python_code
stringlengths
0
187k
repo_name
stringlengths
8
46
file_path
stringlengths
6
135
import os from abc import ABC from typing import Dict, Any, List, Optional, Sequence import gym import habitat import torch from allenact.base_abstractions.experiment_config import MachineParams from allenact.base_abstractions.preprocessor import SensorPreprocessorGraph from allenact.base_abstractions.sensor import SensorSuite from allenact.embodiedai.sensors.vision_sensors import RGBSensor, DepthSensor from allenact.base_abstractions.task import TaskSampler from allenact.utils.experiment_utils import evenly_distribute_count_into_bins from allenact.utils.system import get_logger from allenact_plugins.habitat_plugin.habitat_constants import ( HABITAT_DATASETS_DIR, HABITAT_CONFIGS_DIR, HABITAT_SCENE_DATASETS_DIR, ) from allenact_plugins.habitat_plugin.habitat_task_samplers import PointNavTaskSampler from allenact_plugins.habitat_plugin.habitat_tasks import PointNavTask from allenact_plugins.habitat_plugin.habitat_utils import ( get_habitat_config, construct_env_configs, ) from projects.pointnav_baselines.experiments.pointnav_base import PointNavBaseConfig def create_pointnav_config( config_yaml_path: str, mode: str, scenes_path: str, simulator_gpu_ids: Sequence[int], distance_to_goal: float, rotation_degrees: float, step_size: float, max_steps: int, num_processes: int, camera_width: int, camera_height: int, using_rgb: bool, using_depth: bool, ) -> habitat.Config: config = get_habitat_config(config_yaml_path) config.defrost() config.NUM_PROCESSES = num_processes config.SIMULATOR_GPU_IDS = simulator_gpu_ids config.DATASET.SCENES_DIR = HABITAT_SCENE_DATASETS_DIR config.DATASET.DATA_PATH = scenes_path config.SIMULATOR.AGENT_0.SENSORS = [] if using_rgb: config.SIMULATOR.AGENT_0.SENSORS.append("RGB_SENSOR") if using_depth: config.SIMULATOR.AGENT_0.SENSORS.append("DEPTH_SENSOR") config.SIMULATOR.RGB_SENSOR.WIDTH = camera_width config.SIMULATOR.RGB_SENSOR.HEIGHT = camera_height config.SIMULATOR.DEPTH_SENSOR.WIDTH = camera_width config.SIMULATOR.DEPTH_SENSOR.HEIGHT = camera_height config.SIMULATOR.TURN_ANGLE = rotation_degrees config.SIMULATOR.FORWARD_STEP_SIZE = step_size config.ENVIRONMENT.MAX_EPISODE_STEPS = max_steps config.TASK.TYPE = "Nav-v0" config.TASK.SUCCESS_DISTANCE = distance_to_goal config.TASK.SENSORS = ["POINTGOAL_WITH_GPS_COMPASS_SENSOR"] config.TASK.POINTGOAL_WITH_GPS_COMPASS_SENSOR.GOAL_FORMAT = "POLAR" config.TASK.POINTGOAL_WITH_GPS_COMPASS_SENSOR.DIMENSIONALITY = 2 config.TASK.GOAL_SENSOR_UUID = "pointgoal_with_gps_compass" config.TASK.MEASUREMENTS = ["DISTANCE_TO_GOAL", "SUCCESS", "SPL"] config.TASK.SPL.TYPE = "SPL" config.TASK.SPL.SUCCESS_DISTANCE = distance_to_goal config.TASK.SUCCESS.SUCCESS_DISTANCE = distance_to_goal config.MODE = mode config.freeze() return config class PointNavHabitatBaseConfig(PointNavBaseConfig, ABC): """The base config for all Habitat PointNav experiments.""" FAILED_END_REWARD = -1.0 TASK_DATA_DIR_TEMPLATE = os.path.join( HABITAT_DATASETS_DIR, "pointnav/gibson/v1/{}/{}.json.gz" ) BASE_CONFIG_YAML_PATH = os.path.join( HABITAT_CONFIGS_DIR, "tasks/pointnav_gibson.yaml" ) NUM_TRAIN_PROCESSES = max(5 * torch.cuda.device_count() - 1, 4) NUM_VAL_PROCESSES = 1 NUM_TEST_PROCESSES = 10 TRAINING_GPUS = list(range(torch.cuda.device_count())) VALIDATION_GPUS = [torch.cuda.device_count() - 1] TESTING_GPUS = [torch.cuda.device_count() - 1] def __init__(self): super().__init__() def create_config( mode: str, scenes_path: str, num_processes: int, simulator_gpu_ids: Sequence[int], ): return create_pointnav_config( config_yaml_path=self.BASE_CONFIG_YAML_PATH, mode=mode, scenes_path=scenes_path, simulator_gpu_ids=simulator_gpu_ids, distance_to_goal=self.DISTANCE_TO_GOAL, rotation_degrees=self.ROTATION_DEGREES, step_size=self.STEP_SIZE, max_steps=self.MAX_STEPS, num_processes=num_processes, camera_width=self.CAMERA_WIDTH, camera_height=self.CAMERA_HEIGHT, using_rgb=any(isinstance(s, RGBSensor) for s in self.SENSORS), using_depth=any(isinstance(s, DepthSensor) for s in self.SENSORS), ) self.TRAIN_CONFIG = create_config( mode="train", scenes_path=self.train_scenes_path(), num_processes=self.NUM_TRAIN_PROCESSES, simulator_gpu_ids=self.TRAINING_GPUS, ) self.VALID_CONFIG = create_config( mode="validate", scenes_path=self.valid_scenes_path(), num_processes=self.NUM_VAL_PROCESSES, simulator_gpu_ids=self.VALIDATION_GPUS, ) self.TEST_CONFIG = create_config( mode="validate", scenes_path=self.test_scenes_path(), num_processes=self.NUM_TEST_PROCESSES, simulator_gpu_ids=self.TESTING_GPUS, ) self.TRAIN_CONFIGS_PER_PROCESS = construct_env_configs( self.TRAIN_CONFIG, allow_scene_repeat=True ) self.TEST_CONFIG_PER_PROCESS = construct_env_configs( self.TEST_CONFIG, allow_scene_repeat=False ) def train_scenes_path(self): return self.TASK_DATA_DIR_TEMPLATE.format(*(["train"] * 2)) def valid_scenes_path(self): return self.TASK_DATA_DIR_TEMPLATE.format(*(["val"] * 2)) def test_scenes_path(self): get_logger().warning("Running tests on the validation set!") return self.TASK_DATA_DIR_TEMPLATE.format(*(["val"] * 2)) # return self.TASK_DATA_DIR_TEMPLATE.format(*(["test"] * 2)) @classmethod def tag(cls): return "PointNav" def machine_params(self, mode="train", **kwargs): has_gpus = torch.cuda.is_available() if not has_gpus: gpu_ids = [] nprocesses = 1 elif mode == "train": gpu_ids = self.TRAINING_GPUS nprocesses = self.NUM_TRAIN_PROCESSES elif mode == "valid": gpu_ids = self.VALIDATION_GPUS nprocesses = self.NUM_VAL_PROCESSES elif mode == "test": gpu_ids = self.TESTING_GPUS nprocesses = self.NUM_TEST_PROCESSES else: raise NotImplementedError("mode must be 'train', 'valid', or 'test'.") if has_gpus: nprocesses = evenly_distribute_count_into_bins(nprocesses, len(gpu_ids)) sensor_preprocessor_graph = ( SensorPreprocessorGraph( source_observation_spaces=SensorSuite(self.SENSORS).observation_spaces, preprocessors=self.PREPROCESSORS, ) if mode == "train" or ( (isinstance(nprocesses, int) and nprocesses > 0) or (isinstance(nprocesses, Sequence) and sum(nprocesses) > 0) ) else None ) return MachineParams( nprocesses=nprocesses, devices=gpu_ids, sensor_preprocessor_graph=sensor_preprocessor_graph, ) @classmethod def make_sampler_fn(cls, **kwargs) -> TaskSampler: return PointNavTaskSampler( **{"failed_end_reward": cls.FAILED_END_REWARD, **kwargs} # type: ignore ) def train_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: config = self.TRAIN_CONFIGS_PER_PROCESS[process_ind] return { "env_config": config, "max_steps": self.MAX_STEPS, "sensors": self.SENSORS, "action_space": gym.spaces.Discrete(len(PointNavTask.class_action_names())), "distance_to_goal": self.DISTANCE_TO_GOAL, } def valid_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: if total_processes != 1: raise NotImplementedError( "In validation, `total_processes` must equal 1 for habitat tasks" ) return { "env_config": self.VALID_CONFIG, "max_steps": self.MAX_STEPS, "sensors": self.SENSORS, "action_space": gym.spaces.Discrete(len(PointNavTask.class_action_names())), "distance_to_goal": self.DISTANCE_TO_GOAL, } def test_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: config = self.TEST_CONFIG_PER_PROCESS[process_ind] return { "env_config": config, "max_steps": self.MAX_STEPS, "sensors": self.SENSORS, "action_space": gym.spaces.Discrete(len(PointNavTask.class_action_names())), "distance_to_goal": self.DISTANCE_TO_GOAL, }
ask4help-main
projects/pointnav_baselines/experiments/habitat/pointnav_habitat_base.py
from allenact_plugins.habitat_plugin.habitat_sensors import ( RGBSensorHabitat, TargetCoordinatesSensorHabitat, DepthSensorHabitat, ) from projects.pointnav_baselines.experiments.habitat.debug_pointnav_habitat_base import ( DebugPointNavHabitatBaseConfig, ) from projects.pointnav_baselines.experiments.pointnav_habitat_mixin_ddppo import ( PointNavHabitatMixInPPOConfig, ) from projects.pointnav_baselines.experiments.pointnav_mixin_simpleconvgru import ( PointNavMixInSimpleConvGRUConfig, ) class PointNavHabitatRGBDDeterministiSimpleConvGRUDDPPOExperimentConfig( DebugPointNavHabitatBaseConfig, PointNavHabitatMixInPPOConfig, PointNavMixInSimpleConvGRUConfig, ): """An Point Navigation experiment configuration in Habitat with Depth input.""" SENSORS = [ RGBSensorHabitat( height=DebugPointNavHabitatBaseConfig.SCREEN_SIZE, width=DebugPointNavHabitatBaseConfig.SCREEN_SIZE, use_resnet_normalization=True, ), DepthSensorHabitat( height=DebugPointNavHabitatBaseConfig.SCREEN_SIZE, width=DebugPointNavHabitatBaseConfig.SCREEN_SIZE, use_normalization=True, ), TargetCoordinatesSensorHabitat(coordinate_dims=2), ] @classmethod def tag(cls): return "Debug-Pointnav-Habitat-RGBD-SimpleConv-DDPPO"
ask4help-main
projects/pointnav_baselines/experiments/habitat/debug_pointnav_habitat_rgbd_simpleconvgru_ddppo.py
from allenact_plugins.habitat_plugin.habitat_sensors import ( RGBSensorHabitat, TargetCoordinatesSensorHabitat, ) from projects.pointnav_baselines.experiments.habitat.debug_pointnav_habitat_base import ( DebugPointNavHabitatBaseConfig, ) from projects.pointnav_baselines.experiments.pointnav_habitat_mixin_ddppo import ( PointNavHabitatMixInPPOConfig, ) from projects.pointnav_baselines.experiments.pointnav_mixin_simpleconvgru import ( PointNavMixInSimpleConvGRUConfig, ) class PointNavHabitatDepthDeterministiSimpleConvGRUDDPPOExperimentConfig( DebugPointNavHabitatBaseConfig, PointNavHabitatMixInPPOConfig, PointNavMixInSimpleConvGRUConfig, ): """An Point Navigation experiment configuration in Habitat with Depth input.""" SENSORS = [ RGBSensorHabitat( height=DebugPointNavHabitatBaseConfig.SCREEN_SIZE, width=DebugPointNavHabitatBaseConfig.SCREEN_SIZE, use_resnet_normalization=True, ), TargetCoordinatesSensorHabitat(coordinate_dims=2), ] @classmethod def tag(cls): return "Debug-Pointnav-Habitat-RGB-SimpleConv-DDPPO"
ask4help-main
projects/pointnav_baselines/experiments/habitat/debug_pointnav_habitat_rgb_simpleconvgru_ddppo.py
import torch import torch.optim as optim from torch.optim.lr_scheduler import LambdaLR from allenact.algorithms.onpolicy_sync.losses.imitation import Imitation from allenact.base_abstractions.sensor import ExpertActionSensor from allenact.utils.experiment_utils import ( Builder, PipelineStage, TrainingPipeline, LinearDecay, ) from allenact_plugins.habitat_plugin.habitat_sensors import ( RGBSensorHabitat, TargetCoordinatesSensorHabitat, ) from allenact_plugins.habitat_plugin.habitat_tasks import PointNavTask from projects.pointnav_baselines.experiments.habitat.debug_pointnav_habitat_base import ( DebugPointNavHabitatBaseConfig, ) from projects.pointnav_baselines.experiments.pointnav_mixin_simpleconvgru import ( PointNavMixInSimpleConvGRUConfig, ) class PointNavHabitatRGBDeterministiSimpleConvGRUImitationExperimentConfig( DebugPointNavHabitatBaseConfig, PointNavMixInSimpleConvGRUConfig ): """An Point Navigation experiment configuration in Habitat with Depth input.""" SENSORS = [ RGBSensorHabitat( height=DebugPointNavHabitatBaseConfig.SCREEN_SIZE, width=DebugPointNavHabitatBaseConfig.SCREEN_SIZE, use_resnet_normalization=True, ), TargetCoordinatesSensorHabitat(coordinate_dims=2), ExpertActionSensor(nactions=len(PointNavTask.class_action_names())), ] @classmethod def tag(cls): return "Debug-Pointnav-Habitat-RGB-SimpleConv-BC" @classmethod def training_pipeline(cls, **kwargs): imitate_steps = int(75000000) lr = 3e-4 num_mini_batch = 1 update_repeats = 3 num_steps = 30 save_interval = 5000000 log_interval = 10000 if torch.cuda.is_available() else 1 gamma = 0.99 use_gae = True gae_lambda = 0.95 max_grad_norm = 0.5 return TrainingPipeline( save_interval=save_interval, metric_accumulate_interval=log_interval, optimizer_builder=Builder(optim.Adam, dict(lr=lr)), num_mini_batch=num_mini_batch, update_repeats=update_repeats, max_grad_norm=max_grad_norm, num_steps=num_steps, named_losses={"imitation_loss": Imitation()}, gamma=gamma, use_gae=use_gae, gae_lambda=gae_lambda, advance_scene_rollout_period=cls.ADVANCE_SCENE_ROLLOUT_PERIOD, pipeline_stages=[ PipelineStage( loss_names=["imitation_loss"], max_stage_steps=imitate_steps, # teacher_forcing=LinearDecay(steps=int(1e5), startp=1.0, endp=0.0,), ), ], lr_scheduler_builder=Builder( LambdaLR, {"lr_lambda": LinearDecay(steps=imitate_steps)} ), )
ask4help-main
projects/pointnav_baselines/experiments/habitat/debug_pointnav_habitat_rgb_simpleconvgru_bc.py
from allenact_plugins.habitat_plugin.habitat_sensors import ( DepthSensorHabitat, TargetCoordinatesSensorHabitat, ) from projects.pointnav_baselines.experiments.habitat.pointnav_habitat_base import ( PointNavHabitatBaseConfig, ) from projects.pointnav_baselines.experiments.pointnav_habitat_mixin_ddppo import ( PointNavHabitatMixInPPOConfig, ) from projects.pointnav_baselines.experiments.pointnav_mixin_simpleconvgru import ( PointNavMixInSimpleConvGRUConfig, ) class PointNavHabitatDepthDeterministiSimpleConvGRUDDPPOExperimentConfig( PointNavHabitatBaseConfig, PointNavHabitatMixInPPOConfig, PointNavMixInSimpleConvGRUConfig, ): """An Point Navigation experiment configuration in Habitat with Depth input.""" SENSORS = [ DepthSensorHabitat( height=PointNavHabitatBaseConfig.SCREEN_SIZE, width=PointNavHabitatBaseConfig.SCREEN_SIZE, use_normalization=True, ), TargetCoordinatesSensorHabitat(coordinate_dims=2), ] @classmethod def tag(cls): return "Pointnav-Habitat-Depth-SimpleConv-DDPPO"
ask4help-main
projects/pointnav_baselines/experiments/habitat/pointnav_habitat_depth_simpleconvgru_ddppo.py
import os from abc import ABC import habitat import torch from allenact_plugins.habitat_plugin.habitat_constants import ( HABITAT_DATASETS_DIR, HABITAT_CONFIGS_DIR, ) from projects.pointnav_baselines.experiments.habitat.pointnav_habitat_base import ( PointNavHabitatBaseConfig, ) class DebugPointNavHabitatBaseConfig(PointNavHabitatBaseConfig, ABC): """The base config for all Habitat PointNav experiments.""" FAILED_END_REWARD = -1.0 TASK_DATA_DIR_TEMPLATE = os.path.join( HABITAT_DATASETS_DIR, "pointnav/habitat-test-scenes/v1/{}/{}.json.gz" ) BASE_CONFIG_YAML_PATH = os.path.join( HABITAT_CONFIGS_DIR, "debug_habitat_pointnav.yaml" ) NUM_TRAIN_PROCESSES = 8 if torch.cuda.is_available() else 4 TRAIN_GPUS = [torch.cuda.device_count() - 1] VALIDATION_GPUS = [torch.cuda.device_count() - 1] TESTING_GPUS = [torch.cuda.device_count() - 1] @staticmethod def make_easy_dataset(dataset: habitat.Dataset) -> habitat.Dataset: episodes = [ e for e in dataset.episodes if float(e.info["geodesic_distance"]) < 1.5 ] for i, e in enumerate(episodes): e.episode_id = str(i) dataset.episodes = episodes return dataset
ask4help-main
projects/pointnav_baselines/experiments/habitat/debug_pointnav_habitat_base.py
from allenact_plugins.ithor_plugin.ithor_sensors import RGBSensorThor from allenact_plugins.robothor_plugin.robothor_sensors import ( DepthSensorThor, GPSCompassSensorRoboThor, ) from projects.pointnav_baselines.experiments.ithor.pointnav_ithor_base import ( PointNaviThorBaseConfig, ) from projects.pointnav_baselines.experiments.pointnav_mixin_simpleconvgru import ( PointNavMixInSimpleConvGRUConfig, ) from projects.pointnav_baselines.experiments.pointnav_thor_mixin_ddppo import ( PointNavThorMixInPPOConfig, ) class PointNaviThorRGBDPPOExperimentConfig( PointNaviThorBaseConfig, PointNavThorMixInPPOConfig, PointNavMixInSimpleConvGRUConfig, ): """An Point Navigation experiment configuration in iThor with RGBD input.""" SENSORS = [ RGBSensorThor( height=PointNaviThorBaseConfig.SCREEN_SIZE, width=PointNaviThorBaseConfig.SCREEN_SIZE, use_resnet_normalization=True, uuid="rgb_lowres", ), DepthSensorThor( height=PointNaviThorBaseConfig.SCREEN_SIZE, width=PointNaviThorBaseConfig.SCREEN_SIZE, use_normalization=True, uuid="depth_lowres", ), GPSCompassSensorRoboThor(), ] @classmethod def tag(cls): return "Pointnav-iTHOR-RGBD-SimpleConv-DDPPO"
ask4help-main
projects/pointnav_baselines/experiments/ithor/pointnav_ithor_rgbd_simpleconvgru_ddppo.py
ask4help-main
projects/pointnav_baselines/experiments/ithor/__init__.py
from allenact_plugins.robothor_plugin.robothor_sensors import ( DepthSensorThor, GPSCompassSensorRoboThor, ) from projects.pointnav_baselines.experiments.ithor.pointnav_ithor_base import ( PointNaviThorBaseConfig, ) from projects.pointnav_baselines.experiments.pointnav_mixin_simpleconvgru import ( PointNavMixInSimpleConvGRUConfig, ) from projects.pointnav_baselines.experiments.pointnav_thor_mixin_ddppo_and_gbc import ( PointNavThorMixInPPOAndGBCConfig, ) class PointNaviThorDepthPPOExperimentConfig( PointNaviThorBaseConfig, PointNavThorMixInPPOAndGBCConfig, PointNavMixInSimpleConvGRUConfig, ): """An Point Navigation experiment configuration in iThor with Depth input.""" SENSORS = PointNavThorMixInPPOAndGBCConfig.SENSORS + ( # type:ignore DepthSensorThor( height=PointNaviThorBaseConfig.SCREEN_SIZE, width=PointNaviThorBaseConfig.SCREEN_SIZE, use_normalization=True, uuid="depth_lowres", ), GPSCompassSensorRoboThor(), ) @classmethod def tag(cls): return "Pointnav-iTHOR-Depth-SimpleConv-DDPPOAndGBC"
ask4help-main
projects/pointnav_baselines/experiments/ithor/pointnav_ithor_depth_simpleconvgru_ddppo_and_gbc.py
from allenact_plugins.ithor_plugin.ithor_sensors import RGBSensorThor from allenact_plugins.robothor_plugin.robothor_sensors import GPSCompassSensorRoboThor from projects.pointnav_baselines.experiments.ithor.pointnav_ithor_base import ( PointNaviThorBaseConfig, ) from projects.pointnav_baselines.experiments.pointnav_mixin_simpleconvgru import ( PointNavMixInSimpleConvGRUConfig, ) from projects.pointnav_baselines.experiments.pointnav_thor_mixin_ddppo import ( PointNavThorMixInPPOConfig, ) class PointNaviThorRGBPPOExperimentConfig( PointNaviThorBaseConfig, PointNavThorMixInPPOConfig, PointNavMixInSimpleConvGRUConfig, ): """An Point Navigation experiment configuration in iThor with RGB input.""" SENSORS = [ RGBSensorThor( height=PointNaviThorBaseConfig.SCREEN_SIZE, width=PointNaviThorBaseConfig.SCREEN_SIZE, use_resnet_normalization=True, uuid="rgb_lowres", ), GPSCompassSensorRoboThor(), ] @classmethod def tag(cls): return "Pointnav-iTHOR-RGB-SimpleConv-DDPPO"
ask4help-main
projects/pointnav_baselines/experiments/ithor/pointnav_ithor_rgb_simpleconvgru_ddppo.py
import os from abc import ABC from projects.pointnav_baselines.experiments.pointnav_thor_base import ( PointNavThorBaseConfig, ) class PointNaviThorBaseConfig(PointNavThorBaseConfig, ABC): """The base config for all iTHOR PointNav experiments.""" NUM_PROCESSES = 40 TRAIN_DATASET_DIR = os.path.join(os.getcwd(), "datasets/ithor-pointnav/train") VAL_DATASET_DIR = os.path.join(os.getcwd(), "datasets/ithor-pointnav/val")
ask4help-main
projects/pointnav_baselines/experiments/ithor/pointnav_ithor_base.py
from allenact_plugins.robothor_plugin.robothor_sensors import ( DepthSensorThor, GPSCompassSensorRoboThor, ) from projects.pointnav_baselines.experiments.ithor.pointnav_ithor_base import ( PointNaviThorBaseConfig, ) from projects.pointnav_baselines.experiments.pointnav_mixin_simpleconvgru import ( PointNavMixInSimpleConvGRUConfig, ) from projects.pointnav_baselines.experiments.pointnav_thor_mixin_ddppo import ( PointNavThorMixInPPOConfig, ) class PointNaviThorDepthPPOExperimentConfig( PointNaviThorBaseConfig, PointNavThorMixInPPOConfig, PointNavMixInSimpleConvGRUConfig, ): """An Point Navigation experiment configuration in iThor with Depth input.""" SENSORS = [ DepthSensorThor( height=PointNaviThorBaseConfig.SCREEN_SIZE, width=PointNaviThorBaseConfig.SCREEN_SIZE, use_normalization=True, uuid="depth_lowres", ), GPSCompassSensorRoboThor(), ] @classmethod def tag(cls): return "Pointnav-iTHOR-Depth-SimpleConv-DDPPO"
ask4help-main
projects/pointnav_baselines/experiments/ithor/pointnav_ithor_depth_simpleconvgru_ddppo.py
from typing import Tuple, Dict, Optional, Union, List, cast import gym import torch import torch.nn as nn from gym.spaces.dict import Dict as SpaceDict from allenact.algorithms.onpolicy_sync.policy import ObservationType from allenact.embodiedai.models.basic_models import SimpleCNN import allenact.embodiedai.models.resnet as resnet from allenact.embodiedai.models.visual_nav_models import ( VisualNavActorCritic, FusionType, ) class PointNavActorCritic(VisualNavActorCritic): """Use raw image as observation to the agent.""" def __init__( # base params self, action_space: gym.spaces.Discrete, observation_space: SpaceDict, goal_sensor_uuid: str, hidden_size=512, num_rnn_layers=1, rnn_type="GRU", add_prev_actions=False, action_embed_size=4, multiple_beliefs=False, beliefs_fusion: Optional[FusionType] = None, auxiliary_uuids: Optional[List[str]] = None, # custom params rgb_uuid: Optional[str] = None, depth_uuid: Optional[str] = None, embed_coordinates=False, coordinate_embedding_dim=8, coordinate_dims=2, # perception backbone params, backbone="gnresnet18", resnet_baseplanes=32, ): super().__init__( action_space=action_space, observation_space=observation_space, hidden_size=hidden_size, multiple_beliefs=multiple_beliefs, beliefs_fusion=beliefs_fusion, auxiliary_uuids=auxiliary_uuids, ) self.goal_sensor_uuid = goal_sensor_uuid self.embed_coordinates = embed_coordinates if self.embed_coordinates: self.coordinate_embedding_size = coordinate_embedding_dim else: self.coordinate_embedding_size = coordinate_dims self.sensor_fusion = False if rgb_uuid is not None and depth_uuid is not None: self.sensor_fuser = nn.Linear(hidden_size * 2, hidden_size) self.sensor_fusion = True self.backbone = backbone if backbone == "simple_cnn": self.visual_encoder = SimpleCNN( observation_space=observation_space, output_size=hidden_size, rgb_uuid=rgb_uuid, depth_uuid=depth_uuid, ) else: # resnet family self.visual_encoder = resnet.GroupNormResNetEncoder( observation_space=observation_space, output_size=hidden_size, rgb_uuid=rgb_uuid, depth_uuid=depth_uuid, baseplanes=resnet_baseplanes, ngroups=resnet_baseplanes // 2, make_backbone=getattr(resnet, backbone), ) if self.embed_coordinates: self.coordinate_embedding = nn.Linear( coordinate_dims, coordinate_embedding_dim ) self.create_state_encoders( obs_embed_size=self.goal_visual_encoder_output_dims, num_rnn_layers=num_rnn_layers, rnn_type=rnn_type, add_prev_actions=add_prev_actions, prev_action_embed_size=action_embed_size, ) self.create_actorcritic_head() self.create_aux_models( obs_embed_size=self.goal_visual_encoder_output_dims, action_embed_size=action_embed_size, ) self.train() @property def is_blind(self): return self.visual_encoder.is_blind @property def goal_visual_encoder_output_dims(self): dims = self.coordinate_embedding_size if self.is_blind: return dims return dims + self.recurrent_hidden_state_size def get_target_coordinates_encoding(self, observations): if self.embed_coordinates: return self.coordinate_embedding( observations[self.goal_sensor_uuid].to(torch.float32) ) else: return observations[self.goal_sensor_uuid].to(torch.float32) def forward_encoder(self, observations: ObservationType) -> torch.FloatTensor: target_encoding = self.get_target_coordinates_encoding(observations) obs_embeds: Union[torch.Tensor, List[torch.Tensor]] obs_embeds = [target_encoding] # if observations["rgb"].shape[0] != 1: # print("rgb", (observations["rgb"][...,0,0,:].unsqueeze(-2).unsqueeze(-2) == observations["rgb"][...,0,0,:]).float().mean()) # if "depth" in observations: # print("depth", (observations["depth"][...,0,0,:].unsqueeze(-2).unsqueeze(-2) == observations["depth"][...,0,0,:]).float().mean()) if not self.is_blind: perception_embed = self.visual_encoder(observations) if self.sensor_fusion: perception_embed = self.sensor_fuser(perception_embed) obs_embeds = [perception_embed] + obs_embeds obs_embeds = torch.cat(obs_embeds, dim=-1) return obs_embeds class ResnetTensorPointNavActorCritic(VisualNavActorCritic): """Use resnet_preprocessor to generate observations to the agent.""" def __init__( # base params self, action_space: gym.spaces.Discrete, observation_space: SpaceDict, goal_sensor_uuid: str, hidden_size=512, num_rnn_layers=1, rnn_type="GRU", add_prev_actions=False, action_embed_size=4, multiple_beliefs=False, beliefs_fusion: Optional[FusionType] = None, auxiliary_uuids: Optional[List[str]] = None, # custom params rgb_resnet_preprocessor_uuid: Optional[str] = None, depth_resnet_preprocessor_uuid: Optional[str] = None, goal_dims: int = 32, resnet_compressor_hidden_out_dims: Tuple[int, int] = (128, 32), combiner_hidden_out_dims: Tuple[int, int] = (128, 32), ): super().__init__( action_space=action_space, observation_space=observation_space, hidden_size=hidden_size, multiple_beliefs=multiple_beliefs, beliefs_fusion=beliefs_fusion, auxiliary_uuids=auxiliary_uuids, ) if ( rgb_resnet_preprocessor_uuid is None or depth_resnet_preprocessor_uuid is None ): resnet_preprocessor_uuid = ( rgb_resnet_preprocessor_uuid if rgb_resnet_preprocessor_uuid is not None else depth_resnet_preprocessor_uuid ) self.goal_visual_encoder = ResnetTensorGoalEncoder( observation_space, goal_sensor_uuid, resnet_preprocessor_uuid, goal_dims, resnet_compressor_hidden_out_dims, combiner_hidden_out_dims, ) else: self.goal_visual_encoder = ResnetDualTensorGoalEncoder( # type:ignore observation_space, goal_sensor_uuid, rgb_resnet_preprocessor_uuid, depth_resnet_preprocessor_uuid, goal_dims, resnet_compressor_hidden_out_dims, combiner_hidden_out_dims, ) self.create_state_encoders( obs_embed_size=self.goal_visual_encoder.output_dims, num_rnn_layers=num_rnn_layers, rnn_type=rnn_type, add_prev_actions=add_prev_actions, prev_action_embed_size=action_embed_size, ) self.create_actorcritic_head() self.create_aux_models( obs_embed_size=self.goal_visual_encoder.output_dims, action_embed_size=action_embed_size, ) self.train() @property def is_blind(self) -> bool: """True if the model is blind (e.g. neither 'depth' or 'rgb' is an input observation type).""" return self.goal_visual_encoder.is_blind def forward_encoder(self, observations: ObservationType) -> torch.FloatTensor: return self.goal_visual_encoder(observations) class ResnetTensorGoalEncoder(nn.Module): def __init__( self, observation_spaces: SpaceDict, goal_sensor_uuid: str, resnet_preprocessor_uuid: str, goal_dims: int = 32, resnet_compressor_hidden_out_dims: Tuple[int, int] = (128, 32), combiner_hidden_out_dims: Tuple[int, int] = (128, 32), ) -> None: super().__init__() self.goal_uuid = goal_sensor_uuid self.resnet_uuid = resnet_preprocessor_uuid self.goal_dims = goal_dims self.resnet_hid_out_dims = resnet_compressor_hidden_out_dims self.combine_hid_out_dims = combiner_hidden_out_dims self.embed_goal = nn.Linear(2, self.goal_dims) self.blind = self.resnet_uuid not in observation_spaces.spaces if not self.blind: self.resnet_tensor_shape = observation_spaces.spaces[self.resnet_uuid].shape self.resnet_compressor = nn.Sequential( nn.Conv2d(self.resnet_tensor_shape[0], self.resnet_hid_out_dims[0], 1), nn.ReLU(), nn.Conv2d(*self.resnet_hid_out_dims[0:2], 1), nn.ReLU(), ) self.target_obs_combiner = nn.Sequential( nn.Conv2d( self.resnet_hid_out_dims[1] + self.goal_dims, self.combine_hid_out_dims[0], 1, ), nn.ReLU(), nn.Conv2d(*self.combine_hid_out_dims[0:2], 1), ) @property def is_blind(self): return self.blind @property def output_dims(self): if self.blind: return self.goal_dims else: return ( self.combine_hid_out_dims[-1] * self.resnet_tensor_shape[1] * self.resnet_tensor_shape[2] ) def get_object_type_encoding( self, observations: Dict[str, torch.FloatTensor] ) -> torch.FloatTensor: """Get the object type encoding from input batched observations.""" return cast( torch.FloatTensor, self.embed_goal(observations[self.goal_uuid].to(torch.int64)), ) def compress_resnet(self, observations): return self.resnet_compressor(observations[self.resnet_uuid]) def distribute_target(self, observations): target_emb = self.embed_goal(observations[self.goal_uuid]) return target_emb.view(-1, self.goal_dims, 1, 1).expand( -1, -1, self.resnet_tensor_shape[-2], self.resnet_tensor_shape[-1] ) def adapt_input(self, observations): resnet = observations[self.resnet_uuid] use_agent = False nagent = 1 if len(resnet.shape) == 6: use_agent = True nstep, nsampler, nagent = resnet.shape[:3] else: nstep, nsampler = resnet.shape[:2] observations[self.resnet_uuid] = resnet.view(-1, *resnet.shape[-3:]) observations[self.goal_uuid] = observations[self.goal_uuid].view(-1, 2) return observations, use_agent, nstep, nsampler, nagent @staticmethod def adapt_output(x, use_agent, nstep, nsampler, nagent): if use_agent: return x.view(nstep, nsampler, nagent, -1) return x.view(nstep, nsampler * nagent, -1) def forward(self, observations): observations, use_agent, nstep, nsampler, nagent = self.adapt_input( observations ) if self.blind: return self.embed_goal(observations[self.goal_uuid]) embs = [ self.compress_resnet(observations), self.distribute_target(observations), ] x = self.target_obs_combiner(torch.cat(embs, dim=1,)) x = x.reshape(x.size(0), -1) # flatten return self.adapt_output(x, use_agent, nstep, nsampler, nagent) class ResnetDualTensorGoalEncoder(nn.Module): def __init__( self, observation_spaces: SpaceDict, goal_sensor_uuid: str, rgb_resnet_preprocessor_uuid: str, depth_resnet_preprocessor_uuid: str, goal_dims: int = 32, resnet_compressor_hidden_out_dims: Tuple[int, int] = (128, 32), combiner_hidden_out_dims: Tuple[int, int] = (128, 32), ) -> None: super().__init__() self.goal_uuid = goal_sensor_uuid self.rgb_resnet_uuid = rgb_resnet_preprocessor_uuid self.depth_resnet_uuid = depth_resnet_preprocessor_uuid self.goal_dims = goal_dims self.resnet_hid_out_dims = resnet_compressor_hidden_out_dims self.combine_hid_out_dims = combiner_hidden_out_dims self.embed_goal = nn.Linear(2, self.goal_dims) self.blind = ( self.rgb_resnet_uuid not in observation_spaces.spaces or self.depth_resnet_uuid not in observation_spaces.spaces ) if not self.blind: self.resnet_tensor_shape = observation_spaces.spaces[ self.rgb_resnet_uuid ].shape self.rgb_resnet_compressor = nn.Sequential( nn.Conv2d(self.resnet_tensor_shape[0], self.resnet_hid_out_dims[0], 1), nn.ReLU(), nn.Conv2d(*self.resnet_hid_out_dims[0:2], 1), nn.ReLU(), ) self.depth_resnet_compressor = nn.Sequential( nn.Conv2d(self.resnet_tensor_shape[0], self.resnet_hid_out_dims[0], 1), nn.ReLU(), nn.Conv2d(*self.resnet_hid_out_dims[0:2], 1), nn.ReLU(), ) self.rgb_target_obs_combiner = nn.Sequential( nn.Conv2d( self.resnet_hid_out_dims[1] + self.goal_dims, self.combine_hid_out_dims[0], 1, ), nn.ReLU(), nn.Conv2d(*self.combine_hid_out_dims[0:2], 1), ) self.depth_target_obs_combiner = nn.Sequential( nn.Conv2d( self.resnet_hid_out_dims[1] + self.goal_dims, self.combine_hid_out_dims[0], 1, ), nn.ReLU(), nn.Conv2d(*self.combine_hid_out_dims[0:2], 1), ) @property def is_blind(self): return self.blind @property def output_dims(self): if self.blind: return self.goal_dims else: return ( 2 * self.combine_hid_out_dims[-1] * self.resnet_tensor_shape[1] * self.resnet_tensor_shape[2] ) def get_object_type_encoding( self, observations: Dict[str, torch.FloatTensor] ) -> torch.FloatTensor: """Get the object type encoding from input batched observations.""" return cast( torch.FloatTensor, self.embed_goal(observations[self.goal_uuid].to(torch.int64)), ) def compress_rgb_resnet(self, observations): return self.rgb_resnet_compressor(observations[self.rgb_resnet_uuid]) def compress_depth_resnet(self, observations): return self.depth_resnet_compressor(observations[self.depth_resnet_uuid]) def distribute_target(self, observations): target_emb = self.embed_goal(observations[self.goal_uuid]) return target_emb.view(-1, self.goal_dims, 1, 1).expand( -1, -1, self.resnet_tensor_shape[-2], self.resnet_tensor_shape[-1] ) def adapt_input(self, observations): rgb = observations[self.rgb_resnet_uuid] depth = observations[self.depth_resnet_uuid] use_agent = False nagent = 1 if len(rgb.shape) == 6: use_agent = True nstep, nsampler, nagent = rgb.shape[:3] else: nstep, nsampler = rgb.shape[:2] observations[self.rgb_resnet_uuid] = rgb.view(-1, *rgb.shape[-3:]) observations[self.depth_resnet_uuid] = depth.view(-1, *depth.shape[-3:]) observations[self.goal_uuid] = observations[self.goal_uuid].view(-1, 2) return observations, use_agent, nstep, nsampler, nagent @staticmethod def adapt_output(x, use_agent, nstep, nsampler, nagent): if use_agent: return x.view(nstep, nsampler, nagent, -1) return x.view(nstep, nsampler, -1) def forward(self, observations): observations, use_agent, nstep, nsampler, nagent = self.adapt_input( observations ) if self.blind: return self.embed_goal(observations[self.goal_uuid]) rgb_embs = [ self.compress_rgb_resnet(observations), self.distribute_target(observations), ] rgb_x = self.rgb_target_obs_combiner(torch.cat(rgb_embs, dim=1,)) depth_embs = [ self.compress_depth_resnet(observations), self.distribute_target(observations), ] depth_x = self.depth_target_obs_combiner(torch.cat(depth_embs, dim=1,)) x = torch.cat([rgb_x, depth_x], dim=1) x = x.reshape(x.size(0), -1) # flatten return self.adapt_output(x, use_agent, nstep, nsampler, nagent)
ask4help-main
projects/pointnav_baselines/models/point_nav_models.py
ask4help-main
projects/pointnav_baselines/models/__init__.py
import os from typing import Dict, Any, List, Optional, Sequence import gym import torch import torch.nn as nn import torch.optim as optim from torch.optim.lr_scheduler import LambdaLR from torchvision import models from allenact.algorithms.onpolicy_sync.losses import PPO from allenact.algorithms.onpolicy_sync.losses.ppo import PPOConfig from allenact.base_abstractions.experiment_config import ExperimentConfig, MachineParams from allenact.base_abstractions.preprocessor import SensorPreprocessorGraph from allenact.base_abstractions.sensor import SensorSuite from allenact.base_abstractions.task import TaskSampler from allenact.embodiedai.preprocessors.resnet import ResNetPreprocessor from allenact.utils.experiment_utils import ( Builder, PipelineStage, TrainingPipeline, LinearDecay, evenly_distribute_count_into_bins, ) from allenact_plugins.habitat_plugin.habitat_constants import ( HABITAT_DATASETS_DIR, HABITAT_CONFIGS_DIR, ) from allenact_plugins.habitat_plugin.habitat_sensors import ( RGBSensorHabitat, TargetCoordinatesSensorHabitat, ) from allenact_plugins.habitat_plugin.habitat_task_samplers import PointNavTaskSampler from allenact_plugins.habitat_plugin.habitat_utils import ( construct_env_configs, get_habitat_config, ) from allenact_plugins.robothor_plugin.robothor_tasks import PointNavTask from projects.pointnav_baselines.models.point_nav_models import ( ResnetTensorPointNavActorCritic, ) class PointNavHabitatRGBPPOTutorialExperimentConfig(ExperimentConfig): """A Point Navigation experiment configuration in Habitat.""" # Task Parameters MAX_STEPS = 500 REWARD_CONFIG = { "step_penalty": -0.01, "goal_success_reward": 10.0, "failed_stop_reward": 0.0, "shaping_weight": 1.0, } DISTANCE_TO_GOAL = 0.2 # Simulator Parameters CAMERA_WIDTH = 640 CAMERA_HEIGHT = 480 SCREEN_SIZE = 224 # Training Engine Parameters ADVANCE_SCENE_ROLLOUT_PERIOD: Optional[int] = None NUM_PROCESSES = max(5 * torch.cuda.device_count() - 1, 4) TRAINING_GPUS = list(range(torch.cuda.device_count())) VALIDATION_GPUS = [torch.cuda.device_count() - 1] TESTING_GPUS = [torch.cuda.device_count() - 1] task_data_dir_template = os.path.join( HABITAT_DATASETS_DIR, "pointnav/gibson/v1/{}/{}.json.gz" ) TRAIN_SCENES = task_data_dir_template.format(*(["train"] * 2)) VALID_SCENES = task_data_dir_template.format(*(["val"] * 2)) TEST_SCENES = task_data_dir_template.format(*(["test"] * 2)) CONFIG = get_habitat_config( os.path.join(HABITAT_CONFIGS_DIR, "tasks/pointnav_gibson.yaml") ) CONFIG.defrost() CONFIG.NUM_PROCESSES = NUM_PROCESSES CONFIG.SIMULATOR_GPU_IDS = TRAINING_GPUS CONFIG.DATASET.SCENES_DIR = "habitat/habitat-api/data/scene_datasets/" CONFIG.DATASET.POINTNAVV1.CONTENT_SCENES = ["*"] CONFIG.DATASET.DATA_PATH = TRAIN_SCENES CONFIG.SIMULATOR.AGENT_0.SENSORS = ["RGB_SENSOR"] CONFIG.SIMULATOR.RGB_SENSOR.WIDTH = CAMERA_WIDTH CONFIG.SIMULATOR.RGB_SENSOR.HEIGHT = CAMERA_HEIGHT CONFIG.SIMULATOR.TURN_ANGLE = 30 CONFIG.SIMULATOR.FORWARD_STEP_SIZE = 0.25 CONFIG.ENVIRONMENT.MAX_EPISODE_STEPS = MAX_STEPS CONFIG.TASK.TYPE = "Nav-v0" CONFIG.TASK.SUCCESS_DISTANCE = DISTANCE_TO_GOAL CONFIG.TASK.SENSORS = ["POINTGOAL_WITH_GPS_COMPASS_SENSOR"] CONFIG.TASK.POINTGOAL_WITH_GPS_COMPASS_SENSOR.GOAL_FORMAT = "POLAR" CONFIG.TASK.POINTGOAL_WITH_GPS_COMPASS_SENSOR.DIMENSIONALITY = 2 CONFIG.TASK.GOAL_SENSOR_UUID = "pointgoal_with_gps_compass" CONFIG.TASK.MEASUREMENTS = ["DISTANCE_TO_GOAL", "SUCCESS", "SPL"] CONFIG.TASK.SPL.TYPE = "SPL" CONFIG.TASK.SPL.SUCCESS_DISTANCE = DISTANCE_TO_GOAL CONFIG.TASK.SUCCESS.SUCCESS_DISTANCE = DISTANCE_TO_GOAL CONFIG.MODE = "train" SENSORS = [ RGBSensorHabitat( height=SCREEN_SIZE, width=SCREEN_SIZE, use_resnet_normalization=True, ), TargetCoordinatesSensorHabitat(coordinate_dims=2), ] PREPROCESSORS = [ Builder( ResNetPreprocessor, { "input_height": SCREEN_SIZE, "input_width": SCREEN_SIZE, "output_width": 7, "output_height": 7, "output_dims": 512, "pool": False, "torchvision_resnet_model": models.resnet18, "input_uuids": ["rgb_lowres"], "output_uuid": "rgb_resnet", }, ), ] OBSERVATIONS = [ "rgb_resnet", "target_coordinates_ind", ] TRAIN_CONFIGS = construct_env_configs(CONFIG) @classmethod def tag(cls): return "PointNavHabitatRGBPPO" @classmethod def training_pipeline(cls, **kwargs): ppo_steps = int(250000000) lr = 3e-4 num_mini_batch = 1 update_repeats = 3 num_steps = 30 save_interval = 5000000 log_interval = 10000 gamma = 0.99 use_gae = True gae_lambda = 0.95 max_grad_norm = 0.5 return TrainingPipeline( save_interval=save_interval, metric_accumulate_interval=log_interval, optimizer_builder=Builder(optim.Adam, dict(lr=lr)), num_mini_batch=num_mini_batch, update_repeats=update_repeats, max_grad_norm=max_grad_norm, num_steps=num_steps, named_losses={"ppo_loss": PPO(**PPOConfig)}, gamma=gamma, use_gae=use_gae, gae_lambda=gae_lambda, advance_scene_rollout_period=cls.ADVANCE_SCENE_ROLLOUT_PERIOD, pipeline_stages=[ PipelineStage(loss_names=["ppo_loss"], max_stage_steps=ppo_steps) ], lr_scheduler_builder=Builder( LambdaLR, {"lr_lambda": LinearDecay(steps=ppo_steps)} ), ) def machine_params(self, mode="train", **kwargs): if mode == "train": workers_per_device = 1 gpu_ids = ( [] if not torch.cuda.is_available() else self.TRAINING_GPUS * workers_per_device ) nprocesses = ( 1 if not torch.cuda.is_available() else evenly_distribute_count_into_bins(self.NUM_PROCESSES, len(gpu_ids)) ) elif mode == "valid": nprocesses = 1 gpu_ids = [] if not torch.cuda.is_available() else self.VALIDATION_GPUS elif mode == "test": nprocesses = 1 gpu_ids = [] if not torch.cuda.is_available() else self.TESTING_GPUS else: raise NotImplementedError("mode must be 'train', 'valid', or 'test'.") sensor_preprocessor_graph = ( SensorPreprocessorGraph( source_observation_spaces=SensorSuite(self.SENSORS).observation_spaces, preprocessors=self.PREPROCESSORS, ) if mode == "train" or ( (isinstance(nprocesses, int) and nprocesses > 0) or (isinstance(nprocesses, Sequence) and sum(nprocesses) > 0) ) else None ) return MachineParams( nprocesses=nprocesses, devices=gpu_ids, sensor_preprocessor_graph=sensor_preprocessor_graph, ) # Define Model @classmethod def create_model(cls, **kwargs) -> nn.Module: return ResnetTensorPointNavActorCritic( action_space=gym.spaces.Discrete(len(PointNavTask.class_action_names())), observation_space=kwargs["sensor_preprocessor_graph"].observation_spaces, goal_sensor_uuid="target_coordinates_ind", rgb_resnet_preprocessor_uuid="rgb_resnet", hidden_size=512, goal_dims=32, ) # Define Task Sampler @classmethod def make_sampler_fn(cls, **kwargs) -> TaskSampler: return PointNavTaskSampler(**kwargs) def train_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: config = self.TRAIN_CONFIGS[process_ind] return { "env_config": config, "max_steps": self.MAX_STEPS, "sensors": self.SENSORS, "action_space": gym.spaces.Discrete(len(PointNavTask.class_action_names())), "distance_to_goal": self.DISTANCE_TO_GOAL, # type:ignore } def valid_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: config = self.CONFIG.clone() config.defrost() config.DATASET.DATA_PATH = self.VALID_SCENES config.MODE = "validate" config.freeze() return { "env_config": config, "max_steps": self.MAX_STEPS, "sensors": self.SENSORS, "action_space": gym.spaces.Discrete(len(PointNavTask.class_action_names())), "distance_to_goal": self.DISTANCE_TO_GOAL, # type:ignore } def test_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: raise NotImplementedError("Testing not implemented for this tutorial.")
ask4help-main
projects/tutorials/pointnav_habitat_rgb_ddppo.py
# literate: tutorials/running-inference-on-a-pretrained-model.md # %% """# Tutorial: Inference with a pre-trained model.""" # %% """ In this tutorial we will run inference on a pre-trained model for the PointNav task in the RoboTHOR environment. In this task the agent is tasked with going to a specific location within a realistic 3D environment. For information on how to train a PointNav Model see [this tutorial](training-a-pointnav-model.md) We will need to [install the full AllenAct library](../installation/installation-allenact.md#full-library), the `robothor_plugin` requirements via ```bash pip install -r allenact_plugins/robothor_plugin/extra_requirements.txt ``` and [download the RoboTHOR Pointnav dataset](../installation/download-datasets.md) before we get started. For this tutorial we will download the weights of a model trained on the debug dataset. This can be done with a handy script in the `pretrained_model_ckpts` directory: ```bash bash pretrained_model_ckpts/download_navigation_model_ckpts.sh robothor-pointnav-rgb-resnet ``` This will download the weights for an RGB model that has been trained on the PointNav task in RoboTHOR to `pretrained_model_ckpts/robothor-pointnav-rgb-resnet` Next we need to run the inference, using the PointNav experiment config from the [tutorial on making a PointNav experiment](training-a-pointnav-model.md). We can do this with the following command: ```bash PYTHONPATH=. python allenact/main.py -o <PATH_TO_OUTPUT> -b <BASE_DIRECTORY_OF_YOUR_EXPERIMENT> -c <PATH_TO_CHECKPOINT> --eval ``` Where `<PATH_TO_OUTPUT>` is the location where the results of the test will be dumped, `<PATH_TO_CHECKPOINT>` is the location of the downloaded model weights, and `<BASE_DIRECTORY_OF_YOUR_EXPERIMENT>` is a path to the directory where our experiment definition is stored. For our current setup the following command would work: ```bash PYTHONPATH=. python allenact/main.py \ training_a_pointnav_model \ -o pretrained_model_ckpts/robothor-pointnav-rgb-resnet/ \ -b projects/tutorials \ -c pretrained_model_ckpts/robothor-pointnav-rgb-resnet/checkpoints/PointNavRobothorRGBPPO/2020-08-31_12-13-30/exp_PointNavRobothorRGBPPO__stage_00__steps_000039031200.pt \ --eval ``` For testing on all saved checkpoints we pass a directory to `--checkpoint` rather than just a single file: ```bash PYTHONPATH=. python allenact/main.py \ training_a_pointnav_model \ -o pretrained_model_ckpts/robothor-pointnav-rgb-resnet/ \ -b projects/tutorials \ -c pretrained_model_ckpts/robothor-pointnav-rgb-resnet/checkpoints/PointNavRobothorRGBPPO/2020-08-31_12-13-30 --eval ``` ## Visualization We also show examples of visualizations that can be extracted from the `"valid"` and `"test"` modes. Currently, visualization is still undergoing design changes and does not support multi-agent tasks, but the available functionality is sufficient for pointnav in RoboThor. Following up on the example above, we can make a specialized pontnav `ExperimentConfig` where we instantiate the base visualization class, `VizSuite`, defined in [`allenact.utils.viz_utils`](https://github.com/allenai/allenact/tree/master/allenact/utils/viz_utils.py), when in `test` mode. Each visualization type can be thought of as a plugin to the base `VizSuite`. For example, all `episode_ids` passed to `VizSuite` will be processed with each of the instantiated visualization types (possibly with the exception of the `AgentViewViz`). In the example below we show how to instantiate different visualization types from 4 different data sources. The data sources available to `VizSuite` are: * Task output (e.g. 2D trajectories) * Vector task (e.g. egocentric views) * Rollout storage (e.g. recurrent memory, taken action logprobs...) * `ActorCriticOutput` (e.g. action probabilities) The visualization types included below are: * `TrajectoryViz`: Generic 2D trajectory view. * `AgentViewViz`: RGB egocentric view. * `ActorViz`: Action probabilities from `ActorCriticOutput[CategoricalDistr]`. * `TensorViz1D`: Evolution of a point from RolloutStorage over time. * `TensorViz2D`: Evolution of a vector from RolloutStorage over time. * `ThorViz`: Specialized 2D trajectory view [for RoboThor](https://github.com/allenai/allenact/tree/master/allenact_plugins/robothor_plugin/robothor_viz.py). Note that we need to explicitly set the `episode_ids` that we wish to visualize. For `AgentViewViz` we have the option of using a different (typically shorter) list of episodes or enforce the ones used for the rest of visualizations. """ # %% hide from typing import Optional from allenact.utils.viz_utils import ( VizSuite, TrajectoryViz, ActorViz, AgentViewViz, TensorViz1D, TensorViz2D, ) from allenact_plugins.robothor_plugin.robothor_viz import ThorViz from projects.tutorials.training_a_pointnav_model import ( PointNavRoboThorRGBPPOExperimentConfig, ) # %% class PointNavRoboThorRGBPPOVizExperimentConfig(PointNavRoboThorRGBPPOExperimentConfig): """ExperimentConfig used to demonstrate how to set up visualization code. # Attributes viz_ep_ids : Scene names that will be visualized. viz_video_ids : Scene names that will have videos visualizations associated with them. """ viz_ep_ids = [ "FloorPlan_Train1_1_3", "FloorPlan_Train1_1_4", "FloorPlan_Train1_1_5", "FloorPlan_Train1_1_6", ] viz_video_ids = [["FloorPlan_Train1_1_3"], ["FloorPlan_Train1_1_4"]] viz: Optional[VizSuite] = None def get_viz(self, mode): if self.viz is not None: return self.viz self.viz = VizSuite( episode_ids=self.viz_ep_ids, mode=mode, # Basic 2D trajectory visualizer (task output source): base_trajectory=TrajectoryViz( path_to_target_location=("task_info", "target",), ), # Egocentric view visualizer (vector task source): egeocentric=AgentViewViz( max_video_length=100, episode_ids=self.viz_video_ids ), # Default action probability visualizer (actor critic output source): action_probs=ActorViz(figsize=(3.25, 10), fontsize=18), # Default taken action logprob visualizer (rollout storage source): taken_action_logprobs=TensorViz1D(), # Same episode mask visualizer (rollout storage source): episode_mask=TensorViz1D(rollout_source=("masks",)), # Default recurrent memory visualizer (rollout storage source): rnn_memory=TensorViz2D(rollout_source=("memory", "single_belief")), # Specialized 2D trajectory visualizer (task output source): thor_trajectory=ThorViz( figsize=(16, 8), viz_rows_cols=(448, 448), scenes=("FloorPlan_Train{}_{}", 1, 1, 1, 1), ), ) return self.viz def machine_params(self, mode="train", **kwargs): res = super().machine_params(mode, **kwargs) if mode == "test": res.set_visualizer(self.get_viz(mode)) return res # %% """ Running test on the same downloaded models, but using the visualization-enabled `ExperimentConfig` with ```bash PYTHONPATH=. python allenact/main.py \ running_inference_tutorial \ -o pretrained_model_ckpts/robothor-pointnav-rgb-resnet/ \ -b projects/tutorials \ -c pretrained_model_ckpts/robothor-pointnav-rgb-resnet/checkpoints/PointNavRobothorRGBPPO/2020-08-31_12-13-30/exp_PointNavRobothorRGBPPO__stage_00__steps_000039031200.pt \ --eval ``` generates different types of visualization and logs them in tensorboard. If everything is properly setup and tensorboard includes the `robothor-pointnav-rgb-resnet` folder, under the `IMAGES` tab, we should see something similar to ![Visualization example](../img/viz_pretrained_2videos.jpg) """
ask4help-main
projects/tutorials/running_inference_tutorial.py
import torch import torch.optim as optim from torch.optim.lr_scheduler import LambdaLR from allenact.algorithms.onpolicy_sync.losses import PPO from allenact.algorithms.onpolicy_sync.losses.imitation import Imitation from allenact.algorithms.onpolicy_sync.losses.ppo import PPOConfig from allenact.utils.experiment_utils import ( Builder, PipelineStage, TrainingPipeline, LinearDecay, ) from allenact.base_abstractions.sensor import ExpertActionSensor from projects.tutorials.object_nav_ithor_ppo_one_object import ( ObjectNavThorPPOExperimentConfig, ObjectNaviThorGridTask, ) class ObjectNavThorDaggerThenPPOExperimentConfig(ObjectNavThorPPOExperimentConfig): """A simple object navigation experiment in THOR. Training with DAgger and then PPO. """ SENSORS = ObjectNavThorPPOExperimentConfig.SENSORS + [ ExpertActionSensor( action_space=len(ObjectNaviThorGridTask.class_action_names()), ), ] @classmethod def tag(cls): return "ObjectNavThorDaggerThenPPO" @classmethod def training_pipeline(cls, **kwargs): dagger_steos = int(1e4) ppo_steps = int(1e6) lr = 2.5e-4 num_mini_batch = 2 if not torch.cuda.is_available() else 6 update_repeats = 4 num_steps = 128 metric_accumulate_interval = cls.MAX_STEPS * 10 # Log every 10 max length tasks save_interval = 10000 gamma = 0.99 use_gae = True gae_lambda = 1.0 max_grad_norm = 0.5 return TrainingPipeline( save_interval=save_interval, metric_accumulate_interval=metric_accumulate_interval, optimizer_builder=Builder(optim.Adam, dict(lr=lr)), num_mini_batch=num_mini_batch, update_repeats=update_repeats, max_grad_norm=max_grad_norm, num_steps=num_steps, named_losses={ "ppo_loss": PPO(clip_decay=LinearDecay(ppo_steps), **PPOConfig), "imitation_loss": Imitation(), # We add an imitation loss. }, gamma=gamma, use_gae=use_gae, gae_lambda=gae_lambda, advance_scene_rollout_period=cls.ADVANCE_SCENE_ROLLOUT_PERIOD, pipeline_stages=[ PipelineStage( loss_names=["imitation_loss"], teacher_forcing=LinearDecay( startp=1.0, endp=0.0, steps=dagger_steos, ), max_stage_steps=dagger_steos, ), PipelineStage(loss_names=["ppo_loss"], max_stage_steps=ppo_steps,), ], lr_scheduler_builder=Builder( LambdaLR, {"lr_lambda": LinearDecay(steps=ppo_steps)} ), )
ask4help-main
projects/tutorials/object_nav_ithor_dagger_then_ppo_one_object.py
# literate: tutorials/offpolicy-tutorial.md # %% """# Tutorial: Off-policy training.""" # %% """ **Note** The provided commands to execute in this tutorial assume you have [installed the full library](../installation/installation-allenact.md#full-library) and the `extra_requirements` for the `babyai_plugin` and `minigrid_plugin`. The latter can be installed with: ```bash pip install -r allenact_plugins/babyai_plugin/extra_requirements.txt; pip install -r allenact_plugins/minigrid_plugin/extra_requirements.txt ``` In this tutorial we'll learn how to train an agent from an external dataset by imitating expert actions via Behavior Cloning. We'll use a [BabyAI agent](/api/allenact_plugins/babyai_plugin/babyai_models#BabyAIRecurrentACModel) to solve `GoToLocal` tasks on [MiniGrid](https://github.com/maximecb/gym-minigrid); see the `projects/babyai_baselines/experiments/go_to_local` directory for more details. This tutorial assumes `AllenAct`'s [abstractions](../getting_started/abstractions.md) are known. ## The task In a `GoToLocal` task, the agent immersed in a grid world has to navigate to a specific object in the presence of multiple distractors, requiring the agent to understand `go to` instructions like "go to the red ball". For further details, please consult the [original paper](https://arxiv.org/abs/1810.08272). ## Getting the dataset We will use a large dataset (**more than 4 GB**) including expert demonstrations for `GoToLocal` tasks. To download the data we'll run ```bash PYTHONPATH=. python allenact_plugins/babyai_plugin/scripts/download_babyai_expert_demos.py GoToLocal ``` from the project's root directory, which will download `BabyAI-GoToLocal-v0.pkl` and `BabyAI-GoToLocal-v0_valid.pkl` to the `allenact_plugins/babyai_plugin/data/demos` directory. We will also generate small versions of the datasets, which will be useful if running on CPU, by calling ```bash PYTHONPATH=. python allenact_plugins/babyai_plugin/scripts/truncate_expert_demos.py ``` from the project's root directory, which will generate `BabyAI-GoToLocal-v0-small.pkl` under the same `allenact_plugins/babyai_plugin/data/demos` directory. ## Data iterator In order to train with an off-policy dataset, we need to define a data `Iterator`. The `Data Iterator` merges the functionality of the `Dataset` and `Dataloader` in PyTorch, in that it defines the way to both sample data from the dataset and convert them into batches to be used for training. An example of a `Data Iterator` for BabyAI expert demos might look as follows: """ # %% import_summary allenact_plugins.minigrid_plugin.minigrid_offpolicy.ExpertTrajectoryIterator # %% """ A complete example can be found in [ExpertTrajectoryIterator](/api/allenact_plugins/minigrid_plugin/minigrid_offpolicy#ExpertTrajectoryIterator). ## Loss function Off-policy losses must implement the [AbstractOffPolicyLoss](/api/allenact/algorithms/offpolicy_sync/losses/abstract_offpolicy_loss/#abstractoffpolicyloss) interface. In this case, we minimize the cross-entropy between the actor's policy and the expert action: """ # %% import allenact_plugins.minigrid_plugin.minigrid_offpolicy.MiniGridOffPolicyExpertCELoss # %% """ A complete example can be found in [MiniGridOffPolicyExpertCELoss](/api/allenact_plugins/minigrid_plugin/minigrid_offpolicy#MiniGridOffPolicyExpertCELoss). Note that in this case we train the entire actor, but it would also be possible to forward data through a different subgraph of the ActorCriticModel. ## Experiment configuration For the experiment configuration, we'll build on top of an existing [base BabyAI GoToLocal Experiment Config](/api/projects/babyai_baselines/experiments/go_to_local/base/#basebabyaigotolocalexperimentconfig). The complete `ExperimentConfig` file for off-policy training is [here](/api/projects/tutorials/minigrid_offpolicy_tutorial/#bcoffpolicybabyaigotolocalexperimentconfig), but let's focus on the most relevant aspect to enable this type of training: providing an [OffPolicyPipelineComponent](/api/allenact/utils/experiment_utils/#offpolicypipelinecomponent) object as input to a `PipelineStage` when instantiating the `TrainingPipeline` in the `training_pipeline` method. """ # %% hide import os from typing import Optional, List, Tuple import torch from gym_minigrid.minigrid import MiniGridEnv from allenact.utils.experiment_utils import PipelineStage, OffPolicyPipelineComponent from allenact_plugins.babyai_plugin.babyai_constants import ( BABYAI_EXPERT_TRAJECTORIES_DIR, ) from allenact_plugins.minigrid_plugin.minigrid_offpolicy import ( MiniGridOffPolicyExpertCELoss, create_minigrid_offpolicy_data_iterator, ) from projects.babyai_baselines.experiments.go_to_local.base import ( BaseBabyAIGoToLocalExperimentConfig, ) # %% class BCOffPolicyBabyAIGoToLocalExperimentConfig(BaseBabyAIGoToLocalExperimentConfig): """BC Off-policy imitation.""" DATASET: Optional[List[Tuple[str, bytes, List[int], MiniGridEnv.Actions]]] = None GPU_ID = 0 if torch.cuda.is_available() else None @classmethod def tag(cls): return "BabyAIGoToLocalBCOffPolicy" @classmethod def METRIC_ACCUMULATE_INTERVAL(cls): # See BaseBabyAIGoToLocalExperimentConfig for how this is used. return 1 @classmethod def training_pipeline(cls, **kwargs): total_train_steps = cls.TOTAL_IL_TRAIN_STEPS ppo_info = cls.rl_loss_default("ppo", steps=-1) num_mini_batch = ppo_info["num_mini_batch"] update_repeats = ppo_info["update_repeats"] # fmt: off return cls._training_pipeline( named_losses={ "offpolicy_expert_ce_loss": MiniGridOffPolicyExpertCELoss( total_episodes_in_epoch=int(1e6) ), }, pipeline_stages=[ # Single stage, only with off-policy training PipelineStage( loss_names=[], # no on-policy losses max_stage_steps=total_train_steps, # keep sampling episodes in the stage # Enable off-policy training: offpolicy_component=OffPolicyPipelineComponent( # Pass a method to instantiate data iterators data_iterator_builder=lambda **extra_kwargs: create_minigrid_offpolicy_data_iterator( path=os.path.join( BABYAI_EXPERT_TRAJECTORIES_DIR, "BabyAI-GoToLocal-v0{}.pkl".format( "" if torch.cuda.is_available() else "-small" ), ), nrollouts=cls.NUM_TRAIN_SAMPLERS // num_mini_batch, # per trainer batch size rollout_len=cls.ROLLOUT_STEPS, instr_len=cls.INSTR_LEN, **extra_kwargs, ), loss_names=["offpolicy_expert_ce_loss"], # off-policy losses updates=num_mini_batch * update_repeats, # number of batches per rollout ), ), ], # As we don't have any on-policy losses, we set the next # two values to zero to ensure we don't attempt to # compute gradients for on-policy rollouts: num_mini_batch=0, update_repeats=0, total_train_steps=total_train_steps, ) # fmt: on # %% """ You'll have noted that it is possible to combine on-policy and off-policy training in the same stage, even though here we apply pure off-policy training. ## Training We recommend using a machine with a CUDA-capable GPU for this experiment. In order to start training, we just need to invoke ```bash PYTHONPATH=. python allenact/main.py -b projects/tutorials minigrid_offpolicy_tutorial -m 8 -o <OUTPUT_PATH> ``` Note that with the `-m 8` option we limit to 8 the number of on-policy task sampling processes used between off-policy updates. If everything goes well, the training success should quickly reach values around 0.7-0.8 on GPU and converge to values close to 1 if given sufficient time to train. If running tensorboard, you'll notice a separate group of scalars named `offpolicy` with losses, approximate frame rate and other tracked values in addition to the standard `train` used for on-policy training. A view of the training progress about 5 minutes after starting on a CUDA-capable GPU should look similar to ![off-policy progress](/img/offpolicy_training_tutorial.jpg) """
ask4help-main
projects/tutorials/minigrid_offpolicy_tutorial.py
from math import ceil from typing import Dict, Any, List, Optional import gym import numpy as np import torch import torch.nn as nn import torch.optim as optim from torch.optim.lr_scheduler import LambdaLR from allenact.algorithms.onpolicy_sync.losses import PPO from allenact.algorithms.onpolicy_sync.losses.ppo import PPOConfig from allenact.base_abstractions.experiment_config import ExperimentConfig from allenact.base_abstractions.sensor import SensorSuite from allenact.base_abstractions.task import TaskSampler from allenact.utils.experiment_utils import ( Builder, PipelineStage, TrainingPipeline, LinearDecay, ) from allenact.utils.multi_agent_viz_utils import MultiTrajectoryViz from allenact.utils.viz_utils import VizSuite, AgentViewViz from allenact_plugins.robothor_plugin.robothor_models import ( NavToPartnerActorCriticSimpleConvRNN, ) from allenact_plugins.robothor_plugin.robothor_sensors import RGBSensorMultiRoboThor from allenact_plugins.robothor_plugin.robothor_task_samplers import ( NavToPartnerTaskSampler, ) from allenact_plugins.robothor_plugin.robothor_tasks import NavToPartnerTask from allenact_plugins.robothor_plugin.robothor_viz import ThorMultiViz class NavToPartnerRoboThorRGBPPOExperimentConfig(ExperimentConfig): """A Multi-Agent Navigation experiment configuration in RoboThor.""" # Task Parameters MAX_STEPS = 500 REWARD_CONFIG = { "step_penalty": -0.01, "max_success_distance": 0.75, "success_reward": 5.0, } # Simulator Parameters CAMERA_WIDTH = 300 CAMERA_HEIGHT = 300 SCREEN_SIZE = 224 # Training Engine Parameters ADVANCE_SCENE_ROLLOUT_PERIOD: Optional[int] = None NUM_PROCESSES = 20 TRAINING_GPUS: List[int] = [0] VALIDATION_GPUS: List[int] = [0] TESTING_GPUS: List[int] = [0] SENSORS = [ RGBSensorMultiRoboThor( agent_count=2, height=SCREEN_SIZE, width=SCREEN_SIZE, use_resnet_normalization=True, uuid="rgb", ), ] OBSERVATIONS = [ "rgb", ] ENV_ARGS = dict( width=CAMERA_WIDTH, height=CAMERA_HEIGHT, rotateStepDegrees=30.0, visibilityDistance=1.0, gridSize=0.25, agentCount=2, ) @classmethod def tag(cls): return "NavToPartnerRobothorRGBPPO" @classmethod def training_pipeline(cls, **kwargs): ppo_steps = int(1000000) lr = 3e-4 num_mini_batch = 1 update_repeats = 3 num_steps = 30 save_interval = 200000 log_interval = 1 gamma = 0.99 use_gae = True gae_lambda = 0.95 max_grad_norm = 0.5 return TrainingPipeline( save_interval=save_interval, metric_accumulate_interval=log_interval, optimizer_builder=Builder(optim.Adam, dict(lr=lr)), num_mini_batch=num_mini_batch, update_repeats=update_repeats, max_grad_norm=max_grad_norm, num_steps=num_steps, named_losses={"ppo_loss": PPO(**PPOConfig)}, gamma=gamma, use_gae=use_gae, gae_lambda=gae_lambda, advance_scene_rollout_period=cls.ADVANCE_SCENE_ROLLOUT_PERIOD, pipeline_stages=[ PipelineStage(loss_names=["ppo_loss"], max_stage_steps=ppo_steps) ], lr_scheduler_builder=Builder( LambdaLR, {"lr_lambda": LinearDecay(steps=ppo_steps)} ), ) def split_num_processes(self, ndevices): assert self.NUM_PROCESSES >= ndevices, "NUM_PROCESSES {} < ndevices {}".format( self.NUM_PROCESSES, ndevices ) res = [0] * ndevices for it in range(self.NUM_PROCESSES): res[it % ndevices] += 1 return res viz: Optional[VizSuite] = None def get_viz(self, mode): if self.viz is not None: return self.viz self.viz = VizSuite( mode=mode, # Basic 2D trajectory visualizer (task output source): base_trajectory=MultiTrajectoryViz(), # plt_colormaps=["cool", "cool"]), # Egocentric view visualizer (vector task source): egeocentric=AgentViewViz(max_video_length=100, max_episodes_in_group=1), # Specialized 2D trajectory visualizer (task output source): thor_trajectory=ThorMultiViz( figsize=(16, 8), viz_rows_cols=(448, 448), scenes=("FloorPlan_Train{}_{}", 1, 1, 1, 1), ), ) return self.viz def machine_params(self, mode="train", **kwargs): visualizer = None if mode == "train": devices = ( ["cpu"] if not torch.cuda.is_available() else list(self.TRAINING_GPUS) ) nprocesses = ( 4 if not torch.cuda.is_available() else self.split_num_processes(len(devices)) ) elif mode == "valid": nprocesses = 0 devices = ["cpu"] if not torch.cuda.is_available() else self.VALIDATION_GPUS elif mode == "test": nprocesses = 1 devices = ["cpu"] if not torch.cuda.is_available() else self.TESTING_GPUS visualizer = self.get_viz(mode=mode) else: raise NotImplementedError("mode must be 'train', 'valid', or 'test'.") return { "nprocesses": nprocesses, "devices": devices, "visualizer": visualizer, } # TODO Define Model @classmethod def create_model(cls, **kwargs) -> nn.Module: return NavToPartnerActorCriticSimpleConvRNN( action_space=gym.spaces.Tuple( [ gym.spaces.Discrete(len(NavToPartnerTask.class_action_names())), gym.spaces.Discrete(len(NavToPartnerTask.class_action_names())), ] ), observation_space=SensorSuite(cls.SENSORS).observation_spaces, hidden_size=512, ) # Define Task Sampler @classmethod def make_sampler_fn(cls, **kwargs) -> TaskSampler: return NavToPartnerTaskSampler(**kwargs) # Utility Functions for distributing scenes between GPUs @staticmethod def _partition_inds(n: int, num_parts: int): return np.round(np.linspace(0, n, num_parts + 1, endpoint=True)).astype( np.int32 ) def _get_sampler_args_for_scene_split( self, scenes: List[str], process_ind: int, total_processes: int, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: if total_processes > len(scenes): # oversample some scenes -> bias if total_processes % len(scenes) != 0: print( "Warning: oversampling some of the scenes to feed all processes." " You can avoid this by setting a number of workers divisible by the number of scenes" ) scenes = scenes * int(ceil(total_processes / len(scenes))) scenes = scenes[: total_processes * (len(scenes) // total_processes)] else: if len(scenes) % total_processes != 0: print( "Warning: oversampling some of the scenes to feed all processes." " You can avoid this by setting a number of workers divisor of the number of scenes" ) inds = self._partition_inds(len(scenes), total_processes) return { "scenes": scenes[inds[process_ind] : inds[process_ind + 1]], "max_steps": self.MAX_STEPS, "sensors": self.SENSORS, "action_space": gym.spaces.Tuple( [ gym.spaces.Discrete(len(NavToPartnerTask.class_action_names())), gym.spaces.Discrete(len(NavToPartnerTask.class_action_names())), ] ), "seed": seeds[process_ind] if seeds is not None else None, "deterministic_cudnn": deterministic_cudnn, "rewards_config": self.REWARD_CONFIG, } def train_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: scenes = ["FloorPlan_Train1_1"] res = self._get_sampler_args_for_scene_split( scenes, process_ind, total_processes, seeds=seeds, deterministic_cudnn=deterministic_cudnn, ) res["env_args"] = { **self.ENV_ARGS, "x_display": ("0.%d" % devices[process_ind % len(devices)]) if devices is not None and len(devices) > 0 else None, } return res def valid_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: scenes = ["FloorPlan_Train1_1"] res = self._get_sampler_args_for_scene_split( scenes, process_ind, total_processes, seeds=seeds, deterministic_cudnn=deterministic_cudnn, ) res["env_args"] = { **self.ENV_ARGS, "x_display": ("0.%d" % devices[process_ind % len(devices)]) if devices is not None and len(devices) > 0 else None, } res["max_tasks"] = 20 return res def test_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: scenes = ["FloorPlan_Train1_1"] res = self._get_sampler_args_for_scene_split( scenes, process_ind, total_processes, seeds=seeds, deterministic_cudnn=deterministic_cudnn, ) res["env_args"] = { **self.ENV_ARGS, "x_display": ("0.%d" % devices[process_ind % len(devices)]) if devices is not None and len(devices) > 0 else None, } res["max_tasks"] = 4 return res
ask4help-main
projects/tutorials/navtopartner_robothor_rgb_ppo.py
# literate: tutorials/gym-tutorial.md # %% """# Tutorial: OpenAI gym for continuous control.""" # %% """ **Note** The provided commands to execute in this tutorial assume you have [installed the full library](../installation/installation-allenact.md#full-library) and the requirements for the `gym_plugin`. The latter can be installed by ```bash pip install -r allenact_plugins/gym_plugin/extra_requirements.txt ``` In this tutorial, we: 1. Introduce the `gym_plugin`, which enables some of the tasks in [OpenAI's gym](https://gym.openai.com/) for training and inference within AllenAct. 1. Show an example of continuous control with an arbitrary action space covering 2 policies for one of the `gym` tasks. ## The task For this tutorial, we'll focus on one of the continuous-control environments under the `Box2D` group of `gym` environments: [LunarLanderContinuous-v2](https://gym.openai.com/envs/LunarLanderContinuous-v2/). In this task, the goal is to smoothly land a lunar module in a landing pad, as shown below. ![The LunarLanderContinuous-v2 task](../img/lunar_lander_continuous_demo.png). To achieve this goal, we need to provide continuous control for a main engine and directional one (2 real values). In order to solve the task, the expected reward is of at least 200 points. The controls for main and directional engines are both in the range [-1.0, 1.0] and the observation space is composed of 8 scalars indicating `x` and `y` positions, `x` and `y` velocities, lander angle and angular velocity, and left and right ground contact. Note that these 8 scalars provide a full observation of the state. ## Implementation For this tutorial, we'll use the readily available `gym_plugin`, which includes a [wrapper for `gym` environments](../api/allenact_plugins/gym_plugin/gym_environment.md#gymenvironment), a [task sampler](../api/allenact_plugins/gym_plugin/gym_tasks.md#gymtasksampler) and [task definition](../api/allenact_plugins/gym_plugin/gym_tasks.md#gymcontinuousbox2dtask), a [sensor](../api/allenact_plugins/gym_plugin/gym_sensors.md#gymbox2dsensor) to wrap the observations provided by the `gym` environment, and a simple [model](../api/allenact_plugins/gym_plugin/gym_models.md#memorylessactorcritic). The experiment config, similar to the one used for the [Navigation in MiniGrid tutorial](../tutorials/minigrid-tutorial.md), is defined as follows: """ # %% from typing import Dict, Optional, List, Any, cast import gym import torch.nn as nn import torch.optim as optim from torch.optim.lr_scheduler import LambdaLR from allenact.algorithms.onpolicy_sync.losses.ppo import PPO from allenact.base_abstractions.experiment_config import ExperimentConfig, TaskSampler from allenact.base_abstractions.sensor import SensorSuite from allenact_plugins.gym_plugin.gym_models import MemorylessActorCritic from allenact_plugins.gym_plugin.gym_sensors import GymBox2DSensor from allenact_plugins.gym_plugin.gym_tasks import GymTaskSampler from allenact.utils.experiment_utils import ( TrainingPipeline, Builder, PipelineStage, LinearDecay, ) from allenact.utils.viz_utils import VizSuite, AgentViewViz class GymTutorialExperimentConfig(ExperimentConfig): @classmethod def tag(cls) -> str: return "GymTutorial" # %% """ ### Sensors and Model As mentioned above, we'll use a [GymBox2DSensor](../api/allenact_plugins/gym_plugin/gym_sensors.md#gymbox2dsensor) to provide full observations from the state of the `gym` environment to our model. """ # %% SENSORS = [ GymBox2DSensor("LunarLanderContinuous-v2", uuid="gym_box_data"), ] # %% """ We define our `ActorCriticModel` agent using a lightweight implementation with separate MLPs for actors and critic, [MemorylessActorCritic](../api/allenact_plugins/gym_plugin/gym_models.md#memorylessactorcritic). Since this is a model for continuous control, note that the superclass of our model is `ActorCriticModel[GaussianDistr]` instead of `ActorCriticModel[CategoricalDistr]`, since we'll use a [Gaussian distribution](../api/allenact_plugins/gym_plugin/gym_distributions.md#gaussiandistr) to sample actions. """ # %% @classmethod def create_model(cls, **kwargs) -> nn.Module: return MemorylessActorCritic( input_uuid="gym_box_data", action_space=gym.spaces.Box( -1.0, 1.0, (2,) ), # 2 actors, each in the range [-1.0, 1.0] observation_space=SensorSuite(cls.SENSORS).observation_spaces, action_std=0.5, ) # %% """ ### Task samplers We use an available `TaskSampler` implementation for `gym` environments that allows to sample [GymTasks](../api/allenact_plugins/gym_plugin/gym_tasks.md#gymtask): [GymTaskSampler](../api/allenact_plugins/gym_plugin/gym_tasks.md#gymtasksampler). Even though it is possible to let the task sampler instantiate the proper sensor for the chosen task name (by passing `None`), we use the sensors we created above, which contain a custom identifier for the actual observation space (`gym_box_data`) also used by the model. """ # %% @classmethod def make_sampler_fn(cls, **kwargs) -> TaskSampler: return GymTaskSampler(**kwargs) # %% """ For convenience, we will use a `_get_sampler_args` method to generate the task sampler arguments for all three modes, `train, valid, test`: """ # %% def train_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: return self._get_sampler_args( process_ind=process_ind, mode="train", seeds=seeds ) def valid_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: return self._get_sampler_args( process_ind=process_ind, mode="valid", seeds=seeds ) def test_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: return self._get_sampler_args(process_ind=process_ind, mode="test", seeds=seeds) # %% """ Similarly to what we do in the Minigrid navigation tutorial, the task sampler samples random tasks for ever, while, during testing (or validation), we sample a fixed number of tasks. """ # %% def _get_sampler_args( self, process_ind: int, mode: str, seeds: List[int] ) -> Dict[str, Any]: """Generate initialization arguments for train, valid, and test TaskSamplers. # Parameters process_ind : index of the current task sampler mode: one of `train`, `valid`, or `test` """ if mode == "train": max_tasks = None # infinite training tasks task_seeds_list = None # no predefined random seeds for training deterministic_sampling = False # randomly sample tasks in training else: max_tasks = 3 # one seed for each task to sample: # - ensures different seeds for each sampler, and # - ensures a deterministic set of sampled tasks. task_seeds_list = list( range(process_ind * max_tasks, (process_ind + 1) * max_tasks) ) deterministic_sampling = ( True # deterministically sample task in validation/testing ) return dict( gym_env_types=["LunarLanderContinuous-v2"], sensors=self.SENSORS, # sensors used to return observations to the agent max_tasks=max_tasks, # see above task_seeds_list=task_seeds_list, # see above deterministic_sampling=deterministic_sampling, # see above seed=seeds[process_ind], ) # %% """ Note that we just sample 3 tasks for validation and testing in this case, which suffice to illustrate the model's success. ### Machine parameters Given the simplicity of the task and model, we can just train the model on the CPU. During training, success should reach 100% in less than 10 minutes, whereas solving the task (evaluation reward > 200) might take about 20 minutes (on a laptop CPU). We allocate a larger number of samplers for training (8) than for validation or testing (just 1), and we default to CPU usage by returning an empty list of `devices`. We also include a video visualizer (`AgentViewViz`) in test mode. """ # %% @classmethod def machine_params(cls, mode="train", **kwargs) -> Dict[str, Any]: visualizer = None if mode == "test": visualizer = VizSuite( mode=mode, video_viz=AgentViewViz( label="episode_vid", max_clip_length=400, vector_task_source=("render", {"mode": "rgb_array"}), fps=30, ), ) return { "nprocesses": 8 if mode == "train" else 1, "devices": [], "visualizer": visualizer, } # %% """ ### Training pipeline The last definition is the training pipeline. In this case, we use a PPO stage with linearly decaying learning rate and 80 single-batch update repeats per rollout: """ # %% @classmethod def training_pipeline(cls, **kwargs) -> TrainingPipeline: ppo_steps = int(1.2e6) return TrainingPipeline( named_losses=dict( ppo_loss=PPO(clip_param=0.2, value_loss_coef=0.5, entropy_coef=0.0,), ), # type:ignore pipeline_stages=[ PipelineStage(loss_names=["ppo_loss"], max_stage_steps=ppo_steps), ], optimizer_builder=Builder(cast(optim.Optimizer, optim.Adam), dict(lr=1e-3)), num_mini_batch=1, update_repeats=80, max_grad_norm=100, num_steps=2000, gamma=0.99, use_gae=False, gae_lambda=0.95, advance_scene_rollout_period=None, save_interval=200000, metric_accumulate_interval=50000, lr_scheduler_builder=Builder( LambdaLR, {"lr_lambda": LinearDecay(steps=ppo_steps)}, # type:ignore ), ) # %% """ ## Training and validation We have a complete implementation of this experiment's configuration class in `projects/tutorials/gym_tutorial.py`. To start training from scratch, we just need to invoke ```bash PYTHONPATH=. python allenact/main.py gym_tutorial -b projects/tutorials -m 8 -o /PATH/TO/gym_output -s 54321 -e ``` from the `allenact` root directory. Note that we include `-e` to enforce deterministic evaluation. Please refer to the [Navigation in MiniGrid tutorial](../tutorials/minigrid-tutorial.md) if in doubt of the meaning of the rest of parameters. If we have Tensorboard installed, we can track progress with ```bash tensorboard --logdir /PATH/TO/gym_output ``` which will default to the URL [http://localhost:6006/](http://localhost:6006/). After 1,200,000 steps, the script will terminate. If everything went well, the `valid` success rate should quickly converge to 1 and the mean reward to above 250, while the average episode length should stay below or near 300. ## Testing The training start date for the experiment, in `YYYY-MM-DD_HH-MM-SS` format, is used as the name of one of the subfolders in the path to the checkpoints, saved under the output folder. In order to evaluate (i.e. test) a collection of checkpoints, we need to pass the `--eval` flag and specify the directory containing the checkpoints with the `--checkpoint CHECKPOINT_DIR` option: ```bash PYTHONPATH=. python allenact/main.py gym_tutorial \ -b projects/tutorials \ -m 1 \ -o /PATH/TO/gym_output \ -s 54321 \ -e \ --eval \ --checkpoint /PATH/TO/gym_output/checkpoints/GymTutorial/YOUR_START_DATE \ --approx_ckpt_step_interval 800000 # Skip some checkpoints ``` The option `--approx_ckpt_step_interval 800000` tells AllenAct that we only want to evaluate checkpoints which were saved every ~800000 steps, this lets us avoid evaluating every saved checkpoint. If everything went well, the `test` success rate should converge to 1, the episode length below or near 300 steps, and the mean reward to above 250. The images tab in tensorboard will contain videos for the sampled test episodes. ![video_results](../img/lunar_lander_continuous_test.png). If the test command fails with `pyglet.canvas.xlib.NoSuchDisplayException: Cannot connect to "None"`, e.g. when running remotely, try prepending `DISPLAY=:0.0` to the command above, assuming you have an xserver running with such display available: ```bash DISPLAY=:0.0 PYTHONPATH=. python allenact/main.py gym_tutorial \ -b projects/tutorials \ -m 1 \ -o /PATH/TO/gym_output \ -s 54321 \ -e \ --eval \ --checkpoint /PATH/TO/gym_output/checkpoints/GymTutorial/YOUR_START_DATE \ --approx_ckpt_step_interval 800000 ``` """
ask4help-main
projects/tutorials/gym_tutorial.py
# literate: tutorials/gym-mujoco-tutorial.md # %% """# Tutorial: OpenAI gym MuJoCo environment.""" # %% """ **Note** The provided commands to execute in this tutorial assume you have [installed the full library](../installation/installation-allenact.md#full-library) and the requirements for the `gym_plugin`. The latter can be installed by ```bash pip install -r allenact_plugins/gym_plugin/extra_requirements.txt ``` The environments for this tutorial use [MuJoCo](http://www.mujoco.org/)(**Mu**lti-**Jo**int dynamics in **Co**ntact) physics simulator, which is also required to be installed properly with instructions [here](https://github.com/openai/mujoco-py). ## The task For this tutorial, we'll focus on one of the continuous-control environments under the `mujoco` group of `gym` environments: [Ant-v2](https://gym.openai.com/envs/Ant-v2/). In this task, the goal is to make a four-legged creature, "ant", walk forward as fast as possible. A random agent of "Ant-v2" is shown below. ![The Ant-v2 task](https://ai2-prior-allenact-public-assets.s3.us-west-2.amazonaws.com/tutorials/gym-mujoco/ant_random.gif). To achieve the goal, we need to provide continuous control for the agent moving forward with four legs with the `x` velocity as high as possible for at most 1000 episodes steps. The agent is failed, or done, if the `z` position is out of the range [0.2, 1.0]. The dimension of the action space is 8 and 111 for the dimension of the observation space that maps to different body parts, including 3D position `(x,y,z)`, orientation(quaternion `x`,`y`,`z`,`w`) of the torso, and the joint angles, 3D velocity `(x,y,z)`, 3D angular velocity `(x,y,z)`, and joint velocities. The rewards for the agent "ant" are composed of the forward rewards, healthy rewards, control cost, and contact cost. ## Implementation For this tutorial, we'll use the readily available `gym_plugin`, which includes a [wrapper for `gym` environments](../api/allenact_plugins/gym_plugin/gym_environment.md#gymenvironment), a [task sampler](../api/allenact_plugins/gym_plugin/gym_tasks.md#gymtasksampler) and [task definition](../api/allenact_plugins/gym_plugin/gym_tasks.md#gymcontinuousbox2dtask), a [sensor](../api/allenact_plugins/gym_plugin/gym_sensors.md#gymbox2dsensor) to wrap the observations provided by the `gym` environment, and a simple [model](../api/allenact_plugins/gym_plugin/gym_models.md#memorylessactorcritic). The experiment config, similar to the one used for the [Navigation in MiniGrid tutorial](../tutorials/minigrid-tutorial.md), is defined as follows: """ # %% from typing import Dict, Optional, List, Any, cast import gym import torch.nn as nn import torch.optim as optim from torch.optim.lr_scheduler import LambdaLR from allenact.algorithms.onpolicy_sync.losses.ppo import PPO from allenact.base_abstractions.experiment_config import ExperimentConfig, TaskSampler from allenact.base_abstractions.sensor import SensorSuite from allenact_plugins.gym_plugin.gym_models import MemorylessActorCritic from allenact_plugins.gym_plugin.gym_sensors import GymMuJoCoSensor from allenact_plugins.gym_plugin.gym_tasks import GymTaskSampler from allenact.utils.experiment_utils import ( TrainingPipeline, Builder, PipelineStage, LinearDecay, ) from allenact.utils.viz_utils import VizSuite, AgentViewViz class HandManipulateTutorialExperimentConfig(ExperimentConfig): @classmethod def tag(cls) -> str: return "GymMuJoCoTutorial" # %% """ ### Sensors and Model As mentioned above, we'll use a [GymBox2DSensor](../api/allenact_plugins/gym_plugin/gym_sensors.md#gymbox2dsensor) to provide full observations from the state of the `gym` environment to our model. """ # %% SENSORS = [ GymMuJoCoSensor("Ant-v2", uuid="gym_mujoco_data"), ] # %% """ We define our `ActorCriticModel` agent using a lightweight implementation with separate MLPs for actors and critic, [MemorylessActorCritic](../api/allenact_plugins/gym_plugin/gym_models.md#memorylessactorcritic). Since this is a model for continuous control, note that the superclass of our model is `ActorCriticModel[GaussianDistr]` instead of `ActorCriticModel[CategoricalDistr]`, since we'll use a [Gaussian distribution](../api/allenact_plugins/gym_plugin/gym_distributions.md#gaussiandistr) to sample actions. """ # %% @classmethod def create_model(cls, **kwargs) -> nn.Module: """We define our `ActorCriticModel` agent using a lightweight implementation with separate MLPs for actors and critic, MemorylessActorCritic. Since this is a model for continuous control, note that the superclass of our model is `ActorCriticModel[GaussianDistr]` instead of `ActorCriticModel[CategoricalDistr]`, since we'll use a Gaussian distribution to sample actions. """ return MemorylessActorCritic( input_uuid="gym_mujoco_data", action_space=gym.spaces.Box( -3.0, 3.0, (8,), "float32" ), # 8 actors, each in the range [-3.0, 3.0] observation_space=SensorSuite(cls.SENSORS).observation_spaces, action_std=0.5, ) # %% """ ### Task samplers We use an available `TaskSampler` implementation for `gym` environments that allows to sample [GymTasks](../api/allenact_plugins/gym_plugin/gym_tasks.md#gymtask): [GymTaskSampler](../api/allenact_plugins/gym_plugin/gym_tasks.md#gymtasksampler). Even though it is possible to let the task sampler instantiate the proper sensor for the chosen task name (by passing `None`), we use the sensors we created above, which contain a custom identifier for the actual observation space (`gym_mujoco_data`) also used by the model. """ # %% @classmethod def make_sampler_fn(cls, **kwargs) -> TaskSampler: return GymTaskSampler(gym_env_type="Ant-v2", **kwargs) # %% """ For convenience, we will use a `_get_sampler_args` method to generate the task sampler arguments for all three modes, `train, valid, test`: """ # %% def train_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: return self._get_sampler_args( process_ind=process_ind, mode="train", seeds=seeds ) def valid_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: return self._get_sampler_args( process_ind=process_ind, mode="valid", seeds=seeds ) def test_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: return self._get_sampler_args(process_ind=process_ind, mode="test", seeds=seeds) # %% """ Similarly to what we do in the Minigrid navigation tutorial, the task sampler samples random tasks for ever, while, during testing (or validation), we sample a fixed number of tasks. """ # %% def _get_sampler_args( self, process_ind: int, mode: str, seeds: List[int] ) -> Dict[str, Any]: """Generate initialization arguments for train, valid, and test TaskSamplers. # Parameters process_ind : index of the current task sampler mode: one of `train`, `valid`, or `test` """ if mode == "train": max_tasks = None # infinite training tasks task_seeds_list = None # no predefined random seeds for training deterministic_sampling = False # randomly sample tasks in training else: max_tasks = 4 # one seed for each task to sample: # - ensures different seeds for each sampler, and # - ensures a deterministic set of sampled tasks. task_seeds_list = list( range(process_ind * max_tasks, (process_ind + 1) * max_tasks) ) deterministic_sampling = ( True # deterministically sample task in validation/testing ) return dict( gym_env_types=["Ant-v2"], sensors=self.SENSORS, # sensors used to return observations to the agent max_tasks=max_tasks, # see above task_seeds_list=task_seeds_list, # see above deterministic_sampling=deterministic_sampling, # see above seed=seeds[process_ind], ) # %% """ Note that we just sample 4 tasks for validation and testing in this case, which suffice to illustrate the model's success. ### Machine parameters In this tutorial, we just train the model on the CPU. We allocate a larger number of samplers for training (8) than for validation or testing (just 1), and we default to CPU usage by returning an empty list of `devices`. We also include a video visualizer (`AgentViewViz`) in test mode. """ # %% @classmethod def machine_params(cls, mode="train", **kwargs) -> Dict[str, Any]: visualizer = None if mode == "test": visualizer = VizSuite( mode=mode, video_viz=AgentViewViz( label="episode_vid", max_clip_length=400, vector_task_source=("render", {"mode": "rgb_array"}), fps=30, ), ) return { "nprocesses": 8 if mode == "train" else 1, # rollout "devices": [], "visualizer": visualizer, } # %% """ ### Training pipeline The last definition is the training pipeline. In this case, we use a PPO stage with linearly decaying learning rate and 10 single-batch update repeats per rollout. The reward should exceed 4,000 in 20M steps in the test. In order to make the "ant" run with an obvious fast speed, we train the agents using PPO with 3e7 steps. """ # %% @classmethod def training_pipeline(cls, **kwargs) -> TrainingPipeline: lr = 3e-4 ppo_steps = int(3e7) clip_param = 0.2 value_loss_coef = 0.5 entropy_coef = 0.0 num_mini_batch = 4 # optimal 64 update_repeats = 10 max_grad_norm = 0.5 num_steps = 2048 gamma = 0.99 use_gae = True gae_lambda = 0.95 advance_scene_rollout_period = None save_interval = 200000 metric_accumulate_interval = 50000 return TrainingPipeline( named_losses=dict( ppo_loss=PPO( clip_param=clip_param, value_loss_coef=value_loss_coef, entropy_coef=entropy_coef, ), ), # type:ignore pipeline_stages=[ PipelineStage(loss_names=["ppo_loss"], max_stage_steps=ppo_steps), ], optimizer_builder=Builder(cast(optim.Optimizer, optim.Adam), dict(lr=lr)), num_mini_batch=num_mini_batch, update_repeats=update_repeats, max_grad_norm=max_grad_norm, num_steps=num_steps, gamma=gamma, use_gae=use_gae, gae_lambda=gae_lambda, advance_scene_rollout_period=advance_scene_rollout_period, save_interval=save_interval, metric_accumulate_interval=metric_accumulate_interval, lr_scheduler_builder=Builder( LambdaLR, {"lr_lambda": LinearDecay(steps=ppo_steps, startp=1, endp=0)}, ), ) # %% """ ## Training and validation We have a complete implementation of this experiment's configuration class in `projects/tutorials/gym_mujoco_tutorial.py`. To start training from scratch, we just need to invoke ```bash PYTHONPATH=. python allenact/main.py gym_mujoco_tutorial -b projects/tutorials -m 8 -o /PATH/TO/gym_mujoco_output -s 0 -e ``` from the `allenact` root directory. Note that we include `-e` to enforce deterministic evaluation. Please refer to the [Navigation in MiniGrid tutorial](../tutorials/minigrid-tutorial.md) if in doubt of the meaning of the rest of parameters. If we have Tensorboard installed, we can track progress with ```bash tensorboard --logdir /PATH/TO/gym_mujoco_output ``` which will default to the URL [http://localhost:6006/](http://localhost:6006/). After 30,000,000 steps, the script will terminate. If everything went well, the `valid` success rate should be 1 and the mean reward to above 4,000 in 20,000,000 steps, while the average episode length should stay or a little below 1,000. ## Testing The training start date for the experiment, in `YYYY-MM-DD_HH-MM-SS` format, is used as the name of one of the subfolders in the path to the checkpoints, saved under the output folder. In order to evaluate (i.e. test) a collection of checkpoints, we need to pass the `--eval` flag and specify the directory containing the checkpoints with the `--checkpoint CHECKPOINT_DIR` option: ```bash PYTHONPATH=. python allenact/main.py gym_mujoco_tutorial \ -b projects/tutorials \ -m 1 \ -o /PATH/TO/gym_mujoco_output \ -s 0 \ -e \ --eval \ --checkpoint /PATH/TO/gym_mujoco_output/checkpoints/GymMuJoCoTutorial/YOUR_START_DATE ``` If everything went well, the `test` success rate should converge to 1, the `test` success rate should be 1 and the mean reward to above 4,000 in 20,000,000 steps, while the average episode length should stay or a little below 1,000. The `gif` results can be seen in the image tab of Tensorboard while testing. The output should be something like this: ![results](https://ai2-prior-allenact-public-assets.s3.us-west-2.amazonaws.com/tutorials/gym-mujoco/ant_test.png). And the `gif` results can be seen in the image tab of Tensorboard while testing. ![mp4 demo](https://ai2-prior-allenact-public-assets.s3.us-west-2.amazonaws.com/tutorials/gym-mujoco/ant_test.gif) If the test command fails with `pyglet.canvas.xlib.NoSuchDisplayException: Cannot connect to "None"`, e.g. when running remotely, try prepending `DISPLAY=:0.0` to the command above, assuming you have an xserver running with such display available: ```bash DISPLAY=:0.0 PYTHONPATH=. python allenact/main.py gym_mujoco_tutorial \ -b projects/tutorials \ -m 1 \ -o /PATH/TO/gym_mujoco_output \ -s 0 \ -e \ --eval \ --checkpoint /PATH/TO/gym_mujoco_output/checkpoints/GymMuJoCoTutorial/YOUR_START_DATE ``` """
ask4help-main
projects/tutorials/gym_mujoco_tutorial.py
ask4help-main
projects/tutorials/__init__.py
import glob import os from math import ceil from typing import Dict, Any, List, Optional, Sequence import gym import numpy as np import torch import torch.nn as nn import torch.optim as optim from torch.optim.lr_scheduler import LambdaLR from torchvision import models from allenact.algorithms.onpolicy_sync.losses import PPO from allenact.algorithms.onpolicy_sync.losses.ppo import PPOConfig from allenact.base_abstractions.experiment_config import ExperimentConfig, MachineParams from allenact.base_abstractions.preprocessor import SensorPreprocessorGraph from allenact.base_abstractions.sensor import SensorSuite from allenact.base_abstractions.task import TaskSampler from allenact.embodiedai.preprocessors.resnet import ResNetPreprocessor from allenact.utils.experiment_utils import ( Builder, PipelineStage, TrainingPipeline, LinearDecay, evenly_distribute_count_into_bins, ) from allenact_plugins.ithor_plugin.ithor_sensors import RGBSensorThor from allenact_plugins.robothor_plugin.robothor_sensors import GPSCompassSensorRoboThor from allenact_plugins.robothor_plugin.robothor_task_samplers import ( PointNavDatasetTaskSampler, ) from allenact_plugins.robothor_plugin.robothor_tasks import PointNavTask from projects.pointnav_baselines.models.point_nav_models import ( ResnetTensorPointNavActorCritic, ) class PointNaviThorRGBPPOExperimentConfig(ExperimentConfig): """A Point Navigation experiment configuration in iTHOR.""" # Task Parameters MAX_STEPS = 500 REWARD_CONFIG = { "step_penalty": -0.01, "goal_success_reward": 10.0, "failed_stop_reward": 0.0, "shaping_weight": 1.0, } # Simulator Parameters CAMERA_WIDTH = 640 CAMERA_HEIGHT = 480 SCREEN_SIZE = 224 # Training Engine Parameters ADVANCE_SCENE_ROLLOUT_PERIOD: Optional[int] = None NUM_PROCESSES = 60 TRAINING_GPUS = list(range(torch.cuda.device_count())) VALIDATION_GPUS = [torch.cuda.device_count() - 1] TESTING_GPUS = [torch.cuda.device_count() - 1] # Dataset Parameters TRAIN_DATASET_DIR = os.path.join(os.getcwd(), "datasets/ithor-objectnav/train") VAL_DATASET_DIR = os.path.join(os.getcwd(), "datasets/ithor-objectnav/val") SENSORS = [ RGBSensorThor( height=SCREEN_SIZE, width=SCREEN_SIZE, use_resnet_normalization=True, uuid="rgb_lowres", ), GPSCompassSensorRoboThor(), ] PREPROCESSORS = [ Builder( ResNetPreprocessor, { "input_height": SCREEN_SIZE, "input_width": SCREEN_SIZE, "output_width": 7, "output_height": 7, "output_dims": 512, "pool": False, "torchvision_resnet_model": models.resnet18, "input_uuids": ["rgb_lowres"], "output_uuid": "rgb_resnet", }, ), ] OBSERVATIONS = [ "rgb_resnet", "target_coordinates_ind", ] ENV_ARGS = dict( width=CAMERA_WIDTH, height=CAMERA_HEIGHT, rotateStepDegrees=30.0, visibilityDistance=1.0, gridSize=0.25, ) @classmethod def tag(cls): return "PointNavithorRGBPPO" @classmethod def training_pipeline(cls, **kwargs): ppo_steps = int(250000000) lr = 3e-4 num_mini_batch = 1 update_repeats = 3 num_steps = 30 save_interval = 5000000 log_interval = 10000 gamma = 0.99 use_gae = True gae_lambda = 0.95 max_grad_norm = 0.5 return TrainingPipeline( save_interval=save_interval, metric_accumulate_interval=log_interval, optimizer_builder=Builder(optim.Adam, dict(lr=lr)), num_mini_batch=num_mini_batch, update_repeats=update_repeats, max_grad_norm=max_grad_norm, num_steps=num_steps, named_losses={"ppo_loss": PPO(**PPOConfig)}, gamma=gamma, use_gae=use_gae, gae_lambda=gae_lambda, advance_scene_rollout_period=cls.ADVANCE_SCENE_ROLLOUT_PERIOD, pipeline_stages=[ PipelineStage(loss_names=["ppo_loss"], max_stage_steps=ppo_steps) ], lr_scheduler_builder=Builder( LambdaLR, {"lr_lambda": LinearDecay(steps=ppo_steps)} ), ) def machine_params(self, mode="train", **kwargs): sampler_devices: Sequence[int] = [] if mode == "train": workers_per_device = 1 gpu_ids = ( [] if not torch.cuda.is_available() else self.TRAINING_GPUS * workers_per_device ) nprocesses = ( 1 if not torch.cuda.is_available() else evenly_distribute_count_into_bins(self.NUM_PROCESSES, len(gpu_ids)) ) sampler_devices = self.TRAINING_GPUS elif mode == "valid": nprocesses = 1 gpu_ids = [] if not torch.cuda.is_available() else self.VALIDATION_GPUS elif mode == "test": nprocesses = 1 gpu_ids = [] if not torch.cuda.is_available() else self.TESTING_GPUS else: raise NotImplementedError("mode must be 'train', 'valid', or 'test'.") sensor_preprocessor_graph = ( SensorPreprocessorGraph( source_observation_spaces=SensorSuite(self.SENSORS).observation_spaces, preprocessors=self.PREPROCESSORS, ) if mode == "train" or ( (isinstance(nprocesses, int) and nprocesses > 0) or (isinstance(nprocesses, Sequence) and sum(nprocesses) > 0) ) else None ) return MachineParams( nprocesses=nprocesses, devices=gpu_ids, sampler_devices=sampler_devices if mode == "train" else gpu_ids, # ignored with > 1 gpu_ids sensor_preprocessor_graph=sensor_preprocessor_graph, ) # Define Model @classmethod def create_model(cls, **kwargs) -> nn.Module: return ResnetTensorPointNavActorCritic( action_space=gym.spaces.Discrete(len(PointNavTask.class_action_names())), observation_space=kwargs["sensor_preprocessor_graph"].observation_spaces, goal_sensor_uuid="target_coordinates_ind", rgb_resnet_preprocessor_uuid="rgb_resnet", hidden_size=512, goal_dims=32, ) # Define Task Sampler @classmethod def make_sampler_fn(cls, **kwargs) -> TaskSampler: return PointNavDatasetTaskSampler(**kwargs) # Utility Functions for distributing scenes between GPUs @staticmethod def _partition_inds(n: int, num_parts: int): return np.round(np.linspace(0, n, num_parts + 1, endpoint=True)).astype( np.int32 ) def _get_sampler_args_for_scene_split( self, scenes_dir: str, process_ind: int, total_processes: int, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: path = os.path.join(scenes_dir, "*.json.gz") scenes = [scene.split("/")[-1].split(".")[0] for scene in glob.glob(path)] if len(scenes) == 0: raise RuntimeError( ( "Could find no scene dataset information in directory {}." " Are you sure you've downloaded them? " " If not, see https://allenact.org/installation/download-datasets/ information" " on how this can be done." ).format(scenes_dir) ) if total_processes > len(scenes): # oversample some scenes -> bias if total_processes % len(scenes) != 0: print( "Warning: oversampling some of the scenes to feed all processes." " You can avoid this by setting a number of workers divisible by the number of scenes" ) scenes = scenes * int(ceil(total_processes / len(scenes))) scenes = scenes[: total_processes * (len(scenes) // total_processes)] else: if len(scenes) % total_processes != 0: print( "Warning: oversampling some of the scenes to feed all processes." " You can avoid this by setting a number of workers divisor of the number of scenes" ) inds = self._partition_inds(len(scenes), total_processes) return { "scenes": scenes[inds[process_ind] : inds[process_ind + 1]], "max_steps": self.MAX_STEPS, "sensors": self.SENSORS, "action_space": gym.spaces.Discrete(len(PointNavTask.class_action_names())), "seed": seeds[process_ind] if seeds is not None else None, "deterministic_cudnn": deterministic_cudnn, "rewards_config": self.REWARD_CONFIG, } def train_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: res = self._get_sampler_args_for_scene_split( os.path.join(self.TRAIN_DATASET_DIR, "episodes"), process_ind, total_processes, seeds=seeds, deterministic_cudnn=deterministic_cudnn, ) res["scene_directory"] = self.TRAIN_DATASET_DIR res["loop_dataset"] = True res["env_args"] = {} res["env_args"].update(self.ENV_ARGS) res["env_args"]["x_display"] = ( ("0.%d" % devices[process_ind % len(devices)]) if devices is not None and len(devices) > 0 else None ) res["allow_flipping"] = True return res def valid_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: res = self._get_sampler_args_for_scene_split( os.path.join(self.VAL_DATASET_DIR, "episodes"), process_ind, total_processes, seeds=seeds, deterministic_cudnn=deterministic_cudnn, ) res["scene_directory"] = self.VAL_DATASET_DIR res["loop_dataset"] = False res["env_args"] = {} res["env_args"].update(self.ENV_ARGS) res["env_args"]["x_display"] = ( ("0.%d" % devices[process_ind % len(devices)]) if devices is not None and len(devices) > 0 else None ) return res def test_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: res = self._get_sampler_args_for_scene_split( os.path.join(self.VAL_DATASET_DIR, "episodes"), process_ind, total_processes, seeds=seeds, deterministic_cudnn=deterministic_cudnn, ) res["scene_directory"] = self.VAL_DATASET_DIR res["loop_dataset"] = False res["env_args"] = {} res["env_args"].update(self.ENV_ARGS) return res
ask4help-main
projects/tutorials/pointnav_ithor_rgb_ddppo.py
from projects.tutorials.object_nav_ithor_dagger_then_ppo_one_object import ( ObjectNavThorDaggerThenPPOExperimentConfig, ) from allenact.utils.viz_utils import ( VizSuite, TrajectoryViz, AgentViewViz, ActorViz, TensorViz1D, ) from allenact_plugins.ithor_plugin.ithor_viz import ThorViz class ObjectNavThorDaggerThenPPOVizExperimentConfig( ObjectNavThorDaggerThenPPOExperimentConfig ): """A simple object navigation experiment in THOR. Training with DAgger and then PPO + using viz for test. """ TEST_SAMPLES_IN_SCENE = 4 @classmethod def tag(cls): return "ObjectNavThorDaggerThenPPOViz" viz = None def get_viz(self, mode): if self.viz is not None: return self.viz self.viz = VizSuite( mode=mode, base_trajectory=TrajectoryViz( path_to_target_location=None, path_to_rot_degrees=("rotation",), ), egeocentric=AgentViewViz(max_video_length=100), action_probs=ActorViz(figsize=(3.25, 10), fontsize=18), taken_action_logprobs=TensorViz1D(), episode_mask=TensorViz1D(rollout_source=("masks",)), thor_trajectory=ThorViz( path_to_target_location=None, figsize=(8, 8), viz_rows_cols=(448, 448), ), ) return self.viz def machine_params(self, mode="train", **kwargs): params = super().machine_params(mode, **kwargs) if mode == "test": params.set_visualizer(self.get_viz(mode)) return params
ask4help-main
projects/tutorials/object_nav_ithor_dagger_then_ppo_one_object_viz.py
# literate: tutorials/training-a-pointnav-model.md # %% """# Tutorial: PointNav in RoboTHOR.""" # %% """ ![RoboTHOR Robot](../img/RoboTHOR_robot.jpg) ## Introduction One of the most obvious tasks that an embodied agent should master is navigating the world it inhabits. Before we can teach a robot to cook or clean it first needs to be able to move around. The simplest way to formulate "moving around" into a task is by making your agent find a beacon somewhere in the environment. This beacon transmits its location, such that at any time, the agent can get the direction and euclidian distance to the beacon. This particular task is often called Point Navigation, or **PointNav** for short. #### PointNav At first glance, this task seems trivial. If the agent is given the direction and distance of the target at all times, can it not simply follow this signal directly? The answer is no, because agents are often trained on this task in environments that emulate real-world buildings which are not wide-open spaces, but rather contain many smaller rooms. Because of this, the agent has to learn to navigate human spaces and use doors and hallways to efficiently navigate from one side of the building to the other. This task becomes particularly difficult when the agent is tested in an environment that it is not trained in. If the agent does not know how the floor plan of an environment looks, it has to learn to predict the design of man-made structures, to efficiently navigate across them, much like how people instinctively know how to move around a building they have never seen before based on their experience navigating similar buildings. #### What is an environment anyways? Environments are worlds in which embodied agents exist. If our embodied agent is simply a neural network that is being trained in a simulator, then that simulator is its environment. Similarly, if our agent is a physical robot then its environment is the real world. The agent interacts with the environment by taking one of several available actions (such as "move forward", or "turn left"). After each action, the environment produces a new frame that the agent can analyze to determine its next step. For many tasks, including PointNav the agent also has a special "stop" action which indicates that the agent thinks it has reached the target. After this action is called the agent will be reset to a new location, regardless if it reached the target. The hope is that after enough training the agent will learn to correctly assess that it has successfully navigated to the target. ![RoboTHOR Sim vs. Real](../img/RoboTHOR_sim_real.jpg) There are many simulators designed for the training of embodied agents. In this tutorial, we will be using a simulator called [RoboTHOR](https://ai2thor.allenai.org/robothor/), which is designed specifically to train models that can easily be transferred to a real robot, by providing a photo-realistic virtual environment and a real-world replica of the environment that researchers can have access to. RoboTHOR contains 60 different virtual scenes with different floor plans and furniture and 15 validation scenes. It is also important to mention that **AllenAct** has a class abstraction called Environment. This is not the actual simulator game engine or robotics controller, but rather a shallow wrapper that provides a uniform interface to the actual environment. #### Learning algorithm Finally, let us briefly touch on the algorithm that we will use to train our embodied agent to navigate. While *AllenAct* offers us great flexibility to train models using complex pipelines, we will be using a simple pure reinforcement learning approach for this tutorial. More specifically, we will be using DD-PPO, a decentralized and distributed variant of the ubiquitous PPO algorithm. For those unfamiliar with Reinforcement Learning we highly recommend [this tutorial](http://karpathy.github.io/2016/05/31/rl/) by Andrej Karpathy, and [this book](http://www.incompleteideas.net/book/the-book-2nd.html) by Sutton and Barto. Essentially what we are doing is letting our agent explore the environment on its own, rewarding it for taking actions that bring it closer to its goal and penalizing it for actions that take it away from its goal. We then optimize the agent's model to maximize this reward. ## Requirements To train the model on the PointNav task, we need to [install the RoboTHOR environment](../installation/installation-framework.md) and [download the RoboTHOR PointNav dataset](../installation/download-datasets.md) The dataset contains a list of episodes with thousands of randomly generated starting positions and target locations for each of the scenes as well as a precomputed cache of distances, containing the shortest path from each point in a scene, to every other point in that scene. This is used to reward the agent for moving closer to the target in terms of geodesic distance - the actual path distance (as opposed to a straight line distance). ## Config File Setup Now comes the most important part of the tutorial, we are going to write an experiment config file. If this is your first experience with experiment config files in AllenAct, we suggest that you first see our how-to on [defining an experiment](../howtos/defining-an-experiment.md) which will walk you through creating a simplified experiment config file. Unlike a library that can be imported into python, **AllenAct** is structured as a framework with a runner script called `main.py` which will run the experiment specified in a config file. This design forces us to keep meticulous records of exactly which settings were used to produce a particular result, which can be very useful given how expensive RL models are to train. The `projects/` directory is home to different projects using `AllenAct`. Currently it is populated with baselines of popular tasks and tutorials. We already have all the code for this tutorial stored in `projects/tutorials/training_a_pointnav_model.py`. We will be using this file to run our experiments, but you can create a new directory in `projects/` and start writing your experiment there. We start off by importing everything we will need: """ # %% import glob import os from math import ceil from typing import Dict, Any, List, Optional, Sequence import gym import numpy as np import torch import torch.nn as nn import torch.optim as optim from torch.optim.lr_scheduler import LambdaLR from torchvision import models from allenact.algorithms.onpolicy_sync.losses import PPO from allenact.algorithms.onpolicy_sync.losses.ppo import PPOConfig from allenact.base_abstractions.experiment_config import ExperimentConfig, MachineParams from allenact.base_abstractions.preprocessor import SensorPreprocessorGraph from allenact.base_abstractions.sensor import SensorSuite from allenact.base_abstractions.task import TaskSampler from allenact.embodiedai.preprocessors.resnet import ResNetPreprocessor from allenact.utils.experiment_utils import ( Builder, PipelineStage, TrainingPipeline, LinearDecay, evenly_distribute_count_into_bins, ) from allenact_plugins.ithor_plugin.ithor_sensors import RGBSensorThor from allenact_plugins.robothor_plugin.robothor_sensors import GPSCompassSensorRoboThor from allenact_plugins.robothor_plugin.robothor_task_samplers import ( PointNavDatasetTaskSampler, ) from allenact_plugins.robothor_plugin.robothor_tasks import PointNavTask from projects.pointnav_baselines.models.point_nav_models import ( ResnetTensorPointNavActorCritic, ) # %% """Next we define a new experiment config class:""" # %% class PointNavRoboThorRGBPPOExperimentConfig(ExperimentConfig): """A Point Navigation experiment configuration in RoboThor.""" # %% """ We then define the task parameters. For PointNav, these include the maximum number of steps our agent can take before being reset (this prevents the agent from wandering on forever), and a configuration for the reward function that we will be using. """ # %% # Task Parameters MAX_STEPS = 500 REWARD_CONFIG = { "step_penalty": -0.01, "goal_success_reward": 10.0, "failed_stop_reward": 0.0, "shaping_weight": 1.0, } # %% """ In this case, we set the maximum number of steps to 500. We give the agent a reward of -0.01 for each action that it takes (this is to encourage it to reach the goal in as few actions as possible), and a reward of 10.0 if the agent manages to successfully reach its destination. If the agent selects the `stop` action without reaching the target we do not punish it (although this is sometimes useful for preventing the agent from stopping prematurely). Finally, our agent gets rewarded if it moves closer to the target and gets punished if it moves further away. `shaping_weight` controls how strong this signal should be and is here set to 1.0. These parameters work well for training an agent on PointNav, but feel free to play around with them. Next, we set the parameters of the simulator itself. Here we select a resolution at which the engine will render every frame (640 by 480) and a resolution at which the image will be fed into the neural network (here it is set to a 224 by 224 box). """ # %% # Simulator Parameters CAMERA_WIDTH = 640 CAMERA_HEIGHT = 480 SCREEN_SIZE = 224 # %% """ Next, we set the hardware parameters for the training engine. `NUM_PROCESSES` sets the total number of parallel processes that will be used to train the model. In general, more processes result in faster training, but since each process is a unique instance of the environment in which we are training they can take up a lot of memory. Depending on the size of the model, the environment, and the hardware we are using, we may need to adjust this number, but for a setup with 8 GTX Titans, 60 processes work fine. 60 also happens to be the number of training scenes in RoboTHOR, which allows each process to load only a single scene into memory, saving time and space. `TRAINING_GPUS` takes the ids of the GPUS on which the model should be trained. Similarly `VALIDATION_GPUS` and `TESTING_GPUS` hold the ids of the GPUS on which the validation and testing will occur. During training, a validation process is constantly running and evaluating the current model, to show the progress on the validation set, so reserving a GPU for validation can be a good idea. If our hardware setup does not include a GPU, these fields can be set to empty lists, as the codebase will default to running everything on the CPU with only 1 process. """ # %% ADVANCE_SCENE_ROLLOUT_PERIOD: Optional[int] = None NUM_PROCESSES = 20 TRAINING_GPUS: Sequence[int] = [0] VALIDATION_GPUS: Sequence[int] = [0] TESTING_GPUS: Sequence[int] = [0] # %% """ Since we are using a dataset to train our model we need to define the path to where we have stored it. If we download the dataset instructed above we can define the path as follows """ # %% TRAIN_DATASET_DIR = os.path.join(os.getcwd(), "datasets/robothor-pointnav/debug") VAL_DATASET_DIR = os.path.join(os.getcwd(), "datasets/robothor-pointnav/debug") # %% """ Next, we define the sensors. `RGBSensorThor` is the environment's implementation of an RGB sensor. It takes the raw image outputted by the simulator and resizes it, to the input dimensions for our neural network that we specified above. It also performs normalization if we want. `GPSCompassSensorRoboThor` is a sensor that tracks the point our agent needs to move to. It tells us the direction and distance to our goal at every time step. """ # %% SENSORS = [ RGBSensorThor( height=SCREEN_SIZE, width=SCREEN_SIZE, use_resnet_normalization=True, uuid="rgb_lowres", ), GPSCompassSensorRoboThor(), ] # %% """ For the sake of this example, we are also going to be using a preprocessor with our model. In *AllenAct* the preprocessor abstraction is designed with large models with frozen weights in mind. These models often hail from the ResNet family and transform the raw pixels that our agent observes in the environment, into a complex embedding, which then gets stored and used as input to our trainable model instead of the original image. Most other preprocessing work is done in the sensor classes (as we just saw with the RGB sensor scaling and normalizing our input), but for the sake of efficiency, all neural network preprocessing should use this abstraction. """ # %% PREPROCESSORS = [ Builder( ResNetPreprocessor, { "input_height": SCREEN_SIZE, "input_width": SCREEN_SIZE, "output_width": 7, "output_height": 7, "output_dims": 512, "pool": False, "torchvision_resnet_model": models.resnet18, "input_uuids": ["rgb_lowres"], "output_uuid": "rgb_resnet", }, ), ] # %% """ Next, we must define all of the observation inputs that our model will use. These are just the hardcoded ids of the sensors we are using in the experiment. """ # %% OBSERVATIONS = [ "rgb_resnet", "target_coordinates_ind", ] # %% """ Finally, we must define the settings of our simulator. We set the camera dimensions to the values we defined earlier. We set rotateStepDegrees to 30 degrees, which means that every time the agent takes a turn action, they will rotate by 30 degrees. We set grid size to 0.25 which means that every time the agent moves forward, it will do so by 0.25 meters. """ # %% ENV_ARGS = dict( width=CAMERA_WIDTH, height=CAMERA_HEIGHT, rotateStepDegrees=30.0, visibilityDistance=1.0, gridSize=0.25, ) # %% """ Now we move on to the methods that we must define to finish implementing an experiment config. Firstly we have a simple method that just returns the name of the experiment. """ # %% @classmethod def tag(cls): return "PointNavRobothorRGBPPO" # %% """ Next, we define the training pipeline. In this function, we specify exactly which algorithm or algorithms we will use to train our model. In this simple example, we are using the PPO loss with a learning rate of 3e-4. We specify 250 million steps of training and a rollout length of 30 with the `ppo_steps` and `num_steps` parameters respectively. All the other standard PPO parameters are also present in this function. `metric_accumulate_interval` sets the frequency at which data is accumulated from all the processes and logged while `save_interval` sets how often we save the model weights and run validation on them. """ # %% @classmethod def training_pipeline(cls, **kwargs): ppo_steps = int(250000000) lr = 3e-4 num_mini_batch = 1 update_repeats = 3 num_steps = 30 save_interval = 5000000 log_interval = 1000 gamma = 0.99 use_gae = True gae_lambda = 0.95 max_grad_norm = 0.5 return TrainingPipeline( save_interval=save_interval, metric_accumulate_interval=log_interval, optimizer_builder=Builder(optim.Adam, dict(lr=lr)), num_mini_batch=num_mini_batch, update_repeats=update_repeats, max_grad_norm=max_grad_norm, num_steps=num_steps, named_losses={"ppo_loss": PPO(**PPOConfig)}, gamma=gamma, use_gae=use_gae, gae_lambda=gae_lambda, advance_scene_rollout_period=cls.ADVANCE_SCENE_ROLLOUT_PERIOD, pipeline_stages=[ PipelineStage(loss_names=["ppo_loss"], max_stage_steps=ppo_steps) ], lr_scheduler_builder=Builder( LambdaLR, {"lr_lambda": LinearDecay(steps=ppo_steps)} ), ) # %% """ The `machine_params` method returns the hardware parameters of each process, based on the list of devices we defined above. """ # %% def machine_params(self, mode="train", **kwargs): sampler_devices: List[int] = [] if mode == "train": workers_per_device = 1 gpu_ids = ( [] if not torch.cuda.is_available() else list(self.TRAINING_GPUS) * workers_per_device ) nprocesses = ( 8 if not torch.cuda.is_available() else evenly_distribute_count_into_bins(self.NUM_PROCESSES, len(gpu_ids)) ) sampler_devices = list(self.TRAINING_GPUS) elif mode == "valid": nprocesses = 1 gpu_ids = [] if not torch.cuda.is_available() else self.VALIDATION_GPUS elif mode == "test": nprocesses = 1 gpu_ids = [] if not torch.cuda.is_available() else self.TESTING_GPUS else: raise NotImplementedError("mode must be 'train', 'valid', or 'test'.") sensor_preprocessor_graph = ( SensorPreprocessorGraph( source_observation_spaces=SensorSuite(self.SENSORS).observation_spaces, preprocessors=self.PREPROCESSORS, ) if mode == "train" or ( (isinstance(nprocesses, int) and nprocesses > 0) or (isinstance(nprocesses, Sequence) and sum(nprocesses) > 0) ) else None ) return MachineParams( nprocesses=nprocesses, devices=gpu_ids, sampler_devices=sampler_devices if mode == "train" else gpu_ids, # ignored with > 1 gpu_ids sensor_preprocessor_graph=sensor_preprocessor_graph, ) # %% """ Now we define the actual model that we will be using. **AllenAct** offers first-class support for PyTorch, so any PyTorch model that implements the provided `ActorCriticModel` class will work here. Here we borrow a modelfrom the `pointnav_baselines` project (which unsurprisingly contains several PointNav baselines). It is a small convolutional network that expects the output of a ResNet as its rgb input followed by a single-layered GRU. The model accepts as input the number of different actions our agent can perform in the environment through the `action_space` parameter, which we get from the task definition. We also define the shape of the inputs we are going to be passing to the model with `observation_space` We specify the names of our sensors with `goal_sensor_uuid` and `rgb_resnet_preprocessor_uuid`. Finally, we define the size of our RNN with `hidden_layer` and the size of the embedding of our goal sensor data (the direction and distance to the target) with `goal_dims`. """ # %% @classmethod def create_model(cls, **kwargs) -> nn.Module: return ResnetTensorPointNavActorCritic( action_space=gym.spaces.Discrete(len(PointNavTask.class_action_names())), observation_space=kwargs["sensor_preprocessor_graph"].observation_spaces, goal_sensor_uuid="target_coordinates_ind", rgb_resnet_preprocessor_uuid="rgb_resnet", hidden_size=512, goal_dims=32, ) # %% """ We also need to define the task sampler that we will be using. This is a piece of code that generates instances of tasks for our agent to perform (essentially starting locations and targets for PointNav). Since we are getting our tasks from a dataset, the task sampler is a very simple code that just reads the specified file and sets the agent to the next starting locations whenever the agent exceeds the maximum number of steps or selects the `stop` action. """ # %% @classmethod def make_sampler_fn(cls, **kwargs) -> TaskSampler: return PointNavDatasetTaskSampler(**kwargs) # %% """ You might notice that we did not specify the task sampler's arguments, but are rather passing them in. The reason for this is that each process will have its own task sampler, and we need to specify exactly which scenes each process should work with. If we have several GPUS and many scenes this process of distributing the work can be rather complicated so we define a few helper functions to do just this. """ # %% @staticmethod def _partition_inds(n: int, num_parts: int): return np.round(np.linspace(0, n, num_parts + 1, endpoint=True)).astype( np.int32 ) def _get_sampler_args_for_scene_split( self, scenes_dir: str, process_ind: int, total_processes: int, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: path = os.path.join(scenes_dir, "*.json.gz") scenes = [scene.split("/")[-1].split(".")[0] for scene in glob.glob(path)] if len(scenes) == 0: raise RuntimeError( ( "Could find no scene dataset information in directory {}." " Are you sure you've downloaded them? " " If not, see https://allenact.org/installation/download-datasets/ information" " on how this can be done." ).format(scenes_dir) ) if total_processes > len(scenes): # oversample some scenes -> bias if total_processes % len(scenes) != 0: print( "Warning: oversampling some of the scenes to feed all processes." " You can avoid this by setting a number of workers divisible by the number of scenes" ) scenes = scenes * int(ceil(total_processes / len(scenes))) scenes = scenes[: total_processes * (len(scenes) // total_processes)] else: if len(scenes) % total_processes != 0: print( "Warning: oversampling some of the scenes to feed all processes." " You can avoid this by setting a number of workers divisor of the number of scenes" ) inds = self._partition_inds(len(scenes), total_processes) return { "scenes": scenes[inds[process_ind] : inds[process_ind + 1]], "max_steps": self.MAX_STEPS, "sensors": self.SENSORS, "action_space": gym.spaces.Discrete(len(PointNavTask.class_action_names())), "seed": seeds[process_ind] if seeds is not None else None, "deterministic_cudnn": deterministic_cudnn, "rewards_config": self.REWARD_CONFIG, } # %% """ The very last things we need to define are the sampler arguments themselves. We define them separately for a train, validation, and test sampler, but in this case, they are almost the same. The arguments need to include the location of the dataset and distance cache as well as the environment arguments for our simulator, both of which we defined above and are just referencing here. The only consequential differences between these task samplers are the path to the dataset we are using (train or validation) and whether we want to loop over the dataset or not (we want this for training since we want to train for several epochs, but we do not need this for validation and testing). Since the test scenes of RoboTHOR are private we are also testing on our validation set. """ # %% def train_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: res = self._get_sampler_args_for_scene_split( os.path.join(self.TRAIN_DATASET_DIR, "episodes"), process_ind, total_processes, seeds=seeds, deterministic_cudnn=deterministic_cudnn, ) res["scene_directory"] = self.TRAIN_DATASET_DIR res["loop_dataset"] = True res["env_args"] = {} res["env_args"].update(self.ENV_ARGS) res["env_args"]["x_display"] = ( ("0.%d" % devices[process_ind % len(devices)]) if devices is not None and len(devices) > 0 else None ) res["allow_flipping"] = True return res def valid_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: res = self._get_sampler_args_for_scene_split( os.path.join(self.VAL_DATASET_DIR, "episodes"), process_ind, total_processes, seeds=seeds, deterministic_cudnn=deterministic_cudnn, ) res["scene_directory"] = self.VAL_DATASET_DIR res["loop_dataset"] = False res["env_args"] = {} res["env_args"].update(self.ENV_ARGS) res["env_args"]["x_display"] = ( ("0.%d" % devices[process_ind % len(devices)]) if devices is not None and len(devices) > 0 else None ) return res def test_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: res = self._get_sampler_args_for_scene_split( os.path.join(self.VAL_DATASET_DIR, "episodes"), process_ind, total_processes, seeds=seeds, deterministic_cudnn=deterministic_cudnn, ) res["scene_directory"] = self.VAL_DATASET_DIR res["loop_dataset"] = False res["env_args"] = {} res["env_args"].update(self.ENV_ARGS) return res # %% """ This is it! If we copy all of the code into a file we should be able to run our experiment! ## Training Model On Debug Dataset We can test if our installation worked properly by training our model on a small dataset of 4 episodes. This should take about 20 minutes on a computer with a NVIDIA GPU. We can now train a model by running: ```bash PYTHONPATH=. python allenact/main.py -o <PATH_TO_OUTPUT> -c -b <BASE_DIRECTORY_OF_YOUR_EXPERIMENT> <EXPERIMENT_NAME> ``` If using the same configuration as we have set up, the following command should work: ```bash PYTHONPATH=. python allenact/main.py training_a_pointnav_model -o storage/robothor-pointnav-rgb-resnet-resnet -b projects/tutorials ``` If we start up a tensorboard server during training and specify that `output_dir=storage` the output should look something like this: ![tensorboard output](../img/point-nav-baseline-tb.png) ## Training Model On Full Dataset We can also train the model on the full dataset by changing back our dataset path and running the same command as above. But be aware, training this takes nearly 2 days on a machine with 8 GPU. ## Testing Model To test the performance of a model please refer to [this tutorial](running-inference-on-a-pretrained-model.md). ## Conclusion In this tutorial, we learned how to create a new PointNav experiment using **AllenAct**. There are many simple and obvious ways to modify the experiment from here - changing the model, the learning algorithm and the environment each requires very few lines of code changed in the above file, allowing us to explore our embodied ai research ideas across different frameworks with ease. """
ask4help-main
projects/tutorials/training_a_pointnav_model.py
from math import ceil from typing import Dict, Any, List, Optional import gym import numpy as np import torch import torch.nn as nn import torch.optim as optim from torch.optim.lr_scheduler import LambdaLR from allenact.algorithms.onpolicy_sync.losses import PPO from allenact.algorithms.onpolicy_sync.losses.ppo import PPOConfig from allenact.base_abstractions.experiment_config import ExperimentConfig, MachineParams from allenact.base_abstractions.sensor import SensorSuite from allenact.base_abstractions.task import TaskSampler from allenact.utils.experiment_utils import ( Builder, PipelineStage, TrainingPipeline, LinearDecay, ) from allenact_plugins.ithor_plugin.ithor_sensors import ( RGBSensorThor, GoalObjectTypeThorSensor, ) from allenact_plugins.ithor_plugin.ithor_task_samplers import ObjectNavTaskSampler from allenact_plugins.ithor_plugin.ithor_tasks import ObjectNaviThorGridTask from projects.objectnav_baselines.models.object_nav_models import ( ObjectNavBaselineActorCritic, ) class ObjectNavThorPPOExperimentConfig(ExperimentConfig): """A simple object navigation experiment in THOR. Training with PPO. """ # A simple setting, train/valid/test are all the same single scene # and we're looking for a single object OBJECT_TYPES = ["Tomato"] TRAIN_SCENES = ["FloorPlan1_physics"] VALID_SCENES = ["FloorPlan1_physics"] TEST_SCENES = ["FloorPlan1_physics"] # Setting up sensors and basic environment details SCREEN_SIZE = 224 SENSORS = [ RGBSensorThor( height=SCREEN_SIZE, width=SCREEN_SIZE, use_resnet_normalization=True, ), GoalObjectTypeThorSensor(object_types=OBJECT_TYPES), ] ENV_ARGS = { "player_screen_height": SCREEN_SIZE, "player_screen_width": SCREEN_SIZE, "quality": "Very Low", } MAX_STEPS = 128 ADVANCE_SCENE_ROLLOUT_PERIOD: Optional[int] = None VALID_SAMPLES_IN_SCENE = 10 TEST_SAMPLES_IN_SCENE = 100 @classmethod def tag(cls): return "ObjectNavThorPPO" @classmethod def training_pipeline(cls, **kwargs): ppo_steps = int(1e6) lr = 2.5e-4 num_mini_batch = 2 if not torch.cuda.is_available() else 6 update_repeats = 4 num_steps = 128 metric_accumulate_interval = cls.MAX_STEPS * 10 # Log every 10 max length tasks save_interval = 10000 gamma = 0.99 use_gae = True gae_lambda = 1.0 max_grad_norm = 0.5 return TrainingPipeline( save_interval=save_interval, metric_accumulate_interval=metric_accumulate_interval, optimizer_builder=Builder(optim.Adam, dict(lr=lr)), num_mini_batch=num_mini_batch, update_repeats=update_repeats, max_grad_norm=max_grad_norm, num_steps=num_steps, named_losses={ "ppo_loss": PPO(clip_decay=LinearDecay(ppo_steps), **PPOConfig), }, gamma=gamma, use_gae=use_gae, gae_lambda=gae_lambda, advance_scene_rollout_period=cls.ADVANCE_SCENE_ROLLOUT_PERIOD, pipeline_stages=[ PipelineStage(loss_names=["ppo_loss"], max_stage_steps=ppo_steps,), ], lr_scheduler_builder=Builder( LambdaLR, {"lr_lambda": LinearDecay(steps=ppo_steps)} ), ) @classmethod def machine_params(cls, mode="train", **kwargs): num_gpus = torch.cuda.device_count() has_gpu = num_gpus != 0 if mode == "train": nprocesses = 20 if has_gpu else 4 gpu_ids = [0] if has_gpu else [] elif mode == "valid": nprocesses = 1 gpu_ids = [1 % num_gpus] if has_gpu else [] elif mode == "test": nprocesses = 1 gpu_ids = [0] if has_gpu else [] else: raise NotImplementedError("mode must be 'train', 'valid', or 'test'.") return MachineParams(nprocesses=nprocesses, devices=gpu_ids,) @classmethod def create_model(cls, **kwargs) -> nn.Module: return ObjectNavBaselineActorCritic( action_space=gym.spaces.Discrete( len(ObjectNaviThorGridTask.class_action_names()) ), observation_space=SensorSuite(cls.SENSORS).observation_spaces, rgb_uuid=cls.SENSORS[0].uuid, depth_uuid=None, goal_sensor_uuid="goal_object_type_ind", hidden_size=512, object_type_embedding_dim=8, ) @classmethod def make_sampler_fn(cls, **kwargs) -> TaskSampler: return ObjectNavTaskSampler(**kwargs) @staticmethod def _partition_inds(n: int, num_parts: int): return np.round(np.linspace(0, n, num_parts + 1, endpoint=True)).astype( np.int32 ) def _get_sampler_args_for_scene_split( self, scenes: List[str], process_ind: int, total_processes: int, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: if total_processes > len(scenes): # oversample some scenes -> bias if total_processes % len(scenes) != 0: print( "Warning: oversampling some of the scenes to feed all processes." " You can avoid this by setting a number of workers divisible by the number of scenes" ) scenes = scenes * int(ceil(total_processes / len(scenes))) scenes = scenes[: total_processes * (len(scenes) // total_processes)] else: if len(scenes) % total_processes != 0: print( "Warning: oversampling some of the scenes to feed all processes." " You can avoid this by setting a number of workers divisor of the number of scenes" ) inds = self._partition_inds(len(scenes), total_processes) return { "scenes": scenes[inds[process_ind] : inds[process_ind + 1]], "object_types": self.OBJECT_TYPES, "env_args": self.ENV_ARGS, "max_steps": self.MAX_STEPS, "sensors": self.SENSORS, "action_space": gym.spaces.Discrete( len(ObjectNaviThorGridTask.class_action_names()) ), "seed": seeds[process_ind] if seeds is not None else None, "deterministic_cudnn": deterministic_cudnn, } def train_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: res = self._get_sampler_args_for_scene_split( self.TRAIN_SCENES, process_ind, total_processes, seeds=seeds, deterministic_cudnn=deterministic_cudnn, ) res["scene_period"] = "manual" res["env_args"] = {} res["env_args"].update(self.ENV_ARGS) res["env_args"]["x_display"] = ( ("0.%d" % devices[process_ind % len(devices)]) if devices is not None and len(devices) > 0 else None ) return res def valid_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: res = self._get_sampler_args_for_scene_split( self.VALID_SCENES, process_ind, total_processes, seeds=seeds, deterministic_cudnn=deterministic_cudnn, ) res["scene_period"] = self.VALID_SAMPLES_IN_SCENE res["max_tasks"] = self.VALID_SAMPLES_IN_SCENE * len(res["scenes"]) res["env_args"] = {} res["env_args"].update(self.ENV_ARGS) res["env_args"]["x_display"] = ( ("0.%d" % devices[process_ind % len(devices)]) if devices is not None and len(devices) > 0 else None ) return res def test_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: res = self._get_sampler_args_for_scene_split( self.TEST_SCENES, process_ind, total_processes, seeds=seeds, deterministic_cudnn=deterministic_cudnn, ) res["scene_period"] = self.TEST_SAMPLES_IN_SCENE res["max_tasks"] = self.TEST_SAMPLES_IN_SCENE * len(res["scenes"]) res["env_args"] = {} res["env_args"].update(self.ENV_ARGS) res["env_args"]["x_display"] = ( ("0.%d" % devices[process_ind % len(devices)]) if devices is not None and len(devices) > 0 else None ) return res
ask4help-main
projects/tutorials/object_nav_ithor_ppo_one_object.py
# literate: tutorials/distributed-objectnav-tutorial.md # %% """# Tutorial: Distributed training across multiple nodes.""" # %% """ **Note** The provided commands to execute in this tutorial assume include a configuration script to [clone the full library](../installation/installation-allenact.md#full-library). Setting up headless THOR might require superuser privileges. We also assume [NCCL](https://developer.nvidia.com/nccl) is available for communication across computation nodes and all nodes have a running `ssh` server. The below introduced experimental tools and commands for distributed training assume a Linux OS (tested on Ubuntu 18.04). In this tutorial, we: 1. Introduce the available API for training across multiple nodes, as well as experimental scripts for distributed configuration, training start and termination, and remote command execution. 1. Introduce the headless mode for [AI2-THOR](https://ai2thor.allenai.org/) in `AllenAct`. Note that, in contrast with previous tutorials using AI2-THOR, this time we don't require an xserver (in Linux) to be active. 1. Show a training example for RoboTHOR ObjectNav on a cluster, with each node having sufficient GPUs and GPU memory to host 60 experience samplers collecting rollout data. Thanks to the massive parallelization of experience collection and model training enabled by [DD-PPO](https://arxiv.org/abs/1911.00357), we can greatly speed up training by scaling across multiple nodes: ![training speedup](../img/multinode_training.jpg) ## The task: ObjectNav In ObjectNav, the goal for the agent is to navigate to an object (possibly unseen during training) of a known given class and signal task completion when it determines it has reached the goal. ## Implementation For this tutorial, we'll use the readily available `objectnav_baselines` project, which includes configurations for a wide variety of object navigation experiments for both iTHOR and RoboTHOR. Since those configuration files are defined for a single-node setup, we will mainly focus on the changes required in the `machine_params` and `training_pipeline` methods. Note that, in order to use the headless version of AI2-THOR, we currently need to install a specific THOR commit, different from the default one in `robothor_plugin`. Note that this command is included in the configuration script below, so **we don't need to run this**: ```bash pip install --extra-index-url https://ai2thor-pypi.allenai.org ai2thor==0+91139c909576f3bf95a187c5b02c6fd455d06b48 ``` The experiment config starts as follows: """ # %% import math from typing import Optional, Sequence import torch import torch.optim as optim from torch.optim.lr_scheduler import LambdaLR from allenact.algorithms.onpolicy_sync.losses import PPO from allenact.algorithms.onpolicy_sync.losses.ppo import PPOConfig from projects.objectnav_baselines.experiments.robothor.objectnav_robothor_rgb_resnetgru_ddppo import ( ObjectNavRoboThorRGBPPOExperimentConfig as BaseConfig, ) from allenact.utils.experiment_utils import ( Builder, LinearDecay, MultiLinearDecay, TrainingPipeline, PipelineStage, ) class DistributedObjectNavRoboThorRGBPPOExperimentConfig(BaseConfig): def tag(self) -> str: return "DistributedObjectNavRoboThorRGBPPO" # %% """We override ObjectNavRoboThorBaseConfig's THOR_COMMIT_ID to match the installed headless one:""" # %% THOR_COMMIT_ID = "91139c909576f3bf95a187c5b02c6fd455d06b48" # %% """Also indicate that we're using headless THOR (for `task_sampler_args` methods):""" # %% THOR_IS_HEADLESS = True # %% """**Temporary hack** Disable the `commit_id` argument passed to the THOR `Controller`'s `init` method:""" # %% def env_args(self): res = super().env_args() res.pop("commit_id", None) return res # %% """ And, of course, define the number of nodes. This will be used by `machine_params` and `training_pipeline` below. We override the existing `ExperimentConfig`'s `init` method to include control on the number of nodes: """ # %% def __init__( self, distributed_nodes: int = 1, num_train_processes: Optional[int] = None, train_gpu_ids: Optional[Sequence[int]] = None, val_gpu_ids: Optional[Sequence[int]] = None, test_gpu_ids: Optional[Sequence[int]] = None, ): super().__init__(num_train_processes, train_gpu_ids, val_gpu_ids, test_gpu_ids) self.distributed_nodes = distributed_nodes # %% """ ### Machine parameters **Note:** We assume that all nodes are identical (same number and model of GPUs and drivers). The `machine_params` method will be invoked by `runner.py` with different arguments, e.g. to determine the configuration for validation or training. When working in distributed settings, `AllenAct` needs to know the total number of trainers across all nodes as well as the local number of trainers. This is accomplished through the introduction of a `machine_id` keyword argument, which will be used to define the training parameters as follows: """ # %% def machine_params(self, mode="train", **kwargs): params = super().machine_params(mode, **kwargs) if mode == "train": params.devices = params.devices * self.distributed_nodes params.nprocesses = params.nprocesses * self.distributed_nodes params.sampler_devices = params.sampler_devices * self.distributed_nodes if "machine_id" in kwargs: machine_id = kwargs["machine_id"] assert ( 0 <= machine_id < self.distributed_nodes ), f"machine_id {machine_id} out of range [0, {self.distributed_nodes - 1}]" local_worker_ids = list( range( len(self.train_gpu_ids) * machine_id, len(self.train_gpu_ids) * (machine_id + 1), ) ) params.set_local_worker_ids(local_worker_ids) # Confirm we're setting up train params nicely: print( f"devices {params.devices}" f"\nnprocesses {params.nprocesses}" f"\nsampler_devices {params.sampler_devices}" f"\nlocal_worker_ids {params.local_worker_ids}" ) elif mode == "valid": # Use all GPUs at their maximum capacity for training # (you may run validation in a separate machine) params.nprocesses = (0,) return params # %% """ In summary, we need to specify which indices in `devices`, `nprocesses` and `sampler_devices` correspond to the local `machine_id` node (whenever a `machine_id` is given as a keyword argument), otherwise we specify the global configuration. ### Training pipeline In preliminary ObjectNav experiments, we observe that small batches are useful during the initial training steps in terms of sample efficiency, whereas large batches are preferred during the rest of training. In order to scale to the larger amount of collected data in multi-node settings, we will proceed with a two-stage pipeline: 1. In the first stage, we'll enforce a number of updates per amount of collected data similar to the configuration with a single node by enforcing more batches per rollout (for about 30 million steps). 1. In the second stage we'll switch to a configuration with larger learning rate and batch size to be used up to the grand total of 300 million experience steps. We first define a helper method to generate a learning rate curve with decay for each stage: """ # %% @staticmethod def lr_scheduler(small_batch_steps, transition_steps, ppo_steps, lr_scaling): safe_small_batch_steps = int(small_batch_steps * 1.02) large_batch_and_lr_steps = ppo_steps - safe_small_batch_steps - transition_steps # Learning rate after small batch steps (assuming decay to 0) break1 = 1.0 - safe_small_batch_steps / ppo_steps # Initial learning rate for large batch (after transition from initial to large learning rate) break2 = lr_scaling * ( 1.0 - (safe_small_batch_steps + transition_steps) / ppo_steps ) return MultiLinearDecay( [ # Base learning rate phase for small batch (with linear decay towards 0) LinearDecay(steps=safe_small_batch_steps, startp=1.0, endp=break1,), # Allow the optimizer to adapt its statistics to the changes with a larger learning rate LinearDecay(steps=transition_steps, startp=break1, endp=break2,), # Scaled learning rate phase for large batch (with linear decay towards 0) LinearDecay(steps=large_batch_and_lr_steps, startp=break2, endp=0,), ] ) # %% """ The training pipeline looks like: """ # %% def training_pipeline(self, **kwargs): # These params are identical to the baseline configuration for 60 samplers (1 machine) ppo_steps = int(300e6) lr = 3e-4 num_mini_batch = 1 update_repeats = 4 num_steps = 128 save_interval = 5000000 log_interval = 10000 if torch.cuda.is_available() else 1 gamma = 0.99 use_gae = True gae_lambda = 0.95 max_grad_norm = 0.5 # We add 30 million steps for small batch learning small_batch_steps = int(30e6) # And a short transition phase towards large learning rate # (see comment in the `lr_scheduler` helper method transition_steps = int(2 / 3 * self.distributed_nodes * 1e6) # Find exact number of samplers per GPU assert ( self.num_train_processes % len(self.train_gpu_ids) == 0 ), "Expected uniform number of samplers per GPU" samplers_per_gpu = self.num_train_processes // len(self.train_gpu_ids) # Multiply num_mini_batch by the largest divisor of # samplers_per_gpu to keep all batches of same size: num_mini_batch_multiplier = [ i for i in reversed( range(1, min(samplers_per_gpu // 2, self.distributed_nodes) + 1) ) if samplers_per_gpu % i == 0 ][0] # Multiply update_repeats so that the product of this factor and # num_mini_batch_multiplier is >= self.distributed_nodes: update_repeats_multiplier = int( math.ceil(self.distributed_nodes / num_mini_batch_multiplier) ) return TrainingPipeline( save_interval=save_interval, metric_accumulate_interval=log_interval, optimizer_builder=Builder(optim.Adam, dict(lr=lr)), num_mini_batch=num_mini_batch, update_repeats=update_repeats, max_grad_norm=max_grad_norm, num_steps=num_steps, named_losses={"ppo_loss": PPO(**PPOConfig, show_ratios=False)}, gamma=gamma, use_gae=use_gae, gae_lambda=gae_lambda, advance_scene_rollout_period=self.ADVANCE_SCENE_ROLLOUT_PERIOD, pipeline_stages=[ # We increase the number of batches for the first stage to reach an # equivalent number of updates per collected rollout data as in the # 1 node/60 samplers setting PipelineStage( loss_names=["ppo_loss"], max_stage_steps=small_batch_steps, num_mini_batch=num_mini_batch * num_mini_batch_multiplier, update_repeats=update_repeats * update_repeats_multiplier, ), # The we proceed with the base configuration (leading to larger # batches due to the increased number of samplers) PipelineStage( loss_names=["ppo_loss"], max_stage_steps=ppo_steps - small_batch_steps, ), ], # We use the MultiLinearDecay curve defined by the helper function, # setting the learning rate scaling as the square root of the number # of nodes. Linear scaling might also works, but we leave that # check to the reader. lr_scheduler_builder=Builder( LambdaLR, { "lr_lambda": self.lr_scheduler( small_batch_steps=small_batch_steps, transition_steps=transition_steps, ppo_steps=ppo_steps, lr_scaling=math.sqrt(self.distributed_nodes), ) }, ), ) # %% """ ## Multi-node configuration **Note:** In the following, we'll assume you don't have an available setup for distributed execution, such as [slurm](https://slurm.schedmd.com/documentation.html). If you do have access to a better alternative to setup and run distributed processes, we encourage you to use that. The experimental distributed tools included here are intended for a rather basic usage pattern that might not suit your needs. If we haven't set up AllenAct with the headless version of Ai2-THOR in our nodes, we can define a configuration script similar to: ```bash #!/bin/bash # Prepare a virtualenv for allenact sudo apt-get install -y python3-venv python3 -mvenv ~/allenact_venv source ~/allenact_venv/bin/activate pip install -U pip wheel # Install AllenAct cd ~ git clone https://github.com/allenai/allenact.git cd allenact # Install AllenaAct + RoboTHOR plugin dependencies pip install -r requirements.txt pip install -r allenact_plugins/robothor_plugin/extra_requirements.txt # Download + setup datasets bash datasets/download_navigation_datasets.sh robothor-objectnav # Install headless AI2-THOR and required libvulkan1 sudo apt-get install -y libvulkan1 pip install --extra-index-url https://ai2thor-pypi.allenai.org ai2thor==0+91139c909576f3bf95a187c5b02c6fd455d06b48 # Download AI2-THOR binaries python -c "from ai2thor.controller import Controller; c=Controller(); c.stop()" echo DONE ``` and save it as `headless_robothor_config.sh`. Note that some of the configuration steps in the script assume you have superuser privileges. Then, we can just copy this file to the first node in our cluster and run it with: ```bash source <PATH/TO/headless_robothor_config.sh> ``` If everything went well, we should be able to ```bash cd ~/allenact && source ~/allenact_venv/bin/activate ``` Note that we might need to install `libvulkan1` in each node (even if the AllenAct setup is shared across nodes) if it is not already available. ### Local filesystems If our cluster does not use a shared filesystem, we'll need to propagate the setup to the rest of nodes. Assuming we can just `ssh` with the current user to all nodes, we can propagate our config with ```bash scripts/dconfig.py --runs_on <COMMA_SEPARATED_LIST_OF_IP_ADDRESSES> \ --config_script <PATH/TO/headless_robothor_config.sh> ``` and we can check the state of the installation with the `scripts/dcommand.py` tool: ```bash scripts/dcommand.py --runs_on <COMMA_SEPARATED_LIST_OF_IP_ADDRESSES> \ --command 'tail -n 5 ~/log_allenact_distributed_config' ``` If everything went fine, all requirements are ready to start running our experiment. ## Run your experiment **Note:** In this section, we again assume you don't have an available setup for distributed execution, such as [slurm](https://slurm.schedmd.com/documentation.html). If you do have access to a better alternative to setup/run distributed processes, we encourage you to use that. The experimental distributed tools included here are intended for a rather basic usage pattern that might not suit your needs. Our experimental extension to AllenAct's `main.py` script allows using practically identical commands to the ones used in a single-node setup to start our experiments. From the root `allenact` directory, we can simply invoke ```bash scripts/dmain.py projects/tutorials/distributed_objectnav_tutorial.py \ --config_kwargs '{"distributed_nodes":3}' \ --runs_on <COMMA_SEPARATED_LIST_OF_IP_ADDRESSES> \ --env_activate_path ~/allenact_venv/bin/activate \ --allenact_path ~/allenact \ --distributed_ip_and_port <FIRST_IP_ADDRESS_IN_RUNS_ON_LIST>:<FREE_PORT_NUMBER_FOR_THIS_IP_ADDRESS> ``` This script will do several things for you, including synchronization of the changes in the `allenact` directory to all machines, enabling virtual environments in each node, sharing the same random seed for all `main.py` instances, assigning `--machine_id` parameters required for multi-node training, and redirecting the process output to a log file under the output results folder. Note that by changing the value associated with the `distributed_nodes` key in the `config_kwargs` map and the `runs_on` list of IPs, we can easily scale our training to e.g. 1, 3, or 8 nodes as shown in the chart above. Note that for this call to work unmodified, you should have sufficient GPUs/GPU memory to host 60 samplers per node. ## Track and stop your experiment You might have noticed that, when your experiment started with the above command, a file was created under `~/.allenact`. This file includes IP addresses and screen session IDs for all nodes. It can be used by the already introduced `scripts/dcommand.py` script, if we omit the `--runs_on` argument, to call a command on each node via ssh; but most importantly it is used by the `scripts/dkill.py` script to terminate all screen sessions hosting our training processes. ### Experiment tracking A simple way to check all machines are training, assuming you have `nvidia-smi` installed in all nodes, is to just call ```bash scripts/dcommand.py ``` from the root `allenact` directory. If everything is working well, the GPU usage stats from `nvidia-smi` should reflect ongoing activity. You can also add different commands to be executed by each node. It is of course also possible to run tensorboard on any of the nodes, if that's your preference. ### Experiment termination Just call ```bash scripts/dkill.py ``` After killing all involved screen sessions, you will be asked about whether you also want to delete the "killfile" stored under the `~/.allenact` directory (which might be your preferred option once all processes are terminated). We hope this tutorial will help you start quickly testing new ideas! Even if we've only explored moderates settings of up to 480 experience samplers, you might want to consider some additional changes (like the [choice for the optimizer](https://arxiv.org/abs/2103.07013)) if you plan to run at larger scale. """
ask4help-main
projects/tutorials/distributed_objectnav_tutorial.py
# literate: tutorials/minigrid-tutorial.md # %% """# Tutorial: Navigation in MiniGrid.""" # %% """ In this tutorial, we will train an agent to complete the `MiniGrid-Empty-Random-5x5-v0` task within the [MiniGrid](https://github.com/maximecb/gym-minigrid) environment. We will demonstrate how to: * Write an experiment configuration file with a simple training pipeline from scratch. * Use one of the supported environments with minimal user effort. * Train, validate and test your experiment from the command line. This tutorial assumes the [installation instructions](../installation/installation-allenact.md) have already been followed and that, to some extent, this framework's [abstractions](../getting_started/abstractions.md) are known. The `extra_requirements` for `minigrid_plugin` and `babyai_plugin` can be installed with. ```bash pip install -r allenact_plugins/minigrid_plugin/extra_requirements.txt; pip install -r allenact_plugins/babyai_plugin/extra_requirements.txt ``` ## The task A `MiniGrid-Empty-Random-5x5-v0` task consists of a grid of dimensions 5x5 where an agent spawned at a random location and orientation has to navigate to the visitable bottom right corner cell of the grid by sequences of three possible actions (rotate left/right and move forward). A visualization of the environment with expert steps in a random `MiniGrid-Empty-Random-5x5-v0` task looks like ![MiniGridEmptyRandom5x5 task example](../img/minigrid_environment.png) The observation for the agent is a subset of the entire grid, simulating a simplified limited field of view, as depicted by the highlighted rectangle (observed subset of the grid) around the agent (red arrow). Gray cells correspond to walls. ## Experiment configuration file Our complete experiment consists of: * Training a basic actor-critic agent with memory to solve randomly sampled navigation tasks. * Validation on a fixed set of tasks (running in parallel with training). * A second stage where we test saved checkpoints with a larger fixed set of tasks. The entire configuration for the experiment, including training, validation, and testing, is encapsulated in a single class implementing the `ExperimentConfig` abstraction. For this tutorial, we will follow the config under `projects/tutorials/minigrid_tutorial.py`. The `ExperimentConfig` abstraction is used by the [OnPolicyTrainer](../api/allenact/algorithms/onpolicy_sync/engine.md#onpolicytrainer) class (for training) and the [OnPolicyInference](../api/allenact/algorithms/onpolicy_sync/engine.md#onpolicyinference) class (for validation and testing) invoked through the entry script `main.py` that calls an orchestrating [OnPolicyRunner](../api/allenact/algorithms/onpolicy_sync/runner.md#onpolicyrunner) class. It includes: * A `tag` method to identify the experiment. * A `create_model` method to instantiate actor-critic models. * A `make_sampler_fn` method to instantiate task samplers. * Three `{train,valid,test}_task_sampler_args` methods describing initialization parameters for task samplers used in training, validation, and testing; including assignment of workers to devices for simulation. * A `machine_params` method with configuration parameters that will be used for training, validation, and testing. * A `training_pipeline` method describing a possibly multi-staged training pipeline with different types of losses, an optimizer, and other parameters like learning rates, batch sizes, etc. ### Preliminaries We first import everything we'll need to define our experiment. """ # %% from typing import Dict, Optional, List, Any, cast import gym from gym_minigrid.envs import EmptyRandomEnv5x5 import torch.nn as nn import torch.optim as optim from torch.optim.lr_scheduler import LambdaLR from allenact.algorithms.onpolicy_sync.losses.ppo import PPO, PPOConfig from allenact.base_abstractions.experiment_config import ExperimentConfig, TaskSampler from allenact.base_abstractions.sensor import SensorSuite from allenact.utils.experiment_utils import ( TrainingPipeline, Builder, PipelineStage, LinearDecay, ) from allenact_plugins.minigrid_plugin.minigrid_models import MiniGridSimpleConvRNN from allenact_plugins.minigrid_plugin.minigrid_sensors import EgocentricMiniGridSensor from allenact_plugins.minigrid_plugin.minigrid_tasks import ( MiniGridTaskSampler, MiniGridTask, ) # %% """ We now create the `MiniGridTutorialExperimentConfig` class which we will use to define our experiment. For pedagogical reasons, we will add methods to this class one at a time below with a description of what these classes do. """ # %% class MiniGridTutorialExperimentConfig(ExperimentConfig): # %% """An experiment is identified by a `tag`.""" # %% @classmethod def tag(cls) -> str: return "MiniGridTutorial" # %% """ ### Sensors and Model A readily available Sensor type for MiniGrid, [EgocentricMiniGridSensor](../api/allenact_plugins/minigrid_plugin/minigrid_sensors.md#egocentricminigridsensor), allows us to extract observations in a format consumable by an `ActorCriticModel` agent: """ # %% SENSORS = [ EgocentricMiniGridSensor(agent_view_size=5, view_channels=3), ] # %% """ The three `view_channels` include objects, colors and states corresponding to a partial observation of the environment as an image tensor, equivalent to that from `ImgObsWrapper` in [MiniGrid](https://github.com/maximecb/gym-minigrid#wrappers). The relatively large `agent_view_size` means the view will only be clipped by the environment walls in the forward and lateral directions with respect to the agent's orientation. We define our `ActorCriticModel` agent using a lightweight implementation with recurrent memory for MiniGrid environments, [MiniGridSimpleConvRNN](../api/allenact_plugins/minigrid_plugin/minigrid_models.md#minigridsimpleconvrnn): """ # %% @classmethod def create_model(cls, **kwargs) -> nn.Module: return MiniGridSimpleConvRNN( action_space=gym.spaces.Discrete(len(MiniGridTask.class_action_names())), observation_space=SensorSuite(cls.SENSORS).observation_spaces, num_objects=cls.SENSORS[0].num_objects, num_colors=cls.SENSORS[0].num_colors, num_states=cls.SENSORS[0].num_states, ) # %% """ ### Task samplers We use an available TaskSampler implementation for MiniGrid environments that allows to sample both random and deterministic `MiniGridTasks`, [MiniGridTaskSampler](../api/allenact_plugins/minigrid_plugin/minigrid_tasks.md#minigridtasksampler): """ # %% @classmethod def make_sampler_fn(cls, **kwargs) -> TaskSampler: return MiniGridTaskSampler(**kwargs) # %% """ This task sampler will during training (or validation/testing), randomly initialize new tasks for the agent to complete. While it is not quite as important for this task type (as we test our agent in the same setting it is trained on) there are a lot of good reasons we would like to sample tasks differently during training than during validation or testing. One good reason, that is applicable in this tutorial, is that, during training, we would like to be able to sample tasks forever while, during testing, we would like to sample a fixed number of tasks (as otherwise we would never finish testing!). In `allenact` this is made possible by defining different arguments for the task sampler: """ # %% def train_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: return self._get_sampler_args(process_ind=process_ind, mode="train") def valid_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: return self._get_sampler_args(process_ind=process_ind, mode="valid") def test_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: return self._get_sampler_args(process_ind=process_ind, mode="test") # %% """ where, for convenience, we have defined a `_get_sampler_args` method: """ # %% def _get_sampler_args(self, process_ind: int, mode: str) -> Dict[str, Any]: """Generate initialization arguments for train, valid, and test TaskSamplers. # Parameters process_ind : index of the current task sampler mode: one of `train`, `valid`, or `test` """ if mode == "train": max_tasks = None # infinite training tasks task_seeds_list = None # no predefined random seeds for training deterministic_sampling = False # randomly sample tasks in training else: max_tasks = 20 + 20 * (mode == "test") # 20 tasks for valid, 40 for test # one seed for each task to sample: # - ensures different seeds for each sampler, and # - ensures a deterministic set of sampled tasks. task_seeds_list = list( range(process_ind * max_tasks, (process_ind + 1) * max_tasks) ) deterministic_sampling = ( True # deterministically sample task in validation/testing ) return dict( max_tasks=max_tasks, # see above env_class=self.make_env, # builder for third-party environment (defined below) sensors=self.SENSORS, # sensors used to return observations to the agent env_info=dict(), # parameters for environment builder (none for now) task_seeds_list=task_seeds_list, # see above deterministic_sampling=deterministic_sampling, # see above ) @staticmethod def make_env(*args, **kwargs): return EmptyRandomEnv5x5() # %% """ Note that the `env_class` argument to the Task Sampler is the one determining which task type we are going to train the model for (in this case, `MiniGrid-Empty-Random-5x5-v0` from [gym-minigrid](https://github.com/maximecb/gym-minigrid#empty-environment)) . The sparse reward is [given by the environment](https://github.com/maximecb/gym-minigrid/blob/6e22a44dc67414b647063692258a4f95ce789161/gym_minigrid/minigrid.py#L819) , and the maximum task length is 100. For training, we opt for a default random sampling, whereas for validation and test we define fixed sets of randomly sampled tasks without needing to explicitly define a dataset. In this toy example, the maximum number of different tasks is 32. For validation we sample 320 tasks using 16 samplers, or 640 for testing, so we can be fairly sure that all possible tasks are visited at least once during evaluation. ### Machine parameters Given the simplicity of the task and model, we can quickly train the model on the CPU: """ # %% @classmethod def machine_params(cls, mode="train", **kwargs) -> Dict[str, Any]: return { "nprocesses": 128 if mode == "train" else 16, "devices": [], } # %% """ We allocate a larger number of samplers for training (128) than for validation or testing (16), and we default to CPU usage by returning an empty list of `devices`. ### Training pipeline The last definition required before starting to train is a training pipeline. In this case, we just use a single PPO stage with linearly decaying learning rate: """ # %% @classmethod def training_pipeline(cls, **kwargs) -> TrainingPipeline: ppo_steps = int(150000) return TrainingPipeline( named_losses=dict(ppo_loss=PPO(**PPOConfig)), # type:ignore pipeline_stages=[ PipelineStage(loss_names=["ppo_loss"], max_stage_steps=ppo_steps) ], optimizer_builder=Builder(cast(optim.Optimizer, optim.Adam), dict(lr=1e-4)), num_mini_batch=4, update_repeats=3, max_grad_norm=0.5, num_steps=16, gamma=0.99, use_gae=True, gae_lambda=0.95, advance_scene_rollout_period=None, save_interval=10000, metric_accumulate_interval=1, lr_scheduler_builder=Builder( LambdaLR, {"lr_lambda": LinearDecay(steps=ppo_steps)} # type:ignore ), ) # %% """ You can see that we use a `Builder` class to postpone the construction of some of the elements, like the optimizer, for which the model weights need to be known. ## Training and validation We have a complete implementation of this experiment's configuration class in `projects/tutorials/minigrid_tutorial.py`. To start training from scratch, we just need to invoke ```bash PYTHONPATH=. python allenact/main.py minigrid_tutorial -b projects/tutorials -m 8 -o /PATH/TO/minigrid_output -s 12345 ``` from the `allenact` root directory. * With `-b projects/tutorials` we tell `allenact` that `minigrid_tutorial` experiment config file will be found in the `projects/tutorials` directory. * With `-m 8` we limit the number of subprocesses to 8 (each subprocess will run 16 of the 128 training task samplers). * With `-o minigrid_output` we set the output folder into which results and logs will be saved. * With `-s 12345` we set the random seed. If we have Tensorboard installed, we can track progress with ```bash tensorboard --logdir /PATH/TO/minigrid_output ``` which will default to the URL [http://localhost:6006/](http://localhost:6006/). After 150,000 steps, the script will terminate and several checkpoints will be saved in the output folder. The training curves should look similar to: ![training curves](../img/minigrid_train.png) If everything went well, the `valid` success rate should converge to 1 and the mean episode length to a value below 4. (For perfectly uniform sampling and complete observation, the expectation for the optimal policy is 3.75 steps.) In the not-so-unlikely event of the run failing to converge to a near-optimal policy, we can just try to re-run (for example with a different random seed). The validation curves should look similar to: ![validation curves](../img/minigrid_valid.png) ## Testing The training start date for the experiment, in `YYYY-MM-DD_HH-MM-SS` format, is used as the name of one of the subfolders in the path to the checkpoints, saved under the output folder. In order to evaluate (i.e. test) a particular checkpoint, we need to pass the `--eval` flag and specify the checkpoint with the `--checkpoint CHECKPOINT_PATH` option: ```bash PYTHONPATH=. python allenact/main.py minigrid_tutorial \ -b projects/tutorials \ -m 1 \ -o /PATH/TO/minigrid_output \ -s 12345 \ --eval \ --checkpoint /PATH/TO/minigrid_output/checkpoints/MiniGridTutorial/YOUR_START_DATE/exp_MiniGridTutorial__stage_00__steps_000000151552.pt ``` Again, if everything went well, the `test` success rate should converge to 1 and the mean episode length to a value below 4. Detailed results are saved under a `metrics` subfolder in the output folder. The test curves should look similar to: ![test curves](../img/minigrid_test.png) """
ask4help-main
projects/tutorials/minigrid_tutorial.py
from typing import Dict, Optional, List, Any, cast, Callable, Union, Tuple import gym import numpy as np import torch import torch.nn as nn import torch.optim as optim from gym_minigrid.envs import EmptyRandomEnv5x5 from gym_minigrid.minigrid import MiniGridEnv from torch.optim.lr_scheduler import LambdaLR from allenact.algorithms.onpolicy_sync.losses.imitation import Imitation from allenact.algorithms.onpolicy_sync.losses.ppo import PPO, PPOConfig from allenact.algorithms.onpolicy_sync.policy import ActorCriticModel, DistributionType from allenact.base_abstractions.distributions import ( CategoricalDistr, ConditionalDistr, SequentialDistr, ) from allenact.base_abstractions.experiment_config import ExperimentConfig, TaskSampler from allenact.base_abstractions.misc import ActorCriticOutput, Memory, RLStepResult from allenact.base_abstractions.sensor import SensorSuite, ExpertActionSensor from allenact.embodiedai.models.basic_models import RNNStateEncoder from allenact.utils.experiment_utils import ( TrainingPipeline, Builder, PipelineStage, LinearDecay, ) from allenact.utils.misc_utils import prepare_locals_for_super from allenact_plugins.minigrid_plugin.minigrid_models import MiniGridSimpleConvBase from allenact_plugins.minigrid_plugin.minigrid_sensors import EgocentricMiniGridSensor from allenact_plugins.minigrid_plugin.minigrid_tasks import ( MiniGridTaskSampler, MiniGridTask, ) class ConditionedLinearActorCriticHead(nn.Module): def __init__( self, input_size: int, master_actions: int = 2, subpolicy_actions: int = 2 ): super().__init__() self.input_size = input_size self.master_and_critic = nn.Linear(input_size, master_actions + 1) self.embed_higher = nn.Embedding(num_embeddings=2, embedding_dim=input_size) self.actor = nn.Linear(2 * input_size, subpolicy_actions) nn.init.orthogonal_(self.master_and_critic.weight) nn.init.constant_(self.master_and_critic.bias, 0) nn.init.orthogonal_(self.actor.weight) nn.init.constant_(self.actor.bias, 0) def lower_policy(self, *args, **kwargs): assert "higher" in kwargs assert "state_embedding" in kwargs emb = self.embed_higher(kwargs["higher"]) logits = self.actor(torch.cat([emb, kwargs["state_embedding"]], dim=-1)) return CategoricalDistr(logits=logits) def forward(self, x): out = self.master_and_critic(x) master_logits = out[..., :-1] values = out[..., -1:] # noinspection PyArgumentList cond1 = ConditionalDistr( distr_conditioned_on_input_fn_or_instance=CategoricalDistr( logits=master_logits ), action_group_name="higher", ) cond2 = ConditionalDistr( distr_conditioned_on_input_fn_or_instance=lambda *args, **kwargs: ConditionedLinearActorCriticHead.lower_policy( self, *args, **kwargs ), action_group_name="lower", state_embedding=x, ) return ( SequentialDistr(cond1, cond2), values.view(*values.shape[:2], -1), # [steps, samplers, flattened] ) class ConditionedLinearActorCritic(ActorCriticModel[SequentialDistr]): def __init__( self, input_uuid: str, action_space: gym.spaces.Dict, observation_space: gym.spaces.Dict, ): super().__init__(action_space=action_space, observation_space=observation_space) assert ( input_uuid in observation_space.spaces ), "ConditionedLinearActorCritic expects only a single observational input." self.input_uuid = input_uuid box_space: gym.spaces.Box = observation_space[self.input_uuid] assert isinstance(box_space, gym.spaces.Box), ( "ConditionedLinearActorCritic requires that" "observation space corresponding to the input uuid is a Box space." ) assert len(box_space.shape) == 1 self.in_dim = box_space.shape[0] self.head = ConditionedLinearActorCriticHead( input_size=self.in_dim, master_actions=action_space["higher"].n, subpolicy_actions=action_space["lower"].n, ) # noinspection PyMethodMayBeStatic def _recurrent_memory_specification(self): return None def forward(self, observations, memory, prev_actions, masks): dists, values = self.head(observations[self.input_uuid]) # noinspection PyArgumentList return ( ActorCriticOutput(distributions=dists, values=values, extras={},), None, ) class ConditionedRNNActorCritic(ActorCriticModel[SequentialDistr]): def __init__( self, input_uuid: str, action_space: gym.spaces.Dict, observation_space: gym.spaces.Dict, hidden_size: int = 128, num_layers: int = 1, rnn_type: str = "GRU", head_type: Callable[ ..., ActorCriticModel[SequentialDistr] ] = ConditionedLinearActorCritic, ): super().__init__(action_space=action_space, observation_space=observation_space) self.hidden_size = hidden_size self.rnn_type = rnn_type assert ( input_uuid in observation_space.spaces ), "LinearActorCritic expects only a single observational input." self.input_uuid = input_uuid box_space: gym.spaces.Box = observation_space[self.input_uuid] assert isinstance(box_space, gym.spaces.Box), ( "RNNActorCritic requires that" "observation space corresponding to the input uuid is a Box space." ) assert len(box_space.shape) == 1 self.in_dim = box_space.shape[0] self.state_encoder = RNNStateEncoder( input_size=self.in_dim, hidden_size=hidden_size, num_layers=num_layers, rnn_type=rnn_type, trainable_masked_hidden_state=True, ) self.head_uuid = "{}_{}".format("rnn", input_uuid) self.ac_nonrecurrent_head: ActorCriticModel[SequentialDistr] = head_type( input_uuid=self.head_uuid, action_space=action_space, observation_space=gym.spaces.Dict( { self.head_uuid: gym.spaces.Box( low=np.float32(0.0), high=np.float32(1.0), shape=(hidden_size,) ) } ), ) self.memory_key = "rnn" @property def recurrent_hidden_state_size(self) -> int: return self.hidden_size @property def num_recurrent_layers(self) -> int: return self.state_encoder.num_recurrent_layers def _recurrent_memory_specification(self): return { self.memory_key: ( ( ("layer", self.num_recurrent_layers), ("sampler", None), ("hidden", self.recurrent_hidden_state_size), ), torch.float32, ) } def forward( # type:ignore self, observations: Dict[str, Union[torch.FloatTensor, Dict[str, Any]]], memory: Memory, prev_actions: torch.Tensor, masks: torch.FloatTensor, ) -> Tuple[ActorCriticOutput[DistributionType], Optional[Memory]]: rnn_out, mem_return = self.state_encoder( x=observations[self.input_uuid], hidden_states=memory.tensor(self.memory_key), masks=masks, ) # noinspection PyCallingNonCallable out, _ = self.ac_nonrecurrent_head( observations={self.head_uuid: rnn_out}, memory=None, prev_actions=prev_actions, masks=masks, ) # noinspection PyArgumentList return ( out, memory.set_tensor(self.memory_key, mem_return), ) class ConditionedMiniGridSimpleConvRNN(MiniGridSimpleConvBase): def __init__( self, action_space: gym.spaces.Dict, observation_space: gym.spaces.Dict, num_objects: int, num_colors: int, num_states: int, object_embedding_dim: int = 8, hidden_size=512, num_layers=1, rnn_type="GRU", head_type: Callable[ ..., ActorCriticModel[SequentialDistr] ] = ConditionedLinearActorCritic, **kwargs, ): super().__init__(**prepare_locals_for_super(locals())) self._hidden_size = hidden_size agent_view_x, agent_view_y, view_channels = observation_space[ "minigrid_ego_image" ].shape self.actor_critic = ConditionedRNNActorCritic( input_uuid=self.ac_key, action_space=action_space, observation_space=gym.spaces.Dict( { self.ac_key: gym.spaces.Box( low=np.float32(-1.0), high=np.float32(1.0), shape=( self.object_embedding_dim * agent_view_x * agent_view_y * view_channels, ), ) } ), hidden_size=hidden_size, num_layers=num_layers, rnn_type=rnn_type, head_type=head_type, ) self.memory_key = "rnn" self.train() @property def num_recurrent_layers(self): return self.actor_critic.num_recurrent_layers @property def recurrent_hidden_state_size(self): return self._hidden_size def _recurrent_memory_specification(self): return { self.memory_key: ( ( ("layer", self.num_recurrent_layers), ("sampler", None), ("hidden", self.recurrent_hidden_state_size), ), torch.float32, ) } class ConditionedMiniGridTask(MiniGridTask): _ACTION_NAMES = ("left", "right", "forward", "pickup") _ACTION_IND_TO_MINIGRID_IND = tuple( MiniGridEnv.Actions.__members__[name].value for name in _ACTION_NAMES ) @property def action_space(self) -> gym.spaces.Dict: return gym.spaces.Dict( higher=gym.spaces.Discrete(2), lower=gym.spaces.Discrete(2) ) def _step(self, action: Dict[str, int]) -> RLStepResult: assert len(action) == 2, "got action={}".format(action) minigrid_obs, reward, self._minigrid_done, info = self.env.step( action=( self._ACTION_IND_TO_MINIGRID_IND[action["lower"] + 2 * action["higher"]] ) ) # self.env.render() return RLStepResult( observation=self.get_observations(minigrid_output_obs=minigrid_obs), reward=reward, done=self.is_done(), info=info, ) def query_expert(self, **kwargs) -> Tuple[int, bool]: if kwargs["expert_sensor_group_name"] == "higher": if self._minigrid_done: raise ValueError("Episode is completed, but expert is still queried.") # return 0, False self.cached_expert = super().query_expert(**kwargs) if self.cached_expert[1]: return self.cached_expert[0] // 2, True else: return 0, False else: assert hasattr(self, "cached_expert") if self.cached_expert[1]: res = (self.cached_expert[0] % 2, True) else: res = (0, False) del self.cached_expert return res class MiniGridTutorialExperimentConfig(ExperimentConfig): @classmethod def tag(cls) -> str: return "MiniGridTutorial" SENSORS = [ EgocentricMiniGridSensor(agent_view_size=5, view_channels=3), ExpertActionSensor( action_space=gym.spaces.Dict( higher=gym.spaces.Discrete(2), lower=gym.spaces.Discrete(2) ) ), ] @classmethod def create_model(cls, **kwargs) -> nn.Module: return ConditionedMiniGridSimpleConvRNN( action_space=gym.spaces.Dict( higher=gym.spaces.Discrete(2), lower=gym.spaces.Discrete(2) ), observation_space=SensorSuite(cls.SENSORS).observation_spaces, num_objects=cls.SENSORS[0].num_objects, num_colors=cls.SENSORS[0].num_colors, num_states=cls.SENSORS[0].num_states, ) @classmethod def make_sampler_fn(cls, **kwargs) -> TaskSampler: return MiniGridTaskSampler(**kwargs) def train_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: return self._get_sampler_args(process_ind=process_ind, mode="train") def valid_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: return self._get_sampler_args(process_ind=process_ind, mode="valid") def test_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: return self._get_sampler_args(process_ind=process_ind, mode="test") def _get_sampler_args(self, process_ind: int, mode: str) -> Dict[str, Any]: """Generate initialization arguments for train, valid, and test TaskSamplers. # Parameters process_ind : index of the current task sampler mode: one of `train`, `valid`, or `test` """ if mode == "train": max_tasks = None # infinite training tasks task_seeds_list = None # no predefined random seeds for training deterministic_sampling = False # randomly sample tasks in training else: max_tasks = 20 + 20 * ( mode == "test" ) # 20 tasks for valid, 40 for test (per sampler) # one seed for each task to sample: # - ensures different seeds for each sampler, and # - ensures a deterministic set of sampled tasks. task_seeds_list = list( range(process_ind * max_tasks, (process_ind + 1) * max_tasks) ) deterministic_sampling = ( True # deterministically sample task in validation/testing ) return dict( max_tasks=max_tasks, # see above env_class=self.make_env, # builder for third-party environment (defined below) sensors=self.SENSORS, # sensors used to return observations to the agent env_info=dict(), # parameters for environment builder (none for now) task_seeds_list=task_seeds_list, # see above deterministic_sampling=deterministic_sampling, # see above task_class=ConditionedMiniGridTask, ) @staticmethod def make_env(*args, **kwargs): return EmptyRandomEnv5x5() @classmethod def machine_params(cls, mode="train", **kwargs) -> Dict[str, Any]: return { "nprocesses": 128 if mode == "train" else 16, "devices": [], } @classmethod def training_pipeline(cls, **kwargs) -> TrainingPipeline: ppo_steps = int(150000) return TrainingPipeline( named_losses=dict( imitation_loss=Imitation( cls.SENSORS[1] ), # 0 is Minigrid, 1 is ExpertActionSensor ppo_loss=PPO(**PPOConfig, entropy_method_name="conditional_entropy"), ), # type:ignore pipeline_stages=[ PipelineStage( teacher_forcing=LinearDecay( startp=1.0, endp=0.0, steps=ppo_steps // 2, ), loss_names=["imitation_loss", "ppo_loss"], max_stage_steps=ppo_steps, ) ], optimizer_builder=Builder(cast(optim.Optimizer, optim.Adam), dict(lr=1e-4)), num_mini_batch=4, update_repeats=3, max_grad_norm=0.5, num_steps=16, gamma=0.99, use_gae=True, gae_lambda=0.95, advance_scene_rollout_period=None, save_interval=10000, metric_accumulate_interval=1, lr_scheduler_builder=Builder( LambdaLR, {"lr_lambda": LinearDecay(steps=ppo_steps)} # type:ignore ), )
ask4help-main
projects/tutorials/minigrid_tutorial_conds.py
ask4help-main
projects/manipulathor_baselines/__init__.py
ask4help-main
projects/manipulathor_baselines/armpointnav_baselines/__init__.py
import platform from abc import ABC from math import ceil from typing import Dict, Any, List, Optional, Sequence import gym import numpy as np import torch from allenact.base_abstractions.experiment_config import MachineParams from allenact.base_abstractions.preprocessor import SensorPreprocessorGraph from allenact.base_abstractions.sensor import SensorSuite, ExpertActionSensor from allenact.base_abstractions.task import TaskSampler from allenact.utils.experiment_utils import evenly_distribute_count_into_bins from allenact_plugins.manipulathor_plugin.manipulathor_constants import ENV_ARGS from allenact_plugins.manipulathor_plugin.manipulathor_task_samplers import ( SimpleArmPointNavGeneralSampler, ) from allenact_plugins.manipulathor_plugin.manipulathor_viz import ( ImageVisualizer, TestMetricLogger, ) from projects.manipulathor_baselines.armpointnav_baselines.experiments.armpointnav_base import ( ArmPointNavBaseConfig, ) class ArmPointNavThorBaseConfig(ArmPointNavBaseConfig, ABC): """The base config for all iTHOR PointNav experiments.""" TASK_SAMPLER = SimpleArmPointNavGeneralSampler VISUALIZE = False if platform.system() == "Darwin": VISUALIZE = True NUM_PROCESSES: Optional[int] = None TRAIN_GPU_IDS = list(range(torch.cuda.device_count())) SAMPLER_GPU_IDS = TRAIN_GPU_IDS VALID_GPU_IDS = [torch.cuda.device_count() - 1] TEST_GPU_IDS = [torch.cuda.device_count() - 1] TRAIN_DATASET_DIR: Optional[str] = None VAL_DATASET_DIR: Optional[str] = None CAP_TRAINING = None TRAIN_SCENES: str = None VAL_SCENES: str = None TEST_SCENES: str = None OBJECT_TYPES: Optional[Sequence[str]] = None VALID_SAMPLES_IN_SCENE = 1 TEST_SAMPLES_IN_SCENE = 1 NUMBER_OF_TEST_PROCESS = 10 def __init__(self): super().__init__() assert ( self.CAMERA_WIDTH == 224 and self.CAMERA_HEIGHT == 224 and self.VISIBILITY_DISTANCE == 1 and self.STEP_SIZE == 0.25 ) self.ENV_ARGS = ENV_ARGS def machine_params(self, mode="train", **kwargs): sampler_devices: Sequence[int] = [] if mode == "train": workers_per_device = 1 gpu_ids = ( [] if not torch.cuda.is_available() else self.TRAIN_GPU_IDS * workers_per_device ) nprocesses = ( 1 if not torch.cuda.is_available() else evenly_distribute_count_into_bins(self.NUM_PROCESSES, len(gpu_ids)) ) sampler_devices = self.SAMPLER_GPU_IDS elif mode == "valid": nprocesses = 1 gpu_ids = [] if not torch.cuda.is_available() else self.VALID_GPU_IDS elif mode == "test": nprocesses = self.NUMBER_OF_TEST_PROCESS if torch.cuda.is_available() else 1 gpu_ids = [] if not torch.cuda.is_available() else self.TEST_GPU_IDS else: raise NotImplementedError("mode must be 'train', 'valid', or 'test'.") sensors = [*self.SENSORS] if mode != "train": sensors = [s for s in sensors if not isinstance(s, ExpertActionSensor)] sensor_preprocessor_graph = ( SensorPreprocessorGraph( source_observation_spaces=SensorSuite(sensors).observation_spaces, preprocessors=self.preprocessors(), ) if mode == "train" or ( (isinstance(nprocesses, int) and nprocesses > 0) or (isinstance(nprocesses, Sequence) and sum(nprocesses) > 0) ) else None ) return MachineParams( nprocesses=nprocesses, devices=gpu_ids, sampler_devices=sampler_devices if mode == "train" else gpu_ids, # ignored with > 1 gpu_ids sensor_preprocessor_graph=sensor_preprocessor_graph, ) @classmethod def make_sampler_fn(cls, **kwargs) -> TaskSampler: from datetime import datetime now = datetime.now() exp_name_w_time = cls.__name__ + "_" + now.strftime("%m_%d_%Y_%H_%M_%S_%f") if cls.VISUALIZE: visualizers = [ ImageVisualizer(exp_name=exp_name_w_time), TestMetricLogger(exp_name=exp_name_w_time), ] kwargs["visualizers"] = visualizers kwargs["objects"] = cls.OBJECT_TYPES kwargs["exp_name"] = exp_name_w_time return cls.TASK_SAMPLER(**kwargs) @staticmethod def _partition_inds(n: int, num_parts: int): return np.round(np.linspace(0, n, num_parts + 1, endpoint=True)).astype( np.int32 ) def _get_sampler_args_for_scene_split( self, scenes: List[str], process_ind: int, total_processes: int, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: if total_processes > len(scenes): # oversample some scenes -> bias if total_processes % len(scenes) != 0: print( "Warning: oversampling some of the scenes to feed all processes." " You can avoid this by setting a number of workers divisible by the number of scenes" ) scenes = scenes * int(ceil(total_processes / len(scenes))) scenes = scenes[: total_processes * (len(scenes) // total_processes)] else: if len(scenes) % total_processes != 0: print( "Warning: oversampling some of the scenes to feed all processes." " You can avoid this by setting a number of workers divisor of the number of scenes" ) inds = self._partition_inds(len(scenes), total_processes) return { "scenes": scenes[inds[process_ind] : inds[process_ind + 1]], "env_args": self.ENV_ARGS, "max_steps": self.MAX_STEPS, "sensors": self.SENSORS, "action_space": gym.spaces.Discrete( len(self.TASK_SAMPLER._TASK_TYPE.class_action_names()) ), "seed": seeds[process_ind] if seeds is not None else None, "deterministic_cudnn": deterministic_cudnn, "rewards_config": self.REWARD_CONFIG, } def train_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: res = self._get_sampler_args_for_scene_split( self.TRAIN_SCENES, process_ind, total_processes, seeds=seeds, deterministic_cudnn=deterministic_cudnn, ) res["scene_period"] = "manual" res["sampler_mode"] = "train" res["cap_training"] = self.CAP_TRAINING res["env_args"] = {} res["env_args"].update(self.ENV_ARGS) res["env_args"]["x_display"] = ( ("0.%d" % devices[process_ind % len(devices)]) if len(devices) > 0 else None ) return res def valid_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]], seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: res = self._get_sampler_args_for_scene_split( self.VALID_SCENES, process_ind, total_processes, seeds=seeds, deterministic_cudnn=deterministic_cudnn, ) res["scene_period"] = self.VALID_SAMPLES_IN_SCENE res["sampler_mode"] = "val" res["cap_training"] = self.CAP_TRAINING res["max_tasks"] = self.VALID_SAMPLES_IN_SCENE * len(res["scenes"]) res["env_args"] = {} res["env_args"].update(self.ENV_ARGS) res["env_args"]["x_display"] = ( ("0.%d" % devices[process_ind % len(devices)]) if len(devices) > 0 else None ) return res def test_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]], seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: res = self._get_sampler_args_for_scene_split( self.TEST_SCENES, process_ind, total_processes, seeds=seeds, deterministic_cudnn=deterministic_cudnn, ) res["scene_period"] = self.TEST_SAMPLES_IN_SCENE res["sampler_mode"] = "test" res["env_args"] = {} res["cap_training"] = self.CAP_TRAINING res["env_args"].update(self.ENV_ARGS) res["env_args"]["x_display"] = ( ("0.%d" % devices[process_ind % len(devices)]) if len(devices) > 0 else None ) return res
ask4help-main
projects/manipulathor_baselines/armpointnav_baselines/experiments/armpointnav_thor_base.py
from abc import ABC from typing import Optional, Sequence, Union from allenact.base_abstractions.experiment_config import ExperimentConfig from allenact.base_abstractions.preprocessor import Preprocessor from allenact.base_abstractions.sensor import Sensor from allenact.utils.experiment_utils import Builder class ArmPointNavBaseConfig(ExperimentConfig, ABC): """The base object navigation configuration file.""" ADVANCE_SCENE_ROLLOUT_PERIOD: Optional[int] = None SENSORS: Optional[Sequence[Sensor]] = None STEP_SIZE = 0.25 ROTATION_DEGREES = 45.0 VISIBILITY_DISTANCE = 1.0 STOCHASTIC = False CAMERA_WIDTH = 224 CAMERA_HEIGHT = 224 SCREEN_SIZE = 224 MAX_STEPS = 200 def __init__(self): self.REWARD_CONFIG = { "step_penalty": -0.01, "goal_success_reward": 10.0, "pickup_success_reward": 5.0, "failed_stop_reward": 0.0, "shaping_weight": 1.0, # we are not using this "failed_action_penalty": -0.03, } @classmethod def preprocessors(cls) -> Sequence[Union[Preprocessor, Builder[Preprocessor]]]: return tuple()
ask4help-main
projects/manipulathor_baselines/armpointnav_baselines/experiments/armpointnav_base.py
import torch.optim as optim from allenact.algorithms.onpolicy_sync.losses import PPO from allenact.algorithms.onpolicy_sync.losses.ppo import PPOConfig from allenact.utils.experiment_utils import ( Builder, PipelineStage, TrainingPipeline, LinearDecay, ) from torch.optim.lr_scheduler import LambdaLR from projects.manipulathor_baselines.armpointnav_baselines.experiments.armpointnav_base import ( ArmPointNavBaseConfig, ) class ArmPointNavMixInPPOConfig(ArmPointNavBaseConfig): def training_pipeline(self, **kwargs): ppo_steps = int(300000000) lr = 3e-4 num_mini_batch = 1 update_repeats = 4 num_steps = self.MAX_STEPS save_interval = 500000 # from 50k log_interval = 1000 gamma = 0.99 use_gae = True gae_lambda = 0.95 max_grad_norm = 0.5 return TrainingPipeline( save_interval=save_interval, metric_accumulate_interval=log_interval, optimizer_builder=Builder(optim.Adam, dict(lr=lr)), num_mini_batch=num_mini_batch, update_repeats=update_repeats, max_grad_norm=max_grad_norm, num_steps=num_steps, named_losses={"ppo_loss": PPO(**PPOConfig)}, gamma=gamma, use_gae=use_gae, gae_lambda=gae_lambda, advance_scene_rollout_period=self.ADVANCE_SCENE_ROLLOUT_PERIOD, pipeline_stages=[ PipelineStage(loss_names=["ppo_loss"], max_stage_steps=ppo_steps) ], lr_scheduler_builder=Builder( LambdaLR, {"lr_lambda": LinearDecay(steps=ppo_steps)} ), )
ask4help-main
projects/manipulathor_baselines/armpointnav_baselines/experiments/armpointnav_mixin_ddppo.py
ask4help-main
projects/manipulathor_baselines/armpointnav_baselines/experiments/__init__.py
from typing import Sequence, Union import gym import torch.nn as nn from allenact.base_abstractions.preprocessor import Preprocessor from allenact.utils.experiment_utils import Builder from projects.manipulathor_baselines.armpointnav_baselines.experiments.armpointnav_base import ( ArmPointNavBaseConfig, ) from projects.manipulathor_baselines.armpointnav_baselines.models.arm_pointnav_models import ( ArmPointNavBaselineActorCritic, ) class ArmPointNavMixInSimpleGRUConfig(ArmPointNavBaseConfig): @classmethod def preprocessors(cls) -> Sequence[Union[Preprocessor, Builder[Preprocessor]]]: preprocessors = [] return preprocessors @classmethod def create_model(cls, **kwargs) -> nn.Module: return ArmPointNavBaselineActorCritic( action_space=gym.spaces.Discrete( len(cls.TASK_SAMPLER._TASK_TYPE.class_action_names()) ), observation_space=kwargs["sensor_preprocessor_graph"].observation_spaces, hidden_size=512, )
ask4help-main
projects/manipulathor_baselines/armpointnav_baselines/experiments/armpointnav_mixin_simplegru.py
from allenact_plugins.manipulathor_plugin.manipulathor_constants import ENV_ARGS from allenact_plugins.manipulathor_plugin.manipulathor_sensors import ( NoVisionSensorThor, RelativeAgentArmToObjectSensor, RelativeObjectToGoalSensor, PickedUpObjSensor, ) from allenact_plugins.manipulathor_plugin.manipulathor_task_samplers import ( ArmPointNavTaskSampler, ) from projects.manipulathor_baselines.armpointnav_baselines.experiments.armpointnav_mixin_ddppo import ( ArmPointNavMixInPPOConfig, ) from projects.manipulathor_baselines.armpointnav_baselines.experiments.armpointnav_mixin_simplegru import ( ArmPointNavMixInSimpleGRUConfig, ) from projects.manipulathor_baselines.armpointnav_baselines.experiments.ithor.armpointnav_ithor_base import ( ArmPointNaviThorBaseConfig, ) class ArmPointNavNoVision( ArmPointNaviThorBaseConfig, ArmPointNavMixInPPOConfig, ArmPointNavMixInSimpleGRUConfig, ): """An Object Navigation experiment configuration in iThor with RGB input.""" SENSORS = [ NoVisionSensorThor( height=ArmPointNaviThorBaseConfig.SCREEN_SIZE, width=ArmPointNaviThorBaseConfig.SCREEN_SIZE, use_resnet_normalization=False, uuid="rgb_lowres", ), RelativeAgentArmToObjectSensor(), RelativeObjectToGoalSensor(), PickedUpObjSensor(), ] MAX_STEPS = 200 TASK_SAMPLER = ArmPointNavTaskSampler # def __init__(self): super().__init__() assert ( self.CAMERA_WIDTH == 224 and self.CAMERA_HEIGHT == 224 and self.VISIBILITY_DISTANCE == 1 and self.STEP_SIZE == 0.25 ) self.ENV_ARGS = {**ENV_ARGS, "renderDepthImage": False} @classmethod def tag(cls): return cls.__name__
ask4help-main
projects/manipulathor_baselines/armpointnav_baselines/experiments/ithor/armpointnav_no_vision.py
from abc import ABC from allenact_plugins.manipulathor_plugin.armpointnav_constants import ( TRAIN_OBJECTS, TEST_OBJECTS, ) from projects.manipulathor_baselines.armpointnav_baselines.experiments.armpointnav_thor_base import ( ArmPointNavThorBaseConfig, ) class ArmPointNaviThorBaseConfig(ArmPointNavThorBaseConfig, ABC): """The base config for all iTHOR ObjectNav experiments.""" NUM_PROCESSES = 40 # add all the arguments here TOTAL_NUMBER_SCENES = 30 TRAIN_SCENES = [ "FloorPlan{}_physics".format(str(i)) for i in range(1, TOTAL_NUMBER_SCENES + 1) if (i % 3 == 1 or i % 3 == 0) and i != 28 ] # last scenes are really bad TEST_SCENES = [ "FloorPlan{}_physics".format(str(i)) for i in range(1, TOTAL_NUMBER_SCENES + 1) if i % 3 == 2 and i % 6 == 2 ] VALID_SCENES = [ "FloorPlan{}_physics".format(str(i)) for i in range(1, TOTAL_NUMBER_SCENES + 1) if i % 3 == 2 and i % 6 == 5 ] ALL_SCENES = TRAIN_SCENES + TEST_SCENES + VALID_SCENES assert ( len(ALL_SCENES) == TOTAL_NUMBER_SCENES - 1 and len(set(ALL_SCENES)) == TOTAL_NUMBER_SCENES - 1 ) OBJECT_TYPES = tuple(sorted(TRAIN_OBJECTS)) UNSEEN_OBJECT_TYPES = tuple(sorted(TEST_OBJECTS))
ask4help-main
projects/manipulathor_baselines/armpointnav_baselines/experiments/ithor/armpointnav_ithor_base.py
from allenact_plugins.manipulathor_plugin.manipulathor_constants import ENV_ARGS from allenact_plugins.manipulathor_plugin.manipulathor_sensors import ( DepthSensorThor, RelativeAgentArmToObjectSensor, RelativeObjectToGoalSensor, PickedUpObjSensor, ) from allenact_plugins.manipulathor_plugin.manipulathor_task_samplers import ( ArmPointNavTaskSampler, ) from projects.manipulathor_baselines.armpointnav_baselines.experiments.armpointnav_mixin_ddppo import ( ArmPointNavMixInPPOConfig, ) from projects.manipulathor_baselines.armpointnav_baselines.experiments.armpointnav_mixin_simplegru import ( ArmPointNavMixInSimpleGRUConfig, ) from projects.manipulathor_baselines.armpointnav_baselines.experiments.ithor.armpointnav_ithor_base import ( ArmPointNaviThorBaseConfig, ) class ArmPointNavDepth( ArmPointNaviThorBaseConfig, ArmPointNavMixInPPOConfig, ArmPointNavMixInSimpleGRUConfig, ): """An Object Navigation experiment configuration in iThor with RGB input.""" SENSORS = [ DepthSensorThor( height=ArmPointNaviThorBaseConfig.SCREEN_SIZE, width=ArmPointNaviThorBaseConfig.SCREEN_SIZE, use_normalization=True, uuid="depth_lowres", ), RelativeAgentArmToObjectSensor(), RelativeObjectToGoalSensor(), PickedUpObjSensor(), ] MAX_STEPS = 200 TASK_SAMPLER = ArmPointNavTaskSampler def __init__(self): super().__init__() assert ( self.CAMERA_WIDTH == 224 and self.CAMERA_HEIGHT == 224 and self.VISIBILITY_DISTANCE == 1 and self.STEP_SIZE == 0.25 ) self.ENV_ARGS = {**ENV_ARGS, "renderDepthImage": True} @classmethod def tag(cls): return cls.__name__
ask4help-main
projects/manipulathor_baselines/armpointnav_baselines/experiments/ithor/armpointnav_depth.py
ask4help-main
projects/manipulathor_baselines/armpointnav_baselines/experiments/ithor/__init__.py
from allenact_plugins.ithor_plugin.ithor_sensors import RGBSensorThor from allenact_plugins.manipulathor_plugin.manipulathor_constants import ENV_ARGS from allenact_plugins.manipulathor_plugin.manipulathor_sensors import ( RelativeAgentArmToObjectSensor, RelativeObjectToGoalSensor, PickedUpObjSensor, ) from allenact_plugins.manipulathor_plugin.manipulathor_task_samplers import ( ArmPointNavTaskSampler, ) from projects.manipulathor_baselines.armpointnav_baselines.experiments.armpointnav_mixin_ddppo import ( ArmPointNavMixInPPOConfig, ) from projects.manipulathor_baselines.armpointnav_baselines.experiments.armpointnav_mixin_simplegru import ( ArmPointNavMixInSimpleGRUConfig, ) from projects.manipulathor_baselines.armpointnav_baselines.experiments.ithor.armpointnav_ithor_base import ( ArmPointNaviThorBaseConfig, ) class ArmPointNavRGB( ArmPointNaviThorBaseConfig, ArmPointNavMixInPPOConfig, ArmPointNavMixInSimpleGRUConfig, ): """An Object Navigation experiment configuration in iThor with RGB input.""" SENSORS = [ RGBSensorThor( height=ArmPointNaviThorBaseConfig.SCREEN_SIZE, width=ArmPointNaviThorBaseConfig.SCREEN_SIZE, use_resnet_normalization=True, uuid="rgb_lowres", ), RelativeAgentArmToObjectSensor(), RelativeObjectToGoalSensor(), PickedUpObjSensor(), ] MAX_STEPS = 200 TASK_SAMPLER = ArmPointNavTaskSampler # def __init__(self): super().__init__() assert ( self.CAMERA_WIDTH == 224 and self.CAMERA_HEIGHT == 224 and self.VISIBILITY_DISTANCE == 1 and self.STEP_SIZE == 0.25 ) self.ENV_ARGS = {**ENV_ARGS} @classmethod def tag(cls): return cls.__name__
ask4help-main
projects/manipulathor_baselines/armpointnav_baselines/experiments/ithor/armpointnav_rgb.py
from allenact_plugins.ithor_plugin.ithor_sensors import RGBSensorThor from allenact_plugins.manipulathor_plugin.manipulathor_constants import ENV_ARGS from allenact_plugins.manipulathor_plugin.manipulathor_sensors import ( DepthSensorThor, RelativeAgentArmToObjectSensor, RelativeObjectToGoalSensor, PickedUpObjSensor, ) from allenact_plugins.manipulathor_plugin.manipulathor_task_samplers import ( ArmPointNavTaskSampler, ) from projects.manipulathor_baselines.armpointnav_baselines.experiments.armpointnav_mixin_ddppo import ( ArmPointNavMixInPPOConfig, ) from projects.manipulathor_baselines.armpointnav_baselines.experiments.armpointnav_mixin_simplegru import ( ArmPointNavMixInSimpleGRUConfig, ) from projects.manipulathor_baselines.armpointnav_baselines.experiments.ithor.armpointnav_ithor_base import ( ArmPointNaviThorBaseConfig, ) class ArmPointNavRGBDepth( ArmPointNaviThorBaseConfig, ArmPointNavMixInPPOConfig, ArmPointNavMixInSimpleGRUConfig, ): """An Object Navigation experiment configuration in iThor with RGB input.""" SENSORS = [ DepthSensorThor( height=ArmPointNaviThorBaseConfig.SCREEN_SIZE, width=ArmPointNaviThorBaseConfig.SCREEN_SIZE, use_normalization=True, uuid="depth_lowres", ), RGBSensorThor( height=ArmPointNaviThorBaseConfig.SCREEN_SIZE, width=ArmPointNaviThorBaseConfig.SCREEN_SIZE, use_resnet_normalization=True, uuid="rgb_lowres", ), RelativeAgentArmToObjectSensor(), RelativeObjectToGoalSensor(), PickedUpObjSensor(), ] MAX_STEPS = 200 TASK_SAMPLER = ArmPointNavTaskSampler # def __init__(self): super().__init__() assert ( self.CAMERA_WIDTH == 224 and self.CAMERA_HEIGHT == 224 and self.VISIBILITY_DISTANCE == 1 and self.STEP_SIZE == 0.25 ) self.ENV_ARGS = {**ENV_ARGS, "renderDepthImage": True} @classmethod def tag(cls): return cls.__name__
ask4help-main
projects/manipulathor_baselines/armpointnav_baselines/experiments/ithor/armpointnav_rgbdepth.py
import gym import torch.nn as nn from allenact_plugins.manipulathor_plugin.manipulathor_constants import ENV_ARGS from allenact_plugins.manipulathor_plugin.manipulathor_task_samplers import ( ArmPointNavTaskSampler, ) from projects.manipulathor_baselines.armpointnav_baselines.experiments.ithor.armpointnav_depth import ( ArmPointNavDepth, ) from projects.manipulathor_baselines.armpointnav_baselines.models.disjoint_arm_pointnav_models import ( DisjointArmPointNavBaselineActorCritic, ) class ArmPointNavDisjointDepth(ArmPointNavDepth): """An Object Navigation experiment configuration in iThor with RGB input.""" TASK_SAMPLER = ArmPointNavTaskSampler def __init__(self): super().__init__() assert ( self.CAMERA_WIDTH == 224 and self.CAMERA_HEIGHT == 224 and self.VISIBILITY_DISTANCE == 1 and self.STEP_SIZE == 0.25 ) self.ENV_ARGS = {**ENV_ARGS, "renderDepthImage": True} @classmethod def create_model(cls, **kwargs) -> nn.Module: return DisjointArmPointNavBaselineActorCritic( action_space=gym.spaces.Discrete( len(cls.TASK_SAMPLER._TASK_TYPE.class_action_names()) ), observation_space=kwargs["sensor_preprocessor_graph"].observation_spaces, hidden_size=512, ) @classmethod def tag(cls): return cls.__name__
ask4help-main
projects/manipulathor_baselines/armpointnav_baselines/experiments/ithor/armpointnav_disjoint_depth.py
"""Baseline models for use in the Arm Point Navigation task. Arm Point Navigation is currently available as a Task in ManipulaTHOR. """ from typing import Tuple, Optional import gym import torch from allenact.algorithms.onpolicy_sync.policy import ( ActorCriticModel, LinearCriticHead, LinearActorHead, DistributionType, Memory, ObservationType, ) from allenact.base_abstractions.distributions import CategoricalDistr from allenact.base_abstractions.misc import ActorCriticOutput from allenact.embodiedai.models.basic_models import SimpleCNN, RNNStateEncoder from gym.spaces.dict import Dict as SpaceDict from projects.manipulathor_baselines.armpointnav_baselines.models.manipulathor_net_utils import ( input_embedding_net, ) class ArmPointNavBaselineActorCritic(ActorCriticModel[CategoricalDistr]): """Baseline recurrent actor critic model for armpointnav task. # Attributes action_space : The space of actions available to the agent. Currently only discrete actions are allowed (so this space will always be of type `gym.spaces.Discrete`). observation_space : The observation space expected by the agent. This observation space should include (optionally) 'rgb' images and 'depth' images. hidden_size : The hidden size of the GRU RNN. object_type_embedding_dim: The dimensionality of the embedding corresponding to the goal object type. """ def __init__( self, action_space: gym.spaces.Discrete, observation_space: SpaceDict, hidden_size=512, obj_state_embedding_size=512, trainable_masked_hidden_state: bool = False, num_rnn_layers=1, rnn_type="GRU", ): """Initializer. See class documentation for parameter definitions. """ super().__init__(action_space=action_space, observation_space=observation_space) self._hidden_size = hidden_size self.object_type_embedding_size = obj_state_embedding_size sensor_names = self.observation_space.spaces.keys() self.visual_encoder = SimpleCNN( self.observation_space, self._hidden_size, rgb_uuid="rgb_lowres" if "rgb_lowres" in sensor_names else None, depth_uuid="depth_lowres" if "depth_lowres" in sensor_names else None, ) if "rgb_lowres" in sensor_names and "depth_lowres" in sensor_names: input_visual_feature_num = 2 elif "rgb_lowres" in sensor_names: input_visual_feature_num = 1 elif "depth_lowres" in sensor_names: input_visual_feature_num = 1 self.state_encoder = RNNStateEncoder( (self._hidden_size) * input_visual_feature_num + obj_state_embedding_size, self._hidden_size, trainable_masked_hidden_state=trainable_masked_hidden_state, num_layers=num_rnn_layers, rnn_type=rnn_type, ) self.actor = LinearActorHead(self._hidden_size, action_space.n) self.critic = LinearCriticHead(self._hidden_size) relative_dist_embedding_size = torch.Tensor([3, 100, obj_state_embedding_size]) self.relative_dist_embedding = input_embedding_net( relative_dist_embedding_size.long().tolist(), dropout=0 ) self.train() @property def recurrent_hidden_state_size(self) -> int: """The recurrent hidden state size of the model.""" return self._hidden_size @property def num_recurrent_layers(self) -> int: """Number of recurrent hidden layers.""" return self.state_encoder.num_recurrent_layers def _recurrent_memory_specification(self): return dict( rnn=( ( ("layer", self.num_recurrent_layers), ("sampler", None), ("hidden", self.recurrent_hidden_state_size), ), torch.float32, ) ) def get_relative_distance_embedding( self, state_tensor: torch.Tensor ) -> torch.FloatTensor: return self.relative_dist_embedding(state_tensor) def forward( # type:ignore self, observations: ObservationType, memory: Memory, prev_actions: torch.Tensor, masks: torch.FloatTensor, ) -> Tuple[ActorCriticOutput[DistributionType], Optional[Memory]]: """Processes input batched observations to produce new actor and critic values. Processes input batched observations (along with prior hidden states, previous actions, and masks denoting which recurrent hidden states should be masked) and returns an `ActorCriticOutput` object containing the model's policy (distribution over actions) and evaluation of the current state (value). # Parameters observations : Batched input observations. memory : `Memory` containing the hidden states from initial timepoints. prev_actions : Tensor of previous actions taken. masks : Masks applied to hidden states. See `RNNStateEncoder`. # Returns Tuple of the `ActorCriticOutput` and recurrent hidden state. """ arm2obj_dist = self.get_relative_distance_embedding( observations["relative_agent_arm_to_obj"] ) obj2goal_dist = self.get_relative_distance_embedding( observations["relative_obj_to_goal"] ) perception_embed = self.visual_encoder(observations) pickup_bool = observations["pickedup_object"] after_pickup = pickup_bool == 1 distances = arm2obj_dist distances[after_pickup] = obj2goal_dist[after_pickup] x = [distances, perception_embed] x_cat = torch.cat(x, dim=-1) x_out, rnn_hidden_states = self.state_encoder( x_cat, memory.tensor("rnn"), masks ) actor_out = self.actor(x_out) critic_out = self.critic(x_out) actor_critic_output = ActorCriticOutput( distributions=actor_out, values=critic_out, extras={} ) updated_memory = memory.set_tensor("rnn", rnn_hidden_states) return ( actor_critic_output, updated_memory, )
ask4help-main
projects/manipulathor_baselines/armpointnav_baselines/models/arm_pointnav_models.py
import torch import torch.nn as nn class LinearActorHeadNoCategory(nn.Module): def __init__(self, num_inputs: int, num_outputs: int): super().__init__() self.linear = nn.Linear(num_inputs, num_outputs) nn.init.orthogonal_(self.linear.weight, gain=0.01) nn.init.constant_(self.linear.bias, 0) def forward(self, x: torch.FloatTensor): # type: ignore x = self.linear(x) # type:ignore assert len(x.shape) == 3 return x
ask4help-main
projects/manipulathor_baselines/armpointnav_baselines/models/base_models.py
ask4help-main
projects/manipulathor_baselines/armpointnav_baselines/models/__init__.py
"""Baseline models for use in the Arm Point Navigation task. Arm Point Navigation is currently available as a Task in ManipulaTHOR. """ from typing import Tuple, Optional import gym import torch from allenact.algorithms.onpolicy_sync.policy import ( ActorCriticModel, LinearCriticHead, DistributionType, Memory, ObservationType, ) from allenact.base_abstractions.distributions import CategoricalDistr from allenact.base_abstractions.misc import ActorCriticOutput from allenact.embodiedai.models.basic_models import SimpleCNN, RNNStateEncoder from gym.spaces.dict import Dict as SpaceDict from projects.manipulathor_baselines.armpointnav_baselines.models.base_models import ( LinearActorHeadNoCategory, ) from projects.manipulathor_baselines.armpointnav_baselines.models.manipulathor_net_utils import ( input_embedding_net, ) class DisjointArmPointNavBaselineActorCritic(ActorCriticModel[CategoricalDistr]): """Disjoint Baseline recurrent actor critic model for armpointnav. # Attributes action_space : The space of actions available to the agent. Currently only discrete actions are allowed (so this space will always be of type `gym.spaces.Discrete`). observation_space : The observation space expected by the agent. This observation space should include (optionally) 'rgb' images and 'depth' images and is required to have a component corresponding to the goal `goal_sensor_uuid`. goal_sensor_uuid : The uuid of the sensor of the goal object. See `GoalObjectTypeThorSensor` as an example of such a sensor. hidden_size : The hidden size of the GRU RNN. object_type_embedding_dim: The dimensionality of the embedding corresponding to the goal object type. """ def __init__( self, action_space: gym.spaces.Discrete, observation_space: SpaceDict, hidden_size=512, obj_state_embedding_size=512, trainable_masked_hidden_state: bool = False, num_rnn_layers=1, rnn_type="GRU", ): """Initializer. See class documentation for parameter definitions. """ super().__init__(action_space=action_space, observation_space=observation_space) self._hidden_size = hidden_size self.object_type_embedding_size = obj_state_embedding_size self.visual_encoder_pick = SimpleCNN( self.observation_space, self._hidden_size, rgb_uuid=None, depth_uuid="depth_lowres", ) self.visual_encoder_drop = SimpleCNN( self.observation_space, self._hidden_size, rgb_uuid=None, depth_uuid="depth_lowres", ) self.state_encoder = RNNStateEncoder( (self._hidden_size) + obj_state_embedding_size, self._hidden_size, trainable_masked_hidden_state=trainable_masked_hidden_state, num_layers=num_rnn_layers, rnn_type=rnn_type, ) self.actor_pick = LinearActorHeadNoCategory(self._hidden_size, action_space.n) self.critic_pick = LinearCriticHead(self._hidden_size) self.actor_drop = LinearActorHeadNoCategory(self._hidden_size, action_space.n) self.critic_drop = LinearCriticHead(self._hidden_size) # self.object_state_embedding = nn.Embedding(num_embeddings=6, embedding_dim=obj_state_embedding_size) relative_dist_embedding_size = torch.Tensor([3, 100, obj_state_embedding_size]) self.relative_dist_embedding_pick = input_embedding_net( relative_dist_embedding_size.long().tolist(), dropout=0 ) self.relative_dist_embedding_drop = input_embedding_net( relative_dist_embedding_size.long().tolist(), dropout=0 ) self.train() @property def recurrent_hidden_state_size(self) -> int: """The recurrent hidden state size of the model.""" return self._hidden_size @property def num_recurrent_layers(self) -> int: """Number of recurrent hidden layers.""" return self.state_encoder.num_recurrent_layers def _recurrent_memory_specification(self): return dict( rnn=( ( ("layer", self.num_recurrent_layers), ("sampler", None), ("hidden", self.recurrent_hidden_state_size), ), torch.float32, ) ) def forward( # type:ignore self, observations: ObservationType, memory: Memory, prev_actions: torch.Tensor, masks: torch.FloatTensor, ) -> Tuple[ActorCriticOutput[DistributionType], Optional[Memory]]: """Processes input batched observations to produce new actor and critic values. Processes input batched observations (along with prior hidden states, previous actions, and masks denoting which recurrent hidden states should be masked) and returns an `ActorCriticOutput` object containing the model's policy (distribution over actions) and evaluation of the current state (value). # Parameters observations : Batched input observations. memory : `Memory` containing the hidden states from initial timepoints. prev_actions : Tensor of previous actions taken. masks : Masks applied to hidden states. See `RNNStateEncoder`. # Returns Tuple of the `ActorCriticOutput` and recurrent hidden state. """ arm2obj_dist = self.relative_dist_embedding_pick( observations["relative_agent_arm_to_obj"] ) obj2goal_dist = self.relative_dist_embedding_drop( observations["relative_obj_to_goal"] ) perception_embed_pick = self.visual_encoder_pick(observations) perception_embed_drop = self.visual_encoder_drop(observations) pickup_bool = observations["pickedup_object"] after_pickup = pickup_bool == 1 distances = arm2obj_dist distances[after_pickup] = obj2goal_dist[after_pickup] perception_embed = perception_embed_pick perception_embed[after_pickup] = perception_embed_drop[after_pickup] x = [distances, perception_embed] x_cat = torch.cat(x, dim=-1) # type: ignore x_out, rnn_hidden_states = self.state_encoder( x_cat, memory.tensor("rnn"), masks ) actor_out_pick = self.actor_pick(x_out) critic_out_pick = self.critic_pick(x_out) actor_out_drop = self.actor_drop(x_out) critic_out_drop = self.critic_drop(x_out) actor_out = actor_out_pick actor_out[after_pickup] = actor_out_drop[after_pickup] critic_out = critic_out_pick critic_out[after_pickup] = critic_out_drop[after_pickup] actor_out = CategoricalDistr(logits=actor_out) actor_critic_output = ActorCriticOutput( distributions=actor_out, values=critic_out, extras={} ) updated_memory = memory.set_tensor("rnn", rnn_hidden_states) return ( actor_critic_output, updated_memory, )
ask4help-main
projects/manipulathor_baselines/armpointnav_baselines/models/disjoint_arm_pointnav_models.py
import pdb import torch.nn as nn import torch.nn.functional as F def upshuffle( in_planes, out_planes, upscale_factor, kernel_size=3, stride=1, padding=1 ): return nn.Sequential( nn.Conv2d( in_planes, out_planes * upscale_factor ** 2, kernel_size=kernel_size, stride=stride, padding=padding, ), nn.PixelShuffle(upscale_factor), nn.LeakyReLU(), ) def upshufflenorelu( in_planes, out_planes, upscale_factor, kernel_size=3, stride=1, padding=1 ): return nn.Sequential( nn.Conv2d( in_planes, out_planes * upscale_factor ** 2, kernel_size=kernel_size, stride=stride, padding=padding, ), nn.PixelShuffle(upscale_factor), ) def combine_block_w_bn(in_planes, out_planes): return nn.Sequential( nn.Conv2d(in_planes, out_planes, 1, 1), nn.BatchNorm2d(out_planes), nn.LeakyReLU(), ) def conv2d_block(in_planes, out_planes, kernel_size, stride=1, padding=1): return nn.Sequential( nn.Conv2d(in_planes, out_planes, kernel_size, stride=stride, padding=padding), nn.BatchNorm2d(out_planes), nn.LeakyReLU(), nn.Conv2d(out_planes, out_planes, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(out_planes), ) def combine_block_w_do(in_planes, out_planes, dropout=0.0): return nn.Sequential( nn.Conv2d(in_planes, out_planes, 1, 1), nn.LeakyReLU(), nn.Dropout(dropout), ) def combine_block_no_do(in_planes, out_planes): return nn.Sequential(nn.Conv2d(in_planes, out_planes, 1, 1), nn.LeakyReLU(),) def linear_block(in_features, out_features, dropout=0.0): return nn.Sequential( nn.Linear(in_features, out_features), nn.LeakyReLU(), nn.Dropout(dropout), ) def linear_block_norelu(in_features, out_features): return nn.Sequential(nn.Linear(in_features, out_features),) def input_embedding_net(list_of_feature_sizes, dropout=0.0): modules = [] for i in range(len(list_of_feature_sizes) - 1): input_size, output_size = list_of_feature_sizes[i : i + 2] if i + 2 == len(list_of_feature_sizes): modules.append(linear_block_norelu(input_size, output_size)) else: modules.append(linear_block(input_size, output_size, dropout=dropout)) return nn.Sequential(*modules) def _upsample_add(x, y): _, _, H, W = y.size() return F.upsample(x, size=(H, W), mode="bilinear") + y def replace_all_relu_w_leakyrelu(model): pdb.set_trace() print("Not sure if using this is a good idea") modules = model._modules for m in modules.keys(): module = modules[m] if isinstance(module, nn.ReLU): model._modules[m] = nn.LeakyReLU() elif isinstance(module, nn.Module): model._modules[m] = replace_all_relu_w_leakyrelu(module) return model def replace_all_leakyrelu_w_relu(model): modules = model._modules for m in modules.keys(): module = modules[m] if isinstance(module, nn.LeakyReLU): model._modules[m] = nn.ReLU() elif isinstance(module, nn.Module): model._modules[m] = replace_all_leakyrelu_w_relu(module) return model def replace_all_bn_w_groupnorm(model): pdb.set_trace() print("Not sure if using this is a good idea") modules = model._modules for m in modules.keys(): module = modules[m] if isinstance(module, nn.BatchNorm2d) or isinstance(module, nn.BatchNorm1d): feature_number = module.num_features model._modules[m] = nn.GroupNorm(32, feature_number) elif isinstance(module, nn.BatchNorm3d): raise Exception("Not implemented") elif isinstance(module, nn.Module): model._modules[m] = replace_all_bn_w_groupnorm(module) return model def flat_temporal(tensor, batch_size, sequence_length): tensor_shape = [s for s in tensor.shape] assert tensor_shape[0] == batch_size and tensor_shape[1] == sequence_length result_shape = [batch_size * sequence_length] + tensor_shape[2:] return tensor.contiguous().view(result_shape) def unflat_temporal(tensor, batch_size, sequence_length): tensor_shape = [s for s in tensor.shape] assert tensor_shape[0] == batch_size * sequence_length result_shape = [batch_size, sequence_length] + tensor_shape[1:] return tensor.contiguous().view(result_shape)
ask4help-main
projects/manipulathor_baselines/armpointnav_baselines/models/manipulathor_net_utils.py
### THIS FILE ORIGINALLY LOCATED AT '/home/kunals/eai_proj/clip_model/allenact/projects/objectnav_baselines/experiments/robothor/objectnav_robothor_rgb_resnet50gru_ddppo.py' from allenact_plugins.ithor_plugin.ithor_sensors import ( RGBSensorThor, GoalObjectTypeThorSensor, ) from projects.objectnav_baselines.experiments.objectnav_mixin_ddppo import ( ObjectNavMixInPPOConfig, ) from projects.objectnav_baselines.experiments.objectnav_mixin_resnetgru import ( ObjectNavMixInResNetGRUConfig, ) from projects.objectnav_baselines.experiments.robothor.objectnav_robothor_base import ( ObjectNavRoboThorBaseConfig, ) class ObjectNavRoboThorRGBPPOExperimentConfig( ObjectNavRoboThorBaseConfig, ObjectNavMixInPPOConfig, ObjectNavMixInResNetGRUConfig, ): """An Object Navigation experiment configuration in RoboThor with RGB input.""" RESNET_TYPE = "RN50" SENSORS = [ RGBSensorThor( height=ObjectNavRoboThorBaseConfig.SCREEN_SIZE, width=ObjectNavRoboThorBaseConfig.SCREEN_SIZE, use_resnet_normalization=True, uuid="rgb_lowres", ), GoalObjectTypeThorSensor( object_types=ObjectNavRoboThorBaseConfig.TARGET_TYPES, ), ] @classmethod def tag(cls): return "Objectnav-RoboTHOR-RGB-ResNet50GRU-DDPPO"
ask4help-main
experiment_output/used_configs/Objectnav-RoboTHOR-RGB-ResNet50GRU-DDPPO/2022-02-10_14-00-37/objectnav_robothor_rgb_resnet50gru_ddppo.py
### THIS FILE ORIGINALLY LOCATED AT '/home/kunals/eai_proj/clip_model/allenact/projects/objectnav_baselines/experiments/robothor/objectnav_robothor_base.py' import os from abc import ABC from typing import Optional, List, Any, Dict import torch from allenact.utils.misc_utils import prepare_locals_for_super from projects.objectnav_baselines.experiments.objectnav_thor_base import ( ObjectNavThorBaseConfig, ) class ObjectNavRoboThorBaseConfig(ObjectNavThorBaseConfig, ABC): """The base config for all RoboTHOR ObjectNav experiments.""" THOR_COMMIT_ID = "bad5bc2b250615cb766ffb45d455c211329af17e" THOR_COMMIT_ID_FOR_RAND_MATERIALS = "9549791ce2e7f472063a10abb1fb7664159fec23" AGENT_MODE = "locobot" DEFAULT_NUM_TRAIN_PROCESSES = 1 if torch.cuda.is_available() else 1 TRAIN_DATASET_DIR = os.path.join(os.getcwd(), "datasets/robothor-objectnav/train") VAL_DATASET_DIR = os.path.join(os.getcwd(), "datasets/robothor-objectnav/val") TEST_DATASET_DIR = os.path.join(os.getcwd(), "datasets/robothor-objectnav/test") TARGET_TYPES = tuple( sorted( [ "AlarmClock", "Apple", "BaseballBat", "BasketBall", "Bowl", "GarbageCan", "HousePlant", "Laptop", "Mug", "SprayBottle", "Television", "Vase", ] ) ) def train_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: kwargs = super(ObjectNavRoboThorBaseConfig, self).train_task_sampler_args( **prepare_locals_for_super(locals()) ) if self.randomize_train_materials: kwargs["env_args"]["commit_id"] = self.THOR_COMMIT_ID_FOR_RAND_MATERIALS return kwargs
ask4help-main
experiment_output/used_configs/Objectnav-RoboTHOR-RGB-ResNet50GRU-DDPPO/2022-02-10_14-00-37/objectnav_robothor_base.py
### THIS FILE ORIGINALLY LOCATED AT '/home/kunals/eai_proj/clip_model/allenact/projects/objectnav_baselines/experiments/objectnav_thor_base.py' import glob import os import platform from abc import ABC from math import ceil from typing import Dict, Any, List, Optional, Sequence, Tuple, cast import gym import numpy as np import torch from allenact.base_abstractions.experiment_config import MachineParams from allenact.base_abstractions.preprocessor import SensorPreprocessorGraph from allenact.base_abstractions.sensor import SensorSuite, ExpertActionSensor from allenact.base_abstractions.task import TaskSampler from allenact.utils.experiment_utils import evenly_distribute_count_into_bins from allenact.utils.system import get_logger from allenact_plugins.ithor_plugin.ithor_util import ( horizontal_to_vertical_fov, get_open_x_displays, ) from allenact_plugins.robothor_plugin.robothor_sensors import DepthSensorThor from allenact_plugins.robothor_plugin.robothor_task_samplers import ( ObjectNavDatasetTaskSampler, ) from allenact_plugins.robothor_plugin.robothor_tasks import ObjectNavTask from projects.objectnav_baselines.experiments.objectnav_base import ObjectNavBaseConfig import ai2thor from packaging import version if ai2thor.__version__ not in ["0.0.1", None] and version.parse( ai2thor.__version__ ) < version.parse("3.2.0"): raise ImportError( "To run the AI2-THOR ObjectNav baseline experiments you must use" " ai2thor version 3.2.0 or higher." ) class ObjectNavThorBaseConfig(ObjectNavBaseConfig, ABC): """The base config for all AI2-THOR ObjectNav experiments.""" DEFAULT_NUM_TRAIN_PROCESSES: Optional[int] = None DEFAULT_TRAIN_GPU_IDS = tuple(range(torch.cuda.device_count())) DEFAULT_VALID_GPU_IDS = (torch.cuda.device_count() - 1,) DEFAULT_TEST_GPU_IDS = (torch.cuda.device_count() - 1,) TRAIN_DATASET_DIR: Optional[str] = None VAL_DATASET_DIR: Optional[str] = None TEST_DATASET_DIR: Optional[str] = None AGENT_MODE = "default" TARGET_TYPES: Optional[Sequence[str]] = None THOR_COMMIT_ID: Optional[str] = None THOR_IS_HEADLESS: bool = False def __init__( self, num_train_processes: Optional[int] = None, num_test_processes: Optional[int] = None, test_on_validation: bool = False, train_gpu_ids: Optional[Sequence[int]] = None, val_gpu_ids: Optional[Sequence[int]] = None, test_gpu_ids: Optional[Sequence[int]] = None, randomize_train_materials: bool = False, ): super().__init__() def v_or_default(v, default): return v if v is not None else default self.num_train_processes = v_or_default( num_train_processes, self.DEFAULT_NUM_TRAIN_PROCESSES ) self.num_test_processes = v_or_default( num_test_processes, (10 if torch.cuda.is_available() else 1) ) self.test_on_validation = test_on_validation self.train_gpu_ids = v_or_default(train_gpu_ids, self.DEFAULT_TRAIN_GPU_IDS) self.val_gpu_ids = v_or_default(val_gpu_ids, self.DEFAULT_VALID_GPU_IDS) self.test_gpu_ids = v_or_default(test_gpu_ids, self.DEFAULT_TEST_GPU_IDS) self.sampler_devices = self.train_gpu_ids self.randomize_train_materials = randomize_train_materials @classmethod def env_args(cls): assert cls.THOR_COMMIT_ID is not None return dict( width=cls.CAMERA_WIDTH, height=cls.CAMERA_HEIGHT, commit_id=cls.THOR_COMMIT_ID, continuousMode=True, applyActionNoise=cls.STOCHASTIC, rotateStepDegrees=cls.ROTATION_DEGREES, visibilityDistance=cls.VISIBILITY_DISTANCE, gridSize=cls.STEP_SIZE, snapToGrid=False, agentMode=cls.AGENT_MODE, fieldOfView=horizontal_to_vertical_fov( horizontal_fov_in_degrees=cls.HORIZONTAL_FIELD_OF_VIEW, width=cls.CAMERA_WIDTH, height=cls.CAMERA_HEIGHT, ), include_private_scenes=False, renderDepthImage=any(isinstance(s, DepthSensorThor) for s in cls.SENSORS), ) def machine_params(self, mode="train", **kwargs): sampler_devices: Sequence[torch.device] = [] devices: Sequence[torch.device] if mode == "train": workers_per_device = 1 devices = ( [torch.device("cpu")] if not torch.cuda.is_available() else cast(Tuple, self.train_gpu_ids) * workers_per_device ) nprocesses = evenly_distribute_count_into_bins( self.num_train_processes, max(len(devices), 1) ) sampler_devices = self.sampler_devices elif mode == "valid": nprocesses = 1 devices = ( [torch.device("cpu")] if not torch.cuda.is_available() else self.val_gpu_ids ) elif mode == "test": devices = ( [torch.device("cpu")] if not torch.cuda.is_available() else self.test_gpu_ids ) nprocesses = evenly_distribute_count_into_bins( self.num_test_processes, max(len(devices), 1) ) else: raise NotImplementedError("mode must be 'train', 'valid', or 'test'.") sensors = [*self.SENSORS] if mode != "train": sensors = [s for s in sensors if not isinstance(s, ExpertActionSensor)] sensor_preprocessor_graph = ( SensorPreprocessorGraph( source_observation_spaces=SensorSuite(sensors).observation_spaces, preprocessors=self.preprocessors(), ) if mode == "train" or ( (isinstance(nprocesses, int) and nprocesses > 0) or (isinstance(nprocesses, Sequence) and sum(nprocesses) > 0) ) else None ) return MachineParams( nprocesses=nprocesses, devices=devices, sampler_devices=sampler_devices if mode == "train" else devices, # ignored with > 1 gpu_ids sensor_preprocessor_graph=sensor_preprocessor_graph, ) @classmethod def make_sampler_fn(cls, **kwargs) -> TaskSampler: return ObjectNavDatasetTaskSampler(**kwargs) @staticmethod def _partition_inds(n: int, num_parts: int): return np.round(np.linspace(0, n, num_parts + 1, endpoint=True)).astype( np.int32 ) def _get_sampler_args_for_scene_split( self, scenes_dir: str, process_ind: int, total_processes: int, devices: Optional[List[int]], seeds: Optional[List[int]], deterministic_cudnn: bool, include_expert_sensor: bool = True, allow_oversample: bool = False, ) -> Dict[str, Any]: path = os.path.join(scenes_dir, "*.json.gz") scenes = [scene.split("/")[-1].split(".")[0] for scene in glob.glob(path)] if len(scenes) == 0: raise RuntimeError( ( "Could find no scene dataset information in directory {}." " Are you sure you've downloaded them? " " If not, see https://allenact.org/installation/download-datasets/ information" " on how this can be done." ).format(scenes_dir) ) oversample_warning = ( f"Warning: oversampling some of the scenes ({scenes}) to feed all processes ({total_processes})." " You can avoid this by setting a number of workers divisible by the number of scenes" ) if total_processes > len(scenes): # oversample some scenes -> bias if not allow_oversample: raise RuntimeError( f"Cannot have `total_processes > len(scenes)`" f" ({total_processes} > {len(scenes)}) when `allow_oversample` is `False`." ) if total_processes % len(scenes) != 0: get_logger().warning(oversample_warning) scenes = scenes * int(ceil(total_processes / len(scenes))) scenes = scenes[: total_processes * (len(scenes) // total_processes)] elif len(scenes) % total_processes != 0: get_logger().warning(oversample_warning) inds = self._partition_inds(len(scenes), total_processes) if not self.THOR_IS_HEADLESS: x_display: Optional[str] = None if platform.system() == "Linux": x_displays = get_open_x_displays(throw_error_if_empty=True) if len([d for d in devices if d != torch.device("cpu")]) > len( x_displays ): get_logger().warning( f"More GPU devices found than X-displays (devices: `{x_displays}`, x_displays: `{x_displays}`)." f" This is not necessarily a bad thing but may mean that you're not using GPU memory as" f" efficiently as possible. Consider following the instructions here:" f" https://allenact.org/installation/installation-framework/#installation-of-ithor-ithor-plugin" f" describing how to start an X-display on every GPU." ) x_display = x_displays[process_ind % len(x_displays)] device_dict = dict(x_display=x_display) else: device_dict = dict(gpu_device=devices[process_ind % len(devices)]) return { "scenes": scenes[inds[process_ind] : inds[process_ind + 1]], "object_types": self.TARGET_TYPES, "max_steps": self.MAX_STEPS, "sensors": [ s for s in self.SENSORS if (include_expert_sensor or not isinstance(s, ExpertActionSensor)) ], "action_space": gym.spaces.Discrete( len(ObjectNavTask.class_action_names()) ), "seed": seeds[process_ind] if seeds is not None else None, "deterministic_cudnn": deterministic_cudnn, "rewards_config": self.REWARD_CONFIG, "env_args": {**self.env_args(), **device_dict}, } def train_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: res = self._get_sampler_args_for_scene_split( scenes_dir=os.path.join(self.TRAIN_DATASET_DIR, "episodes"), process_ind=process_ind, total_processes=total_processes, devices=devices, seeds=seeds, deterministic_cudnn=deterministic_cudnn, allow_oversample=True, ) res["scene_directory"] = self.TRAIN_DATASET_DIR res["loop_dataset"] = True res["allow_flipping"] = True res["randomize_materials_in_training"] = self.randomize_train_materials return res def valid_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: res = self._get_sampler_args_for_scene_split( scenes_dir=os.path.join(self.VAL_DATASET_DIR, "episodes"), process_ind=process_ind, total_processes=total_processes, devices=devices, seeds=seeds, deterministic_cudnn=deterministic_cudnn, include_expert_sensor=False, allow_oversample=False, ) res["scene_directory"] = self.VAL_DATASET_DIR res["loop_dataset"] = False return res def test_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: if self.test_on_validation or self.TEST_DATASET_DIR is None: if not self.test_on_validation: get_logger().warning( "`test_on_validation` is set to `True` and thus we will run evaluation on the validation set instead." " Be careful as the saved metrics json and tensorboard files **will still be labeled as" " 'test' rather than 'valid'**." ) else: get_logger().warning( "No test dataset dir detected, running test on validation set instead." " Be careful as the saved metrics json and tensorboard files *will still be labeled as" " 'test' rather than 'valid'**." ) return self.valid_task_sampler_args( process_ind=process_ind, total_processes=total_processes, devices=devices, seeds=seeds, deterministic_cudnn=deterministic_cudnn, ) else: res = self._get_sampler_args_for_scene_split( scenes_dir=os.path.join(self.TEST_DATASET_DIR, "episodes"), process_ind=process_ind, total_processes=total_processes, devices=devices, seeds=seeds, deterministic_cudnn=deterministic_cudnn, include_expert_sensor=False, allow_oversample=False, ) res["env_args"]["all_metadata_available"] = False res["rewards_config"] = {**res["rewards_config"], "shaping_weight": 0} res["scene_directory"] = self.TEST_DATASET_DIR res["loop_dataset"] = False return res
ask4help-main
experiment_output/used_configs/Objectnav-RoboTHOR-RGB-ResNet50GRU-DDPPO/2022-02-10_14-00-37/objectnav_thor_base.py
### THIS FILE ORIGINALLY LOCATED AT '/home/kunals/eai_proj/clip_model/allenact/projects/objectnav_baselines/experiments/objectnav_mixin_resnetgru.py' from typing import Sequence, Union import gym import torch.nn as nn from torchvision import models from allenact.base_abstractions.preprocessor import Preprocessor from allenact.embodiedai.preprocessors.resnet import ResNetPreprocessor from allenact.embodiedai.sensors.vision_sensors import RGBSensor, DepthSensor from allenact.utils.experiment_utils import Builder from allenact_plugins.ithor_plugin.ithor_sensors import GoalObjectTypeThorSensor from allenact_plugins.robothor_plugin.robothor_tasks import ObjectNavTask from projects.objectnav_baselines.experiments.objectnav_base import ObjectNavBaseConfig from projects.objectnav_baselines.experiments.robothor.objectnav_robothor_base import ( ObjectNavRoboThorBaseConfig, ) from projects.objectnav_baselines.models.object_nav_models import ( ResnetTensorObjectNavActorCritic, ) class ObjectNavMixInResNetGRUConfig(ObjectNavBaseConfig): RESNET_TYPE: str @classmethod def preprocessors(cls) -> Sequence[Union[Preprocessor, Builder[Preprocessor]]]: if not hasattr(cls, "RESNET_TYPE"): raise RuntimeError( "When subclassing `ObjectNavMixInResNetGRUConfig` we now expect that you have specified `RESNET_TYPE`" " as a class variable of your subclass (e.g. `RESNET_TYPE = 'RN18'` to use a ResNet18 model)." " Alternatively you can instead subclass `ObjectNavMixInResNet18GRUConfig` which does this" " specification for you." ) preprocessors = [] if cls.RESNET_TYPE in ["RN18", "RN34"]: output_shape = (512, 7, 7) elif cls.RESNET_TYPE in ["RN50", "RN101", "RN152"]: output_shape = (2048, 7, 7) else: raise NotImplementedError( f"`RESNET_TYPE` must be one 'RNx' with x equaling one of" f" 18, 34, 50, 101, or 152." ) rgb_sensor = next((s for s in cls.SENSORS if isinstance(s, RGBSensor)), None) if rgb_sensor is not None: preprocessors.append( ResNetPreprocessor( input_height=cls.SCREEN_SIZE, input_width=cls.SCREEN_SIZE, output_width=output_shape[2], output_height=output_shape[1], output_dims=output_shape[0], pool=False, torchvision_resnet_model=getattr( models, f"resnet{cls.RESNET_TYPE.replace('RN', '')}" ), input_uuids=[rgb_sensor.uuid], output_uuid="rgb_resnet_imagenet", ) ) depth_sensor = next( (s for s in cls.SENSORS if isinstance(s, DepthSensor)), None ) if depth_sensor is not None: preprocessors.append( ResNetPreprocessor( input_height=cls.SCREEN_SIZE, input_width=cls.SCREEN_SIZE, output_width=output_shape[2], output_height=output_shape[1], output_dims=output_shape[0], pool=False, torchvision_resnet_model=getattr( models, f"resnet{cls.RESNET_TYPE.replace('RN', '')}" ), input_uuids=[depth_sensor.uuid], output_uuid="depth_resnet_imagenet", ) ) return preprocessors @classmethod def create_model(cls, **kwargs) -> nn.Module: has_rgb = any(isinstance(s, RGBSensor) for s in cls.SENSORS) has_depth = any(isinstance(s, DepthSensor) for s in cls.SENSORS) goal_sensor_uuid = next( (s.uuid for s in cls.SENSORS if isinstance(s, GoalObjectTypeThorSensor)), None, ) return ResnetTensorObjectNavActorCritic( action_space=gym.spaces.Discrete(len(ObjectNavTask.class_action_names())), observation_space=kwargs["sensor_preprocessor_graph"].observation_spaces, goal_sensor_uuid=goal_sensor_uuid, rgb_resnet_preprocessor_uuid="rgb_resnet_imagenet" if has_rgb else None, depth_resnet_preprocessor_uuid="depth_resnet_imagenet" if has_depth else None, hidden_size=512, goal_dims=32, )
ask4help-main
experiment_output/used_configs/Objectnav-RoboTHOR-RGB-ResNet50GRU-DDPPO/2022-02-10_14-00-37/objectnav_mixin_resnetgru.py
### THIS FILE ORIGINALLY LOCATED AT '/home/kunals/eai_proj/clip_model/allenact/projects/objectnav_baselines/experiments/objectnav_base.py' from abc import ABC from typing import Optional, Sequence, Union from allenact.base_abstractions.experiment_config import ExperimentConfig from allenact.base_abstractions.preprocessor import Preprocessor from allenact.base_abstractions.sensor import Sensor from allenact.utils.experiment_utils import Builder class ObjectNavBaseConfig(ExperimentConfig, ABC): """The base object navigation configuration file.""" STEP_SIZE = 0.25 ROTATION_DEGREES = 30.0 VISIBILITY_DISTANCE = 1.0 STOCHASTIC = True HORIZONTAL_FIELD_OF_VIEW = 79 CAMERA_WIDTH = 400 CAMERA_HEIGHT = 300 SCREEN_SIZE = 224 MAX_STEPS = 500 ADVANCE_SCENE_ROLLOUT_PERIOD: Optional[int] = None SENSORS: Sequence[Sensor] = [] def __init__(self): self.REWARD_CONFIG = { "step_penalty": -0.01, "goal_success_reward": 10.0, "failed_stop_reward": 0.0, "shaping_weight": 1.0, } @classmethod def preprocessors(cls) -> Sequence[Union[Preprocessor, Builder[Preprocessor]]]: return tuple()
ask4help-main
experiment_output/used_configs/Objectnav-RoboTHOR-RGB-ResNet50GRU-DDPPO/2022-02-10_14-00-37/objectnav_base.py
### THIS FILE ORIGINALLY LOCATED AT '/home/kunals/eai_proj/clip_model/allenact/projects/objectnav_baselines/experiments/objectnav_mixin_ddppo.py' from typing import Dict, Tuple import torch import torch.optim as optim from torch.optim.lr_scheduler import LambdaLR from allenact.algorithms.onpolicy_sync.losses.abstract_loss import ( AbstractActorCriticLoss, ) from allenact.algorithms.onpolicy_sync.losses import PPO from allenact.algorithms.onpolicy_sync.losses.ppo import PPOConfig from allenact.embodiedai.aux_losses.losses import ( MultiAuxTaskNegEntropyLoss, InverseDynamicsLoss, TemporalDistanceLoss, CPCA1Loss, CPCA2Loss, CPCA4Loss, CPCA8Loss, CPCA16Loss, ) # noinspection PyUnresolvedReferences from allenact.embodiedai.models.fusion_models import ( AverageFusion, SoftmaxFusion, AttentiveFusion, ) from allenact.utils.experiment_utils import ( Builder, PipelineStage, TrainingPipeline, LinearDecay, ) from projects.objectnav_baselines.experiments.objectnav_base import ObjectNavBaseConfig class ObjectNavMixInPPOConfig(ObjectNavBaseConfig): # selected auxiliary uuids ## if comment all the keys, then it's vanilla DD-PPO AUXILIARY_UUIDS = [ # InverseDynamicsLoss.UUID, # TemporalDistanceLoss.UUID, # CPCA1Loss.UUID, # CPCA4Loss.UUID, # CPCA8Loss.UUID, # CPCA16Loss.UUID, ] ADD_PREV_ACTIONS = False MULTIPLE_BELIEFS = False BELIEF_FUSION = ( # choose one None # AttentiveFusion.UUID # AverageFusion.UUID # SoftmaxFusion.UUID ) def training_pipeline(self, **kwargs): # PPO ppo_steps = int(300000000) lr = 3e-4 num_mini_batch = 1 update_repeats = 4 num_steps = 128 save_interval = 5000000 log_interval = 10000 if torch.cuda.is_available() else 1 gamma = 0.99 use_gae = True gae_lambda = 0.95 max_grad_norm = 0.5 named_losses = {"ppo_loss": (PPO(**PPOConfig), 1.0)} named_losses = self._update_with_auxiliary_losses(named_losses) return TrainingPipeline( save_interval=save_interval, metric_accumulate_interval=log_interval, optimizer_builder=Builder(optim.Adam, dict(lr=lr)), num_mini_batch=num_mini_batch, update_repeats=update_repeats, max_grad_norm=max_grad_norm, num_steps=num_steps, named_losses={key: val[0] for key, val in named_losses.items()}, gamma=gamma, use_gae=use_gae, gae_lambda=gae_lambda, advance_scene_rollout_period=self.ADVANCE_SCENE_ROLLOUT_PERIOD, pipeline_stages=[ PipelineStage( loss_names=list(named_losses.keys()), max_stage_steps=ppo_steps, loss_weights=[val[1] for val in named_losses.values()], ) ], lr_scheduler_builder=Builder( LambdaLR, {"lr_lambda": LinearDecay(steps=ppo_steps)} ), ) @classmethod def _update_with_auxiliary_losses(cls, named_losses): # auxliary losses aux_loss_total_weight = 2.0 # Total losses total_aux_losses: Dict[str, Tuple[AbstractActorCriticLoss, float]] = { InverseDynamicsLoss.UUID: ( InverseDynamicsLoss( subsample_rate=0.2, subsample_min_num=10, # TODO: test its effects ), 0.05 * aux_loss_total_weight, # should times 2 ), TemporalDistanceLoss.UUID: ( TemporalDistanceLoss( num_pairs=8, epsiode_len_min=5, # TODO: test its effects ), 0.2 * aux_loss_total_weight, # should times 2 ), CPCA1Loss.UUID: ( CPCA1Loss(subsample_rate=0.2,), # TODO: test its effects 0.05 * aux_loss_total_weight, # should times 2 ), CPCA2Loss.UUID: ( CPCA2Loss(subsample_rate=0.2,), # TODO: test its effects 0.05 * aux_loss_total_weight, # should times 2 ), CPCA4Loss.UUID: ( CPCA4Loss(subsample_rate=0.2,), # TODO: test its effects 0.05 * aux_loss_total_weight, # should times 2 ), CPCA8Loss.UUID: ( CPCA8Loss(subsample_rate=0.2,), # TODO: test its effects 0.05 * aux_loss_total_weight, # should times 2 ), CPCA16Loss.UUID: ( CPCA16Loss(subsample_rate=0.2,), # TODO: test its effects 0.05 * aux_loss_total_weight, # should times 2 ), } named_losses.update( {uuid: total_aux_losses[uuid] for uuid in cls.AUXILIARY_UUIDS} ) if cls.MULTIPLE_BELIEFS: # add weight entropy loss automatically named_losses[MultiAuxTaskNegEntropyLoss.UUID] = ( MultiAuxTaskNegEntropyLoss(cls.AUXILIARY_UUIDS), 0.01, ) return named_losses
ask4help-main
experiment_output/used_configs/Objectnav-RoboTHOR-RGB-ResNet50GRU-DDPPO/2022-02-10_14-00-37/objectnav_mixin_ddppo.py
### THIS FILE ORIGINALLY LOCATED AT '/usr/lib/python3.8/abc.py' # Copyright 2007 Google, Inc. All Rights Reserved. # Licensed to PSF under a Contributor Agreement. """Abstract Base Classes (ABCs) according to PEP 3119.""" def abstractmethod(funcobj): """A decorator indicating abstract methods. Requires that the metaclass is ABCMeta or derived from it. A class that has a metaclass derived from ABCMeta cannot be instantiated unless all of its abstract methods are overridden. The abstract methods can be called using any of the normal 'super' call mechanisms. abstractmethod() may be used to declare abstract methods for properties and descriptors. Usage: class C(metaclass=ABCMeta): @abstractmethod def my_abstract_method(self, ...): ... """ funcobj.__isabstractmethod__ = True return funcobj class abstractclassmethod(classmethod): """A decorator indicating abstract classmethods. Deprecated, use 'classmethod' with 'abstractmethod' instead. """ __isabstractmethod__ = True def __init__(self, callable): callable.__isabstractmethod__ = True super().__init__(callable) class abstractstaticmethod(staticmethod): """A decorator indicating abstract staticmethods. Deprecated, use 'staticmethod' with 'abstractmethod' instead. """ __isabstractmethod__ = True def __init__(self, callable): callable.__isabstractmethod__ = True super().__init__(callable) class abstractproperty(property): """A decorator indicating abstract properties. Deprecated, use 'property' with 'abstractmethod' instead. """ __isabstractmethod__ = True try: from _abc import (get_cache_token, _abc_init, _abc_register, _abc_instancecheck, _abc_subclasscheck, _get_dump, _reset_registry, _reset_caches) except ImportError: from _py_abc import ABCMeta, get_cache_token ABCMeta.__module__ = 'abc' else: class ABCMeta(type): """Metaclass for defining Abstract Base Classes (ABCs). Use this metaclass to create an ABC. An ABC can be subclassed directly, and then acts as a mix-in class. You can also register unrelated concrete classes (even built-in classes) and unrelated ABCs as 'virtual subclasses' -- these and their descendants will be considered subclasses of the registering ABC by the built-in issubclass() function, but the registering ABC won't show up in their MRO (Method Resolution Order) nor will method implementations defined by the registering ABC be callable (not even via super()). """ def __new__(mcls, name, bases, namespace, **kwargs): cls = super().__new__(mcls, name, bases, namespace, **kwargs) _abc_init(cls) return cls def register(cls, subclass): """Register a virtual subclass of an ABC. Returns the subclass, to allow usage as a class decorator. """ return _abc_register(cls, subclass) def __instancecheck__(cls, instance): """Override for isinstance(instance, cls).""" return _abc_instancecheck(cls, instance) def __subclasscheck__(cls, subclass): """Override for issubclass(subclass, cls).""" return _abc_subclasscheck(cls, subclass) def _dump_registry(cls, file=None): """Debug helper to print the ABC registry.""" print(f"Class: {cls.__module__}.{cls.__qualname__}", file=file) print(f"Inv. counter: {get_cache_token()}", file=file) (_abc_registry, _abc_cache, _abc_negative_cache, _abc_negative_cache_version) = _get_dump(cls) print(f"_abc_registry: {_abc_registry!r}", file=file) print(f"_abc_cache: {_abc_cache!r}", file=file) print(f"_abc_negative_cache: {_abc_negative_cache!r}", file=file) print(f"_abc_negative_cache_version: {_abc_negative_cache_version!r}", file=file) def _abc_registry_clear(cls): """Clear the registry (for debugging or testing).""" _reset_registry(cls) def _abc_caches_clear(cls): """Clear the caches (for debugging or testing).""" _reset_caches(cls) class ABC(metaclass=ABCMeta): """Helper class that provides a standard way to create an ABC using inheritance. """ __slots__ = ()
ask4help-main
experiment_output/used_configs/Objectnav-RoboTHOR-RGB-ResNet50GRU-DDPPO/2022-02-10_14-00-37/abc.py
import json import os import re import shutil import sys from pathlib import Path from urllib.request import urlopen from more_itertools import all_equal DATASET_DIR = os.path.abspath(os.path.dirname(Path(__file__))) def get_habitat_download_info(allow_create: bool = False): """Get a dictionary giving a specification of where habitat data lives online. # Parameters allow_create: Whether or not we should try to regenerate the json file that represents the above dictionary. This is potentially unsafe so please only set this to `True` if you're sure it will download what you want. """ json_save_path = os.path.join(DATASET_DIR, ".habitat_datasets_download_info.json") if allow_create and not os.path.exists(json_save_path): url = "https://raw.githubusercontent.com/facebookresearch/habitat-lab/master/README.md" output = urlopen(url).read().decode("utf-8") lines = [l.strip() for l in output.split("\n")] task_table_started = False table_lines = [] for l in lines: if l.count("|") > 3 and l[0] == l[-1] == "|": if task_table_started: table_lines.append(l) elif "Task" in l and "Link" in l: task_table_started = True table_lines.append(l) elif task_table_started: break url_pat = re.compile("\[.*\]\((.*)\)") def get_url(in_str: str): match = re.match(pattern=url_pat, string=in_str) if match: return match.group(1) else: return in_str header = None rows = [] for i, l in enumerate(table_lines): l = l.strip("|") entries = [get_url(e.strip().replace("`", "")) for e in l.split("|")] if i == 0: header = [e.lower().replace(" ", "_") for e in entries] elif not all_equal(entries): rows.append(entries) link_ind = header.index("link") extract_ind = header.index("extract_path") config_ind = header.index("config_to_use") assert link_ind >= 0 data_info = {} for row in rows: id = row[link_ind].split("/")[-1].replace(".zip", "").replace("_", "-") data_info[id] = { "link": row[link_ind], "rel_path": row[extract_ind], "config_url": row[config_ind], } with open(json_save_path, "w") as f: json.dump(data_info, f) with open(json_save_path, "r") as f: return json.load(f) if __name__ == "__main__": habitat_dir = os.path.join(DATASET_DIR, "habitat") os.makedirs(habitat_dir, exist_ok=True) os.chdir(habitat_dir) download_info = get_habitat_download_info(allow_create=False) if len(sys.argv) != 2 or sys.argv[1] not in download_info: print( "Incorrect input, expects a single input where this input is one of " f" {['test-scenes', *sorted(download_info.keys())]}." ) quit(1) task_key = sys.argv[1] task_dl_info = download_info[task_key] output_archive_name = "__TO_OVERWRITE__.zip" deletable_dir_name = "__TO_DELETE__" cmd = f"wget {task_dl_info['link']} -O {output_archive_name}" if os.system(cmd): print(f"ERROR: `{cmd}` failed.") quit(1) cmd = f"unzip {output_archive_name} -d {deletable_dir_name}" if os.system(cmd): print(f"ERROR: `{cmd}` failed.") quit(1) download_to_path = task_dl_info["rel_path"].replace("data/", "") if download_to_path[-1] == "/": download_to_path = download_to_path[:-1] os.makedirs(download_to_path, exist_ok=True) cmd = f"rsync -avz {deletable_dir_name}/ {download_to_path}/" if os.system(cmd): print(f"ERROR: `{cmd}` failed.") quit(1) os.remove(output_archive_name) shutil.rmtree(deletable_dir_name)
ask4help-main
datasets/.habitat_downloader_helper.py
ask4help-main
tests/__init__.py
ask4help-main
tests/mapping/__init__.py
import os import platform import random import sys import urllib import urllib.request import warnings from collections import defaultdict # noinspection PyUnresolvedReferences from tempfile import mkdtemp from typing import Dict, List, Tuple, cast # noinspection PyUnresolvedReferences import ai2thor # noinspection PyUnresolvedReferences import ai2thor.wsgi_server import compress_pickle import numpy as np import torch from allenact.algorithms.onpolicy_sync.storage import RolloutStorage from allenact.base_abstractions.misc import Memory, ActorCriticOutput from allenact.embodiedai.mapping.mapping_utils.map_builders import SemanticMapBuilder from allenact.utils.experiment_utils import set_seed from allenact.utils.system import get_logger from allenact.utils.tensor_utils import batch_observations from allenact_plugins.ithor_plugin.ithor_sensors import ( RelativePositionChangeTHORSensor, ReachableBoundsTHORSensor, BinnedPointCloudMapTHORSensor, SemanticMapTHORSensor, ) from allenact_plugins.ithor_plugin.ithor_util import get_open_x_displays from allenact_plugins.robothor_plugin.robothor_sensors import DepthSensorThor from constants import ABS_PATH_OF_TOP_LEVEL_DIR class TestAI2THORMapSensors(object): def setup_path_for_use_with_rearrangement_project(self) -> bool: if platform.system() != "Darwin" and len(get_open_x_displays()) == 0: wrn_msg = "Cannot run tests as there seem to be no open displays!" warnings.warn(wrn_msg) get_logger().warning(wrn_msg) return False os.chdir(ABS_PATH_OF_TOP_LEVEL_DIR) sys.path.append( os.path.join(ABS_PATH_OF_TOP_LEVEL_DIR, "projects/ithor_rearrangement") ) try: import rearrange except ImportError: wrn_msg = ( "Could not import `rearrange`. Is it possible you have" " not initialized the submodules (i.e. by running" " `git submodule init; git submodule update;`)?" ) warnings.warn(wrn_msg) get_logger().warning(wrn_msg) return False return True def test_binned_and_semantic_mapping(self, tmpdir): try: if not self.setup_path_for_use_with_rearrangement_project(): return from baseline_configs.rearrange_base import RearrangeBaseExperimentConfig from baseline_configs.walkthrough.walkthrough_rgb_base import ( WalkthroughBaseExperimentConfig, ) from rearrange.constants import ( FOV, PICKUPABLE_OBJECTS, OPENABLE_OBJECTS, ) from datagen.datagen_utils import get_scenes ORDERED_OBJECT_TYPES = list(sorted(PICKUPABLE_OBJECTS + OPENABLE_OBJECTS)) map_range_sensor = ReachableBoundsTHORSensor(margin=1.0) map_info = dict( map_range_sensor=map_range_sensor, vision_range_in_cm=40 * 5, map_size_in_cm=1050, resolution_in_cm=5, ) map_sensors = [ RelativePositionChangeTHORSensor(), map_range_sensor, DepthSensorThor( height=224, width=224, use_normalization=False, uuid="depth", ), BinnedPointCloudMapTHORSensor(fov=FOV, ego_only=False, **map_info,), SemanticMapTHORSensor( fov=FOV, ego_only=False, ordered_object_types=ORDERED_OBJECT_TYPES, **map_info, ), ] all_sensors = [*WalkthroughBaseExperimentConfig.SENSORS, *map_sensors] open_x_displays = [] try: open_x_displays = get_open_x_displays() except (AssertionError, IOError): pass walkthrough_task_sampler = WalkthroughBaseExperimentConfig.make_sampler_fn( stage="train", sensors=all_sensors, scene_to_allowed_rearrange_inds={s: [0] for s in get_scenes("train")}, force_cache_reset=True, allowed_scenes=None, seed=1, x_display=open_x_displays[0] if len(open_x_displays) != 0 else None, thor_controller_kwargs={ **RearrangeBaseExperimentConfig.THOR_CONTROLLER_KWARGS, # "server_class": ai2thor.wsgi_server.WsgiServer, # Only for debugging }, ) targets_path = os.path.join(tmpdir, "rearrange_mapping_examples.pkl.gz") urllib.request.urlretrieve( "https://ai2-prior-allenact-public-test.s3-us-west-2.amazonaws.com/ai2thor_mapping/rearrange_mapping_examples.pkl.gz", targets_path, ) goal_obs_dict = compress_pickle.load(targets_path) def compare_recursive(obs, goal_obs, key_list: List): if isinstance(obs, Dict): for k in goal_obs: compare_recursive( obs=obs[k], goal_obs=goal_obs[k], key_list=key_list + [k] ) elif isinstance(obs, (List, Tuple)): for i in range(len(goal_obs)): compare_recursive( obs=obs[i], goal_obs=goal_obs[i], key_list=key_list + [i] ) else: # Should be a numpy array at this point assert isinstance(obs, np.ndarray) and isinstance( goal_obs, np.ndarray ), f"After {key_list}, not numpy arrays, obs={obs}, goal_obs={goal_obs}" obs = 1.0 * obs goal_obs = 1.0 * goal_obs where_nan = np.isnan(goal_obs) obs[where_nan] = 0.0 goal_obs[where_nan] = 0.0 assert ( np.abs(1.0 * obs - 1.0 * goal_obs).mean() < 1e-4 ), f"Difference of {np.abs(1.0 * obs - 1.0 * goal_obs).mean()} at {key_list}." observations_dict = defaultdict(lambda: []) for i in range(5): # Why 5, why not 5? set_seed(i) task = walkthrough_task_sampler.next_task() obs_list = observations_dict[i] obs_list.append(task.get_observations()) k = 0 compare_recursive( obs=obs_list[0], goal_obs=goal_obs_dict[i][0], key_list=[i, k] ) while not task.is_done(): obs = task.step( action=task.action_names().index( random.choice( 3 * [ "move_ahead", "rotate_right", "rotate_left", "look_up", "look_down", ] + ["done"] ) ) ).observation k += 1 obs_list.append(obs) compare_recursive( obs=obs, goal_obs=goal_obs_dict[i][task.num_steps_taken()], key_list=[i, k], ) # Free space metric map in RGB using pointclouds coming from depth images. This # is built iteratively after every step. # R - is used to encode points at a height < 0.02m (i.e. the floor) # G - is used to encode points at a height between 0.02m and 2m, i.e. objects the agent would run into # B - is used to encode points higher than 2m, i.e. ceiling # Uncomment if you wish to visualize the observations: # import matplotlib.pyplot as plt # plt.imshow( # np.flip(255 * (obs["binned_pc_map"]["map"] > 0), 0) # ) # np.flip because we expect "up" to be -row # plt.title("Free space map") # plt.show() # plt.close() # See also `obs["binned_pc_map"]["egocentric_update"]` to see the # the metric map from the point of view of the agent before it is # rotated into the world-space coordinates and merged with past observations. # Semantic map in RGB which is iteratively revealed using depth maps to figure out what # parts of the scene the agent has seen so far. # This map has shape 210x210x72 with the 72 channels corresponding to the 72 # object types in `ORDERED_OBJECT_TYPES` semantic_map = obs["semantic_map"]["map"] # We can't display all 72 channels in an RGB image so instead we randomly assign # each object a color and then just allow them to overlap each other colored_semantic_map = SemanticMapBuilder.randomly_color_semantic_map( semantic_map ) # Here's the full semantic map with nothing masked out because the agent # hasn't seen it yet colored_semantic_map_no_fog = SemanticMapBuilder.randomly_color_semantic_map( map_sensors[-1].semantic_map_builder.ground_truth_semantic_map ) # Uncomment if you wish to visualize the observations: # import matplotlib.pyplot as plt # plt.imshow( # np.flip( # np.flip because we expect "up" to be -row # np.concatenate( # ( # colored_semantic_map, # 255 + 0 * colored_semantic_map[:, :10, :], # colored_semantic_map_no_fog, # ), # axis=1, # ), # 0, # ) # ) # plt.title("Semantic map with and without exploration fog") # plt.show() # plt.close() # See also # * `obs["semantic_map"]["egocentric_update"]` # * `obs["semantic_map"]["explored_mask"]` # * `obs["semantic_map"]["egocentric_mask"]` # To save observations for comparison against future runs, uncomment the below. # os.makedirs("tmp_out", exist_ok=True) # compress_pickle.dump( # {**observations_dict}, "tmp_out/rearrange_mapping_examples.pkl.gz" # ) finally: try: walkthrough_task_sampler.close() except NameError: pass def test_pretrained_rearrange_walkthrough_mapping_agent(self, tmpdir): try: if not self.setup_path_for_use_with_rearrangement_project(): return from baseline_configs.rearrange_base import RearrangeBaseExperimentConfig from baseline_configs.walkthrough.walkthrough_rgb_mapping_ppo import ( WalkthroughRGBMappingPPOExperimentConfig, ) from rearrange.constants import ( FOV, PICKUPABLE_OBJECTS, OPENABLE_OBJECTS, ) from datagen.datagen_utils import get_scenes open_x_displays = [] try: open_x_displays = get_open_x_displays() except (AssertionError, IOError): pass walkthrough_task_sampler = WalkthroughRGBMappingPPOExperimentConfig.make_sampler_fn( stage="train", scene_to_allowed_rearrange_inds={s: [0] for s in get_scenes("train")}, force_cache_reset=True, allowed_scenes=None, seed=2, x_display=open_x_displays[0] if len(open_x_displays) != 0 else None, ) named_losses = ( WalkthroughRGBMappingPPOExperimentConfig.training_pipeline().named_losses ) ckpt_path = os.path.join( tmpdir, "pretrained_walkthrough_mapping_agent_75mil.pt" ) if not os.path.exists(ckpt_path): urllib.request.urlretrieve( "https://prior-model-weights.s3.us-east-2.amazonaws.com/embodied-ai/rearrangement/walkthrough/pretrained_walkthrough_mapping_agent_75mil.pt", ckpt_path, ) state_dict = torch.load(ckpt_path, map_location="cpu",) walkthrough_model = WalkthroughRGBMappingPPOExperimentConfig.create_model() walkthrough_model.load_state_dict(state_dict["model_state_dict"]) rollout_storage = RolloutStorage( num_steps=1, num_samplers=1, actor_critic=walkthrough_model, only_store_first_and_last_in_memory=True, ) memory = rollout_storage.pick_memory_step(0) masks = rollout_storage.masks[:1] binned_map_losses = [] semantic_map_losses = [] for i in range(5): masks = 0 * masks set_seed(i + 1) task = walkthrough_task_sampler.next_task() def add_step_dim(input): if isinstance(input, torch.Tensor): return input.unsqueeze(0) elif isinstance(input, Dict): return {k: add_step_dim(v) for k, v in input.items()} else: raise NotImplementedError batch = add_step_dim(batch_observations([task.get_observations()])) while not task.is_done(): ac_out, memory = cast( Tuple[ActorCriticOutput, Memory], walkthrough_model.forward( observations=batch, memory=memory, prev_actions=None, masks=masks, ), ) binned_map_losses.append( named_losses["binned_map_loss"] .loss( step_count=0, # Not used in this loss batch={"observations": batch}, actor_critic_output=ac_out, )[0] .item() ) assert ( binned_map_losses[-1] < 0.16 ), f"Binned map loss to large at ({i}, {task.num_steps_taken()})" semantic_map_losses.append( named_losses["semantic_map_loss"] .loss( step_count=0, # Not used in this loss batch={"observations": batch}, actor_critic_output=ac_out, )[0] .item() ) assert ( semantic_map_losses[-1] < 0.004 ), f"Semantic map loss to large at ({i}, {task.num_steps_taken()})" masks = masks.fill_(1.0) obs = task.step( action=ac_out.distributions.sample().item() ).observation batch = add_step_dim(batch_observations([obs])) if task.num_steps_taken() >= 10: break # To save observations for comparison against future runs, uncomment the below. # os.makedirs("tmp_out", exist_ok=True) # compress_pickle.dump( # {**observations_dict}, "tmp_out/rearrange_mapping_examples.pkl.gz" # ) finally: try: walkthrough_task_sampler.close() except NameError: pass if __name__ == "__main__": TestAI2THORMapSensors().test_binned_and_semantic_mapping(mkdtemp()) # type:ignore # TestAI2THORMapSensors().test_binned_and_semantic_mapping("tmp_out") # Used for local debugging # TestAI2THORMapSensors().test_pretrained_rearrange_walkthrough_mapping_agent( # "tmp_out" # ) # Used for local debugging
ask4help-main
tests/mapping/test_ai2thor_mapping.py
from typing import Dict, Any import torch.multiprocessing as mp import torch.nn as nn from allenact.base_abstractions.experiment_config import ExperimentConfig from allenact.base_abstractions.task import TaskSampler from allenact.utils.experiment_utils import TrainingPipeline # noinspection PyAbstractClass,PyTypeChecker class MyConfig(ExperimentConfig): MY_VAR: int = 3 @classmethod def tag(cls) -> str: return "" @classmethod def training_pipeline(cls, **kwargs) -> TrainingPipeline: return None @classmethod def create_model(cls, **kwargs) -> nn.Module: return None @classmethod def make_sampler_fn(cls, **kwargs) -> TaskSampler: return None def my_var_is(self, val): assert self.MY_VAR == val # noinspection PyAbstractClass class MySpecConfig(MyConfig): MY_VAR = 6 @classmethod def machine_params(cls, mode="train", **kwargs) -> Dict[str, Any]: return {} @classmethod def tag(cls) -> str: return "SpecTag" scfg = MySpecConfig() class TestFrozenAttribs(object): def test_frozen_inheritance(self): from abc import abstractmethod from allenact.base_abstractions.experiment_config import FrozenClassVariables class SomeBase(metaclass=FrozenClassVariables): yar = 3 @abstractmethod def use(self): raise NotImplementedError() class SomeDerived(SomeBase): yar = 33 def use(self): return self.yar failed = False try: SomeDerived.yar = 6 # Error except Exception as _: failed = True assert failed inst = SomeDerived() inst2 = SomeDerived() inst.yar = 12 # No error assert inst.use() == 12 assert inst2.use() == 33 @staticmethod def my_func(config, val): config.my_var_is(val) def test_frozen_experiment_config(self): val = 5 failed = False try: MyConfig() except (RuntimeError, TypeError): failed = True assert failed scfg.MY_VAR = val scfg.my_var_is(val) failed = False try: MyConfig.MY_VAR = val except RuntimeError: failed = True assert failed failed = False try: MySpecConfig.MY_VAR = val except RuntimeError: failed = True assert failed for fork_method in ["forkserver", "fork"]: ctxt = mp.get_context(fork_method) p = ctxt.Process(target=self.my_func, kwargs=dict(config=scfg, val=val)) p.start() p.join() if __name__ == "__main__": TestFrozenAttribs().test_frozen_inheritance() # type:ignore TestFrozenAttribs().test_frozen_experiment_config() # type:ignore
ask4help-main
tests/multiprocessing/test_frozen_attribs.py
ask4help-main
tests/multiprocessing/__init__.py
ask4help-main
tests/utils/__init__.py
import warnings from collections import OrderedDict from typing import Tuple import numpy as np import torch from gym import spaces as gyms from allenact.utils import spaces_utils as su class TestSpaces(object): space = gyms.Dict( { "first": gyms.Tuple( [ gyms.Box(-10, 10, (3, 4)), gyms.MultiDiscrete([2, 3, 4]), gyms.Box(-1, 1, ()), ] ), "second": gyms.Tuple( [gyms.Dict({"third": gyms.Discrete(11)}), gyms.MultiBinary(8),] ), } ) @staticmethod def same(a, b, bidx=None): if isinstance(a, OrderedDict): for key in a: if not TestSpaces.same(a[key], b[key], bidx): return False return True elif isinstance(a, Tuple): for it in range(len(a)): if not TestSpaces.same(a[it], b[it], bidx): return False return True else: # np.array_equal also works for torch tensors and scalars if bidx is None: return np.array_equal(a, b) else: return np.array_equal(a, b[bidx]) def test_conversion(self): gsample = self.space.sample() asample = su.torch_point(self.space, gsample) back = su.numpy_point(self.space, asample) assert self.same(back, gsample) def test_flatten(self): # We flatten Discrete to 1 value assert su.flatdim(self.space) == 25 # gym flattens Discrete to one-hot assert gyms.flatdim(self.space) == 35 asample = su.torch_point(self.space, self.space.sample()) flattened = su.flatten(self.space, asample) unflattened = su.unflatten(self.space, flattened) assert self.same(asample, unflattened) # suppress `UserWarning: WARN: Box bound precision lowered by casting to float32` with warnings.catch_warnings(): warnings.simplefilter("ignore") flattened_space = su.flatten_space(self.space) assert flattened_space.shape == (25,) # The maximum comes from Discrete(11) assert flattened_space.high.max() == 11.0 assert flattened_space.low.min() == -10.0 gym_flattened_space = gyms.flatten_space(self.space) assert gym_flattened_space.shape == (35,) # The maximum comes from Box(-10, 10, (3, 4)) assert gym_flattened_space.high.max() == 10.0 assert gym_flattened_space.low.min() == -10.0 def test_batched(self): samples = [self.space.sample() for _ in range(10)] flattened = [ su.flatten(self.space, su.torch_point(self.space, sample)) for sample in samples ] stacked = torch.stack(flattened, dim=0) unflattened = su.unflatten(self.space, stacked) for bidx, refsample in enumerate(samples): # Compare each torch-ified sample to the corresponding unflattened from the stack assert self.same(su.torch_point(self.space, refsample), unflattened, bidx) assert self.same(su.flatten(self.space, unflattened), stacked) def test_tolist(self): space = gyms.MultiDiscrete([3, 3]) actions = su.torch_point(space, space.sample()) # single sampler actions = actions.unsqueeze(0).unsqueeze(0) # add [step, sampler] flat_actions = su.flatten(space, actions) al = su.action_list(space, flat_actions) assert len(al) == 1 assert len(al[0]) == 2 space = gyms.Tuple([gyms.MultiDiscrete([3, 3]), gyms.Discrete(2)]) actions = su.torch_point(space, space.sample()) # single sampler actions = ( actions[0].unsqueeze(0).unsqueeze(0), torch.tensor(actions[1]).unsqueeze(0).unsqueeze(0), ) # add [step, sampler] flat_actions = su.flatten(space, actions) al = su.action_list(space, flat_actions) assert len(al) == 1 assert len(al[0][0]) == 2 assert isinstance(al[0][1], int) space = gyms.Dict( {"tuple": gyms.MultiDiscrete([3, 3]), "scalar": gyms.Discrete(2)} ) actions = su.torch_point(space, space.sample()) # single sampler actions = OrderedDict( [ ("tuple", actions["tuple"].unsqueeze(0).unsqueeze(0)), ("scalar", torch.tensor(actions["scalar"]).unsqueeze(0).unsqueeze(0)), ] ) flat_actions = su.flatten(space, actions) al = su.action_list(space, flat_actions) assert len(al) == 1 assert len(al[0]["tuple"]) == 2 assert isinstance(al[0]["scalar"], int) if __name__ == "__main__": TestSpaces().test_conversion() # type:ignore TestSpaces().test_flatten() # type:ignore TestSpaces().test_batched() # type:ignore TestSpaces().test_tolist() # type:ignore
ask4help-main
tests/utils/test_spaces.py
import hashlib import os import imageio import numpy as np from torchvision.transforms import transforms from allenact.utils.tensor_utils import ScaleBothSides from constants import ABS_PATH_OF_TOP_LEVEL_DIR to_pil = transforms.ToPILImage() # Same as used by the vision sensors class TestPillowRescaling(object): def _load_thor_img(self) -> np.ndarray: img_path = os.path.join( ABS_PATH_OF_TOP_LEVEL_DIR, "docs/img/iTHOR_framework.jpg" ) img = imageio.imread(img_path) return img def _get_img_hash(self, img: np.ndarray) -> str: img_hash = hashlib.sha1(np.ascontiguousarray(img)) return img_hash.hexdigest() def _random_rgb_image(self, width: int, height: int, seed: int) -> np.ndarray: s = np.random.get_state() np.random.seed(seed) img = np.random.randint( low=0, high=256, size=(width, height, 3), dtype=np.uint8 ) np.random.set_state(s) return img def _random_depthmap( self, width: int, height: int, max_depth: float, seed: int ) -> np.ndarray: s = np.random.get_state() np.random.seed(seed) img = max_depth * np.random.rand(width, height, 1) np.random.set_state(s) return np.float32(img) def test_scaler_rgb_thor(self): thor_img_arr = np.uint8(self._load_thor_img()) assert ( self._get_img_hash(thor_img_arr) == "80ff8a342b4f74966796eee91babde31409d0457" ) img = to_pil(thor_img_arr) scaler = ScaleBothSides(width=75, height=75) scaled_img = np.array(scaler(img)) assert ( self._get_img_hash(scaled_img) == "2c47057aa188240cb21b2edc39e0f269c1085bac" ) scaler = ScaleBothSides(width=500, height=600) scaled_img = np.array(scaler(img)) assert ( self._get_img_hash(scaled_img) == "faf0be2b9ec9bfd23a1b7b465c86ad961d03c259" ) def test_scaler_rgb_random(self): arr = self._random_rgb_image(width=100, height=100, seed=1) assert self._get_img_hash(arr) == "d01bd8ba151ab790fde9a8cc29aa8a3c63147334" img = to_pil(arr) scaler = ScaleBothSides(width=60, height=60) scaled_img = np.array(scaler(img)) assert ( self._get_img_hash(scaled_img) == "22473537e50d5e39abeeec4f92dbfde51c754010" ) scaler = ScaleBothSides(width=1000, height=800) scaled_img = np.array(scaler(img)) assert ( self._get_img_hash(scaled_img) == "5e5b955981e4ee3b5e22287536040d001a31fbd3" ) def test_scaler_depth_thor(self): thor_depth_arr = 5 * np.float32(self._load_thor_img()).sum(-1) thor_depth_arr /= thor_depth_arr.max() assert ( self._get_img_hash(thor_depth_arr) == "d3c1474400ba57ed78f52cf4ba6a4c2a1d90516c" ) img = to_pil(thor_depth_arr) scaler = ScaleBothSides(width=75, height=75) scaled_img = np.array(scaler(img)) assert ( self._get_img_hash(scaled_img) == "6a879beb6bed49021e438c1e3af7a62c428a44d8" ) scaler = ScaleBothSides(width=500, height=600) scaled_img = np.array(scaler(img)) assert ( self._get_img_hash(scaled_img) == "79f11fb741ae638afca40125e4c501f54b22cc01" ) def test_scaler_depth_random(self): depth_arr = self._random_depthmap(width=96, height=103, max_depth=5.0, seed=1) assert ( self._get_img_hash(depth_arr) == "cbd8ca127951ffafb6848536d9d731970a5397e9" ) img = to_pil(depth_arr) scaler = ScaleBothSides(width=60, height=60) scaled_img = np.array(scaler(img)) assert ( self._get_img_hash(scaled_img) == "5bed173f2d783fb2badcde9b43904ef85a1a5820" ) scaler = ScaleBothSides(width=1000, height=800) scaled_img = np.array(scaler(img)) assert ( self._get_img_hash(scaled_img) == "9dceb7f77d767888f24a84c00913c0cf4ccd9d49" ) if __name__ == "__main__": TestPillowRescaling().test_scaler_rgb_thor() TestPillowRescaling().test_scaler_rgb_random() TestPillowRescaling().test_scaler_depth_thor() TestPillowRescaling().test_scaler_depth_random()
ask4help-main
tests/vision/test_pillow_rescaling.py
ask4help-main
tests/vision/__init__.py
import math import os from allenact.algorithms.onpolicy_sync.runner import OnPolicyRunner from projects.babyai_baselines.experiments.go_to_obj.ppo import ( PPOBabyAIGoToObjExperimentConfig, ) class TestGoToObjTrains(object): def test_ppo_trains(self, tmpdir): cfg = PPOBabyAIGoToObjExperimentConfig() output_dir = tmpdir.mkdir("experiment_output") train_runner = OnPolicyRunner( config=cfg, output_dir=output_dir, loaded_config_src_files=None, seed=1, mode="train", deterministic_cudnn=True, ) start_time_str = train_runner.start_train(max_sampler_processes_per_worker=1) test_runner = OnPolicyRunner( config=cfg, output_dir=output_dir, loaded_config_src_files=None, seed=1, mode="test", deterministic_cudnn=True, ) test_results = test_runner.start_test( checkpoint_path_dir_or_pattern=os.path.join( output_dir, "checkpoints", "**", start_time_str, "*.pt" ), max_sampler_processes_per_worker=1, ) assert ( len(test_results) == 1 ), f"Too many or too few test results ({test_results})" tr = test_results[0] assert ( tr["training_steps"] == round( math.ceil( cfg.TOTAL_RL_TRAIN_STEPS / (cfg.ROLLOUT_STEPS * cfg.NUM_TRAIN_SAMPLERS) ) ) * cfg.ROLLOUT_STEPS * cfg.NUM_TRAIN_SAMPLERS ), "Incorrect number of training steps" assert len(tr["tasks"]) == cfg.NUM_TEST_TASKS, "Incorrect number of test tasks" assert tr["success"] == sum(task["success"] for task in tr["tasks"]) / len( tr["tasks"] ), "Success counts don't seem to match" assert ( tr["success"] > 0.95 ), "PPO did not seem to converge for the go_to_obj task (success {}).".format( tr["success"] ) if __name__ == "__main__": import pathlib TestGoToObjTrains().test_ppo_trains(pathlib.Path("testing")) # type:ignore
ask4help-main
tests/sync_algs_cpu/test_to_to_obj_trains.py
ask4help-main
tests/sync_algs_cpu/__init__.py
from allenact_plugins.manipulathor_plugin.arm_calculation_utils import ( world_coords_to_agent_coords, ) class TestArmCalculationUtils(object): def test_translation_functions(self): agent_coordinate = { "position": {"x": 1, "y": 0, "z": 2}, "rotation": {"x": 0, "y": -45, "z": 0}, } obj_coordinate = { "position": {"x": 0, "y": 1, "z": 0}, "rotation": {"x": 0, "y": 0, "z": 0}, } rotated = world_coords_to_agent_coords(obj_coordinate, agent_coordinate) eps = 0.01 assert ( abs(rotated["position"]["x"] - (-2.12)) < eps and abs(rotated["position"]["y"] - (1.0)) < eps and abs(rotated["position"]["z"] - (-0.70)) < eps ) if __name__ == "__main__": TestArmCalculationUtils().test_translation_functions()
ask4help-main
tests/manipulathor_plugin/test_utils.py
from typing import Dict, Optional, List, Any, cast import os import gym from gym_minigrid.envs import EmptyRandomEnv5x5 from torch import nn from torch import optim from torch.optim.lr_scheduler import LambdaLR from allenact.algorithms.onpolicy_sync.losses.ppo import PPO, PPOConfig from allenact.base_abstractions.experiment_config import ExperimentConfig, TaskSampler from allenact.base_abstractions.sensor import SensorSuite, ExpertActionSensor from allenact.utils.experiment_utils import ( TrainingPipeline, Builder, PipelineStage, LinearDecay, ) from allenact_plugins.minigrid_plugin.minigrid_sensors import EgocentricMiniGridSensor from allenact_plugins.minigrid_plugin.minigrid_tasks import MiniGridTaskSampler from allenact.algorithms.onpolicy_sync.losses.imitation import Imitation from tempfile import mkdtemp from allenact.algorithms.onpolicy_sync.runner import OnPolicyRunner from projects.tutorials.minigrid_tutorial_conds import ( ConditionedMiniGridSimpleConvRNN, ConditionedMiniGridTask, ) class MiniGridCondTestExperimentConfig(ExperimentConfig): @classmethod def tag(cls) -> str: return "MiniGridCondTest" SENSORS = [ EgocentricMiniGridSensor(agent_view_size=5, view_channels=3), ExpertActionSensor( action_space=gym.spaces.Dict( higher=gym.spaces.Discrete(2), lower=gym.spaces.Discrete(2) ) ), ] @classmethod def create_model(cls, **kwargs) -> nn.Module: return ConditionedMiniGridSimpleConvRNN( action_space=gym.spaces.Dict( higher=gym.spaces.Discrete(2), lower=gym.spaces.Discrete(2) ), observation_space=SensorSuite(cls.SENSORS).observation_spaces, num_objects=cls.SENSORS[0].num_objects, num_colors=cls.SENSORS[0].num_colors, num_states=cls.SENSORS[0].num_states, ) @classmethod def make_sampler_fn(cls, **kwargs) -> TaskSampler: return MiniGridTaskSampler(**kwargs) def train_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: return self._get_sampler_args(process_ind=process_ind, mode="train") def valid_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: return self._get_sampler_args(process_ind=process_ind, mode="valid") def test_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: return self._get_sampler_args(process_ind=process_ind, mode="test") def _get_sampler_args(self, process_ind: int, mode: str) -> Dict[str, Any]: """Generate initialization arguments for train, valid, and test TaskSamplers. # Parameters process_ind : index of the current task sampler mode: one of `train`, `valid`, or `test` """ if mode == "train": max_tasks = None # infinite training tasks task_seeds_list = None # no predefined random seeds for training deterministic_sampling = False # randomly sample tasks in training else: max_tasks = 20 + 20 * ( mode == "test" ) # 20 tasks for valid, 40 for test (per sampler) # one seed for each task to sample: # - ensures different seeds for each sampler, and # - ensures a deterministic set of sampled tasks. task_seeds_list = list( range(process_ind * max_tasks, (process_ind + 1) * max_tasks) ) deterministic_sampling = ( True # deterministically sample task in validation/testing ) return dict( max_tasks=max_tasks, # see above env_class=self.make_env, # builder for third-party environment (defined below) sensors=self.SENSORS, # sensors used to return observations to the agent env_info=dict(), # parameters for environment builder (none for now) task_seeds_list=task_seeds_list, # see above deterministic_sampling=deterministic_sampling, # see above task_class=ConditionedMiniGridTask, ) @staticmethod def make_env(*args, **kwargs): return EmptyRandomEnv5x5() @classmethod def machine_params(cls, mode="train", **kwargs) -> Dict[str, Any]: return { "nprocesses": 4 if mode == "train" else 1, "devices": [], } @classmethod def training_pipeline(cls, **kwargs) -> TrainingPipeline: ppo_steps = int(512) return TrainingPipeline( named_losses=dict( imitation_loss=Imitation( cls.SENSORS[1] ), # 0 is Minigrid, 1 is ExpertActionSensor ppo_loss=PPO(**PPOConfig, entropy_method_name="conditional_entropy"), ), # type:ignore pipeline_stages=[ PipelineStage( teacher_forcing=LinearDecay( startp=1.0, endp=0.0, steps=ppo_steps // 2, ), loss_names=["imitation_loss", "ppo_loss"], max_stage_steps=ppo_steps, ) ], optimizer_builder=Builder(cast(optim.Optimizer, optim.Adam), dict(lr=1e-4)), num_mini_batch=4, update_repeats=3, max_grad_norm=0.5, num_steps=16, gamma=0.99, use_gae=True, gae_lambda=0.95, advance_scene_rollout_period=None, save_interval=10000, metric_accumulate_interval=1, lr_scheduler_builder=Builder( LambdaLR, {"lr_lambda": LinearDecay(steps=ppo_steps)} # type:ignore ), ) class TestMiniGridCond: def test_train(self, tmpdir): cfg = MiniGridCondTestExperimentConfig() train_runner = OnPolicyRunner( config=cfg, output_dir=tmpdir, loaded_config_src_files=None, seed=12345, mode="train", deterministic_cudnn=False, deterministic_agents=False, extra_tag="", disable_tensorboard=True, disable_config_saving=True, ) start_time_str, valid_results = train_runner.start_train( checkpoint=None, restart_pipeline=False, max_sampler_processes_per_worker=1, collect_valid_results=True, ) assert len(valid_results) > 0 test_runner = OnPolicyRunner( config=cfg, output_dir=tmpdir, loaded_config_src_files=None, seed=12345, mode="test", deterministic_cudnn=False, deterministic_agents=False, extra_tag="", disable_tensorboard=True, disable_config_saving=True, ) test_results = test_runner.start_test( checkpoint_path_dir_or_pattern=os.path.join( tmpdir, "checkpoints", "**", start_time_str, "*.pt" ), max_sampler_processes_per_worker=1, inference_expert=True, ) assert test_results[-1]["ep_length"] < 4 if __name__ == "__main__": TestMiniGridCond().test_train(mkdtemp()) # type:ignore
ask4help-main
tests/hierarchical_policies/test_minigrid_conditional.py
ask4help-main
tests/hierarchical_policies/__init__.py
import os from pathlib import Path ALLENACT_INSTALL_DIR = os.path.abspath(os.path.dirname(Path(__file__)))
ask4help-main
allenact/_constants.py
try: from allenact._version import __version__ except ModuleNotFoundError: __version__ = None
ask4help-main
allenact/__init__.py
import os from pathlib import Path from setuptools import find_packages, setup def parse_req_file(fname, initial=None): """Reads requires.txt file generated by setuptools and outputs a new/updated dict of extras as keys and corresponding lists of dependencies as values. The input file's contents are similar to a `ConfigParser` file, e.g. pkg_1 pkg_2 pkg_3 [extras1] pkg_4 pkg_5 [extras2] pkg_6 pkg_7 """ reqs = {} if initial is None else initial cline = None with open(fname, "r") as f: for line in f.readlines(): line = line[:-1].strip() if len(line) == 0: continue if line[0] == "[": # Add new key for current extras (if missing in dict) cline = line[1:-1] if cline not in reqs: reqs[cline] = [] else: # Only keep dependencies from extras if cline is not None: reqs[cline].append(line) return reqs def get_version(fname): """Reads PKG-INFO file generated by setuptools and extracts the Version number.""" res = "UNK" with open(fname, "r") as f: for line in f.readlines(): line = line[:-1] if line.startswith("Version:"): res = line.replace("Version:", "").strip() break if res in ["UNK", ""]: raise ValueError(f"Missing Version number in {fname}") return res if __name__ == "__main__": base_dir = os.path.abspath(os.path.dirname(Path(__file__))) if not os.path.exists( os.path.join(base_dir, "allenact.egg-info/dependency_links.txt") ): # Build mode for sdist os.chdir(os.path.join(base_dir, "..")) with open(".VERSION", "r") as f: __version__ = f.readline().strip() # Extra dependencies for development (actually unnecessary) extras = { "dev": [ l.strip() for l in open("dev_requirements.txt", "r").readlines() if l.strip() != "" ] } else: # Install mode from sdist __version__ = get_version(os.path.join(base_dir, "allenact.egg-info/PKG-INFO")) extras = parse_req_file( os.path.join(base_dir, "allenact.egg-info/requires.txt") ) setup( name="allenact", version=__version__, description="AllenAct framework", long_description=( "AllenAct is a modular and flexible learning framework designed with" " a focus on the unique requirements of Embodied-AI research." ), classifiers=[ "Intended Audience :: Science/Research", "Development Status :: 3 - Alpha", "License :: OSI Approved :: MIT License", "Topic :: Scientific/Engineering :: Artificial Intelligence", "Programming Language :: Python", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], keywords=["reinforcement learning", "embodied-AI", "AI", "RL", "SLAM"], url="https://github.com/allenai/allenact", author="Allen Institute for Artificial Intelligence", author_email="[email protected]", license="MIT", packages=find_packages(include=["allenact", "allenact.*"]), install_requires=[ "gym>=0.17.0,<0.18.0", "torch>=1.6.0,!=1.8.0,<1.9.0", "tensorboardx>=2.1", "torchvision>=0.7.0,<0.10.0", "setproctitle", "moviepy>=1.0.3", "filelock", "numpy>=1.19.1", "Pillow==8.2.0", "matplotlib>=3.3.1", "networkx", "opencv-python", "wheel>=0.36.2", ], setup_requires=["pytest-runner"], tests_require=["pytest", "pytest-cov", "compress_pickle"], entry_points={"console_scripts": ["allenact=allenact.main:main"]}, extras_require=extras, )
ask4help-main
allenact/setup.py
"""Entry point to training/validating/testing for a user given experiment name.""" import argparse import ast import importlib import inspect import json import os from typing import Dict, Tuple, List, Optional, Type from setproctitle import setproctitle as ptitle from allenact import __version__ from allenact.algorithms.onpolicy_sync.runner import ( OnPolicyRunner, _CONFIG_KWARGS_STR, SaveDirFormat, ) from allenact.base_abstractions.experiment_config import ExperimentConfig from allenact.utils.system import get_logger, init_logging, HUMAN_LOG_LEVELS def get_argument_parser(): """Creates the argument parser.""" # noinspection PyTypeChecker parser = argparse.ArgumentParser( description="allenact", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "experiment", type=str, help="the path to experiment config file relative the 'experiment_base' directory" " (see the `--experiment_base` flag).", ) parser.add_argument( "--eval", dest="eval", action="store_true", required=False, help="if you pass the `--eval` flag, AllenAct will run inference on your experiment configuration." " You will need to specify which experiment checkpoints to run evaluation using the `--checkpoint`" " flag.", ) parser.set_defaults(eval=False) parser.add_argument( "--config_kwargs", type=str, default=None, required=False, help="sometimes it is useful to be able to pass additional key-word arguments" " to `__init__` when initializing an experiment configuration. This flag can be used" " to pass such key-word arugments by specifying them with json, e.g." '\n\t--config_kwargs \'{"gpu_id": 0, "my_important_variable": [1,2,3]}\'' "\nTo see which arguments are supported for your experiment see the experiment" " config's `__init__` function. If the value passed to this function is a file path" " then we will try to load this file path as a json object and use this json object" " as key-word arguments.", ) parser.add_argument( "--extra_tag", type=str, default="", required=False, help="Add an extra tag to the experiment when trying out new ideas (will be used" " as a subdirectory of the tensorboard path so you will be able to" " search tensorboard logs using this extra tag). This can also be used to add an extra" " organization when running evaluation (e.g. `--extra_tag running_eval_on_great_idea_12`)", ) parser.add_argument( "-o", "--output_dir", required=False, type=str, default="experiment_output", help="experiment output folder", ) parser.add_argument( "--save_dir_fmt", required=False, type=lambda s: SaveDirFormat[s.upper()], default="flat", help="The file structure to use when saving results from allenact." " See documentation o f`SaveDirFormat` for more details." " Allowed values are ('flat' and 'nested'). Default: 'flat'.", ) parser.add_argument( "-s", "--seed", required=False, default=None, type=int, help="random seed", ) parser.add_argument( "-b", "--experiment_base", required=False, default=os.getcwd(), type=str, help="experiment configuration base folder (default: working directory)", ) parser.add_argument( "-c", "--checkpoint", required=False, default=None, type=str, help="optional checkpoint file name to resume training on or run testing with. When testing (see the `--eval` flag) this" " argument can be used very flexibly as:" "\n(1) the path to a particular individual checkpoint file," "\n(2) the path to a directory of checkpoint files all of which you'd like to be evaluated" " (checkpoints are expected to have a `.pt` file extension)," '\n(3) a "glob" pattern (https://tldp.org/LDP/abs/html/globbingref.html) that will be expanded' " using python's `glob.glob` function and should return a collection of checkpoint files." "\nIf you'd like to only evaluate a subset of the checkpoints specified by the above directory/glob" " (e.g. every checkpoint saved after 5mil steps) you'll likely want to use the `--approx_ckpt_step_interval`" " flag.", ) parser.add_argument( "--infer_output_dir", dest="infer_output_dir", action="store_true", required=False, help="applied when evaluating checkpoint(s) in nested save_dir_fmt: if specified, the output dir will be inferred from checkpoint path.", ) parser.add_argument( "--approx_ckpt_step_interval", required=False, default=None, type=float, help="if running tests on a collection of checkpoints (see the `--checkpoint` flag) this argument can be" " used to skip checkpoints. In particular, if this value is specified and equals `n` then we will" " only evaluate checkpoints whose step count is closest to each of `0*n`, `1*n`, `2*n`, `3*n`, ... " " n * ceil(max training steps in ckpts / n). Note that 'closest to' is important here as AllenAct does" " not generally save checkpoints at exact intervals (doing so would result in performance degregation" " in distributed training).", ) parser.add_argument( "-r", "--restart_pipeline", dest="restart_pipeline", action="store_true", required=False, help="for training, if checkpoint is specified, DO NOT continue the training pipeline from where" " training had previously ended. Instead restart the training pipeline from scratch but" " with the model weights from the checkpoint.", ) parser.set_defaults(restart_pipeline=False) parser.add_argument( "-d", "--deterministic_cudnn", dest="deterministic_cudnn", action="store_true", required=False, help="sets CuDNN to deterministic mode", ) parser.set_defaults(deterministic_cudnn=False) parser.add_argument( "-m", "--max_sampler_processes_per_worker", required=False, default=None, type=int, help="maximal number of sampler processes to spawn for each worker", ) parser.add_argument( "-e", "--deterministic_agents", dest="deterministic_agents", action="store_true", required=False, help="enable deterministic agents (i.e. always taking the mode action) during validation/testing", ) parser.set_defaults(deterministic_agents=False) parser.add_argument( "-l", "--log_level", default="info", type=str, required=False, help="sets the log_level. it must be one of {}.".format( ", ".join(HUMAN_LOG_LEVELS) ), ) parser.add_argument( "-i", "--disable_tensorboard", dest="disable_tensorboard", action="store_true", required=False, help="disable tensorboard logging", ) parser.set_defaults(disable_tensorboard=False) parser.add_argument( "-a", "--disable_config_saving", dest="disable_config_saving", action="store_true", required=False, help="disable saving the used config in the output directory", ) parser.set_defaults(disable_config_saving=False) parser.add_argument( "--collect_valid_results", dest="collect_valid_results", action="store_true", required=False, help="enables returning and saving valid results during training", ) parser.set_defaults(collect_valid_results=False) parser.add_argument( "--test_expert", dest="test_expert", action="store_true", required=False, help="use expert during test", ) parser.set_defaults(test_expert=False) parser.add_argument( "--version", action="version", version=f"allenact {__version__}" ) parser.add_argument( "--distributed_ip_and_port", dest="distributed_ip_and_port", required=False, type=str, default="127.0.0.1:0", help="IP address and port of listener for distributed process with rank 0." " Port number 0 lets runner choose a free port. For more details, please follow the" " tutorial https://allenact.org/tutorials/distributed-objectnav-tutorial/.", ) parser.add_argument( "--machine_id", dest="machine_id", required=False, type=int, default=0, help="ID for machine in distributed runs. For more details, please follow the" " tutorial https://allenact.org/tutorials/distributed-objectnav-tutorial/", ) ### DEPRECATED FLAGS parser.add_argument( "-t", "--test_date", default=None, type=str, required=False, help="`--test_date` has been deprecated. Please use `--eval` instead.", ) parser.add_argument( "--approx_ckpt_steps_count", required=False, default=None, type=float, help="`--approx_ckpt_steps_count` has been deprecated." " Please specify the checkpoint directly using the '--checkpoint' flag.", ) parser.add_argument( "-k", "--skip_checkpoints", required=False, default=0, type=int, help="`--skip_checkpoints` has been deprecated. Please use `--approx_ckpt_steps_count` instead.", ) ### END DEPRECATED FLAGS return parser def get_args(): """Creates the argument parser and parses any input arguments.""" parser = get_argument_parser() args = parser.parse_args() # check for deprecated deprecated_flags = ["test_date", "skip_checkpoints", "approx_ckpt_steps_count"] for df in deprecated_flags: df_info = parser._option_string_actions[f"--{df}"] if getattr(args, df) is not df_info.default: raise RuntimeError(df_info.help) return args def _config_source(config_type: Type) -> Dict[str, str]: if config_type is ExperimentConfig: return {} try: module_file_path = inspect.getfile(config_type) module_dot_path = config_type.__module__ sources_dict = {module_file_path: module_dot_path} for super_type in config_type.__bases__: sources_dict.update(_config_source(super_type)) return sources_dict except TypeError as _: return {} def find_sub_modules(path: str, module_list: Optional[List] = None): if module_list is None: module_list = [] path = os.path.abspath(path) if path[-3:] == ".py": module_list.append(path) elif os.path.isdir(path): contents = os.listdir(path) if any(key in contents for key in ["__init__.py", "setup.py"]): new_paths = [os.path.join(path, f) for f in os.listdir(path)] for new_path in new_paths: find_sub_modules(new_path, module_list) return module_list def load_config(args) -> Tuple[ExperimentConfig, Dict[str, str]]: assert os.path.exists( args.experiment_base ), "The path '{}' does not seem to exist (your current working directory is '{}').".format( args.experiment_base, os.getcwd() ) rel_base_dir = os.path.relpath( # Normalizing string representation of path os.path.abspath(args.experiment_base), os.getcwd() ) rel_base_dot_path = rel_base_dir.replace("/", ".") if rel_base_dot_path == ".": rel_base_dot_path = "" exp_dot_path = args.experiment if exp_dot_path[-3:] == ".py": exp_dot_path = exp_dot_path[:-3] exp_dot_path = exp_dot_path.replace("/", ".") module_path = ( f"{rel_base_dot_path}.{exp_dot_path}" if len(rel_base_dot_path) != 0 else exp_dot_path ) try: importlib.invalidate_caches() module = importlib.import_module(module_path) except ModuleNotFoundError as e: if not any(isinstance(arg, str) and module_path in arg for arg in e.args): raise e all_sub_modules = set(find_sub_modules(os.getcwd())) desired_config_name = module_path.split(".")[-1] relevant_submodules = [ sm for sm in all_sub_modules if desired_config_name in os.path.basename(sm) ] raise ModuleNotFoundError( f"Could not import experiment '{module_path}', are you sure this is the right path?" f" Possibly relevant files include {relevant_submodules}." f" Note that the experiment must be reachable along your `PYTHONPATH`, it might" f" be helpful for you to run `export PYTHONPATH=$PYTHONPATH:$PWD` in your" f" project's top level directory." ) from e experiments = [ m[1] for m in inspect.getmembers(module, inspect.isclass) if m[1].__module__ == module.__name__ and issubclass(m[1], ExperimentConfig) ] assert ( len(experiments) == 1 ), "Too many or two few experiments defined in {}".format(module_path) config_kwargs = {} if args.config_kwargs is not None: if os.path.exists(args.config_kwargs): with open(args.config_kwargs, "r") as f: config_kwargs = json.load(f) else: try: config_kwargs = json.loads(args.config_kwargs) except json.JSONDecodeError: get_logger().warning( f"The input for --config_kwargs ('{args.config_kwargs}')" f" does not appear to be valid json. Often this is due to" f" json requiring very specific syntax (e.g. double quoted strings)" f" we'll try to get around this by evaluating with `ast.literal_eval`" f" (a safer version of the standard `eval` function)." ) config_kwargs = ast.literal_eval(args.config_kwargs) assert isinstance( config_kwargs, Dict ), "`--config_kwargs` must be a json string (or a path to a .json file) that evaluates to a dictionary." config = experiments[0](**config_kwargs) sources = _config_source(config_type=experiments[0]) sources[_CONFIG_KWARGS_STR] = json.dumps(config_kwargs) return config, sources def main(): args = get_args() init_logging(args.log_level) get_logger().info("Running with args {}".format(args)) ptitle("Master: {}".format("Training" if args.eval is None else "Evaluation")) cfg, srcs = load_config(args) if not args.eval: OnPolicyRunner( config=cfg, output_dir=args.output_dir, save_dir_fmt=args.save_dir_fmt, loaded_config_src_files=srcs, seed=args.seed, mode="train", deterministic_cudnn=args.deterministic_cudnn, deterministic_agents=args.deterministic_agents, extra_tag=args.extra_tag, disable_tensorboard=args.disable_tensorboard, disable_config_saving=args.disable_config_saving, distributed_ip_and_port=args.distributed_ip_and_port, machine_id=args.machine_id, ).start_train( checkpoint=args.checkpoint, restart_pipeline=args.restart_pipeline, max_sampler_processes_per_worker=args.max_sampler_processes_per_worker, collect_valid_results=args.collect_valid_results, ) else: OnPolicyRunner( config=cfg, output_dir=args.output_dir, save_dir_fmt=args.save_dir_fmt, loaded_config_src_files=srcs, seed=args.seed, mode="test", deterministic_cudnn=args.deterministic_cudnn, deterministic_agents=args.deterministic_agents, extra_tag=args.extra_tag, disable_tensorboard=args.disable_tensorboard, disable_config_saving=args.disable_config_saving, distributed_ip_and_port=args.distributed_ip_and_port, machine_id=args.machine_id, ).start_test( checkpoint_path_dir_or_pattern=args.checkpoint, infer_output_dir=args.infer_output_dir, approx_ckpt_step_interval=args.approx_ckpt_step_interval, max_sampler_processes_per_worker=args.max_sampler_processes_per_worker, inference_expert=args.test_expert, ) if __name__ == "__main__": main()
ask4help-main
allenact/main.py
ask4help-main
allenact/embodiedai/__init__.py
ask4help-main
allenact/embodiedai/mapping/__init__.py
import torch from torch.nn import functional as F from allenact.algorithms.onpolicy_sync.losses.abstract_loss import ( AbstractActorCriticLoss, ) from allenact.algorithms.onpolicy_sync.policy import ObservationType from allenact.base_abstractions.distributions import CategoricalDistr from allenact.base_abstractions.misc import ActorCriticOutput class BinnedPointCloudMapLoss(AbstractActorCriticLoss): """A (binary cross entropy) loss for training metric maps for free space prediction.""" def __init__( self, binned_pc_uuid: str, map_logits_uuid: str, ): """Initializer. # Parameters binned_pc_uuid : The uuid of a sensor returning a dictionary with an "egocentric_update" key with the same format as returned by `allenact.embodied_ai.mapping_utils.map_builders.BinnedPointCloudMapBuilder`. Such a sensor can be found in the `allenact_plugins` library: see `allenact_plugins.ithor_plugin.ithor_sensors.BinnedPointCloudMapTHORSensor`. map_logits_uuid : key used to index into `actor_critic_output.extras` (returned by the model) whose value should be a tensor of the same shape as the tensor corresponding to the above "egocentric_update" key. """ super().__init__() self.binned_pc_uuid = binned_pc_uuid self.map_logits_uuid = map_logits_uuid def loss( # type: ignore self, step_count: int, batch: ObservationType, actor_critic_output: ActorCriticOutput[CategoricalDistr], *args, **kwargs, ): ego_map_gt = batch["observations"][self.binned_pc_uuid][ "egocentric_update" ].float() *_, h, w, c = ego_map_gt.shape ego_map_gt = ego_map_gt.view(-1, h, w, c).permute(0, 3, 1, 2).contiguous() ego_map_logits = actor_critic_output.extras[self.map_logits_uuid] vision_range = ego_map_logits.shape[-1] ego_map_logits = ego_map_logits.view(-1, c, vision_range, vision_range) assert ego_map_gt.shape == ego_map_logits.shape ego_map_gt_thresholded = (ego_map_gt > 0.5).float() total_loss = F.binary_cross_entropy_with_logits( ego_map_logits, ego_map_gt_thresholded ) return ( total_loss, {"binned_pc_map_ce": total_loss.item()}, ) # FOR DEBUGGING: Save all the ground-truth & predicted maps side by side # import numpy as np # import imageio # for i in range(ego_map_gt_thresholded.shape[0]): # a = ego_map_gt_thresholded[i].permute(1, 2, 0).flip(0).detach().numpy() # b = torch.sigmoid(ego_map_logits)[i].permute(1, 2, 0).flip(0).detach().numpy() # # imageio.imwrite( # f"z_occupancy_maps/{i}.png", # np.concatenate((a, 1 + 0 * a[:, :10], b), axis=1), # ) class SemanticMapFocalLoss(AbstractActorCriticLoss): """A (focal-loss based) loss for training metric maps for free space prediction. As semantic maps tend to be quite sparse this loss uses the focal loss (https://arxiv.org/abs/1708.02002) rather than binary cross entropy (BCE). If the `gamma` parameter is 0.0 then this is just the normal BCE, larger values of `gamma` result less and less emphasis being paid to examples that are already well classified. """ def __init__( self, semantic_map_uuid: str, map_logits_uuid: str, gamma: float = 2.0 ): """Initializer. # Parameters semantic_map_uuid : The uuid of a sensor returning a dictionary with an "egocentric_update" key with the same format as returned by `allenact.embodied_ai.mapping_utils.map_builders.SemanticMapBuilder`. Such a sensor can be found in the `allenact_plugins` library: see `allenact_plugins.ithor_plugin.ithor_sensors.SemanticMapTHORSensor`. map_logits_uuid : key used to index into `actor_critic_output.extras` (returned by the model) whose value should be a tensor of the same shape as the tensor corresponding to the above "egocentric_update" key. """ super().__init__() assert gamma >= 0, f"`gamma` (=={gamma}) must be >= 0" self.semantic_map_uuid = semantic_map_uuid self.map_logits_uuid = map_logits_uuid self.gamma = gamma def loss( # type: ignore self, step_count: int, batch: ObservationType, actor_critic_output: ActorCriticOutput[CategoricalDistr], *args, **kwargs, ): ego_map_gt = batch["observations"][self.semantic_map_uuid]["egocentric_update"] ego_map_gt = ( ego_map_gt.view(-1, *ego_map_gt.shape[-3:]).permute(0, 3, 1, 2).contiguous() ) ego_map_logits = actor_critic_output.extras[self.map_logits_uuid] ego_map_logits = ego_map_logits.view(-1, *ego_map_logits.shape[-3:]) assert ego_map_gt.shape == ego_map_logits.shape p = torch.sigmoid(ego_map_logits) one_minus_p = torch.sigmoid(-ego_map_logits) log_p = F.logsigmoid(ego_map_logits) log_one_minus_p = F.logsigmoid(-ego_map_logits) ego_map_gt = ego_map_gt.float() total_loss = -( ego_map_gt * (log_p * (one_minus_p ** self.gamma)) + (1 - ego_map_gt) * (log_one_minus_p * (p ** self.gamma)) ).mean() return ( total_loss, {"sem_map_focal_loss": total_loss.item()}, ) # FOR DEBUGGING: Save all the ground-truth & predicted maps side by side # import numpy as np # import imageio # from allenact.embodiedai.mapping.mapping_utils.map_builders import SemanticMapBuilder # # print("\n" * 3) # for i in range(ego_map_gt.shape[0]): # pred_sem_map = torch.sigmoid(ego_map_logits)[i].permute(1, 2, 0).flip(0).detach() # a = SemanticMapBuilder.randomly_color_semantic_map(ego_map_gt[i].permute(1, 2, 0).flip(0).detach()) # b = SemanticMapBuilder.randomly_color_semantic_map(pred_sem_map) # imageio.imwrite( # f"z_semantic_maps/{i}.png", # np.concatenate((a, 255 + a[:, :10] * 0, b), axis=1), # ) #
ask4help-main
allenact/embodiedai/mapping/mapping_losses.py
ask4help-main
allenact/embodiedai/mapping/mapping_utils/__init__.py
# MIT License # # Original Copyright (c) 2020 Devendra Chaplot # # Modified work Copyright (c) 2021 Allen Institute for Artificial Intelligence # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import random from typing import Optional, Sequence, Union, Dict import cv2 import numpy as np import torch import torch.nn.functional as F from allenact.embodiedai.mapping.mapping_utils.point_cloud_utils import ( depth_frame_to_world_space_xyz, project_point_cloud_to_map, ) class BinnedPointCloudMapBuilder(object): """Class used to iteratively construct a map of "free space" based on input depth maps (i.e. pointclouds). Adapted from https://github.com/devendrachaplot/Neural-SLAM This class can be used to (iteratively) construct a metric map of free space in an environment as an agent moves around. After every step the agent takes, you should call the `update` function and pass the agent's egocentric depth image along with the agent's new position. This depth map will be converted into a pointcloud, binned along the up/down axis, and then projected onto a 3-dimensional tensor of shape (HxWxC) whose where HxW represent the ground plane and where C equals the number of bins the up-down coordinate was binned into. This 3d map counts the number of points in each bin. Thus a lack of points within a region can be used to infer that that region is free space. # Attributes fov : FOV of the camera used to produce the depth images given when calling `update`. vision_range_in_map_units : The maximum distance (in number of rows/columns) that will be updated when calling `update`, points outside of this map vision range are ignored. map_size_in_cm : Total map size in cm. resolution_in_cm : Number of cm per row/column in the map. height_bins : The bins used to bin the up-down coordinate (for us the y-coordinate). For example, if `height_bins = [0.1, 1]` then all y-values < 0.1 will be mapped to 0, all y values in [0.1, 1) will be mapped to 1, and all y-values >= 1 will be mapped to 2. **Importantly:** these y-values will first be recentered by the `min_xyz` value passed when calling `reset(...)`. device : A `torch.device` on which to run computations. If this device is a GPU you can potentially obtain significant speed-ups. """ def __init__( self, fov: float, vision_range_in_cm: int, map_size_in_cm: int, resolution_in_cm: int, height_bins: Sequence[float], device: torch.device = torch.device("cpu"), ): assert vision_range_in_cm % resolution_in_cm == 0 self.fov = fov self.vision_range_in_map_units = vision_range_in_cm // resolution_in_cm self.map_size_in_cm = map_size_in_cm self.resolution_in_cm = resolution_in_cm self.height_bins = height_bins self.device = device self.binned_point_cloud_map = np.zeros( ( self.map_size_in_cm // self.resolution_in_cm, self.map_size_in_cm // self.resolution_in_cm, len(self.height_bins) + 1, ), dtype=np.float32, ) self.min_xyz: Optional[np.ndarray] = None def update( self, depth_frame: np.ndarray, camera_xyz: np.ndarray, camera_rotation: float, camera_horizon: float, ) -> Dict[str, np.ndarray]: """Updates the map with the input depth frame from the agent. See the `allenact.embodiedai.mapping.mapping_utils.point_cloud_utils.project_point_cloud_to_map` function for more information input parameter definitions. **We assume that the input `depth_frame` has depths recorded in meters**. # Returns Let `map_size = self.map_size_in_cm // self.resolution_in_cm`. Returns a dictionary with keys-values: * `"egocentric_update"` - A tensor of shape `(vision_range_in_map_units)x(vision_range_in_map_units)x(len(self.height_bins) + 1)` corresponding to the binned pointcloud after having been centered on the agent and rotated so that points ahead of the agent correspond to larger row indices and points further to the right of the agent correspond to larger column indices. Note that by "centered" we mean that one can picture the agent as being positioned at (0, vision_range_in_map_units/2) and facing downward. Each entry in this tensor is a count equaling the number of points in the pointcloud that, once binned, fell into this entry. This is likely the output you want to use if you want to build a model to predict free space from an image. * `"allocentric_update"` - A `(map_size)x(map_size)x(len(self.height_bins) + 1)` corresponding to `"egocentric_update"` but rotated to the world-space coordinates. This `allocentric_update` is what is used to update the internally stored representation of the map. * `"map"` - A `(map_size)x(map_size)x(len(self.height_bins) + 1)` tensor corresponding to the sum of all `"allocentric_update"` values since the last `reset()`. ``` """ with torch.no_grad(): assert self.min_xyz is not None, "Please call `reset` before `update`." camera_xyz = ( torch.from_numpy(camera_xyz - self.min_xyz).float().to(self.device) ) depth_frame = torch.from_numpy(depth_frame).to(self.device) depth_frame[ depth_frame > self.vision_range_in_map_units * self.resolution_in_cm / 100 ] = np.NaN world_space_point_cloud = depth_frame_to_world_space_xyz( depth_frame=depth_frame, camera_world_xyz=camera_xyz, rotation=camera_rotation, horizon=camera_horizon, fov=self.fov, ) world_binned_map_update = project_point_cloud_to_map( xyz_points=world_space_point_cloud, bin_axis="y", bins=self.height_bins, map_size=self.binned_point_cloud_map.shape[0], resolution_in_cm=self.resolution_in_cm, flip_row_col=True, ) # Center the cloud on the agent recentered_point_cloud = world_space_point_cloud - ( torch.FloatTensor([1.0, 0.0, 1.0]).to(self.device) * camera_xyz ).reshape((1, 1, 3)) # Rotate the cloud so that positive-z is the direction the agent is looking theta = ( np.pi * camera_rotation / 180 ) # No negative since THOR rotations are already backwards cos_theta = np.cos(theta) sin_theta = np.sin(theta) rotation_transform = torch.FloatTensor( [ [cos_theta, 0, -sin_theta], [0, 1, 0], # unchanged [sin_theta, 0, cos_theta], ] ).to(self.device) rotated_point_cloud = recentered_point_cloud @ rotation_transform.T xoffset = (self.map_size_in_cm / 100) / 2 agent_centric_point_cloud = rotated_point_cloud + torch.FloatTensor( [xoffset, 0, 0] ).to(self.device) allocentric_update_numpy = world_binned_map_update.cpu().numpy() self.binned_point_cloud_map = ( self.binned_point_cloud_map + allocentric_update_numpy ) agent_centric_binned_map = project_point_cloud_to_map( xyz_points=agent_centric_point_cloud, bin_axis="y", bins=self.height_bins, map_size=self.binned_point_cloud_map.shape[0], resolution_in_cm=self.resolution_in_cm, flip_row_col=True, ) vr = self.vision_range_in_map_units vr_div_2 = self.vision_range_in_map_units // 2 width_div_2 = agent_centric_binned_map.shape[1] // 2 agent_centric_binned_map = agent_centric_binned_map[ :vr, (width_div_2 - vr_div_2) : (width_div_2 + vr_div_2), : ] return { "egocentric_update": agent_centric_binned_map.cpu().numpy(), "allocentric_update": allocentric_update_numpy, "map": self.binned_point_cloud_map, } def reset(self, min_xyz: np.ndarray): """Reset the map. Resets the internally stored map. # Parameters min_xyz : An array of size (3,) corresponding to the minimum possible x, y, and z values that will be observed as a point in a pointcloud when calling `.update(...)`. The (world-space) maps returned by calls to `update` will have been normalized so the (0,0,:) entry corresponds to these minimum values. """ self.min_xyz = min_xyz self.binned_point_cloud_map = np.zeros_like(self.binned_point_cloud_map) class ObjectHull2d: def __init__( self, object_id: str, object_type: str, hull_points: Union[np.ndarray, Sequence[Sequence[float]]], ): """A class used to represent 2d convex hulls of objects when projected to the ground plane. # Parameters object_id : A unique id for the object. object_type : The type of the object. hull_points : A Nx2 matrix with `hull_points[:, 0]` being the x coordinates and `hull_points[:, 1]` being the `z` coordinates (this is using the Unity game engine conventions where the `y` axis is up/down). """ self.object_id = object_id self.object_type = object_type self.hull_points = ( hull_points if isinstance(hull_points, np.ndarray) else np.array(hull_points) ) class SemanticMapBuilder(object): """Class used to iteratively construct a semantic map based on input depth maps (i.e. pointclouds). Adapted from https://github.com/devendrachaplot/Neural-SLAM This class can be used to (iteratively) construct a semantic map of objects in the environment. This map is similar to that generated by `BinnedPointCloudMapBuilder` (see its documentation for more information) but the various channels correspond to different object types. Thus if the `(i,j,k)` entry of a map generated by this function is `True`, this means that an object of type `k` is present in position `i,j` in the map. In particular, by "present" we mean that, after projecting the object to the ground plane and taking the convex hull of the resulting 2d object, a non-trivial portion of this convex hull overlaps the `i,j` position. For attribute information, see the documentation of the `BinnedPointCloudMapBuilder` class. The only attribute present in this class that is not present in `BinnedPointCloudMapBuilder` is `ordered_object_types` which corresponds to a list of unique object types where object type `ordered_object_types[i]` will correspond to the `i`th channel of the map generated by this class. """ def __init__( self, fov: float, vision_range_in_cm: int, map_size_in_cm: int, resolution_in_cm: int, ordered_object_types: Sequence[str], device: torch.device = torch.device("cpu"), ): self.fov = fov self.vision_range_in_map_units = vision_range_in_cm // resolution_in_cm self.map_size_in_cm = map_size_in_cm self.resolution_in_cm = resolution_in_cm self.ordered_object_types = tuple(ordered_object_types) self.device = device self.object_type_to_index = { ot: i for i, ot in enumerate(self.ordered_object_types) } self.ground_truth_semantic_map = np.zeros( ( self.map_size_in_cm // self.resolution_in_cm, self.map_size_in_cm // self.resolution_in_cm, len(self.ordered_object_types), ), dtype=np.uint8, ) self.explored_mask = np.zeros( ( self.map_size_in_cm // self.resolution_in_cm, self.map_size_in_cm // self.resolution_in_cm, 1, ), dtype=bool, ) self.min_xyz: Optional[np.ndarray] = None @staticmethod def randomly_color_semantic_map( map: Union[np.ndarray, torch.Tensor], threshold: float = 0.5, seed: int = 1 ) -> np.ndarray: if not isinstance(map, np.ndarray): map = np.array(map) rnd = random.Random(seed) semantic_int_mat = ( (map >= threshold) * np.array(list(range(1, map.shape[-1] + 1))).reshape((1, 1, -1)) ).max(-1) # noinspection PyTypeChecker return np.uint8( np.array( [(0, 0, 0)] + [ tuple(rnd.randint(0, 256) for _ in range(3)) for _ in range(map.shape[-1]) ] )[semantic_int_mat] ) def _xzs_to_colrows(self, xzs: np.ndarray): height, width, _ = self.ground_truth_semantic_map.shape return np.clip( np.int32( ( (100 / self.resolution_in_cm) * (xzs - np.array([[self.min_xyz[0], self.min_xyz[2]]])) ) ), a_min=0, a_max=np.array( [width - 1, height - 1] ), # width then height as we're returns cols then rows ) def build_ground_truth_map(self, object_hulls: Sequence[ObjectHull2d]): self.ground_truth_semantic_map.fill(0) height, width, _ = self.ground_truth_semantic_map.shape for object_hull in object_hulls: ot = object_hull.object_type if ot in self.object_type_to_index: ind = self.object_type_to_index[ot] self.ground_truth_semantic_map[ :, :, ind : (ind + 1) ] = cv2.fillConvexPoly( img=np.array( self.ground_truth_semantic_map[:, :, ind : (ind + 1)], dtype=np.uint8, ), points=self._xzs_to_colrows(np.array(object_hull.hull_points)), color=255, ) def update( self, depth_frame: np.ndarray, camera_xyz: np.ndarray, camera_rotation: float, camera_horizon: float, ) -> Dict[str, np.ndarray]: """Updates the map with the input depth frame from the agent. See the documentation for `BinnedPointCloudMapBuilder.update`, the inputs and outputs are similar except that channels are used to represent the presence/absence of objects of given types. Unlike `BinnedPointCloudMapBuilder.update`, this function also returns two masks with keys `"egocentric_mask"` and `"mask"` that can be used to determine what portions of the map have been observed by the agent so far in the egocentric and world-space reference frames respectively. """ with torch.no_grad(): assert self.min_xyz is not None camera_xyz = torch.from_numpy(camera_xyz - self.min_xyz).to(self.device) map_size = self.ground_truth_semantic_map.shape[0] depth_frame = torch.from_numpy(depth_frame).to(self.device) depth_frame[ depth_frame > self.vision_range_in_map_units * self.resolution_in_cm / 100 ] = np.NaN world_space_point_cloud = depth_frame_to_world_space_xyz( depth_frame=depth_frame, camera_world_xyz=camera_xyz, rotation=camera_rotation, horizon=camera_horizon, fov=self.fov, ) world_newly_explored = ( project_point_cloud_to_map( xyz_points=world_space_point_cloud, bin_axis="y", bins=[], map_size=map_size, resolution_in_cm=self.resolution_in_cm, flip_row_col=True, ) > 0.001 ) world_update_and_mask = torch.cat( ( torch.logical_and( torch.from_numpy(self.ground_truth_semantic_map).to( self.device ), world_newly_explored, ), world_newly_explored, ), dim=-1, ).float() world_update_and_mask_for_sample = world_update_and_mask.unsqueeze( 0 ).permute(0, 3, 1, 2) # We now use grid sampling to rotate world_update_for_sample into the egocentric coordinate # frame of the agent so that the agent's forward direction is downwards in the tensor # (and it's right side is to the right in the image, this means that right/left # when taking the perspective of the agent in the image). This convention aligns with # what's expected by grid_sample where +x corresponds to +cols and +z corresponds to +rows. # Here also the rows/cols have been normalized so that the center of the image is at (0,0) # and the bottom right is at (1,1). # Mentally you can think of the output from the F.affine_grid function as you wanting # rotating/translating an axis-aligned square on the image-to-be-sampled and then # copying whatever is in this square to a new image. Note that the translation always # happens in the global reference frame after the rotation. We'll start by rotating # the square so that the the agent's z direction is downwards in the image. # Since the global axis of the map and the grid sampling are aligned, this requires # rotating the square by the rotation of the agent. As rotation is negative the usual # standard in THOR, we need to negate the rotation of the agent. theta = -np.pi * camera_rotation / 180 # Here form the rotation matrix cos_theta = np.cos(theta) sin_theta = np.sin(theta) rot_mat = torch.FloatTensor( [[cos_theta, -sin_theta], [sin_theta, cos_theta]] ).to(self.device) # Now we need to figure out the translation. For an intuitive understanding, we break this # translation into two different "offsets". The first offset centers the square on the # agent's current location: scaler = 2 * (100 / (self.resolution_in_cm * map_size)) offset_to_center_the_agent = ( scaler * torch.FloatTensor([camera_xyz[0], camera_xyz[2]]) .unsqueeze(-1) .to(self.device) - 1 ) # The second offset moves the square in the direction of the agent's z direction # so that the output image will have the agent's view starting directly at the # top of the image. offset_to_top_of_image = rot_mat @ torch.FloatTensor([0, 1.0]).unsqueeze( 1 ).to(self.device) rotation_and_translate_mat = torch.cat( (rot_mat, offset_to_top_of_image + offset_to_center_the_agent,), dim=1, ) ego_update_and_mask = F.grid_sample( world_update_and_mask_for_sample.to(self.device), F.affine_grid( rotation_and_translate_mat.to(self.device).unsqueeze(0), world_update_and_mask_for_sample.shape, align_corners=False, ), align_corners=False, ) # All that's left now is to crop out the portion of the transformed tensor that we actually # care about (i.e. the portion corresponding to the agent's `self.vision_range_in_map_units`. vr = self.vision_range_in_map_units half_vr = vr // 2 center = self.map_size_in_cm // (2 * self.resolution_in_cm) cropped = ego_update_and_mask[ :, :, :vr, (center - half_vr) : (center + half_vr) ] np.logical_or( self.explored_mask, world_newly_explored.cpu().numpy(), out=self.explored_mask, ) return { "egocentric_update": cropped[0, :-1].permute(1, 2, 0).cpu().numpy(), "egocentric_mask": (cropped[0, -1:].view(vr, vr, 1) > 0.001) .cpu() .numpy(), "explored_mask": np.array(self.explored_mask), "map": np.logical_and( self.explored_mask, (self.ground_truth_semantic_map > 0) ), } def reset(self, min_xyz: np.ndarray, object_hulls: Sequence[ObjectHull2d]): """Reset the map. Resets the internally stored map. # Parameters min_xyz : An array of size (3,) corresponding to the minimum possible x, y, and z values that will be observed as a point in a pointcloud when calling `.update(...)`. The (world-space) maps returned by calls to `update` will have been normalized so the (0,0,:) entry corresponds to these minimum values. object_hulls : The object hulls corresponding to objects in the scene. These will be used to construct the map. """ self.min_xyz = min_xyz self.build_ground_truth_map(object_hulls=object_hulls)
ask4help-main
allenact/embodiedai/mapping/mapping_utils/map_builders.py
# MIT License # # Original Copyright (c) 2020 Devendra Chaplot # # Modified work Copyright (c) 2021 Allen Institute for Artificial Intelligence # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import math from typing import Optional, Sequence, cast import numpy as np import torch def camera_space_xyz_to_world_xyz( camera_space_xyzs: torch.Tensor, camera_world_xyz: torch.Tensor, rotation: float, horizon: float, ) -> torch.Tensor: """Transforms xyz coordinates in the camera's coordinate frame to world- space (global) xyz frame. This code has been adapted from https://github.com/devendrachaplot/Neural-SLAM. **IMPORTANT:** We use the conventions from the Unity game engine. In particular: * A rotation of 0 corresponds to facing north. * Positive rotations correspond to CLOCKWISE rotations. That is a rotation of 90 degrees corresponds to facing east. **THIS IS THE OPPOSITE CONVENTION OF THE ONE GENERALLY USED IN MATHEMATICS.** * When facing NORTH (rotation==0) moving ahead by 1 meter results in the the z coordinate increasing by 1. Moving to the right by 1 meter corresponds to increasing the x coordinate by 1. Finally moving upwards by 1 meter corresponds to increasing the y coordinate by 1. **Having x,z as the ground plane in this way is common in computer graphics but is different than the usual mathematical convention of having z be "up".** * The horizon corresponds to how far below the horizontal the camera is facing. I.e. a horizon of 30 corresponds to the camera being angled downwards at an angle of 30 degrees. # Parameters camera_space_xyzs : A 3xN matrix of xyz coordinates in the camera's reference frame. Here `x, y, z = camera_space_xyzs[:, i]` should equal the xyz coordinates for the ith point. camera_world_xyz : The camera's xyz position in the world reference frame. rotation : The world-space rotation (in degrees) of the camera. horizon : The horizon (in degrees) of the camera. # Returns 3xN tensor with entry [:, i] is the xyz world-space coordinate corresponding to the camera-space coordinate camera_space_xyzs[:, i] """ # Adapted from https://github.com/devendrachaplot/Neural-SLAM. # First compute the transformation that points undergo # due to the camera's horizon psi = -horizon * np.pi / 180 cos_psi = np.cos(psi) sin_psi = np.sin(psi) # fmt: off horizon_transform = camera_space_xyzs.new( [ [1, 0, 0], # unchanged [0, cos_psi, sin_psi], [0, -sin_psi, cos_psi,], ], ) # fmt: on # Next compute the transformation that points undergo # due to the agent's rotation about the y-axis phi = -rotation * np.pi / 180 cos_phi = np.cos(phi) sin_phi = np.sin(phi) # fmt: off rotation_transform = camera_space_xyzs.new( [ [cos_phi, 0, -sin_phi], [0, 1, 0], # unchanged [sin_phi, 0, cos_phi],], ) # fmt: on # Apply the above transformations view_points = (rotation_transform @ horizon_transform) @ camera_space_xyzs # Translate the points w.r.t. the camera's position in world space. world_points = view_points + camera_world_xyz[:, None] return world_points def depth_frame_to_camera_space_xyz( depth_frame: torch.Tensor, mask: Optional[torch.Tensor], fov: float = 90 ) -> torch.Tensor: """Transforms a input depth map into a collection of xyz points (i.e. a point cloud) in the camera's coordinate frame. # Parameters depth_frame : A square depth map, i.e. an MxM matrix with entry `depth_frame[i, j]` equaling the distance from the camera to nearest surface at pixel (i,j). mask : An optional boolean mask of the same size (MxM) as the input depth. Only values where this mask are true will be included in the returned matrix of xyz coordinates. If `None` then no pixels will be masked out (so the returned matrix of xyz points will have dimension 3x(M*M) fov: The field of view of the camera. # Returns A 3xN matrix with entry [:, i] equalling a the xyz coordinates (in the camera's coordinate frame) of a point in the point cloud corresponding to the input depth frame. """ assert ( len(depth_frame.shape) == 2 and depth_frame.shape[0] == depth_frame.shape[1] ), f"depth has shape {depth_frame.shape}, we only support (N, N) shapes for now." resolution = depth_frame.shape[0] if mask is None: mask = torch.ones_like(depth_frame, dtype=bool) # pixel centers camera_space_yx_offsets = ( torch.stack(torch.where(mask)) + 0.5 # Offset by 0.5 so that we are in the middle of the pixel ) # Subtract center camera_space_yx_offsets -= resolution / 2.0 # Make "up" in y be positive camera_space_yx_offsets[0, :] *= -1 # Put points on the clipping plane camera_space_yx_offsets *= (2.0 / resolution) * math.tan((fov / 2) / 180 * math.pi) camera_space_xyz = torch.cat( [ camera_space_yx_offsets[1:, :], # This is x camera_space_yx_offsets[:1, :], # This is y torch.ones_like(camera_space_yx_offsets[:1, :]), ], axis=0, ) return camera_space_xyz * depth_frame[mask][None, :] def depth_frame_to_world_space_xyz( depth_frame: torch.Tensor, camera_world_xyz: torch.Tensor, rotation: float, horizon: float, fov: float, ): """Transforms a input depth map into a collection of xyz points (i.e. a point cloud) in the world-space coordinate frame. **IMPORTANT:** We use the conventions from the Unity game engine. In particular: * A rotation of 0 corresponds to facing north. * Positive rotations correspond to CLOCKWISE rotations. That is a rotation of 90 degrees corresponds to facing east. **THIS IS THE OPPOSITE CONVENTION OF THE ONE GENERALLY USED IN MATHEMATICS.** * When facing NORTH (rotation==0) moving ahead by 1 meter results in the the z coordinate increasing by 1. Moving to the right by 1 meter corresponds to increasing the x coordinate by 1. Finally moving upwards by 1 meter corresponds to increasing the y coordinate by 1. **Having x,z as the ground plane in this way is common in computer graphics but is different than the usual mathematical convention of having z be "up".** * The horizon corresponds to how far below the horizontal the camera is facing. I.e. a horizon of 30 corresponds to the camera being angled downwards at an angle of 30 degrees. # Parameters depth_frame : A square depth map, i.e. an MxM matrix with entry `depth_frame[i, j]` equaling the distance from the camera to nearest surface at pixel (i,j). mask : An optional boolean mask of the same size (MxM) as the input depth. Only values where this mask are true will be included in the returned matrix of xyz coordinates. If `None` then no pixels will be masked out (so the returned matrix of xyz points will have dimension 3x(M*M) camera_space_xyzs : A 3xN matrix of xyz coordinates in the camera's reference frame. Here `x, y, z = camera_space_xyzs[:, i]` should equal the xyz coordinates for the ith point. camera_world_xyz : The camera's xyz position in the world reference frame. rotation : The world-space rotation (in degrees) of the camera. horizon : The horizon (in degrees) of the camera. fov: The field of view of the camera. # Returns A 3xN matrix with entry [:, i] equalling a the xyz coordinates (in the world coordinate frame) of a point in the point cloud corresponding to the input depth frame. """ camera_space_xyz = depth_frame_to_camera_space_xyz( depth_frame=depth_frame, mask=None, fov=fov ) world_points = camera_space_xyz_to_world_xyz( camera_space_xyzs=camera_space_xyz, camera_world_xyz=camera_world_xyz, rotation=rotation, horizon=horizon, ) return world_points.view(3, *depth_frame.shape).permute(1, 2, 0) def project_point_cloud_to_map( xyz_points: torch.Tensor, bin_axis: str, bins: Sequence[float], map_size: int, resolution_in_cm: int, flip_row_col: bool, ): """Bins an input point cloud into a map tensor with the bins equaling the channels. This code has been adapted from https://github.com/devendrachaplot/Neural-SLAM. # Parameters xyz_points : (x,y,z) pointcloud(s) as a torch.Tensor of shape (... x height x width x 3). All operations are vectorized across the `...` dimensions. bin_axis : Either "x", "y", or "z", the axis which should be binned by the values in `bins`. If you have generated your point clouds with any of the other functions in the `point_cloud_utils` module you almost certainly want this to be "y" as this is the default upwards dimension. bins: The values by which to bin along `bin_axis`, see the `bins` parameter of `np.digitize` for more info. map_size : The axes not specified by `bin_axis` will be be divided by `resolution_in_cm / 100` and then rounded to the nearest integer. They are then expected to have their values within the interval [0, ..., map_size - 1]. resolution_in_cm: The resolution_in_cm, in cm, of the map output from this function. Every grid square of the map corresponds to a (`resolution_in_cm`x`resolution_in_cm`) square in space. flip_row_col: Should the rows/cols of the map be flipped? See the 'Returns' section below for more info. # Returns A collection of maps of shape (... x map_size x map_size x (len(bins)+1)), note that bin_axis has been moved to the last index of this returned map, the other two axes stay in their original order unless `flip_row_col` has been called in which case they are reversed (useful as often rows should correspond to y or z instead of x). """ bin_dim = ["x", "y", "z"].index(bin_axis) start_shape = xyz_points.shape xyz_points = xyz_points.reshape([-1, *start_shape[-3:]]) num_clouds, h, w, _ = xyz_points.shape if not flip_row_col: new_order = [i for i in [0, 1, 2] if i != bin_dim] + [bin_dim] else: new_order = [i for i in [2, 1, 0] if i != bin_dim] + [bin_dim] uvw_points = cast( torch.Tensor, torch.stack([xyz_points[..., i] for i in new_order], dim=-1) ) num_bins = len(bins) + 1 isnotnan = ~torch.isnan(xyz_points[..., 0]) uvw_points_binned: torch.Tensor = torch.cat( ( torch.round(100 * uvw_points[..., :-1] / resolution_in_cm).long(), torch.bucketize( uvw_points[..., -1:].contiguous(), boundaries=uvw_points.new(bins) ), ), dim=-1, ) maxes = ( xyz_points.new() .long() .new([map_size, map_size, num_bins]) .reshape((1, 1, 1, 3)) ) isvalid = torch.logical_and( torch.logical_and( (uvw_points_binned >= 0).all(-1), (uvw_points_binned < maxes).all(-1), ), isnotnan, ) uvw_points_binned_with_index_mat = torch.cat( ( torch.repeat_interleave( torch.arange(0, num_clouds).to(xyz_points.device), h * w ).reshape(-1, 1), uvw_points_binned.reshape(-1, 3), ), dim=1, ) uvw_points_binned_with_index_mat[~isvalid.reshape(-1), :] = 0 ind = ( uvw_points_binned_with_index_mat[:, 0] * (map_size * map_size * num_bins) + uvw_points_binned_with_index_mat[:, 1] * (map_size * num_bins) + uvw_points_binned_with_index_mat[:, 2] * num_bins + uvw_points_binned_with_index_mat[:, 3] ) ind[~isvalid.reshape(-1)] = 0 count = torch.bincount( ind.view(-1), isvalid.view(-1).long(), minlength=num_clouds * map_size * map_size * num_bins, ) return count.view(*start_shape[:-3], map_size, map_size, num_bins) ################ # FOR DEBUGGNG # ################ # The below functions are versions of the above which, because of their reliance on # numpy functions, cannot use GPU acceleration. These are possibly useful for debugging, # performance comparisons, or for validating that the above GPU variants work properly. def _cpu_only_camera_space_xyz_to_world_xyz( camera_space_xyzs: np.ndarray, camera_world_xyz: np.ndarray, rotation: float, horizon: float, ): # Adapted from https://github.com/devendrachaplot/Neural-SLAM. # view_position = 3, world_points = 3 x N # NOTE: camera_position is not equal to agent_position!! # First compute the transformation that points undergo # due to the camera's horizon psi = -horizon * np.pi / 180 cos_psi = np.cos(psi) sin_psi = np.sin(psi) # fmt: off horizon_transform = np.array( [ [1, 0, 0], # unchanged [0, cos_psi, sin_psi], [0, -sin_psi, cos_psi,], ], np.float64, ) # fmt: on # Next compute the transformation that points undergo # due to the agent's rotation about the y-axis phi = -rotation * np.pi / 180 cos_phi = np.cos(phi) sin_phi = np.sin(phi) # fmt: off rotation_transform = np.array( [ [cos_phi, 0, -sin_phi], [0, 1, 0], # unchanged [sin_phi, 0, cos_phi],], np.float64, ) # fmt: on # Apply the above transformations view_points = (rotation_transform @ horizon_transform) @ camera_space_xyzs # Translate the points w.r.t. the camera's position in world space. world_points = view_points + camera_world_xyz[:, None] return world_points def _cpu_only_depth_frame_to_camera_space_xyz( depth_frame: np.ndarray, mask: Optional[np.ndarray], fov: float = 90 ): """""" assert ( len(depth_frame.shape) == 2 and depth_frame.shape[0] == depth_frame.shape[1] ), f"depth has shape {depth_frame.shape}, we only support (N, N) shapes for now." resolution = depth_frame.shape[0] if mask is None: mask = np.ones(depth_frame.shape, dtype=bool) # pixel centers camera_space_yx_offsets = ( np.stack(np.where(mask)) + 0.5 # Offset by 0.5 so that we are in the middle of the pixel ) # Subtract center camera_space_yx_offsets -= resolution / 2.0 # Make "up" in y be positive camera_space_yx_offsets[0, :] *= -1 # Put points on the clipping plane camera_space_yx_offsets *= (2.0 / resolution) * math.tan((fov / 2) / 180 * math.pi) camera_space_xyz = np.concatenate( [ camera_space_yx_offsets[1:, :], # This is x camera_space_yx_offsets[:1, :], # This is y np.ones_like(camera_space_yx_offsets[:1, :]), ], axis=0, ) return camera_space_xyz * depth_frame[mask][None, :] def _cpu_only_depth_frame_to_world_space_xyz( depth_frame: np.ndarray, camera_world_xyz: np.ndarray, rotation: float, horizon: float, fov: float, ): camera_space_xyz = _cpu_only_depth_frame_to_camera_space_xyz( depth_frame=depth_frame, mask=None, fov=fov ) world_points = _cpu_only_camera_space_xyz_to_world_xyz( camera_space_xyzs=camera_space_xyz, camera_world_xyz=camera_world_xyz, rotation=rotation, horizon=horizon, ) return world_points.reshape((3, *depth_frame.shape)).transpose((1, 2, 0)) def _cpu_only_project_point_cloud_to_map( xyz_points: np.ndarray, bin_axis: str, bins: Sequence[float], map_size: int, resolution_in_cm: int, flip_row_col: bool, ): """Bins points into bins. Adapted from https://github.com/devendrachaplot/Neural-SLAM. # Parameters xyz_points : (x,y,z) point clouds as a np.ndarray of shape (... x height x width x 3). (x,y,z) should be coordinates specified in meters. bin_axis : Either "x", "y", or "z", the axis which should be binned by the values in `bins` bins: The values by which to bin along `bin_axis`, see the `bins` parameter of `np.digitize` for more info. map_size : The axes not specified by `bin_axis` will be be divided by `resolution_in_cm / 100` and then rounded to the nearest integer. They are then expected to have their values within the interval [0, ..., map_size - 1]. resolution_in_cm: The resolution_in_cm, in cm, of the map output from this function. Every grid square of the map corresponds to a (`resolution_in_cm`x`resolution_in_cm`) square in space. flip_row_col: Should the rows/cols of the map be flipped # Returns A collection of maps of shape (... x map_size x map_size x (len(bins)+1)), note that bin_axis has been moved to the last index of this returned map, the other two axes stay in their original order unless `flip_row_col` has been called in which case they are reversed (useful if you give points as often rows should correspond to y or z instead of x). """ bin_dim = ["x", "y", "z"].index(bin_axis) start_shape = xyz_points.shape xyz_points = xyz_points.reshape([-1, *start_shape[-3:]]) num_clouds, h, w, _ = xyz_points.shape if not flip_row_col: new_order = [i for i in [0, 1, 2] if i != bin_dim] + [bin_dim] else: new_order = [i for i in [2, 1, 0] if i != bin_dim] + [bin_dim] uvw_points: np.ndarray = np.stack([xyz_points[..., i] for i in new_order], axis=-1) num_bins = len(bins) + 1 isnotnan = ~np.isnan(xyz_points[..., 0]) uvw_points_binned = np.concatenate( ( np.round(100 * uvw_points[..., :-1] / resolution_in_cm).astype(np.int32), np.digitize(uvw_points[..., -1:], bins=bins).astype(np.int32), ), axis=-1, ) maxes = np.array([map_size, map_size, num_bins]).reshape((1, 1, 1, 3)) isvalid = np.logical_and.reduce( ( (uvw_points_binned >= 0).all(-1), (uvw_points_binned < maxes).all(-1), isnotnan, ) ) uvw_points_binned_with_index_mat = np.concatenate( ( np.repeat(np.arange(0, num_clouds), h * w).reshape(-1, 1), uvw_points_binned.reshape(-1, 3), ), axis=1, ) uvw_points_binned_with_index_mat[~isvalid.reshape(-1), :] = 0 ind = np.ravel_multi_index( uvw_points_binned_with_index_mat.transpose(), (num_clouds, map_size, map_size, num_bins), ) ind[~isvalid.reshape(-1)] = 0 count = np.bincount( ind.ravel(), isvalid.ravel().astype(np.int32), minlength=num_clouds * map_size * map_size * num_bins, ) return count.reshape([*start_shape[:-3], map_size, map_size, num_bins])
ask4help-main
allenact/embodiedai/mapping/mapping_utils/point_cloud_utils.py
# MIT License # # Original Copyright (c) 2020 Devendra Chaplot # # Modified work Copyright (c) 2021 Allen Institute for Artificial Intelligence # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import math from typing import Optional, Tuple, Dict, Any import numpy as np import torch import torch.nn as nn import torchvision.models as models import torch.nn.functional as F from allenact.utils.model_utils import simple_conv_and_linear_weights_init DEGREES_TO_RADIANS = np.pi / 180.0 RADIANS_TO_DEGREES = 180.0 / np.pi def _inv_sigmoid(x: torch.Tensor): return torch.log(x) - torch.log1p(-x) class ActiveNeuralSLAM(nn.Module): """Active Neural SLAM module. This is an implementation of the Active Neural SLAM module from: ``` Chaplot, D.S., Gandhi, D., Gupta, S., Gupta, A. and Salakhutdinov, R., 2020. Learning To Explore Using Active Neural SLAM. In International Conference on Learning Representations (ICLR). ``` Note that this is purely the mapping component and does not include the planning components from the above paper. This implementation is adapted from `https://github.com/devendrachaplot/Neural-SLAM`, we have extended this implementation to allow for an arbitrary number of output map channels (enabling semantic mapping). At a high level, this model takes as input RGB egocentric images and outputs metric map tensors of shape (# channels) x height x width where height/width correspond to the ground plane of the environment. """ def __init__( self, frame_height: int, frame_width: int, n_map_channels: int, resolution_in_cm: int = 5, map_size_in_cm: int = 2400, vision_range_in_cm: int = 300, use_pose_estimation: bool = False, pretrained_resnet: bool = True, freeze_resnet_batchnorm: bool = True, use_resnet_layernorm: bool = False, ): """Initialize an Active Neural SLAM module. # Parameters frame_height : The height of the RGB images given to this module on calls to `forward`. frame_width : The width of the RGB images given to this module on calls to `forward`. n_map_channels : The number of output channels in the output maps. resolution_in_cm : The resolution of the output map, see `map_size_in_cm`. map_size_in_cm : The height & width of the map in centimeters. The size of the map tensor returned on calls to forward will be `map_size_in_cm/resolution_in_cm`. Note that `map_size_in_cm` must be an divisible by resolution_in_cm. vision_range_in_cm : Given an RGB image input, this module will transform this image into an "egocentric map" with height and width equaling `vision_range_in_cm/resolution_in_cm`. This egocentr map corresponds to the area of the world directly in front of the agent. This "egocentric map" will be rotated/translated into the allocentric reference frame and used to update the larger, allocentric, map whose height and width equal `map_size_in_cm/resolution_in_cm`. Thus this parameter controls how much of the map will be updated on every step. use_pose_estimation : Whether or not we should estimate the agent's change in position/rotation. If `False`, you'll need to provide the ground truth changes in position/rotation. pretrained_resnet : Whether or not to use ImageNet pre-trained model weights for the ResNet18 backbone. freeze_resnet_batchnorm : Whether or not the batch normalization layers in the ResNet18 backbone should be frozen and batchnorm updates disabled. You almost certainly want this to be `True` as using batch normalization during RL training results in all sorts of issues unless you're very careful. use_resnet_layernorm : If you've enabled `freeze_resnet_batchnorm` (recommended) you'll likely want to normalize the output from the ResNet18 model as we've found that these values can otherwise grow quite large harming learning. """ super(ActiveNeuralSLAM, self).__init__() self.frame_height = frame_height self.frame_width = frame_width self.n_map_channels = n_map_channels self.resolution_in_cm = resolution_in_cm self.map_size_in_cm = map_size_in_cm self.input_channels = 3 self.vision_range_in_cm = vision_range_in_cm self.dropout = 0.5 self.use_pose_estimation = use_pose_estimation self.freeze_resnet_batchnorm = freeze_resnet_batchnorm self.max_abs_map_logit_value = 20 # Visual Encoding resnet = models.resnet18(pretrained=pretrained_resnet) self.resnet_l5 = nn.Sequential(*list(resnet.children())[0:8]) self.conv = nn.Sequential( *filter(bool, [nn.Conv2d(512, 64, (1, 1), stride=(1, 1)), nn.ReLU()]) ) self.bn_modules = [ module for module in self.resnet_l5.modules() if "BatchNorm" in type(module).__name__ ] if freeze_resnet_batchnorm: for bn in self.bn_modules: bn.momentum = 0 # Layernorm (if requested) self.use_resnet_layernorm = use_resnet_layernorm if self.use_resnet_layernorm: assert ( self.freeze_resnet_batchnorm ), "When using layernorm, we require that set `freeze_resnet_batchnorm` to True." self.resnet_normalizer = nn.Sequential( nn.Conv2d(512, 512, 1), nn.LayerNorm(normalized_shape=[512, 7, 7], elementwise_affine=True,), ) self.resnet_normalizer.apply(simple_conv_and_linear_weights_init) else: self.resnet_normalizer = nn.Identity() # convolution output size input_test = torch.randn( 1, self.input_channels, self.frame_height, self.frame_width ) # Have to explicitly call .forward to get past LGTM checks as it thinks nn.Sequential isn't callable conv_output = self.conv.forward(self.resnet_l5.forward(input_test)) self.conv_output_size = conv_output.view(-1).size(0) # projection layer self.proj1 = nn.Linear(self.conv_output_size, 1024) assert self.vision_range % 8 == 0 self.deconv_in_height = self.vision_range // 8 self.deconv_in_width = self.deconv_in_height self.n_input_channels_for_deconv = 64 proj2_out_size = 64 * self.deconv_in_height * self.deconv_in_width self.proj2 = nn.Linear(1024, proj2_out_size) if self.dropout > 0: self.dropout1 = nn.Dropout(self.dropout) self.dropout2 = nn.Dropout(self.dropout) # Deconv layers to predict map self.deconv = nn.Sequential( *filter( bool, [ nn.ConvTranspose2d( self.n_input_channels_for_deconv, 32, (4, 4), stride=(2, 2), padding=(1, 1), ), nn.ReLU(), nn.ConvTranspose2d(32, 16, (4, 4), stride=(2, 2), padding=(1, 1)), nn.ReLU(), nn.ConvTranspose2d( 16, self.n_map_channels, (4, 4), stride=(2, 2), padding=(1, 1) ), ], ) ) # Pose Estimator self.pose_conv = nn.Sequential( nn.Conv2d(2 * self.n_map_channels, 64, (4, 4), stride=(2, 2)), nn.ReLU(inplace=True), nn.Conv2d(64, 32, (4, 4), stride=(2, 2)), nn.ReLU(inplace=True), nn.Conv2d(32, 16, (3, 3), stride=(1, 1)), nn.ReLU(inplace=True), nn.Flatten(), ) self.pose_conv_output_dim = ( self.pose_conv.forward( torch.zeros( 1, 2 * self.n_map_channels, self.vision_range, self.vision_range ) ) .view(-1) .size(0) ) # projection layer self.pose_proj1 = nn.Linear(self.pose_conv_output_dim, 1024) self.pose_proj2_x = nn.Linear(1024, 128) self.pose_proj2_z = nn.Linear(1024, 128) self.pose_proj2_o = nn.Linear(1024, 128) self.pose_proj3_x = nn.Linear(128, 1) self.pose_proj3_y = nn.Linear(128, 1) self.pose_proj3_o = nn.Linear(128, 1) if self.dropout > 0: self.pose_dropout1 = nn.Dropout(self.dropout) self.train() @property def device(self): d = self.pose_proj1.weight.get_device() if d < 0: return torch.device("cpu") return torch.device(d) def train(self, mode: bool = True): super().train(mode=mode) if mode and self.freeze_resnet_batchnorm: for module in self.bn_modules: module.eval() @property def map_size(self): return self.map_size_in_cm // self.resolution_in_cm @property def vision_range(self): return self.vision_range_in_cm // (self.resolution_in_cm) def image_to_egocentric_map_logits( self, images: Optional[torch.Tensor], resnet_image_features: Optional[torch.Tensor] = None, ): if resnet_image_features is None: bs, _, _, _ = images.size() resnet_image_features = self.resnet_normalizer( self.resnet_l5(images[:, :3, :, :]) ) else: bs = resnet_image_features.shape[0] conv_output = self.conv(resnet_image_features) proj1 = F.relu(self.proj1(conv_output.reshape(-1, self.conv_output_size))) if self.dropout > 0: proj1 = self.dropout1(proj1) proj3 = F.relu(self.proj2(proj1)) deconv_input = proj3.view( bs, self.n_input_channels_for_deconv, self.deconv_in_height, self.deconv_in_width, ) deconv_output = self.deconv(deconv_input) return deconv_output def allocentric_map_to_egocentric_view( self, allocentric_map: torch.Tensor, xzr: torch.Tensor, padding_mode: str ): # Index the egocentric viewpoints at the given xzr locations with torch.no_grad(): allocentric_map = allocentric_map.float() xzr = xzr.float() theta = xzr[:, 2].float() * float(np.pi / 180) # Here form the rotation matrix cos_theta = torch.cos(theta) sin_theta = torch.sin(theta) rot_mat = torch.stack( ( torch.stack((cos_theta, -sin_theta), -1), torch.stack((sin_theta, cos_theta), -1), ), 1, ) scaler = 2 * (100 / (self.resolution_in_cm * self.map_size)) offset_to_center_the_agent = scaler * xzr[:, :2].unsqueeze(-1) - 1 offset_to_top_of_image = rot_mat @ torch.FloatTensor([0, 1.0]).unsqueeze( 1 ).to(self.device) rotation_and_translate_mat = torch.cat( (rot_mat, offset_to_top_of_image + offset_to_center_the_agent,), dim=-1, ) ego_map = F.grid_sample( allocentric_map, F.affine_grid( rotation_and_translate_mat.to(self.device), allocentric_map.shape, ), padding_mode=padding_mode, align_corners=False, ) vr = self.vision_range half_vr = vr // 2 center = self.map_size_in_cm // (2 * self.resolution_in_cm) cropped = ego_map[:, :, :vr, (center - half_vr) : (center + half_vr)] return cropped def estimate_egocentric_dx_dz_dr( self, map_probs_egocentric: torch.Tensor, last_map_probs_egocentric: torch.Tensor, ): assert last_map_probs_egocentric.shape == map_probs_egocentric.shape pose_est_input = torch.cat( (map_probs_egocentric.detach(), last_map_probs_egocentric.detach()), dim=1 ) pose_conv_output = self.pose_conv(pose_est_input) proj1 = F.relu(self.pose_proj1(pose_conv_output)) if self.dropout > 0: proj1 = self.pose_dropout1(proj1) proj2_x = F.relu(self.pose_proj2_x(proj1)) pred_dx = self.pose_proj3_x(proj2_x) proj2_z = F.relu(self.pose_proj2_z(proj1)) pred_dz = self.pose_proj3_y(proj2_z) proj2_o = F.relu(self.pose_proj2_o(proj1)) pred_do = self.pose_proj3_o(proj2_o) return torch.cat((pred_dx, pred_dz, pred_do), dim=1) @staticmethod def update_allocentric_xzrs_with_egocentric_movement( last_xzrs_allocentric: torch.Tensor, dx_dz_drs_egocentric: torch.Tensor, ): new_xzrs_allocentric = last_xzrs_allocentric.clone() theta = new_xzrs_allocentric[:, 2] * DEGREES_TO_RADIANS sin_theta = torch.sin(theta) cos_theta = torch.cos(theta) new_xzrs_allocentric[:, :2] += torch.matmul( torch.stack([cos_theta, -sin_theta, sin_theta, cos_theta], dim=-1).view( -1, 2, 2 ), dx_dz_drs_egocentric[:, :2].unsqueeze(-1), ).squeeze(-1) new_xzrs_allocentric[:, 2] += dx_dz_drs_egocentric[:, 2] new_xzrs_allocentric[:, 2] = ( torch.fmod(new_xzrs_allocentric[:, 2] - 180.0, 360.0) + 180.0 ) new_xzrs_allocentric[:, 2] = ( torch.fmod(new_xzrs_allocentric[:, 2] + 180.0, 360.0) - 180.0 ) return new_xzrs_allocentric def forward( self, images: Optional[torch.Tensor], last_map_probs_allocentric: Optional[torch.Tensor], last_xzrs_allocentric: Optional[torch.Tensor], dx_dz_drs_egocentric: Optional[torch.Tensor], last_map_logits_egocentric: Optional[torch.Tensor], return_allocentric_maps=True, resnet_image_features: Optional[torch.Tensor] = None, ) -> Dict[str, Any]: """Create allocentric/egocentric maps predictions given RGB image inputs. Here it is assumed that `last_xzrs_allocentric` has been re-centered so that (x, z) == (0,0) corresponds to the top left of the returned map (with increasing x/z moving to the bottom right of the map). Note that all maps are oriented so that: * **Increasing x values** correspond to **increasing columns** in the map(s). * **Increasing z values** correspond to **increasing rows** in the map(s). Note that this may seem a bit weird as: * "north" is pointing downwards in the map, * if you picture yourself as the agent facing north (i.e. down) in the map, then moving to the right from the agent's perspective will correspond to **increasing** which column the agent is at: ``` agent facing downwards - - > (dir. to the right of the agent, i.e. moving right corresponds to +cols) | | v (dir. agent faces, i.e. moving ahead corresponds to +rows) ``` This may be the opposite of what you expect. # Parameters images : A (# batches) x 3 x height x width tensor of RGB images. These should be normalized for use with a resnet model. See [here](https_DOC_COLON_//pytorch.org/vision/stable/models.html) for information (see also the `use_resnet_normalization` parameter of the `allenact.base_abstractions.sensor.RGBSensor` sensor). last_map_probs_allocentric : A (# batches) x (map channels) x (map height) x (map width) tensor representing the colllection of allocentric maps to be updated. last_xzrs_allocentric : A (# batches) x 3 tensor where `last_xzrs_allocentric[_DOC_COLON_, 0]` are the agent's (allocentric) x-coordinates on the previous step, `last_xzrs_allocentric[_DOC_COLON_, 1]` are the agent's (allocentric) z-coordinates from the previous step, and `last_xzrs_allocentric[_DOC_COLON_, 2]` are the agent's rotations (allocentric, in degrees) from the prevoius step. dx_dz_drs_egocentric : A (# batches) x 3 tensor representing the agent's change in x (in meters), z (in meters), and rotation (in degrees) from the previous step. Note that these changes are "egocentric" so that if the agent moved 1 meter ahead from it's perspective this should correspond to a dz of +1.0 regardless of the agent's orientation (similarly moving right would result in a dx of +1.0). This is ignored (and thus can be `None`) if you are using pose estimation (i.e. `self.use_pose_estimation` is `True`) or if `return_allocentric_maps` is `False`. last_map_logits_egocentric : The "egocentric_update" output when calling this function on the last agent's step. I.e. this should be the egocentric map view of the agent from the last step. This is used to compute the change in the agent's position rotation. This is ignored (and thus can be `None`) if you do not wish to estimate the agent's pose (i.e. `self.use_pose_estimation` is `False`). return_allocentric_maps : Whether or not to generate new allocentric maps given `last_map_probs_allocentric` and the new map estimates. Creating these new allocentric maps is expensive so better avoided when not needed. resnet_image_features : Sometimes you may wish to compute the ResNet image features yourself for use in another part of your model. Rather than having to recompute them multiple times, you can instead compute them once and pass them into this forward call (in this case the input `images` parameter is ignored). Note that if you're using the `self.resnet_l5` module to compute these features, be sure to also normalize them with `self.resnet_normalizer` if you have opted to `use_resnet_layernorm` when initializing this module). # Returns A dictionary with keys/values: * "egocentric_update" - The egocentric map view for the given RGB image. This is what should be used for computing losses in general. * "map_logits_probs_update_no_grad" - The egocentric map view after it has been rotated, translated, and moved into a full-sized allocentric map. This map has been detached from the computation graph and so should not be used for gradient computations. This will be `None` if `return_allocentric_maps` was `False`. * "map_logits_probs_no_grad" - The newly updated allocentric map, this corresponds to performing a pointwise maximum between `last_map_probs_allocentric` and the above returned `map_probs_allocentric_update_no_grad`. This will be `None` if `return_allocentric_maps` was `False`. * "dx_dz_dr_egocentric_preds" - The predicted change in x, z, and rotation of the agent (from the egocentric perspective of the agent). * "xzr_allocentric_preds" - The (predicted if `self.use_pose_estimation == True`) allocentric (x, z) position and rotation of the agent. This will equal `None` if `self.use_pose_estimation == False` and `dx_dz_drs_egocentric` is `None`. """ # TODO: For consistency we should update things so that: # "Furthermore, the rotation component of `last_xzrs_allocentric` and `dx_dz_drs_egocentric` # should be specified in **degrees* with positive rotation corresponding to a **CLOCKWISE** # rotation (this is the default used by the many game engines)." map_logits_egocentric = self.image_to_egocentric_map_logits( images=images, resnet_image_features=resnet_image_features ) map_probs_egocentric = torch.sigmoid(map_logits_egocentric) dx_dz_dr_egocentric_preds = None if last_map_logits_egocentric is not None: dx_dz_dr_egocentric_preds = self.estimate_egocentric_dx_dz_dr( map_probs_egocentric=map_probs_egocentric, last_map_probs_egocentric=torch.sigmoid(last_map_logits_egocentric), ) if self.use_pose_estimation: updated_xzrs_allocentrc = self.update_allocentric_xzrs_with_egocentric_movement( last_xzrs_allocentric=last_xzrs_allocentric, dx_dz_drs_egocentric=dx_dz_dr_egocentric_preds, ) elif dx_dz_drs_egocentric is not None: updated_xzrs_allocentrc = self.update_allocentric_xzrs_with_egocentric_movement( last_xzrs_allocentric=last_xzrs_allocentric, dx_dz_drs_egocentric=dx_dz_drs_egocentric, ) else: updated_xzrs_allocentrc = None if return_allocentric_maps: # Aggregate egocentric map prediction in the allocentric map # using the predicted pose (if `self.use_pose_estimation`) or the ground # truth pose (if not `self.use_pose_estimation`) with torch.no_grad(): # Rotate and translate the egocentric map view, we do this grid sampling # at the level of probabilities as bad results can occur at the logit level full_size_allocentric_map_probs_update = _move_egocentric_map_view_into_allocentric_position( map_probs_egocentric=map_probs_egocentric, xzrs_allocentric=updated_xzrs_allocentrc, allocentric_map_height_width=(self.map_size, self.map_size), resolution_in_cm=self.resolution_in_cm, ) map_probs_allocentric = torch.max( last_map_probs_allocentric, full_size_allocentric_map_probs_update ) else: full_size_allocentric_map_probs_update = None map_probs_allocentric = None return { "egocentric_update": map_logits_egocentric, "map_probs_allocentric_update_no_grad": full_size_allocentric_map_probs_update, "map_probs_allocentric_no_grad": map_probs_allocentric, "dx_dz_dr_egocentric_preds": dx_dz_dr_egocentric_preds, "xzr_allocentric_preds": updated_xzrs_allocentrc, } def _move_egocentric_map_view_into_allocentric_position( map_probs_egocentric: torch.Tensor, xzrs_allocentric: torch.Tensor, allocentric_map_height_width: Tuple[int, int], resolution_in_cm: float, ): """Translate/rotate an egocentric map view into an allocentric map. Let's say you have a collection of egocentric maps in a tensor of shape `(# batches) x (# channels) x (# ego rows) x (# ego columns)` where these are "egocentric" as we assume the agent is always at the center of the map and facing "downwards", namely * **ahead** of the agent should correspond to **increasing rows** in the map(s). * **right** of the agent should correspond to **increasing columns** in the map(s). Note that the above is a bit weird as, if you picture yourself as the agent facing downwards in the map, then moving to the right from the agent perspective. Here's how things should look if you plotted one of these egocentric maps: ``` center of map - - > (dir. to the right of the agent, i.e. moving right corresponds to +cols) | | v (dir. agent faces, i.e. moving ahead corresponds to +rows) ``` This function is used to translate/rotate the above ego maps so that they are in the right position/rotation in an allocentric map of size `(# batches) x (# channels) x (# allocentric_map_height_width[0]) x (# allocentric_map_height_width[1])`. Adapted from the get_grid function in https://github.com/devendrachaplot/Neural-SLAM. # Parameters map_probs_egocentric : Egocentric map views. xzrs_allocentric : (# batches)x3 tensor with `xzrs_allocentric[:, 0]` being the x-coordinates (in meters), `xzrs_allocentric[:, 1]` being the z-coordinates (in meters), and `xzrs_allocentric[:, 2]` being the rotation (in degrees) of the agent in the allocentric reference frame. Here it is assumed that `xzrs_allocentric` has been re-centered so that (x, z) == (0,0) corresponds to the top left of the returned map (with increasing x/z moving to the bottom right of the map). Note that positive rotations are in the counterclockwise direction. allocentric_map_height_width : Height/width of the allocentric map to be returned resolution_in_cm : Resolution (in cm) of map to be returned (and of map_probs_egocentric). I.e. `map_probs_egocentric[0,0,0:1,0:1]` should correspond to a `resolution_in_cm x resolution_in_cm` square on the ground plane in the world. # Returns `(# batches) x (# channels) x (# allocentric_map_height_width[0]) x (# allocentric_map_height_width[1])` tensor where the input `map_probs_egocentric` maps have been rotated/translated so that they are in the positions specified by `xzrs_allocentric`. """ # TODO: For consistency we should update the rotations so they are in the clockwise direction. # First we place the egocentric map view into the center # of a map that has the same size as the allocentric map nbatch, c, ego_h, ego_w = map_probs_egocentric.shape allo_h, allo_w = allocentric_map_height_width max_view_range = math.sqrt((ego_w / 2.0) ** 2 + ego_h ** 2) if min(allo_h, allo_w) / 2.0 < max_view_range: raise NotImplementedError( f"The shape of your egocentric view (ego_h, ego_w)==({ego_h, ego_w})" f" is too large relative the size of the allocentric map (allo_h, allo_w)==({allo_h}, {allo_w})." f" The height/width of your allocentric map should be at least {2 * max_view_range} to allow" f" for no information to be lost when rotating the egocentric map." ) full_size_ego_map_update_probs = map_probs_egocentric.new( nbatch, c, *allocentric_map_height_width ).fill_(0) assert (ego_h % 2, ego_w % 2, allo_h % 2, allo_w % 2) == ( 0, ) * 4, "All map heights/widths should be divisible by 2." x1 = allo_w // 2 - ego_w // 2 x2 = x1 + ego_w z1 = allo_h // 2 z2 = z1 + ego_h full_size_ego_map_update_probs[:, :, z1:z2, x1:x2] = map_probs_egocentric # Now we'll rotate and translate `full_size_ego_map_update_probs` # so that the egocentric map view is positioned where it should be # in the allocentric coordinate frame # To do this we first need to rescale our allocentric xz coordinates # so that the center of the map is (0,0) and the top left corner is (-1, -1) # as this is what's expected by the `affine_grid` function below. rescaled_xzrs_allocentric = xzrs_allocentric.clone().detach().float() rescaled_xzrs_allocentric[:, :2] *= ( 100.0 / resolution_in_cm ) # Put x / z into map units rather than meters rescaled_xzrs_allocentric[:, 0] /= allo_w / 2 # x corresponds to columns rescaled_xzrs_allocentric[:, 1] /= allo_h / 2 # z corresponds to rows rescaled_xzrs_allocentric[:, :2] -= 1.0 # Re-center x = rescaled_xzrs_allocentric[:, 0] z = rescaled_xzrs_allocentric[:, 1] theta = ( -rescaled_xzrs_allocentric[:, 2] * DEGREES_TO_RADIANS ) # Notice the negative sign cos_theta = theta.cos() sin_theta = theta.sin() zeroes = torch.zeros_like(cos_theta) ones = torch.ones_like(cos_theta) theta11 = torch.stack([cos_theta, -sin_theta, zeroes], 1) theta12 = torch.stack([sin_theta, cos_theta, zeroes], 1) theta1 = torch.stack([theta11, theta12], 1) theta21 = torch.stack([ones, zeroes, x], 1) theta22 = torch.stack([zeroes, ones, z], 1) theta2 = torch.stack([theta21, theta22], 1) grid_size = (nbatch, c, allo_h, allo_w) rot_grid = F.affine_grid(theta1, grid_size) trans_grid = F.affine_grid(theta2, grid_size) return F.grid_sample( F.grid_sample( full_size_ego_map_update_probs, rot_grid, padding_mode="zeros", align_corners=False, ), trans_grid, padding_mode="zeros", align_corners=False, )
ask4help-main
allenact/embodiedai/mapping/mapping_models/active_neural_slam.py
ask4help-main
allenact/embodiedai/mapping/mapping_models/__init__.py
ask4help-main
allenact/embodiedai/preprocessors/__init__.py
from typing import List, Callable, Optional, Any, cast, Dict import gym import numpy as np import torch import torch.nn as nn from torchvision import models from allenact.base_abstractions.preprocessor import Preprocessor from allenact.utils.misc_utils import prepare_locals_for_super class ResNetEmbedder(nn.Module): def __init__(self, resnet, pool=True): super().__init__() self.model = resnet self.pool = pool self.eval() def forward(self, x): with torch.no_grad(): x = self.model.conv1(x) x = self.model.bn1(x) x = self.model.relu(x) x = self.model.maxpool(x) x = self.model.layer1(x) x = self.model.layer2(x) x = self.model.layer3(x) x = self.model.layer4(x) if not self.pool: return x else: x = self.model.avgpool(x) x = torch.flatten(x, 1) return x class ResNetPreprocessor(Preprocessor): """Preprocess RGB or depth image using a ResNet model.""" def __init__( self, input_uuids: List[str], output_uuid: str, input_height: int, input_width: int, output_height: int, output_width: int, output_dims: int, pool: bool, torchvision_resnet_model: Callable[..., models.ResNet] = models.resnet18, device: Optional[torch.device] = None, device_ids: Optional[List[torch.device]] = None, **kwargs: Any ): def f(x, k): assert k in x, "{} must be set in ResNetPreprocessor".format(k) return x[k] def optf(x, k, default): return x[k] if k in x else default self.input_height = input_height self.input_width = input_width self.output_height = output_height self.output_width = output_width self.output_dims = output_dims self.pool = pool self.make_model = torchvision_resnet_model self.device = torch.device("cpu") if device is None else device self.device_ids = device_ids or cast( List[torch.device], list(range(torch.cuda.device_count())) ) self._resnet: Optional[ResNetEmbedder] = None low = -np.inf high = np.inf shape = (self.output_dims, self.output_height, self.output_width) assert ( len(input_uuids) == 1 ), "resnet preprocessor can only consume one observation type" observation_space = gym.spaces.Box(low=low, high=high, shape=shape) super().__init__(**prepare_locals_for_super(locals())) @property def resnet(self) -> ResNetEmbedder: if self._resnet is None: self._resnet = ResNetEmbedder( self.make_model(pretrained=True).to(self.device), pool=self.pool ) return self._resnet def to(self, device: torch.device) -> "ResNetPreprocessor": self._resnet = self.resnet.to(device) self.device = device return self def process(self, obs: Dict[str, Any], *args: Any, **kwargs: Any) -> Any: x = obs[self.input_uuids[0]].to(self.device).permute(0, 3, 1, 2) # bhwc -> bchw # If the input is depth, repeat it across all 3 channels if x.shape[1] == 1: x = x.repeat(1, 3, 1, 1) return self.resnet(x.to(self.device))
ask4help-main
allenact/embodiedai/preprocessors/resnet.py
from abc import abstractmethod, ABC from typing import Optional, Tuple, Any, cast, Union, Sequence import PIL import gym import numpy as np from torchvision import transforms from allenact.base_abstractions.misc import EnvType from allenact.base_abstractions.sensor import Sensor from allenact.base_abstractions.task import SubTaskType from allenact.utils.misc_utils import prepare_locals_for_super from allenact.utils.tensor_utils import ScaleBothSides class VisionSensor(Sensor[EnvType, SubTaskType]): def __init__( self, mean: Optional[np.ndarray] = None, stdev: Optional[np.ndarray] = None, height: Optional[int] = None, width: Optional[int] = None, uuid: str = "vision", output_shape: Optional[Tuple[int, ...]] = None, output_channels: Optional[int] = None, unnormalized_infimum: float = -np.inf, unnormalized_supremum: float = np.inf, scale_first: bool = True, **kwargs: Any ): """Initializer. # Parameters mean : The images will be normalized with the given mean stdev : The images will be normalized with the given standard deviations. height : If it's a non-negative integer and `width` is also non-negative integer, the image returned from the environment will be rescaled to have `height` rows and `width` columns using bilinear sampling. width : If it's a non-negative integer and `height` is also non-negative integer, the image returned from the environment will be rescaled to have `height` rows and `width` columns using bilinear sampling. uuid : The universally unique identifier for the sensor. output_shape : Optional observation space shape (alternative to `output_channels`). output_channels : Optional observation space number of channels (alternative to `output_shape`). unnormalized_infimum : Lower limit(s) for the observation space range. unnormalized_supremum : Upper limit(s) for the observation space range. scale_first : Whether to scale image before normalization (if needed). kwargs : Extra kwargs. Currently unused. """ self._norm_means = mean self._norm_sds = stdev assert (self._norm_means is None) == (self._norm_sds is None), ( "In VisionSensor's config, " "either both mean/stdev must be None or neither." ) self._should_normalize = self._norm_means is not None self._height = height self._width = width assert (self._width is None) == (self._height is None), ( "In VisionSensor's config, " "either both height/width must be None or neither." ) self._scale_first = scale_first self.scaler: Optional[ScaleBothSides] = None if self._width is not None: self.scaler = ScaleBothSides( width=cast(int, self._width), height=cast(int, self._height) ) self.to_pil = transforms.ToPILImage() # assumes mode="RGB" for 3 channels self._observation_space = self._make_observation_space( output_shape=output_shape, output_channels=output_channels, unnormalized_infimum=unnormalized_infimum, unnormalized_supremum=unnormalized_supremum, ) assert int(PIL.__version__.split(".")[0]) != 7, ( "We found that Pillow version >=7.* has broken scaling," " please downgrade to version 6.2.1 or upgrade to >=8.0.0" ) observation_space = self._get_observation_space() super().__init__(**prepare_locals_for_super(locals())) def _make_observation_space( self, output_shape: Optional[Tuple[int, ...]], output_channels: Optional[int], unnormalized_infimum: float, unnormalized_supremum: float, ) -> gym.spaces.Box: assert output_shape is None or output_channels is None, ( "In VisionSensor's config, " "only one of output_shape and output_channels can be not None." ) shape: Optional[Tuple[int, ...]] = None if output_shape is not None: shape = output_shape elif self._height is not None and output_channels is not None: shape = ( cast(int, self._height), cast(int, self._width), cast(int, output_channels), ) if not self._should_normalize or shape is None or len(shape) == 1: return gym.spaces.Box( low=np.float32(unnormalized_infimum), high=np.float32(unnormalized_supremum), shape=shape, ) else: out_shape = shape[:-1] + (1,) low = np.tile( (unnormalized_infimum - cast(np.ndarray, self._norm_means)) / cast(np.ndarray, self._norm_sds), out_shape, ) high = np.tile( (unnormalized_supremum - cast(np.ndarray, self._norm_means)) / cast(np.ndarray, self._norm_sds), out_shape, ) return gym.spaces.Box(low=np.float32(low), high=np.float32(high)) def _get_observation_space(self): return self._observation_space @property def height(self) -> Optional[int]: """Height that input image will be rescale to have. # Returns The height as a non-negative integer or `None` if no rescaling is done. """ return self._height @property def width(self) -> Optional[int]: """Width that input image will be rescale to have. # Returns The width as a non-negative integer or `None` if no rescaling is done. """ return self._width @abstractmethod def frame_from_env(self, env: EnvType, task: Optional[SubTaskType]) -> np.ndarray: raise NotImplementedError def get_observation( self, env: EnvType, task: Optional[SubTaskType], *args: Any, **kwargs: Any ) -> Any: im = self.frame_from_env(env=env, task=task) assert ( im.dtype == np.float32 and (len(im.shape) == 2 or im.shape[-1] == 1) ) or (im.shape[-1] == 3 and im.dtype == np.uint8), ( "Input frame must either have 3 channels and be of" " type np.uint8 or have one channel and be of type np.float32" ) if self._scale_first: if self.scaler is not None and im.shape[:2] != (self._height, self._width): im = np.array(self.scaler(self.to_pil(im)), dtype=im.dtype) # hwc assert im.dtype in [np.uint8, np.float32] if im.dtype == np.uint8: im = im.astype(np.float32) / 255.0 if self._should_normalize: im -= self._norm_means im /= self._norm_sds if not self._scale_first: if self.scaler is not None and im.shape[:2] != (self._height, self._width): im = np.array(self.scaler(self.to_pil(im)), dtype=np.float32) # hwc return im class RGBSensor(VisionSensor[EnvType, SubTaskType], ABC): IMAGENET_RGB_MEANS: Tuple[float, float, float] = (0.485, 0.456, 0.406) IMAGENET_RGB_STDS: Tuple[float, float, float] = (0.229, 0.224, 0.225) def __init__( self, use_resnet_normalization: bool = False, mean: Optional[Union[np.ndarray, Sequence[float]]] = IMAGENET_RGB_MEANS, stdev: Optional[Union[np.ndarray, Sequence[float]]] = IMAGENET_RGB_STDS, height: Optional[int] = None, width: Optional[int] = None, uuid: str = "rgb", output_shape: Optional[Tuple[int, ...]] = None, output_channels: int = 3, unnormalized_infimum: float = 0.0, unnormalized_supremum: float = 1.0, scale_first: bool = True, **kwargs: Any ): """Initializer. # Parameters use_resnet_normalization : Whether to apply image normalization with the given `mean` and `stdev`. mean : The images will be normalized with the given mean if `use_resnet_normalization` is True (default `[0.485, 0.456, 0.406]`, i.e. the standard resnet normalization mean). stdev : The images will be normalized with the given standard deviation if `use_resnet_normalization` is True (default `[0.229, 0.224, 0.225]`, i.e. the standard resnet normalization standard deviation). height: If it's a non-negative integer and `width` is also non-negative integer, the image returned from the environment will be rescaled to have `height` rows and `width` columns using bilinear sampling. width: If it's a non-negative integer and `height` is also non-negative integer, the image returned from the environment will be rescaled to have `height` rows and `width` columns using bilinear sampling. uuid: The universally unique identifier for the sensor. output_shape: Optional observation space shape (alternative to `output_channels`). output_channels: Optional observation space number of channels (alternative to `output_shape`). unnormalized_infimum: Lower limit(s) for the observation space range. unnormalized_supremum: Upper limit(s) for the observation space range. scale_first: Whether to scale image before normalization (if needed). kwargs : Extra kwargs. Currently unused. """ if not use_resnet_normalization: mean, stdev = None, None if isinstance(mean, tuple): mean = np.array(mean, dtype=np.float32).reshape(1, 1, len(mean)) if isinstance(stdev, tuple): stdev = np.array(stdev, dtype=np.float32).reshape(1, 1, len(stdev)) super().__init__(**prepare_locals_for_super(locals())) class DepthSensor(VisionSensor[EnvType, SubTaskType], ABC): def __init__( self, use_normalization: bool = False, mean: Optional[Union[np.ndarray, float]] = 0.5, stdev: Optional[Union[np.ndarray, float]] = 0.25, height: Optional[int] = None, width: Optional[int] = None, uuid: str = "depth", output_shape: Optional[Tuple[int, ...]] = None, output_channels: int = 1, unnormalized_infimum: float = 0.0, unnormalized_supremum: float = 5.0, scale_first: bool = True, **kwargs: Any ): """Initializer. # Parameters config : If `config["use_normalization"]` is `True` then the depth images will be normalized with mean 0.5 and standard deviation 0.25. If both `config["height"]` and `config["width"]` are non-negative integers then the depth image returned from the environment will be rescaled to have shape (config["height"], config["width"]) using bilinear sampling. use_normalization : Whether to apply image normalization with the given `mean` and `stdev`. mean : The images will be normalized with the given mean if `use_normalization` is True (default 0.5). stdev : The images will be normalized with the given standard deviation if `use_normalization` is True (default 0.25). height: If it's a non-negative integer and `width` is also non-negative integer, the image returned from the environment will be rescaled to have `height` rows and `width` columns using bilinear sampling. width: If it's a non-negative integer and `height` is also non-negative integer, the image returned from the environment will be rescaled to have `height` rows and `width` columns using bilinear sampling. uuid: The universally unique identifier for the sensor. output_shape: Optional observation space shape (alternative to `output_channels`). output_channels: Optional observation space number of channels (alternative to `output_shape`). unnormalized_infimum: Lower limit(s) for the observation space range. unnormalized_supremum: Upper limit(s) for the observation space range. scale_first: Whether to scale image before normalization (if needed). kwargs : Extra kwargs. Currently unused. """ if not use_normalization: mean, stdev = None, None if isinstance(mean, float): mean = np.array(mean, dtype=np.float32).reshape(1, 1) if isinstance(stdev, float): stdev = np.array(stdev, dtype=np.float32).reshape(1, 1) super().__init__(**prepare_locals_for_super(locals())) def get_observation( # type: ignore self, env: EnvType, task: Optional[SubTaskType], *args: Any, **kwargs: Any ) -> Any: depth = super().get_observation(env, task, *args, **kwargs) depth = np.expand_dims(depth, 2) return depth
ask4help-main
allenact/embodiedai/sensors/vision_sensors.py
ask4help-main
allenact/embodiedai/sensors/__init__.py
# Original work Copyright (c) Facebook, Inc. and its affiliates. # Modified work Copyright (c) Allen Institute for AI # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Several of the models defined in this file are modified versions of those found in https://github.com/joel99/habitat-pointnav- aux/blob/master/habitat_baselines/""" import torch import torch.nn as nn from allenact.utils.model_utils import FeatureEmbedding from allenact.embodiedai.aux_losses.losses import ( InverseDynamicsLoss, TemporalDistanceLoss, CPCALoss, FrequencyLoss, SupImitationLoss ) class AuxiliaryModel(nn.Module): """The class of defining the models for all kinds of self-supervised auxiliary tasks.""" def __init__( self, aux_uuid: str, action_dim: int, obs_embed_dim: int, belief_dim: int, action_embed_size: int = 4, cpca_classifier_hidden_dim: int = 32, ): super().__init__() self.aux_uuid = aux_uuid self.action_dim = action_dim self.obs_embed_dim = obs_embed_dim self.belief_dim = belief_dim if self.aux_uuid == InverseDynamicsLoss.UUID: self.decoder = nn.Linear( 2 * self.obs_embed_dim + self.belief_dim, self.action_dim ) elif self.aux_uuid == TemporalDistanceLoss.UUID: self.decoder = nn.Linear(2 * self.obs_embed_dim + self.belief_dim, 1) elif CPCALoss.UUID in self.aux_uuid: # the CPCA family with various k ## Auto-regressive model to predict future context self.action_embedder = FeatureEmbedding( self.action_dim + 1, action_embed_size ) # NOTE: add extra 1 in embedding dict cuz we will pad zero actions? self.context_model = nn.GRU(action_embed_size, self.belief_dim) ## Classifier to estimate mutual information self.classifier = nn.Sequential( nn.Linear( self.belief_dim + self.obs_embed_dim, cpca_classifier_hidden_dim ), nn.ReLU(), nn.Linear(cpca_classifier_hidden_dim, 1), ) elif FrequencyLoss.UUID in self.aux_uuid: pass elif SupImitationLoss.UUID in self.aux_uuid: pass else: raise ValueError("Unknown Auxiliary Loss UUID") def forward(self, features: torch.FloatTensor): if self.aux_uuid in [InverseDynamicsLoss.UUID, TemporalDistanceLoss.UUID]: return self.decoder(features) else: raise NotImplementedError( f"Auxiliary model with UUID {self.aux_uuid} does not support `forward` call." )
ask4help-main
allenact/embodiedai/models/aux_models.py
ask4help-main
allenact/embodiedai/models/__init__.py
"""Basic building block torch networks that can be used across a variety of tasks.""" from typing import ( Sequence, Dict, Union, cast, List, Callable, Optional, Tuple, Any, ) import gym import numpy as np import torch from gym.spaces.dict import Dict as SpaceDict import torch.nn as nn from allenact.algorithms.onpolicy_sync.policy import ActorCriticModel, DistributionType from allenact.base_abstractions.distributions import CategoricalDistr, Distr from allenact.base_abstractions.misc import ActorCriticOutput, Memory from allenact.utils.model_utils import make_cnn, compute_cnn_output from allenact.utils.system import get_logger class SimpleCNN(nn.Module): """A Simple N-Conv CNN followed by a fully connected layer. Takes in observations (of type gym.spaces.dict) and produces an embedding of the `rgb_uuid` and/or `depth_uuid` components. # Attributes observation_space : The observation_space of the agent, should have `rgb_uuid` or `depth_uuid` as a component (otherwise it is a blind model). output_size : The size of the embedding vector to produce. """ def __init__( self, observation_space: SpaceDict, output_size: int, rgb_uuid: Optional[str], depth_uuid: Optional[str], layer_channels: Sequence[int] = (32, 64, 32), kernel_sizes: Sequence[Tuple[int, int]] = ((8, 8), (4, 4), (3, 3)), layers_stride: Sequence[Tuple[int, int]] = ((4, 4), (2, 2), (1, 1)), paddings: Sequence[Tuple[int, int]] = ((0, 0), (0, 0), (0, 0)), dilations: Sequence[Tuple[int, int]] = ((1, 1), (1, 1), (1, 1)), flatten: bool = True, output_relu: bool = True, ): """Initializer. # Parameters observation_space : See class attributes documentation. output_size : See class attributes documentation. """ super().__init__() self.rgb_uuid = rgb_uuid if self.rgb_uuid is not None: assert self.rgb_uuid in observation_space.spaces self._n_input_rgb = observation_space.spaces[self.rgb_uuid].shape[2] assert self._n_input_rgb >= 0 else: self._n_input_rgb = 0 self.depth_uuid = depth_uuid if self.depth_uuid is not None: assert self.depth_uuid in observation_space.spaces self._n_input_depth = observation_space.spaces[self.depth_uuid].shape[2] assert self._n_input_depth >= 0 else: self._n_input_depth = 0 if not self.is_blind: # hyperparameters for layers self._cnn_layers_channels = list(layer_channels) self._cnn_layers_kernel_size = list(kernel_sizes) self._cnn_layers_stride = list(layers_stride) self._cnn_layers_paddings = list(paddings) self._cnn_layers_dilations = list(dilations) if self._n_input_rgb > 0: input_rgb_cnn_dims = np.array( observation_space.spaces[self.rgb_uuid].shape[:2], dtype=np.float32 ) self.rgb_cnn = self.make_cnn_from_params( output_size=output_size, input_dims=input_rgb_cnn_dims, input_channels=self._n_input_rgb, flatten=flatten, output_relu=output_relu, ) if self._n_input_depth > 0: input_depth_cnn_dims = np.array( observation_space.spaces[self.depth_uuid].shape[:2], dtype=np.float32, ) self.depth_cnn = self.make_cnn_from_params( output_size=output_size, input_dims=input_depth_cnn_dims, input_channels=self._n_input_depth, flatten=flatten, output_relu=output_relu, ) def make_cnn_from_params( self, output_size: int, input_dims: np.ndarray, input_channels: int, flatten: bool, output_relu: bool, ) -> nn.Module: output_dims = input_dims for kernel_size, stride, padding, dilation in zip( self._cnn_layers_kernel_size, self._cnn_layers_stride, self._cnn_layers_paddings, self._cnn_layers_dilations, ): # noinspection PyUnboundLocalVariable output_dims = self._conv_output_dim( dimension=output_dims, padding=np.array(padding, dtype=np.float32), dilation=np.array(dilation, dtype=np.float32), kernel_size=np.array(kernel_size, dtype=np.float32), stride=np.array(stride, dtype=np.float32), ) # noinspection PyUnboundLocalVariable cnn = make_cnn( input_channels=input_channels, layer_channels=self._cnn_layers_channels, kernel_sizes=self._cnn_layers_kernel_size, strides=self._cnn_layers_stride, paddings=self._cnn_layers_paddings, dilations=self._cnn_layers_dilations, output_height=output_dims[0], output_width=output_dims[1], output_channels=output_size, flatten=flatten, output_relu=output_relu, ) self.layer_init(cnn) return cnn @staticmethod def _conv_output_dim( dimension: Sequence[int], padding: Sequence[int], dilation: Sequence[int], kernel_size: Sequence[int], stride: Sequence[int], ) -> Tuple[int, ...]: """Calculates the output height and width based on the input height and width to the convolution layer. For parameter definitions see. [here](https://pytorch.org/docs/master/nn.html#torch.nn.Conv2d). # Parameters dimension : See above link. padding : See above link. dilation : See above link. kernel_size : See above link. stride : See above link. """ assert len(dimension) == 2 out_dimension = [] for i in range(len(dimension)): out_dimension.append( int( np.floor( ( ( dimension[i] + 2 * padding[i] - dilation[i] * (kernel_size[i] - 1) - 1 ) / stride[i] ) + 1 ) ) ) return tuple(out_dimension) @staticmethod def layer_init(cnn) -> None: """Initialize layer parameters using Kaiming normal.""" for layer in cnn: if isinstance(layer, (nn.Conv2d, nn.Linear)): nn.init.kaiming_normal_(layer.weight, nn.init.calculate_gain("relu")) if layer.bias is not None: nn.init.constant_(layer.bias, val=0) @property def is_blind(self): """True if the observation space doesn't include `self.rgb_uuid` or `self.depth_uuid`.""" return self._n_input_rgb + self._n_input_depth == 0 def forward(self, observations: Dict[str, torch.Tensor]): # type: ignore if self.is_blind: return None def check_use_agent(new_setting): if use_agent is not None: assert ( use_agent is new_setting ), "rgb and depth must both use an agent dim or none" return new_setting cnn_output_list: List[torch.Tensor] = [] use_agent: Optional[bool] = None if self.rgb_uuid is not None: use_agent = check_use_agent(len(observations[self.rgb_uuid].shape) == 6) cnn_output_list.append( compute_cnn_output(self.rgb_cnn, observations[self.rgb_uuid]) ) if self.depth_uuid is not None: use_agent = check_use_agent(len(observations[self.depth_uuid].shape) == 6) cnn_output_list.append( compute_cnn_output(self.depth_cnn, observations[self.depth_uuid]) ) if use_agent: channels_dim = 3 # [step, sampler, agent, channel (, height, width)] else: channels_dim = 2 # [step, sampler, channel (, height, width)] return torch.cat(cnn_output_list, dim=channels_dim) class RNNStateEncoder(nn.Module): """A simple RNN-based model playing a role in many baseline embodied- navigation agents. See `seq_forward` for more details of how this model is used. """ def __init__( self, input_size: int, hidden_size: int, num_layers: int = 1, rnn_type: str = "GRU", trainable_masked_hidden_state: bool = False, ): """An RNN for encoding the state in RL. Supports masking the hidden state during various timesteps in the forward lass. # Parameters input_size : The input size of the RNN. hidden_size : The hidden size. num_layers : The number of recurrent layers. rnn_type : The RNN cell type. Must be GRU or LSTM. trainable_masked_hidden_state : If `True` the initial hidden state (used at the start of a Task) is trainable (as opposed to being a vector of zeros). """ super().__init__() self._num_recurrent_layers = num_layers self._rnn_type = rnn_type self.rnn = getattr(torch.nn, rnn_type)( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers ) self.trainable_masked_hidden_state = trainable_masked_hidden_state if trainable_masked_hidden_state: self.init_hidden_state = nn.Parameter( 0.1 * torch.randn((num_layers, 1, hidden_size)), requires_grad=True ) self.layer_init() def layer_init(self): """Initialize the RNN parameters in the model.""" for name, param in self.rnn.named_parameters(): if "weight" in name: nn.init.orthogonal_(param) elif "bias" in name: nn.init.constant_(param, 0) @property def num_recurrent_layers(self) -> int: """The number of recurrent layers in the network.""" return self._num_recurrent_layers * (2 if "LSTM" in self._rnn_type else 1) def _pack_hidden( self, hidden_states: Union[torch.FloatTensor, Sequence[torch.FloatTensor]] ) -> torch.FloatTensor: """Stacks hidden states in an LSTM together (if using a GRU rather than an LSTM this is just the identity). # Parameters hidden_states : The hidden states to (possibly) stack. """ if "LSTM" in self._rnn_type: hidden_states = cast( torch.FloatTensor, torch.cat([hidden_states[0], hidden_states[1]], dim=0), ) return cast(torch.FloatTensor, hidden_states) def _unpack_hidden( self, hidden_states: torch.FloatTensor ) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, torch.FloatTensor]]: """Partial inverse of `_pack_hidden` (exact if there are 2 hidden layers).""" if "LSTM" in self._rnn_type: new_hidden_states = ( hidden_states[0 : self._num_recurrent_layers], hidden_states[self._num_recurrent_layers :], ) return cast(Tuple[torch.FloatTensor, torch.FloatTensor], new_hidden_states) return cast(torch.FloatTensor, hidden_states) def _mask_hidden( self, hidden_states: Union[Tuple[torch.FloatTensor, ...], torch.FloatTensor], masks: torch.FloatTensor, ) -> Union[Tuple[torch.FloatTensor, ...], torch.FloatTensor]: """Mask input hidden states given `masks`. Useful when masks represent steps on which a task has completed. # Parameters hidden_states : The hidden states. masks : Masks to apply to hidden states (see seq_forward). # Returns Masked hidden states. Here masked hidden states will be replaced with either all zeros (if `trainable_masked_hidden_state` was False) and will otherwise be a learnable collection of parameters. """ if not self.trainable_masked_hidden_state: if isinstance(hidden_states, tuple): hidden_states = tuple( cast(torch.FloatTensor, v * masks) for v in hidden_states ) else: hidden_states = cast(torch.FloatTensor, masks * hidden_states) else: if isinstance(hidden_states, tuple): # noinspection PyTypeChecker hidden_states = tuple( v * masks # type:ignore + (1.0 - masks) * (self.init_hidden_state.repeat(1, v.shape[1], 1)) # type: ignore for v in hidden_states # type:ignore ) # type: ignore else: # noinspection PyTypeChecker hidden_states = masks * hidden_states + (1 - masks) * ( # type: ignore self.init_hidden_state.repeat(1, hidden_states.shape[1], 1) ) return hidden_states def single_forward( self, x: torch.FloatTensor, hidden_states: torch.FloatTensor, masks: torch.FloatTensor, ) -> Tuple[ torch.FloatTensor, Union[torch.FloatTensor, Tuple[torch.FloatTensor, ...]] ]: """Forward for a single-step input.""" ( x, hidden_states, masks, mem_agent, obs_agent, nsteps, nsamplers, nagents, ) = self.adapt_input(x, hidden_states, masks) unpacked_hidden_states = self._unpack_hidden(hidden_states) x, unpacked_hidden_states = self.rnn( x, self._mask_hidden( unpacked_hidden_states, cast(torch.FloatTensor, masks[0].view(1, -1, 1)) ), ) return self.adapt_result( x, self._pack_hidden(unpacked_hidden_states), mem_agent, obs_agent, nsteps, nsamplers, nagents, ) def adapt_input( self, x: torch.FloatTensor, hidden_states: torch.FloatTensor, masks: torch.FloatTensor, ) -> Tuple[ torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, bool, bool, int, int, int, ]: nsteps, nsamplers = masks.shape[:2] assert len(hidden_states.shape) in [ 3, 4, ], "hidden_states must be [layer, sampler, hidden] or [layer, sampler, agent, hidden]" assert len(x.shape) in [ 3, 4, ], "observations must be [step, sampler, data] or [step, sampler, agent, data]" nagents = 1 mem_agent: bool if len(hidden_states.shape) == 4: # [layer, sampler, agent, hidden] mem_agent = True nagents = hidden_states.shape[2] else: # [layer, sampler, hidden] mem_agent = False obs_agent: bool if len(x.shape) == 4: # [step, sampler, agent, dims] obs_agent = True else: # [step, sampler, dims] obs_agent = False # Flatten (nsamplers, nagents) x = x.view(nsteps, nsamplers * nagents, -1) # type:ignore masks = masks.expand(-1, -1, nagents).reshape( # type:ignore nsteps, nsamplers * nagents ) # Flatten (nsamplers, nagents) and remove step dim hidden_states = hidden_states.view( # type:ignore self.num_recurrent_layers, nsamplers * nagents, -1 ) # noinspection PyTypeChecker return x, hidden_states, masks, mem_agent, obs_agent, nsteps, nsamplers, nagents def adapt_result( self, outputs: torch.FloatTensor, hidden_states: torch.FloatTensor, mem_agent: bool, obs_agent: bool, nsteps: int, nsamplers: int, nagents: int, ) -> Tuple[ torch.FloatTensor, torch.FloatTensor, ]: output_dims = (nsteps, nsamplers) + ((nagents, -1) if obs_agent else (-1,)) hidden_dims = (self.num_recurrent_layers, nsamplers) + ( (nagents, -1) if mem_agent else (-1,) ) outputs = cast(torch.FloatTensor, outputs.view(*output_dims)) hidden_states = cast(torch.FloatTensor, hidden_states.view(*hidden_dims),) return outputs, hidden_states def seq_forward( # type: ignore self, x: torch.FloatTensor, hidden_states: torch.FloatTensor, masks: torch.FloatTensor, ) -> Tuple[ torch.FloatTensor, Union[torch.FloatTensor, Tuple[torch.FloatTensor, ...]] ]: """Forward for a sequence of length T. # Parameters x : (Steps, Samplers, Agents, -1) tensor. hidden_states : The starting hidden states. masks : A (Steps, Samplers, Agents) tensor. The masks to be applied to hidden state at every timestep, equal to 0 whenever the previous step finalized the task, 1 elsewhere. """ ( x, hidden_states, masks, mem_agent, obs_agent, nsteps, nsamplers, nagents, ) = self.adapt_input(x, hidden_states, masks) # steps in sequence which have zero for any episode. Assume t=0 has # a zero in it. has_zeros = (masks[1:] == 0.0).any(dim=-1).nonzero().squeeze().cpu() # +1 to correct the masks[1:] if has_zeros.dim() == 0: # handle scalar has_zeros = [has_zeros.item() + 1] # type: ignore else: has_zeros = (has_zeros + 1).numpy().tolist() # add t=0 and t=T to the list has_zeros = cast(List[int], [0] + has_zeros + [nsteps]) unpacked_hidden_states = self._unpack_hidden( cast(torch.FloatTensor, hidden_states) ) outputs = [] for i in range(len(has_zeros) - 1): # process steps that don't have any zeros in masks together start_idx = int(has_zeros[i]) end_idx = int(has_zeros[i + 1]) # noinspection PyTypeChecker rnn_scores, unpacked_hidden_states = self.rnn( x[start_idx:end_idx], self._mask_hidden( unpacked_hidden_states, cast(torch.FloatTensor, masks[start_idx].view(1, -1, 1)), ), ) outputs.append(rnn_scores) return self.adapt_result( cast(torch.FloatTensor, torch.cat(outputs, dim=0)), self._pack_hidden(unpacked_hidden_states), mem_agent, obs_agent, nsteps, nsamplers, nagents, ) def forward( # type: ignore self, x: torch.FloatTensor, hidden_states: torch.FloatTensor, masks: torch.FloatTensor, ) -> Tuple[ torch.FloatTensor, Union[torch.FloatTensor, Tuple[torch.FloatTensor, ...]] ]: nsteps = masks.shape[0] if nsteps == 1: return self.single_forward(x, hidden_states, masks) return self.seq_forward(x, hidden_states, masks) class LinearActorCritic(ActorCriticModel[CategoricalDistr]): def __init__( self, input_uuid: str, action_space: gym.spaces.Discrete, observation_space: SpaceDict, ): super().__init__(action_space=action_space, observation_space=observation_space) assert ( input_uuid in observation_space.spaces ), "LinearActorCritic expects only a single observational input." self.input_uuid = input_uuid box_space: gym.spaces.Box = observation_space[self.input_uuid] assert isinstance(box_space, gym.spaces.Box), ( "LinearActorCritic requires that" "observation space corresponding to the input uuid is a Box space." ) assert len(box_space.shape) == 1 self.in_dim = box_space.shape[0] self.linear = nn.Linear(self.in_dim, action_space.n + 1) nn.init.orthogonal_(self.linear.weight) nn.init.constant_(self.linear.bias, 0) # noinspection PyMethodMayBeStatic def _recurrent_memory_specification(self): return None def forward(self, observations, memory, prev_actions, masks): out = self.linear(observations[self.input_uuid]) # noinspection PyArgumentList return ( ActorCriticOutput( # ensure [steps, samplers, ...] distributions=CategoricalDistr(logits=out[..., :-1]), # ensure [steps, samplers, flattened] values=cast(torch.FloatTensor, out[..., -1:].view(*out.shape[:2], -1)), extras={}, ), None, ) class RNNActorCritic(ActorCriticModel[Distr]): def __init__( self, input_uuid: str, action_space: gym.spaces.Discrete, observation_space: SpaceDict, hidden_size: int = 128, num_layers: int = 1, rnn_type: str = "GRU", head_type: Callable[..., ActorCriticModel[Distr]] = LinearActorCritic, ): super().__init__(action_space=action_space, observation_space=observation_space) self.hidden_size = hidden_size self.rnn_type = rnn_type assert ( input_uuid in observation_space.spaces ), "LinearActorCritic expects only a single observational input." self.input_uuid = input_uuid box_space: gym.spaces.Box = observation_space[self.input_uuid] assert isinstance(box_space, gym.spaces.Box), ( "RNNActorCritic requires that" "observation space corresponding to the input uuid is a Box space." ) assert len(box_space.shape) == 1 self.in_dim = box_space.shape[0] self.state_encoder = RNNStateEncoder( input_size=self.in_dim, hidden_size=hidden_size, num_layers=num_layers, rnn_type=rnn_type, trainable_masked_hidden_state=True, ) self.head_uuid = "{}_{}".format("rnn", input_uuid) self.ac_nonrecurrent_head: ActorCriticModel[Distr] = head_type( input_uuid=self.head_uuid, action_space=action_space, observation_space=SpaceDict( { self.head_uuid: gym.spaces.Box( low=np.float32(0.0), high=np.float32(1.0), shape=(hidden_size,) ) } ), ) self.memory_key = "rnn" @property def recurrent_hidden_state_size(self) -> int: return self.hidden_size @property def num_recurrent_layers(self) -> int: return self.state_encoder.num_recurrent_layers def _recurrent_memory_specification(self): return { self.memory_key: ( ( ("layer", self.num_recurrent_layers), ("sampler", None), ("hidden", self.recurrent_hidden_state_size), ), torch.float32, ) } def forward( # type:ignore self, observations: Dict[str, Union[torch.FloatTensor, Dict[str, Any]]], memory: Memory, prev_actions: torch.Tensor, masks: torch.FloatTensor, ) -> Tuple[ActorCriticOutput[DistributionType], Optional[Memory]]: if self.memory_key not in memory: get_logger().warning( f"Key {self.memory_key} not found in memory," f" initializing this as all zeros." ) obs = observations[self.input_uuid] memory.check_append( key=self.memory_key, tensor=obs.new( self.num_recurrent_layers, obs.shape[1], self.recurrent_hidden_state_size, ) .float() .zero_(), sampler_dim=1, ) rnn_out, mem_return = self.state_encoder( x=observations[self.input_uuid], hidden_states=memory.tensor(self.memory_key), masks=masks, ) # noinspection PyCallingNonCallable out, _ = self.ac_nonrecurrent_head( observations={self.head_uuid: rnn_out}, memory=None, prev_actions=prev_actions, masks=masks, ) # noinspection PyArgumentList return ( out, memory.set_tensor(self.memory_key, mem_return), )
ask4help-main
allenact/embodiedai/models/basic_models.py
# Original work Copyright (c) Facebook, Inc. and its affiliates. # Modified work Copyright (c) Allen Institute for AI # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Adapted from https://github.com/joel99/habitat-pointnav-aux/blob/master/habitat_baselines/ from typing import Optional import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from gym.spaces.dict import Dict as SpaceDict from allenact.utils.model_utils import Flatten from allenact.utils.system import get_logger def conv3x3(in_planes, out_planes, stride=1, groups=1): """3x3 convolution with padding.""" return nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False, groups=groups, ) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution.""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 resneXt = False def __init__( self, inplanes, planes, ngroups, stride=1, downsample=None, cardinality=1, ): super(BasicBlock, self).__init__() self.convs = nn.Sequential( conv3x3(inplanes, planes, stride, groups=cardinality), nn.GroupNorm(ngroups, planes), nn.ReLU(True), conv3x3(planes, planes, groups=cardinality), nn.GroupNorm(ngroups, planes), ) self.downsample = downsample self.relu = nn.ReLU(True) def forward(self, x): residual = x out = self.convs(x) if self.downsample is not None: residual = self.downsample(x) return self.relu(out + residual) def _build_bottleneck_branch(inplanes, planes, ngroups, stride, expansion, groups=1): return nn.Sequential( conv1x1(inplanes, planes), nn.GroupNorm(ngroups, planes), nn.ReLU(True), conv3x3(planes, planes, stride, groups=groups), nn.GroupNorm(ngroups, planes), nn.ReLU(True), conv1x1(planes, planes * expansion), nn.GroupNorm(ngroups, planes * expansion), ) class SE(nn.Module): def __init__(self, planes, r=16): super().__init__() self.squeeze = nn.AdaptiveAvgPool2d(1) self.excite = nn.Sequential( nn.Linear(planes, int(planes / r)), nn.ReLU(True), nn.Linear(int(planes / r), planes), nn.Sigmoid(), ) def forward(self, x): b, c, _, _ = x.size() x = self.squeeze(x) x = x.view(b, c) x = self.excite(x) return x.view(b, c, 1, 1) def _build_se_branch(planes, r=16): return SE(planes, r) class Bottleneck(nn.Module): expansion = 4 resneXt = False def __init__( self, inplanes, planes, ngroups, stride=1, downsample=None, cardinality=1, ): super().__init__() self.convs = _build_bottleneck_branch( inplanes, planes, ngroups, stride, self.expansion, groups=cardinality, ) self.relu = nn.ReLU(inplace=True) self.downsample = downsample def _impl(self, x): identity = x out = self.convs(x) if self.downsample is not None: identity = self.downsample(x) return self.relu(out + identity) def forward(self, x): return self._impl(x) class SEBottleneck(Bottleneck): def __init__( self, inplanes, planes, ngroups, stride=1, downsample=None, cardinality=1, ): super().__init__(inplanes, planes, ngroups, stride, downsample, cardinality) self.se = _build_se_branch(planes * self.expansion) def _impl(self, x): identity = x out = self.convs(x) out = self.se(out) * out if self.downsample is not None: identity = self.downsample(x) return self.relu(out + identity) class SEResNeXtBottleneck(SEBottleneck): expansion = 2 resneXt = True class ResNeXtBottleneck(Bottleneck): expansion = 2 resneXt = True class GroupNormResNet(nn.Module): def __init__(self, in_channels, base_planes, ngroups, block, layers, cardinality=1): super(GroupNormResNet, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d( in_channels, base_planes, kernel_size=7, stride=2, padding=3, bias=False, ), nn.GroupNorm(ngroups, base_planes), nn.ReLU(True), ) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.cardinality = cardinality self.inplanes = base_planes if block.resneXt: base_planes *= 2 self.layer1 = self._make_layer(block, ngroups, base_planes, layers[0]) self.layer2 = self._make_layer( block, ngroups, base_planes * 2, layers[1], stride=2 ) self.layer3 = self._make_layer( block, ngroups, base_planes * 2 * 2, layers[2], stride=2 ) self.layer4 = self._make_layer( block, ngroups, base_planes * 2 * 2 * 2, layers[3], stride=2 ) self.final_channels = self.inplanes self.final_spatial_compress = 1.0 / (2 ** 5) def _make_layer(self, block, ngroups, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), nn.GroupNorm(ngroups, planes * block.expansion), ) layers = [] layers.append( block( self.inplanes, planes, ngroups, stride, downsample, cardinality=self.cardinality, ) ) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, ngroups)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x def gnresnet18(in_channels, base_planes, ngroups): model = GroupNormResNet(in_channels, base_planes, ngroups, BasicBlock, [2, 2, 2, 2]) return model def gnresnet50(in_channels, base_planes, ngroups): model = GroupNormResNet(in_channels, base_planes, ngroups, Bottleneck, [3, 4, 6, 3]) return model def gnresneXt50(in_channels, base_planes, ngroups): model = GroupNormResNet( in_channels, base_planes, ngroups, ResNeXtBottleneck, [3, 4, 6, 3], cardinality=int(base_planes / 2), ) return model def se_gnresnet50(in_channels, base_planes, ngroups): model = GroupNormResNet( in_channels, base_planes, ngroups, SEBottleneck, [3, 4, 6, 3] ) return model def se_gnresneXt50(in_channels, base_planes, ngroups): model = GroupNormResNet( in_channels, base_planes, ngroups, SEResNeXtBottleneck, [3, 4, 6, 3], cardinality=int(base_planes / 2), ) return model def se_gnresneXt101(in_channels, base_planes, ngroups): model = GroupNormResNet( in_channels, base_planes, ngroups, SEResNeXtBottleneck, [3, 4, 23, 3], cardinality=int(base_planes / 2), ) return model class GroupNormResNetEncoder(nn.Module): def __init__( self, observation_space: SpaceDict, rgb_uuid: Optional[str], depth_uuid: Optional[str], output_size: int, baseplanes=32, ngroups=32, spatial_size=128, make_backbone=None, ): super().__init__() self._inputs = [] self.rgb_uuid = rgb_uuid if self.rgb_uuid is not None: assert self.rgb_uuid in observation_space.spaces self._n_input_rgb = observation_space.spaces[self.rgb_uuid].shape[2] assert self._n_input_rgb >= 0 self._inputs.append(self.rgb_uuid) else: self._n_input_rgb = 0 self.depth_uuid = depth_uuid if self.depth_uuid is not None: assert self.depth_uuid in observation_space.spaces self._n_input_depth = observation_space.spaces[self.depth_uuid].shape[2] assert self._n_input_depth >= 0 self._inputs.append(self.depth_uuid) else: self._n_input_depth = 0 if not self.is_blind: spatial_size = ( observation_space.spaces[self._inputs[0]].shape[0] // 2 ) # H (=W) / 2 # RGBD into one model input_channels = self._n_input_rgb + self._n_input_depth # C self.backbone = make_backbone(input_channels, baseplanes, ngroups) final_spatial = int( np.ceil(spatial_size * self.backbone.final_spatial_compress) ) # fix bug in habitat that uses int() after_compression_flat_size = 2048 num_compression_channels = int( round(after_compression_flat_size / (final_spatial ** 2)) ) self.compression = nn.Sequential( nn.Conv2d( self.backbone.final_channels, num_compression_channels, kernel_size=3, padding=1, bias=False, ), nn.GroupNorm(1, num_compression_channels), nn.ReLU(True), ) self.output_shape = ( num_compression_channels, final_spatial, final_spatial, ) self.head = nn.Sequential( Flatten(), nn.Linear(np.prod(self.output_shape), output_size), nn.ReLU(True), ) self.layer_init() @property def is_blind(self): return self._n_input_rgb + self._n_input_depth == 0 def layer_init(self): for layer in self.modules(): if isinstance(layer, (nn.Conv2d, nn.Linear)): nn.init.kaiming_normal_(layer.weight, nn.init.calculate_gain("relu")) if layer.bias is not None: nn.init.constant_(layer.bias, val=0) get_logger().info("initialize resnet encoder") def forward(self, observations): if self.is_blind: return None # TODO: the reshape follows compute_cnn_output() # but it's hard to make the forward as a nn.Module as cnn param cnn_input = [] for mode in self._inputs: mode_obs = observations[mode] assert len(mode_obs.shape) in [ 5, 6, ], "CNN input must have shape [STEP, SAMPLER, (AGENT,) dim1, dim2, dim3]" nagents: Optional[int] = None if len(mode_obs.shape) == 6: nsteps, nsamplers, nagents = mode_obs.shape[:3] else: nsteps, nsamplers = mode_obs.shape[:2] # Make FLAT_BATCH = nsteps * nsamplers (* nagents) mode_obs = mode_obs.view( (-1,) + mode_obs.shape[2 + int(nagents is not None) :] ) # permute tensor to dimension [BATCH x CHANNEL x HEIGHT X WIDTH] mode_obs = mode_obs.permute(0, 3, 1, 2) cnn_input.append(mode_obs) x = torch.cat(cnn_input, dim=1) x = F.avg_pool2d(x, 2) # 2x downsampling x = self.backbone(x) # (256, 4, 4) x = self.compression(x) # (128, 4, 4) x = self.head(x) # (2048) -> (hidden_size) if nagents is not None: x = x.reshape((nsteps, nsamplers, nagents,) + x.shape[1:]) else: x = x.reshape((nsteps, nsamplers,) + x.shape[1:]) return x
ask4help-main
allenact/embodiedai/models/resnet.py
# Original work Copyright (c) Facebook, Inc. and its affiliates. # Modified work Copyright (c) Allen Institute for AI # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Adapted from https://github.com/joel99/habitat-pointnav-aux/blob/master/habitat_baselines/ from typing import Tuple import math import torch import torch.nn as nn class Fusion(nn.Module): """Base class of belief fusion model from Auxiliary Tasks Speed Up Learning PointGoal Navigation (Ye, 2020) Child class should implement `get_belief_weights` function to generate weights to fuse the beliefs from all the auxiliary task into one.""" def __init__(self, hidden_size, obs_embed_size, num_tasks): super().__init__() self.hidden_size = hidden_size # H self.obs_embed_size = obs_embed_size # Z self.num_tasks = num_tasks # k def forward( self, all_beliefs: torch.FloatTensor, # (T, N, H, K) obs_embeds: torch.FloatTensor, # (T, N, Z) ) -> Tuple[torch.FloatTensor, torch.FloatTensor]: # (T, N, H), (T, N, K) num_steps, num_samplers, _, _ = all_beliefs.shape all_beliefs = all_beliefs.view( num_steps * num_samplers, self.hidden_size, self.num_tasks ) obs_embeds = obs_embeds.view(num_steps * num_samplers, -1) weights = self.get_belief_weights( all_beliefs=all_beliefs, obs_embeds=obs_embeds, # (T*N, H, K) # (T*N, Z) ).unsqueeze( -1 ) # (T*N, K, 1) beliefs = torch.bmm(all_beliefs, weights) # (T*N, H, 1) beliefs = beliefs.squeeze(-1).view(num_steps, num_samplers, self.hidden_size) weights = weights.squeeze(-1).view(num_steps, num_samplers, self.num_tasks) return beliefs, weights def get_belief_weights( self, all_beliefs: torch.FloatTensor, # (T*N, H, K) obs_embeds: torch.FloatTensor, # (T*N, Z) ) -> torch.FloatTensor: # (T*N, K) raise NotImplementedError() class AverageFusion(Fusion): UUID = "avg" def get_belief_weights( self, all_beliefs: torch.FloatTensor, # (T*N, H, K) obs_embeds: torch.FloatTensor, # (T*N, Z) ) -> torch.FloatTensor: # (T*N, K) batch_size = all_beliefs.shape[0] weights = torch.ones(batch_size, self.num_tasks).to(all_beliefs) weights /= self.num_tasks return weights class SoftmaxFusion(Fusion): """Situational Fusion of Visual Representation for Visual Navigation https://arxiv.org/abs/1908.09073.""" UUID = "smax" def __init__(self, hidden_size, obs_embed_size, num_tasks): super().__init__(hidden_size, obs_embed_size, num_tasks) # mapping from rnn input to task # ignore beliefs self.linear = nn.Linear(obs_embed_size, num_tasks) def get_belief_weights( self, all_beliefs: torch.FloatTensor, # (T*N, H, K) obs_embeds: torch.FloatTensor, # (T*N, Z) ) -> torch.FloatTensor: # (T*N, K) scores = self.linear(obs_embeds) # (T*N, K) weights = torch.softmax(scores, dim=-1) return weights class AttentiveFusion(Fusion): """Attention is All You Need https://arxiv.org/abs/1706.03762 i.e. scaled dot-product attention.""" UUID = "attn" def __init__(self, hidden_size, obs_embed_size, num_tasks): super().__init__(hidden_size, obs_embed_size, num_tasks) self.linear = nn.Linear(obs_embed_size, hidden_size) def get_belief_weights( self, all_beliefs: torch.FloatTensor, # (T*N, H, K) obs_embeds: torch.FloatTensor, # (T*N, Z) ) -> torch.FloatTensor: # (T*N, K) queries = self.linear(obs_embeds).unsqueeze(1) # (T*N, 1, H) scores = torch.bmm(queries, all_beliefs).squeeze(1) # (T*N, K) weights = torch.softmax( scores / math.sqrt(self.hidden_size), dim=-1 ) # (T*N, K) return weights
ask4help-main
allenact/embodiedai/models/fusion_models.py
from typing import Tuple, Dict, Optional, List from allenact.utils.system import get_logger from collections import OrderedDict import os import gym import torch import torch.nn as nn from gym.spaces.dict import Dict as SpaceDict from allenact.algorithms.onpolicy_sync.policy import ( ActorCriticModel, LinearCriticHead, LinearActorHead, ObservationType, DistributionType, ) from allenact.base_abstractions.misc import ActorCriticOutput, Memory from allenact.utils.model_utils import FeatureEmbedding from allenact.embodiedai.models.basic_models import RNNStateEncoder from allenact.embodiedai.models.aux_models import AuxiliaryModel from allenact.embodiedai.aux_losses.losses import MultiAuxTaskNegEntropyLoss from allenact.base_abstractions.distributions import CategoricalDistr from typing import TypeVar from allenact.embodiedai.models.fusion_models import Fusion from allenact.base_abstractions.distributions import Distr FusionType = TypeVar("FusionType", bound=Fusion) class succ_pred_model(nn.Module): def __init__(self,input_size): super(succ_pred_model,self).__init__() self.rnn_unit = RNNStateEncoder(input_size=input_size,hidden_size=512) self.linear_layer = nn.Sequential(nn.Linear(512,128),nn.ReLU(),nn.Linear(128,32),nn.ReLU(),nn.Linear(32,8),nn.ReLU(),nn.Linear(8,1)) def forward(self,x,hidden_states,masks): out,rnn_hidden_state = self.rnn_unit(x,hidden_states,masks) out = self.linear_layer(out) return out,rnn_hidden_state # succ_pred_model= succ_pred_model(512)#.load_state_dict('./') # succ_pred_model.load_state_dict('./') class MultiDimActionDistr(Distr): ''' Takes two categorical distributions and outputs a joint multidimensional distributions ''' def __init__(self,actor_distr,label_distr): super().__init__() self.actor_distr = actor_distr self.label_distr = label_distr def sample(self): actor_out = self.actor_distr.sample() label_out = self.label_distr.sample() return {"nav_action": actor_out, "ask_action": label_out} def log_prob(self,value): return self.label_distr.log_prob(value["ask_action"]) #+ self.actor_distr.log_prob(value["nav_action"]) def entropy(self): return self.label_distr.entropy() #+ self.actor_distr.entropy() def mode(self): return {"nav_action":self.actor_distr.mode(),"ask_action":self.label_distr.mode()} class VisualNavActorCritic(ActorCriticModel[CategoricalDistr]): """Base class of visual navigation / manipulation (or broadly, embodied AI) model. `forward_encoder` function requires implementation. """ def __init__( self, action_space: gym.spaces.Discrete, observation_space: SpaceDict, hidden_size=512, multiple_beliefs=False, beliefs_fusion: Optional[FusionType] = None, auxiliary_uuids: Optional[List[str]] = None, ): super().__init__(action_space=action_space, observation_space=observation_space) self._hidden_size = hidden_size assert multiple_beliefs == (beliefs_fusion is not None) self.multiple_beliefs = multiple_beliefs self.beliefs_fusion = beliefs_fusion self.auxiliary_uuids = auxiliary_uuids if isinstance(self.auxiliary_uuids, list) and len(self.auxiliary_uuids) == 0: self.auxiliary_uuids = None self.nav_action_space = action_space['nav_action'] self.ask_action_space = action_space['ask_action'] self.succ_pred_rnn_hidden_state = None self.succ_pred_model = None ''' mlp_input_size = self._hidden_size+48+6 ## 6 for prev action embedding self.ask_actor_head = LinearActorHead(mlp_input_size,self.ask_action_space.n) ## concatenating frozen beliefs with success prediction output self.ask_critic_head = LinearCriticHead(mlp_input_size) ## 6 for prev action embedding self.ask_policy_mlp = nn.Sequential( nn.Linear(mlp_input_size,mlp_input_size//2), nn.ReLU(), nn.Linear(mlp_input_size//2,mlp_input_size//4), ) self.ask_policy_gru = RNNStateEncoder(mlp_input_size//4,128, num_layers=1, rnn_type="GRU", trainable_masked_hidden_state=False,) ##restore to run gru variant self.ask_policy_gru_hidden_state = None self.ask_actor_head = LinearActorHead(128,self.ask_action_space.n) ## concatenating frozen beliefs with success prediction output self.ask_critic_head = LinearCriticHead(128) ''' self.end_action_idx = 3 # self.succ_pred_model = succ_pred_model(512)#.load_state_dict('./') # Define the placeholders in init function self.state_encoders: nn.ModuleDict self.aux_models: nn.ModuleDict self.actor: LinearActorHead self.critic: LinearCriticHead def create_state_encoders( self, obs_embed_size: int, prev_action_embed_size: int, num_rnn_layers: int, rnn_type: str, add_prev_actions: bool, trainable_masked_hidden_state=False, ): rnn_input_size = obs_embed_size self.prev_action_embedder = FeatureEmbedding( input_size=self.nav_action_space.n, output_size=prev_action_embed_size if add_prev_actions else 0, ) if add_prev_actions: rnn_input_size += prev_action_embed_size state_encoders = OrderedDict() # perserve insertion order in py3.6 if self.multiple_beliefs: # multiple belief model for aux_uuid in self.auxiliary_uuids: state_encoders[aux_uuid] = RNNStateEncoder( rnn_input_size, self._hidden_size, num_layers=num_rnn_layers, rnn_type=rnn_type, trainable_masked_hidden_state=trainable_masked_hidden_state, ) # create fusion model self.fusion_model = self.beliefs_fusion( hidden_size=self._hidden_size, obs_embed_size=obs_embed_size, num_tasks=len(self.auxiliary_uuids), ) else: # single belief model state_encoders["single_belief"] = RNNStateEncoder( rnn_input_size, self._hidden_size, num_layers=num_rnn_layers, rnn_type=rnn_type, trainable_masked_hidden_state=trainable_masked_hidden_state, ) self.state_encoders = nn.ModuleDict(state_encoders) self.belief_names = list(self.state_encoders.keys()) get_logger().info( "there are {} belief models: {}".format( len(self.belief_names), self.belief_names ) ) def create_expert_encoder(self, input_size: int, prev_action_embed_size: int, num_rnn_layers: int, rnn_type: str, trainable_masked_hidden_state=False,): self.prev_expert_action_embedder = FeatureEmbedding( input_size=self.nav_action_space.n, output_size=prev_action_embed_size, ) self.expert_encoder = RNNStateEncoder(input_size+prev_action_embed_size, self._hidden_size, num_layers=num_rnn_layers, rnn_type=rnn_type, trainable_masked_hidden_state=trainable_masked_hidden_state, ) def create_ask4_help_module(self, prev_action_embed_size: int, num_rnn_layers: int, rnn_type:str, ask_gru_hidden_size=128, trainable_masked_hidden_state=False, adaptive_reward=False, ): self.prev_ask_action_embedder = FeatureEmbedding( input_size=self.ask_action_space.n, output_size=prev_action_embed_size, ) self.expert_mask_embedder = FeatureEmbedding(input_size=2,output_size=prev_action_embed_size) if adaptive_reward: self.reward_function_embedder = FeatureEmbedding(input_size=30,output_size=prev_action_embed_size*2) else: self.reward_function_embedder = None if adaptive_reward: mlp_input_size = self._hidden_size + 48 + prev_action_embed_size + prev_action_embed_size + prev_action_embed_size*2 ## ask_action + expert_action embedding + reward_function_embed else: mlp_input_size = self._hidden_size + 48 + prev_action_embed_size + prev_action_embed_size self.ask_policy_mlp = nn.Sequential( nn.Linear(mlp_input_size,mlp_input_size//2), nn.ReLU(), nn.Linear(mlp_input_size//2,mlp_input_size//4), ) self.ask_policy_gru = RNNStateEncoder(mlp_input_size//4, ask_gru_hidden_size, num_layers=num_rnn_layers, rnn_type="GRU", trainable_masked_hidden_state=False,) self.ask_actor_head = LinearActorHead(ask_gru_hidden_size,self.ask_action_space.n) ## concatenating frozen beliefs with success prediction output self.ask_critic_head = LinearCriticHead(ask_gru_hidden_size) def load_state_dict(self, state_dict): new_state_dict = OrderedDict() for key in state_dict.keys(): if "state_encoder." in key: # old key name new_key = key.replace("state_encoder.", "state_encoders.single_belief.") else: new_key = key new_state_dict[new_key] = state_dict[key] return super().load_state_dict(new_state_dict,strict=False) # compatible in keys def create_actorcritic_head(self): self.actor = LinearActorHead(self._hidden_size, self.nav_action_space.n) self.critic = LinearCriticHead(self._hidden_size) def create_aux_models(self, obs_embed_size: int, action_embed_size: int): if self.auxiliary_uuids is None: return aux_models = OrderedDict() for aux_uuid in self.auxiliary_uuids: aux_models[aux_uuid] = AuxiliaryModel( aux_uuid=aux_uuid, action_dim=self.nav_action_space.n, obs_embed_dim=obs_embed_size, belief_dim=self._hidden_size, action_embed_size=action_embed_size, ) self.aux_models = nn.ModuleDict(aux_models) @property def num_recurrent_layers(self): """Number of recurrent hidden layers.""" return list(self.state_encoders.values())[0].num_recurrent_layers @property def recurrent_hidden_state_size(self): """The recurrent hidden state size of a single model.""" return {'single_belief':self._hidden_size,'residual_gru':self._hidden_size,'ask4help_gru':128,'succ_pred_gru':512} # return self._hidden_size def _recurrent_memory_specification(self): if self.is_finetuned: self.belief_names.append('ask4help_gru') self.belief_names.append('succ_pred_gru') if self.adapt_belief: self.belief_names.append('residual_gru') return { memory_key: ( ( ("layer", self.num_recurrent_layers), ("sampler", None), ("hidden", self.recurrent_hidden_state_size[memory_key]), ), torch.float32, ) for memory_key in self.belief_names } def forward_encoder(self, observations: ObservationType) -> torch.FloatTensor: raise NotImplementedError("Obs Encoder Not Implemented") def fuse_beliefs( self, beliefs_dict: Dict[str, torch.FloatTensor], obs_embeds: torch.FloatTensor, ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]: all_beliefs = torch.stack(list(beliefs_dict.values()), dim=-1) # (T, N, H, k) if self.multiple_beliefs: # call the fusion model return self.fusion_model(all_beliefs=all_beliefs, obs_embeds=obs_embeds) # single belief beliefs = all_beliefs.squeeze(-1) # (T,N,H) return beliefs, None def forward( # type:ignore self, observations: ObservationType, memory: Memory, prev_actions: torch.Tensor, masks: torch.FloatTensor, ) -> Tuple[ActorCriticOutput[DistributionType], Optional[Memory]]: """Processes input batched observations to produce new actor and critic values. Processes input batched observations (along with prior hidden states, previous actions, and masks denoting which recurrent hidden states should be masked) and returns an `ActorCriticOutput` object containing the model's policy (distribution over actions) and evaluation of the current state (value). # Parameters observations : Batched input observations. memory : `Memory` containing the hidden states from initial timepoints. prev_actions : Tensor of previous actions taken. masks : Masks applied to hidden states. See `RNNStateEncoder`. # Returns Tuple of the `ActorCriticOutput` and recurrent hidden state. """ if self.is_finetuned: expert_action_obs = observations['expert_action'] expert_action = expert_action_obs[:,:,0] expert_action_mask = expert_action_obs[:,:,1] nactions = self.nav_action_space.n with torch.no_grad(): # 1.1 use perception model (i.e. encoder) to get observation embeddings obs_embeds = self.forward_encoder(observations) nsteps,nsamplers,_ = obs_embeds.shape prev_actions_embeds = self.prev_action_embedder(prev_actions['nav_action']) joint_embeds = torch.cat((obs_embeds, prev_actions_embeds), dim=-1) # (T, N, *) if not self.adapt_belief: beliefs_dict = {} for key, model in self.state_encoders.items(): beliefs_dict[key], rnn_hidden_states = model( joint_embeds, memory.tensor(key), masks ) memory.set_tensor(key, rnn_hidden_states) # update memory here # 3. fuse beliefs for multiple belief models beliefs, task_weights = self.fuse_beliefs( beliefs_dict, obs_embeds ) beliefs_combined = beliefs if self.adapt_belief: ### only done when adaptation is switched on### joint_embeds_all = torch.cat((obs_embeds, prev_actions_embeds), dim=-1) beliefs_combined = None for step in range(nsteps): # 1.2 use embedding model to get prev_action embeddings joint_embeds = joint_embeds_all[step,:,:].unsqueeze(0) masks_step = masks[step,:,:].unsqueeze(0) # 2. use RNNs to get single/multiple beliefs with torch.no_grad(): beliefs_dict = {} for key, model in self.state_encoders.items(): beliefs_dict[key], rnn_hidden_states = model( joint_embeds, memory.tensor(key), masks_step ) memory.set_tensor(key, rnn_hidden_states) # update memory here # 3. fuse beliefs for multiple belief models beliefs, task_weights = self.fuse_beliefs( beliefs_dict, obs_embeds ) # fused beliefs if beliefs_combined is None: beliefs_combined = beliefs else: beliefs_combined = torch.cat((beliefs_combined,beliefs),dim=0) expert_action_embedding = self.prev_expert_action_embedder(expert_action[step,:].unsqueeze(0)) res_input = torch.cat((beliefs,expert_action_embedding),dim=-1) beliefs_residual,residual_hidden_states = self.expert_encoder(res_input,memory.tensor('residual_gru'),masks_step) memory.set_tensor('residual_gru',residual_hidden_states) beliefs_residual = beliefs_residual * expert_action_mask.unsqueeze(-1)[step,:,:].unsqueeze(0) beliefs = beliefs + beliefs_residual # if beliefs_combined is None: # beliefs_combined = beliefs # else: # beliefs_combined = torch.cat((beliefs_combined,beliefs),dim=0) memory.set_tensor('single_belief',beliefs) beliefs = beliefs_combined with torch.no_grad(): actor_pred_distr = self.actor(beliefs) if self.end_action_in_ask: ## making logits of end so small that it's never picked by the agent. actor_pred_distr.logits[:,:,self.end_action_idx] -= 999 if self.succ_pred_model is None: self.succ_pred_model = succ_pred_model(512).to(beliefs.device) self.succ_pred_model.load_state_dict( torch.load('./storage/best_auc_clip_run_belief_480_rollout_len.pt', map_location=beliefs.device)) succ_pred_out, succ_rnn_hidden_states = self.succ_pred_model(beliefs, memory.tensor('succ_pred_gru'),masks) memory.set_tensor('succ_pred_gru', succ_rnn_hidden_states) succ_prob = torch.sigmoid(succ_pred_out) succ_prob_inp = succ_prob.repeat(1,1,48) ask_policy_input = torch.cat((beliefs,succ_prob_inp),dim=-1) prev_ask_action_embed = self.prev_ask_action_embedder(prev_actions['ask_action']) expert_mask_embed = self.expert_mask_embedder(expert_action_mask) if self.adaptive_reward: reward_config_embed = self.reward_function_embedder(observations['reward_config_sensor']) ask_policy_input = torch.cat((ask_policy_input,prev_ask_action_embed,expert_mask_embed,reward_config_embed),dim=-1) else: ask_policy_input = torch.cat((ask_policy_input,prev_ask_action_embed,expert_mask_embed),dim=-1) if self.ask_actor_head is None: print ('initialisation error') exit() self.ask_actor_head = LinearActorHead(self._hidden_size+48,self.ask_action_space.n).to(beliefs.device) ## concatenating frozen beliefs with success prediction output self.ask_critic_head = LinearCriticHead(self._hidden_size+48).to(beliefs.device) ask_policy_input = self.ask_policy_mlp(ask_policy_input) ask_policy_input,ask_hidden_states = self.ask_policy_gru(ask_policy_input,memory.tensor('ask4help_gru'),masks) memory.set_tensor('ask4help_gru', ask_hidden_states) ask_pred_distr = self.ask_actor_head(ask_policy_input) ask_pred_value = self.ask_critic_head(ask_policy_input) expert_logits = (torch.zeros(nsteps, nsamplers, nactions) + 1e-3).to(beliefs.device) for step in range(nsteps): for samp in range(nsamplers): expert_action_idx = expert_action[step,samp].item() expert_logits[step,samp,expert_action_idx] = 999 expert_action_mask = expert_action_mask.unsqueeze(-1) action_logits = expert_logits * expert_action_mask + (1 - expert_action_mask) * actor_pred_distr.logits actor_distr = CategoricalDistr(logits=action_logits) output_distr = MultiDimActionDistr(actor_distr, ask_pred_distr) # 4. prepare output extras = ( { aux_uuid: { "beliefs": ( beliefs_dict[aux_uuid] if self.multiple_beliefs else beliefs_combined ), "obs_embeds": obs_embeds, "ask_action_logits":ask_pred_distr.logits, "model_action_logits":actor_pred_distr.logits, "expert_actions":observations['expert_action'], "prev_actions":prev_actions, "aux_model": ( self.aux_models[aux_uuid] if aux_uuid in self.aux_models else None ), } for aux_uuid in self.auxiliary_uuids } if self.auxiliary_uuids is not None else {} ) if self.multiple_beliefs: extras[MultiAuxTaskNegEntropyLoss.UUID] = task_weights actor_critic_output = ActorCriticOutput( distributions=output_distr, values=ask_pred_value, extras=extras, ) return actor_critic_output,memory print ('logic error model') exit() # 1.1 use perception model (i.e. encoder) to get observation embeddings obs_embeds = self.forward_encoder(observations) # 1.2 use embedding model to get prev_action embeddings prev_actions_embeds = self.prev_action_embedder(prev_actions) joint_embeds = torch.cat((obs_embeds, prev_actions_embeds), dim=-1) # (T, N, *) # 2. use RNNs to get single/multiple beliefs beliefs_dict = {} for key, model in self.state_encoders.items(): beliefs_dict[key], rnn_hidden_states = model( joint_embeds, memory.tensor(key), masks ) memory.set_tensor(key, rnn_hidden_states) # update memory here # 3. fuse beliefs for multiple belief models beliefs, task_weights = self.fuse_beliefs( beliefs_dict, obs_embeds ) # fused beliefs # 4. prepare output extras = ( { aux_uuid: { "beliefs": ( beliefs_dict[aux_uuid] if self.multiple_beliefs else beliefs ), "obs_embeds": obs_embeds, "aux_model": ( self.aux_models[aux_uuid] if aux_uuid in self.aux_models else None ), } for aux_uuid in self.auxiliary_uuids } if self.auxiliary_uuids is not None else {} ) if self.multiple_beliefs: extras[MultiAuxTaskNegEntropyLoss.UUID] = task_weights ''' expert_action_obs = observations['expert_action'].squeeze() expert_action = expert_action_obs[0] expert_action_mask = expert_action_obs[1] nsteps,nsamplers,_ = beliefs.shape nactions = self.nav_action_space.n actor_pred_distr = self.actor(beliefs) with torch.no_grad(): if self.succ_pred_model is None: self.succ_pred_model = succ_pred_model(512).to(beliefs.device) self.succ_pred_model.load_state_dict(torch.load('./storage/best_auc_clip_run_belief_480_rollout_len.pt',map_location=beliefs.device)) if self.succ_pred_rnn_hidden_state is None: self.succ_pred_rnn_hidden_state = torch.zeros(1,1,512).to(beliefs.device) succ_pred_out,rnn_hidden_states = self.succ_pred_model(beliefs,self.succ_pred_rnn_hidden_state,masks) self.succ_pred_rnn_hidden_state = rnn_hidden_states succ_prob = torch.sigmoid(succ_pred_out).squeeze() expert_logits = torch.zeros(nsteps,nsamplers,nactions) + 1e-3 expert_logits[:,:,expert_action.item()] = 999 action_logits = expert_logits*expert_action_mask + (1-expert_action_mask) * actor_pred_distr.logits actor_distr = CategoricalDistr(logits=action_logits) threshold = 0.2 ## To be updated if succ_prob<threshold: succ_pred_logit = torch.tensor([0.001,999]).unsqueeze(0).unsqueeze(0).to(beliefs.device) else: succ_pred_logit = torch.tensor([999,0.001]).unsqueeze(0).unsqueeze(0).to(beliefs.device) # succ_pred_logit = torch.tensor([0.001,999]).unsqueeze(0).unsqueeze(0).to(beliefs.device) output_distr = MultiDimActionDistr(actor_distr,CategoricalDistr(logits=succ_pred_logit)) ''' actor_critic_output = ActorCriticOutput( distributions=self.actor(beliefs), values=self.critic(beliefs), extras=extras, ) return actor_critic_output, memory
ask4help-main
allenact/embodiedai/models/visual_nav_models.py
ask4help-main
allenact/embodiedai/aux_losses/__init__.py
# Original work Copyright (c) Facebook, Inc. and its affiliates. # Modified work Copyright (c) Allen Institute for AI # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Defining the auxiliary loss for actor critic type models. Several of the losses defined in this file are modified versions of those found in https://github.com/joel99/habitat-pointnav-aux/blob/master/habitat_baselines/ """ from typing import Dict, cast, Tuple, List import abc import numpy as np import torch import torch.nn as nn from allenact.algorithms.onpolicy_sync.losses.abstract_loss import ( AbstractActorCriticLoss, ObservationType, ) from allenact.base_abstractions.distributions import CategoricalDistr from allenact.base_abstractions.misc import ActorCriticOutput def _bernoulli_subsample_mask_like(masks, p=0.1): return (torch.rand_like(masks) <= p).float() class MultiAuxTaskNegEntropyLoss(AbstractActorCriticLoss): """Used in multiple auxiliary tasks setting. Add a negative entropy loss over all the task weights. """ UUID = "multitask_entropy" # make sure this is unique def __init__(self, task_names: List[str], *args, **kwargs): super().__init__(*args, **kwargs) self.num_tasks = len(task_names) self.task_names = task_names def loss( # type: ignore self, step_count: int, batch: ObservationType, actor_critic_output: ActorCriticOutput[CategoricalDistr], *args, **kwargs ) -> Tuple[torch.FloatTensor, Dict[str, float]]: task_weights = actor_critic_output.extras[self.UUID] task_weights = task_weights.view(-1, self.num_tasks) entropy = CategoricalDistr(task_weights).entropy() avg_loss = (-entropy).mean() avg_task_weights = task_weights.mean(dim=0) # (K) outputs = {"entropy_loss": cast(torch.Tensor, avg_loss).item()} for i in range(self.num_tasks): outputs["weight_" + self.task_names[i]] = cast( torch.Tensor, avg_task_weights[i] ).item() return ( avg_loss, outputs, ) class AuxiliaryLoss(AbstractActorCriticLoss): """Base class of auxiliary loss. Any auxiliary task loss should inherit from it, and implement the `get_aux_loss` function. """ def __init__(self, auxiliary_uuid: str, *args, **kwargs): super().__init__(*args, **kwargs) self.auxiliary_uuid = auxiliary_uuid def loss( # type: ignore self, step_count: int, batch: ObservationType, actor_critic_output: ActorCriticOutput[CategoricalDistr], *args, **kwargs ) -> Tuple[torch.FloatTensor, Dict[str, float]]: # auxiliary loss return self.get_aux_loss( **actor_critic_output.extras[self.auxiliary_uuid], observations=batch["observations"], actions=batch["actions"], masks=batch["masks"], ) @abc.abstractmethod def get_aux_loss( self, aux_model: nn.Module, observations: ObservationType, obs_embeds: torch.FloatTensor, actions: torch.FloatTensor, beliefs: torch.FloatTensor, masks: torch.FloatTensor, *args, **kwargs ): raise NotImplementedError() def _propagate_final_beliefs_to_all_steps( beliefs: torch.Tensor, masks: torch.Tensor, num_sampler: int, num_steps: int, ): final_beliefs = torch.zeros_like(beliefs) # (T, B, *) start_locs_list = [] end_locs_list = [] for i in range(num_sampler): # right shift: to locate the 1 before 0 and ignore the 1st element end_locs = torch.where(masks[1:, i] == 0)[0] # maybe [], dtype=torch.Long start_locs = torch.cat( [torch.tensor([0]).to(end_locs), end_locs + 1] ) # add the first element start_locs_list.append(start_locs) end_locs = torch.cat( [end_locs, torch.tensor([num_steps - 1]).to(end_locs)] ) # add the last element end_locs_list.append(end_locs) for st, ed in zip(start_locs, end_locs): final_beliefs[st : ed + 1, i] = beliefs[ed, i] return final_beliefs, start_locs_list, end_locs_list class FrequencyLoss(AuxiliaryLoss): """ Frequency loss to encourage contiguous chunks of help """ UUID = "FreqLoss" def __init__(self,*args,**kwargs): super().__init__(auxiliary_uuid=self.UUID,**kwargs) def get_aux_loss( self, aux_model: nn.Module, observations: ObservationType, obs_embeds: torch.FloatTensor, ask_action_logits, model_action_logits, expert_actions, prev_actions, actions: torch.FloatTensor, beliefs: torch.FloatTensor, masks: torch.FloatTensor, *args, **kwargs): nsteps,nsamplers,_ = ask_action_logits.shape softmax_logits = torch.softmax(ask_action_logits,dim=-1) loss = torch.zeros(nsteps,nsamplers).to(beliefs.device) for step in range(nsteps): for samp in range(nsamplers): prev_action_idx = prev_actions['ask_action'][step,samp].item() loss[step,samp] = 1-softmax_logits[step,samp,prev_action_idx] num_valid_losses = masks.sum() loss = loss.unsqueeze(-1) loss = loss*masks loss = loss.squeeze(-1) avg_loss = (loss.sum(0).sum(0)) / torch.clamp(num_valid_losses, min=1.0) return ( avg_loss, {"total": cast(torch.Tensor, avg_loss).item(),}, ) class SupImitationLoss(AuxiliaryLoss): """ Supervised Imitation Loss for adaptation from expert supervision """ UUID = "IMITATION_ADAPT" def __init__(self,*args,**kwargs): super().__init__(auxiliary_uuid=self.UUID,**kwargs) self.cross_entropy_loss = nn.CrossEntropyLoss(reduction='none') def get_aux_loss( self, aux_model: nn.Module, observations: ObservationType, obs_embeds: torch.FloatTensor, ask_action_logits, model_action_logits, expert_actions, actions: torch.FloatTensor, beliefs: torch.FloatTensor, masks: torch.FloatTensor, *args, **kwargs): ## add agent logits to extras dict. nsteps,nsamplers,_ = ask_action_logits.shape expert_action_masks = expert_actions[:,:,1] expert_action_seq = expert_actions[:,:,0] softmax_logits = torch.log_softmax(model_action_logits,dim=-1) softmax_logits = softmax_logits.view(nsteps*nsamplers,-1) expert_action_seq = expert_action_seq.view(nsteps*nsamplers) loss = self.cross_entropy_loss(softmax_logits,expert_action_seq) loss = loss.view(nsteps,nsamplers) num_valid_losses = expert_action_masks.sum() loss = loss*expert_action_masks avg_loss = (loss.sum(0).sum(0)) / torch.clamp(num_valid_losses, min=1.0) return ( avg_loss, {"total": cast(torch.Tensor, avg_loss).item(),}, ) class InverseDynamicsLoss(AuxiliaryLoss): """Auxiliary task of Inverse Dynamics from Auxiliary Tasks Speed Up Learning PointGoal Navigation (Ye, 2020) https://arxiv.org/abs/2007.04561 originally from Curiosity-driven Exploration by Self-supervised Prediction (Pathak, 2017) https://arxiv.org/abs/1705.05363.""" UUID = "InvDyn" def __init__( self, subsample_rate: float = 0.2, subsample_min_num: int = 10, *args, **kwargs ): """Subsample the valid samples by the rate of `subsample_rate`, if the total num of the valid samples is larger than `subsample_min_num`.""" super().__init__(auxiliary_uuid=self.UUID, *args, **kwargs) self.cross_entropy_loss = nn.CrossEntropyLoss(reduction="none") self.subsample_rate = subsample_rate self.subsample_min_num = subsample_min_num def get_aux_loss( self, aux_model: nn.Module, observations: ObservationType, obs_embeds: torch.FloatTensor, actions: torch.FloatTensor, beliefs: torch.FloatTensor, masks: torch.FloatTensor, *args, **kwargs ): ## we discard the last action in the batch num_steps, num_sampler = actions.shape # T, B actions = cast(torch.LongTensor, actions) actions = actions[:-1] # (T-1, B) ## find the final belief state based on masks # we did not compute loss here as model.forward is compute-heavy masks = masks.squeeze(-1) # (T, B) final_beliefs, _, _ = _propagate_final_beliefs_to_all_steps( beliefs, masks, num_sampler, num_steps, ) ## compute CE loss decoder_in = torch.cat( [obs_embeds[:-1], obs_embeds[1:], final_beliefs[:-1]], dim=2 ) # (T-1, B, *) preds = aux_model(decoder_in) # (T-1, B, A) # cross entropy loss require class dim at 1 loss = self.cross_entropy_loss( preds.view((num_steps - 1) * num_sampler, -1), # ((T-1)*B, A) actions.flatten(), # ((T-1)*B,) ) loss = loss.view(num_steps - 1, num_sampler) # (T-1, B) # def vanilla_valid_losses(loss, num_sampler, end_locs_batch): # ## this is just used to verify the vectorized version works correctly. # ## not used for experimentation # valid_losses = [] # for i in range(num_sampler): # end_locs = end_locs_batch[i] # for j in range(len(end_locs)): # if j == 0: # start_loc = 0 # else: # start_loc = end_locs[j - 1] + 1 # end_loc = end_locs[j] # if end_loc - start_loc <= 0: # the episode only 1-step # continue # valid_losses.append(loss[start_loc:end_loc, i]) # if len(valid_losses) == 0: # valid_losses = torch.zeros(1, dtype=torch.float).to(loss) # else: # valid_losses = torch.cat(valid_losses) # (sum m, ) # return valid_losses # valid_losses = masks[1:] * loss # (T-1, B) # valid_losses0 = vanilla_valid_losses(loss, num_sampler, end_locs_batch) # assert valid_losses0.sum() == valid_losses.sum() num_valid_losses = torch.count_nonzero(masks[1:]) if num_valid_losses < self.subsample_min_num: # don't subsample subsample_rate = 1.0 else: subsample_rate = self.subsample_rate loss_masks = masks[1:] * _bernoulli_subsample_mask_like( masks[1:], subsample_rate ) num_valid_losses = torch.count_nonzero(loss_masks) avg_loss = (loss * loss_masks).sum() / torch.clamp(num_valid_losses, min=1.0) return ( avg_loss, {"total": cast(torch.Tensor, avg_loss).item(),}, ) class TemporalDistanceLoss(AuxiliaryLoss): """Auxiliary task of Temporal Distance from Auxiliary Tasks Speed Up Learning PointGoal Navigation (Ye, 2020) https://arxiv.org/abs/2007.04561.""" UUID = "TempDist" def __init__(self, num_pairs: int = 8, epsiode_len_min: int = 5, *args, **kwargs): super().__init__(auxiliary_uuid=self.UUID, *args, **kwargs) self.num_pairs = num_pairs self.epsiode_len_min = float(epsiode_len_min) def get_aux_loss( self, aux_model: nn.Module, observations: ObservationType, obs_embeds: torch.FloatTensor, actions: torch.FloatTensor, beliefs: torch.FloatTensor, masks: torch.FloatTensor, *args, **kwargs ): ## we discard the last action in the batch num_steps, num_sampler = actions.shape # T, B ## find the final belief state based on masks # we did not compute loss here as model.forward is compute-heavy masks = masks.squeeze(-1) # (T, B) ( final_beliefs, start_locs_list, end_locs_list, ) = _propagate_final_beliefs_to_all_steps( beliefs, masks, num_sampler, num_steps, ) ## also find the locs_batch of shape (M, 3) # the last dim: [0] is on num_sampler loc, [1] and [2] is start and end locs # of one episode # in other words: at locs_batch[m, 0] in num_sampler dim, there exists one episode # starting from locs_batch[m, 1], ends at locs_batch[m, 2] (included) locs_batch = [] for i in range(num_sampler): locs_batch.append( torch.stack( [ i * torch.ones_like(start_locs_list[i]), start_locs_list[i], end_locs_list[i], ], dim=-1, ) ) # shape (M[i], 3) locs_batch = torch.cat(locs_batch) # shape (M, 3) temporal_dist_max = ( locs_batch[:, 2] - locs_batch[:, 1] ).float() # end - start, (M) # create normalizer that ignores too short episode, otherwise 1/T normalizer = torch.where( temporal_dist_max > self.epsiode_len_min, 1.0 / temporal_dist_max, torch.tensor([0]).to(temporal_dist_max), ) # (M) # sample valid pairs: sampled_pairs shape (M, num_pairs, 3) # where M is the num of total episodes in the batch locs = locs_batch.cpu().numpy() # as torch.randint only support int, not tensor sampled_pairs = np.random.randint( np.repeat(locs[:, [1]], 2 * self.num_pairs, axis=-1), # (M, 2*k) np.repeat(locs[:, [2]] + 1, 2 * self.num_pairs, axis=-1), # (M, 2*k) ).reshape( -1, self.num_pairs, 2 ) # (M, k, 2) sampled_pairs_batch = torch.from_numpy(sampled_pairs).to( locs_batch ) # (M, k, 2) num_sampler_batch = locs_batch[:, [0]].expand( -1, 2 * self.num_pairs ) # (M, 1) -> (M, 2*k) num_sampler_batch = num_sampler_batch.reshape( -1, self.num_pairs, 2 ) # (M, k, 2) sampled_obs_embeds = obs_embeds[ sampled_pairs_batch, num_sampler_batch ] # (M, k, 2, H1) sampled_final_beliefs = final_beliefs[ sampled_pairs_batch, num_sampler_batch ] # (M, k, 2, H2) features = torch.cat( [ sampled_obs_embeds[:, :, 0], sampled_obs_embeds[:, :, 1], sampled_final_beliefs[:, :, 0], ], dim=-1, ) # (M, k, 2*H1 + H2) pred_temp_dist = aux_model(features).squeeze(-1) # (M, k) true_temp_dist = ( sampled_pairs_batch[:, :, 1] - sampled_pairs_batch[:, :, 0] ).float() # (M, k) pred_error = (pred_temp_dist - true_temp_dist) * normalizer.unsqueeze(1) loss = 0.5 * (pred_error).pow(2) avg_loss = loss.mean() return ( avg_loss, {"total": cast(torch.Tensor, avg_loss).item(),}, ) class CPCALoss(AuxiliaryLoss): """Auxiliary task of CPC|A from Auxiliary Tasks Speed Up Learning PointGoal Navigation (Ye, 2020) https://arxiv.org/abs/2007.04561 originally from Neural Predictive Belief Representations (Guo, 2018) https://arxiv.org/abs/1811.06407.""" UUID = "CPCA" def __init__( self, planning_steps: int = 8, subsample_rate: float = 0.2, *args, **kwargs ): super().__init__(auxiliary_uuid=self.UUID, *args, **kwargs) self.planning_steps = planning_steps self.subsample_rate = subsample_rate self.cross_entropy_loss = nn.BCEWithLogitsLoss(reduction="none") def get_aux_loss( self, aux_model: nn.Module, observations: ObservationType, obs_embeds: torch.FloatTensor, actions: torch.FloatTensor, beliefs: torch.FloatTensor, masks: torch.FloatTensor, *args, **kwargs ): # prepare for autoregressive inputs: c_{t+1:t+k} = GRU(b_t, a_{t:t+k-1}) <-> z_{t+k} ## where b_t = RNN(b_{t-1}, z_t, a_{t-1}), prev action is optional num_steps, num_sampler, obs_embed_size = obs_embeds.shape # T, N, H_O assert 0 < self.planning_steps <= num_steps ## prepare positive and negatives that sample from all the batch positives = obs_embeds # (T, N, -1) negative_inds = torch.randperm(num_steps * num_sampler).to(positives.device) negatives = torch.gather( # input[index[i,j]][j] positives.view(num_steps * num_sampler, -1), dim=0, index=negative_inds.view(num_steps * num_sampler, 1).expand( num_steps * num_sampler, positives.size(-1) ), ).view( num_steps, num_sampler, -1 ) # (T, N, -1) ## prepare action sequences and initial beliefs action_embedding = aux_model.action_embedder(actions) # (T, N, -1) action_embed_size = action_embedding.size(-1) action_padding = torch.zeros( self.planning_steps - 1, num_sampler, action_embed_size ).to( action_embedding ) # (k-1, N, -1) action_padded = torch.cat( (action_embedding, action_padding), dim=0 ) # (T+k-1, N, -1) ## unfold function will create consecutive action sequences action_seq = ( action_padded.unfold(dimension=0, size=self.planning_steps, step=1) .permute(3, 0, 1, 2) .view(self.planning_steps, num_steps * num_sampler, action_embed_size) ) # (k, T*N, -1) beliefs = beliefs.view(num_steps * num_sampler, -1).unsqueeze(0) # (1, T*N, -1) # get future contexts c_{t+1:t+k} = GRU(b_t, a_{t:t+k-1}) future_contexts_all, _ = aux_model.context_model( action_seq, beliefs ) # (k, T*N, -1) ## NOTE: future_contexts_all starting from next step t+1 to t+k, not t to t+k-1 future_contexts_all = future_contexts_all.view( self.planning_steps, num_steps, num_sampler, -1 ).permute( 1, 0, 2, 3 ) # (k, T, N, -1) # get all the classifier scores I(c_{t+1:t+k}; z_{t+1:t+k}) positives_padding = torch.zeros( self.planning_steps, num_sampler, obs_embed_size ).to( positives ) # (k, N, -1) positives_padded = torch.cat( (positives[1:], positives_padding), dim=0 ) # (T+k-1, N, -1) positives_expanded = positives_padded.unfold( dimension=0, size=self.planning_steps, step=1 ).permute( 0, 3, 1, 2 ) # (T, k, N, -1) positives_logits = aux_model.classifier( torch.cat([positives_expanded, future_contexts_all], -1) ) # (T, k, N, 1) positive_loss = self.cross_entropy_loss( positives_logits, torch.ones_like(positives_logits) ) # (T, k, N, 1) negatives_padding = torch.zeros( self.planning_steps, num_sampler, obs_embed_size ).to( negatives ) # (k, N, -1) negatives_padded = torch.cat( (negatives[1:], negatives_padding), dim=0 ) # (T+k-1, N, -1) negatives_expanded = negatives_padded.unfold( dimension=0, size=self.planning_steps, step=1 ).permute( 0, 3, 1, 2 ) # (T, k, N, -1) negatives_logits = aux_model.classifier( torch.cat([negatives_expanded, future_contexts_all], -1) ) # (T, k, N, 1) negative_loss = self.cross_entropy_loss( negatives_logits, torch.zeros_like(negatives_logits) ) # (T, k, N, 1) # Masking to get valid scores ## masks: Note which timesteps [1, T+k+1] could have valid queries, at distance (k) (note offset by 1) ## we will extract the **diagonals** as valid_masks from masks later as below ## the vertical axis is (absolute) real timesteps, the horizontal axis is (relative) planning timesteps ## | - - - - - | ## | . | ## | , . | ## | . , . | ## | , . , . | ## | , . , . | ## | , . , | ## | , . | ## | , | ## | - - - - - | masks = masks.squeeze(-1) # (T, N) pred_masks = torch.ones( num_steps + self.planning_steps, self.planning_steps, num_sampler, 1, dtype=torch.bool, ).to( beliefs.device ) # (T+k, k, N, 1) pred_masks[ num_steps - 1 : ] = False # GRU(b_t, a_{t:t+k-1}) is invalid when t >= T, as we don't have real z_{t+1} for j in range(1, self.planning_steps + 1): # for j-step predictions pred_masks[ : j - 1, j - 1 ] = False # Remove the upper triangle above the diagnonal (but I think this is unnecessary for valid_masks) for n in range(num_sampler): has_zeros_batch = torch.where(masks[:, n] == 0)[0] # in j-step prediction, timesteps z -> z + j are disallowed as those are the first j timesteps of a new episode # z-> z-1 because of pred_masks being offset by 1 for z in has_zeros_batch: pred_masks[ z - 1 : z - 1 + j, j - 1, n ] = False # can affect j timesteps # instead of the whole range, we actually are only comparing a window i:i+k for each query/target i - for each, select the appropriate k # we essentially gather diagonals from this full mask, t of them, k long valid_diagonals = [ torch.diagonal(pred_masks, offset=-i) for i in range(num_steps) ] # pull the appropriate k per timestep valid_masks = ( torch.stack(valid_diagonals, dim=0).permute(0, 3, 1, 2).float() ) # (T, N, 1, k) -> (T, k, N, 1) # print(valid_masks.int().squeeze(-1)); print(masks) # verify its correctness loss_masks = valid_masks * _bernoulli_subsample_mask_like( valid_masks, self.subsample_rate ) # (T, k, N, 1) num_valid_losses = torch.count_nonzero(loss_masks) avg_positive_loss = (positive_loss * loss_masks).sum() / torch.clamp( num_valid_losses, min=1.0 ) avg_negative_loss = (negative_loss * loss_masks).sum() / torch.clamp( num_valid_losses, min=1.0 ) avg_loss = avg_positive_loss + avg_negative_loss return ( avg_loss, { "total": cast(torch.Tensor, avg_loss).item(), "positive_loss": cast(torch.Tensor, avg_positive_loss).item(), "negative_loss": cast(torch.Tensor, avg_negative_loss).item(), }, ) class CPCA1Loss(CPCALoss): UUID = "CPCA_1" def __init__(self, subsample_rate: float = 0.2, *args, **kwargs): super().__init__( planning_steps=1, subsample_rate=subsample_rate, *args, **kwargs ) class CPCA2Loss(CPCALoss): UUID = "CPCA_2" def __init__(self, subsample_rate: float = 0.2, *args, **kwargs): super().__init__( planning_steps=2, subsample_rate=subsample_rate, *args, **kwargs ) class CPCA4Loss(CPCALoss): UUID = "CPCA_4" def __init__(self, subsample_rate: float = 0.2, *args, **kwargs): super().__init__( planning_steps=4, subsample_rate=subsample_rate, *args, **kwargs ) class CPCA8Loss(CPCALoss): UUID = "CPCA_8" def __init__(self, subsample_rate: float = 0.2, *args, **kwargs): super().__init__( planning_steps=8, subsample_rate=subsample_rate, *args, **kwargs ) class CPCA16Loss(CPCALoss): UUID = "CPCA_16" def __init__(self, subsample_rate: float = 0.2, *args, **kwargs): super().__init__( planning_steps=16, subsample_rate=subsample_rate, *args, **kwargs )
ask4help-main
allenact/embodiedai/aux_losses/losses.py
"""Defines the `ExperimentConfig` abstract class used as the basis of all experiments.""" import abc from typing import Dict, Any, Optional, List, Union, Sequence, Tuple, cast import torch import torch.nn as nn from allenact.base_abstractions.preprocessor import SensorPreprocessorGraph from allenact.base_abstractions.task import TaskSampler from allenact.utils.experiment_utils import TrainingPipeline, Builder from allenact.utils.system import get_logger from allenact.utils.viz_utils import VizSuite def split_processes_onto_devices(nprocesses: int, ndevices: int): assert ( nprocesses == 0 or nprocesses >= ndevices ), "NUM_PROCESSES {} < ndevices {}".format(nprocesses, ndevices) res = [0] * ndevices for it in range(nprocesses): res[it % ndevices] += 1 return res class MachineParams(object): def __init__( self, nprocesses: Union[int, Sequence[int]], devices: Union[ None, int, str, torch.device, Sequence[Union[int, str, torch.device]] ] = None, sensor_preprocessor_graph: Optional[ Union[SensorPreprocessorGraph, Builder[SensorPreprocessorGraph]] ] = None, sampler_devices: Union[ None, int, str, torch.device, Sequence[Union[int, str, torch.device]] ] = None, visualizer: Optional[Union[VizSuite, Builder[VizSuite]]] = None, gpu_ids: Union[int, Sequence[int]] = None, local_worker_ids: Optional[List[int]] = None, ): assert ( gpu_ids is None or devices is None ), "only one of `gpu_ids` or `devices` should be set." if gpu_ids is not None: get_logger().warning( "The `gpu_ids` parameter will be deprecated, use `devices` instead." ) devices = gpu_ids self.nprocesses = ( nprocesses if isinstance(nprocesses, Sequence) else (nprocesses,) ) self.devices: Tuple[torch.device, ...] = self._standardize_devices( devices=devices, nworkers=len(self.nprocesses) ) self._sensor_preprocessor_graph_maybe_builder = sensor_preprocessor_graph self.sampler_devices: Tuple[torch.device, ...] = ( None if sampler_devices is None else self._standardize_devices( devices=sampler_devices, nworkers=len(self.nprocesses) ) ) self._visualizer_maybe_builder = visualizer self._sensor_preprocessor_graph_cached: Optional[SensorPreprocessorGraph] = None self._visualizer_cached: Optional[VizSuite] = None self.local_worker_ids: Optional[List[int]] = None self.set_local_worker_ids(local_worker_ids) def set_local_worker_ids(self, local_worker_ids: Optional[List[int]]): self.local_worker_ids = local_worker_ids or list(range(len(self.devices))) assert all(0 <= id < len(self.devices) for id in self.local_worker_ids), ( f"Passed {len(self.local_worker_ids)} local worker ids {self.local_worker_ids}" f" for {len(self.devices)} total devices (workers)" ) @classmethod def instance_from( cls, machine_params: Union["MachineParams", Dict[str, Any]] ) -> "MachineParams": if isinstance(machine_params, cls): return machine_params assert isinstance(machine_params, Dict) return cls(**machine_params) @staticmethod def _standardize_devices( devices: Optional[ Union[int, str, torch.device, Sequence[Union[int, str, torch.device]]] ], nworkers: int, ) -> Tuple[torch.device, ...]: if devices is None or (isinstance(devices, Sequence) and len(devices) == 0): devices = torch.device("cpu") if not isinstance(devices, Sequence): devices = (devices,) * nworkers assert len(devices) == nworkers, ( f"The number of devices (len({devices})={len(devices)})" f" must equal the number of workers ({nworkers})" ) devices = tuple( torch.device("cpu") if d == -1 else torch.device(d) for d in devices # type: ignore ) for d in devices: if d != torch.device("cpu"): try: torch.cuda.get_device_capability(d) # type: ignore except Exception: raise RuntimeError( f"It appears the cuda device {d} is not available on your system." ) return cast(Tuple[torch.device, ...], devices) @property def sensor_preprocessor_graph(self) -> Optional[SensorPreprocessorGraph]: if self._sensor_preprocessor_graph_maybe_builder is None: return None if self._sensor_preprocessor_graph_cached is None: if isinstance(self._sensor_preprocessor_graph_maybe_builder, Builder): self._sensor_preprocessor_graph_cached = ( self._sensor_preprocessor_graph_maybe_builder() ) else: self._sensor_preprocessor_graph_cached = ( self._sensor_preprocessor_graph_maybe_builder ) return self._sensor_preprocessor_graph_cached def set_visualizer(self, viz: VizSuite): if self._visualizer_cached is None: self._visualizer_maybe_builder = viz else: get_logger().warning("Ignoring viz (already instantiated)") @property def visualizer(self) -> Optional[VizSuite]: if self._visualizer_maybe_builder is None: return None if self._visualizer_cached is None: if isinstance(self._visualizer_maybe_builder, Builder): self._visualizer_cached = self._visualizer_maybe_builder() else: self._visualizer_cached = self._visualizer_maybe_builder return self._visualizer_cached class FrozenClassVariables(abc.ABCMeta): """Metaclass for ExperimentConfig. Ensures ExperimentConfig class-level attributes cannot be modified. ExperimentConfig attributes can still be modified at the object level. """ def __setattr__(cls, attr, value): if isinstance(cls, type) and ( attr != "__abstractmethods__" and not attr.startswith("_abc_") ): raise RuntimeError( "Cannot edit class-level attributes.\n" "Changing the values of class-level attributes is disabled in ExperimentConfig classes.\n" "This is to prevent problems that can occur otherwise when using multiprocessing.\n" "If you wish to change the value of a configuration, please do so for an instance of that" " configuration.\nTriggered by attempting to modify {}".format( cls.__name__ ) ) else: super().__setattr__(attr, value) class ExperimentConfig(metaclass=FrozenClassVariables): """Abstract class used to define experiments. Instead of using yaml or text files, experiments in our framework are defined as a class. In particular, to define an experiment one must define a new class inheriting from this class which implements all of the below methods. The below methods will then be called when running the experiment. """ @abc.abstractmethod def tag(self) -> str: """A string describing the experiment.""" raise NotImplementedError() @abc.abstractmethod def training_pipeline(self, **kwargs) -> TrainingPipeline: """Creates the training pipeline. # Parameters kwargs : Extra kwargs. Currently unused. # Returns An instantiate `TrainingPipeline` object. """ raise NotImplementedError() @abc.abstractmethod def machine_params( self, mode="train", **kwargs ) -> Union[MachineParams, Dict[str, Any]]: """Parameters used to specify machine information. Machine information includes at least (1) the number of processes to train with and (2) the gpu devices indices to use. mode : Whether or not the machine parameters should be those for "train", "valid", or "test". kwargs : Extra kwargs. # Returns A dictionary of the form `{"nprocesses": ..., "gpu_ids": ..., ...}`. Here `nprocesses` must be a non-negative integer, `gpu_ids` must be a sequence of non-negative integers (if empty, then everything will be run on the cpu). """ raise NotImplementedError() @abc.abstractmethod def create_model(self, **kwargs) -> nn.Module: """Create the neural model.""" raise NotImplementedError() @abc.abstractmethod def make_sampler_fn(self, **kwargs) -> TaskSampler: """Create the TaskSampler given keyword arguments. These `kwargs` will be generated by one of `ExperimentConfig.train_task_sampler_args`, `ExperimentConfig.valid_task_sampler_args`, or `ExperimentConfig.test_task_sampler_args` depending on whether the user has chosen to train, validate, or test. """ raise NotImplementedError() def train_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: """Specifies the training parameters for the `process_ind`th training process. These parameters are meant be passed as keyword arguments to `ExperimentConfig.make_sampler_fn` to generate a task sampler. # Parameters process_ind : The unique index of the training process (`0 ≤ process_ind < total_processes`). total_processes : The total number of training processes. devices : Gpu devices (if any) to use. seeds : The seeds to use, if any. deterministic_cudnn : Whether or not to use deterministic cudnn. # Returns The parameters for `make_sampler_fn` """ raise NotImplementedError() def valid_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: """Specifies the validation parameters for the `process_ind`th validation process. See `ExperimentConfig.train_task_sampler_args` for parameter definitions. """ raise NotImplementedError() def test_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: """Specifies the test parameters for the `process_ind`th test process. See `ExperimentConfig.train_task_sampler_args` for parameter definitions. """ raise NotImplementedError()
ask4help-main
allenact/base_abstractions/experiment_config.py
import abc from typing import ( Dict, Any, TypeVar, Sequence, NamedTuple, Optional, List, Union, Generic, ) import torch EnvType = TypeVar("EnvType") DistributionType = TypeVar("DistributionType") class RLStepResult(NamedTuple): observation: Optional[Any] reward: Optional[Union[float, List[float]]] done: Optional[bool] info: Optional[Dict[str, Any]] def clone(self, new_info: Dict[str, Any]): return RLStepResult( observation=self.observation if "observation" not in new_info else new_info["observation"], reward=self.reward if "reward" not in new_info else new_info["reward"], done=self.done if "done" not in new_info else new_info["done"], info=self.info if "info" not in new_info else new_info["info"], ) def merge(self, other: "RLStepResult"): return RLStepResult( observation=self.observation if other.observation is None else other.observation, reward=self.reward if other.reward is None else other.reward, done=self.done if other.done is None else other.done, info={ **(self.info if self.info is not None else {}), **(other.info if other is not None else {}), }, ) class ActorCriticOutput(tuple, Generic[DistributionType]): distributions: DistributionType values: torch.FloatTensor extras: Dict[str, Any] # noinspection PyTypeChecker def __new__( cls, distributions: DistributionType, values: torch.FloatTensor, extras: Dict[str, Any], ): self = tuple.__new__(cls, (distributions, values, extras)) self.distributions = distributions self.values = values self.extras = extras return self def __repr__(self) -> str: return ( f"Group(distributions={self.distributions}," f" values={self.values}," f" extras={self.extras})" ) class Loss(abc.ABC): def __init__(self, *args, **kwargs): pass @abc.abstractmethod def loss(self, *args, **kwargs): raise NotImplementedError() class Memory(Dict): def __init__(self, *args, **kwargs): super().__init__() if len(args) > 0: assert len(args) == 1, ( "Only one of Sequence[Tuple[str, Tuple[torch.Tensor, int]]]" "or Dict[str, Tuple[torch.Tensor, int]] accepted as unnamed args" ) if isinstance(args[0], Sequence): for key, tensor_dim in args[0]: assert ( len(tensor_dim) == 2 ), "Only Tuple[torch.Tensor, int]] accepted as second item in Tuples" tensor, dim = tensor_dim self.check_append(key, tensor, dim) elif isinstance(args[0], Dict): for key in args[0]: assert ( len(args[0][key]) == 2 ), "Only Tuple[torch.Tensor, int]] accepted as values in Dict" tensor, dim = args[0][key] self.check_append(key, tensor, dim) elif len(kwargs) > 0: for key in kwargs: assert ( len(kwargs[key]) == 2 ), "Only Tuple[torch.Tensor, int]] accepted as keyword arg" tensor, dim = kwargs[key] self.check_append(key, tensor, dim) def check_append( self, key: str, tensor: torch.Tensor, sampler_dim: int ) -> "Memory": """Appends a new memory type given its identifier, its memory tensor and its sampler dim. # Parameters key: string identifier of the memory type tensor: memory tensor sampler_dim: sampler dimension # Returns Updated Memory """ assert isinstance(key, str), "key {} must be str".format(key) assert isinstance( tensor, torch.Tensor ), "tensor {} must be torch.Tensor".format(tensor) assert isinstance(sampler_dim, int), "sampler_dim {} must be int".format( sampler_dim ) assert key not in self, "Reused key {}".format(key) assert ( 0 <= sampler_dim < len(tensor.shape) ), "Got sampler_dim {} for tensor with shape {}".format( sampler_dim, tensor.shape ) self[key] = (tensor, sampler_dim) return self def tensor(self, key: str) -> torch.Tensor: """Returns the memory tensor for a given memory type. # Parameters key: string identifier of the memory type # Returns Memory tensor for type `key` """ assert key in self, "Missing key {}".format(key) return self[key][0] def sampler_dim(self, key: str) -> int: """Returns the sampler dimension for the given memory type. # Parameters key: string identifier of the memory type # Returns The sampler dim """ assert key in self, "Missing key {}".format(key) return self[key][1] def sampler_select(self, keep: Sequence[int]) -> "Memory": """Equivalent to PyTorch index_select along the `sampler_dim` of each memory type. # Parameters keep: a list of sampler indices to keep # Returns Selected memory """ res = Memory() valid = False for name in self: sampler_dim = self.sampler_dim(name) tensor = self.tensor(name) assert len(keep) == 0 or ( 0 <= min(keep) and max(keep) < tensor.shape[sampler_dim] ), "Got min(keep)={} max(keep)={} for memory type {} with shape {}, dim {}".format( min(keep), max(keep), name, tensor.shape, sampler_dim ) if tensor.shape[sampler_dim] > len(keep): tensor = tensor.index_select( dim=sampler_dim, index=torch.as_tensor( list(keep), dtype=torch.int64, device=tensor.device ), ) res.check_append(name, tensor, sampler_dim) valid = True if valid: return res return self def set_tensor(self, key: str, tensor: torch.Tensor) -> "Memory": """Replaces tensor for given key with an updated version. # Parameters key: memory type identifier to update tensor: updated tensor # Returns Updated memory """ assert key in self, "Missing key {}".format(key) assert ( tensor.shape == self[key][0].shape ), "setting tensor with shape {} for former {}".format( tensor.shape, self[key][0].shape ) self[key] = (tensor, self[key][1]) return self def step_select(self, step: int) -> "Memory": """Equivalent to slicing with length 1 for the `step` (i.e first) dimension in rollouts storage. # Parameters step: step to keep # Returns Sliced memory with a single step """ res = Memory() for key in self: tensor = self.tensor(key) assert ( tensor.shape[0] > step ), "attempting to access step {} for memory type {} of shape {}".format( step, key, tensor.shape ) if step != -1: res.check_append( key, self.tensor(key)[step : step + 1, ...], self.sampler_dim(key) ) else: res.check_append( key, self.tensor(key)[step:, ...], self.sampler_dim(key) ) return res def step_squeeze(self, step: int) -> "Memory": """Equivalent to simple indexing for the `step` (i.e first) dimension in rollouts storage. # Parameters step: step to keep # Returns Sliced memory with a single step (and squeezed step dimension) """ res = Memory() for key in self: tensor = self.tensor(key) assert ( tensor.shape[0] > step ), "attempting to access step {} for memory type {} of shape {}".format( step, key, tensor.shape ) res.check_append( key, self.tensor(key)[step, ...], self.sampler_dim(key) - 1 ) return res def slice( self, dim: int, start: Optional[int] = None, stop: Optional[int] = None, step: int = 1, ) -> "Memory": """Slicing for dimensions that have same extents in all memory types. It also accepts negative indices. # Parameters dim: the dimension to slice start: the index of the first item to keep if given (default 0 if None) stop: the index of the first item to discard if given (default tensor size along `dim` if None) step: the increment between consecutive indices (default 1) # Returns Sliced memory """ checked = False total: Optional[int] = None res = Memory() for key in self: tensor = self.tensor(key) assert ( len(tensor.shape) > dim ), "attempting to access dim {} for memory type {} of shape {}".format( dim, key, tensor.shape ) if not checked: total = tensor.shape[dim] checked = True assert ( total == tensor.shape[dim] ), "attempting to slice along non-uniform dimension {}".format(dim) if start is not None or stop is not None or step != 1: slice_tuple = ( (slice(None),) * dim + (slice(start, stop, step),) + (slice(None),) * (len(tensor.shape) - (1 + dim)) ) sliced_tensor = tensor[slice_tuple] res.check_append( key=key, tensor=sliced_tensor, sampler_dim=self.sampler_dim(key), ) else: res.check_append( key, tensor, self.sampler_dim(key), ) return res def to(self, device: torch.device) -> "Memory": for key in self: tensor = self.tensor(key) if tensor.device != device: self.set_tensor(key, tensor.to(device)) return self
ask4help-main
allenact/base_abstractions/misc.py
# Original work Copyright (c) Facebook, Inc. and its affiliates. # Modified work Copyright (c) Allen Institute for AI # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Defines the primary data structures by which agents interact with their environment.""" import abc from typing import Dict, Any, Tuple, Generic, Union, Optional, TypeVar, Sequence, List import gym import numpy as np from gym.spaces.dict import Dict as SpaceDict from allenact.base_abstractions.misc import RLStepResult from allenact.base_abstractions.sensor import Sensor, SensorSuite from allenact.utils.misc_utils import deprecated EnvType = TypeVar("EnvType") class Task(Generic[EnvType]): """An abstract class defining a, goal directed, 'task.' Agents interact with their environment through a task by taking a `step` after which they receive new observations, rewards, and (potentially) other useful information. A Task is a helpful generalization of the OpenAI gym's `Env` class and allows for multiple tasks (e.g. point and object navigation) to be defined on a single environment (e.g. AI2-THOR). # Attributes env : The environment. sensor_suite: Collection of sensors formed from the `sensors` argument in the initializer. task_info : Dictionary of (k, v) pairs defining task goals and other task information. max_steps : The maximum number of steps an agent can take an in the task before it is considered failed. observation_space: The observation space returned on each step from the sensors. """ env: EnvType sensor_suite: SensorSuite[EnvType] task_info: Dict[str, Any] max_steps: int observation_space: SpaceDict def __init__( self, env: EnvType, sensors: Union[SensorSuite, Sequence[Sensor]], task_info: Dict[str, Any], max_steps: int, **kwargs ) -> None: self.env = env self.sensor_suite = ( SensorSuite(sensors) if not isinstance(sensors, SensorSuite) else sensors ) self.task_info = task_info self.max_steps = max_steps self.observation_space = self.sensor_suite.observation_spaces self._num_steps_taken = 0 self._total_reward: Union[float, List[float]] = 0.0 def get_observations(self, **kwargs) -> Any: return self.sensor_suite.get_observations(env=self.env, task=self, **kwargs) @property @abc.abstractmethod def action_space(self) -> gym.Space: """Task's action space. # Returns The action space for the task. """ raise NotImplementedError() @abc.abstractmethod def render(self, mode: str = "rgb", *args, **kwargs) -> np.ndarray: """Render the current task state. Rendered task state can come in any supported modes. # Parameters mode : The mode in which to render. For example, you might have a 'rgb' mode that renders the agent's egocentric viewpoint or a 'dev' mode returning additional information. args : Extra args. kwargs : Extra kwargs. # Returns An numpy array corresponding to the requested render. """ raise NotImplementedError() def _increment_num_steps_taken(self) -> None: """Helper function that increases the number of steps counter by one.""" self._num_steps_taken += 1 def step(self, action: Any) -> RLStepResult: """Take an action in the environment (one per agent). Takes the action in the environment and returns observations (& rewards and any additional information) corresponding to the agent's new state. Note that this function should not be overwritten without care (instead implement the `_step` function). # Parameters action : The action to take, should be of the same form as specified by `self.action_space`. # Returns A `RLStepResult` object encoding the new observations, reward, and (possibly) additional information. """ assert not self.is_done() sr = self._step(action=action) # If reward is Sequence, it's assumed to follow the same order imposed by spaces' flatten operation if isinstance(sr.reward, Sequence): if isinstance(self._total_reward, Sequence): for it, rew in enumerate(sr.reward): self._total_reward[it] += float(rew) else: self._total_reward = [float(r) for r in sr.reward] else: self._total_reward += float(sr.reward) # type:ignore self._increment_num_steps_taken() # TODO: We need a better solution to the below. It's not a good idea # to pre-increment the step counter as this might play poorly with `_step` # if it relies on some aspect of the current number of steps taken. return sr.clone({"done": sr.done or self.is_done()}) @abc.abstractmethod def _step(self, action: Any) -> RLStepResult: """Helper function called by `step` to take a step by each agent in the environment. Takes the action in the environment and returns observations (& rewards and any additional information) corresponding to the agent's new state. This function is called by the (public) `step` function and is what should be implemented when defining your new task. Having separate `_step` be separate from `step` is useful as this allows the `step` method to perform bookkeeping (e.g. keeping track of the number of steps), without having `_step` as a separate method, everyone implementing `step` would need to copy this bookkeeping code. # Parameters action : The action to take. # Returns A `RLStepResult` object encoding the new observations, reward, and (possibly) additional information. """ raise NotImplementedError() def reached_max_steps(self) -> bool: """Has the agent reached the maximum number of steps.""" return self.num_steps_taken() >= self.max_steps @abc.abstractmethod def reached_terminal_state(self) -> bool: """Has the agent reached a terminal state (excluding reaching the maximum number of steps).""" raise NotImplementedError() def is_done(self) -> bool: """Did the agent reach a terminal state or performed the maximum number of steps.""" return self.reached_terminal_state() or self.reached_max_steps() def num_steps_taken(self) -> int: """Number of steps taken by the agent in the task so far.""" return self._num_steps_taken @deprecated def action_names(self) -> Tuple[str, ...]: """Action names of the Task instance. This function has been deprecated and will be removed. This function is a hold-over from when the `Task` abstraction only considered `gym.space.Discrete` action spaces (in which case it makes sense name these actions). This implementation of `action_names` requires that a `class_action_names` method has been defined. This method should be overwritten if `class_action_names` requires key word arguments to determine the number of actions. """ if hasattr(self, "class_action_names"): return self.class_action_names() else: raise NotImplementedError( "`action_names` requires that a function `class_action_names` be defined." " This said, please do not use this functionality as it has been deprecated and will be removed." " If you would like an `action_names` function for your task, feel free to define one" " with the knowledge that the AllenAct internals will ignore it." ) @abc.abstractmethod def close(self) -> None: """Closes the environment and any other files opened by the Task (if applicable).""" raise NotImplementedError() def metrics(self) -> Dict[str, Any]: """Computes metrics related to the task after the task's completion. By default this function is automatically called during training and the reported metrics logged to tensorboard. # Returns A dictionary where every key is a string (the metric's name) and the value is the value of the metric. """ return { "ep_length": self.num_steps_taken(), "reward": self.cumulative_reward, "task_info": self.task_info, } def query_expert(self, **kwargs) -> Tuple[Any, bool]: """(Deprecated) Query the expert policy for this task. The new correct way to include this functionality is through the definition of a class derived from `allenact.base_abstractions.sensor.AbstractExpertActionSensor` or `allenact.base_abstractions.sensor.AbstractExpertPolicySensor`, where a `query_expert` method must be defined. # Returns A tuple (x, y) where x is the expert action (or policy) and y is False \ if the expert could not determine the optimal action (otherwise True). Here y \ is used for masking. Even when y is False, x should still lie in the space of \ possible values (e.g. if x is the expert policy then x should be the correct length, \ sum to 1, and have non-negative entries). """ return None, False @property def cumulative_reward(self) -> float: """Mean per-agent total cumulative in the task so far. # Returns Mean per-agent cumulative reward as a float. """ return ( np.mean(self._total_reward).item() if isinstance(self._total_reward, Sequence) else self._total_reward ) SubTaskType = TypeVar("SubTaskType", bound=Task) class TaskSampler(abc.ABC): """Abstract class defining a how new tasks are sampled.""" @property @abc.abstractmethod def length(self) -> Union[int, float]: """Length. # Returns Number of total tasks remaining that can be sampled. Can be float('inf'). """ raise NotImplementedError() @property @abc.abstractmethod def last_sampled_task(self) -> Optional[Task]: """Get the most recently sampled Task. # Returns The most recently sampled Task. """ raise NotImplementedError() @abc.abstractmethod def next_task(self, force_advance_scene: bool = False) -> Optional[Task]: """Get the next task in the sampler's stream. # Parameters force_advance_scene : Used to (if applicable) force the task sampler to use a new scene for the next task. This is useful if, during training, you would like to train with one scene for some number of steps and then explicitly control when you begin training with the next scene. # Returns The next Task in the sampler's stream if a next task exists. Otherwise None. """ raise NotImplementedError() @abc.abstractmethod def close(self) -> None: """Closes any open environments or streams. Should be run when done sampling. """ raise NotImplementedError() @property @abc.abstractmethod def all_observation_spaces_equal(self) -> bool: """Checks if all observation spaces of tasks that can be sampled are equal. This will almost always simply return `True`. A case in which it should return `False` includes, for example, a setting where you design a `TaskSampler` that can generate different types of tasks, i.e. point navigation tasks and object navigation tasks. In this case, these different tasks may output different types of observations. # Returns True if all Tasks that can be sampled by this sampler have the same observation space. Otherwise False. """ raise NotImplementedError() @abc.abstractmethod def reset(self) -> None: """Resets task sampler to its original state (except for any seed).""" raise NotImplementedError() @abc.abstractmethod def set_seed(self, seed: int) -> None: """Sets new RNG seed. # Parameters seed : New seed. """ raise NotImplementedError()
ask4help-main
allenact/base_abstractions/task.py
# Original work Copyright (c) Facebook, Inc. and its affiliates. # Modified work Copyright (c) Allen Institute for AI # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import OrderedDict from typing import ( Generic, Dict, Any, Optional, TYPE_CHECKING, TypeVar, Sequence, Union, Tuple, cast, ) import abc import gym import gym.spaces as gyms import numpy as np from torch.distributions.utils import lazy_property from allenact.base_abstractions.misc import EnvType from allenact.utils import spaces_utils as su from allenact.utils.misc_utils import prepare_locals_for_super from allenact.utils.system import get_logger if TYPE_CHECKING: from allenact.base_abstractions.task import SubTaskType else: SubTaskType = TypeVar("SubTaskType", bound="Task") SpaceDict = gyms.Dict class Sensor(Generic[EnvType, SubTaskType]): """Represents a sensor that provides data from the environment to agent. The user of this class needs to implement the get_observation method and the user is also required to set the below attributes: # Attributes uuid : universally unique id. observation_space : ``gym.Space`` object corresponding to observation of sensor. """ uuid: str observation_space: gym.Space def __init__(self, uuid: str, observation_space: gym.Space, **kwargs: Any) -> None: self.uuid = uuid self.observation_space = observation_space def get_observation( self, env: EnvType, task: Optional[SubTaskType], *args: Any, **kwargs: Any ) -> Any: """Returns observations from the environment (or task). # Parameters env : The environment the sensor is used upon. task : (Optionally) a Task from which the sensor should get data. # Returns Current observation for Sensor. """ raise NotImplementedError() class SensorSuite(Generic[EnvType]): """Represents a set of sensors, with each sensor being identified through a unique id. # Attributes sensors: list containing sensors for the environment, uuid of each sensor must be unique. """ sensors: Dict[str, Sensor[EnvType, Any]] observation_spaces: gyms.Dict def __init__(self, sensors: Sequence[Sensor]) -> None: """Initializer. # Parameters param sensors: the sensors that will be included in the suite. """ self.sensors = OrderedDict() spaces: OrderedDict[str, gym.Space] = OrderedDict() for sensor in sensors: assert ( sensor.uuid not in self.sensors ), "'{}' is duplicated sensor uuid".format(sensor.uuid) self.sensors[sensor.uuid] = sensor spaces[sensor.uuid] = sensor.observation_space self.observation_spaces = SpaceDict(spaces=spaces) def get(self, uuid: str) -> Sensor: """Return sensor with the given `uuid`. # Parameters uuid : The unique id of the sensor # Returns The sensor with unique id `uuid`. """ return self.sensors[uuid] def get_observations( self, env: EnvType, task: Optional[SubTaskType], **kwargs: Any ) -> Dict[str, Any]: """Get all observations corresponding to the sensors in the suite. # Parameters env : The environment from which to get the observation. task : (Optionally) the task from which to get the observation. # Returns Data from all sensors packaged inside a Dict. """ return { uuid: sensor.get_observation(env=env, task=task, **kwargs) # type: ignore for uuid, sensor in self.sensors.items() } class AbstractExpertSensor(Sensor[EnvType, SubTaskType], abc.ABC): """Base class for sensors that obtain the expert action for a given task (if available).""" ACTION_POLICY_LABEL: str = "action_or_policy" EXPERT_SUCCESS_LABEL: str = "expert_success" _NO_GROUPS_LABEL: str = "__dummy_expert_group__" def __init__( self, action_space: Optional[Union[gym.Space, int]] = None, uuid: str = "expert_sensor_type_uuid", expert_args: Optional[Dict[str, Any]] = None, nactions: Optional[int] = None, use_dict_as_groups: bool = True, **kwargs: Any, ) -> None: """Initialize an `ExpertSensor`. # Parameters action_space : The action space of the agent. This is necessary in order for this sensor to know what its output observation space is. uuid : A string specifying the unique ID of this sensor. expert_args : This sensor obtains an expert action from the task by calling the `query_expert` method of the task. `expert_args` are any keyword arguments that should be passed to the `query_expert` method when called. nactions : [DEPRECATED] The number of actions available to the agent, corresponds to an `action_space` of `gym.spaces.Discrete(nactions)`. use_dict_as_groups : Whether to use the top-level action_space of type `gym.spaces.Dict` as action groups. """ if isinstance(action_space, int): action_space = gym.spaces.Discrete(action_space) elif action_space is None: assert ( nactions is not None ), "One of `action_space` or `nactions` must be not `None`." get_logger().warning( "The `nactions` parameter to `AbstractExpertSensor` is deprecated and will be removed, please use" " the `action_space` parameter instead." ) action_space = gym.spaces.Discrete(nactions) self.action_space = action_space self.use_groups = ( isinstance(action_space, gym.spaces.Dict) and use_dict_as_groups ) self.group_spaces = ( self.action_space if self.use_groups else OrderedDict([(self._NO_GROUPS_LABEL, self.action_space,)]) ) self.expert_args: Dict[str, Any] = expert_args or {} assert ( "expert_sensor_group_name" not in self.expert_args ), "`expert_sensor_group_name` is reserved for `AbstractExpertSensor`" observation_space = self._get_observation_space() super().__init__(**prepare_locals_for_super(locals())) @classmethod @abc.abstractmethod def flagged_group_space(cls, group_space: gym.spaces.Space) -> gym.spaces.Dict: """gym space resulting from wrapping the given action space (or a derived space, as in `AbstractExpertPolicySensor`) together with a binary action space corresponding to an expert success flag, in a Dict space. # Parameters group_space : The source action space to be (optionally used to derive a policy space,) flagged and wrapped """ raise NotImplementedError @classmethod def flagged_space( cls, action_space: gym.spaces.Space, use_dict_as_groups: bool = True ) -> gym.spaces.Dict: """gym space resulting from wrapping the given action space (or every highest-level entry in a Dict action space), together with binary action space corresponding to an expert success flag, in a Dict space. # Parameters action_space : The agent's action space (to be flagged and wrapped) use_dict_as_groups : Flag enabling every highest-level entry in a Dict action space to be independently flagged. """ use_groups = isinstance(action_space, gym.spaces.Dict) and use_dict_as_groups if not use_groups: return cls.flagged_group_space(action_space) else: return gym.spaces.Dict( [ (group_space, cls.flagged_group_space(action_space[group_space]),) for group_space in cast(gym.spaces.Dict, action_space) ] ) def _get_observation_space(self) -> gym.spaces.Dict: """The observation space of the expert sensor. For the most basic discrete agent's ExpertActionSensor, it will equal `gym.spaces.Dict([ (self.ACTION_POLICY_LABEL, self.action_space), (self.EXPERT_SUCCESS_LABEL, gym.spaces.Discrete(2))])`, where the first entry hosts the expert action index and the second equals 0 if and only if the expert failed to generate a true expert action. """ return self.flagged_space(self.action_space, use_dict_as_groups=self.use_groups) @lazy_property def _zeroed_observation(self) -> Union[OrderedDict, Tuple]: # AllenAct-style flattened space (to easily generate an all-zeroes action as an array) flat_space = su.flatten_space(self.observation_space) # torch point to correctly unflatten `Discrete` for zeroed output flat_zeroed = su.torch_point(flat_space, np.zeros_like(flat_space.sample())) # unflatten zeroed output and convert to numpy return su.numpy_point( self.observation_space, su.unflatten(self.observation_space, flat_zeroed) ) def flatten_output(self, unflattened): return ( su.flatten( self.observation_space, su.torch_point(self.observation_space, unflattened), ) .cpu() .numpy() ) @abc.abstractmethod def query_expert( self, task: SubTaskType, expert_sensor_group_name: Optional[str], ) -> Tuple[Any, bool]: """Query the expert for the given task (and optional group name). # Returns A tuple (x, y) where x is the expert action or policy and y is False \ if the expert could not determine the optimal action (otherwise True). Here y \ is used for masking. Even when y is False, x should still lie in the space of \ possible values (e.g. if x is the expert policy then x should be the correct length, \ sum to 1, and have non-negative entries). """ raise NotImplementedError def get_observation( self, env: EnvType, task: SubTaskType, *args: Any, **kwargs: Any ) -> Union[OrderedDict, Tuple]: # If the task is completed, we needn't (perhaps can't) find the expert # action from the (current) terminal state. if task.is_done(): return self.flatten_output(self._zeroed_observation) actions_or_policies = OrderedDict() for group_name in self.group_spaces: action_or_policy, expert_was_successful = self.query_expert( task=task, expert_sensor_group_name=group_name ) actions_or_policies[group_name] = OrderedDict( [ (self.ACTION_POLICY_LABEL, action_or_policy), (self.EXPERT_SUCCESS_LABEL, expert_was_successful), ] ) return self.flatten_output( actions_or_policies if self.use_groups else actions_or_policies[self._NO_GROUPS_LABEL] ) class AbstractExpertActionSensor(AbstractExpertSensor, abc.ABC): def __init__( self, action_space: Optional[Union[gym.Space, int]] = None, uuid: str = "expert_action", expert_args: Optional[Dict[str, Any]] = None, nactions: Optional[int] = None, use_dict_as_groups: bool = True, **kwargs: Any, ) -> None: super().__init__(**prepare_locals_for_super(locals())) @classmethod def flagged_group_space(cls, group_space: gym.spaces.Space) -> gym.spaces.Dict: """gym space resulting from wrapping the given action space, together with a binary action space corresponding to an expert success flag, in a Dict space. # Parameters group_space : The action space to be flagged and wrapped """ return gym.spaces.Dict( [ (cls.ACTION_POLICY_LABEL, group_space), (cls.EXPERT_SUCCESS_LABEL, gym.spaces.Discrete(2)), ] ) class ExpertActionSensor(AbstractExpertActionSensor): """(Deprecated) A sensor that obtains the expert action from a given task (if available).""" def query_expert( self, task: SubTaskType, expert_sensor_group_name: Optional[str] ) -> Tuple[Any, bool]: return task.query_expert( **self.expert_args, expert_sensor_group_name=expert_sensor_group_name ) class AbstractExpertPolicySensor(AbstractExpertSensor, abc.ABC): def __init__( self, action_space: Optional[Union[gym.Space, int]] = None, uuid: str = "expert_policy", expert_args: Optional[Dict[str, Any]] = None, nactions: Optional[int] = None, use_dict_as_groups: bool = True, **kwargs: Any, ) -> None: super().__init__(**prepare_locals_for_super(locals())) @classmethod def flagged_group_space(cls, group_space: gym.spaces.Space) -> gym.spaces.Dict: """gym space resulting from wrapping the policy space corresponding to `allenact.utils.spaces_utils.policy_space(group_space)` together with a binary action space corresponding to an expert success flag, in a Dict space. # Parameters group_space : The source action space to be used to derive a policy space, flagged and wrapped """ return gym.spaces.Dict( [ (cls.ACTION_POLICY_LABEL, su.policy_space(group_space)), (cls.EXPERT_SUCCESS_LABEL, gym.spaces.Discrete(2)), ] ) class ExpertPolicySensor(AbstractExpertPolicySensor): """(Deprecated) A sensor that obtains the expert policy from a given task (if available).""" def query_expert( self, task: SubTaskType, expert_sensor_group_name: Optional[str] ) -> Tuple[Any, bool]: return task.query_expert( **self.expert_args, expert_sensor_group_name=expert_sensor_group_name )
ask4help-main
allenact/base_abstractions/sensor.py
ask4help-main
allenact/base_abstractions/__init__.py
import abc from typing import List, Any, Dict from typing import Sequence from typing import Union import gym import networkx as nx import torch from gym.spaces import Dict as SpaceDict from allenact.utils.experiment_utils import Builder class Preprocessor(abc.ABC): """Represents a preprocessor that transforms data from a sensor or another preprocessor to the input of agents or other preprocessors. The user of this class needs to implement the process method and the user is also required to set the below attributes: # Attributes: input_uuids : List of input universally unique ids. uuid : Universally unique id. observation_space : ``gym.Space`` object corresponding to processed observation spaces. """ input_uuids: List[str] uuid: str observation_space: gym.Space def __init__( self, input_uuids: List[str], output_uuid: str, observation_space: gym.Space, **kwargs: Any ) -> None: self.uuid = output_uuid self.input_uuids = input_uuids self.observation_space = observation_space @abc.abstractmethod def process(self, obs: Dict[str, Any], *args: Any, **kwargs: Any) -> Any: """Returns processed observations from sensors or other preprocessors. # Parameters obs : Dict with available observations and processed observations. # Returns Processed observation. """ raise NotImplementedError() @abc.abstractmethod def to(self, device: torch.device) -> "Preprocessor": raise NotImplementedError() class SensorPreprocessorGraph: """Represents a graph of preprocessors, with each preprocessor being identified through a universally unique id. Allows for the construction of observations that are a function of sensor readings. For instance, perhaps rather than giving your agent a raw RGB image, you'd rather first pass that image through a pre-trained convolutional network and only give your agent the resulting features (see e.g. the `ResNetPreprocessor` class). # Attributes preprocessors : List containing preprocessors with required input uuids, output uuid of each sensor must be unique. observation_spaces: The observation spaces of the values returned when calling `get_observations`. By default (see the `additionally_exposed_uuids` parameter to to change this default) the observations returned by the `SensorPreprocessorGraph` **include only the sink nodes** of the graph (i.e. those that are not used by any other preprocessor). Thus if one of the input preprocessors takes as input the `'YOUR_SENSOR_UUID'` sensor, then `'YOUR_SENSOR_UUID'` will not be returned when calling `get_observations`. device: The `torch.device` upon which the preprocessors are run. """ preprocessors: Dict[str, Preprocessor] observation_spaces: SpaceDict device: torch.device def __init__( self, source_observation_spaces: SpaceDict, preprocessors: Sequence[Union[Preprocessor, Builder[Preprocessor]]], additional_output_uuids: Sequence[str] = tuple(), ) -> None: """Initializer. # Parameters source_observation_spaces : The observation spaces of all sensors before preprocessing. This generally should be the output of `SensorSuite.observation_spaces`. preprocessors : The preprocessors that will be included in the graph. additional_output_uuids: As described in the documentation for this class, the observations returned when calling `get_observations` only include, by default, those observations that are not processed by any preprocessor. If you'd like to include observations that would otherwise not be included, the uuids of these sensors should be included as a sequence of strings here. """ self.device: torch.device = torch.device("cpu") obs_spaces: Dict[str, gym.Space] = { k: source_observation_spaces[k] for k in source_observation_spaces } self.preprocessors: Dict[str, Preprocessor] = {} for preprocessor in preprocessors: if isinstance(preprocessor, Builder): preprocessor = preprocessor() assert ( preprocessor.uuid not in self.preprocessors ), "'{}' is duplicated preprocessor uuid".format(preprocessor.uuid) self.preprocessors[preprocessor.uuid] = preprocessor obs_spaces[preprocessor.uuid] = preprocessor.observation_space g = nx.DiGraph() for k in obs_spaces: g.add_node(k) for k in self.preprocessors: for j in self.preprocessors[k].input_uuids: g.add_edge(j, k) assert nx.is_directed_acyclic_graph( g ), "preprocessors do not form a direct acyclic graph" self.observation_spaces = SpaceDict( spaces={ uuid: obs_spaces[uuid] for uuid in obs_spaces if uuid in additional_output_uuids or g.out_degree(uuid) == 0 } ) # ensure dependencies are precomputed self.compute_order = [n for n in nx.dfs_postorder_nodes(g)] def get(self, uuid: str) -> Preprocessor: """Return preprocessor with the given `uuid`. # Parameters uuid : The unique id of the preprocessor. # Returns The preprocessor with unique id `uuid`. """ return self.preprocessors[uuid] def to(self, device: torch.device) -> "SensorPreprocessorGraph": for k, v in self.preprocessors.items(): self.preprocessors[k] = v.to(device) self.device = device return self def get_observations( self, obs: Dict[str, Any], *args: Any, **kwargs: Any ) -> Dict[str, Any]: """Get processed observations. # Returns Collect observations processed from all sensors and return them packaged inside a Dict. """ for uuid in self.compute_order: if uuid not in obs: obs[uuid] = self.preprocessors[uuid].process(obs) return {uuid: obs[uuid] for uuid in self.observation_spaces} class PreprocessorGraph(SensorPreprocessorGraph): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) raise DeprecationWarning( "`PreprocessorGraph` has been deprecated, use `SensorPreprocessorGraph` instead." ) class ObservationSet: def __init__(self, *args, **kwargs) -> None: raise DeprecationWarning( "`ObservationSet` has been deprecated. Use `SensorPreprocessorGraph` instead." )
ask4help-main
allenact/base_abstractions/preprocessor.py