python_code
stringlengths 0
456k
|
---|
import torch
from colossalai.fx.tracer.meta_patch import patched_function
from functools import partial
def _run(data, patch_fn):
try:
output = patch_fn(data)
return output
except Exception as e:
return e
def _assert_output_shape(data, patch_fn, expect_exception, output_shape):
output = _run(data, patch_fn)
if expect_exception:
assert isinstance(output, AssertionError)
else:
assert not isinstance(output, Exception)
assert output.is_meta
assert output.shape == output_shape
def test_repeat_interleave():
patch_fn = patched_function.torch_repeat_interleave
# examples from https://pytorch.org/docs/stable/generated/torch.repeat_interleave.html
data = torch.tensor([1, 2, 3])
materialized_output = torch.repeat_interleave(data, repeats=2)
repeat_interleave = partial(patch_fn, repeats=2)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
patch_fn=repeat_interleave,
expect_exception=False,
output_shape=materialized_output.shape)
data = torch.tensor([[1, 2], [3, 4]])
materialized_output = torch.repeat_interleave(data, repeats=3, dim=1)
repeat_interleave = partial(patch_fn, repeats=3, dim=1)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
patch_fn=repeat_interleave,
expect_exception=False,
output_shape=materialized_output.shape)
data = torch.tensor([[1, 2], [3, 4]])
materialized_output = torch.repeat_interleave(data, repeats=torch.tensor([1, 2]), dim=-1)
repeat_interleave = partial(patch_fn, repeats=torch.tensor([1, 2]), dim=-1)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
patch_fn=repeat_interleave,
expect_exception=False,
output_shape=materialized_output.shape)
data = torch.tensor([[1, 2], [3, 4]])
materialized_output = torch.repeat_interleave(data, repeats=torch.tensor([1, 2]), dim=0)
repeat_interleave = partial(patch_fn, repeats=[1, 2], dim=0)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
patch_fn=repeat_interleave,
expect_exception=True,
output_shape=materialized_output.shape)
def test_torch_max():
data = torch.rand(4, 3)
out = torch.max(data)
patched_out = patched_function.torch_max(data)
assert out.shape == patched_out.shape
data = torch.rand(4, 3, 2)
out, idx = torch.max(data, dim=1)
patched_out, patched_idx = patched_function.torch_max(data, dim=1)
assert out.shape == patched_out.shape
assert idx.shape == patched_idx.shape
data = torch.rand(4, 3, 2)
out, idx = torch.max(data, dim=1, keepdim=True)
patched_out, patched_idx = patched_function.torch_max(data, dim=1, keepdim=True)
assert out.shape == patched_out.shape
assert idx.shape == patched_idx.shape
|
import torch
import torch.nn as nn
from torch.fx import GraphModule
from colossalai.fx import ColoTracer as Tracer
class ControlFlowModel(nn.Module):
def __init__(self):
super().__init__()
self.linear1 = nn.Linear(10, 10)
self.linear2 = nn.Linear(10, 10)
def forward(self, x, y):
x1 = self.linear1(x)
y1 = self.linear2(y)
if x1.dim() == 2:
return x1 + y1
else:
return x1 - y1
def test_control_flow():
model = ControlFlowModel()
tracer = Tracer()
graph_branch_true = tracer.trace(model,
meta_args={
'x': torch.rand(4, 10, device='meta'),
'y': torch.rand(4, 10, device='meta')
})
graph_branch_false = tracer.trace(model,
meta_args={
'x': torch.rand(10, device='meta'),
'y': torch.rand(4, 10, device='meta')
})
gm_branch_true = GraphModule(model, graph_branch_true, model.__class__.__name__)
gm_branch_false = GraphModule(model, graph_branch_false, model.__class__.__name__)
gm_branch_true.recompile()
gm_branch_false.recompile()
# test the true branch
x = torch.rand(4, 10)
y = torch.rand(4, 10)
assert torch.all(model(x, y) == gm_branch_true(x, y))
assert torch.all(gm_branch_false(x, y) != gm_branch_true(x, y))
# test the true branch
x = torch.rand(10)
y = torch.rand(4, 10)
assert torch.all(model(x, y) == gm_branch_false(x, y))
assert torch.all(gm_branch_false(x, y) != gm_branch_true(x, y))
if __name__ == '__main__':
test_control_flow()
|
import torch
from colossalai.fx.tracer.meta_patch import patched_module
def _run(data, module, patch_fn):
try:
if isinstance(data, dict):
output = patch_fn(module, **data)
if isinstance(data, tuple) or isinstance(data, list):
output = patch_fn(module, *data)
else:
output = patch_fn(module, data)
return output
except Exception as e:
return e
def _assert_output_shape(data, module, patch_fn, expect_exception, output_shape):
output = _run(data, module, patch_fn)
if expect_exception:
assert isinstance(output, AssertionError)
else:
assert not isinstance(output, Exception)
if isinstance(output, tuple):
for item, shape in zip(output, output_shape):
assert item.is_meta
assert item.shape == shape
else:
assert output.is_meta
assert output.shape == output_shape
def test_linear():
# test linear patch can produce the meta output with correct shape
data = torch.rand(2, 4, device='meta')
module = torch.nn.Linear(4, 2)
_assert_output_shape(data, module, patched_module.torch_nn_linear, False, torch.Size([2, 2]))
# test if the linear patch can catch exception when dimension does not match
data = torch.rand(2, 2, device='meta')
_assert_output_shape(data, module, patched_module.torch_nn_linear, True, None)
def test_rnn():
# test rnn patch can produce the meta output with correct shape
data = (torch.randn(5, 3, 10), torch.randn(2, 3, 20))
module = torch.nn.RNN(10, 20, 2)
output, hn = module(*data)
meta_data = (torch.randn(5, 3, 10).to('meta'), torch.randn(2, 3, 20).to('meta'))
_assert_output_shape(meta_data, module, patched_module.torch_nn_rnn, False, (output.shape, hn.shape))
# test if the rnn patch can catch exception when dimension does not match
data = (torch.randn(5, 3, 10), torch.randn(2, 3, 20))
module = torch.nn.RNN(10, 20, 2)
output, hn = module(*data)
meta_data = (torch.randn(5, 3, 1).to('meta'), torch.randn(2, 3, 20).to('meta'))
_assert_output_shape(meta_data, module, patched_module.torch_nn_rnn, True, None)
def test_embedding():
data = torch.rand(2, 4, device='meta')
# test layernorm
ln = torch.nn.LayerNorm(4)
_assert_output_shape(data, ln, patched_module.torch_nn_normalize, False, data.shape)
# test group norm
gn = torch.nn.GroupNorm(4, num_channels=8)
_assert_output_shape(data, gn, patched_module.torch_nn_normalize, False, data.shape)
# test batch norm 1d
bn1d = torch.nn.BatchNorm1d(4)
data = torch.rand(2, 4, device='meta')
_assert_output_shape(data=data,
module=bn1d,
patch_fn=patched_module.torch_nn_normalize,
expect_exception=False,
output_shape=data.shape)
data = torch.rand(2, 4, device='meta')
_assert_output_shape(data=data,
module=bn1d,
patch_fn=patched_module.torch_nn_normalize,
expect_exception=False,
output_shape=data.shape)
data = torch.rand(2, 3, 4, device='meta')
_assert_output_shape(data=data,
module=bn1d,
patch_fn=patched_module.torch_nn_normalize,
expect_exception=False,
output_shape=data.shape)
data = torch.rand(1, 2, 3, 4, device='meta')
_assert_output_shape(data=data,
module=bn1d,
patch_fn=patched_module.torch_nn_normalize,
expect_exception=True,
output_shape=None)
# test batch norm 2d
bn2d = torch.nn.BatchNorm2d(4)
data = torch.rand(1, 2, 3, 4, device='meta')
_assert_output_shape(data=data,
module=bn2d,
patch_fn=patched_module.torch_nn_normalize,
expect_exception=False,
output_shape=data.shape)
data = torch.rand(2, 3, 4, device='meta')
_assert_output_shape(data=data,
module=bn2d,
patch_fn=patched_module.torch_nn_normalize,
expect_exception=True,
output_shape=None)
# # test batch size 3d
bn3d = torch.nn.BatchNorm3d(4)
data = torch.rand(1, 1, 2, 3, 4, device='meta')
_assert_output_shape(data=data,
module=bn3d,
patch_fn=patched_module.torch_nn_normalize,
expect_exception=False,
output_shape=data.shape)
data = torch.rand(1, 2, 3, 4, device='meta')
_assert_output_shape(data=data,
module=bn3d,
patch_fn=patched_module.torch_nn_normalize,
expect_exception=True,
output_shape=None)
def test_conv1d():
# test conv 1d
data = torch.rand(2, 3, 4)
conv1d = torch.nn.Conv1d(in_channels=3, out_channels=4, kernel_size=2)
materialized_output = conv1d(data)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
module=conv1d,
patch_fn=patched_module.torch_nn_conv1d,
expect_exception=False,
output_shape=materialized_output.shape)
conv1d = torch.nn.Conv1d(in_channels=3, out_channels=4, kernel_size=2, padding=1)
materialized_output = conv1d(data)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
module=conv1d,
patch_fn=patched_module.torch_nn_conv1d,
expect_exception=False,
output_shape=materialized_output.shape)
conv1d = torch.nn.Conv1d(in_channels=3,
out_channels=4,
kernel_size=2,
padding=1,
dilation=2,
padding_mode='reflect')
materialized_output = conv1d(data)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
module=conv1d,
patch_fn=patched_module.torch_nn_conv1d,
expect_exception=False,
output_shape=materialized_output.shape)
def test_conv2d():
# test conv 2d
data = torch.rand(2, 3, 4, 4)
conv2d = torch.nn.Conv2d(in_channels=3, out_channels=4, kernel_size=2)
materialized_output = conv2d(data)
_assert_output_shape(data=data,
module=conv2d,
patch_fn=patched_module.torch_nn_conv2d,
expect_exception=False,
output_shape=materialized_output.shape)
conv2d = torch.nn.Conv2d(in_channels=3, out_channels=4, kernel_size=2, padding=1)
materialized_output = conv2d(data)
_assert_output_shape(data=data,
module=conv2d,
patch_fn=patched_module.torch_nn_conv2d,
expect_exception=False,
output_shape=materialized_output.shape)
conv2d = torch.nn.Conv2d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2)
materialized_output = conv2d(data)
_assert_output_shape(data=data,
module=conv2d,
patch_fn=patched_module.torch_nn_conv2d,
expect_exception=False,
output_shape=materialized_output.shape)
conv2d = torch.nn.Conv2d(in_channels=3,
out_channels=4,
kernel_size=2,
padding=1,
dilation=2,
padding_mode='reflect')
materialized_output = conv2d(data)
_assert_output_shape(data=data,
module=conv2d,
patch_fn=patched_module.torch_nn_conv2d,
expect_exception=False,
output_shape=materialized_output.shape)
def test_conv3d():
# test conv 3d
data = torch.rand(2, 3, 4, 4, 4)
conv3d = torch.nn.Conv3d(in_channels=3, out_channels=4, kernel_size=2)
materialized_output = conv3d(data)
_assert_output_shape(data=data,
module=conv3d,
patch_fn=patched_module.torch_nn_conv3d,
expect_exception=False,
output_shape=materialized_output.shape)
conv3d = torch.nn.Conv3d(in_channels=3, out_channels=4, kernel_size=2, padding=1)
materialized_output = conv3d(data)
_assert_output_shape(data=data,
module=conv3d,
patch_fn=patched_module.torch_nn_conv3d,
expect_exception=False,
output_shape=materialized_output.shape)
conv3d = torch.nn.Conv3d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2)
materialized_output = conv3d(data)
_assert_output_shape(data=data,
module=conv3d,
patch_fn=patched_module.torch_nn_conv3d,
expect_exception=False,
output_shape=materialized_output.shape)
conv3d = torch.nn.Conv3d(in_channels=3,
out_channels=4,
kernel_size=2,
padding=1,
dilation=2,
padding_mode='reflect')
materialized_output = conv3d(data)
_assert_output_shape(data=data,
module=conv3d,
patch_fn=patched_module.torch_nn_conv3d,
expect_exception=False,
output_shape=materialized_output.shape)
def test_conv_transpose1d():
# test conv transpose1d
data = torch.rand(2, 3, 4)
convtrans1d = torch.nn.ConvTranspose1d(in_channels=3, out_channels=4, kernel_size=2)
materialized_output = convtrans1d(data)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
module=convtrans1d,
patch_fn=patched_module.torch_nn_convtranspose1d,
expect_exception=False,
output_shape=materialized_output.shape)
convtrans1d = torch.nn.ConvTranspose1d(in_channels=3, out_channels=4, kernel_size=2, padding=1)
materialized_output = convtrans1d(data)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
module=convtrans1d,
patch_fn=patched_module.torch_nn_convtranspose1d,
expect_exception=False,
output_shape=materialized_output.shape)
def test_conv_transpose2d():
# test conv transpose2d
data = torch.rand(2, 3, 4, 4)
convtrans2d = torch.nn.ConvTranspose2d(in_channels=3, out_channels=4, kernel_size=2)
materialized_output = convtrans2d(data)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
module=convtrans2d,
patch_fn=patched_module.torch_nn_convtranspose2d,
expect_exception=False,
output_shape=materialized_output.shape)
convtrans2d = torch.nn.ConvTranspose2d(in_channels=3, out_channels=4, kernel_size=2, padding=1)
materialized_output = convtrans2d(data)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
module=convtrans2d,
patch_fn=patched_module.torch_nn_convtranspose2d,
expect_exception=False,
output_shape=materialized_output.shape)
def test_conv_transpose3d():
# test conv transpose2d
data = torch.rand(2, 3, 4, 4, 4)
convtrans3d = torch.nn.ConvTranspose3d(in_channels=3, out_channels=4, kernel_size=2)
materialized_output = convtrans3d(data)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
module=convtrans3d,
patch_fn=patched_module.torch_nn_convtranspose3d,
expect_exception=False,
output_shape=materialized_output.shape)
convtrans3d = torch.nn.ConvTranspose3d(in_channels=3, out_channels=4, kernel_size=2, padding=1)
materialized_output = convtrans3d(data)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
module=convtrans3d,
patch_fn=patched_module.torch_nn_convtranspose3d,
expect_exception=False,
output_shape=materialized_output.shape)
def test_pool1d():
combinations = [[torch.nn.MaxPool1d, patched_module.torch_nn_maxpool1d],
[torch.nn.AvgPool1d, patched_module.torch_nn_avgpool1d]]
for (layer_cls, patch_func) in combinations:
pooler = layer_cls(kernel_size=3)
data = torch.rand(2, 3, 4)
materialized_output = pooler(data)
_assert_output_shape(data=data,
module=pooler,
patch_fn=patch_func,
expect_exception=False,
output_shape=materialized_output.shape)
data = torch.rand(2, 4)
materialized_output = pooler(data)
_assert_output_shape(data=data,
module=pooler,
patch_fn=patch_func,
expect_exception=False,
output_shape=materialized_output.shape)
data = torch.rand(2, 3, 4, 4)
_assert_output_shape(data=data, module=pooler, patch_fn=patch_func, expect_exception=True, output_shape=None)
def test_pool2d():
combinations = [[torch.nn.MaxPool2d, patched_module.torch_nn_maxpool2d],
[torch.nn.AvgPool2d, patched_module.torch_nn_avgpool2d]]
for (layer_cls, patch_func) in combinations:
pooler = layer_cls(kernel_size=3)
# test max pool 3d
data = torch.rand(2, 3, 4, 4)
materialized_output = pooler(data)
_assert_output_shape(data=data,
module=pooler,
patch_fn=patch_func,
expect_exception=False,
output_shape=materialized_output.shape)
# test max pool 3d
data = torch.rand(2, 4, 4)
materialized_output = pooler(data)
_assert_output_shape(data=data,
module=pooler,
patch_fn=patch_func,
expect_exception=False,
output_shape=materialized_output.shape)
# test max pool 3d
data = torch.rand(2, 3, 4, 4, 4)
_assert_output_shape(data=data, module=pooler, patch_fn=patch_func, expect_exception=True, output_shape=None)
def test_pool3d():
combinations = [[torch.nn.MaxPool3d, patched_module.torch_nn_maxpool3d],
[torch.nn.AvgPool3d, patched_module.torch_nn_avgpool3d]]
for (layer_cls, patch_func) in combinations:
pooler = layer_cls(kernel_size=3)
# test max pool 3d
data = torch.rand(2, 3, 4, 4, 4)
materialized_output = pooler(data)
_assert_output_shape(data=data,
module=pooler,
patch_fn=patch_func,
expect_exception=False,
output_shape=materialized_output.shape)
# test max pool 3d
data = torch.rand(2, 4, 4, 4)
materialized_output = pooler(data)
_assert_output_shape(data=data,
module=pooler,
patch_fn=patch_func,
expect_exception=False,
output_shape=materialized_output.shape)
# test max pool 3d
data = torch.rand(2, 3, 4)
_assert_output_shape(data=data, module=pooler, patch_fn=patch_func, expect_exception=True, output_shape=None)
# adapative pooling is different from other pooling, so test it individually
def test_adaptive_pooling_1d():
pooler = torch.nn.AdaptiveAvgPool1d(output_size=3)
patch_func = patched_module.torch_nn_adapative_pooling_1d
data = torch.rand(3, 4)
output = pooler(data)
_assert_output_shape(data=data,
module=pooler,
patch_fn=patch_func,
expect_exception=False,
output_shape=output.shape)
data = torch.rand(2, 3, 4)
output = pooler(data)
_assert_output_shape(data=data,
module=pooler,
patch_fn=patch_func,
expect_exception=False,
output_shape=output.shape)
data = torch.rand(2, 3, 4, 5)
_assert_output_shape(data=data, module=pooler, patch_fn=patch_func, expect_exception=True, output_shape=None)
def test_adaptive_pooling_2d():
pooler = torch.nn.AdaptiveAvgPool2d(output_size=3)
patch_func = patched_module.torch_nn_adapative_pooling_2d
data = torch.rand(3, 4)
_assert_output_shape(data=data, module=pooler, patch_fn=patch_func, expect_exception=True, output_shape=None)
data = torch.rand(2, 3, 4)
output = pooler(data)
_assert_output_shape(data=data,
module=pooler,
patch_fn=patch_func,
expect_exception=False,
output_shape=output.shape)
data = torch.rand(2, 3, 4, 5)
output = pooler(data)
_assert_output_shape(data=data,
module=pooler,
patch_fn=patch_func,
expect_exception=False,
output_shape=output.shape)
def test_adaptive_pooling_3d():
pooler = torch.nn.AdaptiveAvgPool3d(output_size=3)
patch_func = patched_module.torch_nn_adapative_pooling_3d
data = torch.rand(3, 4, 5)
_assert_output_shape(data=data, module=pooler, patch_fn=patch_func, expect_exception=True, output_shape=None)
data = torch.rand(2, 3, 4, 5)
output = pooler(data)
_assert_output_shape(data=data,
module=pooler,
patch_fn=patch_func,
expect_exception=False,
output_shape=output.shape)
data = torch.rand(2, 3, 4, 5, 6)
output = pooler(data)
_assert_output_shape(data=data,
module=pooler,
patch_fn=patch_func,
expect_exception=False,
output_shape=output.shape)
|
import pytest
import timm.models as tm
import torch
from colossalai.fx import symbolic_trace
def trace_and_compare(model_cls, data, meta_args=None):
# trace
model = model_cls()
# convert to eval for inference
# it is important to set it to eval mode before tracing
# without this statement, the torch.nn.functional.batch_norm will always be in training mode
model.eval()
gm = symbolic_trace(model, meta_args=meta_args)
# run forward
with torch.no_grad():
fx_out = gm(data)
non_fx_out = model(data)
# compare output
if isinstance(fx_out, tuple):
# some models produce tuple as output
for v1, v2 in zip(fx_out, non_fx_out):
assert torch.allclose(v1, v2), f'{model.__class__.__name__} has inconsistent outputs, {v1} vs {v2}'
else:
assert torch.allclose(
fx_out, non_fx_out,
atol=1e-5), f'{model.__class__.__name__} has inconsistent outputs, {fx_out} vs {non_fx_out}'
def test_timm_models_without_control_flow():
torch.backends.cudnn.deterministic = True
MODEL_LIST = [
tm.resnest.resnest50d,
tm.beit.beit_base_patch16_224,
tm.cait.cait_s24_224,
tm.convmixer.convmixer_768_32,
tm.efficientnet.efficientnetv2_m,
tm.resmlp_12_224,
tm.vision_transformer.vit_base_patch16_224,
tm.deit_base_distilled_patch16_224,
]
data = torch.rand(2, 3, 224, 224)
for model_cls in MODEL_LIST:
trace_and_compare(model_cls, data)
def test_timm_models_with_control_flow():
torch.backends.cudnn.deterministic = True
MODEL_LIST_WITH_CONTROL_FLOW = [
tm.convnext.convnext_base, tm.vgg.vgg11, tm.dpn.dpn68, tm.densenet.densenet121, tm.rexnet.rexnet_100,
tm.swin_transformer.swin_base_patch4_window7_224
]
data = torch.rand(2, 3, 224, 224)
meta_args = {'x': data.to('meta')}
for model_cls in MODEL_LIST_WITH_CONTROL_FLOW:
trace_and_compare(model_cls, data, meta_args)
if __name__ == '__main__':
test_timm_models_with_control_flow()
test_timm_models_without_control_flow()
|
import torch
from torchaudio_utils import trace_and_compare
from torchaudio.models import ConvTasNet, DeepSpeech, Wav2Letter, WaveRNN
from torchaudio.models.wavernn import MelResNet, UpsampleNetwork
import pytest
def test_wave2letter_waveform():
batch_size = 2
num_features = 1
num_classes = 40
input_length = 320
model = Wav2Letter(num_classes=num_classes, num_features=num_features)
def data_gen():
x = torch.rand(batch_size, num_features, input_length)
return dict(x=x)
trace_and_compare(model, data_gen, need_meta=False, need_concrete=False)
def test_wave2letter_mfcc():
batch_size = 2
num_features = 13
num_classes = 40
input_length = 2
model = Wav2Letter(num_classes=num_classes, input_type="mfcc", num_features=num_features)
def data_gen():
x = torch.rand(batch_size, num_features, input_length)
return dict(x=x)
trace_and_compare(model, data_gen, need_meta=False, need_concrete=False)
def test_melresnet_waveform():
n_batch = 2
n_time = 200
n_freq = 100
n_output = 128
n_res_block = 10
n_hidden = 128
kernel_size = 5
model = MelResNet(n_res_block, n_freq, n_hidden, n_output, kernel_size)
def data_gen():
x = torch.rand(n_batch, n_freq, n_time)
return dict(specgram=x)
trace_and_compare(model, data_gen, need_meta=False, need_concrete=False)
def test_upsample_network_waveform():
upsample_scales = [5, 5, 8]
n_batch = 2
n_time = 200
n_freq = 100
n_output = 64
n_res_block = 10
n_hidden = 32
kernel_size = 5
total_scale = 1
for upsample_scale in upsample_scales:
total_scale *= upsample_scale
model = UpsampleNetwork(upsample_scales, n_res_block, n_freq, n_hidden, n_output, kernel_size)
def data_gen():
x = torch.rand(n_batch, n_freq, n_time)
return dict(specgram=x)
trace_and_compare(model, data_gen, need_meta=False, need_concrete=False)
def test_wavernn_waveform():
upsample_scales = [2, 2, 5]
n_rnn = 16
n_fc = 16
n_classes = 10
hop_length = 20
n_batch = 2
n_time = 20
n_freq = 10
n_output = 16
n_res_block = 3
n_hidden = 16
kernel_size = 5
model = WaveRNN(upsample_scales, n_classes, hop_length, n_res_block, n_rnn, n_fc, kernel_size, n_freq, n_hidden,
n_output)
def data_gen():
x = torch.rand(n_batch, 1, hop_length * (n_time - kernel_size + 1))
mels = torch.rand(n_batch, 1, n_freq, n_time)
return dict(waveform=x, specgram=mels)
trace_and_compare(model, data_gen, need_meta=True, need_concrete=False)
def test_convtasnet_config():
batch_size = 32
num_frames = 800
model = ConvTasNet()
def data_gen():
tensor = torch.rand(batch_size, 1, num_frames)
return dict(input=tensor)
trace_and_compare(model, data_gen, need_meta=True, need_concrete=False)
def test_deepspeech():
n_batch = 2
n_feature = 1
n_channel = 1
n_class = 40
n_time = 32
model = DeepSpeech(n_feature=n_feature, n_class=n_class)
def data_gen():
x = torch.rand(n_batch, n_channel, n_time, n_feature)
return dict(x=x)
trace_and_compare(model, data_gen, need_meta=False, need_concrete=False)
if __name__ == '__main__':
TEST_LIST = [
test_wave2letter_waveform,
test_wave2letter_mfcc,
test_melresnet_waveform,
test_upsample_network_waveform,
test_wavernn_waveform,
test_convtasnet_config,
test_deepspeech,
]
for test_fn in TEST_LIST:
test_fn()
|
import torch
from colossalai.fx import symbolic_trace
def trace_and_compare(model, data_gen, need_meta=False, need_concrete=False, kwargs_transform=False):
data = data_gen()
concrete_args = data if need_concrete else {}
meta_args = {k: v.to('meta') for k, v in data.items()} if need_meta else {}
model.eval()
gm = symbolic_trace(model, concrete_args=concrete_args, meta_args=meta_args)
with torch.no_grad():
non_fx_out = model(**data)
if kwargs_transform:
data = kwargs_transform(data)
fx_out = gm(**data)
if isinstance(fx_out, tuple):
for non_fx, fx in zip(non_fx_out, fx_out):
assert torch.allclose(
non_fx, fx, atol=1e-5), f'{model.__class__.__name__} has inconsistent outputs, {fx_out} vs {non_fx_out}'
else:
assert torch.allclose(
fx_out, non_fx_out,
atol=1e-5), f'{model.__class__.__name__} has inconsistent outputs, {fx_out} vs {non_fx_out}'
|
import torch
from torchaudio.models import Tacotron2
from torchaudio_utils import trace_and_compare
import pytest
def _get_tacotron2_model(n_mels, decoder_max_step=2000, gate_threshold=0.5):
return Tacotron2(
mask_padding=False,
n_mels=n_mels,
n_symbol=20,
n_frames_per_step=1,
symbol_embedding_dim=32,
encoder_embedding_dim=32,
encoder_n_convolution=3,
encoder_kernel_size=5,
decoder_rnn_dim=32,
decoder_max_step=decoder_max_step,
decoder_dropout=0.1,
decoder_early_stopping=True,
attention_rnn_dim=32,
attention_hidden_dim=32,
attention_location_n_filter=32,
attention_location_kernel_size=31,
attention_dropout=0.1,
prenet_dim=32,
postnet_n_convolution=5,
postnet_kernel_size=5,
postnet_embedding_dim=512,
gate_threshold=gate_threshold,
)
@pytest.mark.skip("Tracing failed")
def test_tacotron_model():
n_mels = 80
n_batch = 3
max_mel_specgram_length = 300
max_text_length = 100
model = _get_tacotron2_model(n_mels)
def data_gen():
text = torch.randint(0, 148, (n_batch, max_text_length))
text_lengths = max_text_length * torch.ones((n_batch,))
mel_specgram = torch.rand(n_batch, n_mels, max_mel_specgram_length)
mel_specgram_lengths = max_mel_specgram_length * torch.ones((n_batch,))
return dict(tokens=text,
token_lengths=text_lengths,
mel_specgram=mel_specgram,
mel_specgram_lengths=mel_specgram_lengths)
trace_and_compare(model, data_gen, need_meta=True, need_concrete=False)
if __name__ == "__main__":
test_tacotron_model()
|
import torch
from torchaudio.models.wav2vec2 import (
hubert_base,
hubert_large,
hubert_xlarge,
wav2vec2_base,
wav2vec2_large,
wav2vec2_large_lv60k,
)
from torchaudio_utils import trace_and_compare
import pytest
MODEL_LIST = [
hubert_base,
hubert_large,
hubert_xlarge,
wav2vec2_base,
wav2vec2_large,
wav2vec2_large_lv60k,
]
def _smoke_test(model, device):
model = model.to(device=device)
batch_size, num_frames = 3, 1024
def data_gen():
waveforms = torch.randn(batch_size, num_frames, device=device)
lengths = torch.randint(
low=0,
high=num_frames,
size=[
batch_size,
],
device=device,
)
return dict(waveforms=waveforms, lengths=lengths)
trace_and_compare(model, data_gen, need_meta=True, need_concrete=False)
@pytest.mark.skip("Tracing failed")
def test_wav2vec():
for model_fn in MODEL_LIST:
_smoke_test(model_fn(), 'cpu')
if __name__ == "__main__":
test_wav2vec()
|
import torch
from torchaudio_utils import trace_and_compare
from torchaudio.models import Emformer, Conformer
import pytest
def test_conformer():
input_dim = 80
batch_size = 10
num_frames = 400
num_heads = 4
ffn_dim = 128
num_layers = 4
depthwise_conv_kernel_size = 31
model = Conformer(
input_dim=input_dim,
num_heads=num_heads,
ffn_dim=ffn_dim,
num_layers=num_layers,
depthwise_conv_kernel_size=depthwise_conv_kernel_size,
)
def data_gen():
lengths = torch.randint(1, num_frames, (batch_size,))
input = torch.rand(batch_size, int(lengths.max()), input_dim)
return dict(input=input, lengths=lengths)
def kwargs_transform(data):
new_data = {}
for k, v in data.items():
new_data[f'{k}_1'] = v
return new_data
trace_and_compare(model, data_gen, need_meta=False, need_concrete=True, kwargs_transform=kwargs_transform)
@pytest.mark.skip("Tracing failed")
def test_emformer():
input_dim = 128
batch_size = 10
num_heads = 8
ffn_dim = 256
num_layers = 3
segment_length = 4
num_frames = 400
right_context_length = 1
model = Emformer(input_dim, num_heads, ffn_dim, num_layers, segment_length, right_context_length)
def data_gen():
lengths = torch.randint(1, num_frames, (batch_size,))
input = torch.rand(batch_size, num_frames, input_dim)
return dict(input=input, lengths=lengths)
trace_and_compare(model, data_gen, need_meta=True, need_concrete=False)
@pytest.mark.skip
def test_torchaudio_transformers():
test_conformer()
test_emformer()
if __name__ == "__main__":
test_torchaudio_transformers()
|
import torch
import torchvision
import torchvision.models as tm
from packaging import version
from colossalai.fx import symbolic_trace
def test_torchvision_models():
MODEL_LIST = [
tm.vgg11, tm.resnet18, tm.densenet121, tm.mobilenet_v3_small, tm.resnext50_32x4d, tm.wide_resnet50_2,
tm.regnet_x_16gf, tm.mnasnet0_5, tm.efficientnet_b0
]
RANDOMIZED_MODELS = [tm.efficientnet_b0]
if version.parse(torchvision.__version__) >= version.parse('0.12.0'):
MODEL_LIST.extend([tm.vit_b_16, tm.convnext_small])
RANDOMIZED_MODELS.append(tm.convnext_small)
torch.backends.cudnn.deterministic = True
data = torch.rand(2, 3, 224, 224)
for model_cls in MODEL_LIST:
if model_cls in RANDOMIZED_MODELS:
# remove the impact of randomicity
model = model_cls(stochastic_depth_prob=0)
else:
model = model_cls()
gm = symbolic_trace(model)
model.eval()
gm.eval()
with torch.no_grad():
fx_out = gm(data)
non_fx_out = model(data)
assert torch.allclose(
fx_out, non_fx_out), f'{model.__class__.__name__} has inconsistent outputs, {fx_out} vs {non_fx_out}'
if __name__ == '__main__':
test_torchvision_models()
|
import pytest
import torch
import transformers
from hf_tracer_utils import trace_model_and_compare_output
BATCH_SIZE = 1
SEQ_LENGTH = 16
def test_t5():
MODEL_LIST = [
transformers.T5Model,
transformers.T5ForConditionalGeneration,
transformers.T5EncoderModel,
]
config = transformers.T5Config(d_model=128, num_layers=2)
def data_gen():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
decoder_input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
kwargs = dict(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
return kwargs
def data_gen_for_encoder_only():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
kwargs = dict(input_ids=input_ids)
return kwargs
for model_cls in MODEL_LIST:
model = model_cls(config=config)
if isinstance(model, transformers.T5EncoderModel):
data_gen_func = data_gen_for_encoder_only
else:
data_gen_func = data_gen
trace_model_and_compare_output(model, data_gen_func)
if __name__ == '__main__':
test_t5()
|
import pytest
import torch
import transformers
from hf_tracer_utils import trace_model_and_compare_output
BATCH_SIZE = 1
SEQ_LENGTH = 16
# TODO: remove this skip once we handle the latest gpt model
@pytest.mark.skip
def test_gpt():
MODEL_LIST = [
transformers.GPT2Model,
transformers.GPT2LMHeadModel,
transformers.GPT2DoubleHeadsModel,
transformers.GPT2ForTokenClassification,
# transformers.GPT2ForSequenceClassification, # not supported yet
]
config = transformers.GPT2Config(n_position=64, n_layer=2, n_head=4)
def data_gen():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
kwargs = dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
return kwargs
for model_cls in MODEL_LIST:
model = model_cls(config=config)
trace_model_and_compare_output(model, data_gen)
if __name__ == '__main__':
test_gpt()
|
import pytest
import torch
import transformers
from hf_tracer_utils import trace_model_and_compare_output
BATCH_SIZE = 2
SEQ_LENGTH = 16
def test_single_sentence_bert():
MODEL_LIST = [
transformers.BertModel,
transformers.BertForPreTraining,
transformers.BertLMHeadModel,
transformers.BertForMaskedLM,
transformers.BertForSequenceClassification,
transformers.BertForTokenClassification,
]
config = transformers.BertConfig(hidden_size=128, num_hidden_layers=2, num_attention_heads=4, intermediate_size=256)
def data_gen():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
meta_args = dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
return meta_args
for model_cls in MODEL_LIST:
model = model_cls(config=config)
trace_model_and_compare_output(model, data_gen)
def test_multi_sentence_bert():
config = transformers.BertConfig(hidden_size=128, num_hidden_layers=2, num_attention_heads=4, intermediate_size=256)
tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-uncased")
def data_gen_for_next_sentence():
prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
next_sentence = "The sky is blue due to the shorter wavelength of blue light."
encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
return encoding
model = transformers.BertForNextSentencePrediction(config)
trace_model_and_compare_output(model, data_gen_for_next_sentence)
def data_gen_for_qa():
question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
inputs = tokenizer(question, text, return_tensors="pt")
return inputs
model = transformers.BertForQuestionAnswering(config)
trace_model_and_compare_output(model, data_gen_for_qa)
def data_gen_for_mcq():
prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
choice0 = "It is eaten with a fork and a knife."
choice1 = "It is eaten while held in the hand."
encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
encoding = {k: v.unsqueeze(0) for k, v in encoding.items()}
return encoding
model = transformers.BertForMultipleChoice(config)
trace_model_and_compare_output(model, data_gen_for_mcq)
if __name__ == '__main__':
test_single_sentence_bert()
test_multi_sentence_bert()
|
import pytest
import torch
import transformers
from hf_tracer_utils import trace_model_and_compare_output
BATCH_SIZE = 2
SEQ_LENGTH = 16
def test_single_sentence_albert():
MODEL_LIST = [
transformers.AlbertModel,
transformers.AlbertForPreTraining,
transformers.AlbertForMaskedLM,
transformers.AlbertForSequenceClassification,
transformers.AlbertForTokenClassification,
]
config = transformers.AlbertConfig(embedding_size=128,
hidden_size=128,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=256)
def data_gen():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
meta_args = dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
return meta_args
for model_cls in MODEL_LIST:
model = model_cls(config=config)
trace_model_and_compare_output(model, data_gen)
def test_multi_sentence_albert():
config = transformers.AlbertConfig(hidden_size=128,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=256)
tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-uncased")
def data_gen_for_qa():
question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
inputs = tokenizer(question, text, return_tensors="pt")
return inputs
model = transformers.AlbertForQuestionAnswering(config)
trace_model_and_compare_output(model, data_gen_for_qa)
def data_gen_for_mcq():
prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
choice0 = "It is eaten with a fork and a knife."
choice1 = "It is eaten while held in the hand."
encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
encoding = {k: v.unsqueeze(0) for k, v in encoding.items()}
return encoding
model = transformers.AlbertForMultipleChoice(config)
trace_model_and_compare_output(model, data_gen_for_mcq)
if __name__ == '__main__':
test_single_sentence_albert()
test_multi_sentence_albert()
|
import torch
from numpy import isin
from torch.fx import GraphModule
from torch.utils._pytree import tree_flatten
from colossalai.fx import symbolic_trace
def trace_model_and_compare_output(model, data_gen):
# must turn on eval mode to ensure the output is consistent
model.eval()
try:
kwargs = data_gen()
meta_args = {k: v.to('meta') for k, v in kwargs.items()}
gm = symbolic_trace(model, meta_args=meta_args)
except Exception as e:
raise RuntimeError(f"Failed to trace {model.__class__.__name__}, error: {e}")
# run forward
inputs = data_gen()
non_fx_out = model(**inputs)
fx_out = gm(**inputs)
# check output
for k in non_fx_out.keys():
if torch.is_tensor(fx_out[k]):
assert torch.equal(
fx_out[k], non_fx_out[k]
), f'{model.__class__.__name__} has incorrect output {k}, expect {non_fx_out[k]}, but got {fx_out[k]}'
|
import pytest
import torch
import transformers
from hf_tracer_utils import trace_model_and_compare_output
BATCH_SIZE = 1
SEQ_LENGTH = 16
def test_opt():
MODEL_LIST = [
transformers.OPTModel,
transformers.OPTForCausalLM,
]
config = transformers.OPTConfig(hidden_size=128, num_hidden_layers=2, num_attention_heads=4)
def data_gen():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
kwargs = dict(input_ids=input_ids, attention_mask=attention_mask)
return kwargs
for model_cls in MODEL_LIST:
model = model_cls(config=config)
trace_model_and_compare_output(model, data_gen)
if __name__ == '__main__':
test_opt()
|
import pytest
import torch
import transformers
from hf_tracer_utils import trace_model_and_compare_output
from colossalai.fx import symbolic_trace
try:
import diffusers
HAS_DIFFUSERS = True
except ImportError:
HAS_DIFFUSERS = False
BATCH_SIZE = 2
SEQ_LENGTH = 5
HEIGHT = 224
WIDTH = 224
IN_CHANNELS = 3
LATENTS_SHAPE = (BATCH_SIZE, IN_CHANNELS, HEIGHT // 8, WIDTH // 8)
TIME_STEP = 2
@pytest.mark.skipif(not HAS_DIFFUSERS, reason="diffusers has not been installed")
def test_vae():
MODEL_LIST = [
diffusers.AutoencoderKL,
diffusers.VQModel,
]
for model_cls in MODEL_LIST:
model = model_cls()
sample = torch.zeros(LATENTS_SHAPE)
gm = symbolic_trace(model)
model.eval()
gm.eval()
with torch.no_grad():
fx_out = gm(sample)
non_fx_out = model(sample)
assert torch.allclose(
fx_out['sample'],
non_fx_out['sample']), f'{model.__class__.__name__} has inconsistent outputs, {fx_out} vs {non_fx_out}'
def test_clip():
MODEL_LIST = [
transformers.CLIPModel,
transformers.CLIPTextModel,
transformers.CLIPVisionModel,
]
CONFIG_LIST = [
transformers.CLIPConfig,
transformers.CLIPTextConfig,
transformers.CLIPVisionConfig,
]
def data_gen():
if isinstance(model, transformers.CLIPModel):
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
position_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
pixel_values = torch.zeros((BATCH_SIZE, IN_CHANNELS, HEIGHT, WIDTH), dtype=torch.float32)
kwargs = dict(input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
pixel_values=pixel_values)
elif isinstance(model, transformers.CLIPTextModel):
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
kwargs = dict(input_ids=input_ids, attention_mask=attention_mask)
elif isinstance(model, transformers.CLIPVisionModel):
pixel_values = torch.zeros((BATCH_SIZE, IN_CHANNELS, HEIGHT, WIDTH), dtype=torch.float32)
kwargs = dict(pixel_values=pixel_values)
return kwargs
for model_cls, config in zip(MODEL_LIST, CONFIG_LIST):
model = model_cls(config=config())
trace_model_and_compare_output(model, data_gen)
@pytest.mark.skipif(not HAS_DIFFUSERS, reason="diffusers has not been installed")
@pytest.mark.skip(reason='cannot pass the test yet')
def test_unet():
MODEL_LIST = [
diffusers.UNet2DModel,
diffusers.UNet2DConditionModel,
]
for model_cls in MODEL_LIST:
model = model_cls()
sample = torch.zeros(LATENTS_SHAPE)
gm = symbolic_trace(model)
model.eval()
gm.eval()
with torch.no_grad():
fx_out = gm(sample, TIME_STEP)
non_fx_out = model(sample, TIME_STEP)
assert torch.allclose(
fx_out['sample'],
non_fx_out['sample']), f'{model.__class__.__name__} has inconsistent outputs, {fx_out} vs {non_fx_out}'
if __name__ == "__main__":
test_vae()
test_clip()
# skip because of failure
# test_unet()
|
import torch
from colossalai.fx import symbolic_trace
try:
from torchrec.models import dlrm
from torchrec.modules.embedding_configs import EmbeddingBagConfig
from torchrec.modules.embedding_modules import EmbeddingBagCollection
from torchrec.sparse.jagged_tensor import KeyedJaggedTensor, KeyedTensor
NOT_TORCHREC = False
except ImportError:
NOT_TORCHREC = True
import pytest
BATCH = 2
SHAPE = 10
@pytest.mark.skipif(NOT_TORCHREC, reason='torchrec is not installed')
def test_torchrec_dlrm_models():
MODEL_LIST = [
dlrm.DLRM,
dlrm.DenseArch,
dlrm.InteractionArch,
dlrm.InteractionV2Arch,
dlrm.OverArch,
dlrm.SparseArch,
# dlrm.DLRMV2
]
# Data Preparation
# EmbeddingBagCollection
eb1_config = EmbeddingBagConfig(name="t1", embedding_dim=SHAPE, num_embeddings=SHAPE, feature_names=["f1"])
eb2_config = EmbeddingBagConfig(name="t2", embedding_dim=SHAPE, num_embeddings=SHAPE, feature_names=["f2"])
ebc = EmbeddingBagCollection(tables=[eb1_config, eb2_config])
keys = ["f1", "f2"]
# KeyedTensor
KT = KeyedTensor(keys=keys, length_per_key=[SHAPE, SHAPE], values=torch.rand((BATCH, 2 * SHAPE)))
# KeyedJaggedTensor
KJT = KeyedJaggedTensor.from_offsets_sync(keys=keys,
values=torch.tensor([1, 2, 3, 4, 5, 6, 7, 8]),
offsets=torch.tensor([0, 2, 4, 6, 8]))
# Dense Features
dense_features = torch.rand((BATCH, SHAPE))
# Sparse Features
sparse_features = torch.rand((BATCH, len(keys), SHAPE))
for model_cls in MODEL_LIST:
# Initializing model
if model_cls == dlrm.DLRM:
model = model_cls(ebc, SHAPE, [SHAPE, SHAPE], [5, 1])
elif model_cls == dlrm.DenseArch:
model = model_cls(SHAPE, [SHAPE, SHAPE])
elif model_cls == dlrm.InteractionArch:
model = model_cls(len(keys))
elif model_cls == dlrm.InteractionV2Arch:
I1 = dlrm.DenseArch(3 * SHAPE, [3 * SHAPE, 3 * SHAPE])
I2 = dlrm.DenseArch(3 * SHAPE, [3 * SHAPE, 3 * SHAPE])
model = model_cls(len(keys), I1, I2)
elif model_cls == dlrm.OverArch:
model = model_cls(SHAPE, [5, 1])
elif model_cls == dlrm.SparseArch:
model = model_cls(ebc)
elif model_cls == dlrm.DLRMV2:
# Currently DLRMV2 cannot be traced
model = model_cls(ebc, SHAPE, [SHAPE, SHAPE], [5, 1], [4 * SHAPE, 4 * SHAPE], [4 * SHAPE, 4 * SHAPE])
# Setup GraphModule
if model_cls == dlrm.InteractionV2Arch:
concrete_args = {"dense_features": dense_features, "sparse_features": sparse_features}
gm = symbolic_trace(model, concrete_args=concrete_args)
else:
gm = symbolic_trace(model)
model.eval()
gm.eval()
# Aligned Test
with torch.no_grad():
if model_cls == dlrm.DLRM or model_cls == dlrm.DLRMV2:
fx_out = gm(dense_features, KJT)
non_fx_out = model(dense_features, KJT)
elif model_cls == dlrm.DenseArch:
fx_out = gm(dense_features)
non_fx_out = model(dense_features)
elif model_cls == dlrm.InteractionArch or model_cls == dlrm.InteractionV2Arch:
fx_out = gm(dense_features, sparse_features)
non_fx_out = model(dense_features, sparse_features)
elif model_cls == dlrm.OverArch:
fx_out = gm(dense_features)
non_fx_out = model(dense_features)
elif model_cls == dlrm.SparseArch:
fx_out = gm(KJT)
non_fx_out = model(KJT)
if torch.is_tensor(fx_out):
assert torch.allclose(
fx_out, non_fx_out), f'{model.__class__.__name__} has inconsistent outputs, {fx_out} vs {non_fx_out}'
else:
assert torch.allclose(
fx_out.values(),
non_fx_out.values()), f'{model.__class__.__name__} has inconsistent outputs, {fx_out} vs {non_fx_out}'
if __name__ == "__main__":
test_torchrec_dlrm_models()
|
import pytest
import torch
from colossalai.fx import symbolic_trace
try:
from torchrec.models import deepfm
from torchrec.modules.embedding_configs import EmbeddingBagConfig
from torchrec.modules.embedding_modules import EmbeddingBagCollection
from torchrec.sparse.jagged_tensor import KeyedJaggedTensor, KeyedTensor
NOT_TORCHREC = False
except ImportError:
NOT_TORCHREC = True
BATCH = 2
SHAPE = 10
@pytest.mark.skipif(NOT_TORCHREC, reason='torchrec is not installed')
def test_torchrec_deepfm_models():
MODEL_LIST = [deepfm.DenseArch, deepfm.FMInteractionArch, deepfm.OverArch, deepfm.SimpleDeepFMNN, deepfm.SparseArch]
# Data Preparation
# EmbeddingBagCollection
eb1_config = EmbeddingBagConfig(name="t1", embedding_dim=SHAPE, num_embeddings=SHAPE, feature_names=["f1"])
eb2_config = EmbeddingBagConfig(name="t2", embedding_dim=SHAPE, num_embeddings=SHAPE, feature_names=["f2"])
ebc = EmbeddingBagCollection(tables=[eb1_config, eb2_config])
keys = ["f1", "f2"]
# KeyedTensor
KT = KeyedTensor(keys=keys, length_per_key=[SHAPE, SHAPE], values=torch.rand((BATCH, 2 * SHAPE)))
# KeyedJaggedTensor
KJT = KeyedJaggedTensor.from_offsets_sync(keys=keys,
values=torch.tensor([1, 2, 3, 4, 5, 6, 7, 8]),
offsets=torch.tensor([0, 2, 4, 6, 8]))
# Dense Features
features = torch.rand((BATCH, SHAPE))
for model_cls in MODEL_LIST:
# Initializing model
if model_cls == deepfm.DenseArch:
model = model_cls(SHAPE, SHAPE, SHAPE)
elif model_cls == deepfm.FMInteractionArch:
model = model_cls(SHAPE * 3, keys, SHAPE)
elif model_cls == deepfm.OverArch:
model = model_cls(SHAPE)
elif model_cls == deepfm.SimpleDeepFMNN:
model = model_cls(SHAPE, ebc, SHAPE, SHAPE)
elif model_cls == deepfm.SparseArch:
model = model_cls(ebc)
# Setup GraphModule
gm = symbolic_trace(model)
model.eval()
gm.eval()
# Aligned Test
with torch.no_grad():
if model_cls == deepfm.DenseArch or model_cls == deepfm.OverArch:
fx_out = gm(features)
non_fx_out = model(features)
elif model_cls == deepfm.FMInteractionArch:
fx_out = gm(features, KT)
non_fx_out = model(features, KT)
elif model_cls == deepfm.SimpleDeepFMNN:
fx_out = gm(features, KJT)
non_fx_out = model(features, KJT)
elif model_cls == deepfm.SparseArch:
fx_out = gm(KJT)
non_fx_out = model(KJT)
if torch.is_tensor(fx_out):
assert torch.allclose(
fx_out, non_fx_out), f'{model.__class__.__name__} has inconsistent outputs, {fx_out} vs {non_fx_out}'
else:
assert torch.allclose(
fx_out.values(),
non_fx_out.values()), f'{model.__class__.__name__} has inconsistent outputs, {fx_out} vs {non_fx_out}'
if __name__ == "__main__":
test_torchrec_deepfm_models()
|
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn.functional as F
from torch.fx import GraphModule
from torch.utils.checkpoint import checkpoint
import colossalai
from colossalai.core import global_context as gpc
from colossalai.fx import ColoTracer
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.utils import free_port
try:
from colossalai.fx.codegen import ActivationCheckpointCodeGen
with_codegen = True
except:
# fall back to older pytorch version
from colossalai.fx.codegen import python_code_with_activation_checkpoint
with_codegen = False
class MLP(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear1 = torch.nn.Linear(4, 4)
self.linear2 = torch.nn.Linear(4, 4)
def forward(self, x):
return self.linear1(x), self.linear2(x)
class relu(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.relu = torch.nn.ReLU(inplace=True)
def forward(self, x):
return self.relu(x)
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.mlp1 = MLP()
self.relu = relu()
self.linear2 = torch.nn.Linear(4, 4)
def ckpt2(self, x):
return F.relu(x, inplace=True)
def ckpt3(self, x, y):
return self.linear2(x) + self.linear2(y)
def forward(self, x, y):
y1, y2 = checkpoint(self.mlp1, x)
y3 = checkpoint(self.relu, x)
y4 = checkpoint(self.ckpt2, y)
y5 = checkpoint(self.ckpt3, y, y4)
y6 = self.linear2(y4)
return y1 + y2 + y3 + y4 + y5 + y6
def _run_act_ckpt_codegen(rank):
# launch colossalai to make sure we could execute colossalai.utils.checkpoint currectly
colossalai.launch(config={}, rank=rank, world_size=1, host='localhost', port=free_port(), backend='nccl')
# build model and run forward
model = MyModule()
data1 = torch.rand(4, 4)
data2 = torch.rand(4, 4)
# copy model to cuda
model = model.to(device="cuda")
data1 = data1.to(device="cuda")
data2 = data2.to(device="cuda")
non_fx_out = model(data1, data2)
# trace the module and replace codegen
tracer = ColoTracer(trace_act_ckpt=True)
graph = tracer.trace(model)
codegen = ActivationCheckpointCodeGen()
graph.set_codegen(codegen)
# check ops are annotated with ckpt
# also annotate the selected node for offloading
ckpt_nodes = ['mlp1_linear1', 'mlp1_linear2', 'relu_relu', 'relu']
offload_starts = ['mlp1_linear1']
for node in graph.nodes:
if node.name in ckpt_nodes:
assert 'activation_checkpoint' in node.meta
# annotate the selected node for offload
if node.name in offload_starts:
node.meta['activation_offload'] = True
gm = ColoGraphModule(model, graph)
gm.recompile()
# assert checkpoint function will be generated and
# the offload option is correct
code = graph.python_code('self').src
assert 'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0, True, x, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_1, False, x, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_2, False, y, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_3, False, y, relu, use_reentrant=True)' in code
# recompile and verify the outputs are consistent
fx_out = gm(data1, data2)
assert torch.equal(non_fx_out, fx_out)
gpc.destroy()
@pytest.mark.skipif(not with_codegen, reason='torch version is lower than 1.12.0')
def test_act_ckpt_codegen():
mp.spawn(_run_act_ckpt_codegen, nprocs=1)
def _run_act_ckpt_python_code_torch11(rank):
# launch colossalai to make sure we could execute colossalai.utils.checkpoint currectly
colossalai.launch(config={}, rank=rank, world_size=1, host='localhost', port=free_port(), backend='nccl')
# build model and run forward
model = MyModule()
data1 = torch.rand(4, 4)
data2 = torch.rand(4, 4)
# copy model to cuda
data1 = data1.to(device="cuda")
data2 = data2.to(device="cuda")
non_fx_out = model(data1, data2)
# trace the module and replace codegen
tracer = ColoTracer(trace_act_ckpt=True)
graph = tracer.trace(model)
# replace a bound method of an object
graph._python_code = python_code_with_activation_checkpoint.__get__(graph)
# check ops are annotated with ckpt
ckpt_nodes = ['mlp1_linear1', 'mlp1_linear2', 'relu_relu', 'relu']
offload_starts = ['mlp1_linear1']
for node in graph.nodes:
if node.name in ckpt_nodes:
assert 'activation_checkpoint' in node.meta
# annotate the selected node for offload
if node.name in offload_starts:
node.meta['activation_offload'] = True
gm = ColoGraphModule(model, graph)
gm.recompile()
# assert checkpoint function will be generated and
# the offload option is correct
code = graph.python_code('self').src
assert 'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0, True, x, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_1, False, x, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_2, False, y, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_3, False, y, relu, use_reentrant=True)' in code
# recompile and verify the outputs are consistent
fx_out = gm(data1, data2)
assert torch.equal(non_fx_out, fx_out)
gpc.destroy()
@pytest.mark.skipif(with_codegen, reason='torch version is equal to or higher than 1.12.0')
@pytest.mark.skip(reason="currently torch11 ColoGraphModule is not done")
def test_act_ckpt_python_code_torch11():
mp.spawn(_run_act_ckpt_python_code_torch11, nprocs=1)
if __name__ == '__main__':
_run_act_ckpt_codegen(rank=0)
|
import copy
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn.functional as F
from torch.fx import GraphModule
import colossalai
from colossalai.core import global_context as gpc
from colossalai.fx import ColoTracer
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.utils import free_port
try:
from colossalai.fx.codegen import ActivationCheckpointCodeGen
with_codegen = True
except:
# fall back to older pytorch version
from colossalai.fx.codegen import python_code_with_activation_checkpoint
with_codegen = False
class MyNet(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear0 = torch.nn.Linear(4, 4)
self.linear1 = torch.nn.Linear(4, 4)
self.linear2 = torch.nn.Linear(4, 4)
self.linear3 = torch.nn.Linear(4, 4)
self.linear4 = torch.nn.Linear(4, 4)
self.linear5 = torch.nn.Linear(4, 4)
self.linear6 = torch.nn.Linear(4, 4)
def forward(self, x):
x = self.linear0(x)
x = self.linear1(x)
x = self.linear2(x)
x = self.linear3(x)
x = self.linear4(x)
x = self.linear5(x)
x = self.linear6(x)
return x
def _is_all_gradient_close(m: torch.nn.Module, gm: GraphModule) -> bool:
for m_p, gm_p in zip(m.parameters(), gm.parameters()):
if not torch.allclose(m_p.grad, gm_p.grad):
return False
return True
def _test_fwd_and_bwd(model: torch.nn.Module, gm: ColoGraphModule, data: torch.Tensor):
# test forward
non_fx_out = model(data)
fx_out = gm(data)
assert torch.equal(non_fx_out, fx_out), "fx_out doesn't comply with original output"
# test barckward
loss0 = non_fx_out.sum()
loss0.backward()
loss1 = fx_out.sum()
loss1.backward()
assert _is_all_gradient_close(model, gm), "gm doesn't have the same gradient as original one"
def _run_offload_codegen(rank):
# launch colossalai to make sure we could execute colossalai.utils.checkpoint currectly
colossalai.launch(config={}, rank=rank, world_size=1, host='localhost', port=free_port(), backend='nccl')
# build model and input
model = MyNet().cuda()
data = torch.rand(4, 4).cuda()
# trace the module and replace codegen
tracer = ColoTracer(trace_act_ckpt=True)
graph = tracer.trace(model)
codegen = ActivationCheckpointCodeGen()
graph.set_codegen(codegen)
# annotate the activation offload part
# also annotate the activation_checkpoint so we could test both types
# of input offload
for node in graph.nodes:
if node.name == "linear0":
node.meta['activation_offload'] = [0, True, False]
if node.name == "linear1":
node.meta['activation_offload'] = [0, True, False]
if node.name == "linear2":
node.meta['activation_offload'] = [1, True, True]
if node.name == "linear4":
node.meta['activation_offload'] = [2, False, True]
if node.name == "linear5":
node.meta['activation_checkpoint'] = [0]
node.meta['activation_offload'] = True
gm = ColoGraphModule(copy.deepcopy(model), graph)
gm.recompile()
# assert we have all the components
code = graph.python_code("self").src
assert "def pack_hook_input(self, x):" in code and \
"def unpack_hook(self, packed):" in code and \
"def pack_hook_no_input(self, x):" in code and \
"setattr(x, 'offload', True)" in code and \
"setattr(linear3, 'offload', False)" in code and \
"with torch.autograd.graph.saved_tensors_hooks(self.pack_hook_input, self.unpack_hook):" in code and \
"with torch.autograd.graph.save_on_cpu(pin_memory=True):" in code and \
"with torch.autograd.graph.saved_tensors_hooks(self.pack_hook_no_input, self.unpack_hook):" in code and \
"colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0, True, linear4, use_reentrant=False)" in code
_test_fwd_and_bwd(model, gm, data)
gpc.destroy()
@pytest.mark.skipif(not with_codegen, reason='torch version is lower than 1.12.0')
def test_act_ckpt_codegen():
mp.spawn(_run_offload_codegen, nprocs=1)
def _run_offload_codegen_torch11(rank):
# launch colossalai to make sure we could execute colossalai.utils.checkpoint currectly
colossalai.launch(config={}, rank=rank, world_size=1, host='localhost', port=free_port(), backend='nccl')
# build model and input
model = MyNet().cuda()
data = torch.rand(4, 4).cuda()
# trace the module and replace codegen
tracer = ColoTracer(trace_act_ckpt=True)
graph = tracer.trace(model)
# replace a bound method of an object
graph._python_code = python_code_with_activation_checkpoint.__get__(graph)
# annotate the activation offload part
# also annotate the activation_checkpoint so we could test both types
# of input offload
for node in graph.nodes:
if node.name == "linear0":
node.meta['activation_offload'] = [0, True, False]
if node.name == "linear1":
node.meta['activation_offload'] = [0, True, False]
if node.name == "linear2":
node.meta['activation_offload'] = [1, True, True]
if node.name == "linear4":
node.meta['activation_offload'] = [2, False, True]
if node.name == "linear5":
node.meta['activation_checkpoint'] = [0]
node.meta['activation_offload'] = True
gm = ColoGraphModule(copy.deepcopy(model), graph)
gm.recompile()
# assert we have all the components
code = graph.python_code("self").src
assert "def pack_hook_input(self, x):" in code and \
"def unpack_hook(self, packed):" in code and \
"def pack_hook_no_input(self, x):" in code and \
"setattr(x, 'offload', True)" in code and \
"setattr(linear3, 'offload', False)" in code and \
"with torch.autograd.graph.saved_tensors_hooks(self.pack_hook_input, self.unpack_hook):" in code and \
"with torch.autograd.graph.save_on_cpu(pin_memory=True):" in code and \
"with torch.autograd.graph.saved_tensors_hooks(self.pack_hook_no_input, self.unpack_hook):" in code and \
"colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0, True, linear4, use_reentrant=False)" in code
_test_fwd_and_bwd(model, gm, data)
gpc.destroy()
@pytest.mark.skip(reason="currently torch11 ColoGraphModule is not implemented")
def test_act_ckpt_python_code_torch11():
mp.spawn(_run_offload_codegen_torch11, nprocs=1)
if __name__ == "__main__":
_run_offload_codegen(0)
|
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn.functional as F
from torch.fx import GraphModule
from torch.utils.checkpoint import checkpoint
import colossalai
from colossalai.core import global_context as gpc
from colossalai.fx import ColoTracer
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.utils import free_port
try:
from colossalai.fx.codegen import ActivationCheckpointCodeGen
with_codegen = True
except:
# fall back to older pytorch version
from colossalai.fx.codegen import python_code_with_activation_checkpoint
with_codegen = False
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear1 = torch.nn.Linear(4, 4)
self.linear2 = torch.nn.Linear(4, 4)
self.linear3 = torch.nn.Linear(4, 4)
self.linear4 = torch.nn.Linear(4, 4)
self.linear5 = torch.nn.Linear(4, 4)
self.linear6 = torch.nn.Linear(4, 4)
def forward(self, x):
return self.linear6(self.linear5(self.linear4(self.linear3(self.linear2(self.linear1(x))))))
def _run_act_ckpt_codegen(rank):
# launch colossalai to make sure we could execute colossalai.utils.checkpoint currectly
colossalai.launch(config={}, rank=rank, world_size=1, host='localhost', port=free_port(), backend='nccl')
# build model and run forward
model = MyModule()
data1 = torch.rand(4, 4)
# copy model to cuda
model = model.to(device="cuda")
data1 = data1.to(device="cuda")
non_fx_out = model(data1)
# trace the module and replace codegen
tracer = ColoTracer(trace_act_ckpt=True)
graph = tracer.trace(model)
codegen = ActivationCheckpointCodeGen()
graph.set_codegen(codegen)
# annotate nested checkpoint
for node in graph.nodes:
if node.name == "linear1":
node.meta['activation_checkpoint'] = [0, 0, 0]
continue
if node.name == "linear2":
node.meta['activation_checkpoint'] = [0, 0, None]
if node.name == "linear3":
node.meta['activation_checkpoint'] = [0, 0, 1]
if node.name == "linear4":
node.meta['activation_checkpoint'] = [0, 1, None]
if node.name == "linear5":
node.meta['activation_checkpoint'] = 1
gm = ColoGraphModule(model, graph)
gm.recompile()
# assert checkpoint function will be generated and
code = graph.python_code('self').src
assert 'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0_0, False, x, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0_1, False, linear3, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0_0_0, False, x, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0_0_1, False, linear2, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0, False, x, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_1, False, linear4, use_reentrant=False)' in code
# recompile and verify the outputs are consistent
fx_out = gm(data1)
assert torch.equal(non_fx_out, fx_out)
gpc.destroy()
@pytest.mark.skipif(not with_codegen, reason='torch version is lower than 1.12.0')
def test_act_ckpt_codegen():
mp.spawn(_run_act_ckpt_codegen, nprocs=1)
def _run_act_ckpt_python_code_torch11(rank):
# launch colossalai to make sure we could execute colossalai.utils.checkpoint currectly
colossalai.launch(config={}, rank=rank, world_size=1, host='localhost', port=free_port(), backend='nccl')
# build model and run forward
model = MyModule()
data1 = torch.rand(4, 4)
# copy model to cuda
model = model.to(device="cuda")
data1 = data1.to(device="cuda")
non_fx_out = model(data1)
# trace the module and replace codegen
tracer = ColoTracer(trace_act_ckpt=True)
graph = tracer.trace(model)
codegen = ActivationCheckpointCodeGen()
graph.set_codegen(codegen)
# annotate nested checkpoint
for node in graph.nodes:
if node.name == "linear1":
node.meta['activation_checkpoint'] = [0, 0, 0]
continue
if node.name == "linear2":
node.meta['activation_checkpoint'] = [0, 0, None]
if node.name == "linear3":
node.meta['activation_checkpoint'] = [0, 0, 1]
if node.name == "linear4":
node.meta['activation_checkpoint'] = [0, 1, None]
if node.name == "linear5":
node.meta['activation_checkpoint'] = 1
gm = ColoGraphModule(model, graph)
gm.recompile()
# assert checkpoint function will be generated and
code = graph.python_code('self').src
assert 'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0_0, False, x, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0_1, False, linear3, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0_0_0, False, x, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0_0_1, False, linear2, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0, False, x, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_1, False, linear4, use_reentrant=False)' in code
# recompile and verify the outputs are consistent
fx_out = gm(data1)
assert torch.equal(non_fx_out, fx_out)
gpc.destroy()
@pytest.mark.skipif(with_codegen, reason='torch version is equal to or higher than 1.12.0')
@pytest.mark.skip(reason="currently torch11 ColoGraphModule is not done")
def test_act_ckpt_python_code_torch11():
mp.spawn(_run_act_ckpt_python_code_torch11, nprocs=1)
if __name__ == '__main__':
_run_act_ckpt_codegen(rank=0)
|
from typing import Optional, Tuple, Union
import torch
import torch.fx
import torchvision.models as tm
from gpt_utils import gpt2_medium, gpt2_xl
from torch.fx import symbolic_trace
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
from colossalai.fx.profiler import calculate_fwd_out, calculate_fwd_tmp, is_compatible_with_meta, parameter_size
from colossalai.fx.tracer.tracer import ColoTracer
from colossalai.testing.pytest_wrapper import run_on_environment_flag
if is_compatible_with_meta():
from colossalai.fx.profiler import MetaTensor
TM_BATCH_SIZE = 64
GPT_BATCH_SIZE = 8
NUM_STEPS = 5
def extract_forward_mem(gm: torch.fx.GraphModule):
node_size = 0
param_size = 0
for node in gm.graph.nodes:
node_size += calculate_fwd_tmp(node)
node_size += calculate_fwd_out(node)
param_size = parameter_size(gm)
return (node_size + param_size) / 1024**2, param_size / 1024**2
def extract_forward_flops(gm: torch.fx.GraphModule):
fwd_flop = 0
bwd_flop = 0
for node in gm.graph.nodes:
fwd_flop += node.meta.get('fwd_flop', 0)
bwd_flop += node.meta.get('bwd_flop', 0)
return fwd_flop, bwd_flop
def gen_tm_data(batch_size: int, shape: Tuple[int, int, int], device='cuda'):
data = torch.rand(batch_size, *shape, device=device)
label = torch.empty(batch_size, dtype=torch.long, device=device).random_(1000)
return data, label
def gen_gpt_data(batch_size, seq_len, vocab_size, device='cpu'):
input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=device)
attention_mask = torch.ones_like(input_ids, device=device)
return input_ids, attention_mask
def run_tm_forward(gm: torch.fx.GraphModule):
torch.cuda.reset_peak_memory_stats()
forward_mem = -torch.cuda.memory_allocated(device="cuda:0") / 1024**2
param_mem = -torch.cuda.memory_allocated(device="cuda:0") / 1024**2
gm.cuda()
param_mem += torch.cuda.memory_allocated(device="cuda:0") / 1024**2
gm.train()
for n in range(NUM_STEPS):
torch.cuda.reset_peak_memory_stats()
data, _ = gen_tm_data(TM_BATCH_SIZE, (3, 224, 224))
# If we need to dive deep into the memory usage by
# inspecting `saved_tensor_hooks`
# =====================================================
# fwd_mem = 0
# cache = set()
# def pack(x):
# if isinstance(x, torch.Tensor):
# nonlocal fwd_mem, cache
# if x.data_ptr() not in cache:
# fwd_mem += activation_size(x)
# cache.add(x.data_ptr())
# return x
# def unpack(x):
# return x
#
# with torch.autograd.graph.saved_tensors_hooks(pack, unpack):
# output = gm(data)
# print(f'Memory estimation by saved_tensor_hooks: {fwd_mem / 1024**2}')
# =====================================================
output = gm(data)
forward_mem += torch.cuda.memory_allocated(device="cuda:0") / 1024**2 / NUM_STEPS
del output
return forward_mem, param_mem
def run_gpt_forward(gm: torch.fx.GraphModule):
torch.cuda.reset_peak_memory_stats()
forward_mem = -torch.cuda.memory_allocated(device="cuda:0") / 1024**2
param_mem = -torch.cuda.memory_allocated(device="cuda:0") / 1024**2
gm.cuda()
param_mem += torch.cuda.memory_allocated(device="cuda:0") / 1024**2
for n in range(NUM_STEPS):
torch.cuda.reset_peak_memory_stats()
data, mask = gen_gpt_data(GPT_BATCH_SIZE, 1024, 50257, device='cuda:0')
# If we need to dive deep into the memory usage by
# inspecting `saved_tensor_hooks`
# =====================================================
# fwd_mem = 0
# cache = set()
# def pack(x):
# if isinstance(x, torch.Tensor):
# nonlocal fwd_mem, cache
# if x.data_ptr() not in cache:
# fwd_mem += activation_size(x)
# cache.add(x.data_ptr())
# return x
# def unpack(x):
# return x
#
# with torch.autograd.graph.saved_tensors_hooks(pack, unpack):
# output = gm(data, mask)
# print(f'Memory estimation by saved_tensor_hooks: {fwd_mem / 1024**2}')
# =====================================================
output = gm(data, mask)
forward_mem += torch.cuda.memory_allocated(device="cuda:0") / 1024**2 / NUM_STEPS
del output
return forward_mem, param_mem
@run_on_environment_flag(name='FX_PROFILER')
def test_meta_info_prop():
for m in [
tm.alexnet, tm.resnet18, tm.resnet34, tm.resnet50, tm.resnet101, tm.resnet152, tm.densenet121,
tm.densenet161, tm.densenet169, tm.densenet201, tm.convnext_tiny, tm.convnext_small, tm.convnext_base,
tm.convnext_large, tm.wide_resnet50_2, tm.wide_resnet101_2, tm.regnet_x_16gf, tm.mnasnet0_5,
tm.efficientnet_b0, tm.shufflenet_v2_x0_5, tm.shufflenet_v2_x1_0, tm.shufflenet_v2_x1_5,
tm.shufflenet_v2_x2_0, tm.mobilenet_v2, tm.mobilenet_v3_small, tm.mobilenet_v3_large, tm.resnext50_32x4d,
tm.resnext101_32x8d, tm.resnext101_64x4d, tm.vit_b_16, tm.vit_b_32, tm.vit_h_14, tm.vit_l_16, tm.vit_l_32,
tm.vgg11, tm.vgg11_bn, tm.vgg13, tm.vgg13_bn, tm.vgg16, tm.vgg16_bn, tm.vgg19, tm.vgg19_bn
]:
model = m().cuda()
model.train()
data = MetaTensor(torch.rand(int(TM_BATCH_SIZE), 3, 224, 224, device='meta'), fake_device='cuda:0')
gm = symbolic_trace(model)
interp = MetaInfoProp(gm)
interp.propagate(data)
gm.cpu()
meta_forward_mem, meta_param_mem = extract_forward_mem(gm)
fwd_flop, bwd_flop = extract_forward_flops(gm)
concrete_forward_mem, concrete_param_mem = run_tm_forward(gm)
print(
f'|{m.__name__}|{meta_forward_mem:.3f} MB|{meta_param_mem:.3f} MB|{concrete_forward_mem:.3f} MB|{concrete_param_mem:.3f} MB|fwd_flop={fwd_flop / 1e9:.3f}GFLOPs|bwd_flop={bwd_flop / 1e9:.3f}GFLOPs|'
)
del model, gm
@run_on_environment_flag(name='FX_PROFILER')
def test_gpt_meta_info_prop():
for m in [gpt2_medium]:
model = m().cuda()
model.train()
data, mask = gen_gpt_data(GPT_BATCH_SIZE, 1024, 50257, device='meta')
graph = ColoTracer().trace(model, meta_args={'input_ids': data, 'attention_mask': mask})
gm = torch.fx.GraphModule(model, graph)
interp = MetaInfoProp(gm)
interp.propagate(MetaTensor(data, fake_device='cuda:0'), MetaTensor(mask, fake_device='cuda:0'))
model.cpu()
fwd_flop, bwd_flop = extract_forward_flops(gm)
concrete_forward_mem, concrete_param_mem = run_gpt_forward(gm)
meta_forward_mem, meta_param_mem = extract_forward_mem(gm)
print(
f'|{m.__name__}|{meta_forward_mem:.3f} MB|{meta_param_mem:.3f} MB|{concrete_forward_mem:.3f} MB|{concrete_param_mem:.3f} MB|fwd_flop={fwd_flop / 1e9:.3f}GFLOPs|bwd_flop={bwd_flop / 1e9:.3f}GFLOPs|'
)
del model, gm
if __name__ == '__main__':
test_meta_info_prop()
test_gpt_meta_info_prop()
|
import torch
import torch.nn as nn
from transformers import GPT2Config, GPT2LMHeadModel
class GPTLMModel(nn.Module):
def __init__(self,
hidden_size=768,
num_layers=12,
num_attention_heads=12,
max_seq_len=1024,
vocab_size=50257,
checkpoint=False):
super().__init__()
self.checkpoint = checkpoint
self.model = GPT2LMHeadModel(
GPT2Config(n_embd=hidden_size,
n_layer=num_layers,
n_head=num_attention_heads,
n_positions=max_seq_len,
n_ctx=max_seq_len,
vocab_size=vocab_size))
if checkpoint:
self.model.gradient_checkpointing_enable()
def forward(self, input_ids, attention_mask):
# Only return lm_logits
return self.model(input_ids=input_ids, attention_mask=attention_mask, use_cache=not self.checkpoint)[0]
class GPTLMLoss(nn.Module):
def __init__(self):
super().__init__()
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, logits, labels):
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
def gpt2_medium(checkpoint=False):
return GPTLMModel(hidden_size=1024, num_layers=24, num_attention_heads=16, checkpoint=checkpoint)
def gpt2_xl(checkpoint=False):
return GPTLMModel(hidden_size=1600, num_layers=48, num_attention_heads=32, checkpoint=checkpoint)
|
import pytest
import timm.models as tm
import torch
from timm_utils import split_model_and_compare_output
@pytest.mark.skip('balance split v2 is not ready')
def test_timm_models_without_control_flow():
MODEL_LIST = [
tm.resnest.resnest50d,
tm.beit.beit_base_patch16_224,
tm.cait.cait_s24_224,
tm.convmixer.convmixer_768_32,
tm.efficientnet.efficientnetv2_m,
tm.resmlp_12_224,
tm.vision_transformer.vit_base_patch16_224,
tm.deit_base_distilled_patch16_224,
]
data = torch.rand(2, 3, 224, 224)
for model_cls in MODEL_LIST:
model = model_cls()
split_model_and_compare_output(model, data)
@pytest.mark.skip('balance split v2 is not ready')
def test_timm_models_with_control_flow():
torch.backends.cudnn.deterministic = True
MODEL_LIST_WITH_CONTROL_FLOW = [
tm.convnext.convnext_base, tm.vgg.vgg11, tm.dpn.dpn68, tm.densenet.densenet121, tm.rexnet.rexnet_100,
tm.swin_transformer.swin_base_patch4_window7_224
]
data = torch.rand(2, 3, 224, 224)
meta_args = {'x': data.to('meta')}
for model_cls in MODEL_LIST_WITH_CONTROL_FLOW:
model = model_cls()
split_model_and_compare_output(model, data, meta_args)
if __name__ == '__main__':
test_timm_models_without_control_flow()
test_timm_models_with_control_flow()
|
import torch
from torch.fx import symbolic_trace
from torch.fx import GraphModule
from colossalai.fx.passes.adding_split_node_pass import split_with_split_nodes_pass, balanced_split_pass
from colossalai.fx import ColoTracer
import inspect
import random
import numpy as np
MANUAL_SEED = 0
random.seed(MANUAL_SEED)
np.random.seed(MANUAL_SEED)
torch.manual_seed(MANUAL_SEED)
torch.backends.cudnn.deterministic = True
def split_model_and_compare_output(model, data, meta_args=None):
model.eval()
# get origin output and rng state
cpu_rng_state = torch.get_rng_state()
output = model(data)
# tracing model
tracer = ColoTracer()
try:
graph = tracer.trace(root=model, meta_args=meta_args)
except Exception as e:
raise RuntimeError(f"Failed to trace {model.__class__.__name__}, error: {e}")
gm = GraphModule(model, graph, model.__class__.__name__)
gm.recompile()
# apply transform passes
annotated_model = balanced_split_pass(gm, 2)
split_model, split_submodules = split_with_split_nodes_pass(annotated_model)
# get split model
model_part0 = list(split_model.children())[0]
model_part1 = list(split_model.children())[1]
# set rng state and compute output of split model
torch.set_rng_state(cpu_rng_state)
output_part0 = model_part0(data)
sig = inspect.signature(model_part1.forward)
if isinstance(output_part0, torch.Tensor):
output_part1 = model_part1(output_part0)
else:
if len(output_part0) > len(sig.parameters):
output_part0 = output_part0[:len(sig.parameters)]
output_part1 = model_part1(*output_part0)
assert output.equal(output_part1)
|
import inspect
import random
import numpy as np
import pytest
import torch
import torchvision
import torchvision.models as tm
from packaging import version
from torch.fx import GraphModule
from colossalai.fx import ColoTracer
from colossalai.fx.passes.adding_split_node_pass import balanced_split_pass, split_with_split_nodes_pass
MANUAL_SEED = 0
random.seed(MANUAL_SEED)
np.random.seed(MANUAL_SEED)
torch.manual_seed(MANUAL_SEED)
torch.backends.cudnn.deterministic = True
@pytest.mark.skip('balance split v2 is not ready')
def test_torchvision_models():
MODEL_LIST = [
tm.vgg11, tm.resnet18, tm.densenet121, tm.mobilenet_v3_small, tm.resnext50_32x4d, tm.wide_resnet50_2,
tm.regnet_x_16gf, tm.efficientnet_b0, tm.mnasnet0_5
]
if version.parse(torchvision.__version__) >= version.parse('0.12.0'):
MODEL_LIST.extend([tm.vit_b_16, tm.convnext_small])
tracer = ColoTracer()
data = torch.rand(2, 3, 224, 224)
for model_cls in MODEL_LIST:
model = model_cls()
model.eval()
cpu_rng_state = torch.get_rng_state()
output = model(data)
graph = tracer.trace(root=model)
gm = GraphModule(model, graph, model.__class__.__name__)
gm.recompile()
# apply transform passes
annotated_model = balanced_split_pass(gm, 2)
split_model, split_submodules = split_with_split_nodes_pass(annotated_model)
# get split model
model_part0 = list(split_model.children())[0]
model_part1 = list(split_model.children())[1]
# set rng state and compute output of split model
torch.set_rng_state(cpu_rng_state)
output_part0 = model_part0(data)
sig = inspect.signature(model_part1.forward)
if isinstance(output_part0, torch.Tensor):
output_part1 = model_part1(output_part0)
else:
if len(output_part0) > len(sig.parameters):
output_part0 = output_part0[:len(sig.parameters)]
output_part1 = model_part1(*output_part0)
assert output.equal(output_part1)
if __name__ == '__main__':
test_torchvision_models()
|
import torch
from torch.fx import GraphModule
from colossalai.fx.passes.adding_split_node_pass import split_with_split_nodes_pass, balanced_split_pass
from colossalai.fx import ColoTracer
from colossalai.pipeline.middleware import Partition, PartitionInputVal, PartitionOutputVal, Topo
from colossalai.pipeline.middleware.adaptor import get_fx_topology
import random
import numpy as np
MANUAL_SEED = 0
random.seed(MANUAL_SEED)
np.random.seed(MANUAL_SEED)
torch.manual_seed(MANUAL_SEED)
class MLP(torch.nn.Module):
def __init__(self, config={}):
super().__init__()
dim = config['dim']
layers = config['layers']
self.layers = torch.nn.ModuleList()
for _ in range(layers):
self.layers.append(torch.nn.Linear(dim, dim, bias=False))
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
def split_model_and_get_DAG(model, data_gen):
model.eval()
# generate input sample
kwargs = data_gen()
# tracing model
tracer = ColoTracer()
try:
meta_args = {k: v.to('meta') for k, v in kwargs.items()}
graph = tracer.trace(root=model, meta_args=meta_args)
except Exception as e:
raise RuntimeError(f"Failed to trace {model.__class__.__name__}, error: {e}")
gm = GraphModule(model, graph, model.__class__.__name__)
gm.recompile()
# apply transform passes
annotated_model = balanced_split_pass(gm, 2)
top_module, split_submodules = split_with_split_nodes_pass(annotated_model)
topo = get_fx_topology(top_module)
for submodule in split_submodules:
if isinstance(submodule, torch.fx.GraphModule):
setattr(submodule, '_topo', topo)
return top_module, split_submodules[0]._topo
def check_input(top_module, input_partition: Partition):
partition_output = input_partition.get_output_vals()
arg_pos = 0
for node in top_module.graph.nodes:
if node.op == 'placeholder':
cur_checkee = partition_output[arg_pos]
to_partition_and_offset = cur_checkee.get()
assert len(to_partition_and_offset) == len(node.users.keys())
arg_pos += 1
assert arg_pos == len(partition_output)
def check_submod(top_module, part_id, mid_partition: Partition):
partition_input = mid_partition.get_input_vals()
partition_output = mid_partition.get_output_vals()
cnt = 1
cur_node = None
for node in top_module.graph.nodes:
if node.name.startswith('submod'):
cnt += 1
if cnt == part_id:
cur_node = node
break
assert len(partition_input) == len(cur_node.args)
assert len(partition_output) == len(cur_node.users)
def check_topo(top_module, topo: Topo):
input_partition = topo.get_input_partition()
mid_partitions = topo.get_mid_partitions()
check_input(top_module, input_partition)
for part_id, submod in mid_partitions.items():
check_submod(top_module, part_id, submod)
|
import pytest
import torch
import transformers
from topo_utils import split_model_and_get_DAG, check_topo, MLP
BATCH_SIZE = 1
SEQ_LENGHT = 16
def test_opt():
MODEL_LIST = [
MLP,
transformers.OPTModel,
]
CONFIGS = [
{'dim': 10, 'layers': 12},
transformers.OPTConfig(vocab_size=100, hidden_size=128, num_hidden_layers=4, num_attention_heads=4),
]
def data_gen_MLP():
x = torch.zeros((16, 10))
kwargs = dict(x=x)
return kwargs
def data_gen_OPT():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
kwargs = dict(input_ids=input_ids, attention_mask=attention_mask)
return kwargs
DATAGEN = [
data_gen_MLP,
data_gen_OPT,
]
for i, model_cls in enumerate(MODEL_LIST):
model = model_cls(config=CONFIGS[i])
top_mod, topo = split_model_and_get_DAG(model, DATAGEN[i])
# print(f'{top_mod=}\n----\n{topo=}')
check_topo(top_mod, topo)
if __name__ == '__main__':
test_opt() |
import pytest
import torch
import transformers
from hf_utils import split_model_and_compare_output
BATCH_SIZE = 1
SEQ_LENGHT = 16
@pytest.mark.skip('balance split v2 is not ready')
def test_t5():
MODEL_LIST = [
transformers.T5Model,
transformers.T5ForConditionalGeneration,
transformers.T5EncoderModel,
]
config = transformers.T5Config(vocab_size=100, d_model=128, num_layers=2)
def data_gen():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
decoder_input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
kwargs = dict(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
return kwargs
def data_gen_for_encoder_only():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
kwargs = dict(input_ids=input_ids)
return kwargs
for model_cls in MODEL_LIST:
model = model_cls(config=config)
if isinstance(model, transformers.T5EncoderModel):
data_gen_func = data_gen_for_encoder_only
else:
data_gen_func = data_gen
split_model_and_compare_output(model, data_gen_func)
if __name__ == '__main__':
test_t5()
|
import pytest
import torch
import transformers
from hf_utils import split_model_and_compare_output
BATCH_SIZE = 1
SEQ_LENGHT = 16
@pytest.mark.skip('balance split v2 is not ready')
def test_opt():
MODEL_LIST = [
transformers.OPTModel,
transformers.OPTForCausalLM,
]
config = transformers.OPTConfig(vocab_size=100, hidden_size=128, num_hidden_layers=4, num_attention_heads=4)
def data_gen():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
kwargs = dict(input_ids=input_ids, attention_mask=attention_mask)
return kwargs
for model_cls in MODEL_LIST:
model = model_cls(config=config)
split_model_and_compare_output(model, data_gen)
if __name__ == '__main__':
test_opt()
|
import torch
from torch.fx import symbolic_trace
from torch.fx import GraphModule
from colossalai.fx.passes.adding_split_node_pass import split_with_split_nodes_pass, balanced_split_pass
from colossalai.fx import ColoTracer
import inspect
import random
import numpy as np
MANUAL_SEED = 0
random.seed(MANUAL_SEED)
np.random.seed(MANUAL_SEED)
torch.manual_seed(MANUAL_SEED)
def split_model_and_compare_output(model, data_gen):
model.eval()
# generate input sample
kwargs = data_gen()
# get origin output and rng state
cpu_rng_state = torch.get_rng_state()
output = model(**kwargs)
# tracing model
tracer = ColoTracer()
try:
meta_args = {k: v.to('meta') for k, v in kwargs.items()}
graph = tracer.trace(root=model, meta_args=meta_args)
except Exception as e:
raise RuntimeError(f"Failed to trace {model.__class__.__name__}, error: {e}")
gm = GraphModule(model, graph, model.__class__.__name__)
gm.recompile()
# apply transform passes
annotated_model = balanced_split_pass(gm, 2)
split_model, split_submodules = split_with_split_nodes_pass(annotated_model)
# get split model
model_part0 = list(split_model.children())[0]
model_part1 = list(split_model.children())[1]
# set rng state and compute output of split model
torch.set_rng_state(cpu_rng_state)
output_part0 = model_part0(**kwargs)
sig = inspect.signature(model_part1.forward)
if isinstance(output_part0, torch.Tensor):
output_part1 = model_part1(output_part0)
else:
if len(output_part0) > len(sig.parameters):
output_part0 = output_part0[:len(sig.parameters)]
output_part1 = model_part1(*output_part0)
# get output tensor from HFOutput datastructure
if 'logits' in output:
output_to_compare = output['logits']
elif 'prediction_logits' in output:
output_to_compare = output['prediction_logits']
else:
output_to_compare = output['last_hidden_state']
# compare output
if isinstance(output_part1, torch.Tensor):
assert output_to_compare.equal(output_part1)
elif isinstance(output_part1, (tuple, list)):
assert output_to_compare.equal(output_part1[0])
else:
assert False
|
import pytest
import torch
import transformers
from hf_utils import split_model_and_compare_output
BATCH_SIZE = 64
SEQ_LENGHT = 16
NUM_EPOCHS = 2
NUM_CHUNKS = 1
@pytest.mark.skip('balance split v2 is not ready')
def test_gpt():
MODEL_LIST = [
transformers.GPT2Model,
transformers.GPT2LMHeadModel,
transformers.GPT2DoubleHeadsModel,
transformers.GPT2ForTokenClassification,
# transformers.GPT2ForSequenceClassification, # not supported yet
]
config = transformers.GPT2Config(n_position=64, n_layer=4, n_head=8)
def data_gen():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
kwargs = dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
return kwargs
for model_cls in MODEL_LIST:
model = model_cls(config=config)
split_model_and_compare_output(model, data_gen)
if __name__ == '__main__':
test_gpt()
|
import pytest
import torch
import transformers
from hf_utils import split_model_and_compare_output
BATCH_SIZE = 2
SEQ_LENGHT = 16
@pytest.mark.skip('balance split v2 is not ready')
def test_single_sentence_albert():
MODEL_LIST = [
transformers.AlbertModel,
transformers.AlbertForPreTraining,
transformers.AlbertForMaskedLM,
transformers.AlbertForSequenceClassification,
transformers.AlbertForTokenClassification,
]
config = transformers.AlbertConfig(vocab_size=100,
embedding_size=128,
hidden_size=128,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=256)
def data_gen():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
meta_args = dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
return meta_args
for model_cls in MODEL_LIST:
model = model_cls(config=config)
split_model_and_compare_output(model, data_gen)
if __name__ == '__main__':
test_single_sentence_albert()
|
import pytest
import torch
import transformers
from hf_utils import split_model_and_compare_output
BATCH_SIZE = 2
SEQ_LENGHT = 16
@pytest.mark.skip('balance split v2 is not ready')
def test_single_sentence_bert():
MODEL_LIST = [
transformers.BertModel,
transformers.BertForPreTraining,
transformers.BertLMHeadModel,
transformers.BertForMaskedLM,
transformers.BertForSequenceClassification,
transformers.BertForTokenClassification,
]
config = transformers.BertConfig(vocab_size=100,
hidden_size=128,
num_hidden_layers=4,
num_attention_heads=4,
intermediate_size=256)
def data_gen():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
meta_args = dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
return meta_args
for model_cls in MODEL_LIST:
model = model_cls(config=config)
split_model_and_compare_output(model, data_gen)
if __name__ == '__main__':
test_single_sentence_bert()
|
import pytest
import timm.models as tmm
import torch
import torchvision.models as tm
from colossalai.fx._compatibility import is_compatible_with_meta
if is_compatible_with_meta():
from colossalai.fx import meta_trace
tm_models = [
tm.vgg11,
tm.resnet18,
tm.densenet121,
tm.mobilenet_v3_small,
tm.resnext50_32x4d,
tm.wide_resnet50_2,
tm.regnet_x_16gf,
tm.mnasnet0_5,
tm.efficientnet_b0,
]
tmm_models = [
tmm.resnest.resnest50d, tmm.beit.beit_base_patch16_224, tmm.cait.cait_s24_224, tmm.efficientnet.efficientnetv2_m,
tmm.resmlp_12_224, tmm.vision_transformer.vit_base_patch16_224, tmm.deit_base_distilled_patch16_224,
tmm.convnext.convnext_base, tmm.vgg.vgg11, tmm.dpn.dpn68, tmm.densenet.densenet121, tmm.rexnet.rexnet_100,
tmm.swin_transformer.swin_base_patch4_window7_224
]
@pytest.mark.skipif(not is_compatible_with_meta(), reason='torch version is lower than 1.12.0')
def test_torchvision_models_trace():
for m in tm_models:
model = m()
data = torch.rand(1000, 3, 224, 224, device='meta')
graph = meta_trace(model, torch.device('cpu'), data)
@pytest.mark.skipif(not is_compatible_with_meta(), reason='torch version is lower than 1.12.0')
def test_timm_models_trace():
for m in tmm_models:
model = m()
data = torch.rand(1000, 3, 224, 224, device='meta')
graph = meta_trace(model, torch.device('cpu'), data)
if __name__ == '__main__':
test_torchvision_models_trace()
test_timm_models_trace()
|
import pytest
import timm.models as tmm
import torch
import torchvision.models as tm
from colossalai.fx._compatibility import is_compatible_with_meta
if is_compatible_with_meta():
from colossalai.fx.profiler import MetaTensor
tm_models = [
tm.vgg11,
tm.resnet18,
tm.densenet121,
tm.mobilenet_v3_small,
tm.resnext50_32x4d,
tm.wide_resnet50_2,
tm.regnet_x_16gf,
tm.mnasnet0_5,
tm.efficientnet_b0,
]
tmm_models = [
tmm.resnest.resnest50d, tmm.beit.beit_base_patch16_224, tmm.cait.cait_s24_224, tmm.efficientnet.efficientnetv2_m,
tmm.resmlp_12_224, tmm.vision_transformer.vit_base_patch16_224, tmm.deit_base_distilled_patch16_224,
tmm.convnext.convnext_base, tmm.vgg.vgg11, tmm.dpn.dpn68, tmm.densenet.densenet121, tmm.rexnet.rexnet_100,
tmm.swin_transformer.swin_base_patch4_window7_224
]
@pytest.mark.skipif(not is_compatible_with_meta(), reason='torch version is lower than 1.12.0')
def test_torchvision_models():
for m in tm_models:
model = m()
data = torch.rand(100000, 3, 224, 224, device='meta')
model(MetaTensor(data, fake_device=torch.device('cpu'))).sum().backward()
@pytest.mark.skipif(not is_compatible_with_meta(), reason='torch version is lower than 1.12.0')
def test_timm_models():
for m in tmm_models:
model = m()
data = torch.rand(100000, 3, 224, 224, device='meta')
model(MetaTensor(data, fake_device=torch.device('cpu'))).sum().backward()
if __name__ == '__main__':
test_torchvision_models()
test_timm_models()
|
from typing import Any, Callable, Union
import pytest
import torch
import torch.nn as nn
from colossalai.fx._compatibility import is_compatible_with_meta
if is_compatible_with_meta():
from colossalai.fx.profiler import MetaTensor
aten = torch.ops.aten
registered_meta = {
('aten.convolution.default', True): [ # (aten ops, requires_backward)
(nn.Conv1d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4)),
(nn.Conv2d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4, 4)),
(nn.Conv3d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4, 4, 4)),
(nn.ConvTranspose1d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4)),
(nn.ConvTranspose2d(in_channels=3, out_channels=4, kernel_size=2, padding=1,
dilation=2), torch.rand(2, 3, 4, 4)),
(nn.ConvTranspose3d(in_channels=3, out_channels=4, kernel_size=2, padding=1,
dilation=2), torch.rand(2, 3, 4, 4, 4)),
],
('aten.native_batch_norm.default', True): [
(nn.BatchNorm1d(4), torch.rand(2, 4)),
(nn.BatchNorm2d(4), torch.rand(1, 4, 4, 4)),
(nn.BatchNorm3d(4), torch.rand(1, 4, 4, 4, 4)),
],
('aten.native_layer_norm.default', True): [(nn.LayerNorm(4), torch.rand(1, 2, 3, 4)),],
('aten.avg_pool1d.default', True): [
(nn.MaxPool1d(3, stride=2), torch.rand(4, 5, 5)),
(nn.AvgPool1d(3, stride=2), torch.rand(4, 5, 5)),
(nn.AdaptiveMaxPool1d(3), torch.rand(4, 5, 5)),
(nn.AdaptiveAvgPool1d(3), torch.rand(4, 5, 5)),
],
('aten.avg_pool2d.default', True): [
(nn.MaxPool2d((3, 2), stride=(2, 1)), torch.rand(2, 4, 5, 5)),
(nn.AvgPool2d((3, 2), stride=(2, 1)), torch.rand(2, 4, 5, 5)),
(nn.AdaptiveMaxPool2d((3, 2)), torch.rand(2, 4, 5, 5)),
(nn.AdaptiveAvgPool2d((3, 2)), torch.rand(2, 4, 5, 5)),
],
('aten.relu.default', True): [
(nn.ReLU(), torch.rand(4, 3, 1, 2)),
(nn.LeakyReLU(), torch.rand(4, 3, 1, 2)),
(nn.SiLU(), torch.rand(4, 3, 1, 2)),
(nn.GELU(), torch.rand(4, 3, 1, 2)),
(nn.ELU(), torch.rand(4, 3, 1, 2)),
(nn.Sigmoid(), torch.rand(4, 3, 1, 2)),
(nn.Tanh(), torch.rand(4, 3, 1, 2)),
(nn.Hardswish(), torch.rand(4, 3, 1, 2)),
]
}
def compare_all(tensor: torch.Tensor, meta_tensor: torch.Tensor) -> Any:
assert tensor.shape == meta_tensor.shape, f'the shape of tensor ({tensor.shape}) and meta tensor ({meta_tensor.shape}) does not match.'
assert tensor.dtype == meta_tensor.dtype, f'the dtype of tensor ({tensor.dtype}) and meta tensor ({meta_tensor.dtype}) does not match.'
assert tensor.stride() == meta_tensor.stride(
), f'the stride of tensor ({tensor.stride()}) and meta tensor ({meta_tensor.stride()}) does not match.'
def run_and_compare(f: Union[nn.Module, Callable], x: torch.Tensor, requires_backward=False) -> Any:
x.requires_grad = requires_backward
meta_x = MetaTensor(x)
x_out, meta_out = f(x), f(meta_x)
compare_all(x_out, meta_out)
if requires_backward:
x_out.sum().backward()
meta_out.sum().backward()
compare_all(x.grad, meta_x.grad)
@pytest.mark.skipif(not is_compatible_with_meta(), reason='torch version is lower than 1.12.0')
def test_meta_aten():
for (aten_op, requires_backward), v in registered_meta.items():
for f, x in v:
run_and_compare(f, x, requires_backward)
if __name__ == '__main__':
test_meta_aten()
|
from functools import partial
import colossalai
import pytest
import torch.multiprocessing as mp
from colossalai.amp import AMP_TYPE
from colossalai.core import global_context as gpc
from colossalai.utils import free_port
from tests.components_to_test.registry import non_distributed_component_funcs
from colossalai.testing import parameterize, rerun_if_address_is_in_use
CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)),
fp16=dict(mode=None),
clip_grad_norm=1.0)
@parameterize('model_name', ['repeated_computed_layers', 'resnet18', 'repeated_computed_layers'])
@parameterize('amp_mode', [AMP_TYPE.APEX, AMP_TYPE.TORCH, AMP_TYPE.NAIVE, None])
def run_train(model_name, amp_mode):
# FIXME: test bert
get_components_func = non_distributed_component_funcs.get_callable(model_name)
gpc.config.fp16['mode'] = amp_mode
model_builder, train_dataloader, _, optimizer_class, criterion = get_components_func()
model = model_builder(checkpoint=False)
engine, train_dataloader, *args = colossalai.initialize(model=model,
optimizer=optimizer_class(model.parameters(), lr=1e-3),
criterion=criterion,
train_dataloader=train_dataloader)
try:
engine.train()
for data, label in train_dataloader:
engine.zero_grad()
data = data.cuda()
label = label.cuda()
if criterion:
output = engine(data)
loss = engine.criterion(output, label)
else:
loss = engine(data, label)
engine.backward(loss)
engine.step()
break
except IndexError:
# if using apex amp, NetWithRepeatedlyComputedLayers will raise an index out of range issue
# the following check fails in apex
# if cached_x.grad_fn.next_functions[1][0].variable is not x:
pass
def run_engine(rank, world_size, port):
# init dist env
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_train()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_engine():
world_size = 2
run_func = partial(run_engine, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_engine()
|
import os
from functools import partial
from pathlib import Path
import colossalai
from colossalai.testing.utils import rerun_if_address_is_in_use
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from colossalai.core import global_context as gpc
from colossalai.logging import get_dist_logger
from colossalai.utils import free_port, get_dataloader
from colossalai.testing import rerun_if_address_is_in_use
from torch.optim import Adam
from torchvision import transforms
from torchvision.datasets import CIFAR10
from torchvision.models import resnet18
# Config
BATCH_SIZE = 2
NUM_CLASSES = 10
CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)),
clip_grad_norm=1.0,
gradient_accumulation=4)
def run_no_pipeline(rank, world_size, port):
# init dist env
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
# build model
model = resnet18(num_classes=10)
# build dataloaders
train_dataset = CIFAR10(root=Path(os.environ['DATA']),
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
]))
train_dataloader = get_dataloader(dataset=train_dataset,
shuffle=True,
batch_size=BATCH_SIZE,
pin_memory=True,
drop_last=True)
# build optimizer
optimizer = Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
engine, train_dataloader, *args = colossalai.initialize(model=model,
optimizer=optimizer,
criterion=criterion,
train_dataloader=train_dataloader)
logger = get_dist_logger()
rank = torch.distributed.get_rank()
param_track = []
grad_track = []
next(model.parameters()).retain_grad()
engine.train()
step = 0
for img, label in train_dataloader:
engine.zero_grad()
img = img.cuda()
label = label.cuda()
output = engine(img)
loss = engine.criterion(output, label)
engine.backward(loss)
engine.step()
# check
param_track.append(next(model.parameters())[0].clone())
grad_track.append(next(model.parameters()).grad[0].clone())
step += 1
if step == CONFIG['gradient_accumulation']:
break
assert not torch.all(grad_track[0] == grad_track[-1]), 'grad should be different in different iterations'
assert torch.all(param_track[0] == param_track[1]) and not torch.all(param_track[0] == param_track[-1]), \
'param should be the same in the first few iterations and only changed in the last iteration'
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_engine():
world_size = 4
func = partial(run_no_pipeline, world_size=world_size, port=free_port())
mp.spawn(func, nprocs=world_size)
if __name__ == '__main__':
test_engine()
|
import torch
from timm.models.beit import Beit
from colossalai.utils.cuda import get_current_device
from .registry import non_distributed_component_funcs
from .utils.dummy_data_generator import DummyDataGenerator
class DummyDataLoader(DummyDataGenerator):
img_size = 64
num_channel = 3
num_class = 10
batch_size = 4
def generate(self):
data = torch.randn((DummyDataLoader.batch_size, DummyDataLoader.num_channel, DummyDataLoader.img_size,
DummyDataLoader.img_size),
device=get_current_device())
label = torch.randint(low=0,
high=DummyDataLoader.num_class,
size=(DummyDataLoader.batch_size,),
device=get_current_device())
return data, label
@non_distributed_component_funcs.register(name='beit')
def get_training_components():
def model_buider(checkpoint=False):
model = Beit(img_size=DummyDataLoader.img_size,
num_classes=DummyDataLoader.num_class,
embed_dim=32,
depth=2,
num_heads=4)
return model
trainloader = DummyDataLoader()
testloader = DummyDataLoader()
criterion = torch.nn.CrossEntropyLoss()
return model_buider, trainloader, testloader, torch.optim.Adam, criterion
|
#!/usr/bin/env python
import torch
import torch.nn as nn
from colossalai.nn import CheckpointModule
from .registry import non_distributed_component_funcs
from .utils.dummy_data_generator import DummyDataGenerator
class NetWithRepeatedlyComputedLayers(CheckpointModule):
"""
This model is to test with layers which go through forward pass multiple times.
In this model, the fc1 and fc2 call forward twice
"""
def __init__(self, checkpoint=False) -> None:
super().__init__(checkpoint=checkpoint)
self.fc1 = nn.Linear(5, 5)
self.fc2 = nn.Linear(5, 5)
self.fc3 = nn.Linear(5, 2)
self.layers = [self.fc1, self.fc2, self.fc1, self.fc2, self.fc3]
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
class DummyDataLoader(DummyDataGenerator):
def generate(self):
data = torch.rand(16, 5)
label = torch.randint(low=0, high=2, size=(16,))
return data, label
@non_distributed_component_funcs.register(name='repeated_computed_layers')
def get_training_components():
def model_builder(checkpoint=False):
return NetWithRepeatedlyComputedLayers(checkpoint)
trainloader = DummyDataLoader()
testloader = DummyDataLoader()
criterion = torch.nn.CrossEntropyLoss()
return model_builder, trainloader, testloader, torch.optim.Adam, criterion
|
import torch
import torch.nn as nn
from transformers import GPT2Config, GPT2LMHeadModel
from colossalai.utils.cuda import get_current_device
from .registry import non_distributed_component_funcs
from .utils.dummy_data_generator import DummyDataGenerator
class DummyDataLoader(DummyDataGenerator):
vocab_size = 128
batch_size = 4
seq_len = 64
def generate(self):
input_ids = torch.randint(0,
DummyDataLoader.vocab_size, (DummyDataLoader.batch_size, DummyDataLoader.seq_len),
device=get_current_device())
return input_ids, input_ids
class GPTLMModel(nn.Module):
def __init__(self,
hidden_size=768,
num_layers=12,
num_attention_heads=12,
max_seq_len=1024,
vocab_size=50304,
checkpoint=False):
super().__init__()
self.checkpoint = checkpoint
self.model = GPT2LMHeadModel(
GPT2Config(n_embd=hidden_size,
n_layer=num_layers,
n_head=num_attention_heads,
n_positions=max_seq_len,
n_ctx=max_seq_len,
vocab_size=vocab_size,
resid_pdrop=0.0,
embd_pdrop=0.0,
attn_pdrop=0.0))
if checkpoint:
self.model.gradient_checkpointing_enable()
def forward(self, input_ids):
# Only return lm_logits
attention_mask = torch.ones_like(input_ids)
return self.model(input_ids=input_ids, attention_mask=attention_mask, use_cache=not self.checkpoint)[0]
def gpt2_micro(checkpoint=True):
return GPTLMModel(checkpoint=checkpoint,
hidden_size=32,
num_layers=2,
num_attention_heads=4,
max_seq_len=64,
vocab_size=128)
def gpt2_s(checkpoint=True):
return GPTLMModel(checkpoint=checkpoint)
def gpt2_m(checkpoint=True):
return GPTLMModel(hidden_size=1024, num_layers=24, num_attention_heads=16, checkpoint=checkpoint)
class GPTLMLoss(nn.Module):
def __init__(self):
super().__init__()
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, logits, labels):
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
@non_distributed_component_funcs.register(name='gpt2')
def get_training_components():
trainloader = DummyDataLoader()
testloader = DummyDataLoader()
criterion = GPTLMLoss()
return gpt2_micro, trainloader, testloader, torch.optim.Adam, criterion
|
#!/usr/bin/env python
class Registry:
def __init__(self):
self._registry = dict()
def register(self, name):
assert name not in self._registry
def _regsiter(callable_):
self._registry[name] = callable_
return _regsiter
def get_callable(self, name: str):
return self._registry[name]
def __iter__(self):
self._idx = 0
self._len = len(self._registry)
self._names = list(self._registry.keys())
return self
def __next__(self):
if self._idx < self._len:
key = self._names[self._idx]
callable_ = self._registry[key]
self._idx += 1
return callable_
else:
raise StopIteration
non_distributed_component_funcs = Registry()
model_paralle_component_funcs = Registry()
__all__ = ['non_distributed_component_funcs', 'model_paralle_component_funcs']
|
import torch
import torch.nn as nn
from colossalai.nn import CheckpointModule
from colossalai.utils.cuda import get_current_device
from .registry import non_distributed_component_funcs
from .utils.dummy_data_generator import DummyDataGenerator
class SimpleNet(CheckpointModule):
"""
In this no-leaf module, it has subordinate nn.modules and a nn.Parameter.
"""
def __init__(self, checkpoint=False) -> None:
super().__init__(checkpoint=checkpoint)
self.embed = nn.Embedding(20, 4)
self.proj1 = nn.Linear(4, 8)
self.ln1 = nn.LayerNorm(8)
self.proj2 = nn.Linear(8, 4)
self.ln2 = nn.LayerNorm(4)
self.classifier = nn.Linear(4, 4)
def forward(self, x):
x = self.embed(x)
x = self.proj1(x)
x = self.ln1(x)
x = self.proj2(x)
x = self.ln2(x)
x = self.classifier(x)
return x
class DummyDataLoader(DummyDataGenerator):
def generate(self):
data = torch.randint(low=0, high=20, size=(16,), device=get_current_device())
label = torch.randint(low=0, high=2, size=(16,), device=get_current_device())
return data, label
@non_distributed_component_funcs.register(name='simple_net')
def get_training_components():
def model_builder(checkpoint=False):
return SimpleNet(checkpoint)
trainloader = DummyDataLoader()
testloader = DummyDataLoader()
criterion = torch.nn.CrossEntropyLoss()
from colossalai.nn.optimizer import HybridAdam
return model_builder, trainloader, testloader, HybridAdam, criterion
|
import torch
import torch.nn as nn
import torch.nn.functional as F
from colossalai.nn import CheckpointModule
from .registry import non_distributed_component_funcs
from .utils import DummyDataGenerator
class SubNet(nn.Module):
def __init__(self, out_features) -> None:
super().__init__()
self.bias = nn.Parameter(torch.zeros(out_features))
def forward(self, x, weight):
return F.linear(x, weight, self.bias)
class NestedNet(CheckpointModule):
def __init__(self, checkpoint=False) -> None:
super().__init__(checkpoint)
self.fc1 = nn.Linear(5, 5)
self.sub_fc = SubNet(5)
self.fc2 = nn.Linear(5, 2)
def forward(self, x):
x = self.fc1(x)
x = self.sub_fc(x, self.fc1.weight)
x = self.fc1(x)
x = self.fc2(x)
return x
class DummyDataLoader(DummyDataGenerator):
def generate(self):
data = torch.rand(16, 5)
label = torch.randint(low=0, high=2, size=(16,))
return data, label
@non_distributed_component_funcs.register(name='nested_model')
def get_training_components():
def model_builder(checkpoint=False):
return NestedNet(checkpoint)
trainloader = DummyDataLoader()
testloader = DummyDataLoader()
criterion = torch.nn.CrossEntropyLoss()
return model_builder, trainloader, testloader, torch.optim.Adam, criterion
|
import torch
import transformers
from packaging import version
from transformers import AlbertConfig, AlbertForSequenceClassification
from .bert import get_bert_data_loader
from .registry import non_distributed_component_funcs
@non_distributed_component_funcs.register(name='albert')
def get_training_components():
hidden_dim = 8
num_head = 4
sequence_length = 12
num_layer = 2
vocab_size = 32
def bert_model_builder(checkpoint: bool = False):
config = AlbertConfig(vocab_size=vocab_size,
gradient_checkpointing=checkpoint,
hidden_size=hidden_dim,
intermediate_size=hidden_dim * 4,
num_attention_heads=num_head,
max_position_embeddings=sequence_length,
num_hidden_layers=num_layer,
hidden_dropout_prob=0.,
attention_probs_dropout_prob=0.)
print('building AlbertForSequenceClassification model')
# adapting huggingface BertForSequenceClassification for single unitest calling interface
class ModelAaptor(AlbertForSequenceClassification):
def forward(self, input_ids, labels):
"""
inputs: data, label
outputs: loss
"""
return super().forward(input_ids=input_ids, labels=labels)[0]
model = ModelAaptor(config)
# if checkpoint and version.parse(transformers.__version__) >= version.parse("4.11.0"):
# model.gradient_checkpointing_enable()
return model
is_distrbuted = torch.distributed.is_initialized()
trainloader = get_bert_data_loader(n_class=vocab_size,
batch_size=2,
total_samples=10000,
sequence_length=sequence_length,
is_distrbuted=is_distrbuted)
testloader = get_bert_data_loader(n_class=vocab_size,
batch_size=2,
total_samples=10000,
sequence_length=sequence_length,
is_distrbuted=is_distrbuted)
criterion = None
return bert_model_builder, trainloader, testloader, torch.optim.Adam, criterion
|
from . import (
beit,
bert,
gpt2,
hanging_param_model,
inline_op_model,
nested_model,
repeated_computed_layers,
resnet,
simple_net,
)
from .utils import run_fwd_bwd
from . import albert # isort:skip
__all__ = [
'bert', 'gpt2', 'hanging_param_model', 'inline_op_model', 'nested_model', 'repeated_computed_layers', 'resnet',
'simple_net', 'run_fwd_bwd', 'albert', 'beit'
]
|
from torchvision.models import resnet18
from .registry import non_distributed_component_funcs
from pathlib import Path
import os
import torch
from torchvision.transforms import transforms
from torchvision.datasets import CIFAR10
from colossalai.utils import get_dataloader
def get_cifar10_dataloader(train):
# build dataloaders
dataset = CIFAR10(root=Path(os.environ['DATA']),
download=True,
train=train,
transform=transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))]))
dataloader = get_dataloader(dataset=dataset, shuffle=True, batch_size=16, drop_last=True)
return dataloader
@non_distributed_component_funcs.register(name='resnet18')
def get_resnet_training_components():
def model_builder(checkpoint=False):
return resnet18(num_classes=10)
trainloader = get_cifar10_dataloader(train=True)
testloader = get_cifar10_dataloader(train=False)
criterion = torch.nn.CrossEntropyLoss()
return model_builder, trainloader, testloader, torch.optim.Adam, criterion
|
import torch
import torch.nn as nn
import torch.nn.functional as F
from colossalai.nn import CheckpointModule
from .registry import non_distributed_component_funcs
from .utils.dummy_data_generator import DummyDataGenerator
class InlineOpModule(CheckpointModule):
"""
a module with inline Ops
"""
def __init__(self, checkpoint=False) -> None:
super().__init__(checkpoint=checkpoint)
self.proj1 = nn.Linear(4, 8)
self.proj2 = nn.Linear(8, 8)
def forward(self, x):
x = self.proj1(x)
# inline add_
x.add_(10)
x = self.proj2(x)
# inline relu_
x = torch.relu_(x)
x = self.proj2(x)
return x
class DummyDataLoader(DummyDataGenerator):
def generate(self):
data = torch.rand(16, 4)
label = torch.randint(low=0, high=2, size=(16,))
return data, label
@non_distributed_component_funcs.register(name='inline_op_model')
def get_training_components():
def model_builder(checkpoint=False):
return InlineOpModule(checkpoint)
trainloader = DummyDataLoader()
testloader = DummyDataLoader()
criterion = torch.nn.CrossEntropyLoss()
from colossalai.nn.optimizer import HybridAdam
return model_builder, trainloader, testloader, HybridAdam, criterion
|
import torch
import torch.nn as nn
import torch.nn.functional as F
from colossalai.nn import CheckpointModule
from .registry import non_distributed_component_funcs
from .utils.dummy_data_generator import DummyDataGenerator
class HangingParamModule(CheckpointModule):
"""
Hanging Parameter: a parameter dose not belong to a leaf Module.
It has subordinate nn.modules and a nn.Parameter.
"""
def __init__(self, checkpoint=False) -> None:
super().__init__(checkpoint=checkpoint)
self.proj1 = nn.Linear(4, 8)
self.weight = nn.Parameter(torch.randn(8, 8))
self.proj2 = nn.Linear(8, 4)
def forward(self, x):
x = self.proj1(x)
x = F.linear(x, self.weight)
x = self.proj2(x)
return x
class DummyDataLoader(DummyDataGenerator):
def generate(self):
data = torch.rand(16, 4)
label = torch.randint(low=0, high=2, size=(16,))
return data, label
@non_distributed_component_funcs.register(name='hanging_param_model')
def get_training_components():
def model_builder(checkpoint=False):
return HangingParamModule(checkpoint)
trainloader = DummyDataLoader()
testloader = DummyDataLoader()
criterion = torch.nn.CrossEntropyLoss()
from colossalai.nn.optimizer import HybridAdam
return model_builder, trainloader, testloader, HybridAdam, criterion
|
import torch
import transformers
from packaging import version
from torch.utils.data import SequentialSampler
from transformers import BertConfig, BertForSequenceClassification
from .registry import non_distributed_component_funcs
def get_bert_data_loader(
n_class,
batch_size,
total_samples,
sequence_length,
device=torch.device('cpu:0'),
is_distrbuted=False,
):
train_data = torch.randint(
low=0,
high=n_class,
size=(total_samples, sequence_length),
device=device,
dtype=torch.long,
)
train_label = torch.randint(low=0, high=2, size=(total_samples,), device=device, dtype=torch.long)
train_dataset = torch.utils.data.TensorDataset(train_data, train_label)
if is_distrbuted:
sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
sampler = SequentialSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, sampler=sampler)
return train_loader
@non_distributed_component_funcs.register(name='bert')
def get_training_components():
hidden_dim = 8
num_head = 4
sequence_length = 12
num_layer = 2
vocab_size = 32
def bert_model_builder(checkpoint: bool = False):
config = BertConfig(vocab_size=vocab_size,
gradient_checkpointing=checkpoint,
hidden_size=hidden_dim,
intermediate_size=hidden_dim * 4,
num_attention_heads=num_head,
max_position_embeddings=sequence_length,
num_hidden_layers=num_layer,
hidden_dropout_prob=0.,
attention_probs_dropout_prob=0.)
print('building BertForSequenceClassification model')
# adapting huggingface BertForSequenceClassification for single unitest calling interface
class ModelAaptor(BertForSequenceClassification):
def forward(self, input_ids, labels):
"""
inputs: data, label
outputs: loss
"""
return super().forward(input_ids=input_ids, labels=labels)[0]
model = ModelAaptor(config)
if checkpoint and version.parse(transformers.__version__) >= version.parse("4.11.0"):
model.gradient_checkpointing_enable()
return model
is_distrbuted = torch.distributed.is_initialized()
trainloader = get_bert_data_loader(n_class=vocab_size,
batch_size=2,
total_samples=10000,
sequence_length=sequence_length,
is_distrbuted=is_distrbuted)
testloader = get_bert_data_loader(n_class=vocab_size,
batch_size=2,
total_samples=10000,
sequence_length=sequence_length,
is_distrbuted=is_distrbuted)
criterion = None
return bert_model_builder, trainloader, testloader, torch.optim.Adam, criterion
|
from abc import ABC, abstractmethod
class DummyDataGenerator(ABC):
def __init__(self, length=10):
self.length = length
@abstractmethod
def generate(self):
pass
def __iter__(self):
self.step = 0
return self
def __next__(self):
if self.step < self.length:
self.step += 1
return self.generate()
else:
raise StopIteration
def __len__(self):
return self.length
|
from .dummy_data_generator import DummyDataGenerator
from .executor import run_fwd_bwd
|
import torch
def run_fwd_bwd(model, data, label, criterion, optimizer=None) -> torch.Tensor:
"""run_fwd_bwd
run fwd and bwd for the model
Args:
model (torch.nn.Module): a PyTorch model
data (torch.Tensor): input data
label (torch.Tensor): label
criterion (Optional[Callable]): a function of criterion
Returns:
torch.Tensor: loss of fwd
"""
if criterion:
y = model(data)
y = y.float()
loss = criterion(y, label)
else:
loss = model(data, label)
loss = loss.float()
if optimizer:
optimizer.backward(loss)
else:
loss.backward()
return loss
|
import math
import torch
import torch.nn as nn
from numpy import dtype
from colossalai.testing import parameterize
from colossalai.utils import multi_tensor_applier
def torch_adam_update(
step,
lr,
beta1,
beta2,
eps,
weight_decay,
param,
grad,
exp_avg,
exp_avg_sq,
use_adamw,
):
bias_correction1 = 1 - beta1**step
bias_correction2 = 1 - beta2**step
if weight_decay != 0:
if use_adamw:
# Perform stepweight decay
param.mul_(1 - lr * weight_decay)
else:
grad = grad.add(param, alpha=weight_decay)
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps)
step_size = lr / bias_correction1
param.addcdiv_(exp_avg, denom, value=-step_size)
@parameterize('adamw', [False, True])
@parameterize('step', [1, 2])
@parameterize('p_dtype', [torch.float, torch.half])
@parameterize('g_dtype', [torch.float, torch.half])
def test_adam(adamw, step, p_dtype, g_dtype):
from colossalai.kernel.op_builder import FusedOptimBuilder
fused_optim = FusedOptimBuilder().load()
fused_adam = fused_optim.multi_tensor_adam
dummy_overflow_buf = torch.cuda.IntTensor([0])
count = 0
for i in range(1024):
p = torch.rand(64, dtype=p_dtype).cuda()
p_copy = p.clone().float()
g = torch.rand(p.shape, dtype=g_dtype).cuda()
g_copy = g.clone().float()
m = torch.rand(p.shape).cuda()
m_copy = m.clone()
v = torch.rand(p.shape).cuda()
v_copy = v.clone()
lr = 1e-3
beta1, beta2 = 0.9, 0.999
eps = 1e-8
weight_decay = 0
multi_tensor_applier(fused_adam, dummy_overflow_buf, [[g], [p], [m], [v]], lr, beta1, beta2, eps, step, adamw,
True, weight_decay, -1)
torch_adam_update(
step,
lr,
beta1,
beta2,
eps,
weight_decay,
p_copy, # fp32 data
g_copy, # fp32 grad
m_copy,
v_copy,
adamw,
)
if torch.isnan(p).any() or torch.isnan(p_copy).any():
count += 1
continue
assert count < 200, "too many nans"
assert torch.allclose(p.to(torch.float), p_copy.to(torch.float), 1e-5,
1e-5), f"failed check, adamw {adamw}, p_dtype {p_dtype}, g_dtype {g_dtype}"
|
import pytest
import torch
from tests.components_to_test.registry import non_distributed_component_funcs
from colossalai.nn.optimizer import CPUAdam, HybridAdam
def move_some_params_to_cuda(model, torch_model):
model.embed.weight.data = model.embed.weight.cuda()
torch_model.embed.weight.data = model.embed.weight.cuda()
model.ln1.weight.data = model.ln1.weight.cuda()
torch_model.ln1.weight.data = model.ln1.weight.cuda()
def check_params_equal(model, torch_model):
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
assert torch.allclose(p, torch_p, atol=1e-3), f'diff: {torch.abs(p - torch_p)}'
@pytest.mark.parametrize('nvme_offload_fraction', [0.0, 0.5, 1.0])
@pytest.mark.parametrize('nvme_offload_dir', ['./offload', None])
@pytest.mark.parametrize('adam_cls', [CPUAdam, HybridAdam])
def test_nvme_adam(nvme_offload_fraction, nvme_offload_dir, adam_cls):
get_components_func = non_distributed_component_funcs.get_callable('simple_net')
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
model = model_builder()
torch_model = model_builder()
move_some_params_to_cuda(model, torch_model)
optimizer = adam_cls(model.parameters(),
lr=0.1,
nvme_offload_fraction=nvme_offload_fraction,
nvme_offload_dir=nvme_offload_dir)
torch_optimizer = torch.optim.Adam(torch_model.parameters(), lr=0.1)
with torch.no_grad():
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
torch_p.copy_(p)
p.grad = torch.rand_like(p)
torch_p.grad = p.grad
for _ in range(3):
optimizer.step()
torch_optimizer.step()
check_params_equal(model, torch_model)
if __name__ == '__main__':
test_nvme_adam(0.5, './offload', CPUAdam)
|
import torch
import torch.nn as nn
from torch.optim.adam import Adam
from torch.optim import AdamW
from colossalai.nn.optimizer.hybrid_adam import HybridAdam
from colossalai.testing import parameterize
RE = 1024
@parameterize('adamw', [False, True])
@parameterize('device', ['cpu', 'cuda:0'])
@parameterize('p_dtype', [torch.float])
@parameterize('g_dtype', [torch.float, torch.half])
def test_adam(adamw, device, p_dtype, g_dtype):
rng_state = torch.get_rng_state()
p = nn.Parameter(torch.rand(64).to(device, p_dtype))
torch.set_rng_state(rng_state)
p_copy = nn.Parameter(torch.rand(64).to(device).float())
if adamw:
optim = HybridAdam([p], lr=1e-3, adamw_mode=True)
torch_optim = AdamW([p_copy], lr=1e-3)
else:
optim = HybridAdam([p], lr=1e-3)
torch_optim = Adam([p_copy], lr=1e-3)
print(f"adaw mode {adamw}, device {device}, p_dtype {p_dtype}, g_dtype {g_dtype}")
for i in range(RE):
p.grad = torch.rand(64).to(device, p_dtype)
p_copy.grad = p.grad.clone().float()
p.grad.data = p.grad.data.to(g_dtype)
optim.step()
torch_optim.step()
if torch.isnan(p.data).any() or torch.isnan(p_copy.data).any():
continue
assert torch.allclose(p.data, p_copy.data, 1e-4, 1e-2), \
f"adaw mode {adamw}, device {device}, p_dtype {p_dtype}, g_dtype {g_dtype}"
|
import math
import torch
from colossalai.testing import parameterize
def torch_adam_update(
step,
lr,
beta1,
beta2,
eps,
weight_decay,
param,
grad,
exp_avg,
exp_avg_sq,
use_adamw,
):
bias_correction1 = 1 - beta1**step
bias_correction2 = 1 - beta2**step
if weight_decay != 0:
if use_adamw:
# Perform stepweight decay
param.mul_(1 - lr * weight_decay)
else:
grad = grad.add(param, alpha=weight_decay)
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps)
step_size = lr / bias_correction1
param.addcdiv_(exp_avg, denom, value=-step_size)
def assertLess(data_diff, threshold, msg):
assert data_diff < threshold, msg
def assertTrue(condition, msg):
assert condition, msg
@parameterize('adamw', [True, False])
@parameterize('step', [1, 2])
@parameterize('p_dtype', [torch.float, torch.half])
@parameterize('g_dtype', [torch.float, torch.half])
def test_cpu_adam(adamw, step, p_dtype, g_dtype):
lr = 1e-3
beta1, beta2 = 0.9, 0.999
eps = 1e-8
weight_decay = 0
for i in range(1024):
p_data = torch.rand(64, dtype=p_dtype)
p_data_copy = p_data.clone().float()
p_grad = torch.rand(64, dtype=g_dtype)
p_grad_copy = p_grad.clone().float()
exp_avg = torch.rand(p_data.shape)
exp_avg_copy = exp_avg.clone()
exp_avg_sq = torch.rand(p_data.shape)
exp_avg_sq_copy = exp_avg_sq.clone()
from colossalai.kernel.op_builder import CPUAdamBuilder
cpu_optim = CPUAdamBuilder().load()
cpu_adam_op = cpu_optim.CPUAdamOptimizer(lr, beta1, beta2, eps, weight_decay, adamw)
cpu_adam_op.step(
step,
lr,
beta1,
beta2,
eps,
weight_decay,
True,
p_data.view(-1), # fp32 data
p_grad.view(-1), # fp32 grad
exp_avg.view(-1),
exp_avg_sq.view(-1),
-1,
)
torch_adam_update(
step,
lr,
beta1,
beta2,
eps,
weight_decay,
p_data_copy, # fp32 data
p_grad_copy, # fp32 grad
exp_avg_copy,
exp_avg_sq_copy,
adamw,
)
var = p_data_copy - p_data
data_diff = torch.max(torch.abs(var))
threshold = 1e-3
assertLess(
data_diff,
threshold,
f"p_data diff {data_diff}. failed check, step {step}, lr {lr}, eps "
f"{eps} beta1 {beta1} beta2 {beta2} weight_decay {weight_decay} p_dtype {p_dtype}, g_dtype {g_dtype}",
)
max_grad_diff = torch.max(torch.abs(p_grad_copy - p_grad))
assertTrue(max_grad_diff < threshold, f"diff {max_grad_diff}")
max_exp_avg_diff = torch.max(torch.abs(exp_avg_copy - exp_avg))
assertTrue(max_exp_avg_diff < threshold, f"max_exp_avg_diff {max_exp_avg_diff}")
max_exp_avg_sq_diff = torch.max(torch.abs(exp_avg_sq_copy - exp_avg_sq))
assertTrue(max_exp_avg_sq_diff < threshold, f"max_exp_avg_sq_diff {max_exp_avg_sq_diff}")
if __name__ == '__main__':
test_cpu_adam()
|
import torch
import torch.nn as nn
from torch.optim.adam import Adam
from torch.optim import AdamW
from colossalai.nn.optimizer.fused_adam import FusedAdam
from colossalai.testing import parameterize
class FC(nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc = nn.Sequential(nn.Linear(64, 64))
def forward(self, x):
return self.fc(x)
@parameterize('adamw', [False, True])
@parameterize('p_dtype', [torch.float, torch.half])
@parameterize('g_dtype', [torch.float, torch.half])
def test_adam(adamw, p_dtype, g_dtype):
model = FC().cuda().to(p_dtype)
state = model.state_dict()
model_copy = FC().cuda().to(p_dtype)
model_copy.load_state_dict(state.copy())
if adamw:
optim = FusedAdam(model.parameters(), lr=1e-3, adamw_mode=True)
torch_optim = AdamW(model_copy.parameters(), lr=1e-3)
else:
optim = FusedAdam(model.parameters(), lr=1e-3)
torch_optim = Adam(model_copy.parameters(), lr=1e-3)
data = torch.rand(1024, 64).cuda().to(p_dtype)
data_copy = data.clone()
label = torch.rand(1024, 64).cuda().to(p_dtype)
for d, l in zip(data, label):
y = model(d)
loss = ((l - y)**2).sum()
optim.zero_grad()
loss.backward()
if p_dtype != g_dtype:
for i in range(len(optim.param_groups[0]['params'])):
optim.param_groups[0]['params'][i].grad.data = optim.param_groups[0]['params'][i].grad.data.to(g_dtype)
optim.step()
for d, l in zip(data_copy, label):
y = model_copy(d)
loss = ((l - y)**2).sum()
torch_optim.zero_grad()
loss.backward()
torch_optim.step()
assert len(optim.param_groups[0]['params']) == len(torch_optim.param_groups[0]['params'])
for i in range(len(optim.param_groups[0]['params'])):
if torch.isnan(optim.param_groups[0]['params'][i]).any() \
or torch.isnan(torch_optim.param_groups[0]['params'][i]).any():
continue
assert torch.allclose(optim.param_groups[0]['params'][i], torch_optim.param_groups[0]['params'][i], 2e-3, 2e-3)
|
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn.functional as F
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.tensor import ColoTensorSpec, ProcessGroup, ColoTensor
from tests.test_tensor.common_utils import tensor_equal, tensor_shard_equal, split_param_col_tp1d, split_param_row_tp1d
def run_with_spec(spec_init_func, split_bias):
pg = ProcessGroup(tp_degree=torch.distributed.get_world_size())
model = torch.nn.Linear(4, 8).cuda()
weight = ColoTensor(torch.nn.Parameter(model.weight.detach()), ColoTensorSpec(pg))
bias = ColoTensor(torch.nn.Parameter(model.bias.detach()), ColoTensorSpec(pg))
spec_init_func(weight, pg)
if split_bias:
spec_init_func(bias, pg)
x = torch.rand(2, 4).cuda()
out = model(x)
colo_out = F.linear(x, weight, bias)
colo_out = colo_out.to_replicate()
assert tensor_equal(out, colo_out)
grad = torch.rand_like(out)
out.backward(grad)
colo_out.backward(grad)
assert tensor_shard_equal(model.weight.grad, weight.grad, pg.tp_local_rank(), pg.tp_world_size())
assert tensor_shard_equal(model.bias.grad, bias.grad, pg.tp_local_rank(), pg.tp_world_size())
def run_dist(rank, world_size, port):
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_with_spec(spec_init_func=split_param_col_tp1d, split_bias=False)
run_with_spec(spec_init_func=split_param_row_tp1d, split_bias=True)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@rerun_if_address_is_in_use()
def test_linear_1d(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_linear_1d(4)
|
import torch
import pytest
import colossalai
import torch.nn.functional as F
import torch.multiprocessing as mp
from functools import partial
from colossalai.tensor import ColoTensor, ProcessGroup, ColoTensorSpec
from colossalai.utils import get_current_device
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.tensor import ShardSpec, ComputeSpec, ComputePattern
def check_cross_entropy():
input_t = torch.randn(4, 4, device=get_current_device(), requires_grad=True)
input_ct = torch.randn(4, 4, device=get_current_device(), requires_grad=True)
with torch.no_grad():
input_ct.copy_(input_t)
target = torch.randint(4, (4,), dtype=torch.int64, device=get_current_device())
world_size = torch.distributed.get_world_size()
pg = ProcessGroup(tp_degree=world_size)
input_t_colo = ColoTensor.from_torch_tensor(tensor=input_ct, spec=ColoTensorSpec(pg))
input_shard = input_t_colo.redistribute(ShardSpec([-1], [pg.tp_world_size()]))
input_shard.set_tensor_spec(dist_spec=None, compute_spec=ComputeSpec(ComputePattern.TP1D))
output = F.cross_entropy(input_t, target)
output_colo = F.cross_entropy(input_shard, target)
assert torch.allclose(output_colo, output)
output.backward()
output_colo.backward()
assert torch.allclose(input_t.grad, input_ct.grad)
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
check_cross_entropy()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 2])
@rerun_if_address_is_in_use()
def test_loss_func(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_loss_func(1)
|
from torch.nn import functional as F
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.tensor import ColoParameter, ColoTensorSpec, ProcessGroup
from tests.test_tensor.common_utils import tensor_equal, tensor_shard_equal, split_param_col_tp1d
def run_with_spec(spec_init_func):
pg = ProcessGroup(tp_degree=torch.distributed.get_world_size())
model = torch.nn.EmbeddingBag(10, 4).cuda()
weight = ColoParameter(model.weight.clone(), True, ColoTensorSpec(pg))
spec_init_func(weight, pg)
inputs = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9]).cuda()
offsets = torch.tensor([0, 4]).cuda()
out = model(inputs, offsets=offsets)
colo_out = F.embedding_bag(inputs, weight, offsets=offsets)
assert tensor_equal(out, colo_out)
grad = torch.rand_like(out)
out.backward(grad)
colo_out.backward(grad)
assert tensor_shard_equal(model.weight.grad, weight.grad, pg.tp_local_rank(), pg.tp_world_size())
def run_dist(rank, world_size, port):
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_with_spec(split_param_col_tp1d)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@rerun_if_address_is_in_use()
def test_embedding_bag_1d(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_embedding_bag_1d(4)
|
import colossalai
import torch
import pytest
import torch.nn as nn
import torch.multiprocessing as mp
from colossalai.tensor import ColoTensor, ProcessGroup
from colossalai.tensor import ColoTensorSpec
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import free_port
from functools import partial
from tests.test_tensor.common_utils import tensor_shard_equal, tensor_equal, split_param_row_tp1d, split_param_col_tp1d
class Conv1D(nn.Module):
"""
1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).
Basically works like a linear layer but the weights are transposed.
Args:
nf (`int`): The number of output features.
nx (`int`): The number of input features.
"""
def __init__(self, nf, nx):
super().__init__()
self.nf = nf
w = torch.empty(nx, nf)
nn.init.normal_(w, std=0.02)
self.weight = nn.Parameter(w)
self.bias = nn.Parameter(torch.ones(nf))
def forward(self, x):
size_out = x.size()[:-1] + (self.nf,)
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
x = x.view(size_out)
return x
def run_with_spec(spec_init_func, split_bias):
model = Conv1D(4, 16).cuda()
world_size = torch.distributed.get_world_size()
pg = ProcessGroup(tp_degree=world_size)
weight = ColoTensor(torch.nn.Parameter(model.weight.detach()), ColoTensorSpec(pg))
bias = ColoTensor(torch.nn.Parameter(model.bias.detach()), ColoTensorSpec(pg))
spec_init_func(weight, pg)
if split_bias:
spec_init_func(bias, pg)
x = torch.rand(2, 16).cuda()
out = model(x)
colo_out = torch.addmm(bias, x, weight)
colo_out = colo_out.to_replicate()
assert tensor_equal(out, colo_out)
grad = torch.rand_like(out)
out.backward(grad)
colo_out.backward(grad)
tensor_shard_equal(model.weight.grad, weight.grad, pg.tp_local_rank(), pg.tp_world_size())
tensor_shard_equal(model.bias.grad, bias.grad, pg.tp_local_rank(), pg.tp_world_size())
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_with_spec(spec_init_func=split_param_row_tp1d, split_bias=False)
run_with_spec(spec_init_func=split_param_col_tp1d, split_bias=True)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@rerun_if_address_is_in_use()
def test_addmm_1d(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_addmm_1d(4)
|
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
import torch.distributed as dist
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import free_port, get_current_device
from colossalai.tensor import ColoTensorSpec, ProcessGroup, ColoTensor, ShardSpec
from colossalai.tensor.distspec import DistPlacementPattern
from tests.test_tensor.common_utils import split_param_row_tp1d, split_param_col_tp1d, debug_print
def exam_view_core(pg):
# the case of replicated ColoTensors
x = torch.randn(4, 4).cuda()
x_colo = ColoTensor(x, ColoTensorSpec(pg))
y = x.view(2, -1, 2)
y_colo = x_colo.view(2, -1, 2)
assert torch.all(y == y_colo)
assert y_colo.dist_spec.placement == DistPlacementPattern.REPLICATE
# the perfect case of col-sliced ColoTensors
split_param_col_tp1d(x_colo, pg)
z = x.view(torch.Size((2, 1, 2, -1)))
z_colo = x_colo.view(torch.Size((2, 1, 2, -1)))
if dist.get_rank() == 0:
z = z[:, :, :, 0:2]
else:
z = z[:, :, :, 2:]
assert torch.all(z == z_colo)
assert z_colo.dist_spec == x_colo.dist_spec
# the perfect case of row-sliced ColoTensors
split_param_row_tp1d(x_colo, pg)
z = x.view(torch.Size((-1, 2, 2)))
z_colo = x_colo.view(torch.Size((-1, 2, 2)))
if dist.get_rank() == 0:
z = z[0:2, :, :]
else:
z = z[2:, :, :]
assert torch.all(z == z_colo)
assert z_colo.dist_spec == x_colo.dist_spec
# the normal case of row-sliced ColoTensors
z = x.view(-1, 2, 2, 2)
z_colo = x_colo.view(-1, 2, 2, 2)
assert torch.all(z == z_colo)
assert y_colo.dist_spec.placement == DistPlacementPattern.REPLICATE
def exam_view_autograd(pg):
x = torch.randn(8, 2, device=get_current_device(), requires_grad=True)
y = torch.randn(8, 2, device=get_current_device(), requires_grad=True)
with torch.no_grad():
y.copy_(x)
y = ColoTensor(y, ColoTensorSpec(pg))
y_slice = y.redistribute(ShardSpec([-1], [pg.tp_world_size()]))
xx = x.view(2, 2, -1)
yy_slice = y_slice.view(2, 2, -1)
yy = yy_slice.to_replicate()
grad = torch.randn(2, 2, 4, device=get_current_device())
xx.backward(grad)
yy.backward(grad)
assert torch.all(x.grad == y.grad)
def exam_view_errors(pg):
x = torch.randn(8, 2, device=get_current_device())
x = ColoTensor(x, ColoTensorSpec(pg))
split_param_row_tp1d(x, pg)
x.view('a', 'b', 'c')
x.view(8, -1)
x.view([-2, -2, -2])
x.view((-1, -1, -1))
def run_dist(rank, world_size, port):
colossalai.launch(config=dict(), rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
pg = ProcessGroup(tp_degree=torch.distributed.get_world_size())
exam_view_core(pg)
exam_view_autograd(pg)
# exam_view_errors(pg)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [2])
@rerun_if_address_is_in_use()
def test_view(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_view(2)
|
import torch
import pytest
import colossalai
import torch.nn.functional as F
import torch.multiprocessing as mp
from functools import partial
from colossalai.tensor import ColoTensor, ProcessGroup, ColoTensorSpec, ShardSpec
from colossalai.utils import get_current_device
from torch.nn import Parameter
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import free_port
def _run_layer_norm():
ln_op = torch.nn.LayerNorm(2, 3, device=get_current_device())
input_t = torch.randn(3, 2, device=get_current_device())
pg = ProcessGroup(tp_degree=torch.distributed.get_world_size())
input_t_colo = ColoTensor.from_torch_tensor(input_t.clone().detach(), ColoTensorSpec(pg))
# prepare colossalai LN
weight = ColoTensor(Parameter(ln_op.weight.detach()), ColoTensorSpec(pg))
bias = ColoTensor(Parameter(ln_op.bias.detach()), ColoTensorSpec(pg))
output = ln_op(input_t)
output_colo = F.layer_norm(input_t_colo, ln_op.normalized_shape, weight, bias, ln_op.eps)
assert torch.allclose(output_colo, output)
torch.mean(output).backward()
torch.mean(output_colo).backward()
assert torch.allclose(ln_op.weight.grad, weight.grad)
def check_spec_eq(tensor, other):
assert isinstance(tensor, ColoTensor) and isinstance(other, ColoTensor)
for k in dir(tensor.dist_spec):
if not k.startswith('__'):
assert hasattr(other.dist_spec, k), f"{k}"
assert getattr(tensor.dist_spec, k) == getattr(other.dist_spec, k)
def check_element_wise_ops():
world_size = torch.distributed.get_world_size()
pg = ProcessGroup(tp_degree=world_size)
t = torch.rand(2, 2)
x = ColoTensor(t, spec=ColoTensorSpec(pg, ShardSpec([0], [pg.tp_world_size()])))
check_spec_eq(x, x.cuda())
assert torch.equal(x.cuda(), t.cuda())
check_spec_eq(x, torch.abs(x))
assert torch.equal(torch.abs(x), torch.abs(t))
check_spec_eq(x, F.sigmoid(x))
assert torch.equal(F.sigmoid(x), F.sigmoid(t))
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
check_element_wise_ops()
_run_layer_norm()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [2])
@rerun_if_address_is_in_use()
def test_element_wise_ops(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
def run_dist2(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
_run_layer_norm()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1])
@rerun_if_address_is_in_use()
def test_ln(world_size):
run_func = partial(run_dist2, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
def check_all():
test_element_wise_ops(2)
if __name__ == '__main__':
check_all()
|
from torch.nn import functional as F
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.tensor import ColoTensorSpec, ProcessGroup, ColoTensor
from tests.test_tensor.common_utils import tensor_equal, tensor_shard_equal, split_param_col_tp1d, split_param_row_tp1d
def run_with_spec(spec_init_func, pg: ProcessGroup):
model = torch.nn.Embedding(12, 32).cuda()
weight = ColoTensor(torch.nn.Parameter(model.weight.detach()), ColoTensorSpec(pg))
spec_init_func(weight, pg)
x = torch.tensor((0, 3, 6, 9)).cuda()
out = model(x)
colo_out = F.embedding(x, weight)
assert tensor_equal(out, colo_out)
grad = torch.rand_like(out)
out.backward(grad)
colo_out.backward(grad)
# compare grad inside a TP group
assert tensor_shard_equal(model.weight.grad, weight.grad, pg.tp_local_rank(), pg.tp_world_size())
def run_dist(rank, world_size, port):
# config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
pg = ProcessGroup(tp_degree=world_size)
run_with_spec(split_param_row_tp1d, pg)
run_with_spec(split_param_col_tp1d, pg)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@rerun_if_address_is_in_use()
def test_embedding_1d(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_embedding_1d(4)
|
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.amp.amp_type import AMP_TYPE
from colossalai.logging import get_dist_logger
from colossalai.trainer import Trainer
from colossalai.utils import MultiTimer, free_port
from tests.components_to_test.registry import non_distributed_component_funcs
from colossalai.testing import parameterize, rerun_if_address_is_in_use
BATCH_SIZE = 4
IMG_SIZE = 32
NUM_EPOCHS = 200
CONFIG = dict(fp16=dict(mode=AMP_TYPE.TORCH))
@parameterize('model_name', ['repeated_computed_layers', 'resnet18', 'nested_model'])
def run_trainer(model_name):
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
model = model_builder()
optimizer = optimizer_class(model.parameters(), lr=1e-3)
engine, train_dataloader, *_ = colossalai.initialize(model=model,
optimizer=optimizer,
criterion=criterion,
train_dataloader=train_dataloader)
logger = get_dist_logger()
logger.info("engine is built", ranks=[0])
timer = MultiTimer()
trainer = Trainer(engine=engine, logger=logger, timer=timer)
logger.info("trainer is built", ranks=[0])
logger.info("start training", ranks=[0])
trainer.fit(train_dataloader=train_dataloader,
test_dataloader=test_dataloader,
epochs=NUM_EPOCHS,
max_steps=3,
display_progress=True,
test_interval=5)
torch.cuda.empty_cache()
def run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_trainer_no_pipeline():
world_size = 4
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_trainer_no_pipeline()
|
import os
from functools import partial
from pathlib import Path
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.engine.schedule import PipelineSchedule
from colossalai.logging import get_dist_logger
from colossalai.trainer import Trainer
from colossalai.utils import MultiTimer, free_port, get_dataloader
from torch.optim import Adam
from torchvision import transforms
from torchvision.datasets import CIFAR10
from torchvision.models import resnet18
from colossalai.testing import rerun_if_address_is_in_use
BATCH_SIZE = 4
IMG_SIZE = 32
NUM_EPOCHS = 200
CONFIG = dict(
NUM_MICRO_BATCHES=2,
parallel=dict(pipeline=2),
)
def run_trainer_with_pipeline(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
# build model
model = resnet18(num_classes=10)
if gpc.get_local_rank(ParallelMode.PIPELINE) == 0:
model = nn.Sequential(model.conv1, model.bn1, model.relu, model.maxpool, model.layer1, model.layer2)
elif gpc.get_local_rank(ParallelMode.PIPELINE) == 1:
class Flatten(nn.Module):
def forward(self, x):
return torch.flatten(x, 1)
model = nn.Sequential(model.layer3, model.layer4, model.avgpool, Flatten(), model.fc)
# build dataloaders
train_dataset = CIFAR10(root=Path(os.environ['DATA']),
download=True,
transform=transforms.Compose([
transforms.Resize(size=(IMG_SIZE, IMG_SIZE)),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
]))
train_dataloader = get_dataloader(dataset=train_dataset,
shuffle=True,
batch_size=BATCH_SIZE,
pin_memory=True,
drop_last=True)
# build optimizer
optimizer = Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
engine, train_dataloader, *args = colossalai.initialize(model=model,
optimizer=optimizer,
criterion=criterion,
train_dataloader=train_dataloader)
logger = get_dist_logger()
logger.info("engine is built", ranks=[0])
timer = MultiTimer()
trainer = Trainer(engine=engine, logger=logger, timer=timer)
logger.info("trainer is built", ranks=[0])
logger.info("start training", ranks=[0])
trainer.fit(train_dataloader=train_dataloader,
epochs=NUM_EPOCHS,
max_steps=3,
display_progress=True,
test_interval=5)
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_trainer_with_pipeline():
world_size = 4
run_func = partial(run_trainer_with_pipeline, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_trainer_with_pipeline()
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from functools import partial
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from colossalai.communication import (recv_backward, recv_forward, recv_obj_meta, send_backward,
send_backward_recv_forward, send_forward, send_forward_recv_backward,
send_obj_meta)
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.initialize import launch
from colossalai.logging import get_dist_logger
from colossalai.utils import free_port, get_current_device
from colossalai.testing import rerun_on_exception
BATCH_SIZE = 4
SEQ_LENGTH = 2
HIDDEN_SIZE = 16
CONFIG = dict(parallel=dict(pipeline=dict(size=4), tensor=dict(size=1, mode=None)), seed=1024)
def check_equal(A, B):
return torch.allclose(A, B, rtol=1e-5, atol=1e-3)
def check_forward(output_tensor, rank, logger):
dist.barrier()
if gpc.is_first_rank(ParallelMode.PIPELINE):
tensor = output_tensor.clone()
else:
tensor = recv_forward(output_tensor.shape)
logger.info('Rank {} received forward. Correct tensor: {}'.format(rank, check_equal(tensor, output_tensor)))
if not gpc.is_last_rank(ParallelMode.PIPELINE):
send_forward(tensor)
logger.info('Rank {} sent forward.'.format(rank))
def check_backward(output_grad, rank, logger):
dist.barrier()
if gpc.is_last_rank(ParallelMode.PIPELINE):
grad = output_grad.clone()
else:
grad = recv_backward(output_grad.shape)
logger.info('Rank {} received backward. Correct grad: {}'.format(rank, check_equal(grad, output_grad)))
if not gpc.is_first_rank(ParallelMode.PIPELINE):
send_backward(grad)
logger.info('Rank {} sent backward.'.format(rank))
def check_forward_backward(output_tensor, output_grad, rank, logger):
dist.barrier()
if not gpc.is_first_rank(ParallelMode.PIPELINE):
tensor = send_backward_recv_forward(output_grad, output_tensor.shape)
logger.info('Rank {} sent backward received forward. Correct tensor: {}'.format(
rank, check_equal(tensor, output_tensor)))
if not gpc.is_last_rank(ParallelMode.PIPELINE):
grad = send_forward_recv_backward(output_tensor, output_grad.shape)
logger.info('Rank {} sent forward received backward. Correct grad: {}'.format(
rank, check_equal(grad, output_grad)))
def check_comm(size, rank, prev_rank, next_rank, logger):
dtype = torch.float32
device = get_current_device()
tensor_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
grad_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
tensor = torch.randn(tensor_shape, dtype=dtype, device=device)
dist.all_reduce(tensor)
grad = torch.randn(grad_shape, dtype=dtype, device=device)
dist.all_reduce(grad)
check_forward(tensor, rank, logger)
check_backward(grad, rank, logger)
check_forward_backward(tensor, grad, rank, logger)
def run_check(rank, world_size, port):
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
logger = get_dist_logger()
rank = gpc.get_global_rank()
prev_rank = gpc.get_prev_global_rank(ParallelMode.PIPELINE)
next_rank = gpc.get_next_global_rank(ParallelMode.PIPELINE)
logger.info('Rank {0}: prev rank {1}, next rank {2}'.format(rank, prev_rank, next_rank))
logger.info('Distributed environment is initialzied.')
check_comm(world_size, rank, prev_rank, next_rank, logger)
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
def test_p2p():
world_size = 4
run_func = partial(run_check, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_p2p()
|
# referenced from Megatron and used to testify communication
import os
import os.path as osp
from functools import partial
from pathlib import Path
import colossalai
import pytest
import torch
import torch.nn as nn
import torch.multiprocessing as mp
from colossalai.core import global_context as gpc
from colossalai.context import ParallelMode
from colossalai.initialize import launch
from colossalai.utils import free_port, get_dataloader, print_rank_0
from colossalai.testing import rerun_on_exception
from torchvision import transforms
from torchvision.datasets import CIFAR10
from torchvision.models import resnet18
BATCH_SIZE = 8
CONFIG=dict(
NUM_MICRO_BATCHES=2,
parallel = dict(
pipeline=dict(size=2),
tensor=dict(size=1, mode=None)
)
)
def run_schedule(rank, world_size, port):
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
# build model
model = resnet18(num_classes=10)
if gpc.get_local_rank(ParallelMode.PIPELINE) == 0:
model = nn.Sequential(model.conv1, model.bn1, model.relu, model.maxpool, model.layer1, model.layer2)
elif gpc.get_local_rank(ParallelMode.PIPELINE) == 1:
class Flatten(nn.Module):
def forward(self, x):
return torch.flatten(x, 1)
model = nn.Sequential(model.layer3, model.layer4, model.avgpool, Flatten(), model.fc)
print_rank_0('model is created')
train_dataset = CIFAR10(root=Path(os.environ['DATA']),
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]),
]))
train_dataloader = get_dataloader(
dataset=train_dataset,
shuffle=True,
add_sampler=True,
batch_size=BATCH_SIZE,
pin_memory=True,
)
# build criterion
criterion = torch.nn.CrossEntropyLoss()
# optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=0.001, weight_decay=0)
# initialize
engine, train_dataloader, _, _ = colossalai.initialize(model, optimizer, criterion, train_dataloader)
# build pipeline schedule
schedule = engine.schedule
# run schedule
data_iter = iter(train_dataloader)
schedule.forward_backward_step(engine, data_iter)
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
def test_pipeline_schedule():
world_size = 2
run_func = partial(run_schedule, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_pipeline_schedule()
|
from functools import partial
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from colossalai.communication import all_gather, all_reduce, reduce_scatter
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.initialize import launch
from colossalai.utils import free_port, get_current_device
from colossalai.testing import rerun_if_address_is_in_use
CONFIG = dict(parallel=dict(data=8, pipeline=1, tensor=dict(mode=None, size=1)))
SIZE = 8
def check_all_gather():
tensor = torch.tensor([dist.get_rank() * SIZE + j for j in range(SIZE)])
tensor = tensor.to(get_current_device())
print('Before: Rank {0} - {1}'.format(dist.get_rank(), tensor))
tensor, op = all_gather(tensor, 0, ParallelMode.GLOBAL, async_op=True)
print('After: Rank {0} - {1}'.format(dist.get_rank(), tensor))
op.wait()
print('Complete: Rank {0} - {1}'.format(dist.get_rank(), tensor))
torch.cuda.synchronize()
def check_reduce_scatter():
tensor = torch.tensor([dist.get_rank() * SIZE + j for j in range(SIZE)])
tensor = tensor.to(get_current_device())
print('Before: Rank {0} - {1}'.format(dist.get_rank(), tensor))
tensor, op = reduce_scatter(tensor, 0, ParallelMode.GLOBAL, async_op=True)
print('After: Rank {0} - {1}'.format(dist.get_rank(), tensor))
op.wait()
print('Complete: Rank {0} - {1}'.format(dist.get_rank(), tensor))
torch.cuda.synchronize()
def check_all_reduce():
tensor = torch.tensor([dist.get_rank() * SIZE + j for j in range(SIZE)])
tensor = tensor.to(get_current_device())
print('Before: Rank {0} - {1}'.format(dist.get_rank(), tensor))
tensor, op = all_reduce(tensor, ParallelMode.GLOBAL, async_op=True)
print('After: Rank {0} - {1}'.format(dist.get_rank(), tensor))
op.wait()
print('Complete: Rank {0} - {1}'.format(dist.get_rank(), tensor))
torch.cuda.synchronize()
def check_layer(rank, world_size, port):
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
assert dist.get_rank() == gpc.get_global_rank()
print('Rank {} / {}'.format(dist.get_rank(), dist.get_world_size()))
check_all_gather()
check_reduce_scatter()
check_all_reduce()
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_comm():
world_size = 4
run_func = partial(check_layer, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_comm()
|
from functools import partial
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from colossalai.communication.p2p import send_forward, recv_forward, send_backward, recv_backward, send_forward_recv_backward, send_backward_recv_forward
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.initialize import launch
from colossalai.utils import free_port, get_current_device
from colossalai.testing import rerun_if_address_is_in_use
CONFIG = dict(parallel=dict(pipeline=2))
torch.manual_seed(123)
LIST_LENGTH = 3
TENSOR_SIZE = torch.Size((3, 3))
TENSOR_SIZE_LIST = [TENSOR_SIZE for i in range(LIST_LENGTH)]
data = torch.rand(3, 3)
data_list = [torch.rand(3, 3) for i in range(LIST_LENGTH)]
grad = torch.rand(3, 3)
grad_list = [torch.rand(3, 3) for i in range(LIST_LENGTH)]
def check_send_recv_forward():
if gpc.get_local_rank(ParallelMode.PIPELINE) == 0:
device = torch.device('cuda:0')
data_to_send = data.to(device)
data_list_to_send = []
for data_in_list in data_list:
data_list_to_send.append(data_in_list.to(device))
send_forward(data_to_send)
send_forward(data_list_to_send)
else:
device = torch.device('cuda:1')
data_recv = recv_forward(TENSOR_SIZE)
data_list_recv = recv_forward(TENSOR_SIZE_LIST)
data_to_check = data.to(device)
assert data_recv.equal(data_to_check)
for data_recv, data_send in zip(data_list_recv, data_list):
data_to_check = data_send.to(device)
assert data_recv.equal(data_to_check)
def check_send_recv_backward():
if gpc.get_local_rank(ParallelMode.PIPELINE) == 0:
device = torch.device('cuda:0')
grad_recv = recv_backward(TENSOR_SIZE)
grad_list_recv = recv_backward(TENSOR_SIZE_LIST)
grad_to_check = grad.to(device)
assert grad_recv.equal(grad_to_check)
for grad_recv, grad_send in zip(grad_list_recv, grad_list):
grad_to_check = grad_send.to(device)
assert grad_recv.equal(grad_to_check)
else:
device = torch.device('cuda:1')
grad_to_send = grad.to(device)
grad_list_to_send = []
for grad_in_list in grad_list:
grad_list_to_send.append(grad_in_list.to(device))
send_backward(grad_to_send)
send_backward(grad_list_to_send)
def check_send_recv_forward_backward():
if gpc.get_local_rank(ParallelMode.PIPELINE) == 0:
device = torch.device('cuda:0')
data_list_to_send = []
for data_in_list in data_list:
data_list_to_send.append(data_in_list.to(device))
grad_list_recv = send_forward_recv_backward(data_list_to_send, TENSOR_SIZE_LIST)
for grad_recv, grad_send in zip(grad_list_recv, grad_list):
grad_to_check = grad_send.to(device)
assert grad_recv.equal(grad_to_check)
else:
device = torch.device('cuda:1')
grad_list_to_send = []
for grad_in_list in grad_list:
grad_list_to_send.append(grad_in_list.to(device))
data_list_recv = send_backward_recv_forward(grad_list_to_send, TENSOR_SIZE_LIST)
for data_recv, data_send in zip(data_list_recv, data_list):
data_to_check = data_send.to(device)
assert data_recv.equal(data_to_check)
def check_layer(rank, world_size, port):
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
check_send_recv_forward()
check_send_recv_backward()
check_send_recv_forward_backward()
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_object_list_p2p():
world_size = 2
run_func = partial(check_layer, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_object_list_p2p()
|
from functools import partial
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from colossalai.communication.p2p_v2 import send_forward, recv_forward, send_backward, recv_backward, init_process_group
from colossalai.context import ParallelMode, Initializer_Pipeline
from colossalai.core import global_context as gpc
from colossalai.initialize import launch
from colossalai.utils import free_port, get_current_device
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.logging import disable_existing_loggers
disable_existing_loggers()
# config
world_size = 4
CONFIG = dict(parallel=dict(pipeline=4))
torch.manual_seed(123)
use_scatter_gather_tensors = False
# data
torch.manual_seed(123)
LIST_LENGTH = 3
TENSOR_SIZE = torch.Size((3, 3))
TENSOR_SIZE_LIST = [TENSOR_SIZE for i in range(LIST_LENGTH)]
data = torch.rand(3, 3)
data_list = [torch.rand(3, 3) for i in range(LIST_LENGTH)]
grad = torch.rand(3, 3)
grad_list = [torch.rand(3, 3) for i in range(LIST_LENGTH)]
def check_send_recv_forward():
disable_existing_loggers()
local_rank = gpc.get_local_rank(ParallelMode.PIPELINE)
if local_rank == 0:
device = torch.device('cuda:0')
data_to_send = data.to(device)
data_list_to_send = []
for data_in_list in data_list:
data_list_to_send.append(data_in_list.to(device))
send_forward(data_to_send, scatter_gather_tensors=use_scatter_gather_tensors)
send_forward(data_list_to_send, scatter_gather_tensors=use_scatter_gather_tensors)
elif local_rank == 1:
device = torch.device('cuda:1')
data_recv = recv_forward(TENSOR_SIZE, scatter_gather_tensors=use_scatter_gather_tensors)
data_list_recv = recv_forward(TENSOR_SIZE_LIST, scatter_gather_tensors=use_scatter_gather_tensors)
data_to_check = data.to(device)
assert data_recv.equal(data_to_check)
for data_recv, data_send in zip(data_list_recv, data_list):
data_to_check = data_send.to(device)
data_recv = data_recv.to(device)
assert data_recv.equal(data_to_check)
def check_send_recv_backward():
disable_existing_loggers()
if gpc.get_local_rank(ParallelMode.PIPELINE) == 0:
device = torch.device('cuda:0')
grad_recv = recv_backward(TENSOR_SIZE)
grad_list_recv = recv_backward(TENSOR_SIZE_LIST)
grad_to_check = grad.to(device)
grad_recv = grad_recv[0].to(device)
assert grad_recv.equal(grad_to_check)
for grad_recv, grad_send in zip(grad_list_recv, grad_list):
grad_recv = grad_recv.to(device)
grad_to_check = grad_send.to(device)
assert grad_recv.equal(grad_to_check)
else:
device = torch.device('cuda:1')
grad_to_send = grad.to(device)
grad_list_to_send = []
for grad_in_list in grad_list:
grad_list_to_send.append(grad_in_list.to(device))
send_backward(grad_to_send)
send_backward(grad_list_to_send)
def check_small_pipeline():
disable_existing_loggers()
# make sure the rank is 4
assert gpc.world_size == 4, "make sure to set world size to 4 to start the training process"
local_rank = gpc.get_local_rank(ParallelMode.PIPELINE)
if local_rank == 0:
obj = [1, torch.randn(2, 2).cuda(), None]
send_forward(obj)
elif local_rank == 1:
obj = recv_forward()
send_forward(obj)
elif local_rank == 2:
obj = recv_forward()
send_forward(obj)
elif local_rank == 3:
obj = recv_forward()
else:
pass
def check_layer(rank, world_size, port):
disable_existing_loggers()
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
disable_existing_loggers()
# check_send_recv_forward()
check_small_pipeline()
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_object_list_p2p():
disable_existing_loggers()
run_func = partial(check_layer, world_size=world_size, port=free_port())
disable_existing_loggers()
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
disable_existing_loggers()
test_object_list_p2p()
|
from functools import partial
from typing import List
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from colossalai.communication.p2p_v2 import _send_object, _recv_object, init_process_group
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.initialize import launch
from colossalai.utils import free_port, get_current_device
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.logging import disable_existing_loggers
disable_existing_loggers()
world_size = 4
CONFIG = dict(parallel=dict(pipeline=world_size))
torch.manual_seed(123)
def check_layer(rank, world_size, port):
disable_existing_loggers()
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl', verbose=False)
rank = gpc.get_local_rank(ParallelMode.PIPELINE)
if rank == 0:
obj = [torch.randn(3,)]
_send_object(obj, 1)
if rank == 1:
_recv_object(0)
if rank == 2:
_recv_object(3)
if rank == 3:
obj = [torch.randn(3,)]
_send_object(obj, 2)
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_object_list_p2p():
disable_existing_loggers()
run_func = partial(check_layer, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_object_list_p2p()
|
from functools import partial
import pytest
import torch
import torch.multiprocessing as mp
import colossalai
from colossalai.amp import convert_to_apex_amp
from colossalai.context import MOE_CONTEXT
from colossalai.engine.gradient_handler import MoeGradientHandler
from colossalai.nn import MoeLoss
from colossalai.nn.optimizer import CPUAdam
from colossalai.testing import assert_equal_in_group, parameterize, rerun_if_address_is_in_use
from colossalai.utils import free_port, get_current_device
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils import BucketTensorShardStrategy, TensorShardStrategy
from colossalai.zero.sharded_model import ShardedModelV2
from colossalai.zero.sharded_model.utils import col_model_deepcopy
from colossalai.zero.sharded_optim import ShardedOptimizerV2
from colossalai.zero.sharded_optim._utils import has_inf_or_nan
from tests.components_to_test.registry import non_distributed_component_funcs
from tests.test_moe.test_moe_zero_init import MoeModel
from tests.test_zero.common import CONFIG, check_sharded_model_params
def _run_step(model, optimizer, data, label, criterion, grad_handler):
model.train()
optimizer.zero_grad()
if criterion:
y = model(data)
loss = criterion(y, label)
else:
loss = model(data, label)
loss = loss.float()
if isinstance(model, ShardedModelV2):
optimizer.backward(loss)
else:
loss.backward()
if grad_handler is not None:
grad_handler.handle_gradient()
optimizer.step()
@parameterize("cpu_offload", [True])
@parameterize("use_cpuadam", [True]) # We do not use Hybrid Adam right now, since it has a little bug
@parameterize("reuse_fp16_shard", [True, False])
@parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy])
def _run_test_sharded_optim_v2(cpu_offload,
shard_strategy_class,
use_cpuadam,
reuse_fp16_shard,
gpu_margin_mem_ratio=0.0):
shard_strategy = shard_strategy_class()
if use_cpuadam and cpu_offload is False:
return
MOE_CONTEXT.reset_loss()
get_components_func = non_distributed_component_funcs.get_callable('hanging_param_model')
_, train_dataloader, _, optimizer_class, _ = get_components_func()
criterion = MoeLoss(aux_weight=0.01, loss_fn=torch.nn.CrossEntropyLoss)
with ZeroInitContext(target_device=torch.device('cpu') if cpu_offload else get_current_device(),
shard_strategy=shard_strategy,
shard_param=True):
zero_model = MoeModel(checkpoint=True)
zero_model = ShardedModelV2(zero_model,
shard_strategy,
tensor_placement_policy='cpu' if cpu_offload else 'cuda',
reuse_fp16_shard=reuse_fp16_shard)
# check whether parameters are identical in ddp
for name, p in zero_model.named_parameters():
if not p.colo_attr.param_is_sharded and p.colo_attr.is_replicated:
assert_equal_in_group(p.colo_attr.data_payload.to(get_current_device()))
model = MoeModel(checkpoint=True).half()
col_model_deepcopy(zero_model, model)
model = model.cuda().float()
if use_cpuadam:
optimizer_class = CPUAdam
optim = optimizer_class(model.parameters(), lr=1e-3)
sharded_optim = optimizer_class(zero_model.parameters(), lr=1e-3)
sharded_optim = ShardedOptimizerV2(zero_model,
sharded_optim,
initial_scale=2**5,
gpu_margin_mem_ratio=gpu_margin_mem_ratio)
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False)
apex_model, apex_optimizer = convert_to_apex_amp(model, optim, amp_config)
apex_grad_handler = MoeGradientHandler(model)
for i, (data, label) in enumerate(train_dataloader):
if i > 5:
break
data, label = data.cuda(), label.cuda()
_run_step(apex_model, apex_optimizer, data, label, criterion, apex_grad_handler)
_run_step(zero_model, sharded_optim, data, label, criterion, None)
check_sharded_model_params(model, zero_model, loose=True, reuse_fp16_shard=use_cpuadam)
for param in model.parameters():
assert not has_inf_or_nan(param)
def _run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
MOE_CONTEXT.setup(seed=42)
_run_test_sharded_optim_v2()
# use_cpuadam = True can be used with cpu_offload = False
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2])
@rerun_if_address_is_in_use()
def test_moe_zero_optim(world_size):
run_func = partial(_run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_moe_zero_optim(world_size=4)
|
from functools import partial
import pytest
import torch
import torch.multiprocessing as mp
import colossalai
from colossalai.context import MOE_CONTEXT
from colossalai.engine.gradient_handler import MoeGradientHandler
from colossalai.nn import MoeLoss
from colossalai.testing import assert_equal_in_group, parameterize, rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils import BucketTensorShardStrategy, TensorShardStrategy
from colossalai.zero.sharded_model import ShardedModelV2
from colossalai.zero.sharded_model._utils import cast_tensor_to_fp16
from colossalai.zero.sharded_model.utils import col_model_deepcopy
from tests.components_to_test.registry import non_distributed_component_funcs
from tests.test_moe.test_moe_zero_init import MoeModel
from tests.test_zero.common import CONFIG, check_grads_padding, run_fwd_bwd
@parameterize("enable_autocast", [False])
@parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy])
def run_model_test(enable_autocast, shard_strategy_class):
shard_strategy = shard_strategy_class()
get_components_func = non_distributed_component_funcs.get_callable('hanging_param_model')
_, train_dataloader, _, optimizer_class, _ = get_components_func()
criterion = MoeLoss(aux_weight=0.01, loss_fn=torch.nn.CrossEntropyLoss)
with ZeroInitContext(target_device=torch.device('cuda', torch.cuda.current_device()),
shard_strategy=shard_strategy,
shard_param=True):
zero_model = MoeModel(checkpoint=True)
zero_model = ShardedModelV2(zero_model, shard_strategy)
# check whether parameters are identical in ddp
for name, p in zero_model.named_parameters():
if not p.colo_attr.param_is_sharded and p.colo_attr.is_replicated:
assert_equal_in_group(p.colo_attr.data_payload)
model = MoeModel(checkpoint=True).half()
col_model_deepcopy(zero_model, model)
model = model.cuda()
grad_handler = MoeGradientHandler(model)
for i, (data, label) in enumerate(train_dataloader):
if i > 5:
break
data, label = cast_tensor_to_fp16(data).cuda(), label.cuda()
run_fwd_bwd(model, data, label, criterion, enable_autocast)
run_fwd_bwd(zero_model, data, label, criterion, enable_autocast)
grad_handler.handle_gradient()
check_grads_padding(model, zero_model, loose=True)
def run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
MOE_CONTEXT.setup(seed=42)
run_model_test()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2])
@rerun_if_address_is_in_use()
def test_moe_zero_model(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_moe_zero_model(world_size=2)
|
from functools import partial
import pytest
import torch
import torch.nn as nn
import torch.multiprocessing as mp
import colossalai
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.utils import free_port, get_current_device
from colossalai.nn.layer.moe import Top1Router, Top2Router, MoeLayer, Experts
from colossalai.context.moe_context import MOE_CONTEXT
from colossalai.testing import rerun_if_address_is_in_use
BATCH_SIZE = 16
NUM_EXPERTS = 4
CONFIG = dict()
def check_equal(tensor_a, tensor_b, atol=1e-06):
assert torch.allclose(tensor_a, tensor_b, rtol=0, atol=atol) is True
def run_routing(rank, world_size, port, rs=2, hidden_size=128, data_type=torch.float32, router=Top2Router):
# Here we do not need TF32, since it brings absolute error on results
torch.backends.cuda.matmul.allow_tf32 = False
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
local_rank = gpc.get_local_rank(ParallelMode.GLOBAL)
MOE_CONTEXT.setup(42) # MOE environment initialization
MOE_CONTEXT.reset_loss()
torch.manual_seed(rs + local_rank) # set each process has different random seed
# get randomized data
tokens = torch.randn(BATCH_SIZE, hidden_size, dtype=data_type, device=get_current_device(), requires_grad=True)
expert_module = nn.Linear
expert_factor = dict(in_features=hidden_size, out_features=hidden_size, device=get_current_device())
expert = Experts(expert_module, NUM_EXPERTS, **expert_factor)
layer = MoeLayer(hidden_size, NUM_EXPERTS, router(capacity_factor_train=1.0), expert)
layer = layer.to(get_current_device())
if data_type == torch.float16:
layer = layer.half()
# use matrix multiplication instead of COL_MOE_KERNL in MOE dispatch and combine
layer.use_kernel = False
old_out, _ = layer(tokens)
ech = old_out.shape
grad = torch.randn(ech, device=get_current_device())
old_out.backward(grad) # get gradient
# save all results
o_tk_grad = tokens.grad.data.clone()
o_gt_grad = layer.gate_weight.grad.data.clone()
# reset all gradients
tokens.grad.zero_()
layer.gate_weight.grad.zero_()
layer.use_kernel = True
new_out, _ = layer(tokens) # get ouputs through colossal kernel
if data_type == torch.float32:
check_equal(old_out, new_out)
else:
check_equal(old_out, new_out, 1e-2)
# forward function passed
new_out.backward(grad) # get new type gradient
n_tk_grad = tokens.grad.data.clone()
n_gt_grad = layer.gate_weight.grad.data.clone()
if data_type == torch.float32:
check_equal(o_tk_grad, n_tk_grad)
else:
check_equal(o_tk_grad, o_tk_grad, 1e-2)
# tokens gradient is correct
if data_type == torch.float32:
check_equal(o_gt_grad, n_gt_grad, 5e-05)
else:
check_equal(o_gt_grad, n_gt_grad, 2e-01)
# bias gradient is correct
@pytest.mark.dist
@pytest.mark.parametrize("rs", [131])
@pytest.mark.parametrize("hidden_size", [32, 144])
@pytest.mark.parametrize("data_type", [torch.float32, torch.float16])
@pytest.mark.parametrize("router", [Top1Router, Top2Router])
@rerun_if_address_is_in_use()
def test_moe_kernel(rs, hidden_size, data_type, router):
world_size = 4
run_func = partial(run_routing,
world_size=world_size,
port=free_port(),
rs=rs,
hidden_size=hidden_size,
data_type=data_type,
router=router)
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_moe_kernel(2, 256, torch.float16, Top2Router)
|
from functools import partial
import pytest
import torch.nn as nn
import torch.multiprocessing as mp
import torch.distributed as dist
import colossalai
from colossalai.utils import free_port, get_current_device
from colossalai.nn.layer.moe import Experts
from colossalai.context.moe_context import MOE_CONTEXT
from colossalai.utils.moe import sync_moe_model_param
from colossalai.testing import assert_equal_in_group, rerun_if_address_is_in_use
D_MODEL = 4
D_FF = 8
CONFIG = dict()
def run_test(rank, port):
world_size = 4
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
expert_module = nn.Linear
expert_factor = dict(in_features=D_MODEL, out_features=D_FF, device=get_current_device())
MOE_CONTEXT.setup(42) # MOE environment initialization
exp0 = Experts(expert_module, 1, **expert_factor)
exp1 = Experts(expert_module, 2, **expert_factor)
exp2 = Experts(expert_module, 4, **expert_factor)
exp3 = Experts(expert_module, 8, **expert_factor)
assert exp0.num_local_experts == 1
assert exp1.num_local_experts == 1
assert exp2.num_local_experts == 1
assert exp3.num_local_experts == 2
# experts deployment passed
parallel_info_dict = MOE_CONTEXT.parallel_info_dict
rank = dist.get_rank()
assert len(parallel_info_dict) == 3
assert dist.get_rank(parallel_info_dict[4].ep_group) == rank
assert dist.get_rank(parallel_info_dict[2].ep_group) == rank % 2
assert dist.get_rank(parallel_info_dict[1].ep_group) == 0
assert dist.get_rank(parallel_info_dict[4].dp_group) == 0
assert dist.get_rank(parallel_info_dict[2].dp_group) == rank // 2
assert dist.get_rank(parallel_info_dict[1].dp_group) == rank
# group creation passed
model = nn.ModuleList([exp0, exp1, exp2, exp3])
model = model.to(get_current_device())
sync_moe_model_param(model)
assert_equal_in_group(exp0.experts[0].weight.data, parallel_info_dict[1].dp_group)
assert_equal_in_group(exp0.experts[0].bias.data, parallel_info_dict[1].dp_group)
# MOE experts layout success when ep_size = 1
assert_equal_in_group(exp1.experts[0].weight.data, parallel_info_dict[2].dp_group)
assert_equal_in_group(exp1.experts[0].bias.data, parallel_info_dict[2].dp_group)
# MOE experts layout success when ep_size = 2
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_moe_initialization():
world_size = 4
run_func = partial(run_test, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_moe_initialization()
|
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
import torch.distributed as dist
from colossalai.testing import parameterize
from colossalai.utils import free_port
from colossalai.context import MOE_CONTEXT
from colossalai.tensor import ColoParameter
from colossalai.utils.model.colo_init_context import ColoInitContext
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import get_current_device
from tests.test_zero.common import CONFIG
from tests.test_moe.test_moe_zero_init import MoeModel
from tests.test_tensor.common_utils import debug_print
@parameterize("init_device_type", ['cpu', 'cuda'])
def exam_moe_colo_init(init_device_type):
world_size = dist.get_world_size()
if init_device_type == 'cuda':
init_device = get_current_device()
elif init_device_type == 'cpu':
init_device = torch.device("cpu")
else:
raise NotImplementedError("Unknown device found.")
with ColoInitContext(device=init_device):
model = MoeModel(checkpoint=True)
for name, param in model.named_parameters():
assert isinstance(param, ColoParameter), "parameter `{}` has an init problem".format(name)
if hasattr(param, "moe_info"):
param.set_process_group(param.moe_info.pg)
if hasattr(param, "moe_info"):
assert param.process_group.dp_world_size() == param.moe_info.dp_size
else:
assert param.process_group.dp_world_size() == world_size
def _run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
MOE_CONTEXT.setup(seed=42)
exam_moe_colo_init()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [4])
@rerun_if_address_is_in_use()
def test_moe_colo_init(world_size):
run_func = partial(_run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_moe_colo_init(world_size=4)
|
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from colossalai.nn import CheckpointModule
from colossalai.logging import get_dist_logger
from colossalai.testing import parameterize
from colossalai.utils import free_port
from colossalai.context import MOE_CONTEXT
from colossalai.nn.layer import MoeModule
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy)
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import get_current_device
from tests.test_zero.common import CONFIG
class MoeModel(nn.Module):
def __init__(self, checkpoint: bool = False):
class TestSubModule(CheckpointModule):
def __init__(self):
super().__init__(checkpoint)
expert_cls = nn.Linear
expert_args_dict = dict(in_features=16, out_features=16)
self.moe = MoeModule(dim_model=16,
num_experts=8,
use_residual=True,
expert_cls=expert_cls,
**expert_args_dict)
self.proj = nn.Linear(16, 4)
def _forward(self, x):
x, y = self.moe(x)
x = self.proj(x)
return x, y
super().__init__()
self.test_embed = nn.Linear(4, 16)
self.test_transform = TestSubModule()
def forward(self, x):
MOE_CONTEXT.reset_loss()
x = self.test_embed(x)
x, y = self.test_transform(x)
MOE_CONTEXT.add_loss(y)
return x
@parameterize("init_device_type", ['cpu', 'cuda'])
@parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy])
def run_moe_zero_init(init_device_type, shard_strategy_class):
logger = get_dist_logger("test_moe_zero_init")
if init_device_type == 'cuda':
init_device = get_current_device()
elif init_device_type == 'cpu':
init_device = torch.device("cpu")
else:
raise NotImplementedError("Unknown device found.")
model_numel_tensor = torch.zeros(1, dtype=torch.int)
with ZeroInitContext(target_device=init_device,
shard_strategy=shard_strategy_class(),
shard_param=True,
model_numel_tensor=model_numel_tensor):
model = MoeModel(checkpoint=True)
for name, param in model.named_parameters():
assert hasattr(param, 'colo_attr')
# the parameters in moe experts and its gate should not be sharded
if ('experts' in name) or ('gate' in name) or ('residual_combine' in name):
assert not param.colo_attr.sharded_data_tensor.is_sharded, "`{}` parameter has problem".format(name)
else:
assert param.colo_attr.sharded_data_tensor.is_sharded
# the parameters in moe experts is not replicated
if 'experts' in name:
assert not param.colo_attr.is_replicated
else:
assert param.colo_attr.is_replicated
if param.colo_attr.param_is_sharded:
assert param.colo_attr.data_payload.device.type == init_device.type, \
f'{param.colo_attr.data_payload.device.type} vs. {init_device.type}'
else:
assert param.colo_attr.data_payload.device.type == 'cuda'
def _run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
MOE_CONTEXT.setup(seed=42)
run_moe_zero_init()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2, 4])
@rerun_if_address_is_in_use()
def test_moe_zero_init(world_size):
run_func = partial(_run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_moe_zero_init(world_size=2)
|
from functools import partial
import pytest
import torch
import torch.nn as nn
import torch.multiprocessing as mp
import torch.distributed as dist
import colossalai
from colossalai.utils import free_port, get_current_device
from colossalai.nn.layer.moe import Top1Router, UniformNoiseGenerator, MoeLayer, Experts
from colossalai.context.moe_context import MOE_CONTEXT
from colossalai.utils.moe import sync_moe_model_param
from colossalai.engine.gradient_handler import MoeGradientHandler
from colossalai.testing import assert_equal_in_group, rerun_if_address_is_in_use
BATCH_SIZE = 4
DIM = 16
CONFIG = dict()
def run_test(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
expert_module = nn.Linear
expert_factor = dict(in_features=DIM, out_features=DIM, device=get_current_device())
MOE_CONTEXT.setup(42) # MOE initialization
noisy_func = UniformNoiseGenerator()
router = Top1Router(noisy_func=noisy_func)
num_experts_list = [1, 2, 4]
layer_list = []
for num_experts in num_experts_list:
exp = Experts(expert_module, num_experts, **expert_factor)
moe_layer = MoeLayer(DIM, num_experts, router, exp)
layer_list.append(moe_layer)
model = nn.ModuleList(layer_list)
model = model.to(get_current_device())
sync_moe_model_param(model)
dist_dict = MOE_CONTEXT.parallel_info_dict
assert_equal_in_group(layer_list[0].experts.experts[0].weight.data, dist_dict[1].dp_group)
assert_equal_in_group(layer_list[1].experts.experts[0].weight.data, dist_dict[2].dp_group)
# MoE model synchronization passed
grad_handler = MoeGradientHandler(model, 0)
rank = dist.get_rank()
torch.cuda.manual_seed(78 + rank)
data = torch.randn(BATCH_SIZE, DIM, device=get_current_device())
grad = torch.randn_like(data)
MOE_CONTEXT.reset_loss()
for layer in layer_list:
data, _ = layer(data)
data.backward(grad)
grad_handler.handle_gradient()
assert_equal_in_group(layer_list[0].experts.experts[0].weight.grad, dist_dict[1].dp_group)
assert_equal_in_group(layer_list[0].experts.experts[0].bias.grad, dist_dict[1].dp_group)
assert_equal_in_group(layer_list[1].experts.experts[0].weight.grad, dist_dict[2].dp_group)
assert_equal_in_group(layer_list[1].experts.experts[0].bias.grad, dist_dict[2].dp_group)
# MoE grad handler test passed
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_grad_handler():
world_size = 4
run_func = partial(run_test, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_grad_handler()
|
from typing import Any, Dict, List
import torch
import torch.fx
import colossalai
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
from colossalai.core import global_context as gpc
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
from colossalai.utils import free_port
if AUTOCHUNK_AVAILABLE:
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
from colossalai.fx.profiler import MetaTensor
from colossalai.fx.tracer.experimental import ColoTracer, symbolic_trace
def assert_codegen_run(
model: Any,
meta_args: List,
concrete_args: List = None,
max_memory: int = None,
print_mem: bool = False,
print_est_mem: bool = False,
print_progress: bool = False,
print_code: bool = False,
) -> List[Dict]:
if concrete_args is None:
concrete_args = []
model = model()
# trace the meta graph and setup codegen
meta_graph = symbolic_trace(
model,
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args},
concrete_args={k: v for k, v in concrete_args},
)
model = model.cuda().eval()
interp = MetaInfoProp(meta_graph)
meta_tensors = [MetaTensor(i[1], fake_device="cuda:0") for i in meta_args] + [i[1] for i in concrete_args]
interp.propagate(*meta_tensors)
codegen = AutoChunkCodeGen(
meta_graph,
max_memory=max_memory,
print_mem=print_est_mem,
print_progress=print_progress,
)
chunks = codegen.chunk_infos
# trace and recompile
# MetaInfoProp requires symbolic_trace but CodeGen requires ColoTracer
graph = ColoTracer().trace(
model.cuda(),
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args},
concrete_args={k: v for k, v in concrete_args},
)
graph.set_codegen(codegen)
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
gm.recompile()
# assert chunk in code
code = graph.python_code("self").src
if print_code:
print(code)
assert "chunk_size = None; " in code
# assert result
inputs = [i[1] for i in meta_args] + [i[1] for i in concrete_args]
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
model.cuda().eval()
gm.eval()
with torch.no_grad():
if print_mem:
torch.cuda.reset_peak_memory_stats()
now_mem_gm = torch.cuda.memory_allocated() / 1024**2
out_gm = gm(*[i.clone() if isinstance(i, torch.Tensor) else i for i in inputs])
if print_mem:
max_mem_gm = torch.cuda.max_memory_allocated() / 1024**2
torch.cuda.reset_peak_memory_stats()
now_mem_ori = torch.cuda.memory_allocated() / 1024**2
out_model = model(*[i.clone() if isinstance(i, torch.Tensor) else i for i in inputs])
if print_mem:
max_mem_ori = torch.cuda.max_memory_allocated() / 1024**2
print("origin mem: %.2fMB, autochunk mem: %.2fMB" % (max_mem_ori - now_mem_ori, max_mem_gm - now_mem_gm))
assert torch.allclose(out_gm["sample"], out_model["sample"],
atol=1e-3), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
torch.abs(out_gm["sample"] - out_model["sample"]))
return chunks
def run_test(
rank: int,
model: Any,
data: tuple,
max_memory: int,
print_code: bool = False,
print_mem: bool = False,
print_est_mem: bool = False,
print_progress: bool = False,
get_chunk_target: Any = None,
) -> None:
# launch colossalai
colossalai.launch(
config={},
rank=rank,
world_size=1,
host="localhost",
port=free_port(),
backend="nccl",
)
# build model and input
meta_args, concrete_args = data
chunks = assert_codegen_run(
model,
meta_args=meta_args,
concrete_args=concrete_args,
max_memory=max_memory,
print_code=print_code,
print_mem=print_mem,
print_est_mem=print_est_mem,
print_progress=print_progress,
)
if get_chunk_target is not None:
chunk_found = [i["region"] for i in chunks]
chunk_target = get_chunk_target()[max_memory]
assert (chunk_found == chunk_target), "found regions %s doesn't equal target regions %s" % (
str(chunk_found),
str(chunk_target),
)
gpc.destroy()
|
from functools import partial
from typing import List, Tuple
import pytest
import torch
import torch.multiprocessing as mp
try:
from diffusers import UNet2DModel
MODELS = [UNet2DModel]
HAS_REPO = True
except:
MODELS = []
HAS_REPO = False
from test_autochunk_diffuser_utils import run_test
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
BATCH_SIZE = 1
HEIGHT = 448
WIDTH = 448
IN_CHANNELS = 3
LATENTS_SHAPE = (BATCH_SIZE, IN_CHANNELS, HEIGHT // 7, WIDTH // 7)
def get_data(shape: tuple) -> Tuple[List, List]:
sample = torch.randn(shape)
meta_args = [
("sample", sample),
]
concrete_args = [("timestep", 50)]
return meta_args, concrete_args
@pytest.mark.skipif(
not (AUTOCHUNK_AVAILABLE and HAS_REPO),
reason="torch version is lower than 1.12.0",
)
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("shape", [LATENTS_SHAPE])
@pytest.mark.parametrize("max_memory", [None])
def test_evoformer_block(model, shape, max_memory):
run_func = partial(
run_test,
max_memory=max_memory,
model=model,
data=get_data(shape),
)
mp.spawn(run_func, nprocs=1)
if __name__ == "__main__":
run_test(
rank=0,
data=get_data(LATENTS_SHAPE),
max_memory=None,
model=UNet2DModel,
print_code=False,
print_mem=False,
print_est_mem=False,
print_progress=False,
)
|
from functools import partial
from typing import Dict, List, Tuple
import pytest
import torch
import torch.fx
import torch.multiprocessing as mp
try:
from fastfold.model.nn.evoformer import EvoformerBlock
HAS_REPO = True
except:
HAS_REPO = False
from test_autochunk_alphafold_utils import run_test
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
def get_model():
model = EvoformerBlock(
c_m=256,
c_z=128,
c_hidden_msa_att=32,
c_hidden_opm=32,
c_hidden_mul=128,
c_hidden_pair_att=32,
no_heads_msa=8,
no_heads_pair=4,
transition_n=4,
msa_dropout=0.15,
pair_dropout=0.15,
inf=1e4,
eps=1e-4,
is_multimer=False,
).eval().cuda()
return model
def get_data(msa_len: int, pair_len: int) -> Tuple[List, List]:
node = torch.randn(1, msa_len, pair_len, 256).cuda()
node_mask = torch.randn(1, msa_len, pair_len).cuda()
pair = torch.randn(1, pair_len, pair_len, 128).cuda()
pair_mask = torch.randn(1, pair_len, pair_len).cuda()
meta_args = [
("m", node),
("z", pair),
("msa_mask", node_mask),
("pair_mask", pair_mask),
]
concrete_args = [("chunk_size", None), ("_mask_trans", True)]
return meta_args, concrete_args
def get_chunk_target() -> Dict:
return {
None: [(120, 123), (222, 237), (269, 289), (305, 311), (100, 105), (146, 152), (187, 193), (241, 242),
(25, 50)],
20: [(120, 123), (232, 237), (277, 282), (305, 306), (100, 101), (34, 39)],
24: [(120, 123)],
}
@pytest.mark.skipif(
not (AUTOCHUNK_AVAILABLE and HAS_REPO),
reason="torch version is lower than 1.12.0",
)
@pytest.mark.parametrize("max_memory", [None, 20, 24])
@pytest.mark.parametrize("data_args", [(32, 64)]) # (msa_len, pair_len)
def test_evoformer_block(data_args, max_memory):
run_func = partial(
run_test,
data_args=data_args,
max_memory=max_memory,
get_model=get_model,
get_data=get_data,
get_chunk_target=get_chunk_target,
)
mp.spawn(run_func, nprocs=1)
if __name__ == "__main__":
run_test(
rank=0,
data_args=(32, 64),
max_memory=24,
get_model=get_model,
get_data=get_data,
get_chunk_target=get_chunk_target,
print_code=False,
print_mem=False,
print_est_mem=False,
print_progress=False,
)
|
from functools import partial
from typing import List, Tuple
import pytest
import torch
import torch.fx
import torch.multiprocessing as mp
try:
from fastfold.model.nn.evoformer import EvoformerStack
HAS_REPO = True
except:
HAS_REPO = False
from test_autochunk_alphafold_utils import run_test
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
def get_model():
model = EvoformerStack(
c_m=256,
c_z=128,
c_hidden_msa_att=32,
c_hidden_opm=32,
c_hidden_mul=128,
c_hidden_pair_att=32,
c_s=384,
no_heads_msa=8,
no_heads_pair=4,
no_blocks=2, # 48
transition_n=4,
msa_dropout=0.15,
pair_dropout=0.25,
blocks_per_ckpt=None,
inf=1000000000.0,
eps=1e-08,
clear_cache_between_blocks=False,
is_multimer=False,
).eval().cuda()
return model
def get_data(msa_len: int, pair_len: int) -> Tuple[List, List]:
node = torch.randn(1, msa_len, pair_len, 256).cuda()
node_mask = torch.randn(1, msa_len, pair_len).cuda()
pair = torch.randn(1, pair_len, pair_len, 128).cuda()
pair_mask = torch.randn(1, pair_len, pair_len).cuda()
meta_args = [
("m", node),
("z", pair),
("msa_mask", node_mask),
("pair_mask", pair_mask),
]
concrete_args = [("chunk_size", None), ("_mask_trans", True)]
return meta_args, concrete_args
@pytest.mark.skipif(
not (AUTOCHUNK_AVAILABLE and HAS_REPO),
reason="torch version is lower than 1.12.0",
)
@pytest.mark.parametrize("max_memory", [None, 20, 24])
@pytest.mark.parametrize("data_args", [(32, 64)]) # (msa_len, pair_len)
def test_evoformer_stack(data_args, max_memory):
run_func = partial(
run_test,
data_args=data_args,
max_memory=max_memory,
get_model=get_model,
get_data=get_data,
)
mp.spawn(run_func, nprocs=1)
if __name__ == "__main__":
run_test(
rank=0,
data_args=(32, 64),
max_memory=None,
get_model=get_model,
get_data=get_data,
print_code=False,
print_mem=False,
print_progress=False,
)
|
import time
from typing import Any, Dict, List
import torch
import torch.fx
import colossalai
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
from colossalai.utils import free_port
if AUTOCHUNK_AVAILABLE:
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
from colossalai.fx.profiler import MetaTensor
from colossalai.fx.tracer.experimental import ColoTracer, symbolic_trace
def _benchmark_evoformer_stack_gm(
data_args: tuple,
max_memory: int,
get_model: Any,
get_data: Any,
) -> None:
# build model and input
model = get_model()
meta_args, concrete_args = get_data(*data_args)
if concrete_args is None:
concrete_args = []
# trace the meta graph and setup codegen
meta_graph = symbolic_trace(
model,
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args},
concrete_args={k: v for k, v in concrete_args},
)
interp = MetaInfoProp(meta_graph)
meta_tensors = [MetaTensor(i[1], fake_device="cuda:0") for i in meta_args] + [i[1] for i in concrete_args]
interp.propagate(*meta_tensors)
codegen = AutoChunkCodeGen(
meta_graph,
max_memory=max_memory,
)
# trace and recompile
# MetaInfoProp requires symbolic_trace but CodeGen requires ColoTracer
graph = ColoTracer().trace(
model,
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args},
concrete_args={k: v for k, v in concrete_args},
)
graph.set_codegen(codegen)
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
gm.recompile()
# init inputs
inputs = [i[1] for i in meta_args] + [i[1] for i in concrete_args]
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
model.cuda()
# bench
mem = _benchmark_memory(gm, inputs)
speed = _benchmark_speed(gm, inputs)
print("evoformer stack gm, mem: %.2fMB, time: %.4fs, data_args: %s" % (mem, speed, str(data_args)))
def _benchmark_evoformer_stack_origin(
data_args: tuple,
get_model: Any,
get_data: Any,
) -> None:
# build model and input
model = get_model()
meta_args, concrete_args = get_data(*data_args)
if concrete_args is None:
concrete_args = []
# init inputs
inputs = [i[1] for i in meta_args] + [i[1] for i in concrete_args]
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
model.cuda()
# bench
mem = _benchmark_memory(model, inputs)
speed = _benchmark_speed(model, inputs)
print("evoformer stack origin, mem: %.2fMB, time: %.4fs, data_args: %s" % (mem, speed, str(data_args)))
def _benchmark_memory(model, inputs):
with torch.no_grad():
torch.cuda.reset_peak_memory_stats()
now_mem = torch.cuda.memory_allocated() / 1024**2
model(*[i.clone() if isinstance(i, torch.Tensor) else i for i in inputs])
new_max_mem = torch.cuda.max_memory_allocated() / 1024**2
return new_max_mem - now_mem
def _benchmark_speed(model, inputs, loop=5):
with torch.no_grad():
for _ in range(loop // 2 + 1):
model(*inputs)
torch.cuda.synchronize()
time1 = time.time()
for _ in range(loop):
model(*inputs)
torch.cuda.synchronize()
time2 = time.time()
return (time2 - time1) / loop
def benchmark_evoformer_stack():
from test_autochunk_evoformer_stack import get_data, get_model
data_args = [128, 256]
print("")
_benchmark_evoformer_stack_origin(data_args, get_model, get_data)
_benchmark_evoformer_stack_gm(data_args, 600, get_model, get_data)
_benchmark_evoformer_stack_gm(data_args, 400, get_model, get_data)
_benchmark_evoformer_stack_gm(data_args, None, get_model, get_data)
if __name__ == "__main__":
# launch colossalai
colossalai.launch(
config={},
rank=0,
world_size=1,
host="localhost",
port=free_port(),
backend="nccl",
)
benchmark_evoformer_stack()
|
from functools import partial
from typing import Dict, List, Tuple
import pytest
import torch
import torch.fx
import torch.multiprocessing as mp
try:
from fastfold.model.nn.evoformer import ExtraMSABlock
HAS_REPO = True
except:
HAS_REPO = False
from test_autochunk_alphafold_utils import run_test
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
def get_model():
model = ExtraMSABlock(
c_m=256,
c_z=128,
c_hidden_msa_att=32,
c_hidden_opm=32,
c_hidden_mul=128,
c_hidden_pair_att=32,
no_heads_msa=8,
no_heads_pair=4,
transition_n=4,
msa_dropout=0.15,
pair_dropout=0.15,
inf=1e4,
eps=1e-4,
ckpt=False,
is_multimer=False,
).eval().cuda()
return model
def get_data(msa_len: int, pair_len: int) -> Tuple[List, List]:
node = torch.randn(1, msa_len, pair_len, 256).cuda()
node_mask = torch.randn(1, msa_len, pair_len).cuda()
pair = torch.randn(1, pair_len, pair_len, 128).cuda()
pair_mask = torch.randn(1, pair_len, pair_len).cuda()
meta_args = [
("m", node),
("z", pair),
("msa_mask", node_mask),
("pair_mask", pair_mask),
]
concrete_args = [("chunk_size", None), ("_chunk_logits", 1024)]
return meta_args, concrete_args
def get_chunk_target() -> Dict:
return {
None: [(128, 131), (230, 245), (277, 297), (313, 319), (108, 113), (154, 160), (195, 201), (249, 250),
(36, 46)],
20: [(128, 131), (240, 245), (285, 290), (313, 314), (108, 109), (41, 46)],
24: [(128, 131)],
}
@pytest.mark.skipif(
not (AUTOCHUNK_AVAILABLE and HAS_REPO),
reason="torch version is lower than 1.12.0",
)
@pytest.mark.parametrize("max_memory", [None, 20, 24])
@pytest.mark.parametrize("data_args", [(32, 64)]) # (msa_len, pair_len)
def test_extramsa_block(data_args, max_memory):
run_func = partial(
run_test,
data_args=data_args,
max_memory=max_memory,
get_model=get_model,
get_data=get_data,
get_chunk_target=get_chunk_target,
)
mp.spawn(run_func, nprocs=1)
if __name__ == "__main__":
run_test(
rank=0,
data_args=(32, 64),
max_memory=None,
get_model=get_model,
get_data=get_data,
get_chunk_target=get_chunk_target,
print_code=False,
print_mem=False,
print_progress=False,
)
|
from typing import Any, Dict, List
import torch
import torch.fx
import colossalai
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
from colossalai.autochunk.utils import flat_list
from colossalai.core import global_context as gpc
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
from colossalai.utils import free_port
if AUTOCHUNK_AVAILABLE:
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
from colossalai.fx.profiler import MetaTensor
from colossalai.fx.tracer.experimental import ColoTracer, symbolic_trace
def assert_codegen_run(
model: Any,
meta_args: List,
concrete_args: List = None,
max_memory: int = None,
print_mem: bool = False,
print_est_mem: bool = False,
print_progress: bool = False,
print_code: bool = False,
) -> List[Dict]:
if concrete_args is None:
concrete_args = []
# trace the meta graph and setup codegen
meta_graph = symbolic_trace(
model,
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args},
concrete_args={k: v for k, v in concrete_args},
)
interp = MetaInfoProp(meta_graph)
meta_tensors = [MetaTensor(i[1], fake_device="cuda:0") for i in meta_args] + [i[1] for i in concrete_args]
interp.propagate(*meta_tensors)
codegen = AutoChunkCodeGen(
meta_graph,
max_memory=max_memory,
print_mem=print_est_mem,
print_progress=print_progress,
)
chunks = codegen.chunk_infos
# trace and recompile
# MetaInfoProp requires symbolic_trace but CodeGen requires ColoTracer
graph = ColoTracer().trace(
model,
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args},
concrete_args={k: v for k, v in concrete_args},
)
graph.set_codegen(codegen)
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
gm.recompile()
# assert chunk in code
code = graph.python_code("self").src
if print_code:
print(code)
assert "chunk_size = None; " in code
# assert result
inputs = [i[1] for i in meta_args] + [i[1] for i in concrete_args]
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
model.cuda()
with torch.no_grad():
if print_mem:
torch.cuda.reset_peak_memory_stats()
now_mem = torch.cuda.memory_allocated() / 1024**2
out_gm = gm(*[i.clone() if isinstance(i, torch.Tensor) else i for i in inputs])
if print_mem:
new_max_mem = torch.cuda.max_memory_allocated() / 1024**2
print("mem: %.2fMB" % (new_max_mem - now_mem))
out_model = model(*inputs)
out_gm = flat_list(out_gm)
out_model = flat_list(out_model)
for out_gm_i, out_model_i in zip(out_gm, out_model):
assert torch.allclose(out_gm_i, out_model_i,
atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
torch.abs(out_gm_i - out_model_i))
return chunks
def run_test(
rank: int,
data_args: tuple,
max_memory: int,
get_model: Any,
get_data: Any,
print_code: bool = False,
print_mem: bool = False,
print_est_mem: bool = False,
print_progress: bool = False,
get_chunk_target: Any = None,
) -> None:
# launch colossalai
colossalai.launch(
config={},
rank=rank,
world_size=1,
host="localhost",
port=free_port(),
backend="nccl",
)
# build model and input
model = get_model()
meta_args, concrete_args = get_data(*data_args)
chunks = assert_codegen_run(
model,
meta_args=meta_args,
concrete_args=concrete_args,
max_memory=max_memory,
print_code=print_code,
print_mem=print_mem,
print_est_mem=print_est_mem,
print_progress=print_progress,
)
if get_chunk_target is not None:
chunk_found = [i["region"] for i in chunks]
chunk_target = get_chunk_target()[max_memory]
assert chunk_found == chunk_target, "found regions %s doesn't equal target regions %s" % (
str(chunk_found),
str(chunk_target),
)
|
from typing import Any, Dict, List
import torch
import torch.fx
import colossalai
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
from colossalai.core import global_context as gpc
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
from colossalai.utils import free_port
if AUTOCHUNK_AVAILABLE:
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
from colossalai.fx.profiler import MetaTensor
from colossalai.fx.tracer.experimental import ColoTracer, symbolic_trace
def assert_codegen_run(
model: Any,
data: tuple,
max_memory: int = None,
print_est_mem: bool = False,
print_mem: bool = False,
print_progress: bool = False,
print_code: bool = False,
) -> List[Dict]:
meta_args, concrete_args, sequence = data
if concrete_args is None:
concrete_args = {}
# trace the meta graph and setup codegen
meta_graph = symbolic_trace(
model,
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args.items()},
concrete_args={k: v for k, v in concrete_args.items()},
)
interp = MetaInfoProp(meta_graph)
meta_tensors = [meta_args[i] if i in meta_args else concrete_args[i] for i in sequence]
meta_tensors = [MetaTensor(i, fake_device="cuda:0") if isinstance(i, torch.Tensor) else i for i in meta_tensors]
interp.propagate(*meta_tensors)
codegen = AutoChunkCodeGen(
meta_graph,
max_memory=max_memory,
print_mem=print_est_mem,
print_progress=print_progress,
)
chunks = codegen.chunk_infos
# trace and recompile
# MetaInfoProp requires symbolic_trace but CodeGen requires ColoTracer
graph = ColoTracer().trace(
model.cuda(),
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args.items()},
concrete_args={k: v for k, v in concrete_args.items()},
)
graph.set_codegen(codegen)
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
gm.recompile()
# assert chunk in code
code = graph.python_code("self").src
if print_code:
print(code)
assert "chunk_size = None; " in code
# assert result
inputs = [meta_args[i] if i in meta_args else concrete_args[i] for i in sequence]
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
model.cuda().eval()
gm.eval()
with torch.no_grad():
if print_mem:
torch.cuda.reset_peak_memory_stats()
now_mem = torch.cuda.memory_allocated() / 1024**2
out_gm = gm(*[i.clone() if isinstance(i, torch.Tensor) else i for i in inputs])
if print_mem:
new_max_mem = torch.cuda.max_memory_allocated() / 1024**2
print("mem: %.2fMB" % (new_max_mem - now_mem))
out_model = model(*inputs)
assert_allclose(out_model, out_gm)
return chunks
def assert_allclose(out_model: Any, out_gm: Any) -> None:
"""
assert allclose for out
"""
if isinstance(out_model, torch.Tensor):
assert torch.allclose(out_model, out_gm,
atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
torch.abs(out_model - out_gm))
elif isinstance(out_model, dict):
for k in out_model.keys():
assert_allclose(out_model[k], out_gm[k])
elif isinstance(out_model, tuple) or isinstance(out_model, list) or isinstance(out_model, set):
for i, j in zip(out_model, out_gm):
assert_allclose(i, j)
def run_test(
rank: int,
model: Any,
config: Any,
data: tuple,
max_memory: int,
print_code: bool = False,
print_est_mem: bool = False,
print_mem: bool = False,
print_progress: bool = False,
get_chunk_target: Any = None,
) -> None:
model = model(config=config)
# launch colossalai
colossalai.launch(
config={},
rank=rank,
world_size=1,
host="localhost",
port=free_port(),
backend="nccl",
)
# build model and input
chunks = assert_codegen_run(
model,
data=data,
max_memory=max_memory,
print_code=print_code,
print_est_mem=print_est_mem,
print_mem=print_mem,
print_progress=print_progress,
)
if get_chunk_target is not None:
chunk_found = [i["region"] for i in chunks]
chunk_target = get_chunk_target()[max_memory]
assert (chunk_found == chunk_target), "found regions %s doesn't equal target regions %s" % (
str(chunk_found),
str(chunk_target),
)
|
import time
from typing import Any, Dict, List
import torch
import torch.fx
import colossalai
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
from colossalai.fx.profiler import parameter_size
from colossalai.utils import free_port
if AUTOCHUNK_AVAILABLE:
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
from colossalai.fx.profiler import MetaTensor
from colossalai.fx.tracer.experimental import ColoTracer, symbolic_trace
def _benchmark_autochunk_gpt_gm(
model: Any,
data: tuple,
max_memory: int = None,
) -> None:
model = model.cuda().eval()
# build model and input
meta_args, concrete_args, sequence = data
if concrete_args is None:
concrete_args = {}
# trace the meta graph and setup codegen
meta_graph = symbolic_trace(
model,
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args.items()},
concrete_args={k: v for k, v in concrete_args.items()},
)
interp = MetaInfoProp(meta_graph)
meta_tensors = [meta_args[i] if i in meta_args else concrete_args[i] for i in sequence]
meta_tensors = [MetaTensor(i, fake_device="cuda:0") if isinstance(i, torch.Tensor) else i for i in meta_tensors]
interp.propagate(*meta_tensors)
codegen = AutoChunkCodeGen(
meta_graph,
max_memory=max_memory,
)
# trace and recompile
# MetaInfoProp requires symbolic_trace but CodeGen requires ColoTracer
graph = ColoTracer().trace(
model.cuda().eval(),
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args.items()},
concrete_args={k: v for k, v in concrete_args.items()},
)
graph.set_codegen(codegen)
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
gm.recompile()
# init inputs
inputs = [meta_args[i] if i in meta_args else concrete_args[i] for i in sequence]
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
model.cuda().eval()
# bench
para_mem = float(parameter_size(model)) / 1024**2 * 6
act_mem = _benchmark_memory(gm, inputs)
speed = _benchmark_speed(gm, inputs)
print("gpt autochunk, time: %.4fs, act mem: %.2fMB, para mem: %.2fMB, all mem: %.2fMB" %
(speed, act_mem, para_mem, act_mem + para_mem))
def _benchmark_autochunk_gpt_origin(
model: Any,
data: tuple,
) -> None:
# build model and input
meta_args, concrete_args, sequence = data
if concrete_args is None:
concrete_args = {}
# init inputs
inputs = [meta_args[i] if i in meta_args else concrete_args[i] for i in sequence]
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
model.cuda().eval()
# bench
para_mem = float(parameter_size(model)) / 1024**2 * 6
act_mem = _benchmark_memory(model, inputs)
speed = _benchmark_speed(model, inputs)
print("gpt origin, time: %.4fs, act mem: %.2fMB, para mem: %.2fMB, all mem: %.2fMB" %
(speed, act_mem, para_mem, act_mem + para_mem))
return act_mem
def _benchmark_memory(model, inputs):
with torch.no_grad():
torch.cuda.reset_peak_memory_stats()
now_mem = float(torch.cuda.memory_allocated()) / 1024**2
model(*[i.clone() if isinstance(i, torch.Tensor) else i for i in inputs])
new_max_mem = float(torch.cuda.max_memory_allocated()) / 1024**2
return new_max_mem - now_mem
def _benchmark_speed(model, inputs, loop=5):
with torch.no_grad():
for _ in range(loop // 2 + 1):
model(*inputs)
torch.cuda.synchronize()
time1 = time.time()
for _ in range(loop):
model(*inputs)
torch.cuda.synchronize()
time2 = time.time()
return (time2 - time1) / loop
def benchmark_autochunk_gpt(batch=1, seq=512, n_embd=768, n_head=12):
from test_autochunk_gpt import GPT2Config, GPT2Model, get_data
model = GPT2Model
config = GPT2Config(n_embd=n_embd, n_position=seq, n_layer=2, n_head=n_head)
config.max_position_embeddings = seq
model = model(config=config)
shape = [batch, seq]
print("\nbatch: %d, seq: %d, n_embd: %d, n_head: %d" % (batch, seq, n_embd, n_head))
max_mem = _benchmark_autochunk_gpt_origin(model, get_data(shape))
for ratio in [0.5, 0.4, 0.3, 0.2]:
try:
_benchmark_autochunk_gpt_gm(model, get_data(shape), max_mem * ratio)
except RuntimeError as e:
if e.args[0] == 'Search failed. Try a larger memory threshold.':
break
except Exception as e:
raise e
_benchmark_autochunk_gpt_gm(model, get_data(shape), None)
if __name__ == "__main__":
# launch colossalai
colossalai.launch(
config={},
rank=0,
world_size=1,
host="localhost",
port=free_port(),
backend="nccl",
)
benchmark_autochunk_gpt(batch=1, seq=1024, n_embd=768, n_head=12)
benchmark_autochunk_gpt(batch=1, seq=2048, n_embd=768, n_head=12)
benchmark_autochunk_gpt(batch=1, seq=4096, n_embd=768, n_head=12)
benchmark_autochunk_gpt(batch=1, seq=6144, n_embd=768, n_head=12)
benchmark_autochunk_gpt(batch=1, seq=8192, n_embd=768, n_head=12)
|
from functools import partial
from typing import List, Tuple
import pytest
import torch
import torch.multiprocessing as mp
try:
from transformers import GPT2Config, GPT2Model
MODELS = [GPT2Model]
HAS_REPO = True
except:
MODELS = []
HAS_REPO = False
from test_autochunk_transformer_utils import run_test
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
BATCH_SIZE = 1
SEQ_LENGTH = 512
def get_data(shape: tuple) -> Tuple[List, List]:
input_ids = torch.zeros(shape, dtype=torch.int64)
token_type_ids = torch.zeros(shape, dtype=torch.int64)
attention_mask = torch.ones(shape, dtype=torch.int64)
meta_args = dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
concrete_args = {"past_key_values": None}
sequence = ["input_ids", "past_key_values", "attention_mask", "token_type_ids"]
return meta_args, concrete_args, sequence
@pytest.mark.skipif(
not (AUTOCHUNK_AVAILABLE and HAS_REPO),
reason="torch version is lower than 1.12.0",
)
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("shape", [(BATCH_SIZE, SEQ_LENGTH)])
@pytest.mark.parametrize("max_memory", [None, 6, 8])
def test_autochunk_gpt(model, shape, max_memory):
run_func = partial(
run_test,
data=get_data(shape),
max_memory=max_memory,
model=model,
config=GPT2Config(n_embd=96, n_position=shape[1], n_layer=2, n_head=4),
)
mp.spawn(run_func, nprocs=1)
if __name__ == "__main__":
run_test(
rank=0,
data=get_data((BATCH_SIZE, SEQ_LENGTH)),
max_memory=None,
model=GPT2Model,
config=GPT2Config(n_embd=96, n_position=SEQ_LENGTH, n_layer=2, n_head=4),
print_code=False,
print_est_mem=False,
print_mem=False,
print_progress=False,
)
|
# Configuration file for the Sphinx documentation builder.
#
# This file only contains a selection of the most common options. For a full
# list see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
# -- Path setup --------------------------------------------------------------
import datetime
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
import os
import sys
sys.path.insert(0, os.path.abspath('..'))
# -- Project information -----------------------------------------------------
project = 'Colossal-AI'
copyright = f'{datetime.datetime.now().year}, HPC-AI Tech'
author = 'HPC-AI Technology Inc.'
# The full version, including alpha/beta/rc tags
# release = '0.0.1'
# -- General configuration ---------------------------------------------------
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [
'sphinx.ext.autodoc',
'sphinx.ext.mathjax',
'sphinx.ext.napoleon',
'sphinx.ext.linkcode',
'myst_parser',
]
# Disable docstring inheritance
autodoc_inherit_docstrings = False
# Disable displaying type annotations, these can be very verbose
autodoc_typehints = 'none'
# Enable overriding of function signatures in the first line of the docstring.
autodoc_docstring_signature = True
autodoc_default_options = {
'member-order': 'bysource',
}
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = ['.build', 'Thumbs.db', '.DS_Store']
# -- Options for HTML output -------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = 'sphinx_book_theme'
html_show_sourcelink = False
html_theme_options = {
'navigation_depth': 3,
}
html_context = {
'display_github': True,
'github_user': 'hpcaitech',
'github_repo': 'ColossalAI',
# 'github_version': 'master/docs/',
}
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']
html_css_files = [
'css/rtd_theme.css',
]
# -- Extension configuration -------------------------------------------------
source_suffix = ['.rst', '.md', '.MD']
import inspect
import colossalai
def linkcode_resolve(domain, info):
"""
Determine the URL corresponding to Python object
"""
if domain != 'py':
return None
modname = info['module']
fullname = info['fullname']
submod = sys.modules.get(modname)
if submod is None:
return None
obj = submod
for part in fullname.split('.'):
try:
obj = getattr(obj, part)
except Exception:
return None
try:
fn = inspect.getsourcefile(obj)
except Exception:
fn = None
if not fn:
return None
try:
source, lineno = inspect.findsource(obj)
except Exception:
lineno = None
if lineno:
linespec = "#L%d" % (lineno + 1)
else:
linespec = ""
fn = os.path.relpath(fn, start=os.path.dirname(colossalai.__file__))
github = "https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/{}{}"
return github.format(fn, linespec)
|
from typing import Optional
class TensorParallelEnv(object):
_instance = None
def __new__(cls, *args, **kwargs):
if cls._instance is None:
cls._instance = object.__new__(cls, *args, **kwargs)
return cls._instance
def __init__(self, *args, **kwargs):
self.load(*args, **kwargs)
def load(self,
mode: Optional[str] = None,
vocab_parallel: bool = False,
parallel_input_1d: bool = False,
summa_dim: int = None,
tesseract_dim: int = None,
tesseract_dep: int = None,
depth_3d: int = None,
input_group_3d=None,
weight_group_3d=None,
output_group_3d=None,
input_x_weight_group_3d=None,
output_x_weight_group_3d=None):
self.mode = mode
self.vocab_parallel = vocab_parallel
self.parallel_input_1d = parallel_input_1d
self.summa_dim = summa_dim
self.tesseract_dim = tesseract_dim
self.tesseract_dep = tesseract_dep
self.depth_3d = depth_3d
self.input_group_3d = input_group_3d
self.weight_group_3d = weight_group_3d
self.output_group_3d = output_group_3d
self.input_x_weight_group_3d = input_x_weight_group_3d
self.output_x_weight_group_3d = output_x_weight_group_3d
def save(self):
return dict(mode=self.mode,
vocab_parallel=self.vocab_parallel,
parallel_input_1d=self.parallel_input_1d,
summa_dim=self.summa_dim,
tesseract_dim=self.tesseract_dim,
tesseract_dep=self.tesseract_dep,
depth_3d=self.depth_3d,
input_group_3d=self.input_group_3d,
weight_group_3d=self.weight_group_3d,
output_group_3d=self.output_group_3d,
input_x_weight_group_3d=self.input_x_weight_group_3d,
output_x_weight_group_3d=self.output_x_weight_group_3d)
tensor_parallel_env = TensorParallelEnv()
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import argparse
import os
import pprint
from pathlib import Path
from typing import Callable, Dict, Iterable, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.nn.modules.loss import _Loss
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim.lr_scheduler import _LRScheduler
from torch.optim.optimizer import Optimizer
from torch.utils.data import DataLoader
from colossalai.amp import AMP_TYPE, convert_to_amp
from colossalai.amp.naive_amp import NaiveAMPModel
from colossalai.builder.builder import build_gradient_handler
from colossalai.context import Config, ConfigException, ParallelMode
from colossalai.context.moe_context import MOE_CONTEXT
from colossalai.core import global_context as gpc
from colossalai.engine import Engine
from colossalai.engine.gradient_accumulation import accumulate_gradient
from colossalai.engine.schedule import (
InterleavedPipelineSchedule,
NonPipelineSchedule,
PipelineSchedule,
get_tensor_shape,
)
from colossalai.gemini.ophooks import BaseOpHook
from colossalai.logging import get_dist_logger
from colossalai.nn.optimizer.colossalai_optimizer import ColossalaiOptimizer
from colossalai.utils import get_current_device, is_using_ddp, is_using_pp, is_using_sequence, sync_model_param
from colossalai.utils.moe import sync_moe_model_param
from colossalai.zero import convert_to_zero_v2
from colossalai.zero.sharded_optim.sharded_optim_v2 import ShardedOptimizerV2
def get_default_parser():
"""Reads user command line and uses an argument parser to parse the input arguments.
Input arguments include configuration, host, port, world size, local rank, backend for torch.distributed.
Returns:
Namespace: Returns the parser with the default arguments, the user may add customized arguments into this parser.
"""
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, help='path to the config file')
parser.add_argument('--host', type=str, help='the master address for distributed training')
parser.add_argument('--port', type=int, help='the master port for distributed training')
parser.add_argument('--world_size', type=int, help='world size for distributed training')
parser.add_argument('--rank', type=int, help='rank for the default process group')
parser.add_argument('--local_rank', type=int, help='local rank on the node')
parser.add_argument('--backend', type=str, default='nccl', help='backend for distributed communication')
return parser
def launch(config: Union[str, Path, Config, Dict],
rank: int,
world_size: int,
host: str,
port: int,
backend: str = 'nccl',
local_rank: int = None,
seed: int = 1024,
verbose: bool = True):
"""This function first parses the configuration arguments, using :func:`parse_args()` in case one of the input
arguments are not given. Then initialize and set distributed environment by calling global_context's functions.
Args:
config (Union[str, dict, Config]): Config file or config file path are both acceptable
rank (int): Rank for the default process group
world_size (int): World size of the default process group
host (str): The master address for distributed training
port (str): The master port for distributed training
backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl``
local_rank (int, optional):
Rank for the process on the node and is used to set the default CUDA device,
defaults to None. If local_rank = None, the default device ordinal will be calculated automatically.
seed (int, optional): Specified random seed for every process. Defaults to 1024.
verbose (bool, optional): Whether to print logs. Defaults to True.
Raises:
Exception: Raise exception when config type is wrong
"""
gpc.verbose = verbose
# set config
assert isinstance(config, (Config, str, Path, dict)), \
f'expected argument config to be Config, str or Path, but got {type(config)}'
if not isinstance(config, Config) and isinstance(config, dict):
config = Config(config)
if isinstance(config, (str, Path)):
config = Config.from_file(config)
gpc.load_config(config)
# init default process group
gpc.init_global_dist(rank, world_size, backend, host, port)
# init process groups for different parallel modes from config
gpc.init_parallel_groups()
# set cuda device
if torch.cuda.is_available():
# if local rank is not given, calculate automatically
gpc.set_device(local_rank)
# set the number of processes running on the same node
gpc.detect_num_processes_on_current_node()
gpc.set_seed(seed)
if verbose:
logger = get_dist_logger()
logger.info(
f'Distributed environment is initialized, '
f'data parallel size: {gpc.data_parallel_size}, pipeline parallel size: {gpc.pipeline_parallel_size}, '
f'tensor parallel size: {gpc.tensor_parallel_size}',
ranks=[0])
def launch_from_slurm(config: Union[str, Path, Config, Dict],
host: str,
port: int,
backend: str = 'nccl',
seed: int = 1024,
verbose: bool = True):
"""A wrapper for colossalai.launch for SLURM launcher by reading rank and world size from the environment variables
set by SLURM
Args:
config (Union[str, dict, Config]): Config file or config file path are both acceptable
host (str): The master address for distributed training
port (str): The master port for distributed training
backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl``
seed (int, optional): Specified random seed for every process. Defaults to 1024.
verbose (bool, optional): Whether to print logs. Defaults to True.
"""
try:
rank = int(os.environ['SLURM_PROCID'])
world_size = int(os.environ['SLURM_NPROCS'])
except KeyError as e:
raise RuntimeError(
f"Could not find {e} in the SLURM environment, visit https://www.colossalai.org/ for more information on launching with SLURM"
)
launch(config=config,
rank=rank,
world_size=world_size,
host=host,
port=port,
backend=backend,
seed=seed,
verbose=verbose)
def launch_from_openmpi(config: Union[str, Path, Config, Dict],
host: str,
port: int,
backend: str = 'nccl',
seed: int = 1024,
verbose: bool = True):
"""A wrapper for colossalai.launch for OpenMPI launcher by reading rank and world size from the environment variables
set by OpenMPI
Args:
config (Union[str, dict, Config]): Config file or config file path are both acceptable
host (str): The master address for distributed training
port (str): The master port for distributed training
backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl``
seed (int, optional): Specified random seed for every process. Defaults to 1024.
verbose (bool, optional): Whether to print logs. Defaults to True.
"""
try:
rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
local_rank = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
except KeyError as e:
raise RuntimeError(
f"Could not find {e} in the OpenMPI environment, visit https://www.colossalai.org/ for more information on launching with OpenMPI"
)
launch(config=config,
local_rank=local_rank,
rank=rank,
world_size=world_size,
host=host,
port=port,
backend=backend,
seed=seed,
verbose=verbose)
def launch_from_torch(config: Union[str, Path, Config, Dict],
backend: str = 'nccl',
seed: int = 1024,
verbose: bool = True):
"""A wrapper for colossalai.launch for torchrun or torch.distributed.launch by reading rank and world size
from the environment variables set by PyTorch
Args:
config (Union[str, dict, Config]): Config file or config file path are both acceptable
backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl``
seed (int, optional): Specified random seed for every process. Defaults to 1024.
verbose (bool, optional): Whether to print logs. Defaults to True.
"""
try:
rank = int(os.environ['RANK'])
local_rank = int(os.environ['LOCAL_RANK'])
world_size = int(os.environ['WORLD_SIZE'])
host = os.environ['MASTER_ADDR']
port = int(os.environ['MASTER_PORT'])
except KeyError as e:
raise RuntimeError(
f"Could not find {e} in the torch environment, visit https://www.colossalai.org/ for more information on launching with torch"
)
launch(config=config,
local_rank=local_rank,
rank=rank,
world_size=world_size,
host=host,
port=port,
backend=backend,
seed=seed,
verbose=verbose)
def initialize(model: nn.Module,
optimizer: Optimizer,
criterion: Optional[_Loss] = None,
train_dataloader: Optional[Iterable] = None,
test_dataloader: Optional[Iterable] = None,
lr_scheduler: Optional[_LRScheduler] = None,
ophooks: Optional[List[BaseOpHook]] = None,
verbose: bool = True) -> Tuple[Engine, DataLoader, DataLoader, _LRScheduler]:
"""Core function to wrap the essential training components with our functionality based on the config which is
loaded into gpc.config.
Args:
model (:class:`torch.nn.Module` or Callbale): Your model instance or a function to build the model.
optimizer (:class:`torch.optim.optimizer.Optimizer` or :class:`Type[torch.optim.optimizer]`):
Your optimizer instance.
criterion (:class:`torch.nn.modules.loss._Loss`, optional): Your criterion instance.
train_dataloader (:class:`torch.utils.data.DataLoader`, optional): Dataloader for training.
test_dataloader (:class:`torch.utils.data.DataLoader`, optional): Dataloader for testing.
lr_scheduler (:class:`torch.nn.lr_scheduler._LRScheduler`, optional): Your lr scheduler instance, optional.
verbose (bool, optional): Whether to print logs.
Returns:
Tuple (engine, train_dataloader, test_dataloader, lr_scheduler):
A tuple of ``(engine, train_dataloader, test_dataloader, lr_scheduler)``
where only ``engine`` could not be None.
"""
# get logger
logger = get_dist_logger()
gpc.verbose = verbose
# get config from gpc
config = gpc.config
# print config
if verbose:
logger.info(
f"\n========== Your Config ========\n"
f"{pprint.pformat(gpc.config)}\n"
f"================================\n",
ranks=[0])
# cudnn
cudnn_benchmark = config.get('cudnn_benchmark', False)
cudnn_deterministic = config.get('cudnn_deterministic', False)
torch.backends.cudnn.benchmark = cudnn_benchmark
torch.backends.cudnn.deterministic = cudnn_deterministic
if verbose:
logger.info(f"cuDNN benchmark = {cudnn_benchmark}, deterministic = {cudnn_deterministic}", ranks=[0])
# zero
use_zero = hasattr(gpc.config, 'zero')
if use_zero:
zero_cfg = gpc.config.get('zero', None)
if zero_cfg is not None:
cfg_ = zero_cfg.copy()
else:
cfg_ = {}
optimizer_config = zero_cfg.get('optimizer_config', None)
model_config = zero_cfg.get('model_config', None)
model, optimizer = convert_to_zero_v2(model,
optimizer,
model_config=model_config,
optimizer_config=optimizer_config)
logger.info("Initializing ZeRO model and optimizer finished!", ranks=[0])
else:
if isinstance(model, nn.Module):
# first sync model across dp ranks
model.to(get_current_device())
elif isinstance(model, Callable):
model = model().to(get_current_device())
# optimizer maybe a optimizer_cls
if isinstance(optimizer, Callable):
optimizer = optimizer(model.parameters())
logger.warning("Initializing an non ZeRO model with optimizer class")
if not use_zero:
if is_using_sequence():
sync_model_param(model, ParallelMode.SEQUENCE_DP)
elif MOE_CONTEXT.is_initialized:
sync_moe_model_param(model)
elif is_using_ddp():
sync_model_param(model, ParallelMode.DATA)
else:
logger.warning(
"The parameters of models is not automatically synchronized.\n"
"Please make sure that all parameters are the same in data parallel group.",
ranks=[0])
# check amp and zero
fp16_cfg = gpc.config.get('fp16', None)
if fp16_cfg is not None and fp16_cfg.mode is not None and use_zero:
raise ConfigException(
"It is not allowed to set fp16 and zero configuration in your config file at the same time")
# clip grad norm
clip_grad_norm = gpc.config.get('clip_grad_norm', 0.0)
# initialize amp
amp_mode = None
if fp16_cfg is not None and fp16_cfg.mode is not None:
cfg_ = fp16_cfg.copy()
amp_mode = cfg_.pop('mode')
if is_using_pp():
assert amp_mode == AMP_TYPE.NAIVE, 'Pipeline only support NaiveAMP currently'
if amp_mode == AMP_TYPE.NAIVE:
cfg_['clip_grad_norm'] = clip_grad_norm
model, optimizer, criterion = convert_to_amp(model=model,
optimizer=optimizer,
criterion=criterion,
mode=amp_mode,
amp_config=cfg_)
# get torch ddp config
torch_ddp_cfg = gpc.config.get('torch_ddp', dict())
# gradient handler
gradient_handler_cfg = gpc.config.get('gradient_handler', None)
if gradient_handler_cfg is None:
# if gradient handler is not specified in the configuration file,
# check in the following order
# 1. if optimizer is ZERO, then use zero grad handler
# 2. if dp size is larger than 1 and pipeline is not used, use pytorch ddp
# 3. if using pipeline and dp size larger than 1, use data parallel grad handler
if isinstance(optimizer, ShardedOptimizerV2):
gradient_handler_cfg = [dict(type='ZeROGradientHandler')]
if verbose:
logger.info(
"Training with zero is detected, ZeROGradientHandler is automatically "
"added even though not specified in the configuration",
ranks=[0])
elif is_using_ddp() and MOE_CONTEXT.is_initialized:
gradient_handler_cfg = [dict(type='MoeGradientHandler')]
if verbose:
logger.info(
"Data parallel training is detected with moe parallel, MoeGradientHandler is automatically "
"added even though not specified in the configuration",
ranks=[0])
elif is_using_sequence():
model = DDP(model,
process_group=gpc.get_group(ParallelMode.SEQUENCE_DP),
device_ids=[torch.cuda.current_device()],
**torch_ddp_cfg)
if verbose:
logger.info('Model is using torch.nn.parallel.DistributedDataParallel for Sequence Parallelism',
ranks=[0])
elif is_using_ddp() and not is_using_pp() and amp_mode != AMP_TYPE.NAIVE:
model = DDP(model,
process_group=gpc.get_group(ParallelMode.DATA),
device_ids=[torch.cuda.current_device()],
**torch_ddp_cfg)
if verbose:
logger.info('Model is using torch.nn.parallel.DistributedDataParallel for Data Parallelism', ranks=[0])
elif is_using_ddp():
gradient_handler_cfg = [dict(type='DataParallelGradientHandler')]
if verbose:
logger.info(
"Data parallel training is detected when using pipeline parallel, "
"DataParallelGradientHandler is automatically "
"added even though not specified in the configuration",
ranks=[0])
# add pipeline parallel gradient handler, if pipeline shared module is detected
for param in model.parameters():
if getattr(param, 'pipeline_shared_module_pg', None) is not None:
if gradient_handler_cfg is None:
gradient_handler_cfg = [dict(type='PipelineSharedModuleGradientHandler')]
else:
gradient_handler_cfg.append(dict(type='PipelineSharedModuleGradientHandler'))
if verbose:
logger.info(
"pipeline_shared_module is detected, PipelineSharedModuleGradientHandler is automatically "
"added even though not specified in the configuration",
ranks=[0])
break
else:
if not isinstance(gradient_handler_cfg, list):
raise ConfigException(
f"expected gradient_handler in the configuration file to be a list but got {type(gradient_handler_cfg)}"
)
# turn off sync buffer for NaiveAMPModel if using torch DDP and NaiveAMPModel at the same time
# to avoid duplicated buffer synchronization
if isinstance(model, DDP) and isinstance(model.module, NaiveAMPModel):
model.module.sync_buffer = False
# initialize schedule for engine
if is_using_pp():
tensor_shape = get_tensor_shape()
use_interleaved = hasattr(gpc.config, 'model') and hasattr(gpc.config.model, 'num_chunks')
if gpc.is_initialized(ParallelMode.PARALLEL_1D):
scatter_gather = True
else:
scatter_gather = False
if use_interleaved:
if isinstance(model, nn.Sequential):
model = nn.ModuleList([model])
schedule = InterleavedPipelineSchedule(gpc.config.NUM_MICRO_BATCHES,
gpc.config.model.num_chunks,
tensor_shape=tensor_shape,
scatter_gather_tensors=scatter_gather)
else:
schedule = PipelineSchedule(gpc.config.NUM_MICRO_BATCHES,
tensor_shape=tensor_shape,
scatter_gather_tensors=scatter_gather)
else:
schedule = NonPipelineSchedule()
if gradient_handler_cfg is None:
gradient_handlers = None
if verbose and not isinstance(model, DDP):
logger.warning(
"No PyTorch DDP or gradient handler is set up, please make sure you do not need "
"to all-reduce the gradients after a training step.",
ranks=[0])
else:
gradient_handlers = [build_gradient_handler(cfg, model, optimizer) for cfg in gradient_handler_cfg]
# check if optimizer is ColossalaiOptimizer
if not isinstance(optimizer, (ColossalaiOptimizer, ShardedOptimizerV2)):
optimizer = ColossalaiOptimizer(optim=optimizer)
# gradient accumulation
grad_accum_size = gpc.config.get('gradient_accumulation', None)
if grad_accum_size is not None:
optimizer, train_dataloader, gradient_handlers, lr_scheduler = accumulate_gradient(
model=model,
optimizer=optimizer,
dataloader=train_dataloader,
accumulate_size=grad_accum_size,
gradient_handlers=gradient_handlers,
lr_scheduler=lr_scheduler)
engine = Engine(model=model,
optimizer=optimizer,
criterion=criterion,
gradient_handlers=gradient_handlers,
clip_grad_norm=clip_grad_norm,
ophook_list=ophooks,
schedule=schedule)
return engine, train_dataloader, test_dataloader, lr_scheduler
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
ALLOWED_MODES = [None, '1d', '2d', '2.5d', '3d', 'sequence']
TENSOR_PARALLEL_MODE = 'tensor_parallel_mode'
# initializer
INITIALIZER_MAPPING = {
'data': 'Initializer_Data',
'tensor': 'Initializer_Tensor',
'pipeline': 'Initializer_Pipeline',
'embedding': 'Initializer_Embedding',
'1d': 'Initializer_1D',
'2d': 'Initializer_2D',
'2.5d': 'Initializer_2p5D',
'3d': 'Initializer_3D',
'sequence': 'Initializer_Sequence',
'model': 'Initializer_Model',
'moe': 'Initializer_Moe'
}
# 3D parallelism groups
INPUT_GROUP_3D = 'input_group_3d'
WEIGHT_GROUP_3D = 'weight_group_3d'
OUTPUT_GROUP_3D = 'output_group_3d'
INPUT_X_WEIGHT_3D = 'input_x_weight_group_3d'
OUTPUT_X_WEIGHT_3D = 'output_x_weight_group_3d'
# Attributes of tensor parallel parameters
IS_TENSOR_PARALLEL = 'is_tensor_parallel'
NUM_PARTITIONS = 'num_partitions'
TENSOR_PARALLEL_ATTRIBUTES = [IS_TENSOR_PARALLEL, NUM_PARTITIONS]
|
from .initialize import (
get_default_parser,
initialize,
launch,
launch_from_openmpi,
launch_from_slurm,
launch_from_torch,
)
try:
# .version will be created by setup.py
from .version import __version__
except ModuleNotFoundError:
# this will only happen if the user did not run `pip install`
# and directly set PYTHONPATH to use Colossal-AI which is a bad practice
__version__ = '0.0.0'
print('please install Colossal-AI from https://www.colossalai.org/download or from source')
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from colossalai.context.parallel_context import global_context
__all__ = ['global_context'] |
from typing import List, Dict, Tuple
import os
import threading
from torch.distributed import rpc
import torch.distributed as dist
from colossalai.tensor import ProcessGroup
class PipelineProcessGroup:
# TODO : flexible API for DP size and TP size
# In the future design mode, dp_degree and tp_degree should be removed
def __init__(self) -> None:
self.is_initialize = False
def set_global_info(self,
rank: int,
world_size: int,
dp_degree: int = 1,
tp_degree: int = 1,
num_worker_threads: int = 1,
device: str = "cuda") -> None:
device_mesh_size = dp_degree * tp_degree
assert world_size % device_mesh_size == 0, "world_size must be the multiple of dp_degree * tp_degree !!!"
self._num_worker_threads = num_worker_threads
self._device_mesh_size = device_mesh_size
self._rank = rank
self._world_size = world_size
self._dp_degree = dp_degree
self._tp_degree = tp_degree
self.device = device
self._stage_num = world_size // device_mesh_size
self._pp_rank = rank // device_mesh_size
self._pp_ranks = [(rank % device_mesh_size) + i * device_mesh_size for i in range(self._stage_num)]
self._local_stage_ranks = [(rank // device_mesh_size * device_mesh_size) + i for i in range(device_mesh_size)]
# pp_ranks
self._initialize_pp_process_group()
# initialise tp dp process groups
self._initialize_tp_dp_process_group()
# status
self._is_first_pp_rank = self._pp_rank == 0
self._is_last_pp_rank = self._pp_rank == self._stage_num - 1
self.is_initialize = True
# lock
self.initialise_lock = threading.Lock()
self.chimera_lock = threading.Lock()
def _initialize_process_group(self):
stage_num = self.get_stage_num()
if stage_num == 1:
return
device = self.device
world_size = self.get_world_size()
rank = self.get_global_rank()
backend = 'nccl' if device == 'cuda' else 'gloo'
dist.init_process_group(backend, world_size=world_size, rank=rank, group_name='main_group')
def _initialize_pp_process_group(self) -> None:
rank = self.get_global_rank()
world_size = self.get_world_size()
# build rpc connection
options = rpc.TensorPipeRpcBackendOptions(num_worker_threads=self._num_worker_threads)
for pp_rank in self._pp_ranks:
options.set_device_map(f'work{pp_rank}', {rank: pp_rank})
rpc.init_rpc(name=f'work{rank}', rank=rank, world_size=world_size, rpc_backend_options=options)
def _initialize_tp_dp_process_group(self) -> None:
rank = self.get_global_rank()
local_stage_ranks = self.get_local_stage_global_ranks()
dp_degree = self.get_dp_degree()
tp_degree = self.get_tp_degree()
self._tp_dp_process_group = ProcessGroup(rank, local_stage_ranks, tp_degree, dp_degree)
def get_global_rank(self):
return self._rank
def get_world_size(self):
return self._world_size
def get_dp_degree(self) -> int:
return self._dp_degree
def get_tp_degree(self) -> int:
return self._tp_degree
def get_local_device_mesh_size(self) -> int:
return self._device_mesh_size
def get_device_mesh_num(self) -> int:
pass
def get_stage_num(self) -> int:
return self._stage_num
def is_first_stage(self) -> bool:
return self._is_first_pp_rank
def is_last_stage(self) -> bool:
return self._is_last_pp_rank
def check_pp_rank_valid(self, pp_rank: int) -> bool:
return -1 < pp_rank < self._stage_num
def get_local_pp_rank(self) -> int:
return self._pp_rank
def get_prev_pp_rank(self) -> int:
prev_pp_rank = self._pp_rank - 1
if not self.check_pp_rank_valid(prev_pp_rank):
assert ValueError(f"current rank's pp_rank: {self._pp_rank} doesn't have a previous stage!")
return prev_pp_rank
def get_next_pp_rank(self) -> int:
next_pp_rank = self._pp_rank + 1
if not self.check_pp_rank_valid(next_pp_rank):
assert ValueError(f"current rank's pp_rank: {self._pp_rank} doesn't have a next stage!")
return next_pp_rank
def get_local_stage_global_ranks(self) -> List[int]:
return self._local_stage_ranks
def local_dp_rank(self) -> int:
return self._tp_dp_process_group.dp_local_rank()
def local_tp_rank(self) -> int:
return self._tp_dp_process_group.tp_local_rank()
def get_pp_global_ranks(self) -> int:
return self._pp_ranks
def get_dp_global_ranks(self):
pass
def get_tp_global_ranks(self):
pass
def get_chimera_all_reduce_group(self, pp_rank: int):
with self.chimera_lock:
if not hasattr(self, 'chimera_groups'):
world_size = self.get_world_size()
stage_num = self.get_stage_num()
assert world_size % 2 == 0, 'world_size must be even in chimera!'
self.chimera_groups = {}
for rank in range(world_size // 2):
pair = [rank, world_size - 1 - rank]
group = dist.new_group(pair)
self.chimera_groups[pair[0]] = group
self.chimera_groups[pair[1]] = group
self.chimera_groups[pair[0] + stage_num] = group
self.chimera_groups[pair[1] + stage_num] = group
self.chimera_step_lock = threading.Lock()
self.chimera_step_lock.acquire()
return self.chimera_groups[pp_rank]
ppg = PipelineProcessGroup()
|
import torch
import inspect
from colossalai.utils.model.utils import InsertPostInitMethodToModuleSubClasses
from .utils import partition_uniform, partition_balanced, build_kwargs_for_function, \
build_kwargs_for_module, exec_func_with_kwargs, exec_funcs_with_kwargs, \
call_module, customized_partition
from colossalai.nn.layer.utils import CheckpointModule
from colossalai.tensor import ColoParameter
from colossalai.core import global_context as gpc
from colossalai.context import ParallelMode
from .layer_spec import LayerSpec
class PipelinableContext(InsertPostInitMethodToModuleSubClasses):
"""
A context manager to split the model into pipeline stages.
"""
def __init__(self, policy: str = "balanced"):
super().__init__()
self._layer_spec_dict = {}
self._root_children = None
self._model = None
self._layer_spec_list = []
self._func_dict = {}
self._policy = policy
@property
def policy(self):
return self._policy
@policy.setter
def policy(self, policy: str):
self._policy = policy
@property
def layers_count(self):
return len(self._layer_spec_list)
@property
def funcs_count(self):
return len(self._func_dict)
def _pre_context_exec(self):
"""
The Callback function when entering the context
"""
# reserve rng states
self.cpu_rng_state = torch.get_rng_state()
self.cuda_rng_state = torch.cuda.get_rng_state()
def _post_context_exec(self):
"""
The callback function when exiting context.
"""
# reset rng states
torch.set_rng_state(self.cpu_rng_state)
torch.cuda.set_rng_state(self.cuda_rng_state)
def _post_init_method(self, module: torch.nn.Module, *args, **kwargs):
"""
The function to call at the end of the constructor of each module.
NOTE() The module may be passed to this function multiple times.
"""
# iterate over the positional arguments
# to check if an argument is a torch Module
# if found any torch Module, replace it with its layer spec
# for storage purpose
modified_args = []
for arg in args:
if isinstance(arg, torch.nn.Module):
# if nn.Module is an argument of a non-root module, then we should convert it to layer spec, which make sure the correct init method used in the real build.
# if nn.Module is an argument of the root module, then we should just record the module instance itself, because those instance has been built outside of the context.
if id(arg) in self._layer_spec_dict:
arg = self._layer_spec_dict[id(arg)]
modified_args.append(arg)
# to the same for the keyword arguments
modified_kwargs = {}
for k, v in kwargs.items():
if isinstance(v, torch.nn.Module):
v = self._layer_spec_dict[id(v)]
# (lyl)TODO: analyse ColoTensor as well
modified_kwargs[k] = v
# keep track of the module children
# as torch.nn.Module.__init__ is called from inner module to outer module,
# the final value of self._model will be the outermost model
# e.g. if the model is torchvision.models.resnet18, then the final value of self._model
# will be the ``ResNet`` object.
self._root_children = list(module.children())
self._model = module
# store the children to keep the module hierarchy
layer_spec = LayerSpec(module.__class__, *modified_args, **modified_kwargs)
layer_spec.set_children(module.children())
# store the layer spec in this context
module_id = id(module)
self._layer_spec_dict[module_id] = layer_spec
# convert all torch.nn.Parameter to colossalai.tensor.ColoParameter
name_list = []
for name, param in module.named_parameters():
if isinstance(param, ColoParameter):
continue
name_list.append((name, param))
for name, param in name_list:
if hasattr(module, name):
delattr(module, name)
setattr(module, name, ColoParameter.from_torch_tensor(tensor=param.data, requires_grad=param.requires_grad))
def to_layer_list(self, exec_seq=None):
"""
Create a layer spec list and func list with execution sequence given by user.
If exec_seq is None, we will take the module initizing order as execution order.
"""
self._exec_seq = exec_seq
if exec_seq is None:
# if user do not provide the model executing sequence, we use the initialization order as the executing order.
children_name = []
for child in self._root_children:
layer_spec = self._layer_spec_dict[id(child)]
if layer_spec.typename in (torch.nn.modules.container.ModuleList,
torch.nn.modules.container.Sequential):
for child_in_container in layer_spec.children:
self._layer_spec_list.append(self._layer_spec_dict[id(child_in_container)])
for name, module in self._model.named_modules():
if id(module) == id(child_in_container):
children_name.append(name)
break
else:
self._layer_spec_list.append(layer_spec)
for name, module in self._model.named_modules():
if id(module) == id(child):
children_name.append(name)
break
else:
front_funcs_list = []
named_modules = dict(self._model.named_modules())
for index, element in enumerate(exec_seq):
if isinstance(element, str):
if element == 'SPLIT_NODE':
continue
assert element in named_modules, f'Found invalid module name {element}, please check if you spell the module name correctly.'
# get the layer spec based on the module ID
module = named_modules[element]
layer_spec = self._layer_spec_dict[id(module)]
# check whether there are functions which should be executed before this module
if len(front_funcs_list) != 0:
func_key = (layer_spec, "front")
if func_key not in self._func_dict:
self._func_dict[func_key] = []
for f in front_funcs_list:
self._func_dict[func_key].append(f)
front_funcs_list = []
func_key = (layer_spec, "behind")
self._layer_spec_list.append(layer_spec)
elif isinstance(element, tuple) and element[1] == "front":
front_funcs_list.append(element[0])
else:
if func_key not in self._func_dict:
self._func_dict[func_key] = []
if isinstance(element, tuple):
self._func_dict[func_key].append(element[0])
else:
self._func_dict[func_key].append(element)
def partition(self, num_chunks, pipeline_size, rank):
"""
Partitioned model will be built respect to partion policy.
The real module instance will be built in this method.
"""
if isinstance(self._policy, str):
if self._policy == "uniform":
parts = partition_uniform(len(self._layer_spec_list), pipeline_size, num_chunks)[rank]
elif self._policy == "balanced":
param_counts = []
for layer_spec in self._layer_spec_list:
param_counts.append(layer_spec.count_params())
parts = partition_balanced(param_counts, pipeline_size, num_chunks)[rank]
elif self._policy == "customized":
assert self._exec_seq is not None, f'An explicit exec_seq must be defined by user in customized policy mode.'
self.customized_parts = customized_partition(self._exec_seq)
assert len(self.customized_parts) == gpc.get_world_size(
ParallelMode.PIPELINE
), f'World size is {gpc.get_world_size(ParallelMode.PIPELINE)}, but the number of partions is {len(self.customized_parts)}'
parts = self.customized_parts[rank]
else:
raise ValueError("A string partition policy should be one of ['uniform', 'balanced', 'customized'].")
elif isinstance(self._policy, dict):
parts = self._policy[rank]
else:
raise ValueError("A partition policy should be either a string or a dictionary.")
layers_to_build = []
for start, end in parts:
layers_to_build += self._layer_spec_list[start:end]
behind_func_dict_in_partition = {}
front_func_dict_in_partition = {}
module_list_in_partition = []
for layer in layers_to_build:
module = layer.build()
module_list_in_partition.append(module)
if (layer, "front") in self._func_dict:
front_func_dict_in_partition[id(module)] = self._func_dict[(layer, "front")]
elif (layer, "behind") in self._func_dict:
behind_func_dict_in_partition[id(module)] = self._func_dict[(layer, "behind")]
module_list_in_partition = torch.nn.ModuleList(module_list_in_partition)
pipeline_model = PipelinableModel(module_list_in_partition, front_func_dict_in_partition,
behind_func_dict_in_partition)
return pipeline_model
class PipelinableModel(torch.nn.Module):
def __init__(self, module_list, front_func_dict, behind_func_dict):
super().__init__()
self._module_list = module_list
self._front_func_dict = front_func_dict
self._behind_func_dict = behind_func_dict
def forward(self, *input_tensor, **kwargs):
for module in self._module_list:
if id(module) in self._front_func_dict:
input_tensor = exec_funcs_with_kwargs(self._front_func_dict, id(module), input_tensor, kwargs)
if isinstance(module, CheckpointModule):
forward_func = module._forward
else:
forward_func = module.forward
module_kwargs = build_kwargs_for_module(forward_func, input_tensor, kwargs)
if input_tensor is None:
input_tensor = call_module(module, kwargs=module_kwargs)
elif isinstance(input_tensor, torch.Tensor):
input_tensor = call_module(module, args=(input_tensor,), kwargs=module_kwargs)
else:
input_tensor = call_module(module, args=input_tensor, kwargs=module_kwargs)
if id(module) in self._behind_func_dict:
input_tensor = exec_funcs_with_kwargs(self._behind_func_dict, id(module), input_tensor, kwargs)
return input_tensor
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.