python_code
stringlengths
0
187k
repo_name
stringlengths
8
46
file_path
stringlengths
6
135
import abc from typing import Any, Union, Callable, TypeVar, Dict, Optional, cast from collections import OrderedDict import torch import torch.nn as nn from torch.distributions.utils import lazy_property import gym from allenact.base_abstractions.sensor import AbstractExpertActionSensor as Expert from allenact.utils import spaces_utils as su from allenact.utils.misc_utils import all_unique TeacherForcingAnnealingType = TypeVar("TeacherForcingAnnealingType") """ Modify standard PyTorch distributions so they are compatible with this code. """ class Distr(abc.ABC): @abc.abstractmethod def log_prob(self, actions: Any): """Return the log probability/ies of the provided action/s.""" raise NotImplementedError() @abc.abstractmethod def entropy(self): """Return the entropy or entropies.""" raise NotImplementedError() @abc.abstractmethod def sample(self, sample_shape=torch.Size()): """Sample actions.""" raise NotImplementedError() def mode(self): """If available, return the action(s) with highest probability. It will only be called if using deterministic agents. """ raise NotImplementedError() class CategoricalDistr(torch.distributions.Categorical, Distr): """A categorical distribution extending PyTorch's Categorical. probs or logits are assumed to be passed with step and sampler dimensions as in: [step, samplers, ...] """ def mode(self): return self._param.argmax(dim=-1, keepdim=False) # match sample()'s shape def log_prob(self, value: torch.Tensor): if value.shape == self.logits.shape[:-1]: return super(CategoricalDistr, self).log_prob(value=value) elif value.shape == self.logits.shape[:-1] + (1,): return ( super(CategoricalDistr, self) .log_prob(value=value.squeeze(-1)) .unsqueeze(-1) ) else: raise NotImplementedError( "Broadcasting in categorical distribution is disabled as it often leads" f" to unexpected results. We have that `value.shape == {value.shape}` but" f" expected a shape of " f" `self.logits.shape[:-1] == {self.logits.shape[:-1]}` or" f" `self.logits.shape[:-1] + (1,) == {self.logits.shape[:-1] + (1,)}`" ) @lazy_property def log_probs_tensor(self): return torch.log_softmax(self.logits, dim=-1) @lazy_property def probs_tensor(self): return torch.softmax(self.logits, dim=-1) class ConditionalDistr(Distr): """Action distribution conditional which is conditioned on other information (i.e. part of a hierarchical distribution) # Attributes action_group_name : the identifier of the group of actions (`OrderedDict`) produced by this `ConditionalDistr` """ action_group_name: str def __init__( self, distr_conditioned_on_input_fn_or_instance: Union[Callable, Distr], action_group_name: str, *distr_conditioned_on_input_args, **distr_conditioned_on_input_kwargs, ): """Initialize an ConditionalDistr. # Parameters distr_conditioned_on_input_fn_or_instance : Callable to generate `ConditionalDistr` given sampled actions, or given `Distr`. action_group_name : the identifier of the group of actions (`OrderedDict`) produced by this `ConditionalDistr` distr_conditioned_on_input_args : positional arguments for Callable `distr_conditioned_on_input_fn_or_instance` distr_conditioned_on_input_kwargs : keyword arguments for Callable `distr_conditioned_on_input_fn_or_instance` """ self.distr: Optional[Distr] = None self.distr_conditioned_on_input_fn: Optional[Callable] = None self.distr_conditioned_on_input_args = distr_conditioned_on_input_args self.distr_conditioned_on_input_kwargs = distr_conditioned_on_input_kwargs if isinstance(distr_conditioned_on_input_fn_or_instance, Distr): self.distr = distr_conditioned_on_input_fn_or_instance else: self.distr_conditioned_on_input_fn = ( distr_conditioned_on_input_fn_or_instance ) self.action_group_name = action_group_name def log_prob(self, actions): return self.distr.log_prob(actions) def entropy(self): return self.distr.entropy() def condition_on_input(self, **ready_actions): if self.distr is None: assert all( key not in self.distr_conditioned_on_input_kwargs for key in ready_actions ) self.distr = self.distr_conditioned_on_input_fn( *self.distr_conditioned_on_input_args, **self.distr_conditioned_on_input_kwargs, **ready_actions, ) def reset(self): if (self.distr is not None) and ( self.distr_conditioned_on_input_fn is not None ): self.distr = None def sample(self, sample_shape=torch.Size()) -> OrderedDict: return OrderedDict([(self.action_group_name, self.distr.sample(sample_shape))]) def mode(self) -> OrderedDict: return OrderedDict([(self.action_group_name, self.distr.mode())]) class SequentialDistr(Distr): def __init__(self, *conditional_distrs: ConditionalDistr): action_group_names = [cd.action_group_name for cd in conditional_distrs] assert all_unique( action_group_names ), f"All conditional distribution `action_group_name`, must be unique, given names {action_group_names}" self.conditional_distrs = conditional_distrs def sample(self, sample_shape=torch.Size()): actions = OrderedDict() for cd in self.conditional_distrs: cd.condition_on_input(**actions) actions.update(cd.sample(sample_shape=sample_shape)) return actions def mode(self): actions = OrderedDict() for cd in self.conditional_distrs: cd.condition_on_input(**actions) actions.update(cd.mode()) return actions def conditional_entropy(self): sum = 0 for cd in self.conditional_distrs: sum = sum + cd.entropy() return sum def entropy(self): raise NotImplementedError( "Please use 'conditional_entropy' instead of 'entropy' as the `entropy_method_name` " "parameter in your loss when using `SequentialDistr`." ) def log_prob( self, actions: Dict[str, Any], return_dict: bool = False ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]: assert len(actions) == len( self.conditional_distrs ), f"{len(self.conditional_distrs)} conditional distributions for {len(actions)} action groups" res: Union[int, torch.Tensor, Dict[str, torch.Tensor]] = ( 0 if not return_dict else OrderedDict() ) for cd in self.conditional_distrs: cd.condition_on_input(**actions) current_log_prob = cd.log_prob(actions[cd.action_group_name]) if not return_dict: res = res + current_log_prob else: res[cd.action_group_name] = current_log_prob return res class TeacherForcingDistr(Distr): def __init__( self, distr: Distr, obs: Dict[str, Any], action_space: gym.spaces.Space, num_active_samplers: Optional[int], approx_steps: Optional[int], teacher_forcing: Optional[TeacherForcingAnnealingType], tracking_info: Optional[Dict[str, Any]], always_enforce: bool = False, ): self.distr = distr self.is_sequential = isinstance(self.distr, SequentialDistr) # action_space is a gym.spaces.Dict for SequentialDistr, or any gym.Space for other Distr self.action_space = action_space self.num_active_samplers = num_active_samplers self.approx_steps = approx_steps self.teacher_forcing = teacher_forcing self.tracking_info = tracking_info self.always_enforce = always_enforce assert ( "expert_action" in obs ), "When using teacher forcing, obs must contain an `expert_action` uuid" obs_space = Expert.flagged_space( self.action_space, use_dict_as_groups=self.is_sequential ) self.expert = su.unflatten(obs_space, obs["expert_action"]) def enforce( self, sample: Any, action_space: gym.spaces.Space, teacher: OrderedDict, teacher_force_info: Optional[Dict[str, Any]], action_name: Optional[str] = None, ): actions = su.flatten(action_space, sample) assert ( len(actions.shape) == 3 ), f"Got flattened actions with shape {actions.shape} (it should be [1 x `samplers` x `flatdims`])" if self.num_active_samplers is not None: assert actions.shape[1] == self.num_active_samplers expert_actions = su.flatten(action_space, teacher[Expert.ACTION_POLICY_LABEL]) ## avoiding since partially multidimensional assert ( expert_actions.shape == actions.shape ), f"expert actions shape {expert_actions.shape} doesn't match the model's {actions.shape}" # expert_success is 0 if the expert action could not be computed and otherwise equals 1. expert_action_exists_mask = teacher[Expert.EXPERT_SUCCESS_LABEL] if not self.always_enforce: teacher_forcing_mask = ( torch.distributions.bernoulli.Bernoulli( torch.tensor(self.teacher_forcing(self.approx_steps)) ) .sample(expert_action_exists_mask.shape) .long() .to(actions.device) ) * expert_action_exists_mask else: teacher_forcing_mask = expert_action_exists_mask if teacher_force_info is not None: teacher_force_info[ "teacher_ratio/sampled{}".format( f"_{action_name}" if action_name is not None else "" ) ] = (teacher_forcing_mask.float().mean().item()) extended_shape = teacher_forcing_mask.shape + (1,) * ( len(actions.shape) - len(teacher_forcing_mask.shape) ) actions = torch.where( teacher_forcing_mask.byte().view(extended_shape), expert_actions, actions ) return su.unflatten(action_space, actions) def log_prob(self, actions: Any): return self.distr.log_prob(actions) def entropy(self): return self.distr.entropy() def conditional_entropy(self): return self.distr.conditional_entropy() def sample(self, sample_shape=torch.Size()): teacher_force_info: Optional[Dict[str, Any]] = None if self.approx_steps is not None: teacher_force_info = { "teacher_ratio/enforced": self.teacher_forcing(self.approx_steps), } if self.is_sequential: res = OrderedDict() for cd in cast(SequentialDistr, self.distr).conditional_distrs: cd.condition_on_input(**res) action_group_name = cd.action_group_name res[action_group_name] = self.enforce( cd.sample(sample_shape)[action_group_name], cast(gym.spaces.Dict, self.action_space)[action_group_name], self.expert[action_group_name], teacher_force_info, action_group_name, ) else: res = self.enforce( self.distr.sample(sample_shape), self.action_space, self.expert, teacher_force_info, ) if self.tracking_info is not None and self.num_active_samplers is not None: self.tracking_info["teacher"].append( ("teacher_package", teacher_force_info, self.num_active_samplers) ) return res class AddBias(nn.Module): """Adding bias parameters to input values.""" def __init__(self, bias: torch.FloatTensor): """Initializer. # Parameters bias : data to use as the initial values of the bias. """ super(AddBias, self).__init__() self._bias = nn.Parameter(bias.unsqueeze(1), requires_grad=True) def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: # type: ignore """Adds the stored bias parameters to `x`.""" assert x.dim() in [2, 4] if x.dim() == 2: bias = self._bias.t().view(1, -1) else: bias = self._bias.t().view(1, -1, 1, 1) return x + bias # type:ignore
ask4help-main
allenact/base_abstractions/distributions.py
ask4help-main
allenact/algorithms/__init__.py
"""Defines the reinforcement learning `OnPolicyRunner`.""" import copy import glob import itertools import json import math import os import pathlib import queue import random import signal import subprocess import sys import time import traceback from collections import defaultdict from multiprocessing.context import BaseContext from multiprocessing.process import BaseProcess from typing import Optional, Dict, Union, Tuple, Sequence, List, Any import enum import filelock import numpy as np import torch import torch.multiprocessing as mp from setproctitle import setproctitle as ptitle from allenact.algorithms.onpolicy_sync.engine import ( OnPolicyTrainer, OnPolicyInference, TRAIN_MODE_STR, VALID_MODE_STR, TEST_MODE_STR, OnPolicyRLEngine, ) from allenact.base_abstractions.experiment_config import ExperimentConfig, MachineParams from allenact.utils.experiment_utils import ( ScalarMeanTracker, set_deterministic_cudnn, set_seed, LoggingPackage, ) from allenact.utils.misc_utils import ( all_equal, get_git_diff_of_project, NumpyJSONEncoder, ) from allenact.utils.model_utils import md5_hash_of_state_dict from allenact.utils.system import get_logger, find_free_port from allenact.utils.tensor_utils import SummaryWriter from allenact.utils.viz_utils import VizSuite _CONFIG_KWARGS_STR = "__CONFIG_KWARGS__" class SaveDirFormat(enum.Enum): """Directory formats that can be used when saving tensorboard logs, checkpoints, etc. during training/evaluation. FLAT: the first-level directories are logs, checkpoints, metrics, etc; the second-level are time strings of each experiment NESTED: the opposite to FLAT. """ FLAT = "FLAT" NESTED = "NESTED" # Has results queue (aggregated per trainer), checkpoints queue and mp context # Instantiates train, validate, and test workers # Logging # Saves configs, makes folder for trainer models class OnPolicyRunner(object): def __init__( self, config: ExperimentConfig, output_dir: str, loaded_config_src_files: Optional[Dict[str, str]], seed: Optional[int] = None, mode: str = "train", deterministic_cudnn: bool = False, deterministic_agents: bool = False, mp_ctx: Optional[BaseContext] = None, multiprocessing_start_method: str = "default", extra_tag: str = "", disable_tensorboard: bool = False, disable_config_saving: bool = False, distributed_ip_and_port: str = "127.0.0.1:0", machine_id: int = 0, save_dir_fmt: SaveDirFormat = SaveDirFormat.FLAT, ): self.config = config self.output_dir = output_dir self.loaded_config_src_files = loaded_config_src_files self.seed = seed if seed is not None else random.randint(0, 2 ** 31 - 1) self.deterministic_cudnn = deterministic_cudnn if multiprocessing_start_method == "default": if torch.cuda.is_available(): multiprocessing_start_method = "forkserver" else: # Spawn seems to play nicer with cpus and debugging multiprocessing_start_method = "spawn" self.mp_ctx = self.init_context(mp_ctx, multiprocessing_start_method) self.extra_tag = extra_tag self.mode = mode.lower().strip() self.visualizer: Optional[VizSuite] = None self.deterministic_agents = deterministic_agents self.disable_tensorboard = disable_tensorboard self.disable_config_saving = disable_config_saving assert self.mode in [ TRAIN_MODE_STR, TEST_MODE_STR, ], "Only 'train' and 'test' modes supported in runner" if self.deterministic_cudnn: set_deterministic_cudnn() set_seed(self.seed) self.queues: Optional[Dict[str, mp.Queue]] = None self.processes: Dict[str, List[Union[BaseProcess, mp.Process]]] = defaultdict( list ) self.current_checkpoint = None self._local_start_time_str: Optional[str] = None self._is_closed: bool = False self._collect_valid_results: bool = False self.distributed_ip_and_port = distributed_ip_and_port self.machine_id = machine_id self.save_dir_fmt = save_dir_fmt @property def local_start_time_str(self) -> str: if self._local_start_time_str is None: raise RuntimeError( "Local start time string does not exist as neither `start_train()` or `start_test()`" " has been called on this runner." ) return self._local_start_time_str @property def running_validation(self): return ( sum( MachineParams.instance_from( self.config.machine_params(VALID_MODE_STR) ).nprocesses ) > 0 ) and self.machine_id == 0 @staticmethod def init_context( mp_ctx: Optional[BaseContext] = None, multiprocessing_start_method: str = "forkserver", valid_start_methods: Tuple[str, ...] = ("forkserver", "spawn", "fork"), ): if mp_ctx is None: assert multiprocessing_start_method in valid_start_methods, ( f"multiprocessing_start_method must be one of {valid_start_methods}." f" Got '{multiprocessing_start_method}'" ) mp_ctx = mp.get_context(multiprocessing_start_method) elif multiprocessing_start_method != mp_ctx.get_start_method(): get_logger().warning( f"ignoring multiprocessing_start_method '{multiprocessing_start_method}'" f" and using given context with '{mp_ctx.get_start_method()}'" ) return mp_ctx def _acquire_unique_local_start_time_string(self) -> str: """Creates a (unique) local start time string for this experiment. Ensures through file locks that the local start time string produced is unique. This implies that, if one has many experiments starting in in parallel, at most one will be started every second (as the local start time string only records the time up to the current second). """ os.makedirs(self.output_dir, exist_ok=True) start_time_string_lock_path = os.path.abspath( os.path.join(self.output_dir, ".allenact_start_time_string.lock") ) try: with filelock.FileLock(start_time_string_lock_path, timeout=60): last_start_time_string_path = os.path.join( self.output_dir, ".allenact_last_start_time_string" ) pathlib.Path(last_start_time_string_path).touch() with open(last_start_time_string_path, "r") as f: last_start_time_string_list = f.readlines() while True: candidate_str = time.strftime( "%Y-%m-%d_%H-%M-%S", time.localtime(time.time()) ) if ( len(last_start_time_string_list) == 0 or last_start_time_string_list[0].strip() != candidate_str ): break time.sleep(0.2) with open(last_start_time_string_path, "w") as f: f.write(candidate_str) except filelock.Timeout as e: get_logger().exception( f"Could not acquire the lock for {start_time_string_lock_path} for 60 seconds," " this suggests an unexpected deadlock. Please close all AllenAct training processes," " delete this lockfile, and try again." ) raise e assert candidate_str is not None return candidate_str def worker_devices(self, mode: str): machine_params: MachineParams = MachineParams.instance_from( self.config.machine_params(mode) ) devices = machine_params.devices assert all_equal(devices) or all( d.index >= 0 for d in devices ), f"Cannot have a mix of CPU and GPU devices (`devices == {devices}`)" get_logger().info(f"Using {len(devices)} {mode} workers on devices {devices}") return devices def local_worker_ids(self, mode: str): machine_params: MachineParams = MachineParams.instance_from( self.config.machine_params(mode, machine_id=self.machine_id) ) ids = machine_params.local_worker_ids get_logger().info( f"Using local worker ids {ids} (total {len(ids)} workers in machine {self.machine_id})" ) return ids def init_visualizer(self, mode: str): if not self.disable_tensorboard: # Note: Avoid instantiating anything in machine_params (use Builder if needed) machine_params = MachineParams.instance_from( self.config.machine_params(mode) ) self.visualizer = machine_params.visualizer @staticmethod def init_process(mode: str, id: int, to_close_on_termination: OnPolicyRLEngine): ptitle(f"{mode}-{id}") def create_handler(termination_type: str): def handler(_signo, _frame): prefix = f"{termination_type} signal sent to worker {mode}-{id}." if to_close_on_termination._is_closed: get_logger().info( f"{prefix} Worker {mode}-{id} is already closed, exiting." ) sys.exit(0) elif not to_close_on_termination._is_closing: get_logger().info( f"{prefix} Forcing worker {mode}-{id} to close and exiting." ) try: to_close_on_termination.close(True) except Exception: get_logger().error( f"Error occurred when closing the RL engine used by work {mode}-{id}." f" We cannot recover from this and will simply exit. The exception:" ) get_logger().exception(traceback.format_exc()) sys.exit(1) sys.exit(0) else: get_logger().info( f"{prefix} Worker {mode}-{id} is already closing, ignoring this signal." ) return handler signal.signal(signal.SIGTERM, create_handler("Termination")) signal.signal(signal.SIGINT, create_handler("Interrupt")) @staticmethod def init_worker(engine_class, args, kwargs): mode = kwargs["mode"] id = kwargs["worker_id"] worker = None try: worker = engine_class(*args, **kwargs) except Exception: get_logger().error(f"Encountered Exception. Terminating {mode} worker {id}") get_logger().exception(traceback.format_exc()) kwargs["results_queue"].put((f"{mode}_stopped", 1 + id)) finally: return worker @staticmethod def train_loop( id: int = 0, checkpoint: Optional[str] = None, restart_pipeline: bool = False, *engine_args, **engine_kwargs, ): engine_kwargs["mode"] = TRAIN_MODE_STR engine_kwargs["worker_id"] = id engine_kwargs_for_print = { k: (v if k != "initial_model_state_dict" else "[SUPPRESSED]") for k, v in engine_kwargs.items() } get_logger().info(f"train {id} args {engine_kwargs_for_print}") trainer: OnPolicyTrainer = OnPolicyRunner.init_worker( engine_class=OnPolicyTrainer, args=engine_args, kwargs=engine_kwargs ) if trainer is not None: OnPolicyRunner.init_process("Train", id, to_close_on_termination=trainer) trainer.train( checkpoint_file_name=checkpoint, restart_pipeline=restart_pipeline ) @staticmethod def valid_loop(id: int = 0, *engine_args, **engine_kwargs): engine_kwargs["mode"] = VALID_MODE_STR engine_kwargs["worker_id"] = id get_logger().info(f"valid {id} args {engine_kwargs}") valid = OnPolicyRunner.init_worker( engine_class=OnPolicyInference, args=engine_args, kwargs=engine_kwargs ) if valid is not None: OnPolicyRunner.init_process("Valid", id, to_close_on_termination=valid) valid.process_checkpoints() # gets checkpoints via queue @staticmethod def test_loop(id: int = 0, *engine_args, **engine_kwargs): engine_kwargs["mode"] = TEST_MODE_STR engine_kwargs["worker_id"] = id get_logger().info(f"test {id} args {engine_kwargs}") test = OnPolicyRunner.init_worker(OnPolicyInference, engine_args, engine_kwargs) if test is not None: OnPolicyRunner.init_process("Test", id, to_close_on_termination=test) test.process_checkpoints() # gets checkpoints via queue def _initialize_start_train_or_start_test(self): self._is_closed = False if self.queues is not None: for k, q in self.queues.items(): try: out = q.get(timeout=1) raise RuntimeError( f"{k} queue was not empty before starting new training/testing (contained {out})." f" This should not happen, please report how you obtained this error" f" by creating an issue at https://github.com/allenai/allenact/issues." ) except queue.Empty: pass self.queues = { "results": self.mp_ctx.Queue(), "checkpoints": self.mp_ctx.Queue(), } self._local_start_time_str = self._acquire_unique_local_start_time_string() def get_port(self): passed_port = int(self.distributed_ip_and_port.split(":")[1]) if passed_port == 0: assert ( self.machine_id == 0 ), "Only runner with `machine_id` == 0 can search for a free port." distributed_port = find_free_port( self.distributed_ip_and_port.split(":")[0] ) else: distributed_port = passed_port get_logger().info( f"Engines on machine_id == {self.machine_id} using port {distributed_port} and seed {self.seed}" ) return distributed_port def start_train( self, checkpoint: Optional[str] = None, restart_pipeline: bool = False, max_sampler_processes_per_worker: Optional[int] = None, save_ckpt_after_every_pipeline_stage: bool = True, collect_valid_results: bool = False, ): self._initialize_start_train_or_start_test() self._collect_valid_results = collect_valid_results if not self.disable_config_saving: self.save_project_state() devices = self.worker_devices(TRAIN_MODE_STR) num_workers = len(devices) # Be extra careful to ensure that all models start # with the same initializations. set_seed(self.seed) initial_model_state_dict = self.config.create_model( sensor_preprocessor_graph=MachineParams.instance_from( self.config.machine_params(self.mode) ).sensor_preprocessor_graph ).state_dict() distributed_port = 0 if num_workers == 1 else self.get_port() worker_ids = self.local_worker_ids(TRAIN_MODE_STR) model_hash = None for trainer_id in worker_ids: training_kwargs = dict( id=trainer_id, checkpoint=checkpoint, restart_pipeline=restart_pipeline, experiment_name=self.experiment_name, config=self.config, results_queue=self.queues["results"], checkpoints_queue=self.queues["checkpoints"] if self.running_validation else None, checkpoints_dir=self.checkpoint_dir(), seed=self.seed, deterministic_cudnn=self.deterministic_cudnn, mp_ctx=self.mp_ctx, num_workers=num_workers, device=devices[trainer_id], distributed_ip=self.distributed_ip_and_port.split(":")[0], distributed_port=distributed_port, max_sampler_processes_per_worker=max_sampler_processes_per_worker, save_ckpt_after_every_pipeline_stage=save_ckpt_after_every_pipeline_stage, initial_model_state_dict=initial_model_state_dict if model_hash is None else model_hash, first_local_worker_id=worker_ids[0], ) train: BaseProcess = self.mp_ctx.Process( target=self.train_loop, kwargs=training_kwargs, ) try: train.start() except ValueError as e: # If the `initial_model_state_dict` is too large we sometimes # run into errors passing it with multiprocessing. In such cases # we instead hash the state_dict and confirm, in each engine worker, that # this hash equals the model the engine worker instantiates. if e.args[0] == "too many fds": model_hash = md5_hash_of_state_dict(initial_model_state_dict) training_kwargs["initial_model_state_dict"] = model_hash train = self.mp_ctx.Process( target=self.train_loop, kwargs=training_kwargs, ) train.start() else: raise e self.processes[TRAIN_MODE_STR].append(train) get_logger().info( f"Started {len(self.processes[TRAIN_MODE_STR])} train processes" ) # Validation if self.running_validation: device = self.worker_devices(VALID_MODE_STR)[0] self.init_visualizer(VALID_MODE_STR) valid: BaseProcess = self.mp_ctx.Process( target=self.valid_loop, args=(0,), kwargs=dict( config=self.config, results_queue=self.queues["results"], checkpoints_queue=self.queues["checkpoints"], seed=12345, # TODO allow same order for randomly sampled tasks? Is this any useful anyway? deterministic_cudnn=self.deterministic_cudnn, deterministic_agents=self.deterministic_agents, mp_ctx=self.mp_ctx, device=device, max_sampler_processes_per_worker=max_sampler_processes_per_worker, ), ) valid.start() self.processes[VALID_MODE_STR].append(valid) get_logger().info( f"Started {len(self.processes[VALID_MODE_STR])} valid processes" ) else: get_logger().info( "No processes allocated to validation, no validation will be run." ) metrics_file_template: Optional[str] = None if self._collect_valid_results: metrics_dir = self.metric_path(self.local_start_time_str) os.makedirs(metrics_dir, exist_ok=True) suffix = f"__valid_{self.local_start_time_str}" metrics_file_template = os.path.join( metrics_dir, "metrics" + suffix + "{:012d}.json" ) # template for training steps get_logger().info( f"Saving valid metrics with template {metrics_file_template}" ) # Check output file can be written with open(metrics_file_template.format(0), "w") as f: json.dump([], f, indent=4, sort_keys=True, cls=NumpyJSONEncoder) valid_results = self.log_and_close( start_time_str=self.local_start_time_str, nworkers=len(worker_ids), # TODO num_workers once we forward metrics, metrics_file=metrics_file_template, ) if not self._collect_valid_results: return self.local_start_time_str else: return self.local_start_time_str, valid_results def start_test( self, checkpoint_path_dir_or_pattern: str, infer_output_dir: bool = False, approx_ckpt_step_interval: Optional[Union[float, int]] = None, max_sampler_processes_per_worker: Optional[int] = None, inference_expert: bool = False, ) -> List[Dict]: # Tester always runs on a single machine assert ( self.machine_id == 0 ), f"Received `machine_id={self.machine_id} for test. Only one machine supported." self.extra_tag += ( "__" * (len(self.extra_tag) > 0) + "enforced_test_expert" ) * inference_expert self._initialize_start_train_or_start_test() devices = self.worker_devices(TEST_MODE_STR) self.init_visualizer(TEST_MODE_STR) num_testers = len(devices) distributed_port = 0 if num_testers > 1: distributed_port = find_free_port() # Tester always runs on a single machine for tester_it in range(num_testers): test: BaseProcess = self.mp_ctx.Process( target=self.test_loop, args=(tester_it,), kwargs=dict( config=self.config, results_queue=self.queues["results"], checkpoints_queue=self.queues["checkpoints"], seed=12345, # TODO allow same order for randomly sampled tasks? Is this any useful anyway? deterministic_cudnn=self.deterministic_cudnn, deterministic_agents=self.deterministic_agents, mp_ctx=self.mp_ctx, num_workers=num_testers, device=devices[tester_it], max_sampler_processes_per_worker=max_sampler_processes_per_worker, distributed_port=distributed_port, enforce_expert=inference_expert, ), ) test.start() self.processes[TEST_MODE_STR].append(test) get_logger().info( f"Started {len(self.processes[TEST_MODE_STR])} test processes" ) checkpoint_paths = self.get_checkpoint_files( checkpoint_path_dir_or_pattern=checkpoint_path_dir_or_pattern, approx_ckpt_step_interval=approx_ckpt_step_interval, ) steps = [self.step_from_checkpoint(cp) for cp in checkpoint_paths] get_logger().info(f"Running test on {len(steps)} steps {steps}") for checkpoint_path in checkpoint_paths: # Make all testers work on each checkpoint for tester_it in range(num_testers): self.queues["checkpoints"].put(("eval", checkpoint_path)) # Signal all testers to terminate cleanly for _ in range(num_testers): self.queues["checkpoints"].put(("quit", None)) if self.save_dir_fmt == SaveDirFormat.NESTED: if infer_output_dir: # NOTE: we change output_dir here self.output_dir = self.checkpoint_log_folder_str(checkpoint_paths[0]) suffix = "" elif self.save_dir_fmt == SaveDirFormat.FLAT: suffix = f"__test_{self.local_start_time_str}" else: raise NotImplementedError metrics_dir = self.metric_path(self.local_start_time_str) os.makedirs(metrics_dir, exist_ok=True) metrics_file_path = os.path.join(metrics_dir, "metrics" + suffix + ".json") get_logger().info(f"Saving test metrics in {metrics_file_path}") # Check output file can be written with open(metrics_file_path, "w") as f: json.dump([], f, indent=4, sort_keys=True, cls=NumpyJSONEncoder) return self.log_and_close( start_time_str=self.checkpoint_start_time_str(checkpoint_paths[0]), nworkers=num_testers, test_steps=steps, metrics_file=metrics_file_path, ) @staticmethod def checkpoint_start_time_str(checkpoint_file_name): parts = checkpoint_file_name.split(os.path.sep) assert len(parts) > 1, f"{checkpoint_file_name} is not a valid checkpoint path" start_time_str = parts[-2] get_logger().info(f"Using checkpoint start time {start_time_str}") return start_time_str @staticmethod def checkpoint_log_folder_str(checkpoint_file_name): parts = checkpoint_file_name.split(os.path.sep) assert len(parts) > 1, f"{checkpoint_file_name} is not a valid checkpoint path" log_folder_str = (os.path.sep).join(parts[:-2]) # remove checkpoints/*.pt get_logger().info(f"Using log folder {log_folder_str}") return log_folder_str @property def experiment_name(self): if len(self.extra_tag) > 0: return f"{self.config.tag()}_{self.extra_tag}" return self.config.tag() def checkpoint_dir( self, start_time_str: Optional[str] = None, create_if_none: bool = True ): path_parts = [ self.config.tag() if self.extra_tag == "" else os.path.join(self.config.tag(), self.extra_tag), start_time_str or self.local_start_time_str, ] if self.save_dir_fmt == SaveDirFormat.NESTED: folder = os.path.join(self.output_dir, *path_parts, "checkpoints",) elif self.save_dir_fmt == SaveDirFormat.FLAT: folder = os.path.join(self.output_dir, "checkpoints", *path_parts,) else: raise NotImplementedError if create_if_none: os.makedirs(folder, exist_ok=True) return folder def log_writer_path(self, start_time_str: str) -> str: if self.save_dir_fmt == SaveDirFormat.NESTED: if self.mode == TEST_MODE_STR: return os.path.join( self.output_dir, "test", self.config.tag(), self.local_start_time_str, ) path = os.path.join( self.output_dir, self.config.tag() if self.extra_tag == "" else os.path.join(self.config.tag(), self.extra_tag), start_time_str, "train_tb", ) return path elif self.save_dir_fmt == SaveDirFormat.FLAT: path = os.path.join( self.output_dir, "tb", self.config.tag() if self.extra_tag == "" else os.path.join(self.config.tag(), self.extra_tag), start_time_str, ) if self.mode == TEST_MODE_STR: path = os.path.join(path, "test", self.local_start_time_str) return path else: raise NotImplementedError def metric_path(self, start_time_str: str) -> str: if self.save_dir_fmt == SaveDirFormat.NESTED: return os.path.join( self.output_dir, "test", self.config.tag(), start_time_str, ) elif self.save_dir_fmt == SaveDirFormat.FLAT: return os.path.join( self.output_dir, "metrics", self.config.tag() if self.extra_tag == "" else os.path.join(self.config.tag(), self.extra_tag), start_time_str, ) else: raise NotImplementedError def save_project_state(self): path_parts = [ self.config.tag() if self.extra_tag == "" else os.path.join(self.config.tag(), self.extra_tag), self.local_start_time_str, ] if self.save_dir_fmt == SaveDirFormat.NESTED: base_dir = os.path.join(self.output_dir, *path_parts, "used_configs",) elif self.save_dir_fmt == SaveDirFormat.FLAT: base_dir = os.path.join(self.output_dir, "used_configs", *path_parts,) else: raise NotImplementedError os.makedirs(base_dir, exist_ok=True) # Saving current git diff try: sha, diff_str = get_git_diff_of_project() with open(os.path.join(base_dir, f"{sha}.patch"), "w") as f: f.write(diff_str) get_logger().info(f"Git diff saved to {base_dir}") except subprocess.CalledProcessError: get_logger().warning( "Failed to get a git diff of the current project." f" Is it possible that {os.getcwd()} is not under version control?" ) # Saving configs if self.loaded_config_src_files is not None: for src_path in self.loaded_config_src_files: if src_path == _CONFIG_KWARGS_STR: # We also save key-word arguments passed to to the experiment # initializer. save_path = os.path.join(base_dir, "config_kwargs.json") assert not os.path.exists( save_path ), f"{save_path} should not already exist." with open(save_path, "w") as f: json.dump(json.loads(self.loaded_config_src_files[src_path]), f) continue assert os.path.isfile(src_path), f"Config file {src_path} not found" src_path = os.path.abspath(src_path) # To prevent overwriting files with the same name, we loop # here until we find a prefix (if necessary) to prevent # name collisions. k = -1 while True: prefix = "" if k == -1 else f"namecollision{k}__" k += 1 dst_path = os.path.join( base_dir, f"{prefix}{os.path.basename(src_path)}", ) if not os.path.exists(dst_path): os.makedirs(os.path.dirname(dst_path), exist_ok=True) with open(src_path, "r") as f: file_contents = f.read() with open(dst_path, "w") as f: f.write( f"### THIS FILE ORIGINALLY LOCATED AT '{src_path}'\n\n{file_contents}" ) break get_logger().info(f"Config files saved to {base_dir}") def process_eval_package( self, log_writer: Optional[SummaryWriter], pkg: LoggingPackage, all_results: Optional[List[Any]] = None, ): training_steps = pkg.training_steps checkpoint_file_name = pkg.checkpoint_file_name render = pkg.viz_data task_outputs = pkg.metric_dicts num_tasks = pkg.num_non_empty_metrics_dicts_added metric_means = pkg.metrics_tracker.means() mode = pkg.mode if log_writer is not None: log_writer.add_scalar( f"{mode}-misc/num_tasks_evaled", num_tasks, training_steps ) message = [f"{mode} {training_steps} steps:"] for k in sorted(metric_means.keys()): if log_writer is not None: log_writer.add_scalar( f"{mode}-metrics/{k}", metric_means[k], training_steps ) message.append(f"{k} {metric_means[k]}") if all_results is not None: results = copy.deepcopy(metric_means) results.update({"training_steps": training_steps, "tasks": task_outputs}) all_results.append(results) message.append(f"tasks {num_tasks} checkpoint {checkpoint_file_name}") get_logger().info(" ".join(message)) if self.visualizer is not None: self.visualizer.log( log_writer=log_writer, task_outputs=task_outputs, render=render, num_steps=training_steps, ) def process_train_packages( self, log_writer: Optional[SummaryWriter], pkgs: List[LoggingPackage], last_steps=0, last_offpolicy_steps=0, last_time=0.0, ): assert self.mode == TRAIN_MODE_STR current_time = time.time() training_steps = pkgs[0].training_steps offpolicy_steps = pkgs[0].off_policy_steps if log_writer is not None: log_writer.add_scalar( tag="train-misc/pipeline_stage", scalar_value=pkgs[0].pipeline_stage, global_step=training_steps, ) def add_prefix(d: Dict[str, Any], tag: str) -> Dict[str, Any]: new_dict = {} for k, v in d.items(): if "offpolicy" in k: pass elif k.startswith("losses/"): k = f"{self.mode}-{k}" else: k = f"{self.mode}-{tag}/{k}" new_dict[k] = v return new_dict metrics_and_train_info_tracker = ScalarMeanTracker() for pkg in pkgs: metrics_and_train_info_tracker.add_scalars( scalars=add_prefix(pkg.metrics_tracker.means(), "metrics"), n=add_prefix(pkg.metrics_tracker.counts(), "metrics"), ) metrics_and_train_info_tracker.add_scalars( scalars=add_prefix(pkg.train_info_tracker.means(), "misc"), n=add_prefix(pkg.train_info_tracker.counts(), "misc"), ) message = [f"train {training_steps} steps {offpolicy_steps} offpolicy:"] means = metrics_and_train_info_tracker.means() for k in sorted( means.keys(), key=lambda mean_key: (mean_key.count("/"), mean_key) ): if log_writer is not None: log_writer.add_scalar(k, means[k], training_steps) short_key = ( "/".join(k.split("/")[1:]) if k.startswith("train-") and "/" in k else k ) message.append(f"{short_key} {means[k]:.3g}") message += [f"elapsed_time {(current_time - last_time):.3g}s"] if last_steps > 0: fps = (training_steps - last_steps) / (current_time - last_time) message += [f"approx_fps {fps:.3g}"] if log_writer is not None: log_writer.add_scalar("train-misc/approx_fps", fps, training_steps) if last_offpolicy_steps > 0: fps = (offpolicy_steps - last_offpolicy_steps) / (current_time - last_time) message += [f"offpolicy/approx_fps {fps:.3g}"] if log_writer is not None: log_writer.add_scalar("offpolicy/approx_fps", fps, training_steps) get_logger().info(" ".join(message)) return training_steps, offpolicy_steps, current_time def process_test_packages( self, log_writer: Optional[SummaryWriter], pkgs: List[LoggingPackage], all_results: Optional[List[Any]] = None, ): mode = pkgs[0].mode assert mode == TEST_MODE_STR training_steps = pkgs[0].training_steps all_metrics_tracker = ScalarMeanTracker() metric_dicts_list, render, checkpoint_file_name = [], {}, [] for pkg in pkgs: all_metrics_tracker.add_scalars( scalars=pkg.metrics_tracker.means(), n=pkg.metrics_tracker.counts() ) metric_dicts_list.extend(pkg.metric_dicts) if pkg.viz_data is not None: render.update(pkg.viz_data) checkpoint_file_name.append(pkg.checkpoint_file_name) assert all_equal(checkpoint_file_name) message = [f"{mode} {training_steps} steps:"] metric_means = all_metrics_tracker.means() for k in sorted(metric_means.keys()): if log_writer is not None: log_writer.add_scalar( f"{mode}-metrics/{k}", metric_means[k], training_steps ) message.append(k + f" {metric_means[k]:.3g}") if all_results is not None: results = copy.deepcopy(metric_means) results.update( {"training_steps": training_steps, "tasks": metric_dicts_list} ) all_results.append(results) num_tasks = sum([pkg.num_non_empty_metrics_dicts_added for pkg in pkgs]) if log_writer is not None: log_writer.add_scalar( f"{mode}-misc/num_tasks_evaled", num_tasks, training_steps ) message.append(f"tasks {num_tasks} checkpoint {checkpoint_file_name[0]}") get_logger().info(" ".join(message)) if self.visualizer is not None: self.visualizer.log( log_writer=log_writer, task_outputs=metric_dicts_list, render=render, num_steps=training_steps, ) def log_and_close( self, start_time_str: str, nworkers: int, test_steps: Sequence[int] = (), metrics_file: Optional[str] = None, ) -> List[Dict]: finalized = False log_writer: Optional[SummaryWriter] = None if not self.disable_tensorboard: log_writer = SummaryWriter( log_dir=self.log_writer_path(start_time_str), filename_suffix=f"__{self.mode}_{self.local_start_time_str}", ) # To aggregate/buffer metrics from trainers/testers collected: List[LoggingPackage] = [] last_train_steps = 0 last_offpolicy_steps = 0 last_train_time = time.time() # test_steps = sorted(test_steps, reverse=True) eval_results: List[Dict] = [] unfinished_workers = nworkers try: while True: try: package: Union[ LoggingPackage, Union[Tuple[str, Any], Tuple[str, Any, Any]] ] = self.queues["results"].get(timeout=1) if isinstance(package, LoggingPackage): pkg_mode = package.mode if pkg_mode == TRAIN_MODE_STR: collected.append(package) if len(collected) >= nworkers: collected = sorted( collected, key=lambda pkg: ( pkg.training_steps, pkg.off_policy_steps, ), ) if ( collected[nworkers - 1].training_steps == collected[0].training_steps and collected[nworkers - 1].off_policy_steps == collected[0].off_policy_steps ): # ensure nworkers have provided the same num_steps ( last_train_steps, last_offpolicy_steps, last_train_time, ) = self.process_train_packages( log_writer=log_writer, pkgs=collected[:nworkers], last_steps=last_train_steps, last_offpolicy_steps=last_offpolicy_steps, last_time=last_train_time, ) collected = collected[nworkers:] elif len(collected) > 2 * nworkers: get_logger().warning( f"Unable to aggregate train packages from all {nworkers} workers" f"after {len(collected)} packages collected" ) elif ( pkg_mode == VALID_MODE_STR ): # they all come from a single worker if ( package.training_steps is not None ): # no validation samplers self.process_eval_package( log_writer=log_writer, pkg=package, all_results=eval_results if self._collect_valid_results else None, ) if metrics_file is not None: with open( metrics_file.format(package.training_steps), "w" ) as f: json.dump( eval_results[-1], f, indent=4, sort_keys=True, cls=NumpyJSONEncoder, ) get_logger().info( "Written valid results file {}".format( metrics_file.format( package.training_steps ), ) ) if ( finalized and self.queues["checkpoints"].empty() ): # assume queue is actually empty after trainer finished and no checkpoints in queue break elif pkg_mode == TEST_MODE_STR: collected.append(package) if len(collected) >= nworkers: collected = sorted( collected, key=lambda x: x.training_steps ) # sort by num_steps if ( collected[nworkers - 1].training_steps == collected[0].training_steps ): # ensure nworkers have provided the same num_steps self.process_test_packages( log_writer=log_writer, pkgs=collected[:nworkers], all_results=eval_results, ) collected = collected[nworkers:] with open(metrics_file, "w") as f: json.dump( eval_results, f, indent=4, sort_keys=True, cls=NumpyJSONEncoder, ) get_logger().info( "Updated {} up to checkpoint {}".format( metrics_file, test_steps[len(eval_results) - 1], ) ) else: get_logger().error( f"Runner received unknown package of type {pkg_mode}" ) else: pkg_mode = package[0] if pkg_mode == "train_stopped": if package[1] == 0: finalized = True if not self.running_validation: get_logger().info( "Terminating runner after trainer done (no validation)" ) break else: raise Exception( f"Train worker {package[1] - 1} abnormally terminated" ) elif pkg_mode == "valid_stopped": raise Exception( f"Valid worker {package[1] - 1} abnormally terminated" ) elif pkg_mode == "test_stopped": if package[1] == 0: unfinished_workers -= 1 if unfinished_workers == 0: get_logger().info( "Last tester finished. Terminating" ) finalized = True break else: raise RuntimeError( f"Test worker {package[1] - 1} abnormally terminated" ) else: get_logger().error( f"Runner received invalid package tuple {package}" ) except queue.Empty as _: if all( p.exitcode is not None for p in itertools.chain(*self.processes.values()) ): break except KeyboardInterrupt: get_logger().info("KeyboardInterrupt. Terminating runner.") except Exception: get_logger().error("Encountered Exception. Terminating runner.") get_logger().exception(traceback.format_exc()) finally: if finalized: get_logger().info("Done") if log_writer is not None: log_writer.close() self.close() return eval_results def get_checkpoint_files( self, checkpoint_path_dir_or_pattern: str, approx_ckpt_step_interval: Optional[int] = None, ): if os.path.isdir(checkpoint_path_dir_or_pattern): # The fragment is a path to a directory, lets use this directory # as the base dir to search for checkpoints checkpoint_path_dir_or_pattern = os.path.join( checkpoint_path_dir_or_pattern, "*.pt" ) ckpt_paths = glob.glob(checkpoint_path_dir_or_pattern, recursive=True) if len(ckpt_paths) == 0: raise FileNotFoundError( f"Could not find any checkpoints at {os.path.abspath(checkpoint_path_dir_or_pattern)}, is it possible" f" the path has been mispecified?" ) step_count_ckpt_pairs = [(self.step_from_checkpoint(p), p) for p in ckpt_paths] step_count_ckpt_pairs.sort() ckpts_paths = [p for _, p in step_count_ckpt_pairs] step_counts = np.array([sc for sc, _ in step_count_ckpt_pairs]) if approx_ckpt_step_interval is not None: assert ( approx_ckpt_step_interval > 0 ), "`approx_ckpt_step_interval` must be >0" inds_to_eval = set() for i in range( math.ceil(step_count_ckpt_pairs[-1][0] / approx_ckpt_step_interval) + 1 ): inds_to_eval.add( int(np.argmin(np.abs(step_counts - i * approx_ckpt_step_interval))) ) ckpts_paths = [ckpts_paths[ind] for ind in sorted(list(inds_to_eval))] return ckpts_paths @staticmethod def step_from_checkpoint(ckpt_path: str) -> int: parts = os.path.basename(ckpt_path).split("__") for part in parts: if "steps_" in part: possible_num = part.split("_")[-1].split(".")[0] if possible_num.isdigit(): return int(possible_num) get_logger().warning( f"The checkpoint {os.path.basename(ckpt_path)} does not follow the checkpoint naming convention" f" used by AllenAct. As a fall back we must load the checkpoint into memory to find the" f" training step count, this may increase startup time if the checkpoints are large or many" f" must be loaded in sequence." ) ckpt = torch.load(ckpt_path, map_location="cpu") return ckpt["total_steps"] def close(self, verbose=True): if self._is_closed: return def logif(s: Union[str, Exception]): if verbose: if isinstance(s, str): get_logger().info(s) elif isinstance(s, Exception): get_logger().exception(traceback.format_exc()) else: raise NotImplementedError() # First send termination signals for process_type in self.processes: for it, process in enumerate(self.processes[process_type]): if process.is_alive(): logif(f"Terminating {process_type} {it}") process.terminate() # Now join processes for process_type in self.processes: for it, process in enumerate(self.processes[process_type]): try: logif(f"Joining {process_type} {it}") process.join(1) logif(f"Closed {process_type} {it}") except Exception as e: logif(f"Exception raised when closing {process_type} {it}") logif(e) self.processes.clear() self._is_closed = True def __del__(self): self.close(verbose=True) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close(verbose=True)
ask4help-main
allenact/algorithms/onpolicy_sync/runner.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import abc from collections import OrderedDict from typing import TypeVar, Generic, Tuple, Optional, Union, Dict, List, Any import gym import torch from gym.spaces.dict import Dict as SpaceDict import torch.nn as nn from allenact.base_abstractions.distributions import CategoricalDistr from allenact.base_abstractions.misc import ActorCriticOutput, Memory DistributionType = TypeVar("DistributionType") MemoryDimType = Tuple[str, Optional[int]] MemoryShapeType = Tuple[MemoryDimType, ...] MemorySpecType = Tuple[MemoryShapeType, torch.dtype] FullMemorySpecType = Dict[str, MemorySpecType] ObservationType = Dict[str, Union[torch.Tensor, Dict[str, Any]]] ActionType = Union[torch.Tensor, OrderedDict, Tuple, int] class ActorCriticModel(Generic[DistributionType], nn.Module): """Abstract class defining a deep (recurrent) actor critic agent. When defining a new agent, you should subclass this class and implement the abstract methods. # Attributes action_space : The space of actions available to the agent. This is of type `gym.spaces.Space`. observation_space: The observation space expected by the agent. This is of type `gym.spaces.dict`. """ def __init__(self, action_space: gym.Space, observation_space: SpaceDict): """Initializer. # Parameters action_space : The space of actions available to the agent. observation_space: The observation space expected by the agent. """ super().__init__() self.action_space = action_space self.observation_space = observation_space self.memory_spec: Optional[List[Optional[FullMemorySpecType]]] = None @property def recurrent_memory_specification(self) -> Optional[FullMemorySpecType]: """The memory specification for the `ActorCriticModel`. See docs for `_recurrent_memory_shape` # Returns The memory specification from `_recurrent_memory_shape`. """ if self.memory_spec is None: self.memory_spec = [self._recurrent_memory_specification()] spec = self.memory_spec[0] if spec is None: return None for key in spec: dims, _ = spec[key] dim_names = [d[0] for d in dims] assert ( "step" not in dim_names ), "`step` is automatically added and cannot be reused" assert "sampler" in dim_names, "`sampler` dim must be defined" return self.memory_spec[0] @abc.abstractmethod def _recurrent_memory_specification(self) -> Optional[FullMemorySpecType]: """Implementation of memory specification for the `ActorCriticModel`. # Returns If None, it indicates the model is memory-less. Otherwise, it is a one-level dictionary (a map) with string keys (memory type identification) and tuple values (memory type specification). Each specification tuple contains: 1. Memory type named shape, e.g. `(("layer", 1), ("sampler", None), ("agent", 2), ("hidden", 32))` for a two-agent GRU memory, where the `sampler` dimension placeholder *always* precedes the optional `agent` dimension; the optional `agent` dimension has the number of agents in the model and is *always* the one after `sampler` if present; and `layer` and `hidden` correspond to the standard RNN hidden state parametrization. 2. The data type, e.g. `torch.float32`. The `sampler` dimension placeholder is mandatory for all memories. For a single-agent ActorCritic model it is often more convenient to skip the agent dimension, e.g. `(("layer", 1), ("sampler", None), ("hidden", 32))` for a GRU memory. """ raise NotImplementedError() @abc.abstractmethod def forward( # type:ignore self, observations: ObservationType, memory: Memory, prev_actions: ActionType, masks: torch.FloatTensor, ) -> Tuple[ActorCriticOutput[DistributionType], Optional[Memory]]: """Transforms input observations (& previous hidden state) into action probabilities and the state value. # Parameters observations : Multi-level map from key strings to tensors of shape [steps, samplers, (agents,) ...] with the current observations. memory : `Memory` object with recurrent memory. The shape of each tensor is determined by the corresponding entry in `_recurrent_memory_specification`. prev_actions : ActionType with tensors of shape [steps, samplers, ...] with the previous actions. masks : tensor of shape [steps, samplers, agents, 1] with zeros indicating steps where a new episode/task starts. # Returns A tuple whose first element is an object of class ActorCriticOutput which stores the agents' probability distribution over possible actions (shape [steps, samplers, ...]), the agents' value for the state (shape [steps, samplers, ..., 1]), and any extra information needed for loss computations. The second element is an optional `Memory`, which is only used in models with recurrent memory. """ raise NotImplementedError() class LinearActorCriticHead(nn.Module): def __init__(self, input_size: int, num_actions: int): super().__init__() self.input_size = input_size self.num_actions = num_actions self.actor_and_critic = nn.Linear(input_size, 1 + num_actions) nn.init.orthogonal_(self.actor_and_critic.weight) nn.init.constant_(self.actor_and_critic.bias, 0) def forward(self, x) -> Tuple[CategoricalDistr, torch.Tensor]: out = self.actor_and_critic(x) logits = out[..., :-1] values = out[..., -1:] # noinspection PyArgumentList return ( # logits are [step, sampler, ...] CategoricalDistr(logits=logits), # values are [step, sampler, flattened] values.view(*values.shape[:2], -1), ) class LinearCriticHead(nn.Module): def __init__(self, input_size: int): super().__init__() self.fc = nn.Linear(input_size, 1) nn.init.orthogonal_(self.fc.weight) nn.init.constant_(self.fc.bias, 0) def forward(self, x): return self.fc(x).view(*x.shape[:2], -1) # [steps, samplers, flattened] class LinearActorHead(nn.Module): def __init__(self, num_inputs: int, num_outputs: int): super().__init__() self.linear = nn.Linear(num_inputs, num_outputs) nn.init.orthogonal_(self.linear.weight, gain=0.01) nn.init.constant_(self.linear.bias, 0) def forward(self, x: torch.FloatTensor): # type: ignore x = self.linear(x) # type:ignore # noinspection PyArgumentList return CategoricalDistr(logits=x) # logits are [step, sampler, ...]
ask4help-main
allenact/algorithms/onpolicy_sync/policy.py
ask4help-main
allenact/algorithms/onpolicy_sync/__init__.py
"""Defines the reinforcement learning `OnPolicyRLEngine`.""" import datetime import itertools import logging import os import random import time import traceback from collections import defaultdict from multiprocessing.context import BaseContext from typing import ( Optional, Any, Dict, Union, List, Sequence, cast, Iterator, Callable, Tuple, ) from functools import partial import torch import torch.distributed as dist # type: ignore import torch.distributions # type: ignore import torch.multiprocessing as mp # type: ignore import torch.nn as nn import torch.optim as optim from allenact.utils.model_utils import md5_hash_of_state_dict try: # noinspection PyProtectedMember from torch.optim.lr_scheduler import _LRScheduler except (ImportError, ModuleNotFoundError): raise ImportError("`_LRScheduler` was not found in `torch.optim.lr_scheduler`") from allenact.algorithms.onpolicy_sync.losses.abstract_loss import ( AbstractActorCriticLoss, ) from allenact.algorithms.onpolicy_sync.policy import ActorCriticModel from allenact.algorithms.onpolicy_sync.storage import RolloutStorage from allenact.algorithms.onpolicy_sync.vector_sampled_tasks import ( VectorSampledTasks, COMPLETE_TASK_METRICS_KEY, SingleProcessVectorSampledTasks, ) from allenact.base_abstractions.experiment_config import ExperimentConfig, MachineParams from allenact.base_abstractions.misc import RLStepResult from allenact.base_abstractions.distributions import TeacherForcingDistr from allenact.utils import spaces_utils as su from allenact.utils.experiment_utils import ( set_seed, TrainingPipeline, LoggingPackage, Builder, PipelineStage, set_deterministic_cudnn, ScalarMeanTracker, ) from allenact.utils.system import get_logger from allenact.utils.tensor_utils import ( batch_observations, to_device_recursively, detach_recursively, ) from allenact.utils.viz_utils import VizSuite TRAIN_MODE_STR = "train" VALID_MODE_STR = "valid" TEST_MODE_STR = "test" class OnPolicyRLEngine(object): """The reinforcement learning primary controller. This `OnPolicyRLEngine` class handles all training, validation, and testing as well as logging and checkpointing. You are not expected to instantiate this class yourself, instead you should define an experiment which will then be used to instantiate an `OnPolicyRLEngine` and perform any desired tasks. """ def __init__( self, experiment_name: str, config: ExperimentConfig, results_queue: mp.Queue, # to output aggregated results checkpoints_queue: Optional[ mp.Queue ], # to write/read (trainer/evaluator) ready checkpoints checkpoints_dir: str, mode: str = "train", seed: Optional[int] = None, deterministic_cudnn: bool = False, mp_ctx: Optional[BaseContext] = None, worker_id: int = 0, num_workers: int = 1, device: Union[str, torch.device, int] = "cpu", distributed_ip: str = "127.0.0.1", distributed_port: int = 0, deterministic_agents: bool = False, max_sampler_processes_per_worker: Optional[int] = None, initial_model_state_dict: Optional[Union[Dict[str, Any], int]] = None, **kwargs, ): """Initializer. # Parameters config : The ExperimentConfig defining the experiment to run. output_dir : Root directory at which checkpoints and logs should be saved. seed : Seed used to encourage deterministic behavior (it is difficult to ensure completely deterministic behavior due to CUDA issues and nondeterminism in environments). mode : "train", "valid", or "test". deterministic_cudnn : Whether or not to use deterministic cudnn. If `True` this may lower training performance this is necessary (but not sufficient) if you desire deterministic behavior. extra_tag : An additional label to add to the experiment when saving tensorboard logs. """ self.config = config self.results_queue = results_queue self.checkpoints_queue = checkpoints_queue self.mp_ctx = mp_ctx self.checkpoints_dir = checkpoints_dir self.worker_id = worker_id self.num_workers = num_workers self.device = torch.device("cpu") if device == -1 else torch.device(device) # type: ignore self.distributed_ip = distributed_ip self.distributed_port = distributed_port self.mode = mode.lower().strip() assert self.mode in [ TRAIN_MODE_STR, VALID_MODE_STR, TEST_MODE_STR, ], 'Only "train", "valid", "test" modes supported' self.deterministic_cudnn = deterministic_cudnn if self.deterministic_cudnn: set_deterministic_cudnn() self.seed = seed set_seed(self.seed) self.experiment_name = experiment_name assert ( max_sampler_processes_per_worker is None or max_sampler_processes_per_worker >= 1 ), "`max_sampler_processes_per_worker` must be either `None` or a positive integer." self.max_sampler_processes_per_worker = max_sampler_processes_per_worker machine_params = config.machine_params(self.mode) self.machine_params: MachineParams if isinstance(machine_params, MachineParams): self.machine_params = machine_params else: self.machine_params = MachineParams(**machine_params) self.num_samplers_per_worker = self.machine_params.nprocesses self.num_samplers = self.num_samplers_per_worker[self.worker_id] self._vector_tasks: Optional[ Union[VectorSampledTasks, SingleProcessVectorSampledTasks] ] = None self.sensor_preprocessor_graph = None self.actor_critic: Optional[ActorCriticModel] = None if self.num_samplers > 0: create_model_kwargs = {} if self.machine_params.sensor_preprocessor_graph is not None: self.sensor_preprocessor_graph = self.machine_params.sensor_preprocessor_graph.to( self.device ) create_model_kwargs[ "sensor_preprocessor_graph" ] = self.sensor_preprocessor_graph set_seed(self.seed) self.actor_critic = cast( ActorCriticModel, self.config.create_model(**create_model_kwargs), ).to(self.device) if initial_model_state_dict is not None: if isinstance(initial_model_state_dict, int): assert ( md5_hash_of_state_dict(self.actor_critic.state_dict()) == initial_model_state_dict ), ( f"Could not reproduce the correct model state dict on worker {self.worker_id} despite seeding." f" Please ensure that your model's initialization is reproducable when `set_seed(...)`" f"] has been called with a fixed seed before initialization." ) else: self.actor_critic.load_state_dict(state_dict=initial_model_state_dict) else: assert mode != TRAIN_MODE_STR or self.num_workers == 1, ( "When training with multiple workers you must pass a," " non-`None` value for the `initial_model_state_dict` argument." ) if get_logger().level == logging.DEBUG: model_hash = md5_hash_of_state_dict(self.actor_critic.state_dict()) get_logger().debug( f"WORKER ({self.mode}): {self.worker_id}, model weights hash: {model_hash}" ) self.is_distributed = False self.store: Optional[torch.distributed.TCPStore] = None # type:ignore if self.num_workers > 1: self.store = torch.distributed.TCPStore( # type:ignore self.distributed_ip, self.distributed_port, self.num_workers, self.worker_id == 0, ) cpu_device = self.device == torch.device("cpu") # type:ignore dist.init_process_group( # type:ignore backend="gloo" if cpu_device or self.mode == TEST_MODE_STR else "nccl", store=self.store, rank=self.worker_id, world_size=self.num_workers, # During testing we sometimes found that default timeout was too short # resulting in the run terminating surprisingly, we increase it here. timeout=datetime.timedelta(minutes=3000) if self.mode == TEST_MODE_STR else dist.default_pg_timeout, ) self.is_distributed = True self.deterministic_agents = deterministic_agents self._is_closing: bool = ( False # Useful for letting the RL runner know if this is closing ) self._is_closed: bool = False self.training_pipeline: Optional[TrainingPipeline] = None # Keeping track of metrics during training/inference self.single_process_metrics: List = [] @property def vector_tasks( self, ) -> Union[VectorSampledTasks, SingleProcessVectorSampledTasks]: if self._vector_tasks is None and self.num_samplers > 0: if self.is_distributed: total_processes = sum( self.num_samplers_per_worker ) # TODO this will break the fixed seed for multi-device test else: total_processes = self.num_samplers seeds = self.worker_seeds( total_processes, initial_seed=self.seed, # do not update the RNG state (creation might happen after seed resetting) ) # TODO: The `self.max_sampler_processes_per_worker == 1` case below would be # great to have but it does not play nicely with us wanting to kill things # using SIGTERM/SIGINT signals. Would be nice to figure out a solution to # this at some point. # if self.max_sampler_processes_per_worker == 1: # # No need to instantiate a new task sampler processes if we're # # restricted to one sampler process for this worker. # self._vector_tasks = SingleProcessVectorSampledTasks( # make_sampler_fn=self.config.make_sampler_fn, # sampler_fn_args_list=self.get_sampler_fn_args(seeds), # ) # else: self._vector_tasks = VectorSampledTasks( make_sampler_fn=self.config.make_sampler_fn, sampler_fn_args=self.get_sampler_fn_args(seeds), multiprocessing_start_method="forkserver" if self.mp_ctx is None else None, mp_ctx=self.mp_ctx, max_processes=self.max_sampler_processes_per_worker, ) return self._vector_tasks @staticmethod def worker_seeds(nprocesses: int, initial_seed: Optional[int]) -> List[int]: """Create a collection of seeds for workers without modifying the RNG state.""" rstate = None # type:ignore if initial_seed is not None: rstate = random.getstate() random.seed(initial_seed) seeds = [random.randint(0, (2 ** 31) - 1) for _ in range(nprocesses)] if initial_seed is not None: random.setstate(rstate) return seeds def get_sampler_fn_args(self, seeds: Optional[List[int]] = None): sampler_devices = self.machine_params.sampler_devices if self.mode == TRAIN_MODE_STR: fn = self.config.train_task_sampler_args elif self.mode == VALID_MODE_STR: fn = self.config.valid_task_sampler_args elif self.mode == TEST_MODE_STR: fn = self.config.test_task_sampler_args else: raise NotImplementedError( "self.mode must be one of `train`, `valid` or `test`." ) if self.is_distributed: total_processes = sum(self.num_samplers_per_worker) process_offset = sum(self.num_samplers_per_worker[: self.worker_id]) else: total_processes = self.num_samplers process_offset = 0 sampler_devices_as_ints: Optional[List[int]] = None if ( self.is_distributed or self.mode == TEST_MODE_STR ) and self.device.index is not None: sampler_devices_as_ints = [self.device.index] elif sampler_devices is not None: sampler_devices_as_ints = [ -1 if sd.index is None else sd.index for sd in sampler_devices ] return [ fn( process_ind=process_offset + it, total_processes=total_processes, devices=sampler_devices_as_ints, seeds=seeds, ) for it in range(self.num_samplers) ] def checkpoint_load( self, ckpt: Union[str, Dict[str, Any]] ) -> Dict[str, Union[Dict[str, Any], torch.Tensor, float, int, str, List]]: if isinstance(ckpt, str): get_logger().info( "{} worker {} loading checkpoint from {}".format( self.mode, self.worker_id, ckpt ) ) # Map location CPU is almost always better than mapping to a CUDA device. ckpt = torch.load(os.path.abspath(ckpt), map_location="cpu") ckpt = cast( Dict[str, Union[Dict[str, Any], torch.Tensor, float, int, str, List]], ckpt, ) self.actor_critic.load_state_dict(ckpt["model_state_dict"]) # type:ignore return ckpt # aggregates task metrics currently in queue def aggregate_task_metrics( self, logging_pkg: LoggingPackage, num_tasks: int = -1, ) -> LoggingPackage: if num_tasks > 0: if len(self.single_process_metrics) != num_tasks: error_msg = ( "shorter" if len(self.single_process_metrics) < num_tasks else "longer" ) get_logger().error( f"Metrics out is {error_msg} than expected number of tasks." " This should only happen if a positive number of `num_tasks` were" " set during testing but the queue did not contain this number of entries." " Please file an issue at https://github.com/allenai/allenact/issues." ) num_empty_tasks_dequeued = 0 for metrics_dict in self.single_process_metrics: num_empty_tasks_dequeued += not logging_pkg.add_metrics_dict( single_task_metrics_dict=metrics_dict ) self.single_process_metrics = [] if num_empty_tasks_dequeued != 0: get_logger().warning( "Discarded {} empty task metrics".format(num_empty_tasks_dequeued) ) return logging_pkg def _preprocess_observations(self, batched_observations): if self.sensor_preprocessor_graph is None: return batched_observations return self.sensor_preprocessor_graph.get_observations(batched_observations) def remove_paused(self, observations): paused, keep, running = [], [], [] for it, obs in enumerate(observations): if obs is None: paused.append(it) else: keep.append(it) running.append(obs) for p in reversed(paused): self.vector_tasks.pause_at(p) # Group samplers along new dim: batch = batch_observations(running, device=self.device) return len(paused), keep, batch def initialize_rollouts(self, rollouts, visualizer: Optional[VizSuite] = None): observations = self.vector_tasks.get_observations() npaused, keep, batch = self.remove_paused(observations) if npaused > 0: rollouts.sampler_select(keep) rollouts.to(self.device) rollouts.insert_observations( self._preprocess_observations(batch) if len(keep) > 0 else batch ) if visualizer is not None and len(keep) > 0: visualizer.collect(vector_task=self.vector_tasks, alive=keep) return npaused @property def num_active_samplers(self): return self.vector_tasks.num_unpaused_tasks def act(self, rollouts: RolloutStorage, dist_wrapper_class: Optional[type] = None): with torch.no_grad(): step_observation = rollouts.pick_observation_step(rollouts.step) memory = rollouts.pick_memory_step(rollouts.step) prev_actions = rollouts.pick_prev_actions_step(rollouts.step) actor_critic_output, memory = self.actor_critic( step_observation, memory, prev_actions, rollouts.masks[rollouts.step : rollouts.step + 1], ) distr = actor_critic_output.distributions if dist_wrapper_class is not None: distr = dist_wrapper_class(distr=distr, obs=step_observation) actions = distr.sample() if not self.deterministic_agents else distr.mode() return actions, actor_critic_output, memory, step_observation @staticmethod def _active_memory(memory, keep): return memory.sampler_select(keep) if memory is not None else memory def probe(self, dones: List[bool], npaused, period=100000): """Debugging util. When called from self.collect_rollout_step(...), calls render for the 0-th task sampler of the 0-th distributed worker for the first beginning episode spaced at least period steps from the beginning of the previous one. For valid, train, it currently renders all episodes for the 0-th task sampler of the 0-th distributed worker. If this is not wanted, it must be hard-coded for now below. :param dones: dones list from self.collect_rollout_step(...) :param npaused: number of newly paused tasks returned by self.removed_paused(...) :param period: minimal spacing in sampled steps between the beginning of episodes to be shown. """ sampler_id = 0 done = dones[sampler_id] if self.mode != TRAIN_MODE_STR: setattr( self, "_probe_npaused", getattr(self, "_probe_npaused", 0) + npaused ) if self._probe_npaused == self.num_samplers: # type:ignore del self._probe_npaused # type:ignore return period = 0 if self.worker_id == 0: if done: if period > 0 and ( getattr(self, "_probe_steps", None) is None or ( self._probe_steps < 0 # type:ignore and ( self.training_pipeline.total_steps + self._probe_steps # type:ignore ) >= period ) ): self._probe_steps = self.training_pipeline.total_steps if period == 0 or ( getattr(self, "_probe_steps", None) is not None and self._probe_steps >= 0 and ((self.training_pipeline.total_steps - self._probe_steps) < period) ): if ( period == 0 or not done or self._probe_steps == self.training_pipeline.total_steps ): self.vector_tasks.call_at(sampler_id, "render", ["human"]) else: self._probe_steps = -self._probe_steps def collect_rollout_step( self, rollouts: RolloutStorage, visualizer=None, dist_wrapper_class=None ) -> int: actions, actor_critic_output, memory, _ = self.act( rollouts=rollouts, dist_wrapper_class=dist_wrapper_class ) # Flatten actions flat_actions = su.flatten(self.actor_critic.action_space, actions) assert len(flat_actions.shape) == 3, ( "Distribution samples must include step and task sampler dimensions [step, sampler, ...]. The simplest way" "to accomplish this is to pass param tensors (like `logits` in a `CategoricalDistr`) with these dimensions" "to the Distribution." ) # Convert flattened actions into list of actions and send them outputs: List[RLStepResult] = self.vector_tasks.step( su.action_list(self.actor_critic.action_space, flat_actions) ) # Save after task completion metrics for step_result in outputs: if ( step_result.info is not None and COMPLETE_TASK_METRICS_KEY in step_result.info ): self.single_process_metrics.append( step_result.info[COMPLETE_TASK_METRICS_KEY] ) del step_result.info[COMPLETE_TASK_METRICS_KEY] rewards: Union[List, torch.Tensor] observations, rewards, dones, infos = [list(x) for x in zip(*outputs)] rewards = torch.tensor( rewards, dtype=torch.float, device=self.device, # type:ignore ) # We want rewards to have dimensions [sampler, reward] if len(rewards.shape) == 1: # Rewards are of shape [sampler,] rewards = rewards.unsqueeze(-1) elif len(rewards.shape) > 1: raise NotImplementedError() # If done then clean the history of observations. masks = ( 1.0 - torch.tensor( dones, dtype=torch.float32, device=self.device, # type:ignore ) ).view( -1, 1 ) # [sampler, 1] npaused, keep, batch = self.remove_paused(observations) # TODO self.probe(...) can be useful for debugging (we might want to control it from main?) # self.probe(dones, npaused) if npaused > 0: rollouts.sampler_select(keep) rollouts.insert( observations=self._preprocess_observations(batch) if len(keep) > 0 else batch, memory=self._active_memory(memory, keep), actions=flat_actions[0, keep], action_log_probs=actor_critic_output.distributions.log_prob(actions)[ 0, keep ], value_preds=actor_critic_output.values[0, keep], rewards=rewards[keep], masks=masks[keep], ) # TODO we always miss tensors for the last action in the last episode of each worker if visualizer is not None: if len(keep) > 0: visualizer.collect( rollout=rollouts, vector_task=self.vector_tasks, alive=keep, actor_critic=actor_critic_output, ) else: visualizer.collect(actor_critic=actor_critic_output) return npaused def close(self, verbose=True): self._is_closing = True if "_is_closed" in self.__dict__ and self._is_closed: return def logif(s: Union[str, Exception]): if verbose: if isinstance(s, str): get_logger().info(s) elif isinstance(s, Exception): get_logger().error(traceback.format_exc()) else: raise NotImplementedError() if "_vector_tasks" in self.__dict__ and self._vector_tasks is not None: try: logif( "{} worker {} Closing OnPolicyRLEngine.vector_tasks.".format( self.mode, self.worker_id ) ) self._vector_tasks.close() logif("{} worker {} Closed.".format(self.mode, self.worker_id)) except Exception as e: logif( "{} worker {} Exception raised when closing OnPolicyRLEngine.vector_tasks:".format( self.mode, self.worker_id ) ) logif(e) self._is_closed = True self._is_closing = False def __del__(self): self.close(verbose=False) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close(verbose=False) class OnPolicyTrainer(OnPolicyRLEngine): def __init__( self, experiment_name: str, config: ExperimentConfig, results_queue: mp.Queue, checkpoints_queue: Optional[mp.Queue], checkpoints_dir: str = "", seed: Optional[int] = None, deterministic_cudnn: bool = False, mp_ctx: Optional[BaseContext] = None, worker_id: int = 0, num_workers: int = 1, device: Union[str, torch.device, int] = "cpu", distributed_ip: str = "127.0.0.1", distributed_port: int = 0, deterministic_agents: bool = False, distributed_preemption_threshold: float = 0.7, max_sampler_processes_per_worker: Optional[int] = None, save_ckpt_after_every_pipeline_stage: bool = True, first_local_worker_id: int = 0, **kwargs, ): kwargs["mode"] = TRAIN_MODE_STR super().__init__( experiment_name=experiment_name, config=config, results_queue=results_queue, checkpoints_queue=checkpoints_queue, checkpoints_dir=checkpoints_dir, seed=seed, deterministic_cudnn=deterministic_cudnn, mp_ctx=mp_ctx, worker_id=worker_id, num_workers=num_workers, device=device, distributed_ip=distributed_ip, distributed_port=distributed_port, deterministic_agents=deterministic_agents, max_sampler_processes_per_worker=max_sampler_processes_per_worker, **kwargs, ) self.save_ckpt_after_every_pipeline_stage = save_ckpt_after_every_pipeline_stage self.actor_critic.train() self.training_pipeline: TrainingPipeline = config.training_pipeline() if self.num_workers != 1: # Ensure that we're only using early stopping criterions in the non-distributed setting. if any( stage.early_stopping_criterion is not None for stage in self.training_pipeline.pipeline_stages ): raise NotImplementedError( "Early stopping criterions are currently only allowed when using a single training worker, i.e." " no distributed (multi-GPU) training. If this is a feature you'd like please create an issue" " at https://github.com/allenai/allenact/issues or (even better) create a pull request with this " " feature and we'll be happy to review it." ) self.optimizer: optim.optimizer.Optimizer = ( self.training_pipeline.optimizer_builder( params=[p for p in self.actor_critic.parameters() if p.requires_grad] ) ) # noinspection PyProtectedMember self.lr_scheduler: Optional[optim.lr_scheduler._LRScheduler] = None if self.training_pipeline.lr_scheduler_builder is not None: self.lr_scheduler = self.training_pipeline.lr_scheduler_builder( optimizer=self.optimizer ) if self.is_distributed: # Tracks how many workers have finished their rollout self.num_workers_done = torch.distributed.PrefixStore( # type:ignore "num_workers_done", self.store ) # Tracks the number of steps taken by each worker in current rollout self.num_workers_steps = torch.distributed.PrefixStore( # type:ignore "num_workers_steps", self.store ) self.distributed_preemption_threshold = distributed_preemption_threshold # Flag for finished worker in current epoch self.offpolicy_epoch_done = torch.distributed.PrefixStore( # type:ignore "offpolicy_epoch_done", self.store ) else: self.num_workers_done = None self.num_workers_steps = None self.distributed_preemption_threshold = 1.0 self.offpolicy_epoch_done = None # Keeping track of training state self.tracking_info: Dict[str, List] = defaultdict(lambda: []) self.former_steps: Optional[int] = None self.last_log: Optional[int] = None self.last_save: Optional[int] = None # The `self._last_aggregated_train_task_metrics` attribute defined # below is used for early stopping criterion computations self._last_aggregated_train_task_metrics: ScalarMeanTracker = ( ScalarMeanTracker() ) self.first_local_worker_id = first_local_worker_id def advance_seed( self, seed: Optional[int], return_same_seed_per_worker=False ) -> Optional[int]: if seed is None: return seed seed = (seed ^ (self.training_pipeline.total_steps + 1)) % ( 2 ** 31 - 1 ) # same seed for all workers if (not return_same_seed_per_worker) and ( self.mode == TRAIN_MODE_STR or self.mode == TEST_MODE_STR ): return self.worker_seeds(self.num_workers, seed)[ self.worker_id ] # doesn't modify the current rng state else: return self.worker_seeds(1, seed)[0] # doesn't modify the current rng state def deterministic_seeds(self) -> None: if self.seed is not None: set_seed(self.advance_seed(self.seed)) # known state for all workers seeds = self.worker_seeds( self.num_samplers, None ) # use latest seed for workers and update rng state self.vector_tasks.set_seeds(seeds) def checkpoint_save(self, pipeline_stage_index: Optional[int] = None) -> str: model_path = os.path.join( self.checkpoints_dir, "exp_{}__stage_{:02d}__steps_{:012d}.pt".format( self.experiment_name, self.training_pipeline.current_stage_index if pipeline_stage_index is None else pipeline_stage_index, self.training_pipeline.total_steps, ), ) save_dict = { "model_state_dict": self.actor_critic.state_dict(), # type:ignore "total_steps": self.training_pipeline.total_steps, # Total steps including current stage "optimizer_state_dict": self.optimizer.state_dict(), # type: ignore "training_pipeline_state_dict": self.training_pipeline.state_dict(), "trainer_seed": self.seed, } if self.lr_scheduler is not None: save_dict["scheduler_state"] = cast( _LRScheduler, self.lr_scheduler ).state_dict() torch.save(save_dict, model_path) return model_path def checkpoint_load( self, ckpt: Union[str, Dict[str, Any]], restart_pipeline: bool = False ) -> Dict[str, Union[Dict[str, Any], torch.Tensor, float, int, str, List]]: ckpt = super().checkpoint_load(ckpt) self.training_pipeline.load_state_dict( cast(Dict[str, Any], ckpt["training_pipeline_state_dict"]) ) if restart_pipeline: self.training_pipeline.restart_pipeline() else: self.seed = cast(int, ckpt["trainer_seed"]) self.optimizer.load_state_dict(ckpt["optimizer_state_dict"]) # type: ignore if self.lr_scheduler is not None: self.lr_scheduler.load_state_dict(ckpt["scheduler_state"]) # type: ignore self.deterministic_seeds() return ckpt def _get_loss(self, loss_name) -> AbstractActorCriticLoss: assert ( loss_name in self.training_pipeline.named_losses ), "undefined referenced loss {}".format(loss_name) if isinstance(self.training_pipeline.named_losses[loss_name], Builder): return cast( Builder[AbstractActorCriticLoss], self.training_pipeline.named_losses[loss_name], )() else: return cast( AbstractActorCriticLoss, self.training_pipeline.named_losses[loss_name] ) def _load_losses(self, stage: PipelineStage): stage_losses: Dict[str, AbstractActorCriticLoss] = {} for loss_name in stage.loss_names: stage_losses[loss_name] = self._get_loss(loss_name) loss_weights_list = ( stage.loss_weights if stage.loss_weights is not None else [1.0] * len(stage.loss_names) ) stage_loss_weights = { name: weight for name, weight in zip(stage.loss_names, loss_weights_list) } return stage_losses, stage_loss_weights def _stage_value(self, stage: PipelineStage, field: str, allow_none: bool = False): if hasattr(stage, field) and getattr(stage, field) is not None: return getattr(stage, field) if ( hasattr(self.training_pipeline, field) and getattr(self.training_pipeline, field) is not None ): return getattr(self.training_pipeline, field) if ( hasattr(self.machine_params, field) and getattr(self.machine_params, field) is not None ): return getattr(self.machine_params, field) if allow_none: return None else: raise RuntimeError("missing value for {}".format(field)) @property def step_count(self): return self.training_pipeline.current_stage.steps_taken_in_stage @step_count.setter def step_count(self, val: int): self.training_pipeline.current_stage.steps_taken_in_stage = val @property def log_interval(self): return self.training_pipeline.metric_accumulate_interval @property def approx_steps(self): if self.is_distributed: # the actual number of steps gets synchronized after each rollout return ( self.step_count - self.former_steps ) * self.num_workers + self.former_steps else: return self.step_count # this is actually accurate def act(self, rollouts: RolloutStorage, dist_wrapper_class: Optional[type] = None): if self.training_pipeline.current_stage.teacher_forcing is not None: assert dist_wrapper_class is None dist_wrapper_class = partial( TeacherForcingDistr, action_space=self.actor_critic.action_space, num_active_samplers=self.num_active_samplers, approx_steps=self.approx_steps, teacher_forcing=self.training_pipeline.current_stage.teacher_forcing, tracking_info=self.tracking_info, ) actions, actor_critic_output, memory, step_observation = super().act( rollouts=rollouts, dist_wrapper_class=dist_wrapper_class ) self.step_count += self.num_active_samplers return actions, actor_critic_output, memory, step_observation def advantage_stats( self, advantages: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: r"""Computes the mean and variances of advantages (possibly over multiple workers). For multiple workers, this method is equivalent to first collecting all versions of advantages and then computing the mean and variance locally over that. # Parameters advantages: Tensors to compute mean and variance over. Assumed to be solely the worker's local copy of this tensor, the resultant mean and variance will be computed as though _all_ workers' versions of this tensor were concatenated together in distributed training. """ # Step count has already been updated with the steps from all workers global_rollout_steps = self.step_count - self.former_steps if self.is_distributed: summed_advantages = advantages.sum() dist.all_reduce(summed_advantages) mean = summed_advantages / global_rollout_steps summed_squares = (advantages - mean).pow(2).sum() dist.all_reduce(summed_squares) std = (summed_squares / (global_rollout_steps - 1)).sqrt() else: mean, std = advantages.mean(), advantages.std() return mean, std def distributed_weighted_sum( self, to_share: Union[torch.Tensor, float, int], weight: Union[torch.Tensor, float, int], ): """Weighted sum of scalar across distributed workers.""" if self.is_distributed: aggregate = torch.tensor(to_share * weight).to(self.device) dist.all_reduce(aggregate) return aggregate.item() else: if abs(1 - weight) > 1e-5: get_logger().warning( f"Scaling non-distributed value with weight {weight}" ) return torch.tensor(to_share * weight).item() def update(self, rollouts: RolloutStorage): advantages = rollouts.returns[:-1] - rollouts.value_preds[:-1] adv_mean, adv_std = self.advantage_stats(advantages) for e in range(self.training_pipeline.current_stage.update_repeats): data_generator = rollouts.recurrent_generator( advantages=advantages, adv_mean=adv_mean, adv_std=adv_std, num_mini_batch=self.training_pipeline.current_stage.num_mini_batch, ) for bit, batch in enumerate(data_generator): # masks is always [steps, samplers, 1]: num_rollout_steps, num_samplers = batch["masks"].shape[:2] bsize = int(num_rollout_steps * num_samplers) aggregate_bsize = self.distributed_weighted_sum(bsize, 1) actor_critic_output, memory = self.actor_critic( observations=batch["observations"], memory=batch["memory"], prev_actions=batch["prev_actions"], masks=batch["masks"], ) info: Dict[str, float] = {} current_pipeline_stage = self.training_pipeline.current_stage total_loss: Optional[torch.Tensor] = None for loss_name in self.training_pipeline.current_stage_losses: loss, loss_weight, loss_update_repeats = ( self.training_pipeline.current_stage_losses[loss_name], current_pipeline_stage.named_loss_weights[loss_name], current_pipeline_stage.named_loss_update_repeats[loss_name], ) if loss_update_repeats is not None and e >= loss_update_repeats: # Skip losses which should not be repeated more than `loss_update_repeats` times. continue loss_return = loss.loss( step_count=self.step_count, batch=batch, actor_critic_output=actor_critic_output, ) per_epoch_info = {} if len(loss_return) == 2: current_loss, current_info = loss_return elif len(loss_return) == 3: current_loss, current_info, per_epoch_info = loss_return else: raise NotImplementedError if total_loss is None: total_loss = loss_weight * current_loss else: total_loss = total_loss + loss_weight * current_loss for key, value in current_info.items(): info[f"{loss_name}/{key}"] = self.distributed_weighted_sum( value, bsize / aggregate_bsize ) for key, value in per_epoch_info.items(): value = self.distributed_weighted_sum( value, bsize / aggregate_bsize ) if self.training_pipeline.current_stage.update_repeats > 1: info[f"{loss_name}/{key}_epoch{e:02d}"] = value info[f"{loss_name}/{key}_combined"] = value else: info[f"{loss_name}/{key}"] = value assert ( total_loss is not None ), "No losses specified for training in stage {}".format( self.training_pipeline.current_stage_index ) total_loss_scalar = total_loss.item() if self.is_distributed: info["total_loss"] = self.distributed_weighted_sum( total_loss_scalar, bsize / aggregate_bsize ) info["total_loss"] = total_loss_scalar self.tracking_info["losses"].append(("losses", info, bsize)) to_track = { "lr": self.optimizer.param_groups[0]["lr"], "rollout_num_mini_batch": self.training_pipeline.current_stage.num_mini_batch, "rollout_epochs": self.training_pipeline.current_stage.update_repeats, "global_batch_size": aggregate_bsize, "worker_batch_size": bsize, } for k, v in to_track.items(): self.tracking_info[k].append((k, {k: v}, bsize)) self.backprop_step( total_loss=total_loss, local_to_global_batch_size_ratio=bsize / aggregate_bsize, ) # # TODO Unit test to ensure correctness of distributed infrastructure # state_dict = self.actor_critic.state_dict() # keys = sorted(list(state_dict.keys())) # get_logger().debug( # "worker {} param 0 {} param -1 {}".format( # self.worker_id, # state_dict[keys[0]].flatten()[0], # state_dict[keys[-1]].flatten()[-1], # ) # ) def make_offpolicy_iterator( self, data_iterator_builder: Callable[..., Iterator], ): stage = self.training_pipeline.current_stage if self.num_workers == 1: rollouts_per_worker: Sequence[int] = [self.num_samplers] else: rollouts_per_worker = self.num_samplers_per_worker # common seed for all workers (in case we wish to shuffle the full dataset before iterating on one partition) seed = self.advance_seed(self.seed, return_same_seed_per_worker=True) kwargs = stage.offpolicy_component.data_iterator_kwargs_generator( self.worker_id, rollouts_per_worker, seed ) offpolicy_iterator = data_iterator_builder(**kwargs) stage.offpolicy_memory.clear() if stage.offpolicy_epochs is None: stage.offpolicy_epochs = 0 else: stage.offpolicy_epochs += 1 if self.is_distributed: self.offpolicy_epoch_done.set("offpolicy_epoch_done", str(0)) dist.barrier() # sync return offpolicy_iterator def backprop_step( self, total_loss: torch.Tensor, local_to_global_batch_size_ratio: float = 1.0, ): self.optimizer.zero_grad() # type: ignore if isinstance(total_loss, torch.Tensor): total_loss.backward() if self.is_distributed: # From https://github.com/pytorch/pytorch/issues/43135 reductions, all_params = [], [] for p in self.actor_critic.parameters(): # you can also organize grads to larger buckets to make all_reduce more efficient if p.requires_grad: if p.grad is None: p.grad = torch.zeros_like(p.data) else: # local_global_batch_size_tuple is not None, since we're distributed: p.grad = p.grad * local_to_global_batch_size_ratio reductions.append( dist.all_reduce(p.grad, async_op=True,) # sum ) # synchronize all_params.append(p) for reduction, p in zip(reductions, all_params): reduction.wait() nn.utils.clip_grad_norm_( self.actor_critic.parameters(), self.training_pipeline.current_stage.max_grad_norm, # type: ignore ) self.optimizer.step() # type: ignore def offpolicy_update( self, updates: int, data_iterator: Optional[Iterator], data_iterator_builder: Callable[..., Iterator], ) -> Iterator: stage = self.training_pipeline.current_stage current_steps = 0 if self.is_distributed: self.num_workers_steps.set("steps", str(0)) dist.barrier() for e in range(updates): if data_iterator is None: data_iterator = self.make_offpolicy_iterator(data_iterator_builder) try: batch = next(data_iterator) except StopIteration: batch = None if self.is_distributed: self.offpolicy_epoch_done.add("offpolicy_epoch_done", 1) if self.is_distributed: dist.barrier() # sync after every batch! if int(self.offpolicy_epoch_done.get("offpolicy_epoch_done")) != 0: batch = None if batch is None: data_iterator = self.make_offpolicy_iterator(data_iterator_builder) # TODO: (batch, bsize) from iterator instead of waiting for the loss? batch = next(data_iterator) batch = to_device_recursively(batch, device=self.device, inplace=True) info: Dict[str, float] = dict() info["lr"] = self.optimizer.param_groups[0]["lr"] # type: ignore bsize: Optional[int] = None total_loss: Optional[torch.Tensor] = None for loss_name in stage.offpolicy_named_loss_weights: loss, loss_weight = ( self.training_pipeline.current_stage_offpolicy_losses[loss_name], stage.offpolicy_named_loss_weights[loss_name], ) current_loss, current_info, stage.offpolicy_memory, bsize = loss.loss( model=self.actor_critic, batch=batch, step_count=self.step_count, memory=stage.offpolicy_memory, ) if total_loss is None: total_loss = loss_weight * current_loss else: total_loss = total_loss + loss_weight * current_loss for key in current_info: info["offpolicy/" + loss_name + "/" + key] = current_info[key] assert ( total_loss is not None ), "No offline losses specified for training in stage {}".format( self.training_pipeline.current_stage_index ) info["offpolicy/total_loss"] = total_loss.item() info["offpolicy/epoch"] = stage.offpolicy_epochs self.tracking_info["offpolicy_update"].append( ("offpolicy_update_package", info, bsize) ) aggregate_bsize = self.distributed_weighted_sum(bsize, 1) self.backprop_step( total_loss=total_loss, local_to_global_batch_size_ratio=bsize / aggregate_bsize, ) stage.offpolicy_memory = detach_recursively( input=stage.offpolicy_memory, inplace=True ) if self.is_distributed: self.num_workers_steps.add("steps", bsize) # counts samplers x steps else: current_steps += bsize if self.is_distributed: dist.barrier() stage.offpolicy_steps_taken_in_stage += int( self.num_workers_steps.get("steps") ) dist.barrier() else: stage.offpolicy_steps_taken_in_stage += current_steps return data_iterator def aggregate_and_send_logging_package(self, tracking_info: Dict[str, List]): logging_pkg = LoggingPackage( mode=self.mode, training_steps=self.training_pipeline.total_steps, off_policy_steps=self.training_pipeline.total_offpolicy_steps, pipeline_stage=self.training_pipeline.current_stage_index, ) self.aggregate_task_metrics(logging_pkg=logging_pkg) if self.mode == TRAIN_MODE_STR: # Technically self.mode should always be "train" here (as this is the training engine), # this conditional is defensive self._last_aggregated_train_task_metrics.add_scalars( scalars=logging_pkg.metrics_tracker.means(), n=logging_pkg.metrics_tracker.counts(), ) for (info_type, train_info_dict, n) in itertools.chain(*tracking_info.values()): if n < 0: get_logger().warning( f"Obtained a train_info_dict with {n} elements." f" Full info: ({info_type}, {train_info_dict}, {n})." ) elif info_type == "losses": logging_pkg.add_train_info_dict( train_info_dict={ f"losses/{k}": v for k, v in train_info_dict.items() }, n=n, ) else: logging_pkg.add_train_info_dict(train_info_dict=train_info_dict, n=n) self.results_queue.put(logging_pkg) def _save_checkpoint_then_send_checkpoint_for_validation_and_update_last_save_counter( self, pipeline_stage_index: Optional[int] = None ): self.deterministic_seeds() if self.worker_id == self.first_local_worker_id: model_path = self.checkpoint_save(pipeline_stage_index=pipeline_stage_index) if self.checkpoints_queue is not None: self.checkpoints_queue.put(("eval", model_path)) self.last_save = self.training_pipeline.total_steps def run_pipeline(self, rollouts: RolloutStorage): self.initialize_rollouts(rollouts) self.tracking_info.clear() self.last_log = self.training_pipeline.total_steps if self.last_save is None: self.last_save = self.training_pipeline.total_steps offpolicy_data_iterator: Optional[Iterator] = None should_save_checkpoints = ( self.checkpoints_dir != "" and self.training_pipeline.current_stage.save_interval is not None and self.training_pipeline.current_stage.save_interval > 0 ) already_saved_checkpoint = False while True: pipeline_stage_changed = self.training_pipeline.before_rollout( train_metrics=self._last_aggregated_train_task_metrics ) self._last_aggregated_train_task_metrics.reset() # Here we handle saving a checkpoint after a pipeline stage ends. We # do this when # (1) after every pipeline stage if the `self.save_ckpt_after_every_pipeline_stage` # boolean is True, # (2) we have reached the end of ALL training (i.e. all stages are complete) # We handle saving every `save_interval` steps training_is_complete = self.training_pipeline.current_stage is None if ( should_save_checkpoints and ( # Might happen if the `save_interval` was hit just previously, see below not already_saved_checkpoint ) and pipeline_stage_changed and ( # Don't save at start self.training_pipeline.current_stage_index != 0 ) and (self.save_ckpt_after_every_pipeline_stage or training_is_complete) ): self._save_checkpoint_then_send_checkpoint_for_validation_and_update_last_save_counter( pipeline_stage_index=self.training_pipeline.current_stage_index - 1 if not training_is_complete else len(self.training_pipeline.pipeline_stages) - 1 ) already_saved_checkpoint = False if training_is_complete: break if self.is_distributed: self.num_workers_done.set("done", str(0)) self.num_workers_steps.set("steps", str(0)) # Ensure all workers are done before incrementing num_workers_{steps, done} dist.barrier() self.former_steps = self.step_count for step in range(self.training_pipeline.current_stage.num_steps): num_paused = self.collect_rollout_step(rollouts=rollouts) # Make sure we've collected the entire set of tensors (including memory) if rollouts.num_steps != self.training_pipeline.current_stage.num_steps: rollouts.unnarrow(unnarrow_to_maximum_size=True) assert rollouts.num_steps == self.training_pipeline.num_steps rollouts.narrow(self.training_pipeline.current_stage.num_steps) if num_paused > 0: raise NotImplementedError( "When trying to get a new task from a task sampler (using the `.next_task()` method)" " the task sampler returned `None`. This is not currently supported during training" " (and almost certainly a bug in the implementation of the task sampler or in the " " initialization of the task sampler for training)." ) if self.is_distributed: # Preempt stragglers # Each worker will stop collecting steps for the current rollout whenever a # 100 * distributed_preemption_threshold percentage of workers are finished collecting their # rollout steps and we have collected at least 25% but less than 90% of the steps. num_done = int(self.num_workers_done.get("done")) if ( num_done > self.distributed_preemption_threshold * self.num_workers and 0.25 * self.training_pipeline.current_stage.num_steps <= step < 0.9 * self.training_pipeline.current_stage.num_steps ): get_logger().debug( "{} worker {} narrowed rollouts after {} steps (out of {}) with {} workers done".format( self.mode, self.worker_id, rollouts.step, step, num_done ) ) rollouts.narrow() break with torch.no_grad(): actor_critic_output, _ = self.actor_critic( observations=rollouts.pick_observation_step(-1), memory=rollouts.pick_memory_step(-1), prev_actions=su.unflatten( self.actor_critic.action_space, rollouts.prev_actions[-1:] ), masks=rollouts.masks[-1:], ) if self.is_distributed: # Mark that a worker is done collecting experience self.num_workers_done.add("done", 1) self.num_workers_steps.add("steps", self.step_count - self.former_steps) # Ensure all workers are done before updating step counter dist.barrier() ndone = int(self.num_workers_done.get("done")) assert ( ndone == self.num_workers ), "# workers done {} != # workers {}".format(ndone, self.num_workers) # get the actual step_count self.step_count = ( int(self.num_workers_steps.get("steps")) + self.former_steps ) rollouts.compute_returns( next_value=actor_critic_output.values.detach(), use_gae=self.training_pipeline.current_stage.use_gae, gamma=self.training_pipeline.current_stage.gamma, tau=self.training_pipeline.current_stage.gae_lambda, ) self.update(rollouts=rollouts) # here we synchronize self.training_pipeline.rollout_count += 1 rollouts.after_update() if self.training_pipeline.current_stage.offpolicy_component is not None: offpolicy_component = ( self.training_pipeline.current_stage.offpolicy_component ) offpolicy_data_iterator = self.offpolicy_update( updates=offpolicy_component.updates, data_iterator=offpolicy_data_iterator, data_iterator_builder=offpolicy_component.data_iterator_builder, ) if self.lr_scheduler is not None: self.lr_scheduler.step(epoch=self.training_pipeline.total_steps) if ( self.training_pipeline.total_steps - self.last_log >= self.log_interval or self.training_pipeline.current_stage.is_complete ): self.aggregate_and_send_logging_package( tracking_info=self.tracking_info ) self.tracking_info.clear() self.last_log = self.training_pipeline.total_steps # Here we handle saving a checkpoint every `save_interval` steps, saving after # a pipeline stage completes is controlled above if should_save_checkpoints and ( self.training_pipeline.total_steps - self.last_save >= self.training_pipeline.current_stage.save_interval ): self._save_checkpoint_then_send_checkpoint_for_validation_and_update_last_save_counter() already_saved_checkpoint = True if ( self.training_pipeline.current_stage.advance_scene_rollout_period is not None ) and ( self.training_pipeline.rollout_count % self.training_pipeline.current_stage.advance_scene_rollout_period == 0 ): get_logger().info( "{} worker {} Force advance tasks with {} rollouts".format( self.mode, self.worker_id, self.training_pipeline.rollout_count ) ) self.vector_tasks.next_task(force_advance_scene=True) self.initialize_rollouts(rollouts) def train( self, checkpoint_file_name: Optional[str] = None, restart_pipeline: bool = False ): assert ( self.mode == TRAIN_MODE_STR ), "train only to be called from a train instance" training_completed_successfully = False try: if checkpoint_file_name is not None: self.checkpoint_load(checkpoint_file_name, restart_pipeline) self.run_pipeline( RolloutStorage( num_steps=self.training_pipeline.num_steps, num_samplers=self.num_samplers, actor_critic=self.actor_critic if isinstance(self.actor_critic, ActorCriticModel) else cast(ActorCriticModel, self.actor_critic.module), ) ) training_completed_successfully = True except KeyboardInterrupt: get_logger().info( "KeyboardInterrupt. Terminating {} worker {}".format( self.mode, self.worker_id ) ) except Exception: get_logger().error( "Encountered Exception. Terminating {} worker {}".format( self.mode, self.worker_id ) ) get_logger().exception(traceback.format_exc()) finally: if training_completed_successfully: if self.worker_id == 0: self.results_queue.put(("train_stopped", 0)) get_logger().info( "{} worker {} COMPLETE".format(self.mode, self.worker_id) ) else: self.results_queue.put(("train_stopped", 1 + self.worker_id)) self.close() class OnPolicyInference(OnPolicyRLEngine): def __init__( self, config: ExperimentConfig, results_queue: mp.Queue, # to output aggregated results checkpoints_queue: mp.Queue, # to write/read (trainer/evaluator) ready checkpoints checkpoints_dir: str = "", mode: str = "valid", # or "test" seed: Optional[int] = None, deterministic_cudnn: bool = False, mp_ctx: Optional[BaseContext] = None, device: Union[str, torch.device, int] = "cpu", deterministic_agents: bool = False, worker_id: int = 0, num_workers: int = 1, distributed_port: int = 0, enforce_expert: bool = False, **kwargs, ): super().__init__( experiment_name="", config=config, results_queue=results_queue, checkpoints_queue=checkpoints_queue, checkpoints_dir=checkpoints_dir, mode=mode, seed=seed, deterministic_cudnn=deterministic_cudnn, mp_ctx=mp_ctx, deterministic_agents=deterministic_agents, device=device, worker_id=worker_id, num_workers=num_workers, distributed_port=distributed_port, **kwargs, ) self.enforce_expert = enforce_expert def run_eval( self, checkpoint_file_path: str, rollout_steps: int = 100, visualizer: Optional[VizSuite] = None, update_secs: float = 20.0, verbose: bool = False, ) -> LoggingPackage: assert self.actor_critic is not None, "called run_eval with no actor_critic" ckpt = self.checkpoint_load(checkpoint_file_path) total_steps = cast(int, ckpt["total_steps"]) rollouts = RolloutStorage( num_steps=rollout_steps, num_samplers=self.num_samplers, actor_critic=cast(ActorCriticModel, self.actor_critic), ) if visualizer is not None: assert visualizer.empty() num_paused = self.initialize_rollouts(rollouts, visualizer=visualizer) assert num_paused == 0, f"{num_paused} tasks paused when initializing eval" num_tasks = sum( self.vector_tasks.command( "sampler_attr", ["length"] * self.num_active_samplers ) ) + ( # We need to add this as the first tasks have already been sampled self.num_active_samplers ) # get_logger().debug( # "worker {} number of tasks {}".format(self.worker_id, num_tasks) # ) steps = 0 self.actor_critic.eval() last_time: float = time.time() init_time: float = last_time frames: int = 0 if verbose: get_logger().info( f"[{self.mode}] worker {self.worker_id}: running evaluation on {num_tasks} tasks" f" for ckpt {checkpoint_file_path}" ) if self.enforce_expert: dist_wrapper_class = partial( TeacherForcingDistr, action_space=self.actor_critic.action_space, num_active_samplers=None, approx_steps=None, teacher_forcing=None, tracking_info=None, always_enforce=True, ) else: dist_wrapper_class = None logging_pkg = LoggingPackage(mode=self.mode, training_steps=total_steps) while self.num_active_samplers > 0: frames += self.num_active_samplers self.collect_rollout_step( rollouts, visualizer=visualizer, dist_wrapper_class=dist_wrapper_class ) steps += 1 if steps % rollout_steps == 0: rollouts.after_update() cur_time = time.time() if self.num_active_samplers == 0 or cur_time - last_time >= update_secs: self.aggregate_task_metrics(logging_pkg=logging_pkg) if verbose: npending: int lengths: List[int] if self.num_active_samplers > 0: lengths = self.vector_tasks.command( "sampler_attr", ["length"] * self.num_active_samplers, ) npending = sum(lengths) else: lengths = [] npending = 0 est_time_to_complete = ( "{:.2f}".format( ( (cur_time - init_time) * (npending / (num_tasks - npending)) / 60 ) ) if npending != num_tasks else "???" ) get_logger().info( f"[{self.mode}] worker {self.worker_id}:" f" for ckpt {checkpoint_file_path}" f" {frames / (cur_time - init_time):.1f} fps," f" {npending}/{num_tasks} tasks pending ({lengths})." f" ~{est_time_to_complete} min. to complete." ) if logging_pkg.num_non_empty_metrics_dicts_added != 0: get_logger().info( ", ".join( [ f"[{self.mode}] worker {self.worker_id}:" f" num_{self.mode}_tasks_complete {logging_pkg.num_non_empty_metrics_dicts_added}", *[ f"{k} {v:.3g}" for k, v in logging_pkg.metrics_tracker.means().items() ], ] ) ) last_time = cur_time get_logger().info( "worker {}: {} complete, all task samplers paused".format( self.mode, self.worker_id ) ) self.vector_tasks.resume_all() self.vector_tasks.set_seeds(self.worker_seeds(self.num_samplers, self.seed)) self.vector_tasks.reset_all() self.aggregate_task_metrics(logging_pkg=logging_pkg) logging_pkg.viz_data = ( visualizer.read_and_reset() if visualizer is not None else None ) logging_pkg.checkpoint_file_name = checkpoint_file_path return logging_pkg @staticmethod def skip_to_latest(checkpoints_queue: mp.Queue, command: Optional[str], data): assert ( checkpoints_queue is not None ), "Attempting to process checkpoints queue but this queue is `None`." cond = True while cond: sentinel = ("skip.AUTO.sentinel", time.time()) checkpoints_queue.put( sentinel ) # valid since a single valid process is the only consumer forwarded = False while not forwarded: new_command: Optional[str] new_data: Any ( new_command, new_data, ) = checkpoints_queue.get() # block until next command arrives if new_command == command: data = new_data elif new_command == sentinel[0]: assert ( new_data == sentinel[1] ), "wrong sentinel found: {} vs {}".format(new_data, sentinel[1]) forwarded = True else: raise ValueError( "Unexpected command {} with data {}".format( new_command, new_data ) ) time.sleep(1) cond = not checkpoints_queue.empty() return data def process_checkpoints(self): assert ( self.mode != TRAIN_MODE_STR ), "process_checkpoints only to be called from a valid or test instance" assert ( self.checkpoints_queue is not None ), "Attempting to process checkpoints queue but this queue is `None`." visualizer: Optional[VizSuite] = None finalized = False try: while True: command: Optional[str] ckp_file_path: Any ( command, ckp_file_path, ) = self.checkpoints_queue.get() # block until first command arrives # get_logger().debug( # "{} {} command {} data {}".format( # self.mode, self.worker_id, command, data # ) # ) if command == "eval": if self.num_samplers > 0: if self.mode == VALID_MODE_STR: # skip to latest using # 1. there's only consumer in valid # 2. there's no quit/exit/close message issued by runner nor trainer ckp_file_path = self.skip_to_latest( checkpoints_queue=self.checkpoints_queue, command=command, data=ckp_file_path, ) if ( visualizer is None and self.machine_params.visualizer is not None ): visualizer = self.machine_params.visualizer eval_package = self.run_eval( checkpoint_file_path=ckp_file_path, visualizer=visualizer, verbose=True, update_secs=20 if self.mode == TEST_MODE_STR else 5 * 60, ) self.results_queue.put(eval_package) if self.is_distributed: dist.barrier() else: self.results_queue.put( LoggingPackage(mode=self.mode, training_steps=None,) ) elif command in ["quit", "exit", "close"]: finalized = True break else: raise NotImplementedError() except KeyboardInterrupt: get_logger().info( "KeyboardInterrupt. Terminating {} worker {}".format( self.mode, self.worker_id ) ) except Exception: get_logger().error( "Encountered Exception. Terminating {} worker {}".format( self.mode, self.worker_id ) ) get_logger().error(traceback.format_exc()) finally: if finalized: if self.mode == TEST_MODE_STR: self.results_queue.put(("test_stopped", 0)) get_logger().info( "{} worker {} complete".format(self.mode, self.worker_id) ) else: if self.mode == TEST_MODE_STR: self.results_queue.put(("test_stopped", self.worker_id + 1)) self.close(verbose=self.mode == TEST_MODE_STR)
ask4help-main
allenact/algorithms/onpolicy_sync/engine.py
# Original work Copyright (c) Facebook, Inc. and its affiliates. # Modified work Copyright (c) Allen Institute for AI # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import signal import time import traceback from multiprocessing.connection import Connection from multiprocessing.context import BaseContext from multiprocessing.process import BaseProcess from threading import Thread from typing import ( Any, Callable, List, Optional, Sequence, Set, Tuple, Union, Dict, Generator, Iterator, cast, ) import numpy as np from gym.spaces.dict import Dict as SpaceDict from setproctitle import setproctitle as ptitle from allenact.base_abstractions.misc import RLStepResult from allenact.base_abstractions.task import TaskSampler from allenact.utils.misc_utils import partition_sequence from allenact.utils.system import get_logger from allenact.utils.tensor_utils import tile_images try: # Use torch.multiprocessing if we can. # We have yet to find a reason to not use it and # you are required to use it when sending a torch.Tensor # between processes import torch.multiprocessing as mp except ImportError: import multiprocessing as mp # type: ignore DEFAULT_MP_CONTEXT_TYPE = "forkserver" COMPLETE_TASK_METRICS_KEY = "__AFTER_TASK_METRICS__" STEP_COMMAND = "step" NEXT_TASK_COMMAND = "next_task" RENDER_COMMAND = "render" CLOSE_COMMAND = "close" OBSERVATION_SPACE_COMMAND = "observation_space" ACTION_SPACE_COMMAND = "action_space" CALL_COMMAND = "call" SAMPLER_COMMAND = "call_sampler" ATTR_COMMAND = "attr" SAMPLER_ATTR_COMMAND = "sampler_attr" RESET_COMMAND = "reset" SEED_COMMAND = "seed" PAUSE_COMMAND = "pause" RESUME_COMMAND = "resume" class DelaySignalHandling: # Modified from https://stackoverflow.com/a/21919644 def __enter__(self): self.int_signal_received: Optional[Any] = None self.term_signal_received: Optional[Any] = None self.old_int_handler = signal.signal(signal.SIGINT, self.int_handler) self.old_term_handler = signal.signal(signal.SIGTERM, self.term_handler) def int_handler(self, sig, frame): self.int_signal_received = (sig, frame) get_logger().debug("SIGINT received. Delaying KeyboardInterrupt.") def term_handler(self, sig, frame): self.term_signal_received = (sig, frame) get_logger().debug("SIGTERM received. Delaying termination.") def __exit__(self, type, value, traceback): signal.signal(signal.SIGINT, self.old_int_handler) signal.signal(signal.SIGTERM, self.old_term_handler) if self.term_signal_received: # For some reason there appear to be cases where the original termination # handler is not callable. It is unclear to me exactly why this is the case # but here we add a guard to double check that the handler is callable and, # if it's not, we re-send the termination signal to the process and let # the python internals handle it (note that we've already reset the termination # handler to what it was originaly above in the signal.signal(...) code). if callable(self.old_term_handler): self.old_term_handler(*self.term_signal_received) else: get_logger().warning( "Termination handler could not be called after delaying signal handling." f" Resending the SIGTERM signal. Last (sig, frame) == ({self.term_signal_received})." ) os.kill(os.getpid(), signal.SIGTERM) if self.int_signal_received: if callable(self.old_int_handler): self.old_int_handler(*self.int_signal_received) else: signal.default_int_handler(*self.int_signal_received) class VectorSampledTasks(object): """Vectorized collection of tasks. Creates multiple processes where each process runs its own TaskSampler. Each process generates one Task from its TaskSampler at a time and this class allows for interacting with these tasks in a vectorized manner. When a task on a process completes, the process samples another task from its task sampler. All the tasks are synchronized (for step and new_task methods). # Attributes make_sampler_fn : function which creates a single TaskSampler. sampler_fn_args : sequence of dictionaries describing the args to pass to make_sampler_fn on each individual process. auto_resample_when_done : automatically sample a new Task from the TaskSampler when the Task completes. If False, a new Task will not be resampled until all Tasks on all processes have completed. This functionality is provided for seamless training of vectorized Tasks. multiprocessing_start_method : the multiprocessing method used to spawn worker processes. Valid methods are ``{'spawn', 'forkserver', 'fork'}`` ``'forkserver'`` is the recommended method as it works well with CUDA. If ``'fork'`` is used, the subproccess must be started before any other GPU useage. """ observation_space: SpaceDict _workers: List[Union[mp.Process, Thread, BaseProcess]] _is_waiting: bool _num_task_samplers: int _auto_resample_when_done: bool _mp_ctx: BaseContext _connection_read_fns: List[Callable[[], Any]] _connection_write_fns: List[Callable[[Any], None]] def __init__( self, make_sampler_fn: Callable[..., TaskSampler], sampler_fn_args: Sequence[Dict[str, Any]] = None, auto_resample_when_done: bool = True, multiprocessing_start_method: Optional[str] = "forkserver", mp_ctx: Optional[BaseContext] = None, should_log: bool = True, max_processes: Optional[int] = None, ) -> None: self._is_waiting = False self._is_closed = True self.should_log = should_log self.max_processes = max_processes assert ( sampler_fn_args is not None and len(sampler_fn_args) > 0 ), "number of processes to be created should be greater than 0" self._num_task_samplers = len(sampler_fn_args) self._num_processes = ( self._num_task_samplers if max_processes is None else min(max_processes, self._num_task_samplers) ) self._auto_resample_when_done = auto_resample_when_done assert (multiprocessing_start_method is None) != ( mp_ctx is None ), "Exactly one of `multiprocessing_start_method`, and `mp_ctx` must be not None." if multiprocessing_start_method is not None: assert multiprocessing_start_method in self._valid_start_methods, ( "multiprocessing_start_method must be one of {}. Got '{}'" ).format(self._valid_start_methods, multiprocessing_start_method) self._mp_ctx = mp.get_context(multiprocessing_start_method) else: self._mp_ctx = cast(BaseContext, mp_ctx) self.npaused_per_process = [0] * self._num_processes self.sampler_index_to_process_ind_and_subprocess_ind: Optional[ List[List[int]] ] = None self._reset_sampler_index_to_process_ind_and_subprocess_ind() self._workers: Optional[List] = None for args in sampler_fn_args: args["mp_ctx"] = self._mp_ctx ( self._connection_read_fns, self._connection_write_fns, ) = self._spawn_workers( # noqa make_sampler_fn=make_sampler_fn, sampler_fn_args_list=[ args_list for args_list in self._partition_to_processes(sampler_fn_args) ], ) self._is_closed = False for write_fn in self._connection_write_fns: write_fn((OBSERVATION_SPACE_COMMAND, None)) observation_spaces = [ space for read_fn in self._connection_read_fns for space in read_fn() ] if any(os is None for os in observation_spaces): raise NotImplementedError( "It appears that the `all_observation_spaces_equal`" " is not True for some task sampler created by" " VectorSampledTasks. This is not currently supported." ) if any(observation_spaces[0] != os for os in observation_spaces): raise NotImplementedError( "It appears that the observation spaces of the samplers" " created in VectorSampledTasks are not equal." " This is not currently supported." ) self.observation_space = observation_spaces[0] for write_fn in self._connection_write_fns: write_fn((ACTION_SPACE_COMMAND, None)) self.action_spaces = [ space for read_fn in self._connection_read_fns for space in read_fn() ] def _reset_sampler_index_to_process_ind_and_subprocess_ind(self): self.sampler_index_to_process_ind_and_subprocess_ind = [ [i, j] for i, part in enumerate( partition_sequence([1] * self._num_task_samplers, self._num_processes) ) for j in range(len(part)) ] def _partition_to_processes(self, seq: Union[Iterator, Sequence]): subparts_list: List[List] = [[] for _ in range(self._num_processes)] seq = list(seq) assert len(seq) == len(self.sampler_index_to_process_ind_and_subprocess_ind) for sampler_index, (process_ind, subprocess_ind) in enumerate( self.sampler_index_to_process_ind_and_subprocess_ind ): assert len(subparts_list[process_ind]) == subprocess_ind subparts_list[process_ind].append(seq[sampler_index]) return subparts_list @property def is_closed(self) -> bool: """Has the vector task been closed.""" return self._is_closed @property def num_unpaused_tasks(self) -> int: """Number of unpaused processes. # Returns Number of unpaused processes. """ return self._num_task_samplers - sum(self.npaused_per_process) @property def mp_ctx(self): """Get the multiprocessing process used by the vector task. # Returns The multiprocessing context. """ return self._mp_ctx @staticmethod def _task_sampling_loop_worker( worker_id: Union[int, str], connection_read_fn: Callable, connection_write_fn: Callable, make_sampler_fn: Callable[..., TaskSampler], sampler_fn_args_list: List[Dict[str, Any]], auto_resample_when_done: bool, should_log: bool, child_pipe: Optional[Connection] = None, parent_pipe: Optional[Connection] = None, ) -> None: """process worker for creating and interacting with the Tasks/TaskSampler.""" ptitle("VectorSampledTask: {}".format(worker_id)) sp_vector_sampled_tasks = SingleProcessVectorSampledTasks( make_sampler_fn=make_sampler_fn, sampler_fn_args_list=sampler_fn_args_list, auto_resample_when_done=auto_resample_when_done, should_log=should_log, ) if parent_pipe is not None: parent_pipe.close() try: while True: read_input = connection_read_fn() with DelaySignalHandling(): # Delaying signal handling here is necessary to ensure that we don't # (when processing a SIGTERM/SIGINT signal) attempt to send data to # a generator while it is already processing other data. if len(read_input) == 3: sampler_index, command, data = read_input assert ( command != CLOSE_COMMAND ), "Must close all processes at once." assert ( command != RESUME_COMMAND ), "Must resume all task samplers at once." if command == PAUSE_COMMAND: sp_vector_sampled_tasks.pause_at( sampler_index=sampler_index ) connection_write_fn("done") else: connection_write_fn( sp_vector_sampled_tasks.command_at( sampler_index=sampler_index, command=command, data=data, ) ) else: commands, data_list = read_input assert ( commands != PAUSE_COMMAND ), "Cannot pause all task samplers at once." if commands == CLOSE_COMMAND: sp_vector_sampled_tasks.close() break elif commands == RESUME_COMMAND: sp_vector_sampled_tasks.resume_all() connection_write_fn("done") else: if isinstance(commands, str): commands = [ commands ] * sp_vector_sampled_tasks.num_unpaused_tasks connection_write_fn( sp_vector_sampled_tasks.command( commands=commands, data_list=data_list ) ) except KeyboardInterrupt as e: if should_log: get_logger().info(f"Worker {worker_id} KeyboardInterrupt") except Exception as e: get_logger().error(traceback.format_exc()) raise e finally: if child_pipe is not None: child_pipe.close() if should_log: get_logger().info(f"Worker {worker_id} closing.") def _spawn_workers( self, make_sampler_fn: Callable[..., TaskSampler], sampler_fn_args_list: Sequence[Sequence[Dict[str, Any]]], ) -> Tuple[List[Callable[[], Any]], List[Callable[[Any], None]]]: parent_connections, worker_connections = zip( *[self._mp_ctx.Pipe(duplex=True) for _ in range(self._num_processes)] ) self._workers = [] k = 0 id: Union[int, str] for id, stuff in enumerate( zip(worker_connections, parent_connections, sampler_fn_args_list) ): worker_conn, parent_conn, current_sampler_fn_args_list = stuff # type: ignore if len(current_sampler_fn_args_list) != 1: id = "{}({}-{})".format( id, k, k + len(current_sampler_fn_args_list) - 1 ) k += len(current_sampler_fn_args_list) if self.should_log: get_logger().info( "Starting {}-th VectorSampledTask worker with args {}".format( id, current_sampler_fn_args_list ) ) ps = self._mp_ctx.Process( # type: ignore target=self._task_sampling_loop_worker, args=( id, worker_conn.recv, worker_conn.send, make_sampler_fn, current_sampler_fn_args_list, self._auto_resample_when_done, self.should_log, worker_conn, parent_conn, ), ) self._workers.append(ps) ps.daemon = True ps.start() worker_conn.close() time.sleep( 0.1 ) # Useful to ensure things don't lock up when spawning many envs return ( [p.recv for p in parent_connections], [p.send for p in parent_connections], ) def next_task(self, **kwargs): """Move to the the next Task for all TaskSamplers. # Parameters kwargs : key word arguments passed to the `next_task` function of the samplers. # Returns List of initial observations for each of the new tasks. """ return self.command( commands=NEXT_TASK_COMMAND, data_list=[kwargs] * self.num_unpaused_tasks ) def get_observations(self): """Get observations for all unpaused tasks. # Returns List of observations for each of the unpaused tasks. """ return self.call(["get_observations"] * self.num_unpaused_tasks,) def command_at( self, sampler_index: int, command: str, data: Optional[Any] = None ) -> Any: """Runs the command on the selected task and returns the result. # Parameters # Returns Result of the command. """ self._is_waiting = True ( process_ind, subprocess_ind, ) = self.sampler_index_to_process_ind_and_subprocess_ind[sampler_index] self._connection_write_fns[process_ind]((subprocess_ind, command, data)) result = self._connection_read_fns[process_ind]() self._is_waiting = False return result def call_at( self, sampler_index: int, function_name: str, function_args: Optional[List[Any]] = None, ) -> Any: """Calls a function (which is passed by name) on the selected task and returns the result. # Parameters index : Which task to call the function on. function_name : The name of the function to call on the task. function_args : Optional function args. # Returns Result of calling the function. """ return self.command_at( sampler_index=sampler_index, command=CALL_COMMAND, data=(function_name, function_args), ) def next_task_at(self, sampler_index: int) -> List[RLStepResult]: """Move to the the next Task from the TaskSampler in index_process process in the vector. # Parameters index_process : Index of the process to be reset. # Returns List of length one containing the observations the newly sampled task. """ return [ self.command_at( sampler_index=sampler_index, command=NEXT_TASK_COMMAND, data=None ) ] def step_at(self, sampler_index: int, action: Any) -> List[RLStepResult]: """Step in the index_process task in the vector. # Parameters sampler_index : Index of the sampler to be reset. action : The action to take. # Returns List containing the output of step method on the task in the indexed process. """ return [ self.command_at( sampler_index=sampler_index, command=STEP_COMMAND, data=action ) ] def async_step(self, actions: Sequence[Any]) -> None: """Asynchronously step in the vectorized Tasks. # Parameters actions : actions to be performed in the vectorized Tasks. """ self._is_waiting = True for write_fn, action in zip( self._connection_write_fns, self._partition_to_processes(actions) ): write_fn((STEP_COMMAND, action)) def wait_step(self) -> List[Dict[str, Any]]: """Wait until all the asynchronized processes have synchronized.""" observations = [] for read_fn in self._connection_read_fns: observations.extend(read_fn()) self._is_waiting = False return observations def step(self, actions: Sequence[Any]): """Perform actions in the vectorized tasks. # Parameters actions: List of size _num_samplers containing action to be taken in each task. # Returns List of outputs from the step method of tasks. """ self.async_step(actions) return self.wait_step() def reset_all(self): """Reset all task samplers to their initial state (except for the RNG seed).""" self.command(commands=RESET_COMMAND, data_list=None) def set_seeds(self, seeds: List[int]): """Sets new tasks' RNG seeds. # Parameters seeds: List of size _num_samplers containing new RNG seeds. """ self.command(commands=SEED_COMMAND, data_list=seeds) def close(self) -> None: if self._is_closed: return if self._is_waiting: for read_fn in self._connection_read_fns: try: read_fn() except Exception: pass for write_fn in self._connection_write_fns: try: write_fn((CLOSE_COMMAND, None)) except Exception: pass for process in self._workers: try: process.join(timeout=0.1) except Exception: pass self._is_closed = True def pause_at(self, sampler_index: int) -> None: """Pauses computation on the Task in process `index` without destroying the Task. This is useful for not needing to call steps on all Tasks when only some are active (for example during the last samples of running eval). # Parameters index : which process to pause. All indexes after this one will be shifted down by one. """ if self._is_waiting: for read_fn in self._connection_read_fns: read_fn() ( process_ind, subprocess_ind, ) = self.sampler_index_to_process_ind_and_subprocess_ind[sampler_index] self.command_at(sampler_index=sampler_index, command=PAUSE_COMMAND, data=None) for i in range( sampler_index + 1, len(self.sampler_index_to_process_ind_and_subprocess_ind) ): other_process_and_sub_process_inds = self.sampler_index_to_process_ind_and_subprocess_ind[ i ] if other_process_and_sub_process_inds[0] == process_ind: other_process_and_sub_process_inds[1] -= 1 else: break self.sampler_index_to_process_ind_and_subprocess_ind.pop(sampler_index) self.npaused_per_process[process_ind] += 1 def resume_all(self) -> None: """Resumes any paused processes.""" self._is_waiting = True for connection_write_fn in self._connection_write_fns: connection_write_fn((RESUME_COMMAND, None)) for connection_read_fn in self._connection_read_fns: connection_read_fn() self._is_waiting = False self._reset_sampler_index_to_process_ind_and_subprocess_ind() for i in range(len(self.npaused_per_process)): self.npaused_per_process[i] = 0 def command( self, commands: Union[List[str], str], data_list: Optional[List] ) -> List[Any]: """""" self._is_waiting = True if isinstance(commands, str): commands = [commands] * self.num_unpaused_tasks if data_list is None: data_list = [None] * self.num_unpaused_tasks for write_fn, subcommands, subdata_list in zip( self._connection_write_fns, self._partition_to_processes(commands), self._partition_to_processes(data_list), ): write_fn((subcommands, data_list)) results = [] for read_fn in self._connection_read_fns: results.extend(read_fn()) self._is_waiting = False return results def call( self, function_names: Union[str, List[str]], function_args_list: Optional[List[Any]] = None, ) -> List[Any]: """Calls a list of functions (which are passed by name) on the corresponding task (by index). # Parameters function_names : The name of the functions to call on the tasks. function_args_list : List of function args for each function. If provided, len(function_args_list) should be as long as len(function_names). # Returns List of results of calling the functions. """ self._is_waiting = True if isinstance(function_names, str): function_names = [function_names] * self.num_unpaused_tasks if function_args_list is None: function_args_list = [None] * len(function_names) assert len(function_names) == len(function_args_list) func_names_and_args_list = zip(function_names, function_args_list) for write_fn, func_names_and_args in zip( self._connection_write_fns, self._partition_to_processes(func_names_and_args_list), ): write_fn((CALL_COMMAND, func_names_and_args)) results = [] for read_fn in self._connection_read_fns: results.extend(read_fn()) self._is_waiting = False return results def attr_at(self, sampler_index: int, attr_name: str) -> Any: """Gets the attribute (specified by name) on the selected task and returns it. # Parameters index : Which task to call the function on. attr_name : The name of the function to call on the task. # Returns Result of calling the function. """ return self.command_at(sampler_index, command=ATTR_COMMAND, data=attr_name) def attr(self, attr_names: Union[List[str], str]) -> List[Any]: """Gets the attributes (specified by name) on the tasks. # Parameters attr_names : The name of the functions to call on the tasks. # Returns List of results of calling the functions. """ if isinstance(attr_names, str): attr_names = [attr_names] * self.num_unpaused_tasks return self.command(commands=ATTR_COMMAND, data_list=attr_names) def render( self, mode: str = "human", *args, **kwargs ) -> Union[np.ndarray, None, List[np.ndarray]]: """Render observations from all Tasks in a tiled image or list of images.""" images = self.command( commands=RENDER_COMMAND, data_list=[(args, {"mode": "rgb", **kwargs})] * self.num_unpaused_tasks, ) if mode == "raw_rgb_list": return images tile = tile_images(images) if mode == "human": import cv2 cv2.imshow("vectask", tile[:, :, ::-1]) cv2.waitKey(1) return None elif mode == "rgb_array": return tile else: raise NotImplementedError @property def _valid_start_methods(self) -> Set[str]: return {"forkserver", "spawn", "fork"} def __del__(self): self.close() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() class SingleProcessVectorSampledTasks(object): """Vectorized collection of tasks. Simultaneously handles the state of multiple TaskSamplers and their associated tasks. Allows for interacting with these tasks in a vectorized manner. When a task completes, another task is sampled from the appropriate task sampler. All the tasks are synchronized (for step and new_task methods). # Attributes make_sampler_fn : function which creates a single TaskSampler. sampler_fn_args : sequence of dictionaries describing the args to pass to make_sampler_fn on each individual process. auto_resample_when_done : automatically sample a new Task from the TaskSampler when the Task completes. If False, a new Task will not be resampled until all Tasks on all processes have completed. This functionality is provided for seamless training of vectorized Tasks. """ observation_space: SpaceDict _vector_task_generators: List[Generator] _num_task_samplers: int _auto_resample_when_done: bool def __init__( self, make_sampler_fn: Callable[..., TaskSampler], sampler_fn_args_list: Sequence[Dict[str, Any]] = None, auto_resample_when_done: bool = True, should_log: bool = True, ) -> None: self._is_closed = True assert ( sampler_fn_args_list is not None and len(sampler_fn_args_list) > 0 ), "number of processes to be created should be greater than 0" self._num_task_samplers = len(sampler_fn_args_list) self._auto_resample_when_done = auto_resample_when_done self.should_log = should_log self._vector_task_generators: List[Generator] = self._create_generators( make_sampler_fn=make_sampler_fn, sampler_fn_args=[{"mp_ctx": None, **args} for args in sampler_fn_args_list], ) self._is_closed = False observation_spaces = [ vsi.send((OBSERVATION_SPACE_COMMAND, None)) for vsi in self._vector_task_generators ] if any(os is None for os in observation_spaces): raise NotImplementedError( "It appears that the `all_observation_spaces_equal`" " is not True for some task sampler created by" " VectorSampledTasks. This is not currently supported." ) if any(observation_spaces[0] != os for os in observation_spaces): raise NotImplementedError( "It appears that the observation spaces of the samplers" " created in VectorSampledTasks are not equal." " This is not currently supported." ) self.observation_space = observation_spaces[0] self.action_spaces = [ vsi.send((ACTION_SPACE_COMMAND, None)) for vsi in self._vector_task_generators ] self._paused: List[Tuple[int, Generator]] = [] @property def is_closed(self) -> bool: """Has the vector task been closed.""" return self._is_closed @property def mp_ctx(self) -> Optional[BaseContext]: return None @property def num_unpaused_tasks(self) -> int: """Number of unpaused processes. # Returns Number of unpaused processes. """ return self._num_task_samplers - len(self._paused) @staticmethod def _task_sampling_loop_generator_fn( worker_id: int, make_sampler_fn: Callable[..., TaskSampler], sampler_fn_args: Dict[str, Any], auto_resample_when_done: bool, should_log: bool, ) -> Generator: """Generator for working with Tasks/TaskSampler.""" task_sampler = make_sampler_fn(**sampler_fn_args) current_task = task_sampler.next_task() if current_task is None: raise RuntimeError( "Newly created task sampler had `None` as it's first task. This likely means that" " it was not provided with any tasks to generate. This can happen if, e.g., during testing" " you have started more processes than you had tasks to test. Currently this is not supported:" " every task sampler must be able to generate at least one task." ) try: command, data = yield "started" while command != CLOSE_COMMAND: if command == STEP_COMMAND: step_result: RLStepResult = current_task.step(data) if current_task.is_done(): metrics = current_task.metrics() if metrics is not None and len(metrics) != 0: if step_result.info is None: step_result = step_result.clone({"info": {}}) step_result.info[COMPLETE_TASK_METRICS_KEY] = metrics if auto_resample_when_done: current_task = task_sampler.next_task() if current_task is None: step_result = step_result.clone({"observation": None}) else: step_result = step_result.clone( {"observation": current_task.get_observations()} ) command, data = yield step_result elif command == NEXT_TASK_COMMAND: if data is not None: current_task = task_sampler.next_task(**data) else: current_task = task_sampler.next_task() observations = current_task.get_observations() command, data = yield observations elif command == RENDER_COMMAND: command, data = yield current_task.render(*data[0], **data[1]) elif ( command == OBSERVATION_SPACE_COMMAND or command == ACTION_SPACE_COMMAND ): res = getattr(current_task, command) command, data = yield res elif command == CALL_COMMAND: function_name, function_args = data if function_args is None or len(function_args) == 0: result = getattr(current_task, function_name)() else: result = getattr(current_task, function_name)(*function_args) command, data = yield result elif command == SAMPLER_COMMAND: function_name, function_args = data if function_args is None or len(function_args) == 0: result = getattr(task_sampler, function_name)() else: result = getattr(task_sampler, function_name)(*function_args) command, data = yield result elif command == ATTR_COMMAND: property_name = data result = getattr(current_task, property_name) command, data = yield result elif command == SAMPLER_ATTR_COMMAND: property_name = data result = getattr(task_sampler, property_name) command, data = yield result elif command == RESET_COMMAND: task_sampler.reset() current_task = task_sampler.next_task() if current_task is None: raise RuntimeError( "After resetting the task sampler it seems to have" " no new tasks (the `task_sampler.next_task()` call" " returned `None` after the reset). This suggests that" " the task sampler's reset method was not implemented" f" correctly (task sampler type is {type(task_sampler)})." ) command, data = yield "done" elif command == SEED_COMMAND: task_sampler.set_seed(data) command, data = yield "done" else: raise NotImplementedError() except KeyboardInterrupt: if should_log: get_logger().info( "SingleProcessVectorSampledTask {} KeyboardInterrupt".format( worker_id ) ) except Exception as e: get_logger().error(traceback.format_exc()) raise e finally: if should_log: get_logger().info( "SingleProcessVectorSampledTask {} closing.".format(worker_id) ) task_sampler.close() def _create_generators( self, make_sampler_fn: Callable[..., TaskSampler], sampler_fn_args: Sequence[Dict[str, Any]], ) -> List[Generator]: generators = [] for id, current_sampler_fn_args in enumerate(sampler_fn_args): if self.should_log: get_logger().info( "Starting {}-th SingleProcessVectorSampledTasks generator with args {}".format( id, current_sampler_fn_args ) ) generators.append( self._task_sampling_loop_generator_fn( worker_id=id, make_sampler_fn=make_sampler_fn, sampler_fn_args=current_sampler_fn_args, auto_resample_when_done=self._auto_resample_when_done, should_log=self.should_log, ) ) if next(generators[-1]) != "started": raise RuntimeError("Generator failed to start.") return generators def next_task(self, **kwargs): """Move to the the next Task for all TaskSamplers. # Parameters kwargs : key word arguments passed to the `next_task` function of the samplers. # Returns List of initial observations for each of the new tasks. """ return [ g.send((NEXT_TASK_COMMAND, kwargs)) for g in self._vector_task_generators ] def get_observations(self): """Get observations for all unpaused tasks. # Returns List of observations for each of the unpaused tasks. """ return self.call(["get_observations"] * self.num_unpaused_tasks,) def next_task_at(self, index_process: int) -> List[RLStepResult]: """Move to the the next Task from the TaskSampler in index_process process in the vector. # Parameters index_process : Index of the generator to be reset. # Returns List of length one containing the observations the newly sampled task. """ return [ self._vector_task_generators[index_process].send((NEXT_TASK_COMMAND, None)) ] def step_at(self, index_process: int, action: int) -> List[RLStepResult]: """Step in the index_process task in the vector. # Parameters index_process : Index of the process to be reset. action : The action to take. # Returns List containing the output of step method on the task in the indexed process. """ return self._vector_task_generators[index_process].send((STEP_COMMAND, action)) def step(self, actions: List[List[int]]): """Perform actions in the vectorized tasks. # Parameters actions: List of size _num_samplers containing action to be taken in each task. # Returns List of outputs from the step method of tasks. """ return [ g.send((STEP_COMMAND, action)) for g, action in zip(self._vector_task_generators, actions) ] def reset_all(self): """Reset all task samplers to their initial state (except for the RNG seed).""" return [g.send((RESET_COMMAND, None)) for g in self._vector_task_generators] def set_seeds(self, seeds: List[int]): """Sets new tasks' RNG seeds. # Parameters seeds: List of size _num_samplers containing new RNG seeds. """ return [ g.send((SEED_COMMAND, seed)) for g, seed in zip(self._vector_task_generators, seeds) ] def close(self) -> None: if self._is_closed: return for g in self._vector_task_generators: try: try: g.send((CLOSE_COMMAND, None)) except StopIteration: pass except KeyboardInterrupt: pass self._is_closed = True def pause_at(self, sampler_index: int) -> None: """Pauses computation on the Task in process `index` without destroying the Task. This is useful for not needing to call steps on all Tasks when only some are active (for example during the last samples of running eval). # Parameters index : which process to pause. All indexes after this one will be shifted down by one. """ generator = self._vector_task_generators.pop(sampler_index) self._paused.append((sampler_index, generator)) def resume_all(self) -> None: """Resumes any paused processes.""" for index, generator in reversed(self._paused): self._vector_task_generators.insert(index, generator) self._paused = [] def command_at( self, sampler_index: int, command: str, data: Optional[Any] = None ) -> Any: """Calls a function (which is passed by name) on the selected task and returns the result. # Parameters index : Which task to call the function on. function_name : The name of the function to call on the task. function_args : Optional function args. # Returns Result of calling the function. """ return self._vector_task_generators[sampler_index].send((command, data)) def command( self, commands: Union[List[str], str], data_list: Optional[List] ) -> List[Any]: """""" if isinstance(commands, str): commands = [commands] * self.num_unpaused_tasks if data_list is None: data_list = [None] * self.num_unpaused_tasks return [ g.send((command, data)) for g, command, data in zip( self._vector_task_generators, commands, data_list ) ] def call_at( self, sampler_index: int, function_name: str, function_args: Optional[List[Any]] = None, ) -> Any: """Calls a function (which is passed by name) on the selected task and returns the result. # Parameters index : Which task to call the function on. function_name : The name of the function to call on the task. function_args : Optional function args. # Returns Result of calling the function. """ return self._vector_task_generators[sampler_index].send( (CALL_COMMAND, (function_name, function_args)) ) def call( self, function_names: Union[str, List[str]], function_args_list: Optional[List[Any]] = None, ) -> List[Any]: """Calls a list of functions (which are passed by name) on the corresponding task (by index). # Parameters function_names : The name of the functions to call on the tasks. function_args_list : List of function args for each function. If provided, len(function_args_list) should be as long as len(function_names). # Returns List of results of calling the functions. """ if isinstance(function_names, str): function_names = [function_names] * self.num_unpaused_tasks if function_args_list is None: function_args_list = [None] * len(function_names) assert len(function_names) == len(function_args_list) return [ g.send((CALL_COMMAND, args)) for g, args in zip( self._vector_task_generators, zip(function_names, function_args_list) ) ] def attr_at(self, sampler_index: int, attr_name: str) -> Any: """Gets the attribute (specified by name) on the selected task and returns it. # Parameters index : Which task to call the function on. attr_name : The name of the function to call on the task. # Returns Result of calling the function. """ return self._vector_task_generators[sampler_index].send( (ATTR_COMMAND, attr_name) ) def attr(self, attr_names: Union[List[str], str]) -> List[Any]: """Gets the attributes (specified by name) on the tasks. # Parameters attr_names : The name of the functions to call on the tasks. # Returns List of results of calling the functions. """ if isinstance(attr_names, str): attr_names = [attr_names] * self.num_unpaused_tasks return [ g.send((ATTR_COMMAND, attr_name)) for g, attr_name in zip(self._vector_task_generators, attr_names) ] def render( self, mode: str = "human", *args, **kwargs ) -> Union[np.ndarray, None, List[np.ndarray]]: """Render observations from all Tasks in a tiled image or a list of images.""" images = [ g.send((RENDER_COMMAND, (args, {"mode": "rgb", **kwargs}))) for g in self._vector_task_generators ] if mode == "raw_rgb_list": return images for index, _ in reversed(self._paused): images.insert(index, np.zeros_like(images[0])) tile = tile_images(images) if mode == "human": import cv2 cv2.imshow("vectask", tile[:, :, ::-1]) cv2.waitKey(1) return None elif mode == "rgb_array": return tile else: raise NotImplementedError def __del__(self): self.close() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close()
ask4help-main
allenact/algorithms/onpolicy_sync/vector_sampled_tasks.py
# Original work Copyright (c) Facebook, Inc. and its affiliates. # Modified work Copyright (c) Allen Institute for AI # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import random from collections import defaultdict from typing import Union, List, Dict, Tuple, DefaultDict, Sequence, cast, Optional import numpy as np import torch from allenact.algorithms.onpolicy_sync.policy import ( ActorCriticModel, FullMemorySpecType, ObservationType, ActionType, ) from allenact.base_abstractions.misc import Memory from allenact.utils.system import get_logger import allenact.utils.spaces_utils as su class RolloutStorage(object): """Class for storing rollout information for RL trainers.""" FLATTEN_SEPARATOR: str = "._AUTOFLATTEN_." def __init__( self, num_steps: int, num_samplers: int, actor_critic: ActorCriticModel, only_store_first_and_last_in_memory: bool = True, ): self.num_steps = num_steps self.only_store_first_and_last_in_memory = only_store_first_and_last_in_memory self.flattened_to_unflattened: Dict[str, Dict[str, List[str]]] = { "memory": dict(), "observations": dict(), } self.unflattened_to_flattened: Dict[str, Dict[Tuple[str, ...], str]] = { "memory": dict(), "observations": dict(), } self.dim_names = ["step", "sampler", None] self.memory: Memory = self.create_memory( actor_critic.recurrent_memory_specification, num_samplers, first_and_last_only=only_store_first_and_last_in_memory, ) self.observations: Memory = Memory() self.value_preds: Optional[torch.Tensor] = None self.returns: Optional[torch.Tensor] = None self.rewards: Optional[torch.Tensor] = None self.action_log_probs: Optional[torch.Tensor] = None self.masks = torch.zeros(num_steps + 1, num_samplers, 1) self.action_space = actor_critic.action_space action_flat_dim = su.flatdim(self.action_space) self.actions = torch.zeros(num_steps, num_samplers, action_flat_dim,) self.prev_actions = torch.zeros(num_steps + 1, num_samplers, action_flat_dim,) self.step = 0 self.unnarrow_data: DefaultDict[ str, Union[int, torch.Tensor, Dict] ] = defaultdict(dict) self.permanent_unnarrow_data: DefaultDict[ str, Union[int, torch.Tensor, Dict] ] = defaultdict(dict) self.device = torch.device("cpu") def create_memory( self, spec: Optional[FullMemorySpecType], num_samplers: int, first_and_last_only: bool = False, ) -> Memory: if spec is None: return Memory() memory = Memory() for key in spec: dims_template, dtype = spec[key] dim_names = ["step"] + [d[0] for d in dims_template] sampler_dim = dim_names.index("sampler") if not first_and_last_only: all_dims = [self.num_steps + 1] + [d[1] for d in dims_template] else: all_dims = [2] + [d[1] for d in dims_template] all_dims[sampler_dim] = num_samplers memory.check_append( key=key, tensor=torch.zeros(*all_dims, dtype=dtype), sampler_dim=sampler_dim, ) self.flattened_to_unflattened["memory"][key] = [key] self.unflattened_to_flattened["memory"][(key,)] = key return memory def to(self, device: torch.device): self.observations.to(device) self.memory.to(device) self.actions = self.actions.to(device) self.prev_actions = self.prev_actions.to(device) self.masks = self.masks.to(device) if self.rewards is not None: self.rewards = self.rewards.to(device) self.value_preds = self.value_preds.to(device) self.returns = self.returns.to(device) self.action_log_probs = self.action_log_probs.to(device) self.device = device def insert_observations( self, observations: ObservationType, time_step: int = 0, ): self.insert_tensors( storage_name="observations", unflattened=observations, time_step=time_step ) def insert_memory( self, memory: Optional[Memory], time_step: int, ): if memory is None: assert len(self.memory) == 0 return if self.only_store_first_and_last_in_memory and time_step > 0: time_step = 1 self.insert_tensors( storage_name="memory", unflattened=memory, time_step=time_step ) def insert_tensors( self, storage_name: str, unflattened: Union[ObservationType, Memory], prefix: str = "", path: Sequence[str] = (), time_step: int = 0, ): storage = getattr(self, storage_name) path = list(path) for name in unflattened: current_data = unflattened[name] if isinstance(current_data, Dict): self.insert_tensors( storage_name, cast(ObservationType, current_data), prefix=prefix + name + self.FLATTEN_SEPARATOR, path=path + [name], time_step=time_step, ) continue sampler_dim = self.dim_names.index("sampler") if isinstance(current_data, tuple): sampler_dim = current_data[1] current_data = current_data[0] flatten_name = prefix + name if flatten_name not in storage: assert storage_name == "observations" storage[flatten_name] = ( torch.zeros_like(current_data) # type:ignore .repeat( self.num_steps + 1, # required for observations (and memory) *(1 for _ in range(len(current_data.shape))), ) .to(self.device), sampler_dim, ) assert ( flatten_name not in self.flattened_to_unflattened[storage_name] ), "new flattened name {} already existing in flattened spaces[{}]".format( flatten_name, storage_name ) self.flattened_to_unflattened[storage_name][flatten_name] = path + [ name ] self.unflattened_to_flattened[storage_name][ tuple(path + [name]) ] = flatten_name if storage_name == "observations": # current_data has a step dimension assert time_step >= 0 storage[flatten_name][0][time_step : time_step + 1].copy_(current_data) else: # current_data does not have a step dimension storage[flatten_name][0][time_step].copy_(current_data) def create_tensor_storage( self, num_steps: int, template: torch.Tensor ) -> torch.Tensor: return torch.cat([torch.zeros_like(template).to(self.device)] * num_steps) def insert( self, observations: ObservationType, memory: Optional[Memory], actions: torch.Tensor, action_log_probs: torch.Tensor, value_preds: torch.Tensor, rewards: torch.Tensor, masks: torch.Tensor, ): self.insert_observations(observations, time_step=self.step + 1) self.insert_memory(memory, time_step=self.step + 1) assert actions.shape == self.actions[self.step].shape self.actions[self.step].copy_(actions) # type:ignore self.prev_actions[self.step + 1].copy_(actions) # type:ignore self.masks[self.step + 1].copy_(masks) # type:ignore if self.rewards is None: # We delay the instantiation of storage for `rewards`, `value_preds`, `action_log_probs` and `returns` # as we do not, a priori, know what shape these will be. For instance, if we are in a multi-agent setting # then there may be many rewards (one for each agent). self.rewards = self.create_tensor_storage( self.num_steps, rewards.unsqueeze(0) ) # add step value_returns_template = value_preds.unsqueeze(0) # add step self.value_preds = self.create_tensor_storage( self.num_steps + 1, value_returns_template ) self.returns = self.create_tensor_storage( self.num_steps + 1, value_returns_template ) self.action_log_probs = self.create_tensor_storage( self.num_steps, action_log_probs.unsqueeze(0) ) self.value_preds[self.step].copy_(value_preds) # type:ignore self.rewards[self.step].copy_(rewards) # type:ignore self.action_log_probs[self.step].copy_( # type:ignore action_log_probs ) self.step = (self.step + 1) % self.num_steps def sampler_select(self, keep_list: Sequence[int]): keep_list = list(keep_list) if self.actions.shape[1] == len(keep_list): # samplers dim return # we are keeping everything, no need to copy self.observations = self.observations.sampler_select(keep_list) self.memory = self.memory.sampler_select(keep_list) self.actions = self.actions[:, keep_list] self.prev_actions = self.prev_actions[:, keep_list] self.action_log_probs = self.action_log_probs[:, keep_list] self.masks = self.masks[:, keep_list] if self.rewards is not None: self.value_preds = self.value_preds[:, keep_list] self.rewards = self.rewards[:, keep_list] self.returns = self.returns[:, keep_list] def narrow(self, num_steps=None): """This function is used by the training engine to temporarily (after one interrupted rollout in decentralized distributed settings, without arguments) or permanently (for a training stage with shorter horizon, with arguments) narrow the step dimension in the storage. The reverse operation, `unnarrow`, is automatically called by `after_update` (without arguments) or when the rollout length varies in the training pipeline (with arguments). """ unnarrow_data = ( self.unnarrow_data if num_steps is None else self.permanent_unnarrow_data ) assert len(unnarrow_data) == 0, "attempting to narrow narrowed rollouts" # Check if we're done if self.step == 0 and num_steps is None: get_logger().warning("Called narrow with self.step == 0") return elif num_steps is not None and num_steps == self.num_steps: return base_length = self.step if num_steps is None else num_steps for storage_name in ["observations", "memory"]: storage: Memory = getattr(self, storage_name) for key in storage: unnarrow_data[storage_name][key] = storage.tensor(key) if ( storage_name == "memory" and self.only_store_first_and_last_in_memory and (self.step > 0 or num_steps is not None) ): length = 2 else: length = base_length + 1 storage[key] = ( storage.tensor(key).narrow(dim=0, start=0, length=length), storage.sampler_dim(key), ) to_narrow_to_step = ["actions", "action_log_probs", "rewards"] to_narrow_to_step_plus_1 = ["prev_actions", "value_preds", "returns", "masks"] for name in to_narrow_to_step + to_narrow_to_step_plus_1: if getattr(self, name) is not None: unnarrow_data[name] = getattr(self, name) setattr( self, name, unnarrow_data[name].narrow( dim=0, start=0, length=base_length + (name in to_narrow_to_step_plus_1), ), ) unnarrow_data["num_steps"] = self.num_steps self.num_steps = base_length if num_steps is None: self.step = 0 # we just finished a rollout, so we reset it for the next one def unnarrow(self, unnarrow_to_maximum_size=False): """See doc string for the `narrow` method.""" unnarrow_data = ( self.permanent_unnarrow_data if unnarrow_to_maximum_size else self.unnarrow_data ) if len(unnarrow_data) == 0: return for storage_name in ["observations", "memory"]: storage: Memory = getattr(self, storage_name) for key in storage: storage[key] = ( unnarrow_data[storage_name][key], storage.sampler_dim(key), ) unnarrow_data[storage_name].pop(key) # Note that memory can be empty assert ( storage_name not in unnarrow_data or len(unnarrow_data[storage_name]) == 0 ), "unnarrow_data contains {} {}".format( storage_name, unnarrow_data[storage_name] ) unnarrow_data.pop(storage_name, None) for name in [ "prev_actions", "value_preds", "returns", "masks", "actions", "action_log_probs", "rewards", ]: if name in unnarrow_data: setattr(self, name, unnarrow_data[name]) unnarrow_data.pop(name) self.num_steps = unnarrow_data["num_steps"] unnarrow_data.pop("num_steps") assert len(unnarrow_data) == 0 def after_update(self): for storage in [self.observations, self.memory]: for key in storage: storage[key][0][0].copy_(storage[key][0][-1]) self.masks[0].copy_(self.masks[-1]) self.prev_actions[0].copy_(self.prev_actions[-1]) if len(self.unnarrow_data) > 0: self.unnarrow() def _extend_tensor(self, stored_tensor: torch.Tensor): # Ensure broadcast to all flattened dimensions extended_shape = stored_tensor.shape + (1,) * ( len(self.value_preds.shape) - len(stored_tensor.shape) ) return stored_tensor.view(*extended_shape) def compute_returns( self, next_value: torch.Tensor, use_gae: bool, gamma: float, tau: float ): extended_mask = self._extend_tensor(self.masks) extended_rewards = self._extend_tensor(self.rewards) if use_gae: self.value_preds[-1] = next_value gae = 0 for step in reversed(range(extended_rewards.shape[0])): delta = ( extended_rewards[step] + gamma * self.value_preds[step + 1] * extended_mask[step + 1] - self.value_preds[step] ) gae = delta + gamma * tau * extended_mask[step + 1] * gae # type:ignore self.returns[step] = gae + self.value_preds[step] else: self.returns[-1] = next_value for step in reversed(range(extended_rewards.shape[0])): self.returns[step] = ( self.returns[step + 1] * gamma * extended_mask[step + 1] + extended_rewards[step] ) def recurrent_generator( self, advantages: torch.Tensor, adv_mean: torch.Tensor, adv_std: torch.Tensor, num_mini_batch: int, ): normalized_advantages = (advantages - adv_mean) / (adv_std + 1e-5) num_samplers = self.rewards.shape[1] assert num_samplers >= num_mini_batch, ( "The number of task samplers ({}) " "must be greater than or equal to the number of " "mini batches ({}).".format(num_samplers, num_mini_batch) ) inds = np.round( np.linspace(0, num_samplers, num_mini_batch + 1, endpoint=True) ).astype(np.int32) pairs = list(zip(inds[:-1], inds[1:])) random.shuffle(pairs) for start_ind, end_ind in pairs: cur_samplers = list(range(start_ind, end_ind)) memory_batch = self.memory.step_squeeze(0).sampler_select(cur_samplers) observations_batch = self.unflatten_observations( self.observations.slice(dim=0, stop=-1).sampler_select(cur_samplers) ) actions_batch = [] prev_actions_batch = [] value_preds_batch = [] return_batch = [] masks_batch = [] old_action_log_probs_batch = [] adv_targ = [] norm_adv_targ = [] for ind in cur_samplers: actions_batch.append(self.actions[:, ind]) prev_actions_batch.append(self.prev_actions[:-1, ind]) value_preds_batch.append(self.value_preds[:-1, ind]) return_batch.append(self.returns[:-1, ind]) masks_batch.append(self.masks[:-1, ind]) old_action_log_probs_batch.append(self.action_log_probs[:, ind]) adv_targ.append(advantages[:, ind]) norm_adv_targ.append(normalized_advantages[:, ind]) actions_batch = torch.stack(actions_batch, 1) # type:ignore prev_actions_batch = torch.stack(prev_actions_batch, 1) # type:ignore value_preds_batch = torch.stack(value_preds_batch, 1) # type:ignore return_batch = torch.stack(return_batch, 1) # type:ignore masks_batch = torch.stack(masks_batch, 1) # type:ignore old_action_log_probs_batch = torch.stack( # type:ignore old_action_log_probs_batch, 1 ) adv_targ = torch.stack(adv_targ, 1) # type:ignore norm_adv_targ = torch.stack(norm_adv_targ, 1) # type:ignore yield { "observations": observations_batch, "memory": memory_batch, "actions": su.unflatten(self.action_space, actions_batch), "prev_actions": su.unflatten(self.action_space, prev_actions_batch), "values": value_preds_batch, "returns": return_batch, "masks": masks_batch, "old_action_log_probs": old_action_log_probs_batch, "adv_targ": adv_targ, "norm_adv_targ": norm_adv_targ, } def unflatten_observations(self, flattened_batch: Memory) -> ObservationType: result: ObservationType = {} for name in flattened_batch: full_path = self.flattened_to_unflattened["observations"][name] cur_dict = result for part in full_path[:-1]: if part not in cur_dict: cur_dict[part] = {} cur_dict = cast(ObservationType, cur_dict[part]) cur_dict[full_path[-1]] = flattened_batch[name][0] return result def pick_observation_step(self, step: int) -> ObservationType: return self.unflatten_observations(self.observations.step_select(step)) def pick_memory_step(self, step: int) -> Memory: if self.only_store_first_and_last_in_memory and step > 0: step = 1 return self.memory.step_squeeze(step) def pick_prev_actions_step(self, step: int) -> ActionType: return su.unflatten(self.action_space, self.prev_actions[step : step + 1])
ask4help-main
allenact/algorithms/onpolicy_sync/storage.py
import functools from typing import Dict, cast, Sequence, Set import torch from allenact.algorithms.onpolicy_sync.losses.abstract_loss import ( AbstractActorCriticLoss, ) from allenact.algorithms.onpolicy_sync.policy import ObservationType from allenact.base_abstractions.distributions import CategoricalDistr from allenact.base_abstractions.misc import ActorCriticOutput class GroupedActionImitation(AbstractActorCriticLoss): def __init__( self, nactions: int, action_groups: Sequence[Set[int]], *args, **kwargs ): super().__init__(*args, **kwargs) assert ( sum(len(ag) for ag in action_groups) == nactions and len(functools.reduce(lambda x, y: x | y, action_groups)) == nactions ), f"`action_groups` (==`{action_groups}`) must be a partition of `[0, 1, 2, ..., nactions - 1]`" self.nactions = nactions self.action_groups_mask = torch.FloatTensor( [ [i in action_group for i in range(nactions)] for action_group in action_groups ] + [[1] * nactions] # type:ignore ) def loss( # type: ignore self, step_count: int, batch: ObservationType, actor_critic_output: ActorCriticOutput[CategoricalDistr], *args, **kwargs, ): observations = cast(Dict[str, torch.Tensor], batch["observations"]) assert "expert_group_action" in observations expert_group_actions = observations["expert_group_action"] # expert_group_actions = expert_group_actions + (expert_group_actions == -1).long() * ( # 1 + self.action_groups_mask.shape[0] # ) if self.action_groups_mask.get_device() != expert_group_actions.get_device(): self.action_groups_mask = cast( torch.FloatTensor, self.action_groups_mask.cuda(expert_group_actions.get_device()), ) expert_group_actions_reshaped = expert_group_actions.view(-1, 1) expert_group_actions_mask = self.action_groups_mask[ expert_group_actions_reshaped ] probs_tensor = actor_critic_output.distributions.probs_tensor expert_group_actions_mask = expert_group_actions_mask.view(probs_tensor.shape) total_loss = -( torch.log((probs_tensor * expert_group_actions_mask).sum(-1)) ).mean() return total_loss, {"grouped_action_cross_entropy": total_loss.item(),}
ask4help-main
allenact/algorithms/onpolicy_sync/losses/grouped_action_imitation.py
from .a2cacktr import A2C, ACKTR, A2CACKTR from .ppo import PPO
ask4help-main
allenact/algorithms/onpolicy_sync/losses/__init__.py
"""Defining imitation losses for actor critic type models.""" from typing import Dict, cast, Optional from collections import OrderedDict import torch from allenact.algorithms.onpolicy_sync.losses.abstract_loss import ( AbstractActorCriticLoss, ObservationType, ) from allenact.base_abstractions.distributions import ( Distr, CategoricalDistr, SequentialDistr, ConditionalDistr, ) from allenact.base_abstractions.misc import ActorCriticOutput from allenact.base_abstractions.sensor import AbstractExpertSensor import allenact.utils.spaces_utils as su class Imitation(AbstractActorCriticLoss): """Expert imitation loss.""" def __init__( self, expert_sensor: Optional[AbstractExpertSensor] = None, *args, **kwargs ): super().__init__(*args, **kwargs) self.expert_sensor = expert_sensor def group_loss( self, distribution: CategoricalDistr, expert_actions: torch.Tensor, expert_actions_masks: torch.Tensor, ): assert isinstance(distribution, CategoricalDistr) or ( isinstance(distribution, ConditionalDistr) and isinstance(distribution.distr, CategoricalDistr) ), "This implementation only supports (groups of) `CategoricalDistr`" expert_successes = expert_actions_masks.sum() log_probs = distribution.log_prob(cast(torch.LongTensor, expert_actions)) assert ( log_probs.shape[: len(expert_actions_masks.shape)] == expert_actions_masks.shape ) # Add dimensions to `expert_actions_masks` on the right to allow for masking # if necessary. len_diff = len(log_probs.shape) - len(expert_actions_masks.shape) assert len_diff >= 0 expert_actions_masks = expert_actions_masks.view( *expert_actions_masks.shape, *((1,) * len_diff) ) group_loss = -(expert_actions_masks * log_probs).sum() / torch.clamp( expert_successes, min=1 ) return group_loss, expert_successes def loss( # type: ignore self, step_count: int, batch: ObservationType, actor_critic_output: ActorCriticOutput[Distr], *args, **kwargs, ): """Computes the imitation loss. # Parameters batch : A batch of data corresponding to the information collected when rolling out (possibly many) agents over a fixed number of steps. In particular this batch should have the same format as that returned by `RolloutStorage.recurrent_generator`. Here `batch["observations"]` must contain `"expert_action"` observations or `"expert_policy"` observations. See `ExpertActionSensor` (or `ExpertPolicySensor`) for an example of a sensor producing such observations. actor_critic_output : The output of calling an ActorCriticModel on the observations in `batch`. args : Extra args. Ignored. kwargs : Extra kwargs. Ignored. # Returns A (0-dimensional) torch.FloatTensor corresponding to the computed loss. `.backward()` will be called on this tensor in order to compute a gradient update to the ActorCriticModel's parameters. """ observations = cast(Dict[str, torch.Tensor], batch["observations"]) losses = OrderedDict() should_report_loss = False if "expert_action" in observations: if self.expert_sensor is None or not self.expert_sensor.use_groups: expert_actions_and_mask = observations["expert_action"] assert expert_actions_and_mask.shape[-1] == 2 expert_actions_and_mask_reshaped = expert_actions_and_mask.view(-1, 2) expert_actions = expert_actions_and_mask_reshaped[:, 0].view( *expert_actions_and_mask.shape[:-1], 1 ) expert_actions_masks = ( expert_actions_and_mask_reshaped[:, 1] .float() .view(*expert_actions_and_mask.shape[:-1], 1) ) total_loss, expert_successes = self.group_loss( cast(CategoricalDistr, actor_critic_output.distributions), expert_actions, expert_actions_masks, ) should_report_loss = expert_successes.item() != 0 else: expert_actions = su.unflatten( self.expert_sensor.observation_space, observations["expert_action"] ) total_loss = 0 ready_actions = OrderedDict() for group_name, cd in zip( self.expert_sensor.group_spaces, cast( SequentialDistr, actor_critic_output.distributions ).conditional_distrs, ): assert group_name == cd.action_group_name cd.reset() cd.condition_on_input(**ready_actions) expert_action = expert_actions[group_name][ AbstractExpertSensor.ACTION_POLICY_LABEL ] expert_action_masks = expert_actions[group_name][ AbstractExpertSensor.EXPERT_SUCCESS_LABEL ] ready_actions[group_name] = expert_action current_loss, expert_successes = self.group_loss( cd, expert_action, expert_action_masks, ) should_report_loss = ( expert_successes.item() != 0 or should_report_loss ) cd.reset() if expert_successes.item() != 0: losses[group_name + "_cross_entropy"] = current_loss.item() total_loss = total_loss + current_loss elif "expert_policy" in observations: if self.expert_sensor is None or not self.expert_sensor.use_groups: assert isinstance( actor_critic_output.distributions, CategoricalDistr ), "This implementation currently only supports `CategoricalDistr`" expert_policies = cast(Dict[str, torch.Tensor], batch["observations"])[ "expert_policy" ][..., :-1] expert_actions_masks = cast( Dict[str, torch.Tensor], batch["observations"] )["expert_policy"][..., -1:] expert_successes = expert_actions_masks.sum() if expert_successes.item() > 0: should_report_loss = True log_probs = cast( CategoricalDistr, actor_critic_output.distributions ).log_probs_tensor # Add dimensions to `expert_actions_masks` on the right to allow for masking # if necessary. len_diff = len(log_probs.shape) - len(expert_actions_masks.shape) assert len_diff >= 0 expert_actions_masks = expert_actions_masks.view( *expert_actions_masks.shape, *((1,) * len_diff) ) total_loss = ( -(log_probs * expert_policies) * expert_actions_masks ).sum() / torch.clamp(expert_successes, min=1) else: raise NotImplementedError( "This implementation currently only supports `CategoricalDistr`" ) else: raise NotImplementedError( "Imitation loss requires either `expert_action` or `expert_policy`" " sensor to be active." ) return ( total_loss, {"expert_cross_entropy": total_loss.item(), **losses} if should_report_loss else {}, )
ask4help-main
allenact/algorithms/onpolicy_sync/losses/imitation.py
"""Defining abstract loss classes for actor critic models.""" import abc from typing import Dict, Tuple, Union import torch from allenact.algorithms.onpolicy_sync.policy import ObservationType from allenact.base_abstractions.distributions import CategoricalDistr from allenact.base_abstractions.misc import Loss, ActorCriticOutput class AbstractActorCriticLoss(Loss): """Abstract class representing a loss function used to train an ActorCriticModel.""" @abc.abstractmethod def loss( # type: ignore self, step_count: int, batch: ObservationType, actor_critic_output: ActorCriticOutput[CategoricalDistr], *args, **kwargs, ) -> Union[ Tuple[torch.FloatTensor, Dict[str, float]], Tuple[torch.FloatTensor, Dict[str, float], Dict[str, float]], ]: """Computes the loss. # Parameters batch : A batch of data corresponding to the information collected when rolling out (possibly many) agents over a fixed number of steps. In particular this batch should have the same format as that returned by `RolloutStorage.recurrent_generator`. actor_critic_output : The output of calling an ActorCriticModel on the observations in `batch`. args : Extra args. kwargs : Extra kwargs. # Returns A (0-dimensional) torch.FloatTensor corresponding to the computed loss. `.backward()` will be called on this tensor in order to compute a gradient update to the ActorCriticModel's parameters. A Dict[str, float] with scalar values corresponding to sub-losses. An optional Dict[str, float] with scalar values corresponding to extra info to be processed per epoch and combined across epochs by the engine. """ # TODO: The above documentation is missing what the batch dimensions are. raise NotImplementedError()
ask4help-main
allenact/algorithms/onpolicy_sync/losses/abstract_loss.py
"""Defining the PPO loss for actor critic type models.""" from typing import Dict, Optional, Callable, cast, Tuple import torch from allenact.algorithms.onpolicy_sync.losses.abstract_loss import ( AbstractActorCriticLoss, ObservationType, ) from allenact.base_abstractions.distributions import CategoricalDistr from allenact.base_abstractions.misc import ActorCriticOutput class PPO(AbstractActorCriticLoss): """Implementation of the Proximal Policy Optimization loss. # Attributes clip_param : The clipping parameter to use. value_loss_coef : Weight of the value loss. entropy_coef : Weight of the entropy (encouraging) loss. use_clipped_value_loss : Whether or not to also clip the value loss. clip_decay : Callable for clip param decay factor (function of the current number of steps) entropy_method_name : Name of Distr's entropy method name. Default is `entropy`, but we might use `conditional_entropy` for `SequentialDistr` show_ratios : If True, adds tracking for the PPO ratio (linear, clamped, and used) in each epoch to be logged by the engine. normalize_advantage: Whether or not to use normalized advantage. Default is True. """ def __init__( self, clip_param: float, value_loss_coef: float, entropy_coef: float, use_clipped_value_loss=True, clip_decay: Optional[Callable[[int], float]] = None, entropy_method_name: str = "entropy", normalize_advantage: bool = True, show_ratios: bool = False, *args, **kwargs ): """Initializer. See the class documentation for parameter definitions. """ super().__init__(*args, **kwargs) self.clip_param = clip_param self.value_loss_coef = value_loss_coef self.entropy_coef = entropy_coef self.use_clipped_value_loss = use_clipped_value_loss self.clip_decay = clip_decay if clip_decay is not None else (lambda x: 1.0) self.entropy_method_name = entropy_method_name self.show_ratios = show_ratios if normalize_advantage: self.adv_key = "norm_adv_targ" else: self.adv_key = "adv_targ" def loss_per_step( self, step_count: int, batch: ObservationType, actor_critic_output: ActorCriticOutput[CategoricalDistr], ) -> Tuple[ Dict[str, Tuple[torch.Tensor, Optional[float]]], Dict[str, torch.Tensor] ]: # TODO tuple output actions = cast(torch.LongTensor, batch["actions"]) values = actor_critic_output.values action_log_probs = actor_critic_output.distributions.log_prob(actions) dist_entropy: torch.FloatTensor = getattr( actor_critic_output.distributions, self.entropy_method_name )() def add_trailing_dims(t: torch.Tensor): assert len(t.shape) <= len(batch[self.adv_key].shape) return t.view( t.shape + ((1,) * (len(batch[self.adv_key].shape) - len(t.shape))) ) dist_entropy = add_trailing_dims(dist_entropy) clip_param = self.clip_param * self.clip_decay(step_count) ratio = torch.exp(action_log_probs - batch["old_action_log_probs"]) ratio = add_trailing_dims(ratio) clamped_ratio = torch.clamp(ratio, 1.0 - clip_param, 1.0 + clip_param) surr1 = ratio * batch[self.adv_key] surr2 = clamped_ratio * batch[self.adv_key] use_clamped = surr2 < surr1 action_loss = -torch.where(cast(torch.Tensor, use_clamped), surr2, surr1) if self.use_clipped_value_loss: value_pred_clipped = batch["values"] + (values - batch["values"]).clamp( -clip_param, clip_param ) value_losses = (values - batch["returns"]).pow(2) value_losses_clipped = (value_pred_clipped - batch["returns"]).pow(2) value_loss = 0.5 * torch.max(value_losses, value_losses_clipped) else: value_loss = 0.5 * (cast(torch.FloatTensor, batch["returns"]) - values).pow( 2 ) # noinspection PyUnresolvedReferences return ( { "value": (value_loss, self.value_loss_coef), "action": (action_loss, None), "entropy": (dist_entropy.mul_(-1.0), self.entropy_coef), # type: ignore }, { "ratio": ratio, "ratio_clamped": clamped_ratio, "ratio_used": torch.where( cast(torch.Tensor, use_clamped), clamped_ratio, ratio ), } if self.show_ratios else {}, ) def loss( # type: ignore self, step_count: int, batch: ObservationType, actor_critic_output: ActorCriticOutput[CategoricalDistr], *args, **kwargs ): losses_per_step, ratio_info = self.loss_per_step( step_count=step_count, batch=batch, actor_critic_output=actor_critic_output, ) losses = { key: (loss.mean(), weight) for (key, (loss, weight)) in losses_per_step.items() } total_loss = sum( loss * weight if weight is not None else loss for loss, weight in losses.values() ) result = ( total_loss, { "ppo_total": cast(torch.Tensor, total_loss).item(), **{key: loss.item() for key, (loss, _) in losses.items()}, "returns": batch["returns"].mean().item(), }, {key: float(value.mean().item()) for key, value in ratio_info.items()}, ) return result if self.show_ratios else result[:2] class PPOValue(AbstractActorCriticLoss): """Implementation of the Proximal Policy Optimization loss. # Attributes clip_param : The clipping parameter to use. use_clipped_value_loss : Whether or not to also clip the value loss. """ def __init__( self, clip_param: float, use_clipped_value_loss=True, clip_decay: Optional[Callable[[int], float]] = None, *args, **kwargs ): """Initializer. See the class documentation for parameter definitions. """ super().__init__(*args, **kwargs) self.clip_param = clip_param self.use_clipped_value_loss = use_clipped_value_loss self.clip_decay = clip_decay if clip_decay is not None else (lambda x: 1.0) def loss( # type: ignore self, step_count: int, batch: ObservationType, actor_critic_output: ActorCriticOutput[CategoricalDistr], *args, **kwargs ): values = actor_critic_output.values clip_param = self.clip_param * self.clip_decay(step_count) if self.use_clipped_value_loss: value_pred_clipped = batch["values"] + (values - batch["values"]).clamp( -clip_param, clip_param ) value_losses = (values - batch["returns"]).pow(2) value_losses_clipped = (value_pred_clipped - batch["returns"]).pow(2) value_loss = 0.5 * torch.max(value_losses, value_losses_clipped).mean() else: value_loss = ( 0.5 * (cast(torch.FloatTensor, batch["returns"]) - values).pow(2).mean() ) return ( value_loss, {"value": value_loss.item(),}, ) PPOConfig = dict(clip_param=0.1, value_loss_coef=0.5, entropy_coef=0.01)
ask4help-main
allenact/algorithms/onpolicy_sync/losses/ppo.py
"""Implementation of the KFAC optimizer. TODO: this code is not supported as it currently lacks an implementation for recurrent models. """ import math import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from allenact.base_abstractions.distributions import AddBias # TODO: In order to make this code faster: # 1) Implement _extract_patches as a single cuda kernel # 2) Compute QR decomposition in a separate process # 3) Actually make a general KFAC optimizer so it fits PyTorch def _extract_patches(x, kernel_size, stride, padding): if padding[0] + padding[1] > 0: x = F.pad( x, [padding[1], padding[1], padding[0], padding[0]] ).data # Actually check dims x = x.unfold(2, kernel_size[0], stride[0]) x = x.unfold(3, kernel_size[1], stride[1]) x = x.transpose_(1, 2).transpose_(2, 3).contiguous() x = x.view(x.size(0), x.size(1), x.size(2), x.size(3) * x.size(4) * x.size(5)) return x def compute_cov_a(a, classname, layer_info, fast_cnn): batch_size = a.size(0) if classname == "Conv2d": if fast_cnn: a = _extract_patches(a, *layer_info) a = a.view(a.size(0), -1, a.size(-1)) a = a.mean(1) else: a = _extract_patches(a, *layer_info) a = a.view(-1, a.size(-1)).div_(a.size(1)).div_(a.size(2)) elif classname == "AddBias": is_cuda = a.is_cuda a = torch.ones(a.size(0), 1) if is_cuda: a = a.cuda() return a.t() @ (a / batch_size) def compute_cov_g(g, classname, layer_info, fast_cnn): batch_size = g.size(0) if classname == "Conv2d": if fast_cnn: g = g.view(g.size(0), g.size(1), -1) g = g.sum(-1) else: g = g.transpose(1, 2).transpose(2, 3).contiguous() g = g.view(-1, g.size(-1)).mul_(g.size(1)).mul_(g.size(2)) elif classname == "AddBias": g = g.view(g.size(0), g.size(1), -1) g = g.sum(-1) g_ = g * batch_size return g_.t() @ (g_ / g.size(0)) def update_running_stat(aa, m_aa, momentum): # Do the trick to keep aa unchanged and not create any additional tensors m_aa *= momentum / (1 - momentum) m_aa += aa m_aa *= 1 - momentum class SplitBias(nn.Module): def __init__(self, module): super(SplitBias, self).__init__() self.module = module self.add_bias = AddBias(module.bias.data) self.module.bias = None def forward(self, x): y = self.module(x) y = self.add_bias(y) return y class KFACOptimizer(optim.Optimizer): # type: ignore def __init__( self, model, lr=0.25, momentum=0.9, stat_decay=0.99, kl_clip=0.001, damping=1e-2, weight_decay=0, fast_cnn=False, Ts=1, Tf=10, ): defaults = dict() def split_bias(module): for mname, child in module.named_children(): if hasattr(child, "bias") and child.bias is not None: # noinspection PyProtectedMember module._modules[mname] = SplitBias(child) else: split_bias(child) split_bias(model) super(KFACOptimizer, self).__init__(model.parameters(), defaults) self.known_modules = {"Linear", "Conv2d", "AddBias"} self.modules = [] self.grad_outputs = {} self.model = model self._prepare_model() self.steps = 0 self.m_aa, self.m_gg = {}, {} self.Q_a, self.Q_g = {}, {} self.d_a, self.d_g = {}, {} self.momentum = momentum self.stat_decay = stat_decay self.lr = lr self.kl_clip = kl_clip self.damping = damping self.weight_decay = weight_decay self.fast_cnn = fast_cnn self.Ts = Ts self.Tf = Tf self.optim = optim.SGD( model.parameters(), lr=self.lr * (1 - self.momentum), momentum=self.momentum ) def _save_input(self, module, input_to_save): if torch.is_grad_enabled() and self.steps % self.Ts == 0: classname = module.__class__.__name__ layer_info = None if classname == "Conv2d": layer_info = (module.kernel_size, module.stride, module.padding) aa = compute_cov_a( input_to_save[0].data, classname, layer_info, self.fast_cnn ) # Initialize buffers if self.steps == 0: self.m_aa[module] = aa.clone() update_running_stat(aa, self.m_aa[module], self.stat_decay) def _save_grad_output(self, module, grad_input, grad_output): # Accumulate statistics for Fisher matrices if self.acc_stats: classname = module.__class__.__name__ layer_info = None if classname == "Conv2d": layer_info = (module.kernel_size, module.stride, module.padding) gg = compute_cov_g( grad_output[0].data, classname, layer_info, self.fast_cnn ) # Initialize buffers if self.steps == 0: self.m_gg[module] = gg.clone() update_running_stat(gg, self.m_gg[module], self.stat_decay) def _prepare_model(self): for module in self.model.modules(): classname = module.__class__.__name__ if classname in self.known_modules: assert not ( (classname in ["Linear", "Conv2d"]) and module.bias is not None ), "You must have a bias as a separate layer" self.modules.append(module) module.register_forward_pre_hook(self._save_input) module.register_backward_hook(self._save_grad_output) def step(self, closure=None): # Add weight decay if self.weight_decay > 0: for p in self.model.parameters(): p.grad.data.add_(self.weight_decay, p.data) updates = {} for i, m in enumerate(self.modules): assert ( len(list(m.parameters())) == 1 ), "Can handle only one parameter at the moment" classname = m.__class__.__name__ p = next(m.parameters()) la = self.damping + self.weight_decay if self.steps % self.Tf == 0: # My asynchronous implementation exists, I will add it later. # Experimenting with different ways to this in PyTorch. self.d_a[m], self.Q_a[m] = torch.symeig(self.m_aa[m], eigenvectors=True) self.d_g[m], self.Q_g[m] = torch.symeig(self.m_gg[m], eigenvectors=True) self.d_a[m].mul_((self.d_a[m] > 1e-6).float()) self.d_g[m].mul_((self.d_g[m] > 1e-6).float()) if classname == "Conv2d": p_grad_mat = p.grad.data.view(p.grad.data.size(0), -1) else: p_grad_mat = p.grad.data v1 = self.Q_g[m].t() @ p_grad_mat @ self.Q_a[m] v2 = v1 / (self.d_g[m].unsqueeze(1) * self.d_a[m].unsqueeze(0) + la) v = self.Q_g[m] @ v2 @ self.Q_a[m].t() v = v.view(p.grad.data.size()) updates[p] = v vg_sum = 0 for p in self.model.parameters(): v = updates[p] vg_sum += (v * p.grad.data * self.lr * self.lr).sum() nu = min(1.0, math.sqrt(self.kl_clip / vg_sum)) for p in self.model.parameters(): v = updates[p] p.grad.data.copy_(v) p.grad.data.mul_(nu) self.optim.step() self.steps += 1
ask4help-main
allenact/algorithms/onpolicy_sync/losses/kfac.py
"""Implementation of A2C and ACKTR losses.""" from typing import cast, Tuple, Dict, Optional import torch from allenact.algorithms.onpolicy_sync.losses.abstract_loss import ( AbstractActorCriticLoss, ObservationType, ) from allenact.base_abstractions.distributions import CategoricalDistr from allenact.base_abstractions.misc import ActorCriticOutput from allenact.utils.system import get_logger class A2CACKTR(AbstractActorCriticLoss): """Class implementing A2C and ACKTR losses. # Attributes acktr : `True` if should use ACKTR loss (currently not supported), otherwise uses A2C loss. value_loss_coef : Weight of value loss. entropy_coef : Weight of entropy (encouraging) loss. entropy_method_name : Name of Distr's entropy method name. Default is `entropy`, but we might use `conditional_entropy` for `SequentialDistr`. """ def __init__( self, value_loss_coef, entropy_coef, acktr=False, entropy_method_name: str = "entropy", *args, **kwargs, ): """Initializer. See class documentation for parameter definitions. """ super().__init__(*args, **kwargs) self.acktr = acktr self.loss_key = "a2c_total" if not acktr else "aktr_total" self.value_loss_coef = value_loss_coef self.entropy_coef = entropy_coef self.entropy_method_name = entropy_method_name def loss_per_step( # type: ignore self, step_count: int, batch: ObservationType, actor_critic_output: ActorCriticOutput[CategoricalDistr], ) -> Dict[str, Tuple[torch.Tensor, Optional[float]]]: actions = cast(torch.LongTensor, batch["actions"]) values = actor_critic_output.values action_log_probs = actor_critic_output.distributions.log_prob(actions) action_log_probs = action_log_probs.view( action_log_probs.shape + (1,) * ( len(cast(torch.Tensor, batch["adv_targ"]).shape) - len(action_log_probs.shape) ) ) dist_entropy: torch.FloatTensor = getattr( actor_critic_output.distributions, self.entropy_method_name )() dist_entropy = dist_entropy.view( dist_entropy.shape + ((1,) * (len(action_log_probs.shape) - len(dist_entropy.shape))) ) value_loss = 0.5 * (cast(torch.FloatTensor, batch["returns"]) - values).pow(2) # TODO: Decided not to use normalized advantages here, # is this correct? (it's how it's done in Kostrikov's) action_loss = -( cast(torch.FloatTensor, batch["adv_targ"]).detach() * action_log_probs ) if self.acktr: # TODO: Currently acktr doesn't really work because of this natural gradient stuff # that we should figure out how to integrate properly. get_logger().warning("acktr is only partially supported.") return { "value": (value_loss, self.value_loss_coef), "action": (action_loss, None), "entropy": (dist_entropy.mul_(-1.0), self.entropy_coef), # type: ignore } def loss( # type: ignore self, step_count: int, batch: ObservationType, actor_critic_output: ActorCriticOutput[CategoricalDistr], *args, **kwargs, ): losses_per_step = self.loss_per_step( step_count=step_count, batch=batch, actor_critic_output=actor_critic_output, ) losses = { key: (loss.mean(), weight) for (key, (loss, weight)) in losses_per_step.items() } total_loss = cast( torch.Tensor, sum( loss * weight if weight is not None else loss for loss, weight in losses.values() ), ) return ( total_loss, { self.loss_key: total_loss.item(), **{key: loss.item() for key, (loss, _) in losses.items()}, }, ) class A2C(A2CACKTR): """A2C Loss.""" def __init__( self, value_loss_coef, entropy_coef, entropy_method_name: str = "entropy", *args, **kwargs, ): super().__init__( value_loss_coef=value_loss_coef, entropy_coef=entropy_coef, acktr=False, entropy_method_name=entropy_method_name, *args, **kwargs, ) class ACKTR(A2CACKTR): """ACKTR Loss. This code is not supported as it currently lacks an implementation for recurrent models. """ def __init__( self, value_loss_coef, entropy_coef, entropy_method_name: str = "entropy", *args, **kwargs, ): super().__init__( value_loss_coef=value_loss_coef, entropy_coef=entropy_coef, acktr=True, entropy_method_name=entropy_method_name, *args, **kwargs, ) A2CConfig = dict(value_loss_coef=0.5, entropy_coef=0.01,)
ask4help-main
allenact/algorithms/onpolicy_sync/losses/a2cacktr.py
ask4help-main
allenact/algorithms/offpolicy_sync/__init__.py
"""Defining abstract loss classes for actor critic models.""" import abc from typing import Dict, Tuple, TypeVar, Generic import torch from allenact.algorithms.onpolicy_sync.policy import ObservationType from allenact.base_abstractions.misc import Loss, Memory ModelType = TypeVar("ModelType") class AbstractOffPolicyLoss(Generic[ModelType], Loss): """Abstract class representing an off-policy loss function used to train a model.""" @abc.abstractmethod def loss( # type: ignore self, step_count: int, model: ModelType, batch: ObservationType, memory: Memory, *args, **kwargs, ) -> Tuple[torch.FloatTensor, Dict[str, float], Memory, int]: """Computes the loss. Loss after processing a batch of data with (part of) a model (possibly with memory). # Parameters model: model to run on data batch (both assumed to be on the same device) batch: data to use as input for model (already on the same device as model) memory: model memory before processing current data batch # Returns A tuple with: current_loss: total loss current_info: additional information about the current loss memory: model memory after processing current data batch bsize: batch size """ raise NotImplementedError()
ask4help-main
allenact/algorithms/offpolicy_sync/losses/abstract_offpolicy_loss.py
ask4help-main
allenact/algorithms/offpolicy_sync/losses/__init__.py
"""Functions used to initialize and manipulate pytorch models.""" import hashlib from collections import Callable from typing import Sequence, Tuple, Union, Optional, Dict, Any import numpy as np import torch import torch.nn as nn from allenact.utils.misc_utils import md5_hash_str_as_int def md5_hash_of_state_dict(state_dict: Dict[str, Any]): hashables = [] for piece in sorted(state_dict.items()): import torch if isinstance(piece[1], (np.ndarray, torch.Tensor, nn.Parameter)): hashables.append(piece[0]) if not isinstance(piece[1], np.ndarray): p1 = piece[1].data.cpu().numpy() else: p1 = piece[1] hashables.append(int(hashlib.md5(p1.tobytes()).hexdigest(), 16,)) else: hashables.append(md5_hash_str_as_int(str(piece))) return md5_hash_str_as_int(str(hashables)) class Flatten(nn.Module): """Flatten input tensor so that it is of shape (FLATTENED_BATCH x -1).""" def forward(self, x): """Flatten input tensor. # Parameters x : Tensor of size (FLATTENED_BATCH x ...) to flatten to size (FLATTENED_BATCH x -1) # Returns Flattened tensor. """ return x.reshape(x.size(0), -1) def init_linear_layer( module: nn.Linear, weight_init: Callable, bias_init: Callable, gain=1 ): """Initialize a torch.nn.Linear layer. # Parameters module : A torch linear layer. weight_init : Function used to initialize the weight parameters of the linear layer. Should take the weight data tensor and gain as input. bias_init : Function used to initialize the bias parameters of the linear layer. Should take the bias data tensor and gain as input. gain : The gain to apply. # Returns The initialized linear layer. """ weight_init(module.weight.data, gain=gain) bias_init(module.bias.data) return module def grad_norm(parameters, norm_type=2): if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = list(filter(lambda p: p.grad is not None, parameters)) norm_type = float(norm_type) if norm_type == "inf": total_norm = max(p.grad.data.abs().max() for p in parameters) else: total_norm = 0 for p in parameters: param_norm = p.grad.data.norm(norm_type) total_norm += param_norm.item() ** norm_type total_norm = total_norm ** (1.0 / norm_type) return total_norm def make_cnn( input_channels: int, layer_channels: Sequence[int], kernel_sizes: Sequence[Union[int, Tuple[int, int]]], strides: Sequence[Union[int, Tuple[int, int]]], paddings: Sequence[Union[int, Tuple[int, int]]], dilations: Sequence[Union[int, Tuple[int, int]]], output_height: int, output_width: int, output_channels: int, flatten: bool = True, output_relu: bool = True, ) -> nn.Module: assert ( len(layer_channels) == len(kernel_sizes) == len(strides) == len(paddings) == len(dilations) ), "Mismatched sizes: layers {} kernels {} strides {} paddings {} dilations {}".format( layer_channels, kernel_sizes, strides, paddings, dilations ) net = nn.Sequential() input_channels_list = [input_channels] + list(layer_channels) for it, current_channels in enumerate(layer_channels): net.add_module( "conv_{}".format(it), nn.Conv2d( in_channels=input_channels_list[it], out_channels=current_channels, kernel_size=kernel_sizes[it], stride=strides[it], padding=paddings[it], dilation=dilations[it], ), ) if it < len(layer_channels) - 1: net.add_module("relu_{}".format(it), nn.ReLU(inplace=True)) if flatten: net.add_module("flatten", Flatten()) net.add_module( "fc", nn.Linear( layer_channels[-1] * output_width * output_height, output_channels ), ) if output_relu: net.add_module("out_relu", nn.ReLU(True)) return net def compute_cnn_output( cnn: nn.Module, cnn_input: torch.Tensor, permute_order: Optional[Tuple[int, ...]] = ( 0, # FLAT_BATCH (flattening steps, samplers and agents) 3, # CHANNEL 1, # ROW 2, # COL ), # from [FLAT_BATCH x ROW x COL x CHANNEL] flattened input ): """Computes CNN outputs for given inputs. # Parameters cnn : A torch CNN. cnn_input: A torch Tensor with inputs. permute_order: A permutation Tuple to provide PyTorch dimension order, default (0, 3, 1, 2), where 0 corresponds to the flattened batch dimensions (combining step, sampler and agent) # Returns CNN output with dimensions [STEP, SAMPLER, AGENT, CHANNEL, (HEIGHT, WIDTH)]. """ nsteps: int nsamplers: int nagents: int assert len(cnn_input.shape) in [ 5, 6, ], "CNN input must have shape [STEP, SAMPLER, (AGENT,) dim1, dim2, dim3]" nagents: Optional[int] = None if len(cnn_input.shape) == 6: nsteps, nsamplers, nagents = cnn_input.shape[:3] else: nsteps, nsamplers = cnn_input.shape[:2] # Make FLAT_BATCH = nsteps * nsamplers (* nagents) cnn_input = cnn_input.view((-1,) + cnn_input.shape[2 + int(nagents is not None) :]) if permute_order is not None: cnn_input = cnn_input.permute(*permute_order) cnn_output = cnn(cnn_input) if nagents is not None: cnn_output = cnn_output.reshape( (nsteps, nsamplers, nagents,) + cnn_output.shape[1:] ) else: cnn_output = cnn_output.reshape((nsteps, nsamplers,) + cnn_output.shape[1:]) return cnn_output def simple_conv_and_linear_weights_init(m): if type(m) in [ nn.Conv1d, nn.Conv2d, nn.Conv3d, nn.ConvTranspose1d, nn.ConvTranspose2d, nn.ConvTranspose3d, ]: weight_shape = list(m.weight.data.size()) fan_in = np.prod(weight_shape[1:4]) fan_out = np.prod(weight_shape[2:4]) * weight_shape[0] w_bound = np.sqrt(6.0 / (fan_in + fan_out)) m.weight.data.uniform_(-w_bound, w_bound) if m.bias is not None: m.bias.data.fill_(0) elif type(m) == nn.Linear: simple_linear_weights_init(m) def simple_linear_weights_init(m): if type(m) == nn.Linear: weight_shape = list(m.weight.data.size()) fan_in = weight_shape[1] fan_out = weight_shape[0] w_bound = np.sqrt(6.0 / (fan_in + fan_out)) m.weight.data.uniform_(-w_bound, w_bound) if m.bias is not None: m.bias.data.fill_(0) class FeatureEmbedding(nn.Module): """A wrapper of nn.Embedding but support zero output Used for extracting features for actions/rewards.""" def __init__(self, input_size, output_size): super().__init__() self.output_size = output_size if self.output_size != 0: self.fc = nn.Embedding(input_size, output_size) else: # automatically be moved to a device self.null_embedding: torch.Tensor self.register_buffer("null_embedding", torch.zeros(0,), persistent=False) def forward(self, inputs): if self.output_size != 0: return self.fc(inputs) else: return self.null_embedding
ask4help-main
allenact/utils/model_utils.py
"""Utility classes and functions for running and designing experiments.""" import abc import collections.abc import copy import random from collections import OrderedDict, defaultdict from typing import ( Callable, NamedTuple, Dict, Any, Union, Iterator, Optional, List, cast, Sequence, TypeVar, Generic, ) import numpy as np import torch import torch.optim as optim from allenact.algorithms.offpolicy_sync.losses.abstract_offpolicy_loss import ( AbstractOffPolicyLoss, Memory, ) from allenact.algorithms.onpolicy_sync.losses.abstract_loss import ( AbstractActorCriticLoss, ) from allenact.base_abstractions.misc import Loss from allenact.utils.system import get_logger from allenact.utils.misc_utils import prepare_locals_for_super def evenly_distribute_count_into_bins(count: int, nbins: int) -> List[int]: """Distribute a count into a number of bins. # Parameters count: A positive integer to be distributed, should be `>= nbins`. nbins: The number of bins. # Returns A list of positive integers which sum to `count`. These values will be as close to equal as possible (may differ by at most 1). """ assert count >= nbins, f"count ({count}) < nbins ({nbins})" res = [0] * nbins for it in range(count): res[it % nbins] += 1 return res def recursive_update( original: Union[Dict, collections.abc.MutableMapping], update: Union[Dict, collections.abc.MutableMapping], ): """Recursively updates original dictionary with entries form update dict. # Parameters original : Original dictionary to be updated. update : Dictionary with additional or replacement entries. # Returns Updated original dictionary. """ for k, v in update.items(): if isinstance(v, collections.abc.MutableMapping): original[k] = recursive_update(original.get(k, {}), v) else: original[k] = v return original ToBuildType = TypeVar("ToBuildType") class Builder(tuple, Generic[ToBuildType]): """Used to instantiate a given class with (default) parameters. Helper class that stores a class, default parameters for that class, and key word arguments that (possibly) overwrite the defaults. When calling this an object of the Builder class it generates a class of type `class_type` with parameters specified by the attributes `default` and `kwargs` (and possibly additional, overwriting, keyword arguments). # Attributes class_type : The class to be instantiated when calling the object. kwargs : Keyword arguments used to instantiate an object of type `class_type`. default : Default parameters used when instantiating the class. """ class_type: ToBuildType kwargs: Dict[str, Any] default: Dict[str, Any] # noinspection PyTypeChecker def __new__( cls, class_type: ToBuildType, kwargs: Optional[Dict[str, Any]] = None, default: Optional[Dict[str, Any]] = None, ): """Create a new Builder. For parameter descriptions see the class documentation. Note that `kwargs` and `default` can be None in which case they are set to be empty dictionaries. """ self = tuple.__new__( cls, ( class_type, kwargs if kwargs is not None else {}, default if default is not None else {}, ), ) self.class_type = class_type self.kwargs = self[1] self.default = self[2] return self def __repr__(self) -> str: return ( f"Group(class_type={self.class_type}," f" kwargs={self.kwargs}," f" default={self.default})" ) def __call__(self, **kwargs) -> ToBuildType: """Build and return a new class. # Parameters kwargs : additional keyword arguments to use when instantiating the object. These overwrite all arguments already in the `self.kwargs` and `self.default` attributes. # Returns Class of type `self.class_type` with parameters taken from `self.default`, `self.kwargs`, and any keyword arguments additionally passed to `__call__`. """ allkwargs = copy.deepcopy(self.default) recursive_update(allkwargs, self.kwargs) recursive_update(allkwargs, kwargs) return cast(Callable, self.class_type)(**allkwargs) class ScalarMeanTracker(object): """Track a collection `scalar key -> mean` pairs.""" def __init__(self) -> None: self._sums: Dict[str, float] = OrderedDict() self._counts: Dict[str, int] = OrderedDict() def add_scalars( self, scalars: Dict[str, Union[float, int]], n: Union[int, Dict[str, int]] = 1 ) -> None: """Add additional scalars to track. # Parameters scalars : A dictionary of `scalar key -> value` pairs. """ ndict = cast( Dict[str, int], (n if isinstance(n, Dict) else defaultdict(lambda: n)) # type: ignore ) for k in scalars: if k not in self._sums: self._sums[k] = ndict[k] * scalars[k] self._counts[k] = ndict[k] else: self._sums[k] += ndict[k] * scalars[k] self._counts[k] += ndict[k] def pop_and_reset(self) -> Dict[str, float]: """Return tracked means and reset. On resetting all previously tracked values are discarded. # Returns A dictionary of `scalar key -> current mean` pairs corresponding to those values added with `add_scalars`. """ means = OrderedDict( [(k, float(self._sums[k] / self._counts[k])) for k in self._sums] ) self.reset() return means def reset(self): self._sums = OrderedDict() self._counts = OrderedDict() def sums(self): return copy.copy(self._sums) def counts(self) -> Dict[str, int]: return copy.copy(self._counts) def means(self) -> Dict[str, float]: return OrderedDict( [(k, float(self._sums[k] / self._counts[k])) for k in self._sums] ) @property def empty(self): assert len(self._sums) == len( self._counts ), "Mismatched length of _sums {} and _counts {}".format( len(self._sums), len(self._counts) ) return len(self._sums) == 0 class LoggingPackage(object): """Data package used for logging.""" def __init__( self, mode: str, training_steps: Optional[int], pipeline_stage: Optional[int] = None, off_policy_steps: Optional[int] = None, ) -> None: self.mode = mode self.training_steps: int = training_steps self.pipeline_stage = pipeline_stage self.off_policy_steps: Optional[int] = off_policy_steps self.metrics_tracker = ScalarMeanTracker() self.train_info_tracker = ScalarMeanTracker() self.metric_dicts: List[Any] = [] self.viz_data: Optional[Dict[str, List[Dict[str, Any]]]] = None self.checkpoint_file_name: Optional[str] = None self.num_empty_metrics_dicts_added: int = 0 @property def num_non_empty_metrics_dicts_added(self) -> int: return len(self.metric_dicts) @staticmethod def _metrics_dict_is_empty( single_task_metrics_dict: Dict[str, Union[float, int]] ) -> bool: return ( len(single_task_metrics_dict) == 0 or ( len(single_task_metrics_dict) == 1 and "task_info" in single_task_metrics_dict ) or ( "success" in single_task_metrics_dict and single_task_metrics_dict["success"] is None ) ) def add_metrics_dict( self, single_task_metrics_dict: Dict[str, Union[float, int]] ) -> bool: if self._metrics_dict_is_empty(single_task_metrics_dict): self.num_empty_metrics_dicts_added += 1 return False self.metric_dicts.append(single_task_metrics_dict) self.metrics_tracker.add_scalars( {k: v for k, v in single_task_metrics_dict.items() if k != "task_info"} ) return True def add_train_info_dict( self, train_info_dict: Dict[str, Union[int, float]], n: int ): assert n >= 0 self.train_info_tracker.add_scalars(scalars=train_info_dict, n=n) class LinearDecay(object): """Linearly decay between two values over some number of steps. Obtain the value corresponding to the `i`-th step by calling an instance of this class with the value `i`. # Parameters steps : The number of steps over which to decay. startp : The starting value. endp : The ending value. """ def __init__(self, steps: int, startp: float = 1.0, endp: float = 0.0) -> None: """Initializer. See class documentation for parameter definitions. """ self.steps = steps self.startp = startp self.endp = endp def __call__(self, epoch: int) -> float: """Get the decayed value for `epoch` number of steps. # Parameters epoch : The number of steps. # Returns Decayed value for `epoch` number of steps. """ epoch = max(min(epoch, self.steps), 0) return self.startp + (self.endp - self.startp) * (epoch / float(self.steps)) class MultiLinearDecay(object): """Container for multiple stages of LinearDecay. Obtain the value corresponding to the `i`-th step by calling an instance of this class with the value `i`. # Parameters stages: List of `LinearDecay` objects to be sequentially applied for the number of steps in each stage. """ def __init__(self, stages: Sequence[LinearDecay]) -> None: """Initializer. See class documentation for parameter definitions. """ self.stages = stages self.steps = np.cumsum([stage.steps for stage in self.stages]) self.total_steps = self.steps[-1] self.stage_idx = -1 self.min_steps = 0 self.max_steps = 0 self.stage = None def __call__(self, epoch: int) -> float: """Get the decayed value factor for `epoch` number of steps. # Parameters epoch : The number of steps. # Returns Decayed value for `epoch` number of steps. """ epoch = max(min(epoch, self.total_steps), 0) while epoch >= self.max_steps and self.max_steps < self.total_steps: self.stage_idx += 1 assert self.stage_idx < len(self.stages) self.min_steps = self.max_steps self.max_steps = self.steps[self.stage_idx] self.stage = self.stages[self.stage_idx] return self.stage(epoch - self.min_steps) # noinspection PyTypeHints,PyUnresolvedReferences def set_deterministic_cudnn() -> None: """Makes cudnn deterministic. This may slow down computations. """ if torch.cuda.is_available(): torch.backends.cudnn.deterministic = True # type: ignore torch.backends.cudnn.benchmark = False # type: ignore def set_seed(seed: Optional[int] = None) -> None: """Set seeds for multiple (cpu) sources of randomness. Sets seeds for (cpu) `pytorch`, base `random`, and `numpy`. # Parameters seed : The seed to set. If set to None, keep using the current seed. """ if seed is None: return torch.manual_seed(seed) # seeds the RNG for all devices (CPU and GPUs) random.seed(seed) np.random.seed(seed) class EarlyStoppingCriterion(abc.ABC): """Abstract class for class who determines if training should stop early in a particular pipeline stage.""" @abc.abstractmethod def __call__( self, stage_steps: int, total_steps: int, training_metrics: ScalarMeanTracker, ) -> bool: """Returns `True` if training should be stopped early. # Parameters stage_steps: Total number of steps taken in the current pipeline stage. total_steps: Total number of steps taken during training so far (includes steps taken in prior pipeline stages). training_metrics: Metrics recovered over some fixed number of steps (see the `metric_accumulate_interval` attribute in the `TrainingPipeline` class) training. """ raise NotImplementedError class NeverEarlyStoppingCriterion(EarlyStoppingCriterion): """Implementation of `EarlyStoppingCriterion` which never stops early.""" def __call__( self, stage_steps: int, total_steps: int, training_metrics: ScalarMeanTracker, ) -> bool: return False class OffPolicyPipelineComponent(NamedTuple): """An off-policy component for a PipeLineStage. # Attributes data_iterator_builder: A function to instantiate a Data Iterator (with a __next__(self) method) loss_names: list of unique names assigned to off-policy losses updates: number of off-policy updates between on-policy rollout collections loss_weights : A list of floating point numbers describing the relative weights applied to the losses referenced by `loss_names`. Should be the same length as `loss_names`. If this is `None`, all weights will be assumed to be one. data_iterator_kwargs_generator: Optional generator of keyword arguments for data_iterator_builder (useful for distributed training. It takes a `cur_worker` int value, a `rollouts_per_worker` list of number of samplers per training worker, and an optional random `seed` shared by all workers, which can be None. """ data_iterator_builder: Callable[..., Iterator] loss_names: List[str] updates: int loss_weights: Optional[Sequence[float]] = None data_iterator_kwargs_generator: Callable[ [int, Sequence[int], Optional[int]], Dict ] = lambda cur_worker, rollouts_per_worker, seed: {} class TrainingSettings(object): """Class defining parameters used for training (within a stage or the entire pipeline). # Attributes num_mini_batch : The number of mini-batches to break a rollout into. update_repeats : The number of times we will cycle through the mini-batches corresponding to a single rollout doing gradient updates. max_grad_norm : The maximum "inf" norm of any gradient step (gradients are clipped to not exceed this). num_steps : Total number of steps a single agent takes in a rollout. gamma : Discount factor applied to rewards (should be in [0, 1]). use_gae : Whether or not to use generalized advantage estimation (GAE). gae_lambda : The additional parameter used in GAE. advance_scene_rollout_period: Optional number of rollouts before enforcing an advance scene in all samplers. save_interval : The frequency with which to save (in total agent steps taken). If `None` then *no* checkpoints will be saved. Otherwise, in addition to the checkpoints being saved every `save_interval` steps, a checkpoint will *always* be saved at the end of each pipeline stage. If `save_interval <= 0` then checkpoints will only be saved at the end of each pipeline stage. metric_accumulate_interval : The frequency with which training/validation metrics are accumulated (in total agent steps). Metrics accumulated in an interval are logged (if `should_log` is `True`) and used by the stage's early stopping criterion (if any). """ num_mini_batch: Optional[int] update_repeats: Optional[int] max_grad_norm: Optional[float] num_steps: Optional[int] gamma: Optional[float] use_gae: Optional[bool] gae_lambda: Optional[float] advance_scene_rollout_period: Optional[int] save_interval: Optional[int] metric_accumulate_interval: Optional[int] # noinspection PyUnresolvedReferences def __init__( self, num_mini_batch: Optional[int] = None, update_repeats: Optional[int] = None, max_grad_norm: Optional[float] = None, num_steps: Optional[int] = None, gamma: Optional[float] = None, use_gae: Optional[bool] = None, gae_lambda: Optional[float] = None, advance_scene_rollout_period: Optional[int] = None, save_interval: Optional[int] = None, metric_accumulate_interval: Optional[int] = None, **kwargs: Any, ): all_vars = prepare_locals_for_super(locals(), ignore_kwargs=True) for key, value in all_vars.items(): setattr(self, key, value) _TRAINING_SETTINGS_NAMES: List[str] = list(TrainingSettings().__dict__.keys()) class PipelineStage(TrainingSettings): """A single stage in a training pipeline, possibly including overrides to the global `TrainingSettings` in `TrainingPipeline`. # Attributes loss_name : A collection of unique names assigned to losses. These will reference the `Loss` objects in a `TrainingPipeline` instance. max_stage_steps : Either the total number of steps agents should take in this stage or a Callable object (e.g. a function) loss_weights : A list of floating point numbers describing the relative weights applied to the losses referenced by `loss_name`. Should be the same length as `loss_name`. If this is `None`, all weights will be assumed to be one. teacher_forcing : If applicable, defines the probability an agent will take the expert action (as opposed to its own sampled action) at a given time point. early_stopping_criterion: An `EarlyStoppingCriterion` object which determines if training in this stage should be stopped early. If `None` then no early stopping occurs. If `early_stopping_criterion` is not `None` then we do not guarantee reproducibility when restarting a model from a checkpoint (as the `EarlyStoppingCriterion` object may store internal state which is not saved in the checkpoint). Currently AllenAct only supports using early stopping criterion when **not** using distributed training. num_mini_batch : See docs for `TrainingSettings`. update_repeats : See docs for `TrainingSettings`. max_grad_norm : See docs for `TrainingSettings`. num_steps : See docs for `TrainingSettings`. gamma : See docs for `TrainingSettings`. use_gae : See docs for `TrainingSettings`. gae_lambda : See docs for `TrainingSettings`. advance_scene_rollout_period: See docs for `TrainingSettings`. save_interval : See docs for `TrainingSettings`. metric_accumulate_interval : See docs for `TrainingSettings`. """ def __init__( self, *, # Disables positional arguments. Please provide arguments as keyword arguments. loss_names: List[str], max_stage_steps: Union[int, Callable], loss_weights: Optional[Sequence[float]] = None, loss_update_repeats: Optional[Sequence[int]] = None, teacher_forcing: Optional[LinearDecay] = None, offpolicy_component: Optional[OffPolicyPipelineComponent] = None, early_stopping_criterion: Optional[EarlyStoppingCriterion] = None, num_mini_batch: Optional[int] = None, update_repeats: Optional[int] = None, max_grad_norm: Optional[float] = None, num_steps: Optional[int] = None, gamma: Optional[float] = None, use_gae: Optional[bool] = None, gae_lambda: Optional[float] = None, advance_scene_rollout_period: Optional[int] = None, save_interval: Optional[int] = None, metric_accumulate_interval: Optional[int] = None, ): self._update_repeats: Optional[int] = None # Populate TrainingSettings members super().__init__(**prepare_locals_for_super(locals())) self.loss_names = loss_names self.max_stage_steps = max_stage_steps self.loss_weights = loss_weights self.loss_update_repeats = loss_update_repeats assert self.loss_weights is None or len(self.loss_weights) == len( self.loss_names ) assert self.loss_update_repeats is None or ( len(self.loss_update_repeats) == len(self.loss_names) and self._update_repeats is None ) self.teacher_forcing = teacher_forcing self.offpolicy_component = offpolicy_component self.early_stopping_criterion = early_stopping_criterion self.steps_taken_in_stage: int = 0 self.rollout_count = 0 self.early_stopping_criterion_met = False self.named_losses: Optional[Dict[str, AbstractActorCriticLoss]] = None self._named_loss_weights: Optional[Dict[str, float]] = None self._named_loss_update_repeats: Optional[Dict[str, float]] = None self.offpolicy_memory = Memory() self.offpolicy_epochs: Optional[int] = None self.offpolicy_named_losses: Optional[Dict[str, AbstractOffPolicyLoss]] = None self._offpolicy_named_loss_weights: Optional[Dict[str, float]] = None self.offpolicy_steps_taken_in_stage: int = 0 @property def update_repeats(self) -> Optional[int]: if self._update_repeats is None: if self.loss_update_repeats is None: return None return max(self.loss_update_repeats) else: return self._update_repeats @update_repeats.setter def update_repeats(self, val: Optional[int]): self._update_repeats = val @property def is_complete(self): return ( self.early_stopping_criterion_met or self.steps_taken_in_stage >= self.max_stage_steps ) @property def named_loss_update_repeats(self): if self._named_loss_update_repeats is None: loss_update_repeats = ( self.loss_update_repeats if self.loss_update_repeats is not None else [None] * len(self.loss_names) ) self._named_loss_update_repeats = { name: weight for name, weight in zip(self.loss_names, loss_update_repeats) } return self._named_loss_update_repeats @property def named_loss_weights(self): if self._named_loss_weights is None: loss_weights = ( self.loss_weights if self.loss_weights is not None else [1.0] * len(self.loss_names) ) self._named_loss_weights = { name: weight for name, weight in zip(self.loss_names, loss_weights) } return self._named_loss_weights @property def offpolicy_named_loss_weights(self): if self._offpolicy_named_loss_weights is None: loss_weights = ( self.offpolicy_component.loss_weights if self.offpolicy_component.loss_weights is not None else [1.0] * len(self.offpolicy_component.loss_names) ) self._offpolicy_named_loss_weights = { name: weight for name, weight in zip( self.offpolicy_component.loss_names, loss_weights ) } return self._offpolicy_named_loss_weights class TrainingPipeline(TrainingSettings): """Class defining the stages (and global training settings) in a training pipeline. The training pipeline can be used as an iterator to go through the pipeline stages in, for instance, a loop. # Attributes named_losses : Dictionary mapping a the name of a loss to either an instantiation of that loss or a `Builder` that, when called, will return that loss. pipeline_stages : A list of PipelineStages. Each of these define how the agent will be trained and are executed sequentially. optimizer_builder : Builder object to instantiate the optimizer to use during training. num_mini_batch : See docs for `TrainingSettings`. update_repeats : See docs for `TrainingSettings`. max_grad_norm : See docs for `TrainingSettings`. num_steps : See docs for `TrainingSettings`. gamma : See docs for `TrainingSettings`. use_gae : See docs for `TrainingSettings`. gae_lambda : See docs for `TrainingSettings`. advance_scene_rollout_period: See docs for `TrainingSettings`. save_interval : See docs for `TrainingSettings`. metric_accumulate_interval : See docs for `TrainingSettings`. should_log: `True` if metrics accumulated during training should be logged to the console as well as to a tensorboard file. lr_scheduler_builder : Optional builder object to instantiate the learning rate scheduler used through the pipeline. """ # noinspection PyUnresolvedReferences def __init__( self, named_losses: Dict[str, Union[Loss, Builder[Loss]]], pipeline_stages: List[PipelineStage], optimizer_builder: Builder[optim.Optimizer], # type: ignore num_mini_batch: int, update_repeats: Optional[int], max_grad_norm: float, num_steps: int, gamma: float, use_gae: bool, gae_lambda: float, advance_scene_rollout_period: Optional[int], save_interval: Optional[int], metric_accumulate_interval: int, should_log: bool = True, lr_scheduler_builder: Optional[Builder[optim.lr_scheduler._LRScheduler]] = None, # type: ignore ): """Initializer. See class docstring for parameter definitions. """ all_vars = prepare_locals_for_super(locals()) # Populate TrainingSettings members super().__init__(**all_vars) self.optimizer_builder = optimizer_builder self.lr_scheduler_builder = lr_scheduler_builder self.named_losses = named_losses self.should_log = should_log self.pipeline_stages = pipeline_stages if len(self.pipeline_stages) > len(set(id(ps) for ps in pipeline_stages)): raise RuntimeError( "Duplicate `PipelineStage` object instances found in the pipeline stages input" " to `TrainingPipeline`. `PipelineStage` objects are not immutable, if you'd" " like to have multiple pipeline stages of the same type, please instantiate" " multiple separate instances." ) self._current_stage: Optional[PipelineStage] = None for sit, stage in enumerate(self.pipeline_stages): # Forward all global `TrainingSettings` to all `PipelineStage`s unless overridden: for var in _TRAINING_SETTINGS_NAMES: if getattr(stage, var) is None: setattr(stage, var, getattr(self, var)) assert ( stage.num_steps <= self.num_steps ), f"Stage {sit} has `num_steps` {stage.num_steps} > {self.num_steps} in pipeline." self.rollout_count = 0 self.off_policy_epochs = None self._refresh_current_stage(force_stage_search_from_start=True) @property def total_steps(self) -> int: return sum(ps.steps_taken_in_stage for ps in self.pipeline_stages) @property def total_offpolicy_steps(self) -> int: return sum(ps.offpolicy_steps_taken_in_stage for ps in self.pipeline_stages) def _refresh_current_stage( self, force_stage_search_from_start: bool = False ) -> Optional[PipelineStage]: if force_stage_search_from_start: self._current_stage = None if self._current_stage is None or self._current_stage.is_complete: if self._current_stage is None: start_index = 0 else: start_index = self.pipeline_stages.index(self._current_stage) + 1 self._current_stage = None for ps in self.pipeline_stages[start_index:]: if not ps.is_complete: self._current_stage = ps break return self._current_stage @property def current_stage(self) -> Optional[PipelineStage]: return self._current_stage @property def current_stage_index(self) -> Optional[int]: if self.current_stage is None: return None return self.pipeline_stages.index(self.current_stage) def before_rollout(self, train_metrics: Optional[ScalarMeanTracker] = None) -> bool: if ( train_metrics is not None and self.current_stage.early_stopping_criterion is not None ): self.current_stage.early_stopping_criterion_met = self.current_stage.early_stopping_criterion( stage_steps=self.current_stage.steps_taken_in_stage, total_steps=self.total_steps, training_metrics=train_metrics, ) if self.current_stage.early_stopping_criterion_met: get_logger().debug( f"Early stopping criterion met after {self.total_steps} total steps " f"({self.current_stage.steps_taken_in_stage} in current stage, stage index {self.current_stage_index})." ) return self.current_stage is not self._refresh_current_stage( force_stage_search_from_start=False ) def restart_pipeline(self): for ps in self.pipeline_stages: ps.steps_taken_in_stage = 0 ps.early_stopping_criterion_met = False self._current_stage = None self._refresh_current_stage(force_stage_search_from_start=True) def state_dict(self): return dict( stage_info_list=[ { "early_stopping_criterion_met": ps.early_stopping_criterion_met, "steps_taken_in_stage": ps.steps_taken_in_stage, "offpolicy_steps_taken_in_stage": ps.offpolicy_steps_taken_in_stage, } for ps in self.pipeline_stages ], rollout_count=self.rollout_count, off_policy_epochs=self.off_policy_epochs, ) def load_state_dict(self, state_dict: Dict[str, Any]): for ps, stage_info in zip(self.pipeline_stages, state_dict["stage_info_list"]): ps.early_stopping_criterion_met = stage_info["early_stopping_criterion_met"] ps.steps_taken_in_stage = stage_info["steps_taken_in_stage"] ps.offpolicy_steps_taken_in_stage = stage_info.get( "offpolicy_steps_taken_in_stage", 0 ) self.rollout_count = state_dict["rollout_count"] self.off_policy_epochs = state_dict.get("off_policy_epochs", 0) self._refresh_current_stage(force_stage_search_from_start=True) @property def current_stage_losses(self) -> Dict[str, AbstractActorCriticLoss]: if self.current_stage.named_losses is None: for loss_name in self.current_stage.loss_names: if isinstance(self.named_losses[loss_name], Builder): self.named_losses[loss_name] = cast( Builder["AbstractActorCriticLoss"], self.named_losses[loss_name], )() self.current_stage.named_losses = { loss_name: cast(AbstractActorCriticLoss, self.named_losses[loss_name]) for loss_name in self.current_stage.loss_names } return self.current_stage.named_losses @property def current_stage_offpolicy_losses(self) -> Dict[str, AbstractOffPolicyLoss]: if self.current_stage.offpolicy_named_losses is None: for loss_name in self.current_stage.offpolicy_component.loss_names: if isinstance(self.named_losses[loss_name], Builder): self.named_losses[loss_name] = cast( Builder["AbstractOffPolicyLoss"], self.named_losses[loss_name], )() self.current_stage.offpolicy_named_losses = { loss_name: cast(AbstractOffPolicyLoss, self.named_losses[loss_name]) for loss_name in self.current_stage.offpolicy_component.loss_names } return self.current_stage.offpolicy_named_losses
ask4help-main
allenact/utils/experiment_utils.py
# Original work Copyright (c) 2016 OpenAI (https://openai.com). # Modified work Copyright (c) Allen Institute for AI # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Union, Tuple, List, cast, Iterable, Callable from collections import OrderedDict import numpy as np import torch from gym import spaces as gym ActionType = Union[torch.Tensor, OrderedDict, Tuple, int] def flatdim(space): """Return the number of dimensions a flattened equivalent of this space would have. Accepts a space and returns an integer. Raises ``NotImplementedError`` if the space is not defined in ``gym.spaces``. """ if isinstance(space, gym.Box): return int(np.prod(space.shape)) elif isinstance(space, gym.Discrete): return 1 # we do not expand to one-hot elif isinstance(space, gym.Tuple): return int(sum([flatdim(s) for s in space.spaces])) elif isinstance(space, gym.Dict): return int(sum([flatdim(s) for s in space.spaces.values()])) elif isinstance(space, gym.MultiBinary): return int(space.n) elif isinstance(space, gym.MultiDiscrete): return int(np.prod(space.shape)) else: raise NotImplementedError def flatten(space, torch_x): """Flatten data points from a space.""" if isinstance(space, gym.Box): if len(space.shape) > 0: return torch_x.view(torch_x.shape[: -len(space.shape)] + (-1,)) else: return torch_x.view(torch_x.shape + (-1,)) elif isinstance(space, gym.Discrete): # Assume tensor input does NOT contain a dimension for action if isinstance(torch_x, torch.Tensor): return torch_x.unsqueeze(-1) else: return torch.tensor(torch_x).view(1) elif isinstance(space, gym.Tuple): return torch.cat( [flatten(s, x_part) for x_part, s in zip(torch_x, space.spaces)], dim=-1 ) elif isinstance(space, gym.Dict): return torch.cat( [flatten(s, torch_x[key]) for key, s in space.spaces.items()], dim=-1 ) elif isinstance(space, gym.MultiBinary): return torch_x.view(torch_x.shape[: -len(space.shape)] + (-1,)) elif isinstance(space, gym.MultiDiscrete): return torch_x.view(torch_x.shape[: -len(space.shape)] + (-1,)) else: raise NotImplementedError def unflatten(space, torch_x): """Unflatten a concatenated data points tensor from a space.""" if isinstance(space, gym.Box): return torch_x.view(torch_x.shape[:-1] + space.shape).float() elif isinstance(space, gym.Discrete): res = torch_x.view(torch_x.shape[:-1] + space.shape).long() return res if len(res.shape) > 0 else res.item() elif isinstance(space, gym.Tuple): dims = [flatdim(s) for s in space.spaces] list_flattened = torch.split(torch_x, dims, dim=-1) list_unflattened = [ unflatten(s, flattened) for flattened, s in zip(list_flattened, space.spaces) ] return tuple(list_unflattened) elif isinstance(space, gym.Dict): dims = [flatdim(s) for s in space.spaces.values()] list_flattened = torch.split(torch_x, dims, dim=-1) list_unflattened = [ (key, unflatten(s, flattened)) for flattened, (key, s) in zip(list_flattened, space.spaces.items()) ] return OrderedDict(list_unflattened) elif isinstance(space, gym.MultiBinary): return torch_x.view(torch_x.shape[:-1] + space.shape).byte() elif isinstance(space, gym.MultiDiscrete): return torch_x.view(torch_x.shape[:-1] + space.shape).long() else: raise NotImplementedError def torch_point(space, np_x): """Convert numpy space point into torch.""" if isinstance(space, gym.Box): return torch.from_numpy(np_x) elif isinstance(space, gym.Discrete): return np_x elif isinstance(space, gym.Tuple): return tuple([torch_point(s, x_part) for x_part, s in zip(np_x, space.spaces)]) elif isinstance(space, gym.Dict): return OrderedDict( [(key, torch_point(s, np_x[key])) for key, s in space.spaces.items()] ) elif isinstance(space, gym.MultiBinary): return torch.from_numpy(np_x) elif isinstance(space, gym.MultiDiscrete): return torch.from_numpy(np.asarray(np_x)) else: raise NotImplementedError def numpy_point( space: gym.Space, torch_x: Union[int, torch.Tensor, OrderedDict, Tuple] ): """Convert torch space point into numpy.""" if isinstance(space, gym.Box): return cast(torch.Tensor, torch_x).cpu().numpy() elif isinstance(space, gym.Discrete): return torch_x elif isinstance(space, gym.Tuple): return tuple( [ numpy_point(s, x_part) for x_part, s in zip(cast(Iterable, torch_x), space.spaces) ] ) elif isinstance(space, gym.Dict): return OrderedDict( [ (key, numpy_point(s, cast(torch.Tensor, torch_x)[key])) for key, s in space.spaces.items() ] ) elif isinstance(space, gym.MultiBinary): return cast(torch.Tensor, torch_x).cpu().numpy() elif isinstance(space, gym.MultiDiscrete): return cast(torch.Tensor, torch_x).cpu().numpy() else: raise NotImplementedError def flatten_space(space: gym.Space): if isinstance(space, gym.Box): return gym.Box(space.low.flatten(), space.high.flatten()) if isinstance(space, gym.Discrete): return gym.Box(low=0, high=space.n, shape=(1,)) if isinstance(space, gym.Tuple): space = [flatten_space(s) for s in space.spaces] return gym.Box( low=np.concatenate([s.low for s in space]), high=np.concatenate([s.high for s in space]), ) if isinstance(space, gym.Dict): space = [flatten_space(s) for s in space.spaces.values()] return gym.Box( low=np.concatenate([s.low for s in space]), high=np.concatenate([s.high for s in space]), ) if isinstance(space, gym.MultiBinary): return gym.Box(low=0, high=1, shape=(space.n,)) if isinstance(space, gym.MultiDiscrete): return gym.Box(low=np.zeros_like(space.nvec), high=space.nvec,) raise NotImplementedError def policy_space( action_space: gym.Space, box_space_to_policy: Callable[[gym.Box], gym.Space] = None, ) -> gym.Space: if isinstance(action_space, gym.Box): if box_space_to_policy is None: # policy = mean (default) return action_space else: return box_space_to_policy(action_space) if isinstance(action_space, gym.Discrete): # policy = prob of each option return gym.Box( low=np.float32(0.0), high=np.float32(1.0), shape=(action_space.n,) ) if isinstance(action_space, gym.Tuple): # policy = tuple of sub-policies spaces = [policy_space(s, box_space_to_policy) for s in action_space.spaces] return gym.Tuple(spaces) if isinstance(action_space, gym.Dict): # policy = dict of sub-policies spaces = [ (name, policy_space(s, box_space_to_policy),) for name, s in action_space.spaces.items() ] return gym.Dict(spaces) if isinstance(action_space, gym.MultiBinary): # policy = prob of 0, 1 in each entry return gym.Box( low=np.float32(0.0), high=np.float32(1.0), shape=(action_space.n, 2) ) if isinstance(action_space, gym.MultiDiscrete): # policy = Tuple of prob of each option for each discrete return gym.Tuple( [ gym.Box(low=np.float32(0.0), high=np.float32(1.0), shape=(n,)) for n in action_space.nvec ] ) raise NotImplementedError def action_list( action_space: gym.Space, flat_actions: torch.Tensor ) -> List[ActionType]: """Convert flattened actions to list. Assumes `flat_actions` are of shape `[step, sampler, flatdim]`. """ def tolist(action): if isinstance(action, torch.Tensor): return action.tolist() if isinstance(action, Tuple): actions = [tolist(ac) for ac in action] return tuple(actions) if isinstance(action, OrderedDict): actions = [(key, tolist(action[key])) for key in action.keys()] return OrderedDict(actions) # else, it's a scalar return action return [tolist(unflatten(action_space, ac)) for ac in flat_actions[0]]
ask4help-main
allenact/utils/spaces_utils.py
import io import logging import os import socket import sys from contextlib import closing from typing import cast, Optional, Tuple from torch import multiprocessing as mp from allenact._constants import ALLENACT_INSTALL_DIR HUMAN_LOG_LEVELS: Tuple[str, ...] = ("debug", "info", "warning", "error", "none") """ Available log levels: "debug", "info", "warning", "error", "none" """ _LOGGER: Optional[logging.Logger] = None class ColoredFormatter(logging.Formatter): """Format a log string with colors. This implementation taken (with modifications) from https://stackoverflow.com/a/384125. """ BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE = range(8) RESET_SEQ = "\033[0m" COLOR_SEQ = "\033[1;%dm" BOLD_SEQ = "\033[1m" COLORS = { "WARNING": YELLOW, "INFO": GREEN, "DEBUG": BLUE, "ERROR": RED, "CRITICAL": MAGENTA, } def __init__(self, fmt: str, datefmt: Optional[str] = None, use_color=True): super().__init__(fmt=fmt, datefmt=datefmt) self.use_color = use_color def format(self, record: logging.LogRecord) -> str: levelname = record.levelname if self.use_color and levelname in self.COLORS: levelname_with_color = ( self.COLOR_SEQ % (30 + self.COLORS[levelname]) + levelname + self.RESET_SEQ ) record.levelname = levelname_with_color formated_record = logging.Formatter.format(self, record) record.levelname = ( levelname # Resetting levelname as `record` might be used elsewhere ) return formated_record else: return logging.Formatter.format(self, record) def get_logger() -> logging.Logger: """Get a `logging.Logger` to stderr. It can be called whenever we wish to log some message. Messages can get mixed-up (https://docs.python.org/3.6/library/multiprocessing.html#logging), but it works well in most cases. # Returns logger: the `logging.Logger` object """ if _new_logger(): if mp.current_process().name == "MainProcess": _new_logger(logging.DEBUG) _set_log_formatter() return _LOGGER def _human_log_level_to_int(human_log_level): human_log_level = human_log_level.lower().strip() assert human_log_level in HUMAN_LOG_LEVELS, "unknown human_log_level {}".format( human_log_level ) if human_log_level == "debug": log_level = logging.DEBUG elif human_log_level == "info": log_level = logging.INFO elif human_log_level == "warning": log_level = logging.WARNING elif human_log_level == "error": log_level = logging.ERROR elif human_log_level == "none": log_level = logging.CRITICAL + 1 else: raise NotImplementedError(f"Unknown log level {human_log_level}.") return log_level def init_logging(human_log_level: str = "info") -> None: """Init the `logging.Logger`. It should be called only once in the app (e.g. in `main`). It sets the log_level to one of `HUMAN_LOG_LEVELS`. And sets up a handler for stderr. The logging level is propagated to all subprocesses. """ _new_logger(_human_log_level_to_int(human_log_level)) _set_log_formatter() def update_log_level(logger, human_log_level: str): logger.setLevel(_human_log_level_to_int(human_log_level)) def find_free_port(address: str = "127.0.0.1") -> int: """Finds a free port for distributed training. # Returns port: port number that can be used to listen """ with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s: s.bind((address, 0)) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) port = s.getsockname()[1] return port def _new_logger(log_level: Optional[int] = None): global _LOGGER if _LOGGER is None: _LOGGER = mp.get_logger() if log_level is not None: get_logger().setLevel(log_level) return True if log_level is not None: get_logger().setLevel(log_level) return False def _set_log_formatter(): assert _LOGGER is not None if _LOGGER.getEffectiveLevel() <= logging.CRITICAL: add_style_to_logs = True # In case someone wants to turn this off manually. if add_style_to_logs: default_format = "$BOLD[%(asctime)s$RESET %(levelname)s$BOLD:]$RESET %(message)s\t[%(filename)s: %(lineno)d]" default_format = default_format.replace( "$BOLD", ColoredFormatter.BOLD_SEQ ).replace("$RESET", ColoredFormatter.RESET_SEQ) else: default_format = ( "%(asctime)s %(levelname)s: %(message)s\t[%(filename)s: %(lineno)d]" ) short_date_format = "%m/%d %H:%M:%S" log_format = "default" if log_format == "default": fmt = default_format datefmt = short_date_format elif log_format == "defaultMilliseconds": fmt = default_format datefmt = None else: fmt = log_format datefmt = short_date_format if add_style_to_logs: formatter = ColoredFormatter(fmt=fmt, datefmt=datefmt,) else: formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) ch = logging.StreamHandler() ch.setFormatter(formatter) ch.addFilter(cast(logging.Filter, _AllenActMessageFilter(os.getcwd()))) _LOGGER.addHandler(ch) sys.excepthook = _excepthook sys.stdout = cast(io.TextIOWrapper, _StreamToLogger()) return _LOGGER class _StreamToLogger: def __init__(self): self.linebuf = "" def write(self, buf): temp_linebuf = self.linebuf + buf self.linebuf = "" for line in temp_linebuf.splitlines(True): if line[-1] == "\n": cast(logging.Logger, _LOGGER).info(line.rstrip()) else: self.linebuf += line def flush(self): if self.linebuf != "": cast(logging.Logger, _LOGGER).info(self.linebuf.rstrip()) self.linebuf = "" def _excepthook(*args): # noinspection PyTypeChecker get_logger().error(msg="Uncaught exception:", exc_info=args) class _AllenActMessageFilter: def __init__(self, working_directory: str): self.working_directory = working_directory # noinspection PyMethodMayBeStatic def filter(self, record): # TODO: Does this work when pip-installing AllenAct? return int( self.working_directory in record.pathname or ALLENACT_INSTALL_DIR in record.pathname or "main" in record.pathname ) class ImportChecker: def __init__(self, msg=None): self.msg = msg def __enter__(self): pass def __exit__(self, exc_type, value, traceback): if exc_type == ModuleNotFoundError and self.msg is not None: value.msg += self.msg return exc_type is None
ask4help-main
allenact/utils/system.py
from typing import List, Any import torch from torchvision.models.detection.backbone_utils import resnet_fpn_backbone from torchvision.models.detection.faster_rcnn import FasterRCNN # noinspection PyProtectedMember from torchvision.models.detection.faster_rcnn import model_urls from torchvision.models.detection.rpn import AnchorGenerator from torchvision.models.utils import load_state_dict_from_url class CachelessAnchorGenerator(AnchorGenerator): def forward(self, image_list: Any, feature_maps: Any): grid_sizes = list([feature_map.shape[-2:] for feature_map in feature_maps]) image_size = image_list.tensors.shape[-2:] strides = [ [int(image_size[0] / g[0]), int(image_size[1] / g[1])] for g in grid_sizes ] dtype, device = feature_maps[0].dtype, feature_maps[0].device self.set_cell_anchors(dtype, device) anchors_over_all_feature_maps = self.grid_anchors(grid_sizes, strides) anchors = torch.jit.annotate(List[List[torch.Tensor]], []) # type:ignore for i, (image_height, image_width) in enumerate(image_list.image_sizes): anchors_in_image = [] for anchors_per_feature_map in anchors_over_all_feature_maps: anchors_in_image.append(anchors_per_feature_map) anchors.append(anchors_in_image) anchors = [torch.cat(anchors_per_image) for anchors_per_image in anchors] return anchors def fasterrcnn_resnet50_fpn( pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, **kwargs ): if pretrained: # no need to download the backbone if pretrained is set pretrained_backbone = False backbone = resnet_fpn_backbone("resnet50", pretrained_backbone) anchor_sizes = ((32,), (64,), (128,), (256,), (512,)) aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes) rpn_anchor_generator = CachelessAnchorGenerator(anchor_sizes, aspect_ratios) model = FasterRCNN( backbone, num_classes, rpn_anchor_generator=rpn_anchor_generator, **kwargs ) # min_size = 300 # max_size = 400 # anchor_sizes = ((12,), (24,), (48,), (96,), (192,)) # aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes) # rpn_anchor_generator = CachelessAnchorGenerator( # anchor_sizes, aspect_ratios # ) # model = FasterRCNN(backbone, num_classes, rpn_anchor_generator=rpn_anchor_generator, min_size=min_size, max_size=max_size, **kwargs) if pretrained: state_dict = load_state_dict_from_url( model_urls["fasterrcnn_resnet50_fpn_coco"], progress=progress ) model.load_state_dict(state_dict) return model
ask4help-main
allenact/utils/cacheless_frcnn.py
ask4help-main
allenact/utils/__init__.py
import copy import functools import hashlib import inspect import json import math import os import random import subprocess import urllib import urllib.request from collections import Counter from contextlib import contextmanager from typing import Sequence, List, Optional, Tuple, Hashable import filelock import numpy as np import torch from scipy.special import comb from allenact.utils.system import get_logger TABLEAU10_RGB = ( (31, 119, 180), (255, 127, 14), (44, 160, 44), (214, 39, 40), (148, 103, 189), (140, 86, 75), (227, 119, 194), (127, 127, 127), (188, 189, 34), (23, 190, 207), ) def multiprocessing_safe_download_file_from_url(url: str, save_path: str): with filelock.FileLock(save_path + ".lock"): if not os.path.isfile(save_path): get_logger().info(f"Downloading file from {url} to {save_path}.") urllib.request.urlretrieve( url, save_path, ) else: get_logger().debug(f"{save_path} exists - skipping download.") def experimental_api(to_decorate): """Decorate a function to note that it is part of the experimental API.""" have_warned = [False] name = f"{inspect.getmodule(to_decorate).__name__}.{to_decorate.__qualname__}" if to_decorate.__name__ == "__init__": name = name.replace(".__init__", "") @functools.wraps(to_decorate) def decorated(*args, **kwargs): if not have_warned[0]: get_logger().warning( f"'{name}' is a part of AllenAct's experimental API." f" This means: (1) there are likely bugs present and (2)" f" we may remove/change this functionality without warning." f" USE AT YOUR OWN RISK.", ) have_warned[0] = True return to_decorate(*args, **kwargs) return decorated def deprecated(to_decorate): """Decorate a function to note that it has been deprecated.""" have_warned = [False] name = f"{inspect.getmodule(to_decorate).__name__}.{to_decorate.__qualname__}" if to_decorate.__name__ == "__init__": name = name.replace(".__init__", "") @functools.wraps(to_decorate) def decorated(*args, **kwargs): if not have_warned[0]: get_logger().warning( f"'{name}' has been deprecated and will soon be removed from AllenAct's API." f" Please discontinue your use of this function.", ) have_warned[0] = True return to_decorate(*args, **kwargs) return decorated class NumpyJSONEncoder(json.JSONEncoder): """JSON encoder for numpy objects. Based off the stackoverflow answer by Jie Yang here: https://stackoverflow.com/a/57915246. The license for this code is [BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/). """ def default(self, obj): if isinstance(obj, np.void): return None elif isinstance(obj, np.bool): return bool(obj) elif isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.ndarray): return obj.tolist() else: return super(NumpyJSONEncoder, self).default(obj) @contextmanager def tensor_print_options(**print_opts): torch_print_opts = copy.deepcopy(torch._tensor_str.PRINT_OPTS) np_print_opts = np.get_printoptions() try: torch.set_printoptions(**print_opts) np.set_printoptions(**print_opts) yield None finally: torch.set_printoptions(**{k: getattr(torch_print_opts, k) for k in print_opts}) np.set_printoptions(**np_print_opts) def md5_hash_str_as_int(to_hash: str): return int(hashlib.md5(to_hash.encode()).hexdigest(), 16,) def get_git_diff_of_project() -> Tuple[str, str]: short_sha = ( subprocess.check_output(["git", "describe", "--always"]).decode("utf-8").strip() ) diff = subprocess.check_output(["git", "diff", short_sha]).decode("utf-8") return short_sha, diff class HashableDict(dict): """A dictionary which is hashable so long as all of its values are hashable. A HashableDict object will allow setting / deleting of items until the first time that `__hash__()` is called on it after which attempts to set or delete items will throw `RuntimeError` exceptions. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._hash_has_been_called = False def __key(self): return tuple((k, self[k]) for k in sorted(self)) def __hash__(self): self._hash_has_been_called = True return hash(self.__key()) def __eq__(self, other): return self.__key() == other.__key() def __setitem__(self, *args, **kwargs): if not self._hash_has_been_called: return super(HashableDict, self).__setitem__(*args, **kwargs) raise RuntimeError("Cannot set item in HashableDict after having called hash.") def __delitem__(self, *args, **kwargs): if not self._hash_has_been_called: return super(HashableDict, self).__delitem__(*args, **kwargs) raise RuntimeError( "Cannot delete item in HashableDict after having called hash." ) def partition_sequence(seq: Sequence, parts: int) -> List: assert 0 < parts, f"parts [{parts}] must be greater > 0" assert parts <= len(seq), f"parts [{parts}] > len(seq) [{len(seq)}]" n = len(seq) quotient = n // parts remainder = n % parts counts = [quotient + (i < remainder) for i in range(parts)] inds = np.cumsum([0] + counts) return [seq[ind0:ind1] for ind0, ind1 in zip(inds[:-1], inds[1:])] def uninterleave(seq: Sequence, parts: int) -> List: assert 0 < parts <= len(seq) n = len(seq) quotient = n // parts return [ [seq[i + j * parts] for j in range(quotient + 1) if i + j * parts < len(seq)] for i in range(parts) ] @functools.lru_cache(10000) def cached_comb(n: int, m: int): return comb(n, m) def expected_max_of_subset_statistic(vals: List[float], m: int): n = len(vals) assert m <= n vals_and_counts = list(Counter([round(val, 8) for val in vals]).items()) vals_and_counts.sort() count_so_far = 0 logdenom = math.log(comb(n, m)) expected_max = 0.0 for val, num_occurances_of_val in vals_and_counts: count_so_far += num_occurances_of_val if count_so_far < m: continue count_where_max = 0 for i in range(1, min(num_occurances_of_val, m) + 1): count_where_max += cached_comb(num_occurances_of_val, i) * cached_comb( count_so_far - num_occurances_of_val, m - i ) expected_max += val * math.exp(math.log(count_where_max) - logdenom) return expected_max def bootstrap_max_of_subset_statistic( vals: List[float], m: int, reps=1000, seed: Optional[int] = None ): rstate = None if seed is not None: rstate = random.getstate() random.seed(seed) results = [] for _ in range(reps): results.append( expected_max_of_subset_statistic(random.choices(vals, k=len(vals)), m) ) if seed is not None: random.setstate(rstate) return results def rand_float(low: float, high: float, shape): assert low <= high try: return np.random.rand(*shape) * (high - low) + low except TypeError as _: return np.random.rand(shape) * (high - low) + low def all_unique(seq: Sequence[Hashable]): seen = set() for s in seq: if s in seen: return False seen.add(s) return True def all_equal(s: Sequence): if len(s) <= 1: return True return all(s[0] == ss for ss in s[1:]) def prepare_locals_for_super( local_vars, args_name="args", kwargs_name="kwargs", ignore_kwargs=False ): assert ( args_name not in local_vars ), "`prepare_locals_for_super` does not support {}.".format(args_name) new_locals = {k: v for k, v in local_vars.items() if k != "self" and "__" not in k} if kwargs_name in new_locals: if ignore_kwargs: new_locals.pop(kwargs_name) else: kwargs = new_locals.pop(kwargs_name) kwargs.update(new_locals) new_locals = kwargs return new_locals def partition_limits(num_items: int, num_parts: int): return ( np.round(np.linspace(0, num_items, num_parts + 1, endpoint=True)) .astype(np.int32) .tolist() )
ask4help-main
allenact/utils/misc_utils.py
from typing import Sequence, Any import numpy as np from matplotlib import pyplot as plt, markers from matplotlib.collections import LineCollection from allenact.utils.viz_utils import TrajectoryViz class MultiTrajectoryViz(TrajectoryViz): def __init__( self, path_to_trajectory_prefix: Sequence[str] = ("task_info", "followed_path"), agent_suffixes: Sequence[str] = ("1", "2"), label: str = "trajectories", trajectory_plt_colormaps: Sequence[str] = ("cool", "spring"), marker_plt_colors: Sequence[Any] = ("blue", "orange"), axes_equal: bool = True, **other_base_kwargs, ): super().__init__(label=label, **other_base_kwargs) self.path_to_trajectory_prefix = list(path_to_trajectory_prefix) self.agent_suffixes = list(agent_suffixes) self.trajectory_plt_colormaps = list(trajectory_plt_colormaps) self.marker_plt_colors = marker_plt_colors self.axes_equal = axes_equal def make_fig(self, episode, episode_id): # From https://nbviewer.jupyter.org/github/dpsanders/matplotlib-examples/blob/master/colorline.ipynb def colorline( x, y, z=None, cmap=plt.get_cmap("cool"), norm=plt.Normalize(0.0, 1.0), linewidth=2, alpha=1.0, zorder=1, ): """Plot a colored line with coordinates x and y. Optionally specify colors in the array z Optionally specify a colormap, a norm function and a line width. """ def make_segments(x, y): """Create list of line segments from x and y coordinates, in the correct format for LineCollection: an array of the form numlines x (points per line) x 2 (x and y) array """ points = np.array([x, y]).T.reshape(-1, 1, 2) segments = np.concatenate([points[:-1], points[1:]], axis=1) return segments # Default colors equally spaced on [0,1]: if z is None: z = np.linspace(0.0, 1.0, len(x)) # Special case if a single number: if not hasattr( z, "__iter__" ): # to check for numerical input -- this is a hack z = np.array([z]) z = np.asarray(z) segments = make_segments(x, y) lc = LineCollection( segments, array=z, cmap=cmap, norm=norm, linewidth=linewidth, alpha=alpha, zorder=zorder, ) ax = plt.gca() ax.add_collection(lc) return lc fig, ax = plt.subplots(figsize=self.figsize) for agent, cmap, marker_color in zip( self.agent_suffixes, self.trajectory_plt_colormaps, self.marker_plt_colors ): path = self.path_to_trajectory_prefix[:] path[-1] = path[-1] + agent trajectory = self._access(episode, path) x, y = [], [] for xy in trajectory: x.append(float(self._access(xy, self.x))) y.append(float(self._access(xy, self.y))) colorline(x, y, zorder=1, cmap=cmap) start_marker = markers.MarkerStyle(marker=self.start_marker_shape) if self.path_to_rot_degrees is not None: rot_degrees = float( self._access(trajectory[0], self.path_to_rot_degrees) ) if self.adapt_rotation is not None: rot_degrees = self.adapt_rotation(rot_degrees) start_marker._transform = start_marker.get_transform().rotate_deg( rot_degrees ) ax.scatter( [x[0]], [y[0]], marker=start_marker, zorder=2, s=self.start_marker_scale, color=marker_color, ) ax.scatter( [x[-1]], [y[-1]], marker="s", color=marker_color ) # stop (square) if self.axes_equal: ax.set_aspect("equal", "box") ax.set_title(episode_id, fontsize=self.fontsize) ax.tick_params(axis="x", labelsize=self.fontsize) ax.tick_params(axis="y", labelsize=self.fontsize) return fig
ask4help-main
allenact/utils/multi_agent_viz_utils.py
import os from collections import defaultdict import abc import json from typing import ( Dict, Any, Union, Optional, List, Tuple, Sequence, Callable, cast, Set, ) import sys import numpy as np from allenact.utils.experiment_utils import Builder from allenact.utils.tensor_utils import SummaryWriter, tile_images, process_video try: # Tensorflow not installed for testing from tensorflow.core.util import event_pb2 from tensorflow.python.lib.io import tf_record _TF_AVAILABLE = True except ImportError as _: _TF_AVAILABLE = False try: # When debugging we don't want to use the interactive version of matplotlib # as it causes all sorts of problems. import pydevd import matplotlib matplotlib.use("agg") except ImportError as _: pass from matplotlib import pyplot as plt, markers from matplotlib.collections import LineCollection from matplotlib.figure import Figure import cv2 from allenact.utils.system import get_logger class AbstractViz: def __init__( self, label: Optional[str] = None, vector_task_sources: Sequence[Tuple[str, Dict[str, Any]]] = (), rollout_sources: Sequence[Union[str, Sequence[str]]] = (), actor_critic_source: bool = False, **kwargs, # accepts `max_episodes_in_group` ): self.label = label self.vector_task_sources = list(vector_task_sources) self.rollout_sources = [ [entry] if isinstance(entry, str) else list(entry) for entry in rollout_sources ] self.actor_critic_source = actor_critic_source self.mode: Optional[str] = None self.path_to_id: Optional[Sequence[str]] = None self.episode_ids: Optional[List[Sequence[str]]] = None if "max_episodes_in_group" in kwargs: self.max_episodes_in_group = kwargs["max_episodes_in_group"] self.assigned_max_eps_in_group = True else: self.max_episodes_in_group = 8 self.assigned_max_eps_in_group = False @staticmethod def _source_to_str(source, is_vector_task): source_type = "vector_task" if is_vector_task else "rollout_or_actor_critic" return "{}__{}".format( source_type, "__{}_sep__".format(source_type).join(["{}".format(s) for s in source]), ) @staticmethod def _access(dictionary, path): path = path[::-1] while len(path) > 0: dictionary = dictionary[path.pop()] return dictionary def _auto_viz_order(self, task_outputs): if task_outputs is None: return None, None all_episodes = { self._access(episode, self.path_to_id): episode for episode in task_outputs } if self.episode_ids is None: all_episode_keys = list(all_episodes.keys()) viz_order = [] for page_start in range( 0, len(all_episode_keys), self.max_episodes_in_group ): viz_order.append( all_episode_keys[ page_start : page_start + self.max_episodes_in_group ] ) get_logger().debug("visualizing with order {}".format(viz_order)) else: viz_order = self.episode_ids return viz_order, all_episodes def _setup( self, mode: str, path_to_id: Sequence[str], episode_ids: Optional[Sequence[Union[Sequence[str], str]]], max_episodes_in_group: int, force: bool = False, ): self.mode = mode self.path_to_id = list(path_to_id) if (self.episode_ids is None or force) and episode_ids is not None: self.episode_ids = ( list(episode_ids) if not isinstance(episode_ids[0], str) else [list(cast(List[str], episode_ids))] ) if not self.assigned_max_eps_in_group or force: self.max_episodes_in_group = max_episodes_in_group @abc.abstractmethod def log( self, log_writer: SummaryWriter, task_outputs: Optional[List[Any]], render: Optional[Dict[str, List[Dict[str, Any]]]], num_steps: int, ): raise NotImplementedError() class TrajectoryViz(AbstractViz): def __init__( self, path_to_trajectory: Sequence[str] = ("task_info", "followed_path"), path_to_target_location: Optional[Sequence[str]] = ( "task_info", "target_position", ), path_to_x: Sequence[str] = ("x",), path_to_y: Sequence[str] = ("z",), path_to_rot_degrees: Optional[Sequence[str]] = ("rotation", "y"), adapt_rotation: Optional[Callable[[float], float]] = None, label: str = "trajectory", figsize: Tuple[float, float] = (2, 2), fontsize: float = 5, start_marker_shape: str = r"$\spadesuit$", start_marker_scale: int = 100, **other_base_kwargs, ): super().__init__(label, **other_base_kwargs) self.path_to_trajectory = list(path_to_trajectory) self.path_to_target_location = ( list(path_to_target_location) if path_to_target_location is not None else None ) self.adapt_rotation = adapt_rotation self.x = list(path_to_x) self.y = list(path_to_y) self.path_to_rot_degrees = ( list(path_to_rot_degrees) if path_to_rot_degrees is not None else None ) self.figsize = figsize self.fontsize = fontsize self.start_marker_shape = start_marker_shape self.start_marker_scale = start_marker_scale def log( self, log_writer: SummaryWriter, task_outputs: Optional[List[Any]], render: Optional[Dict[str, List[Dict[str, Any]]]], num_steps: int, ): viz_order, all_episodes = self._auto_viz_order(task_outputs) if viz_order is None: get_logger().debug("trajectory viz returning without visualizing") return for page, current_ids in enumerate(viz_order): figs = [] for episode_id in current_ids: # assert episode_id in all_episodes if episode_id not in all_episodes: get_logger().warning( "skipping viz for missing episode {}".format(episode_id) ) continue figs.append(self.make_fig(all_episodes[episode_id], episode_id)) if len(figs) == 0: continue log_writer.add_figure( "{}/{}_group{}".format(self.mode, self.label, page), figs, global_step=num_steps, ) plt.close( "all" ) # close all current figures (SummaryWriter already closes all figures we log) def make_fig(self, episode, episode_id): # From https://nbviewer.jupyter.org/github/dpsanders/matplotlib-examples/blob/master/colorline.ipynb def colorline( x, y, z=None, cmap=plt.get_cmap("cool"), norm=plt.Normalize(0.0, 1.0), linewidth=2, alpha=1.0, zorder=1, ): """Plot a colored line with coordinates x and y. Optionally specify colors in the array z Optionally specify a colormap, a norm function and a line width. """ def make_segments(x, y): """Create list of line segments from x and y coordinates, in the correct format for LineCollection: an array of the form numlines x (points per line) x 2 (x and y) array """ points = np.array([x, y]).T.reshape(-1, 1, 2) segments = np.concatenate([points[:-1], points[1:]], axis=1) return segments # Default colors equally spaced on [0,1]: if z is None: z = np.linspace(0.0, 1.0, len(x)) # Special case if a single number: if not hasattr( z, "__iter__" ): # to check for numerical input -- this is a hack z = np.array([z]) z = np.asarray(z) segments = make_segments(x, y) lc = LineCollection( segments, array=z, cmap=cmap, norm=norm, linewidth=linewidth, alpha=alpha, zorder=zorder, ) ax = plt.gca() ax.add_collection(lc) return lc trajectory = self._access(episode, self.path_to_trajectory) x, y = [], [] for xy in trajectory: x.append(float(self._access(xy, self.x))) y.append(float(self._access(xy, self.y))) fig, ax = plt.subplots(figsize=self.figsize) colorline(x, y, zorder=1) start_marker = markers.MarkerStyle(marker=self.start_marker_shape) if self.path_to_rot_degrees is not None: rot_degrees = float(self._access(trajectory[0], self.path_to_rot_degrees)) if self.adapt_rotation is not None: rot_degrees = self.adapt_rotation(rot_degrees) start_marker._transform = start_marker.get_transform().rotate_deg( rot_degrees ) ax.scatter( [x[0]], [y[0]], marker=start_marker, zorder=2, s=self.start_marker_scale ) ax.scatter([x[-1]], [y[-1]], marker="s") # stop if self.path_to_target_location is not None: target = self._access(episode, self.path_to_target_location) ax.scatter( [float(self._access(target, self.x))], [float(self._access(target, self.y))], marker="*", ) ax.set_title(episode_id, fontsize=self.fontsize) ax.tick_params(axis="x", labelsize=self.fontsize) ax.tick_params(axis="y", labelsize=self.fontsize) return fig class AgentViewViz(AbstractViz): def __init__( self, label: str = "agent_view", max_clip_length: int = 100, # control memory used when converting groups of images into clips max_video_length: int = -1, # no limit, if > 0, limit the maximum video length (discard last frames) vector_task_source: Tuple[str, Dict[str, Any]] = ( "render", {"mode": "raw_rgb_list"}, ), episode_ids: Optional[Sequence[Union[Sequence[str], str]]] = None, fps: int = 4, max_render_size: int = 400, **other_base_kwargs, ): super().__init__( label, vector_task_sources=[vector_task_source], **other_base_kwargs, ) self.max_clip_length = max_clip_length self.max_video_length = max_video_length self.fps = fps self.max_render_size = max_render_size self.episode_ids = ( ( list(episode_ids) if not isinstance(episode_ids[0], str) else [list(cast(List[str], episode_ids))] ) if episode_ids is not None else None ) def log( self, log_writer: SummaryWriter, task_outputs: Optional[List[Any]], render: Optional[Dict[str, List[Dict[str, Any]]]], num_steps: int, ): if render is None: return datum_id = self._source_to_str(self.vector_task_sources[0], is_vector_task=True) viz_order, _ = self._auto_viz_order(task_outputs) if viz_order is None: get_logger().debug("agent view viz returning without visualizing") return for page, current_ids in enumerate(viz_order): images = [] # list of lists of rgb frames for episode_id in current_ids: # assert episode_id in render if episode_id not in render: get_logger().warning( "skipping viz for missing episode {}".format(episode_id) ) continue images.append( [ self._overlay_label(step[datum_id], episode_id) for step in render[episode_id] ] ) if len(images) == 0: continue vid = self.make_vid(images) if vid is not None: log_writer.add_vid( "{}/{}_group{}".format(self.mode, self.label, page), vid, global_step=num_steps, ) @staticmethod def _overlay_label( img, text, pos=(0, 0), bg_color=(255, 255, 255), fg_color=(0, 0, 0), scale=0.4, thickness=1, margin=2, font_face=cv2.FONT_HERSHEY_SIMPLEX, ): txt_size = cv2.getTextSize(text, font_face, scale, thickness) end_x = pos[0] + txt_size[0][0] + margin end_y = pos[1] pos = (pos[0], pos[1] + txt_size[0][1] + margin) cv2.rectangle(img, pos, (end_x, end_y), bg_color, cv2.FILLED) cv2.putText( img=img, text=text, org=pos, fontFace=font_face, fontScale=scale, color=fg_color, thickness=thickness, lineType=cv2.LINE_AA, ) return img def make_vid(self, images): max_length = max([len(ep) for ep in images]) if max_length == 0: return None valid_im = None for ep in images: if len(ep) > 0: valid_im = ep[0] break frames = [] for it in range(max_length): current_images = [] for ep in images: if it < len(ep): current_images.append(ep[it]) else: if it == 0: current_images.append(np.zeros_like(valid_im)) else: gray = ep[-1].copy() gray[:, :, 0] = gray[:, :, 2] = gray[:, :, 1] current_images.append(gray) frames.append(tile_images(current_images)) return process_video( frames, self.max_clip_length, self.max_video_length, fps=self.fps ) class AbstractTensorViz(AbstractViz): def __init__( self, rollout_source: Union[str, Sequence[str]], label: Optional[str] = None, figsize: Tuple[float, float] = (3, 3), **other_base_kwargs, ): if label is None: if isinstance(rollout_source, str): label = rollout_source[:] else: label = "/".join(rollout_source) super().__init__(label, rollout_sources=[rollout_source], **other_base_kwargs) self.figsize = figsize self.datum_id = self._source_to_str( self.rollout_sources[0], is_vector_task=False ) def log( self, log_writer: SummaryWriter, task_outputs: Optional[List[Any]], render: Optional[Dict[str, List[Dict[str, Any]]]], num_steps: int, ): if render is None: return viz_order, _ = self._auto_viz_order(task_outputs) if viz_order is None: get_logger().debug("tensor viz returning without visualizing") return for page, current_ids in enumerate(viz_order): figs = [] for episode_id in current_ids: if episode_id not in render or len(render[episode_id]) == 0: get_logger().warning( "skipping viz for missing or 0-length episode {}".format( episode_id ) ) continue episode_src = [ step[self.datum_id] for step in render[episode_id] if self.datum_id in step ] if len(episode_src) > 0: # If the last episode for an inference worker is of length 1, there's no captured rollout sources figs.append(self.make_fig(episode_src, episode_id)) if len(figs) == 0: continue log_writer.add_figure( "{}/{}_group{}".format(self.mode, self.label, page), figs, global_step=num_steps, ) plt.close( "all" ) # close all current figures (SummaryWriter already closes all figures we log) @abc.abstractmethod def make_fig(self, episode_src: Sequence[np.ndarray], episode_id: str) -> Figure: raise NotImplementedError() class TensorViz1D(AbstractTensorViz): def __init__( self, rollout_source: Union[str, Sequence[str]] = "action_log_probs", label: Optional[str] = None, figsize: Tuple[float, float] = (3, 3), **other_base_kwargs, ): super().__init__(rollout_source, label, figsize, **other_base_kwargs) def make_fig(self, episode_src, episode_id): assert episode_src[0].size == 1 # Concatenate along step axis (0) seq = np.concatenate(episode_src, axis=0).squeeze() # remove all singleton dims fig, ax = plt.subplots(figsize=self.figsize) ax.plot(seq) ax.set_title(episode_id) ax.set_aspect("auto") plt.tight_layout() return fig class TensorViz2D(AbstractTensorViz): def __init__( self, rollout_source: Union[str, Sequence[str]] = ("memory", "rnn"), label: Optional[str] = None, figsize: Tuple[float, float] = (10, 10), fontsize: float = 5, **other_base_kwargs, ): super().__init__(rollout_source, label, figsize, **other_base_kwargs) self.fontsize = fontsize def make_fig(self, episode_src, episode_id): # Concatenate along step axis (0) seq = np.concatenate( episode_src, axis=0 ).squeeze() # remove num_layers if it's equal to 1, else die assert len(seq.shape) == 2, "No support for higher-dimensions" # get_logger().debug("basic {} h render {}".format(episode_id, seq[:10, 0])) fig, ax = plt.subplots(figsize=self.figsize) ax.matshow(seq) ax.set_xlabel(episode_id, fontsize=self.fontsize) ax.tick_params(axis="x", labelsize=self.fontsize) ax.tick_params(axis="y", labelsize=self.fontsize) ax.tick_params(bottom=False) ax.set_aspect("auto") plt.tight_layout() return fig class ActorViz(AbstractViz): def __init__( self, label: str = "action_probs", action_names_path: Optional[Sequence[str]] = ("task_info", "action_names"), figsize: Tuple[float, float] = (1, 5), fontsize: float = 5, **other_base_kwargs, ): super().__init__(label, actor_critic_source=True, **other_base_kwargs) self.action_names_path: Optional[Sequence[str]] = ( list(action_names_path) if action_names_path is not None else None ) self.figsize = figsize self.fontsize = fontsize self.action_names: Optional[List[str]] = None def log( self, log_writer: SummaryWriter, task_outputs: Optional[List[Any]], render: Optional[Dict[str, List[Dict[str, Any]]]], num_steps: int, ): if render is None: return if ( self.action_names is None and task_outputs is not None and len(task_outputs) > 0 and self.action_names_path is not None ): self.action_names = list( self._access(task_outputs[0], self.action_names_path) ) viz_order, _ = self._auto_viz_order(task_outputs) if viz_order is None: get_logger().debug("actor viz returning without visualizing") return for page, current_ids in enumerate(viz_order): figs = [] for episode_id in current_ids: # assert episode_id in render if episode_id not in render: get_logger().warning( "skipping viz for missing episode {}".format(episode_id) ) continue episode_src = [ step["actor_probs"] for step in render[episode_id] if "actor_probs" in step ] assert len(episode_src) == len(render[episode_id]) figs.append(self.make_fig(episode_src, episode_id)) if len(figs) == 0: continue log_writer.add_figure( "{}/{}_group{}".format(self.mode, self.label, page), figs, global_step=num_steps, ) plt.close( "all" ) # close all current figures (SummaryWriter already closes all figures we log) def make_fig(self, episode_src, episode_id): # Concatenate along step axis (0, reused from kept sampler axis) mat = np.concatenate(episode_src, axis=0) fig, ax = plt.subplots(figsize=self.figsize) ax.matshow(mat) if self.action_names is not None: assert len(self.action_names) == mat.shape[-1] ax.set_xticklabels([""] + self.action_names, rotation="vertical") ax.set_xlabel(episode_id, fontsize=self.fontsize) ax.tick_params(axis="x", labelsize=self.fontsize) ax.tick_params(axis="y", labelsize=self.fontsize) ax.tick_params(bottom=False) # Gridlines based on minor ticks ax.set_yticks(np.arange(-0.5, mat.shape[0], 1), minor=True) ax.set_xticks(np.arange(-0.5, mat.shape[1], 1), minor=True) ax.grid(which="minor", color="w", linestyle="-", linewidth=0.05) ax.tick_params( axis="both", which="minor", left=False, top=False, right=False, bottom=False ) ax.set_aspect("auto") plt.tight_layout() return fig class VizSuite(AbstractViz): def __init__( self, episode_ids: Optional[Sequence[Union[Sequence[str], str]]] = None, path_to_id: Sequence[str] = ("task_info", "id"), mode: str = "valid", force_episodes_and_max_episodes_in_group: bool = False, max_episodes_in_group: int = 8, *viz, **kw_viz, ): super().__init__(max_episodes_in_group=max_episodes_in_group) self._setup( mode=mode, path_to_id=path_to_id, episode_ids=episode_ids, max_episodes_in_group=max_episodes_in_group, ) self.force_episodes_and_max_episodes_in_group = ( force_episodes_and_max_episodes_in_group ) self.all_episode_ids = self._episodes_set() self.viz = [ v() if isinstance(v, Builder) else v for v in viz if isinstance(v, Builder) or isinstance(v, AbstractViz) ] + [ v() if isinstance(v, Builder) else v for k, v in kw_viz.items() if isinstance(v, Builder) or isinstance(v, AbstractViz) ] self.max_render_size: Optional[int] = None ( self.rollout_sources, self.vector_task_sources, self.actor_critic_source, ) = self._setup_sources() self.data: Dict[ str, List[Dict] ] = {} # dict of episode id to list of dicts with collected data self.last_it2epid: List[str] = [] def _setup_sources(self): rollout_sources, vector_task_sources = [], [] labels = [] actor_critic_source = False new_episodes = [] for v in self.viz: labels.append(v.label) rollout_sources += v.rollout_sources vector_task_sources += v.vector_task_sources actor_critic_source |= v.actor_critic_source if ( v.episode_ids is not None and not self.force_episodes_and_max_episodes_in_group ): cur_episodes = self._episodes_set(v.episode_ids) for ep in cur_episodes: if ( self.all_episode_ids is not None and ep not in self.all_episode_ids ): new_episodes.append(ep) get_logger().info( "Added new episode {} from {}".format(ep, v.label) ) v._setup( mode=self.mode, path_to_id=self.path_to_id, episode_ids=self.episode_ids, max_episodes_in_group=self.max_episodes_in_group, force=self.force_episodes_and_max_episodes_in_group, ) if isinstance(v, AgentViewViz): self.max_render_size = v.max_render_size get_logger().info("Logging labels {}".format(labels)) if len(new_episodes) > 0: get_logger().info("Added new episodes {}".format(new_episodes)) self.episode_ids.append(new_episodes) # new group with all added episodes self.all_episode_ids = self._episodes_set() rol_flat = {json.dumps(src, sort_keys=True): src for src in rollout_sources} vt_flat = {json.dumps(src, sort_keys=True): src for src in vector_task_sources} rol_keys = list(set(rol_flat.keys())) vt_keys = list(set(vt_flat.keys())) return ( [rol_flat[k] for k in rol_keys], [vt_flat[k] for k in vt_keys], actor_critic_source, ) def _episodes_set(self, episode_list=None) -> Optional[Set[str]]: source = self.episode_ids if episode_list is None else episode_list if source is None: return None all_episode_ids: List[str] = [] for group in source: all_episode_ids += group return set(all_episode_ids) def empty(self): return len(self.data) == 0 def _update(self, collected_data): for epid in collected_data: assert epid in self.data self.data[epid][-1].update(collected_data[epid]) def _append(self, vector_task_data): for epid in vector_task_data: if epid in self.data: self.data[epid].append(vector_task_data[epid]) else: self.data[epid] = [vector_task_data[epid]] def _collect_actor_critic(self, actor_critic): actor_critic_data = { epid: dict() for epid in self.last_it2epid if self.all_episode_ids is None or epid in self.all_episode_ids } if len(actor_critic_data) > 0 and actor_critic is not None: if self.actor_critic_source: # TODO this code only supports Discrete action spaces! probs = ( actor_critic.distributions.probs ) # step (=1) x sampler x agent (=1) x action values = actor_critic.values # step x sampler x agent x 1 for it, epid in enumerate(self.last_it2epid): if epid in actor_critic_data: # Select current episode (sampler axis will be reused as step axis) prob = ( # probs.narrow(dim=0, start=it, length=1) # works for sampler x action probs.narrow( dim=1, start=it, length=1 ) # step x sampler x agent x action -> step x 1 x agent x action .squeeze( 0 ) # step x 1 x agent x action -> 1 x agent x action # .squeeze(-2) # 1 x agent x action -> 1 x action .to("cpu") .detach() .numpy() ) assert "actor_probs" not in actor_critic_data[epid] actor_critic_data[epid]["actor_probs"] = prob val = ( # values.narrow(dim=0, start=it, length=1) # works for sampler x 1 values.narrow( dim=1, start=it, length=1 ) # step x sampler x agent x 1 -> step x 1 x agent x 1 .squeeze(0) # step x 1 x agent x 1 -> 1 x agent x 1 # .squeeze(-2) # 1 x agent x 1 -> 1 x 1 .to("cpu") .detach() .numpy() ) assert "critic_value" not in actor_critic_data[epid] actor_critic_data[epid]["critic_value"] = val self._update(actor_critic_data) def _collect_rollout(self, rollout, alive): alive_set = set(alive) assert len(alive_set) == len(alive) alive_it2epid = [ epid for it, epid in enumerate(self.last_it2epid) if it in alive_set ] rollout_data = { epid: dict() for epid in alive_it2epid if self.all_episode_ids is None or epid in self.all_episode_ids } if len(rollout_data) > 0 and rollout is not None: for source in self.rollout_sources: datum_id = self._source_to_str(source, is_vector_task=False) storage, path = source[0], source[1:] # Access storage res = getattr(rollout, storage) episode_dim = rollout.dim_names.index("sampler") # Access sub-storage if path not empty if len(path) > 0: flattened_name = rollout.unflattened_to_flattened[storage][ tuple(path) ] # for path_step in path: # res = res[path_step] res = res[flattened_name] res, episode_dim = res if rollout.step > 0: if rollout.step > res.shape[0]: # e.g. rnn with only latest memory saved rollout_step = res.shape[0] - 1 else: rollout_step = rollout.step - 1 else: if rollout.num_steps - 1 < res.shape[0]: rollout_step = rollout.num_steps - 1 else: # e.g. rnn with only latest memory saved rollout_step = res.shape[0] - 1 # Select latest step res = res.narrow( dim=0, start=rollout_step, length=1, # step dimension ) # 1 x ... x sampler x ... # get_logger().debug("basic collect h {}".format(res[..., 0])) for it, epid in enumerate(alive_it2epid): if epid in rollout_data: # Select current episode and remove episode/sampler axis datum = ( res.narrow(dim=episode_dim, start=it, length=1) .squeeze(axis=episode_dim) .to("cpu") .detach() .numpy() ) # 1 x ... (no sampler dim) # get_logger().debug("basic collect ep {} h {}".format(epid, res[..., 0])) assert datum_id not in rollout_data[epid] rollout_data[epid][ datum_id ] = datum.copy() # copy needed when running on CPU! self._update(rollout_data) def _collect_vector_task(self, vector_task): it2epid = [ self._access(info, self.path_to_id[1:]) for info in vector_task.attr("task_info") ] # get_logger().debug("basic epids {}".format(it2epid)) def limit_spatial_res(data: np.ndarray, max_size=400): if data.shape[0] <= max_size and data.shape[1] <= max_size: return data else: f = float(max_size) / max(data.shape[0], data.shape[1]) size = (int(data.shape[1] * f), int(data.shape[0] * f)) return cv2.resize(data, size, 0, 0, interpolation=cv2.INTER_AREA) vector_task_data = { epid: dict() for epid in it2epid if self.all_episode_ids is None or epid in self.all_episode_ids } if len(vector_task_data) > 0: for ( source ) in self.vector_task_sources: # these are observations for next step! datum_id = self._source_to_str(source, is_vector_task=True) method, kwargs = source res = getattr(vector_task, method)(**kwargs) if not isinstance(res, Sequence): assert len(it2epid) == 1 res = [res] if method == "render": res = [limit_spatial_res(r, self.max_render_size) for r in res] assert len(res) == len(it2epid) for datum, epid in zip(res, it2epid): if epid in vector_task_data: assert datum_id not in vector_task_data[epid] vector_task_data[epid][datum_id] = datum self._append(vector_task_data) return it2epid # to be called by engine def collect(self, vector_task=None, alive=None, rollout=None, actor_critic=None): if actor_critic is not None: # in phase with last_it2epid try: self._collect_actor_critic(actor_critic) except (AssertionError, RuntimeError): get_logger().debug( msg=f"Failed collect (actor_critic) for viz due to exception:", exc_info=sys.exc_info(), ) get_logger().error(f"Failed collect (actor_critic) for viz") if alive is not None and rollout is not None: # in phase with last_it2epid that stay alive try: self._collect_rollout(rollout, alive) except (AssertionError, RuntimeError): get_logger().debug( msg=f"Failed collect (rollout) for viz due to exception:", exc_info=sys.exc_info(), ) get_logger().error(f"Failed collect (rollout) for viz") # Always call this one last! if vector_task is not None: # in phase with identifiers of current episodes from vector_task try: self.last_it2epid = self._collect_vector_task(vector_task) except (AssertionError, RuntimeError): get_logger().debug( msg=f"Failed collect (vector_task) for viz due to exception:", exc_info=sys.exc_info(), ) get_logger().error(f"Failed collect (vector_task) for viz") def read_and_reset(self) -> Dict[str, List[Dict[str, Any]]]: res = self.data self.data = {} # get_logger().debug("Returning episodes {}".format(list(res.keys()))) return res # to be called by logger def log( self, log_writer: SummaryWriter, task_outputs: Optional[List[Any]], render: Optional[Dict[str, List[Dict[str, Any]]]], num_steps: int, ): for v in self.viz: try: v.log(log_writer, task_outputs, render, num_steps) except (AssertionError, RuntimeError): get_logger().debug( msg=f"Dropped {v.label} viz due to exception:", exc_info=sys.exc_info(), ) get_logger().error(f"Dropped {v.label} viz") class TensorboardSummarizer: """Assumption: tensorboard tags/labels include a valid/test/train substr indicating the data modality""" def __init__( self, experiment_to_train_events_paths_map: Dict[str, Sequence[str]], experiment_to_test_events_paths_map: Dict[str, Sequence[str]], eval_min_mega_steps: Optional[Sequence[float]] = None, tensorboard_tags_to_labels_map: Optional[Dict[str, str]] = None, tensorboard_output_summary_folder: str = "tensorboard_plotter_output", ): if not _TF_AVAILABLE: raise ImportError( "Please install tensorflow e.g. with `pip install tensorflow` to enable TensorboardSummarizer" ) self.experiment_to_train_events_paths_map = experiment_to_train_events_paths_map self.experiment_to_test_events_paths_map = experiment_to_test_events_paths_map train_experiments = set(list(experiment_to_train_events_paths_map.keys())) test_experiments = set(list(experiment_to_test_events_paths_map.keys())) assert (train_experiments - test_experiments) in [set(), train_experiments,], ( f"`experiment_to_test_events_paths_map` must have identical keys (experiment names) to those" f" in `experiment_to_train_events_paths_map`, or be empty." f" Got {train_experiments} train keys and {test_experiments} test keys." ) self.eval_min_mega_steps = eval_min_mega_steps self.tensorboard_tags_to_labels_map = tensorboard_tags_to_labels_map if self.tensorboard_tags_to_labels_map is not None: for tag, label in self.tensorboard_tags_to_labels_map.items(): assert ("valid" in label) + ("train" in label) + ( "test" in label ) == 1, ( f"One (and only one) of {'train', 'valid', 'test'} must be part of the label for" f" tag {tag} ({label} given)." ) self.tensorboard_output_summary_folder = tensorboard_output_summary_folder self.train_data = self._read_tensorflow_experiment_events( self.experiment_to_train_events_paths_map ) self.test_data = self._read_tensorflow_experiment_events( self.experiment_to_test_events_paths_map ) def _read_tensorflow_experiment_events( self, experiment_to_events_paths_map, skip_map=False ): def my_summary_iterator(path): try: for r in tf_record.tf_record_iterator(path): yield event_pb2.Event.FromString(r) except IOError: get_logger().debug(f"IOError for path {path}") return None collected_data = {} for experiment_name, path_list in experiment_to_events_paths_map.items(): experiment_data = defaultdict(list) for filename_path in path_list: for event in my_summary_iterator(filename_path): if event is None: break for value in event.summary.value: if self.tensorboard_tags_to_labels_map is None or skip_map: label = value.tag elif value.tag in self.tensorboard_tags_to_labels_map: label = self.tensorboard_tags_to_labels_map[value.tag] else: continue experiment_data[label].append( dict( score=value.simple_value, time=event.wall_time, steps=event.step, ) ) collected_data[experiment_name] = experiment_data return collected_data def _eval_vs_train_time_steps(self, eval_data, train_data): min_mega_steps = self.eval_min_mega_steps if min_mega_steps is None: min_mega_steps = [(item["steps"] - 1) / 1e6 for item in eval_data] scores, times, steps = [], [], [] i, t, last_i = 0, 0, -1 while len(times) < len(min_mega_steps): while eval_data[i]["steps"] / min_mega_steps[len(times)] / 1e6 < 1: i += 1 while train_data[t]["steps"] / min_mega_steps[len(times)] / 1e6 < 1: t += 1 # step might be missing in valid! (and would duplicate future value at previous steps!) # solution: move forward last entry's time if no change in i (instead of new entry) if i == last_i: times[-1] = train_data[t]["time"] else: scores.append(eval_data[i]["score"]) times.append(train_data[t]["time"]) steps.append(eval_data[i]["steps"]) last_i = i scores.insert(0, train_data[0]["score"]) times.insert(0, train_data[0]["time"]) steps.insert(0, 0) return scores, times, steps def _train_vs_time_steps(self, train_data): last_eval_step = ( self.eval_min_mega_steps[-1] * 1e6 if self.eval_min_mega_steps is not None else float("inf") ) scores = [train_data[0]["score"]] times = [train_data[0]["time"]] steps = [train_data[0]["steps"]] t = 1 while steps[-1] < last_eval_step and t < len(train_data): scores.append(train_data[t]["score"]) times.append(train_data[t]["time"]) steps.append(train_data[t]["steps"]) t += 1 return scores, times, steps def make_tensorboard_summary(self): all_experiments = list(self.experiment_to_train_events_paths_map.keys()) for experiment_name in all_experiments: summary_writer = SummaryWriter( os.path.join(self.tensorboard_output_summary_folder, experiment_name) ) test_labels = ( sorted(list(self.test_data[experiment_name].keys())) if len(self.test_data) > 0 else [] ) for test_label in test_labels: train_label = test_label.replace("valid", "test").replace( "test", "train" ) if train_label not in self.train_data[experiment_name]: print( f"Missing matching 'train' label {train_label} for eval label {test_label}. Skipping" ) continue train_data = self.train_data[experiment_name][train_label] test_data = self.test_data[experiment_name][test_label] scores, times, steps = self._eval_vs_train_time_steps( test_data, train_data ) for score, t, step in zip(scores, times, steps): summary_writer.add_scalar( test_label, score, global_step=step, walltime=t ) valid_labels = sorted( [ key for key in list(self.train_data[experiment_name].keys()) if "valid" in key ] ) for valid_label in valid_labels: train_label = valid_label.replace("valid", "train") assert ( train_label in self.train_data[experiment_name] ), f"Missing matching 'train' label {train_label} for valid label {valid_label}" train_data = self.train_data[experiment_name][train_label] valid_data = self.train_data[experiment_name][valid_label] scores, times, steps = self._eval_vs_train_time_steps( valid_data, train_data ) for score, t, step in zip(scores, times, steps): summary_writer.add_scalar( valid_label, score, global_step=step, walltime=t ) train_labels = sorted( [ key for key in list(self.train_data[experiment_name].keys()) if "train" in key ] ) for train_label in train_labels: scores, times, steps = self._train_vs_time_steps( self.train_data[experiment_name][train_label] ) for score, t, step in zip(scores, times, steps): summary_writer.add_scalar( train_label, score, global_step=step, walltime=t ) summary_writer.close()
ask4help-main
allenact/utils/viz_utils.py
"""Functions used to manipulate pytorch tensors and numpy arrays.""" import numbers import os import tempfile from collections import defaultdict from typing import List, Dict, Optional, DefaultDict, Union, Any, cast import PIL import numpy as np import torch from PIL import Image from moviepy import editor as mpy from moviepy.editor import concatenate_videoclips from tensorboardX import SummaryWriter as TBXSummaryWriter, summary as tbxsummary from tensorboardX.proto.summary_pb2 import Summary as TBXSummary # noinspection PyProtectedMember from tensorboardX.utils import _prepare_video as tbx_prepare_video from tensorboardX.x2num import make_np as tbxmake_np from allenact.utils.system import get_logger def to_device_recursively( input: Any, device: Union[str, torch.device, int], inplace: bool = True ): """Recursively places tensors on the appropriate device.""" if input is None: return input elif isinstance(input, torch.Tensor): return input.to(device) # type: ignore elif isinstance(input, tuple): return tuple( to_device_recursively(input=subinput, device=device, inplace=inplace) for subinput in input ) elif isinstance(input, list): if inplace: for i in range(len(input)): input[i] = to_device_recursively( input=input[i], device=device, inplace=inplace ) return input else: return [ to_device_recursively(input=subpart, device=device, inplace=inplace) for subpart in input ] elif isinstance(input, dict): if inplace: for key in input: input[key] = to_device_recursively( input=input[key], device=device, inplace=inplace ) return input else: return { k: to_device_recursively(input=input[k], device=device, inplace=inplace) for k in input } elif isinstance(input, set): if inplace: for element in list(input): input.remove(element) input.add( to_device_recursively(element, device=device, inplace=inplace) ) else: return set( to_device_recursively(k, device=device, inplace=inplace) for k in input ) elif isinstance(input, np.ndarray) or np.isscalar(input) or isinstance(input, str): return input elif hasattr(input, "to"): # noinspection PyCallingNonCallable return input.to(device=device, inplace=inplace) else: raise NotImplementedError( "Sorry, value of type {} is not supported.".format(type(input)) ) def detach_recursively(input: Any, inplace=True): """Recursively detaches tensors in some data structure from their computation graph.""" if input is None: return input elif isinstance(input, torch.Tensor): return input.detach() elif isinstance(input, tuple): return tuple( detach_recursively(input=subinput, inplace=inplace) for subinput in input ) elif isinstance(input, list): if inplace: for i in range(len(input)): input[i] = detach_recursively(input[i], inplace=inplace) return input else: return [ detach_recursively(input=subinput, inplace=inplace) for subinput in input ] elif isinstance(input, dict): if inplace: for key in input: input[key] = detach_recursively(input[key], inplace=inplace) return input else: return {k: detach_recursively(input[k], inplace=inplace) for k in input} elif isinstance(input, set): if inplace: for element in list(input): input.remove(element) input.add(detach_recursively(element, inplace=inplace)) else: return set(detach_recursively(k, inplace=inplace) for k in input) elif isinstance(input, np.ndarray) or np.isscalar(input) or isinstance(input, str): return input elif hasattr(input, "detach_recursively"): # noinspection PyCallingNonCallable return input.detach_recursively(inplace=inplace) else: raise NotImplementedError( "Sorry, hidden state of type {} is not supported.".format(type(input)) ) def batch_observations( observations: List[Dict], device: Optional[torch.device] = None ) -> Dict[str, Union[Dict, torch.Tensor]]: """Transpose a batch of observation dicts to a dict of batched observations. # Arguments observations : List of dicts of observations. device : The torch.device to put the resulting tensors on. Will not move the tensors if None. # Returns Transposed dict of lists of observations. """ def dict_from_observation( observation: Dict[str, Any] ) -> Dict[str, Union[Dict, List]]: batch_dict: DefaultDict = defaultdict(list) for sensor in observation: if isinstance(observation[sensor], Dict): batch_dict[sensor] = dict_from_observation(observation[sensor]) else: batch_dict[sensor].append(to_tensor(observation[sensor])) return batch_dict def fill_dict_from_observations( input_batch: Any, observation: Dict[str, Any] ) -> None: for sensor in observation: if isinstance(observation[sensor], Dict): fill_dict_from_observations(input_batch[sensor], observation[sensor]) else: input_batch[sensor].append(to_tensor(observation[sensor])) def dict_to_batch(input_batch: Any) -> None: for sensor in input_batch: if isinstance(input_batch[sensor], Dict): dict_to_batch(input_batch[sensor]) else: input_batch[sensor] = torch.stack( [batch.to(device=device) for batch in input_batch[sensor]], dim=0 ) if len(observations) == 0: return cast(Dict[str, Union[Dict, torch.Tensor]], observations) batch = dict_from_observation(observations[0]) for obs in observations[1:]: fill_dict_from_observations(batch, obs) dict_to_batch(batch) return cast(Dict[str, Union[Dict, torch.Tensor]], batch) def to_tensor(v) -> torch.Tensor: """Return a torch.Tensor version of the input. # Parameters v : Input values that can be coerced into being a tensor. # Returns A tensor version of the input. """ if torch.is_tensor(v): return v elif isinstance(v, np.ndarray): return torch.from_numpy(v) else: return torch.tensor( v, dtype=torch.int64 if isinstance(v, numbers.Integral) else torch.float ) def tile_images(images: List[np.ndarray]) -> np.ndarray: """Tile multiple images into single image. # Parameters images : list of images where each image has dimension (height x width x channels) # Returns Tiled image (new_height x width x channels). """ assert len(images) > 0, "empty list of images" np_images = np.asarray(images) n_images, height, width, n_channels = np_images.shape new_height = int(np.ceil(np.sqrt(n_images))) new_width = int(np.ceil(float(n_images) / new_height)) # pad with empty images to complete the rectangle np_images = np.array( images + [images[0] * 0 for _ in range(n_images, new_height * new_width)] ) # img_HWhwc out_image = np_images.reshape((new_height, new_width, height, width, n_channels)) # img_HhWwc out_image = out_image.transpose(0, 2, 1, 3, 4) # img_Hh_Ww_c out_image = out_image.reshape((new_height * height, new_width * width, n_channels)) return out_image class SummaryWriter(TBXSummaryWriter): @staticmethod def _video(tag, vid): # noinspection PyProtectedMember tag = tbxsummary._clean_tag(tag) return TBXSummary(value=[TBXSummary.Value(tag=tag, image=vid)]) def add_vid(self, tag, vid, global_step=None, walltime=None): self._get_file_writer().add_summary( self._video(tag, vid), global_step, walltime ) def add_image( self, tag, img_tensor, global_step=None, walltime=None, dataformats="CHW" ): self._get_file_writer().add_summary( image(tag, img_tensor, dataformats=dataformats), global_step, walltime ) def image(tag, tensor, rescale=1, dataformats="CHW"): """Outputs a `Summary` protocol buffer with images. The summary has up to `max_images` summary values containing images. The images are built from `tensor` which must be 3-D with shape `[height, width, channels]` and where `channels` can be: * 1: `tensor` is interpreted as Grayscale. * 3: `tensor` is interpreted as RGB. * 4: `tensor` is interpreted as RGBA. # Parameters tag: A name for the generated node. Will also serve as a series name in TensorBoard. tensor: A 3-D `uint8` or `float32` `Tensor` of shape `[height, width, channels]` where `channels` is 1, 3, or 4. 'tensor' can either have values in [0, 1] (float32) or [0, 255] (uint8). The image() function will scale the image values to [0, 255] by applying a scale factor of either 1 (uint8) or 255 (float32). rescale: The scale. dataformats: Input image shape format. # Returns A scalar `Tensor` of type `string`. The serialized `Summary` protocol buffer. """ # noinspection PyProtectedMember tag = tbxsummary._clean_tag(tag) tensor = tbxmake_np(tensor) tensor = convert_to_HWC(tensor, dataformats) # Do not assume that user passes in values in [0, 255], use data type to detect if tensor.dtype != np.uint8: tensor = (tensor * 255.0).astype(np.uint8) image = tbxsummary.make_image(tensor, rescale=rescale) return TBXSummary(value=[TBXSummary.Value(tag=tag, image=image)]) def convert_to_HWC(tensor, input_format): # tensor: numpy array assert len(set(input_format)) == len( input_format ), "You can not use the same dimension shordhand twice. \ input_format: {}".format( input_format ) assert len(tensor.shape) == len( input_format ), "size of input tensor and input format are different. \ tensor shape: {}, input_format: {}".format( tensor.shape, input_format ) input_format = input_format.upper() if len(input_format) == 4: index = [input_format.find(c) for c in "NCHW"] tensor_NCHW = tensor.transpose(index) tensor_CHW = make_grid(tensor_NCHW) # noinspection PyTypeChecker return tensor_CHW.transpose(1, 2, 0) if len(input_format) == 3: index = [input_format.find(c) for c in "HWC"] tensor_HWC = tensor.transpose(index) if tensor_HWC.shape[2] == 1: tensor_HWC = np.concatenate([tensor_HWC, tensor_HWC, tensor_HWC], 2) return tensor_HWC if len(input_format) == 2: index = [input_format.find(c) for c in "HW"] tensor = tensor.transpose(index) tensor = np.stack([tensor, tensor, tensor], 2) return tensor def make_grid(I, ncols=8): # I: N1HW or N3HW assert isinstance(I, np.ndarray), "plugin error, should pass numpy array here" if I.shape[1] == 1: I = np.concatenate([I, I, I], 1) assert I.ndim == 4 and I.shape[1] == 3 or I.shape[1] == 4 nimg = I.shape[0] H = I.shape[2] W = I.shape[3] ncols = min(nimg, ncols) nrows = int(np.ceil(float(nimg) / ncols)) canvas = np.zeros((I.shape[1], H * nrows, W * ncols), dtype=I.dtype) i = 0 for y in range(nrows): for x in range(ncols): if i >= nimg: break canvas[:, y * H : (y + 1) * H, x * W : (x + 1) * W] = I[i] i = i + 1 return canvas def tensor_to_video(tensor, fps=4): tensor = tbxmake_np(tensor) tensor = tbx_prepare_video(tensor) # If user passes in uint8, then we don't need to rescale by 255 if tensor.dtype != np.uint8: tensor = (tensor * 255.0).astype(np.uint8) return tbxsummary.make_video(tensor, fps) def tensor_to_clip(tensor, fps=4): tensor = tbxmake_np(tensor) tensor = tbx_prepare_video(tensor) # If user passes in uint8, then we don't need to rescale by 255 if tensor.dtype != np.uint8: tensor = (tensor * 255.0).astype(np.uint8) t, h, w, c = tensor.shape clip = mpy.ImageSequenceClip(list(tensor), fps=fps) return clip, (h, w, c) def clips_to_video(clips, h, w, c): # encode sequence of images into gif string clip = concatenate_videoclips(clips) filename = tempfile.NamedTemporaryFile(suffix=".gif", delete=False).name # moviepy >= 1.0.0 use logger=None to suppress output. try: clip.write_gif(filename, verbose=False, logger=None) except TypeError: get_logger().warning( "Upgrade to moviepy >= 1.0.0 to suppress the progress bar." ) clip.write_gif(filename, verbose=False) with open(filename, "rb") as f: tensor_string = f.read() try: os.remove(filename) except OSError: get_logger().warning("The temporary file used by moviepy cannot be deleted.") return TBXSummary.Image( height=h, width=w, colorspace=c, encoded_image_string=tensor_string ) def process_video(render, max_clip_len=500, max_video_len=-1, fps=4): output = [] hwc = None if len(render) > 0: if len(render) > max_video_len > 0: get_logger().warning( "Clipping video to first {} frames out of {} original frames".format( max_video_len, len(render) ) ) render = render[:max_video_len] for clipstart in range(0, len(render), max_clip_len): clip = render[clipstart : clipstart + max_clip_len] try: current = np.stack(clip, axis=0) # T, H, W, C current = current.transpose((0, 3, 1, 2)) # T, C, H, W current = np.expand_dims(current, axis=0) # 1, T, C, H, W current, cur_hwc = tensor_to_clip(current, fps=fps) if hwc is None: hwc = cur_hwc else: assert ( hwc == cur_hwc ), "Inconsistent clip shape: previous {} current {}".format( hwc, cur_hwc ) output.append(current) except MemoryError: get_logger().error( "Skipping video due to memory error with clip of length {}".format( len(clip) ) ) return None else: get_logger().warning("Calling process_video with 0 frames") return None assert len(output) > 0, "No clips to concatenate" assert hwc is not None, "No tensor dims assigned" try: result = clips_to_video(output, *hwc) except MemoryError: get_logger().error("Skipping video due to memory error calling clips_to_video") result = None return result class ScaleBothSides(object): """Rescales the input PIL.Image to the given 'width' and `height`. Attributes width: new width height: new height interpolation: Default: PIL.Image.BILINEAR """ def __init__(self, width: int, height: int, interpolation=Image.BILINEAR): self.width = width self.height = height self.interpolation = interpolation def __call__(self, img: PIL.Image) -> PIL.Image: return img.resize((self.width, self.height), self.interpolation)
ask4help-main
allenact/utils/tensor_utils.py
import math from typing import Dict, Any, Union, Callable, Optional from allenact.utils.system import get_logger def pos_to_str_for_cache(pos: Dict[str, float]) -> str: return "_".join([str(pos["x"]), str(pos["y"]), str(pos["z"])]) def str_to_pos_for_cache(s: str) -> Dict[str, float]: split = s.split("_") return {"x": float(split[0]), "y": float(split[1]), "z": float(split[2])} def get_distance( cache: Dict[str, Any], pos: Dict[str, float], target: Dict[str, float] ) -> float: pos = { "x": 0.25 * math.ceil(pos["x"] / 0.25), "y": pos["y"], "z": 0.25 * math.ceil(pos["z"] / 0.25), } sp = _get_shortest_path_distance_from_cache(cache, pos, target) if sp == -1.0: pos = { "x": 0.25 * math.floor(pos["x"] / 0.25), "y": pos["y"], "z": 0.25 * math.ceil(pos["z"] / 0.25), } sp = _get_shortest_path_distance_from_cache(cache, pos, target) if sp == -1.0: pos = { "x": 0.25 * math.ceil(pos["x"] / 0.25), "y": pos["y"], "z": 0.25 * math.floor(pos["z"] / 0.25), } sp = _get_shortest_path_distance_from_cache(cache, pos, target) if sp == -1.0: pos = { "x": 0.25 * math.floor(pos["x"] / 0.25), "y": pos["y"], "z": 0.25 * math.floor(pos["z"] / 0.25), } sp = _get_shortest_path_distance_from_cache(cache, pos, target) if sp == -1.0: pos = find_nearest_point_in_cache(cache, pos) sp = _get_shortest_path_distance_from_cache(cache, pos, target) if sp == -1.0: target = find_nearest_point_in_cache(cache, target) sp = _get_shortest_path_distance_from_cache(cache, pos, target) if sp == -1.0: print("Your cache is incomplete!") exit() return sp def get_distance_to_object( cache: Dict[str, Any], pos: Dict[str, float], target_class: str ) -> float: dists = [] weights = [] for rounder_func_0 in [math.ceil, math.floor]: for rounder_func_1 in [math.ceil, math.floor]: rounded_pos = { "x": 0.25 * rounder_func_0(pos["x"] / 0.25), "y": pos["y"], "z": 0.25 * rounder_func_1(pos["z"] / 0.25), } dist = _get_shortest_path_distance_to_object_from_cache( cache, rounded_pos, target_class ) if dist >= 0: dists.append(dist) weights.append( 1.0 / ( math.sqrt( (pos["x"] - rounded_pos["x"]) ** 2 + (pos["z"] - rounded_pos["z"]) ** 2 ) + 1e6 ) ) if len(dists) == 0: raise RuntimeError("Your cache is incomplete!") total_weight = sum(weights) weights = [w / total_weight for w in weights] return sum(d * w for d, w in zip(dists, weights)) def _get_shortest_path_distance_from_cache( cache: Dict[str, Any], position: Dict[str, float], target: Dict[str, float] ) -> float: try: return cache[pos_to_str_for_cache(position)][pos_to_str_for_cache(target)][ "distance" ] except KeyError: return -1.0 def _get_shortest_path_distance_to_object_from_cache( cache: Dict[str, Any], position: Dict[str, float], target_class: str ) -> float: try: return cache[pos_to_str_for_cache(position)][target_class]["distance"] except KeyError: return -1.0 def find_nearest_point_in_cache( cache: Dict[str, Any], point: Dict[str, float] ) -> Dict[str, float]: best_delta = float("inf") closest_point: Dict[str, float] = {} for p in cache: pos = str_to_pos_for_cache(p) delta = ( abs(point["x"] - pos["x"]) + abs(point["y"] - pos["y"]) + abs(point["z"] - pos["z"]) ) if delta < best_delta: best_delta = delta closest_point = pos return closest_point class DynamicDistanceCache(object): def __init__(self, rounding: Optional[int] = None): self.cache: Dict[str, Any] = {} self.rounding = rounding self.hits = 0 self.misses = 0 self.num_accesses = 0 def find_distance( self, scene_name: str, position: Dict[str, Any], target: Union[Dict[str, Any], str], native_distance_function: Callable[ [Dict[str, Any], Union[Dict[str, Any], str]], float ], ) -> float: # Convert the position to its rounded string representation position_str = scene_name + self._pos_to_str(position) # If the target is also a position, convert it to its rounded string representation if isinstance(target, str): target_str = target else: target_str = self._pos_to_str(target) if position_str not in self.cache: self.cache[position_str] = {} if target_str not in self.cache[position_str]: self.cache[position_str][target_str] = native_distance_function( position, target ) self.misses += 1 else: self.hits += 1 self.num_accesses += 1 if self.num_accesses % 1000 == 0: get_logger().debug("Cache Miss-Hit Ratio: %.4f" % (self.misses / self.hits)) return self.cache[position_str][target_str] def invalidate(self): self.cache = [] def _pos_to_str(self, pos: Dict[str, Any]) -> str: if self.rounding: pos = {k: round(v, self.rounding) for k, v in pos.items()} return str(pos)
ask4help-main
allenact/utils/cache_utils.py
import os import sys from pathlib import Path from subprocess import getoutput def make_package(name, verbose=False): """Prepares sdist for allenact or allenact_plugins.""" orig_dir = os.getcwd() base_dir = os.path.join(os.path.abspath(os.path.dirname(Path(__file__))), "..") os.chdir(base_dir) with open(".VERSION", "r") as f: __version__ = f.readline().strip() # generate sdist via setuptools output = getoutput(f"{sys.executable} {name}/setup.py sdist") if verbose: print(output) os.chdir(os.path.join(base_dir, "dist")) # uncompress the tar.gz sdist output = getoutput(f"tar zxvf {name}-{__version__}.tar.gz") if verbose: print(output) # copy setup.py to the top level of the package (required by pip install) output = getoutput( f"cp {name}-{__version__}/{name}/setup.py {name}-{__version__}/setup.py" ) if verbose: print(output) # create new source file with version getoutput( f"printf '__version__ = \"{__version__}\"\n' >> {name}-{__version__}/{name}/_version.py" ) # include it in sources getoutput( f'printf "\n{name}/_version.py" >> {name}-{__version__}/{name}.egg-info/SOURCES.txt' ) # recompress tar.gz output = getoutput(f"tar zcvf {name}-{__version__}.tar.gz {name}-{__version__}/") if verbose: print(output) # remove temporary directory output = getoutput(f"rm -r {name}-{__version__}") if verbose: print(output) os.chdir(orig_dir) if __name__ == "__main__": verbose = False make_package("allenact", verbose) make_package("allenact_plugins", verbose)
ask4help-main
scripts/release.py
#!/usr/bin/env python3 """Tool to run command on multiple nodes through SSH.""" import os import argparse import glob def get_argument_parser(): """Creates the argument parser.""" # noinspection PyTypeChecker parser = argparse.ArgumentParser( description="dcommand", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--runs_on", required=False, type=str, default=None, help="Comma-separated IP addresses of machines. If empty, the tool will scan for lists of IP addresses" " in `screen_ids_file`s in the `~/.allenact` directory.", ) parser.add_argument( "--ssh_cmd", required=False, type=str, default="ssh {addr}", help="SSH command. Useful to utilize a pre-shared key with 'ssh -i path/to/mykey.pem ubuntu@{addr}'.", ) parser.add_argument( "--command", required=False, default="nvidia-smi | head -n 35", type=str, help="Command to be run through ssh onto each machine", ) return parser def get_args(): """Creates the argument parser and parses any input arguments.""" parser = get_argument_parser() args = parser.parse_args() return args def wrap_double(text): return f'"{text}"' def wrap_single(text): return f"'{text}'" def wrap_single_nested(text, quote=r"'\''"): return f"{quote}{text}{quote}" if __name__ == "__main__": args = get_args() all_addresses = [] if args.runs_on is not None: all_addresses = args.runs_on.split(",") else: all_files = sorted( glob.glob(os.path.join(os.path.expanduser("~"), ".allenact", "*.killfile")), reverse=True, ) if len(all_files) == 0: print( f"No screen_ids_file found under {os.path.join(os.path.expanduser('~'), '.allenact')}" ) for killfile in all_files: with open(killfile, "r") as f: # Each line contains 'IP_address screen_ID' nodes = [tuple(line[:-1].split(" ")) for line in f.readlines()] all_addresses = [node[0] for node in nodes] use_addresses = "" while use_addresses not in ["y", "n"]: use_addresses = input( f"Run on {all_addresses} from {killfile}? [Y/n] " ).lower() if use_addresses == "": use_addresses = "y" if use_addresses == "n": all_addresses = [] else: break print(f"Running on IP addresses {all_addresses}") for it, addr in enumerate(all_addresses): ssh_command = f"{args.ssh_cmd.format(addr=addr)} {wrap_single(args.command)}" print(f"{it} {addr} SSH command {ssh_command}") os.system(ssh_command) print("DONE")
ask4help-main
scripts/dcommand.py
import glob import os import shutil import sys from pathlib import Path from subprocess import check_output from threading import Thread from typing import Dict, Union, Optional, Set, List, Sequence, Mapping from git import Git from ruamel.yaml import YAML # type: ignore from constants import ABS_PATH_OF_TOP_LEVEL_DIR # TODO: the scripts directory shouldn't be a module (as it conflicts with # some local developmment workflows) but we do want to import scripts/literate.py. # Temporary solution is just to modify the sys.path when this script is run. sys.path.append(os.path.abspath(os.path.dirname(Path(__file__)))) from literate import literate_python_to_markdown class StringColors: HEADER = "\033[95m" OKBLUE = "\033[94m" OKGREEN = "\033[92m" WARNING = "\033[93m" FAIL = "\033[91m" ENDC = "\033[0m" BOLD = "\033[1m" UNDERLINE = "\033[4m" exclude_files = [ ".DS_Store", "__init__.py", "__init__.pyc", "README.md", "version.py", "run.py", "setup.py", "main.py", ] def render_file( relative_src_path: str, src_file: str, to_file: str, modifier="" ) -> None: """Shells out to pydocmd, which creates a .md file from the docstrings of python functions and classes in the file we specify. The modifer specifies the depth at which to generate docs for classes and functions in the file. More information here: https://pypi.org/project/pydoc-markdown/ """ # First try literate was_literate = False try: was_literate = literate_python_to_markdown( path=os.path.join(relative_src_path, src_file) ) except Exception as _: pass if was_literate: return # Now do standard pydocmd relative_src_namespace = relative_src_path.replace("/", ".") src_base = src_file.replace(".py", "") if relative_src_namespace == "": namespace = f"{src_base}{modifier}" else: namespace = f"{relative_src_namespace}.{src_base}{modifier}" pydoc_config = """'{ renderer: { type: markdown, code_headers: true, descriptive_class_title: false, add_method_class_prefix: true, source_linker: {type: github, repo: allenai/allenact}, header_level_by_type: { Module: 1, Class: 2, Method: 3, Function: 3, Data: 3, } } }'""" pydoc_config = " ".join(pydoc_config.split()) args = ["pydoc-markdown", "-m", namespace, pydoc_config] try: call_result = check_output([" ".join(args)], shell=True, env=os.environ).decode( "utf-8" ) # noinspection PyShadowingNames with open(to_file, "w") as f: doc_split = call_result.split("\n") # github_path = "https://github.com/allenai/allenact/tree/master/" # path = ( # github_path + namespace.replace(".", "/") + ".py" # ) # mdlink = "[[source]]({})".format(path) mdlink = "" # Removing the above source link for now. call_result = "\n".join([doc_split[0] + " " + mdlink] + doc_split[1:]) call_result = call_result.replace("_DOC_COLON_", ":") f.write(call_result) print( f"{StringColors.OKGREEN}[SUCCESS]{StringColors.ENDC} built docs for {src_file} -> {to_file}." ) except Exception as _: cmd = " ".join(args) print( f"{StringColors.WARNING}[SKIPPING]{StringColors.ENDC} could not" f" build docs for {src_file} (missing an import?). CMD: '{cmd}'" ) # noinspection PyShadowingNames def build_docs_for_file( relative_path: str, file_name: str, docs_dir: str, threads: List ) -> Dict[str, str]: """Build docs for an individual python file.""" clean_filename = file_name.replace(".py", "") markdown_filename = f"{clean_filename}.md" output_path = os.path.join(docs_dir, relative_path, markdown_filename) nav_path = os.path.join("api", relative_path, markdown_filename) thread = Thread(target=render_file, args=(relative_path, file_name, output_path)) thread.start() threads.append(thread) return {os.path.basename(clean_filename): nav_path} # noinspection PyShadowingNames def build_docs( base_dir: Union[Path, str], root_path: Union[Path, str], docs_dir: Union[Path, str], threads: List, allowed_dirs: Optional[Set[str]] = None, ): base_dir, root_path, docs_dir = str(base_dir), str(root_path), str(docs_dir) nav_root = [] for child in os.listdir(root_path): relative_path = os.path.join(root_path, child) if ( (allowed_dirs is not None) and (os.path.isdir(relative_path)) and (os.path.abspath(relative_path) not in allowed_dirs) # or ".git" in relative_path # or ".idea" in relative_path # or "__pycache__" in relative_path # or "tests" in relative_path # or "mypy_cache" in relative_path ): print("SKIPPING {}".format(relative_path)) continue # without_allenact = str(root_path).replace("allenact/", "") new_path = os.path.relpath(root_path, base_dir).replace(".", "") target_dir = os.path.join(docs_dir, new_path) if not os.path.exists(target_dir): os.mkdir(target_dir) if os.path.isdir(relative_path): nav_subsection = build_docs( base_dir, relative_path, docs_dir, threads=threads, allowed_dirs=allowed_dirs, ) if not nav_subsection: continue nav_root.append({child: nav_subsection}) else: if child in exclude_files or not child.endswith(".py"): continue nav = build_docs_for_file(new_path, child, docs_dir, threads=threads) nav_root.append(nav) return nav_root def project_readme_paths_to_nav_structure(project_readmes): nested_dict = {} for fp in project_readmes: has_seen_project_dir = False sub_nested_dict = nested_dict split_fp = os.path.dirname(fp).split("/") for i, yar in enumerate(split_fp): has_seen_project_dir = has_seen_project_dir or yar == "projects" if not has_seen_project_dir or yar == "projects": continue if yar not in sub_nested_dict: if i == len(split_fp) - 1: sub_nested_dict[yar] = fp.replace("docs/", "") break else: sub_nested_dict[yar] = {} sub_nested_dict = sub_nested_dict[yar] def recursively_create_nav_structure(nested_dict): if isinstance(nested_dict, str): return nested_dict to_return = [] for key in nested_dict: to_return.append({key: recursively_create_nav_structure(nested_dict[key])}) return to_return return recursively_create_nav_structure(nested_dict) def pruned_nav_entries(nav_entries): if isinstance(nav_entries, str): if os.path.exists(os.path.join("docs", nav_entries)): return nav_entries else: return None elif isinstance(nav_entries, Sequence): new_entries = [] for entry in nav_entries: entry = pruned_nav_entries(entry) if entry: new_entries.append(entry) return new_entries elif isinstance(nav_entries, Mapping): new_entries = {} for k, entry in nav_entries.items(): entry = pruned_nav_entries(entry) if entry: new_entries[k] = entry return new_entries else: raise NotImplementedError() def main(): os.chdir(ABS_PATH_OF_TOP_LEVEL_DIR) print("Copying all README.md files to docs.") with open("README.md") as f: readme_content = f.readlines() readme_content = [x.replace("docs/", "") for x in readme_content] with open("docs/index.md", "w") as f: f.writelines(readme_content) project_readmes = [] for readme_file_path in glob.glob("projects/**/README.md", recursive=True): if "docs/" not in readme_file_path: new_path = os.path.join("docs", readme_file_path) os.makedirs(os.path.dirname(new_path), exist_ok=True) shutil.copy(readme_file_path, new_path) project_readmes.append(new_path) print("Copying LICENSE file to docs.") shutil.copy("LICENSE", "docs/LICENSE.md") print("Copying CONTRIBUTING.md file to docs.") shutil.copy("CONTRIBUTING.md", "docs/CONTRIBUTING.md") # print("Copying CNAME file to docs.") # shutil.copy("CNAME", "docs/CNAME") print("Building the docs.") parent_folder_path = Path(__file__).parent.parent yaml_path = parent_folder_path / "mkdocs.yml" source_path = parent_folder_path docs_dir = str(parent_folder_path / "docs" / "api") if not os.path.exists(docs_dir): os.mkdir(docs_dir) # Adding project readmes to the yaml yaml = YAML() mkdocs_yaml = yaml.load(yaml_path) site_nav = mkdocs_yaml["nav"] # TODO Find a way to do the following in a way that results in nice titles. # projects_key = "Projects using allenact" # nav_obj = None # for obj in site_nav: # if projects_key in obj: # nav_obj = obj # break # nav_obj[projects_key] = project_readme_paths_to_nav_structure(project_readmes) with open(yaml_path, "w") as f: yaml.dump(mkdocs_yaml, f) # Get directories to ignore git_dirs = set( os.path.abspath(os.path.split(p)[0]) for p in Git(".").ls_files().split("\n") ) ignore_rel_dirs = [ "docs", "scripts", "experiments", "src", ".pip_src", "dist", "build", ] ignore_abs_dirs = set( os.path.abspath(os.path.join(str(parent_folder_path), rel_dir)) for rel_dir in ignore_rel_dirs ) for d in ignore_abs_dirs: if d in git_dirs: git_dirs.remove(d) threads: List = [] nav_entries = build_docs( parent_folder_path, source_path, docs_dir, threads=threads, allowed_dirs=git_dirs, ) nav_entries.sort(key=lambda x: list(x)[0], reverse=False) for thread in threads: thread.join() nav_entries = pruned_nav_entries(nav_entries) docs_key = "API" # Find the yaml corresponding to the API nav_obj = None for obj in site_nav: if docs_key in obj: nav_obj = obj break nav_obj[docs_key] = nav_entries with open(yaml_path, "w") as f: yaml.dump(mkdocs_yaml, f) if __name__ == "__main__": main()
ask4help-main
scripts/build_docs.py
#!/usr/bin/env python3 import os import argparse def get_argument_parser(): """Creates the argument parser.""" # noinspection PyTypeChecker parser = argparse.ArgumentParser( description="dconfig", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--runs_on", required=True, type=str, help="Comma-separated IP addresses of machines", ) parser.add_argument( "--config_script", required=True, type=str, help="Path to bash script with configuration", ) parser.add_argument( "--ssh_cmd", required=False, type=str, default="ssh -f {addr}", help="SSH command. Useful to utilize a pre-shared key with 'ssh -i path/to/mykey.pem -f ubuntu@{addr}'. " "The option `-f` should be used, since we want a non-interactive session", ) parser.add_argument( "--distribute_public_rsa_key", dest="distribute_public_rsa_key", action="store_true", required=False, help="if you pass the `--distribute_public_rsa_key` flag, the manager node's public key will be added to the " "authorized keys of all workers (this is necessary in default-configured EC2 instances to use " "`scripts/dmain.py`)", ) parser.set_defaults(distribute_public_rsa_key=False) return parser def get_args(): """Creates the argument parser and parses any input arguments.""" parser = get_argument_parser() args = parser.parse_args() return args def wrap_double(text): return f'"{text}"' def wrap_single(text): return f"'{text}'" def wrap_single_nested(text, quote=r"'\''"): return f"{quote}{text}{quote}" if __name__ == "__main__": args = get_args() all_addresses = args.runs_on.split(",") print(f"Running on addresses {all_addresses}") remote_config_script = f"{args.config_script}.distributed" for it, addr in enumerate(all_addresses): if args.distribute_public_rsa_key: key_command = ( f"{args.ssh_cmd.format(addr=addr)} " f"{wrap_double('echo $(cat ~/.ssh/id_rsa.pub) >> ~/.ssh/authorized_keys')}" ) print(f"Key command {key_command}") os.system(f"{key_command}") scp_cmd = ( args.ssh_cmd.replace("ssh ", "scp ") .replace("-f", args.config_script) .format(addr=addr) ) print(f"SCP command {scp_cmd}:{remote_config_script}") os.system(f"{scp_cmd}:{remote_config_script}") screen_name = f"allenact_config_machine{it}" bash_command = wrap_single_nested( f"source {remote_config_script} &>> log_allenact_distributed_config" ) screen_command = wrap_single( f"screen -S {screen_name} -dm bash -c {bash_command}" ) ssh_command = f"{args.ssh_cmd.format(addr=addr)} {screen_command}" print(f"SSH command {ssh_command}") os.system(ssh_command) print(f"{addr} {screen_name}") print("DONE")
ask4help-main
scripts/dconfig.py
#!/usr/bin/env python3 """Tool to terminate multi-node (distributed) training.""" import os import argparse import glob def get_argument_parser(): """Creates the argument parser.""" # noinspection PyTypeChecker parser = argparse.ArgumentParser( description="dkill", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--screen_ids_file", required=False, type=str, default=None, help="Path to file generated by dmain.py with IPs and screen ids for nodes running process." " If empty, the tool will scan the `~/.allenact` directory for `screen_ids_file`s.", ) parser.add_argument( "--ssh_cmd", required=False, type=str, default="ssh {addr}", help="SSH command. Useful to utilize a pre-shared key with 'ssh -i mykey.pem ubuntu@{addr}'. ", ) return parser def get_args(): """Creates the argument parser and parses any input arguments.""" parser = get_argument_parser() args = parser.parse_args() return args if __name__ == "__main__": args = get_args() all_files = ( [args.screen_ids_file] if args.screen_ids_file is not None else sorted( glob.glob(os.path.join(os.path.expanduser("~"), ".allenact", "*.killfile")), reverse=True, ) ) if len(all_files) == 0: print( f"No screen_ids_file found under {os.path.join(os.path.expanduser('~'), '.allenact')}" ) for killfile in all_files: with open(killfile, "r") as f: nodes = [tuple(line[:-1].split(" ")) for line in f.readlines()] do_kill = "" while do_kill not in ["y", "n"]: do_kill = input( f"Stopping processes on {nodes} from {killfile}? [y/N] " ).lower() if do_kill == "": do_kill = "n" if do_kill == "y": for it, node in enumerate(nodes): addr, screen_name = node print(f"Killing screen {screen_name} on {addr}") ssh_command = ( f"{args.ssh_cmd.format(addr=addr)} '" f"screen -S {screen_name} -p 0 -X quit ; " f"sleep 1 ; " f"echo Master processes left running: ; " f"ps aux | grep Master: | grep -v grep ; " f"echo ; " f"'" ) # print(f"SSH command {ssh_command}") os.system(ssh_command) do_delete = "" while do_delete not in ["y", "n"]: do_delete = input(f"Delete file {killfile}? [y/N] ").lower() if do_delete == "": do_delete = "n" if do_delete == "y": os.system(f"rm {killfile}") print(f"Deleted {killfile}") print("DONE")
ask4help-main
scripts/dkill.py
"""Helper functions used to create literate documentation from python files.""" import importlib import inspect import os from typing import Optional, Sequence, List, cast from typing.io import TextIO from constants import ABS_PATH_OF_DOCS_DIR, ABS_PATH_OF_TOP_LEVEL_DIR def get_literate_output_path(file: TextIO) -> Optional[str]: for l in file: l = l.strip() if l != "": if l.lower().startswith(("# literate", "#literate")): parts = l.split(":") if len(parts) == 1: assert ( file.name[-3:].lower() == ".py" ), "Can only run literate on python (*.py) files." return file.name[:-3] + ".md" elif len(parts) == 2: rel_outpath = parts[1].strip() outpath = os.path.abspath( os.path.join(ABS_PATH_OF_DOCS_DIR, rel_outpath) ) assert outpath.startswith( ABS_PATH_OF_DOCS_DIR ), f"Path {outpath} is not allowed, must be within {ABS_PATH_OF_DOCS_DIR}." return outpath else: raise NotImplementedError( f"Line '{l}' is not of the correct format." ) else: return None return None def source_to_markdown(dot_path: str, summarize: bool = False): importlib.invalidate_caches() module_path, obj_name = ".".join(dot_path.split(".")[:-1]), dot_path.split(".")[-1] module = importlib.import_module(module_path) obj = getattr(module, obj_name) source = inspect.getsource(obj) if not summarize: return source elif inspect.isclass(obj): lines = source.split("\n") newlines = [lines[0]] whitespace_len = float("inf") k = 1 started = False while k < len(lines): l = lines[k] lstripped = l.lstrip() if started: newlines.append(l) started = "):" not in l and "->" not in l if not started: newlines.append(l[: cast(int, whitespace_len)] + " ...\n") if ( l.lstrip().startswith("def ") and len(l) - len(lstripped) <= whitespace_len ): whitespace_len = len(l) - len(lstripped) newlines.append(l) started = "):" not in l and "->" not in l if not started: newlines.append(l[:whitespace_len] + " ...\n") k += 1 return "\n".join(newlines).strip() elif inspect.isfunction(obj): return source.split("\n")[0] + "\n ..." else: return def _strip_empty_lines(lines: Sequence[str]) -> List[str]: lines = list(lines) if len(lines) == 0: return lines for i in range(len(lines)): if lines[i].strip() != "": lines = lines[i:] break for i in reversed(list(range(len(lines)))): if lines[i].strip() != "": lines = lines[: i + 1] break return lines def literate_python_to_markdown(path: str) -> bool: assert path[-3:].lower() == ".py", "Can only run literate on python (*.py) files." with open(path, "r") as file: output_path = get_literate_output_path(file) if output_path is None: return False output_lines = [ f"<!-- DO NOT EDIT THIS FILE. --> ", f"<!-- THIS FILE WAS AUTOGENERATED FROM" f" 'ALLENACT_BASE_DIR/{os.path.relpath(path, ABS_PATH_OF_TOP_LEVEL_DIR)}', EDIT IT INSTEAD. -->\n", ] md_lines: List[str] = [] code_lines = md_lines lines = file.readlines() mode = None for line in lines: line = line.rstrip() stripped_line = line.strip() if (mode is None or mode == "change") and line.strip() == "": continue if mode == "markdown": if stripped_line in ['"""', "'''"]: output_lines.extend(_strip_empty_lines(md_lines) + [""]) md_lines.clear() mode = None elif stripped_line.endswith(('"""', "'''")): output_lines.extend( _strip_empty_lines(md_lines) + [stripped_line[:-3]] ) md_lines.clear() mode = None # TODO: Does not account for the case where a string is ended with a comment. else: md_lines.append(line.strip()) elif stripped_line.startswith(("# %%", "#%%")): last_mode = mode mode = "change" if last_mode == "code": output_lines.extend( ["```python"] + _strip_empty_lines(code_lines) + ["```"] ) code_lines.clear() if " import " in stripped_line: path = stripped_line.split(" import ")[-1].strip() output_lines.append( "```python\n" + source_to_markdown(path) + "\n```" ) elif " import_summary " in stripped_line: path = stripped_line.split(" import_summary ")[-1].strip() output_lines.append( "```python\n" + source_to_markdown(path, summarize=True) + "\n```" ) elif " hide" in stripped_line: mode = "hide" elif mode == "hide": continue elif mode == "change": if stripped_line.startswith(('"""', "'''")): mode = "markdown" if len(stripped_line) != 3: if stripped_line.endswith(('"""', "'''")): output_lines.append(stripped_line[3:-3]) mode = "change" else: output_lines.append(stripped_line[3:]) else: mode = "code" code_lines.append(line) elif mode == "code": code_lines.append(line) else: raise NotImplementedError( f"mode {mode} is not implemented. Last 5 lines: " + "\n".join(output_lines[-5:]) ) if mode == "code" and len(code_lines) != 0: output_lines.extend( ["```python"] + _strip_empty_lines(code_lines) + ["```"] ) with open(output_path, "w") as f: f.writelines([l + "\n" for l in output_lines]) return True if __name__ == "__main__": # print( # source_to_markdown( # "allenact_plugins.minigrid_plugin.minigrid_offpolicy.ExpertTrajectoryIterator", # True # ) # ) literate_python_to_markdown( os.path.join( ABS_PATH_OF_TOP_LEVEL_DIR, "projects/tutorials/training_a_pointnav_model.py", ) )
ask4help-main
scripts/literate.py
import atexit import os import platform import re import shlex import subprocess import tempfile # Turning off automatic black formatting for this script as it breaks quotes. # fmt: off def pci_records(): records = [] command = shlex.split("lspci -vmm") output = subprocess.check_output(command).decode() for devices in output.strip().split("\n\n"): record = {} records.append(record) for row in devices.split("\n"): key, value = row.split("\t") record[key.split(":")[0]] = value return records def generate_xorg_conf(devices): xorg_conf = [] device_section = """ Section "Device" Identifier "Device{device_id}" Driver "nvidia" VendorName "NVIDIA Corporation" BusID "{bus_id}" EndSection """ server_layout_section = """ Section "ServerLayout" Identifier "Layout0" {screen_records} EndSection """ screen_section = """ Section "Screen" Identifier "Screen{screen_id}" Device "Device{device_id}" DefaultDepth 24 Option "AllowEmptyInitialConfiguration" "True" SubSection "Display" Depth 24 Virtual 1024 768 EndSubSection EndSection """ screen_records = [] for i, bus_id in enumerate(devices): xorg_conf.append(device_section.format(device_id=i, bus_id=bus_id)) xorg_conf.append(screen_section.format(device_id=i, screen_id=i)) screen_records.append('Screen {screen_id} "Screen{screen_id}" 0 0'.format(screen_id=i)) xorg_conf.append(server_layout_section.format(screen_records="\n ".join(screen_records))) output = "\n".join(xorg_conf) return output def startx(display=0): if platform.system() != "Linux": raise Exception("Can only run startx on linux") devices = [] for r in pci_records(): if r.get("Vendor", "") == "NVIDIA Corporation"\ and r["Class"] in ["VGA compatible controller", "3D controller"]: bus_id = "PCI:" + ":".join(map(lambda x: str(int(x, 16)), re.split(r"[:\.]", r["Slot"]))) devices.append(bus_id) if not devices: raise Exception("no nvidia cards found") try: fd, path = tempfile.mkstemp() with open(path, "w") as f: f.write(generate_xorg_conf(devices)) command = shlex.split("Xorg -noreset +extension GLX +extension RANDR +extension RENDER -config %s :%s" % (path, display)) proc = subprocess.Popen(command) atexit.register(lambda: proc.poll() is None and proc.kill()) proc.wait() finally: os.close(fd) os.unlink(path) # fmt: on if __name__ == "__main__": startx()
ask4help-main
scripts/startx.py
#!/usr/bin/env python3 """Entry point to multi-node (distributed) training for a user given experiment name.""" import sys import os import time import random import string from pathlib import Path from typing import Optional import subprocess # Add to PYTHONPATH the path of the parent directory of the current file's directory sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(Path(__file__))))) from allenact.main import get_argument_parser as get_main_arg_parser from allenact.utils.system import init_logging, get_logger from constants import ABS_PATH_OF_TOP_LEVEL_DIR def get_argument_parser(): """Creates the argument parser.""" parser = get_main_arg_parser() parser.description = f"distributed {parser.description}" parser.add_argument( "--runs_on", required=True, type=str, help="Comma-separated IP addresses of machines", ) parser.add_argument( "--ssh_cmd", required=False, type=str, default="ssh -f {addr}", help="SSH command. Useful to utilize a pre-shared key with 'ssh -i mykey.pem -f ubuntu@{addr}'. " "The option `-f` should be used for non-interactive session", ) parser.add_argument( "--env_activate_path", required=True, type=str, help="Path to the virtual environment's `activate` script. It must be the same across all machines", ) parser.add_argument( "--allenact_path", required=False, type=str, default="allenact", help="Path to allenact top directory. It must be the same across all machines", ) # Required distributed_ip_and_port idx = [a.dest for a in parser._actions].index("distributed_ip_and_port") parser._actions[idx].required = True return parser def get_args(): """Creates the argument parser and parses any input arguments.""" parser = get_argument_parser() args = parser.parse_args() return args def get_raw_args(): raw_args = sys.argv[1:] filtered_args = [] remove: Optional[str] = None enclose_in_quotes: Optional[str] = None for arg in raw_args: if remove is not None: remove = None elif enclose_in_quotes is not None: # Within backslash expansion: close former single, open double, create single, close double, reopen single inner_quote = r"\'\"\'\"\'" # Convert double quotes into backslash double for later expansion filtered_args.append( inner_quote + arg.replace('"', r"\"").replace("'", r"\"") + inner_quote ) enclose_in_quotes = None elif arg in [ "--runs_on", "--ssh_cmd", "--env_activate_path", "--allenact_path", "--extra_tag", "--machine_id", ]: remove = arg elif arg == "--config_kwargs": enclose_in_quotes = arg filtered_args.append(arg) else: filtered_args.append(arg) return filtered_args def wrap_single(text): return f"'{text}'" def wrap_single_nested(text): # Close former single, start backslash expansion (via $), create new single quote for expansion: quote_enter = r"'$'\'" # New closing single quote for expansion, close backslash expansion, reopen former single: quote_leave = r"\'''" return f"{quote_enter}{text}{quote_leave}" def wrap_double(text): return f'"{text}"' def id_generator(size=4, chars=string.ascii_uppercase + string.digits): return "".join(random.choice(chars) for _ in range(size)) # Assume we can ssh into each of the `runs_on` machines through port 22 if __name__ == "__main__": # Tool must be called from AllenAct project's root directory cwd = os.path.abspath(os.getcwd()) assert cwd == ABS_PATH_OF_TOP_LEVEL_DIR, ( f"`dmain.py` called from {cwd}." f"\nIt should be called from AllenAct's top level directory {ABS_PATH_OF_TOP_LEVEL_DIR}." ) args = get_args() init_logging(args.log_level) raw_args = get_raw_args() if args.seed is None: seed = random.randint(0, 2 ** 31 - 1) raw_args.extend(["-s", f"{seed}"]) get_logger().info(f"Using random seed {seed} in all workers (none was given)") all_addresses = args.runs_on.split(",") get_logger().info(f"Running on IP addresses {all_addresses}") assert args.distributed_ip_and_port.split(":")[0] in all_addresses, ( f"Missing listener IP address {args.distributed_ip_and_port.split(':')[0]}" f" in list of worker addresses {all_addresses}" ) time_str = time.strftime("%Y-%m-%d_%H-%M-%S", time.localtime(time.time())) global_job_id = id_generator() killfilename = os.path.join( os.path.expanduser("~"), ".allenact", f"{time_str}_{global_job_id}.killfile" ) os.makedirs(os.path.dirname(killfilename), exist_ok=True) code_src = "." with open(killfilename, "w") as killfile: for it, addr in enumerate(all_addresses): code_tget = f"{addr}:{args.allenact_path}/" get_logger().info(f"rsync {code_src} to {code_tget}") os.system(f"rsync -rz {code_src} {code_tget}") job_id = id_generator() command = " ".join( ["python", "main.py"] + raw_args + [ "--extra_tag", f"{args.extra_tag}{'__' if len(args.extra_tag) > 0 else ''}machine{it}", ] + ["--machine_id", f"{it}"] ) logfile = ( f"{args.output_dir}/log_{time_str}_{global_job_id}_{job_id}_machine{it}" ) env_and_command = wrap_single_nested( f"for NCCL_SOCKET_IFNAME in $(route | grep default) ; do : ; done && export NCCL_SOCKET_IFNAME" f" && cd {args.allenact_path}" f" && mkdir -p {args.output_dir}" f" && source {args.env_activate_path} &>> {logfile}" f" && echo pwd=$(pwd) &>> {logfile}" f" && echo output_dir={args.output_dir} &>> {logfile}" f" && echo python_version=$(python --version) &>> {logfile}" f" && echo python_path=$(which python) &>> {logfile}" f" && set | grep NCCL_SOCKET_IFNAME &>> {logfile}" f" && echo &>> {logfile}" f" && {command} &>> {logfile}" ) screen_name = f"allenact_{time_str}_{global_job_id}_{job_id}_machine{it}" screen_command = wrap_single( f"screen -S {screen_name} -dm bash -c {env_and_command}" ) ssh_command = f"{args.ssh_cmd.format(addr=addr)} {screen_command}" get_logger().debug(f"SSH command {ssh_command}") subprocess.run(ssh_command, shell=True, executable="/bin/bash") get_logger().info(f"{addr} {screen_name}") killfile.write(f"{addr} {screen_name}\n") get_logger().info("") get_logger().info(f"Running screen ids saved to {killfilename}") get_logger().info("") get_logger().info("DONE")
ask4help-main
scripts/dmain.py
try: from allenact_plugins._version import __version__ except ModuleNotFoundError: __version__ = None
ask4help-main
allenact_plugins/__init__.py
import glob import os from pathlib import Path from setuptools import find_packages, setup def parse_req_file(fname, initial=None): """Reads requires.txt file generated by setuptools and outputs a new/updated dict of extras as keys and corresponding lists of dependencies as values. The input file's contents are similar to a `ConfigParser` file, e.g. pkg_1 pkg_2 pkg_3 [extras1] pkg_4 pkg_5 [extras2] pkg_6 pkg_7 """ reqs = {} if initial is None else initial cline = None with open(fname, "r") as f: for line in f.readlines(): line = line[:-1].strip() if len(line) == 0: continue if line[0] == "[": # Add new key for current extras (if missing in dict) cline = line[1:-1].strip() if cline not in reqs: reqs[cline] = [] else: # Only keep dependencies from extras if cline is not None: reqs[cline].append(line) return reqs def get_version(fname): """Reads PKG-INFO file generated by setuptools and extracts the Version number.""" res = "UNK" with open(fname, "r") as f: for line in f.readlines(): line = line[:-1] if line.startswith("Version:"): res = line.replace("Version:", "").strip() break if res in ["UNK", ""]: raise ValueError(f"Missing Version number in {fname}") return res if __name__ == "__main__": base_dir = os.path.abspath(os.path.dirname(Path(__file__))) if not os.path.exists( os.path.join(base_dir, "allenact_plugins.egg-info/dependency_links.txt") ): # Build mode for sdist # Extra dependencies required for various plugins extras = {} for plugin_path in glob.glob(os.path.join(base_dir, "*_plugin")): plugin_name = os.path.basename(plugin_path).replace("_plugin", "") extra_reqs_path = os.path.join(plugin_path, "extra_requirements.txt") if os.path.exists(extra_reqs_path): with open(extra_reqs_path, "r") as f: # Filter out non-PyPI dependencies extras[plugin_name] = [ clean_dep for clean_dep in (dep.strip() for dep in f.readlines()) if clean_dep != "" and not clean_dep.startswith("#") and "@ git+https://github.com/" not in clean_dep ] extras["all"] = sum(extras.values(), []) os.chdir(os.path.join(base_dir, "..")) with open(".VERSION", "r") as f: __version__ = f.readline().strip() else: # Install mode from sdist __version__ = get_version( os.path.join(base_dir, "allenact_plugins.egg-info/PKG-INFO") ) extras = parse_req_file( os.path.join(base_dir, "allenact_plugins.egg-info/requires.txt") ) setup( name="allenact_plugins", version=__version__, description="Plugins for the AllenAct framework", long_description=( "A collection of plugins/extensions for use within the AllenAct framework." ), classifiers=[ "Intended Audience :: Science/Research", "Development Status :: 3 - Alpha", "License :: OSI Approved :: MIT License", "Topic :: Scientific/Engineering :: Artificial Intelligence", "Programming Language :: Python", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], keywords=["reinforcement learning", "embodied-AI", "AI", "RL", "SLAM"], url="https://github.com/allenai/allenact", author="Allen Institute for Artificial Intelligence", author_email="[email protected]", license="MIT", packages=find_packages(include=["allenact_plugins", "allenact_plugins.*"]), install_requires=[ "gym>=0.17.0,<0.18.0", "torch>=1.6.0,!=1.8.0,<1.9.0", "torchvision>=0.7.0,<0.10.0", "numpy>=1.19.1", "wheel>=0.36.2", f"allenact=={__version__}", ], setup_requires=["pytest-runner"], tests_require=["pytest", "pytest-cov"], extras_require=extras, )
ask4help-main
allenact_plugins/setup.py
import os if os.path.exists(os.path.join(os.getcwd(), "habitat", "habitat-lab")): # Old directory structure (not recommended) HABITAT_DATA_BASE = os.path.join(os.getcwd(), "habitat/habitat-lab/data") else: # New directory structure HABITAT_DATA_BASE = os.path.join(os.getcwd(), "datasets", "habitat",) HABITAT_DATASETS_DIR = os.path.join(HABITAT_DATA_BASE, "datasets") HABITAT_SCENE_DATASETS_DIR = os.path.join(HABITAT_DATA_BASE, "scene_datasets") HABITAT_CONFIGS_DIR = os.path.join(HABITAT_DATA_BASE, "configs") MOVE_AHEAD = "MOVE_FORWARD" ROTATE_LEFT = "TURN_LEFT" ROTATE_RIGHT = "TURN_RIGHT" LOOK_DOWN = "LOOK_DOWN" LOOK_UP = "LOOK_UP" END = "STOP"
ask4help-main
allenact_plugins/habitat_plugin/habitat_constants.py
from abc import ABC from typing import Tuple, List, Dict, Any, Optional, Union, Sequence, cast import gym import numpy as np from habitat.sims.habitat_simulator.actions import HabitatSimActions from habitat.sims.habitat_simulator.habitat_simulator import HabitatSim from habitat.tasks.nav.shortest_path_follower import ShortestPathFollower from allenact.base_abstractions.misc import RLStepResult from allenact.base_abstractions.sensor import Sensor from allenact.base_abstractions.task import Task from allenact.utils.system import get_logger from allenact_plugins.habitat_plugin.habitat_constants import ( MOVE_AHEAD, ROTATE_LEFT, ROTATE_RIGHT, END, LOOK_UP, LOOK_DOWN, ) from allenact_plugins.habitat_plugin.habitat_environment import HabitatEnvironment class HabitatTask(Task[HabitatEnvironment], ABC): def __init__( self, env: HabitatEnvironment, sensors: List[Sensor], task_info: Dict[str, Any], max_steps: int, **kwargs ) -> None: super().__init__( env=env, sensors=sensors, task_info=task_info, max_steps=max_steps, **kwargs ) self._last_action: Optional[str] = None self._last_action_ind: Optional[int] = None self._last_action_success: Optional[bool] = None self._actions_taken: List[str] = [] self._positions = [] pos = self.get_observations()["agent_position_and_rotation"] self._positions.append( {"x": pos[0], "y": pos[1], "z": pos[2], "rotation": pos[3]} ) ep = self.env.get_current_episode() # Extract the scene name from the scene path and append the episode id to generate # a globally unique episode_id self._episode_id = ep.scene_id[-15:-4] + "_" + ep.episode_id @property def last_action(self): return self._last_action @last_action.setter def last_action(self, value: str): self._last_action = value @property def last_action_success(self): return self._last_action_success @last_action_success.setter def last_action_success(self, value: Optional[bool]): self._last_action_success = value def render(self, mode: str = "rgb", *args, **kwargs) -> np.ndarray: if mode == "rgb": return self.env.current_frame["rgb"] elif mode == "depth": return self.env.current_frame["depth"] else: raise NotImplementedError() class PointNavTask(Task[HabitatEnvironment]): _actions = (MOVE_AHEAD, ROTATE_LEFT, ROTATE_RIGHT, END) def __init__( self, env: HabitatEnvironment, sensors: List[Sensor], task_info: Dict[str, Any], max_steps: int, failed_end_reward: float = 0.0, **kwargs ) -> None: super().__init__( env=env, sensors=sensors, task_info=task_info, max_steps=max_steps, **kwargs ) self._took_end_action: bool = False self._success: Optional[bool] = False self._subsampled_locations_from_which_obj_visible = None # Get the geodesic distance to target from the environemnt and make sure it is # a valid value self.last_geodesic_distance = self.current_geodesic_dist_to_target() self.start_distance = self.last_geodesic_distance assert self.last_geodesic_distance is not None # noinspection PyProtectedMember self._shortest_path_follower = ShortestPathFollower( cast(HabitatSim, env.env.sim), env.env._config.TASK.SUCCESS_DISTANCE, False ) self._shortest_path_follower.mode = "geodesic_path" self._rewards: List[float] = [] self._metrics = None self.failed_end_reward = failed_end_reward def current_geodesic_dist_to_target(self) -> Optional[float]: metrics = self.env.env.get_metrics() if metrics["distance_to_goal"] is None: habitat_env = self.env.env habitat_env.task.measurements.update_measures( episode=habitat_env.current_episode, action=None, task=habitat_env.task ) metrics = self.env.env.get_metrics() return metrics["distance_to_goal"] @property def action_space(self): return gym.spaces.Discrete(len(self._actions)) def reached_terminal_state(self) -> bool: return self.env.env.episode_over @classmethod def class_action_names(cls, **kwargs) -> Tuple[str, ...]: return cls._actions def close(self) -> None: self.env.stop() def _step(self, action: Union[int, Sequence[int]]) -> RLStepResult: assert isinstance(action, int) action = cast(int, action) action_str = self.class_action_names()[action] self.env.step({"action": action_str}) if action_str == END: self._took_end_action = True self._success = self._is_goal_in_range() self.last_action_success = self._success else: self.last_action_success = self.env.last_action_success step_result = RLStepResult( observation=self.get_observations(), reward=self.judge(), done=self.is_done(), info={"last_action_success": self.last_action_success}, ) return step_result def render(self, mode: str = "rgb", *args, **kwargs) -> np.ndarray: assert mode in ["rgb", "depth"], "only rgb and depth rendering is implemented" return self.env.current_frame["rgb"] def _is_goal_in_range(self) -> bool: return ( self.current_geodesic_dist_to_target() <= self.task_info["distance_to_goal"] ) def judge(self) -> float: reward = -0.01 new_geodesic_distance = self.current_geodesic_dist_to_target() if self.last_geodesic_distance is None: self.last_geodesic_distance = new_geodesic_distance if self.last_geodesic_distance is not None: if ( new_geodesic_distance is None or new_geodesic_distance in [float("-inf"), float("inf")] or np.isnan(new_geodesic_distance) ): new_geodesic_distance = self.last_geodesic_distance delta_distance_reward = self.last_geodesic_distance - new_geodesic_distance reward += delta_distance_reward self.last_geodesic_distance = new_geodesic_distance if self.is_done(): reward += 10.0 if self._success else self.failed_end_reward else: get_logger().warning("Could not get geodesic distance from habitat env.") self._rewards.append(float(reward)) return float(reward) def metrics(self) -> Dict[str, Any]: if not self.is_done(): return {} else: _metrics = self.env.env.get_metrics() metrics = { "success": 1 * self._success, "ep_length": self.num_steps_taken(), "reward": np.sum(self._rewards), "spl": _metrics["spl"] if _metrics["spl"] is not None else 0.0, "dist_to_target": self.current_geodesic_dist_to_target(), } self._rewards = [] return metrics def query_expert(self, **kwargs) -> Tuple[int, bool]: if self._is_goal_in_range(): return self.class_action_names().index(END), True target = self.task_info["target"] habitat_action = self._shortest_path_follower.get_next_action(target) if habitat_action == HabitatSimActions.MOVE_FORWARD: return self.class_action_names().index(MOVE_AHEAD), True elif habitat_action == HabitatSimActions.TURN_LEFT: return self.class_action_names().index(ROTATE_LEFT), True elif habitat_action == HabitatSimActions.TURN_RIGHT: return self.class_action_names().index(ROTATE_RIGHT), True else: return 0, False class ObjectNavTask(HabitatTask): _actions = (MOVE_AHEAD, ROTATE_LEFT, ROTATE_RIGHT, END, LOOK_UP, LOOK_DOWN) def __init__( self, env: HabitatEnvironment, sensors: List[Sensor], task_info: Dict[str, Any], max_steps: int, **kwargs ) -> None: super().__init__( env=env, sensors=sensors, task_info=task_info, max_steps=max_steps, **kwargs ) self._took_end_action: bool = False self._success: Optional[bool] = False self._subsampled_locations_from_which_obj_visible = None # Get the geodesic distance to target from the environemnt and make sure it is # a valid value self.last_geodesic_distance = self.current_geodesic_dist_to_target() assert not ( self.last_geodesic_distance is None or self.last_geodesic_distance in [float("-inf"), float("inf")] or np.isnan(self.last_geodesic_distance) ), "Bad geodesic distance" self._min_distance_to_goal = self.last_geodesic_distance self._num_invalid_actions = 0 # noinspection PyProtectedMember self._shortest_path_follower = ShortestPathFollower( env.env.sim, env.env._config.TASK.SUCCESS_DISTANCE, False ) self._shortest_path_follower.mode = "geodesic_path" self._rewards: List[float] = [] self._metrics = None self.task_info["episode_id"] = self._episode_id self.task_info["target_position"] = { "x": self.task_info["target"][0], "y": self.task_info["target"][1], "z": self.task_info["target"][2], } self._coverage_map = np.zeros((150, 150)) @property def action_space(self): return gym.spaces.Discrete(len(self._actions)) def reached_terminal_state(self) -> bool: return self.env.env.episode_over @classmethod def class_action_names(cls, **kwargs) -> Tuple[str, ...]: return cls._actions def action_names(self, **kwargs) -> Tuple[str, ...]: return self._actions def close(self) -> None: self.env.stop() def current_geodesic_dist_to_target(self) -> Optional[float]: metrics = self.env.env.get_metrics() if metrics["distance_to_goal"] is None: habitat_env = self.env.env habitat_env.task.measurements.update_measures( episode=habitat_env.current_episode, action=None, task=habitat_env.task ) metrics = self.env.env.get_metrics() return metrics["distance_to_goal"] def _step(self, action: Union[int, Sequence[int]]) -> RLStepResult: assert isinstance(action, int) action = cast(int, action) old_pos = self.get_observations()["agent_position_and_rotation"] action_str = self.action_names()[action] self._actions_taken.append(action_str) self.env.step({"action": action_str}) # if action_str != END: # self.env.step({"action": action_str}) # if self.env.env.get_metrics()['distance_to_goal'] <= 0.2: # self._took_end_action = True # self._success = self.env.env.get_metrics()['distance_to_goal'] <= 0.2 # self.last_action_success = self._success # else: # self.last_action_success = self.env.last_action_success if action_str == END: self._took_end_action = True self._success = self._is_goal_in_range() self.last_action_success = self._success else: self.last_action_success = self.env.last_action_success step_result = RLStepResult( observation=self.get_observations(), reward=self.judge(), done=self.is_done(), info={"last_action_success": self.last_action_success}, ) new_pos = self.get_observations()["agent_position_and_rotation"] if np.all(old_pos == new_pos): self._num_invalid_actions += 1 pos = self.get_observations()["agent_position_and_rotation"] self._positions.append( {"x": pos[0], "y": pos[1], "z": pos[2], "rotation": pos[3]} ) return step_result def render(self, mode: str = "rgb", *args, **kwargs) -> np.ndarray: assert mode in ["rgb", "depth"], "only rgb and depth rendering is implemented" return self.env.current_frame["rgb"] def _is_goal_in_range(self) -> bool: # The habitat simulator will return an SPL value of 0.0 whenever the goal is not in range return bool(self.env.env.get_metrics()["spl"]) def judge(self) -> float: # Set default reward reward = -0.01 # Get geodesic distance reward new_geodesic_distance = self.current_geodesic_dist_to_target() self._min_distance_to_goal = min( new_geodesic_distance, self._min_distance_to_goal ) if ( new_geodesic_distance is None or new_geodesic_distance in [float("-inf"), float("inf")] or np.isnan(new_geodesic_distance) ): new_geodesic_distance = self.last_geodesic_distance delta_distance_reward = self.last_geodesic_distance - new_geodesic_distance reward += delta_distance_reward if self._took_end_action: reward += 10.0 if self._success else 0.0 # Get success reward self._rewards.append(float(reward)) self.last_geodesic_distance = new_geodesic_distance # # Get coverage reward # pos = self.get_observations()["agent_position_and_rotation"] # # align current position with center of map # x = int(pos[0] + 75) # y = int(pos[2] + 75) # if self._coverage_map[x, y] == 0: # self._coverage_map[x, y] = 1 # reward += 0.1 # else: # reward -= 0.0 return float(reward) def metrics(self) -> Dict[str, Any]: self.task_info["taken_actions"] = self._actions_taken self.task_info["action_names"] = self.action_names() self.task_info["followed_path"] = self._positions if not self.is_done(): return {} else: _metrics = self.env.env.get_metrics() metrics = { "success": self._success, "ep_length": self.num_steps_taken(), "total_reward": np.sum(self._rewards), "spl": _metrics["spl"] if _metrics["spl"] is not None else 0.0, "min_distance_to_target": self._min_distance_to_goal, "num_invalid_actions": self._num_invalid_actions, "task_info": self.task_info, } self._rewards = [] return metrics def query_expert(self, **kwargs) -> Tuple[int, bool]: if self._is_goal_in_range(): return self.class_action_names().index(END), True target = self.task_info["target"] action = self._shortest_path_follower.get_next_action(target) return action, action is not None
ask4help-main
allenact_plugins/habitat_plugin/habitat_tasks.py
from allenact.utils.system import ImportChecker with ImportChecker( "\n\nPlease install habitat following\n\n" "https://allenact.org/installation/installation-framework/#installation-of-habitat\n\n" ): import habitat import habitat_sim
ask4help-main
allenact_plugins/habitat_plugin/__init__.py
from typing import Any, Optional, Tuple import gym import numpy as np from pyquaternion import Quaternion from allenact.base_abstractions.sensor import Sensor from allenact.embodiedai.sensors.vision_sensors import RGBSensor, DepthSensor from allenact.base_abstractions.task import Task from allenact.utils.misc_utils import prepare_locals_for_super from allenact_plugins.habitat_plugin.habitat_environment import HabitatEnvironment from allenact_plugins.habitat_plugin.habitat_tasks import PointNavTask # type: ignore class RGBSensorHabitat(RGBSensor[HabitatEnvironment, Task[HabitatEnvironment]]): # For backwards compatibility def __init__( self, use_resnet_normalization: bool = False, mean: Optional[np.ndarray] = np.array( [[[0.485, 0.456, 0.406]]], dtype=np.float32 ), stdev: Optional[np.ndarray] = np.array( [[[0.229, 0.224, 0.225]]], dtype=np.float32 ), height: Optional[int] = None, width: Optional[int] = None, uuid: str = "rgb", output_shape: Optional[Tuple[int, ...]] = None, output_channels: int = 3, unnormalized_infimum: float = 0.0, unnormalized_supremum: float = 1.0, scale_first: bool = True, **kwargs: Any ): super().__init__(**prepare_locals_for_super(locals())) def frame_from_env( self, env: HabitatEnvironment, task: Optional[Task[HabitatEnvironment]] ) -> np.ndarray: return env.current_frame["rgb"].copy() class DepthSensorHabitat(DepthSensor[HabitatEnvironment, Task[HabitatEnvironment]]): # For backwards compatibility def __init__( self, use_resnet_normalization: Optional[bool] = None, use_normalization: Optional[bool] = None, mean: Optional[np.ndarray] = np.array([[0.5]], dtype=np.float32), stdev: Optional[np.ndarray] = np.array([[0.25]], dtype=np.float32), height: Optional[int] = None, width: Optional[int] = None, uuid: str = "depth", output_shape: Optional[Tuple[int, ...]] = None, output_channels: int = 1, unnormalized_infimum: float = 0.0, unnormalized_supremum: float = 5.0, scale_first: bool = False, **kwargs: Any ): # Give priority to use_normalization, but use_resnet_normalization for backward compat. if not set if use_resnet_normalization is not None and use_normalization is None: use_normalization = use_resnet_normalization elif use_normalization is None: use_normalization = False super().__init__(**prepare_locals_for_super(locals())) def frame_from_env( self, env: HabitatEnvironment, task: Optional[Task[HabitatEnvironment]] ) -> np.ndarray: return env.current_frame["depth"].copy() class TargetCoordinatesSensorHabitat(Sensor[HabitatEnvironment, PointNavTask]): def __init__( self, coordinate_dims: int, uuid: str = "target_coordinates_ind", **kwargs: Any ): self.coordinate_dims = coordinate_dims observation_space = self._get_observation_space() super().__init__(**prepare_locals_for_super(locals())) def _get_observation_space(self): # Distance is a non-negative real and angle is normalized to the range (-Pi, Pi] or [-Pi, Pi) return gym.spaces.Box( np.float32(-3.15), np.float32(1000), shape=(self.coordinate_dims,) ) def get_observation( self, env: HabitatEnvironment, task: Optional[PointNavTask], *args: Any, **kwargs: Any ) -> Any: frame = env.current_frame goal = frame["pointgoal_with_gps_compass"] return goal class TargetObjectSensorHabitat(Sensor[HabitatEnvironment, PointNavTask]): def __init__(self, uuid: str = "target_object_id", **kwargs: Any): observation_space = self._get_observation_space() super().__init__(**prepare_locals_for_super(locals())) def _get_observation_space(self): return gym.spaces.Discrete(38) def get_observation( self, env: HabitatEnvironment, task: Optional[PointNavTask], *args: Any, **kwargs: Any ) -> Any: frame = env.current_frame goal = frame["objectgoal"][0] return goal class AgentCoordinatesSensorHabitat(Sensor[HabitatEnvironment, PointNavTask]): def __init__(self, uuid: str = "agent_position_and_rotation", **kwargs: Any): observation_space = self._get_observation_space() super().__init__(**prepare_locals_for_super(locals())) def _get_observation_space(self): return gym.spaces.Box(np.float32(-1000), np.float32(1000), shape=(4,)) def get_observation( self, env: HabitatEnvironment, task: Optional[PointNavTask], *args: Any, **kwargs: Any ) -> Any: position = env.env.sim.get_agent_state().position quaternion = Quaternion(env.env.sim.get_agent_state().rotation.components) return np.array([position[0], position[1], position[2], quaternion.radians])
ask4help-main
allenact_plugins/habitat_plugin/habitat_sensors.py
"""A wrapper for interacting with the Habitat environment.""" from typing import Dict, Union, List, Optional import habitat import numpy as np from habitat.config import Config from habitat.core.dataset import Dataset from habitat.core.simulator import Observations, AgentState, ShortestPathPoint from habitat.tasks.nav.nav import NavigationEpisode as HabitatNavigationEpisode from allenact.utils.cache_utils import DynamicDistanceCache from allenact.utils.system import get_logger class HabitatEnvironment(object): def __init__(self, config: Config, dataset: Dataset, x_display: str = None) -> None: # print("habitat_plugin env constructor") self.x_display = x_display self.env = habitat.Env(config=config, dataset=dataset) # Set the target to a random goal from the provided list for this episode self.goal_index = 0 self.last_geodesic_distance = None self.distance_cache = DynamicDistanceCache(rounding=1) self._current_frame: Optional[np.ndarray] = None @property def scene_name(self) -> str: return self.env.current_episode.scene_id @property def current_frame(self) -> np.ndarray: assert self._current_frame is not None return self._current_frame def step(self, action_dict: Dict[str, Union[str, int]]) -> Observations: obs = self.env.step(action_dict["action"]) self._current_frame = obs return obs # def get_distance_to_target(self) -> float: # curr = self.get_location() # goal = self.get_current_episode().goals[0].view_points[0].agent_state.position # return self.env.sim.geodesic_distance(curr, goal) def get_location(self) -> Optional[np.ndarray]: return self.env.sim.get_agent_state().position def get_rotation(self) -> Optional[List[float]]: return self.env.sim.get_agent_state().rotation def get_shortest_path( self, source_state: AgentState, target_state: AgentState, ) -> List[ShortestPathPoint]: return self.env.sim.action_space_shortest_path(source_state, [target_state]) def get_current_episode(self) -> HabitatNavigationEpisode: return self.env.current_episode # type: ignore # noinspection PyMethodMayBeStatic def start(self): get_logger().debug("No need to start a habitat_plugin env") def stop(self): self.env.close() def reset(self): self._current_frame = self.env.reset() @property def last_action_success(self) -> bool: # For now we can not have failure of actions return True @property def num_episodes(self) -> int: ep_iterator = self.env.episode_iterator assert isinstance(ep_iterator, habitat.core.dataset.EpisodeIterator) return len(ep_iterator.episodes)
ask4help-main
allenact_plugins/habitat_plugin/habitat_environment.py
from typing import Any from allenact.embodiedai.preprocessors.resnet import ResNetPreprocessor from allenact.utils.system import get_logger class ResnetPreProcessorHabitat(ResNetPreprocessor): """Preprocess RGB or depth image using a ResNet model.""" def __init__(self, *args, **kwargs: Any): super().__init__(*args, **kwargs) get_logger().warning( "`ResnetPreProcessorHabitat` is deprecated, use `ResNetPreprocessor` instead." )
ask4help-main
allenact_plugins/habitat_plugin/habitat_preprocessors.py
from typing import List, Optional, Union, Callable import gym import habitat from habitat.config import Config from allenact.base_abstractions.sensor import Sensor from allenact.base_abstractions.task import TaskSampler from allenact_plugins.habitat_plugin.habitat_environment import HabitatEnvironment from allenact_plugins.habitat_plugin.habitat_tasks import PointNavTask, ObjectNavTask # type: ignore class PointNavTaskSampler(TaskSampler): def __init__( self, env_config: Config, sensors: List[Sensor], max_steps: int, action_space: gym.Space, distance_to_goal: float, filter_dataset_func: Optional[ Callable[[habitat.Dataset], habitat.Dataset] ] = None, **task_init_kwargs, ) -> None: self.grid_size = 0.25 self.env: Optional[HabitatEnvironment] = None self.max_tasks: Optional[int] = None self.reset_tasks: Optional[int] = None self.sensors = sensors self.max_steps = max_steps self._action_space = action_space self.env_config = env_config self.distance_to_goal = distance_to_goal self.seed: Optional[int] = None self.filter_dataset_func = filter_dataset_func self._last_sampled_task: Optional[PointNavTask] = None self.task_init_kwargs = task_init_kwargs def _create_environment(self) -> HabitatEnvironment: dataset = habitat.make_dataset( self.env_config.DATASET.TYPE, config=self.env_config.DATASET ) if len(dataset.episodes) == 0: raise RuntimeError("Empty input dataset.") if self.filter_dataset_func is not None: dataset = self.filter_dataset_func(dataset) if len(dataset.episodes) == 0: raise RuntimeError("Empty dataset after filtering.") env = HabitatEnvironment(config=self.env_config, dataset=dataset) self.max_tasks = ( None if self.env_config.MODE == "train" else env.num_episodes ) # env.num_episodes self.reset_tasks = self.max_tasks return env @property def length(self) -> Union[int, float]: """ @return: Number of total tasks remaining that can be sampled. Can be float('inf'). """ return float("inf") if self.max_tasks is None else self.max_tasks @property def total_unique(self) -> Union[int, float, None]: return self.env.num_episodes @property def last_sampled_task(self) -> Optional[PointNavTask]: return self._last_sampled_task def close(self) -> None: if self.env is not None: self.env.stop() @property def all_observation_spaces_equal(self) -> bool: """ @return: True if all Tasks that can be sampled by this sampler have the same observation space. Otherwise False. """ return True def next_task(self, force_advance_scene=False) -> Optional[PointNavTask]: if self.max_tasks is not None and self.max_tasks <= 0: return None if self.env is not None: self.env.reset() else: self.env = self._create_environment() self.env.reset() ep_info = self.env.get_current_episode() target = ep_info.goals[0].position task_info = { "target": target, "distance_to_goal": self.distance_to_goal, } self._last_sampled_task = PointNavTask( env=self.env, sensors=self.sensors, task_info=task_info, max_steps=self.max_steps, action_space=self._action_space, **self.task_init_kwargs, ) if self.max_tasks is not None: self.max_tasks -= 1 return self._last_sampled_task def reset(self): self.max_tasks = self.reset_tasks def set_seed(self, seed: int): self.seed = seed if seed is not None: self.env.env.seed(seed) class ObjectNavTaskSampler(TaskSampler): def __init__( self, env_config: Config, sensors: List[Sensor], max_steps: int, action_space: gym.Space, distance_to_goal: float, **kwargs, ) -> None: self.grid_size = 0.25 self.env: Optional[HabitatEnvironment] = None self.max_tasks: Optional[int] = None self.reset_tasks: Optional[int] = None self.sensors = sensors self.max_steps = max_steps self._action_space = action_space self.env_config = env_config self.distance_to_goal = distance_to_goal self.seed: Optional[int] = None self._last_sampled_task: Optional[ObjectNavTask] = None def _create_environment(self) -> HabitatEnvironment: dataset = habitat.make_dataset( self.env_config.DATASET.TYPE, config=self.env_config.DATASET ) env = HabitatEnvironment(config=self.env_config, dataset=dataset) self.max_tasks = ( None if self.env_config.MODE == "train" else env.num_episodes ) # mp3d objectnav val -> 2184 self.reset_tasks = self.max_tasks return env @property def length(self) -> Union[int, float]: """ @return: Number of total tasks remaining that can be sampled. Can be float('inf'). """ return float("inf") if self.max_tasks is None else self.max_tasks @property def total_unique(self) -> Union[int, float, None]: return self.env.num_episodes @property def last_sampled_task(self) -> Optional[ObjectNavTask]: return self._last_sampled_task def close(self) -> None: if self.env is not None: self.env.stop() @property def all_observation_spaces_equal(self) -> bool: """ @return: True if all Tasks that can be sampled by this sampler have the same observation space. Otherwise False. """ return True def next_task(self, force_advance_scene=False) -> Optional[ObjectNavTask]: if self.max_tasks is not None and self.max_tasks <= 0: return None if self.env is not None: self.env.reset() else: self.env = self._create_environment() self.env.reset() ep_info = self.env.get_current_episode() target = ep_info.goals[0].position task_info = { "target": target, "distance_to_goal": self.distance_to_goal, } self._last_sampled_task = ObjectNavTask( env=self.env, sensors=self.sensors, task_info=task_info, max_steps=self.max_steps, action_space=self._action_space, ) if self.max_tasks is not None: self.max_tasks -= 1 return self._last_sampled_task def reset(self): self.max_tasks = self.reset_tasks def set_seed(self, seed: int): self.seed = seed if seed is not None: self.env.env.seed(seed)
ask4help-main
allenact_plugins/habitat_plugin/habitat_task_samplers.py
import glob import os import shutil from typing import List import habitat from habitat import Config from allenact.utils.system import get_logger from allenact_plugins.habitat_plugin.habitat_constants import ( HABITAT_DATA_BASE, HABITAT_CONFIGS_DIR, ) def construct_env_configs( config: Config, allow_scene_repeat: bool = False, ) -> List[Config]: """Create list of Habitat Configs for training on multiple processes To allow better performance, dataset are split into small ones for each individual env, grouped by scenes. # Parameters config : configs that contain num_processes as well as information necessary to create individual environments. allow_scene_repeat: if `True` and the number of distinct scenes in the dataset is less than the total number of processes this will result in scenes being repeated across processes. If `False`, then if the total number of processes is greater than the number of scenes, this will result in a RuntimeError exception being raised. # Returns List of Configs, one for each process. """ config.freeze() num_processes = config.NUM_PROCESSES configs = [] dataset = habitat.make_dataset(config.DATASET.TYPE) scenes = dataset.get_scenes_to_load(config.DATASET) if len(scenes) > 0: if len(scenes) < num_processes: if not allow_scene_repeat: raise RuntimeError( "reduce the number of processes as there aren't enough number of scenes." ) else: scenes = (scenes * (1 + (num_processes // len(scenes))))[:num_processes] scene_splits: List[List] = [[] for _ in range(num_processes)] for idx, scene in enumerate(scenes): scene_splits[idx % len(scene_splits)].append(scene) assert sum(map(len, scene_splits)) == len(scenes) for i in range(num_processes): task_config = config.clone() task_config.defrost() if len(scenes) > 0: task_config.DATASET.CONTENT_SCENES = scene_splits[i] if len(config.SIMULATOR_GPU_IDS) == 0: task_config.SIMULATOR.HABITAT_SIM_V0.GPU_DEVICE_ID = -1 else: task_config.SIMULATOR.HABITAT_SIM_V0.GPU_DEVICE_ID = config.SIMULATOR_GPU_IDS[ i % len(config.SIMULATOR_GPU_IDS) ] task_config.freeze() configs.append(task_config.clone()) return configs def construct_env_configs_mp3d(config: Config) -> List[Config]: r"""Create list of Habitat Configs for training on multiple processes To allow better performance, dataset are split into small ones for each individual env, grouped by scenes. Args: config: configs that contain num_processes as well as information necessary to create individual environments. Returns: List of Configs, one for each process """ config.freeze() num_processes = config.NUM_PROCESSES configs = [] # dataset = habitat.make_dataset(config.DATASET.TYPE) # scenes = dataset.get_scenes_to_load(config.DATASET) if num_processes == 1: scene_splits = [["pRbA3pwrgk9"]] else: small = [ "rPc6DW4iMge", "e9zR4mvMWw7", "uNb9QFRL6hY", "qoiz87JEwZ2", "sKLMLpTHeUy", "s8pcmisQ38h", "759xd9YjKW5", "XcA2TqTSSAj", "SN83YJsR3w2", "8WUmhLawc2A", "JeFG25nYj2p", "17DRP5sb8fy", "Uxmj2M2itWa", "XcA2TqTSSAj", "SN83YJsR3w2", "8WUmhLawc2A", "JeFG25nYj2p", "17DRP5sb8fy", "Uxmj2M2itWa", "D7N2EKCX4Sj", "b8cTxDM8gDG", "sT4fr6TAbpF", "S9hNv5qa7GM", "82sE5b5pLXE", "pRbA3pwrgk9", "aayBHfsNo7d", "cV4RVeZvu5T", "i5noydFURQK", "YmJkqBEsHnH", "jh4fc5c5qoQ", "VVfe2KiqLaN", "29hnd4uzFmX", "Pm6F8kyY3z2", "JF19kD82Mey", "GdvgFV5R1Z5", "HxpKQynjfin", "vyrNrziPKCB", ] med = [ "V2XKFyX4ASd", "VFuaQ6m2Qom", "ZMojNkEp431", "5LpN3gDmAk7", "r47D5H71a5s", "ULsKaCPVFJR", "E9uDoFAP3SH", "kEZ7cmS4wCh", "ac26ZMwG7aT", "dhjEzFoUFzH", "mJXqzFtmKg4", "p5wJjkQkbXX", "Vvot9Ly1tCj", "EDJbREhghzL", "VzqfbhrpDEA", "7y3sRwLe3Va", ] scene_splits = [[] for _ in range(config.NUM_PROCESSES)] distribute( small, scene_splits, num_gpus=8, procs_per_gpu=3, proc_offset=1, scenes_per_process=2, ) distribute( med, scene_splits, num_gpus=8, procs_per_gpu=3, proc_offset=0, scenes_per_process=1, ) # gpu0 = [['pRbA3pwrgk9', '82sE5b5pLXE', 'S9hNv5qa7GM'], # ['Uxmj2M2itWa', '17DRP5sb8fy', 'JeFG25nYj2p'], # ['5q7pvUzZiYa', '759xd9YjKW5', 's8pcmisQ38h'], # ['e9zR4mvMWw7', 'rPc6DW4iMge', 'vyrNrziPKCB']] # gpu1 = [['sT4fr6TAbpF', 'b8cTxDM8gDG', 'D7N2EKCX4Sj'], # ['8WUmhLawc2A', 'SN83YJsR3w2', 'XcA2TqTSSAj'], # ['sKLMLpTHeUy', 'qoiz87JEwZ2', 'uNb9QFRL6hY'], # ['V2XKFyX4ASd', 'VFuaQ6m2Qom', 'ZMojNkEp431']] # gpu2 = [['5LpN3gDmAk7', 'r47D5H71a5s', 'ULsKaCPVFJR', 'E9uDoFAP3SH'], # ['VVfe2KiqLaN', 'jh4fc5c5qoQ', 'YmJkqBEsHnH'], # small # ['i5noydFURQK', 'cV4RVeZvu5T', 'aayBHfsNo7d']] # small # gpu3 = [['kEZ7cmS4wCh', 'ac26ZMwG7aT', 'dhjEzFoUFzH'], # ['mJXqzFtmKg4', 'p5wJjkQkbXX', 'Vvot9Ly1tCj']] # gpu4 = [['EDJbREhghzL', 'VzqfbhrpDEA', '7y3sRwLe3Va'], # ['ur6pFq6Qu1A', 'PX4nDJXEHrG', 'PuKPg4mmafe']] # gpu5 = [['r1Q1Z4BcV1o', 'gTV8FGcVJC9', '1pXnuDYAj8r'], # ['JF19kD82Mey', 'Pm6F8kyY3z2', '29hnd4uzFmX']] # small # gpu6 = [['VLzqgDo317F', '1LXtFkjw3qL'], # ['HxpKQynjfin', 'gZ6f7yhEvPG', 'GdvgFV5R1Z5']] # small # gpu7 = [['D7G3Y4RVNrH', 'B6ByNegPMKs']] # # scene_splits = gpu0 + gpu1 + gpu2 + gpu3 + gpu4 + gpu5 + gpu6 + gpu7 for i in range(num_processes): task_config = config.clone() task_config.defrost() task_config.DATASET.CONTENT_SCENES = scene_splits[i] task_config.SIMULATOR.HABITAT_SIM_V0.GPU_DEVICE_ID = config.SIMULATOR_GPU_IDS[ i % len(config.SIMULATOR_GPU_IDS) ] task_config.freeze() configs.append(task_config.clone()) return configs def distribute( data: List[str], scene_splits: List[List], num_gpus=8, procs_per_gpu=4, proc_offset=0, scenes_per_process=1, ) -> None: for idx, scene in enumerate(data): i = (idx // num_gpus) % scenes_per_process j = idx % num_gpus scene_splits[j * procs_per_gpu + i + proc_offset].append(scene) def get_habitat_config(path: str, allow_download: bool = True): assert ( path[-4:].lower() == ".yml" or path[-5:].lower() == ".yaml" ), f"path ({path}) must be a .yml or .yaml file." if not os.path.exists(path): if not allow_download: raise IOError( "Path {} does not exist and we do not wish to try downloading it." ) get_logger().info( f"Attempting to load config at path {path}. This path does not exist, attempting to" f"download habitat configs and will try again. Downloading..." ) os.chdir(HABITAT_DATA_BASE) output_archive_name = "__TO_OVERWRITE__.zip" deletable_dir_name = "__TO_DELETE__" url = "https://github.com/facebookresearch/habitat-lab/archive/7c4286653211bbfaca59d0807c28bfb3a6b962bf.zip" cmd = f"wget {url} -O {output_archive_name}" if os.system(cmd): raise RuntimeError(f"ERROR: `{cmd}` failed.") cmd = f"unzip {output_archive_name} -d {deletable_dir_name}" if os.system(cmd): raise RuntimeError(f"ERROR: `{cmd}` failed.") habitat_path = glob.glob(os.path.join(deletable_dir_name, "habitat-lab*"))[0] cmd = f"rsync --ignore-existing -raz {habitat_path}/configs/ {HABITAT_CONFIGS_DIR}/" if os.system(cmd): raise RuntimeError(f"ERROR: `{cmd}` failed.") os.remove(output_archive_name) shutil.rmtree(deletable_dir_name) if not os.path.exists(path): raise RuntimeError( f"Config at path {path} does not exist even after downloading habitat configs to {HABITAT_CONFIGS_DIR}." ) else: get_logger().info(f"Config downloaded successfully.") return habitat.get_config(path)
ask4help-main
allenact_plugins/habitat_plugin/habitat_utils.py
ask4help-main
allenact_plugins/habitat_plugin/configs/__init__.py
import os import cv2 import habitat from pyquaternion import Quaternion from allenact_plugins.habitat_plugin.habitat_constants import ( HABITAT_CONFIGS_DIR, HABITAT_DATASETS_DIR, HABITAT_SCENE_DATASETS_DIR, ) from allenact_plugins.habitat_plugin.habitat_utils import get_habitat_config FORWARD_KEY = "w" LEFT_KEY = "a" RIGHT_KEY = "d" FINISH = "f" def transform_rgb_bgr(image): return image[:, :, [2, 1, 0]] def agent_demo(): config = get_habitat_config( os.path.join(HABITAT_CONFIGS_DIR, "tasks/pointnav.yaml") ) config.defrost() config.DATASET.DATA_PATH = os.path.join( HABITAT_DATASETS_DIR, "pointnav/gibson/v1/train/train.json.gz" ) config.DATASET.SCENES_DIR = HABITAT_SCENE_DATASETS_DIR config.SIMULATOR.HABITAT_SIM_V0.GPU_DEVICE_ID = 0 config.SIMULATOR.TURN_ANGLE = 45 config.freeze() env = habitat.Env(config=config) print("Environment creation successful") observations = env.reset() cv2.imshow("RGB", transform_rgb_bgr(observations["rgb"])) print("Agent stepping around inside environment.") count_steps = 0 action = None while not env.episode_over: keystroke = cv2.waitKey(0) if keystroke == ord(FORWARD_KEY): action = 1 print("action: FORWARD") elif keystroke == ord(LEFT_KEY): action = 2 print("action: LEFT") elif keystroke == ord(RIGHT_KEY): action = 3 print("action: RIGHT") elif keystroke == ord(FINISH): action = 0 print("action: FINISH") else: print("INVALID KEY") continue observations = env.step(action) count_steps += 1 print("Position:", env.sim.get_agent_state().position) print("Quaternions:", env.sim.get_agent_state().rotation) quat = Quaternion(env.sim.get_agent_state().rotation.components) print(quat.radians) cv2.imshow("RGB", transform_rgb_bgr(observations["rgb"])) print("Episode finished after {} steps.".format(count_steps)) if action == habitat.SimulatorActions.STOP and observations["pointgoal"][0] < 0.2: print("you successfully navigated to destination point") else: print("your navigation was unsuccessful") if __name__ == "__main__": agent_demo()
ask4help-main
allenact_plugins/habitat_plugin/scripts/agent_demo.py
ask4help-main
allenact_plugins/habitat_plugin/scripts/__init__.py
import os import habitat import numpy as np from tqdm import tqdm from allenact_plugins.habitat_plugin.habitat_constants import ( HABITAT_CONFIGS_DIR, HABITAT_DATA_BASE, HABITAT_SCENE_DATASETS_DIR, HABITAT_DATASETS_DIR, ) from allenact_plugins.habitat_plugin.habitat_utils import get_habitat_config map_resolution = 0.05 map_size = 960 def make_map(env, scene): vacancy_map = np.zeros([map_size, map_size], dtype=bool) for i in tqdm(range(map_size)): for j in range(map_size): x = (i - map_size // 2) * map_resolution z = (j - map_size // 2) * map_resolution vacancy_map[j, i] = env.sim.is_navigable([x, 0.0, z]) np.save( os.path.join(HABITAT_DATA_BASE, "map_data/pointnav/v1/gibson/data/" + scene), vacancy_map, ) def generate_maps(): config = get_habitat_config( os.path.join(HABITAT_CONFIGS_DIR, "tasks/pointnav.yaml") ) config.defrost() config.DATASET.DATA_PATH = os.path.join( HABITAT_DATASETS_DIR, "pointnav/gibson/v1/train/train.json.gz" ) config.DATASET.SCENES_DIR = HABITAT_SCENE_DATASETS_DIR config.SIMULATOR.HABITAT_SIM_V0.GPU_DEVICE_ID = 0 config.freeze() dataset = habitat.make_dataset(config.DATASET.TYPE) scenes = dataset.get_scenes_to_load(config.DATASET) for scene in scenes: print("Making environment for:", scene) config.defrost() config.DATASET.CONTENT_SCENES = [scene] config.freeze() env = habitat.Env(config=config) make_map(env, scene) env.close() if __name__ == "__main__": generate_maps()
ask4help-main
allenact_plugins/habitat_plugin/scripts/make_map.py
ask4help-main
allenact_plugins/habitat_plugin/data/__init__.py
from typing import Optional, Tuple, cast import gym import torch import torch.nn as nn from gym.spaces.dict import Dict as SpaceDict from allenact.algorithms.onpolicy_sync.policy import ( ActorCriticModel, Memory, ObservationType, ) from allenact.base_abstractions.distributions import CategoricalDistr from allenact.base_abstractions.misc import ActorCriticOutput, DistributionType class LinearAdvisorActorCritic(ActorCriticModel[CategoricalDistr]): def __init__( self, input_uuid: str, action_space: gym.spaces.Discrete, observation_space: SpaceDict, ensure_same_init_aux_weights: bool = True, ): super().__init__(action_space=action_space, observation_space=observation_space) assert ( input_uuid in observation_space.spaces ), "LinearActorCritic expects only a single observational input." self.input_uuid = input_uuid box_space: gym.spaces.Box = observation_space[self.input_uuid] assert isinstance(box_space, gym.spaces.Box), ( "LinearActorCritic requires that" "observation space corresponding to the input key is a Box space." ) assert len(box_space.shape) == 1 self.in_dim = box_space.shape[0] self.num_actions = action_space.n self.linear = nn.Linear(self.in_dim, 2 * self.num_actions + 1) nn.init.orthogonal_(self.linear.weight) if ensure_same_init_aux_weights: # Ensure main actor / auxiliary actor start with the same weights self.linear.weight.data[self.num_actions : -1, :] = self.linear.weight[ : self.num_actions, : ] nn.init.constant_(self.linear.bias, 0) # noinspection PyMethodMayBeStatic def _recurrent_memory_specification(self): return None def forward( # type:ignore self, observations: ObservationType, memory: Memory, prev_actions: torch.Tensor, masks: torch.FloatTensor, ) -> Tuple[ActorCriticOutput[DistributionType], Optional[Memory]]: out = self.linear(cast(torch.Tensor, observations[self.input_uuid])) main_logits = out[..., : self.num_actions] aux_logits = out[..., self.num_actions : -1] values = out[..., -1:] # noinspection PyArgumentList return ( ActorCriticOutput( distributions=cast( DistributionType, CategoricalDistr(logits=main_logits) ), # step x sampler x ... values=cast( torch.FloatTensor, values.view(values.shape[:2] + (-1,)) ), # step x sampler x flattened extras={"auxiliary_distributions": CategoricalDistr(logits=aux_logits)}, ), None, )
ask4help-main
allenact_plugins/lighthouse_plugin/lighthouse_models.py
import copy import curses import itertools import time from functools import lru_cache from typing import Optional, Tuple, Any, List, Union, cast import numpy as np from gym.utils import seeding from gym_minigrid import minigrid EMPTY = 0 GOAL = 1 WRONG_CORNER = 2 WALL = 3 @lru_cache(1000) def _get_world_corners(world_dim: int, world_radius: int): if world_radius == 0: return ((0,) * world_dim,) def combination_to_vec(comb) -> Tuple[int, ...]: vec = [world_radius] * world_dim for k in comb: vec[k] *= -1 return tuple(vec) return tuple( sorted( combination_to_vec(comb) for i in range(world_dim + 1) for comb in itertools.combinations(list(range(world_dim)), i) ) ) @lru_cache(1000) def _base_world_tensor(world_dim: int, world_radius: int): tensor = np.full((2 * world_radius + 1,) * world_dim, fill_value=EMPTY) slices: List[Union[slice, int]] = [slice(0, 2 * world_radius + 1)] * world_dim for i in range(world_dim): tmp_slices = [*slices] tmp_slices[i] = 0 tensor[tuple(tmp_slices)] = WALL tmp_slices[i] = 2 * world_radius tensor[tuple(tmp_slices)] = WALL for corner in _get_world_corners(world_dim=world_dim, world_radius=world_radius): tensor[tuple([loc + world_radius for loc in corner])] = WRONG_CORNER return tensor class LightHouseEnvironment(object): EMPTY = 0 GOAL = 1 WRONG_CORNER = 2 WALL = 3 SPACE_LEVELS = [EMPTY, GOAL, WRONG_CORNER, WALL] def __init__(self, world_dim: int, world_radius: int, **kwargs): self.world_dim = world_dim self.world_radius = world_radius self.world_corners = np.array( _get_world_corners(world_dim=world_dim, world_radius=world_radius), dtype=int, ) self.curses_screen: Optional[Any] = None self.world_tensor: np.ndarray = copy.deepcopy( _base_world_tensor(world_radius=world_radius, world_dim=world_dim) ) self.current_position = np.zeros(world_dim, dtype=int) self.closest_distance_to_corners = np.full( 2 ** world_dim, fill_value=world_radius, dtype=int ) self.positions: List[Tuple[int, ...]] = [tuple(self.current_position)] self.goal_position: Optional[np.ndarray] = None self.last_action: Optional[int] = None self.seed: Optional[int] = None self.np_seeded_random_gen: Optional[np.random.RandomState] = None self.set_seed(seed=int(kwargs.get("seed", np.random.randint(0, 2 ** 31 - 1)))) self.random_reset() def set_seed(self, seed: int): # More information about why `np_seeded_random_gen` is used rather than just `np.random.seed` # can be found at gym/utils/seeding.py # There's literature indicating that having linear correlations between seeds of multiple # PRNG's can correlate the outputs self.seed = seed self.np_seeded_random_gen, _ = cast( Tuple[np.random.RandomState, Any], seeding.np_random(self.seed) ) def random_reset(self, goal_position: Optional[bool] = None): self.last_action = None self.world_tensor = copy.deepcopy( _base_world_tensor(world_radius=self.world_radius, world_dim=self.world_dim) ) if goal_position is None: self.goal_position = self.world_corners[ self.np_seeded_random_gen.randint(low=0, high=len(self.world_corners)) ] self.world_tensor[ tuple(cast(np.ndarray, self.world_radius + self.goal_position)) ] = GOAL if self.curses_screen is not None: curses.nocbreak() self.curses_screen.keypad(False) curses.echo() curses.endwin() self.curses_screen = None self.current_position = np.zeros(self.world_dim, dtype=int) self.closest_distance_to_corners = np.abs( (self.world_corners - self.current_position.reshape(1, -1)) ).max(1) self.positions = [tuple(self.current_position)] def step(self, action: int) -> bool: assert 0 <= action < 2 * self.world_dim self.last_action = action delta = -1 if action >= self.world_dim else 1 ind = action % self.world_dim old = self.current_position[ind] new = min(max(delta + old, -self.world_radius), self.world_radius) if new == old: self.positions.append(self.positions[-1]) return False else: self.current_position[ind] = new self.closest_distance_to_corners = np.minimum( np.abs((self.world_corners - self.current_position.reshape(1, -1))).max( 1 ), self.closest_distance_to_corners, ) self.positions.append(tuple(self.current_position)) return True def render(self, mode="array", **kwargs): if mode == "array": arr = copy.deepcopy(self.world_tensor) arr[tuple(self.world_radius + self.current_position)] = 9 return arr elif mode == "curses": if self.world_dim == 1: space_list = ["_"] * (1 + 2 * self.world_radius) goal_ind = self.goal_position[0] + self.world_radius space_list[goal_ind] = "G" space_list[2 * self.world_radius - goal_ind] = "W" space_list[self.current_position[0] + self.world_radius] = "X" to_print = " ".join(space_list) if self.curses_screen is None: self.curses_screen = curses.initscr() self.curses_screen.addstr(0, 0, to_print) if "extra_text" in kwargs: self.curses_screen.addstr(1, 0, kwargs["extra_text"]) self.curses_screen.refresh() elif self.world_dim == 2: space_list = [ ["_"] * (1 + 2 * self.world_radius) for _ in range(1 + 2 * self.world_radius) ] for row_ind in range(1 + 2 * self.world_radius): for col_ind in range(1 + 2 * self.world_radius): if self.world_tensor[row_ind][col_ind] == self.GOAL: space_list[row_ind][col_ind] = "G" if self.world_tensor[row_ind][col_ind] == self.WRONG_CORNER: space_list[row_ind][col_ind] = "C" if self.world_tensor[row_ind][col_ind] == self.WALL: space_list[row_ind][col_ind] = "W" if ( (row_ind, col_ind) == self.world_radius + self.current_position ).all(): space_list[row_ind][col_ind] = "X" if self.curses_screen is None: self.curses_screen = curses.initscr() for i, sl in enumerate(space_list): self.curses_screen.addstr(i, 0, " ".join(sl)) self.curses_screen.addstr(len(space_list), 0, str(self.state())) if "extra_text" in kwargs: self.curses_screen.addstr( len(space_list) + 1, 0, kwargs["extra_text"] ) self.curses_screen.refresh() else: raise NotImplementedError("Cannot render worlds of > 2 dimensions.") elif mode == "minigrid": height = width = 2 * self.world_radius + 2 grid = minigrid.Grid(width, height) # Generate the surrounding walls grid.horz_wall(0, 0) grid.horz_wall(0, height - 1) grid.vert_wall(0, 0) grid.vert_wall(width - 1, 0) # Place fake agent at the center agent_pos = np.array(self.positions[-1]) + 1 + self.world_radius # grid.set(*agent_pos, None) agent = minigrid.Goal() agent.color = "red" grid.set(agent_pos[0], agent_pos[1], agent) agent.init_pos = tuple(agent_pos) agent.cur_pos = tuple(agent_pos) goal_pos = self.goal_position + self.world_radius goal = minigrid.Goal() grid.set(goal_pos[0], goal_pos[1], goal) goal.init_pos = tuple(goal_pos) goal.cur_pos = tuple(goal_pos) highlight_mask = np.zeros((height, width), dtype=bool) minx, maxx = max(1, agent_pos[0] - 5), min(height - 1, agent_pos[0] + 5) miny, maxy = max(1, agent_pos[1] - 5), min(height - 1, agent_pos[1] + 5) highlight_mask[minx : (maxx + 1), miny : (maxy + 1)] = True img = grid.render( minigrid.TILE_PIXELS, agent_pos, None, highlight_mask=highlight_mask ) return img else: raise NotImplementedError("Unknown render mode {}.".format(mode)) time.sleep(0.0 if "sleep_time" not in kwargs else kwargs["sleep_time"]) def close(self): if self.curses_screen is not None: curses.nocbreak() self.curses_screen.keypad(False) curses.echo() curses.endwin() @staticmethod def optimal_ave_ep_length(world_dim: int, world_radius: int, view_radius: int): if world_dim == 1: max_steps_wrong_dir = max(world_radius - view_radius, 0) return max_steps_wrong_dir + world_radius elif world_dim == 2: tau = 2 * (world_radius - view_radius) average_steps_needed = 0.25 * (4 * 2 * view_radius + 10 * tau) return average_steps_needed else: raise NotImplementedError( "`optimal_average_ep_length` is only implemented" " for when the `world_dim` is 1 or 2 ({} given).".format(world_dim) )
ask4help-main
allenact_plugins/lighthouse_plugin/lighthouse_environment.py
import abc import string from typing import List, Dict, Any, Optional, Tuple, Union, Sequence, cast import gym import numpy as np from gym.utils import seeding from allenact.base_abstractions.misc import RLStepResult from allenact.base_abstractions.sensor import Sensor, SensorSuite from allenact.base_abstractions.task import Task, TaskSampler from allenact.utils.experiment_utils import set_seed from allenact.utils.system import get_logger from allenact_plugins.lighthouse_plugin.lighthouse_environment import ( LightHouseEnvironment, ) from allenact_plugins.lighthouse_plugin.lighthouse_sensors import get_corner_observation DISCOUNT_FACTOR = 0.99 STEP_PENALTY = -0.01 FOUND_TARGET_REWARD = 1.0 class LightHouseTask(Task[LightHouseEnvironment], abc.ABC): """Defines an abstract embodied task in the light house gridworld. # Attributes env : The light house environment. sensor_suite: Collection of sensors formed from the `sensors` argument in the initializer. task_info : Dictionary of (k, v) pairs defining task goals and other task information. max_steps : The maximum number of steps an agent can take an in the task before it is considered failed. observation_space: The observation space returned on each step from the sensors. """ def __init__( self, env: LightHouseEnvironment, sensors: Union[SensorSuite, List[Sensor]], task_info: Dict[str, Any], max_steps: int, **kwargs, ) -> None: """Initializer. See class documentation for parameter definitions. """ super().__init__( env=env, sensors=sensors, task_info=task_info, max_steps=max_steps, **kwargs ) self._last_action: Optional[int] = None @property def last_action(self) -> int: return self._last_action @last_action.setter def last_action(self, value: int): self._last_action = value def step(self, action: Union[int, Sequence[int]]) -> RLStepResult: assert isinstance(action, int) action = cast(int, action) self.last_action = action return super(LightHouseTask, self).step(action=action) def render(self, mode: str = "array", *args, **kwargs) -> np.ndarray: if mode == "array": return self.env.render(mode, **kwargs) elif mode in ["rgb", "rgb_array", "human"]: arr = self.env.render("array", **kwargs) colors = np.array( [ (31, 119, 180), (255, 127, 14), (44, 160, 44), (214, 39, 40), (148, 103, 189), (140, 86, 75), (227, 119, 194), (127, 127, 127), (188, 189, 34), (23, 190, 207), ], dtype=np.uint8, ) return colors[arr] else: raise NotImplementedError("Render mode '{}' is not supported.".format(mode)) class FindGoalLightHouseTask(LightHouseTask): _CACHED_ACTION_NAMES: Dict[int, Tuple[str, ...]] = {} def __init__( self, env: LightHouseEnvironment, sensors: Union[SensorSuite, List[Sensor]], task_info: Dict[str, Any], max_steps: int, **kwargs, ): super().__init__(env, sensors, task_info, max_steps, **kwargs) self._found_target = False @property def action_space(self) -> gym.spaces.Discrete: return gym.spaces.Discrete(2 * self.env.world_dim) def _step(self, action: Union[int, Sequence[int]]) -> RLStepResult: assert isinstance(action, int) action = cast(int, action) self.env.step(action) reward = STEP_PENALTY if np.all(self.env.current_position == self.env.goal_position): self._found_target = True reward += FOUND_TARGET_REWARD elif self.num_steps_taken() == self.max_steps - 1: reward = STEP_PENALTY / (1 - DISCOUNT_FACTOR) return RLStepResult( observation=self.get_observations(), reward=reward, done=self.is_done(), info=None, ) def reached_terminal_state(self) -> bool: return self._found_target @classmethod def class_action_names(cls, world_dim: int = 2, **kwargs) -> Tuple[str, ...]: assert 1 <= world_dim <= 26, "Too many dimensions." if world_dim not in cls._CACHED_ACTION_NAMES: action_names = [ "{}(+1)".format(string.ascii_lowercase[i] for i in range(world_dim)) ] action_names.extend( "{}(-1)".format(string.ascii_lowercase[i] for i in range(world_dim)) ) cls._CACHED_ACTION_NAMES[world_dim] = tuple(action_names) return cls._CACHED_ACTION_NAMES[world_dim] def action_names(self) -> Tuple[str, ...]: return self.class_action_names(world_dim=self.env.world_dim) def close(self) -> None: pass def query_expert( self, expert_view_radius: int, return_policy: bool = False, deterministic: bool = False, **kwargs, ) -> Tuple[Any, bool]: view_tuple = get_corner_observation( env=self.env, view_radius=expert_view_radius, view_corner_offsets=None, ) goal = self.env.GOAL wrong = self.env.WRONG_CORNER if self.env.world_dim == 1: left_view, right_view, hitting, last_action = view_tuple left = 1 right = 0 expert_action: Optional[int] = None policy: Optional[np.ndarray] = None if left_view == goal: expert_action = left elif right_view == goal: expert_action = right elif hitting != 2 * self.env.world_dim: expert_action = left if last_action == right else right elif left_view == wrong: expert_action = right elif right_view == wrong: expert_action = left elif last_action == 2 * self.env.world_dim: policy = np.array([0.5, 0.5]) else: expert_action = last_action if policy is None: policy = np.array([expert_action == right, expert_action == left]) elif self.env.world_dim == 2: tl, tr, bl, br, hitting, last_action = view_tuple wall = self.env.WALL d, r, u, l, none = 0, 1, 2, 3, 4 if tr == goal: if hitting != r: expert_action = r else: expert_action = u elif br == goal: if hitting != d: expert_action = d else: expert_action = r elif bl == goal: if hitting != l: expert_action = l else: expert_action = d elif tl == goal: if hitting != u: expert_action = u else: expert_action = l elif tr == wrong and not any(x == wrong for x in [br, bl, tl]): expert_action = l elif br == wrong and not any(x == wrong for x in [bl, tl, tr]): expert_action = u elif bl == wrong and not any(x == wrong for x in [tl, tr, br]): expert_action = r elif tl == wrong and not any(x == wrong for x in [tr, br, bl]): expert_action = d elif all(x == wrong for x in [tr, br]) and not any( x == wrong for x in [bl, tl] ): expert_action = l elif all(x == wrong for x in [br, bl]) and not any( x == wrong for x in [tl, tr] ): expert_action = u elif all(x == wrong for x in [bl, tl]) and not any( x == wrong for x in [tr, br] ): expert_action = r elif all(x == wrong for x in [tl, tr]) and not any( x == wrong for x in [br, bl] ): expert_action = d elif hitting != none and tr == br == bl == tl: # Only possible if in 0 vis setting if tr == self.env.WRONG_CORNER or last_action == hitting: if last_action == r: expert_action = u elif last_action == u: expert_action = l elif last_action == l: expert_action = d elif last_action == d: expert_action = r else: raise NotImplementedError() else: expert_action = last_action elif last_action == r and tr == wall: expert_action = u elif last_action == u and tl == wall: expert_action = l elif last_action == l and bl == wall: expert_action = d elif last_action == d and br == wall: expert_action = r elif last_action == none: expert_action = r else: expert_action = last_action policy = np.array( [ expert_action == d, expert_action == r, expert_action == u, expert_action == l, ] ) else: raise NotImplementedError("Can only query expert for world dims of 1 or 2.") if return_policy: return policy, True elif deterministic: return int(np.argmax(policy)), True else: return ( int(np.argmax(np.random.multinomial(1, policy / (1.0 * policy.sum())))), True, ) class FindGoalLightHouseTaskSampler(TaskSampler): def __init__( self, world_dim: int, world_radius: int, sensors: Union[SensorSuite, List[Sensor]], max_steps: int, max_tasks: Optional[int] = None, num_unique_seeds: Optional[int] = None, task_seeds_list: Optional[List[int]] = None, deterministic_sampling: bool = False, seed: Optional[int] = None, **kwargs, ): self.env = LightHouseEnvironment(world_dim=world_dim, world_radius=world_radius) self._last_sampled_task: Optional[FindGoalLightHouseTask] = None self.sensors = ( SensorSuite(sensors) if not isinstance(sensors, SensorSuite) else sensors ) self.max_steps = max_steps self.max_tasks = max_tasks self.num_tasks_generated = 0 self.deterministic_sampling = deterministic_sampling self.num_unique_seeds = num_unique_seeds self.task_seeds_list = task_seeds_list assert (self.num_unique_seeds is None) or ( 0 < self.num_unique_seeds ), "`num_unique_seeds` must be a positive integer." self.num_unique_seeds = num_unique_seeds self.task_seeds_list = task_seeds_list if self.task_seeds_list is not None: if self.num_unique_seeds is not None: assert self.num_unique_seeds == len( self.task_seeds_list ), "`num_unique_seeds` must equal the length of `task_seeds_list` if both specified." self.num_unique_seeds = len(self.task_seeds_list) elif self.num_unique_seeds is not None: self.task_seeds_list = list(range(self.num_unique_seeds)) assert (not deterministic_sampling) or ( self.num_unique_seeds is not None ), "Cannot use deterministic sampling when `num_unique_seeds` is `None`." if (not deterministic_sampling) and self.max_tasks: get_logger().warning( "`deterministic_sampling` is `False` but you have specified `max_tasks < inf`," " this might be a mistake when running testing." ) self.seed: int = int( seed if seed is not None else np.random.randint(0, 2 ** 31 - 1) ) self.np_seeded_random_gen: Optional[np.random.RandomState] = None self.set_seed(self.seed) @property def world_dim(self): return self.env.world_dim @property def world_radius(self): return self.env.world_radius @property def length(self) -> Union[int, float]: return ( float("inf") if self.max_tasks is None else self.max_tasks - self.num_tasks_generated ) @property def total_unique(self) -> Optional[Union[int, float]]: n = 2 ** self.world_dim return n if self.num_unique_seeds is None else min(n, self.num_unique_seeds) @property def last_sampled_task(self) -> Optional[Task]: return self._last_sampled_task def next_task(self, force_advance_scene: bool = False) -> Optional[Task]: if self.length <= 0: return None if self.num_unique_seeds is not None: if self.deterministic_sampling: seed = self.task_seeds_list[ self.num_tasks_generated % len(self.task_seeds_list) ] else: seed = self.np_seeded_random_gen.choice(self.task_seeds_list) else: seed = self.np_seeded_random_gen.randint(0, 2 ** 31 - 1) self.num_tasks_generated += 1 self.env.set_seed(seed) self.env.random_reset() return FindGoalLightHouseTask( env=self.env, sensors=self.sensors, task_info={}, max_steps=self.max_steps ) def close(self) -> None: pass @property def all_observation_spaces_equal(self) -> bool: return True def reset(self) -> None: self.num_tasks_generated = 0 self.set_seed(seed=self.seed) def set_seed(self, seed: int) -> None: set_seed(seed) self.np_seeded_random_gen, _ = seeding.np_random(seed) self.seed = seed
ask4help-main
allenact_plugins/lighthouse_plugin/lighthouse_tasks.py
ask4help-main
allenact_plugins/lighthouse_plugin/__init__.py
import itertools from typing import Any, Dict, Optional, Tuple, Sequence import gym import numpy as np import pandas as pd import patsy from allenact.base_abstractions.sensor import Sensor, prepare_locals_for_super from allenact.base_abstractions.task import Task from allenact_plugins.lighthouse_plugin.lighthouse_environment import ( LightHouseEnvironment, ) def get_corner_observation( env: LightHouseEnvironment, view_radius: int, view_corner_offsets: Optional[np.array], ): if view_corner_offsets is None: view_corner_offsets = view_radius * (2 * (env.world_corners > 0) - 1) world_corners_offset = env.world_corners + env.world_radius multidim_view_corner_indices = np.clip( np.reshape(env.current_position, (1, -1)) + view_corner_offsets + env.world_radius, a_min=0, a_max=2 * env.world_radius, ) flat_view_corner_indices = np.ravel_multi_index( np.transpose(multidim_view_corner_indices), env.world_tensor.shape ) view_values = env.world_tensor.reshape(-1)[flat_view_corner_indices] last_action = 2 * env.world_dim if env.last_action is None else env.last_action on_border_bools = np.concatenate( ( env.current_position == env.world_radius, env.current_position == -env.world_radius, ), axis=0, ) if last_action == 2 * env.world_dim or on_border_bools[last_action]: on_border_value = last_action elif on_border_bools.any(): on_border_value = np.argwhere(on_border_bools).reshape(-1)[0] else: on_border_value = 2 * env.world_dim seen_mask = np.array(env.closest_distance_to_corners <= view_radius, dtype=int) seen_corner_values = ( env.world_tensor.reshape(-1)[ np.ravel_multi_index( np.transpose(world_corners_offset), env.world_tensor.shape ) ] * seen_mask ) return np.concatenate( ( seen_corner_values + view_values * (1 - seen_mask), [on_border_value, last_action], ), axis=0, out=np.zeros((seen_corner_values.shape[0] + 2,), dtype=np.float32,), ) class CornerSensor(Sensor[LightHouseEnvironment, Any]): def __init__( self, view_radius: int, world_dim: int, uuid: str = "corner_fixed_radius", **kwargs: Any ): self.view_radius = view_radius self.world_dim = world_dim self.view_corner_offsets: Optional[np.ndarray] = None observation_space = self._get_observation_space() super().__init__(**prepare_locals_for_super(locals())) def _get_observation_space(self): return gym.spaces.Box( low=min(LightHouseEnvironment.SPACE_LEVELS), high=max(LightHouseEnvironment.SPACE_LEVELS), shape=(2 ** self.world_dim + 2,), dtype=int, ) def get_observation( self, env: LightHouseEnvironment, task: Optional[Task], *args: Any, **kwargs: Any ) -> Any: if self.view_corner_offsets is None: self.view_corner_offsets = self.view_radius * ( 2 * (env.world_corners > 0) - 1 ) return get_corner_observation( env=env, view_radius=self.view_radius, view_corner_offsets=self.view_corner_offsets, ) class FactorialDesignCornerSensor(Sensor[LightHouseEnvironment, Any]): _DESIGN_MAT_CACHE: Dict[Tuple, Any] = {} def __init__( self, view_radius: int, world_dim: int, degree: int, uuid: str = "corner_fixed_radius_categorical", **kwargs: Any ): self.view_radius = view_radius self.world_dim = world_dim self.degree = degree if self.world_dim > 2: raise NotImplementedError( "When using the `FactorialDesignCornerSensor`," "`world_dim` must be <= 2 due to memory constraints." "In the current implementation, creating the design" "matrix in the `world_dim == 3` case would require" "instantiating a matrix of size ~ 3Mx3M (9 trillion entries)." ) self.view_corner_offsets: Optional[np.ndarray] = None # self.world_corners_offset: Optional[List[typing.Tuple[int, ...]]] = None self.corner_sensor = CornerSensor(self.view_radius, self.world_dim) self.variables_and_levels = self._get_variables_and_levels( world_dim=self.world_dim ) self._design_mat_formula = self._create_formula( variables_and_levels=self._get_variables_and_levels( world_dim=self.world_dim ), degree=self.degree, ) self.single_row_df = pd.DataFrame( data=[[0] * len(self.variables_and_levels)], columns=[x[0] for x in self.variables_and_levels], ) self._view_tuple_to_design_array: Dict[Tuple[int, ...], np.ndarray] = {} ( design_matrix, tuple_to_ind, ) = self._create_full_design_matrix_and_tuple_to_ind_dict( variables_and_levels=tuple(self.variables_and_levels), degree=self.degree ) self.design_matrix = design_matrix self.tuple_to_ind = tuple_to_ind observation_space = self._get_observation_space() super().__init__(**prepare_locals_for_super(locals())) def _get_observation_space(self): return gym.spaces.Box( low=min(LightHouseEnvironment.SPACE_LEVELS), high=max(LightHouseEnvironment.SPACE_LEVELS), shape=( len( self.view_tuple_to_design_array( (0,) * len(self.variables_and_levels) ) ), ), dtype=int, ) def view_tuple_to_design_array(self, view_tuple: Tuple): return np.array( self.design_matrix[self.tuple_to_ind[view_tuple], :], dtype=np.float32 ) @classmethod def output_dim(cls, world_dim: int): return ((3 if world_dim == 1 else 4) ** (2 ** world_dim)) * ( 2 * world_dim + 1 ) ** 2 @classmethod def _create_full_design_matrix_and_tuple_to_ind_dict( cls, variables_and_levels: Sequence[Tuple[str, Sequence[int]]], degree: int ): variables_and_levels = tuple((x, tuple(y)) for x, y in variables_and_levels) key = (variables_and_levels, degree) if key not in cls._DESIGN_MAT_CACHE: all_tuples = [ tuple(x) for x in itertools.product( *[levels for _, levels in variables_and_levels] ) ] tuple_to_ind = {} for i, t in enumerate(all_tuples): tuple_to_ind[t] = i df = pd.DataFrame( data=all_tuples, columns=[var_name for var_name, _ in variables_and_levels], ) cls._DESIGN_MAT_CACHE[key] = ( np.array( 1.0 * patsy.dmatrix( cls._create_formula( variables_and_levels=variables_and_levels, degree=degree ), data=df, ), dtype=bool, ), tuple_to_ind, ) return cls._DESIGN_MAT_CACHE[key] @staticmethod def _get_variables_and_levels(world_dim: int): return ( [ ("s{}".format(i), list(range(3 if world_dim == 1 else 4))) for i in range(2 ** world_dim) ] + [("b{}".format(i), list(range(2 * world_dim + 1))) for i in range(1)] + [("a{}".format(i), list(range(2 * world_dim + 1))) for i in range(1)] ) @classmethod def _create_formula( cls, variables_and_levels: Sequence[Tuple[str, Sequence[int]]], degree: int ): def make_categorial(var_name, levels): return "C({}, levels={})".format(var_name, levels) if degree == -1: return ":".join( make_categorial(var_name, levels) for var_name, levels in variables_and_levels ) else: return "({})**{}".format( "+".join( make_categorial(var_name, levels) for var_name, levels in variables_and_levels ), degree, ) def get_observation( self, env: LightHouseEnvironment, task: Optional[Task], *args: Any, **kwargs: Any ) -> Any: kwargs["as_tuple"] = True view_array = self.corner_sensor.get_observation(env, task, *args, **kwargs) return self.view_tuple_to_design_array(tuple(view_array))
ask4help-main
allenact_plugins/lighthouse_plugin/lighthouse_sensors.py
import numpy as np from allenact.utils.experiment_utils import EarlyStoppingCriterion, ScalarMeanTracker class StopIfNearOptimal(EarlyStoppingCriterion): def __init__(self, optimal: float, deviation: float, min_memory_size: int = 100): self.optimal = optimal self.deviation = deviation self.current_pos = 0 self.has_filled = False self.memory: np.ndarray = np.zeros(min_memory_size) def __call__( self, stage_steps: int, total_steps: int, training_metrics: ScalarMeanTracker, ) -> bool: sums = training_metrics.sums() counts = training_metrics.counts() k = "ep_length" if k in sums: count = counts[k] ep_length_ave = sums[k] / count n = self.memory.shape[0] if count >= n: if count > n: # Increase memory size to fit all of the new values self.memory = np.full(count, fill_value=ep_length_ave) else: # We have exactly as many values as the memory size, # simply set the whole memory to be equal to the new # average ep length. self.memory[:] = ep_length_ave self.current_pos = 0 self.has_filled = True else: self.memory[ self.current_pos : (self.current_pos + count) ] = ep_length_ave if self.current_pos + count > n: self.has_filled = True self.current_pos = self.current_pos + count % n self.memory[: self.current_pos] = ep_length_ave if not self.has_filled: return False return self.memory.mean() < self.optimal + self.deviation
ask4help-main
allenact_plugins/lighthouse_plugin/lighthouse_util.py
ask4help-main
allenact_plugins/lighthouse_plugin/configs/__init__.py
ask4help-main
allenact_plugins/lighthouse_plugin/scripts/__init__.py
ask4help-main
allenact_plugins/lighthouse_plugin/data/__init__.py
import os from pathlib import Path BABYAI_EXPERT_TRAJECTORIES_DIR = os.path.abspath( os.path.join(os.path.dirname(Path(__file__)), "data", "demos") )
ask4help-main
allenact_plugins/babyai_plugin/babyai_constants.py
from allenact.utils.system import ImportChecker with ImportChecker( "\n\nPlease install babyai with:\n\n" "pip install -e git+https://github.com/Lucaweihs/babyai.git@0b450eeb3a2dc7116c67900d51391986bdbb84cd#egg=babyai\n", ): import babyai
ask4help-main
allenact_plugins/babyai_plugin/__init__.py
from typing import Dict, Optional, List, cast, Tuple, Any import babyai.model import babyai.rl import gym import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from gym.spaces.dict import Dict as SpaceDict from allenact.algorithms.onpolicy_sync.policy import ( ActorCriticModel, ObservationType, Memory, DistributionType, ) from allenact.base_abstractions.distributions import CategoricalDistr from allenact.base_abstractions.misc import ActorCriticOutput class BabyAIACModelWrapped(babyai.model.ACModel): def __init__( self, obs_space: Dict[str, int], action_space: gym.spaces.Discrete, image_dim=128, memory_dim=128, instr_dim=128, use_instr=False, lang_model="gru", use_memory=False, arch="cnn1", aux_info=None, include_auxiliary_head: bool = False, ): self.use_cnn2 = arch == "cnn2" super().__init__( obs_space=obs_space, action_space=action_space, image_dim=image_dim, memory_dim=memory_dim, instr_dim=instr_dim, use_instr=use_instr, lang_model=lang_model, use_memory=use_memory, arch="cnn1" if self.use_cnn2 else arch, aux_info=aux_info, ) self.semantic_embedding = None if self.use_cnn2: self.semantic_embedding = nn.Embedding(33, embedding_dim=8) self.image_conv = nn.Sequential( nn.Conv2d(in_channels=24, out_channels=16, kernel_size=(2, 2)), *self.image_conv[1:] # type:ignore ) self.image_conv[0].apply(babyai.model.initialize_parameters) self.include_auxiliary_head = include_auxiliary_head if self.use_memory and self.lang_model == "gru": self.memory_rnn = nn.LSTM(self.image_dim, self.memory_dim) if self.include_auxiliary_head: self.aux = nn.Sequential( nn.Linear(self.memory_dim, 64), nn.Tanh(), nn.Linear(64, action_space.n), ) self.aux.apply(babyai.model.initialize_parameters) self.train() def forward_once(self, obs, memory, instr_embedding=None): """Copied (with minor modifications) from `babyai.model.ACModel.forward(...)`.""" if self.use_instr and instr_embedding is None: instr_embedding = self._get_instr_embedding(obs.instr) if self.use_instr and self.lang_model == "attgru": # outputs: B x L x D # memory: B x M mask = (obs.instr != 0).float() # The mask tensor has the same length as obs.instr, and # thus can be both shorter and longer than instr_embedding. # It can be longer if instr_embedding is computed # for a subbatch of obs.instr. # It can be shorter if obs.instr is a subbatch of # the batch that instr_embeddings was computed for. # Here, we make sure that mask and instr_embeddings # have equal length along dimension 1. mask = mask[:, : instr_embedding.shape[1]] instr_embedding = instr_embedding[:, : mask.shape[1]] keys = self.memory2key(memory) pre_softmax = (keys[:, None, :] * instr_embedding).sum(2) + 1000 * mask attention = F.softmax(pre_softmax, dim=1) instr_embedding = (instr_embedding * attention[:, :, None]).sum(1) x = torch.transpose(torch.transpose(obs.image, 1, 3), 2, 3) if self.arch.startswith("expert_filmcnn"): x = self.image_conv(x) for controler in self.controllers: x = controler(x, instr_embedding) x = F.relu(self.film_pool(x)) else: x = self.image_conv(x.contiguous()) x = x.reshape(x.shape[0], -1) if self.use_memory: hidden = ( memory[:, : self.semi_memory_size], memory[:, self.semi_memory_size :], ) hidden = self.memory_rnn(x, hidden) embedding = hidden[0] memory = torch.cat(hidden, dim=1) # type: ignore else: embedding = x if self.use_instr and not "filmcnn" in self.arch: embedding = torch.cat((embedding, instr_embedding), dim=1) if hasattr(self, "aux_info") and self.aux_info: extra_predictions = { info: self.extra_heads[info](embedding) for info in self.extra_heads } else: extra_predictions = dict() return { "embedding": embedding, "memory": memory, "extra_predictions": extra_predictions, } def forward_loop( self, observations: ObservationType, recurrent_hidden_states: torch.FloatTensor, prev_actions: torch.Tensor, masks: torch.FloatTensor, ): results = [] images = cast(torch.FloatTensor, observations["minigrid_ego_image"]).float() instrs: Optional[torch.Tensor] = None if "minigrid_mission" in observations: instrs = cast(torch.Tensor, observations["minigrid_mission"]) _, nsamplers, _ = recurrent_hidden_states.shape rollouts_len = images.shape[0] // nsamplers obs = babyai.rl.DictList() images = images.view(rollouts_len, nsamplers, *images.shape[1:]) masks = masks.view(rollouts_len, nsamplers, *masks.shape[1:]) # type:ignore # needs_reset = (masks != 1.0).view(nrollouts, -1).any(-1) if instrs is not None: instrs = instrs.view(rollouts_len, nsamplers, instrs.shape[-1]) needs_instr_reset_mask = masks != 1.0 needs_instr_reset_mask[0] = 1 needs_instr_reset_mask = needs_instr_reset_mask.squeeze(-1) instr_embeddings: Optional[torch.Tensor] = None if self.use_instr: instr_reset_multi_inds = list( (int(a), int(b)) for a, b in zip(*np.where(needs_instr_reset_mask.cpu().numpy())) ) time_ind_to_which_need_instr_reset: List[List] = [ [] for _ in range(rollouts_len) ] reset_multi_ind_to_index = { mi: i for i, mi in enumerate(instr_reset_multi_inds) } for a, b in instr_reset_multi_inds: time_ind_to_which_need_instr_reset[a].append(b) unique_instr_embeddings = self._get_instr_embedding( instrs[needs_instr_reset_mask] ) instr_embeddings_list = [unique_instr_embeddings[:nsamplers]] current_instr_embeddings_list = list(instr_embeddings_list[-1]) for time_ind in range(1, rollouts_len): if len(time_ind_to_which_need_instr_reset[time_ind]) == 0: instr_embeddings_list.append(instr_embeddings_list[-1]) else: for sampler_needing_reset_ind in time_ind_to_which_need_instr_reset[ time_ind ]: current_instr_embeddings_list[ sampler_needing_reset_ind ] = unique_instr_embeddings[ reset_multi_ind_to_index[ (time_ind, sampler_needing_reset_ind) ] ] instr_embeddings_list.append( torch.stack(current_instr_embeddings_list, dim=0) ) instr_embeddings = torch.stack(instr_embeddings_list, dim=0) assert recurrent_hidden_states.shape[0] == 1 memory = recurrent_hidden_states[0] # instr_embedding: Optional[torch.Tensor] = None for i in range(rollouts_len): obs.image = images[i] if "minigrid_mission" in observations: obs.instr = instrs[i] # reset = needs_reset[i].item() # if self.baby_ai_model.use_instr and (reset or i == 0): # instr_embedding = self.baby_ai_model._get_instr_embedding(obs.instr) results.append( self.forward_once( obs, memory=memory * masks[i], instr_embedding=instr_embeddings[i] ) ) memory = results[-1]["memory"] embedding = torch.cat([r["embedding"] for r in results], dim=0) extra_predictions_list = [r["extra_predictions"] for r in results] extra_predictions = { key: torch.cat([ep[key] for ep in extra_predictions_list], dim=0) for key in extra_predictions_list[0] } return ( ActorCriticOutput( distributions=CategoricalDistr(logits=self.actor(embedding),), values=self.critic(embedding), extras=extra_predictions if not self.include_auxiliary_head else { **extra_predictions, "auxiliary_distributions": cast( Any, CategoricalDistr(logits=self.aux(embedding)) ), }, ), torch.stack([r["memory"] for r in results], dim=0), ) # noinspection PyMethodOverriding def forward( self, observations: ObservationType, recurrent_hidden_states: torch.FloatTensor, prev_actions: torch.Tensor, masks: torch.FloatTensor, ): ( observations, recurrent_hidden_states, prev_actions, masks, num_steps, num_samplers, num_agents, num_layers, ) = self.adapt_inputs( observations, recurrent_hidden_states, prev_actions, masks ) if self.lang_model != "gru": ac_output, hidden_states = self.forward_loop( observations=observations, recurrent_hidden_states=recurrent_hidden_states, prev_actions=prev_actions, masks=masks, # type: ignore ) return self.adapt_result( ac_output, hidden_states[-1:], num_steps, num_samplers, num_agents, num_layers, observations, ) assert recurrent_hidden_states.shape[0] == 1 images = cast(torch.FloatTensor, observations["minigrid_ego_image"]) if self.use_cnn2: images_shape = images.shape # noinspection PyArgumentList images = images + torch.LongTensor([0, 11, 22]).view( # type:ignore 1, 1, 1, 3 ).to(images.device) images = self.semantic_embedding(images).view( # type:ignore *images_shape[:3], 24 ) images = images.permute(0, 3, 1, 2).float() # type:ignore _, nsamplers, _ = recurrent_hidden_states.shape rollouts_len = images.shape[0] // nsamplers masks = cast( torch.FloatTensor, masks.view(rollouts_len, nsamplers, *masks.shape[1:]) ) instrs: Optional[torch.Tensor] = None if "minigrid_mission" in observations and self.use_instr: instrs = cast(torch.FloatTensor, observations["minigrid_mission"]) instrs = instrs.view(rollouts_len, nsamplers, instrs.shape[-1]) needs_instr_reset_mask = masks != 1.0 needs_instr_reset_mask[0] = 1 needs_instr_reset_mask = needs_instr_reset_mask.squeeze(-1) blocking_inds: List[int] = np.where( needs_instr_reset_mask.view(rollouts_len, -1).any(-1).cpu().numpy() )[0].tolist() blocking_inds.append(rollouts_len) instr_embeddings: Optional[torch.Tensor] = None if self.use_instr: instr_reset_multi_inds = list( (int(a), int(b)) for a, b in zip(*np.where(needs_instr_reset_mask.cpu().numpy())) ) time_ind_to_which_need_instr_reset: List[List] = [ [] for _ in range(rollouts_len) ] reset_multi_ind_to_index = { mi: i for i, mi in enumerate(instr_reset_multi_inds) } for a, b in instr_reset_multi_inds: time_ind_to_which_need_instr_reset[a].append(b) unique_instr_embeddings = self._get_instr_embedding( instrs[needs_instr_reset_mask] ) instr_embeddings_list = [unique_instr_embeddings[:nsamplers]] current_instr_embeddings_list = list(instr_embeddings_list[-1]) for time_ind in range(1, rollouts_len): if len(time_ind_to_which_need_instr_reset[time_ind]) == 0: instr_embeddings_list.append(instr_embeddings_list[-1]) else: for sampler_needing_reset_ind in time_ind_to_which_need_instr_reset[ time_ind ]: current_instr_embeddings_list[ sampler_needing_reset_ind ] = unique_instr_embeddings[ reset_multi_ind_to_index[ (time_ind, sampler_needing_reset_ind) ] ] instr_embeddings_list.append( torch.stack(current_instr_embeddings_list, dim=0) ) instr_embeddings = torch.stack(instr_embeddings_list, dim=0) # The following code can be used to compute the instr_embeddings in another way # and thus verify that the above logic is (more likely to be) correct # needs_instr_reset_mask = (masks != 1.0) # needs_instr_reset_mask[0] *= 0 # needs_instr_reset_inds = needs_instr_reset_mask.view(nrollouts, -1).any(-1).cpu().numpy() # # # Get inds where a new task has started # blocking_inds: List[int] = np.where(needs_instr_reset_inds)[0].tolist() # blocking_inds.append(needs_instr_reset_inds.shape[0]) # if nrollouts != 1: # pdb.set_trace() # if blocking_inds[0] != 0: # blocking_inds.insert(0, 0) # if self.use_instr: # instr_embeddings_list = [] # for ind0, ind1 in zip(blocking_inds[:-1], blocking_inds[1:]): # instr_embeddings_list.append( # self._get_instr_embedding(instrs[ind0]) # .unsqueeze(0) # .repeat(ind1 - ind0, 1, 1) # ) # tmp_instr_embeddings = torch.cat(instr_embeddings_list, dim=0) # assert (instr_embeddings - tmp_instr_embeddings).abs().max().item() < 1e-6 # Embed images # images = images.view(nrollouts, nsamplers, *images.shape[1:]) image_embeddings = self.image_conv(images) if self.arch.startswith("expert_filmcnn"): instr_embeddings_flatter = instr_embeddings.view( -1, *instr_embeddings.shape[2:] ) for controller in self.controllers: image_embeddings = controller( image_embeddings, instr_embeddings_flatter ) image_embeddings = F.relu(self.film_pool(image_embeddings)) image_embeddings = image_embeddings.view(rollouts_len, nsamplers, -1) if self.use_instr and self.lang_model == "attgru": raise NotImplementedError("Currently attgru is not implemented.") memory = None if self.use_memory: assert recurrent_hidden_states.shape[0] == 1 hidden = ( recurrent_hidden_states[:, :, : self.semi_memory_size], recurrent_hidden_states[:, :, self.semi_memory_size :], ) embeddings_list = [] for ind0, ind1 in zip(blocking_inds[:-1], blocking_inds[1:]): hidden = (hidden[0] * masks[ind0], hidden[1] * masks[ind0]) rnn_out, hidden = self.memory_rnn(image_embeddings[ind0:ind1], hidden) embeddings_list.append(rnn_out) # embedding = hidden[0] embedding = torch.cat(embeddings_list, dim=0) memory = torch.cat(hidden, dim=-1) else: embedding = image_embeddings if self.use_instr and not "filmcnn" in self.arch: embedding = torch.cat((embedding, instr_embeddings), dim=-1) if hasattr(self, "aux_info") and self.aux_info: extra_predictions = { info: self.extra_heads[info](embedding) for info in self.extra_heads } else: extra_predictions = dict() embedding = embedding.view(rollouts_len * nsamplers, -1) ac_output = ActorCriticOutput( distributions=CategoricalDistr(logits=self.actor(embedding),), values=self.critic(embedding), extras=extra_predictions if not self.include_auxiliary_head else { **extra_predictions, "auxiliary_distributions": CategoricalDistr(logits=self.aux(embedding)), }, ) hidden_states = memory return self.adapt_result( ac_output, hidden_states, num_steps, num_samplers, num_agents, num_layers, observations, ) @staticmethod def adapt_inputs( # type: ignore observations: ObservationType, recurrent_hidden_states: torch.FloatTensor, prev_actions: torch.Tensor, masks: torch.FloatTensor, ): # INPUTS # observations are of shape [num_steps, num_samplers, ...] # recurrent_hidden_states are of shape [num_layers, num_samplers, (num_agents,) num_dims] # prev_actions are of shape [num_steps, num_samplers, ...] # masks are of shape [num_steps, num_samplers, 1] # num_agents is assumed to be 1 num_steps, num_samplers = masks.shape[:2] num_layers = recurrent_hidden_states.shape[0] num_agents = 1 # Flatten all observation batch dims def recursively_adapt_observations(obs): for entry in obs: if isinstance(obs[entry], Dict): recursively_adapt_observations(obs[entry]) else: assert isinstance(obs[entry], torch.Tensor) if entry in ["minigrid_ego_image", "minigrid_mission"]: final_dims = obs[entry].shape[2:] obs[entry] = obs[entry].view( num_steps * num_samplers, *final_dims ) # Old-style inputs need to be # observations [num_steps * num_samplers, ...] # recurrent_hidden_states [num_layers, num_samplers (* num_agents), num_dims] # prev_actions [num_steps * num_samplers, -1] # masks [num_steps * num_samplers, 1] recursively_adapt_observations(observations) recurrent_hidden_states = cast( torch.FloatTensor, recurrent_hidden_states.view(num_layers, num_samplers * num_agents, -1), ) if prev_actions is not None: prev_actions = prev_actions.view( # type:ignore num_steps * num_samplers, -1 ) masks = masks.view(num_steps * num_samplers, 1) # type:ignore return ( observations, recurrent_hidden_states, prev_actions, masks, num_steps, num_samplers, num_agents, num_layers, ) @staticmethod def adapt_result(ac_output, hidden_states, num_steps, num_samplers, num_agents, num_layers, observations): # type: ignore distributions = CategoricalDistr( logits=ac_output.distributions.logits.view(num_steps, num_samplers, -1), ) values = ac_output.values.view(num_steps, num_samplers, num_agents) extras = ac_output.extras # ignore shape # TODO confirm the shape of the auxiliary distribution is the same as the actor's if "auxiliary_distributions" in extras: extras["auxiliary_distributions"] = CategoricalDistr( logits=extras["auxiliary_distributions"].logits.view( num_steps, num_samplers, -1 # assume single-agent ), ) hidden_states = hidden_states.view(num_layers, num_samplers * num_agents, -1) # Unflatten all observation batch dims def recursively_adapt_observations(obs): for entry in obs: if isinstance(obs[entry], Dict): recursively_adapt_observations(obs[entry]) else: assert isinstance(obs[entry], torch.Tensor) if entry in ["minigrid_ego_image", "minigrid_mission"]: final_dims = obs[entry].shape[ 1: ] # assumes no agents dim in observations! obs[entry] = obs[entry].view( num_steps, num_samplers * num_agents, *final_dims ) recursively_adapt_observations(observations) return ( ActorCriticOutput( distributions=distributions, values=values, extras=extras ), hidden_states, ) class BabyAIRecurrentACModel(ActorCriticModel[CategoricalDistr]): def __init__( self, action_space: gym.spaces.Discrete, observation_space: SpaceDict, image_dim=128, memory_dim=128, instr_dim=128, use_instr=False, lang_model="gru", use_memory=False, arch="cnn1", aux_info=None, include_auxiliary_head: bool = False, ): super().__init__(action_space=action_space, observation_space=observation_space) assert "minigrid_ego_image" in observation_space.spaces assert not use_instr or "minigrid_mission" in observation_space.spaces self.memory_dim = memory_dim self.include_auxiliary_head = include_auxiliary_head self.baby_ai_model = BabyAIACModelWrapped( obs_space={"image": 7 * 7 * 3, "instr": 100,}, action_space=action_space, image_dim=image_dim, memory_dim=memory_dim, instr_dim=instr_dim, use_instr=use_instr, lang_model=lang_model, use_memory=use_memory, arch=arch, aux_info=aux_info, include_auxiliary_head=self.include_auxiliary_head, ) self.memory_key = "rnn" @property def recurrent_hidden_state_size(self) -> int: return 2 * self.memory_dim @property def num_recurrent_layers(self): return 1 def _recurrent_memory_specification(self): return { self.memory_key: ( ( ("layer", self.num_recurrent_layers), ("sampler", None), ("hidden", self.recurrent_hidden_state_size), ), torch.float32, ) } def forward( # type:ignore self, observations: ObservationType, memory: Memory, prev_actions: torch.Tensor, masks: torch.FloatTensor, ) -> Tuple[ActorCriticOutput[DistributionType], Optional[Memory]]: out, recurrent_hidden_states = self.baby_ai_model.forward( observations=observations, recurrent_hidden_states=cast( torch.FloatTensor, memory.tensor(self.memory_key) ), prev_actions=prev_actions, masks=masks, ) return out, memory.set_tensor(self.memory_key, recurrent_hidden_states)
ask4help-main
allenact_plugins/babyai_plugin/babyai_models.py
import random import signal from typing import Tuple, Any, List, Dict, Optional, Union, Callable import babyai import babyai.bot import gym import numpy as np from gym.utils import seeding from gym_minigrid.minigrid import MiniGridEnv from allenact.base_abstractions.misc import RLStepResult from allenact.base_abstractions.sensor import Sensor, SensorSuite from allenact.base_abstractions.task import Task, TaskSampler from allenact.utils.system import get_logger class BabyAITask(Task[MiniGridEnv]): def __init__( self, env: MiniGridEnv, sensors: Union[SensorSuite, List[Sensor]], task_info: Dict[str, Any], expert_view_size: int = 7, expert_can_see_through_walls: bool = False, **kwargs, ): super().__init__( env=env, sensors=sensors, task_info=task_info, max_steps=env.max_steps, **kwargs, ) self._was_successful: bool = False self.bot: Optional[babyai.bot.Bot] = None self._bot_died = False self.expert_view_size = expert_view_size self.expert_can_see_through_walls = expert_can_see_through_walls self._last_action: Optional[int] = None env.max_steps = env.max_steps + 1 @property def action_space(self) -> gym.spaces.Discrete: return self.env.action_space def render(self, mode: str = "rgb", *args, **kwargs) -> np.ndarray: return self.env.render(mode=mode) def _step(self, action: int) -> RLStepResult: assert isinstance(action, int) minigrid_obs, reward, done, info = self.env.step(action=action) self._last_action = action self._was_successful = done and reward > 0 return RLStepResult( observation=self.get_observations(minigrid_output_obs=minigrid_obs), reward=reward, done=self.is_done(), info=info, ) def get_observations( self, *args, minigrid_output_obs: Optional[Dict[str, Any]] = None, **kwargs ) -> Any: return self.sensor_suite.get_observations( env=self.env, task=self, minigrid_output_obs=minigrid_output_obs ) def reached_terminal_state(self) -> bool: return self._was_successful @classmethod def class_action_names(cls, **kwargs) -> Tuple[str, ...]: return tuple( x for x, _ in sorted( [(str(a), a.value) for a in MiniGridEnv.Actions], key=lambda x: x[1] ) ) def close(self) -> None: pass def _expert_timeout_hander(self, signum, frame): raise TimeoutError def query_expert(self, **kwargs) -> Tuple[Any, bool]: see_through_walls = self.env.see_through_walls agent_view_size = self.env.agent_view_size if self._bot_died: return 0, False try: self.env.agent_view_size = self.expert_view_size self.env.expert_can_see_through_walls = self.expert_can_see_through_walls if self.bot is None: self.bot = babyai.bot.Bot(self.env) signal.signal(signal.SIGALRM, self._expert_timeout_hander) signal.alarm(kwargs.get("timeout", 4 if self.num_steps_taken() == 0 else 2)) return self.bot.replan(self._last_action), True except TimeoutError as _: self._bot_died = True return 0, False finally: signal.alarm(0) self.env.see_through_walls = see_through_walls self.env.agent_view_size = agent_view_size def metrics(self) -> Dict[str, Any]: metrics = { **super(BabyAITask, self).metrics(), "success": 1.0 * (self.reached_terminal_state()), } return metrics class BabyAITaskSampler(TaskSampler): def __init__( self, env_builder: Union[str, Callable[..., MiniGridEnv]], sensors: Union[SensorSuite, List[Sensor]], max_tasks: Optional[int] = None, num_unique_seeds: Optional[int] = None, task_seeds_list: Optional[List[int]] = None, deterministic_sampling: bool = False, extra_task_kwargs: Optional[Dict] = None, **kwargs, ): super(BabyAITaskSampler, self).__init__() self.sensors = ( SensorSuite(sensors) if not isinstance(sensors, SensorSuite) else sensors ) self.max_tasks = max_tasks self.num_unique_seeds = num_unique_seeds self.deterministic_sampling = deterministic_sampling self.extra_task_kwargs = ( extra_task_kwargs if extra_task_kwargs is not None else {} ) self._last_env_seed: Optional[int] = None self._last_task: Optional[BabyAITask] = None assert (self.num_unique_seeds is None) or ( 0 < self.num_unique_seeds ), "`num_unique_seeds` must be a positive integer." self.num_unique_seeds = num_unique_seeds self.task_seeds_list = task_seeds_list if self.task_seeds_list is not None: if self.num_unique_seeds is not None: assert self.num_unique_seeds == len( self.task_seeds_list ), "`num_unique_seeds` must equal the length of `task_seeds_list` if both specified." self.num_unique_seeds = len(self.task_seeds_list) elif self.num_unique_seeds is not None: self.task_seeds_list = list(range(self.num_unique_seeds)) if (not deterministic_sampling) and self.max_tasks: get_logger().warning( "`deterministic_sampling` is `False` but you have specified `max_tasks < inf`," " this might be a mistake when running testing." ) if isinstance(env_builder, str): self.env = gym.make(env_builder) else: self.env = env_builder() self.np_seeded_random_gen, _ = seeding.np_random(random.randint(0, 2 ** 31 - 1)) self.num_tasks_generated = 0 @property def length(self) -> Union[int, float]: return ( float("inf") if self.max_tasks is None else self.max_tasks - self.num_tasks_generated ) @property def total_unique(self) -> Optional[Union[int, float]]: return None if self.num_unique_seeds is None else self.num_unique_seeds @property def last_sampled_task(self) -> Optional[Task]: raise NotImplementedError def next_task(self, force_advance_scene: bool = False) -> Optional[BabyAITask]: if self.length <= 0: return None if self.num_unique_seeds is not None: if self.deterministic_sampling: self._last_env_seed = self.task_seeds_list[ self.num_tasks_generated % len(self.task_seeds_list) ] else: self._last_env_seed = self.np_seeded_random_gen.choice( self.task_seeds_list ) else: self._last_env_seed = self.np_seeded_random_gen.randint(0, 2 ** 31 - 1) self.env.seed(self._last_env_seed) self.env.saved_seed = self._last_env_seed self.env.reset() self.num_tasks_generated += 1 self._last_task = BabyAITask(env=self.env, sensors=self.sensors, task_info={}) return self._last_task def close(self) -> None: self.env.close() @property def all_observation_spaces_equal(self) -> bool: return True def reset(self) -> None: self.num_tasks_generated = 0 self.env.reset() def set_seed(self, seed: int) -> None: self.np_seeded_random_gen, _ = seeding.np_random(seed)
ask4help-main
allenact_plugins/babyai_plugin/babyai_tasks.py
ask4help-main
allenact_plugins/babyai_plugin/configs/__init__.py
import glob import os import babyai from allenact_plugins.babyai_plugin.babyai_constants import ( BABYAI_EXPERT_TRAJECTORIES_DIR, ) def make_small_demos(dir: str): for file_path in glob.glob(os.path.join(dir, "*.pkl")): if "valid" not in file_path and "small" not in file_path: new_file_path = file_path.replace(".pkl", "-small.pkl") if os.path.exists(new_file_path): continue print( "Saving small version of {} to {}...".format( os.path.basename(file_path), new_file_path ) ) babyai.utils.save_demos( babyai.utils.load_demos(file_path)[:1000], new_file_path ) print("Done.") if __name__ == "__main__": make_small_demos(BABYAI_EXPERT_TRAJECTORIES_DIR)
ask4help-main
allenact_plugins/babyai_plugin/scripts/truncate_expert_demos.py
ask4help-main
allenact_plugins/babyai_plugin/scripts/__init__.py
import glob import os import babyai import numpy as np from allenact_plugins.babyai_plugin.babyai_constants import ( BABYAI_EXPERT_TRAJECTORIES_DIR, ) # Boss level # [(50, 11.0), (90, 22.0), (99, 32.0), (99.9, 38.0), (99.99, 43.0)] if __name__ == "__main__": # level = "BossLevel" level = "GoToLocal" files = glob.glob( os.path.join(BABYAI_EXPERT_TRAJECTORIES_DIR, "*{}-v0.pkl".format(level)) ) assert len(files) == 1 demos = babyai.utils.load_demos(files[0]) percentiles = [50, 90, 99, 99.9, 99.99, 100] print( list( zip( percentiles, np.percentile([len(d[0].split(" ")) for d in demos], percentiles), ) ) )
ask4help-main
allenact_plugins/babyai_plugin/scripts/get_instr_length_percentiles.py
import argparse import os import platform from allenact_plugins.babyai_plugin.babyai_constants import ( BABYAI_EXPERT_TRAJECTORIES_DIR, ) LEVEL_TO_TRAIN_VALID_IDS = { "BossLevel": ( "1DkVVpIEVtpyo1LxOXQL_bVyjFCTO3cHD", "1ccEFA_n5RT4SWD0Wa_qO65z2HACJBace", ), "GoToObjMaze": ( "1P1CuMbGDJtZit1f-8hmd-HwweXZMj77T", "1MVlVsIpJUZ0vjrYGXY6Ku4m4vBxtWjRZ", ), "GoTo": ("1ABR1q-TClgjSlbhVdVJjzOBpTmTtlTN1", "13DlEx5woi31MIs_dzyLxfi7dPe1g59l2"), "GoToLocal": ( "1U8YWdd3viN2lxOP5BByNUZRPVDKVvDAN", "1Esy-J0t8eJUg6_RT8F4kkegHYDWwqmSl", ), } def get_args(): """Creates the argument parser and parses input arguments.""" # noinspection PyTypeChecker parser = argparse.ArgumentParser( description="download_babyai_expert_demos", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "dataset", nargs="?", default="all", help="dataset name (one of {}, or all)".format( ", ".join(LEVEL_TO_TRAIN_VALID_IDS.keys()) ), ) return parser.parse_args() if __name__ == "__main__": args = get_args() if platform.system() == "Linux": download_template = """wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id={}' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\\1\\n/p')&id={}" -O {}""" elif platform.system() == "Darwin": download_template = """wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id={}' -O- | gsed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\\1\\n/p')&id={}" -O {}""" else: raise NotImplementedError("{} is not supported".format(platform.system())) try: os.makedirs(BABYAI_EXPERT_TRAJECTORIES_DIR, exist_ok=True) if args.dataset == "all": id_items = LEVEL_TO_TRAIN_VALID_IDS else: assert ( args.dataset in LEVEL_TO_TRAIN_VALID_IDS ), "Only {} are valid datasets".format( ", ".join(LEVEL_TO_TRAIN_VALID_IDS.keys()) ) id_items = {args.dataset: LEVEL_TO_TRAIN_VALID_IDS[args.dataset]} for level_name, (train_id, valid_id) in id_items.items(): train_path = os.path.join( BABYAI_EXPERT_TRAJECTORIES_DIR, "BabyAI-{}-v0.pkl".format(level_name) ) if os.path.exists(train_path): print("{} already exists, skipping...".format(train_path)) else: os.system(download_template.format(train_id, train_id, train_path)) print("Demos saved to {}.".format(train_path)) valid_path = os.path.join( BABYAI_EXPERT_TRAJECTORIES_DIR, "BabyAI-{}-v0_valid.pkl".format(level_name), ) if os.path.exists(valid_path): print("{} already exists, skipping...".format(valid_path)) else: os.system(download_template.format(valid_id, valid_id, valid_path)) print("Demos saved to {}.".format(valid_path)) except Exception as _: raise Exception( "Failed to download babyai demos. Make sure you have the appropriate command line" " tools installed for your platform. For MacOS you'll need to install `gsed` and `gwget (the gnu version" " of sed) using homebrew or some other method." )
ask4help-main
allenact_plugins/babyai_plugin/scripts/download_babyai_expert_demos.py
ask4help-main
allenact_plugins/babyai_plugin/data/__init__.py
import random from typing import Dict, Tuple, List, Any, Optional, Union, Sequence, cast import gym import numpy as np from allenact.base_abstractions.misc import RLStepResult from allenact.base_abstractions.sensor import Sensor from allenact.base_abstractions.task import Task from allenact.utils.system import get_logger from allenact_plugins.ithor_plugin.ithor_constants import ( MOVE_AHEAD, ROTATE_LEFT, ROTATE_RIGHT, LOOK_DOWN, LOOK_UP, END, ) from allenact_plugins.ithor_plugin.ithor_environment import IThorEnvironment from allenact_plugins.ithor_plugin.ithor_util import round_to_factor class ObjectNaviThorGridTask(Task[IThorEnvironment]): """Defines the object navigation task in AI2-THOR. In object navigation an agent is randomly initialized into an AI2-THOR scene and must find an object of a given type (e.g. tomato, television, etc). An object is considered found if the agent takes an `End` action and the object is visible to the agent (see [here](https://ai2thor.allenai.org/documentation/concepts) for a definition of visibiliy in AI2-THOR). The actions available to an agent in this task are: 1. Move ahead * Moves agent ahead by 0.25 meters. 1. Rotate left / rotate right * Rotates the agent by 90 degrees counter-clockwise / clockwise. 1. Look down / look up * Changes agent view angle by 30 degrees up or down. An agent cannot look more than 30 degrees above horizontal or less than 60 degrees below horizontal. 1. End * Ends the task and the agent receives a positive reward if the object type is visible to the agent, otherwise it receives a negative reward. # Attributes env : The ai2thor environment. sensor_suite: Collection of sensors formed from the `sensors` argument in the initializer. task_info : The task info. Must contain a field "object_type" that specifies, as a string, the goal object type. max_steps : The maximum number of steps an agent can take an in the task before it is considered failed. observation_space: The observation space returned on each step from the sensors. """ _actions = (MOVE_AHEAD, ROTATE_LEFT, ROTATE_RIGHT, LOOK_DOWN, LOOK_UP, END) _CACHED_LOCATIONS_FROM_WHICH_OBJECT_IS_VISIBLE: Dict[ Tuple[str, str], List[Tuple[float, float, int, int]] ] = {} def __init__( self, env: IThorEnvironment, sensors: List[Sensor], task_info: Dict[str, Any], max_steps: int, **kwargs, ) -> None: """Initializer. See class documentation for parameter definitions. """ super().__init__( env=env, sensors=sensors, task_info=task_info, max_steps=max_steps, **kwargs ) self._took_end_action: bool = False self._success: Optional[bool] = False self._subsampled_locations_from_which_obj_visible: Optional[ List[Tuple[float, float, int, int]] ] = None self.task_info["followed_path"] = [self.env.get_agent_location()] self.task_info["action_names"] = self.class_action_names() @property def action_space(self): return gym.spaces.Discrete(len(self._actions)) def reached_terminal_state(self) -> bool: return self._took_end_action @classmethod def class_action_names(cls, **kwargs) -> Tuple[str, ...]: return cls._actions def close(self) -> None: self.env.stop() def _step(self, action: Union[int, Sequence[int]]) -> RLStepResult: assert isinstance(action, int) action = cast(int, action) action_str = self.class_action_names()[action] if action_str == END: self._took_end_action = True self._success = self.is_goal_object_visible() self.last_action_success = self._success else: self.env.step({"action": action_str}) self.last_action_success = self.env.last_action_success if ( not self.last_action_success ) and self._CACHED_LOCATIONS_FROM_WHICH_OBJECT_IS_VISIBLE is not None: self.env.update_graph_with_failed_action(failed_action=action_str) self.task_info["followed_path"].append(self.env.get_agent_location()) step_result = RLStepResult( observation=self.get_observations(), reward=self.judge(), done=self.is_done(), info={"last_action_success": self.last_action_success}, ) return step_result def render(self, mode: str = "rgb", *args, **kwargs) -> np.ndarray: assert mode == "rgb", "only rgb rendering is implemented" return self.env.current_frame def is_goal_object_visible(self) -> bool: """Is the goal object currently visible?""" return any( o["objectType"] == self.task_info["object_type"] for o in self.env.visible_objects() ) def judge(self) -> float: """Compute the reward after having taken a step.""" reward = -0.01 if not self.last_action_success: reward += -0.03 if self._took_end_action: reward += 1.0 if self._success else -1.0 return float(reward) def metrics(self) -> Dict[str, Any]: if not self.is_done(): return {} else: return { "success": self._success, **super(ObjectNaviThorGridTask, self).metrics(), } def query_expert(self, **kwargs) -> Tuple[int, bool]: target = self.task_info["object_type"] if self.is_goal_object_visible(): return self.class_action_names().index(END), True else: key = (self.env.scene_name, target) if self._subsampled_locations_from_which_obj_visible is None: if key not in self._CACHED_LOCATIONS_FROM_WHICH_OBJECT_IS_VISIBLE: obj_ids: List[str] = [] obj_ids.extend( o["objectId"] for o in self.env.last_event.metadata["objects"] if o["objectType"] == target ) assert len(obj_ids) != 0, "No objects to get an expert path to." locations_from_which_object_is_visible: List[ Tuple[float, float, int, int] ] = [] y = self.env.last_event.metadata["agent"]["position"]["y"] positions_to_check_interactionable_from = [ {"x": x, "y": y, "z": z} for x, z in set((x, z) for x, z, _, _ in self.env.graph.nodes) ] for obj_id in set(obj_ids): self.env.controller.step( { "action": "PositionsFromWhichItemIsInteractable", "objectId": obj_id, "positions": positions_to_check_interactionable_from, } ) assert ( self.env.last_action_success ), "Could not get positions from which item was interactable." returned = self.env.last_event.metadata["actionReturn"] locations_from_which_object_is_visible.extend( ( round(x, 2), round(z, 2), round_to_factor(rot, 90) % 360, round_to_factor(hor, 30) % 360, ) for x, z, rot, hor, standing in zip( returned["x"], returned["z"], returned["rotation"], returned["horizon"], returned["standing"], ) if standing == 1 ) self._CACHED_LOCATIONS_FROM_WHICH_OBJECT_IS_VISIBLE[ key ] = locations_from_which_object_is_visible self._subsampled_locations_from_which_obj_visible = self._CACHED_LOCATIONS_FROM_WHICH_OBJECT_IS_VISIBLE[ key ] if len(self._subsampled_locations_from_which_obj_visible) > 5: self._subsampled_locations_from_which_obj_visible = random.sample( self._CACHED_LOCATIONS_FROM_WHICH_OBJECT_IS_VISIBLE[key], 5 ) current_loc_key = self.env.get_key(self.env.last_event.metadata["agent"]) paths = [] for goal_key in self._subsampled_locations_from_which_obj_visible: path = self.env.shortest_state_path( source_state_key=current_loc_key, goal_state_key=goal_key ) if path is not None: paths.append(path) if len(paths) == 0: return 0, False shortest_path_ind = int(np.argmin([len(p) for p in paths])) if len(paths[shortest_path_ind]) == 1: get_logger().warning( "Shortest path computations suggest we are at the target but episode does not think so." ) return 0, False next_key_on_shortest_path = paths[shortest_path_ind][1] return ( self.class_action_names().index( self.env.action_transitioning_between_keys( current_loc_key, next_key_on_shortest_path ) ), True, )
ask4help-main
allenact_plugins/ithor_plugin/ithor_tasks.py
"""A wrapper for engaging with the THOR environment.""" import copy import functools import math import random from typing import Tuple, Dict, List, Set, Union, Any, Optional, Mapping, cast import ai2thor.server import networkx as nx import numpy as np from ai2thor.controller import Controller from scipy.spatial.transform import Rotation from allenact.utils.system import get_logger from allenact_plugins.ithor_plugin.ithor_constants import VISIBILITY_DISTANCE, FOV from allenact_plugins.ithor_plugin.ithor_util import round_to_factor class IThorEnvironment(object): """Wrapper for the ai2thor controller providing additional functionality and bookkeeping. See [here](https://ai2thor.allenai.org/documentation/installation) for comprehensive documentation on AI2-THOR. # Attributes controller : The ai2thor controller. """ def __init__( self, x_display: Optional[str] = None, docker_enabled: bool = False, local_thor_build: Optional[str] = None, visibility_distance: float = VISIBILITY_DISTANCE, fov: float = FOV, player_screen_width: int = 300, player_screen_height: int = 300, quality: str = "Very Low", restrict_to_initially_reachable_points: bool = False, make_agents_visible: bool = True, object_open_speed: float = 1.0, simplify_physics: bool = False, ) -> None: """Initializer. # Parameters x_display : The x display into which to launch ai2thor (possibly necessarily if you are running on a server without an attached display). docker_enabled : Whether or not to run thor in a docker container (useful on a server without an attached display so that you don't have to start an x display). local_thor_build : The path to a local build of ai2thor. This is probably not necessary for your use case and can be safely ignored. visibility_distance : The distance (in meters) at which objects, in the viewport of the agent, are considered visible by ai2thor and will have their "visible" flag be set to `True` in the metadata. fov : The agent's camera's field of view. player_screen_width : The width resolution (in pixels) of the images returned by ai2thor. player_screen_height : The height resolution (in pixels) of the images returned by ai2thor. quality : The quality at which to render. Possible quality settings can be found in `ai2thor._quality_settings.QUALITY_SETTINGS`. restrict_to_initially_reachable_points : Whether or not to restrict the agent to locations in ai2thor that were found to be (initially) reachable by the agent (i.e. reachable by the agent after resetting the scene). This can be useful if you want to ensure there are only a fixed set of locations where the agent can go. make_agents_visible : Whether or not the agent should be visible. Most noticable when there are multiple agents or when quality settings are high so that the agent casts a shadow. object_open_speed : How quickly objects should be opened. High speeds mean faster simulation but also mean that opening objects have a lot of kinetic energy and can, possibly, knock other objects away. simplify_physics : Whether or not to simplify physics when applicable. Currently this only simplies object interactions when opening drawers (when simplified, objects within a drawer do not slide around on their own when the drawer is opened or closed, instead they are effectively glued down). """ self._start_player_screen_width = player_screen_width self._start_player_screen_height = player_screen_height self._local_thor_build = local_thor_build self.x_display = x_display self.controller: Optional[Controller] = None self._started = False self._quality = quality self._initially_reachable_points: Optional[List[Dict]] = None self._initially_reachable_points_set: Optional[Set[Tuple[float, float]]] = None self._move_mag: Optional[float] = None self._grid_size: Optional[float] = None self._visibility_distance = visibility_distance self._fov = fov self.restrict_to_initially_reachable_points = ( restrict_to_initially_reachable_points ) self.make_agents_visible = make_agents_visible self.object_open_speed = object_open_speed self._always_return_visible_range = False self.simplify_physics = simplify_physics self.start(None) # noinspection PyTypeHints self.controller.docker_enabled = docker_enabled # type: ignore @property def scene_name(self) -> str: """Current ai2thor scene.""" return self.controller.last_event.metadata["sceneName"] @property def current_frame(self) -> np.ndarray: """Returns rgb image corresponding to the agent's egocentric view.""" return self.controller.last_event.frame @property def last_event(self) -> ai2thor.server.Event: """Last event returned by the controller.""" return self.controller.last_event @property def started(self) -> bool: """Has the ai2thor controller been started.""" return self._started @property def last_action(self) -> str: """Last action, as a string, taken by the agent.""" return self.controller.last_event.metadata["lastAction"] @last_action.setter def last_action(self, value: str) -> None: """Set the last action taken by the agent. Doing this is rewriting history, be careful. """ self.controller.last_event.metadata["lastAction"] = value @property def last_action_success(self) -> bool: """Was the last action taken by the agent a success?""" return self.controller.last_event.metadata["lastActionSuccess"] @last_action_success.setter def last_action_success(self, value: bool) -> None: """Set whether or not the last action taken by the agent was a success. Doing this is rewriting history, be careful. """ self.controller.last_event.metadata["lastActionSuccess"] = value @property def last_action_return(self) -> Any: """Get the value returned by the last action (if applicable). For an example of an action that returns a value, see `"GetReachablePositions"`. """ return self.controller.last_event.metadata["actionReturn"] @last_action_return.setter def last_action_return(self, value: Any) -> None: """Set the value returned by the last action. Doing this is rewriting history, be careful. """ self.controller.last_event.metadata["actionReturn"] = value def start( self, scene_name: Optional[str], move_mag: float = 0.25, **kwargs, ) -> None: """Starts the ai2thor controller if it was previously stopped. After starting, `reset` will be called with the scene name and move magnitude. # Parameters scene_name : The scene to load. move_mag : The amount of distance the agent moves in a single `MoveAhead` step. kwargs : additional kwargs, passed to reset. """ if self._started: raise RuntimeError( "Trying to start the environment but it is already started." ) self.controller = Controller( x_display=self.x_display, width=self._start_player_screen_width, height=self._start_player_screen_height, local_executable_path=self._local_thor_build, quality=self._quality, server_class=ai2thor.fifo_server.FifoServer, ) if ( self._start_player_screen_height, self._start_player_screen_width, ) != self.current_frame.shape[:2]: self.controller.step( { "action": "ChangeResolution", "x": self._start_player_screen_width, "y": self._start_player_screen_height, } ) self._started = True self.reset(scene_name=scene_name, move_mag=move_mag, **kwargs) def stop(self) -> None: """Stops the ai2thor controller.""" try: self.controller.stop() except Exception as e: get_logger().warning(str(e)) finally: self._started = False def reset( self, scene_name: Optional[str], move_mag: float = 0.25, **kwargs, ): """Resets the ai2thor in a new scene. Resets ai2thor into a new scene and initializes the scene/agents with prespecified settings (e.g. move magnitude). # Parameters scene_name : The scene to load. move_mag : The amount of distance the agent moves in a single `MoveAhead` step. kwargs : additional kwargs, passed to the controller "Initialize" action. """ self._move_mag = move_mag self._grid_size = self._move_mag if scene_name is None: scene_name = self.controller.last_event.metadata["sceneName"] self.controller.reset(scene_name) self.controller.step( { "action": "Initialize", "gridSize": self._grid_size, "visibilityDistance": self._visibility_distance, "fieldOfView": self._fov, "makeAgentsVisible": self.make_agents_visible, "alwaysReturnVisibleRange": self._always_return_visible_range, **kwargs, } ) if self.object_open_speed != 1.0: self.controller.step( {"action": "ChangeOpenSpeed", "x": self.object_open_speed} ) self._initially_reachable_points = None self._initially_reachable_points_set = None self.controller.step({"action": "GetReachablePositions"}) if not self.controller.last_event.metadata["lastActionSuccess"]: get_logger().warning( "Error when getting reachable points: {}".format( self.controller.last_event.metadata["errorMessage"] ) ) self._initially_reachable_points = self.last_action_return def teleport_agent_to( self, x: float, y: float, z: float, rotation: float, horizon: float, standing: Optional[bool] = None, force_action: bool = False, only_initially_reachable: Optional[bool] = None, verbose=True, ignore_y_diffs=False, ) -> None: """Helper function teleporting the agent to a given location.""" if standing is None: standing = self.last_event.metadata.get( "isStanding", self.last_event.metadata["agent"].get("isStanding") ) original_location = self.get_agent_location() target = {"x": x, "y": y, "z": z} if only_initially_reachable is None: only_initially_reachable = self.restrict_to_initially_reachable_points if only_initially_reachable: reachable_points = self.initially_reachable_points reachable = False for p in reachable_points: if self.position_dist(target, p, ignore_y=ignore_y_diffs) < 0.01: reachable = True break if not reachable: self.last_action = "TeleportFull" self.last_event.metadata[ "errorMessage" ] = "Target position was not initially reachable." self.last_action_success = False return self.controller.step( dict( action="TeleportFull", x=x, y=y, z=z, rotation={"x": 0.0, "y": rotation, "z": 0.0}, horizon=horizon, standing=standing, forceAction=force_action, ) ) if not self.last_action_success: agent_location = self.get_agent_location() rot_diff = ( agent_location["rotation"] - original_location["rotation"] ) % 360 new_old_dist = self.position_dist( original_location, agent_location, ignore_y=ignore_y_diffs ) if ( self.position_dist( original_location, agent_location, ignore_y=ignore_y_diffs ) > 1e-2 or min(rot_diff, 360 - rot_diff) > 1 ): get_logger().warning( "Teleportation FAILED but agent still moved (position_dist {}, rot diff {})" " (\nprevious location\n{}\ncurrent_location\n{}\n)".format( new_old_dist, rot_diff, original_location, agent_location ) ) return if force_action: assert self.last_action_success return agent_location = self.get_agent_location() rot_diff = (agent_location["rotation"] - rotation) % 360 if ( self.position_dist(agent_location, target, ignore_y=ignore_y_diffs) > 1e-2 or min(rot_diff, 360 - rot_diff) > 1 ): if only_initially_reachable: self._snap_agent_to_initially_reachable(verbose=False) if verbose: get_logger().warning( "Teleportation did not place agent" " precisely where desired in scene {}" " (\ndesired\n{}\nactual\n{}\n)" " perhaps due to grid snapping." " Action is considered failed but agent may have moved.".format( self.scene_name, { "x": x, "y": y, "z": z, "rotation": rotation, "standing": standing, "horizon": horizon, }, agent_location, ) ) self.last_action_success = False return def random_reachable_state(self, seed: int = None) -> Dict: """Returns a random reachable location in the scene.""" if seed is not None: random.seed(seed) xyz = random.choice(self.currently_reachable_points) rotation = random.choice([0, 90, 180, 270]) horizon = random.choice([0, 30, 60, 330]) state = copy.copy(xyz) state["rotation"] = rotation state["horizon"] = horizon return state def randomize_agent_location( self, seed: int = None, partial_position: Optional[Dict[str, float]] = None ) -> Dict: """Teleports the agent to a random reachable location in the scene.""" if partial_position is None: partial_position = {} k = 0 state: Optional[Dict] = None while k == 0 or (not self.last_action_success and k < 10): state = self.random_reachable_state(seed=seed) self.teleport_agent_to(**{**state, **partial_position}) k += 1 if not self.last_action_success: get_logger().warning( ( "Randomize agent location in scene {}" " with seed {} and partial position {} failed in " "10 attempts. Forcing the action." ).format(self.scene_name, seed, partial_position) ) self.teleport_agent_to(**{**state, **partial_position}, force_action=True) # type: ignore assert self.last_action_success assert state is not None return state def object_pixels_in_frame( self, object_id: str, hide_all: bool = True, hide_transparent: bool = False ) -> np.ndarray: """Return an mask for a given object in the agent's current view. # Parameters object_id : The id of the object. hide_all : Whether or not to hide all other objects in the scene before getting the mask. hide_transparent : Whether or not partially transparent objects are considered to occlude the object. # Returns A numpy array of the mask. """ # Emphasizing an object turns it magenta and hides all other objects # from view, we can find where the hand object is on the screen by # emphasizing it and then scanning across the image for the magenta pixels. if hide_all: self.step({"action": "EmphasizeObject", "objectId": object_id}) else: self.step({"action": "MaskObject", "objectId": object_id}) if hide_transparent: self.step({"action": "HideTranslucentObjects"}) # noinspection PyShadowingBuiltins filter = np.array([[[255, 0, 255]]]) object_pixels = 1 * np.all(self.current_frame == filter, axis=2) if hide_all: self.step({"action": "UnemphasizeAll"}) else: self.step({"action": "UnmaskObject", "objectId": object_id}) if hide_transparent: self.step({"action": "UnhideAllObjects"}) return object_pixels def object_pixels_on_grid( self, object_id: str, grid_shape: Tuple[int, int], hide_all: bool = True, hide_transparent: bool = False, ) -> np.ndarray: """Like `object_pixels_in_frame` but counts object pixels in a partitioning of the image.""" def partition(n, num_parts): m = n // num_parts parts = [m] * num_parts num_extra = n % num_parts for k in range(num_extra): parts[k] += 1 return parts object_pixels = self.object_pixels_in_frame( object_id=object_id, hide_all=hide_all, hide_transparent=hide_transparent ) # Divide the current frame into a grid and count the number # of hand object pixels in each of the grid squares sums_in_blocks: List[List] = [] frame_shape = self.current_frame.shape[:2] row_inds = np.cumsum([0] + partition(frame_shape[0], grid_shape[0])) col_inds = np.cumsum([0] + partition(frame_shape[1], grid_shape[1])) for i in range(len(row_inds) - 1): sums_in_blocks.append([]) for j in range(len(col_inds) - 1): sums_in_blocks[i].append( np.sum( object_pixels[ row_inds[i] : row_inds[i + 1], col_inds[j] : col_inds[j + 1] ] ) ) return np.array(sums_in_blocks, dtype=np.float32) def object_in_hand(self): """Object metadata for the object in the agent's hand.""" inv_objs = self.last_event.metadata["inventoryObjects"] if len(inv_objs) == 0: return None elif len(inv_objs) == 1: return self.get_object_by_id( self.last_event.metadata["inventoryObjects"][0]["objectId"] ) else: raise AttributeError("Must be <= 1 inventory objects.") @property def initially_reachable_points(self) -> List[Dict[str, float]]: """List of {"x": x, "y": y, "z": z} locations in the scene that were reachable after initially resetting.""" assert self._initially_reachable_points is not None return copy.deepcopy(self._initially_reachable_points) # type:ignore @property def initially_reachable_points_set(self) -> Set[Tuple[float, float]]: """Set of (x,z) locations in the scene that were reachable after initially resetting.""" if self._initially_reachable_points_set is None: self._initially_reachable_points_set = set() for p in self.initially_reachable_points: self._initially_reachable_points_set.add( self._agent_location_to_tuple(p) ) return self._initially_reachable_points_set @property def currently_reachable_points(self) -> List[Dict[str, float]]: """List of {"x": x, "y": y, "z": z} locations in the scene that are currently reachable.""" self.step({"action": "GetReachablePositions"}) return self.last_event.metadata["actionReturn"] # type:ignore def get_agent_location(self) -> Dict[str, Union[float, bool]]: """Gets agent's location.""" metadata = self.controller.last_event.metadata location = { "x": metadata["agent"]["position"]["x"], "y": metadata["agent"]["position"]["y"], "z": metadata["agent"]["position"]["z"], "rotation": metadata["agent"]["rotation"]["y"], "horizon": metadata["agent"]["cameraHorizon"], "standing": metadata.get("isStanding", metadata["agent"].get("isStanding")), } return location @staticmethod def _agent_location_to_tuple(p: Dict[str, float]) -> Tuple[float, float]: return round(p["x"], 2), round(p["z"], 2) def _snap_agent_to_initially_reachable(self, verbose=True): agent_location = self.get_agent_location() end_location_tuple = self._agent_location_to_tuple(agent_location) if end_location_tuple in self.initially_reachable_points_set: return agent_x = agent_location["x"] agent_z = agent_location["z"] closest_reachable_points = list(self.initially_reachable_points_set) closest_reachable_points = sorted( closest_reachable_points, key=lambda xz: abs(xz[0] - agent_x) + abs(xz[1] - agent_z), ) # In rare cases end_location_tuple might be not considered to be in self.initially_reachable_points_set # even when it is, here we check for such cases. if ( math.sqrt( ( ( np.array(closest_reachable_points[0]) - np.array(end_location_tuple) ) ** 2 ).sum() ) < 1e-6 ): return saved_last_action = self.last_action saved_last_action_success = self.last_action_success saved_last_action_return = self.last_action_return saved_error_message = self.last_event.metadata["errorMessage"] # Thor behaves weirdly when the agent gets off of the grid and you # try to teleport the agent back to the closest grid location. To # get around this we first teleport the agent to random location # and then back to where it should be. for point in self.initially_reachable_points: if abs(agent_x - point["x"]) > 0.1 or abs(agent_z - point["z"]) > 0.1: self.teleport_agent_to( rotation=0, horizon=30, **point, only_initially_reachable=False, verbose=False, ) if self.last_action_success: break for p in closest_reachable_points: self.teleport_agent_to( **{**agent_location, "x": p[0], "z": p[1]}, only_initially_reachable=False, verbose=False, ) if self.last_action_success: break teleport_forced = False if not self.last_action_success: self.teleport_agent_to( **{ **agent_location, "x": closest_reachable_points[0][0], "z": closest_reachable_points[0][1], }, force_action=True, only_initially_reachable=False, verbose=False, ) teleport_forced = True self.last_action = saved_last_action self.last_action_success = saved_last_action_success self.last_action_return = saved_last_action_return self.last_event.metadata["errorMessage"] = saved_error_message new_agent_location = self.get_agent_location() if verbose: get_logger().warning( ( "In {}, at location (x,z)=({},{}) which is not in the set " "of initially reachable points;" " attempting to correct this: agent teleported to (x,z)=({},{}).\n" "Teleportation {} forced." ).format( self.scene_name, agent_x, agent_z, new_agent_location["x"], new_agent_location["z"], "was" if teleport_forced else "wasn't", ) ) def step( self, action_dict: Optional[Dict[str, Union[str, int, float, Dict]]] = None, **kwargs: Union[str, int, float, Dict], ) -> ai2thor.server.Event: """Take a step in the ai2thor environment.""" if action_dict is None: action_dict = dict() action_dict.update(kwargs) action = cast(str, action_dict["action"]) skip_render = "renderImage" in action_dict and not action_dict["renderImage"] last_frame: Optional[np.ndarray] = None if skip_render: last_frame = self.current_frame if self.simplify_physics: action_dict["simplifyOPhysics"] = True if "Move" in action and "Hand" not in action: # type: ignore action_dict = { **action_dict, "moveMagnitude": self._move_mag, } # type: ignore start_location = self.get_agent_location() sr = self.controller.step(action_dict) if self.restrict_to_initially_reachable_points: end_location_tuple = self._agent_location_to_tuple( self.get_agent_location() ) if end_location_tuple not in self.initially_reachable_points_set: self.teleport_agent_to(**start_location, force_action=True) # type: ignore self.last_action = action self.last_action_success = False self.last_event.metadata[ "errorMessage" ] = "Moved to location outside of initially reachable points." elif "RandomizeHideSeekObjects" in action: last_position = self.get_agent_location() self.controller.step(action_dict) metadata = self.last_event.metadata if self.position_dist(last_position, self.get_agent_location()) > 0.001: self.teleport_agent_to(**last_position, force_action=True) # type: ignore get_logger().warning( "In scene {}, after randomization of hide and seek objects, agent moved.".format( self.scene_name ) ) sr = self.controller.step({"action": "GetReachablePositions"}) self._initially_reachable_points = self.controller.last_event.metadata[ "actionReturn" ] self._initially_reachable_points_set = None self.last_action = action self.last_action_success = metadata["lastActionSuccess"] self.controller.last_event.metadata["actionReturn"] = [] elif "RotateUniverse" in action: sr = self.controller.step(action_dict) metadata = self.last_event.metadata if metadata["lastActionSuccess"]: sr = self.controller.step({"action": "GetReachablePositions"}) self._initially_reachable_points = self.controller.last_event.metadata[ "actionReturn" ] self._initially_reachable_points_set = None self.last_action = action self.last_action_success = metadata["lastActionSuccess"] self.controller.last_event.metadata["actionReturn"] = [] else: sr = self.controller.step(action_dict) if self.restrict_to_initially_reachable_points: self._snap_agent_to_initially_reachable() if skip_render: assert last_frame is not None self.last_event.frame = last_frame return sr @staticmethod def position_dist( p0: Mapping[str, Any], p1: Mapping[str, Any], ignore_y: bool = False, l1_dist: bool = False, ) -> float: """Distance between two points of the form {"x": x, "y":y, "z":z"}.""" if l1_dist: return ( abs(p0["x"] - p1["x"]) + (0 if ignore_y else abs(p0["y"] - p1["y"])) + abs(p0["z"] - p1["z"]) ) else: return math.sqrt( (p0["x"] - p1["x"]) ** 2 + (0 if ignore_y else (p0["y"] - p1["y"]) ** 2) + (p0["z"] - p1["z"]) ** 2 ) @staticmethod def rotation_dist(a: Dict[str, float], b: Dict[str, float]): """Distance between rotations.""" def deg_dist(d0: float, d1: float): dist = (d0 - d1) % 360 return min(dist, 360 - dist) return sum(deg_dist(a[k], b[k]) for k in ["x", "y", "z"]) @staticmethod def angle_between_rotations(a: Dict[str, float], b: Dict[str, float]): return np.abs( (180 / (2 * math.pi)) * ( Rotation.from_euler("xyz", [a[k] for k in "xyz"], degrees=True) * Rotation.from_euler("xyz", [b[k] for k in "xyz"], degrees=True).inv() ).as_rotvec() ).sum() def closest_object_with_properties( self, properties: Dict[str, Any] ) -> Optional[Dict[str, Any]]: """Find the object closest to the agent that has the given properties.""" agent_pos = self.controller.last_event.metadata["agent"]["position"] min_dist = float("inf") closest = None for o in self.all_objects(): satisfies_all = True for k, v in properties.items(): if o[k] != v: satisfies_all = False break if satisfies_all: d = self.position_dist(agent_pos, o["position"]) if d < min_dist: min_dist = d closest = o return closest def closest_visible_object_of_type( self, object_type: str ) -> Optional[Dict[str, Any]]: """Find the object closest to the agent that is visible and has the given type.""" properties = {"visible": True, "objectType": object_type} return self.closest_object_with_properties(properties) def closest_object_of_type(self, object_type: str) -> Optional[Dict[str, Any]]: """Find the object closest to the agent that has the given type.""" properties = {"objectType": object_type} return self.closest_object_with_properties(properties) def closest_reachable_point_to_position( self, position: Dict[str, float] ) -> Tuple[Dict[str, float], float]: """Of all reachable positions, find the one that is closest to the given location.""" target = np.array([position["x"], position["z"]]) min_dist = float("inf") closest_point = None for pt in self.initially_reachable_points: dist = np.linalg.norm(target - np.array([pt["x"], pt["z"]])) if dist < min_dist: closest_point = pt min_dist = dist if min_dist < 1e-3: break assert closest_point is not None return closest_point, min_dist @staticmethod def _angle_from_to(a_from: float, a_to: float) -> float: a_from = a_from % 360 a_to = a_to % 360 min_rot = min(a_from, a_to) max_rot = max(a_from, a_to) rot_across_0 = (360 - max_rot) + min_rot rot_not_across_0 = max_rot - min_rot rot_err = min(rot_across_0, rot_not_across_0) if rot_across_0 == rot_err: rot_err *= -1 if a_to > a_from else 1 else: rot_err *= 1 if a_to > a_from else -1 return rot_err def agent_xz_to_scene_xz(self, agent_xz: Dict[str, float]) -> Dict[str, float]: agent_pos = self.get_agent_location() x_rel_agent = agent_xz["x"] z_rel_agent = agent_xz["z"] scene_x = agent_pos["x"] scene_z = agent_pos["z"] rotation = agent_pos["rotation"] if abs(rotation) < 1e-5: scene_x += x_rel_agent scene_z += z_rel_agent elif abs(rotation - 90) < 1e-5: scene_x += z_rel_agent scene_z += -x_rel_agent elif abs(rotation - 180) < 1e-5: scene_x += -x_rel_agent scene_z += -z_rel_agent elif abs(rotation - 270) < 1e-5: scene_x += -z_rel_agent scene_z += x_rel_agent else: raise Exception("Rotation must be one of 0, 90, 180, or 270.") return {"x": scene_x, "z": scene_z} def scene_xz_to_agent_xz(self, scene_xz: Dict[str, float]) -> Dict[str, float]: agent_pos = self.get_agent_location() x_err = scene_xz["x"] - agent_pos["x"] z_err = scene_xz["z"] - agent_pos["z"] rotation = agent_pos["rotation"] if abs(rotation) < 1e-5: agent_x = x_err agent_z = z_err elif abs(rotation - 90) < 1e-5: agent_x = -z_err agent_z = x_err elif abs(rotation - 180) < 1e-5: agent_x = -x_err agent_z = -z_err elif abs(rotation - 270) < 1e-5: agent_x = z_err agent_z = -x_err else: raise Exception("Rotation must be one of 0, 90, 180, or 270.") return {"x": agent_x, "z": agent_z} def all_objects(self) -> List[Dict[str, Any]]: """Return all object metadata.""" return self.controller.last_event.metadata["objects"] def all_objects_with_properties( self, properties: Dict[str, Any] ) -> List[Dict[str, Any]]: """Find all objects with the given properties.""" objects = [] for o in self.all_objects(): satisfies_all = True for k, v in properties.items(): if o[k] != v: satisfies_all = False break if satisfies_all: objects.append(o) return objects def visible_objects(self) -> List[Dict[str, Any]]: """Return all visible objects.""" return self.all_objects_with_properties({"visible": True}) def get_object_by_id(self, object_id: str) -> Optional[Dict[str, Any]]: for o in self.last_event.metadata["objects"]: if o["objectId"] == object_id: return o return None ### # Following is used for computing shortest paths between states ### _CACHED_GRAPHS: Dict[str, nx.DiGraph] = {} GRAPH_ACTIONS_SET = {"LookUp", "LookDown", "RotateLeft", "RotateRight", "MoveAhead"} def reachable_points_with_rotations_and_horizons(self): self.controller.step({"action": "GetReachablePositions"}) assert self.last_action_success points_slim = self.last_event.metadata["actionReturn"] points = [] for r in [0, 90, 180, 270]: for horizon in [-30, 0, 30, 60]: for p in points_slim: p = copy.copy(p) p["rotation"] = r p["horizon"] = horizon points.append(p) return points @staticmethod def location_for_key(key, y_value=0.0): x, z, rot, hor = key loc = dict(x=x, y=y_value, z=z, rotation=rot, horizon=hor) return loc @staticmethod def get_key(input_dict: Dict[str, Any]) -> Tuple[float, float, int, int]: if "x" in input_dict: x = input_dict["x"] z = input_dict["z"] rot = input_dict["rotation"] hor = input_dict["horizon"] else: x = input_dict["position"]["x"] z = input_dict["position"]["z"] rot = input_dict["rotation"]["y"] hor = input_dict["cameraHorizon"] return ( round(x, 2), round(z, 2), round_to_factor(rot, 90) % 360, round_to_factor(hor, 30) % 360, ) def update_graph_with_failed_action(self, failed_action: str): if ( self.scene_name not in self._CACHED_GRAPHS or failed_action not in self.GRAPH_ACTIONS_SET ): return source_key = self.get_key(self.last_event.metadata["agent"]) self._check_contains_key(source_key) edge_dict = self.graph[source_key] to_remove_key = None for target_key in self.graph[source_key]: if edge_dict[target_key]["action"] == failed_action: to_remove_key = target_key break if to_remove_key is not None: self.graph.remove_edge(source_key, to_remove_key) def _add_from_to_edge( self, g: nx.DiGraph, s: Tuple[float, float, int, int], t: Tuple[float, float, int, int], ): def ae(x, y): return abs(x - y) < 0.001 s_x, s_z, s_rot, s_hor = s t_x, t_z, t_rot, t_hor = t dist = round(math.sqrt((s_x - t_x) ** 2 + (s_z - t_z) ** 2), 2) angle_dist = (round_to_factor(t_rot - s_rot, 90) % 360) // 90 horz_dist = (round_to_factor(t_hor - s_hor, 30) % 360) // 30 # If source and target differ by more than one action, continue if sum(x != 0 for x in [dist, angle_dist, horz_dist]) != 1: return grid_size = self._grid_size action = None if angle_dist != 0: if angle_dist == 1: action = "RotateRight" elif angle_dist == 3: action = "RotateLeft" elif horz_dist != 0: if horz_dist == 11: action = "LookUp" elif horz_dist == 1: action = "LookDown" elif ae(dist, grid_size): if ( (s_rot == 0 and ae(t_z - s_z, grid_size)) or (s_rot == 90 and ae(t_x - s_x, grid_size)) or (s_rot == 180 and ae(t_z - s_z, -grid_size)) or (s_rot == 270 and ae(t_x - s_x, -grid_size)) ): g.add_edge(s, t, action="MoveAhead") if action is not None: g.add_edge(s, t, action=action) @functools.lru_cache(1) def possible_neighbor_offsets(self) -> Tuple[Tuple[float, float, int, int], ...]: grid_size = round(self._grid_size, 2) offsets = [] for rot_diff in [-90, 0, 90]: for horz_diff in [-30, 0, 30, 60]: for x_diff in [-grid_size, 0, grid_size]: for z_diff in [-grid_size, 0, grid_size]: if (rot_diff != 0) + (horz_diff != 0) + (x_diff != 0) + ( z_diff != 0 ) == 1: offsets.append((x_diff, z_diff, rot_diff, horz_diff)) return tuple(offsets) def _add_node_to_graph(self, graph: nx.DiGraph, s: Tuple[float, float, int, int]): if s in graph: return existing_nodes = set(graph.nodes()) graph.add_node(s) for o in self.possible_neighbor_offsets(): t = (s[0] + o[0], s[1] + o[1], s[2] + o[2], s[3] + o[3]) if t in existing_nodes: self._add_from_to_edge(graph, s, t) self._add_from_to_edge(graph, t, s) @property def graph(self): if self.scene_name not in self._CACHED_GRAPHS: g = nx.DiGraph() points = self.reachable_points_with_rotations_and_horizons() for p in points: self._add_node_to_graph(g, self.get_key(p)) self._CACHED_GRAPHS[self.scene_name] = g return self._CACHED_GRAPHS[self.scene_name] @graph.setter def graph(self, g): self._CACHED_GRAPHS[self.scene_name] = g def _check_contains_key(self, key: Tuple[float, float, int, int], add_if_not=True): if key not in self.graph: get_logger().warning( "{} was not in the graph for scene {}.".format(key, self.scene_name) ) if add_if_not: self._add_node_to_graph(self.graph, key) def shortest_state_path(self, source_state_key, goal_state_key): self._check_contains_key(source_state_key) self._check_contains_key(goal_state_key) # noinspection PyBroadException try: path = nx.shortest_path(self.graph, source_state_key, goal_state_key) return path except Exception as _: return None def action_transitioning_between_keys(self, s, t): self._check_contains_key(s) self._check_contains_key(t) if self.graph.has_edge(s, t): return self.graph.get_edge_data(s, t)["action"] else: return None def shortest_path_next_state(self, source_state_key, goal_state_key): self._check_contains_key(source_state_key) self._check_contains_key(goal_state_key) if source_state_key == goal_state_key: raise RuntimeError("called next state on the same source and goal state") state_path = self.shortest_state_path(source_state_key, goal_state_key) return state_path[1] def shortest_path_next_action(self, source_state_key, goal_state_key): self._check_contains_key(source_state_key) self._check_contains_key(goal_state_key) next_state_key = self.shortest_path_next_state(source_state_key, goal_state_key) return self.graph.get_edge_data(source_state_key, next_state_key)["action"] def shortest_path_length(self, source_state_key, goal_state_key): self._check_contains_key(source_state_key) self._check_contains_key(goal_state_key) try: return nx.shortest_path_length(self.graph, source_state_key, goal_state_key) except nx.NetworkXNoPath as _: return float("inf")
ask4help-main
allenact_plugins/ithor_plugin/ithor_environment.py
ask4help-main
allenact_plugins/ithor_plugin/__init__.py
"""Common constants used when training agents to complete tasks in iTHOR, the interactive version of AI2-THOR.""" from collections import OrderedDict from typing import Set, Dict MOVE_AHEAD = "MoveAhead" ROTATE_LEFT = "RotateLeft" ROTATE_RIGHT = "RotateRight" LOOK_DOWN = "LookDown" LOOK_UP = "LookUp" END = "End" VISIBILITY_DISTANCE = 1.25 FOV = 90.0 ORDERED_SCENE_TYPES = ("kitchens", "livingrooms", "bedrooms", "bathrooms") NUM_SCENE_TYPES = len(ORDERED_SCENE_TYPES) def make_scene_name(type_ind, scene_num): if type_ind == 1: return "FloorPlan" + str(scene_num) + "_physics" elif scene_num < 10: return "FloorPlan" + str(type_ind) + "0" + str(scene_num) + "_physics" else: return "FloorPlan" + str(type_ind) + str(scene_num) + "_physics" SCENES_TYPE_TO_SCENE_NAMES = OrderedDict( [ ( ORDERED_SCENE_TYPES[type_ind - 1], tuple( make_scene_name(type_ind=type_ind, scene_num=scene_num) for scene_num in range(1, 31) ), ) for type_ind in range(1, NUM_SCENE_TYPES + 1) ] ) SCENES_TYPE_TO_TRAIN_SCENE_NAMES = OrderedDict( (key, scenes[:20]) for key, scenes in SCENES_TYPE_TO_SCENE_NAMES.items() ) SCENES_TYPE_TO_VALID_SCENE_NAMES = OrderedDict( (key, scenes[20:25]) for key, scenes in SCENES_TYPE_TO_SCENE_NAMES.items() ) SCENES_TYPE_TO_TEST_SCENE_NAMES = OrderedDict( (key, scenes[25:30]) for key, scenes in SCENES_TYPE_TO_SCENE_NAMES.items() ) ALL_SCENE_NAMES = sum(SCENES_TYPE_TO_SCENE_NAMES.values(), tuple()) TRAIN_SCENE_NAMES = sum( (scenes for scenes in SCENES_TYPE_TO_TRAIN_SCENE_NAMES.values()), tuple() ) VALID_SCENE_NAMES = sum( (scenes for scenes in SCENES_TYPE_TO_VALID_SCENE_NAMES.values()), tuple() ) TEST_SCENE_NAMES = sum( (scenes for scenes in SCENES_TYPE_TO_TEST_SCENE_NAMES.values()), tuple() ) TRAIN_SCENE_NAMES_SET = set(TRAIN_SCENE_NAMES) VALID_SCENE_NAMES_SET = set(VALID_SCENE_NAMES) TEST_SCENE_NAMES_SET = set(TEST_SCENE_NAMES) _object_type_and_location_tsv = """ AlarmClock bedrooms Apple kitchens ArmChair livingrooms,bedrooms BaseballBat bedrooms BasketBall bedrooms Bathtub bathrooms BathtubBasin bathrooms Bed bedrooms Blinds kitchens,bedrooms Book kitchens,livingrooms,bedrooms Boots livingrooms,bedrooms Bottle kitchens Bowl kitchens,livingrooms,bedrooms Box livingrooms,bedrooms Bread kitchens ButterKnife kitchens Cabinet kitchens,livingrooms,bedrooms,bathrooms Candle livingrooms,bathrooms Cart bathrooms CD bedrooms CellPhone kitchens,livingrooms,bedrooms Chair kitchens,livingrooms,bedrooms Cloth bedrooms,bathrooms CoffeeMachine kitchens CoffeeTable livingrooms,bedrooms CounterTop kitchens,livingrooms,bedrooms,bathrooms CreditCard kitchens,livingrooms,bedrooms Cup kitchens Curtains kitchens,livingrooms,bedrooms Desk bedrooms DeskLamp livingrooms,bedrooms DiningTable kitchens,livingrooms,bedrooms DishSponge kitchens,bathrooms Drawer kitchens,livingrooms,bedrooms,bathrooms Dresser livingrooms,bedrooms,bathrooms Egg kitchens Faucet kitchens,bathrooms FloorLamp livingrooms,bedrooms Footstool bedrooms Fork kitchens Fridge kitchens GarbageCan kitchens,livingrooms,bedrooms,bathrooms HandTowel bathrooms HandTowelHolder bathrooms HousePlant kitchens,livingrooms,bedrooms,bathrooms Kettle kitchens KeyChain livingrooms,bedrooms Knife kitchens Ladle kitchens Laptop kitchens,livingrooms,bedrooms LaundryHamper bedrooms LaundryHamperLid bedrooms Lettuce kitchens LightSwitch kitchens,livingrooms,bedrooms,bathrooms Microwave kitchens Mirror kitchens,livingrooms,bedrooms,bathrooms Mug kitchens,bedrooms Newspaper livingrooms Ottoman livingrooms,bedrooms Painting kitchens,livingrooms,bedrooms,bathrooms Pan kitchens PaperTowel kitchens,bathrooms Pen kitchens,livingrooms,bedrooms Pencil kitchens,livingrooms,bedrooms PepperShaker kitchens Pillow livingrooms,bedrooms Plate kitchens,livingrooms Plunger bathrooms Poster bedrooms Pot kitchens Potato kitchens RemoteControl livingrooms,bedrooms Safe kitchens,livingrooms,bedrooms SaltShaker kitchens ScrubBrush bathrooms Shelf kitchens,livingrooms,bedrooms,bathrooms ShowerCurtain bathrooms ShowerDoor bathrooms ShowerGlass bathrooms ShowerHead bathrooms SideTable livingrooms,bedrooms Sink kitchens,bathrooms SinkBasin kitchens,bathrooms SoapBar bathrooms SoapBottle kitchens,bathrooms Sofa livingrooms,bedrooms Spatula kitchens Spoon kitchens SprayBottle bathrooms Statue kitchens,livingrooms,bedrooms StoveBurner kitchens StoveKnob kitchens TeddyBear bedrooms Television livingrooms,bedrooms TennisRacket bedrooms TissueBox livingrooms,bedrooms,bathrooms Toaster kitchens Toilet bathrooms ToiletPaper bathrooms ToiletPaperHanger bathrooms Tomato kitchens Towel bathrooms TowelHolder bathrooms TVStand livingrooms Vase kitchens,livingrooms,bedrooms Watch livingrooms,bedrooms WateringCan livingrooms Window kitchens,livingrooms,bedrooms,bathrooms WineBottle kitchens """ OBJECT_TYPE_TO_SCENE_TYPES = OrderedDict() for ot_tab_scene_types in _object_type_and_location_tsv.split("\n"): if ot_tab_scene_types != "": ot, scene_types_csv = ot_tab_scene_types.split("\t") OBJECT_TYPE_TO_SCENE_TYPES[ot] = tuple(sorted(scene_types_csv.split(","))) SCENE_TYPE_TO_OBJECT_TYPES: Dict[str, Set[str]] = OrderedDict( ((k, set()) for k in ORDERED_SCENE_TYPES) ) for ot_tab_scene_types in _object_type_and_location_tsv.split("\n"): if ot_tab_scene_types != "": ot, scene_types_csv = ot_tab_scene_types.split("\t") for scene_type in scene_types_csv.split(","): SCENE_TYPE_TO_OBJECT_TYPES[scene_type].add(ot)
ask4help-main
allenact_plugins/ithor_plugin/ithor_constants.py
import glob import math import os import platform from contextlib import contextmanager from typing import Sequence import Xlib import Xlib.display import ai2thor.controller @contextmanager def include_object_data(controller: ai2thor.controller.Controller): needs_reset = len(controller.last_event.metadata["objects"]) == 0 try: if needs_reset: controller.step("ResetObjectFilter") assert controller.last_event.metadata["lastActionSuccess"] yield None finally: if needs_reset: controller.step("SetObjectFilter", objectIds=[]) assert controller.last_event.metadata["lastActionSuccess"] def vertical_to_horizontal_fov( vertical_fov_in_degrees: float, height: float, width: float ): assert 0 < vertical_fov_in_degrees < 180 aspect_ratio = width / height vertical_fov_in_rads = (math.pi / 180) * vertical_fov_in_degrees return ( (180 / math.pi) * math.atan(math.tan(vertical_fov_in_rads * 0.5) * aspect_ratio) * 2 ) def horizontal_to_vertical_fov( horizontal_fov_in_degrees: float, height: float, width: float ): return vertical_to_horizontal_fov( vertical_fov_in_degrees=horizontal_fov_in_degrees, height=width, width=height, ) def round_to_factor(num: float, base: int) -> int: """Rounds floating point number to the nearest integer multiple of the given base. E.g., for floating number 90.1 and integer base 45, the result is 90. # Attributes num : floating point number to be rounded. base: integer base """ return round(num / base) * base def get_open_x_displays(throw_error_if_empty: bool = False) -> Sequence[str]: assert platform.system() == "Linux", "Can only get X-displays for Linux systems." displays = [] open_display_strs = [ os.path.basename(s)[1:] for s in glob.glob("/tmp/.X11-unix/X*") ] for open_display_str in sorted(open_display_strs): try: open_display_str = str(int(open_display_str)) except Exception: continue display = Xlib.display.Display(":{}".format(open_display_str)) displays.extend( [f"{open_display_str}.{i}" for i in range(display.screen_count())] ) if throw_error_if_empty and len(displays) == 0: raise IOError( "Could not find any open X-displays on which to run AI2-THOR processes. " " Please see the AI2-THOR installation instructions at" " https://allenact.org/installation/installation-framework/#installation-of-ithor-ithor-plugin" " for information as to how to start such displays." ) return displays
ask4help-main
allenact_plugins/ithor_plugin/ithor_util.py
import copy from typing import Any, Dict, Optional, Union, Sequence import ai2thor.controller import gym import gym.spaces import numpy as np import torch from allenact.base_abstractions.sensor import Sensor from allenact.embodiedai.sensors.vision_sensors import RGBSensor from allenact.base_abstractions.task import Task from allenact.embodiedai.mapping.mapping_utils.map_builders import ( BinnedPointCloudMapBuilder, SemanticMapBuilder, ObjectHull2d, ) from allenact.utils.misc_utils import prepare_locals_for_super from allenact_plugins.ithor_plugin.ithor_environment import IThorEnvironment from allenact_plugins.ithor_plugin.ithor_tasks import ObjectNaviThorGridTask from allenact_plugins.ithor_plugin.ithor_util import include_object_data from allenact_plugins.robothor_plugin.robothor_environment import RoboThorEnvironment from allenact_plugins.robothor_plugin.robothor_tasks import PointNavTask, ObjectNavTask class RGBSensorThor( RGBSensor[ Union[IThorEnvironment, RoboThorEnvironment], Union[Task[IThorEnvironment], Task[RoboThorEnvironment]], ] ): """Sensor for RGB images in THOR. Returns from a running IThorEnvironment instance, the current RGB frame corresponding to the agent's egocentric view. """ def frame_from_env( self, env: IThorEnvironment, task: Task[IThorEnvironment] ) -> np.ndarray: # type:ignore return env.current_frame.copy() class GoalObjectTypeThorSensor(Sensor): def __init__( self, object_types: Sequence[str], target_to_detector_map: Optional[Dict[str, str]] = None, detector_types: Optional[Sequence[str]] = None, uuid: str = "goal_object_type_ind", **kwargs: Any, ): self.ordered_object_types = list(object_types) assert self.ordered_object_types == sorted( self.ordered_object_types ), "object types input to goal object type sensor must be ordered" self.target_to_detector_map = target_to_detector_map if target_to_detector_map is None: self.object_type_to_ind = { ot: i for i, ot in enumerate(self.ordered_object_types) } else: assert ( detector_types is not None ), "Missing detector_types for map {}".format(target_to_detector_map) self.target_to_detector = target_to_detector_map self.detector_types = detector_types detector_index = {ot: i for i, ot in enumerate(self.detector_types)} self.object_type_to_ind = { ot: detector_index[self.target_to_detector[ot]] for ot in self.ordered_object_types } observation_space = self._get_observation_space() super().__init__(**prepare_locals_for_super(locals())) def _get_observation_space(self): if self.target_to_detector_map is None: return gym.spaces.Discrete(len(self.ordered_object_types)) else: return gym.spaces.Discrete(len(self.detector_types)) def get_observation( self, env: IThorEnvironment, task: Optional[ObjectNaviThorGridTask], *args: Any, **kwargs: Any, ) -> Any: return self.object_type_to_ind[task.task_info["object_type"]] class TakeEndActionThorNavSensor( Sensor[ Union[RoboThorEnvironment, IThorEnvironment], Union[ObjectNaviThorGridTask, ObjectNavTask, PointNavTask], ] ): def __init__(self, nactions: int, uuid: str, **kwargs: Any) -> None: self.nactions = nactions observation_space = self._get_observation_space() super().__init__(**prepare_locals_for_super(locals())) def _get_observation_space(self) -> gym.spaces.Discrete: """The observation space. Equals `gym.spaces.Discrete(2)` where a 0 indicates that the agent **should not** take the `End` action and a 1 indicates that the agent **should** take the end action. """ return gym.spaces.Discrete(2) def get_observation( # type:ignore self, env: IThorEnvironment, task: Union[ObjectNaviThorGridTask, ObjectNavTask, PointNavTask], *args, **kwargs, ) -> np.ndarray: if isinstance(task, ObjectNaviThorGridTask): should_end = task.is_goal_object_visible() elif isinstance(task, ObjectNavTask): should_end = task._is_goal_in_range() elif isinstance(task, PointNavTask): should_end = task._is_goal_in_range() else: raise NotImplementedError if should_end is None: should_end = False return np.array([1 * should_end], dtype=np.int64) class RelativePositionChangeTHORSensor( Sensor[RoboThorEnvironment, Task[RoboThorEnvironment]] ): def __init__(self, uuid: str = "rel_position_change", **kwargs: Any): observation_space = gym.spaces.Dict( { "last_allocentric_position": gym.spaces.Box( low=np.array([-np.inf, -np.inf, 0], dtype=np.float32), high=np.array([np.inf, np.inf, 360], dtype=np.float32), shape=(3,), dtype=np.float32, ), "dx_dz_dr": gym.spaces.Box( low=np.array([-np.inf, -np.inf, -360], dtype=np.float32), high=np.array([-np.inf, -np.inf, 360], dtype=np.float32), shape=(3,), dtype=np.float32, ), } ) super().__init__(**prepare_locals_for_super(locals())) self.last_xzr: Optional[np.ndarray] = None @staticmethod def get_relative_position_change(from_xzr: np.ndarray, to_xzr: np.ndarray): dx_dz_dr = to_xzr - from_xzr # Transform dx, dz (in global coordinates) into the relative coordinates # given by rotation r0=from_xzr[-2]. This requires rotating everything so that # r0 is facing in the positive z direction. Since thor rotations are negative # the usual rotation direction this means we want to rotate by r0 degrees. theta = np.pi * from_xzr[-1] / 180 cos_theta = np.cos(theta) sin_theta = np.sin(theta) dx_dz_dr = ( np.array( [ [cos_theta, -sin_theta, 0], [sin_theta, cos_theta, 0], [0, 0, 1], # Don't change dr ] ) @ dx_dz_dr.reshape(-1, 1) ).reshape(-1) dx_dz_dr[-1] = dx_dz_dr[-1] % 360 return dx_dz_dr def get_observation( self, env: RoboThorEnvironment, task: Optional[Task[RoboThorEnvironment]], *args: Any, **kwargs: Any, ) -> Any: if task.num_steps_taken() == 0: p = env.controller.last_event.metadata["agent"]["position"] r = env.controller.last_event.metadata["agent"]["rotation"]["y"] self.last_xzr = np.array([p["x"], p["z"], r % 360]) p = env.controller.last_event.metadata["agent"]["position"] r = env.controller.last_event.metadata["agent"]["rotation"]["y"] current_xzr = np.array([p["x"], p["z"], r % 360]) dx_dz_dr = self.get_relative_position_change( from_xzr=self.last_xzr, to_xzr=current_xzr ) to_return = {"last_allocentric_position": self.last_xzr, "dx_dz_dr": dx_dz_dr} self.last_xzr = current_xzr return to_return class ReachableBoundsTHORSensor(Sensor[RoboThorEnvironment, Task[RoboThorEnvironment]]): def __init__(self, margin: float, uuid: str = "scene_bounds", **kwargs: Any): observation_space = gym.spaces.Dict( { "x_range": gym.spaces.Box( low=np.array([-np.inf, -np.inf], dtype=np.float32), high=np.array([np.inf, np.inf], dtype=np.float32), shape=(2,), dtype=np.float32, ), "z_range": gym.spaces.Box( low=np.array([-np.inf, -np.inf], dtype=np.float32), high=np.array([np.inf, np.inf], dtype=np.float32), shape=(2,), dtype=np.float32, ), } ) super().__init__(**prepare_locals_for_super(locals())) self.margin = margin self._bounds_cache = {} @staticmethod def get_bounds( controller: ai2thor.controller.Controller, margin: float, ) -> Dict[str, np.ndarray]: positions = controller.step("GetReachablePositions").metadata["actionReturn"] min_x = min(p["x"] for p in positions) max_x = max(p["x"] for p in positions) min_z = min(p["z"] for p in positions) max_z = max(p["z"] for p in positions) return { "x_range": np.array([min_x - margin, max_x + margin]), "z_range": np.array([min_z - margin, max_z + margin]), } def get_observation( self, env: RoboThorEnvironment, task: Optional[Task[RoboThorEnvironment]], *args: Any, **kwargs: Any, ) -> Any: scene_name = env.controller.last_event.metadata["sceneName"] if scene_name not in self._bounds_cache: self._bounds_cache[scene_name] = self.get_bounds( controller=env.controller, margin=self.margin ) return copy.deepcopy(self._bounds_cache[scene_name]) class SceneBoundsTHORSensor(Sensor[RoboThorEnvironment, Task[RoboThorEnvironment]]): def __init__(self, uuid: str = "scene_bounds", **kwargs: Any): observation_space = gym.spaces.Dict( { "x_range": gym.spaces.Box( low=np.array([-np.inf, -np.inf]), high=np.array([np.inf, np.inf]), shape=(2,), dtype=np.float32, ), "z_range": gym.spaces.Box( low=np.array([-np.inf, -np.inf]), high=np.array([np.inf, np.inf]), shape=(2,), dtype=np.float32, ), } ) super().__init__(**prepare_locals_for_super(locals())) def get_observation( self, env: RoboThorEnvironment, task: Optional[Task[RoboThorEnvironment]], *args: Any, **kwargs: Any, ) -> Any: scene_bounds = env.controller.last_event.metadata["sceneBounds"] center = scene_bounds["center"] size = scene_bounds["size"] return { "x_range": np.array( [center["x"] - size["x"] / 2, center["x"] + size["x"] / 2] ), "z_range": np.array( [center["z"] - size["z"] / 2, center["z"] + size["z"] / 2] ), } class BinnedPointCloudMapTHORSensor( Sensor[RoboThorEnvironment, Task[RoboThorEnvironment]] ): def __init__( self, fov: float, vision_range_in_cm: int, map_size_in_cm: int, resolution_in_cm: int, map_range_sensor: Sensor, height_bins: Sequence[float] = (0.02, 2), ego_only: bool = True, uuid: str = "binned_pc_map", **kwargs: Any, ): self.fov = fov self.vision_range_in_cm = vision_range_in_cm self.map_size_in_cm = map_size_in_cm self.resolution_in_cm = resolution_in_cm self.height_bins = height_bins self.ego_only = ego_only self.binned_pc_map_builder = BinnedPointCloudMapBuilder( fov=fov, vision_range_in_cm=vision_range_in_cm, map_size_in_cm=map_size_in_cm, resolution_in_cm=resolution_in_cm, height_bins=height_bins, ) map_space = gym.spaces.Box( low=0, high=np.inf, shape=self.binned_pc_map_builder.binned_point_cloud_map.shape, dtype=np.float32, ) space_dict = { "egocentric_update": map_space, } if not ego_only: space_dict["allocentric_update"] = copy.deepcopy(map_space) space_dict["map"] = copy.deepcopy(map_space) observation_space = gym.spaces.Dict(space_dict) super().__init__(**prepare_locals_for_super(locals())) self.map_range_sensor = map_range_sensor @property def device(self): return self.binned_pc_map_builder.device @device.setter def device(self, val: torch.device): self.binned_pc_map_builder.device = torch.device(val) def get_observation( self, env: RoboThorEnvironment, task: Optional[Task[RoboThorEnvironment]], *args: Any, **kwargs: Any, ) -> Any: e = env.controller.last_event metadata = e.metadata if task.num_steps_taken() == 0: xz_ranges_dict = self.map_range_sensor.get_observation(env=env, task=task) self.binned_pc_map_builder.reset( min_xyz=np.array( [ xz_ranges_dict["x_range"][0], 0, # TODO: Should y be different per scene? xz_ranges_dict["z_range"][0], ] ) ) map_dict = self.binned_pc_map_builder.update( depth_frame=e.depth_frame, camera_xyz=np.array( [metadata["cameraPosition"][k] for k in ["x", "y", "z"]] ), camera_rotation=metadata["agent"]["rotation"]["y"], camera_horizon=metadata["agent"]["cameraHorizon"], ) return {k: map_dict[k] for k in self.observation_space.spaces.keys()} class SemanticMapTHORSensor(Sensor[RoboThorEnvironment, Task[RoboThorEnvironment]]): def __init__( self, fov: float, vision_range_in_cm: int, map_size_in_cm: int, resolution_in_cm: int, ordered_object_types: Sequence[str], map_range_sensor: Sensor, ego_only: bool = True, uuid: str = "semantic_map", device: torch.device = torch.device("cpu"), **kwargs: Any, ): self.fov = fov self.vision_range_in_cm = vision_range_in_cm self.map_size_in_cm = map_size_in_cm self.resolution_in_cm = resolution_in_cm self.ordered_object_types = ordered_object_types self.map_range_sensor = map_range_sensor self.ego_only = ego_only self.semantic_map_builder = SemanticMapBuilder( fov=fov, vision_range_in_cm=vision_range_in_cm, map_size_in_cm=map_size_in_cm, resolution_in_cm=resolution_in_cm, ordered_object_types=ordered_object_types, device=device, ) def get_map_space(nchannels: int, size: int): return gym.spaces.Box( low=0, high=1, shape=(size, size, nchannels), dtype=np.bool, ) n = len(self.ordered_object_types) small = self.vision_range_in_cm // self.resolution_in_cm big = self.semantic_map_builder.ground_truth_semantic_map.shape[0] space_dict = { "egocentric_update": get_map_space(nchannels=n, size=small,), "egocentric_mask": get_map_space(nchannels=1, size=small,), } if not ego_only: space_dict["explored_mask"] = get_map_space(nchannels=1, size=big,) space_dict["map"] = get_map_space(nchannels=n, size=big,) observation_space = gym.spaces.Dict(space_dict) super().__init__(**prepare_locals_for_super(locals())) @property def device(self): return self.semantic_map_builder.device @device.setter def device(self, val: torch.device): self.semantic_map_builder.device = torch.device(val) def get_observation( self, env: RoboThorEnvironment, task: Optional[Task[RoboThorEnvironment]], *args: Any, **kwargs: Any, ) -> Any: with include_object_data(env.controller): last_event = env.controller.last_event metadata = last_event.metadata if task.num_steps_taken() == 0: env.controller.step( "Get2DSemanticHulls", objectTypes=self.ordered_object_types ) assert env.last_event.metadata[ "lastActionSuccess" ], f"Get2DSemanticHulls failed with error '{env.last_event.metadata['lastActionSuccess']}'" object_id_to_hull = env.controller.last_event.metadata["actionReturn"] xz_ranges_dict = self.map_range_sensor.get_observation( env=env, task=task ) self.semantic_map_builder.reset( min_xyz=np.array( [ xz_ranges_dict["x_range"][0], 0, # TODO: Should y be different per scene? xz_ranges_dict["z_range"][0], ] ), object_hulls=[ ObjectHull2d( object_id=o["objectId"], object_type=o["objectType"], hull_points=object_id_to_hull[o["objectId"]], ) for o in metadata["objects"] if o["objectId"] in object_id_to_hull ], ) map_dict = self.semantic_map_builder.update( depth_frame=last_event.depth_frame, camera_xyz=np.array( [metadata["cameraPosition"][k] for k in ["x", "y", "z"]] ), camera_rotation=metadata["agent"]["rotation"]["y"], camera_horizon=metadata["agent"]["cameraHorizon"], ) return { k: map_dict[k] > 0.001 if map_dict[k].dtype != np.bool else map_dict[k] for k in self.observation_space.spaces.keys() }
ask4help-main
allenact_plugins/ithor_plugin/ithor_sensors.py
import copy import json import math import os from typing import Tuple, Sequence, Union, Dict, Optional, Any, cast, Generator, List import cv2 import numpy as np from PIL import Image, ImageDraw from ai2thor.controller import Controller from matplotlib import pyplot as plt from matplotlib.figure import Figure import colour as col from allenact.utils.system import get_logger from allenact.utils.viz_utils import TrajectoryViz ITHOR_VIZ_CACHED_TOPDOWN_VIEWS_DIR = os.path.join( os.path.expanduser("~"), ".allenact", "ithor", "top_down_viz_cache" ) class ThorPositionTo2DFrameTranslator(object): def __init__( self, frame_shape_rows_cols: Tuple[int, int], cam_position: Sequence[float], orth_size: float, ): self.frame_shape = frame_shape_rows_cols self.lower_left = np.array((cam_position[0], cam_position[2])) - orth_size self.span = 2 * orth_size def __call__(self, position: Sequence[float]): if len(position) == 3: x, _, z = position else: x, z = position camera_position = (np.array((x, z)) - self.lower_left) / self.span return np.array( ( round(self.frame_shape[0] * (1.0 - camera_position[1])), round(self.frame_shape[1] * camera_position[0]), ), dtype=int, ) class ThorViz(TrajectoryViz): def __init__( self, path_to_trajectory: Sequence[str] = ("task_info", "followed_path"), label: str = "thor_trajectory", figsize: Tuple[float, float] = (8, 8), # width, height fontsize: float = 10, scenes: Union[Tuple[str, int, int], Sequence[Tuple[str, int, int]]] = ( ("FloorPlan{}_physics", 1, 30), ("FloorPlan{}_physics", 201, 230), ("FloorPlan{}_physics", 301, 330), ("FloorPlan{}_physics", 401, 430), ), viz_rows_cols: Tuple[int, int] = (448, 448), single_color: bool = False, view_triangle_only_on_last: bool = True, disable_view_triangle: bool = False, line_opacity: float = 1.0, path_to_rot_degrees: Sequence[str] = ("rotation",), **kwargs, ): super().__init__( path_to_trajectory=path_to_trajectory, label=label, figsize=figsize, fontsize=fontsize, path_to_rot_degrees=path_to_rot_degrees, **kwargs, ) if isinstance(scenes[0], str): scenes = [cast(Tuple[str, int, int], scenes)] # make it list of tuples self.scenes = cast(List[Tuple[str, int, int]], scenes) self.room_path = ITHOR_VIZ_CACHED_TOPDOWN_VIEWS_DIR os.makedirs(self.room_path, exist_ok=True) self.viz_rows_cols = viz_rows_cols self.single_color = single_color self.view_triangle_only_on_last = view_triangle_only_on_last self.disable_view_triangle = disable_view_triangle self.line_opacity = line_opacity # Only needed for rendering self.map_data: Optional[Dict[str, Any]] = None self.thor_top_downs: Optional[Dict[str, np.ndarray]] = None self.controller: Optional[Controller] = None def init_top_down_render(self): self.map_data = self.get_translator() self.thor_top_downs = self.make_top_down_views() # No controller needed after this point if self.controller is not None: self.controller.stop() self.controller = None @staticmethod def iterate_scenes( all_scenes: Sequence[Tuple[str, int, int]] ) -> Generator[str, None, None]: for scenes in all_scenes: for wall in range(scenes[1], scenes[2] + 1): roomname = scenes[0].format(wall) yield roomname def cached_map_data_path(self, roomname: str) -> str: return os.path.join(self.room_path, "map_data__{}.json".format(roomname)) def get_translator(self) -> Dict[str, Any]: # roomname = list(ThorViz.iterate_scenes(self.scenes))[0] all_map_data = {} for roomname in ThorViz.iterate_scenes(self.scenes): json_file = self.cached_map_data_path(roomname) if not os.path.exists(json_file): self.make_controller() self.controller.reset(roomname) map_data = self.get_agent_map_data() get_logger().info("Dumping {}".format(json_file)) with open(json_file, "w") as f: json.dump(map_data, f, indent=4, sort_keys=True) else: with open(json_file, "r") as f: map_data = json.load(f) pos_translator = ThorPositionTo2DFrameTranslator( self.viz_rows_cols, self.position_to_tuple(map_data["cam_position"]), map_data["cam_orth_size"], ) map_data["pos_translator"] = pos_translator all_map_data[roomname] = map_data get_logger().debug("Using map_data {}".format(all_map_data)) return all_map_data def cached_image_path(self, roomname: str) -> str: return os.path.join( self.room_path, "{}__r{}_c{}.png".format(roomname, *self.viz_rows_cols) ) def make_top_down_views(self) -> Dict[str, np.ndarray]: top_downs = {} for roomname in self.iterate_scenes(self.scenes): fname = self.cached_image_path(roomname) if not os.path.exists(fname): self.make_controller() self.dump_top_down_view(roomname, fname) top_downs[roomname] = cv2.imread(fname) return top_downs def crop_viz_image(self, viz_image: np.ndarray) -> np.ndarray: y_min = int(self.viz_rows_cols[0] * 0) y_max = int(self.viz_rows_cols[0] * 1) # But it covers approximately the entire width: x_min = 0 x_max = self.viz_rows_cols[1] cropped_viz_image = viz_image[y_min:y_max, x_min:x_max, :] return cropped_viz_image def make_controller(self): if self.controller is None: self.controller = Controller() self.controller.step({"action": "ChangeQuality", "quality": "Very High"}) self.controller.step( { "action": "ChangeResolution", "x": self.viz_rows_cols[1], "y": self.viz_rows_cols[0], } ) def get_agent_map_data(self): self.controller.step({"action": "ToggleMapView"}) cam_position = self.controller.last_event.metadata["cameraPosition"] cam_orth_size = self.controller.last_event.metadata["cameraOrthSize"] to_return = { "cam_position": cam_position, "cam_orth_size": cam_orth_size, } self.controller.step({"action": "ToggleMapView"}) return to_return @staticmethod def position_to_tuple(position: Dict[str, float]) -> Tuple[float, float, float]: return position["x"], position["y"], position["z"] @staticmethod def add_lines_to_map( ps: Sequence[Any], frame: np.ndarray, pos_translator: ThorPositionTo2DFrameTranslator, opacity: float, color: Optional[Tuple[int, ...]] = None, ) -> np.ndarray: if len(ps) <= 1: return frame if color is None: color = (255, 0, 0) img1 = Image.fromarray(frame.astype("uint8"), "RGB").convert("RGBA") img2 = Image.new("RGBA", frame.shape[:-1]) # Use RGBA opacity = int(round(255 * opacity)) # Define transparency for the triangle. draw = ImageDraw.Draw(img2) for i in range(len(ps) - 1): draw.line( tuple(reversed(pos_translator(ps[i]))) + tuple(reversed(pos_translator(ps[i + 1]))), fill=color + (opacity,), width=int(frame.shape[0] / 100), ) img = Image.alpha_composite(img1, img2) return np.array(img.convert("RGB")) @staticmethod def add_line_to_map( p0: Any, p1: Any, frame: np.ndarray, pos_translator: ThorPositionTo2DFrameTranslator, opacity: float, color: Optional[Tuple[int, ...]] = None, ) -> np.ndarray: if p0 == p1: return frame if color is None: color = (255, 0, 0) img1 = Image.fromarray(frame.astype("uint8"), "RGB").convert("RGBA") img2 = Image.new("RGBA", frame.shape[:-1]) # Use RGBA opacity = int(round(255 * opacity)) # Define transparency for the triangle. draw = ImageDraw.Draw(img2) draw.line( tuple(reversed(pos_translator(p0))) + tuple(reversed(pos_translator(p1))), fill=color + (opacity,), width=int(frame.shape[0] / 100), ) img = Image.alpha_composite(img1, img2) return np.array(img.convert("RGB")) @staticmethod def add_agent_view_triangle( position: Any, rotation: float, frame: np.ndarray, pos_translator: ThorPositionTo2DFrameTranslator, scale: float = 1.0, opacity: float = 0.1, ) -> np.ndarray: p0 = np.array((position[0], position[2])) p1 = copy.copy(p0) p2 = copy.copy(p0) theta = -2 * math.pi * (rotation / 360.0) rotation_mat = np.array( [[math.cos(theta), -math.sin(theta)], [math.sin(theta), math.cos(theta)]] ) offset1 = scale * np.array([-1 / 2.0, 1]) offset2 = scale * np.array([1 / 2.0, 1]) p1 += np.matmul(rotation_mat, offset1) p2 += np.matmul(rotation_mat, offset2) img1 = Image.fromarray(frame.astype("uint8"), "RGB").convert("RGBA") img2 = Image.new("RGBA", frame.shape[:-1]) # Use RGBA opacity = int(round(255 * opacity)) # Define transparency for the triangle. points = [tuple(reversed(pos_translator(p))) for p in [p0, p1, p2]] draw = ImageDraw.Draw(img2) draw.polygon(points, fill=(255, 255, 255, opacity)) img = Image.alpha_composite(img1, img2) return np.array(img.convert("RGB")) @staticmethod def visualize_agent_path( positions: Sequence[Any], frame: np.ndarray, pos_translator: ThorPositionTo2DFrameTranslator, single_color: bool = False, view_triangle_only_on_last: bool = False, disable_view_triangle: bool = False, line_opacity: float = 1.0, trajectory_start_end_color_str: Tuple[str, str] = ("red", "green"), ) -> np.ndarray: if single_color: frame = ThorViz.add_lines_to_map( list(map(ThorViz.position_to_tuple, positions)), frame, pos_translator, line_opacity, tuple( map( lambda x: int(round(255 * x)), col.Color(trajectory_start_end_color_str[0]).rgb, ) ), ) else: if len(positions) > 1: colors = list( col.Color(trajectory_start_end_color_str[0]).range_to( col.Color(trajectory_start_end_color_str[1]), len(positions) - 1 ) ) for i in range(len(positions) - 1): frame = ThorViz.add_line_to_map( ThorViz.position_to_tuple(positions[i]), ThorViz.position_to_tuple(positions[i + 1]), frame, pos_translator, opacity=line_opacity, color=tuple(map(lambda x: int(round(255 * x)), colors[i].rgb)), ) if view_triangle_only_on_last: positions = [positions[-1]] if disable_view_triangle: positions = [] for position in positions: frame = ThorViz.add_agent_view_triangle( ThorViz.position_to_tuple(position), rotation=position["rotation"], frame=frame, pos_translator=pos_translator, opacity=0.05 + view_triangle_only_on_last * 0.2, ) return frame def dump_top_down_view(self, room_name: str, image_path: str): get_logger().debug("Dumping {}".format(image_path)) self.controller.reset(room_name) self.controller.step( {"action": "Initialize", "gridSize": 0.1, "makeAgentsVisible": False} ) self.controller.step({"action": "ToggleMapView"}) top_down_view = self.controller.last_event.cv2img cv2.imwrite(image_path, top_down_view) def make_fig(self, episode: Any, episode_id: str) -> Figure: trajectory: Sequence[Dict[str, Any]] = self._access( episode, self.path_to_trajectory ) if self.thor_top_downs is None: self.init_top_down_render() roomname = "_".join(episode_id.split("_")[:2]) im = self.visualize_agent_path( trajectory, self.thor_top_downs[roomname], self.map_data[roomname]["pos_translator"], single_color=self.single_color, view_triangle_only_on_last=self.view_triangle_only_on_last, disable_view_triangle=self.disable_view_triangle, line_opacity=self.line_opacity, ) fig, ax = plt.subplots(figsize=self.figsize) ax.set_title(episode_id, fontsize=self.fontsize) ax.imshow(self.crop_viz_image(im)[:, :, ::-1]) ax.axis("off") return fig class ThorMultiViz(ThorViz): def __init__( self, path_to_trajectory_prefix: Sequence[str] = ("task_info", "followed_path"), agent_suffixes: Sequence[str] = ("1", "2"), label: str = "thor_trajectories", trajectory_start_end_color_strs: Sequence[Tuple[str, str]] = ( ("red", "green"), ("cyan", "purple"), ), **kwargs, ): super().__init__(label=label, **kwargs) self.path_to_trajectory_prefix = list(path_to_trajectory_prefix) self.agent_suffixes = list(agent_suffixes) self.trajectory_start_end_color_strs = list(trajectory_start_end_color_strs) def make_fig(self, episode: Any, episode_id: str) -> Figure: if self.thor_top_downs is None: self.init_top_down_render() roomname = "_".join(episode_id.split("_")[:2]) im = self.thor_top_downs[roomname] for agent, start_end_color in zip( self.agent_suffixes, self.trajectory_start_end_color_strs ): path = self.path_to_trajectory_prefix[:] path[-1] = path[-1] + agent trajectory = self._access(episode, path) im = self.visualize_agent_path( trajectory, im, self.map_data[roomname]["pos_translator"], single_color=self.single_color, view_triangle_only_on_last=self.view_triangle_only_on_last, disable_view_triangle=self.disable_view_triangle, line_opacity=self.line_opacity, trajectory_start_end_color_str=start_end_color, ) fig, ax = plt.subplots(figsize=self.figsize) ax.set_title(episode_id, fontsize=self.fontsize) ax.imshow(self.crop_viz_image(im)[:, :, ::-1]) ax.axis("off") return fig
ask4help-main
allenact_plugins/ithor_plugin/ithor_viz.py
import copy import random from typing import List, Dict, Optional, Any, Union, cast import gym from allenact.base_abstractions.sensor import Sensor from allenact.base_abstractions.task import TaskSampler from allenact.utils.experiment_utils import set_deterministic_cudnn, set_seed from allenact.utils.system import get_logger from allenact_plugins.ithor_plugin.ithor_environment import IThorEnvironment from allenact_plugins.ithor_plugin.ithor_tasks import ObjectNaviThorGridTask class ObjectNavTaskSampler(TaskSampler): def __init__( self, scenes: List[str], object_types: str, sensors: List[Sensor], max_steps: int, env_args: Dict[str, Any], action_space: gym.Space, scene_period: Optional[Union[int, str]] = None, max_tasks: Optional[int] = None, seed: Optional[int] = None, deterministic_cudnn: bool = False, **kwargs, ) -> None: self.env_args = env_args self.scenes = scenes self.object_types = object_types self.grid_size = 0.25 self.env: Optional[IThorEnvironment] = None self.sensors = sensors self.max_steps = max_steps self._action_space = action_space self.scene_counter: Optional[int] = None self.scene_order: Optional[List[str]] = None self.scene_id: Optional[int] = None self.scene_period: Optional[ Union[str, int] ] = scene_period # default makes a random choice self.max_tasks: Optional[int] = None self.reset_tasks = max_tasks self._last_sampled_task: Optional[ObjectNaviThorGridTask] = None self.seed: Optional[int] = None self.set_seed(seed) if deterministic_cudnn: set_deterministic_cudnn() self.reset() def _create_environment(self) -> IThorEnvironment: env = IThorEnvironment( make_agents_visible=False, object_open_speed=0.05, restrict_to_initially_reachable_points=True, **self.env_args, ) return env @property def length(self) -> Union[int, float]: """Length. # Returns Number of total tasks remaining that can be sampled. Can be float('inf'). """ return float("inf") if self.max_tasks is None else self.max_tasks @property def total_unique(self) -> Optional[Union[int, float]]: return None @property def last_sampled_task(self) -> Optional[ObjectNaviThorGridTask]: return self._last_sampled_task def close(self) -> None: if self.env is not None: self.env.stop() @property def all_observation_spaces_equal(self) -> bool: """Check if observation spaces equal. # Returns True if all Tasks that can be sampled by this sampler have the same observation space. Otherwise False. """ return True def sample_scene(self, force_advance_scene: bool): if force_advance_scene: if self.scene_period != "manual": get_logger().warning( "When sampling scene, have `force_advance_scene == True`" "but `self.scene_period` is not equal to 'manual'," "this may cause unexpected behavior." ) self.scene_id = (1 + self.scene_id) % len(self.scenes) if self.scene_id == 0: random.shuffle(self.scene_order) if self.scene_period is None: # Random scene self.scene_id = random.randint(0, len(self.scenes) - 1) elif self.scene_period == "manual": pass elif self.scene_counter >= cast(int, self.scene_period): if self.scene_id == len(self.scene_order) - 1: # Randomize scene order for next iteration random.shuffle(self.scene_order) # Move to next scene self.scene_id = 0 else: # Move to next scene self.scene_id += 1 # Reset scene counter self.scene_counter = 1 elif isinstance(self.scene_period, int): # Stay in current scene self.scene_counter += 1 else: raise NotImplementedError( "Invalid scene_period {}".format(self.scene_period) ) if self.max_tasks is not None: self.max_tasks -= 1 return self.scenes[int(self.scene_order[self.scene_id])] def next_task( self, force_advance_scene: bool = False ) -> Optional[ObjectNaviThorGridTask]: if self.max_tasks is not None and self.max_tasks <= 0: return None scene = self.sample_scene(force_advance_scene) if self.env is not None: if scene.replace("_physics", "") != self.env.scene_name.replace( "_physics", "" ): self.env.reset(scene) else: self.env = self._create_environment() self.env.reset(scene_name=scene) pose = self.env.randomize_agent_location() object_types_in_scene = set( [o["objectType"] for o in self.env.last_event.metadata["objects"]] ) task_info: Dict[str, Any] = {} for ot in random.sample(self.object_types, len(self.object_types)): if ot in object_types_in_scene: task_info["object_type"] = ot break if len(task_info) == 0: get_logger().warning( "Scene {} does not contain any" " objects of any of the types {}.".format(scene, self.object_types) ) task_info["start_pose"] = copy.copy(pose) task_info[ "id" ] = f"{scene}__{'_'.join(list(map(str, self.env.get_key(pose))))}__{task_info['object_type']}" self._last_sampled_task = ObjectNaviThorGridTask( env=self.env, sensors=self.sensors, task_info=task_info, max_steps=self.max_steps, action_space=self._action_space, ) return self._last_sampled_task def reset(self): self.scene_counter = 0 self.scene_order = list(range(len(self.scenes))) random.shuffle(self.scene_order) self.scene_id = 0 self.max_tasks = self.reset_tasks def set_seed(self, seed: int): self.seed = seed if seed is not None: set_seed(seed)
ask4help-main
allenact_plugins/ithor_plugin/ithor_task_samplers.py
import os from allenact_plugins.robothor_plugin.scripts.make_objectnav_debug_dataset import ( create_debug_dataset_from_train_dataset, ) if __name__ == "__main__": CURRENT_PATH = os.getcwd() SCENE = "FloorPlan1" TARGET = "Apple" EPISODES = [0, 7, 11, 12] BASE_OUT = os.path.join(CURRENT_PATH, "datasets", "ithor-objectnav", "debug") create_debug_dataset_from_train_dataset( scene=SCENE, target_object_type=TARGET, episodes_subset=EPISODES, train_dataset_path=os.path.join( CURRENT_PATH, "datasets", "ithor-objectnav", "train" ), base_debug_output_path=BASE_OUT, )
ask4help-main
allenact_plugins/ithor_plugin/scripts/make_objectnav_debug_dataset.py
ask4help-main
allenact_plugins/ithor_plugin/scripts/__init__.py
import os from allenact_plugins.robothor_plugin.scripts.make_objectnav_debug_dataset import ( create_debug_dataset_from_train_dataset, ) if __name__ == "__main__": CURRENT_PATH = os.getcwd() SCENE = "FloorPlan1" EPISODES = [0, 7, 11, 12] BASE_OUT = os.path.join(CURRENT_PATH, "datasets", "ithor-pointnav", "debug") create_debug_dataset_from_train_dataset( scene=SCENE, target_object_type=None, episodes_subset=EPISODES, train_dataset_path=os.path.join( CURRENT_PATH, "datasets", "ithor-pointnav", "train" ), base_debug_output_path=BASE_OUT, )
ask4help-main
allenact_plugins/ithor_plugin/scripts/make_pointnav_debug_dataset.py
from collections import OrderedDict from typing import Dict, Any, Optional, List, cast import gym import numpy as np import torch from gym.spaces.dict import Dict as SpaceDict from allenact.base_abstractions.preprocessor import Preprocessor from allenact.utils.cacheless_frcnn import fasterrcnn_resnet50_fpn from allenact.utils.misc_utils import prepare_locals_for_super class BatchedFasterRCNN(torch.nn.Module): # fmt: off COCO_INSTANCE_CATEGORY_NAMES = [ '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] # fmt: on def __init__(self, thres=0.12, maxdets=3, res=7): super().__init__() self.model = fasterrcnn_resnet50_fpn(pretrained=True) self.eval() self.min_score = thres self.maxdets = maxdets self.res = res def detector_tensor(self, boxes, classes, scores, aspect_ratio=1.0): res, maxdets = self.res, self.maxdets bins = np.array(list(range(res + 1)))[1:-1] / res res_classes = torch.zeros( res, res, maxdets, dtype=torch.int64 ) # 0 is background res_boxes = -1 * torch.ones( res, res, maxdets, 5 ) # regular range is [0, 1] (vert) or [0, aspect_ratio] (horiz) temp = [[[] for _ in range(res)] for _ in range(res)] # grid of arrays # # TODO Debug # print('NEW IMAGE') for it in range(classes.shape[0]): cx = (boxes[it, 0].item() + boxes[it, 2].item()) / 2 cy = (boxes[it, 1].item() + boxes[it, 3].item()) / 2 px = np.digitize(cx, bins=aspect_ratio * bins).item() py = np.digitize(cy, bins=bins).item() temp[py][px].append( ( scores[it][classes[it]].item(), # prob (boxes[it, 2] - boxes[it, 0]).item() / aspect_ratio, # width (boxes[it, 3] - boxes[it, 1]).item(), # height boxes[it, 0].item() / aspect_ratio, # x boxes[it, 1].item(), # y classes[it].item(), # class ) ) # # TODO Debug: # print(self.COCO_INSTANCE_CATEGORY_NAMES[classes[it].item()]) for py in range(res): for px in range(res): order = sorted(temp[py][px], reverse=True)[:maxdets] for it, data in enumerate(order): res_classes[py, px, it] = data[-1] res_boxes[py, px, it, :] = torch.tensor( list(data[:-1]) ) # prob, size, top left res_classes = res_classes.permute(2, 0, 1).unsqueeze(0).contiguous() res_boxes = ( res_boxes.view(res, res, -1).permute(2, 0, 1).unsqueeze(0).contiguous() ) return res_classes, res_boxes def forward(self, imbatch): with torch.no_grad(): imglist = [im_in.squeeze(0) for im_in in imbatch.split(split_size=1, dim=0)] # # TODO Debug # import cv2 # for it, im_in in enumerate(imglist): # cvim = 255.0 * im_in.to('cpu').permute(1, 2, 0).numpy()[:, :, ::-1] # cv2.imwrite('test_highres{}.png'.format(it), cvim) preds = self.model(imglist) keeps = [ pred["scores"] > self.min_score for pred in preds ] # already after nms # [0, 1] for rows, [0, aspect_ratio] for cols (im_in is C x H x W), with all images of same size (batch) all_boxes = [ pred["boxes"][keep] / imbatch.shape[-2] for pred, keep in zip(preds, keeps) ] all_classes = [pred["labels"][keep] for pred, keep in zip(preds, keeps)] all_pred_scores = [pred["scores"][keep] for pred, keep in zip(preds, keeps)] # hack: fill in a full prob score (all classes, 0 score if undetected) for each box, for backwards compatibility all_scores = [ torch.zeros(pred_scores.shape[0], 91, device=pred_scores.device) for pred_scores in all_pred_scores ] all_scores = [ torch.where( torch.arange(91, device=pred_scores.device).unsqueeze(0) == merged_classes.unsqueeze(1), pred_scores.unsqueeze(1), scores, ) for merged_classes, pred_scores, scores in zip( all_classes, all_pred_scores, all_scores ) ] all_classes_boxes = [ self.detector_tensor( boxes, classes, scores, aspect_ratio=imbatch.shape[-1] / imbatch.shape[-2], ) for boxes, classes, scores in zip(all_boxes, all_classes, all_scores) ] classes = torch.cat( [classes_boxes[0] for classes_boxes in all_classes_boxes], dim=0 ).to(imbatch.device) boxes = torch.cat( [classes_boxes[1] for classes_boxes in all_classes_boxes], dim=0 ).to(imbatch.device) return classes, boxes class FasterRCNNPreProcessorRoboThor(Preprocessor): """Preprocess RGB image using a ResNet model.""" COCO_INSTANCE_CATEGORY_NAMES = BatchedFasterRCNN.COCO_INSTANCE_CATEGORY_NAMES def __init__( self, input_uuids: List[str], output_uuid: str, input_height: int, input_width: int, max_dets: int, detector_spatial_res: int, detector_thres: float, device: Optional[torch.device] = None, device_ids: Optional[List[torch.device]] = None, **kwargs: Any, ): self.input_height = input_height self.input_width = input_width self.max_dets = max_dets self.detector_spatial_res = detector_spatial_res self.detector_thres = detector_thres self.device = torch.device("cpu") if device is None else device self.device_ids = device_ids or cast( List[torch.device], list(range(torch.cuda.device_count())) ) self.frcnn: BatchedFasterRCNN = BatchedFasterRCNN( thres=self.detector_thres, maxdets=self.max_dets, res=self.detector_spatial_res, ) spaces: OrderedDict[str, gym.Space] = OrderedDict() shape = (self.max_dets, self.detector_spatial_res, self.detector_spatial_res) spaces["frcnn_classes"] = gym.spaces.Box( low=0, # 0 is bg high=len(self.COCO_INSTANCE_CATEGORY_NAMES) - 1, shape=shape, dtype=np.int64, ) shape = ( self.max_dets * 5, self.detector_spatial_res, self.detector_spatial_res, ) spaces["frcnn_boxes"] = gym.spaces.Box(low=-np.inf, high=np.inf, shape=shape) assert ( len(input_uuids) == 1 ), "fasterrcnn preprocessor can only consume one observation type" observation_space = SpaceDict(spaces=spaces) super().__init__(**prepare_locals_for_super(locals())) def to(self, device: torch.device) -> "FasterRCNNPreProcessorRoboThor": self.frcnn = self.frcnn.to(device) self.device = device return self def process(self, obs: Dict[str, Any], *args: Any, **kwargs: Any) -> Any: frames_tensor = ( obs[self.input_uuids[0]].to(self.device).permute(0, 3, 1, 2) ) # bhwc -> bchw (unnormalized) classes, boxes = self.frcnn(frames_tensor) return {"frcnn_classes": classes, "frcnn_boxes": boxes}
ask4help-main
allenact_plugins/robothor_plugin/robothor_preprocessors.py
import copy import gzip import json import random import itertools from typing import List, Optional, Union, Dict, Any, cast, Tuple import gym import numpy as np from allenact.base_abstractions.sensor import Sensor from allenact.base_abstractions.task import TaskSampler from allenact.utils.cache_utils import str_to_pos_for_cache from allenact.utils.experiment_utils import set_seed, set_deterministic_cudnn from allenact.utils.system import get_logger from allenact_plugins.robothor_plugin.robothor_environment import RoboThorEnvironment from allenact_plugins.robothor_plugin.robothor_tasks import ( ObjectNavTask, PointNavTask, NavToPartnerTask, ) class ObjectNavTaskSampler(TaskSampler): def __init__( self, scenes: Union[List[str], str], object_types: List[str], sensors: List[Sensor], max_steps: int, env_args: Dict[str, Any], action_space: gym.Space, rewards_config: Dict, scene_period: Optional[Union[int, str]] = None, max_tasks: Optional[int] = None, seed: Optional[int] = None, deterministic_cudnn: bool = False, allow_flipping: bool = False, dataset_first: int = -1, dataset_last: int = -1, **kwargs, ) -> None: self.rewards_config = rewards_config self.env_args = env_args self.scenes = scenes self.object_types = object_types self.env: Optional[RoboThorEnvironment] = None self.sensors = sensors self.max_steps = max_steps self._action_space = action_space self.allow_flipping = allow_flipping self.scenes_is_dataset = (dataset_first >= 0) or (dataset_last >= 0) if not self.scenes_is_dataset: assert isinstance( self.scenes, List ), "When not using a dataset, scenes ({}) must be a list".format( self.scenes ) self.scene_counter: Optional[int] = None self.scene_order: Optional[List[str]] = None self.scene_id: Optional[int] = None self.scene_period: Optional[ Union[str, int] ] = scene_period # default makes a random choice self.max_tasks: Optional[int] = None self.reset_tasks = max_tasks else: assert isinstance( self.scenes, str ), "When using a dataset, scenes ({}) must be a json file name string".format( self.scenes ) with open(self.scenes, "r") as f: self.dataset_episodes = json.load(f) # get_logger().debug("Loaded {} object nav episodes".format(len(self.dataset_episodes))) self.dataset_first = dataset_first if dataset_first >= 0 else 0 self.dataset_last = ( dataset_last if dataset_last >= 0 else len(self.dataset_episodes) - 1 ) assert ( 0 <= self.dataset_first <= self.dataset_last ), "dataset_last {} must be >= dataset_first {} >= 0".format( dataset_last, dataset_first ) self.reset_tasks = self.dataset_last - self.dataset_first + 1 # get_logger().debug("{} tasks ({}, {}) in sampler".format(self.reset_tasks, self.dataset_first, self.dataset_last)) self._last_sampled_task: Optional[ObjectNavTask] = None self.seed: Optional[int] = None self.set_seed(seed) if deterministic_cudnn: set_deterministic_cudnn() self.reset() def _create_environment(self) -> RoboThorEnvironment: env = RoboThorEnvironment(**self.env_args) return env @property def length(self) -> Union[int, float]: """Length. # Returns Number of total tasks remaining that can be sampled. Can be float('inf'). """ return float("inf") if self.max_tasks is None else self.max_tasks @property def total_unique(self) -> Optional[Union[int, float]]: return self.reset_tasks @property def last_sampled_task(self) -> Optional[ObjectNavTask]: return self._last_sampled_task def close(self) -> None: if self.env is not None: self.env.stop() @property def all_observation_spaces_equal(self) -> bool: """Check if observation spaces equal. # Returns True if all Tasks that can be sampled by this sampler have the same observation space. Otherwise False. """ return True def sample_scene(self, force_advance_scene: bool): if force_advance_scene: if self.scene_period != "manual": get_logger().warning( "When sampling scene, have `force_advance_scene == True`" "but `self.scene_period` is not equal to 'manual'," "this may cause unexpected behavior." ) self.scene_id = (1 + self.scene_id) % len(self.scenes) if self.scene_id == 0: random.shuffle(self.scene_order) if self.scene_period is None: # Random scene self.scene_id = random.randint(0, len(self.scenes) - 1) elif self.scene_period == "manual": pass elif self.scene_counter >= cast(int, self.scene_period): if self.scene_id == len(self.scene_order) - 1: # Randomize scene order for next iteration random.shuffle(self.scene_order) # Move to next scene self.scene_id = 0 else: # Move to next scene self.scene_id += 1 # Reset scene counter self.scene_counter = 1 elif isinstance(self.scene_period, int): # Stay in current scene self.scene_counter += 1 else: raise NotImplementedError( "Invalid scene_period {}".format(self.scene_period) ) if self.max_tasks is not None: self.max_tasks -= 1 return self.scenes[int(self.scene_order[self.scene_id])] # def sample_episode(self, scene): # self.scene_counters[scene] = (self.scene_counters[scene] + 1) % len(self.scene_to_episodes[scene]) # if self.scene_counters[scene] == 0: # random.shuffle(self.scene_to_episodes[scene]) # return self.scene_to_episodes[scene][self.scene_counters[scene]] def next_task(self, force_advance_scene: bool = False) -> Optional[ObjectNavTask]: if self.max_tasks is not None and self.max_tasks <= 0: # get_logger().debug("max_tasks {}".format(self.max_tasks)) return None if not self.scenes_is_dataset: scene = self.sample_scene(force_advance_scene) if self.env is not None: if scene.replace("_physics", "") != self.env.scene_name.replace( "_physics", "" ): self.env.reset(scene) else: self.env = self._create_environment() self.env.reset(scene_name=scene) pose = self.env.randomize_agent_location() object_types_in_scene = set( [o["objectType"] for o in self.env.last_event.metadata["objects"]] ) task_info = {"scene": scene} for ot in random.sample(self.object_types, len(self.object_types)): if ot in object_types_in_scene: task_info["object_type"] = ot break if len(task_info) == 0: get_logger().warning( "Scene {} does not contain any" " objects of any of the types {}.".format(scene, self.object_types) ) task_info["initial_position"] = {k: pose[k] for k in ["x", "y", "z"]} task_info["initial_orientation"] = cast(Dict[str, float], pose["rotation"])[ "y" ] else: assert self.max_tasks is not None next_task_id = self.dataset_first + self.max_tasks - 1 # get_logger().debug("task {}".format(next_task_id)) assert ( self.dataset_first <= next_task_id <= self.dataset_last ), "wrong task_id {} for min {} max {}".format( next_task_id, self.dataset_first, self.dataset_last ) task_info = copy.deepcopy(self.dataset_episodes[next_task_id]) scene = task_info["scene"] if self.env is not None: if scene.replace("_physics", "") != self.env.scene_name.replace( "_physics", "" ): self.env.reset(scene_name=scene) else: self.env = self._create_environment() self.env.reset(scene_name=scene) self.env.step( { "action": "TeleportFull", **{k: float(v) for k, v in task_info["initial_position"].items()}, "rotation": { "x": 0.0, "y": float(task_info["initial_orientation"]), "z": 0.0, }, "horizon": 0.0, "standing": True, } ) assert self.env.last_action_success, "Failed to reset agent for {}".format( task_info ) self.max_tasks -= 1 # task_info["actions"] = [] # TODO populated by Task(Generic[EnvType]).step(...) but unused if self.allow_flipping and random.random() > 0.5: task_info["mirrored"] = True else: task_info["mirrored"] = False self._last_sampled_task = ObjectNavTask( env=self.env, sensors=self.sensors, task_info=task_info, max_steps=self.max_steps, action_space=self._action_space, reward_configs=self.rewards_config, ) return self._last_sampled_task def reset(self): if not self.scenes_is_dataset: self.scene_counter = 0 self.scene_order = list(range(len(self.scenes))) random.shuffle(self.scene_order) self.scene_id = 0 self.max_tasks = self.reset_tasks def set_seed(self, seed: int): self.seed = seed if seed is not None: set_seed(seed) class ObjectNavDatasetTaskSampler(TaskSampler): def __init__( self, scenes: List[str], scene_directory: str, sensors: List[Sensor], max_steps: int, env_args: Dict[str, Any], action_space: gym.Space, rewards_config: Dict, adaptive_reward: bool = False, seed: Optional[int] = None, deterministic_cudnn: bool = False, loop_dataset: bool = True, task_mode: str = 'Train', allow_flipping=False, env_class=RoboThorEnvironment, randomize_materials_in_training: bool = False, **kwargs, ) -> None: self.rewards_config = rewards_config self.env_args = env_args self.scenes = scenes self.task_mode = task_mode self.episodes = { scene: ObjectNavDatasetTaskSampler.load_dataset( scene, scene_directory + "/episodes" ) for scene in scenes } # Only keep episodes containing desired objects if 'object_types' in kwargs: self.episodes = { scene : [ep for ep in episodes if ep["object_type"] in kwargs['object_types']] for scene, episodes in self.episodes.items()} self.episodes = {scene:episodes for scene, episodes in self.episodes.items() if len(episodes) > 0} self.scenes = [scene for scene in self.scenes if scene in self.episodes] self.env_class = env_class self.object_types = [ ep["object_type"] for scene in self.episodes for ep in self.episodes[scene] ] self.env: Optional[RoboThorEnvironment] = None self.sensors = sensors self.max_steps = max_steps self._action_space = action_space self.adaptive_reward = adaptive_reward self.allow_flipping = allow_flipping self.scene_counter: Optional[int] = None self.scene_order: Optional[List[str]] = None self.scene_id: Optional[int] = None # get the total number of tasks assigned to this process if loop_dataset: self.max_tasks = None else: self.max_tasks = sum(len(self.episodes[scene]) for scene in self.episodes) self.reset_tasks = self.max_tasks self.scene_index = 0 self.episode_index = 0 self.randomize_materials_in_training = randomize_materials_in_training self._last_sampled_task: Optional[ObjectNavTask] = None self.seed: Optional[int] = None self.set_seed(seed) if deterministic_cudnn: set_deterministic_cudnn() self.reset() def _create_environment(self) -> RoboThorEnvironment: env = self.env_class(**self.env_args) return env @staticmethod def load_dataset(scene: str, base_directory: str) -> List[Dict]: filename = ( "/".join([base_directory, scene]) if base_directory[-1] != "/" else "".join([base_directory, scene]) ) filename += ".json.gz" fin = gzip.GzipFile(filename, "r") json_bytes = fin.read() fin.close() json_str = json_bytes.decode("utf-8") data = json.loads(json_str) random.shuffle(data) return data @staticmethod def load_distance_cache_from_file(scene: str, base_directory: str) -> Dict: filename = ( "/".join([base_directory, scene]) if base_directory[-1] != "/" else "".join([base_directory, scene]) ) filename += ".json.gz" fin = gzip.GzipFile(filename, "r") json_bytes = fin.read() fin.close() json_str = json_bytes.decode("utf-8") data = json.loads(json_str) return data @property def __len__(self) -> Union[int, float]: """Length. # Returns Number of total tasks remaining that can be sampled. Can be float('inf'). """ return float("inf") if self.max_tasks is None else self.max_tasks @property def total_unique(self) -> Optional[Union[int, float]]: return self.reset_tasks @property def last_sampled_task(self) -> Optional[ObjectNavTask]: return self._last_sampled_task def close(self) -> None: if self.env is not None: self.env.stop() @property def all_observation_spaces_equal(self) -> bool: """Check if observation spaces equal. # Returns True if all Tasks that can be sampled by this sampler have the same observation space. Otherwise False. """ return True @property def length(self) -> Union[int, float]: """Length. # Returns Number of total tasks remaining that can be sampled. Can be float('inf'). """ return float("inf") if self.max_tasks is None else self.max_tasks def next_task(self, force_advance_scene: bool = False) -> Optional[ObjectNavTask]: if self.max_tasks is not None and self.max_tasks <= 0: return None if self.episode_index >= len(self.episodes[self.scenes[self.scene_index]]): self.scene_index = (self.scene_index + 1) % len(self.scenes) # shuffle the new list of episodes to train on random.shuffle(self.episodes[self.scenes[self.scene_index]]) self.episode_index = 0 scene = self.scenes[self.scene_index] episode = self.episodes[scene][self.episode_index] if self.env is None: self.env = self._create_environment() if scene.replace("_physics", "") != self.env.scene_name.replace("_physics", ""): self.env.reset(scene_name=scene) else: self.env.reset_object_filter() self.env.set_object_filter( object_ids=[ o["objectId"] for o in self.env.last_event.metadata["objects"] if o["objectType"] == episode["object_type"] ] ) # only randomize materials in train scenes were_materials_randomized = False if self.randomize_materials_in_training: if ( "Train" in scene or int(scene.replace("FloorPlan", "").replace("_physics", "")) % 100 < 21 ): were_materials_randomized = True self.env.controller.step(action="RandomizeMaterials") task_info = { "scene": scene, "object_type": episode["object_type"], "materials_randomized": were_materials_randomized, } if len(task_info) == 0: get_logger().warning( "Scene {} does not contain any" " objects of any of the types {}.".format(scene, self.object_types) ) task_info["initial_position"] = episode["initial_position"] task_info["initial_orientation"] = episode["initial_orientation"] task_info["initial_horizon"] = episode.get("initial_horizon", 0) task_info["distance_to_target"] = episode.get("shortest_path_length") task_info["path_to_target"] = episode.get("shortest_path") task_info["object_type"] = episode["object_type"] task_info["id"] = episode["id"] if self.allow_flipping and random.random() > 0.5: task_info["mirrored"] = True else: task_info["mirrored"] = False self.episode_index += 1 if self.max_tasks is not None: self.max_tasks -= 1 if not self.env.teleport( pose=episode["initial_position"], rotation=episode["initial_orientation"], horizon=episode.get("initial_horizon", 0), ): return self.next_task() if self.adaptive_reward: rewards_config = { "step_penalty": -0.0, "goal_success_reward": 0.00, "failed_stop_reward": -15.00, "shaping_weight": 0.00, "penalty_for_init_ask": -1.00, "penalty_for_step_ask": -0.01, } # init_asked_configs = list(np.linspace(0,5,num=6,endpoint=True)) failed_stop_configs = list(np.linspace(1,30,num=30,endpoint=True)) ##trying 13 different reward different configs ##change adaptive reward embedding size in visual_nav_models.py #all_configs = [init_asked_configs,failed_stop_configs] #combined_configs = list(itertools.product(*all_configs)) # probs = [1/len(combined_configs)]*len(combined_configs) probs = [1/len(failed_stop_configs)]*len(failed_stop_configs) if self.task_mode == 'Train': config_idx = np.random.choice(np.arange(len(failed_stop_configs)),1,p=probs)[0] reward = failed_stop_configs[config_idx] # init_ask,failed_stop = -1*reward[0],-1*reward[1] failed_stop = -1*reward else: # config_idx = 15.0 config_idx = failed_stop_configs.index(13.0) failed_stop = -13.0 # init_ask = -1.0 rewards_config['failed_stop_reward'] = failed_stop #-1*config_idx ### -1 is important # rewards_config['penalty_for_init_ask'] = init_ask ''' config_idx = np.random.choice(4,1,p=[0.25,0.25,0.25,0.25])[0] rewards_config = adaptive_configs_dict[config_idx] ''' task_info['reward_config_idx'] = config_idx #failed_stop_configs.index(config_idx) self._last_sampled_task = ObjectNavTask( env=self.env, sensors=self.sensors, task_info=task_info, max_steps=self.max_steps, action_space=self._action_space, reward_configs=rewards_config, ) else: self._last_sampled_task = ObjectNavTask( env=self.env, sensors=self.sensors, task_info=task_info, max_steps=self.max_steps, action_space=self._action_space, reward_configs=self.rewards_config, ) return self._last_sampled_task def reset(self): self.episode_index = 0 self.scene_index = 0 self.max_tasks = self.reset_tasks def set_seed(self, seed: int): self.seed = seed if seed is not None: set_seed(seed) class PointNavTaskSampler(TaskSampler): def __init__( self, scenes: List[str], # object_types: List[str], # scene_to_episodes: List[Dict[str, Any]], sensors: List[Sensor], max_steps: int, env_args: Dict[str, Any], action_space: gym.Space, rewards_config: Dict, scene_period: Optional[Union[int, str]] = None, max_tasks: Optional[int] = None, seed: Optional[int] = None, deterministic_cudnn: bool = False, **kwargs, ) -> None: self.rewards_config = rewards_config self.env_args = env_args self.scenes = scenes # self.object_types = object_types # self.scene_to_episodes = scene_to_episodes # self.scene_counters = {scene: -1 for scene in self.scene_to_episodes} # self.scenes = list(self.scene_to_episodes.keys()) self.env: Optional[RoboThorEnvironment] = None self.sensors = sensors self.max_steps = max_steps self._action_space = action_space self.scene_counter: Optional[int] = None self.scene_order: Optional[List[str]] = None self.scene_id: Optional[int] = None self.scene_period: Optional[ Union[str, int] ] = scene_period # default makes a random choice self.max_tasks: Optional[int] = None self.reset_tasks = max_tasks self._last_sampled_task: Optional[PointNavTask] = None self.seed: Optional[int] = None self.set_seed(seed) if deterministic_cudnn: set_deterministic_cudnn() self.reset() def _create_environment(self) -> RoboThorEnvironment: env = RoboThorEnvironment(**self.env_args) return env @property def length(self) -> Union[int, float]: """Length. # Returns Number of total tasks remaining that can be sampled. Can be float('inf'). """ return float("inf") if self.max_tasks is None else self.max_tasks @property def total_unique(self) -> Optional[Union[int, float]]: # total = 0 # for scene in self.scene_to_episodes: # total += len(self.scene_to_episodes[scene]) # return total return self.reset_tasks @property def last_sampled_task(self) -> Optional[PointNavTask]: return self._last_sampled_task def close(self) -> None: if self.env is not None: self.env.stop() @property def all_observation_spaces_equal(self) -> bool: """Check if observation spaces equal. # Returns True if all Tasks that can be sampled by this sampler have the same observation space. Otherwise False. """ return True def sample_scene(self, force_advance_scene: bool): if force_advance_scene: if self.scene_period != "manual": get_logger().warning( "When sampling scene, have `force_advance_scene == True`" "but `self.scene_period` is not equal to 'manual'," "this may cause unexpected behavior." ) self.scene_id = (1 + self.scene_id) % len(self.scenes) if self.scene_id == 0: random.shuffle(self.scene_order) if self.scene_period is None: # Random scene self.scene_id = random.randint(0, len(self.scenes) - 1) elif self.scene_period == "manual": pass elif self.scene_counter >= cast(int, self.scene_period): if self.scene_id == len(self.scene_order) - 1: # Randomize scene order for next iteration random.shuffle(self.scene_order) # Move to next scene self.scene_id = 0 else: # Move to next scene self.scene_id += 1 # Reset scene counter self.scene_counter = 1 elif isinstance(self.scene_period, int): # Stay in current scene self.scene_counter += 1 else: raise NotImplementedError( "Invalid scene_period {}".format(self.scene_period) ) if self.max_tasks is not None: self.max_tasks -= 1 return self.scenes[int(self.scene_order[self.scene_id])] # def sample_episode(self, scene): # self.scene_counters[scene] = (self.scene_counters[scene] + 1) % len(self.scene_to_episodes[scene]) # if self.scene_counters[scene] == 0: # random.shuffle(self.scene_to_episodes[scene]) # return self.scene_to_episodes[scene][self.scene_counters[scene]] def next_task(self, force_advance_scene: bool = False) -> Optional[PointNavTask]: if self.max_tasks is not None and self.max_tasks <= 0: return None scene = self.sample_scene(force_advance_scene) if self.env is not None: if scene.replace("_physics", "") != self.env.scene_name.replace( "_physics", "" ): self.env.reset(scene_name=scene) else: self.env = self._create_environment() self.env.reset(scene_name=scene) # task_info = copy.deepcopy(self.sample_episode(scene)) # task_info['target'] = task_info['target_position'] # task_info['actions'] = [] locs = self.env.known_good_locations_list() # get_logger().debug("locs[0] {} locs[-1] {}".format(locs[0], locs[-1])) ys = [loc["y"] for loc in locs] miny = min(ys) maxy = max(ys) assert maxy - miny < 1e-6, "miny {} maxy {} for scene {}".format( miny, maxy, scene ) too_close_to_target = True target: Optional[Dict[str, float]] = None for _ in range(10): self.env.randomize_agent_location() target = copy.copy(random.choice(locs)) too_close_to_target = self.env.distance_to_point(target) <= 0 if not too_close_to_target: break pose = self.env.agent_state() task_info = { "scene": scene, "initial_position": {k: pose[k] for k in ["x", "y", "z"]}, "initial_orientation": pose["rotation"]["y"], "target": target, "actions": [], } if too_close_to_target: get_logger().warning("No path for sampled episode {}".format(task_info)) # else: # get_logger().debug("Path found for sampled episode {}".format(task_info)) # pose = {**task_info['initial_position'], 'rotation': {'x': 0.0, 'y': task_info['initial_orientation'], 'z': 0.0}, 'horizon': 0.0} # self.env.step({"action": "TeleportFull", **pose}) # assert self.env.last_action_success, "Failed to initialize agent to {} in {} for epsiode {}".format(pose, scene, task_info) self._last_sampled_task = PointNavTask( env=self.env, sensors=self.sensors, task_info=task_info, max_steps=self.max_steps, action_space=self._action_space, reward_configs=self.rewards_config, ) return self._last_sampled_task def reset(self): self.scene_counter = 0 self.scene_order = list(range(len(self.scenes))) random.shuffle(self.scene_order) self.scene_id = 0 self.max_tasks = self.reset_tasks # for scene in self.scene_to_episodes: # random.shuffle(self.scene_to_episodes[scene]) # for scene in self.scene_counters: # self.scene_counters[scene] = -1 def set_seed(self, seed: int): self.seed = seed if seed is not None: set_seed(seed) class PointNavDatasetTaskSampler(TaskSampler): def __init__( self, scenes: List[str], scene_directory: str, sensors: List[Sensor], max_steps: int, env_args: Dict[str, Any], action_space: gym.Space, rewards_config: Dict, seed: Optional[int] = None, deterministic_cudnn: bool = False, loop_dataset: bool = True, shuffle_dataset: bool = True, allow_flipping=False, env_class=RoboThorEnvironment, **kwargs, ) -> None: self.rewards_config = rewards_config self.env_args = env_args self.scenes = scenes self.shuffle_dataset: bool = shuffle_dataset self.episodes = { scene: ObjectNavDatasetTaskSampler.load_dataset( scene, scene_directory + "/episodes" ) for scene in scenes } self.env_class = env_class self.env: Optional[RoboThorEnvironment] = None self.sensors = sensors self.max_steps = max_steps self._action_space = action_space self.allow_flipping = allow_flipping self.scene_counter: Optional[int] = None self.scene_order: Optional[List[str]] = None self.scene_id: Optional[int] = None # get the total number of tasks assigned to this process if loop_dataset: self.max_tasks = None else: self.max_tasks = sum(len(self.episodes[scene]) for scene in self.episodes) self.reset_tasks = self.max_tasks self.scene_index = 0 self.episode_index = 0 self._last_sampled_task: Optional[PointNavTask] = None self.seed: Optional[int] = None self.set_seed(seed) if deterministic_cudnn: set_deterministic_cudnn() self.reset() def _create_environment(self) -> RoboThorEnvironment: env = self.env_class(**self.env_args) return env @property def __len__(self) -> Union[int, float]: """Length. # Returns Number of total tasks remaining that can be sampled. Can be float('inf'). """ return float("inf") if self.max_tasks is None else self.max_tasks @property def total_unique(self) -> Optional[Union[int, float]]: return self.reset_tasks @property def last_sampled_task(self) -> Optional[PointNavTask]: return self._last_sampled_task def close(self) -> None: if self.env is not None: self.env.stop() @property def all_observation_spaces_equal(self) -> bool: """Check if observation spaces equal. # Returns True if all Tasks that can be sampled by this sampler have the same observation space. Otherwise False. """ return True def next_task(self, force_advance_scene: bool = False) -> Optional[PointNavTask]: if self.max_tasks is not None and self.max_tasks <= 0: return None if self.episode_index >= len(self.episodes[self.scenes[self.scene_index]]): self.scene_index = (self.scene_index + 1) % len(self.scenes) # shuffle the new list of episodes to train on if self.shuffle_dataset: random.shuffle(self.episodes[self.scenes[self.scene_index]]) self.episode_index = 0 scene = self.scenes[self.scene_index] episode = self.episodes[scene][self.episode_index] if self.env is not None: if scene.replace("_physics", "") != self.env.scene_name.replace( "_physics", "" ): self.env.reset(scene_name=scene, filtered_objects=[]) else: self.env = self._create_environment() self.env.reset(scene_name=scene, filtered_objects=[]) def to_pos(s): if isinstance(s, (Dict, Tuple)): return s if isinstance(s, float): return {"x": 0, "y": s, "z": 0} return str_to_pos_for_cache(s) for k in ["initial_position", "initial_orientation", "target_position"]: episode[k] = to_pos(episode[k]) task_info = { "scene": scene, "initial_position": episode["initial_position"], "initial_orientation": episode["initial_orientation"], "target": episode["target_position"], "shortest_path": episode["shortest_path"], "distance_to_target": episode["shortest_path_length"], "id": episode["id"], } if self.allow_flipping and random.random() > 0.5: task_info["mirrored"] = True else: task_info["mirrored"] = False self.episode_index += 1 if self.max_tasks is not None: self.max_tasks -= 1 if not self.env.teleport( pose=episode["initial_position"], rotation=episode["initial_orientation"] ): return self.next_task() self._last_sampled_task = PointNavTask( env=self.env, sensors=self.sensors, task_info=task_info, max_steps=self.max_steps, action_space=self._action_space, reward_configs=self.rewards_config, ) return self._last_sampled_task def reset(self): self.episode_index = 0 self.scene_index = 0 self.max_tasks = self.reset_tasks def set_seed(self, seed: int): self.seed = seed if seed is not None: set_seed(seed) @property def length(self) -> Union[int, float]: """Length. # Returns Number of total tasks remaining that can be sampled. Can be float('inf'). """ return float("inf") if self.max_tasks is None else self.max_tasks class NavToPartnerTaskSampler(TaskSampler): def __init__( self, scenes: List[str], sensors: List[Sensor], max_steps: int, env_args: Dict[str, Any], action_space: gym.Space, rewards_config: Dict, scene_period: Optional[Union[int, str]] = None, max_tasks: Optional[int] = None, seed: Optional[int] = None, deterministic_cudnn: bool = False, **kwargs, ) -> None: self.rewards_config = rewards_config self.env_args = env_args self.scenes = scenes self.env: Optional[RoboThorEnvironment] = None self.sensors = sensors self.max_steps = max_steps self._action_space = action_space self.scene_counter: Optional[int] = None self.scene_order: Optional[List[str]] = None self.scene_id: Optional[int] = None self.scene_period: Optional[ Union[str, int] ] = scene_period # default makes a random choice self.max_tasks: Optional[int] = None self.reset_tasks = max_tasks self._last_sampled_task: Optional[NavToPartnerTask] = None self.seed: Optional[int] = None self.set_seed(seed) if deterministic_cudnn: set_deterministic_cudnn() self.reset() def _create_environment(self) -> RoboThorEnvironment: assert ( self.env_args["agentCount"] == 2 ), "NavToPartner is only defined for 2 agents!" env = RoboThorEnvironment(**self.env_args) return env @property def length(self) -> Union[int, float]: """Length. # Returns Number of total tasks remaining that can be sampled. Can be float('inf'). """ return float("inf") if self.max_tasks is None else self.max_tasks @property def total_unique(self) -> Optional[Union[int, float]]: return self.reset_tasks @property def last_sampled_task(self) -> Optional[NavToPartnerTask]: return self._last_sampled_task def close(self) -> None: if self.env is not None: self.env.stop() @property def all_observation_spaces_equal(self) -> bool: """Check if observation spaces equal. # Returns True if all Tasks that can be sampled by this sampler have the same observation space. Otherwise False. """ return True def sample_scene(self, force_advance_scene: bool): if force_advance_scene: if self.scene_period != "manual": get_logger().warning( "When sampling scene, have `force_advance_scene == True`" "but `self.scene_period` is not equal to 'manual'," "this may cause unexpected behavior." ) self.scene_id = (1 + self.scene_id) % len(self.scenes) if self.scene_id == 0: random.shuffle(self.scene_order) if self.scene_period is None: # Random scene self.scene_id = random.randint(0, len(self.scenes) - 1) elif self.scene_period == "manual": pass elif self.scene_counter >= cast(int, self.scene_period): if self.scene_id == len(self.scene_order) - 1: # Randomize scene order for next iteration random.shuffle(self.scene_order) # Move to next scene self.scene_id = 0 else: # Move to next scene self.scene_id += 1 # Reset scene counter self.scene_counter = 1 elif isinstance(self.scene_period, int): # Stay in current scene self.scene_counter += 1 else: raise NotImplementedError( "Invalid scene_period {}".format(self.scene_period) ) if self.max_tasks is not None: self.max_tasks -= 1 return self.scenes[int(self.scene_order[self.scene_id])] def next_task( self, force_advance_scene: bool = False ) -> Optional[NavToPartnerTask]: if self.max_tasks is not None and self.max_tasks <= 0: return None scene = self.sample_scene(force_advance_scene) if self.env is not None: if scene.replace("_physics", "") != self.env.scene_name.replace( "_physics", "" ): self.env.reset(scene_name=scene) else: self.env = self._create_environment() self.env.reset(scene_name=scene) too_close_to_target = True for _ in range(10): self.env.randomize_agent_location(agent_id=0) self.env.randomize_agent_location(agent_id=1) pose1 = self.env.agent_state(0) pose2 = self.env.agent_state(1) dist = self.env.distance_cache.find_distance( self.env.scene_name, {k: pose1[k] for k in ["x", "y", "z"]}, {k: pose2[k] for k in ["x", "y", "z"]}, self.env.distance_from_point_to_point, ) too_close_to_target = ( dist <= 1.25 * self.rewards_config["max_success_distance"] ) if not too_close_to_target: break task_info = { "scene": scene, "initial_position1": {k: pose1[k] for k in ["x", "y", "z"]}, "initial_position2": {k: pose2[k] for k in ["x", "y", "z"]}, "initial_orientation1": pose1["rotation"]["y"], "initial_orientation2": pose2["rotation"]["y"], "id": "_".join( [scene] # + ["%4.2f" % pose1[k] for k in ["x", "y", "z"]] # + ["%4.2f" % pose1["rotation"]["y"]] # + ["%4.2f" % pose2[k] for k in ["x", "y", "z"]] # + ["%4.2f" % pose2["rotation"]["y"]] + ["%d" % random.randint(0, 2 ** 63 - 1)] ), } if too_close_to_target: get_logger().warning("Bad sampled episode {}".format(task_info)) self._last_sampled_task = NavToPartnerTask( env=self.env, sensors=self.sensors, task_info=task_info, max_steps=self.max_steps, action_space=self._action_space, reward_configs=self.rewards_config, ) return self._last_sampled_task def reset(self): self.scene_counter = 0 self.scene_order = list(range(len(self.scenes))) random.shuffle(self.scene_order) self.scene_id = 0 self.max_tasks = self.reset_tasks def set_seed(self, seed: int): self.seed = seed if seed is not None: set_seed(seed)
ask4help-main
allenact_plugins/robothor_plugin/robothor_task_samplers.py
import copy import glob import math import pickle import random import warnings from typing import Any, Optional, Dict, List, Union, Tuple, Collection from ai2thor.fifo_server import FifoServer import ai2thor.server import numpy as np from ai2thor.controller import Controller from ai2thor.util import metrics from allenact.utils.cache_utils import ( DynamicDistanceCache, pos_to_str_for_cache, str_to_pos_for_cache, ) from allenact.utils.experiment_utils import recursive_update from allenact.utils.system import get_logger class RoboThorEnvironment: """Wrapper for the robo2thor controller providing additional functionality and bookkeeping. See [here](https://ai2thor.allenai.org/robothor/documentation) for comprehensive documentation on RoboTHOR. # Attributes controller : The AI2-THOR controller. config : The AI2-THOR controller configuration """ def __init__(self, all_metadata_available: bool = True, **kwargs): self.config = dict( rotateStepDegrees=30.0, visibilityDistance=1.0, gridSize=0.25, continuousMode=True, snapToGrid=False, agentMode="locobot", width=640, height=480, agentCount=1, server_class=FifoServer, ) if "agentCount" in kwargs: assert kwargs["agentCount"] > 0 kwargs["agentMode"] = kwargs.get("agentMode", "locobot") if kwargs["agentMode"] not in ["bot", "locobot"]: warnings.warn( f"The RoboTHOR environment has not been tested using" f" an agent of mode '{kwargs['agentMode']}'." ) recursive_update(self.config, kwargs) self.controller = Controller(**self.config,) self.all_metadata_available = all_metadata_available self.scene_to_reachable_positions: Optional[Dict[str, Any]] = None self.distance_cache: Optional[DynamicDistanceCache] = None if self.all_metadata_available: self.scene_to_reachable_positions = { self.scene_name: copy.deepcopy(self.currently_reachable_points) } assert len(self.scene_to_reachable_positions[self.scene_name]) > 10 self.distance_cache = DynamicDistanceCache(rounding=1) self.agent_count = self.config["agentCount"] self._extra_teleport_kwargs: Dict[ str, Any ] = {} # Used for backwards compatability with the teleport action def initialize_grid_dimensions( self, reachable_points: Collection[Dict[str, float]] ) -> Tuple[int, int, int, int]: """Computes bounding box for reachable points quantized with the current gridSize.""" points = { ( round(p["x"] / self.config["gridSize"]), round(p["z"] / self.config["gridSize"]), ): p for p in reachable_points } assert len(reachable_points) == len(points) xmin, xmax = min([p[0] for p in points]), max([p[0] for p in points]) zmin, zmax = min([p[1] for p in points]), max([p[1] for p in points]) return xmin, xmax, zmin, zmax def set_object_filter(self, object_ids: List[str]): self.controller.step("SetObjectFilter", objectIds=object_ids, renderImage=False) def reset_object_filter(self): self.controller.step("ResetObjectFilter", renderImage=False) def path_from_point_to_object_type( self, point: Dict[str, float], object_type: str, allowed_error: float ) -> Optional[List[Dict[str, float]]]: event = self.controller.step( action="GetShortestPath", objectType=object_type, position=point, allowedError=allowed_error, ) if event.metadata["lastActionSuccess"]: return event.metadata["actionReturn"]["corners"] else: get_logger().debug( "Failed to find path for {} in {}. Start point {}, agent state {}.".format( object_type, self.controller.last_event.metadata["sceneName"], point, self.agent_state(), ) ) return None def distance_from_point_to_object_type( self, point: Dict[str, float], object_type: str, allowed_error: float ) -> float: """Minimal geodesic distance from a point to an object of the given type. It might return -1.0 for unreachable targets. """ path = self.path_from_point_to_object_type(point, object_type, allowed_error) if path: # Because `allowed_error != 0` means that the path returned above might not start # at `point`, we explicitly add any offset there is. s_dist = math.sqrt( (point["x"] - path[0]["x"]) ** 2 + (point["z"] - path[0]["z"]) ** 2 ) return metrics.path_distance(path) + s_dist return -1.0 def distance_to_object_type(self, object_type: str, agent_id: int = 0) -> float: """Minimal geodesic distance to object of given type from agent's current location. It might return -1.0 for unreachable targets. """ assert 0 <= agent_id < self.agent_count assert ( self.all_metadata_available ), "`distance_to_object_type` cannot be called when `self.all_metadata_available` is `False`." def retry_dist(position: Dict[str, float], object_type: str): allowed_error = 0.05 debug_log = "" d = -1.0 while allowed_error < 2.5: d = self.distance_from_point_to_object_type( position, object_type, allowed_error ) if d < 0: debug_log = ( f"In scene {self.scene_name}, could not find a path from {position} to {object_type} with" f" {allowed_error} error tolerance. Increasing this tolerance to" f" {2 * allowed_error} any trying again." ) allowed_error *= 2 else: break if d < 0: get_logger().warning( f"In scene {self.scene_name}, could not find a path from {position} to {object_type}" f" with {allowed_error} error tolerance. Returning a distance of -1." ) elif debug_log != "": get_logger().debug(debug_log) return d return self.distance_cache.find_distance( self.scene_name, self.controller.last_event.events[agent_id].metadata["agent"]["position"], object_type, retry_dist, ) def path_from_point_to_point( self, position: Dict[str, float], target: Dict[str, float], allowedError: float ) -> Optional[List[Dict[str, float]]]: try: return self.controller.step( action="GetShortestPathToPoint", position=position, x=target["x"], y=target["y"], z=target["z"], allowedError=allowedError, ).metadata["actionReturn"]["corners"] except Exception: get_logger().debug( "Failed to find path for {} in {}. Start point {}, agent state {}.".format( target, self.controller.last_event.metadata["sceneName"], position, self.agent_state(), ) ) return None def distance_from_point_to_point( self, position: Dict[str, float], target: Dict[str, float], allowed_error: float ) -> float: path = self.path_from_point_to_point(position, target, allowed_error) if path: # Because `allowed_error != 0` means that the path returned above might not start # or end exactly at the position/target points, we explictly add any offset there is. s_dist = math.sqrt( (position["x"] - path[0]["x"]) ** 2 + (position["z"] - path[0]["z"]) ** 2 ) t_dist = math.sqrt( (target["x"] - path[-1]["x"]) ** 2 + (target["z"] - path[-1]["z"]) ** 2 ) return metrics.path_distance(path) + s_dist + t_dist return -1.0 def distance_to_point(self, target: Dict[str, float], agent_id: int = 0) -> float: """Minimal geodesic distance to end point from agent's current location. It might return -1.0 for unreachable targets. """ assert 0 <= agent_id < self.agent_count assert ( self.all_metadata_available ), "`distance_to_object_type` cannot be called when `self.all_metadata_available` is `False`." def retry_dist(position: Dict[str, float], target: Dict[str, float]): allowed_error = 0.05 debug_log = "" d = -1.0 while allowed_error < 2.5: d = self.distance_from_point_to_point(position, target, allowed_error) if d < 0: debug_log = ( f"In scene {self.scene_name}, could not find a path from {position} to {target} with" f" {allowed_error} error tolerance. Increasing this tolerance to" f" {2 * allowed_error} any trying again." ) allowed_error *= 2 else: break if d < 0: get_logger().warning( f"In scene {self.scene_name}, could not find a path from {position} to {target}" f" with {allowed_error} error tolerance. Returning a distance of -1." ) elif debug_log != "": get_logger().debug(debug_log) return d return self.distance_cache.find_distance( self.scene_name, self.controller.last_event.events[agent_id].metadata["agent"]["position"], target, retry_dist, ) def agent_state(self, agent_id: int = 0) -> Dict: """Return agent position, rotation and horizon.""" assert 0 <= agent_id < self.agent_count agent_meta = self.last_event.events[agent_id].metadata["agent"] return { **{k: float(v) for k, v in agent_meta["position"].items()}, "rotation": {k: float(v) for k, v in agent_meta["rotation"].items()}, "horizon": round(float(agent_meta["cameraHorizon"]), 1), } def teleport( self, pose: Dict[str, float], rotation: Dict[str, float], horizon: float = 0.0, agent_id: int = 0, ): assert 0 <= agent_id < self.agent_count try: e = self.controller.step( action="TeleportFull", x=pose["x"], y=pose["y"], z=pose["z"], rotation=rotation, horizon=horizon, agentId=agent_id, **self._extra_teleport_kwargs, ) except ValueError as e: if len(self._extra_teleport_kwargs) == 0: self._extra_teleport_kwargs["standing"] = True else: raise e return self.teleport( pose=pose, rotation=rotation, horizon=horizon, agent_id=agent_id ) return e.metadata["lastActionSuccess"] def reset( self, scene_name: str = None, filtered_objects: Optional[List[str]] = None ) -> None: """Resets scene to a known initial state.""" if scene_name is not None and scene_name != self.scene_name: self.controller.reset(scene_name) assert self.last_action_success, "Could not reset to new scene" if ( self.all_metadata_available and scene_name not in self.scene_to_reachable_positions ): self.scene_to_reachable_positions[scene_name] = copy.deepcopy( self.currently_reachable_points ) assert len(self.scene_to_reachable_positions[scene_name]) > 10 if filtered_objects: self.set_object_filter(filtered_objects) else: self.reset_object_filter() def random_reachable_state( self, seed: Optional[int] = None ) -> Dict[str, Union[Dict[str, float], float]]: """Returns a random reachable location in the scene.""" assert ( self.all_metadata_available ), "`random_reachable_state` cannot be called when `self.all_metadata_available` is `False`." if seed is not None: random.seed(seed) # xyz = random.choice(self.currently_reachable_points) assert len(self.scene_to_reachable_positions[self.scene_name]) > 10 xyz = copy.deepcopy( random.choice(self.scene_to_reachable_positions[self.scene_name]) ) rotation = random.choice( np.arange(0.0, 360.0, self.config["rotateStepDegrees"]) ) horizon = 0.0 # random.choice([0.0, 30.0, 330.0]) return { **{k: float(v) for k, v in xyz.items()}, "rotation": {"x": 0.0, "y": float(rotation), "z": 0.0}, "horizon": float(horizon), } def randomize_agent_location( self, seed: int = None, partial_position: Optional[Dict[str, float]] = None, agent_id: int = 0, ) -> Dict[str, Union[Dict[str, float], float]]: """Teleports the agent to a random reachable location in the scene.""" assert 0 <= agent_id < self.agent_count if partial_position is None: partial_position = {} k = 0 state: Optional[Dict] = None while k == 0 or (not self.last_action_success and k < 10): # self.reset() state = {**self.random_reachable_state(seed=seed), **partial_position} # get_logger().debug("picked target location {}".format(state)) self.controller.step("TeleportFull", **state, agentId=agent_id) k += 1 if not self.last_action_success: get_logger().warning( ( "Randomize agent location in scene {} and current random state {}" " with seed {} and partial position {} failed in " "10 attempts. Forcing the action." ).format(self.scene_name, state, seed, partial_position) ) self.controller.step("TeleportFull", **state, force_action=True, agentId=agent_id) # type: ignore assert self.last_action_success, "Force action failed with {}".format(state) # get_logger().debug("location after teleport full {}".format(self.agent_state())) # self.controller.step("TeleportFull", **self.agent_state()) # TODO only for debug # get_logger().debug("location after re-teleport full {}".format(self.agent_state())) return self.agent_state(agent_id=agent_id) def known_good_locations_list(self): assert ( self.all_metadata_available ), "`known_good_locations_list` cannot be called when `self.all_metadata_available` is `False`." return self.scene_to_reachable_positions[self.scene_name] @property def currently_reachable_points(self) -> List[Dict[str, float]]: """List of {"x": x, "y": y, "z": z} locations in the scene that are currently reachable.""" self.controller.step(action="GetReachablePositions") assert ( self.last_action_success ), f"Could not get reachable positions for reason {self.last_event.metadata['errorMessage']}." return self.last_action_return @property def scene_name(self) -> str: """Current ai2thor scene.""" return self.controller.last_event.metadata["sceneName"].replace("_physics", "") @property def current_frame(self) -> np.ndarray: """Returns rgb image corresponding to the agent's egocentric view.""" return self.controller.last_event.frame @property def current_depth(self) -> np.ndarray: """Returns depth image corresponding to the agent's egocentric view.""" return self.controller.last_event.depth_frame @property def current_frames(self) -> List[np.ndarray]: """Returns rgb images corresponding to the agents' egocentric views.""" return [ self.controller.last_event.events[agent_id].frame for agent_id in range(self.agent_count) ] @property def current_depths(self) -> List[np.ndarray]: """Returns depth images corresponding to the agents' egocentric views.""" return [ self.controller.last_event.events[agent_id].depth_frame for agent_id in range(self.agent_count) ] @property def last_event(self) -> ai2thor.server.Event: """Last event returned by the controller.""" return self.controller.last_event @property def last_action(self) -> str: """Last action, as a string, taken by the agent.""" return self.controller.last_event.metadata["lastAction"] @property def last_action_success(self) -> bool: """Was the last action taken by the agent a success?""" return self.controller.last_event.metadata["lastActionSuccess"] @property def last_action_return(self) -> Any: """Get the value returned by the last action (if applicable). For an example of an action that returns a value, see `"GetReachablePositions"`. """ return self.controller.last_event.metadata["actionReturn"] def step( self, action_dict: Optional[Dict[str, Union[str, int, float, Dict]]] = None, **kwargs: Union[str, int, float, Dict], ) -> ai2thor.server.Event: """Take a step in the ai2thor environment.""" if action_dict is None: action_dict = dict() action_dict.update(kwargs) return self.controller.step(**action_dict) def stop(self): """Stops the ai2thor controller.""" try: self.controller.stop() except Exception as e: get_logger().warning(str(e)) def all_objects(self) -> List[Dict[str, Any]]: """Return all object metadata.""" return self.controller.last_event.metadata["objects"] def all_objects_with_properties( self, properties: Dict[str, Any] ) -> List[Dict[str, Any]]: """Find all objects with the given properties.""" objects = [] for o in self.all_objects(): satisfies_all = True for k, v in properties.items(): if o[k] != v: satisfies_all = False break if satisfies_all: objects.append(o) return objects def visible_objects(self) -> List[Dict[str, Any]]: """Return all visible objects.""" return self.all_objects_with_properties({"visible": True}) class RoboThorCachedEnvironment: """Wrapper for the robo2thor controller providing additional functionality and bookkeeping. See [here](https://ai2thor.allenai.org/robothor/documentation) for comprehensive documentation on RoboTHOR. # Attributes controller : The AI2THOR controller. config : The AI2THOR controller configuration """ def __init__(self, **kwargs): self.config = dict( rotateStepDegrees=30.0, visibilityDistance=1.0, gridSize=0.25, continuousMode=True, snapToGrid=False, agentMode="locobot", width=640, height=480, ) self.env_root_dir = kwargs["env_root_dir"] random_scene = random.choice(list(glob.glob(self.env_root_dir + "/*.pkl"))) handle = open(random_scene, "rb") self.view_cache = pickle.load(handle) handle.close() self.agent_position = list(self.view_cache.keys())[0] self.agent_rotation = list(self.view_cache[self.agent_position].keys())[0] self.known_good_locations: Dict[str, Any] = { self.scene_name: copy.deepcopy(self.currently_reachable_points) } self._last_action = "None" assert len(self.known_good_locations[self.scene_name]) > 10 def agent_state(self) -> Dict[str, Union[Dict[str, float], float]]: """Return agent position, rotation and horizon.""" return { **str_to_pos_for_cache(self.agent_position), "rotation": {"x": 0.0, "y": self.agent_rotation, "z": 0.0}, "horizon": 1.0, } def teleport( self, pose: Dict[str, float], rotation: Dict[str, float], horizon: float = 0.0 ): self.agent_position = pos_to_str_for_cache(pose) self.agent_rotation = ( math.floor(rotation["y"] / 90.0) * 90 ) # round to nearest 90 degree angle return True def reset(self, scene_name: str = None) -> None: """Resets scene to a known initial state.""" try: handle = open(self.env_root_dir + "/" + scene_name + ".pkl", "rb") self.view_cache = pickle.load(handle) handle.close() self.agent_position = list(self.view_cache.keys())[0] self.agent_rotation = list(self.view_cache[self.agent_position].keys())[0] self.known_good_locations[self.scene_name] = copy.deepcopy( self.currently_reachable_points ) self._last_action = "None" assert len(self.known_good_locations[self.scene_name]) > 10 except Exception as _: raise RuntimeError("Could not load scene:", scene_name) def known_good_locations_list(self): return self.known_good_locations[self.scene_name] @property def currently_reachable_points(self) -> List[Dict[str, float]]: """List of {"x": x, "y": y, "z": z} locations in the scene that are currently reachable.""" return [str_to_pos_for_cache(pos) for pos in self.view_cache] @property def scene_name(self) -> str: """Current ai2thor scene.""" return self.view_cache[self.agent_position][self.agent_rotation].metadata[ "sceneName" ] @property def current_frame(self) -> np.ndarray: """Returns rgb image corresponding to the agent's egocentric view.""" return self.view_cache[self.agent_position][self.agent_rotation].frame @property def current_depth(self) -> np.ndarray: """Returns depth image corresponding to the agent's egocentric view.""" return self.view_cache[self.agent_position][self.agent_rotation].depth_frame @property def last_event(self) -> ai2thor.server.Event: """Last event returned by the controller.""" return self.view_cache[self.agent_position][self.agent_rotation] @property def last_action(self) -> str: """Last action, as a string, taken by the agent.""" return self._last_action @property def last_action_success(self) -> bool: """In the cached environment, all actions succeed.""" return True @property def last_action_return(self) -> Any: """Get the value returned by the last action (if applicable). For an example of an action that returns a value, see `"GetReachablePositions"`. """ return self.view_cache[self.agent_position][self.agent_rotation].metadata[ "actionReturn" ] def step( self, action_dict: Dict[str, Union[str, int, float]] ) -> ai2thor.server.Event: """Take a step in the ai2thor environment.""" self._last_action = action_dict["action"] if action_dict["action"] == "RotateLeft": self.agent_rotation = (self.agent_rotation - 90.0) % 360.0 elif action_dict["action"] == "RotateRight": self.agent_rotation = (self.agent_rotation + 90.0) % 360.0 elif action_dict["action"] == "MoveAhead": pos = str_to_pos_for_cache(self.agent_position) if self.agent_rotation == 0.0: pos["x"] += 0.25 elif self.agent_rotation == 90.0: pos["z"] += 0.25 elif self.agent_rotation == 180.0: pos["x"] -= 0.25 elif self.agent_rotation == 270.0: pos["z"] -= 0.25 pos_string = pos_to_str_for_cache(pos) if pos_string in self.view_cache: self.agent_position = pos_to_str_for_cache(pos) return self.last_event # noinspection PyMethodMayBeStatic def stop(self): """Stops the ai2thor controller.""" print("No need to stop cached environment") def all_objects(self) -> List[Dict[str, Any]]: """Return all object metadata.""" return self.view_cache[self.agent_position][self.agent_rotation].metadata[ "objects" ] def all_objects_with_properties( self, properties: Dict[str, Any] ) -> List[Dict[str, Any]]: """Find all objects with the given properties.""" objects = [] for o in self.all_objects(): satisfies_all = True for k, v in properties.items(): if o[k] != v: satisfies_all = False break if satisfies_all: objects.append(o) return objects def visible_objects(self) -> List[Dict[str, Any]]: """Return all visible objects.""" return self.all_objects_with_properties({"visible": True})
ask4help-main
allenact_plugins/robothor_plugin/robothor_environment.py
MOVE_AHEAD = "MoveAhead" ROTATE_LEFT = "RotateLeft" ROTATE_RIGHT = "RotateRight" LOOK_DOWN = "LookDown" LOOK_UP = "LookUp" END = "End" PASS = "Pass"
ask4help-main
allenact_plugins/robothor_plugin/robothor_constants.py
from typing import Tuple import torch from allenact.base_abstractions.distributions import CategoricalDistr, Distr class TupleCategoricalDistr(Distr): def __init__(self, probs=None, logits=None, validate_args=None): self.dists = CategoricalDistr( probs=probs, logits=logits, validate_args=validate_args ) def log_prob(self, actions: Tuple[torch.LongTensor, ...]) -> torch.FloatTensor: # flattened output [steps, samplers, num_agents] return self.dists.log_prob(torch.stack(actions, dim=-1)) def entropy(self) -> torch.FloatTensor: # flattened output [steps, samplers, num_agents] return self.dists.entropy() def sample(self, sample_shape=torch.Size()) -> Tuple[torch.LongTensor, ...]: # split and remove trailing singleton dim res = self.dists.sample(sample_shape).split(1, dim=-1) return tuple([r.view(r.shape[:2]) for r in res]) def mode(self) -> Tuple[torch.LongTensor, ...]: # split and remove trailing singleton dim res = self.dists.mode().split(1, dim=-1) return tuple([r.view(r.shape[:2]) for r in res])
ask4help-main
allenact_plugins/robothor_plugin/robothor_distributions.py
from typing import Tuple, Dict, Union, Sequence, Optional, cast import gym import torch import torch.nn as nn from gym.spaces import Dict as SpaceDict from allenact.algorithms.onpolicy_sync.policy import ( ActorCriticModel, LinearActorCriticHead, DistributionType, Memory, ObservationType, ) from allenact.base_abstractions.distributions import CategoricalDistr from allenact.base_abstractions.misc import ActorCriticOutput from allenact.embodiedai.models.basic_models import RNNStateEncoder, SimpleCNN from allenact_plugins.robothor_plugin.robothor_distributions import ( TupleCategoricalDistr, ) class ResnetTensorGoalEncoder(nn.Module): def __init__( self, observation_spaces: SpaceDict, goal_sensor_uuid: str, resnet_preprocessor_uuid: str, class_dims: int = 32, resnet_compressor_hidden_out_dims: Tuple[int, int] = (128, 32), combiner_hidden_out_dims: Tuple[int, int] = (128, 32), ) -> None: super().__init__() self.goal_uuid = goal_sensor_uuid self.resnet_uuid = resnet_preprocessor_uuid self.class_dims = class_dims self.resnet_hid_out_dims = resnet_compressor_hidden_out_dims self.combine_hid_out_dims = combiner_hidden_out_dims self.embed_class = nn.Embedding( num_embeddings=observation_spaces.spaces[self.goal_uuid].n, embedding_dim=self.class_dims, ) self.blind = self.resnet_uuid not in observation_spaces.spaces if not self.blind: self.resnet_tensor_shape = observation_spaces.spaces[self.resnet_uuid].shape self.resnet_compressor = nn.Sequential( nn.Conv2d(self.resnet_tensor_shape[0], self.resnet_hid_out_dims[0], 1), nn.ReLU(), nn.Conv2d(*self.resnet_hid_out_dims[0:2], 1), nn.ReLU(), ) self.target_obs_combiner = nn.Sequential( nn.Conv2d( self.resnet_hid_out_dims[1] + self.class_dims, self.combine_hid_out_dims[0], 1, ), nn.ReLU(), nn.Conv2d(*self.combine_hid_out_dims[0:2], 1), ) @property def is_blind(self): return self.blind @property def output_dims(self): if self.blind: return self.class_dims else: return ( self.combine_hid_out_dims[-1] * self.resnet_tensor_shape[1] * self.resnet_tensor_shape[2] ) def get_object_type_encoding( self, observations: Dict[str, torch.FloatTensor] ) -> torch.FloatTensor: """Get the object type encoding from input batched observations.""" return cast( torch.FloatTensor, self.embed_class(observations[self.goal_uuid].to(torch.int64)), ) def compress_resnet(self, observations): return self.resnet_compressor(observations[self.resnet_uuid]) def distribute_target(self, observations): target_emb = self.embed_class(observations[self.goal_uuid]) return target_emb.view(-1, self.class_dims, 1, 1).expand( -1, -1, self.resnet_tensor_shape[-2], self.resnet_tensor_shape[-1] ) def adapt_input(self, observations): resnet = observations[self.resnet_uuid] use_agent = False nagent = 1 if len(resnet.shape) == 6: use_agent = True nstep, nsampler, nagent = resnet.shape[:3] else: nstep, nsampler = resnet.shape[:2] observations[self.resnet_uuid] = resnet.view(-1, *resnet.shape[-3:]) observations[self.goal_uuid] = observations[self.goal_uuid].view(-1, 1) return observations, use_agent, nstep, nsampler, nagent @staticmethod def adapt_output(x, use_agent, nstep, nsampler, nagent): if use_agent: return x.view(nstep, nsampler, nagent, -1) return x.view(nstep, nsampler * nagent, -1) def forward(self, observations): observations, use_agent, nstep, nsampler, nagent = self.adapt_input( observations ) if self.blind: return self.embed_class(observations[self.goal_uuid]) embs = [ self.compress_resnet(observations), self.distribute_target(observations), ] x = self.target_obs_combiner(torch.cat(embs, dim=-3,)) x = x.reshape(x.size(0), -1) # flatten return self.adapt_output(x, use_agent, nstep, nsampler, nagent) class ResnetTensorObjectNavActorCritic(ActorCriticModel[CategoricalDistr]): def __init__( self, action_space: gym.spaces.Discrete, observation_space: SpaceDict, goal_sensor_uuid: str, resnet_preprocessor_uuid: str, rnn_hidden_size: int = 512, goal_dims: int = 32, resnet_compressor_hidden_out_dims: Tuple[int, int] = (128, 32), combiner_hidden_out_dims: Tuple[int, int] = (128, 32), ): super().__init__( action_space=action_space, observation_space=observation_space, ) self.hidden_size = rnn_hidden_size self.goal_visual_encoder = ResnetTensorGoalEncoder( self.observation_space, goal_sensor_uuid, resnet_preprocessor_uuid, goal_dims, resnet_compressor_hidden_out_dims, combiner_hidden_out_dims, ) self.state_encoder = RNNStateEncoder( self.goal_visual_encoder.output_dims, rnn_hidden_size, ) self.actor_critic = LinearActorCriticHead(self.hidden_size, action_space.n) self.train() @property def recurrent_hidden_state_size( self, ) -> Union[int, Dict[str, Tuple[Sequence[Tuple[str, Optional[int]]], torch.dtype]]]: """The recurrent hidden state size of the model.""" return self.hidden_size @property def is_blind(self) -> bool: """True if the model is blind (e.g. neither 'depth' or 'rgb' is an input observation type).""" return self.goal_visual_encoder.is_blind @property def num_recurrent_layers(self) -> int: """Number of recurrent hidden layers.""" return self.state_encoder.num_recurrent_layers def _recurrent_memory_specification(self): return { "rnn_hidden": ( ( ("layer", self.state_encoder.num_recurrent_layers), ("sampler", None), ("hidden", self.hidden_size), ), torch.float32, ) } def get_object_type_encoding( self, observations: Dict[str, torch.FloatTensor] ) -> torch.FloatTensor: """Get the object type encoding from input batched observations.""" return self.goal_visual_encoder.get_object_type_encoding(observations) def forward( # type:ignore self, observations: ObservationType, memory: Memory, prev_actions: torch.Tensor, masks: torch.FloatTensor, ) -> Tuple[ActorCriticOutput[DistributionType], Optional[Memory]]: x = self.goal_visual_encoder(observations) x, rnn_hidden_states = self.state_encoder(x, memory.tensor("rnn_hidden"), masks) dists, vals = self.actor_critic(x) return ( ActorCriticOutput(distributions=dists, values=vals, extras={},), memory.set_tensor("rnn_hidden", rnn_hidden_states), ) class ResnetFasterRCNNTensorsGoalEncoder(nn.Module): def __init__( self, observation_spaces: SpaceDict, goal_sensor_uuid: str, resnet_preprocessor_uuid: str, detector_preprocessor_uuid: str, class_dims: int = 32, max_dets: int = 3, resnet_compressor_hidden_out_dims: Tuple[int, int] = (128, 32), box_embedder_hidden_out_dims: Tuple[int, int] = (128, 32), class_embedder_hidden_out_dims: Tuple[int, int] = (128, 32), combiner_hidden_out_dims: Tuple[int, int] = (128, 32), ) -> None: super().__init__() self.goal_uuid = goal_sensor_uuid self.resnet_uuid = resnet_preprocessor_uuid self.detector_uuid = detector_preprocessor_uuid self.class_dims = class_dims self.max_dets = max_dets self.resnet_hid_out_dims = resnet_compressor_hidden_out_dims self.box_hid_out_dims = box_embedder_hidden_out_dims self.class_hid_out_dims = class_embedder_hidden_out_dims self.combine_hid_out_dims = combiner_hidden_out_dims self.embed_class = nn.Embedding( num_embeddings=observation_spaces.spaces[self.goal_uuid].n, embedding_dim=self.class_dims, ) self.blind = (self.resnet_uuid not in observation_spaces.spaces) and ( self.detector_uuid not in observation_spaces.spaces ) if not self.blind: self.resnet_tensor_shape = observation_spaces.spaces[self.resnet_uuid].shape self.resnet_compressor = nn.Sequential( nn.Conv2d(self.resnet_tensor_shape[0], self.resnet_hid_out_dims[0], 1), nn.ReLU(), nn.Conv2d(*self.resnet_hid_out_dims[0:2], 1), nn.ReLU(), ) self.box_tensor_shape = ( observation_spaces.spaces[self.detector_uuid] .spaces["frcnn_boxes"] .shape ) assert ( self.box_tensor_shape[1:] == self.resnet_tensor_shape[1:] ), "Spatial dimensions of object detector and resnet tensor do not match: {} vs {}".format( self.box_tensor_shape, self.resnet_tensor_shape ) self.box_embedder = nn.Sequential( nn.Conv2d(self.box_tensor_shape[0], self.box_hid_out_dims[0], 1), nn.ReLU(), nn.Conv2d(*self.box_hid_out_dims[0:2], 1), nn.ReLU(), ) self.class_combiner = nn.Sequential( nn.Conv2d( self.max_dets * self.class_dims, self.class_hid_out_dims[0], 1 ), nn.ReLU(), nn.Conv2d(*self.class_hid_out_dims[0:2], 1), nn.ReLU(), ) self.target_obs_combiner = nn.Sequential( nn.Conv2d( self.resnet_hid_out_dims[1] + self.box_hid_out_dims[1] + self.class_hid_out_dims[1] + self.class_dims, self.combine_hid_out_dims[0], 1, ), nn.ReLU(), nn.Conv2d(*self.combine_hid_out_dims[0:2], 1), ) @property def is_blind(self): return self.blind @property def output_dims(self): if self.blind: return self.class_dims else: return ( self.combine_hid_out_dims[-1] * self.resnet_tensor_shape[1] * self.resnet_tensor_shape[2] ) def get_object_type_encoding( self, observations: Dict[str, torch.FloatTensor] ) -> torch.FloatTensor: """Get the object type encoding from input batched observations.""" return cast( torch.FloatTensor, self.embed_class(observations[self.goal_uuid].to(torch.int64)), ) def compress_resnet(self, observations): return self.resnet_compressor(observations[self.resnet_uuid]) def distribute_target(self, observations): target_emb = self.embed_class(observations[self.goal_uuid]) return target_emb.view(-1, self.class_dims, 1, 1).expand( -1, -1, self.resnet_tensor_shape[-2], self.resnet_tensor_shape[-1] ) def embed_classes(self, observations): classes = observations[self.detector_uuid]["frcnn_classes"] classes = classes.permute(0, 2, 3, 1).contiguous() # move classes to last dim classes_shape = classes.shape class_emb = self.embed_class(classes.view(-1)) # (flattened) class_emb = class_emb.view( classes_shape[:-1] + (self.max_dets * class_emb.shape[-1],) ) # align embedding along last dimension class_emb = class_emb.permute( 0, 3, 1, 2 ).contiguous() # convert into image tensor return self.class_combiner(class_emb) def embed_boxes(self, observations): return self.box_embedder(observations[self.detector_uuid]["frcnn_boxes"]) def adapt_input(self, observations): boxes = observations[self.detector_uuid]["frcnn_boxes"] classes = observations[self.detector_uuid]["frcnn_classes"] use_agent = False nagent = 1 if len(boxes.shape) == 6: use_agent = True nstep, nsampler, nagent = boxes.shape[:3] else: nstep, nsampler = boxes.shape[:2] observations[self.detector_uuid]["frcnn_boxes"] = boxes.view( -1, *boxes.shape[-3:] ) observations[self.detector_uuid]["frcnn_classes"] = classes.view( -1, *classes.shape[-3:] ) observations[self.goal_uuid] = observations[self.goal_uuid].view(-1, 1) return observations, use_agent, nstep, nsampler, nagent @staticmethod def adapt_output(x, use_agent, nstep, nsampler, nagent): if use_agent: return x.view(nstep, nsampler, nagent, -1) return x.view(nstep, nsampler * nagent, -1) def forward(self, observations): observations, use_agent, nstep, nsampler, nagent = self.adapt_input( observations ) if self.blind: return self.embed_class(observations[self.goal_uuid]) embs = [ self.compress_resnet(observations), self.embed_boxes(observations), self.embed_classes(observations), self.distribute_target(observations), ] x = self.target_obs_combiner(torch.cat(embs, dim=-3,)) x = x.reshape(x.size(0), -1) # flatten return self.adapt_output(x, use_agent, nstep, nsampler, nagent) class ResnetFasterRCNNTensorsObjectNavActorCritic(ActorCriticModel[CategoricalDistr]): def __init__( self, action_space: gym.spaces.Discrete, observation_space: SpaceDict, goal_sensor_uuid: str, resnet_preprocessor_uuid: str, detector_preprocessor_uuid: str, rnn_hidden_size=512, goal_dims: int = 32, max_dets: int = 3, resnet_compressor_hidden_out_dims: Tuple[int, int] = (128, 32), box_embedder_hidden_out_dims: Tuple[int, int] = (128, 32), class_embedder_hidden_out_dims: Tuple[int, int] = (128, 32), combiner_hidden_out_dims: Tuple[int, int] = (128, 32), ): super().__init__( action_space=action_space, observation_space=observation_space, ) self.hidden_size = rnn_hidden_size self.goal_visual_encoder = ResnetFasterRCNNTensorsGoalEncoder( self.observation_space, goal_sensor_uuid, resnet_preprocessor_uuid, detector_preprocessor_uuid, goal_dims, max_dets, resnet_compressor_hidden_out_dims, box_embedder_hidden_out_dims, class_embedder_hidden_out_dims, combiner_hidden_out_dims, ) self.state_encoder = RNNStateEncoder( self.goal_visual_encoder.output_dims, rnn_hidden_size, ) self.actor_critic = LinearActorCriticHead(self.hidden_size, action_space.n) self.train() @property def recurrent_hidden_state_size(self) -> int: """The recurrent hidden state size of the model.""" return self.hidden_size @property def is_blind(self) -> bool: """True if the model is blind (e.g. neither 'depth' or 'rgb' is an input observation type).""" return self.goal_visual_encoder.is_blind @property def num_recurrent_layers(self) -> int: """Number of recurrent hidden layers.""" return self.state_encoder.num_recurrent_layers def _recurrent_memory_specification(self): return { "rnn_hidden": ( ( ("layer", self.state_encoder.num_recurrent_layers), ("sampler", None), ("hidden", self.hidden_size), ), torch.float32, ) } def get_object_type_encoding( self, observations: Dict[str, torch.FloatTensor] ) -> torch.FloatTensor: """Get the object type encoding from input batched observations.""" return self.goal_visual_encoder.get_object_type_encoding(observations) def forward( # type:ignore self, observations: ObservationType, memory: Memory, prev_actions: torch.Tensor, masks: torch.FloatTensor, ) -> Tuple[ActorCriticOutput[DistributionType], Optional[Memory]]: x = self.goal_visual_encoder(observations) x, rnn_hidden_states = self.state_encoder(x, memory.tensor("rnn_hidden"), masks) dists, vals = self.actor_critic(x) return ( ActorCriticOutput(distributions=dists, values=vals, extras={},), memory.set_tensor("rnn_hidden", rnn_hidden_states), ) class TupleLinearActorCriticHead(LinearActorCriticHead): def forward(self, x): out = self.actor_and_critic(x) logits = out[..., :-1] values = out[..., -1:] # noinspection PyArgumentList return ( TupleCategoricalDistr(logits=logits), # [steps, samplers, ...] values.view(*values.shape[:2], -1), # [steps, samplers, flattened] ) class NavToPartnerActorCriticSimpleConvRNN(ActorCriticModel[TupleCategoricalDistr]): def __init__( self, action_space: gym.spaces.Tuple, observation_space: SpaceDict, rgb_uuid: Optional[str] = "rgb", hidden_size=512, num_rnn_layers=1, rnn_type="GRU", ): super().__init__(action_space=action_space, observation_space=observation_space) self._hidden_size = hidden_size self.rgb_uuid = rgb_uuid self.visual_encoder = SimpleCNN( observation_space=observation_space, output_size=hidden_size, rgb_uuid=self.rgb_uuid, depth_uuid=None, ) self.state_encoder = RNNStateEncoder( 0 if self.is_blind else self.recurrent_hidden_state_size, self._hidden_size, num_layers=num_rnn_layers, rnn_type=rnn_type, ) self.actor_critic = TupleLinearActorCriticHead( self._hidden_size, action_space[0].n ) self.train() @property def output_size(self): return self._hidden_size @property def is_blind(self): return self.visual_encoder.is_blind @property def num_recurrent_layers(self): return self.state_encoder.num_recurrent_layers @property def recurrent_hidden_state_size(self): return self._hidden_size @property def num_agents(self): return len(self.action_space) def _recurrent_memory_specification(self): return dict( rnn=( ( ("layer", self.num_recurrent_layers), ("sampler", None), ("agent", self.num_agents), ("hidden", self.recurrent_hidden_state_size), ), torch.float32, ) ) def forward( # type:ignore self, observations: ObservationType, memory: Memory, prev_actions: torch.Tensor, masks: torch.FloatTensor, ) -> Tuple[ActorCriticOutput[DistributionType], Optional[Memory]]: if not self.is_blind: perception_embed = self.visual_encoder(observations) else: # TODO manage blindness for all agents simultaneously or separate? raise NotImplementedError() # TODO alternative where all agents consume all observations x, rnn_hidden_states = self.state_encoder( perception_embed, memory.tensor("rnn"), masks ) dists, vals = self.actor_critic(x) return ( ActorCriticOutput(distributions=dists, values=vals, extras={},), memory.set_tensor("rnn", rnn_hidden_states), )
ask4help-main
allenact_plugins/robothor_plugin/robothor_models.py
ask4help-main
allenact_plugins/robothor_plugin/__init__.py
import math from typing import Tuple, List, Dict, Any, Optional, Union, Sequence, cast import gym import numpy as np from allenact.base_abstractions.misc import RLStepResult from allenact.base_abstractions.sensor import Sensor from allenact.base_abstractions.task import Task from allenact.utils.system import get_logger from allenact.utils.tensor_utils import tile_images from allenact_plugins.ithor_plugin.ithor_environment import IThorEnvironment from allenact_plugins.robothor_plugin.robothor_constants import ( MOVE_AHEAD, ROTATE_LEFT, ROTATE_RIGHT, END, LOOK_UP, LOOK_DOWN, ) from allenact_plugins.robothor_plugin.robothor_environment import RoboThorEnvironment def spl_metric( success: bool, optimal_distance: float, travelled_distance: float ) -> Optional[float]: if not success: return 0.0 elif optimal_distance < 0: return None elif optimal_distance == 0: if travelled_distance == 0: return 1.0 else: return 0.0 else: travelled_distance = max(travelled_distance, optimal_distance) return optimal_distance / travelled_distance class PointNavTask(Task[RoboThorEnvironment]): _actions = (MOVE_AHEAD, ROTATE_LEFT, ROTATE_RIGHT, END) def __init__( self, env: RoboThorEnvironment, sensors: List[Sensor], task_info: Dict[str, Any], max_steps: int, reward_configs: Dict[str, Any], **kwargs, ) -> None: super().__init__( env=env, sensors=sensors, task_info=task_info, max_steps=max_steps, **kwargs ) self.reward_configs = reward_configs self._took_end_action: bool = False self._success: Optional[bool] = False self.last_geodesic_distance = self.env.distance_to_point( self.task_info["target"] ) self.optimal_distance = self.last_geodesic_distance self._rewards: List[float] = [] self._distance_to_goal: List[float] = [] self._metrics = None self.path: List[ Any ] = [] # the initial coordinate will be directly taken from the optimal path self.travelled_distance = 0.0 self.task_info["followed_path"] = [self.env.agent_state()] self.task_info["action_names"] = self.action_names() @property def action_space(self): return gym.spaces.Discrete(len(self._actions)) def reached_terminal_state(self) -> bool: return self._took_end_action @classmethod def class_action_names(cls, **kwargs) -> Tuple[str, ...]: return cls._actions def close(self) -> None: self.env.stop() def _step(self, action: Union[int, Sequence[int]]) -> RLStepResult: assert isinstance(action, int) action = cast(int, action) action_str = self.class_action_names()[action] if action_str == END: self._took_end_action = True self._success = self._is_goal_in_range() self.last_action_success = self._success else: self.env.step({"action": action_str}) self.last_action_success = self.env.last_action_success pose = self.env.agent_state() self.path.append({k: pose[k] for k in ["x", "y", "z"]}) self.task_info["followed_path"].append(pose) if len(self.path) > 1: self.travelled_distance += IThorEnvironment.position_dist( p0=self.path[-1], p1=self.path[-2], ignore_y=True ) step_result = RLStepResult( observation=self.get_observations(), reward=self.judge(), done=self.is_done(), info={"last_action_success": self.last_action_success, "action": action}, ) return step_result def render(self, mode: str = "rgb", *args, **kwargs) -> np.ndarray: assert mode in ["rgb", "depth"], "only rgb and depth rendering is implemented" if mode == "rgb": return self.env.current_frame elif mode == "depth": return self.env.current_depth def _is_goal_in_range(self) -> Optional[bool]: tget = self.task_info["target"] dist = self.dist_to_target() if -0.5 < dist <= 0.2: return True elif dist > 0.2: return False else: get_logger().debug( "No path for {} from {} to {}".format( self.env.scene_name, self.env.agent_state(), tget ) ) return None def shaping(self) -> float: rew = 0.0 if self.reward_configs["shaping_weight"] == 0.0: return rew geodesic_distance = self.dist_to_target() if geodesic_distance == -1.0: geodesic_distance = self.last_geodesic_distance if ( self.last_geodesic_distance > -0.5 and geodesic_distance > -0.5 ): # (robothor limits) rew += self.last_geodesic_distance - geodesic_distance self.last_geodesic_distance = geodesic_distance return rew * self.reward_configs["shaping_weight"] def judge(self) -> float: """Judge the last event.""" reward = self.reward_configs["step_penalty"] reward += self.shaping() if self._took_end_action: if self._success is not None: reward += ( self.reward_configs["goal_success_reward"] if self._success else self.reward_configs["failed_stop_reward"] ) elif self.num_steps_taken() + 1 >= self.max_steps: reward += self.reward_configs.get("reached_max_steps_reward", 0.0) self._rewards.append(float(reward)) return float(reward) def dist_to_target(self): return self.env.distance_to_point(self.task_info["target"]) def metrics(self) -> Dict[str, Any]: if not self.is_done(): return {} total_reward = float(np.sum(self._rewards)) self._rewards = [] if self._success is None: return {} dist2tget = self.dist_to_target() spl = spl_metric( success=self._success, optimal_distance=self.optimal_distance, travelled_distance=self.travelled_distance, ) metrics = { **super(PointNavTask, self).metrics(), "success": self._success, # False also if no path to target "total_reward": total_reward, "dist_to_target": dist2tget, "spl": 0 if spl is None else spl, } return metrics class ObjectNavTask(Task[RoboThorEnvironment]): _actions = (MOVE_AHEAD, ROTATE_LEFT, ROTATE_RIGHT, END, LOOK_UP, LOOK_DOWN) def __init__( self, env: RoboThorEnvironment, sensors: List[Sensor], task_info: Dict[str, Any], max_steps: int, reward_configs: Dict[str, Any], **kwargs, ) -> None: super().__init__( env=env, sensors=sensors, task_info=task_info, max_steps=max_steps, **kwargs ) self.reward_configs = reward_configs self._took_end_action: bool = False self._success: Optional[bool] = False self.mirror = task_info["mirrored"] self._all_metadata_available = env.all_metadata_available self._rewards: List[float] = [] self._distance_to_goal: List[float] = [] self._metrics = None self.path: List = ( [] ) # the initial coordinate will be directly taken from the optimal path self.travelled_distance = 0.0 self.task_info["followed_path"] = [self.env.agent_state()] self.task_info["taken_actions"] = [] self.task_info["action_names"] = self.class_action_names() self.task_info["taken_ask_actions"] = [] if self._all_metadata_available: self.last_geodesic_distance = self.env.distance_to_object_type( self.task_info["object_type"] ) self.optimal_distance = self.last_geodesic_distance self.closest_geo_distance = self.last_geodesic_distance self.last_expert_action: Optional[int] = None self.agent_asked_for_help = False self.num_steps_expert = 0 self.help_asked_at_all = False self.false_stop = 0 self.asked_init_help_flag = False self.expert_action_span = 0 self.max_expert_span = 0 self.expert_ends_traj = False self.expert_took_step = False self.penalty_given_once = False @property def action_space(self): return gym.spaces.Discrete(len(self._actions)) def reached_terminal_state(self) -> bool: return self._took_end_action @classmethod def class_action_names(cls, **kwargs) -> Tuple[str, ...]: return cls._actions def close(self) -> None: self.env.stop() def _step(self, action: Union[int, Sequence[int]]) -> RLStepResult: ask_action = action['ask_action'] ask_action = cast(int,ask_action) if ask_action==0: # print ('expert takes step') ask_action_str = 'start_asking' self.agent_asked_for_help = True self.help_asked_at_all = True self.expert_action_span+=1 self.max_expert_span = max(self.expert_action_span,self.max_expert_span) if ask_action==1: # print ('agent takes step') ask_action_str = 'stop_asking' self.agent_asked_for_help = False # self.max_expert_span = max(self.expert_action_span,self.max_expert_span) self.expert_action_span = 0 ##reset counter ''' if ask_action==1: # print ('start asking for help') self.agent_asked_for_help = True self.help_asked_at_all = True self.expert_action_span+=1 self.asked_init_help_flag = False # self.max_steps = 5e5 if ask_action==2: # print ('stop asking') self.agent_asked_for_help = False self.max_expert_span = max(self.expert_action_span,self.max_expert_span) self.expert_action_span = 0 ##reset counter if ask_action==0: # print ('do nothing') self.asked_init_help_flag = True if ask_action==3: # print ('ask policy called END') # self._took_end_action = True # self._success = self._is_goal_in_range() # if not self._success: # self.false_stop = 1 # self.last_action_success = self._success self.agent_asked_for_help = False action_str = END ''' action = action['nav_action'] assert isinstance(action, int) action = cast(int, action) if self.agent_asked_for_help: self.num_steps_expert+=1 action_str = self.class_action_names()[action] if self.mirror: if action_str == ROTATE_RIGHT: action_str = ROTATE_LEFT elif action_str == ROTATE_LEFT: action_str = ROTATE_RIGHT self.task_info["taken_actions"].append(action_str) self.task_info["taken_ask_actions"].append(ask_action_str) if action_str == END: if self.expert_took_step: self.expert_ends_traj = True # if ask_action==3: # print ('logic error in ask action END') # exit() self._took_end_action = True self._success = self._is_goal_in_range() if not self._success: self.false_stop = 1 self.last_action_success = self._success else: self.env.step({"action": action_str}) self.last_action_success = self.env.last_action_success pose = self.env.agent_state() self.path.append({k: pose[k] for k in ["x", "y", "z"]}) self.task_info["followed_path"].append(pose) if ask_action==0: self.expert_took_step = True else: self.expert_took_step = False if len(self.path) > 1: self.travelled_distance += IThorEnvironment.position_dist( p0=self.path[-1], p1=self.path[-2], ignore_y=True ) step_result = RLStepResult( observation=self.get_observations(), reward=self.judge(), done=self.is_done(), info={"last_action_success": self.last_action_success, "action": action}, ) return step_result def render(self, mode: str = "rgb", *args, **kwargs) -> np.ndarray: assert mode in ["rgb", "depth"], "only rgb and depth rendering is implemented" if mode == "rgb": frame = self.env.current_frame.copy() elif mode == "depth": frame = self.env.current_depth.copy() else: raise NotImplementedError(f"Mode '{mode}' is not supported.") if self.mirror: frame = frame[:, ::-1, :].copy() # horizontal flip # print("mirrored render") return frame def _is_goal_in_range(self) -> bool: return any( o["objectType"] == self.task_info["object_type"] for o in self.env.visible_objects() ) def shaping(self) -> float: rew = 0.0 if self.reward_configs["shaping_weight"] == 0.0: return rew geodesic_distance = self.env.distance_to_object_type( self.task_info["object_type"] ) # Ensuring the reward magnitude is not greater than the total distance moved max_reward_mag = 0.0 if len(self.path) >= 2: p0, p1 = self.path[-2:] max_reward_mag = math.sqrt( (p0["x"] - p1["x"]) ** 2 + (p0["z"] - p1["z"]) ** 2 ) if self.reward_configs.get("positive_only_reward", False): if geodesic_distance > 0.5: rew = max(self.closest_geo_distance - geodesic_distance, 0) else: if ( self.last_geodesic_distance > -0.5 and geodesic_distance > -0.5 ): # (robothor limits) rew += self.last_geodesic_distance - geodesic_distance self.last_geodesic_distance = geodesic_distance self.closest_geo_distance = min(self.closest_geo_distance, geodesic_distance) return ( max(min(rew, max_reward_mag), -max_reward_mag,) * self.reward_configs["shaping_weight"] ) def judge(self) -> float: """Judge the last event.""" reward = self.reward_configs["step_penalty"] reward += self.shaping() ''' if self.help_asked_at_all and (self.asked_init_help_flag is False): # print ('give initial ask penalty') if not self.penalty_given_once: # print ('given initial ask') reward += self.reward_configs['penalty_for_init_ask'] self.penalty_given_once = True else: # print ('given recurring') reward += self.reward_configs['penalty_for_ask_recurring'] self.asked_init_help_flag = True ''' ## for 2 actions if self.help_asked_at_all: if not self.penalty_given_once: reward += self.reward_configs['penalty_for_init_ask'] self.penalty_given_once = True if self.agent_asked_for_help: # print ('step ask penalty') reward += self.reward_configs['penalty_for_step_ask'] if self._took_end_action: if self._success: reward += self.reward_configs["goal_success_reward"] else: reward += self.reward_configs["failed_stop_reward"] elif self.num_steps_taken() + 1 >= self.max_steps: self.false_stop=1 reward += self.reward_configs['failed_stop_reward'] # reward += self.reward_configs.get("reached_max_steps_reward", 0.0) self._rewards.append(float(reward)) return float(reward) def get_observations(self, **kwargs) -> Any: obs = self.sensor_suite.get_observations(env=self.env, task=self) if self.mirror: for o in obs: if ("rgb" in o or "depth" in o) and isinstance(obs[o], np.ndarray): if ( len(obs[o].shape) == 3 ): # heuristic to determine this is a visual sensor obs[o] = obs[o][:, ::-1, :].copy() # horizontal flip elif len(obs[o].shape) == 2: # perhaps only two axes for depth? obs[o] = obs[o][:, ::-1].copy() # horizontal flip return obs def metrics(self) -> Dict[str, Any]: if not self.is_done(): return {} metrics = super(ObjectNavTask, self).metrics() if self._all_metadata_available: dist2tget = self.env.distance_to_object_type(self.task_info["object_type"]) spl = spl_metric( success=self._success, optimal_distance=self.optimal_distance, travelled_distance=self.travelled_distance, ) expert_action_ratio = self.num_steps_expert/self.num_steps_taken() metrics = { **metrics, "success": self._success, "total_reward": np.sum(self._rewards), "dist_to_target": dist2tget, "part_taken_over_by_expert":expert_action_ratio, "false_done_actions":self.false_stop, "helped_asked_at_all":self.help_asked_at_all, "longest_span_of_expert":self.max_expert_span, "expert_ends_traj":self.expert_ends_traj, "spl": 0 if spl is None else spl, } return metrics def query_expert(self, end_action_only: bool = False, **kwargs) -> Tuple[int, bool]: if not self.agent_asked_for_help: return 0,False ''' noise_control = np.random.choice([0,1],p=[0.8,0.2]) if noise_control==0: action_idx = np.random.choice([0,1,2,4,5],p=[1/5]*5) #return self.class_action_names().index(action_idx), True return action_idx, True ''' if self._is_goal_in_range(): return self.class_action_names().index(END), True if end_action_only: return 0, False else: try: self.env.step( { "action": "ObjectNavExpertAction", "objectType": self.task_info["object_type"], } ) except ValueError: raise RuntimeError( "Attempting to use the action `ObjectNavExpertAction` which is not supported by your version of" " AI2-THOR. The action `ObjectNavExpertAction` is experimental. In order" " to enable this action, please install the (in development) version of AI2-THOR. Through pip" " this can be done with the command" " `pip install -e git+https://github.com/allenai/ai2thor.git@7d914cec13aae62298f5a6a816adb8ac6946c61f#egg=ai2thor`." ) if self.env.last_action_success: expert_action: Optional[str] = self.env.last_event.metadata[ "actionReturn" ] if isinstance(expert_action, str): if self.mirror: if expert_action == "RotateLeft": expert_action = "RotateRight" elif expert_action == "RotateRight": expert_action = "RotateLeft" return self.class_action_names().index(expert_action), True else: # This should have been caught by self._is_goal_in_range()... return 0, False else: return 0, False class NavToPartnerTask(Task[RoboThorEnvironment]): _actions = (MOVE_AHEAD, ROTATE_LEFT, ROTATE_RIGHT) def __init__( self, env: RoboThorEnvironment, sensors: List[Sensor], task_info: Dict[str, Any], max_steps: int, reward_configs: Dict[str, Any], **kwargs, ) -> None: super().__init__( env=env, sensors=sensors, task_info=task_info, max_steps=max_steps, **kwargs ) self.reward_configs = reward_configs assert self.env.agent_count == 2, "NavToPartnerTask only defined for 2 agents!" pose1 = self.env.agent_state(0) pose2 = self.env.agent_state(1) self.last_geodesic_distance = self.env.distance_cache.find_distance( self.env.scene_name, {k: pose1[k] for k in ["x", "y", "z"]}, {k: pose2[k] for k in ["x", "y", "z"]}, self.env.distance_from_point_to_point, ) self.task_info["followed_path1"] = [pose1] self.task_info["followed_path2"] = [pose2] self.task_info["action_names"] = self.class_action_names() @property def action_space(self): return gym.spaces.Tuple( [ gym.spaces.Discrete(len(self._actions)), gym.spaces.Discrete(len(self._actions)), ] ) def reached_terminal_state(self) -> bool: return ( self.last_geodesic_distance <= self.reward_configs["max_success_distance"] ) @classmethod def class_action_names(cls, **kwargs) -> Tuple[str, ...]: return cls._actions def close(self) -> None: self.env.stop() def _step(self, action: Tuple[int, int]) -> RLStepResult: assert isinstance(action, tuple) action_str1 = self.class_action_names()[action[0]] action_str2 = self.class_action_names()[action[1]] self.env.step({"action": action_str1, "agentId": 0}) self.last_action_success1 = self.env.last_action_success self.env.step({"action": action_str2, "agentId": 1}) self.last_action_success2 = self.env.last_action_success pose1 = self.env.agent_state(0) self.task_info["followed_path1"].append(pose1) pose2 = self.env.agent_state(1) self.task_info["followed_path2"].append(pose2) self.last_geodesic_distance = self.env.distance_cache.find_distance( self.env.scene_name, {k: pose1[k] for k in ["x", "y", "z"]}, {k: pose2[k] for k in ["x", "y", "z"]}, self.env.distance_from_point_to_point, ) step_result = RLStepResult( observation=self.get_observations(), reward=self.judge(), done=self.is_done(), info={ "last_action_success": [ self.last_action_success1, self.last_action_success2, ], "action": action, }, ) return step_result def render(self, mode: str = "rgb", *args, **kwargs) -> np.ndarray: assert mode in ["rgb", "depth"], "only rgb and depth rendering is implemented" if mode == "rgb": return tile_images(self.env.current_frames) elif mode == "depth": return tile_images(self.env.current_depths) def judge(self) -> float: """Judge the last event.""" reward = self.reward_configs["step_penalty"] if self.reached_terminal_state(): reward += self.reward_configs["success_reward"] return reward # reward shared by both agents (no shaping) def metrics(self) -> Dict[str, Any]: if not self.is_done(): return {} return { **super().metrics(), "success": self.reached_terminal_state(), }
ask4help-main
allenact_plugins/robothor_plugin/robothor_tasks.py
from typing import Any, Tuple, Optional, Union import gym import numpy as np import quaternion # noqa # pylint: disable=unused-import from allenact.base_abstractions.sensor import Sensor from allenact.embodiedai.sensors.vision_sensors import RGBSensor, DepthSensor from allenact.base_abstractions.task import Task from allenact.utils.misc_utils import prepare_locals_for_super from allenact.utils.system import get_logger from allenact_plugins.ithor_plugin.ithor_environment import IThorEnvironment from allenact_plugins.ithor_plugin.ithor_sensors import RGBSensorThor from allenact_plugins.robothor_plugin.robothor_environment import RoboThorEnvironment from allenact_plugins.robothor_plugin.robothor_tasks import PointNavTask class RGBSensorRoboThor(RGBSensorThor): """Sensor for RGB images in RoboTHOR. Returns from a running RoboThorEnvironment instance, the current RGB frame corresponding to the agent's egocentric view. """ def __init__(self, *args: Any, **kwargs: Any): get_logger().warning( "`RGBSensorRoboThor` is deprecated, use `RGBSensorThor` instead." ) super().__init__(*args, **kwargs) class RGBSensorMultiRoboThor(RGBSensor[RoboThorEnvironment, Task[RoboThorEnvironment]]): """Sensor for RGB images in RoboTHOR. Returns from a running RoboThorEnvironment instance, the current RGB frame corresponding to the agent's egocentric view. """ def __init__(self, agent_count: int = 2, **kwargs): # TODO take all named args from superclass and pass with super().__init__(**prepare_locals_for_super(locals())) super().__init__(**kwargs) self.agent_count = agent_count self.agent_id = 0 def frame_from_env( self, env: RoboThorEnvironment, task: Optional[Task[RoboThorEnvironment]] ) -> np.ndarray: return env.current_frames[self.agent_id].copy() def get_observation( self, env: RoboThorEnvironment, task: Task[RoboThorEnvironment], *args: Any, **kwargs: Any ) -> Any: obs = [] for self.agent_id in range(self.agent_count): obs.append(super().get_observation(env, task, *args, **kwargs)) return np.stack(obs, axis=0) # agents x width x height x channels class GPSCompassSensorRoboThor(Sensor[RoboThorEnvironment, PointNavTask]): def __init__(self, uuid: str = "target_coordinates_ind", **kwargs: Any): observation_space = self._get_observation_space() super().__init__(**prepare_locals_for_super(locals())) def _get_observation_space(self): return gym.spaces.Box( low=np.finfo(np.float32).min, high=np.finfo(np.float32).max, shape=(2,), dtype=np.float32, ) @staticmethod def _compute_pointgoal( source_position: np.ndarray, source_rotation: np.quaternion, goal_position: np.ndarray, ): direction_vector = goal_position - source_position direction_vector_agent = GPSCompassSensorRoboThor.quaternion_rotate_vector( source_rotation.inverse(), direction_vector ) rho, phi = GPSCompassSensorRoboThor.cartesian_to_polar( direction_vector_agent[2], -direction_vector_agent[0] ) return np.array([rho, phi], dtype=np.float32) @staticmethod def quaternion_from_y_angle(angle: float) -> np.quaternion: r"""Creates a quaternion from rotation angle around y axis""" return GPSCompassSensorRoboThor.quaternion_from_coeff( np.array( [0.0, np.sin(np.pi * angle / 360.0), 0.0, np.cos(np.pi * angle / 360.0)] ) ) @staticmethod def quaternion_from_coeff(coeffs: np.ndarray) -> np.quaternion: r"""Creates a quaternions from coeffs in [x, y, z, w] format""" quat = np.quaternion(0, 0, 0, 0) quat.real = coeffs[3] quat.imag = coeffs[0:3] return quat @staticmethod def cartesian_to_polar(x, y): rho = np.sqrt(x ** 2 + y ** 2) phi = np.arctan2(y, x) return rho, phi @staticmethod def quaternion_rotate_vector(quat: np.quaternion, v: np.array) -> np.array: r"""Rotates a vector by a quaternion Args: quat: The quaternion to rotate by v: The vector to rotate Returns: np.array: The rotated vector """ vq = np.quaternion(0, 0, 0, 0) vq.imag = v return (quat * vq * quat.inverse()).imag def get_observation( self, env: RoboThorEnvironment, task: Optional[PointNavTask], *args: Any, **kwargs: Any ) -> Any: agent_state = env.agent_state() agent_position = np.array([agent_state[k] for k in ["x", "y", "z"]]) rotation_world_agent = self.quaternion_from_y_angle( agent_state["rotation"]["y"] ) goal_position = np.array([task.task_info["target"][k] for k in ["x", "y", "z"]]) return self._compute_pointgoal( agent_position, rotation_world_agent, goal_position ) class DepthSensorThor( DepthSensor[ Union[IThorEnvironment, RoboThorEnvironment], Union[Task[IThorEnvironment], Task[RoboThorEnvironment]], ], ): def __init__( self, use_resnet_normalization: Optional[bool] = None, use_normalization: Optional[bool] = None, mean: Optional[np.ndarray] = np.array([[0.5]], dtype=np.float32), stdev: Optional[np.ndarray] = np.array([[0.25]], dtype=np.float32), height: Optional[int] = None, width: Optional[int] = None, uuid: str = "depth", output_shape: Optional[Tuple[int, ...]] = None, output_channels: int = 1, unnormalized_infimum: float = 0.0, unnormalized_supremum: float = 5.0, scale_first: bool = False, **kwargs: Any ): # Give priority to use_normalization, but use_resnet_normalization for backward compat. if not set if use_resnet_normalization is not None and use_normalization is None: use_normalization = use_resnet_normalization elif use_normalization is None: use_normalization = False super().__init__(**prepare_locals_for_super(locals())) def frame_from_env( self, env: RoboThorEnvironment, task: Optional[Task[RoboThorEnvironment]] ) -> np.ndarray: return env.controller.last_event.depth_frame class DepthSensorRoboThor(DepthSensorThor): # For backwards compatibility def __init__(self, *args: Any, **kwargs: Any): get_logger().warning( "`DepthSensorRoboThor` is deprecated, use `DepthSensorThor` instead." ) super().__init__(*args, **kwargs) class RewardConfigSensor(Sensor): def __init__(self,uuid='reward_config_sensor', **kwargs: Any): observation_space = self._get_observation_space() super().__init__(**prepare_locals_for_super(locals())) def _get_observation_space(self): return gym.spaces.Discrete(1) def get_observation(self,env,task,*args: Any, **kwargs: Any) -> Any: config_idx = task.task_info['reward_config_idx'] return np.array(config_idx)
ask4help-main
allenact_plugins/robothor_plugin/robothor_sensors.py
import copy import json import math import os from typing import Tuple, Sequence, Union, Dict, Optional, Any, cast, Generator, List import cv2 import numpy as np from PIL import Image, ImageDraw from ai2thor.controller import Controller from matplotlib import pyplot as plt from matplotlib.figure import Figure import colour as col from allenact.utils.system import get_logger from allenact.utils.viz_utils import TrajectoryViz ROBOTHOR_VIZ_CACHED_TOPDOWN_VIEWS_DIR = os.path.join( os.path.expanduser("~"), ".allenact", "robothor", "top_down_viz_cache" ) class ThorPositionTo2DFrameTranslator(object): def __init__( self, frame_shape_rows_cols: Tuple[int, int], cam_position: Sequence[float], orth_size: float, ): self.frame_shape = frame_shape_rows_cols self.lower_left = np.array((cam_position[0], cam_position[2])) - orth_size self.span = 2 * orth_size def __call__(self, position: Sequence[float]): if len(position) == 3: x, _, z = position else: x, z = position camera_position = (np.array((x, z)) - self.lower_left) / self.span return np.array( ( round(self.frame_shape[0] * (1.0 - camera_position[1])), round(self.frame_shape[1] * camera_position[0]), ), dtype=int, ) class ThorViz(TrajectoryViz): def __init__( self, path_to_trajectory: Sequence[str] = ("task_info", "followed_path"), label: str = "thor_trajectory", figsize: Tuple[float, float] = (8, 4), # width, height fontsize: float = 10, scenes: Union[ Tuple[str, int, int, int, int], Sequence[Tuple[str, int, int, int, int]] ] = ("FloorPlan_Val{}_{}", 1, 3, 1, 5), viz_rows_cols: Tuple[int, int] = (448, 448), single_color: bool = False, view_triangle_only_on_last: bool = True, disable_view_triangle: bool = False, line_opacity: float = 1.0, **kwargs ): super().__init__( path_to_trajectory=path_to_trajectory, label=label, figsize=figsize, fontsize=fontsize, **kwargs ) if isinstance(scenes[0], str): scenes = [ cast(Tuple[str, int, int, int, int], scenes) ] # make it list of tuples self.scenes = cast(List[Tuple[str, int, int, int, int]], scenes) self.room_path = ROBOTHOR_VIZ_CACHED_TOPDOWN_VIEWS_DIR os.makedirs(self.room_path, exist_ok=True) self.viz_rows_cols = viz_rows_cols self.single_color = single_color self.view_triangle_only_on_last = view_triangle_only_on_last self.disable_view_triangle = disable_view_triangle self.line_opacity = line_opacity # Only needed for rendering self.map_data: Optional[Dict[str, Any]] = None self.thor_top_downs: Optional[Dict[str, np.ndarray]] = None self.controller: Optional[Controller] = None def init_top_down_render(self): self.map_data = self.get_translator() self.thor_top_downs = self.make_top_down_views() # No controller needed after this point if self.controller is not None: self.controller.stop() self.controller = None @staticmethod def iterate_scenes( all_scenes: Sequence[Tuple[str, int, int, int, int]] ) -> Generator[str, None, None]: for scenes in all_scenes: for wall in range(scenes[1], scenes[2] + 1): for furniture in range(scenes[3], scenes[4] + 1): roomname = scenes[0].format(wall, furniture) yield roomname def cached_map_data_path(self, roomname: str) -> str: return os.path.join(self.room_path, "map_data__{}.json".format(roomname)) def get_translator(self) -> Dict[str, Any]: roomname = list(ThorViz.iterate_scenes(self.scenes))[0] json_file = self.cached_map_data_path(roomname) if not os.path.exists(json_file): self.make_controller() self.controller.reset(roomname) map_data = self.get_agent_map_data() get_logger().info("Dumping {}".format(json_file)) with open(json_file, "w") as f: json.dump(map_data, f, indent=4, sort_keys=True) else: with open(json_file, "r") as f: map_data = json.load(f) pos_translator = ThorPositionTo2DFrameTranslator( self.viz_rows_cols, self.position_to_tuple(map_data["cam_position"]), map_data["cam_orth_size"], ) map_data["pos_translator"] = pos_translator get_logger().debug("Using map_data {}".format(map_data)) return map_data def cached_image_path(self, roomname: str) -> str: return os.path.join( self.room_path, "{}__r{}_c{}.png".format(roomname, *self.viz_rows_cols) ) def make_top_down_views(self) -> Dict[str, np.ndarray]: top_downs = {} for roomname in self.iterate_scenes(self.scenes): fname = self.cached_image_path(roomname) if not os.path.exists(fname): self.make_controller() self.dump_top_down_view(roomname, fname) top_downs[roomname] = cv2.imread(fname) return top_downs def crop_viz_image(self, viz_image: np.ndarray) -> np.ndarray: # Top-down view of room spans vertically near the center of the frame in RoboTHOR: y_min = int(self.viz_rows_cols[0] * 0.3) y_max = int(self.viz_rows_cols[0] * 0.8) # But it covers approximately the entire width: x_min = 0 x_max = self.viz_rows_cols[1] cropped_viz_image = viz_image[y_min:y_max, x_min:x_max, :] return cropped_viz_image def make_controller(self): if self.controller is None: self.controller = Controller() self.controller.step({"action": "ChangeQuality", "quality": "Very High"}) self.controller.step( { "action": "ChangeResolution", "x": self.viz_rows_cols[1], "y": self.viz_rows_cols[0], } ) def get_agent_map_data(self): self.controller.step({"action": "ToggleMapView"}) cam_position = self.controller.last_event.metadata["cameraPosition"] cam_orth_size = self.controller.last_event.metadata["cameraOrthSize"] to_return = { "cam_position": cam_position, "cam_orth_size": cam_orth_size, } self.controller.step({"action": "ToggleMapView"}) return to_return @staticmethod def position_to_tuple(position: Dict[str, float]) -> Tuple[float, float, float]: return position["x"], position["y"], position["z"] @staticmethod def add_lines_to_map( ps: Sequence[Any], frame: np.ndarray, pos_translator: ThorPositionTo2DFrameTranslator, opacity: float, color: Optional[Tuple[int, ...]] = None, ) -> np.ndarray: if len(ps) <= 1: return frame if color is None: color = (255, 0, 0) img1 = Image.fromarray(frame.astype("uint8"), "RGB").convert("RGBA") img2 = Image.new("RGBA", frame.shape[:-1]) # Use RGBA opacity = int(round(255 * opacity)) # Define transparency for the triangle. draw = ImageDraw.Draw(img2) for i in range(len(ps) - 1): draw.line( tuple(reversed(pos_translator(ps[i]))) + tuple(reversed(pos_translator(ps[i + 1]))), fill=color + (opacity,), width=int(frame.shape[0] / 100), ) img = Image.alpha_composite(img1, img2) return np.array(img.convert("RGB")) @staticmethod def add_line_to_map( p0: Any, p1: Any, frame: np.ndarray, pos_translator: ThorPositionTo2DFrameTranslator, opacity: float, color: Optional[Tuple[int, ...]] = None, ) -> np.ndarray: if p0 == p1: return frame if color is None: color = (255, 0, 0) img1 = Image.fromarray(frame.astype("uint8"), "RGB").convert("RGBA") img2 = Image.new("RGBA", frame.shape[:-1]) # Use RGBA opacity = int(round(255 * opacity)) # Define transparency for the triangle. draw = ImageDraw.Draw(img2) draw.line( tuple(reversed(pos_translator(p0))) + tuple(reversed(pos_translator(p1))), fill=color + (opacity,), width=int(frame.shape[0] / 100), ) img = Image.alpha_composite(img1, img2) return np.array(img.convert("RGB")) @staticmethod def add_agent_view_triangle( position: Any, rotation: Dict[str, float], frame: np.ndarray, pos_translator: ThorPositionTo2DFrameTranslator, scale: float = 1.0, opacity: float = 0.1, ) -> np.ndarray: p0 = np.array((position[0], position[2])) p1 = copy.copy(p0) p2 = copy.copy(p0) theta = -2 * math.pi * (rotation["y"] / 360.0) rotation_mat = np.array( [[math.cos(theta), -math.sin(theta)], [math.sin(theta), math.cos(theta)]] ) offset1 = scale * np.array([-1 / 2.0, 1]) offset2 = scale * np.array([1 / 2.0, 1]) p1 += np.matmul(rotation_mat, offset1) p2 += np.matmul(rotation_mat, offset2) img1 = Image.fromarray(frame.astype("uint8"), "RGB").convert("RGBA") img2 = Image.new("RGBA", frame.shape[:-1]) # Use RGBA opacity = int(round(255 * opacity)) # Define transparency for the triangle. points = [tuple(reversed(pos_translator(p))) for p in [p0, p1, p2]] draw = ImageDraw.Draw(img2) draw.polygon(points, fill=(255, 255, 255, opacity)) img = Image.alpha_composite(img1, img2) return np.array(img.convert("RGB")) @staticmethod def visualize_agent_path( positions: Sequence[Any], frame: np.ndarray, pos_translator: ThorPositionTo2DFrameTranslator, single_color: bool = False, view_triangle_only_on_last: bool = False, disable_view_triangle: bool = False, line_opacity: float = 1.0, trajectory_start_end_color_str: Tuple[str, str] = ("red", "green"), ) -> np.ndarray: if single_color: frame = ThorViz.add_lines_to_map( list(map(ThorViz.position_to_tuple, positions)), frame, pos_translator, line_opacity, tuple( map( lambda x: int(round(255 * x)), col.Color(trajectory_start_end_color_str[0]).rgb, ) ), ) else: if len(positions) > 1: colors = list( col.Color(trajectory_start_end_color_str[0]).range_to( col.Color(trajectory_start_end_color_str[1]), len(positions) - 1 ) ) for i in range(len(positions) - 1): frame = ThorViz.add_line_to_map( ThorViz.position_to_tuple(positions[i]), ThorViz.position_to_tuple(positions[i + 1]), frame, pos_translator, opacity=line_opacity, color=tuple(map(lambda x: int(round(255 * x)), colors[i].rgb)), ) if view_triangle_only_on_last: positions = [positions[-1]] if disable_view_triangle: positions = [] for position in positions: frame = ThorViz.add_agent_view_triangle( ThorViz.position_to_tuple(position), rotation=position["rotation"], frame=frame, pos_translator=pos_translator, opacity=0.05 + view_triangle_only_on_last * 0.2, ) return frame def dump_top_down_view(self, room_name: str, image_path: str): get_logger().debug("Dumping {}".format(image_path)) self.controller.reset(room_name) self.controller.step( {"action": "Initialize", "gridSize": 0.1, "makeAgentsVisible": False} ) self.controller.step({"action": "ToggleMapView"}) top_down_view = self.controller.last_event.cv2img cv2.imwrite(image_path, top_down_view) def make_fig(self, episode: Any, episode_id: str) -> Figure: trajectory: Sequence[Dict[str, Any]] = self._access( episode, self.path_to_trajectory ) if self.thor_top_downs is None: self.init_top_down_render() roomname = "_".join(episode_id.split("_")[:3]) im = self.visualize_agent_path( trajectory, self.thor_top_downs[roomname], self.map_data["pos_translator"], single_color=self.single_color, view_triangle_only_on_last=self.view_triangle_only_on_last, disable_view_triangle=self.disable_view_triangle, line_opacity=self.line_opacity, ) fig, ax = plt.subplots(figsize=self.figsize) ax.set_title(episode_id, fontsize=self.fontsize) ax.imshow(self.crop_viz_image(im)[:, :, ::-1]) ax.axis("off") return fig class ThorMultiViz(ThorViz): def __init__( self, path_to_trajectory_prefix: Sequence[str] = ("task_info", "followed_path"), agent_suffixes: Sequence[str] = ("1", "2"), label: str = "thor_trajectories", trajectory_start_end_color_strs: Sequence[Tuple[str, str]] = ( ("red", "green"), ("cyan", "purple"), ), **kwargs ): super().__init__(label=label, **kwargs) self.path_to_trajectory_prefix = list(path_to_trajectory_prefix) self.agent_suffixes = list(agent_suffixes) self.trajectory_start_end_color_strs = list(trajectory_start_end_color_strs) def make_fig(self, episode: Any, episode_id: str) -> Figure: if self.thor_top_downs is None: self.init_top_down_render() roomname = "_".join(episode_id.split("_")[:3]) im = self.thor_top_downs[roomname] for agent, start_end_color in zip( self.agent_suffixes, self.trajectory_start_end_color_strs ): path = self.path_to_trajectory_prefix[:] path[-1] = path[-1] + agent trajectory = self._access(episode, path) im = self.visualize_agent_path( trajectory, im, self.map_data["pos_translator"], single_color=self.single_color, view_triangle_only_on_last=self.view_triangle_only_on_last, disable_view_triangle=self.disable_view_triangle, line_opacity=self.line_opacity, trajectory_start_end_color_str=start_end_color, ) fig, ax = plt.subplots(figsize=self.figsize) ax.set_title(episode_id, fontsize=self.fontsize) ax.imshow(self.crop_viz_image(im)[:, :, ::-1]) ax.axis("off") return fig
ask4help-main
allenact_plugins/robothor_plugin/robothor_viz.py
ask4help-main
allenact_plugins/robothor_plugin/configs/__init__.py
import gzip import json import os from typing import Sequence, Optional from allenact_plugins.robothor_plugin.robothor_task_samplers import ( ObjectNavDatasetTaskSampler, ) def create_debug_dataset_from_train_dataset( scene: str, target_object_type: Optional[str], episodes_subset: Sequence[int], train_dataset_path: str, base_debug_output_path: str, ): downloaded_episodes = os.path.join( train_dataset_path, "episodes", scene + ".json.gz" ) assert os.path.exists(downloaded_episodes), ( "'{}' doesn't seem to exist or is empty. Make sure you've downloaded to download the appropriate" " training dataset with" " datasets/download_navigation_datasets.sh".format(downloaded_episodes) ) # episodes episodes = ObjectNavDatasetTaskSampler.load_dataset( scene=scene, base_directory=os.path.join(train_dataset_path, "episodes") ) if target_object_type is not None: ids = { "{}_{}_{}".format(scene, target_object_type, epit) for epit in episodes_subset } else: ids = {"{}_{}".format(scene, epit) for epit in episodes_subset} debug_episodes = [ep for ep in episodes if ep["id"] in ids] assert len(ids) == len(debug_episodes), ( f"Number of input ids ({len(ids)}) does not equal" f" number of output debug tasks ({len(debug_episodes)})" ) # sort by episode_ids debug_episodes = [ idep[1] for idep in sorted( [(int(ep["id"].split("_")[-1]), ep) for ep in debug_episodes], key=lambda x: x[0], ) ] assert len(debug_episodes) == len(episodes_subset) episodes_dir = os.path.join(base_debug_output_path, "episodes") os.makedirs(episodes_dir, exist_ok=True) episodes_file = os.path.join(episodes_dir, scene + ".json.gz") json_str = json.dumps(debug_episodes) json_bytes = json_str.encode("utf-8") with gzip.GzipFile(episodes_file, "w") as fout: fout.write(json_bytes) assert os.path.exists(episodes_file) if __name__ == "__main__": CURRENT_PATH = os.getcwd() SCENE = "FloorPlan_Train1_1" TARGET = "Television" EPISODES = [0, 7, 11, 12] BASE_OUT = os.path.join(CURRENT_PATH, "datasets", "robothor-objectnav", "debug") create_debug_dataset_from_train_dataset( scene=SCENE, target_object_type=TARGET, episodes_subset=EPISODES, train_dataset_path=os.path.join( CURRENT_PATH, "datasets", "robothor-objectnav", "train" ), base_debug_output_path=BASE_OUT, )
ask4help-main
allenact_plugins/robothor_plugin/scripts/make_objectnav_debug_dataset.py
ask4help-main
allenact_plugins/robothor_plugin/scripts/__init__.py
import os from allenact_plugins.robothor_plugin.scripts.make_objectnav_debug_dataset import ( create_debug_dataset_from_train_dataset, ) if __name__ == "__main__": CURRENT_PATH = os.getcwd() SCENE = "FloorPlan_Train1_1" EPISODES = [3, 4, 5, 6] BASE_OUT = os.path.join(CURRENT_PATH, "datasets", "robothor-pointnav", "debug") create_debug_dataset_from_train_dataset( scene=SCENE, target_object_type=None, episodes_subset=EPISODES, train_dataset_path=os.path.join( CURRENT_PATH, "datasets", "robothor-pointnav", "train" ), base_debug_output_path=BASE_OUT, )
ask4help-main
allenact_plugins/robothor_plugin/scripts/make_pointnav_debug_dataset.py
import random from typing import Tuple, Any, List, Dict, Optional, Union, Callable, Sequence, cast import gym import networkx as nx import numpy as np from gym.utils import seeding from gym_minigrid.envs import CrossingEnv from gym_minigrid.minigrid import ( DIR_TO_VEC, IDX_TO_OBJECT, MiniGridEnv, OBJECT_TO_IDX, ) from allenact.base_abstractions.misc import RLStepResult from allenact.base_abstractions.sensor import Sensor, SensorSuite from allenact.base_abstractions.task import Task, TaskSampler from allenact.utils.system import get_logger from allenact_plugins.minigrid_plugin.minigrid_environments import ( AskForHelpSimpleCrossing, ) class MiniGridTask(Task[CrossingEnv]): _ACTION_NAMES: Tuple[str, ...] = ("left", "right", "forward") _ACTION_IND_TO_MINIGRID_IND = tuple( MiniGridEnv.Actions.__members__[name].value for name in _ACTION_NAMES ) _CACHED_GRAPHS: Dict[str, nx.DiGraph] = {} _NEIGHBOR_OFFSETS = tuple( [(-1, 0, 0), (0, -1, 0), (0, 0, -1), (1, 0, 0), (0, 1, 0), (0, 0, 1),] ) _XY_DIFF_TO_AGENT_DIR = { tuple(vec): dir_ind for dir_ind, vec in enumerate(DIR_TO_VEC) } """ Task around a MiniGrid Env, allows interfacing allenact with MiniGrid tasks. (currently focussed towards LavaCrossing) """ def __init__( self, env: Union[CrossingEnv], sensors: Union[SensorSuite, List[Sensor]], task_info: Dict[str, Any], max_steps: int, task_cache_uid: Optional[str] = None, corrupt_expert_within_actions_of_goal: Optional[int] = None, **kwargs, ): super().__init__( env=env, sensors=sensors, task_info=task_info, max_steps=max_steps, **kwargs ) self._graph: Optional[nx.DiGraph] = None self._minigrid_done = False self._task_cache_uid = task_cache_uid self.corrupt_expert_within_actions_of_goal = ( corrupt_expert_within_actions_of_goal ) self.closest_agent_has_been_to_goal: Optional[float] = None @property def action_space(self) -> gym.spaces.Discrete: return gym.spaces.Discrete(len(self._ACTION_NAMES)) def render(self, mode: str = "rgb", *args, **kwargs) -> np.ndarray: return self.env.render(mode=mode) def _step(self, action: int) -> RLStepResult: assert isinstance(action, int) action = cast(int, action) minigrid_obs, reward, self._minigrid_done, info = self.env.step( action=self._ACTION_IND_TO_MINIGRID_IND[action] ) # self.env.render() return RLStepResult( observation=self.get_observations(minigrid_output_obs=minigrid_obs), reward=reward, done=self.is_done(), info=info, ) def get_observations( self, *args, minigrid_output_obs: Optional[Dict[str, Any]] = None, **kwargs ) -> Any: return self.sensor_suite.get_observations( env=self.env, task=self, minigrid_output_obs=minigrid_output_obs ) def reached_terminal_state(self) -> bool: return self._minigrid_done @classmethod def class_action_names(cls, **kwargs) -> Tuple[str, ...]: return cls._ACTION_NAMES def close(self) -> None: pass def metrics(self) -> Dict[str, Any]: # noinspection PyUnresolvedReferences,PyCallingNonCallable env_metrics = self.env.metrics() if hasattr(self.env, "metrics") else {} return { **super(MiniGridTask, self).metrics(), **{k: float(v) for k, v in env_metrics.items()}, "success": int( self.env.was_successful if hasattr(self.env, "was_successful") else self.cumulative_reward > 0 ), } @property def graph_created(self): return self._graph is not None @property def graph(self): if self._graph is None: if self._task_cache_uid is not None: if self._task_cache_uid not in self._CACHED_GRAPHS: self._CACHED_GRAPHS[self._task_cache_uid] = self.generate_graph() self._graph = self._CACHED_GRAPHS[self._task_cache_uid] else: self._graph = self.generate_graph() return self._graph @graph.setter def graph(self, graph: nx.DiGraph): self._graph = graph @classmethod def possible_neighbor_offsets(cls) -> Tuple[Tuple[int, int, int], ...]: # Tuples of format: # (X translation, Y translation, rotation by 90 degrees) # A constant is returned, this function can be changed if anything # more complex needs to be done. # offsets_superset = itertools.product( # [-1, 0, 1], [-1, 0, 1], [-1, 0, 1] # ) # # valid_offsets = [] # for off in offsets_superset: # if (int(off[0] != 0) + int(off[1] != 0) + int(off[2] != 0)) == 1: # valid_offsets.append(off) # # return tuple(valid_offsets) return cls._NEIGHBOR_OFFSETS @classmethod def _add_from_to_edge( cls, g: nx.DiGraph, s: Tuple[int, int, int], t: Tuple[int, int, int], ): """Adds nodes and corresponding edges to existing nodes. This approach avoids adding the same edge multiple times. Pre-requisite knowledge about MiniGrid: DIR_TO_VEC = [ # Pointing right (positive X) np.array((1, 0)), # Down (positive Y) np.array((0, 1)), # Pointing left (negative X) np.array((-1, 0)), # Up (negative Y) np.array((0, -1)), ] or AGENT_DIR_TO_STR = { 0: '>', 1: 'V', 2: '<', 3: '^' } This also implies turning right (clockwise) means: agent_dir += 1 """ s_x, s_y, s_rot = s t_x, t_y, t_rot = t x_diff = t_x - s_x y_diff = t_y - s_y angle_diff = (t_rot - s_rot) % 4 # If source and target differ by more than one action, continue if (x_diff != 0) + (y_diff != 0) + (angle_diff != 0) != 1 or angle_diff == 2: return action = None if angle_diff == 1: action = "right" elif angle_diff == 3: action = "left" elif cls._XY_DIFF_TO_AGENT_DIR[(x_diff, y_diff)] == s_rot: # if translation is the same direction as source # orientation, then it's a valid forward action action = "forward" else: # This is when the source and target aren't one action # apart, despite having dx=1 or dy=1 pass if action is not None: g.add_edge(s, t, action=action) def _add_node_to_graph( self, graph: nx.DiGraph, s: Tuple[int, int, int], valid_node_types: Tuple[str, ...], attr_dict: Dict[Any, Any] = None, include_rotation_free_leaves: bool = False, ): if s in graph: return if attr_dict is None: get_logger().warning("adding a node with neighbor checks and no attributes") graph.add_node(s, **attr_dict) if include_rotation_free_leaves: rot_free_leaf = (*s[:-1], None) if rot_free_leaf not in graph: graph.add_node(rot_free_leaf) graph.add_edge(s, rot_free_leaf, action="NA") if attr_dict["type"] in valid_node_types: for o in self.possible_neighbor_offsets(): t = (s[0] + o[0], s[1] + o[1], (s[2] + o[2]) % 4) if t in graph and graph.nodes[t]["type"] in valid_node_types: self._add_from_to_edge(graph, s, t) self._add_from_to_edge(graph, t, s) def generate_graph(self,) -> nx.DiGraph: """The generated graph is based on the fully observable grid (as the expert sees it all). env: environment to generate the graph over """ image = self.env.grid.encode() width, height, _ = image.shape graph = nx.DiGraph() # In fully observable grid, there shouldn't be any "unseen" # Currently dealing with "empty", "wall", "goal", "lava" valid_object_ids = np.sort( [OBJECT_TO_IDX[o] for o in ["empty", "wall", "lava", "goal"]] ) assert np.all(np.union1d(image[:, :, 0], valid_object_ids) == valid_object_ids) # Grid to nodes for x in range(width): for y in range(height): for rotation in range(4): type, color, state = image[x, y] self._add_node_to_graph( graph, (x, y, rotation), attr_dict={ "type": IDX_TO_OBJECT[type], "color": color, "state": state, }, valid_node_types=("empty", "goal"), ) if IDX_TO_OBJECT[type] == "goal": if not graph.has_node("unified_goal"): graph.add_node("unified_goal") graph.add_edge((x, y, rotation), "unified_goal") return graph def query_expert(self, **kwargs) -> Tuple[int, bool]: if self._minigrid_done: get_logger().warning("Episode is completed, but expert is still queried.") return -1, False paths = [] agent_x, agent_y = self.env.agent_pos agent_rot = self.env.agent_dir source_state_key = (agent_x, agent_y, agent_rot) assert source_state_key in self.graph paths.append(nx.shortest_path(self.graph, source_state_key, "unified_goal")) if len(paths) == 0: return -1, False shortest_path_ind = int(np.argmin([len(p) for p in paths])) if self.closest_agent_has_been_to_goal is None: self.closest_agent_has_been_to_goal = len(paths[shortest_path_ind]) - 1 else: self.closest_agent_has_been_to_goal = min( len(paths[shortest_path_ind]) - 1, self.closest_agent_has_been_to_goal ) if ( self.corrupt_expert_within_actions_of_goal is not None and self.corrupt_expert_within_actions_of_goal >= self.closest_agent_has_been_to_goal ): return ( int(self.env.np_random.randint(0, len(self.class_action_names()))), True, ) if len(paths[shortest_path_ind]) == 2: # Since "unified_goal" is 1 step away from actual goals # if a path like [actual_goal, unified_goal] exists, then # you are already at a goal. get_logger().warning( "Shortest path computations suggest we are at" " the target but episode does not think so." ) return -1, False next_key_on_shortest_path = paths[shortest_path_ind][1] return ( self.class_action_names().index( self.graph.get_edge_data(source_state_key, next_key_on_shortest_path)[ "action" ] ), True, ) class AskForHelpSimpleCrossingTask(MiniGridTask): _ACTION_NAMES = ("left", "right", "forward", "toggle") _ACTION_IND_TO_MINIGRID_IND = tuple( MiniGridEnv.Actions.__members__[name].value for name in _ACTION_NAMES ) _CACHED_GRAPHS: Dict[str, nx.DiGraph] = {} def __init__( self, env: AskForHelpSimpleCrossing, sensors: Union[SensorSuite, List[Sensor]], task_info: Dict[str, Any], max_steps: int, **kwargs, ): super().__init__( env=env, sensors=sensors, task_info=task_info, max_steps=max_steps, **kwargs ) self.did_toggle: List[bool] = [] def _step(self, action: Union[int, Sequence[int]]) -> RLStepResult: assert isinstance(action, int) action = cast(int, action) self.did_toggle.append(self._ACTION_NAMES[action] == "toggle") return super(AskForHelpSimpleCrossingTask, self)._step(action=action) def metrics(self) -> Dict[str, Any]: return { **super(AskForHelpSimpleCrossingTask, self).metrics(), "toggle_percent": float( sum(self.did_toggle) / max(len(self.did_toggle), 1) ), } class MiniGridTaskSampler(TaskSampler): def __init__( self, env_class: Callable[..., Union[MiniGridEnv]], sensors: Union[SensorSuite, List[Sensor]], env_info: Optional[Dict[str, Any]] = None, max_tasks: Optional[int] = None, num_unique_seeds: Optional[int] = None, task_seeds_list: Optional[List[int]] = None, deterministic_sampling: bool = False, cache_graphs: Optional[bool] = False, task_class: Callable[..., MiniGridTask] = MiniGridTask, repeat_failed_task_for_min_steps: int = 0, extra_task_kwargs: Optional[Dict] = None, **kwargs, ): super(MiniGridTaskSampler, self).__init__() self.sensors = ( SensorSuite(sensors) if not isinstance(sensors, SensorSuite) else sensors ) self.max_tasks = max_tasks self.num_unique_seeds = num_unique_seeds self.cache_graphs = cache_graphs self.deterministic_sampling = deterministic_sampling self.repeat_failed_task_for_min_steps = repeat_failed_task_for_min_steps self.extra_task_kwargs = ( extra_task_kwargs if extra_task_kwargs is not None else {} ) self._last_env_seed: Optional[int] = None self._last_task: Optional[MiniGridTask] = None self._number_of_steps_taken_with_task_seed = 0 assert (not deterministic_sampling) or repeat_failed_task_for_min_steps <= 0, ( "If `deterministic_sampling` is True then we require" " `repeat_failed_task_for_min_steps <= 0`" ) assert (not self.cache_graphs) or self.num_unique_seeds is not None, ( "When caching graphs you must specify" " a number of unique tasks to sample from." ) assert (self.num_unique_seeds is None) or ( 0 < self.num_unique_seeds ), "`num_unique_seeds` must be a positive integer." self.num_unique_seeds = num_unique_seeds self.task_seeds_list = task_seeds_list if self.task_seeds_list is not None: if self.num_unique_seeds is not None: assert self.num_unique_seeds == len( self.task_seeds_list ), "`num_unique_seeds` must equal the length of `task_seeds_list` if both specified." self.num_unique_seeds = len(self.task_seeds_list) elif self.num_unique_seeds is not None: self.task_seeds_list = list(range(self.num_unique_seeds)) if num_unique_seeds is not None and repeat_failed_task_for_min_steps > 0: raise NotImplementedError( "`repeat_failed_task_for_min_steps` must be <=0 if number" " of unique seeds is not None." ) assert ( not self.cache_graphs ) or self.num_unique_seeds <= 1000, "Too many tasks (graphs) to cache" assert (not deterministic_sampling) or ( self.num_unique_seeds is not None ), "Cannot use deterministic sampling when `num_unique_seeds` is `None`." if (not deterministic_sampling) and self.max_tasks: get_logger().warning( "`deterministic_sampling` is `False` but you have specified `max_tasks < inf`," " this might be a mistake when running testing." ) self.env = env_class(**env_info) self.task_class = task_class self.np_seeded_random_gen, _ = seeding.np_random(random.randint(0, 2 ** 31 - 1)) self.num_tasks_generated = 0 @property def length(self) -> Union[int, float]: return ( float("inf") if self.max_tasks is None else self.max_tasks - self.num_tasks_generated ) @property def total_unique(self) -> Optional[Union[int, float]]: return None if self.num_unique_seeds is None else self.num_unique_seeds @property def last_sampled_task(self) -> Optional[Task]: raise NotImplementedError def next_task(self, force_advance_scene: bool = False) -> Optional[MiniGridTask]: if self.length <= 0: return None task_cache_uid = None repeating = False if self.num_unique_seeds is not None: if self.deterministic_sampling: self._last_env_seed = self.task_seeds_list[ self.num_tasks_generated % len(self.task_seeds_list) ] else: self._last_env_seed = self.np_seeded_random_gen.choice( self.task_seeds_list ) else: if self._last_task is not None: self._number_of_steps_taken_with_task_seed += ( self._last_task.num_steps_taken() ) if ( self._last_env_seed is not None and self._number_of_steps_taken_with_task_seed < self.repeat_failed_task_for_min_steps and self._last_task.cumulative_reward == 0 ): repeating = True else: self._number_of_steps_taken_with_task_seed = 0 self._last_env_seed = self.np_seeded_random_gen.randint(0, 2 ** 31 - 1) task_has_same_seed_reset = hasattr(self.env, "same_seed_reset") if self.cache_graphs: task_cache_uid = str(self._last_env_seed) if repeating and task_has_same_seed_reset: # noinspection PyUnresolvedReferences self.env.same_seed_reset() else: self.env.seed(self._last_env_seed) self.env.saved_seed = self._last_env_seed self.env.reset() self.num_tasks_generated += 1 task = self.task_class( **dict( env=self.env, sensors=self.sensors, task_info={}, max_steps=self.env.max_steps, task_cache_uid=task_cache_uid, ), **self.extra_task_kwargs, ) if repeating and self._last_task.graph_created: task.graph = self._last_task.graph self._last_task = task return task def close(self) -> None: self.env.close() @property def all_observation_spaces_equal(self) -> bool: return True def reset(self) -> None: self.num_tasks_generated = 0 self.env.reset() def set_seed(self, seed: int) -> None: self.np_seeded_random_gen, _ = seeding.np_random(seed)
ask4help-main
allenact_plugins/minigrid_plugin/minigrid_tasks.py
import copy from typing import Optional, Set import numpy as np from gym import register from gym_minigrid.envs import CrossingEnv from gym_minigrid.minigrid import Lava, Wall class FastCrossing(CrossingEnv): """Similar to `CrossingEnv`, but to support faster task sampling as per `repeat_failed_task_for_min_steps` flag in MiniGridTaskSampler.""" def __init__(self, size=9, num_crossings=1, obstacle_type=Lava, seed=None): self.init_agent_pos: Optional[np.ndarray] = None self.init_agent_dir: Optional[int] = None self.step_count: Optional[int] = None super(FastCrossing, self).__init__( size=size, num_crossings=num_crossings, obstacle_type=obstacle_type, seed=seed, ) def same_seed_reset(self): assert self.init_agent_pos is not None # Current position and direction of the agent self.agent_pos = self.init_agent_pos self.agent_dir = self.init_agent_dir # Check that the agent doesn't overlap with an object start_cell = self.grid.get(*self.agent_pos) assert start_cell is None or start_cell.can_overlap() assert self.carrying is None # Step count since episode start self.step_count = 0 # Return first observation obs = self.gen_obs() return obs def reset(self, partial_reset: bool = False): super(FastCrossing, self).reset() self.init_agent_pos = copy.deepcopy(self.agent_pos) self.init_agent_dir = self.agent_dir class AskForHelpSimpleCrossing(CrossingEnv): """Corresponds to WC FAULTY SWITCH environment.""" def __init__( self, size=9, num_crossings=1, obstacle_type=Wall, seed=None, exploration_reward: Optional[float] = None, death_penalty: Optional[float] = None, toggle_is_permenant: bool = False, ): self.init_agent_pos: Optional[np.ndarray] = None self.init_agent_dir: Optional[int] = None self.should_reveal_image: bool = False self.exploration_reward = exploration_reward self.death_penalty = death_penalty self.explored_points: Set = set() self._was_successful = False self.toggle_is_permanent = toggle_is_permenant self.step_count: Optional[int] = None super(AskForHelpSimpleCrossing, self).__init__( size=size, num_crossings=num_crossings, obstacle_type=obstacle_type, seed=seed, ) @property def was_successful(self) -> bool: return self._was_successful def gen_obs(self): obs = super(AskForHelpSimpleCrossing, self).gen_obs() if not self.should_reveal_image: obs["image"] *= 0 return obs def metrics(self): return { "explored_count": len(self.explored_points), "final_distance": float( min( abs(x - (self.width - 2)) + abs(y - (self.height - 2)) for x, y in self.explored_points ) ), } def step(self, action: int): """Reveal the observation only if the `toggle` action is executed.""" if action == self.actions.toggle: self.should_reveal_image = True else: self.should_reveal_image = ( self.should_reveal_image and self.toggle_is_permanent ) minigrid_obs, reward, done, info = super(AskForHelpSimpleCrossing, self).step( action=action ) assert not self._was_successful, "Called step after done." self._was_successful = self._was_successful or (reward > 0) if ( done and self.steps_remaining != 0 and (not self._was_successful) and self.death_penalty is not None ): reward += self.death_penalty t = tuple(self.agent_pos) if self.exploration_reward is not None: if t not in self.explored_points: reward += self.exploration_reward self.explored_points.add(t) return minigrid_obs, reward, done, info def same_seed_reset(self): assert self.init_agent_pos is not None self._was_successful = False # Current position and direction of the agent self.agent_pos = self.init_agent_pos self.agent_dir = self.init_agent_dir self.explored_points.clear() self.explored_points.add(tuple(self.agent_pos)) self.should_reveal_image = False # Check that the agent doesn't overlap with an object start_cell = self.grid.get(*self.agent_pos) assert start_cell is None or start_cell.can_overlap() assert self.carrying is None # Step count since episode start self.step_count = 0 # Return first observation obs = self.gen_obs() return obs def reset(self, partial_reset: bool = False): super(AskForHelpSimpleCrossing, self).reset() self.explored_points.clear() self.explored_points.add(tuple(self.agent_pos)) self.init_agent_pos = copy.deepcopy(self.agent_pos) self.init_agent_dir = self.agent_dir self._was_successful = False self.should_reveal_image = False class LavaCrossingS25N10(CrossingEnv): def __init__(self): super(LavaCrossingS25N10, self).__init__(size=25, num_crossings=10) class LavaCrossingS15N7(CrossingEnv): def __init__(self): super(LavaCrossingS15N7, self).__init__(size=15, num_crossings=7) class LavaCrossingS11N7(CrossingEnv): def __init__(self): super(LavaCrossingS11N7, self).__init__(size=9, num_crossings=4) register( id="MiniGrid-LavaCrossingS25N10-v0", entry_point="allenact_plugins.minigrid_plugin.minigrid_environments:LavaCrossingS25N10", ) register( id="MiniGrid-LavaCrossingS15N7-v0", entry_point="allenact_plugins.minigrid_plugin.minigrid_environments:LavaCrossingS15N7", ) register( id="MiniGrid-LavaCrossingS11N7-v0", entry_point="allenact_plugins.minigrid_plugin.minigrid_environments:LavaCrossingS11N7", )
ask4help-main
allenact_plugins/minigrid_plugin/minigrid_environments.py
from allenact.utils.system import ImportChecker with ImportChecker( "\n\nPlease install babyai with:\n\n" "pip install -e git+https://github.com/Lucaweihs/babyai.git@0b450eeb3a2dc7116c67900d51391986bdbb84cd#egg=babyai\n", ): import babyai
ask4help-main
allenact_plugins/minigrid_plugin/__init__.py
import os import queue import random from collections import defaultdict from typing import Dict, Tuple, Any, cast, Iterator, List, Union, Optional import babyai import blosc import numpy as np import pickle5 as pickle import torch from gym_minigrid.minigrid import MiniGridEnv from allenact.algorithms.offpolicy_sync.losses.abstract_offpolicy_loss import ( AbstractOffPolicyLoss, Memory, ) from allenact.algorithms.onpolicy_sync.policy import ActorCriticModel, ObservationType from allenact.utils.misc_utils import partition_limits from allenact.utils.system import get_logger from allenact_plugins.minigrid_plugin.minigrid_sensors import MiniGridMissionSensor _DATASET_CACHE: Dict[str, Any] = {} class MiniGridOffPolicyExpertCELoss(AbstractOffPolicyLoss[ActorCriticModel]): def __init__(self, total_episodes_in_epoch: Optional[int] = None): super().__init__() self.total_episodes_in_epoch = total_episodes_in_epoch def loss( # type:ignore self, model: ActorCriticModel, batch: ObservationType, memory: Memory, *args, **kwargs ) -> Tuple[torch.FloatTensor, Dict[str, float], Memory, int]: rollout_len, nrollouts = cast(torch.Tensor, batch["minigrid_ego_image"]).shape[ :2 ] # Initialize Memory if empty if len(memory) == 0: spec = model.recurrent_memory_specification for key in spec: dims_template, dtype = spec[key] # get sampler_dim and all_dims from dims_template (and nrollouts) dim_names = [d[0] for d in dims_template] sampler_dim = dim_names.index("sampler") all_dims = [d[1] for d in dims_template] all_dims[sampler_dim] = nrollouts memory.check_append( key=key, tensor=torch.zeros( *all_dims, dtype=dtype, device=cast(torch.Tensor, batch["minigrid_ego_image"]).device ), sampler_dim=sampler_dim, ) # Forward data (through the actor and critic) ac_out, memory = model.forward( observations=batch, memory=memory, prev_actions=None, # type:ignore masks=cast(torch.FloatTensor, batch["masks"]), ) # Compute the loss from the actor's output and expert action expert_ce_loss = -ac_out.distributions.log_prob(batch["expert_action"]).mean() info = {"expert_ce": expert_ce_loss.item()} if self.total_episodes_in_epoch is not None: if "completed_episode_count" not in memory: memory["completed_episode_count"] = 0 memory["completed_episode_count"] += ( int(np.prod(batch["masks"].shape)) # type: ignore - batch["masks"].sum().item() # type: ignore ) info["epoch_progress"] = ( memory["completed_episode_count"] / self.total_episodes_in_epoch ) return expert_ce_loss, info, memory, rollout_len * nrollouts def transform_demos(demos): # A modified version of babyai.utils.demos.transform_demos # where we use pickle 5 instead of standard pickle new_demos = [] for demo in demos: new_demo = [] mission = demo[0] all_images = demo[1] directions = demo[2] actions = demo[3] # First decompress the pickle pickled_array = blosc.blosc_extension.decompress(all_images, False) # ... and unpickle all_images = pickle.loads(pickled_array) n_observations = all_images.shape[0] assert ( len(directions) == len(actions) == n_observations ), "error transforming demos" for i in range(n_observations): obs = { "image": all_images[i], "direction": directions[i], "mission": mission, } action = actions[i] done = i == n_observations - 1 new_demo.append((obs, action, done)) new_demos.append(new_demo) return new_demos class ExpertTrajectoryIterator(Iterator): def __init__( self, data: List[Tuple[str, bytes, List[int], MiniGridEnv.Actions]], nrollouts: int, rollout_len: int, instr_len: Optional[int], restrict_max_steps_in_dataset: Optional[int] = None, num_data_length_clusters: int = 8, current_worker: Optional[int] = None, num_workers: Optional[int] = None, ): super(ExpertTrajectoryIterator, self).__init__() self.restrict_max_steps_in_dataset = restrict_max_steps_in_dataset if restrict_max_steps_in_dataset is not None: restricted_data = [] cur_len = 0 for i, d in enumerate(data): if cur_len >= restrict_max_steps_in_dataset: break restricted_data.append(d) cur_len += len(d[2]) data = restricted_data if num_workers is not None: parts = partition_limits(len(data), num_workers) new_data = data[parts[current_worker] : parts[current_worker + 1]] data = new_data self.num_data_lengths = min(num_data_length_clusters, len(data) // nrollouts) data_lengths = sorted( [(len(d), it) for it, d in enumerate(data)], key=lambda x: (x[0], x[1]) ) sorted_inds = [l[1] for l in data_lengths] data_limits = partition_limits( num_items=len(data_lengths), num_parts=self.num_data_lengths ) # get_logger().debug("Using cluster limits {}".format(data_limits)) self.data = data self.instr_len = instr_len self.trajectory_inds = [ sorted_inds[data_limits[i] : data_limits[i + 1]] for i in range(self.num_data_lengths) ] for i in range(self.num_data_lengths): random.shuffle(self.trajectory_inds[i]) assert nrollouts <= sum( len(ti) for ti in self.trajectory_inds ), "Too many rollouts requested." self.nrollouts = nrollouts self.rollout_len = rollout_len self.current_data_length = [ random.randint(0, self.num_data_lengths - 1) for _ in range(nrollouts) ] self.rollout_queues: List[queue.Queue] = [ queue.Queue() for _ in range(nrollouts) ] for it, q in enumerate(self.rollout_queues): self.add_data_to_rollout_queue(q, it) self.minigrid_mission_sensor: Optional[MiniGridMissionSensor] = None if instr_len is not None: self.minigrid_mission_sensor = MiniGridMissionSensor(instr_len) def add_data_to_rollout_queue(self, q: queue.Queue, sampler: int) -> bool: assert q.empty() start = self.current_data_length[sampler] cond = True while cond: self.current_data_length[sampler] = ( self.current_data_length[sampler] + 1 ) % self.num_data_lengths cond = ( len(self.trajectory_inds[self.current_data_length[sampler]]) == 0 and self.current_data_length[sampler] != start ) if len(self.trajectory_inds[self.current_data_length[sampler]]) == 0: return False for i, step in enumerate( transform_demos( [ self.data[ self.trajectory_inds[self.current_data_length[sampler]].pop() ] ] )[0] ): q.put((*step, i == 0)) return True def get_data_for_rollout_ind(self, rollout_ind: int) -> Dict[str, np.ndarray]: masks: List[bool] = [] minigrid_ego_image = [] minigrid_mission = [] expert_actions = [] q = self.rollout_queues[rollout_ind] while len(masks) != self.rollout_len: if q.empty(): if not self.add_data_to_rollout_queue(q, rollout_ind): raise StopIteration() obs, expert_action, _, is_first_obs = cast( Tuple[ Dict[str, Union[np.array, int, str]], MiniGridEnv.Actions, bool, bool, ], q.get_nowait(), ) masks.append(not is_first_obs) minigrid_ego_image.append(obs["image"]) if self.minigrid_mission_sensor is not None: # noinspection PyTypeChecker minigrid_mission.append( self.minigrid_mission_sensor.get_observation( env=None, task=None, minigrid_output_obs=obs ) ) expert_actions.append([expert_action]) to_return = { "masks": np.array(masks, dtype=np.float32).reshape( (self.rollout_len, 1) # steps x mask ), "minigrid_ego_image": np.stack( minigrid_ego_image, axis=0 ), # steps x height x width x channels "expert_action": np.array(expert_actions, dtype=np.int64).reshape( self.rollout_len # steps ), } if self.minigrid_mission_sensor is not None: to_return["minigrid_mission"] = np.stack( minigrid_mission, axis=0 ) # steps x mission_dims return to_return def __next__(self) -> Dict[str, torch.Tensor]: all_data = defaultdict(lambda: []) for rollout_ind in range(self.nrollouts): data_for_ind = self.get_data_for_rollout_ind(rollout_ind=rollout_ind) for key in data_for_ind: all_data[key].append(data_for_ind[key]) return { key: torch.from_numpy(np.stack(all_data[key], axis=1)) # new sampler dim for key in all_data } def create_minigrid_offpolicy_data_iterator( path: str, nrollouts: int, rollout_len: int, instr_len: Optional[int], restrict_max_steps_in_dataset: Optional[int] = None, current_worker: Optional[int] = None, num_workers: Optional[int] = None, ) -> ExpertTrajectoryIterator: path = os.path.abspath(path) assert (current_worker is None) == ( num_workers is None ), "both current_worker and num_workers must be simultaneously defined or undefined" if path not in _DATASET_CACHE: get_logger().info( "Loading minigrid dataset from {} for first time...".format(path) ) _DATASET_CACHE[path] = babyai.utils.load_demos(path) assert _DATASET_CACHE[path] is not None and len(_DATASET_CACHE[path]) != 0 get_logger().info( "Loading minigrid dataset complete, it contains {} trajectories".format( len(_DATASET_CACHE[path]) ) ) return ExpertTrajectoryIterator( data=_DATASET_CACHE[path], nrollouts=nrollouts, rollout_len=rollout_len, instr_len=instr_len, restrict_max_steps_in_dataset=restrict_max_steps_in_dataset, current_worker=current_worker, num_workers=num_workers, )
ask4help-main
allenact_plugins/minigrid_plugin/minigrid_offpolicy.py