python_code
stringlengths
0
456k
from torch.optim.lr_scheduler import CosineAnnealingLR as _CosineAnnealingLR from colossalai.registry import LR_SCHEDULERS from .delayed import DelayerScheduler, WarmupDelayerScheduler, WarmupScheduler @LR_SCHEDULERS.register_module class CosineAnnealingLR(_CosineAnnealingLR): r"""Set the learning rate of each parameter group using a cosine annealing schedule, where :math:`\eta_{max}` is set to the initial lr and :math:`T_{cur}` is the number of epochs since the last restart in SGDR: .. math:: \begin{aligned} \eta_t & = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 + \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right), & T_{cur} \neq (2k+1)T_{max}; \\ \eta_{t+1} & = \eta_{t} + \frac{1}{2}(\eta_{max} - \eta_{min}) \left(1 - \cos\left(\frac{1}{T_{max}}\pi\right)\right), & T_{cur} = (2k+1)T_{max}. \end{aligned} When last_epoch=-1, sets initial lr as lr. Notice that because the schedule is defined recursively, the learning rate can be simultaneously modified outside this scheduler by other operators. If the learning rate is set solely by this scheduler, the learning rate at each step becomes: .. math:: \eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 + \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right) It has been proposed in `SGDR: Stochastic Gradient Descent with Warm Restarts`_. Note that this only implements the cosine annealing part of SGDR, and not the restarts. .. _SGDR\: Stochastic Gradient Descent with Warm Restarts: https://arxiv.org/abs/1608.03983 Args: optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. total_steps (int): Number of total training steps. eta_min (int, optional): Minimum learning rate, defaults to 0. last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1, the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr. """ def __init__(self, optimizer, total_steps: int, eta_min: int = 0, last_epoch: int = -1, **kwargs): super().__init__(optimizer, total_steps, eta_min=eta_min, last_epoch=last_epoch) @LR_SCHEDULERS.register_module class CosineAnnealingWarmupLR(WarmupScheduler): """Cosine annealing learning rate scheduler with learning rate warmup. A linear warmup schedule will be applied. Args: optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. total_steps (int): Number of total training steps. warmup_steps (int, optional): Number of warmup steps, defaults to 0. eta_min (int, optional): Minimum learning rate, defaults to 0. last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1, the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr. """ def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, eta_min: float = 0., last_epoch: int = -1): base_scheduler = _CosineAnnealingLR(optimizer, total_steps - warmup_steps, eta_min=eta_min, last_epoch=last_epoch) super().__init__(optimizer, warmup_steps, base_scheduler) @LR_SCHEDULERS.register_module class FlatAnnealingLR(DelayerScheduler): """Flat and cosine annealing learning rate scheduler. The learning rate will be a fixed value before starting decay. Args: optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. total_steps (int): Number of total training steps. pct_start (float, optional): Percent of steps before starting learning rate decay, defaults to -0.72. last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1, the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr. """ def __init__(self, optimizer, total_steps: int, pct_start: float = 0.72, last_epoch: int = -1, **kwargs): if not (0.0 <= pct_start <= 1.0): raise ValueError(f'pct_start must >= 0.0 and <= 1.0, got {pct_start}') flat_steps = int(total_steps * pct_start) anneal_steps = total_steps - flat_steps base_scheduler = _CosineAnnealingLR(optimizer, anneal_steps) super().__init__(optimizer, flat_steps, base_scheduler, last_epoch=last_epoch) @LR_SCHEDULERS.register_module class FlatAnnealingWarmupLR(WarmupDelayerScheduler): """Flat and cosine annealing learning rate scheduler with learning rate warmup. A linear warmup schedule will be applied, and then the learning rate will be a fixed value before starting decay. Args: optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. total_steps (int): Number of total training steps. warmup_steps (int, optional): Number of warmup steps, defaults to 0. pct_start (float, optional): Percent of steps before starting learning rate decay, defaults to -0.72. eta_min (int, optional): Minimum learning rate, defaults to 0. last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1, the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr. """ def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, pct_start: float = 0.72, eta_min: int = 0, last_epoch: int = -1, **kwargs): if not (0.0 <= pct_start <= 1.0): raise ValueError(f'pct_start must >= 0.0 and <= 1.0, got {pct_start}') flat_steps = int((total_steps - warmup_steps) * pct_start) anneal_steps = total_steps - warmup_steps - flat_steps base_scheduler = _CosineAnnealingLR(optimizer, anneal_steps, eta_min=eta_min) super().__init__(optimizer, warmup_steps, flat_steps, base_scheduler, last_epoch=last_epoch)
from torch.optim.lr_scheduler import _LRScheduler from colossalai.registry import LR_SCHEDULERS @LR_SCHEDULERS.register_module class LinearWarmupLR(_LRScheduler): """Linearly warmup learning rate and then linearly decay. Args: optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. total_steps (int): Number of total training steps. warmup_steps (int, optional): Number of warmup steps, defaults to 0 last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1, the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr. """ def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, last_epoch: int = -1, **kwargs): self.warmup_steps = warmup_steps self.total_steps = total_steps super().__init__(optimizer, last_epoch=last_epoch) def get_lr(self): if self.last_epoch < self.warmup_steps: return [(self.last_epoch + 1) / (self.warmup_steps + 1) * lr for lr in self.base_lrs] else: return [(self.total_steps - self.last_epoch) / (self.total_steps - self.warmup_steps) * lr for lr in self.base_lrs]
from torch.optim.lr_scheduler import OneCycleLR as _OneCycleLR from colossalai.registry import LR_SCHEDULERS @LR_SCHEDULERS.register_module class OneCycleLR(_OneCycleLR): r"""Sets the learning rate of each parameter group according to the 1cycle learning rate policy. The 1cycle policy anneals the learning rate from an initial learning rate to some maximum learning rate and then from that maximum learning rate to some minimum learning rate much lower than the initial learning rate. This policy was initially described in the paper `Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates`_. The 1cycle learning rate policy changes the learning rate after every batch. `step` should be called after a batch has been used for training. This scheduler is not chainable. Note also that the total number of steps in the cycle can be determined in one of two ways (listed in order of precedence): * A value for total_steps is explicitly provided. * A number of epochs (epochs) and a number of steps per epoch (steps_per_epoch) are provided. In this case, the number of total steps is inferred by total_steps = epochs * steps_per_epoch You must either provide a value for total_steps or provide a value for both epochs and steps_per_epoch. The default behaviour of this scheduler follows the fastai implementation of 1cycle, which claims that "unpublished work has shown even better results by using only two phases". To mimic the behaviour of the original paper instead, set ``three_phase=True``. Args: optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. total_steps (int): Number of total training steps. pct_start (float, optional): The percentage of the cycle (in number of steps) spent increasing the learning rate, defaults to 0.3. anneal_strategy (str, optional): {'cos', 'linear'}, Specifies the annealing strategy: "cos" for cosine annealing, "linear" for linear annealing, defaults to 'cos'. cycle_momentum (bool, optional): If ``True``, momentum is cycled inversely to learning rate between 'base_momentum' and 'max_momentum', defaults to True. base_momentum (float, optional): Lower momentum boundaries in the cycle for each parameter group. Note that momentum is cycled inversely to learning rate; at the peak of a cycle, momentum is 'base_momentum' and learning rate is 'max_lr', defaults to 0.85. max_momentum (float, optional): Upper momentum boundaries in the cycle for each parameter group. Functionally, it defines the cycle amplitude (max_momentum - base_momentum). Note that momentum is cycled inversely to learning rate; at the start of a cycle, momentum is 'max_momentum' and learning rate is 'base_lr', defaults to 0.95. div_factor (float, optional): Determines the initial learning rate via initial_lr = max_lr/div_factor, defaults to 25.0. final_div_factor (float, optional): Determines the minimum learning rate via min_lr = initial_lr/final_div_factor, defaults to 10000.0. last_epoch (int, optional): The index of the last batch. This parameter is used when resuming a training job. Since `step()` should be invoked after each batch instead of after each epoch, this number represents the total number of *batches* computed, not the total number of epochs computed. When last_epoch=-1, the schedule is started from the beginning, defaults to -1 The ``kwargs`` for initializing torch.optim.lr_scheduler.OneCycleLR should include parameters below: :: epochs (int, optional, default=None) steps_per_epoch (int, optional, default=None) three_phase (bool, optional, default=False) verbose (bool, optional, default=False) More details about kwargs could be found in `OneCycleLR <https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html#torch.optim.lr_scheduler.OneCycleLR>`_. .. _Super-Convergence\: Very Fast Training of Neural Networks Using Large Learning Rates: https://arxiv.org/abs/1708.07120 """ def __init__(self, optimizer, total_steps: int, pct_start=0.3, anneal_strategy='cos', cycle_momentum=True, base_momentum=0.85, max_momentum=0.95, div_factor=25.0, final_div_factor=10000.0, last_epoch=-1, **kwargs): max_lrs = list(map(lambda group: group['lr'], optimizer.param_groups)) super().__init__(optimizer, max_lrs, total_steps=total_steps, pct_start=pct_start, anneal_strategy=anneal_strategy, cycle_momentum=cycle_momentum, base_momentum=base_momentum, max_momentum=max_momentum, div_factor=div_factor, final_div_factor=final_div_factor, last_epoch=last_epoch)
from typing import List from torch.optim.lr_scheduler import MultiStepLR as _MultiStepLR from colossalai.registry import LR_SCHEDULERS from .delayed import WarmupScheduler @LR_SCHEDULERS.register_module class MultiStepLR(_MultiStepLR): """Decays the learning rate of each parameter group by gamma once the number of epoch reaches one of the milestones. Notice that such decay can happen simultaneously with other changes to the learning rate from outside this scheduler. When last_epoch=-1, sets initial lr as lr. Args: optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. total_steps (int): Number of total training steps. milestones (List[int], optional): List of epoch indices. Must be increasing, defaults to None. gamma (float, optional): Multiplicative factor of learning rate decay, defaults to 0.1. last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1, the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr. """ def __init__(self, optimizer, total_steps: int, milestones: List[int] = None, gamma: float = 0.1, last_epoch: int = -1, **kwargs): super().__init__(optimizer, milestones, gamma=gamma, last_epoch=last_epoch) @LR_SCHEDULERS.register_module class MultiStepWarmupLR(WarmupScheduler): """Multistep learning rate scheduler with warmup. Args: optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. total_steps (int): Number of total training steps. warmup_steps (int, optional): Number of warmup steps, defaults to 0. milestones (List[int], optional): List of epoch indices. Must be increasing, defaults to None. gamma (float, optional): Multiplicative factor of learning rate decay, defaults to 0.1. num_steps_per_epoch (int, optional): Number of steps per epoch, defaults to -1. last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1, the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr. """ def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, milestones: List[int] = None, gamma: float = 0.1, last_epoch: int = -1, **kwargs): if len(milestones) == 0: raise ValueError('milestones cannot be empty') milestones = [v - warmup_steps for v in milestones if v >= warmup_steps] base_scheduler = _MultiStepLR(optimizer, milestones=milestones, gamma=gamma) super().__init__(optimizer, warmup_steps, base_scheduler, last_epoch=last_epoch)
from .cosine import CosineAnnealingLR, CosineAnnealingWarmupLR, FlatAnnealingLR, FlatAnnealingWarmupLR from .linear import LinearWarmupLR from .multistep import MultiStepLR, MultiStepWarmupLR from .onecycle import OneCycleLR from .poly import PolynomialLR, PolynomialWarmupLR from .torch import LambdaLR, MultiplicativeLR, StepLR, ExponentialLR __all__ = [ 'CosineAnnealingLR', 'CosineAnnealingWarmupLR', 'FlatAnnealingLR', 'FlatAnnealingWarmupLR', 'LinearWarmupLR', 'MultiStepLR', 'MultiStepWarmupLR', 'OneCycleLR', 'PolynomialLR', 'PolynomialWarmupLR', 'LambdaLR', 'MultiplicativeLR', 'StepLR', 'ExponentialLR' ]
from torch.optim.lr_scheduler import _LRScheduler from colossalai.registry import LR_SCHEDULERS from .delayed import WarmupScheduler @LR_SCHEDULERS.register_module class PolynomialLR(_LRScheduler): """Polynomial learning rate scheduler. Args: optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. total_steps (int): Number of total training steps. end_lr (float, optional): Minimum learning rate, defaults to 0.0001. power (float, optional): The power of polynomial, defaults to 1.0. last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1, the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr. """ def __init__(self, optimizer, total_steps: int, end_lr: float = 0.0001, power: float = 1.0, last_epoch: int = -1, **kwargs): if end_lr < 0: raise ValueError(f'end_lr must >= 0, got {end_lr}') self.total_steps = total_steps self.end_lr = end_lr self.power = power super().__init__(optimizer, last_epoch=last_epoch) def get_lr(self): return self._get_closed_form_lr() def _get_closed_form_lr(self): return [(base_lr - self.end_lr) * ((1 - min(self.last_epoch, self.total_steps) / self.total_steps)**self.power) + self.end_lr for base_lr in self.base_lrs] @LR_SCHEDULERS.register_module class PolynomialWarmupLR(WarmupScheduler): """Polynomial learning rate scheduler with warmup. Args: optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. total_steps (int): Number of total training steps. warmup_steps (int, optional): Number of warmup steps, defaults to 0. end_lr (float, optional): Minimum learning rate, defaults to 0.0001. power (float, optional): The power of polynomial, defaults to 1.0. last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1, the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr. """ def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, end_lr: float = 0.0001, power: float = 1.0, last_epoch: int = -1, **kwargs): base_scheduler = PolynomialLR(optimizer, total_steps - warmup_steps, end_lr=end_lr, power=power) super().__init__(optimizer, warmup_steps, base_scheduler, last_epoch=last_epoch)
from torch.optim.lr_scheduler import _LRScheduler class _enable_get_lr_call: def __init__(self, o): self.o = o def __enter__(self): self.o._get_lr_called_within_step = True return self def __exit__(self, type, value, traceback): self.o._get_lr_called_within_step = False class DelayerScheduler(_LRScheduler): """Starts with a flat lr schedule until it reaches N epochs then applies the specific scheduler (For example: ReduceLROnPlateau) Args: optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. delay_epochs (int): Number of epochs to keep the initial lr until starting applying the scheduler. after_scheduler (:class:`torch.optim.lr_scheduler`): After target_epoch, use this scheduler. last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1, the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr. """ def __init__(self, optimizer, delay_epochs, after_scheduler, last_epoch=-1): if delay_epochs < 0: raise ValueError(f'delay_epochs must >= 0, got {delay_epochs}') self.delay_epochs = delay_epochs self.after_scheduler = after_scheduler self.finished = False super().__init__(optimizer, last_epoch) def state_dict(self): state_dict = {key: value for key, value in self.__dict__.items() if key not in 'optimizer'} if isinstance(state_dict['after_scheduler'], _LRScheduler): state_dict['after_scheduler_type'] = type(state_dict['after_scheduler']).__name__ state_dict['after_scheduler_dict'] = state_dict['after_scheduler'].state_dict() del state_dict['after_scheduler'] else: raise NotImplementedError() return state_dict def get_lr(self): if self.last_epoch >= self.delay_epochs: if not self.finished: self.after_scheduler.base_lrs = self.base_lrs self.finished = True with _enable_get_lr_call(self.after_scheduler): return self.after_scheduler.get_lr() return self.base_lrs def step(self, epoch=None): if self.finished: if epoch is None: self.after_scheduler.step(None) self._last_lr = self.after_scheduler.get_last_lr() else: self.after_scheduler.step(epoch - self.delay_epochs) self._last_lr = self.after_scheduler.get_last_lr() else: return super(DelayerScheduler, self).step(epoch) class WarmupScheduler(_LRScheduler): """Starts with a linear warmup lr schedule until it reaches N epochs then applies the specific scheduler (For example: ReduceLROnPlateau). Args: optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. warmup_epochs (int): Number of epochs to linearly warmup lr until starting applying the scheduler. after_scheduler (:class:`torch.optim.lr_scheduler`): After target_epoch, use this scheduler. last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1, the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr. """ def __init__(self, optimizer, warmup_epochs, after_scheduler, last_epoch=-1): self.warmup_epochs = int(warmup_epochs) self.after_scheduler = after_scheduler self.finished = False super().__init__(optimizer, last_epoch) def state_dict(self): state_dict = {key: value for key, value in self.__dict__.items() if key not in 'optimizer'} if isinstance(state_dict['after_scheduler'], _LRScheduler): state_dict['after_scheduler_type'] = type(state_dict['after_scheduler']).__name__ state_dict['after_scheduler_dict'] = state_dict['after_scheduler'].state_dict() del state_dict['after_scheduler'] else: raise NotImplementedError() return state_dict def get_lr(self): if self.last_epoch >= self.warmup_epochs: if not self.finished: self.after_scheduler.base_lrs = self.base_lrs self.finished = True return self.after_scheduler.get_lr() return [(self.last_epoch + 1) / self.warmup_epochs * lr for lr in self.base_lrs] def step(self, epoch=None): if self.finished: if epoch is None: self.after_scheduler.step(None) self._last_lr = self.after_scheduler.get_last_lr() else: self.after_scheduler.step(epoch - self.warmup_epochs) self._last_lr = self.after_scheduler.get_last_lr() else: return super().step(epoch) class WarmupDelayerScheduler(_LRScheduler): """Starts with a linear warmup lr schedule until it reaches N epochs and a flat lr schedule until it reaches M epochs then applies the specific scheduler (For example: ReduceLROnPlateau). Args: optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. warmup_epochs (int): Number of epochs to linearly warmup lr until starting applying the scheduler. delay_epochs (int): Number of epochs to keep the initial lr until starting applying the scheduler. after_scheduler (:class:`torch.optim.lr_scheduler`): After target_epoch, use this scheduler. last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1, the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr. """ def __init__(self, optimizer, warmup_epochs, delay_epochs, after_scheduler, last_epoch=-1): if delay_epochs < 0: raise ValueError(f'delay_epochs must >= 0, got {delay_epochs}') if warmup_epochs < 0: raise ValueError(f'warmup_epochs must >= 0, got {warmup_epochs}') self.warmup_epochs = warmup_epochs self.delay_epochs = delay_epochs self.after_scheduler = after_scheduler self.finished = False super().__init__(optimizer, last_epoch) def state_dict(self): state_dict = {key: value for key, value in self.__dict__.items() if key not in 'optimizer'} if isinstance(state_dict['after_scheduler'], _LRScheduler): state_dict['after_scheduler_type'] = type(state_dict['after_scheduler']).__name__ state_dict['after_scheduler_dict'] = state_dict['after_scheduler'].state_dict() del state_dict['after_scheduler'] else: raise NotImplementedError() return state_dict def get_lr(self): if self.last_epoch >= self.warmup_epochs + self.delay_epochs: if not self.finished: self.after_scheduler.base_lrs = self.base_lrs # reset lr to base_lr for group, base_lr in zip(self.optimizer.param_groups, self.base_lrs): group['lr'] = base_lr self.finished = True with _enable_get_lr_call(self.after_scheduler): return self.after_scheduler.get_lr() elif self.last_epoch >= self.warmup_epochs: return self.base_lrs return [(self.last_epoch + 1) / self.warmup_epochs * lr for lr in self.base_lrs] def step(self, epoch=None): if self.finished: if epoch is None: self.after_scheduler.step(None) self._last_lr = self.after_scheduler.get_last_lr() else: self.after_scheduler.step(epoch - self.warmup_epochs) self._last_lr = self.after_scheduler.get_last_lr() else: return super().step(epoch)
from torch.optim.lr_scheduler import LambdaLR as _LambdaLR from torch.optim.lr_scheduler import MultiplicativeLR as _MultiplicativeLR from torch.optim.lr_scheduler import StepLR as _StepLR from torch.optim.lr_scheduler import ExponentialLR as _ExponentialLR from colossalai.registry import LR_SCHEDULERS @LR_SCHEDULERS.register_module class LambdaLR(_LambdaLR): """Sets the learning rate of each parameter group to the initial lr times a given function. When last_epoch=-1, sets initial lr as lr. Args: optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. total_steps (int): Number of total training steps. lr_lambda (Union[``function``, ``list[function]``]): A function which computes a multiplicative factor given an integer parameter epoch, or a list of such functions, one for each group in optimizer.param_groups, defaults to None. last_epoch (int, optional): The index of last epoch, defaults to -1. """ def __init__(self, optimizer, total_steps, lr_lambda=None, last_epoch: int = -1) -> None: super().__init__(optimizer, lr_lambda, last_epoch=last_epoch) @LR_SCHEDULERS.register_module class MultiplicativeLR(_MultiplicativeLR): """Multiply the learning rate of each parameter group by the factor given in the specified function. When last_epoch=-1, sets initial lr as lr. Args: optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. total_steps (int): Number of total training steps. lr_lambda (Union[``function``, ``list[function]``]): A function which computes a multiplicative factor given an integer parameter epoch, or a list of such functions, one for each group in optimizer.param_groups, defaults to None. last_epoch (int, optional): The index of last epoch, defaults to -1. """ def __init__(self, optimizer, total_steps, lr_lambda=None, last_epoch: int = -1) -> None: super().__init__(optimizer, lr_lambda, last_epoch=last_epoch) @LR_SCHEDULERS.register_module class StepLR(_StepLR): """Decays the learning rate of each parameter group by gamma every step_size epochs. Notice that such decay can happen simultaneously with other changes to the learning rate from outside this scheduler. When last_epoch=-1, sets initial lr as lr. Args: optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. total_steps (int): Number of total training steps. step_size (int, optional): Period of learning rate decay, defaults to 1. gamma (float, optional): Multiplicative factor of learning rate decay, defaults to 0.1. last_epoch (int, optional): The index of last epoch, defaults to -1. """ def __init__(self, optimizer, total_steps, step_size: int = 1, gamma: float = 0.1, last_epoch: int = -1) -> None: super().__init__(optimizer, step_size, gamma=gamma, last_epoch=last_epoch) @LR_SCHEDULERS.register_module class ExponentialLR(_ExponentialLR): """Decays the learning rate of each parameter group by gamma every epoch. When last_epoch=-1, sets initial lr as lr Args: optimizer (Union[:class:`torch.optim.Optimizer`, :class:`colossalai.nn.optimizer`]): Wrapped optimizer. total_steps (int): Number of total training steps. gamma (float, optional): Multiplicative factor of learning rate decay, defaults to 1.0. last_epoch (int, optional): The index of last epoch, defaults to -1. """ def __init__(self, optimizer, total_steps, gamma: float = 1.0, last_epoch: int = -1) -> None: super().__init__(optimizer, gamma, last_epoch=last_epoch)
from typing import List, Optional import torch.nn.functional as F from colossalai.tensor.op_wrapper import colo_op_impl from colossalai.tensor import ColoTensor, distspec, ColoTensorSpec, ReplicaSpec from ._utils import GeneralTensor, convert_to_colo_tensor @colo_op_impl(F.layer_norm) def colo_layernorm( input_tensor: GeneralTensor, normalized_shape: List[int], weight: Optional[GeneralTensor] = None, bias: Optional[GeneralTensor] = None, eps: float = 1e-5, ): assert isinstance(weight, ColoTensor) input_tensor = convert_to_colo_tensor(input_tensor, weight.get_process_group()) bias = convert_to_colo_tensor(bias, weight.get_process_group()) input_tensor = input_tensor.redistribute(ReplicaSpec()) output = F.layer_norm(input_tensor, normalized_shape, weight=weight, bias=bias, eps=eps) output = ColoTensor.from_torch_tensor(tensor=output, spec=ColoTensorSpec(pg=input_tensor.get_process_group(), dist_attr=input_tensor.dist_spec)) return output
import torch.nn.functional as F from typing import Optional from colossalai.tensor.op_wrapper import colo_op_impl from colossalai.tensor import ComputePattern, ColoTensorSpec, ComputePattern, ComputeSpec, ColoTensor, ShardSpec, \ ReplicaSpec from ._utils import GeneralTensor, convert_to_colo_tensor, reduce_input def colo_embedding_1Dcol(input_tensor: ColoTensor, weight: ColoTensor, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: float = 2.0, scale_grad_by_freq: bool = False, sparse: bool = False) -> ColoTensor: # embedding_1Dcol split the weight(lookup table) to (num_embeddings, embedding_dim/P) # Gather splitted lookup table input_tensor = input_tensor.redistribute(ReplicaSpec()) output_parallel = F.embedding(input_tensor, weight, padding_idx=padding_idx, max_norm=max_norm, norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq, sparse=sparse) output_spec = ColoTensorSpec(weight.get_process_group(), ShardSpec([-1], [weight.get_tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) output = ColoTensor.from_torch_tensor(output_parallel, spec=output_spec) compute_spec = weight.compute_spec if compute_spec.output_replicate: return output.to_replicate() else: return output def colo_embedding_1Drow(input_tensor: ColoTensor, weight: ColoTensor, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: float = 2.0, scale_grad_by_freq: bool = False, sparse: bool = False) -> ColoTensor: # embedding_1Drow splits the weight(lookup table) to the shape, [num_embeddings/P, embedding_dim] # get the index of current segment and mask other segments with 0 # get complete input tensor through all-gather input_tensor = input_tensor.redistribute(ReplicaSpec()) # tensor_parallel_rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D) tensor_parallel_rank = weight.get_process_group().tp_local_rank() num_embeddings_per_partition = weight.size_local(0) vocab_start_index = tensor_parallel_rank * num_embeddings_per_partition vocab_end_index = vocab_start_index + num_embeddings_per_partition # build the mask. input_mask = (input_tensor < vocab_start_index) | (input_tensor >= vocab_end_index) # mask the input. # TODO(jzy) masked_input may be an activation managed by ColoTensor. masked_input = input_tensor - vocab_start_index masked_input[input_mask] = 0 partial_output = F.embedding(masked_input, weight, padding_idx=padding_idx, max_norm=max_norm, norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq, sparse=sparse) # Mask the output embedding. partial_output[input_mask, :] = 0. # Reduce across all the model parallel GPUs. output = reduce_input(partial_output, weight.get_process_group()) output = ColoTensor.from_torch_tensor(output, spec=ColoTensorSpec(weight.get_process_group(), ReplicaSpec())) return output def colo_embedding_1d(mode: str, input_tensor: ColoTensor, weight: ColoTensor, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: float = 2.0, scale_grad_by_freq: bool = False, sparse: bool = False) -> ColoTensor: assert mode in ('row', 'col') funcs = {'row': colo_embedding_1Drow, 'col': colo_embedding_1Dcol} return funcs[mode](input_tensor, weight, padding_idx=padding_idx, max_norm=max_norm, norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq, sparse=sparse) @colo_op_impl(F.embedding) def colo_embedding(input_tensor: GeneralTensor, weight: GeneralTensor, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: float = 2.0, scale_grad_by_freq: bool = False, sparse: bool = False): """Handles ``__torch_function__`` dispatch for ``torch.nn.functional.embedding``. This method looks up an embedding table. """ assert isinstance(weight, ColoTensor) input_tensor = convert_to_colo_tensor(input_tensor, weight.get_process_group()) if not weight.has_compute_spec(): # No Model Parallel Applied assert weight.is_replicate(), 'Invalid weight spec for native embedding op' return ColoTensor.from_torch_tensor(tensor=F.embedding(input_tensor, weight, padding_idx=padding_idx, max_norm=max_norm, norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq, sparse=sparse), spec=ColoTensorSpec(weight.get_process_group())) elif weight.has_compute_pattern(ComputePattern.TP1D): # Single Model Parallel Applied if weight.is_shard_1drow(): mode = 'row' elif weight.is_shard_1dcol(): mode = 'col' else: raise NotImplementedError return colo_embedding_1d(mode, input_tensor, weight, padding_idx=padding_idx, max_norm=max_norm, norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq, sparse=sparse) else: raise NotImplementedError
from copy import deepcopy from typing import Optional import torch.nn.functional as F from colossalai.tensor import ColoTensor, ColoTensorSpec, ComputePattern, ComputeSpec, ReplicaSpec, ShardSpec from colossalai.tensor.op_wrapper import colo_op_impl from colossalai.tensor.sharding_spec import ShardingSpec from ._utils import GeneralTensor, convert_to_colo_tensor, reduce_grad, reduce_input def colo_linear_1drow(input_tensor: ColoTensor, weight: ColoTensor, bias: Optional[ColoTensor]) -> 'ColoTensor': # Input:S[1] x Weight:S[0] = Output:P # All-Reduce(Output) + bias = res # Input:S[1] pg = weight.get_process_group() input_tensor = input_tensor.redistribute(ShardSpec([-1], [weight.get_tp_world_size()]), pg) # Output:P partial_output = F.linear(input_tensor, weight) # Reduce(Output) output = reduce_input(partial_output, pg) # Bias if bias is not None: assert not bias.has_compute_spec(), 'Invalid bias spec for 1Drow Linear op' output = output + bias output = ColoTensor.from_torch_tensor(output, spec=ColoTensorSpec(pg, ReplicaSpec())) return output def colo_linear_1dcol(input_tensor: ColoTensor, weight: ColoTensor, bias: Optional[ColoTensor]) -> 'ColoTensor': # Input:B x Weight:S[1] + Bias:S[1] = Output:S[1] # All-Gather(Output) # Input:B compute_spec = weight.compute_spec input_tensor = input_tensor.redistribute(ReplicaSpec()) input_parallel = reduce_grad(input_tensor, weight.get_process_group()) output_parallel = F.linear(input_parallel, weight, bias) output = ColoTensor.from_torch_tensor(output_parallel, spec=ColoTensorSpec(weight.get_process_group(), ShardSpec([-1], [weight.get_tp_world_size()]), ComputeSpec(ComputePattern.TP1D))) if compute_spec.output_replicate: return output.to_replicate() else: return output def colo_linear_1d(mode: str, input_tensor: ColoTensor, weight: ColoTensor, bias: Optional[ColoTensor]) -> 'ColoTensor': assert mode in ('row', 'col') funcs = {'row': colo_linear_1drow, 'col': colo_linear_1dcol} return funcs[mode](input_tensor, weight, bias) # @register_colo_graph(input_pos=[1], param_pos=[2, 3]) def colo_linear_imp(input_tensor: GeneralTensor, weight: GeneralTensor, bias: Optional[GeneralTensor] = None) -> 'ColoTensor': """Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``. This method computes a linear. """ assert isinstance(weight, ColoTensor) pg = weight.get_process_group() assert pg input_tensor = convert_to_colo_tensor(input_tensor, pg) bias = convert_to_colo_tensor(bias, pg) # input_tensor, weight, bias = tuple(map(convert_to_colo_tensor, (input_tensor, weight, bias))) # Add communication logic before and after linear call. ret_tensor = None if not weight.has_compute_spec(): # No Model Parallel Applied assert weight.is_replicate(), 'Invalid weight spec for native Linear op' assert bias is None or bias.is_replicate(), 'Invalid bias spec for native Linear op' ret_tensor = ColoTensor.from_torch_tensor(F.linear(input_tensor, weight, bias), spec=ColoTensorSpec(pg)) elif weight.has_compute_pattern(ComputePattern.TP1D): # Single Model Parallel Applied if weight.is_shard_1dcol() and (bias is None or bias.is_replicate()): mode = 'row' elif weight.is_shard_1drow() and (bias is None or bias.is_shard_1drow() or bias.is_shard_1dcol()): mode = 'col' else: raise RuntimeError(f"the weight or bias tensor spec is not valid, weight {weight}, bias {bias}") ret_tensor = colo_linear_1d(mode, input_tensor, weight, bias) else: raise NotImplementedError return ret_tensor def _new_colo_linear_imp(input_tensor: GeneralTensor, weight: GeneralTensor, bias: Optional[GeneralTensor] = None) -> 'ColoTensor': """ A tentative function to compute the distributed linear layer with the latest sharding spec. This function is subject to future change as the current sharding API is not stable. """ # get mesh info input_sharding_seq = input_tensor.sharding_spec.sharding_sequence weight_sharding_seq = weight.sharding_spec.sharding_sequence if bias is not None: bias_sharding_seq = bias.sharding_spec.sharding_sequence device_mesh = weight.sharding_spec.device_mesh pg_axis0 = weight.pg_axis0 pg_axis1 = weight.pg_axis1 # the last dim of input should have the same spec as the first dim of weight # the weight is transposed, so we look at the second dimension assert input_sharding_seq[-1] == weight_sharding_seq[1] if bias is not None: assert bias_sharding_seq[0] == weight_sharding_seq[0] # compute the output sharding sequence # as weight is transposed, so we look at the first dimension output_shard_seq = input_sharding_seq[:-1] + weight_sharding_seq[:1] output_shard_seq = deepcopy(output_shard_seq) # TODO: add reduce grad logic # handle column and row parallel linear # by reusing the implementation above out = F.linear(input_tensor, weight) # run all reduce if necessary last_dim_spec = input_sharding_seq[-1] if last_dim_spec.is_replica: pass elif last_dim_spec.shard_list is not None: for dim in last_dim_spec.shard_list: if dim == 0: reduce_input(out, pg_axis0) elif dim == 1: reduce_input(out, pg_axis1) else: raise RuntimeError("Found invalid sharding axis {dim}, only 0 or 1 is expected") # add bias if bias is not None: out += bias # convert shard seq to partition dict output_partition_dict = {} for index, dim_spec in enumerate(output_shard_seq): if not dim_spec.is_replica: if index not in output_partition_dict: output_partition_dict[index] = [] output_partition_dict[index].extend(dim_spec.shard_list) entire_shape = out.shape output_sharding_spec = ShardingSpec(device_mesh, entire_shape, output_partition_dict) ret_tensor = ColoTensor.from_torch_tensor(out) setattr(ret_tensor, 'sharding_spec', output_sharding_spec) return ret_tensor def _has_sharding_spec(tensor): """ A tentative function to check whether the tensor is using the new sharding spec API. We assume that the sharding spec object is set as the attribute `sharding_spec` on a tensor. """ return hasattr(tensor, 'sharding_spec') @colo_op_impl(F.linear) def colo_linear(input: GeneralTensor, weight: GeneralTensor, bias: Optional[GeneralTensor] = None) -> 'ColoTensor': if _has_sharding_spec(weight): return _new_colo_linear_imp(input, weight, bias) else: return colo_linear_imp(input, weight, bias)
from .addmm import colo_addmm from .batch_norm import colo_batch_norm from .element_wise import * from .embedding import colo_embedding from .embedding_bag import colo_embedding_bag from .layernorm import colo_layernorm from .linear import colo_linear from .loss import colo_cross_entropy from .view import colo_view
import torch.nn.functional as F from typing import Optional from torch import Tensor from colossalai.tensor.op_wrapper import colo_op_impl from colossalai.tensor import ComputePattern, ComputePattern, ComputeSpec, ColoTensor, distspec, ColoTensorSpec, \ ShardSpec, ReplicaSpec from ._utils import GeneralTensor, convert_to_colo_tensor def colo_embedding_bag_1Dcol(input_tensor: ColoTensor, weight: ColoTensor, offsets: Optional[Tensor] = None, max_norm: Optional[float] = None, norm_type: float = 2, scale_grad_by_freq: bool = False, mode: str = "mean", sparse: bool = False, per_sample_weights: Optional[Tensor] = None, include_last_offset: bool = False, padding_idx: Optional[int] = None) -> ColoTensor: # embedding_bag_1Dcol split the weight(lookup table) to (num_embeddings, embedding_dim/P) # Gather splitted lookup table pg = weight.get_process_group() input_tensor = input_tensor.redistribute(ReplicaSpec()) output_parallel = F.embedding_bag(input_tensor, weight, offsets=offsets, max_norm=max_norm, norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq, mode=mode, sparse=sparse, per_sample_weights=per_sample_weights, include_last_offset=include_last_offset, padding_idx=padding_idx) output_spec = ColoTensorSpec(pg, ShardSpec([-1], [weight.get_tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) output = ColoTensor.from_torch_tensor(output_parallel, spec=output_spec) if weight.compute_spec.output_replicate: return output.to_replicate() else: return output def colo_embedding_bag_1d(tp_mode: str, input_tensor: ColoTensor, weight: ColoTensor, offsets: Optional[Tensor] = None, max_norm: Optional[float] = None, norm_type: float = 2, scale_grad_by_freq: bool = False, mode: str = "mean", sparse: bool = False, per_sample_weights: Optional[Tensor] = None, include_last_offset: bool = False, padding_idx: Optional[int] = None) -> ColoTensor: assert tp_mode in ('col',) funcs = {'col': colo_embedding_bag_1Dcol} return funcs[tp_mode](input_tensor, weight, offsets=offsets, max_norm=max_norm, norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq, mode=mode, sparse=sparse, per_sample_weights=per_sample_weights, include_last_offset=include_last_offset, padding_idx=padding_idx) @colo_op_impl(F.embedding_bag) def colo_embedding_bag(input_tensor: GeneralTensor, weight: GeneralTensor, offsets: Optional[Tensor] = None, max_norm: Optional[float] = None, norm_type: float = 2, scale_grad_by_freq: bool = False, mode: str = "mean", sparse: bool = False, per_sample_weights: Optional[Tensor] = None, include_last_offset: bool = False, padding_idx: Optional[int] = None): """Handles ``__torch_function__`` dispatch for ``torch.nn.functional.embedding_bag``. This method looks up an embedding table. """ assert isinstance(weight, ColoTensor) input_tensor = convert_to_colo_tensor(input_tensor, weight.get_process_group()) # Handle differen parallel actions. if not weight.has_compute_spec(): # No Model Parallel Applied assert weight.is_replicate(), 'Invalid weight spec for native embedding op' return ColoTensor.from_torch_tensor(tensor=F.embedding_bag(input_tensor, weight, offsets=offsets, max_norm=max_norm, norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq, mode=mode, sparse=sparse, per_sample_weights=per_sample_weights, include_last_offset=include_last_offset, padding_idx=padding_idx), spec=ColoTensorSpec(weight.get_process_group())) elif weight.has_compute_pattern(ComputePattern.TP1D): # Single Model Parallel Applied if weight.is_shard_1dcol(): tp_mode = 'col' else: raise NotImplementedError return colo_embedding_bag_1d(tp_mode, input_tensor, weight, offsets=offsets, max_norm=max_norm, norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq, mode=mode, sparse=sparse, per_sample_weights=per_sample_weights, include_last_offset=include_last_offset, padding_idx=padding_idx) else: raise NotImplementedError
import torch import torch.nn.functional as F from torch import Tensor from colossalai.tensor import ColoTensor, ColoTensorSpec from colossalai.tensor.op_wrapper import colo_op_impl from ._utils import GeneralTensor, convert_to_colo_tensor def register_elementwise_op(op): @colo_op_impl(op) def elementwise_op(input_tensor: GeneralTensor, *args, **kwargs): """ Handles ``__torch_function__`` dispatch for the elementwise op such as ``torch.nn.functional.gelu`` or ``torch.nn.functional.relu``. This method computes on either a normal tensor or a sharded tensor. """ if 'inplace' in kwargs: # TODO(jiaruifang) inplace will cause bugs input_tensor = input_tensor.clone() return op(input_tensor, *args, **kwargs) else: output = op(input_tensor, *args, **kwargs) # return output if isinstance(input_tensor, ColoTensor): if isinstance(output, str): return output if not isinstance(output, torch.Tensor): raise NotImplementedError return ColoTensor.from_torch_tensor(output, spec=ColoTensorSpec(input_tensor.get_process_group(), dist_attr=input_tensor.dist_spec)) # @colo_op_impl(torch.relu_) # def elementwise_op(input_tensor): # torch.relu_(input_tensor.data) # return input_tensor # @colo_op_impl(Tensor.add_) # def elementwise_op(input_tensor: ColoTensor, *args, **kwargs): # input_tensor = input_tensor.data.add_(*args, **kwargs) # return input_tensor # Tensor op register_elementwise_op(Tensor.abs) register_elementwise_op(Tensor.absolute) register_elementwise_op(Tensor.acos) register_elementwise_op(Tensor.arccos) register_elementwise_op(Tensor.angle) register_elementwise_op(Tensor.asin) register_elementwise_op(Tensor.arcsin) register_elementwise_op(Tensor.atan) register_elementwise_op(Tensor.arctan) register_elementwise_op(Tensor.all) register_elementwise_op(Tensor.any) register_elementwise_op(Tensor.bernoulli) register_elementwise_op(Tensor.bfloat16) register_elementwise_op(Tensor.bitwise_not) register_elementwise_op(Tensor.bool) register_elementwise_op(Tensor.byte) register_elementwise_op(Tensor.ceil) register_elementwise_op(Tensor.char) register_elementwise_op(Tensor.clamp) register_elementwise_op(Tensor.clamp_max) register_elementwise_op(Tensor.clamp_min) register_elementwise_op(Tensor.clip) register_elementwise_op(Tensor.clone) register_elementwise_op(Tensor.contiguous) register_elementwise_op(Tensor.copysign) register_elementwise_op(Tensor.cos) register_elementwise_op(Tensor.cosh) register_elementwise_op(Tensor.acosh) register_elementwise_op(Tensor.arccosh) register_elementwise_op(Tensor.cpu) register_elementwise_op(Tensor.cuda) register_elementwise_op(Tensor.deg2rad) register_elementwise_op(Tensor.detach) register_elementwise_op(Tensor.digamma) register_elementwise_op(Tensor.double) register_elementwise_op(Tensor.erf) register_elementwise_op(Tensor.erfc) register_elementwise_op(Tensor.erfinv) register_elementwise_op(Tensor.exp) register_elementwise_op(Tensor.expm1) register_elementwise_op(Tensor.fix) register_elementwise_op(Tensor.trunc) register_elementwise_op(Tensor.float) register_elementwise_op(Tensor.float_power) register_elementwise_op(Tensor.floor) register_elementwise_op(Tensor.frac) register_elementwise_op(Tensor.half) register_elementwise_op(Tensor.hardshrink) register_elementwise_op(Tensor.heaviside) register_elementwise_op(Tensor.i0) register_elementwise_op(Tensor.int) register_elementwise_op(Tensor.isfinite) register_elementwise_op(Tensor.isinf) register_elementwise_op(Tensor.isposinf) register_elementwise_op(Tensor.isneginf) register_elementwise_op(Tensor.isnan) register_elementwise_op(Tensor.lgamma) register_elementwise_op(Tensor.log) register_elementwise_op(Tensor.log10) register_elementwise_op(Tensor.log1p) register_elementwise_op(Tensor.log2) register_elementwise_op(Tensor.logical_not) register_elementwise_op(Tensor.logit) register_elementwise_op(Tensor.long) register_elementwise_op(Tensor.nan_to_num) register_elementwise_op(Tensor.neg) register_elementwise_op(Tensor.negative) register_elementwise_op(Tensor.positive) register_elementwise_op(Tensor.pow) register_elementwise_op(Tensor.rad2deg) register_elementwise_op(Tensor.reciprocal) register_elementwise_op(Tensor.round) register_elementwise_op(Tensor.rsqrt) register_elementwise_op(Tensor.short) register_elementwise_op(Tensor.sigmoid) register_elementwise_op(Tensor.sign) register_elementwise_op(Tensor.signbit) register_elementwise_op(Tensor.sgn) register_elementwise_op(Tensor.sin) register_elementwise_op(Tensor.sinc) register_elementwise_op(Tensor.sinh) register_elementwise_op(Tensor.asinh) register_elementwise_op(Tensor.arcsinh) register_elementwise_op(Tensor.sqrt) register_elementwise_op(Tensor.square) register_elementwise_op(Tensor.to) register_elementwise_op(Tensor.tan) register_elementwise_op(Tensor.tanh) register_elementwise_op(Tensor.atanh) register_elementwise_op(Tensor.arctanh) register_elementwise_op(Tensor.type) register_elementwise_op(Tensor.type_as) # torch OP register_elementwise_op(torch.abs) register_elementwise_op(torch.absolute) register_elementwise_op(torch.acos) register_elementwise_op(torch.arccos) register_elementwise_op(torch.angle) register_elementwise_op(torch.asin) register_elementwise_op(torch.arcsin) register_elementwise_op(torch.atan) register_elementwise_op(torch.arctan) register_elementwise_op(torch.all) register_elementwise_op(torch.any) register_elementwise_op(torch.bernoulli) register_elementwise_op(torch.bitwise_not) register_elementwise_op(torch.ceil) register_elementwise_op(torch.clamp) register_elementwise_op(torch.clamp_max) register_elementwise_op(torch.clamp_min) register_elementwise_op(torch.clip) register_elementwise_op(torch.clone) register_elementwise_op(torch.copysign) register_elementwise_op(torch.cos) register_elementwise_op(torch.cosh) register_elementwise_op(torch.acosh) register_elementwise_op(torch.arccosh) register_elementwise_op(torch.deg2rad) register_elementwise_op(torch.digamma) register_elementwise_op(torch.erf) register_elementwise_op(torch.erfc) register_elementwise_op(torch.erfinv) register_elementwise_op(torch.exp) register_elementwise_op(torch.expm1) register_elementwise_op(torch.fix) register_elementwise_op(torch.trunc) register_elementwise_op(torch.float_power) register_elementwise_op(torch.floor) register_elementwise_op(torch.frac) register_elementwise_op(torch.hardshrink) register_elementwise_op(torch.heaviside) register_elementwise_op(torch.i0) register_elementwise_op(torch.isfinite) register_elementwise_op(torch.isinf) register_elementwise_op(torch.isposinf) register_elementwise_op(torch.isneginf) register_elementwise_op(torch.isnan) register_elementwise_op(torch.lgamma) register_elementwise_op(torch.log) register_elementwise_op(torch.log10) register_elementwise_op(torch.log1p) register_elementwise_op(torch.log2) register_elementwise_op(torch.logical_not) register_elementwise_op(torch.logit) register_elementwise_op(torch.nan_to_num) register_elementwise_op(torch.neg) register_elementwise_op(torch.negative) register_elementwise_op(torch.positive) register_elementwise_op(torch.pow) register_elementwise_op(torch.rad2deg) register_elementwise_op(torch.reciprocal) register_elementwise_op(torch.round) register_elementwise_op(torch.rsqrt) register_elementwise_op(torch.sigmoid) register_elementwise_op(torch.sign) register_elementwise_op(torch.signbit) register_elementwise_op(torch.sgn) register_elementwise_op(torch.sin) register_elementwise_op(torch.sinc) register_elementwise_op(torch.sinh) register_elementwise_op(torch.asinh) register_elementwise_op(torch.arcsinh) register_elementwise_op(torch.sqrt) register_elementwise_op(torch.square) register_elementwise_op(torch.tan) register_elementwise_op(torch.tanh) register_elementwise_op(torch.atanh) register_elementwise_op(torch.arctanh) register_elementwise_op(torch.zeros_like) # nn.functional OP register_elementwise_op(F.threshold) register_elementwise_op(F.relu) register_elementwise_op(F.hardtanh) register_elementwise_op(F.hardswish) register_elementwise_op(F.relu6) register_elementwise_op(F.elu) register_elementwise_op(F.selu) register_elementwise_op(F.celu) register_elementwise_op(F.leaky_relu) register_elementwise_op(F.prelu) register_elementwise_op(F.rrelu) register_elementwise_op(F.gelu) register_elementwise_op(F.logsigmoid) register_elementwise_op(F.hardshrink) register_elementwise_op(F.tanhshrink) register_elementwise_op(F.softsign) register_elementwise_op(F.softplus) register_elementwise_op(F.softmin) register_elementwise_op(F.softmax) register_elementwise_op(F.softshrink) register_elementwise_op(F.gumbel_softmax) register_elementwise_op(F.log_softmax) register_elementwise_op(F.tanh) register_elementwise_op(F.sigmoid) register_elementwise_op(F.hardsigmoid) register_elementwise_op(F.silu) register_elementwise_op(F.mish) # TODO(ver217): dropout handles seed register_elementwise_op(F.dropout) register_elementwise_op(F.alpha_dropout) register_elementwise_op(F.feature_alpha_dropout)
import torch import torch.nn.functional as F from typing import Optional from colossalai.tensor.op_wrapper import colo_op_impl from colossalai.tensor import ColoTensor, ColoTensorSpec from colossalai.nn.loss.loss_1d import VocabParallelCrossEntropyLoss1D from ._utils import GeneralTensor, convert_to_colo_tensor @colo_op_impl(F.cross_entropy) def colo_cross_entropy(input_tensor: GeneralTensor, target: GeneralTensor, weight: Optional[GeneralTensor] = None, size_average: Optional[bool] = None, ignore_index: int = -100, reduce: Optional[bool] = None, reduction: str = "mean", label_smoothing: float = 0.0): assert isinstance(weight, ColoTensor) or isinstance(target, ColoTensor) or isinstance(input_tensor, ColoTensor) pg = input_tensor.get_process_group() if isinstance(input_tensor, ColoTensor) else isinstance(target, ColoTensor) weight = convert_to_colo_tensor(weight, pg) target = convert_to_colo_tensor(target, pg) input_tensor = convert_to_colo_tensor(input_tensor, pg) if input_tensor.is_replicate(): # Input is gathered assert target.is_replicate() and (weight is None or weight.is_replicate()), \ "Target tensor and weight tensor both should be complete" output = F.cross_entropy(input_tensor, target, weight=weight, size_average=size_average, ignore_index=ignore_index, reduce=reduce, reduction=reduction, label_smoothing=label_smoothing) return ColoTensor.from_torch_tensor(output, ColoTensorSpec(pg)) elif input_tensor.has_compute_spec(): # Single Model Parallel Applied if input_tensor.is_shard_1dcol(): assert weight is None, "Current TP cross entropy loss function doesn't support passing weight tensor in" assert target.is_replicate(), "Target tensor should be complete in TP cross entropy loss function" output = VocabParallelCrossEntropyLoss1D()(input_tensor, target, process_group=input_tensor.process_group.tp_process_group()) return ColoTensor.from_torch_tensor(output, ColoTensorSpec(pg)) else: raise NotImplementedError else: raise NotImplementedError
import math import torch from colossalai.tensor.op_wrapper import colo_op_impl from colossalai.tensor import ColoTensor, ColoTensorSpec, ReplicaSpec from typing import Optional, Union def _all_int(my_iter): return all(isinstance(i, int) for i in my_iter) def _get_valid_shape(shape): if isinstance(shape, list): if _all_int(shape): return tuple(shape) else: raise RuntimeError("expects type(int) but finds an other type") elif isinstance(shape, tuple): if _all_int(shape): return shape else: return _get_valid_shape(shape[0]) else: raise RuntimeError("expects an iterable array but finds '{}'".format(type(shape))) def _shape_infer(org_sp, tgt_sp): cnt = 0 pos = 0 for idx, dim in enumerate(tgt_sp): if dim < -1: raise RuntimeError("invalid shape dimension {}".format(dim)) elif dim == -1: cnt += 1 pos = idx if cnt > 1: raise RuntimeError("only one dimension can be inferred") org_prod = math.prod(org_sp) tgt_prod = math.prod(tgt_sp) if cnt == 0: if org_prod != tgt_prod: raise RuntimeError("shape '{}' is invalid for input of size {}".format(tgt_sp, org_prod)) else: return tgt_sp elif org_prod % tgt_prod != 0: raise RuntimeError("shape '{}' is invalid for input of size {}".format(tgt_sp, org_prod)) infer_dim = -(org_prod // tgt_prod) return tgt_sp[: pos] + (infer_dim,) + tgt_sp[pos + 1:] @colo_op_impl(torch.Tensor.view) def colo_view(self: ColoTensor, *shape) -> 'ColoTensor': """Handles ``__torch_function__`` dispatch for ``torch.Tensor.view``. Changes the shape of the current tensor. """ assert isinstance(self, ColoTensor) # apply original `view` function for replicated colo tensors if self.is_replicate(): return self.view(*shape) cur_sp = self.size() org_sp = self.size_global() # parse the passed arguments tgt_sp = _get_valid_shape(shape) # get the correct shape from inference inf_sp = _shape_infer(org_sp, tgt_sp) if self.is_shard_1drow() and org_sp[0] == inf_sp[0]: new_shape = (cur_sp[0],) + tgt_sp[1:] res = self.view(*new_shape) elif self.is_shard_1dcol() and org_sp[-1] == inf_sp[-1]: new_shape = tgt_sp[:-1] + (cur_sp[-1],) res = self.view(*new_shape) else: replicated_t = self.redistribute(dist_spec=ReplicaSpec()) return ColoTensor.from_torch_tensor( tensor=replicated_t.view(*shape), spec=ColoTensorSpec(self.get_process_group())) return ColoTensor.from_torch_tensor( tensor=res, spec=ColoTensorSpec( pg=self.get_process_group(), dist_attr=self.dist_spec)) @colo_op_impl(torch.Tensor.size) def colo_size(self: ColoTensor, dim: Optional[int] = None) -> Union[torch.Size, int]: size = self.size_global() if dim is None: return size else: return size[dim]
from typing import Optional import torch.nn.functional as F from colossalai.tensor import ColoTensor, ColoTensorSpec, ReplicaSpec from colossalai.tensor.op_wrapper import colo_op_impl from ._utils import GeneralTensor, convert_to_colo_tensor @colo_op_impl(F.batch_norm) def colo_batch_norm( input: GeneralTensor, running_mean: Optional[GeneralTensor], running_var: Optional[GeneralTensor], weight: Optional[GeneralTensor] = None, bias: Optional[GeneralTensor] = None, training: bool = False, momentum: float = 0.1, eps: float = 1e-5, ): assert isinstance(weight, ColoTensor) running_mean = running_mean.detach() running_var = running_var.detach() input = convert_to_colo_tensor(input, weight.get_process_group()) bias = convert_to_colo_tensor(bias, weight.get_process_group()) input = input.redistribute(ReplicaSpec()) bias = bias.redistribute(ReplicaSpec()) output = F.batch_norm(input, running_mean, running_var, weight, bias, training, momentum, eps) output = ColoTensor.from_torch_tensor(tensor=output, spec=ColoTensorSpec(pg=weight.get_process_group())) return output
import torch from typing import Union, Optional, List from colossalai.tensor import ColoTensor import torch import torch.distributed as dist from colossalai.global_variables import tensor_parallel_env as env from colossalai.nn.layer.utils import divide from colossalai.tensor import ProcessGroup, ColoTensorSpec GeneralTensor = Union[ColoTensor, torch.Tensor] Number = Union[int, float] def convert_to_colo_tensor(tensor: Optional[GeneralTensor], pg: ProcessGroup) -> Optional[ColoTensor]: if tensor is not None and not isinstance(tensor, ColoTensor): tensor = ColoTensor.from_torch_tensor(tensor, ColoTensorSpec(pg)) return tensor def set_parallel_input(input_parallel: bool): env.parallel_input_1d = input_parallel def get_parallel_input(): return env.parallel_input_1d def vocab_range_from_per_partition_vocab_size(per_partition_vocab_size, rank): index_f = rank * per_partition_vocab_size index_l = index_f + per_partition_vocab_size return index_f, index_l def vocab_range_from_global_vocab_size(global_vocab_size, rank, world_size): per_partition_vocab_size = divide(global_vocab_size, world_size) return vocab_range_from_per_partition_vocab_size(per_partition_vocab_size, rank) def _reduce(input_, pg: ProcessGroup): # skip if only one rank involved if pg.tp_world_size() == 1: return input_ assert input_.device.type == 'cuda' group = pg.tp_process_group() dist.all_reduce(input_, group=group) return input_ def _split(input_, pg: ProcessGroup, dim=-1): # skip if only one rank involved world_size = pg.tp_world_size() if world_size == 1: return input_ # Split along last dimension. dim_size = input_.size(dim) assert dim_size % world_size == 0, \ f'The dimension to split ({dim_size}) is not a multiple of world size ({world_size}), ' \ f'cannot split tensor evenly' tensor_list = torch.split(input_, dim_size // world_size, dim=dim) rank = pg.tp_local_rank() output = tensor_list[rank].contiguous() return output def _gather(input_, pg: ProcessGroup, dim=-1): # skip if only one rank involved world_size = pg.tp_world_size() if world_size == 1: return input_ # all gather rank = pg.tp_local_rank() tensor_list = [torch.empty_like(input_) for _ in range(world_size)] tensor_list[rank] = input_ assert input_.device.type == 'cuda' group = pg.tp_process_group() torch.distributed.all_gather(tensor_list, input_, group=group) # concat output = torch.cat(tensor_list, dim=dim).contiguous() return output class _ReduceGrad(torch.autograd.Function): """ Pass the input to the model parallel region. Args: input_: input matrix. process_group: parallel mode. """ @staticmethod def symbolic(graph, input_): return input_ @staticmethod def forward(ctx, input_, process_group): ctx.mode = process_group return input_ @staticmethod def backward(ctx, grad_output): return _reduce(grad_output, ctx.mode), None class _ReduceInput(torch.autograd.Function): """ All-reduce the input from the model parallel region. Args: input_: input matrix. process_group: parallel mode. """ @staticmethod def symbolic(graph, input_): return _reduce(input_) @staticmethod def forward(ctx, input_, process_group): return _reduce(input_, process_group) @staticmethod def backward(ctx, grad_output): return grad_output, None class _SplitForwardGatherBackward(torch.autograd.Function): """ Split the input and keep only the corresponding chuck to the rank. Args: input_: input matrix. process_group: parallel mode. dim: dimension """ @staticmethod def symbolic(graph, input_): return _split(input_) @staticmethod def forward(ctx, input_, process_group, dim): ctx.mode = process_group ctx.dim = dim return _split(input_, process_group, dim) @staticmethod def backward(ctx, grad_output): return _gather(grad_output, ctx.mode, ctx.dim), None, None class _GatherForwardSplitBackward(torch.autograd.Function): """Gather the input from model parallel region and concatenate. Args: input_: input matrix. process_group: parallel mode. dim: dimension """ @staticmethod def symbolic(graph, input_): return _gather(input_) @staticmethod def forward(ctx, input_, process_group, dim): ctx.mode = process_group ctx.dim = dim return _gather(input_, process_group, dim) @staticmethod def backward(ctx, grad_output): return _split(grad_output, ctx.mode, ctx.dim), None, None def reduce_grad(input_, process_group): return _ReduceGrad.apply(input_, process_group) def reduce_input(input_, process_group): return _ReduceInput.apply(input_, process_group) def split_forward_gather_backward(input_, process_group, dim): return _SplitForwardGatherBackward.apply(input_, process_group, dim) def gather_forward_split_backward(input_, process_group, dim): return _GatherForwardSplitBackward.apply(input_, process_group, dim) def _all_to_all(x: torch.Tensor, pg: ProcessGroup, scatter_dim: int, gather_dim: int) -> torch.Tensor: world_size = pg.tp_world_size() if world_size == 1: return x # TODO: enabling mpi backend to support CPU all_to_all assert x.device.type == 'cuda', f"Currently, the collective function dual_all_to_all only supports nccl backend" shapes = list(x.size()) shapes[scatter_dim] = shapes[scatter_dim] // world_size scatter_list = [each.contiguous() for each in torch.tensor_split(x, world_size, scatter_dim)] gather_list = [torch.empty(*shapes, dtype=x.dtype, device=x.device) for _ in range(world_size)] torch.distributed.all_to_all(gather_list, scatter_list, group=pg.tp_process_group()) return torch.cat(gather_list, dim=gather_dim).contiguous() class _DualAllToAll(torch.autograd.Function): @staticmethod def forward(ctx, x, pg, scatter_dim, gather_dim): ctx.scatter_dim = scatter_dim ctx.gather_dim = gather_dim ctx.pg = pg return _all_to_all(x, pg, scatter_dim, gather_dim) @staticmethod def backward(ctx, grad): return _all_to_all(grad, ctx.pg, ctx.gather_dim, ctx.scatter_dim), None, None, None def dual_all_to_all(x, pg, scatter_dim: int, gather_dim: int): return _DualAllToAll.apply(x, pg, scatter_dim, gather_dim) ### table wise embedding shard def _all_to_all_for_tablewise(x: torch.Tensor, pg: ProcessGroup, scatter_strides: List[int], gather_strides: List[int], forward=True) -> torch.Tensor: world_size = pg.tp_world_size() rank = pg.tp_local_rank() if world_size == 1: return x assert x.device.type == 'cuda', f"Currently, the collective function dual_all_to_all only supports nccl backend" if forward: scatter_list = list(x.split(scatter_strides, 0)) gather_list = [ torch.empty(scatter_strides[rank], gather_strides[i], dtype=x.dtype, device=x.device) for i in range(world_size) ] torch.distributed.all_to_all(gather_list, scatter_list, group=pg.tp_process_group()) return torch.cat(gather_list, 1).contiguous() else: # split on dim 1, lose contiguity scatter_list = [each.contiguous() for each in x.split(scatter_strides, 1)] gather_list = [ torch.empty(gather_strides[i], scatter_strides[rank], dtype=x.dtype, device=x.device) for i in range(world_size) ] torch.distributed.all_to_all(gather_list, scatter_list, group=pg.tp_process_group()) return torch.cat(gather_list, 0).contiguous() class _DualAllToAllForTablewise(torch.autograd.Function): @staticmethod def forward(ctx, x, pg, scatter_strides, gather_strides): ctx.pg = pg ctx.scatter_strides = scatter_strides ctx.gather_strides = gather_strides return _all_to_all_for_tablewise(x, pg, scatter_strides, gather_strides, forward=True) @staticmethod def backward(ctx, grad): return _all_to_all_for_tablewise(grad, ctx.pg, ctx.gather_strides, ctx.scatter_strides, forward=False), None, None, None def dual_all_to_all_tablewise(x, pg, scatter_strides, gather_strides): return _DualAllToAllForTablewise.apply(x, pg, scatter_strides, gather_strides)
import torch from colossalai.tensor.op_wrapper import colo_op_impl from colossalai.tensor import ComputePattern, ComputePattern, ComputeSpec, ColoTensor from colossalai.tensor import distspec, ColoTensorSpec, ShardSpec, ReplicaSpec from ._utils import GeneralTensor, Number, convert_to_colo_tensor from ._utils import reduce_input, reduce_grad def colo_addmm_1Drow(input_tensor: ColoTensor, mat1: ColoTensor, mat2: ColoTensor, beta: Number, alpha: Number) -> ColoTensor: # mat1:S[1] x mat2:S[0] = Output:P # beta * input + alpha * All-Reduce(Output) = res mat1 = mat1.redistribute(ShardSpec([-1], [mat2.get_tp_world_size()]), mat2.get_process_group()) # Output:P partial_output = torch.mm(mat1, mat2) # Reduce(Output) output = reduce_input(partial_output, mat2.get_process_group()) # input assert not input_tensor.has_compute_spec(), 'Invalid input spec for 1Drow addmm op' output = beta * input_tensor + alpha * output output = ColoTensor.from_torch_tensor(output, spec=ColoTensorSpec(input_tensor.get_process_group())) return output def colo_addmm_1Dcol(input_tensor: ColoTensor, mat1: ColoTensor, mat2: ColoTensor, beta: Number, alpha: Number) -> ColoTensor: # mat1:B x mat2:S[1] + input:S[1] = Output:S[1] compute_spec = mat2.compute_spec mat1 = mat1.redistribute(ReplicaSpec()) mat1 = reduce_grad(mat1, mat1.get_process_group()) output_parallel = torch.addmm(input_tensor, mat1, mat2, beta=beta, alpha=alpha) output_spec = ColoTensorSpec(input_tensor.get_process_group(), ShardSpec([-1], [mat2.get_tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) output = ColoTensor.from_torch_tensor(output_parallel, spec=output_spec) if compute_spec.output_replicate: return output.to_replicate() else: return output def colo_addmm_1d(mode: str, input_tensor: ColoTensor, mat1: ColoTensor, mat2: ColoTensor, beta: Number, alpha: Number) -> ColoTensor: assert mode in ('row', 'col') funcs = {'row': colo_addmm_1Drow, 'col': colo_addmm_1Dcol} return funcs[mode](input_tensor, mat1, mat2, beta, alpha) @colo_op_impl(torch.addmm) def colo_addmm(input_tensor: GeneralTensor, mat1: ColoTensor, mat2: ColoTensor, beta: Number = 1, alpha: Number = 1, **kargs) -> ColoTensor: """Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``. This method computes a linear. """ # At least one of the tensor should be ColoTensor assert isinstance(mat2, ColoTensor) input_tensor = convert_to_colo_tensor(input_tensor, mat2.get_process_group()) mat1 = convert_to_colo_tensor(mat1, mat2.get_process_group()) # Add communication logic before and after linear call. ret_tensor = None if not mat2.has_compute_spec(): # No Model Parallel Applied assert mat2.is_replicate(), 'Invalid mat2 spec for native addmm op' assert input_tensor.is_replicate(), 'Invalid input spec for native addmm op' ret_tensor = ColoTensor.from_torch_tensor( tensor=torch.addmm(input_tensor, mat1, mat2, beta=beta, alpha=alpha, **kargs), spec=ColoTensorSpec(mat2.get_process_group())) elif mat2.has_compute_pattern(ComputePattern.TP1D): # Single Model Parallel Applied if mat2.is_shard_1drow() and input_tensor.is_replicate(): mode = 'row' elif mat2.is_shard_1dcol() and (input_tensor.is_shard_1dcol() or input_tensor.is_shard_1drow()): mode = 'col' else: raise NotImplementedError ret_tensor = colo_addmm_1d(mode, input_tensor, mat1, mat2, beta, alpha) else: raise NotImplementedError return ret_tensor
#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch.nn as nn from colossalai.context import ParallelMode from colossalai.core import global_context as gpc from contextlib import contextmanager class ParallelLayer(nn.Module): global_state_dict: bool = True def __init__(self): super().__init__() self.data_parallel_rank = 0 if not gpc.is_initialized(ParallelMode.DATA) else gpc.get_local_rank( ParallelMode.DATA) self.data_parallel_size = 1 if not gpc.is_initialized(ParallelMode.DATA) else gpc.get_world_size( ParallelMode.DATA) self.tensor_parallel_rank = 0 if not gpc.is_initialized(ParallelMode.TENSOR) else gpc.get_local_rank( ParallelMode.TENSOR) self.tensor_parallel_size = 1 if not gpc.is_initialized(ParallelMode.TENSOR) else gpc.get_world_size( ParallelMode.TENSOR) self.pipeline_parallel_rank = 0 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_local_rank( ParallelMode.PIPELINE) self.pipeline_parallel_size = 1 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_world_size( ParallelMode.PIPELINE) def _load_from_global_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) def _save_to_global_state_dict(self, destination, prefix, keep_vars): return super()._save_to_state_dict(destination, prefix, keep_vars) def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): if self.global_state_dict: if gpc.get_local_rank(ParallelMode.TENSOR) != 0: missing_keys.clear() unexpected_keys.clear() return self._load_from_global_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) def _save_to_state_dict(self, destination, prefix, keep_vars): if self.global_state_dict: return self._save_to_global_state_dict(destination, prefix, keep_vars) return super()._save_to_state_dict(destination, prefix, keep_vars) @classmethod @contextmanager def use_local_state_dict(cls): try: cls.global_state_dict = False yield finally: cls.global_state_dict = True
from .colossalai_layer import * from .parallel_1d import * from .parallel_2d import * from .parallel_2p5d import * from .parallel_3d import * from .parallel_sequence import * from .moe import * from .utils import * from .vanilla import * from .wrapper import *
#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch from torch import distributed as dist from colossalai.communication import ring_forward from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.nn.layer.parallel_sequence._utils import _calc_incoming_device_range, _calc_current_device_range from colossalai.utils import get_current_device from torch.cuda.amp import custom_bwd, custom_fwd class RingQK(torch.autograd.Function): """ Calculate QK in a ring-exchange style """ @staticmethod @custom_fwd def forward(ctx, sub_q, sub_k, batch_size, num_attention_heads, sub_seq_length): # save tensor for backward ctx.save_for_backward(sub_q, sub_k) ctx.sub_seq_length = sub_seq_length # create local segment of attention score attention_score = torch.empty(batch_size * num_attention_heads, sub_seq_length, sub_seq_length * gpc.get_world_size(ParallelMode.SEQUENCE), dtype=sub_q.dtype, device=get_current_device()) # compute local QK^T part_a = torch.matmul(sub_q, sub_k.transpose(2, 1)) local_rank = gpc.get_local_rank(ParallelMode.SEQUENCE) local_world_size = gpc.get_world_size(ParallelMode.SEQUENCE) start_idx = local_rank * sub_seq_length end_idx = (local_rank + 1) * sub_seq_length attention_score[:, :, start_idx:end_idx] = part_a # compute QK^T in ring-all-reduce style for i in range(local_world_size - 1): sub_k = ring_forward(sub_k, ParallelMode.SEQUENCE) start_idx, end_idx = _calc_incoming_device_range(i, local_rank, local_world_size, sub_seq_length) part_a = torch.matmul(sub_q, sub_k.transpose(2, 1)) attention_score[:, :, start_idx:end_idx] = part_a return attention_score @staticmethod @custom_bwd def backward(ctx, grad_output): sub_q, sub_k, = ctx.saved_tensors local_rank = gpc.get_local_rank(ParallelMode.SEQUENCE) local_world_size = gpc.get_world_size(ParallelMode.SEQUENCE) # calculate gradient of sub_k grad_k = torch.matmul(grad_output.transpose(2, 1), sub_q) dist.all_reduce(grad_k, group=gpc.get_group(ParallelMode.SEQUENCE)) grad_k = grad_k[:, local_rank * ctx.sub_seq_length:(local_rank + 1) * ctx.sub_seq_length] grad_k /= local_world_size # calculate gradient for sub_q grad_q = torch.zeros_like( sub_q, dtype=sub_q.dtype, device=get_current_device(), ) # compute with local sub_k start_idx, end_idx = _calc_current_device_range(local_rank, ctx.sub_seq_length) grad_q += torch.matmul(grad_output[:, :, start_idx:end_idx], sub_k) # compute QK^T in ring-all-reduce style for i in range(local_world_size - 1): sub_k = ring_forward(sub_k, ParallelMode.SEQUENCE) start_idx, end_idx = _calc_incoming_device_range(i, local_rank, local_world_size, ctx.sub_seq_length) grad_q += torch.matmul(grad_output[:, :, start_idx:end_idx], sub_k) grad_q /= local_world_size return grad_q, grad_k, None, None, None class RingAV(torch.autograd.Function): """ Calculate AV in a ring-exchange style """ @staticmethod @custom_fwd def forward(ctx, attention_score, sub_v, batch_size, num_attention_heads, attention_head_size, sub_seq_length): local_rank = gpc.get_local_rank(ParallelMode.SEQUENCE) local_world_size = gpc.get_world_size(ParallelMode.SEQUENCE) local_start_idx, local_end_idx = _calc_current_device_range(local_rank, sub_seq_length) sub_attention_result = torch.zeros(batch_size * num_attention_heads, sub_seq_length, attention_head_size, device=get_current_device(), dtype=attention_score.dtype) # save tensors for backward ctx.save_for_backward(attention_score, sub_v) ctx.sub_seq_length = sub_seq_length # compute local AV part_av = torch.matmul(attention_score[:, :, local_start_idx:local_end_idx], sub_v) sub_attention_result += part_av # compute AV in ring - all - reduce style for i in range(local_world_size - 1): sub_v = ring_forward(sub_v, ParallelMode.SEQUENCE) start_idx, end_idx = _calc_incoming_device_range(i, local_rank, local_world_size, sub_seq_length) # compute QK^T part_av = torch.matmul(attention_score[:, :, start_idx:end_idx], sub_v) sub_attention_result += part_av return sub_attention_result @staticmethod @custom_bwd def backward(ctx, grad_output): local_rank = gpc.get_local_rank(ParallelMode.SEQUENCE) local_world_size = gpc.get_world_size(ParallelMode.SEQUENCE) local_start_idx, local_end_idx = _calc_current_device_range(local_rank, ctx.sub_seq_length) attention_scores, sub_v = ctx.saved_tensors # calculate gradient of v grad_v = torch.matmul(attention_scores.transpose(2, 1), grad_output) dist.all_reduce(grad_v, group=gpc.get_group(ParallelMode.SEQUENCE)) grad_v = grad_v[:, local_start_idx:local_end_idx] grad_v /= local_world_size # calculate gradient for attention score grad_attention_score = torch.zeros_like(attention_scores, dtype=grad_output.dtype, device=get_current_device()) # compute with local sub_k grad_attention_score[:, :, local_start_idx:local_end_idx] += torch.matmul(grad_output, sub_v.transpose(2, 1)) # compute QK^T in ring-all-reduce style for i in range(local_world_size - 1): sub_v = ring_forward(sub_v, ParallelMode.SEQUENCE) start_idx, end_idx = _calc_incoming_device_range(i, local_rank, local_world_size, ctx.sub_seq_length) # compute grad_q grad_attention_score[:, :, start_idx:end_idx] += torch.matmul(grad_output, sub_v.transpose(2, 1)) return grad_attention_score, grad_v, None, None, None, None
from ._operation import RingQK, RingAV from .layers import TransformerSelfAttentionRing __all__ = ['TransformerSelfAttentionRing', 'RingAV', 'RingQK']
#!/usr/bin/env python # -*- encoding: utf-8 -*- import math import colossalai import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import Parameter from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.nn.layer.parallel_sequence._operation import RingQK, RingAV from colossalai.registry import LAYERS from colossalai.kernel.cuda_native.scaled_softmax import AttnMaskType from colossalai.kernel import FusedScaleMaskSoftmax from colossalai.context import seed @LAYERS.register_module class TransformerSelfAttentionRing(nn.Module): """Parallel self-attention layer abstract class. Self-attention layer takes input with size [b, s, h] and returns output of the same size. Args: hidden_size (int): hidden size. num_attention_heads (int): number of attention heads. attention_dropout (float): dropout probability for attention layer. attention_mask_func (:class:`typing.Callable`): Mask function to be applied. layer_number (int): number of layers. """ def __init__(self, hidden_size, num_attention_heads, attention_dropout, attention_mask_func, layer_number, apply_query_key_layer_scaling: bool = False, convert_fp16_to_fp32_in_softmax: bool = False, attn_mask_type=AttnMaskType.padding, masked_softmax_fusion=True, fp16=False, bf16=False): super().__init__() self.convert_fp16_to_fp32_in_softmax = convert_fp16_to_fp32_in_softmax self.apply_query_key_layer_scaling = apply_query_key_layer_scaling self.attention_mask_func = attention_mask_func self.layer_number = layer_number self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.attn_mask_type = attn_mask_type assert self.layer_number > 0 self.attention_dropout = attention_dropout if self.apply_query_key_layer_scaling: self.convert_fp16_to_fp32_in_softmax = True assert self.hidden_size % self.num_attention_heads == 0, \ 'hidden size is not divisible by the number of attention heads' self.hidden_size_per_attention_head = self.hidden_size // num_attention_heads self.world_size = gpc.get_world_size(ParallelMode.SEQUENCE) # Strided linear layer. self.query_key_value = _Linear( hidden_size, 3 * self.hidden_size, ) self.coeff = None self.norm_factor = math.sqrt(self.hidden_size) if self.apply_query_key_layer_scaling: self.coeff = layer_number self.norm_factor *= self.coeff self.scale_mask_softmax = FusedScaleMaskSoftmax(fp16, bf16, self.attn_mask_type, masked_softmax_fusion, self.attention_mask_func, self.convert_fp16_to_fp32_in_softmax, self.coeff) self.attention_dropout = nn.Dropout(attention_dropout) # Output. self.dense = _Linear(hidden_size, hidden_size, bias=True, skip_bias_add=True) def forward(self, hidden_states, attention_mask): # hidden_states: [sub_seq_len, batch_size, hidden_size] # attention_mask: [batch_size, 1, sub_seq_len, seq_len] sub_seq_length, batch_size, hidden_size = hidden_states.size() # ===================== # Query, Key, and Value # ===================== # Attention heads shape change: # [sub_seq_len, batch_size, hidden_size] --> [sub_seq_len, batch_size, (3 * head_size * num_heads)] mixed_x_layer = self.query_key_value(hidden_states) # [sub_seq_len, batch_size, num_heads, 3 * head_size] --> 3 [sub_seq_len, batch_size, num_heads, head_size] new_tensor_shape = mixed_x_layer.size()[:-1] + (self.num_attention_heads, 3 * self.hidden_size_per_attention_head) mixed_x_layer = mixed_x_layer.view(*new_tensor_shape) # split into query, key and value last_dim = mixed_x_layer.dim() - 1 last_dim_value = mixed_x_layer.size(-1) assert last_dim_value % 3 == 0, 'the last dimension is not a multiple of 3, ' \ 'cannot be divided into query, key and value' partition_size = last_dim_value // 3 (query_layer, key_layer, value_layer) = torch.split(mixed_x_layer, partition_size, dim=last_dim) # attention scores: [batch_size, num_heads, sub_seq_len, seq_len] output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0) * self.world_size) # [sub_seq_len, batch_size, num_heads, head_size] -> [sub_seq_len, batch_size * num_heads, head_size] query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1) # [sub_seq_len, batch_size, num_heads, head_size] -> [sub_seq_len, batch_size * num_heads, head_size] key_layer = key_layer.view(key_layer.size(0), output_size[0] * output_size[1], -1) # attention_scores: [batch_size * num_heads, sub_seq_len, seq_len] attention_scores = RingQK.apply( query_layer.transpose(0, 1).contiguous(), # [batch_size * num_heads, sub_seq_len, head_size] key_layer.transpose(0, 1).contiguous(), # [batch_size * num_heads, sub_seq_len, head_size], batch_size, self.num_attention_heads, sub_seq_length) attention_scores /= self.norm_factor # change view to [batch_size, num_heads, sub_seq_len, seq_len] attention_scores = attention_scores.view(*output_size) # change shape to [batch_size, num_heads, sub_seq_len, seq_len] attention_probs = self.scale_mask_softmax(attention_scores, attention_mask) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. with seed(ParallelMode.TENSOR): attention_probs = self.attention_dropout(attention_probs) # context layer shape: [batch_size, num_heads, sub_seq_len, head_size] output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3)) # change view [sub_seq_len, batch_size * num_heads, head_size] value_layer = value_layer.contiguous().view(value_layer.size(0), output_size[0] * output_size[1], -1) # # change view [b * num_heads, sub_seq_len, seq_len] attention_probs = attention_probs.view( attention_probs.size(0) * attention_probs.size(1), attention_probs.size(2), attention_probs.size(3)) # matmul: [batch_size * num_heads, sub_seq_len, head_size] context_layer = RingAV.apply(attention_probs, value_layer.transpose(0, 1).contiguous(), batch_size, self.num_attention_heads, self.hidden_size_per_attention_head, sub_seq_length) # change view [batch_size, num_heads, sub_seq_len, head_size] context_layer = context_layer.view(*output_size) # [batch_size, num_heads, sub_seq_len, head_size] -> [sub_seq_len, batch_size, num_heads, head_size] context_layer = context_layer.permute(2, 0, 1, 3).contiguous() # [sub_seq_len, batch_size, num_heads, head_size] -> [sub_seq_len, batch_size, hidden_size] new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_attention_head * self.num_attention_heads,) context_layer = context_layer.view(*new_context_layer_shape) output, bias = self.dense(context_layer) return output, bias def __repr__(self): return f'TransformerSelfAttentionRing(apply_query_key_layer_scaling={self.apply_query_key_layer_scaling}, ' \ f'layer_number={self.layer_number}, hidden_size:{self.hidden_size}, attention_dropout={self.attention_dropout}, ' \ f'attn_mask_type={self.attn_mask_type}, num_attention_heads={self.num_attention_heads}, ' \ f'hidden_size_per_attention_head={self.hidden_size_per_attention_head}, coeff={self.coeff}, norm_factor={self.norm_factor}, ' \ f'convert_fp16_to_fp32_in_softmax={self.convert_fp16_to_fp32_in_softmax})' class _Linear(nn.Module): """Linear layer with column parallelism. The linear layer is defined as Y = XA + b. A is parallelized along its second dimension as A = [A_1, ..., A_p]. Arguments: input_size: first dimension of matrix A. output_size: second dimension of matrix A. bias: If true, add bias init_method: method to initialize weights. Note that bias is always set to zero. stride: For the strided linear layers. keep_master_weight_for_test: This was added for testing and should be set to False. It returns the master weights used for initialization. skip_bias_add: This was added to enable performance optimations where bias can be fused with other elementwise operations. we skip adding bias but instead return it. """ def __init__(self, input_size, output_size, bias=True, skip_bias_add=False): super(_Linear, self).__init__() # Keep input parameters self.input_size = input_size self.output_size = output_size self.skip_bias_add = skip_bias_add self.weight = Parameter(torch.empty( self.output_size, self.input_size, )) nn.init.xavier_normal_(self.weight) if bias: self.bias = Parameter(torch.empty(self.output_size)) # Always initialize bias to zero. with torch.no_grad(): self.bias.zero_() else: self.register_parameter('bias', None) def forward(self, input_): # Matrix multiply. bias = self.bias if not self.skip_bias_add else None output = F.linear(input_, self.weight, bias) if self.skip_bias_add: return output, self.bias else: return output def __repr__(self): return f'Linear(in_features={self.input_size}, out_features={self.output_size}, ' + \ f'bias={self.bias is not None}, skip_bias_add={self.skip_bias_add})'
#!/usr/bin/env python # -*- encoding: utf-8 -*- def _calc_incoming_device_range(i, rank, world_size, sub_seq_length): device_of_incoming_k = (rank - i - 1) % world_size start_idx = sub_seq_length * device_of_incoming_k end_idx = sub_seq_length * (device_of_incoming_k + 1) return start_idx, end_idx def _calc_current_device_range(rank, sub_seq_length): start_idx = sub_seq_length * rank end_idx = sub_seq_length * (rank + 1) return start_idx, end_idx
import torch.nn as nn import torch.distributed as dist from typing import List, Tuple, Union from colossalai.context import ParallelMode from colossalai.core import global_context as gpc class PipelineSharedModuleWrapper: def __init__(self, pipeline_ranks: Union[List[int], Tuple[int]]) -> None: assert len(pipeline_ranks) > 1, f'Expect len(pipeline_ranks) > 1, got {len(pipeline_ranks)}' self.pipeline_ranks = pipeline_ranks self.group = None self.ranks_in_group = None self._init_group() def _init_group(self): world_size = gpc.get_world_size(ParallelMode.GLOBAL) dp_size = gpc.get_world_size(ParallelMode.DATA) pp_size = gpc.get_world_size(ParallelMode.PIPELINE) rank = gpc.get_global_rank() num_dp_groups = world_size // dp_size num_pp_stages = num_dp_groups // pp_size for i in range(dp_size): for j in range(num_pp_stages): pipeline_ranks = list(range(i * num_dp_groups + j, (i + 1) * num_dp_groups, num_pp_stages)) sub_ranks = [pipeline_ranks[idx] for idx in self.pipeline_ranks] group = dist.new_group(sub_ranks) if rank in sub_ranks: self.group = group self.ranks_in_group = sub_ranks def register_module(self, module: nn.Module): assert self.ranks_in_group is not None,\ f'Rank {gpc.get_local_rank(ParallelMode.PIPELINE)} is not in pipeline_ranks {self.pipeline_ranks}' src = self.ranks_in_group[self.pipeline_ranks[0]] for p in module.parameters(): setattr(p, 'pipeline_shared_module_pg', self.group) dist.broadcast(p, src, group=self.group) def register_parameter(self, param: nn.Parameter): assert self.ranks_in_group is not None,\ f'Rank {gpc.get_local_rank(ParallelMode.PIPELINE)} is not in pipeline_ranks {self.pipeline_ranks}' src = self.ranks_in_group[self.pipeline_ranks[0]] setattr(param, 'pipeline_shared_module_pg', self.group) dist.broadcast(param, src, group=self.group)
from .pipeline_wrapper import PipelineSharedModuleWrapper __all__ = ['PipelineSharedModuleWrapper']
from typing import Any, Tuple import torch import torch.distributed as dist from colossalai.communication.collective import (all_gather, all_reduce, reduce_scatter) from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.utils import get_current_device from torch import Tensor from torch.cuda.amp import custom_bwd, custom_fwd def get_parallel_group(parallel_mode: ParallelMode): return gpc.get_group(parallel_mode) def get_global_rank(): return gpc.get_global_rank() def get_parallel_rank(parallel_mode: ParallelMode): return gpc.get_local_rank(parallel_mode) class _Classifier2p5D(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward( ctx: Any, A: Tensor, B: Tensor, bias, tesseract_dim: int, out_shape: Tuple[int, ...], row_rank: int, col_rank: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode, data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int, tensor_parallel_size: int, ) -> Tensor: A = A.clone().detach() A_shape = A.shape A = A.reshape((-1, A_shape[-1])) B_shape = B.shape B = B.reshape((-1, B_shape[-1])) B_temp = all_gather(B, -1, col_parallel_mode) if ctx: ctx.save_for_backward(A, B_temp) C = torch.matmul(A, B_temp.transpose(0, 1)) C = all_reduce(C, row_parallel_mode) ctx.use_bias = bias is not None if bias is not None: C = C + bias out = C.reshape(out_shape) if ctx: ctx.tesseract_dim = tesseract_dim ctx.row_rank = row_rank ctx.col_rank = col_rank ctx.row_parallel_mode = row_parallel_mode ctx.col_parallel_mode = col_parallel_mode ctx.A_shape = A_shape ctx.B_shape = B_shape ctx.data_parallel_rank = data_parallel_rank ctx.pipeline_parallel_rank = pipeline_parallel_rank ctx.pipeline_parallel_size = pipeline_parallel_size ctx.tensor_parallel_size = tensor_parallel_size return out @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: A, B = ctx.saved_tensors with torch.no_grad(): A_grad = torch.matmul(output_grad, B) A_grad = A_grad.reshape(ctx.A_shape) B_grad = torch.matmul(output_grad.reshape(-1, output_grad.shape[-1]).transpose(0, 1), A) B_grad = reduce_scatter(B_grad, -1, ctx.col_parallel_mode) B_grad = B_grad.reshape(ctx.B_shape) if ctx.use_bias: bias_grad = torch.sum(output_grad, dim=tuple(range(output_grad.ndim - 1))) bias_grad = all_reduce(bias_grad, ctx.col_parallel_mode) else: bias_grad = None return A_grad, B_grad, bias_grad, None, None, None, None, None, None, None, None, None, None def classifier_2p5d(A: Tensor, B: Tensor, bias, tesseract_dim: int, out_shape: Tuple[int, ...], row_rank: int, col_rank: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode, data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int, tensor_parallel_size: int) -> Tensor: r"""Classifier. Args: A (:class:`torch.tensor`): matrix :math:`A`. B (:class:`torch.tensor`): matrix :math:`B`. bias (:class:`torch.tensor`): matrix of bias. tesseract_dim (int): dimension of TESSERACT fo 2.5D parallelism. out_shape (:class:`torch.size`): shape of output tensor. row_rank (int): the rank of row. col_rank (int): the rank of column. row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode. col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode. data_parallel_rank (int): data parallel rank. pipeline_parallel_rank (int): pipeline parallel rank pipeline_parallel_size (int): pipeline parallel size. tensor_parallel_size (int): tensor parallel size. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ return _Classifier2p5D.apply(A, B, bias, tesseract_dim, out_shape, row_rank, col_rank, row_parallel_mode, col_parallel_mode, data_parallel_rank, pipeline_parallel_rank, pipeline_parallel_size, tensor_parallel_size) class Matmul_AB_2p5D(torch.autograd.Function): r"""Matrix multiplication for :math:`C = AB`. Args: A (:class:`torch.tensor`): matrix :math:`A`. B (:class:`torch.tensor`): matrix :math:`B`. tesseract_dim (int): dimension of TESSERACT fo 2.5D parallelism. out_shape (:class:`torch.size`): shape of output tensor. row_rank (int): the rank of row. col_rank (int): the rank of column. dep_rank (int): the rank of depth. row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode. col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode. data_parallel_rank (int): data parallel rank. pipeline_parallel_rank (int): pipeline parallel rank pipeline_parallel_size (int): pipeline parallel size. tensor_parallel_size (int): tensor parallel size. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx: Any, A: Tensor, B: Tensor, tesseract_dim: int, out_shape: Tuple[int, ...], row_rank: int, col_rank: int, dep_rank: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode, data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int, tensor_parallel_size: int) -> Tensor: # A: [b / dq, s, h / q] -> [(b * s) / dq, h / q] # B: [h / dq, s / q] # C: [b / dq, s, s / q] -> [(b * s) / dq, s / q] assert A.shape[-1] == B.shape[-2], \ 'Invalid shapes: A={}, B={} for AB.'.format(A.shape, B.shape) if ctx: ctx.save_for_backward(A, B) A_shape = A.shape A = A.reshape((-1, A_shape[-1])) B_shape = B.shape B = B.reshape((-1, B_shape[-1])) C_shape = (A.shape[0], B.shape[-1]) C = torch.zeros(C_shape, dtype=A.dtype, device=get_current_device()) # use circular buffer to store the communication tensor # 2 is enough for all cases A_list = [torch.empty_like(A) for _ in range(2)] B_list = [torch.empty_like(B) for _ in range(2)] row_group = gpc.get_group(row_parallel_mode) col_group = gpc.get_group(col_parallel_mode) src_a = \ tesseract_dim * row_rank + tesseract_dim ** 2 * dep_rank + \ data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size src_b = \ col_rank + tesseract_dim ** 2 * dep_rank + \ data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size opa = [None] * 2 opb = [None] * 2 A_list[0].copy_(A) B_list[0].copy_(B) opa[0] = dist.broadcast(A_list[0], src=src_a, group=row_group, async_op=True) opb[0] = dist.broadcast(B_list[0], src=src_b, group=col_group, async_op=True) cur = 0 for i in range(tesseract_dim): if i != tesseract_dim - 1: A_list[1 - cur].copy_(A) opa[1 - cur] = dist.broadcast(A_list[1 - cur], src=src_a + 1, group=row_group, async_op=True) B_list[1 - cur].copy_(B) opb[1 - cur] = dist.broadcast(B_list[1 - cur], src=src_b + tesseract_dim, group=col_group, async_op=True) if opa[cur] is not None: opa[cur].wait() if opb[cur] is not None: opb[cur].wait() torch.addmm(C, A_list[cur], B_list[cur], out=C) cur = 1 - cur src_a += 1 src_b += tesseract_dim out = C.reshape(out_shape) if ctx: ctx.tesseract_dim = tesseract_dim ctx.row_rank = row_rank ctx.col_rank = col_rank ctx.dep_rank = dep_rank ctx.row_parallel_mode = row_parallel_mode ctx.col_parallel_mode = col_parallel_mode ctx.A_shape = A_shape ctx.B_shape = B_shape ctx.data_parallel_rank = data_parallel_rank ctx.pipeline_parallel_rank = pipeline_parallel_rank ctx.pipeline_parallel_size = pipeline_parallel_size ctx.tensor_parallel_size = tensor_parallel_size return out @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: A, B = ctx.saved_tensors with torch.no_grad(): A_grad = Matmul_ABT_2p5D.apply(output_grad, B, ctx.tesseract_dim, ctx.A_shape, ctx.row_rank, ctx.col_rank, ctx.dep_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size) B_grad = Matmul_ATB_2p5D.apply(A, output_grad, ctx.tesseract_dim, ctx.B_shape, ctx.row_rank, ctx.col_rank, ctx.dep_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size) return A_grad, B_grad, None, None, None, None, None, None, None, None, None, None, None, None, None class Matmul_ABT_2p5D(torch.autograd.Function): r"""Matrix multiplication for :math:`C = AB^T`. Args: A (:class:`torch.tensor`): matrix :math:`A`. B (:class:`torch.tensor`): matrix :math:`B`. tesseract_dim (int): dimension of TESSERACT fo 2.5D parallelism. out_shape (:class:`torch.size`): shape of output tensor. row_rank (int): the rank of row. col_rank (int): the rank of column. dep_rank (int): the rank of depth. row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode. col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode. data_parallel_rank (int): data parallel rank. pipeline_parallel_rank (int): pipeline parallel rank pipeline_parallel_size (int): pipeline parallel size. tensor_parallel_size (int): tensor parallel size. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx: Any, A: Tensor, B: Tensor, tesseract_dim: int, out_shape: Tuple[int, ...], row_rank: int, col_rank: int, dep_rank: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode, data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int, tensor_parallel_size: int) -> Tensor: assert A.shape[-1] == B.shape[-1], \ 'Invalid shapes: A={}, B={} for ABT.'.format(A.shape, B.shape) if ctx: ctx.save_for_backward(A, B) A_shape = A.shape A = A.reshape((-1, A_shape[-1])) B_shape = B.shape B = B.reshape((-1, B_shape[-1])) C_shape = (A.shape[0], B.shape[0]) C = torch.empty(C_shape, dtype=A.dtype, device=get_current_device()) # use circular buffer to store the communication tensor # 2 is enough for all cases B_list = [torch.empty_like(B) for _ in range(2)] C_list = [torch.empty_like(C) for _ in range(2)] row_group = gpc.get_group(row_parallel_mode) col_group = gpc.get_group(col_parallel_mode) src_b = \ col_rank + tesseract_dim ** 2 * dep_rank + \ data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size src_c = \ tesseract_dim * row_rank + tesseract_dim ** 2 * dep_rank + \ data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size opb = [None] * 2 opr = [None] * 2 B_list[0].copy_(B) opb[0] = dist.broadcast(B_list[0], src=src_b, group=col_group, async_op=True) cur = 0 for i in range(tesseract_dim): if i != tesseract_dim - 1: B_list[1 - cur].copy_(B) opb[1 - cur] = dist.broadcast(B_list[1 - cur], src=src_b + tesseract_dim, group=col_group, async_op=True) if opr[cur] is not None: opr[cur].wait() if i - 2 == col_rank: C.copy_(C_list[cur]) if opb[cur] is not None: opb[cur].wait() torch.matmul(A, B_list[cur].transpose(0, 1), out=C_list[cur]) opr[cur] = dist.reduce(C_list[cur], dst=src_c, group=row_group, async_op=True) cur = 1 - cur src_b += tesseract_dim src_c += 1 for op in opr: op.wait() if tesseract_dim - 2 == col_rank: C.copy_(C_list[cur]) if tesseract_dim - 1 == col_rank: C.copy_(C_list[1 - cur]) out = C.reshape(out_shape) if ctx: ctx.tesseract_dim = tesseract_dim ctx.row_rank = row_rank ctx.col_rank = col_rank ctx.dep_rank = dep_rank ctx.row_parallel_mode = row_parallel_mode ctx.col_parallel_mode = col_parallel_mode ctx.A_shape = A_shape ctx.B_shape = B_shape ctx.data_parallel_rank = data_parallel_rank ctx.pipeline_parallel_rank = pipeline_parallel_rank ctx.pipeline_parallel_size = pipeline_parallel_size ctx.tensor_parallel_size = tensor_parallel_size return out @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: A, B = ctx.saved_tensors with torch.no_grad(): A_grad = Matmul_AB_2p5D.apply(output_grad, B, ctx.tesseract_dim, ctx.A_shape, ctx.row_rank, ctx.col_rank, ctx.dep_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size) B_grad = Matmul_ATB_2p5D.apply(output_grad, A, ctx.tesseract_dim, ctx.B_shape, ctx.row_rank, ctx.col_rank, ctx.dep_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size) return A_grad, B_grad, None, None, None, None, None, None, None, None, None, None, None, None, None class Matmul_ATB_2p5D(torch.autograd.Function): r"""Matrix multiplication for :math:`C = A^TB` Args: A (:class:`torch.tensor`): matrix :math:`A`. B (:class:`torch.tensor`): matrix :math:`B`. tesseract_dim (int): dimension of TESSERACT fo 2.5D parallelism. out_shape (:class:`torch.size`): shape of output tensor. row_rank (int): the rank of row. col_rank (int): the rank of column. dep_rank (int): the rank of depth. row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode. col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode. data_parallel_rank (int): data parallel rank. pipeline_parallel_rank (int): pipeline parallel rank pipeline_parallel_size (int): pipeline parallel size. tensor_parallel_size (int): tensor parallel size. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx: Any, A: Tensor, B: Tensor, tesseract_dim: int, out_shape: Tuple[int, ...], row_rank: int, col_rank: int, dep_rank: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode, data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int, tensor_parallel_size: int): assert A.shape[-2] == B.shape[-2], \ 'Invalid shapes: A={}, B={} for ATB.'.format(A.shape, B.shape) if ctx: ctx.save_for_backward(A, B) A_shape = A.shape A = A.reshape((-1, A_shape[-1])) B_shape = B.shape B = B.reshape((-1, B_shape[-1])) C_shape = (A.shape[-1], B.shape[-1]) C = torch.empty(C_shape, dtype=A.dtype, device=get_current_device()) # use circular buffer to store the communication tensor # 2 is enough for all cases A_list = [torch.empty_like(A) for _ in range(2)] C_list = [torch.empty_like(C) for _ in range(2)] row_group = gpc.get_group(row_parallel_mode) col_group = gpc.get_group(col_parallel_mode) src_a = \ tesseract_dim * row_rank + tesseract_dim ** 2 * dep_rank + \ data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size src_c = \ col_rank + tesseract_dim ** 2 * dep_rank + \ data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size opa = [None] * 2 opr = [None] * 2 A_list[0].copy_(A) opa[0] = dist.broadcast(A_list[0], src=src_a, group=row_group, async_op=True) cur = 0 for i in range(tesseract_dim): if i != tesseract_dim - 1: A_list[1 - cur].copy_(A) opa[1 - cur] = dist.broadcast(A_list[1 - cur], src=src_a + 1, group=row_group, async_op=True) if opr[cur] is not None: opr[cur].wait() if i - 2 == row_rank: C.copy_(C_list[cur]) if opa[cur] is not None: opa[cur].wait() torch.matmul(A_list[cur].transpose(0, 1), B, out=C_list[cur]) opr[cur] = dist.reduce(C_list[cur], dst=src_c, group=col_group, async_op=True) cur = 1 - cur src_a += 1 src_c += tesseract_dim for op in opr: op.wait() if tesseract_dim - 2 == row_rank: C.copy_(C_list[cur]) if tesseract_dim - 1 == row_rank: C.copy_(C_list[1 - cur]) out = C.reshape(out_shape) if ctx: ctx.tesseract_dim = tesseract_dim ctx.row_rank = row_rank ctx.col_rank = col_rank ctx.dep_rank = dep_rank ctx.row_parallel_mode = row_parallel_mode ctx.col_parallel_mode = col_parallel_mode ctx.A_shape = A_shape ctx.B_shape = B_shape ctx.data_parallel_rank = data_parallel_rank ctx.pipeline_parallel_rank = pipeline_parallel_rank ctx.pipeline_parallel_size = pipeline_parallel_size ctx.tensor_parallel_size = tensor_parallel_size return out @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: A, B = ctx.saved_tensors with torch.no_grad(): A_grad = Matmul_ABT_2p5D.apply(B, output_grad, ctx.tesseract_dim, ctx.A_shape, ctx.row_rank, ctx.col_rank, ctx.dep_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size) B_grad = Matmul_AB_2p5D.apply(A, output_grad, ctx.tesseract_dim, ctx.B_shape, ctx.row_rank, ctx.col_rank, ctx.dep_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size) return A_grad, B_grad, None, None, None, None, None, None, None, None, None, None, None, None, None class _Add_Bias_2p5D(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx: Any, input: Tensor, bias: Tensor, output_size_per_partition: int, tesseract_dim: int, row_rank: int, col_rank: int, dep_rank: int, col_parallel_mode: ParallelMode, skip_bias_add: bool, data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int, tensor_parallel_size: int) -> Tensor: if row_rank == 0: bias_temp = bias.clone() else: bias_temp = torch.zeros(output_size_per_partition, dtype=bias.dtype, device=get_current_device()) src_rank = \ col_rank + dep_rank * tesseract_dim ** 2 + \ data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size dist.broadcast(bias_temp, src=src_rank, group=get_parallel_group(col_parallel_mode)) ctx.row_rank = row_rank ctx.col_rank = col_rank ctx.dep_rank = dep_rank ctx.tesseract_dim = tesseract_dim ctx.col_parallel_mode = col_parallel_mode ctx.bias = skip_bias_add ctx.data_parallel_rank = data_parallel_rank ctx.pipeline_parallel_rank = pipeline_parallel_rank ctx.pipeline_parallel_size = pipeline_parallel_size ctx.tensor_parallel_size = tensor_parallel_size if skip_bias_add: return bias_temp else: output = input + bias_temp return output @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: row_rank = ctx.row_rank col_rank = ctx.col_rank dep_rank = ctx.dep_rank tesseract_dim = ctx.tesseract_dim col_parallel_mode = ctx.col_parallel_mode data_parallel_rank = ctx.data_parallel_rank pipeline_parallel_rank = ctx.pipeline_parallel_rank pipeline_parallel_size = ctx.pipeline_parallel_size tensor_parallel_size = ctx.tensor_parallel_size if ctx.bias: dst_rank = \ col_rank + dep_rank * (tesseract_dim ** 2) + \ data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size dist.reduce(output_grad, dst=dst_rank, group=get_parallel_group(col_parallel_mode)) if row_rank == 0: return \ None, output_grad, None, None, None, None, None, None, \ None, None, None, None, None, None, None, None else: grad_tmp = torch.zeros_like(output_grad) return \ None, grad_tmp, None, None, None, None, None, None, \ None, None, None, None, None, None, None, None else: reduce_dim = tuple(range(output_grad.ndim - 1)) reduce = torch.sum(output_grad, dim=reduce_dim) dst_rank = \ col_rank + dep_rank * (tesseract_dim ** 2) + \ data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size dist.reduce(reduce, dst=dst_rank, group=get_parallel_group(col_parallel_mode)) if row_rank == 0: return \ output_grad, reduce, None, None, None, None, None, None, None, \ None, None, None, None, None, None, None, None else: reduce_tmp = torch.zeros_like(reduce) return \ output_grad, reduce_tmp, None, None, None, None, None, None, \ None, None, None, None, None, None, None, None, None def add_bias_2p5d(input: Tensor, bias: Tensor, output_size_per_partition: int, tesseract_dim: int, row_rank: int, col_rank: int, dep_rank: int, col_parallel_mode: ParallelMode, skip_bias_add: bool, data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int, tensor_parallel_size: int) -> Tensor: r"""Matrix add bias: :math:`C = A + b`. Args: input (:class:`torch.tensor`): matrix :math:`A`. bias (:class:`torch.tensor`): matrix :math:`B`. tesseract_dim (int): dimension of TESSERACT fo 2.5D parallelism. output_size_per_partition (int): output size in each partition. row_rank (int): the rank of row. col_rank (int): the rank of column. dep_rank (int): the rank of depth. col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode. skip_bias_add (bool): If set to ``True``, it will skip bias add for linear layer, which is preserved for kernel fusion. data_parallel_rank (int): data parallel rank. pipeline_parallel_rank (int): pipeline parallel rank pipeline_parallel_size (int): pipeline parallel size. tensor_parallel_size (int): tensor parallel size. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ return _Add_Bias_2p5D.apply(input, bias, output_size_per_partition, tesseract_dim, row_rank, col_rank, dep_rank, col_parallel_mode, skip_bias_add, data_parallel_rank, pipeline_parallel_rank, pipeline_parallel_size, tensor_parallel_size) class _Layernorm2p5D(torch.autograd.Function): r"""Layernorm. Args: input (:class:`torch.tensor`): input matrix. E_x (:class:`torch.tensor`): mean. Var_x (:class:`torch.tensor`): variance. hidden_size (int): hidden size. row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ @staticmethod @custom_fwd(cast_inputs=torch.float32) def forward(ctx: Any, input: Tensor, E_x: Tensor, Var_x: Tensor, hidden_size: int, row_parallel_mode: ParallelMode) -> Tensor: input = input - E_x # in here, input = x - E[x], Var_x = 1 / sqrt(Var[x] + eps) ctx.hidden_size = hidden_size output = input * Var_x ctx.save_for_backward(output, Var_x) ctx.row_parallel_mode = row_parallel_mode return output @staticmethod @custom_bwd def backward(ctx, output_grad): row_parallel_mode = ctx.row_parallel_mode x, Var_x = ctx.saved_tensors # in here, Var_x = 1 / sqrt(Var[x] + eps), x = (x - E[x]) * Var_x with torch.no_grad(): output_grad_sum = torch.sum(output_grad, dim=-1, keepdim=True) torch.distributed.all_reduce(output_grad_sum, group=get_parallel_group(row_parallel_mode)) output_grad_sum /= ctx.hidden_size output_grad_mul_x_sum = torch.sum(output_grad * x, dim=-1, keepdim=True) torch.distributed.all_reduce(output_grad_mul_x_sum, group=get_parallel_group(row_parallel_mode)) output_grad_mul_x_sum /= ctx.hidden_size input_grad = output_grad.clone() input_grad -= x * output_grad_mul_x_sum input_grad -= output_grad_sum input_grad *= Var_x return input_grad, None, None, None, None, None, None def layernorm_2p5d(input: Tensor, E_x: Tensor, Var_x: Tensor, hidden_size: int, row_parallel_mode: ParallelMode) -> Tensor: r"""Layernorm. Args: input (:class:`torch.tensor`): input matrix. E_x (:class:`torch.tensor`): mean. Var_x (:class:`torch.tensor`): variance. hidden_size (int): hidden size. row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_. """ return _Layernorm2p5D.apply(input, E_x, Var_x, hidden_size, row_parallel_mode) class _AllGatherTensor2p5D(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx: Any, inputs: Tensor, dim: int, col_parallel_mode: ParallelMode) -> Tensor: ctx.dim = dim ctx.col_parallel_mode = col_parallel_mode outputs = all_gather(inputs, dim, col_parallel_mode) return outputs @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: grad = reduce_scatter(output_grad, ctx.dim, ctx.col_parallel_mode) return grad.contiguous(), None, None def all_gather_tensor_2p5d(inputs: Tensor, dim: int, col_parallel_mode: ParallelMode) -> Tensor: r"""all gather the weight of 2.5D parallelism. Args: inputs (:class:`torch.tensor`): input tensor. dim (int): dimension of all-gather. col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_. """ return _AllGatherTensor2p5D.apply(inputs, dim, col_parallel_mode) class SplitFirst(torch.autograd.Function): r""" Args: inputs (:class:`torch.tensor`): input tensor. tesseract_dim (int): dimension of TESSERACT fo 2.5D parallelism col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_. """ @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx: Any, inputs: Tensor, tesseract_dim: int, col_parallel_mode: ParallelMode) -> Tensor: ctx.tesseract_dim = tesseract_dim ctx.batch_size = inputs.size(0) ctx.para_mode = col_parallel_mode row_rank = gpc.get_local_rank(col_parallel_mode) outputs = inputs.chunk(tesseract_dim, dim=0)[row_rank] return outputs @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: grad_shape = (ctx.batch_size,) + output_grad.shape[1:] grad = torch.empty(grad_shape, dtype=output_grad.dtype, device=get_current_device()) dist.all_gather(list(grad.chunk(ctx.tesseract_dim, dim=0)), output_grad.contiguous(), group=gpc.get_group(ctx.para_mode)) return grad, None, None def split_batch_2p5d(input_: Tensor, dim: int = 0) -> Tensor: """Splits 2P5D tensor in specified dimension across cols. Args: input_ (:class:`torch.tensor`): Input tensor. dim (int): Specified dimension in which to split. Returns: :class:`torch.tensor`: The tensor has been split. """ dim_size = input_.size(dim) world_size = gpc.get_world_size(ParallelMode.PARALLEL_2P5D_COL) if world_size <= 1: return input_ assert dim_size % world_size == 0, \ f'The batch size ({dim_size}) is not a multiple of 2.5D size * depth ({world_size}).' return torch.chunk(input_, gpc.get_world_size(ParallelMode.PARALLEL_2P5D_COL), dim=dim)[gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL)].contiguous() class _ReduceTensor2p5D(torch.autograd.Function): @staticmethod def forward(ctx, input_, parallel_mode): return all_reduce(input_, parallel_mode) @staticmethod def backward(ctx, output_grad): return output_grad, None def reduce_tensor_2p5d(input_: Tensor, parallel_mode: ParallelMode) -> Tensor: r"""All-reduce the input. Args: input_ (:class:`torch.tensor`): Input tensor. parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode tensor used. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ return _ReduceTensor2p5D.apply(input_, parallel_mode) class _ReduceScatterTensor2p5D(torch.autograd.Function): @staticmethod def forward(ctx, input_, dim, parallel_mode): ctx.dim = dim ctx.parallel_mode = parallel_mode return reduce_scatter(input_, dim, parallel_mode) @staticmethod def backward(ctx, output_grad): return all_gather(output_grad, ctx.dim, ctx.parallel_mode), None, None def reduce_scatter_tensor_2p5d(input_: Tensor, dim: int, parallel_mode: ParallelMode) -> Tensor: r"""Reduce-scatter the input. Args: input_ (:class:`torch.tensor`): Input tensor. dim (int): Dimension to reduce. parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode tensor used. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ dim_size = input_.size(dim) world_size = gpc.get_world_size(parallel_mode) assert dim_size % world_size == 0, \ f'The batch size ({dim_size}) is not a multiple of 2.5D size * depth ({world_size}).' return _ReduceScatterTensor2p5D.apply(input_, dim, parallel_mode) class _RreduceByBatch2p5D(torch.autograd.Function): @staticmethod def symbolic(graph, input_, reduce_mean: bool = False): output = all_reduce(input_, ParallelMode.PARALLEL_2P5D_COL) if reduce_mean: reduce_size = gpc.get_world_size(ParallelMode.PARALLEL_2P5D_COL) return output / reduce_size return output @staticmethod @custom_fwd(cast_inputs=torch.float32) def forward(ctx, input_, reduce_mean: bool = False): output = all_reduce(input_, ParallelMode.PARALLEL_2P5D_COL) ctx.reduce_mean = reduce_mean if reduce_mean: reduce_size = gpc.get_world_size(ParallelMode.PARALLEL_2P5D_COL) ctx.reduce_size = reduce_size return output.clone() / reduce_size return output.clone() @staticmethod @custom_bwd def backward(ctx, output_grad): if ctx.reduce_mean: return output_grad / ctx.reduce_size, None else: return output_grad, None def reduce_by_batch_2p5d(input_, reduce_mean: bool = False) -> Tensor: r"""All-reduce the input from the model parallel region. Args: input_ (:class:`torch.tensor`): input matrix. reduce_mean (bool, optional): If set to ``True``, it will divide the output by column parallel size, default to False. """ return _RreduceByBatch2p5D.apply(input_, reduce_mean)
from ._operation import reduce_by_batch_2p5d, split_batch_2p5d from .layers import (Classifier2p5D, Embedding2p5D, LayerNorm2p5D, Linear2p5D, PatchEmbedding2p5D, VocabParallelClassifier2p5D, VocabParallelEmbedding2p5D) __all__ = [ 'split_batch_2p5d', 'reduce_by_batch_2p5d', 'Linear2p5D', 'LayerNorm2p5D', 'Classifier2p5D', 'PatchEmbedding2p5D', 'Embedding2p5D', 'VocabParallelClassifier2p5D', 'VocabParallelEmbedding2p5D' ]
import math from collections import OrderedDict from typing import Callable import torch import torch.nn as nn import torch.nn.functional as F from colossalai.communication import broadcast from colossalai.context import ParallelMode, seed from colossalai.core import global_context as gpc from colossalai.global_variables import tensor_parallel_env as env from colossalai.nn import init as init from colossalai.registry import LAYERS from colossalai.utils.checkpointing import (broadcast_state_dict, gather_tensor_parallel_state_dict, partition_tensor_parallel_state_dict) from colossalai.utils.cuda import get_current_device from torch import Tensor from torch.nn import Parameter from ..base_layer import ParallelLayer from ..utils import divide, set_tensor_parallel_attribute_by_partition, to_2tuple from ._operation import (Matmul_AB_2p5D, Matmul_ABT_2p5D, add_bias_2p5d, all_gather_tensor_2p5d, classifier_2p5d, layernorm_2p5d, reduce_scatter_tensor_2p5d, split_batch_2p5d) from ._utils import assert_tesseract_initialization, get_tesseract_dim_dep_from_env @LAYERS.register_module class Linear2p5D(ParallelLayer): r"""Linear layer for 2.5D parallelism. Args: in_features (int): size of each input sample. out_features (int): size of each output sample. bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. skip_bias_add (bool, optional): If set to ``True``, it will skip bias add for linear layer, which is preserved for kernel fusion, defaults to False. weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. More details about ``initializer`` please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, in_features: int, out_features: int, bias: bool = True, dtype: torch.dtype = None, skip_bias_add: bool = False, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)): super().__init__() self.in_features = in_features self.out_features = out_features self.skip_bias_add = skip_bias_add # parallel setting assert_tesseract_initialization() self.row_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) self.col_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) self.dep_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP) self.tesseract_dim, _ = get_tesseract_dim_dep_from_env() # partitioning dimension self.input_size_per_partition = divide(in_features, self.tesseract_dim) self.hidden_size_per_partition = divide(out_features, self.tesseract_dim) # create weight, shape: [k/q, h/q] factory_kwargs = {'device': get_current_device(), 'dtype': dtype} self.weight = Parameter( torch.empty(self.input_size_per_partition, self.hidden_size_per_partition, **factory_kwargs)) # create bias, shape: [h/q] if bias: self.bias = Parameter(torch.empty(self.hidden_size_per_partition, **factory_kwargs)) else: self.register_parameter('bias', None) # initialize parameters with seed(ParallelMode.TENSOR): self.reset_parameters(weight_initializer, bias_initializer) self._set_tensor_parallel_attributes() def _set_tensor_parallel_attributes(self): set_tensor_parallel_attribute_by_partition(self.weight, self.tesseract_dim**2) if self.bias is not None: set_tensor_parallel_attribute_by_partition(self.bias, self.tesseract_dim) def reset_parameters(self, weight_initializer, bias_initializer) -> None: fan_in, fan_out = self.in_features, self.out_features weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) if self.bias is not None: bias_initializer(self.bias, fan_in=fan_in) def _load_from_global_state_dict(self, state_dict, prefix, *args, **kwargs): local_state = OrderedDict() weight_key = prefix + 'weight' bias_key = prefix + 'bias' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight.transpose(0, 1) # bias if self.bias is not None: bias = state_dict.pop(bias_key, None) if bias is not None: local_state[bias_key] = bias # broadcast in dep groups if gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) == 0 and \ gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) == 0: broadcast_state_dict(local_state, ParallelMode.PARALLEL_2P5D_DEP) # partition in column groups if gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) == 0: local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_COL, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }, ) # partition in row groups local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_ROW, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, ) super()._load_from_global_state_dict(local_state, prefix, *args, **kwargs) def _save_to_global_state_dict(self, destination, prefix, keep_vars): if gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP) == 0: weight_key = prefix + 'weight' bias_key = prefix + 'bias' local_state = OrderedDict({weight_key: self.weight}) if self.bias is not None: local_state[bias_key] = self.bias # gather in row groups local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_ROW, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, keep_vars=keep_vars, ) # gather in column groups if gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) == 0: local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_COL, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }, keep_vars=keep_vars, ) if gpc.get_local_rank(ParallelMode.TENSOR) == 0: local_state[weight_key] = local_state[weight_key].transpose(0, 1) destination.update(local_state) def forward(self, x: Tensor) -> Tensor: # input: [m/dq, n/q, k/q] # output: [m/dq, n/q, h/q] out_shape = x.shape[:-1] + (self.hidden_size_per_partition,) output = Matmul_AB_2p5D.apply( x, self.weight, self.tesseract_dim, out_shape, self.row_rank, self.col_rank, self.dep_rank, ParallelMode.PARALLEL_2P5D_ROW, ParallelMode.PARALLEL_2P5D_COL, self.data_parallel_rank, self.pipeline_parallel_rank, self.pipeline_parallel_size, self.tensor_parallel_size, ) if self.bias is not None: if self.skip_bias_add: bias = add_bias_2p5d(None, self.bias, self.hidden_size_per_partition, self.tesseract_dim, self.row_rank, self.col_rank, self.dep_rank, ParallelMode.PARALLEL_2P5D_COL, True, self.data_parallel_rank, self.pipeline_parallel_rank, self.pipeline_parallel_size, self.tensor_parallel_size) return output, bias else: output = add_bias_2p5d(output, self.bias, self.hidden_size_per_partition, self.tesseract_dim, self.row_rank, self.col_rank, self.dep_rank, ParallelMode.PARALLEL_2P5D_COL, False, self.data_parallel_rank, self.pipeline_parallel_rank, self.pipeline_parallel_size, self.tensor_parallel_size) return output else: return output @LAYERS.register_module class LayerNorm2p5D(ParallelLayer): r"""Layer Normalization for 2.5D parallelism. Args: normalized_shape (int): input shape from an expected input of size. :math:`[* \times \text{normalized_shape}[0] \times \text{normalized_shape}[1] \times \ldots \times \text{normalized_shape}[-1]]` If a single integer is used, it is treated as a singleton list, and this module will normalize over the last dimension which is expected to be of that specific size. eps (float, optional): a value added to the denominator for numerical stability, defaults to 1e-05. bias (bool, optional): Whether to add a bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. """ def __init__(self, normalized_shape: int, eps: float = 1e-05, bias=True, dtype=None): super().__init__() # layer norm config self.normalized_shape = normalized_shape self.variance_epsilon = eps # parallel setting assert_tesseract_initialization() self.row_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) self.col_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) self.dep_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP) self.tesseract_dim, _ = get_tesseract_dim_dep_from_env() # partitioning dimension self.partitioned_partition = divide(normalized_shape, self.tesseract_dim) # * # create parameters factory_kwargs = {'device': get_current_device(), 'dtype': dtype} self.weight = Parameter(torch.ones(self.partitioned_partition, **factory_kwargs)) if bias: self.bias = Parameter(torch.zeros(self.partitioned_partition, **factory_kwargs)) else: self.bias = None self._set_tensor_parallel_attribute() def _set_tensor_parallel_attribute(self): set_tensor_parallel_attribute_by_partition(self.weight, self.tesseract_dim) if self.bias is not None: set_tensor_parallel_attribute_by_partition(self.bias, self.tesseract_dim) def _load_from_global_state_dict(self, state_dict, prefix, *args, **kwargs): local_state = OrderedDict() weight_key = prefix + 'weight' bias_key = prefix + 'bias' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight # bias bias = state_dict.pop(bias_key, None) if bias is not None: local_state[bias_key] = bias # partition in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) == 0: local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_ROW, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, ) # partition in column groups local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_COL, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, ) super()._load_from_global_state_dict(local_state, prefix, *args, **kwargs) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' bias_key = prefix + 'bias' local_state = OrderedDict({weight_key: self.weight}) if self.bias is not None: local_state[bias_key] = self.bias # gather in column groups local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_COL, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, keep_vars=keep_vars, ) # gather in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) == 0: local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_ROW, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, keep_vars=keep_vars, ) if gpc.get_local_rank(ParallelMode.TENSOR) == 0: destination.update(local_state) def forward(self, x: Tensor) -> Tensor: with torch.no_grad(): E_x = torch.sum(x, dim=-1, keepdim=True) # [b/q, s, 1] torch.distributed.all_reduce(E_x, group=gpc.get_group(ParallelMode.PARALLEL_2P5D_ROW)) E_x /= self.normalized_shape # Var_x in the block below is the sum of input^2 Var_x = torch.sum(x * x, dim=-1, keepdim=True) # [b/q, s, 1] torch.distributed.all_reduce(Var_x, group=gpc.get_group(ParallelMode.PARALLEL_2P5D_ROW)) Var_x /= self.normalized_shape Var_x = Var_x - E_x * E_x # variance of x [b/q, s, 1] # this time 1/sqrt(Var_x + epsilon) Var_x = 1.0 / torch.sqrt(Var_x + self.variance_epsilon) output = layernorm_2p5d(x, E_x, Var_x, self.normalized_shape, ParallelMode.PARALLEL_2P5D_ROW) scale = add_bias_2p5d(None, self.weight, self.partitioned_partition, self.tesseract_dim, self.row_rank, self.col_rank, self.dep_rank, ParallelMode.PARALLEL_2P5D_COL, True, self.data_parallel_rank, self.pipeline_parallel_rank, self.pipeline_parallel_size, self.tensor_parallel_size) if self.bias is not None: bias = add_bias_2p5d(None, self.bias, self.partitioned_partition, self.tesseract_dim, self.row_rank, self.col_rank, self.dep_rank, ParallelMode.PARALLEL_2P5D_COL, True, self.data_parallel_rank, self.pipeline_parallel_rank, self.pipeline_parallel_size, self.tensor_parallel_size) output = torch.addcmul(bias, scale, output) else: output = torch.mul(scale, output) return output @LAYERS.register_module class PatchEmbedding2p5D(ParallelLayer): r"""2D Image to Patch Embedding. Args: img_size (int): image size. patch_size (int): patch size. in_chans (int): number of channels of input image. embed_size (int): size of embedding. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. flatten (bool, optional): whether to flatten output tensor, defaults to True. weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. position_embed_initializer (:class:`typing.Callable`, optional): The initializer of position embedding, defaults to zeros initializer. More details about ``initializer`` please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, img_size: int, patch_size: int, in_chans: int, embed_size: int, flatten: bool = True, dtype: torch.dtype = None, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1), position_embed_initializer: Callable = init.zeros_()): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) assert_tesseract_initialization() self.tesseract_dim, self.tesseract_dep = get_tesseract_dim_dep_from_env() self.img_size = img_size self.patch_size = patch_size self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.flatten = flatten self.embed_size = embed_size self.embed_size_per_partition = embed_size // self.tesseract_dim**2 with seed(ParallelMode.TENSOR): self.weight = Parameter( torch.empty((self.embed_size_per_partition, in_chans, *self.patch_size), device=get_current_device(), dtype=dtype)) self.bias = Parameter(torch.empty(self.embed_size_per_partition, device=get_current_device(), dtype=dtype)) self.cls_token = Parameter( torch.zeros((1, 1, self.embed_size_per_partition), device=get_current_device(), dtype=dtype)) self.pos_embed = Parameter( torch.zeros((1, self.num_patches + 1, self.embed_size_per_partition), device=get_current_device(), dtype=dtype)) self.reset_parameters(weight_initializer, bias_initializer, position_embed_initializer) self._set_tensor_parallel_attribute() def _set_tensor_parallel_attribute(self): set_tensor_parallel_attribute_by_partition(self.weight, self.tesseract_dim**2) set_tensor_parallel_attribute_by_partition(self.bias, self.tesseract_dim**2) set_tensor_parallel_attribute_by_partition(self.cls_token, self.tesseract_dim**2) set_tensor_parallel_attribute_by_partition(self.pos_embed, self.tesseract_dim**2) def reset_parameters(self, weight_initializer, bias_initializer, position_embed_initializer): with seed(ParallelMode.TENSOR): fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight) fan_out = self.embed_size weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) bias_initializer(self.bias, fan_in=fan_in) position_embed_initializer(self.pos_embed) def _load_from_global_state_dict(self, state_dict, prefix, *args, **kwargs): local_state = OrderedDict() weight_key = prefix + 'weight' bias_key = prefix + 'bias' cls_token_key = prefix + 'cls_token' pos_embed_key = prefix + 'pos_embed' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight # bias bias = state_dict.pop(bias_key, None) if bias is not None: local_state[bias_key] = bias # cls token cls_token = state_dict.pop(cls_token_key, None) if cls_token is not None: local_state[cls_token_key] = cls_token # pos embed pos_embed = state_dict.pop(pos_embed_key, None) if pos_embed is not None: local_state[pos_embed_key] = pos_embed # partition in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) == 0: local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_ROW, dims={ weight_key: 0, bias_key: 0, cls_token_key: -1, pos_embed_key: -1 }, partition_states={ weight_key: True, bias_key: True, cls_token_key: True, pos_embed_key: True }, ) # partition in column groups local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_COL, dims={ weight_key: 0, bias_key: 0, cls_token_key: -1, pos_embed_key: -1 }, partition_states={ weight_key: True, bias_key: True, cls_token_key: True, pos_embed_key: True }, ) super()._load_from_global_state_dict(local_state, prefix, *args, **kwargs) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' bias_key = prefix + 'bias' cls_token_key = prefix + 'cls_token' pos_embed_key = prefix + 'pos_embed' local_state = OrderedDict({ weight_key: self.weight, bias_key: self.bias, cls_token_key: self.cls_token, pos_embed_key: self.pos_embed }) # gather in column groups local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_COL, dims={ weight_key: 0, bias_key: 0, cls_token_key: -1, pos_embed_key: -1 }, partition_states={ weight_key: True, bias_key: True, cls_token_key: True, pos_embed_key: True }, keep_vars=keep_vars, ) # gather in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) == 0: local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_ROW, dims={ weight_key: 0, bias_key: 0, cls_token_key: -1, pos_embed_key: -1 }, partition_states={ weight_key: True, bias_key: True, cls_token_key: True, pos_embed_key: True }, keep_vars=keep_vars, ) if gpc.get_local_rank(ParallelMode.TENSOR) == 0: destination.update(local_state) def forward(self, input_: Tensor) -> Tensor: input_ = split_batch_2p5d(input_, 0) B, C, H, W = input_.shape assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." weight = all_gather_tensor_2p5d(self.weight, 0, ParallelMode.PARALLEL_2P5D_COL) bias = all_gather_tensor_2p5d(self.bias, 0, ParallelMode.PARALLEL_2P5D_COL) output = F.conv2d(input_, weight, bias, stride=self.patch_size) if self.flatten: output = output.flatten(2).transpose(1, 2) # BCHW -> BNC cls_token = all_gather_tensor_2p5d(self.cls_token, -1, ParallelMode.PARALLEL_2P5D_COL) pos_embed = all_gather_tensor_2p5d(self.pos_embed, -1, ParallelMode.PARALLEL_2P5D_COL) cls_token = cls_token.expand(output.shape[0], -1, -1) output = torch.cat((cls_token, output), dim=1) output = output + pos_embed return output @LAYERS.register_module class Embedding2p5D(ParallelLayer): r"""Embedding for 2.5D parallelism. Args: num_embeddings (int): number of embeddings. embedding_dim (int): dimension of embedding. padding_idx (int, optional): If specified, the entries at padding_idx do not contribute to the gradient; therefore, the embedding vector at padding_idx is not updated during training, i.e. it remains as a fixed “pad”, defaults to None. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. weight_initializer (:class:`typing.Callable`, optional): he initializer of weight, defaults to normal initializer. The ``args`` and ``kwargs`` used in :class:``torch.nn.functional.embedding`` should contain: :: max_norm (float, optional): If given, each embedding vector with norm larger than max_norm is renormalized to have norm max_norm. Note: this will modify weight in-place. norm_type (float, optional): The p of the p-norm to compute for the max_norm option. Default 2. scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default False. sparse (bool, optional): If True, gradient w.r.t. weight will be a sparse tensor. Default False. More details about ``args`` and ``kwargs`` could be found in `Embedding <https://pytorch.org/docs/stable/generated/torch.nn.functional.embedding.html#torch.nn.functional.embedding>`_. More details about initializer please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_ """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int = None, dtype: torch.dtype = None, weight_initializer: Callable = init.normal_(), *args, **kwargs): super().__init__() assert_tesseract_initialization() self.tesseract_dim, self.tesseract_dep = get_tesseract_dim_dep_from_env() self.num_embeddings = num_embeddings self.embed_dim = embedding_dim embed_dim_per_partition = embedding_dim // self.tesseract_dim**2 self.padding_idx = padding_idx self.embed_args = args self.embed_kwargs = kwargs self.weight = Parameter( torch.empty((num_embeddings, embed_dim_per_partition), device=get_current_device(), dtype=dtype)) self.reset_parameters(weight_initializer) self._set_tensor_parallel_attributes() def _set_tensor_parallel_attributes(self): set_tensor_parallel_attribute_by_partition(self.weight, self.tesseract_dim**2) def reset_parameters(self, weight_initializer) -> None: with seed(ParallelMode.TENSOR): fan_in, fan_out = self.num_embeddings, self.embed_dim weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) self._fill_padding_idx_with_zero() def _fill_padding_idx_with_zero(self) -> None: if self.padding_idx is not None: with torch.no_grad(): self.weight[self.padding_idx].fill_(0) def _load_from_global_state_dict(self, state_dict, prefix, *args, **kwargs): local_state = OrderedDict() weight_key = prefix + 'weight' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight # partition in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) == 0: local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_ROW, dims={weight_key: -1}, partition_states={weight_key: True}, ) # partition in column groups local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_COL, dims={weight_key: -1}, partition_states={weight_key: True}, ) super()._load_from_global_state_dict(local_state, prefix, *args, **kwargs) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' local_state = OrderedDict({weight_key: self.weight}) # gather in column groups local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_COL, dims={weight_key: -1}, partition_states={weight_key: True}, keep_vars=keep_vars, ) # gather in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) == 0: local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_ROW, dims={weight_key: -1}, partition_states={weight_key: True}, keep_vars=keep_vars, ) if gpc.get_local_rank(ParallelMode.TENSOR) == 0: destination.update(local_state) def forward(self, input_: Tensor) -> Tensor: input_ = split_batch_2p5d(input_, 0) weight = all_gather_tensor_2p5d(self.weight, -1, ParallelMode.PARALLEL_2P5D_COL) output = F.embedding(input_, weight, self.padding_idx, *self.embed_args, **self.embed_kwargs) return output @LAYERS.register_module class VocabParallelEmbedding2p5D(ParallelLayer): """Embedding parallelized in the vocabulary dimension. Args: num_embeddings (int): number of embeddings. embedding_dim (int): dimension of embedding. padding_idx (int, optional): If specified, the entries at padding_idx do not contribute to the gradient; therefore, the embedding vector at padding_idx is not updated during training, i.e. it remains as a fixed “pad”, defaults to None. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. weight_initializer (:class:`typing.Callable`, optional): he initializer of weight, defaults to normal initializer. The ``args`` and ``kwargs`` used in :class:``torch.nn.functional.embedding`` should contain: :: max_norm (float, optional): If given, each embedding vector with norm larger than max_norm is renormalized to have norm max_norm. Note: this will modify weight in-place. norm_type (float, optional): The p of the p-norm to compute for the max_norm option. Default 2. scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default False. sparse (bool, optional): If True, gradient w.r.t. weight will be a sparse tensor. Default False. More details about ``args`` and ``kwargs`` could be found in `Embedding <https://pytorch.org/docs/stable/generated/torch.nn.functional.embedding.html#torch.nn.functional.embedding>`_. More details about initializer please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int = None, dtype: torch.dtype = None, weight_initializer: Callable = init.normal_(), *args, **kwargs): super().__init__() self.num_embeddings = num_embeddings self.embed_dim = embedding_dim self.padding_idx = padding_idx self.embed_args = args self.embed_kwargs = kwargs assert_tesseract_initialization() self.tesseract_dim, self.tesseract_dep = get_tesseract_dim_dep_from_env() self.num_embeddings_per_partition = divide(self.num_embeddings, self.tesseract_dim) self.embed_dim_per_partition = divide(self.embed_dim, self.tesseract_dim) tensor_parallel_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) self.vocab_start_index = tensor_parallel_rank * self.num_embeddings_per_partition self.vocab_end_index = self.vocab_start_index + self.num_embeddings_per_partition self.weight = Parameter( torch.empty((self.num_embeddings_per_partition, self.embed_dim_per_partition), device=get_current_device(), dtype=dtype)) self.reset_parameters(weight_initializer) self._set_tensor_parallel_attributes() env.vocab_parallel = True def _set_tensor_parallel_attributes(self): set_tensor_parallel_attribute_by_partition(self.weight, self.tesseract_dim**2) def reset_parameters(self, weight_initializer) -> None: with seed(ParallelMode.TENSOR): fan_in, fan_out = self.num_embeddings, self.embed_dim weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) self._fill_padding_idx_with_zero() def _fill_padding_idx_with_zero(self) -> None: if self.padding_idx is not None and \ self.vocab_start_index <= self.padding_idx < self.vocab_end_index: with torch.no_grad(): self.weight[self.padding_idx - self.vocab_start_index].fill_(0) def _load_from_global_state_dict(self, state_dict, prefix, *args, **kwargs): local_state = OrderedDict() weight_key = prefix + 'weight' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight # partition in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) == 0: local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_ROW, dims={weight_key: -1}, partition_states={weight_key: True}, ) # partition in column groups local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_COL, dims={weight_key: 0}, partition_states={weight_key: True}, ) super()._load_from_global_state_dict(local_state, prefix, *args, **kwargs) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' local_state = OrderedDict({weight_key: self.weight}) # gather in column groups local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_COL, dims={weight_key: 0}, partition_states={weight_key: True}, keep_vars=keep_vars, ) # gather in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) == 0: local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_ROW, dims={weight_key: -1}, partition_states={weight_key: True}, keep_vars=keep_vars, ) if gpc.get_local_rank(ParallelMode.TENSOR) == 0: destination.update(local_state) def forward(self, input_: Tensor) -> Tensor: # Build the mask. input_mask = (input_ < self.vocab_start_index) | (input_ >= self.vocab_end_index) # Mask the input. masked_input = input_.clone() - self.vocab_start_index masked_input[input_mask] = 0 output_parallel = F.embedding(masked_input, self.weight, self.padding_idx, *self.embed_args, **self.embed_kwargs) # Mask the output embedding. output_parallel[input_mask, :] = 0. # Reduce across all the model parallel GPUs. output = reduce_scatter_tensor_2p5d(output_parallel, 0, ParallelMode.PARALLEL_2P5D_COL) return output @LAYERS.register_module class Classifier2p5D(ParallelLayer): r"""Classifier for 2.5D parallelism. Args: in_features (int): size of each input sample. num_classes (int): number of classes. weight (:class:`torch.nn.Parameter`, optional): weight of the classifier, defaults to None. bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. More details about ``initializer`` please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, in_features: int, num_classes: int, weight: Parameter = None, bias: bool = True, dtype: torch.dtype = None, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)): super().__init__() self.in_features = in_features self.num_classes = num_classes assert_tesseract_initialization() self.row_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) self.col_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) self.dep_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP) self.tesseract_dim, self.tesseract_dep = get_tesseract_dim_dep_from_env() # partitioning dimension self.input_size_per_partition = divide(self.in_features, self.tesseract_dim**2) if weight is not None: self.weight = weight self.has_weight = False else: self.weight = Parameter( torch.empty(self.num_classes, self.input_size_per_partition, device=get_current_device(), dtype=dtype)) self.has_weight = True if bias: self.bias = Parameter(torch.zeros(self.num_classes, device=get_current_device(), dtype=dtype)) else: self.bias = None self.reset_parameters(weight_initializer, bias_initializer) self._set_tensor_parallel_attributes() def _set_tensor_parallel_attributes(self): if self.has_weight: set_tensor_parallel_attribute_by_partition(self.weight, self.tesseract_dim**2) def reset_parameters(self, weight_initializer, bias_initializer) -> None: with seed(ParallelMode.TENSOR): fan_in, fan_out = self.in_features, self.num_classes col_src_rank = gpc.get_ranks_in_group(ParallelMode.PARALLEL_2P5D_COL)[0] row_src_rank = gpc.get_ranks_in_group(ParallelMode.PARALLEL_2P5D_ROW)[0] if self.has_weight: weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) if self.bias is not None: bias_initializer(self.bias, fan_in=fan_in) broadcast(self.bias, col_src_rank, ParallelMode.PARALLEL_2P5D_COL) broadcast(self.bias, row_src_rank, ParallelMode.PARALLEL_2P5D_ROW) def _load_from_global_state_dict(self, state_dict, prefix, *args, **kwargs): local_state = OrderedDict() weight_key = prefix + 'weight' bias_key = prefix + 'bias' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight if self.has_weight: weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight # bias if self.bias is not None: bias = state_dict.pop(bias_key, None) if bias is not None: local_state[bias_key] = bias # partition in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) == 0: local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_ROW, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }, ) # partition in column groups local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_COL, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }, ) super()._load_from_global_state_dict(local_state, prefix, *args, **kwargs) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' bias_key = prefix + 'bias' local_state = OrderedDict() if self.has_weight: local_state[weight_key] = self.weight if self.bias is not None: local_state[bias_key] = self.bias # gather in column groups local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_COL, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }, keep_vars=keep_vars, ) # gather in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) == 0: local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_ROW, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }, keep_vars=keep_vars, ) if gpc.get_local_rank(ParallelMode.TENSOR) == 0: destination.update(local_state) def forward(self, input_: Tensor) -> Tensor: out_shape = input_.shape[:-1] + (self.num_classes,) return classifier_2p5d(input_, self.weight, self.bias, self.tesseract_dim, out_shape, self.row_rank, self.col_rank, ParallelMode.PARALLEL_2P5D_ROW, ParallelMode.PARALLEL_2P5D_COL, self.data_parallel_rank, self.pipeline_parallel_rank, self.pipeline_parallel_size, self.tensor_parallel_size) @LAYERS.register_module class VocabParallelClassifier2p5D(ParallelLayer): r"""Vocab parallel classifier layer for 2.5D parallelism. Args: in_features (int): size of each input sample. num_classes (int): number of classes. weight (:class:`torch.nn.Parameter`, optional): weight of the classifier, defaults to None. bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. More details about ``initializer`` please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, in_features: int, num_classes: int, weight: Parameter = None, bias: bool = True, dtype: torch.dtype = None, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)): super().__init__() self.in_features = in_features self.num_classes = num_classes # parallel setting assert_tesseract_initialization() self.row_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) self.col_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) self.dep_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP) self.tesseract_dim, _ = get_tesseract_dim_dep_from_env() # partitioning dimension self.input_size_per_partition = divide(in_features, self.tesseract_dim) self.hidden_size_per_partition = divide(num_classes, self.tesseract_dim) # create weight, shape: [k/q, h/q] factory_kwargs = {'device': get_current_device(), 'dtype': dtype} if weight is not None: self.weight = weight self.has_weight = False else: self.weight = Parameter( torch.empty(self.hidden_size_per_partition, self.input_size_per_partition, **factory_kwargs)) self.has_weight = True # create bias, shape: [h/q] if bias: self.bias = Parameter(torch.empty(self.hidden_size_per_partition, **factory_kwargs)) else: self.bias = None # initialize parameters with seed(ParallelMode.TENSOR): self.reset_parameters(weight_initializer, bias_initializer) self._set_tensor_parallel_attributes() env.vocab_parallel = True def _set_tensor_parallel_attributes(self): if self.has_weight: set_tensor_parallel_attribute_by_partition(self.weight, self.tesseract_dim**2) if self.bias is not None: set_tensor_parallel_attribute_by_partition(self.bias, self.tesseract_dim) def reset_parameters(self, weight_initializer, bias_initializer) -> None: fan_in, fan_out = self.in_features, self.num_classes if self.has_weight: weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) if self.bias is not None: bias_initializer(self.bias, fan_in=fan_in) def _load_from_global_state_dict(self, state_dict, prefix, *args, **kwargs): local_state = OrderedDict() weight_key = prefix + 'weight' bias_key = prefix + 'bias' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight if self.has_weight: weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight # bias if self.bias is not None: bias = state_dict.pop(bias_key, None) if bias is not None: local_state[bias_key] = bias # partition in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) == 0: local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_ROW, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, ) # partition in column groups local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2P5D_COL, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, ) super()._load_from_global_state_dict(local_state, prefix, *args, **kwargs) def forward(self, x: Tensor) -> Tensor: # input: [m/dq, n/q, k/q] # output: [m/dq, n/q, h/q] out_shape = x.shape[:-1] + (self.hidden_size_per_partition,) output = Matmul_ABT_2p5D.apply( x, self.weight, self.tesseract_dim, out_shape, self.row_rank, self.col_rank, self.dep_rank, ParallelMode.PARALLEL_2P5D_ROW, ParallelMode.PARALLEL_2P5D_COL, self.data_parallel_rank, self.pipeline_parallel_rank, self.pipeline_parallel_size, self.tensor_parallel_size, ) if self.bias is not None: output = add_bias_2p5d(output, self.bias, self.hidden_size_per_partition, self.tesseract_dim, self.row_rank, self.col_rank, self.dep_rank, ParallelMode.PARALLEL_2P5D_COL, False, self.data_parallel_rank, self.pipeline_parallel_rank, self.pipeline_parallel_size, self.tensor_parallel_size) return output
from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.global_variables import tensor_parallel_env as env def get_tesseract_dim_dep_from_env(): try: tesseract_dim = env.tesseract_dim tesseract_dep = env.tesseract_dep assert tesseract_dim > 0, 'TESSERACT_DIM must be larger than zero' assert tesseract_dep > 0, 'TESSERACT_DEP must be larger than zero' return tesseract_dim, tesseract_dep except KeyError as e: raise EnvironmentError('TESSERACT_DIM or TESSERACT_DEP is not found in the current environment, ' 'please make sure that you have used the correct process group initializer') def assert_tesseract_initialization(): assert gpc.is_initialized(ParallelMode.PARALLEL_2P5D_COL) and \ gpc.is_initialized(ParallelMode.PARALLEL_2P5D_ROW) and \ gpc.is_initialized(ParallelMode.PARALLEL_2P5D_DEP) and \ gpc.is_initialized(ParallelMode.PARALLEL_2P5D_XZ), \ 'Both PARALLEL_2P5D_COL, PARALLEL_2P5D_ROW, PARALLEL_2P5D_DEP and PARALLEL_2P5D_XZ ' \ 'must be initialized by the process group initializer'
#!/usr/bin/env python # -*- encoding: utf-8 -*- from typing import Optional, Tuple import torch from torch import Tensor from torch.cuda.amp import custom_bwd, custom_fwd from colossalai.communication import all_gather, all_reduce, broadcast, reduce, reduce_scatter from colossalai.constants import INPUT_GROUP_3D, WEIGHT_GROUP_3D from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from ._utils import get_parallel_mode_from_env, push_async_grad class _Linear3D(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward( ctx, input_: Tensor, weight: Tensor, weight_id: int, input_parallel_mode: ParallelMode, weight_parallel_mode: ParallelMode, output_parallel_mode: ParallelMode, ) -> Tensor: ctx.weight_id = weight_id ctx.input_parallel_mode = input_parallel_mode ctx.weight_parallel_mode = weight_parallel_mode ctx.output_parallel_mode = output_parallel_mode input_ = all_gather(input_, 0, input_parallel_mode) weight = all_gather(weight, 0, weight_parallel_mode) ctx.save_for_backward(input_, weight) output = torch.matmul(input_, weight) output = reduce_scatter(output, 0, output_parallel_mode) return output @staticmethod @custom_bwd def backward(ctx, output_grad: Tensor) -> Tuple[Tensor, ...]: input_, weight = ctx.saved_tensors output_grad = all_gather(output_grad, 0, ctx.output_parallel_mode) input_grad = torch.matmul(output_grad, weight.transpose(0, 1)) input_grad, input_op = reduce_scatter(input_grad, 0, ctx.input_parallel_mode, async_op=True) weight_grad = torch.matmul( input_.reshape(-1, input_.shape[-1]).transpose(0, 1), output_grad.reshape(-1, output_grad.shape[-1])) weight_grad, op = reduce_scatter(weight_grad, 0, ctx.weight_parallel_mode, async_op=True) weight_grad = push_async_grad(op, weight_grad, ctx.weight_id) input_op.wait() return input_grad, weight_grad, None, None, None, None def linear_3d( input_: Tensor, weight: Tensor, input_parallel_mode: ParallelMode, weight_parallel_mode: ParallelMode, output_parallel_mode: ParallelMode, ) -> Tensor: r"""Linear layer for 3D parallelism. Args: input_ (:class:`torch.tensor`): input matrix. weight (:class:`torch.tensor`): matrix of weight. input_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): input parallel mode. weight_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): weight parallel mode. output_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): output parallel mode. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ return _Linear3D.apply( input_, weight, id(weight), input_parallel_mode, weight_parallel_mode, output_parallel_mode, ) class _Classifier3D(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward( ctx, input_: Tensor, weight: Tensor, bias: Optional[Tensor], weight_id: int, bias_id: Optional[int], input_parallel_mode: ParallelMode, weight_parallel_mode: ParallelMode, output_parallel_mode: ParallelMode, ) -> Tensor: ctx.use_bias = bias is not None ctx.weight_id = weight_id src_rank = gpc.get_ranks_in_group(input_parallel_mode)[gpc.get_local_rank(output_parallel_mode)] weight = broadcast(weight, src_rank, input_parallel_mode) ctx.save_for_backward(input_, weight) output = torch.matmul(input_, weight.transpose(0, 1)) output = all_reduce(output, output_parallel_mode) if bias is not None: ctx.bias_id = bias_id output += bias ctx.src_rank = src_rank ctx.input_parallel_mode = input_parallel_mode ctx.weight_parallel_mode = weight_parallel_mode ctx.output_parallel_mode = output_parallel_mode return output @staticmethod @custom_bwd def backward(ctx, output_grad: Tensor) -> Tuple[Tensor, ...]: input_, weight = ctx.saved_tensors weight_grad = torch.matmul( output_grad.reshape(-1, output_grad.shape[-1]).transpose(0, 1), input_.reshape(-1, input_.shape[-1])) weight_grad = reduce(weight_grad, ctx.src_rank, ctx.input_parallel_mode) if gpc.get_local_rank(ctx.input_parallel_mode) == gpc.get_local_rank(ctx.output_parallel_mode): weight_grad, op = all_reduce(weight_grad, ctx.weight_parallel_mode, async_op=True) weight_grad = push_async_grad(op, weight_grad, ctx.weight_id) else: weight_grad = None if ctx.use_bias: bias_grad = torch.sum(output_grad, dim=tuple(range(len(output_grad.shape))[:-1])) bias_grad = all_reduce(bias_grad, ctx.input_parallel_mode) bias_grad, op = all_reduce(bias_grad, ctx.weight_parallel_mode, async_op=True) bias_grad = push_async_grad(op, bias_grad, ctx.bias_id) else: bias_grad = None input_grad = torch.matmul(output_grad, weight) return input_grad, weight_grad, bias_grad, None, None, None, None, None def classifier_3d( input_: Tensor, weight: Tensor, bias: Optional[Tensor], input_parallel_mode: ParallelMode, weight_parallel_mode: ParallelMode, output_parallel_mode: ParallelMode, ) -> Tensor: r"""3D parallel classifier. Args: input_ (:class:`torch.tensor`): input matrix. weight (:class:`torch.tensor`): matrix of weight. bias (:class:`torch.tensor`): matrix of bias. input_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): input parallel mode. weight_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): weight parallel mode. output_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): output parallel mode. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ return _Classifier3D.apply( input_, weight, bias, id(weight), id(bias) if bias is not None else None, input_parallel_mode, weight_parallel_mode, output_parallel_mode, ) class _VocabParallelClassifier3D(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward( ctx, input_: Tensor, weight: Tensor, bias: Optional[Tensor], weight_id: int, bias_id: Optional[int], input_parallel_mode: ParallelMode, weight_parallel_mode: ParallelMode, output_parallel_mode: ParallelMode, ) -> Tensor: ctx.use_bias = bias is not None ctx.weight_id = weight_id input_ = all_gather(input_, 0, input_parallel_mode) weight = all_gather(weight, 0, weight_parallel_mode).transpose(0, 1) ctx.save_for_backward(input_, weight) output = torch.matmul(input_, weight) output = reduce_scatter(output, 0, output_parallel_mode) if bias is not None: ctx.bias_id = bias_id output += bias ctx.input_parallel_mode = input_parallel_mode ctx.weight_parallel_mode = weight_parallel_mode ctx.output_parallel_mode = output_parallel_mode return output @staticmethod @custom_bwd def backward(ctx, output_grad: Tensor) -> Tuple[Tensor, ...]: input_, weight = ctx.saved_tensors output_grad = all_gather(output_grad, 0, ctx.output_parallel_mode) input_grad = torch.matmul(output_grad, weight.transpose(0, 1)) input_grad, input_op = reduce_scatter(input_grad, 0, ctx.input_parallel_mode, async_op=True) weight_grad = torch.matmul( input_.reshape(-1, input_.shape[-1]).transpose(0, 1), output_grad.reshape(-1, output_grad.shape[-1])) weight_grad, op = reduce_scatter(weight_grad.transpose(0, 1), 0, ctx.weight_parallel_mode, async_op=True) weight_grad = push_async_grad(op, weight_grad, ctx.weight_id) if ctx.use_bias: bias_grad = torch.sum(output_grad, dim=tuple(range(len(output_grad.shape))[:-1])) bias_grad, op = all_reduce(bias_grad, ctx.weight_parallel_mode, async_op=True) bias_grad = push_async_grad(op, bias_grad, ctx.bias_id) else: bias_grad = None input_op.wait() return input_grad, weight_grad, bias_grad, None, None, None, None, None def vocab_parallel_classifier_3d( input_: Tensor, weight: Tensor, bias: Optional[Tensor], input_parallel_mode: ParallelMode, weight_parallel_mode: ParallelMode, output_parallel_mode: ParallelMode, ) -> Tensor: r"""3D vocab parallel classifier. Args: input_ (:class:`torch.tensor`): input matrix. weight (:class:`torch.tensor`): matrix of weight. bias (:class:`torch.tensor`): matrix of bias. input_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): input parallel mode. weight_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): weight parallel mode. output_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): output parallel mode. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ return _VocabParallelClassifier3D.apply( input_, weight, bias, id(weight), id(bias) if bias is not None else None, input_parallel_mode, weight_parallel_mode, output_parallel_mode, ) @torch.jit.script def norm_forward(x: Tensor, mean: Tensor, sqr_mean: Tensor, weight: Tensor, bias: Tensor, eps: float): mu = x - mean var = sqr_mean - mean**2 sigma = torch.sqrt(var + eps) z = mu / sigma output = weight * z + bias return output, mu, sigma @torch.jit.script def norm_backward(grad: Tensor, mu: Tensor, sigma: Tensor, weight: Tensor): # dbias, dweight = grad, grad * mu / sigma dz = grad * weight dmu = dz / sigma dvar = dz * mu * (-0.5) * sigma**(-3) dmean = -dmu dvar = torch.sum(dvar, -1, keepdim=True) dmean = torch.sum(dmean, -1, keepdim=True) return dmu, dmean, dvar class _Layernorm3D(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float32) def forward( ctx, input_: Tensor, weight: Tensor, bias: Tensor, weight_id: int, bias_id: int, normalized_shape: int, eps: float, output_parallel_mode: ParallelMode, input_x_weight_parallel_mode: ParallelMode, ) -> Tensor: ctx.weight_id = weight_id ctx.bias_id = bias_id sum_ = torch.sum(input_, dim=-1, keepdim=True) sqr_sum = torch.sum(input_**2, dim=-1, keepdim=True) mean, sqr_mean = all_reduce(torch.stack((sum_, sqr_sum)), output_parallel_mode) / normalized_shape output, mu, sigma = norm_forward(input_, mean, sqr_mean, weight, bias, eps) ctx.save_for_backward(mu, sigma, weight) ctx.normalized_shape = normalized_shape ctx.output_parallel_mode = output_parallel_mode ctx.input_x_weight_parallel_mode = input_x_weight_parallel_mode return output @staticmethod @custom_bwd def backward(ctx, output_grad: Tensor) -> Tuple[Tensor, ...]: mu, sigma, weight = ctx.saved_tensors bias_grad, weight_grad = output_grad, output_grad * mu / sigma bias_grad = torch.sum(bias_grad, dim=tuple(range(len(bias_grad.shape))[:-1])) bias_grad, op = all_reduce(bias_grad, ctx.input_x_weight_parallel_mode, async_op=True) bias_grad = push_async_grad(op, bias_grad, ctx.bias_id) weight_grad = torch.sum(weight_grad, dim=tuple(range(len(weight_grad.shape))[:-1])) weight_grad, op = all_reduce(weight_grad, ctx.input_x_weight_parallel_mode, async_op=True) weight_grad = push_async_grad(op, weight_grad, ctx.weight_id) dmu, dmean, dvar = norm_backward(output_grad, mu, sigma, weight) dvar, dmean = all_reduce(torch.stack((dvar, dmean)), ctx.output_parallel_mode) input_grad = dmu + (dmean + 2 * dvar * mu) / ctx.normalized_shape return input_grad, weight_grad, bias_grad, None, None, None, None, None, None, None, None def layernorm_3d( input_: Tensor, weight: Tensor, bias: Tensor, normalized_shape: int, eps: float, output_parallel_mode: ParallelMode, input_x_weight_parallel_mode: ParallelMode, ) -> Tensor: r"""3D parallel Layernorm. Args: input_ (:class:`torch.tensor`): input matrix. weight (:class:`torch.tensor`): matrix of weight. bias (:class:`torch.tensor`): matrix of bias. normalized_shape (int): input shape from an expected input of size. :math:`[* \times \text{normalized_shape}[0] \times \text{normalized_shape}[1] \times \ldots \times \text{normalized_shape}[-1]]` If a single integer is used, it is treated as a singleton list, and this module will normalize over the last dimension which is expected to be of that specific size. eps (float): a value added to the denominator for numerical stability output_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): output parallel mode. input_x_weight_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): input x weight parallel mode. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ return _Layernorm3D.apply( input_, weight, bias, id(weight), id(bias), normalized_shape, eps, output_parallel_mode, input_x_weight_parallel_mode, ) def split_tensor_3d(tensor: Tensor, dim: int, parallel_mode: ParallelMode) -> Tensor: r"""Splits 3D parallel tensor in specified dimension. Args: tensor (:class:`torch.tensor`): Input tensor. dim (int): Specified dimension in which to split. parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`, optional): Parallel mode. Returns: :class:`torch.tensor`: The tensor has been split. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_. """ dim_size = tensor.size(dim) world_size = gpc.get_world_size(parallel_mode) assert dim_size % world_size == 0, \ f'The dimension {dim} to split, size ({dim_size}) is not a multiple of world size ({world_size}), ' \ f'cannot split tensor evenly' if tensor.size(dim) <= 1: return tensor output = torch.chunk(tensor, gpc.get_world_size(parallel_mode), dim=dim)[gpc.get_local_rank(parallel_mode)].contiguous() return output def split_batch_3d(input_: Tensor, dim: int = 0, input_parallel_mode: ParallelMode = ParallelMode.PARALLEL_3D_INPUT, weight_parallel_mode: ParallelMode = ParallelMode.PARALLEL_3D_WEIGHT) -> Tensor: r"""Splits 3D tensor in batch. Args: input_ (:class:`torch.tensor`): Input tensor. dim (int): Specified dimension in which to split. input_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`, optional): input parallel mode. weight_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`, optional): weight parallel mode. Returns: :class:`torch.tensor`: The tensor has been split. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_. """ if input_.size(dim) <= 1: return input_ weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D) input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D) weight_world_size = gpc.get_world_size(weight_parallel_mode) input_world_size = gpc.get_world_size(input_parallel_mode) output = torch.chunk(input_, weight_world_size, dim=dim)[gpc.get_local_rank(weight_parallel_mode)].contiguous() output = torch.chunk(output, input_world_size, dim=dim)[gpc.get_local_rank(input_parallel_mode)].contiguous() return output class _ReduceTensor3D(torch.autograd.Function): @staticmethod def forward(ctx, input_, parallel_mode): return all_reduce(input_, parallel_mode) @staticmethod def backward(ctx, output_grad): return output_grad, None def reduce_tensor_3d(tensor: Tensor, parallel_mode: ParallelMode) -> Tensor: r"""All-reduce the input Args: tensor (:class:`torch.tensor`): Input tensor. parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): Parallel mode. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_. """ return _ReduceTensor3D.apply(tensor, parallel_mode) class _AllGatherTensor3D(torch.autograd.Function): @staticmethod def forward(ctx, input_, dim, parallel_mode): ctx.dim = dim ctx.parallel_mode = parallel_mode output = all_gather(input_, dim, parallel_mode) return output @staticmethod def backward(ctx, output_grad): input_grad = reduce_scatter(output_grad, ctx.dim, ctx.parallel_mode) return input_grad, None, None def all_gather_tensor_3d(tensor: Tensor, dim: int, parallel_mode: ParallelMode) -> Tensor: r"""All-reduce the gradient in backward pass. Args: tensor (:class:`torch.tensor`): Input tensor. dim (int): Dimension to gather. parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): Parallel mode. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_. """ return _AllGatherTensor3D.apply(tensor, dim, parallel_mode) class _ReduceScatterTensor3D(torch.autograd.Function): @staticmethod def forward(ctx, input_, dim, parallel_mode): ctx.dim = dim ctx.parallel_mode = parallel_mode return reduce_scatter(input_, dim, parallel_mode) @staticmethod def backward(ctx, output_grad): input_grad = all_gather(output_grad, ctx.dim, ctx.parallel_mode) return input_grad, None, None def reduce_scatter_tensor_3d(tensor: Tensor, dim: int, parallel_mode: ParallelMode) -> Tensor: r"""Reduce-scatter the input. Args: tensor (:class:`torch.tensor`): Input tensor. dim (int): Dimension to scatter. parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): Parallel mode. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ dim_size = tensor.size(dim) world_size = gpc.get_world_size(parallel_mode) assert dim_size % world_size == 0, \ f'The batch size ({dim_size}) is not a multiple of square of 3D depth ({world_size}).' return _ReduceScatterTensor3D.apply(tensor, dim, parallel_mode) class _ReduceByBatch3D(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float32) def forward(ctx, input_: Tensor, input_parallel_mode: ParallelMode, weight_parallel_mode: ParallelMode, reduce_mean: bool = False) -> Tensor: output = all_reduce(input_, input_parallel_mode) output = all_reduce(output, weight_parallel_mode) ctx.reduce_mean = reduce_mean if reduce_mean: reduce_size = gpc.get_world_size(input_parallel_mode) * gpc.get_world_size(weight_parallel_mode) ctx.reduce_size = reduce_size return output.clone() / reduce_size return output.clone() @staticmethod @custom_bwd def backward(ctx, output_grad: Tensor) -> Tuple[Tensor, ...]: if ctx.reduce_mean: return output_grad / ctx.reduce_size, None, None, None else: return output_grad, None, None, None def reduce_by_batch_3d(tensor: Tensor, input_parallel_mode: ParallelMode, weight_parallel_mode: ParallelMode, reduce_mean: bool = False) -> Tensor: r"""All-reduce the input from the model parallel region. Args: input_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): input parallel mode. weight_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): weight parallel mode. reduce_mean (bool, optional): If set to ``True``, it will divide the output by (input parallel size * weight parallel size), default to False. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ return _ReduceByBatch3D.apply(tensor, input_parallel_mode, weight_parallel_mode, reduce_mean)
from ._operation import reduce_by_batch_3d, split_batch_3d, split_tensor_3d from .layers import (Classifier3D, Embedding3D, LayerNorm3D, Linear3D, PatchEmbedding3D, VocabParallelClassifier3D, VocabParallelEmbedding3D) __all__ = [ 'reduce_by_batch_3d', 'split_tensor_3d', 'split_batch_3d', 'Linear3D', 'LayerNorm3D', 'PatchEmbedding3D', 'Classifier3D', 'Embedding3D', 'VocabParallelEmbedding3D', 'VocabParallelClassifier3D' ]
import math from collections import OrderedDict from typing import Callable import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from torch.nn import Parameter from colossalai.communication import all_reduce, broadcast from colossalai.constants import INPUT_GROUP_3D, INPUT_X_WEIGHT_3D, OUTPUT_GROUP_3D, OUTPUT_X_WEIGHT_3D, WEIGHT_GROUP_3D from colossalai.context import ParallelMode, seed from colossalai.core import global_context as gpc from colossalai.global_variables import tensor_parallel_env as env from colossalai.nn import init as init from colossalai.nn.layer.base_layer import ParallelLayer from colossalai.registry import LAYERS from colossalai.utils.checkpointing import ( broadcast_state_dict, gather_tensor_parallel_state_dict, partition_tensor_parallel_state_dict, ) from colossalai.utils.cuda import get_current_device from ..utils import divide, set_tensor_parallel_attribute_by_partition, to_2tuple from ._operation import ( all_gather_tensor_3d, classifier_3d, layernorm_3d, linear_3d, reduce_scatter_tensor_3d, split_batch_3d, split_tensor_3d, vocab_parallel_classifier_3d, ) from ._utils import get_depth_from_env, get_parallel_mode_from_env, register_async_grad_hook, swap_in_out_group @LAYERS.register_module class LayerNorm3D(ParallelLayer): r"""Layer Normalization for 3D parallelism. Args: normalized_shape (int): input shape from an expected input of size. :math:`[* \times \text{normalized_shape}[0] \times \text{normalized_shape}[1] \times \ldots \times \text{normalized_shape}[-1]]` If a single integer is used, it is treated as a singleton list, and this module will normalize over the last dimension which is expected to be of that specific size. eps (float, optional): a value added to the denominator for numerical stability, defaults to 1e-12. bias (bool, optional): Whether to add a bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. """ def __init__(self, normalized_shape: int, eps: float = 1e-12, bias=True, dtype=None): super().__init__() self.input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D) self.weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D) self.output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D) self.input_x_weight_parallel_mode = get_parallel_mode_from_env(INPUT_X_WEIGHT_3D) self.depth = get_depth_from_env() self.normalized_shape = normalized_shape self.normalized_shape_per_partition = divide(normalized_shape, self.depth) self.weight = Parameter( torch.ones(self.normalized_shape_per_partition, device=get_current_device(), dtype=dtype)) if bias: self.bias = Parameter( torch.zeros(self.normalized_shape_per_partition, device=get_current_device(), dtype=dtype)) else: self.bias = None self.variance_epsilon = eps self.reset_parameters() self._set_tensor_parallel_attributes() def _set_tensor_parallel_attributes(self) -> None: set_tensor_parallel_attribute_by_partition(self.weight, self.depth) if self.bias is not None: set_tensor_parallel_attribute_by_partition(self.bias, self.depth) def reset_parameters(self) -> None: init.ones_()(self.weight) register_async_grad_hook(self.weight) if self.bias is not None: init.zeros_()(self.bias) register_async_grad_hook(self.bias) def _load_from_global_state_dict(self, state_dict, prefix, *args, **kwargs): local_state = OrderedDict() weight_key = prefix + 'weight' bias_key = prefix + 'bias' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight.transpose(0, 1) # bias bias = state_dict.pop(bias_key, None) if bias is not None: local_state[bias_key] = bias # partition in output groups if gpc.get_local_rank(self.input_parallel_mode) == 0 and \ gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = partition_tensor_parallel_state_dict( local_state, self.output_parallel_mode, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True, }, ) # broadcast in input groups if gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = broadcast_state_dict(local_state, self.input_parallel_mode) # broadcast in weight groups local_state = broadcast_state_dict(local_state, self.weight_parallel_mode) super()._load_from_global_state_dict(local_state, prefix, *args, **kwargs) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' bias_key = prefix + 'bias' local_state = OrderedDict({weight_key: self.weight}) if self.bias is not None: local_state[bias_key] = self.bias # gather in output groups if gpc.get_local_rank(self.input_parallel_mode) == 0 and \ gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = gather_tensor_parallel_state_dict( local_state, self.output_parallel_mode, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, keep_vars=keep_vars, ) if gpc.get_local_rank(ParallelMode.TENSOR) == 0: destination.update(local_state) def forward(self, input_: Tensor) -> Tensor: return layernorm_3d( input_, self.weight, self.bias, self.normalized_shape, self.variance_epsilon, self.output_parallel_mode, self.input_x_weight_parallel_mode, ) @LAYERS.register_module class Linear3D(ParallelLayer): r"""Linear layer for 3D parallelism. Args: in_features (int): size of each input sample. out_features (int): size of each output sample. bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. More details about ``initializer`` please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, in_features: int, out_features: int, bias: bool = True, dtype: torch.dtype = None, skip_bias_add: bool = False, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)): super().__init__() self.in_features = in_features self.out_features = out_features self.input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D) self.weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D) self.output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D) self.output_x_weight_parallel_mode = get_parallel_mode_from_env(OUTPUT_X_WEIGHT_3D) self.depth = get_depth_from_env() self.skip_bias_add = skip_bias_add self.in_features_per_partition = divide(in_features, self.depth**2) self.out_features_per_partition = divide(out_features, self.depth) self.bias_features_per_partition = divide(out_features, self.depth) self.weight = Parameter( torch.empty(self.in_features_per_partition, self.out_features_per_partition, device=get_current_device(), dtype=dtype)) if bias: self.bias = Parameter( torch.zeros(self.bias_features_per_partition, device=get_current_device(), dtype=dtype)) else: self.bias = None self.reset_parameters(weight_initializer, bias_initializer) self._set_tensor_parallel_attributes() swap_in_out_group() def _set_tensor_parallel_attributes(self) -> None: set_tensor_parallel_attribute_by_partition(self.weight, self.depth**3) if self.bias is not None: set_tensor_parallel_attribute_by_partition(self.bias, self.depth) def _sync_grad_hook(self, grad) -> Tensor: grad = all_reduce(grad.clone(), self.output_x_weight_parallel_mode) return grad def reset_parameters(self, weight_initializer, bias_initializer) -> None: with seed(ParallelMode.TENSOR): fan_in, fan_out = self.in_features, self.out_features weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) register_async_grad_hook(self.weight) if self.bias is not None: bias_initializer(self.bias, fan_in=fan_in) broadcast(self.bias, gpc.get_ranks_in_group(self.output_x_weight_parallel_mode)[0], self.output_x_weight_parallel_mode) self.bias.register_hook(self._sync_grad_hook) def _load_from_global_state_dict(self, state_dict, prefix, *args, **kwargs): local_state = OrderedDict() weight_key = prefix + 'weight' bias_key = prefix + 'bias' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight.transpose(0, 1) # bias if self.bias is not None: bias = state_dict.pop(bias_key, None) if bias is not None: local_state[bias_key] = bias # partition in output groups if gpc.get_local_rank(self.input_parallel_mode) == 0 and \ gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = partition_tensor_parallel_state_dict( local_state, self.output_parallel_mode, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }, ) # partition in input groups if gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = partition_tensor_parallel_state_dict( local_state, self.input_parallel_mode, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, ) # partition in weight groups local_state = partition_tensor_parallel_state_dict( local_state, self.weight_parallel_mode, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }, ) super()._load_from_global_state_dict(local_state, prefix, *args, **kwargs) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' bias_key = prefix + 'bias' local_state = OrderedDict({weight_key: self.weight}) if self.bias is not None: local_state[bias_key] = self.bias # gather in weight groups local_state = gather_tensor_parallel_state_dict( local_state, self.weight_parallel_mode, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }, keep_vars=keep_vars, ) # gather in input groups if gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = gather_tensor_parallel_state_dict( local_state, self.input_parallel_mode, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, keep_vars=keep_vars, ) # gather in output groups if gpc.get_local_rank(self.input_parallel_mode) == 0 and \ gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = gather_tensor_parallel_state_dict( local_state, self.output_parallel_mode, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }, keep_vars=keep_vars, ) if gpc.get_local_rank(ParallelMode.TENSOR) == 0: local_state[weight_key] = local_state[weight_key].transpose(0, 1) destination.update(local_state) def forward(self, input_: Tensor) -> Tensor: output = linear_3d( input_, self.weight, self.input_parallel_mode, self.weight_parallel_mode, self.output_parallel_mode, ) if not self.skip_bias_add: if self.bias is not None: output = output + self.bias return output else: return output, self.bias @LAYERS.register_module class Classifier3D(ParallelLayer): r"""Classifier for 3D parallelism. Args: in_features (int): size of each input sample. num_classes (int): number of classes. weight (:class:`torch.nn.Parameter`, optional): weight of the classifier, defaults to None. bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. More details about ``initializer`` please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, in_features: int, num_classes: int, weight: Parameter = None, bias: bool = True, dtype: torch.dtype = None, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)): super().__init__() self.in_features = in_features self.num_classes = num_classes self.input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D) self.weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D) self.output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D) self.depth = get_depth_from_env() self.in_features_per_partition = divide(in_features, self.depth) if weight is not None: self.weight = weight self.has_weight = False else: self.weight = Parameter( torch.empty(self.num_classes, self.in_features_per_partition, device=get_current_device(), dtype=dtype)) self.has_weight = True if bias: self.bias = Parameter(torch.zeros(self.num_classes, device=get_current_device(), dtype=dtype)) else: self.bias = None self.reset_parameters(weight_initializer, bias_initializer) self._set_tensor_parallel_attributes() def _set_tensor_parallel_attributes(self) -> None: if self.has_weight: set_tensor_parallel_attribute_by_partition(self.weight, self.depth) def reset_parameters(self, weight_initializer, bias_initializer) -> None: with seed(ParallelMode.TENSOR): fan_in, fan_out = self.in_features, self.num_classes if self.has_weight: weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) broadcast(self.weight, gpc.get_ranks_in_group(self.weight_parallel_mode)[0], self.weight_parallel_mode) register_async_grad_hook(self.weight) if self.bias is not None: bias_initializer(self.bias, fan_in=fan_in) broadcast(self.bias, gpc.get_ranks_in_group(ParallelMode.TENSOR)[0], ParallelMode.TENSOR) register_async_grad_hook(self.bias) def _load_from_global_state_dict(self, state_dict, prefix, *args, **kwargs): local_state = OrderedDict() weight_key = prefix + 'weight' bias_key = prefix + 'bias' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight if self.has_weight: weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight # bias if self.bias is not None: bias = state_dict.pop(bias_key, None) if bias is not None: local_state[bias_key] = bias # partition in output groups if gpc.get_local_rank(self.input_parallel_mode) == 0 and \ gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = partition_tensor_parallel_state_dict( local_state, self.output_parallel_mode, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }, ) # broadcast in input groups if gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = broadcast_state_dict(local_state, self.input_parallel_mode) # broadcast in weight groups local_state = broadcast_state_dict(local_state, self.weight_parallel_mode) super()._load_from_global_state_dict(local_state, prefix, *args, **kwargs) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' bias_key = prefix + 'bias' local_state = OrderedDict() if self.has_weight: local_state[weight_key] = self.weight if self.bias is not None: local_state[bias_key] = self.bias # gather in output groups if gpc.get_local_rank(self.input_parallel_mode) == 0 and \ gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = gather_tensor_parallel_state_dict( local_state, self.output_parallel_mode, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }, keep_vars=keep_vars, ) if gpc.get_local_rank(ParallelMode.TENSOR) == 0: destination.update(local_state) def forward(self, input_: Tensor) -> Tensor: return classifier_3d( input_, self.weight, self.bias, self.input_parallel_mode, self.weight_parallel_mode, self.output_parallel_mode, ) @LAYERS.register_module class VocabParallelClassifier3D(ParallelLayer): r"""Vocab parallel classifier layer for 3D parallelism. Args: in_features (int): size of each input sample. num_classes (int): number of classes. weight (:class:`torch.nn.Parameter`, optional): weight of the classifier, defaults to None. bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. More details about ``initializer`` please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, in_features: int, num_classes: int, weight: Parameter = None, bias: bool = True, dtype: torch.dtype = None, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)): super().__init__() self.in_features = in_features self.num_classes = num_classes self.input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D) self.weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D) self.output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D) self.output_x_weight_parallel_mode = get_parallel_mode_from_env(OUTPUT_X_WEIGHT_3D) self.depth = get_depth_from_env() self.in_features_per_partition = divide(in_features, self.depth) self.out_features_per_partition = divide(num_classes, self.depth**2) self.bias_features_per_partition = divide(num_classes, self.depth) if weight is not None: self.weight = weight self.has_weight = False else: self.weight = Parameter( torch.empty(self.out_features_per_partition, self.in_features_per_partition, device=get_current_device(), dtype=dtype)) self.has_weight = True if bias: self.bias = Parameter( torch.zeros(self.bias_features_per_partition, device=get_current_device(), dtype=dtype)) else: self.bias = None self.reset_parameters(weight_initializer, bias_initializer) self._set_tensor_parallel_attributes() swap_in_out_group() env.vocab_parallel = True def _set_tensor_parallel_attributes(self) -> None: if self.has_weight: set_tensor_parallel_attribute_by_partition(self.weight, self.depth**3) if self.bias is not None: set_tensor_parallel_attribute_by_partition(self.bias, self.depth) def reset_parameters(self, weight_initializer, bias_initializer) -> None: with seed(ParallelMode.TENSOR): fan_in, fan_out = self.in_features, self.num_classes if self.has_weight: weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) register_async_grad_hook(self.weight) if self.bias is not None: bias_initializer(self.bias, fan_in=fan_in) broadcast(self.bias, gpc.get_ranks_in_group(self.output_x_weight_parallel_mode)[0], self.output_x_weight_parallel_mode) register_async_grad_hook(self.bias) def _load_from_global_state_dict(self, state_dict, prefix, *args, **kwargs): local_state = OrderedDict() weight_key = prefix + 'weight' bias_key = prefix + 'bias' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight if self.has_weight: weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight # bias if self.bias is not None: bias = state_dict.pop(bias_key, None) if bias is not None: local_state[bias_key] = bias # partition in output groups if gpc.get_local_rank(self.input_parallel_mode) == 0 and \ gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = partition_tensor_parallel_state_dict( local_state, self.output_parallel_mode, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }, ) # partition in input groups if gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = partition_tensor_parallel_state_dict( local_state, self.input_parallel_mode, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, ) # partition in weight groups local_state = partition_tensor_parallel_state_dict( local_state, self.weight_parallel_mode, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }, ) super()._load_from_global_state_dict(local_state, prefix, *args, **kwargs) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' bias_key = prefix + 'bias' local_state = OrderedDict({weight_key: self.weight}) if self.bias is not None: local_state[bias_key] = self.bias # gather in weight groups local_state = gather_tensor_parallel_state_dict( local_state, self.weight_parallel_mode, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }, keep_vars=keep_vars, ) # gather in input groups if gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = gather_tensor_parallel_state_dict( local_state, self.input_parallel_mode, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, keep_vars=keep_vars, ) # gather in output groups if gpc.get_local_rank(self.input_parallel_mode) == 0 and \ gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = gather_tensor_parallel_state_dict( local_state, self.output_parallel_mode, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }, keep_vars=keep_vars, ) if gpc.get_local_rank(ParallelMode.TENSOR) == 0: destination.update(local_state) def forward(self, input_: Tensor) -> Tensor: return vocab_parallel_classifier_3d( input_, self.weight, self.bias, self.input_parallel_mode, self.weight_parallel_mode, self.output_parallel_mode, ) @LAYERS.register_module class PatchEmbedding3D(ParallelLayer): r"""2D Image to Patch Embedding. Args: img_size (int): image size. patch_size (int): patch size. in_chans (int): number of channels of input image. embed_size (int): size of embedding. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. flatten (bool, optional): whether to flatten output tensor, defaults to True. weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. position_embed_initializer (:class:`typing.Callable`, optional): The initializer of position embedding, defaults to zeros initializer. More details about ``initializer`` please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, img_size: int, patch_size: int, in_chans: int, embed_size: int, flatten: bool = True, dtype: torch.dtype = None, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1), position_embed_initializer: Callable = init.zeros_()): super().__init__() self.depth = get_depth_from_env() self.input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D) self.weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D) self.output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D) self.input_x_weight_parallel_mode = get_parallel_mode_from_env(INPUT_X_WEIGHT_3D) img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.embed_size = embed_size embed_size_per_partition = embed_size // self.depth self.flatten = flatten self.weight = nn.Parameter( torch.empty((embed_size_per_partition, in_chans, *self.patch_size), device=get_current_device(), dtype=dtype)) self.bias = nn.Parameter(torch.empty(embed_size_per_partition, device=get_current_device(), dtype=dtype)) self.cls_token = nn.Parameter( torch.zeros((1, 1, embed_size_per_partition), device=get_current_device(), dtype=dtype)) self.pos_embed = nn.Parameter( torch.zeros((1, self.num_patches + 1, embed_size_per_partition), device=get_current_device(), dtype=dtype)) self.reset_parameters(weight_initializer, bias_initializer, position_embed_initializer) self._set_tensor_parallel_attributes() def _set_tensor_parallel_attributes(self) -> None: set_tensor_parallel_attribute_by_partition(self.weight, self.depth) set_tensor_parallel_attribute_by_partition(self.bias, self.depth) set_tensor_parallel_attribute_by_partition(self.cls_token, self.depth) set_tensor_parallel_attribute_by_partition(self.pos_embed, self.depth) def _sync_grad_hook(self, grad) -> Tensor: grad = all_reduce(grad.clone(), self.input_x_weight_parallel_mode) return grad def reset_parameters(self, weight_initializer, bias_initializer, position_embed_initializer) -> None: with seed(ParallelMode.TENSOR): fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight) fan_out = self.embed_size weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) bias_initializer(self.bias, fan_in=fan_in) position_embed_initializer(self.pos_embed) src_rank = gpc.get_ranks_in_group(self.input_x_weight_parallel_mode)[0] broadcast(self.weight, src_rank, self.input_x_weight_parallel_mode) broadcast(self.bias, src_rank, self.input_x_weight_parallel_mode) broadcast(self.pos_embed, src_rank, self.input_x_weight_parallel_mode) self.weight.register_hook(self._sync_grad_hook) self.bias.register_hook(self._sync_grad_hook) self.cls_token.register_hook(self._sync_grad_hook) self.pos_embed.register_hook(self._sync_grad_hook) def _load_from_global_state_dict(self, state_dict, prefix, *args, **kwargs): local_state = OrderedDict() weight_key = prefix + 'weight' bias_key = prefix + 'bias' cls_token_key = prefix + 'cls_token' pos_embed_key = prefix + 'pos_embed' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight # bias bias = state_dict.pop(bias_key, None) if bias is not None: local_state[bias_key] = bias # cls token cls_token = state_dict.pop(cls_token_key, None) if cls_token is not None: local_state[cls_token_key] = cls_token # pos embed pos_embed = state_dict.pop(pos_embed_key, None) if pos_embed is not None: local_state[pos_embed_key] = pos_embed # partition in output groups if gpc.get_local_rank(self.input_parallel_mode) == 0 and \ gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = partition_tensor_parallel_state_dict( local_state, self.output_parallel_mode, dims={ weight_key: 0, bias_key: 0, cls_token_key: -1, pos_embed_key: -1 }, partition_states={ weight_key: True, bias_key: True, cls_token_key: True, pos_embed_key: True }, ) # broadcast in input groups if gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = broadcast_state_dict(local_state, self.input_parallel_mode) # broadcast in weight groups local_state = broadcast_state_dict(local_state, self.weight_parallel_mode) super()._load_from_global_state_dict(local_state, prefix, *args, **kwargs) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' bias_key = prefix + 'bias' cls_token_key = prefix + 'cls_token' pos_embed_key = prefix + 'pos_embed' local_state = OrderedDict({ weight_key: self.weight, bias_key: self.bias, cls_token_key: self.cls_token, pos_embed_key: self.pos_embed }) # gather in output groups if gpc.get_local_rank(self.input_parallel_mode) == 0 and \ gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = gather_tensor_parallel_state_dict( local_state, self.output_parallel_mode, dims={ weight_key: 0, bias_key: 0, cls_token_key: -1, pos_embed_key: -1 }, partition_states={ weight_key: True, bias_key: True, cls_token_key: True, pos_embed_key: True }, keep_vars=keep_vars, ) if gpc.get_local_rank(ParallelMode.TENSOR) == 0: destination.update(local_state) def forward(self, input_: Tensor) -> Tensor: input_ = split_batch_3d(input_, input_parallel_mode=self.input_parallel_mode, weight_parallel_mode=self.weight_parallel_mode) output = F.conv2d(input_, self.weight, self.bias, stride=self.patch_size) if self.flatten: output = output.flatten(2).transpose(1, 2) # BCHW -> BNC cls_token = self.cls_token.expand(output.shape[0], -1, -1) output = torch.cat((cls_token, output), dim=1) output = output + self.pos_embed return output @LAYERS.register_module class Embedding3D(ParallelLayer): r"""Embedding for 3D parallelism. Args: num_embeddings (int): number of embeddings. embedding_dim (int): dimension of embedding. padding_idx (int, optional): If specified, the entries at padding_idx do not contribute to the gradient; therefore, the embedding vector at padding_idx is not updated during training, i.e. it remains as a fixed “pad”, defaults to None. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. weight_initializer (:class:`typing.Callable`, optional): he initializer of weight, defaults to normal initializer. The ``args`` and ``kwargs`` used in :class:``torch.nn.functional.embedding`` should contain: :: max_norm (float, optional): If given, each embedding vector with norm larger than max_norm is renormalized to have norm max_norm. Note: this will modify weight in-place. norm_type (float, optional): The p of the p-norm to compute for the max_norm option. Default 2. scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default False. sparse (bool, optional): If True, gradient w.r.t. weight will be a sparse tensor. Default False. More details about ``args`` and ``kwargs`` could be found in `Embedding <https://pytorch.org/docs/stable/generated/torch.nn.functional.embedding.html#torch.nn.functional.embedding>`_. More details about initializer please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_ """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int = None, dtype: torch.dtype = None, weight_initializer: Callable = init.normal_(), *args, **kwargs): super().__init__() self.depth = get_depth_from_env() self.input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D) self.weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D) self.output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D) self.input_x_weight_parallel_mode = get_parallel_mode_from_env(INPUT_X_WEIGHT_3D) self.num_embeddings = num_embeddings self.embed_dim = embedding_dim embed_dim_per_partition = divide(embedding_dim, self.depth) self.padding_idx = padding_idx self.embed_args = args self.embed_kwargs = kwargs self.weight = nn.Parameter( torch.empty((num_embeddings, embed_dim_per_partition), device=get_current_device(), dtype=dtype)) self.reset_parameters(weight_initializer) self._set_tensor_parallel_attributes() def _set_tensor_parallel_attributes(self) -> None: set_tensor_parallel_attribute_by_partition(self.weight, self.depth) def _sync_grad_hook(self, grad) -> Tensor: grad = all_reduce(grad.clone(), self.input_x_weight_parallel_mode) return grad def reset_parameters(self, weight_initializer) -> None: with seed(ParallelMode.TENSOR): fan_in, fan_out = self.num_embeddings, self.embed_dim weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) self._fill_padding_idx_with_zero() broadcast(self.weight, gpc.get_ranks_in_group(self.input_x_weight_parallel_mode)[0], self.input_x_weight_parallel_mode) self.weight.register_hook(self._sync_grad_hook) def _fill_padding_idx_with_zero(self) -> None: if self.padding_idx is not None: with torch.no_grad(): self.weight[self.padding_idx].fill_(0) def _load_from_global_state_dict(self, state_dict, prefix, *args, **kwargs): local_state = OrderedDict() weight_key = prefix + 'weight' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight # partition in output groups if gpc.get_local_rank(self.input_parallel_mode) == 0 and \ gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = partition_tensor_parallel_state_dict( local_state, self.output_parallel_mode, dims={weight_key: 0}, partition_states={weight_key: True}, ) # broadcast in input groups if gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = broadcast_state_dict(local_state, self.input_parallel_mode) # broadcast in weight groups local_state = broadcast_state_dict(local_state, self.weight_parallel_mode) super()._load_from_global_state_dict(local_state, prefix, *args, **kwargs) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' local_state = OrderedDict({weight_key: self.weight}) # gather in output groups if gpc.get_local_rank(self.input_parallel_mode) == 0 and \ gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = gather_tensor_parallel_state_dict( local_state, self.output_parallel_mode, dims={weight_key: 0}, partition_states={weight_key: True}, keep_vars=keep_vars, ) if gpc.get_local_rank(ParallelMode.TENSOR) == 0: destination.update(local_state) def forward(self, input_: Tensor) -> Tensor: input_ = split_batch_3d(input_, input_parallel_mode=self.input_parallel_mode, weight_parallel_mode=self.weight_parallel_mode) output = F.embedding(input_, self.weight, self.padding_idx, *self.embed_args, **self.embed_kwargs) return output @LAYERS.register_module class VocabParallelEmbedding3D(ParallelLayer): r"""Embedding parallelized in the vocabulary dimension. Args: num_embeddings (int): number of embeddings. embedding_dim (int): dimension of embedding. padding_idx (int, optional): If specified, the entries at padding_idx do not contribute to the gradient; therefore, the embedding vector at padding_idx is not updated during training, i.e. it remains as a fixed “pad”, defaults to None. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. weight_initializer (:class:`typing.Callable`, optional): he initializer of weight, defaults to normal initializer. The ``args`` and ``kwargs`` used in :class:``torch.nn.functional.embedding`` should contain: :: max_norm (float, optional): If given, each embedding vector with norm larger than max_norm is renormalized to have norm max_norm. Note: this will modify weight in-place. norm_type (float, optional): The p of the p-norm to compute for the max_norm option. Default 2. scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default False. sparse (bool, optional): If True, gradient w.r.t. weight will be a sparse tensor. Default False. More details about ``args`` and ``kwargs`` could be found in `Embedding <https://pytorch.org/docs/stable/generated/torch.nn.functional.embedding.html#torch.nn.functional.embedding>`_. More details about initializer please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int = None, dtype: torch.dtype = None, weight_initializer: Callable = init.normal_(), *args, **kwargs): super().__init__() self.num_embeddings = num_embeddings self.embed_dim = embedding_dim self.padding_idx = padding_idx self.embed_args = args self.embed_kwargs = kwargs self.depth = get_depth_from_env() self.input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D) self.weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D) self.output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D) self.num_embeddings_per_partition = divide(self.num_embeddings, self.depth**2) self.embed_dim_per_partition = divide(self.embed_dim, self.depth) vocab_parallel_rank = gpc.get_local_rank(self.input_parallel_mode) self.vocab_start_index = vocab_parallel_rank * self.num_embeddings_per_partition * self.depth self.vocab_end_index = self.vocab_start_index + self.num_embeddings_per_partition * self.depth self.weight = Parameter( torch.empty((self.num_embeddings_per_partition, self.embed_dim_per_partition), device=get_current_device(), dtype=dtype)) self.reset_parameters(weight_initializer) self._set_tensor_parallel_attributes() env.vocab_parallel = True def _set_tensor_parallel_attributes(self): set_tensor_parallel_attribute_by_partition(self.weight, self.depth**3) def reset_parameters(self, weight_initializer) -> None: with seed(ParallelMode.TENSOR): fan_in, fan_out = self.num_embeddings, self.embed_dim weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) self._fill_padding_idx_with_zero() def _fill_padding_idx_with_zero(self) -> None: if self.padding_idx is not None and \ self.padding_idx >= self.vocab_start_index and self.padding_idx < self.vocab_end_index: with torch.no_grad(): self.weight[self.padding_idx - self.vocab_start_index].fill_(0) def _load_from_global_state_dict(self, state_dict, prefix, *args, **kwargs): local_state = OrderedDict() weight_key = prefix + 'weight' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight # partition in output groups if gpc.get_local_rank(self.input_parallel_mode) == 0 and \ gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = partition_tensor_parallel_state_dict( local_state, self.output_parallel_mode, dims={weight_key: -1}, partition_states={weight_key: True}, ) # partition in input groups if gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = partition_tensor_parallel_state_dict( local_state, self.input_parallel_mode, dims={weight_key: 0}, partition_states={weight_key: True}, ) # partition in weight groups local_state = partition_tensor_parallel_state_dict( local_state, self.weight_parallel_mode, dims={weight_key: 0}, partition_states={weight_key: True}, ) super()._load_from_global_state_dict(local_state, prefix, *args, **kwargs) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' local_state = OrderedDict({weight_key: self.weight}) # gather in weight groups local_state = gather_tensor_parallel_state_dict( local_state, self.weight_parallel_mode, dims={weight_key: 0}, partition_states={weight_key: True}, keep_vars=keep_vars, ) # gather in input groups if gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = gather_tensor_parallel_state_dict( local_state, self.input_parallel_mode, dims={weight_key: 0}, partition_states={weight_key: True}, keep_vars=keep_vars, ) # gather in output groups if gpc.get_local_rank(self.input_parallel_mode) == 0 and \ gpc.get_local_rank(self.weight_parallel_mode) == 0: local_state = gather_tensor_parallel_state_dict( local_state, self.output_parallel_mode, dims={weight_key: -1}, partition_states={weight_key: True}, keep_vars=keep_vars, ) if gpc.get_local_rank(ParallelMode.TENSOR) == 0: destination.update(local_state) def forward(self, input_: Tensor) -> Tensor: input_ = split_tensor_3d(input_, 0, self.weight_parallel_mode) input_mask = (input_ < self.vocab_start_index) | (input_ >= self.vocab_end_index) masked_input = input_.clone() - self.vocab_start_index masked_input[input_mask] = 0 weight = all_gather_tensor_3d(self.weight, 0, self.weight_parallel_mode) output_parallel = F.embedding(masked_input, weight, self.padding_idx, *self.embed_args, **self.embed_kwargs) output_parallel[input_mask, :] = 0. output = reduce_scatter_tensor_3d(output_parallel, 0, self.input_parallel_mode) return output
from collections import OrderedDict from functools import partial import torch from torch import Tensor from colossalai.constants import INPUT_GROUP_3D, INPUT_X_WEIGHT_3D, OUTPUT_GROUP_3D, OUTPUT_X_WEIGHT_3D, WEIGHT_GROUP_3D from colossalai.core import global_context as gpc from colossalai.global_variables import tensor_parallel_env as env def get_depth_from_env() -> int: try: depth = env.depth_3d assert depth > 0, 'DEPTH must be greater than zero' return depth except KeyError as e: raise EnvironmentError('DEPTH is not found in the current environment, ' 'please make sure that you have used the correct process group initializer') def get_parallel_mode_from_env(group): assert group in [INPUT_GROUP_3D, WEIGHT_GROUP_3D, OUTPUT_GROUP_3D, INPUT_X_WEIGHT_3D, OUTPUT_X_WEIGHT_3D], \ f'{group} is not valid for 3D tensor parallelism.' return getattr(env, group) def swap_in_out_group(): env.input_group_3d, env.output_group_3d = env.output_group_3d, env.input_group_3d env.input_x_weight_group_3d, env.output_x_weight_group_3d = ( env.output_x_weight_group_3d, env.input_x_weight_group_3d, ) def dbg_check_shape(tensor: Tensor, shape: tuple): rank = gpc.get_global_rank() if rank == 0: print(tensor.shape) assert tensor.shape == shape, \ '{} does not match {}'.format(tensor.shape, shape) class AsyncGradientBucket(object): def __init__(self): self.bucket = OrderedDict() def __len__(self): return len(self.bucket) def push(self, async_op, grad_tensor, param_id): self.bucket[param_id] = tuple((async_op, grad_tensor)) return torch.zeros_like(grad_tensor, dtype=grad_tensor.dtype, device=grad_tensor.device) def pop(self, param_id): grad = None if param_id in self.bucket: op, grad = self.bucket.pop(param_id) if op is not None: op.wait() return grad def synchronize(self, params): for p in params: i = id(p) if i in self.bucket: op, grad = self.bucket.pop(i) if op is not None: op.wait() p.grad.add_(grad) _async_grad_bucket = AsyncGradientBucket() def push_async_grad(op, grad, param_id): return _async_grad_bucket.push(op, grad, param_id) def pop_async_grad(param_id): return _async_grad_bucket.pop(param_id) def _async_grad_hook(grad, param_id): grad.add_(pop_async_grad(param_id)) return grad def register_async_grad_hook(param): param.register_hook(partial(_async_grad_hook, param_id=id(param))) def synchronize(params=list()): _async_grad_bucket.synchronize(params) torch.cuda.default_stream().synchronize() if len(_async_grad_bucket) > 0: raise RuntimeError(f"{len(_async_grad_bucket)} asynchronous gradient(s) not collected.")
from .common import (ACT2FN, CheckpointModule, _ntuple, divide, get_tensor_parallel_mode, set_tensor_parallel_attribute_by_partition, set_tensor_parallel_attribute_by_size, to_2tuple) __all__ = [ 'CheckpointModule', 'divide', 'ACT2FN', 'set_tensor_parallel_attribute_by_size', 'set_tensor_parallel_attribute_by_partition', 'get_tensor_parallel_mode', '_ntuple', 'to_2tuple' ]
#!/usr/bin/env python # -*- encoding: utf-8 -*- import collections.abc from itertools import repeat import numpy as np import torch from colossalai.constants import IS_TENSOR_PARALLEL, NUM_PARTITIONS from colossalai.global_variables import tensor_parallel_env as env from colossalai.utils import checkpoint from torch import Tensor, nn class CheckpointModule(nn.Module): def __init__(self, checkpoint: bool = True, offload: bool = False): super().__init__() self.checkpoint = checkpoint self._use_checkpoint = checkpoint self._offload = offload def _forward(self, *args, **kwargs): raise NotImplementedError('CheckpointModule should implement _forward method instead of origin forward') def forward(self, *args, **kwargs): if self._use_checkpoint: return checkpoint(self._forward, self._offload, *args, **kwargs) else: return self._forward(*args, **kwargs) def train(self, mode: bool = True): self._use_checkpoint = self.checkpoint return super().train(mode=mode) def eval(self): self._use_checkpoint = False return super().eval() def divide(numerator, denominator): """Only allow exact division. Args: numerator (int): Numerator of the division. denominator (int): Denominator of the division. Returns: int: the result of exact division. """ assert denominator != 0, 'denominator can not be zero' assert numerator % denominator == 0, \ '{} is not divisible by {}'.format(numerator, denominator) return numerator // denominator def swish(x: Tensor) -> Tensor: return x * torch.sigmoid(x) ACT2FN = {"gelu": torch.nn.functional.gelu, "relu": torch.nn.functional.relu, "swish": swish} def set_tensor_parallel_attribute_by_size(param, size): setattr(param, IS_TENSOR_PARALLEL, True) setattr(param, NUM_PARTITIONS, size // np.prod(param.shape)) def set_tensor_parallel_attribute_by_partition(param, num_partitions): setattr(param, IS_TENSOR_PARALLEL, True) setattr(param, NUM_PARTITIONS, num_partitions) def get_tensor_parallel_mode(): return env.mode # From PyTorch internals def _ntuple(n): def parse(x): if isinstance(x, collections.abc.Iterable): return x return tuple(repeat(x, n)) return parse to_2tuple = _ntuple(2)
import torch import torch.distributed as dist from colossalai.core import global_context as gpc try: import fused_mix_prec_layer_norm_cuda except: fused_mix_prec_layer_norm_cuda = None class FusedLayerNormAffineFunction1D(torch.autograd.Function): r"""Layernorm Args: input: input matrix. weight: weight matrix. bias: bias matrix. normalized_shape: input shape from an expected input of size. :math:`[* \times \text{normalized_shape}[0] \times \text{normalized_shape}[1] \times \ldots \times \text{normalized_shape}[-1]]` If a single integer is used, it is treated as a singleton list, and this module will normalize over the last dimension which is expected to be of that specific size. eps: a value added to the denominator for numerical stability """ @staticmethod def forward(ctx, input, weight, bias, normalized_shape, eps): ctx.normalized_shape = normalized_shape ctx.eps = eps input_ = input.contiguous() weight_ = weight.contiguous() bias_ = bias.contiguous() output, mean, invvar = fused_mix_prec_layer_norm_cuda.forward_affine(input_, ctx.normalized_shape, weight_, bias_, ctx.eps) ctx.save_for_backward(input_, weight_, bias_, mean, invvar) return output @staticmethod def backward(ctx, grad_output): input_, weight_, bias_, mean, invvar = ctx.saved_tensors grad_input = grad_weight = grad_bias = None grad_input, grad_weight, grad_bias \ = fused_mix_prec_layer_norm_cuda.backward_affine( grad_output.contiguous(), mean, invvar, input_, ctx.normalized_shape, weight_, bias_, ctx.eps) return grad_input, grad_weight, grad_bias, None, None class LinearWithAsyncCommunication(torch.autograd.Function): """ Linear layer execution with asynchronous communication in backprop. """ @staticmethod def forward(ctx, input_, weight, bias, parallel_mode, async_grad_allreduce): ctx.save_for_backward(input_, weight) ctx.use_bias = bias is not None ctx.parallel_mode = parallel_mode ctx.async_grad_allreduce = async_grad_allreduce output = torch.matmul(input_, weight.t()) if bias is not None: output = output + bias return output @staticmethod def backward(ctx, grad_output): input, weight = ctx.saved_tensors use_bias = ctx.use_bias total_input = input grad_input = grad_output.matmul(weight) # Convert the tensor shapes to 2D for execution compatibility grad_output = grad_output.view(grad_output.shape[0] * grad_output.shape[1], grad_output.shape[2]) total_input = total_input.view(total_input.shape[0] * total_input.shape[1], total_input.shape[2]) if ctx.async_grad_allreduce: # Asynchronous all-reduce handle = dist.all_reduce(grad_input, group=gpc.get_group(ctx.parallel_mode), async_op=True) # Delay the start of weight gradient computation shortly (3us) to have # all-reduce scheduled first and have GPU resources allocated _ = torch.empty(1, device=grad_output.device) + 1 grad_weight = grad_output.t().matmul(total_input) grad_bias = grad_output.sum(dim=0) if use_bias else None if ctx.async_grad_allreduce: handle.wait() return grad_input, grad_weight, grad_bias, None, None, None def linear_with_async_comm(input_, weight, bias, parallel_mode, async_grad_allreduce): return LinearWithAsyncCommunication.apply(input_, weight, bias, parallel_mode, async_grad_allreduce)
from .layers import (Classifier1D, Dropout1D, Embedding1D, LayerNorm1D, Linear1D, Linear1D_Col, Linear1D_Row, PatchEmbedding1D, VocabParallelClassifier1D, VocabParallelEmbedding1D) __all__ = [ 'Linear1D', 'Linear1D_Col', 'Linear1D_Row', 'Embedding1D', 'Dropout1D', 'Classifier1D', 'VocabParallelClassifier1D', 'VocabParallelEmbedding1D', 'LayerNorm1D', 'PatchEmbedding1D' ]
#!/usr/bin/env python # -*- encoding: utf-8 -*- import math from collections import OrderedDict from typing import Callable, Tuple import torch import torch.nn.functional as F from torch import Tensor from torch.nn.parameter import Parameter from colossalai.communication import broadcast from colossalai.context import ParallelMode, seed from colossalai.core import global_context as gpc from colossalai.global_variables import tensor_parallel_env as env from colossalai.kernel import LayerNorm from colossalai.nn import init as init from colossalai.registry import LAYERS from colossalai.utils.checkpointing import ( broadcast_state_dict, gather_tensor_parallel_state_dict, partition_tensor_parallel_state_dict, ) from colossalai.utils.cuda import get_current_device from ..base_layer import ParallelLayer from ..colossalai_layer._utils import ColossalaiModule from ..utils import divide, set_tensor_parallel_attribute_by_partition from ..vanilla import VanillaLayerNorm, VanillaPatchEmbedding from ._operation import linear_with_async_comm from ._utils import ( gather_forward_split_backward, get_parallel_input, reduce_grad, reduce_input, set_parallel_input, split_forward_gather_backward, ) Fast_LN = None try: from apex.contrib.layer_norm.layer_norm import FastLayerNorm Fast_LN = FastLayerNorm except ImportError: pass @LAYERS.register_module class Linear1D(ColossalaiModule): r"""Linear layer for 1D parallelism. Args: in_features (int): size of each input sample. out_features (int): size of each output sample. bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. gather_output (bool, optional): Whether to call all-gather on output, defaults to False. skip_bias_add (bool, optional): If set to ``True``, it will skip bias add for linear layer, which is preserved for kernel fusion, defaults to False weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. More details about ``initializer`` please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, in_features: int, out_features: int, bias: bool = True, dtype: torch.dtype = None, gather_output: bool = False, skip_bias_add: bool = False, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)): parallel_input = get_parallel_input() if not parallel_input and not gather_output: layer = Linear1D_Col(in_features, out_features, bias=bias, dtype=dtype, skip_bias_add=skip_bias_add, weight_initializer=weight_initializer, bias_initializer=bias_initializer) else: layer = Linear1D_Row(in_features, out_features, bias=bias, dtype=dtype, parallel_input=parallel_input, skip_bias_add=skip_bias_add, weight_initializer=weight_initializer, bias_initializer=bias_initializer) super().__init__(layer) @LAYERS.register_module class LayerNorm1D(ColossalaiModule): r""" Layer Normalization for colossalai Args: normalized_shape (int): input shape from an expected input of size. :math:`[* \times \text{normalized_shape}[0] \times \text{normalized_shape}[1] \times \ldots \times \text{normalized_shape}[-1]]` If a single integer is used, it is treated as a singleton list, and this module will normalize over the last dimension which is expected to be of that specific size. eps (float): a value added to the denominator for numerical stability, defaults to 1e-05. bias (bool, optional): Whether to add a bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. """ _fast_ln_supported_sizes = [ 1024, 1536, 2048, 2304, 3072, 3840, 4096, 5120, 6144, 8192, 10240, 12288, 12800, 15360, 16384, 18432, 20480, 24576, 25600, 30720, 32768, 40960, 49152, 65536 ] def __init__(self, normalized_shape: int, eps=1e-05, bias=True, dtype=None): if Fast_LN is not None and normalized_shape in self._fast_ln_supported_sizes: norm = Fast_LN(normalized_shape, eps=eps).to(dtype) else: norm = None try: from apex.normalization import FusedLayerNorm norm = FusedLayerNorm(normalized_shape, eps=eps).to(dtype) except ImportError: norm = LayerNorm(normalized_shape, eps=eps).to(dtype) super().__init__(norm) def _load_from_state_dict(self, state_dict, prefix, *args): local_state = OrderedDict() weight_key = prefix + 'weight' bias_key = prefix + 'bias' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight # bias bias = state_dict.pop(bias_key, None) if bias is not None: local_state[bias_key] = bias local_state = broadcast_state_dict(local_state, ParallelMode.PARALLEL_1D) super()._load_from_state_dict(local_state, prefix, *args) def _save_to_state_dict(self, destination, prefix, keep_vars): if gpc.get_local_rank(ParallelMode.TENSOR) == 0: super()._save_to_state_dict(destination, prefix, keep_vars) @LAYERS.register_module class Classifier1D(ParallelLayer): r"""RowLinear with given weight. Classifier of 1D parallelism. Args: in_features (int): size of each input sample. num_classes (int): number of classes. weight (:class:`torch.nn.Parameter`, optional): weight of the classifier, defaults to None. bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. More details about ``initializer`` please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, in_features: int, num_classes: int, weight: Parameter = None, bias: bool = True, dtype: torch.dtype = None, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)): super().__init__() self.in_features = in_features self.num_classes = num_classes self.parallel_input = get_parallel_input() # Divide the weight matrix along the last dimension. self.input_size_per_partition = divide(in_features, gpc.tensor_parallel_size) # Parameters. # Initialize weight. factory_kwargs = {'device': get_current_device(), 'dtype': dtype} if weight is not None: self.weight = weight self.has_weight = False else: self.weight = Parameter(torch.empty(self.num_classes, self.input_size_per_partition, **factory_kwargs)) self.has_weight = True if bias: self.bias = Parameter(torch.empty(self.num_classes, **factory_kwargs)) else: self.bias = None with seed(ParallelMode.TENSOR): self.reset_parameters(weight_initializer, bias_initializer) self._set_tensor_parallel_attributes() set_parallel_input(False) env.vocab_parallel = False def reset_parameters(self, weight_initializer, bias_initializer) -> None: fan_in, fan_out = self.in_features, self.num_classes if self.has_weight: weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) if self.bias is not None: bias_initializer(self.bias, fan_in=fan_in) broadcast(self.bias, gpc.get_ranks_in_group(ParallelMode.PARALLEL_1D)[0], ParallelMode.PARALLEL_1D) def _set_tensor_parallel_attributes(self): if self.has_weight: num_partition = gpc.get_world_size(ParallelMode.TENSOR) set_tensor_parallel_attribute_by_partition(self.weight, num_partition) def _load_from_global_state_dict(self, state_dict, prefix, *args): local_state = OrderedDict() weight_key = prefix + 'weight' bias_key = prefix + 'bias' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight if self.has_weight: weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight # bias if self.bias is not None: bias = state_dict.pop(bias_key, None) if bias is not None: local_state[bias_key] = bias local_state = partition_tensor_parallel_state_dict(local_state, ParallelMode.PARALLEL_1D, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }) super()._load_from_global_state_dict(local_state, prefix, *args) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' bias_key = prefix + 'bias' local_state = OrderedDict() if self.has_weight: local_state[weight_key] = self.weight if self.bias is not None: local_state[bias_key] = self.bias local_state = gather_tensor_parallel_state_dict(local_state, ParallelMode.PARALLEL_1D, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }, keep_vars=keep_vars) destination.update(local_state) def forward(self, input_: Tensor) -> Tensor: # Set up backprop all-reduce. if self.parallel_input: assert input_.shape[-1] == self.weight.shape[-1], \ 'Invalid shapes in Classifier1D forward: input={}, weight={}. Expected last dim of input {}.'.format( input_.shape, self.weight.shape, self.weight.shape[-1]) input_ = input_ else: assert divide(input_.shape[-1], gpc.tensor_parallel_size) == self.weight.shape[-1], \ 'Invalid shapes in Classifier1D forward: input={}, weight={}. Expected last dim of input {}.'.format( input_.shape, self.weight.shape, self.weight.shape[-1] * gpc.tensor_parallel_size) input_ = split_forward_gather_backward(input_, ParallelMode.PARALLEL_1D, dim=-1) output_parallel = F.linear(input_, self.weight) output = reduce_input(output_parallel, ParallelMode.PARALLEL_1D) if self.bias is not None: output = output + self.bias return output @LAYERS.register_module class VocabParallelClassifier1D(ParallelLayer): r"""ColLinear with given weight. Classifier of 1D parallelism. Args: in_features (int): size of each input sample. num_classes (int): number of classes. weight (:class:`torch.nn.Parameter`, optional): weight of the classifier, defaults to None. bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. More details about ``initializer`` please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, in_features: int, num_classes: int, weight: Parameter = None, bias: bool = True, dtype: torch.dtype = None, gather_output: bool = False, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)): super().__init__() self.in_features = in_features self.num_classes = num_classes self.gather_output = gather_output self.parallel_input = get_parallel_input() # Divide the weight matrix along the last dimension. self.num_classes_per_partition = divide(num_classes, gpc.tensor_parallel_size) # Parameters. # Initialize weight. factory_kwargs = {'device': get_current_device(), 'dtype': dtype} if weight is not None: self.weight = weight self.has_weight = False else: self.weight = Parameter(torch.empty(self.num_classes_per_partition, self.in_features, **factory_kwargs)) self.has_weight = True if bias: self.bias = Parameter(torch.empty(self.num_classes_per_partition, **factory_kwargs)) else: self.bias = None with seed(ParallelMode.TENSOR): self.reset_parameters(weight_initializer, bias_initializer) self._set_tensor_parallel_attributes() set_parallel_input(False) env.vocab_parallel = True def reset_parameters(self, weight_initializer, bias_initializer) -> None: fan_in, fan_out = self.in_features, self.num_classes if self.has_weight: weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) if self.bias is not None: bias_initializer(self.bias, fan_in=fan_in) def _set_tensor_parallel_attributes(self): num_partition = gpc.get_world_size(ParallelMode.TENSOR) if self.has_weight: set_tensor_parallel_attribute_by_partition(self.weight, num_partition) if self.bias is not None: set_tensor_parallel_attribute_by_partition(self.bias, num_partition) def _load_from_global_state_dict(self, state_dict, prefix, *args): local_state = OrderedDict() weight_key = prefix + 'weight' bias_key = prefix + 'bias' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight if self.has_weight: weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight # bias if self.bias is not None: bias = state_dict.pop(bias_key, None) if bias is not None: local_state[bias_key] = bias local_state = partition_tensor_parallel_state_dict(local_state, ParallelMode.PARALLEL_1D, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }) super()._load_from_global_state_dict(local_state, prefix, *args) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' bias_key = prefix + 'bias' local_state = OrderedDict() if self.has_weight: local_state[weight_key] = self.weight if self.bias is not None: local_state[bias_key] = self.bias local_state = gather_tensor_parallel_state_dict(local_state, ParallelMode.PARALLEL_1D, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, keep_vars=keep_vars) destination.update(local_state) def forward(self, input_: Tensor) -> Tensor: assert input_.shape[-1] == self.weight.shape[-1], \ 'Invalid shapes in VocabParallelClassifier1D forward: input={}, weight={}. Expected last dim of input {}.'.format( input_.shape, self.weight.shape, self.weight.shape[-1]) # Set up backprop all-reduce. input_parallel = reduce_grad(input_, ParallelMode.PARALLEL_1D) # Matrix multiply. output_parallel = F.linear(input_parallel, self.weight, self.bias) if self.gather_output: # All-gather across the partitions. output = gather_forward_split_backward(output_parallel, ParallelMode.PARALLEL_1D, dim=-1) else: output = output_parallel return output @LAYERS.register_module class Linear1D_Col(ParallelLayer): r"""Linear layer with column parallelism. The linear layer is defined as :math:`Y = XA + b`. A is parallelized along its second dimension as :math:`A = [A_1, ..., A_p]`. Args: in_features (int): size of each input sample. out_features (int): size of each output sample. bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. gather_output (bool, optional): If true, call all-gather on output and make Y available to all GPUs, otherwise, every GPU will have its output which is :math:`Y_i = XA_i`, defaults to False skip_bias_add (bool, optional): If set to ``True``, it will skip bias add for linear layer, which is preserved for kernel fusion, defaults to Fals weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. More details about ``initializer`` please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, in_features: int, out_features: int, bias: bool = True, dtype: torch.dtype = None, gather_output: bool = False, skip_bias_add: bool = False, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)): super().__init__() # Keep input parameters self.in_features = in_features self.out_features = out_features self.gather_output = gather_output self.skip_bias_add = skip_bias_add if skip_bias_add and not bias: raise ValueError('cannot skip bias addition if bias is None') self.out_features_per_partition = divide(out_features, gpc.tensor_parallel_size) # Parameters. # Initialize weight. factory_kwargs = {'device': get_current_device(), 'dtype': dtype} self.weight = Parameter(torch.empty(self.out_features_per_partition, self.in_features, **factory_kwargs)) if bias: self.bias = Parameter(torch.empty(self.out_features_per_partition, **factory_kwargs)) else: self.bias = None with seed(ParallelMode.TENSOR): self.reset_parameters(weight_initializer, bias_initializer) self._set_tensor_parallel_attributes() is_parallel_output = not self.gather_output set_parallel_input(is_parallel_output) def reset_parameters(self, weight_initializer, bias_initializer) -> None: fan_in, fan_out = self.in_features, self.out_features weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) if self.bias is not None: bias_initializer(self.bias, fan_in=fan_in) def _set_tensor_parallel_attributes(self): num_partition = gpc.get_world_size(ParallelMode.TENSOR) set_tensor_parallel_attribute_by_partition(self.weight, num_partition) if self.bias is not None: set_tensor_parallel_attribute_by_partition(self.bias, num_partition) def _load_from_global_state_dict(self, state_dict, prefix, *args): local_state = OrderedDict() weight_key = prefix + 'weight' bias_key = prefix + 'bias' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight # bias if self.bias is not None: bias = state_dict.pop(bias_key, None) if bias is not None: local_state[bias_key] = bias local_state = partition_tensor_parallel_state_dict(local_state, ParallelMode.PARALLEL_1D, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }) super()._load_from_global_state_dict(local_state, prefix, *args) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' bias_key = prefix + 'bias' local_state = OrderedDict({weight_key: self.weight}) if self.bias is not None: local_state[bias_key] = self.bias local_state = gather_tensor_parallel_state_dict(local_state, ParallelMode.PARALLEL_1D, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, keep_vars=keep_vars) destination.update(local_state) def forward(self, input_: Tensor) -> Tuple[Tensor, Tensor]: assert input_.shape[-1] == self.weight.shape[-1], \ 'Invalid shapes in Linear1D_Col forward: input={}, weight={}. Expected last dim of input {}.'.format( input_.shape, self.weight.shape, self.weight.shape[-1]) # Set up backprop all-reduce. # input_parallel = reduce_grad(input_, ParallelMode.PARALLEL_1D) input_parallel = input_ # Matrix multiply. bias = self.bias if not self.skip_bias_add else None # output_parallel = F.linear(input_parallel, self.weight, bias) output_parallel = linear_with_async_comm(input_parallel, self.weight, bias, ParallelMode.PARALLEL_1D, True) if self.gather_output: # All-gather across the partitions. output = gather_forward_split_backward(output_parallel, ParallelMode.PARALLEL_1D, dim=-1) else: output = output_parallel if self.skip_bias_add: return output, self.bias else: return output @LAYERS.register_module class Linear1D_Row(ParallelLayer): r""" Linear layer with row parallelism Args: in_features (int): size of each input sample. out_features (int): size of each output sample. bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. parallel_input (bool, optional): If set to ``True``, it's assumed that the input is split, defaults to False. skip_bias_add (bool, optional): If set to ``True``, it will skip bias add for linear layer, which is preserved for kernel fusion, defaults to Fals weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. More details about ``initializer`` please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, in_features: int, out_features: int, bias: bool = True, dtype: torch.dtype = None, parallel_input: bool = True, skip_bias_add: bool = False, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1), stream_chunk_num: int = 1): super().__init__() self.stream_chunk_num = stream_chunk_num # Keep input parameters self.in_features = in_features self.out_features = out_features self.parallel_input = parallel_input self.skip_bias_add = skip_bias_add if skip_bias_add and not bias: raise ValueError('cannot skip bias addition if bias is None') # Divide the weight matrix along the last dimension. self.input_size_per_partition = divide(in_features, gpc.tensor_parallel_size) # Parameters. # Initialize weight. factory_kwargs = {'device': get_current_device(), 'dtype': dtype} self.weight = Parameter(torch.empty(self.out_features, self.input_size_per_partition, **factory_kwargs)) if self.stream_chunk_num > 1: # TODO() work for inference only self.chunk_weight() if bias: self.bias = Parameter(torch.empty(self.out_features, **factory_kwargs)) else: self.bias = None with seed(ParallelMode.TENSOR): self.reset_parameters(weight_initializer, bias_initializer) self._set_tensor_parallel_attributes() set_parallel_input(False) def chunk_weight(self): self.weight_list = torch.chunk(self.weight, self.stream_chunk_num, dim=0) def reset_parameters(self, weight_initializer, bias_initializer) -> None: fan_in, fan_out = self.in_features, self.out_features weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) if self.bias is not None: bias_initializer(self.bias, fan_in=fan_in) broadcast(self.bias, gpc.get_ranks_in_group(ParallelMode.PARALLEL_1D)[0], ParallelMode.PARALLEL_1D) def _set_tensor_parallel_attributes(self): num_partition = gpc.get_world_size(ParallelMode.TENSOR) set_tensor_parallel_attribute_by_partition(self.weight, num_partition) def _load_from_global_state_dict(self, state_dict, prefix, *args): local_state = OrderedDict() weight_key = prefix + 'weight' bias_key = prefix + 'bias' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight # bias if self.bias is not None: bias = state_dict.pop(bias_key, None) if bias is not None: local_state[bias_key] = bias local_state = partition_tensor_parallel_state_dict(local_state, ParallelMode.PARALLEL_1D, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }) super()._load_from_global_state_dict(local_state, prefix, *args) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' bias_key = prefix + 'bias' local_state = OrderedDict({weight_key: self.weight}) if self.bias is not None: local_state[bias_key] = self.bias local_state = gather_tensor_parallel_state_dict(local_state, ParallelMode.PARALLEL_1D, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }, keep_vars=keep_vars) destination.update(local_state) def forward(self, input_: Tensor) -> Tensor: # Set up backprop all-reduce. if self.parallel_input: assert input_.shape[-1] == self.weight.shape[-1], \ 'Invalid shapes in Linear1D_Row forward: input={}, weight={}. Expected last dim of input {}.'.format( input_.shape, self.weight.shape, self.weight.shape[-1]) input_ = input_ else: assert divide(input_.shape[-1], gpc.tensor_parallel_size) == self.weight.shape[-1], \ 'Invalid shapes in Linear1D_Row forward: input={}, weight={}. Expected last dim of input {}.'.format( input_.shape, self.weight.shape, self.weight.shape[-1] * gpc.tensor_parallel_size) input_ = split_forward_gather_backward(input_, ParallelMode.PARALLEL_1D, dim=-1) if self.stream_chunk_num > 1: if self.training: raise RuntimeError("use stream_chunk_num=1 in Linear1D_Row for training!") with torch.no_grad(): output_parallel_list = [None for i in range(self.stream_chunk_num)] handle_list = [] for i in range(self.stream_chunk_num): output_parallel_list[i] = F.linear(input_, self.weight_list[i]) handle = torch.distributed.all_reduce(output_parallel_list[i], group=gpc.get_group(ParallelMode.PARALLEL_1D), async_op=True) handle_list.append(handle) # output_parallel_list[i] = reduce_input(output_parallel_list[i], ParallelMode.PARALLEL_1D) for handle in handle_list: handle.wait() output = torch.cat(output_parallel_list, dim=-1) else: output_parallel = F.linear(input_, self.weight) # output_parallel = linear_with_async_comm(input_, self.weight, None, ParallelMode.PARALLEL_1D, False) output = reduce_input(output_parallel, ParallelMode.PARALLEL_1D) if not self.skip_bias_add: if self.bias is not None: output = output + self.bias return output else: return output, self.bias @LAYERS.register_module class Embedding1D(ParallelLayer): r"""Embedding for 1D parallelism. Args: num_embeddings (int): number of embeddings. embedding_dim (int): dimension of embedding. padding_idx (int, optional): If specified, the entries at padding_idx do not contribute to the gradient; therefore, the embedding vector at padding_idx is not updated during training, i.e. it remains as a fixed “pad”, defaults to None. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. weight_initializer (:class:`typing.Callable`, optional): he initializer of weight, defaults to normal initializer. The ``args`` and ``kwargs`` used in :class:`torch.nn.functional.embedding` should contain: :: max_norm (float, optional): If given, each embedding vector with norm larger than max_norm is renormalized to have norm max_norm. Note: this will modify weight in-place. norm_type (float, optional): The p of the p-norm to compute for the max_norm option. Default 2. scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default False. sparse (bool, optional): If True, gradient w.r.t. weight will be a sparse tensor. Default False. More details about ``args`` and ``kwargs`` could be found in `Embedding <https://pytorch.org/docs/stable/generated/torch.nn.functional.embedding.html#torch.nn.functional.embedding>`_. More details about ``initializer`` please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_ """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int = None, dtype: torch.dtype = None, weight_initializer: Callable = init.normal_(), *args, **kwargs): super().__init__() self.num_embeddings = num_embeddings self.embed_dim = embedding_dim embed_dim_per_partition = divide(embedding_dim, gpc.tensor_parallel_size) self.padding_idx = padding_idx self.embed_args = args self.embed_kwargs = kwargs self.weight = Parameter( torch.empty((num_embeddings, embed_dim_per_partition), device=get_current_device(), dtype=dtype)) self.reset_parameters(weight_initializer) self._set_tensor_parallel_attributes() set_parallel_input(False) def _set_tensor_parallel_attributes(self): set_tensor_parallel_attribute_by_partition(self.weight, gpc.tensor_parallel_size) def reset_parameters(self, weight_initializer) -> None: with seed(ParallelMode.TENSOR): fan_in, fan_out = self.num_embeddings, self.embed_dim weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) self._fill_padding_idx_with_zero() def _fill_padding_idx_with_zero(self) -> None: if self.padding_idx is not None: with torch.no_grad(): self.weight[self.padding_idx].fill_(0) def _load_from_global_state_dict(self, state_dict, prefix, *args): local_state = OrderedDict() weight_key = prefix + 'weight' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight local_state = partition_tensor_parallel_state_dict(local_state, ParallelMode.PARALLEL_1D, dims={weight_key: -1}, partition_states={weight_key: True}) super()._load_from_global_state_dict(local_state, prefix, *args) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' local_state = OrderedDict({weight_key: self.weight}) local_state = gather_tensor_parallel_state_dict(local_state, ParallelMode.PARALLEL_1D, dims={weight_key: -1}, partition_states={weight_key: True}, keep_vars=keep_vars) destination.update(local_state) def forward(self, input_: Tensor) -> Tensor: output_parallel = F.embedding(input_, self.weight, self.padding_idx, *self.embed_args, **self.embed_kwargs) output = gather_forward_split_backward(output_parallel, ParallelMode.PARALLEL_1D, dim=-1) return output @LAYERS.register_module class VocabParallelEmbedding1D(ParallelLayer): r"""Embedding parallelized in the vocabulary dimension. Args: num_embeddings (int): number of embeddings. embedding_dim (int): dimension of embedding. padding_idx (int, optional): If specified, the entries at padding_idx do not contribute to the gradient; therefore, the embedding vector at padding_idx is not updated during training, i.e. it remains as a fixed “pad”, defaults to None. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. weight_initializer (:class:`typing.Callable`, optional): he initializer of weight, defaults to normal initializer. The ``args`` and ``kwargs`` used in :class:``torch.nn.functional.embedding`` should contain: :: max_norm (float, optional): If given, each embedding vector with norm larger than max_norm is renormalized to have norm max_norm. Note: this will modify weight in-place. norm_type (float, optional): The p of the p-norm to compute for the max_norm option. Default 2. scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default False. sparse (bool, optional): If True, gradient w.r.t. weight will be a sparse tensor. Default False. More details about ``args`` and ``kwargs`` could be found in `Embedding <https://pytorch.org/docs/stable/generated/torch.nn.functional.embedding.html#torch.nn.functional.embedding>`_. More details about initializer please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int = None, dtype: torch.dtype = None, weight_initializer: Callable = init.normal_(), *args, **kwargs): super().__init__() self.num_embeddings = num_embeddings self.embed_dim = embedding_dim self.padding_idx = padding_idx self.embed_args = args self.embed_kwargs = kwargs tensor_parallel_size = gpc.get_world_size(ParallelMode.PARALLEL_1D) tensor_parallel_rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D) self.num_embeddings_per_partition = divide(num_embeddings, tensor_parallel_size) self.vocab_start_index = tensor_parallel_rank * self.num_embeddings_per_partition self.vocab_end_index = self.vocab_start_index + self.num_embeddings_per_partition self.weight = Parameter( torch.empty((self.num_embeddings_per_partition, self.embed_dim), device=get_current_device(), dtype=dtype)) self.reset_parameters(weight_initializer) self._set_tensor_parallel_attributes() set_parallel_input(False) env.vocab_parallel = True def _set_tensor_parallel_attributes(self): set_tensor_parallel_attribute_by_partition(self.weight, gpc.tensor_parallel_size) def reset_parameters(self, weight_initializer) -> None: with seed(ParallelMode.TENSOR): fan_in, fan_out = self.num_embeddings, self.embed_dim weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) self._fill_padding_idx_with_zero() def _fill_padding_idx_with_zero(self) -> None: if self.padding_idx is not None and \ self.padding_idx >= self.vocab_start_index and self.padding_idx < self.vocab_end_index: with torch.no_grad(): self.weight[self.padding_idx - self.vocab_start_index].fill_(0) def _load_from_global_state_dict(self, state_dict, prefix, *args): local_state = OrderedDict() weight_key = prefix + 'weight' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight local_state = partition_tensor_parallel_state_dict(local_state, ParallelMode.PARALLEL_1D, dims={weight_key: 0}, partition_states={weight_key: True}) super()._load_from_global_state_dict(local_state, prefix, *args) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' local_state = OrderedDict({weight_key: self.weight}) local_state = gather_tensor_parallel_state_dict(local_state, ParallelMode.PARALLEL_1D, dims={weight_key: 0}, partition_states={weight_key: True}, keep_vars=keep_vars) destination.update(local_state) def forward(self, input_: Tensor) -> Tensor: # Build the mask. input_mask = (input_ < self.vocab_start_index) | (input_ >= self.vocab_end_index) # Mask the input. masked_input = input_.clone() - self.vocab_start_index masked_input[input_mask] = 0 output_parallel = F.embedding(masked_input, self.weight, self.padding_idx, *self.embed_args, **self.embed_kwargs) # Mask the output embedding. output_parallel[input_mask, :] = 0. # Reduce across all the model parallel GPUs. output = reduce_input(output_parallel, ParallelMode.PARALLEL_1D) return output @LAYERS.register_module class Dropout1D(ParallelLayer): """Dropout layer of 1D parallelism. Args: p (float, optional): probability of an element to be zeroed, defaults 0.5. inplace (bool, optional): whether to do dropout in-place, default to be False. """ def __init__(self, p: float = 0.5, inplace: bool = False): super().__init__() self.parallel_input = get_parallel_input() self.p = p self.inplace = inplace def forward(self, input_: Tensor) -> Tensor: if self.parallel_input: with seed(ParallelMode.TENSOR): output = F.dropout(input_, self.p, self.training, self.inplace) else: output = F.dropout(input_, self.p, self.training, self.inplace) return output @LAYERS.register_module class PatchEmbedding1D(ColossalaiModule): """ 2D Image to Patch Embedding :param img_size: image size :type img_size: int :param patch_size: patch size :type patch_size: int :param in_chans: number of channels of input image :type in_chans: int :param embed_size: size of embedding :type embed_size: int :param dtype: The dtype of parameters, defaults to None :type dtype: torch.dtype, optional :param flatten: whether to flatten output tensor, defaults to True :type flatten: bool, optional :param weight_initializer: The intializer of weight, defaults to kaiming uniform initializer :type weight_initializer: typing.Callable, optional :param bias_initializer: The intializer of bias, defaults to xavier uniform initializer :type bias_initializer: typing.Callable, optional :param position_embed_initializer: The intializer of position embedding, defaults to zero :type position_embed_initializer: typing.Callable, optional """ def __init__(self, img_size: int, patch_size: int, in_chans: int, embed_size: int, dtype: torch.dtype = None, flatten: bool = True, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1), position_embed_initializer: Callable = init.zeros_()): embed = VanillaPatchEmbedding(img_size, patch_size, in_chans, embed_size, dtype=dtype, flatten=flatten, weight_initializer=weight_initializer, bias_initializer=bias_initializer, position_embed_initializer=position_embed_initializer) super().__init__(embed) def _load_from_state_dict(self, state_dict, prefix, *args): local_state = OrderedDict() param_keys = [prefix + 'weight', prefix + 'bias', prefix + 'cls_token', prefix + 'pos_embed'] if gpc.get_local_rank(ParallelMode.TENSOR) == 0: for key in param_keys: param = state_dict.pop(key, None) if param is not None: local_state[key] = param local_state = broadcast_state_dict(local_state, ParallelMode.PARALLEL_1D) super()._load_from_state_dict(local_state, prefix, *args) def _save_to_state_dict(self, destination, prefix, keep_vars): if gpc.get_local_rank(ParallelMode.TENSOR) == 0: super()._save_to_state_dict(destination, prefix, keep_vars)
#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch import torch.distributed as dist from colossalai.core import global_context as gpc from colossalai.global_variables import tensor_parallel_env as env from ..utils import divide def set_parallel_input(input_parallel: bool): env.parallel_input_1d = input_parallel def get_parallel_input(): return env.parallel_input_1d def vocab_range_from_per_partition_vocab_size(per_partition_vocab_size, rank): index_f = rank * per_partition_vocab_size index_l = index_f + per_partition_vocab_size return index_f, index_l def vocab_range_from_global_vocab_size(global_vocab_size, rank, world_size): per_partition_vocab_size = divide(global_vocab_size, world_size) return vocab_range_from_per_partition_vocab_size(per_partition_vocab_size, rank) def _reduce(input_, parallel_mode): # skip if only one rank involved if gpc.get_world_size(parallel_mode) == 1: return input_ group = gpc.get_cpu_group(parallel_mode) if input_.device.type == "cpu" else gpc.get_group(parallel_mode) dist.all_reduce(input_, group=group) return input_ def _split(input_, parallel_mode, dim=-1): # skip if only one rank involved world_size = gpc.get_world_size(parallel_mode) if world_size == 1: return input_ # Split along last dimension. dim_size = input_.size(dim) assert dim_size % world_size == 0, \ f'The dimension to split ({dim_size}) is not a multiple of world size ({world_size}), ' \ f'cannot split tensor evenly' tensor_list = torch.split(input_, dim_size // world_size, dim=dim) rank = gpc.get_local_rank(parallel_mode) output = tensor_list[rank].contiguous() return output def _gather(input_, parallel_mode, dim=-1): # skip if only one rank involved world_size = gpc.get_world_size(parallel_mode) if world_size == 1: return input_ # all gather rank = gpc.get_local_rank(parallel_mode) tensor_list = [torch.empty_like(input_) for _ in range(world_size)] tensor_list[rank] = input_ group = gpc.get_cpu_group(parallel_mode) if input_.device.type == "cpu" else gpc.get_group(parallel_mode) torch.distributed.all_gather(tensor_list, input_, group=group) # concat output = torch.cat(tensor_list, dim=dim).contiguous() return output class _ReduceGrad(torch.autograd.Function): """ Pass the input to the model parallel region. Args: input_: input matrix. parallel_mode: parallel mode. """ @staticmethod def symbolic(graph, input_): return input_ @staticmethod def forward(ctx, input_, parallel_mode): ctx.mode = parallel_mode return input_ @staticmethod def backward(ctx, grad_output): return _reduce(grad_output, ctx.mode), None class _ReduceInput(torch.autograd.Function): """ All-reduce the input from the model parallel region. Args: input_: input matrix. parallel_mode: parallel mode. """ @staticmethod def symbolic(graph, input_): return _reduce(input_) @staticmethod def forward(ctx, input_, parallel_mode): return _reduce(input_, parallel_mode) @staticmethod def backward(ctx, grad_output): return grad_output, None class _SplitForwardGatherBackward(torch.autograd.Function): """ Split the input and keep only the corresponding chuck to the rank. Args: input_: input matrix. parallel_mode: parallel mode. dim: dimension """ @staticmethod def symbolic(graph, input_): return _split(input_) @staticmethod def forward(ctx, input_, parallel_mode, dim): ctx.mode = parallel_mode ctx.dim = dim return _split(input_, parallel_mode, dim) @staticmethod def backward(ctx, grad_output): return _gather(grad_output, ctx.mode, ctx.dim), None, None class _GatherForwardSplitBackward(torch.autograd.Function): """Gather the input from model parallel region and concatenate. Args: input_: input matrix. parallel_mode: parallel mode. dim: dimension """ @staticmethod def symbolic(graph, input_): return _gather(input_) @staticmethod def forward(ctx, input_, parallel_mode, dim): ctx.mode = parallel_mode ctx.dim = dim return _gather(input_, parallel_mode, dim) @staticmethod def backward(ctx, grad_output): return _split(grad_output, ctx.mode, ctx.dim), None, None def reduce_grad(input_, parallel_mode): return _ReduceGrad.apply(input_, parallel_mode) def reduce_input(input_, parallel_mode): return _ReduceInput.apply(input_, parallel_mode) def split_forward_gather_backward(input_, parallel_mode, dim): return _SplitForwardGatherBackward.apply(input_, parallel_mode, dim) def gather_forward_split_backward(input_, parallel_mode, dim): return _GatherForwardSplitBackward.apply(input_, parallel_mode, dim)
from typing import Any, Optional, Tuple import torch import torch.distributed as dist from colossalai.communication.collective import (all_gather, all_reduce, reduce, reduce_scatter) from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.utils import get_current_device from torch import Tensor from torch.cuda.amp import custom_bwd, custom_fwd from colossalai.global_variables import tensor_parallel_env as env def matmul_2d( a, b, summa_dim, out_shape, row_rank=None, col_rank=None, row_parallel_mode=ParallelMode.PARALLEL_2D_ROW, col_parallel_mode=ParallelMode.PARALLEL_2D_COL, ): r"""Matrix multiplication for 2D parallelism. Args: a (:class:`torch.tensor`): matrix :math:`A`. b (:class:`torch.tensor`): matrix :math:`B`. summa_dim (int): dimension of SUMMA fo 2D parallelism. out_shape (:class:`torch.size`): shape of output tensor. row_rank (int, optional): the rank of row, defaults to None. col_rank (int, optional): the rank of column, defaults to None. row_parallel_mode (:class:`colossalai.context.ParallelMode`, optional): row parallel mode, defaults to ParallelMode.PARALLEL_2D_ROW. col_parallel_mode (:class:`colossalai.context.ParallelMode`, optional): column parallel mode, defaults to ParallelMode.PARALLEL_2D_COL. Returns: :class:`torch.tensor`: :math:`C = AB`. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ if row_rank is None: row_rank = gpc.get_local_rank(col_parallel_mode) if col_rank is None: col_rank = gpc.get_local_rank(row_parallel_mode) data_parallel_rank = 0 if not gpc.is_initialized(ParallelMode.DATA) else gpc.get_local_rank(ParallelMode.DATA) pipeline_parallel_rank = 0 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_local_rank( ParallelMode.PIPELINE) pipeline_parallel_size = 1 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_world_size( ParallelMode.PIPELINE) tensor_parallel_size = summa_dim**2 return Matmul_AB_2D(a, b, summa_dim, out_shape, row_rank, col_rank, row_parallel_mode, col_parallel_mode, data_parallel_rank, pipeline_parallel_rank, pipeline_parallel_size, tensor_parallel_size) class _Classifier2D(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward( ctx: Any, A: Tensor, B: Tensor, bias: Optional[Tensor], summa_dim: int, out_shape: Tuple[int, ...], row_rank: int, col_rank: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode, data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int, tensor_parallel_size: int, ) -> Tensor: A = A.clone().detach() A_shape = A.shape A = A.reshape((-1, A_shape[-1])) B_shape = B.shape B = B.reshape((-1, B_shape[-1])) B_temp = all_gather(B, -1, col_parallel_mode) if ctx: ctx.save_for_backward(A, B_temp) C = torch.matmul(A, B_temp.transpose(0, 1)) C = all_reduce(C, row_parallel_mode) ctx.use_bias = bias is not None if bias is not None: C = C + bias out = C.reshape(out_shape) if ctx: ctx.summa_dim = summa_dim ctx.row_rank = row_rank ctx.col_rank = col_rank ctx.row_parallel_mode = row_parallel_mode ctx.col_parallel_mode = col_parallel_mode ctx.A_shape = A_shape ctx.B_shape = B_shape ctx.data_parallel_rank = data_parallel_rank ctx.pipeline_parallel_rank = pipeline_parallel_rank ctx.pipeline_parallel_size = pipeline_parallel_size ctx.tensor_parallel_size = tensor_parallel_size return out @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: A, B = ctx.saved_tensors with torch.no_grad(): A_grad = torch.matmul(output_grad, B) A_grad = A_grad.reshape(ctx.A_shape) B_grad = torch.matmul(output_grad.reshape(-1, output_grad.shape[-1]).transpose(0, 1), A) B_grad = reduce_scatter(B_grad, -1, ctx.col_parallel_mode) B_grad = B_grad.reshape(ctx.B_shape) if ctx.use_bias: bias_grad = torch.sum(output_grad, dim=tuple(range(output_grad.ndim - 1))) bias_grad = all_reduce(bias_grad, ctx.col_parallel_mode) else: bias_grad = None return A_grad, B_grad, bias_grad, None, None, None, None, None, None, None, None, None, None def classifier_2d(A: Tensor, B: Tensor, bias: Optional[Tensor], summa_dim: int, out_shape: Tuple[int, ...], row_rank: int, col_rank: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode, data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int, tensor_parallel_size: int) -> Tensor: r"""2D parallel classifier. Args: A (:class:`torch.tensor`): matrix :math:`A`. B (:class:`torch.tensor`): matrix :math:`B`. bias (:class:`torch.tensor`, optional): matrix of bias. summa_dim (int): dimension of SUMMA fo 2D parallelism. out_shape (:class:`torch.size`): shape of output tensor. row_rank (int, optional): the rank of row, defaults to None. col_rank (int, optional): the rank of column, defaults to None. row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode. col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode. data_parallel_rank (int): data parallel rank. pipeline_parallel_rank (int): pipeline parallel rank pipeline_parallel_size (int): pipeline parallel size. tensor_parallel_size (int): tensor parallel size. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ return _Classifier2D.apply(A, B, bias, summa_dim, out_shape, row_rank, col_rank, row_parallel_mode, col_parallel_mode, data_parallel_rank, pipeline_parallel_rank, pipeline_parallel_size, tensor_parallel_size) class Matmul_AB_2D(torch.autograd.Function): r"""Matrix multiplication for :math:`C = AB`. Args: A (:class:`torch.tensor`): matrix :math:`A`. B (:class:`torch.tensor`): matrix :math:`B`. summa_dim (int): dimension of SUMMA fo 2D parallelism. out_shape (:class:`torch.size`): shape of output tensor. row_rank (int, optional): the rank of row, defaults to None. col_rank (int, optional): the rank of column, defaults to None. row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode. col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode. data_parallel_rank (int): data parallel rank. pipeline_parallel_rank (int): pipeline parallel rank pipeline_parallel_size (int): pipeline parallel size. tensor_parallel_size (int): tensor parallel size. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward( ctx: Any, A: Tensor, B: Tensor, summa_dim: int, out_shape: Tuple[int, ...], row_rank: int, col_rank: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode, data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int, tensor_parallel_size: int, ) -> Tensor: # A: [b / q, s, h / q] -> [(b * s) / q, h / q] # B: [h / q, s / q] # C: [b / q, s, s / q] -> [(b * s) / q, s / q] assert A.shape[-1] == B.shape[-2], \ 'Invalid shapes: A={}, B={} for AB.'.format(A.shape, B.shape) if ctx: ctx.save_for_backward(A, B) A_shape = A.shape A = A.reshape((-1, A_shape[-1])) B_shape = B.shape B = B.reshape((-1, B_shape[-1])) C_shape = (A.shape[0], B.shape[-1]) C = torch.zeros(C_shape, dtype=A.dtype, device=get_current_device()) # use circular buffer to store the communication tensor # 2 is enough for all cases A_list = [torch.empty_like(A) for _ in range(2)] B_list = [torch.empty_like(B) for _ in range(2)] row_group = gpc.get_group(row_parallel_mode) col_group = gpc.get_group(col_parallel_mode) src_a = summa_dim * row_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size src_b = col_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size opa = [None] * 2 opb = [None] * 2 A_list[0].copy_(A) B_list[0].copy_(B) opa[0] = dist.broadcast(A_list[0], src=src_a, group=row_group, async_op=True) opb[0] = dist.broadcast(B_list[0], src=src_b, group=col_group, async_op=True) cur = 0 for i in range(summa_dim): if i != summa_dim - 1: A_list[1 - cur].copy_(A) opa[1 - cur] = dist.broadcast(A_list[1 - cur], src=src_a + 1, group=row_group, async_op=True) B_list[1 - cur].copy_(B) opb[1 - cur] = dist.broadcast(B_list[1 - cur], src=src_b + summa_dim, group=col_group, async_op=True) if opa[cur] is not None: opa[cur].wait() if opb[cur] is not None: opb[cur].wait() torch.addmm(C, A_list[cur], B_list[cur], out=C) cur = 1 - cur src_a += 1 src_b += summa_dim out = C.reshape(out_shape) if ctx: ctx.summa_dim = summa_dim ctx.row_rank = row_rank ctx.col_rank = col_rank ctx.row_parallel_mode = row_parallel_mode ctx.col_parallel_mode = col_parallel_mode ctx.A_shape = A_shape ctx.B_shape = B_shape ctx.data_parallel_rank = data_parallel_rank ctx.pipeline_parallel_rank = pipeline_parallel_rank ctx.pipeline_parallel_size = pipeline_parallel_size ctx.tensor_parallel_size = tensor_parallel_size return out @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: A, B = ctx.saved_tensors with torch.no_grad(): A_grad = Matmul_ABT_2D.apply(output_grad, B, ctx.summa_dim, ctx.A_shape, ctx.row_rank, ctx.col_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size) B_grad = Matmul_ATB_2D.apply(A, output_grad, ctx.summa_dim, ctx.B_shape, ctx.row_rank, ctx.col_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size) return A_grad, B_grad, None, None, None, None, None, None, None, None, None, None class Matmul_ABT_2D(torch.autograd.Function): r"""Matrix multiplication for :math:`C = AB^T` Args: A (:class:`torch.tensor`): matrix :math:`A`. B (:class:`torch.tensor`): matrix :math:`B`. summa_dim (int): dimension of SUMMA fo 2D parallelism. out_shape (:class:`torch.size`): shape of output tensor. row_rank (int, optional): the rank of row, defaults to None. col_rank (int, optional): the rank of column, defaults to None. row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode. col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode. column parallel mode, defaults to ParallelMode.PARALLEL_2D_COL. data_parallel_rank (int): data parallel rank. pipeline_parallel_rank (int): pipeline parallel rank pipeline_parallel_size (int): pipeline parallel size. tensor_parallel_size (int): tensor parallel size. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_. """ @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward( ctx: Any, A: Tensor, B: Tensor, summa_dim: int, out_shape: Tuple[int, ...], row_rank: int, col_rank: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode, data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int, tensor_parallel_size: int, ) -> Tensor: assert A.shape[-1] == B.shape[-1], \ 'Invalid shapes: A={}, B={} for ABT.'.format(A.shape, B.shape) if ctx: ctx.save_for_backward(A, B) A_shape = A.shape A = A.reshape((-1, A_shape[-1])) B_shape = B.shape B = B.reshape((-1, B_shape[-1])) C_shape = (A.shape[0], B.shape[0]) C = torch.empty(C_shape, dtype=A.dtype, device=get_current_device()) # use circular buffer to store the communication tensor # 2 is enough for all cases B_list = [torch.empty_like(B) for _ in range(2)] C_list = [torch.empty_like(C) for _ in range(2)] row_group = gpc.get_group(row_parallel_mode) col_group = gpc.get_group(col_parallel_mode) src_b = col_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size src_c = summa_dim * row_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size opb = [None] * 2 opr = [None] * 2 B_list[0].copy_(B) opb[0] = dist.broadcast(B_list[0], src=src_b, group=col_group, async_op=True) cur = 0 for i in range(summa_dim): if i != summa_dim - 1: B_list[1 - cur].copy_(B) opb[1 - cur] = dist.broadcast(B_list[1 - cur], src=src_b + summa_dim, group=col_group, async_op=True) if opr[cur] is not None: opr[cur].wait() if i - 2 == col_rank: C.copy_(C_list[cur]) if opb[cur] is not None: opb[cur].wait() torch.matmul(A, B_list[cur].transpose(0, 1), out=C_list[cur]) opr[cur] = dist.reduce(C_list[cur], dst=src_c, group=row_group, async_op=True) cur = 1 - cur src_b += summa_dim src_c += 1 for op in opr: op.wait() if summa_dim - 2 == col_rank: C.copy_(C_list[cur]) if summa_dim - 1 == col_rank: C.copy_(C_list[1 - cur]) out = C.reshape(out_shape) if ctx: ctx.summa_dim = summa_dim ctx.row_rank = row_rank ctx.col_rank = col_rank ctx.row_parallel_mode = row_parallel_mode ctx.col_parallel_mode = col_parallel_mode ctx.A_shape = A_shape ctx.B_shape = B_shape ctx.data_parallel_rank = data_parallel_rank ctx.pipeline_parallel_rank = pipeline_parallel_rank ctx.pipeline_parallel_size = pipeline_parallel_size ctx.tensor_parallel_size = tensor_parallel_size return out @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: A, B = ctx.saved_tensors with torch.no_grad(): A_grad = Matmul_AB_2D.apply(output_grad, B, ctx.summa_dim, ctx.A_shape, ctx.row_rank, ctx.col_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size) B_grad = Matmul_ATB_2D.apply(output_grad, A, ctx.summa_dim, ctx.B_shape, ctx.row_rank, ctx.col_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size) return A_grad, B_grad, None, None, None, None, None, None, None, None, None, None class Matmul_ATB_2D(torch.autograd.Function): r"""Matrix multiplication for :math:`C = A^TB`. Args: A (:class:`torch.tensor`): matrix :math:`A`. B (:class:`torch.tensor`): matrix :math:`B`. summa_dim (int): dimension of SUMMA fo 2D parallelism. out_shape (:class:`torch.size`): shape of output tensor. row_rank (int, optional): the rank of row, defaults to None. col_rank (int, optional): the rank of column, defaults to None. row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode. col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode. data_parallel_rank (int): data parallel rank. pipeline_parallel_rank (int): pipeline parallel rank pipeline_parallel_size (int): pipeline parallel size. tensor_parallel_size (int): tensor parallel size. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_. """ @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward( ctx: Any, A: Tensor, B: Tensor, summa_dim: int, out_shape: Tuple[int, ...], row_rank: int, col_rank: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode, data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int, tensor_parallel_size: int, ) -> Tensor: assert A.shape[-2] == B.shape[-2], \ 'Invalid shapes: A={}, B={} for ATB.'.format(A.shape, B.shape) if ctx: ctx.save_for_backward(A, B) A_shape = A.shape A = A.reshape((-1, A_shape[-1])) B_shape = B.shape B = B.reshape((-1, B_shape[-1])) C_shape = (A.shape[-1], B.shape[-1]) C = torch.empty(C_shape, dtype=A.dtype, device=get_current_device()) # use circular buffer to store the communication tensor # 2 is enough for all cases A_list = [torch.empty_like(A) for _ in range(2)] C_list = [torch.empty_like(C) for _ in range(2)] row_group = gpc.get_group(row_parallel_mode) col_group = gpc.get_group(col_parallel_mode) src_a = summa_dim * row_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size src_c = col_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size opa = [None] * 2 opr = [None] * 2 A_list[0].copy_(A) opa[0] = dist.broadcast(A_list[0], src=src_a, group=row_group, async_op=True) cur = 0 for i in range(summa_dim): if i != summa_dim - 1: A_list[1 - cur].copy_(A) opa[1 - cur] = dist.broadcast(A_list[1 - cur], src=src_a + 1, group=row_group, async_op=True) if opr[cur] is not None: opr[cur].wait() if i - 2 == row_rank: C.copy_(C_list[cur]) if opa[cur] is not None: opa[cur].wait() torch.matmul(A_list[cur].transpose(0, 1), B, out=C_list[cur]) opr[cur] = dist.reduce(C_list[cur], dst=src_c, group=col_group, async_op=True) cur = 1 - cur src_a += 1 src_c += summa_dim for op in opr: op.wait() if summa_dim - 2 == row_rank: C.copy_(C_list[cur]) if summa_dim - 1 == row_rank: C.copy_(C_list[1 - cur]) out = C.reshape(out_shape) if ctx: ctx.summa_dim = summa_dim ctx.row_rank = row_rank ctx.col_rank = col_rank ctx.row_parallel_mode = row_parallel_mode ctx.col_parallel_mode = col_parallel_mode ctx.A_shape = A_shape ctx.B_shape = B_shape ctx.data_parallel_rank = data_parallel_rank ctx.pipeline_parallel_rank = pipeline_parallel_rank ctx.pipeline_parallel_size = pipeline_parallel_size ctx.tensor_parallel_size = tensor_parallel_size return out @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: A, B = ctx.saved_tensors with torch.no_grad(): A_grad = Matmul_ABT_2D.apply(B, output_grad, ctx.summa_dim, ctx.A_shape, ctx.row_rank, ctx.col_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size) B_grad = Matmul_AB_2D.apply(A, output_grad, ctx.summa_dim, ctx.B_shape, ctx.row_rank, ctx.col_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size) return A_grad, B_grad, None, None, None, None, None, None, None, None, None, None class _Add_Bias_2D(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward( ctx: Any, input_: Tensor, bias: Tensor, output_size_per_partition: int, row_rank: int, col_rank: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode, skip_bias_add: bool, data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int, tensor_parallel_size: int, ) -> Tensor: bias_temp = all_gather(bias, -1, col_parallel_mode) ctx.row_rank = row_rank ctx.col_rank = col_rank ctx.row_parallel_mode = row_parallel_mode ctx.col_parallel_mode = col_parallel_mode ctx.bias = skip_bias_add ctx.data_parallel_rank = data_parallel_rank ctx.pipeline_parallel_rank = pipeline_parallel_rank ctx.pipeline_parallel_size = pipeline_parallel_size ctx.tensor_parallel_size = tensor_parallel_size if skip_bias_add: return bias_temp else: output = input_ + bias_temp return output @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: col_parallel_mode = ctx.col_parallel_mode if ctx.bias: grad = reduce_scatter(output_grad, -1, col_parallel_mode) return None, grad, None, None, None, None, None, None, None, None, None, None else: reduce_dim = tuple(range(output_grad.ndim - 1)) reduce = torch.sum(output_grad, dim=reduce_dim) grad = reduce_scatter(reduce, -1, col_parallel_mode) return output_grad, grad, None, None, None, None, None, None, None, None, None, None def add_bias_2d(input_: Tensor, bias: Tensor, output_size_per_partition: int, row_rank: int, col_rank: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode, skip_bias_add: bool, data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int, tensor_parallel_size: int) -> Tensor: r"""Matrix add bias: :math:`C = A + b`. Args: input_ (:class:`torch.tensor`): matrix :math:`A`. bias (:class:`torch.tensor`): matrix :math:`B`. output_size_per_partition (int): size of output per partition. row_rank (int, optional): the rank of row, defaults to None. col_rank (int, optional): the rank of column, defaults to None. row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode. col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode. skip_bias_add (bool): If set to ``True``, it will skip bias add for linear layer, which is preserved for kernel fusion. data_parallel_rank (int): data parallel rank. pipeline_parallel_rank (int): pipeline parallel rank pipeline_parallel_size (int): pipeline parallel size. tensor_parallel_size (int): tensor parallel size. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ return _Add_Bias_2D.apply(input_, bias, output_size_per_partition, row_rank, col_rank, row_parallel_mode, col_parallel_mode, skip_bias_add, data_parallel_rank, pipeline_parallel_rank, pipeline_parallel_size, tensor_parallel_size) class _Layernorm_2D(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float32) def forward(ctx: Any, input_: Tensor, E_x: Tensor, Var_x: Tensor, hidden_size: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode) -> Tensor: input_ = input_ - E_x # in here, input = x - E[x], Var_x = 1 / sqrt(Var[x] + eps) ctx.normalized_shape = hidden_size output = input_ * Var_x ctx.save_for_backward(output, Var_x) ctx.row_parallel_mode = row_parallel_mode ctx.col_parallel_mode = col_parallel_mode return output @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: row_parallel_mode = ctx.row_parallel_mode col_parallel_mode = ctx.col_parallel_mode x, Var_x = ctx.saved_tensors # in here, Var_x = 1 / sqrt(Var[x] + eps), x = (x - E[x]) * Var_x output_grad_sum = torch.sum(output_grad, dim=-1, keepdim=True) torch.distributed.all_reduce(output_grad_sum, group=gpc.get_group(row_parallel_mode)) output_grad_sum /= ctx.normalized_shape output_grad_mul_x_sum = torch.sum(output_grad * x, dim=-1, keepdim=True) torch.distributed.all_reduce(output_grad_mul_x_sum, group=gpc.get_group(row_parallel_mode)) output_grad_mul_x_sum /= ctx.normalized_shape input_grad = output_grad.clone() input_grad -= x * output_grad_mul_x_sum input_grad -= output_grad_sum input_grad *= Var_x return input_grad, None, None, None, None, None def layernorm_2d(input_: Tensor, E_x: Tensor, Var_x: Tensor, hidden_size: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode) -> Tensor: r"""Layernorm. Args: input_ (:class:`torch.tensor`): input matrix. E_x (:class:`torch.tensor`): mean. Var_x (:class:`torch.tensor`): variance. hidden_size (int): hidden size. row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode. col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ return _Layernorm_2D.apply(input_, E_x, Var_x, hidden_size, row_parallel_mode, col_parallel_mode) class _AllGatherTensor2D(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx: Any, inputs: Tensor, dim: int, parallel_mode: ParallelMode) -> Tensor: ctx.dim = dim ctx.parallel_mode = parallel_mode outputs = all_gather(inputs, dim, parallel_mode) return outputs @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: grad = reduce_scatter(output_grad, ctx.dim, ctx.parallel_mode) return grad.contiguous(), None, None def all_gather_tensor_2d(tensor: Tensor, dim: int, parallel_mode: ParallelMode) -> Tensor: r"""All gather the tensor of 2D parallelism. Args: tensor (:class:`torch.tensor`): Input tensor. dim (int): Dimension to gather. parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode tensor used. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ return _AllGatherTensor2D.apply(tensor, dim, parallel_mode) def split_batch_2d(input_: Tensor, dim: int = 0) -> Tensor: """Splits 2D tensor in specified dimension across cols. Args: input_ (:class:`torch.tensor`): Input tensor. dim (int): Specified dimension in which to split. Returns: :class:`torch.tensor`: The tensor has been split. """ dim_size = input_.size(dim) world_size = gpc.get_world_size(ParallelMode.PARALLEL_2D_COL) if world_size <= 1: return input_ assert dim_size % world_size == 0, \ f'The batch size ({dim_size}) is not a multiple of 2D size ({world_size}).' return torch.chunk(input_, gpc.get_world_size(ParallelMode.PARALLEL_2D_COL), dim=dim)[gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)].contiguous() class _ReduceTensor2D(torch.autograd.Function): @staticmethod def forward(ctx, input_, parallel_mode): return all_reduce(input_, parallel_mode) @staticmethod def backward(ctx, output_grad): return output_grad, None def reduce_tensor_2d(input_: Tensor, parallel_mode: ParallelMode) -> Tensor: r"""All-reduce the input. Args: input_ (:class:`torch.tensor`): Input tensor. parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode tensor used. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ return _ReduceTensor2D.apply(input_, parallel_mode) class _ReduceScatterTensor2D(torch.autograd.Function): @staticmethod def forward(ctx, input_, dim, parallel_mode): ctx.dim = dim ctx.parallel_mode = parallel_mode return reduce_scatter(input_, dim, parallel_mode) @staticmethod def backward(ctx, output_grad): return all_gather(output_grad, ctx.dim, ctx.parallel_mode), None, None def reduce_scatter_tensor_2d(tensor: Tensor, dim: int, parallel_mode: ParallelMode) -> Tensor: r"""Reduce-scatter the input. Args: tensor (:class:`torch.tensor`): Input tensor. dim (int): Dimension to reduce. parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode tensor used. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ dim_size = tensor.size(dim) world_size = gpc.get_world_size(parallel_mode) assert dim_size % world_size == 0, \ f'The batch size ({dim_size}) is not a multiple of 2D size ({world_size}).' return _ReduceScatterTensor2D.apply(tensor, dim, parallel_mode) class _ReduceByBatch2D(torch.autograd.Function): @staticmethod def symbolic(graph, input_, reduce_mean: bool = False): output = all_reduce(input_, ParallelMode.PARALLEL_2D_COL) if reduce_mean: reduce_size = gpc.get_world_size(ParallelMode.PARALLEL_2D_COL) return output / reduce_size return output @staticmethod @custom_fwd(cast_inputs=torch.float32) def forward(ctx, input_, reduce_mean: bool = False): output = all_reduce(input_, ParallelMode.PARALLEL_2D_COL) ctx.reduce_mean = reduce_mean if reduce_mean: reduce_size = gpc.get_world_size(ParallelMode.PARALLEL_2D_COL) ctx.reduce_size = reduce_size return output.clone() / reduce_size return output.clone() @staticmethod @custom_bwd def backward(ctx, output_grad): if ctx.reduce_mean: return output_grad / ctx.reduce_size, None else: return output_grad, None def reduce_by_batch_2d(input_, reduce_mean: bool = False) -> Tensor: r"""All-reduce the input from the model parallel region. Args: input_ (:class:`torch.tensor`): input matrix. reduce_mean (bool, optional): If set to ``True``, it will divide the output by column parallel size, default to False. """ return _ReduceByBatch2D.apply(input_, reduce_mean)
from ._operation import reduce_by_batch_2d, split_batch_2d from .layers import (Classifier2D, Embedding2D, LayerNorm2D, Linear2D, PatchEmbedding2D, VocabParallelClassifier2D, VocabParallelEmbedding2D) __all__ = [ 'split_batch_2d', 'reduce_by_batch_2d', 'Linear2D', 'LayerNorm2D', 'Classifier2D', 'PatchEmbedding2D', 'Embedding2D', 'VocabParallelEmbedding2D', 'VocabParallelClassifier2D' ]
import math from collections import OrderedDict from typing import Callable import torch import torch.nn as nn import torch.nn.functional as F from colossalai.communication import broadcast from colossalai.context import ParallelMode, seed from colossalai.core import global_context as gpc from colossalai.global_variables import tensor_parallel_env as env from colossalai.nn import init as init from colossalai.registry import LAYERS from colossalai.utils.checkpointing import gather_tensor_parallel_state_dict, partition_tensor_parallel_state_dict from colossalai.utils.cuda import get_current_device from torch import Tensor from torch.nn import Parameter from ..base_layer import ParallelLayer from ..utils import divide, set_tensor_parallel_attribute_by_partition, to_2tuple from ._operation import (Matmul_AB_2D, Matmul_ABT_2D, add_bias_2d, all_gather_tensor_2d, classifier_2d, layernorm_2d, reduce_scatter_tensor_2d, split_batch_2d) from ._utils import assert_summa_initialization, get_summa_dim_from_env @LAYERS.register_module class Linear2D(ParallelLayer): r"""Linear layer for 2D parallelism Args: in_features (int): size of each input sample. out_features (int): size of each output sample. bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. skip_bias_add (bool, optional): If set to ``True``, it will skip bias add for linear layer, which is preserved for kernel fusion, defaults to False. weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. More details about ``initializer`` please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, in_features: int, out_features: int, bias: bool = True, dtype: torch.dtype = None, skip_bias_add: bool = False, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)): super().__init__() self.in_features = in_features self.out_features = out_features self.skip_bias_add = skip_bias_add # parallel settings assert_summa_initialization() self.row_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) self.col_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) self.summa_dim = get_summa_dim_from_env() # partitioning dimension self.input_size_per_partition = divide(self.in_features, self.summa_dim) self.hidden_size_per_partition = divide(self.out_features, self.summa_dim) # create weight, shape: [k/q, h/q] factory_kwargs = {'device': get_current_device(), 'dtype': dtype} self.weight = Parameter( torch.empty(self.input_size_per_partition, self.hidden_size_per_partition, **factory_kwargs)) # create bias, shape: [h/q] if bias: self.bias = Parameter(torch.empty(divide(self.out_features, self.summa_dim**2), **factory_kwargs)) else: self.register_parameter('bias', None) # initialize parameters with seed(ParallelMode.TENSOR): self.reset_parameters(weight_initializer, bias_initializer) self._set_tensor_parallel_attributes() def _set_tensor_parallel_attributes(self): set_tensor_parallel_attribute_by_partition(self.weight, self.summa_dim**2) if self.bias is not None: set_tensor_parallel_attribute_by_partition(self.bias, self.summa_dim**2) def reset_parameters(self, weight_initializer, bias_initializer) -> None: fan_in, fan_out = self.in_features, self.out_features weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) if self.bias is not None: bias_initializer(self.bias, fan_in=fan_in) def _load_from_global_state_dict(self, state_dict, prefix, *args, **kwargs): local_state = OrderedDict() weight_key = prefix + 'weight' bias_key = prefix + 'bias' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight.transpose(0, 1) # bias if self.bias is not None: bias = state_dict.pop(bias_key, None) if bias is not None: local_state[bias_key] = bias # partition in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) == 0: local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_ROW, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, ) # partition in column groups local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_COL, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, ) super()._load_from_global_state_dict(local_state, prefix, *args, **kwargs) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' bias_key = prefix + 'bias' local_state = OrderedDict({weight_key: self.weight}) if self.bias is not None: local_state[bias_key] = self.bias # gather in column groups local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_COL, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, keep_vars=keep_vars, ) # gather in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) == 0: local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_ROW, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, keep_vars=keep_vars, ) if gpc.get_local_rank(ParallelMode.TENSOR) == 0: local_state[weight_key] = local_state[weight_key].transpose(0, 1) destination.update(local_state) def forward(self, x: Tensor) -> Tensor: # input: [m/q, n/q, k/q] # output: [m/q, n/q, h/q] out_shape = x.shape[:-1] + (self.hidden_size_per_partition,) output = Matmul_AB_2D.apply(x, self.weight, self.summa_dim, out_shape, self.row_rank, self.col_rank, ParallelMode.PARALLEL_2D_ROW, ParallelMode.PARALLEL_2D_COL, self.data_parallel_rank, self.pipeline_parallel_rank, self.pipeline_parallel_size, self.tensor_parallel_size) if self.bias is not None: if self.skip_bias_add: bias = add_bias_2d(None, self.bias, self.hidden_size_per_partition, self.row_rank, self.col_rank, ParallelMode.PARALLEL_2D_ROW, ParallelMode.PARALLEL_2D_COL, True, self.data_parallel_rank, self.pipeline_parallel_rank, self.pipeline_parallel_size, self.tensor_parallel_size) return output, bias else: output = add_bias_2d(output, self.bias, self.hidden_size_per_partition, self.row_rank, self.col_rank, ParallelMode.PARALLEL_2D_ROW, ParallelMode.PARALLEL_2D_COL, False, self.data_parallel_rank, self.pipeline_parallel_rank, self.pipeline_parallel_size, self.tensor_parallel_size) return output else: return output @LAYERS.register_module class LayerNorm2D(ParallelLayer): r"""Layer Normalization for 2D parallelism. Args: normalized_shape (int): input shape from an expected input of size. :math:`[* \times \text{normalized_shape}[0] \times \text{normalized_shape}[1] \times \ldots \times \text{normalized_shape}[-1]]` If a single integer is used, it is treated as a singleton list, and this module will normalize over the last dimension which is expected to be of that specific size. eps (float, optional): a value added to the denominator for numerical stability, defaults to 1e-05. bias (bool, optional): Whether to add a bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. """ def __init__(self, normalized_shape: int, eps: float = 1e-05, bias=True, dtype=None): super().__init__() # layer norm config self.normalized_shape = normalized_shape self.variance_epsilon = eps # parallel setting assert_summa_initialization() self.row_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) self.col_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) self.summa_dim = get_summa_dim_from_env() # partitioning dimension self.partitioned_partition = divide(normalized_shape, self.summa_dim**2) # create parameters factory_kwargs = {'device': get_current_device(), 'dtype': dtype} self.weight = Parameter(torch.ones(self.partitioned_partition, **factory_kwargs)) if bias: self.bias = Parameter(torch.zeros(self.partitioned_partition, **factory_kwargs)) else: self.bias = None self._set_tensor_parallel_attributes() def _set_tensor_parallel_attributes(self): set_tensor_parallel_attribute_by_partition(self.weight, self.summa_dim**2) if self.bias is not None: set_tensor_parallel_attribute_by_partition(self.bias, self.summa_dim**2) def _load_from_global_state_dict(self, state_dict, prefix, *args, **kwargs): local_state = OrderedDict() weight_key = prefix + 'weight' bias_key = prefix + 'bias' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight # bias bias = state_dict.pop(bias_key, None) if bias is not None: local_state[bias_key] = bias # partition in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) == 0: local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_ROW, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, ) # partition in column groups local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_COL, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, ) super()._load_from_global_state_dict(local_state, prefix, *args, **kwargs) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' bias_key = prefix + 'bias' local_state = OrderedDict({weight_key: self.weight}) if self.bias is not None: local_state[bias_key] = self.bias # gather in column groups local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_COL, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, keep_vars=keep_vars, ) # gather in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) == 0: local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_ROW, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, keep_vars=keep_vars, ) if gpc.get_local_rank(ParallelMode.TENSOR) == 0: destination.update(local_state) def forward(self, x: Tensor) -> Tensor: with torch.no_grad(): E_x = torch.sum(x, dim=-1, keepdim=True) # [b/q, s, 1] torch.distributed.all_reduce(E_x, group=gpc.get_group(ParallelMode.PARALLEL_2D_ROW)) E_x /= self.normalized_shape # Var_x in the block below is the sum of input^2 Var_x = torch.sum(x * x, dim=-1, keepdim=True) # [b/q, s, 1] torch.distributed.all_reduce(Var_x, group=gpc.get_group(ParallelMode.PARALLEL_2D_ROW)) Var_x /= self.normalized_shape Var_x = Var_x - E_x * E_x # variance of x [b/q, s, 1] # this time 1/sqrt(Var_x + epsilon) Var_x = 1.0 / torch.sqrt(Var_x + self.variance_epsilon) output = layernorm_2d(x, E_x, Var_x, self.normalized_shape, ParallelMode.PARALLEL_2D_ROW, ParallelMode.PARALLEL_2D_COL) scale = add_bias_2d(None, self.weight, self.partitioned_partition, self.row_rank, self.col_rank, ParallelMode.PARALLEL_2D_ROW, ParallelMode.PARALLEL_2D_COL, True, self.data_parallel_rank, self.pipeline_parallel_rank, self.pipeline_parallel_size, self.tensor_parallel_size) if self.bias is not None: bias = add_bias_2d(None, self.bias, self.partitioned_partition, self.row_rank, self.col_rank, ParallelMode.PARALLEL_2D_ROW, ParallelMode.PARALLEL_2D_COL, True, self.data_parallel_rank, self.pipeline_parallel_rank, self.pipeline_parallel_size, self.tensor_parallel_size) output = torch.addcmul(bias, scale, output) else: output = torch.mul(scale, output) return output @LAYERS.register_module class PatchEmbedding2D(ParallelLayer): r"""2D Image to Patch Embedding. Args: img_size (int): image size. patch_size (int): patch size. in_chans (int): number of channels of input image. embed_size (int): size of embedding. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. flatten (bool, optional): whether to flatten output tensor, defaults to True. weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. position_embed_initializer (:class:`typing.Callable`, optional): The initializer of position embedding, defaults to zeros initializer. More details about ``initializer`` please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, img_size: int, patch_size: int, in_chans: int, embed_size: int, flatten: bool = True, dtype: torch.dtype = None, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1), position_embed_initializer: Callable = init.zeros_()): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) assert_summa_initialization() self.summa_dim = get_summa_dim_from_env() self.img_size = img_size self.patch_size = patch_size self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.flatten = flatten self.embed_size = embed_size self.embed_size_per_partition = embed_size // (self.summa_dim**2) with seed(ParallelMode.TENSOR): self.weight = Parameter( torch.empty((self.embed_size_per_partition, in_chans, *self.patch_size), device=get_current_device(), dtype=dtype)) self.bias = Parameter(torch.empty(self.embed_size_per_partition, device=get_current_device(), dtype=dtype)) self.cls_token = Parameter( torch.zeros((1, 1, self.embed_size_per_partition), device=get_current_device(), dtype=dtype)) self.pos_embed = Parameter( torch.zeros((1, self.num_patches + 1, self.embed_size_per_partition), device=get_current_device(), dtype=dtype)) self.reset_parameters(weight_initializer, bias_initializer, position_embed_initializer) self._set_tensor_parallel_attribute() def _set_tensor_parallel_attribute(self): set_tensor_parallel_attribute_by_partition(self.weight, self.summa_dim**2) set_tensor_parallel_attribute_by_partition(self.bias, self.summa_dim**2) set_tensor_parallel_attribute_by_partition(self.cls_token, self.summa_dim**2) set_tensor_parallel_attribute_by_partition(self.pos_embed, self.summa_dim**2) def reset_parameters(self, weight_initializer, bias_initializer, position_embed_initializer): with seed(ParallelMode.TENSOR): fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight) fan_out = self.embed_size weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) bias_initializer(self.bias, fan_in=fan_in) position_embed_initializer(self.pos_embed) def _load_from_global_state_dict(self, state_dict, prefix, *args, **kwargs): local_state = OrderedDict() weight_key = prefix + 'weight' bias_key = prefix + 'bias' cls_token_key = prefix + 'cls_token' pos_embed_key = prefix + 'pos_embed' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight # bias bias = state_dict.pop(bias_key, None) if bias is not None: local_state[bias_key] = bias # cls token cls_token = state_dict.pop(cls_token_key, None) if cls_token is not None: local_state[cls_token_key] = cls_token # pos embed pos_embed = state_dict.pop(pos_embed_key, None) if pos_embed is not None: local_state[pos_embed_key] = pos_embed # partition in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) == 0: local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_ROW, dims={ weight_key: 0, bias_key: 0, cls_token_key: -1, pos_embed_key: -1 }, partition_states={ weight_key: True, bias_key: True, cls_token_key: True, pos_embed_key: True }, ) # partition in column groups local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_COL, dims={ weight_key: 0, bias_key: 0, cls_token_key: -1, pos_embed_key: -1 }, partition_states={ weight_key: True, bias_key: True, cls_token_key: True, pos_embed_key: True }, ) super()._load_from_global_state_dict(local_state, prefix, *args, **kwargs) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' bias_key = prefix + 'bias' cls_token_key = prefix + 'cls_token' pos_embed_key = prefix + 'pos_embed' local_state = OrderedDict({ weight_key: self.weight, bias_key: self.bias, cls_token_key: self.cls_token, pos_embed_key: self.pos_embed }) # gather in column groups local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_COL, dims={ weight_key: 0, bias_key: 0, cls_token_key: -1, pos_embed_key: -1 }, partition_states={ weight_key: True, bias_key: True, cls_token_key: True, pos_embed_key: True }, keep_vars=keep_vars, ) # gather in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) == 0: local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_ROW, dims={ weight_key: 0, bias_key: 0, cls_token_key: -1, pos_embed_key: -1 }, partition_states={ weight_key: True, bias_key: True, cls_token_key: True, pos_embed_key: True }, keep_vars=keep_vars, ) if gpc.get_local_rank(ParallelMode.TENSOR) == 0: destination.update(local_state) def forward(self, input_: Tensor) -> Tensor: input_ = split_batch_2d(input_) B, C, H, W = input_.shape assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." weight = all_gather_tensor_2d(self.weight, 0, ParallelMode.PARALLEL_2D_COL) bias = all_gather_tensor_2d(self.bias, 0, ParallelMode.PARALLEL_2D_COL) output = F.conv2d(input_, weight, bias, stride=self.patch_size) if self.flatten: output = output.flatten(2).transpose(1, 2) # BCHW -> BNC cls_token = all_gather_tensor_2d(self.cls_token, -1, ParallelMode.PARALLEL_2D_COL) pos_embed = all_gather_tensor_2d(self.pos_embed, -1, ParallelMode.PARALLEL_2D_COL) cls_token = cls_token.expand(output.shape[0], -1, -1) output = torch.cat((cls_token, output), dim=1) output = output + pos_embed return output @LAYERS.register_module class Embedding2D(ParallelLayer): r"""Embedding for 2D parallelism. Args: num_embeddings (int): number of embeddings. embedding_dim (int): dimension of embedding. padding_idx (int, optional): If specified, the entries at padding_idx do not contribute to the gradient; therefore, the embedding vector at padding_idx is not updated during training, i.e. it remains as a fixed “pad”, defaults to None. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. weight_initializer (:class:`typing.Callable`, optional): he initializer of weight, defaults to normal initializer. The ``args`` and ``kwargs`` used in :class:``torch.nn.functional.embedding`` should contain: :: max_norm (float, optional): If given, each embedding vector with norm larger than max_norm is renormalized to have norm max_norm. Note: this will modify weight in-place. norm_type (float, optional): The p of the p-norm to compute for the max_norm option. Default 2. scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default False. sparse (bool, optional): If True, gradient w.r.t. weight will be a sparse tensor. Default False. More details about ``args`` and ``kwargs`` could be found in `Embedding <https://pytorch.org/docs/stable/generated/torch.nn.functional.embedding.html#torch.nn.functional.embedding>`_. More details about initializer please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_ """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int = None, dtype: torch.dtype = None, weight_initializer: Callable = init.normal_(), *args, **kwargs): super().__init__() assert_summa_initialization() self.summa_dim = get_summa_dim_from_env() self.num_embeddings = num_embeddings self.embed_dim = embedding_dim embed_dim_per_partition = divide(embedding_dim, self.summa_dim**2) self.padding_idx = padding_idx self.embed_args = args self.embed_kwargs = kwargs self.weight = Parameter( torch.empty((num_embeddings, embed_dim_per_partition), device=get_current_device(), dtype=dtype)) self.reset_parameters(weight_initializer) self._set_tensor_parallel_attributes() def _set_tensor_parallel_attributes(self): set_tensor_parallel_attribute_by_partition(self.weight, self.summa_dim**2) def reset_parameters(self, weight_initializer) -> None: with seed(ParallelMode.TENSOR): fan_in, fan_out = self.num_embeddings, self.embed_dim weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) self._fill_padding_idx_with_zero() def _fill_padding_idx_with_zero(self) -> None: if self.padding_idx is not None: with torch.no_grad(): self.weight[self.padding_idx].fill_(0) def _load_from_global_state_dict(self, state_dict, prefix, *args, **kwargs): local_state = OrderedDict() weight_key = prefix + 'weight' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight # partition in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) == 0: local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_ROW, dims={weight_key: -1}, partition_states={weight_key: True}, ) # partition in column groups local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_COL, dims={weight_key: -1}, partition_states={weight_key: True}, ) super()._load_from_global_state_dict(local_state, prefix, *args, **kwargs) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' local_state = OrderedDict({weight_key: self.weight}) # gather in column groups local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_COL, dims={weight_key: -1}, partition_states={weight_key: True}, keep_vars=keep_vars, ) # gather in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) == 0: local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_ROW, dims={weight_key: -1}, partition_states={weight_key: True}, keep_vars=keep_vars, ) if gpc.get_local_rank(ParallelMode.TENSOR) == 0: destination.update(local_state) def forward(self, input_: Tensor) -> Tensor: input_ = split_batch_2d(input_) weight = all_gather_tensor_2d(self.weight, -1, ParallelMode.PARALLEL_2D_COL) output = F.embedding(input_, weight, self.padding_idx, *self.embed_args, **self.embed_kwargs) return output @LAYERS.register_module class VocabParallelEmbedding2D(ParallelLayer): r"""Embedding parallelized in the vocabulary dimension. Args: num_embeddings (int): number of embeddings. embedding_dim (int): dimension of embedding. padding_idx (int, optional): If specified, the entries at padding_idx do not contribute to the gradient; therefore, the embedding vector at padding_idx is not updated during training, i.e. it remains as a fixed “pad”, defaults to None. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. weight_initializer (:class:`typing.Callable`, optional): he initializer of weight, defaults to normal initializer. The ``args`` and ``kwargs`` used in :class:``torch.nn.functional.embedding`` should contain: :: max_norm (float, optional): If given, each embedding vector with norm larger than max_norm is renormalized to have norm max_norm. Note: this will modify weight in-place. norm_type (float, optional): The p of the p-norm to compute for the max_norm option. Default 2. scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default False. sparse (bool, optional): If True, gradient w.r.t. weight will be a sparse tensor. Default False. More details about ``args`` and ``kwargs`` could be found in `Embedding <https://pytorch.org/docs/stable/generated/torch.nn.functional.embedding.html#torch.nn.functional.embedding>`_. More details about initializer please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int = None, dtype: torch.dtype = None, weight_initializer: Callable = init.normal_(), *args, **kwargs): super().__init__() self.num_embeddings = num_embeddings self.embed_dim = embedding_dim self.padding_idx = padding_idx self.embed_args = args self.embed_kwargs = kwargs assert_summa_initialization() self.summa_dim = get_summa_dim_from_env() self.num_embeddings_per_partition = divide(self.num_embeddings, self.summa_dim) self.embed_dim_per_partition = divide(self.embed_dim, self.summa_dim) tensor_parallel_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) self.vocab_start_index = tensor_parallel_rank * self.num_embeddings_per_partition self.vocab_end_index = self.vocab_start_index + self.num_embeddings_per_partition self.weight = Parameter( torch.empty((self.num_embeddings_per_partition, self.embed_dim_per_partition), device=get_current_device(), dtype=dtype)) self.reset_parameters(weight_initializer) self._set_tensor_parallel_attributes() env.vocab_parallel = True def _set_tensor_parallel_attributes(self): set_tensor_parallel_attribute_by_partition(self.weight, self.summa_dim**2) def reset_parameters(self, weight_initializer) -> None: with seed(ParallelMode.TENSOR): fan_in, fan_out = self.num_embeddings, self.embed_dim weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) self._fill_padding_idx_with_zero() def _fill_padding_idx_with_zero(self) -> None: if self.padding_idx is not None and \ self.padding_idx >= self.vocab_start_index and self.padding_idx < self.vocab_end_index: with torch.no_grad(): self.weight[self.padding_idx - self.vocab_start_index].fill_(0) def _load_from_global_state_dict(self, state_dict, prefix, *args, **kwargs): local_state = OrderedDict() weight_key = prefix + 'weight' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight # partition in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) == 0: local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_ROW, dims={weight_key: -1}, partition_states={weight_key: True}, ) # partition in column groups local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_COL, dims={weight_key: 0}, partition_states={weight_key: True}, ) super()._load_from_global_state_dict(local_state, prefix, *args, **kwargs) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' local_state = OrderedDict({weight_key: self.weight}) # gather in column groups local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_COL, dims={weight_key: 0}, partition_states={weight_key: True}, keep_vars=keep_vars, ) # gather in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) == 0: local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_ROW, dims={weight_key: -1}, partition_states={weight_key: True}, keep_vars=keep_vars, ) if gpc.get_local_rank(ParallelMode.TENSOR) == 0: destination.update(local_state) def forward(self, input_: Tensor) -> Tensor: input_mask = (input_ < self.vocab_start_index) | (input_ >= self.vocab_end_index) masked_input = input_.clone() - self.vocab_start_index masked_input[input_mask] = 0 output_parallel = F.embedding(masked_input, self.weight, self.padding_idx, *self.embed_args, **self.embed_kwargs) output_parallel[input_mask, :] = 0. output = reduce_scatter_tensor_2d(output_parallel, 0, ParallelMode.PARALLEL_2D_COL) return output @LAYERS.register_module class Classifier2D(ParallelLayer): r"""Classifier for 2D parallelism. Args: in_features (int): size of each input sample. num_classes (int): number of classes. weight (:class:`torch.nn.Parameter`, optional): weight of the classifier, defaults to None. bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. More details about ``initializer`` please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, in_features: int, num_classes: int, weight: Parameter = None, bias: bool = True, dtype: torch.dtype = None, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)): super().__init__() self.in_features = in_features self.num_classes = num_classes assert_summa_initialization() self.row_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) self.col_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) self.summa_dim = get_summa_dim_from_env() # partitioning dimension self.input_size_per_partition = divide(self.in_features, self.summa_dim**2) if weight is not None: self.weight = weight self.has_weight = False else: self.weight = Parameter( torch.empty(self.num_classes, self.input_size_per_partition, device=get_current_device(), dtype=dtype)) self.has_weight = True if bias: self.bias = Parameter(torch.zeros(self.num_classes, device=get_current_device(), dtype=dtype)) else: self.bias = None self.reset_parameters(weight_initializer, bias_initializer) self._set_tensor_parallel_attributes() def _set_tensor_parallel_attributes(self): if self.has_weight: set_tensor_parallel_attribute_by_partition(self.weight, self.summa_dim**2) def reset_parameters(self, weight_initializer, bias_initializer) -> None: with seed(ParallelMode.TENSOR): fan_in, fan_out = self.in_features, self.num_classes col_src_rank = gpc.get_ranks_in_group(ParallelMode.PARALLEL_2D_COL)[0] row_src_rank = gpc.get_ranks_in_group(ParallelMode.PARALLEL_2D_ROW)[0] if self.has_weight: weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) if self.bias is not None: bias_initializer(self.bias, fan_in=fan_in) broadcast(self.bias, col_src_rank, ParallelMode.PARALLEL_2D_COL) broadcast(self.bias, row_src_rank, ParallelMode.PARALLEL_2D_ROW) def _load_from_global_state_dict(self, state_dict, prefix, *args, **kwargs): local_state = OrderedDict() weight_key = prefix + 'weight' bias_key = prefix + 'bias' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight if self.has_weight: weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight # bias if self.bias is not None: bias = state_dict.pop(bias_key, None) if bias is not None: local_state[bias_key] = bias # partition in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) == 0: local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_ROW, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }, ) # partition in column groups local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_COL, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }, ) super()._load_from_global_state_dict(local_state, prefix, *args, **kwargs) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' bias_key = prefix + 'bias' local_state = OrderedDict() if self.has_weight: local_state[weight_key] = self.weight if self.bias is not None: local_state[bias_key] = self.bias # gather in column groups local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_COL, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }, keep_vars=keep_vars, ) # gather in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) == 0: local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_ROW, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: False }, keep_vars=keep_vars, ) if gpc.get_local_rank(ParallelMode.TENSOR) == 0: destination.update(local_state) def forward(self, input_: Tensor) -> Tensor: out_shape = input_.shape[:-1] + (self.num_classes,) return classifier_2d(input_, self.weight, self.bias, self.summa_dim, out_shape, self.row_rank, self.col_rank, ParallelMode.PARALLEL_2D_ROW, ParallelMode.PARALLEL_2D_COL, self.data_parallel_rank, self.pipeline_parallel_rank, self.pipeline_parallel_size, self.tensor_parallel_size) @LAYERS.register_module class VocabParallelClassifier2D(ParallelLayer): r"""Vocab parallel classifier layer for 2D parallelism. Args: in_features (int): size of each input sample. num_classes (int): number of classes. weight (:class:`torch.nn.Parameter`, optional): weight of the classifier, defaults to None. bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. More details about ``initializer`` please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, in_features: int, num_classes: int, weight: Parameter = None, bias: bool = True, dtype: torch.dtype = None, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)): super().__init__() self.in_features = in_features self.num_classes = num_classes # parallel setting assert_summa_initialization() self.row_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) self.col_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) self.summa_dim = get_summa_dim_from_env() # partitioning dimension self.input_size_per_partition = divide(in_features, self.summa_dim) self.output_size_per_partition = divide(num_classes, self.summa_dim) # create weight, shape: [k/q, h/q] factory_kwargs = {'device': get_current_device(), 'dtype': dtype} if weight is not None: self.weight = weight self.has_weight = False else: self.weight = Parameter( torch.empty(self.output_size_per_partition, self.input_size_per_partition, **factory_kwargs)) self.has_weight = True # create bias, shape: [h/q] if bias: self.bias = Parameter(torch.empty(divide(self.num_classes, self.summa_dim**2), **factory_kwargs)) else: self.bias = None # initialize parameters with seed(ParallelMode.TENSOR): self.reset_parameters(weight_initializer, bias_initializer) self._set_tensor_parallel_attributes() env.vocab_parallel = True def _set_tensor_parallel_attributes(self): if self.has_weight: set_tensor_parallel_attribute_by_partition(self.weight, self.summa_dim**2) if self.bias is not None: set_tensor_parallel_attribute_by_partition(self.bias, self.summa_dim**2) def reset_parameters(self, weight_initializer, bias_initializer) -> None: fan_in, fan_out = self.in_features, self.num_classes if self.has_weight: weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) if self.bias is not None: bias_initializer(self.bias, fan_in=fan_in) def _load_from_global_state_dict(self, state_dict, prefix, *args, **kwargs): local_state = OrderedDict() weight_key = prefix + 'weight' bias_key = prefix + 'bias' if gpc.get_local_rank(ParallelMode.TENSOR) == 0: # weight if self.has_weight: weight = state_dict.pop(weight_key, None) if weight is not None: local_state[weight_key] = weight # bias if self.bias is not None: bias = state_dict.pop(bias_key, None) if bias is not None: local_state[bias_key] = bias # partition in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) == 0: local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_ROW, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, ) # partition in column groups local_state = partition_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_COL, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, ) super()._load_from_global_state_dict(local_state, prefix, *args, **kwargs) def _save_to_global_state_dict(self, destination, prefix, keep_vars): weight_key = prefix + 'weight' bias_key = prefix + 'bias' local_state = OrderedDict() if self.has_weight: local_state[weight_key] = self.weight if self.bias is not None: local_state[bias_key] = self.bias # gather in column groups local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_COL, dims={ weight_key: 0, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, keep_vars=keep_vars, ) # gather in row groups if gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) == 0: local_state = gather_tensor_parallel_state_dict( local_state, ParallelMode.PARALLEL_2D_ROW, dims={ weight_key: -1, bias_key: 0 }, partition_states={ weight_key: True, bias_key: True }, keep_vars=keep_vars, ) if gpc.get_local_rank(ParallelMode.TENSOR) == 0: local_state[weight_key] = local_state[weight_key].transpose(0, 1) destination.update(local_state) def forward(self, x: Tensor) -> Tensor: # input: [m/q, n/q, k/q] # output: [m/q, n/q, h/q] out_shape = x.shape[:-1] + (self.output_size_per_partition,) output = Matmul_ABT_2D.apply(x, self.weight, self.summa_dim, out_shape, self.row_rank, self.col_rank, ParallelMode.PARALLEL_2D_ROW, ParallelMode.PARALLEL_2D_COL, self.data_parallel_rank, self.pipeline_parallel_rank, self.pipeline_parallel_size, self.tensor_parallel_size) if self.bias is not None: output = add_bias_2d(output, self.bias, self.output_size_per_partition, self.row_rank, self.col_rank, ParallelMode.PARALLEL_2D_ROW, ParallelMode.PARALLEL_2D_COL, False, self.data_parallel_rank, self.pipeline_parallel_rank, self.pipeline_parallel_size, self.tensor_parallel_size) return output
from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.global_variables import tensor_parallel_env as env def get_summa_dim_from_env() -> int: try: summa_dim = env.summa_dim assert summa_dim > 0, 'SUMMA_DIM must be larger than zero' return summa_dim except KeyError as e: raise EnvironmentError('SUMMA_DIM is not found in the current environment, ' 'please make sure that you have used the correct process group initializer') def assert_summa_initialization(): assert gpc.is_initialized(ParallelMode.PARALLEL_2D_COL) and \ gpc.is_initialized(ParallelMode.PARALLEL_2D_ROW), \ 'Both TWO_DIMENSION_COL and TWO_DIMENSION_ROW must be initialized by the process group initializer'
import math from typing import Callable from colossalai.utils import get_current_device from torch import dtype, nn from ... import init as init from ..parallel_1d import Embedding1D, PatchEmbedding1D, VocabParallelEmbedding1D from ..parallel_2d import Embedding2D, PatchEmbedding2D, VocabParallelEmbedding2D from ..parallel_2p5d import Embedding2p5D, PatchEmbedding2p5D, VocabParallelEmbedding2p5D from ..parallel_3d import Embedding3D, PatchEmbedding3D, VocabParallelEmbedding3D from ..utils import get_tensor_parallel_mode from ..vanilla import VanillaPatchEmbedding from ._utils import ColossalaiModule _parallel_embedding = { '1d': Embedding1D, '2d': Embedding2D, '2.5d': Embedding2p5D, '3d': Embedding3D, } _vocab_parallel_embedding = { '1d': VocabParallelEmbedding1D, '2d': VocabParallelEmbedding2D, '2.5d': VocabParallelEmbedding2p5D, '3d': VocabParallelEmbedding3D } _parallel_patchembedding = { None: VanillaPatchEmbedding, '1d': PatchEmbedding1D, '2d': PatchEmbedding2D, '2.5d': PatchEmbedding2p5D, '3d': PatchEmbedding3D } class Embedding(ColossalaiModule): r"""Embedding for colossalai. Args: num_embeddings (int): number of embeddings. embedding_dim (int): dimension of embedding. padding_idx (int, optional): If specified, the entries at padding_idx do not contribute to the gradient; therefore, the embedding vector at padding_idx is not updated during training, i.e. it remains as a fixed “pad”, defaults to None. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. weight_initializer (:class:`typing.Callable`, optional): he initializer of weight, defaults to normal initializer. The ``args`` and ``kwargs`` used in :class:`torch.nn.functional.embedding` should contain: :: max_norm (float, optional): If given, each embedding vector with norm larger than max_norm is renormalized to have norm max_norm. Note: this will modify weight in-place. norm_type (float, optional): The p of the p-norm to compute for the max_norm option. Default 2. scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default False. sparse (bool, optional): If True, gradient w.r.t. weight will be a sparse tensor. Default False. More details about ``args`` and ``kwargs`` could be found in `Embedding <https://pytorch.org/docs/stable/generated/torch.nn.functional.embedding.html#torch.nn.functional.embedding>`_. More details about ``initializer`` please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_ """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int = None, dtype: dtype = None, weight_initializer: Callable = init.normal_(), vocab_parallel_limit: int = 2048, *args, **kwargs) -> None: tensor_parallel = get_tensor_parallel_mode() if tensor_parallel is None: embed = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx, *args, **kwargs).to(dtype).to(get_current_device()) weight_initializer(embed.weight, fan_in=num_embeddings, fan_out=embedding_dim) elif num_embeddings <= vocab_parallel_limit: embed = _parallel_embedding[tensor_parallel]( num_embeddings, embedding_dim, padding_idx=padding_idx, dtype=dtype, weight_initializer=weight_initializer, *args, **kwargs, ) else: embed = _vocab_parallel_embedding[tensor_parallel]( num_embeddings, embedding_dim, padding_idx=padding_idx, dtype=dtype, weight_initializer=weight_initializer, *args, **kwargs, ) super().__init__(embed) class PatchEmbedding(ColossalaiModule): """2D Image to Patch Embedding. Args: img_size (int): image size. patch_size (int): patch size. in_chans (int): number of channels of input image. embed_size (int): size of embedding. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. flatten (bool, optional): whether to flatten output tensor, defaults to True. weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. position_embed_initializer (:class:`typing.Callable`, optional): The initializer of position embedding, defaults to zeros initializer. More details about ``initializer`` please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__( self, img_size: int, patch_size: int, in_chans: int, embed_size: int, dtype: dtype = None, flatten: bool = True, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1), position_embed_initializer: Callable = init.zeros_() ) -> None: tensor_parallel = get_tensor_parallel_mode() embed = _parallel_patchembedding[tensor_parallel]( img_size, patch_size, in_chans, embed_size, dtype=dtype, flatten=flatten, weight_initializer=weight_initializer, bias_initializer=bias_initializer, position_embed_initializer=position_embed_initializer, ) super().__init__(embed)
import inspect import math from typing import Callable from torch import dtype, nn from colossalai.utils import get_current_device from ... import init as init from ..parallel_1d import * from ..parallel_2d import * from ..parallel_2p5d import * from ..parallel_3d import * from ..utils import get_tensor_parallel_mode from ..vanilla import * from ._utils import ColossalaiModule _parallel_linear = {None: VanillaLinear, '1d': Linear1D, '2d': Linear2D, '2.5d': Linear2p5D, '3d': Linear3D} _parallel_classifier = { None: VanillaClassifier, '1d': Classifier1D, '2d': Classifier2D, '2.5d': Classifier2p5D, '3d': Classifier3D } _vocab_parallel_classifier = { '1d': VocabParallelClassifier1D, '2d': VocabParallelClassifier2D, '2.5d': VocabParallelClassifier2p5D, '3d': VocabParallelClassifier3D } class Linear(ColossalaiModule): """Linear layer of colossalai. Args: in_features (int): size of each input sample. out_features (int): size of each output sample. bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. Note: ``kwargs`` would contain different parameters when you use different parallelisms. The ``kwargs`` should contain parameters below: :: Linear1D: gather_output: bool (optional, default to be false) skip_bias_add: bool (optional, default to be false) Linear2D: skip_bias_add: bool (optional, default to be false) Linear2p5D: skip_bias_add: bool (optional, default to be false) Linear3D: None More details about ``initializer`` please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, in_features: int, out_features: int, bias: bool = True, dtype: dtype = None, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1), **kwargs) -> None: tensor_parallel = get_tensor_parallel_mode() linear_cls = _parallel_linear[tensor_parallel] gather_output = kwargs.pop('gather_output', None) if 'gather_output' in inspect.signature(linear_cls.__init__).parameters.keys(): # gather_out arg is available kwargs['gather_output'] = gather_output layer = linear_cls( in_features, out_features, bias=bias, dtype=dtype, weight_initializer=weight_initializer, bias_initializer=bias_initializer, **kwargs, ) super().__init__(layer) class Classifier(ColossalaiModule): """Classifier layer of colossalai. Args: in_features (int): size of each input sample. num_classes (int): number of classes. weight (:class:`torch.nn.Parameter`, optional): weight of the classifier, defaults to None. bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. More details about ``initializer`` please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, in_features: int, num_classes: int, weight: nn.Parameter = None, bias: bool = True, dtype: dtype = None, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1), vocab_parallel_limit: int = 2048) -> None: tensor_parallel = get_tensor_parallel_mode() if num_classes <= vocab_parallel_limit or tensor_parallel is None: layer = _parallel_classifier[tensor_parallel]( in_features, num_classes, weight=weight, bias=bias, dtype=dtype, weight_initializer=weight_initializer, bias_initializer=bias_initializer, ) else: layer = _vocab_parallel_classifier[tensor_parallel]( in_features, num_classes, weight=weight, bias=bias, dtype=dtype, weight_initializer=weight_initializer, bias_initializer=bias_initializer, ) super().__init__(layer)
from ._utils import partition_batch from .dropout import Dropout from .embedding import Embedding, PatchEmbedding from .linear import Classifier, Linear from .normalization import LayerNorm __all__ = ['Linear', 'Classifier', 'Embedding', 'PatchEmbedding', 'LayerNorm', 'Dropout', 'partition_batch']
import torch.nn as nn from colossalai.context import ParallelMode, seed from ..parallel_1d import * from ..utils import get_tensor_parallel_mode from ._utils import ColossalaiModule class Dropout(ColossalaiModule): """Dropout layer of colossalai. Args: p (float, optional): probability of an element to be zeroed, defaults 0.5. inplace (bool, optional): whether to do dropout in-place, default to be False. """ def __init__(self, p: float = 0.5, inplace: bool = False) -> None: tensor_parallel = get_tensor_parallel_mode() if tensor_parallel == "1d": drop = Dropout1D(p, inplace) else: drop = nn.Dropout(p, inplace) super().__init__(drop, tensor_parallel=tensor_parallel) def forward(self, *args): if self.tensor_parallel in [None, '1d']: return self._forward_func(*args) else: with seed(ParallelMode.TENSOR): return self._forward_func(*args)
from colossalai.utils import get_current_device from torch import nn from ..parallel_1d import LayerNorm1D from ..parallel_2d import LayerNorm2D from ..parallel_2p5d import LayerNorm2p5D from ..parallel_3d import LayerNorm3D from ..utils import get_tensor_parallel_mode from ..vanilla import VanillaLayerNorm from ._utils import ColossalaiModule _parallel_layernorm = { None: VanillaLayerNorm, "1d": LayerNorm1D, "2d": LayerNorm2D, "2.5d": LayerNorm2p5D, "3d": LayerNorm3D, } class LayerNorm(ColossalaiModule): r"""Layer Normalization for colossalai. Args: normalized_shape (int): input shape from an expected input of size. :math:`[* \times \text{normalized_shape}[0] \times \text{normalized_shape}[1] \times \ldots \times \text{normalized_shape}[-1]]` If a single integer is used, it is treated as a singleton list, and this module will normalize over the last dimension which is expected to be of that specific size. eps (float): a value added to the denominator for numerical stability, defaults to 1e-05. bias (bool, optional): Whether to add a bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. """ def __init__(self, normalized_shape: int, eps=1e-05, bias=True, dtype=None) -> None: tensor_parallel = get_tensor_parallel_mode() if tensor_parallel is None: norm = nn.LayerNorm(normalized_shape, eps=eps).to(dtype).to(get_current_device()) else: norm = _parallel_layernorm[tensor_parallel](normalized_shape, eps=eps, dtype=dtype) super().__init__(norm)
import torch.nn as nn from torch import Tensor from ..parallel_2d._operation import split_batch_2d from ..parallel_2p5d._operation import split_batch_2p5d from ..parallel_3d._operation import split_batch_3d from ..utils import get_tensor_parallel_mode _parallel_split_batch = {'2d': split_batch_2d, '2.5d': split_batch_2p5d, '3d': split_batch_3d} def partition_batch(input_) -> Tensor: tensor_parallel_mode = get_tensor_parallel_mode() if tensor_parallel_mode in _parallel_split_batch: if isinstance(input_, dict): return {k: _parallel_split_batch[tensor_parallel_mode](v) for k, v in input_.items()} else: return _parallel_split_batch[tensor_parallel_mode](input_) else: return input_ class ColossalaiModule(nn.Module): def __init__(self, module: nn.Module, **kwargs): super().__init__() # copy values self.__dict__ = module.__dict__.copy() # copy methods for name, attr in module.__class__.__dict__.items(): if name not in ['__init__', 'forward'] and callable(attr): setattr(self, name, getattr(module, name)) self._forward_func = module.forward for k, v in kwargs.items(): setattr(self, k, v) def forward(self, *args): return self._forward_func(*args)
from .layers import ( DropPath, VanillaClassifier, VanillaLayerNorm, VanillaLinear, VanillaPatchEmbedding, WrappedDropout, WrappedDropPath, ) __all__ = [ "VanillaLayerNorm", "VanillaPatchEmbedding", "VanillaClassifier", "DropPath", "WrappedDropout", "WrappedDropPath", "VanillaLinear" ]
import math from typing import Callable import torch import torch.nn.functional as F from torch import Tensor from torch import nn as nn from torch.nn.parameter import Parameter from colossalai.context import seed from colossalai.nn import init as init from colossalai.registry import LAYERS from colossalai.utils.cuda import get_current_device from ..utils import to_2tuple def drop_path(x, drop_prob: float = 0., training: bool = False): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. Args: drop_prob (float, optional): probability of dropping path, defaults 0.0. training (bool, optional): whether in training progress, defaults False. """ if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py Args: drop_prob (float, optional): probability of dropping path, defaults None. """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class WrappedDropout(nn.Module): r"""Same as torch.nn.Dropout. But it is wrapped with the context of seed manager. During training, randomly zeroes some elements of the input tensor with probability p using samples from a Bernoulli distribution. Each channel will be zeroed out independently on every forward call. Furthermore, the outputs are scaled by a factor of 1/(1-p) during training. This means that during evaluation the module simply computes an identity function. Args: p (float, optional): probability of an element to be zeroed, defaults 0.5. inplace (bool, optional): whether to do dropout in-place, default to be False. mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ def __init__(self, p: float = 0.5, inplace: bool = False, mode=None): super().__init__() if p < 0 or p > 1: raise ValueError("dropout probability has to be between 0 and 1, " "but got {}".format(p)) self.p = p self.inplace = inplace if mode is None: self.func = self.nonefunc else: self.func = self.normalfunc self.mode = mode def nonefunc(self, inputs): return F.dropout(inputs, self.p, self.training, self.inplace) def normalfunc(self, inputs): with seed(self.mode): return F.dropout(inputs, self.p, self.training, self.inplace) def forward(self, inputs): return self.func(inputs) class WrappedDropPath(nn.Module): r"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Here, it is wrapped with the context of seed manager. Args: p (float, optional): probability of dropping path, defaults 0.0. mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_ """ def __init__(self, p: float = 0., mode=None): super().__init__() self.p = p self.mode = mode if self.mode is None: self.func = self.nonefunc else: self.func = self.normalfunc self.mode = mode def nonefunc(self, inputs): return drop_path(inputs, self.p, self.training) def normalfunc(self, inputs): with seed(self.mode): return drop_path(inputs, self.p, self.training) def forward(self, inputs): return self.func(inputs) @LAYERS.register_module class VanillaPatchEmbedding(nn.Module): r""" 2D Image to Patch Embedding Args: img_size (int): image size. patch_size (int): patch size. in_chans (int): number of channels of input image. embed_size (int): size of embedding. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. flatten (bool, optional): whether to flatten output tensor, defaults to True. weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. position_embed_initializer (:class:`typing.Callable`, optional): The initializer of position embedding, defaults to zeros initializer. More details about initializer please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, img_size: int, patch_size: int, in_chans: int, embed_size: int, flatten: bool = True, dtype: torch.dtype = None, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1), position_embed_initializer: Callable = init.zeros_()): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.flatten = flatten self.weight = nn.Parameter( torch.empty((embed_size, in_chans, *self.patch_size), device=get_current_device(), dtype=dtype)) self.bias = nn.Parameter(torch.empty(embed_size, device=get_current_device(), dtype=dtype)) self.cls_token = nn.Parameter(torch.zeros((1, 1, embed_size), device=get_current_device(), dtype=dtype)) self.pos_embed = nn.Parameter( torch.zeros((1, self.num_patches + 1, embed_size), device=get_current_device(), dtype=dtype)) self.reset_parameters(weight_initializer, bias_initializer, position_embed_initializer) def reset_parameters(self, weight_initializer, bias_initializer, position_embed_initializer): fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(self.weight) weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) bias_initializer(self.bias, fan_in=fan_in) position_embed_initializer(self.pos_embed) def forward(self, input_: Tensor) -> Tensor: B, C, H, W = input_.shape assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." output = F.conv2d(input_, self.weight, self.bias, stride=self.patch_size) if self.flatten: output = output.flatten(2).transpose(1, 2) # BCHW -> BNC cls_token = self.cls_token.expand(output.shape[0], -1, -1) output = torch.cat((cls_token, output), dim=1) output = output + self.pos_embed return output @LAYERS.register_module class VanillaClassifier(nn.Module): r"""Dense linear classifier. Args: in_features (int): size of each input sample. num_classes (int): number of classes. weight (:class:`torch.nn.Parameter`, optional): weight of the classifier, defaults to None. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. flatten (bool, optional): whether to flatten output tensor, defaults to True. weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. More details about initializer please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, in_features: int, num_classes: int, weight: nn.Parameter = None, bias: bool = True, dtype: torch.dtype = None, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)): super().__init__() self.in_features = in_features self.num_classes = num_classes if weight is not None: self.weight = weight self.has_weight = False else: self.weight = nn.Parameter( torch.empty(self.num_classes, self.in_features, device=get_current_device(), dtype=dtype)) self.has_weight = True if bias: self.bias = nn.Parameter(torch.zeros(self.num_classes, device=get_current_device(), dtype=dtype)) else: self.bias = None self.reset_parameters(weight_initializer, bias_initializer) def reset_parameters(self, weight_initializer, bias_initializer): fan_in, fan_out = self.in_features, self.num_classes if self.has_weight: weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) if self.bias is not None: bias_initializer(self.bias, fan_in=fan_in) def forward(self, input_: Tensor) -> Tensor: return F.linear(input_, self.weight, self.bias) @LAYERS.register_module class VanillaLayerNorm(nn.Module): r""" Layer Normalization for colossalai Args: normalized_shape (int): input shape from an expected input of size. :math:`[* \times \text{normalized_shape}[0] \times \text{normalized_shape}[1] \times \ldots \times \text{normalized_shape}[-1]]` If a single integer is used, it is treated as a singleton list, and this module will normalize over the last dimension which is expected to be of that specific size. eps (float): a value added to the denominator for numerical stability, defaults to 1e-05. bias (bool, optional): Whether to add a bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. """ def __init__(self, normalized_shape: int, eps=1e-05, bias=True, dtype=None): super().__init__() self.normalized_shape = (normalized_shape,) self.variance_epsilon = eps factory_kwargs = {'device': get_current_device(), 'dtype': dtype} self.weight = nn.Parameter(torch.ones(normalized_shape, **factory_kwargs)) if bias: self.bias = nn.Parameter(torch.zeros(normalized_shape, **factory_kwargs)) else: self.bias = None def forward(self, x: Tensor) -> Tensor: return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.variance_epsilon) @LAYERS.register_module class VanillaLinear(nn.Module): """Linear layer. Args: in_features (int): size of each input sample. out_features (int): size of each output sample. bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. skip_bias_add: bool (optional, default to be false). weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. More details about ``initializer`` please refer to `init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. """ def __init__(self, in_features: int, out_features: int, bias: bool = True, dtype: torch.dtype = None, skip_bias_add: bool = False, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1), **kwargs) -> None: super().__init__() self.in_features = in_features self.out_features = out_features self.skip_bias_add = skip_bias_add factory_kwargs = {'device': get_current_device(), 'dtype': dtype} self.weight = Parameter(torch.empty(self.out_features, self.in_features, **factory_kwargs)) if bias: self.bias = Parameter(torch.empty(self.out_features, **factory_kwargs)) else: self.bias = None weight_initializer(self.weight, fan_in=in_features, fan_out=out_features) if self.bias is not None: bias_initializer(self.bias, fan_in=in_features) def forward(self, input: Tensor) -> Tensor: if not self.skip_bias_add: return F.linear(input, self.weight, self.bias) else: return F.linear(input, self.weight), self.bias
from typing import Any, Optional, Tuple import torch import torch.distributed as dist from torch import Tensor from torch.distributed import ProcessGroup COL_MOE_KERNEL_FLAG = False try: from colossalai._C import moe except: moe = None def build_moe_if_not_prebuilt(): # load moe kernel during runtime if not pre-built global moe if moe is None: from colossalai.kernel.op_builder import MOEBuilder moe = MOEBuilder().load() class AllGather(torch.autograd.Function): @staticmethod def forward(ctx: Any, inputs: Tensor, group: Optional[ProcessGroup] = None) -> Tensor: global moe if moe is None: from colossalai.kernel.op_builder import MOEBuilder moe = MOEBuilder().load() if ctx is not None: ctx.comm_grp = group comm_size = dist.get_world_size(group) if comm_size == 1: return inputs.unsqueeze(0) buffer_shape = (comm_size,) + inputs.shape outputs = torch.empty(buffer_shape, dtype=inputs.dtype, device=inputs.device) buffer_list = list(torch.chunk(outputs, comm_size, dim=0)) dist.all_gather(buffer_list, inputs, group=group) return outputs @staticmethod def backward(ctx: Any, grad_outputs: Tensor) -> Tuple[Tensor, None]: return ReduceScatter.forward(None, grad_outputs, ctx.comm_grp), None class ReduceScatter(torch.autograd.Function): @staticmethod def forward(ctx: Any, inputs: Tensor, group: Optional[ProcessGroup] = None) -> Tensor: if ctx is not None: ctx.comm_grp = group comm_size = dist.get_world_size(group) if comm_size == 1: return inputs.squeeze(0) if not inputs.is_contiguous(): inputs = inputs.contiguous() output_shape = inputs.shape[1:] outputs = torch.empty(output_shape, dtype=inputs.dtype, device=inputs.device) buffer_list = list(torch.chunk(inputs, comm_size, dim=0)) dist.reduce_scatter(outputs, buffer_list, group=group) return outputs @staticmethod def backward(ctx: Any, grad_outputs: Tensor) -> Tuple[Tensor, None]: return AllGather.forward(None, grad_outputs, ctx.comm_grp), None class AllToAll(torch.autograd.Function): """Dispatches input tensor [e, c, h] to all experts by all_to_all_single operation in torch.distributed. """ @staticmethod def forward(ctx: Any, inputs: Tensor, group: Optional[ProcessGroup] = None) -> Tensor: if ctx is not None: ctx.comm_grp = group if not inputs.is_contiguous(): inputs = inputs.contiguous() if dist.get_world_size(group) == 1: return inputs output = torch.empty_like(inputs) dist.all_to_all_single(output, inputs, group=group) return output @staticmethod def backward(ctx: Any, *grad_outputs: Tensor) -> Tuple[Tensor, None]: return AllToAll.forward(None, *grad_outputs, ctx.comm_grp), None class MoeDispatch(torch.autograd.Function): @staticmethod def forward(ctx, tokens, mask, dest_idx, ec): s = tokens.size(0) h = tokens.size(1) # load moe kernel during runtime if not pre-built build_moe_if_not_prebuilt() expert_input = moe.dispatch_forward(s, ec, h, tokens, mask, dest_idx) ctx.save_for_backward(mask, dest_idx) ctx.s = s ctx.h = h ctx.ec = ec return expert_input @staticmethod def backward(ctx, output_grad): mask, dest_idx = ctx.saved_tensors d_tokens = moe.dispatch_backward(ctx.s, ctx.ec, ctx.h, output_grad, mask, dest_idx) return d_tokens, None, None, None class MoeCombine(torch.autograd.Function): @staticmethod def forward(ctx, expert_tokens, logits, mask, dest_idx, ec): assert logits.dtype == torch.float32 s = logits.size(0) e = logits.size(1) c = ec // e h = expert_tokens.size(-1) # load moe kernel during runtime if not pre-built build_moe_if_not_prebuilt() fp16_flag = (expert_tokens.dtype == torch.float16) cb_input = expert_tokens.to(torch.float32) if fp16_flag else expert_tokens ctokens = moe.combine_forward(s, e, c, h, cb_input, logits, mask, dest_idx) output = ctokens.to(torch.float16) if fp16_flag else ctokens ctx.save_for_backward(expert_tokens, logits, mask, dest_idx) ctx.s = s ctx.e = e ctx.c = c ctx.h = h ctx.fp16_flag = fp16_flag return output @staticmethod def backward(ctx, tokens_grad): expert_tokens, logits, mask, dest_idx = ctx.saved_tensors cb_grad = tokens_grad.to(torch.float32) if tokens_grad.dtype is torch.float16 \ else tokens_grad cb_input = expert_tokens.to(torch.float32) if ctx.fp16_flag else expert_tokens d_expert, d_logits = moe.combine_backward(ctx.s, ctx.e, ctx.c, ctx.h, cb_grad, cb_input, logits, mask, dest_idx) d_expert = d_expert.to(torch.float16) if ctx.fp16_flag else d_expert return d_expert, d_logits, None, None, None def moe_cumsum(inputs: Tensor): dim0 = inputs.size(0) flag = (dim0 <= 1024) or (dim0 <= 2048 and dim0 % 2 == 0) or (dim0 % 4 == 0) if flag and COL_MOE_KERNEL_FLAG: # load moe kernel during runtime if not pre-built build_moe_if_not_prebuilt() return moe.cumsum_sub_one(inputs) else: return torch.cumsum(inputs, dim=0) - 1
from .experts import Experts, FFNExperts, TPExperts from .layers import MoeLayer, MoeModule from .routers import MoeRouter, Top1Router, Top2Router from .utils import NormalNoiseGenerator, UniformNoiseGenerator, build_ffn_experts __all__ = [ 'Experts', 'FFNExperts', 'TPExperts', 'Top1Router', 'Top2Router', 'MoeLayer', 'NormalNoiseGenerator', 'UniformNoiseGenerator', 'build_ffn_experts', 'MoeModule', 'MoeRouter' ]
import torch import torch.nn.functional as F from colossalai.utils import get_current_device from colossalai.context.moe_context import MOE_CONTEXT from .experts import FFNExperts, TPExperts class ForceFP32Parameter(torch.nn.Parameter): def half(self, memory_format=None): return self.data.clone() class NormalNoiseGenerator: """Generates a random noisy mask for logtis tensor. All noise is generated from a normal distribution :math:`(0, 1 / E^2)`, where `E = the number of experts`. Args: num_experts (int): The number of experts. """ def __init__(self, num_experts: int): self.normal = torch.distributions.normal.Normal(loc=torch.tensor(0.0, device=get_current_device()), scale=torch.tensor(1.0 / num_experts**2, device=get_current_device())).rsample def __call__(self, inputs: torch.Tensor): noisy = self.normal(inputs.shape) return inputs + noisy class UniformNoiseGenerator: """Generates a random noisy mask for logtis tensor. copied from mesh tensorflow: Multiply values by a random number between :math:`1-epsilon` and :math:`1+epsilon`. Makes models more resilient to rounding errors introduced by bfloat16. This seems particularly important for logits. Args: eps (float, optional): Epsilon in generator, defaults 1e-2. """ def __init__(self, eps: float = 1e-2): self.uniform = torch.distributions.uniform.Uniform(low=torch.tensor(1.0 - eps, device=get_current_device()), high=torch.tensor(1.0 + eps, device=get_current_device())).rsample def __call__(self, inputs: torch.Tensor): noisy = self.uniform(inputs.shape) return inputs * noisy def autocast_softmax(logit: torch.Tensor, dim: int): if logit.dtype != torch.float32: logit = logit.float() return F.softmax(logit, dim=dim) def build_ffn_experts(num_experts: int, d_model: int, d_ff: int, activation=None, drop_rate: float = 0): mep_size = MOE_CONTEXT.max_ep_size if num_experts % mep_size == 0 or mep_size % num_experts == 0: return FFNExperts(num_experts, d_model, d_ff, activation, drop_rate) elif d_ff % mep_size == 0: return TPExperts(num_experts, d_model, d_ff, activation, drop_rate) else: raise NotImplementedError(f"Can not build {num_experts} experts in {mep_size} GPUS.")
import math import torch import torch.nn as nn from colossalai.context import ParallelMode, seed from colossalai.utils import get_current_device from colossalai.context.moe_context import MOE_CONTEXT from colossalai.zero.init_ctx import no_shard_zero_decrator from typing import Type class MoeExperts(nn.Module): """Basic class for experts in MoE. It stores what kind of communication expersts use to exchange tokens, how many experts in a single GPU and parallel information such as expert parallel size, data parallel size and their distributed communication groups. """ def __init__(self, comm_name: str, num_experts: int): super().__init__() assert comm_name in {"all_to_all", "all_gather"}, \ "This kind of communication has not been implemented yet.\n Please use Experts build function." self.comm_name = comm_name # Get the configuration of experts' deployment and parallel information from moe contex self.num_local_experts, self.dist_info = MOE_CONTEXT.get_info(num_experts) @no_shard_zero_decrator(is_replicated=False) class Experts(MoeExperts): """A wrapper class to create experts. It will create E experts across the moe model parallel group, where E is the number of experts. Every expert is a instence of the class, 'expert' in initialization parameters. Args: expert_cls (:class:`torch.nn.Module`): The class of all experts num_experts (int): The number of experts expert_args: Args used to initialize experts, the args could be found in corresponding expert class """ def __init__(self, expert_cls: Type[nn.Module], num_experts: int, **expert_args): super().__init__("all_to_all", num_experts) # Use seed to make every expert different from others with seed(ParallelMode.TENSOR): self.experts = nn.ModuleList([expert_cls(**expert_args) for _ in range(self.num_local_experts)]) # Attach parallel information for all parameters in Experts for exp in self.experts: for param in exp.parameters(): param.__setattr__('moe_info', self.dist_info) def forward(self, inputs: torch.Tensor): # Split inputs for each expert expert_input = torch.chunk(inputs, self.num_local_experts, dim=1) expert_output = [] # Get outputs from each expert for i in range(self.num_local_experts): expert_output.append(self.experts[i](expert_input[i])) # Concatenate all outputs together output = torch.cat(expert_output, dim=1).contiguous() return output class FFNExperts(MoeExperts): """Use torch.bmm to speed up for multiple experts. """ def __init__(self, num_experts: int, d_model: int, d_ff: int, activation=None, drop_rate: float = 0): super().__init__("all_to_all", num_experts) self.w1 = nn.Parameter(torch.empty(self.num_local_experts, d_model, d_ff, device=get_current_device())) self.b1 = nn.Parameter(torch.empty(self.num_local_experts, 1, d_ff, device=get_current_device())) self.w2 = nn.Parameter(torch.empty(self.num_local_experts, d_ff, d_model, device=get_current_device())) self.b2 = nn.Parameter(torch.empty(self.num_local_experts, 1, d_model, device=get_current_device())) s1 = math.sqrt(0.1 / d_model) s2 = math.sqrt(0.1 / d_ff) with seed(ParallelMode.TENSOR): nn.init.trunc_normal_(self.w1, std=s1) nn.init.trunc_normal_(self.b1, std=s1) nn.init.trunc_normal_(self.w2, std=s2) nn.init.trunc_normal_(self.b2, std=s2) self.act = nn.GELU() if activation is None else activation self.drop = nn.Dropout(p=drop_rate) for param in self.parameters(): param.__setattr__('moe_info', self.dist_info) def forward(self, inputs): # inputs [g, el, c, h] el = inputs.size(1) h = inputs.size(-1) inputs = inputs.transpose(0, 1) inshape = inputs.shape inputs = inputs.reshape(el, -1, h) out_ff = torch.baddbmm(self.b1, inputs, self.w1) out_act = self.act(out_ff) with seed(ParallelMode.TENSOR): out_inter = self.drop(out_act) out_model = torch.baddbmm(self.b2, out_inter, self.w2) with seed(ParallelMode.TENSOR): outputs = self.drop(out_model) # outputs [el, gc, h] outputs = outputs.reshape(inshape) outputs = outputs.transpose(0, 1).contiguous() return outputs class TPExperts(MoeExperts): """Use tensor parallelism to split each expert evenly, which can deploy experts in case that the number of experts can't be divied by maximum expert parallel size or maximum expert parallel size can't be divied by the number of experts. """ def __init__(self, num_experts: int, d_model: int, d_ff: int, activation=None, drop_rate: float = 0): super().__init__("all_gather", MOE_CONTEXT.max_ep_size) assert d_ff % MOE_CONTEXT.max_ep_size == 0, \ "d_ff should be divied by maximum expert parallel size" p_ff = d_ff // MOE_CONTEXT.max_ep_size self.w1 = nn.Parameter(torch.empty(num_experts, d_model, p_ff, device=get_current_device())) self.b1 = nn.Parameter(torch.empty(num_experts, 1, p_ff, device=get_current_device())) self.w2 = nn.Parameter(torch.empty(num_experts, p_ff, d_model, device=get_current_device())) self.b2 = nn.Parameter(torch.empty(num_experts, 1, d_model, device=get_current_device())) s1 = math.sqrt(0.1 / d_model) s2 = math.sqrt(0.1 / d_ff) with seed(ParallelMode.TENSOR): nn.init.trunc_normal_(self.w1, std=s1) nn.init.trunc_normal_(self.b1, std=s1) nn.init.trunc_normal_(self.w2, std=s2) nn.init.trunc_normal_(self.b2, std=s2) self.act = nn.GELU() if activation is None else activation self.drop = nn.Dropout(p=drop_rate) self.w1.__setattr__('moe_info', self.dist_info) self.w2.__setattr__('moe_info', self.dist_info) self.b1.__setattr__('moe_info', self.dist_info) def forward(self, inputs): # inputs [g, e, c, h] e = inputs.size(1) h = inputs.size(-1) inputs = inputs.transpose(0, 1) inshape = inputs.shape inputs = inputs.reshape(e, -1, h) out_ff = torch.baddbmm(self.b1, inputs, self.w1) out_act = self.act(out_ff) with seed(ParallelMode.TENSOR): out_inter = self.drop(out_act) out_model = torch.baddbmm(self.b2, out_inter, self.w2) outputs = self.drop(out_model) # outputs [e, gc, h] outputs = outputs.reshape(inshape) outputs = outputs.transpose(0, 1).contiguous() return outputs # outputs [g, e, c, h]
import math import torch import torch.nn as nn import torch.nn.functional as F from colossalai.context.moe_context import MOE_CONTEXT from colossalai.utils import get_current_device from colossalai.nn.layer.moe._operation import COL_MOE_KERNEL_FLAG, AllToAll, AllGather, \ ReduceScatter, MoeDispatch, MoeCombine from colossalai.nn.layer.moe.experts import MoeExperts, Experts from colossalai.nn.layer.moe.utils import UniformNoiseGenerator, NormalNoiseGenerator from colossalai.nn.layer.moe.routers import MoeRouter, Top1Router, Top2Router from colossalai.zero.init_ctx import no_shard_zero_context, no_shard_zero_decrator from typing import Optional, Type, Tuple @no_shard_zero_decrator(is_replicated=True) class MoeLayer(nn.Module): """A MoE layer, that puts its input tensor to its gate and uses the output logits to router all tokens, is mainly used to exchange all tokens for every expert across the moe tensor group by all to all comunication. Then it will get the output of all experts and exchange the output. At last returns the output of the moe system. Args: dim_model (int): Dimension of model. num_experts (int): The number of experts. router (MoeRouter): Instance of router used in routing. experts (MoeExperts): Instance of experts generated by Expert. """ def __init__(self, dim_model: int, num_experts: int, router: MoeRouter, experts: MoeExperts): super().__init__() self.d_model = dim_model self.num_experts = num_experts self.gate_weight = torch.nn.Parameter(torch.empty(num_experts, dim_model)) self.router: MoeRouter = router self.experts: MoeExperts = experts self.use_kernel = True if COL_MOE_KERNEL_FLAG and MOE_CONTEXT.use_kernel_optim else False self.ep_group = experts.dist_info.ep_group self.ep_size = experts.dist_info.ep_size self.num_local_experts = experts.num_local_experts nn.init.trunc_normal_(self.gate_weight, std=math.sqrt(0.1 / dim_model)) def a2a_process(self, dispatch_data: torch.Tensor): expert_input = AllToAll.apply(dispatch_data, self.ep_group) input_shape = expert_input.shape expert_input = expert_input.reshape(self.ep_size, self.num_local_experts, -1, self.d_model) expert_output = self.experts(expert_input) expert_output = expert_output.reshape(input_shape) expert_output = AllToAll.apply(expert_output, self.ep_group) return expert_output def tp_process(self, dispatch_data: torch.Tensor): expert_in = AllGather.apply(dispatch_data, self.ep_group) expert_out = self.experts(expert_in) expert_out = ReduceScatter.apply(expert_out, self.ep_group) return expert_out def forward(self, inputs: torch.Tensor) -> Tuple: # reshape the input tokens tokens = inputs.reshape(-1, self.d_model) # the data type of the inputs in the gating should be fp32 fp32_input = tokens.to(torch.float) fp32_weight = self.gate_weight.to(torch.float) gate_output = F.linear(fp32_input, fp32_weight) # the result from the router route_result_list = self.router(inputs=gate_output, use_kernel=self.use_kernel, ep_group=self.ep_group) if self.use_kernel: dispatch_data = MoeDispatch.apply(tokens, *route_result_list[1:]) dispatch_data = dispatch_data.reshape(self.num_experts, -1, self.d_model) else: sec_mask_f = route_result_list[1].type_as(inputs) dispatch_data = torch.matmul(sec_mask_f.permute(1, 2, 0), tokens) # dispatch_data [e, c, h] if self.experts.comm_name == "all_to_all": expert_output = self.a2a_process(dispatch_data) elif self.experts.comm_name == "all_gather": expert_output = self.tp_process(dispatch_data) else: raise NotImplementedError("This kind of communication has not been implemented yet.\n Please use Experts " "build function.") # expert_output [e, c, h] if self.use_kernel: expert_output = expert_output.reshape(-1, self.d_model) ans = MoeCombine.apply(expert_output, *route_result_list) else: combine_weights = route_result_list[0].type_as(inputs) combine_weights = combine_weights.view(combine_weights.shape[0], -1) expert_output = expert_output.view(-1, expert_output.shape[-1]) ans = torch.matmul(combine_weights, expert_output) ans = ans.reshape(inputs.shape) l_aux = self.router.pop_routing_loss() return ans, l_aux class MoeModule(nn.Module): """A class for users to create MoE modules in their models. Args: dim_model (int): Hidden dimension of training model num_experts (int): The number experts top_k (int, optional): The number of experts for dispatchment of each token capacity_factor_train (float, optional): Capacity factor in routing during training capacity_factor_eval (float, optional): Capacity factor in routing during evaluation min_capacity (int, optional): The minimum number of the capacity of each expert noisy_policy (str, optional): The policy of noisy function. Now we have 'Jitter' and 'Gaussian'. 'Jitter' can be found in `Switch Transformer paper`_. 'Gaussian' can be found in `ViT-MoE paper`_. drop_tks (bool, optional): Whether drops tokens in evaluation use_residual (bool, optional): Makes this MoE layer a Residual MoE. More information can be found in `Microsoft paper`_. residual_instance (nn.Module, optional): The instance of residual module in Resiual MoE expert_instance (MoeExperts, optional): The instance of experts module in MoeLayer expert_cls (Type[nn.Module], optional): The class of each expert when no instance is given expert_args (optional): The args of expert when no instance is given .. _Switch Transformer paper: https://arxiv.org/abs/2101.03961 .. _ViT-MoE paper: https://arxiv.org/abs/2106.05974 .. _Microsoft paper: https://arxiv.org/abs/2201.05596 """ def __init__(self, dim_model: int, num_experts: int, top_k: int = 1, capacity_factor_train: float = 1.25, capacity_factor_eval: float = 2.0, min_capacity: int = 4, noisy_policy: Optional[str] = None, drop_tks: bool = True, use_residual: bool = False, residual_instance: Optional[nn.Module] = None, expert_instance: Optional[MoeExperts] = None, expert_cls: Optional[Type[nn.Module]] = None, **expert_args): super().__init__() noisy_func = None if noisy_policy is not None: if noisy_policy == 'Jitter': noisy_func = UniformNoiseGenerator() elif noisy_policy == 'Gaussian': noisy_func = NormalNoiseGenerator(num_experts) else: raise NotImplementedError("Unsupported input noisy policy") if top_k == 1: moe_router_cls = Top1Router elif top_k == 2: moe_router_cls = Top2Router else: raise NotImplementedError("top_k > 2 is not supported yet") self.moe_router = moe_router_cls(capacity_factor_train=capacity_factor_train, capacity_factor_eval=capacity_factor_eval, min_capacity=min_capacity, noisy_func=noisy_func, drop_tks=drop_tks) self.use_residual = use_residual if use_residual: if residual_instance is not None: self.residual_module = residual_instance else: assert expert_cls is not None, \ "Expert class can't be None when residual instance is not given" self.residual_module = expert_cls(**expert_args) with no_shard_zero_context(): self.residual_combine = nn.Linear(dim_model, 2, device=get_current_device()) if expert_instance is not None: self.experts = expert_instance else: assert expert_cls is not None, \ "Expert class can't be None when experts instance is not given" self.experts = Experts(expert_cls, num_experts, **expert_args) self.moe_layer = MoeLayer(dim_model=dim_model, num_experts=num_experts, router=self.moe_router, experts=self.experts) def forward(self, inputs: torch.Tensor): moe_output, l_aux = self.moe_layer(inputs) if self.use_residual: residual_output = self.residual_module(inputs) combine_coef = self.residual_combine(inputs) combine_coef = F.softmax(combine_coef, dim=-1) output = moe_output * combine_coef[..., 0:1] + residual_output * combine_coef[..., 1:] else: output = moe_output return output, l_aux
import math from abc import ABC import torch import torch.nn as nn import torch.nn.functional as F import torch.distributed as dist from colossalai.utils import get_current_device from colossalai.context import MOE_CONTEXT from colossalai.nn.layer.moe._operation import moe_cumsum from typing import Callable, Optional from torch.distributed import ProcessGroup class MoeRouter(nn.Module, ABC): """Base class for all MoE routers. Args: k_value (int): The value of top_k. capacity_factor_train (float): Capacity factor in routing of training. capacity_factor_eval (float): Capacity factor in routing of evaluation. min_capacity (int): The minimum number of the capacity of each expert. noisy_func (:class:`typing.Callable`, optional): Noisy function used in logits. drop_tks (bool, optional): Whether drops tokens in evaluation """ def __init__(self, k_value: int, capacity_factor_train: float, capacity_factor_eval: float, min_capacity: int, noisy_func: Callable = None, drop_tks: bool = True): super().__init__() self.k_value = k_value self.capacity_factor_train = capacity_factor_train self.capacity_factor_eval = capacity_factor_eval self.min_capacity = min_capacity self.noisy_func = noisy_func self.drop_tks = drop_tks self._routing_loss = None def get_capacity(self, logits_shape): capacity_factor = self.capacity_factor_train if self.training else self.capacity_factor_eval capacity = math.floor(self.k_value * capacity_factor * logits_shape[-2] / logits_shape[-1]) capacity += capacity % 2 capacity = max(capacity, self.min_capacity) assert capacity > 0 return capacity def set_routing_loss(self, aux_loss: torch.Tensor) -> None: assert self._routing_loss is None self._routing_loss = aux_loss def pop_routing_loss(self) -> torch.Tensor: assert self._routing_loss is not None reservation = self._routing_loss self._routing_loss = None return reservation class Top1Router(MoeRouter): """Top1 router that returns the dispatch mask [s, e, c] and combine weight [s, e, c] for routing usage. More deailted function can be found in the paper about Switch Transformer of Google. Args: capacity_factor_train (float, optional): Capacity factor in routing of training. capacity_factor_eval (float, optional): Capacity factor in routing of evaluation. min_capacity (int, optional): The minimum number of the capacity of each expert. select_policy (str, optional): The policy about tokens selection. noisy_func (:class:`typing.Callable`, optional): Noisy function used in logits. drop_tks (bool, optional): Whether drops tokens in evaluation """ def __init__(self, capacity_factor_train: float = 1.25, capacity_factor_eval: float = 2.0, min_capacity: int = 4, select_policy: str = "first", noisy_func: Callable = None, drop_tks: bool = True): super().__init__(k_value=1, capacity_factor_train=capacity_factor_train, capacity_factor_eval=capacity_factor_eval, min_capacity=min_capacity, noisy_func=noisy_func, drop_tks=drop_tks) self.select_policy = select_policy assert select_policy in {"first", "random"} if select_policy == "random": self.uniform = torch.distributions.uniform.Uniform(low=torch.tensor(0.0, device=get_current_device()), high=torch.tensor(1.0, device=get_current_device())).rsample def forward(self, inputs: torch.Tensor, use_kernel: bool = False, ep_group: Optional[ProcessGroup] = None): if self.noisy_func is not None and self.training: inputs = self.noisy_func(inputs) assert inputs.dtype == torch.float logits = F.softmax(inputs, dim=-1) num_experts = logits.size(-1) capacity = self.get_capacity(logits.shape) top1_idx = torch.argmax(inputs, dim=-1) mask = F.one_hot(top1_idx, num_classes=num_experts).to(torch.int32) # caculate the auxiliary loss me = torch.mean(logits, dim=0) ce = torch.mean(mask.float(), dim=0) l_aux = num_experts * torch.sum(me * ce) self.set_routing_loss(l_aux) if not self.training and not self.drop_tks: max_num = torch.max(torch.sum(mask, dim=0)) dist.all_reduce(max_num, op=dist.ReduceOp.MAX, group=ep_group) capacity = max_num.item() if self.select_policy == "random": rand_mask = mask * self.uniform(mask.shape) _, dispatch_idx = torch.topk(rand_mask, k=capacity, dim=0) mask = mask * torch.zeros_like(mask).scatter_(0, dispatch_idx, 1) ranks = moe_cumsum(mask) elif self.select_policy == "first": ranks = moe_cumsum(mask) mask = mask * torch.lt(ranks, capacity) else: raise NotImplementedError("Not support such select policy yet.") ranks = torch.sum(mask * ranks, dim=-1) if use_kernel: mask = torch.sum(mask, dim=-1) mask = torch.stack([mask], dim=0).to(torch.int32) dest_idx = torch.stack([top1_idx * capacity + ranks], dim=0).to(torch.int32) return logits, mask, dest_idx, num_experts * capacity else: ranks = F.one_hot(ranks, num_classes=capacity) weight = mask * logits.type_as(inputs) combine_weights = weight.unsqueeze(2) * ranks.unsqueeze(1) sec_mask = combine_weights.bool() return combine_weights, sec_mask class Top2Router(MoeRouter): """Top2 router that returns the dispatch mask [s, e, c] and combine weight [s, e, c] for routing usage. More deailted function can be found in the paper about ViT-MoE. Args: capacity_factor_train (float, optional): Capacity factor in routing of training. capacity_factor_eval (float, optional): Capacity factor in routing of evaluation. min_capacity (int, optional): The minimum number of the capacity of each expert noisy_func (:class:`typing.Callable`, optional): Noisy function used in logits. drop_tks (bool, optional): Whether drops tokens in evaluation. """ def __init__(self, capacity_factor_train: float = 1.25, capacity_factor_eval: float = 2.0, min_capacity: int = 4, noisy_func: Callable = None, drop_tks: bool = True): super().__init__(k_value=2, capacity_factor_train=capacity_factor_train, capacity_factor_eval=capacity_factor_eval, min_capacity=min_capacity, noisy_func=noisy_func, drop_tks=drop_tks) def forward(self, inputs: torch.Tensor, use_kernel: bool = False, ep_group: Optional[ProcessGroup] = None): # inputs: [s, h] if self.noisy_func is not None and self.training: inputs = self.noisy_func(inputs) assert inputs.dtype == torch.float logits = F.softmax(inputs, dim=-1) # logits: [s, e] num_experts = logits.size(-1) capacity = self.get_capacity(logits.shape) top1_idx = torch.argmax(logits, dim=-1) mask1 = F.one_hot(top1_idx, num_classes=num_experts).to(torch.int32) logits_except1 = logits.masked_fill(mask1.bool(), float("-inf")) top2_idx = torch.argmax(logits_except1, dim=-1) mask2 = F.one_hot(top2_idx, num_classes=num_experts).to(torch.int32) cmask = (mask1 + mask2) # loss: [s, e] # caculate the auxiliary loss me = torch.mean(logits, dim=0) ce = torch.mean(cmask.float(), dim=0) l_aux = num_experts * torch.sum(me * ce) / 2.0 # div 2 to normalize it to 1 self.set_routing_loss(l_aux) if not self.training and not self.drop_tks: max_num = torch.max(torch.sum(cmask, dim=0)) dist.all_reduce(max_num, op=dist.ReduceOp.MAX, group=ep_group) capacity = max_num.item() rank1 = moe_cumsum(mask1) # rank1: [s, e] rank2 = moe_cumsum(mask2) rank2 += torch.sum(mask1, dim=-2, keepdim=True) mask1 *= torch.lt(rank1, capacity) mask2 *= torch.lt(rank2, capacity) rank1 = torch.sum(mask1 * rank1, dim=-1) rank2 = torch.sum(mask2 * rank2, dim=-1) if use_kernel: mask1 = torch.sum(mask1, dim=-1) mask2 = torch.sum(mask2, dim=-1) mask = torch.stack([mask1, mask2], dim=0).to(torch.int32) dest_idx = torch.stack([top1_idx * capacity + rank1, top2_idx * capacity + rank2], dim=0).to(torch.int32) return logits, mask, dest_idx, num_experts * capacity else: weight1 = mask1 * logits.type_as(inputs) weight2 = mask2 * logits.type_as(inputs) rank1_sc = F.one_hot(rank1, num_classes=capacity) rank2_sc = F.one_hot(rank2, num_classes=capacity) cb_weight1 = weight1.unsqueeze(2) * rank1_sc.unsqueeze(1) cb_weight2 = weight2.unsqueeze(2) * rank2_sc.unsqueeze(1) cb_weight = cb_weight1 + cb_weight2 sec_mask = cb_weight.bool() return cb_weight, sec_mask
from torch import nn from ._utils import calc_acc from .accuracy_2d import Accuracy2D from .accuracy_2p5d import Accuracy2p5D from .accuracy_3d import Accuracy3D from colossalai.nn.layer.utils import get_tensor_parallel_mode _parallel_accuracy = { '2d': Accuracy2D, '2.5d': Accuracy2p5D, '3d': Accuracy3D, } class Accuracy(nn.Module): def __init__(self): super().__init__() tensor_parallel = get_tensor_parallel_mode() if tensor_parallel not in _parallel_accuracy: self.acc = calc_acc else: self.acc = _parallel_accuracy[tensor_parallel]() def forward(self, *args): return self.acc(*args)
import torch from colossalai.nn.layer.parallel_2d import reduce_by_batch_2d, split_batch_2d from torch import nn from ._utils import calc_acc class Accuracy2D(nn.Module): """Accuracy for 2D parallelism """ def __init__(self): super().__init__() def forward(self, logits, targets): """Calculate the accuracy of predicted labels. Args: logits (:class:`torch.tensor`): Predicted labels. targets (:class:`torch.tensor`): True labels from data. Returns: float: the accuracy of prediction. """ with torch.no_grad(): targets = split_batch_2d(targets) correct = calc_acc(logits, targets) correct = reduce_by_batch_2d(correct) return correct
import torch from colossalai.constants import INPUT_GROUP_3D, WEIGHT_GROUP_3D from colossalai.nn.layer.parallel_3d import reduce_by_batch_3d, split_tensor_3d from colossalai.nn.layer.parallel_3d._utils import get_parallel_mode_from_env from torch import nn from ._utils import calc_acc class Accuracy3D(nn.Module): """Accuracy for 3D parallelism """ def __init__(self): super().__init__() self.input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D) self.weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D) def forward(self, logits, targets): """Calculate the accuracy of predicted labels. Args: logits (:class:`torch.tensor`): Predicted labels. targets (:class:`torch.tensor`): True labels from data. Returns: float: the accuracy of prediction. """ with torch.no_grad(): targets = split_tensor_3d(targets, 0, self.weight_parallel_mode) targets = split_tensor_3d(targets, 0, self.input_parallel_mode) correct = calc_acc(logits, targets) correct = reduce_by_batch_3d(correct, self.input_parallel_mode, self.weight_parallel_mode) return correct
import torch from colossalai.nn.layer.parallel_2p5d import reduce_by_batch_2p5d, split_batch_2p5d from torch import nn from ._utils import calc_acc class Accuracy2p5D(nn.Module): """Accuracy for 2p5D parallelism """ def __init__(self): super().__init__() def forward(self, logits, targets): """Calculate the accuracy of predicted labels. Args: logits (:class:`torch.tensor`): Predicted labels. targets (:class:`torch.tensor`): True labels from data. Returns: float: the accuracy of prediction. """ with torch.no_grad(): targets = split_batch_2p5d(targets) correct = calc_acc(logits, targets) correct = reduce_by_batch_2p5d(correct) return correct
import torch def calc_acc(logits, targets): preds = torch.argmax(logits, dim=-1) correct = torch.sum(targets == preds) return correct
import os import warnings from pathlib import Path from typing import Any, Dict, List, Optional, Set, Type, Union import torch import torch.nn as nn from torch.nn.modules.module import _addindent try: from torch.fx.graph import Graph, PythonCode, _custom_builtins, _is_from_torch, _PyTreeCodeGen from torch.fx.graph_module import GraphModule, _EvalCacheLoader, _exec_with_source, _forward_from_src, _WrappedCall from colossalai.fx.codegen.activation_checkpoint_codegen import ActivationCheckpointCodeGen COLOGM = True except: from torch.fx.graph import Graph from torch.fx.graph_module import GraphModule COLOGM = False if COLOGM: class ColoGraphModule(GraphModule): def __init__(self, root: Union[torch.nn.Module, Dict[str, Any]], graph: Graph, class_name: str = 'GraphModule', ckpt_codegen: bool = True): if ckpt_codegen: graph.set_codegen(ActivationCheckpointCodeGen()) super().__init__(root, graph, class_name) def bind(self, ckpt_def, globals): """Bind function needed for correctly execute gm forward We need to bind checkpoint functions and saved_tensor_hooks functions to gm so that we could correctly execute gm forward Args: ckpt_def (_type_): definition before the forward function globals (_type_): global variables """ ckpt_code = "\n".join(ckpt_def) globals_copy = globals.copy() _exec_with_source(ckpt_code, globals_copy) func_list = [func for func in globals_copy.keys() if "checkpoint" in func or "pack" in func] for func in func_list: tmp_func = globals_copy[func] setattr(self, func, tmp_func.__get__(self, self.__class__)) del globals_copy[func] def recompile(self) -> PythonCode: """ Recompile this GraphModule from its ``graph`` attribute. This should be called after editing the contained ``graph``, otherwise the generated code of this ``GraphModule`` will be out of date. """ if isinstance(self._graph._codegen, _PyTreeCodeGen): self._in_spec = self._graph._codegen.pytree_info.in_spec self._out_spec = self._graph._codegen.pytree_info.out_spec python_code = self._graph.python_code(root_module='self') self._code = python_code.src # To split ckpt functions code and forward code _code_list = self._code.split("\n") _fwd_def = [item for item in _code_list if "def forward" in item][0] _fwd_idx = _code_list.index(_fwd_def) ckpt_def = _code_list[:_fwd_idx] self._code = "\n".join(_code_list[_fwd_idx:]) self.bind(ckpt_def, python_code.globals) cls = type(self) cls.forward = _forward_from_src(self._code, python_code.globals) # Determine whether this class explicitly defines a __call__ implementation # to wrap. If it does, save it in order to have wrapped_call invoke it. # If it does not, wrapped_call can use a dynamic call to super() instead. # In most cases, super().__call__ should be torch.nn.Module.__call__. # We do not want to hold a reference to Module.__call__ here; doing so will # bypass patching of torch.nn.Module.__call__ done while symbolic tracing. cls_call = cls.__call__ if "__call__" in vars(cls) else None if '_wrapped_call' not in vars(cls): cls._wrapped_call = _WrappedCall(cls, cls_call) # type: ignore[attr-defined] def call_wrapped(self, *args, **kwargs): return self._wrapped_call(self, *args, **kwargs) cls.__call__ = call_wrapped # reset self._code to original src, otherwise to_folder will be wrong self._code = python_code.src return python_code def to_folder(self, folder: Union[str, os.PathLike], module_name: str = "FxModule"): """Dumps out module to ``folder`` with ``module_name`` so that it can be imported with ``from <folder> import <module_name>`` Args: folder (Union[str, os.PathLike]): The folder to write the code out to module_name (str): Top-level name to use for the ``Module`` while writing out the code """ folder = Path(folder) Path(folder).mkdir(exist_ok=True) torch.save(self.state_dict(), folder / 'state_dict.pt') tab = " " * 4 # we add import colossalai here model_str = f""" import torch from torch.nn import * import colossalai class {module_name}(torch.nn.Module): def __init__(self): super().__init__() """ def _gen_model_repr(module_name: str, module: torch.nn.Module) -> Optional[str]: safe_reprs = [ nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d, nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d ] if type(module) in safe_reprs: return f"{module.__repr__()}" else: return None blobified_modules = [] for module_name, module in self.named_children(): module_str = _gen_model_repr(module_name, module) if module_str is None: module_file = folder / f'{module_name}.pt' torch.save(module, module_file) blobified_modules.append(module_name) module_repr = module.__repr__().replace('\r', ' ').replace('\n', ' ') module_str = f"torch.load(r'{module_file}') # {module_repr}" model_str += f"{tab*2}self.{module_name} = {module_str}\n" for buffer_name, buffer in self._buffers.items(): if buffer is None: continue model_str += f"{tab*2}self.register_buffer('{buffer_name}', torch.empty({list(buffer.shape)}, dtype={buffer.dtype}))\n" for param_name, param in self._parameters.items(): if param is None: continue model_str += f"{tab*2}self.{param_name} = torch.nn.Parameter(torch.empty({list(param.shape)}, dtype={param.dtype}))\n" model_str += f"{tab*2}self.load_state_dict(torch.load(r'{folder}/state_dict.pt'))\n" model_str += f"{_addindent(self.code, 4)}\n" module_file = folder / 'module.py' module_file.write_text(model_str) init_file = folder / '__init__.py' init_file.write_text('from .module import *') if len(blobified_modules) > 0: warnings.warn("Was not able to save the following children modules as reprs -" f"saved as pickled files instead: {blobified_modules}") else: class ColoGraphModule(GraphModule): def __init__(self, root: Union[torch.nn.Module, Dict[str, Any]], graph: Graph, class_name: str = 'GraphModule'): super().__init__(root, graph, class_name)
# meta patch from https://github.com/pytorch/pytorch/blob/master/torch/_meta_registrations.py # should be activated for PyTorch version 1.12.0 and below # refer to https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/native_functions.yaml # for more meta_registrations from typing import Callable, List, Optional, Tuple, Union import torch from torch.utils._pytree import tree_map aten = torch.ops.aten meta_lib = torch.library.Library("aten", "IMPL", "Meta") meta_table = {} def register_meta(op, register_dispatcher=True): def wrapper(f): def add_func(op): meta_table[op] = f if register_dispatcher: name = (op.__name__ if op._overloadname != "default" else op.overloadpacket.__name__) try: meta_lib.impl(name, f) except: pass tree_map(add_func, op) return f return wrapper # ============================== Convolutions ====================================== # https://github.com/pytorch/pytorch/pull/79834 @register_meta(aten.convolution.default) def meta_conv( input_tensor: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor, stride: List[int], padding: List[int], dilation: List[int], is_transposed: bool, output_padding: List[int], groups: int, ): def _formula(ln: int, p: int, d: int, k: int, s: int) -> int: """ Formula to apply to calculate the length of some dimension of the output See: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html Args: ln: length of the dimension p: padding in that dim d: dilation in that dim k: kernel size in that dim s: stride in that dim Returns: The output length """ return (ln + 2 * p - d * (k - 1) - 1) // s + 1 def _formula_transposed(ln: int, p: int, d: int, k: int, s: int, op: int) -> int: """ Formula to apply to calculate the length of some dimension of the output if transposed convolution is used. See: https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html Args: ln: length of the dimension p: padding in that dim d: dilation in that dim k: kernel size in that dim s: stride in that dim op: output padding in that dim Returns: The output length """ return (ln - 1) * s - 2 * p + d * (k - 1) + op + 1 def calc_conv_nd_return_shape( dims: torch.Size, kernel_size: torch.Size, stride: Union[List[int], int], padding: Union[List[int], int], dilation: Union[List[int], int], output_padding: Optional[Union[List[int], int]] = None, ): ret_shape = [] if isinstance(stride, int): stride = [stride] * len(dims) elif len(stride) == 1: stride = [stride[0]] * len(dims) if isinstance(padding, int): padding = [padding] * len(dims) elif len(padding) == 1: padding = [padding[0]] * len(dims) if isinstance(dilation, int): dilation = [dilation] * len(dims) elif len(dilation) == 1: dilation = [dilation[0]] * len(dims) output_padding_list: Optional[List[int]] = None if output_padding: if isinstance(output_padding, int): output_padding_list = [output_padding] * len(dims) elif len(output_padding) == 1: output_padding_list = [output_padding[0]] * len(dims) else: output_padding_list = output_padding for i in range(len(dims)): # If output_padding is present, we are dealing with a transposed convolution if output_padding_list: ret_shape.append( _formula_transposed( dims[i], padding[i], dilation[i], kernel_size[i], stride[i], output_padding_list[i], )) else: ret_shape.append(_formula(dims[i], padding[i], dilation[i], kernel_size[i], stride[i])) return ret_shape def pick_memory_format(): if input_tensor.is_contiguous(memory_format=torch.channels_last): return torch.channels_last elif input_tensor.is_contiguous(memory_format=torch.contiguous_format): return torch.contiguous_format elif input_tensor.is_contiguous(memory_format=torch.preserve_format): return torch.preserve_format kernel_size = weight.shape[2:] dims = input_tensor.shape[2:] if is_transposed: out_channels = groups * weight.shape[1] shape_out = calc_conv_nd_return_shape( dims, kernel_size, stride, padding, dilation, output_padding, ) else: out_channels = weight.shape[0] if weight.shape[1] != input_tensor.shape[1] / groups: raise RuntimeError("Invalid channel dimensions") shape_out = calc_conv_nd_return_shape(dims, kernel_size, stride, padding, dilation) out = input_tensor.new_empty((input_tensor.shape[0], out_channels, *shape_out)) mem_fmt = pick_memory_format() out = out.to(memory_format=mem_fmt) # type: ignore[call-overload] return out @register_meta(aten._convolution.default) def meta_conv_1(input_tensor: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor, stride: List[int], padding: List[int], dilation: List[int], is_transposed: bool, output_padding: List[int], groups: int, *extra_args): out = meta_conv(input_tensor, weight, bias, stride, padding, dilation, is_transposed, output_padding, groups) return out @register_meta(aten.convolution_backward.default) def meta_conv_backward(grad_output: torch.Tensor, input: torch.Tensor, weight: torch.Tensor, bias_sizes, stride, padding, dilation, transposed, output_padding, groups, output_mask): return torch.empty_like(input), torch.empty_like(weight), torch.empty((bias_sizes), device='meta') # https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/AdaptiveAveragePooling.cpp @register_meta(aten._adaptive_avg_pool2d_backward.default) def meta_adaptive_avg_pool2d_backward( grad_output: torch.Tensor, input: torch.Tensor, ): grad_input = torch.empty_like(input) return grad_input # ================================ RNN ============================================= # https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/cudnn/RNN.cpp @register_meta(aten._cudnn_rnn.default) def meta_cuda_rnn( input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, ): is_input_packed = len(batch_sizes) != 0 if is_input_packed: seq_length = len(batch_sizes) mini_batch = batch_sizes[0] batch_sizes_sum = input.shape[0] else: seq_length = input.shape[1] if batch_first else input.shape[0] mini_batch = input.shape[0] if batch_first else input.shape[1] batch_sizes_sum = -1 num_directions = 2 if bidirectional else 1 out_size = proj_size if proj_size != 0 else hidden_size if is_input_packed: out_shape = [batch_sizes_sum, out_size * num_directions] else: out_shape = ([mini_batch, seq_length, out_size * num_directions] if batch_first else [seq_length, mini_batch, out_size * num_directions]) output = input.new_empty(out_shape) cell_shape = [num_layers * num_directions, mini_batch, hidden_size] cy = torch.empty(0) if cx is None else cx.new_empty(cell_shape) hy = hx.new_empty([num_layers * num_directions, mini_batch, out_size]) # TODO: Query cudnnGetRNNTrainingReserveSize (expose to python) reserve_shape = 0 if train else 0 reserve = input.new_empty(reserve_shape, dtype=torch.uint8) return output, hy, cy, reserve, weight_buf # https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/cudnn/RNN.cpp @register_meta(aten._cudnn_rnn_backward.default) def meta_cudnn_rnn_backward(input: torch.Tensor, weight: torch.Tensor, weight_stride0: int, hx: torch.Tensor, cx: Optional[torch.Tensor] = None, *args, **kwargs): print(input, weight, hx, cx) grad_input = torch.empty_like(input) grad_weight = torch.empty_like(weight) grad_hx = torch.empty_like(hx) grad_cx = torch.empty_like(cx) if cx is not None else torch.empty((), device='meta') return grad_input, grad_weight, grad_hx, grad_cx # https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/Activation.cpp # ============================== Activations ======================================= @register_meta(aten.relu.default) def meta_relu(input: torch.Tensor): return torch.empty_like(input) @register_meta(aten.prelu.default) def meta_prelu(input: torch.Tensor, weight: torch.Tensor): return torch.empty_like(input) @register_meta(aten.hardswish.default) def meta_hardswish(input: torch.Tensor): return torch.empty_like(input) @register_meta(aten.hardtanh.default) def meta_hardtanh(input: torch.Tensor, min, max): return torch.empty_like(input) @register_meta(aten.hardswish_backward.default) def meta_hardswish_backward(grad_out: torch.Tensor, input: torch.Tensor): grad_in = torch.empty_like(input) return grad_in @register_meta(aten.hardtanh_backward.default) def meta_hardtanh_backward(grad_out: torch.Tensor, input: torch.Tensor, min_val: int, max_val: int): grad_in = torch.empty_like(input) return grad_in # ============================== Normalization ===================================== # https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/cudnn/BatchNorm.cpp @register_meta(aten.native_batch_norm.default) def meta_bn(input: torch.Tensor, weight, bias, running_mean, running_var, training, momentum, eps): n_input = input.size(1) output = torch.empty_like(input) running_mean = torch.empty((n_input), device='meta') running_var = torch.empty((n_input), device='meta') return output, running_mean, running_var # https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/cudnn/BatchNorm.cpp @register_meta(aten.native_batch_norm_backward.default) def meta_bn_backward(dY: torch.Tensor, input: torch.Tensor, weight: torch.Tensor, running_mean, running_var, save_mean, save_invstd, train, eps, output_mask): dX = torch.empty_like(input) dgamma = torch.empty_like(weight) dbeta = torch.empty_like(weight) return dX, dgamma, dbeta # https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/cudnn/BatchNorm.cpp @register_meta(aten.cudnn_batch_norm.default) def meta_cudnn_bn(input: torch.Tensor, weight, bias, running_mean, running_var, training, momentum, eps): n_input = input.size(1) output = torch.empty_like(input) running_mean = torch.empty((n_input), device='meta') running_var = torch.empty((n_input), device='meta') reserve = torch.empty((0), dtype=torch.uint8, device='meta') return output, running_mean, running_var, reserve # https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/cudnn/BatchNorm.cpp # NB: CuDNN only implements the backward algorithm for batchnorm # in training mode (evaluation mode batchnorm has a different algorithm), # which is why this doesn't accept a 'training' parameter. @register_meta(aten.cudnn_batch_norm_backward.default) def meta_cudnn_bn_backward(dY: torch.Tensor, input: torch.Tensor, weight: torch.Tensor, running_mean, running_var, save_mean, save_invstd, eps, reserve): dX = torch.empty_like(input) dgamma = torch.empty_like(weight) dbeta = torch.empty_like(weight) return dX, dgamma, dbeta # https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/layer_norm.cpp @register_meta(aten.native_layer_norm.default) def meta_ln(input: torch.Tensor, normalized_shape, weight, bias, eps): bs = input.size(0) n_input = input.size(1) output = torch.empty_like(input) running_mean = torch.empty((bs, n_input, 1), device='meta') running_var = torch.empty((bs, n_input, 1), device='meta') return output, running_mean, running_var # https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/layer_norm.cpp @register_meta(aten.native_layer_norm_backward.default) def meta_ln_backward(dY: torch.Tensor, input: torch.Tensor, normalized_shape, mean, rstd, weight, bias, grad_input_mask): dX = torch.empty_like(input) dgamma = torch.empty_like(weight) dbeta = torch.empty_like(bias) return dX, dgamma, dbeta # https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/group_norm.cpp @register_meta(aten.native_group_norm_backward.default) def meta_gn_backward(dY: torch.Tensor, input: torch.Tensor, mean, rstd, gamma, N, C, HxW, group, grad_input_mask): dX = torch.empty_like(input) dgamma = torch.empty_like(gamma) dbeta = torch.empty_like(gamma) return dX, dgamma, dbeta # ================================== Misc ========================================== # https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/native_functions.yaml @register_meta(aten.roll.default) def meta_roll(input: torch.Tensor, shifts, dims): return input # https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/Scalar.cpp @register_meta(aten._local_scalar_dense.default) def meta_local_scalar_dense(self: torch.Tensor): return 0 # https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/TensorCompare.cpp @register_meta(aten.where.self) def meta_where_self(condition: torch.Tensor, self: torch.Tensor, other: torch.Tensor): result_type = torch.result_type(self, other) return torch.empty_like(self, dtype=result_type) @register_meta(aten.index.Tensor) def meta_index_Tensor(self, indices): assert indices, "at least one index must be provided" # aten::index is the internal advanced indexing implementation # checkIndexTensorTypes and expandTensors result: List[Optional[torch.Tensor]] = [] for i, index in enumerate(indices): if index is not None: assert index.dtype in [torch.long, torch.int8, torch.bool],\ "tensors used as indices must be long, byte or bool tensors" if index.dtype in [torch.int8, torch.bool]: nonzero = index.nonzero() k = len(result) assert k + index.ndim <= self.ndim, f"too many indices for tensor of dimension {self.ndim}" for j in range(index.ndim): assert index.shape[j] == self.shape[ k + j], f"The shape of the mask {index.shape} at index {i} does not match the shape of the indexed tensor {self.shape} at index {k + j}" result.append(nonzero.select(1, j)) else: result.append(index) else: result.append(index) indices = result assert len(indices) <= self.ndim, f"too many indices for tensor of dimension {self.ndim} (got {len(indices)})" # expand_outplace import torch._refs as refs indices = list(refs._maybe_broadcast(*indices)) # add missing null tensors while len(indices) < self.ndim: indices.append(None) # hasContiguousSubspace # true if all non-null tensors are adjacent # See: # https://numpy.org/doc/stable/user/basics.indexing.html#combining-advanced-and-basic-indexing # https://stackoverflow.com/questions/53841497/why-does-numpy-mixed-basic-advanced-indexing-depend-on-slice-adjacency state = 0 has_contiguous_subspace = False for index in indices: if state == 0: if index is not None: state = 1 elif state == 1: if index is None: state = 2 else: if index is not None: break else: has_contiguous_subspace = True # transposeToFront # This is the logic that causes the newly inserted dimensions to show up # at the beginning of the tensor, if they're not contiguous if not has_contiguous_subspace: dims = [] transposed_indices = [] for i, index in enumerate(indices): if index is not None: dims.append(i) transposed_indices.append(index) for i, index in enumerate(indices): if index is None: dims.append(i) transposed_indices.append(index) self = self.permute(dims) indices = transposed_indices # AdvancedIndex::AdvancedIndex # Now we can assume the indices have contiguous subspace # This is simplified from AdvancedIndex which goes to more effort # to put the input and indices in a form so that TensorIterator can # take them. If we write a ref for this, probably that logic should # get implemented before_shape: List[int] = [] after_shape: List[int] = [] replacement_shape: List[int] = [] for dim, index in enumerate(indices): if index is None: if replacement_shape: after_shape.append(self.shape[dim]) else: before_shape.append(self.shape[dim]) else: replacement_shape = list(index.shape) return self.new_empty(before_shape + replacement_shape + after_shape) # ============================== Embedding ========================================= # https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/Embedding.cpp @register_meta(aten.embedding_dense_backward.default) def meta_embedding_dense_backward(grad_output: torch.Tensor, indices: torch.Tensor, num_weights, padding_idx, scale_grad_by_freq): return torch.empty((num_weights, grad_output.size(-1)), dtype=grad_output.dtype, device=grad_output.device, layout=grad_output.layout) # ============================== Dropout =========================================== # https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/Dropout.cpp @register_meta(aten.native_dropout.default) def meta_native_dropout_default(input: torch.Tensor, p: float, train: bool = False): # notice that mask is bool output = torch.empty_like(input) mask = torch.empty_like(input, dtype=torch.bool) return output, mask # https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/Dropout.cpp @register_meta(aten.native_dropout_backward.default) def meta_native_dropout_backward_default(grad: torch.Tensor, mask: torch.Tensor, scale: float): return torch.empty_like(grad)
import operator import torch from torch.fx.proxy import Proxy, Attribute from typing import List, Union, Any from colossalai.fx.tracer.meta_patch import meta_patched_function __all__ = ['ColoProxy'] class ColoProxy(Proxy): """ ColoProxy is a proxy class which uses meta tensor to handle data-dependent control flow. The original torch.fx proxy cannot be used to infer the condition statement, with this proxy, torch.fx can still run even with if statements. Example:: proxy = tracer.create_proxy(...) proxy.meta_data = torch.empty(4, 2, device='meta') print(len(proxy)) # expect output 4 """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.node._meta_data = None @property def meta_data(self): return self.node._meta_data @meta_data.setter def meta_data(self, data: Any): self.node._meta_data = data @property def has_meta_data(self): return self._meta_data is not None def _assert_meta_data_is_tensor(self): assert torch.is_tensor( self._meta_data) and self._meta_data.is_meta, f'Meta data is not a meta tensor for {self.node.name}' def _assert_has_meta_data(self): assert self._meta_data is not None, f'Meta data is not set for {self.node.name}' def __len__(self): self._assert_has_meta_data() return len(self.meta_data) def __int__(self): self._assert_has_meta_data() return int(self.meta_data) def __float__(self): self._assert_has_meta_data() return float(self.meta_data) def __bool__(self): self._assert_has_meta_data() return self.meta_data def __getattr__(self, k): return ColoAttribute(self, k) def __contains__(self, key): if self.node.op == "placeholder": # this is used to handle like # if x in kwargs # we don't handle this case for now return False return super().__contains__(key) def extract_meta(*args, **kwargs): """ This function is copied from _tracer_utils.py to avoid circular import issue. """ def _convert(val): if isinstance(val, ColoProxy): return val.meta_data elif isinstance(val, (list, tuple)): return type(val)([_convert(ele) for ele in val]) return val new_args = [_convert(val) for val in args] new_kwargs = {k: _convert(v) for k, v in kwargs.items()} return new_args, new_kwargs class ColoAttribute(ColoProxy): def __init__(self, root, attr: str): self.root = root self.attr = attr self.tracer = root.tracer self._node = None @property def node(self): if self._node is None: proxy = self.tracer.create_proxy("call_function", getattr, (self.root, self.attr), {}) if not isinstance(proxy, ColoProxy): meta_args, meta_kwargs = extract_meta(*(self.root, self.attr)) meta_out = getattr(*meta_args, **meta_kwargs) proxy = ColoProxy(proxy.node) proxy.meta_data = meta_out self._node = proxy.node return self._node def __call__(self, *args, **kwargs): proxy = self.tracer.create_proxy("call_method", self.attr, (self.root,) + args, kwargs) if not isinstance(proxy, ColoProxy): meta_args, meta_kwargs = extract_meta(*((self.root,) + args), **kwargs) method = getattr(meta_args[0].__class__, self.attr) if meta_patched_function.has(method): meta_target = meta_patched_function.get(method) elif meta_patched_function.has(method.__name__): meta_target = meta_patched_function.get(method.__name__) else: meta_target = method meta_out = meta_target(*meta_args, **meta_kwargs) proxy = ColoProxy(proxy.node) proxy.meta_data = meta_out return proxy
from ._compatibility import compatibility, is_compatible_with_meta from .graph_module import ColoGraphModule from .passes import MetaInfoProp, metainfo_trace from .tracer import ColoTracer, meta_trace, symbolic_trace
from typing import Callable import torch try: from . import _meta_registrations META_COMPATIBILITY = True except: META_COMPATIBILITY = False def compatibility(is_backward_compatible: bool = False) -> Callable: """A decorator to make a function compatible with different versions of PyTorch. Args: is_backward_compatible (bool, optional): Whether the function is backward compatible. Defaults to False. Returns: Callable: The decorated function """ def decorator(func): if META_COMPATIBILITY: return func else: if is_backward_compatible: return func else: def wrapper(*args, **kwargs): raise RuntimeError(f'Function `{func.__name__}` is not compatible with PyTorch {torch.__version__}') return wrapper return decorator def is_compatible_with_meta() -> bool: """Check the meta compatibility. Normally it should be called before importing some of the `colossalai.fx` modules. If the meta compatibility is not satisfied, the `colossalai.fx` modules will be replaced by its experimental counterparts. Returns: bool: The meta compatibility """ return META_COMPATIBILITY
import enum import functools import inspect import operator from contextlib import contextmanager from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union import torch from torch.fx import Graph, Node, Proxy, Tracer from torch.utils._pytree import tree_map from colossalai.fx import ColoGraphModule, compatibility, is_compatible_with_meta from colossalai.fx.tracer._tracer_utils import extract_meta, is_element_in_list from colossalai.fx.tracer.bias_addition_patch import func_to_func_dict, method_to_func_dict, module_to_func_dict from colossalai.fx.tracer.registry import ( bias_addition_function, bias_addition_method, bias_addition_module, meta_patched_function, meta_patched_module, ) if is_compatible_with_meta(): from colossalai.fx.profiler import MetaTensor Target = Union[Callable[..., Any], str] Argument = Optional[Union[Tuple[Any, ...], # actually Argument, but mypy can't represent recursive types List[Any], # actually Argument Dict[str, Any], # actually Argument slice, # Slice[Argument, Argument, Argument], but slice is not a templated type in typing 'Node',]] _CScriptMethod = ['add', 'mul', 'sub', 'div'] _TorchNewMethod = [ "arange", "zeros", "zeros_like", "ones", "ones_like", "full", "full_like", "empty", "empty_like", "eye", "tensor", "finfo" ] _TensorPropertyMethod = ["dtype", "shape", "device", "requires_grad", "grad", "grad_fn", "data"] def _truncate_suffix(s: str): import re return re.sub(r'_\d+$', '', s) def default_device(): return torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu') @compatibility(is_backward_compatible=False) class ColoProxy(Proxy): def __init__(self, *args, data=None, **kwargs): super().__init__(*args, **kwargs) self._meta_data = data @property def meta_data(self): return self._meta_data @meta_data.setter def meta_data(self, args): wrap_fn = lambda x: MetaTensor(x) if isinstance(x, torch.Tensor) else x self._meta_data = tree_map(wrap_fn, args) @classmethod def __torch_function__(cls, orig_method, types, args=(), kwargs=None): proxy = cls.from_torch_proxy(super().__torch_function__(orig_method, types, args, kwargs)) unwrap_fn = lambda p: p.meta_data if isinstance(p, ColoProxy) else p kwargs = {} if kwargs is None else kwargs if proxy.meta_data is None: proxy.meta_data = orig_method(*tree_map(unwrap_fn, args), **tree_map(unwrap_fn, kwargs)) return proxy @classmethod def from_torch_proxy(cls, proxy: Proxy): return cls(proxy.node, proxy.tracer) def __repr__(self): return f"ColoProxy({self.node.name}, meta_data={self.meta_data})" def __len__(self): return len(self.meta_data) def __int__(self): return int(self.meta_data) def __index__(self): try: return int(self.meta_data) except: return torch.zeros(self.meta_data.shape, dtype=torch.bool).numpy().__index__() def __float__(self): return float(self.meta_data) def __bool__(self): return self.meta_data def __getattr__(self, k): return ColoAttribute(self, k, getattr(self._meta_data, k, None)) def __setitem__(self, key, value): proxy = self.tracer.create_proxy('call_function', operator.setitem, (self, key, value), {}) proxy.meta_data = self._meta_data return proxy def __contains__(self, key): if self.node.op == "placeholder": # this is used to handle like # if x in kwargs # we don't handle this case for now return False return super().__contains__(key) def __isinstancecheck__(self, type): return isinstance(self.meta_data, type) @property def shape(self): return self.meta_data.shape @property def ndim(self): return self.meta_data.ndim @property def device(self): proxy = self.tracer.create_proxy('call_function', getattr, (self, 'device'), {}) proxy.meta_data = self.meta_data.device return proxy @property def dtype(self): proxy = self.tracer.create_proxy('call_function', getattr, (self, 'dtype'), {}) proxy.meta_data = self.meta_data.dtype return proxy def to(self, *args, **kwargs): return self.tracer.create_proxy('call_method', 'to', (self, *args), {**kwargs}) def cpu(self, *args, **kwargs): return self.tracer.create_proxy('call_method', 'cpu', (self, *args), {**kwargs}) def cuda(self, *args, **kwargs): return self.tracer.create_proxy('call_method', 'cuda', (self, *args), {**kwargs}) @compatibility(is_backward_compatible=False) class ColoAttribute(ColoProxy): def __init__(self, root, attr: str, data=None): self.root = root self.attr = attr self.tracer = root.tracer self._meta_data = data self._node: Optional[Node] = None @property def node(self): # the node for attributes is added lazily, since most will just be method calls # which do not rely on the getitem call if self._node is None: self._node = self.tracer.create_proxy('call_function', getattr, (self.root, self.attr), {}).node return self._node def __call__(self, *args, **kwargs): return self.tracer.create_proxy('call_method', self.attr, (self.root,) + args, kwargs) def __repr__(self): return f"ColoAttribute({self.node.name}, attr={self.attr})" @compatibility(is_backward_compatible=False) class ColoTracer(Tracer): def __init__(self, trace_act_ckpt: bool = False, *args, **kwargs): super().__init__(*args, **kwargs) self._disable_module_getattr = False self.proxy_buffer_attributes = True # whether the tracer will record the usage of torch.utils.checkpoint self.trace_act_ckpt = trace_act_ckpt # whether the current tracing occurs within the activation checkpoint functions self.inside_torch_checkpoint_func = False self.act_ckpt_region_count = 0 def proxy(self, node: Node) -> 'ColoProxy': return ColoProxy(node, self) def create_proxy(self, kind: str, target: Target, args: Tuple[Any, ...], kwargs: Dict[str, Any], name: Optional[str] = None, type_expr: Optional[Any] = None, proxy_factory_fn: Callable[[Node], 'Proxy'] = None): proxy: ColoProxy = super().create_proxy(kind, target, args, kwargs, name, type_expr, proxy_factory_fn) unwrap_fn = lambda p: p.meta_data if isinstance(p, ColoProxy) else p if kind == 'placeholder': proxy.meta_data = self.meta_args[target] if target in self.meta_args else self.concrete_args.get( _truncate_suffix(target), None) elif kind == 'get_attr': self._disable_module_getattr = True try: attr_itr = self.root atoms = target.split(".") for atom in atoms: attr_itr = getattr(attr_itr, atom) proxy.meta_data = attr_itr finally: self._disable_module_getattr = False elif kind == 'call_function': proxy.meta_data = target(*tree_map(unwrap_fn, args), **tree_map(unwrap_fn, kwargs)) elif kind == 'call_method': self._disable_module_getattr = True try: if target == '__call__': proxy.meta_data = unwrap_fn(args[0])(*tree_map(unwrap_fn, args[1:]), **tree_map(unwrap_fn, kwargs)) else: if target not in _TensorPropertyMethod: proxy._meta_data = getattr(unwrap_fn(args[0]), target)(*tree_map(unwrap_fn, args[1:]), **tree_map(unwrap_fn, kwargs)) finally: self._disable_module_getattr = False elif kind == 'call_module': mod = self.root.get_submodule(target) self._disable_module_getattr = True try: proxy.meta_data = mod.forward(*tree_map(unwrap_fn, args), **tree_map(unwrap_fn, kwargs)) finally: self._disable_module_getattr = False return proxy def create_node(self, *args, **kwargs) -> Node: node = super().create_node(*args, **kwargs) if self.inside_torch_checkpoint_func: # annotate the activation checkpoint module node.meta['activation_checkpoint'] = self.act_ckpt_region_count return node def trace(self, root: torch.nn.Module, concrete_args: Optional[Dict[str, torch.Tensor]] = None, meta_args: Optional[Dict[str, torch.Tensor]] = None) -> Graph: if meta_args is None: meta_args = {} if concrete_args is None: concrete_args = {} # check concrete and meta args have valid names sig = inspect.signature(root.forward) sig_names = set(sig.parameters.keys()) meta_arg_names = set(meta_args.keys()) # update concrete args with default values non_meta_arg_names = sig_names - meta_arg_names for k, v in sig.parameters.items(): if k in non_meta_arg_names and \ k not in concrete_args and \ v.default is not inspect.Parameter.empty: concrete_args[k] = v.default # get non concrete arg names concrete_arg_names = set(concrete_args.keys()) non_concrete_arg_names = sig_names - concrete_arg_names def _check_arg_name_valid(names): success, element = is_element_in_list(names, sig_names) if not success: raise KeyError( f"argument {element} is not found in the signature of {root.__class__.__name__}'s forward function") _check_arg_name_valid(meta_arg_names) _check_arg_name_valid(concrete_arg_names) self.concrete_args = concrete_args self.meta_args = meta_args with _TorchTensorOverride(self), self.trace_activation_checkpoint(enabled=self.trace_act_ckpt): self.graph = super().trace(root, concrete_args=concrete_args) self.graph.lint() return self.graph @contextmanager def trace_activation_checkpoint(self, enabled: bool): if enabled: orig_ckpt_func = torch.utils.checkpoint.CheckpointFunction class PatchedCheckpointFunction(torch.autograd.Function): @staticmethod def forward(ctx, run_function, preserve_rng_state, *args): # signal that the current tracing occurs within activaton checkpoint part self.inside_torch_checkpoint_func = True out = run_function(*args) self.inside_torch_checkpoint_func = False self.act_ckpt_region_count += 1 return out @staticmethod def backward(ctx: Any, *grad_outputs: Any) -> Any: raise NotImplementedError( "We do not implement the backward pass as we only trace the forward pass.") # override the checkpoint function torch.utils.checkpoint.CheckpointFunction = PatchedCheckpointFunction yield if enabled: # recover the checkpoint function upon exit torch.utils.checkpoint.CheckpointFunction = orig_ckpt_func def _post_check(self, non_concrete_arg_names: Set[str]): # This is necessary because concrete args are added as input to the traced module since # https://github.com/pytorch/pytorch/pull/55888. for node in self.graph.nodes: if node.op == "placeholder": # Removing default values for inputs as the forward pass will fail with them. if node.target in non_concrete_arg_names: node.args = () # Without this, torch.jit.script fails because the inputs type is Optional[torch.Tensor]. # It cannot infer on the attributes and methods the input should have, and fails. node.type = torch.Tensor # It is a concrete arg so it is not used and should be removed. else: if hasattr(torch.fx._symbolic_trace, "_assert_is_none"): # Newer versions of torch.fx emit an assert statement # for concrete arguments; delete those before we delete # the concrete arg. to_delete = [] for user in node.users: if user.target == torch.fx._symbolic_trace._assert_is_none: to_delete.append(user) for user in to_delete: self.graph.erase_node(user) self.graph.erase_node(node) # TODO: solves GraphModule creation. # Without this, return type annotation "Tuple" is causing code execution failure. if node.op == "output": node.type = None self.graph.lint() def _module_getattr(self, attr, attr_val, parameter_proxy_cache): if getattr(self, "_disable_module_getattr", False): return attr_val def maybe_get_proxy_for_attr(attr_val, collection_to_search, parameter_proxy_cache): for n, p in collection_to_search: if attr_val is p: if n not in parameter_proxy_cache: kwargs = {} if 'proxy_factory_fn' in inspect.signature(self.create_proxy).parameters: kwargs['proxy_factory_fn'] = (None if not self.param_shapes_constant else lambda node: ColoProxy(self, node, n, attr_val)) val_proxy = self.create_proxy('get_attr', n, (), {}, **kwargs) # type: ignore[arg-type] parameter_proxy_cache[n] = val_proxy return parameter_proxy_cache[n] return None if self.proxy_buffer_attributes and isinstance(attr_val, torch.Tensor): maybe_buffer_proxy = maybe_get_proxy_for_attr(attr_val, self.root.named_buffers(), parameter_proxy_cache) if maybe_buffer_proxy is not None: return maybe_buffer_proxy if isinstance(attr_val, torch.nn.Parameter): maybe_parameter_proxy = maybe_get_proxy_for_attr(attr_val, self.root.named_parameters(), parameter_proxy_cache) if maybe_parameter_proxy is not None: return maybe_parameter_proxy return attr_val @compatibility(is_backward_compatible=True) def symbolic_trace( root: Union[torch.nn.Module, Callable[..., Any]], concrete_args: Optional[Dict[str, Any]] = None, meta_args: Optional[Dict[str, Any]] = None, trace_act_ckpt=False, ) -> ColoGraphModule: if is_compatible_with_meta(): if meta_args is not None: root.to(default_device()) wrap_fn = lambda x: MetaTensor(x, fake_device=default_device()) if isinstance(x, torch.Tensor) else x graph = ColoTracer(trace_act_ckpt=trace_act_ckpt).trace(root, concrete_args=concrete_args, meta_args=tree_map(wrap_fn, meta_args)) root.cpu() else: graph = Tracer().trace(root, concrete_args=concrete_args) else: from .tracer import ColoTracer as OrigColoTracer graph = OrigColoTracer(trace_act_ckpt=trace_act_ckpt).trace(root, concrete_args=concrete_args, meta_args=meta_args) name = root.__class__.__name__ if isinstance(root, torch.nn.Module) else root.__name__ return ColoGraphModule(root, graph, name) @compatibility(is_backward_compatible=False) class _TorchTensorOverride(object): def __init__(self, tracer: Tracer): self.overrides = {} self.tracer = tracer def __enter__(self): def wrap_tensor_method(target): @functools.wraps(target) def wrapper(*args, **kwargs): is_proxy = any(isinstance(p, ColoProxy) for p in args) | any( isinstance(p, ColoProxy) for p in kwargs.values()) if is_proxy: # if the arg is a proxy, then need to record this function called on this proxy # e.g. torch.ones(size) where size is an input proxy self.tracer._disable_module_getattr = True try: proxy = self.tracer.create_proxy('call_function', target, args, kwargs) finally: self.tracer._disable_module_getattr = False return proxy else: return target(*args, **kwargs) return wrapper, target self.overrides = { target: wrap_tensor_method(getattr(torch, target)) for target in _TorchNewMethod if callable(getattr(torch, target)) } for name, (wrapper, orig) in self.overrides.items(): setattr(torch, name, wrapper) def __exit__(self, exc_type, exc_val, exc_tb): for name, (wrapper, orig) in self.overrides.items(): setattr(torch, name, orig) def meta_prop_pass(gm: ColoGraphModule, root: torch.nn.Module, meta_args: Optional[Dict[str, Any]] = None, concrete_args: Optional[Dict[str, torch.Tensor]] = None): if meta_args is None: meta_args = {} if concrete_args is None: concrete_args = {} # check concrete and meta args have valid names sig = inspect.signature(root.forward) sig_names = set(sig.parameters.keys()) meta_arg_names = set(meta_args.keys()) # update concrete args with default values non_meta_arg_names = sig_names - meta_arg_names for k, v in sig.parameters.items(): if k in non_meta_arg_names and \ k not in concrete_args and \ v.default is not inspect.Parameter.empty: concrete_args[k] = v.default for node in gm.graph.nodes: node._meta_data = _meta_data_computing(meta_args, concrete_args, root, node.op, node.target, node.args, node.kwargs) def _meta_data_computing(meta_args, concrete_args, root, kind, target, args, kwargs): unwrap_fn = lambda n: n._meta_data if isinstance(n, Node) else n if kind == 'placeholder': meta_out = meta_args[target] if target in meta_args else concrete_args.get(_truncate_suffix(target), None) elif kind == 'get_attr': attr_itr = root atoms = target.split(".") for atom in atoms: attr_itr = getattr(attr_itr, atom) meta_out = attr_itr elif kind == 'call_function': meta_out = target(*tree_map(unwrap_fn, args), **tree_map(unwrap_fn, kwargs)) elif kind == 'call_method': if target == '__call__': meta_out = unwrap_fn(args[0])(*tree_map(unwrap_fn, args[1:]), **tree_map(unwrap_fn, kwargs)) else: if target not in _TensorPropertyMethod: meta_out = getattr(unwrap_fn(args[0]), target)(*tree_map(unwrap_fn, args[1:]), **tree_map(unwrap_fn, kwargs)) elif kind == 'call_module': mod = root.get_submodule(target) meta_out = mod.forward(*tree_map(unwrap_fn, args), **tree_map(unwrap_fn, kwargs)) else: meta_out = None return meta_out def _meta_data_computing_v0(meta_args, root, kind, target, args, kwargs): if kind == "placeholder" and target in meta_args and meta_args[target].is_meta: meta_out = meta_args[target] return meta_out if target in [getattr(torch, torch_func) for torch_func in _TorchNewMethod]: # NOTE: tensor constructors in PyTorch define the `device` argument as # *kwargs-only*. That is why this works. If you add methods to # _TORCH_METHODS_TO_PATCH that do not define `device` as kwarg-only, # this will break and you will likely see issues where we cannot infer # the size of the output. if "device" in kwargs: kwargs["device"] = "meta" try: unwrap_fn = lambda n: n._meta_data if isinstance(n, Node) else n args_metas = tree_map(unwrap_fn, args) kwargs_metas = tree_map(unwrap_fn, kwargs) if kind == "call_function": # fetch patched function if meta_patched_function.has(target): meta_target = meta_patched_function.get(target) elif meta_patched_function.has(target.__name__): # use name for some builtin op like @ (matmul) meta_target = meta_patched_function.get(target.__name__) else: meta_target = target meta_out = meta_target(*args_metas, **kwargs_metas) if isinstance(meta_out, torch.Tensor): meta_out = meta_out.to(device="meta") elif kind == "call_method": method = getattr(args_metas[0].__class__, target) # fetch patched method if meta_patched_function.has(method): meta_target = meta_patched_function.get(method) else: meta_target = method meta_out = meta_target(*args_metas, **kwargs_metas) elif kind == "call_module": mod = root.get_submodule(target) mod_type = type(mod) if meta_patched_module.has(mod_type): meta_out = meta_patched_module.get(mod_type)(mod, *args_metas, **kwargs_metas) else: meta_out = mod(*args_metas, **kwargs_metas) elif kind == "get_attr": attr_itr = root atoms = target.split(".") for atom in atoms: attr_itr = getattr(attr_itr, atom) if isinstance(attr_itr, torch.nn.parameter.Parameter): meta_out = torch.nn.Parameter(attr_itr.to(device="meta")) elif isinstance(attr_itr, torch.Tensor): meta_out = attr_itr.to(device="meta") else: meta_out = attr_itr else: return None except Exception as e: raise RuntimeError(f"Could not compute metadata for {kind} target {target}: {e}") return meta_out def bias_addition_pass(gm: ColoGraphModule, root_model: torch.nn.Module, meta_args: Optional[Dict[str, Any]] = None): result_graph = Graph() value_remap = {} unwrap_fn = lambda n: n._meta_data if isinstance(n, Node) else n for orig_node in gm.graph.nodes: assert hasattr(orig_node, "_meta_data") kind = orig_node.op target = orig_node.target args = orig_node.args kwargs = orig_node.kwargs args_metas = tree_map(unwrap_fn, args) tracer = ColoTracer() tracer.graph = Graph(tracer_cls=ColoTracer) tracer.root = root_model def wrap_fn(n): if isinstance(n, Node): proxy = ColoProxy(n, tracer) proxy.meta_data = n._meta_data return proxy return n args_proxy = tree_map(wrap_fn, args) kwargs_proxy = tree_map(wrap_fn, kwargs) handle = None if kind == "call_function": if bias_addition_function.has(target): if target == torch.nn.functional.linear: if 'bias' in kwargs and kwargs['bias'] is not None: function_to_substitute = func_to_func_dict[target] handle = bias_addition_function.get(target)(tracer, target, args_proxy, kwargs_proxy, function_to_substitute) else: function_to_substitute = func_to_func_dict[target] handle = bias_addition_function.get(target)(tracer, target, args_proxy, kwargs_proxy, function_to_substitute) elif bias_addition_function.has(target.__name__): # use name for some builtin op like @ (matmul) function_to_substitute = func_to_func_dict[target] handle = bias_addition_function.get(target.__name__)(tracer, target, args_proxy, kwargs_proxy, function_to_substitute) elif kind == "call_method": method = getattr(args_metas[0].__class__, target) if bias_addition_method.has(method): function_to_substitute = method_to_func_dict[method] handle = bias_addition_method.get(method)(tracer, target, args_proxy, kwargs_proxy, function_to_substitute) elif kind == "call_module": # if not hasattr(self, "orig_forward"): # raise AttributeError(f"{self} does not have an attribute called orig_forward") mod = gm.get_submodule(target) mod_type = type(mod) if bias_addition_module.has(mod_type) and mod.bias is not None: function_to_substitute = module_to_func_dict[mod_type] handle = bias_addition_module.get(mod_type)(tracer, target, args_proxy, kwargs_proxy, function_to_substitute) if handle is not None: handle.generate() for node_inserted in tracer.graph.nodes: value_remap[node_inserted] = result_graph.node_copy(node_inserted, lambda n: value_remap[n]) last_node = value_remap[node_inserted] value_remap[orig_node] = last_node else: value_remap[orig_node] = result_graph.node_copy(orig_node, lambda n: value_remap[n]) del tracer gm.graph = result_graph gm.recompile() meta_prop_pass(gm, root_model, meta_args)
class PatchRegistry: def __init__(self, name): self.name = name self.store = {} def register(self, source): def wrapper(func): self.store[source] = func return func return wrapper def get(self, source): assert source in self.store target = self.store[source] return target def has(self, source): return source in self.store meta_patched_function = PatchRegistry(name='patched_functions_for_meta_execution') meta_patched_module = PatchRegistry(name='patched_modules_for_meta_execution') bias_addition_function = PatchRegistry(name='patched_function_for_bias_addition') bias_addition_module = PatchRegistry(name='patched_module_for_bias_addition') bias_addition_method = PatchRegistry(name='patched_method_for_bias_addition')
from colossalai.fx.tracer.meta_patch.patched_function.python_ops import operator_getitem from ._meta_trace import meta_trace from ._symbolic_trace import symbolic_trace from .tracer import ColoTracer
from typing import List, Union, Any from ..proxy import ColoProxy, ColoAttribute import torch from .meta_patch import meta_patched_function, meta_patched_module __all__ = ['is_element_in_list', 'extract_meta'] def is_element_in_list(elements: Union[List[Any], Any], list_: List[Any]): if isinstance(elements, (tuple, list, set)): for ele in elements: if ele not in list_: return False, ele else: if elements not in list_: return False, elements return True, None def extract_meta(*args, **kwargs): def _convert(val): if isinstance(val, ColoProxy): return val.meta_data elif isinstance(val, (list, tuple)): return type(val)([_convert(ele) for ele in val]) return val new_args = [_convert(val) for val in args] new_kwargs = {k: _convert(v) for k, v in kwargs.items()} return new_args, new_kwargs def compute_meta_data_for_functions_proxy(target, args, kwargs): args_metas, kwargs_metas = extract_meta(*args, **kwargs) # fetch patched function if meta_patched_function.has(target): meta_target = meta_patched_function.get(target) elif meta_patched_function.has(target.__name__): meta_target = meta_patched_function.get(target.__name__) else: meta_target = target meta_out = meta_target(*args_metas, **kwargs_metas) if isinstance(meta_out, torch.Tensor): meta_out = meta_out.to(device="meta") return meta_out
from typing import Any, Callable, Dict, Optional, Union import torch from colossalai.fx import ColoGraphModule from colossalai.fx._compatibility import compatibility from .tracer import ColoTracer @compatibility(is_backward_compatible=True) def symbolic_trace( root: Union[torch.nn.Module, Callable[..., Any]], concrete_args: Optional[Dict[str, Any]] = None, meta_args: Optional[Dict[str, Any]] = None, trace_act_ckpt=False, ) -> ColoGraphModule: """ Symbolic tracing API Given an ``nn.Module`` or function instance ``root``, this function will return a ``ColoGraphModule`` constructed by recording operations seen while tracing through ``root``. With ``meta_args``, we can trace the model that are untraceable subject to control flow. If specified using ``meta_args`` only, the tracing can be done ahead of time. Note that ``meta_args`` are kwargs, which contains the key of the argument's names and the value of the argument's values. Uses: >>> model = ... # if this works >>> gm = symbolic_trace(model, concrete_args=concrete_args) # else try this >>> gm = symbolic_trace(model, concrete_args=concrete_args, meta_args={'x': torch.rand(1, 3, 224, 224, device='meta')}) Args: root (Union[torch.nn.Module, Callable[..., Any]]): Module or function to be traced and converted into a Graph representation. concrete_args (Optional[Dict[str, Any]], optional): Concrete arguments to be used for tracing. meta_args (Optional[Dict[str, Any]], optional): Inputs to be partially specialized, special for ``ColoTracer``. Defaults to None. Returns: ColoGraphModule: A ``ColoGraphModule`` created from the recorded operations from ``root``. Warnings: This API is still under development and can incur some bugs. Feel free to report any bugs to the Colossal-AI team. """ graph = ColoTracer(trace_act_ckpt=trace_act_ckpt).trace(root, concrete_args=concrete_args, meta_args=meta_args) name = root.__class__.__name__ if isinstance(root, torch.nn.Module) else root.__name__ return ColoGraphModule(root, graph, name)
#!/usr/bin/env python """ tracer.py: Implemented a tracer which supports control flow and user-defined meta arguments. The implementation is partly inspired HuggingFace's fx tracer """ import enum import functools import inspect import operator from contextlib import contextmanager from typing import Any, Dict, Optional import torch import torch.nn as nn from torch import Tensor from torch.fx import Node, Tracer from torch.fx.graph import Graph, magic_methods, reflectable_magic_methods from torch.fx.proxy import ParameterProxy, Proxy from ..proxy import ColoProxy from ._tracer_utils import compute_meta_data_for_functions_proxy, extract_meta, is_element_in_list from .bias_addition_patch import func_to_func_dict, method_to_func_dict, module_to_func_dict from .registry import ( bias_addition_function, bias_addition_method, bias_addition_module, meta_patched_function, meta_patched_module, ) __all__ = ['ColoTracer'] class TracerType(enum.Enum): DEFAULT = 1 META = 2 class ColoTracer(Tracer): """ ColoTracer is a symbolic tracer designed to support dynamic control flow by using meta tensors for the `colossalai.fx` module. This tracer is initialized in the same way as the original torch.fx.Tracer. Usage:: class Model(nn.Module): def __init__(self): super().__init__() self.linear1 = nn.Linear(10, 10) self.linear2 = nn.Linear(10, 10) def forward(self, x, y): x1 = self.linear1(x) y1 = self.linear2(y) if x1.dim() == 2: return x1 + y1 else: return x1 - y1 model = Model() tracer = ColoTracer() graph = tracer.trace(model, concrete_args={'y': torch.rand(4, 10)}, meta_args={'x': torch.rand(4, 10, device='meta')}) """ def __init__(self, trace_act_ckpt: bool = False, *args, **kwargs): super().__init__(*args, **kwargs) self.tracer_type = TracerType.META self.proxy_cls = ColoProxy # whether the tracer will record the usage of torch.utils.checkpoint self.trace_act_ckpt = trace_act_ckpt # whether the current tracing occurs within the activation checkpoint functions self.inside_torch_checkpoint_func = False self.act_ckpt_region_count = 0 # Feature flag for proxying accesses to buffer values proxy_buffer_attributes: bool = True _TORCH_METHODS_TO_PATCH = ["arange", "zeros", "ones", "full", "full_like", "eye", "empty", "tensor", "finfo"] def create_proxy(self, kind, target, args, kwargs, name=None, type_expr=None, proxy_factory_fn=None) -> ColoProxy: """ Create a proxy for different kinds of operations. """ if self.tracer_type == TracerType.DEFAULT: # since meta_args is not given # we just fall back to the original torch.fx.Tracer proxy = super().create_proxy(kind, target, args, kwargs, name, type_expr, proxy_factory_fn) return proxy # if graph is traced for auto parallelism module, some extra node will be added during # graph construction to deal with the compatability between bias addition and all reduce. # if no extra manipulation is applied, we just pass the origin arguments to create_proxy function # to create node on computation graph origin_arguments = (kind, target, args, kwargs, name, type_expr, proxy_factory_fn) # dispatch the arguments generator depending on the kind and target in origin arguments. args_metas, _ = extract_meta(*args, **kwargs) handle = None if kind == "call_function": if bias_addition_function.has(target): if target == torch.nn.functional.linear: if 'bias' in kwargs and kwargs['bias'] is not None: function_to_substitute = func_to_func_dict[target] handle = bias_addition_function.get(target)(self, target, args, kwargs, function_to_substitute) else: function_to_substitute = func_to_func_dict[target] handle = bias_addition_function.get(target)(self, target, args, kwargs, function_to_substitute) elif bias_addition_function.has(target.__name__): # use name for some builtin op like @ (matmul) function_to_substitute = func_to_func_dict[target] handle = bias_addition_function.get(target.__name__)(self, target, args, kwargs, function_to_substitute) elif kind == "call_method": method = getattr(args_metas[0].__class__, target) if bias_addition_method.has(method): function_to_substitute = method_to_func_dict[method] handle = bias_addition_method.get(method)(self, target, args, kwargs, function_to_substitute) elif kind == "call_module": if not hasattr(self, "orig_forward"): raise AttributeError(f"{self} does not have an attribute called orig_forward") self._disable_module_getattr = True try: mod = self.root.get_submodule(target) mod_type = type(mod) if bias_addition_module.has(mod_type) and mod.bias is not None: function_to_substitute = module_to_func_dict[mod_type] handle = bias_addition_module.get(mod_type)(self, target, args, kwargs, function_to_substitute) finally: self._disable_module_getattr = False if handle is not None: return handle.generate() # create nodes using patched arguments proxy = super().create_proxy(*origin_arguments) proxy: ColoProxy meta_out = self._meta_data_computing( kind, target, args, kwargs, ) proxy.meta_data = meta_out return proxy def _module_getattr(self, attr, attr_val, parameter_proxy_cache): if getattr(self, "_disable_module_getattr", False): return attr_val else: # return super()._module_getattr(attr, attr_val, parameter_proxy_cache) def maybe_get_proxy_for_attr(attr_val, collection_to_search, parameter_proxy_cache): for n, p in collection_to_search: if attr_val is p: if n not in parameter_proxy_cache: kwargs = {} if "proxy_factory_fn" in inspect.signature(self.create_proxy).parameters: kwargs["proxy_factory_fn"] = (None if not self.param_shapes_constant else lambda node: ParameterProxy(self, node, n, attr_val)) val_proxy = self.create_proxy("get_attr", n, (), {}, **kwargs) # type: ignore[arg-type] parameter_proxy_cache[n] = val_proxy return parameter_proxy_cache[n] return None if isinstance(attr_val, torch.nn.Parameter): maybe_parameter_proxy = maybe_get_proxy_for_attr(attr_val, self.root.named_parameters(), parameter_proxy_cache) if maybe_parameter_proxy is not None: return maybe_parameter_proxy if self.proxy_buffer_attributes and isinstance(attr_val, torch.Tensor): maybe_buffer_proxy = maybe_get_proxy_for_attr(attr_val, self.root.named_buffers(), parameter_proxy_cache) if maybe_buffer_proxy is not None: return maybe_buffer_proxy return attr_val def call_module(self, m, forward, args, kwargs): self.orig_forward = forward module_qualified_name = self.path_of_module(m) # a leaf module is the torch.nn.Module subclasses starting with `torch.nn` # which means customized modules are not leaf module by default # if a customized or third-party module like apex.normalization.FusedRMSNorm is patched, # we should treat it as leaf module as well if meta_patched_module.has(m.__class__) or self.is_leaf_module(m, module_qualified_name): return self.create_proxy('call_module', module_qualified_name, args, kwargs) else: return forward(*args, **kwargs) def proxy(self, node) -> Proxy: """ Returns a ColoProxy object. """ return self.proxy_cls(node, self) def _configure_tracer_type(self, tracer_type: TracerType): if tracer_type == TracerType.DEFAULT: self.proxy_cls = Proxy self.tracer_type = TracerType.DEFAULT elif tracer_type == TracerType.META: self.proxy_cls = ColoProxy self.tracer_type = TracerType.META else: raise ValueError(f"Unrecognised tracer type {tracer_type}") def _meta_data_computing(self, kind, target, args, kwargs): if kind == "placeholder" and target in self.meta_args and self.meta_args[target].is_meta: meta_out = self.meta_args[target] return meta_out if target in self.orig_torch_tensor_methods: # NOTE: tensor constructors in PyTorch define the `device` argument as # *kwargs-only*. That is why this works. If you add methods to # _TORCH_METHODS_TO_PATCH that do not define `device` as kwarg-only, # this will break and you will likely see issues where we cannot infer # the size of the output. if "device" in kwargs: kwargs["device"] = "meta" try: args_metas, kwargs_metas = extract_meta(*args, **kwargs) if kind == "call_function": # Our meta data will not record the nn.parameter.Parameter attribute。 # It works fine in most of the case, but it may cause some problems after # the bias addition manipulation. # Therefore, I need to record the nn.parameter.Parameter attribute for the operation # added by the bias addition manipulation following the get_attr node. convert_to_parameter = False if target in (torch.transpose, torch.reshape) and isinstance(args_metas[0], torch.nn.parameter.Parameter): convert_to_parameter = True # fetch patched function if meta_patched_function.has(target): meta_target = meta_patched_function.get(target) elif meta_patched_function.has(target.__name__): # use name for some builtin op like @ (matmul) meta_target = meta_patched_function.get(target.__name__) else: meta_target = target meta_out = meta_target(*args_metas, **kwargs_metas) if isinstance(meta_out, torch.Tensor): meta_out = meta_out.to(device="meta") if convert_to_parameter: meta_out = torch.nn.Parameter(meta_out) elif kind == "call_method": # Our meta data will not record the nn.parameter.Parameter attribute。 # It works fine in most of the case, but it may cause some problems after # the bias addition manipulation. # Therefore, I need to record the nn.parameter.Parameter attribute for the operation # added by the bias addition manipulation following the get_attr node. convert_to_parameter = False if target in (torch.Tensor.view,) and isinstance(args_metas[0], torch.nn.parameter.Parameter): convert_to_parameter = True method = getattr(args_metas[0].__class__, target) # fetch patched method if meta_patched_function.has(method): meta_target = meta_patched_function.get(method) else: meta_target = method meta_out = meta_target(*args_metas, **kwargs_metas) if convert_to_parameter: meta_out = torch.nn.Parameter(meta_out) elif kind == "call_module": if not hasattr(self, "orig_forward"): raise AttributeError(f"{self} does not have an attribute called orig_forward") self._disable_module_getattr = True try: mod = self.root.get_submodule(target) mod_type = type(mod) if meta_patched_module.has(mod_type): meta_out = meta_patched_module.get(mod_type)(mod, *args_metas, **kwargs_metas) else: meta_out = self.orig_forward(*args_metas, **kwargs_metas) finally: self._disable_module_getattr = False elif kind == "get_attr": self._disable_module_getattr = True try: attr_itr = self.root atoms = target.split(".") for atom in atoms: attr_itr = getattr(attr_itr, atom) if isinstance(attr_itr, torch.nn.parameter.Parameter): meta_out = torch.nn.Parameter(attr_itr.to(device="meta")) elif isinstance(attr_itr, torch.Tensor): meta_out = attr_itr.to(device="meta") else: meta_out = attr_itr finally: self._disable_module_getattr = False else: return None except Exception as e: raise RuntimeError(f"Could not compute metadata for {kind} target {target}: {e}") return meta_out def trace(self, root: nn.Module, concrete_args: Optional[Dict[str, Tensor]] = None, meta_args: Optional[Dict[str, Tensor]] = None) -> Graph: """ Trace the forward computation graph using `torch.fx.Tracer`. This tracer enables data-dependent control flow. Args: root (nn.Module): a `nn.Module` object to trace the computation graph meta_args (Optional[Dict[str, Tensor]]): the meta tensor arguments used to trace the computation graph. These arguments are the sample data fed to the model during actual computation, but just converted to meta tensors. concrete_args (Optional[Dict[str, Tensor]]): the concrete arguments that should not be treated as Proxies. """ if meta_args is None: meta_args = {} if concrete_args is None: concrete_args = {} if len(meta_args) == 0: self._configure_tracer_type(TracerType.DEFAULT) else: self._configure_tracer_type(TracerType.META) # check concrete and meta args have valid names sig = inspect.signature(root.forward) sig_names = set(sig.parameters.keys()) meta_arg_names = set(meta_args.keys()) # update concrete args with default values non_meta_arg_names = sig_names - meta_arg_names for k, v in sig.parameters.items(): if k in non_meta_arg_names and \ k not in concrete_args and \ v.default is not inspect.Parameter.empty: concrete_args[k] = v.default # get non concrete arg names concrete_arg_names = set(concrete_args.keys()) non_concrete_arg_names = sig_names - concrete_arg_names def _check_arg_name_valid(names): success, element = is_element_in_list(names, sig_names) if not success: raise KeyError( f"argument {element} is not found in the signature of {root.__class__.__name__}'s forward function") _check_arg_name_valid(meta_arg_names) _check_arg_name_valid(concrete_arg_names) # assign as attributed for late reference def _check_kwargs(kwargs, should_be_meta: bool): for k, v in kwargs.items(): if not should_be_meta: assert not torch.is_tensor(v) or not v.is_meta, \ f'Expected the {k} not to be a meta tensor, please check the args passed to the tracer' else: assert v.is_meta == should_be_meta, \ f'Expected the is_meta attribute of {k} to be {should_be_meta}, but got {v.is_meta}, please check the args passed to the tracer' _check_kwargs(concrete_args, should_be_meta=False) _check_kwargs(meta_args, should_be_meta=True) self.concrete_args = concrete_args self.meta_args = meta_args self.patched_torch_tensor_methods = {} if self.tracer_type == TracerType.META: # wrap the torch tensor constructing methods so that they are captured in the graph self.patched_torch_tensor_methods = { target: wrap_tensor_constructor_method(getattr(torch, target)) for target in self._TORCH_METHODS_TO_PATCH } # patch these methods to replace their original use for name, (wrapper, orig) in self.patched_torch_tensor_methods.items(): setattr(torch, name, wrapper) # cache these methods so that we can detect whether a method call # should be patched during tracing self.orig_torch_tensor_methods = [val[1] for val in self.patched_torch_tensor_methods.values()] try: # to track the usage of torch.utils.checkpoint with self.trace_activation_checkpoint(enabled=self.trace_act_ckpt): self.graph = super().trace(root, concrete_args=concrete_args) finally: # recover the patched methods for name, (_, orig) in self.patched_torch_tensor_methods.items(): setattr(torch, name, orig) if self.tracer_type == TracerType.DEFAULT: return self.graph # This is necessary because concrete args are added as input to the traced module since # https://github.com/pytorch/pytorch/pull/55888. for node in self.graph.nodes: if node.op == "placeholder": # Removing default values for inputs as the forward pass will fail with them. if node.target in non_concrete_arg_names: node.args = () # Without this, torch.jit.script fails because the inputs type is Optional[torch.Tensor]. # It cannot infer on the attributes and methods the input should have, and fails. node.type = torch.Tensor # It is a concrete arg so it is not used and should be removed. else: if hasattr(torch.fx._symbolic_trace, "_assert_is_none"): # Newer versions of torch.fx emit an assert statement # for concrete arguments; delete those before we delete # the concrete arg. to_delete = [] for user in node.users: if user.target == torch.fx._symbolic_trace._assert_is_none: to_delete.append(user) for user in to_delete: self.graph.erase_node(user) self.graph.erase_node(node) # TODO: solves GraphModule creation. # Without this, return type annotation "Tuple" is causing code execution failure. if node.op == "output": node.type = None return self.graph @contextmanager def trace_activation_checkpoint(self, enabled: bool): if enabled: orig_ckpt_func = torch.utils.checkpoint.CheckpointFunction class PatchedCheckpointFunction(torch.autograd.Function): @staticmethod def forward(ctx, run_function, preserve_rng_state, *args): # signal that the current tracing occurs within activaton checkpoint part self.inside_torch_checkpoint_func = True out = run_function(*args) self.inside_torch_checkpoint_func = False self.act_ckpt_region_count += 1 return out @staticmethod def backward(ctx: Any, *grad_outputs: Any) -> Any: raise NotImplementedError( "We do not implement the backward pass as we only trace the forward pass.") # override the checkpoint function torch.utils.checkpoint.CheckpointFunction = PatchedCheckpointFunction yield if enabled: # recover the checkpoint function upon exit torch.utils.checkpoint.CheckpointFunction = orig_ckpt_func def create_node(self, *args, **kwargs) -> Node: node = super().create_node(*args, **kwargs) if self.inside_torch_checkpoint_func: # annotate the activation checkpoint module node.meta['activation_checkpoint'] = self.act_ckpt_region_count return node def wrap_tensor_constructor_method(target): def look_for_proxy(*args, **kwargs): # find in pos vars for arg in args: if isinstance(arg, Proxy): return arg if isinstance(arg, (tuple, list)): return look_for_proxy(*arg) # find in keyword vars for k, v in kwargs.items(): if isinstance(v, Proxy): return v if isinstance(v, (tuple, list)): return look_for_proxy(*v) return None @functools.wraps(target) def wrapper(*args, **kwargs): proxy = look_for_proxy(*args, **kwargs) if proxy is not None: # if the arg is a proxy, then need to record this function called on this proxy # e.g. torch.ones(size) where size is an input proxy colo_proxy = proxy.tracer.create_proxy("call_function", target, args, kwargs) if not isinstance(colo_proxy, ColoProxy): meta_out = compute_meta_data_for_functions_proxy(target, args, kwargs) colo_proxy = ColoProxy(proxy.node) colo_proxy.meta_data = meta_out return colo_proxy else: # this is called directly when the inputs do not contain proxy # e.g. torch.ones(4) where the input is static return target(*args, **kwargs) return wrapper, target # Patched magic methods for ColoProxy, then tracer could record the magic_method like __sub__, # and add meta_data attribute to the created proxy. for method in magic_methods: def _scope(method): def impl(*args, **kwargs): tracer = args[0].tracer target = getattr(operator, method) proxy = tracer.create_proxy('call_function', target, args, kwargs) if not isinstance(proxy, ColoProxy): meta_out = compute_meta_data_for_functions_proxy(target, args, kwargs) proxy = ColoProxy(proxy.node) proxy.meta_data = meta_out return proxy impl.__name__ = method as_magic = f'__{method.strip("_")}__' setattr(ColoProxy, as_magic, impl) _scope(method) def _define_reflectable(orig_method_name): method_name = f'__r{orig_method_name.strip("_")}__' def impl(self, rhs): target = getattr(operator, orig_method_name) proxy = self.tracer.create_proxy('call_function', target, (rhs, self), {}) if not isinstance(proxy, ColoProxy): meta_out = compute_meta_data_for_functions_proxy(target, *(rhs, self), {}) proxy = ColoProxy(proxy.node) proxy.meta_data = meta_out return proxy impl.__name__ = method_name impl.__qualname__ = method_name setattr(ColoProxy, method_name, impl) for orig_method_name in reflectable_magic_methods: _define_reflectable(orig_method_name)
import torch from torch.fx import Graph, Node from torch.utils._pytree import tree_map def normalize_tuple(x): if not isinstance(x, tuple): return (x,) return x def is_autogradable(x): return isinstance(x, torch.Tensor) and x.is_floating_point() def meta_trace(module: torch.nn.Module, fake_device=None, *args, **kwargs) -> Graph: """Trace forward and backward graph with MetaTensor Args: module (torch.nn.Module): The target module for tracing. Returns: graph (torch.fx.Graph): The computation graph. Usage: >>> import torchvision.models as tm >>> model = tm.alexnet() >>> graph = meta_trace(model, torch.rand(1000, 3, 224, 224)) >>> graph.print_tabular() """ graph = Graph() namespace = graph._graph_namespace class MetaProxy(torch.Tensor): """ A wrapping tensor that hacks `torch.autograd` without patching more `torch.ops.aten` ops. """ _tensor: torch.Tensor _node: Node __slots__ = ['_tensor', '_node'] @staticmethod def __new__(cls, tensor, fake_device=None, placeholder=False, name=None): r = torch.Tensor._make_wrapper_subclass( cls, tensor.size(), strides=tensor.stride(), storage_offset=tensor.storage_offset(), dtype=tensor.dtype, layout=tensor.layout, device=fake_device if fake_device is not None else tensor.device, requires_grad=tensor.requires_grad) # deceive the frontend for aten selections r._tensor = tensor if placeholder: if name is None: name = 'input' r._node = graph.create_node('placeholder', 'placeholder', (graph._root,), name=namespace.create_name(name, tensor)) # ...the real tensor is held as an element on the tensor. if not r._tensor.is_meta: r._tensor = r._tensor.to(torch.device('meta')) return r @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): def unwrap(x): nonlocal fake_device if isinstance(x, MetaProxy): fake_device = x.device x = x._tensor # assert not isinstance(x, MetaProxy) elif isinstance(x, torch.Tensor): fake_device = x.device x = x.to(torch.device('meta')) return x def get_node(x): if isinstance(x, torch.Tensor) and not hasattr(x, '_node'): x = MetaProxy(x, placeholder=True, name='weight') return x if not hasattr(x, '_node') else x._node args_node = tree_map(get_node, args) kwargs_node = tree_map(get_node, kwargs) node = graph.create_node('call_function', func, args_node, kwargs_node) if 'device' in kwargs: fake_device = kwargs['device'] kwargs['device'] = torch.device('meta') args = tree_map(unwrap, args) kwargs = tree_map(unwrap, kwargs) # run aten for backend=CPU but actually on backend=Meta out = func(*args, **kwargs) # Now, we want to continue propagating this tensor, so we rewrap Tensors in # our custom tensor subclass def wrap(x): if isinstance(x, torch.Tensor): nonlocal fake_device if not x.is_meta: x = x.to(torch.device('meta')) return MetaProxy( x, fake_device=fake_device) if isinstance(x, torch.Tensor) and not hasattr(x, '_tensor') else x def set_node(x): x._node = node out = tree_map(wrap, out) tree_map(set_node, out) return out def wrap(x): return MetaProxy(x, fake_device=fake_device, placeholder=True) if isinstance(x, torch.Tensor) else x args = tree_map(wrap, args) kwargs = tree_map(wrap, kwargs) out = module(*args, **kwargs) for tensor in normalize_tuple(out): if is_autogradable(tensor) and tensor.requires_grad: grad = torch.empty_like(tensor._tensor, device=torch.device('meta')) if isinstance( tensor, MetaProxy) else torch.empty_like(tensor, device=torch.device('meta')) torch.autograd.backward(tensor, MetaProxy(grad, fake_device=tensor.device, placeholder=True), retain_graph=True) return graph
from .patched_function import * from .patched_module import *
import math import torch from ...registry import meta_patched_module @meta_patched_module.register(torch.nn.Conv1d) def torch_nn_conv1d(self, input): # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv1d l_in = input.shape[-1] c_out = self.out_channels l_out = math.floor((l_in + 2 * self.padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1) result_shape = input.shape[:-2] + ( c_out, l_out, ) return torch.empty(result_shape, device='meta') @meta_patched_module.register(torch.nn.Conv2d) def torch_nn_conv2d(self, input): # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv2d h_in, w_in = input.shape[-2:] c_out = self.out_channels h_out = math.floor((h_in + 2 * self.padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1) w_out = math.floor((w_in + 2 * self.padding[1] - self.dilation[1] * (self.kernel_size[1] - 1) - 1) / self.stride[1] + 1) result_shape = input.shape[:-3] + ( c_out, h_out, w_out, ) return torch.empty(result_shape, device='meta') @meta_patched_module.register(torch.nn.Conv3d) def torch_nn_conv3d(self, input): # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv3d d_in, h_in, w_in = input.shape[-3:] c_out = self.out_channels d_out = math.floor((d_in + 2 * self.padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1) h_out = math.floor((h_in + 2 * self.padding[1] - self.dilation[1] * (self.kernel_size[1] - 1) - 1) / self.stride[1] + 1) w_out = math.floor((w_in + 2 * self.padding[2] - self.dilation[2] * (self.kernel_size[2] - 1) - 1) / self.stride[2] + 1) result_shape = input.shape[:-4] + ( c_out, d_out, h_out, w_out, ) return torch.empty(result_shape, device='meta') @meta_patched_module.register(torch.nn.ConvTranspose1d) def torch_nn_convtranspose1d(self, input): # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose1d.html l_in = input.shape[-1] c_out = self.out_channels l_out = math.floor((l_in - 1) * self.stride[0] - 2 * self.padding[0] + self.dilation[0] * (self.kernel_size[0] - 1) + self.output_padding[0] + 1) result_shape = input.shape[:-2] + ( c_out, l_out, ) return torch.empty(result_shape, device='meta') @meta_patched_module.register(torch.nn.ConvTranspose2d) def torch_nn_convtranspose2d(self, input): # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html h_in, w_in = input.shape[-2:] c_out = self.out_channels h_out = math.floor((h_in - 1) * self.stride[0] - 2 * self.padding[0] + self.dilation[0] * (self.kernel_size[0] - 1) + self.output_padding[0] + 1) w_out = math.floor((w_in - 1) * self.stride[1] - 2 * self.padding[1] + self.dilation[1] * (self.kernel_size[1] - 1) + self.output_padding[1] + 1) result_shape = input.shape[:-3] + ( c_out, h_out, w_out, ) return torch.empty(result_shape, device='meta') @meta_patched_module.register(torch.nn.ConvTranspose3d) def torch_nn_convtranspose3d(self, input): # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose3d.html d_in, h_in, w_in = input.shape[-3:] c_out = self.out_channels d_out = math.floor((d_in - 1) * self.stride[0] - 2 * self.padding[0] + self.dilation[0] * (self.kernel_size[0] - 1) + self.output_padding[0] + 1) h_out = math.floor((h_in - 1) * self.stride[1] - 2 * self.padding[1] + self.dilation[1] * (self.kernel_size[1] - 1) + self.output_padding[1] + 1) w_out = math.floor((w_in - 1) * self.stride[2] - 2 * self.padding[2] + self.dilation[2] * (self.kernel_size[2] - 1) + self.output_padding[2] + 1) result_shape = input.shape[:-4] + ( c_out, d_out, h_out, w_out, ) return torch.empty(result_shape, device='meta')
import torch from ...registry import meta_patched_module @meta_patched_module.register(torch.nn.Embedding) def torch_nn_embedding(self, input): result_shape = input.shape + (self.embedding_dim,) return torch.empty(result_shape, device='meta')
import torch from ...registry import meta_patched_module @meta_patched_module.register(torch.nn.Linear) def torch_nn_linear(self, input): last_dim = input.shape[-1] assert last_dim == self.in_features, f'Expected hidden size {self.in_features} but got {last_dim} for the torch.nn.Linear patch' return torch.empty(input.shape[:-1] + (self.out_features,), device="meta")
import math import torch from ...registry import meta_patched_module @meta_patched_module.register(torch.nn.AvgPool1d) def torch_nn_avgpool1d(self, input): num_dim = input.dim() assert num_dim in [2, 3], f'expected the input to have 2 or 3 dimensions, but got {num_dim} dimensions' l_in = input.shape[-1] def _convert_int_to_list(item): if isinstance(item, int): return [item] * 1 else: return item padding = _convert_int_to_list(self.padding) kernel_size = _convert_int_to_list(self.kernel_size) stride = _convert_int_to_list(self.stride) l_out = math.floor((l_in + 2 * padding[0] - kernel_size[0]) / stride[0] + 1) result_shape = tuple(input.shape[:-1]) + (l_out,) return torch.empty(result_shape, device='meta') @meta_patched_module.register(torch.nn.AvgPool2d) def torch_nn_avgpool2d(self, input): num_dim = input.dim() assert num_dim in [3, 4], f'expected the input to have 3 or 4 dimensions, but got {num_dim} dimensions' h_in, w_in = input.shape[-2:] def _convert_int_to_list(item): if isinstance(item, int): return [item] * 2 else: return item padding = _convert_int_to_list(self.padding) kernel_size = _convert_int_to_list(self.kernel_size) stride = _convert_int_to_list(self.stride) h_out = math.floor((h_in + 2 * padding[0] - kernel_size[0]) / stride[0] + 1) w_out = math.floor((w_in + 2 * padding[1] - kernel_size[1]) / stride[1] + 1) result_shape = tuple(input.shape[:-2]) + ( h_out, w_out, ) return torch.empty(result_shape, device='meta') @meta_patched_module.register(torch.nn.AvgPool3d) def torch_nn_avgpool3d(self, input): num_dim = input.dim() assert num_dim in [4, 5], f'expected the input to have 4 or 5 dimensions, but got {num_dim} dimensions' d_in, h_in, w_in = input.shape[-3:] def _convert_int_to_list(item): if isinstance(item, int): return [item] * 3 else: return item padding = _convert_int_to_list(self.padding) kernel_size = _convert_int_to_list(self.kernel_size) stride = _convert_int_to_list(self.stride) d_out = math.floor((d_in + 2 * padding[0] - kernel_size[0]) / stride[0] + 1) h_out = math.floor((h_in + 2 * padding[1] - kernel_size[1]) / stride[1] + 1) w_out = math.floor((w_in + 2 * padding[2] - kernel_size[2]) / stride[2] + 1) result_shape = tuple(input.shape[:-3]) + ( d_out, h_out, w_out, ) return torch.empty(result_shape, device='meta') @meta_patched_module.register(torch.nn.MaxPool1d) def torch_nn_maxpool1d(self, input): num_dim = input.dim() assert num_dim in [2, 3], f'expected the input to have 2 or 3 dimensions, but got {num_dim} dimensions' l_in = input.shape[-1] def _convert_int_to_list(item): if isinstance(item, int): return [item] * 1 else: return item padding = _convert_int_to_list(self.padding) dilation = _convert_int_to_list(self.dilation) kernel_size = _convert_int_to_list(self.kernel_size) stride = _convert_int_to_list(self.stride) l_out = math.floor((l_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1) result_shape = tuple(input.shape[:-1]) + (l_out,) return torch.empty(result_shape, device='meta') @meta_patched_module.register(torch.nn.MaxPool2d) def torch_nn_maxpool2d(self, input): num_dim = input.dim() assert num_dim in [3, 4], f'expected the input to have 3 or 4 dimensions, but got {num_dim} dimensions' h_in, w_in = input.shape[-2:] def _convert_int_to_list(item): if isinstance(item, int): return [item] * 2 else: return item padding = _convert_int_to_list(self.padding) dilation = _convert_int_to_list(self.dilation) kernel_size = _convert_int_to_list(self.kernel_size) stride = _convert_int_to_list(self.stride) h_out = math.floor((h_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1) w_out = math.floor((w_in + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) / stride[1] + 1) result_shape = tuple(input.shape[:-2]) + ( h_out, w_out, ) return torch.empty(result_shape, device='meta') @meta_patched_module.register(torch.nn.MaxPool3d) def torch_nn_maxpool3d(self, input): num_dim = input.dim() assert num_dim in [4, 5], f'expected the input to have 4 or 5 dimensions, but got {num_dim} dimensions' d_in, h_in, w_in = input.shape[-3:] def _convert_int_to_list(item): if isinstance(item, int): return [item] * 3 else: return item padding = _convert_int_to_list(self.padding) dilation = _convert_int_to_list(self.dilation) kernel_size = _convert_int_to_list(self.kernel_size) stride = _convert_int_to_list(self.stride) d_out = math.floor((d_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1) h_out = math.floor((h_in + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) / stride[1] + 1) w_out = math.floor((w_in + 2 * padding[2] - dilation[2] * (kernel_size[2] - 1) - 1) / stride[2] + 1) result_shape = tuple(input.shape[:-3]) + ( d_out, h_out, w_out, ) return torch.empty(result_shape, device='meta') @meta_patched_module.register(torch.nn.AdaptiveAvgPool1d) @meta_patched_module.register(torch.nn.AdaptiveMaxPool1d) def torch_nn_adapative_pooling_1d(self, input): assert input.dim() in [2, 3] if isinstance(self.output_size, int): output_size = (self.output_size,) else: output_size = self.output_size result_shape = tuple(input.shape[:-1]) + output_size return torch.empty(result_shape, device='meta') @meta_patched_module.register(torch.nn.AdaptiveAvgPool2d) @meta_patched_module.register(torch.nn.AdaptiveMaxPool2d) def torch_nn_adapative_pooling_2d(self, input): assert input.dim() in [3, 4] if isinstance(self.output_size, int): output_size = (self.output_size,) * 2 else: output_size = self.output_size result_shape = tuple(input.shape[:-2]) + output_size return torch.empty(result_shape, device='meta') @meta_patched_module.register(torch.nn.AdaptiveAvgPool3d) @meta_patched_module.register(torch.nn.AdaptiveMaxPool3d) def torch_nn_adapative_pooling_3d(self, input): assert input.dim() in [4, 5] if isinstance(self.output_size, int): output_size = (self.output_size,) * 3 else: output_size = self.output_size result_shape = tuple(input.shape[:-3]) + output_size return torch.empty(result_shape, device='meta')
from .activation_function import * from .convolution import * from .embedding import * from .linear import * from .normalization import * from .pooling import * from .rnn import *
import torch from ...registry import meta_patched_module @meta_patched_module.register(torch.nn.ReLU) @meta_patched_module.register(torch.nn.Sigmoid) @meta_patched_module.register(torch.nn.GELU) @meta_patched_module.register(torch.nn.Tanh) @meta_patched_module.register(torch.nn.ReLU6) @meta_patched_module.register(torch.nn.PReLU) def torch_nn_non_linear_act(self, input): return torch.empty(input.shape, device='meta')
import torch from ...registry import meta_patched_module @meta_patched_module.register(torch.nn.LayerNorm) @meta_patched_module.register(torch.nn.GroupNorm) @meta_patched_module.register(torch.nn.BatchNorm1d) @meta_patched_module.register(torch.nn.BatchNorm2d) @meta_patched_module.register(torch.nn.BatchNorm3d) def torch_nn_normalize(self, input): # check shape if isinstance(self, torch.nn.BatchNorm1d): assert input.dim() in [2, 3] elif isinstance(self, torch.nn.BatchNorm2d): assert input.dim() == 4 elif isinstance(self, torch.nn.BatchNorm3d): assert input.dim() == 5 # normalization maintain the same shape as the input return input.clone() try: import apex meta_patched_module.register(apex.normalization.FusedLayerNorm)(torch_nn_normalize) meta_patched_module.register(apex.normalization.FusedRMSNorm)(torch_nn_normalize) meta_patched_module.register(apex.normalization.MixedFusedLayerNorm)(torch_nn_normalize) meta_patched_module.register(apex.normalization.MixedFusedRMSNorm)(torch_nn_normalize) except (ImportError, AttributeError): pass
from typing import Optional import torch from ...registry import meta_patched_module @meta_patched_module.register(torch.nn.GRU) @meta_patched_module.register(torch.nn.RNN) def torch_nn_rnn(self, input, hx): assert input.shape[ -1] == self.input_size, f'Expected input to have input size {self.input_size} but got {input.shape[-1]} for the torch.nn.RNN patch' assert hx.shape[ -1] == self.hidden_size, f'Expected hx to have hidden size {self.hidden_size} but got {hx.shape[-1]} for the torch.nn.RNN patch' d = 2 if self.bidirectional else 1 return torch.empty(input.shape[:-1] + (self.hidden_size * d,), device="meta"), hx
import torch from ...registry import meta_patched_function @meta_patched_function.register(torch.matmul) @meta_patched_function.register('matmul') # for built-in op @ def torch_matmul(input, other, *, out=None): # copied from huggingface.utils.fx d1 = input.dim() d2 = other.dim() shape = None if d1 == 1 and d2 == 1: shape = None elif d1 == 2 and d2 == 2: shape = (input.size(0), other.size(1)) elif d1 == 1 and d2 == 2: shape = (other.size(1),) elif d1 == 2 and d2 == 1: shape = (input.size(0),) else: max_length = max(input.dim(), other.dim()) shape1 = list(input.shape) shape2 = list(other.shape) if d1 == 1: shape1 = [1] + shape1 if d2 == 1: shape2.append(1) shape1 = [-1] * (max_length - d1) + list(input.shape) shape2 = [-1] * (max_length - d2) + list(other.shape) shape = [] for i in range(max_length): shape.append(max(shape1[i], shape2[i])) shape[-2] = shape1[-2] shape[-1] = shape2[-1] if d1 == 1: shape.pop(-2) if d2 == 1: shape.pop(-1) if shape is None: return torch.tensor(0.0, device="meta") return torch.empty(*shape, device="meta") @meta_patched_function.register(torch.abs) def torch_abs(input, *, out=None): assert out is None, 'out is not supported yet' return torch.empty(input.shape, device='meta') @meta_patched_function.register(torch.bmm) def torch_bmm(input, mat2, *, out=None): if out is not None: raise ValueError("Don't support in-place abs for MetaTensor analysis") batch_size, n, m = input.shape _, _, p = mat2.shape return torch.empty(batch_size, n, p, device="meta") @meta_patched_function.register(torch.nn.functional.linear) def torch_linear(input, mat2, bias=None, *, out=None): if out is not None: raise ValueError("Don't support in-place abs for MetaTensor analysis") output_shape = list(input.shape) output_feature = list(mat2.shape)[0] output_shape[-1] = output_feature return torch.empty(*output_shape, device="meta") @meta_patched_function.register(torch.addbmm) @meta_patched_function.register(torch.Tensor.addbmm) def torch_addbmm(input, mat1, mat2, *, beta=1, alpha=1, out=None): if out is not None: raise ValueError("Don't support in-place abs for MetaTensor analysis") _, n, _ = mat1.shape _, _, p = mat2.shape return torch.empty(n, p, device="meta") @meta_patched_function.register(torch.addmm) @meta_patched_function.register(torch.Tensor.addmm) def torch_addmm(input, mat1, mat2, *, beta=1, alpha=1, out=None): if out is not None: raise ValueError("Don't support in-place abs for MetaTensor analysis") n, _ = mat1.shape _, p = mat2.shape return torch.empty(n, p, device="meta") @meta_patched_function.register(torch.var_mean) def torch_var_mean(input, dim, unbiased=True, keepdim=False, *, out=None): assert out is None, 'saving to out is not supported yet' var = torch.empty(1).squeeze(0).to('meta') mean = torch.empty(1).squeeze(0).to('meta') return var, mean
import collections import math from itertools import repeat import torch from ...registry import meta_patched_function def _ntuple(n, name="parse"): def parse(x): if isinstance(x, collections.abc.Iterable): return tuple(x) return tuple(repeat(x, n)) parse.__name__ = name return parse _single = _ntuple(1, "_single") _pair = _ntuple(2, "_pair") _triple = _ntuple(3, "_triple") def _extract_kwargs(kwargs): if 'stride' in kwargs: stride = kwargs['stride'] else: stride = 1 # TODO: process str type padding if 'padding' in kwargs: padding = kwargs['padding'] else: padding = 0 if 'dilation' in kwargs: dilation = kwargs['dilation'] else: dilation = 1 if 'output_padding' in kwargs: output_padding = kwargs['output_padding'] else: output_padding = 0 return stride, padding, dilation, output_padding @meta_patched_function.register(torch.nn.functional.conv1d) def torch_nn_functional_conv1d(input, weight, **kwargs): stride, padding, dilation, _ = _extract_kwargs(kwargs) stride = _single(stride) padding = _single(padding) dilation = _single(dilation) kernel_size = weight.shape[2:] l_in = input.shape[-1] c_out = weight.shape[0] l_out = math.floor((l_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1) result_shape = input.shape[:-2] + ( c_out, l_out, ) return torch.empty(result_shape, device='meta') @meta_patched_function.register(torch.nn.functional.conv2d) def torch_nn_functional_conv2d(input, weight, **kwargs): stride, padding, dilation, _ = _extract_kwargs(kwargs) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) kernel_size = weight.shape[2:] h_in, w_in = input.shape[-2:] c_out = weight.shape[0] h_out = math.floor((h_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1) w_out = math.floor((w_in + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) / stride[1] + 1) result_shape = input.shape[:-3] + ( c_out, h_out, w_out, ) return torch.empty(result_shape, device='meta') @meta_patched_function.register(torch.nn.functional.conv3d) def torch_nn_functional_conv3d(input, weight, **kwargs): stride, padding, dilation, _ = _extract_kwargs(kwargs) stride = _triple(stride) padding = _triple(padding) dilation = _triple(dilation) kernel_size = weight.shape[2:] d_in, h_in, w_in = input.shape[-3:] c_out = weight.shape[0] d_out = math.floor((d_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1) h_out = math.floor((h_in + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) / stride[1] + 1) w_out = math.floor((w_in + 2 * padding[2] - dilation[2] * (kernel_size[2] - 1) - 1) / stride[2] + 1) result_shape = input.shape[:-4] + ( c_out, d_out, h_out, w_out, ) return torch.empty(result_shape, device='meta') @meta_patched_function.register(torch.nn.functional.conv_transpose1d) def torch_nn_functional_convtranspose1d(input, weight, **kwargs): stride, padding, dilation, output_padding = _extract_kwargs(kwargs) stride = _single(stride) padding = _single(padding) dilation = _single(dilation) output_padding = _single(output_padding) kernel_size = weight.shape[2:] l_in = input.shape[-1] c_out = weight.shape[1] l_out = math.floor((l_in - 1) * stride[0] - 2 * padding[0] + dilation[0] * (kernel_size[0] - 1) + output_padding[0] + 1) result_shape = input.shape[:-2] + ( c_out, l_out, ) return torch.empty(result_shape, device='meta') @meta_patched_function.register(torch.nn.functional.conv_transpose2d) def torch_nn_functional_convtranspose2d(input, weight, **kwargs): stride, padding, dilation, output_padding = _extract_kwargs(kwargs) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) output_padding = _pair(output_padding) kernel_size = weight.shape[2:] h_in, w_in = input.shape[-2:] c_out = weight.shape[1] h_out = math.floor((h_in - 1) * stride[0] - 2 * padding[0] + dilation[0] * (kernel_size[0] - 1) + output_padding[0] + 1) w_out = math.floor((w_in - 1) * stride[1] - 2 * padding[1] + dilation[1] * (kernel_size[1] - 1) + output_padding[1] + 1) result_shape = input.shape[:-3] + ( c_out, h_out, w_out, ) return torch.empty(result_shape, device='meta') @meta_patched_function.register(torch.nn.functional.conv_transpose3d) def torch_nn_functional_convtranspose3d(input, weight, **kwargs): stride, padding, dilation, output_padding = _extract_kwargs(kwargs) stride = _triple(stride) padding = _triple(padding) dilation = _triple(dilation) output_padding = _triple(output_padding) kernel_size = weight.shape[2:] d_in, h_in, w_in = input.shape[-3:] c_out = weight.shape[1] d_out = math.floor((d_in - 1) * stride[0] - 2 * padding[0] + dilation[0] * (kernel_size[0] - 1) + output_padding[0] + 1) h_out = math.floor((h_in - 1) * stride[1] - 2 * padding[1] + dilation[1] * (kernel_size[1] - 1) + output_padding[1] + 1) w_out = math.floor((w_in - 1) * stride[2] - 2 * padding[2] + dilation[2] * (kernel_size[2] - 1) + output_padding[2] + 1) result_shape = input.shape[:-4] + ( c_out, d_out, h_out, w_out, ) return torch.empty(result_shape, device='meta')
import torch from ...registry import meta_patched_function @meta_patched_function.register(torch.nn.functional.embedding) def torch_nn_functional_embedding(input, weight, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False): return torch.empty(*input.shape, weight.shape[-1], device="meta")
from .activation_function import * from .arithmetic import * from .convolution import * from .embedding import * from .normalization import * from .torch_ops import *
import operator import torch from colossalai.fx.proxy import ColoProxy from ...registry import meta_patched_function @meta_patched_function.register(operator.getitem) def operator_getitem(a, b): # copied from huggingface.utils.fx def to_concrete(t): if isinstance(t, torch.Tensor): concrete = torch.ones_like(t, device="cpu") if concrete.dtype in [torch.float16, torch.float32, torch.float64, torch.int32]: concrete = concrete.to(torch.int64) return concrete return t def _slice_convert(slice_obj): attrs = {'start': slice_obj.start, 'stop': slice_obj.stop, 'step': slice_obj.step} new_attrs = _slice_attr_convert(attrs) attr_dict_to_tuple = (new_attrs['start'], new_attrs['stop'], new_attrs['step']) return slice(*attr_dict_to_tuple) def _slice_attr_convert(attrs): new_attrs = {} for key, value in attrs.items(): if isinstance(value, ColoProxy): new_attrs[key] = value.meta_data else: new_attrs[key] = value return new_attrs if isinstance(b, tuple): b = list(b) for index, element in enumerate(b): if isinstance(element, slice): b[index] = _slice_convert(element) b = tuple(b) elif isinstance(b, slice): b = _slice_convert(b) if isinstance(a, torch.Tensor): # TODO: infer shape without performing the computation. if isinstance(b, tuple): b = tuple(map(to_concrete, b)) else: b = to_concrete(b) return operator.getitem(torch.empty_like(a, device="cpu"), b).to("meta") if isinstance(a, ColoProxy): # TODO: infer shape without performing the computation. if isinstance(b, tuple): b = tuple(map(to_concrete, b)) else: b = to_concrete(b) return operator.getitem(torch.empty_like(a.meta_data, device="cpu"), b).to("meta") return operator.getitem(a, b)
import torch from ...registry import meta_patched_function @meta_patched_function.register(torch.arange) def torch_arange(*args, **kwargs): n = len(args) step = 1 if n == 1: start = 0 end = args[0] elif n == 2: start, end = args else: start, end, step = args if isinstance(start, float): start = int(start) if isinstance(end, float): start = int(end) if isinstance(step, float): step = int(step) step = kwargs.get("step", step) dtype = kwargs.get("dtype") return torch.empty((end - start) // step, dtype=dtype, device="meta") @meta_patched_function.register(torch.finfo) def torch_finfo(*args): return torch.finfo(*args) @meta_patched_function.register(torch.where) def torch_where(condition, x, y): # torch.where returns the broadcasted tensor of condition, x, and y, # so hack it by using addition return condition.to(device="meta") + x.to(device="meta") + y.to(device="meta") @meta_patched_function.register(torch.Tensor.repeat) def torch_tensor_repeat(self, *sizes): shape = list(self.shape) for i, x in enumerate(sizes): shape[i] *= x return torch.empty(shape, device="meta") @meta_patched_function.register(torch.index_select) def torch_index_select(input, dim, index, *, out=None): shape = list(input.shape) shape[dim] = len(index) return torch.empty(*shape, device="meta") @meta_patched_function.register(torch.Tensor.index_select) def torch_tensor_index_select(self, dim, index): return torch_index_select(self, dim, index) @meta_patched_function.register(torch.squeeze) def torch_squeeze(input, dim=None): shape = list(input.shape) if dim is not None: if dim < 0: dim = input.dim() + dim if shape[dim] == 1: shape.pop(dim) else: new_shape = [] for dim_value in shape: if dim_value == 1: continue new_shape.append(dim_value) shape = new_shape return torch.empty(shape, device="meta") @meta_patched_function.register(torch.Tensor.squeeze) def torch_tensor_squeeze(self, dim=None): return torch_squeeze(self, dim) @meta_patched_function.register(torch.unsqueeze) def torch_unsqueeze(input, dim): shape = list(input.shape) if dim < 0: dim = input.dim() + 1 + dim shape.insert(dim, 1) return torch.empty(shape, device="meta") @meta_patched_function.register(torch.Tensor.unsqueeze) def torch_tensor_unsqueeze(self, dim): return torch_unsqueeze(self, dim) @meta_patched_function.register(torch.cat) def torch_cat(tensors, dim=None, axis=None, *, out=None): if dim is None and axis is None: dim = 0 if dim is None and axis is not None: dim = axis if dim < 0: dim = tensors[0].dim() + dim shapes = [t.shape for t in tensors] shape = list(shapes[0]) concatenated_dim = sum(shape[dim] for shape in shapes) final_shape = shape[:dim] + [concatenated_dim] + shape[dim + 1:] return torch.empty(final_shape, device="meta") @meta_patched_function.register(torch.repeat_interleave) def torch_repeat_interleave(input, repeats, dim=None, output_size=None): assert isinstance(repeats, int) or isinstance(repeats, torch.Tensor), \ "Argument 'repeats' should be of type 'torch.Tensor' or 'int'" shape = list(input.shape) if dim is not None else [input.numel()] dim = dim if dim is not None else 0 dim = input.dim() + dim if dim < 0 else dim if isinstance(repeats, int): shape[dim] = shape[dim] * repeats elif isinstance(repeats, torch.Tensor): shape[dim] = repeats.sum() return torch.empty(shape, device="meta") @meta_patched_function.register(torch.Tensor.repeat_interleave) def torch_tensor_repeat_interleave(self, repeats, dim=None, *, output_size=None): return torch_repeat_interleave(self, repeats, dim, output_size) @meta_patched_function.register(torch.roll) def torch_roll(input, shifts, dims=None): return torch.empty(input.shape, device='meta') @meta_patched_function.register(torch.full) def torch_full(size, fill_value, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False): assert out is None, 'assigning result to out is not supported yet' return torch.empty(size, device='meta', dtype=dtype, layout=layout, requires_grad=requires_grad) @meta_patched_function.register(torch.max) def torch_max(input, dim=None, keepdim=False, *, out=None): assert out is None, 'assigning value to out is not supported yet' if dim is not None: if isinstance(dim, int): shape = list(input.shape) shape.pop(dim) if keepdim: shape.insert(dim, 1) return torch.empty(shape, device='meta', dtype=input.dtype), torch.empty(shape, device='meta', dtype=input.dtype) elif isinstance(dim, torch.Tensor): # when dim is a 0D or 1D tensor, it will maintain the same shape num_dims = dim.dim() if num_dims in [0, 1]: return torch.empty_like(input, device='meta') else: raise ValueError(f"Expected dim to a 0D or 1D tensor but got {num_dims} dimensions") else: return torch.empty([], device='meta', dtype=input.dtype) @meta_patched_function.register(torch.Tensor.cpu) def torch_tensor_cpu(input): return input.clone() @meta_patched_function.register(torch.Tensor.cuda) def torch_tensor_cuda(input, *args, **kwargs): return input.clone()
import torch from ...registry import meta_patched_function @meta_patched_function.register(torch.nn.functional.relu) def torch_nn_func_relu(input, inplace=False): return torch.empty(input.shape, device='meta')
import torch from ...registry import meta_patched_function @meta_patched_function.register(torch.nn.functional.layer_norm) def torch_nn_func_layernorm(input, normalized_shape, weight=None, bias=None, eps=1e-05): return torch.empty(input.shape, device='meta') @meta_patched_function.register(torch.nn.functional.batch_norm) def torch_nn_func_batchnorm(input, running_mean, running_var, weight=None, bias=None, training=False, momentum=0.1, eps=1e-05): return torch.empty(input.shape, device='meta')
from .patched_bias_addition_function import * from .patched_bias_addition_module import *
import operator from abc import ABC, abstractmethod import torch import torch.nn.functional as F class BiasAdditionFunc(ABC): """ This class is used to construct the restructure computation graph for call_func node with bias addition inside. """ def __init__(self, tracer, target, args, kwargs, substitute_func): self.tracer = tracer self.target = target self.args = args self.kwargs = kwargs self.substitute_func = substitute_func @abstractmethod def extract_kwargs_from_origin_func(self): """ This method is used to extract the kwargs for further graph transform. For example: The formula for torch.addmm is out = beta * input + alpha * (m1 @ m2) The kwargs for addmm function is {beta=1, alpha=1, output=None}, then we need to insert two more operator.mul nodes for the computation graph to compute the final result. """ pass @abstractmethod def generate(self): """ This method is used to construct the whole restructure computation graph for call_func node with bias addition inside. A whole restructure computation graph will contain a weight node, a bias node, a non-bias addition computation node, a bias reshape node if needed and a bias addition node. Use torch.addmm as an example: The origin node is: %addmm: call_func[target=torch.addmm](args = (%input_1, m1, m2), kwargs = {beta=1, alpha=1}) Restructured graph is: %transpose : [#users=1] = call_function[target=torch.transpose](args = (%m2, 0, 1), kwargs = {}) %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%m1, %transpose), kwargs = {}) %mul : [#users=1] = call_function[target=operator.mul](args = (%input_1, 3), kwargs = {}) %mul_1 : [#users=1] = call_function[target=operator.mul](args = (2, %linear), kwargs = {}) %add : [#users=1] = call_function[target=operator.add](args = (%mul_1, %mul), kwargs = {}) """ pass def create_mul_node(self, input_proxy, coefficent): """ This method is used to create a coefficent node for the numerical correctness. The formula for torch.addmm is out = beta * input + alpha * (m1 @ m2) Therefore, we need to use this method insert two more operator.mul nodes for the computation graph to compute the final result. """ node_kind = 'call_function' node_target = operator.mul node_args = ( input_proxy, coefficent, ) node_kwargs = {} mul_proxy = self.tracer.create_proxy(node_kind, node_target, node_args, node_kwargs) return mul_proxy class LinearBasedBiasFunc(BiasAdditionFunc): """ This class is used to construct the restructure computation graph for call_func node based on F.linear. """ def create_non_bias_func_proxy(self, input_proxy, other_proxy): """ This method is used to create the non_bias_func proxy, the node created by this proxy will compute the main computation, such as convolution, with bias option banned. """ assert self.substitute_func == torch.nn.functional.linear node_kind = 'call_function' node_target = self.substitute_func node_args = (input_proxy, other_proxy) # non-bias linear does not have any kwargs node_kwargs = {} non_bias_func_proxy = self.tracer.create_proxy(node_kind, node_target, node_args, node_kwargs) return non_bias_func_proxy def create_bias_addition_proxy(self, non_bias_func_proxy, bias_proxy): """ This method is used to create the bias_addition_proxy, the node created by this proxy will compute the sum of non_bias_func result and bias with some reshape operation if needed. """ bias_add_node_kind = 'call_function' bias_add_node_target = operator.add bias_add_args = (non_bias_func_proxy, bias_proxy) bias_add_proxy = self.tracer.create_proxy(bias_add_node_kind, bias_add_node_target, tuple(bias_add_args), {}) return bias_add_proxy func_to_func_dict = { torch.addmm: F.linear, torch.addbmm: torch.bmm, F.linear: F.linear, } method_to_func_dict = { torch.Tensor.addmm: F.linear, torch.Tensor.addbmm: torch.bmm, }
import operator import torch import torch.nn.functional as F from ...registry import bias_addition_function from .bias_addition_function import LinearBasedBiasFunc @bias_addition_function.register(F.linear) class Linear(LinearBasedBiasFunc): def extract_kwargs_from_origin_func(self): assert 'bias' in self.kwargs kwargs = {} if 'bias' in self.kwargs: kwargs['bias'] = self.kwargs['bias'] return kwargs def generate(self): non_bias_linear_func_proxy = self.create_non_bias_func_proxy(self.args[0], self.args[1]) kwargs = self.extract_kwargs_from_origin_func() bias_addition_proxy = self.create_bias_addition_proxy(non_bias_linear_func_proxy, kwargs['bias']) return bias_addition_proxy
from .addbmm import Addbmm from .addmm import Addmm from .bias_addition_function import BiasAdditionFunc, LinearBasedBiasFunc, func_to_func_dict, method_to_func_dict from .linear import Linear
import operator import torch import torch.nn.functional as F from ...registry import bias_addition_function, bias_addition_method from .bias_addition_function import LinearBasedBiasFunc @bias_addition_method.register(torch.Tensor.addbmm) @bias_addition_function.register(torch.addbmm) class Addbmm(LinearBasedBiasFunc): def extract_kwargs_from_origin_func(self): kwargs = {} if 'beta' in self.kwargs: kwargs['beta'] = self.kwargs['beta'] if 'alpha' in self.kwargs: kwargs['alpha'] = self.kwargs['alpha'] return kwargs def create_non_bias_func_proxy(self, input_proxy, other_proxy): """ This method is used to create the non_bias_func proxy, the node created by this proxy will compute the main computation, such as convolution, with bias option banned. """ assert self.substitute_func == torch.bmm node_kind = 'call_function' node_target = self.substitute_func node_args = (input_proxy, other_proxy) # torch.bmm does not have any kwargs node_kwargs = {} non_bias_func_proxy = self.tracer.create_proxy(node_kind, node_target, node_args, node_kwargs) return non_bias_func_proxy def insert_sum_node(self, input_proxy, sum_dims=0): ''' This method is used to sum the input_proxy through the sum_dims. ''' node_kind = 'call_function' node_target = torch.sum node_args = (input_proxy, sum_dims) node_kwargs = {} sum_proxy = self.tracer.create_proxy(node_kind, node_target, node_args, node_kwargs) return sum_proxy def generate(self): # The formula for addbmm is output = beta * input + alpha * (torch.bmm(b1, b2)) # doing the non-bias computation(temp_0 = torch.bmm(b1, b2)) non_bias_linear_func_proxy = self.create_non_bias_func_proxy(self.args[1], self.args[2]) # doing sum on the batch dimension(temp_1 = torch.sum(temp_0, 0)) sum_proxy = self.insert_sum_node(non_bias_linear_func_proxy) kwargs = self.extract_kwargs_from_origin_func() if 'beta' in kwargs: beta = kwargs['beta'] # doing the multiplication with beta if it exists(temp_2 = beta * input) beta_proxy = self.create_mul_node(self.args[0], beta) else: beta_proxy = self.args[0] if 'alpha' in kwargs: alpha = kwargs['alpha'] # doing the multiplication with alpha if it exists(temp_3 = alpha * temp_1) alpha_proxy = self.create_mul_node(alpha, sum_proxy) else: alpha_proxy = sum_proxy # doing the addition(temp_4 = temp_2 + temp_3) bias_addition_proxy = self.create_bias_addition_proxy(alpha_proxy, beta_proxy) return bias_addition_proxy
import operator import torch import torch.nn.functional as F from ...registry import bias_addition_function, bias_addition_method from .bias_addition_function import LinearBasedBiasFunc @bias_addition_method.register(torch.Tensor.addmm) @bias_addition_function.register(torch.addmm) class Addmm(LinearBasedBiasFunc): def extract_kwargs_from_origin_func(self): kwargs = {} if 'beta' in self.kwargs: kwargs['beta'] = self.kwargs['beta'] if 'alpha' in self.kwargs: kwargs['alpha'] = self.kwargs['alpha'] return kwargs def transpose_other_operand_for_linear(self, other_proxy): ''' This method is used to transpose the other operand for linear function. For example: input = torch.rand(3, 4) m1 = torch.rand(3, 5) m2 = torch.rand(5, 4) original_output = torch.addmm(input, m1, m2) # To keep the computation graph consistent with the origin computation graph, we need to transpose the m2 # before we call the linear function. new_output = torch.linear(m1, m2.transpose(0, 1)) + input ''' node_kind = 'call_function' node_target = torch.transpose node_args = (other_proxy, 0, 1) node_kwargs = {} transpose_proxy = self.tracer.create_proxy(node_kind, node_target, node_args, node_kwargs) return transpose_proxy def generate(self): transpose_proxy = self.transpose_other_operand_for_linear(self.args[2]) non_bias_linear_func_proxy = self.create_non_bias_func_proxy(self.args[1], transpose_proxy) kwargs = self.extract_kwargs_from_origin_func() if 'beta' in kwargs: beta = kwargs['beta'] beta_proxy = self.create_mul_node(self.args[0], beta) else: beta_proxy = self.args[0] if 'alpha' in kwargs: alpha = kwargs['alpha'] alpha_proxy = self.create_mul_node(alpha, non_bias_linear_func_proxy) else: alpha_proxy = non_bias_linear_func_proxy bias_addition_proxy = self.create_bias_addition_proxy(alpha_proxy, beta_proxy) return bias_addition_proxy
import operator from abc import ABC, abstractmethod import torch import torch.nn.functional as F class BiasAdditionModule(ABC): """ This class is used to construct the restructure computation graph for call_module node with bias addition inside. """ def __init__(self, tracer, target, args, kwargs, substitute_func): self.tracer = tracer self.target = target self.args = args self.kwargs = kwargs self.substitute_func = substitute_func self.weight_proxy = self._create_weight_proxy() self.bias_proxy = self._create_bias_proxy() def _create_weight_proxy(self): """ Create weight proxy, the node created by this proxy contains module weight. Note: this function will be invoked during module initializing, you should never call this function. """ weight_node_kind = 'get_attr' weight_node_target = self.target + '.weight' weight_proxy = self.tracer.create_proxy(weight_node_kind, weight_node_target, (), {}) return weight_proxy def _create_bias_proxy(self): """ Create bias proxy, the node created by this proxy contains module bias. Note: this function will be invoked during module initializing, you should never call this function. """ bias_node_kind = 'get_attr' bias_node_target = self.target + '.bias' bias_proxy = self.tracer.create_proxy(bias_node_kind, bias_node_target, (), {}) return bias_proxy @abstractmethod def extract_kwargs_from_mod(self): """ This method is used to extract the kwargs for non-bias computation. For example: The kwargs for conv2d module is {} because the attributes like 'padding' or 'groups' are considered during module initilizing. However, we need to consider those attributes as kwargs in F.conv2d. """ pass def create_non_bias_func_proxy(self, input_proxy=None): """ This method is used to create the non_bias_func proxy, the node created by this proxy will compute the main computation, such as convolution, with bias option banned. """ node_kind = 'call_function' node_target = self.substitute_func if input_proxy is None: input_proxy = self.args[0] node_args = (input_proxy, self.weight_proxy) node_kwargs = self.extract_kwargs_from_mod() non_bias_func_proxy = self.tracer.create_proxy(node_kind, node_target, node_args, node_kwargs) return non_bias_func_proxy def create_bias_addition_proxy(self, non_bias_func_proxy, bias_proxy): """ This method is used to create the bias_addition_proxy, the node created by this proxy will compute the sum of non_bias_func result and bias with some reshape operation if needed. """ bias_add_node_kind = 'call_function' bias_add_node_target = operator.add bias_add_args = (non_bias_func_proxy, bias_proxy) bias_add_proxy = self.tracer.create_proxy(bias_add_node_kind, bias_add_node_target, tuple(bias_add_args), {}) return bias_add_proxy @abstractmethod def generate(self): """ This method is used to construct the whole restructure computation graph for call_module node with bias addition inside. A whole restructure computation graph will contain a weight node, a bias node, a non-bias addition computation node, a bias reshape node if needed and a bias addition node. Use Conv2d module as an example: The origin node is: %conv: call_module[target=conv](args = (%x,), kwargs = {}) Restructured graph is: %conv_weight : [#users=1] = get_attr[target=conv.weight] %conv_bias : [#users=1] = get_attr[target=conv.bias] %conv2d : [#users=1] = call_function[target=torch.conv2d](args = (%x, %conv_weight), kwargs = {}) %view : [#users=1] = call_method[target=view](args = (%conv_bias, [1, -1, 1, 1]), kwargs = {}) %add : [#users=1] = call_function[target=operator.add](args = (%conv2d, %view), kwargs = {}) """ pass module_to_func_dict = { torch.nn.Linear: F.linear, torch.nn.Conv1d: F.conv1d, torch.nn.Conv2d: F.conv2d, torch.nn.Conv3d: F.conv3d, }