python_code
stringlengths 0
456k
|
---|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
from typing import Dict, Sequence, Text, Any
class Concat(Base):
@staticmethod
def export(): # type: () -> None
test_cases = {
'1d': ([1, 2],
[3, 4]),
'2d': ([[1, 2], [3, 4]],
[[5, 6], [7, 8]]),
'3d': ([[[1, 2], [3, 4]], [[5, 6], [7, 8]]],
[[[9, 10], [11, 12]], [[13, 14], [15, 16]]])
} # type: Dict[Text, Sequence[Any]]
for test_case, values_ in test_cases.items():
values = [np.asarray(v, dtype=np.float32) for v in values_]
for i in range(len(values[0].shape)):
in_args = ['value' + str(k) for k in range(len(values))]
node = onnx.helper.make_node(
'Concat',
inputs=[s for s in in_args],
outputs=['output'],
axis=i
)
output = np.concatenate(values, i)
expect(node, inputs=[v for v in values], outputs=[output],
name='test_concat_' + test_case + '_axis_' + str(i))
for i in range(-len(values[0].shape), 0):
in_args = ['value' + str(k) for k in range(len(values))]
node = onnx.helper.make_node(
'Concat',
inputs=[s for s in in_args],
outputs=['output'],
axis=i
)
output = np.concatenate(values, i)
expect(node, inputs=[v for v in values], outputs=[output],
name='test_concat_' + test_case + '_axis_negative_' + str(abs(i)))
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class QuantizeLinear(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node('QuantizeLinear',
inputs=['x', 'y_scale', 'y_zero_point'],
outputs=['y'],)
x = np.array([0, 2, 3, 1000, -254, -1000]).astype(np.float32)
y_scale = np.float32(2)
y_zero_point = np.uint8(128)
y = np.array([128, 129, 130, 255, 1, 0]).astype(np.uint8)
expect(node, inputs=[x, y_scale, y_zero_point], outputs=[y],
name='test_quantizelinear')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Log(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Log',
inputs=['x'],
outputs=['y'],
)
x = np.array([1, 10]).astype(np.float32)
y = np.log(x) # expected output [0., 2.30258512]
expect(node, inputs=[x], outputs=[y],
name='test_log_example')
x = np.exp(np.random.randn(3, 4, 5).astype(np.float32))
y = np.log(x)
expect(node, inputs=[x], outputs=[y],
name='test_log')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class QLinearMatMul(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node('QLinearMatMul',
inputs=['a', 'a_scale', 'a_zero_point', 'b', 'b_scale', 'b_zero_point', 'y_scale', 'y_zero_point'],
outputs=['y'],)
#2D
a = np.array([[208, 236, 0, 238],
[3, 214, 255, 29], ], dtype=np.uint8)
a_scale = np.array([0.0066], dtype=np.float32)
a_zero_point = np.array([113], dtype=np.uint8)
b = np.array([[152, 51, 244],
[60, 26, 255],
[0, 127, 246],
[127, 254, 247]], dtype=np.uint8)
b_scale = np.array([0.00705], dtype=np.float32)
b_zero_point = np.array([114], dtype=np.uint8)
y_scale = np.array([0.0107], dtype=np.float32)
y_zero_point = np.array([118], dtype=np.uint8)
output = np.array([[168, 115, 255],
[1, 66, 151], ], dtype=np.uint8)
expect(node, inputs=[a, a_scale, a_zero_point, b, b_scale, b_zero_point, y_scale, y_zero_point], outputs=[output],
name='test_qlinearmatmul_2D')
#3D
a = np.array([[[208, 236, 0, 238],
[3, 214, 255, 29]],
[[208, 236, 0, 238],
[3, 214, 255, 29]]], dtype=np.uint8)
a_scale = np.array([0.0066], dtype=np.float32)
a_zero_point = np.array([113], dtype=np.uint8)
b = np.array([[[152, 51, 244],
[60, 26, 255],
[0, 127, 246],
[127, 254, 247]],
[[152, 51, 244],
[60, 26, 255],
[0, 127, 246],
[127, 254, 247]]], dtype=np.uint8)
b_scale = np.array([0.00705], dtype=np.float32)
b_zero_point = np.array([114], dtype=np.uint8)
y_scale = np.array([0.0107], dtype=np.float32)
y_zero_point = np.array([118], dtype=np.uint8)
output = np.array([[[168, 115, 255],
[1, 66, 151]],
[[168, 115, 255],
[1, 66, 151]]], dtype=np.uint8)
expect(node, inputs=[a, a_scale, a_zero_point, b, b_scale, b_zero_point, y_scale, y_zero_point], outputs=[output],
name='test_qlinearmatmul_3D')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Asin(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Asin',
inputs=['x'],
outputs=['y'],
)
x = np.array([-0.5, 0, 0.5]).astype(np.float32)
y = np.arcsin(x)
expect(node, inputs=[x], outputs=[y],
name='test_asin_example')
x = np.random.rand(3, 4, 5).astype(np.float32)
y = np.arcsin(x)
expect(node, inputs=[x], outputs=[y],
name='test_asin')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import math
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class LRN(Base):
@staticmethod
def export(): # type: () -> None
alpha = 0.0002
beta = 0.5
bias = 2.0
nsize = 3
node = onnx.helper.make_node(
'LRN',
inputs=['x'],
outputs=['y'],
alpha=alpha,
beta=beta,
bias=bias,
size=nsize
)
x = np.random.randn(5, 5, 5, 5).astype(np.float32)
square_sum = np.zeros((5, 5, 5, 5)).astype(np.float32)
for n, c, h, w in np.ndindex(x.shape):
square_sum[n, c, h, w] = sum(x[n,
max(0, c - int(math.floor((nsize - 1) / 2))):min(5, c + int(math.ceil((nsize - 1) / 2)) + 1),
h,
w] ** 2)
y = x / ((bias + (alpha / nsize) * square_sum) ** beta)
expect(node, inputs=[x], outputs=[y],
name='test_lrn')
@staticmethod
def export_default(): # type: () -> None
alpha = 0.0001
beta = 0.75
bias = 1.0
nsize = 3
node = onnx.helper.make_node(
'LRN',
inputs=['x'],
outputs=['y'],
size=3
)
x = np.random.randn(5, 5, 5, 5).astype(np.float32)
square_sum = np.zeros((5, 5, 5, 5)).astype(np.float32)
for n, c, h, w in np.ndindex(x.shape):
square_sum[n, c, h, w] = sum(x[n,
max(0, c - int(math.floor((nsize - 1) / 2))):min(5, c + int(math.ceil((nsize - 1) / 2)) + 1),
h,
w] ** 2)
y = x / ((bias + (alpha / nsize) * square_sum) ** beta)
expect(node, inputs=[x], outputs=[y],
name='test_lrn_default')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
from typing import Tuple, Text
def einsum_reference_implementation(Eqn, Operands): # type: (Text, Tuple[np.ndarray, ...]) -> np.ndarray
Z = np.einsum(Eqn, *Operands)
return Z
class Einsum(Base):
@staticmethod
def export_einsum_transpose(): # type: () -> None
Eqn = 'ij->ji'
node = onnx.helper.make_node(
'Einsum',
inputs=['x'],
outputs=['y'],
equation=Eqn
)
X = np.random.randn(3, 4)
Y = einsum_reference_implementation(Eqn, (X,))
expect(node, inputs=[X], outputs=[Y], name='test_einsum_transpose')
@staticmethod
def export_einsum_sum(): # type: () -> None
Eqn = 'ij->i'
node = onnx.helper.make_node(
'Einsum',
inputs=['x'],
outputs=['y'],
equation=Eqn
)
X = np.random.randn(3, 4)
Z = einsum_reference_implementation(Eqn, (X,))
expect(node, inputs=[X], outputs=[Z], name='test_einsum_sum')
@staticmethod
def export_einsum_batch_diagonal(): # type: () -> None
Eqn = '...ii ->...i'
node = onnx.helper.make_node(
'Einsum',
inputs=['x'],
outputs=['y'],
equation=Eqn
)
X = np.random.randn(3, 5, 5)
Z = einsum_reference_implementation(Eqn, (X,))
expect(node, inputs=[X], outputs=[Z], name='test_einsum_batch_diagonal')
@staticmethod
def export_einsum_inner_prod(): # type: () -> None
Eqn = 'i,i'
node = onnx.helper.make_node(
'Einsum',
inputs=['x', 'y'],
outputs=['z'],
equation=Eqn
)
X = np.random.randn(5)
Y = np.random.randn(5)
Z = einsum_reference_implementation(Eqn, (X, Y))
expect(node, inputs=[X, Y], outputs=[Z], name='test_einsum_inner_prod')
@staticmethod
def export_einsum_batch_matmul(): # type: () -> None
Eqn = 'bij, bjk -> bik'
node = onnx.helper.make_node(
'Einsum',
inputs=['x', 'y'],
outputs=['z'],
equation=Eqn
)
X = np.random.randn(5, 2, 3)
Y = np.random.randn(5, 3, 4)
Z = einsum_reference_implementation(Eqn, (X, Y))
expect(node, inputs=[X, Y], outputs=[Z], name='test_einsum_batch_matmul')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
from typing import Optional
import onnx
from ..base import Base
from . import expect
def gemm_reference_implementation(A, B, C=None, alpha=1., beta=1., transA=0,
transB=0): # type: (np.ndarray, np.ndarray, Optional[np.ndarray], float, float, int, int) -> np.ndarray
A = A if transA == 0 else A.T
B = B if transB == 0 else B.T
C = C if C is not None else np.array(0)
Y = alpha * np.dot(A, B) + beta * C
return Y
class Gemm(Base):
@staticmethod
def export_default_zero_bias(): # type: () -> None
node = onnx.helper.make_node(
'Gemm',
inputs=['a', 'b', 'c'],
outputs=['y']
)
a = np.random.ranf([3, 5]).astype(np.float32)
b = np.random.ranf([5, 4]).astype(np.float32)
c = np.zeros([1, 4]).astype(np.float32)
y = gemm_reference_implementation(a, b, c)
expect(node, inputs=[a, b, c], outputs=[y],
name='test_gemm_default_zero_bias')
@staticmethod
def export_default_no_bias(): # type: () -> None
node = onnx.helper.make_node(
'Gemm',
inputs=['a', 'b'],
outputs=['y']
)
a = np.random.ranf([2, 10]).astype(np.float32)
b = np.random.ranf([10, 3]).astype(np.float32)
y = gemm_reference_implementation(a, b)
expect(node, inputs=[a, b], outputs=[y],
name='test_gemm_default_no_bias')
@staticmethod
def export_default_scalar_bias(): # type: () -> None
node = onnx.helper.make_node(
'Gemm',
inputs=['a', 'b', 'c'],
outputs=['y']
)
a = np.random.ranf([2, 3]).astype(np.float32)
b = np.random.ranf([3, 4]).astype(np.float32)
c = np.array(3.14).astype(np.float32)
y = gemm_reference_implementation(a, b, c)
expect(node, inputs=[a, b, c], outputs=[y],
name='test_gemm_default_scalar_bias')
@staticmethod
def export_default_single_elem_vector_bias(): # type: () -> None
node = onnx.helper.make_node(
'Gemm',
inputs=['a', 'b', 'c'],
outputs=['y']
)
a = np.random.ranf([3, 7]).astype(np.float32)
b = np.random.ranf([7, 3]).astype(np.float32)
c = np.random.ranf([1]).astype(np.float32)
y = gemm_reference_implementation(a, b, c)
expect(node, inputs=[a, b, c], outputs=[y],
name='test_gemm_default_single_elem_vector_bias')
@staticmethod
def export_default_vector_bias(): # type: () -> None
node = onnx.helper.make_node(
'Gemm',
inputs=['a', 'b', 'c'],
outputs=['y']
)
a = np.random.ranf([2, 7]).astype(np.float32)
b = np.random.ranf([7, 4]).astype(np.float32)
c = np.random.ranf([1, 4]).astype(np.float32)
y = gemm_reference_implementation(a, b, c)
expect(node, inputs=[a, b, c], outputs=[y],
name='test_gemm_default_vector_bias')
@staticmethod
def export_default_matrix_bias(): # type: () -> None
node = onnx.helper.make_node(
'Gemm',
inputs=['a', 'b', 'c'],
outputs=['y']
)
a = np.random.ranf([3, 6]).astype(np.float32)
b = np.random.ranf([6, 4]).astype(np.float32)
c = np.random.ranf([3, 4]).astype(np.float32)
y = gemm_reference_implementation(a, b, c)
expect(node, inputs=[a, b, c], outputs=[y],
name='test_gemm_default_matrix_bias')
@staticmethod
def export_transposeA(): # type: () -> None
node = onnx.helper.make_node(
'Gemm',
inputs=['a', 'b', 'c'],
outputs=['y'],
transA=1
)
a = np.random.ranf([6, 3]).astype(np.float32)
b = np.random.ranf([6, 4]).astype(np.float32)
c = np.zeros([1, 4]).astype(np.float32)
y = gemm_reference_implementation(a, b, c, transA=1)
expect(node, inputs=[a, b, c], outputs=[y],
name='test_gemm_transposeA')
@staticmethod
def export_transposeB(): # type: () -> None
node = onnx.helper.make_node(
'Gemm',
inputs=['a', 'b', 'c'],
outputs=['y'],
transB=1
)
a = np.random.ranf([3, 6]).astype(np.float32)
b = np.random.ranf([4, 6]).astype(np.float32)
c = np.zeros([1, 4]).astype(np.float32)
y = gemm_reference_implementation(a, b, c, transB=1)
expect(node, inputs=[a, b, c], outputs=[y],
name='test_gemm_transposeB')
@staticmethod
def export_alpha(): # type: () -> None
node = onnx.helper.make_node(
'Gemm',
inputs=['a', 'b', 'c'],
outputs=['y'],
alpha=0.5
)
a = np.random.ranf([3, 5]).astype(np.float32)
b = np.random.ranf([5, 4]).astype(np.float32)
c = np.zeros([1, 4]).astype(np.float32)
y = gemm_reference_implementation(a, b, c, alpha=0.5)
expect(node, inputs=[a, b, c], outputs=[y],
name='test_gemm_alpha')
@staticmethod
def export_beta(): # type: () -> None
node = onnx.helper.make_node(
'Gemm',
inputs=['a', 'b', 'c'],
outputs=['y'],
beta=0.5
)
a = np.random.ranf([2, 7]).astype(np.float32)
b = np.random.ranf([7, 4]).astype(np.float32)
c = np.random.ranf([1, 4]).astype(np.float32)
y = gemm_reference_implementation(a, b, c, beta=0.5)
expect(node, inputs=[a, b, c], outputs=[y],
name='test_gemm_beta')
@staticmethod
def export_all_attributes(): # type: () -> None
node = onnx.helper.make_node(
'Gemm',
inputs=['a', 'b', 'c'],
outputs=['y'],
alpha=0.25,
beta=0.35,
transA=1,
transB=1
)
a = np.random.ranf([4, 3]).astype(np.float32)
b = np.random.ranf([5, 4]).astype(np.float32)
c = np.random.ranf([1, 5]).astype(np.float32)
y = gemm_reference_implementation(a, b, c, transA=1, transB=1, alpha=0.25, beta=0.35)
expect(node, inputs=[a, b, c], outputs=[y],
name='test_gemm_all_attributes')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Where(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Where',
inputs=['condition', 'x', 'y'],
outputs=['z'],
)
condition = np.array([[1, 0], [1, 1]], dtype=np.bool)
x = np.array([[1, 2], [3, 4]], dtype=np.float32)
y = np.array([[9, 8], [7, 6]], dtype=np.float32)
z = np.where(condition, x, y) # expected output [[1, 8], [3, 4]]
expect(node, inputs=[condition, x, y], outputs=[z],
name='test_where_example')
@staticmethod
def export_long(): # type: () -> None
node = onnx.helper.make_node(
'Where',
inputs=['condition', 'x', 'y'],
outputs=['z'],
)
condition = np.array([[1, 0], [1, 1]], dtype=np.bool)
x = np.array([[1, 2], [3, 4]], dtype=np.int64)
y = np.array([[9, 8], [7, 6]], dtype=np.int64)
z = np.where(condition, x, y) # expected output [[1, 8], [3, 4]]
expect(node, inputs=[condition, x, y], outputs=[z],
name='test_where_long_example')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Cos(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Cos',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.cos(x)
expect(node, inputs=[x], outputs=[y],
name='test_cos_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.cos(x)
expect(node, inputs=[x], outputs=[y],
name='test_cos')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Or(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Or',
inputs=['x', 'y'],
outputs=['or'],
)
# 2d
x = (np.random.randn(3, 4) > 0).astype(np.bool)
y = (np.random.randn(3, 4) > 0).astype(np.bool)
z = np.logical_or(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_or2d')
# 3d
x = (np.random.randn(3, 4, 5) > 0).astype(np.bool)
y = (np.random.randn(3, 4, 5) > 0).astype(np.bool)
z = np.logical_or(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_or3d')
# 4d
x = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool)
y = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool)
z = np.logical_or(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_or4d')
@staticmethod
def export_or_broadcast(): # type: () -> None
node = onnx.helper.make_node(
'Or',
inputs=['x', 'y'],
outputs=['or'],
)
# 3d vs 1d
x = (np.random.randn(3, 4, 5) > 0).astype(np.bool)
y = (np.random.randn(5) > 0).astype(np.bool)
z = np.logical_or(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_or_bcast3v1d')
# 3d vs 2d
x = (np.random.randn(3, 4, 5) > 0).astype(np.bool)
y = (np.random.randn(4, 5) > 0).astype(np.bool)
z = np.logical_or(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_or_bcast3v2d')
# 4d vs 2d
x = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool)
y = (np.random.randn(5, 6) > 0).astype(np.bool)
z = np.logical_or(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_or_bcast4v2d')
# 4d vs 3d
x = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool)
y = (np.random.randn(4, 5, 6) > 0).astype(np.bool)
z = np.logical_or(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_or_bcast4v3d')
# 4d vs 4d
x = (np.random.randn(1, 4, 1, 6) > 0).astype(np.bool)
y = (np.random.randn(3, 1, 5, 6) > 0).astype(np.bool)
z = np.logical_or(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_or_bcast4v4d')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
def one_hot(indices, depth, axis=-1, dtype=np.float32): # type: ignore
''' Compute one hot from indices at a specific axis '''
values = np.asarray(indices)
rank = len(values.shape)
depth_range = np.arange(depth)
if axis < 0:
axis += (rank + 1)
ls = values.shape[0:axis]
rs = values.shape[axis:rank]
targets = np.reshape(depth_range, (1,) * len(ls) + depth_range.shape + (1,) * len(rs))
values = np.reshape(np.mod(values, depth), ls + (1,) + rs)
return np.asarray(targets == values, dtype=dtype)
class OneHot(Base):
@staticmethod
def export_without_axis(): # type: () -> None
on_value = 5
off_value = 2
output_type = np.int32
node = onnx.helper.make_node(
'OneHot',
inputs=['indices', 'depth', 'values'],
outputs=['y']
)
indices = np.array([0, 7, 8], dtype=np.int64)
depth = np.float32(12)
values = np.array([off_value, on_value], dtype=output_type)
y = one_hot(indices, depth, dtype=output_type)
y = y * (on_value - off_value) + off_value
expect(node, inputs=[indices, depth, values], outputs=[y], name='test_onehot_without_axis')
@staticmethod
def export_with_axis(): # type: () -> None
axisValue = 1
on_value = 3
off_value = 1
output_type = np.float32
node = onnx.helper.make_node(
'OneHot',
inputs=['indices', 'depth', 'values'],
outputs=['y'],
axis=axisValue
)
indices = np.array([[1, 9],
[2, 4]], dtype=np.float32)
depth = np.array([10], dtype=np.float32)
values = np.array([off_value, on_value], dtype=output_type)
y = one_hot(indices, depth, axis=axisValue, dtype=output_type)
y = y * (on_value - off_value) + off_value
expect(node, inputs=[indices, depth, values], outputs=[y], name='test_onehot_with_axis')
@staticmethod
def export_with_negative_indices(): # type: () -> None
axisValue = 1
on_value = 3
off_value = 1
output_type = np.float32
node = onnx.helper.make_node(
'OneHot',
inputs=['indices', 'depth', 'values'],
outputs=['y'],
axis=axisValue
)
indices = np.array([0, -7, -8], dtype=np.int64)
depth = np.array([10], dtype=np.float32)
values = np.array([off_value, on_value], dtype=output_type)
y = one_hot(indices, depth, axis=axisValue, dtype=output_type)
y = y * (on_value - off_value) + off_value
expect(node, inputs=[indices, depth, values], outputs=[y], name='test_onehot_negative_indices')
# print(y)
# [[3. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
# [1. 1. 1. 3. 1. 1. 1. 1. 1. 1.]
# [1. 1. 3. 1. 1. 1. 1. 1. 1. 1.]]
@staticmethod
def export_with_negative_axis(): # type: () -> None
axisValue = -2
on_value = 3
off_value = 1
output_type = np.float32
node = onnx.helper.make_node(
'OneHot',
inputs=['indices', 'depth', 'values'],
outputs=['y'],
axis=axisValue
)
indices = np.array([[1, 9],
[2, 4]], dtype=np.float32)
depth = np.array([10], dtype=np.float32)
values = np.array([off_value, on_value], dtype=output_type)
y = one_hot(indices, depth, axis=axisValue, dtype=output_type)
y = y * (on_value - off_value) + off_value
expect(node, inputs=[indices, depth, values], outputs=[y], name='test_onehot_with_negative_axis')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
def reshape_reference_implementation(data, shape): # type: (np.ndarray, np.ndarray) -> np.ndarray
# replace zeros with corresponding dim size
# we need to do this because np.reshape doesn't support 0
new_shape = np.copy(shape)
zeros_index = np.where(shape == 0)
new_shape[zeros_index] = np.array(data.shape)[zeros_index]
reshaped = np.reshape(data, new_shape)
return reshaped
class Reshape(Base):
@staticmethod
def export(): # type: () -> None
original_shape = [2, 3, 4]
test_cases = {
'reordered_all_dims': np.array([4, 2, 3], dtype=np.int64),
'reordered_last_dims': np.array([2, 4, 3], dtype=np.int64),
'reduced_dims': np.array([2, 12], dtype=np.int64),
'extended_dims': np.array([2, 3, 2, 2], dtype=np.int64),
'one_dim': np.array([24], dtype=np.int64),
'negative_dim': np.array([2, -1, 2], dtype=np.int64),
'negative_extended_dims': np.array([-1, 2, 3, 4], dtype=np.int64),
'zero_dim': np.array([2, 0, 4, 1], dtype=np.int64),
'zero_and_negative_dim': np.array([2, 0, 1, -1], dtype=np.int64),
}
data = np.random.random_sample(original_shape).astype(np.float32)
for test_name, shape in test_cases.items():
node = onnx.helper.make_node(
'Reshape',
inputs=['data', 'shape'],
outputs=['reshaped'],
)
reshaped = reshape_reference_implementation(data, shape)
expect(node, inputs=[data, shape], outputs=[reshaped],
name='test_reshape_' + test_name)
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Tan(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Tan',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.tan(x)
expect(node, inputs=[x], outputs=[y],
name='test_tan_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.tan(x)
expect(node, inputs=[x], outputs=[y],
name='test_tan')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class DequantizeLinear(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node('DequantizeLinear',
inputs=['x', 'x_scale', 'x_zero_point'],
outputs=['y'],)
# scalar zero point and scale
x = np.array([0, 3, 128, 255]).astype(np.uint8)
x_scale = np.float32(2)
x_zero_point = np.uint8(128)
y = np.array([-256, -250, 0, 254], dtype=np.float32)
expect(node, inputs=[x, x_scale, x_zero_point], outputs=[y],
name='test_dequantizelinear')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Unique(Base):
@staticmethod
def export_sorted_without_axis(): # type: () -> None
node_sorted = onnx.helper.make_node(
'Unique',
inputs=['X'],
outputs=['Y', 'indices', 'inverse_indices', 'counts']
)
x = np.array([2.0, 1.0, 1.0, 3.0, 4.0, 3.0], dtype=np.float32)
y, indices, inverse_indices, counts = np.unique(x, True, True, True)
expect(node_sorted, inputs=[x], outputs=[y, indices, inverse_indices, counts], name='test_unique_sorted_without_axis')
@staticmethod
def export_not_sorted_without_axis(): # type: () -> None
node_not_sorted = onnx.helper.make_node(
'Unique',
inputs=['X'],
outputs=['Y', 'indices', 'inverse_indices', 'counts'],
sorted=0
)
# numpy unique does not retain original order (it sorts the output unique values)
# https://github.com/numpy/numpy/issues/8621
# we need to recover unsorted output and indices
x = np.array([2.0, 1.0, 1.0, 3.0, 4.0, 3.0], dtype=np.float32)
y, indices, inverse_indices, counts = np.unique(x, True, True, True)
# prepare index mapping from sorted to unsorted
argsorted_indices = np.argsort(indices)
inverse_indices_map = {i: si for i, si in zip(argsorted_indices, np.arange(len(argsorted_indices)))}
indices = indices[argsorted_indices]
y = np.take(x, indices, axis=0)
inverse_indices = np.asarray([inverse_indices_map[i] for i in inverse_indices], dtype=np.int64)
counts = counts[argsorted_indices]
# print(y)
# [2.0, 1.0, 3.0, 4.0]
# print(indices)
# [0 1 3 4]
# print(inverse_indices)
# [0, 1, 1, 2, 3, 2]
# print(counts)
# [1, 2, 2, 1]
expect(node_not_sorted, inputs=[x], outputs=[y, indices, inverse_indices, counts], name='test_unique_not_sorted_without_axis')
@staticmethod
def export_sorted_with_axis(): # type: () -> None
node_sorted = onnx.helper.make_node(
'Unique',
inputs=['X'],
outputs=['Y', 'indices', 'inverse_indices', 'counts'],
sorted=1,
axis=0
)
x = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]], dtype=np.float32)
y, indices, inverse_indices, counts = np.unique(x, True, True, True, axis=0)
# print(y)
# [[1. 0. 0.]
# [2. 3. 4.]]
# print(indices)
# [0 2]
# print(inverse_indices)
# [0 0 1]
# print(counts)
# [2 1]
expect(node_sorted, inputs=[x], outputs=[y, indices, inverse_indices, counts], name='test_unique_sorted_with_axis')
@staticmethod
def export_sorted_with_axis_3d(): # type: () -> None
node_sorted = onnx.helper.make_node(
'Unique',
inputs=['X'],
outputs=['Y', 'indices', 'inverse_indices', 'counts'],
sorted=1,
axis=1
)
x = np.array([[[1., 1.], [0., 1.], [2., 1.], [0., 1.]],
[[1., 1.], [0., 1.], [2., 1.], [0., 1.]]], dtype=np.float32)
y, indices, inverse_indices, counts = np.unique(x, True, True, True, axis=1)
# print(y)
# [[[0. 1.]
# [1. 1.]
# [2. 1.]]
# [[0. 1.]
# [1. 1.]
# [2. 1.]]]
# print(indices)
# [1 0 2]
# print(inverse_indices)
# [1 0 2 0]
# print(counts)
# [2 1 1]
expect(node_sorted, inputs=[x], outputs=[y, indices, inverse_indices, counts], name='test_unique_sorted_with_axis_3d')
@staticmethod
def export_sorted_with_negative_axis(): # type: () -> None
node_sorted = onnx.helper.make_node(
'Unique',
inputs=['X'],
outputs=['Y', 'indices', 'inverse_indices', 'counts'],
sorted=1,
axis=-1
)
x = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 3]], dtype=np.float32)
y, indices, inverse_indices, counts = np.unique(x, True, True, True, axis=-1)
# print(y)
# [[0. 1.]
# [0. 1.]
# [3. 2.]]
# print(indices)
# [1 0]
# print(inverse_indices)
# [1 0 0]
# print(counts)
# [2 1]
expect(node_sorted, inputs=[x], outputs=[y, indices, inverse_indices, counts], name='test_unique_sorted_with_negative_axis')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class ReduceMin(Base):
@staticmethod
def export_do_not_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [1]
keepdims = 0
node = onnx.helper.make_node(
'ReduceMin',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
reduced = np.minimum.reduce(data, axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[5., 1.]
# [30., 1.]
# [55., 1.]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_min_do_not_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.minimum.reduce(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_min_do_not_keepdims_random')
@staticmethod
def export_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [1]
keepdims = 1
node = onnx.helper.make_node(
'ReduceMin', inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
reduced = np.minimum.reduce(data, axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[[5., 1.]]
# [[30., 1.]]
# [[55., 1.]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_min_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.minimum.reduce(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_min_keepdims_random')
@staticmethod
def export_default_axes_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = None
keepdims = 1
node = onnx.helper.make_node(
'ReduceMin',
inputs=['data'],
outputs=['reduced'],
keepdims=keepdims)
data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
reduced = np.minimum.reduce(data, axis=axes, keepdims=keepdims == 1)
#print(reduced)
#[[[1.]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_min_default_axes_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.minimum.reduce(data, axis=axes, keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_min_default_axes_keepdims_random')
@staticmethod
def export_negative_axes_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [-2]
keepdims = 1
node = onnx.helper.make_node(
'ReduceMin', inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
reduced = np.minimum.reduce(data, axis=tuple(axes), keepdims=keepdims == 1)
# print(reduced)
#[[[5., 1.]]
# [[30., 1.]]
# [[55., 1.]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_min_negative_axes_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.minimum.reduce(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_min_negative_axes_keepdims_random')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class ReduceL1(Base):
@staticmethod
def export_do_not_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [2]
keepdims = 0
node = onnx.helper.make_node(
'ReduceL1',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims
)
data = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape)
#print(data)
#[[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]], [[9., 10.], [11., 12.]]]
reduced = np.sum(a=np.abs(data), axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[3., 7.], [11., 15.], [19., 23.]]
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l1_do_not_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sum(a=np.abs(data), axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l1_do_not_keepdims_random')
@staticmethod
def export_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [2]
keepdims = 1
node = onnx.helper.make_node(
'ReduceL1',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims
)
data = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape)
#print(data)
#[[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]], [[9., 10.], [11., 12.]]]
reduced = np.sum(a=np.abs(data), axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[[3.], [7.]], [[11.], [15.]], [[19.], [23.]]]
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l1_keep_dims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sum(a=np.abs(data), axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l1_keep_dims_random')
@staticmethod
def export_default_axes_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = None
keepdims = 1
node = onnx.helper.make_node(
'ReduceL1',
inputs=['data'],
outputs=['reduced'],
keepdims=keepdims
)
data = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape)
#print(data)
#[[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]], [[9., 10.], [11., 12.]]]
reduced = np.sum(a=np.abs(data), axis=axes, keepdims=keepdims == 1)
#print(reduced)
#[[[78.]]]
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l1_default_axes_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sum(a=np.abs(data), axis=axes, keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l1_default_axes_keepdims_random')
@staticmethod
def export_negative_axes_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [-1]
keepdims = 1
node = onnx.helper.make_node(
'ReduceL1',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims
)
data = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape)
# print(data)
#[[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]], [[9., 10.], [11., 12.]]]
reduced = np.sum(a=np.abs(data), axis=tuple(axes), keepdims=keepdims == 1)
# print(reduced)
#[[[3.], [7.]], [[11.], [15.]], [[19.], [23.]]]
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l1_negative_axes_keep_dims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sum(a=np.abs(data), axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l1_negative_axes_keep_dims_random')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class LeakyRelu(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'LeakyRelu',
inputs=['x'],
outputs=['y'],
alpha=0.1
)
x = np.array([-1, 0, 1]).astype(np.float32)
# expected output [-0.1, 0., 1.]
y = np.clip(x, 0, np.inf) + np.clip(x, -np.inf, 0) * 0.1
expect(node, inputs=[x], outputs=[y],
name='test_leakyrelu_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, 0, np.inf) + np.clip(x, -np.inf, 0) * 0.1
expect(node, inputs=[x], outputs=[y],
name='test_leakyrelu')
@staticmethod
def export_leakyrelu_default(): # type: () -> None
default_alpha = 0.01
node = onnx.helper.make_node(
'LeakyRelu',
inputs=['x'],
outputs=['y'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, 0, np.inf) + np.clip(x, -np.inf, 0) * default_alpha
expect(node, inputs=[x], outputs=[y],
name='test_leakyrelu_default')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
from onnx.backend.sample.ops.abs import abs
class Abs(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Abs',
inputs=['x'],
outputs=['y'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = abs(x)
expect(node, inputs=[x], outputs=[y],
name='test_abs')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import sys
import re
from typing import List, Text, Sequence, Any
import numpy as np # type: ignore
import onnx
import onnx.mapping
from ..utils import import_recursive
from ..test_case import TestCase
_NodeTestCases = []
from onnx.onnx_pb import NodeProto, AttributeProto
from onnx.onnx_operators_pb import FunctionProto
# FIXME(TMVector): Any reason we can't get rid of this and use the C++ helper directly?
def function_expand_helper(node, # type: NodeProto
function_proto, # type: FunctionProto
op_prefix # type: Text
): # type: (...) -> List[NodeProto]
node_list = []
io_names_map = dict()
attribute_map = dict((a.name, a) for a in node.attribute)
for idx in range(len(function_proto.input)):
io_names_map[function_proto.input[idx]] = node.input[idx] \
if idx in range(len(node.input)) else ""
for idx in range(len(function_proto.output)):
# Even if the node has been created with optional outputs missing, we
# can't assume that the function body handles this correctly, such as in
# the case that output is also an intermediate value.
# So we only add a name mapping if the output is present. An internal
# name will be generated if the missing output is used, the same as any
# other internal tensor.
if idx in range(len(node.output)) and node.output[idx] != "":
io_names_map[function_proto.output[idx]] = node.output[idx]
for internal_node in function_proto.node:
new_node = NodeProto()
new_node.CopyFrom(internal_node)
new_node.ClearField("input")
new_node.ClearField("output")
new_node.ClearField("attribute")
for internal_name in internal_node.input:
if internal_name in io_names_map:
new_node.input.append(io_names_map[internal_name])
else:
new_node.input.append(op_prefix + internal_name)
for internal_name in internal_node.output:
if internal_name in io_names_map:
new_node.output.append(io_names_map[internal_name])
else:
new_node.output.append(op_prefix + internal_name)
for attr in internal_node.attribute:
if attr.HasField("ref_attr_name"):
if attr.ref_attr_name in attribute_map:
new_attr = AttributeProto()
new_attr.CopyFrom(attribute_map[attr.ref_attr_name]) # type: ignore
new_attr.name = attr.name
new_node.attribute.extend([new_attr])
else:
new_attr = AttributeProto()
new_attr.CopyFrom(attr)
new_node.attribute.extend([new_attr])
node_list.append(new_node)
return node_list
def function_testcase_helper(node, name): # type: (NodeProto, Text) -> List[NodeProto]
test_op = node.op_type
op_prefix = test_op + "_" + name + "_expanded_function"
schema = onnx.defs.get_schema(test_op, node.domain)
if schema.has_function: # type: ignore
function_proto = schema.function_body # type: ignore
elif schema.has_context_dependent_function: # type: ignore
function_proto_str = schema.get_context_dependent_function(node.SerializeToString()) # type: ignore
function_proto = FunctionProto()
function_proto.ParseFromString(function_proto_str)
else:
return []
for attr in schema.attributes:
if attr in [a.name for a in node.attribute]:
continue
if schema.attributes[attr].default_value:
node.attribute.extend([schema.attributes[attr].default_value])
# function_proto.attributes
node_list = function_expand_helper(node, function_proto, op_prefix)
return node_list
def _extract_value_info(arr, name): # type: (np.ndarray, Text) -> onnx.ValueInfoProto
return onnx.helper.make_tensor_value_info(
name=name,
elem_type=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[arr.dtype],
shape=arr.shape)
def expect(node, # type: onnx.NodeProto
inputs, # type: Sequence[np.ndarray]
outputs, # type: Sequence[np.ndarray]
name, # type: Text
**kwargs # type: Any
): # type: (...) -> None
present_inputs = [x for x in node.input if (x != '')]
present_outputs = [x for x in node.output if (x != '')]
inputs_vi = [_extract_value_info(arr, arr_name)
for arr, arr_name in zip(inputs, present_inputs)]
outputs_vi = [_extract_value_info(arr, arr_name)
for arr, arr_name in zip(outputs, present_outputs)]
graph = onnx.helper.make_graph(
nodes=[node],
name=name,
inputs=inputs_vi,
outputs=outputs_vi)
kwargs[str('producer_name')] = 'backend-test'
model = onnx.helper.make_model(graph, **kwargs)
_NodeTestCases.append(TestCase(
name=name,
model_name=name,
url=None,
model_dir=None,
model=model,
data_sets=[(inputs, outputs)],
kind='node',
rtol=1e-3,
atol=1e-7,
))
expanded_function_nodes = function_testcase_helper(node, name)
if expanded_function_nodes:
function_test_name = name + '_expanded'
graph = onnx.helper.make_graph(
nodes=expanded_function_nodes,
name=function_test_name,
inputs=inputs_vi,
outputs=outputs_vi)
kwargs[str('producer_name')] = 'backend-test'
model = onnx.helper.make_model(graph, **kwargs)
_NodeTestCases.append(TestCase(
name=function_test_name,
model_name=function_test_name,
url=None,
model_dir=None,
model=model,
data_sets=[(inputs, outputs)],
kind='node',
rtol=1e-3,
atol=1e-7,
))
def collect_testcases(): # type: () -> List[TestCase]
'''Collect node test cases defined in python/numpy code.
'''
import_recursive(sys.modules[__name__])
return _NodeTestCases
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
def argmax_use_numpy(data, axis=0, keepdims=1): # type: (np.ndarray, int, int) -> (np.ndarray)
result = np.argmax(data, axis=axis)
if (keepdims == 1):
result = np.expand_dims(result, axis)
return result.astype(np.int64)
def argmax_use_numpy_select_last_index(data, axis=0, keepdims=True): # type: (np.ndarray, int, int) -> (np.ndarray)
data = np.flip(data, axis)
result = np.argmax(data, axis=axis)
result = data.shape[axis] - result - 1
if keepdims:
result = np.expand_dims(result, axis)
return result.astype(np.int64)
class ArgMax(Base):
@staticmethod
def export_no_keepdims(): # type: () -> None
data = np.array([[2, 1], [3, 10]], dtype=np.float32)
axis = 1
keepdims = 0
node = onnx.helper.make_node(
'ArgMax',
inputs=['data'],
outputs=['result'],
axis=axis,
keepdims=keepdims)
# result: [[0, 1]]
result = argmax_use_numpy(data, axis=axis, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmax_no_keepdims_example')
data = np.random.uniform(-10, 10, [2, 3, 4]).astype(np.float32)
# result's shape: [2, 4]
result = argmax_use_numpy(data, axis=axis, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmax_no_keepdims_random')
@staticmethod
def export_keepdims(): # type: () -> None
data = np.array([[2, 1], [3, 10]], dtype=np.float32)
axis = 1
keepdims = 1
node = onnx.helper.make_node(
'ArgMax',
inputs=['data'],
outputs=['result'],
axis=axis,
keepdims=keepdims)
# result: [[0], [1]]
result = argmax_use_numpy(data, axis=axis, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmax_keepdims_example')
data = np.random.uniform(-10, 10, [2, 3, 4]).astype(np.float32)
# result's shape: [2, 1, 4]
result = argmax_use_numpy(data, axis=axis, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmax_keepdims_random')
@staticmethod
def export_default_axes_keepdims(): # type: () -> None
data = np.array([[2, 1], [3, 10]], dtype=np.float32)
keepdims = 1
node = onnx.helper.make_node(
'ArgMax',
inputs=['data'],
outputs=['result'],
keepdims=keepdims)
# result: [[1], [1]]
result = argmax_use_numpy(data, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmax_default_axis_example')
data = np.random.uniform(-10, 10, [2, 3, 4]).astype(np.float32)
# result's shape: [1, 3, 4]
result = argmax_use_numpy(data, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmax_default_axis_random')
@staticmethod
def export_negative_axis_keepdims(): # type: () -> None
data = np.array([[2, 1], [3, 10]], dtype=np.float32)
axis = -1
keepdims = 1
node = onnx.helper.make_node(
'ArgMax',
inputs=['data'],
outputs=['result'],
axis=axis,
keepdims=keepdims)
# result: [[0], [1]]
result = argmax_use_numpy(data, axis=axis, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmax_negative_axis_keepdims_example')
data = np.random.uniform(-10, 10, [2, 3, 4]).astype(np.float32)
# result's shape: [2, 3, 1]
result = argmax_use_numpy(data, axis=axis, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmax_negative_axis_keepdims_random')
@staticmethod
def export_no_keepdims_select_last_index(): # type: () -> None
data = np.array([[2, 2], [3, 10]], dtype=np.float32)
axis = 1
keepdims = 0
node = onnx.helper.make_node(
'ArgMax',
inputs=['data'],
outputs=['result'],
axis=axis,
keepdims=keepdims,
select_last_index=True)
# result: [[1, 1]]
result = argmax_use_numpy_select_last_index(data, axis=axis, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmax_no_keepdims_example_select_last_index')
data = np.random.uniform(-10, 10, [2, 3, 4]).astype(np.float32)
# result's shape: [2, 4]
result = argmax_use_numpy_select_last_index(data, axis=axis, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmax_no_keepdims_random_select_last_index')
@staticmethod
def export_keepdims_select_last_index(): # type: () -> None
data = np.array([[2, 2], [3, 10]], dtype=np.float32)
axis = 1
keepdims = 1
node = onnx.helper.make_node(
'ArgMax',
inputs=['data'],
outputs=['result'],
axis=axis,
keepdims=keepdims,
select_last_index=True)
# result: [[1], [1]]
result = argmax_use_numpy_select_last_index(data, axis=axis, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmax_keepdims_example_select_last_index')
data = np.random.uniform(-10, 10, [2, 3, 4]).astype(np.float32)
# result's shape: [2, 1, 4]
result = argmax_use_numpy_select_last_index(data, axis=axis, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmax_keepdims_random_select_last_index')
@staticmethod
def export_default_axes_keepdims_select_last_index(): # type: () -> None
data = np.array([[2, 2], [3, 10]], dtype=np.float32)
keepdims = 1
node = onnx.helper.make_node(
'ArgMax',
inputs=['data'],
outputs=['result'],
keepdims=keepdims,
select_last_index=True)
# result: [[1, 1]]
result = argmax_use_numpy_select_last_index(data, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmax_default_axis_example_select_last_index')
data = np.random.uniform(-10, 10, [2, 3, 4]).astype(np.float32)
# result's shape: [1, 3, 4]
result = argmax_use_numpy_select_last_index(data, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmax_default_axis_random_select_last_index')
@staticmethod
def export_negative_axis_keepdims_select_last_index(): # type: () -> None
data = np.array([[2, 2], [3, 10]], dtype=np.float32)
axis = -1
keepdims = 1
node = onnx.helper.make_node(
'ArgMax',
inputs=['data'],
outputs=['result'],
axis=axis,
keepdims=keepdims,
select_last_index=True)
# result: [[1], [1]]
result = argmax_use_numpy_select_last_index(data, axis=axis, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmax_negative_axis_keepdims_example_select_last_index')
data = np.random.uniform(-10, 10, [2, 3, 4]).astype(np.float32)
# result's shape: [2, 3, 1]
result = argmax_use_numpy_select_last_index(data, axis=axis, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmax_negative_axis_keepdims_random_select_last_index')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class BitShift(Base):
@staticmethod
def export_right_unit8(): # type: () -> None
node = onnx.helper.make_node(
'BitShift',
inputs=['x', 'y'],
outputs=['z'],
direction="RIGHT"
)
x = np.array([16, 4, 1]).astype(np.uint8)
y = np.array([1, 2, 3]).astype(np.uint8)
z = x >> y # expected output [8, 1, 0]
expect(node, inputs=[x, y], outputs=[z],
name='test_bitshift_right_uint8')
@staticmethod
def export_right_unit16(): # type: () -> None
node = onnx.helper.make_node(
'BitShift',
inputs=['x', 'y'],
outputs=['z'],
direction="RIGHT"
)
x = np.array([16, 4, 1]).astype(np.uint16)
y = np.array([1, 2, 3]).astype(np.uint16)
z = x >> y # expected output [8, 1, 0]
expect(node, inputs=[x, y], outputs=[z],
name='test_bitshift_right_uint16')
@staticmethod
def export_right_unit32(): # type: () -> None
node = onnx.helper.make_node(
'BitShift',
inputs=['x', 'y'],
outputs=['z'],
direction="RIGHT"
)
x = np.array([16, 4, 1]).astype(np.uint32)
y = np.array([1, 2, 3]).astype(np.uint32)
z = x >> y # expected output [8, 1, 0]
expect(node, inputs=[x, y], outputs=[z],
name='test_bitshift_right_uint32')
@staticmethod
def export_right_unit64(): # type: () -> None
node = onnx.helper.make_node(
'BitShift',
inputs=['x', 'y'],
outputs=['z'],
direction="RIGHT"
)
x = np.array([16, 4, 1]).astype(np.uint64)
y = np.array([1, 2, 3]).astype(np.uint64)
z = x >> y # expected output [8, 1, 0]
expect(node, inputs=[x, y], outputs=[z],
name='test_bitshift_right_uint64')
@staticmethod
def export_left_unit8(): # type: () -> None
node = onnx.helper.make_node(
'BitShift',
inputs=['x', 'y'],
outputs=['z'],
direction="LEFT"
)
x = np.array([16, 4, 1]).astype(np.uint8)
y = np.array([1, 2, 3]).astype(np.uint8)
z = x << y # expected output [32, 16, 8]
expect(node, inputs=[x, y], outputs=[z],
name='test_bitshift_left_uint8')
@staticmethod
def export_left_unit16(): # type: () -> None
node = onnx.helper.make_node(
'BitShift',
inputs=['x', 'y'],
outputs=['z'],
direction="LEFT"
)
x = np.array([16, 4, 1]).astype(np.uint16)
y = np.array([1, 2, 3]).astype(np.uint16)
z = x << y # expected output [32, 16, 8]
expect(node, inputs=[x, y], outputs=[z],
name='test_bitshift_left_uint16')
@staticmethod
def export_left_unit32(): # type: () -> None
node = onnx.helper.make_node(
'BitShift',
inputs=['x', 'y'],
outputs=['z'],
direction="LEFT"
)
x = np.array([16, 4, 1]).astype(np.uint32)
y = np.array([1, 2, 3]).astype(np.uint32)
z = x << y # expected output [32, 16, 8]
expect(node, inputs=[x, y], outputs=[z],
name='test_bitshift_left_uint32')
@staticmethod
def export_left_unit64(): # type: () -> None
node = onnx.helper.make_node(
'BitShift',
inputs=['x', 'y'],
outputs=['z'],
direction="LEFT"
)
x = np.array([16, 4, 1]).astype(np.uint64)
y = np.array([1, 2, 3]).astype(np.uint64)
z = x << y # expected output [32, 16, 8]
expect(node, inputs=[x, y], outputs=[z],
name='test_bitshift_left_uint64')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Floor(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Floor',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1.5, 1.2, 2]).astype(np.float32)
y = np.floor(x) # expected output [-2., 1., 2.]
expect(node, inputs=[x], outputs=[y],
name='test_floor_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.floor(x)
expect(node, inputs=[x], outputs=[y],
name='test_floor')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import math
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Erf(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Erf',
inputs=['x'],
outputs=['y'],
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
y = np.vectorize(math.erf)(x).astype(np.float32)
expect(node, inputs=[x], outputs=[y],
name='test_erf')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
from onnx import helper
class Upsample(Base):
@staticmethod
def export_nearest(): # type: () -> None
node = onnx.helper.make_node(
'Upsample',
inputs=['X', 'scales'],
outputs=['Y'],
mode='nearest',
)
data = np.array([[[
[1, 2],
[3, 4],
]]], dtype=np.float32)
scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
output = np.array([[[
[1, 1, 1, 2, 2, 2],
[1, 1, 1, 2, 2, 2],
[3, 3, 3, 4, 4, 4],
[3, 3, 3, 4, 4, 4],
]]], dtype=np.float32)
expect(node, inputs=[data, scales], outputs=[output],
name='test_upsample_nearest', opset_imports=[helper.make_opsetid("", 9)])
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class ConvInteger(Base):
@staticmethod
def export(): # type: () -> None
x = np.array([2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.uint8).reshape((1, 1, 3, 3))
x_zero_point = np.uint8(1)
w = np.array([1, 1, 1, 1]).astype(np.uint8).reshape((1, 1, 2, 2))
y = np.array([12, 16, 24, 28]).astype(np.int32).reshape(1, 1, 2, 2)
# ConvInteger without padding
convinteger_node = onnx.helper.make_node('ConvInteger',
inputs=['x', 'w', 'x_zero_point'],
outputs=['y'])
expect(convinteger_node, inputs=[x, w, x_zero_point], outputs=[y],
name='test_basic_convinteger')
# ConvInteger with padding
y_with_padding = np.array([1, 3, 5, 3, 5, 12, 16, 9, 11, 24, 28, 15, 7, 15, 17, 9]).astype(np.int32).reshape((1, 1, 4, 4))
convinteger_node_with_padding = onnx.helper.make_node('ConvInteger',
inputs=['x', 'w', 'x_zero_point'],
outputs=['y'],
pads=[1, 1, 1, 1],)
expect(convinteger_node_with_padding, inputs=[x, w, x_zero_point], outputs=[y_with_padding],
name='test_convinteger_with_padding')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class LogSoftmax(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'LogSoftmax',
inputs=['x'],
outputs=['y'],
)
x = np.array([[-1, 0, 1]]).astype(np.float32)
# expected output [[-2.40760589, -1.40760589, -0.40760589]]
y = x - np.log(np.sum(np.exp(x), axis=1))
expect(node, inputs=[x], outputs=[y],
name='test_logsoftmax_example_1')
@staticmethod
def export_logsoftmax_axis(): # type: () -> None
def logsoftmax_2d(x): # type: (np.ndarray) -> np.ndarray
max_x = np.max(x, axis=1).reshape((-1, 1))
exp_x = np.exp(x - max_x)
return x - max_x - np.log(np.sum(exp_x, axis=1).reshape((-1, 1)))
x = np.array([[0, 1, 2, 3], [10000, 10001, 10002, 10003]]).astype(np.float32)
# expected output [[-3.4401896, -2.4401896, -1.44018972, -0.44018969],
# [-3.4401896, -2.4401896, -1.44018972, -0.44018969]]
y = logsoftmax_2d(x)
node = onnx.helper.make_node(
'LogSoftmax',
inputs=['x'],
outputs=['y'],
)
expect(node, inputs=[x], outputs=[y],
name='test_logsoftmax_large_number')
x = np.abs(np.random.randn(3, 4, 5).astype(np.float32))
node = onnx.helper.make_node(
'LogSoftmax',
inputs=['x'],
outputs=['y'],
axis=0,
)
y = logsoftmax_2d(x.reshape(1, 60)).reshape(3, 4, 5)
expect(node, inputs=[x], outputs=[y],
name='test_logsoftmax_axis_0')
node = onnx.helper.make_node(
'LogSoftmax',
inputs=['x'],
outputs=['y'],
axis=1,
)
y = logsoftmax_2d(x.reshape(3, 20)).reshape(3, 4, 5)
expect(node, inputs=[x], outputs=[y],
name='test_logsoftmax_axis_1')
# default axis is 1
node = onnx.helper.make_node(
'LogSoftmax',
inputs=['x'],
outputs=['y'],
)
expect(node, inputs=[x], outputs=[y],
name='test_logsoftmax_default_axis')
node = onnx.helper.make_node(
'LogSoftmax',
inputs=['x'],
outputs=['y'],
axis=2,
)
y = logsoftmax_2d(x.reshape(12, 5)).reshape(3, 4, 5)
expect(node, inputs=[x], outputs=[y],
name='test_logsoftmax_axis_2')
node = onnx.helper.make_node(
'LogSoftmax',
inputs=['x'],
outputs=['y'],
axis=-1,
)
y = logsoftmax_2d(x.reshape(12, 5)).reshape(3, 4, 5)
expect(node, inputs=[x], outputs=[y],
name='test_logsoftmax_negative_axis')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Celu(Base):
@staticmethod
def export(): # type: () -> None
alpha = 2.0
node = onnx.helper.make_node(
'Celu',
inputs=['X'],
outputs=['Y'],
alpha=alpha,
)
input_data = np.array([[[[0.8439683], [0.5665144], [0.05836735]],
[[0.02916367], [0.12964272], [0.5060197]],
[[0.79538304], [0.9411346], [0.9546573]]],
[[[0.17730942], [0.46192095], [0.26480448]],
[[0.6746842], [0.01665257], [0.62473077]],
[[0.9240844], [0.9722341], [0.11965699]]],
[[[0.41356155], [0.9129373], [0.59330076]],
[[0.81929934], [0.7862604], [0.11799799]],
[[0.69248444], [0.54119414], [0.07513223]]]], dtype=np.float32)
# Calculate expected output data
positive_input = np.maximum(0, input_data)
negative_input = np.minimum(0, alpha * (np.exp(input_data / alpha) - 1))
expected_output = positive_input + negative_input
expect(node, inputs=[input_data], outputs=[expected_output],
name='test_celu')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
def softmaxcrossentropy(x, target, weight=None, reduction='mean', ignore_index=None, get_log_prob=None): # type: ignore
input_shape = x.shape
if len(input_shape) == 1:
raise RuntimeError("Unsupported shape")
target_shape = target.shape
N = input_shape[0]
C = input_shape[1]
# compute log_softmax
max_x = np.max(x, axis=1, keepdims=True)
exp_x = np.exp(x - max_x)
p = exp_x / np.sum(exp_x, axis=1, keepdims=True)
inp = np.log(p)
log_prob = None
if get_log_prob is True:
log_prob = np.copy(inp)
# initialize the positional weights when required
gather_weight = None
if weight is not None:
# setting mode='clip' to deal with ignore_index > C or < 0 cases.
# when the target value is > C or < 0, it doesn't matter which value we are
# taking in gather_weight, since it will be set to 0 in the following if-block
gather_weight = np.take(weight, target, mode='clip')
# set `ignore_index`'s loss weight to 0.
# The loss tensor will be multiplied by this weight tensor,
# so `ingore_index`'s loss value will be eliminated.
if ignore_index is not None:
gather_weight = np.where(target == ignore_index, 0, gather_weight).astype(dtype=np.float32)
elif ignore_index is not None:
gather_weight = np.where(target == ignore_index, 0, 1).astype(dtype=np.float32)
# if input is 4-d and above, make it 3-d
if len(input_shape) != 3:
inp = inp.reshape((N, C, -1))
target = target.reshape((N, -1))
# Get a dimension from the reshaped input.
# If the original input shape is [N, C, H, W],
# the D here should be H * W because we reshape
# [N, C, H, W] to [N, C, H * W].
D = inp.shape[2]
neg_gather_element_input = np.zeros((N, D), dtype=np.float32)
for i in range(N):
for d in range(D):
if target[i][d] != ignore_index:
neg_gather_element_input[i][d] = -inp[i][target[i][d]][d]
loss = neg_gather_element_input
# if the input was 4-d or above reshape to the right shape
if len(input_shape) != 3:
loss = loss.reshape(target_shape)
# apply the weights when required
if gather_weight is not None:
loss = gather_weight * loss
if reduction == 'mean':
loss = loss.sum() / gather_weight.sum()
if get_log_prob is True:
return loss, log_prob
else:
return loss
if reduction == 'mean':
loss = np.mean(loss)
elif reduction == 'sum':
loss = np.sum(loss)
if get_log_prob is True:
return loss, log_prob
else:
return loss
class SoftmaxCrossEntropyLoss(Base):
@staticmethod
def export_softmaxcrossentropy_none(): # type: () -> None
# Define operator attributes.
reduction = 'none'
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y'],
outputs=['z'],
reduction=reduction)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5).astype(np.float32)
labels = np.random.randint(0, high=5, size=(3, ))
# Compute SoftmaxCrossEntropyLoss
sce = softmaxcrossentropy(x, labels, reduction='none')
# Check results
expect(node, inputs=[x, labels], outputs=[sce], name='test_softmax_cross_entropy_none')
@staticmethod
def export_softmaxcrossentropy_none_log_prob(): # type: () -> None
# Define operator attributes.
reduction = 'none'
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y'],
outputs=['z', 'log_prob'],
reduction=reduction)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5).astype(np.float32)
labels = np.random.randint(0, high=5, size=(3, ))
# Compute SoftmaxCrossEntropyLoss
loss, log_prob = softmaxcrossentropy(x, labels, reduction='none', get_log_prob=True)
# Check results
expect(node, inputs=[x, labels], outputs=[loss, log_prob], name='test_softmax_cross_entropy_none_log_prob')
@staticmethod
def export_softmaxcrossentropy_none_weights(): # type: () -> None
# Define operator attributes.
reduction = 'none'
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y', 'w'],
outputs=['z'],
reduction=reduction)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5).astype(np.float32)
labels = np.random.randint(0, high=5, size=(3, ))
weights = np.array([0.9, 0.7, 0.8, 0.9, 0.9], dtype=np.float32)
# Compute SoftmaxCrossEntropyLoss
sce = softmaxcrossentropy(x, labels, weight=weights, reduction='none')
# Check results
expect(node, inputs=[x, labels, weights], outputs=[sce], name='test_softmax_cross_entropy_none_weights')
@staticmethod
def export_softmaxcrossentropy_none_weights_log_prob(): # type: () -> None
# Define operator attributes.
reduction = 'none'
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y', 'w'],
outputs=['z', 'log_prob'],
reduction=reduction)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5).astype(np.float32)
labels = np.random.randint(0, high=5, size=(3, ))
weights = np.array([0.9, 0.7, 0.8, 0.9, 0.9], dtype=np.float32)
# Compute SoftmaxCrossEntropyLoss
loss, log_prob = softmaxcrossentropy(x, labels, weight=weights, reduction='none', get_log_prob=True)
# Check results
expect(node, inputs=[x, labels, weights], outputs=[loss, log_prob], name='test_softmax_cross_entropy_none_weights_log_prob')
@staticmethod
def export_softmaxcrossentropy_sum(): # type: () -> None
# Define operator attributes.
reduction = 'sum'
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y'],
outputs=['z'],
reduction=reduction)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5).astype(np.float32)
labels = np.random.randint(0, high=5, size=(3, ))
# Compute SoftmaxCrossEntropyLoss
sce = softmaxcrossentropy(x, labels, reduction='sum')
# Check results
expect(node, inputs=[x, labels], outputs=[sce], name='test_softmax_cross_entropy_sum')
@staticmethod
def export_softmaxcrossentropy_sum_log_prob(): # type: () -> None
# Define operator attributes.
reduction = 'sum'
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y'],
outputs=['z', 'log_prob'],
reduction=reduction)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5).astype(np.float32)
labels = np.random.randint(0, high=5, size=(3, ))
# Compute SoftmaxCrossEntropyLoss
loss, log_prob = softmaxcrossentropy(x, labels, reduction='sum', get_log_prob=True)
# Check results
expect(node, inputs=[x, labels], outputs=[loss, log_prob], name='test_softmax_cross_entropy_sum_log_prob')
@staticmethod
def export_softmaxcrossentropy_mean(): # type: () -> None
# Define operator attributes.
reduction = 'mean'
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y'],
outputs=['z'],
reduction=reduction)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5).astype(np.float32)
labels = np.random.randint(0, high=5, size=(3, ))
# Compute SoftmaxCrossEntropyLoss
sce = softmaxcrossentropy(x, labels)
# Check results
expect(node, inputs=[x, labels], outputs=[sce], name='test_softmax_cross_entropy_mean')
@staticmethod
def export_softmaxcrossentropy_mean_log_prob(): # type: () -> None
# Define operator attributes.
reduction = 'mean'
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y'],
outputs=['z', 'log_prob'],
reduction=reduction)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5).astype(np.float32)
labels = np.random.randint(0, high=5, size=(3, ))
# Compute SoftmaxCrossEntropyLoss
loss, log_prob = softmaxcrossentropy(x, labels, get_log_prob=True)
# Check results
expect(node, inputs=[x, labels], outputs=[loss, log_prob], name='test_softmax_cross_entropy_mean_log_prob')
@staticmethod
def export_softmaxcrossentropy_mean_3d(): # type: () -> None
# Define operator attributes.
reduction = 'mean'
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y'],
outputs=['z'],
reduction=reduction)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5, 2).astype(np.float32)
y = np.random.randint(0, high=5, size=(3, 2))
# Compute SoftmaxCrossEntropyLoss
sce = softmaxcrossentropy(x, y)
# Check results
expect(node, inputs=[x, y], outputs=[sce], name='test_softmax_cross_entropy_mean_3d')
@staticmethod
def export_softmaxcrossentropy_mean_3d_log_prob(): # type: () -> None
# Define operator attributes.
reduction = 'mean'
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y'],
outputs=['z', 'log_prob'],
reduction=reduction)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5, 2).astype(np.float32)
y = np.random.randint(0, high=5, size=(3, 2))
# Compute SoftmaxCrossEntropyLoss
loss, log_prob = softmaxcrossentropy(x, y, get_log_prob=True)
# Check results
expect(node, inputs=[x, y], outputs=[loss, log_prob], name='test_softmax_cross_entropy_mean_3d_log_prob')
@staticmethod
def export_softmaxcrossentropy_mean_weights(): # type: () -> None
# Define operator attributes.
reduction = 'mean'
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y', 'w'],
outputs=['z'],
reduction=reduction)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5).astype(np.float32)
labels = np.random.randint(0, high=5, size=(3, ))
weights = np.array([0.9, 0.7, 0.8, 0.9, 0.9], dtype=np.float32)
# Compute SoftmaxCrossEntropyLoss
sce = softmaxcrossentropy(x, labels, weight=weights)
# Check results
expect(node, inputs=[x, labels, weights], outputs=[sce], name='test_softmax_cross_entropy_mean_weight')
@staticmethod
def export_softmaxcrossentropy_mean_weights_log_prob(): # type: () -> None
# Define operator attributes.
reduction = 'mean'
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y', 'w'],
outputs=['z', 'log_prob'],
reduction=reduction)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5).astype(np.float32)
labels = np.random.randint(0, high=5, size=(3, ))
weights = np.array([0.9, 0.7, 0.8, 0.9, 0.9], dtype=np.float32)
# Compute SoftmaxCrossEntropyLoss
loss, log_prob = softmaxcrossentropy(x, labels, weight=weights, get_log_prob=True)
# Check results
expect(node, inputs=[x, labels, weights], outputs=[loss, log_prob], name='test_softmax_cross_entropy_mean_weight_log_prob')
@staticmethod
def export_softmaxcrossentropy_mean_weights_ignore_index(): # type: () -> None
# Define operator attributes.
reduction = 'mean'
ignore_index = np.int64(0)
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y', 'w'],
outputs=['z'],
reduction=reduction,
ignore_index=ignore_index)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5).astype(np.float32)
labels = np.random.randint(0, high=5, size=(3, ))
labels[0] = np.int64(0)
weights = np.array([0.9, 0.7, 0.8, 0.9, 0.9], dtype=np.float32)
# Compute SoftmaxCrossEntropyLoss
sce = softmaxcrossentropy(x, labels, weight=weights, ignore_index=ignore_index)
# Check results
expect(node, inputs=[x, labels, weights], outputs=[sce], name='test_softmax_cross_entropy_mean_weight_ignore_index')
@staticmethod
def export_softmaxcrossentropy_mean_weights_ignore_index_log_prob(): # type: () -> None
# Define operator attributes.
reduction = 'mean'
ignore_index = np.int64(0)
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y', 'w'],
outputs=['z', 'log_prob'],
reduction=reduction,
ignore_index=ignore_index)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5).astype(np.float32)
labels = np.random.randint(0, high=5, size=(3, ))
labels[0] = np.int64(0)
weights = np.array([0.9, 0.7, 0.8, 0.9, 0.9], dtype=np.float32)
# Compute SoftmaxCrossEntropyLoss
loss, log_prob = softmaxcrossentropy(x, labels, weight=weights, ignore_index=ignore_index, get_log_prob=True)
# Check results
expect(node, inputs=[x, labels, weights], outputs=[loss, log_prob], name='test_softmax_cross_entropy_mean_weight_ignore_index_log_prob')
@staticmethod
def export_softmaxcrossentropy_mean_no_weights_ignore_index(): # type: () -> None
# Define operator attributes.
reduction = 'mean'
ignore_index = np.int64(2)
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y'],
outputs=['z'],
reduction=reduction,
ignore_index=ignore_index)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5).astype(np.float32)
labels = np.random.randint(0, high=5, size=(3, ))
labels[0] = np.int64(2)
# Compute SoftmaxCrossEntropyLoss
sce = softmaxcrossentropy(x, labels, ignore_index=ignore_index)
# Check results
expect(node, inputs=[x, labels], outputs=[sce], name='test_softmax_cross_entropy_mean_no_weight_ignore_index')
@staticmethod
def export_softmaxcrossentropy_mean_no_weights_ignore_index_log_prob(): # type: () -> None
# Define operator attributes.
reduction = 'mean'
ignore_index = np.int64(2)
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y'],
outputs=['z', 'log_prob'],
reduction=reduction,
ignore_index=ignore_index)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5).astype(np.float32)
labels = np.random.randint(0, high=5, size=(3, ))
labels[0] = np.int64(2)
# Compute SoftmaxCrossEntropyLoss
loss, log_prob = softmaxcrossentropy(x, labels, ignore_index=ignore_index, get_log_prob=True)
# Check results
expect(node, inputs=[x, labels], outputs=[loss, log_prob], name='test_softmax_cross_entropy_mean_no_weight_ignore_index_log_prob')
@staticmethod
def export_softmaxcrossentropy_mean_weights_ignore_index_3d(): # type: () -> None
# Define operator attributes.
reduction = 'mean'
ignore_index = np.int64(1)
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y', 'w'],
outputs=['z'],
reduction=reduction,
ignore_index=ignore_index)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5, 2).astype(np.float32)
labels = np.random.randint(0, high=5, size=(3, 2))
labels[0][0] = np.int64(1)
weights = np.array([0.2, 0.3, 0.6, 0.1, 0.5], dtype=np.float32)
# Compute SoftmaxCrossEntropyLoss
sce = softmaxcrossentropy(x, labels, weight=weights, ignore_index=ignore_index)
# Check results
expect(node, inputs=[x, labels, weights], outputs=[sce], name='test_softmax_cross_entropy_mean_weight_ignore_index_3d')
@staticmethod
def export_softmaxcrossentropy_mean_weights_ignore_index_3d_log_prob(): # type: () -> None
# Define operator attributes.
reduction = 'mean'
ignore_index = np.int64(1)
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y', 'w'],
outputs=['z', 'log_prob'],
reduction=reduction,
ignore_index=ignore_index)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5, 2).astype(np.float32)
labels = np.random.randint(0, high=5, size=(3, 2))
labels[0][0] = np.int64(1)
weights = np.array([0.2, 0.3, 0.6, 0.1, 0.5], dtype=np.float32)
# Compute SoftmaxCrossEntropyLoss
loss, log_prob = softmaxcrossentropy(x, labels, weight=weights, ignore_index=ignore_index, get_log_prob=True)
# Check results
expect(node, inputs=[x, labels, weights], outputs=[loss, log_prob], name='test_softmax_cross_entropy_mean_weight_ignore_index_3d_log_prob')
@staticmethod
def export_softmaxcrossentropy_mean_no_weights_ignore_index_3d(): # type: () -> None
# Define operator attributes.
reduction = 'mean'
ignore_index = np.int64(2)
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y'],
outputs=['z'],
reduction=reduction,
ignore_index=ignore_index)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5, 2).astype(np.float32)
labels = np.random.randint(0, high=5, size=(3, 2))
labels[0][0] = np.int64(2)
# Compute SoftmaxCrossEntropyLoss
sce = softmaxcrossentropy(x, labels, ignore_index=ignore_index)
# Check results
expect(node, inputs=[x, labels], outputs=[sce], name='test_softmax_cross_entropy_mean_no_weight_ignore_index_3d')
@staticmethod
def export_softmaxcrossentropy_mean_no_weights_ignore_index_3d_log_prob(): # type: () -> None
# Define operator attributes.
reduction = 'mean'
ignore_index = np.int64(2)
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y'],
outputs=['z', 'log_prob'],
reduction=reduction,
ignore_index=ignore_index)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5, 2).astype(np.float32)
labels = np.random.randint(0, high=5, size=(3, 2))
labels[0][0] = np.int64(2)
# Compute SoftmaxCrossEntropyLoss
loss, log_prob = softmaxcrossentropy(x, labels, ignore_index=ignore_index, get_log_prob=True)
# Check results
expect(node, inputs=[x, labels], outputs=[loss, log_prob], name='test_softmax_cross_entropy_mean_no_weight_ignore_index_3d_log_prob')
@staticmethod
def export_softmaxcrossentropy_mean_weights_ignore_index_4d(): # type: () -> None
# Define operator attributes.
reduction = 'mean'
ignore_index = np.int64(2)
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y', 'w'],
outputs=['z'],
reduction=reduction,
ignore_index=ignore_index)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5, 2, 7).astype(np.float32)
labels = np.random.randint(0, high=5, size=(3, 2, 7))
labels[0][0][0] = np.int64(2)
weights = np.array([0.2, 0.3, 0.6, 0.1, 0.5], dtype=np.float32)
# Compute SoftmaxCrossEntropyLoss
sce = softmaxcrossentropy(x, labels, reduction=reduction, weight=weights, ignore_index=ignore_index)
# Check results
expect(node, inputs=[x, labels, weights], outputs=[sce], name='test_softmax_cross_entropy_mean_weight_ignore_index_4d')
@staticmethod
def export_softmaxcrossentropy_mean_weights_ignore_index_4d_log_prob(): # type: () -> None
# Define operator attributes.
reduction = 'mean'
ignore_index = np.int64(2)
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y', 'w'],
outputs=['z', 'log_prob'],
reduction=reduction,
ignore_index=ignore_index)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5, 2, 7).astype(np.float32)
labels = np.random.randint(0, high=5, size=(3, 2, 7))
labels[0][0][0] = np.int64(2)
weights = np.array([0.2, 0.3, 0.6, 0.1, 0.5], dtype=np.float32)
# Compute SoftmaxCrossEntropyLoss
loss, log_prob = softmaxcrossentropy(x, labels, reduction=reduction, weight=weights, ignore_index=ignore_index, get_log_prob=True)
# Check results
expect(node, inputs=[x, labels, weights], outputs=[loss, log_prob], name='test_softmax_cross_entropy_mean_weight_ignore_index_4d_log_prob')
@staticmethod
def export_softmaxcrossentropy_mean_no_weights_ignore_index_4d(): # type: () -> None
# Define operator attributes.
reduction = 'mean'
ignore_index = np.int64(2)
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y'],
outputs=['z'],
reduction=reduction,
ignore_index=ignore_index)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5, 2, 7).astype(np.float32)
labels = np.random.randint(0, high=5, size=(3, 2, 7))
labels[0][0][0] = np.int64(2)
# Compute SoftmaxCrossEntropyLoss
sce = softmaxcrossentropy(x, labels, reduction=reduction, ignore_index=ignore_index)
# Check results
expect(node, inputs=[x, labels], outputs=[sce], name='test_softmax_cross_entropy_mean_no_weight_ignore_index_4d')
@staticmethod
def export_softmaxcrossentropy_mean_no_weights_ignore_index_4d_log_prob(): # type: () -> None
# Define operator attributes.
reduction = 'mean'
ignore_index = np.int64(2)
# Create operator.
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y'],
outputs=['z', 'log_prob'],
reduction=reduction,
ignore_index=ignore_index)
# Define operator inputs.
np.random.seed(0)
x = np.random.rand(3, 5, 2, 7).astype(np.float32)
labels = np.random.randint(0, high=5, size=(3, 2, 7))
labels[0][0][0] = np.int64(2)
# Compute SoftmaxCrossEntropyLoss
loss, log_prob = softmaxcrossentropy(x, labels, reduction=reduction, ignore_index=ignore_index, get_log_prob=True)
# Check results
expect(node, inputs=[x, labels], outputs=[loss, log_prob], name='test_softmax_cross_entropy_mean_no_weight_ignore_index_4d_log_prob')
@staticmethod
def export_input_shape_is_NCd1d2d3d4d5_mean_weight(): # type: () -> None
reduction = 'mean'
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y', 'w'],
outputs=['z'],
reduction=reduction)
N, C, dim1, dim2, dim3, dim4, dim5 = 3, 5, 6, 6, 5, 3, 4
np.random.seed(0)
x = np.random.rand(N, C, dim1, dim2, dim3, dim4, dim5).astype(np.float32)
labels = np.random.randint(0, high=C, size=(N, dim1, dim2, dim3, dim4, dim5))
weight = np.random.rand(C).astype(np.float32)
sce = softmaxcrossentropy(x,
labels,
weight=weight,
reduction=reduction)
expect(node, inputs=[x, labels, weight], outputs=[sce], name='test_softmax_cross_entropy_input_shape_is_NCd1d2d3d4d5_mean_weight')
@staticmethod
def export_input_shape_is_NCd1d2d3d4d5_mean_weight_log_prob(): # type: () -> None
reduction = 'mean'
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y', 'w'],
outputs=['z', 'log_prob'],
reduction=reduction)
N, C, dim1, dim2, dim3, dim4, dim5 = 3, 5, 6, 6, 5, 3, 4
np.random.seed(0)
x = np.random.rand(N, C, dim1, dim2, dim3, dim4, dim5).astype(np.float32)
labels = np.random.randint(0, high=C, size=(N, dim1, dim2, dim3, dim4, dim5))
weight = np.random.rand(C).astype(np.float32)
loss, log_prob = softmaxcrossentropy(x,
labels,
weight=weight,
reduction=reduction,
get_log_prob=True)
expect(node, inputs=[x, labels, weight], outputs=[loss, log_prob], name='test_softmax_cross_entropy_input_shape_is_NCd1d2d3d4d5_mean_weight_log_prob')
@staticmethod
def export_input_shape_is_NCd1d2d3d4d5_none_no_weight(): # type: () -> None
reduction = 'none'
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y'],
outputs=['z'],
reduction=reduction)
N, C, dim1, dim2, dim3, dim4, dim5 = 3, 5, 6, 6, 5, 3, 4
np.random.seed(0)
x = np.random.rand(N, C, dim1, dim2, dim3, dim4, dim5).astype(np.float32)
labels = np.random.randint(0, high=C, size=(N, dim1, dim2, dim3, dim4, dim5))
sce = softmaxcrossentropy(x,
labels,
reduction=reduction)
expect(node, inputs=[x, labels], outputs=[sce], name='test_softmax_cross_entropy_input_shape_is_NCd1d2d3d4d5_none_no_weight')
@staticmethod
def export_input_shape_is_NCd1d2d3d4d5_none_no_weight_log_prob(): # type: () -> None
reduction = 'none'
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y'],
outputs=['z', 'log_prob'],
reduction=reduction)
N, C, dim1, dim2, dim3, dim4, dim5 = 3, 5, 6, 6, 5, 3, 4
np.random.seed(0)
x = np.random.rand(N, C, dim1, dim2, dim3, dim4, dim5).astype(np.float32)
labels = np.random.randint(0, high=C, size=(N, dim1, dim2, dim3, dim4, dim5))
loss, log_prob = softmaxcrossentropy(x,
labels,
reduction=reduction,
get_log_prob=True)
expect(node, inputs=[x, labels], outputs=[loss, log_prob], name='test_softmax_cross_entropy_input_shape_is_NCd1d2d3d4d5_none_no_weight_log_prob')
@staticmethod
def export_input_shape_is_NCd1_mean_weight_negative_ignore_index(): # type: () -> None
reduction = 'mean'
ignore_index = np.int64(-1)
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y', 'w'],
outputs=['z'],
reduction=reduction,
ignore_index=ignore_index)
N, C, dim1 = 3, 5, 6
np.random.seed(0)
x = np.random.rand(N, C, dim1).astype(np.float32)
labels = np.random.randint(0, high=C, size=(N, dim1))
labels[0][0] = -1
weight = np.random.rand(C).astype(np.float32)
sce = softmaxcrossentropy(x,
labels,
weight=weight,
reduction=reduction,
ignore_index=ignore_index)
expect(node, inputs=[x, labels, weight], outputs=[sce], name='test_softmax_cross_entropy_input_shape_is_NCd1_mean_weight_negative_ignore_index')
@staticmethod
def export_input_shape_is_NCd1_mean_weight_negative_ignore_index_log_prob(): # type: () -> None
reduction = 'mean'
ignore_index = np.int64(-1)
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y', 'w'],
outputs=['z', 'log_prob'],
reduction=reduction,
ignore_index=ignore_index)
N, C, dim1 = 3, 5, 6
np.random.seed(0)
x = np.random.rand(N, C, dim1).astype(np.float32)
labels = np.random.randint(0, high=C, size=(N, dim1))
labels[0][0] = -1
weight = np.random.rand(C).astype(np.float32)
loss, log_prob = softmaxcrossentropy(x,
labels,
weight=weight,
reduction=reduction,
ignore_index=ignore_index,
get_log_prob=True)
expect(node, inputs=[x, labels, weight], outputs=[loss, log_prob], name='test_softmax_cross_entropy_input_shape_is_NCd1_mean_weight_negative_ignore_index_log_prob')
@staticmethod
def export_input_shape_is_NCd1d2d3_none_no_weight_negative_ignore_index(): # type: () -> None
reduction = 'none'
ignore_index = np.int64(-5)
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y'],
outputs=['z'],
reduction=reduction,
ignore_index=ignore_index)
N, C, dim1, dim2, dim3 = 3, 5, 6, 6, 5
np.random.seed(0)
x = np.random.rand(N, C, dim1, dim2, dim3).astype(np.float32)
labels = np.random.randint(0, high=C, size=(N, dim1, dim2, dim3))
labels[0][0][0][0] = -5
sce = softmaxcrossentropy(x,
labels,
reduction=reduction,
ignore_index=ignore_index)
expect(node, inputs=[x, labels], outputs=[sce], name='test_softmax_cross_entropy_input_shape_is_NCd1d2d3_none_no_weight_negative_ignore_index')
@staticmethod
def export_input_shape_is_NCd1d2d3_none_no_weight_negative_ignore_index_log_prob(): # type: () -> None
reduction = 'none'
ignore_index = np.int64(-5)
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y'],
outputs=['z', 'log_prob'],
reduction=reduction,
ignore_index=ignore_index)
N, C, dim1, dim2, dim3 = 3, 5, 6, 6, 5
np.random.seed(0)
x = np.random.rand(N, C, dim1, dim2, dim3).astype(np.float32)
labels = np.random.randint(0, high=C, size=(N, dim1, dim2, dim3))
labels[0][0][0][0] = -5
loss, log_prob = softmaxcrossentropy(x,
labels,
reduction=reduction,
ignore_index=ignore_index,
get_log_prob=True)
expect(node, inputs=[x, labels], outputs=[loss, log_prob], name='test_softmax_cross_entropy_input_shape_is_NCd1d2d3_none_no_weight_negative_ignore_index_log_prob')
@staticmethod
def export_input_shape_is_NCd1d2d3_sum_weight_high_ignore_index(): # type: () -> None
reduction = 'sum'
ignore_index = np.int64(10)
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y', 'w'],
outputs=['z'],
reduction=reduction,
ignore_index=ignore_index)
N, C = 3, 5
np.random.seed(0)
x = np.random.rand(N, C).astype(np.float32)
labels = np.random.randint(0, high=C, size=(N))
labels[0] = 10
weight = np.random.rand(C).astype(np.float32)
sce = softmaxcrossentropy(x,
labels,
weight=weight,
reduction=reduction,
ignore_index=ignore_index)
expect(node, inputs=[x, labels, weight], outputs=[sce], name='test_softmax_cross_entropy_input_shape_is_NCd1d2d3_sum_weight_high_ignore_index')
@staticmethod
def export_input_shape_is_NCd1d2d3_sum_weight_high_ignore_index_log_prob(): # type: () -> None
reduction = 'sum'
ignore_index = np.int64(10)
node = onnx.helper.make_node('SoftmaxCrossEntropyLoss',
inputs=['x', 'y', 'w'],
outputs=['z', 'log_prob'],
reduction=reduction,
ignore_index=ignore_index)
N, C = 3, 5
np.random.seed(0)
x = np.random.rand(N, C).astype(np.float32)
labels = np.random.randint(0, high=C, size=(N))
labels[0] = 10
weight = np.random.rand(C).astype(np.float32)
loss, log_prob = softmaxcrossentropy(x,
labels,
weight=weight,
reduction=reduction,
ignore_index=ignore_index,
get_log_prob=True)
expect(node, inputs=[x, labels, weight], outputs=[loss, log_prob], name='test_softmax_cross_entropy_input_shape_is_NCd1d2d3_sum_weight_high_ignore_index_log_prob')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class RoiAlign(Base):
@staticmethod
def export_roialign(): # type: () -> None
node = onnx.helper.make_node(
"RoiAlign",
inputs=["X", "rois", "batch_indices"],
outputs=["Y"],
spatial_scale=1.0,
output_height=5,
output_width=5,
sampling_ratio=2,
)
X = np.array(
[
[
[
[
0.2764,
0.7150,
0.1958,
0.3416,
0.4638,
0.0259,
0.2963,
0.6518,
0.4856,
0.7250,
],
[
0.9637,
0.0895,
0.2919,
0.6753,
0.0234,
0.6132,
0.8085,
0.5324,
0.8992,
0.4467,
],
[
0.3265,
0.8479,
0.9698,
0.2471,
0.9336,
0.1878,
0.4766,
0.4308,
0.3400,
0.2162,
],
[
0.0206,
0.1720,
0.2155,
0.4394,
0.0653,
0.3406,
0.7724,
0.3921,
0.2541,
0.5799,
],
[
0.4062,
0.2194,
0.4473,
0.4687,
0.7109,
0.9327,
0.9815,
0.6320,
0.1728,
0.6119,
],
[
0.3097,
0.1283,
0.4984,
0.5068,
0.4279,
0.0173,
0.4388,
0.0430,
0.4671,
0.7119,
],
[
0.1011,
0.8477,
0.4726,
0.1777,
0.9923,
0.4042,
0.1869,
0.7795,
0.9946,
0.9689,
],
[
0.1366,
0.3671,
0.7011,
0.6234,
0.9867,
0.5585,
0.6985,
0.5609,
0.8788,
0.9928,
],
[
0.5697,
0.8511,
0.6711,
0.9406,
0.8751,
0.7496,
0.1650,
0.1049,
0.1559,
0.2514,
],
[
0.7012,
0.4056,
0.7879,
0.3461,
0.0415,
0.2998,
0.5094,
0.3727,
0.5482,
0.0502,
],
]
]
],
dtype=np.float32,
)
batch_indices = np.array([0, 0, 0], dtype=np.int64)
rois = np.array([[0, 0, 9, 9], [0, 5, 4, 9], [5, 5, 9, 9]], dtype=np.float32)
# (num_rois, C, output_height, output_width)
Y = np.array(
[
[
[
[0.4664, 0.4466, 0.3405, 0.5688, 0.6068],
[0.3714, 0.4296, 0.3835, 0.5562, 0.3510],
[0.2768, 0.4883, 0.5222, 0.5528, 0.4171],
[0.4713, 0.4844, 0.6904, 0.4920, 0.8774],
[0.6239, 0.7125, 0.6289, 0.3355, 0.3495],
]
],
[
[
[0.3022, 0.4305, 0.4696, 0.3978, 0.5423],
[0.3656, 0.7050, 0.5165, 0.3172, 0.7015],
[0.2912, 0.5059, 0.6476, 0.6235, 0.8299],
[0.5916, 0.7389, 0.7048, 0.8372, 0.8893],
[0.6227, 0.6153, 0.7097, 0.6154, 0.4585],
]
],
[
[
[0.2384, 0.3379, 0.3717, 0.6100, 0.7601],
[0.3767, 0.3785, 0.7147, 0.9243, 0.9727],
[0.5749, 0.5826, 0.5709, 0.7619, 0.8770],
[0.5355, 0.2566, 0.2141, 0.2796, 0.3600],
[0.4365, 0.3504, 0.2887, 0.3661, 0.2349],
]
],
],
dtype=np.float32,
)
expect(node, inputs=[X, rois, batch_indices], outputs=[Y], name="test_roialign")
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Ceil(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Ceil',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1.5, 1.2]).astype(np.float32)
y = np.ceil(x) # expected output [-1., 2.]
expect(node, inputs=[x], outputs=[y],
name='test_ceil_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.ceil(x)
expect(node, inputs=[x], outputs=[y],
name='test_ceil')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Size(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Size',
inputs=['x'],
outputs=['y'],
)
x = np.array([
[1, 2, 3],
[4, 5, 6],
]).astype(np.float32)
y = np.array(6).astype(np.int64)
expect(node, inputs=[x], outputs=[y],
name='test_size_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.array(x.size).astype(np.int64)
expect(node, inputs=[x], outputs=[y],
name='test_size')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class NonMaxSuppression(Base):
@staticmethod
def export_nonmaxsuppression_suppress_by_IOU(): # type: () -> None
node = onnx.helper.make_node(
'NonMaxSuppression',
inputs=['boxes', 'scores', 'max_output_boxes_per_class', 'iou_threshold', 'score_threshold'],
outputs=['selected_indices']
)
boxes = np.array([[
[0.0, 0.0, 1.0, 1.0],
[0.0, 0.1, 1.0, 1.1],
[0.0, -0.1, 1.0, 0.9],
[0.0, 10.0, 1.0, 11.0],
[0.0, 10.1, 1.0, 11.1],
[0.0, 100.0, 1.0, 101.0]
]]).astype(np.float32)
scores = np.array([[[0.9, 0.75, 0.6, 0.95, 0.5, 0.3]]]).astype(np.float32)
max_output_boxes_per_class = np.array([3]).astype(np.int64)
iou_threshold = np.array([0.5]).astype(np.float32)
score_threshold = np.array([0.0]).astype(np.float32)
selected_indices = np.array([[0, 0, 3], [0, 0, 0], [0, 0, 5]]).astype(np.int64)
expect(node, inputs=[boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold], outputs=[selected_indices], name='test_nonmaxsuppression_suppress_by_IOU')
@staticmethod
def export_nonmaxsuppression_suppress_by_IOU_and_scores(): # type: () -> None
node = onnx.helper.make_node(
'NonMaxSuppression',
inputs=['boxes', 'scores', 'max_output_boxes_per_class', 'iou_threshold', 'score_threshold'],
outputs=['selected_indices']
)
boxes = np.array([[
[0.0, 0.0, 1.0, 1.0],
[0.0, 0.1, 1.0, 1.1],
[0.0, -0.1, 1.0, 0.9],
[0.0, 10.0, 1.0, 11.0],
[0.0, 10.1, 1.0, 11.1],
[0.0, 100.0, 1.0, 101.0]
]]).astype(np.float32)
scores = np.array([[[0.9, 0.75, 0.6, 0.95, 0.5, 0.3]]]).astype(np.float32)
max_output_boxes_per_class = np.array([3]).astype(np.int64)
iou_threshold = np.array([0.5]).astype(np.float32)
score_threshold = np.array([0.4]).astype(np.float32)
selected_indices = np.array([[0, 0, 3], [0, 0, 0]]).astype(np.int64)
expect(node, inputs=[boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold], outputs=[selected_indices], name='test_nonmaxsuppression_suppress_by_IOU_and_scores')
@staticmethod
def export_nonmaxsuppression_flipped_coordinates(): # type: () -> None
node = onnx.helper.make_node(
'NonMaxSuppression',
inputs=['boxes', 'scores', 'max_output_boxes_per_class', 'iou_threshold', 'score_threshold'],
outputs=['selected_indices']
)
boxes = np.array([[
[1.0, 1.0, 0.0, 0.0],
[0.0, 0.1, 1.0, 1.1],
[0.0, 0.9, 1.0, -0.1],
[0.0, 10.0, 1.0, 11.0],
[1.0, 10.1, 0.0, 11.1],
[1.0, 101.0, 0.0, 100.0]
]]).astype(np.float32)
scores = np.array([[[0.9, 0.75, 0.6, 0.95, 0.5, 0.3]]]).astype(np.float32)
max_output_boxes_per_class = np.array([3]).astype(np.int64)
iou_threshold = np.array([0.5]).astype(np.float32)
score_threshold = np.array([0.0]).astype(np.float32)
selected_indices = np.array([[0, 0, 3], [0, 0, 0], [0, 0, 5]]).astype(np.int64)
expect(node, inputs=[boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold], outputs=[selected_indices], name='test_nonmaxsuppression_flipped_coordinates')
@staticmethod
def export_nonmaxsuppression_limit_output_size(): # type: () -> None
node = onnx.helper.make_node(
'NonMaxSuppression',
inputs=['boxes', 'scores', 'max_output_boxes_per_class', 'iou_threshold', 'score_threshold'],
outputs=['selected_indices']
)
boxes = np.array([[
[0.0, 0.0, 1.0, 1.0],
[0.0, 0.1, 1.0, 1.1],
[0.0, -0.1, 1.0, 0.9],
[0.0, 10.0, 1.0, 11.0],
[0.0, 10.1, 1.0, 11.1],
[0.0, 100.0, 1.0, 101.0]
]]).astype(np.float32)
scores = np.array([[[0.9, 0.75, 0.6, 0.95, 0.5, 0.3]]]).astype(np.float32)
max_output_boxes_per_class = np.array([2]).astype(np.int64)
iou_threshold = np.array([0.5]).astype(np.float32)
score_threshold = np.array([0.0]).astype(np.float32)
selected_indices = np.array([[0, 0, 3], [0, 0, 0]]).astype(np.int64)
expect(node, inputs=[boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold], outputs=[selected_indices], name='test_nonmaxsuppression_limit_output_size')
@staticmethod
def export_nonmaxsuppression_single_box(): # type: () -> None
node = onnx.helper.make_node(
'NonMaxSuppression',
inputs=['boxes', 'scores', 'max_output_boxes_per_class', 'iou_threshold', 'score_threshold'],
outputs=['selected_indices']
)
boxes = np.array([[
[0.0, 0.0, 1.0, 1.0]
]]).astype(np.float32)
scores = np.array([[[0.9]]]).astype(np.float32)
max_output_boxes_per_class = np.array([3]).astype(np.int64)
iou_threshold = np.array([0.5]).astype(np.float32)
score_threshold = np.array([0.0]).astype(np.float32)
selected_indices = np.array([[0, 0, 0]]).astype(np.int64)
expect(node, inputs=[boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold], outputs=[selected_indices], name='test_nonmaxsuppression_single_box')
@staticmethod
def export_nonmaxsuppression_identical_boxes(): # type: () -> None
node = onnx.helper.make_node(
'NonMaxSuppression',
inputs=['boxes', 'scores', 'max_output_boxes_per_class', 'iou_threshold', 'score_threshold'],
outputs=['selected_indices']
)
boxes = np.array([[
[0.0, 0.0, 1.0, 1.0],
[0.0, 0.0, 1.0, 1.0],
[0.0, 0.0, 1.0, 1.0],
[0.0, 0.0, 1.0, 1.0],
[0.0, 0.0, 1.0, 1.0],
[0.0, 0.0, 1.0, 1.0],
[0.0, 0.0, 1.0, 1.0],
[0.0, 0.0, 1.0, 1.0],
[0.0, 0.0, 1.0, 1.0],
[0.0, 0.0, 1.0, 1.0]
]]).astype(np.float32)
scores = np.array([[[0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9]]]).astype(np.float32)
max_output_boxes_per_class = np.array([3]).astype(np.int64)
iou_threshold = np.array([0.5]).astype(np.float32)
score_threshold = np.array([0.0]).astype(np.float32)
selected_indices = np.array([[0, 0, 0]]).astype(np.int64)
expect(node, inputs=[boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold], outputs=[selected_indices], name='test_nonmaxsuppression_identical_boxes')
@staticmethod
def export_nonmaxsuppression_center_point_box_format(): # type: () -> None
node = onnx.helper.make_node(
'NonMaxSuppression',
inputs=['boxes', 'scores', 'max_output_boxes_per_class', 'iou_threshold', 'score_threshold'],
outputs=['selected_indices'],
center_point_box=1
)
boxes = np.array([[
[0.5, 0.5, 1.0, 1.0],
[0.5, 0.6, 1.0, 1.0],
[0.5, 0.4, 1.0, 1.0],
[0.5, 10.5, 1.0, 1.0],
[0.5, 10.6, 1.0, 1.0],
[0.5, 100.5, 1.0, 1.0]
]]).astype(np.float32)
scores = np.array([[[0.9, 0.75, 0.6, 0.95, 0.5, 0.3]]]).astype(np.float32)
max_output_boxes_per_class = np.array([3]).astype(np.int64)
iou_threshold = np.array([0.5]).astype(np.float32)
score_threshold = np.array([0.0]).astype(np.float32)
selected_indices = np.array([[0, 0, 3], [0, 0, 0], [0, 0, 5]]).astype(np.int64)
expect(node, inputs=[boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold], outputs=[selected_indices], name='test_nonmaxsuppression_center_point_box_format')
@staticmethod
def export_nonmaxsuppression_two_classes(): # type: () -> None
node = onnx.helper.make_node(
'NonMaxSuppression',
inputs=['boxes', 'scores', 'max_output_boxes_per_class', 'iou_threshold', 'score_threshold'],
outputs=['selected_indices']
)
boxes = np.array([[
[0.0, 0.0, 1.0, 1.0],
[0.0, 0.1, 1.0, 1.1],
[0.0, -0.1, 1.0, 0.9],
[0.0, 10.0, 1.0, 11.0],
[0.0, 10.1, 1.0, 11.1],
[0.0, 100.0, 1.0, 101.0]
]]).astype(np.float32)
scores = np.array([[[0.9, 0.75, 0.6, 0.95, 0.5, 0.3],
[0.9, 0.75, 0.6, 0.95, 0.5, 0.3]]]).astype(np.float32)
max_output_boxes_per_class = np.array([2]).astype(np.int64)
iou_threshold = np.array([0.5]).astype(np.float32)
score_threshold = np.array([0.0]).astype(np.float32)
selected_indices = np.array([[0, 0, 3], [0, 0, 0], [0, 1, 3], [0, 1, 0]]).astype(np.int64)
expect(node, inputs=[boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold], outputs=[selected_indices], name='test_nonmaxsuppression_two_classes')
@staticmethod
def export_nonmaxsuppression_two_batches(): # type: () -> None
node = onnx.helper.make_node(
'NonMaxSuppression',
inputs=['boxes', 'scores', 'max_output_boxes_per_class', 'iou_threshold', 'score_threshold'],
outputs=['selected_indices']
)
boxes = np.array([[[0.0, 0.0, 1.0, 1.0],
[0.0, 0.1, 1.0, 1.1],
[0.0, -0.1, 1.0, 0.9],
[0.0, 10.0, 1.0, 11.0],
[0.0, 10.1, 1.0, 11.1],
[0.0, 100.0, 1.0, 101.0]],
[[0.0, 0.0, 1.0, 1.0],
[0.0, 0.1, 1.0, 1.1],
[0.0, -0.1, 1.0, 0.9],
[0.0, 10.0, 1.0, 11.0],
[0.0, 10.1, 1.0, 11.1],
[0.0, 100.0, 1.0, 101.0]]]).astype(np.float32)
scores = np.array([[[0.9, 0.75, 0.6, 0.95, 0.5, 0.3]],
[[0.9, 0.75, 0.6, 0.95, 0.5, 0.3]]]).astype(np.float32)
max_output_boxes_per_class = np.array([2]).astype(np.int64)
iou_threshold = np.array([0.5]).astype(np.float32)
score_threshold = np.array([0.0]).astype(np.float32)
selected_indices = np.array([[0, 0, 3], [0, 0, 0], [1, 0, 3], [1, 0, 0]]).astype(np.int64)
expect(node, inputs=[boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold], outputs=[selected_indices], name='test_nonmaxsuppression_two_batches')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
def apply_adagrad(r, t, x, g, h, norm_coefficient, epsilon, decay_factor): # type: ignore
# Compute adjusted learning-rate.
r_ = r / (1 + t * decay_factor)
# Add gradient of regularization term.
g_regularized = norm_coefficient * x + g
# Update squared accumulated gradient.
h_new = h + g_regularized * g_regularized
# Compute ADAGRAD's gradient scaling factors
h_sqrt = np.sqrt(h_new) + epsilon
# Apply ADAGRAD update rule.
x_new = x - r_ * g_regularized / h_sqrt
return (x_new, h_new)
class Adagrad(Base):
@staticmethod
def export_adagrad(): # type: () -> None
# Define operator attributes.
norm_coefficient = 0.001
epsilon = 1e-5
decay_factor = 0.1
# Create operator.
node = onnx.helper.make_node('Adagrad',
inputs=['R', 'T', 'X', 'G', 'H'],
outputs=['X_new', 'H_new'],
norm_coefficient=norm_coefficient,
epsilon=epsilon,
decay_factor=decay_factor,
domain='ai.onnx.training'
)
# Define operator inputs.
r = np.array(0.1, dtype=np.float32) # scalar
t = np.array(0, dtype=np.int64) # scalar
x = np.array([1.0], dtype=np.float32)
g = np.array([-1.0], dtype=np.float32)
h = np.array([2.0], dtype=np.float32)
# Compute expected outputs of Adagrad.
x_new, h_new = apply_adagrad(r, t, x, g, h,
norm_coefficient, epsilon, decay_factor)
# Check results.
expect(node, inputs=[r, t, x, g, h],
outputs=[x_new, h_new], name='test_adagrad',
opset_imports=[onnx.helper.make_opsetid('ai.onnx.training', 1)])
@staticmethod
def export_adagrad_multiple(): # type: () -> None
# Define operator attributes.
norm_coefficient = 0.001
epsilon = 1e-5
decay_factor = 0.1
node = onnx.helper.make_node('Adagrad',
inputs=['R', 'T', 'X1', 'X2',
'G1', 'G2', 'H1', 'H2'],
outputs=['X1_new', 'X2_new',
'H1_new', 'H2_new'],
norm_coefficient=norm_coefficient,
epsilon=epsilon,
decay_factor=decay_factor,
domain='ai.onnx.training'
)
# Define operator inputs.
r = np.array(0.1, dtype=np.float32) # scalar
t = np.array(0, dtype=np.int64) # scalar
x1 = np.array([1.0], dtype=np.float32)
g1 = np.array([-1.0], dtype=np.float32)
h1 = np.array([2.0], dtype=np.float32)
x2 = np.array([1.0, 2.0], dtype=np.float32)
g2 = np.array([-1.0, -3.0], dtype=np.float32)
h2 = np.array([4.0, 1.0], dtype=np.float32)
# Compute expected outputs of Adagrad.
x1_new, h1_new = apply_adagrad(r, t, x1, g1, h1,
norm_coefficient, epsilon, decay_factor)
x2_new, h2_new = apply_adagrad(r, t, x2, g2, h2,
norm_coefficient, epsilon, decay_factor)
# Check results.
expect(node, inputs=[r, t, x1, x2, g1, g2, h1, h2],
outputs=[x1_new, x2_new, h1_new, h2_new], name='test_adagrad_multiple',
opset_imports=[onnx.helper.make_opsetid('ai.onnx.training', 1)])
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
from ..utils import all_numeric_dtypes
class Min(Base):
@staticmethod
def export(): # type: () -> None
data_0 = np.array([3, 2, 1]).astype(np.float32)
data_1 = np.array([1, 4, 4]).astype(np.float32)
data_2 = np.array([2, 5, 0]).astype(np.float32)
result = np.array([1, 2, 0]).astype(np.float32)
node = onnx.helper.make_node(
'Min',
inputs=['data_0', 'data_1', 'data_2'],
outputs=['result'],
)
expect(node, inputs=[data_0, data_1, data_2], outputs=[result],
name='test_min_example')
node = onnx.helper.make_node(
'Min',
inputs=['data_0'],
outputs=['result'],
)
expect(node, inputs=[data_0], outputs=[data_0],
name='test_min_one_input')
result = np.minimum(data_0, data_1)
node = onnx.helper.make_node(
'Min',
inputs=['data_0', 'data_1'],
outputs=['result'],
)
expect(node, inputs=[data_0, data_1], outputs=[result],
name='test_min_two_inputs')
@staticmethod
def export_min_all_numeric_types(): # type: () -> None
for op_dtype in all_numeric_dtypes:
data_0 = np.array([3, 2, 1]).astype(op_dtype)
data_1 = np.array([1, 4, 4]).astype(op_dtype)
result = np.array([1, 2, 1]).astype(op_dtype)
node = onnx.helper.make_node(
'Min',
inputs=['data_0', 'data_1'],
outputs=['result'],
)
expect(node, inputs=[data_0, data_1], outputs=[result],
name='test_min_{0}'.format(np.dtype(op_dtype).name))
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
from .pool_op_common import get_pad_shape, get_output_shape, pool
class AveragePool(Base):
@staticmethod
def export_averagepool_2d_precomputed_pads(): # type: () -> None
"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 5, 5]
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[5, 5],
pads=[2, 2, 2, 2]
)
x = np.array([[[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
]]]).astype(np.float32)
y = np.array([[[[7, 7.5, 8, 8.5, 9],
[9.5, 10, 10.5, 11, 11.5],
[12, 12.5, 13, 13.5, 14],
[14.5, 15, 15.5, 16, 16.5],
[17, 17.5, 18, 18.5, 19]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_precomputed_pads')
@staticmethod
def export_averagepool_2d_precomputed_pads_count_include_pad(): # type: () -> None
"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 5, 5]
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[5, 5],
pads=[2, 2, 2, 2],
count_include_pad=1
)
x = np.array([[[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
]]]).astype(np.float32)
y = np.array([[[[2.5200, 3.6000, 4.8000, 4.0800, 3.2400],
[4.5600, 6.4000, 8.4000, 7.0400, 5.5200],
[7.2000, 10.0000, 13.0000, 10.8000, 8.4000],
[6.9600, 9.6000, 12.4000, 10.2400, 7.9200],
[6.1200, 8.4000, 10.8000, 8.8800, 6.8400]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_precomputed_pads_count_include_pad')
@staticmethod
def export_averagepool_2d_precomputed_strides(): # type: () -> None
"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 2, 2]
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2, 2],
strides=[2, 2]
)
x = np.array([[[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
]]]).astype(np.float32)
y = np.array([[[[4, 6],
[14, 16]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_precomputed_strides')
@staticmethod
def export_averagepool_2d_precomputed_same_upper(): # type: () -> None
"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 3, 3]
pad_shape: [2, 2] -> [1, 1, 1, 1] by axis
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[3, 3],
strides=[2, 2],
auto_pad='SAME_UPPER'
)
x = np.array([[[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
]]]).astype(np.float32)
y = np.array([[[[4, 5.5, 7],
[11.5, 13, 14.5],
[19, 20.5, 22]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_precomputed_same_upper')
@staticmethod
def export_averagepool_1d_default(): # type: () -> None
"""
input_shape: [1, 3, 32]
output_shape: [1, 3, 31]
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2],
)
x = np.random.randn(1, 3, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = [2]
strides = [1]
out_shape = get_output_shape('VALID', x_shape[2:], kernel_shape, strides)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, [0], 'AVG')
expect(node, inputs=[x], outputs=[y], name='test_averagepool_1d_default')
@staticmethod
def export_averagepool_2d_default(): # type: () -> None
"""
input_shape: [1, 3, 32, 32]
output_shape: [1, 3, 31, 31]
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2, 2],
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (2, 2)
strides = (1, 1)
out_shape = get_output_shape('VALID', x_shape[2:], kernel_shape, strides)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, (0, 0), 'AVG')
expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_default')
@staticmethod
def export_averagepool_3d_default(): # type: () -> None
"""
input_shape: [1, 3, 32, 32, 32]
output_shape: [1, 3, 31, 31, 31]
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2, 2, 2],
)
x = np.random.randn(1, 3, 32, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = [2, 2, 2]
strides = [1, 1, 1]
out_shape = get_output_shape('VALID', x_shape[2:], kernel_shape, strides)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, [0, 0, 0], 'AVG')
expect(node, inputs=[x], outputs=[y], name='test_averagepool_3d_default')
@staticmethod
def export_averagepool_2d_same_upper(): # type: () -> None
"""
input_shape: [1, 3, 32, 32]
output_shape: [1, 3, 32, 32]
pad_shape: [1, 1] -> [0, 1, 0, 1] by axis
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2, 2],
auto_pad='SAME_UPPER'
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (2, 2)
strides = (1, 1)
out_shape = get_output_shape('SAME_UPPER', x_shape[2:], kernel_shape, strides)
pad_shape = get_pad_shape('SAME_UPPER', x_shape[2:], kernel_shape, strides, out_shape)
pad_top = pad_shape[0] // 2
pad_bottom = pad_shape[0] - pad_top
pad_left = pad_shape[1] // 2
pad_right = pad_shape[1] - pad_left
padded = np.pad(x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode='constant',
constant_values=np.nan)
y = pool(padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'AVG')
expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_same_upper')
@staticmethod
def export_averagepool_2d_same_lower(): # type: () -> None
"""
input_shape: [1, 3, 32, 32]
output_shape: [1, 3, 32, 32]
pad_shape: [1, 1] -> [1, 0, 1, 0] by axis
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2, 2],
auto_pad='SAME_LOWER'
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (2, 2)
strides = (1, 1)
out_shape = get_output_shape('SAME_LOWER', x_shape[2:], kernel_shape, strides)
pad_shape = get_pad_shape('SAME_LOWER', x_shape[2:], kernel_shape, strides, out_shape)
pad_bottom = pad_shape[0] // 2
pad_top = pad_shape[0] - pad_bottom
pad_right = pad_shape[1] // 2
pad_left = pad_shape[1] - pad_right
padded = np.pad(x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode='constant',
constant_values=np.nan)
y = pool(padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'AVG')
expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_same_lower')
@staticmethod
def export_averagepool_2d_pads(): # type: () -> None
"""
input_shape: [1, 3, 28, 28]
output_shape: [1, 3, 30, 30]
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[3, 3],
pads=[2, 2, 2, 2]
)
x = np.random.randn(1, 3, 28, 28).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (3, 3)
strides = (1, 1)
pad_bottom = 2
pad_top = 2
pad_right = 2
pad_left = 2
pad_shape = [pad_top + pad_bottom, pad_left + pad_right]
out_shape = get_output_shape('VALID', np.add(x_shape[2:], pad_shape), kernel_shape, strides)
padded = np.pad(x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode='constant',
constant_values=np.nan)
y = pool(padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'AVG')
expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_pads')
@staticmethod
def export_averagepool_2d_pads_count_include_pad(): # type: () -> None
"""
input_shape: [1, 3, 28, 28]
output_shape: [1, 3, 30, 30]
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[3, 3],
pads=[2, 2, 2, 2],
count_include_pad=1,
)
x = np.random.randn(1, 3, 28, 28).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (3, 3)
strides = (1, 1)
pad_bottom = 2
pad_top = 2
pad_right = 2
pad_left = 2
pad_shape = [pad_top + pad_bottom, pad_left + pad_right]
out_shape = get_output_shape('VALID', np.add(x_shape[2:], pad_shape), kernel_shape, strides)
padded = np.pad(x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode='constant',
constant_values=0)
y = pool(padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'AVG', count_include_pad=1)
expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_pads_count_include_pad')
@staticmethod
def export_averagepool_2d_strides(): # type: () -> None
"""
input_shape: [1, 3, 32, 32]
output_shape: [1, 3, 10, 10]
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[5, 5],
strides=[3, 3]
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (5, 5)
strides = (3, 3)
out_shape = get_output_shape('VALID', x_shape[2:], kernel_shape, strides)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, (0, 0), 'AVG')
expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_strides')
@staticmethod
def export_averagepool_2d_ceil(): # type: () -> None
"""
input_shape: [1, 1, 4, 4]
output_shape: [1, 1, 2, 2]
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[3, 3],
strides=[2, 2],
ceil_mode=True
)
x = np.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
]]]).astype(np.float32)
y = np.array([[[
[6, 7.5],
[12, 13.5]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_ceil')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Mean(Base):
@staticmethod
def export(): # type: () -> None
data_0 = np.array([3, 0, 2]).astype(np.float32)
data_1 = np.array([1, 3, 4]).astype(np.float32)
data_2 = np.array([2, 6, 6]).astype(np.float32)
result = np.array([2, 3, 4]).astype(np.float32)
node = onnx.helper.make_node(
'Mean',
inputs=['data_0', 'data_1', 'data_2'],
outputs=['result'],
)
expect(node, inputs=[data_0, data_1, data_2], outputs=[result],
name='test_mean_example')
node = onnx.helper.make_node(
'Mean',
inputs=['data_0'],
outputs=['result'],
)
expect(node, inputs=[data_0], outputs=[data_0],
name='test_mean_one_input')
result = np.divide(np.add(data_0, data_1), 2.)
node = onnx.helper.make_node(
'Mean',
inputs=['data_0', 'data_1'],
outputs=['result'],
)
expect(node, inputs=[data_0, data_1], outputs=[result],
name='test_mean_two_inputs')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Not(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Not',
inputs=['x'],
outputs=['not'],
)
# 2d
x = (np.random.randn(3, 4) > 0).astype(np.bool)
expect(node, inputs=[x], outputs=[np.logical_not(x)],
name='test_not_2d')
# 3d
x = (np.random.randn(3, 4, 5) > 0).astype(np.bool)
expect(node, inputs=[x], outputs=[np.logical_not(x)],
name='test_not_3d')
# 4d
x = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool)
expect(node, inputs=[x], outputs=[np.logical_not(x)],
name='test_not_4d')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Mul(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Mul',
inputs=['x', 'y'],
outputs=['z'],
)
x = np.array([1, 2, 3]).astype(np.float32)
y = np.array([4, 5, 6]).astype(np.float32)
z = x * y # expected output [4., 10., 18.]
expect(node, inputs=[x, y], outputs=[z],
name='test_mul_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.randn(3, 4, 5).astype(np.float32)
z = x * y
expect(node, inputs=[x, y], outputs=[z],
name='test_mul')
@staticmethod
def export_mul_broadcast(): # type: () -> None
node = onnx.helper.make_node(
'Mul',
inputs=['x', 'y'],
outputs=['z'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.randn(5).astype(np.float32)
z = x * y
expect(node, inputs=[x, y], outputs=[z],
name='test_mul_bcast')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
def pad_impl(data, raw_pads, mode, constant_values=0.0): # type: ignore
input_rank = data.ndim
if input_rank * 2 != raw_pads.size:
raise Exception('The number of elements in raw_pads should be 2 * data_rank')
# re-order to np.pad accepted order ((x1_begin, x1_end), (x2_begin, x2_end), ...)
pad_width = ()
for i in range(int(raw_pads.size / 2)):
pad_width += ((raw_pads[i], raw_pads[i + input_rank])), # type: ignore
if mode == 'constant':
y = np.pad(
data,
pad_width=pad_width,
mode=mode,
constant_values=constant_values,
)
return y
y = np.pad(
data,
pad_width=pad_width,
mode=mode,
)
return y
class Pad(Base):
@staticmethod
def export_constant_pad(): # type: () -> None
node = onnx.helper.make_node(
'Pad',
inputs=['x', 'pads', 'value'],
outputs=['y'],
mode='constant'
)
x = np.random.randn(1, 3, 4, 5).astype(np.float32)
pads = np.array([0, 0, 1, 3, 0, 0, 2, 4]).astype(np.int64) # pad order [x1_begin, x2_begin, ..., x1_end, x2_end, ...]
value = np.float32(1.2)
y = pad_impl(
x,
pads,
'constant',
1.2
)
expect(node, inputs=[x, pads, value], outputs=[y],
name='test_constant_pad')
@staticmethod
def export_reflection_and_edge_pad(): # type: () -> None
for mode in ['edge', 'reflect']:
node = onnx.helper.make_node(
'Pad',
inputs=['x', 'pads'],
outputs=['y'],
mode=mode
)
x = np.random.randn(1, 3, 4, 5).astype(np.int32)
pads = np.array([0, 0, 1, 1, 0, 0, 1, 1]).astype(np.int64) # pad order [x1_begin, x2_begin, ..., x1_end, x2_end, ...]
y = pad_impl(
x,
pads,
mode
)
expect(node, inputs=[x, pads], outputs=[y],
name='test_{}_pad'.format(mode))
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class ReduceMean(Base):
@staticmethod
def export_do_not_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [1]
keepdims = 0
node = onnx.helper.make_node(
'ReduceMean',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
reduced = np.mean(data, axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[12.5, 1.5]
# [35., 1.5]
# [57.5, 1.5]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_mean_do_not_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.mean(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_mean_do_not_keepdims_random')
@staticmethod
def export_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [1]
keepdims = 1
node = onnx.helper.make_node(
'ReduceMean',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
reduced = np.mean(data, axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[[12.5, 1.5]]
# [[35., 1.5]]
# [[57.5, 1.5]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_mean_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.mean(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_mean_keepdims_random')
@staticmethod
def export_default_axes_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = None
keepdims = 1
node = onnx.helper.make_node(
'ReduceMean',
inputs=['data'],
outputs=['reduced'],
keepdims=keepdims)
data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
reduced = np.mean(data, axis=axes, keepdims=keepdims == 1)
#print(reduced)
#[[[18.25]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_mean_default_axes_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.mean(data, axis=axes, keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_mean_default_axes_keepdims_random')
@staticmethod
def export_negative_axes_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [-2]
keepdims = 1
node = onnx.helper.make_node(
'ReduceMean',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
reduced = np.mean(data, axis=tuple(axes), keepdims=keepdims == 1)
# print(reduced)
# [[[12.5, 1.5]]
# [[35., 1.5]]
# [[57.5, 1.5]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_mean_negative_axes_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.mean(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_mean_negative_axes_keepdims_random')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
from typing import Any, List, Callable, Union, Optional, Text
def cartesian(arrays, out=None):
# type: (List[np.ndarray], np.ndarray) -> np.ndarray
"""
From https://stackoverflow.com/a/1235363
Generate a cartesian product of input arrays.
Parameters
----------
arrays : list of array-like
1-D arrays to form the cartesian product of.
out : ndarray
Array to place the cartesian product in.
Returns
-------
out : ndarray
2-D array of shape (M, len(arrays)) containing cartesian products
formed of input arrays.
Examples
--------
>>> cartesian(([1, 2, 3], [4, 5], [6, 7]))
array([[1, 4, 6],
[1, 4, 7],
[1, 5, 6],
[1, 5, 7],
[2, 4, 6],
[2, 4, 7],
[2, 5, 6],
[2, 5, 7],
[3, 4, 6],
[3, 4, 7],
[3, 5, 6],
[3, 5, 7]])
"""
arrays = [np.asarray(x) for x in arrays]
dtype = arrays[0].dtype
n = np.prod([x.size for x in arrays])
if out is None:
out = np.zeros([n, len(arrays)], dtype=dtype)
m = n // arrays[0].size
out[:, 0] = np.repeat(arrays[0], m)
if arrays[1:]:
cartesian(arrays[1:], out=out[0:m, 1:])
for j in range(1, arrays[0].size):
out[j * m:(j + 1) * m, 1:] = out[0:m, 1:]
return out
def interpolate_1d_with_x(data, # type: np.ndarray
scale_factor, # type: float
x, # type: float
get_coeffs, # type: Callable[[float], np.ndarray]
roi=None, # type: np.ndarray
extrapolation_value=0.0, # type: float
coordinate_transformation_mode='half_pixel', # type: Text
exclude_outside=False, # type: bool
): # type: (...) -> np.ndarray
def get_neighbor_idxes(x, n, limit): # type: (float, int, int) -> np.ndarray
"""
Return the n nearest indexes to x among [0, limit), prefer the indexes smaller than x.
As a result, the ratio must be in (0, 1]
Examples:
get_neighbor_idxes(4, 2, 10) == [3, 4]
get_neighbor_idxes(4, 3, 10) == [3, 4, 5]
get_neighbor_idxes(4.4, 3, 10) == [3, 4, 5]
get_neighbor_idxes(4.5, 3, 10) == [3, 4, 5]
get_neighbor_idxes(4.6, 3, 10) == [4, 5, 6]
get_neighbor_idxes(4.4, 1, 10) == [4]
get_neighbor_idxes(4.6, 1, 10) == [5]
:param x:
:param n: the number of the wanted indexes
:param limit: the maximum value of index
:return: An np.array containing n nearest indexes in ascending order
"""
idxes = sorted(range(limit), key=lambda idx: (abs(x - idx), idx))[:n]
idxes = sorted(idxes)
return np.array(idxes)
def get_neighbor(x, n, data): # type: (float, int, np.ndarray) -> np.ndarray
"""
Pad `data` in 'edge' mode, and get n nearest elements in the padded array and their indexes in the original
array
:param x: center index (in the unpadded coordinate system) of the found nearest elements.
:param n: the number of neighbors.
:param data: the array
:return: A tuple containing the indexes of neighbor elements (the index can be smaller than 0 or higher than
len(data)) and the value of these elements
"""
pad_width = np.ceil(n / 2).astype(np.int)
padded = np.pad(data, pad_width, mode='edge')
x += pad_width
idxes = get_neighbor_idxes(x, n, len(padded))
ret = padded[idxes]
return idxes - pad_width, ret
input_width = len(data)
output_width = scale_factor * input_width
if coordinate_transformation_mode == 'align_corners':
if output_width == 1:
x_ori = 0.
else:
x_ori = x * (input_width - 1) / (output_width - 1)
elif coordinate_transformation_mode == 'asymmetric':
x_ori = x / scale_factor
elif coordinate_transformation_mode == 'tf_crop_and_resize':
if output_width == 1:
x_ori = (roi[1] - roi[0]) * (input_width - 1) / 2
else:
x_ori = x * (roi[1] - roi[0]) * \
(input_width - 1) / (output_width - 1)
x_ori += (roi[0] * (input_width - 1))
# Return extrapolation_value directly as what TF CropAndResize does
if x_ori < 0 or x_ori > input_width - 1:
return extrapolation_value
elif coordinate_transformation_mode == 'tf_half_pixel_for_nn':
x_ori = (x + 0.5) / scale_factor
elif coordinate_transformation_mode == 'pytorch_half_pixel':
if output_width == 1:
x_ori = -0.5
else:
x_ori = (x + 0.5) / scale_factor - 0.5
else: # coordinate_transformation_mode == 'half_pixel'
x_ori = (x + 0.5) / scale_factor - 0.5
x_ori_int = np.floor(x_ori).astype(np.int).item()
# ratio must be in (0, 1] since we prefer the pixel on the left of `x_ori`
if x_ori.is_integer():
ratio = 1
else:
ratio = x_ori - x_ori_int
coeffs = get_coeffs(ratio)
n = len(coeffs)
idxes, points = get_neighbor(x_ori, n, data)
if exclude_outside:
for i, idx in enumerate(idxes):
if idx < 0 or idx >= input_width:
coeffs[i] = 0
coeffs /= sum(coeffs)
return np.dot(coeffs, points).item()
def interpolate_nd_with_x(data, # type: np.ndarray
n, # type: int
scale_factors, # type: List[float]
x, # type: List[float]
get_coeffs, # type: Callable[[float], np.ndarray]
roi=None, # type: np.ndarray
**kwargs # type: Any
): # type: (...) -> np.ndarray
if n == 1:
return interpolate_1d_with_x(data, scale_factors[0], x[0], get_coeffs, roi=roi,
**kwargs)
return interpolate_1d_with_x(
[interpolate_nd_with_x(data[i], n - 1, scale_factors[1:], x[1:], get_coeffs,
roi=None if roi is None else np.concatenate(
[roi[1:n], roi[n + 1:]]),
**kwargs)
for i in range(data.shape[0])], scale_factors[0], x[0], get_coeffs,
roi=None if roi is None else [roi[0], roi[n]], **kwargs)
def interpolate_nd(data, # type: np.ndarray
get_coeffs, # type: Callable[[float], np.ndarray]
output_size=None, # type: Optional[List[int]]
scale_factors=None, # type: Optional[List[float]]
roi=None, # type: np.ndarray
**kwargs # type: Any
): # type: (...) -> np.ndarray
def get_all_coords(data): # type: (np.ndarray) -> np.ndarray
return cartesian([list(range(data.shape[i])) for i in range(len(data.shape))])
assert output_size is not None or scale_factors is not None
if output_size is not None:
scale_factors = np.array(output_size) / np.array(data.shape)
else:
output_size = (scale_factors * np.array(data.shape)).astype(np.int)
assert scale_factors is not None
ret = np.zeros(output_size)
for x in get_all_coords(ret):
ret[tuple(x)] = interpolate_nd_with_x(data, len(data.shape), scale_factors, x, get_coeffs, roi=roi,
**kwargs)
return ret
def cubic_coeffs(ratio, A=-0.75): # type: (float, float) -> np.ndarray
coeffs = [((A * (ratio + 1) - 5 * A) * (ratio + 1) + 8 * A) * (ratio + 1) - 4 * A,
((A + 2) * ratio - (A + 3)) * ratio * ratio + 1,
((A + 2) * (1 - ratio) - (A + 3)) * (1 - ratio) * (1 - ratio) + 1,
((A * ((1 - ratio) + 1) - 5 * A) * ((1 - ratio) + 1) + 8 * A) * ((1 - ratio) + 1) - 4 * A]
return np.array(coeffs)
def linear_coeffs(ratio): # type: (float) -> np.ndarray
return np.array([1 - ratio, ratio])
def nearest_coeffs(ratio, mode='round_prefer_floor'): # type: (float, Text) -> np.ndarray
if type(ratio) == int or ratio.is_integer():
return np.array([0, 1])
elif mode == 'round_prefer_floor':
return np.array([ratio <= 0.5, ratio > 0.5])
elif mode == 'round_prefer_ceil':
return np.array([ratio < 0.5, ratio >= 0.5])
elif mode == 'floor':
return np.array([1, 0])
elif mode == 'ceil':
return np.array([0, 1])
class Resize(Base):
@staticmethod
def export_resize_upsample_scales_nearest(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales'],
outputs=['Y'],
mode='nearest',
)
data = np.array([[[
[1, 2],
[3, 4],
]]], dtype=np.float32)
roi = np.array([], dtype=np.float32)
scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
# [[[[1. 1. 1. 2. 2. 2.]
# [1. 1. 1. 2. 2. 2.]
# [3. 3. 3. 4. 4. 4.]
# [3. 3. 3. 4. 4. 4.]]]]
output = interpolate_nd(
data, nearest_coeffs, scale_factors=scales).astype(np.float32)
expect(node, inputs=[data, roi, scales], outputs=[output],
name='test_resize_upsample_scales_nearest')
@staticmethod
def export_resize_downsample_scales_nearest(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales'],
outputs=['Y'],
mode='nearest',
)
data = np.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
]]], dtype=np.float32)
roi = np.array([], dtype=np.float32)
scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
# [[[[1. 3.]]]]
output = interpolate_nd(
data, nearest_coeffs, scale_factors=scales).astype(np.float32)
expect(node, inputs=[data, roi, scales], outputs=[output],
name='test_resize_downsample_scales_nearest')
@staticmethod
def export_resize_upsample_sizes_nearest(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales', 'sizes'],
outputs=['Y'],
mode='nearest',
)
data = np.array([[[
[1, 2],
[3, 4],
]]], dtype=np.float32)
roi = np.array([], dtype=np.float32)
scales = np.array([], dtype=np.float32)
sizes = np.array([1, 1, 7, 8], dtype=np.int64)
# [[[[1. 1. 1. 1. 2. 2. 2. 2.]
# [1. 1. 1. 1. 2. 2. 2. 2.]
# [1. 1. 1. 1. 2. 2. 2. 2.]
# [1. 1. 1. 1. 2. 2. 2. 2.]
# [3. 3. 3. 3. 4. 4. 4. 4.]
# [3. 3. 3. 3. 4. 4. 4. 4.]
# [3. 3. 3. 3. 4. 4. 4. 4.]]]]
output = interpolate_nd(
data, nearest_coeffs, output_size=sizes).astype(np.float32)
expect(node, inputs=[data, roi, scales, sizes], outputs=[output],
name='test_resize_upsample_sizes_nearest')
@staticmethod
def export_resize_downsample_sizes_nearest(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales', 'sizes'],
outputs=['Y'],
mode='nearest',
)
data = np.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
]]], dtype=np.float32)
roi = np.array([], dtype=np.float32)
scales = np.array([], dtype=np.float32)
sizes = np.array([1, 1, 1, 3], dtype=np.int64)
# [[[[1. 3.]]]]
output = interpolate_nd(
data, nearest_coeffs, output_size=sizes).astype(np.float32)
expect(node, inputs=[data, roi, scales, sizes], outputs=[output],
name='test_resize_downsample_sizes_nearest')
@staticmethod
def export_resize_upsample_scales_linear(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales'],
outputs=['Y'],
mode='linear',
)
data = np.array([[[
[1, 2],
[3, 4],
]]], dtype=np.float32)
roi = np.array([], dtype=np.float32)
scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
# [[[[1. 1.25 1.75 2. ]
# [1.5 1.75 2.25 2.5 ]
# [2.5 2.75 3.25 3.5 ]
# [3. 3.25 3.75 4. ]]]]
output = interpolate_nd(
data, linear_coeffs, scale_factors=scales).astype(np.float32)
expect(node, inputs=[data, roi, scales], outputs=[output],
name='test_resize_upsample_scales_linear')
@staticmethod
def export_resize_upsample_scales_linear_align_corners(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales'],
outputs=['Y'],
mode='linear',
coordinate_transformation_mode='align_corners'
)
data = np.array([[[
[1, 2],
[3, 4],
]]], dtype=np.float32)
roi = np.array([], dtype=np.float32)
scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
# [[[[1. 1.33333333 1.66666667 2. ]
# [1.66666667 2. 2.33333333 2.66666667]
# [2.33333333 2.66666667 3. 3.33333333]
# [3. 3.33333333 3.66666667 4. ]]]]
output = interpolate_nd(
data, linear_coeffs, scale_factors=scales, coordinate_transformation_mode='align_corners').astype(np.float32)
expect(node, inputs=[data, roi, scales], outputs=[output],
name='test_resize_upsample_scales_linear_align_corners')
@staticmethod
def export_resize_downsample_scales_linear(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales'],
outputs=['Y'],
mode='linear',
)
data = np.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
]]], dtype=np.float32)
roi = np.array([], dtype=np.float32)
scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
# [[[[2.6666665 4.3333331]]]]
output = interpolate_nd(
data, linear_coeffs, scale_factors=scales).astype(np.float32)
expect(node, inputs=[data, roi, scales], outputs=[output],
name='test_resize_downsample_scales_linear')
@staticmethod
def export_resize_downsample_scales_linear_align_corners(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales'],
outputs=['Y'],
mode='linear',
coordinate_transformation_mode='align_corners'
)
data = np.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
]]], dtype=np.float32)
roi = np.array([], dtype=np.float32)
scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
# [[[[1. 3.142857]]]]
output = interpolate_nd(
data, linear_coeffs, scale_factors=scales, coordinate_transformation_mode='align_corners').astype(np.float32)
expect(node, inputs=[data, roi, scales], outputs=[output],
name='test_resize_downsample_scales_linear_align_corners')
@staticmethod
def export_resize_upsample_scales_cubic(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales'],
outputs=['Y'],
mode='cubic',
)
data = np.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
]]], dtype=np.float32)
roi = np.array([], dtype=np.float32)
scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
# [[[[ 0.47265625 0.76953125 1.24609375 1.875 2.28125
# 2.91015625 3.38671875 3.68359375]
# [ 1.66015625 1.95703125 2.43359375 3.0625 3.46875
# 4.09765625 4.57421875 4.87109375]
# [ 3.56640625 3.86328125 4.33984375 4.96875 5.375
# 6.00390625 6.48046875 6.77734375]
# [ 6.08203125 6.37890625 6.85546875 7.484375 7.890625
# 8.51953125 8.99609375 9.29296875]
# [ 7.70703125 8.00390625 8.48046875 9.109375 9.515625
# 10.14453125 10.62109375 10.91796875]
# [10.22265625 10.51953125 10.99609375 11.625 12.03125
# 12.66015625 13.13671875 13.43359375]
# [12.12890625 12.42578125 12.90234375 13.53125 13.9375
# 14.56640625 15.04296875 15.33984375]
# [13.31640625 13.61328125 14.08984375 14.71875 15.125
# 15.75390625 16.23046875 16.52734375]]]]
output = interpolate_nd(
data, cubic_coeffs, scale_factors=scales).astype(np.float32)
expect(node, inputs=[data, roi, scales], outputs=[output],
name='test_resize_upsample_scales_cubic')
@staticmethod
def export_resize_upsample_scales_cubic_align_corners(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales'],
outputs=['Y'],
mode='cubic',
coordinate_transformation_mode='align_corners'
)
data = np.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
]]], dtype=np.float32)
roi = np.array([], dtype=np.float32)
scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
# [[[[ 1. 1.34110787 1.80029155 2.32944606 2.67055394
# 3.19970845 3.65889213 4. ]
# [ 2.36443149 2.70553936 3.16472303 3.69387755 4.03498542
# 4.56413994 5.02332362 5.36443149]
# [ 4.20116618 4.54227405 5.00145773 5.53061224 5.87172012
# 6.40087464 6.86005831 7.20116618]
# [ 6.31778426 6.65889213 7.1180758 7.64723032 7.98833819
# 8.51749271 8.97667638 9.31778426]
# [ 7.68221574 8.02332362 8.48250729 9.01166181 9.35276968
# 9.8819242 10.34110787 10.68221574]
# [ 9.79883382 10.13994169 10.59912536 11.12827988 11.46938776
# 11.99854227 12.45772595 12.79883382]
# [11.63556851 11.97667638 12.43586006 12.96501458 13.30612245
# 13.83527697 14.29446064 14.63556851]
# [13. 13.34110787 13.80029155 14.32944606 14.67055394
# 15.19970845 15.65889213 16. ]]]]
output = interpolate_nd(
data, cubic_coeffs, scale_factors=scales, coordinate_transformation_mode='align_corners').astype(np.float32)
expect(node, inputs=[data, roi, scales], outputs=[output],
name='test_resize_upsample_scales_cubic_align_corners')
@staticmethod
def export_resize_downsample_scales_cubic(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales'],
outputs=['Y'],
mode='cubic',
)
data = np.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
]]], dtype=np.float32)
roi = np.array([], dtype=np.float32)
scales = np.array([1.0, 1.0, 0.8, 0.8], dtype=np.float32)
# [[[[ 1.47119141 2.78125 4.08251953]
# [ 6.71142578 8.02148438 9.32275391]
# [11.91650391 13.2265625 14.52783203]]]]
output = interpolate_nd(
data, cubic_coeffs, scale_factors=scales).astype(np.float32)
expect(node, inputs=[data, roi, scales], outputs=[output],
name='test_resize_downsample_scales_cubic')
@staticmethod
def export_resize_downsample_scales_cubic_align_corners(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales'],
outputs=['Y'],
mode='cubic',
coordinate_transformation_mode='align_corners'
)
data = np.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
]]], dtype=np.float32)
roi = np.array([], dtype=np.float32)
scales = np.array([1.0, 1.0, 0.8, 0.8], dtype=np.float32)
# [[[[ 1. 2.39519159 3.79038317]
# [ 6.58076634 7.97595793 9.37114951]
# [12.16153268 13.55672427 14.95191585]]]]
output = interpolate_nd(
data, cubic_coeffs, scale_factors=scales, coordinate_transformation_mode='align_corners').astype(np.float32)
expect(node, inputs=[data, roi, scales], outputs=[output],
name='test_resize_downsample_scales_cubic_align_corners')
@staticmethod
def export_resize_upsample_sizes_cubic(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales', 'sizes'],
outputs=['Y'],
mode='cubic',
)
data = np.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
]]], dtype=np.float32)
roi = np.array([], dtype=np.float32)
scales = np.array([], dtype=np.float32)
sizes = np.array([1, 1, 9, 10], dtype=np.int64)
# [[[[ 0.45507922 0.64057922 0.97157922 1.42257922 1.90732922
# 2.22332922 2.70807922 3.15907922 3.49007922 3.67557922]
# [ 1.39437963 1.57987963 1.91087963 2.36187963 2.84662963
# 3.16262963 3.64737963 4.09837963 4.42937963 4.61487963]
# [ 2.95130693 3.13680693 3.46780693 3.91880693 4.40355693
# 4.71955693 5.20430693 5.65530693 5.98630693 6.17180693]
# [ 5.20525069 5.39075069 5.72175069 6.17275069 6.65750069
# 6.97350069 7.45825069 7.90925069 8.24025069 8.42575069]
# [ 6.88975 7.07525 7.40625 7.85725 8.342
# 8.658 9.14275 9.59375 9.92475 10.11025 ]
# [ 8.57424931 8.75974931 9.09074931 9.54174931 10.02649931
# 10.34249931 10.82724931 11.27824931 11.60924931 11.79474931]
# [10.82819307 11.01369307 11.34469307 11.79569307 12.28044307
# 12.59644307 13.08119307 13.53219307 13.86319307 14.04869307]
# [12.38512037 12.57062037 12.90162037 13.35262037 13.83737037
# 14.15337037 14.63812037 15.08912037 15.42012037 15.60562037]
# [13.32442078 13.50992078 13.84092078 14.29192078 14.77667078
# 15.09267078 15.57742078 16.02842078 16.35942078 16.54492078]]]]
output = interpolate_nd(
data, cubic_coeffs, output_size=sizes).astype(np.float32)
expect(node, inputs=[data, roi, scales, sizes], outputs=[output],
name='test_resize_upsample_sizes_cubic')
@staticmethod
def export_resize_downsample_sizes_cubic(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales', 'sizes'],
outputs=['Y'],
mode='cubic',
)
data = np.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
]]], dtype=np.float32)
roi = np.array([], dtype=np.float32)
scales = np.array([], dtype=np.float32)
sizes = np.array([1, 1, 3, 3], dtype=np.int64)
# [[[[ 1.63078704 3.00462963 4.37847222]
# [ 7.12615741 8.5 9.87384259]
# [12.62152778 13.99537037 15.36921296]]]]
output = interpolate_nd(
data, cubic_coeffs, output_size=sizes).astype(np.float32)
expect(node, inputs=[data, roi, scales, sizes], outputs=[output],
name='test_resize_downsample_sizes_cubic')
# TensorFlow v1 bicubic with half_pixel_centers=True
@staticmethod
def export_resize_upsample_scales_cubic_A_n0p5_exclude_outside(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales'],
outputs=['Y'],
mode='cubic',
cubic_coeff_a=-0.5,
exclude_outside=True
)
data = np.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
]]], dtype=np.float32)
roi = np.array([], dtype=np.float32)
scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
# [[[[ 0.55882353 0.81494204 1.35698249 1.89705882 2.39705882
# 2.93713516 3.47917561 3.73529412]
# [ 1.58329755 1.83941606 2.38145651 2.92153285 3.42153285
# 3.96160918 4.50364964 4.75976814]
# [ 3.75145936 4.00757787 4.54961832 5.08969466 5.58969466
# 6.12977099 6.67181144 6.92792995]
# [ 5.91176471 6.16788321 6.70992366 7.25 7.75
# 8.29007634 8.83211679 9.08823529]
# [ 7.91176471 8.16788321 8.70992366 9.25 9.75
# 10.29007634 10.83211679 11.08823529]
# [10.07207005 10.32818856 10.87022901 11.41030534 11.91030534
# 12.45038168 12.99242213 13.24854064]
# [12.24023186 12.49635036 13.03839082 13.57846715 14.07846715
# 14.61854349 15.16058394 15.41670245]
# [13.26470588 13.52082439 14.06286484 14.60294118 15.10294118
# 15.64301751 16.18505796 16.44117647]]]]
output = interpolate_nd(data, lambda x: cubic_coeffs(x, A=-0.5), scale_factors=scales,
exclude_outside=True).astype(np.float32)
expect(node, inputs=[data, roi, scales], outputs=[output],
name='test_resize_upsample_scales_cubic_A_n0p5_exclude_outside')
@staticmethod
def export_resize_downsample_scales_cubic_A_n0p5_exclude_outside(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales'],
outputs=['Y'],
mode='cubic',
cubic_coeff_a=-0.5,
exclude_outside=True
)
data = np.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
]]], dtype=np.float32)
roi = np.array([], dtype=np.float32)
scales = np.array([1.0, 1.0, 0.8, 0.8], dtype=np.float32)
# [[[[ 1.36812675 2.6695014 4.0133367 ]
# [ 6.57362535 7.875 9.2188353 ]
# [11.94896657 13.25034122 14.59417652]]]]
output = interpolate_nd(data, lambda x: cubic_coeffs(x, A=-0.5), scale_factors=scales,
exclude_outside=True).astype(np.float32)
expect(node, inputs=[data, roi, scales], outputs=[output],
name='test_resize_downsample_scales_cubic_A_n0p5_exclude_outside')
# TensorFlow v1 bicubic with half_pixel_centers=False
@staticmethod
def export_resize_upsample_scales_cubic_asymmetric(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales'],
outputs=['Y'],
mode='cubic',
coordinate_transformation_mode='asymmetric'
)
data = np.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
]]], dtype=np.float32)
scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
roi = np.array([], dtype=np.float32)
# [[[[ 1. 1.40625 2. 2.5 3. 3.59375 4.
# 4.09375]
# [ 2.625 3.03125 3.625 4.125 4.625 5.21875 5.625
# 5.71875]
# [ 5. 5.40625 6. 6.5 7. 7.59375 8.
# 8.09375]
# [ 7. 7.40625 8. 8.5 9. 9.59375 10.
# 10.09375]
# [ 9. 9.40625 10. 10.5 11. 11.59375 12.
# 12.09375]
# [11.375 11.78125 12.375 12.875 13.375 13.96875 14.375
# 14.46875]
# [13. 13.40625 14. 14.5 15. 15.59375 16.
# 16.09375]
# [13.375 13.78125 14.375 14.875 15.375 15.96875 16.375
# 16.46875]]]]
output = interpolate_nd(data, lambda x: cubic_coeffs(x, A=-0.75), scale_factors=scales,
coordinate_transformation_mode='asymmetric').astype(np.float32)
expect(node, inputs=[data, roi, scales], outputs=[output],
name='test_resize_upsample_scales_cubic_asymmetric')
@staticmethod
def export_resize_tf_crop_and_resize(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales', 'sizes'],
outputs=['Y'],
mode='linear',
coordinate_transformation_mode='tf_crop_and_resize'
)
data = np.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
]]], dtype=np.float32)
# Note: for some rois, the result may be different with that of TF for inaccurate floating point
roi = np.array([0, 0, 0.4, 0.6, 1, 1, 0.6, 0.8], dtype=np.float32)
scales = np.array([], dtype=np.float32)
sizes = np.array([1, 1, 3, 3], dtype=np.int64)
# [[[[ 7.6000004 7.9 8.2 ]
# [ 8.8 9.1 9.400001 ]
# [10. 10.3 10.6 ]]]]
output = interpolate_nd(data, linear_coeffs, output_size=sizes, roi=roi,
coordinate_transformation_mode='tf_crop_and_resize').astype(np.float32)
expect(node, inputs=[data, roi, scales, sizes], outputs=[output],
name='test_resize_tf_crop_and_resize')
@staticmethod
def export_resize_tf_crop_and_resize_extrapolation_value(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales', 'sizes'],
outputs=['Y'],
mode='linear',
coordinate_transformation_mode='tf_crop_and_resize',
extrapolation_value=10.0
)
data = np.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
]]], dtype=np.float32)
# Note: for some rois, the result may be different with that of TF for inaccurate floating point
roi = np.array([0, 0, 0.4, 0.6, 1, 1, 1.2, 1.7], dtype=np.float32)
scales = np.array([], dtype=np.float32)
sizes = np.array([1, 1, 3, 3], dtype=np.int64)
# [[[[ 7.6000004 10. 10. ]
# [12.400001 10. 10. ]
# [10. 10. 10. ]]]]
output = interpolate_nd(data, linear_coeffs, output_size=sizes, roi=roi,
coordinate_transformation_mode='tf_crop_and_resize', extrapolation_value=10.0).astype(np.float32)
expect(node, inputs=[data, roi, scales, sizes], outputs=[output],
name='test_resize_tf_crop_and_resize')
@staticmethod
def export_resize_downsample_sizes_nearest_tf_half_pixel_for_nn(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales', 'sizes'],
outputs=['Y'],
mode='nearest',
coordinate_transformation_mode='tf_half_pixel_for_nn'
)
data = np.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
]]], dtype=np.float32)
roi = np.array([], dtype=np.float32)
scales = np.array([], dtype=np.float32)
sizes = np.array([1, 1, 3, 2], dtype=np.int64)
# [[[[ 6. 8.]
# [10. 12.]
# [14. 16.]]]]
output = interpolate_nd(
data, nearest_coeffs, output_size=sizes, coordinate_transformation_mode='tf_half_pixel_for_nn').astype(np.float32)
expect(node, inputs=[data, roi, scales, sizes], outputs=[output],
name='test_resize_downsample_sizes_nearest_tf_half_pixel_for_nn')
@staticmethod
def export_resize_downsample_sizes_linear_pytorch_half_pixel(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales', 'sizes'],
outputs=['Y'],
mode='linear',
coordinate_transformation_mode='pytorch_half_pixel'
)
data = np.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
]]], dtype=np.float32)
roi = np.array([], dtype=np.float32)
scales = np.array([], dtype=np.float32)
sizes = np.array([1, 1, 3, 1], dtype=np.int64)
# [[[[ 1.6666666]
# [ 7. ]
# [12.333333 ]]]]
output = interpolate_nd(
data, linear_coeffs, output_size=sizes, coordinate_transformation_mode='pytorch_half_pixel').astype(np.float32)
expect(node, inputs=[data, roi, scales, sizes], outputs=[output],
name='test_resize_downsample_sizes_linear_pytorch_half_pixel')
@staticmethod
def export_resize_upsample_sizes_nearest_floor_align_corners(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales', 'sizes'],
outputs=['Y'],
mode='nearest',
coordinate_transformation_mode='align_corners',
nearest_mode='floor'
)
data = np.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
]]], dtype=np.float32)
roi = np.array([], dtype=np.float32)
scales = np.array([], dtype=np.float32)
sizes = np.array([1, 1, 8, 8], dtype=np.int64)
# [[[[ 1. 1. 1. 2. 2. 3. 3. 4.]
# [ 1. 1. 1. 2. 2. 3. 3. 4.]
# [ 1. 1. 1. 2. 2. 3. 3. 4.]
# [ 5. 5. 5. 6. 6. 7. 7. 8.]
# [ 5. 5. 5. 6. 6. 7. 7. 8.]
# [ 9. 9. 9. 10. 10. 11. 11. 12.]
# [ 9. 9. 9. 10. 10. 11. 11. 12.]
# [13. 13. 13. 14. 14. 15. 15. 16.]]]]
output = interpolate_nd(
data, lambda x: nearest_coeffs(x, mode='floor'), output_size=sizes, coordinate_transformation_mode='align_corners').astype(np.float32)
expect(node, inputs=[data, roi, scales, sizes], outputs=[output],
name='test_resize_upsample_sizes_nearest_floor_align_corners')
@staticmethod
def export_resize_upsample_sizes_nearest_round_prefer_ceil_asymmetric(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales', 'sizes'],
outputs=['Y'],
mode='nearest',
coordinate_transformation_mode='asymmetric',
nearest_mode='round_prefer_ceil'
)
data = np.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
]]], dtype=np.float32)
roi = np.array([], dtype=np.float32)
scales = np.array([], dtype=np.float32)
sizes = np.array([1, 1, 8, 8], dtype=np.int64)
# [[[[ 1. 2. 2. 3. 3. 4. 4. 4.]
# [ 5. 6. 6. 7. 7. 8. 8. 8.]
# [ 5. 6. 6. 7. 7. 8. 8. 8.]
# [ 9. 10. 10. 11. 11. 12. 12. 12.]
# [ 9. 10. 10. 11. 11. 12. 12. 12.]
# [13. 14. 14. 15. 15. 16. 16. 16.]
# [13. 14. 14. 15. 15. 16. 16. 16.]
# [13. 14. 14. 15. 15. 16. 16. 16.]]]]
output = interpolate_nd(
data, lambda x: nearest_coeffs(x, mode='round_prefer_ceil'),
output_size=sizes, coordinate_transformation_mode='asymmetric').astype(np.float32)
expect(node, inputs=[data, roi, scales, sizes], outputs=[output],
name='test_resize_upsample_sizes_nearest_round_prefer_ceil_asymmetric')
@staticmethod
def export_resize_upsample_sizes_nearest_ceil_half_pixel(): # type: () -> None
node = onnx.helper.make_node(
'Resize',
inputs=['X', 'roi', 'scales', 'sizes'],
outputs=['Y'],
mode='nearest',
coordinate_transformation_mode='half_pixel',
nearest_mode='ceil'
)
data = np.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
]]], dtype=np.float32)
roi = np.array([], dtype=np.float32)
scales = np.array([], dtype=np.float32)
sizes = np.array([1, 1, 8, 8], dtype=np.int64)
# [[[[ 1. 2. 2. 3. 3. 4. 4. 4.]
# [ 5. 6. 6. 7. 7. 8. 8. 8.]
# [ 5. 6. 6. 7. 7. 8. 8. 8.]
# [ 9. 10. 10. 11. 11. 12. 12. 12.]
# [ 9. 10. 10. 11. 11. 12. 12. 12.]
# [13. 14. 14. 15. 15. 16. 16. 16.]
# [13. 14. 14. 15. 15. 16. 16. 16.]
# [13. 14. 14. 15. 15. 16. 16. 16.]]]]
output = interpolate_nd(
data, lambda x: nearest_coeffs(x, mode='ceil'), output_size=sizes).astype(np.float32)
expect(node, inputs=[data, roi, scales, sizes], outputs=[output],
name='test_resize_upsample_sizes_nearest_ceil_half_pixel')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Round(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Round',
inputs=['x'],
outputs=['y'],
)
x = np.array([0.1, 0.5, 0.9, 1.2, 1.5,
1.8, 2.3, 2.5, 2.7, -1.1,
-1.5, -1.9, -2.2, -2.5, -2.8]).astype(np.float32)
y = np.array([0., 0., 1., 1., 2.,
2., 2., 2., 3., -1.,
-2., -2., -2., -2., -3.]).astype(np.float32) # expected output
expect(node, inputs=[x], outputs=[y],
name='test_round')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import itertools
import onnx
from ..base import Base
from . import expect
class Transpose(Base):
@staticmethod
def export_default(): # type: () -> None
shape = (2, 3, 4)
data = np.random.random_sample(shape).astype(np.float32)
node = onnx.helper.make_node(
'Transpose',
inputs=['data'],
outputs=['transposed']
)
transposed = np.transpose(data)
expect(node, inputs=[data], outputs=[transposed],
name='test_transpose_default')
@staticmethod
def export_all_permutations(): # type: () -> None
shape = (2, 3, 4)
data = np.random.random_sample(shape).astype(np.float32)
permutations = list(itertools.permutations(np.arange(len(shape))))
for i in range(len(permutations)):
node = onnx.helper.make_node(
'Transpose',
inputs=['data'],
outputs=['transposed'],
perm=permutations[i]
)
transposed = np.transpose(data, permutations[i])
expect(node, inputs=[data], outputs=[transposed],
name='test_transpose_all_permutations_' + str(i))
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
def compute_negative_log_likelihood_loss(input, target, weight=None, reduction='mean', ignore_index=None): # type: ignore
input_shape = input.shape
if len(input_shape) == 1:
raise RuntimeError("Unsupported shape")
target_shape = target.shape
N = input_shape[0]
C = input_shape[1]
# initialize the positional weights when required
gather_weight = None
if weight is not None:
# setting mode='clip' to deal with ignore_index > C or < 0 cases.
# when the target value is > C or < 0, it doesn't matter which value we are
# taking in gather_weight, since it will be set to 0 in the following if-block
gather_weight = np.take(weight, target, mode='clip')
# set `ignore_index`'s loss weight to 0.
# The loss tensor will be multiplied by this weight tensor,
# so `ingore_index`'s loss value will be eliminated.
if ignore_index is not None:
gather_weight = np.where(target == ignore_index, 0, gather_weight).astype(dtype=np.float32)
elif ignore_index is not None:
gather_weight = np.where(target == ignore_index, 0, 1).astype(dtype=np.float32)
# if input is 4-d and above, make it 3-d
if len(input_shape) != 3:
input = input.reshape((N, C, -1))
target = target.reshape((N, -1))
# Get a dimension from the reshaped input.
# If the original input shape is [N, C, H, W],
# the D here should be H * W because we reshape
# [N, C, H, W] to [N, C, H * W].
D = input.shape[2]
neg_gather_element_input = np.zeros((N, D), dtype=np.float32)
for i in range(N):
for d in range(D):
if target[i][d] != ignore_index:
neg_gather_element_input[i][d] = -input[i][target[i][d]][d]
loss = neg_gather_element_input
# if the input was 4-d or above reshape to the right shape
if len(input_shape) != 3:
loss = loss.reshape(target_shape)
# apply the weights when required
if gather_weight is not None:
loss = gather_weight * loss
if reduction == 'mean':
loss = loss.sum() / gather_weight.sum()
return loss
if reduction == 'mean':
loss = np.mean(loss)
elif reduction == 'sum':
loss = np.sum(loss)
return loss
class NegativeLogLikelihoodLoss(Base):
@staticmethod
def export_input_shape_is_NC(): # type: () -> None
reduction = 'none'
node = onnx.helper.make_node(
'NegativeLogLikelihoodLoss',
inputs=['input', 'target'],
outputs=['loss'],
reduction=reduction
)
N, C = 3, 5
np.random.seed(0)
input = np.random.rand(N, C).astype(np.float32)
target = np.random.randint(0, high=C, size=(N, ))
negative_log_likelihood_loss = compute_negative_log_likelihood_loss(input, target, weight=None, reduction=reduction)
expect(node, inputs=[input, target], outputs=[negative_log_likelihood_loss],
name='test_negative_log_likelihood_loss_input_shape_is_NC')
@staticmethod
def export_input_shape_is_NCd1d2(): # type: () -> None
reduction = 'none'
node = onnx.helper.make_node(
'NegativeLogLikelihoodLoss',
inputs=['input', 'target'],
outputs=['loss'],
reduction=reduction
)
N, C, dim1, dim2 = 3, 5, 6, 6
np.random.seed(0)
input = np.random.rand(N, C, dim1, dim2).astype(np.float32)
target = np.random.randint(0, high=C, size=(N, dim1, dim2))
negative_log_likelihood_loss = compute_negative_log_likelihood_loss(input, target, weight=None, reduction=reduction)
expect(node, inputs=[input, target], outputs=[negative_log_likelihood_loss],
name='test_negative_log_likelihood_loss_input_shape_is_NCd1d2')
@staticmethod
def export_input_shape_is_NCd1d2_reduction_mean(): # type: () -> None
reduction = 'mean'
node = onnx.helper.make_node(
'NegativeLogLikelihoodLoss',
inputs=['input', 'target'],
outputs=['loss'],
reduction=reduction
)
N, C, dim1, dim2 = 3, 5, 6, 6
np.random.seed(0)
input = np.random.rand(N, C, dim1, dim2).astype(np.float32)
target = np.random.randint(0, high=C, size=(N, dim1, dim2))
negative_log_likelihood_loss = compute_negative_log_likelihood_loss(input, target, weight=None, reduction=reduction)
expect(node, inputs=[input, target], outputs=[negative_log_likelihood_loss],
name='test_negative_log_likelihood_loss_input_shape_is_NCd1d2_reduction_mean')
@staticmethod
def export_input_shape_is_NCd1d2_reduction_sum(): # type: () -> None
reduction = 'sum'
node = onnx.helper.make_node(
'NegativeLogLikelihoodLoss',
inputs=['input', 'target'],
outputs=['loss'],
reduction=reduction
)
N, C, dim1, dim2 = 3, 5, 6, 6
np.random.seed(0)
input = np.random.rand(N, C, dim1, dim2).astype(np.float32)
target = np.random.randint(0, high=C, size=(N, dim1, dim2))
negative_log_likelihood_loss = compute_negative_log_likelihood_loss(input, target, weight=None, reduction=reduction)
expect(node, inputs=[input, target], outputs=[negative_log_likelihood_loss],
name='test_negative_log_likelihood_loss_input_shape_is_NCd1d2_reduction_sum')
@staticmethod
def export_input_shape_is_NCd1d2_with_weight(): # type: () -> None
reduction = 'none'
node = onnx.helper.make_node(
'NegativeLogLikelihoodLoss',
inputs=['input', 'target', 'weight'],
outputs=['loss'],
reduction=reduction
)
N, C, dim1, dim2 = 3, 5, 6, 6
np.random.seed(0)
input = np.random.rand(N, C, dim1, dim2).astype(np.float32)
target = np.random.randint(0, high=C, size=(N, dim1, dim2))
weight = np.random.rand(C).astype(np.float32)
negative_log_likelihood_loss = compute_negative_log_likelihood_loss(input, target, weight=weight, reduction=reduction)
expect(node, inputs=[input, target, weight], outputs=[negative_log_likelihood_loss],
name='test_negative_log_likelihood_loss_input_shape_is_NCd1d2_with_weight')
@staticmethod
def export_input_shape_is_NCd1d2_with_weight_reduction_mean(): # type: () -> None
reduction = 'mean'
node = onnx.helper.make_node(
'NegativeLogLikelihoodLoss',
inputs=['input', 'target', 'weight'],
outputs=['loss'],
reduction=reduction
)
N, C, dim1, dim2 = 3, 5, 6, 6
np.random.seed(0)
input = np.random.rand(N, C, dim1, dim2).astype(np.float32)
target = np.random.randint(0, high=C, size=(N, dim1, dim2))
weight = np.random.rand(C).astype(np.float32)
negative_log_likelihood_loss = compute_negative_log_likelihood_loss(input, target, weight=weight, reduction=reduction)
expect(node, inputs=[input, target, weight], outputs=[negative_log_likelihood_loss],
name='test_negative_log_likelihood_loss_input_shape_is_NCd1d2_with_weight_reduction_mean')
@staticmethod
def export_input_shape_is_NCd1d2_with_weight_reduction_sum(): # type: () -> None
reduction = 'sum'
node = onnx.helper.make_node(
'NegativeLogLikelihoodLoss',
inputs=['input', 'target', 'weight'],
outputs=['loss'],
reduction=reduction
)
N, C, dim1, dim2 = 3, 5, 6, 6
np.random.seed(0)
input = np.random.rand(N, C, dim1, dim2).astype(np.float32)
target = np.random.randint(0, high=C, size=(N, dim1, dim2))
weight = np.random.rand(C).astype(np.float32)
negative_log_likelihood_loss = compute_negative_log_likelihood_loss(input, target, weight=weight, reduction=reduction)
expect(node, inputs=[input, target, weight], outputs=[negative_log_likelihood_loss],
name='test_negative_log_likelihood_loss_input_shape_is_NCd1d2_with_weight_reduction_sum')
@staticmethod
def export_input_shape_is_NCd1d2_with_weight_reduction_sum_ignore_index(): # type: () -> None
reduction = 'sum'
ignore_index = np.int64(0)
node = onnx.helper.make_node(
'NegativeLogLikelihoodLoss',
inputs=['input', 'target', 'weight'],
outputs=['loss'],
reduction=reduction,
ignore_index=ignore_index
)
N, C, dim1, dim2 = 3, 5, 6, 6
np.random.seed(0)
input = np.random.rand(N, C, dim1, dim2).astype(np.float32)
target = np.random.randint(0, high=C, size=(N, dim1, dim2))
target[0][0][0] = np.int64(0)
weight = np.random.rand(C).astype(np.float32)
negative_log_likelihood_loss = compute_negative_log_likelihood_loss(input, target, weight=weight, reduction=reduction, ignore_index=ignore_index)
expect(node, inputs=[input, target, weight], outputs=[negative_log_likelihood_loss],
name='test_negative_log_likelihood_loss_input_shape_is_NCd1d2_with_weight_reduction_sum_ignore_index')
@staticmethod
def export_input_shape_is_NCd1d2_no_weight_reduction_mean_ignore_index(): # type: () -> None
reduction = 'mean'
ignore_index = np.int64(1)
node = onnx.helper.make_node(
'NegativeLogLikelihoodLoss',
inputs=['input', 'target'],
outputs=['loss'],
reduction=reduction,
ignore_index=ignore_index
)
N, C, dim1, dim2 = 3, 5, 6, 6
np.random.seed(0)
input = np.random.rand(N, C, dim1, dim2).astype(np.float32)
target = np.random.randint(0, high=C, size=(N, dim1, dim2))
target[0][0][0] = np.int64(1)
negative_log_likelihood_loss = compute_negative_log_likelihood_loss(input, target, reduction=reduction, ignore_index=ignore_index)
expect(node, inputs=[input, target], outputs=[negative_log_likelihood_loss],
name='test_negative_log_likelihood_loss_input_shape_is_NCd1d2_no_weight_reduction_mean_ignore_index')
@staticmethod
def export_input_shape_is_NCd1(): # type: () -> None
reduction = 'mean'
node = onnx.helper.make_node(
'NegativeLogLikelihoodLoss',
inputs=['input', 'target'],
outputs=['loss'],
reduction=reduction
)
N, C, d1 = 3, 5, 2
np.random.seed(0)
input = np.random.rand(N, C, d1).astype(np.float32)
target = np.random.randint(0, high=C, size=(N, d1))
negative_log_likelihood_loss = compute_negative_log_likelihood_loss(input, target, weight=None, reduction=reduction)
expect(node, inputs=[input, target], outputs=[negative_log_likelihood_loss],
name='test_negative_log_likelihood_loss_input_shape_is_NCd1')
@staticmethod
def export_input_shape_is_NCd1_weight(): # type: () -> None
reduction = 'mean'
node = onnx.helper.make_node(
'NegativeLogLikelihoodLoss',
inputs=['input', 'target', 'weight'],
outputs=['loss'],
reduction=reduction
)
N, C, d1 = 3, 5, 2
np.random.seed(0)
input = np.random.rand(N, C, d1).astype(np.float32)
target = np.random.randint(0, high=C, size=(N, d1))
weight = np.random.rand(C).astype(np.float32)
negative_log_likelihood_loss = compute_negative_log_likelihood_loss(input, target, weight=weight, reduction=reduction)
expect(node, inputs=[input, target, weight], outputs=[negative_log_likelihood_loss],
name='test_negative_log_likelihood_loss_input_shape_is_NCd1_weight')
@staticmethod
def export_input_shape_is_NCd1_ignore_index(): # type: () -> None
reduction = 'mean'
ignore_index = np.int64(1)
node = onnx.helper.make_node(
'NegativeLogLikelihoodLoss',
inputs=['input', 'target'],
outputs=['loss'],
reduction=reduction,
ignore_index=ignore_index
)
N, C, d1 = 3, 5, 2
np.random.seed(0)
input = np.random.rand(N, C, d1).astype(np.float32)
target = np.random.randint(0, high=C, size=(N, d1))
target[0][0] = np.int64(1)
negative_log_likelihood_loss = compute_negative_log_likelihood_loss(input, target, weight=None, reduction=reduction, ignore_index=ignore_index)
expect(node, inputs=[input, target], outputs=[negative_log_likelihood_loss],
name='test_negative_log_likelihood_loss_input_shape_is_NCd1_ignore_index')
@staticmethod
def export_input_shape_is_NCd1_weight_ignore_index(): # type: () -> None
reduction = 'mean'
ignore_index = np.int64(1)
node = onnx.helper.make_node(
'NegativeLogLikelihoodLoss',
inputs=['input', 'target', 'weight'],
outputs=['loss'],
reduction=reduction,
ignore_index=ignore_index
)
N, C, d1 = 3, 5, 2
np.random.seed(0)
input = np.random.rand(N, C, d1).astype(np.float32)
target = np.random.randint(0, high=C, size=(N, d1))
target[0][0] = np.int64(1)
weight = np.random.rand(C).astype(np.float32)
negative_log_likelihood_loss = compute_negative_log_likelihood_loss(input, target, weight=weight, reduction=reduction, ignore_index=ignore_index)
expect(node, inputs=[input, target, weight], outputs=[negative_log_likelihood_loss],
name='test_negative_log_likelihood_loss_iinput_shape_is_NCd1_weight_ignore_index')
@staticmethod
def export_input_shape_is_NCd1d2d3d4d5_mean_weight(): # type: () -> None
reduction = 'mean'
node = onnx.helper.make_node(
'NegativeLogLikelihoodLoss',
inputs=['input', 'target', 'weight'],
outputs=['loss'],
reduction=reduction)
N, C, dim1, dim2, dim3, dim4, dim5 = 3, 5, 6, 6, 5, 3, 4
np.random.seed(0)
input = np.random.rand(N, C, dim1, dim2, dim3, dim4, dim5).astype(np.float32)
target = np.random.randint(0, high=C, size=(N, dim1, dim2, dim3, dim4, dim5))
weight = np.random.rand(C).astype(np.float32)
negative_log_likelihood_loss = compute_negative_log_likelihood_loss(input,
target,
weight=weight,
reduction=reduction)
expect(node, inputs=[input, target, weight], outputs=[negative_log_likelihood_loss],
name='test_negative_log_likelihood_loss_input_shape_is_NCd1d2d3d4d5_mean_weight')
@staticmethod
def export_input_shape_is_NCd1d2d3d4d5_none_no_weight(): # type: () -> None
reduction = 'none'
node = onnx.helper.make_node(
'NegativeLogLikelihoodLoss',
inputs=['input', 'target'],
outputs=['loss'],
reduction=reduction)
N, C, dim1, dim2, dim3, dim4, dim5 = 3, 5, 6, 6, 5, 3, 4
np.random.seed(0)
input = np.random.rand(N, C, dim1, dim2, dim3, dim4, dim5).astype(np.float32)
target = np.random.randint(0, high=C, size=(N, dim1, dim2, dim3, dim4, dim5))
negative_log_likelihood_loss = compute_negative_log_likelihood_loss(input,
target,
reduction=reduction)
expect(node, inputs=[input, target], outputs=[negative_log_likelihood_loss],
name='test_negative_log_likelihood_loss_input_shape_is_NCd1d2d3d4d5_none_no_weight')
@staticmethod
def export_input_shape_is_NCd1_mean_weight_negative_ignore_index(): # type: () -> None
reduction = 'mean'
ignore_index = np.int64(-1)
node = onnx.helper.make_node(
'NegativeLogLikelihoodLoss',
inputs=['input', 'target', 'weight'],
outputs=['loss'],
reduction=reduction,
ignore_index=ignore_index)
N, C, dim1 = 3, 5, 6
np.random.seed(0)
input = np.random.rand(N, C, dim1).astype(np.float32)
target = np.random.randint(0, high=C, size=(N, dim1))
target[0][0] = -1
weight = np.random.rand(C).astype(np.float32)
negative_log_likelihood_loss = compute_negative_log_likelihood_loss(input,
target,
weight=weight,
reduction=reduction,
ignore_index=ignore_index)
expect(node, inputs=[input, target, weight], outputs=[negative_log_likelihood_loss],
name='test_negative_log_likelihood_loss_input_shape_is_NCd1_mean_weight_negative_ignore_index')
@staticmethod
def export_input_shape_is_NCd1d2d3_none_no_weight_negative_ignore_index(): # type: () -> None
reduction = 'none'
ignore_index = np.int64(-5)
node = onnx.helper.make_node(
'NegativeLogLikelihoodLoss',
inputs=['input', 'target'],
outputs=['loss'],
reduction=reduction,
ignore_index=ignore_index)
N, C, dim1, dim2, dim3 = 3, 5, 6, 6, 5
np.random.seed(0)
input = np.random.rand(N, C, dim1, dim2, dim3).astype(np.float32)
target = np.random.randint(0, high=C, size=(N, dim1, dim2, dim3))
target[0][0][0][0] = -5
negative_log_likelihood_loss = compute_negative_log_likelihood_loss(input,
target,
reduction=reduction,
ignore_index=ignore_index)
expect(node, inputs=[input, target], outputs=[negative_log_likelihood_loss],
name='test_negative_log_likelihood_loss_input_shape_is_NCd1d2d3_none_no_weight_negative_ignore_index')
@staticmethod
def export_input_shape_is_NCd1d2d3_sum_weight_high_ignore_index(): # type: () -> None
reduction = 'sum'
ignore_index = np.int64(10)
node = onnx.helper.make_node(
'NegativeLogLikelihoodLoss',
inputs=['input', 'target', 'weight'],
outputs=['loss'],
reduction=reduction,
ignore_index=ignore_index)
N, C = 3, 5
np.random.seed(0)
input = np.random.rand(N, C).astype(np.float32)
target = np.random.randint(0, high=C, size=(N))
target[0] = 10
weight = np.random.rand(C).astype(np.float32)
negative_log_likelihood_loss = compute_negative_log_likelihood_loss(input,
target,
weight=weight,
reduction=reduction,
ignore_index=ignore_index)
expect(node, inputs=[input, target, weight], outputs=[negative_log_likelihood_loss],
name='test_negative_log_likelihood_loss_input_shape_is_NCd1d2d3_sum_weight_high_ignore_index')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from onnx import TensorProto
from ..base import Base
from . import expect
class DynamicQuantizeLinear(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node('DynamicQuantizeLinear',
inputs=['x'],
outputs=['y', 'y_scale', 'y_zero_point'],
)
# expected scale 0.0196078438 and zero point 153
X = np.array([0, 2, -3, -2.5, 1.34, 0.5]).astype(np.float32)
x_min = np.minimum(0, np.min(X))
x_max = np.maximum(0, np.max(X))
Y_Scale = np.float32((x_max - x_min) / (255 - 0)) # uint8 -> [0, 255]
Y_ZeroPoint = np.clip(round((0 - x_min) / Y_Scale), 0, 255).astype(np.uint8)
Y = np.clip(np.round(X / Y_Scale) + Y_ZeroPoint, 0, 255).astype(np.uint8)
expect(node, inputs=[X], outputs=[Y, Y_Scale, Y_ZeroPoint],
name='test_dynamicquantizelinear')
# expected scale 0.0156862754 and zero point 255
X = np.array([-1.0, -2.1, -1.3, -2.5, -3.34, -4.0]).astype(np.float32)
x_min = np.minimum(0, np.min(X))
x_max = np.maximum(0, np.max(X))
Y_Scale = np.float32((x_max - x_min) / (255 - 0)) # uint8 -> [0, 255]
Y_ZeroPoint = np.clip(round((0 - x_min) / Y_Scale), 0, 255).astype(np.uint8)
Y = np.clip(np.round(X / Y_Scale) + Y_ZeroPoint, 0, 255).astype(np.uint8)
expect(node, inputs=[X], outputs=[Y, Y_Scale, Y_ZeroPoint],
name='test_dynamicquantizelinear_max_adjusted')
X = np.array([1, 2.1, 1.3, 2.5,
3.34, 4.0, 1.5, 2.6,
3.9, 4.0, 3.0, 2.345]).astype(np.float32).reshape((3, 4))
# expected scale 0.0156862754 and zero point 0
x_min = np.minimum(0, np.min(X))
x_max = np.maximum(0, np.max(X))
Y_Scale = np.float32((x_max - x_min) / (255 - 0)) # uint8 -> [0, 255]
Y_ZeroPoint = np.clip(round((0 - x_min) / Y_Scale), 0, 255).astype(np.uint8)
Y = np.clip(np.round(X / Y_Scale) + Y_ZeroPoint, 0, 255).astype(np.uint8)
expect(node, inputs=[X], outputs=[Y, Y_Scale, Y_ZeroPoint],
name='test_dynamicquantizelinear_min_adjusted')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Split(Base):
@staticmethod
def export_1d(): # type: () -> None
input = np.array([1., 2., 3., 4., 5., 6.]).astype(np.float32)
node = onnx.helper.make_node(
'Split',
inputs=['input'],
outputs=['output_1', 'output_2', 'output_3'],
axis=0
)
expected_outputs = [np.array([1., 2.]).astype(np.float32), np.array([3., 4.]).astype(np.float32), np.array([5., 6.]).astype(np.float32)]
expect(node, inputs=[input], outputs=[y for y in expected_outputs], name='test_split_equal_parts_1d')
node = onnx.helper.make_node(
'Split',
inputs=['input'],
outputs=['output_1', 'output_2'],
axis=0,
split=[2, 4]
)
expected_outputs = [np.array([1., 2.]).astype(np.float32), np.array([3., 4., 5., 6.]).astype(np.float32)]
expect(node, inputs=[input], outputs=[y for y in expected_outputs], name='test_split_variable_parts_1d')
@staticmethod
def export_2d(): # type: () -> None
input = np.array([[1., 2., 3., 4., 5., 6.],
[7., 8., 9., 10., 11., 12.]]).astype(np.float32)
node = onnx.helper.make_node(
'Split',
inputs=['input'],
outputs=['output_1', 'output_2'],
axis=1
)
expected_outputs = [np.array([[1., 2., 3.], [7., 8., 9.]]).astype(np.float32),
np.array([[4., 5., 6.], [10., 11., 12.]]).astype(np.float32)]
expect(node, inputs=[input], outputs=[y for y in expected_outputs], name='test_split_equal_parts_2d')
node = onnx.helper.make_node(
'Split',
inputs=['input'],
outputs=['output_1', 'output_2'],
axis=1,
split=[2, 4]
)
expected_outputs = [np.array([[1., 2.], [7., 8.]]).astype(np.float32),
np.array([[3., 4., 5., 6.], [9., 10., 11., 12.]]).astype(np.float32)]
expect(node, inputs=[input], outputs=[y for y in expected_outputs], name='test_split_variable_parts_2d')
@staticmethod
def export_default_values(): # type: () -> None
input = np.array([1., 2., 3., 4., 5., 6.]).astype(np.float32)
# If axis is not specified, split is applied on default axis 0
node = onnx.helper.make_node(
'Split',
inputs=['input'],
outputs=['output_1', 'output_2', 'output_3']
)
expected_outputs = [np.array([1., 2.]).astype(np.float32), np.array([3., 4.]).astype(np.float32), np.array([5., 6.]).astype(np.float32)]
expect(node, inputs=[input], outputs=[y for y in expected_outputs], name='test_split_equal_parts_default_axis')
node = onnx.helper.make_node(
'Split',
inputs=['input'],
outputs=['output_1', 'output_2'],
split=[2, 4]
)
expected_outputs = [np.array([1., 2.]).astype(np.float32), np.array([3., 4., 5., 6.]).astype(np.float32)]
expect(node, inputs=[input], outputs=[y for y in expected_outputs], name='test_split_variable_parts_default_axis')
@staticmethod
def export_zero_size_splits(): # type: () -> None
input = np.array([]).astype(np.float32)
# Split emtpy tensor to tensors of size zero
node = onnx.helper.make_node(
'Split',
inputs=['input'],
outputs=['output_1', 'output_2', 'output_3'],
split=[0, 0, 0]
)
expected_outputs = [np.array([]).astype(np.float32), np.array([]).astype(np.float32), np.array([]).astype(np.float32)]
expect(node, inputs=[input], outputs=[y for y in expected_outputs], name='test_split_zero_size_splits')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class PRelu(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'PRelu',
inputs=['x', 'slope'],
outputs=['y'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
slope = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, 0, np.inf) + np.clip(x, -np.inf, 0) * slope
expect(node, inputs=[x, slope], outputs=[y],
name='test_prelu_example')
@staticmethod
def export_prelu_broadcast(): # type: () -> None
node = onnx.helper.make_node(
'PRelu',
inputs=['x', 'slope'],
outputs=['y'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
slope = np.random.randn(5).astype(np.float32)
y = np.clip(x, 0, np.inf) + np.clip(x, -np.inf, 0) * slope
expect(node, inputs=[x, slope], outputs=[y],
name='test_prelu_broadcast')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class GlobalAveragePool(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'GlobalAveragePool',
inputs=['x'],
outputs=['y'],
)
x = np.random.randn(1, 3, 5, 5).astype(np.float32)
spatial_shape = np.ndim(x) - 2
y = np.average(x, axis=tuple(range(spatial_shape, spatial_shape + 2)))
for _ in range(spatial_shape):
y = np.expand_dims(y, -1)
expect(node, inputs=[x], outputs=[y], name='test_globalaveragepool')
@staticmethod
def export_globalaveragepool_precomputed(): # type: () -> None
node = onnx.helper.make_node(
'GlobalAveragePool',
inputs=['x'],
outputs=['y'],
)
x = np.array([[[
[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
]]]).astype(np.float32)
y = np.array([[[[5]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name='test_globalaveragepool_precomputed')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
from .pool_op_common import get_output_shape, get_pad_shape, pool
class MaxPool(Base):
@staticmethod
def export_maxpool_2d_uint8(): # type: () -> None
"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 5, 5]
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[5, 5],
pads=[2, 2, 2, 2]
)
x = np.array([[[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
]]]).astype(np.uint8)
y = np.array([[[
[13, 14, 15, 15, 15],
[18, 19, 20, 20, 20],
[23, 24, 25, 25, 25],
[23, 24, 25, 25, 25],
[23, 24, 25, 25, 25]]]]).astype(np.uint8)
expect(node, inputs=[x], outputs=[y], name='test_maxpool_2d_uint8')
@staticmethod
def export_maxpool_2d_precomputed_pads(): # type: () -> None
"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 5, 5]
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[5, 5],
pads=[2, 2, 2, 2]
)
x = np.array([[[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
]]]).astype(np.float32)
y = np.array([[[
[13, 14, 15, 15, 15],
[18, 19, 20, 20, 20],
[23, 24, 25, 25, 25],
[23, 24, 25, 25, 25],
[23, 24, 25, 25, 25]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name='test_maxpool_2d_precomputed_pads')
@staticmethod
def export_maxpool_with_argmax_2d_precomputed_pads(): # type: () -> None
"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 5, 5]
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y', 'z'],
kernel_shape=[5, 5],
pads=[2, 2, 2, 2]
)
x = np.array([[[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
]]]).astype(np.float32)
y = np.array([[[
[13, 14, 15, 15, 15],
[18, 19, 20, 20, 20],
[23, 24, 25, 25, 25],
[23, 24, 25, 25, 25],
[23, 24, 25, 25, 25]]]]).astype(np.float32)
z = np.array([[[
[12, 13, 14, 14, 14],
[17, 18, 19, 19, 19],
[22, 23, 24, 24, 24],
[22, 23, 24, 24, 24],
[22, 23, 24, 24, 24]]]]).astype(np.int64)
expect(node, inputs=[x], outputs=[y, z], name='test_maxpool_with_argmax_2d_precomputed_pads')
@staticmethod
def export_maxpool_2d_precomputed_strides(): # type: () -> None
"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 2, 2]
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2, 2],
strides=[2, 2]
)
x = np.array([[[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
]]]).astype(np.float32)
y = np.array([[[[7, 9],
[17, 19]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name='test_maxpool_2d_precomputed_strides')
@staticmethod
def export_maxpool_with_argmax_2d_precomputed_strides(): # type: () -> None
"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 2, 2]
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y', 'z'],
kernel_shape=[2, 2],
strides=[2, 2],
storage_order=1
)
x = np.array([[[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
]]]).astype(np.float32)
y = np.array([[[[7, 9],
[17, 19]]]]).astype(np.float32)
z = np.array([[[[6, 16],
[8, 18]]]]).astype(np.int64)
expect(node, inputs=[x], outputs=[y, z], name='test_maxpool_with_argmax_2d_precomputed_strides')
@staticmethod
def export_maxpool_2d_precomputed_same_upper(): # type: () -> None
"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 3, 3]
pad_shape: [2, 2] -> [1, 1, 1, 1] by axis
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[3, 3],
strides=[2, 2],
auto_pad='SAME_UPPER'
)
x = np.array([[[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
]]]).astype(np.float32)
y = np.array([[[[7, 9, 10],
[17, 19, 20],
[22, 24, 25]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name='test_maxpool_2d_precomputed_same_upper')
@staticmethod
def export_maxpool_1d_default(): # type: () -> None
"""
input_shape: [1, 3, 32]
output_shape: [1, 3, 31]
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2],
)
x = np.random.randn(1, 3, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = [2]
strides = [1]
out_shape = get_output_shape('VALID', x_shape[2:], kernel_shape, strides)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, [0], 'MAX')
expect(node, inputs=[x], outputs=[y], name='test_maxpool_1d_default')
@staticmethod
def export_maxpool_2d_default(): # type: () -> None
"""
input_shape: [1, 3, 32, 32]
output_shape: [1, 3, 31, 31]
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2, 2],
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (2, 2)
strides = (1, 1)
out_shape = get_output_shape('VALID', x_shape[2:], kernel_shape, strides)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, (0, 0), 'MAX')
expect(node, inputs=[x], outputs=[y], name='test_maxpool_2d_default')
@staticmethod
def export_maxpool_3d_default(): # type: () -> None
"""
input_shape: [1, 3, 32, 32, 32]
output_shape: [1, 3, 31, 31, 31]
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2, 2, 2],
)
x = np.random.randn(1, 3, 32, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = [2, 2, 2]
strides = [1, 1, 1]
out_shape = get_output_shape('VALID', x_shape[2:], kernel_shape, strides)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, [0, 0, 0], 'MAX')
expect(node, inputs=[x], outputs=[y], name='test_maxpool_3d_default')
@staticmethod
def export_maxpool_2d_same_upper(): # type: () -> None
"""
input_shape: [1, 3, 32, 32]
output_shape: [1, 3, 32, 32]
pad_shape: [1, 1] -> [0, 1, 0, 1] by axis
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2, 2],
auto_pad='SAME_UPPER'
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (2, 2)
strides = (1, 1)
out_shape = get_output_shape('SAME_UPPER', x_shape[2:], kernel_shape, strides)
pad_shape = get_pad_shape('SAME_UPPER', x_shape[2:], kernel_shape, strides, out_shape)
pad_top = pad_shape[0] // 2
pad_bottom = pad_shape[0] - pad_top
pad_left = pad_shape[1] // 2
pad_right = pad_shape[1] - pad_left
padded = np.pad(x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode='constant',
constant_values=np.nan)
y = pool(padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'MAX')
expect(node, inputs=[x], outputs=[y], name='test_maxpool_2d_same_upper')
@staticmethod
def export_maxpool_2d_same_lower(): # type: () -> None
"""
input_shape: [1, 3, 32, 32]
output_shape: [1, 3, 32, 32]
pad_shape: [1, 1] -> [1, 0, 1, 0] by axis
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2, 2],
auto_pad='SAME_LOWER'
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (2, 2)
strides = (1, 1)
out_shape = get_output_shape('SAME_LOWER', x_shape[2:], kernel_shape, strides)
pad_shape = get_pad_shape('SAME_LOWER', x_shape[2:], kernel_shape, strides, out_shape)
pad_bottom = pad_shape[0] // 2
pad_top = pad_shape[0] - pad_bottom
pad_right = pad_shape[1] // 2
pad_left = pad_shape[1] - pad_right
padded = np.pad(x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode='constant',
constant_values=np.nan)
y = pool(padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'MAX')
expect(node, inputs=[x], outputs=[y], name='test_maxpool_2d_same_lower')
@staticmethod
def export_maxpool_2d_pads(): # type: () -> None
"""
input_shape: [1, 3, 28, 28]
output_shape: [1, 3, 30, 30]
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[3, 3],
pads=[2, 2, 2, 2]
)
x = np.random.randn(1, 3, 28, 28).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (3, 3)
strides = (1, 1)
pad_bottom = pad_top = pad_right = pad_left = 2
pad_shape = [pad_top + pad_bottom, pad_left + pad_right]
out_shape = get_output_shape('VALID', np.add(x_shape[2:], pad_shape), kernel_shape, strides)
padded = np.pad(x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode='constant',
constant_values=np.nan)
y = pool(padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'MAX')
expect(node, inputs=[x], outputs=[y], name='test_maxpool_2d_pads')
@staticmethod
def export_maxpool_2d_strides(): # type: () -> None
"""
input_shape: [1, 3, 32, 32]
output_shape: [1, 3, 10, 10]
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[5, 5],
strides=[3, 3]
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (5, 5)
strides = (3, 3)
out_shape = get_output_shape('VALID', x_shape[2:], kernel_shape, strides)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, (0, 0), 'MAX')
expect(node, inputs=[x], outputs=[y], name='test_maxpool_2d_strides')
@staticmethod
def export_maxpool_2d_ceil(): # type: () -> None
"""
input_shape: [1, 1, 4, 4]
output_shape: [1, 1, 2, 2]
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[3, 3],
strides=[2, 2],
ceil_mode=True
)
x = np.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
]]]).astype(np.float32)
y = np.array([[[
[11, 12],
[15, 16]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name='test_maxpool_2d_ceil')
@staticmethod
def export_maxpool_2d_dilations(): # type: () -> None
"""
input_shape: [1, 1, 4, 4]
output_shape: [1, 1, 2, 2]
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2, 2],
strides=[1, 1],
dilations=[2, 2]
)
x = np.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
]]]).astype(np.float32)
y = np.array([[[
[11, 12],
[15, 16]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name='test_maxpool_2d_dilations')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class MaxUnpool(Base):
@staticmethod
def export_without_output_shape(): # type: () -> None
node = onnx.helper.make_node(
'MaxUnpool',
inputs=['xT', 'xI'],
outputs=['y'],
kernel_shape=[2, 2],
strides=[2, 2]
)
xT = np.array([[[[1, 2],
[3, 4]]]], dtype=np.float32)
xI = np.array([[[[5, 7],
[13, 15]]]], dtype=np.int64)
y = np.array([[[[0, 0, 0, 0],
[0, 1, 0, 2],
[0, 0, 0, 0],
[0, 3, 0, 4]]]], dtype=np.float32)
expect(node, inputs=[xT, xI], outputs=[y], name='test_maxunpool_export_without_output_shape')
@staticmethod
def export_with_output_shape(): # type: () -> None
node = onnx.helper.make_node(
'MaxUnpool',
inputs=['xT', 'xI', 'output_shape'],
outputs=['y'],
kernel_shape=[2, 2],
strides=[2, 2]
)
xT = np.array([[[[5, 6],
[7, 8]]]], dtype=np.float32)
xI = np.array([[[[5, 7],
[13, 15]]]], dtype=np.int64)
output_shape = np.array((1, 1, 5, 5), dtype=np.int64)
y = np.array([[[[0, 0, 0, 0, 0],
[0, 5, 0, 6, 0],
[0, 0, 0, 0, 0],
[0, 7, 0, 8, 0],
[0, 0, 0, 0, 0]]]], dtype=np.float32)
expect(node, inputs=[xT, xI, output_shape], outputs=[y], name='test_maxunpool_export_with_output_shape')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class EyeLike(Base):
@staticmethod
def export_without_dtype(): # type: () -> None
shape = (4, 4)
node = onnx.helper.make_node(
'EyeLike',
inputs=['x'],
outputs=['y'],
)
x = np.random.randint(0, 100, size=shape, dtype=np.int32)
y = np.eye(shape[0], shape[1], dtype=np.int32)
expect(node, inputs=[x], outputs=[y], name='test_eyelike_without_dtype')
@staticmethod
def export_with_dtype(): # type: () -> None
shape = (3, 4)
node = onnx.helper.make_node(
'EyeLike',
inputs=['x'],
outputs=['y'],
dtype=onnx.TensorProto.DOUBLE,
)
x = np.random.randint(0, 100, size=shape, dtype=np.int32)
y = np.eye(shape[0], shape[1], dtype=np.float64)
expect(node, inputs=[x], outputs=[y], name='test_eyelike_with_dtype')
@staticmethod
def export_populate_off_main_diagonal(): # type: () -> None
shape = (4, 5)
off_diagonal_offset = 1
node = onnx.helper.make_node(
'EyeLike',
inputs=['x'],
outputs=['y'],
k=off_diagonal_offset,
dtype=onnx.TensorProto.FLOAT,
)
x = np.random.randint(0, 100, size=shape, dtype=np.int32)
y = np.eye(shape[0], shape[1], k=off_diagonal_offset, dtype=np.float32)
expect(node, inputs=[x], outputs=[y], name='test_eyelike_populate_off_main_diagonal')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
def gather_nd_impl(data, indices, batch_dims):
# type: (np.ndarray, np.ndarray, int) -> np.ndarray
# Note the data rank - will be reused multiple times later
data_rank = len(data.shape)
# Check input tensors' shape/rank condition
assert indices.shape[-1] <= data_rank
#The list of data/indice shape of batch_dims
batch_dims_shape = []
#The number of elements in the batch_dims for data/indice array
batch_dims_size = 1
# Check the shape of indice and data are identicial for batch dims.
for i in range(batch_dims):
batch_dims_shape.append(indices.shape[i])
batch_dims_size *= indices.shape[i]
# Compute output of the op as below
# Compute shape of output array
output_shape = batch_dims_shape + list(indices.shape)[batch_dims:-1] if (indices.shape[-1] == data_rank - batch_dims) \
else batch_dims_shape + list(indices.shape)[batch_dims:-1] + list(data.shape)[batch_dims + indices.shape[-1]:]
# Placeholder for output data
output_data_buffer = []
# Flatten 'indices' to 2D array
reshaped_indices = indices.reshape(batch_dims_size, -1, indices.shape[-1])
# Flatten 'data' to array of shape (batch_dim_size, data.shape[batch_dimes:])
reshaped_data = data.reshape((batch_dims_size, ) + data.shape[batch_dims:])
# gather each scalar value from 'data'
for batch_dim in range(reshaped_indices.shape[0]):
for outer_dim in range(reshaped_indices.shape[1]):
gather_index = tuple(reshaped_indices[batch_dim][outer_dim])
output_data_buffer.append(reshaped_data[(batch_dim,) + gather_index])
return np.asarray(output_data_buffer, dtype=data.dtype).reshape(output_shape)
class GatherND(Base):
@staticmethod
def export_int32(): # type: () -> None
node = onnx.helper.make_node(
'GatherND',
inputs=['data', 'indices'],
outputs=['output'],
)
data = np.array([[0, 1], [2, 3]], dtype=np.int32)
indices = np.array([[0, 0], [1, 1]], dtype=np.int64)
output = gather_nd_impl(data, indices, 0)
expected_output = np.array([0, 3], dtype=np.int32)
assert (np.array_equal(output, expected_output))
expect(node, inputs=[data, indices], outputs=[output],
name='test_gathernd_example_int32')
@staticmethod
def export_float32(): # type: () -> None
node = onnx.helper.make_node(
'GatherND',
inputs=['data', 'indices'],
outputs=['output'],
)
data = np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]], dtype=np.float32)
indices = np.array([[[0, 1]], [[1, 0]]], dtype=np.int64)
output = gather_nd_impl(data, indices, 0)
expected_output = np.array([[[2, 3]], [[4, 5]]], dtype=np.float32)
assert (np.array_equal(output, expected_output))
expect(node, inputs=[data, indices], outputs=[output],
name='test_gathernd_example_float32')
@staticmethod
def export_int32_batchdim_1(): # type: () -> None
node = onnx.helper.make_node(
'GatherND',
inputs=['data', 'indices'],
outputs=['output'],
batch_dims=1,
)
data = np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]], dtype=np.int32)
indices = np.array([[1], [0]], dtype=np.int64)
output = gather_nd_impl(data, indices, 1)
expected_output = np.array([[2, 3], [4, 5]], dtype=np.int32)
assert (np.array_equal(output, expected_output))
expect(node, inputs=[data, indices], outputs=[output],
name='test_gathernd_example_int32_batch_dim1')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
from onnx import helper
# The below Scatter's numpy implementation is from https://stackoverflow.com/a/46204790/11767360
def scatter(data, indices, updates, axis=0): # type: ignore
if axis < 0:
axis = data.ndim + axis
idx_xsection_shape = indices.shape[:axis] + indices.shape[axis + 1:]
def make_slice(arr, axis, i): # type: ignore
slc = [slice(None)] * arr.ndim
slc[axis] = i
return slc
def unpack(packed): # type: ignore
unpacked = packed[0]
for i in range(1, len(packed)):
unpacked = unpacked, packed[i]
return unpacked
# We use indices and axis parameters to create idx
# idx is in a form that can be used as a NumPy advanced indices for scattering of updates param. in data
idx = [[unpack(np.indices(idx_xsection_shape).reshape(indices.ndim - 1, -1)),
indices[tuple(make_slice(indices, axis, i))].reshape(1, -1)[0]] for i in range(indices.shape[axis])]
idx = list(np.concatenate(idx, axis=1))
idx.insert(axis, idx.pop())
# updates_idx is a NumPy advanced indices for indexing of elements in the updates
updates_idx = list(idx)
updates_idx.pop(axis)
updates_idx.insert(axis, np.repeat(np.arange(indices.shape[axis]), np.prod(idx_xsection_shape)))
scattered = np.copy(data)
scattered[tuple(idx)] = updates[tuple(updates_idx)]
return scattered
class Scatter(Base):
@staticmethod
def export_scatter_without_axis(): # type: () -> None
node = onnx.helper.make_node(
'Scatter',
inputs=['data', 'indices', 'updates'],
outputs=['y'],
)
data = np.zeros((3, 3), dtype=np.float32)
indices = np.array([[1, 0, 2], [0, 2, 1]], dtype=np.int64)
updates = np.array([[1.0, 1.1, 1.2], [2.0, 2.1, 2.2]], dtype=np.float32)
y = scatter(data, indices, updates)
# print(y) produces
# [[2.0, 1.1, 0.0],
# [1.0, 0.0, 2.2],
# [0.0, 2.1, 1.2]]
expect(node, inputs=[data, indices, updates], outputs=[y],
name='test_scatter_without_axis', opset_imports=[helper.make_opsetid("", 10)])
@staticmethod
def export_scatter_with_axis(): # type: () -> None
axis = 1
node = onnx.helper.make_node(
'Scatter',
inputs=['data', 'indices', 'updates'],
outputs=['y'],
axis=axis,
)
data = np.array([[1.0, 2.0, 3.0, 4.0, 5.0]], dtype=np.float32)
indices = np.array([[1, 3]], dtype=np.int64)
updates = np.array([[1.1, 2.1]], dtype=np.float32)
y = scatter(data, indices, updates, axis=axis)
# print(y) produces
# [[1.0, 1.1, 3.0, 2.1, 5.0]]
expect(node, inputs=[data, indices, updates], outputs=[y],
name='test_scatter_with_axis', opset_imports=[helper.make_opsetid("", 10)])
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
def apply_adam(r, t, x, g, v, h, norm_coefficient, norm_coefficient_post, alpha, beta, epsilon): # type: ignore
# Add gradient of regularization term.
g_regularized = norm_coefficient * x + g
# Update momentum.
v_new = alpha * v + (1 - alpha) * g_regularized
# Update second-order momentum.
h_new = beta * h + (1 - beta) * (g_regularized * g_regularized)
# Compute element-wise square root.
h_sqrt = np.sqrt(h_new) + epsilon
# Adjust learning rate.
r_adjusted = None
if t > 0:
# Consider bias correction on momentums.
r_adjusted = r * np.sqrt(1 - beta**t) / (1 - alpha**t)
else:
# No bias correction on momentums.
r_adjusted = r
# Apply Adam update rule.
x_new = x - r_adjusted * (v_new / h_sqrt)
# It's possible to apply regularization in the end.
x_final = (1 - norm_coefficient_post) * x_new
return x_final, v_new, h_new
class Adam(Base):
@staticmethod
def export_adam(): # type: () -> None
# Define operator attributes.
norm_coefficient = 0.001
alpha = 0.95
beta = 0.1
epsilon = 1e-7
# Create operator.
node = onnx.helper.make_node('Adam',
inputs=['R', 'T', 'X', 'G', 'V', 'H'],
outputs=['X_new', 'V_new', 'H_new'],
norm_coefficient=norm_coefficient,
alpha=alpha,
beta=beta,
epsilon=epsilon,
domain='ai.onnx.training'
)
# Define operator inputs.
r = np.array(0.1, dtype=np.float32) # scalar
t = np.array(0, dtype=np.int64) # scalar
x = np.array([1.2, 2.8], dtype=np.float32)
g = np.array([-0.94, -2.5], dtype=np.float32)
v = np.array([1.7, 3.6], dtype=np.float32)
h = np.array([0.1, 0.1], dtype=np.float32)
# Compute expected outputs of Adam.
x_new, v_new, h_new = apply_adam(r, t, x, g, v, h,
norm_coefficient, 0.0, alpha, beta,
epsilon)
# Check results.
expect(node, inputs=[r, t, x, g, v, h],
outputs=[x_new, v_new, h_new], name='test_adam',
opset_imports=[onnx.helper.make_opsetid('ai.onnx.training', 1)])
@staticmethod
def export_adam_multiple(): # type: () -> None
# Define operator attributes.
norm_coefficient = 0.001
alpha = 0.95
beta = 0.85
epsilon = 1e-2
node = onnx.helper.make_node('Adam',
inputs=['R', 'T', 'X1', 'X2',
'G1', 'G2', 'V1', 'V2',
'H1', 'H2'],
outputs=['X1_new', 'X2_new',
'V1_new', 'V2_new',
'H1_new', 'H2_new'],
norm_coefficient=norm_coefficient,
alpha=alpha,
beta=beta,
domain='ai.onnx.training'
)
# Define operator inputs.
r = np.array(0.1, dtype=np.float32) # scalar
t = np.array(0, dtype=np.int64) # scalar
x1 = np.array([1.0], dtype=np.float32)
g1 = np.array([-1.0], dtype=np.float32)
v1 = np.array([2.0], dtype=np.float32)
h1 = np.array([0.5], dtype=np.float32)
x2 = np.array([1.0, 2.0], dtype=np.float32)
g2 = np.array([-1.0, -3.0], dtype=np.float32)
v2 = np.array([4.0, 1.0], dtype=np.float32)
h2 = np.array([1.0, 10.0], dtype=np.float32)
# Compute expected outputs of Adam.
x1_new, v1_new, h1_new = apply_adam(r, t, x1, g1, v1, h1,
norm_coefficient, 0.0, alpha, beta,
epsilon)
x2_new, v2_new, h2_new = apply_adam(r, t, x2, g2, v2, h2,
norm_coefficient, 0.0, alpha, beta,
epsilon)
# Check results.
expect(node, inputs=[r, t, x1, x2, g1, g2, v1, v2, h1, h2],
outputs=[x1_new, x2_new, v1_new, v2_new, h1_new, h2_new],
name='test_adam_multiple',
opset_imports=[onnx.helper.make_opsetid('ai.onnx.training', 1)])
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Compress(Base):
@staticmethod
def export_compress_0(): # type: () -> None
node = onnx.helper.make_node(
'Compress',
inputs=['input', 'condition'],
outputs=['output'],
axis=0,
)
input = np.array([[1, 2], [3, 4], [5, 6]]).astype(np.float32)
condition = np.array([0, 1, 1])
output = np.compress(condition, input, axis=0)
#print(output)
#[[ 3. 4.]
# [ 5. 6.]]
expect(node, inputs=[input, condition.astype(np.bool)], outputs=[output],
name='test_compress_0')
@staticmethod
def export_compress_1(): # type: () -> None
node = onnx.helper.make_node(
'Compress',
inputs=['input', 'condition'],
outputs=['output'],
axis=1,
)
input = np.array([[1, 2], [3, 4], [5, 6]]).astype(np.float32)
condition = np.array([0, 1])
output = np.compress(condition, input, axis=1)
#print(output)
#[[ 2.]
# [ 4.]
# [ 6.]]
expect(node, inputs=[input, condition.astype(np.bool)], outputs=[output],
name='test_compress_1')
@staticmethod
def export_compress_default_axis(): # type: () -> None
node = onnx.helper.make_node(
'Compress',
inputs=['input', 'condition'],
outputs=['output'],
)
input = np.array([[1, 2], [3, 4], [5, 6]]).astype(np.float32)
condition = np.array([0, 1, 0, 0, 1])
output = np.compress(condition, input)
#print(output)
#[ 2., 5.]
expect(node, inputs=[input, condition.astype(np.bool)], outputs=[output],
name='test_compress_default_axis')
@staticmethod
def export_compress_negative_axis(): # type: () -> None
node = onnx.helper.make_node(
'Compress',
inputs=['input', 'condition'],
outputs=['output'],
axis=-1,
)
input = np.array([[1, 2], [3, 4], [5, 6]]).astype(np.float32)
condition = np.array([0, 1])
output = np.compress(condition, input, axis=-1)
# print(output)
#[[ 2.]
# [ 4.]
# [ 6.]]
expect(node, inputs=[input, condition.astype(np.bool)], outputs=[output],
name='test_compress_negative_axis')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Relu(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Relu',
inputs=['x'],
outputs=['y'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, 0, np.inf)
expect(node, inputs=[x], outputs=[y],
name='test_relu')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Sub(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Sub',
inputs=['x', 'y'],
outputs=['z'],
)
x = np.array([1, 2, 3]).astype(np.float32)
y = np.array([3, 2, 1]).astype(np.float32)
z = x - y # expected output [-2., 0., 2.]
expect(node, inputs=[x, y], outputs=[z],
name='test_sub_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.randn(3, 4, 5).astype(np.float32)
z = x - y
expect(node, inputs=[x, y], outputs=[z],
name='test_sub')
@staticmethod
def export_sub_broadcast(): # type: () -> None
node = onnx.helper.make_node(
'Sub',
inputs=['x', 'y'],
outputs=['z'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.randn(5).astype(np.float32)
z = x - y
expect(node, inputs=[x, y], outputs=[z],
name='test_sub_bcast')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
from typing import Any, Sequence
import onnx
from onnx import NodeProto
from ..base import Base
from . import expect
class TfIdfVectorizerHelper():
def __init__(self, **params): # type: (*Any) -> None
# Attr names
mode = str('mode')
min_gram_length = str('min_gram_length')
max_gram_length = str('max_gram_length')
max_skip_count = str('max_skip_count')
ngram_counts = str('ngram_counts')
ngram_indexes = str('ngram_indexes')
pool_int64s = str('pool_int64s')
required_attr = [mode, min_gram_length, max_gram_length, max_skip_count,
ngram_counts, ngram_indexes, pool_int64s]
for i in required_attr:
assert i in params, "Missing attribute: {0}".format(i)
self.mode = params[mode]
self.min_gram_length = params[min_gram_length]
self.max_gram_length = params[max_gram_length]
self.max_skip_count = params[max_skip_count]
self.ngram_counts = params[ngram_counts]
self.ngram_indexes = params[ngram_indexes]
self.pool_int64s = params[pool_int64s]
def make_node_noweights(self): # type: () -> NodeProto
return onnx.helper.make_node(
'TfIdfVectorizer',
inputs=['X'],
outputs=['Y'],
mode=self.mode,
min_gram_length=self.min_gram_length,
max_gram_length=self.max_gram_length,
max_skip_count=self.max_skip_count,
ngram_counts=self.ngram_counts,
ngram_indexes=self.ngram_indexes,
pool_int64s=self.pool_int64s
)
class TfIdfVectorizer(Base):
@staticmethod
def export_tf_only_bigrams_skip0(): # type: () -> None
input = np.array([1, 1, 3, 3, 3, 7, 8, 6, 7, 5, 6, 8]).astype(np.int32)
output = np.array([0., 0., 0., 0., 1., 1., 1.]).astype(np.float32)
ngram_counts = np.array([0, 4]).astype(np.int64)
ngram_indexes = np.array([0, 1, 2, 3, 4, 5, 6]).astype(np.int64)
pool_int64s = np.array([2, 3, 5, 4, # unigrams
5, 6, 7, 8, 6, 7]).astype(np.int64) # bigrams
helper = TfIdfVectorizerHelper(
mode='TF',
min_gram_length=2,
max_gram_length=2,
max_skip_count=0,
ngram_counts=ngram_counts,
ngram_indexes=ngram_indexes,
pool_int64s=pool_int64s
)
node = helper.make_node_noweights()
expect(node, inputs=[input], outputs=[output], name='test_tfidfvectorizer_tf_only_bigrams_skip0')
@staticmethod
def export_tf_batch_onlybigrams_skip0(): # type: () -> None
input = np.array([[1, 1, 3, 3, 3, 7], [8, 6, 7, 5, 6, 8]]).astype(np.int32)
output = np.array([[0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 0., 1.]]).astype(np.float32)
ngram_counts = np.array([0, 4]).astype(np.int64)
ngram_indexes = np.array([0, 1, 2, 3, 4, 5, 6]).astype(np.int64)
pool_int64s = np.array([2, 3, 5, 4, # unigrams
5, 6, 7, 8, 6, 7]).astype(np.int64) # bigrams
helper = TfIdfVectorizerHelper(
mode='TF',
min_gram_length=2,
max_gram_length=2,
max_skip_count=0,
ngram_counts=ngram_counts,
ngram_indexes=ngram_indexes,
pool_int64s=pool_int64s
)
node = helper.make_node_noweights()
expect(node, inputs=[input], outputs=[output], name='test_tfidfvectorizer_tf_batch_onlybigrams_skip0')
@staticmethod
def export_tf_onlybigrams_levelempty(): # type: () -> None
input = np.array([1, 1, 3, 3, 3, 7, 8, 6, 7, 5, 6, 8]).astype(np.int32)
output = np.array([1., 1., 1.]).astype(np.float32)
ngram_counts = np.array([0, 0]).astype(np.int64)
ngram_indexes = np.array([0, 1, 2]).astype(np.int64)
pool_int64s = np.array([ # unigrams none
5, 6, 7, 8, 6, 7]).astype(np.int64) # bigrams
helper = TfIdfVectorizerHelper(
mode='TF',
min_gram_length=2,
max_gram_length=2,
max_skip_count=0,
ngram_counts=ngram_counts,
ngram_indexes=ngram_indexes,
pool_int64s=pool_int64s
)
node = helper.make_node_noweights()
expect(node, inputs=[input], outputs=[output], name='test_tfidfvectorizer_tf_onlybigrams_levelempty')
@staticmethod
def export_tf_onlybigrams_skip5(): # type: () -> None
input = np.array([1, 1, 3, 3, 3, 7, 8, 6, 7, 5, 6, 8]).astype(np.int32)
output = np.array([0., 0., 0., 0., 1., 3., 1.]).astype(np.float32)
ngram_counts = np.array([0, 4]).astype(np.int64)
ngram_indexes = np.array([0, 1, 2, 3, 4, 5, 6]).astype(np.int64)
pool_int64s = np.array([2, 3, 5, 4, # unigrams
5, 6, 7, 8, 6, 7]).astype(np.int64) # bigrams
helper = TfIdfVectorizerHelper(
mode='TF',
min_gram_length=2,
max_gram_length=2,
max_skip_count=5,
ngram_counts=ngram_counts,
ngram_indexes=ngram_indexes,
pool_int64s=pool_int64s
)
node = helper.make_node_noweights()
expect(node, inputs=[input], outputs=[output], name='test_tfidfvectorizer_tf_onlybigrams_skip5')
@staticmethod
def export_tf_batch_onlybigrams_skip5(): # type: () -> None
input = np.array([[1, 1, 3, 3, 3, 7], [8, 6, 7, 5, 6, 8]]).astype(np.int32)
output = np.array([[0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 1., 1.]]).astype(np.float32)
ngram_counts = np.array([0, 4]).astype(np.int64)
ngram_indexes = np.array([0, 1, 2, 3, 4, 5, 6]).astype(np.int64)
pool_int64s = np.array([2, 3, 5, 4, # unigrams
5, 6, 7, 8, 6, 7]).astype(np.int64) # bigrams
helper = TfIdfVectorizerHelper(
mode='TF',
min_gram_length=2,
max_gram_length=2,
max_skip_count=5,
ngram_counts=ngram_counts,
ngram_indexes=ngram_indexes,
pool_int64s=pool_int64s
)
node = helper.make_node_noweights()
expect(node, inputs=[input], outputs=[output], name='test_tfidfvectorizer_tf_batch_onlybigrams_skip5')
@staticmethod
def export_tf_uniandbigrams_skip5(): # type: () -> None
input = np.array([1, 1, 3, 3, 3, 7, 8, 6, 7, 5, 6, 8]).astype(np.int32)
output = np.array([0., 3., 1., 0., 1., 3., 1.]).astype(np.float32)
ngram_counts = np.array([0, 4]).astype(np.int64)
ngram_indexes = np.array([0, 1, 2, 3, 4, 5, 6]).astype(np.int64)
pool_int64s = np.array([2, 3, 5, 4, # unigrams
5, 6, 7, 8, 6, 7]).astype(np.int64) # bigrams
helper = TfIdfVectorizerHelper(
mode='TF',
min_gram_length=1,
max_gram_length=2,
max_skip_count=5,
ngram_counts=ngram_counts,
ngram_indexes=ngram_indexes,
pool_int64s=pool_int64s
)
node = helper.make_node_noweights()
expect(node, inputs=[input], outputs=[output], name='test_tfidfvectorizer_tf_uniandbigrams_skip5')
@staticmethod
def export_tf_batch_uniandbigrams_skip5(): # type: () -> None
input = np.array([[1, 1, 3, 3, 3, 7], [8, 6, 7, 5, 6, 8]]).astype(np.int32)
output = np.array([[0., 3., 0., 0., 0., 0., 0.], [0., 0., 1., 0., 1., 1., 1.]]).astype(np.float32)
ngram_counts = np.array([0, 4]).astype(np.int64)
ngram_indexes = np.array([0, 1, 2, 3, 4, 5, 6]).astype(np.int64)
pool_int64s = np.array([2, 3, 5, 4, # unigrams
5, 6, 7, 8, 6, 7]).astype(np.int64) # bigrams
helper = TfIdfVectorizerHelper(
mode='TF',
min_gram_length=1,
max_gram_length=2,
max_skip_count=5,
ngram_counts=ngram_counts,
ngram_indexes=ngram_indexes,
pool_int64s=pool_int64s
)
node = helper.make_node_noweights()
expect(node, inputs=[input], outputs=[output], name='test_tfidfvectorizer_tf_batch_uniandbigrams_skip5')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
def scatter_nd_impl(data, indices, updates):
# type: (np.ndarray, np.ndarray, np.ndarray) -> np.ndarray
# Check tensor shapes
assert indices.shape[-1] <= len(data.shape)
assert updates.shape == indices.shape[:-1] + data.shape[indices.shape[-1]:]
# Compute output
output = np.copy(data)
for i in np.ndindex(indices.shape[:-1]):
# NOTE: The order of iteration in this loop is not specified.
# In particular, indices should not have duplicate entries: that is, if idx1 != idx2, then indices[idx1] != indices[idx2].
# This ensures that the output value does not depend on the iteration order.
output[indices[i]] = updates[i]
return output
class ScatterND(Base):
@staticmethod
def export_scatternd(): # type: () -> None
node = onnx.helper.make_node(
'ScatterND',
inputs=['data', 'indices', 'updates'],
outputs=['y'],
)
data = np.array(
[[[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]],
[[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]],
[[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]],
[[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]]], dtype=np.float32)
indices = np.array([[0], [2]], dtype=np.int64)
updates = np.array(
[[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]]], dtype=np.float32)
# Expecting output as np.array(
# [[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
# [[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]],
# [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]],
# [[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]]], dtype=np.float32)
output = scatter_nd_impl(data, indices, updates)
expect(node, inputs=[data, indices, updates], outputs=[output],
name='test_scatternd')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
# The below ScatterElements' numpy implementation is from https://stackoverflow.com/a/46204790/11767360
def scatter_elements(data, indices, updates, axis=0): # type: ignore
if axis < 0:
axis = data.ndim + axis
idx_xsection_shape = indices.shape[:axis] + indices.shape[axis + 1:]
def make_slice(arr, axis, i): # type: ignore
slc = [slice(None)] * arr.ndim
slc[axis] = i
return slc
def unpack(packed): # type: ignore
unpacked = packed[0]
for i in range(1, len(packed)):
unpacked = unpacked, packed[i]
return unpacked
# We use indices and axis parameters to create idx
# idx is in a form that can be used as a NumPy advanced indices for scattering of updates param. in data
idx = [[unpack(np.indices(idx_xsection_shape).reshape(indices.ndim - 1, -1)),
indices[tuple(make_slice(indices, axis, i))].reshape(1, -1)[0]] for i in range(indices.shape[axis])]
idx = list(np.concatenate(idx, axis=1))
idx.insert(axis, idx.pop())
# updates_idx is a NumPy advanced indices for indexing of elements in the updates
updates_idx = list(idx)
updates_idx.pop(axis)
updates_idx.insert(axis, np.repeat(np.arange(indices.shape[axis]), np.prod(idx_xsection_shape)))
scattered = np.copy(data)
scattered[tuple(idx)] = updates[tuple(updates_idx)]
return scattered
class ScatterElements(Base):
@staticmethod
def export_scatter_elements_without_axis(): # type: () -> None
node = onnx.helper.make_node(
'ScatterElements',
inputs=['data', 'indices', 'updates'],
outputs=['y'],
)
data = np.zeros((3, 3), dtype=np.float32)
indices = np.array([[1, 0, 2], [0, 2, 1]], dtype=np.int64)
updates = np.array([[1.0, 1.1, 1.2], [2.0, 2.1, 2.2]], dtype=np.float32)
y = scatter_elements(data, indices, updates)
# print(y) produces
# [[2.0, 1.1, 0.0],
# [1.0, 0.0, 2.2],
# [0.0, 2.1, 1.2]]
expect(node, inputs=[data, indices, updates], outputs=[y],
name='test_scatter_elements_without_axis')
@staticmethod
def export_scatter_elements_with_axis(): # type: () -> None
axis = 1
node = onnx.helper.make_node(
'ScatterElements',
inputs=['data', 'indices', 'updates'],
outputs=['y'],
axis=axis,
)
data = np.array([[1.0, 2.0, 3.0, 4.0, 5.0]], dtype=np.float32)
indices = np.array([[1, 3]], dtype=np.int64)
updates = np.array([[1.1, 2.1]], dtype=np.float32)
y = scatter_elements(data, indices, updates, axis)
# print(y) produces
# [[1.0, 1.1, 3.0, 2.1, 5.0]]
expect(node, inputs=[data, indices, updates], outputs=[y],
name='test_scatter_elements_with_axis')
@staticmethod
def export_scatter_elements_with_negative_indices(): # type: () -> None
axis = 1
node = onnx.helper.make_node(
'ScatterElements',
inputs=['data', 'indices', 'updates'],
outputs=['y'],
axis=axis,
)
data = np.array([[1.0, 2.0, 3.0, 4.0, 5.0]], dtype=np.float32)
indices = np.array([[1, -3]], dtype=np.int64)
updates = np.array([[1.1, 2.1]], dtype=np.float32)
y = scatter_elements(data, indices, updates, axis)
# print(y) produces
# [[1.0, 1.1, 2.1, 4.0, 5.0]]
expect(node, inputs=[data, indices, updates], outputs=[y],
name='test_scatter_elements_with_negative_indices')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Xor(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Xor',
inputs=['x', 'y'],
outputs=['xor'],
)
# 2d
x = (np.random.randn(3, 4) > 0).astype(np.bool)
y = (np.random.randn(3, 4) > 0).astype(np.bool)
z = np.logical_xor(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_xor2d')
# 3d
x = (np.random.randn(3, 4, 5) > 0).astype(np.bool)
y = (np.random.randn(3, 4, 5) > 0).astype(np.bool)
z = np.logical_xor(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_xor3d')
# 4d
x = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool)
y = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool)
z = np.logical_xor(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_xor4d')
@staticmethod
def export_xor_broadcast(): # type: () -> None
node = onnx.helper.make_node(
'Xor',
inputs=['x', 'y'],
outputs=['xor'],
)
# 3d vs 1d
x = (np.random.randn(3, 4, 5) > 0).astype(np.bool)
y = (np.random.randn(5) > 0).astype(np.bool)
z = np.logical_xor(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_xor_bcast3v1d')
# 3d vs 2d
x = (np.random.randn(3, 4, 5) > 0).astype(np.bool)
y = (np.random.randn(4, 5) > 0).astype(np.bool)
z = np.logical_xor(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_xor_bcast3v2d')
# 4d vs 2d
x = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool)
y = (np.random.randn(5, 6) > 0).astype(np.bool)
z = np.logical_xor(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_xor_bcast4v2d')
# 4d vs 3d
x = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool)
y = (np.random.randn(4, 5, 6) > 0).astype(np.bool)
z = np.logical_xor(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_xor_bcast4v3d')
# 4d vs 4d
x = (np.random.randn(1, 4, 1, 6) > 0).astype(np.bool)
y = (np.random.randn(3, 1, 5, 6) > 0).astype(np.bool)
z = np.logical_xor(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_xor_bcast4v4d')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Unsqueeze(Base):
@staticmethod
def export_unsqueeze_one_axis(): # type: () -> None
x = np.random.randn(3, 4, 5).astype(np.float32)
for i in range(x.ndim):
node = onnx.helper.make_node(
'Unsqueeze',
inputs=['x'],
outputs=['y'],
axes=[i],
)
y = np.expand_dims(x, axis=i)
expect(node, inputs=[x], outputs=[y],
name='test_unsqueeze_axis_' + str(i))
@staticmethod
def export_unsqueeze_two_axes(): # type: () -> None
x = np.random.randn(3, 4, 5).astype(np.float32)
node = onnx.helper.make_node(
'Unsqueeze',
inputs=['x'],
outputs=['y'],
axes=[1, 4],
)
y = np.expand_dims(x, axis=1)
y = np.expand_dims(y, axis=4)
expect(node, inputs=[x], outputs=[y],
name='test_unsqueeze_two_axes')
@staticmethod
def export_unsqueeze_three_axes(): # type: () -> None
x = np.random.randn(3, 4, 5).astype(np.float32)
node = onnx.helper.make_node(
'Unsqueeze',
inputs=['x'],
outputs=['y'],
axes=[2, 4, 5],
)
y = np.expand_dims(x, axis=2)
y = np.expand_dims(y, axis=4)
y = np.expand_dims(y, axis=5)
expect(node, inputs=[x], outputs=[y],
name='test_unsqueeze_three_axes')
@staticmethod
def export_unsqueeze_unsorted_axes(): # type: () -> None
x = np.random.randn(3, 4, 5).astype(np.float32)
node = onnx.helper.make_node(
'Unsqueeze',
inputs=['x'],
outputs=['y'],
axes=[5, 4, 2],
)
y = np.expand_dims(x, axis=2)
y = np.expand_dims(y, axis=4)
y = np.expand_dims(y, axis=5)
expect(node, inputs=[x], outputs=[y],
name='test_unsqueeze_unsorted_axes')
@staticmethod
def export_unsqueeze_negative_axes(): # type: () -> None
node = onnx.helper.make_node(
'Unsqueeze',
inputs=['x'],
outputs=['y'],
axes=[-2],
)
x = np.random.randn(1, 3, 1, 5).astype(np.float32)
y = np.expand_dims(x, axis=-2)
expect(node, inputs=[x], outputs=[y],
name='test_unsqueeze_negative_axes')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class ReverseSequence(Base):
@staticmethod
def export_reversesequence_time(): # type: () -> None
node = onnx.helper.make_node(
'ReverseSequence',
inputs=['x', 'sequence_lens'],
outputs=['y'],
time_axis=0,
batch_axis=1,
)
x = np.array([[0.0, 4.0, 8.0, 12.0],
[1.0, 5.0, 9.0, 13.0],
[2.0, 6.0, 10.0, 14.0],
[3.0, 7.0, 11.0, 15.0]], dtype=np.float32)
sequence_lens = np.array([4, 3, 2, 1], dtype=np.int64)
y = np.array([[3.0, 6.0, 9.0, 12.0],
[2.0, 5.0, 8.0, 13.0],
[1.0, 4.0, 10.0, 14.0],
[0.0, 7.0, 11.0, 15.0]], dtype=np.float32)
expect(node, inputs=[x, sequence_lens], outputs=[y],
name='test_reversesequence_time')
@staticmethod
def export_reversesequence_batch(): # type: () -> None
node = onnx.helper.make_node(
'ReverseSequence',
inputs=['x', 'sequence_lens'],
outputs=['y'],
time_axis=1,
batch_axis=0,
)
x = np.array([[0.0, 1.0, 2.0, 3.0],
[4.0, 5.0, 6.0, 7.0],
[8.0, 9.0, 10.0, 11.0],
[12.0, 13.0, 14.0, 15.0]], dtype=np.float32)
sequence_lens = np.array([1, 2, 3, 4], dtype=np.int64)
y = np.array([[0.0, 1.0, 2.0, 3.0],
[5.0, 4.0, 6.0, 7.0],
[10.0, 9.0, 8.0, 11.0],
[15.0, 14.0, 13.0, 12.0]], dtype=np.float32)
expect(node, inputs=[x, sequence_lens], outputs=[y],
name='test_reversesequence_batch')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Scan(Base):
@staticmethod
def export_scan_8(): # type: () -> None
# Given an input sequence [x1, ..., xN], sum up its elements using a scan
# returning the final state (x1+x2+...+xN) as well the scan_output
# [x1, x1+x2, ..., x1+x2+...+xN]
#
# create graph to represent scan body
sum_in = onnx.helper.make_tensor_value_info('sum_in', onnx.TensorProto.FLOAT, [2])
next = onnx.helper.make_tensor_value_info('next', onnx.TensorProto.FLOAT, [2])
sum_out = onnx.helper.make_tensor_value_info('sum_out', onnx.TensorProto.FLOAT, [2])
scan_out = onnx.helper.make_tensor_value_info('scan_out', onnx.TensorProto.FLOAT, [2])
add_node = onnx.helper.make_node(
'Add',
inputs=['sum_in', 'next'],
outputs=['sum_out']
)
id_node = onnx.helper.make_node(
'Identity',
inputs=['sum_out'],
outputs=['scan_out']
)
scan_body = onnx.helper.make_graph(
[add_node, id_node],
'scan_body',
[sum_in, next],
[sum_out, scan_out]
)
# create scan op node
no_sequence_lens = '' # optional input, not supplied
node = onnx.helper.make_node(
'Scan',
inputs=[no_sequence_lens, 'initial', 'x'],
outputs=['y', 'z'],
num_scan_inputs=1,
body=scan_body
)
# create inputs for batch-size 1, sequence-length 3, inner dimension 2
initial = np.array([0, 0]).astype(np.float32).reshape((1, 2))
x = np.array([1, 2, 3, 4, 5, 6]).astype(np.float32).reshape((1, 3, 2))
# final state computed = [1 + 3 + 5, 2 + 4 + 6]
y = np.array([9, 12]).astype(np.float32).reshape((1, 2))
# scan-output computed
z = np.array([1, 2, 4, 6, 9, 12]).astype(np.float32).reshape((1, 3, 2))
expect(node, inputs=[initial, x], outputs=[y, z],
name='test_scan_sum', opset_imports=[onnx.helper.make_opsetid("", 8)])
@staticmethod
def export_scan_9(): # type: () -> None
# Given an input sequence [x1, ..., xN], sum up its elements using a scan
# returning the final state (x1+x2+...+xN) as well the scan_output
# [x1, x1+x2, ..., x1+x2+...+xN]
#
# create graph to represent scan body
sum_in = onnx.helper.make_tensor_value_info('sum_in', onnx.TensorProto.FLOAT, [2])
next = onnx.helper.make_tensor_value_info('next', onnx.TensorProto.FLOAT, [2])
sum_out = onnx.helper.make_tensor_value_info('sum_out', onnx.TensorProto.FLOAT, [2])
scan_out = onnx.helper.make_tensor_value_info('scan_out', onnx.TensorProto.FLOAT, [2])
add_node = onnx.helper.make_node(
'Add',
inputs=['sum_in', 'next'],
outputs=['sum_out']
)
id_node = onnx.helper.make_node(
'Identity',
inputs=['sum_out'],
outputs=['scan_out']
)
scan_body = onnx.helper.make_graph(
[add_node, id_node],
'scan_body',
[sum_in, next],
[sum_out, scan_out]
)
# create scan op node
node = onnx.helper.make_node(
'Scan',
inputs=['initial', 'x'],
outputs=['y', 'z'],
num_scan_inputs=1,
body=scan_body
)
# create inputs for sequence-length 3, inner dimension 2
initial = np.array([0, 0]).astype(np.float32).reshape((2,))
x = np.array([1, 2, 3, 4, 5, 6]).astype(np.float32).reshape((3, 2))
# final state computed = [1 + 3 + 5, 2 + 4 + 6]
y = np.array([9, 12]).astype(np.float32).reshape((2,))
# scan-output computed
z = np.array([1, 2, 4, 6, 9, 12]).astype(np.float32).reshape((3, 2))
expect(node, inputs=[initial, x], outputs=[y, z],
name='test_scan9_sum', opset_imports=[onnx.helper.make_opsetid("", 9)])
|
import numpy as np # type: ignore
import itertools
from typing import Text, Sequence
def get_pad_shape(auto_pad, # type: Text
input_spatial_shape, # type: Sequence[int]
kernel_spatial_shape, # type: Sequence[int]
strides_spatial, # type: Sequence[int]
output_spatial_shape # type: Sequence[int]
): # type: (...) -> Sequence[int]
pad_shape = [0] * len(input_spatial_shape)
if auto_pad in ('SAME_UPPER', 'SAME_LOWER'):
for i in range(len(input_spatial_shape)):
pad_shape[i] = (output_spatial_shape[i] - 1) * strides_spatial[i] + \
kernel_spatial_shape[i] - input_spatial_shape[i]
elif auto_pad == 'VALID':
pass
return pad_shape
def get_output_shape(auto_pad, # type: Text
input_spatial_shape, # type: Sequence[int]
kernel_spatial_shape, # type: Sequence[int]
strides_spatial # type: Sequence[int]
): # type: (...) -> Sequence[int]
out_shape = [0] * len(input_spatial_shape)
if auto_pad in ('SAME_UPPER', 'SAME_LOWER'):
for i in range(len(input_spatial_shape)):
out_shape[i] = int(
np.ceil(
float(
input_spatial_shape[i])
/ float(
strides_spatial[i])))
elif auto_pad == 'VALID':
for i in range(len(input_spatial_shape)):
out_shape[i] = int(np.ceil(float(input_spatial_shape[i] - (kernel_spatial_shape[i] - 1)) / float(strides_spatial[i])))
return out_shape
def pool(padded, # type: np.ndarray
x_shape, # type: Sequence[int]
kernel_shape, # type: Sequence[int]
strides_shape, # type: Sequence[int]
out_shape, # type: Sequence[int]
pad_shape, # type: Sequence[int]
pooling_type, # type: Text
count_include_pad=0 # type: int
): # type: (...) -> np.ndarray
spatial_size = len(x_shape) - 2
y = np.zeros([x_shape[0], x_shape[1]] + list(out_shape))
for shape in itertools.product(range(x_shape[0]), range(x_shape[1]), *[range(int(
(x_shape[i + 2] + pad_shape[i] - kernel_shape[i]) / strides_shape[i] + 1)) for i in range(spatial_size)]):
window = padded[shape[0], shape[1]]
window_vals = np.array([window[i] for i in list(
itertools.product(
*[range(strides_shape[i] * shape[i + 2], strides_shape[i] * shape[i + 2] + kernel_shape[i]) for i in
range(spatial_size)])
)])
if pooling_type == 'AVG':
f = np.average
elif pooling_type == 'MAX':
f = np.max
else:
raise NotImplementedError(
'Pooling type {} does not support. Should be AVG, MAX'.format(pooling_type))
if count_include_pad == 1 and pooling_type == 'AVG':
y[shape] = f(window_vals)
else:
y[shape] = f(window_vals[np.where(~np.isnan(window_vals))])
return y.astype(np.float32)
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class HardSigmoid(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'HardSigmoid',
inputs=['x'],
outputs=['y'],
alpha=0.5,
beta=0.6
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.clip(x * 0.5 + 0.6, 0, 1) # expected output [0.1, 0.6, 1.]
expect(node, inputs=[x], outputs=[y],
name='test_hardsigmoid_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x * 0.5 + 0.6, 0, 1)
expect(node, inputs=[x], outputs=[y],
name='test_hardsigmoid')
@staticmethod
def export_hardsigmoid_default(): # type: () -> None
default_alpha = 0.2
default_beta = 0.5
node = onnx.helper.make_node(
'HardSigmoid',
inputs=['x'],
outputs=['y'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x * default_alpha + default_beta, 0, 1)
expect(node, inputs=[x], outputs=[y],
name='test_hardsigmoid_default')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class ReduceL2(Base):
@staticmethod
def export_do_not_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [2]
keepdims = 0
node = onnx.helper.make_node(
'ReduceL2',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims
)
data = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape)
#print(data)
#[[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]], [[9., 10.], [11., 12.]]]
reduced = np.sqrt(np.sum(
a=np.square(data), axis=tuple(axes), keepdims=keepdims == 1))
#print(reduced)
#[[2.23606798, 5.],
# [7.81024968, 10.63014581],
# [13.45362405, 16.2788206]]
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l2_do_not_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sqrt(np.sum(
a=np.square(data), axis=tuple(axes), keepdims=keepdims == 1))
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l2_do_not_keepdims_random')
@staticmethod
def export_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [2]
keepdims = 1
node = onnx.helper.make_node(
'ReduceL2',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims
)
data = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape)
#print(data)
#[[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]], [[9., 10.], [11., 12.]]]
reduced = np.sqrt(np.sum(
a=np.square(data), axis=tuple(axes), keepdims=keepdims == 1))
#print(reduced)
#[[[2.23606798], [5.]]
# [[7.81024968], [10.63014581]]
# [[13.45362405], [16.2788206 ]]]
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l2_keep_dims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sqrt(np.sum(
a=np.square(data), axis=tuple(axes), keepdims=keepdims == 1))
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_l2_keep_dims_random')
@staticmethod
def export_default_axes_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = None
keepdims = 1
node = onnx.helper.make_node(
'ReduceL2',
inputs=['data'],
outputs=['reduced'],
keepdims=keepdims
)
data = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape)
#print(data)
#[[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]], [[9., 10.], [11., 12.]]]
reduced = np.sqrt(np.sum(
a=np.square(data), axis=axes, keepdims=keepdims == 1))
#print(reduced)
#[[[25.49509757]]]
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l2_default_axes_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sqrt(np.sum(
a=np.square(data), axis=axes, keepdims=keepdims == 1))
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l2_default_axes_keepdims_random')
@staticmethod
def export_negative_axes_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [-1]
keepdims = 1
node = onnx.helper.make_node(
'ReduceL2',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims
)
data = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape)
# print(data)
#[[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]], [[9., 10.], [11., 12.]]]
reduced = np.sqrt(np.sum(
a=np.square(data), axis=tuple(axes), keepdims=keepdims == 1))
# print(reduced)
#[[[2.23606798], [5.]]
# [[7.81024968], [10.63014581]]
# [[13.45362405], [16.2788206 ]]]
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l2_negative_axes_keep_dims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sqrt(np.sum(
a=np.square(data), axis=tuple(axes), keepdims=keepdims == 1))
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l2_negative_axes_keep_dims_random')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Shape(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Shape',
inputs=['x'],
outputs=['y'],
)
x = np.array([
[1, 2, 3],
[4, 5, 6],
]).astype(np.float32)
y = np.array([
2, 3,
]).astype(np.int64)
expect(node, inputs=[x], outputs=[y],
name='test_shape_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.array(x.shape).astype(np.int64)
expect(node, inputs=[x], outputs=[y],
name='test_shape')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class MatMulInteger(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node('MatMulInteger',
inputs=['A', 'B', 'a_zero_point', 'b_zero_point'],
outputs=['Y'],)
A = np.array([[11, 7, 3],
[10, 6, 2],
[9, 5, 1],
[8, 4, 0], ], dtype=np.uint8)
a_zero_point = np.array([12], dtype=np.uint8)
B = np.array([[1, 4],
[2, 5],
[3, 6], ], dtype=np.uint8)
b_zero_point = np.array([0], dtype=np.uint8)
output = np.array([[-38, -83],
[-44, -98],
[-50, -113],
[-56, -128], ], dtype=np.int32)
expect(node, inputs=[A, B, a_zero_point, b_zero_point], outputs=[output],
name='test_matmulinteger')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class ReduceProd(Base):
@staticmethod
def export_do_not_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [1]
keepdims = 0
node = onnx.helper.make_node(
'ReduceProd',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=np.float32)
reduced = np.prod(data, axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[3., 8.]
# [35., 48.]
# [99., 120.]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_prod_do_not_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.prod(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_prod_do_not_keepdims_random')
@staticmethod
def export_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [1]
keepdims = 1
node = onnx.helper.make_node(
'ReduceProd',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=np.float32)
reduced = np.prod(data, axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[[3., 8.]]
# [[35., 48.]]
# [[99., 120.]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_prod_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.prod(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_prod_keepdims_random')
@staticmethod
def export_default_axes_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = None
keepdims = 1
node = onnx.helper.make_node(
'ReduceProd',
inputs=['data'],
outputs=['reduced'],
keepdims=keepdims)
data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=np.float32)
reduced = np.prod(data, axis=axes, keepdims=keepdims == 1)
#print(reduced)
#[[[4.790016e+08]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_prod_default_axes_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.prod(data, axis=axes, keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_prod_default_axes_keepdims_random')
@staticmethod
def export_negative_axes_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [-2]
keepdims = 1
node = onnx.helper.make_node(
'ReduceProd',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=np.float32)
reduced = np.prod(data, axis=tuple(axes), keepdims=keepdims == 1)
# print(reduced)
#[[[3., 8.]]
# [[35., 48.]]
# [[99., 120.]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_prod_negative_axes_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.prod(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_prod_negative_axes_keepdims_random')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import random
import onnx
from ..base import Base
from . import expect
from onnx import helper
def dropout(X, drop_probability=0.5, seed=0, training_mode=False, return_mask=False): # type: ignore
if drop_probability == 0 or training_mode is False:
if return_mask is True:
return X, np.ones(X.shape, dtype=bool)
else:
return X
np.random.seed(seed)
mask = np.random.uniform(0, 1.0, X.shape) >= drop_probability
scale = (1 / (1 - drop_probability))
if return_mask is True:
return mask * X * scale, mask.astype(bool)
else:
return mask * X * scale
class Dropout(Base):
# Inferencing tests.
@staticmethod
def export_default(): # type: () -> None
seed = np.int64(0)
node = onnx.helper.make_node(
'Dropout',
inputs=['x'],
outputs=['y'],
seed=seed
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = dropout(x)
expect(node, inputs=[x], outputs=[y], name='test_dropout_default')
@staticmethod
def export_default_ratio(): # type: () -> None
seed = np.int64(0)
node = onnx.helper.make_node(
'Dropout',
inputs=['x', 'r'],
outputs=['y'],
seed=seed
)
r = np.float32(0.1)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = dropout(x, r)
expect(node, inputs=[x, r], outputs=[y], name='test_dropout_default_ratio')
@staticmethod
def export_default_mask(): # type: () -> None
seed = np.int64(0)
node = onnx.helper.make_node(
'Dropout',
inputs=['x'],
outputs=['y', 'z'],
seed=seed
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y, z = dropout(x, return_mask=True)
expect(node, inputs=[x], outputs=[y, z], name='test_dropout_default_mask')
@staticmethod
def export_default_mask_ratio(): # type: () -> None
seed = np.int64(0)
node = onnx.helper.make_node(
'Dropout',
inputs=['x', 'r'],
outputs=['y', 'z'],
seed=seed
)
r = np.float32(0.1)
x = np.random.randn(3, 4, 5).astype(np.float32)
y, z = dropout(x, r, return_mask=True)
expect(node, inputs=[x, r], outputs=[y, z], name='test_dropout_default_mask_ratio')
# Training tests.
@staticmethod
def export_training_default(): # type: () -> None
seed = np.int64(0)
node = onnx.helper.make_node(
'Dropout',
inputs=['x', 'r', 't'],
outputs=['y'],
seed=seed
)
x = np.random.randn(3, 4, 5).astype(np.float32)
r = np.float32(0.5)
t = np.bool_(True)
y = dropout(x, r, training_mode=t)
expect(node, inputs=[x, r, t], outputs=[y], name='test_training_dropout_default')
@staticmethod
def export_training_default_ratio_mask(): # type: () -> None
seed = np.int64(0)
node = onnx.helper.make_node(
'Dropout',
inputs=['x', 'r', 't'],
outputs=['y', 'z'],
seed=seed
)
x = np.random.randn(3, 4, 5).astype(np.float32)
r = np.float32(0.5)
t = np.bool_(True)
y, z = dropout(x, r, training_mode=t, return_mask=True)
expect(node, inputs=[x, r, t], outputs=[y, z], name='test_training_dropout_default_mask')
@staticmethod
def export_training(): # type: () -> None
seed = np.int64(0)
node = onnx.helper.make_node(
'Dropout',
inputs=['x', 'r', 't'],
outputs=['y'],
seed=seed
)
x = np.random.randn(3, 4, 5).astype(np.float32)
r = np.float32(0.75)
t = np.bool_(True)
y = dropout(x, r, training_mode=t)
expect(node, inputs=[x, r, t], outputs=[y], name='test_training_dropout')
@staticmethod
def export_training_ratio_mask(): # type: () -> None
seed = np.int64(0)
node = onnx.helper.make_node(
'Dropout',
inputs=['x', 'r', 't'],
outputs=['y', 'z'],
seed=seed
)
x = np.random.randn(3, 4, 5).astype(np.float32)
r = np.float32(0.75)
t = np.bool_(True)
y, z = dropout(x, r, training_mode=t, return_mask=True)
expect(node, inputs=[x, r, t], outputs=[y, z], name='test_training_dropout_mask')
@staticmethod
def export_training_default_zero_ratio(): # type: () -> None
seed = np.int64(0)
node = onnx.helper.make_node(
'Dropout',
inputs=['x', 'r', 't'],
outputs=['y'],
seed=seed
)
x = np.random.randn(3, 4, 5).astype(np.float32)
r = np.float32(0.0)
t = np.bool_(True)
y = dropout(x, r, training_mode=t)
expect(node, inputs=[x, r, t], outputs=[y], name='test_training_dropout_zero_ratio')
@staticmethod
def export_training_default_zero_ratio_mask(): # type: () -> None
seed = np.int64(0)
node = onnx.helper.make_node(
'Dropout',
inputs=['x', 'r', 't'],
outputs=['y', 'z'],
seed=seed
)
x = np.random.randn(3, 4, 5).astype(np.float32)
r = np.float32(0.0)
t = np.bool_(True)
y, z = dropout(x, r, training_mode=t, return_mask=True)
expect(node, inputs=[x, r, t], outputs=[y, z], name='test_training_dropout_zero_ratio_mask')
# Old dropout tests
@staticmethod
def export_default_old(): # type: () -> None
node = onnx.helper.make_node(
'Dropout',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = x
expect(node, inputs=[x], outputs=[y],
name='test_dropout_default_old', opset_imports=[helper.make_opsetid("", 11)])
@staticmethod
def export_random_old(): # type: () -> None
node = onnx.helper.make_node(
'Dropout',
inputs=['x'],
outputs=['y'],
ratio=.2,
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = x
expect(node, inputs=[x], outputs=[y],
name='test_dropout_random_old', opset_imports=[helper.make_opsetid("", 11)])
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Constant(Base):
@staticmethod
def export(): # type: () -> None
values = np.random.randn(5, 5).astype(np.float32)
node = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=['values'],
value=onnx.helper.make_tensor(
name='const_tensor',
data_type=onnx.TensorProto.FLOAT,
dims=values.shape,
vals=values.flatten().astype(float),
),
)
expect(node, inputs=[], outputs=[values],
name='test_constant')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Sum(Base):
@staticmethod
def export(): # type: () -> None
data_0 = np.array([3, 0, 2]).astype(np.float32)
data_1 = np.array([1, 3, 4]).astype(np.float32)
data_2 = np.array([2, 6, 6]).astype(np.float32)
result = np.array([6, 9, 12]).astype(np.float32)
node = onnx.helper.make_node(
'Sum',
inputs=['data_0', 'data_1', 'data_2'],
outputs=['result'],
)
expect(node, inputs=[data_0, data_1, data_2], outputs=[result],
name='test_sum_example')
node = onnx.helper.make_node(
'Sum',
inputs=['data_0'],
outputs=['result'],
)
expect(node, inputs=[data_0], outputs=[data_0],
name='test_sum_one_input')
result = np.add(data_0, data_1)
node = onnx.helper.make_node(
'Sum',
inputs=['data_0', 'data_1'],
outputs=['result'],
)
expect(node, inputs=[data_0, data_1], outputs=[result],
name='test_sum_two_inputs')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class ReduceMax(Base):
@staticmethod
def export_do_not_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [1]
keepdims = 0
node = onnx.helper.make_node(
'ReduceMax',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
reduced = np.maximum.reduce(data, axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[20., 2.]
# [40., 2.]
# [60., 2.]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_max_do_not_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.maximum.reduce(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_max_do_not_keepdims_random')
@staticmethod
def export_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [1]
keepdims = 1
node = onnx.helper.make_node(
'ReduceMax',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
reduced = np.maximum.reduce(data, axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[[20., 2.]]
# [[40., 2.]]
# [[60., 2.]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_max_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.maximum.reduce(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_max_keepdims_random')
@staticmethod
def export_default_axes_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = None
keepdims = 1
node = onnx.helper.make_node(
'ReduceMax',
inputs=['data'],
outputs=['reduced'],
keepdims=keepdims)
data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
reduced = np.maximum.reduce(data, axis=axes, keepdims=keepdims == 1)
#print(reduced)
[[[60.]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_max_default_axes_keepdim_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.maximum.reduce(data, axis=axes, keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_max_default_axes_keepdims_random')
@staticmethod
def export_negative_axes_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [-2]
keepdims = 1
node = onnx.helper.make_node(
'ReduceMax',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
reduced = np.maximum.reduce(data, axis=tuple(axes), keepdims=keepdims == 1)
# print(reduced)
#[[[20., 2.]]
# [[40., 2.]]
# [[60., 2.]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_max_negative_axes_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.maximum.reduce(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_max_negative_axes_keepdims_random')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Conv(Base):
@staticmethod
def export(): # type: () -> None
x = np.array([[[[0., 1., 2., 3., 4.], # (1, 1, 5, 5) input tensor
[5., 6., 7., 8., 9.],
[10., 11., 12., 13., 14.],
[15., 16., 17., 18., 19.],
[20., 21., 22., 23., 24.]]]]).astype(np.float32)
W = np.array([[[[1., 1., 1.], # (1, 1, 3, 3) tensor for convolution weights
[1., 1., 1.],
[1., 1., 1.]]]]).astype(np.float32)
# Convolution with padding
node_with_padding = onnx.helper.make_node(
'Conv',
inputs=['x', 'W'],
outputs=['y'],
kernel_shape=[3, 3],
# Default values for other attributes: strides=[1, 1], dilations=[1, 1], groups=1
pads=[1, 1, 1, 1],
)
y_with_padding = np.array([[[[12., 21., 27., 33., 24.], # (1, 1, 5, 5) output tensor
[33., 54., 63., 72., 51.],
[63., 99., 108., 117., 81.],
[93., 144., 153., 162., 111.],
[72., 111., 117., 123., 84.]]]]).astype(np.float32)
expect(node_with_padding, inputs=[x, W], outputs=[y_with_padding],
name='test_basic_conv_with_padding')
# Convolution without padding
node_without_padding = onnx.helper.make_node(
'Conv',
inputs=['x', 'W'],
outputs=['y'],
kernel_shape=[3, 3],
# Default values for other attributes: strides=[1, 1], dilations=[1, 1], groups=1
pads=[0, 0, 0, 0],
)
y_without_padding = np.array([[[[54., 63., 72.], # (1, 1, 3, 3) output tensor
[99., 108., 117.],
[144., 153., 162.]]]]).astype(np.float32)
expect(node_without_padding, inputs=[x, W], outputs=[y_without_padding],
name='test_basic_conv_without_padding')
@staticmethod
def export_conv_with_strides(): # type: () -> None
x = np.array([[[[0., 1., 2., 3., 4.], # (1, 1, 7, 5) input tensor
[5., 6., 7., 8., 9.],
[10., 11., 12., 13., 14.],
[15., 16., 17., 18., 19.],
[20., 21., 22., 23., 24.],
[25., 26., 27., 28., 29.],
[30., 31., 32., 33., 34.]]]]).astype(np.float32)
W = np.array([[[[1., 1., 1.], # (1, 1, 3, 3) tensor for convolution weights
[1., 1., 1.],
[1., 1., 1.]]]]).astype(np.float32)
# Convolution with strides=2 and padding
node_with_padding = onnx.helper.make_node(
'Conv',
inputs=['x', 'W'],
outputs=['y'],
kernel_shape=[3, 3],
pads=[1, 1, 1, 1],
strides=[2, 2], # Default values for other attributes: dilations=[1, 1], groups=1
)
y_with_padding = np.array([[[[12., 27., 24.], # (1, 1, 4, 3) output tensor
[63., 108., 81.],
[123., 198., 141.],
[112., 177., 124.]]]]).astype(np.float32)
expect(node_with_padding, inputs=[x, W], outputs=[y_with_padding],
name='test_conv_with_strides_padding')
# Convolution with strides=2 and no padding
node_without_padding = onnx.helper.make_node(
'Conv',
inputs=['x', 'W'],
outputs=['y'],
kernel_shape=[3, 3],
pads=[0, 0, 0, 0],
strides=[2, 2], # Default values for other attributes: dilations=[1, 1], groups=1
)
y_without_padding = np.array([[[[54., 72.], # (1, 1, 3, 2) output tensor
[144., 162.],
[234., 252.]]]]).astype(np.float32)
expect(node_without_padding, inputs=[x, W], outputs=[y_without_padding],
name='test_conv_with_strides_no_padding')
# Convolution with strides=2 and padding only along one dimension (the H dimension in NxCxHxW tensor)
node_with_asymmetric_padding = onnx.helper.make_node(
'Conv',
inputs=['x', 'W'],
outputs=['y'],
kernel_shape=[3, 3],
pads=[1, 0, 1, 0],
strides=[2, 2], # Default values for other attributes: dilations=[1, 1], groups=1
)
y_with_asymmetric_padding = np.array([[[[21., 33.], # (1, 1, 4, 2) output tensor
[99., 117.],
[189., 207.],
[171., 183.]]]]).astype(np.float32)
expect(node_with_asymmetric_padding, inputs=[x, W], outputs=[y_with_asymmetric_padding],
name='test_conv_with_strides_and_asymmetric_padding')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Greater(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Greater',
inputs=['x', 'y'],
outputs=['greater'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.randn(3, 4, 5).astype(np.float32)
z = np.greater(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_greater')
@staticmethod
def export_greater_broadcast(): # type: () -> None
node = onnx.helper.make_node(
'Greater',
inputs=['x', 'y'],
outputs=['greater'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.randn(5).astype(np.float32)
z = np.greater(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_greater_bcast')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Less(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Less',
inputs=['x', 'y'],
outputs=['less'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.randn(3, 4, 5).astype(np.float32)
z = np.less(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_less')
@staticmethod
def export_less_broadcast(): # type: () -> None
node = onnx.helper.make_node(
'Less',
inputs=['x', 'y'],
outputs=['less'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.randn(5).astype(np.float32)
z = np.less(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_less_bcast')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class CumSum(Base):
@staticmethod
def export_cumsum_1d(): # type: () -> None
node = onnx.helper.make_node(
'CumSum',
inputs=['x', 'axis'],
outputs=['y']
)
x = np.array([1., 2., 3., 4., 5.]).astype(np.float64)
axis = np.array([0]).astype(np.int32)
y = np.array([1., 3., 6., 10., 15.]).astype(np.float64)
expect(node, inputs=[x, axis], outputs=[y],
name='test_cumsum_1d')
@staticmethod
def export_cumsum_1d_exclusive(): # type: () -> None
node = onnx.helper.make_node(
'CumSum',
inputs=['x', 'axis'],
outputs=['y'],
exclusive=1
)
x = np.array([1., 2., 3., 4., 5.]).astype(np.float64)
axis = np.array([0]).astype(np.int32)
y = np.array([0., 1., 3., 6., 10.]).astype(np.float64)
expect(node, inputs=[x, axis], outputs=[y],
name='test_cumsum_1d_exclusive')
@staticmethod
def export_cumsum_1d_reverse(): # type: () -> None
node = onnx.helper.make_node(
'CumSum',
inputs=['x', 'axis'],
outputs=['y'],
reverse=1
)
x = np.array([1., 2., 3., 4., 5.]).astype(np.float64)
axis = np.array([0]).astype(np.int32)
y = np.array([15., 14., 12., 9., 5.]).astype(np.float64)
expect(node, inputs=[x, axis], outputs=[y],
name='test_cumsum_1d_reverse')
@staticmethod
def export_cumsum_1d_reverse_exclusive(): # type: () -> None
node = onnx.helper.make_node(
'CumSum',
inputs=['x', 'axis'],
outputs=['y'],
reverse=1
)
x = np.array([1., 2., 3., 4., 5.]).astype(np.float64)
axis = np.array([0]).astype(np.int32)
y = np.array([14., 12., 9., 5., 0.]).astype(np.float64)
expect(node, inputs=[x, axis], outputs=[y],
name='test_cumsum_1d_reverse_exclusive')
@staticmethod
def export_cumsum_2d_axis_0(): # type: () -> None
node = onnx.helper.make_node(
'CumSum',
inputs=['x', 'axis'],
outputs=['y'],
)
x = np.array([1., 2., 3., 4., 5., 6.]).astype(np.float64).reshape((2, 3))
axis = np.array([0]).astype(np.int32)
y = np.array([1., 2., 3., 5., 7., 9.]).astype(np.float64).reshape((2, 3))
expect(node, inputs=[x, axis], outputs=[y],
name='test_cumsum_2d_axis_0')
@staticmethod
def export_cumsum_2d_axis_1(): # type: () -> None
node = onnx.helper.make_node(
'CumSum',
inputs=['x', 'axis'],
outputs=['y'],
)
x = np.array([1., 2., 3., 4., 5., 6.]).astype(np.float64).reshape((2, 3))
axis = np.array([1]).astype(np.int32)
y = np.array([1., 3., 6., 4., 9., 15.]).astype(np.float64).reshape((2, 3))
expect(node, inputs=[x, axis], outputs=[y],
name='test_cumsum_2d_axis_1')
@staticmethod
def export_cumsum_2d_negative_axis(): # type: () -> None
node = onnx.helper.make_node(
'CumSum',
inputs=['x', 'axis'],
outputs=['y'],
)
x = np.array([1., 2., 3., 4., 5., 6.]).astype(np.float64).reshape((2, 3))
axis = np.array([-1]).astype(np.int32)
y = np.array([1., 3., 6., 4., 9., 15.]).astype(np.float64).reshape((2, 3))
expect(node, inputs=[x, axis], outputs=[y],
name='test_cumsum_2d_negative_axis')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class ReduceSumSquare(Base):
@staticmethod
def export_do_not_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [1]
keepdims = 0
node = onnx.helper.make_node(
'ReduceSumSquare',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=np.float32)
reduced = np.sum(np.square(data), axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[10., 20.]
# [74., 100.]
# [202., 244.]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_square_do_not_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sum(np.square(data), axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_square_do_not_keepdims_random')
@staticmethod
def export_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [1]
keepdims = 1
node = onnx.helper.make_node(
'ReduceSumSquare',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=np.float32)
reduced = np.sum(np.square(data), axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[[10., 20.]]
# [[74., 100.]]
# [[202., 244.]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_square_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sum(np.square(data), axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_square_keepdims_random')
@staticmethod
def export_default_axes_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = None
keepdims = 1
node = onnx.helper.make_node(
'ReduceSumSquare',
inputs=['data'],
outputs=['reduced'],
keepdims=keepdims)
data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=np.float32)
reduced = np.sum(np.square(data), axis=axes, keepdims=keepdims == 1)
#print(reduced)
#[[[650.]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_square_default_axes_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sum(np.square(data), axis=axes, keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_square_default_axes_keepdims_random')
@staticmethod
def export_negative_axes_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [-2]
keepdims = 1
node = onnx.helper.make_node(
'ReduceSumSquare',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=np.float32)
reduced = np.sum(np.square(data), axis=tuple(axes), keepdims=keepdims == 1)
# print(reduced)
#[[[10., 20.s]]
# [[74., 100.]]
# [[202., 244.]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_square_negative_axes_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sum(np.square(data), axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_square_negative_axes_keepdims_random')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
from typing import Any, Tuple
import onnx
from ..base import Base
from . import expect
class LSTM_Helper():
def __init__(self, **params): # type: (*Any) -> None
# LSTM Input Names
X = str('X')
W = str('W')
R = str('R')
B = str('B')
H_0 = str('initial_h')
C_0 = str('initial_c')
P = str('P')
number_of_gates = 4
number_of_peepholes = 3
required_inputs = [X, W, R]
for i in required_inputs:
assert i in params, "Missing Required Input: {0}".format(i)
self.num_directions = params[W].shape[0]
if self.num_directions == 1:
for k in params.keys():
if k != X:
params[k] = np.squeeze(params[k], axis=0)
hidden_size = params[R].shape[-1]
batch_size = params[X].shape[1]
b = params[B] if B in params else np.zeros(2 * number_of_gates * hidden_size, dtype=np.float32)
p = params[P] if P in params else np.zeros(number_of_peepholes * hidden_size, dtype=np.float32)
h_0 = params[H_0] if H_0 in params else np.zeros((batch_size, hidden_size), dtype=np.float32)
c_0 = params[C_0] if C_0 in params else np.zeros((batch_size, hidden_size), dtype=np.float32)
self.X = params[X]
self.W = params[W]
self.R = params[R]
self.B = b
self.P = p
self.H_0 = h_0
self.C_0 = c_0
else:
raise NotImplementedError()
def f(self, x): # type: (np.ndarray) -> np.ndarray
return 1 / (1 + np.exp(-x))
def g(self, x): # type: (np.ndarray) -> np.ndarray
return np.tanh(x)
def h(self, x): # type: (np.ndarray) -> np.ndarray
return np.tanh(x)
def step(self): # type: () -> Tuple[np.ndarray, np.ndarray]
[p_i, p_o, p_f] = np.split(self.P, 3)
h_list = []
H_t = self.H_0
C_t = self.C_0
for x in np.split(self.X, self.X.shape[0], axis=0):
gates = np.dot(x, np.transpose(self.W)) + np.dot(H_t, np.transpose(self.R)) + np.add(
*np.split(self.B, 2))
i, o, f, c = np.split(gates, 4, -1)
i = self.f(i + p_i * C_t)
f = self.f(f + p_f * C_t)
c = self.g(c)
C = f * C_t + i * c
o = self.f(o + p_o * C)
H = o * self.h(C)
h_list.append(H)
H_t = H
C_t = C
concatenated = np.concatenate(h_list)
if self.num_directions == 1:
output = np.expand_dims(concatenated, 1)
return output, h_list[-1]
class LSTM(Base):
@staticmethod
def export_defaults(): # type: () -> None
input = np.array([[[1., 2.], [3., 4.], [5., 6.]]]).astype(np.float32)
input_size = 2
hidden_size = 3
weight_scale = 0.1
number_of_gates = 4
node = onnx.helper.make_node(
'LSTM',
inputs=['X', 'W', 'R'],
outputs=['', 'Y'],
hidden_size=hidden_size
)
W = weight_scale * np.ones((1, number_of_gates * hidden_size, input_size)).astype(np.float32)
R = weight_scale * np.ones((1, number_of_gates * hidden_size, hidden_size)).astype(np.float32)
lstm = LSTM_Helper(X=input, W=W, R=R)
_, Y_h = lstm.step()
expect(node, inputs=[input, W, R], outputs=[Y_h.astype(np.float32)], name='test_lstm_defaults')
@staticmethod
def export_initial_bias(): # type: () -> None
input = np.array([[[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]]).astype(np.float32)
input_size = 3
hidden_size = 4
weight_scale = 0.1
custom_bias = 0.1
number_of_gates = 4
node = onnx.helper.make_node(
'LSTM',
inputs=['X', 'W', 'R', 'B'],
outputs=['', 'Y'],
hidden_size=hidden_size
)
W = weight_scale * np.ones((1, number_of_gates * hidden_size, input_size)).astype(np.float32)
R = weight_scale * np.ones((1, number_of_gates * hidden_size, hidden_size)).astype(np.float32)
# Adding custom bias
W_B = custom_bias * np.ones((1, number_of_gates * hidden_size)).astype(np.float32)
R_B = np.zeros((1, number_of_gates * hidden_size)).astype(np.float32)
B = np.concatenate((W_B, R_B), 1)
lstm = LSTM_Helper(X=input, W=W, R=R, B=B)
_, Y_h = lstm.step()
expect(node, inputs=[input, W, R, B], outputs=[Y_h.astype(np.float32)], name='test_lstm_with_initial_bias')
@staticmethod
def export_peepholes(): # type: () -> None
input = np.array([[[1., 2., 3., 4.], [5., 6., 7., 8.]]]).astype(np.float32)
input_size = 4
hidden_size = 3
weight_scale = 0.1
number_of_gates = 4
number_of_peepholes = 3
node = onnx.helper.make_node(
'LSTM',
inputs=['X', 'W', 'R', 'B', 'sequence_lens', 'initial_h', 'initial_c', 'P'],
outputs=['', 'Y'],
hidden_size=hidden_size
)
# Initializing Inputs
W = weight_scale * np.ones((1, number_of_gates * hidden_size, input_size)).astype(np.float32)
R = weight_scale * np.ones((1, number_of_gates * hidden_size, hidden_size)).astype(np.float32)
B = np.zeros((1, 2 * number_of_gates * hidden_size)).astype(np.float32)
seq_lens = np.repeat(input.shape[0], input.shape[1]).astype(np.int32)
init_h = np.zeros((1, input.shape[1], hidden_size)).astype(np.float32)
init_c = np.zeros((1, input.shape[1], hidden_size)).astype(np.float32)
P = weight_scale * np.ones((1, number_of_peepholes * hidden_size)).astype(np.float32)
lstm = LSTM_Helper(X=input, W=W, R=R, B=B, P=P, initial_c=init_c, initial_h=init_h)
_, Y_h = lstm.step()
expect(node, inputs=[input, W, R, B, seq_lens, init_h, init_c, P], outputs=[Y_h.astype(np.float32)],
name='test_lstm_with_peepholes')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Cosh(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Cosh',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.cosh(x) # expected output [1.54308069, 1., 1.54308069]
expect(node, inputs=[x], outputs=[y],
name='test_cosh_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.cosh(x)
expect(node, inputs=[x], outputs=[y],
name='test_cosh')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Clip(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Clip',
inputs=['x', 'min', 'max'],
outputs=['y'],
)
x = np.array([-2, 0, 2]).astype(np.float32)
min_val = np.float32(-1)
max_val = np.float32(1)
y = np.clip(x, min_val, max_val) # expected output [-1., 0., 1.]
expect(node, inputs=[x, min_val, max_val], outputs=[y],
name='test_clip_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, min_val, max_val)
expect(node, inputs=[x, min_val, max_val], outputs=[y],
name='test_clip')
node = onnx.helper.make_node(
'Clip',
inputs=['x', 'min', 'max'],
outputs=['y'],
)
min_val = np.float32(-5)
max_val = np.float32(5)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.array([-1, 0, 1]).astype(np.float32)
expect(node, inputs=[x, min_val, max_val], outputs=[y],
name='test_clip_inbounds')
x = np.array([-6, 0, 6]).astype(np.float32)
y = np.array([-5, 0, 5]).astype(np.float32)
expect(node, inputs=[x, min_val, max_val], outputs=[y],
name='test_clip_outbounds')
x = np.array([-1, 0, 6]).astype(np.float32)
y = np.array([-1, 0, 5]).astype(np.float32)
expect(node, inputs=[x, min_val, max_val], outputs=[y],
name='test_clip_splitbounds')
@staticmethod
def export_clip_default(): # type: () -> None
node = onnx.helper.make_node(
'Clip',
inputs=['x', 'min'],
outputs=['y'],
)
min_val = np.float32(0)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, min_val, np.inf)
expect(node, inputs=[x, min_val], outputs=[y],
name='test_clip_default_min')
no_min = "" # optional input, not supplied
node = onnx.helper.make_node(
'Clip',
inputs=['x', no_min, 'max'],
outputs=['y'],
)
max_val = np.float32(0)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, -np.inf, max_val)
expect(node, inputs=[x, max_val], outputs=[y],
name='test_clip_default_max')
no_max = "" # optional input, not supplied
node = onnx.helper.make_node(
'Clip',
inputs=['x', no_min, no_max],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.array([-1, 0, 1]).astype(np.float32)
expect(node, inputs=[x], outputs=[y],
name='test_clip_default_inbounds')
@staticmethod
def export_clip_default_int8(): # type: () -> None
node = onnx.helper.make_node(
'Clip',
inputs=['x', 'min'],
outputs=['y'],
)
min_val = np.int8(0)
x = np.random.randn(3, 4, 5).astype(np.int8)
y = np.clip(x, min_val, np.iinfo(np.int8).max)
expect(node, inputs=[x, min_val], outputs=[y],
name='test_clip_default_int8_min')
no_min = "" # optional input, not supplied
node = onnx.helper.make_node(
'Clip',
inputs=['x', no_min, 'max'],
outputs=['y'],
)
max_val = np.int8(0)
x = np.random.randn(3, 4, 5).astype(np.int8)
y = np.clip(x, np.iinfo(np.int8).min, max_val)
expect(node, inputs=[x, max_val], outputs=[y],
name='test_clip_default_int8_max')
no_max = "" # optional input, not supplied
node = onnx.helper.make_node(
'Clip',
inputs=['x', no_min, no_max],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.int8)
y = np.array([-1, 0, 1]).astype(np.int8)
expect(node, inputs=[x], outputs=[y],
name='test_clip_default_int8_inbounds')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Elu(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Elu',
inputs=['x'],
outputs=['y'],
alpha=2.0
)
x = np.array([-1, 0, 1]).astype(np.float32)
# expected output [-1.2642411, 0., 1.]
y = np.clip(x, 0, np.inf) + (np.exp(np.clip(x, -np.inf, 0)) - 1) * 2.0
expect(node, inputs=[x], outputs=[y],
name='test_elu_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, 0, np.inf) + (np.exp(np.clip(x, -np.inf, 0)) - 1) * 2.0
expect(node, inputs=[x], outputs=[y],
name='test_elu')
@staticmethod
def export_elu_default(): # type: () -> None
default_alpha = 1.0
node = onnx.helper.make_node(
'Elu',
inputs=['x'],
outputs=['y'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, 0, np.inf) + (np.exp(np.clip(x, -np.inf, 0)) - 1) * default_alpha
expect(node, inputs=[x], outputs=[y],
name='test_elu_default')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
from typing import Any, Tuple
import onnx
from ..base import Base
from . import expect
class GRU_Helper():
def __init__(self, **params): # type: (*Any) -> None
# GRU Input Names
X = str('X')
W = str('W')
R = str('R')
B = str('B')
H_0 = str('initial_h')
LBR = str('linear_before_reset')
number_of_gates = 3
required_inputs = [X, W, R]
for i in required_inputs:
assert i in params, "Missing Required Input: {0}".format(i)
self.num_directions = params[W].shape[0]
if self.num_directions == 1:
for k in params.keys():
if k != X:
params[k] = np.squeeze(params[k], axis=0)
hidden_size = params[R].shape[-1]
batch_size = params[X].shape[1]
b = params[B] if B in params else np.zeros(2 * number_of_gates * hidden_size)
h_0 = params[H_0] if H_0 in params else np.zeros((batch_size, hidden_size))
lbr = params[LBR] if LBR in params else 0
self.X = params[X]
self.W = params[W]
self.R = params[R]
self.B = b
self.H_0 = h_0
self.LBR = lbr
else:
raise NotImplementedError()
def f(self, x): # type: (np.ndarray) -> np.ndarray
return 1 / (1 + np.exp(-x))
def g(self, x): # type: (np.ndarray) -> np.ndarray
return np.tanh(x)
def step(self): # type: () -> Tuple[np.ndarray, np.ndarray]
h_list = []
[w_z, w_r, w_h] = np.split(self.W, 3)
[r_z, r_r, r_h] = np.split(self.R, 3)
[w_bz, w_br, w_bh, r_bz, r_br, r_bh] = np.split(self.B, 6)
gates_w = np.transpose(np.concatenate((w_z, w_r)))
gates_r = np.transpose(np.concatenate((r_z, r_r)))
gates_b = np.add(np.concatenate((w_bz, w_br)), np.concatenate((r_bz, r_br)))
H_t = self.H_0
for x in np.split(self.X, self.X.shape[0], axis=0):
gates = np.dot(x, gates_w) + np.dot(H_t, gates_r) + gates_b
z, r = np.split(gates, 2, -1)
z = self.f(z)
r = self.f(r)
h_default = self.g(np.dot(x, np.transpose(w_h)) + np.dot(r * H_t, np.transpose(r_h)) + w_bh + r_bh)
h_linear = self.g(np.dot(x, np.transpose(w_h)) + r * (np.dot(H_t, np.transpose(r_h)) + r_bh) + w_bh)
h = h_linear if self.LBR else h_default
H = (1 - z) * h + z * H_t
h_list.append(H)
H_t = H
concatenated = np.concatenate(h_list)
if self.num_directions == 1:
output = np.expand_dims(concatenated, 1)
return output, h_list[-1]
class GRU(Base):
@staticmethod
def export_defaults(): # type: () -> None
input = np.array([[[1., 2.], [3., 4.], [5., 6.]]]).astype(np.float32)
input_size = 2
hidden_size = 5
weight_scale = 0.1
number_of_gates = 3
node = onnx.helper.make_node(
'GRU',
inputs=['X', 'W', 'R'],
outputs=['', 'Y'],
hidden_size=hidden_size
)
W = weight_scale * np.ones((1, number_of_gates * hidden_size, input_size)).astype(np.float32)
R = weight_scale * np.ones((1, number_of_gates * hidden_size, hidden_size)).astype(np.float32)
gru = GRU_Helper(X=input, W=W, R=R)
_, Y_h = gru.step()
expect(node, inputs=[input, W, R], outputs=[Y_h.astype(np.float32)], name='test_gru_defaults')
@staticmethod
def export_initial_bias(): # type: () -> None
input = np.array([[[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]]).astype(np.float32)
input_size = 3
hidden_size = 3
weight_scale = 0.1
custom_bias = 0.1
number_of_gates = 3
node = onnx.helper.make_node(
'GRU',
inputs=['X', 'W', 'R', 'B'],
outputs=['', 'Y'],
hidden_size=hidden_size
)
W = weight_scale * np.ones((1, number_of_gates * hidden_size, input_size)).astype(np.float32)
R = weight_scale * np.ones((1, number_of_gates * hidden_size, hidden_size)).astype(np.float32)
# Adding custom bias
W_B = custom_bias * np.ones((1, number_of_gates * hidden_size)).astype(np.float32)
R_B = np.zeros((1, number_of_gates * hidden_size)).astype(np.float32)
B = np.concatenate((W_B, R_B), axis=1)
gru = GRU_Helper(X=input, W=W, R=R, B=B)
_, Y_h = gru.step()
expect(node, inputs=[input, W, R, B], outputs=[Y_h.astype(np.float32)], name='test_gru_with_initial_bias')
@staticmethod
def export_seq_length(): # type: () -> None
input = np.array([[[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]],
[[10., 11., 12.], [13., 14., 15.], [16., 17., 18.]]]).astype(np.float32)
input_size = 3
hidden_size = 5
number_of_gates = 3
node = onnx.helper.make_node(
'GRU',
inputs=['X', 'W', 'R', 'B'],
outputs=['', 'Y'],
hidden_size=hidden_size
)
W = np.random.randn(1, number_of_gates * hidden_size, input_size).astype(np.float32)
R = np.random.randn(1, number_of_gates * hidden_size, hidden_size).astype(np.float32)
# Adding custom bias
W_B = np.random.randn(1, number_of_gates * hidden_size).astype(np.float32)
R_B = np.random.randn(1, number_of_gates * hidden_size).astype(np.float32)
B = np.concatenate((W_B, R_B), axis=1)
gru = GRU_Helper(X=input, W=W, R=R, B=B)
_, Y_h = gru.step()
expect(node, inputs=[input, W, R, B], outputs=[Y_h.astype(np.float32)], name='test_gru_seq_length')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Sign(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Sign',
inputs=['x'],
outputs=['y'],
)
x = np.array(range(-5, 6)).astype(np.float32)
y = np.sign(x)
expect(node, inputs=[x], outputs=[y],
name='test_sign')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Sinh(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Sinh',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.sinh(x) # expected output [-1.17520118, 0., 1.17520118]
expect(node, inputs=[x], outputs=[y],
name='test_sinh_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.sinh(x)
expect(node, inputs=[x], outputs=[y],
name='test_sinh')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Softplus(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Softplus',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.log(np.exp(x) + 1) # expected output [0.31326166, 0.69314718, 1.31326163]
expect(node, inputs=[x], outputs=[y],
name='test_softplus_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.log(np.exp(x) + 1)
expect(node, inputs=[x], outputs=[y],
name='test_softplus')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
def topk_sorted_implementation(X, k, axis, largest): # type: ignore
sorted_indices = np.argsort(X, axis=axis)
sorted_values = np.sort(X, axis=axis)
if largest:
sorted_indices = np.flip(sorted_indices, axis=axis)
sorted_values = np.flip(sorted_values, axis=axis)
topk_sorted_indices = np.take(sorted_indices, np.arange(k), axis=axis)
topk_sorted_values = np.take(sorted_values, np.arange(k), axis=axis)
return topk_sorted_values, topk_sorted_indices
class TopK(Base):
@staticmethod
def export_top_k(): # type: () -> None
axis = 1
largest = 1
k = 3
node = onnx.helper.make_node(
'TopK',
inputs=['x', 'k'],
outputs=['values', 'indices'],
axis=axis
)
X = np.array([
[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11],
], dtype=np.float32)
K = np.array([k], dtype=np.int64)
values_ref, indices_ref = topk_sorted_implementation(X, k, axis, largest)
#print(values_ref)
#[[ 3. 2. 1.]
# [ 7. 6. 5.]
# [11. 10. 9.]]
#print(indices_ref)
#[[3 2 1]
# [3 2 1]
# [3 2 1]]
expect(node, inputs=[X, K], outputs=[values_ref, indices_ref],
name='test_top_k')
@staticmethod
def export_top_k_smallest(): # type: () -> None
axis = 1
largest = 0
sorted = 1
k = 3
node = onnx.helper.make_node(
'TopK',
inputs=['x', 'k'],
outputs=['values', 'indices'],
axis=axis,
largest=largest,
sorted=sorted
)
X = np.array([
[0, 1, 2, 3],
[4, 5, 6, 7],
[11, 10, 9, 8],
], dtype=np.float32)
K = np.array([k], dtype=np.int64)
values_ref, indices_ref = topk_sorted_implementation(X, k, axis, largest)
#print(values_ref)
#[[ 0. 1. 2.]
# [ 4. 5. 6.]
# [ 8. 9. 10.]]
#print(indices_ref)
#[[0 1 2]
# [0 1 2]
# [3 2 1]]
expect(node, inputs=[X, K], outputs=[values_ref, indices_ref],
name='test_top_k_smallest')
@staticmethod
def export_top_k_negative_axis(): # type: () -> None
axis = -1
largest = 1
k = 3
node = onnx.helper.make_node(
'TopK',
inputs=['x', 'k'],
outputs=['values', 'indices'],
axis=axis
)
X = np.array([
[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11],
], dtype=np.float32)
K = np.array([k], dtype=np.int64)
values_ref, indices_ref = topk_sorted_implementation(X, k, axis, largest)
# print(values_ref)
#[[ 3. 2. 1.]
# [ 7. 6. 5.]
# [11. 10. 9.]]
# print(indices_ref)
#[[3 2 1]
# [3 2 1]
# [3 2 1]]
expect(node, inputs=[X, K], outputs=[values_ref, indices_ref],
name='test_top_k_negative_axis')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Sigmoid(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Sigmoid',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = 1.0 / (1.0 + np.exp(np.negative(x))) # expected output [0.26894143, 0.5, 0.7310586]
expect(node, inputs=[x], outputs=[y],
name='test_sigmoid_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = 1.0 / (1.0 + np.exp(np.negative(x)))
expect(node, inputs=[x], outputs=[y],
name='test_sigmoid')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from onnx.backend.test.case.base import Base
from onnx.backend.test.case.node import expect
class Squeeze(Base):
@staticmethod
def export_squeeze(): # type: () -> None
node = onnx.helper.make_node(
'Squeeze',
inputs=['x'],
outputs=['y'],
axes=[0],
)
x = np.random.randn(1, 3, 4, 5).astype(np.float32)
y = np.squeeze(x, axis=0)
expect(node, inputs=[x], outputs=[y],
name='test_squeeze')
@staticmethod
def export_squeeze_negative_axes(): # type: () -> None
node = onnx.helper.make_node(
'Squeeze',
inputs=['x'],
outputs=['y'],
axes=[-2],
)
x = np.random.randn(1, 3, 1, 5).astype(np.float32)
y = np.squeeze(x, axis=-2)
expect(node, inputs=[x], outputs=[y],
name='test_squeeze_negative_axes')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Mod(Base):
@staticmethod
def export_mod_mixed_sign_float64(): # type: () -> None
node = onnx.helper.make_node(
'Mod',
inputs=['x', 'y'],
outputs=['z'],
fmod=1
)
x = np.array([-4.3, 7.2, 5.0, 4.3, -7.2, 8.0]).astype(np.float64)
y = np.array([2.1, -3.4, 8.0, -2.1, 3.4, 5.0]).astype(np.float64)
z = np.fmod(x, y) # expected output [-0.1, 0.4, 5. , 0.1, -0.4, 3.]
expect(node, inputs=[x, y], outputs=[z],
name='test_mod_mixed_sign_float64')
@staticmethod
def export_mod_mixed_sign_float32(): # type: () -> None
node = onnx.helper.make_node(
'Mod',
inputs=['x', 'y'],
outputs=['z'],
fmod=1
)
x = np.array([-4.3, 7.2, 5.0, 4.3, -7.2, 8.0]).astype(np.float32)
y = np.array([2.1, -3.4, 8.0, -2.1, 3.4, 5.0]).astype(np.float32)
z = np.fmod(x, y) # expected output [-0.10000038, 0.39999962, 5. , 0.10000038, -0.39999962, 3.]
expect(node, inputs=[x, y], outputs=[z],
name='test_mod_mixed_sign_float32')
@staticmethod
def export_mod_mixed_sign_float16(): # type: () -> None
node = onnx.helper.make_node(
'Mod',
inputs=['x', 'y'],
outputs=['z'],
fmod=1
)
x = np.array([-4.3, 7.2, 5.0, 4.3, -7.2, 8.0]).astype(np.float16)
y = np.array([2.1, -3.4, 8.0, -2.1, 3.4, 5.0]).astype(np.float16)
z = np.fmod(x, y) # expected output [-0.10156, 0.3984 , 5. , 0.10156, -0.3984 , 3.]
expect(node, inputs=[x, y], outputs=[z],
name='test_mod_mixed_sign_float16')
@staticmethod
def export_mod_mixed_sign_int64(): # type: () -> None
node = onnx.helper.make_node(
'Mod',
inputs=['x', 'y'],
outputs=['z'],
)
x = np.array([-4, 7, 5, 4, -7, 8]).astype(np.int64)
y = np.array([2, -3, 8, -2, 3, 5]).astype(np.int64)
z = np.mod(x, y) # expected output [ 0, -2, 5, 0, 2, 3]
expect(node, inputs=[x, y], outputs=[z],
name='test_mod_mixed_sign_int64')
@staticmethod
def export_mod_mixed_sign_int32(): # type: () -> None
node = onnx.helper.make_node(
'Mod',
inputs=['x', 'y'],
outputs=['z'],
)
x = np.array([-4, 7, 5, 4, -7, 8]).astype(np.int32)
y = np.array([2, -3, 8, -2, 3, 5]).astype(np.int32)
z = np.mod(x, y) # expected output [ 0, -2, 5, 0, 2, 3]
expect(node, inputs=[x, y], outputs=[z],
name='test_mod_mixed_sign_int32')
@staticmethod
def export_mod_mixed_sign_int16(): # type: () -> None
node = onnx.helper.make_node(
'Mod',
inputs=['x', 'y'],
outputs=['z'],
)
x = np.array([-4, 7, 5, 4, -7, 8]).astype(np.int16)
y = np.array([2, -3, 8, -2, 3, 5]).astype(np.int16)
z = np.mod(x, y) # expected output [ 0, -2, 5, 0, 2, 3]
expect(node, inputs=[x, y], outputs=[z],
name='test_mod_mixed_sign_int16')
@staticmethod
def export_mod_mixed_sign_int8(): # type: () -> None
node = onnx.helper.make_node(
'Mod',
inputs=['x', 'y'],
outputs=['z'],
)
x = np.array([-4, 7, 5, 4, -7, 8]).astype(np.int8)
y = np.array([2, -3, 8, -2, 3, 5]).astype(np.int8)
z = np.mod(x, y) # expected output [ 0, -2, 5, 0, 2, 3]
expect(node, inputs=[x, y], outputs=[z],
name='test_mod_mixed_sign_int8')
@staticmethod
def export_mod_uint8(): # type: () -> None
node = onnx.helper.make_node(
'Mod',
inputs=['x', 'y'],
outputs=['z'],
)
x = np.array([4, 7, 5]).astype(np.uint8)
y = np.array([2, 3, 8]).astype(np.uint8)
z = np.mod(x, y) # expected output [0, 1, 5]
expect(node, inputs=[x, y], outputs=[z],
name='test_mod_uint8')
@staticmethod
def export_mod_uint16(): # type: () -> None
node = onnx.helper.make_node(
'Mod',
inputs=['x', 'y'],
outputs=['z'],
)
x = np.array([4, 7, 5]).astype(np.uint16)
y = np.array([2, 3, 8]).astype(np.uint16)
z = np.mod(x, y) # expected output [0, 1, 5]
expect(node, inputs=[x, y], outputs=[z],
name='test_mod_uint16')
@staticmethod
def export_mod_uint32(): # type: () -> None
node = onnx.helper.make_node(
'Mod',
inputs=['x', 'y'],
outputs=['z'],
)
x = np.array([4, 7, 5]).astype(np.uint32)
y = np.array([2, 3, 8]).astype(np.uint32)
z = np.mod(x, y) # expected output [0, 1, 5]
expect(node, inputs=[x, y], outputs=[z],
name='test_mod_uint32')
@staticmethod
def export_mod_uint64(): # type: () -> None
node = onnx.helper.make_node(
'Mod',
inputs=['x', 'y'],
outputs=['z'],
)
x = np.array([4, 7, 5]).astype(np.uint64)
y = np.array([2, 3, 8]).astype(np.uint64)
z = np.mod(x, y) # expected output [0, 1, 5]
expect(node, inputs=[x, y], outputs=[z],
name='test_mod_uint64')
@staticmethod
def export_mod_int64_fmod(): # type: () -> None
node = onnx.helper.make_node(
'Mod',
inputs=['x', 'y'],
outputs=['z'],
fmod=1
)
x = np.array([-4, 7, 5, 4, -7, 8]).astype(np.int64)
y = np.array([2, -3, 8, -2, 3, 5]).astype(np.int64)
z = np.fmod(x, y) # expected output [ 0, 1, 5, 0, -1, 3]
expect(node, inputs=[x, y], outputs=[z],
name='test_mod_int64_fmod')
@staticmethod
def export_mod_broadcast(): # type: () -> None
node = onnx.helper.make_node(
'Mod',
inputs=['x', 'y'],
outputs=['z'],
)
x = np.arange(0, 30).reshape([3, 2, 5])
y = np.array([7])
z = np.mod(x, y)
z
# array([[[0, 1, 2, 3, 4],
# [5, 6, 0, 1, 2]],
# [[3, 4, 5, 6, 0],
# [1, 2, 3, 4, 5]],
# [[6, 0, 1, 2, 3],
# [4, 5, 6, 0, 1]]], dtype=int32)
expect(node, inputs=[x, y], outputs=[z],
name='test_mod_broadcast')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Greater(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'GreaterOrEqual',
inputs=['x', 'y'],
outputs=['greater_equal'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.randn(3, 4, 5).astype(np.float32)
z = np.greater_equal(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_greater_equal')
@staticmethod
def export_greater_broadcast(): # type: () -> None
node = onnx.helper.make_node(
'GreaterOrEqual',
inputs=['x', 'y'],
outputs=['greater_equal'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.randn(5).astype(np.float32)
z = np.greater_equal(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_greater_equal_bcast')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Identity(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Identity',
inputs=['x'],
outputs=['y'],
)
data = np.array([[[
[1, 2],
[3, 4],
]]], dtype=np.float32)
expect(node, inputs=[data], outputs=[data],
name='test_identity')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
def apply_momentum(t, r, x, g, v, norm_coefficient, alpha, beta): # type: ignore
# Add gradient of regularization term.
g_regularized = norm_coefficient * x + g
# Coefficient of gradient should be 1 at the first iteration.
beta_adjusted = beta if t > 0 else 1
# Update momentum.
v_new = alpha * v + beta_adjusted * g_regularized
# Apply SG with momentum update rule.
x_new = x - r * v_new
return x_new, v_new
def apply_nesterov(t, r, x, g, v, norm_coefficient, alpha, beta): # type: ignore
# Add gradient of regularization term.
g_regularized = norm_coefficient * x + g
# Coefficient of gradient should be 1 at the first iteration.
beta_adjusted = beta if t > 0 else 1
# Update momentum.
v_new = alpha * v + beta_adjusted * g_regularized
# Apply Nesterov with momentum update rule.
x_new = x - r * (g_regularized + alpha * v_new)
return x_new, v_new
class Momentum(Base):
@staticmethod
def export_momentum(): # type: () -> None
# Define operator attributes.
norm_coefficient = 0.001
alpha = 0.95
beta = 0.1
# Create operator.
node = onnx.helper.make_node('Momentum',
inputs=['R', 'T', 'X', 'G', 'V'],
outputs=['X_new', 'V_new'],
norm_coefficient=norm_coefficient,
alpha=alpha,
beta=beta,
mode='standard',
domain='ai.onnx.training'
)
# Define operator inputs.
r = np.array(0.1, dtype=np.float32) # scalar
t = np.array(0, dtype=np.int64) # scalar
x = np.array([1.2, 2.8], dtype=np.float32)
g = np.array([-0.94, -2.5], dtype=np.float32)
v = np.array([1.7, 3.6], dtype=np.float32)
# Compute expected outputs of Momentum.
x_new, v_new = apply_momentum(r, t, x, g, v,
norm_coefficient, alpha, beta)
# Check results.
expect(node, inputs=[r, t, x, g, v],
outputs=[x_new, v_new], name='test_momentum',
opset_imports=[onnx.helper.make_opsetid('ai.onnx.training', 1)])
@staticmethod
def export_nesterov_momentum(): # type: () -> None
# Define operator attributes.
norm_coefficient = 0.01
alpha = 0.95
beta = 1.0
# Create operator.
node = onnx.helper.make_node('Momentum',
inputs=['R', 'T', 'X', 'G', 'V'],
outputs=['X_new', 'V_new'],
norm_coefficient=norm_coefficient,
alpha=alpha,
beta=beta,
mode='nesterov',
domain='ai.onnx.training'
)
# Define operator inputs.
r = np.array(0.1, dtype=np.float32) # scalar
t = np.array(0, dtype=np.int64) # scalar
x = np.array([1.2, 2.8], dtype=np.float32)
g = np.array([-0.94, -2.5], dtype=np.float32)
v = np.array([1.7, 3.6], dtype=np.float32)
# Compute expected outputs of Adagrad.
x_new, v_new = apply_nesterov(r, t, x, g, v,
norm_coefficient, alpha, beta)
# Check results.
expect(node, inputs=[r, t, x, g, v],
outputs=[x_new, v_new], name='test_nesterov_momentum',
opset_imports=[onnx.helper.make_opsetid('ai.onnx.training', 1)])
@staticmethod
def export_momentum_multiple(): # type: () -> None
# Define operator attributes.
norm_coefficient = 0.001
alpha = 0.95
beta = 0.85
node = onnx.helper.make_node('Momentum',
inputs=['R', 'T', 'X1', 'X2',
'G1', 'G2', 'H1', 'H2'],
outputs=['X1_new', 'X2_new',
'V1_new', 'V2_new'],
norm_coefficient=norm_coefficient,
alpha=alpha,
beta=beta,
mode='standard',
domain='ai.onnx.training'
)
# Define operator inputs.
r = np.array(0.1, dtype=np.float32) # scalar
t = np.array(0, dtype=np.int64) # scalar
x1 = np.array([1.0], dtype=np.float32)
g1 = np.array([-1.0], dtype=np.float32)
v1 = np.array([2.0], dtype=np.float32)
x2 = np.array([1.0, 2.0], dtype=np.float32)
g2 = np.array([-1.0, -3.0], dtype=np.float32)
v2 = np.array([4.0, 1.0], dtype=np.float32)
# Compute expected outputs of Momentum.
x1_new, v1_new = apply_momentum(r, t, x1, g1, v1,
norm_coefficient, alpha, beta)
x2_new, v2_new = apply_momentum(r, t, x2, g2, v2,
norm_coefficient, alpha, beta)
# Check results.
expect(node, inputs=[r, t, x1, x2, g1, g2, v1, v2],
outputs=[x1_new, x2_new, v1_new, v2_new], name='test_momentum_multiple',
opset_imports=[onnx.helper.make_opsetid('ai.onnx.training', 1)])
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class Exp(Base):
@staticmethod
def export(): # type: () -> None
node = onnx.helper.make_node(
'Exp',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.exp(x) # expected output [0.36787945, 1., 2.71828175]
expect(node, inputs=[x], outputs=[y],
name='test_exp_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.exp(x)
expect(node, inputs=[x], outputs=[y],
name='test_exp')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class ConstantOfShape(Base):
@staticmethod
def export_float_ones(): # type: () -> None
x = np.array([4, 3, 2]).astype(np.int64)
tensor_value = onnx.helper.make_tensor("value", onnx.TensorProto.FLOAT,
[1], [1])
node = onnx.helper.make_node(
'ConstantOfShape',
inputs=['x'],
outputs=['y'],
value=tensor_value,
)
y = np.ones(x, dtype=np.float32)
expect(node, inputs=[x], outputs=[y],
name='test_constantofshape_float_ones')
@staticmethod
def export_int32_zeros(): # type: () -> None
x = np.array([10, 6]).astype(np.int64)
tensor_value = onnx.helper.make_tensor("value", onnx.TensorProto.INT32,
[1], [0])
node = onnx.helper.make_node(
'ConstantOfShape',
inputs=['x'],
outputs=['y'],
value=tensor_value,
)
y = np.zeros(x, dtype=np.int32)
expect(node, inputs=[x], outputs=[y],
name='test_constantofshape_int_zeros')
@staticmethod
def export_int32_shape_zero(): # type: () -> None
x = np.array([0, ]).astype(np.int64)
tensor_value = onnx.helper.make_tensor("value", onnx.TensorProto.INT32,
[1], [0])
node = onnx.helper.make_node(
'ConstantOfShape',
inputs=['x'],
outputs=['y'],
value=tensor_value,
)
y = np.zeros(x, dtype=np.int32)
expect(node, inputs=[x], outputs=[y],
name='test_constantofshape_int_shape_zero')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
from typing import Any, Tuple
import onnx
from ..base import Base
from . import expect
class RNN_Helper():
def __init__(self, **params): # type: (**Any) -> None
# RNN Input Names
X = str('X')
W = str('W')
R = str('R')
B = str('B')
H_0 = str('initial_h')
required_inputs = [X, W, R]
for i in required_inputs:
assert i in params, "Missing Required Input: {0}".format(i)
self.num_directions = params[str(W)].shape[0]
if self.num_directions == 1:
for k in params.keys():
if k != X:
params[k] = np.squeeze(params[k], axis=0)
hidden_size = params[R].shape[-1]
batch_size = params[X].shape[1]
b = params[B] if B in params else np.zeros(2 * hidden_size, dtype=np.float32)
h_0 = params[H_0] if H_0 in params else np.zeros((batch_size, hidden_size), dtype=np.float32)
self.X = params[X]
self.W = params[W]
self.R = params[R]
self.B = b
self.H_0 = h_0
else:
raise NotImplementedError()
def f(self, x): # type: (np.ndarray) -> np.ndarray
return np.tanh(x)
def step(self): # type: () -> Tuple[np.ndarray, np.ndarray]
h_list = []
H_t = self.H_0
for x in np.split(self.X, self.X.shape[0], axis=0):
H = self.f(np.dot(x, np.transpose(self.W)) + np.dot(H_t, np.transpose(self.R)) + np.add(
*np.split(self.B, 2)))
h_list.append(H)
H_t = H
concatenated = np.concatenate(h_list)
if self.num_directions == 1:
output = np.expand_dims(concatenated, 1)
return output, h_list[-1]
class RNN(Base):
@staticmethod
def export_defaults(): # type: () -> None
input = np.array([[[1., 2.], [3., 4.], [5., 6.]]]).astype(np.float32)
input_size = 2
hidden_size = 4
weight_scale = 0.1
node = onnx.helper.make_node(
'RNN',
inputs=['X', 'W', 'R'],
outputs=['', 'Y'],
hidden_size=hidden_size
)
W = weight_scale * np.ones((1, hidden_size, input_size)).astype(np.float32)
R = weight_scale * np.ones((1, hidden_size, hidden_size)).astype(np.float32)
rnn = RNN_Helper(X=input, W=W, R=R)
_, Y_h = rnn.step()
expect(node, inputs=[input, W, R], outputs=[Y_h.astype(np.float32)], name='test_simple_rnn_defaults')
@staticmethod
def export_initial_bias(): # type: () -> None
input = np.array([[[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]]).astype(np.float32)
input_size = 3
hidden_size = 5
custom_bias = 0.1
weight_scale = 0.1
node = onnx.helper.make_node(
'RNN',
inputs=['X', 'W', 'R', 'B'],
outputs=['', 'Y'],
hidden_size=hidden_size
)
W = weight_scale * np.ones((1, hidden_size, input_size)).astype(np.float32)
R = weight_scale * np.ones((1, hidden_size, hidden_size)).astype(np.float32)
# Adding custom bias
W_B = custom_bias * np.ones((1, hidden_size)).astype(np.float32)
R_B = np.zeros((1, hidden_size)).astype(np.float32)
B = np.concatenate((W_B, R_B), axis=1)
rnn = RNN_Helper(X=input, W=W, R=R, B=B)
_, Y_h = rnn.step()
expect(node, inputs=[input, W, R, B], outputs=[Y_h.astype(np.float32)],
name='test_simple_rnn_with_initial_bias')
@staticmethod
def export_seq_length(): # type: () -> None
input = np.array([[[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]],
[[10., 11., 12.], [13., 14., 15.], [16., 17., 18.]]]).astype(np.float32)
input_size = 3
hidden_size = 5
node = onnx.helper.make_node(
'RNN',
inputs=['X', 'W', 'R', 'B'],
outputs=['', 'Y'],
hidden_size=hidden_size
)
W = np.random.randn(1, hidden_size, input_size).astype(np.float32)
R = np.random.randn(1, hidden_size, hidden_size).astype(np.float32)
# Adding custom bias
W_B = np.random.randn(1, hidden_size).astype(np.float32)
R_B = np.random.randn(1, hidden_size).astype(np.float32)
B = np.concatenate((W_B, R_B), axis=1)
rnn = RNN_Helper(X=input, W=W, R=R, B=B)
_, Y_h = rnn.step()
expect(node, inputs=[input, W, R, B], outputs=[Y_h.astype(np.float32)], name='test_rnn_seq_length')
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class ReduceLogSumExp(Base):
@staticmethod
def export_do_not_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [1]
keepdims = 0
node = onnx.helper.make_node(
'ReduceLogSumExp',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims
)
data = np.array(
[[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]],
dtype=np.float32)
reduced = np.log(np.sum(
np.exp(data), axis=tuple(axes), keepdims=keepdims == 1))
# print(reduced)
#[[20., 2.31326175]
# [40.00004578, 2.31326175]
# [60.00671387, 2.31326175]]
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_log_sum_exp_do_not_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.log(np.sum(
np.exp(data), axis=tuple(axes), keepdims=keepdims == 1))
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_log_sum_exp_do_not_keepdims_random')
@staticmethod
def export_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [1]
keepdims = 1
node = onnx.helper.make_node(
'ReduceLogSumExp',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims
)
data = np.array(
[[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]],
dtype=np.float32)
reduced = np.log(np.sum(np.exp(data),
axis=tuple(axes),
keepdims=keepdims == 1))
# print(reduced)
# [[[20., 2.31326175]]
# [[40.00004578, 2.31326175]]
# [[60.00671387, 2.31326175]]]
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_log_sum_exp_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.log(np.sum(np.exp(data),
axis=tuple(axes),
keepdims=keepdims == 1))
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_log_sum_exp_keepdims_random')
@staticmethod
def export_default_axes_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = None
keepdims = 1
node = onnx.helper.make_node(
'ReduceLogSumExp',
inputs=['data'],
outputs=['reduced'],
keepdims=keepdims
)
data = np.array(
[[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]],
dtype=np.float32)
reduced = np.log(np.sum(np.exp(data),
axis=axes,
keepdims=keepdims == 1))
# print(reduced)
# [[[60.00671387]]]
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_log_sum_exp_default_axes_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.log(np.sum(np.exp(data),
axis=axes,
keepdims=keepdims == 1))
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_log_sum_exp_default_axes_keepdims_random')
@staticmethod
def export_negative_axes_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [-2]
keepdims = 1
node = onnx.helper.make_node(
'ReduceLogSumExp',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims
)
data = np.array(
[[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]],
dtype=np.float32)
reduced = np.log(np.sum(np.exp(data),
axis=tuple(axes),
keepdims=keepdims == 1))
# print(reduced)
# [[[20., 2.31326175]]
# [[40.00004578, 2.31326175]]
# [[60.00671387, 2.31326175]]]
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_log_sum_exp_negative_axes_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.log(np.sum(np.exp(data),
axis=tuple(axes),
keepdims=keepdims == 1))
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_log_sum_exp_negative_axes_keepdims_random')
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.