python_code
stringlengths
0
456k
from doctr.file_utils import is_tf_available, is_torch_available if is_tf_available(): from .tensorflow import * elif is_torch_available(): from .pytorch import * # type: ignore[assignment]
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from copy import deepcopy from typing import Any, Dict, List, Optional, Tuple, Union import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras.models import Model, Sequential from doctr.datasets import VOCABS from ...classification import mobilenet_v3_large_r, mobilenet_v3_small_r, vgg16_bn_r from ...utils.tensorflow import load_pretrained_params from ..core import RecognitionModel, RecognitionPostProcessor __all__ = ["CRNN", "crnn_vgg16_bn", "crnn_mobilenet_v3_small", "crnn_mobilenet_v3_large"] default_cfgs: Dict[str, Dict[str, Any]] = { "crnn_vgg16_bn": { "mean": (0.694, 0.695, 0.693), "std": (0.299, 0.296, 0.301), "input_shape": (32, 128, 3), "vocab": VOCABS["legacy_french"], "url": "https://doctr-static.mindee.com/models?id=v0.3.0/crnn_vgg16_bn-76b7f2c6.zip&src=0", }, "crnn_mobilenet_v3_small": { "mean": (0.694, 0.695, 0.693), "std": (0.299, 0.296, 0.301), "input_shape": (32, 128, 3), "vocab": VOCABS["french"], "url": "https://doctr-static.mindee.com/models?id=v0.3.1/crnn_mobilenet_v3_small-7f36edec.zip&src=0", }, "crnn_mobilenet_v3_large": { "mean": (0.694, 0.695, 0.693), "std": (0.299, 0.296, 0.301), "input_shape": (32, 128, 3), "vocab": VOCABS["french"], "url": None, }, } class CTCPostProcessor(RecognitionPostProcessor): """ Postprocess raw prediction of the model (logits) to a list of words using CTC decoding Args: vocab: string containing the ordered sequence of supported characters ignore_case: if True, ignore case of letters ignore_accents: if True, ignore accents of letters """ def __call__( self, logits: tf.Tensor, beam_width: int = 1, top_paths: int = 1, ) -> Union[List[Tuple[str, float]], List[Tuple[List[str], List[float]]]]: """ Performs decoding of raw output with CTC and decoding of CTC predictions with label_to_idx mapping dictionnary Args: logits: raw output of the model, shape BATCH_SIZE X SEQ_LEN X NUM_CLASSES + 1 beam_width: An int scalar >= 0 (beam search beam width). top_paths: An int scalar >= 0, <= beam_width (controls output size). Returns: A list of decoded words of length BATCH_SIZE """ # Decode CTC _decoded, _log_prob = tf.nn.ctc_beam_search_decoder( tf.transpose(logits, perm=[1, 0, 2]), tf.fill(tf.shape(logits)[:1], tf.shape(logits)[1]), beam_width=beam_width, top_paths=top_paths, ) _decoded = tf.sparse.concat( 1, [tf.sparse.expand_dims(dec, axis=1) for dec in _decoded], expand_nonconcat_dims=True, ) # dim : batchsize x beamwidth x actual_max_len_predictions out_idxs = tf.sparse.to_dense(_decoded, default_value=len(self.vocab)) # Map it to characters _decoded_strings_pred = tf.strings.reduce_join( inputs=tf.nn.embedding_lookup(tf.constant(self._embedding, dtype=tf.string), out_idxs), axis=-1, ) _decoded_strings_pred = tf.strings.split(_decoded_strings_pred, "<eos>") decoded_strings_pred = tf.sparse.to_dense(_decoded_strings_pred.to_sparse(), default_value="not valid")[ :, :, 0 ] # dim : batch_size x beam_width if top_paths == 1: probs = tf.math.exp(tf.squeeze(_log_prob, axis=1)) # dim : batchsize decoded_strings_pred = tf.squeeze(decoded_strings_pred, axis=1) word_values = [word.decode() for word in decoded_strings_pred.numpy().tolist()] else: probs = tf.math.exp(_log_prob) # dim : batchsize x beamwidth word_values = [[word.decode() for word in words] for words in decoded_strings_pred.numpy().tolist()] return list(zip(word_values, probs.numpy().tolist())) class CRNN(RecognitionModel, Model): """Implements a CRNN architecture as described in `"An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition" <https://arxiv.org/pdf/1507.05717.pdf>`_. Args: feature_extractor: the backbone serving as feature extractor vocab: vocabulary used for encoding rnn_units: number of units in the LSTM layers exportable: onnx exportable returns only logits beam_width: beam width for beam search decoding top_paths: number of top paths for beam search decoding cfg: configuration dictionary """ _children_names: List[str] = ["feat_extractor", "decoder", "postprocessor"] def __init__( self, feature_extractor: tf.keras.Model, vocab: str, rnn_units: int = 128, exportable: bool = False, beam_width: int = 1, top_paths: int = 1, cfg: Optional[Dict[str, Any]] = None, ) -> None: # Initialize kernels h, w, c = feature_extractor.output_shape[1:] super().__init__() self.vocab = vocab self.max_length = w self.cfg = cfg self.exportable = exportable self.feat_extractor = feature_extractor self.decoder = Sequential( [ layers.Bidirectional(layers.LSTM(units=rnn_units, return_sequences=True)), layers.Bidirectional(layers.LSTM(units=rnn_units, return_sequences=True)), layers.Dense(units=len(vocab) + 1), ] ) self.decoder.build(input_shape=(None, w, h * c)) self.postprocessor = CTCPostProcessor(vocab=vocab) self.beam_width = beam_width self.top_paths = top_paths def compute_loss( self, model_output: tf.Tensor, target: List[str], ) -> tf.Tensor: """Compute CTC loss for the model. Args: model_output: predicted logits of the model target: lengths of each gt word inside the batch Returns: The loss of the model on the batch """ gt, seq_len = self.build_target(target) batch_len = model_output.shape[0] input_length = tf.fill((batch_len,), model_output.shape[1]) ctc_loss = tf.nn.ctc_loss( gt, model_output, seq_len, input_length, logits_time_major=False, blank_index=len(self.vocab) ) return ctc_loss def call( self, x: tf.Tensor, target: Optional[List[str]] = None, return_model_output: bool = False, return_preds: bool = False, beam_width: int = 1, top_paths: int = 1, **kwargs: Any, ) -> Dict[str, Any]: if kwargs.get("training", False) and target is None: raise ValueError("Need to provide labels during training") features = self.feat_extractor(x, **kwargs) # B x H x W x C --> B x W x H x C transposed_feat = tf.transpose(features, perm=[0, 2, 1, 3]) w, h, c = transposed_feat.get_shape().as_list()[1:] # B x W x H x C --> B x W x H * C features_seq = tf.reshape(transposed_feat, shape=(-1, w, h * c)) logits = self.decoder(features_seq, **kwargs) out: Dict[str, tf.Tensor] = {} if self.exportable: out["logits"] = logits return out if return_model_output: out["out_map"] = logits if target is None or return_preds: # Post-process boxes out["preds"] = self.postprocessor(logits, beam_width=beam_width, top_paths=top_paths) if target is not None: out["loss"] = self.compute_loss(logits, target) return out def _crnn( arch: str, pretrained: bool, backbone_fn, pretrained_backbone: bool = True, input_shape: Optional[Tuple[int, int, int]] = None, **kwargs: Any, ) -> CRNN: pretrained_backbone = pretrained_backbone and not pretrained kwargs["vocab"] = kwargs.get("vocab", default_cfgs[arch]["vocab"]) _cfg = deepcopy(default_cfgs[arch]) _cfg["vocab"] = kwargs["vocab"] _cfg["input_shape"] = input_shape or default_cfgs[arch]["input_shape"] feat_extractor = backbone_fn( input_shape=_cfg["input_shape"], include_top=False, pretrained=pretrained_backbone, ) # Build the model model = CRNN(feat_extractor, cfg=_cfg, **kwargs) # Load pretrained parameters if pretrained: load_pretrained_params(model, _cfg["url"]) return model def crnn_vgg16_bn(pretrained: bool = False, **kwargs: Any) -> CRNN: """CRNN with a VGG-16 backbone as described in `"An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition" <https://arxiv.org/pdf/1507.05717.pdf>`_. >>> import tensorflow as tf >>> from doctr.models import crnn_vgg16_bn >>> model = crnn_vgg16_bn(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 32, 128, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text recognition dataset Returns: text recognition architecture """ return _crnn("crnn_vgg16_bn", pretrained, vgg16_bn_r, **kwargs) def crnn_mobilenet_v3_small(pretrained: bool = False, **kwargs: Any) -> CRNN: """CRNN with a MobileNet V3 Small backbone as described in `"An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition" <https://arxiv.org/pdf/1507.05717.pdf>`_. >>> import tensorflow as tf >>> from doctr.models import crnn_mobilenet_v3_small >>> model = crnn_mobilenet_v3_small(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 32, 128, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text recognition dataset Returns: text recognition architecture """ return _crnn("crnn_mobilenet_v3_small", pretrained, mobilenet_v3_small_r, **kwargs) def crnn_mobilenet_v3_large(pretrained: bool = False, **kwargs: Any) -> CRNN: """CRNN with a MobileNet V3 Large backbone as described in `"An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition" <https://arxiv.org/pdf/1507.05717.pdf>`_. >>> import tensorflow as tf >>> from doctr.models import crnn_mobilenet_v3_large >>> model = crnn_mobilenet_v3_large(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 32, 128, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text recognition dataset Returns: text recognition architecture """ return _crnn("crnn_mobilenet_v3_large", pretrained, mobilenet_v3_large_r, **kwargs)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from copy import deepcopy from itertools import groupby from typing import Any, Callable, Dict, List, Optional, Tuple import torch from torch import nn from torch.nn import functional as F from doctr.datasets import VOCABS, decode_sequence from ...classification import mobilenet_v3_large_r, mobilenet_v3_small_r, vgg16_bn_r from ...utils.pytorch import load_pretrained_params from ..core import RecognitionModel, RecognitionPostProcessor __all__ = ["CRNN", "crnn_vgg16_bn", "crnn_mobilenet_v3_small", "crnn_mobilenet_v3_large"] default_cfgs: Dict[str, Dict[str, Any]] = { "crnn_vgg16_bn": { "mean": (0.694, 0.695, 0.693), "std": (0.299, 0.296, 0.301), "input_shape": (3, 32, 128), "vocab": VOCABS["legacy_french"], "url": "https://doctr-static.mindee.com/models?id=v0.3.1/crnn_vgg16_bn-9762b0b0.pt&src=0", }, "crnn_mobilenet_v3_small": { "mean": (0.694, 0.695, 0.693), "std": (0.299, 0.296, 0.301), "input_shape": (3, 32, 128), "vocab": VOCABS["french"], "url": "https://doctr-static.mindee.com/models?id=v0.3.1/crnn_mobilenet_v3_small_pt-3b919a02.pt&src=0", }, "crnn_mobilenet_v3_large": { "mean": (0.694, 0.695, 0.693), "std": (0.299, 0.296, 0.301), "input_shape": (3, 32, 128), "vocab": VOCABS["french"], "url": "https://doctr-static.mindee.com/models?id=v0.3.1/crnn_mobilenet_v3_large_pt-f5259ec2.pt&src=0", }, } class CTCPostProcessor(RecognitionPostProcessor): """ Postprocess raw prediction of the model (logits) to a list of words using CTC decoding Args: vocab: string containing the ordered sequence of supported characters """ @staticmethod def ctc_best_path( logits: torch.Tensor, vocab: str = VOCABS["french"], blank: int = 0, ) -> List[Tuple[str, float]]: """Implements best path decoding as shown by Graves (Dissertation, p63), highly inspired from <https://github.com/githubharald/CTCDecoder>`_. Args: logits: model output, shape: N x T x C vocab: vocabulary to use blank: index of blank label Returns: A list of tuples: (word, confidence) """ # Gather the most confident characters, and assign the smallest conf among those to the sequence prob probs = F.softmax(logits, dim=-1).max(dim=-1).values.min(dim=1).values # collapse best path (using itertools.groupby), map to chars, join char list to string words = [ decode_sequence([k for k, _ in groupby(seq.tolist()) if k != blank], vocab) for seq in torch.argmax(logits, dim=-1) ] return list(zip(words, probs.tolist())) def __call__(self, logits: torch.Tensor) -> List[Tuple[str, float]]: """ Performs decoding of raw output with CTC and decoding of CTC predictions with label_to_idx mapping dictionnary Args: logits: raw output of the model, shape (N, C + 1, seq_len) Returns: A tuple of 2 lists: a list of str (words) and a list of float (probs) """ # Decode CTC return self.ctc_best_path(logits=logits, vocab=self.vocab, blank=len(self.vocab)) class CRNN(RecognitionModel, nn.Module): """Implements a CRNN architecture as described in `"An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition" <https://arxiv.org/pdf/1507.05717.pdf>`_. Args: feature_extractor: the backbone serving as feature extractor vocab: vocabulary used for encoding rnn_units: number of units in the LSTM layers exportable: onnx exportable returns only logits cfg: configuration dictionary """ _children_names: List[str] = ["feat_extractor", "decoder", "linear", "postprocessor"] def __init__( self, feature_extractor: nn.Module, vocab: str, rnn_units: int = 128, input_shape: Tuple[int, int, int] = (3, 32, 128), exportable: bool = False, cfg: Optional[Dict[str, Any]] = None, ) -> None: super().__init__() self.vocab = vocab self.cfg = cfg self.max_length = 32 self.exportable = exportable self.feat_extractor = feature_extractor # Resolve the input_size of the LSTM self.feat_extractor.eval() with torch.no_grad(): out_shape = self.feat_extractor(torch.zeros((1, *input_shape))).shape lstm_in = out_shape[1] * out_shape[2] # Switch back to original mode self.feat_extractor.train() self.decoder = nn.LSTM( input_size=lstm_in, hidden_size=rnn_units, batch_first=True, num_layers=2, bidirectional=True, ) # features units = 2 * rnn_units because bidirectional layers self.linear = nn.Linear(in_features=2 * rnn_units, out_features=len(vocab) + 1) self.postprocessor = CTCPostProcessor(vocab=vocab) for n, m in self.named_modules(): # Don't override the initialization of the backbone if n.startswith("feat_extractor."): continue if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight.data, mode="fan_out", nonlinearity="relu") if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1.0) m.bias.data.zero_() def compute_loss( self, model_output: torch.Tensor, target: List[str], ) -> torch.Tensor: """Compute CTC loss for the model. Args: gt: the encoded tensor with gt labels model_output: predicted logits of the model seq_len: lengths of each gt word inside the batch Returns: The loss of the model on the batch """ gt, seq_len = self.build_target(target) batch_len = model_output.shape[0] input_length = model_output.shape[1] * torch.ones(size=(batch_len,), dtype=torch.int32) # N x T x C -> T x N x C logits = model_output.permute(1, 0, 2) probs = F.log_softmax(logits, dim=-1) ctc_loss = F.ctc_loss( probs, torch.from_numpy(gt), input_length, torch.tensor(seq_len, dtype=torch.int), len(self.vocab), zero_infinity=True, ) return ctc_loss def forward( self, x: torch.Tensor, target: Optional[List[str]] = None, return_model_output: bool = False, return_preds: bool = False, ) -> Dict[str, Any]: if self.training and target is None: raise ValueError("Need to provide labels during training") features = self.feat_extractor(x) # B x C x H x W --> B x C*H x W --> B x W x C*H c, h, w = features.shape[1], features.shape[2], features.shape[3] features_seq = torch.reshape(features, shape=(-1, h * c, w)) features_seq = torch.transpose(features_seq, 1, 2) logits, _ = self.decoder(features_seq) logits = self.linear(logits) out: Dict[str, Any] = {} if self.exportable: out["logits"] = logits return out if return_model_output: out["out_map"] = logits if target is None or return_preds: # Post-process boxes out["preds"] = self.postprocessor(logits) if target is not None: out["loss"] = self.compute_loss(logits, target) return out def _crnn( arch: str, pretrained: bool, backbone_fn: Callable[[Any], nn.Module], pretrained_backbone: bool = True, ignore_keys: Optional[List[str]] = None, **kwargs: Any, ) -> CRNN: pretrained_backbone = pretrained_backbone and not pretrained # Feature extractor feat_extractor = backbone_fn(pretrained=pretrained_backbone).features # type: ignore[call-arg] kwargs["vocab"] = kwargs.get("vocab", default_cfgs[arch]["vocab"]) kwargs["input_shape"] = kwargs.get("input_shape", default_cfgs[arch]["input_shape"]) _cfg = deepcopy(default_cfgs[arch]) _cfg["vocab"] = kwargs["vocab"] _cfg["input_shape"] = kwargs["input_shape"] # Build the model model = CRNN(feat_extractor, cfg=_cfg, **kwargs) # type: ignore[arg-type] # Load pretrained parameters if pretrained: # The number of classes is not the same as the number of classes in the pretrained model => # remove the last layer weights _ignore_keys = ignore_keys if _cfg["vocab"] != default_cfgs[arch]["vocab"] else None load_pretrained_params(model, _cfg["url"], ignore_keys=_ignore_keys) return model def crnn_vgg16_bn(pretrained: bool = False, **kwargs: Any) -> CRNN: """CRNN with a VGG-16 backbone as described in `"An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition" <https://arxiv.org/pdf/1507.05717.pdf>`_. >>> import torch >>> from doctr.models import crnn_vgg16_bn >>> model = crnn_vgg16_bn(pretrained=True) >>> input_tensor = torch.rand(1, 3, 32, 128) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text recognition dataset Returns: text recognition architecture """ return _crnn("crnn_vgg16_bn", pretrained, vgg16_bn_r, ignore_keys=["linear.weight", "linear.bias"], **kwargs) def crnn_mobilenet_v3_small(pretrained: bool = False, **kwargs: Any) -> CRNN: """CRNN with a MobileNet V3 Small backbone as described in `"An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition" <https://arxiv.org/pdf/1507.05717.pdf>`_. >>> import torch >>> from doctr.models import crnn_mobilenet_v3_small >>> model = crnn_mobilenet_v3_small(pretrained=True) >>> input_tensor = torch.rand(1, 3, 32, 128) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text recognition dataset Returns: text recognition architecture """ return _crnn( "crnn_mobilenet_v3_small", pretrained, mobilenet_v3_small_r, ignore_keys=["linear.weight", "linear.bias"], **kwargs, ) def crnn_mobilenet_v3_large(pretrained: bool = False, **kwargs: Any) -> CRNN: """CRNN with a MobileNet V3 Large backbone as described in `"An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition" <https://arxiv.org/pdf/1507.05717.pdf>`_. >>> import torch >>> from doctr.models import crnn_mobilenet_v3_large >>> model = crnn_mobilenet_v3_large(pretrained=True) >>> input_tensor = torch.rand(1, 3, 32, 128) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text recognition dataset Returns: text recognition architecture """ return _crnn( "crnn_mobilenet_v3_large", pretrained, mobilenet_v3_large_r, ignore_keys=["linear.weight", "linear.bias"], **kwargs, )
from doctr.file_utils import is_tf_available, is_torch_available if is_tf_available(): from .tensorflow import * elif is_torch_available(): from .pytorch import * # type: ignore[assignment]
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from copy import deepcopy from typing import Any, Dict, List, Optional, Tuple import tensorflow as tf from tensorflow.keras import Model, layers from doctr.datasets import VOCABS from ...classification import vit_b, vit_s from ...utils.tensorflow import load_pretrained_params from .base import _ViTSTR, _ViTSTRPostProcessor __all__ = ["ViTSTR", "vitstr_small", "vitstr_base"] default_cfgs: Dict[str, Dict[str, Any]] = { "vitstr_small": { "mean": (0.694, 0.695, 0.693), "std": (0.299, 0.296, 0.301), "input_shape": (32, 128, 3), "vocab": VOCABS["french"], "url": None, }, "vitstr_base": { "mean": (0.694, 0.695, 0.693), "std": (0.299, 0.296, 0.301), "input_shape": (32, 128, 3), "vocab": VOCABS["french"], "url": None, }, } class ViTSTR(_ViTSTR, Model): """Implements a ViTSTR architecture as described in `"Vision Transformer for Fast and Efficient Scene Text Recognition" <https://arxiv.org/pdf/2105.08582.pdf>`_. Args: feature_extractor: the backbone serving as feature extractor vocab: vocabulary used for encoding embedding_units: number of embedding units max_length: maximum word length handled by the model dropout_prob: dropout probability for the encoder and decoder input_shape: input shape of the image exportable: onnx exportable returns only logits cfg: dictionary containing information about the model """ _children_names: List[str] = ["feat_extractor", "postprocessor"] def __init__( self, feature_extractor, vocab: str, embedding_units: int, max_length: int = 25, dropout_prob: float = 0.0, input_shape: Tuple[int, int, int] = (32, 128, 3), # different from paper exportable: bool = False, cfg: Optional[Dict[str, Any]] = None, ) -> None: super().__init__() self.vocab = vocab self.exportable = exportable self.cfg = cfg # NOTE: different from paper, who uses eos also as pad token self.max_length = max_length + 3 # Add 1 step for EOS, 1 for SOS, 1 for PAD self.feat_extractor = feature_extractor self.head = layers.Dense(len(self.vocab) + 3, name="head") self.postprocessor = ViTSTRPostProcessor(vocab=self.vocab) @staticmethod def compute_loss( model_output: tf.Tensor, gt: tf.Tensor, seq_len: List[int], ) -> tf.Tensor: """Compute categorical cross-entropy loss for the model. Sequences are masked after the EOS character. Args: model_output: predicted logits of the model gt: the encoded tensor with gt labels seq_len: lengths of each gt word inside the batch Returns: The loss of the model on the batch """ # Input length : number of steps input_len = tf.shape(model_output)[1] # Add one for additional <eos> token (sos disappear in shift!) seq_len = tf.cast(seq_len, tf.int32) + 1 # One-hot gt labels oh_gt = tf.one_hot(gt, depth=model_output.shape[2]) # Compute loss: don't forget to shift gt! Otherwise the model learns to output the gt[t-1]! # The "masked" first gt char is <sos>. Delete last logit of the model output. cce = tf.nn.softmax_cross_entropy_with_logits(oh_gt[:, 1:, :], model_output[:, :-1, :]) # Compute mask mask_values = tf.zeros_like(cce) mask_2d = tf.sequence_mask(seq_len, input_len - 1) # delete the last mask timestep as well masked_loss = tf.where(mask_2d, cce, mask_values) ce_loss = tf.math.divide(tf.reduce_sum(masked_loss, axis=1), tf.cast(seq_len, model_output.dtype)) return tf.expand_dims(ce_loss, axis=1) def call( self, x: tf.Tensor, target: Optional[List[str]] = None, return_model_output: bool = False, return_preds: bool = False, **kwargs: Any, ) -> Dict[str, Any]: features = self.feat_extractor(x, **kwargs) # (batch_size, patches_seqlen, d_model) if target is not None: gt, seq_len = self.build_target(target) seq_len = tf.cast(seq_len, tf.int32) if kwargs.get("training", False) and target is None: raise ValueError("Need to provide labels during training") features = features[:, : self.max_length + 1] # add 1 for unused cls token (ViT) # (batch_size, max_length + 1, d_model) B, N, E = features.shape features = tf.reshape(features, (B * N, E)) logits = tf.reshape(self.head(features), (B, N, len(self.vocab) + 3)) # (batch_size, max_length + 1, vocab + 3) decoded_features = logits[:, 1:] # remove cls_token out: Dict[str, tf.Tensor] = {} if self.exportable: out["logits"] = decoded_features return out if return_model_output: out["out_map"] = decoded_features if target is None or return_preds: # Post-process boxes out["preds"] = self.postprocessor(decoded_features) if target is not None: out["loss"] = self.compute_loss(decoded_features, gt, seq_len) return out class ViTSTRPostProcessor(_ViTSTRPostProcessor): """Post processor for ViTSTR architecture Args: vocab: string containing the ordered sequence of supported characters """ def __call__( self, logits: tf.Tensor, ) -> List[Tuple[str, float]]: # compute pred with argmax for attention models out_idxs = tf.math.argmax(logits, axis=2) # N x L probs = tf.gather(tf.nn.softmax(logits, axis=-1), out_idxs, axis=-1, batch_dims=2) # Take the minimum confidence of the sequence probs = tf.math.reduce_min(probs, axis=1) # decode raw output of the model with tf_label_to_idx out_idxs = tf.cast(out_idxs, dtype="int32") embedding = tf.constant(self._embedding, dtype=tf.string) decoded_strings_pred = tf.strings.reduce_join(inputs=tf.nn.embedding_lookup(embedding, out_idxs), axis=-1) decoded_strings_pred = tf.strings.split(decoded_strings_pred, "<eos>") decoded_strings_pred = tf.sparse.to_dense(decoded_strings_pred.to_sparse(), default_value="not valid")[:, 0] word_values = [word.decode() for word in decoded_strings_pred.numpy().tolist()] return list(zip(word_values, probs.numpy().tolist())) def _vitstr( arch: str, pretrained: bool, backbone_fn, pretrained_backbone: bool = False, # NOTE: training from scratch without a pretrained backbone works better input_shape: Optional[Tuple[int, int, int]] = None, **kwargs: Any, ) -> ViTSTR: pretrained_backbone = pretrained_backbone and not pretrained # Patch the config _cfg = deepcopy(default_cfgs[arch]) _cfg["input_shape"] = input_shape or _cfg["input_shape"] _cfg["vocab"] = kwargs.get("vocab", _cfg["vocab"]) kwargs["vocab"] = _cfg["vocab"] # Feature extractor feat_extractor = backbone_fn( pretrained=pretrained_backbone, input_shape=_cfg["input_shape"], include_top=False, ) # Build the model model = ViTSTR(feat_extractor, cfg=_cfg, **kwargs) # Load pretrained parameters if pretrained: load_pretrained_params(model, default_cfgs[arch]["url"]) return model def vitstr_small(pretrained: bool = False, **kwargs: Any) -> ViTSTR: """ViTSTR-Small as described in `"Vision Transformer for Fast and Efficient Scene Text Recognition" <https://arxiv.org/pdf/2105.08582.pdf>`_. >>> import tensorflow as tf >>> from doctr.models import vitstr_small >>> model = vitstr_small(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 32, 128, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text recognition dataset Returns: text recognition architecture """ return _vitstr( "vitstr_small", pretrained, vit_s, embedding_units=384, **kwargs, ) def vitstr_base(pretrained: bool = False, **kwargs: Any) -> ViTSTR: """ViTSTR-Base as described in `"Vision Transformer for Fast and Efficient Scene Text Recognition" <https://arxiv.org/pdf/2105.08582.pdf>`_. >>> import tensorflow as tf >>> from doctr.models import vitstr_base >>> model = vitstr_base(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 32, 128, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text recognition dataset Returns: text recognition architecture """ return _vitstr( "vitstr_base", pretrained, vit_b, embedding_units=768, **kwargs, )
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from copy import deepcopy from typing import Any, Callable, Dict, List, Optional, Tuple import torch from torch import nn from torch.nn import functional as F from torchvision.models._utils import IntermediateLayerGetter from doctr.datasets import VOCABS from ...classification import vit_b, vit_s from ...utils.pytorch import load_pretrained_params from .base import _ViTSTR, _ViTSTRPostProcessor __all__ = ["ViTSTR", "vitstr_small", "vitstr_base"] default_cfgs: Dict[str, Dict[str, Any]] = { "vitstr_small": { "mean": (0.694, 0.695, 0.693), "std": (0.299, 0.296, 0.301), "input_shape": (3, 32, 128), "vocab": VOCABS["french"], "url": None, }, "vitstr_base": { "mean": (0.694, 0.695, 0.693), "std": (0.299, 0.296, 0.301), "input_shape": (3, 32, 128), "vocab": VOCABS["french"], "url": None, }, } class ViTSTR(_ViTSTR, nn.Module): """Implements a ViTSTR architecture as described in `"Vision Transformer for Fast and Efficient Scene Text Recognition" <https://arxiv.org/pdf/2105.08582.pdf>`_. Args: feature_extractor: the backbone serving as feature extractor vocab: vocabulary used for encoding embedding_units: number of embedding units max_length: maximum word length handled by the model dropout_prob: dropout probability of the encoder LSTM input_shape: input shape of the image exportable: onnx exportable returns only logits cfg: dictionary containing information about the model """ def __init__( self, feature_extractor, vocab: str, embedding_units: int, max_length: int = 25, input_shape: Tuple[int, int, int] = (3, 32, 128), # different from paper exportable: bool = False, cfg: Optional[Dict[str, Any]] = None, ) -> None: super().__init__() self.vocab = vocab self.exportable = exportable self.cfg = cfg # NOTE: different from paper, who uses eos also as pad token self.max_length = max_length + 3 # Add 1 step for EOS, 1 for SOS, 1 for PAD self.feat_extractor = feature_extractor self.head = nn.Linear(embedding_units, len(self.vocab) + 3) self.postprocessor = ViTSTRPostProcessor(vocab=self.vocab) def forward( self, x: torch.Tensor, target: Optional[List[str]] = None, return_model_output: bool = False, return_preds: bool = False, ) -> Dict[str, Any]: features = self.feat_extractor(x)["features"] # (batch_size, patches_seqlen, d_model) if target is not None: _gt, _seq_len = self.build_target(target) gt, seq_len = torch.from_numpy(_gt).to(dtype=torch.long), torch.tensor(_seq_len) gt, seq_len = gt.to(x.device), seq_len.to(x.device) if self.training and target is None: raise ValueError("Need to provide labels during training") # borrowed from : https://github.com/baudm/parseq/blob/main/strhub/models/vitstr/model.py features = features[:, : self.max_length + 1] # add 1 for unused cls token (ViT) # (batch_size, max_length + 1, d_model) B, N, E = features.size() features = features.reshape(B * N, E) logits = self.head(features).view(B, N, len(self.vocab) + 3) # (batch_size, max_length + 1, vocab + 3) decoded_features = logits[:, 1:] # remove cls_token out: Dict[str, Any] = {} if self.exportable: out["logits"] = decoded_features return out if return_model_output: out["out_map"] = decoded_features if target is None or return_preds: # Post-process boxes out["preds"] = self.postprocessor(decoded_features) if target is not None: out["loss"] = self.compute_loss(decoded_features, gt, seq_len) return out @staticmethod def compute_loss( model_output: torch.Tensor, gt: torch.Tensor, seq_len: torch.Tensor, ) -> torch.Tensor: """Compute categorical cross-entropy loss for the model. Sequences are masked after the EOS character. Args: model_output: predicted logits of the model gt: the encoded tensor with gt labels seq_len: lengths of each gt word inside the batch Returns: The loss of the model on the batch """ # Input length : number of steps input_len = model_output.shape[1] # Add one for additional <eos> token (sos disappear in shift!) seq_len = seq_len + 1 # Compute loss: don't forget to shift gt! Otherwise the model learns to output the gt[t-1]! # The "masked" first gt char is <sos>. Delete last logit of the model output. cce = F.cross_entropy(model_output[:, :-1, :].permute(0, 2, 1), gt[:, 1:], reduction="none") # Compute mask, remove 1 timestep here as well mask_2d = torch.arange(input_len - 1, device=model_output.device)[None, :] >= seq_len[:, None] cce[mask_2d] = 0 ce_loss = cce.sum(1) / seq_len.to(dtype=model_output.dtype) return ce_loss.mean() class ViTSTRPostProcessor(_ViTSTRPostProcessor): """Post processor for ViTSTR architecture Args: vocab: string containing the ordered sequence of supported characters """ def __call__( self, logits: torch.Tensor, ) -> List[Tuple[str, float]]: # compute pred with argmax for attention models out_idxs = logits.argmax(-1) # N x L probs = torch.gather(torch.softmax(logits, -1), -1, out_idxs.unsqueeze(-1)).squeeze(-1) # Take the minimum confidence of the sequence probs = probs.min(dim=1).values.detach().cpu() # Manual decoding word_values = [ "".join(self._embedding[idx] for idx in encoded_seq).split("<eos>")[0] for encoded_seq in out_idxs.cpu().numpy() ] return list(zip(word_values, probs.numpy().tolist())) def _vitstr( arch: str, pretrained: bool, backbone_fn: Callable[[bool], nn.Module], layer: str, pretrained_backbone: bool = False, # NOTE: training from scratch without a pretrained backbone works better ignore_keys: Optional[List[str]] = None, **kwargs: Any, ) -> ViTSTR: pretrained_backbone = pretrained_backbone and not pretrained # Patch the config _cfg = deepcopy(default_cfgs[arch]) _cfg["vocab"] = kwargs.get("vocab", _cfg["vocab"]) _cfg["input_shape"] = kwargs.get("input_shape", _cfg["input_shape"]) kwargs["vocab"] = _cfg["vocab"] kwargs["input_shape"] = _cfg["input_shape"] # Feature extractor feat_extractor = IntermediateLayerGetter( backbone_fn(pretrained_backbone, input_shape=_cfg["input_shape"]), # type: ignore[call-arg] {layer: "features"}, ) # Build the model model = ViTSTR(feat_extractor, cfg=_cfg, **kwargs) # Load pretrained parameters if pretrained: # The number of classes is not the same as the number of classes in the pretrained model => # remove the last layer weights _ignore_keys = ignore_keys if _cfg["vocab"] != default_cfgs[arch]["vocab"] else None load_pretrained_params(model, default_cfgs[arch]["url"], ignore_keys=_ignore_keys) return model def vitstr_small(pretrained: bool = False, **kwargs: Any) -> ViTSTR: """ViTSTR-Small as described in `"Vision Transformer for Fast and Efficient Scene Text Recognition" <https://arxiv.org/pdf/2105.08582.pdf>`_. >>> import torch >>> from doctr.models import vitstr_small >>> model = vitstr_small(pretrained=False) >>> input_tensor = torch.rand((1, 3, 32, 128)) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text recognition dataset Returns: text recognition architecture """ return _vitstr( "vitstr_small", pretrained, vit_s, "1", embedding_units=384, ignore_keys=["head.weight", "head.bias"], **kwargs, ) def vitstr_base(pretrained: bool = False, **kwargs: Any) -> ViTSTR: """ViTSTR-Base as described in `"Vision Transformer for Fast and Efficient Scene Text Recognition" <https://arxiv.org/pdf/2105.08582.pdf>`_. >>> import torch >>> from doctr.models import vitstr_base >>> model = vitstr_base(pretrained=False) >>> input_tensor = torch.rand((1, 3, 32, 128)) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text recognition dataset Returns: text recognition architecture """ return _vitstr( "vitstr_base", pretrained, vit_b, "1", embedding_units=768, ignore_keys=["head.weight", "head.bias"], **kwargs, )
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from typing import List, Tuple import numpy as np from ....datasets import encode_sequences from ..core import RecognitionPostProcessor class _ViTSTR: vocab: str max_length: int def build_target( self, gts: List[str], ) -> Tuple[np.ndarray, List[int]]: """Encode a list of gts sequences into a np array and gives the corresponding* sequence lengths. Args: gts: list of ground-truth labels Returns: A tuple of 2 tensors: Encoded labels and sequence lengths (for each entry of the batch) """ encoded = encode_sequences( sequences=gts, vocab=self.vocab, target_size=self.max_length, eos=len(self.vocab), sos=len(self.vocab) + 1, pad=len(self.vocab) + 2, ) seq_len = [len(word) for word in gts] return encoded, seq_len class _ViTSTRPostProcessor(RecognitionPostProcessor): """Abstract class to postprocess the raw output of the model Args: vocab: string containing the ordered sequence of supported characters """ def __init__( self, vocab: str, ) -> None: super().__init__(vocab) self._embedding = list(vocab) + ["<eos>", "<sos>", "<pad>"]
from doctr.file_utils import is_tf_available, is_torch_available if is_tf_available(): from .tensorflow import * elif is_torch_available(): from .pytorch import * # type: ignore[assignment]
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from copy import deepcopy from typing import Any, Dict, List, Optional, Tuple import tensorflow as tf from tensorflow.keras import Model, layers from doctr.datasets import VOCABS from doctr.models.classification import magc_resnet31 from doctr.models.modules.transformer import Decoder, PositionalEncoding from ...utils.tensorflow import load_pretrained_params from .base import _MASTER, _MASTERPostProcessor __all__ = ["MASTER", "master"] default_cfgs: Dict[str, Dict[str, Any]] = { "master": { "mean": (0.694, 0.695, 0.693), "std": (0.299, 0.296, 0.301), "input_shape": (32, 128, 3), "vocab": VOCABS["french"], "url": None, }, } class MASTER(_MASTER, Model): """Implements MASTER as described in paper: <https://arxiv.org/pdf/1910.02562.pdf>`_. Implementation based on the official TF implementation: <https://github.com/jiangxiluning/MASTER-TF>`_. Args: feature_extractor: the backbone serving as feature extractor vocab: vocabulary, (without EOS, SOS, PAD) d_model: d parameter for the transformer decoder dff: depth of the pointwise feed-forward layer num_heads: number of heads for the mutli-head attention module num_layers: number of decoder layers to stack max_length: maximum length of character sequence handled by the model dropout: dropout probability of the decoder input_shape: size of the image inputs exportable: onnx exportable returns only logits cfg: dictionary containing information about the model """ def __init__( self, feature_extractor: tf.keras.Model, vocab: str, d_model: int = 512, dff: int = 2048, num_heads: int = 8, # number of heads in the transformer decoder num_layers: int = 3, max_length: int = 50, dropout: float = 0.2, input_shape: Tuple[int, int, int] = (32, 128, 3), # different from the paper exportable: bool = False, cfg: Optional[Dict[str, Any]] = None, ) -> None: super().__init__() self.exportable = exportable self.max_length = max_length self.d_model = d_model self.vocab = vocab self.cfg = cfg self.vocab_size = len(vocab) self.feat_extractor = feature_extractor self.positional_encoding = PositionalEncoding(self.d_model, dropout, max_len=input_shape[0] * input_shape[1]) self.decoder = Decoder( num_layers=num_layers, d_model=self.d_model, num_heads=num_heads, vocab_size=self.vocab_size + 3, # EOS, SOS, PAD dff=dff, dropout=dropout, maximum_position_encoding=self.max_length, ) self.linear = layers.Dense(self.vocab_size + 3, kernel_initializer=tf.initializers.he_uniform()) self.postprocessor = MASTERPostProcessor(vocab=self.vocab) @tf.function def make_source_and_target_mask(self, source: tf.Tensor, target: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]: # [1, 1, 1, ..., 0, 0, 0] -> 0 is masked # (N, 1, 1, max_length) target_pad_mask = tf.cast(tf.math.not_equal(target, self.vocab_size + 2), dtype=tf.uint8) target_pad_mask = target_pad_mask[:, tf.newaxis, tf.newaxis, :] target_length = target.shape[1] # sub mask filled diagonal with 1 = see 0 = masked (max_length, max_length) target_sub_mask = tf.linalg.band_part(tf.ones((target_length, target_length)), -1, 0) # source mask filled with ones (max_length, positional_encoded_seq_len) source_mask = tf.ones((target_length, source.shape[1])) # combine the two masks into one boolean mask where False is masked (N, 1, max_length, max_length) target_mask = tf.math.logical_and( tf.cast(target_sub_mask, dtype=tf.bool), tf.cast(target_pad_mask, dtype=tf.bool) ) return source_mask, target_mask @staticmethod def compute_loss( model_output: tf.Tensor, gt: tf.Tensor, seq_len: List[int], ) -> tf.Tensor: """Compute categorical cross-entropy loss for the model. Sequences are masked after the EOS character. Args: gt: the encoded tensor with gt labels model_output: predicted logits of the model seq_len: lengths of each gt word inside the batch Returns: The loss of the model on the batch """ # Input length : number of timesteps input_len = tf.shape(model_output)[1] # Add one for additional <eos> token (sos disappear in shift!) seq_len = tf.cast(seq_len, tf.int32) + 1 # One-hot gt labels oh_gt = tf.one_hot(gt, depth=model_output.shape[2]) # Compute loss: don't forget to shift gt! Otherwise the model learns to output the gt[t-1]! # The "masked" first gt char is <sos>. Delete last logit of the model output. cce = tf.nn.softmax_cross_entropy_with_logits(oh_gt[:, 1:, :], model_output[:, :-1, :]) # Compute mask mask_values = tf.zeros_like(cce) mask_2d = tf.sequence_mask(seq_len, input_len - 1) # delete the last mask timestep as well masked_loss = tf.where(mask_2d, cce, mask_values) ce_loss = tf.math.divide(tf.reduce_sum(masked_loss, axis=1), tf.cast(seq_len, model_output.dtype)) return tf.expand_dims(ce_loss, axis=1) def call( self, x: tf.Tensor, target: Optional[List[str]] = None, return_model_output: bool = False, return_preds: bool = False, **kwargs: Any, ) -> Dict[str, Any]: """Call function for training Args: x: images target: list of str labels return_model_output: if True, return logits return_preds: if True, decode logits Return: A dictionnary containing eventually loss, logits and predictions. """ # Encode feature = self.feat_extractor(x, **kwargs) b, h, w, c = feature.get_shape() # (N, H, W, C) --> (N, H * W, C) feature = tf.reshape(feature, shape=(b, h * w, c)) # add positional encoding to features encoded = self.positional_encoding(feature, **kwargs) out: Dict[str, tf.Tensor] = {} if kwargs.get("training", False) and target is None: raise ValueError("Need to provide labels during training") if target is not None: # Compute target: tensor of gts and sequence lengths gt, seq_len = self.build_target(target) # Compute decoder masks source_mask, target_mask = self.make_source_and_target_mask(encoded, gt) # Compute logits output = self.decoder(gt, encoded, source_mask, target_mask, **kwargs) logits = self.linear(output, **kwargs) else: logits = self.decode(encoded, **kwargs) if self.exportable: out["logits"] = logits return out if target is not None: out["loss"] = self.compute_loss(logits, gt, seq_len) if return_model_output: out["out_map"] = logits if return_preds: out["preds"] = self.postprocessor(logits) return out @tf.function def decode(self, encoded: tf.Tensor, **kwargs: Any) -> tf.Tensor: """Decode function for prediction Args: encoded: encoded features Return: A Tuple of tf.Tensor: predictions, logits """ b = encoded.shape[0] start_symbol = tf.constant(self.vocab_size + 1, dtype=tf.int32) # SOS padding_symbol = tf.constant(self.vocab_size + 2, dtype=tf.int32) # PAD ys = tf.fill(dims=(b, self.max_length - 1), value=padding_symbol) start_vector = tf.fill(dims=(b, 1), value=start_symbol) ys = tf.concat([start_vector, ys], axis=-1) # Final dimension include EOS/SOS/PAD for i in range(self.max_length - 1): source_mask, target_mask = self.make_source_and_target_mask(encoded, ys) output = self.decoder(ys, encoded, source_mask, target_mask, **kwargs) logits = self.linear(output, **kwargs) prob = tf.nn.softmax(logits, axis=-1) next_token = tf.argmax(prob, axis=-1, output_type=ys.dtype) # update ys with the next token and ignore the first token (SOS) i_mesh, j_mesh = tf.meshgrid(tf.range(b), tf.range(self.max_length), indexing="ij") indices = tf.stack([i_mesh[:, i + 1], j_mesh[:, i + 1]], axis=1) ys = tf.tensor_scatter_nd_update(ys, indices, next_token[:, i]) # Shape (N, max_length, vocab_size + 1) return logits class MASTERPostProcessor(_MASTERPostProcessor): """Post processor for MASTER architectures Args: vocab: string containing the ordered sequence of supported characters """ def __call__( self, logits: tf.Tensor, ) -> List[Tuple[str, float]]: # compute pred with argmax for attention models out_idxs = tf.math.argmax(logits, axis=2) # N x L probs = tf.gather(tf.nn.softmax(logits, axis=-1), out_idxs, axis=-1, batch_dims=2) # Take the minimum confidence of the sequence probs = tf.math.reduce_min(probs, axis=1) # decode raw output of the model with tf_label_to_idx out_idxs = tf.cast(out_idxs, dtype="int32") embedding = tf.constant(self._embedding, dtype=tf.string) decoded_strings_pred = tf.strings.reduce_join(inputs=tf.nn.embedding_lookup(embedding, out_idxs), axis=-1) decoded_strings_pred = tf.strings.split(decoded_strings_pred, "<eos>") decoded_strings_pred = tf.sparse.to_dense(decoded_strings_pred.to_sparse(), default_value="not valid")[:, 0] word_values = [word.decode() for word in decoded_strings_pred.numpy().tolist()] return list(zip(word_values, probs.numpy().tolist())) def _master(arch: str, pretrained: bool, backbone_fn, pretrained_backbone: bool = True, **kwargs: Any) -> MASTER: pretrained_backbone = pretrained_backbone and not pretrained # Patch the config _cfg = deepcopy(default_cfgs[arch]) _cfg["input_shape"] = kwargs.get("input_shape", _cfg["input_shape"]) _cfg["vocab"] = kwargs.get("vocab", _cfg["vocab"]) kwargs["vocab"] = _cfg["vocab"] kwargs["input_shape"] = _cfg["input_shape"] # Build the model model = MASTER( backbone_fn(pretrained=pretrained_backbone, input_shape=_cfg["input_shape"], include_top=False), cfg=_cfg, **kwargs, ) # Load pretrained parameters if pretrained: load_pretrained_params(model, default_cfgs[arch]["url"]) return model def master(pretrained: bool = False, **kwargs: Any) -> MASTER: """MASTER as described in paper: <https://arxiv.org/pdf/1910.02562.pdf>`_. >>> import tensorflow as tf >>> from doctr.models import master >>> model = master(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 32, 128, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text recognition dataset Returns: text recognition architecture """ return _master("master", pretrained, magc_resnet31, **kwargs)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from copy import deepcopy from typing import Any, Callable, Dict, List, Optional, Tuple import torch from torch import nn from torch.nn import functional as F from torchvision.models._utils import IntermediateLayerGetter from doctr.datasets import VOCABS from doctr.models.classification import magc_resnet31 from doctr.models.modules.transformer import Decoder, PositionalEncoding from ...utils.pytorch import load_pretrained_params from .base import _MASTER, _MASTERPostProcessor __all__ = ["MASTER", "master"] default_cfgs: Dict[str, Dict[str, Any]] = { "master": { "mean": (0.694, 0.695, 0.693), "std": (0.299, 0.296, 0.301), "input_shape": (3, 32, 128), "vocab": VOCABS["french"], "url": None, }, } class MASTER(_MASTER, nn.Module): """Implements MASTER as described in paper: <https://arxiv.org/pdf/1910.02562.pdf>`_. Implementation based on the official Pytorch implementation: <https://github.com/wenwenyu/MASTER-pytorch>`_. Args: feature_extractor: the backbone serving as feature extractor vocab: vocabulary, (without EOS, SOS, PAD) d_model: d parameter for the transformer decoder dff: depth of the pointwise feed-forward layer num_heads: number of heads for the mutli-head attention module num_layers: number of decoder layers to stack max_length: maximum length of character sequence handled by the model dropout: dropout probability of the decoder input_shape: size of the image inputs exportable: onnx exportable returns only logits cfg: dictionary containing information about the model """ def __init__( self, feature_extractor: nn.Module, vocab: str, d_model: int = 512, dff: int = 2048, num_heads: int = 8, # number of heads in the transformer decoder num_layers: int = 3, max_length: int = 50, dropout: float = 0.2, input_shape: Tuple[int, int, int] = (3, 32, 128), # different from the paper exportable: bool = False, cfg: Optional[Dict[str, Any]] = None, ) -> None: super().__init__() self.exportable = exportable self.max_length = max_length self.d_model = d_model self.vocab = vocab self.cfg = cfg self.vocab_size = len(vocab) self.feat_extractor = feature_extractor self.positional_encoding = PositionalEncoding(self.d_model, dropout, max_len=input_shape[1] * input_shape[2]) self.decoder = Decoder( num_layers=num_layers, d_model=self.d_model, num_heads=num_heads, vocab_size=self.vocab_size + 3, # EOS, SOS, PAD dff=dff, dropout=dropout, maximum_position_encoding=self.max_length, ) self.linear = nn.Linear(self.d_model, self.vocab_size + 3) self.postprocessor = MASTERPostProcessor(vocab=self.vocab) for n, m in self.named_modules(): # Don't override the initialization of the backbone if n.startswith("feat_extractor."): continue if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def make_source_and_target_mask( self, source: torch.Tensor, target: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: # borrowed and slightly modified from https://github.com/wenwenyu/MASTER-pytorch # NOTE: nn.TransformerDecoder takes the inverse from this implementation # [True, True, True, ..., False, False, False] -> False is masked target_pad_mask = (target != self.vocab_size + 2).unsqueeze(1).unsqueeze(1) # (N, 1, 1, max_length) target_length = target.size(1) # sub mask filled diagonal with True = see and False = masked (max_length, max_length) # NOTE: onnxruntime tril/triu works only with float currently (onnxruntime 1.11.1 - opset 14) target_sub_mask = torch.tril(torch.ones((target_length, target_length), device=source.device), diagonal=0).to( dtype=torch.bool ) # source mask filled with ones (max_length, positional_encoded_seq_len) source_mask = torch.ones((target_length, source.size(1)), dtype=torch.uint8, device=source.device) # combine the two masks into one (N, 1, max_length, max_length) target_mask = target_pad_mask & target_sub_mask return source_mask, target_mask.int() @staticmethod def compute_loss( model_output: torch.Tensor, gt: torch.Tensor, seq_len: torch.Tensor, ) -> torch.Tensor: """Compute categorical cross-entropy loss for the model. Sequences are masked after the EOS character. Args: gt: the encoded tensor with gt labels model_output: predicted logits of the model seq_len: lengths of each gt word inside the batch Returns: The loss of the model on the batch """ # Input length : number of timesteps input_len = model_output.shape[1] # Add one for additional <eos> token (sos disappear in shift!) seq_len = seq_len + 1 # Compute loss: don't forget to shift gt! Otherwise the model learns to output the gt[t-1]! # The "masked" first gt char is <sos>. Delete last logit of the model output. cce = F.cross_entropy(model_output[:, :-1, :].permute(0, 2, 1), gt[:, 1:], reduction="none") # Compute mask, remove 1 timestep here as well mask_2d = torch.arange(input_len - 1, device=model_output.device)[None, :] >= seq_len[:, None] cce[mask_2d] = 0 ce_loss = cce.sum(1) / seq_len.to(dtype=model_output.dtype) return ce_loss.mean() def forward( self, x: torch.Tensor, target: Optional[List[str]] = None, return_model_output: bool = False, return_preds: bool = False, ) -> Dict[str, Any]: """Call function for training Args: x: images target: list of str labels return_model_output: if True, return logits return_preds: if True, decode logits Returns: A dictionnary containing eventually loss, logits and predictions. """ # Encode features = self.feat_extractor(x)["features"] b, c, h, w = features.shape # (N, C, H, W) --> (N, H * W, C) features = features.view(b, c, h * w).permute((0, 2, 1)) # add positional encoding to features encoded = self.positional_encoding(features) out: Dict[str, Any] = {} if self.training and target is None: raise ValueError("Need to provide labels during training") if target is not None: # Compute target: tensor of gts and sequence lengths _gt, _seq_len = self.build_target(target) gt, seq_len = torch.from_numpy(_gt).to(dtype=torch.long), torch.tensor(_seq_len) gt, seq_len = gt.to(x.device), seq_len.to(x.device) # Compute source mask and target mask source_mask, target_mask = self.make_source_and_target_mask(encoded, gt) output = self.decoder(gt, encoded, source_mask, target_mask) # Compute logits logits = self.linear(output) else: logits = self.decode(encoded) if self.exportable: out["logits"] = logits return out if target is not None: out["loss"] = self.compute_loss(logits, gt, seq_len) if return_model_output: out["out_map"] = logits if return_preds: out["preds"] = self.postprocessor(logits) return out def decode(self, encoded: torch.Tensor) -> torch.Tensor: """Decode function for prediction Args: encoded: input tensor Return: A Tuple of torch.Tensor: predictions, logits """ b = encoded.size(0) # Padding symbol + SOS at the beginning ys = torch.full((b, self.max_length), self.vocab_size + 2, dtype=torch.long, device=encoded.device) # pad ys[:, 0] = self.vocab_size + 1 # sos # Final dimension include EOS/SOS/PAD for i in range(self.max_length - 1): source_mask, target_mask = self.make_source_and_target_mask(encoded, ys) output = self.decoder(ys, encoded, source_mask, target_mask) logits = self.linear(output) prob = torch.softmax(logits, dim=-1) next_token = torch.max(prob, dim=-1).indices # update ys with the next token and ignore the first token (SOS) ys[:, i + 1] = next_token[:, i] # Shape (N, max_length, vocab_size + 1) return logits class MASTERPostProcessor(_MASTERPostProcessor): """Post processor for MASTER architectures""" def __call__( self, logits: torch.Tensor, ) -> List[Tuple[str, float]]: # compute pred with argmax for attention models out_idxs = logits.argmax(-1) # N x L probs = torch.gather(torch.softmax(logits, -1), -1, out_idxs.unsqueeze(-1)).squeeze(-1) # Take the minimum confidence of the sequence probs = probs.min(dim=1).values.detach().cpu() # Manual decoding word_values = [ "".join(self._embedding[idx] for idx in encoded_seq).split("<eos>")[0] for encoded_seq in out_idxs.cpu().numpy() ] return list(zip(word_values, probs.numpy().tolist())) def _master( arch: str, pretrained: bool, backbone_fn: Callable[[bool], nn.Module], layer: str, pretrained_backbone: bool = True, ignore_keys: Optional[List[str]] = None, **kwargs: Any, ) -> MASTER: pretrained_backbone = pretrained_backbone and not pretrained # Patch the config _cfg = deepcopy(default_cfgs[arch]) _cfg["input_shape"] = kwargs.get("input_shape", _cfg["input_shape"]) _cfg["vocab"] = kwargs.get("vocab", _cfg["vocab"]) kwargs["vocab"] = _cfg["vocab"] kwargs["input_shape"] = _cfg["input_shape"] # Build the model feat_extractor = IntermediateLayerGetter( backbone_fn(pretrained_backbone), {layer: "features"}, ) model = MASTER(feat_extractor, cfg=_cfg, **kwargs) # Load pretrained parameters if pretrained: # The number of classes is not the same as the number of classes in the pretrained model => # remove the last layer weights _ignore_keys = ignore_keys if _cfg["vocab"] != default_cfgs[arch]["vocab"] else None load_pretrained_params(model, default_cfgs[arch]["url"], ignore_keys=_ignore_keys) return model def master(pretrained: bool = False, **kwargs: Any) -> MASTER: """MASTER as described in paper: <https://arxiv.org/pdf/1910.02562.pdf>`_. >>> import torch >>> from doctr.models import master >>> model = master(pretrained=False) >>> input_tensor = torch.rand((1, 3, 32, 128)) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text recognition dataset Returns: text recognition architecture """ return _master( "master", pretrained, magc_resnet31, "10", ignore_keys=[ "decoder.embed.weight", "linear.weight", "linear.bias", ], **kwargs, )
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from typing import List, Tuple import numpy as np from ....datasets import encode_sequences from ..core import RecognitionPostProcessor class _MASTER: vocab: str max_length: int def build_target( self, gts: List[str], ) -> Tuple[np.ndarray, List[int]]: """Encode a list of gts sequences into a np array and gives the corresponding* sequence lengths. Args: gts: list of ground-truth labels Returns: A tuple of 2 tensors: Encoded labels and sequence lengths (for each entry of the batch) """ encoded = encode_sequences( sequences=gts, vocab=self.vocab, target_size=self.max_length, eos=len(self.vocab), sos=len(self.vocab) + 1, pad=len(self.vocab) + 2, ) seq_len = [len(word) for word in gts] return encoded, seq_len class _MASTERPostProcessor(RecognitionPostProcessor): """Abstract class to postprocess the raw output of the model Args: vocab: string containing the ordered sequence of supported characters """ def __init__( self, vocab: str, ) -> None: super().__init__(vocab) self._embedding = list(vocab) + ["<eos>"] + ["<sos>"] + ["<pad>"]
from doctr.file_utils import is_tf_available, is_torch_available if is_tf_available(): from .tensorflow import * elif is_torch_available(): from .pytorch import * # type: ignore[assignment]
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from copy import deepcopy from typing import Any, Dict, List, Optional, Tuple import tensorflow as tf from tensorflow.keras import Model, Sequential, layers from doctr.datasets import VOCABS from doctr.utils.repr import NestedObject from ...classification import resnet31 from ...utils.tensorflow import load_pretrained_params from ..core import RecognitionModel, RecognitionPostProcessor __all__ = ["SAR", "sar_resnet31"] default_cfgs: Dict[str, Dict[str, Any]] = { "sar_resnet31": { "mean": (0.694, 0.695, 0.693), "std": (0.299, 0.296, 0.301), "input_shape": (32, 128, 3), "vocab": VOCABS["french"], "url": None, }, } class SAREncoder(layers.Layer, NestedObject): """Implements encoder module of the SAR model Args: rnn_units: number of hidden rnn units dropout_prob: dropout probability """ def __init__(self, rnn_units: int, dropout_prob: float = 0.0) -> None: super().__init__() self.rnn = Sequential( [ layers.LSTM(units=rnn_units, return_sequences=True, recurrent_dropout=dropout_prob), layers.LSTM(units=rnn_units, return_sequences=False, recurrent_dropout=dropout_prob), ] ) def call( self, x: tf.Tensor, **kwargs: Any, ) -> tf.Tensor: # (N, C) return self.rnn(x, **kwargs) class AttentionModule(layers.Layer, NestedObject): """Implements attention module of the SAR model Args: attention_units: number of hidden attention units """ def __init__(self, attention_units: int) -> None: super().__init__() self.hidden_state_projector = layers.Conv2D( attention_units, 1, strides=1, use_bias=False, padding="same", kernel_initializer="he_normal", ) self.features_projector = layers.Conv2D( attention_units, 3, strides=1, use_bias=True, padding="same", kernel_initializer="he_normal", ) self.attention_projector = layers.Conv2D( 1, 1, strides=1, use_bias=False, padding="same", kernel_initializer="he_normal", ) self.flatten = layers.Flatten() def call( self, features: tf.Tensor, hidden_state: tf.Tensor, **kwargs: Any, ) -> tf.Tensor: [H, W] = features.get_shape().as_list()[1:3] # shape (N, H, W, vgg_units) -> (N, H, W, attention_units) features_projection = self.features_projector(features, **kwargs) # shape (N, 1, 1, rnn_units) -> (N, 1, 1, attention_units) hidden_state = tf.expand_dims(tf.expand_dims(hidden_state, axis=1), axis=1) hidden_state_projection = self.hidden_state_projector(hidden_state, **kwargs) projection = tf.math.tanh(hidden_state_projection + features_projection) # shape (N, H, W, attention_units) -> (N, H, W, 1) attention = self.attention_projector(projection, **kwargs) # shape (N, H, W, 1) -> (N, H * W) attention = self.flatten(attention) attention = tf.nn.softmax(attention) # shape (N, H * W) -> (N, H, W, 1) attention_map = tf.reshape(attention, [-1, H, W, 1]) glimpse = tf.math.multiply(features, attention_map) # shape (N, H * W) -> (N, C) return tf.reduce_sum(glimpse, axis=[1, 2]) class SARDecoder(layers.Layer, NestedObject): """Implements decoder module of the SAR model Args: rnn_units: number of hidden units in recurrent cells max_length: maximum length of a sequence vocab_size: number of classes in the model alphabet embedding_units: number of hidden embedding units attention_units: number of hidden attention units num_decoder_cells: number of LSTMCell layers to stack dropout_prob: dropout probability """ def __init__( self, rnn_units: int, max_length: int, vocab_size: int, embedding_units: int, attention_units: int, num_decoder_cells: int = 2, dropout_prob: float = 0.0, ) -> None: super().__init__() self.vocab_size = vocab_size self.max_length = max_length self.embed = layers.Dense(embedding_units, use_bias=False) self.embed_tgt = layers.Embedding(embedding_units, self.vocab_size + 1) self.lstm_cells = layers.StackedRNNCells( [layers.LSTMCell(rnn_units, implementation=1) for _ in range(num_decoder_cells)] ) self.attention_module = AttentionModule(attention_units) self.output_dense = layers.Dense(self.vocab_size + 1, use_bias=True) self.dropout = layers.Dropout(dropout_prob) def call( self, features: tf.Tensor, holistic: tf.Tensor, gt: Optional[tf.Tensor] = None, **kwargs: Any, ) -> tf.Tensor: if gt is not None: gt_embedding = self.embed_tgt(gt, **kwargs) logits_list: List[tf.Tensor] = [] for t in range(self.max_length + 1): # 32 if t == 0: # step to init the first states of the LSTMCell states = self.lstm_cells.get_initial_state( inputs=None, batch_size=features.shape[0], dtype=features.dtype ) prev_symbol = holistic elif t == 1: # step to init a 'blank' sequence of length vocab_size + 1 filled with zeros # (N, vocab_size + 1) --> (N, embedding_units) prev_symbol = tf.zeros([features.shape[0], self.vocab_size + 1]) prev_symbol = self.embed(prev_symbol, **kwargs) else: if gt is not None: # (N, embedding_units) -2 because of <bos> and <eos> (same) prev_symbol = self.embed(gt_embedding[:, t - 2], **kwargs) else: # -1 to start at timestep where prev_symbol was initialized index = tf.argmax(logits_list[t - 1], axis=-1) # update prev_symbol with ones at the index of the previous logit vector # (N, embedding_units) index = tf.ones_like(index) prev_symbol = tf.scatter_nd( tf.expand_dims(index, axis=1), prev_symbol, tf.constant([features.shape[0], features.shape[-1]], dtype=tf.int64), ) # (N, C), (N, C) take the last hidden state and cell state from current timestep _, states = self.lstm_cells(prev_symbol, states, **kwargs) # states = (hidden_state, cell_state) hidden_state = states[0][0] # (N, H, W, C), (N, C) --> (N, C) glimpse = self.attention_module(features, hidden_state, **kwargs) # (N, C), (N, C) --> (N, 2 * C) logits = tf.concat([hidden_state, glimpse], axis=1) logits = self.dropout(logits, **kwargs) # (N, vocab_size + 1) logits_list.append(self.output_dense(logits, **kwargs)) # (max_length + 1, N, vocab_size + 1) --> (N, max_length + 1, vocab_size + 1) return tf.transpose(tf.stack(logits_list[1:]), (1, 0, 2)) class SAR(Model, RecognitionModel): """Implements a SAR architecture as described in `"Show, Attend and Read:A Simple and Strong Baseline for Irregular Text Recognition" <https://arxiv.org/pdf/1811.00751.pdf>`_. Args: feature_extractor: the backbone serving as feature extractor vocab: vocabulary used for encoding rnn_units: number of hidden units in both encoder and decoder LSTM embedding_units: number of embedding units attention_units: number of hidden units in attention module max_length: maximum word length handled by the model num_decoder_cells: number of LSTMCell layers to stack dropout_prob: dropout probability for the encoder and decoder exportable: onnx exportable returns only logits cfg: dictionary containing information about the model """ _children_names: List[str] = ["feat_extractor", "encoder", "decoder", "postprocessor"] def __init__( self, feature_extractor, vocab: str, rnn_units: int = 512, embedding_units: int = 512, attention_units: int = 512, max_length: int = 30, num_decoder_cells: int = 2, dropout_prob: float = 0.0, exportable: bool = False, cfg: Optional[Dict[str, Any]] = None, ) -> None: super().__init__() self.vocab = vocab self.exportable = exportable self.cfg = cfg self.max_length = max_length + 1 # Add 1 timestep for EOS after the longest word self.feat_extractor = feature_extractor self.encoder = SAREncoder(rnn_units, dropout_prob) self.decoder = SARDecoder( rnn_units, self.max_length, len(vocab), embedding_units, attention_units, num_decoder_cells, dropout_prob, ) self.postprocessor = SARPostProcessor(vocab=vocab) @staticmethod def compute_loss( model_output: tf.Tensor, gt: tf.Tensor, seq_len: tf.Tensor, ) -> tf.Tensor: """Compute categorical cross-entropy loss for the model. Sequences are masked after the EOS character. Args: gt: the encoded tensor with gt labels model_output: predicted logits of the model seq_len: lengths of each gt word inside the batch Returns: The loss of the model on the batch """ # Input length : number of timesteps input_len = tf.shape(model_output)[1] # Add one for additional <eos> token seq_len = seq_len + 1 # One-hot gt labels oh_gt = tf.one_hot(gt, depth=model_output.shape[2]) # Compute loss cce = tf.nn.softmax_cross_entropy_with_logits(oh_gt, model_output) # Compute mask mask_values = tf.zeros_like(cce) mask_2d = tf.sequence_mask(seq_len, input_len) masked_loss = tf.where(mask_2d, cce, mask_values) ce_loss = tf.math.divide(tf.reduce_sum(masked_loss, axis=1), tf.cast(seq_len, model_output.dtype)) return tf.expand_dims(ce_loss, axis=1) def call( self, x: tf.Tensor, target: Optional[List[str]] = None, return_model_output: bool = False, return_preds: bool = False, **kwargs: Any, ) -> Dict[str, Any]: features = self.feat_extractor(x, **kwargs) # vertical max pooling --> (N, C, W) pooled_features = tf.reduce_max(features, axis=1) # holistic (N, C) encoded = self.encoder(pooled_features, **kwargs) if target is not None: gt, seq_len = self.build_target(target) seq_len = tf.cast(seq_len, tf.int32) if kwargs.get("training", False) and target is None: raise ValueError("Need to provide labels during training for teacher forcing") decoded_features = self.decoder(features, encoded, gt=None if target is None else gt, **kwargs) out: Dict[str, tf.Tensor] = {} if self.exportable: out["logits"] = decoded_features return out if return_model_output: out["out_map"] = decoded_features if target is None or return_preds: # Post-process boxes out["preds"] = self.postprocessor(decoded_features) if target is not None: out["loss"] = self.compute_loss(decoded_features, gt, seq_len) return out class SARPostProcessor(RecognitionPostProcessor): """Post processor for SAR architectures Args: vocab: string containing the ordered sequence of supported characters """ def __call__( self, logits: tf.Tensor, ) -> List[Tuple[str, float]]: # compute pred with argmax for attention models out_idxs = tf.math.argmax(logits, axis=2) # N x L probs = tf.gather(tf.nn.softmax(logits, axis=-1), out_idxs, axis=-1, batch_dims=2) # Take the minimum confidence of the sequence probs = tf.math.reduce_min(probs, axis=1) # decode raw output of the model with tf_label_to_idx out_idxs = tf.cast(out_idxs, dtype="int32") embedding = tf.constant(self._embedding, dtype=tf.string) decoded_strings_pred = tf.strings.reduce_join(inputs=tf.nn.embedding_lookup(embedding, out_idxs), axis=-1) decoded_strings_pred = tf.strings.split(decoded_strings_pred, "<eos>") decoded_strings_pred = tf.sparse.to_dense(decoded_strings_pred.to_sparse(), default_value="not valid")[:, 0] word_values = [word.decode() for word in decoded_strings_pred.numpy().tolist()] return list(zip(word_values, probs.numpy().tolist())) def _sar( arch: str, pretrained: bool, backbone_fn, pretrained_backbone: bool = True, input_shape: Optional[Tuple[int, int, int]] = None, **kwargs: Any, ) -> SAR: pretrained_backbone = pretrained_backbone and not pretrained # Patch the config _cfg = deepcopy(default_cfgs[arch]) _cfg["input_shape"] = input_shape or _cfg["input_shape"] _cfg["vocab"] = kwargs.get("vocab", _cfg["vocab"]) # Feature extractor feat_extractor = backbone_fn( pretrained=pretrained_backbone, input_shape=_cfg["input_shape"], include_top=False, ) kwargs["vocab"] = _cfg["vocab"] # Build the model model = SAR(feat_extractor, cfg=_cfg, **kwargs) # Load pretrained parameters if pretrained: load_pretrained_params(model, default_cfgs[arch]["url"]) return model def sar_resnet31(pretrained: bool = False, **kwargs: Any) -> SAR: """SAR with a resnet-31 feature extractor as described in `"Show, Attend and Read:A Simple and Strong Baseline for Irregular Text Recognition" <https://arxiv.org/pdf/1811.00751.pdf>`_. >>> import tensorflow as tf >>> from doctr.models import sar_resnet31 >>> model = sar_resnet31(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 64, 256, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text recognition dataset Returns: text recognition architecture """ return _sar("sar_resnet31", pretrained, resnet31, **kwargs)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from copy import deepcopy from typing import Any, Callable, Dict, List, Optional, Tuple import torch from torch import nn from torch.nn import functional as F from torchvision.models._utils import IntermediateLayerGetter from doctr.datasets import VOCABS from ...classification import resnet31 from ...utils.pytorch import load_pretrained_params from ..core import RecognitionModel, RecognitionPostProcessor __all__ = ["SAR", "sar_resnet31"] default_cfgs: Dict[str, Dict[str, Any]] = { "sar_resnet31": { "mean": (0.694, 0.695, 0.693), "std": (0.299, 0.296, 0.301), "input_shape": (3, 32, 128), "vocab": VOCABS["french"], "url": None, }, } class SAREncoder(nn.Module): def __init__(self, in_feats: int, rnn_units: int, dropout_prob: float = 0.0) -> None: super().__init__() self.rnn = nn.LSTM(in_feats, rnn_units, 2, batch_first=True, dropout=dropout_prob) self.linear = nn.Linear(rnn_units, rnn_units) def forward(self, x: torch.Tensor) -> torch.Tensor: # (N, L, C) --> (N, T, C) encoded = self.rnn(x)[0] # (N, C) return self.linear(encoded[:, -1, :]) class AttentionModule(nn.Module): def __init__(self, feat_chans: int, state_chans: int, attention_units: int) -> None: super().__init__() self.feat_conv = nn.Conv2d(feat_chans, attention_units, kernel_size=3, padding=1) # No need to add another bias since both tensors are summed together self.state_conv = nn.Conv2d(state_chans, attention_units, kernel_size=1, bias=False) self.attention_projector = nn.Conv2d(attention_units, 1, kernel_size=1, bias=False) def forward( self, features: torch.Tensor, # (N, C, H, W) hidden_state: torch.Tensor, # (N, C) ) -> torch.Tensor: H_f, W_f = features.shape[2:] # (N, feat_chans, H, W) --> (N, attention_units, H, W) feat_projection = self.feat_conv(features) # (N, state_chans, 1, 1) --> (N, attention_units, 1, 1) hidden_state = hidden_state.view(hidden_state.size(0), hidden_state.size(1), 1, 1) state_projection = self.state_conv(hidden_state) state_projection = state_projection.expand(-1, -1, H_f, W_f) # (N, attention_units, 1, 1) --> (N, attention_units, H_f, W_f) attention_weights = torch.tanh(feat_projection + state_projection) # (N, attention_units, H_f, W_f) --> (N, 1, H_f, W_f) attention_weights = self.attention_projector(attention_weights) B, C, H, W = attention_weights.size() # (N, H, W) --> (N, 1, H, W) attention_weights = torch.softmax(attention_weights.view(B, -1), dim=-1).view(B, C, H, W) # fuse features and attention weights (N, C) return (features * attention_weights).sum(dim=(2, 3)) class SARDecoder(nn.Module): """Implements decoder module of the SAR model Args: rnn_units: number of hidden units in recurrent cells max_length: maximum length of a sequence vocab_size: number of classes in the model alphabet embedding_units: number of hidden embedding units attention_units: number of hidden attention units """ def __init__( self, rnn_units: int, max_length: int, vocab_size: int, embedding_units: int, attention_units: int, feat_chans: int = 512, dropout_prob: float = 0.0, ) -> None: super().__init__() self.vocab_size = vocab_size self.max_length = max_length self.embed = nn.Linear(self.vocab_size + 1, embedding_units) self.embed_tgt = nn.Embedding(embedding_units, self.vocab_size + 1) self.attention_module = AttentionModule(feat_chans, rnn_units, attention_units) self.lstm_cell = nn.LSTMCell(rnn_units, rnn_units) self.output_dense = nn.Linear(2 * rnn_units, self.vocab_size + 1) self.dropout = nn.Dropout(dropout_prob) def forward( self, features: torch.Tensor, # (N, C, H, W) holistic: torch.Tensor, # (N, C) gt: Optional[torch.Tensor] = None, # (N, L) ) -> torch.Tensor: if gt is not None: gt_embedding = self.embed_tgt(gt) logits_list: List[torch.Tensor] = [] for t in range(self.max_length + 1): # 32 if t == 0: # step to init the first states of the LSTMCell hidden_state_init = cell_state_init = torch.zeros( features.size(0), features.size(1), device=features.device ) hidden_state, cell_state = hidden_state_init, cell_state_init prev_symbol = holistic elif t == 1: # step to init a 'blank' sequence of length vocab_size + 1 filled with zeros # (N, vocab_size + 1) --> (N, embedding_units) prev_symbol = torch.zeros(features.size(0), self.vocab_size + 1, device=features.device) prev_symbol = self.embed(prev_symbol) else: if gt is not None: # (N, embedding_units) -2 because of <bos> and <eos> (same) prev_symbol = self.embed(gt_embedding[:, t - 2]) else: # -1 to start at timestep where prev_symbol was initialized index = logits_list[t - 1].argmax(-1) # update prev_symbol with ones at the index of the previous logit vector # (N, embedding_units) prev_symbol = prev_symbol.scatter_(1, index.unsqueeze(1), 1) # (N, C), (N, C) take the last hidden state and cell state from current timestep hidden_state_init, cell_state_init = self.lstm_cell(prev_symbol, (hidden_state_init, cell_state_init)) hidden_state, cell_state = self.lstm_cell(hidden_state_init, (hidden_state, cell_state)) # (N, C, H, W), (N, C) --> (N, C) glimpse = self.attention_module(features, hidden_state) # (N, C), (N, C) --> (N, 2 * C) logits = torch.cat([hidden_state, glimpse], dim=1) logits = self.dropout(logits) # (N, vocab_size + 1) logits_list.append(self.output_dense(logits)) # (max_length + 1, N, vocab_size + 1) --> (N, max_length + 1, vocab_size + 1) return torch.stack(logits_list[1:]).permute(1, 0, 2) class SAR(nn.Module, RecognitionModel): """Implements a SAR architecture as described in `"Show, Attend and Read:A Simple and Strong Baseline for Irregular Text Recognition" <https://arxiv.org/pdf/1811.00751.pdf>`_. Args: feature_extractor: the backbone serving as feature extractor vocab: vocabulary used for encoding rnn_units: number of hidden units in both encoder and decoder LSTM embedding_units: number of embedding units attention_units: number of hidden units in attention module max_length: maximum word length handled by the model dropout_prob: dropout probability of the encoder LSTM exportable: onnx exportable returns only logits cfg: dictionary containing information about the model """ def __init__( self, feature_extractor, vocab: str, rnn_units: int = 512, embedding_units: int = 512, attention_units: int = 512, max_length: int = 30, dropout_prob: float = 0.0, input_shape: Tuple[int, int, int] = (3, 32, 128), exportable: bool = False, cfg: Optional[Dict[str, Any]] = None, ) -> None: super().__init__() self.vocab = vocab self.exportable = exportable self.cfg = cfg self.max_length = max_length + 1 # Add 1 timestep for EOS after the longest word self.feat_extractor = feature_extractor # Size the LSTM self.feat_extractor.eval() with torch.no_grad(): out_shape = self.feat_extractor(torch.zeros((1, *input_shape)))["features"].shape # Switch back to original mode self.feat_extractor.train() self.encoder = SAREncoder(out_shape[1], rnn_units, dropout_prob) self.decoder = SARDecoder( rnn_units, self.max_length, len(self.vocab), embedding_units, attention_units, dropout_prob=dropout_prob, ) self.postprocessor = SARPostProcessor(vocab=vocab) def forward( self, x: torch.Tensor, target: Optional[List[str]] = None, return_model_output: bool = False, return_preds: bool = False, ) -> Dict[str, Any]: features = self.feat_extractor(x)["features"] # NOTE: use max instead of functional max_pool2d which leads to ONNX incompatibility (kernel_size) # Vertical max pooling (N, C, H, W) --> (N, C, W) pooled_features = features.max(dim=-2).values # (N, W, C) pooled_features = pooled_features.permute(0, 2, 1).contiguous() # (N, C) encoded = self.encoder(pooled_features) if target is not None: _gt, _seq_len = self.build_target(target) gt, seq_len = torch.from_numpy(_gt).to(dtype=torch.long), torch.tensor(_seq_len) gt, seq_len = gt.to(x.device), seq_len.to(x.device) if self.training and target is None: raise ValueError("Need to provide labels during training for teacher forcing") decoded_features = self.decoder(features, encoded, gt=None if target is None else gt) out: Dict[str, Any] = {} if self.exportable: out["logits"] = decoded_features return out if return_model_output: out["out_map"] = decoded_features if target is None or return_preds: # Post-process boxes out["preds"] = self.postprocessor(decoded_features) if target is not None: out["loss"] = self.compute_loss(decoded_features, gt, seq_len) return out @staticmethod def compute_loss( model_output: torch.Tensor, gt: torch.Tensor, seq_len: torch.Tensor, ) -> torch.Tensor: """Compute categorical cross-entropy loss for the model. Sequences are masked after the EOS character. Args: model_output: predicted logits of the model gt: the encoded tensor with gt labels seq_len: lengths of each gt word inside the batch Returns: The loss of the model on the batch """ # Input length : number of timesteps input_len = model_output.shape[1] # Add one for additional <eos> token seq_len = seq_len + 1 # Compute loss # (N, L, vocab_size + 1) cce = F.cross_entropy(model_output.permute(0, 2, 1), gt, reduction="none") mask_2d = torch.arange(input_len, device=model_output.device)[None, :] >= seq_len[:, None] cce[mask_2d] = 0 ce_loss = cce.sum(1) / seq_len.to(dtype=model_output.dtype) return ce_loss.mean() class SARPostProcessor(RecognitionPostProcessor): """Post processor for SAR architectures Args: vocab: string containing the ordered sequence of supported characters """ def __call__( self, logits: torch.Tensor, ) -> List[Tuple[str, float]]: # compute pred with argmax for attention models out_idxs = logits.argmax(-1) # N x L probs = torch.gather(torch.softmax(logits, -1), -1, out_idxs.unsqueeze(-1)).squeeze(-1) # Take the minimum confidence of the sequence probs = probs.min(dim=1).values.detach().cpu() # Manual decoding word_values = [ "".join(self._embedding[idx] for idx in encoded_seq).split("<eos>")[0] for encoded_seq in out_idxs.detach().cpu().numpy() ] return list(zip(word_values, probs.numpy().tolist())) def _sar( arch: str, pretrained: bool, backbone_fn: Callable[[bool], nn.Module], layer: str, pretrained_backbone: bool = True, ignore_keys: Optional[List[str]] = None, **kwargs: Any, ) -> SAR: pretrained_backbone = pretrained_backbone and not pretrained # Patch the config _cfg = deepcopy(default_cfgs[arch]) _cfg["vocab"] = kwargs.get("vocab", _cfg["vocab"]) _cfg["input_shape"] = kwargs.get("input_shape", _cfg["input_shape"]) # Feature extractor feat_extractor = IntermediateLayerGetter( backbone_fn(pretrained_backbone), {layer: "features"}, ) kwargs["vocab"] = _cfg["vocab"] kwargs["input_shape"] = _cfg["input_shape"] # Build the model model = SAR(feat_extractor, cfg=_cfg, **kwargs) # Load pretrained parameters if pretrained: # The number of classes is not the same as the number of classes in the pretrained model => # remove the last layer weights _ignore_keys = ignore_keys if _cfg["vocab"] != default_cfgs[arch]["vocab"] else None load_pretrained_params(model, default_cfgs[arch]["url"], ignore_keys=_ignore_keys) return model def sar_resnet31(pretrained: bool = False, **kwargs: Any) -> SAR: """SAR with a resnet-31 feature extractor as described in `"Show, Attend and Read:A Simple and Strong Baseline for Irregular Text Recognition" <https://arxiv.org/pdf/1811.00751.pdf>`_. >>> import torch >>> from doctr.models import sar_resnet31 >>> model = sar_resnet31(pretrained=False) >>> input_tensor = torch.rand((1, 3, 32, 128)) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text recognition dataset Returns: text recognition architecture """ return _sar( "sar_resnet31", pretrained, resnet31, "10", ignore_keys=[ "decoder.embed.weight", "decoder.embed_tgt.weight", "decoder.output_dense.weight", "decoder.output_dense.bias", ], **kwargs, )
from doctr.file_utils import is_tf_available if is_tf_available(): from .tensorflow import * else: from .pytorch import * # type: ignore[assignment]
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from typing import Any, List, Tuple, Union import numpy as np import tensorflow as tf from doctr.models.preprocessor import PreProcessor from doctr.utils.repr import NestedObject from ..core import RecognitionModel from ._utils import remap_preds, split_crops __all__ = ["RecognitionPredictor"] class RecognitionPredictor(NestedObject): """Implements an object able to identify character sequences in images Args: pre_processor: transform inputs for easier batched model inference model: core detection architecture split_wide_crops: wether to use crop splitting for high aspect ratio crops """ _children_names: List[str] = ["pre_processor", "model"] def __init__( self, pre_processor: PreProcessor, model: RecognitionModel, split_wide_crops: bool = True, ) -> None: super().__init__() self.pre_processor = pre_processor self.model = model self.split_wide_crops = split_wide_crops self.critical_ar = 8 # Critical aspect ratio self.dil_factor = 1.4 # Dilation factor to overlap the crops self.target_ar = 6 # Target aspect ratio def __call__( self, crops: List[Union[np.ndarray, tf.Tensor]], **kwargs: Any, ) -> List[Tuple[str, float]]: if len(crops) == 0: return [] # Dimension check if any(crop.ndim != 3 for crop in crops): raise ValueError("incorrect input shape: all crops are expected to be multi-channel 2D images.") # Split crops that are too wide remapped = False if self.split_wide_crops: new_crops, crop_map, remapped = split_crops(crops, self.critical_ar, self.target_ar, self.dil_factor) if remapped: crops = new_crops # Resize & batch them processed_batches = self.pre_processor(crops) # Forward it raw = [ self.model(batch, return_preds=True, training=False, **kwargs)["preds"] # type: ignore[operator] for batch in processed_batches ] # Process outputs out = [charseq for batch in raw for charseq in batch] # Remap crops if self.split_wide_crops and remapped: out = remap_preds(out, crop_map, self.dil_factor) return out
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from typing import Any, List, Sequence, Tuple, Union import numpy as np import torch from torch import nn from doctr.models.preprocessor import PreProcessor from ._utils import remap_preds, split_crops __all__ = ["RecognitionPredictor"] class RecognitionPredictor(nn.Module): """Implements an object able to identify character sequences in images Args: pre_processor: transform inputs for easier batched model inference model: core detection architecture split_wide_crops: wether to use crop splitting for high aspect ratio crops """ def __init__( self, pre_processor: PreProcessor, model: nn.Module, split_wide_crops: bool = True, ) -> None: super().__init__() self.pre_processor = pre_processor self.model = model.eval() self.split_wide_crops = split_wide_crops self.critical_ar = 8 # Critical aspect ratio self.dil_factor = 1.4 # Dilation factor to overlap the crops self.target_ar = 6 # Target aspect ratio @torch.no_grad() def forward( self, crops: Sequence[Union[np.ndarray, torch.Tensor]], **kwargs: Any, ) -> List[Tuple[str, float]]: if len(crops) == 0: return [] # Dimension check if any(crop.ndim != 3 for crop in crops): raise ValueError("incorrect input shape: all crops are expected to be multi-channel 2D images.") # Split crops that are too wide remapped = False if self.split_wide_crops: new_crops, crop_map, remapped = split_crops( crops, # type: ignore[arg-type] self.critical_ar, self.target_ar, self.dil_factor, isinstance(crops[0], np.ndarray), ) if remapped: crops = new_crops # Resize & batch them processed_batches = self.pre_processor(crops) # Forward it _device = next(self.model.parameters()).device raw = [ self.model(batch.to(device=_device), return_preds=True, **kwargs)["preds"] for batch in processed_batches ] # Process outputs out = [charseq for batch in raw for charseq in batch] # Remap crops if self.split_wide_crops and remapped: out = remap_preds(out, crop_map, self.dil_factor) return out
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from typing import List, Tuple, Union import numpy as np from ..utils import merge_multi_strings __all__ = ["split_crops", "remap_preds"] def split_crops( crops: List[np.ndarray], max_ratio: float, target_ratio: int, dilation: float, channels_last: bool = True, ) -> Tuple[List[np.ndarray], List[Union[int, Tuple[int, int]]], bool]: """Chunk crops horizontally to match a given aspect ratio Args: crops: list of numpy array of shape (H, W, 3) if channels_last or (3, H, W) otherwise max_ratio: the maximum aspect ratio that won't trigger the chunk target_ratio: when crops are chunked, they will be chunked to match this aspect ratio dilation: the width dilation of final chunks (to provide some overlaps) channels_last: whether the numpy array has dimensions in channels last order Returns: a tuple with the new crops, their mapping, and a boolean specifying whether any remap is required """ _remap_required = False crop_map: List[Union[int, Tuple[int, int]]] = [] new_crops: List[np.ndarray] = [] for crop in crops: h, w = crop.shape[:2] if channels_last else crop.shape[-2:] aspect_ratio = w / h if aspect_ratio > max_ratio: # Determine the number of crops, reference aspect ratio = 4 = 128 / 32 num_subcrops = int(aspect_ratio // target_ratio) # Find the new widths, additional dilation factor to overlap crops width = dilation * w / num_subcrops centers = [(w / num_subcrops) * (1 / 2 + idx) for idx in range(num_subcrops)] # Get the crops if channels_last: _crops = [ crop[:, max(0, int(round(center - width / 2))) : min(w - 1, int(round(center + width / 2))), :] for center in centers ] else: _crops = [ crop[:, :, max(0, int(round(center - width / 2))) : min(w - 1, int(round(center + width / 2)))] for center in centers ] # Avoid sending zero-sized crops _crops = [crop for crop in _crops if all(s > 0 for s in crop.shape)] # Record the slice of crops crop_map.append((len(new_crops), len(new_crops) + len(_crops))) new_crops.extend(_crops) # At least one crop will require merging _remap_required = True else: crop_map.append(len(new_crops)) new_crops.append(crop) return new_crops, crop_map, _remap_required def remap_preds( preds: List[Tuple[str, float]], crop_map: List[Union[int, Tuple[int, int]]], dilation: float ) -> List[Tuple[str, float]]: remapped_out = [] for _idx in crop_map: # Crop hasn't been split if isinstance(_idx, int): remapped_out.append(preds[_idx]) else: # unzip vals, probs = zip(*preds[_idx[0] : _idx[1]]) # Merge the string values remapped_out.append((merge_multi_strings(vals, dilation), min(probs))) # type: ignore[arg-type] return remapped_out
from .transformer import * from .vision_transformer import *
from doctr.file_utils import is_tf_available, is_torch_available if is_tf_available(): from .tensorflow import * elif is_torch_available(): from .pytorch import * # type: ignore[assignment]
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import math from typing import Any, Tuple import tensorflow as tf from tensorflow.keras import layers from doctr.utils.repr import NestedObject __all__ = ["PatchEmbedding"] class PatchEmbedding(layers.Layer, NestedObject): """Compute 2D patch embeddings with cls token and positional encoding""" def __init__(self, input_shape: Tuple[int, int, int], embed_dim: int) -> None: super().__init__() height, width, _ = input_shape # calculate patch size # NOTE: this is different from the original implementation self.patch_size = (height // (height // 8), width // (width // 8)) self.grid_size = (self.patch_size[0], self.patch_size[1]) self.num_patches = self.patch_size[0] * self.patch_size[1] self.cls_token = self.add_weight(shape=(1, 1, embed_dim), initializer="zeros", trainable=True, name="cls_token") self.positions = self.add_weight( shape=(1, self.num_patches + 1, embed_dim), initializer="zeros", trainable=True, name="positions", ) self.proj = layers.Dense(embed_dim, kernel_initializer="he_normal", name="projection") def interpolate_pos_encoding(self, embeddings: tf.Tensor, height: int, width: int) -> tf.Tensor: """ 100 % borrowed from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/vit/modeling_tf_vit.py This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. Source: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py """ seq_len, dim = embeddings.shape[1:] num_patches = seq_len - 1 num_positions = self.positions.shape[1] - 1 if num_patches == num_positions and height == width: return self.positions class_pos_embed = self.positions[:, :1] patch_pos_embed = self.positions[:, 1:] h0 = height // self.patch_size[0] w0 = width // self.patch_size[1] patch_pos_embed = tf.image.resize( images=tf.reshape( patch_pos_embed, shape=(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) ), size=(h0, w0), method="bilinear", ) shape = patch_pos_embed.shape assert h0 == shape[-3], "height of interpolated patch embedding doesn't match" assert w0 == shape[-2], "width of interpolated patch embedding doesn't match" patch_pos_embed = tf.reshape(tensor=patch_pos_embed, shape=(1, -1, dim)) return tf.concat(values=(class_pos_embed, patch_pos_embed), axis=1) def call(self, x: tf.Tensor, **kwargs: Any) -> tf.Tensor: B, H, W, C = x.shape assert H % self.patch_size[0] == 0, "Image height must be divisible by patch height" assert W % self.patch_size[1] == 0, "Image width must be divisible by patch width" # patchify image without convolution # adapted from: # https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial15/Vision_Transformer.html # NOTE: tf.image.extract_patches has no ONNX support and Conv2D with padding=valid consumes to much memory patches = tf.reshape( x, (B, H // self.patch_size[0], self.patch_size[0], W // self.patch_size[1], self.patch_size[1], C) ) patches = tf.transpose(a=patches, perm=(0, 1, 3, 2, 4, 5)) # (B, H', W', C, ph, pw) -> (B, H'*W', C*ph*pw) patches = tf.reshape(tensor=patches, shape=(B, -1, self.patch_size[0] * self.patch_size[1] * C)) patches = self.proj(patches, **kwargs) # (batch_size, num_patches, d_model) cls_tokens = tf.repeat(self.cls_token, B, axis=0) # (batch_size, 1, d_model) # concate cls_tokens to patches embeddings = tf.concat([cls_tokens, patches], axis=1) # (batch_size, num_patches + 1, d_model) # add positions to embeddings embeddings += self.interpolate_pos_encoding(embeddings, H, W) # (batch_size, num_patches + 1, d_model) return embeddings
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import math from typing import Tuple import torch from torch import nn __all__ = ["PatchEmbedding"] class PatchEmbedding(nn.Module): """Compute 2D patch embeddings with cls token and positional encoding""" def __init__(self, input_shape: Tuple[int, int, int], embed_dim: int) -> None: super().__init__() channels, height, width = input_shape # calculate patch size # NOTE: this is different from the original implementation self.patch_size = (height // (height // 8), width // (width // 8)) self.grid_size = (self.patch_size[0], self.patch_size[1]) self.num_patches = self.patch_size[0] * self.patch_size[1] self.cls_token = nn.Parameter(torch.randn(1, 1, embed_dim)) self.positions = nn.Parameter(torch.randn(1, self.num_patches + 1, embed_dim)) self.proj = nn.Linear((channels * self.patch_size[0] * self.patch_size[1]), embed_dim) def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ 100 % borrowed from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/vit/modeling_vit.py This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. Source: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py """ num_patches = embeddings.shape[1] - 1 num_positions = self.positions.shape[1] - 1 if num_patches == num_positions and height == width: return self.positions class_pos_embed = self.positions[:, 0] patch_pos_embed = self.positions[:, 1:] dim = embeddings.shape[-1] h0 = float(height // self.patch_size[0]) w0 = float(width // self.patch_size[1]) # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 h0, w0 = h0 + 0.1, w0 + 0.1 patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) patch_pos_embed = nn.functional.interpolate( patch_pos_embed, scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)), mode="bilinear", align_corners=False, recompute_scale_factor=True, ) assert int(h0) == patch_pos_embed.shape[-2], "height of interpolated patch embedding doesn't match" assert int(w0) == patch_pos_embed.shape[-1], "width of interpolated patch embedding doesn't match" patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) def forward(self, x: torch.Tensor) -> torch.Tensor: B, C, H, W = x.shape assert H % self.patch_size[0] == 0, "Image height must be divisible by patch height" assert W % self.patch_size[1] == 0, "Image width must be divisible by patch width" # patchify image without convolution # adapted from: # https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial15/Vision_Transformer.html # NOTE: patchify with Conv2d works only with padding="valid" correctly on smaller images # and has currently no ONNX support so we use this workaround x = x.reshape( B, C, (H // self.patch_size[0]), self.patch_size[0], (W // self.patch_size[1]), self.patch_size[1] ) # (B, H', W', C, ph, pw) -> (B, H'*W', C*ph*pw) patches = x.permute(0, 2, 4, 1, 3, 5).flatten(1, 2).flatten(2, 4) patches = self.proj(patches) # (batch_size, num_patches, d_model) cls_tokens = self.cls_token.expand(B, -1, -1) # (batch_size, 1, d_model) # concate cls_tokens to patches embeddings = torch.cat([cls_tokens, patches], dim=1) # (batch_size, num_patches + 1, d_model) # add positions to embeddings embeddings += self.interpolate_pos_encoding(embeddings, H, W) # (batch_size, num_patches + 1, d_model) return embeddings
from doctr.file_utils import is_tf_available, is_torch_available if is_tf_available(): from .tensorflow import * elif is_torch_available(): from .pytorch import * # type: ignore[assignment]
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import math from typing import Any, Callable, Optional, Tuple import tensorflow as tf from tensorflow.keras import layers from doctr.utils.repr import NestedObject __all__ = ["Decoder", "PositionalEncoding", "EncoderBlock"] tf.config.run_functions_eagerly(True) class PositionalEncoding(layers.Layer, NestedObject): """Compute positional encoding""" def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000) -> None: super(PositionalEncoding, self).__init__() self.dropout = layers.Dropout(rate=dropout) # Compute the positional encodings once in log space. pe = tf.Variable(tf.zeros((max_len, d_model))) position = tf.cast( tf.expand_dims(tf.experimental.numpy.arange(start=0, stop=max_len), axis=1), dtype=tf.float32 ) div_term = tf.math.exp( tf.cast(tf.experimental.numpy.arange(start=0, stop=d_model, step=2), dtype=tf.float32) * -(math.log(10000.0) / d_model) ) pe = pe.numpy() pe[:, 0::2] = tf.math.sin(position * div_term) pe[:, 1::2] = tf.math.cos(position * div_term) self.pe = tf.expand_dims(tf.convert_to_tensor(pe), axis=0) def call( self, x: tf.Tensor, **kwargs: Any, ) -> tf.Tensor: """ Args: x: embeddings (batch, max_len, d_model) **kwargs: additional arguments Returns: positional embeddings (batch, max_len, d_model) """ if x.dtype == tf.float16: # amp fix: cast to half x = x + tf.cast(self.pe[:, : x.shape[1]], dtype=tf.half) else: x = x + self.pe[:, : x.shape[1]] return self.dropout(x, **kwargs) @tf.function def scaled_dot_product_attention( query: tf.Tensor, key: tf.Tensor, value: tf.Tensor, mask: Optional[tf.Tensor] = None ) -> Tuple[tf.Tensor, tf.Tensor]: """Scaled Dot-Product Attention""" scores = tf.matmul(query, tf.transpose(key, perm=[0, 1, 3, 2])) / math.sqrt(query.shape[-1]) if mask is not None: # NOTE: to ensure the ONNX compatibility, tf.where works only with bool type condition scores = tf.where(mask == False, float("-inf"), scores) # noqa: E712 p_attn = tf.nn.softmax(scores, axis=-1) return tf.matmul(p_attn, value), p_attn class PositionwiseFeedForward(layers.Layer, NestedObject): """Position-wise Feed-Forward Network""" def __init__( self, d_model: int, ffd: int, dropout=0.1, activation_fct: Callable[[Any], Any] = layers.ReLU() ) -> None: super(PositionwiseFeedForward, self).__init__() self.activation_fct = activation_fct self.first_linear = layers.Dense(ffd, kernel_initializer=tf.initializers.he_uniform()) self.sec_linear = layers.Dense(d_model, kernel_initializer=tf.initializers.he_uniform()) self.dropout = layers.Dropout(rate=dropout) def call(self, x: tf.Tensor, **kwargs: Any) -> tf.Tensor: x = self.first_linear(x, **kwargs) x = self.activation_fct(x) x = self.dropout(x, **kwargs) x = self.sec_linear(x, **kwargs) x = self.dropout(x, **kwargs) return x class MultiHeadAttention(layers.Layer, NestedObject): """Multi-Head Attention""" def __init__(self, num_heads: int, d_model: int, dropout: float = 0.1) -> None: super().__init__() assert d_model % num_heads == 0, "d_model must be divisible by num_heads" self.d_k = d_model // num_heads self.num_heads = num_heads self.linear_layers = [layers.Dense(d_model, kernel_initializer=tf.initializers.he_uniform()) for _ in range(3)] self.output_linear = layers.Dense(d_model, kernel_initializer=tf.initializers.he_uniform()) def call( self, query: tf.Tensor, key: tf.Tensor, value: tf.Tensor, mask: tf.Tensor = None, **kwargs: Any, ) -> tf.Tensor: batch_size = query.shape[0] # linear projections of Q, K, V query, key, value = [ tf.transpose( tf.reshape(linear(x, **kwargs), shape=[batch_size, -1, self.num_heads, self.d_k]), perm=[0, 2, 1, 3] ) for linear, x in zip(self.linear_layers, (query, key, value)) ] # apply attention on all the projected vectors in batch x, attn = scaled_dot_product_attention(query, key, value, mask=mask) # Concat attention heads x = tf.transpose(x, perm=[0, 2, 1, 3]) x = tf.reshape(x, shape=[batch_size, -1, self.num_heads * self.d_k]) return self.output_linear(x, **kwargs) class EncoderBlock(layers.Layer, NestedObject): """Transformer Encoder Block""" def __init__( self, num_layers: int, num_heads: int, d_model: int, dff: int, # hidden dimension of the feedforward network dropout: float, activation_fct: Callable[[Any], Any] = layers.ReLU(), ) -> None: super().__init__() self.num_layers = num_layers self.layer_norm_input = layers.LayerNormalization(epsilon=1e-5) self.layer_norm_attention = layers.LayerNormalization(epsilon=1e-5) self.layer_norm_output = layers.LayerNormalization(epsilon=1e-5) self.dropout = layers.Dropout(rate=dropout) self.attention = [MultiHeadAttention(num_heads, d_model, dropout) for _ in range(self.num_layers)] self.position_feed_forward = [ PositionwiseFeedForward(d_model, dff, dropout, activation_fct) for _ in range(self.num_layers) ] def call(self, x: tf.Tensor, mask: Optional[tf.Tensor] = None, **kwargs: Any) -> tf.Tensor: output = x for i in range(self.num_layers): normed_output = self.layer_norm_input(output, **kwargs) output = output + self.dropout( self.attention[i](normed_output, normed_output, normed_output, mask, **kwargs), **kwargs, ) normed_output = self.layer_norm_attention(output, **kwargs) output = output + self.dropout(self.position_feed_forward[i](normed_output, **kwargs), **kwargs) # (batch_size, seq_len, d_model) return self.layer_norm_output(output, **kwargs) class Decoder(layers.Layer, NestedObject): """Transformer Decoder""" def __init__( self, num_layers: int, num_heads: int, d_model: int, vocab_size: int, dropout: float = 0.2, dff: int = 2048, # hidden dimension of the feedforward network maximum_position_encoding: int = 50, ) -> None: super(Decoder, self).__init__() self.num_layers = num_layers self.d_model = d_model self.layer_norm_input = layers.LayerNormalization(epsilon=1e-5) self.layer_norm_masked_attention = layers.LayerNormalization(epsilon=1e-5) self.layer_norm_attention = layers.LayerNormalization(epsilon=1e-5) self.layer_norm_output = layers.LayerNormalization(epsilon=1e-5) self.dropout = layers.Dropout(rate=dropout) self.embed = layers.Embedding(vocab_size, d_model) self.positional_encoding = PositionalEncoding(d_model, dropout, maximum_position_encoding) self.attention = [MultiHeadAttention(num_heads, d_model, dropout) for _ in range(self.num_layers)] self.source_attention = [MultiHeadAttention(num_heads, d_model, dropout) for _ in range(self.num_layers)] self.position_feed_forward = [PositionwiseFeedForward(d_model, dff, dropout) for _ in range(self.num_layers)] def call( self, tgt: tf.Tensor, memory: tf.Tensor, source_mask: Optional[tf.Tensor] = None, target_mask: Optional[tf.Tensor] = None, **kwargs: Any, ) -> tf.Tensor: tgt = self.embed(tgt, **kwargs) * math.sqrt(self.d_model) pos_enc_tgt = self.positional_encoding(tgt, **kwargs) output = pos_enc_tgt for i in range(self.num_layers): normed_output = self.layer_norm_input(output, **kwargs) output = output + self.dropout( self.attention[i](normed_output, normed_output, normed_output, target_mask, **kwargs), **kwargs, ) normed_output = self.layer_norm_masked_attention(output, **kwargs) output = output + self.dropout( self.source_attention[i](normed_output, memory, memory, source_mask, **kwargs), **kwargs, ) normed_output = self.layer_norm_attention(output, **kwargs) output = output + self.dropout(self.position_feed_forward[i](normed_output, **kwargs), **kwargs) # (batch_size, seq_len, d_model) return self.layer_norm_output(output, **kwargs)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. # This module 'transformer.py' is inspired by https://github.com/wenwenyu/MASTER-pytorch and Decoder is borrowed import math from typing import Any, Callable, Optional, Tuple import torch from torch import nn __all__ = ["Decoder", "PositionalEncoding", "EncoderBlock"] class PositionalEncoding(nn.Module): """Compute positional encoding""" def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000) -> None: super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) # Compute the positional encodings once in log space. pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1).float() div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) self.register_buffer("pe", pe.unsqueeze(0)) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Args: x: embeddings (batch, max_len, d_model) Returns: positional embeddings (batch, max_len, d_model) """ x = x + self.pe[:, : x.size(1)] # type: ignore return self.dropout(x) def scaled_dot_product_attention( query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, mask: Optional[torch.Tensor] = None ) -> Tuple[torch.Tensor, torch.Tensor]: """Scaled Dot-Product Attention""" scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(query.size(-1)) if mask is not None: # NOTE: to ensure the ONNX compatibility, masked_fill works only with int equal condition scores = scores.masked_fill(mask == 0, float("-inf")) p_attn = torch.softmax(scores, dim=-1) return torch.matmul(p_attn, value), p_attn class PositionwiseFeedForward(nn.Sequential): """Position-wise Feed-Forward Network""" def __init__( self, d_model: int, ffd: int, dropout: float = 0.1, activation_fct: Callable[[Any], Any] = nn.ReLU() ) -> None: super().__init__( # type: ignore[call-overload] nn.Linear(d_model, ffd), activation_fct, nn.Dropout(p=dropout), nn.Linear(ffd, d_model), nn.Dropout(p=dropout), ) class MultiHeadAttention(nn.Module): """Multi-Head Attention""" def __init__(self, num_heads: int, d_model: int, dropout: float = 0.1) -> None: super().__init__() assert d_model % num_heads == 0, "d_model must be divisible by num_heads" self.d_k = d_model // num_heads self.num_heads = num_heads self.linear_layers = nn.ModuleList([nn.Linear(d_model, d_model) for _ in range(3)]) self.output_linear = nn.Linear(d_model, d_model) def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, mask=None) -> torch.Tensor: batch_size = query.size(0) # linear projections of Q, K, V query, key, value = [ linear(x).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2) for linear, x in zip(self.linear_layers, (query, key, value)) ] # apply attention on all the projected vectors in batch x, attn = scaled_dot_product_attention(query, key, value, mask=mask) # Concat attention heads x = x.transpose(1, 2).contiguous().view(batch_size, -1, self.num_heads * self.d_k) return self.output_linear(x) class EncoderBlock(nn.Module): """Transformer Encoder Block""" def __init__( self, num_layers: int, num_heads: int, d_model: int, dff: int, # hidden dimension of the feedforward network dropout: float, activation_fct: Callable[[Any], Any] = nn.ReLU(), ) -> None: super().__init__() self.num_layers = num_layers self.layer_norm_input = nn.LayerNorm(d_model, eps=1e-5) self.layer_norm_attention = nn.LayerNorm(d_model, eps=1e-5) self.layer_norm_output = nn.LayerNorm(d_model, eps=1e-5) self.dropout = nn.Dropout(dropout) self.attention = nn.ModuleList( [MultiHeadAttention(num_heads, d_model, dropout) for _ in range(self.num_layers)] ) self.position_feed_forward = nn.ModuleList( [PositionwiseFeedForward(d_model, dff, dropout, activation_fct) for _ in range(self.num_layers)] ) def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor: output = x for i in range(self.num_layers): normed_output = self.layer_norm_input(output) output = output + self.dropout(self.attention[i](normed_output, normed_output, normed_output, mask)) normed_output = self.layer_norm_attention(output) output = output + self.dropout(self.position_feed_forward[i](normed_output)) # (batch_size, seq_len, d_model) return self.layer_norm_output(output) class Decoder(nn.Module): """Transformer Decoder""" def __init__( self, num_layers: int, num_heads: int, d_model: int, vocab_size: int, dropout: float = 0.2, dff: int = 2048, # hidden dimension of the feedforward network maximum_position_encoding: int = 50, ) -> None: super(Decoder, self).__init__() self.num_layers = num_layers self.d_model = d_model self.layer_norm_input = nn.LayerNorm(d_model, eps=1e-5) self.layer_norm_masked_attention = nn.LayerNorm(d_model, eps=1e-5) self.layer_norm_attention = nn.LayerNorm(d_model, eps=1e-5) self.layer_norm_output = nn.LayerNorm(d_model, eps=1e-5) self.dropout = nn.Dropout(dropout) self.embed = nn.Embedding(vocab_size, d_model) self.positional_encoding = PositionalEncoding(d_model, dropout, maximum_position_encoding) self.attention = nn.ModuleList( [MultiHeadAttention(num_heads, d_model, dropout) for _ in range(self.num_layers)] ) self.source_attention = nn.ModuleList( [MultiHeadAttention(num_heads, d_model, dropout) for _ in range(self.num_layers)] ) self.position_feed_forward = nn.ModuleList( [PositionwiseFeedForward(d_model, dff, dropout) for _ in range(self.num_layers)] ) def forward( self, tgt: torch.Tensor, memory: torch.Tensor, source_mask: Optional[torch.Tensor] = None, target_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: tgt = self.embed(tgt) * math.sqrt(self.d_model) pos_enc_tgt = self.positional_encoding(tgt) output = pos_enc_tgt for i in range(self.num_layers): normed_output = self.layer_norm_input(output) output = output + self.dropout(self.attention[i](normed_output, normed_output, normed_output, target_mask)) normed_output = self.layer_norm_masked_attention(output) output = output + self.dropout(self.source_attention[i](normed_output, memory, memory, source_mask)) normed_output = self.layer_norm_attention(output) output = output + self.dropout(self.position_feed_forward[i](normed_output)) # (batch_size, seq_len, d_model) return self.layer_norm_output(output)
from doctr.file_utils import is_tf_available if is_tf_available(): from .tensorflow import * else: from .pytorch import * # type: ignore[assignment]
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from typing import Any, List, Union import numpy as np import tensorflow as tf from doctr.io.elements import Document from doctr.models._utils import estimate_orientation, get_language from doctr.models.detection.predictor import DetectionPredictor from doctr.models.recognition.predictor import RecognitionPredictor from doctr.utils.geometry import rotate_boxes, rotate_image from doctr.utils.repr import NestedObject from .base import _OCRPredictor __all__ = ["OCRPredictor"] class OCRPredictor(NestedObject, _OCRPredictor): """Implements an object able to localize and identify text elements in a set of documents Args: det_predictor: detection module reco_predictor: recognition module assume_straight_pages: if True, speeds up the inference by assuming you only pass straight pages without rotated textual elements. straighten_pages: if True, estimates the page general orientation based on the median line orientation. Then, rotates page before passing it to the deep learning modules. The final predictions will be remapped accordingly. Doing so will improve performances for documents with page-uniform rotations. detect_orientation: if True, the estimated general page orientation will be added to the predictions for each page. Doing so will slightly deteriorate the overall latency. detect_language: if True, the language prediction will be added to the predictions for each page. Doing so will slightly deteriorate the overall latency. kwargs: keyword args of `DocumentBuilder` """ _children_names = ["det_predictor", "reco_predictor", "doc_builder"] def __init__( self, det_predictor: DetectionPredictor, reco_predictor: RecognitionPredictor, assume_straight_pages: bool = True, straighten_pages: bool = False, preserve_aspect_ratio: bool = False, symmetric_pad: bool = True, detect_orientation: bool = False, detect_language: bool = False, **kwargs: Any, ) -> None: self.det_predictor = det_predictor self.reco_predictor = reco_predictor _OCRPredictor.__init__( self, assume_straight_pages, straighten_pages, preserve_aspect_ratio, symmetric_pad, **kwargs ) self.detect_orientation = detect_orientation self.detect_language = detect_language def __call__( self, pages: List[Union[np.ndarray, tf.Tensor]], **kwargs: Any, ) -> Document: # Dimension check if any(page.ndim != 3 for page in pages): raise ValueError("incorrect input shape: all pages are expected to be multi-channel 2D images.") origin_page_shapes = [page.shape[:2] for page in pages] # Detect document rotation and rotate pages if self.detect_orientation: origin_page_orientations = [estimate_orientation(page) for page in pages] orientations = [ {"value": orientation_page, "confidence": 1.0} for orientation_page in origin_page_orientations ] else: orientations = None if self.straighten_pages: origin_page_orientations = ( origin_page_orientations if self.detect_orientation else [estimate_orientation(page) for page in pages] ) pages = [rotate_image(page, -angle, expand=True) for page, angle in zip(pages, origin_page_orientations)] # Localize text elements loc_preds_dict = self.det_predictor(pages, **kwargs) assert all( len(loc_pred) == 1 for loc_pred in loc_preds_dict ), "Detection Model in ocr_predictor should output only one class" loc_preds: List[np.ndarray] = [list(loc_pred.values())[0] for loc_pred in loc_preds_dict] # Rectify crops if aspect ratio loc_preds = self._remove_padding(pages, loc_preds) # Crop images crops, loc_preds = self._prepare_crops( pages, loc_preds, channels_last=True, assume_straight_pages=self.assume_straight_pages ) # Rectify crop orientation if not self.assume_straight_pages: crops, loc_preds = self._rectify_crops(crops, loc_preds) # Identify character sequences word_preds = self.reco_predictor([crop for page_crops in crops for crop in page_crops], **kwargs) boxes, text_preds = self._process_predictions(loc_preds, word_preds) if self.detect_language: languages = [get_language(" ".join([item[0] for item in text_pred])) for text_pred in text_preds] languages_dict = [{"value": lang[0], "confidence": lang[1]} for lang in languages] else: languages_dict = None # Rotate back pages and boxes while keeping original image size if self.straighten_pages: boxes = [ rotate_boxes( page_boxes, angle, orig_shape=page.shape[:2] if isinstance(page, np.ndarray) else page.shape[-2:], target_shape=mask, # type: ignore[arg-type] ) for page_boxes, page, angle, mask in zip(boxes, pages, origin_page_orientations, origin_page_shapes) ] out = self.doc_builder( boxes, text_preds, origin_page_shapes, # type: ignore[arg-type] orientations, languages_dict, ) return out
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from typing import Any, List, Union import numpy as np import torch from torch import nn from doctr.io.elements import Document from doctr.models._utils import estimate_orientation, get_language from doctr.models.detection.predictor import DetectionPredictor from doctr.models.recognition.predictor import RecognitionPredictor from doctr.utils.geometry import rotate_boxes, rotate_image from .base import _OCRPredictor __all__ = ["OCRPredictor"] class OCRPredictor(nn.Module, _OCRPredictor): """Implements an object able to localize and identify text elements in a set of documents Args: det_predictor: detection module reco_predictor: recognition module assume_straight_pages: if True, speeds up the inference by assuming you only pass straight pages without rotated textual elements. straighten_pages: if True, estimates the page general orientation based on the median line orientation. Then, rotates page before passing it to the deep learning modules. The final predictions will be remapped accordingly. Doing so will improve performances for documents with page-uniform rotations. detect_orientation: if True, the estimated general page orientation will be added to the predictions for each page. Doing so will slightly deteriorate the overall latency. detect_language: if True, the language prediction will be added to the predictions for each page. Doing so will slightly deteriorate the overall latency. kwargs: keyword args of `DocumentBuilder` """ def __init__( self, det_predictor: DetectionPredictor, reco_predictor: RecognitionPredictor, assume_straight_pages: bool = True, straighten_pages: bool = False, preserve_aspect_ratio: bool = False, symmetric_pad: bool = True, detect_orientation: bool = False, detect_language: bool = False, **kwargs: Any, ) -> None: nn.Module.__init__(self) self.det_predictor = det_predictor.eval() # type: ignore[attr-defined] self.reco_predictor = reco_predictor.eval() # type: ignore[attr-defined] _OCRPredictor.__init__( self, assume_straight_pages, straighten_pages, preserve_aspect_ratio, symmetric_pad, **kwargs ) self.detect_orientation = detect_orientation self.detect_language = detect_language @torch.no_grad() def forward( self, pages: List[Union[np.ndarray, torch.Tensor]], **kwargs: Any, ) -> Document: # Dimension check if any(page.ndim != 3 for page in pages): raise ValueError("incorrect input shape: all pages are expected to be multi-channel 2D images.") origin_page_shapes = [page.shape[:2] if isinstance(page, np.ndarray) else page.shape[-2:] for page in pages] # Detect document rotation and rotate pages if self.detect_orientation: origin_page_orientations = [estimate_orientation(page) for page in pages] # type: ignore[arg-type] orientations = [ {"value": orientation_page, "confidence": 1.0} for orientation_page in origin_page_orientations ] else: orientations = None if self.straighten_pages: origin_page_orientations = ( origin_page_orientations if self.detect_orientation else [estimate_orientation(page) for page in pages] # type: ignore[arg-type] ) pages = [ rotate_image(page, -angle, expand=True) # type: ignore[arg-type] for page, angle in zip(pages, origin_page_orientations) ] # Localize text elements loc_preds = self.det_predictor(pages, **kwargs) assert all( len(loc_pred) == 1 for loc_pred in loc_preds ), "Detection Model in ocr_predictor should output only one class" loc_preds = [list(loc_pred.values())[0] for loc_pred in loc_preds] # Check whether crop mode should be switched to channels first channels_last = len(pages) == 0 or isinstance(pages[0], np.ndarray) # Rectify crops if aspect ratio loc_preds = self._remove_padding(pages, loc_preds) # type: ignore[arg-type] # Crop images crops, loc_preds = self._prepare_crops( pages, # type: ignore[arg-type] loc_preds, channels_last=channels_last, assume_straight_pages=self.assume_straight_pages, ) # Rectify crop orientation if not self.assume_straight_pages: crops, loc_preds = self._rectify_crops(crops, loc_preds) # Identify character sequences word_preds = self.reco_predictor([crop for page_crops in crops for crop in page_crops], **kwargs) boxes, text_preds = self._process_predictions(loc_preds, word_preds) if self.detect_language: languages = [get_language(" ".join([item[0] for item in text_pred])) for text_pred in text_preds] languages_dict = [{"value": lang[0], "confidence": lang[1]} for lang in languages] else: languages_dict = None # Rotate back pages and boxes while keeping original image size if self.straighten_pages: boxes = [ rotate_boxes( page_boxes, angle, orig_shape=page.shape[:2] if isinstance(page, np.ndarray) else page.shape[1:], # type: ignore[arg-type] target_shape=mask, # type: ignore[arg-type] ) for page_boxes, page, angle, mask in zip(boxes, pages, origin_page_orientations, origin_page_shapes) ] out = self.doc_builder( boxes, text_preds, [page.shape[:2] if channels_last else page.shape[-2:] for page in pages], # type: ignore[misc] orientations, languages_dict, ) return out
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from typing import Any, List, Optional, Tuple import numpy as np from doctr.models.builder import DocumentBuilder from doctr.utils.geometry import extract_crops, extract_rcrops from .._utils import rectify_crops, rectify_loc_preds from ..classification import crop_orientation_predictor from ..classification.predictor import CropOrientationPredictor __all__ = ["_OCRPredictor"] class _OCRPredictor: """Implements an object able to localize and identify text elements in a set of documents Args: assume_straight_pages: if True, speeds up the inference by assuming you only pass straight pages without rotated textual elements. straighten_pages: if True, estimates the page general orientation based on the median line orientation. Then, rotates page before passing it to the deep learning modules. The final predictions will be remapped accordingly. Doing so will improve performances for documents with page-uniform rotations. preserve_aspect_ratio: if True, resize preserving the aspect ratio (with padding) symmetric_pad: if True and preserve_aspect_ratio is True, pas the image symmetrically. kwargs: keyword args of `DocumentBuilder` """ crop_orientation_predictor: Optional[CropOrientationPredictor] def __init__( self, assume_straight_pages: bool = True, straighten_pages: bool = False, preserve_aspect_ratio: bool = True, symmetric_pad: bool = True, **kwargs: Any, ) -> None: self.assume_straight_pages = assume_straight_pages self.straighten_pages = straighten_pages self.crop_orientation_predictor = None if assume_straight_pages else crop_orientation_predictor(pretrained=True) self.doc_builder = DocumentBuilder(**kwargs) self.preserve_aspect_ratio = preserve_aspect_ratio self.symmetric_pad = symmetric_pad @staticmethod def _generate_crops( pages: List[np.ndarray], loc_preds: List[np.ndarray], channels_last: bool, assume_straight_pages: bool = False, ) -> List[List[np.ndarray]]: extraction_fn = extract_crops if assume_straight_pages else extract_rcrops crops = [ extraction_fn(page, _boxes[:, :4], channels_last=channels_last) # type: ignore[operator] for page, _boxes in zip(pages, loc_preds) ] return crops @staticmethod def _prepare_crops( pages: List[np.ndarray], loc_preds: List[np.ndarray], channels_last: bool, assume_straight_pages: bool = False, ) -> Tuple[List[List[np.ndarray]], List[np.ndarray]]: crops = _OCRPredictor._generate_crops(pages, loc_preds, channels_last, assume_straight_pages) # Avoid sending zero-sized crops is_kept = [[all(s > 0 for s in crop.shape) for crop in page_crops] for page_crops in crops] crops = [ [crop for crop, _kept in zip(page_crops, page_kept) if _kept] for page_crops, page_kept in zip(crops, is_kept) ] loc_preds = [_boxes[_kept] for _boxes, _kept in zip(loc_preds, is_kept)] return crops, loc_preds def _rectify_crops( self, crops: List[List[np.ndarray]], loc_preds: List[np.ndarray], ) -> Tuple[List[List[np.ndarray]], List[np.ndarray]]: # Work at a page level orientations = [self.crop_orientation_predictor(page_crops) for page_crops in crops] # type: ignore[misc] rect_crops = [rectify_crops(page_crops, orientation) for page_crops, orientation in zip(crops, orientations)] rect_loc_preds = [ rectify_loc_preds(page_loc_preds, orientation) if len(page_loc_preds) > 0 else page_loc_preds for page_loc_preds, orientation in zip(loc_preds, orientations) ] return rect_crops, rect_loc_preds # type: ignore[return-value] def _remove_padding( self, pages: List[np.ndarray], loc_preds: List[np.ndarray], ) -> List[np.ndarray]: if self.preserve_aspect_ratio: # Rectify loc_preds to remove padding rectified_preds = [] for page, loc_pred in zip(pages, loc_preds): h, w = page.shape[0], page.shape[1] if h > w: # y unchanged, dilate x coord if self.symmetric_pad: if self.assume_straight_pages: loc_pred[:, [0, 2]] = np.clip((loc_pred[:, [0, 2]] - 0.5) * h / w + 0.5, 0, 1) else: loc_pred[:, :, 0] = np.clip((loc_pred[:, :, 0] - 0.5) * h / w + 0.5, 0, 1) else: if self.assume_straight_pages: loc_pred[:, [0, 2]] *= h / w else: loc_pred[:, :, 0] *= h / w elif w > h: # x unchanged, dilate y coord if self.symmetric_pad: if self.assume_straight_pages: loc_pred[:, [1, 3]] = np.clip((loc_pred[:, [1, 3]] - 0.5) * w / h + 0.5, 0, 1) else: loc_pred[:, :, 1] = np.clip((loc_pred[:, :, 1] - 0.5) * w / h + 0.5, 0, 1) else: if self.assume_straight_pages: loc_pred[:, [1, 3]] *= w / h else: loc_pred[:, :, 1] *= w / h rectified_preds.append(loc_pred) return rectified_preds return loc_preds @staticmethod def _process_predictions( loc_preds: List[np.ndarray], word_preds: List[Tuple[str, float]], ) -> Tuple[List[np.ndarray], List[List[Tuple[str, float]]]]: text_preds = [] if len(loc_preds) > 0: # Text _idx = 0 for page_boxes in loc_preds: text_preds.append(word_preds[_idx : _idx + page_boxes.shape[0]]) _idx += page_boxes.shape[0] return loc_preds, text_preds
from doctr.file_utils import is_tf_available, is_torch_available if is_tf_available(): from .tensorflow import * elif is_torch_available(): from .pytorch import * # type: ignore[assignment]
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import math from typing import Any, List, Tuple, Union import numpy as np import tensorflow as tf from doctr.transforms import Normalize, Resize from doctr.utils.multithreading import multithread_exec from doctr.utils.repr import NestedObject __all__ = ["PreProcessor"] class PreProcessor(NestedObject): """Implements an abstract preprocessor object which performs casting, resizing, batching and normalization. Args: output_size: expected size of each page in format (H, W) batch_size: the size of page batches mean: mean value of the training distribution by channel std: standard deviation of the training distribution by channel """ _children_names: List[str] = ["resize", "normalize"] def __init__( self, output_size: Tuple[int, int], batch_size: int, mean: Tuple[float, float, float] = (0.5, 0.5, 0.5), std: Tuple[float, float, float] = (1.0, 1.0, 1.0), fp16: bool = False, **kwargs: Any, ) -> None: self.batch_size = batch_size self.resize = Resize(output_size, **kwargs) # Perform the division by 255 at the same time self.normalize = Normalize(mean, std) def batch_inputs(self, samples: List[tf.Tensor]) -> List[tf.Tensor]: """Gather samples into batches for inference purposes Args: samples: list of samples (tf.Tensor) Returns: list of batched samples """ num_batches = int(math.ceil(len(samples) / self.batch_size)) batches = [ tf.stack(samples[idx * self.batch_size : min((idx + 1) * self.batch_size, len(samples))], axis=0) for idx in range(int(num_batches)) ] return batches def sample_transforms(self, x: Union[np.ndarray, tf.Tensor]) -> tf.Tensor: if x.ndim != 3: raise AssertionError("expected list of 3D Tensors") if isinstance(x, np.ndarray): if x.dtype not in (np.uint8, np.float32): raise TypeError("unsupported data type for numpy.ndarray") x = tf.convert_to_tensor(x) elif x.dtype not in (tf.uint8, tf.float16, tf.float32): raise TypeError("unsupported data type for torch.Tensor") # Data type & 255 division if x.dtype == tf.uint8: x = tf.image.convert_image_dtype(x, dtype=tf.float32) # Resizing x = self.resize(x) return x def __call__(self, x: Union[tf.Tensor, np.ndarray, List[Union[tf.Tensor, np.ndarray]]]) -> List[tf.Tensor]: """Prepare document data for model forwarding Args: x: list of images (np.array) or tensors (already resized and batched) Returns: list of page batches """ # Input type check if isinstance(x, (np.ndarray, tf.Tensor)): if x.ndim != 4: raise AssertionError("expected 4D Tensor") if isinstance(x, np.ndarray): if x.dtype not in (np.uint8, np.float32): raise TypeError("unsupported data type for numpy.ndarray") x = tf.convert_to_tensor(x) elif x.dtype not in (tf.uint8, tf.float16, tf.float32): raise TypeError("unsupported data type for torch.Tensor") # Data type & 255 division if x.dtype == tf.uint8: x = tf.image.convert_image_dtype(x, dtype=tf.float32) # Resizing if (x.shape[1], x.shape[2]) != self.resize.output_size: x = tf.image.resize(x, self.resize.output_size, method=self.resize.method) batches = [x] elif isinstance(x, list) and all(isinstance(sample, (np.ndarray, tf.Tensor)) for sample in x): # Sample transform (to tensor, resize) samples = list(multithread_exec(self.sample_transforms, x)) # Batching batches = self.batch_inputs(samples) else: raise TypeError(f"invalid input type: {type(x)}") # Batch transforms (normalize) batches = list(multithread_exec(self.normalize, batches)) return batches
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import math from typing import Any, List, Tuple, Union import numpy as np import torch from torch import nn from torchvision.transforms import functional as F from torchvision.transforms import transforms as T from doctr.transforms import Resize from doctr.utils.multithreading import multithread_exec __all__ = ["PreProcessor"] class PreProcessor(nn.Module): """Implements an abstract preprocessor object which performs casting, resizing, batching and normalization. Args: output_size: expected size of each page in format (H, W) batch_size: the size of page batches mean: mean value of the training distribution by channel std: standard deviation of the training distribution by channel """ def __init__( self, output_size: Tuple[int, int], batch_size: int, mean: Tuple[float, float, float] = (0.5, 0.5, 0.5), std: Tuple[float, float, float] = (1.0, 1.0, 1.0), fp16: bool = False, **kwargs: Any, ) -> None: super().__init__() self.batch_size = batch_size self.resize: T.Resize = Resize(output_size, **kwargs) # Perform the division by 255 at the same time self.normalize = T.Normalize(mean, std) def batch_inputs(self, samples: List[torch.Tensor]) -> List[torch.Tensor]: """Gather samples into batches for inference purposes Args: samples: list of samples of shape (C, H, W) Returns: list of batched samples (*, C, H, W) """ num_batches = int(math.ceil(len(samples) / self.batch_size)) batches = [ torch.stack(samples[idx * self.batch_size : min((idx + 1) * self.batch_size, len(samples))], dim=0) for idx in range(int(num_batches)) ] return batches def sample_transforms(self, x: Union[np.ndarray, torch.Tensor]) -> torch.Tensor: if x.ndim != 3: raise AssertionError("expected list of 3D Tensors") if isinstance(x, np.ndarray): if x.dtype not in (np.uint8, np.float32): raise TypeError("unsupported data type for numpy.ndarray") x = torch.from_numpy(x.copy()).permute(2, 0, 1) elif x.dtype not in (torch.uint8, torch.float16, torch.float32): raise TypeError("unsupported data type for torch.Tensor") # Resizing x = self.resize(x) # Data type if x.dtype == torch.uint8: x = x.to(dtype=torch.float32).div(255).clip(0, 1) # type: ignore[union-attr] else: x = x.to(dtype=torch.float32) # type: ignore[union-attr] return x def __call__(self, x: Union[torch.Tensor, np.ndarray, List[Union[torch.Tensor, np.ndarray]]]) -> List[torch.Tensor]: """Prepare document data for model forwarding Args: x: list of images (np.array) or tensors (already resized and batched) Returns: list of page batches """ # Input type check if isinstance(x, (np.ndarray, torch.Tensor)): if x.ndim != 4: raise AssertionError("expected 4D Tensor") if isinstance(x, np.ndarray): if x.dtype not in (np.uint8, np.float32): raise TypeError("unsupported data type for numpy.ndarray") x = torch.from_numpy(x.copy()).permute(0, 3, 1, 2) elif x.dtype not in (torch.uint8, torch.float16, torch.float32): raise TypeError("unsupported data type for torch.Tensor") # Resizing if x.shape[-2] != self.resize.size[0] or x.shape[-1] != self.resize.size[1]: x = F.resize(x, self.resize.size, interpolation=self.resize.interpolation) # Data type if x.dtype == torch.uint8: # type: ignore[union-attr] x = x.to(dtype=torch.float32).div(255).clip(0, 1) # type: ignore[union-attr] else: x = x.to(dtype=torch.float32) # type: ignore[union-attr] batches = [x] elif isinstance(x, list) and all(isinstance(sample, (np.ndarray, torch.Tensor)) for sample in x): # Sample transform (to tensor, resize) samples = list(multithread_exec(self.sample_transforms, x)) # Batching batches = self.batch_inputs(samples) else: raise TypeError(f"invalid input type: {type(x)}") # Batch transforms (normalize) batches = list(multithread_exec(self.normalize, batches)) return batches
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from typing import Any, List from doctr.file_utils import is_tf_available, is_torch_available from .. import detection from ..preprocessor import PreProcessor from .predictor import DetectionPredictor __all__ = ["detection_predictor"] ARCHS: List[str] ROT_ARCHS: List[str] if is_tf_available(): ARCHS = ["db_resnet50", "db_mobilenet_v3_large", "linknet_resnet18", "linknet_resnet34", "linknet_resnet50"] ROT_ARCHS = ["linknet_resnet18_rotation"] elif is_torch_available(): ARCHS = [ "db_resnet34", "db_resnet50", "db_mobilenet_v3_large", "linknet_resnet18", "linknet_resnet34", "linknet_resnet50", ] ROT_ARCHS = ["db_resnet50_rotation"] def _predictor(arch: Any, pretrained: bool, assume_straight_pages: bool = True, **kwargs: Any) -> DetectionPredictor: if isinstance(arch, str): if arch not in ARCHS + ROT_ARCHS: raise ValueError(f"unknown architecture '{arch}'") if arch not in ROT_ARCHS and not assume_straight_pages: raise AssertionError( "You are trying to use a model trained on straight pages while not assuming" " your pages are straight. If you have only straight documents, don't pass" " assume_straight_pages=False, otherwise you should use one of these archs:" f"{ROT_ARCHS}" ) _model = detection.__dict__[arch]( pretrained=pretrained, pretrained_backbone=kwargs.get("pretrained_backbone", True), assume_straight_pages=assume_straight_pages, ) else: if not isinstance(arch, (detection.DBNet, detection.LinkNet)): raise ValueError(f"unknown architecture: {type(arch)}") _model = arch _model.assume_straight_pages = assume_straight_pages kwargs.pop("pretrained_backbone", None) kwargs["mean"] = kwargs.get("mean", _model.cfg["mean"]) kwargs["std"] = kwargs.get("std", _model.cfg["std"]) kwargs["batch_size"] = kwargs.get("batch_size", 1) predictor = DetectionPredictor( PreProcessor(_model.cfg["input_shape"][:-1] if is_tf_available() else _model.cfg["input_shape"][1:], **kwargs), _model, ) return predictor def detection_predictor( arch: Any = "db_resnet50", pretrained: bool = False, assume_straight_pages: bool = True, **kwargs: Any ) -> DetectionPredictor: """Text detection architecture. >>> import numpy as np >>> from doctr.models import detection_predictor >>> model = detection_predictor(arch='db_resnet50', pretrained=True) >>> input_page = (255 * np.random.rand(600, 800, 3)).astype(np.uint8) >>> out = model([input_page]) Args: arch: name of the architecture or model itself to use (e.g. 'db_resnet50') pretrained: If True, returns a model pre-trained on our text detection dataset assume_straight_pages: If True, fit straight boxes to the page Returns: Detection predictor """ return _predictor(arch, pretrained, assume_straight_pages, **kwargs)
from .differentiable_binarization import * from .linknet import * from .zoo import *
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from typing import List import cv2 import numpy as np from doctr.utils.repr import NestedObject __all__ = ["DetectionPostProcessor"] class DetectionPostProcessor(NestedObject): """Abstract class to postprocess the raw output of the model Args: box_thresh (float): minimal objectness score to consider a box bin_thresh (float): threshold to apply to segmentation raw heatmap assume straight_pages (bool): if True, fit straight boxes only """ def __init__(self, box_thresh: float = 0.5, bin_thresh: float = 0.5, assume_straight_pages: bool = True) -> None: self.box_thresh = box_thresh self.bin_thresh = bin_thresh self.assume_straight_pages = assume_straight_pages self._opening_kernel: np.ndarray = np.ones((3, 3), dtype=np.uint8) def extra_repr(self) -> str: return f"bin_thresh={self.bin_thresh}, box_thresh={self.box_thresh}" @staticmethod def box_score(pred: np.ndarray, points: np.ndarray, assume_straight_pages: bool = True) -> float: """Compute the confidence score for a polygon : mean of the p values on the polygon Args: pred (np.ndarray): p map returned by the model Returns: polygon objectness """ h, w = pred.shape[:2] if assume_straight_pages: xmin = np.clip(np.floor(points[:, 0].min()).astype(np.int32), 0, w - 1) xmax = np.clip(np.ceil(points[:, 0].max()).astype(np.int32), 0, w - 1) ymin = np.clip(np.floor(points[:, 1].min()).astype(np.int32), 0, h - 1) ymax = np.clip(np.ceil(points[:, 1].max()).astype(np.int32), 0, h - 1) return pred[ymin : ymax + 1, xmin : xmax + 1].mean() else: mask: np.ndarray = np.zeros((h, w), np.int32) cv2.fillPoly(mask, [points.astype(np.int32)], 1.0) product = pred * mask return np.sum(product) / np.count_nonzero(product) def bitmap_to_boxes( self, pred: np.ndarray, bitmap: np.ndarray, ) -> np.ndarray: raise NotImplementedError def __call__( self, proba_map, ) -> List[List[np.ndarray]]: """Performs postprocessing for a list of model outputs Args: proba_map: probability map of shape (N, H, W, C) Returns: list of N class predictions (for each input sample), where each class predictions is a list of C tensors of shape (*, 5) or (*, 6) """ if proba_map.ndim != 4: raise AssertionError(f"arg `proba_map` is expected to be 4-dimensional, got {proba_map.ndim}.") # Erosion + dilation on the binary map bin_map = [ [ cv2.morphologyEx(bmap[..., idx], cv2.MORPH_OPEN, self._opening_kernel) for idx in range(proba_map.shape[-1]) ] for bmap in (proba_map >= self.bin_thresh).astype(np.uint8) ] return [ [self.bitmap_to_boxes(pmaps[..., idx], bmaps[idx]) for idx in range(proba_map.shape[-1])] for pmaps, bmaps in zip(proba_map, bin_map) ]
from doctr.file_utils import is_tf_available if is_tf_available(): from .tensorflow import * else: from .pytorch import *
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import tensorflow as tf __all__ = ["erode", "dilate"] def erode(x: tf.Tensor, kernel_size: int) -> tf.Tensor: """Performs erosion on a given tensor Args: x: boolean tensor of shape (N, H, W, C) kernel_size: the size of the kernel to use for erosion Returns: the eroded tensor """ return 1 - tf.nn.max_pool2d(1 - x, kernel_size, strides=1, padding="SAME") def dilate(x: tf.Tensor, kernel_size: int) -> tf.Tensor: """Performs dilation on a given tensor Args: x: boolean tensor of shape (N, H, W, C) kernel_size: the size of the kernel to use for dilation Returns: the dilated tensor """ return tf.nn.max_pool2d(x, kernel_size, strides=1, padding="SAME")
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from torch import Tensor from torch.nn.functional import max_pool2d __all__ = ["erode", "dilate"] def erode(x: Tensor, kernel_size: int) -> Tensor: """Performs erosion on a given tensor Args: x: boolean tensor of shape (N, C, H, W) kernel_size: the size of the kernel to use for erosion Returns: the eroded tensor """ _pad = (kernel_size - 1) // 2 return 1 - max_pool2d(1 - x, kernel_size, stride=1, padding=_pad) def dilate(x: Tensor, kernel_size: int) -> Tensor: """Performs dilation on a given tensor Args: x: boolean tensor of shape (N, C, H, W) kernel_size: the size of the kernel to use for dilation Returns: the dilated tensor """ _pad = (kernel_size - 1) // 2 return max_pool2d(x, kernel_size, stride=1, padding=_pad)
from doctr.file_utils import is_tf_available, is_torch_available if is_tf_available(): from .tensorflow import * elif is_torch_available(): from .pytorch import * # type: ignore[assignment]
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. # Credits: post-processing adapted from https://github.com/xuannianz/DifferentiableBinarization from copy import deepcopy from typing import Any, Dict, List, Optional, Tuple import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.applications import ResNet50 from doctr.file_utils import CLASS_NAME from doctr.models.utils import IntermediateLayerGetter, conv_sequence, load_pretrained_params from doctr.utils.repr import NestedObject from ...classification import mobilenet_v3_large from .base import DBPostProcessor, _DBNet __all__ = ["DBNet", "db_resnet50", "db_mobilenet_v3_large"] default_cfgs: Dict[str, Dict[str, Any]] = { "db_resnet50": { "mean": (0.798, 0.785, 0.772), "std": (0.264, 0.2749, 0.287), "input_shape": (1024, 1024, 3), "url": "https://doctr-static.mindee.com/models?id=v0.2.0/db_resnet50-adcafc63.zip&src=0", }, "db_mobilenet_v3_large": { "mean": (0.798, 0.785, 0.772), "std": (0.264, 0.2749, 0.287), "input_shape": (1024, 1024, 3), "url": "https://doctr-static.mindee.com/models?id=v0.3.1/db_mobilenet_v3_large-8c16d5bf.zip&src=0", }, } class FeaturePyramidNetwork(layers.Layer, NestedObject): """Feature Pyramid Network as described in `"Feature Pyramid Networks for Object Detection" <https://arxiv.org/pdf/1612.03144.pdf>`_. Args: channels: number of channel to output """ def __init__( self, channels: int, ) -> None: super().__init__() self.channels = channels self.upsample = layers.UpSampling2D(size=(2, 2), interpolation="nearest") self.inner_blocks = [layers.Conv2D(channels, 1, strides=1, kernel_initializer="he_normal") for _ in range(4)] self.layer_blocks = [self.build_upsampling(channels, dilation_factor=2**idx) for idx in range(4)] @staticmethod def build_upsampling( channels: int, dilation_factor: int = 1, ) -> layers.Layer: """Module which performs a 3x3 convolution followed by up-sampling Args: channels: number of output channels dilation_factor (int): dilation factor to scale the convolution output before concatenation Returns: a keras.layers.Layer object, wrapping these operations in a sequential module """ _layers = conv_sequence(channels, "relu", True, kernel_size=3) if dilation_factor > 1: _layers.append(layers.UpSampling2D(size=(dilation_factor, dilation_factor), interpolation="nearest")) module = keras.Sequential(_layers) return module def extra_repr(self) -> str: return f"channels={self.channels}" def call( self, x: List[tf.Tensor], **kwargs: Any, ) -> tf.Tensor: # Channel mapping results = [block(fmap, **kwargs) for block, fmap in zip(self.inner_blocks, x)] # Upsample & sum for idx in range(len(results) - 1, -1): results[idx] += self.upsample(results[idx + 1]) # Conv & upsample results = [block(fmap, **kwargs) for block, fmap in zip(self.layer_blocks, results)] return layers.concatenate(results) class DBNet(_DBNet, keras.Model, NestedObject): """DBNet as described in `"Real-time Scene Text Detection with Differentiable Binarization" <https://arxiv.org/pdf/1911.08947.pdf>`_. Args: feature extractor: the backbone serving as feature extractor fpn_channels: number of channels each extracted feature maps is mapped to assume_straight_pages: if True, fit straight bounding boxes only exportable: onnx exportable returns only logits cfg: the configuration dict of the model class_names: list of class names """ _children_names: List[str] = ["feat_extractor", "fpn", "probability_head", "threshold_head", "postprocessor"] def __init__( self, feature_extractor: IntermediateLayerGetter, fpn_channels: int = 128, # to be set to 256 to represent the author's initial idea bin_thresh: float = 0.3, assume_straight_pages: bool = True, exportable: bool = False, cfg: Optional[Dict[str, Any]] = None, class_names: List[str] = [CLASS_NAME], ) -> None: super().__init__() self.class_names = class_names num_classes: int = len(self.class_names) self.cfg = cfg self.feat_extractor = feature_extractor self.exportable = exportable self.assume_straight_pages = assume_straight_pages self.fpn = FeaturePyramidNetwork(channels=fpn_channels) # Initialize kernels _inputs = [layers.Input(shape=in_shape[1:]) for in_shape in self.feat_extractor.output_shape] output_shape = tuple(self.fpn(_inputs).shape) self.probability_head = keras.Sequential( [ *conv_sequence(64, "relu", True, kernel_size=3, input_shape=output_shape[1:]), layers.Conv2DTranspose(64, 2, strides=2, use_bias=False, kernel_initializer="he_normal"), layers.BatchNormalization(), layers.Activation("relu"), layers.Conv2DTranspose(num_classes, 2, strides=2, kernel_initializer="he_normal"), ] ) self.threshold_head = keras.Sequential( [ *conv_sequence(64, "relu", True, kernel_size=3, input_shape=output_shape[1:]), layers.Conv2DTranspose(64, 2, strides=2, use_bias=False, kernel_initializer="he_normal"), layers.BatchNormalization(), layers.Activation("relu"), layers.Conv2DTranspose(num_classes, 2, strides=2, kernel_initializer="he_normal"), ] ) self.postprocessor = DBPostProcessor(assume_straight_pages=assume_straight_pages, bin_thresh=bin_thresh) def compute_loss( self, out_map: tf.Tensor, thresh_map: tf.Tensor, target: List[Dict[str, np.ndarray]], ) -> tf.Tensor: """Compute a batch of gts, masks, thresh_gts, thresh_masks from a list of boxes and a list of masks for each image. From there it computes the loss with the model output Args: out_map: output feature map of the model of shape (N, H, W, C) thresh_map: threshold map of shape (N, H, W, C) target: list of dictionary where each dict has a `boxes` and a `flags` entry Returns: A loss tensor """ prob_map = tf.math.sigmoid(out_map) thresh_map = tf.math.sigmoid(thresh_map) seg_target, seg_mask, thresh_target, thresh_mask = self.build_target(target, out_map.shape, True) seg_target = tf.convert_to_tensor(seg_target, dtype=out_map.dtype) seg_mask = tf.convert_to_tensor(seg_mask, dtype=tf.bool) thresh_target = tf.convert_to_tensor(thresh_target, dtype=out_map.dtype) thresh_mask = tf.convert_to_tensor(thresh_mask, dtype=tf.bool) # Compute balanced BCE loss for proba_map bce_scale = 5.0 bce_loss = tf.keras.losses.binary_crossentropy( seg_target[..., None], out_map[..., None], from_logits=True, )[seg_mask] neg_target = 1 - seg_target[seg_mask] positive_count = tf.math.reduce_sum(seg_target[seg_mask]) negative_count = tf.math.reduce_min([tf.math.reduce_sum(neg_target), 3.0 * positive_count]) negative_loss = bce_loss * neg_target negative_loss, _ = tf.nn.top_k(negative_loss, tf.cast(negative_count, tf.int32)) sum_losses = tf.math.reduce_sum(bce_loss * seg_target[seg_mask]) + tf.math.reduce_sum(negative_loss) balanced_bce_loss = sum_losses / (positive_count + negative_count + 1e-6) # Compute dice loss for approxbin_map bin_map = 1 / (1 + tf.exp(-50.0 * (prob_map[seg_mask] - thresh_map[seg_mask]))) bce_min = tf.math.reduce_min(bce_loss) weights = (bce_loss - bce_min) / (tf.math.reduce_max(bce_loss) - bce_min) + 1.0 inter = tf.math.reduce_sum(bin_map * seg_target[seg_mask] * weights) union = tf.math.reduce_sum(bin_map) + tf.math.reduce_sum(seg_target[seg_mask]) + 1e-8 dice_loss = 1 - 2.0 * inter / union # Compute l1 loss for thresh_map l1_scale = 10.0 if tf.reduce_any(thresh_mask): l1_loss = tf.math.reduce_mean(tf.math.abs(thresh_map[thresh_mask] - thresh_target[thresh_mask])) else: l1_loss = tf.constant(0.0) return l1_scale * l1_loss + bce_scale * balanced_bce_loss + dice_loss def call( self, x: tf.Tensor, target: Optional[List[Dict[str, np.ndarray]]] = None, return_model_output: bool = False, return_preds: bool = False, **kwargs: Any, ) -> Dict[str, Any]: feat_maps = self.feat_extractor(x, **kwargs) feat_concat = self.fpn(feat_maps, **kwargs) logits = self.probability_head(feat_concat, **kwargs) out: Dict[str, tf.Tensor] = {} if self.exportable: out["logits"] = logits return out if return_model_output or target is None or return_preds: prob_map = tf.math.sigmoid(logits) if return_model_output: out["out_map"] = prob_map if target is None or return_preds: # Post-process boxes (keep only text predictions) out["preds"] = [dict(zip(self.class_names, preds)) for preds in self.postprocessor(prob_map.numpy())] if target is not None: thresh_map = self.threshold_head(feat_concat, **kwargs) loss = self.compute_loss(logits, thresh_map, target) out["loss"] = loss return out def _db_resnet( arch: str, pretrained: bool, backbone_fn, fpn_layers: List[str], pretrained_backbone: bool = True, input_shape: Optional[Tuple[int, int, int]] = None, **kwargs: Any, ) -> DBNet: pretrained_backbone = pretrained_backbone and not pretrained # Patch the config _cfg = deepcopy(default_cfgs[arch]) _cfg["input_shape"] = input_shape or _cfg["input_shape"] if not kwargs.get("class_names", None): kwargs["class_names"] = _cfg.get("class_names", [CLASS_NAME]) else: kwargs["class_names"] = sorted(kwargs["class_names"]) # Feature extractor feat_extractor = IntermediateLayerGetter( backbone_fn( weights="imagenet" if pretrained_backbone else None, include_top=False, pooling=None, input_shape=_cfg["input_shape"], ), fpn_layers, ) # Build the model model = DBNet(feat_extractor, cfg=_cfg, **kwargs) # Load pretrained parameters if pretrained: load_pretrained_params(model, _cfg["url"]) return model def _db_mobilenet( arch: str, pretrained: bool, backbone_fn, fpn_layers: List[str], pretrained_backbone: bool = True, input_shape: Optional[Tuple[int, int, int]] = None, **kwargs: Any, ) -> DBNet: pretrained_backbone = pretrained_backbone and not pretrained # Patch the config _cfg = deepcopy(default_cfgs[arch]) _cfg["input_shape"] = input_shape or _cfg["input_shape"] # Feature extractor feat_extractor = IntermediateLayerGetter( backbone_fn( input_shape=_cfg["input_shape"], include_top=False, pretrained=pretrained_backbone, ), fpn_layers, ) # Build the model model = DBNet(feat_extractor, cfg=_cfg, **kwargs) # Load pretrained parameters if pretrained: load_pretrained_params(model, _cfg["url"]) return model def db_resnet50(pretrained: bool = False, **kwargs: Any) -> DBNet: """DBNet as described in `"Real-time Scene Text Detection with Differentiable Binarization" <https://arxiv.org/pdf/1911.08947.pdf>`_, using a ResNet-50 backbone. >>> import tensorflow as tf >>> from doctr.models import db_resnet50 >>> model = db_resnet50(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text detection dataset Returns: text detection architecture """ return _db_resnet( "db_resnet50", pretrained, ResNet50, ["conv2_block3_out", "conv3_block4_out", "conv4_block6_out", "conv5_block3_out"], **kwargs, ) def db_mobilenet_v3_large(pretrained: bool = False, **kwargs: Any) -> DBNet: """DBNet as described in `"Real-time Scene Text Detection with Differentiable Binarization" <https://arxiv.org/pdf/1911.08947.pdf>`_, using a mobilenet v3 large backbone. >>> import tensorflow as tf >>> from doctr.models import db_mobilenet_v3_large >>> model = db_mobilenet_v3_large(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text detection dataset Returns: text detection architecture """ return _db_mobilenet( "db_mobilenet_v3_large", pretrained, mobilenet_v3_large, ["inverted_2", "inverted_5", "inverted_11", "final_block"], **kwargs, )
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from typing import Any, Callable, Dict, List, Optional import numpy as np import torch from torch import nn from torch.nn import functional as F from torchvision.models import resnet34, resnet50 from torchvision.models._utils import IntermediateLayerGetter from torchvision.ops.deform_conv import DeformConv2d from doctr.file_utils import CLASS_NAME from ...classification import mobilenet_v3_large from ...utils import load_pretrained_params from .base import DBPostProcessor, _DBNet __all__ = ["DBNet", "db_resnet50", "db_resnet34", "db_mobilenet_v3_large", "db_resnet50_rotation"] default_cfgs: Dict[str, Dict[str, Any]] = { "db_resnet50": { "input_shape": (3, 1024, 1024), "mean": (0.798, 0.785, 0.772), "std": (0.264, 0.2749, 0.287), "url": "https://doctr-static.mindee.com/models?id=v0.3.1/db_resnet50-ac60cadc.pt&src=0", }, "db_resnet34": { "input_shape": (3, 1024, 1024), "mean": (0.5, 0.5, 0.5), "std": (1.0, 1.0, 1.0), "url": None, }, "db_mobilenet_v3_large": { "input_shape": (3, 1024, 1024), "mean": (0.798, 0.785, 0.772), "std": (0.264, 0.2749, 0.287), "url": "https://doctr-static.mindee.com/models?id=v0.3.1/db_mobilenet_v3_large-fd62154b.pt&src=0", }, "db_resnet50_rotation": { "input_shape": (3, 1024, 1024), "mean": (0.798, 0.785, 0.772), "std": (0.264, 0.2749, 0.287), "url": "https://doctr-static.mindee.com/models?id=v0.4.1/db_resnet50-1138863a.pt&src=0", }, } class FeaturePyramidNetwork(nn.Module): def __init__( self, in_channels: List[int], out_channels: int, deform_conv: bool = False, ) -> None: super().__init__() out_chans = out_channels // len(in_channels) conv_layer = DeformConv2d if deform_conv else nn.Conv2d self.in_branches = nn.ModuleList( [ nn.Sequential( conv_layer(chans, out_channels, 1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), ) for idx, chans in enumerate(in_channels) ] ) self.upsample = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True) self.out_branches = nn.ModuleList( [ nn.Sequential( conv_layer(out_channels, out_chans, 3, padding=1, bias=False), nn.BatchNorm2d(out_chans), nn.ReLU(inplace=True), nn.Upsample(scale_factor=2**idx, mode="bilinear", align_corners=True), ) for idx, chans in enumerate(in_channels) ] ) def forward(self, x: List[torch.Tensor]) -> torch.Tensor: if len(x) != len(self.out_branches): raise AssertionError # Conv1x1 to get the same number of channels _x: List[torch.Tensor] = [branch(t) for branch, t in zip(self.in_branches, x)] out: List[torch.Tensor] = [_x[-1]] for t in _x[:-1][::-1]: out.append(self.upsample(out[-1]) + t) # Conv and final upsampling out = [branch(t) for branch, t in zip(self.out_branches, out[::-1])] return torch.cat(out, dim=1) class DBNet(_DBNet, nn.Module): """DBNet as described in `"Real-time Scene Text Detection with Differentiable Binarization" <https://arxiv.org/pdf/1911.08947.pdf>`_. Args: feature extractor: the backbone serving as feature extractor head_chans: the number of channels in the head deform_conv: whether to use deformable convolution assume_straight_pages: if True, fit straight bounding boxes only exportable: onnx exportable returns only logits cfg: the configuration dict of the model class_names: list of class names """ def __init__( self, feat_extractor: IntermediateLayerGetter, head_chans: int = 256, deform_conv: bool = False, bin_thresh: float = 0.3, assume_straight_pages: bool = True, exportable: bool = False, cfg: Optional[Dict[str, Any]] = None, class_names: List[str] = [CLASS_NAME], ) -> None: super().__init__() self.class_names = class_names num_classes: int = len(self.class_names) self.cfg = cfg conv_layer = DeformConv2d if deform_conv else nn.Conv2d self.exportable = exportable self.assume_straight_pages = assume_straight_pages self.feat_extractor = feat_extractor # Identify the number of channels for the head initialization _is_training = self.feat_extractor.training self.feat_extractor = self.feat_extractor.eval() with torch.no_grad(): out = self.feat_extractor(torch.zeros((1, 3, 224, 224))) fpn_channels = [v.shape[1] for _, v in out.items()] if _is_training: self.feat_extractor = self.feat_extractor.train() self.fpn = FeaturePyramidNetwork(fpn_channels, head_chans, deform_conv) # Conv1 map to channels self.prob_head = nn.Sequential( conv_layer(head_chans, head_chans // 4, 3, padding=1, bias=False), nn.BatchNorm2d(head_chans // 4), nn.ReLU(inplace=True), nn.ConvTranspose2d(head_chans // 4, head_chans // 4, 2, stride=2, bias=False), nn.BatchNorm2d(head_chans // 4), nn.ReLU(inplace=True), nn.ConvTranspose2d(head_chans // 4, num_classes, 2, stride=2), ) self.thresh_head = nn.Sequential( conv_layer(head_chans, head_chans // 4, 3, padding=1, bias=False), nn.BatchNorm2d(head_chans // 4), nn.ReLU(inplace=True), nn.ConvTranspose2d(head_chans // 4, head_chans // 4, 2, stride=2, bias=False), nn.BatchNorm2d(head_chans // 4), nn.ReLU(inplace=True), nn.ConvTranspose2d(head_chans // 4, num_classes, 2, stride=2), ) self.postprocessor = DBPostProcessor(assume_straight_pages=assume_straight_pages, bin_thresh=bin_thresh) for n, m in self.named_modules(): # Don't override the initialization of the backbone if n.startswith("feat_extractor."): continue if isinstance(m, (nn.Conv2d, DeformConv2d)): nn.init.kaiming_normal_(m.weight.data, mode="fan_out", nonlinearity="relu") if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1.0) m.bias.data.zero_() def forward( self, x: torch.Tensor, target: Optional[List[np.ndarray]] = None, return_model_output: bool = False, return_preds: bool = False, ) -> Dict[str, torch.Tensor]: # Extract feature maps at different stages feats = self.feat_extractor(x) feats = [feats[str(idx)] for idx in range(len(feats))] # Pass through the FPN feat_concat = self.fpn(feats) logits = self.prob_head(feat_concat) out: Dict[str, Any] = {} if self.exportable: out["logits"] = logits return out if return_model_output or target is None or return_preds: prob_map = torch.sigmoid(logits) if return_model_output: out["out_map"] = prob_map if target is None or return_preds: # Post-process boxes (keep only text predictions) out["preds"] = [ dict(zip(self.class_names, preds)) for preds in self.postprocessor(prob_map.detach().cpu().permute((0, 2, 3, 1)).numpy()) ] if target is not None: thresh_map = self.thresh_head(feat_concat) loss = self.compute_loss(logits, thresh_map, target) out["loss"] = loss return out def compute_loss(self, out_map: torch.Tensor, thresh_map: torch.Tensor, target: List[np.ndarray]) -> torch.Tensor: """Compute a batch of gts, masks, thresh_gts, thresh_masks from a list of boxes and a list of masks for each image. From there it computes the loss with the model output Args: out_map: output feature map of the model of shape (N, C, H, W) thresh_map: threshold map of shape (N, C, H, W) target: list of dictionary where each dict has a `boxes` and a `flags` entry Returns: A loss tensor """ prob_map = torch.sigmoid(out_map) thresh_map = torch.sigmoid(thresh_map) targets = self.build_target(target, prob_map.shape, False) # type: ignore[arg-type] seg_target, seg_mask = torch.from_numpy(targets[0]), torch.from_numpy(targets[1]) seg_target, seg_mask = seg_target.to(out_map.device), seg_mask.to(out_map.device) thresh_target, thresh_mask = torch.from_numpy(targets[2]), torch.from_numpy(targets[3]) thresh_target, thresh_mask = thresh_target.to(out_map.device), thresh_mask.to(out_map.device) # Compute balanced BCE loss for proba_map bce_scale = 5.0 balanced_bce_loss = torch.zeros(1, device=out_map.device) dice_loss = torch.zeros(1, device=out_map.device) l1_loss = torch.zeros(1, device=out_map.device) if torch.any(seg_mask): bce_loss = F.binary_cross_entropy_with_logits( out_map, seg_target, reduction="none", )[seg_mask] neg_target = 1 - seg_target[seg_mask] positive_count = seg_target[seg_mask].sum() negative_count = torch.minimum(neg_target.sum(), 3.0 * positive_count) negative_loss = bce_loss * neg_target negative_loss = negative_loss.sort().values[-int(negative_count.item()) :] sum_losses = torch.sum(bce_loss * seg_target[seg_mask]) + torch.sum(negative_loss) balanced_bce_loss = sum_losses / (positive_count + negative_count + 1e-6) # Compute dice loss for approxbin_map bin_map = 1 / (1 + torch.exp(-50.0 * (prob_map[seg_mask] - thresh_map[seg_mask]))) bce_min = bce_loss.min() weights = (bce_loss - bce_min) / (bce_loss.max() - bce_min) + 1.0 inter = torch.sum(bin_map * seg_target[seg_mask] * weights) union = torch.sum(bin_map) + torch.sum(seg_target[seg_mask]) + 1e-8 dice_loss = 1 - 2.0 * inter / union # Compute l1 loss for thresh_map l1_scale = 10.0 if torch.any(thresh_mask): l1_loss = torch.mean(torch.abs(thresh_map[thresh_mask] - thresh_target[thresh_mask])) return l1_scale * l1_loss + bce_scale * balanced_bce_loss + dice_loss def _dbnet( arch: str, pretrained: bool, backbone_fn: Callable[[bool], nn.Module], fpn_layers: List[str], backbone_submodule: Optional[str] = None, pretrained_backbone: bool = True, **kwargs: Any, ) -> DBNet: # Starting with Imagenet pretrained params introduces some NaNs in layer3 & layer4 of resnet50 pretrained_backbone = pretrained_backbone and not arch.split("_")[1].startswith("resnet") pretrained_backbone = pretrained_backbone and not pretrained # Feature extractor backbone = backbone_fn(pretrained_backbone) if isinstance(backbone_submodule, str): backbone = getattr(backbone, backbone_submodule) feat_extractor = IntermediateLayerGetter( backbone, {layer_name: str(idx) for idx, layer_name in enumerate(fpn_layers)}, ) if not kwargs.get("class_names", None): kwargs["class_names"] = default_cfgs[arch].get("class_names", [CLASS_NAME]) else: kwargs["class_names"] = sorted(kwargs["class_names"]) # Build the model model = DBNet(feat_extractor, cfg=default_cfgs[arch], **kwargs) # Load pretrained parameters if pretrained: load_pretrained_params(model, default_cfgs[arch]["url"]) return model def db_resnet34(pretrained: bool = False, **kwargs: Any) -> DBNet: """DBNet as described in `"Real-time Scene Text Detection with Differentiable Binarization" <https://arxiv.org/pdf/1911.08947.pdf>`_, using a ResNet-34 backbone. >>> import torch >>> from doctr.models import db_resnet34 >>> model = db_resnet34(pretrained=True) >>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text detection dataset Returns: text detection architecture """ return _dbnet( "db_resnet34", pretrained, resnet34, ["layer1", "layer2", "layer3", "layer4"], None, **kwargs, ) def db_resnet50(pretrained: bool = False, **kwargs: Any) -> DBNet: """DBNet as described in `"Real-time Scene Text Detection with Differentiable Binarization" <https://arxiv.org/pdf/1911.08947.pdf>`_, using a ResNet-50 backbone. >>> import torch >>> from doctr.models import db_resnet50 >>> model = db_resnet50(pretrained=True) >>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text detection dataset Returns: text detection architecture """ return _dbnet( "db_resnet50", pretrained, resnet50, ["layer1", "layer2", "layer3", "layer4"], None, **kwargs, ) def db_mobilenet_v3_large(pretrained: bool = False, **kwargs: Any) -> DBNet: """DBNet as described in `"Real-time Scene Text Detection with Differentiable Binarization" <https://arxiv.org/pdf/1911.08947.pdf>`_, using a MobileNet V3 Large backbone. >>> import torch >>> from doctr.models import db_mobilenet_v3_large >>> model = db_mobilenet_v3_large(pretrained=True) >>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text detection dataset Returns: text detection architecture """ return _dbnet( "db_mobilenet_v3_large", pretrained, mobilenet_v3_large, ["3", "6", "12", "16"], "features", **kwargs, ) def db_resnet50_rotation(pretrained: bool = False, **kwargs: Any) -> DBNet: """DBNet as described in `"Real-time Scene Text Detection with Differentiable Binarization" <https://arxiv.org/pdf/1911.08947.pdf>`_, using a ResNet-50 backbone. This model is trained with rotated documents >>> import torch >>> from doctr.models import db_resnet50_rotation >>> model = db_resnet50_rotation(pretrained=True) >>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text detection dataset Returns: text detection architecture """ return _dbnet( "db_resnet50_rotation", pretrained, resnet50, ["layer1", "layer2", "layer3", "layer4"], None, **kwargs, )
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. # Credits: post-processing adapted from https://github.com/xuannianz/DifferentiableBinarization from typing import Dict, List, Tuple, Union import cv2 import numpy as np import pyclipper from shapely.geometry import Polygon from ..core import DetectionPostProcessor __all__ = ["DBPostProcessor"] class DBPostProcessor(DetectionPostProcessor): """Implements a post processor for DBNet adapted from the implementation of `xuannianz <https://github.com/xuannianz/DifferentiableBinarization>`_. Args: unclip ratio: ratio used to unshrink polygons min_size_box: minimal length (pix) to keep a box max_candidates: maximum boxes to consider in a single page box_thresh: minimal objectness score to consider a box bin_thresh: threshold used to binzarized p_map at inference time """ def __init__( self, box_thresh: float = 0.1, bin_thresh: float = 0.3, assume_straight_pages: bool = True, ) -> None: super().__init__(box_thresh, bin_thresh, assume_straight_pages) self.unclip_ratio = 1.5 if assume_straight_pages else 2.2 def polygon_to_box( self, points: np.ndarray, ) -> np.ndarray: """Expand a polygon (points) by a factor unclip_ratio, and returns a polygon Args: points: The first parameter. Returns: a box in absolute coordinates (xmin, ymin, xmax, ymax) or (4, 2) array (quadrangle) """ if not self.assume_straight_pages: # Compute the rectangle polygon enclosing the raw polygon rect = cv2.minAreaRect(points) points = cv2.boxPoints(rect) # Add 1 pixel to correct cv2 approx area = (rect[1][0] + 1) * (1 + rect[1][1]) length = 2 * (rect[1][0] + rect[1][1]) + 2 else: poly = Polygon(points) area = poly.area length = poly.length distance = area * self.unclip_ratio / length # compute distance to expand polygon offset = pyclipper.PyclipperOffset() offset.AddPath(points, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) _points = offset.Execute(distance) # Take biggest stack of points idx = 0 if len(_points) > 1: max_size = 0 for _idx, p in enumerate(_points): if len(p) > max_size: idx = _idx max_size = len(p) # We ensure that _points can be correctly casted to a ndarray _points = [_points[idx]] expanded_points: np.ndarray = np.asarray(_points) # expand polygon if len(expanded_points) < 1: return None # type: ignore[return-value] return ( cv2.boundingRect(expanded_points) if self.assume_straight_pages else np.roll(cv2.boxPoints(cv2.minAreaRect(expanded_points)), -1, axis=0) ) def bitmap_to_boxes( self, pred: np.ndarray, bitmap: np.ndarray, ) -> np.ndarray: """Compute boxes from a bitmap/pred_map Args: pred: Pred map from differentiable binarization output bitmap: Bitmap map computed from pred (binarized) angle_tol: Comparison tolerance of the angle with the median angle across the page ratio_tol: Under this limit aspect ratio, we cannot resolve the direction of the crop Returns: np tensor boxes for the bitmap, each box is a 5-element list containing x, y, w, h, score for the box """ height, width = bitmap.shape[:2] min_size_box = 1 + int(height / 512) boxes: List[Union[np.ndarray, List[float]]] = [] # get contours from connected components on the bitmap contours, _ = cv2.findContours(bitmap.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: # Check whether smallest enclosing bounding box is not too small if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < min_size_box): continue # Compute objectness if self.assume_straight_pages: x, y, w, h = cv2.boundingRect(contour) points: np.ndarray = np.array([[x, y], [x, y + h], [x + w, y + h], [x + w, y]]) score = self.box_score(pred, points, assume_straight_pages=True) else: score = self.box_score(pred, contour, assume_straight_pages=False) if score < self.box_thresh: # remove polygons with a weak objectness continue if self.assume_straight_pages: _box = self.polygon_to_box(points) else: _box = self.polygon_to_box(np.squeeze(contour)) # Remove too small boxes if self.assume_straight_pages: if _box is None or _box[2] < min_size_box or _box[3] < min_size_box: continue elif np.linalg.norm(_box[2, :] - _box[0, :], axis=-1) < min_size_box: continue if self.assume_straight_pages: x, y, w, h = _box # compute relative polygon to get rid of img shape xmin, ymin, xmax, ymax = x / width, y / height, (x + w) / width, (y + h) / height boxes.append([xmin, ymin, xmax, ymax, score]) else: # compute relative box to get rid of img shape, in that case _box is a 4pt polygon if not isinstance(_box, np.ndarray) and _box.shape == (4, 2): raise AssertionError("When assume straight pages is false a box is a (4, 2) array (polygon)") _box[:, 0] /= width _box[:, 1] /= height boxes.append(_box) if not self.assume_straight_pages: return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 4, 2), dtype=pred.dtype) else: return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5), dtype=pred.dtype) class _DBNet: """DBNet as described in `"Real-time Scene Text Detection with Differentiable Binarization" <https://arxiv.org/pdf/1911.08947.pdf>`_. Args: feature extractor: the backbone serving as feature extractor fpn_channels: number of channels each extracted feature maps is mapped to """ shrink_ratio = 0.4 thresh_min = 0.3 thresh_max = 0.7 min_size_box = 3 assume_straight_pages: bool = True @staticmethod def compute_distance( xs: np.ndarray, ys: np.ndarray, a: np.ndarray, b: np.ndarray, eps: float = 1e-7, ) -> float: """Compute the distance for each point of the map (xs, ys) to the (a, b) segment Args: xs : map of x coordinates (height, width) ys : map of y coordinates (height, width) a: first point defining the [ab] segment b: second point defining the [ab] segment Returns: The computed distance """ square_dist_1 = np.square(xs - a[0]) + np.square(ys - a[1]) square_dist_2 = np.square(xs - b[0]) + np.square(ys - b[1]) square_dist = np.square(a[0] - b[0]) + np.square(a[1] - b[1]) cosin = (square_dist - square_dist_1 - square_dist_2) / (2 * np.sqrt(square_dist_1 * square_dist_2) + eps) square_sin = 1 - np.square(cosin) square_sin = np.nan_to_num(square_sin) result = np.sqrt(square_dist_1 * square_dist_2 * square_sin / square_dist) result[cosin < 0] = np.sqrt(np.fmin(square_dist_1, square_dist_2))[cosin < 0] return result def draw_thresh_map( self, polygon: np.ndarray, canvas: np.ndarray, mask: np.ndarray, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """Draw a polygon treshold map on a canvas, as described in the DB paper Args: polygon : array of coord., to draw the boundary of the polygon canvas : threshold map to fill with polygons mask : mask for training on threshold polygons """ if polygon.ndim != 2 or polygon.shape[1] != 2: raise AttributeError("polygon should be a 2 dimensional array of coords") # Augment polygon by shrink_ratio polygon_shape = Polygon(polygon) distance = polygon_shape.area * (1 - np.power(self.shrink_ratio, 2)) / polygon_shape.length subject = [tuple(coor) for coor in polygon] # Get coord as list of tuples padding = pyclipper.PyclipperOffset() padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) padded_polygon: np.ndarray = np.array(padding.Execute(distance)[0]) # Fill the mask with 1 on the new padded polygon cv2.fillPoly(mask, [padded_polygon.astype(np.int32)], 1.0) # Get min/max to recover polygon after distance computation xmin = padded_polygon[:, 0].min() xmax = padded_polygon[:, 0].max() ymin = padded_polygon[:, 1].min() ymax = padded_polygon[:, 1].max() width = xmax - xmin + 1 height = ymax - ymin + 1 # Get absolute polygon for distance computation polygon[:, 0] = polygon[:, 0] - xmin polygon[:, 1] = polygon[:, 1] - ymin # Get absolute padded polygon xs: np.ndarray = np.broadcast_to(np.linspace(0, width - 1, num=width).reshape(1, width), (height, width)) ys: np.ndarray = np.broadcast_to(np.linspace(0, height - 1, num=height).reshape(height, 1), (height, width)) # Compute distance map to fill the padded polygon distance_map = np.zeros((polygon.shape[0], height, width), dtype=polygon.dtype) for i in range(polygon.shape[0]): j = (i + 1) % polygon.shape[0] absolute_distance = self.compute_distance(xs, ys, polygon[i], polygon[j]) distance_map[i] = np.clip(absolute_distance / distance, 0, 1) distance_map = np.min(distance_map, axis=0) # Clip the padded polygon inside the canvas xmin_valid = min(max(0, xmin), canvas.shape[1] - 1) xmax_valid = min(max(0, xmax), canvas.shape[1] - 1) ymin_valid = min(max(0, ymin), canvas.shape[0] - 1) ymax_valid = min(max(0, ymax), canvas.shape[0] - 1) # Fill the canvas with the distances computed inside the valid padded polygon canvas[ymin_valid : ymax_valid + 1, xmin_valid : xmax_valid + 1] = np.fmax( 1 - distance_map[ymin_valid - ymin : ymax_valid - ymin + 1, xmin_valid - xmin : xmax_valid - xmin + 1], canvas[ymin_valid : ymax_valid + 1, xmin_valid : xmax_valid + 1], ) return polygon, canvas, mask def build_target( self, target: List[Dict[str, np.ndarray]], output_shape: Tuple[int, int, int, int], channels_last: bool = True, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: if any(t.dtype != np.float32 for tgt in target for t in tgt.values()): raise AssertionError("the expected dtype of target 'boxes' entry is 'np.float32'.") if any(np.any((t[:, :4] > 1) | (t[:, :4] < 0)) for tgt in target for t in tgt.values()): raise ValueError("the 'boxes' entry of the target is expected to take values between 0 & 1.") input_dtype = next(iter(target[0].values())).dtype if len(target) > 0 else np.float32 if channels_last: h, w = output_shape[1:-1] target_shape = (output_shape[0], output_shape[-1], h, w) # (Batch_size, num_classes, h, w) else: h, w = output_shape[-2:] target_shape = output_shape # (Batch_size, num_classes, h, w) seg_target: np.ndarray = np.zeros(target_shape, dtype=np.uint8) seg_mask: np.ndarray = np.ones(target_shape, dtype=bool) thresh_target: np.ndarray = np.zeros(target_shape, dtype=np.float32) thresh_mask: np.ndarray = np.ones(target_shape, dtype=np.uint8) for idx, tgt in enumerate(target): for class_idx, _tgt in enumerate(tgt.values()): # Draw each polygon on gt if _tgt.shape[0] == 0: # Empty image, full masked # seg_mask[idx, :, :, class_idx] = False seg_mask[idx, class_idx] = False # Absolute bounding boxes abs_boxes = _tgt.copy() if abs_boxes.ndim == 3: abs_boxes[:, :, 0] *= w abs_boxes[:, :, 1] *= h polys = abs_boxes boxes_size = np.linalg.norm(abs_boxes[:, 2, :] - abs_boxes[:, 0, :], axis=-1) abs_boxes = np.concatenate((abs_boxes.min(1), abs_boxes.max(1)), -1).round().astype(np.int32) else: abs_boxes[:, [0, 2]] *= w abs_boxes[:, [1, 3]] *= h abs_boxes = abs_boxes.round().astype(np.int32) polys = np.stack( [ abs_boxes[:, [0, 1]], abs_boxes[:, [0, 3]], abs_boxes[:, [2, 3]], abs_boxes[:, [2, 1]], ], axis=1, ) boxes_size = np.minimum(abs_boxes[:, 2] - abs_boxes[:, 0], abs_boxes[:, 3] - abs_boxes[:, 1]) for box, box_size, poly in zip(abs_boxes, boxes_size, polys): # Mask boxes that are too small if box_size < self.min_size_box: # seg_mask[idx, box[1] : box[3] + 1, box[0] : box[2] + 1, class_idx] = False seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False continue # Negative shrink for gt, as described in paper polygon = Polygon(poly) distance = polygon.area * (1 - np.power(self.shrink_ratio, 2)) / polygon.length subject = [tuple(coor) for coor in poly] padding = pyclipper.PyclipperOffset() padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) shrinked = padding.Execute(-distance) # Draw polygon on gt if it is valid if len(shrinked) == 0: # seg_mask[idx, box[1] : box[3] + 1, box[0] : box[2] + 1, class_idx] = False seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False continue shrinked = np.array(shrinked[0]).reshape(-1, 2) if shrinked.shape[0] <= 2 or not Polygon(shrinked).is_valid: # seg_mask[idx, box[1] : box[3] + 1, box[0] : box[2] + 1, class_idx] = False seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False continue cv2.fillPoly(seg_target[idx, class_idx], [shrinked.astype(np.int32)], 1) # Draw on both thresh map and thresh mask poly, thresh_target[idx, class_idx], thresh_mask[idx, class_idx] = self.draw_thresh_map( poly, thresh_target[idx, class_idx], thresh_mask[idx, class_idx] ) if channels_last: seg_target = seg_target.transpose((0, 2, 3, 1)) seg_mask = seg_mask.transpose((0, 2, 3, 1)) thresh_target = thresh_target.transpose((0, 2, 3, 1)) thresh_mask = thresh_mask.transpose((0, 2, 3, 1)) thresh_target = thresh_target.astype(input_dtype) * (self.thresh_max - self.thresh_min) + self.thresh_min seg_target = seg_target.astype(input_dtype) seg_mask = seg_mask.astype(bool) thresh_target = thresh_target.astype(input_dtype) thresh_mask = thresh_mask.astype(bool) return seg_target, seg_mask, thresh_target, thresh_mask
from doctr.file_utils import is_tf_available, is_torch_available if is_tf_available(): from .tensorflow import * elif is_torch_available(): from .pytorch import * # type: ignore[assignment]
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. # Credits: post-processing adapted from https://github.com/xuannianz/DifferentiableBinarization from copy import deepcopy from typing import Any, Dict, List, Optional, Tuple import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import Model, Sequential, layers from doctr.file_utils import CLASS_NAME from doctr.models.classification import resnet18, resnet34, resnet50 from doctr.models.utils import IntermediateLayerGetter, conv_sequence, load_pretrained_params from doctr.utils.repr import NestedObject from .base import LinkNetPostProcessor, _LinkNet __all__ = ["LinkNet", "linknet_resnet18", "linknet_resnet34", "linknet_resnet50", "linknet_resnet18_rotation"] default_cfgs: Dict[str, Dict[str, Any]] = { "linknet_resnet18": { "mean": (0.798, 0.785, 0.772), "std": (0.264, 0.2749, 0.287), "input_shape": (1024, 1024, 3), "url": None, }, "linknet_resnet18_rotation": { "mean": (0.798, 0.785, 0.772), "std": (0.264, 0.2749, 0.287), "input_shape": (1024, 1024, 3), "url": "https://doctr-static.mindee.com/models?id=v0.5.0/linknet_resnet18-a48e6ed3.zip&src=0", }, "linknet_resnet34": { "mean": (0.798, 0.785, 0.772), "std": (0.264, 0.2749, 0.287), "input_shape": (1024, 1024, 3), "url": None, }, "linknet_resnet50": { "mean": (0.798, 0.785, 0.772), "std": (0.264, 0.2749, 0.287), "input_shape": (1024, 1024, 3), "url": None, }, } def decoder_block(in_chan: int, out_chan: int, stride: int, **kwargs: Any) -> Sequential: """Creates a LinkNet decoder block""" return Sequential( [ *conv_sequence(in_chan // 4, "relu", True, kernel_size=1, **kwargs), layers.Conv2DTranspose( filters=in_chan // 4, kernel_size=3, strides=stride, padding="same", use_bias=False, kernel_initializer="he_normal", ), layers.BatchNormalization(), layers.Activation("relu"), *conv_sequence(out_chan, "relu", True, kernel_size=1), ] ) class LinkNetFPN(Model, NestedObject): """LinkNet Decoder module""" def __init__( self, out_chans: int, in_shapes: List[Tuple[int, ...]], ) -> None: super().__init__() self.out_chans = out_chans strides = [2] * (len(in_shapes) - 1) + [1] i_chans = [s[-1] for s in in_shapes[::-1]] o_chans = i_chans[1:] + [out_chans] self.decoders = [ decoder_block(in_chan, out_chan, s, input_shape=in_shape) for in_chan, out_chan, s, in_shape in zip(i_chans, o_chans, strides, in_shapes[::-1]) ] def call(self, x: List[tf.Tensor]) -> tf.Tensor: out = 0 for decoder, fmap in zip(self.decoders, x[::-1]): out = decoder(out + fmap) return out def extra_repr(self) -> str: return f"out_chans={self.out_chans}" class LinkNet(_LinkNet, keras.Model): """LinkNet as described in `"LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation" <https://arxiv.org/pdf/1707.03718.pdf>`_. Args: feature extractor: the backbone serving as feature extractor fpn_channels: number of channels each extracted feature maps is mapped to assume_straight_pages: if True, fit straight bounding boxes only exportable: onnx exportable returns only logits cfg: the configuration dict of the model class_names: list of class names """ _children_names: List[str] = ["feat_extractor", "fpn", "classifier", "postprocessor"] def __init__( self, feat_extractor: IntermediateLayerGetter, fpn_channels: int = 64, bin_thresh: float = 0.1, assume_straight_pages: bool = True, exportable: bool = False, cfg: Optional[Dict[str, Any]] = None, class_names: List[str] = [CLASS_NAME], ) -> None: super().__init__(cfg=cfg) self.class_names = class_names num_classes: int = len(self.class_names) self.exportable = exportable self.assume_straight_pages = assume_straight_pages self.feat_extractor = feat_extractor self.fpn = LinkNetFPN(fpn_channels, [_shape[1:] for _shape in self.feat_extractor.output_shape]) self.fpn.build(self.feat_extractor.output_shape) self.classifier = Sequential( [ layers.Conv2DTranspose( filters=32, kernel_size=3, strides=2, padding="same", use_bias=False, kernel_initializer="he_normal", input_shape=self.fpn.decoders[-1].output_shape[1:], ), layers.BatchNormalization(), layers.Activation("relu"), *conv_sequence(32, "relu", True, kernel_size=3, strides=1), layers.Conv2DTranspose( filters=num_classes, kernel_size=2, strides=2, padding="same", use_bias=True, kernel_initializer="he_normal", ), ] ) self.postprocessor = LinkNetPostProcessor(assume_straight_pages=assume_straight_pages, bin_thresh=bin_thresh) def compute_loss( self, out_map: tf.Tensor, target: List[Dict[str, np.ndarray]], gamma: float = 2.0, alpha: float = 0.5, eps: float = 1e-8, ) -> tf.Tensor: """Compute linknet loss, BCE with boosted box edges or focal loss. Focal loss implementation based on <https://github.com/tensorflow/addons/>`_. Args: out_map: output feature map of the model of shape N x H x W x 1 target: list of dictionary where each dict has a `boxes` and a `flags` entry gamma: modulating factor in the focal loss formula alpha: balancing factor in the focal loss formula eps: epsilon factor in dice loss Returns: A loss tensor """ seg_target, seg_mask = self.build_target(target, out_map.shape[1:], True) seg_target = tf.convert_to_tensor(seg_target, dtype=out_map.dtype) seg_mask = tf.convert_to_tensor(seg_mask, dtype=tf.bool) seg_mask = tf.cast(seg_mask, tf.float32) bce_loss = tf.keras.losses.binary_crossentropy(seg_target[..., None], out_map[..., None], from_logits=True) proba_map = tf.sigmoid(out_map) # Focal loss if gamma < 0: raise ValueError("Value of gamma should be greater than or equal to zero.") # Convert logits to prob, compute gamma factor p_t = (seg_target * proba_map) + ((1 - seg_target) * (1 - proba_map)) alpha_t = seg_target * alpha + (1 - seg_target) * (1 - alpha) # Unreduced loss focal_loss = alpha_t * (1 - p_t) ** gamma * bce_loss # Class reduced focal_loss = tf.reduce_sum(seg_mask * focal_loss, (0, 1, 2, 3)) / tf.reduce_sum(seg_mask, (0, 1, 2, 3)) # Dice loss inter = tf.math.reduce_sum(seg_mask * proba_map * seg_target, (0, 1, 2, 3)) cardinality = tf.math.reduce_sum((proba_map + seg_target), (0, 1, 2, 3)) dice_loss = 1 - 2 * (inter + eps) / (cardinality + eps) return focal_loss + dice_loss def call( self, x: tf.Tensor, target: Optional[List[Dict[str, np.ndarray]]] = None, return_model_output: bool = False, return_preds: bool = False, **kwargs: Any, ) -> Dict[str, Any]: feat_maps = self.feat_extractor(x, **kwargs) logits = self.fpn(feat_maps, **kwargs) logits = self.classifier(logits, **kwargs) out: Dict[str, tf.Tensor] = {} if self.exportable: out["logits"] = logits return out if return_model_output or target is None or return_preds: prob_map = tf.math.sigmoid(logits) if return_model_output: out["out_map"] = prob_map if target is None or return_preds: # Post-process boxes out["preds"] = [dict(zip(self.class_names, preds)) for preds in self.postprocessor(prob_map.numpy())] if target is not None: loss = self.compute_loss(logits, target) out["loss"] = loss return out def _linknet( arch: str, pretrained: bool, backbone_fn, fpn_layers: List[str], pretrained_backbone: bool = True, input_shape: Optional[Tuple[int, int, int]] = None, **kwargs: Any, ) -> LinkNet: pretrained_backbone = pretrained_backbone and not pretrained # Patch the config _cfg = deepcopy(default_cfgs[arch]) _cfg["input_shape"] = input_shape or default_cfgs[arch]["input_shape"] if not kwargs.get("class_names", None): kwargs["class_names"] = _cfg.get("class_names", [CLASS_NAME]) else: kwargs["class_names"] = sorted(kwargs["class_names"]) # Feature extractor feat_extractor = IntermediateLayerGetter( backbone_fn( pretrained=pretrained_backbone, include_top=False, input_shape=_cfg["input_shape"], ), fpn_layers, ) # Build the model model = LinkNet(feat_extractor, cfg=_cfg, **kwargs) # Load pretrained parameters if pretrained: load_pretrained_params(model, _cfg["url"]) return model def linknet_resnet18(pretrained: bool = False, **kwargs: Any) -> LinkNet: """LinkNet as described in `"LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation" <https://arxiv.org/pdf/1707.03718.pdf>`_. >>> import tensorflow as tf >>> from doctr.models import linknet_resnet18 >>> model = linknet_resnet18(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text detection dataset Returns: text detection architecture """ return _linknet( "linknet_resnet18", pretrained, resnet18, ["resnet_block_1", "resnet_block_3", "resnet_block_5", "resnet_block_7"], **kwargs, ) def linknet_resnet18_rotation(pretrained: bool = False, **kwargs: Any) -> LinkNet: """LinkNet as described in `"LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation" <https://arxiv.org/pdf/1707.03718.pdf>`_. >>> import tensorflow as tf >>> from doctr.models import linknet_resnet18_rotation >>> model = linknet_resnet18_rotation(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text detection dataset Returns: text detection architecture """ return _linknet( "linknet_resnet18_rotation", pretrained, resnet18, ["resnet_block_1", "resnet_block_3", "resnet_block_5", "resnet_block_7"], **kwargs, ) def linknet_resnet34(pretrained: bool = False, **kwargs: Any) -> LinkNet: """LinkNet as described in `"LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation" <https://arxiv.org/pdf/1707.03718.pdf>`_. >>> import tensorflow as tf >>> from doctr.models import linknet_resnet34 >>> model = linknet_resnet34(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text detection dataset Returns: text detection architecture """ return _linknet( "linknet_resnet34", pretrained, resnet34, ["resnet_block_2", "resnet_block_6", "resnet_block_12", "resnet_block_15"], **kwargs, ) def linknet_resnet50(pretrained: bool = False, **kwargs: Any) -> LinkNet: """LinkNet as described in `"LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation" <https://arxiv.org/pdf/1707.03718.pdf>`_. >>> import tensorflow as tf >>> from doctr.models import linknet_resnet50 >>> model = linknet_resnet50(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text detection dataset Returns: text detection architecture """ return _linknet( "linknet_resnet50", pretrained, resnet50, ["conv2_block3_out", "conv3_block4_out", "conv4_block6_out", "conv5_block3_out"], **kwargs, )
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from typing import Any, Callable, Dict, List, Optional, Tuple import numpy as np import torch from torch import nn from torch.nn import functional as F from torchvision.models._utils import IntermediateLayerGetter from doctr.file_utils import CLASS_NAME from doctr.models.classification import resnet18, resnet34, resnet50 from ...utils import load_pretrained_params from .base import LinkNetPostProcessor, _LinkNet __all__ = ["LinkNet", "linknet_resnet18", "linknet_resnet34", "linknet_resnet50"] default_cfgs: Dict[str, Dict[str, Any]] = { "linknet_resnet18": { "input_shape": (3, 1024, 1024), "mean": (0.5, 0.5, 0.5), "std": (1.0, 1.0, 1.0), "url": None, }, "linknet_resnet34": { "input_shape": (3, 1024, 1024), "mean": (0.5, 0.5, 0.5), "std": (1.0, 1.0, 1.0), "url": None, }, "linknet_resnet50": { "input_shape": (3, 1024, 1024), "mean": (0.5, 0.5, 0.5), "std": (1.0, 1.0, 1.0), "url": None, }, } class LinkNetFPN(nn.Module): def __init__(self, layer_shapes: List[Tuple[int, int, int]]) -> None: super().__init__() strides = [ 1 if (in_shape[-1] == out_shape[-1]) else 2 for in_shape, out_shape in zip(layer_shapes[:-1], layer_shapes[1:]) ] chans = [shape[0] for shape in layer_shapes] _decoder_layers = [ self.decoder_block(ochan, ichan, stride) for ichan, ochan, stride in zip(chans[:-1], chans[1:], strides) ] self.decoders = nn.ModuleList(_decoder_layers) @staticmethod def decoder_block(in_chan: int, out_chan: int, stride: int) -> nn.Sequential: """Creates a LinkNet decoder block""" mid_chan = in_chan // 4 return nn.Sequential( nn.Conv2d(in_chan, mid_chan, kernel_size=1, bias=False), nn.BatchNorm2d(mid_chan), nn.ReLU(inplace=True), nn.ConvTranspose2d(mid_chan, mid_chan, 3, padding=1, output_padding=stride - 1, stride=stride, bias=False), nn.BatchNorm2d(mid_chan), nn.ReLU(inplace=True), nn.Conv2d(mid_chan, out_chan, kernel_size=1, bias=False), nn.BatchNorm2d(out_chan), nn.ReLU(inplace=True), ) def forward(self, feats: List[torch.Tensor]) -> torch.Tensor: out = feats[-1] for decoder, fmap in zip(self.decoders[::-1], feats[:-1][::-1]): out = decoder(out) + fmap out = self.decoders[0](out) return out class LinkNet(nn.Module, _LinkNet): """LinkNet as described in `"LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation" <https://arxiv.org/pdf/1707.03718.pdf>`_. Args: feature extractor: the backbone serving as feature extractor head_chans: number of channels in the head layers assume_straight_pages: if True, fit straight bounding boxes only exportable: onnx exportable returns only logits cfg: the configuration dict of the model class_names: list of class names """ def __init__( self, feat_extractor: IntermediateLayerGetter, bin_thresh: float = 0.1, head_chans: int = 32, assume_straight_pages: bool = True, exportable: bool = False, cfg: Optional[Dict[str, Any]] = None, class_names: List[str] = [CLASS_NAME], ) -> None: super().__init__() self.class_names = class_names num_classes: int = len(self.class_names) self.cfg = cfg self.exportable = exportable self.assume_straight_pages = assume_straight_pages self.feat_extractor = feat_extractor # Identify the number of channels for the FPN initialization self.feat_extractor.eval() with torch.no_grad(): in_shape = (3, 512, 512) out = self.feat_extractor(torch.zeros((1, *in_shape))) # Get the shapes of the extracted feature maps _shapes = [v.shape[1:] for _, v in out.items()] # Prepend the expected shapes of the first encoder _shapes = [(_shapes[0][0], in_shape[1] // 4, in_shape[2] // 4)] + _shapes self.feat_extractor.train() self.fpn = LinkNetFPN(_shapes) self.classifier = nn.Sequential( nn.ConvTranspose2d( _shapes[0][0], head_chans, kernel_size=3, padding=1, output_padding=1, stride=2, bias=False ), nn.BatchNorm2d(head_chans), nn.ReLU(inplace=True), nn.Conv2d(head_chans, head_chans, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(head_chans), nn.ReLU(inplace=True), nn.ConvTranspose2d(head_chans, num_classes, kernel_size=2, stride=2), ) self.postprocessor = LinkNetPostProcessor( assume_straight_pages=self.assume_straight_pages, bin_thresh=bin_thresh ) for n, m in self.named_modules(): # Don't override the initialization of the backbone if n.startswith("feat_extractor."): continue if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)): nn.init.kaiming_normal_(m.weight.data, mode="fan_out", nonlinearity="relu") if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1.0) m.bias.data.zero_() def forward( self, x: torch.Tensor, target: Optional[List[np.ndarray]] = None, return_model_output: bool = False, return_preds: bool = False, **kwargs: Any, ) -> Dict[str, Any]: feats = self.feat_extractor(x) logits = self.fpn([feats[str(idx)] for idx in range(len(feats))]) logits = self.classifier(logits) out: Dict[str, Any] = {} if self.exportable: out["logits"] = logits return out if return_model_output or target is None or return_preds: prob_map = torch.sigmoid(logits) if return_model_output: out["out_map"] = prob_map if target is None or return_preds: # Post-process boxes out["preds"] = [ dict(zip(self.class_names, preds)) for preds in self.postprocessor(prob_map.detach().cpu().permute((0, 2, 3, 1)).numpy()) ] if target is not None: loss = self.compute_loss(logits, target) out["loss"] = loss return out def compute_loss( self, out_map: torch.Tensor, target: List[np.ndarray], gamma: float = 2.0, alpha: float = 0.5, eps: float = 1e-8, ) -> torch.Tensor: """Compute linknet loss, BCE with boosted box edges or focal loss. Focal loss implementation based on <https://github.com/tensorflow/addons/>`_. Args: out_map: output feature map of the model of shape (N, num_classes, H, W) target: list of dictionary where each dict has a `boxes` and a `flags` entry gamma: modulating factor in the focal loss formula alpha: balancing factor in the focal loss formula eps: epsilon factor in dice loss Returns: A loss tensor """ _target, _mask = self.build_target(target, out_map.shape[1:], False) # type: ignore[arg-type] seg_target, seg_mask = torch.from_numpy(_target).to(dtype=out_map.dtype), torch.from_numpy(_mask) seg_target, seg_mask = seg_target.to(out_map.device), seg_mask.to(out_map.device) seg_mask = seg_mask.to(dtype=torch.float32) bce_loss = F.binary_cross_entropy_with_logits(out_map, seg_target, reduction="none") proba_map = torch.sigmoid(out_map) # Focal loss if gamma < 0: raise ValueError("Value of gamma should be greater than or equal to zero.") p_t = proba_map * seg_target + (1 - proba_map) * (1 - seg_target) alpha_t = alpha * seg_target + (1 - alpha) * (1 - seg_target) # Unreduced version focal_loss = alpha_t * (1 - p_t) ** gamma * bce_loss # Class reduced focal_loss = (seg_mask * focal_loss).sum((0, 1, 2, 3)) / seg_mask.sum((0, 1, 2, 3)) # Dice loss inter = (seg_mask * proba_map * seg_target).sum((0, 1, 2, 3)) cardinality = (seg_mask * (proba_map + seg_target)).sum((0, 1, 2, 3)) dice_loss = 1 - 2 * (inter + eps) / (cardinality + eps) # Return the full loss (equal sum of focal loss and dice loss) return focal_loss + dice_loss def _linknet( arch: str, pretrained: bool, backbone_fn: Callable[[bool], nn.Module], fpn_layers: List[str], pretrained_backbone: bool = True, **kwargs: Any, ) -> LinkNet: pretrained_backbone = pretrained_backbone and not pretrained # Build the feature extractor backbone = backbone_fn(pretrained_backbone) feat_extractor = IntermediateLayerGetter( backbone, {layer_name: str(idx) for idx, layer_name in enumerate(fpn_layers)}, ) if not kwargs.get("class_names", None): kwargs["class_names"] = default_cfgs[arch].get("class_names", [CLASS_NAME]) else: kwargs["class_names"] = sorted(kwargs["class_names"]) # Build the model model = LinkNet(feat_extractor, cfg=default_cfgs[arch], **kwargs) # Load pretrained parameters if pretrained: load_pretrained_params(model, default_cfgs[arch]["url"]) return model def linknet_resnet18(pretrained: bool = False, **kwargs: Any) -> LinkNet: """LinkNet as described in `"LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation" <https://arxiv.org/pdf/1707.03718.pdf>`_. >>> import torch >>> from doctr.models import linknet_resnet18 >>> model = linknet_resnet18(pretrained=True).eval() >>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text detection dataset Returns: text detection architecture """ return _linknet("linknet_resnet18", pretrained, resnet18, ["layer1", "layer2", "layer3", "layer4"], **kwargs) def linknet_resnet34(pretrained: bool = False, **kwargs: Any) -> LinkNet: """LinkNet as described in `"LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation" <https://arxiv.org/pdf/1707.03718.pdf>`_. >>> import torch >>> from doctr.models import linknet_resnet34 >>> model = linknet_resnet34(pretrained=True).eval() >>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text detection dataset Returns: text detection architecture """ return _linknet("linknet_resnet34", pretrained, resnet34, ["layer1", "layer2", "layer3", "layer4"], **kwargs) def linknet_resnet50(pretrained: bool = False, **kwargs: Any) -> LinkNet: """LinkNet as described in `"LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation" <https://arxiv.org/pdf/1707.03718.pdf>`_. >>> import torch >>> from doctr.models import linknet_resnet50 >>> model = linknet_resnet50(pretrained=True).eval() >>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our text detection dataset Returns: text detection architecture """ return _linknet("linknet_resnet50", pretrained, resnet50, ["layer1", "layer2", "layer3", "layer4"], **kwargs)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. # Credits: post-processing adapted from https://github.com/xuannianz/DifferentiableBinarization from typing import Dict, List, Tuple, Union import cv2 import numpy as np import pyclipper from shapely.geometry import Polygon from doctr.models.core import BaseModel from ..core import DetectionPostProcessor __all__ = ["_LinkNet", "LinkNetPostProcessor"] class LinkNetPostProcessor(DetectionPostProcessor): """Implements a post processor for LinkNet model. Args: bin_thresh: threshold used to binzarized p_map at inference time box_thresh: minimal objectness score to consider a box assume_straight_pages: whether the inputs were expected to have horizontal text elements """ def __init__( self, bin_thresh: float = 0.1, box_thresh: float = 0.1, assume_straight_pages: bool = True, ) -> None: super().__init__(box_thresh, bin_thresh, assume_straight_pages) self.unclip_ratio = 1.2 def polygon_to_box( self, points: np.ndarray, ) -> np.ndarray: """Expand a polygon (points) by a factor unclip_ratio, and returns a polygon Args: points: The first parameter. Returns: a box in absolute coordinates (xmin, ymin, xmax, ymax) or (4, 2) array (quadrangle) """ if not self.assume_straight_pages: # Compute the rectangle polygon enclosing the raw polygon rect = cv2.minAreaRect(points) points = cv2.boxPoints(rect) # Add 1 pixel to correct cv2 approx area = (rect[1][0] + 1) * (1 + rect[1][1]) length = 2 * (rect[1][0] + rect[1][1]) + 2 else: poly = Polygon(points) area = poly.area length = poly.length distance = area * self.unclip_ratio / length # compute distance to expand polygon offset = pyclipper.PyclipperOffset() offset.AddPath(points, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) _points = offset.Execute(distance) # Take biggest stack of points idx = 0 if len(_points) > 1: max_size = 0 for _idx, p in enumerate(_points): if len(p) > max_size: idx = _idx max_size = len(p) # We ensure that _points can be correctly casted to a ndarray _points = [_points[idx]] expanded_points: np.ndarray = np.asarray(_points) # expand polygon if len(expanded_points) < 1: return None # type: ignore[return-value] return ( cv2.boundingRect(expanded_points) if self.assume_straight_pages else np.roll(cv2.boxPoints(cv2.minAreaRect(expanded_points)), -1, axis=0) ) def bitmap_to_boxes( self, pred: np.ndarray, bitmap: np.ndarray, ) -> np.ndarray: """Compute boxes from a bitmap/pred_map: find connected components then filter boxes Args: pred: Pred map from differentiable linknet output bitmap: Bitmap map computed from pred (binarized) angle_tol: Comparison tolerance of the angle with the median angle across the page ratio_tol: Under this limit aspect ratio, we cannot resolve the direction of the crop Returns: np tensor boxes for the bitmap, each box is a 6-element list containing x, y, w, h, alpha, score for the box """ height, width = bitmap.shape[:2] boxes: List[Union[np.ndarray, List[float]]] = [] # get contours from connected components on the bitmap contours, _ = cv2.findContours(bitmap.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: # Check whether smallest enclosing bounding box is not too small if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < 2): continue # Compute objectness if self.assume_straight_pages: x, y, w, h = cv2.boundingRect(contour) points: np.ndarray = np.array([[x, y], [x, y + h], [x + w, y + h], [x + w, y]]) score = self.box_score(pred, points, assume_straight_pages=True) else: score = self.box_score(pred, contour, assume_straight_pages=False) if score < self.box_thresh: # remove polygons with a weak objectness continue if self.assume_straight_pages: _box = self.polygon_to_box(points) else: _box = self.polygon_to_box(np.squeeze(contour)) if self.assume_straight_pages: # compute relative polygon to get rid of img shape x, y, w, h = _box xmin, ymin, xmax, ymax = x / width, y / height, (x + w) / width, (y + h) / height boxes.append([xmin, ymin, xmax, ymax, score]) else: # compute relative box to get rid of img shape _box[:, 0] /= width _box[:, 1] /= height boxes.append(_box) if not self.assume_straight_pages: return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 4, 2), dtype=pred.dtype) else: return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5), dtype=pred.dtype) class _LinkNet(BaseModel): """LinkNet as described in `"LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation" <https://arxiv.org/pdf/1707.03718.pdf>`_. Args: out_chan: number of channels for the output """ min_size_box: int = 3 assume_straight_pages: bool = True shrink_ratio = 0.5 def build_target( self, target: List[Dict[str, np.ndarray]], output_shape: Tuple[int, int, int], channels_last: bool = True, ) -> Tuple[np.ndarray, np.ndarray]: """Build the target, and it's mask to be used from loss computation. Args: target: target coming from dataset output_shape: shape of the output of the model without batch_size channels_last: whether channels are last or not Returns: the new formatted target and the mask """ if any(t.dtype != np.float32 for tgt in target for t in tgt.values()): raise AssertionError("the expected dtype of target 'boxes' entry is 'np.float32'.") if any(np.any((t[:, :4] > 1) | (t[:, :4] < 0)) for tgt in target for t in tgt.values()): raise ValueError("the 'boxes' entry of the target is expected to take values between 0 & 1.") h: int w: int if channels_last: h, w, num_classes = output_shape else: num_classes, h, w = output_shape target_shape = (len(target), num_classes, h, w) seg_target: np.ndarray = np.zeros(target_shape, dtype=np.uint8) seg_mask: np.ndarray = np.ones(target_shape, dtype=bool) for idx, tgt in enumerate(target): for class_idx, _tgt in enumerate(tgt.values()): # Draw each polygon on gt if _tgt.shape[0] == 0: # Empty image, full masked seg_mask[idx, class_idx] = False # Absolute bounding boxes abs_boxes = _tgt.copy() if abs_boxes.ndim == 3: abs_boxes[:, :, 0] *= w abs_boxes[:, :, 1] *= h polys = abs_boxes boxes_size = np.linalg.norm(abs_boxes[:, 2, :] - abs_boxes[:, 0, :], axis=-1) abs_boxes = np.concatenate((abs_boxes.min(1), abs_boxes.max(1)), -1).round().astype(np.int32) else: abs_boxes[:, [0, 2]] *= w abs_boxes[:, [1, 3]] *= h abs_boxes = abs_boxes.round().astype(np.int32) polys = np.stack( [ abs_boxes[:, [0, 1]], abs_boxes[:, [0, 3]], abs_boxes[:, [2, 3]], abs_boxes[:, [2, 1]], ], axis=1, ) boxes_size = np.minimum(abs_boxes[:, 2] - abs_boxes[:, 0], abs_boxes[:, 3] - abs_boxes[:, 1]) for poly, box, box_size in zip(polys, abs_boxes, boxes_size): # Mask boxes that are too small if box_size < self.min_size_box: seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False continue # Negative shrink for gt, as described in paper polygon = Polygon(poly) distance = polygon.area * (1 - np.power(self.shrink_ratio, 2)) / polygon.length subject = [tuple(coor) for coor in poly] padding = pyclipper.PyclipperOffset() padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) shrunken = padding.Execute(-distance) # Draw polygon on gt if it is valid if len(shrunken) == 0: seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False continue shrunken = np.array(shrunken[0]).reshape(-1, 2) if shrunken.shape[0] <= 2 or not Polygon(shrunken).is_valid: seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False continue cv2.fillPoly(seg_target[idx, class_idx], [shrunken.astype(np.int32)], 1) # Don't forget to switch back to channel last if Tensorflow is used if channels_last: seg_target = seg_target.transpose((0, 2, 3, 1)) seg_mask = seg_mask.transpose((0, 2, 3, 1)) return seg_target, seg_mask
from doctr.file_utils import is_tf_available if is_tf_available(): from .tensorflow import * else: from .pytorch import * # type: ignore[assignment]
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from typing import Any, Dict, List, Union import numpy as np import tensorflow as tf from tensorflow import keras from doctr.models.preprocessor import PreProcessor from doctr.utils.repr import NestedObject __all__ = ["DetectionPredictor"] class DetectionPredictor(NestedObject): """Implements an object able to localize text elements in a document Args: pre_processor: transform inputs for easier batched model inference model: core detection architecture """ _children_names: List[str] = ["pre_processor", "model"] def __init__( self, pre_processor: PreProcessor, model: keras.Model, ) -> None: self.pre_processor = pre_processor self.model = model def __call__( self, pages: List[Union[np.ndarray, tf.Tensor]], **kwargs: Any, ) -> List[Dict[str, np.ndarray]]: # Dimension check if any(page.ndim != 3 for page in pages): raise ValueError("incorrect input shape: all pages are expected to be multi-channel 2D images.") processed_batches = self.pre_processor(pages) predicted_batches = [ self.model(batch, return_preds=True, training=False, **kwargs)["preds"] for batch in processed_batches ] return [pred for batch in predicted_batches for pred in batch]
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from typing import Any, List, Union import numpy as np import torch from torch import nn from doctr.models.preprocessor import PreProcessor __all__ = ["DetectionPredictor"] class DetectionPredictor(nn.Module): """Implements an object able to localize text elements in a document Args: pre_processor: transform inputs for easier batched model inference model: core detection architecture """ def __init__( self, pre_processor: PreProcessor, model: nn.Module, ) -> None: super().__init__() self.pre_processor = pre_processor self.model = model.eval() @torch.no_grad() def forward( self, pages: List[Union[np.ndarray, torch.Tensor]], **kwargs: Any, ) -> List[np.ndarray]: # Dimension check if any(page.ndim != 3 for page in pages): raise ValueError("incorrect input shape: all pages are expected to be multi-channel 2D images.") processed_batches = self.pre_processor(pages) _device = next(self.model.parameters()).device predicted_batches = [ self.model(batch.to(device=_device), return_preds=True, **kwargs)["preds"] for batch in processed_batches ] return [pred for batch in predicted_batches for pred in batch]
from .hub import *
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. # Inspired by: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/hub.py import json import logging import os import subprocess import textwrap from pathlib import Path from typing import Any from huggingface_hub import HfApi, HfFolder, Repository, hf_hub_download, snapshot_download from doctr import models from doctr.file_utils import is_tf_available, is_torch_available if is_torch_available(): import torch __all__ = ["login_to_hub", "push_to_hf_hub", "from_hub", "_save_model_and_config_for_hf_hub"] AVAILABLE_ARCHS = { "classification": models.classification.zoo.ARCHS, "detection": models.detection.zoo.ARCHS + models.detection.zoo.ROT_ARCHS, "recognition": models.recognition.zoo.ARCHS, "obj_detection": ["fasterrcnn_mobilenet_v3_large_fpn"] if is_torch_available() else None, } def login_to_hub() -> None: """Login to huggingface hub""" access_token = HfFolder.get_token() if access_token is not None and HfApi()._is_valid_token(access_token): logging.info("Huggingface Hub token found and valid") HfApi().set_access_token(access_token) else: subprocess.call(["huggingface-cli", "login"]) HfApi().set_access_token(HfFolder().get_token()) # check if git lfs is installed try: subprocess.call(["git", "lfs", "version"]) except FileNotFoundError: raise OSError( "Looks like you do not have git-lfs installed, please install. \ You can install from https://git-lfs.github.com/. \ Then run `git lfs install` (you only have to do this once)." ) def _save_model_and_config_for_hf_hub(model: Any, save_dir: str, arch: str, task: str) -> None: """Save model and config to disk for pushing to huggingface hub Args: model: TF or PyTorch model to be saved save_dir: directory to save model and config arch: architecture name task: task name """ save_directory = Path(save_dir) if is_torch_available(): weights_path = save_directory / "pytorch_model.bin" torch.save(model.state_dict(), weights_path) elif is_tf_available(): weights_path = save_directory / "tf_model" / "weights" model.save_weights(str(weights_path)) config_path = save_directory / "config.json" # add model configuration model_config = model.cfg model_config["arch"] = arch model_config["task"] = task with config_path.open("w") as f: json.dump(model_config, f, indent=2, ensure_ascii=False) def push_to_hf_hub(model: Any, model_name: str, task: str, **kwargs) -> None: """Save model and its configuration on HF hub >>> from doctr.models import login_to_hub, push_to_hf_hub >>> from doctr.models.recognition import crnn_mobilenet_v3_small >>> login_to_hub() >>> model = crnn_mobilenet_v3_small(pretrained=True) >>> push_to_hf_hub(model, 'my-model', 'recognition', arch='crnn_mobilenet_v3_small') Args: model: TF or PyTorch model to be saved model_name: name of the model which is also the repository name task: task name **kwargs: keyword arguments for push_to_hf_hub """ run_config = kwargs.get("run_config", None) arch = kwargs.get("arch", None) if run_config is None and arch is None: raise ValueError("run_config or arch must be specified") if task not in ["classification", "detection", "recognition", "obj_detection"]: raise ValueError("task must be one of classification, detection, recognition, obj_detection") # default readme readme = textwrap.dedent( f""" --- language: en --- <p align="center"> <img src="https://doctr-static.mindee.com/models?id=v0.3.1/Logo_doctr.gif&src=0" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: {task} https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ``` """ ) # add run configuration to readme if available if run_config is not None: arch = run_config.arch readme += textwrap.dedent( f"""### Run Configuration \n{json.dumps(vars(run_config), indent=2, ensure_ascii=False)}""" ) if arch not in AVAILABLE_ARCHS[task]: # type: ignore raise ValueError( f"Architecture: {arch} for task: {task} not found.\ \nAvailable architectures: {AVAILABLE_ARCHS}" ) commit_message = f"Add {model_name} model" local_cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "huggingface", "hub", model_name) repo_url = HfApi().create_repo(model_name, token=HfFolder.get_token(), exist_ok=False) repo = Repository(local_dir=local_cache_dir, clone_from=repo_url, token=True) with repo.commit(commit_message): _save_model_and_config_for_hf_hub(model, repo.local_dir, arch=arch, task=task) readme_path = Path(repo.local_dir) / "README.md" readme_path.write_text(readme) repo.git_push() def from_hub(repo_id: str, **kwargs: Any): """Instantiate & load a pretrained model from HF hub. >>> from doctr.models import from_hub >>> model = from_hub("mindee/fasterrcnn_mobilenet_v3_large_fpn") Args: repo_id: HuggingFace model hub repo kwargs: kwargs of `hf_hub_download` or `snapshot_download` Returns: Model loaded with the checkpoint """ # Get the config with open(hf_hub_download(repo_id, filename="config.json", **kwargs), "rb") as f: cfg = json.load(f) arch = cfg["arch"] task = cfg["task"] cfg.pop("arch") cfg.pop("task") if task == "classification": model = models.classification.__dict__[arch]( pretrained=False, classes=cfg["classes"], num_classes=cfg["num_classes"] ) elif task == "detection": model = models.detection.__dict__[arch](pretrained=False) elif task == "recognition": model = models.recognition.__dict__[arch](pretrained=False, input_shape=cfg["input_shape"], vocab=cfg["vocab"]) elif task == "obj_detection" and is_torch_available(): model = models.obj_detection.__dict__[arch]( pretrained=False, image_mean=cfg["mean"], image_std=cfg["std"], max_size=cfg["input_shape"][-1], num_classes=len(cfg["classes"]), ) # update model cfg model.cfg = cfg # Load checkpoint if is_torch_available(): state_dict = torch.load(hf_hub_download(repo_id, filename="pytorch_model.bin", **kwargs), map_location="cpu") model.load_state_dict(state_dict) else: # tf repo_path = snapshot_download(repo_id, **kwargs) model.load_weights(os.path.join(repo_path, "tf_model", "weights")) return model
from .faster_rcnn import *
from doctr.file_utils import is_tf_available, is_torch_available if not is_tf_available() and is_torch_available(): from .pytorch import *
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from typing import Any, Dict from torchvision.models.detection import FasterRCNN, faster_rcnn from ...utils import load_pretrained_params __all__ = ["fasterrcnn_mobilenet_v3_large_fpn"] default_cfgs: Dict[str, Dict[str, Any]] = { "fasterrcnn_mobilenet_v3_large_fpn": { "input_shape": (3, 1024, 1024), "mean": (0.485, 0.456, 0.406), "std": (0.229, 0.224, 0.225), "classes": ["background", "qr_code", "bar_code", "logo", "photo"], "url": "https://doctr-static.mindee.com/models?id=v0.4.1/fasterrcnn_mobilenet_v3_large_fpn-d5b2490d.pt&src=0", }, } def _fasterrcnn(arch: str, pretrained: bool, **kwargs: Any) -> FasterRCNN: _kwargs = { "image_mean": default_cfgs[arch]["mean"], "image_std": default_cfgs[arch]["std"], "box_detections_per_img": 150, "box_score_thresh": 0.5, "box_positive_fraction": 0.35, "box_nms_thresh": 0.2, "rpn_nms_thresh": 0.2, "num_classes": len(default_cfgs[arch]["classes"]), } # Build the model _kwargs.update(kwargs) model = faster_rcnn.__dict__[arch](pretrained=False, pretrained_backbone=False, **_kwargs) model.cfg = default_cfgs[arch] if pretrained: # Load pretrained parameters load_pretrained_params(model, default_cfgs[arch]["url"]) else: # Filter keys state_dict = { k: v for k, v in faster_rcnn.__dict__[arch](pretrained=True).state_dict().items() if not k.startswith("roi_heads.") } # Load state dict model.load_state_dict(state_dict, strict=False) return model def fasterrcnn_mobilenet_v3_large_fpn(pretrained: bool = False, **kwargs: Any) -> FasterRCNN: """Faster-RCNN architecture with a MobileNet V3 backbone as described in `"Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" <https://arxiv.org/pdf/1506.01497.pdf>`_. >>> import torch >>> from doctr.models.obj_detection import fasterrcnn_mobilenet_v3_large_fpn >>> model = fasterrcnn_mobilenet_v3_large_fpn(pretrained=True) >>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32) >>> out = model(input_tensor) Args: pretrained (bool): If True, returns a model pre-trained on our object detection dataset Returns: object detection architecture """ return _fasterrcnn("fasterrcnn_mobilenet_v3_large_fpn", pretrained, **kwargs)
from .modules import *
from doctr.file_utils import is_tf_available, is_torch_available from .base import * if is_tf_available(): from .tensorflow import * elif is_torch_available(): from .pytorch import * # type: ignore[assignment]
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import random from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union import numpy as np import tensorflow as tf import tensorflow_addons as tfa from doctr.utils.repr import NestedObject from ..functional.tensorflow import random_shadow __all__ = [ "Compose", "Resize", "Normalize", "LambdaTransformation", "ToGray", "RandomBrightness", "RandomContrast", "RandomSaturation", "RandomHue", "RandomGamma", "RandomJpegQuality", "GaussianBlur", "ChannelShuffle", "GaussianNoise", "RandomHorizontalFlip", "RandomShadow", ] class Compose(NestedObject): """Implements a wrapper that will apply transformations sequentially >>> import tensorflow as tf >>> from doctr.transforms import Compose, Resize >>> transfos = Compose([Resize((32, 32))]) >>> out = transfos(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) Args: transforms: list of transformation modules """ _children_names: List[str] = ["transforms"] def __init__(self, transforms: List[Callable[[Any], Any]]) -> None: self.transforms = transforms def __call__(self, x: Any) -> Any: for t in self.transforms: x = t(x) return x class Resize(NestedObject): """Resizes a tensor to a target size >>> import tensorflow as tf >>> from doctr.transforms import Resize >>> transfo = Resize((32, 32)) >>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) Args: output_size: expected output size method: interpolation method preserve_aspect_ratio: if `True`, preserve aspect ratio and pad the rest with zeros symmetric_pad: if `True` while preserving aspect ratio, the padding will be done symmetrically """ def __init__( self, output_size: Union[int, Tuple[int, int]], method: str = "bilinear", preserve_aspect_ratio: bool = False, symmetric_pad: bool = False, ) -> None: self.output_size = output_size self.method = method self.preserve_aspect_ratio = preserve_aspect_ratio self.symmetric_pad = symmetric_pad if isinstance(self.output_size, int): self.wanted_size = (self.output_size, self.output_size) elif isinstance(self.output_size, (tuple, list)): self.wanted_size = self.output_size else: raise AssertionError("Output size should be either a list, a tuple or an int") def extra_repr(self) -> str: _repr = f"output_size={self.output_size}, method='{self.method}'" if self.preserve_aspect_ratio: _repr += f", preserve_aspect_ratio={self.preserve_aspect_ratio}, symmetric_pad={self.symmetric_pad}" return _repr def __call__( self, img: tf.Tensor, target: Optional[np.ndarray] = None, ) -> Union[tf.Tensor, Tuple[tf.Tensor, np.ndarray]]: input_dtype = img.dtype img = tf.image.resize(img, self.wanted_size, self.method, self.preserve_aspect_ratio) # It will produce an un-padded resized image, with a side shorter than wanted if we preserve aspect ratio raw_shape = img.shape[:2] if self.preserve_aspect_ratio: if isinstance(self.output_size, (tuple, list)): # In that case we need to pad because we want to enforce both width and height if not self.symmetric_pad: offset = (0, 0) elif self.output_size[0] == img.shape[0]: offset = (0, int((self.output_size[1] - img.shape[1]) / 2)) else: offset = (int((self.output_size[0] - img.shape[0]) / 2), 0) img = tf.image.pad_to_bounding_box(img, *offset, *self.output_size) # In case boxes are provided, resize boxes if needed (for detection task if preserve aspect ratio) if target is not None: if self.preserve_aspect_ratio: # Get absolute coords if target.shape[1:] == (4,): if isinstance(self.output_size, (tuple, list)) and self.symmetric_pad: if np.max(target) <= 1: offset = offset[0] / img.shape[0], offset[1] / img.shape[1] target[:, [0, 2]] = offset[1] + target[:, [0, 2]] * raw_shape[1] / img.shape[1] target[:, [1, 3]] = offset[0] + target[:, [1, 3]] * raw_shape[0] / img.shape[0] else: target[:, [0, 2]] *= raw_shape[1] / img.shape[1] target[:, [1, 3]] *= raw_shape[0] / img.shape[0] elif target.shape[1:] == (4, 2): if isinstance(self.output_size, (tuple, list)) and self.symmetric_pad: if np.max(target) <= 1: offset = offset[0] / img.shape[0], offset[1] / img.shape[1] target[..., 0] = offset[1] + target[..., 0] * raw_shape[1] / img.shape[1] target[..., 1] = offset[0] + target[..., 1] * raw_shape[0] / img.shape[0] else: target[..., 0] *= raw_shape[1] / img.shape[1] target[..., 1] *= raw_shape[0] / img.shape[0] else: raise AssertionError return tf.cast(img, dtype=input_dtype), target return tf.cast(img, dtype=input_dtype) class Normalize(NestedObject): """Normalize a tensor to a Gaussian distribution for each channel >>> import tensorflow as tf >>> from doctr.transforms import Normalize >>> transfo = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) Args: mean: average value per channel std: standard deviation per channel """ def __init__(self, mean: Tuple[float, float, float], std: Tuple[float, float, float]) -> None: self.mean = tf.constant(mean) self.std = tf.constant(std) def extra_repr(self) -> str: return f"mean={self.mean.numpy().tolist()}, std={self.std.numpy().tolist()}" def __call__(self, img: tf.Tensor) -> tf.Tensor: img -= tf.cast(self.mean, dtype=img.dtype) img /= tf.cast(self.std, dtype=img.dtype) return img class LambdaTransformation(NestedObject): """Normalize a tensor to a Gaussian distribution for each channel >>> import tensorflow as tf >>> from doctr.transforms import LambdaTransformation >>> transfo = LambdaTransformation(lambda x: x/ 255.) >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) Args: fn: the function to be applied to the input tensor """ def __init__(self, fn: Callable[[tf.Tensor], tf.Tensor]) -> None: self.fn = fn def __call__(self, img: tf.Tensor) -> tf.Tensor: return self.fn(img) class ToGray(NestedObject): """Convert a RGB tensor (batch of images or image) to a 3-channels grayscale tensor >>> import tensorflow as tf >>> from doctr.transforms import ToGray >>> transfo = ToGray() >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) """ def __init__(self, num_output_channels: int = 1): self.num_output_channels = num_output_channels def __call__(self, img: tf.Tensor) -> tf.Tensor: img = tf.image.rgb_to_grayscale(img) return img if self.num_output_channels == 1 else tf.repeat(img, self.num_output_channels, axis=-1) class RandomBrightness(NestedObject): """Randomly adjust brightness of a tensor (batch of images or image) by adding a delta to all pixels >>> import tensorflow as tf >>> from doctr.transforms import RandomBrightness >>> transfo = RandomBrightness() >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) Args: max_delta: offset to add to each pixel is randomly picked in [-max_delta, max_delta] p: probability to apply transformation """ def __init__(self, max_delta: float = 0.3) -> None: self.max_delta = max_delta def extra_repr(self) -> str: return f"max_delta={self.max_delta}" def __call__(self, img: tf.Tensor) -> tf.Tensor: return tf.image.random_brightness(img, max_delta=self.max_delta) class RandomContrast(NestedObject): """Randomly adjust contrast of a tensor (batch of images or image) by adjusting each pixel: (img - mean) * contrast_factor + mean. >>> import tensorflow as tf >>> from doctr.transforms import RandomContrast >>> transfo = RandomContrast() >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) Args: delta: multiplicative factor is picked in [1-delta, 1+delta] (reduce contrast if factor<1) """ def __init__(self, delta: float = 0.3) -> None: self.delta = delta def extra_repr(self) -> str: return f"delta={self.delta}" def __call__(self, img: tf.Tensor) -> tf.Tensor: return tf.image.random_contrast(img, lower=1 - self.delta, upper=1 / (1 - self.delta)) class RandomSaturation(NestedObject): """Randomly adjust saturation of a tensor (batch of images or image) by converting to HSV and increasing saturation by a factor. >>> import tensorflow as tf >>> from doctr.transforms import RandomSaturation >>> transfo = RandomSaturation() >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) Args: delta: multiplicative factor is picked in [1-delta, 1+delta] (reduce saturation if factor<1) """ def __init__(self, delta: float = 0.5) -> None: self.delta = delta def extra_repr(self) -> str: return f"delta={self.delta}" def __call__(self, img: tf.Tensor) -> tf.Tensor: return tf.image.random_saturation(img, lower=1 - self.delta, upper=1 + self.delta) class RandomHue(NestedObject): """Randomly adjust hue of a tensor (batch of images or image) by converting to HSV and adding a delta >>> import tensorflow as tf >>> from doctr.transforms import RandomHue >>> transfo = RandomHue() >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) Args: max_delta: offset to add to each pixel is randomly picked in [-max_delta, max_delta] """ def __init__(self, max_delta: float = 0.3) -> None: self.max_delta = max_delta def extra_repr(self) -> str: return f"max_delta={self.max_delta}" def __call__(self, img: tf.Tensor) -> tf.Tensor: return tf.image.random_hue(img, max_delta=self.max_delta) class RandomGamma(NestedObject): """randomly performs gamma correction for a tensor (batch of images or image) >>> import tensorflow as tf >>> from doctr.transforms import RandomGamma >>> transfo = RandomGamma() >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) Args: min_gamma: non-negative real number, lower bound for gamma param max_gamma: non-negative real number, upper bound for gamma min_gain: lower bound for constant multiplier max_gain: upper bound for constant multiplier """ def __init__( self, min_gamma: float = 0.5, max_gamma: float = 1.5, min_gain: float = 0.8, max_gain: float = 1.2, ) -> None: self.min_gamma = min_gamma self.max_gamma = max_gamma self.min_gain = min_gain self.max_gain = max_gain def extra_repr(self) -> str: return f"""gamma_range=({self.min_gamma}, {self.max_gamma}), gain_range=({self.min_gain}, {self.max_gain})""" def __call__(self, img: tf.Tensor) -> tf.Tensor: gamma = random.uniform(self.min_gamma, self.max_gamma) gain = random.uniform(self.min_gain, self.max_gain) return tf.image.adjust_gamma(img, gamma=gamma, gain=gain) class RandomJpegQuality(NestedObject): """Randomly adjust jpeg quality of a 3 dimensional RGB image >>> import tensorflow as tf >>> from doctr.transforms import RandomJpegQuality >>> transfo = RandomJpegQuality() >>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) Args: min_quality: int between [0, 100] max_quality: int between [0, 100] """ def __init__(self, min_quality: int = 60, max_quality: int = 100) -> None: self.min_quality = min_quality self.max_quality = max_quality def extra_repr(self) -> str: return f"min_quality={self.min_quality}" def __call__(self, img: tf.Tensor) -> tf.Tensor: return tf.image.random_jpeg_quality(img, min_jpeg_quality=self.min_quality, max_jpeg_quality=self.max_quality) class GaussianBlur(NestedObject): """Randomly adjust jpeg quality of a 3 dimensional RGB image >>> import tensorflow as tf >>> from doctr.transforms import GaussianBlur >>> transfo = GaussianBlur(3, (.1, 5)) >>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) Args: kernel_shape: size of the blurring kernel std: min and max value of the standard deviation """ def __init__(self, kernel_shape: Union[int, Iterable[int]], std: Tuple[float, float]) -> None: self.kernel_shape = kernel_shape self.std = std def extra_repr(self) -> str: return f"kernel_shape={self.kernel_shape}, std={self.std}" @tf.function def __call__(self, img: tf.Tensor) -> tf.Tensor: sigma = random.uniform(self.std[0], self.std[1]) return tfa.image.gaussian_filter2d( img, filter_shape=self.kernel_shape, sigma=sigma, ) class ChannelShuffle(NestedObject): """Randomly shuffle channel order of a given image""" def __init__(self): pass def __call__(self, img: tf.Tensor) -> tf.Tensor: return tf.transpose(tf.random.shuffle(tf.transpose(img, perm=[2, 0, 1])), perm=[1, 2, 0]) class GaussianNoise(NestedObject): """Adds Gaussian Noise to the input tensor >>> import tensorflow as tf >>> from doctr.transforms import GaussianNoise >>> transfo = GaussianNoise(0., 1.) >>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) Args: mean : mean of the gaussian distribution std : std of the gaussian distribution """ def __init__(self, mean: float = 0.0, std: float = 1.0) -> None: super().__init__() self.std = std self.mean = mean def __call__(self, x: tf.Tensor) -> tf.Tensor: # Reshape the distribution noise = self.mean + 2 * self.std * tf.random.uniform(x.shape) - self.std if x.dtype == tf.uint8: return tf.cast( tf.clip_by_value(tf.math.round(tf.cast(x, dtype=tf.float32) + 255 * noise), 0, 255), dtype=tf.uint8 ) else: return tf.cast(tf.clip_by_value(x + noise, 0, 1), dtype=x.dtype) def extra_repr(self) -> str: return f"mean={self.mean}, std={self.std}" class RandomHorizontalFlip(NestedObject): """Adds random horizontal flip to the input tensor/np.ndarray >>> import tensorflow as tf >>> from doctr.transforms import RandomHorizontalFlip >>> transfo = RandomHorizontalFlip(p=0.5) >>> image = tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1) >>> target = { >>> "boxes": np.array([[0.1, 0.1, 0.4, 0.5] ], dtype= np.float32), >>> "labels": np.ones(1, dtype= np.int64) >>> } >>> out = transfo(image, target) Args: p : probability of Horizontal Flip """ def __init__(self, p: float) -> None: super().__init__() self.p = p def __call__(self, img: Union[tf.Tensor, np.ndarray], target: Dict[str, Any]) -> Tuple[tf.Tensor, Dict[str, Any]]: """ Args: img: Image to be flipped. target: Dictionary with boxes (in relative coordinates of shape (N, 4)) and labels as keys Returns: Tuple of numpy nd-array or Tensor and target """ if np.random.rand(1) <= self.p: _img = tf.image.flip_left_right(img) _target = target.copy() # Changing the relative bbox coordinates _target["boxes"][:, ::2] = 1 - target["boxes"][:, [2, 0]] return _img, _target return img, target class RandomShadow(NestedObject): """Adds random shade to the input image >>> import tensorflow as tf >>> from doctr.transforms import RandomShadow >>> transfo = RandomShadow(0., 1.) >>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) Args: opacity_range : minimum and maximum opacity of the shade """ def __init__(self, opacity_range: Optional[Tuple[float, float]] = None) -> None: super().__init__() self.opacity_range = opacity_range if isinstance(opacity_range, tuple) else (0.2, 0.8) def __call__(self, x: tf.Tensor) -> tf.Tensor: # Reshape the distribution if x.dtype == tf.uint8: return tf.cast( tf.clip_by_value( tf.math.round(255 * random_shadow(tf.cast(x, dtype=tf.float32) / 255, self.opacity_range)), 0, 255, ), dtype=tf.uint8, ) else: return tf.clip_by_value(random_shadow(x, self.opacity_range), 0, 1) def extra_repr(self) -> str: return f"opacity_range={self.opacity_range}"
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import math from typing import Any, Dict, Optional, Tuple, Union import numpy as np import torch from PIL.Image import Image from torch.nn.functional import pad from torchvision.transforms import functional as F from torchvision.transforms import transforms as T from ..functional.pytorch import random_shadow __all__ = ["Resize", "GaussianNoise", "ChannelShuffle", "RandomHorizontalFlip", "RandomShadow"] class Resize(T.Resize): def __init__( self, size: Union[int, Tuple[int, int]], interpolation=F.InterpolationMode.BILINEAR, preserve_aspect_ratio: bool = False, symmetric_pad: bool = False, ) -> None: super().__init__(size, interpolation) self.preserve_aspect_ratio = preserve_aspect_ratio self.symmetric_pad = symmetric_pad if not isinstance(self.size, (int, tuple, list)): raise AssertionError("size should be either a tuple, a list or an int") def forward( self, img: torch.Tensor, target: Optional[np.ndarray] = None, ) -> Union[torch.Tensor, Tuple[torch.Tensor, np.ndarray]]: if isinstance(self.size, int): target_ratio = img.shape[-2] / img.shape[-1] else: target_ratio = self.size[0] / self.size[1] actual_ratio = img.shape[-2] / img.shape[-1] if not self.preserve_aspect_ratio or (target_ratio == actual_ratio and (isinstance(self.size, (tuple, list)))): # If we don't preserve the aspect ratio or the wanted aspect ratio is the same than the original one # We can use with the regular resize if target is not None: return super().forward(img), target return super().forward(img) else: # Resize if isinstance(self.size, (tuple, list)): if actual_ratio > target_ratio: tmp_size = (self.size[0], max(int(self.size[0] / actual_ratio), 1)) else: tmp_size = (max(int(self.size[1] * actual_ratio), 1), self.size[1]) elif isinstance(self.size, int): # self.size is the longest side, infer the other if img.shape[-2] <= img.shape[-1]: tmp_size = (max(int(self.size * actual_ratio), 1), self.size) else: tmp_size = (self.size, max(int(self.size / actual_ratio), 1)) # Scale image img = F.resize(img, tmp_size, self.interpolation) raw_shape = img.shape[-2:] if isinstance(self.size, (tuple, list)): # Pad (inverted in pytorch) _pad = (0, self.size[1] - img.shape[-1], 0, self.size[0] - img.shape[-2]) if self.symmetric_pad: half_pad = (math.ceil(_pad[1] / 2), math.ceil(_pad[3] / 2)) _pad = (half_pad[0], _pad[1] - half_pad[0], half_pad[1], _pad[3] - half_pad[1]) img = pad(img, _pad) # In case boxes are provided, resize boxes if needed (for detection task if preserve aspect ratio) if target is not None: if self.preserve_aspect_ratio: # Get absolute coords if target.shape[1:] == (4,): if isinstance(self.size, (tuple, list)) and self.symmetric_pad: if np.max(target) <= 1: offset = half_pad[0] / img.shape[-1], half_pad[1] / img.shape[-2] target[:, [0, 2]] = offset[0] + target[:, [0, 2]] * raw_shape[-1] / img.shape[-1] target[:, [1, 3]] = offset[1] + target[:, [1, 3]] * raw_shape[-2] / img.shape[-2] else: target[:, [0, 2]] *= raw_shape[-1] / img.shape[-1] target[:, [1, 3]] *= raw_shape[-2] / img.shape[-2] elif target.shape[1:] == (4, 2): if isinstance(self.size, (tuple, list)) and self.symmetric_pad: if np.max(target) <= 1: offset = half_pad[0] / img.shape[-1], half_pad[1] / img.shape[-2] target[..., 0] = offset[0] + target[..., 0] * raw_shape[-1] / img.shape[-1] target[..., 1] = offset[1] + target[..., 1] * raw_shape[-2] / img.shape[-2] else: target[..., 0] *= raw_shape[-1] / img.shape[-1] target[..., 1] *= raw_shape[-2] / img.shape[-2] else: raise AssertionError return img, target return img def __repr__(self) -> str: interpolate_str = self.interpolation.value _repr = f"output_size={self.size}, interpolation='{interpolate_str}'" if self.preserve_aspect_ratio: _repr += f", preserve_aspect_ratio={self.preserve_aspect_ratio}, symmetric_pad={self.symmetric_pad}" return f"{self.__class__.__name__}({_repr})" class GaussianNoise(torch.nn.Module): """Adds Gaussian Noise to the input tensor >>> import torch >>> from doctr.transforms import GaussianNoise >>> transfo = GaussianNoise(0., 1.) >>> out = transfo(torch.rand((3, 224, 224))) Args: mean : mean of the gaussian distribution std : std of the gaussian distribution """ def __init__(self, mean: float = 0.0, std: float = 1.0) -> None: super().__init__() self.std = std self.mean = mean def forward(self, x: torch.Tensor) -> torch.Tensor: # Reshape the distribution noise = self.mean + 2 * self.std * torch.rand(x.shape, device=x.device) - self.std if x.dtype == torch.uint8: return (x + 255 * noise).round().clamp(0, 255).to(dtype=torch.uint8) else: return (x + noise.to(dtype=x.dtype)).clamp(0, 1) def extra_repr(self) -> str: return f"mean={self.mean}, std={self.std}" class ChannelShuffle(torch.nn.Module): """Randomly shuffle channel order of a given image""" def __init__(self): super().__init__() def forward(self, img: torch.Tensor) -> torch.Tensor: # Get a random order chan_order = torch.rand(img.shape[0]).argsort() return img[chan_order] class RandomHorizontalFlip(T.RandomHorizontalFlip): def forward( self, img: Union[torch.Tensor, Image], target: Dict[str, Any] ) -> Tuple[Union[torch.Tensor, Image], Dict[str, Any]]: """ Args: img: Image to be flipped. target: Dictionary with boxes (in relative coordinates of shape (N, 4)) and labels as keys Returns: Tuple of PIL Image or Tensor and target """ if torch.rand(1) < self.p: _img = F.hflip(img) _target = target.copy() # Changing the relative bbox coordinates _target["boxes"][:, ::2] = 1 - target["boxes"][:, [2, 0]] return _img, _target return img, target class RandomShadow(torch.nn.Module): """Adds random shade to the input image >>> import torch >>> from doctr.transforms import RandomShadow >>> transfo = RandomShadow((0., 1.)) >>> out = transfo(torch.rand((3, 64, 64))) Args: opacity_range : minimum and maximum opacity of the shade """ def __init__(self, opacity_range: Optional[Tuple[float, float]] = None) -> None: super().__init__() self.opacity_range = opacity_range if isinstance(opacity_range, tuple) else (0.2, 0.8) def __call__(self, x: torch.Tensor) -> torch.Tensor: # Reshape the distribution try: if x.dtype == torch.uint8: return ( ( 255 * random_shadow( x.to(dtype=torch.float32) / 255, self.opacity_range, ) ) .round() .clip(0, 255) .to(dtype=torch.uint8) ) else: return random_shadow(x, self.opacity_range).clip(0, 1) except ValueError: return x def extra_repr(self) -> str: return f"opacity_range={self.opacity_range}"
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import math import random from typing import Any, Callable, Dict, List, Tuple import numpy as np from doctr.utils.repr import NestedObject from .. import functional as F __all__ = ["SampleCompose", "ImageTransform", "ColorInversion", "OneOf", "RandomApply", "RandomRotate", "RandomCrop"] class SampleCompose(NestedObject): """Implements a wrapper that will apply transformations sequentially on both image and target .. tabs:: .. tab:: TensorFlow .. code:: python >>> import numpy as np >>> import tensorflow as tf >>> from doctr.transforms import SampleCompose, ImageTransform, ColorInversion, RandomRotate >>> transfo = SampleCompose([ImageTransform(ColorInversion((32, 32))), RandomRotate(30)]) >>> out, out_boxes = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1), np.zeros((2, 4))) .. tab:: PyTorch .. code:: python >>> import numpy as np >>> import torch >>> from doctr.transforms import SampleCompose, ImageTransform, ColorInversion, RandomRotate >>> transfos = SampleCompose([ImageTransform(ColorInversion((32, 32))), RandomRotate(30)]) >>> out, out_boxes = transfos(torch.rand(8, 64, 64, 3), np.zeros((2, 4))) Args: transforms: list of transformation modules """ _children_names: List[str] = ["sample_transforms"] def __init__(self, transforms: List[Callable[[Any, Any], Tuple[Any, Any]]]) -> None: self.sample_transforms = transforms def __call__(self, x: Any, target: Any) -> Tuple[Any, Any]: for t in self.sample_transforms: x, target = t(x, target) return x, target class ImageTransform(NestedObject): """Implements a transform wrapper to turn an image-only transformation into an image+target transform .. tabs:: .. tab:: TensorFlow .. code:: python >>> import tensorflow as tf >>> from doctr.transforms import ImageTransform, ColorInversion >>> transfo = ImageTransform(ColorInversion((32, 32))) >>> out, _ = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1), None) .. tab:: PyTorch .. code:: python >>> import torch >>> from doctr.transforms import ImageTransform, ColorInversion >>> transfo = ImageTransform(ColorInversion((32, 32))) >>> out, _ = transfo(torch.rand(8, 64, 64, 3), None) Args: transform: the image transformation module to wrap """ _children_names: List[str] = ["img_transform"] def __init__(self, transform: Callable[[Any], Any]) -> None: self.img_transform = transform def __call__(self, img: Any, target: Any) -> Tuple[Any, Any]: img = self.img_transform(img) return img, target class ColorInversion(NestedObject): """Applies the following tranformation to a tensor (image or batch of images): convert to grayscale, colorize (shift 0-values randomly), and then invert colors .. tabs:: .. tab:: TensorFlow .. code:: python >>> import tensorflow as tf >>> from doctr.transforms import ColorInversion >>> transfo = ColorInversion(min_val=0.6) >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) .. tab:: PyTorch .. code:: python >>> import torch >>> from doctr.transforms import ColorInversion >>> transfo = ColorInversion(min_val=0.6) >>> out = transfo(torch.rand(8, 64, 64, 3)) Args: min_val: range [min_val, 1] to colorize RGB pixels """ def __init__(self, min_val: float = 0.5) -> None: self.min_val = min_val def extra_repr(self) -> str: return f"min_val={self.min_val}" def __call__(self, img: Any) -> Any: return F.invert_colors(img, self.min_val) class OneOf(NestedObject): """Randomly apply one of the input transformations .. tabs:: .. tab:: TensorFlow .. code:: python >>> import tensorflow as tf >>> from doctr.transforms import OneOf >>> transfo = OneOf([JpegQuality(), Gamma()]) >>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) .. tab:: PyTorch .. code:: python >>> import torch >>> from doctr.transforms import OneOf >>> transfo = OneOf([JpegQuality(), Gamma()]) >>> out = transfo(torch.rand(1, 64, 64, 3)) Args: transforms: list of transformations, one only will be picked """ _children_names: List[str] = ["transforms"] def __init__(self, transforms: List[Callable[[Any], Any]]) -> None: self.transforms = transforms def __call__(self, img: Any) -> Any: # Pick transformation transfo = self.transforms[int(random.random() * len(self.transforms))] # Apply return transfo(img) class RandomApply(NestedObject): """Apply with a probability p the input transformation .. tabs:: .. tab:: TensorFlow .. code:: python >>> import tensorflow as tf >>> from doctr.transforms import RandomApply >>> transfo = RandomApply(Gamma(), p=.5) >>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) .. tab:: PyTorch .. code:: python >>> import torch >>> from doctr.transforms import RandomApply >>> transfo = RandomApply(Gamma(), p=.5) >>> out = transfo(torch.rand(1, 64, 64, 3)) Args: transform: transformation to apply p: probability to apply """ def __init__(self, transform: Callable[[Any], Any], p: float = 0.5) -> None: self.transform = transform self.p = p def extra_repr(self) -> str: return f"transform={self.transform}, p={self.p}" def __call__(self, img: Any) -> Any: if random.random() < self.p: return self.transform(img) return img class RandomRotate(NestedObject): """Randomly rotate a tensor image and its boxes .. image:: https://doctr-static.mindee.com/models?id=v0.4.0/rotation_illustration.png&src=0 :align: center Args: max_angle: maximum angle for rotation, in degrees. Angles will be uniformly picked in [-max_angle, max_angle] expand: whether the image should be padded before the rotation """ def __init__(self, max_angle: float = 5.0, expand: bool = False) -> None: self.max_angle = max_angle self.expand = expand def extra_repr(self) -> str: return f"max_angle={self.max_angle}, expand={self.expand}" def __call__(self, img: Any, target: np.ndarray) -> Tuple[Any, np.ndarray]: angle = random.uniform(-self.max_angle, self.max_angle) r_img, r_polys = F.rotate_sample(img, target, angle, self.expand) # Removes deleted boxes is_kept = (r_polys.max(1) > r_polys.min(1)).sum(1) == 2 return r_img, r_polys[is_kept] class RandomCrop(NestedObject): """Randomly crop a tensor image and its boxes Args: scale: tuple of floats, relative (min_area, max_area) of the crop ratio: tuple of float, relative (min_ratio, max_ratio) where ratio = h/w """ def __init__(self, scale: Tuple[float, float] = (0.08, 1.0), ratio: Tuple[float, float] = (0.75, 1.33)) -> None: self.scale = scale self.ratio = ratio def extra_repr(self) -> str: return f"scale={self.scale}, ratio={self.ratio}" def __call__(self, img: Any, target: Dict[str, np.ndarray]) -> Tuple[Any, Dict[str, np.ndarray]]: scale = random.uniform(self.scale[0], self.scale[1]) ratio = random.uniform(self.ratio[0], self.ratio[1]) # Those might overflow crop_h = math.sqrt(scale * ratio) crop_w = math.sqrt(scale / ratio) xmin, ymin = random.uniform(0, 1 - crop_w), random.uniform(0, 1 - crop_h) xmax, ymax = xmin + crop_w, ymin + crop_h # Clip them xmin, ymin = max(xmin, 0), max(ymin, 0) xmax, ymax = min(xmax, 1), min(ymax, 1) croped_img, crop_boxes = F.crop_detection(img, target["boxes"], (xmin, ymin, xmax, ymax)) return croped_img, dict(boxes=crop_boxes)
from doctr.file_utils import is_tf_available, is_torch_available if is_tf_available(): from .tensorflow import * elif is_torch_available(): from .pytorch import *
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import math from copy import deepcopy from typing import Tuple import numpy as np import tensorflow as tf import tensorflow_addons as tfa from doctr.utils.geometry import compute_expanded_shape, rotate_abs_geoms from .base import create_shadow_mask, crop_boxes __all__ = ["invert_colors", "rotate_sample", "crop_detection", "random_shadow"] def invert_colors(img: tf.Tensor, min_val: float = 0.6) -> tf.Tensor: out = tf.image.rgb_to_grayscale(img) # Convert to gray # Random RGB shift shift_shape = [img.shape[0], 1, 1, 3] if img.ndim == 4 else [1, 1, 3] rgb_shift = tf.random.uniform(shape=shift_shape, minval=min_val, maxval=1) # Inverse the color if out.dtype == tf.uint8: out = tf.cast(tf.cast(out, dtype=rgb_shift.dtype) * rgb_shift, dtype=tf.uint8) else: out *= tf.cast(rgb_shift, dtype=out.dtype) # Inverse the color out = 255 - out if out.dtype == tf.uint8 else 1 - out return out def rotated_img_tensor(img: tf.Tensor, angle: float, expand: bool = False) -> tf.Tensor: """Rotate image around the center, interpolation=NEAREST, pad with 0 (black) Args: img: image to rotate angle: angle in degrees. +: counter-clockwise, -: clockwise expand: whether the image should be padded before the rotation Returns: the rotated image (tensor) """ # Compute the expanded padding h_crop, w_crop = 0, 0 if expand: exp_h, exp_w = compute_expanded_shape(img.shape[:-1], angle) h_diff, w_diff = int(math.ceil(exp_h - img.shape[0])), int(math.ceil(exp_w - img.shape[1])) h_pad, w_pad = max(h_diff, 0), max(w_diff, 0) exp_img = tf.pad(img, tf.constant([[h_pad // 2, h_pad - h_pad // 2], [w_pad // 2, w_pad - w_pad // 2], [0, 0]])) h_crop, w_crop = int(round(max(exp_img.shape[0] - exp_h, 0))), int(round(min(exp_img.shape[1] - exp_w, 0))) else: exp_img = img # Rotate the padded image rotated_img = tfa.image.rotate(exp_img, angle * math.pi / 180) # Interpolation NEAREST by default # Crop the rest if h_crop > 0 or w_crop > 0: h_slice = slice(h_crop // 2, -h_crop // 2) if h_crop > 0 else slice(rotated_img.shape[0]) w_slice = slice(-w_crop // 2, -w_crop // 2) if w_crop > 0 else slice(rotated_img.shape[1]) rotated_img = rotated_img[h_slice, w_slice] return rotated_img def rotate_sample( img: tf.Tensor, geoms: np.ndarray, angle: float, expand: bool = False, ) -> Tuple[tf.Tensor, np.ndarray]: """Rotate image around the center, interpolation=NEAREST, pad with 0 (black) Args: img: image to rotate geoms: array of geometries of shape (N, 4) or (N, 4, 2) angle: angle in degrees. +: counter-clockwise, -: clockwise expand: whether the image should be padded before the rotation Returns: A tuple of rotated img (tensor), rotated boxes (np array) """ # Rotated the image rotated_img = rotated_img_tensor(img, angle, expand) # Get absolute coords _geoms = deepcopy(geoms) if _geoms.shape[1:] == (4,): if np.max(_geoms) <= 1: _geoms[:, [0, 2]] *= img.shape[1] _geoms[:, [1, 3]] *= img.shape[0] elif _geoms.shape[1:] == (4, 2): if np.max(_geoms) <= 1: _geoms[..., 0] *= img.shape[1] _geoms[..., 1] *= img.shape[0] else: raise AssertionError # Rotate the boxes: xmin, ymin, xmax, ymax or polygons --> (4, 2) polygon rotated_geoms: np.ndarray = rotate_abs_geoms(_geoms, angle, img.shape[:-1], expand).astype(np.float32) # Always return relative boxes to avoid label confusions when resizing is performed aferwards rotated_geoms[..., 0] = rotated_geoms[..., 0] / rotated_img.shape[1] rotated_geoms[..., 1] = rotated_geoms[..., 1] / rotated_img.shape[0] return rotated_img, np.clip(rotated_geoms, 0, 1) def crop_detection( img: tf.Tensor, boxes: np.ndarray, crop_box: Tuple[float, float, float, float] ) -> Tuple[tf.Tensor, np.ndarray]: """Crop and image and associated bboxes Args: img: image to crop boxes: array of boxes to clip, absolute (int) or relative (float) crop_box: box (xmin, ymin, xmax, ymax) to crop the image. Relative coords. Returns: A tuple of cropped image, cropped boxes, where the image is not resized. """ if any(val < 0 or val > 1 for val in crop_box): raise AssertionError("coordinates of arg `crop_box` should be relative") h, w = img.shape[:2] xmin, ymin = int(round(crop_box[0] * (w - 1))), int(round(crop_box[1] * (h - 1))) xmax, ymax = int(round(crop_box[2] * (w - 1))), int(round(crop_box[3] * (h - 1))) cropped_img = tf.image.crop_to_bounding_box(img, ymin, xmin, ymax - ymin, xmax - xmin) # Crop the box boxes = crop_boxes(boxes, crop_box if boxes.max() <= 1 else (xmin, ymin, xmax, ymax)) return cropped_img, boxes def random_shadow(img: tf.Tensor, opacity_range: Tuple[float, float], **kwargs) -> tf.Tensor: """Apply a random shadow to a given image Args: img: image to modify opacity_range: the minimum and maximum desired opacity of the shadow Returns: shaded image """ shadow_mask = create_shadow_mask(img.shape[:2], **kwargs) opacity = np.random.uniform(*opacity_range) shadow_tensor = 1 - tf.convert_to_tensor(shadow_mask[..., None], dtype=tf.float32) # Add some blur to make it believable k = 7 + int(2 * 4 * np.random.rand(1)) shadow_tensor = tfa.image.gaussian_filter2d( shadow_tensor, filter_shape=k, sigma=np.random.uniform(0.5, 5.0), ) return opacity * shadow_tensor * img + (1 - opacity) * img
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from copy import deepcopy from typing import Tuple import numpy as np import torch from torchvision.transforms import functional as F from doctr.utils.geometry import rotate_abs_geoms from .base import create_shadow_mask, crop_boxes __all__ = ["invert_colors", "rotate_sample", "crop_detection", "random_shadow"] def invert_colors(img: torch.Tensor, min_val: float = 0.6) -> torch.Tensor: out = F.rgb_to_grayscale(img, num_output_channels=3) # Random RGB shift shift_shape = [img.shape[0], 3, 1, 1] if img.ndim == 4 else [3, 1, 1] rgb_shift = min_val + (1 - min_val) * torch.rand(shift_shape) # Inverse the color if out.dtype == torch.uint8: out = (out.to(dtype=rgb_shift.dtype) * rgb_shift).to(dtype=torch.uint8) else: out = out * rgb_shift.to(dtype=out.dtype) # Inverse the color out = 255 - out if out.dtype == torch.uint8 else 1 - out return out def rotate_sample( img: torch.Tensor, geoms: np.ndarray, angle: float, expand: bool = False, ) -> Tuple[torch.Tensor, np.ndarray]: """Rotate image around the center, interpolation=NEAREST, pad with 0 (black) Args: img: image to rotate geoms: array of geometries of shape (N, 4) or (N, 4, 2) angle: angle in degrees. +: counter-clockwise, -: clockwise expand: whether the image should be padded before the rotation Returns: A tuple of rotated img (tensor), rotated geometries of shape (N, 4, 2) """ rotated_img = F.rotate(img, angle=angle, fill=0, expand=expand) # Interpolation NEAREST by default rotated_img = rotated_img[:3] # when expand=True, it expands to RGBA channels # Get absolute coords _geoms = deepcopy(geoms) if _geoms.shape[1:] == (4,): if np.max(_geoms) <= 1: _geoms[:, [0, 2]] *= img.shape[-1] _geoms[:, [1, 3]] *= img.shape[-2] elif _geoms.shape[1:] == (4, 2): if np.max(_geoms) <= 1: _geoms[..., 0] *= img.shape[-1] _geoms[..., 1] *= img.shape[-2] else: raise AssertionError("invalid format for arg `geoms`") # Rotate the boxes: xmin, ymin, xmax, ymax or polygons --> (4, 2) polygon rotated_geoms: np.ndarray = rotate_abs_geoms( _geoms, angle, img.shape[1:], # type: ignore[arg-type] expand, ).astype(np.float32) # Always return relative boxes to avoid label confusions when resizing is performed aferwards rotated_geoms[..., 0] = rotated_geoms[..., 0] / rotated_img.shape[2] rotated_geoms[..., 1] = rotated_geoms[..., 1] / rotated_img.shape[1] return rotated_img, np.clip(rotated_geoms, 0, 1) def crop_detection( img: torch.Tensor, boxes: np.ndarray, crop_box: Tuple[float, float, float, float] ) -> Tuple[torch.Tensor, np.ndarray]: """Crop and image and associated bboxes Args: img: image to crop boxes: array of boxes to clip, absolute (int) or relative (float) crop_box: box (xmin, ymin, xmax, ymax) to crop the image. Relative coords. Returns: A tuple of cropped image, cropped boxes, where the image is not resized. """ if any(val < 0 or val > 1 for val in crop_box): raise AssertionError("coordinates of arg `crop_box` should be relative") h, w = img.shape[-2:] xmin, ymin = int(round(crop_box[0] * (w - 1))), int(round(crop_box[1] * (h - 1))) xmax, ymax = int(round(crop_box[2] * (w - 1))), int(round(crop_box[3] * (h - 1))) cropped_img = F.crop(img, ymin, xmin, ymax - ymin, xmax - xmin) # Crop the box boxes = crop_boxes(boxes, crop_box if boxes.max() <= 1 else (xmin, ymin, xmax, ymax)) return cropped_img, boxes def random_shadow(img: torch.Tensor, opacity_range: Tuple[float, float], **kwargs) -> torch.Tensor: """Crop and image and associated bboxes Args: img: image to modify opacity_range: the minimum and maximum desired opacity of the shadow Returns: shaded image """ shadow_mask = create_shadow_mask(img.shape[1:], **kwargs) # type: ignore[arg-type] opacity = np.random.uniform(*opacity_range) shadow_tensor = 1 - torch.from_numpy(shadow_mask[None, ...]) # Add some blur to make it believable k = 7 + 2 * int(4 * np.random.rand(1)) sigma = np.random.uniform(0.5, 5.0) shadow_tensor = F.gaussian_blur(shadow_tensor, k, sigma=[sigma, sigma]) return opacity * shadow_tensor * img + (1 - opacity) * img
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from typing import Tuple, Union import cv2 import numpy as np from doctr.utils.geometry import rotate_abs_geoms __all__ = ["crop_boxes", "create_shadow_mask"] def crop_boxes( boxes: np.ndarray, crop_box: Union[Tuple[int, int, int, int], Tuple[float, float, float, float]], ) -> np.ndarray: """Crop localization boxes Args: boxes: ndarray of shape (N, 4) in relative or abs coordinates crop_box: box (xmin, ymin, xmax, ymax) to crop the image, in the same coord format that the boxes Returns: the cropped boxes """ is_box_rel = boxes.max() <= 1 is_crop_rel = max(crop_box) <= 1 if is_box_rel ^ is_crop_rel: raise AssertionError("both the boxes and the crop need to have the same coordinate convention") xmin, ymin, xmax, ymax = crop_box # Clip boxes & correct offset boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(xmin, xmax) - xmin boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(ymin, ymax) - ymin # Rescale relative coords if is_box_rel: boxes[:, [0, 2]] /= xmax - xmin boxes[:, [1, 3]] /= ymax - ymin # Remove 0-sized boxes is_valid = np.logical_and(boxes[:, 1] < boxes[:, 3], boxes[:, 0] < boxes[:, 2]) return boxes[is_valid] def expand_line(line: np.ndarray, target_shape: Tuple[int, int]) -> Tuple[float, float]: """Expands a 2-point line, so that the first is on the edge. In other terms, we extend the line in the same direction until we meet one of the edges. Args: line: array of shape (2, 2) of the point supposed to be on one edge, and the shadow tip. target_shape: the desired mask shape Returns: 2D coordinates of the first point once we extended the line (on one of the edges) """ if any(coord == 0 or coord == size for coord, size in zip(line[0], target_shape[::-1])): return line[0] # Get the line equation _tmp = line[1] - line[0] _direction = _tmp > 0 _flat = _tmp == 0 # vertical case if _tmp[0] == 0: solutions = [ # y = 0 (line[0, 0], 0), # y = bot (line[0, 0], target_shape[0]), ] # horizontal elif _tmp[1] == 0: solutions = [ # x = 0 (0, line[0, 1]), # x = right (target_shape[1], line[0, 1]), ] else: alpha = _tmp[1] / _tmp[0] beta = line[1, 1] - alpha * line[1, 0] # Solve it for edges solutions = [ # x = 0 (0, beta), # y = 0 (-beta / alpha, 0), # x = right (target_shape[1], alpha * target_shape[1] + beta), # y = bot ((target_shape[0] - beta) / alpha, target_shape[0]), ] for point in solutions: # Skip points that are out of the final image if any(val < 0 or val > size for val, size in zip(point, target_shape[::-1])): continue if all( val == ref if _same else (val < ref if _dir else val > ref) for val, ref, _dir, _same in zip(point, line[1], _direction, _flat) ): return point raise ValueError def create_shadow_mask( target_shape: Tuple[int, int], min_base_width=0.3, max_tip_width=0.5, max_tip_height=0.3, ) -> np.ndarray: """Creates a random shadow mask Args: target_shape: the target shape (H, W) min_base_width: the relative minimum shadow base width max_tip_width: the relative maximum shadow tip width max_tip_height: the relative maximum shadow tip height Returns: a numpy ndarray of shape (H, W, 1) with values in the range [0, 1] """ # Default base is top _params = np.random.rand(6) base_width = min_base_width + (1 - min_base_width) * _params[0] base_center = base_width / 2 + (1 - base_width) * _params[1] # Ensure tip width is smaller for shadow consistency tip_width = min(_params[2] * base_width * target_shape[0] / target_shape[1], max_tip_width) tip_center = tip_width / 2 + (1 - tip_width) * _params[3] tip_height = _params[4] * max_tip_height tip_mid = tip_height / 2 + (1 - tip_height) * _params[5] _order = tip_center < base_center contour: np.ndarray = np.array( [ [base_center - base_width / 2, 0], [base_center + base_width / 2, 0], [tip_center + tip_width / 2, tip_mid + tip_height / 2 if _order else tip_mid - tip_height / 2], [tip_center - tip_width / 2, tip_mid - tip_height / 2 if _order else tip_mid + tip_height / 2], ], dtype=np.float32, ) # Convert to absolute coords abs_contour: np.ndarray = ( np.stack( (contour[:, 0] * target_shape[1], contour[:, 1] * target_shape[0]), axis=-1, ) .round() .astype(np.int32) ) # Direction _params = np.random.rand(1) rotated_contour = ( rotate_abs_geoms( abs_contour[None, ...], 360 * _params[0], target_shape, expand=False, )[0] .round() .astype(np.int32) ) # Check approx quadrant quad_idx = int(_params[0] / 0.25) # Top-bot if quad_idx % 2 == 0: intensity_mask = np.repeat(np.arange(target_shape[0])[:, None], target_shape[1], axis=1) / (target_shape[0] - 1) if quad_idx == 0: intensity_mask = 1 - intensity_mask # Left - right else: intensity_mask = np.repeat(np.arange(target_shape[1])[None, :], target_shape[0], axis=0) / (target_shape[1] - 1) if quad_idx == 1: intensity_mask = 1 - intensity_mask # Expand base final_contour = rotated_contour.copy() final_contour[0] = expand_line(final_contour[[0, 3]], target_shape) final_contour[1] = expand_line(final_contour[[1, 2]], target_shape) # If both base are not on the same side, add a point if not np.any(final_contour[0] == final_contour[1]): corner_x = 0 if max(final_contour[0, 0], final_contour[1, 0]) < target_shape[1] else target_shape[1] corner_y = 0 if max(final_contour[0, 1], final_contour[1, 1]) < target_shape[0] else target_shape[0] corner: np.ndarray = np.array([corner_x, corner_y]) final_contour = np.concatenate((final_contour[:1], corner[None, ...], final_contour[1:]), axis=0) # Direction & rotate mask: np.ndarray = np.zeros((*target_shape, 1), dtype=np.uint8) mask = cv2.fillPoly(mask, [final_contour], (255,), lineType=cv2.LINE_AA)[..., 0] return (mask / 255).astype(np.float32).clip(0, 1) * intensity_mask.astype(np.float32)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import os os.environ["USE_TORCH"] = "1" import argparse import logging import cv2 import matplotlib.pyplot as plt import torch from doctr.io.image import read_img_as_tensor from doctr.models import obj_detection CLASSES = ["__background__", "QR Code", "Barcode", "Logo", "Photo"] CM = [(255, 255, 255), (0, 0, 150), (0, 0, 0), (0, 150, 0), (150, 0, 0)] def plot_predictions(image, boxes, labels): for box, label in zip(boxes, labels): # Bounding box around artefacts cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), CM[label], 2) text_size, _ = cv2.getTextSize(CLASSES[label], cv2.FONT_HERSHEY_SIMPLEX, 2, 2) text_w, text_h = text_size # Filled rectangle above bounding box cv2.rectangle(image, (box[0], box[1]), (box[0] + text_w, box[1] - text_h), CM[label], -1) # Text bearing the name of the artefact detected cv2.putText(image, CLASSES[label], (int(box[0]), int(box[1])), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 3) plt.axis("off") plt.imshow(image) plt.show() @torch.no_grad() def main(args): print(args) model = obj_detection.__dict__[args.arch](pretrained=True, num_classes=5).eval() # GPU if isinstance(args.device, int): if not torch.cuda.is_available(): raise AssertionError("PyTorch cannot access your GPU. Please investigate!") if args.device >= torch.cuda.device_count(): raise ValueError("Invalid device index") # Silent default switch to GPU if available elif torch.cuda.is_available(): args.device = 0 else: logging.warning("No accessible GPU, target device set to CPU.") img = read_img_as_tensor(args.img_path).unsqueeze(0) if torch.cuda.is_available(): torch.cuda.set_device(args.device) model = model.cuda() img = img.cuda() pred = model(img) labels = pred[0]["labels"].detach().cpu().numpy() labels = labels.round().astype(int) boxes = pred[0]["boxes"].detach().cpu().numpy() boxes = boxes.round().astype(int) img = img.cpu().permute(0, 2, 3, 1).numpy()[0].copy() plot_predictions(img, boxes, labels) def parse_args(): parser = argparse.ArgumentParser( description="DocTR artefact detection", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("arch", type=str, help="Artefact detection model to use") parser.add_argument("img_path", type=str, help="path to the image") parser.add_argument("--device", default=None, type=int, help="device") args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() main(args)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import os from doctr.io.elements import KIEDocument os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" import numpy as np from tqdm import tqdm from doctr import datasets from doctr.file_utils import is_tf_available from doctr.models import kie_predictor from doctr.utils.geometry import extract_crops, extract_rcrops from doctr.utils.metrics import LocalizationConfusion, OCRMetric, TextMatch # Enable GPU growth if using TF if is_tf_available(): import tensorflow as tf gpu_devices = tf.config.experimental.list_physical_devices("GPU") if any(gpu_devices): tf.config.experimental.set_memory_growth(gpu_devices[0], True) else: import torch def _pct(val): return "N/A" if val is None else f"{val:.2%}" def main(args): if not args.rotation: args.eval_straight = True predictor = kie_predictor( args.detection, args.recognition, pretrained=True, reco_bs=args.batch_size, assume_straight_pages=not args.rotation, ) if args.img_folder and args.label_file: testset = datasets.OCRDataset( img_folder=args.img_folder, label_file=args.label_file, ) sets = [testset] else: train_set = datasets.__dict__[args.dataset](train=True, download=True, use_polygons=not args.eval_straight) val_set = datasets.__dict__[args.dataset](train=False, download=True, use_polygons=not args.eval_straight) sets = [train_set, val_set] reco_metric = TextMatch() if args.mask_shape: det_metric = LocalizationConfusion( iou_thresh=args.iou, use_polygons=not args.eval_straight, mask_shape=(args.mask_shape, args.mask_shape) ) e2e_metric = OCRMetric( iou_thresh=args.iou, use_polygons=not args.eval_straight, mask_shape=(args.mask_shape, args.mask_shape) ) else: det_metric = LocalizationConfusion(iou_thresh=args.iou, use_polygons=not args.eval_straight) e2e_metric = OCRMetric(iou_thresh=args.iou, use_polygons=not args.eval_straight) sample_idx = 0 extraction_fn = extract_crops if args.eval_straight else extract_rcrops for dataset in sets: for page, target in tqdm(dataset): # GT gt_boxes = target["boxes"] gt_labels = target["labels"] if args.img_folder and args.label_file: x, y, w, h = gt_boxes[:, 0], gt_boxes[:, 1], gt_boxes[:, 2], gt_boxes[:, 3] xmin, ymin = np.clip(x - w / 2, 0, 1), np.clip(y - h / 2, 0, 1) xmax, ymax = np.clip(x + w / 2, 0, 1), np.clip(y + h / 2, 0, 1) gt_boxes = np.stack([xmin, ymin, xmax, ymax], axis=-1) # Forward out: KIEDocument if is_tf_available(): out = predictor(page[None, ...]) crops = extraction_fn(page, gt_boxes) reco_out = predictor.reco_predictor(crops) else: with torch.no_grad(): out = predictor(page[None, ...]) # We directly crop on PyTorch tensors, which are in channels_first crops = extraction_fn(page, gt_boxes, channels_last=False) reco_out = predictor.reco_predictor(crops) if len(reco_out): reco_words, _ = zip(*reco_out) else: reco_words = [] # Unpack preds pred_boxes = [] pred_labels = [] for page in out.pages: height, width = page.dimensions for predictions in page.predictions.values(): for prediction in predictions: if not args.rotation: (a, b), (c, d) = prediction.geometry else: ( [x1, y1], [x2, y2], [x3, y3], [x4, y4], ) = prediction.geometry if gt_boxes.dtype == int: if not args.rotation: pred_boxes.append([int(a * width), int(b * height), int(c * width), int(d * height)]) else: if args.eval_straight: pred_boxes.append( [ int(width * min(x1, x2, x3, x4)), int(height * min(y1, y2, y3, y4)), int(width * max(x1, x2, x3, x4)), int(height * max(y1, y2, y3, y4)), ] ) else: pred_boxes.append( [ [int(x1 * width), int(y1 * height)], [int(x2 * width), int(y2 * height)], [int(x3 * width), int(y3 * height)], [int(x4 * width), int(y4 * height)], ] ) else: if not args.rotation: pred_boxes.append([a, b, c, d]) else: if args.eval_straight: pred_boxes.append( [ min(x1, x2, x3, x4), min(y1, y2, y3, y4), max(x1, x2, x3, x4), max(y1, y2, y3, y4), ] ) else: pred_boxes.append([[x1, y1], [x2, y2], [x3, y3], [x4, y4]]) pred_labels.append(prediction.value) # Update the metric det_metric.update(gt_boxes, np.asarray(pred_boxes)) reco_metric.update(gt_labels, reco_words) e2e_metric.update(gt_boxes, np.asarray(pred_boxes), gt_labels, pred_labels) # Loop break sample_idx += 1 if isinstance(args.samples, int) and args.samples == sample_idx: break if isinstance(args.samples, int) and args.samples == sample_idx: break # Unpack aggregated metrics print( f"Model Evaluation (model= {args.detection} + {args.recognition}, " f"dataset={'OCRDataset' if args.img_folder else args.dataset})" ) recall, precision, mean_iou = det_metric.summary() print(f"Text Detection - Recall: {_pct(recall)}, Precision: {_pct(precision)}, Mean IoU: {_pct(mean_iou)}") acc = reco_metric.summary() print(f"Text Recognition - Accuracy: {_pct(acc['raw'])} (unicase: {_pct(acc['unicase'])})") recall, precision, mean_iou = e2e_metric.summary() print( f"KIE OCR - Recall: {_pct(recall['raw'])} (unicase: {_pct(recall['unicase'])}), " f"Precision: {_pct(precision['raw'])} (unicase: {_pct(precision['unicase'])}), Mean IoU: {_pct(mean_iou)}" ) def parse_args(): import argparse parser = argparse.ArgumentParser( description="DocTR end-to-end evaluation", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("detection", type=str, help="Text detection model to use for analysis") parser.add_argument("recognition", type=str, help="Text recognition model to use for analysis") parser.add_argument("--iou", type=float, default=0.5, help="IoU threshold to match a pair of boxes") parser.add_argument("--dataset", type=str, default="FUNSD", help="choose a dataset: FUNSD, CORD") parser.add_argument("--img_folder", type=str, default=None, help="Only for local sets, path to images") parser.add_argument("--label_file", type=str, default=None, help="Only for local sets, path to labels") parser.add_argument("--rotation", dest="rotation", action="store_true", help="run rotated OCR + postprocessing") parser.add_argument("-b", "--batch_size", type=int, default=32, help="batch size for recognition") parser.add_argument("--mask_shape", type=int, default=None, help="mask shape for mask iou (only for rotation)") parser.add_argument("--samples", type=int, default=None, help="evaluate only on the N first samples") parser.add_argument( "--eval-straight", action="store_true", help="evaluate on straight pages with straight bbox (to use the quick and light metric)", ) args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() main(args)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. """ Based on https://github.com/pytorch/pytorch/blob/master/torch/utils/collect_env.py This script outputs relevant system environment info Run it with `python collect_env.py`. """ from __future__ import absolute_import, division, print_function, unicode_literals import locale import os import re import subprocess import sys from collections import namedtuple os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" try: import doctr DOCTR_AVAILABLE = True except (ImportError, NameError, AttributeError, OSError): DOCTR_AVAILABLE = False try: import tensorflow as tf TF_AVAILABLE = True except (ImportError, NameError, AttributeError, OSError): TF_AVAILABLE = False try: import torch TORCH_AVAILABLE = True except (ImportError, NameError, AttributeError, OSError): TORCH_AVAILABLE = False try: import torchvision TV_AVAILABLE = True except (ImportError, NameError, AttributeError, OSError): TV_AVAILABLE = False try: import cv2 CV2_AVAILABLE = True except (ImportError, NameError, AttributeError, OSError): CV2_AVAILABLE = False PY3 = sys.version_info >= (3, 0) # System Environment Information SystemEnv = namedtuple( "SystemEnv", [ "doctr_version", "tf_version", "torch_version", "torchvision_version", "cv2_version", "os", "python_version", "is_cuda_available_tf", "is_cuda_available_torch", "cuda_runtime_version", "nvidia_driver_version", "nvidia_gpu_models", "cudnn_version", ], ) def run(command): """Returns (return-code, stdout, stderr)""" p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) output, err = p.communicate() rc = p.returncode if PY3: enc = locale.getpreferredencoding() output = output.decode(enc) err = err.decode(enc) return rc, output.strip(), err.strip() def run_and_read_all(run_lambda, command): """Runs command using run_lambda; reads and returns entire output if rc is 0""" rc, out, _ = run_lambda(command) if rc != 0: return None return out def run_and_parse_first_match(run_lambda, command, regex): """Runs command using run_lambda, returns the first regex match if it exists""" rc, out, _ = run_lambda(command) if rc != 0: return None match = re.search(regex, out) if match is None: return None return match.group(1) def get_nvidia_driver_version(run_lambda): if get_platform() == "darwin": cmd = "kextstat | grep -i cuda" return run_and_parse_first_match(run_lambda, cmd, r"com[.]nvidia[.]CUDA [(](.*?)[)]") smi = get_nvidia_smi() return run_and_parse_first_match(run_lambda, smi, r"Driver Version: (.*?) ") def get_gpu_info(run_lambda): if get_platform() == "darwin": if TF_AVAILABLE and any(tf.config.list_physical_devices("GPU")): return tf.config.list_physical_devices("GPU")[0].name return None smi = get_nvidia_smi() uuid_regex = re.compile(r" \(UUID: .+?\)") rc, out, _ = run_lambda(smi + " -L") if rc != 0: return None # Anonymize GPUs by removing their UUID return re.sub(uuid_regex, "", out) def get_running_cuda_version(run_lambda): return run_and_parse_first_match(run_lambda, "nvcc --version", r"release .+ V(.*)") def get_cudnn_version(run_lambda): """This will return a list of libcudnn.so; it's hard to tell which one is being used""" if get_platform() == "win32": cudnn_cmd = 'where /R "%CUDA_PATH%\\bin" cudnn*.dll' elif get_platform() == "darwin": # CUDA libraries and drivers can be found in /usr/local/cuda/. See # https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#install # https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installmac # Use CUDNN_LIBRARY when cudnn library is installed elsewhere. cudnn_cmd = "ls /usr/local/cuda/lib/libcudnn*" else: cudnn_cmd = 'ldconfig -p | grep libcudnn | rev | cut -d" " -f1 | rev' rc, out, _ = run_lambda(cudnn_cmd) # find will return 1 if there are permission errors or if not found if len(out) == 0 or (rc != 1 and rc != 0): lib = os.environ.get("CUDNN_LIBRARY") if lib is not None and os.path.isfile(lib): return os.path.realpath(lib) return None files = set() for fn in out.split("\n"): fn = os.path.realpath(fn) # eliminate symbolic links if os.path.isfile(fn): files.add(fn) if not files: return None # Alphabetize the result because the order is non-deterministic otherwise files = list(sorted(files)) if len(files) == 1: return files[0] result = "\n".join(files) return "Probably one of the following:\n{}".format(result) def get_nvidia_smi(): # Note: nvidia-smi is currently available only on Windows and Linux smi = "nvidia-smi" if get_platform() == "win32": smi = '"C:\\Program Files\\NVIDIA Corporation\\NVSMI\\%s"' % smi return smi def get_platform(): if sys.platform.startswith("linux"): return "linux" elif sys.platform.startswith("win32"): return "win32" elif sys.platform.startswith("cygwin"): return "cygwin" elif sys.platform.startswith("darwin"): return "darwin" else: return sys.platform def get_mac_version(run_lambda): return run_and_parse_first_match(run_lambda, "sw_vers -productVersion", r"(.*)") def get_windows_version(run_lambda): return run_and_read_all(run_lambda, "wmic os get Caption | findstr /v Caption") def get_lsb_version(run_lambda): return run_and_parse_first_match(run_lambda, "lsb_release -a", r"Description:\t(.*)") def check_release_file(run_lambda): return run_and_parse_first_match(run_lambda, "cat /etc/*-release", r'PRETTY_NAME="(.*)"') def get_os(run_lambda): platform = get_platform() if platform == "win32" or platform == "cygwin": return get_windows_version(run_lambda) if platform == "darwin": version = get_mac_version(run_lambda) if version is None: return None return "Mac OSX {}".format(version) if platform == "linux": # Ubuntu/Debian based desc = get_lsb_version(run_lambda) if desc is not None: return desc # Try reading /etc/*-release desc = check_release_file(run_lambda) if desc is not None: return desc return platform # Unknown platform return platform def get_env_info(): run_lambda = run doctr_str = doctr.__version__ if DOCTR_AVAILABLE else "N/A" if TF_AVAILABLE: tf_str = tf.__version__ tf_cuda_available_str = any(tf.config.list_physical_devices("GPU")) else: tf_str = tf_cuda_available_str = "N/A" if TORCH_AVAILABLE: torch_str = torch.__version__ torch_cuda_available_str = torch.cuda.is_available() else: torch_str = torch_cuda_available_str = "N/A" tv_str = torchvision.__version__ if TV_AVAILABLE else "N/A" cv2_str = cv2.__version__ if CV2_AVAILABLE else "N/A" return SystemEnv( doctr_version=doctr_str, tf_version=tf_str, torch_version=torch_str, torchvision_version=tv_str, cv2_version=cv2_str, python_version=".".join(map(str, sys.version_info[:3])), is_cuda_available_tf=tf_cuda_available_str, is_cuda_available_torch=torch_cuda_available_str, cuda_runtime_version=get_running_cuda_version(run_lambda), nvidia_gpu_models=get_gpu_info(run_lambda), nvidia_driver_version=get_nvidia_driver_version(run_lambda), cudnn_version=get_cudnn_version(run_lambda), os=get_os(run_lambda), ) env_info_fmt = """ DocTR version: {doctr_version} TensorFlow version: {tf_version} PyTorch version: {torch_version} (torchvision {torchvision_version}) OpenCV version: {cv2_version} OS: {os} Python version: {python_version} Is CUDA available (TensorFlow): {is_cuda_available_tf} Is CUDA available (PyTorch): {is_cuda_available_torch} CUDA runtime version: {cuda_runtime_version} GPU models and configuration: {nvidia_gpu_models} Nvidia driver version: {nvidia_driver_version} cuDNN version: {cudnn_version} """.strip() def pretty_str(envinfo): def replace_nones(dct, replacement="Could not collect"): for key in dct.keys(): if dct[key] is not None: continue dct[key] = replacement return dct def replace_bools(dct, true="Yes", false="No"): for key in dct.keys(): if dct[key] is True: dct[key] = true elif dct[key] is False: dct[key] = false return dct def maybe_start_on_next_line(string): # If `string` is multiline, prepend a \n to it. if string is not None and len(string.split("\n")) > 1: return "\n{}\n".format(string) return string mutable_dict = envinfo._asdict() # If nvidia_gpu_models is multiline, start on the next line mutable_dict["nvidia_gpu_models"] = maybe_start_on_next_line(envinfo.nvidia_gpu_models) # If the machine doesn't have CUDA, report some fields as 'No CUDA' dynamic_cuda_fields = [ "cuda_runtime_version", "nvidia_gpu_models", "nvidia_driver_version", ] all_cuda_fields = dynamic_cuda_fields + ["cudnn_version"] all_dynamic_cuda_fields_missing = all(mutable_dict[field] is None for field in dynamic_cuda_fields) if TF_AVAILABLE and not any(tf.config.list_physical_devices("GPU")) and all_dynamic_cuda_fields_missing: for field in all_cuda_fields: mutable_dict[field] = "No CUDA" # Replace True with Yes, False with No mutable_dict = replace_bools(mutable_dict) # Replace all None objects with 'Could not collect' mutable_dict = replace_nones(mutable_dict) return env_info_fmt.format(**mutable_dict) def get_pretty_env_info(): """Collects environment information for debugging purposes Returns: str: environment information """ return pretty_str(get_env_info()) def main(): print("Collecting environment information...\n") output = get_pretty_env_info() print(output) if __name__ == "__main__": main()
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import argparse import json import os from pathlib import Path from tqdm import tqdm os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" from doctr.file_utils import is_tf_available from doctr.io import DocumentFile from doctr.models import detection, ocr_predictor # Enable GPU growth if using TF if is_tf_available(): import tensorflow as tf gpu_devices = tf.config.experimental.list_physical_devices("GPU") if any(gpu_devices): tf.config.experimental.set_memory_growth(gpu_devices[0], True) IMAGE_FILE_EXTENSIONS = [".jpeg", ".jpg", ".png", ".tif", ".tiff", ".bmp"] OTHER_EXTENSIONS = [".pdf"] def _process_file(model, file_path: Path, out_format: str) -> None: if out_format not in ["txt", "json", "xml"]: raise ValueError(f"Unsupported output format: {out_format}") if os.path.splitext(file_path)[1] in IMAGE_FILE_EXTENSIONS: doc = DocumentFile.from_images([file_path]) elif os.path.splitext(file_path)[1] in OTHER_EXTENSIONS: doc = DocumentFile.from_pdf(file_path) else: print(f"Skip unsupported file type: {file_path}") out = model(doc) if out_format == "json": output = json.dumps(out.export(), indent=2) elif out_format == "txt": output = out.render() elif out_format == "xml": output = out.export_as_xml() path = Path("output").joinpath(file_path.stem + "." + out_format) if out_format == "xml": for i, (xml_bytes, xml_tree) in enumerate(output): path = Path("output").joinpath(file_path.stem + f"_{i}." + out_format) xml_tree.write(path, encoding="utf-8", xml_declaration=True) else: with open(path, "w") as f: f.write(output) def main(args): detection_model = detection.__dict__[args.detection]( pretrained=True, bin_thresh=args.bin_thresh, ) model = ocr_predictor(detection_model, args.recognition, pretrained=True) path = Path(args.path) os.makedirs(name="output", exist_ok=True) if path.is_dir(): to_process = [ f for f in path.iterdir() if str(f).lower().endswith(tuple(IMAGE_FILE_EXTENSIONS + OTHER_EXTENSIONS)) ] for file_path in tqdm(to_process): _process_file(model, file_path, args.format) else: _process_file(model, path, args.format) def parse_args(): parser = argparse.ArgumentParser( description="DocTR text detection", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("path", type=str, help="Path to process: PDF, image, directory") parser.add_argument("--detection", type=str, default="db_resnet50", help="Text detection model to use for analysis") parser.add_argument("--bin-thresh", type=float, default=0.3, help="Binarization threshold for the detection model.") parser.add_argument( "--recognition", type=str, default="crnn_vgg16_bn", help="Text recognition model to use for analysis" ) parser.add_argument("-f", "--format", choices=["txt", "json", "xml"], default="txt", help="Output format") return parser.parse_args() if __name__ == "__main__": parsed_args = parse_args() main(parsed_args)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import os os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" import numpy as np from tqdm import tqdm from doctr import datasets from doctr.file_utils import is_tf_available from doctr.models import ocr_predictor from doctr.utils.geometry import extract_crops, extract_rcrops from doctr.utils.metrics import LocalizationConfusion, OCRMetric, TextMatch # Enable GPU growth if using TF if is_tf_available(): import tensorflow as tf gpu_devices = tf.config.experimental.list_physical_devices("GPU") if any(gpu_devices): tf.config.experimental.set_memory_growth(gpu_devices[0], True) else: import torch def _pct(val): return "N/A" if val is None else f"{val:.2%}" def main(args): if not args.rotation: args.eval_straight = True predictor = ocr_predictor( args.detection, args.recognition, pretrained=True, reco_bs=args.batch_size, assume_straight_pages=not args.rotation, ) if args.img_folder and args.label_file: testset = datasets.OCRDataset( img_folder=args.img_folder, label_file=args.label_file, ) sets = [testset] else: train_set = datasets.__dict__[args.dataset](train=True, download=True, use_polygons=not args.eval_straight) val_set = datasets.__dict__[args.dataset](train=False, download=True, use_polygons=not args.eval_straight) sets = [train_set, val_set] reco_metric = TextMatch() if args.mask_shape: det_metric = LocalizationConfusion( iou_thresh=args.iou, use_polygons=not args.eval_straight, mask_shape=(args.mask_shape, args.mask_shape) ) e2e_metric = OCRMetric( iou_thresh=args.iou, use_polygons=not args.eval_straight, mask_shape=(args.mask_shape, args.mask_shape) ) else: det_metric = LocalizationConfusion(iou_thresh=args.iou, use_polygons=not args.eval_straight) e2e_metric = OCRMetric(iou_thresh=args.iou, use_polygons=not args.eval_straight) sample_idx = 0 extraction_fn = extract_crops if args.eval_straight else extract_rcrops for dataset in sets: for page, target in tqdm(dataset): # GT gt_boxes = target["boxes"] gt_labels = target["labels"] if args.img_folder and args.label_file: x, y, w, h = gt_boxes[:, 0], gt_boxes[:, 1], gt_boxes[:, 2], gt_boxes[:, 3] xmin, ymin = np.clip(x - w / 2, 0, 1), np.clip(y - h / 2, 0, 1) xmax, ymax = np.clip(x + w / 2, 0, 1), np.clip(y + h / 2, 0, 1) gt_boxes = np.stack([xmin, ymin, xmax, ymax], axis=-1) # Forward if is_tf_available(): out = predictor(page[None, ...]) crops = extraction_fn(page, gt_boxes) reco_out = predictor.reco_predictor(crops) else: with torch.no_grad(): out = predictor(page[None, ...]) # We directly crop on PyTorch tensors, which are in channels_first crops = extraction_fn(page, gt_boxes, channels_last=False) reco_out = predictor.reco_predictor(crops) if len(reco_out): reco_words, _ = zip(*reco_out) else: reco_words = [] # Unpack preds pred_boxes = [] pred_labels = [] for page in out.pages: height, width = page.dimensions for block in page.blocks: for line in block.lines: for word in line.words: if not args.rotation: (a, b), (c, d) = word.geometry else: ( [x1, y1], [x2, y2], [x3, y3], [x4, y4], ) = word.geometry if gt_boxes.dtype == int: if not args.rotation: pred_boxes.append( [int(a * width), int(b * height), int(c * width), int(d * height)] ) else: if args.eval_straight: pred_boxes.append( [ int(width * min(x1, x2, x3, x4)), int(height * min(y1, y2, y3, y4)), int(width * max(x1, x2, x3, x4)), int(height * max(y1, y2, y3, y4)), ] ) else: pred_boxes.append( [ [int(x1 * width), int(y1 * height)], [int(x2 * width), int(y2 * height)], [int(x3 * width), int(y3 * height)], [int(x4 * width), int(y4 * height)], ] ) else: if not args.rotation: pred_boxes.append([a, b, c, d]) else: if args.eval_straight: pred_boxes.append( [ min(x1, x2, x3, x4), min(y1, y2, y3, y4), max(x1, x2, x3, x4), max(y1, y2, y3, y4), ] ) else: pred_boxes.append([[x1, y1], [x2, y2], [x3, y3], [x4, y4]]) pred_labels.append(word.value) # Update the metric det_metric.update(gt_boxes, np.asarray(pred_boxes)) reco_metric.update(gt_labels, reco_words) e2e_metric.update(gt_boxes, np.asarray(pred_boxes), gt_labels, pred_labels) # Loop break sample_idx += 1 if isinstance(args.samples, int) and args.samples == sample_idx: break if isinstance(args.samples, int) and args.samples == sample_idx: break # Unpack aggregated metrics print( f"Model Evaluation (model= {args.detection} + {args.recognition}, " f"dataset={'OCRDataset' if args.img_folder else args.dataset})" ) recall, precision, mean_iou = det_metric.summary() print(f"Text Detection - Recall: {_pct(recall)}, Precision: {_pct(precision)}, Mean IoU: {_pct(mean_iou)}") acc = reco_metric.summary() print(f"Text Recognition - Accuracy: {_pct(acc['raw'])} (unicase: {_pct(acc['unicase'])})") recall, precision, mean_iou = e2e_metric.summary() print( f"OCR - Recall: {_pct(recall['raw'])} (unicase: {_pct(recall['unicase'])}), " f"Precision: {_pct(precision['raw'])} (unicase: {_pct(precision['unicase'])}), Mean IoU: {_pct(mean_iou)}" ) def parse_args(): import argparse parser = argparse.ArgumentParser( description="DocTR end-to-end evaluation", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("detection", type=str, help="Text detection model to use for analysis") parser.add_argument("recognition", type=str, help="Text recognition model to use for analysis") parser.add_argument("--iou", type=float, default=0.5, help="IoU threshold to match a pair of boxes") parser.add_argument("--dataset", type=str, default="FUNSD", help="choose a dataset: FUNSD, CORD") parser.add_argument("--img_folder", type=str, default=None, help="Only for local sets, path to images") parser.add_argument("--label_file", type=str, default=None, help="Only for local sets, path to labels") parser.add_argument("--rotation", dest="rotation", action="store_true", help="run rotated OCR + postprocessing") parser.add_argument("-b", "--batch_size", type=int, default=32, help="batch size for recognition") parser.add_argument("--mask_shape", type=int, default=None, help="mask shape for mask iou (only for rotation)") parser.add_argument("--samples", type=int, default=None, help="evaluate only on the N first samples") parser.add_argument( "--eval-straight", action="store_true", help="evaluate on straight pages with straight bbox (to use the quick and light metric)", ) args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() main(args)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import os os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" from doctr.file_utils import is_tf_available from doctr.io import DocumentFile from doctr.models import ocr_predictor # Enable GPU growth if using TF if is_tf_available(): import tensorflow as tf gpu_devices = tf.config.experimental.list_physical_devices("GPU") if any(gpu_devices): tf.config.experimental.set_memory_growth(gpu_devices[0], True) def main(args): model = ocr_predictor(args.detection, args.recognition, pretrained=True) if args.path.lower().endswith(".pdf"): doc = DocumentFile.from_pdf(args.path) else: doc = DocumentFile.from_images(args.path) out = model(doc) for page, img in zip(out.pages, doc): page.show(img, block=not args.noblock, interactive=not args.static) def parse_args(): import argparse parser = argparse.ArgumentParser( description="DocTR end-to-end analysis", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("path", type=str, help="Path to the input document (PDF or image)") parser.add_argument("--detection", type=str, default="db_resnet50", help="Text detection model to use for analysis") parser.add_argument( "--recognition", type=str, default="crnn_vgg16_bn", help="Text recognition model to use for analysis" ) parser.add_argument( "--noblock", dest="noblock", help="Disables blocking visualization. Used only for CI.", action="store_true" ) parser.add_argument("--static", dest="static", help="Switches to static visualization", action="store_true") args = parser.parse_args() return args if __name__ == "__main__": parsed_args = parse_args() main(parsed_args)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. """ Borrowed & adapted from https://github.com/pytorch/vision/blob/main/.github/process_commit.py This script finds the merger responsible for labeling a PR by a commit SHA. It is used by the workflow in '.github/workflows/pr-labels.yml'. If there exists no PR associated with the commit or the PR is properly labeled, this script is a no-op. Note: we ping the merger only, not the reviewers, as the reviewers can sometimes be external to torchvision with no labeling responsibility, so we don't want to bother them. """ from typing import Any, Set, Tuple import requests # For a PR to be properly labeled it should have one primary label and one secondary label # Should specify the type of change PRIMARY_LABELS = { "type: new feature", "type: bug", "type: enhancement", "type: misc", } # Should specify what has been modified SECONDARY_LABELS = { "topic: documentation", "module: datasets", "module: io", "module: models", "module: transforms", "module: utils", "ext: api", "ext: demo", "ext: docs", "ext: notebooks", "ext: references", "ext: scripts", "ext: tests", "topic: build", "topic: ci", "topic: docker", } GH_ORG = "mindee" GH_REPO = "doctr" def query_repo(cmd: str, *, accept) -> Any: response = requests.get(f"https://api.github.com/repos/{GH_ORG}/{GH_REPO}/{cmd}", headers=dict(Accept=accept)) return response.json() def get_pr_merger_and_labels(pr_number: int) -> Tuple[str, Set[str]]: # See https://docs.github.com/en/rest/reference/pulls#get-a-pull-request data = query_repo(f"pulls/{pr_number}", accept="application/vnd.github.v3+json") merger = data.get("merged_by", {}).get("login") labels = {label["name"] for label in data["labels"]} return merger, labels def main(args): merger, labels = get_pr_merger_and_labels(args.pr) is_properly_labeled = bool(PRIMARY_LABELS.intersection(labels) and SECONDARY_LABELS.intersection(labels)) if isinstance(merger, str) and not is_properly_labeled: print(f"@{merger}") def parse_args(): import argparse parser = argparse.ArgumentParser( description="PR label checker", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("pr", type=int, help="PR number") args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() main(args)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import os import doctr PROJECT_NAME: str = "docTR API template" PROJECT_DESCRIPTION: str = "Template API for Optical Character Recognition" VERSION: str = doctr.__version__ DEBUG: bool = os.environ.get("DEBUG", "") != "False"
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import tensorflow as tf gpu_devices = tf.config.experimental.list_physical_devices("GPU") if any(gpu_devices): tf.config.experimental.set_memory_growth(gpu_devices[0], True) from doctr.models import kie_predictor, ocr_predictor predictor = ocr_predictor(pretrained=True) det_predictor = predictor.det_predictor reco_predictor = predictor.reco_predictor kie_predictor = kie_predictor(pretrained=True)
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from typing import Tuple from pydantic import BaseModel, Field # Recognition output class RecognitionOut(BaseModel): value: str = Field(..., example="Hello") class DetectionOut(BaseModel): box: Tuple[float, float, float, float] class OCROut(RecognitionOut, DetectionOut): pass
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. import time from fastapi import FastAPI, Request from fastapi.openapi.utils import get_openapi from app import config as cfg from app.routes import detection, kie, ocr, recognition app = FastAPI(title=cfg.PROJECT_NAME, description=cfg.PROJECT_DESCRIPTION, debug=cfg.DEBUG, version=cfg.VERSION) # Routing app.include_router(recognition.router, prefix="/recognition", tags=["recognition"]) app.include_router(detection.router, prefix="/detection", tags=["detection"]) app.include_router(ocr.router, prefix="/ocr", tags=["ocr"]) app.include_router(kie.router, prefix="/kie", tags=["kie"]) # Middleware @app.middleware("http") async def add_process_time_header(request: Request, call_next): start_time = time.time() response = await call_next(request) process_time = time.time() - start_time response.headers["X-Process-Time"] = str(process_time) return response # Docs def custom_openapi(): if app.openapi_schema: return app.openapi_schema openapi_schema = get_openapi( title=cfg.PROJECT_NAME, version=cfg.VERSION, description=cfg.PROJECT_DESCRIPTION, routes=app.routes, ) app.openapi_schema = openapi_schema return app.openapi_schema app.openapi = custom_openapi
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from fastapi import APIRouter, File, UploadFile, status from app.schemas import RecognitionOut from app.vision import reco_predictor from doctr.io import decode_img_as_tensor router = APIRouter() @router.post("/", response_model=RecognitionOut, status_code=status.HTTP_200_OK, summary="Perform text recognition") async def text_recognition(file: UploadFile = File(...)): """Runs docTR text recognition model to analyze the input image""" img = decode_img_as_tensor(file.file.read()) out = reco_predictor([img]) return RecognitionOut(value=out[0][0])
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from typing import List from fastapi import APIRouter, File, UploadFile, status from app.schemas import DetectionOut from app.vision import det_predictor from doctr.file_utils import CLASS_NAME from doctr.io import decode_img_as_tensor router = APIRouter() @router.post("/", response_model=List[DetectionOut], status_code=status.HTTP_200_OK, summary="Perform text detection") async def text_detection(file: UploadFile = File(...)): """Runs docTR text detection model to analyze the input image""" img = decode_img_as_tensor(file.file.read()) boxes = det_predictor([img])[0] return [DetectionOut(box=box.tolist()) for box in boxes[CLASS_NAME][:, :-1]]
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from typing import List from fastapi import APIRouter, File, UploadFile, status from app.schemas import OCROut from app.vision import predictor from doctr.io import decode_img_as_tensor router = APIRouter() @router.post("/", response_model=List[OCROut], status_code=status.HTTP_200_OK, summary="Perform OCR") async def perform_ocr(file: UploadFile = File(...)): """Runs docTR OCR model to analyze the input image""" img = decode_img_as_tensor(file.file.read()) out = predictor([img]) return [ OCROut(box=(*word.geometry[0], *word.geometry[1]), value=word.value) for block in out.pages[0].blocks for line in block.lines for word in line.words ]
# Copyright (C) 2021-2023, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from typing import Dict, List from fastapi import APIRouter, File, UploadFile, status from app.schemas import OCROut from app.vision import kie_predictor from doctr.io import decode_img_as_tensor router = APIRouter() @router.post("/", response_model=Dict[str, List[OCROut]], status_code=status.HTTP_200_OK, summary="Perform KIE") async def perform_kie(file: UploadFile = File(...)): """Runs docTR KIE model to analyze the input image""" img = decode_img_as_tensor(file.file.read()) out = kie_predictor([img]) return { class_name: [ OCROut(box=(*prediction.geometry[0], *prediction.geometry[1]), value=prediction.value) for prediction in out.pages[0].predictions[class_name] ] for class_name in out.pages[0].predictions.keys() }
import pytest_asyncio import requests from httpx import AsyncClient from app.main import app @pytest_asyncio.fixture(scope="session") def mock_recognition_image(tmpdir_factory): url = "https://user-images.githubusercontent.com/76527547/117133599-c073fa00-ada4-11eb-831b-412de4d28341.jpeg" return requests.get(url).content @pytest_asyncio.fixture(scope="session") def mock_detection_image(tmpdir_factory): url = "https://user-images.githubusercontent.com/76527547/117319856-fc35bf00-ae8b-11eb-9b51-ca5aba673466.jpg" return requests.get(url).content @pytest_asyncio.fixture(scope="function") async def test_app_asyncio(): # for httpx>=20, follow_redirects=True (cf. https://github.com/encode/httpx/releases/tag/0.20.0) async with AsyncClient(app=app, base_url="http://test", follow_redirects=True) as ac: yield ac # testing happens here
import pytest @pytest.mark.asyncio async def test_text_recognition(test_app_asyncio, mock_recognition_image): response = await test_app_asyncio.post("/recognition", files={"file": mock_recognition_image}) assert response.status_code == 200 assert response.json() == {"value": "invite"}
import numpy as np import pytest from scipy.optimize import linear_sum_assignment from doctr.utils.metrics import box_iou @pytest.mark.asyncio async def test_text_detection(test_app_asyncio, mock_detection_image): response = await test_app_asyncio.post("/detection", files={"file": mock_detection_image}) assert response.status_code == 200 json_response = response.json() gt_boxes = np.array([[1240, 430, 1355, 470], [1360, 430, 1495, 470]], dtype=np.float32) gt_boxes[:, [0, 2]] = gt_boxes[:, [0, 2]] / 1654 gt_boxes[:, [1, 3]] = gt_boxes[:, [1, 3]] / 2339 # Check that IoU with GT if reasonable assert isinstance(json_response, list) and len(json_response) == gt_boxes.shape[0] pred_boxes = np.array([elt["box"] for elt in json_response]) iou_mat = box_iou(gt_boxes, pred_boxes) gt_idxs, pred_idxs = linear_sum_assignment(-iou_mat) is_kept = iou_mat[gt_idxs, pred_idxs] >= 0.8 assert gt_idxs[is_kept].shape[0] == gt_boxes.shape[0]
import numpy as np import pytest from scipy.optimize import linear_sum_assignment from doctr.utils.metrics import box_iou @pytest.mark.asyncio async def test_perform_ocr(test_app_asyncio, mock_detection_image): response = await test_app_asyncio.post("/ocr", files={"file": mock_detection_image}) assert response.status_code == 200 json_response = response.json() gt_boxes = np.array([[1240, 430, 1355, 470], [1360, 430, 1495, 470]], dtype=np.float32) gt_boxes[:, [0, 2]] = gt_boxes[:, [0, 2]] / 1654 gt_boxes[:, [1, 3]] = gt_boxes[:, [1, 3]] / 2339 gt_labels = ["Hello", "world!"] # Check that IoU with GT if reasonable assert isinstance(json_response, list) and len(json_response) == gt_boxes.shape[0] pred_boxes = np.array([elt["box"] for elt in json_response]) pred_labels = np.array([elt["value"] for elt in json_response]) iou_mat = box_iou(gt_boxes, pred_boxes) gt_idxs, pred_idxs = linear_sum_assignment(-iou_mat) is_kept = iou_mat[gt_idxs, pred_idxs] >= 0.8 gt_idxs, pred_idxs = gt_idxs[is_kept], pred_idxs[is_kept] assert gt_idxs.shape[0] == gt_boxes.shape[0] assert all(gt_labels[gt_idx] == pred_labels[pred_idx] for gt_idx, pred_idx in zip(gt_idxs, pred_idxs))
import numpy as np import pytest from scipy.optimize import linear_sum_assignment from doctr.utils.metrics import box_iou @pytest.mark.asyncio async def test_perform_kie(test_app_asyncio, mock_detection_image): response = await test_app_asyncio.post("/kie", files={"file": mock_detection_image}) assert response.status_code == 200 json_response = response.json() gt_boxes = np.array([[1240, 430, 1355, 470], [1360, 430, 1495, 470]], dtype=np.float32) gt_boxes[:, [0, 2]] = gt_boxes[:, [0, 2]] / 1654 gt_boxes[:, [1, 3]] = gt_boxes[:, [1, 3]] / 2339 gt_labels = ["Hello", "world!"] # Check that IoU with GT if reasonable assert isinstance(json_response, dict) and len(list(json_response.values())[0]) == gt_boxes.shape[0] pred_boxes = np.array([elt["box"] for json_out in json_response.values() for elt in json_out]) pred_labels = np.array([elt["value"] for json_out in json_response.values() for elt in json_out]) iou_mat = box_iou(gt_boxes, pred_boxes) gt_idxs, pred_idxs = linear_sum_assignment(-iou_mat) is_kept = iou_mat[gt_idxs, pred_idxs] >= 0.8 gt_idxs, pred_idxs = gt_idxs[is_kept], pred_idxs[is_kept] assert gt_idxs.shape[0] == gt_boxes.shape[0] assert all(gt_labels[gt_idx] == pred_labels[pred_idx] for gt_idx, pred_idx in zip(gt_idxs, pred_idxs))
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # -------------------------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function import setuptools setuptools.setup( name="tensorboard_plugin_torch_profiler", version="0.1.0", description="PyTorch Profiler TensorBoard Plugin", packages=setuptools.find_packages(), package_data={ "tensorboard_plugin_torch_profiler": ["static/**"], }, install_requires=[ "tensorboard", "pandas" ], entry_points={ "tensorboard_plugins": [ "torch_profiler = tensorboard_plugin_torch_profiler.plugin:TorchProfilerPlugin", ], }, )
import unittest import math from tensorboard_plugin_torch_profiler.profiler.overall_parser import ( merge_ranges, subtract_ranges_lists, intersection_ranges_lists, get_ranges_sum ) def check_ranges_equal(ranges1, ranges2): if len(ranges1) != len(ranges2): return False for i in range(len(ranges1)): if ranges1[i][0] != ranges2[i][0] or ranges1[i][1] != ranges2[i][1]: return False return True class TestOverallParser(unittest.TestCase): def test_merge_ranges(self): src_ranges = [(1.1, 2.2), (1.5, 2.3), (3.3, 3.9), (3.5, 3.6), (3.7, 3.8), (4.1, 4.2)] expected_ranges = [(1.1, 2.3), (3.3, 3.9), (4.1, 4.2)] dst_ranges = merge_ranges(src_ranges, True) is_equal = check_ranges_equal(dst_ranges, expected_ranges) self.assertTrue(is_equal) def test_subtract_ranges_lists(self): ranges1 = [(1.1, 2.2), (3.3, 4.4), (5.5, 6.6)] ranges2 = [(0, 0.1), (1.0, 1.4), (1.5, 1.6), (1.9, 3.4), (4.3, 4.6)] expected_ranges = [(1.4, 1.5), (1.6, 1.9), (3.4, 4.3), (5.5, 6.6)] dst_ranges = subtract_ranges_lists(ranges1, ranges2) is_equal = check_ranges_equal(dst_ranges, expected_ranges) self.assertTrue(is_equal) def test_intersection_ranges_lists(self): ranges1 = [(1.1, 2.2), (3.3, 4.4), (5.5, 6.6)] ranges2 = [(0, 0.1), (1.0, 1.4), (1.5, 1.6), (1.9, 3.4), (4.3, 4.6)] expected_ranges = [(1.1, 1.4), (1.5, 1.6), (1.9, 2.2), (3.3, 3.4), (4.3, 4.4)] dst_ranges = intersection_ranges_lists(ranges1, ranges2) is_equal = check_ranges_equal(dst_ranges, expected_ranges) self.assertTrue(is_equal) def test_get_ranges_sum(self): ranges = [(1.1, 2.2), (3.3, 4.4), (5.5, 6.6)] expected_sum = 3.3 dst_sum = get_ranges_sum(ranges) self.assertTrue(math.isclose(dst_sum, expected_sum)) if __name__ == '__main__': unittest.main()
import json import unittest import tensorboard_plugin_torch_profiler.profiler.trace as trace from tensorboard_plugin_torch_profiler.profiler.data import RunProfileData SCHEMA_VERSION = 1 WORKER_NAME = "worker0" def parse_json_trace(json_content): trace_json = json.loads(json_content) profile = RunProfileData(WORKER_NAME) parser = trace.get_event_parser(SCHEMA_VERSION) profile.events = [] for data in trace_json: event = parser.parse(data) if event is not None: profile.events.append(event) return profile ''' All the events in json string are only simulation, not actual generated events. We removed the data fields that not used by current version of our profiler, for easy to check correctness and shorter in length. We even renamed the data values such as kernel name or "ts", to simplify the string. ''' class TestProfiler(unittest.TestCase): # A test case including all 7 event categories. def test_all_categories(self): json_content = """ [{ "ph": "X", "cat": "Operator", "name": "enumerate(DataLoader)#_SingleProcessDataLoaderIter.__next__", "pid": 13721, "tid": "123", "ts": 100, "dur": 180, "args": {"Input dims": [], "External id": 2} }, { "ph": "X", "cat": "Operator", "name": "aten::to", "pid": 13721, "tid": "123", "ts": 200, "dur": 60, "args": {"Input dims": [[2, 8, 5], [], [], [], [], [], [], []], "External id": 3} }, { "ph": "X", "cat": "Operator", "name": "aten::nll_loss_backward", "pid": 13721, "tid": "456", "ts": 340, "dur": 70, "args": {"Input dims": [[], [32, 1000], [32], [], [], [], []], "External id": 4} }, { "ph": "X", "cat": "Operator", "name": "ProfilerStep#1", "pid": 13721, "tid": "123", "ts": 50, "dur": 400, "args": {"Input dims": [], "External id": 1} }, { "ph": "X", "cat": "Memcpy", "name": "Memcpy HtoD (Pageable -> Device)", "pid": 0, "tid": "stream 7", "ts": 405, "dur": 10, "args": {"stream": 7, "correlation": 334, "external id": 4} }, { "ph": "X", "cat": "Runtime", "name": "cudaMemcpyAsync", "pid": 13721, "tid": "456", "ts": 360, "dur": 20, "args": {"correlation": 334, "external id": 4} }, { "ph": "X", "cat": "Memset", "name": "Memset (Device)", "pid": 0, "tid": "stream 7", "ts": 420, "dur": 5, "args": {"stream": 7, "correlation": 40344, "external id": 4} }, { "ph": "X", "cat": "Runtime", "name": "cudaMemsetAsync", "pid": 13721, "tid": "456", "ts": 390, "dur": 10, "args": {"correlation": 40344, "external id": 4} }, { "ph": "X", "cat": "Kernel", "name": "void cunn_ClassNLLCriterion_updateGradInput_kernel<float>", "pid": 0, "tid": "stream 7", "ts": 430, "dur": 15, "args": {"correlation": 40348, "external id": 4} }, { "ph": "X", "cat": "Runtime", "name": "cudaLaunchKernel", "pid": 13721, "tid": "456", "ts": 405, "dur": 5, "args": {"correlation": 40348, "external id": 4} }] """ profile = parse_json_trace(json_content) profile.process() self.assertTrue(profile.is_gpu_used) step = profile.steps_costs[0] self.assertEqual(step.kernel_cost, 15) self.assertEqual(step.memcpy_cost, 10) self.assertEqual(step.memset_cost, 5) self.assertEqual(step.runtime_cost, 30) self.assertEqual(step.dataloader_cost, 180) self.assertEqual(step.cpuop_cost, 35) self.assertEqual(step.other_cost, 125) self.assertEqual(len(profile.op_list_groupby_name), 2) self.assertEqual(len(profile.op_list_groupby_name_input), 2) def test_op_list(op_list): op_count = 0 for op_agg in op_list: if op_agg.name == "aten::to": op_count += 1 self.assertEqual(op_agg.input_shape, "[[2, 8, 5], [], [], [], [], [], [], []]") self.assertEqual(op_agg.calls, 1) self.assertEqual(op_agg.host_duration, 60) self.assertEqual(op_agg.device_duration, 0) self.assertEqual(op_agg.self_host_duration, 60) self.assertEqual(op_agg.self_device_duration, 0) if op_agg.name == "aten::nll_loss_backward": op_count += 1 self.assertEqual(op_agg.input_shape, "[[], [32, 1000], [32], [], [], [], []]") self.assertEqual(op_agg.calls, 1) self.assertEqual(op_agg.host_duration, 70) self.assertEqual(op_agg.device_duration, 30) self.assertEqual(op_agg.self_host_duration, 70) self.assertEqual(op_agg.self_device_duration, 30) self.assertEqual(op_count, 2) test_op_list(profile.op_list_groupby_name) test_op_list(profile.op_list_groupby_name_input) self.assertEqual(len(profile.kernel_list_groupby_name_op), 1) self.assertEqual(profile.kernel_stat.shape[0], 1) self.assertEqual(profile.kernel_list_groupby_name_op[0].name, "void cunn_ClassNLLCriterion_updateGradInput_kernel<float>") self.assertEqual(profile.kernel_list_groupby_name_op[0].op_name, "aten::nll_loss_backward") self.assertEqual(profile.kernel_list_groupby_name_op[0].calls, 1) self.assertEqual(profile.kernel_list_groupby_name_op[0].total_duration, 15) self.assertEqual(profile.kernel_list_groupby_name_op[0].min_duration, 15) self.assertEqual(profile.kernel_list_groupby_name_op[0].max_duration, 15) self.assertEqual(profile.kernel_stat.iloc[0]["count"], 1) self.assertEqual(profile.kernel_stat.iloc[0]["sum"], 15) self.assertEqual(profile.kernel_stat.iloc[0]["mean"], 15) self.assertEqual(profile.kernel_stat.iloc[0]["min"], 15) self.assertEqual(profile.kernel_stat.iloc[0]["max"], 15) # Test using external_id to build relationship between Operator and Runtime. # Use external_id to build correlation with its father OperatorNode or ProfilerStepNode. # Because in the case when RuntimeNode has duration 0 and starts at same time as a OperatorNode, # just use interval containing relationship can't tell it is child or brother of the OperatorNode. def test_external_id(self): json_content = """ [{ "ph": "X", "cat": "Operator", "name": "aten::mat_mul", "pid": 13721, "tid": "456", "ts": 100, "dur": 100, "args": {"Input dims": [], "External id": 2} }, { "ph": "X", "cat": "Operator", "name": "aten::mm", "pid": 13721, "tid": "456", "ts": 120, "dur": 70, "args": {"Input dims": [], "External id": 4} }, { "ph": "X", "cat": "Kernel", "name": "void cunn_ClassNLLCriterion_updateGradInput_kernel<float>", "pid": 0, "tid": "stream 7", "ts": 130, "dur": 5, "args": {"correlation": 334, "external id": 4} }, { "ph": "X", "cat": "Runtime", "name": "cudaLaunchKernel", "pid": 13721, "tid": "456", "ts": 120, "dur": 0, "args": {"correlation": 334, "external id": 4} }, { "ph": "X", "cat": "Kernel", "name": "void cunn_ClassNLLCriterion_updateGradInput_kernel<float>", "pid": 0, "tid": "stream 7", "ts": 130, "dur": 6, "args": {"correlation": 335, "external id": 2} }, { "ph": "X", "cat": "Runtime", "name": "cudaLaunchKernel", "pid": 13721, "tid": "456", "ts": 120, "dur": 0, "args": {"correlation": 335, "external id": 2} }, { "ph": "X", "cat": "Kernel", "name": "void cunn_ClassNLLCriterion_updateGradInput_kernel<float>", "pid": 0, "tid": "stream 7", "ts": 130, "dur": 7, "args": {"correlation": 336, "external id": 4} }, { "ph": "X", "cat": "Runtime", "name": "cudaLaunchKernel", "pid": 13721, "tid": "456", "ts": 190, "dur": 0, "args": {"correlation": 336, "external id": 4} }, { "ph": "X", "cat": "Kernel", "name": "void cunn_ClassNLLCriterion_updateGradInput_kernel<float>", "pid": 0, "tid": "stream 7", "ts": 130, "dur": 8, "args": {"correlation": 337, "external id": 2} }, { "ph": "X", "cat": "Runtime", "name": "cudaLaunchKernel", "pid": 13721, "tid": "456", "ts": 190, "dur": 0, "args": {"correlation": 337, "external id": 2} }] """ profile = parse_json_trace(json_content) profile.process() op_count = 0 for op_agg in profile.op_list_groupby_name: if op_agg.name == "aten::mat_mul": op_count += 1 self.assertEqual(op_agg.device_duration, 5 + 6 + 7 + 8) self.assertEqual(op_agg.self_device_duration, 6 + 8) if op_agg.name == "aten::mm": op_count += 1 self.assertEqual(op_agg.device_duration, 5 + 7) self.assertEqual(op_agg.self_device_duration, 5 + 7) self.assertEqual(op_count, 2) # Test operator's father-child relationship when they have same start time or end time. def test_operator_relation(self): # 2 events with same start time. json_content = """ [{ "ph": "X", "cat": "Operator", "name": "aten::mat_mul", "pid": 13721, "tid": "456", "ts": 100, "dur": 100, "args": {"Input dims": [], "External id": 2} }, { "ph": "X", "cat": "Operator", "name": "aten::mm", "pid": 13721, "tid": "456", "ts": 100, "dur": 70, "args": {"Input dims": [], "External id": 4} }] """ profile = parse_json_trace(json_content) profile.process() op_count = 0 for op_agg in profile.op_list_groupby_name: if op_agg.name == "aten::mat_mul": op_count += 1 self.assertEqual(op_agg.self_host_duration, 100 - 70) if op_agg.name == "aten::mm": op_count += 1 self.assertEqual(op_agg.self_host_duration, 70) self.assertEqual(op_count, 2) # 2 events with same end time. json_content = """ [{ "ph": "X", "cat": "Operator", "name": "aten::mat_mul", "pid": 13721, "tid": "456", "ts": 100, "dur": 100, "args": {"Input dims": [], "External id": 2} }, { "ph": "X", "cat": "Operator", "name": "aten::mm", "pid": 13721, "tid": "456", "ts": 130, "dur": 70, "args": {"Input dims": [], "External id": 4} }] """ profile = parse_json_trace(json_content) profile.process() op_count = 0 for op_agg in profile.op_list_groupby_name: if op_agg.name == "aten::mat_mul": op_count += 1 self.assertEqual(op_agg.self_host_duration, 100 - 70) if op_agg.name == "aten::mm": op_count += 1 self.assertEqual(op_agg.self_host_duration, 70) self.assertEqual(op_count, 2) # Test multiple father-child operators with same name. # In this case, all the operators except the top operator should be removed, # and all runtime/kernels belong to the children operators should be attached to the only kept one. # This behavior is to keep consistent with _remove_dup_nodes in torch/autograd/profiler.py. def test_remove_dup_nodes(self): json_content = """ [{ "ph": "X", "cat": "Operator", "name": "aten::mm", "pid": 13721, "tid": "456", "ts": 100, "dur": 100, "args": {"Input dims": [], "External id": 2} }, { "ph": "X", "cat": "Operator", "name": "aten::mm", "pid": 13721, "tid": "456", "ts": 110, "dur": 80, "args": {"Input dims": [], "External id": 3} }, { "ph": "X", "cat": "Operator", "name": "aten::mm", "pid": 13721, "tid": "456", "ts": 120, "dur": 60, "args": {"Input dims": [], "External id": 4} }, { "ph": "X", "cat": "Runtime", "name": "cudaLaunchKernel", "pid": 13721, "tid": "456", "ts": 130, "dur": 20, "args": {"correlation": 335, "external id": 4} }, { "ph": "X", "cat": "Kernel", "name": "void gemmSN_TN_kernel_64addr", "pid": 0, "tid": "stream 7", "ts": 220, "dur": 8, "args": {"correlation": 335, "external id": 4} }] """ profile = parse_json_trace(json_content) profile.process() self.assertEqual(len(profile.op_list_groupby_name), 1) self.assertEqual(profile.op_list_groupby_name[0].self_device_duration, 8) # Test Runtime with "external id" 0. # This kind of Runtime should not be attached to any operator, # and should be included in accumulating device time. def test_top_level_runtime(self): # This operator is different thread with the runtime. json_content = """ [{ "ph": "X", "cat": "Operator", "name": "aten::mm", "pid": 13721, "tid": "123", "ts": 100, "dur": 100, "args": {"Input dims": [], "External id": 2} }, { "ph": "X", "cat": "Runtime", "name": "cudaLaunchKernel", "pid": 13721, "tid": "456", "ts": 130, "dur": 20, "args": {"correlation": 335, "external id": 0} }, { "ph": "X", "cat": "Kernel", "name": "void gemmSN_TN_kernel_64addr", "pid": 0, "tid": "stream 7", "ts": 220, "dur": 8, "args": {"correlation": 335, "external id": 0} }] """ profile = parse_json_trace(json_content) profile.process() self.assertEqual(profile.op_list_groupby_name[0].device_duration, 0) self.assertEqual(profile.op_list_groupby_name[0].self_device_duration, 0) self.assertEqual(profile.kernel_stat.iloc[0]["count"], 1) # Test Runtime directly called in ProfilerStep, not inside any operator. def test_runtime_called_by_profilerstep(self): json_content = """ [{ "ph": "X", "cat": "Operator", "name": "ProfilerStep#1", "pid": 13721, "tid": "456", "ts": 100, "dur": 300, "args": {"Input dims": [], "External id": 2} }, { "ph": "X", "cat": "Runtime", "name": "cudaLaunchKernel", "pid": 13721, "tid": "456", "ts": 130, "dur": 20, "args": {"correlation": 335, "external id": 2} }, { "ph": "X", "cat": "Kernel", "name": "void gemmSN_TN_kernel_64addr", "pid": 0, "tid": "stream 7", "ts": 220, "dur": 8, "args": {"correlation": 335, "external id": 2} }] """ profile = parse_json_trace(json_content) profile.process() step = profile.steps_costs[0] self.assertEqual(step.kernel_cost, 8) self.assertEqual(step.runtime_cost, 20) self.assertEqual(step.cpuop_cost, 0) self.assertEqual(step.other_cost, 300 - 8 - 20) self.assertEqual(len(profile.op_list_groupby_name), 0) # ProfilerStep is not regarded as an operator. self.assertEqual(len(profile.op_list_groupby_name_input), 0) self.assertEqual(profile.kernel_stat.iloc[0]["count"], 1) self.assertEqual(len(profile.kernel_list_groupby_name_op), 1) # Test one Runtime lauch more than one Kernels. # Sometimes such as running Bert using DataParallel mode(1 process, 2GPUs), # one runtime such as cudaLaunchCooperativeKernelMultiDevice could trigger more than one kernel, # each Kernel runs at a seperate GPU card. def test_runtime_launch_multipe_kernels(self): json_content = """ [{ "ph": "X", "cat": "Operator", "name": "Broadcast", "pid": 13721, "tid": "456", "ts": 100, "dur": 300, "args": {"Input dims": [], "External id": 2} }, { "ph": "X", "cat": "Runtime", "name": "cudaLaunchCooperativeKernelMultiDevice", "pid": 13721, "tid": "456", "ts": 130, "dur": 20, "args": {"correlation": 335, "external id": 2} }, { "ph": "X", "cat": "Kernel", "name": "ncclBroadcastRingLLKernel_copy_i8(ncclColl)", "pid": 0, "tid": "stream 13", "ts": 160, "dur": 120318, "args": {"device": 0, "context": 1, "stream": 13, "correlation": 335, "external id": 2} }, { "ph": "X", "cat": "Kernel", "name": "ncclBroadcastRingLLKernel_copy_i8(ncclColl)", "pid": 0, "tid": "stream 22", "ts": 170, "dur": 132800, "args": {"device": 1, "context": 2, "stream": 22, "correlation": 335, "external id": 2} }] """ profile = parse_json_trace(json_content) profile.process() self.assertEqual(profile.op_list_groupby_name[0].device_duration, 120318 + 132800) self.assertEqual(profile.kernel_stat.iloc[0]["count"], 2) self.assertEqual(len(profile.kernel_list_groupby_name_op), 1) # Test when there is no ProfilerStep#. def test_no_profilerstep(self): json_content = """ [{ "ph": "X", "cat": "Operator", "name": "aten::to", "pid": 13721, "tid": "123", "ts": 100, "dur": 60, "args": {"Input dims": [[2, 8, 5], [], [], [], [], [], [], []], "External id": 3} }, { "ph": "X", "cat": "Operator", "name": "aten::nll_loss_backward", "pid": 13721, "tid": "456", "ts": 300, "dur": 70, "args": {"Input dims": [[], [32, 1000], [32], [], [], [], []], "External id": 4} }, { "ph": "X", "cat": "Kernel", "name": "void cunn_ClassNLLCriterion_updateGradInput_kernel<float>", "pid": 0, "tid": "stream 7", "ts": 320, "dur": 100, "args": {"correlation": 40348, "external id": 4} }, { "ph": "X", "cat": "Runtime", "name": "cudaLaunchKernel", "pid": 13721, "tid": "456", "ts": 310, "dur": 20, "args": {"correlation": 40348, "external id": 4} }] """ profile = parse_json_trace(json_content) profile.process() self.assertTrue(profile.is_gpu_used) self.assertEqual(len(profile.steps_costs), 1) step = profile.steps_costs[0] self.assertEqual(step.kernel_cost, 100) self.assertEqual(step.memcpy_cost, 0) self.assertEqual(step.memset_cost, 0) self.assertEqual(step.runtime_cost, 320 - 310) self.assertEqual(step.dataloader_cost, 0) self.assertEqual(step.cpuop_cost, 60 + (310 - 300)) # If no ProfilerStep, all events will be regarded as a step. self.assertEqual(step.other_cost, 300 - (100 + 60)) self.assertEqual(step.step_total_cost, (320 + 100) - 100) self.assertEqual(len(profile.op_list_groupby_name), 2) self.assertEqual(len(profile.op_list_groupby_name_input), 2) self.assertEqual(profile.kernel_stat.iloc[0]["count"], 1) self.assertEqual(len(profile.kernel_list_groupby_name_op), 1) def test_op_list(op_list): op_count = 0 for op_agg in op_list: if op_agg.name == "aten::to": op_count += 1 self.assertEqual(op_agg.input_shape, "[[2, 8, 5], [], [], [], [], [], [], []]") self.assertEqual(op_agg.calls, 1) self.assertEqual(op_agg.host_duration, 60) self.assertEqual(op_agg.device_duration, 0) self.assertEqual(op_agg.self_host_duration, 60) self.assertEqual(op_agg.self_device_duration, 0) if op_agg.name == "aten::nll_loss_backward": op_count += 1 self.assertEqual(op_agg.input_shape, "[[], [32, 1000], [32], [], [], [], []]") self.assertEqual(op_agg.calls, 1) self.assertEqual(op_agg.host_duration, 70) self.assertEqual(op_agg.device_duration, 100) self.assertEqual(op_agg.self_host_duration, 70) self.assertEqual(op_agg.self_device_duration, 100) self.assertEqual(op_count, 2) test_op_list(profile.op_list_groupby_name) test_op_list(profile.op_list_groupby_name_input) self.assertEqual(profile.kernel_list_groupby_name_op[0].name, "void cunn_ClassNLLCriterion_updateGradInput_kernel<float>") self.assertEqual(profile.kernel_list_groupby_name_op[0].op_name, "aten::nll_loss_backward") self.assertEqual(profile.kernel_list_groupby_name_op[0].calls, 1) self.assertEqual(profile.kernel_list_groupby_name_op[0].total_duration, 100) self.assertEqual(profile.kernel_list_groupby_name_op[0].min_duration, 100) self.assertEqual(profile.kernel_list_groupby_name_op[0].max_duration, 100) self.assertEqual(profile.kernel_stat.iloc[0]["count"], 1) self.assertEqual(profile.kernel_stat.iloc[0]["sum"], 100) self.assertEqual(profile.kernel_stat.iloc[0]["mean"], 100) self.assertEqual(profile.kernel_stat.iloc[0]["min"], 100) self.assertEqual(profile.kernel_stat.iloc[0]["max"], 100) def test_multiple_profilersteps(self): json_content = """ [{ "ph": "X", "cat": "Operator", "name": "ProfilerStep#1", "pid": 13721, "tid": "123", "ts": 100, "dur": 200, "args": {"Input dims": [], "External id": 1} }, { "ph": "X", "cat": "Operator", "name": "aten::to", "pid": 13721, "tid": "123", "ts": 200, "dur": 60, "args": {"Input dims": [[2, 8, 5], [], [], [], [], [], [], []], "External id": 2} }, { "ph": "X", "cat": "Operator", "name": "ProfilerStep#2", "pid": 13721, "tid": "123", "ts": 350, "dur": 150, "args": {"Input dims": [], "External id": 3} }, { "ph": "X", "cat": "Operator", "name": "aten::mm", "pid": 13721, "tid": "123", "ts": 360, "dur": 50, "args": {"Input dims": [], "External id": 4} }, { "ph": "X", "cat": "Memcpy", "name": "Memcpy HtoD (Pageable -> Device)", "pid": 0, "tid": "stream 7", "ts": 280, "dur": 40, "args": {"stream": 7, "correlation": 334, "external id": 2} }, { "ph": "X", "cat": "Runtime", "name": "cudaMemcpyAsync", "pid": 13721, "tid": "123", "ts": 250, "dur": 5, "args": {"correlation": 334, "external id": 2} }, { "ph": "X", "cat": "Kernel", "name": "void cunn_ClassNLLCriterion_updateGradInput_kernel<float>", "pid": 0, "tid": "stream 7", "ts": 410, "dur": 200, "args": {"correlation": 40348, "external id": 4} }, { "ph": "X", "cat": "Runtime", "name": "cudaLaunchKernel", "pid": 13721, "tid": "123", "ts": 400, "dur": 20, "args": {"correlation": 40348, "external id": 4} }] """ profile = parse_json_trace(json_content) profile.process() self.assertTrue(profile.is_gpu_used) self.assertEqual(len(profile.steps_costs), 2) step = profile.steps_costs[0] self.assertEqual(step.kernel_cost, 0) self.assertEqual(step.memcpy_cost, (100 + 200) - 280) self.assertEqual(step.memset_cost, 0) self.assertEqual(step.runtime_cost, 5) self.assertEqual(step.dataloader_cost, 0) self.assertEqual(step.cpuop_cost, 60 - 5) self.assertEqual(step.other_cost, 200 - 60 - 20) self.assertEqual(step.step_total_cost, 200) # Only the time inside ProfilerStep will count. step = profile.steps_costs[1] self.assertEqual(step.kernel_cost, (350 + 150) - 410) self.assertEqual(step.memcpy_cost, 0) self.assertEqual(step.memset_cost, 0) self.assertEqual(step.runtime_cost, 410 - 400) self.assertEqual(step.dataloader_cost, 0) self.assertEqual(step.cpuop_cost, 400 - 360) self.assertEqual(step.other_cost, 360 - 350) self.assertEqual(step.step_total_cost, 150) # Only the time inside ProfilerStep will count. self.assertEqual(profile.avg_costs.step_total_cost, (200 + 150) / 2) self.assertEqual(len(profile.op_list_groupby_name), 2) self.assertEqual(len(profile.op_list_groupby_name_input), 2) def test_op_list(op_list): op_count = 0 for op_agg in op_list: if op_agg.name == "aten::to": op_count += 1 self.assertEqual(op_agg.input_shape, "[[2, 8, 5], [], [], [], [], [], [], []]") self.assertEqual(op_agg.calls, 1) self.assertEqual(op_agg.host_duration, 60) self.assertEqual(op_agg.device_duration, 40) self.assertEqual(op_agg.self_host_duration, 60) self.assertEqual(op_agg.self_device_duration, 40) if op_agg.name == "aten::mm": op_count += 1 self.assertEqual(op_agg.input_shape, "[]") self.assertEqual(op_agg.calls, 1) self.assertEqual(op_agg.host_duration, 50) self.assertEqual(op_agg.device_duration, 200) self.assertEqual(op_agg.self_host_duration, 50) self.assertEqual(op_agg.self_device_duration, 200) self.assertEqual(op_count, 2) test_op_list(profile.op_list_groupby_name) test_op_list(profile.op_list_groupby_name_input) self.assertEqual(len(profile.kernel_list_groupby_name_op), 1) self.assertEqual(profile.kernel_stat.shape[0], 1) self.assertEqual(profile.kernel_list_groupby_name_op[0].name, "void cunn_ClassNLLCriterion_updateGradInput_kernel<float>") self.assertEqual(profile.kernel_list_groupby_name_op[0].op_name, "aten::mm") self.assertEqual(profile.kernel_list_groupby_name_op[0].calls, 1) self.assertEqual(profile.kernel_list_groupby_name_op[0].total_duration, 200) self.assertEqual(profile.kernel_list_groupby_name_op[0].min_duration, 200) self.assertEqual(profile.kernel_list_groupby_name_op[0].max_duration, 200) self.assertEqual(profile.kernel_stat.iloc[0]["count"], 1) self.assertEqual(profile.kernel_stat.iloc[0]["sum"], 200) self.assertEqual(profile.kernel_stat.iloc[0]["mean"], 200) self.assertEqual(profile.kernel_stat.iloc[0]["min"], 200) self.assertEqual(profile.kernel_stat.iloc[0]["max"], 200) # Test self time and total time on operator with nested operator. def test_self_time(self): def test_external_id(self): json_content = """ [{ "ph": "X", "cat": "Operator", "name": "aten::mat_mul", "pid": 13721, "tid": "456", "ts": 100, "dur": 100, "args": {"Input dims": [], "External id": 2} }, { "ph": "X", "cat": "Operator", "name": "aten::mm", "pid": 13721, "tid": "456", "ts": 120, "dur": 40, "args": {"Input dims": [], "External id": 4} }, { "ph": "X", "cat": "Kernel", "name": "void cunn_ClassNLLCriterion_updateGradInput_kernel<float>", "pid": 0, "tid": "stream 7", "ts": 155, "dur": 20, "args": {"correlation": 334, "external id": 4} }, { "ph": "X", "cat": "Runtime", "name": "cudaLaunchKernel", "pid": 13721, "tid": "456", "ts": 150, "dur": 10, "args": {"correlation": 334, "external id": 4} }, { "ph": "X", "cat": "Kernel", "name": "void cunn_ClassNLLCriterion_updateGradInput_kernel<float>", "pid": 0, "tid": "stream 7", "ts": 210, "dur": 16, "args": {"correlation": 335, "external id": 2} }, { "ph": "X", "cat": "Runtime", "name": "cudaLaunchKernel", "pid": 13721, "tid": "456", "ts": 170, "dur": 25, "args": {"correlation": 335, "external id": 2} }] """ profile = parse_json_trace(json_content) profile.process() op_count = 0 for op_agg in profile.op_list_groupby_name: if op_agg.name == "aten::mat_mul": op_count += 1 self.assertEqual(op_agg.host_duration, 100) self.assertEqual(op_agg.device_duration, 20 + 16) self.assertEqual(op_agg.self_host_duration, 100 - 40) self.assertEqual(op_agg.self_device_duration, 16) if op_agg.name == "aten::mm": op_count += 1 self.assertEqual(op_agg.host_duration, 40) self.assertEqual(op_agg.device_duration, 20) self.assertEqual(op_agg.self_host_duration, 40) self.assertEqual(op_agg.self_device_duration, 20) self.assertEqual(op_count, 2) if __name__ == '__main__': unittest.main()
import os import torch import torch.nn as nn import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import torchvision import torchvision.transforms as T import torchvision.models as models from torch.autograd.profiler import profile model = models.resnet50(pretrained=True) model.cuda() cudnn.benchmark = True transform = T.Compose([T.Resize(256), T.CenterCrop(224), T.ToTensor()]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True, num_workers=0) criterion = nn.CrossEntropyLoss().cuda() optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9) device = torch.device("cuda:0") model.train() with profile(use_cuda=True, use_kineto=True, record_shapes=True) as p: for step, data in enumerate(trainloader, 0): print("step:{}".format(step)) inputs, labels = data[0].to(device=device), data[1].to(device=device) outputs = model(inputs) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() if step >= 5: break try: os.mkdir("result") except Exception: pass p.export_chrome_trace("./result/worker0.pt.trace.json")
import os import torch import torch.nn as nn import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import torchvision import torchvision.transforms as T import torchvision.datasets as datasets import torchvision.models as models import torch.profiler model = models.resnet50(pretrained=True) model.cuda() cudnn.benchmark = True transform = T.Compose([T.Resize(256), T.CenterCrop(224), T.ToTensor()]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True, num_workers=0) criterion = nn.CrossEntropyLoss().cuda() optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9) device = torch.device("cuda:0") model.train() def output_fn(p): try: os.mkdir("result") except Exception as e: pass p.export_chrome_trace("./result/worker0.pt.trace.json") with torch.profiler.profile( activities=[ torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA], schedule=torch.profiler.schedule( wait=2, warmup=3, active=6), on_trace_ready=output_fn, record_shapes=True ) as p: for step, data in enumerate(trainloader, 0): print("step:{}".format(step)) inputs, labels = data[0].to(device=device), data[1].to(device=device) outputs = model(inputs) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() if step + 1 >= 11: break p.step()
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # -------------------------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import OrderedDict class Run(object): """ A profiler run. For visualization purpose only. May contain profiling results from multiple workers. E.g. distributed scenario. """ def __init__(self, name, run_dir): self.name = name self.run_dir = run_dir self.profiles = OrderedDict() @property def workers(self): return list(self.profiles.keys()) @property def views(self): profile = self.get_profile() if profile is None: return None return profile.views def add_profile(self, profile): self.profiles[profile.worker] = profile def get_profile(self, worker=None): if len(self.profiles) == 0: return None if not worker: return next(iter(self.profiles.values())) return self.profiles.get(worker, None) class RunProfile(object): """ Cooked profiling result for a worker. For visualization purpose only. """ def __init__(self, worker): self.worker = worker self.views = [] self.is_gpu_used = False self.overview = None self.operation_pie_by_name = None self.operation_table_by_name = None self.operation_pie_by_name_input = None self.operation_table_by_name_input = None self.kernel_op_table = None self.kernel_pie = None self.kernel_table = None self.trace_file_path = None
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # -------------------------------------------------------------------------- # Entry point for Pytorch TensorBoard plugin package.
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # -------------------------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import namedtuple PLUGIN_NAME = "torch_profiler" TRACE_FILE_SUFFIX = ".pt.trace.json" TRACE_GZIP_FILE_SUFFIX = ".pt.trace.json.gz" MONITOR_RUN_REFRESH_INTERNAL_IN_SECONDS = 10 View = namedtuple("View", "id, name, display_name") OVERALL_VIEW = View(1, "overall", "Overview") OP_VIEW = View(2, "operator", "Operator") KERNEL_VIEW = View(3, "kernel", "Kernel") TRACE_VIEW = View(4, "trace", "Trace")
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # -------------------------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging from . import consts def get_logger(): logger = logging.getLogger(consts.PLUGIN_NAME) logger.setLevel(logging.INFO) return logger def is_chrome_trace_file(path): return path.endswith(consts.TRACE_GZIP_FILE_SUFFIX) or path.endswith(consts.TRACE_FILE_SUFFIX)
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # -------------------------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import multiprocessing import os import threading import time from collections import OrderedDict import werkzeug from tensorboard.plugins import base_plugin from werkzeug import wrappers from . import consts from . import utils from .profiler import RunLoader from .run import Run logger = utils.get_logger() class TorchProfilerPlugin(base_plugin.TBPlugin): """TensorBoard plugin for Torch Profiler.""" plugin_name = consts.PLUGIN_NAME def __init__(self, context): """Instantiates TorchProfilerPlugin. Args: context: A base_plugin.TBContext instance. """ super(TorchProfilerPlugin, self).__init__(context) self.logdir = os.path.abspath(context.logdir) self._is_active = None self._is_active_initialized_event = threading.Event() self._runs = OrderedDict() self._runs_lock = threading.Lock() self._queue = multiprocessing.Queue() monitor_runs = threading.Thread(target=self.monitor_runs, name="monitor_runs", daemon=True) monitor_runs.start() receive_runs = threading.Thread(target=self.receive_runs, name="receive_runs", daemon=True) receive_runs.start() def is_active(self): """Returns whether there is relevant data for the plugin to process. """ self._is_active_initialized_event.wait() return self._is_active def get_plugin_apps(self): return { "/index.js": self.static_file_route, "/main.js": self.static_file_route, "/index.html": self.static_file_route, "/overall.html": self.static_file_route, "/trace_viewer_full.html": self.static_file_route, "/trace_embedding.html": self.static_file_route, "/operator.html": self.static_file_route, "/kernel.html": self.static_file_route, "/runs": self.runs_route, "/views": self.views_route, "/workers": self.workers_route, "/overview": self.overview_route, "/operation": self.operation_pie_route, "/operation/table": self.operation_table_route, "/kernel": self.kernel_pie_route, "/kernel/table": self.kernel_table_route, "/trace": self.trace_route } def frontend_metadata(self): return base_plugin.FrontendMetadata(es_module_path="/index.js") def monitor_runs(self): logger.info("Monitor runs begin") # Set _is_active quickly based on file pattern match, don't wait for data loading self._is_active = any(self._get_run_dirs()) self._is_active_initialized_event.set() touched = set() while True: try: logger.debug("Scan run dir") run_dirs = self._get_run_dirs() # Assume no deletion on run directories, trigger async load if find a new run for name, run_dir in run_dirs: if name not in touched: logger.info("Find run %s under %s", name, run_dir) touched.add(name) # Use multiprocessing to avoid UI stall and reduce data parsing time process = multiprocessing.Process(target=_load_run, args=(self._queue, name, run_dir)) process.daemon = True process.start() except Exception as ex: logger.warning("Failed to scan runs. Exception=%s", ex, exc_info=True) time.sleep(consts.MONITOR_RUN_REFRESH_INTERNAL_IN_SECONDS) def receive_runs(self): while True: run = self._queue.get() if run is None: continue logger.info("Add run %s", run.name) with self._runs_lock: is_new = run.name not in self._runs self._runs[run.name] = run if is_new: self._runs = OrderedDict(sorted(self._runs.items())) # Update is_active if not self._is_active: self._is_active = True def _get_run_dirs(self): """Scan logdir, find PyTorch Profiler run directories. A directory is considered to be a run if it contains 1 or more *.pt.trace.json[.gz]. E.g. there are 2 runs: run1, run2 /run1 /[worker1].pt.trace.json.gz /[worker2].pt.trace.json.gz /run2 /[worker1].pt.trace.json """ for root, _, files in os.walk(self.logdir): for file in files: if utils.is_chrome_trace_file(file): run_dir = os.path.abspath(root) if run_dir == self.logdir: name = os.path.basename(run_dir) else: name = os.path.relpath(run_dir, self.logdir) yield name, run_dir break def get_run(self, name) -> Run: with self._runs_lock: return self._runs.get(name, None) @wrappers.Request.application def runs_route(self, request): with self._runs_lock: names = list(self._runs.keys()) return self.respond_as_json(names) @wrappers.Request.application def views_route(self, request): name = request.args.get("run") run = self.get_run(name) views = sorted(run.views, key=lambda x: x.id) views_list = [] for view in views: views_list.append(view.display_name) return self.respond_as_json(views_list) @wrappers.Request.application def workers_route(self, request): name = request.args.get("run") run = self.get_run(name) return self.respond_as_json(run.workers) @wrappers.Request.application def overview_route(self, request): name = request.args.get("run") worker = request.args.get("worker") run = self.get_run(name) profile = run.get_profile(worker) data = profile.overview data["environments"] = [{"title": "Number of Worker(s)", "value": str(len(run.workers))}, {"title": "Device Type", "value": "GPU" if profile.is_gpu_used else "CPU"}] if profile.is_gpu_used: data["environments"].append({"title": "Number of Device(s)", "value": "1"}) return self.respond_as_json(data) @wrappers.Request.application def operation_pie_route(self, request): name = request.args.get("run") worker = request.args.get("worker") group_by = request.args.get("group_by") run = self.get_run(name) profile = run.get_profile(worker) if group_by == "OperationAndInputShape": return self.respond_as_json(profile.operation_pie_by_name_input) else: return self.respond_as_json(profile.operation_pie_by_name) @wrappers.Request.application def operation_table_route(self, request): name = request.args.get("run") worker = request.args.get("worker") group_by = request.args.get("group_by") run = self.get_run(name) profile = run.get_profile(worker) if group_by == "OperationAndInputShape": return self.respond_as_json(profile.operation_table_by_name_input) else: return self.respond_as_json(profile.operation_table_by_name) @wrappers.Request.application def kernel_pie_route(self, request): name = request.args.get("run") worker = request.args.get("worker") run = self.get_run(name) profile = run.get_profile(worker) return self.respond_as_json(profile.kernel_pie) @wrappers.Request.application def kernel_table_route(self, request): name = request.args.get("run") worker = request.args.get("worker") group_by = request.args.get("group_by") run = self.get_run(name) profile = run.get_profile(worker) if group_by == "Kernel": return self.respond_as_json(profile.kernel_table) else: return self.respond_as_json(profile.kernel_op_table) @wrappers.Request.application def trace_route(self, request): name = request.args.get("run") worker = request.args.get("worker") run = self.get_run(name) profile = run.get_profile(worker) fopen = open with fopen(profile.trace_file_path, 'rb') as f: raw_data = f.read() if profile.trace_file_path.endswith('.gz'): headers = [] headers.append(('Content-Encoding', 'gzip')) return werkzeug.Response(raw_data, content_type="application/json", headers=headers) else: return werkzeug.Response(raw_data, content_type="application/json") @wrappers.Request.application def static_file_route(self, request): filename = os.path.basename(request.path) extension = os.path.splitext(filename)[1] if extension == '.html': mimetype = 'text/html' elif extension == '.css': mimetype = 'text/css' elif extension == '.js': mimetype = 'application/javascript' else: mimetype = 'application/octet-stream' filepath = os.path.join(os.path.dirname(__file__), 'static', filename) try: with open(filepath, 'rb') as infile: contents = infile.read() except IOError: return werkzeug.Response('404 Not Found', 'text/plain', code=404) return werkzeug.Response( contents, content_type=mimetype ) @staticmethod def respond_as_json(obj): content = json.dumps(obj) return werkzeug.Response(content, content_type="application/json") def _load_run(queue, name, run_dir): import absl.logging absl.logging.use_absl_handler() try: logger.info("Load run %s", name) # Currently, assume run data is immutable, so just load once loader = RunLoader(name, run_dir) run = loader.load() logger.info("Run %s loaded", name) queue.put(run) except Exception as ex: logger.warning("Failed to load run %s. Exception=%s", ex, name, exc_info=True)
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # -------------------------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function from .. import utils __all__ = ["EventTypes", "get_event_parser"] logger = utils.get_logger() class EventTypes(object): NET = "NetEvent" OPERATOR = "OperatorEvent" PROFILER_STEP = "ProfilerStepEvent" RUNTIME = "RuntimeEvent" KERNEL = "KernelEvent" MEMCPY = "MemcpyEvent" MEMSET = "MemsetEvent" PYTHON = "PythonEvent" class TraceEvent(object): def __init__(self, type, data): self.type = type self.category = data.get("cat", "") self.name = data.get("name", None) self.ts = data.get("ts", None) self.duration = data.get("dur", None) self.pid = data.get("pid", None) self.tid = data.get("tid", None) self.args = data.get("args", None) def to_dict(self): return vars(self) class NetEvent(TraceEvent): def __init__(self, data): super(NetEvent, self).__init__(EventTypes.NET, data) class OperatorEvent(TraceEvent): def __init__(self, data): super(OperatorEvent, self).__init__(EventTypes.OPERATOR, data) class ProfilerStepEvent(TraceEvent): def __init__(self, data): super(ProfilerStepEvent, self).__init__(EventTypes.PROFILER_STEP, data) # torch.profiler.profile.step will invoke record_function with name like "ProfilerStep#5" self.step = int(self.name.split("#")[1]) class RuntimeEvent(TraceEvent): def __init__(self, data): super(RuntimeEvent, self).__init__(EventTypes.RUNTIME, data) class KernelEvent(TraceEvent): def __init__(self, data): super(KernelEvent, self).__init__(EventTypes.KERNEL, data) class MemcpyEvent(TraceEvent): def __init__(self, data): super(MemcpyEvent, self).__init__(EventTypes.MEMCPY, data) class MemsetEvent(TraceEvent): def __init__(self, data): super(MemsetEvent, self).__init__(EventTypes.MEMSET, data) class PythonEvent(TraceEvent): def __init__(self, data): super(PythonEvent, self).__init__(EventTypes.PYTHON, data) class EventParser(object): def __init__(self): self._handlers = { "X": { "Net": NetEvent, "Operator": self._parse_operator_event, "Runtime": RuntimeEvent, "Kernel": KernelEvent, "Memcpy": MemcpyEvent, "Memset": MemsetEvent, "Python": PythonEvent, } } def _get_handler(self, type=None, category=None): handlers = self._handlers.get(type, None) if handlers is None: return None return handlers.get(category, None) def parse(self, event): try: type = event.get("ph", None) category = event.get("cat", None) handler = self._get_handler(type, category) if handler is None: return None return handler(event) except Exception as ex: logger.warning("Failed to parse profile event. Exception=%s. Event=%s", ex, event, exc_info=True) raise ex def _parse_operator_event(self, event): name = event.get("name") if name.startswith("ProfilerStep#"): return ProfilerStepEvent(event) return OperatorEvent(event) def get_event_parser(version=None): return EventParser()
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # -------------------------------------------------------------------------- from .loader import RunLoader __all__ = ["RunLoader"]
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # -------------------------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from .data import RunData, RunProfileData from .run_generator import RunGenerator from .. import consts, utils from ..run import Run logger = utils.get_logger() class RunLoader(object): def __init__(self, name, run_dir): self.run = RunData(name, run_dir) def load(self): self._parse() if len(self.run.profiles) == 0: logger.warning("No profile data found.") return None self._process() self._analyze() run = self._generate_run() return run def _parse(self): workers = [] for path in os.listdir(self.run.run_dir): if os.path.isdir(path): continue for pattern in [consts.TRACE_GZIP_FILE_SUFFIX, consts.TRACE_FILE_SUFFIX]: if path.endswith(pattern): worker = path[:-len(pattern)] workers.append(worker) break for worker in sorted(workers): try: data = RunProfileData.parse(self.run.run_dir, worker) self.run.profiles[worker] = data except Exception as ex: logger.warning("Failed to parse profile data for Run %s on %s. Exception=%s", self.run.name, worker, ex, exc_info=True) def _process(self): for data in self.run.profiles.values(): logger.debug("Processing profile data") data.process() logger.debug("Processing profile data finish") def _analyze(self): for data in self.run.profiles.values(): logger.debug("Analyzing profile data") data.analyze() logger.debug("Analyzing profile data finish") def _generate_run(self): run = Run(self.run.name, self.run.run_dir) for worker, data in self.run.profiles.items(): generator = RunGenerator(worker, data) profile = generator.generate_run_profile() run.add_profile(profile) return run
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # -------------------------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function from .. import consts from ..run import RunProfile class RunGenerator(object): def __init__(self, worker, profile_data): self.worker = worker self.profile_data = profile_data def generate_run_profile(self): profile_run = RunProfile(self.worker) profile_run.is_gpu_used = self.profile_data.is_gpu_used profile_run.views.append(consts.OVERALL_VIEW) profile_run.overview = self._generate_overview() profile_run.views.append(consts.OP_VIEW) profile_run.operation_pie_by_name = self._generate_op_pie() profile_run.operation_table_by_name = self._generate_op_table() profile_run.operation_pie_by_name_input = self._generate_op_pie(True) profile_run.operation_table_by_name_input = self._generate_op_table(True) if self.profile_data.is_gpu_used: profile_run.views.append(consts.KERNEL_VIEW) profile_run.kernel_op_table = self._generate_kernel_op_table() profile_run.kernel_pie = self._generate_kernel_pie() profile_run.kernel_table = self._generate_kernel_table() profile_run.views.append(consts.TRACE_VIEW) profile_run.trace_file_path = self.profile_data.trace_file_path return profile_run def _generate_overview(self): def build_part_time_str(part_cost, part_name): format_str = '<div class="visualization-tooltip" style="white-space: nowrap;">' \ 'Step {}<br>' \ 'Total: {}us<br>' \ '<b>{}: {}us</b><br>' \ 'Percentage: {}%' \ '</div>' percentage = round(100 * part_cost / costs.step_total_cost, 2) return format_str.format(step_name, costs.step_total_cost, part_name, part_cost, percentage) def build_avg_cost_dict(part_name, part_cost): cost_dict = {"name": part_name, "description": "", "value": round(part_cost), "extra": round(100 * part_cost / self.profile_data.avg_costs.step_total_cost, 2)} return cost_dict show_gpu = self.profile_data.is_gpu_used column_tootip = {"type": "string", "role": "tooltip", "p": {"html": "true"}} data = {} data["steps"] = {} data["steps"]["columns"] = [{"type": "string", "name": "Step"}] if show_gpu: data["steps"]["columns"].extend([{"type": "number", "name": "Kernel"}, column_tootip, {"type": "number", "name": "Memcpy"}, column_tootip, {"type": "number", "name": "Memset"}, column_tootip, {"type": "number", "name": "Runtime"}, column_tootip]) data["steps"]["columns"].extend([{"type": "number", "name": "DataLoader"}, column_tootip, {"type": "number", "name": "CPU Exec"}, column_tootip, {"type": "number", "name": "Other"}, column_tootip]) data["steps"]["rows"] = [] for i in range(len(self.profile_data.steps_costs)): costs = self.profile_data.steps_costs[i] step_name = self.profile_data.steps_names[i] row = [step_name] if show_gpu: row.extend([costs.kernel_cost, build_part_time_str(costs.kernel_cost, "Kernel"), costs.memcpy_cost, build_part_time_str(costs.memcpy_cost, "Memcpy"), costs.memset_cost, build_part_time_str(costs.memset_cost, "Memset"), costs.runtime_cost, build_part_time_str(costs.runtime_cost, "Runtime")]) row.extend([costs.dataloader_cost, build_part_time_str(costs.dataloader_cost, "DataLoader"), costs.cpuop_cost, build_part_time_str(costs.cpuop_cost, "CPU Exec"), costs.other_cost, build_part_time_str(costs.other_cost, "Other")]) data["steps"]["rows"].append(row) avg_costs = [] if show_gpu: avg_costs.extend([ build_avg_cost_dict("Kernel", self.profile_data.avg_costs.kernel_cost), build_avg_cost_dict("Memcpy", self.profile_data.avg_costs.memcpy_cost), build_avg_cost_dict("Memset", self.profile_data.avg_costs.memset_cost), build_avg_cost_dict("Runtime", self.profile_data.avg_costs.runtime_cost) ]) avg_costs.extend([ build_avg_cost_dict("DataLoader", self.profile_data.avg_costs.dataloader_cost), build_avg_cost_dict("CPU Exec", self.profile_data.avg_costs.cpuop_cost), build_avg_cost_dict("Other", self.profile_data.avg_costs.other_cost) ]) data["performance"] = [{"name": "Average Step Time", "description": "", "value": round(self.profile_data.avg_costs.step_total_cost), "extra": 100, "children": avg_costs}] if len(self.profile_data.recommendations) == 0: html = "<li>N/A</li>" else: html = "" for recommendation in self.profile_data.recommendations: html += "<li>{}</li>".format(recommendation) data["recommendations"] = "<ul>{}</ul>".format(html) return data def _generate_op_pie(self, group_by_input_shape=False): op_device_total_time = [] op_device_self_time = [] op_host_total_time = [] op_host_self_time = [] if group_by_input_shape: op_list = self.profile_data.op_list_groupby_name_input else: op_list = self.profile_data.op_list_groupby_name for op_agg in op_list: # Whether device_duration & self_device_duration are accurate or not depends on the input tracing data. if op_agg.device_duration > 0: op_device_total_time.append([op_agg.name, op_agg.device_duration]) if op_agg.self_device_duration > 0: op_device_self_time.append([op_agg.name, op_agg.self_device_duration]) if op_agg.host_duration > 0: op_host_total_time.append([op_agg.name, op_agg.host_duration]) if op_agg.self_host_duration > 0: op_host_self_time.append([op_agg.name, op_agg.self_host_duration]) op_device_total_time.sort(key=lambda x: x[1], reverse=True) op_device_self_time.sort(key=lambda x: x[1], reverse=True) op_host_total_time.sort(key=lambda x: x[1], reverse=True) op_host_self_time.sort(key=lambda x: x[1], reverse=True) data = {} device_total_time = {} device_self_time = {} host_total_time = {} host_self_time = {} if len(op_device_total_time) > 0: device_total_time["title"] = "Device Total Time" device_total_time["columns"] = [{"type": "string", "name": "name"}, {"type": "number", "name": "value"}] device_total_time["rows"] = op_device_total_time else: device_total_time = None if len(op_device_self_time) > 0: device_self_time["title"] = "Device Self Time" device_self_time["columns"] = [{"type": "string", "name": "name"}, {"type": "number", "name": "value"}] device_self_time["rows"] = op_device_self_time else: device_self_time = None if len(op_host_total_time) > 0: host_total_time["title"] = "Host Total Time" host_total_time["columns"] = [{"type": "string", "name": "name"}, {"type": "number", "name": "value"}] host_total_time["rows"] = op_host_total_time else: host_total_time = None if len(op_host_self_time) > 0: host_self_time["title"] = "Host Self Time" host_self_time["columns"] = [{"type": "string", "name": "name"}, {"type": "number", "name": "value"}] host_self_time["rows"] = op_host_self_time else: host_self_time = None data["device_total_time"] = device_total_time data["device_self_time"] = device_self_time data["host_total_time"] = host_total_time data["host_self_time"] = host_self_time return data def _generate_op_table(self, group_by_input_shape=False): show_gpu = self.profile_data.is_gpu_used columns = [{"type": "string", "name": "Name"}] if group_by_input_shape: columns.append({"type": "string", "name": "Input Shape"}) columns.append({"type": "number", "name": "Calls"}) if show_gpu: columns.extend([{"type": "number", "name": "Device Self Duration (us)"}, {"type": "number", "name": "Device Total Duration (us)"}]) columns.extend([{"type": "number", "name": "Host Self Duration (us)"}, {"type": "number", "name": "Host Total Duration (us)"}]) if group_by_input_shape: op_list = self.profile_data.op_list_groupby_name_input else: op_list = self.profile_data.op_list_groupby_name op_list = sorted(op_list, key=lambda x: x.self_device_duration if show_gpu else x.self_host_duration, reverse=True) rows = [] for op in op_list: # Whether device_duration & self_device_duration are accurate or not depends on the input tracing data. row = [op.name] if group_by_input_shape: row.append(op.input_shape) row.append(op.calls) if show_gpu: row.extend([round(op.self_device_duration), round(op.device_duration)]) row.extend([round(op.self_host_duration), round(op.host_duration)]) rows.append(row) data = {"data": {"columns": columns, "rows": rows}} return data def _generate_kernel_op_table(self): table = {} table["columns"] = [{"type": "string", "name": "Name"}, {"type": "string", "name": "Operator"}] col_names = ["Calls", "Total Duration (us)", "Mean Duration (us)", "Max Duration (us)", "Min Duration (us)"] for column in col_names: table["columns"].append({"type": "number", "name": column}) table["rows"] = [] kernel_list = sorted(self.profile_data.kernel_list_groupby_name_op, key=lambda x: x.total_duration, reverse=True) for agg_by_name_op in kernel_list: kernel_op_row = [agg_by_name_op.name, agg_by_name_op.op_name, agg_by_name_op.calls, agg_by_name_op.total_duration, agg_by_name_op.avg_duration, agg_by_name_op.min_duration, agg_by_name_op.max_duration] table["rows"].append(kernel_op_row) data = {"data": table} return data def _generate_kernel_pie(self): pie = {"columns": [{"type": "string", "name": "name"}, {"type": "number", "name": "value"}], "rows": []} for _id, (name, row) in enumerate(self.profile_data.kernel_stat.iterrows()): pie["rows"].append([name, row["sum"]]) data = {"total": pie} return data def _generate_kernel_table(self): table = {} table["columns"] = [{"type": "string", "name": "Name"}] columns = ["count", "sum", "mean", "max", "min"] col_names = ["Calls", "Total Duration (us)", "Mean Duration (us)", "Max Duration (us)", "Min Duration (us)"] for column in col_names: table["columns"].append({"type": "number", "name": column}) table["rows"] = [] for _id, (name, row) in enumerate(self.profile_data.kernel_stat.iterrows()): kernel_row = [name] for column in columns: kernel_row.append(round(row[column])) table["rows"].append(kernel_row) data = {"data": table} return data
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # -------------------------------------------------------------------------- import pandas as pd class KernelParser: def __init__(self): self.kernel_stat = None def parse_events(self, events): events_dict = [] for event in events: events_dict.append(event.to_dict()) events = events_dict events = pd.DataFrame(events) events = events.astype({"type": "category", "category": "category", "name": "string"}, copy=False) kernels = events[events["category"] == "Kernel"] self.kernel_stat = kernels.groupby("name")["duration"].agg(["count", "sum", "mean", "max", "min"]) \ .sort_values("sum", ascending=False)
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # -------------------------------------------------------------------------- import sys from .. import utils from .trace import EventTypes logger = utils.get_logger() def merge_ranges(src_ranges, is_sorted=False): merged_ranges = [] if len(src_ranges) > 0: if not is_sorted: src_ranges.sort(key=lambda x: x[0]) src_id = 0 merged_ranges.append( (src_ranges[src_id][0], src_ranges[src_id][1])) for src_id in range(1, len(src_ranges)): dst_id = len(merged_ranges) - 1 if src_ranges[src_id][1] > merged_ranges[dst_id][1]: if src_ranges[src_id][0] <= merged_ranges[dst_id][1]: merged_ranges[dst_id] = (merged_ranges[dst_id][0], src_ranges[src_id][1]) else: merged_ranges.append( (src_ranges[src_id][0], src_ranges[src_id][1])) return merged_ranges def subtract_ranges_lists(range_list1, range_list2): range_list_dst = [] if len(range_list1) == 0: return range_list_dst if len(range_list2) == 0: range_list_dst = list(range_list1) return range_list_dst r1 = range_list1[0] r2 = range_list2[0] i1 = i2 = 0 while i1 < len(range_list1): if i2 == len(range_list2): range_list_dst.append(r1) r1, i1 = pop_list(range_list1, i1) elif r2[1] <= r1[0]: r2, i2 = pop_list(range_list2, i2) elif r2[0] <= r1[0] and r2[1] < r1[1]: r1 = (r2[1], r1[1]) r2, i2 = pop_list(range_list2, i2) elif r2[0] <= r1[0]: assert (r2[1] >= r1[1]) r2 = (r1[1], r2[1]) r1, i1 = pop_list(range_list1, i1) elif r2[0] < r1[1]: assert (r2[0] > r1[0]) range_list_dst.append((r1[0], r2[0])) r1 = (r2[0], r1[1]) else: assert (r2[0] >= r1[1]) range_list_dst.append(r1) r1, i1 = pop_list(range_list1, i1) return range_list_dst def intersection_ranges_lists(range_list1, range_list2): range_list_dst = [] if len(range_list1) == 0 or len(range_list2) == 0: return range_list_dst r1 = range_list1[0] r2 = range_list2[0] i1 = i2 = 0 while i1 < len(range_list1): if i2 == len(range_list2): break elif r2[1] <= r1[0]: r2, i2 = pop_list(range_list2, i2) elif r2[0] <= r1[0] and r2[1] < r1[1]: assert (r2[1] > r1[0]) range_list_dst.append((r1[0], r2[1])) r1 = (r2[1], r1[1]) r2, i2 = pop_list(range_list2, i2) elif r2[0] <= r1[0]: assert (r2[1] >= r1[1]) range_list_dst.append(r1) r2 = (r1[1], r2[1]) r1, i1 = pop_list(range_list1, i1) elif r2[1] < r1[1]: assert (r2[0] > r1[0]) range_list_dst.append(r2) r1 = (r2[1], r1[1]) r2, i2 = pop_list(range_list2, i2) elif r2[0] < r1[1]: assert (r2[1] >= r1[1]) range_list_dst.append((r2[0], r1[1])) r2 = (r1[1], r2[1]) r1, i1 = pop_list(range_list1, i1) else: assert (r2[0] >= r1[1]) r1, i1 = pop_list(range_list1, i1) return range_list_dst def get_ranges_sum(ranges): sum = 0 for range in ranges: sum += (range[1] - range[0]) return sum def pop_list(range_list, index): next_index = index + 1 if next_index >= len(range_list): return None, len(range_list) next_item = range_list[next_index] return next_item, next_index class OverallParser(object): class Costs: def __init__(self): self.step_total_cost = 0 self.kernel_cost = 0 self.memcpy_cost = 0 self.memset_cost = 0 self.runtime_cost = 0 self.dataloader_cost = 0 self.cpuop_cost = 0 self.other_cost = 0 def calculate_costs(self, statistics, step): self.step_total_cost = step[1] - step[0] self.kernel_cost = get_ranges_sum(statistics.kernel_cost_ranges) self.memcpy_cost = get_ranges_sum(statistics.memcpy_cost_ranges) self.memset_cost = get_ranges_sum(statistics.memset_cost_ranges) self.runtime_cost = get_ranges_sum(statistics.runtime_cost_ranges) self.dataloader_cost = get_ranges_sum(statistics.dataloader_cost_ranges) self.cpuop_cost = get_ranges_sum(statistics.cpuop_cost_ranges) self.other_cost = get_ranges_sum(statistics.other_cost_ranges) class Statistics: def __init__(self): self.kernel_cost_ranges = [] self.memcpy_cost_ranges = [] self.memset_cost_ranges = [] self.runtime_cost_ranges = [] self.dataloader_cost_ranges = [] self.cpuop_cost_ranges = [] self.other_cost_ranges = [] def intersection_with_step(self, step): result = OverallParser.Statistics() step = [step] result.kernel_cost_ranges = intersection_ranges_lists(step, self.kernel_cost_ranges) result.memcpy_cost_ranges = intersection_ranges_lists(step, self.memcpy_cost_ranges) result.memset_cost_ranges = intersection_ranges_lists(step, self.memset_cost_ranges) result.runtime_cost_ranges = intersection_ranges_lists(step, self.runtime_cost_ranges) result.dataloader_cost_ranges = intersection_ranges_lists(step, self.dataloader_cost_ranges) result.cpuop_cost_ranges = intersection_ranges_lists(step, self.cpuop_cost_ranges) result.other_cost_ranges = intersection_ranges_lists(step, self.other_cost_ranges) return result def __init__(self): self.kernel_ranges = [] self.memcpy_ranges = [] self.memset_ranges = [] self.runtime_ranges = [] self.dataloader_ranges = [] self.cpuop_ranges = [] self.steps = [] self.steps_names = [] self.is_gpu_used = False self.min_ts = sys.maxsize self.max_ts = -sys.maxsize - 1 self.steps_costs = [] self.avg_costs = OverallParser.Costs() def parse_events(self, events): logger.debug("Overall, parse events") for event in events: self.parse_event(event) self.kernel_ranges = merge_ranges(self.kernel_ranges) self.memcpy_ranges = merge_ranges(self.memcpy_ranges) self.memset_ranges = merge_ranges(self.memset_ranges) self.runtime_ranges = merge_ranges(self.runtime_ranges) self.dataloader_ranges = merge_ranges(self.dataloader_ranges) self.cpuop_ranges = merge_ranges(self.cpuop_ranges) if len(self.steps) == 0: self.steps.append((self.min_ts, self.max_ts)) self.steps_names.append("0") merged_steps = list(self.steps) merged_steps = merge_ranges(merged_steps) logger.debug("Overall, statistics") global_stats = OverallParser.Statistics() global_stats.kernel_cost_ranges = self.kernel_ranges slots = subtract_ranges_lists(merged_steps, self.kernel_ranges) global_stats.memcpy_cost_ranges = intersection_ranges_lists(slots, self.memcpy_ranges) slots = subtract_ranges_lists(slots, global_stats.memcpy_cost_ranges) global_stats.memset_cost_ranges = intersection_ranges_lists(slots, self.memset_ranges) slots = subtract_ranges_lists(slots, global_stats.memset_cost_ranges) global_stats.runtime_cost_ranges = intersection_ranges_lists(slots, self.runtime_ranges) slots = subtract_ranges_lists(slots, global_stats.runtime_cost_ranges) global_stats.dataloader_cost_ranges = intersection_ranges_lists(slots, self.dataloader_ranges) slots = subtract_ranges_lists(slots, global_stats.dataloader_cost_ranges) global_stats.cpuop_cost_ranges = intersection_ranges_lists(slots, self.cpuop_ranges) slots = subtract_ranges_lists(slots, global_stats.cpuop_cost_ranges) global_stats.other_cost_ranges = slots logger.debug("Overall, aggregation") valid_steps = len(self.steps) for i in range(valid_steps): steps_stat = global_stats.intersection_with_step(self.steps[i]) self.steps_costs.append(OverallParser.Costs()) self.steps_costs[i].calculate_costs(steps_stat, self.steps[i]) self.avg_costs.step_total_cost += self.steps_costs[i].step_total_cost self.avg_costs.kernel_cost += self.steps_costs[i].kernel_cost self.avg_costs.memcpy_cost += self.steps_costs[i].memcpy_cost self.avg_costs.memset_cost += self.steps_costs[i].memset_cost self.avg_costs.runtime_cost += self.steps_costs[i].runtime_cost self.avg_costs.dataloader_cost += self.steps_costs[i].dataloader_cost self.avg_costs.cpuop_cost += self.steps_costs[i].cpuop_cost self.avg_costs.other_cost += self.steps_costs[i].other_cost self.avg_costs.step_total_cost /= valid_steps self.avg_costs.kernel_cost /= valid_steps self.avg_costs.memcpy_cost /= valid_steps self.avg_costs.memset_cost /= valid_steps self.avg_costs.runtime_cost /= valid_steps self.avg_costs.dataloader_cost /= valid_steps self.avg_costs.cpuop_cost /= valid_steps self.avg_costs.other_cost /= valid_steps def parse_event(self, event): ts = event.ts dur = event.duration evt_type = event.type if evt_type == EventTypes.KERNEL: self.kernel_ranges.append((ts, ts + dur)) elif evt_type == EventTypes.MEMCPY: self.memcpy_ranges.append((ts, ts + dur)) elif evt_type == EventTypes.MEMSET: self.memset_ranges.append((ts, ts + dur)) elif evt_type == EventTypes.RUNTIME: self.runtime_ranges.append((ts, ts + dur)) elif evt_type == EventTypes.OPERATOR and event.name.startswith("enumerate(DataLoader)#") \ and event.name.endswith(".__next__"): self.dataloader_ranges.append((ts, ts + dur)) elif event.type == EventTypes.PROFILER_STEP: self.steps.append((ts, ts + dur)) self.steps_names.append(str(event.step)) elif evt_type in [EventTypes.PYTHON, EventTypes.OPERATOR]: self.cpuop_ranges.append((ts, ts + dur)) if evt_type == EventTypes.RUNTIME: self.is_gpu_used = True if ts < self.min_ts: self.min_ts = ts if ts + dur > self.max_ts: self.max_ts = ts + dur
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # -------------------------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function import gzip import json import os from collections import OrderedDict from . import trace from .kernel_parser import KernelParser from .module_parser import ModuleParser from .overall_parser import OverallParser from .. import consts, utils logger = utils.get_logger() class RunData(object): def __init__(self, name, run_dir): self.name = name self.run_dir = run_dir self.profiles = OrderedDict() class RunProfileData(object): def __init__(self, worker): self.worker = worker self.data_schema_version = None self.events = None self.trace_file_path = None self.is_gpu_used = False self.steps_costs = None self.steps_names = None self.avg_costs = None self.op_list_groupby_name = None self.op_list_groupby_name_input = None self.kernel_list_groupby_name_op = None self.kernel_stat = None self.recommendations = [] @staticmethod def parse(run_dir, worker): logger.debug("Parse trace, run_dir=%s, worker=%s", run_dir, worker) trace_path = os.path.join(run_dir, "{}{}".format(worker, consts.TRACE_FILE_SUFFIX)) fopen = open if not os.path.isfile(trace_path): trace_path += ".gz" fopen = gzip.open if not os.path.isfile(trace_path): raise FileNotFoundError(trace_path) with fopen(trace_path, 'r') as f: trace_json = json.load(f) profile = RunProfileData(worker) profile.trace_file_path = trace_path if type(trace_json) is dict: metadata = trace_json.get("profilerMetadata", None) version = metadata.get("DataSchemaVersion") if metadata else None profile.data_schema_version = version trace_json = trace_json["traceEvents"] parser = trace.get_event_parser(profile.data_schema_version) profile.events = [] for data in trace_json: event = parser.parse(data) if event is not None: profile.events.append(event) return profile def process(self): logger.debug("OverallParser") overall_parser = OverallParser() overall_parser.parse_events(self.events) self.is_gpu_used = overall_parser.is_gpu_used self.steps_costs = overall_parser.steps_costs self.steps_names = overall_parser.steps_names self.avg_costs = overall_parser.avg_costs logger.debug("ModuleParser") module_parser = ModuleParser() module_parser.parse_events(self.events) self.op_list_groupby_name = module_parser.op_list_groupby_name self.op_list_groupby_name_input = module_parser.op_list_groupby_name_input self.kernel_list_groupby_name_op = module_parser.kernel_list_groupby_name_op if self.is_gpu_used: logger.debug("KernelParser") kernel_parser = KernelParser() kernel_parser.parse_events(self.events) self.kernel_stat = kernel_parser.kernel_stat def analyze(self): self.recommendations = [] dataloader_ratio = self.avg_costs.dataloader_cost / self.avg_costs.step_total_cost if dataloader_ratio > 0.05: text = "This run has high time cost on input data loading. " \ "{}% of the step time is in DataLoader. You could " \ "try to set num_workers on DataLoader's construction " \ "and enable multi-processes on data loading. " \ "Reference: <a href =\"{}\" target=\"_blank\">Single- and Multi-process Data Loading</a>".format( round(dataloader_ratio * 100, 1), "https://pytorch.org/docs/stable/data.html#single-and-multi-process-data-loading" ) self.recommendations.append(text)