python_code
stringlengths
0
456k
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Softmax(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Softmax', inputs=['x'], outputs=['y'], ) x = np.array([[-1, 0, 1]]).astype(np.float32) # expected output [[0.09003058, 0.24472848, 0.66524094]] y = np.exp(x) / np.sum(np.exp(x), axis=1) expect(node, inputs=[x], outputs=[y], name='test_softmax_example') @staticmethod def export_softmax_axis(): # type: () -> None def softmax_2d(x): # type: (np.ndarray) -> np.ndarray max_x = np.max(x, axis=1).reshape((-1, 1)) exp_x = np.exp(x - max_x) return exp_x / np.sum(exp_x, axis=1).reshape((-1, 1)) x = np.array([[0, 1, 2, 3], [10000, 10001, 10002, 10003]]).astype(np.float32) # expected output [[0.0320586, 0.08714432, 0.23688284, 0.64391428], # [0.0320586, 0.08714432, 0.23688284, 0.64391428]] y = softmax_2d(x) node = onnx.helper.make_node( 'Softmax', inputs=['x'], outputs=['y'], ) expect(node, inputs=[x], outputs=[y], name='test_softmax_large_number') x = np.abs(np.random.randn(3, 4, 5).astype(np.float32)) node = onnx.helper.make_node( 'Softmax', inputs=['x'], outputs=['y'], axis=0, ) y = softmax_2d(x.reshape(1, 60)).reshape(3, 4, 5) expect(node, inputs=[x], outputs=[y], name='test_softmax_axis_0') node = onnx.helper.make_node( 'Softmax', inputs=['x'], outputs=['y'], axis=1, ) y = softmax_2d(x.reshape(3, 20)).reshape(3, 4, 5) expect(node, inputs=[x], outputs=[y], name='test_softmax_axis_1') # default axis is 1 node = onnx.helper.make_node( 'Softmax', inputs=['x'], outputs=['y'], ) expect(node, inputs=[x], outputs=[y], name='test_softmax_default_axis') node = onnx.helper.make_node( 'Softmax', inputs=['x'], outputs=['y'], axis=2, ) y = softmax_2d(x.reshape(12, 5)).reshape(3, 4, 5) expect(node, inputs=[x], outputs=[y], name='test_softmax_axis_2') node = onnx.helper.make_node( 'Softmax', inputs=['x'], outputs=['y'], axis=-1, ) y = softmax_2d(x.reshape(12, 5)).reshape(3, 4, 5) expect(node, inputs=[x], outputs=[y], name='test_softmax_negative_axis')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Atan(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Atan', inputs=['x'], outputs=['y'], ) x = np.array([-1, 0, 1]).astype(np.float32) y = np.arctan(x) expect(node, inputs=[x], outputs=[y], name='test_atan_example') x = np.random.randn(3, 4, 5).astype(np.float32) y = np.arctan(x) expect(node, inputs=[x], outputs=[y], name='test_atan')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Atanh(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Atanh', inputs=['x'], outputs=['y'], ) x = np.array([-0.5, 0, 0.5]).astype(np.float32) y = np.arctanh(x) # expected output [-0.54930615, 0., 0.54930615] expect(node, inputs=[x], outputs=[y], name='test_atanh_example') x = np.random.uniform(0.0, 1.0, (3, 4, 5)).astype(np.float32) y = np.arctanh(x) expect(node, inputs=[x], outputs=[y], name='test_atanh')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Acos(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Acos', inputs=['x'], outputs=['y'], ) x = np.array([-0.5, 0, 0.5]).astype(np.float32) y = np.arccos(x) expect(node, inputs=[x], outputs=[y], name='test_acos_example') x = np.random.rand(3, 4, 5).astype(np.float32) y = np.arccos(x) expect(node, inputs=[x], outputs=[y], name='test_acos')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Expand(Base): @staticmethod def export_dim_changed(): # type: () -> None node = onnx.helper.make_node( 'Expand', inputs=['data', 'new_shape'], outputs=['expanded'], ) shape = [3, 1] data = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape) #print(data) #[[1.], [2.], [3.]] new_shape = [2, 1, 6] expanded = data * np.ones(new_shape, dtype=np.float32) #print(expanded) #[[[1., 1., 1., 1., 1., 1.], # [2., 2., 2., 2., 2., 2.], # [3., 3., 3., 3., 3., 3.]], # # [[1., 1., 1., 1., 1., 1.], # [2., 2., 2., 2., 2., 2.], # [3., 3., 3., 3., 3., 3.]]] new_shape = np.array(new_shape, dtype=np.int64) expect(node, inputs=[data, new_shape], outputs=[expanded], name='test_expand_dim_changed') @staticmethod def export_dim_unchanged(): # type: () -> None node = onnx.helper.make_node( 'Expand', inputs=['data', 'new_shape'], outputs=['expanded'], ) shape = [3, 1] new_shape = [3, 4] data = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape) #print(data) #[[1.], [2.], [3.]] expanded = np.tile(data, 4) #print(expanded) #[[1., 1., 1., 1.], # [2., 2., 2., 2.], # [3., 3., 3., 3.]] new_shape = np.array(new_shape, dtype=np.int64) expect(node, inputs=[data, new_shape], outputs=[expanded], name='test_expand_dim_unchanged')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class QLinearConv(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node('QLinearConv', inputs=['x', 'x_scale', 'x_zero_point', 'w', 'w_scale', 'w_zero_point', 'y_scale', 'y_zero_point'], outputs=['y'],) x = np.array([[255, 174, 162, 25, 203, 168, 58], [15, 59, 237, 95, 129, 0, 64], [56, 242, 153, 221, 168, 12, 166], [232, 178, 186, 195, 237, 162, 237], [188, 39, 124, 77, 80, 102, 43], [127, 230, 21, 83, 41, 40, 134], [255, 154, 92, 141, 42, 148, 247], ], dtype=np.uint8).reshape((1, 1, 7, 7)) x_scale = np.float32(0.00369204697) x_zero_point = np.uint8(132) w = np.array([0], dtype=np.uint8).reshape((1, 1, 1, 1)) w_scale = np.array([0.00172794575], dtype=np.float32) w_zero_point = np.array([255], dtype=np.uint8) y_scale = np.float32(0.00162681262) y_zero_point = np.uint8(123) output = np.array([[0, 81, 93, 230, 52, 87, 197], [240, 196, 18, 160, 126, 255, 191], [199, 13, 102, 34, 87, 243, 89], [23, 77, 69, 60, 18, 93, 18], [67, 216, 131, 178, 175, 153, 212], [128, 25, 234, 172, 214, 215, 121], [0, 101, 163, 114, 213, 107, 8], ], dtype=np.uint8).reshape((1, 1, 7, 7)) expect(node, inputs=[x, x_scale, x_zero_point, w, w_scale, w_zero_point, y_scale, y_zero_point], outputs=[output], name='test_qlinearconv')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Sin(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Sin', inputs=['x'], outputs=['y'], ) x = np.array([-1, 0, 1]).astype(np.float32) y = np.sin(x) expect(node, inputs=[x], outputs=[y], name='test_sin_example') x = np.random.randn(3, 4, 5).astype(np.float32) y = np.sin(x) expect(node, inputs=[x], outputs=[y], name='test_sin')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect # The below GatherElements' numpy implementation is from https://stackoverflow.com/a/46204790/11767360 def gather_elements(data, indices, axis=0): # type: ignore data_swaped = np.swapaxes(data, 0, axis) index_swaped = np.swapaxes(indices, 0, axis) gathered = np.choose(index_swaped, data_swaped, mode='wrap') y = np.swapaxes(gathered, 0, axis) return y class GatherElements(Base): @staticmethod def export_gather_elements_0(): # type: () -> None axis = 1 node = onnx.helper.make_node( 'GatherElements', inputs=['data', 'indices'], outputs=['y'], axis=axis, ) data = np.array([[1, 2], [3, 4]], dtype=np.float32) indices = np.array([[0, 0], [1, 0]], dtype=np.int32) y = gather_elements(data, indices, axis) # print(y) produces # [[1, 1], # [4, 3]] expect(node, inputs=[data, indices.astype(np.int64)], outputs=[y], name='test_gather_elements_0') @staticmethod def export_gather_elements_1(): # type: () -> None axis = 0 node = onnx.helper.make_node( 'GatherElements', inputs=['data', 'indices'], outputs=['y'], axis=axis, ) data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32) indices = np.array([[1, 2, 0], [2, 0, 0]], dtype=np.int32) y = gather_elements(data, indices, axis) # print(y) produces # [[4, 8, 3], # [7, 2, 3]] expect(node, inputs=[data, indices.astype(np.int64)], outputs=[y], name='test_gather_elements_1') @staticmethod def export_gather_elements_negative_indices(): # type: () -> None axis = 0 node = onnx.helper.make_node( 'GatherElements', inputs=['data', 'indices'], outputs=['y'], axis=axis, ) data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32) indices = np.array([[-1, -2, 0], [-2, 0, 0]], dtype=np.int32) y = gather_elements(data, indices, axis) # print(y) produces # [[7, 5, 3], # [4, 2, 3]] expect(node, inputs=[data, indices.astype(np.int64)], outputs=[y], name='test_gather_elements_negative_indices')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Selu(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Selu', inputs=['x'], outputs=['y'], alpha=2.0, gamma=3.0 ) x = np.array([-1, 0, 1]).astype(np.float32) # expected output [-3.79272318, 0., 3.] y = np.clip(x, 0, np.inf) * 3.0 + (np.exp(np.clip(x, -np.inf, 0)) - 1) * 2.0 * 3.0 expect(node, inputs=[x], outputs=[y], name='test_selu_example') x = np.random.randn(3, 4, 5).astype(np.float32) y = np.clip(x, 0, np.inf) * 3.0 + (np.exp(np.clip(x, -np.inf, 0)) - 1) * 2.0 * 3.0 expect(node, inputs=[x], outputs=[y], name='test_selu') @staticmethod def export_selu_default(): # type: () -> None default_alpha = 1.67326319217681884765625 default_gamma = 1.05070102214813232421875 node = onnx.helper.make_node( 'Selu', inputs=['x'], outputs=['y'], ) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.clip(x, 0, np.inf) * default_gamma + \ (np.exp(np.clip(x, -np.inf, 0)) - 1) * default_alpha * default_gamma expect(node, inputs=[x], outputs=[y], name='test_selu_default')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Reciprocal(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Reciprocal', inputs=['x'], outputs=['y'], ) x = np.array([-4, 2]).astype(np.float32) y = np.reciprocal(x) # expected output [-0.25, 0.5], expect(node, inputs=[x], outputs=[y], name='test_reciprocal_example') x = np.random.rand(3, 4, 5).astype(np.float32) + 0.5 y = np.reciprocal(x) expect(node, inputs=[x], outputs=[y], name='test_reciprocal')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect def argmin_use_numpy(data, axis=0, keepdims=1): # type: (np.ndarray, int, int) -> (np.ndarray) result = np.argmin(data, axis=axis) if (keepdims == 1): result = np.expand_dims(result, axis) return result.astype(np.int64) def argmin_use_numpy_select_last_index(data, axis=0, keepdims=True): # type: (np.ndarray, int, int) -> (np.ndarray) data = np.flip(data, axis) result = np.argmin(data, axis=axis) result = data.shape[axis] - result - 1 if keepdims: result = np.expand_dims(result, axis) return result.astype(np.int64) class ArgMin(Base): @staticmethod def export_no_keepdims(): # type: () -> None data = np.array([[2, 1], [3, 10]], dtype=np.float32) axis = 1 keepdims = 0 node = onnx.helper.make_node( 'ArgMin', inputs=['data'], outputs=['result'], axis=axis, keepdims=keepdims) # The content of result is : [[1, 0]] result = argmin_use_numpy(data, axis=axis, keepdims=keepdims) expect(node, inputs=[data], outputs=[result], name='test_argmin_no_keepdims_example') data = np.random.uniform(-10, 10, [2, 3, 4]).astype(np.float32) # result's shape: [2, 4] result = argmin_use_numpy(data, axis=axis, keepdims=keepdims) expect(node, inputs=[data], outputs=[result], name='test_argmin_no_keepdims_random') @staticmethod def export_keepdims(): # type: () -> None data = np.array([[2, 1], [3, 10]], dtype=np.float32) axis = 1 keepdims = 1 node = onnx.helper.make_node( 'ArgMin', inputs=['data'], outputs=['result'], axis=axis, keepdims=keepdims) # The content of result is : [[1], [0]] result = argmin_use_numpy(data, axis=axis, keepdims=keepdims) expect(node, inputs=[data], outputs=[result], name='test_argmin_keepdims_example') data = np.random.uniform(-10, 10, [2, 3, 4]).astype(np.float32) # result's shape: [2, 1, 4] result = argmin_use_numpy(data, axis=axis, keepdims=keepdims) expect(node, inputs=[data], outputs=[result], name='test_argmin_keepdims_random') @staticmethod def export_default_axes_keepdims(): # type: () -> None data = np.array([[2, 1], [3, 10]], dtype=np.float32) keepdims = 1 node = onnx.helper.make_node( 'ArgMin', inputs=['data'], outputs=['result'], keepdims=keepdims) # The content of result is : [[0], [0]] result = argmin_use_numpy(data, keepdims=keepdims) expect(node, inputs=[data], outputs=[result], name='test_argmin_default_axis_example') data = np.random.uniform(-10, 10, [2, 3, 4]).astype(np.float32) # result's shape: [1, 3, 4] result = argmin_use_numpy(data, keepdims=keepdims) expect(node, inputs=[data], outputs=[result], name='test_argmin_default_axis_random') @staticmethod def export_negative_axis_keepdims(): # type: () -> None data = np.array([[2, 1], [3, 10]], dtype=np.float32) axis = -1 keepdims = 1 node = onnx.helper.make_node( 'ArgMin', inputs=['data'], outputs=['result'], axis=axis, keepdims=keepdims) # The content of result is : [[1], [0]] result = argmin_use_numpy(data, axis=axis, keepdims=keepdims) expect(node, inputs=[data], outputs=[result], name='test_argmin_negative_axis_keepdims_example') data = np.random.uniform(-10, 10, [2, 3, 4]).astype(np.float32) # result's shape: [2, 3, 1] result = argmin_use_numpy(data, axis=axis, keepdims=keepdims) expect(node, inputs=[data], outputs=[result], name='test_argmin_negative_axis_keepdims_random') @staticmethod def export_no_keepdims_select_last_index(): # type: () -> None data = np.array([[2, 2], [3, 10]], dtype=np.float32) axis = 1 keepdims = 0 node = onnx.helper.make_node( 'ArgMin', inputs=['data'], outputs=['result'], axis=axis, keepdims=keepdims, select_last_index=True) # result: [[1, 0]] result = argmin_use_numpy_select_last_index(data, axis=axis, keepdims=keepdims) expect(node, inputs=[data], outputs=[result], name='test_argmin_no_keepdims_example_select_last_index') data = np.random.uniform(-10, 10, [2, 3, 4]).astype(np.float32) # result's shape: [2, 4] result = argmin_use_numpy_select_last_index(data, axis=axis, keepdims=keepdims) expect(node, inputs=[data], outputs=[result], name='test_argmin_no_keepdims_random_select_last_index') @staticmethod def export_keepdims_select_last_index(): # type: () -> None data = np.array([[2, 2], [3, 10]], dtype=np.float32) axis = 1 keepdims = 1 node = onnx.helper.make_node( 'ArgMin', inputs=['data'], outputs=['result'], axis=axis, keepdims=keepdims, select_last_index=True) # result: [[1], [0]] result = argmin_use_numpy_select_last_index(data, axis=axis, keepdims=keepdims) expect(node, inputs=[data], outputs=[result], name='test_argmin_keepdims_example_select_last_index') data = np.random.uniform(-10, 10, [2, 3, 4]).astype(np.float32) # result's shape: [2, 1, 4] result = argmin_use_numpy_select_last_index(data, axis=axis, keepdims=keepdims) expect(node, inputs=[data], outputs=[result], name='test_argmin_keepdims_random_select_last_index') @staticmethod def export_default_axes_keepdims_select_last_index(): # type: () -> None data = np.array([[2, 2], [3, 10]], dtype=np.float32) keepdims = 1 node = onnx.helper.make_node( 'ArgMin', inputs=['data'], outputs=['result'], keepdims=keepdims, select_last_index=True) # result: [[0, 0]] result = argmin_use_numpy_select_last_index(data, keepdims=keepdims) expect(node, inputs=[data], outputs=[result], name='test_argmin_default_axis_example_select_last_index') data = np.random.uniform(-10, 10, [2, 3, 4]).astype(np.float32) # result's shape: [1, 3, 4] result = argmin_use_numpy_select_last_index(data, keepdims=keepdims) expect(node, inputs=[data], outputs=[result], name='test_argmin_default_axis_random_select_last_index') @staticmethod def export_negative_axis_keepdims_select_last_index(): # type: () -> None data = np.array([[2, 2], [3, 10]], dtype=np.float32) axis = -1 keepdims = 1 node = onnx.helper.make_node( 'ArgMin', inputs=['data'], outputs=['result'], axis=axis, keepdims=keepdims, select_last_index=True) # result: [[1], [0]] result = argmin_use_numpy_select_last_index(data, axis=axis, keepdims=keepdims) expect(node, inputs=[data], outputs=[result], name='test_argmin_negative_axis_keepdims_example_select_last_index') data = np.random.uniform(-10, 10, [2, 3, 4]).astype(np.float32) # result's shape: [2, 3, 1] result = argmin_use_numpy_select_last_index(data, axis=axis, keepdims=keepdims) expect(node, inputs=[data], outputs=[result], name='test_argmin_negative_axis_keepdims_random_select_last_index')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class DepthToSpace(Base): @staticmethod def export_default_mode_example(): # type: () -> None node = onnx.helper.make_node( 'DepthToSpace', inputs=['x'], outputs=['y'], blocksize=2, mode='DCR' ) # (1, 8, 2, 3) input tensor x = np.array([[[[0., 1., 2.], [3., 4., 5.]], [[9., 10., 11.], [12., 13., 14.]], [[18., 19., 20.], [21., 22., 23.]], [[27., 28., 29.], [30., 31., 32.]], [[36., 37., 38.], [39., 40., 41.]], [[45., 46., 47.], [48., 49., 50.]], [[54., 55., 56.], [57., 58., 59.]], [[63., 64., 65.], [66., 67., 68.]]]]).astype(np.float32) # (1, 2, 4, 6) output tensor y = np.array([[[[0., 18., 1., 19., 2., 20.], [36., 54., 37., 55., 38., 56.], [3., 21., 4., 22., 5., 23.], [39., 57., 40., 58., 41., 59.]], [[9., 27., 10., 28., 11., 29.], [45., 63., 46., 64., 47., 65.], [12., 30., 13., 31., 14., 32.], [48., 66., 49., 67., 50., 68.]]]]).astype(np.float32) expect(node, inputs=[x], outputs=[y], name='test_depthtospace_example') @staticmethod def export_crd_mode_example(): # type: () -> None node = onnx.helper.make_node( 'DepthToSpace', inputs=['x'], outputs=['y'], blocksize=2, mode='CRD' ) # (1, 8, 2, 3) input tensor x = np.array([[[[0., 1., 2.], [3., 4., 5.]], [[9., 10., 11.], [12., 13., 14.]], [[18., 19., 20.], [21., 22., 23.]], [[27., 28., 29.], [30., 31., 32.]], [[36., 37., 38.], [39., 40., 41.]], [[45., 46., 47.], [48., 49., 50.]], [[54., 55., 56.], [57., 58., 59.]], [[63., 64., 65.], [66., 67., 68.]]]]).astype(np.float32) # (1, 2, 4, 6) output tensor y = np.array([[[[0., 9., 1., 10., 2., 11.], [18., 27., 19., 28., 20., 29.], [3., 12., 4., 13., 5., 14.], [21., 30., 22., 31., 23., 32.]], [[36., 45., 37., 46., 38., 47.], [54., 63., 55., 64., 56., 65.], [39., 48., 40., 49., 41., 50.], [57., 66., 58., 67., 59., 68.]]]]).astype(np.float32) expect(node, inputs=[x], outputs=[y], name='test_depthtospace_crd_mode_example')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class And(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'And', inputs=['x', 'y'], outputs=['and'], ) # 2d x = (np.random.randn(3, 4) > 0).astype(np.bool) y = (np.random.randn(3, 4) > 0).astype(np.bool) z = np.logical_and(x, y) expect(node, inputs=[x, y], outputs=[z], name='test_and2d') # 3d x = (np.random.randn(3, 4, 5) > 0).astype(np.bool) y = (np.random.randn(3, 4, 5) > 0).astype(np.bool) z = np.logical_and(x, y) expect(node, inputs=[x, y], outputs=[z], name='test_and3d') # 4d x = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool) y = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool) z = np.logical_and(x, y) expect(node, inputs=[x, y], outputs=[z], name='test_and4d') @staticmethod def export_and_broadcast(): # type: () -> None node = onnx.helper.make_node( 'And', inputs=['x', 'y'], outputs=['and'], ) # 3d vs 1d x = (np.random.randn(3, 4, 5) > 0).astype(np.bool) y = (np.random.randn(5) > 0).astype(np.bool) z = np.logical_and(x, y) expect(node, inputs=[x, y], outputs=[z], name='test_and_bcast3v1d') # 3d vs 2d x = (np.random.randn(3, 4, 5) > 0).astype(np.bool) y = (np.random.randn(4, 5) > 0).astype(np.bool) z = np.logical_and(x, y) expect(node, inputs=[x, y], outputs=[z], name='test_and_bcast3v2d') # 4d vs 2d x = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool) y = (np.random.randn(5, 6) > 0).astype(np.bool) z = np.logical_and(x, y) expect(node, inputs=[x, y], outputs=[z], name='test_and_bcast4v2d') # 4d vs 3d x = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool) y = (np.random.randn(4, 5, 6) > 0).astype(np.bool) z = np.logical_and(x, y) expect(node, inputs=[x, y], outputs=[z], name='test_and_bcast4v3d') # 4d vs 4d x = (np.random.randn(1, 4, 1, 6) > 0).astype(np.bool) y = (np.random.randn(3, 1, 5, 6) > 0).astype(np.bool) z = np.logical_and(x, y) expect(node, inputs=[x, y], outputs=[z], name='test_and_bcast4v4d')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import pytest # type: ignore from .coverage import Coverage from typing import Dict, Text, Sequence, Any, List _coverage = Coverage() _marks = {} # type: Dict[Text, Sequence[Any]] def _add_mark(mark, bucket): # type: (Any, Text) -> None proto = mark.args[0] if isinstance(proto, list): assert len(proto) == 1 proto = proto[0] if proto is not None: _coverage.add_proto(proto, bucket, mark.args[1] == 'RealModel') def pytest_runtest_call(item): # type: (pytest.nodes.Item) -> None mark = item.get_closest_marker('onnx_coverage') if mark: assert item.nodeid not in _marks _marks[item.nodeid] = mark def pytest_runtest_logreport(report): # type: (Any) -> None if (report.when == 'call' and report.outcome == 'passed' and report.nodeid in _marks): mark = _marks[report.nodeid] _add_mark(mark, 'passed') @pytest.hookimpl(trylast=True) # type: ignore def pytest_terminal_summary(terminalreporter, exitstatus): # type: (pytest.terminal.TerminalReporter, int) -> None for mark in _marks.values(): _add_mark(mark, 'loaded') _coverage.report_text(terminalreporter)
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from collections import defaultdict, OrderedDict import os import csv import datetime from tabulate import tabulate # type: ignore import onnx from onnx import defs, helper, GraphProto from typing import Optional, Text, Set, Dict, IO, List, Any _all_schemas = defs.get_all_schemas() class AttrCoverage(object): def __init__(self): # type: () -> None self.name = None # type: Optional[Text] self.values = set() # type: Set[Text] def add(self, attr): # type: (onnx.AttributeProto) -> None assert self.name in [None, attr.name] self.name = attr.name value = helper.get_attribute_value(attr) # Turn list into tuple so we can put it into set # As value can be string, don't blindly turn `collections.Iterable` # into tuple. if isinstance(value, list): value = tuple(value) self.values.add(str(value)) class NodeCoverage(object): def __init__(self): # type: () -> None self.op_type = None # type: Optional[Text] self.attr_coverages = defaultdict(AttrCoverage) # type: Dict[Text, AttrCoverage] def add(self, node): # type: (onnx.NodeProto) -> None assert self.op_type in [None, node.op_type] if self.op_type is None: self.op_type = node.op_type assert self.op_type is not None self.schema = defs.get_schema(self.op_type) for attr in node.attribute: self.attr_coverages[attr.name].add(attr) class ModelCoverage(object): def __init__(self): # type: () -> None self.name = None # type: Optional[Text] self.graph = None # type: Optional[GraphProto] self.node_coverages = defaultdict(NodeCoverage) # type: Dict[Text, NodeCoverage] def add(self, model): # type: (onnx.ModelProto) -> None assert self.name in [None, model.graph.name] if self.name is None: self.name = model.graph.name assert self.name is not None self.graph = model.graph for node in model.graph.node: self.node_coverages[node.op_type].add(node) class Coverage(object): def __init__(self): # type: () -> None self.buckets = { 'loaded': defaultdict(NodeCoverage), 'passed': defaultdict(NodeCoverage), } # type: Dict[Text, Dict[Text, NodeCoverage]] self.models = { 'loaded': defaultdict(ModelCoverage), 'passed': defaultdict(ModelCoverage), } # type: Dict[Text, Dict[Text, ModelCoverage]] def add_node(self, node, bucket): # type: (onnx.NodeProto, Text) -> None self.buckets[bucket][node.op_type].add(node) def add_graph(self, graph, bucket): # type: (onnx.GraphProto, Text) -> None for node in graph.node: self.add_node(node, bucket) def add_model(self, model, bucket, is_model): # type: (onnx.ModelProto, Text, bool) -> None self.add_graph(model.graph, bucket) # Only add model if name does not start with test if is_model: self.models[bucket][model.graph.name].add(model) def add_proto(self, proto, bucket, is_model): # type: (onnx.ModelProto, Text, bool) -> None assert isinstance(proto, onnx.ModelProto) self.add_model(proto, bucket, is_model) def report_text(self, writer): # type: (IO[Text]) -> None writer.write('---------- onnx coverage: ----------\n') writer.write('Operators (passed/loaded/total): {}/{}/{}\n'.format( len(self.buckets['passed']), len(self.buckets['loaded']), len(_all_schemas))) writer.write('------------------------------------\n') rows = [] passed = [] all_ops = [] # type: List[Text] experimental = [] # type: List[Text] for op_cov in self.buckets['passed'].values(): covered_attrs = [ '{}: {}'.format(attr_cov.name, len(attr_cov.values)) for attr_cov in op_cov.attr_coverages.values()] uncovered_attrs = [ '{}: 0'.format(attr) for attr in op_cov.schema.attributes if attr not in op_cov.attr_coverages ] attrs = sorted(covered_attrs) + sorted(uncovered_attrs) if attrs: attrs_column = os.linesep.join(attrs) else: attrs_column = 'No attributes' rows.append([op_cov.op_type, attrs_column]) passed.append(op_cov.op_type) writer.write(tabulate( rows, headers=['Operator', 'Attributes\n(name: #values)'], tablefmt='plain')) if os.environ.get(str('CSVDIR')) is not None: self.report_csv(all_ops, passed, experimental) # This function writes the coverage report to a set of CSV files for # the Backend Scoreboard (onnx.ai/backend-scoreboard). To enable this # feature, set a CSVDIR environment variable locally with the directory # where you would like the files to be written, relative to the # directory from which you're running pytest. The format of the CSV # files is a column naming each op or model and columns for each # backend with indications of whether the tests passed or failed for # each row. def report_csv(self, all_ops, passed, experimental): # type: (List[Text], List[Optional[Text]], List[Text]) -> None for schema in _all_schemas: if schema.domain == '' or schema.domain == 'ai.onnx': all_ops.append(schema.name) if schema.support_level == defs.OpSchema.SupportType.EXPERIMENTAL: experimental.append(schema.name) all_ops.sort() nodes_path = os.path.join(str(os.environ.get('CSVDIR')), # type: ignore 'nodes.csv') # type: ignore models_path = os.path.join(str(os.environ.get('CSVDIR')), # type: ignore 'models.csv') # type: ignore existing_nodes = OrderedDict() # type: OrderedDict[Text, Dict[str, str]] existing_models = OrderedDict() # type: OrderedDict[Text, Dict[str, str]] frameworks = [] # type: List[str] if os.path.isfile(nodes_path): with open(nodes_path, 'r') as nodes_file: reader = csv.DictReader(nodes_file) frameworks = list(reader.fieldnames) for row in reader: op = row[str('Op')] del row[str('Op')] existing_nodes[str(op)] = row if os.path.isfile(models_path): with open(models_path, 'r') as models_file: reader = csv.DictReader(models_file) for row in reader: model = row[str('Model')] del row[str('Model')] existing_models[str(model)] = row backend = os.environ.get(str('BACKEND')) other_frameworks = frameworks[1:] with open(nodes_path, 'w') as nodes_file: if str('Op') not in frameworks: frameworks.append(str('Op')) if backend not in frameworks: frameworks.append(str(backend)) else: other_frameworks.remove(str(backend)) node_writer = csv.DictWriter(nodes_file, fieldnames=frameworks) node_writer.writeheader() for node in all_ops: node_name = node if node in experimental: node_name = node + ' (Experimental)' if node_name not in existing_nodes: # Also add Skipped for other nodes existing_nodes[node_name] = OrderedDict() for other_framework in other_frameworks: existing_nodes[node_name][other_framework] = str("Skipped!") if node in passed: existing_nodes[node_name][str(backend)] = str("Passed!") else: existing_nodes[node_name][str(backend)] = str("Failed!") summaries = dict() # type: Dict[Any, Any] if "Summary" in existing_nodes: summaries = existing_nodes["Summary"] del existing_nodes["Summary"] summaries[str(backend)] = \ "{}/{} node tests passed".format(len(passed), len(all_ops)) summaries['Op'] = 'Summary' for node in existing_nodes: existing_nodes[node][str('Op')] = str(node) node_writer.writerow(existing_nodes[node]) node_writer.writerow(summaries) with open(models_path, 'w') as models_file: frameworks[0] = str("Model") model_writer = csv.DictWriter(models_file, fieldnames=frameworks) model_writer.writeheader() # Consider both buckets num_models = 0 for bucket in self.models: for model in self.models[bucket]: # type: ignore # Both analyze and run the model on the backend num_covered = 0 for node in self.models[bucket][model].node_coverages: if node in passed: num_covered += 1 # TODO: Identify if there are models that are being # skipped/not loaded, but that are in other frameworks msg = "Passed!" if bucket == 'loaded': if model in self.models['passed']: continue msg = "Failed!" num_models += 1 if model not in existing_models: # Also add Skipped for other models existing_models[model] = OrderedDict() for other_framework in other_frameworks: existing_models[model][other_framework] = str("Skipped!") existing_models[model][str(backend)] = str("{}/{} nodes covered: {}" .format(num_covered, len(self.models[bucket][model] .node_coverages), msg)) summaries.clear() if "Summary" in existing_models: summaries = existing_models["Summary"] del existing_models["Summary"] if str(backend) in summaries: del summaries[str(backend)] summaries[str(backend)] = "{}/{} model tests passed" \ .format(len(self.models['passed']), num_models) summaries['Model'] = 'Summary' for model in existing_models: # type: ignore existing_models[model][str('Model')] = model model_writer.writerow(existing_models[model]) model_writer.writerow(summaries) with open(os.path.join(str(os.environ.get('CSVDIR')), # type: ignore 'metadata.csv'), 'w') as metadata_file: # type: ignore metadata_writer = csv.writer(metadata_file) metadata_writer.writerow(["Latest Update", datetime.datetime.now().isoformat().replace('T', ' ')])
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals class ReporterBase(object): pass
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore def abs(input): # type: (np.ndarray) -> np.ndarray return np.abs(input)
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import importlib import inspect import sys import pkgutil from typing import Dict, Text from types import ModuleType def collect_sample_implementations(): # type: () -> Dict[Text, Text] dict = {} # type: Dict[Text, Text] _recursive_scan(sys.modules[__name__], dict) return dict def _recursive_scan(package, dict): # type: (ModuleType, Dict[Text, Text]) -> None pkg_dir = package.__path__ # type: ignore module_location = package.__name__ for _module_loader, name, ispkg in pkgutil.iter_modules(pkg_dir): # type: ignore module_name = "{}.{}".format(module_location, name) # Module/package module = importlib.import_module(module_name) dict[name] = inspect.getsource(module) if ispkg: _recursive_scan(module, dict)
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from onnx import defs def main(): # type: () -> None # domain -> support level -> name -> [schema] with_inference = [] without_inference = [] for schema in defs.get_all_schemas(): domain, name, has_inference = schema.domain, schema.name, schema.has_type_and_shape_inference_function if has_inference: with_inference.append((domain, name)) else: without_inference.append((domain, name)) print(len(with_inference), 'operators have a type/shape inference function.') print(len(without_inference), 'do not. These are:') for domain, name in sorted(without_inference): print(domain, name) if __name__ == '__main__': main()
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from onnx import AttributeProto, FunctionProto import onnx.onnx_cpp2py_export.defs as C from collections import defaultdict from typing import List, Dict ONNX_DOMAIN = "" ONNX_ML_DOMAIN = 'ai.onnx.ml' has = C.has_schema get_schema = C.get_schema get_all_schemas = C.get_all_schemas get_all_schemas_with_history = C.get_all_schemas_with_history def onnx_opset_version(): # type: () -> int return C.schema_version_map()[ONNX_DOMAIN][1] @property # type: ignore def _Function_proto(self): # type: ignore func_proto = FunctionProto() func_proto.ParseFromString(self._function_body) return func_proto OpSchema = C.OpSchema # type: ignore C.OpSchema.function_body = _Function_proto # type: ignore @property # type: ignore def _Attribute_default_value(self): # type: ignore attr = AttributeProto() attr.ParseFromString(self._default_value) return attr OpSchema.Attribute.default_value = _Attribute_default_value # type: ignore def get_function_ops(): # type: () -> List[OpSchema] schemas = C.get_all_schemas() return [schema for schema in schemas if schema.has_function or schema.has_context_dependent_function] # type: ignore
#!/usr/bin/env python from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from collections import defaultdict import io import os import sys import numpy as np # type: ignore from onnx import defs, FunctionProto, helper, OperatorStatus from onnx.defs import OpSchema, ONNX_DOMAIN, ONNX_ML_DOMAIN from onnx.backend.test.case import collect_snippets from onnx.backend.sample.ops import collect_sample_implementations from typing import Any, Text, Sequence, Dict, List, Type, Set, Tuple SNIPPETS = collect_snippets() SAMPLE_IMPLEMENTATIONS = collect_sample_implementations() ONNX_ML = not bool(os.getenv('ONNX_ML') == '0') ext = '-ml.md' if ONNX_ML else '.md' def display_number(v): # type: (int) -> Text if defs.OpSchema.is_infinite(v): return '&#8734;' return Text(v) def should_render_domain(domain): # type: (Text) -> bool if domain == ONNX_ML_DOMAIN and not ONNX_ML: return False if ONNX_ML and domain != ONNX_ML_DOMAIN: return False return True def format_name_with_domain(domain, schema_name): # type: (Text, Text) -> Text if domain: return '{}.{}'.format(domain, schema_name) return schema_name def display_attr_type(v): # type: (OpSchema.AttrType) -> Text assert isinstance(v, OpSchema.AttrType) s = Text(v) s = s[s.rfind('.') + 1:].lower() if s[-1] == 's': s = 'list of ' + s return s def display_domain(domain): # type: (Text) -> Text if domain: return "the '{}' operator set".format(domain) return "the default ONNX operator set" def display_domain_short(domain): # type: (Text) -> Text if domain: return domain return 'ai.onnx (default)' def display_version_link(name, version): # type: (Text, int) -> Text changelog_md = 'Changelog' + ext name_with_ver = '{}-{}'.format(name, version) return '<a href="{}#{}">{}</a>'.format(changelog_md, name_with_ver, name_with_ver) def display_schema(schema, versions): # type: (OpSchema, Sequence[OpSchema]) -> Text s = '' # doc if schema.doc: s += '\n' s += '\n'.join(' ' + line for line in schema.doc.lstrip().splitlines()) s += '\n' # since version s += '\n#### Version\n' if schema.support_level == OpSchema.SupportType.EXPERIMENTAL: s += '\nNo versioning maintained for experimental ops.' else: s += '\nThis version of the operator has been ' + ('deprecated' if schema.deprecated else 'available') + ' since version {}'.format(schema.since_version) s += ' of {}.\n'.format(display_domain(schema.domain)) if len(versions) > 1: # TODO: link to the Changelog.md s += '\nOther versions of this operator: {}\n'.format( ', '.join(display_version_link(format_name_with_domain(v.domain, v.name), v.since_version) for v in versions[:-1])) # If this schema is deprecated, don't display any of the following sections if schema.deprecated: return s # attributes if schema.attributes: s += '\n#### Attributes\n\n' s += '<dl>\n' for _, attr in sorted(schema.attributes.items()): # option holds either required or default value opt = '' if attr.required: opt = 'required' elif attr.default_value.name: default_value = helper.get_attribute_value(attr.default_value) def format_value(value): # type: (Any) -> Text if isinstance(value, float): formatted = str(np.round(value, 5)) # use default formatting, unless too long. if (len(formatted) > 10): formatted = str("({:e})".format(value)) return formatted elif isinstance(value, (bytes, bytearray)) and sys.version_info[0] == 3: return str(value.decode('utf-8')) return str(value) if isinstance(default_value, list): default_value = [format_value(val) for val in default_value] else: default_value = format_value(default_value) opt = 'default is {}'.format(default_value) s += '<dt><tt>{}</tt> : {}{}</dt>\n'.format( attr.name, display_attr_type(attr.type), ' ({})'.format(opt) if opt else '') s += '<dd>{}</dd>\n'.format(attr.description) s += '</dl>\n' # inputs s += '\n#### Inputs' if schema.min_input != schema.max_input: s += ' ({} - {})'.format(display_number(schema.min_input), display_number(schema.max_input)) s += '\n\n' if schema.inputs: s += '<dl>\n' for input in schema.inputs: option_str = "" if OpSchema.FormalParameterOption.Optional == input.option: option_str = " (optional)" elif OpSchema.FormalParameterOption.Variadic == input.option: if input.isHomogeneous: option_str = " (variadic)" else: option_str = " (variadic, heterogeneous)" s += '<dt><tt>{}</tt>{} : {}</dt>\n'.format(input.name, option_str, input.typeStr) s += '<dd>{}</dd>\n'.format(input.description) s += '</dl>\n' # outputs s += '\n#### Outputs' if schema.min_output != schema.max_output: s += ' ({} - {})'.format(display_number(schema.min_output), display_number(schema.max_output)) s += '\n\n' if schema.outputs: s += '<dl>\n' for output in schema.outputs: option_str = "" if OpSchema.FormalParameterOption.Optional == output.option: option_str = " (optional)" elif OpSchema.FormalParameterOption.Variadic == output.option: if output.isHomogeneous: option_str = " (variadic)" else: option_str = " (variadic, heterogeneous)" s += '<dt><tt>{}</tt>{} : {}</dt>\n'.format(output.name, option_str, output.typeStr) s += '<dd>{}</dd>\n'.format(output.description) s += '</dl>\n' # type constraints s += '\n#### Type Constraints' s += '\n\n' if schema.type_constraints: s += '<dl>\n' for type_constraint in schema.type_constraints: allowedTypes = type_constraint.allowed_type_strs if (len(allowedTypes) > 0): allowedTypeStr = allowedTypes[0] for allowedType in allowedTypes[1:]: allowedTypeStr += ', ' + allowedType s += '<dt><tt>{}</tt> : {}</dt>\n'.format( type_constraint.type_param_str, allowedTypeStr) s += '<dd>{}</dd>\n'.format(type_constraint.description) s += '</dl>\n' # Function Body # TODO: this should be refactored to show the function body graph's picture (DAG). #if schema.has_function or schema.has_context_dependent_function: # type: ignore # s += '\n#### Function\n' # s += '\nThe Function can be represented as a function.\n' return s def support_level_str(level): # type: (OpSchema.SupportType) -> Text return \ "<sub>experimental</sub> " if level == OpSchema.SupportType.EXPERIMENTAL else "" def main(args): # type: (Type[Args]) -> None with io.open(args.changelog, 'w', newline='') as fout: fout.write('## Operator Changelog\n') fout.write( "*This file is automatically generated from the\n" " [def files](/onnx/defs) via [this script](/onnx/defs/gen_doc.py).\n" " Do not modify directly and instead edit operator definitions.*\n") # domain -> version -> [schema] dv_index = defaultdict(lambda: defaultdict(list)) # type: Dict[Text, Dict[int, List[OpSchema]]] for schema in defs.get_all_schemas_with_history(): dv_index[schema.domain][schema.since_version].append(schema) fout.write('\n') for domain, versionmap in sorted(dv_index.items()): if not should_render_domain(domain): continue s = '# {}\n'.format(display_domain_short(domain)) for version, unsorted_schemas in sorted(versionmap.items()): s += '## Version {} of {}\n'.format(version, display_domain(domain)) for schema in sorted(unsorted_schemas, key=lambda s: s.name): name_with_ver = '{}-{}'.format(format_name_with_domain(domain, schema.name), schema.since_version) s += ('### <a name="{}"></a>**{}**' + (' (deprecated)' if schema.deprecated else '') + '</a>\n').format(name_with_ver, name_with_ver) s += display_schema(schema, [schema]) s += '\n' fout.write(s) with io.open(args.output, 'w', newline='', encoding="utf-8") as fout: fout.write('## Operator Schemas\n') fout.write( "*This file is automatically generated from the\n" " [def files](/onnx/defs) via [this script](/onnx/defs/gen_doc.py).\n" " Do not modify directly and instead edit operator definitions.*\n") # domain -> support level -> name -> [schema] index = defaultdict(lambda: defaultdict(lambda: defaultdict(list))) # type: Dict[Text, Dict[int, Dict[Text, List[OpSchema]]]] for schema in defs.get_all_schemas_with_history(): index[schema.domain][int(schema.support_level)][schema.name].append(schema) fout.write('\n') # Preprocess the Operator Schemas # [(domain, [(support_level, [(schema name, current schema, all versions schemas)])])] operator_schemas = list() # type: List[Tuple[Text, List[Tuple[int, List[Tuple[Text, OpSchema, List[OpSchema]]]]]]] exsting_ops = set() # type: Set[Text] for domain, _supportmap in sorted(index.items()): if not should_render_domain(domain): continue processed_supportmap = list() for _support, _namemap in sorted(_supportmap.items()): processed_namemap = list() for n, unsorted_versions in sorted(_namemap.items()): versions = sorted(unsorted_versions, key=lambda s: s.since_version) schema = versions[-1] if schema.name in exsting_ops: continue exsting_ops.add(schema.name) processed_namemap.append((n, schema, versions)) processed_supportmap.append((_support, processed_namemap)) operator_schemas.append((domain, processed_supportmap)) # Table of contents for domain, supportmap in operator_schemas: s = '* {}\n'.format(display_domain_short(domain)) fout.write(s) function_ops = list() for _, namemap in supportmap: for n, schema, versions in namemap: if schema.has_function or schema.has_context_dependent_function: # type: ignore function_ops.append((n, schema, versions)) continue s = ' * {}<a href="#{}">{}</a>\n'.format( support_level_str(schema.support_level), format_name_with_domain(domain, n), format_name_with_domain(domain, n)) fout.write(s) if len(function_ops): fout.write('\n') fout.write(' **Functions**\n') for n, schema, versions in function_ops: s = ' * {}<a href="#{}">{}</a>\n'.format( support_level_str(schema.support_level), format_name_with_domain(domain, n), format_name_with_domain(domain, n)) fout.write(s) fout.write('\n') for domain, supportmap in operator_schemas: s = '## {}\n'.format(display_domain_short(domain)) fout.write(s) for _, namemap in supportmap: for op_type, schema, versions in namemap: # op_type s = ('### {}<a name="{}"></a><a name="{}">**{}**' + (' (deprecated)' if schema.deprecated else '') + '</a>\n').format( support_level_str(schema.support_level), format_name_with_domain(domain, op_type), format_name_with_domain(domain, op_type.lower()), format_name_with_domain(domain, op_type)) s += display_schema(schema, versions) s += '\n\n' if op_type in SNIPPETS: s += '#### Examples\n\n' for summary, code in sorted(SNIPPETS[op_type]): s += '<details>\n' s += '<summary>{}</summary>\n\n'.format(summary) s += '```python\n{}\n```\n\n'.format(code) s += '</details>\n' s += '\n\n' if op_type.lower() in SAMPLE_IMPLEMENTATIONS: s += '#### Sample Implementation\n\n' s += '<details>\n' s += '<summary>{}</summary>\n\n'.format(op_type) s += '```python\n{}\n```\n\n'.format(SAMPLE_IMPLEMENTATIONS[op_type.lower()]) s += '</details>\n' s += '\n\n' fout.write(s) if __name__ == '__main__': base_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) docs_dir = os.path.join(base_dir, 'docs') class Args(object): output = os.path.join(docs_dir, 'Operators' + ext) changelog = os.path.join(docs_dir, 'Changelog' + ext) main(Args)
import distutils.command.clean import glob import os import shutil import subprocess import sys import torch from setuptools import find_packages, setup from torch.utils.cpp_extension import ( BuildExtension, CppExtension, CUDA_HOME, CUDAExtension, ) version = open("version.txt", "r").read().strip() sha = "Unknown" package_name = "torchcsprng" cwd = os.path.dirname(os.path.abspath(__file__)) try: sha = ( subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=cwd) .decode("ascii") .strip() ) except Exception: pass if os.getenv("BUILD_VERSION"): version = os.getenv("BUILD_VERSION") elif sha != "Unknown": version += "+" + sha[:7] print("Building wheel {}-{}".format(package_name, version)) def write_version_file(): version_path = os.path.join(cwd, "torchcsprng", "version.py") with open(version_path, "w") as f: f.write("__version__ = '{}'\n".format(version)) f.write("git_version = {}\n".format(repr(sha))) # f.write("from torchcsprng.extension import _check_cuda_version\n") # f.write("if _check_cuda_version() > 0:\n") # f.write(" cuda = _check_cuda_version()\n") write_version_file() with open("README.md", "r") as fh: long_description = fh.read() requirements = [ "torch", ] def append_flags(flags, flags_to_append): for flag in flags_to_append: if not flag in flags: flags.append(flag) return flags def get_extensions(): build_cuda = torch.cuda.is_available() or os.getenv("FORCE_CUDA", "0") == "1" module_name = "torchcsprng" extensions_dir = os.path.join(cwd, module_name, "csrc") openmp = "ATen parallel backend: OpenMP" in torch.__config__.parallel_info() main_file = glob.glob(os.path.join(extensions_dir, "*.cpp")) source_cpu = glob.glob(os.path.join(extensions_dir, "cpu", "*.cpp")) sources = main_file + source_cpu extension = CppExtension define_macros = [] cxx_flags = os.getenv("CXX_FLAGS", "") if cxx_flags == "": cxx_flags = [] else: cxx_flags = cxx_flags.split(" ") if openmp: if sys.platform == "linux": cxx_flags = append_flags(cxx_flags, ["-fopenmp"]) elif sys.platform == "win32": cxx_flags = append_flags(cxx_flags, ["/openmp"]) # elif sys.platform == 'darwin': # cxx_flags = append_flags(cxx_flags, ['-Xpreprocessor', '-fopenmp']) if build_cuda: extension = CUDAExtension source_cuda = glob.glob(os.path.join(extensions_dir, "cuda", "*.cu")) sources += source_cuda define_macros += [("WITH_CUDA", None)] nvcc_flags = os.getenv("NVCC_FLAGS", "") if nvcc_flags == "": nvcc_flags = [] else: nvcc_flags = nvcc_flags.split(" ") nvcc_flags = append_flags(nvcc_flags, ["--expt-extended-lambda", "-Xcompiler"]) extra_compile_args = { "cxx": cxx_flags, "nvcc": nvcc_flags, } else: extra_compile_args = { "cxx": cxx_flags, } ext_modules = [ extension( module_name + "._C", sources, define_macros=define_macros, extra_compile_args=extra_compile_args, ) ] return ext_modules class clean(distutils.command.clean.clean): def run(self): with open(".gitignore", "r") as f: ignores = f.read() start_deleting = False for wildcard in filter(None, ignores.split("\n")): if ( wildcard == "# do not change or delete this comment - `python setup.py clean` deletes everything after this line" ): start_deleting = True if not start_deleting: continue for filename in glob.glob(wildcard): try: os.remove(filename) except OSError: shutil.rmtree(filename, ignore_errors=True) # It's an old-style class in Python 2.7... distutils.command.clean.clean.run(self) setup( # Metadata name=package_name, version=version, author="Pavel Belevich", author_email="[email protected]", url="https://github.com/pytorch/csprng", description="Cryptographically secure pseudorandom number generators for PyTorch", long_description=long_description, long_description_content_type="text/markdown", license="BSD-3", # Package info packages=find_packages(exclude=("test",)), classifiers=[ "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Science/Research", "License :: OSI Approved :: BSD License", "Programming Language :: C++", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Topic :: Scientific/Engineering", "Topic :: Scientific/Engineering :: Mathematics", "Topic :: Scientific/Engineering :: Artificial Intelligence", "Topic :: Software Development", "Topic :: Software Development :: Libraries", "Topic :: Software Development :: Libraries :: Python Modules", ], python_requires=">=3.6", install_requires=requirements, ext_modules=get_extensions(), test_suite="test", cmdclass={ "build_ext": BuildExtension, "clean": clean, }, )
# -*- coding: utf-8 -*- """Helper script to package wheels and relocate binaries.""" import glob import hashlib import io # Standard library imports import os import os.path as osp import platform import shutil import subprocess import sys import zipfile from base64 import urlsafe_b64encode # Third party imports if sys.platform == "linux": from auditwheel.lddtree import lddtree from wheel.bdist_wheel import get_abi_tag ALLOWLIST = { "libgcc_s.so.1", "libstdc++.so.6", "libm.so.6", "libdl.so.2", "librt.so.1", "libc.so.6", "libnsl.so.1", "libutil.so.1", "libpthread.so.0", "libresolv.so.2", "libX11.so.6", "libXext.so.6", "libXrender.so.1", "libICE.so.6", "libSM.so.6", "libGL.so.1", "libgobject-2.0.so.0", "libgthread-2.0.so.0", "libglib-2.0.so.0", "ld-linux-x86-64.so.2", "ld-2.17.so", } WINDOWS_ALLOWLIST = { "MSVCP140.dll", "KERNEL32.dll", "VCRUNTIME140_1.dll", "VCRUNTIME140.dll", "api-ms-win-crt-heap-l1-1-0.dll", "api-ms-win-crt-runtime-l1-1-0.dll", "api-ms-win-crt-stdio-l1-1-0.dll", "api-ms-win-crt-filesystem-l1-1-0.dll", "api-ms-win-crt-string-l1-1-0.dll", "api-ms-win-crt-environment-l1-1-0.dll", "api-ms-win-crt-math-l1-1-0.dll", "api-ms-win-crt-convert-l1-1-0.dll", } HERE = osp.dirname(osp.abspath(__file__)) PACKAGE_ROOT = osp.dirname(osp.dirname(HERE)) PLATFORM_ARCH = platform.machine() PYTHON_VERSION = sys.version_info def read_chunks(file, size=io.DEFAULT_BUFFER_SIZE): """Yield pieces of data from a file-like object until EOF.""" while True: chunk = file.read(size) if not chunk: break yield chunk def rehash(path, blocksize=1 << 20): """Return (hash, length) for path using hashlib.sha256()""" h = hashlib.sha256() length = 0 with open(path, "rb") as f: for block in read_chunks(f, size=blocksize): length += len(block) h.update(block) digest = "sha256=" + urlsafe_b64encode(h.digest()).decode("latin1").rstrip("=") # unicode/str python2 issues return (digest, str(length)) # type: ignore def unzip_file(file, dest): """Decompress zip `file` into directory `dest`.""" with zipfile.ZipFile(file, "r") as zip_ref: zip_ref.extractall(dest) def is_program_installed(basename): """ Return program absolute path if installed in PATH. Otherwise, return None On macOS systems, a .app is considered installed if it exists. """ if sys.platform == "darwin" and basename.endswith(".app") and osp.exists(basename): return basename for path in os.environ["PATH"].split(os.pathsep): abspath = osp.join(path, basename) if osp.isfile(abspath): return abspath def find_program(basename): """ Find program in PATH and return absolute path Try adding .exe or .bat to basename on Windows platforms (return None if not found) """ names = [basename] if os.name == "nt": # Windows platforms extensions = (".exe", ".bat", ".cmd", ".dll") if not basename.endswith(extensions): names = [basename + ext for ext in extensions] + [basename] for name in names: path = is_program_installed(name) if path: return path def patch_new_path(library_path, new_dir): library = osp.basename(library_path) name, *rest = library.split(".") rest = ".".join(rest) hash_id = hashlib.sha256(library_path.encode("utf-8")).hexdigest()[:8] new_name = ".".join([name, hash_id, rest]) return osp.join(new_dir, new_name) def find_dll_dependencies(dumpbin, binary): out = subprocess.run([dumpbin, "/dependents", binary], stdout=subprocess.PIPE) out = out.stdout.strip().decode("utf-8") start_index = out.find("dependencies:") + len("dependencies:") end_index = out.find("Summary") dlls = out[start_index:end_index].strip() dlls = dlls.split(os.linesep) dlls = [dll.strip() for dll in dlls] return dlls def relocate_elf_library(patchelf, output_dir, output_library, binary): """ Relocate an ELF shared library to be packaged on a wheel. Given a shared library, find the transitive closure of its dependencies, rename and copy them into the wheel while updating their respective rpaths. """ print("Relocating {0}".format(binary)) binary_path = osp.join(output_library, binary) ld_tree = lddtree(binary_path) tree_libs = ld_tree["libs"] binary_queue = [(n, binary) for n in ld_tree["needed"]] binary_paths = {binary: binary_path} binary_dependencies = {} while binary_queue != []: library, parent = binary_queue.pop(0) library_info = tree_libs[library] print(library) if library_info["path"] is None: print("Omitting {0}".format(library)) continue if library in ALLOWLIST: # Omit glibc/gcc/system libraries print("Omitting {0}".format(library)) continue parent_dependencies = binary_dependencies.get(parent, []) parent_dependencies.append(library) binary_dependencies[parent] = parent_dependencies if library in binary_paths: continue binary_paths[library] = library_info["path"] binary_queue += [(n, library) for n in library_info["needed"]] print("Copying dependencies to wheel directory") new_libraries_path = osp.join(output_dir, "torchcsprng.libs") os.makedirs(new_libraries_path) new_names = {binary: binary_path} for library in binary_paths: if library != binary: library_path = binary_paths[library] new_library_path = patch_new_path(library_path, new_libraries_path) print("{0} -> {1}".format(library, new_library_path)) shutil.copyfile(library_path, new_library_path) new_names[library] = new_library_path print("Updating dependency names by new files") for library in binary_paths: if library != binary: if library not in binary_dependencies: continue library_dependencies = binary_dependencies[library] new_library_name = new_names[library] for dep in library_dependencies: new_dep = osp.basename(new_names[dep]) print("{0}: {1} -> {2}".format(library, dep, new_dep)) subprocess.check_output( [patchelf, "--replace-needed", dep, new_dep, new_library_name], cwd=new_libraries_path, ) print("Updating library rpath") subprocess.check_output( [patchelf, "--set-rpath", "$ORIGIN", new_library_name], cwd=new_libraries_path, ) subprocess.check_output( [patchelf, "--print-rpath", new_library_name], cwd=new_libraries_path ) print("Update library dependencies") library_dependencies = binary_dependencies[binary] for dep in library_dependencies: new_dep = osp.basename(new_names[dep]) print("{0}: {1} -> {2}".format(binary, dep, new_dep)) subprocess.check_output( [patchelf, "--replace-needed", dep, new_dep, binary], cwd=output_library ) print("Update library rpath") subprocess.check_output( [patchelf, "--set-rpath", "$ORIGIN:$ORIGIN/../torchcsprng.libs", binary_path], cwd=output_library, ) def relocate_dll_library(dumpbin, output_dir, output_library, binary): """ Relocate a DLL/PE shared library to be packaged on a wheel. Given a shared library, find the transitive closure of its dependencies, rename and copy them into the wheel. """ print("Relocating {0}".format(binary)) binary_path = osp.join(output_library, binary) library_dlls = find_dll_dependencies(dumpbin, binary_path) binary_queue = [(dll, binary) for dll in library_dlls] binary_paths = {binary: binary_path} binary_dependencies = {} while binary_queue != []: library, parent = binary_queue.pop(0) if library in WINDOWS_ALLOWLIST or library.startswith("api-ms-win"): print("Omitting {0}".format(library)) continue library_path = find_program(library) if library_path is None: print("{0} not found".format(library)) continue if osp.basename(osp.dirname(library_path)) == "system32": continue print("{0}: {1}".format(library, library_path)) parent_dependencies = binary_dependencies.get(parent, []) parent_dependencies.append(library) binary_dependencies[parent] = parent_dependencies if library in binary_paths: continue binary_paths[library] = library_path downstream_dlls = find_dll_dependencies(dumpbin, library_path) binary_queue += [(n, library) for n in downstream_dlls] print("Copying dependencies to wheel directory") package_dir = osp.join(output_dir, "torchcsprng") for library in binary_paths: if library != binary: library_path = binary_paths[library] new_library_path = osp.join(package_dir, library) print("{0} -> {1}".format(library, new_library_path)) shutil.copyfile(library_path, new_library_path) def compress_wheel(output_dir, wheel, wheel_dir, wheel_name): """Create RECORD file and compress wheel distribution.""" print("Update RECORD file in wheel") dist_info = glob.glob(osp.join(output_dir, "*.dist-info"))[0] record_file = osp.join(dist_info, "RECORD") with open(record_file, "w") as f: for root, _, files in os.walk(output_dir): for this_file in files: full_file = osp.join(root, this_file) rel_file = osp.relpath(full_file, output_dir) if full_file == record_file: f.write("{0},,\n".format(rel_file)) else: digest, size = rehash(full_file) f.write("{0},{1},{2}\n".format(rel_file, digest, size)) print("Compressing wheel") base_wheel_name = osp.join(wheel_dir, wheel_name) shutil.make_archive(base_wheel_name, "zip", output_dir) os.remove(wheel) shutil.move("{0}.zip".format(base_wheel_name), wheel) shutil.rmtree(output_dir) def patch_linux(): # Get patchelf location patchelf = find_program("patchelf") if patchelf is None: raise FileNotFoundError( "Patchelf was not found in the system, please" " make sure that is available on the PATH." ) # Find wheel print("Finding wheels...") wheels = glob.glob(osp.join(PACKAGE_ROOT, "dist", "*.whl")) output_dir = osp.join(PACKAGE_ROOT, "dist", ".wheel-process") image_binary = "image.so" video_binary = "video_reader.so" torchcsprng_binaries = [image_binary, video_binary] for wheel in wheels: if osp.exists(output_dir): shutil.rmtree(output_dir) os.makedirs(output_dir) print("Unzipping wheel...") wheel_file = osp.basename(wheel) wheel_dir = osp.dirname(wheel) print("{0}".format(wheel_file)) wheel_name, _ = osp.splitext(wheel_file) unzip_file(wheel, output_dir) print("Finding ELF dependencies...") output_library = osp.join(output_dir, "torchcsprng") for binary in torchcsprng_binaries: if osp.exists(osp.join(output_library, binary)): relocate_elf_library(patchelf, output_dir, output_library, binary) compress_wheel(output_dir, wheel, wheel_dir, wheel_name) def patch_win(): # Get dumpbin location dumpbin = find_program("dumpbin") if dumpbin is None: raise FileNotFoundError( "Dumpbin was not found in the system, please" " make sure that is available on the PATH." ) # Find wheel print("Finding wheels...") wheels = glob.glob(osp.join(PACKAGE_ROOT, "dist", "*.whl")) output_dir = osp.join(PACKAGE_ROOT, "dist", ".wheel-process") image_binary = "image.pyd" video_binary = "video_reader.pyd" torchcsprng_binaries = [image_binary, video_binary] for wheel in wheels: if osp.exists(output_dir): shutil.rmtree(output_dir) os.makedirs(output_dir) print("Unzipping wheel...") wheel_file = osp.basename(wheel) wheel_dir = osp.dirname(wheel) print("{0}".format(wheel_file)) wheel_name, _ = osp.splitext(wheel_file) unzip_file(wheel, output_dir) print("Finding DLL/PE dependencies...") output_library = osp.join(output_dir, "torchcsprng") for binary in torchcsprng_binaries: if osp.exists(osp.join(output_library, binary)): relocate_dll_library(dumpbin, output_dir, output_library, binary) compress_wheel(output_dir, wheel, wheel_dir, wheel_name) if __name__ == "__main__": if sys.platform == "linux": patch_linux() elif sys.platform == "win32": patch_win()
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import math import os import random import time import unittest import numpy as np import torch from Crypto.Cipher import AES from Crypto.Util import Counter from scipy import stats try: import torchcsprng as csprng except ImportError: raise RuntimeError("CSPRNG not available") IS_SANDCASTLE = ( os.getenv("SANDCASTLE") == "1" or os.getenv("TW_JOB_USER") == "sandcastle" ) IS_FBCODE = os.getenv("PYTORCH_TEST_FBCODE") == "1" def to_numpy(t, dtype=torch.float): if t.dtype == torch.bfloat16: t = t.to(dtype) return t.numpy() def to_bytes(t): if t.dtype == torch.bfloat16: t = t.view(torch.int16) return t.cpu().numpy().view(np.int8) class TestCSPRNG(unittest.TestCase): all_generators = [ csprng.create_random_device_generator(), csprng.create_random_device_generator("/dev/urandom"), csprng.create_mt19937_generator(), csprng.create_mt19937_generator(42), ] int_dtypes = [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64] standard_fp_dtypes = [torch.float, torch.double] non_standard_fp_dtypes = [torch.half, torch.bfloat16] fp_dtypes = standard_fp_dtypes + non_standard_fp_dtypes num_dtypes = int_dtypes + fp_dtypes all_dtypes = num_dtypes + [torch.bool] size = 1000 all_devices = ( ["cpu", "cuda"] if (torch.cuda.is_available() and csprng.supports_cuda()) else ["cpu"] ) def test_random_kstest(self): for device in self.all_devices: for gen in self.all_generators: for dtype in self.num_dtypes: if dtype == torch.float: to_inc = 2**24 elif dtype == torch.double: to_inc = 2**53 elif dtype == torch.half: to_inc = 2**11 elif dtype == torch.bfloat16: to_inc = 2**8 else: to_inc = torch.iinfo(dtype).max t = torch.empty(self.size, dtype=dtype, device=device).random_( generator=gen ) res = stats.kstest( to_numpy(t.cpu()), stats.randint.cdf, args=(0, to_inc) ) self.assertTrue(res.statistic < 0.1) no_cuda = not torch.cuda.is_available() or not csprng.supports_cuda() no_cuda_message = ( "CUDA is not available or csprng was not compiled with CUDA support" ) @unittest.skipIf(no_cuda, no_cuda_message) def test_random_cpu_vs_cuda(self): for dtype in self.num_dtypes: gen = csprng.create_mt19937_generator(42) cpu_t = torch.empty(self.size, dtype=dtype, device="cpu").random_( generator=gen ) gen = csprng.create_mt19937_generator(42) cuda_t = torch.empty(self.size, dtype=dtype, device="cuda").random_( generator=gen ) self.assertTrue((cpu_t == cuda_t.cpu()).all()) def test_random_to_kstest(self): to_ = 42 for device in self.all_devices: for gen in self.all_generators: for dtype in self.num_dtypes: t = torch.zeros(self.size, dtype=dtype, device=device).random_( to_, generator=gen ) res = stats.kstest( to_numpy(t.cpu()), stats.randint.cdf, args=(0, to_) ) self.assertTrue(res.statistic < 0.1) @unittest.skipIf(no_cuda, no_cuda_message) def test_random_to_cpu_vs_cuda(self): to_ = 42 for dtype in self.num_dtypes: gen = csprng.create_mt19937_generator(42) cpu_t = torch.zeros(self.size, dtype=dtype, device="cpu").random_( to_, generator=gen ) gen = csprng.create_mt19937_generator(42) cuda_t = torch.zeros(self.size, dtype=dtype, device="cuda").random_( to_, generator=gen ) self.assertTrue((cpu_t == cuda_t.cpu()).all()) def test_random_from_to_kstest(self): for device in self.all_devices: for gen in self.all_generators: for dtype in self.num_dtypes: for from_ in [0, 24, 42]: for to_ in [42, 99, 123]: if from_ < to_: t = torch.zeros( self.size, dtype=dtype, device=device ).random_(from_, to_, generator=gen) res = stats.kstest( to_numpy(t.cpu()), stats.randint.cdf, args=(from_, to_), ) self.assertTrue(res.statistic < 0.2) @unittest.skipIf(no_cuda, no_cuda_message) def test_random_from_to_cpu_vs_cuda(self): for dtype in self.num_dtypes: for from_ in [0, 24, 42]: for to_ in [42, 99, 123]: if from_ < to_: gen = csprng.create_mt19937_generator(42) cpu_t = torch.zeros( self.size, dtype=dtype, device="cpu" ).random_(from_, to_, generator=gen) gen = csprng.create_mt19937_generator(42) cuda_t = torch.zeros( self.size, dtype=dtype, device="cuda" ).random_(from_, to_, generator=gen) self.assertTrue((cpu_t == cuda_t.cpu()).all()) def test_random_bool(self): for device in self.all_devices: for gen in self.all_generators: t = torch.empty(self.size, dtype=torch.bool, device=device) t.fill_(False) t.random_(generator=gen) self.assertEqual(t.min(), False) self.assertEqual(t.max(), True) self.assertTrue( 0.4 < (t.eq(True)).to(torch.int).sum().item() / self.size < 0.6 ) t.fill_(True) t.random_(generator=gen) self.assertEqual(t.min(), False) self.assertEqual(t.max(), True) self.assertTrue( 0.4 < (t.eq(True)).to(torch.int).sum().item() / self.size < 0.6 ) @unittest.skipIf(no_cuda, no_cuda_message) def test_random_bool_cpu_vs_cuda(self): gen = csprng.create_mt19937_generator(42) cpu_t = torch.empty(self.size, dtype=torch.bool, device="cpu").random_( generator=gen ) gen = csprng.create_mt19937_generator(42) cuda_t = torch.empty(self.size, dtype=torch.bool, device="cuda").random_( generator=gen ) self.assertTrue((cpu_t == cuda_t.cpu()).all()) def test_uniform_kstest(self): for device in self.all_devices: for gen in self.all_generators: for dtype in self.fp_dtypes: for from_ in [-42, 0, 4.2]: for to_ in [-4.2, 0, 42]: if to_ > from_: t = torch.empty( self.size, dtype=dtype, device=device ).uniform_(from_, to_, generator=gen) res = stats.kstest( to_numpy(t.cpu(), torch.double), "uniform", args=(from_, (to_ - from_)), ) self.assertTrue(res.statistic < 0.1) @unittest.skipIf(no_cuda, no_cuda_message) def test_uniform_cpu_vs_cuda(self): for dtype in self.fp_dtypes: for from_ in [-42, 0, 4.2]: for to_ in [-4.2, 0, 42]: if to_ > from_: gen = csprng.create_mt19937_generator(42) cpu_t = torch.empty( self.size, dtype=dtype, device="cpu" ).uniform_(from_, to_, generator=gen) gen = csprng.create_mt19937_generator(42) cuda_t = torch.empty( self.size, dtype=dtype, device="cuda" ).uniform_(from_, to_, generator=gen) self.assertTrue(torch.allclose(cpu_t, cuda_t.cpu(), 1e-9)) def test_normal_kstest(self): for device in self.all_devices: for gen in self.all_generators: for dtype in self.fp_dtypes: for mean in [-3, 0, 7]: for std in [1, 5, 7]: t = torch.empty( self.size, dtype=dtype, device=device ).normal_(mean=mean, std=std, generator=gen) res = stats.kstest( to_numpy(t.cpu(), torch.double), "norm", args=(mean, std), ) self.assertTrue(res.statistic < 0.1) @unittest.skipIf(no_cuda, no_cuda_message) def test_normal_cpu_vs_cuda(self): for dtype in self.fp_dtypes: for mean in [-3, 0, 7]: for std in [1, 5, 7]: gen = csprng.create_mt19937_generator(42) cpu_t = torch.empty(self.size, dtype=dtype, device="cpu").normal_( mean=mean, std=std, generator=gen ) gen = csprng.create_mt19937_generator(42) cuda_t = torch.empty(self.size, dtype=dtype, device="cuda").normal_( mean=mean, std=std, generator=gen ) self.assertTrue(torch.allclose(cpu_t, cuda_t.cpu(), 1e-9)) def test_log_normal_kstest(self): for device in self.all_devices: for gen in self.all_generators: for dtype in self.fp_dtypes: for mean in [-3, 0, 7]: for std in [1, 5, 7]: t = torch.empty( self.size, dtype=dtype, device=device ).log_normal_(mean=mean, std=std, generator=gen) res = stats.kstest( to_numpy(t.cpu(), torch.double), "lognorm", args=(std, 0, math.exp(mean)), ) if dtype in [torch.half, torch.bfloat16]: self.assertTrue(res.statistic < 0.4) else: self.assertTrue(res.statistic < 0.1) @unittest.skipIf(no_cuda, no_cuda_message) def test_log_normal_cpu_vs_cuda(self): for dtype in self.fp_dtypes: for mean in [-3, 0, 7]: for std in [1, 5, 7]: gen = csprng.create_mt19937_generator(42) cpu_t = torch.empty( self.size, dtype=dtype, device="cpu" ).log_normal_(mean=mean, std=std, generator=gen) gen = csprng.create_mt19937_generator(42) cuda_t = torch.empty( self.size, dtype=dtype, device="cuda" ).log_normal_(mean=mean, std=std, generator=gen) self.assertTrue( torch.allclose(cpu_t, cuda_t.cpu(), 1e-4, equal_nan=True) ) def test_exponential_kstest(self): for device in self.all_devices: for gen in self.all_generators: for dtype in self.fp_dtypes: for lambd in [0.5, 1.0, 5.0]: t = torch.empty( self.size, dtype=dtype, device=device ).exponential_(lambd=lambd, generator=gen) res = stats.kstest( to_numpy(t.cpu(), torch.double), "expon", args=( 0, 1 / lambd, ), ) self.assertTrue(res.statistic < 0.1) @unittest.skipIf(no_cuda, no_cuda_message) @unittest.skip("https://github.com/pytorch/pytorch/issues/38662") def test_exponential_cpu_vs_cuda(self): for dtype in self.fp_dtypes: for lambd in [0.5, 1.0, 5.0]: gen = csprng.create_mt19937_generator(42) cpu_t = torch.empty(self.size, dtype=dtype, device="cpu").exponential_( lambd=lambd, generator=gen ) gen = csprng.create_mt19937_generator(42) cuda_t = torch.empty( self.size, dtype=dtype, device="cuda" ).exponential_(lambd=lambd, generator=gen) self.assertTrue(torch.allclose(cpu_t, cuda_t.cpu(), 1e-9)) def test_cauchy_kstest(self): for device in self.all_devices: for gen in self.all_generators: for dtype in self.fp_dtypes: for median in [-10, 0, 50]: for sigma in [0.5, 1.0, 10.0]: t = torch.empty( self.size, dtype=dtype, device=device ).cauchy_(median=median, sigma=sigma, generator=gen) res = stats.kstest( to_numpy(t.cpu(), torch.double), "cauchy", args=(median, sigma), ) if dtype in [torch.half, torch.bfloat16]: self.assertTrue(res.statistic < 0.4) else: self.assertTrue(res.statistic < 0.1) @unittest.skipIf(no_cuda, no_cuda_message) def test_cauchy_cpu_vs_cuda(self): for dtype in self.fp_dtypes: for median in [-10, 0, 50]: for sigma in [0.5, 1.0, 10.0]: gen = csprng.create_mt19937_generator(42) cpu_t = torch.empty(self.size, dtype=dtype, device="cpu").cauchy_( median=median, sigma=sigma, generator=gen ) gen = csprng.create_mt19937_generator(42) cuda_t = torch.empty(self.size, dtype=dtype, device="cuda").cauchy_( median=median, sigma=sigma, generator=gen ) self.assertTrue(torch.allclose(cpu_t, cuda_t.cpu(), 1e-9)) def test_geometric(self): for device in self.all_devices: for gen in self.all_generators: for dtype in self.fp_dtypes: for p in [0.2, 0.5, 0.8]: t = torch.empty( self.size, dtype=dtype, device=device ).geometric_(p=p, generator=gen) # actual = np.histogram(t.cpu().to(torch.double), np.arange(1, 100))[0] # expected = stats.geom(p).pmf(np.arange(1, 99)) * self.size # res = stats.chisquare(actual, expected) # self.assertAlmostEqual(res.pvalue, 1.0, delta=0.5) TODO https://github.com/pytorch/csprng/issues/7 @unittest.skipIf(no_cuda, no_cuda_message) def test_geometric_cpu_vs_cuda(self): for dtype in self.fp_dtypes: for p in [0.2, 0.5, 0.8]: gen = csprng.create_mt19937_generator(42) cpu_t = torch.empty(self.size, dtype=dtype, device="cpu").geometric_( p=p, generator=gen ) gen = csprng.create_mt19937_generator(42) cuda_t = torch.empty(self.size, dtype=dtype, device="cuda").geometric_( p=p, generator=gen ) self.assertTrue( torch.allclose(cpu_t, cuda_t.cpu(), 1e-9, equal_nan=True) ) def test_non_contiguous_vs_contiguous(self): size = 10 for device in self.all_devices: for dtype in self.all_dtypes: for i in range(10): t = torch.zeros([size, size, size], dtype=dtype, device=device) x1 = random.randrange(0, size) y1 = random.randrange(0, size) z1 = random.randrange(0, size) x2 = random.randrange(x1 + 1, max(x1 + 2, size)) y2 = random.randrange(y1 + 1, max(y1 + 2, size)) z2 = random.randrange(z1 + 1, max(z1 + 2, size)) maybe_non_contiguous = t[x1:x2, y1:y2, z1:z2] assert maybe_non_contiguous.numel() > 0 if not maybe_non_contiguous.is_contiguous(): seed = random.randrange(1000) non_contiguous = maybe_non_contiguous gen = csprng.create_mt19937_generator(seed) non_contiguous.random_(generator=gen) contiguous = torch.zeros_like(non_contiguous) gen = csprng.create_mt19937_generator(seed) contiguous.random_(generator=gen) assert contiguous.is_contiguous() self.assertTrue((non_contiguous == contiguous).all()) for x in range(0, size): for y in range(0, size): for z in range(0, size): if ( not x1 <= x < x2 and not y1 <= y < y2 and not z1 <= z < z2 ): self.assertTrue(t[x, y, z] == 0) @unittest.skipIf(IS_SANDCASTLE or IS_FBCODE, "Does not work on Sandcastle") @unittest.skipIf(torch.get_num_threads() < 2, "requires multithreading CPU") def test_cpu_parallel(self): urandom_gen = csprng.create_random_device_generator("/dev/urandom") def measure(size): t = torch.empty(size, dtype=torch.float32, device="cpu") start = time.time() for i in range(20): t.normal_(generator=urandom_gen) finish = time.time() return finish - start time_for_1K = measure(1000) time_for_1M = measure(1000000) # Pessimistic check that parallel execution gives >= 1.5 performance boost self.assertTrue(time_for_1M / time_for_1K < 1000 / 1.5) @unittest.skipIf(IS_SANDCASTLE or IS_FBCODE, "Does not work on Sandcastle") def test_version(self): self.assertTrue(csprng.__version__) self.assertTrue(csprng.git_version) def test_randperm(self): for device in self.all_devices: for gen in self.all_generators: for dtype in self.int_dtypes: for size in range(0, 20): expected = torch.arange(size, dtype=dtype, device=device) actual = torch.randperm( size, dtype=dtype, device=device, generator=gen ) actual_out = torch.empty(1, dtype=dtype, device=device) torch.randperm(size, out=actual_out, generator=gen) if size >= 10: self.assertTrue(not torch.allclose(expected, actual)) self.assertTrue(not torch.allclose(expected, actual_out)) actual = actual.sort()[0] actual_out = actual.sort()[0] self.assertTrue(torch.allclose(expected, actual)) self.assertTrue(torch.allclose(expected, actual_out)) def test_encrypt_decrypt(self): key_size_bytes = 16 block_size_bytes = 16 def sizeof(dtype): if dtype == torch.bool: return 1 elif dtype.is_floating_point: return torch.finfo(dtype).bits // 8 else: return torch.iinfo(dtype).bits // 8 def pad(data, pad_size): if len(data) % pad_size == 0: return data length = pad_size - (len(data) % pad_size) return data + bytes([0]) * length def create_aes(m, k): if m == "ecb": return AES.new(k.tobytes(), AES.MODE_ECB) elif m == "ctr": ctr = Counter.new( AES.block_size * 8, initial_value=0, little_endian=True ) return AES.new(k.tobytes(), AES.MODE_CTR, counter=ctr) else: return None for key_dtype in self.all_dtypes: key_size = key_size_bytes // sizeof(key_dtype) key = torch.empty(key_size, dtype=key_dtype).random_() key_np = to_bytes(key) for initial_dtype in self.all_dtypes: for initial_size in [0, 4, 8, 15, 16, 23, 42]: initial = torch.empty(initial_size, dtype=initial_dtype).random_() initial_np = to_bytes(initial) initial_size_bytes = initial_size * sizeof(initial_dtype) for encrypted_dtype in self.all_dtypes: encrypted_size = ( (initial_size_bytes + block_size_bytes - 1) // block_size_bytes * block_size_bytes // sizeof(encrypted_dtype) ) encrypted = torch.zeros(encrypted_size, dtype=encrypted_dtype) for decrypted_dtype in self.all_dtypes: decrypted_size = ( initial_size_bytes + sizeof(decrypted_dtype) - 1 ) // sizeof(decrypted_dtype) decrypted = torch.zeros( decrypted_size, dtype=decrypted_dtype ) for mode in ["ecb", "ctr"]: for device in self.all_devices: key = key.to(device) initial = initial.to(device) encrypted = encrypted.to(device) decrypted = decrypted.to(device) csprng.encrypt( initial, encrypted, key, "aes128", mode ) encrypted_np = to_bytes(encrypted) aes = create_aes(mode, key_np) encrypted_expected = np.frombuffer( aes.encrypt( pad(initial_np.tobytes(), block_size_bytes) ), dtype=np.int8, ) self.assertTrue( np.array_equal(encrypted_np, encrypted_expected) ) csprng.decrypt( encrypted, decrypted, key, "aes128", mode ) decrypted_np = to_bytes(decrypted)[ :initial_size_bytes ] aes = create_aes(mode, key_np) decrypted_expected = np.frombuffer( aes.decrypt( pad( encrypted_np.tobytes(), block_size_bytes ) ), dtype=np.int8, )[:initial_size_bytes] self.assertTrue( np.array_equal(decrypted_np, decrypted_expected) ) self.assertTrue( np.array_equal(initial_np, decrypted_np) ) def test_encrypt_decrypt_inplace(self): key_size_bytes = 16 def sizeof(dtype): if dtype == torch.bool: return 1 elif dtype.is_floating_point: return torch.finfo(dtype).bits // 8 else: return torch.iinfo(dtype).bits // 8 def create_aes(m, k): if m == "ecb": return AES.new(k.tobytes(), AES.MODE_ECB) elif m == "ctr": ctr = Counter.new( AES.block_size * 8, initial_value=0, little_endian=True ) return AES.new(k.tobytes(), AES.MODE_CTR, counter=ctr) else: return None for key_dtype in self.all_dtypes: key_size = key_size_bytes // sizeof(key_dtype) key = torch.empty(key_size, dtype=key_dtype).random_() key_np = to_bytes(key) for initial_dtype in self.all_dtypes: for initial_size_bytes in [0, 16, 256]: initial_size = initial_size_bytes // sizeof(initial_dtype) initial = torch.empty(initial_size, dtype=initial_dtype).random_() initial_np = to_bytes(initial) initial_np_copy = np.copy(initial_np) for mode in ["ecb", "ctr"]: for device in self.all_devices: key = key.to(device) initial = initial.to(device) csprng.encrypt(initial, initial, key, "aes128", mode) encrypted_np = to_bytes(initial) aes = create_aes(mode, key_np) encrypted_expected = np.frombuffer( aes.encrypt(initial_np_copy.tobytes()), dtype=np.int8 ) self.assertTrue( np.array_equal(encrypted_np, encrypted_expected) ) encrypted_np_copy = np.copy(encrypted_np) csprng.decrypt(initial, initial, key, "aes128", mode) decrypted_np = to_bytes(initial) aes = create_aes(mode, key_np) decrypted_expected = np.frombuffer( aes.decrypt(encrypted_np_copy.tobytes()), dtype=np.int8 ) self.assertTrue( np.array_equal(decrypted_np, decrypted_expected) ) self.assertTrue( np.array_equal(initial_np_copy, decrypted_np) ) if __name__ == "__main__": unittest.main()
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import torch from torchcsprng._C import * try: from .version import __version__, git_version # noqa: F401 except ImportError: pass
#!/usr/bin/env python """ TODO: This was hard to read in pkg_helpers.bash, so I've extracted it to its own script. This script is not yet being called by pkg_helpers.bash yet. """ import os import sys import json import re cuver = os.environ.get('CU_VERSION') cuver = (cuver[:-1] + '.' + cuver[-1]).replace('cu', 'cuda') if cuver != 'cpu' else cuver pytorch_entries = json.load(sys.stdin)['pytorch'] filtered_pytorch_entries_plat_cuda = list(filter( lambda x: (x['platform'] == 'darwin' or cuver in x['fn']), pytorch_entries )) filtered_pytorch_entries_py_ver = list(filter( lambda x: 'py' + os.environ['PYTHON_VERSION'] in x['fn'], filtered_pytorch_entries_plat_cuda )) versions = [x['version'] for x in filtered_pytorch_entries_py_ver] try: last_entry = versions[-1] print(re.sub(r'\\+.*$', '', last_entry)) except Exception as e: all_platforms = set([x['platform'] for x in pytorch_entries]) all_fns = set([x['fn'] for x in pytorch_entries]) msg = "\n\t".join([ "Exception was: " + str(e), "Unfiltered entries count: " + str(len(pytorch_entries)), "Filtered by platform count: " + str(len(filtered_pytorch_entries_plat_cuda)), "Filtered by python version count: " + str(len(filtered_pytorch_entries_py_ver)), "all_platforms:\n" + "".join(map(lambda x: "\t\t" + str(x) + "\n", all_platforms)), "all_fns:\n" + "".join(map(lambda x: "\t\t" + str(x) + "\n", all_fns)), ]) sys.exit(msg)
#!/usr/bin/env python3 import os.path import unittest import subprocess import sys import os TIMEOUT = 2 * 60 * 60 # 2 hours def run(command, timeout=None): """ Returns (return-code, stdout, stderr) """ completed = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, encoding="utf8", timeout=timeout) return completed.returncode, completed.stdout, completed.stderr class TestRepos(unittest.TestCase): pass def _test(cls, directory): command = os.path.join(directory, "run.sh") (rc, out, err) = run(command, TIMEOUT) cls.assertEqual(rc, 0, "Ran {}\nstdout:\n{}\nstderr:\n{}".format( command, out, err)) def generate_test_objects(target_directory): """ Generate the tests, one for each repo """ repos = sorted([os.path.normpath(os.path.join(target_directory, o)) for o in os.listdir(target_directory) if os.path.isdir(os.path.join(target_directory, o))]) for f in repos: print("found {}".format(f)) setattr(TestRepos, "test_" + f, lambda cls, f=f: _test(cls, f)) if __name__ == '__main__': generate_test_objects('examples') unittest.main()
import re import subprocess32 import sys PY3 = sys.version_info >= (3, 0) reinforce_cmd = 'python examples/reinforcement_learning/reinforce.py' actor_critic_cmd = 'python examples/reinforcement_learning/actor_critic.py' def run(command, timeout): """ Returns (return-code, stdout, stderr) """ p = subprocess32.Popen(command, stdout=subprocess32.PIPE, stderr=subprocess32.PIPE, shell=True) output, err = p.communicate(timeout=timeout) rc = p.returncode if PY3: output = output.decode("ascii") err = err.decode("ascii") return (rc, output, err) def check_cartpole_example(command, seconds=30, baseline_iter=1000): """ Runs command. Checks that: 1. the command exits within a timeout 2. cartpole is solved 3. the number of iters it takes to solve cartpole is less than baseline_iter """ (rc, stdout, stderr) = run(command, timeout=seconds) print("stdout:\n", stdout) print("stderr:\n", stderr) if rc is not 0: sys.exit(rc) # Reinforce should have solved cartpole matches = re.search('Solved!', stdout) if matches is None: print("error: reinforce didn't solve cartpole") sys.exit(1) matches = re.findall('Episode (\d+)', stdout) if len(matches) is 0: print("error: unexpected output: ", stdout) sys.exit(1) losses = [int(m) for m in matches] if losses[-1] > baseline_iter: print("error: too many iterations taken: {}".format(losses[-1])) sys.exit(1) if __name__ == '__main__': check_cartpole_example(actor_critic_cmd, seconds=5*60, baseline_iter=4000) # NOTE: Times out after 60 seconds; changed to 3 minutes check_cartpole_example(reinforce_cmd, seconds=3*60, baseline_iter=4000)
import re import subprocess import sys import os PY3 = sys.version_info >= (3, 0) def run(command, timeout): """ Returns (return-code, stdout, stderr) """ p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) output, err = p.communicate(timeout=timeout) rc = p.returncode if PY3: output = output.decode("ascii") err = err.decode("ascii") return rc, output, err # data lives in $BASEDIR/cocotrain2014/ command_args = [ 'python', 'examples/fast_neural_style/neural_style/neural_style.py', 'train', '--dataset', 'cocotrain2014', '--style-image', 'examples/fast_neural_style/images/style-images/mosaic.jpg', '--save-model-dir', './saved_models', '--epochs', '1', '--image-size=128', '--cuda', '0' if os.environ.get("CU_VERSION") == 'cpu' else '1', ] command = " ".join(command_args) def main(): # Test: run one epoch of fast neural style training. Warning: takes a while (half an hour?) (rc, stdout, err) = subprocess.check_output(command, shell=True) print("stdout:\n", stdout, "stderr:\n", err) if rc is not 0: sys.exit(rc) # Processes the output for losses matches = re.findall('total: (\d+\.\d*)', stdout) if len(matches) is 0: print("error: unexpected output:", stdout) sys.exit(1) losses = [float(m) for m in matches] # Smoke test: assert losses are decreasing prev = float('Inf') for loss in losses: if loss > prev: print("error: non-decreasing loss:", losses) sys.exit(1) if __name__ == '__main__': main()
#!/usr/bin/env python import zipfile import re import sys def unzip(path): """ Unzips /path/to/some.zip to ./some Doesn't work with - or _ in 'some' """ match = re.search("(\w+)\.zip", path) if match is None: print("Could not parse path") return dest = match.group(1) with zipfile.ZipFile(path) as z: z.extractall(dest) if __name__ == '__main__': unzip(sys.argv[1])
import re import subprocess import sys import argparse PY3 = sys.version_info >= (3, 0) blacklist = [ "./advanced_source/super_resolution_with_caffe2.py", # The docker image's python has some trouble with decoding unicode "./intermediate_source/char_rnn_classification_tutorial.py", ] visual = [ "./advanced_source/neural_style_tutorial.py", "./beginner_source/blitz/cifar10_tutorial.py", "./beginner_source/data_loading_tutorial.py", "./beginner_source/transfer_learning_tutorial.py", "./intermediate_source/char_rnn_generation_tutorial.py", "./intermediate_source/reinforcement_q_learning.py", "./intermediate_source/seq2seq_translation_tutorial.py", "./intermediate_source/spatial_transformer_tutorial.py", ] def run(command): """ Returns (return-code, stdout, stderr) """ p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) output, err = p.communicate() rc = p.returncode if PY3: output = output.decode("ascii") err = err.decode("ascii") return (rc, output, err) def main(): parser = argparse.ArgumentParser( description="Run all pytorch tutorials") parser.add_argument('--visual', dest='visual', action='store_true', default=False, help='Run the tutorials that rely on a GUI. Default: False') parser.add_argument('--py', dest='python', action='store', default='python', help='the python binary. Default: python') parser.add_argument('--all', dest='all', action='store_true', default=False, help='Run all tutorials, include visual and blacklisted ones.') args = parser.parse_args() run_visual = args.visual (rc, stdout, stderr) = run("find . -type f | grep -P 'source.+py$'") if rc is not 0: print("Couldn't execute find") exit(1) files = stdout.split('\n') files = [f for f in files if len(f) > 0] failed = [] warns = [] python = args.python for f in files: if not args.all and f in blacklist: print("skipping {}".format(f)) continue if not args.all and not run_visual and f in visual: print("skipping {} b/c --visual was not set".format(f)) continue (rc, out, err) = run("{} {}".format(python, f)) fail_msg = "" if rc is not 0: failed.append((rc, out, err, f)) fail_msg = " [FAILED]" if rc is 0 and len(err) is not 0: warns.append((rc, out, err, f)) fail_msg = " [WARNINGS]" print("testing {}{}".format(f, fail_msg)) if len(failed) is 0 and len(warns) is 0: print("All tutorials ran successfully") exit(0) for (rc, out, err, f) in warns: print("-" * 50) print("[WARNINGS] {} {} had warnings:".format(python, f)) print("return code: {}\nstdout:\n{}\nstderr:\n{}\n".format( rc, out, err)) if len(failed) is 0: exit(0) for (rc, out, err, f) in failed: print("-" * 50) print("[FAILED] {} {} failed with the following:".format(python, f)) print("return code: {}\nstdout:\n{}\nstderr:\n{}\n".format( rc, out, err)) exit(1) if __name__ == '__main__': main()
# Logic copied from PEP 513 def is_manylinux1_compatible(): # Only Linux, and only x86-64 / i686 from distutils.util import get_platform if get_platform() not in ["linux-x86_64", "linux-i686"]: return False # Check for presence of _manylinux module try: import _manylinux return bool(_manylinux.manylinux1_compatible) except (ImportError, AttributeError): # Fall through to heuristic check below pass # Check glibc version. CentOS 5 uses glibc 2.5. return have_compatible_glibc(2, 5) def have_compatible_glibc(major, minimum_minor): import ctypes process_namespace = ctypes.CDLL(None) try: gnu_get_libc_version = process_namespace.gnu_get_libc_version except AttributeError: # Symbol doesn't exist -> therefore, we are not linked to # glibc. return False # Call gnu_get_libc_version, which returns a string like "2.5". gnu_get_libc_version.restype = ctypes.c_char_p version_str = gnu_get_libc_version() # py2 / py3 compatibility: if not isinstance(version_str, str): version_str = version_str.decode("ascii") # Parse string and check against requested version. version = [int(piece) for piece in version_str.split(".")] assert len(version) == 2 if major != version[0]: return False if minimum_minor > version[1]: return False return True import sys if is_manylinux1_compatible(): print("%s is manylinux1 compatible" % (sys.executable,)) sys.exit(0) else: print("%s is NOT manylinux1 compatible" % (sys.executable,)) sys.exit(1)
# cf. https://github.com/pypa/manylinux/issues/53 GOOD_SSL = "https://google.com" BAD_SSL = "https://self-signed.badssl.com" import sys print("Testing SSL certificate checking for Python:", sys.version) if (sys.version_info[:2] < (2, 7) or sys.version_info[:2] < (3, 4)): print("This version never checks SSL certs; skipping tests") sys.exit(0) if sys.version_info[0] >= 3: from urllib.request import urlopen EXC = OSError else: from urllib import urlopen EXC = IOError print("Connecting to %s should work" % (GOOD_SSL,)) urlopen(GOOD_SSL) print("...it did, yay.") print("Connecting to %s should fail" % (BAD_SSL,)) try: urlopen(BAD_SSL) # If we get here then we failed: print("...it DIDN'T!!!!!11!!1one!") sys.exit(1) except EXC: print("...it did, yay.")
# Utility script to print the python tag + the abi tag for a Python # See PEP 425 for exactly what these are, but an example would be: # cp27-cp27mu from wheel.pep425tags import get_abbr_impl, get_impl_ver, get_abi_tag print("{0}{1}-{2}".format(get_abbr_impl(), get_impl_ver(), get_abi_tag()))
import json import sys # Usage: # write_json.py input_file output_file # Reads a file of '<platform> <log_name> <size>' into a json file inputfile = sys.argv[1] outputfile = sys.argv[2] data = [] with open(inputfile, 'r') as infile: for line in infile: platform, pkg_type, py_ver, cu_ver, size = line.split() data.append({ 'os': platform, 'pkgType': pkg_type, 'pyVer': py_ver, 'cuVer': cu_ver, 'size': size, }) with open(outputfile, 'w') as outfile: json.dump(data, outfile)
import json import sys # Usage: # parse_conda_json.py input_file output_file # Reads the result of a `conda search --json` into lines of '<platform> # <log_name> <size>' inputfile = sys.argv[1] outputfile = sys.argv[2] data = [] with open(inputfile, 'rb') as jsonfile: rawdata = json.load(jsonfile) # conda search returns format {'pytorch-nightly': [{key:val}...]} pkg_name = list(rawdata.keys())[0] print('parse_conda_json.py:: Parsing package {}'.format(pkg_name)) # Loop through versions found, keeping only 'build', and size # size is in bytes for result in rawdata[pkg_name]: # N.B. platform is queried as 'linux-64' but is stores as linux, and as # 'osx-64' but stored as 'darwin' plat = 'linux' if 'linux' in result['platform'] else 'macos' size = result['size'] # 'build' is of the form # linux CUDA builds: 'py2.7_cuda8.0.61_cudnn7.1.2_0' # linux CPU builds: 'py2.7_cpu_0' # MacOS builds: 'py2.7_0' build = result['build'].split('_') print('parse_conda_json.py:: Size of {} conda {} is {}'.format(plat, build, size)) if plat == 'macos': # We expect a format like 'py2.7_0' assert len(build) == 2, "Unexpected MacOS build string {}".format(build) else: # We expect a format like: # CUDA builds: 'py2.7_cuda8.0.61_cudnn7.1.2_0' # CPU builds: 'py2.7_cpu_0' assert len(build) in (3,4), "Unexpected Linux build string {}".format(build) # Python versions are of form 'py#.#' , we discard the 'py' py_ver = build[0][2:] # CUDA versions are of the form 'cuda10.0.61', we replace 'cuda' with # 'cu' and keep only the major and minor values if build[1].startswith('cuda'): cu_ver = build[1][4:].split('.') assert len(cu_ver) == 3, "Unexpected cuda format {}".format(cu_ver) cu_ver = 'cu' + ''.join((cu_ver[0], cu_ver[1])) else: cu_ver = 'cpu' data.append((plat, py_ver, cu_ver, size)) # Write the sizes out in log_name format of conda_2.7_cu80 print("parse_conda_json.py:: Writing log_name format to {}".format(outputfile)) with open(outputfile, 'a') as outfile: for plat, py_ver, cu_ver, size in data: outfile.write("{} conda {} {} {}\n".format(plat, py_ver, cu_ver, size))
#!/usr/bin/env python3.7 from datetime import datetime, time import json import requests import itertools import sqlite3 import os import sys from typing import Callable, Dict, List, MutableSet, Optional, Sequence def get_executor_price_rate(executor): (etype, eclass) = executor['type'], executor['resource_class'] assert etype in ['machine', 'external', 'docker', 'macos', 'runner'], f'Unexpected type {etype}:{eclass}' if etype == 'machine': return { 'medium': 10, 'large': 20, 'xlarge': 100, '2xlarge': 200, 'gpu.medium': 160, 'gpu.large': 320, 'gpu.small': 80, 'windows.medium': 40, 'windows.large': 120, 'windows.xlarge': 210, 'windows.2xlarge': 500, 'windows.gpu.nvidia.medium': 500, 'gpu.nvidia.small': 160, 'gpu.nvidia.medium': 240, 'gpu.nvidia.large': 1000, }[eclass] if etype == 'macos': return { 'medium': 50, 'large': 100, }[eclass] if etype == 'docker': return { 'small': 5, 'medium': 10, 'medium+': 15, 'large': 20, 'xlarge': 40, '2xlarge': 80, '2xlarge+': 100, }[eclass] if etype == 'runner' or etype == 'external': return { 'pytorch/amd-gpu': 0, }[eclass] raise RuntimeError(f'Undefined executor {etype}:{eclass}') price_per_credit = 6e-4 def get_circleci_token() -> str: token_file_path = os.path.join(os.getenv('HOME'), '.circleci_token') token = os.getenv('CIRCLECI_TOKEN') if token is not None: return token if not os.path.exists(token_file_path): raise RuntimeError('Can not get CirclCI token neither from CIRCLECI_TOKEN environment variable, nor via ~/.circleci_token file') with open(token_file_path) as f: return f.read().strip() def is_workflow_in_progress(workflow: Dict) -> bool: return workflow['status'] in ['running', 'not_run', 'failing', 'on_hold'] class CircleCICache: def __init__(self, token: Optional[str], db_name: str = 'circleci-cache.db') -> None: file_folder = os.path.dirname(__file__) self.url_prefix = 'https://circleci.com/api/v2' self.session = requests.session() self.headers = { 'Accept': 'application/json', 'Circle-Token': token, } if token is not None else None self.db = sqlite3.connect(os.path.join(file_folder, db_name)) self.db.execute('CREATE TABLE IF NOT EXISTS jobs(slug TEXT NOT NULL, job_id INTEGER NOT NULL, json TEXT NOT NULL);') self.db.execute('CREATE TABLE IF NOT EXISTS artifacts(slug TEXT NOT NULL, job_id INTEGER NOT NULL, json TEXT NOT NULL);') self.db.execute('CREATE UNIQUE INDEX IF NOT EXISTS jobs_key on jobs(slug, job_id);') self.db.execute('CREATE TABLE IF NOT EXISTS workflows(id TEXT NOT NULL PRIMARY KEY, json TEXT NOT NULL);') self.db.execute('CREATE TABLE IF NOT EXISTS pipeline_workflows(id TEXT NOT NULL PRIMARY KEY, json TEXT NOT NULL);') self.db.execute('CREATE TABLE IF NOT EXISTS pipelines(id TEXT NOT NULL PRIMARY KEY, json TEXT NOT NULL, branch TEXT, revision TEXT);') self.db.commit() def is_offline(self) -> bool: return self.headers is None def _get_paged_items_list(self, url: str, params = {}, item_count: Optional[int] =-1) -> List: rc, token, run_once = [], None, False def _should_quit(): nonlocal run_once, rc, token if not run_once: run_once = True return False if token is None: return True if item_count is None: return True return item_count >= 0 and len(rc) >= item_count while not _should_quit(): if token is not None: params['page-token'] = token r = self.session.get(url, params = params, headers = self.headers) try: j = r.json() except json.JSONDecodeError: print(f"Failed to decode {rc}", file=sys.stderr) raise if 'message' in j: raise RuntimeError(f'Failed to get list from {url}: {j["message"]}') token = j['next_page_token'] rc.extend(j['items']) return rc def get_pipelines(self, project: str = 'github/pytorch/pytorch',branch: Optional[str] = None, item_count: Optional[int] = None) -> List: if self.is_offline(): c = self.db.cursor() cmd = "SELECT json from pipelines" if branch is not None: cmd += f" WHERE branch='{branch}'" if item_count is not None and item_count > 0: cmd += f" LIMIT {item_count}" c.execute(cmd) return [json.loads(val[0]) for val in c.fetchall()] rc = self._get_paged_items_list( f'{self.url_prefix}/project/{project}/pipeline', {'branch': branch} if branch is not None else {}, item_count) for pipeline in rc: vcs = pipeline['vcs'] pid, branch, revision, pser = pipeline['id'], vcs['branch'], vcs['revision'], json.dumps(pipeline) self.db.execute("INSERT OR REPLACE INTO pipelines(id, branch, revision, json) VALUES (?, ?, ?, ?)", (pid, branch, revision, pser)) self.db.commit() return rc def get_pipeline_workflows(self, pipeline) -> List: c = self.db.cursor() c.execute("SELECT json FROM pipeline_workflows WHERE id=?", (pipeline,)) rc = c.fetchone() if rc is not None: rc = json.loads(rc[0]) if not any([is_workflow_in_progress(w) for w in rc]) or self.is_offline(): return rc if self.is_offline(): return [] rc = self._get_paged_items_list(f'{self.url_prefix}/pipeline/{pipeline}/workflow') self.db.execute("INSERT OR REPLACE INTO pipeline_workflows(id, json) VALUES (?, ?)", (pipeline, json.dumps(rc))) self.db.commit() return rc def get_workflow_jobs(self, workflow, should_cache = True) -> List: c = self.db.cursor() c.execute("select json from workflows where id=?", (workflow,)) rc = c.fetchone() if rc is not None: return json.loads(rc[0]) if self.is_offline(): return [] rc = self._get_paged_items_list(f'{self.url_prefix}/workflow/{workflow}/job') if should_cache: self.db.execute("INSERT INTO workflows(id, json) VALUES (?, ?)", (workflow, json.dumps(rc))) self.db.commit() return rc def get_job(self, project_slug, job_number) -> Dict: c = self.db.cursor() c.execute("select json from jobs where slug=? and job_id = ?", (project_slug, job_number)) rc = c.fetchone() if rc is not None: return json.loads(rc[0]) if self.is_offline(): return {} r = self.session.get(f'{self.url_prefix}/project/{project_slug}/job/{job_number}', headers = self.headers) try: rc=r.json() except json.JSONDecodeError: print(f"Failed to decode {rc}", file=sys.stderr) raise self.db.execute("INSERT INTO jobs(slug,job_id, json) VALUES (?, ?, ?)", (project_slug, job_number, json.dumps(rc))) self.db.commit() return rc def get_job_artifacts(self, project_slug, job_number) -> List[Dict]: c = self.db.cursor() c.execute("select json from artifacts where slug=? and job_id = ?", (project_slug, job_number)) rc = c.fetchone() if rc is not None: return json.loads(rc[0]) if self.is_offline(): return {} rc = self._get_paged_items_list(f"{self.url_prefix}/project/{project_slug}/{job_number}/artifacts") self.db.execute("INSERT INTO artifacts(slug,job_id, json) VALUES (?, ?, ?)", (project_slug, job_number, json.dumps(rc))) self.db.commit() return rc def get_pipeline_jobs(self, project: str = 'github/pytorch/pytorch', branch: Optional[str] = None, item_count: Optional[int] = None) -> Sequence: for pipeline in self.get_pipelines(project, branch, item_count): for workflow in self.get_pipeline_workflows(pipeline['id']): in_progress = is_workflow_in_progress(workflow) for job in self.get_workflow_jobs(workflow['id'], should_cache = not in_progress): yield (pipeline, workflow, job) def get_jobs_summary(self, slug='gh/pytorch/pytorch', workflow='build') -> Dict: r = requests.get(f'{self.url_prefix}/insights/{slug}/workflows/{workflow}/jobs', headers = self.headers) rc = dict() for item in r.json()['items']: rc[item['name']] = item return rc def get_jobs_summary(self, slug='gh/pytorch/pytorch', workflow='build') -> Dict: r = requests.get(f'{self.url_prefix}/insights/{slug}/workflows/{workflow}/jobs', headers = self.headers) rc = dict() for item in r.json()['items']: rc[item['name']] = item return rc def get_job_timeseries(self, job_name, slug='gh/pytorch/pytorch', workflow='build') -> List: r = requests.get(f'{self.url_prefix}/insights/{slug}/workflows/build/jobs/{job_name}', headers = self.headers) return [(datetime.fromisoformat(x['started_at'][:-1]), x['duration']) for x in r.json()['items'] if x['status'] == 'success'] def aggregate_by_day(series): rc = {} for (ts, val) in series: date = datetime.combine(ts.date(), time()) valcount = [val, 1.0] if date not in rc: rc[date] = valcount else: rc[date] = [sum(x) for x in zip(rc[date], valcount)] return [(x, rc[x][0] / rc[x][1]) for x in sorted(rc.keys())] def plot_graph(name_filter=None, output_file=None): import matplotlib.pyplot as plt import matplotlib.dates as mdates ci_cache = CircleCICache(token=get_circleci_token()) summary = ci_cache.get_jobs_summary() test_jobs = [ name for name in summary.keys() if name.startswith('pytorch') and 'test' in name] series = [] labels = [] styles = [f'{color}{style}' for (style,color) in itertools.product(['-','--','-.',':'], ['b','g','r','c','m','y','k'])] for name in test_jobs: label=f"{name}(p95 = {int(summary[name]['metrics']['duration_metrics']['p95']/60)} min)" print(label) if name_filter is not None and name_filter not in name: continue ts = ci_cache.get_job_timeseries(name) if len(ts) == 0: continue labels.append(label) series.append(ts) x,y=zip(*aggregate_by_day(ts)) plt.plot(x, y, styles[len(labels)%len(styles)]) plt.legend(labels) if output_file is not None: plt.savefig(output_file) else: plt.show() def print_line(line: str, padding: Optional[int] =None, newline: bool =True) -> None: if padding is not None and len(line) < padding: line += ' '*(padding - len(line)) print(line, end = '\n' if newline else '\r', flush=True) def fetch_status(branch=None, item_count=50): isatty = sys.stdout.isatty() padding = os.get_terminal_size().columns -1 if isatty else None ci_cache = CircleCICache(token=get_circleci_token()) print(f"About to fetch {item_count} latest pipelines against {branch if branch is not None else 'all branches'}") pipelines = ci_cache.get_pipelines(branch=branch, item_count=item_count) total_price, total_master_price = 0, 0 for pipeline in pipelines: revision = pipeline['vcs']['revision'] branch = pipeline['vcs']['branch'] workflows = ci_cache.get_pipeline_workflows(pipeline['id']) known_job_ids = [] for workflow in workflows: url = f'https://app.circleci.com/pipelines/github/pytorch/pytorch/{workflow["pipeline_number"]}/workflows/{workflow["id"]}' if is_workflow_in_progress(workflow): print_line(f'Skipping {url} name:{workflow["name"]} status:{workflow["status"]}', newline=not sys.stdout.isatty()) continue rerun=False total_credits, test_credits, gpu_credits, wincpu_credits, wingpu_credits = 0, 0, 0, 0, 0 jobs = ci_cache.get_workflow_jobs(workflow['id']) for job in jobs: job_name, job_status, job_number = job['name'], job['status'], job.get('job_number', None) if job_status in ['blocked', 'canceled', 'unauthorized', 'running', 'not_run', 'failing']: continue if job_number is None: print(job) continue if job_number in known_job_ids: rerun = True continue job_info = ci_cache.get_job(job['project_slug'], job_number) if 'executor' not in job_info: print(f'executor not found in {job_info}') continue job_executor = job_info['executor'] resource_class = job_executor['resource_class'] if resource_class is None: print(f'resource_class is none for {job_info}') continue job_on_gpu = 'gpu' in resource_class job_on_win = 'windows' in resource_class duration = datetime.fromisoformat(job_info['stopped_at'][:-1]) - datetime.fromisoformat(job_info['started_at'][:-1]) job_credits = get_executor_price_rate(job_executor) * int(job_info['duration']) * 1e-3 / 60 job_cost = job_credits * price_per_credit total_credits += job_credits if 'test' in job_name or job_name.startswith('smoke_'): test_credits += job_credits elif job_on_gpu: print(f'Running build job {job_name} on GPU!!!') if job_on_gpu: gpu_credits += job_credits if job_on_win: wingpu_credits += job_credits if job_on_win and not job_on_gpu: wincpu_credits += job_credits known_job_ids.append(job_number) print_line(f' {job_name} {job_status} {duration} ${job_cost:.2f}', padding = padding, newline = not isatty) # Increment totals total_price += total_credits * price_per_credit if branch in ['master', 'nightly', 'postnightly', 'release/1.6']: total_master_price += total_credits * price_per_credit # skip small jobs if total_credits * price_per_credit < .1: continue workflow_status = f'{url} {workflow["name"]} status:{workflow["status"]} price: ${total_credits * price_per_credit:.2f}' workflow_status += ' (Rerun?)' if rerun else '' workflow_status += f'\n\t\tdate: {workflow["created_at"]} branch:{branch} revision:{revision}' workflow_status += f'\n\t\ttotal credits: {int(total_credits)}' if test_credits != 0: workflow_status += f' testing: {100 * test_credits / total_credits:.1f}%' if gpu_credits != 0: workflow_status += f' GPU testing: {100 * gpu_credits / total_credits:.1f}%' if wingpu_credits != 0: workflow_status += f' WINGPU/GPU: {100 * wingpu_credits / gpu_credits:.1f}%' if wincpu_credits != 0: workflow_status += f' Win CPU: {100 * wincpu_credits / total_credits:.1f}%' workflow_status += f' Total: ${total_price:.2f} master fraction: {100 * total_master_price/ total_price:.1f}%' print_line(workflow_status, padding = padding) def plot_heatmap(cov_matrix, names): import numpy as np import matplotlib.pyplot as plt assert cov_matrix.shape == (len(names), len(names)) fig, ax = plt.subplots() im = ax.imshow(cov_matrix) ax.set_xticks(np.arange(len(names))) ax.set_yticks(np.arange(len(names))) ax.set_xticklabels(names) ax.set_yticklabels(names) #Rotate tick labels plt.setp(ax.get_xticklabels(), rotation=45, ha='right', rotation_mode='anchor') # Annotate values for i in range(len(names)): for j in range(len(names)): ax.text(j, i, f'{cov_matrix[i, j]:.2f}', ha = 'center', va = 'center', color = 'w') plt.show() def filter_service_jobs(name): if name.startswith('docker'): return True if name.startswith('binary'): return True return False def filter_cuda_test(name): if filter_service_jobs(name): return False if 'libtorch' in name: return False if 'test' not in name: return False # Skip jit-profiling tests if 'jit-profiling' in name: return False if 'cuda11' in name: return False # Skip VS2017 tests if 'vs2017' in name: return False return 'cuda' in name and 'nogpu' not in name def filter_cuda_build(name): if filter_service_jobs(name): return False if 'libtorch' in name: return False return 'cuda' in name and name.endswith('build') def filter_windows_test(name): if filter_service_jobs(name): return False # Skip jit-profiling tests if 'jit-profiling' in name: return False return 'test' in name and 'windows' in name def compute_covariance(branch='master', name_filter: Optional[Callable[[str], bool]] = None): import numpy as np revisions: MutableSet[str] = set() job_summary: Dict[str, Dict[str, float]] = {} # Extract data print(f"Computing covariance for {branch if branch is not None else 'all branches'}") ci_cache = CircleCICache(None) pipelines = ci_cache.get_pipelines(branch = branch) for pipeline in pipelines: if pipeline['trigger']['type'] == 'schedule': continue revision = pipeline['vcs']['revision'] pipeline_jobs: Dict[str, float] = {} blocked_jobs: MutableSet[str] = set() workflows = ci_cache.get_pipeline_workflows(pipeline['id']) for workflow in workflows: if is_workflow_in_progress(workflow): continue jobs = ci_cache.get_workflow_jobs(workflow['id']) for job in jobs: job_name = job['name'] job_status = job['status'] # Handle renames if job_name == 'pytorch_linux_xenial_cuda10_1_cudnn7_py3_NO_AVX2_test': job_name = 'pytorch_linux_xenial_cuda10_1_cudnn7_py3_nogpu_NO_AVX2_test' if job_name == 'pytorch_linux_xenial_cuda10_1_cudnn7_py3_NO_AVX_NO_AVX2_test': job_name = 'pytorch_linux_xenial_cuda10_1_cudnn7_py3_nogpu_NO_AVX_test' if job_status in ['infrastructure_fail', 'canceled']: continue if callable(name_filter) and not name_filter(job_name): continue if job_status == 'blocked': blocked_jobs.add(job_name) continue if job_name in blocked_jobs: blocked_jobs.remove(job_name) result = 1.0 if job_status == 'success' else -1.0 pipeline_jobs[job_name] = result # Skip build with blocked job [which usually means build failed due to the test failure] if len(blocked_jobs) != 0: continue # Skip all success workflows if all([result == 1.0 for result in pipeline_jobs.values()]): continue revisions.add(revision) for job_name in pipeline_jobs: if job_name not in job_summary: job_summary[job_name] = {} job_summary[job_name][revision] = pipeline_jobs[job_name] # Analyze results job_names = sorted(job_summary.keys()) #revisions = sorted(revisions) job_data = np.zeros((len(job_names), len(revisions)), dtype=np.float) print(f"Number of observations: {len(revisions)}") for job_idx, job_name in enumerate(job_names): job_row = job_summary[job_name] for rev_idx, revision in enumerate(revisions): if revision in job_row: job_data[job_idx, rev_idx] = job_row[revision] success_rate = job_data[job_idx,].sum(where=job_data[job_idx,]>0.0) / len(job_row) present_rate = 1.0 * len(job_row) / len(revisions) print(f"{job_name}: missing {100.0 * (1.0 - present_rate):.2f}% success rate: {100 * success_rate:.2f}%") cov_matrix = np.corrcoef(job_data) plot_heatmap(cov_matrix, job_names) def print_artifacts(branch, item_count, name_filter: Callable[[str], bool]) -> None: ci_cache = CircleCICache(token=get_circleci_token()) for pipeline, workflow, job in ci_cache.get_pipeline_jobs(branch=branch, item_count = item_count): revision = pipeline['vcs']['revision'] if not name_filter(job["name"]): continue job_number = job.get("job_number") if job_number is None: continue artifacts = ci_cache.get_job_artifacts('gh/pytorch/pytorch', job_number) for artifact in artifacts: name = os.path.basename(artifact['path']) url = artifact["url"] print(f"{revision} {name} {url}") def parse_arguments(): from argparse import ArgumentParser parser = ArgumentParser(description="Download and analyze circle logs") parser.add_argument('--plot-graph', type=str, nargs = '?', help="Plot job time trends", const = '') parser.add_argument('--output', type=str, help="Output file name for the graphs") parser.add_argument('--get_artifacts', type=str) parser.add_argument('--branch', type=str) parser.add_argument('--item_count', type=int, default=100) parser.add_argument('--compute_covariance', choices=['cuda_test', 'cuda_build', 'windows_test']) return parser.parse_args() if __name__ == '__main__': args = parse_arguments() if args.get_artifacts is not None: print_artifacts(branch=args.branch, item_count=args.item_count, name_filter=lambda x: args.get_artifacts in x) sys.exit(0) if args.compute_covariance is not None: name_filter = { 'cuda_test': filter_cuda_test, 'cuda_build': filter_cuda_build, 'windows_test': filter_windows_test, }[args.compute_covariance] compute_covariance(branch=args.branch, name_filter=name_filter) sys.exit(0) if args.plot_graph is not None: plot_graph(args.plot_graph, args.output) sys.exit(0) fetch_status(branch=args.branch, item_count=args.item_count)
#!/usr/bin/env python3 # Tool for analyzing sizes of CUDA kernels for various GPU architectures import os import struct import sys # Try to auto-import elftools try: from elftools.elf.elffile import ELFFile except ModuleNotFoundError: print(f'elftools module not found, trying to install it from pip') from pip._internal import main as pip_main try: pip_main(["install", "pyelftools", "--user"]) except SystemExit: print(f'PIP installation failed, please install it manually by invoking "{sys.executable} -mpip install pyelftools --user"') sys.exit(-1) from elftools.elf.elffile import ELFFile # From https://stackoverflow.com/questions/1094841/reusable-library-to-get-human-readable-version-of-file-size def sizeof_fmt(num, suffix='B'): for unit in ['','Ki','Mi','Gi','Ti','Pi','Ei','Zi']: if abs(num) < 1024.0: return "%3.1f%s%s" % (num, unit, suffix) num /= 1024.0 return "%.1f%s%s" % (num, 'Yi', suffix) def compute_cubin_sizes(file_name, section_name='.nv_fatbin', debug=False): with open(file_name, 'rb') as f: elf_file=ELFFile(f) nv_fatbin=elf_file.get_section_by_name(section_name) if nv_fatbin is None: return {} data=nv_fatbin.data() idx, offs = 0, 0 elf_sizes = {} while offs < len(data): (magic, version, header_size, fatbin_size)=struct.unpack('IHHL', data[offs: offs + 16]) if magic != 0xba55ed50 or version != 1: raise RuntimeError(f"Unexpected fatbin magic {hex(magic)} or version {version}") if debug: print(f"Found fatbin at {offs} header_size={header_size} fatbin_size={fatbin_size}") offs += header_size fatbin_end = offs + fatbin_size while offs < fatbin_end: (kind, version, hdr_size, elf_size, empty, code_ver, sm_ver) = struct.unpack('HHILLIH', data[offs: offs + 30]) if version != 0x0101 or kind not in [1, 2]: raise RuntimeError(f"Unexpected cubin version {hex(version)} or kind {kind}") sm_ver = f'{"ptx" if kind == 1 else "sm"}_{sm_ver}' if debug: print(f" {idx}: elf_size={elf_size} code_ver={hex(code_ver)} sm={sm_ver}") if sm_ver not in elf_sizes: elf_sizes[sm_ver] = 0 elf_sizes[sm_ver] += elf_size idx, offs = idx + 1, offs + hdr_size + elf_size offs = fatbin_end return elf_sizes def main(): if sys.platform != 'linux': print('This script only works with Linux ELF files') return if len(sys.argv) < 2: print(f"{sys.argv[0]} invoked without any arguments trying to infer location of libtorch_cuda") import torch fname = os.path.join(os.path.dirname(torch.__file__), 'lib', 'libtorch_cuda.so') else: fname = sys.argv[1] if not os.path.exists(fname): print(f"Can't find {fname}") sys.exit(-1) print(f"Analyzing {fname}") for section_name in ['.nv_fatbin', '__nv_relfatbin']: elf_sizes = compute_cubin_sizes(fname, section_name) print(f"{section_name} size {sizeof_fmt(sum(elf_sizes.values()))}") for (sm_ver, total_size) in elf_sizes.items(): print(f" {sm_ver}: {sizeof_fmt(total_size)}") if __name__ == '__main__': main()
from collections import defaultdict from datetime import datetime, timedelta, timezone import gzip import multiprocessing import os import re import urllib from tqdm import tqdm import botocore import boto3 S3 = boto3.resource('s3') CLIENT = boto3.client('s3') BUCKET = S3.Bucket('pytorch') class CacheEntry: _size = None def __init__(self, download_uri: str): self.download_uri = download_uri self.bytes_sent = 0 @property def os_type(self) -> str: os_type = "linux" if "win" in self.download_uri: os_type = "windows" elif "macosx" in self.download_uri: os_type = "macos" return os_type @property def target_arch(self) -> str: target_arch = "cpu" result = re.search(r"cu[0-9]+", self.download_uri) if result: target_arch = result[0] return target_arch @property def package_name(self) -> str: filename_contents = os.path.basename(self.download_uri).split('-') return filename_contents[0] @property def package_version(self) -> str: if "dev" in self.download_uri: results = re.search( r"[0-9]+\.[0-9]+\.[0-9]+\.dev[0-9]+", self.download_uri ) else: results = re.search( r"[0-9]+\.[0-9]+\.[0-9]+", self.download_uri ) if not results: raise Exception("Wtf there's no version o.O") return results[0] @property def size(self) -> int: if self._size is None: for key in BUCKET.objects.filter( Prefix=self.download_uri.lstrip("/") ): self._size = key.size if self._size is None: raise Exception( f"No object found for prefix {self.download_uri}" ) return self._size @property def downloads(self): return self.bytes_sent // self.size def parse_logs(log_directory: str) -> dict: bytes_cache = dict() entries = [] for (dirpath, _, filenames) in os.walk(log_directory): for filename in tqdm(filenames): with gzip.open(os.path.join(dirpath, filename), 'r') as gf: string = gf.read().decode("utf-8") entries += string.splitlines()[2:] for entry in entries: columns = entry.split('\t') bytes_sent = int(columns[3]) download_uri = urllib.parse.unquote( urllib.parse.unquote(columns[7]) ) status = columns[8] if not all([ status.startswith("2"), download_uri.endswith((".whl", ".zip")) ]): continue if not bytes_cache.get(download_uri): bytes_cache[download_uri] = CacheEntry(download_uri) bytes_cache[download_uri].bytes_sent += bytes_sent return bytes_cache def output_results(bytes_cache: dict) -> None: os_results = defaultdict(int) arch_results = defaultdict(int) package_results = defaultdict(lambda: defaultdict(int)) for _, val in tqdm(bytes_cache.items()): try: os_results[val.os_type] += val.downloads arch_results[val.target_arch] += val.downloads package_results[val.package_name][val.package_version] += ( val.downloads ) except Exception: pass print("=-=-= Results =-=-=") print("=-=-= OS =-=-=") total_os_num = sum(os_results.values()) for os_type, num in os_results.items(): print( f"\t* {os_type}: {num} ({(num/total_os_num)*100:.2f}%)" ) print("=-=-= ARCH =-=-=") total_arch_num = sum(arch_results.values()) for arch_type, num in arch_results.items(): print( f"\t* {arch_type}: {num} ({(num/total_arch_num) * 100:.2f}%)" ) print("=-=-= By Package =-=-=") for package_name, upper_val in package_results.items(): print(f"=-=-= {package_name} =-=-=") total_package_num = sum(upper_val.values()) for package_version, num in upper_val.items(): print( f"\t* {package_version}: {num} ({(num/total_package_num) * 100:.2f}%)" ) def download_logs(log_directory: str, since: float): dt_now = datetime.now(timezone.utc) dt_end = datetime(dt_now.year, dt_now.month, dt_now.day, tzinfo=timezone.utc) dt_start = dt_end - timedelta(days=1, hours=1) # Add 1 hour padding to account for potentially missed logs due to timing for key in tqdm(BUCKET.objects.filter(Prefix='cflogs')): remote_fname = key.key local_fname = os.path.join(log_directory, remote_fname) # Only download things from yesterday dt_modified = key.last_modified.replace(tzinfo=timezone.utc) if dt_start >= dt_modified or dt_end < dt_modified: continue # TODO: Do this in parallel if not os.path.exists(local_fname): dirname = os.path.dirname(local_fname) if not os.path.exists(dirname): os.makedirs(dirname) CLIENT.download_file("pytorch", remote_fname, local_fname) if __name__ == "__main__": print("Downloading logs") download_logs('cache', 1) print("Parsing logs") cache = parse_logs('cache/cflogs/') print("Calculating results") output_results(cache)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import os from pathlib import Path from setuptools import setup PKG_NAME = "python-doctr" VERSION = os.getenv("BUILD_VERSION", "0.7.1a0") if __name__ == "__main__": print(f"Building wheel {PKG_NAME}-{VERSION}") # Dynamically set the __version__ attribute cwd = Path(__file__).parent.absolute() with open(cwd.joinpath("doctr", "version.py"), "w", encoding="utf-8") as f: f.write(f"__version__ = '{VERSION}'\n") setup(name=PKG_NAME, version=VERSION)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import cv2 import matplotlib.pyplot as plt import numpy as np import streamlit as st from doctr.file_utils import is_tf_available from doctr.io import DocumentFile from doctr.utils.visualization import visualize_page if is_tf_available(): import tensorflow as tf from backend.tensorflow import DET_ARCHS, RECO_ARCHS, forward_image, load_predictor if any(tf.config.experimental.list_physical_devices("gpu")): forward_device = tf.device("/gpu:0") else: forward_device = tf.device("/cpu:0") else: import torch from backend.pytorch import DET_ARCHS, RECO_ARCHS, forward_image, load_predictor forward_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def main(det_archs, reco_archs): """Build a streamlit layout""" # Wide mode st.set_page_config(layout="wide") # Designing the interface st.title("docTR: Document Text Recognition") # For newline st.write("\n") # Instructions st.markdown("*Hint: click on the top-right corner of an image to enlarge it!*") # Set the columns cols = st.columns((1, 1, 1, 1)) cols[0].subheader("Input page") cols[1].subheader("Segmentation heatmap") cols[2].subheader("OCR output") cols[3].subheader("Page reconstitution") # Sidebar # File selection st.sidebar.title("Document selection") # Disabling warning st.set_option("deprecation.showfileUploaderEncoding", False) # Choose your own image uploaded_file = st.sidebar.file_uploader("Upload files", type=["pdf", "png", "jpeg", "jpg"]) if uploaded_file is not None: if uploaded_file.name.endswith(".pdf"): doc = DocumentFile.from_pdf(uploaded_file.read()) else: doc = DocumentFile.from_images(uploaded_file.read()) page_idx = st.sidebar.selectbox("Page selection", [idx + 1 for idx in range(len(doc))]) - 1 page = doc[page_idx] cols[0].image(page) # Model selection st.sidebar.title("Model selection") st.sidebar.markdown("**Backend**: " + ("TensorFlow" if is_tf_available() else "PyTorch")) det_arch = st.sidebar.selectbox("Text detection model", det_archs) reco_arch = st.sidebar.selectbox("Text recognition model", reco_archs) # For newline st.sidebar.write("\n") if st.sidebar.button("Analyze page"): if uploaded_file is None: st.sidebar.write("Please upload a document") else: with st.spinner("Loading model..."): predictor = load_predictor(det_arch, reco_arch, forward_device) with st.spinner("Analyzing..."): # Forward the image to the model seg_map = forward_image(predictor, page, forward_device) seg_map = np.squeeze(seg_map) seg_map = cv2.resize(seg_map, (page.shape[1], page.shape[0]), interpolation=cv2.INTER_LINEAR) # Plot the raw heatmap fig, ax = plt.subplots() ax.imshow(seg_map) ax.axis("off") cols[1].pyplot(fig) # Plot OCR output out = predictor([page]) fig = visualize_page(out.pages[0].export(), page, interactive=False) cols[2].pyplot(fig) # Page reconsitution under input page page_export = out.pages[0].export() if "rotation" not in det_arch: img = out.pages[0].synthesize() cols[3].image(img, clamp=True) # Display JSON st.markdown("\nHere are your analysis results in JSON format:") st.json(page_export) if __name__ == "__main__": main(DET_ARCHS, RECO_ARCHS)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import numpy as np import tensorflow as tf from doctr.models import ocr_predictor from doctr.models.predictor import OCRPredictor DET_ARCHS = ["db_resnet50", "db_mobilenet_v3_large", "linknet_resnet18_rotation"] RECO_ARCHS = ["crnn_vgg16_bn", "crnn_mobilenet_v3_small", "master", "sar_resnet31"] def load_predictor(det_arch: str, reco_arch: str, device) -> OCRPredictor: """ Args: device is tf.device """ with device: predictor = ocr_predictor( det_arch, reco_arch, pretrained=True, assume_straight_pages=("rotation" not in det_arch) ) return predictor def forward_image(predictor: OCRPredictor, image: np.ndarray, device) -> np.ndarray: """ Args: device is tf.device """ with device: processed_batches = predictor.det_predictor.pre_processor([image]) out = predictor.det_predictor.model(processed_batches[0], return_model_output=True) seg_map = out["out_map"] with tf.device("/cpu:0"): seg_map = tf.identity(seg_map).numpy() return seg_map
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import numpy as np import torch from doctr.models import ocr_predictor from doctr.models.predictor import OCRPredictor DET_ARCHS = ["db_resnet50", "db_mobilenet_v3_large", "linknet_resnet50_rotation"] RECO_ARCHS = ["crnn_vgg16_bn", "crnn_mobilenet_v3_small", "master", "sar_resnet31"] def load_predictor(det_arch: str, reco_arch: str, device) -> OCRPredictor: """ Args: device is torch.device """ predictor = ocr_predictor( det_arch, reco_arch, pretrained=True, assume_straight_pages=("rotation" not in det_arch) ).to(device) return predictor def forward_image(predictor: OCRPredictor, image: np.ndarray, device) -> np.ndarray: """ Args: device is torch.device """ with torch.no_grad(): processed_batches = predictor.det_predictor.pre_processor([image]) out = predictor.det_predictor.model(processed_batches[0].to(device), return_model_output=True) seg_map = out["out_map"].to("cpu").numpy() return seg_map
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. """ Image classification latency benchmark """ import argparse import os import time import numpy as np import tensorflow as tf os.environ["USE_TF"] = "1" os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" from doctr.models import classification def main(args): if args.gpu: gpu_devices = tf.config.experimental.list_physical_devices("GPU") if any(gpu_devices): tf.config.experimental.set_memory_growth(gpu_devices[0], True) else: raise AssertionError("TensorFlow cannot access your GPU. Please investigate!") else: os.environ["CUDA_VISIBLE_DEVICES"] = "" # Pretrained imagenet model model = classification.__dict__[args.arch]( pretrained=args.pretrained, input_shape=(args.size, args.size, 3), ) # Input img_tensor = tf.random.uniform(shape=[args.batch_size, args.size, args.size, 3], maxval=1, dtype=tf.float32) # Warmup for _ in range(10): _ = model(img_tensor, training=False) timings = [] # Evaluation runs for _ in range(args.it): start_ts = time.perf_counter() _ = model(img_tensor, training=False) timings.append(time.perf_counter() - start_ts) _timings = np.array(timings) print(f"{args.arch} ({args.it} runs on ({args.size}, {args.size}) inputs)") print(f"mean {1000 * _timings.mean():.2f}ms, std {1000 * _timings.std():.2f}ms") if __name__ == "__main__": parser = argparse.ArgumentParser( description="docTR latency benchmark for imag classification (TensorFlow)", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("arch", type=str, help="Architecture to use") parser.add_argument("--size", type=int, default=32, help="The image input size") parser.add_argument("--batch-size", "-b", type=int, default=64, help="The batch_size") parser.add_argument("--gpu", dest="gpu", help="Should the benchmark be performed on GPU", action="store_true") parser.add_argument("--it", type=int, default=100, help="Number of iterations to run") parser.add_argument( "--pretrained", dest="pretrained", help="Use pre-trained models from the modelzoo", action="store_true" ) args = parser.parse_args() main(args)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. """ Image classification latency benchmark """ import argparse import os import time import numpy as np import torch os.environ["USE_TORCH"] = "1" from doctr.models import classification @torch.no_grad() def main(args): device = torch.device("cuda:0" if args.gpu else "cpu") # Pretrained imagenet model model = ( classification.__dict__[args.arch]( pretrained=args.pretrained, ) .eval() .to(device=device) ) # Input img_tensor = torch.rand((args.batch_size, 3, args.size, args.size)).to(device=device) # Warmup for _ in range(10): _ = model(img_tensor) timings = [] # Evaluation runs for _ in range(args.it): start_ts = time.perf_counter() _ = model(img_tensor) timings.append(time.perf_counter() - start_ts) _timings = np.array(timings) print(f"{args.arch} ({args.it} runs on ({args.size}, {args.size}) inputs in batches of {args.batch_size})") print(f"mean {1000 * _timings.mean():.2f}ms, std {1000 * _timings.std():.2f}ms") if __name__ == "__main__": parser = argparse.ArgumentParser( description="docTR latency benchmark for image classification (PyTorch)", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("arch", type=str, help="Architecture to use") parser.add_argument("--size", type=int, default=32, help="The image input size") parser.add_argument("--batch-size", "-b", type=int, default=64, help="The batch_size") parser.add_argument("--gpu", dest="gpu", help="Should the benchmark be performed on GPU", action="store_true") parser.add_argument("--it", type=int, default=100, help="Number of iterations to run") parser.add_argument( "--pretrained", dest="pretrained", help="Use pre-trained models from the modelzoo", action="store_true" ) args = parser.parse_args() main(args)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import os os.environ["USE_TF"] = "1" os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" import datetime import multiprocessing as mp import time import numpy as np import tensorflow as tf import wandb from fastprogress.fastprogress import master_bar, progress_bar from tensorflow.keras import mixed_precision from doctr.models import login_to_hub, push_to_hf_hub gpu_devices = tf.config.experimental.list_physical_devices("GPU") if any(gpu_devices): tf.config.experimental.set_memory_growth(gpu_devices[0], True) from doctr import transforms as T from doctr.datasets import VOCABS, CharacterGenerator, DataLoader from doctr.models import classification from doctr.models.utils import export_model_to_onnx from utils import plot_recorder, plot_samples def record_lr( model: tf.keras.Model, train_loader: DataLoader, batch_transforms, optimizer, start_lr: float = 1e-7, end_lr: float = 1, num_it: int = 100, amp: bool = False, ): """Gridsearch the optimal learning rate for the training. Adapted from https://github.com/frgfm/Holocron/blob/master/holocron/trainer/core.py """ if num_it > len(train_loader): raise ValueError("the value of `num_it` needs to be lower than the number of available batches") # Update param groups & LR gamma = (end_lr / start_lr) ** (1 / (num_it - 1)) optimizer.learning_rate = start_lr lr_recorder = [start_lr * gamma**idx for idx in range(num_it)] loss_recorder = [] for batch_idx, (images, targets) in enumerate(train_loader): images = batch_transforms(images) # Forward, Backward & update with tf.GradientTape() as tape: out = model(images, training=True) train_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(targets, out) grads = tape.gradient(train_loss, model.trainable_weights) if amp: grads = optimizer.get_unscaled_gradients(grads) optimizer.apply_gradients(zip(grads, model.trainable_weights)) optimizer.learning_rate = optimizer.learning_rate * gamma # Record train_loss = train_loss.numpy() if np.any(np.isnan(train_loss)): if batch_idx == 0: raise ValueError("loss value is NaN or inf.") else: break loss_recorder.append(train_loss.mean()) # Stop after the number of iterations if batch_idx + 1 == num_it: break return lr_recorder[: len(loss_recorder)], loss_recorder def fit_one_epoch(model, train_loader, batch_transforms, optimizer, mb, amp=False): # Iterate over the batches of the dataset for images, targets in progress_bar(train_loader, parent=mb): images = batch_transforms(images) with tf.GradientTape() as tape: out = model(images, training=True) train_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(targets, out) grads = tape.gradient(train_loss, model.trainable_weights) if amp: grads = optimizer.get_unscaled_gradients(grads) optimizer.apply_gradients(zip(grads, model.trainable_weights)) mb.child.comment = f"Training loss: {train_loss.numpy().mean():.6}" def evaluate(model, val_loader, batch_transforms): # Validation loop val_loss, correct, samples, batch_cnt = 0, 0, 0, 0 val_iter = iter(val_loader) for images, targets in val_iter: images = batch_transforms(images) out = model(images, training=False) loss = tf.nn.sparse_softmax_cross_entropy_with_logits(targets, out) # Compute metric correct += int((out.numpy().argmax(1) == targets.numpy()).sum()) val_loss += loss.numpy().mean() batch_cnt += 1 samples += images.shape[0] val_loss /= batch_cnt acc = correct / samples return val_loss, acc def collate_fn(samples): images, targets = zip(*samples) images = tf.stack(images, axis=0) return images, tf.convert_to_tensor(targets) def main(args): print(args) if args.push_to_hub: login_to_hub() if not isinstance(args.workers, int): args.workers = min(16, mp.cpu_count()) vocab = VOCABS[args.vocab] fonts = args.font.split(",") # AMP if args.amp: mixed_precision.set_global_policy("mixed_float16") # Load val data generator st = time.time() val_set = CharacterGenerator( vocab=vocab, num_samples=args.val_samples * len(vocab), cache_samples=True, img_transforms=T.Compose( [ T.Resize((args.input_size, args.input_size)), # Ensure we have a 90% split of white-background images T.RandomApply(T.ColorInversion(), 0.9), ] ), font_family=fonts, ) val_loader = DataLoader( val_set, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=args.workers, collate_fn=collate_fn, ) print( f"Validation set loaded in {time.time() - st:.4}s ({len(val_set)} samples in " f"{val_loader.num_batches} batches)" ) # Load doctr model model = classification.__dict__[args.arch]( pretrained=args.pretrained, input_shape=(args.input_size, args.input_size, 3), num_classes=len(vocab), classes=list(vocab), include_top=True, ) # Resume weights if isinstance(args.resume, str): model.load_weights(args.resume) batch_transforms = T.Compose( [ T.Normalize(mean=(0.694, 0.695, 0.693), std=(0.299, 0.296, 0.301)), ] ) if args.test_only: print("Running evaluation") val_loss, acc = evaluate(model, val_loader, batch_transforms) print(f"Validation loss: {val_loss:.6} (Acc: {acc:.2%})") return st = time.time() # Load train data generator train_set = CharacterGenerator( vocab=vocab, num_samples=args.train_samples * len(vocab), cache_samples=True, img_transforms=T.Compose( [ T.Resize((args.input_size, args.input_size)), # Augmentations T.RandomApply(T.ColorInversion(), 0.9), T.RandomApply(T.ToGray(3), 0.1), T.RandomJpegQuality(60), T.RandomSaturation(0.3), T.RandomContrast(0.3), T.RandomBrightness(0.3), # Blur T.RandomApply(T.GaussianBlur(kernel_shape=(3, 3), std=(0.1, 3)), 0.3), ] ), font_family=fonts, ) train_loader = DataLoader( train_set, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=args.workers, collate_fn=collate_fn, ) print( f"Train set loaded in {time.time() - st:.4}s ({len(train_set)} samples in " f"{train_loader.num_batches} batches)" ) if args.show_samples: x, target = next(iter(train_loader)) plot_samples(x, list(map(vocab.__getitem__, target))) return # Optimizer scheduler = tf.keras.optimizers.schedules.ExponentialDecay( args.lr, decay_steps=args.epochs * len(train_loader), decay_rate=1 / (1e3), # final lr as a fraction of initial lr staircase=False, ) optimizer = tf.keras.optimizers.Adam( learning_rate=scheduler, beta_1=0.95, beta_2=0.99, epsilon=1e-6, ) if args.amp: optimizer = mixed_precision.LossScaleOptimizer(optimizer) # LR Finder if args.find_lr: lrs, losses = record_lr(model, train_loader, batch_transforms, optimizer, amp=args.amp) plot_recorder(lrs, losses) return # Tensorboard to monitor training current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") exp_name = f"{args.arch}_{current_time}" if args.name is None else args.name # W&B if args.wb: run = wandb.init( name=exp_name, project="character-classification", config={ "learning_rate": args.lr, "epochs": args.epochs, "weight_decay": 0.0, "batch_size": args.batch_size, "architecture": args.arch, "input_size": args.input_size, "optimizer": "adam", "framework": "tensorflow", "vocab": args.vocab, "scheduler": "exp_decay", "pretrained": args.pretrained, }, ) # Create loss queue min_loss = np.inf # Training loop mb = master_bar(range(args.epochs)) for epoch in mb: fit_one_epoch(model, train_loader, batch_transforms, optimizer, mb, args.amp) # Validation loop at the end of each epoch val_loss, acc = evaluate(model, val_loader, batch_transforms) if val_loss < min_loss: print(f"Validation loss decreased {min_loss:.6} --> {val_loss:.6}: saving state...") model.save_weights(f"./{exp_name}/weights") min_loss = val_loss mb.write(f"Epoch {epoch + 1}/{args.epochs} - Validation loss: {val_loss:.6} (Acc: {acc:.2%})") # W&B if args.wb: wandb.log( { "val_loss": val_loss, "acc": acc, } ) if args.wb: run.finish() if args.push_to_hub: push_to_hf_hub(model, exp_name, task="classification", run_config=args) if args.export_onnx: print("Exporting model to ONNX...") if args.arch == "vit_b": # fixed batch size for vit dummy_input = [tf.TensorSpec([1, args.input_size, args.input_size, 3], tf.float32, name="input")] else: # dynamic batch size dummy_input = [tf.TensorSpec([None, args.input_size, args.input_size, 3], tf.float32, name="input")] model_path, _ = export_model_to_onnx(model, exp_name, dummy_input) print(f"Exported model saved in {model_path}") def parse_args(): import argparse parser = argparse.ArgumentParser( description="DocTR training script for character classification (TensorFlow)", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("arch", type=str, help="text-recognition model to train") parser.add_argument("--name", type=str, default=None, help="Name of your training experiment") parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train the model on") parser.add_argument("-b", "--batch_size", type=int, default=64, help="batch size for training") parser.add_argument("--input_size", type=int, default=32, help="input size H for the model, W = 4*H") parser.add_argument("--lr", type=float, default=0.001, help="learning rate for the optimizer (Adam)") parser.add_argument("-j", "--workers", type=int, default=None, help="number of workers used for dataloading") parser.add_argument("--resume", type=str, default=None, help="Path to your checkpoint") parser.add_argument( "--font", type=str, default="FreeMono.ttf,FreeSans.ttf,FreeSerif.ttf", help="Font family to be used" ) parser.add_argument("--vocab", type=str, default="french", help="Vocab to be used for training") parser.add_argument( "--train-samples", dest="train_samples", type=int, default=1000, help="Multiplied by the vocab length gets you the number of training samples that will be used.", ) parser.add_argument( "--val-samples", dest="val_samples", type=int, default=20, help="Multiplied by the vocab length gets you the number of validation samples that will be used.", ) parser.add_argument("--test-only", dest="test_only", action="store_true", help="Run the validation loop") parser.add_argument( "--show-samples", dest="show_samples", action="store_true", help="Display unormalized training samples" ) parser.add_argument("--wb", dest="wb", action="store_true", help="Log to Weights & Biases") parser.add_argument("--push-to-hub", dest="push_to_hub", action="store_true", help="Push to Huggingface Hub") parser.add_argument( "--pretrained", dest="pretrained", action="store_true", help="Load pretrained parameters before starting the training", ) parser.add_argument("--export-onnx", dest="export_onnx", action="store_true", help="Export the model to ONNX") parser.add_argument("--amp", dest="amp", help="Use Automatic Mixed Precision", action="store_true") parser.add_argument("--find-lr", action="store_true", help="Gridsearch the optimal LR") args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() main(args)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import math import matplotlib.pyplot as plt import numpy as np def plot_samples(images, targets): # Unnormalize image num_samples = min(len(images), 12) num_cols = min(len(images), 8) num_rows = int(math.ceil(num_samples / num_cols)) _, axes = plt.subplots(num_rows, num_cols, figsize=(20, 5)) for idx in range(num_samples): img = (255 * images[idx].numpy()).round().clip(0, 255).astype(np.uint8) if img.shape[0] == 3 and img.shape[2] != 3: img = img.transpose(1, 2, 0) row_idx = idx // num_cols col_idx = idx % num_cols ax = axes[row_idx] if num_rows > 1 else axes ax = ax[col_idx] if num_cols > 1 else ax ax.imshow(img) ax.set_title(targets[idx]) # Disable axis for ax in axes.ravel(): ax.axis("off") plt.show() def plot_recorder(lr_recorder, loss_recorder, beta: float = 0.95, **kwargs) -> None: """Display the results of the LR grid search. Adapted from https://github.com/frgfm/Holocron/blob/master/holocron/trainer/core.py Args: lr_recorder: list of LR values loss_recorder: list of loss values beta (float, optional): smoothing factor """ if len(lr_recorder) != len(loss_recorder) or len(lr_recorder) == 0: raise AssertionError("Both `lr_recorder` and `loss_recorder` should have the same length") # Exp moving average of loss smoothed_losses = [] avg_loss = 0.0 for idx, loss in enumerate(loss_recorder): avg_loss = beta * avg_loss + (1 - beta) * loss smoothed_losses.append(avg_loss / (1 - beta ** (idx + 1))) # Properly rescale Y-axis data_slice = slice( min(len(loss_recorder) // 10, 10), -min(len(loss_recorder) // 20, 5) if len(loss_recorder) >= 20 else len(loss_recorder), ) vals = np.array(smoothed_losses[data_slice]) min_idx = vals.argmin() max_val = vals.max() if min_idx is None else vals[: min_idx + 1].max() # type: ignore[misc] delta = max_val - vals[min_idx] plt.plot(lr_recorder[data_slice], smoothed_losses[data_slice]) plt.xscale("log") plt.xlabel("Learning Rate") plt.ylabel("Training loss") plt.ylim(vals[min_idx] - 0.1 * delta, max_val + 0.2 * delta) plt.grid(True, linestyle="--", axis="x") plt.show(**kwargs)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import os os.environ["USE_TORCH"] = "1" import datetime import logging import multiprocessing as mp import time import numpy as np import torch import wandb from fastprogress.fastprogress import master_bar, progress_bar from torch.nn.functional import cross_entropy from torch.optim.lr_scheduler import CosineAnnealingLR, MultiplicativeLR, OneCycleLR from torch.utils.data import DataLoader, RandomSampler, SequentialSampler from torchvision.transforms import ( ColorJitter, Compose, GaussianBlur, Grayscale, InterpolationMode, Normalize, RandomRotation, ) from doctr import transforms as T from doctr.datasets import VOCABS, CharacterGenerator from doctr.models import classification, login_to_hub, push_to_hf_hub from doctr.models.utils import export_model_to_onnx from utils import plot_recorder, plot_samples def record_lr( model: torch.nn.Module, train_loader: DataLoader, batch_transforms, optimizer, start_lr: float = 1e-7, end_lr: float = 1, num_it: int = 100, amp: bool = False, ): """Gridsearch the optimal learning rate for the training. Adapted from https://github.com/frgfm/Holocron/blob/master/holocron/trainer/core.py """ if num_it > len(train_loader): raise ValueError("the value of `num_it` needs to be lower than the number of available batches") model = model.train() # Update param groups & LR optimizer.defaults["lr"] = start_lr for pgroup in optimizer.param_groups: pgroup["lr"] = start_lr gamma = (end_lr / start_lr) ** (1 / (num_it - 1)) scheduler = MultiplicativeLR(optimizer, lambda step: gamma) lr_recorder = [start_lr * gamma**idx for idx in range(num_it)] loss_recorder = [] if amp: scaler = torch.cuda.amp.GradScaler() for batch_idx, (images, targets) in enumerate(train_loader): if torch.cuda.is_available(): images = images.cuda() targets = targets.cuda() images = batch_transforms(images) # Forward, Backward & update optimizer.zero_grad() if amp: with torch.cuda.amp.autocast(): out = model(images) train_loss = cross_entropy(out, targets) scaler.scale(train_loss).backward() # Update the params scaler.step(optimizer) scaler.update() else: out = model(images) train_loss = cross_entropy(out, targets) train_loss.backward() optimizer.step() # Update LR scheduler.step() # Record if not torch.isfinite(train_loss): if batch_idx == 0: raise ValueError("loss value is NaN or inf.") else: break loss_recorder.append(train_loss.item()) # Stop after the number of iterations if batch_idx + 1 == num_it: break return lr_recorder[: len(loss_recorder)], loss_recorder def fit_one_epoch(model, train_loader, batch_transforms, optimizer, scheduler, mb, amp=False): if amp: scaler = torch.cuda.amp.GradScaler() model.train() # Iterate over the batches of the dataset for images, targets in progress_bar(train_loader, parent=mb): if torch.cuda.is_available(): images = images.cuda() targets = targets.cuda() images = batch_transforms(images) optimizer.zero_grad() if amp: with torch.cuda.amp.autocast(): out = model(images) train_loss = cross_entropy(out, targets) scaler.scale(train_loss).backward() # Update the params scaler.step(optimizer) scaler.update() else: out = model(images) train_loss = cross_entropy(out, targets) train_loss.backward() optimizer.step() scheduler.step() mb.child.comment = f"Training loss: {train_loss.item():.6}" @torch.no_grad() def evaluate(model, val_loader, batch_transforms, amp=False): # Model in eval mode model.eval() # Validation loop val_loss, correct, samples, batch_cnt = 0, 0, 0, 0 for images, targets in val_loader: images = batch_transforms(images) if torch.cuda.is_available(): images = images.cuda() targets = targets.cuda() if amp: with torch.cuda.amp.autocast(): out = model(images) loss = cross_entropy(out, targets) else: out = model(images) loss = cross_entropy(out, targets) # Compute metric correct += (out.argmax(dim=1) == targets).sum().item() val_loss += loss.item() batch_cnt += 1 samples += images.shape[0] val_loss /= batch_cnt acc = correct / samples return val_loss, acc def main(args): print(args) if args.push_to_hub: login_to_hub() if not isinstance(args.workers, int): args.workers = min(16, mp.cpu_count()) torch.backends.cudnn.benchmark = True vocab = VOCABS[args.vocab] fonts = args.font.split(",") # Load val data generator st = time.time() val_set = CharacterGenerator( vocab=vocab, num_samples=args.val_samples * len(vocab), cache_samples=True, img_transforms=Compose( [ T.Resize((args.input_size, args.input_size)), # Ensure we have a 90% split of white-background images T.RandomApply(T.ColorInversion(), 0.9), ] ), font_family=fonts, ) val_loader = DataLoader( val_set, batch_size=args.batch_size, drop_last=False, num_workers=args.workers, sampler=SequentialSampler(val_set), pin_memory=torch.cuda.is_available(), ) print(f"Validation set loaded in {time.time() - st:.4}s ({len(val_set)} samples in " f"{len(val_loader)} batches)") batch_transforms = Normalize(mean=(0.694, 0.695, 0.693), std=(0.299, 0.296, 0.301)) # Load doctr model model = classification.__dict__[args.arch](pretrained=args.pretrained, num_classes=len(vocab), classes=list(vocab)) # Resume weights if isinstance(args.resume, str): print(f"Resuming {args.resume}") checkpoint = torch.load(args.resume, map_location="cpu") model.load_state_dict(checkpoint) # GPU if isinstance(args.device, int): if not torch.cuda.is_available(): raise AssertionError("PyTorch cannot access your GPU. Please investigate!") if args.device >= torch.cuda.device_count(): raise ValueError("Invalid device index") # Silent default switch to GPU if available elif torch.cuda.is_available(): args.device = 0 else: logging.warning("No accessible GPU, targe device set to CPU.") if torch.cuda.is_available(): torch.cuda.set_device(args.device) model = model.cuda() if args.test_only: print("Running evaluation") val_loss, acc = evaluate(model, val_loader, batch_transforms) print(f"Validation loss: {val_loss:.6} (Acc: {acc:.2%})") return st = time.time() # Load train data generator train_set = CharacterGenerator( vocab=vocab, num_samples=args.train_samples * len(vocab), cache_samples=True, img_transforms=Compose( [ T.Resize((args.input_size, args.input_size)), # Augmentations T.RandomApply(T.ColorInversion(), 0.9), # GaussianNoise T.RandomApply(Grayscale(3), 0.1), ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.02), T.RandomApply(GaussianBlur(kernel_size=(3, 3), sigma=(0.1, 3)), 0.3), RandomRotation(15, interpolation=InterpolationMode.BILINEAR), ] ), font_family=fonts, ) train_loader = DataLoader( train_set, batch_size=args.batch_size, drop_last=True, num_workers=args.workers, sampler=RandomSampler(train_set), pin_memory=torch.cuda.is_available(), ) print(f"Train set loaded in {time.time() - st:.4}s ({len(train_set)} samples in " f"{len(train_loader)} batches)") if args.show_samples: x, target = next(iter(train_loader)) plot_samples(x, list(map(vocab.__getitem__, target))) return # Optimizer optimizer = torch.optim.Adam( [p for p in model.parameters() if p.requires_grad], args.lr, betas=(0.95, 0.99), eps=1e-6, weight_decay=args.weight_decay, ) # LR Finder if args.find_lr: lrs, losses = record_lr(model, train_loader, batch_transforms, optimizer, amp=args.amp) plot_recorder(lrs, losses) return # Scheduler if args.sched == "cosine": scheduler = CosineAnnealingLR(optimizer, args.epochs * len(train_loader), eta_min=args.lr / 25e4) elif args.sched == "onecycle": scheduler = OneCycleLR(optimizer, args.lr, args.epochs * len(train_loader)) # Training monitoring current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") exp_name = f"{args.arch}_{current_time}" if args.name is None else args.name # W&B if args.wb: run = wandb.init( name=exp_name, project="character-classification", config={ "learning_rate": args.lr, "epochs": args.epochs, "weight_decay": args.weight_decay, "batch_size": args.batch_size, "architecture": args.arch, "input_size": args.input_size, "optimizer": "adam", "framework": "pytorch", "vocab": args.vocab, "scheduler": args.sched, "pretrained": args.pretrained, }, ) # Create loss queue min_loss = np.inf # Training loop mb = master_bar(range(args.epochs)) for epoch in mb: fit_one_epoch(model, train_loader, batch_transforms, optimizer, scheduler, mb) # Validation loop at the end of each epoch val_loss, acc = evaluate(model, val_loader, batch_transforms) if val_loss < min_loss: print(f"Validation loss decreased {min_loss:.6} --> {val_loss:.6}: saving state...") torch.save(model.state_dict(), f"./{exp_name}.pt") min_loss = val_loss mb.write(f"Epoch {epoch + 1}/{args.epochs} - Validation loss: {val_loss:.6} (Acc: {acc:.2%})") # W&B if args.wb: wandb.log( { "val_loss": val_loss, "acc": acc, } ) if args.wb: run.finish() if args.push_to_hub: push_to_hf_hub(model, exp_name, task="classification", run_config=args) if args.export_onnx: print("Exporting model to ONNX...") dummy_batch = next(iter(val_loader)) dummy_input = dummy_batch[0].cuda() if torch.cuda.is_available() else dummy_batch[0] model_path = export_model_to_onnx(model, exp_name, dummy_input) print(f"Exported model saved in {model_path}") def parse_args(): import argparse parser = argparse.ArgumentParser( description="DocTR training script for character classification (PyTorch)", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("arch", type=str, help="text-recognition model to train") parser.add_argument("--name", type=str, default=None, help="Name of your training experiment") parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train the model on") parser.add_argument("-b", "--batch_size", type=int, default=64, help="batch size for training") parser.add_argument("--device", default=None, type=int, help="device") parser.add_argument("--input_size", type=int, default=32, help="input size H for the model, W = H") parser.add_argument("--lr", type=float, default=0.001, help="learning rate for the optimizer (Adam)") parser.add_argument("--wd", "--weight-decay", default=0, type=float, help="weight decay", dest="weight_decay") parser.add_argument("-j", "--workers", type=int, default=None, help="number of workers used for dataloading") parser.add_argument("--resume", type=str, default=None, help="Path to your checkpoint") parser.add_argument( "--font", type=str, default="FreeMono.ttf,FreeSans.ttf,FreeSerif.ttf", help="Font family to be used" ) parser.add_argument("--vocab", type=str, default="french", help="Vocab to be used for training") parser.add_argument( "--train-samples", dest="train_samples", type=int, default=1000, help="Multiplied by the vocab length gets you the number of training samples that will be used.", ) parser.add_argument( "--val-samples", dest="val_samples", type=int, default=20, help="Multiplied by the vocab length gets you the number of validation samples that will be used.", ) parser.add_argument("--test-only", dest="test_only", action="store_true", help="Run the validation loop") parser.add_argument( "--show-samples", dest="show_samples", action="store_true", help="Display unormalized training samples" ) parser.add_argument("--wb", dest="wb", action="store_true", help="Log to Weights & Biases") parser.add_argument("--push-to-hub", dest="push_to_hub", action="store_true", help="Push to Huggingface Hub") parser.add_argument( "--pretrained", dest="pretrained", action="store_true", help="Load pretrained parameters before starting the training", ) parser.add_argument("--export-onnx", dest="export_onnx", action="store_true", help="Export the model to ONNX") parser.add_argument("--sched", type=str, default="cosine", help="scheduler to use") parser.add_argument("--amp", dest="amp", help="Use Automatic Mixed Precision", action="store_true") parser.add_argument("--find-lr", action="store_true", help="Gridsearch the optimal LR") args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() main(args)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. """ Text recognition latency benchmark """ import argparse import os import time import numpy as np import tensorflow as tf os.environ["USE_TF"] = "1" os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" from doctr.models import recognition def main(args): if args.gpu: gpu_devices = tf.config.experimental.list_physical_devices("GPU") if any(gpu_devices): tf.config.experimental.set_memory_growth(gpu_devices[0], True) else: raise AssertionError("TensorFlow cannot access your GPU. Please investigate!") else: os.environ["CUDA_VISIBLE_DEVICES"] = "" spatial_shape = (args.size, 4 * args.size) # Pretrained imagenet model model = recognition.__dict__[args.arch]( pretrained=args.pretrained, pretrained_backbone=False, input_shape=(*spatial_shape, 3), ) # Input img_tensor = tf.random.uniform(shape=[args.batch_size, *spatial_shape, 3], maxval=1, dtype=tf.float32) # Warmup for _ in range(10): _ = model(img_tensor, training=False) timings = [] # Evaluation runs for _ in range(args.it): start_ts = time.perf_counter() _ = model(img_tensor, training=False) timings.append(time.perf_counter() - start_ts) _timings = np.array(timings) print(f"{args.arch} ({args.it} runs on {spatial_shape} inputs in batches of {args.batch_size})") print(f"mean {1000 * _timings.mean():.2f}ms, std {1000 * _timings.std():.2f}ms") if __name__ == "__main__": parser = argparse.ArgumentParser( description="docTR latency benchmark for text recognition (TensorFlow)", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("arch", type=str, help="Architecture to use") parser.add_argument("--batch-size", "-b", type=int, default=64, help="The batch_size") parser.add_argument("--size", type=int, default=32, help="The image input size") parser.add_argument("--gpu", dest="gpu", help="Should the benchmark be performed on GPU", action="store_true") parser.add_argument("--it", type=int, default=100, help="Number of iterations to run") parser.add_argument( "--pretrained", dest="pretrained", help="Use pre-trained models from the modelzoo", action="store_true" ) args = parser.parse_args() main(args)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. """ Text recognition latency benchmark """ import argparse import os import time import numpy as np import torch os.environ["USE_TORCH"] = "1" from doctr.models import recognition @torch.no_grad() def main(args): device = torch.device("cuda:0" if args.gpu else "cpu") # Pretrained imagenet model model = ( recognition.__dict__[args.arch]( pretrained=args.pretrained, pretrained_backbone=False, ) .eval() .to(device=device) ) # Input img_tensor = torch.rand((args.batch_size, 3, args.size, 4 * args.size)).to(device=device) # Warmup for _ in range(10): _ = model(img_tensor) timings = [] # Evaluation runs for _ in range(args.it): start_ts = time.perf_counter() _ = model(img_tensor) timings.append(time.perf_counter() - start_ts) _timings = np.array(timings) print(f"{args.arch} ({args.it} runs on ({args.size}, {4 * args.size}) inputs in batches of {args.batch_size})") print(f"mean {1000 * _timings.mean():.2f}ms, std {1000 * _timings.std():.2f}ms") if __name__ == "__main__": parser = argparse.ArgumentParser( description="docTR latency benchmark for text recognition (PyTorch)", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("arch", type=str, help="Architecture to use") parser.add_argument("--batch-size", "-b", type=int, default=64, help="The batch_size") parser.add_argument("--size", type=int, default=32, help="The image input size") parser.add_argument("--gpu", dest="gpu", help="Should the benchmark be performed on GPU", action="store_true") parser.add_argument("--it", type=int, default=100, help="Number of iterations to run") parser.add_argument( "--pretrained", dest="pretrained", help="Use pre-trained models from the modelzoo", action="store_true" ) args = parser.parse_args() main(args)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import os os.environ["USE_TF"] = "1" os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" import datetime import hashlib import multiprocessing as mp import time from pathlib import Path import numpy as np import tensorflow as tf import wandb from fastprogress.fastprogress import master_bar, progress_bar from tensorflow.keras import mixed_precision from doctr.models import login_to_hub, push_to_hf_hub gpu_devices = tf.config.experimental.list_physical_devices("GPU") if any(gpu_devices): tf.config.experimental.set_memory_growth(gpu_devices[0], True) from doctr import transforms as T from doctr.datasets import VOCABS, DataLoader, RecognitionDataset, WordGenerator from doctr.models import recognition from doctr.utils.metrics import TextMatch from utils import plot_recorder, plot_samples def record_lr( model: tf.keras.Model, train_loader: DataLoader, batch_transforms, optimizer, start_lr: float = 1e-7, end_lr: float = 1, num_it: int = 100, amp: bool = False, ): """Gridsearch the optimal learning rate for the training. Adapted from https://github.com/frgfm/Holocron/blob/master/holocron/trainer/core.py """ if num_it > len(train_loader): raise ValueError("the value of `num_it` needs to be lower than the number of available batches") # Update param groups & LR gamma = (end_lr / start_lr) ** (1 / (num_it - 1)) optimizer.learning_rate = start_lr lr_recorder = [start_lr * gamma**idx for idx in range(num_it)] loss_recorder = [] for batch_idx, (images, targets) in enumerate(train_loader): images = batch_transforms(images) # Forward, Backward & update with tf.GradientTape() as tape: train_loss = model(images, targets, training=True)["loss"] grads = tape.gradient(train_loss, model.trainable_weights) if amp: grads = optimizer.get_unscaled_gradients(grads) optimizer.apply_gradients(zip(grads, model.trainable_weights)) optimizer.learning_rate = optimizer.learning_rate * gamma # Record train_loss = train_loss.numpy() if np.any(np.isnan(train_loss)): if batch_idx == 0: raise ValueError("loss value is NaN or inf.") else: break loss_recorder.append(train_loss.mean()) # Stop after the number of iterations if batch_idx + 1 == num_it: break return lr_recorder[: len(loss_recorder)], loss_recorder def fit_one_epoch(model, train_loader, batch_transforms, optimizer, mb, amp=False): train_iter = iter(train_loader) # Iterate over the batches of the dataset for images, targets in progress_bar(train_iter, parent=mb): images = batch_transforms(images) with tf.GradientTape() as tape: train_loss = model(images, targets, training=True)["loss"] grads = tape.gradient(train_loss, model.trainable_weights) if amp: grads = optimizer.get_unscaled_gradients(grads) optimizer.apply_gradients(zip(grads, model.trainable_weights)) mb.child.comment = f"Training loss: {train_loss.numpy().mean():.6}" def evaluate(model, val_loader, batch_transforms, val_metric): # Reset val metric val_metric.reset() # Validation loop val_loss, batch_cnt = 0, 0 val_iter = iter(val_loader) for images, targets in val_iter: images = batch_transforms(images) out = model(images, targets, return_preds=True, training=False) # Compute metric if len(out["preds"]): words, _ = zip(*out["preds"]) else: words = [] val_metric.update(targets, words) val_loss += out["loss"].numpy().mean() batch_cnt += 1 val_loss /= batch_cnt result = val_metric.summary() return val_loss, result["raw"], result["unicase"] def main(args): print(args) if args.push_to_hub: login_to_hub() if not isinstance(args.workers, int): args.workers = min(16, mp.cpu_count()) vocab = VOCABS[args.vocab] fonts = args.font.split(",") # AMP if args.amp: mixed_precision.set_global_policy("mixed_float16") st = time.time() if isinstance(args.val_path, str): with open(os.path.join(args.val_path, "labels.json"), "rb") as f: val_hash = hashlib.sha256(f.read()).hexdigest() # Load val data generator val_set = RecognitionDataset( img_folder=os.path.join(args.val_path, "images"), labels_path=os.path.join(args.val_path, "labels.json"), img_transforms=T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True), ) else: val_hash = None # Load synthetic data generator val_set = WordGenerator( vocab=vocab, min_chars=args.min_chars, max_chars=args.max_chars, num_samples=args.val_samples * len(vocab), font_family=fonts, img_transforms=T.Compose( [ T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True), # Ensure we have a 90% split of white-background images T.RandomApply(T.ColorInversion(), 0.9), ] ), ) val_loader = DataLoader( val_set, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=args.workers, ) print( f"Validation set loaded in {time.time() - st:.4}s ({len(val_set)} samples in " f"{val_loader.num_batches} batches)" ) # Load doctr model model = recognition.__dict__[args.arch]( pretrained=args.pretrained, input_shape=(args.input_size, 4 * args.input_size, 3), vocab=vocab, ) # Resume weights if isinstance(args.resume, str): model.load_weights(args.resume) # Metrics val_metric = TextMatch() batch_transforms = T.Compose( [ T.Normalize(mean=(0.694, 0.695, 0.693), std=(0.299, 0.296, 0.301)), ] ) if args.test_only: print("Running evaluation") val_loss, exact_match, partial_match = evaluate(model, val_loader, batch_transforms, val_metric) print(f"Validation loss: {val_loss:.6} (Exact: {exact_match:.2%} | Partial: {partial_match:.2%})") return st = time.time() if isinstance(args.train_path, str): # Load train data generator base_path = Path(args.train_path) parts = ( [base_path] if base_path.joinpath("labels.json").is_file() else [base_path.joinpath(sub) for sub in os.listdir(base_path)] ) with open(parts[0].joinpath("labels.json"), "rb") as f: train_hash = hashlib.sha256(f.read()).hexdigest() train_set = RecognitionDataset( parts[0].joinpath("images"), parts[0].joinpath("labels.json"), img_transforms=T.Compose( [ T.RandomApply(T.ColorInversion(), 0.1), T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True), # Augmentations T.RandomJpegQuality(60), T.RandomSaturation(0.3), T.RandomContrast(0.3), T.RandomBrightness(0.3), ] ), ) if len(parts) > 1: for subfolder in parts[1:]: train_set.merge_dataset( RecognitionDataset(subfolder.joinpath("images"), subfolder.joinpath("labels.json")) ) else: train_hash = None # Load synthetic data generator train_set = WordGenerator( vocab=vocab, min_chars=args.min_chars, max_chars=args.max_chars, num_samples=args.train_samples * len(vocab), font_family=fonts, img_transforms=T.Compose( [ T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True), # Ensure we have a 90% split of white-background images T.RandomApply(T.ColorInversion(), 0.9), T.RandomJpegQuality(60), T.RandomSaturation(0.3), T.RandomContrast(0.3), T.RandomBrightness(0.3), ] ), ) train_loader = DataLoader( train_set, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=args.workers, ) print( f"Train set loaded in {time.time() - st:.4}s ({len(train_set)} samples in " f"{train_loader.num_batches} batches)" ) if args.show_samples: x, target = next(iter(train_loader)) plot_samples(x, target) return # Optimizer scheduler = tf.keras.optimizers.schedules.ExponentialDecay( args.lr, decay_steps=args.epochs * len(train_loader), decay_rate=1 / (25e4), # final lr as a fraction of initial lr staircase=False, ) optimizer = tf.keras.optimizers.Adam(learning_rate=scheduler, beta_1=0.95, beta_2=0.99, epsilon=1e-6, clipnorm=5) if args.amp: optimizer = mixed_precision.LossScaleOptimizer(optimizer) # LR Finder if args.find_lr: lrs, losses = record_lr(model, train_loader, batch_transforms, optimizer, amp=args.amp) plot_recorder(lrs, losses) return # Tensorboard to monitor training current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") exp_name = f"{args.arch}_{current_time}" if args.name is None else args.name # W&B if args.wb: run = wandb.init( name=exp_name, project="text-recognition", config={ "learning_rate": args.lr, "epochs": args.epochs, "weight_decay": 0.0, "batch_size": args.batch_size, "architecture": args.arch, "input_size": args.input_size, "optimizer": "adam", "framework": "tensorflow", "scheduler": "exp_decay", "vocab": args.vocab, "train_hash": train_hash, "val_hash": val_hash, "pretrained": args.pretrained, }, ) min_loss = np.inf # Training loop mb = master_bar(range(args.epochs)) for epoch in mb: fit_one_epoch(model, train_loader, batch_transforms, optimizer, mb, args.amp) # Validation loop at the end of each epoch val_loss, exact_match, partial_match = evaluate(model, val_loader, batch_transforms, val_metric) if val_loss < min_loss: print(f"Validation loss decreased {min_loss:.6} --> {val_loss:.6}: saving state...") model.save_weights(f"./{exp_name}/weights") min_loss = val_loss mb.write( f"Epoch {epoch + 1}/{args.epochs} - Validation loss: {val_loss:.6} " f"(Exact: {exact_match:.2%} | Partial: {partial_match:.2%})" ) # W&B if args.wb: wandb.log( { "val_loss": val_loss, "exact_match": exact_match, "partial_match": partial_match, } ) if args.wb: run.finish() if args.push_to_hub: push_to_hf_hub(model, exp_name, task="recognition", run_config=args) def parse_args(): import argparse parser = argparse.ArgumentParser( description="DocTR training script for text recognition (TensorFlow)", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("arch", type=str, help="text-recognition model to train") parser.add_argument("--train_path", type=str, default=None, help="path to train data folder(s)") parser.add_argument("--val_path", type=str, default=None, help="path to val data folder") parser.add_argument( "--train-samples", type=int, default=1000, help="Multiplied by the vocab length gets you the number of synthetic training samples that will be used.", ) parser.add_argument( "--val-samples", type=int, default=20, help="Multiplied by the vocab length gets you the number of synthetic validation samples that will be used.", ) parser.add_argument( "--font", type=str, default="FreeMono.ttf,FreeSans.ttf,FreeSerif.ttf", help="Font family to be used" ) parser.add_argument("--min-chars", type=int, default=1, help="Minimum number of characters per synthetic sample") parser.add_argument("--max-chars", type=int, default=12, help="Maximum number of characters per synthetic sample") parser.add_argument("--name", type=str, default=None, help="Name of your training experiment") parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train the model on") parser.add_argument("-b", "--batch_size", type=int, default=64, help="batch size for training") parser.add_argument("--input_size", type=int, default=32, help="input size H for the model, W = 4*H") parser.add_argument("--lr", type=float, default=0.001, help="learning rate for the optimizer (Adam)") parser.add_argument("-j", "--workers", type=int, default=None, help="number of workers used for dataloading") parser.add_argument("--resume", type=str, default=None, help="Path to your checkpoint") parser.add_argument("--vocab", type=str, default="french", help="Vocab to be used for training") parser.add_argument("--test-only", dest="test_only", action="store_true", help="Run the validation loop") parser.add_argument( "--show-samples", dest="show_samples", action="store_true", help="Display unormalized training samples" ) parser.add_argument("--wb", dest="wb", action="store_true", help="Log to Weights & Biases") parser.add_argument("--push-to-hub", dest="push_to_hub", action="store_true", help="Push to Huggingface Hub") parser.add_argument( "--pretrained", dest="pretrained", action="store_true", help="Load pretrained parameters before starting the training", ) parser.add_argument("--amp", dest="amp", help="Use Automatic Mixed Precision", action="store_true") parser.add_argument("--find-lr", action="store_true", help="Gridsearch the optimal LR") args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() main(args)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import os os.environ["USE_TORCH"] = "1" import multiprocessing as mp import time import torch from torch.utils.data import DataLoader, SequentialSampler from torchvision.transforms import Normalize from tqdm import tqdm from doctr import datasets from doctr import transforms as T from doctr.datasets import VOCABS from doctr.models import recognition from doctr.utils.metrics import TextMatch @torch.no_grad() def evaluate(model, val_loader, batch_transforms, val_metric, amp=False): # Model in eval mode model.eval() # Reset val metric val_metric.reset() # Validation loop val_loss, batch_cnt = 0, 0 for images, targets in tqdm(val_loader): try: if torch.cuda.is_available(): images = images.cuda() images = batch_transforms(images) if amp: with torch.cuda.amp.autocast(): out = model(images, targets, return_preds=True) else: out = model(images, targets, return_preds=True) # Compute metric if len(out["preds"]): words, _ = zip(*out["preds"]) else: words = [] val_metric.update(targets, words) val_loss += out["loss"].item() batch_cnt += 1 except ValueError: print(f"unexpected symbol/s in targets:\n{targets} \n--> skip batch") continue val_loss /= batch_cnt result = val_metric.summary() return val_loss, result["raw"], result["unicase"] def main(args): print(args) torch.backends.cudnn.benchmark = True if not isinstance(args.workers, int): args.workers = min(16, mp.cpu_count()) # Load doctr model model = recognition.__dict__[args.arch]( pretrained=True if args.resume is None else False, input_shape=(3, args.input_size, 4 * args.input_size), vocab=VOCABS[args.vocab], ).eval() # Resume weights if isinstance(args.resume, str): print(f"Resuming {args.resume}") checkpoint = torch.load(args.resume, map_location="cpu") model.load_state_dict(checkpoint) st = time.time() ds = datasets.__dict__[args.dataset]( train=True, download=True, recognition_task=True, use_polygons=args.regular, img_transforms=T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True), ) _ds = datasets.__dict__[args.dataset]( train=False, download=True, recognition_task=True, use_polygons=args.regular, img_transforms=T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True), ) ds.data.extend([(np_img, target) for np_img, target in _ds.data]) test_loader = DataLoader( ds, batch_size=args.batch_size, drop_last=False, num_workers=args.workers, sampler=SequentialSampler(ds), pin_memory=torch.cuda.is_available(), collate_fn=ds.collate_fn, ) print(f"Test set loaded in {time.time() - st:.4}s ({len(ds)} samples in " f"{len(test_loader)} batches)") mean, std = model.cfg["mean"], model.cfg["std"] batch_transforms = Normalize(mean=mean, std=std) # Metrics val_metric = TextMatch() # GPU if isinstance(args.device, int): if not torch.cuda.is_available(): raise AssertionError("PyTorch cannot access your GPU. Please investigate!") if args.device >= torch.cuda.device_count(): raise ValueError("Invalid device index") # Silent default switch to GPU if available elif torch.cuda.is_available(): args.device = 0 else: print("No accessible GPU, targe device set to CPU.") if torch.cuda.is_available(): torch.cuda.set_device(args.device) model = model.cuda() print("Running evaluation") val_loss, exact_match, partial_match = evaluate(model, test_loader, batch_transforms, val_metric, amp=args.amp) print(f"Validation loss: {val_loss:.6} (Exact: {exact_match:.2%} | Partial: {partial_match:.2%})") def parse_args(): import argparse parser = argparse.ArgumentParser( description="docTR evaluation script for text recognition (PyTorch)", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("arch", type=str, help="text-recognition model to evaluate") parser.add_argument("--vocab", type=str, default="french", help="Vocab to be used for evaluation") parser.add_argument("--dataset", type=str, default="FUNSD", help="Dataset to evaluate on") parser.add_argument("--device", default=None, type=int, help="device") parser.add_argument("-b", "--batch_size", type=int, default=1, help="batch size for evaluation") parser.add_argument("--input_size", type=int, default=32, help="input size H for the model, W = 4*H") parser.add_argument("-j", "--workers", type=int, default=None, help="number of workers used for dataloading") parser.add_argument( "--only_regular", dest="regular", action="store_true", help="test set contains only regular text" ) parser.add_argument("--resume", type=str, default=None, help="Checkpoint to resume") parser.add_argument("--amp", dest="amp", help="Use Automatic Mixed Precision", action="store_true") args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() main(args)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import os os.environ["USE_TF"] = "1" os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" import multiprocessing as mp import time import tensorflow as tf from tensorflow.keras import mixed_precision from tqdm import tqdm gpu_devices = tf.config.experimental.list_physical_devices("GPU") if any(gpu_devices): tf.config.experimental.set_memory_growth(gpu_devices[0], True) from doctr import datasets from doctr import transforms as T from doctr.datasets import VOCABS, DataLoader from doctr.models import recognition from doctr.utils.metrics import TextMatch def evaluate(model, val_loader, batch_transforms, val_metric): # Reset val metric val_metric.reset() # Validation loop val_loss, batch_cnt = 0, 0 val_iter = iter(val_loader) for images, targets in tqdm(val_iter): try: images = batch_transforms(images) out = model(images, targets, return_preds=True, training=False) # Compute metric if len(out["preds"]): words, _ = zip(*out["preds"]) else: words = [] val_metric.update(targets, words) val_loss += out["loss"].numpy().mean() batch_cnt += 1 except ValueError: print(f"unexpected symbol/s in targets:\n{targets} \n--> skip batch") continue val_loss /= batch_cnt result = val_metric.summary() return val_loss, result["raw"], result["unicase"] def main(args): print(args) if not isinstance(args.workers, int): args.workers = min(16, mp.cpu_count()) # AMP if args.amp: mixed_precision.set_global_policy("mixed_float16") # Load doctr model model = recognition.__dict__[args.arch]( pretrained=True if args.resume is None else False, input_shape=(args.input_size, 4 * args.input_size, 3), vocab=VOCABS[args.vocab], ) # Resume weights if isinstance(args.resume, str): model.load_weights(args.resume) st = time.time() ds = datasets.__dict__[args.dataset]( train=True, download=True, recognition_task=True, use_polygons=args.regular, img_transforms=T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True), ) _ds = datasets.__dict__[args.dataset]( train=False, download=True, recognition_task=True, use_polygons=args.regular, img_transforms=T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True), ) ds.data.extend([(np_img, target) for np_img, target in _ds.data]) test_loader = DataLoader( ds, batch_size=args.batch_size, drop_last=False, num_workers=args.workers, shuffle=False, ) print(f"Test set loaded in {time.time() - st:.4}s ({len(ds)} samples in " f"{len(test_loader)} batches)") mean, std = model.cfg["mean"], model.cfg["std"] batch_transforms = T.Normalize(mean=mean, std=std) # Metrics val_metric = TextMatch() print("Running evaluation") val_loss, exact_match, partial_match = evaluate(model, test_loader, batch_transforms, val_metric) print(f"Validation loss: {val_loss:.6} (Exact: {exact_match:.2%} | Partial: {partial_match:.2%})") def parse_args(): import argparse parser = argparse.ArgumentParser( description="docTR evaluation script for text recognition (TensorFlow)", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("arch", type=str, help="text-recognition model to evaluate") parser.add_argument("--vocab", type=str, default="french", help="Vocab to be used for evaluation") parser.add_argument("--dataset", type=str, default="FUNSD", help="Dataset to evaluate on") parser.add_argument("-b", "--batch_size", type=int, default=1, help="batch size for evaluation") parser.add_argument("--input_size", type=int, default=32, help="input size H for the model, W = 4*H") parser.add_argument("-j", "--workers", type=int, default=None, help="number of workers used for dataloading") parser.add_argument( "--only_regular", dest="regular", action="store_true", help="test set contains only regular text" ) parser.add_argument("--resume", type=str, default=None, help="Checkpoint to resume") parser.add_argument("--amp", dest="amp", help="Use Automatic Mixed Precision", action="store_true") args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() main(args)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import math import matplotlib.pyplot as plt import numpy as np def plot_samples(images, targets): # Unnormalize image num_samples = min(len(images), 12) num_cols = min(len(images), 4) num_rows = int(math.ceil(num_samples / num_cols)) _, axes = plt.subplots(num_rows, num_cols, figsize=(20, 5)) for idx in range(num_samples): img = (255 * images[idx].numpy()).round().clip(0, 255).astype(np.uint8) if img.shape[0] == 3 and img.shape[2] != 3: img = img.transpose(1, 2, 0) row_idx = idx // num_cols col_idx = idx % num_cols ax = axes[row_idx] if num_rows > 1 else axes ax = ax[col_idx] if num_cols > 1 else ax ax.imshow(img) ax.set_title(targets[idx]) # Disable axis for ax in axes.ravel(): ax.axis("off") plt.show() def plot_recorder(lr_recorder, loss_recorder, beta: float = 0.95, **kwargs) -> None: """Display the results of the LR grid search. Adapted from https://github.com/frgfm/Holocron/blob/master/holocron/trainer/core.py. Args: lr_recorder: list of LR values loss_recorder: list of loss values beta (float, optional): smoothing factor """ if len(lr_recorder) != len(loss_recorder) or len(lr_recorder) == 0: raise AssertionError("Both `lr_recorder` and `loss_recorder` should have the same length") # Exp moving average of loss smoothed_losses = [] avg_loss = 0.0 for idx, loss in enumerate(loss_recorder): avg_loss = beta * avg_loss + (1 - beta) * loss smoothed_losses.append(avg_loss / (1 - beta ** (idx + 1))) # Properly rescale Y-axis data_slice = slice( min(len(loss_recorder) // 10, 10), -min(len(loss_recorder) // 20, 5) if len(loss_recorder) >= 20 else len(loss_recorder), ) vals = np.array(smoothed_losses[data_slice]) min_idx = vals.argmin() max_val = vals.max() if min_idx is None else vals[: min_idx + 1].max() # type: ignore[misc] delta = max_val - vals[min_idx] plt.plot(lr_recorder[data_slice], smoothed_losses[data_slice]) plt.xscale("log") plt.xlabel("Learning Rate") plt.ylabel("Training loss") plt.ylim(vals[min_idx] - 0.1 * delta, max_val + 0.2 * delta) plt.grid(True, linestyle="--", axis="x") plt.show(**kwargs)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import os os.environ["USE_TORCH"] = "1" import datetime import hashlib import logging import multiprocessing as mp import time from pathlib import Path import numpy as np import torch import wandb from fastprogress.fastprogress import master_bar, progress_bar from torch.optim.lr_scheduler import CosineAnnealingLR, MultiplicativeLR, OneCycleLR from torch.utils.data import DataLoader, RandomSampler, SequentialSampler from torchvision.transforms import ColorJitter, Compose, Normalize from doctr import transforms as T from doctr.datasets import VOCABS, RecognitionDataset, WordGenerator from doctr.models import login_to_hub, push_to_hf_hub, recognition from doctr.utils.metrics import TextMatch from utils import plot_recorder, plot_samples def record_lr( model: torch.nn.Module, train_loader: DataLoader, batch_transforms, optimizer, start_lr: float = 1e-7, end_lr: float = 1, num_it: int = 100, amp: bool = False, ): """Gridsearch the optimal learning rate for the training. Adapted from https://github.com/frgfm/Holocron/blob/master/holocron/trainer/core.py """ if num_it > len(train_loader): raise ValueError("the value of `num_it` needs to be lower than the number of available batches") model = model.train() # Update param groups & LR optimizer.defaults["lr"] = start_lr for pgroup in optimizer.param_groups: pgroup["lr"] = start_lr gamma = (end_lr / start_lr) ** (1 / (num_it - 1)) scheduler = MultiplicativeLR(optimizer, lambda step: gamma) lr_recorder = [start_lr * gamma**idx for idx in range(num_it)] loss_recorder = [] if amp: scaler = torch.cuda.amp.GradScaler() for batch_idx, (images, targets) in enumerate(train_loader): if torch.cuda.is_available(): images = images.cuda() images = batch_transforms(images) # Forward, Backward & update optimizer.zero_grad() if amp: with torch.cuda.amp.autocast(): train_loss = model(images, targets)["loss"] scaler.scale(train_loss).backward() # Gradient clipping scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), 5) # Update the params scaler.step(optimizer) scaler.update() else: train_loss = model(images, targets)["loss"] train_loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 5) optimizer.step() # Update LR scheduler.step() # Record if not torch.isfinite(train_loss): if batch_idx == 0: raise ValueError("loss value is NaN or inf.") else: break loss_recorder.append(train_loss.item()) # Stop after the number of iterations if batch_idx + 1 == num_it: break return lr_recorder[: len(loss_recorder)], loss_recorder def fit_one_epoch(model, train_loader, batch_transforms, optimizer, scheduler, mb, amp=False): if amp: scaler = torch.cuda.amp.GradScaler() model.train() # Iterate over the batches of the dataset for images, targets in progress_bar(train_loader, parent=mb): if torch.cuda.is_available(): images = images.cuda() images = batch_transforms(images) train_loss = model(images, targets)["loss"] optimizer.zero_grad() if amp: with torch.cuda.amp.autocast(): train_loss = model(images, targets)["loss"] scaler.scale(train_loss).backward() # Gradient clipping scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), 5) # Update the params scaler.step(optimizer) scaler.update() else: train_loss = model(images, targets)["loss"] train_loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 5) optimizer.step() scheduler.step() mb.child.comment = f"Training loss: {train_loss.item():.6}" @torch.no_grad() def evaluate(model, val_loader, batch_transforms, val_metric, amp=False): # Model in eval mode model.eval() # Reset val metric val_metric.reset() # Validation loop val_loss, batch_cnt = 0, 0 for images, targets in val_loader: if torch.cuda.is_available(): images = images.cuda() images = batch_transforms(images) if amp: with torch.cuda.amp.autocast(): out = model(images, targets, return_preds=True) else: out = model(images, targets, return_preds=True) # Compute metric if len(out["preds"]): words, _ = zip(*out["preds"]) else: words = [] val_metric.update(targets, words) val_loss += out["loss"].item() batch_cnt += 1 val_loss /= batch_cnt result = val_metric.summary() return val_loss, result["raw"], result["unicase"] def main(args): print(args) if args.push_to_hub: login_to_hub() if not isinstance(args.workers, int): args.workers = min(16, mp.cpu_count()) torch.backends.cudnn.benchmark = True vocab = VOCABS[args.vocab] fonts = args.font.split(",") # Load val data generator st = time.time() if isinstance(args.val_path, str): with open(os.path.join(args.val_path, "labels.json"), "rb") as f: val_hash = hashlib.sha256(f.read()).hexdigest() val_set = RecognitionDataset( img_folder=os.path.join(args.val_path, "images"), labels_path=os.path.join(args.val_path, "labels.json"), img_transforms=T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True), ) else: val_hash = None # Load synthetic data generator val_set = WordGenerator( vocab=vocab, min_chars=args.min_chars, max_chars=args.max_chars, num_samples=args.val_samples * len(vocab), font_family=fonts, img_transforms=Compose( [ T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True), # Ensure we have a 90% split of white-background images T.RandomApply(T.ColorInversion(), 0.9), ] ), ) val_loader = DataLoader( val_set, batch_size=args.batch_size, drop_last=False, num_workers=args.workers, sampler=SequentialSampler(val_set), pin_memory=torch.cuda.is_available(), collate_fn=val_set.collate_fn, ) print(f"Validation set loaded in {time.time() - st:.4}s ({len(val_set)} samples in " f"{len(val_loader)} batches)") batch_transforms = Normalize(mean=(0.694, 0.695, 0.693), std=(0.299, 0.296, 0.301)) # Load doctr model model = recognition.__dict__[args.arch](pretrained=args.pretrained, vocab=vocab) # Resume weights if isinstance(args.resume, str): print(f"Resuming {args.resume}") checkpoint = torch.load(args.resume, map_location="cpu") model.load_state_dict(checkpoint) # GPU if isinstance(args.device, int): if not torch.cuda.is_available(): raise AssertionError("PyTorch cannot access your GPU. Please investigate!") if args.device >= torch.cuda.device_count(): raise ValueError("Invalid device index") # Silent default switch to GPU if available elif torch.cuda.is_available(): args.device = 0 else: logging.warning("No accessible GPU, targe device set to CPU.") if torch.cuda.is_available(): torch.cuda.set_device(args.device) model = model.cuda() # Metrics val_metric = TextMatch() if args.test_only: print("Running evaluation") val_loss, exact_match, partial_match = evaluate(model, val_loader, batch_transforms, val_metric, amp=args.amp) print(f"Validation loss: {val_loss:.6} (Exact: {exact_match:.2%} | Partial: {partial_match:.2%})") return st = time.time() if isinstance(args.train_path, str): # Load train data generator base_path = Path(args.train_path) parts = ( [base_path] if base_path.joinpath("labels.json").is_file() else [base_path.joinpath(sub) for sub in os.listdir(base_path)] ) with open(parts[0].joinpath("labels.json"), "rb") as f: train_hash = hashlib.sha256(f.read()).hexdigest() train_set = RecognitionDataset( parts[0].joinpath("images"), parts[0].joinpath("labels.json"), img_transforms=Compose( [ T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True), # Augmentations T.RandomApply(T.ColorInversion(), 0.1), ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.02), ] ), ) if len(parts) > 1: for subfolder in parts[1:]: train_set.merge_dataset( RecognitionDataset(subfolder.joinpath("images"), subfolder.joinpath("labels.json")) ) else: train_hash = None # Load synthetic data generator train_set = WordGenerator( vocab=vocab, min_chars=args.min_chars, max_chars=args.max_chars, num_samples=args.train_samples * len(vocab), font_family=fonts, img_transforms=Compose( [ T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True), # Ensure we have a 90% split of white-background images T.RandomApply(T.ColorInversion(), 0.9), ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.02), ] ), ) train_loader = DataLoader( train_set, batch_size=args.batch_size, drop_last=True, num_workers=args.workers, sampler=RandomSampler(train_set), pin_memory=torch.cuda.is_available(), collate_fn=train_set.collate_fn, ) print(f"Train set loaded in {time.time() - st:.4}s ({len(train_set)} samples in " f"{len(train_loader)} batches)") if args.show_samples: x, target = next(iter(train_loader)) plot_samples(x, target) return # Optimizer optimizer = torch.optim.Adam( [p for p in model.parameters() if p.requires_grad], args.lr, betas=(0.95, 0.99), eps=1e-6, weight_decay=args.weight_decay, ) # LR Finder if args.find_lr: lrs, losses = record_lr(model, train_loader, batch_transforms, optimizer, amp=args.amp) plot_recorder(lrs, losses) return # Scheduler if args.sched == "cosine": scheduler = CosineAnnealingLR(optimizer, args.epochs * len(train_loader), eta_min=args.lr / 25e4) elif args.sched == "onecycle": scheduler = OneCycleLR(optimizer, args.lr, args.epochs * len(train_loader)) # Training monitoring current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") exp_name = f"{args.arch}_{current_time}" if args.name is None else args.name # W&B if args.wb: run = wandb.init( name=exp_name, project="text-recognition", config={ "learning_rate": args.lr, "epochs": args.epochs, "weight_decay": args.weight_decay, "batch_size": args.batch_size, "architecture": args.arch, "input_size": args.input_size, "optimizer": "adam", "framework": "pytorch", "scheduler": args.sched, "vocab": args.vocab, "train_hash": train_hash, "val_hash": val_hash, "pretrained": args.pretrained, }, ) # Create loss queue min_loss = np.inf # Training loop mb = master_bar(range(args.epochs)) for epoch in mb: fit_one_epoch(model, train_loader, batch_transforms, optimizer, scheduler, mb, amp=args.amp) # Validation loop at the end of each epoch val_loss, exact_match, partial_match = evaluate(model, val_loader, batch_transforms, val_metric, amp=args.amp) if val_loss < min_loss: print(f"Validation loss decreased {min_loss:.6} --> {val_loss:.6}: saving state...") torch.save(model.state_dict(), f"./{exp_name}.pt") min_loss = val_loss mb.write( f"Epoch {epoch + 1}/{args.epochs} - Validation loss: {val_loss:.6} " f"(Exact: {exact_match:.2%} | Partial: {partial_match:.2%})" ) # W&B if args.wb: wandb.log( { "val_loss": val_loss, "exact_match": exact_match, "partial_match": partial_match, } ) if args.wb: run.finish() if args.push_to_hub: push_to_hf_hub(model, exp_name, task="recognition", run_config=args) def parse_args(): import argparse parser = argparse.ArgumentParser( description="DocTR training script for text recognition (PyTorch)", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("arch", type=str, help="text-recognition model to train") parser.add_argument("--train_path", type=str, default=None, help="path to train data folder(s)") parser.add_argument("--val_path", type=str, default=None, help="path to val data folder") parser.add_argument( "--train-samples", type=int, default=1000, help="Multiplied by the vocab length gets you the number of synthetic training samples that will be used.", ) parser.add_argument( "--val-samples", type=int, default=20, help="Multiplied by the vocab length gets you the number of synthetic validation samples that will be used.", ) parser.add_argument( "--font", type=str, default="FreeMono.ttf,FreeSans.ttf,FreeSerif.ttf", help="Font family to be used" ) parser.add_argument("--min-chars", type=int, default=1, help="Minimum number of characters per synthetic sample") parser.add_argument("--max-chars", type=int, default=12, help="Maximum number of characters per synthetic sample") parser.add_argument("--name", type=str, default=None, help="Name of your training experiment") parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train the model on") parser.add_argument("-b", "--batch_size", type=int, default=64, help="batch size for training") parser.add_argument("--device", default=None, type=int, help="device") parser.add_argument("--input_size", type=int, default=32, help="input size H for the model, W = 4*H") parser.add_argument("--lr", type=float, default=0.001, help="learning rate for the optimizer (Adam)") parser.add_argument("--wd", "--weight-decay", default=0, type=float, help="weight decay", dest="weight_decay") parser.add_argument("-j", "--workers", type=int, default=None, help="number of workers used for dataloading") parser.add_argument("--resume", type=str, default=None, help="Path to your checkpoint") parser.add_argument("--vocab", type=str, default="french", help="Vocab to be used for training") parser.add_argument("--test-only", dest="test_only", action="store_true", help="Run the validation loop") parser.add_argument( "--show-samples", dest="show_samples", action="store_true", help="Display unormalized training samples" ) parser.add_argument("--wb", dest="wb", action="store_true", help="Log to Weights & Biases") parser.add_argument("--push-to-hub", dest="push_to_hub", action="store_true", help="Push to Huggingface Hub") parser.add_argument( "--pretrained", dest="pretrained", action="store_true", help="Load pretrained parameters before starting the training", ) parser.add_argument("--sched", type=str, default="cosine", help="scheduler to use") parser.add_argument("--amp", dest="amp", help="Use Automatic Mixed Precision", action="store_true") parser.add_argument("--find-lr", action="store_true", help="Gridsearch the optimal LR") args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() main(args)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import os os.environ["USE_TORCH"] = "1" import datetime import hashlib import multiprocessing import time from pathlib import Path import numpy as np import torch import torch.distributed as dist import torch.multiprocessing as mp import wandb from fastprogress.fastprogress import master_bar, progress_bar from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim.lr_scheduler import CosineAnnealingLR, OneCycleLR from torch.utils.data import DataLoader, SequentialSampler from torch.utils.data.distributed import DistributedSampler from torchvision.transforms import ColorJitter, Compose, Normalize from doctr import transforms as T from doctr.datasets import VOCABS, RecognitionDataset, WordGenerator from doctr.models import login_to_hub, push_to_hf_hub, recognition from doctr.utils.metrics import TextMatch from utils import plot_samples def fit_one_epoch(model, device, train_loader, batch_transforms, optimizer, scheduler, mb, amp=False): if amp: scaler = torch.cuda.amp.GradScaler() model.train() # Iterate over the batches of the dataset for images, targets in progress_bar(train_loader, parent=mb): images = images.to(device) images = batch_transforms(images) train_loss = model(images, targets)["loss"] optimizer.zero_grad() if amp: with torch.cuda.amp.autocast(): train_loss = model(images, targets)["loss"] scaler.scale(train_loss).backward() # Gradient clipping scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), 5) # Update the params scaler.step(optimizer) scaler.update() else: train_loss = model(images, targets)["loss"] train_loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 5) optimizer.step() scheduler.step() mb.child.comment = f"Training loss: {train_loss.item():.6}" @torch.no_grad() def evaluate(model, device, val_loader, batch_transforms, val_metric, amp=False): # Model in eval mode model.eval() # Reset val metric val_metric.reset() # Validation loop val_loss, batch_cnt = 0, 0 for images, targets in val_loader: images = images.to(device) images = batch_transforms(images) if amp: with torch.cuda.amp.autocast(): out = model(images, targets, return_preds=True) else: out = model(images, targets, return_preds=True) # Compute metric if len(out["preds"]): words, _ = zip(*out["preds"]) else: words = [] val_metric.update(targets, words) val_loss += out["loss"].item() batch_cnt += 1 val_loss /= batch_cnt result = val_metric.summary() return val_loss, result["raw"], result["unicase"] def main(rank: int, world_size: int, args): """ Args: rank (int): device id to put the model on args: other arguments passed through the CLI """ print(args) if rank == 0 and args.push_to_hub: login_to_hub() if not isinstance(args.workers, int): args.workers = min(16, multiprocessing.cpu_count()) torch.backends.cudnn.benchmark = True vocab = VOCABS[args.vocab] fonts = args.font.split(",") if rank == 0: # Load val data generator st = time.time() if isinstance(args.val_path, str): with open(os.path.join(args.val_path, "labels.json"), "rb") as f: val_hash = hashlib.sha256(f.read()).hexdigest() val_set = RecognitionDataset( img_folder=os.path.join(args.val_path, "images"), labels_path=os.path.join(args.val_path, "labels.json"), img_transforms=T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True), ) else: val_hash = None # Load synthetic data generator val_set = WordGenerator( vocab=vocab, min_chars=args.min_chars, max_chars=args.max_chars, num_samples=args.val_samples * len(vocab), font_family=fonts, img_transforms=Compose( [ T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True), # Ensure we have a 90% split of white-background images T.RandomApply(T.ColorInversion(), 0.9), ] ), ) val_loader = DataLoader( val_set, batch_size=args.batch_size, drop_last=False, num_workers=args.workers, sampler=SequentialSampler(val_set), pin_memory=torch.cuda.is_available(), collate_fn=val_set.collate_fn, ) print( f"Validation set loaded in {time.time() - st:.4}s ({len(val_set)} samples in " f"{len(val_loader)} batches)" ) batch_transforms = Normalize(mean=(0.694, 0.695, 0.693), std=(0.299, 0.296, 0.301)) # Load doctr model model = recognition.__dict__[args.arch](pretrained=args.pretrained, vocab=vocab) # Resume weights if isinstance(args.resume, str): print(f"Resuming {args.resume}") checkpoint = torch.load(args.resume, map_location="cpu") model.load_state_dict(checkpoint) # create default process group device = torch.device("cuda", args.devices[rank]) dist.init_process_group(args.backend, rank=rank, world_size=world_size) # create local model model = model.to(device) # construct DDP model model = DDP(model, device_ids=[device]) if rank == 0: # Metrics val_metric = TextMatch() if rank == 0 and args.test_only: print("Running evaluation") val_loss, exact_match, partial_match = evaluate( model, device, val_loader, batch_transforms, val_metric, amp=args.amp ) print(f"Validation loss: {val_loss:.6} (Exact: {exact_match:.2%} | Partial: {partial_match:.2%})") return st = time.time() if isinstance(args.train_path, str): # Load train data generator base_path = Path(args.train_path) parts = ( [base_path] if base_path.joinpath("labels.json").is_file() else [base_path.joinpath(sub) for sub in os.listdir(base_path)] ) with open(parts[0].joinpath("labels.json"), "rb") as f: train_hash = hashlib.sha256(f.read()).hexdigest() train_set = RecognitionDataset( parts[0].joinpath("images"), parts[0].joinpath("labels.json"), img_transforms=Compose( [ T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True), # Augmentations T.RandomApply(T.ColorInversion(), 0.1), ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.02), ] ), ) if len(parts) > 1: for subfolder in parts[1:]: train_set.merge_dataset( RecognitionDataset(subfolder.joinpath("images"), subfolder.joinpath("labels.json")) ) else: train_hash = None # Load synthetic data generator train_set = WordGenerator( vocab=vocab, min_chars=args.min_chars, max_chars=args.max_chars, num_samples=args.train_samples * len(vocab), font_family=fonts, img_transforms=Compose( [ T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True), # Ensure we have a 90% split of white-background images T.RandomApply(T.ColorInversion(), 0.9), ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.02), ] ), ) train_loader = DataLoader( train_set, batch_size=args.batch_size, drop_last=True, num_workers=args.workers, sampler=DistributedSampler(train_set, num_replicas=world_size, rank=rank, shuffle=True, drop_last=True), pin_memory=torch.cuda.is_available(), collate_fn=train_set.collate_fn, ) print(f"Train set loaded in {time.time() - st:.4}s ({len(train_set)} samples in " f"{len(train_loader)} batches)") if rank == 0 and args.show_samples: x, target = next(iter(train_loader)) plot_samples(x, target) return # Optimizer optimizer = torch.optim.Adam( [p for p in model.parameters() if p.requires_grad], args.lr, betas=(0.95, 0.99), eps=1e-6, weight_decay=args.weight_decay, ) # Scheduler if args.sched == "cosine": scheduler = CosineAnnealingLR(optimizer, args.epochs * len(train_loader), eta_min=args.lr / 25e4) elif args.sched == "onecycle": scheduler = OneCycleLR(optimizer, args.lr, args.epochs * len(train_loader)) # Training monitoring current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") exp_name = f"{args.arch}_{current_time}" if args.name is None else args.name # W&B if rank == 0 and args.wb: run = wandb.init( name=exp_name, project="text-recognition", config={ "learning_rate": args.lr, "epochs": args.epochs, "weight_decay": args.weight_decay, "batch_size": args.batch_size, "architecture": args.arch, "input_size": args.input_size, "optimizer": "adam", "framework": "pytorch", "scheduler": args.sched, "vocab": args.vocab, "train_hash": train_hash, "val_hash": val_hash, "pretrained": args.pretrained, }, ) # Create loss queue min_loss = np.inf # Training loop mb = master_bar(range(args.epochs)) for epoch in mb: fit_one_epoch(model, device, train_loader, batch_transforms, optimizer, scheduler, mb, amp=args.amp) if rank == 0: # Validation loop at the end of each epoch val_loss, exact_match, partial_match = evaluate( model, device, val_loader, batch_transforms, val_metric, amp=args.amp ) if val_loss < min_loss: # All processes should see same parameters as they all start from same # random parameters and gradients are synchronized in backward passes. # Therefore, saving it in one process is sufficient. print(f"Validation loss decreased {min_loss:.6} --> {val_loss:.6}: saving state...") torch.save(model.state_dict(), f"./{exp_name}.pt") min_loss = val_loss mb.write( f"Epoch {epoch + 1}/{args.epochs} - Validation loss: {val_loss:.6} " f"(Exact: {exact_match:.2%} | Partial: {partial_match:.2%})" ) # W&B if args.wb: wandb.log( { "val_loss": val_loss, "exact_match": exact_match, "partial_match": partial_match, } ) if rank == 0: if args.wb: run.finish() if args.push_to_hub: push_to_hf_hub(model, exp_name, task="recognition", run_config=args) def parse_args(): import argparse parser = argparse.ArgumentParser( description="DocTR training script for text recognition (PyTorch)", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("arch", type=str, help="text-recognition model to train") parser.add_argument("--train_path", type=str, default=None, help="path to train data folder(s)") parser.add_argument("--val_path", type=str, default=None, help="path to val data folder") parser.add_argument( "--train-samples", type=int, default=1000, help="Multiplied by the vocab length gets you the number of synthetic training samples that will be used.", ) parser.add_argument( "--val-samples", type=int, default=20, help="Multiplied by the vocab length gets you the number of synthetic validation samples that will be used.", ) parser.add_argument( "--font", type=str, default="FreeMono.ttf,FreeSans.ttf,FreeSerif.ttf", help="Font family to be used" ) parser.add_argument("--min-chars", type=int, default=1, help="Minimum number of characters per synthetic sample") parser.add_argument("--max-chars", type=int, default=12, help="Maximum number of characters per synthetic sample") parser.add_argument("--name", type=str, default=None, help="Name of your training experiment") parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train the model on") parser.add_argument("-b", "--batch_size", type=int, default=64, help="batch size for training") parser.add_argument("--backend", default="nccl", type=str, help="Backend to use for Torch DDP") parser.add_argument("--devices", default=None, nargs="+", type=int, help="GPU devices to use for training") parser.add_argument("--input_size", type=int, default=32, help="input size H for the model, W = 4*H") parser.add_argument("--lr", type=float, default=0.001, help="learning rate for the optimizer (Adam)") parser.add_argument("--wd", "--weight-decay", default=0, type=float, help="weight decay", dest="weight_decay") parser.add_argument("-j", "--workers", type=int, default=None, help="number of workers used for dataloading") parser.add_argument("--resume", type=str, default=None, help="Path to your checkpoint") parser.add_argument("--vocab", type=str, default="french", help="Vocab to be used for training") parser.add_argument("--test-only", dest="test_only", action="store_true", help="Run the validation loop") parser.add_argument( "--show-samples", dest="show_samples", action="store_true", help="Display unormalized training samples" ) parser.add_argument("--wb", dest="wb", action="store_true", help="Log to Weights & Biases") parser.add_argument("--push-to-hub", dest="push_to_hub", action="store_true", help="Push to Huggingface Hub") parser.add_argument( "--pretrained", dest="pretrained", action="store_true", help="Load pretrained parameters before starting the training", ) parser.add_argument("--sched", type=str, default="cosine", help="scheduler to use") parser.add_argument("--amp", dest="amp", help="Use Automatic Mixed Precision", action="store_true") args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() if not torch.cuda.is_available(): raise AssertionError("PyTorch cannot access your GPUs. Please investigate!") if not isinstance(args.devices, list): args.devices = list(range(torch.cuda.device_count())) nprocs = len(args.devices) # Environment variables which need to be # set when using c10d's default "env" # initialization mode. os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "29500" mp.spawn(main, args=(nprocs, args), nprocs=nprocs, join=True)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. """ Text detection latency benchmark """ import argparse import os import time import numpy as np import tensorflow as tf os.environ["USE_TF"] = "1" os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" from doctr.models import detection def main(args): if args.gpu: gpu_devices = tf.config.experimental.list_physical_devices("GPU") if any(gpu_devices): tf.config.experimental.set_memory_growth(gpu_devices[0], True) else: raise AssertionError("TensorFlow cannot access your GPU. Please investigate!") else: os.environ["CUDA_VISIBLE_DEVICES"] = "" # Pretrained imagenet model model = detection.__dict__[args.arch]( pretrained=args.pretrained, pretrained_backbone=False, input_shape=(args.size, args.size, 3), ) # Input img_tensor = tf.random.uniform(shape=[1, args.size, args.size, 3], maxval=1, dtype=tf.float32) # Warmup for _ in range(10): _ = model(img_tensor, training=False) timings = [] # Evaluation runs for _ in range(args.it): start_ts = time.perf_counter() _ = model(img_tensor, training=False) timings.append(time.perf_counter() - start_ts) _timings = np.array(timings) print(f"{args.arch} ({args.it} runs on ({args.size}, {args.size}) inputs)") print(f"mean {1000 * _timings.mean():.2f}ms, std {1000 * _timings.std():.2f}ms") if __name__ == "__main__": parser = argparse.ArgumentParser( description="docTR latency benchmark for text detection (TensorFlow)", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("arch", type=str, help="Architecture to use") parser.add_argument("--size", type=int, default=1024, help="The image input size") parser.add_argument("--gpu", dest="gpu", help="Should the benchmark be performed on GPU", action="store_true") parser.add_argument("--it", type=int, default=100, help="Number of iterations to run") parser.add_argument( "--pretrained", dest="pretrained", help="Use pre-trained models from the modelzoo", action="store_true" ) args = parser.parse_args() main(args)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. """ Text detection latency benchmark """ import argparse import os import time import numpy as np import torch os.environ["USE_TORCH"] = "1" from doctr.models import detection @torch.no_grad() def main(args): device = torch.device("cuda:0" if args.gpu else "cpu") # Pretrained imagenet model model = ( detection.__dict__[args.arch](pretrained=args.pretrained, pretrained_backbone=False).eval().to(device=device) ) # Input img_tensor = torch.rand((1, 3, args.size, args.size)).to(device=device) # Warmup for _ in range(10): _ = model(img_tensor) timings = [] # Evaluation runs for _ in range(args.it): start_ts = time.perf_counter() _ = model(img_tensor) timings.append(time.perf_counter() - start_ts) _timings = np.array(timings) print(f"{args.arch} ({args.it} runs on ({args.size}, {args.size}) inputs)") print(f"mean {1000 * _timings.mean():.2f}ms, std {1000 * _timings.std():.2f}ms") if __name__ == "__main__": parser = argparse.ArgumentParser( description="docTR latency benchmark for text detection (PyTorch)", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("arch", type=str, help="Architecture to use") parser.add_argument("--size", type=int, default=1024, help="The image input size") parser.add_argument("--gpu", dest="gpu", help="Should the benchmark be performed on GPU", action="store_true") parser.add_argument("--it", type=int, default=100, help="Number of iterations to run") parser.add_argument( "--pretrained", dest="pretrained", help="Use pre-trained models from the modelzoo", action="store_true" ) args = parser.parse_args() main(args)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import os os.environ["USE_TF"] = "1" os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" import datetime import hashlib import multiprocessing as mp import time import numpy as np import psutil import tensorflow as tf import wandb from fastprogress.fastprogress import master_bar, progress_bar from tensorflow.keras import mixed_precision from doctr.models import login_to_hub, push_to_hf_hub gpu_devices = tf.config.experimental.list_physical_devices("GPU") if any(gpu_devices): tf.config.experimental.set_memory_growth(gpu_devices[0], True) from doctr import transforms as T from doctr.datasets import DataLoader, DetectionDataset from doctr.models import detection from doctr.utils.metrics import LocalizationConfusion from utils import load_backbone, plot_recorder, plot_samples def record_lr( model: tf.keras.Model, train_loader: DataLoader, batch_transforms, optimizer, start_lr: float = 1e-7, end_lr: float = 1, num_it: int = 100, amp: bool = False, ): """Gridsearch the optimal learning rate for the training. Adapted from https://github.com/frgfm/Holocron/blob/master/holocron/trainer/core.py """ if num_it > len(train_loader): raise ValueError("the value of `num_it` needs to be lower than the number of available batches") # Update param groups & LR gamma = (end_lr / start_lr) ** (1 / (num_it - 1)) optimizer.learning_rate = start_lr lr_recorder = [start_lr * gamma**idx for idx in range(num_it)] loss_recorder = [] for batch_idx, (images, targets) in enumerate(train_loader): images = batch_transforms(images) # Forward, Backward & update with tf.GradientTape() as tape: train_loss = model(images, targets, training=True)["loss"] grads = tape.gradient(train_loss, model.trainable_weights) if amp: grads = optimizer.get_unscaled_gradients(grads) optimizer.apply_gradients(zip(grads, model.trainable_weights)) optimizer.learning_rate = optimizer.learning_rate * gamma # Record train_loss = train_loss.numpy() if np.any(np.isnan(train_loss)): if batch_idx == 0: raise ValueError("loss value is NaN or inf.") else: break loss_recorder.append(train_loss.mean()) # Stop after the number of iterations if batch_idx + 1 == num_it: break return lr_recorder[: len(loss_recorder)], loss_recorder def fit_one_epoch(model, train_loader, batch_transforms, optimizer, mb, amp=False): train_iter = iter(train_loader) # Iterate over the batches of the dataset for images, targets in progress_bar(train_iter, parent=mb): images = batch_transforms(images) with tf.GradientTape() as tape: train_loss = model(images, targets, training=True)["loss"] grads = tape.gradient(train_loss, model.trainable_weights) if amp: grads = optimizer.get_unscaled_gradients(grads) optimizer.apply_gradients(zip(grads, model.trainable_weights)) mb.child.comment = f"Training loss: {train_loss.numpy():.6}" def evaluate(model, val_loader, batch_transforms, val_metric): # Reset val metric val_metric.reset() # Validation loop val_loss, batch_cnt = 0, 0 val_iter = iter(val_loader) for images, targets in val_iter: images = batch_transforms(images) out = model(images, targets, training=False, return_preds=True) # Compute metric loc_preds = out["preds"] for target, loc_pred in zip(targets, loc_preds): for boxes_gt, boxes_pred in zip(target.values(), loc_pred.values()): if args.rotation and args.eval_straight: # Convert pred to boxes [xmin, ymin, xmax, ymax] N, 4, 2 --> N, 4 boxes_pred = np.concatenate((boxes_pred.min(axis=1), boxes_pred.max(axis=1)), axis=-1) val_metric.update(gts=boxes_gt, preds=boxes_pred[:, :4]) val_loss += out["loss"].numpy() batch_cnt += 1 val_loss /= batch_cnt recall, precision, mean_iou = val_metric.summary() return val_loss, recall, precision, mean_iou def main(args): print(args) if args.push_to_hub: login_to_hub() if not isinstance(args.workers, int): args.workers = min(16, mp.cpu_count()) system_available_memory = int(psutil.virtual_memory().available / 1024**3) # AMP if args.amp: mixed_precision.set_global_policy("mixed_float16") st = time.time() val_set = DetectionDataset( img_folder=os.path.join(args.val_path, "images"), label_path=os.path.join(args.val_path, "labels.json"), sample_transforms=T.SampleCompose( ( [T.Resize((args.input_size, args.input_size), preserve_aspect_ratio=True, symmetric_pad=True)] if not args.rotation or args.eval_straight else [] ) + ( [ T.Resize(args.input_size, preserve_aspect_ratio=True), # This does not pad T.RandomRotate(90, expand=True), T.Resize((args.input_size, args.input_size), preserve_aspect_ratio=True, symmetric_pad=True), ] if args.rotation and not args.eval_straight else [] ) ), use_polygons=args.rotation and not args.eval_straight, ) val_loader = DataLoader( val_set, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=args.workers, ) print( f"Validation set loaded in {time.time() - st:.4}s ({len(val_set)} samples in " f"{val_loader.num_batches} batches)" ) with open(os.path.join(args.val_path, "labels.json"), "rb") as f: val_hash = hashlib.sha256(f.read()).hexdigest() batch_transforms = T.Compose( [ T.Normalize(mean=(0.798, 0.785, 0.772), std=(0.264, 0.2749, 0.287)), ] ) # Load doctr model model = detection.__dict__[args.arch]( pretrained=args.pretrained, input_shape=(args.input_size, args.input_size, 3), assume_straight_pages=not args.rotation, class_names=val_set.class_names, ) # Resume weights if isinstance(args.resume, str): model.load_weights(args.resume) if isinstance(args.pretrained_backbone, str): print("Loading backbone weights.") model = load_backbone(model, args.pretrained_backbone) print("Done.") # Metrics val_metric = LocalizationConfusion( use_polygons=args.rotation and not args.eval_straight, mask_shape=(args.input_size, args.input_size), use_broadcasting=True if system_available_memory > 62 else False, ) if args.test_only: print("Running evaluation") val_loss, recall, precision, mean_iou = evaluate(model, val_loader, batch_transforms, val_metric) print( f"Validation loss: {val_loss:.6} (Recall: {recall:.2%} | Precision: {precision:.2%} | " f"Mean IoU: {mean_iou:.2%})" ) return st = time.time() # Load both train and val data generators train_set = DetectionDataset( img_folder=os.path.join(args.train_path, "images"), label_path=os.path.join(args.train_path, "labels.json"), img_transforms=T.Compose( [ # Augmentations T.RandomApply(T.ColorInversion(), 0.1), T.RandomJpegQuality(60), T.RandomSaturation(0.3), T.RandomContrast(0.3), T.RandomBrightness(0.3), ] ), sample_transforms=T.SampleCompose( ( [T.Resize((args.input_size, args.input_size), preserve_aspect_ratio=True, symmetric_pad=True)] if not args.rotation else [] ) + ( [ T.Resize(args.input_size, preserve_aspect_ratio=True), # This does not pad T.RandomRotate(90, expand=True), T.Resize((args.input_size, args.input_size), preserve_aspect_ratio=True, symmetric_pad=True), ] if args.rotation else [] ) ), use_polygons=args.rotation, ) train_loader = DataLoader( train_set, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=args.workers, ) print( f"Train set loaded in {time.time() - st:.4}s ({len(train_set)} samples in " f"{train_loader.num_batches} batches)" ) with open(os.path.join(args.train_path, "labels.json"), "rb") as f: train_hash = hashlib.sha256(f.read()).hexdigest() if args.show_samples: x, target = next(iter(train_loader)) plot_samples(x, target) return # Optimizer scheduler = tf.keras.optimizers.schedules.ExponentialDecay( args.lr, decay_steps=args.epochs * len(train_loader), decay_rate=1 / (25e4), # final lr as a fraction of initial lr staircase=False, ) optimizer = tf.keras.optimizers.Adam(learning_rate=scheduler, beta_1=0.95, beta_2=0.99, epsilon=1e-6, clipnorm=5) if args.amp: optimizer = mixed_precision.LossScaleOptimizer(optimizer) # LR Finder if args.find_lr: lrs, losses = record_lr(model, train_loader, batch_transforms, optimizer, amp=args.amp) plot_recorder(lrs, losses) return # Tensorboard to monitor training current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") exp_name = f"{args.arch}_{current_time}" if args.name is None else args.name # W&B if args.wb: run = wandb.init( name=exp_name, project="text-detection", config={ "learning_rate": args.lr, "epochs": args.epochs, "weight_decay": 0.0, "batch_size": args.batch_size, "architecture": args.arch, "input_size": args.input_size, "optimizer": "adam", "framework": "tensorflow", "scheduler": "exp_decay", "train_hash": train_hash, "val_hash": val_hash, "pretrained": args.pretrained, "rotation": args.rotation, }, ) if args.freeze_backbone: for layer in model.feat_extractor.layers: layer.trainable = False min_loss = np.inf # Training loop mb = master_bar(range(args.epochs)) for epoch in mb: fit_one_epoch(model, train_loader, batch_transforms, optimizer, mb, args.amp) # Validation loop at the end of each epoch val_loss, recall, precision, mean_iou = evaluate(model, val_loader, batch_transforms, val_metric) if val_loss < min_loss: print(f"Validation loss decreased {min_loss:.6} --> {val_loss:.6}: saving state...") model.save_weights(f"./{exp_name}/weights") min_loss = val_loss log_msg = f"Epoch {epoch + 1}/{args.epochs} - Validation loss: {val_loss:.6} " if any(val is None for val in (recall, precision, mean_iou)): log_msg += "(Undefined metric value, caused by empty GTs or predictions)" else: log_msg += f"(Recall: {recall:.2%} | Precision: {precision:.2%} | Mean IoU: {mean_iou:.2%})" mb.write(log_msg) # W&B if args.wb: wandb.log( { "val_loss": val_loss, "recall": recall, "precision": precision, "mean_iou": mean_iou, } ) if args.wb: run.finish() if args.push_to_hub: push_to_hf_hub(model, exp_name, task="detection", run_config=args) def parse_args(): import argparse parser = argparse.ArgumentParser( description="DocTR training script for text detection (TensorFlow)", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("train_path", type=str, help="path to training data folder") parser.add_argument("val_path", type=str, help="path to validation data folder") parser.add_argument("arch", type=str, help="text-detection model to train") parser.add_argument("--name", type=str, default=None, help="Name of your training experiment") parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train the model on") parser.add_argument("-b", "--batch_size", type=int, default=2, help="batch size for training") parser.add_argument("--input_size", type=int, default=1024, help="model input size, H = W") parser.add_argument("--lr", type=float, default=0.001, help="learning rate for the optimizer (Adam)") parser.add_argument("-j", "--workers", type=int, default=None, help="number of workers used for dataloading") parser.add_argument("--resume", type=str, default=None, help="Path to your checkpoint") parser.add_argument("--pretrained-backbone", type=str, default=None, help="Path to your backbone weights") parser.add_argument("--test-only", dest="test_only", action="store_true", help="Run the validation loop") parser.add_argument( "--freeze-backbone", dest="freeze_backbone", action="store_true", help="freeze model backbone for fine-tuning" ) parser.add_argument( "--show-samples", dest="show_samples", action="store_true", help="Display unormalized training samples" ) parser.add_argument("--wb", dest="wb", action="store_true", help="Log to Weights & Biases") parser.add_argument("--push-to-hub", dest="push_to_hub", action="store_true", help="Push to Huggingface Hub") parser.add_argument( "--pretrained", dest="pretrained", action="store_true", help="Load pretrained parameters before starting the training", ) parser.add_argument("--rotation", dest="rotation", action="store_true", help="train with rotated documents") parser.add_argument( "--eval-straight", action="store_true", help="metrics evaluation with straight boxes instead of polygons to save time + memory", ) parser.add_argument("--amp", dest="amp", help="Use Automatic Mixed Precision", action="store_true") parser.add_argument("--find-lr", action="store_true", help="Gridsearch the optimal LR") args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() main(args)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import os from doctr.file_utils import CLASS_NAME os.environ["USE_TORCH"] = "1" import logging import multiprocessing as mp import time from pathlib import Path import psutil import torch from torch.utils.data import DataLoader, SequentialSampler from torchvision.transforms import Normalize from tqdm import tqdm from doctr import datasets from doctr import transforms as T from doctr.models import detection from doctr.utils.metrics import LocalizationConfusion @torch.no_grad() def evaluate(model, val_loader, batch_transforms, val_metric, amp=False): # Model in eval mode model.eval() # Reset val metric val_metric.reset() # Validation loop val_loss, batch_cnt = 0, 0 for images, targets in tqdm(val_loader): if torch.cuda.is_available(): images = images.cuda() images = batch_transforms(images) targets = [{CLASS_NAME: t["boxes"]} for t in targets] if amp: with torch.cuda.amp.autocast(): out = model(images, targets, return_preds=True) else: out = model(images, targets, return_preds=True) # Compute metric loc_preds = out["preds"] for target, loc_pred in zip(targets, loc_preds): for boxes_gt, boxes_pred in zip(target.values(), loc_pred.values()): # Remove scores val_metric.update(gts=boxes_gt, preds=boxes_pred[:, :-1]) val_loss += out["loss"].item() batch_cnt += 1 val_loss /= batch_cnt recall, precision, mean_iou = val_metric.summary() return val_loss, recall, precision, mean_iou def main(args): print(args) if not isinstance(args.workers, int): args.workers = min(16, mp.cpu_count()) torch.backends.cudnn.benchmark = True system_available_memory = int(psutil.virtual_memory().available / 1024**3) # Load docTR model model = detection.__dict__[args.arch]( pretrained=not isinstance(args.resume, str), assume_straight_pages=not args.rotation ).eval() if isinstance(args.size, int): input_shape = (args.size, args.size) else: input_shape = model.cfg["input_shape"][-2:] mean, std = model.cfg["mean"], model.cfg["std"] st = time.time() ds = datasets.__dict__[args.dataset]( train=True, download=True, use_polygons=args.rotation, sample_transforms=T.Resize(input_shape), ) # Monkeypatch subfolder = ds.root.split("/")[-2:] ds.root = str(Path(ds.root).parent.parent) ds.data = [(os.path.join(*subfolder, name), target) for name, target in ds.data] _ds = datasets.__dict__[args.dataset]( train=False, download=True, use_polygons=args.rotation, sample_transforms=T.Resize(input_shape), ) subfolder = _ds.root.split("/")[-2:] ds.data.extend([(os.path.join(*subfolder, name), target) for name, target in _ds.data]) test_loader = DataLoader( ds, batch_size=args.batch_size, drop_last=False, num_workers=args.workers, sampler=SequentialSampler(ds), pin_memory=torch.cuda.is_available(), collate_fn=ds.collate_fn, ) print(f"Test set loaded in {time.time() - st:.4}s ({len(ds)} samples in " f"{len(test_loader)} batches)") batch_transforms = Normalize(mean=mean, std=std) # Resume weights if isinstance(args.resume, str): print(f"Resuming {args.resume}") checkpoint = torch.load(args.resume, map_location="cpu") model.load_state_dict(checkpoint) # GPU if isinstance(args.device, int): if not torch.cuda.is_available(): raise AssertionError("PyTorch cannot access your GPU. Please investigate!") if args.device >= torch.cuda.device_count(): raise ValueError("Invalid device index") # Silent default switch to GPU if available elif torch.cuda.is_available(): args.device = 0 else: logging.warning("No accessible GPU, targe device set to CPU.") if torch.cuda.is_available(): torch.cuda.set_device(args.device) model = model.cuda() # Metrics metric = LocalizationConfusion( use_polygons=args.rotation, mask_shape=input_shape, use_broadcasting=True if system_available_memory > 62 else False, ) print("Running evaluation") val_loss, recall, precision, mean_iou = evaluate(model, test_loader, batch_transforms, metric, amp=args.amp) print( f"Validation loss: {val_loss:.6} (Recall: {recall:.2%} | Precision: {precision:.2%} | " f"Mean IoU: {mean_iou:.2%})" ) def parse_args(): import argparse parser = argparse.ArgumentParser( description="docTR evaluation script for text detection (PyTorch)", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("arch", type=str, help="text-detection model to evaluate") parser.add_argument("--dataset", type=str, default="FUNSD", help="Dataset to evaluate on") parser.add_argument("-b", "--batch_size", type=int, default=2, help="batch size for evaluation") parser.add_argument("--device", default=None, type=int, help="device") parser.add_argument("--size", type=int, default=None, help="model input size, H = W") parser.add_argument("-j", "--workers", type=int, default=None, help="number of workers used for dataloading") parser.add_argument("--rotation", dest="rotation", action="store_true", help="inference with rotated bbox") parser.add_argument("--resume", type=str, default=None, help="Checkpoint to resume") parser.add_argument("--amp", dest="amp", help="Use Automatic Mixed Precision", action="store_true") args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() main(args)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import os from doctr.file_utils import CLASS_NAME os.environ["USE_TF"] = "1" os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" import multiprocessing as mp import time from pathlib import Path import psutil import tensorflow as tf from tensorflow.keras import mixed_precision from tqdm import tqdm gpu_devices = tf.config.experimental.list_physical_devices("GPU") if any(gpu_devices): tf.config.experimental.set_memory_growth(gpu_devices[0], True) from doctr import datasets from doctr import transforms as T from doctr.datasets import DataLoader from doctr.models import detection from doctr.utils.metrics import LocalizationConfusion def evaluate(model, val_loader, batch_transforms, val_metric): # Reset val metric val_metric.reset() # Validation loop val_loss, batch_cnt = 0, 0 for images, targets in tqdm(val_loader): images = batch_transforms(images) targets = [{CLASS_NAME: t["boxes"]} for t in targets] out = model(images, targets, training=False, return_preds=True) # Compute metric loc_preds = out["preds"] for target, loc_pred in zip(targets, loc_preds): for boxes_gt, boxes_pred in zip(target.values(), loc_pred.values()): # Remove scores val_metric.update(gts=boxes_gt, preds=boxes_pred[:, :-1]) val_loss += out["loss"].numpy() batch_cnt += 1 val_loss /= batch_cnt recall, precision, mean_iou = val_metric.summary() return val_loss, recall, precision, mean_iou def main(args): print(args) if not isinstance(args.workers, int): args.workers = min(16, mp.cpu_count()) system_available_memory = int(psutil.virtual_memory().available / 1024**3) # AMP if args.amp: mixed_precision.set_global_policy("mixed_float16") input_shape = (args.size, args.size, 3) if isinstance(args.size, int) else None # Load docTR model model = detection.__dict__[args.arch]( pretrained=isinstance(args.resume, str), assume_straight_pages=not args.rotation, input_shape=input_shape, ) # Resume weights if isinstance(args.resume, str): print(f"Resuming {args.resume}") model.load_weights(args.resume).expect_partial() input_shape = model.cfg["input_shape"] if input_shape is None else input_shape mean, std = model.cfg["mean"], model.cfg["std"] st = time.time() ds = datasets.__dict__[args.dataset]( train=True, download=True, use_polygons=args.rotation, sample_transforms=T.Resize(input_shape[:2]), ) # Monkeypatch subfolder = ds.root.split("/")[-2:] ds.root = str(Path(ds.root).parent.parent) ds.data = [(os.path.join(*subfolder, name), target) for name, target in ds.data] _ds = datasets.__dict__[args.dataset]( train=False, download=True, use_polygons=args.rotation, sample_transforms=T.Resize(input_shape[:2]), ) subfolder = _ds.root.split("/")[-2:] ds.data.extend([(os.path.join(*subfolder, name), target) for name, target in _ds.data]) test_loader = DataLoader( ds, batch_size=args.batch_size, drop_last=False, num_workers=args.workers, shuffle=False, ) print(f"Test set loaded in {time.time() - st:.4}s ({len(ds)} samples in " f"{len(test_loader)} batches)") batch_transforms = T.Normalize(mean=mean, std=std) # Metrics metric = LocalizationConfusion( use_polygons=args.rotation, mask_shape=input_shape[:2], use_broadcasting=True if system_available_memory > 62 else False, ) print("Running evaluation") val_loss, recall, precision, mean_iou = evaluate(model, test_loader, batch_transforms, metric) print( f"Validation loss: {val_loss:.6} (Recall: {recall:.2%} | Precision: {precision:.2%} | " f"Mean IoU: {mean_iou:.2%})" ) def parse_args(): import argparse parser = argparse.ArgumentParser( description="docTR evaluation script for text detection (TensorFlow)", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("arch", type=str, help="text-detection model to evaluate") parser.add_argument("--dataset", type=str, default="FUNSD", help="Dataset to evaluate on") parser.add_argument("-b", "--batch_size", type=int, default=2, help="batch size for evaluation") parser.add_argument("--size", type=int, default=None, help="model input size, H = W") parser.add_argument("-j", "--workers", type=int, default=None, help="number of workers used for dataloading") parser.add_argument("--rotation", dest="rotation", action="store_true", help="inference with rotated bbox") parser.add_argument("--resume", type=str, default=None, help="Checkpoint to resume") parser.add_argument("--amp", dest="amp", help="Use Automatic Mixed Precision", action="store_true") args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() main(args)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import pickle from typing import Dict, List import cv2 import matplotlib.pyplot as plt import numpy as np def plot_samples(images, targets: List[Dict[str, np.ndarray]]) -> None: # Unnormalize image nb_samples = min(len(images), 4) _, axes = plt.subplots(2, nb_samples, figsize=(20, 5)) for idx in range(nb_samples): img = (255 * images[idx].numpy()).round().clip(0, 255).astype(np.uint8) if img.shape[0] == 3 and img.shape[2] != 3: img = img.transpose(1, 2, 0) target = np.zeros(img.shape[:2], np.uint8) tgts = targets[idx].copy() for key, boxes in tgts.items(): boxes[:, [0, 2]] = boxes[:, [0, 2]] * img.shape[1] boxes[:, [1, 3]] = boxes[:, [1, 3]] * img.shape[0] boxes[:, :4] = boxes[:, :4].round().astype(int) for box in boxes: if boxes.ndim == 3: cv2.fillPoly(target, [np.int0(box)], 1) else: target[int(box[1]) : int(box[3]) + 1, int(box[0]) : int(box[2]) + 1] = 1 if nb_samples > 1: axes[0][idx].imshow(img) axes[1][idx].imshow(target.astype(bool)) else: axes[0].imshow(img) axes[1].imshow(target.astype(bool)) # Disable axis for ax in axes.ravel(): ax.axis("off") plt.show() def plot_recorder(lr_recorder, loss_recorder, beta: float = 0.95, **kwargs) -> None: """Display the results of the LR grid search. Adapted from https://github.com/frgfm/Holocron/blob/master/holocron/trainer/core.py Args: lr_recorder: list of LR values loss_recorder: list of loss values beta (float, optional): smoothing factor """ if len(lr_recorder) != len(loss_recorder) or len(lr_recorder) == 0: raise AssertionError("Both `lr_recorder` and `loss_recorder` should have the same length") # Exp moving average of loss smoothed_losses = [] avg_loss = 0.0 for idx, loss in enumerate(loss_recorder): avg_loss = beta * avg_loss + (1 - beta) * loss smoothed_losses.append(avg_loss / (1 - beta ** (idx + 1))) # Properly rescale Y-axis data_slice = slice( min(len(loss_recorder) // 10, 10), # -min(len(loss_recorder) // 20, 5) if len(loss_recorder) >= 20 else len(loss_recorder) len(loss_recorder), ) vals = np.array(smoothed_losses[data_slice]) min_idx = vals.argmin() max_val = vals.max() if min_idx is None else vals[: min_idx + 1].max() # type: ignore[misc] delta = max_val - vals[min_idx] plt.plot(lr_recorder[data_slice], smoothed_losses[data_slice]) plt.xscale("log") plt.xlabel("Learning Rate") plt.ylabel("Training loss") plt.ylim(vals[min_idx] - 0.1 * delta, max_val + 0.2 * delta) plt.grid(True, linestyle="--", axis="x") plt.show(**kwargs) def load_backbone(model, weights_path): pretrained_backbone_weights = pickle.load(open(weights_path, "rb")) model.feat_extractor.set_weights(pretrained_backbone_weights[0]) model.fpn.set_weights(pretrained_backbone_weights[1]) return model
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import os os.environ["USE_TORCH"] = "1" import datetime import hashlib import logging import multiprocessing as mp import time import numpy as np import psutil import torch import wandb from fastprogress.fastprogress import master_bar, progress_bar from torch.optim.lr_scheduler import CosineAnnealingLR, MultiplicativeLR, OneCycleLR from torch.utils.data import DataLoader, RandomSampler, SequentialSampler from torchvision.transforms import ColorJitter, Compose, Normalize from doctr import transforms as T from doctr.datasets import DetectionDataset from doctr.models import detection, login_to_hub, push_to_hf_hub from doctr.utils.metrics import LocalizationConfusion from utils import plot_recorder, plot_samples def record_lr( model: torch.nn.Module, train_loader: DataLoader, batch_transforms, optimizer, start_lr: float = 1e-7, end_lr: float = 1, num_it: int = 100, amp: bool = False, ): """Gridsearch the optimal learning rate for the training. Adapted from https://github.com/frgfm/Holocron/blob/master/holocron/trainer/core.py """ if num_it > len(train_loader): raise ValueError("the value of `num_it` needs to be lower than the number of available batches") model = model.train() # Update param groups & LR optimizer.defaults["lr"] = start_lr for pgroup in optimizer.param_groups: pgroup["lr"] = start_lr gamma = (end_lr / start_lr) ** (1 / (num_it - 1)) scheduler = MultiplicativeLR(optimizer, lambda step: gamma) lr_recorder = [start_lr * gamma**idx for idx in range(num_it)] loss_recorder = [] if amp: scaler = torch.cuda.amp.GradScaler() for batch_idx, (images, targets) in enumerate(train_loader): if torch.cuda.is_available(): images = images.cuda() images = batch_transforms(images) # Forward, Backward & update optimizer.zero_grad() if amp: with torch.cuda.amp.autocast(): train_loss = model(images, targets)["loss"] scaler.scale(train_loss).backward() # Gradient clipping scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), 5) # Update the params scaler.step(optimizer) scaler.update() else: train_loss = model(images, targets)["loss"] train_loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 5) optimizer.step() # Update LR scheduler.step() # Record if not torch.isfinite(train_loss): if batch_idx == 0: raise ValueError("loss value is NaN or inf.") else: break loss_recorder.append(train_loss.item()) # Stop after the number of iterations if batch_idx + 1 == num_it: break return lr_recorder[: len(loss_recorder)], loss_recorder def fit_one_epoch(model, train_loader, batch_transforms, optimizer, scheduler, mb, amp=False): if amp: scaler = torch.cuda.amp.GradScaler() model.train() # Iterate over the batches of the dataset for images, targets in progress_bar(train_loader, parent=mb): if torch.cuda.is_available(): images = images.cuda() images = batch_transforms(images) optimizer.zero_grad() if amp: with torch.cuda.amp.autocast(): train_loss = model(images, targets)["loss"] scaler.scale(train_loss).backward() # Gradient clipping scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), 5) # Update the params scaler.step(optimizer) scaler.update() else: train_loss = model(images, targets)["loss"] train_loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 5) optimizer.step() scheduler.step() mb.child.comment = f"Training loss: {train_loss.item():.6}" @torch.no_grad() def evaluate(model, val_loader, batch_transforms, val_metric, amp=False): # Model in eval mode model.eval() # Reset val metric val_metric.reset() # Validation loop val_loss, batch_cnt = 0, 0 for images, targets in val_loader: if torch.cuda.is_available(): images = images.cuda() images = batch_transforms(images) if amp: with torch.cuda.amp.autocast(): out = model(images, targets, return_preds=True) else: out = model(images, targets, return_preds=True) # Compute metric loc_preds = out["preds"] for target, loc_pred in zip(targets, loc_preds): for boxes_gt, boxes_pred in zip(target.values(), loc_pred.values()): if args.rotation and args.eval_straight: # Convert pred to boxes [xmin, ymin, xmax, ymax] N, 4, 2 --> N, 4 boxes_pred = np.concatenate((boxes_pred.min(axis=1), boxes_pred.max(axis=1)), axis=-1) val_metric.update(gts=boxes_gt, preds=boxes_pred[:, :4]) val_loss += out["loss"].item() batch_cnt += 1 val_loss /= batch_cnt recall, precision, mean_iou = val_metric.summary() return val_loss, recall, precision, mean_iou def main(args): print(args) if args.push_to_hub: login_to_hub() if not isinstance(args.workers, int): args.workers = min(16, mp.cpu_count()) torch.backends.cudnn.benchmark = True system_available_memory = int(psutil.virtual_memory().available / 1024**3) st = time.time() val_set = DetectionDataset( img_folder=os.path.join(args.val_path, "images"), label_path=os.path.join(args.val_path, "labels.json"), sample_transforms=T.SampleCompose( ( [T.Resize((args.input_size, args.input_size), preserve_aspect_ratio=True, symmetric_pad=True)] if not args.rotation or args.eval_straight else [] ) + ( [ T.Resize(args.input_size, preserve_aspect_ratio=True), # This does not pad T.RandomRotate(90, expand=True), T.Resize((args.input_size, args.input_size), preserve_aspect_ratio=True, symmetric_pad=True), ] if args.rotation and not args.eval_straight else [] ) ), use_polygons=args.rotation and not args.eval_straight, ) val_loader = DataLoader( val_set, batch_size=args.batch_size, drop_last=False, num_workers=args.workers, sampler=SequentialSampler(val_set), pin_memory=torch.cuda.is_available(), collate_fn=val_set.collate_fn, ) print(f"Validation set loaded in {time.time() - st:.4}s ({len(val_set)} samples in " f"{len(val_loader)} batches)") with open(os.path.join(args.val_path, "labels.json"), "rb") as f: val_hash = hashlib.sha256(f.read()).hexdigest() batch_transforms = Normalize(mean=(0.798, 0.785, 0.772), std=(0.264, 0.2749, 0.287)) # Load doctr model model = detection.__dict__[args.arch]( pretrained=args.pretrained, assume_straight_pages=not args.rotation, class_names=val_set.class_names, ) # Resume weights if isinstance(args.resume, str): print(f"Resuming {args.resume}") checkpoint = torch.load(args.resume, map_location="cpu") model.load_state_dict(checkpoint) # GPU if isinstance(args.device, int): if not torch.cuda.is_available(): raise AssertionError("PyTorch cannot access your GPU. Please investigate!") if args.device >= torch.cuda.device_count(): raise ValueError("Invalid device index") # Silent default switch to GPU if available elif torch.cuda.is_available(): args.device = 0 else: logging.warning("No accessible GPU, targe device set to CPU.") if torch.cuda.is_available(): torch.cuda.set_device(args.device) model = model.cuda() # Metrics val_metric = LocalizationConfusion( use_polygons=args.rotation and not args.eval_straight, mask_shape=(args.input_size, args.input_size), use_broadcasting=True if system_available_memory > 62 else False, ) if args.test_only: print("Running evaluation") val_loss, recall, precision, mean_iou = evaluate(model, val_loader, batch_transforms, val_metric, amp=args.amp) print( f"Validation loss: {val_loss:.6} (Recall: {recall:.2%} | Precision: {precision:.2%} | " f"Mean IoU: {mean_iou:.2%})" ) return st = time.time() # Load both train and val data generators train_set = DetectionDataset( img_folder=os.path.join(args.train_path, "images"), label_path=os.path.join(args.train_path, "labels.json"), img_transforms=Compose( [ # Augmentations T.RandomApply(T.ColorInversion(), 0.1), ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.02), ] ), sample_transforms=T.SampleCompose( ( [T.Resize((args.input_size, args.input_size), preserve_aspect_ratio=True, symmetric_pad=True)] if not args.rotation else [] ) + ( [ T.Resize(args.input_size, preserve_aspect_ratio=True), T.RandomRotate(90, expand=True), T.Resize((args.input_size, args.input_size), preserve_aspect_ratio=True, symmetric_pad=True), ] if args.rotation else [] ) ), use_polygons=args.rotation, ) train_loader = DataLoader( train_set, batch_size=args.batch_size, drop_last=True, num_workers=args.workers, sampler=RandomSampler(train_set), pin_memory=torch.cuda.is_available(), collate_fn=train_set.collate_fn, ) print(f"Train set loaded in {time.time() - st:.4}s ({len(train_set)} samples in " f"{len(train_loader)} batches)") with open(os.path.join(args.train_path, "labels.json"), "rb") as f: train_hash = hashlib.sha256(f.read()).hexdigest() if args.show_samples: x, target = next(iter(train_loader)) plot_samples(x, target) return # Backbone freezing if args.freeze_backbone: for p in model.feat_extractor.parameters(): p.reguires_grad_(False) # Optimizer optimizer = torch.optim.Adam( [p for p in model.parameters() if p.requires_grad], args.lr, betas=(0.95, 0.99), eps=1e-6, weight_decay=args.weight_decay, ) # LR Finder if args.find_lr: lrs, losses = record_lr(model, train_loader, batch_transforms, optimizer, amp=args.amp) plot_recorder(lrs, losses) return # Scheduler if args.sched == "cosine": scheduler = CosineAnnealingLR(optimizer, args.epochs * len(train_loader), eta_min=args.lr / 25e4) elif args.sched == "onecycle": scheduler = OneCycleLR(optimizer, args.lr, args.epochs * len(train_loader)) # Training monitoring current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") exp_name = f"{args.arch}_{current_time}" if args.name is None else args.name # W&B if args.wb: run = wandb.init( name=exp_name, project="text-detection", config={ "learning_rate": args.lr, "epochs": args.epochs, "weight_decay": args.weight_decay, "batch_size": args.batch_size, "architecture": args.arch, "input_size": args.input_size, "optimizer": "adam", "framework": "pytorch", "scheduler": args.sched, "train_hash": train_hash, "val_hash": val_hash, "pretrained": args.pretrained, "rotation": args.rotation, "amp": args.amp, }, ) # Create loss queue min_loss = np.inf # Training loop mb = master_bar(range(args.epochs)) for epoch in mb: fit_one_epoch(model, train_loader, batch_transforms, optimizer, scheduler, mb, amp=args.amp) # Validation loop at the end of each epoch val_loss, recall, precision, mean_iou = evaluate(model, val_loader, batch_transforms, val_metric, amp=args.amp) if val_loss < min_loss: print(f"Validation loss decreased {min_loss:.6} --> {val_loss:.6}: saving state...") torch.save(model.state_dict(), f"./{exp_name}.pt") min_loss = val_loss log_msg = f"Epoch {epoch + 1}/{args.epochs} - Validation loss: {val_loss:.6} " if any(val is None for val in (recall, precision, mean_iou)): log_msg += "(Undefined metric value, caused by empty GTs or predictions)" else: log_msg += f"(Recall: {recall:.2%} | Precision: {precision:.2%} | Mean IoU: {mean_iou:.2%})" mb.write(log_msg) # W&B if args.wb: wandb.log( { "val_loss": val_loss, "recall": recall, "precision": precision, "mean_iou": mean_iou, } ) if args.wb: run.finish() if args.push_to_hub: push_to_hf_hub(model, exp_name, task="detection", run_config=args) def parse_args(): import argparse parser = argparse.ArgumentParser( description="DocTR training script for text detection (PyTorch)", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("train_path", type=str, help="path to training data folder") parser.add_argument("val_path", type=str, help="path to validation data folder") parser.add_argument("arch", type=str, help="text-detection model to train") parser.add_argument("--name", type=str, default=None, help="Name of your training experiment") parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train the model on") parser.add_argument("-b", "--batch_size", type=int, default=2, help="batch size for training") parser.add_argument("--device", default=None, type=int, help="device") parser.add_argument("--input_size", type=int, default=1024, help="model input size, H = W") parser.add_argument("--lr", type=float, default=0.001, help="learning rate for the optimizer (Adam)") parser.add_argument("--wd", "--weight-decay", default=0, type=float, help="weight decay", dest="weight_decay") parser.add_argument("-j", "--workers", type=int, default=None, help="number of workers used for dataloading") parser.add_argument("--resume", type=str, default=None, help="Path to your checkpoint") parser.add_argument("--test-only", dest="test_only", action="store_true", help="Run the validation loop") parser.add_argument( "--freeze-backbone", dest="freeze_backbone", action="store_true", help="freeze model backbone for fine-tuning" ) parser.add_argument( "--show-samples", dest="show_samples", action="store_true", help="Display unormalized training samples" ) parser.add_argument("--wb", dest="wb", action="store_true", help="Log to Weights & Biases") parser.add_argument("--push-to-hub", dest="push_to_hub", action="store_true", help="Push to Huggingface Hub") parser.add_argument( "--pretrained", dest="pretrained", action="store_true", help="Load pretrained parameters before starting the training", ) parser.add_argument("--rotation", dest="rotation", action="store_true", help="train with rotated documents") parser.add_argument( "--eval-straight", action="store_true", help="metrics evaluation with straight boxes instead of polygons to save time + memory", ) parser.add_argument("--sched", type=str, default="cosine", help="scheduler to use") parser.add_argument("--amp", dest="amp", help="Use Automatic Mixed Precision", action="store_true") parser.add_argument("--find-lr", action="store_true", help="Gridsearch the optimal LR") args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() main(args)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. """ Object detection latency benchmark """ import argparse import os import time import numpy as np import torch os.environ["USE_TORCH"] = "1" from doctr.models import obj_detection @torch.no_grad() def main(args): device = torch.device("cuda:0" if args.gpu else "cpu") # Pretrained imagenet model model = ( obj_detection.__dict__[args.arch]( pretrained=args.pretrained, min_size=args.size, max_size=args.size, ) .eval() .to(device=device) ) # Input img_tensor = torch.rand((1, 3, args.size, args.size)).to(device=device) # Warmup for _ in range(10): _ = model(img_tensor) timings = [] # Evaluation runs for _ in range(args.it): start_ts = time.perf_counter() _ = model(img_tensor) timings.append(time.perf_counter() - start_ts) _timings = np.array(timings) print(f"{args.arch} ({args.it} runs on ({args.size}, {args.size}) inputs)") print(f"mean {1000 * _timings.mean():.2f}ms, std {1000 * _timings.std():.2f}ms") if __name__ == "__main__": parser = argparse.ArgumentParser( description="docTR latency benchmark for object detection (PyTorch)", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("arch", type=str, help="Architecture to use") parser.add_argument("--size", type=int, default=1024, help="The image input size") parser.add_argument("--gpu", dest="gpu", help="Should the benchmark be performed on GPU", action="store_true") parser.add_argument("--it", type=int, default=100, help="Number of iterations to run") parser.add_argument( "--pretrained", dest="pretrained", help="Use pre-trained models from the modelzoo", action="store_true" ) args = parser.parse_args() main(args)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from typing import Dict, List import cv2 import matplotlib.pyplot as plt import numpy as np from matplotlib.cm import get_cmap def plot_samples(images, targets: List[Dict[str, np.ndarray]], classes: List[str]) -> None: cmap = get_cmap("gist_rainbow", len(classes)) # Unnormalize image nb_samples = min(len(images), 4) _, axes = plt.subplots(1, nb_samples, figsize=(20, 5)) for idx in range(nb_samples): img = (255 * images[idx].numpy()).round().clip(0, 255).astype(np.uint8) if img.shape[0] == 3 and img.shape[2] != 3: img = img.transpose(1, 2, 0) target = img.copy() for box, class_idx in zip(targets[idx]["boxes"].numpy(), targets[idx]["labels"]): r, g, b, _ = cmap(class_idx.numpy()) color = int(round(255 * r)), int(round(255 * g)), int(round(255 * b)) cv2.rectangle(target, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), color, 2) text_size, _ = cv2.getTextSize(classes[class_idx], cv2.FONT_HERSHEY_SIMPLEX, 1, 2) text_w, text_h = text_size cv2.rectangle(target, (int(box[0]), int(box[1])), (int(box[0]) + text_w, int(box[1]) - text_h), color, -1) cv2.putText( target, classes[class_idx], (int(box[0]), int(box[1])), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2 ) axes[idx].imshow(target) # Disable axis for ax in axes.ravel(): ax.axis("off") plt.show() def plot_recorder(lr_recorder, loss_recorder, beta: float = 0.95, **kwargs) -> None: """Display the results of the LR grid search. Adapted from https://github.com/frgfm/Holocron/blob/master/holocron/trainer/core.py Args: lr_recorder: list of LR values loss_recorder: list of loss values beta (float, optional): smoothing factor """ if len(lr_recorder) != len(loss_recorder) or len(lr_recorder) == 0: raise AssertionError("Both `lr_recorder` and `loss_recorder` should have the same length") # Exp moving average of loss smoothed_losses = [] avg_loss = 0.0 for idx, loss in enumerate(loss_recorder): avg_loss = beta * avg_loss + (1 - beta) * loss smoothed_losses.append(avg_loss / (1 - beta ** (idx + 1))) # Properly rescale Y-axis data_slice = slice( min(len(loss_recorder) // 10, 10), -min(len(loss_recorder) // 20, 5) if len(loss_recorder) >= 20 else len(loss_recorder), ) vals = np.array(smoothed_losses[data_slice]) min_idx = vals.argmin() max_val = vals.max() if min_idx is None else vals[: min_idx + 1].max() # type: ignore[misc] delta = max_val - vals[min_idx] plt.plot(lr_recorder[data_slice], smoothed_losses[data_slice]) plt.xscale("log") plt.xlabel("Learning Rate") plt.ylabel("Training loss") plt.ylim(vals[min_idx] - 0.1 * delta, max_val + 0.2 * delta) plt.grid(True, linestyle="--", axis="x") plt.show(**kwargs)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import os os.environ["USE_TORCH"] = "1" import datetime import logging import multiprocessing as mp import time import numpy as np import torch import torch.optim as optim import wandb from fastprogress.fastprogress import master_bar, progress_bar from torch.optim.lr_scheduler import MultiplicativeLR, StepLR from torch.utils.data import DataLoader, RandomSampler, SequentialSampler from torchvision.transforms import ColorJitter, Compose, GaussianBlur from doctr import transforms as T from doctr.datasets import DocArtefacts from doctr.models import login_to_hub, obj_detection, push_to_hf_hub from doctr.utils import DetectionMetric from utils import plot_recorder, plot_samples def record_lr( model: torch.nn.Module, train_loader: DataLoader, optimizer, start_lr: float = 1e-7, end_lr: float = 1, num_it: int = 100, amp: bool = False, ): """Gridsearch the optimal learning rate for the training. Adapted from https://github.com/frgfm/Holocron/blob/master/holocron/trainer/core.py """ if num_it > len(train_loader): raise ValueError("the value of `num_it` needs to be lower than the number of available batches") model = model.train() # Update param groups & LR optimizer.defaults["lr"] = start_lr for pgroup in optimizer.param_groups: pgroup["lr"] = start_lr gamma = (end_lr / start_lr) ** (1 / (num_it - 1)) scheduler = MultiplicativeLR(optimizer, lambda step: gamma) lr_recorder = [start_lr * gamma**idx for idx in range(num_it)] loss_recorder = [] if amp: scaler = torch.cuda.amp.GradScaler() for batch_idx, (images, targets) in enumerate(train_loader): targets = convert_to_abs_coords(targets, images.shape) if torch.cuda.is_available(): images = images.cuda() targets = [{k: v.cuda() for k, v in t.items()} for t in targets] # Forward, Backward & update optimizer.zero_grad() if amp: with torch.cuda.amp.autocast(): loss_dict = model(images, targets) train_loss = sum(v for v in loss_dict.values()) scaler.scale(train_loss).backward() # Update the params scaler.step(optimizer) scaler.update() else: loss_dict = model(images, targets) train_loss = sum(v for v in loss_dict.values()) train_loss.backward() optimizer.step() # Update LR scheduler.step() # Record if not torch.isfinite(train_loss): if batch_idx == 0: raise ValueError("loss value is NaN or inf.") else: break loss_recorder.append(train_loss.item()) # Stop after the number of iterations if batch_idx + 1 == num_it: break return lr_recorder[: len(loss_recorder)], loss_recorder def convert_to_abs_coords(targets, img_shape): height, width = img_shape[-2:] for idx, t in enumerate(targets): targets[idx]["boxes"][:, 0::2] = (t["boxes"][:, 0::2] * width).round() targets[idx]["boxes"][:, 1::2] = (t["boxes"][:, 1::2] * height).round() targets = [ { "boxes": torch.from_numpy(t["boxes"]).to(dtype=torch.float32), "labels": torch.tensor(t["labels"]).to(dtype=torch.long), } for t in targets ] return targets def fit_one_epoch(model, train_loader, optimizer, scheduler, mb, amp=False): if amp: scaler = torch.cuda.amp.GradScaler() model.train() # Iterate over the batches of the dataset for images, targets in progress_bar(train_loader, parent=mb): targets = convert_to_abs_coords(targets, images.shape) if torch.cuda.is_available(): images = images.cuda() targets = [{k: v.cuda() for k, v in t.items()} for t in targets] optimizer.zero_grad() if amp: with torch.cuda.amp.autocast(): loss_dict = model(images, targets) loss = sum(v for v in loss_dict.values()) scaler.scale(loss).backward() # Update the params scaler.step(optimizer) scaler.update() else: loss_dict = model(images, targets) loss = sum(v for v in loss_dict.values()) loss.backward() optimizer.step() mb.child.comment = f"Training loss: {loss.item()}" scheduler.step() @torch.no_grad() def evaluate(model, val_loader, metric, amp=False): model.eval() metric.reset() for images, targets in val_loader: targets = convert_to_abs_coords(targets, images.shape) if torch.cuda.is_available(): images = images.cuda() if amp: with torch.cuda.amp.autocast(): output = model(images) else: output = model(images) # Compute metric pred_labels = np.concatenate([o["labels"].cpu().numpy() for o in output]) pred_boxes = np.concatenate([o["boxes"].cpu().numpy() for o in output]) gt_boxes = np.concatenate([o["boxes"].cpu().numpy() for o in targets]) gt_labels = np.concatenate([o["labels"].cpu().numpy() for o in targets]) metric.update(gt_boxes, pred_boxes, gt_labels, pred_labels) return metric.summary() def main(args): print(args) if args.push_to_hub: login_to_hub() if not isinstance(args.workers, int): args.workers = min(16, mp.cpu_count()) torch.backends.cudnn.benchmark = True st = time.time() val_set = DocArtefacts( train=False, download=True, img_transforms=T.Resize((args.input_size, args.input_size)), ) val_loader = DataLoader( val_set, batch_size=args.batch_size, drop_last=False, num_workers=args.workers, sampler=SequentialSampler(val_set), pin_memory=torch.cuda.is_available(), collate_fn=val_set.collate_fn, ) print(f"Validation set loaded in {time.time() - st:.4}s ({len(val_set)} samples in " f"{len(val_loader)} batches)") # Load doctr model model = obj_detection.__dict__[args.arch](pretrained=args.pretrained, num_classes=5) # Resume weights if isinstance(args.resume, str): print(f"Resuming {args.resume}") checkpoint = torch.load(args.resume, map_location="cpu") model.load_state_dict(checkpoint) # GPU if isinstance(args.device, int): if not torch.cuda.is_available(): raise AssertionError("PyTorch cannot access your GPU. Please investigate!") if args.device >= torch.cuda.device_count(): raise ValueError("Invalid device index") # Silent default switch to GPU if available elif torch.cuda.is_available(): args.device = 0 else: logging.warning("No accessible GPU, target device set to CPU.") if torch.cuda.is_available(): torch.cuda.set_device(args.device) model = model.cuda() # Metrics metric = DetectionMetric(iou_thresh=0.5) if args.test_only: print("Running evaluation") recall, precision, mean_iou = evaluate(model, val_loader, metric, amp=args.amp) print(f"Recall: {recall:.2%} | Precision: {precision:.2%} |IoU: {mean_iou:.2%}") return st = time.time() # Load train data generators train_set = DocArtefacts( train=True, download=True, img_transforms=Compose( [ T.Resize((args.input_size, args.input_size)), T.RandomApply(T.GaussianNoise(0.0, 0.25), p=0.5), ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.02), T.RandomApply(GaussianBlur(kernel_size=(3, 3), sigma=(0.1, 3)), 0.3), ] ), sample_transforms=T.RandomHorizontalFlip(p=0.5), ) train_loader = DataLoader( train_set, batch_size=args.batch_size, drop_last=True, num_workers=args.workers, sampler=RandomSampler(train_set), pin_memory=torch.cuda.is_available(), collate_fn=train_set.collate_fn, ) print(f"Train set loaded in {time.time() - st:.4}s ({len(train_set)} samples in " f"{len(train_loader)} batches)") if args.show_samples: images, targets = next(iter(train_loader)) targets = convert_to_abs_coords(targets, images.shape) plot_samples(images, targets, train_set.CLASSES) return # Backbone freezing if args.freeze_backbone: for p in model.backbone.parameters(): p.reguires_grad_(False) # Optimizer optimizer = optim.SGD( [p for p in model.parameters() if p.requires_grad], lr=args.lr, weight_decay=args.weight_decay ) # LR Finder if args.find_lr: lrs, losses = record_lr(model, train_loader, optimizer, amp=args.amp) plot_recorder(lrs, losses) return # Scheduler scheduler = StepLR(optimizer, step_size=8, gamma=0.7) # Training monitoring current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") exp_name = f"{args.arch}_{current_time}" if args.name is None else args.name # W&B if args.wb: run = wandb.init( name=exp_name, project="object-detection", config={ "learning_rate": args.lr, "epochs": args.epochs, "weight_decay": args.weight_decay, "batch_size": args.batch_size, "architecture": args.arch, "input_size": args.input_size, "optimizer": "sgd", "framework": "pytorch", "scheduler": "step", "pretrained": args.pretrained, "amp": args.amp, }, ) mb = master_bar(range(args.epochs)) max_score = 0.0 for epoch in mb: fit_one_epoch(model, train_loader, optimizer, scheduler, mb, amp=args.amp) # Validation loop at the end of each epoch recall, precision, mean_iou = evaluate(model, val_loader, metric, amp=args.amp) f1_score = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0.0 if f1_score > max_score: print(f"Validation metric increased {max_score:.6} --> {f1_score:.6}: saving state...") torch.save(model.state_dict(), f"./{exp_name}.pt") max_score = f1_score log_msg = f"Epoch {epoch + 1}/{args.epochs} - " if any(val is None for val in (recall, precision, mean_iou)): log_msg += "Undefined metric value, caused by empty GTs or predictions" else: log_msg += f"Recall: {recall:.2%} | Precision: {precision:.2%} | Mean IoU: {mean_iou:.2%}" mb.write(log_msg) # W&B if args.wb: wandb.log( { "recall": recall, "precision": precision, "mean_iou": mean_iou, } ) if args.wb: run.finish() if args.push_to_hub: push_to_hf_hub(model, exp_name, task="obj_detection", run_config=args) def parse_args(): import argparse parser = argparse.ArgumentParser( description="DocTR training script for object detection (PyTorch)", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("arch", type=str, help="text-detection model to train") parser.add_argument("--name", type=str, default=None, help="Name of your training experiment") parser.add_argument("--epochs", type=int, default=20, help="number of epochs to train the model on") parser.add_argument("-b", "--batch_size", type=int, default=2, help="batch size for training") parser.add_argument("--device", default=None, type=int, help="device") parser.add_argument("--input_size", type=int, default=1024, help="model input size, H = W") parser.add_argument("--lr", type=float, default=0.001, help="learning rate for the optimizer (SGD)") parser.add_argument("--wd", "--weight-decay", default=0, type=float, help="weight decay", dest="weight_decay") parser.add_argument("-j", "--workers", type=int, default=None, help="number of workers used for dataloading") parser.add_argument("--resume", type=str, default=None, help="Path to your checkpoint") parser.add_argument("--test-only", dest="test_only", action="store_true", help="Run the validation loop") parser.add_argument( "--show-samples", dest="show_samples", action="store_true", help="Display unormalized training samples" ) parser.add_argument( "--freeze-backbone", dest="freeze_backbone", action="store_true", help="freeze model backbone for fine-tuning" ) parser.add_argument("--wb", dest="wb", action="store_true", help="Log to Weights & Biases") parser.add_argument("--push-to-hub", dest="push_to_hub", action="store_true", help="Push to Huggingface Hub") parser.add_argument( "--pretrained", dest="pretrained", action="store_true", help="Load pretrained parameters before starting the training", ) parser.add_argument("--amp", dest="amp", help="Use Automatic Mixed Precision", action="store_true") parser.add_argument("--find-lr", action="store_true", help="Gridsearch the optimal LR") args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() main(args)
import json import shutil import tempfile from io import BytesIO import cv2 import hdf5storage import numpy as np import pytest import requests import scipy.io as sio from PIL import Image from doctr.datasets.generator.base import synthesize_text_img from doctr.io import reader from doctr.utils import geometry @pytest.fixture(scope="session") def mock_vocab(): return ( "3K}7eé;5àÎYho]QwV6qU~W\"XnbBvcADfËmy.9ÔpÛ*{CôïE%M4#ÈR:g@T$x?0î£|za1ù8,OG€P-kçHëÀÂ2É/ûIJ'j" "(LNÙFut[)èZs+&°Sd=Ï!<â_Ç>rêi`l" ) @pytest.fixture(scope="session") def mock_pdf(tmpdir_factory): # Page 1 text_img = synthesize_text_img("I am a jedi!", background_color=(255, 255, 255), text_color=(0, 0, 0)) page = Image.new(text_img.mode, (1240, 1754), (255, 255, 255)) page.paste(text_img, (50, 100)) # Page 2 text_img = synthesize_text_img("No, I am your father.", background_color=(255, 255, 255), text_color=(0, 0, 0)) _page = Image.new(text_img.mode, (1240, 1754), (255, 255, 255)) _page.paste(text_img, (40, 300)) # Save the PDF fn = tmpdir_factory.mktemp("data").join("mock_pdf_file.pdf") page.save(str(fn), "PDF", save_all=True, append_images=[_page]) return str(fn) @pytest.fixture(scope="session") def mock_payslip(tmpdir_factory): url = "https://3.bp.blogspot.com/-Es0oHTCrVEk/UnYA-iW9rYI/AAAAAAAAAFI/hWExrXFbo9U/s1600/003.jpg" file = BytesIO(requests.get(url).content) folder = tmpdir_factory.mktemp("data") fn = str(folder.join("mock_payslip.jpeg")) with open(fn, "wb") as f: f.write(file.getbuffer()) return fn @pytest.fixture(scope="session") def mock_tilted_payslip(mock_payslip, tmpdir_factory): image = reader.read_img_as_numpy(mock_payslip) image = geometry.rotate_image(image, 30, expand=True) tmp_path = str(tmpdir_factory.mktemp("data").join("mock_tilted_payslip.jpg")) cv2.imwrite(tmp_path, image) return tmp_path @pytest.fixture(scope="session") def mock_text_box_stream(): url = "https://doctr-static.mindee.com/models?id=v0.5.1/word-crop.png&src=0" return requests.get(url).content @pytest.fixture(scope="session") def mock_text_box(mock_text_box_stream, tmpdir_factory): file = BytesIO(mock_text_box_stream) fn = tmpdir_factory.mktemp("data").join("mock_text_box_file.png") with open(fn, "wb") as f: f.write(file.getbuffer()) return str(fn) @pytest.fixture(scope="session") def mock_image_stream(): url = "https://miro.medium.com/max/3349/1*mk1-6aYaf_Bes1E3Imhc0A.jpeg" return requests.get(url).content @pytest.fixture(scope="session") def mock_image_path(mock_image_stream, tmpdir_factory): file = BytesIO(mock_image_stream) folder = tmpdir_factory.mktemp("images") fn = folder.join("mock_image_file.jpeg") with open(fn, "wb") as f: f.write(file.getbuffer()) return str(fn) @pytest.fixture(scope="session") def mock_image_folder(mock_image_stream, tmpdir_factory): file = BytesIO(mock_image_stream) folder = tmpdir_factory.mktemp("images") for i in range(5): fn = folder.join("mock_image_file_" + str(i) + ".jpeg") with open(fn, "wb") as f: f.write(file.getbuffer()) return str(folder) @pytest.fixture(scope="session") def mock_detection_label(tmpdir_factory): folder = tmpdir_factory.mktemp("labels") labels = {} for idx in range(5): labels[f"mock_image_file_{idx}.jpeg"] = { "img_dimensions": (800, 600), "img_hash": "dummy_hash", "polygons": [ [[1, 2], [1, 3], [2, 1], [2, 3]], [[10, 20], [10, 30], [20, 10], [20, 30]], [[3, 2], [3, 3], [4, 1], [4, 3]], [[30, 20], [30, 30], [40, 10], [40, 30]], ], } labels_path = folder.join("labels.json") with open(labels_path, "w") as f: json.dump(labels, f) return str(labels_path) @pytest.fixture(scope="session") def mock_recognition_label(tmpdir_factory): label_file = tmpdir_factory.mktemp("labels").join("labels.json") label = { "mock_image_file_0.jpeg": "I", "mock_image_file_1.jpeg": "am", "mock_image_file_2.jpeg": "a", "mock_image_file_3.jpeg": "jedi", "mock_image_file_4.jpeg": "!", } with open(label_file, "w") as f: json.dump(label, f) return str(label_file) @pytest.fixture(scope="session") def mock_ocrdataset(tmpdir_factory, mock_image_stream): root = tmpdir_factory.mktemp("dataset") label_file = root.join("labels.json") label = { "mock_image_file_0.jpg": { "typed_words": [ {"value": "I", "geometry": (0.2, 0.2, 0.1, 0.1, 0)}, {"value": "am", "geometry": (0.5, 0.5, 0.1, 0.1, 0)}, ] }, "mock_image_file_1.jpg": { "typed_words": [ {"value": "a", "geometry": (0.2, 0.2, 0.1, 0.1, 0)}, {"value": "jedi", "geometry": (0.5, 0.5, 0.1, 0.1, 0)}, ] }, "mock_image_file_2.jpg": { "typed_words": [ {"value": "!", "geometry": (0.2, 0.2, 0.1, 0.1, 0)}, ] }, } with open(label_file, "w") as f: json.dump(label, f) file = BytesIO(mock_image_stream) image_folder = tmpdir_factory.mktemp("images") for i in range(3): fn = image_folder.join(f"mock_image_file_{i}.jpg") with open(fn, "wb") as f: f.write(file.getbuffer()) return str(image_folder), str(label_file) @pytest.fixture(scope="session") def mock_ic13(tmpdir_factory, mock_image_stream): file = BytesIO(mock_image_stream) image_folder = tmpdir_factory.mktemp("images") label_folder = tmpdir_factory.mktemp("labels") labels = [ "100, 100, 200, 200, 'I'\n", "250, 300, 455, 678, 'am'\n", "321, 485, 529, 607, 'a'\n", "235, 121, 325, 621, 'jedi'\n", "468, 589, 1120, 2520, '!'", ] for i in range(5): fn_l = label_folder.join(f"gt_mock_image_file_{i}.txt") with open(fn_l, "w") as f: f.writelines(labels) fn_i = image_folder.join(f"mock_image_file_{i}.jpg") with open(fn_i, "wb") as f: f.write(file.getbuffer()) return str(image_folder), str(label_folder) @pytest.fixture(scope="session") def mock_imgur5k(tmpdir_factory, mock_image_stream): file = BytesIO(mock_image_stream) image_folder = tmpdir_factory.mktemp("images") label_folder = tmpdir_factory.mktemp("dataset_info") labels = { "index_id": { "YsaVkzl": { "image_url": "https://i.imgur.com/YsaVkzl.jpg", "image_path": "/path/to/IMGUR5K-Handwriting-Dataset/images/YsaVkzl.jpg", "image_hash": "993a7cbb04a7c854d1d841b065948369", }, "wz3wHhN": { "image_url": "https://i.imgur.com/wz3wHhN.jpg", "image_path": "/path/to/IMGUR5K-Handwriting-Dataset/images/wz3wHhN.jpg", "image_hash": "9157426a98ee52f3e1e8d41fa3a99175", }, "BRHSP23": { "image_url": "https://i.imgur.com/BRHSP23.jpg", "image_path": "/path/to/IMGUR5K-Handwriting-Dataset/images/BRHSP23.jpg", "image_hash": "aab01f7ac82ae53845b01674e9e34167", }, }, "index_to_ann_map": { "YsaVkzl": ["YsaVkzl_0", "YsaVkzl_1"], "wz3wHhN": ["wz3wHhN_0", "wz3wHhN_1"], "BRHSP23": ["BRHSP23_0", "BRHSP23_1"], }, "ann_id": { "YsaVkzl_0": {"word": "I", "bounding_box": "[305.33, 850.67, 432.33, 115.33, 5.0]"}, "YsaVkzl_1": {"word": "am", "bounding_box": "[546.67, 455.67, 345.0, 212.33, 18.67]"}, "wz3wHhN_0": {"word": "a", "bounding_box": "[544.67, 345.67, 76.0, 222.33, 34.67]"}, "wz3wHhN_1": {"word": "jedi", "bounding_box": "[545.0, 437.0, 76.67, 201.0, 23.33]"}, "BRHSP23_0": {"word": "!", "bounding_box": "[555.67, 432.67, 220.0, 120.33, 7.67]"}, "BRHSP23_1": {"word": "!", "bounding_box": "[566.0, 437.0, 76.67, 201.0, 25.33]"}, }, } label_file = label_folder.join("imgur5k_annotations.json") with open(label_file, "w") as f: json.dump(labels, f) for index_id in ["YsaVkzl", "wz3wHhN", "BRHSP23"]: fn_i = image_folder.join(f"{index_id}.jpg") with open(fn_i, "wb") as f: f.write(file.getbuffer()) return str(image_folder), str(label_file) @pytest.fixture(scope="session") def mock_svhn_dataset(tmpdir_factory, mock_image_stream): root = tmpdir_factory.mktemp("datasets") svhn_root = root.mkdir("svhn") file = BytesIO(mock_image_stream) # ascii image names first = np.array([[49], [46], [112], [110], [103]], dtype=np.int16) # 1.png second = np.array([[50], [46], [112], [110], [103]], dtype=np.int16) # 2.png third = np.array([[51], [46], [112], [110], [103]], dtype=np.int16) # 3.png # labels: label is also ascii label = { "height": [35, 35, 35, 35], "label": [1, 1, 3, 7], "left": [116, 128, 137, 151], "top": [27, 29, 29, 26], "width": [15, 10, 17, 17], } matcontent = {"digitStruct": {"name": [first, second, third], "bbox": [label, label, label]}} # Mock train data train_root = svhn_root.mkdir("train") hdf5storage.write(matcontent, filename=train_root.join("digitStruct.mat")) for i in range(3): fn = train_root.join(f"{i+1}.png") with open(fn, "wb") as f: f.write(file.getbuffer()) # Packing data into an archive to simulate the real data set and bypass archive extraction archive_path = root.join("svhn_train.tar") shutil.make_archive(root.join("svhn_train"), "tar", str(svhn_root)) return str(archive_path) @pytest.fixture(scope="session") def mock_sroie_dataset(tmpdir_factory, mock_image_stream): root = tmpdir_factory.mktemp("datasets") sroie_root = root.mkdir("sroie2019_train_task1") annotations_folder = sroie_root.mkdir("annotations") image_folder = sroie_root.mkdir("images") labels = [ "72, 25, 326, 25, 326, 64, 72, 64, 'I'\n", "50, 82, 440, 82, 440, 121, 50, 121, 'am'\n", "205, 121, 285, 121, 285, 139, 205, 139, 'a'\n", "18, 250, 440, 320, 250, 64, 85, 121, 'jedi'\n", "400, 112, 252, 84, 112, 84, 75, 88, '!'", ] file = BytesIO(mock_image_stream) for i in range(3): fn_i = image_folder.join(f"{i}.jpg") with open(fn_i, "wb") as f: f.write(file.getbuffer()) fn_l = annotations_folder.join(f"{i}.txt") with open(fn_l, "w") as f: f.writelines(labels) # Packing data into an archive to simulate the real data set and bypass archive extraction archive_path = root.join("sroie2019_train_task1.zip") shutil.make_archive(root.join("sroie2019_train_task1"), "zip", str(sroie_root)) return str(archive_path) @pytest.fixture(scope="session") def mock_funsd_dataset(tmpdir_factory, mock_image_stream): root = tmpdir_factory.mktemp("datasets") funsd_root = root.mkdir("funsd") sub_dataset_root = funsd_root.mkdir("dataset") train_root = sub_dataset_root.mkdir("training_data") image_folder = train_root.mkdir("images") annotations_folder = train_root.mkdir("annotations") labels = { "form": [ { "box": [84, 109, 136, 119], "text": "I", "label": "question", "words": [{"box": [84, 109, 136, 119], "text": "I"}], "linking": [[0, 37]], "id": 0, }, { "box": [85, 110, 145, 120], "text": "am", "label": "answer", "words": [{"box": [85, 110, 145, 120], "text": "am"}], "linking": [[1, 38]], "id": 1, }, { "box": [86, 115, 150, 125], "text": "Luke", "label": "answer", "words": [{"box": [86, 115, 150, 125], "text": "Luke"}], "linking": [[2, 44]], "id": 2, }, ] } file = BytesIO(mock_image_stream) for i in range(3): fn_i = image_folder.join(f"{i}.png") with open(fn_i, "wb") as f: f.write(file.getbuffer()) fn_l = annotations_folder.join(f"{i}.json") with open(fn_l, "w") as f: json.dump(labels, f) # Packing data into an archive to simulate the real data set and bypass archive extraction archive_path = root.join("funsd.zip") shutil.make_archive(root.join("funsd"), "zip", str(funsd_root)) return str(archive_path) @pytest.fixture(scope="session") def mock_cord_dataset(tmpdir_factory, mock_image_stream): root = tmpdir_factory.mktemp("datasets") cord_root = root.mkdir("cord_train") image_folder = cord_root.mkdir("image") annotations_folder = cord_root.mkdir("json") labels = { "dontcare": [], "valid_line": [ { "words": [ { "quad": { "x2": 270, "y3": 390, "x3": 270, "y4": 390, "x1": 256, "y1": 374, "x4": 256, "y2": 374, }, "is_key": 0, "row_id": 2179893, "text": "I", } ], "category": "menu.cnt", "group_id": 3, }, { "words": [ { "quad": { "x2": 270, "y3": 418, "x3": 270, "y4": 418, "x1": 258, "y1": 402, "x4": 258, "y2": 402, }, "is_key": 0, "row_id": 2179894, "text": "am", } ], "category": "menu.cnt", "group_id": 4, }, { "words": [ { "quad": { "x2": 272, "y3": 444, "x3": 272, "y4": 444, "x1": 258, "y1": 428, "x4": 258, "y2": 428, }, "is_key": 0, "row_id": 2179895, "text": "Luke", } ], "category": "menu.cnt", "group_id": 5, }, ], } file = BytesIO(mock_image_stream) for i in range(3): fn_i = image_folder.join(f"receipt_{i}.png") with open(fn_i, "wb") as f: f.write(file.getbuffer()) fn_l = annotations_folder.join(f"receipt_{i}.json") with open(fn_l, "w") as f: json.dump(labels, f) # Packing data into an archive to simulate the real data set and bypass archive extraction archive_path = root.join("cord_train.zip") shutil.make_archive(root.join("cord_train"), "zip", str(cord_root)) return str(archive_path) @pytest.fixture(scope="session") def mock_synthtext_dataset(tmpdir_factory, mock_image_stream): root = tmpdir_factory.mktemp("datasets") synthtext_root = root.mkdir("SynthText") image_folder = synthtext_root.mkdir("8") annotation_file = synthtext_root.join("gt.mat") labels = { "imnames": [[["8/ballet_106_0.jpg"], ["8/ballet_106_1.jpg"], ["8/ballet_106_2.jpg"]]], "wordBB": [[np.random.randint(1000, size=(2, 4, 5)) for _ in range(3)]], "txt": [np.array([["I ", "am\na ", "Jedi ", "!"] for _ in range(3)])], } # hacky trick to write file into a LocalPath object with scipy.io.savemat with tempfile.NamedTemporaryFile(mode="wb", delete=True) as f: sio.savemat(f.name, labels) shutil.copy(f.name, str(annotation_file)) file = BytesIO(mock_image_stream) for i in range(3): fn_i = image_folder.join(f"ballet_106_{i}.jpg") with open(fn_i, "wb") as f: f.write(file.getbuffer()) # Packing data into an archive to simulate the real data set and bypass archive extraction archive_path = root.join("SynthText.zip") shutil.make_archive(root.join("SynthText"), "zip", str(synthtext_root)) return str(archive_path) @pytest.fixture(scope="session") def mock_doc_artefacts(tmpdir_factory, mock_image_stream): root = tmpdir_factory.mktemp("datasets") doc_root = root.mkdir("artefact_detection") labels = { "0.jpg": [ {"geometry": [0.94375, 0.4013671875, 0.99375, 0.4365234375], "label": "bar_code"}, {"geometry": [0.03125, 0.6923828125, 0.07875, 0.7294921875], "label": "qr_code"}, {"geometry": [0.1975, 0.1748046875, 0.39875, 0.2216796875], "label": "bar_code"}, ], "1.jpg": [ {"geometry": [0.94375, 0.4013671875, 0.99375, 0.4365234375], "label": "bar_code"}, {"geometry": [0.03125, 0.6923828125, 0.07875, 0.7294921875], "label": "qr_code"}, {"geometry": [0.1975, 0.1748046875, 0.39875, 0.2216796875], "label": "background"}, ], "2.jpg": [ {"geometry": [0.94375, 0.4013671875, 0.99375, 0.4365234375], "label": "logo"}, {"geometry": [0.03125, 0.6923828125, 0.07875, 0.7294921875], "label": "qr_code"}, {"geometry": [0.1975, 0.1748046875, 0.39875, 0.2216796875], "label": "photo"}, ], } train_root = doc_root.mkdir("train") label_file = train_root.join("labels.json") with open(label_file, "w") as f: json.dump(labels, f) image_folder = train_root.mkdir("images") file = BytesIO(mock_image_stream) for i in range(3): fn = image_folder.join(f"{i}.jpg") with open(fn, "wb") as f: f.write(file.getbuffer()) # Packing data into an archive to simulate the real data set and bypass archive extraction archive_path = root.join("artefact_detection.zip") shutil.make_archive(root.join("artefact_detection"), "zip", str(doc_root)) return str(archive_path) @pytest.fixture(scope="session") def mock_iiit5k_dataset(tmpdir_factory, mock_image_stream): root = tmpdir_factory.mktemp("datasets") iiit5k_root = root.mkdir("IIIT5K") image_folder = iiit5k_root.mkdir("train") annotation_file = iiit5k_root.join("trainCharBound.mat") labels = { "trainCharBound": {"ImgName": ["train/0.png"], "chars": ["I"], "charBB": np.random.randint(50, size=(1, 4))}, } # hacky trick to write file into a LocalPath object with scipy.io.savemat with tempfile.NamedTemporaryFile(mode="wb", delete=True) as f: sio.savemat(f.name, labels) shutil.copy(f.name, str(annotation_file)) file = BytesIO(mock_image_stream) for i in range(1): fn_i = image_folder.join(f"{i}.png") with open(fn_i, "wb") as f: f.write(file.getbuffer()) # Packing data into an archive to simulate the real data set and bypass archive extraction archive_path = root.join("IIIT5K-Word-V3.tar") shutil.make_archive(root.join("IIIT5K-Word-V3"), "tar", str(iiit5k_root)) return str(archive_path) @pytest.fixture(scope="session") def mock_svt_dataset(tmpdir_factory, mock_image_stream): root = tmpdir_factory.mktemp("datasets") svt_root = root.mkdir("svt1") labels = """<tagset><image><imageName>img/00_00.jpg</imageName> <address>341 Southwest 10th Avenue Portland OR</address><lex>LIVING,ROOM,THEATERS</lex> <Resolution x="1280" y="880"/><taggedRectangles><taggedRectangle height="75" width="236" x="375" y="253"> <tag>LIVING</tag></taggedRectangle></taggedRectangles></image><image><imageName>img/00_01.jpg</imageName> <address>1100 Southwest 6th Avenue Portland OR</address><lex>LULA</lex><Resolution x="1650" y="500"/> <taggedRectangles><taggedRectangle height="80" width="250" x="450" y="242"><tag>HOUSE</tag></taggedRectangle> </taggedRectangles></image><image><imageName>img/00_02.jpg</imageName> <address>341 Southwest 10th Avenue Portland OR</address><lex>LIVING,ROOM,THEATERS</lex><Resolution x="850" y="420"/> <taggedRectangles><taggedRectangle height="100" width="250" x="350" y="220"><tag>COST</tag></taggedRectangle> </taggedRectangles></image></tagset>""" with open(svt_root.join("train.xml"), "w") as f: f.write(labels) image_folder = svt_root.mkdir("img") file = BytesIO(mock_image_stream) for i in range(3): fn = image_folder.join(f"00_0{i}.jpg") with open(fn, "wb") as f: f.write(file.getbuffer()) # Packing data into an archive to simulate the real data set and bypass archive extraction archive_path = root.join("svt.zip") shutil.make_archive(root.join("svt"), "zip", str(svt_root)) return str(archive_path) @pytest.fixture(scope="session") def mock_ic03_dataset(tmpdir_factory, mock_image_stream): root = tmpdir_factory.mktemp("datasets") ic03_root = root.mkdir("SceneTrialTrain") labels = """<tagset><image><imageName>images/0.jpg</imageName><Resolution x="1280" y="880"/><taggedRectangles> <taggedRectangle x="174.0" y="392.0" width="274.0" height="195.0" offset="0.0" rotation="0.0"><tag>LIVING</tag> </taggedRectangle></taggedRectangles></image><image><imageName>images/1.jpg</imageName> <Resolution x="1650" y="500"/> <taggedRectangles><taggedRectangle x="244.0" y="440.0" width="300.0" height="220.0" offset="0.0" rotation="0.0"> <tag>HOUSE</tag></taggedRectangle></taggedRectangles></image><image><imageName>images/2.jpg</imageName> <Resolution x="850" y="420"/><taggedRectangles> <taggedRectangle x="180.0" y="400.0" width="280.0" height="250.0" offset="0.0" rotation="0.0"><tag>COST</tag> </taggedRectangle></taggedRectangles></image></tagset>""" with open(ic03_root.join("words.xml"), "w") as f: f.write(labels) image_folder = ic03_root.mkdir("images") file = BytesIO(mock_image_stream) for i in range(3): fn = image_folder.join(f"{i}.jpg") with open(fn, "wb") as f: f.write(file.getbuffer()) # Packing data into an archive to simulate the real data set and bypass archive extraction archive_path = root.join("ic03_train.zip") shutil.make_archive(root.join("ic03_train"), "zip", str(ic03_root)) return str(archive_path) @pytest.fixture(scope="session") def mock_mjsynth_dataset(tmpdir_factory, mock_image_stream): root = tmpdir_factory.mktemp("datasets") mjsynth_root = root.mkdir("mjsynth") image_folder = mjsynth_root.mkdir("images") label_file = mjsynth_root.join("imlist.txt") labels = [ "./mjsynth/images/12_I_34.jpg\n", "./mjsynth/images/12_am_34.jpg\n", "./mjsynth/images/12_a_34.jpg\n", "./mjsynth/images/12_Jedi_34.jpg\n", "./mjsynth/images/12_!_34.jpg\n", ] with open(label_file, "w") as f: for label in labels: f.write(label) file = BytesIO(mock_image_stream) for i in ["I", "am", "a", "Jedi", "!"]: fn = image_folder.join(f"12_{i}_34.jpg") with open(fn, "wb") as f: f.write(file.getbuffer()) return str(root), str(label_file)
import os from doctr.io import DocumentFile from doctr.models.artefacts import BarCodeDetector, FaceDetector def test_qr_code_detector(mock_image_folder): detector = BarCodeDetector() for img in os.listdir(mock_image_folder): image = DocumentFile.from_images(os.path.join(mock_image_folder, img))[0] barcode = detector(image) assert len(barcode) == 0 def test_face_detector(mock_image_folder): detector = FaceDetector(n_faces=1) for img in os.listdir(mock_image_folder): image = DocumentFile.from_images(os.path.join(mock_image_folder, img))[0] faces = detector(image) assert len(faces) <= 1
from PIL.ImageFont import FreeTypeFont, ImageFont from doctr.utils.fonts import get_font def test_get_font(): # Attempts to load recommended OS font font = get_font() assert isinstance(font, (ImageFont, FreeTypeFont))
import numpy as np import pytest from doctr.file_utils import CLASS_NAME from doctr.io import Document from doctr.io.elements import KIEDocument from doctr.models import builder words_per_page = 10 boxes_1 = {CLASS_NAME: np.random.rand(words_per_page, 6)} # dict format boxes_1[CLASS_NAME][:2] *= boxes_1[CLASS_NAME][2:4] boxes_2 = np.random.rand(words_per_page, 6) # array format boxes_2[:2] *= boxes_2[2:4] def test_documentbuilder(): num_pages = 2 # Don't resolve lines doc_builder = builder.DocumentBuilder(resolve_lines=False, resolve_blocks=False) boxes = np.random.rand(words_per_page, 6) # array format boxes[:2] *= boxes[2:4] # Arg consistency check with pytest.raises(ValueError): doc_builder([boxes, boxes], [("hello", 1.0)] * 3, [(100, 200), (100, 200)]) out = doc_builder([boxes, boxes], [[("hello", 1.0)] * words_per_page] * num_pages, [(100, 200), (100, 200)]) assert isinstance(out, Document) assert len(out.pages) == num_pages # 1 Block & 1 line per page assert len(out.pages[0].blocks) == 1 and len(out.pages[0].blocks[0].lines) == 1 assert len(out.pages[0].blocks[0].lines[0].words) == words_per_page # Resolve lines doc_builder = builder.DocumentBuilder(resolve_lines=True, resolve_blocks=True) out = doc_builder([boxes, boxes], [[("hello", 1.0)] * words_per_page] * num_pages, [(100, 200), (100, 200)]) # No detection boxes = np.zeros((0, 5)) out = doc_builder([boxes, boxes], [[], []], [(100, 200), (100, 200)]) assert len(out.pages[0].blocks) == 0 # Rotated boxes to export as straight boxes boxes = np.array( [ [[0.1, 0.1], [0.2, 0.2], [0.15, 0.25], [0.05, 0.15]], [[0.5, 0.5], [0.6, 0.6], [0.55, 0.65], [0.45, 0.55]], ] ) doc_builder_2 = builder.DocumentBuilder(resolve_blocks=False, resolve_lines=False, export_as_straight_boxes=True) out = doc_builder_2([boxes], [[("hello", 0.99), ("word", 0.99)]], [(100, 100)]) assert out.pages[0].blocks[0].lines[0].words[-1].geometry == ((0.45, 0.5), (0.6, 0.65)) # Repr assert ( repr(doc_builder) == "DocumentBuilder(resolve_lines=True, " "resolve_blocks=True, paragraph_break=0.035, export_as_straight_boxes=False)" ) def test_kiedocumentbuilder(): num_pages = 2 # Don't resolve lines doc_builder = builder.KIEDocumentBuilder(resolve_lines=False, resolve_blocks=False) predictions = {CLASS_NAME: np.random.rand(words_per_page, 6)} # dict format predictions[CLASS_NAME][:2] *= predictions[CLASS_NAME][2:4] # Arg consistency check with pytest.raises(ValueError): doc_builder([predictions, predictions], [{CLASS_NAME: ("hello", 1.0)}] * 3, [(100, 200), (100, 200)]) out = doc_builder( [predictions, predictions], [{CLASS_NAME: [("hello", 1.0)] * words_per_page}] * num_pages, [(100, 200), (100, 200)], ) assert isinstance(out, KIEDocument) assert len(out.pages) == num_pages # 1 Block & 1 line per page assert len(out.pages[0].predictions) == 1 assert len(out.pages[0].predictions[CLASS_NAME]) == words_per_page # Resolve lines doc_builder = builder.KIEDocumentBuilder(resolve_lines=True, resolve_blocks=True) out = doc_builder( [predictions, predictions], [{CLASS_NAME: [("hello", 1.0)] * words_per_page}] * num_pages, [(100, 200), (100, 200)], ) # No detection predictions = {CLASS_NAME: np.zeros((0, 5))} out = doc_builder([predictions, predictions], [{CLASS_NAME: []}, {CLASS_NAME: []}], [(100, 200), (100, 200)]) assert len(out.pages[0].predictions[CLASS_NAME]) == 0 # Rotated boxes to export as straight boxes predictions = { CLASS_NAME: np.array( [ [[0.1, 0.1], [0.2, 0.2], [0.15, 0.25], [0.05, 0.15]], [[0.5, 0.5], [0.6, 0.6], [0.55, 0.65], [0.45, 0.55]], ] ) } doc_builder_2 = builder.KIEDocumentBuilder(resolve_blocks=False, resolve_lines=False, export_as_straight_boxes=True) out = doc_builder_2([predictions], [{CLASS_NAME: [("hello", 0.99), ("word", 0.99)]}], [(100, 100)]) assert out.pages[0].predictions[CLASS_NAME][0].geometry == ((0.05, 0.1), (0.2, 0.25)) assert out.pages[0].predictions[CLASS_NAME][1].geometry == ((0.45, 0.5), (0.6, 0.65)) # Repr assert ( repr(doc_builder) == "KIEDocumentBuilder(resolve_lines=True, " "resolve_blocks=True, paragraph_break=0.035, export_as_straight_boxes=False)" ) @pytest.mark.parametrize( "input_boxes, sorted_idxs", [ [[[0, 0.5, 0.1, 0.6], [0, 0.3, 0.2, 0.4], [0, 0, 0.1, 0.1]], [2, 1, 0]], # vertical [[[0.7, 0.5, 0.85, 0.6], [0.2, 0.3, 0.4, 0.4], [0, 0, 0.1, 0.1]], [2, 1, 0]], # diagonal [[[0, 0.5, 0.1, 0.6], [0.15, 0.5, 0.25, 0.6], [0.5, 0.5, 0.6, 0.6]], [0, 1, 2]], # same line, 2p [[[0, 0.5, 0.1, 0.6], [0.2, 0.49, 0.35, 0.59], [0.8, 0.52, 0.9, 0.63]], [0, 1, 2]], # ~same line [[[0, 0.3, 0.4, 0.45], [0.5, 0.28, 0.75, 0.42], [0, 0.45, 0.1, 0.55]], [0, 1, 2]], # 2 lines [[[0, 0.3, 0.4, 0.35], [0.75, 0.28, 0.95, 0.42], [0, 0.45, 0.1, 0.55]], [0, 1, 2]], # 2 lines [ [ [[0.1, 0.1], [0.2, 0.2], [0.15, 0.25], [0.05, 0.15]], [[0.5, 0.5], [0.6, 0.6], [0.55, 0.65], [0.45, 0.55]], ], [0, 1], ], # rot ], ) def test_sort_boxes(input_boxes, sorted_idxs): doc_builder = builder.DocumentBuilder() assert doc_builder._sort_boxes(np.asarray(input_boxes))[0].tolist() == sorted_idxs @pytest.mark.parametrize( "input_boxes, lines", [ [[[0, 0.5, 0.1, 0.6], [0, 0.3, 0.2, 0.4], [0, 0, 0.1, 0.1]], [[2], [1], [0]]], # vertical [[[0.7, 0.5, 0.85, 0.6], [0.2, 0.3, 0.4, 0.4], [0, 0, 0.1, 0.1]], [[2], [1], [0]]], # diagonal [[[0, 0.5, 0.14, 0.6], [0.15, 0.5, 0.25, 0.6], [0.5, 0.5, 0.6, 0.6]], [[0, 1], [2]]], # same line, 2p [[[0, 0.5, 0.18, 0.6], [0.2, 0.48, 0.35, 0.58], [0.8, 0.52, 0.9, 0.63]], [[0, 1], [2]]], # ~same line [[[0, 0.3, 0.48, 0.45], [0.5, 0.28, 0.75, 0.42], [0, 0.45, 0.1, 0.55]], [[0, 1], [2]]], # 2 lines [[[0, 0.3, 0.4, 0.35], [0.75, 0.28, 0.95, 0.42], [0, 0.45, 0.1, 0.55]], [[0], [1], [2]]], # 2 lines [ [ [[0.1, 0.1], [0.2, 0.2], [0.15, 0.25], [0.05, 0.15]], [[0.5, 0.5], [0.6, 0.6], [0.55, 0.65], [0.45, 0.55]], ], [[0], [1]], ], # rot ], ) def test_resolve_lines(input_boxes, lines): doc_builder = builder.DocumentBuilder() assert doc_builder._resolve_lines(np.asarray(input_boxes)) == lines
from copy import deepcopy from math import hypot import numpy as np import pytest from doctr.io import DocumentFile from doctr.utils import geometry def test_bbox_to_polygon(): assert geometry.bbox_to_polygon(((0, 0), (1, 1))) == ((0, 0), (1, 0), (0, 1), (1, 1)) def test_polygon_to_bbox(): assert geometry.polygon_to_bbox(((0, 0), (1, 0), (0, 1), (1, 1))) == ((0, 0), (1, 1)) def test_resolve_enclosing_bbox(): assert geometry.resolve_enclosing_bbox([((0, 0.5), (1, 0)), ((0.5, 0), (1, 0.25))]) == ((0, 0), (1, 0.5)) pred = geometry.resolve_enclosing_bbox(np.array([[0.1, 0.1, 0.2, 0.2, 0.9], [0.15, 0.15, 0.2, 0.2, 0.8]])) assert pred.all() == np.array([0.1, 0.1, 0.2, 0.2, 0.85]).all() def test_resolve_enclosing_rbbox(): pred = geometry.resolve_enclosing_rbbox( [ np.asarray([[0.1, 0.1], [0.2, 0.2], [0.15, 0.25], [0.05, 0.15]]), np.asarray([[0.5, 0.5], [0.6, 0.6], [0.55, 0.65], [0.45, 0.55]]), ] ) target1 = np.asarray([[0.55, 0.65], [0.05, 0.15], [0.1, 0.1], [0.6, 0.6]]) target2 = np.asarray([[0.05, 0.15], [0.1, 0.1], [0.6, 0.6], [0.55, 0.65]]) assert np.all(target1 - pred <= 1e-3) or np.all(target2 - pred <= 1e-3) def test_remap_boxes(): pred = geometry.remap_boxes( np.asarray([[[0.25, 0.25], [0.25, 0.75], [0.75, 0.25], [0.75, 0.75]]]), (10, 10), (20, 20) ) target = np.asarray([[[0.375, 0.375], [0.375, 0.625], [0.625, 0.375], [0.625, 0.625]]]) assert np.all(pred == target) pred = geometry.remap_boxes( np.asarray([[[0.25, 0.25], [0.25, 0.75], [0.75, 0.25], [0.75, 0.75]]]), (10, 10), (20, 10) ) target = np.asarray([[[0.25, 0.375], [0.25, 0.625], [0.75, 0.375], [0.75, 0.625]]]) assert np.all(pred == target) with pytest.raises(ValueError): geometry.remap_boxes( np.asarray([[[0.25, 0.25], [0.25, 0.75], [0.75, 0.25], [0.75, 0.75]]]), (80, 40, 150), (160, 40) ) with pytest.raises(ValueError): geometry.remap_boxes(np.asarray([[[0.25, 0.25], [0.25, 0.75], [0.75, 0.25], [0.75, 0.75]]]), (80, 40), (160,)) orig_dimension = (100, 100) dest_dimensions = (200, 100) # Unpack dimensions height_o, width_o = orig_dimension height_d, width_d = dest_dimensions orig_box = np.asarray([[[0.25, 0.25], [0.25, 0.25], [0.75, 0.75], [0.75, 0.75]]]) pred = geometry.remap_boxes(orig_box, orig_dimension, dest_dimensions) # Switch to absolute coords orig = np.stack((orig_box[:, :, 0] * width_o, orig_box[:, :, 1] * height_o), axis=2)[0] dest = np.stack((pred[:, :, 0] * width_d, pred[:, :, 1] * height_d), axis=2)[0] len_orig = hypot(orig[0][0] - orig[2][0], orig[0][1] - orig[2][1]) len_dest = hypot(dest[0][0] - dest[2][0], dest[0][1] - dest[2][1]) assert len_orig == len_dest alpha_orig = np.rad2deg(np.arctan((orig[0][1] - orig[2][1]) / (orig[0][0] - orig[2][0]))) alpha_dest = np.rad2deg(np.arctan((dest[0][1] - dest[2][1]) / (dest[0][0] - dest[2][0]))) assert alpha_orig == alpha_dest def test_rotate_boxes(): boxes = np.array([[0.1, 0.1, 0.8, 0.3, 0.5]]) rboxes = np.array([[0.1, 0.1], [0.8, 0.1], [0.8, 0.3], [0.1, 0.3]]) # Angle = 0 rotated = geometry.rotate_boxes(boxes, angle=0.0, orig_shape=(1, 1)) assert np.all(rotated == rboxes) # Angle < 1: rotated = geometry.rotate_boxes(boxes, angle=0.5, orig_shape=(1, 1)) assert np.all(rotated == rboxes) # Angle = 30 rotated = geometry.rotate_boxes(boxes, angle=30, orig_shape=(1, 1)) assert rotated.shape == (1, 4, 2) boxes = np.array([[0.0, 0.0, 0.6, 0.2, 0.5]]) # Angle = -90: rotated = geometry.rotate_boxes(boxes, angle=-90, orig_shape=(1, 1), min_angle=0) assert np.allclose(rotated, np.array([[[1, 0.0], [1, 0.6], [0.8, 0.6], [0.8, 0.0]]])) # Angle = 90 rotated = geometry.rotate_boxes(boxes, angle=+90, orig_shape=(1, 1), min_angle=0) assert np.allclose(rotated, np.array([[[0, 1.0], [0, 0.4], [0.2, 0.4], [0.2, 1.0]]])) def test_rotate_image(): img = np.ones((32, 64, 3), dtype=np.float32) rotated = geometry.rotate_image(img, 30.0) assert rotated.shape[:-1] == (32, 64) assert rotated[0, 0, 0] == 0 assert rotated[0, :, 0].sum() > 1 # Expand rotated = geometry.rotate_image(img, 30.0, expand=True) assert rotated.shape[:-1] == (60, 120) assert rotated[0, :, 0].sum() <= 1 # Expand rotated = geometry.rotate_image(img, 30.0, expand=True, preserve_origin_shape=True) assert rotated.shape[:-1] == (32, 64) assert rotated[0, :, 0].sum() <= 1 # Expand with 90° rotation rotated = geometry.rotate_image(img, 90.0, expand=True) assert rotated.shape[:-1] == (64, 128) assert rotated[0, :, 0].sum() <= 1 @pytest.mark.parametrize( "abs_geoms, img_size, rel_geoms", [ # Full image (boxes) [np.array([[0, 0, 32, 32]]), (32, 32), np.array([[0, 0, 1, 1]], dtype=np.float32)], # Full image (polygons) [ np.array([[[0, 0], [32, 0], [32, 32], [0, 32]]]), (32, 32), np.array([[[0, 0], [1, 0], [1, 1], [0, 1]]], dtype=np.float32), ], # Quarter image (boxes) [np.array([[0, 0, 16, 16]]), (32, 32), np.array([[0, 0, 0.5, 0.5]], dtype=np.float32)], # Quarter image (polygons) [ np.array([[[0, 0], [16, 0], [16, 16], [0, 16]]]), (32, 32), np.array([[[0, 0], [0.5, 0], [0.5, 0.5], [0, 0.5]]], dtype=np.float32), ], ], ) def test_convert_to_relative_coords(abs_geoms, img_size, rel_geoms): assert np.all(geometry.convert_to_relative_coords(abs_geoms, img_size) == rel_geoms) # Wrong format with pytest.raises(ValueError): geometry.convert_to_relative_coords(np.zeros((3, 5)), (32, 32)) def test_estimate_page_angle(): straight_polys = np.array( [ [[0.3, 0.3], [0.4, 0.3], [0.4, 0.4], [0.3, 0.4]], [[0.4, 0.4], [0.5, 0.4], [0.5, 0.5], [0.4, 0.5]], [[0.5, 0.5], [0.6, 0.5], [0.6, 0.6], [0.5, 0.6]], ] ) rotated_polys = geometry.rotate_boxes(straight_polys, angle=20, orig_shape=(512, 512)) angle = geometry.estimate_page_angle(rotated_polys) assert np.isclose(angle, 20) def test_extract_crops(mock_pdf): # noqa: F811 doc_img = DocumentFile.from_pdf(mock_pdf)[0] num_crops = 2 rel_boxes = np.array( [[idx / num_crops, idx / num_crops, (idx + 1) / num_crops, (idx + 1) / num_crops] for idx in range(num_crops)], dtype=np.float32, ) abs_boxes = np.array( [ [ int(idx * doc_img.shape[1] / num_crops), int(idx * doc_img.shape[0]) / num_crops, int((idx + 1) * doc_img.shape[1] / num_crops), int((idx + 1) * doc_img.shape[0] / num_crops), ] for idx in range(num_crops) ], dtype=np.float32, ) with pytest.raises(AssertionError): geometry.extract_crops(doc_img, np.zeros((1, 5))) for boxes in (rel_boxes, abs_boxes): croped_imgs = geometry.extract_crops(doc_img, boxes) # Number of crops assert len(croped_imgs) == num_crops # Data type and shape assert all(isinstance(crop, np.ndarray) for crop in croped_imgs) assert all(crop.ndim == 3 for crop in croped_imgs) # Identity assert np.all( doc_img == geometry.extract_crops(doc_img, np.array([[0, 0, 1, 1]], dtype=np.float32), channels_last=True)[0] ) torch_img = np.transpose(doc_img, axes=(-1, 0, 1)) assert np.all( torch_img == np.transpose( geometry.extract_crops(doc_img, np.array([[0, 0, 1, 1]], dtype=np.float32), channels_last=False)[0], axes=(-1, 0, 1), ) ) # No box assert geometry.extract_crops(doc_img, np.zeros((0, 4))) == [] def test_extract_rcrops(mock_pdf): # noqa: F811 doc_img = DocumentFile.from_pdf(mock_pdf)[0] num_crops = 2 rel_boxes = np.array( [ [ [idx / num_crops, idx / num_crops], [idx / num_crops + 0.1, idx / num_crops], [idx / num_crops + 0.1, idx / num_crops + 0.1], [idx / num_crops, idx / num_crops], ] for idx in range(num_crops) ], dtype=np.float32, ) abs_boxes = deepcopy(rel_boxes) abs_boxes[:, :, 0] *= doc_img.shape[1] abs_boxes[:, :, 1] *= doc_img.shape[0] abs_boxes = abs_boxes.astype(np.int) with pytest.raises(AssertionError): geometry.extract_rcrops(doc_img, np.zeros((1, 8))) for boxes in (rel_boxes, abs_boxes): croped_imgs = geometry.extract_rcrops(doc_img, boxes) # Number of crops assert len(croped_imgs) == num_crops # Data type and shape assert all(isinstance(crop, np.ndarray) for crop in croped_imgs) assert all(crop.ndim == 3 for crop in croped_imgs) # No box assert geometry.extract_rcrops(doc_img, np.zeros((0, 4, 2))) == []
import numpy as np import pytest from test_io_elements import _mock_pages from doctr.utils import visualization def test_visualize_page(): pages = _mock_pages() image = np.ones((300, 200, 3)) visualization.visualize_page(pages[0].export(), image, words_only=False) visualization.visualize_page(pages[0].export(), image, words_only=True, interactive=False) # geometry checks with pytest.raises(ValueError): visualization.create_obj_patch([1, 2], (100, 100)) with pytest.raises(ValueError): visualization.create_obj_patch((1, 2), (100, 100)) with pytest.raises(ValueError): visualization.create_obj_patch((1, 2, 3, 4, 5), (100, 100)) def test_synthesize_page(): pages = _mock_pages() visualization.synthesize_page(pages[0].export(), draw_proba=False) render = visualization.synthesize_page(pages[0].export(), draw_proba=True) assert isinstance(render, np.ndarray) assert render.shape == (*pages[0].dimensions, 3) def test_draw_boxes(): image = np.ones((256, 256, 3), dtype=np.float32) boxes = [ [0.1, 0.1, 0.2, 0.2], [0.15, 0.15, 0.19, 0.2], # to suppress [0.5, 0.5, 0.6, 0.55], [0.55, 0.5, 0.7, 0.55], # to suppress ] visualization.draw_boxes(boxes=np.array(boxes), image=image, block=False)
import numpy as np import pytest from doctr.datasets import utils @pytest.mark.parametrize( "input_str, vocab, output_str", [ ["f orêt", "latin", "foret"], ["f or êt", "french", "forêt"], ["¢¾©téØßřůž", "french", "¢■■té■■ruz"], ["Ûæëð", "french", "Û■ë■"], ["Ûæë<àð", "latin", "U■e<a■"], ["Ûm@læ5€ëð", "currency", "■■■■■■€■■"], ["Ûtë3p2ð", "digits", "■■■3■2■"], ], ) def test_translate(input_str, vocab, output_str): out = utils.translate(input_str, vocab, unknown_char="■") assert out == output_str @pytest.mark.parametrize( "input_str", [ "frtvorêt", "for98€t", "uéîUY", "ÛAZ$£ë", ], ) def test_encode_decode(input_str): mapping = """3K}7eé;5àÎYho]QwV6qU~W"XnbBvcADfËmy.9ÔpÛ*{CôïE%M4#ÈR:g@T$x?0î£| za1ù8,OG€P-kçHëÀÂ2É/ûIJ\'j(LNÙFut[)èZs+&°Sd=Ï!<â_Ç>rêi`l""" encoded = utils.encode_string(input_str, mapping) decoded = utils.decode_sequence(encoded, mapping) assert decoded == input_str def test_decode_sequence(): mapping = "abcdef" with pytest.raises(TypeError): utils.decode_sequence(123, mapping) with pytest.raises(AssertionError): utils.decode_sequence(np.array([2, 10]), mapping) with pytest.raises(AssertionError): utils.decode_sequence(np.array([2, 4.5]), mapping) assert utils.decode_sequence([3, 4, 3, 4], mapping) == "dede" @pytest.mark.parametrize( "sequences, vocab, target_size, sos, eos, pad, dynamic_len, error, out_shape, gts", [ [["cba"], "abcdef", None, None, 1, None, False, True, (1, 3), [[2, 1, 0]]], # eos in vocab [["cba", "a"], "abcdef", None, None, -1, None, False, False, (2, 4), [[2, 1, 0, -1], [0, -1, -1, -1]]], [["cba", "a"], "abcdef", None, None, 6, None, False, False, (2, 4), [[2, 1, 0, 6], [0, 6, 6, 6]]], [["cba", "a"], "abcdef", 2, None, -1, None, False, False, (2, 2), [[2, 1], [0, -1]]], [["cba", "a"], "abcdef", 4, None, -1, None, False, False, (2, 4), [[2, 1, 0, -1], [0, -1, -1, -1]]], [["cba", "a"], "abcdef", 5, 7, -1, None, False, False, (2, 5), [[7, 2, 1, 0, -1], [7, 0, -1, -1, -1]]], [["cba", "a"], "abcdef", 6, 7, -1, None, True, False, (2, 5), [[7, 2, 1, 0, -1], [7, 0, -1, -1, -1]]], [["cba", "a"], "abcdef", None, 7, -1, 9, False, False, (2, 6), [[7, 2, 1, 0, -1, 9], [7, 0, -1, 9, 9, 9]]], ], ) def test_encode_sequences(sequences, vocab, target_size, sos, eos, pad, dynamic_len, error, out_shape, gts): if error: with pytest.raises(ValueError): utils.encode_sequences(sequences, vocab, target_size, eos, sos, pad, dynamic_len) else: out = utils.encode_sequences(sequences, vocab, target_size, eos, sos, pad, dynamic_len) assert isinstance(out, np.ndarray) assert out.shape == out_shape assert np.all(out == np.asarray(gts)), print(out, gts) # NOTE: main test in test_utils_geometry.py @pytest.mark.parametrize( "target", [ # Boxes {"boxes": np.random.rand(3, 4), "labels": ["a", "b", "c"]}, # Polygons {"boxes": np.random.rand(3, 4, 2), "labels": ["a", "b", "c"]}, ], ) def test_convert_target_to_relative(target, mock_image_stream): img = np.array([[3, 32, 128]]) # ImageTensor back_img, target = utils.convert_target_to_relative(img, target) assert img.all() == back_img.all() assert (target["boxes"].all() >= 0) & (target["boxes"].all() <= 1) # NOTE: main test in test_utils_geometry.py (extract_rcrops, extract_crops) @pytest.mark.parametrize( "geoms", [ # Boxes np.random.randint(low=1, high=20, size=(3, 4)), # Polygons np.random.randint(low=1, high=20, size=(3, 4, 2)), ], ) def test_crop_bboxes_from_image(geoms, mock_image_path): num_crops = 3 with pytest.raises(ValueError): utils.crop_bboxes_from_image(mock_image_path, geoms=np.zeros((3, 1))) with pytest.raises(FileNotFoundError): utils.crop_bboxes_from_image("123", geoms=np.zeros((2, 4))) cropped_imgs = utils.crop_bboxes_from_image(mock_image_path, geoms=geoms) # Number of crops assert len(cropped_imgs) == num_crops # Data type and shape assert all(isinstance(crop, np.ndarray) for crop in cropped_imgs) assert all(crop.ndim == 3 for crop in cropped_imgs)
from pathlib import Path import numpy as np import pytest from doctr import datasets def test_visiondataset(): url = "https://data.deepai.org/mnist.zip" with pytest.raises(ValueError): datasets.datasets.VisionDataset(url, download=False) dataset = datasets.datasets.VisionDataset(url, download=True, extract_archive=True) assert len(dataset) == 0 assert repr(dataset) == "VisionDataset()" def test_abstractdataset(mock_image_path): with pytest.raises(ValueError): datasets.datasets.AbstractDataset("my/fantasy/folder") # Check transforms path = Path(mock_image_path) ds = datasets.datasets.AbstractDataset(path.parent) # Check target format with pytest.raises(AssertionError): ds.data = [(path.name, 0)] img, target = ds[0] with pytest.raises(AssertionError): ds.data = [(path.name, dict(boxes=np.array([[0, 0, 1, 1]])))] img, target = ds[0] with pytest.raises(AssertionError): ds.data = [(ds.data[0][0], {"label": "A"})] img, target = ds[0] # Patch some data ds.data = [(path.name, np.array([0]))] # Fetch the img img, target = ds[0] assert isinstance(target, np.ndarray) and target == np.array([0]) # Check img_transforms ds.img_transforms = lambda x: 1 - x img2, target2 = ds[0] assert np.all(img2.numpy() == 1 - img.numpy()) assert target == target2 # Check sample_transforms ds.img_transforms = None ds.sample_transforms = lambda x, y: (x, y + 1) img3, target3 = ds[0] assert np.all(img3.numpy() == img.numpy()) and (target3 == (target + 1)) # Check inplace modifications ds.data = [(ds.data[0][0], "A")] def inplace_transfo(x, target): target += "B" return x, target ds.sample_transforms = inplace_transfo _, t = ds[0] _, t = ds[0] assert t == "AB"
import numpy as np import pytest from doctr.models.detection.differentiable_binarization.base import DBPostProcessor from doctr.models.detection.linknet.base import LinkNetPostProcessor def test_dbpostprocessor(): postprocessor = DBPostProcessor(assume_straight_pages=True) r_postprocessor = DBPostProcessor(assume_straight_pages=False) with pytest.raises(AssertionError): postprocessor(np.random.rand(2, 512, 512).astype(np.float32)) mock_batch = np.random.rand(2, 512, 512, 1).astype(np.float32) out = postprocessor(mock_batch) r_out = r_postprocessor(mock_batch) # Batch composition assert isinstance(out, list) assert len(out) == 2 assert all(isinstance(sample, list) and all(isinstance(v, np.ndarray) for v in sample) for sample in out) assert all(all(v.shape[1] == 5 for v in sample) for sample in out) assert all(all(v.shape[1] == 4 and v.shape[2] == 2 for v in sample) for sample in r_out) # Relative coords assert all(all(np.all(np.logical_and(v[:, :4] >= 0, v[:, :4] <= 1)) for v in sample) for sample in out) assert all(all(np.all(np.logical_and(v[:, :4] >= 0, v[:, :4] <= 1)) for v in sample) for sample in r_out) # Repr assert repr(postprocessor) == "DBPostProcessor(bin_thresh=0.3, box_thresh=0.1)" # Edge case when the expanded points of the polygon has two lists issue_points = np.array( [ [869, 561], [923, 581], [925, 595], [915, 583], [889, 583], [905, 593], [882, 601], [901, 595], [904, 604], [876, 608], [915, 614], [911, 605], [925, 601], [930, 616], [911, 617], [900, 636], [931, 637], [904, 649], [932, 649], [932, 628], [918, 627], [934, 624], [935, 573], [909, 569], [934, 562], ], dtype=np.int32, ) out = postprocessor.polygon_to_box(issue_points) r_out = r_postprocessor.polygon_to_box(issue_points) assert isinstance(out, tuple) and len(out) == 4 assert isinstance(r_out, np.ndarray) and r_out.shape == (4, 2) def test_linknet_postprocessor(): postprocessor = LinkNetPostProcessor() r_postprocessor = LinkNetPostProcessor(assume_straight_pages=False) with pytest.raises(AssertionError): postprocessor(np.random.rand(2, 512, 512).astype(np.float32)) mock_batch = np.random.rand(2, 512, 512, 1).astype(np.float32) out = postprocessor(mock_batch) r_out = r_postprocessor(mock_batch) # Batch composition assert isinstance(out, list) assert len(out) == 2 assert all(isinstance(sample, list) and all(isinstance(v, np.ndarray) for v in sample) for sample in out) assert all(all(v.shape[1] == 5 for v in sample) for sample in out) assert all(all(v.shape[1] == 4 and v.shape[2] == 2 for v in sample) for sample in r_out) # Relative coords assert all(all(np.all(np.logical_and(v[:4] >= 0, v[:4] <= 1)) for v in sample) for sample in out)
import doctr def test_version(): assert len(doctr.__version__.split(".")) == 3 def test_is_tf_available(): assert doctr.is_tf_available() def test_is_torch_available(): assert not doctr.is_torch_available()
import os from pathlib import PosixPath from unittest.mock import patch import pytest from doctr.utils.data import download_from_url @patch("doctr.utils.data._urlretrieve") @patch("pathlib.Path.mkdir") @patch.dict(os.environ, {"HOME": "/"}, clear=True) def test_download_from_url(mkdir_mock, urlretrieve_mock): download_from_url("test_url") urlretrieve_mock.assert_called_with("test_url", PosixPath("/.cache/doctr/test_url")) @patch.dict(os.environ, {"DOCTR_CACHE_DIR": "/test"}, clear=True) @patch("doctr.utils.data._urlretrieve") @patch("pathlib.Path.mkdir") def test_download_from_url_customizing_cache_dir(mkdir_mock, urlretrieve_mock): download_from_url("test_url") urlretrieve_mock.assert_called_with("test_url", PosixPath("/test/test_url")) @patch.dict(os.environ, {"HOME": "/"}, clear=True) @patch("pathlib.Path.mkdir", side_effect=OSError) @patch("logging.error") def test_download_from_url_error_creating_directory(logging_mock, mkdir_mock): with pytest.raises(OSError): download_from_url("test_url") logging_mock.assert_called_with( "Failed creating cache direcotry at /.cache/doctr." " You can change default cache directory using 'DOCTR_CACHE_DIR' environment variable if needed." ) @patch.dict(os.environ, {"HOME": "/", "DOCTR_CACHE_DIR": "/test"}, clear=True) @patch("pathlib.Path.mkdir", side_effect=OSError) @patch("logging.error") def test_download_from_url_error_creating_directory_with_env_var(logging_mock, mkdir_mock): with pytest.raises(OSError): download_from_url("test_url") logging_mock.assert_called_with( "Failed creating cache direcotry at /test using path from 'DOCTR_CACHE_DIR' environment variable." )
from io import BytesIO import numpy as np import pytest import requests from doctr import io def _check_doc_content(doc_tensors, num_pages): # 1 doc of 8 pages assert len(doc_tensors) == num_pages assert all(isinstance(page, np.ndarray) for page in doc_tensors) assert all(page.dtype == np.uint8 for page in doc_tensors) def test_read_pdf(mock_pdf): doc = io.read_pdf(mock_pdf) _check_doc_content(doc, 2) with open(mock_pdf, "rb") as f: doc = io.read_pdf(f.read()) _check_doc_content(doc, 2) # Wrong input type with pytest.raises(TypeError): _ = io.read_pdf(123) # Wrong path with pytest.raises(FileNotFoundError): _ = io.read_pdf("my_imaginary_file.pdf") def test_read_img_as_numpy(tmpdir_factory, mock_pdf): # Wrong input type with pytest.raises(TypeError): _ = io.read_img_as_numpy(123) # Non-existing file with pytest.raises(FileNotFoundError): io.read_img_as_numpy("my_imaginary_file.jpg") # Invalid image with pytest.raises(ValueError): io.read_img_as_numpy(str(mock_pdf)) # From path url = "https://doctr-static.mindee.com/models?id=v0.2.1/Grace_Hopper.jpg&src=0" file = BytesIO(requests.get(url).content) tmp_path = str(tmpdir_factory.mktemp("data").join("mock_img_file.jpg")) with open(tmp_path, "wb") as f: f.write(file.getbuffer()) # Path & stream with open(tmp_path, "rb") as f: page_stream = io.read_img_as_numpy(f.read()) for page in (io.read_img_as_numpy(tmp_path), page_stream): # Data type assert isinstance(page, np.ndarray) assert page.dtype == np.uint8 # Shape assert page.shape == (606, 517, 3) # RGB bgr_page = io.read_img_as_numpy(tmp_path, rgb_output=False) assert np.all(page == bgr_page[..., ::-1]) # Resize target_size = (200, 150) resized_page = io.read_img_as_numpy(tmp_path, target_size) assert resized_page.shape[:2] == target_size def test_read_html(): url = "https://www.google.com" pdf_stream = io.read_html(url) assert isinstance(pdf_stream, bytes) def test_document_file(mock_pdf, mock_image_stream): pages = io.DocumentFile.from_images(mock_image_stream) _check_doc_content(pages, 1) assert isinstance(io.DocumentFile.from_pdf(mock_pdf), list) assert isinstance(io.DocumentFile.from_url("https://www.google.com"), list) def test_pdf(mock_pdf): pages = io.DocumentFile.from_pdf(mock_pdf) # As images num_pages = 2 _check_doc_content(pages, num_pages)
import pytest from doctr.models.recognition.utils import merge_multi_strings, merge_strings @pytest.mark.parametrize( "a, b, merged", [ ["abc", "def", "abcdef"], ["abcd", "def", "abcdef"], ["abcde", "def", "abcdef"], ["abcdef", "def", "abcdef"], ["abcccc", "cccccc", "abcccccccc"], ], ) def test_merge_strings(a, b, merged): assert merged == merge_strings(a, b, 1.4) @pytest.mark.parametrize( "seq_list, merged", [ [["abc", "def"], "abcdef"], [["abcd", "def", "efgh", "ijk"], "abcdefghijk"], [["abcdi", "defk", "efghi", "aijk"], "abcdefghijk"], ], ) def test_merge_multi_strings(seq_list, merged): assert merged == merge_multi_strings(seq_list, 1.4)
import numpy as np import pytest from doctr.utils import metrics @pytest.mark.parametrize( "gt, pred, raw, caseless, unidecode, unicase", [ [["grass", "56", "True", "EUR"], ["grass", "56", "true", "€"], 0.5, 0.75, 0.75, 1], [["éléphant", "ça"], ["elephant", "ca"], 0, 0, 1, 1], ], ) def test_text_match(gt, pred, raw, caseless, unidecode, unicase): metric = metrics.TextMatch() with pytest.raises(AssertionError): metric.summary() with pytest.raises(AssertionError): metric.update(["a", "b"], ["c"]) metric.update(gt, pred) assert metric.summary() == dict(raw=raw, caseless=caseless, unidecode=unidecode, unicase=unicase) metric.reset() assert metric.raw == metric.caseless == metric.unidecode == metric.unicase == metric.total == 0 @pytest.mark.parametrize( "box1, box2, iou, abs_tol", [ [[[0, 0, 0.5, 0.5]], [[0, 0, 0.5, 0.5]], 1, 0], # Perfect match [[[0, 0, 0.5, 0.5]], [[0.5, 0.5, 1, 1]], 0, 0], # No match [[[0, 0, 1, 1]], [[0.5, 0.5, 1, 1]], 0.25, 0], # Partial match [[[0.2, 0.2, 0.6, 0.6]], [[0.4, 0.4, 0.8, 0.8]], 4 / 28, 1e-7], # Partial match [[[0, 0, 0.1, 0.1]], [[0.9, 0.9, 1, 1]], 0, 0], # Boxes far from each other [np.zeros((0, 4)), [[0, 0, 0.5, 0.5]], 0, 0], # Zero-sized inputs [[[0, 0, 0.5, 0.5]], np.zeros((0, 4)), 0, 0], # Zero-sized inputs ], ) def test_box_iou(box1, box2, iou, abs_tol): iou_mat = metrics.box_iou(np.asarray(box1), np.asarray(box2)) assert iou_mat.shape == (len(box1), len(box2)) if iou_mat.size > 0: assert abs(iou_mat - iou) <= abs_tol @pytest.mark.parametrize( "mask1, mask2, iou, abs_tol", [ [ [[[True, True, False], [True, True, False]]], [[[True, True, False], [True, True, False]]], 1, 0, ], # Perfect match [ [[[True, False, False], [False, False, False]]], [[[True, True, False], [True, True, False]]], 0.25, 0, ], # Partial match ], ) def test_mask_iou(mask1, mask2, iou, abs_tol): iou_mat = metrics.mask_iou(np.asarray(mask1), np.asarray(mask2)) assert iou_mat.shape == (len(mask1), len(mask2)) if iou_mat.size > 0: assert abs(iou_mat - iou) <= abs_tol # Incompatible spatial shapes with pytest.raises(AssertionError): metrics.mask_iou(np.zeros((2, 3, 5), dtype=bool), np.ones((3, 2, 5), dtype=bool)) @pytest.mark.parametrize( "rbox1, rbox2, iou, abs_tol", [ [[[[0, 0], [0.5, 0], [0.5, 0.5], [0, 0.5]]], [[[0, 0], [0.5, 0], [0.5, 0.5], [0, 0.5]]], 1, 0], # Perfect match [[[[0, 0], [0.5, 0], [0.5, 0.5], [0, 0.5]]], [[[0.5, 0.5], [1, 0.5], [1, 1], [0.5, 1]]], 0, 1e-4], # No match [ [[[0, 0], [1.0, 0], [1.0, 1.0], [0, 1.0]]], [[[0.5, 0.5], [1, 0.5], [1.0, 1.0], [0.5, 1]]], 0.25, 5e-3, ], # Partial match [ [[[0.2, 0.2], [0.6, 0.2], [0.6, 0.6], [0.2, 0.6]]], [[[0.4, 0.4], [0.8, 0.4], [0.8, 0.8], [0.4, 0.8]]], 4 / 28, 7e-3, ], # Partial match [ [[[0, 0], [0.05, 0], [0.05, 0.05], [0, 0.05]]], [[[0.5, 0.5], [1, 0.5], [1, 1], [0.5, 1]]], 0, 0, ], # Boxes far from each other [np.zeros((0, 4, 2)), [[[0, 0], [0.05, 0], [0.05, 0.05], [0, 0.05]]], 0, 0], # Zero-sized inputs [[[[0, 0], [0.05, 0], [0.05, 0.05], [0, 0.05]]], np.zeros((0, 4, 2)), 0, 0], # Zero-sized inputs ], ) def test_polygon_iou(rbox1, rbox2, iou, abs_tol): mask_shape = (256, 256) iou_mat = metrics.polygon_iou(np.asarray(rbox1), np.asarray(rbox2), mask_shape) assert iou_mat.shape == (len(rbox1), len(rbox2)) if iou_mat.size > 0: assert abs(iou_mat - iou) <= abs_tol # Ensure broadcasting doesn't change the result iou_matbis = metrics.polygon_iou(np.asarray(rbox1), np.asarray(rbox2), mask_shape, use_broadcasting=False) assert np.all((iou_mat - iou_matbis) <= 1e-7) # Incorrect boxes with pytest.raises(AssertionError): metrics.polygon_iou(np.zeros((2, 5), dtype=float), np.ones((3, 4), dtype=float), mask_shape) @pytest.mark.parametrize( "box, shape, mask", [ [ [[0, 0], [0.5, 0], [0.5, 0.5], [0, 0.5]], (2, 2), [[True, False], [False, False]], ], ], ) def test_rbox_to_mask(box, shape, mask): masks = metrics.rbox_to_mask(np.asarray(box)[None, ...], shape) assert masks.shape == (1, *shape) assert np.all(masks[0] == np.asarray(mask, dtype=bool)) @pytest.mark.parametrize( "gts, preds, iou_thresh, recall, precision, mean_iou", [ [[[[0, 0, 0.5, 0.5]]], [[[0, 0, 0.5, 0.5]]], 0.5, 1, 1, 1], # Perfect match [[[[0, 0, 1, 1]]], [[[0, 0, 0.5, 0.5], [0.6, 0.6, 0.7, 0.7]]], 0.2, 1, 0.5, 0.13], # Bad match [[[[0, 0, 1, 1]]], [[[0, 0, 0.5, 0.5], [0.6, 0.6, 0.7, 0.7]]], 0.5, 0, 0, 0.13], # Bad match [ [[[0, 0, 0.5, 0.5]], [[0, 0, 0.5, 0.5]]], [[[0, 0, 0.5, 0.5]], None], 0.5, 0.5, 1, 1, ], # No preds on 2nd sample ], ) def test_localization_confusion(gts, preds, iou_thresh, recall, precision, mean_iou): metric = metrics.LocalizationConfusion(iou_thresh) for _gts, _preds in zip(gts, preds): metric.update(np.asarray(_gts), np.zeros((0, 4)) if _preds is None else np.asarray(_preds)) assert metric.summary() == (recall, precision, mean_iou) metric.reset() assert metric.num_gts == metric.num_preds == metric.matches == metric.tot_iou == 0 @pytest.mark.parametrize( "gts, preds, iou_thresh, recall, precision, mean_iou", [ [ [[[[0.05, 0.05], [0.15, 0.05], [0.15, 0.15], [0.05, 0.15]]]], [[[[0.05, 0.05], [0.15, 0.05], [0.15, 0.15], [0.05, 0.15]]]], 0.5, 1, 1, 1, ], # Perfect match [ [[[[0.1, 0.05], [0.2, 0.05], [0.2, 0.15], [0.1, 0.15]]]], [[[[0.1, 0.05], [0.3, 0.05], [0.3, 0.15], [0.1, 0.15]], [[0.6, 0.6], [0.8, 0.6], [0.8, 0.8], [0.6, 0.8]]]], 0.2, 1, 0.5, 0.25, ], # Bad match [ [ [[[0.05, 0.05], [0.15, 0.05], [0.15, 0.15], [0.05, 0.15]]], [[[0.25, 0.25], [0.35, 0.25], [35, 0.35], [0.25, 0.35]]], ], [[[[0.05, 0.05], [0.15, 0.05], [0.15, 0.15], [0.05, 0.15]]], None], 0.5, 0.5, 1, 1, ], # Empty ], ) def test_r_localization_confusion(gts, preds, iou_thresh, recall, precision, mean_iou): metric = metrics.LocalizationConfusion(iou_thresh, use_polygons=True, mask_shape=(1000, 1000)) for _gts, _preds in zip(gts, preds): metric.update(np.asarray(_gts), np.zeros((0, 5)) if _preds is None else np.asarray(_preds)) assert metric.summary()[:2] == (recall, precision) assert abs(metric.summary()[2] - mean_iou) <= 5e-3 metric.reset() assert metric.num_gts == metric.num_preds == metric.matches == metric.tot_iou == 0 @pytest.mark.parametrize( "gt_boxes, gt_words, pred_boxes, pred_words, iou_thresh, recall, precision, mean_iou", [ [ # Perfect match [[[0, 0, 0.5, 0.5]]], [["elephant"]], [[[0, 0, 0.5, 0.5]]], [["elephant"]], 0.5, {"raw": 1, "caseless": 1, "unidecode": 1, "unicase": 1}, {"raw": 1, "caseless": 1, "unidecode": 1, "unicase": 1}, 1, ], [ # Bad match [[[0, 0, 0.5, 0.5]]], [["elefant"]], [[[0, 0, 0.5, 0.5]]], [["elephant"]], 0.5, {"raw": 0, "caseless": 0, "unidecode": 0, "unicase": 0}, {"raw": 0, "caseless": 0, "unidecode": 0, "unicase": 0}, 1, ], [ # Good match [[[0, 0, 1, 1]]], [["EUR"]], [[[0, 0, 0.5, 0.5], [0.6, 0.6, 0.7, 0.7]]], [["€", "e"]], 0.2, {"raw": 0, "caseless": 0, "unidecode": 1, "unicase": 1}, {"raw": 0, "caseless": 0, "unidecode": 0.5, "unicase": 0.5}, 0.13, ], [ # No preds on 2nd sample [[[0, 0, 0.5, 0.5]], [[0, 0, 0.5, 0.5]]], [["Elephant"], ["elephant"]], [[[0, 0, 0.5, 0.5]], None], [["elephant"], []], 0.5, {"raw": 0, "caseless": 0.5, "unidecode": 0, "unicase": 0.5}, {"raw": 0, "caseless": 1, "unidecode": 0, "unicase": 1}, 1, ], ], ) def test_ocr_metric(gt_boxes, gt_words, pred_boxes, pred_words, iou_thresh, recall, precision, mean_iou): metric = metrics.OCRMetric(iou_thresh) for _gboxes, _gwords, _pboxes, _pwords in zip(gt_boxes, gt_words, pred_boxes, pred_words): metric.update( np.asarray(_gboxes), np.zeros((0, 4)) if _pboxes is None else np.asarray(_pboxes), _gwords, _pwords ) _recall, _precision, _mean_iou = metric.summary() assert _recall == recall assert _precision == precision assert _mean_iou == mean_iou metric.reset() assert metric.num_gts == metric.num_preds == metric.tot_iou == 0 assert metric.raw_matches == metric.caseless_matches == metric.unidecode_matches == metric.unicase_matches == 0 # Shape check with pytest.raises(AssertionError): metric.update( np.asarray(_gboxes), np.zeros((0, 4)), _gwords, ["I", "have", "a", "bad", "feeling", "about", "this"], ) @pytest.mark.parametrize( "gt_boxes, gt_classes, pred_boxes, pred_classes, iou_thresh, recall, precision, mean_iou", [ [ # Perfect match [[[0, 0, 0.5, 0.5]]], [[0]], [[[0, 0, 0.5, 0.5]]], [[0]], 0.5, 1, 1, 1, ], [ # Bad match [[[0, 0, 0.5, 0.5]]], [[0]], [[[0, 0, 0.5, 0.5]]], [[1]], 0.5, 0, 0, 1, ], [ # No preds on 2nd sample [[[0, 0, 0.5, 0.5]], [[0, 0, 0.5, 0.5]]], [[0], [1]], [[[0, 0, 0.5, 0.5]], None], [[0], []], 0.5, 0.5, 1, 1, ], ], ) def test_detection_metric(gt_boxes, gt_classes, pred_boxes, pred_classes, iou_thresh, recall, precision, mean_iou): metric = metrics.DetectionMetric(iou_thresh) for _gboxes, _gclasses, _pboxes, _pclasses in zip(gt_boxes, gt_classes, pred_boxes, pred_classes): metric.update( np.asarray(_gboxes), np.zeros((0, 4)) if _pboxes is None else np.asarray(_pboxes), np.array(_gclasses, dtype=np.int64), np.array(_pclasses, dtype=np.int64), ) _recall, _precision, _mean_iou = metric.summary() assert _recall == recall assert _precision == precision assert _mean_iou == mean_iou metric.reset() assert metric.num_gts == metric.num_preds == metric.tot_iou == 0 assert metric.num_matches == 0 # Shape check with pytest.raises(AssertionError): metric.update( np.asarray(_gboxes), np.zeros((0, 4)), np.array(_gclasses, dtype=np.int64), np.array([1, 2], dtype=np.int64) ) def test_nms(): boxes = [ [0.1, 0.1, 0.2, 0.2, 0.95], [0.15, 0.15, 0.19, 0.2, 0.90], # to suppress [0.5, 0.5, 0.6, 0.55, 0.90], [0.55, 0.5, 0.7, 0.55, 0.85], # to suppress ] to_keep = metrics.nms(np.asarray(boxes), thresh=0.2) assert to_keep == [0, 2] def test_box_ioa(): boxes = [ [0.1, 0.1, 0.2, 0.2], [0.15, 0.15, 0.2, 0.2], ] mat = metrics.box_ioa(np.array(boxes), np.array(boxes)) assert mat[1, 0] == mat[0, 0] == mat[1, 1] == 1.0 assert abs(mat[0, 1] - 0.25) <= 1e-7
from io import BytesIO import cv2 import numpy as np import pytest import requests from doctr.io import reader from doctr.models._utils import estimate_orientation, get_bitmap_angle, get_language, invert_data_structure from doctr.utils import geometry @pytest.fixture(scope="function") def mock_image(tmpdir_factory): url = "https://doctr-static.mindee.com/models?id=v0.2.1/bitmap30.png&src=0" file = BytesIO(requests.get(url).content) tmp_path = str(tmpdir_factory.mktemp("data").join("mock_bitmap.jpg")) with open(tmp_path, "wb") as f: f.write(file.getbuffer()) image = reader.read_img_as_numpy(tmp_path) return image @pytest.fixture(scope="function") def mock_bitmap(mock_image): bitmap = np.squeeze(cv2.cvtColor(mock_image, cv2.COLOR_BGR2GRAY) / 255.0) return bitmap def test_get_bitmap_angle(mock_bitmap): angle = get_bitmap_angle(mock_bitmap) assert abs(angle - 30.0) < 1.0 def test_estimate_orientation(mock_image, mock_tilted_payslip): assert estimate_orientation(mock_image * 0) == 0 angle = estimate_orientation(mock_image) assert abs(angle - 30.0) < 1.0 rotated = geometry.rotate_image(mock_image, -angle) angle_rotated = estimate_orientation(rotated) assert abs(angle_rotated) < 1.0 mock_tilted_payslip = reader.read_img_as_numpy(mock_tilted_payslip) assert (estimate_orientation(mock_tilted_payslip) - 30.0) < 1.0 rotated = geometry.rotate_image(mock_tilted_payslip, -30, expand=True) angle_rotated = estimate_orientation(rotated) assert abs(angle_rotated) < 1.0 def test_get_lang(): sentence = "This is a test sentence." expected_lang = "en" threshold_prob = 0.99 lang = get_language(sentence) assert lang[0] == expected_lang assert lang[1] > threshold_prob lang = get_language("a") assert lang[0] == "unknown" assert lang[1] == 0.0 def test_convert_list_dict(): dic = {"k1": [[0], [0], [0]], "k2": [[1], [1], [1]]} L = [{"k1": [0], "k2": [1]}, {"k1": [0], "k2": [1]}, {"k1": [0], "k2": [1]}] converted_dic = invert_data_structure(dic) converted_list = invert_data_structure(L) assert converted_dic == L assert converted_list == dic
import numpy as np import pytest from doctr.transforms import modules as T from doctr.transforms.functional.base import expand_line def test_imagetransform(): transfo = T.ImageTransform(lambda x: 1 - x) assert transfo(0, 1) == (1, 1) def test_samplecompose(): transfos = [lambda x, y: (1 - x, y), lambda x, y: (x, 2 * y)] transfo = T.SampleCompose(transfos) assert transfo(0, 1) == (1, 2) def test_oneof(): transfos = [lambda x: 1 - x, lambda x: x + 10] transfo = T.OneOf(transfos) out = transfo(1) assert out == 0 or out == 11 def test_randomapply(): transfo = T.RandomApply(lambda x: 1 - x) out = transfo(1) assert out == 0 or out == 1 assert repr(transfo).endswith(", p=0.5)") @pytest.mark.parametrize( "line", [ # Horizontal np.array([[63, 1], [42, 1]]).astype(np.int32), # Vertical np.array([[1, 63], [1, 42]]).astype(np.int32), # Normal np.array([[1, 63], [12, 42]]).astype(np.int32), ], ) def test_expand_line(line): out = expand_line(line, (100, 100)) assert isinstance(out, tuple) assert all(isinstance(val, (float, int, np.int32, np.float64)) and val >= 0 for val in out)
import numpy as np import pytest from doctr.models.recognition.predictor._utils import remap_preds, split_crops @pytest.mark.parametrize( "crops, max_ratio, target_ratio, dilation, channels_last, num_crops", [ # No split required [[np.zeros((32, 128, 3), dtype=np.uint8)], 8, 4, 1.4, True, 1], [[np.zeros((3, 32, 128), dtype=np.uint8)], 8, 4, 1.4, False, 1], # Split required [[np.zeros((32, 1024, 3), dtype=np.uint8)], 8, 6, 1.4, True, 5], [[np.zeros((3, 32, 1024), dtype=np.uint8)], 8, 6, 1.4, False, 5], ], ) def test_split_crops(crops, max_ratio, target_ratio, dilation, channels_last, num_crops): new_crops, crop_map, should_remap = split_crops(crops, max_ratio, target_ratio, dilation, channels_last) assert len(new_crops) == num_crops assert len(crop_map) == len(crops) assert should_remap == (len(crops) != len(new_crops)) @pytest.mark.parametrize( "preds, crop_map, dilation, pred", [ # Nothing to remap [[("hello", 0.5)], [0], 1.4, [("hello", 0.5)]], # Merge [[("hellowo", 0.5), ("loworld", 0.6)], [(0, 2)], 1.4, [("helloworld", 0.5)]], ], ) def test_remap_preds(preds, crop_map, dilation, pred): preds = remap_preds(preds, crop_map, dilation) assert len(preds) == len(pred) assert preds == pred assert all(isinstance(pred, tuple) for pred in preds) assert all(isinstance(pred[0], str) and isinstance(pred[1], float) for pred in preds)
import os from multiprocessing.pool import ThreadPool from unittest.mock import patch import pytest from doctr.utils.multithreading import multithread_exec @pytest.mark.parametrize( "input_seq, func, output_seq", [ [[1, 2, 3], lambda x: 2 * x, [2, 4, 6]], [[1, 2, 3], lambda x: x**2, [1, 4, 9]], [ ["this is", "show me", "I know"], lambda x: x + " the way", ["this is the way", "show me the way", "I know the way"], ], ], ) def test_multithread_exec(input_seq, func, output_seq): assert list(multithread_exec(func, input_seq)) == output_seq assert list(multithread_exec(func, input_seq, 0)) == output_seq @patch.dict(os.environ, {"DOCTR_MULTIPROCESSING_DISABLE": "TRUE"}, clear=True) def test_multithread_exec_multiprocessing_disable(): with patch.object(ThreadPool, "map") as mock_tp_map: multithread_exec(lambda x: x, [1, 2]) assert not mock_tp_map.called
"""Test for python files copyright headers.""" from datetime import datetime from pathlib import Path def test_copyright_header(): copyright_header = "".join( [ f"# Copyright (C) {2021}-{datetime.now().year}, Mindee.\n\n", "# This program is licensed under the Apache License 2.0.\n", "# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.\n", ] ) excluded_files = ["__init__.py", "version.py"] invalid_files = [] locations = [".github", "api/app", "demo", "docs", "doctr", "references", "scripts"] for location in locations: for source_path in Path(__file__).parent.parent.parent.joinpath(location).rglob("*.py"): if source_path.name not in excluded_files: source_path_content = source_path.read_text() if copyright_header not in source_path_content: invalid_files.append(source_path) assert len(invalid_files) == 0, f"Invalid copyright header in the following files: {invalid_files}"
from xml.etree.ElementTree import ElementTree import numpy as np import pytest from doctr.file_utils import CLASS_NAME from doctr.io import elements def _mock_words(size=(1.0, 1.0), offset=(0, 0), confidence=0.9): return [ elements.Word( "hello", confidence, ((offset[0], offset[1]), (size[0] / 2 + offset[0], size[1] / 2 + offset[1])) ), elements.Word( "world", confidence, ((size[0] / 2 + offset[0], size[1] / 2 + offset[1]), (size[0] + offset[0], size[1] + offset[1])), ), ] def _mock_artefacts(size=(1, 1), offset=(0, 0), confidence=0.8): sub_size = (size[0] / 2, size[1] / 2) return [ elements.Artefact( "qr_code", confidence, ((offset[0], offset[1]), (sub_size[0] + offset[0], sub_size[1] + offset[1])) ), elements.Artefact( "qr_code", confidence, ((sub_size[0] + offset[0], sub_size[1] + offset[1]), (size[0] + offset[0], size[1] + offset[1])), ), ] def _mock_lines(size=(1, 1), offset=(0, 0)): sub_size = (size[0] / 2, size[1] / 2) return [ elements.Line(_mock_words(size=sub_size, offset=offset)), elements.Line(_mock_words(size=sub_size, offset=(offset[0] + sub_size[0], offset[1] + sub_size[1]))), ] def _mock_prediction(size=(1.0, 1.0), offset=(0, 0), confidence=0.9): return [ elements.Prediction( "hello", confidence, ((offset[0], offset[1]), (size[0] / 2 + offset[0], size[1] / 2 + offset[1])) ), elements.Prediction( "world", confidence, ((size[0] / 2 + offset[0], size[1] / 2 + offset[1]), (size[0] + offset[0], size[1] + offset[1])), ), ] def _mock_blocks(size=(1, 1), offset=(0, 0)): sub_size = (size[0] / 4, size[1] / 4) return [ elements.Block( _mock_lines(size=sub_size, offset=offset), _mock_artefacts(size=sub_size, offset=(offset[0] + sub_size[0], offset[1] + sub_size[1])), ), elements.Block( _mock_lines(size=sub_size, offset=(offset[0] + 2 * sub_size[0], offset[1] + 2 * sub_size[1])), _mock_artefacts(size=sub_size, offset=(offset[0] + 3 * sub_size[0], offset[1] + 3 * sub_size[1])), ), ] def _mock_pages(block_size=(1, 1), block_offset=(0, 0)): return [ elements.Page( _mock_blocks(block_size, block_offset), 0, (300, 200), {"value": 0.0, "confidence": 1.0}, {"value": "EN", "confidence": 0.8}, ), elements.Page( _mock_blocks(block_size, block_offset), 1, (500, 1000), {"value": 0.15, "confidence": 0.8}, {"value": "FR", "confidence": 0.7}, ), ] def _mock_kie_pages(prediction_size=(1, 1), prediction_offset=(0, 0)): return [ elements.KIEPage( {CLASS_NAME: _mock_prediction(prediction_size, prediction_offset)}, 0, (300, 200), {"value": 0.0, "confidence": 1.0}, {"value": "EN", "confidence": 0.8}, ), elements.KIEPage( {CLASS_NAME: _mock_prediction(prediction_size, prediction_offset)}, 1, (500, 1000), {"value": 0.15, "confidence": 0.8}, {"value": "FR", "confidence": 0.7}, ), ] def test_element(): with pytest.raises(KeyError): elements.Element(sub_elements=[1]) def test_word(): word_str = "hello" conf = 0.8 geom = ((0, 0), (1, 1)) word = elements.Word(word_str, conf, geom) # Attribute checks assert word.value == word_str assert word.confidence == conf assert word.geometry == geom # Render assert word.render() == word_str # Export assert word.export() == {"value": word_str, "confidence": conf, "geometry": geom} # Repr assert word.__repr__() == f"Word(value='hello', confidence={conf:.2})" # Class method state_dict = {"value": "there", "confidence": 0.1, "geometry": ((0, 0), (0.5, 0.5))} word = elements.Word.from_dict(state_dict) assert word.export() == state_dict def test_line(): geom = ((0, 0), (0.5, 0.5)) words = _mock_words(size=geom[1], offset=geom[0]) line = elements.Line(words) # Attribute checks assert len(line.words) == len(words) assert all(isinstance(w, elements.Word) for w in line.words) assert line.geometry == geom # Render assert line.render() == "hello world" # Export assert line.export() == {"words": [w.export() for w in words], "geometry": geom} # Repr words_str = " " * 4 + ",\n ".join(repr(word) for word in words) + "," assert line.__repr__() == f"Line(\n (words): [\n{words_str}\n ]\n)" # Ensure that words repr does't span on several lines when there are none assert repr(elements.Line([], ((0, 0), (1, 1)))) == "Line(\n (words): []\n)" # from dict state_dict = { "words": [{"value": "there", "confidence": 0.1, "geometry": ((0, 0), (1.0, 1.0))}], "geometry": ((0, 0), (1.0, 1.0)), } line = elements.Line.from_dict(state_dict) assert line.export() == state_dict def test_artefact(): artefact_type = "qr_code" conf = 0.8 geom = ((0, 0), (1, 1)) artefact = elements.Artefact(artefact_type, conf, geom) # Attribute checks assert artefact.type == artefact_type assert artefact.confidence == conf assert artefact.geometry == geom # Render assert artefact.render() == "[QR_CODE]" # Export assert artefact.export() == {"type": artefact_type, "confidence": conf, "geometry": geom} # Repr assert artefact.__repr__() == f"Artefact(type='{artefact_type}', confidence={conf:.2})" def test_prediction(): prediction_str = "hello" conf = 0.8 geom = ((0, 0), (1, 1)) prediction = elements.Prediction(prediction_str, conf, geom) # Attribute checks assert prediction.value == prediction_str assert prediction.confidence == conf assert prediction.geometry == geom # Render assert prediction.render() == prediction_str # Export assert prediction.export() == {"value": prediction_str, "confidence": conf, "geometry": geom} # Repr assert prediction.__repr__() == f"Prediction(value='hello', confidence={conf:.2}, bounding_box={geom})" # Class method state_dict = {"value": "there", "confidence": 0.1, "geometry": ((0, 0), (0.5, 0.5))} prediction = elements.Prediction.from_dict(state_dict) assert prediction.export() == state_dict def test_block(): geom = ((0, 0), (1, 1)) sub_size = (geom[1][0] / 2, geom[1][0] / 2) lines = _mock_lines(size=sub_size, offset=geom[0]) artefacts = _mock_artefacts(size=sub_size, offset=sub_size) block = elements.Block(lines, artefacts) # Attribute checks assert len(block.lines) == len(lines) assert len(block.artefacts) == len(artefacts) assert all(isinstance(w, elements.Line) for w in block.lines) assert all(isinstance(a, elements.Artefact) for a in block.artefacts) assert block.geometry == geom # Render assert block.render() == "hello world\nhello world" # Export assert block.export() == { "lines": [line.export() for line in lines], "artefacts": [artefact.export() for artefact in artefacts], "geometry": geom, } def test_page(): page_idx = 0 page_size = (300, 200) orientation = {"value": 0.0, "confidence": 0.0} language = {"value": "EN", "confidence": 0.8} blocks = _mock_blocks() page = elements.Page(blocks, page_idx, page_size, orientation, language) # Attribute checks assert len(page.blocks) == len(blocks) assert all(isinstance(b, elements.Block) for b in page.blocks) assert page.page_idx == page_idx assert page.dimensions == page_size assert page.orientation == orientation assert page.language == language # Render assert page.render() == "hello world\nhello world\n\nhello world\nhello world" # Export assert page.export() == { "blocks": [b.export() for b in blocks], "page_idx": page_idx, "dimensions": page_size, "orientation": orientation, "language": language, } # Export XML assert ( isinstance(page.export_as_xml(), tuple) and isinstance(page.export_as_xml()[0], (bytes, bytearray)) and isinstance(page.export_as_xml()[1], ElementTree) ) # Repr assert "\n".join(repr(page).split("\n")[:2]) == f"Page(\n dimensions={repr(page_size)}" # Show page.show(np.zeros((256, 256, 3), dtype=np.uint8), block=False) # Synthesize img = page.synthesize() assert isinstance(img, np.ndarray) assert img.shape == (*page_size, 3) def test_kiepage(): page_idx = 0 page_size = (300, 200) orientation = {"value": 0.0, "confidence": 0.0} language = {"value": "EN", "confidence": 0.8} predictions = {CLASS_NAME: _mock_prediction()} kie_page = elements.KIEPage(predictions, page_idx, page_size, orientation, language) # Attribute checks assert len(kie_page.predictions) == len(predictions) assert all(isinstance(b, elements.Prediction) for b in kie_page.predictions[CLASS_NAME]) assert kie_page.page_idx == page_idx assert kie_page.dimensions == page_size assert kie_page.orientation == orientation assert kie_page.language == language # Render assert kie_page.render() == "words: hello\n\nwords: world" # Export assert kie_page.export() == { "predictions": {CLASS_NAME: [b.export() for b in predictions[CLASS_NAME]]}, "page_idx": page_idx, "dimensions": page_size, "orientation": orientation, "language": language, } # Export XML assert ( isinstance(kie_page.export_as_xml(), tuple) and isinstance(kie_page.export_as_xml()[0], (bytes, bytearray)) and isinstance(kie_page.export_as_xml()[1], ElementTree) ) # Repr assert "\n".join(repr(kie_page).split("\n")[:2]) == f"KIEPage(\n dimensions={repr(page_size)}" # Show kie_page.show(np.zeros((256, 256, 3), dtype=np.uint8), block=False) # Synthesize img = kie_page.synthesize() assert isinstance(img, np.ndarray) assert img.shape == (*page_size, 3) def test_document(): pages = _mock_pages() doc = elements.Document(pages) # Attribute checks assert len(doc.pages) == len(pages) assert all(isinstance(p, elements.Page) for p in doc.pages) # Render page_export = "hello world\nhello world\n\nhello world\nhello world" assert doc.render() == f"{page_export}\n\n\n\n{page_export}" # Export assert doc.export() == {"pages": [p.export() for p in pages]} # Export XML assert isinstance(doc.export_as_xml(), list) and len(doc.export_as_xml()) == len(pages) # Show doc.show([np.zeros((256, 256, 3), dtype=np.uint8) for _ in range(len(pages))], block=False) # Synthesize img_list = doc.synthesize() assert isinstance(img_list, list) and len(img_list) == len(pages) def test_kie_document(): pages = _mock_kie_pages() doc = elements.KIEDocument(pages) # Attribute checks assert len(doc.pages) == len(pages) assert all(isinstance(p, elements.KIEPage) for p in doc.pages) # Render page_export = "words: hello\n\nwords: world" assert doc.render() == f"{page_export}\n\n\n\n{page_export}" # Export assert doc.export() == {"pages": [p.export() for p in pages]} # Export XML assert isinstance(doc.export_as_xml(), list) and len(doc.export_as_xml()) == len(pages) # Show doc.show([np.zeros((256, 256, 3), dtype=np.uint8) for _ in range(len(pages))], block=False) # Synthesize img_list = doc.synthesize() assert isinstance(img_list, list) and len(img_list) == len(pages)
from doctr.file_utils import is_tf_available def test_file_utils(): assert is_tf_available()
import math import numpy as np import pytest import tensorflow as tf from doctr import transforms as T from doctr.transforms.functional import crop_detection, rotate_sample def test_resize(): output_size = (32, 32) transfo = T.Resize(output_size) input_t = tf.cast(tf.fill([64, 64, 3], 1), dtype=tf.float32) out = transfo(input_t) assert tf.reduce_all(out == 1) assert out.shape[:2] == output_size assert repr(transfo) == f"Resize(output_size={output_size}, method='bilinear')" transfo = T.Resize(output_size, preserve_aspect_ratio=True) input_t = tf.cast(tf.fill([32, 64, 3], 1), dtype=tf.float32) out = transfo(input_t) assert not tf.reduce_all(out == 1) # Asymetric padding assert tf.reduce_all(out[-1] == 0) and tf.reduce_all(out[0] == 1) assert out.shape[:2] == output_size # Symetric padding transfo = T.Resize(output_size, preserve_aspect_ratio=True, symmetric_pad=True) assert repr(transfo) == ( f"Resize(output_size={output_size}, method='bilinear', " f"preserve_aspect_ratio=True, symmetric_pad=True)" ) out = transfo(input_t) # Asymetric padding assert tf.reduce_all(out[-1] == 0) and tf.reduce_all(out[0] == 0) # Inverse aspect ratio input_t = tf.cast(tf.fill([64, 32, 3], 1), dtype=tf.float32) out = transfo(input_t) assert not tf.reduce_all(out == 1) assert out.shape[:2] == output_size # FP16 input_t = tf.cast(tf.fill([64, 64, 3], 1), dtype=tf.float16) out = transfo(input_t) assert out.dtype == tf.float16 def test_compose(): output_size = (16, 16) transfo = T.Compose([T.Resize((32, 32)), T.Resize(output_size)]) input_t = tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1) out = transfo(input_t) assert out.shape[:2] == output_size assert len(repr(transfo).split("\n")) == 6 @pytest.mark.parametrize( "input_shape", [ [8, 32, 32, 3], [32, 32, 3], [32, 3], ], ) def test_normalize(input_shape): mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5] transfo = T.Normalize(mean, std) input_t = tf.cast(tf.fill(input_shape, 1), dtype=tf.float32) out = transfo(input_t) assert tf.reduce_all(out == 1) assert repr(transfo) == f"Normalize(mean={mean}, std={std})" # FP16 input_t = tf.cast(tf.fill(input_shape, 1), dtype=tf.float16) out = transfo(input_t) assert out.dtype == tf.float16 def test_lambatransformation(): transfo = T.LambdaTransformation(lambda x: x / 2) input_t = tf.cast(tf.fill([8, 32, 32, 3], 1), dtype=tf.float32) out = transfo(input_t) assert tf.reduce_all(out == 0.5) def test_togray(): transfo = T.ToGray() r = tf.fill([8, 32, 32, 1], 0.2) g = tf.fill([8, 32, 32, 1], 0.6) b = tf.fill([8, 32, 32, 1], 0.7) input_t = tf.cast(tf.concat([r, g, b], axis=-1), dtype=tf.float32) out = transfo(input_t) assert tf.reduce_all(out <= 0.51) assert tf.reduce_all(out >= 0.49) # FP16 input_t = tf.cast(tf.concat([r, g, b], axis=-1), dtype=tf.float16) out = transfo(input_t) assert out.dtype == tf.float16 @pytest.mark.parametrize( "rgb_min", [ 0.2, 0.4, 0.6, ], ) def test_invert_colorize(rgb_min): transfo = T.ColorInversion(min_val=rgb_min) input_t = tf.cast(tf.fill([8, 32, 32, 3], 1), dtype=tf.float32) out = transfo(input_t) assert tf.reduce_all(out <= 1 - rgb_min + 1e-4) assert tf.reduce_all(out >= 0) input_t = tf.cast(tf.fill([8, 32, 32, 3], 255), dtype=tf.uint8) out = transfo(input_t) assert tf.reduce_all(out <= int(math.ceil(255 * (1 - rgb_min)))) assert tf.reduce_all(out >= 0) # FP16 input_t = tf.cast(tf.fill([8, 32, 32, 3], 1), dtype=tf.float16) out = transfo(input_t) assert out.dtype == tf.float16 def test_brightness(): transfo = T.RandomBrightness(max_delta=0.1) input_t = tf.cast(tf.fill([8, 32, 32, 3], 0.5), dtype=tf.float32) out = transfo(input_t) assert tf.reduce_all(out >= 0.4) assert tf.reduce_all(out <= 0.6) # FP16 input_t = tf.cast(tf.fill([8, 32, 32, 3], 0.5), dtype=tf.float16) out = transfo(input_t) assert out.dtype == tf.float16 def test_contrast(): transfo = T.RandomContrast(delta=0.2) input_t = tf.cast(tf.fill([8, 32, 32, 3], 0.5), dtype=tf.float32) out = transfo(input_t) assert tf.reduce_all(out == 0.5) # FP16 if any(tf.config.list_physical_devices("GPU")): input_t = tf.cast(tf.fill([8, 32, 32, 3], 0.5), dtype=tf.float16) out = transfo(input_t) assert out.dtype == tf.float16 def test_saturation(): transfo = T.RandomSaturation(delta=0.2) input_t = tf.cast(tf.fill([8, 32, 32, 3], 0.5), dtype=tf.float32) input_t = tf.image.hsv_to_rgb(input_t) out = transfo(input_t) hsv = tf.image.rgb_to_hsv(out) assert tf.reduce_all(hsv[:, :, :, 1] >= 0.4) assert tf.reduce_all(hsv[:, :, :, 1] <= 0.6) # FP16 if any(tf.config.list_physical_devices("GPU")): input_t = tf.cast(tf.fill([8, 32, 32, 3], 0.5), dtype=tf.float16) out = transfo(input_t) assert out.dtype == tf.float16 def test_hue(): transfo = T.RandomHue(max_delta=0.2) input_t = tf.cast(tf.fill([8, 32, 32, 3], 0.5), dtype=tf.float32) input_t = tf.image.hsv_to_rgb(input_t) out = transfo(input_t) hsv = tf.image.rgb_to_hsv(out) assert tf.reduce_all(hsv[:, :, :, 0] <= 0.7) assert tf.reduce_all(hsv[:, :, :, 0] >= 0.3) # FP16 if any(tf.config.list_physical_devices("GPU")): input_t = tf.cast(tf.fill([8, 32, 32, 3], 0.5), dtype=tf.float16) out = transfo(input_t) assert out.dtype == tf.float16 def test_gamma(): transfo = T.RandomGamma(min_gamma=1.0, max_gamma=2.0, min_gain=0.8, max_gain=1.0) input_t = tf.cast(tf.fill([8, 32, 32, 3], 2.0), dtype=tf.float32) out = transfo(input_t) assert tf.reduce_all(out >= 1.6) assert tf.reduce_all(out <= 4.0) # FP16 input_t = tf.cast(tf.fill([8, 32, 32, 3], 2.0), dtype=tf.float16) out = transfo(input_t) assert out.dtype == tf.float16 def test_jpegquality(): transfo = T.RandomJpegQuality(min_quality=50) input_t = tf.cast(tf.fill([32, 32, 3], 1), dtype=tf.float32) out = transfo(input_t) assert out.shape == input_t.shape # FP16 input_t = tf.cast(tf.fill([32, 32, 3], 1), dtype=tf.float16) out = transfo(input_t) assert out.dtype == tf.float16 def test_rotate_sample(): img = tf.ones((200, 100, 3), dtype=tf.float32) boxes = np.array([0, 0, 100, 200])[None, ...] polys = np.stack((boxes[..., [0, 1]], boxes[..., [2, 1]], boxes[..., [2, 3]], boxes[..., [0, 3]]), axis=1) rel_boxes = np.array([0, 0, 1, 1], dtype=np.float32)[None, ...] rel_polys = np.stack( (rel_boxes[..., [0, 1]], rel_boxes[..., [2, 1]], rel_boxes[..., [2, 3]], rel_boxes[..., [0, 3]]), axis=1 ) # No angle rotated_img, rotated_geoms = rotate_sample(img, boxes, 0, False) assert tf.math.reduce_all(rotated_img == img) and np.all(rotated_geoms == rel_polys) rotated_img, rotated_geoms = rotate_sample(img, boxes, 0, True) assert tf.math.reduce_all(rotated_img == img) and np.all(rotated_geoms == rel_polys) rotated_img, rotated_geoms = rotate_sample(img, polys, 0, False) assert tf.math.reduce_all(rotated_img == img) and np.all(rotated_geoms == rel_polys) rotated_img, rotated_geoms = rotate_sample(img, polys, 0, True) assert tf.math.reduce_all(rotated_img == img) and np.all(rotated_geoms == rel_polys) # No expansion expected_img = np.zeros((200, 100, 3), dtype=np.float32) expected_img[50:150] = 1 expected_img = tf.convert_to_tensor(expected_img) expected_polys = np.array([[0, 0.75], [0, 0.25], [1, 0.25], [1, 0.75]])[None, ...] rotated_img, rotated_geoms = rotate_sample(img, boxes, 90, False) assert tf.math.reduce_all(rotated_img == expected_img) and np.all(rotated_geoms == expected_polys) rotated_img, rotated_geoms = rotate_sample(img, polys, 90, False) assert tf.math.reduce_all(rotated_img == expected_img) and np.all(rotated_geoms == expected_polys) rotated_img, rotated_geoms = rotate_sample(img, rel_boxes, 90, False) assert tf.math.reduce_all(rotated_img == expected_img) and np.all(rotated_geoms == expected_polys) rotated_img, rotated_geoms = rotate_sample(img, rel_polys, 90, False) assert tf.math.reduce_all(rotated_img == expected_img) and np.all(rotated_geoms == expected_polys) # Expansion expected_img = tf.ones((100, 200, 3), dtype=tf.float32) expected_polys = np.array([[0, 1], [0, 0], [1, 0], [1, 1]], dtype=np.float32)[None, ...] rotated_img, rotated_geoms = rotate_sample(img, boxes, 90, True) # import ipdb; ipdb.set_trace() assert tf.math.reduce_all(rotated_img == expected_img) and np.all(rotated_geoms == expected_polys) rotated_img, rotated_geoms = rotate_sample(img, polys, 90, True) assert tf.math.reduce_all(rotated_img == expected_img) and np.all(rotated_geoms == expected_polys) rotated_img, rotated_geoms = rotate_sample(img, rel_boxes, 90, True) assert tf.math.reduce_all(rotated_img == expected_img) and np.all(rotated_geoms == expected_polys) rotated_img, rotated_geoms = rotate_sample(img, rel_polys, 90, True) assert tf.math.reduce_all(rotated_img == expected_img) and np.all(rotated_geoms == expected_polys) with pytest.raises(AssertionError): rotate_sample(img, boxes[None, ...], 90, False) def test_random_rotate(): rotator = T.RandomRotate(max_angle=10.0, expand=False) input_t = tf.ones((50, 50, 3), dtype=tf.float32) boxes = np.array([[15, 20, 35, 30]]) r_img, r_boxes = rotator(input_t, boxes) assert r_img.shape == input_t.shape rotator = T.RandomRotate(max_angle=10.0, expand=True) r_img, r_boxes = rotator(input_t, boxes) assert r_img.shape != input_t.shape # FP16 input_t = tf.ones((50, 50, 3), dtype=tf.float16) r_img, _ = rotator(input_t, boxes) assert r_img.dtype == tf.float16 def test_crop_detection(): img = tf.ones((50, 50, 3), dtype=tf.float32) abs_boxes = np.array( [ [15, 20, 35, 30], [5, 10, 10, 20], ] ) crop_box = (12 / 50, 23 / 50, 1.0, 1.0) c_img, c_boxes = crop_detection(img, abs_boxes, crop_box) assert c_img.shape == (26, 37, 3) assert c_boxes.shape == (1, 4) assert np.all(c_boxes == np.array([15 - 12, 0, 35 - 12, 30 - 23])[None, ...]) rel_boxes = np.array( [ [0.3, 0.4, 0.7, 0.6], [0.1, 0.2, 0.2, 0.4], ] ) c_img, c_boxes = crop_detection(img, rel_boxes, crop_box) assert c_img.shape == (26, 37, 3) assert c_boxes.shape == (1, 4) assert np.abs(c_boxes - np.array([0.06 / 0.76, 0.0, 0.46 / 0.76, 0.14 / 0.54])[None, ...]).mean() < 1e-7 # FP16 img = tf.ones((50, 50, 3), dtype=tf.float16) c_img, _ = crop_detection(img, rel_boxes, crop_box) assert c_img.dtype == tf.float16 with pytest.raises(AssertionError): crop_detection(img, abs_boxes, (2, 6, 24, 56)) def test_random_crop(): transfo = T.RandomCrop(scale=(0.5, 1.0), ratio=(0.75, 1.33)) input_t = tf.ones((50, 50, 3), dtype=tf.float32) boxes = np.array([[15, 20, 35, 30]]) img, target = transfo(input_t, dict(boxes=boxes)) # Check the scale (take a margin) assert img.shape[0] * img.shape[1] >= 0.4 * input_t.shape[0] * input_t.shape[1] # Check aspect ratio (take a margin) assert 0.65 <= img.shape[0] / img.shape[1] <= 1.5 # Check the target assert np.all(target["boxes"] >= 0) assert np.all(target["boxes"][:, [0, 2]] <= img.shape[1]) and np.all(target["boxes"][:, [1, 3]] <= img.shape[0]) def test_gaussian_blur(): blur = T.GaussianBlur(3, (0.1, 3)) input_t = np.ones((31, 31, 3), dtype=np.float32) input_t[15, 15] = 0 blur_img = blur(tf.convert_to_tensor(input_t)).numpy() assert blur_img.shape == input_t.shape assert np.all(blur_img[15, 15] > 0) @pytest.mark.parametrize( "input_dtype, input_size", [ [tf.float32, (32, 32, 3)], [tf.uint8, (32, 32, 3)], ], ) def test_channel_shuffle(input_dtype, input_size): transfo = T.ChannelShuffle() input_t = tf.random.uniform(input_size, dtype=tf.float32) if input_dtype == tf.uint8: input_t = tf.math.round(255 * input_t) input_t = tf.cast(input_t, dtype=input_dtype) out = transfo(input_t) assert isinstance(out, tf.Tensor) assert out.shape == input_size assert out.dtype == input_dtype # Ensure that nothing has changed apart from channel order assert tf.math.reduce_all(tf.math.reduce_sum(input_t, -1) == tf.math.reduce_sum(out, -1)) @pytest.mark.parametrize( "input_dtype,input_shape", [ [tf.float32, (32, 32, 3)], [tf.uint8, (32, 32, 3)], ], ) def test_gaussian_noise(input_dtype, input_shape): transform = T.GaussianNoise(0.0, 1.0) input_t = tf.random.uniform(input_shape, dtype=tf.float32) if input_dtype == tf.uint8: input_t = tf.math.round((255 * input_t)) input_t = tf.cast(input_t, dtype=input_dtype) transformed = transform(input_t) assert isinstance(transformed, tf.Tensor) assert transformed.shape == input_shape assert transformed.dtype == input_dtype assert tf.math.reduce_any(transformed != input_t) assert tf.math.reduce_all(transformed >= 0) if input_dtype == tf.uint8: assert tf.reduce_all(transformed <= 255) else: assert tf.reduce_all(transformed <= 1.0) @pytest.mark.parametrize("p", [1, 0]) def test_randomhorizontalflip(p): # testing for 2 cases, with flip probability 1 and 0. transform = T.RandomHorizontalFlip(p) input_t = np.ones((32, 32, 3)) input_t[:, :16, :] = 0 input_t = tf.convert_to_tensor(input_t) target = {"boxes": np.array([[0.1, 0.1, 0.3, 0.4]], dtype=np.float32), "labels": np.ones(1, dtype=np.int64)} transformed, _target = transform(input_t, target) assert isinstance(transformed, tf.Tensor) assert transformed.shape == input_t.shape assert transformed.dtype == input_t.dtype # integrity check of targets assert isinstance(_target, dict) assert all(isinstance(val, np.ndarray) for val in _target.values()) assert _target["boxes"].dtype == np.float32 assert _target["labels"].dtype == np.int64 if p == 1: assert np.all(_target["boxes"] == np.array([[0.7, 0.1, 0.9, 0.4]], dtype=np.float32)) assert tf.reduce_all( tf.math.reduce_mean(transformed, (0, 2)) == tf.constant([1] * 16 + [0] * 16, dtype=tf.float64) ) elif p == 0: assert np.all(_target["boxes"] == np.array([[0.1, 0.1, 0.3, 0.4]], dtype=np.float32)) assert tf.reduce_all( tf.math.reduce_mean(transformed, (0, 2)) == tf.constant([0] * 16 + [1] * 16, dtype=tf.float64) ) assert np.all(_target["labels"] == np.ones(1, dtype=np.int64)) @pytest.mark.parametrize( "input_dtype,input_shape", [ [tf.float32, (32, 32, 3)], [tf.uint8, (32, 32, 3)], [tf.float32, (64, 32, 3)], [tf.uint8, (64, 32, 3)], ], ) def test_random_shadow(input_dtype, input_shape): transform = T.RandomShadow((0.2, 0.8)) input_t = tf.random.uniform(input_shape, dtype=tf.float32) if input_dtype == tf.uint8: input_t = tf.math.round((255 * input_t)) input_t = tf.cast(input_t, dtype=input_dtype) transformed = transform(input_t) assert isinstance(transformed, tf.Tensor) assert transformed.shape == input_shape assert transformed.dtype == input_dtype # The shadow will darken the picture assert tf.math.reduce_mean(input_t) >= tf.math.reduce_mean(transformed) assert tf.math.reduce_all(transformed >= 0) if input_dtype == tf.uint8: assert tf.reduce_all(transformed <= 255) else: assert tf.reduce_all(transformed <= 1.0)
import os import shutil import tempfile import numpy as np import onnxruntime import pytest import tensorflow as tf from doctr.io import DocumentFile from doctr.models import recognition from doctr.models.preprocessor import PreProcessor from doctr.models.recognition.crnn.tensorflow import CTCPostProcessor from doctr.models.recognition.master.tensorflow import MASTERPostProcessor from doctr.models.recognition.predictor import RecognitionPredictor from doctr.models.recognition.sar.tensorflow import SARPostProcessor from doctr.models.recognition.vitstr.tensorflow import ViTSTRPostProcessor from doctr.models.utils import export_model_to_onnx from doctr.utils.geometry import extract_crops @pytest.mark.parametrize( "arch_name, input_shape", [ ["crnn_vgg16_bn", (32, 128, 3)], ["crnn_mobilenet_v3_small", (32, 128, 3)], ["crnn_mobilenet_v3_large", (32, 128, 3)], ["sar_resnet31", (32, 128, 3)], ["master", (32, 128, 3)], ["vitstr_small", (32, 128, 3)], ["vitstr_base", (32, 128, 3)], ], ) def test_recognition_models(arch_name, input_shape): batch_size = 4 reco_model = recognition.__dict__[arch_name](pretrained=True, input_shape=input_shape) assert isinstance(reco_model, tf.keras.Model) input_tensor = tf.random.uniform(shape=[batch_size, *input_shape], minval=0, maxval=1) target = ["i", "am", "a", "jedi"] out = reco_model(input_tensor, target, return_model_output=True, return_preds=True) assert isinstance(out, dict) assert len(out) == 3 assert isinstance(out["out_map"], tf.Tensor) assert out["out_map"].dtype == tf.float32 assert isinstance(out["preds"], list) assert len(out["preds"]) == batch_size assert all(isinstance(word, str) and isinstance(conf, float) and 0 <= conf <= 1 for word, conf in out["preds"]) assert isinstance(out["loss"], tf.Tensor) # test model in train mode needs targets with pytest.raises(ValueError): reco_model(input_tensor, None, training=True) @pytest.mark.parametrize( "post_processor, input_shape", [ [SARPostProcessor, [2, 30, 119]], [CTCPostProcessor, [2, 30, 119]], [MASTERPostProcessor, [2, 30, 119]], [ViTSTRPostProcessor, [2, 30, 119]], ], ) def test_reco_postprocessors(post_processor, input_shape, mock_vocab): processor = post_processor(mock_vocab) decoded = processor(tf.random.uniform(shape=input_shape, minval=0, maxval=1, dtype=tf.float32)) assert isinstance(decoded, list) assert all(isinstance(word, str) and isinstance(conf, float) and 0 <= conf <= 1 for word, conf in decoded) assert len(decoded) == input_shape[0] assert all(char in mock_vocab for word, _ in decoded for char in word) # Repr assert repr(processor) == f"{post_processor.__name__}(vocab_size={len(mock_vocab)})" @pytest.fixture(scope="session") def test_recognitionpredictor(mock_pdf, mock_vocab): # noqa: F811 batch_size = 4 predictor = RecognitionPredictor( PreProcessor(output_size=(32, 128), batch_size=batch_size, preserve_aspect_ratio=True), recognition.crnn_vgg16_bn(vocab=mock_vocab, input_shape=(32, 128, 3)), ) pages = DocumentFile.from_pdf(mock_pdf).as_images() # Create bounding boxes boxes = np.array([[0.5, 0.5, 0.75, 0.75], [0.5, 0.5, 1.0, 1.0]], dtype=np.float32) crops = extract_crops(pages[0], boxes) out = predictor(crops) # One prediction per crop assert len(out) == boxes.shape[0] assert all(isinstance(val, str) and isinstance(conf, float) for val, conf in out) # Dimension check with pytest.raises(ValueError): input_crop = (255 * np.random.rand(1, 128, 64, 3)).astype(np.uint8) _ = predictor([input_crop]) return predictor @pytest.mark.parametrize( "arch_name", [ "crnn_vgg16_bn", "crnn_mobilenet_v3_small", "crnn_mobilenet_v3_large", "sar_resnet31", "master", "vitstr_small", "vitstr_base", ], ) def test_recognition_zoo(arch_name): batch_size = 2 # Model predictor = recognition.zoo.recognition_predictor(arch_name, pretrained=False) # object check assert isinstance(predictor, RecognitionPredictor) input_tensor = tf.random.uniform(shape=[batch_size, 128, 128, 3], minval=0, maxval=1) out = predictor(input_tensor) assert isinstance(out, list) and len(out) == batch_size assert all(isinstance(word, str) and isinstance(conf, float) for word, conf in out) @pytest.mark.parametrize( "arch_name", [ "crnn_vgg16_bn", "crnn_mobilenet_v3_small", "crnn_mobilenet_v3_large", ], ) def test_crnn_beam_search(arch_name): batch_size = 2 # Model predictor = recognition.zoo.recognition_predictor(arch_name, pretrained=False) # object check assert isinstance(predictor, RecognitionPredictor) input_tensor = tf.random.uniform(shape=[batch_size, 128, 128, 3], minval=0, maxval=1) out = predictor(input_tensor, beam_width=10, top_paths=10) assert isinstance(out, list) and len(out) == batch_size assert all( isinstance(words, list) and isinstance(confs, list) and all([isinstance(word, str) for word in words]) and all([isinstance(conf, float) for conf in confs]) for words, confs in out ) def test_recognition_zoo_error(): with pytest.raises(ValueError): _ = recognition.zoo.recognition_predictor("my_fancy_model", pretrained=False) @pytest.mark.skipif(os.getenv("SLOW", "0") == "0", reason="slow test") @pytest.mark.parametrize( "arch_name, input_shape", [ ["crnn_vgg16_bn", (32, 128, 3)], ["crnn_mobilenet_v3_small", (32, 128, 3)], ["crnn_mobilenet_v3_large", (32, 128, 3)], ["sar_resnet31", (32, 128, 3)], ["master", (32, 128, 3)], ["vitstr_small", (32, 128, 3)], # testing one vitstr version is enough ], ) def test_models_onnx_export(arch_name, input_shape): # Model batch_size = 2 tf.keras.backend.clear_session() model = recognition.__dict__[arch_name](pretrained=True, exportable=True, input_shape=input_shape) # SAR, MASTER, ViTSTR export currently only available with constant batch size if arch_name in ["sar_resnet31", "master", "vitstr_small"]: dummy_input = [tf.TensorSpec([batch_size, *input_shape], tf.float32, name="input")] else: # batch_size = None for dynamic batch size dummy_input = [tf.TensorSpec([None, *input_shape], tf.float32, name="input")] np_dummy_input = np.random.rand(batch_size, *input_shape).astype(np.float32) with tempfile.TemporaryDirectory() as tmpdir: # Export model_path, output = export_model_to_onnx( model, model_name=os.path.join(tmpdir, "model"), dummy_input=dummy_input, large_model=True if arch_name == "master" else False, ) assert os.path.exists(model_path) if arch_name == "master": # large models are exported as zip archive shutil.unpack_archive(model_path, tmpdir, "zip") model_path = os.path.join(tmpdir, "__MODEL_PROTO.onnx") else: model_path = os.path.join(tmpdir, "model.onnx") # Inference ort_session = onnxruntime.InferenceSession(model_path, providers=["CPUExecutionProvider"]) ort_outs = ort_session.run(output, {"input": np_dummy_input}) assert isinstance(ort_outs, list) and len(ort_outs) == 1 assert ort_outs[0].shape[0] == batch_size
import numpy as np import pytest from doctr import models from doctr.file_utils import CLASS_NAME from doctr.io import Document, DocumentFile from doctr.io.elements import KIEDocument from doctr.models import detection, recognition from doctr.models.detection.predictor import DetectionPredictor from doctr.models.detection.zoo import detection_predictor from doctr.models.kie_predictor import KIEPredictor from doctr.models.predictor import OCRPredictor from doctr.models.preprocessor import PreProcessor from doctr.models.recognition.predictor import RecognitionPredictor from doctr.models.recognition.zoo import recognition_predictor from doctr.utils.repr import NestedObject @pytest.mark.parametrize( "assume_straight_pages, straighten_pages", [ [True, False], [False, False], [True, True], ], ) def test_ocrpredictor(mock_pdf, mock_vocab, assume_straight_pages, straighten_pages): det_bsize = 4 det_predictor = DetectionPredictor( PreProcessor(output_size=(512, 512), batch_size=det_bsize), detection.db_mobilenet_v3_large( pretrained=True, pretrained_backbone=False, input_shape=(512, 512, 3), assume_straight_pages=assume_straight_pages, ), ) reco_bsize = 16 reco_predictor = RecognitionPredictor( PreProcessor(output_size=(32, 128), batch_size=reco_bsize, preserve_aspect_ratio=True), recognition.crnn_vgg16_bn(pretrained=False, pretrained_backbone=False, vocab=mock_vocab), ) doc = DocumentFile.from_pdf(mock_pdf) predictor = OCRPredictor( det_predictor, reco_predictor, assume_straight_pages=assume_straight_pages, straighten_pages=straighten_pages, detect_orientation=True, detect_language=True, ) if assume_straight_pages: assert predictor.crop_orientation_predictor is None else: assert isinstance(predictor.crop_orientation_predictor, NestedObject) out = predictor(doc) assert isinstance(out, Document) assert len(out.pages) == 2 # Dimension check with pytest.raises(ValueError): input_page = (255 * np.random.rand(1, 256, 512, 3)).astype(np.uint8) _ = predictor([input_page]) orientation = 0 assert out.pages[0].orientation["value"] == orientation language = "unknown" assert out.pages[0].language["value"] == language def test_trained_ocr_predictor(mock_tilted_payslip): doc = DocumentFile.from_images(mock_tilted_payslip) det_predictor = detection_predictor("db_resnet50", pretrained=True, batch_size=2, assume_straight_pages=True) reco_predictor = recognition_predictor("crnn_vgg16_bn", pretrained=True, batch_size=128) predictor = OCRPredictor( det_predictor, reco_predictor, assume_straight_pages=True, straighten_pages=True, ) out = predictor(doc) assert out.pages[0].blocks[0].lines[0].words[0].value == "Mr." geometry_mr = np.array( [[0.08844472, 0.35763523], [0.11625107, 0.34320644], [0.12588427, 0.35771032], [0.09807791, 0.37213911]] ) assert np.allclose(np.array(out.pages[0].blocks[0].lines[0].words[0].geometry), geometry_mr) assert out.pages[0].blocks[1].lines[0].words[-1].value == "revised" geometry_revised = np.array( [[0.50422498, 0.19551784], [0.55741975, 0.16791493], [0.56705294, 0.18241881], [0.51385817, 0.21002172]] ) assert np.allclose(np.array(out.pages[0].blocks[1].lines[0].words[-1].geometry), geometry_revised) det_predictor = detection_predictor( "db_resnet50", pretrained=True, batch_size=2, assume_straight_pages=True, preserve_aspect_ratio=True, symmetric_pad=True, ) predictor = OCRPredictor( det_predictor, reco_predictor, assume_straight_pages=True, straighten_pages=True, preserve_aspect_ratio=True, symmetric_pad=True, ) out = predictor(doc) assert out.pages[0].blocks[0].lines[0].words[0].value == "Mr." @pytest.mark.parametrize( "assume_straight_pages, straighten_pages", [ [True, False], [False, False], [True, True], ], ) def test_kiepredictor(mock_pdf, mock_vocab, assume_straight_pages, straighten_pages): det_bsize = 4 det_predictor = DetectionPredictor( PreProcessor(output_size=(512, 512), batch_size=det_bsize), detection.db_mobilenet_v3_large( pretrained=True, pretrained_backbone=False, input_shape=(512, 512, 3), assume_straight_pages=assume_straight_pages, ), ) reco_bsize = 16 reco_predictor = RecognitionPredictor( PreProcessor(output_size=(32, 128), batch_size=reco_bsize, preserve_aspect_ratio=True), recognition.crnn_vgg16_bn(pretrained=False, pretrained_backbone=False, vocab=mock_vocab), ) doc = DocumentFile.from_pdf(mock_pdf) predictor = KIEPredictor( det_predictor, reco_predictor, assume_straight_pages=assume_straight_pages, straighten_pages=straighten_pages, detect_orientation=True, detect_language=True, ) if assume_straight_pages: assert predictor.crop_orientation_predictor is None else: assert isinstance(predictor.crop_orientation_predictor, NestedObject) out = predictor(doc) assert isinstance(out, KIEDocument) assert len(out.pages) == 2 # Dimension check with pytest.raises(ValueError): input_page = (255 * np.random.rand(1, 256, 512, 3)).astype(np.uint8) _ = predictor([input_page]) orientation = 0 assert out.pages[0].orientation["value"] == orientation language = "unknown" assert out.pages[0].language["value"] == language def test_trained_kie_predictor(mock_tilted_payslip): doc = DocumentFile.from_images(mock_tilted_payslip) det_predictor = detection_predictor("db_resnet50", pretrained=True, batch_size=2, assume_straight_pages=True) reco_predictor = recognition_predictor("crnn_vgg16_bn", pretrained=True, batch_size=128) predictor = KIEPredictor( det_predictor, reco_predictor, assume_straight_pages=True, straighten_pages=True, ) out = predictor(doc) assert isinstance(out, KIEDocument) assert out.pages[0].predictions[CLASS_NAME][0].value == "Mr." geometry_mr = np.array( [[0.08844472, 0.35763523], [0.11625107, 0.34320644], [0.12588427, 0.35771032], [0.09807791, 0.37213911]] ) assert np.allclose(np.array(out.pages[0].predictions[CLASS_NAME][0].geometry), geometry_mr) assert out.pages[0].predictions[CLASS_NAME][-1].value == "Kabir)" geometry_revised = np.array( [[0.43725992, 0.67232439], [0.49045468, 0.64472149], [0.50570724, 0.66768597], [0.452512473, 0.69528887]] ) assert np.allclose(np.array(out.pages[0].predictions[CLASS_NAME][-1].geometry), geometry_revised) det_predictor = detection_predictor( "db_resnet50", pretrained=True, batch_size=2, assume_straight_pages=True, preserve_aspect_ratio=True, symmetric_pad=True, ) predictor = KIEPredictor( det_predictor, reco_predictor, assume_straight_pages=True, straighten_pages=True, preserve_aspect_ratio=True, symmetric_pad=True, ) out = predictor(doc) assert isinstance(out, KIEDocument) assert out.pages[0].predictions[CLASS_NAME][0].value == "Mr." def _test_predictor(predictor): # Output checks assert isinstance(predictor, OCRPredictor) doc = [np.zeros((512, 512, 3), dtype=np.uint8)] out = predictor(doc) # Document assert isinstance(out, Document) # The input doc has 1 page assert len(out.pages) == 1 # Dimension check with pytest.raises(ValueError): input_page = (255 * np.random.rand(1, 256, 512, 3)).astype(np.uint8) _ = predictor([input_page]) def _test_kiepredictor(predictor): # Output checks assert isinstance(predictor, KIEPredictor) doc = [np.zeros((512, 512, 3), dtype=np.uint8)] out = predictor(doc) # Document assert isinstance(out, KIEDocument) # The input doc has 1 page assert len(out.pages) == 1 # Dimension check with pytest.raises(ValueError): input_page = (255 * np.random.rand(1, 256, 512, 3)).astype(np.uint8) _ = predictor([input_page]) @pytest.mark.parametrize( "det_arch, reco_arch", [ ["db_mobilenet_v3_large", "crnn_vgg16_bn"], ], ) def test_zoo_models(det_arch, reco_arch): # Model predictor = models.ocr_predictor(det_arch, reco_arch, pretrained=True) _test_predictor(predictor) # passing model instance directly det_model = detection.__dict__[det_arch](pretrained=True) reco_model = recognition.__dict__[reco_arch](pretrained=True) predictor = models.ocr_predictor(det_model, reco_model) _test_predictor(predictor) # passing recognition model as detection model with pytest.raises(ValueError): models.ocr_predictor(det_arch=reco_model, pretrained=True) # passing detection model as recognition model with pytest.raises(ValueError): models.ocr_predictor(reco_arch=det_model, pretrained=True) # KIE predictor predictor = models.kie_predictor(det_arch, reco_arch, pretrained=True) _test_kiepredictor(predictor) # passing model instance directly det_model = detection.__dict__[det_arch](pretrained=True) reco_model = recognition.__dict__[reco_arch](pretrained=True) predictor = models.kie_predictor(det_model, reco_model) _test_kiepredictor(predictor) # passing recognition model as detection model with pytest.raises(ValueError): models.kie_predictor(det_arch=reco_model, pretrained=True) # passing detection model as recognition model with pytest.raises(ValueError): models.kie_predictor(reco_arch=det_model, pretrained=True)
import os import pytest import tensorflow as tf from tensorflow.keras import Sequential, layers from tensorflow.keras.applications import ResNet50 from doctr.models.utils import IntermediateLayerGetter, conv_sequence, load_pretrained_params def test_load_pretrained_params(tmpdir_factory): model = Sequential([layers.Dense(8, activation="relu", input_shape=(4,)), layers.Dense(4)]) # Retrieve this URL url = "https://doctr-static.mindee.com/models?id=v0.1-models/tmp_checkpoint-4a98e492.zip&src=0" # Temp cache dir cache_dir = tmpdir_factory.mktemp("cache") # Pass an incorrect hash with pytest.raises(ValueError): load_pretrained_params(model, url, "mywronghash", cache_dir=str(cache_dir), internal_name="") # Let tit resolve the hash from the file name load_pretrained_params(model, url, cache_dir=str(cache_dir), internal_name="") # Check that the file was downloaded & the archive extracted assert os.path.exists(cache_dir.join("models").join("tmp_checkpoint-4a98e492")) # Check that archive was deleted assert os.path.exists(cache_dir.join("models").join("tmp_checkpoint-4a98e492.zip")) def test_conv_sequence(): assert len(conv_sequence(8, kernel_size=3)) == 1 assert len(conv_sequence(8, "relu", kernel_size=3)) == 1 assert len(conv_sequence(8, None, True, kernel_size=3)) == 2 assert len(conv_sequence(8, "relu", True, kernel_size=3)) == 3 def test_intermediate_layer_getter(): backbone = ResNet50(include_top=False, weights=None, pooling=None) feat_extractor = IntermediateLayerGetter(backbone, ["conv2_block3_out", "conv3_block4_out"]) # Check num of output features input_tensor = tf.random.uniform(shape=[1, 224, 224, 3], minval=0, maxval=1) assert len(feat_extractor(input_tensor)) == 2 # Repr assert repr(feat_extractor) == "IntermediateLayerGetter()"
import numpy as np import pytest import tensorflow as tf from doctr.models.preprocessor import PreProcessor @pytest.mark.parametrize( "batch_size, output_size, input_tensor, expected_batches, expected_value", [ [2, (128, 128), np.full((3, 256, 128, 3), 255, dtype=np.uint8), 1, 0.5], # numpy uint8 [2, (128, 128), np.ones((3, 256, 128, 3), dtype=np.float32), 1, 0.5], # numpy fp32 [2, (128, 128), tf.cast(tf.fill((3, 256, 128, 3), 255), dtype=tf.uint8), 1, 0.5], # tf uint8 [2, (128, 128), tf.ones((3, 128, 128, 3), dtype=tf.float32), 1, 0.5], # tf fp32 [2, (128, 128), [np.full((256, 128, 3), 255, dtype=np.uint8)] * 3, 2, 0.5], # list of numpy uint8 [2, (128, 128), [np.ones((256, 128, 3), dtype=np.float32)] * 3, 2, 0.5], # list of numpy fp32 [2, (128, 128), [tf.cast(tf.fill((256, 128, 3), 255), dtype=tf.uint8)] * 3, 2, 0.5], # list of tf uint8 [2, (128, 128), [tf.ones((128, 128, 3), dtype=tf.float32)] * 3, 2, 0.5], # list of tf fp32 ], ) def test_preprocessor(batch_size, output_size, input_tensor, expected_batches, expected_value): processor = PreProcessor(output_size, batch_size) # Invalid input type with pytest.raises(TypeError): processor(42) # 4D check with pytest.raises(AssertionError): processor(np.full((256, 128, 3), 255, dtype=np.uint8)) with pytest.raises(TypeError): processor(np.full((1, 256, 128, 3), 255, dtype=np.int32)) # 3D check with pytest.raises(AssertionError): processor([np.full((3, 256, 128, 3), 255, dtype=np.uint8)]) with pytest.raises(TypeError): processor([np.full((256, 128, 3), 255, dtype=np.int32)]) out = processor(input_tensor) assert isinstance(out, list) and len(out) == expected_batches assert all(isinstance(b, tf.Tensor) for b in out) assert all(b.dtype == tf.float32 for b in out) assert all(b.shape[1:3] == output_size for b in out) assert all(tf.math.reduce_all(b == expected_value) for b in out) assert len(repr(processor).split("\n")) == 4
from typing import List, Tuple import tensorflow as tf from doctr.datasets import DataLoader class MockDataset: def __init__(self, input_size): self.data: List[Tuple[float, bool]] = [ (1, True), (0, False), (0.5, True), ] self.input_size = input_size def __len__(self): return len(self.data) def __getitem__(self, index): val, label = self.data[index] return tf.cast(tf.fill(self.input_size, val), dtype=tf.float32), tf.constant(label, dtype=tf.bool) class MockDatasetBis(MockDataset): @staticmethod def collate_fn(samples): x, y = zip(*samples) return tf.stack(x, axis=0), list(y) def test_dataloader(): loader = DataLoader( MockDataset((32, 32)), shuffle=True, batch_size=2, drop_last=True, ) ds_iter = iter(loader) num_batches = 0 for x, y in ds_iter: num_batches += 1 assert len(loader) == 1 assert num_batches == 1 assert isinstance(x, tf.Tensor) and isinstance(y, tf.Tensor) assert x.shape == (2, 32, 32) assert y.shape == (2,) # Drop last loader = DataLoader( MockDataset((32, 32)), shuffle=True, batch_size=2, drop_last=False, ) ds_iter = iter(loader) num_batches = 0 for x, y in ds_iter: num_batches += 1 assert loader.num_batches == 2 assert num_batches == 2 # Custom collate loader = DataLoader( MockDatasetBis((32, 32)), shuffle=True, batch_size=2, drop_last=False, ) ds_iter = iter(loader) x, y = next(ds_iter) assert isinstance(x, tf.Tensor) and isinstance(y, list) assert x.shape == (2, 32, 32) assert len(y) == 2
import os import tempfile import cv2 import numpy as np import onnxruntime import pytest import tensorflow as tf from doctr.models import classification from doctr.models.classification.predictor import CropOrientationPredictor from doctr.models.utils import export_model_to_onnx @pytest.mark.parametrize( "arch_name, input_shape, output_size", [ ["vgg16_bn_r", (32, 32, 3), (126,)], ["resnet18", (32, 32, 3), (126,)], ["resnet31", (32, 32, 3), (126,)], ["resnet34", (32, 32, 3), (126,)], ["resnet34_wide", (32, 32, 3), (126,)], ["resnet50", (32, 32, 3), (126,)], ["magc_resnet31", (32, 32, 3), (126,)], ["mobilenet_v3_small", (32, 32, 3), (126,)], ["mobilenet_v3_large", (32, 32, 3), (126,)], ["vit_s", (32, 32, 3), (126,)], ["vit_b", (32, 32, 3), (126,)], ], ) def test_classification_architectures(arch_name, input_shape, output_size): # Model batch_size = 2 tf.keras.backend.clear_session() model = classification.__dict__[arch_name](pretrained=True, include_top=True, input_shape=input_shape) # Forward out = model(tf.random.uniform(shape=[batch_size, *input_shape], maxval=1, dtype=tf.float32)) # Output checks assert isinstance(out, tf.Tensor) assert out.dtype == tf.float32 assert out.numpy().shape == (batch_size, *output_size) @pytest.mark.parametrize( "arch_name, input_shape", [ ["mobilenet_v3_small_orientation", (128, 128, 3)], ], ) def test_classification_models(arch_name, input_shape): batch_size = 8 reco_model = classification.__dict__[arch_name](pretrained=True, input_shape=input_shape) assert isinstance(reco_model, tf.keras.Model) input_tensor = tf.random.uniform(shape=[batch_size, *input_shape], minval=0, maxval=1) out = reco_model(input_tensor) assert isinstance(out, tf.Tensor) assert out.shape.as_list() == [8, 4] @pytest.mark.parametrize( "arch_name", [ "mobilenet_v3_small_orientation", ], ) def test_classification_zoo(arch_name): batch_size = 16 # Model predictor = classification.zoo.crop_orientation_predictor(arch_name, pretrained=False) with pytest.raises(ValueError): predictor = classification.zoo.crop_orientation_predictor(arch="wrong_model", pretrained=False) # object check assert isinstance(predictor, CropOrientationPredictor) input_tensor = tf.random.uniform(shape=[batch_size, 128, 128, 3], minval=0, maxval=1) out = predictor(input_tensor) assert isinstance(out, list) and len(out) == batch_size assert all(isinstance(pred, int) for pred in out) def test_crop_orientation_model(mock_text_box): text_box_0 = cv2.imread(mock_text_box) text_box_90 = np.rot90(text_box_0, 1) text_box_180 = np.rot90(text_box_0, 2) text_box_270 = np.rot90(text_box_0, 3) classifier = classification.crop_orientation_predictor("mobilenet_v3_small_orientation", pretrained=True) assert classifier([text_box_0, text_box_90, text_box_180, text_box_270]) == [0, 1, 2, 3] @pytest.mark.parametrize( "arch_name, input_shape, output_size", [ ["vgg16_bn_r", (32, 32, 3), (126,)], ["resnet18", (32, 32, 3), (126,)], ["resnet31", (32, 32, 3), (126,)], ["resnet34", (32, 32, 3), (126,)], ["resnet34_wide", (32, 32, 3), (126,)], ["resnet50", (32, 32, 3), (126,)], ["magc_resnet31", (32, 32, 3), (126,)], ["vit_b", (32, 32, 3), (126,)], # Disabled for now # ["mobilenet_v3_small", (512, 512, 3), (126,)], # ["mobilenet_v3_large", (512, 512, 3), (126,)], # ["mobilenet_v3_small_orientation", (128, 128, 3), (4,)], ], ) def test_models_onnx_export(arch_name, input_shape, output_size): # Model batch_size = 2 tf.keras.backend.clear_session() if arch_name == "mobilenet_v3_small_orientation": model = classification.__dict__[arch_name](pretrained=True, input_shape=input_shape) else: model = classification.__dict__[arch_name](pretrained=True, include_top=True, input_shape=input_shape) if arch_name == "vit_b": # vit model needs a fixed batch size dummy_input = [tf.TensorSpec([2, *input_shape], tf.float32, name="input")] else: # batch_size = None for dynamic batch size dummy_input = [tf.TensorSpec([None, *input_shape], tf.float32, name="input")] np_dummy_input = np.random.rand(batch_size, *input_shape).astype(np.float32) with tempfile.TemporaryDirectory() as tmpdir: # Export model_path, output = export_model_to_onnx( model, model_name=os.path.join(tmpdir, "model"), dummy_input=dummy_input ) assert os.path.exists(model_path) # Inference ort_session = onnxruntime.InferenceSession( os.path.join(tmpdir, "model.onnx"), providers=["CPUExecutionProvider"] ) ort_outs = ort_session.run(output, {"input": np_dummy_input}) assert isinstance(ort_outs, list) and len(ort_outs) == 1 assert ort_outs[0].shape == (batch_size, *output_size)
import os from shutil import move import numpy as np import pytest import tensorflow as tf from doctr import datasets from doctr.datasets import DataLoader from doctr.file_utils import CLASS_NAME from doctr.transforms import Resize def _validate_dataset(ds, input_size, batch_size=2, class_indices=False, is_polygons=False): # Fetch one sample img, target = ds[0] assert isinstance(img, tf.Tensor) assert img.shape == (*input_size, 3) assert img.dtype == tf.float32 assert isinstance(target, dict) assert isinstance(target["boxes"], np.ndarray) and target["boxes"].dtype == np.float32 if is_polygons: assert target["boxes"].ndim == 3 and target["boxes"].shape[1:] == (4, 2) else: assert target["boxes"].ndim == 2 and target["boxes"].shape[1:] == (4,) assert np.all(np.logical_and(target["boxes"] <= 1, target["boxes"] >= 0)) if class_indices: assert isinstance(target["labels"], np.ndarray) and target["labels"].dtype == np.int64 else: assert isinstance(target["labels"], list) and all(isinstance(s, str) for s in target["labels"]) assert len(target["labels"]) == len(target["boxes"]) # Check batching loader = DataLoader(ds, batch_size=batch_size) images, targets = next(iter(loader)) assert isinstance(images, tf.Tensor) and images.shape == (batch_size, *input_size, 3) assert isinstance(targets, list) and all(isinstance(elt, dict) for elt in targets) def _validate_dataset_recognition_part(ds, input_size, batch_size=2): # Fetch one sample img, label = ds[0] assert isinstance(img, tf.Tensor) assert img.shape == (*input_size, 3) assert img.dtype == tf.float32 assert isinstance(label, str) # Check batching loader = DataLoader(ds, batch_size=batch_size) images, labels = next(iter(loader)) assert isinstance(images, tf.Tensor) and images.shape == (batch_size, *input_size, 3) assert isinstance(labels, list) and all(isinstance(elt, str) for elt in labels) def test_detection_dataset(mock_image_folder, mock_detection_label): input_size = (1024, 1024) ds = datasets.DetectionDataset( img_folder=mock_image_folder, label_path=mock_detection_label, img_transforms=Resize(input_size), ) assert len(ds) == 5 img, target_dict = ds[0] target = target_dict[CLASS_NAME] assert isinstance(img, tf.Tensor) assert img.shape[:2] == input_size assert img.dtype == tf.float32 # Bounding boxes assert isinstance(target_dict, dict) assert isinstance(target, np.ndarray) and target.dtype == np.float32 assert np.all(np.logical_and(target[:, :4] >= 0, target[:, :4] <= 1)) assert target.shape[1] == 4 loader = DataLoader(ds, batch_size=2) images, targets = next(iter(loader)) assert isinstance(images, tf.Tensor) and images.shape == (2, *input_size, 3) assert isinstance(targets, list) and all( isinstance(elt, np.ndarray) for target in targets for elt in target.values() ) # Rotated DS rotated_ds = datasets.DetectionDataset( img_folder=mock_image_folder, label_path=mock_detection_label, img_transforms=Resize(input_size), use_polygons=True, ) _, r_target = rotated_ds[0] assert r_target[CLASS_NAME].shape[1:] == (4, 2) # File existence check img_name, _ = ds.data[0] move(os.path.join(ds.root, img_name), os.path.join(ds.root, "tmp_file")) with pytest.raises(FileNotFoundError): datasets.DetectionDataset(mock_image_folder, mock_detection_label) move(os.path.join(ds.root, "tmp_file"), os.path.join(ds.root, img_name)) def test_recognition_dataset(mock_image_folder, mock_recognition_label): input_size = (32, 128) ds = datasets.RecognitionDataset( img_folder=mock_image_folder, labels_path=mock_recognition_label, img_transforms=Resize(input_size, preserve_aspect_ratio=True), ) assert len(ds) == 5 image, label = ds[0] assert isinstance(image, tf.Tensor) assert image.shape[:2] == input_size assert image.dtype == tf.float32 assert isinstance(label, str) loader = DataLoader(ds, batch_size=2) images, labels = next(iter(loader)) assert isinstance(images, tf.Tensor) and images.shape == (2, *input_size, 3) assert isinstance(labels, list) and all(isinstance(elt, str) for elt in labels) # File existence check img_name, _ = ds.data[0] move(os.path.join(ds.root, img_name), os.path.join(ds.root, "tmp_file")) with pytest.raises(FileNotFoundError): datasets.RecognitionDataset(mock_image_folder, mock_recognition_label) move(os.path.join(ds.root, "tmp_file"), os.path.join(ds.root, img_name)) @pytest.mark.parametrize( "use_polygons", [False, True], ) def test_ocrdataset(mock_ocrdataset, use_polygons): input_size = (512, 512) ds = datasets.OCRDataset( *mock_ocrdataset, img_transforms=Resize(input_size), use_polygons=use_polygons, ) assert len(ds) == 3 _validate_dataset(ds, input_size, is_polygons=use_polygons) # File existence check img_name, _ = ds.data[0] move(os.path.join(ds.root, img_name), os.path.join(ds.root, "tmp_file")) with pytest.raises(FileNotFoundError): datasets.OCRDataset(*mock_ocrdataset) move(os.path.join(ds.root, "tmp_file"), os.path.join(ds.root, img_name)) def test_charactergenerator(): input_size = (32, 32) vocab = "abcdef" ds = datasets.CharacterGenerator( vocab=vocab, num_samples=10, cache_samples=True, img_transforms=Resize(input_size), ) assert len(ds) == 10 image, label = ds[0] assert isinstance(image, tf.Tensor) assert image.shape[:2] == input_size assert image.dtype == tf.float32 assert isinstance(label, int) and label < len(vocab) loader = DataLoader(ds, batch_size=2, collate_fn=ds.collate_fn) images, targets = next(iter(loader)) assert isinstance(images, tf.Tensor) and images.shape == (2, *input_size, 3) assert isinstance(targets, tf.Tensor) and targets.shape == (2,) assert targets.dtype == tf.int32 def test_wordgenerator(): input_size = (32, 128) wordlen_range = (1, 10) vocab = "abcdef" ds = datasets.WordGenerator( vocab=vocab, min_chars=wordlen_range[0], max_chars=wordlen_range[1], num_samples=10, cache_samples=True, img_transforms=Resize(input_size), ) assert len(ds) == 10 image, target = ds[0] assert isinstance(image, tf.Tensor) assert image.shape[:2] == input_size assert image.dtype == tf.float32 assert isinstance(target, str) and len(target) >= wordlen_range[0] and len(target) <= wordlen_range[1] assert all(char in vocab for char in target) loader = DataLoader(ds, batch_size=2, collate_fn=ds.collate_fn) images, targets = next(iter(loader)) assert isinstance(images, tf.Tensor) and images.shape == (2, *input_size, 3) assert isinstance(targets, list) and len(targets) == 2 and all(isinstance(t, str) for t in targets) @pytest.mark.parametrize( "input_size, num_samples, rotate", [ [[512, 512], 3, True], # Actual set has 2700 training samples and 300 test samples [[512, 512], 3, False], ], ) def test_artefact_detection(input_size, num_samples, rotate, mock_doc_artefacts): # monkeypatch the path to temporary dataset datasets.DocArtefacts.URL = mock_doc_artefacts datasets.DocArtefacts.SHA256 = None ds = datasets.DocArtefacts( train=True, download=True, img_transforms=Resize(input_size), use_polygons=rotate, cache_dir="/".join(mock_doc_artefacts.split("/")[:-2]), cache_subdir=mock_doc_artefacts.split("/")[-2], ) assert len(ds) == num_samples assert repr(ds) == f"DocArtefacts(train={True})" _validate_dataset(ds, input_size, class_indices=True, is_polygons=rotate) # NOTE: following datasets support also recognition task @pytest.mark.parametrize( "input_size, num_samples, rotate, recognition", [ [[512, 512], 3, True, False], # Actual set has 626 training samples and 360 test samples [[512, 512], 3, False, False], [[32, 128], 15, True, True], # recognition [[32, 128], 15, False, True], ], ) def test_sroie(input_size, num_samples, rotate, recognition, mock_sroie_dataset): # monkeypatch the path to temporary dataset datasets.SROIE.TRAIN = (mock_sroie_dataset, None) ds = datasets.SROIE( train=True, download=True, img_transforms=Resize(input_size), use_polygons=rotate, recognition_task=recognition, cache_dir="/".join(mock_sroie_dataset.split("/")[:-2]), cache_subdir=mock_sroie_dataset.split("/")[-2], ) assert len(ds) == num_samples assert repr(ds) == f"SROIE(train={True})" if recognition: _validate_dataset_recognition_part(ds, input_size) else: _validate_dataset(ds, input_size, is_polygons=rotate) @pytest.mark.parametrize( "input_size, num_samples, rotate, recognition", [ [[512, 512], 5, True, False], # Actual set has 229 train and 233 test samples [[512, 512], 5, False, False], [[32, 128], 25, True, True], # recognition [[32, 128], 25, False, True], ], ) def test_ic13_dataset(input_size, num_samples, rotate, recognition, mock_ic13): ds = datasets.IC13( *mock_ic13, img_transforms=Resize(input_size), use_polygons=rotate, recognition_task=recognition, ) assert len(ds) == num_samples if recognition: _validate_dataset_recognition_part(ds, input_size) else: _validate_dataset(ds, input_size, is_polygons=rotate) @pytest.mark.parametrize( "input_size, num_samples, rotate, recognition", [ [[512, 512], 3, True, False], # Actual set has 7149 train and 796 test samples [[512, 512], 3, False, False], [[32, 128], 5, True, True], # recognition [[32, 128], 5, False, True], ], ) def test_imgur5k_dataset(input_size, num_samples, rotate, recognition, mock_imgur5k): ds = datasets.IMGUR5K( *mock_imgur5k, train=True, img_transforms=Resize(input_size), use_polygons=rotate, recognition_task=recognition, ) assert len(ds) == num_samples - 1 # -1 because of the test set 90 / 10 split assert repr(ds) == f"IMGUR5K(train={True})" if recognition: _validate_dataset_recognition_part(ds, input_size) else: _validate_dataset(ds, input_size, is_polygons=rotate) @pytest.mark.parametrize( "input_size, num_samples, rotate, recognition", [ [[32, 128], 3, True, False], # Actual set has 33402 training samples and 13068 test samples [[32, 128], 3, False, False], [[32, 128], 12, True, True], # recognition [[32, 128], 12, False, True], ], ) def test_svhn(input_size, num_samples, rotate, recognition, mock_svhn_dataset): # monkeypatch the path to temporary dataset datasets.SVHN.TRAIN = (mock_svhn_dataset, None, "svhn_train.tar") ds = datasets.SVHN( train=True, download=True, img_transforms=Resize(input_size), use_polygons=rotate, recognition_task=recognition, cache_dir="/".join(mock_svhn_dataset.split("/")[:-2]), cache_subdir=mock_svhn_dataset.split("/")[-2], ) assert len(ds) == num_samples assert repr(ds) == f"SVHN(train={True})" if recognition: _validate_dataset_recognition_part(ds, input_size) else: _validate_dataset(ds, input_size, is_polygons=rotate) @pytest.mark.parametrize( "input_size, num_samples, rotate, recognition", [ [[512, 512], 3, True, False], # Actual set has 149 training samples and 50 test samples [[512, 512], 3, False, False], [[32, 128], 9, True, True], # recognition [[32, 128], 9, False, True], ], ) def test_funsd(input_size, num_samples, rotate, recognition, mock_funsd_dataset): # monkeypatch the path to temporary dataset datasets.FUNSD.URL = mock_funsd_dataset datasets.FUNSD.SHA256 = None datasets.FUNSD.FILE_NAME = "funsd.zip" ds = datasets.FUNSD( train=True, download=True, img_transforms=Resize(input_size), use_polygons=rotate, recognition_task=recognition, cache_dir="/".join(mock_funsd_dataset.split("/")[:-2]), cache_subdir=mock_funsd_dataset.split("/")[-2], ) assert len(ds) == num_samples assert repr(ds) == f"FUNSD(train={True})" if recognition: _validate_dataset_recognition_part(ds, input_size) else: _validate_dataset(ds, input_size, is_polygons=rotate) @pytest.mark.parametrize( "input_size, num_samples, rotate, recognition", [ [[512, 512], 3, True, False], # Actual set has 800 training samples and 100 test samples [[512, 512], 3, False, False], [[32, 128], 9, True, True], # recognition [[32, 128], 9, False, True], ], ) def test_cord(input_size, num_samples, rotate, recognition, mock_cord_dataset): # monkeypatch the path to temporary dataset datasets.CORD.TRAIN = (mock_cord_dataset, None) ds = datasets.CORD( train=True, download=True, img_transforms=Resize(input_size), use_polygons=rotate, recognition_task=recognition, cache_dir="/".join(mock_cord_dataset.split("/")[:-2]), cache_subdir=mock_cord_dataset.split("/")[-2], ) assert len(ds) == num_samples assert repr(ds) == f"CORD(train={True})" if recognition: _validate_dataset_recognition_part(ds, input_size) else: _validate_dataset(ds, input_size, is_polygons=rotate) @pytest.mark.parametrize( "input_size, num_samples, rotate, recognition", [ [[512, 512], 2, True, False], # Actual set has 772875 training samples and 85875 test samples [[512, 512], 2, False, False], [[32, 128], 10, True, True], # recognition [[32, 128], 10, False, True], ], ) def test_synthtext(input_size, num_samples, rotate, recognition, mock_synthtext_dataset): # monkeypatch the path to temporary dataset datasets.SynthText.URL = mock_synthtext_dataset datasets.SynthText.SHA256 = None ds = datasets.SynthText( train=True, download=True, img_transforms=Resize(input_size), use_polygons=rotate, recognition_task=recognition, cache_dir="/".join(mock_synthtext_dataset.split("/")[:-2]), cache_subdir=mock_synthtext_dataset.split("/")[-2], ) assert len(ds) == num_samples assert repr(ds) == f"SynthText(train={True})" if recognition: _validate_dataset_recognition_part(ds, input_size) else: _validate_dataset(ds, input_size, is_polygons=rotate) @pytest.mark.parametrize( "input_size, num_samples, rotate, recognition", [ [[32, 128], 1, True, False], # Actual set has 2000 training samples and 3000 test samples [[32, 128], 1, False, False], [[32, 128], 1, True, True], # recognition [[32, 128], 1, False, True], ], ) def test_iiit5k(input_size, num_samples, rotate, recognition, mock_iiit5k_dataset): # monkeypatch the path to temporary dataset datasets.IIIT5K.URL = mock_iiit5k_dataset datasets.IIIT5K.SHA256 = None ds = datasets.IIIT5K( train=True, download=True, img_transforms=Resize(input_size), use_polygons=rotate, recognition_task=recognition, cache_dir="/".join(mock_iiit5k_dataset.split("/")[:-2]), cache_subdir=mock_iiit5k_dataset.split("/")[-2], ) assert len(ds) == num_samples assert repr(ds) == f"IIIT5K(train={True})" if recognition: _validate_dataset_recognition_part(ds, input_size, batch_size=1) else: _validate_dataset(ds, input_size, batch_size=1, is_polygons=rotate) @pytest.mark.parametrize( "input_size, num_samples, rotate, recognition", [ [[512, 512], 3, True, False], # Actual set has 100 training samples and 249 test samples [[512, 512], 3, False, False], [[32, 128], 3, True, True], # recognition [[32, 128], 3, False, True], ], ) def test_svt(input_size, num_samples, rotate, recognition, mock_svt_dataset): # monkeypatch the path to temporary dataset datasets.SVT.URL = mock_svt_dataset datasets.SVT.SHA256 = None ds = datasets.SVT( train=True, download=True, img_transforms=Resize(input_size), use_polygons=rotate, recognition_task=recognition, cache_dir="/".join(mock_svt_dataset.split("/")[:-2]), cache_subdir=mock_svt_dataset.split("/")[-2], ) assert len(ds) == num_samples assert repr(ds) == f"SVT(train={True})" if recognition: _validate_dataset_recognition_part(ds, input_size) else: _validate_dataset(ds, input_size, is_polygons=rotate) @pytest.mark.parametrize( "input_size, num_samples, rotate, recognition", [ [[512, 512], 3, True, False], # Actual set has 246 training samples and 249 test samples [[512, 512], 3, False, False], [[32, 128], 3, True, True], # recognition [[32, 128], 3, False, True], ], ) def test_ic03(input_size, num_samples, rotate, recognition, mock_ic03_dataset): # monkeypatch the path to temporary dataset datasets.IC03.TRAIN = (mock_ic03_dataset, None, "ic03_train.zip") ds = datasets.IC03( train=True, download=True, img_transforms=Resize(input_size), use_polygons=rotate, recognition_task=recognition, cache_dir="/".join(mock_ic03_dataset.split("/")[:-2]), cache_subdir=mock_ic03_dataset.split("/")[-2], ) assert len(ds) == num_samples assert repr(ds) == f"IC03(train={True})" if recognition: _validate_dataset_recognition_part(ds, input_size) else: _validate_dataset(ds, input_size, is_polygons=rotate) # NOTE: following datasets are only for recognition task def test_mjsynth_dataset(mock_mjsynth_dataset): input_size = (32, 128) ds = datasets.MJSynth( *mock_mjsynth_dataset, img_transforms=Resize(input_size, preserve_aspect_ratio=True), ) assert len(ds) == 4 # Actual set has 7581382 train and 1337891 test samples assert repr(ds) == f"MJSynth(train={True})" _validate_dataset_recognition_part(ds, input_size)
import os import tempfile import numpy as np import onnxruntime import pytest import tensorflow as tf from doctr.file_utils import CLASS_NAME from doctr.io import DocumentFile from doctr.models import detection from doctr.models.detection._utils import dilate, erode from doctr.models.detection.predictor import DetectionPredictor from doctr.models.preprocessor import PreProcessor from doctr.models.utils import export_model_to_onnx @pytest.mark.parametrize( "arch_name, input_shape, output_size, out_prob", [ ["db_resnet50", (512, 512, 3), (512, 512, 1), True], ["db_mobilenet_v3_large", (512, 512, 3), (512, 512, 1), True], ["linknet_resnet18", (512, 512, 3), (512, 512, 1), False], ["linknet_resnet34", (512, 512, 3), (512, 512, 1), False], ["linknet_resnet50", (512, 512, 3), (512, 512, 1), False], ], ) def test_detection_models(arch_name, input_shape, output_size, out_prob): batch_size = 2 tf.keras.backend.clear_session() model = detection.__dict__[arch_name](pretrained=True, input_shape=input_shape) assert isinstance(model, tf.keras.Model) input_tensor = tf.random.uniform(shape=[batch_size, *input_shape], minval=0, maxval=1) target = [ {CLASS_NAME: np.array([[0.5, 0.5, 1, 1], [0.5, 0.5, 0.8, 0.8]], dtype=np.float32)}, {CLASS_NAME: np.array([[0.5, 0.5, 1, 1], [0.5, 0.5, 0.8, 0.9]], dtype=np.float32)}, ] # test training model out = model(input_tensor, target, return_model_output=True, return_preds=True, training=True) assert isinstance(out, dict) assert len(out) == 3 # Check proba map assert isinstance(out["out_map"], tf.Tensor) assert out["out_map"].dtype == tf.float32 seg_map = out["out_map"].numpy() assert seg_map.shape == (batch_size, *output_size) if out_prob: assert np.all(np.logical_and(seg_map >= 0, seg_map <= 1)) # Check boxes for boxes_dict in out["preds"]: for boxes in boxes_dict.values(): assert boxes.shape[1] == 5 assert np.all(boxes[:, :2] < boxes[:, 2:4]) assert np.all(boxes[:, :4] >= 0) and np.all(boxes[:, :4] <= 1) # Check loss assert isinstance(out["loss"], tf.Tensor) # Target checks target = [ {CLASS_NAME: np.array([[0, 0, 1, 1]], dtype=np.uint8)}, {CLASS_NAME: np.array([[0, 0, 1, 1]], dtype=np.uint8)}, ] with pytest.raises(AssertionError): out = model(input_tensor, target, training=True) target = [ {CLASS_NAME: np.array([[0, 0, 1.5, 1.5]], dtype=np.float32)}, {CLASS_NAME: np.array([[-0.2, -0.3, 1, 1]], dtype=np.float32)}, ] with pytest.raises(ValueError): out = model(input_tensor, target, training=True) # Check the rotated case target = [ {CLASS_NAME: np.array([[0.75, 0.75, 0.5, 0.5, 0], [0.65, 0.65, 0.3, 0.3, 0]], dtype=np.float32)}, {CLASS_NAME: np.array([[0.75, 0.75, 0.5, 0.5, 0], [0.65, 0.7, 0.3, 0.4, 0]], dtype=np.float32)}, ] loss = model(input_tensor, target, training=True)["loss"] assert isinstance(loss, tf.Tensor) and ((loss - out["loss"]) / loss).numpy() < 25e-2 @pytest.fixture(scope="session") def test_detectionpredictor(mock_pdf): # noqa: F811 batch_size = 4 predictor = DetectionPredictor( PreProcessor(output_size=(512, 512), batch_size=batch_size), detection.db_resnet50(input_shape=(512, 512, 3)) ) pages = DocumentFile.from_pdf(mock_pdf).as_images() out = predictor(pages) # The input PDF has 2 pages assert len(out) == 2 # Dimension check with pytest.raises(ValueError): input_page = (255 * np.random.rand(1, 256, 512, 3)).astype(np.uint8) _ = predictor([input_page]) return predictor @pytest.fixture(scope="session") def test_rotated_detectionpredictor(mock_pdf): # noqa: F811 batch_size = 4 predictor = DetectionPredictor( PreProcessor(output_size=(512, 512), batch_size=batch_size), detection.db_resnet50(assume_straight_pages=False, input_shape=(512, 512, 3)), ) pages = DocumentFile.from_pdf(mock_pdf).as_images() out = predictor(pages) # The input PDF has 2 pages assert len(out) == 2 # Dimension check with pytest.raises(ValueError): input_page = (255 * np.random.rand(1, 256, 512, 3)).astype(np.uint8) _ = predictor([input_page]) return predictor @pytest.mark.parametrize( "arch_name", [ "db_resnet50", "db_mobilenet_v3_large", "linknet_resnet18", ], ) def test_detection_zoo(arch_name): # Model tf.keras.backend.clear_session() predictor = detection.zoo.detection_predictor(arch_name, pretrained=False) # object check assert isinstance(predictor, DetectionPredictor) input_tensor = tf.random.uniform(shape=[2, 1024, 1024, 3], minval=0, maxval=1) out = predictor(input_tensor) assert all(isinstance(boxes, dict) for boxes in out) assert all(isinstance(boxes[CLASS_NAME], np.ndarray) and boxes[CLASS_NAME].shape[1] == 5 for boxes in out) def test_detection_zoo_error(): with pytest.raises(ValueError): _ = detection.zoo.detection_predictor("my_fancy_model", pretrained=False) def test_erode(): x = np.zeros((1, 3, 3, 1), dtype=np.float32) x[:, 1, 1] = 1 x = tf.convert_to_tensor(x) expected = tf.zeros((1, 3, 3, 1)) out = erode(x, 3) assert tf.math.reduce_all(out == expected) def test_dilate(): x = np.zeros((1, 3, 3, 1), dtype=np.float32) x[:, 1, 1] = 1 x = tf.convert_to_tensor(x) expected = tf.ones((1, 3, 3, 1)) out = dilate(x, 3) assert tf.math.reduce_all(out == expected) @pytest.mark.parametrize( "arch_name, input_shape, output_size", [ ["db_resnet50", (512, 512, 3), (512, 512, 1)], ["db_mobilenet_v3_large", (512, 512, 3), (512, 512, 1)], ["linknet_resnet18", (1024, 1024, 3), (1024, 1024, 1)], ["linknet_resnet34", (1024, 1024, 3), (1024, 1024, 1)], ["linknet_resnet50", (512, 512, 3), (512, 512, 1)], ], ) def test_models_onnx_export(arch_name, input_shape, output_size): # Model batch_size = 2 tf.keras.backend.clear_session() model = detection.__dict__[arch_name](pretrained=True, exportable=True, input_shape=input_shape) # batch_size = None for dynamic batch size dummy_input = [tf.TensorSpec([None, *input_shape], tf.float32, name="input")] np_dummy_input = np.random.rand(batch_size, *input_shape).astype(np.float32) with tempfile.TemporaryDirectory() as tmpdir: # Export model_path, output = export_model_to_onnx( model, model_name=os.path.join(tmpdir, "model"), dummy_input=dummy_input ) assert os.path.exists(model_path) # Inference ort_session = onnxruntime.InferenceSession( os.path.join(tmpdir, "model.onnx"), providers=["CPUExecutionProvider"] ) ort_outs = ort_session.run(output, {"input": np_dummy_input}) assert isinstance(ort_outs, list) and len(ort_outs) == 1 assert ort_outs[0].shape == (batch_size, *output_size)
import json import os import tempfile import pytest import tensorflow as tf from doctr import models from doctr.models.factory import _save_model_and_config_for_hf_hub, from_hub, push_to_hf_hub def test_push_to_hf_hub(): model = models.classification.resnet18(pretrained=False) with pytest.raises(ValueError): # run_config and/or arch must be specified push_to_hf_hub(model, model_name="test", task="classification") with pytest.raises(ValueError): # task must be one of classification, detection, recognition, obj_detection push_to_hf_hub(model, model_name="test", task="invalid_task", arch="mobilenet_v3_small") with pytest.raises(ValueError): # arch not in available architectures for task push_to_hf_hub(model, model_name="test", task="detection", arch="crnn_mobilenet_v3_large") @pytest.mark.parametrize( "arch_name, task_name, dummy_model_id", [ ["vgg16_bn_r", "classification", "Felix92/doctr-dummy-tf-vgg16-bn-r"], ["resnet18", "classification", "Felix92/doctr-dummy-tf-resnet18"], ["resnet31", "classification", "Felix92/doctr-dummy-tf-resnet31"], ["resnet34", "classification", "Felix92/doctr-dummy-tf-resnet34"], ["resnet34_wide", "classification", "Felix92/doctr-dummy-tf-resnet34-wide"], ["resnet50", "classification", "Felix92/doctr-dummy-tf-resnet50"], ["magc_resnet31", "classification", "Felix92/doctr-dummy-tf-magc-resnet31"], ["mobilenet_v3_large", "classification", "Felix92/doctr-dummy-tf-mobilenet-v3-large"], ["vit_b", "classification", "Felix92/doctr-dummy-tf-vit-b"], ["db_resnet50", "detection", "Felix92/doctr-dummy-tf-db-resnet50"], ["db_mobilenet_v3_large", "detection", "Felix92/doctr-dummy-tf-db-mobilenet-v3-large"], ["linknet_resnet18", "detection", "Felix92/doctr-dummy-tf-linknet-resnet18"], ["linknet_resnet18_rotation", "detection", "Felix92/doctr-dummy-tf-linknet-resnet18-rotation"], ["linknet_resnet34", "detection", "Felix92/doctr-dummy-tf-linknet-resnet34"], ["linknet_resnet50", "detection", "Felix92/doctr-dummy-tf-linknet-resnet50"], ["crnn_vgg16_bn", "recognition", "Felix92/doctr-dummy-tf-crnn-vgg16-bn"], ["crnn_mobilenet_v3_large", "recognition", "Felix92/doctr-dummy-tf-crnn-mobilenet-v3-large"], ["sar_resnet31", "recognition", "Felix92/doctr-dummy-tf-sar-resnet31"], ["master", "recognition", "Felix92/doctr-dummy-tf-master"], ["vitstr_small", "recognition", "Felix92/doctr-dummy-tf-vitstr-small"], ], ) def test_models_for_hub(arch_name, task_name, dummy_model_id, tmpdir): with tempfile.TemporaryDirectory() as tmp_dir: tf.keras.backend.clear_session() model = models.__dict__[task_name].__dict__[arch_name](pretrained=True) _save_model_and_config_for_hf_hub(model, arch=arch_name, task=task_name, save_dir=tmp_dir) assert hasattr(model, "cfg") assert len(os.listdir(tmp_dir)) == 2 assert os.path.exists(tmp_dir + "/tf_model") assert len(os.listdir(tmp_dir + "/tf_model")) == 3 assert os.path.exists(tmp_dir + "/config.json") tmp_config = json.load(open(tmp_dir + "/config.json")) assert arch_name == tmp_config["arch"] assert task_name == tmp_config["task"] assert all(key in model.cfg.keys() for key in tmp_config.keys()) # test from hub tf.keras.backend.clear_session() hub_model = from_hub(repo_id=dummy_model_id) assert isinstance(hub_model, type(model))
import numpy as np import pytest import tensorflow as tf from doctr.io import decode_img_as_tensor, read_img_as_tensor, tensor_from_numpy def test_read_img_as_tensor(mock_image_path): img = read_img_as_tensor(mock_image_path) assert isinstance(img, tf.Tensor) assert img.dtype == tf.float32 assert img.shape == (900, 1200, 3) img = read_img_as_tensor(mock_image_path, dtype=tf.float16) assert img.dtype == tf.float16 img = read_img_as_tensor(mock_image_path, dtype=tf.uint8) assert img.dtype == tf.uint8 def test_decode_img_as_tensor(mock_image_stream): img = decode_img_as_tensor(mock_image_stream) assert isinstance(img, tf.Tensor) assert img.dtype == tf.float32 assert img.shape == (900, 1200, 3) img = decode_img_as_tensor(mock_image_stream, dtype=tf.float16) assert img.dtype == tf.float16 img = decode_img_as_tensor(mock_image_stream, dtype=tf.uint8) assert img.dtype == tf.uint8 def test_tensor_from_numpy(mock_image_stream): with pytest.raises(ValueError): tensor_from_numpy(np.zeros((256, 256, 3)), tf.int64) out = tensor_from_numpy(np.zeros((256, 256, 3), dtype=np.uint8)) assert isinstance(out, tf.Tensor) assert out.dtype == tf.float32 assert out.shape == (256, 256, 3) out = tensor_from_numpy(np.zeros((256, 256, 3), dtype=np.uint8), dtype=tf.float16) assert out.dtype == tf.float16 out = tensor_from_numpy(np.zeros((256, 256, 3), dtype=np.uint8), dtype=tf.uint8) assert out.dtype == tf.uint8