python_code
stringlengths
0
187k
repo_name
stringlengths
8
46
file_path
stringlengths
6
135
import time import torch import comet.utils as utils import comet.data.config as cfg class Evaluator(object): def __init__(self, opt, model, data_loader): super(Evaluator, self).__init__() self.data_loader = data_loader self.model = model self.batch_variables = { "model": model, "data": data_loader } self.opt = opt def validate(self, l, split="dev", losses={}, keyset=None): self.batch_variables["split"] = split print("Evaluating {}".format(split)) epoch_losses = self.epoch( self.opt, self.model, self.data_loader, split, keyset) self.print_result(split, epoch_losses) for loss_name, loss_val in epoch_losses.items(): losses.setdefault(loss_name, {}) losses[loss_name][l] = loss_val def epoch(self, opt, model, data_loader, split, keyset=None): average_loss, nums = self.initialize_losses() data_loader.reset_offsets(splits=split, shuffle=False) # Set evaluation mode model.eval() start = time.time() # Initialize progress bar bar = utils.set_progress_bar( data_loader.total_size[split]) reset = False with torch.no_grad(): while not reset: start = data_loader.offset_summary(split) outputs = self.batch( opt, nums, average_loss, self.batch_variables, eval_mode=True) end = data_loader.offset_summary(split) reset = outputs["reset"] if not reset: bar.update(end - start) else: print(end) if cfg.toy and self.counter(nums) > 100: break if (opt.eval.es != "full" and (self.counter(nums) > opt.eval.es)): break nums = outputs["nums"] torch.cuda.synchronize() print("{} evaluation completed in: {} s".format( split.capitalize(), time.time() - start)) average_loss = self.compute_final_scores( average_loss, nums) return average_loss
comet-public-master
comet/evaluate/evaluate.py
import torch import torch.nn as nn import torch.nn.functional as F import comet.data.data as data import comet.data.config as cfg import comet.models.utils as model_utils import comet.evaluate.utils as eval_utils import comet.train.batch as batch_utils def make_sampler(sampler_type, opt, *args, **kwargs): print("Initializing Greedy Sampler") return GreedySampler(opt, *args, **kwargs) class Sampler(): def __init__(self, opt, data_loader, batch_mode=False): # Token on which to end sampling self.end_token = data_loader.vocab_encoder[data.end_token] self.opt = opt def generate_sequence(self, batch, model): raise class GreedySampler(Sampler): def __init__(self, opt, data_loader, batch_mode=True): super(GreedySampler, self).__init__(opt, data_loader) def append_batch(self, X, next_idx, mask): next_pos = X[:, -1:, 1] + 1 next_x = torch.cat((next_idx, next_pos), -1).unsqueeze(1) next_mask = torch.cat([mask, torch.ones(X.size(0), 1, device=mask.device)], 1) return torch.cat((X, next_x), 1), next_mask def generate_sequence(self, batch, model, data_loader, start_idx, end_len): XMB = batch["sequences"][:, :start_idx] MMB = batch["attention_mask"][:, :start_idx] XMB = model_utils.prepare_position_embeddings( self.opt, data_loader.vocab_encoder, XMB.unsqueeze(-1)) lm_probs = F.log_softmax(model( XMB.unsqueeze(1), sequence_mask=MMB), dim=-1) values, indices = lm_probs[:, -1, :].max(dim=-1) seqs = indices.clone().unsqueeze(1) loss = values counts = 1 next_pos = XMB[:, -1:, 1] + 1 next_x = torch.cat((indices.view(-1, 1), next_pos), -1).unsqueeze(1) XMB = torch.cat((XMB, next_x), 1) MMB = torch.cat([MMB, torch.ones(XMB.size(0), 1, device=MMB.device)], 1) # Sample from top k for _ in range(self.opt.eval.smax): lm_probs = F.log_softmax(model( XMB.unsqueeze(1), sequence_mask=MMB), dim=-1) # Sample from top k values, next_idx = lm_probs[:, -1, :].max(dim=-1) loss += values counts += 1 next_idx = next_idx.unsqueeze(1) seqs = torch.cat([seqs, next_idx], 1) if (next_idx.item() == self.end_token) or (_ == end_len - 1): break XMB, MMB = self.append_batch(XMB, next_idx, MMB) beams = [] for beam in seqs: beams.append(" ".join("".join( [data_loader.vocab_decoder[tok.item()].replace( '</w>', ' ').replace('\n', '') for tok in beam if tok != self.end_token]).split())) sampling_result = { "sequence": beams[0], "beams": beams, "beam_losses": [loss.item()], "loss": loss.item(), "beam_lengths": [counts], "length": counts } return sampling_result class TopKSampler(Sampler): def __init__(self, opt, data_loader, batch_mode=True): super(TopKSampler, self).__init__(opt, data_loader) def append_batch(self, X, next_idx, mask): next_pos = X[:, -1:, 1] + 1 next_x = torch.cat((next_idx, next_pos), -1).unsqueeze(1) next_mask = torch.cat([mask, torch.ones(X.size(0), 1, device=mask.device)], 1) return torch.cat((X, next_x), 1), next_mask def generate_sequence(self, batch, model, data_loader, start_idx, end_len): # start_idx = context_size_event + 1 # start_idx = max_e1 + max_r # end_idx = context_size_effect - 1 # end_idx = max_e2 XMB = batch["sequences"][:, :start_idx] MMB = batch["attention_mask"][:, :start_idx] XMB = model_utils.prepare_position_embeddings( self.opt, data_loader.vocab_encoder, XMB.unsqueeze(-1)) lm_probs = F.log_softmax(model( XMB.unsqueeze(1), sequence_mask=MMB), dim=-1) values, indices = lm_probs[:, -1, :].topk(self.opt.eval.k) seqs = indices.t().clone() losses = - values.view(-1, 1) ended = (seqs == self.end_token).float() counts = (1 - ended) XMB = XMB.repeat(self.opt.eval.k, 1, 1) MMB = MMB.repeat(self.opt.eval.k, 1) next_pos = XMB[:, -1:, 1] + 1 next_x = torch.cat((indices.view(self.opt.eval.k, -1), next_pos), -1).unsqueeze(1) XMB = torch.cat((XMB, next_x), 1) MMB = torch.cat([MMB, torch.ones(XMB.size(0), 1, device=MMB.device)], 1) # Sample from top k for _ in range(end_len): lm_probs = F.log_softmax(model( XMB.unsqueeze(1), sequence_mask=MMB), dim=-1) # Sample from top k values, indices = lm_probs[:, -1, :].topk(self.opt.eval.k) choice = torch.multinomial(values.exp(), 1) next_idx = indices.gather(-1, choice) ended = ended + (next_idx == self.end_token).float() * (1 - ended) next_idx = next_idx * (1 - ended).long() + ended.long() * self.end_token counts += (1 - ended) seqs = torch.cat([seqs, next_idx], 1) if ended.sum().item() == self.opt.eval.k: break losses -= values.gather(-1, choice) * (1 - ended) XMB, MMB = self.append_batch(XMB, next_idx, MMB) beams = [] for beam in seqs: beams.append(" ".join("".join( [data_loader.vocab_decoder[tok.item()].replace( '</w>', ' ').replace('\n', '') for tok in beam if tok != self.end_token]).split())) sampling_result = { "sequence": beams[0], "beams": beams, "beam_losses": losses.squeeze().tolist(), "loss": losses[0].item(), "beam_lengths": counts.long().squeeze().tolist(), "length": counts[0].long().item() } return sampling_result class BeamSampler(TopKSampler): def __init__(self, opt, data_loader, batch_mode=True, scorer=None): super(BeamSampler, self).__init__(opt, data_loader, batch_mode) self.kill_mask = torch.ones(opt.eval.bs, opt.eval.bs).to(cfg.device) * 9000 self.kill_mask[:, 0] = 0 def make_batch(self, X): X = np.array(X) assert X.ndim in [1, 2] if X.ndim == 1: X = np.expand_dims(X, axis=0) pos_enc = np.arange(n_vocab + n_special, n_vocab + n_special + X.shape[-1]) pos_enc = np.expand_dims(pos_enc, axis=0) batch = np.stack([X, pos_enc], axis=-1) batch = torch.tensor(batch, dtype=torch.long).to(device) return batch def append_batch(self, X, beam_toks, mask): next_pos = X[:, -1:, 1] + 1 next_x = torch.cat((beam_toks.unsqueeze(1), next_pos), -1).unsqueeze(1) next_mask = torch.cat([mask, torch.ones(X.size(0), 1, device=mask.device)], 1) return torch.cat((X, next_x), 1), next_mask def generate_sequence(self, batch, model, data_loader, start_idx, end_len): # start_idx = context_size_event + 1 # start_idx = max_e1 + max_r # end_idx = context_size_effect - 1 # end_idx = max_e2 XMB = batch["sequences"][:, :start_idx] MMB = batch["attention_mask"][:, :start_idx] XMB = model_utils.prepare_position_embeddings( self.opt, data_loader.vocab_encoder, XMB.unsqueeze(-1)) tokens = [] beam_losses = [] # Beam Search beam_lls, beam_toks, beam_seqs = None, None, None lm_probs = F.log_softmax(model( XMB.unsqueeze(1), sequence_mask=MMB), dim=-1) dist = lm_probs[:, -1, :].squeeze() beam_lls, beam_toks = dist.topk(self.opt.eval.bs) beam_losses.append(beam_lls) ended = (beam_toks == self.end_token).float() counts = (2 - ended) beam_toks = beam_toks.unsqueeze(1) beam_seqs = beam_toks.clone() XMB = XMB.repeat(self.opt.eval.bs, 1, 1) MMB = MMB.repeat(self.opt.eval.bs, 1) next_pos = XMB[:, -1:, 1] + 1 next_x = torch.cat((beam_toks, next_pos), -1).unsqueeze(1) XMB = torch.cat((XMB, next_x), 1) MMB = torch.cat([MMB, torch.ones(XMB.size(0), 1, device=MMB.device)], 1) for _ in range(end_len): # Compute distribution for current beam lm_probs = F.log_softmax(model( XMB.unsqueeze(1), sequence_mask=MMB), dim=-1) dist = lm_probs[:, -1, :].squeeze() # get hypothesis tokens for distribution hyp_beam_lls, hyp_beam_toks = dist.topk(self.opt.eval.bs) # Compute masks and expand beam expanded_ended = ended.unsqueeze(1).repeat(1, self.opt.eval.bs) hypothesis_mask = expanded_ended * self.kill_mask + (1 - expanded_ended) current_beam_lls = beam_lls.unsqueeze(1).repeat( 1, self.opt.eval.bs).view(self.opt.eval.bs**2) # Compute losses of hypotheses, masking those that have ended hyp_beam_lls = (hyp_beam_lls.view(self.opt.eval.bs**2) * hypothesis_mask.view(-1)) + current_beam_lls # Get normalizer for sequences temp_counts = counts.unsqueeze(1).repeat(1, self.opt.eval.bs).view( self.opt.eval.bs ** 2) # Select best beams with lowest aggregate loss beam_lls, top_beam_idxs = (hyp_beam_lls / temp_counts).topk(self.opt.eval.bs) # Update placements in beam based on selecetion beam_losses = [i.index_select(0, top_beam_idxs // self.opt.eval.bs) for i in beam_losses] ended = ended.index_select(0, top_beam_idxs // self.opt.eval.bs) counts = temp_counts.index_select(0, top_beam_idxs) # Save beam losses beam_losses.append(beam_lls * counts) # Update beam tokens ended_mask = (1 - ended).long() end_replacement = (self.end_token * ended).long() next_toks = hyp_beam_toks.view(-1)[top_beam_idxs] beam_toks = next_toks * ended_mask + end_replacement # Update ended and counts ended = ended + (beam_toks == self.end_token).float() * (1 - ended) counts = counts + (1 - ended) # Update beam sequences beam_seqs = beam_seqs.t().repeat(self.opt.eval.bs, 1).t().contiguous().view( self.opt.eval.bs**2, -1)[top_beam_idxs] beam_seqs = torch.cat((beam_seqs, beam_toks.unsqueeze(1)), dim=1) # I have no idea what's going on but Ari's on point with it XMB = XMB.transpose(0, 1).transpose(1, 2).repeat( self.opt.eval.bs, 1, 1).transpose(2, 1).transpose( 1, 0).contiguous().view( self.opt.eval.bs**2, XMB.size(1), XMB.size(2))[top_beam_idxs] XMB, MMB = self.append_batch(XMB, beam_toks, MMB) if (beam_toks == self.end_token).sum().item() == self.opt.eval.bs: break beams = [] for beam in beam_seqs: beams.append(" ".join("".join( [data_loader.vocab_decoder[tok.item()].replace( '</w>', ' ').replace('\n', '') for tok in beam if tok != self.end_token]).split())) sampling_result = { "sequence": beams[0], "beams": beams, "beam_losses": beam_lls.tolist(), "loss": beam_lls[0].item(), "beam_lengths": counts.tolist(), "length": counts[0].item() } return sampling_result
comet-public-master
comet/evaluate/sampler.py
import copy import torch import torch.nn as nn import torch.nn.functional as F import comet.data.config as cfg import comet.train.utils as train_utils import comet.models.utils as model_utils import comet.evaluate.utils as eval_utils import comet.utils as utils from IPython import embed ############################################################################## # BATCH ############################################################################## def batch_atomic_generate(opt, nums, losses, batch_variables, eval_mode=False): data_loader = batch_variables["data"] model = batch_variables["model"] split = batch_variables["split"] batch, reset = data_loader.sample_batch(split, bs=opt.train.dynamic.bs) input_ = model_utils.prepare_position_embeddings( opt, data_loader.vocab_encoder, batch["sequences"].unsqueeze(-1)) attention_mask = batch["attention_mask"] loss_mask = batch["loss_mask"] targets = input_.squeeze(0)[:, 1:, 0].contiguous().view(-1) loss, dist = mle_steps( opt.net.model, model, input_[:, :-1, :], targets, attention_mask[:, :-1], loss_reduction="none") # Set loss name micro_name = "total_micro" macro_name = "total_macro" length = loss_mask.sum(1) bs = input_.size(0) final_loss = (loss * loss_mask).sum(1) update_generation_losses(losses, nums, micro_name, macro_name, bs, length, (loss * loss_mask).sum(1), split) final_loss = final_loss / length outputs = {"loss": final_loss.sum(), "nums": nums, "reset": reset} return outputs def batch_conceptnet_generate(opt, nums, losses, batch_variables, eval_mode=False, tracking_mode=False): data_loader = batch_variables["data"] model = batch_variables["model"] split = batch_variables["split"] category = batch_variables["category"] batch, reset = data_loader.sample_batch( split, bs=opt.train.dynamic.bs, cat=category) input_ = model_utils.prepare_position_embeddings( opt, data_loader.vocab_encoder, batch["sequences"].unsqueeze(-1)) attention_mask = batch["attention_mask"] loss_mask = batch["loss_mask"] targets = input_.squeeze(0)[:, 1:, 0].contiguous().view(-1) loss, dist = mle_steps( opt.net.model, model, input_[:, :-1, :], targets, attention_mask[:, :-1], loss_reduction="none") # Set loss name if not eval_mode or batch_variables["category"] == "positive": micro_name = "total_micro" macro_name = "total_macro" else: micro_name = "negative_micro" macro_name = "negative_macro" length = loss_mask.sum(1) bs = input_.size(0) final_loss = (loss * loss_mask).sum(1) update_generation_losses(losses, nums, micro_name, macro_name, bs, length, (loss * loss_mask).sum(1), split) final_loss = final_loss / length outputs = {"loss": final_loss.sum(), "nums": nums, "reset": reset} if tracking_mode: outputs["tracking"] = final_loss.squeeze().tolist() return outputs def mle_steps(key, model, input_, targets, attention_mask, loss_reduction="mean", i=None): word_acts = decode(model, input_.unsqueeze(1), attention_mask, i) word_dist = train_utils.modify_output_for_loss_fn( "nll", word_acts, dim=-1) # Compute losses loss = F.nll_loss( word_dist.view(-1, word_dist.size(-1)), targets, reduction=loss_reduction) if loss_reduction != "mean": return loss.view(word_dist.size(0), -1), word_dist else: return loss, word_dist def decode(model, input_, attention_mask, i=None): return model(input_, sequence_mask=attention_mask) def update_generation_losses(losses, nums, micro, macro, bs, length, loss, split): if split == "train": train_utils.update_generation_losses( losses, nums, micro, macro, bs, length, loss) else: eval_utils.update_generation_losses( losses, nums, micro, macro, bs, length, loss)
comet-public-master
comet/train/batch.py
import random import torch import comet.data.config as cfg import comet.train.atomic_train as base_train import comet.train.batch as batch_utils import comet.evaluate.conceptnet_evaluate as evaluate import comet.evaluate.conceptnet_generate as gen def make_trainer(opt, *args): return ConceptNetGenerationIteratorTrainer(opt, *args) class ConceptNetGenerationIteratorTrainer( base_train.AtomicGenerationIteratorTrainer): def set_evaluator(self, opt, model, data_loader): self.evaluator = evaluate.make_evaluator( opt, model, data_loader) def set_generator(self, opt, model, data_loader): self.generator = gen.make_generator( opt, model, data_loader) def batch(self, opt, *args): outputs = batch_utils.batch_atomic_generate(opt, *args) token_loss = outputs["loss"] nums = outputs["nums"] reset = outputs["reset"] return token_loss, nums, reset def update_top_score(self, opt): print(self.top_score) tracked_scores = self.get_tracked_score() if self.top_score is None: self.top_score = \ self.top_score = {"epoch": {}, "score": {}} self.top_score["epoch"]["total_micro"] = self.opt.train.dynamic.epoch self.top_score["score"]["total_micro"] = tracked_scores["total_micro"] else: if tracked_scores["total_micro"] < self.top_score["score"]["total_micro"]: self.top_score["epoch"]["total_micro"] = self.opt.train.dynamic.epoch self.top_score["score"]["total_micro"] = tracked_scores["total_micro"] print(self.top_score) def get_tracked_score(self): return { "total_micro": self.losses["dev"]["total_micro"][self.opt.train.dynamic.epoch] } def decide_to_save(self): to_save = cfg.save and not cfg.toy curr_epoch = self.opt.train.dynamic.epoch to_save = to_save or cfg.test_save print(cfg.save_strategy) if cfg.save_strategy == "best": if ((self.top_score["epoch"]["total_micro"] != curr_epoch)): to_save = False return to_save
comet-public-master
comet/train/conceptnet_train.py
import random import comet.train.train as base_train import comet.train.batch as batch import comet.evaluate.atomic_evaluate as evaluate # import comet.evaluate.atomic_generate as gen def make_trainer(opt, *args): return AtomicGenerationIteratorTrainer(opt, *args) class AtomicGenerationIteratorTrainer(base_train.IteratorTrainer): def __init__(self, opt, *args): super(AtomicGenerationIteratorTrainer, self).__init__(opt, *args) self.initialize_losses(opt.data.get("categories", [])) def set_evaluator(self, opt, model, data_loader): self.evaluator = evaluate.make_evaluator( opt, model, data_loader) # def set_generator(self, opt, model, data_loader, scores, reward=None): # self.generator = gen.make_generator( # opt, model, data_loader, scores, reward) def set_sampler(self, opt): if opt.train.static.samp not in self.samplers: self.samplers[opt.train.static.samp] = sampling.make_sampler( opt.train.static.samp, opt, self.data_loader, batch_mode=True) self.batch_variables["sampler"] = self.samplers def batch(self, opt, *args): outputs = batch.batch_atomic_generate(opt, *args) token_loss = outputs["loss"] nums = outputs["nums"] reset = outputs["reset"] return token_loss, nums, reset def initialize_losses(self, categories): self.losses["train"] = { "total_micro": [0], "total_macro": [0] } nums = {"total_micro": 0, "total_macro": 0} for category in categories: micro_name = "{}_micro".format(category) macro_name = "{}_macro".format(category) self.losses["train"][micro_name] = [0] self.losses["train"][macro_name] = [0] nums[micro_name] = 0 nums[macro_name] = 0 return nums def update_top_score(self, opt): print(self.top_score) if self.top_score is None: self.top_score = (self.opt.train.dynamic.epoch, self.get_tracked_score()) elif self.get_tracked_score() < self.top_score[-1]: self.top_score = (self.opt.train.dynamic.epoch, self.get_tracked_score()) print(self.top_score) def get_tracked_score(self): return self.losses["dev"]["total_micro"][self.opt.train.dynamic.epoch] def counter(self, nums): return nums["total_macro"]
comet-public-master
comet/train/atomic_train.py
comet-public-master
comet/train/__init__.py
'''TAKEN from OpenAI LM Code by HuggingFace''' import math import torch from torch.optim import Optimizer from torch.nn.utils import clip_grad_norm_ def warmup_cosine(x, warmup=0.002): s = 1 if x <= warmup else 0 return s*(x/warmup) + (1-s)*(0.5 * (1 + torch.cos(math.pi * x))) def warmup_constant(x, warmup=0.002): s = 1 if x <= warmup else 0 return s*(x/warmup) + (1-s)*1 def warmup_linear(x, warmup=0.002): s = 1 if x <= warmup else 0 # print(s) return (s*(x/warmup) + (1-s))*(1-x) SCHEDULES = { 'warmup_cosine': warmup_cosine, 'warmup_constant': warmup_constant, 'warmup_linear': warmup_linear, } class OpenAIAdam(Optimizer): """Implements Open AI version of Adam algorithm with weight decay fix. """ def __init__(self, params, lr, schedule, warmup, t_total, b1=0.9, b2=0.999, e=1e-8, l2=0, vector_l2=False, max_grad_norm=-1, **kwargs): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if schedule not in SCHEDULES: raise ValueError("Invalid schedule parameter: {}".format(schedule)) if not 0 <= warmup: raise ValueError("Invalid warmup: {}".format(warmup)) if not 0.0 <= b1 < 1.0: raise ValueError("Invalid b1 parameter: {}".format(b1)) if not 0.0 <= b2 < 1.0: raise ValueError("Invalid b2 parameter: {}".format(b2)) if not 0.0 <= e: raise ValueError("Invalid epsilon value: {}".format(e)) defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total, b1=b1, b2=b2, e=e, l2=l2, vector_l2=vector_l2, max_grad_norm=max_grad_norm) super(OpenAIAdam, self).__init__(params, defaults) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: # print(group['t_total']) # print(group['warmup']) # if self.state[group['params'][0]]: # print(self.state[group['params'][0]]['step'] / group['t_total']) # print() for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError( 'Adam does not support sparse gradients, \ please consider SparseAdam instead') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['b1'], group['b2'] state['step'] += 1 # Add grad clipping if group['max_grad_norm'] > 0: clip_grad_norm_(p, group['max_grad_norm']) # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) denom = exp_avg_sq.sqrt().add_(group['e']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] schedule_fct = SCHEDULES[group['schedule']] lr_scheduled = (group['lr'] * schedule_fct(state['step'] / group['t_total'], group['warmup'])) step_size = (lr_scheduled * math.sqrt(bias_correction2) / bias_correction1) p.data.addcdiv_(-step_size, exp_avg, denom) # Add weight decay at the end (fixed version) if (len(p.size()) > 1 or group['vector_l2']) and group['l2'] > 0: p.data.add_(-lr_scheduled * group['l2'], p.data) return loss
comet-public-master
comet/train/opt.py
import torch import torch.optim import torch.nn.functional as F import copy def update_generation_losses(losses, nums, micro, macro, bs, length, loss): # Update Losses losses[micro] += \ [copy.deepcopy(losses[micro][-1])] losses[macro] += \ [copy.deepcopy(losses[macro][-1])] losses[micro][-1] *= nums[micro] losses[macro][-1] *= nums[macro] nums[macro] += bs if isinstance(length, int): update_indiv_generation_losses( losses, nums, micro, macro, bs, length, loss) else: update_tensor_generation_losses( losses, nums, micro, macro, bs, length, loss) def update_indiv_generation_losses(losses, nums, micro, macro, bs, length, loss): nums[micro] += (bs * length) batch_loss = loss * bs losses[micro][-1] += batch_loss losses[micro][-1] /= nums[micro] losses[macro][-1] += batch_loss / length losses[macro][-1] /= nums[macro] def update_tensor_generation_losses(losses, nums, micro, macro, bs, length, loss): nums[micro] += length.sum().item() losses[micro][-1] += loss.sum().item() losses[micro][-1] /= nums[micro] losses[macro][-1] += (loss / length.float()).sum().item() losses[macro][-1] /= nums[macro] def modify_output_for_loss_fn(loss_fn, output, dim): if loss_fn == "ce": return output if loss_fn == "mse": return F.softmax(output, dim=dim) if loss_fn == "nll": return F.log_softmax(output, dim=dim) if loss_fn in ["bce", "wbce", "wbce1"]: return torch.sigmoid(output)
comet-public-master
comet/train/utils.py
import torch import torch.nn as nn import torch.nn.functional as F import comet.data.config as cfg import comet.data.data as data import comet.train.utils as train_utils import comet.train.batch as batch import comet.evaluate.evaluate as evaluate import comet.evaluate.generate as gen import comet.evaluate.sampler as sampling import comet.utils as utils from tensorboardX import SummaryWriter class Trainer(object): def __init__(self, opt, meta, data_loader, model, optimizer): self.optimizer = optimizer self.model = model if opt.trainer == "epoch": self.epochs = meta.epochs self.data_loader = data_loader self.opt = opt self.losses = {"dev": {}, "test": {}, "train": {}} self.top_score = None self.lrs = {} self.batch_variables = { "data": self.data_loader, "model": self.model, "split": "train" } self.do_gen = cfg.do_gen self.samplers = {} def decide_to_save(self): to_save = cfg.save and not cfg.toy to_save = to_save or cfg.test_save print(cfg.save_strategy) if cfg.save_strategy == "best": if self.top_score[0] != self.opt.train.dynamic.epoch: print("DOING IT RIGHT") to_save = False return to_save def save_model(self, tracked_score): lrs = {} for i, param_group in enumerate(self.optimizer.param_groups): lrs[i] = param_group['lr'] self.lrs[self.opt.train.dynamic.epoch] = lrs to_save = self.decide_to_save() if to_save: data.save_step( self.model, self.data_loader.vocab_encoder, self.optimizer, self.opt, self.opt.train.dynamic.epoch, self.lrs) def log_losses(self, opt, losses): if (not cfg.toy and cfg.save) or cfg.test_save: data.save_eval_file(opt, losses["train"], "losses", split="train") data.save_eval_file(opt, losses['dev'], "losses", split="dev") data.save_eval_file(opt, losses['test'], "losses", split="test") def set_logger(self): if cfg.toy: self.logger = SummaryWriter(utils.make_name( self.opt, prefix="garbage/logs/", eval_=True, do_epoch=False)) else: self.logger = SummaryWriter(utils.make_name( self.opt, prefix="logs/", eval_=True, do_epoch=False)) print("Logging Tensorboard Files at: {}".format(self.logger.log_dir)) def stop_logger(self): self.logger.close() def run(self): self.set_logger() self.count = 0 for epoch in range(self.epochs): self.model.train() self.opt.train.dynamic.epoch += 1 self.epoch() self.stop_logger() def epoch(self): nums = self.reset_losses() # Initialize progress bar bar = utils.initialize_progress_bar( self.data_loader.sequences["train"]) reset = False while not reset: loss, nums, reset = self.do_forward_pass(nums) self.do_backward_pass(loss) self.update_parameters() bar.update(self.opt.train.dynamic.bs) self.count += 1 for loss_name in self.losses["train"]: self.logger.add_scalar( "train/{}".format(loss_name), loss.item() / self.opt.train.dynamic.bs, self.count) if cfg.toy and self.counter(nums) > 300: break with torch.no_grad(): self.run_evaluation_cycle() self.log_losses(self.opt, self.losses) self.update_top_score(self.opt) self.save_model(self.get_tracked_score()) self.data_loader.reset_offsets("train") def run_evaluation_cycle(self): for split in ["dev", "test"]: self.evaluator.validate( self.opt.train.dynamic.epoch, split, self.losses[split]) if self.do_gen: gen.do_gen_run( self.opt, self.generator, self.opt.train.dynamic.epoch, split, self.losses[split]) iter_num = self.opt.train.dynamic.epoch for loss_name in self.losses[split]: self.logger.add_scalar( "{}/{}".format(split, loss_name), self.losses[split][loss_name][iter_num], iter_num) def clip_gradients(self): if self.opt.train.static.clip: torch.nn.utils.clip_grad_norm_( self.model.parameters(), self.opt.train.static.clip) def do_forward_pass(self, nums): token_loss, nums, reset = self.batch( self.opt, nums, self.losses["train"], self.batch_variables) return token_loss, nums, reset def do_backward_pass(self, loss): loss.backward() def update_parameters(self): if self.opt.model == "lstm": self.clip_gradients() self.optimizer.step() self.optimizer.zero_grad() def reset_losses(self): loss_names = set([i.rstrip("maicro").rstrip("_") for i in self.losses["train"].keys()]) return self.initialize_losses(list(loss_names)) class IteratorTrainer(Trainer): def __init__(self, opt, meta, data_loader, model, optimizer): super(IteratorTrainer, self).__init__( opt, meta, data_loader, model, optimizer) self.iters = meta.cycle self.total_iters = meta.iterations def run(self): self.set_logger() # Initialize progress bar bar = utils.set_progress_bar(self.total_iters) for cycle_num in range(int(self.total_iters / self.iters)): self.model.train() self.cycle(bar, cycle_num) with torch.no_grad(): self.run_evaluation_cycle() self.log_losses(self.opt, self.losses) self.update_top_score(self.opt) self.save_model(self.get_tracked_score()) self.stop_logger() def cycle(self, bar, cycle_num): nums = self.reset_losses() print(self.losses["train"]) for i in range(1, self.iters + 1): # self.model.zero_grad() loss, nums, reset = self.do_forward_pass(nums) self.do_backward_pass(loss) self.update_parameters() # print(loss) # print(loss.item()) self.opt.train.dynamic.epoch += 1 for loss_name in self.losses["train"]: self.logger.add_scalar( "train/{}".format(loss_name), loss.item() / self.opt.train.dynamic.bs, self.opt.train.dynamic.epoch) bar.update(1) if cfg.toy and i > 10: break if reset: self.data_loader.reset_offsets("train")
comet-public-master
comet/train/train.py
import torch import sys import os import time from comet.data.utils import TextEncoder import comet.data.config as cfg import comet.data.data as data import comet.models.models as models from comet.evaluate.sampler import BeamSampler, GreedySampler, TopKSampler import comet.utils as utils def set_compute_mode(mode): if mode == "auto" and torch.cuda.is_available(): cfg.device = "cuda" elif mode.isdigit(): cfg.device = int(mode) elif mode in ["cpu", "cuda"]: cfg.device = mode else: raise print("Pushing units to: {}".format(cfg.device)) class BaseDataLoader(object): def __init__(self, opt, vocab): self.vocab_encoder = vocab self.vocab_decoder = {j: i for i, j in self.vocab_encoder.items()} class ConceptNetBaseDataLoader(BaseDataLoader): def __init__(self, opt, vocab): super(ConceptNetBaseDataLoader, self).__init__(opt, vocab) self.max_e1 = opt.data.get("maxe1", 10) self.max_e2 = opt.data.get("maxe2", 15) + 1 self.max_r = opt.data.get("maxr", 5) class AtomicBaseDataLoader(BaseDataLoader): def __init__(self, opt, vocab): super(AtomicBaseDataLoader, self).__init__(opt, vocab) self.max_event = opt.data.get("maxe1", 17) self.max_effect = opt.data.get("maxe2", 34) + 1 def load_model_file(model_file): model_stuff = data.load_checkpoint(model_file) opt = utils.convert_nested_dict_to_DD(model_stuff["opt"]) state_dict = model_stuff["state_dict"] vocab = model_stuff['vocab'] return opt, state_dict, vocab def load_data(dataset, opt, vocab, vocabulary_path): if dataset == "atomic": data_loader = load_atomic_data(opt, vocab) elif dataset == "conceptnet": data_loader = load_conceptnet_data(opt, vocab) # Initialize TextEncoder encoder_path = vocabulary_path + "encoder_bpe_40000.json" bpe_path = vocabulary_path + "vocab_40000.bpe" text_encoder = TextEncoder(encoder_path, bpe_path) text_encoder.encoder = data_loader.vocab_encoder text_encoder.decoder = data_loader.vocab_decoder return data_loader, text_encoder def load_atomic_data(opt, vocab): # path = "data/atomic/processed/generation/{}.pickle".format( # utils.make_name_string(opt.data)) # data_loader = data.make_data_loader(opt, opt.data.categories) # loaded = data_loader.load_data(path) data_loader = AtomicBaseDataLoader(opt, vocab) return data_loader def load_conceptnet_data(opt, vocab): # path = "data/conceptnet/processed/generation/{}.pickle".format( # utils.make_name_string(opt.data)) # data_loader = data.make_data_loader(opt) # loaded = data_loader.load_data(path) data_loader = ConceptNetBaseDataLoader(opt, vocab) return data_loader def make_model(opt, n_vocab, n_ctx, state_dict): model = models.make_model( opt, n_vocab, n_ctx, None, load=False, return_acts=True, return_probs=False) model.load_state_dict(state_dict) model.to(cfg.device) model.eval() return model def set_sampler(opt, sampling_algorithm, data_loader): if "beam" in sampling_algorithm: opt.eval.bs = int(sampling_algorithm.split("-")[1]) sampler = BeamSampler(opt, data_loader) elif "topk" in sampling_algorithm: # print("Still bugs in the topk sampler. Use beam or greedy instead") # raise NotImplementedError opt.eval.k = int(sampling_algorithm.split("-")[1]) sampler = TopKSampler(opt, data_loader) else: sampler = GreedySampler(opt, data_loader) return sampler def get_atomic_sequence(input_event, model, sampler, data_loader, text_encoder, category): if isinstance(category, list): outputs = {} for cat in category: new_outputs = get_atomic_sequence( input_event, model, sampler, data_loader, text_encoder, cat) outputs.update(new_outputs) return outputs elif category == "all": outputs = {} # start = time.time() for category in data.atomic_data.all_categories: new_outputs = get_atomic_sequence( input_event, model, sampler, data_loader, text_encoder, category) outputs.update(new_outputs) # end = time.time() # print("total time for all categories: {} s".format(end - start)) return outputs else: sequence_all = {} sequence_all["event"] = input_event sequence_all["effect_type"] = category with torch.no_grad(): # start = time.time() batch = set_atomic_inputs( input_event, category, data_loader, text_encoder) # end_set = time.time() sampling_result = sampler.generate_sequence( batch, model, data_loader, data_loader.max_event + data.atomic_data.num_delimiter_tokens["category"], data_loader.max_effect - data.atomic_data.num_delimiter_tokens["category"]) # end_sample = time.time() # print(category) # print("Set inputs: {} s".format(end_set - start)) # print("Sample: {} s".format(end_sample - end_set)) sequence_all['beams'] = sampling_result["beams"] print_atomic_sequence(sequence_all) return {category: sequence_all} def print_atomic_sequence(sequence_object): input_event = sequence_object["event"] category = sequence_object["effect_type"] print("Input Event: {}".format(input_event)) print("Target Effect: {}".format(category)) print("") print("Candidate Sequences:") for beam in sequence_object["beams"]: print(beam) print("") print("====================================================") print("") def set_atomic_inputs(input_event, category, data_loader, text_encoder): XMB = torch.zeros(1, data_loader.max_event + 1).long().to(cfg.device) prefix, suffix = data.atomic_data.do_example(text_encoder, input_event, None, True, None) XMB[:, :len(prefix)] = torch.LongTensor(prefix) XMB[:, -1] = torch.LongTensor([text_encoder.encoder["<{}>".format(category)]]) batch = {} batch["sequences"] = XMB batch["attention_mask"] = data.atomic_data.make_attention_mask(XMB) return batch def get_conceptnet_sequence(e1, model, sampler, data_loader, text_encoder, relation, force=False): if isinstance(relation, list): outputs = {} for rel in relation: new_outputs = get_conceptnet_sequence( e1, model, sampler, data_loader, text_encoder, rel) outputs.update(new_outputs) return outputs elif relation == "all": outputs = {} for relation in data.conceptnet_data.conceptnet_relations: new_outputs = get_conceptnet_sequence( e1, model, sampler, data_loader, text_encoder, relation) outputs.update(new_outputs) return outputs else: sequence_all = {} sequence_all["e1"] = e1 sequence_all["relation"] = relation with torch.no_grad(): if data_loader.max_r != 1: relation_sequence = data.conceptnet_data.split_into_words[relation] else: relation_sequence = "<{}>".format(relation) batch, abort = set_conceptnet_inputs( e1, relation_sequence, text_encoder, data_loader.max_e1, data_loader.max_r, force) if abort: return {relation: sequence_all} sampling_result = sampler.generate_sequence( batch, model, data_loader, data_loader.max_e1 + data_loader.max_r, data_loader.max_e2) sequence_all['beams'] = sampling_result["beams"] print_conceptnet_sequence(sequence_all) return {relation: sequence_all} def set_conceptnet_inputs(input_event, relation, text_encoder, max_e1, max_r, force): abort = False e1_tokens, rel_tokens, _ = data.conceptnet_data.do_example(text_encoder, input_event, relation, None) if len(e1_tokens) > max_e1: if force: XMB = torch.zeros(1, len(e1_tokens) + max_r).long().to(cfg.device) else: XMB = torch.zeros(1, max_e1 + max_r).long().to(cfg.device) return {}, True else: XMB = torch.zeros(1, max_e1 + max_r).long().to(cfg.device) XMB[:, :len(e1_tokens)] = torch.LongTensor(e1_tokens) XMB[:, max_e1:max_e1 + len(rel_tokens)] = torch.LongTensor(rel_tokens) batch = {} batch["sequences"] = XMB batch["attention_mask"] = data.conceptnet_data.make_attention_mask(XMB) return batch, abort def print_conceptnet_sequence(sequence_object): e1 = sequence_object["e1"] relation = sequence_object["relation"] print("Input Entity: {}".format(e1)) print("Target Relation: {}".format(relation)) print("") print("Candidate Sequences:") for beam in sequence_object["beams"]: print(beam) print("") print("====================================================") print("") def print_help(data): print("") if data == "atomic": print("Provide a seed event such as \"PersonX goes to the mall\"") print("Don't include names, instead replacing them with PersonX, PersonY, etc.") print("The event should always have PersonX included") if data == "conceptnet": print("Provide a seed entity such as \"go to the mall\"") print("Because the model was trained on lemmatized entities,") print("it works best if the input entities are also lemmatized") print("") def print_relation_help(data): print_category_help(data) def print_category_help(data): print("") if data == "atomic": print("Enter a possible effect type from the following effect types:") print("all - compute the output for all effect types {{oEffect, oReact, oWant, xAttr, xEffect, xIntent, xNeed, xReact, xWant}}") print("oEffect - generate the effect of the event on participants other than PersonX") print("oReact - generate the reactions of participants other than PersonX to the event") print("oEffect - generate what participants other than PersonX may want after the event") elif data == "conceptnet": print("Enter a possible relation from the following list:") print("") print('AtLocation') print('CapableOf') print('Causes') print('CausesDesire') print('CreatedBy') print('DefinedAs') print('DesireOf') print('Desires') print('HasA') print('HasFirstSubevent') print('HasLastSubevent') print('HasPainCharacter') print('HasPainIntensity') print('HasPrerequisite') print('HasProperty') print('HasSubevent') print('InheritsFrom') print('InstanceOf') print('IsA') print('LocatedNear') print('LocationOfAction') print('MadeOf') print('MotivatedByGoal') print('NotCapableOf') print('NotDesires') print('NotHasA') print('NotHasProperty') print('NotIsA') print('NotMadeOf') print('PartOf') print('ReceivesAction') print('RelatedTo') print('SymbolOf') print('UsedFor') print("") print("NOTE: Capitalization is important") else: raise print("") def print_sampling_help(): print("") print("Provide a sampling algorithm to produce the sequence with from the following:") print("") print("greedy") print("beam-# where # is the beam size") print("topk-# where # is k") print("")
comet-public-master
comet/interactive/functions.py
import sys import os import argparse import comet.interactive.functions as interactive sampling_mapping = { "b10": "beam-10", "b5": "beam-5", "g": "greedy" } def parse_input_string(string): objects = string.split("|") relations = objects[1] if not relations or relations == "all": base_relations = [ 'AtLocation', 'CapableOf', 'Causes', 'CausesDesire', 'CreatedBy', 'DefinedAs', 'Desires', 'HasA', 'HasFirstSubevent', 'HasLastSubevent', 'HasPrerequisite', 'HasProperty', 'HasSubevent', 'IsA', 'MadeOf', 'MotivatedByGoal', 'PartOf', 'ReceivesAction', 'SymbolOf', 'UsedFor' ] # final_relations = ["<{}>".format(i) for i in base_relations] else: final_relations = relations.split(",") sampling = sampling_mapping[objects[2]] sequence = objects[0] return sequence, final_relations, sampling def format_output_string(text_sequence, sequences): print_string = [] print_string.append("<h3>{}</h3>".format(text_sequence)) for relation, stuff in sequences.items(): print_string.append("<b>{}</b>".format(relation)) for i, sequence in enumerate(stuff["beams"]): print_string.append("({}) {}".format(i + 1, sequence)) print_string.append("") print_string.append("") return "<br>".join(print_string) class DemoModel(object): def __init__(self, model_file, vocabulary_path="model/"): opt, state_dict, vocab = interactive.load_model_file(model_file) data_loader, text_encoder = interactive.load_data( "conceptnet", opt, vocab, vocabulary_path) self.opt = opt self.data_loader = data_loader self.text_encoder = text_encoder n_ctx = data_loader.max_e1 + data_loader.max_e2 + data_loader.max_r n_vocab = len(text_encoder.encoder) + n_ctx model = interactive.make_model(opt, n_vocab, n_ctx, state_dict) self.model = model def predict(self, text_sequence, relations, sampling_algorithm, verbose=True): sampler = interactive.set_sampler( self.opt, sampling_algorithm, self.data_loader) sequences = interactive.get_conceptnet_sequence( text_sequence, self.model, sampler, self.data_loader, self.text_encoder, relations) return sequences def getOutput(self, text_string): text_sequence, relations, sampling_algorithm = parse_input_string(text_string) model_output_sequences = self.predict( text_sequence, relations, sampling_algorithm, verbose=True) return format_output_string(text_sequence, model_output_sequences) if __name__ == "__main__": # sys.path.append("ConceptNet_NLGWebsite") # sys.path.append(os.getcwd()) from server import run parser = argparse.ArgumentParser() parser.add_argument("--device", type=str, default="cpu") parser.add_argument("--model_file", type=str, default="models/conceptnet-generation/iteration-500-100000/transformer/rel_language-trainsize_100-devversion_12-maxe1_10-maxe2_15/model_transformer-nL_12-nH_12-hSize_768-edpt_0.1-adpt_0.1-rdpt_0.1-odpt_0.1-pt_gpt-afn_gelu-init_pt-vSize_40545/exp_generation-seed_123-l2_0.01-vl2_T-lrsched_warmup_linear-lrwarm_0.002-clip_1-loss_nll-b2_0.999-b1_0.9-e_1e-08/bs_1-smax_40-sample_greedy-numseq_1-gs_full-es_full-categories_None/1e-05_adam_64_15500.pickle") parser.add_argument("--sampling_algorithm", type=str, default="help") args = parser.parse_args() interactive.set_compute_mode(args.device) myNLGmodel = DemoModel(args.model_file) run(nlg=myNLGmodel, port=8001)
comet-public-master
comet/interactive/conceptnet_demo.py
comet-public-master
comet/interactive/__init__.py
import sys import os import argparse import comet.interactive.functions as interactive descriptions = { "oEffect": "The effect of the event on participants besides PersonX might be: ", "oReact": "Other participants may react to the event in this way: ", "oWant": "After the event, other participants may want: ", "xAttr": "Because of the event, we can say that PersonX is: ", "xEffect": "The effect of the event on PersonX might be: ", "xIntent": "The intent of PersonX in participating in this event is: ", "xNeed": "To participate in the event, PersonX needs: ", "xReact": "PersonX may react to the event in this way: ", "xWant": "After the event, PersonX may want: ", } sampling_mapping = { "b10": "beam-10", "b5": "beam-5", "g": "greedy" } def parse_input_string(string): objects = string.split("|") categories = objects[1] if not categories or categories == "all": final_categories = list(descriptions.keys()) else: final_categories = categories.split(",") sampling = sampling_mapping[objects[2]] sequence = objects[0] return sequence, final_categories, sampling def format_output_string(text_sequence, sequences): print_string = [] print_string.append("<h3>{}</h3>".format(text_sequence)) for category, stuff in sequences.items(): print_string.append("<b>{}</b>".format(descriptions[category])) for i, sequence in enumerate(stuff["beams"]): print_string.append("({}) {}".format(i + 1, sequence)) print_string.append("") print_string.append("") return "<br>".join(print_string) class DemoModel(object): def __init__(self, model_file, vocabulary_path="model/"): opt, state_dict, vocab = interactive.load_model_file(model_file) # print(opt) data_loader, text_encoder = interactive.load_data( "atomic", opt, vocab, vocabulary_path) self.opt = opt self.data_loader = data_loader self.text_encoder = text_encoder n_ctx = data_loader.max_event + data_loader.max_effect n_vocab = len(text_encoder.encoder) + n_ctx model = interactive.make_model(opt, n_vocab, n_ctx, state_dict) self.model = model def predict(self, text_sequence, categories, sampling_algorithm, verbose=True): sampler = interactive.set_sampler( self.opt, sampling_algorithm, self.data_loader) sequences = interactive.get_atomic_sequence( text_sequence, self.model, sampler, self.data_loader, self.text_encoder, categories) return sequences def getOutput(self, text_string): print(text_string) text_sequence, categories, sampling_algorithm = parse_input_string(text_string) model_output_sequences = self.predict( text_sequence, categories, sampling_algorithm, verbose=True) return format_output_string(text_sequence, model_output_sequences) if __name__ == "__main__": # from server import run # sys.path.append("ATOMIC_NLGWebsite") # sys.path.append(os.getcwd()) parser = argparse.ArgumentParser() parser.add_argument("--device", type=str, default="cpu") parser.add_argument("--model_file", type=str, default="models/atomic-generation/iteration-500-50000/transformer/categories_oEffect#oReact#oWant#xAttr#xEffect#xIntent#xNeed#xReact#xWant/model_transformer-nL_12-nH_12-hSize_768-edpt_0.1-adpt_0.1-rdpt_0.1-odpt_0.1-pt_gpt-afn_gelu-init_pt-vSize_40542/exp_generation-seed_123-l2_0.01-vl2_T-lrsched_warmup_linear-lrwarm_0.002-clip_1-loss_nll-b2_0.999-b1_0.9-e_1e-08/bs_1-smax_40-sample_greedy-numseq_1-gs_1000-es_1000-categories_oEffect#oReact#oWant#xAttr#xEffect#xIntent#xNeed#xReact#xWant/6.25e-05_adam_64_22000.pickle") args = parser.parse_args() interactive.set_compute_mode(args.device) myNLGmodel = DemoModel(args.model_file) run(nlg=myNLGmodel)
comet-public-master
comet/interactive/atomic_demo.py
import json from comet.utils import DD device = "cuda" save = False test_save = False toy = False do_gen = False save_strategy = "all" def get_parameters(opt, exp_type="model"): params = DD() params.net = DD() params.mle = 0 params.dataset = opt.dataset params.net = get_net_parameters(opt) params.train = get_training_parameters(opt) params.model = params.net.model params.exp = opt.exp params.data = get_data_parameters(opt, params.exp, params.dataset) params.eval = get_eval_parameters(opt, params.data.get("categories", None)) meta = DD() params.trainer = opt.trainer meta.iterations = int(opt.iterations) meta.cycle = opt.cycle params.cycle = opt.cycle params.iters = int(opt.iterations) global toy toy = opt.toy global do_gen do_gen = opt.do_gen global save save = opt.save global test_save test_save = opt.test_save global save_strategy save_strategy = opt.save_strategy print(params) return params, meta def get_eval_parameters(opt, force_categories=None): evaluate = DD() if opt.eval_sampler == "beam": evaluate.bs = opt.beam_size elif opt.eval_sampler == "greedy": evaluate.bs = 1 elif opt.eval_sampler == "topk": evaluate.k = opt.topk_size evaluate.smax = opt.gen_seqlength evaluate.sample = opt.eval_sampler evaluate.numseq = opt.num_sequences evaluate.gs = opt.generate_sequences evaluate.es = opt.evaluate_sequences if opt.dataset == "atomic": if "eval_categories" in opt and force_categories is None: evaluate.categories = opt.eval_categories else: evaluate.categories = force_categories return evaluate def get_data_parameters(opt, experiment, dataset): data = DD() if dataset == "atomic": data.categories = sorted(opt.categories) elif dataset == "conceptnet": data.rel = opt.relation_format data.trainsize = opt.training_set_size data.devversion = opt.development_set_versions_to_use data.maxe1 = opt.max_event_1_size data.maxe2 = opt.max_event_2_size return data def get_training_parameters(opt): train = DD() static = DD() static.exp = opt.exp static.seed = opt.random_seed # weight decay static.l2 = opt.l2 static.vl2 = True static.lrsched = opt.learning_rate_schedule # 'warmup_linear' static.lrwarm = opt.learning_rate_warmup # 0.002 # gradient clipping static.clip = opt.clip # what loss function to use static.loss = opt.loss dynamic = DD() dynamic.lr = opt.learning_rate # learning rate dynamic.bs = opt.batch_size # batch size # optimizer to use {adam, rmsprop, etc.} dynamic.optim = opt.optimizer # rmsprop # alpha is interpolation average static.update(opt[dynamic.optim]) train.static = static train.dynamic = dynamic return train def get_net_parameters(opt): net = DD() net.model = opt.model net.nL = opt.num_layers net.nH = opt.num_heads net.hSize = opt.hidden_dim net.edpt = opt.embedding_dropout net.adpt = opt.attention_dropout net.rdpt = opt.residual_dropout net.odpt = opt.output_dropout net.pt = opt.pretrain net.afn = opt.activation # how to intialize parameters # format is gauss+{}+{}.format(mean, std) # n = the default initialization pytorch net.init = opt.init return net def read_config(file_): config = DD() print(file_) for k, v in file_.items(): if v == "True" or v == "T" or v == "true": config[k] = True elif v == "False" or v == "F" or v == "false": config[k] = False elif type(v) == dict: config[k] = read_config(v) else: config[k] = v return config def load_config(name): with open(name, "r") as f: config = json.load(f) return config
comet-public-master
comet/data/config.py
import comet.data.utils as data_utils import comet.data.atomic as adata import comet.data.config as cfg import torch import random from tqdm import tqdm def map_name(name, opt): if name == "train": return "train{}k.txt".format(opt.trainsize) elif name == "test": return "test.txt" else: return "dev{}.txt".format(opt.devversion) conceptnet_relations = [ 'AtLocation', 'CapableOf', 'Causes', 'CausesDesire', 'CreatedBy', 'DefinedAs', 'DesireOf', 'Desires', 'HasA', 'HasFirstSubevent', 'HasLastSubevent', 'HasPainCharacter', 'HasPainIntensity', 'HasPrerequisite', 'HasProperty', 'HasSubevent', 'InheritsFrom', 'InstanceOf', 'IsA', 'LocatedNear', 'LocationOfAction', 'MadeOf', 'MotivatedByGoal', 'NotCapableOf', 'NotDesires', 'NotHasA', 'NotHasProperty', 'NotIsA', 'NotMadeOf', 'PartOf', 'ReceivesAction', 'RelatedTo', 'SymbolOf', 'UsedFor' ] split_into_words = { 'AtLocation': "at location", 'CapableOf': "capable of", 'Causes': "causes", 'CausesDesire': "causes desire", 'CreatedBy': "created by", 'DefinedAs': "defined as", 'DesireOf': "desire of", 'Desires': "desires", 'HasA': "has a", 'HasFirstSubevent': "has first subevent", 'HasLastSubevent': "has last subevent", 'HasPainCharacter': "has pain character", 'HasPainIntensity': "has pain intensity", 'HasPrerequisite': "has prequisite", 'HasProperty': "has property", 'HasSubevent': "has subevent", 'InheritsFrom': "inherits from", 'InstanceOf': 'instance of', 'IsA': "is a", 'LocatedNear': "located near", 'LocationOfAction': "location of action", 'MadeOf': "made of", 'MotivatedByGoal': "motivated by goal", 'NotCapableOf': "not capable of", 'NotDesires': "not desires", 'NotHasA': "not has a", 'NotHasProperty': "not has property", 'NotIsA': "not is a", 'NotMadeOf': "not made of", 'PartOf': "part of", 'ReceivesAction': "receives action", 'RelatedTo': "related to", 'SymbolOf': "symbol of", 'UsedFor': "used for" } class GenerationDataLoader(adata.DataLoader): def __init__(self, opt, categories=None): super(GenerationDataLoader, self).__init__(opt) self.opt = opt for split in self.data: self.data[split] = {"total": []} self.offsets[split] = {"total": 0} self.vocab_encoder = None self.vocab_decoder = None self.special_chars = None self.max_e1 = None self.max_e2 = None self.max_r = None def offset_summary(self, split): return sum(self.offsets[split].values()) def load_data(self, path): if ".pickle" in path: print("Loading data from: {}".format(path)) data_utils.load_existing_data_loader(self, path) return True for split in self.data: file_name = map_name(split, self.opt.data) if split != "dev" or self.opt.data.devversion != "12": string_tuples = open("{}/{}".format( path, file_name), "r").read().split("\n") tuples = [x.split("\t") for x in string_tuples if x] else: string_tuples = open("{}/{}".format( path, "dev1.txt"), "r").read().split("\n") tuples = [x.split("\t") for x in string_tuples if x] string_tuples = open("{}/{}".format( path, "dev2.txt"), "r").read().split("\n") tuples += [x.split("\t") for x in string_tuples if x] if split in ["dev", "test"]: if self.opt.data.rel == "language": self.data[split]["total"] = \ [(i[1].lower().strip(), split_into_words[i[0]], i[2].lower().strip(), int(i[3])) for i in tuples] self.data[split]["positive"] = \ [(i[1].lower().strip(), split_into_words[i[0]], i[2].lower().strip(), int(i[3])) for i in tuples if int(i[3])] self.data[split]["negative"] = \ [(i[1].lower().strip(), split_into_words[i[0]], i[2].lower().strip(), int(i[3])) for i in tuples if not int(i[3])] elif self.opt.data.rel == "relation": self.data[split]["total"] = \ [(i[1].lower().strip(), "<{}>".format(i[0]), i[2].lower().strip(), int(i[3])) for i in tuples] self.data[split]["positive"] = \ [(i[1].lower().strip(), "<{}>".format(i[0]), i[2].lower().strip(), int(i[3])) for i in tuples if int(i[3])] self.data[split]["negative"] = \ [(i[1].lower().strip(), "<{}>".format(i[0]), i[2].lower().strip(), int(i[3])) for i in tuples if not int(i[3])] else: if self.opt.data.rel == "language": self.data[split]["total"] = \ [(i[1].lower().strip(), split_into_words[i[0]], i[2].lower().strip(), i[3]) for i in tuples] elif self.opt.data.rel == "relation": self.data[split]["total"] = \ [(i[1].lower().strip(), "<{}>".format(i[0]), i[2].lower().strip(), i[3]) for i in tuples] return False def make_tensors(self, text_encoder, special, splits=["train", "dev", "test"], test=False): self.vocab_encoder = text_encoder.encoder self.vocab_decoder = text_encoder.decoder self.special_chars = special sequences = {} for split in splits: sequences[split], discarded = get_generation_sequences( self.data, split, text_encoder, test, self.opt.data.maxe1, self.opt.data.maxe2) if split == "train": self.data[split]["total"] = [j for i, j in enumerate( self.data[split]["total"]) if i not in set(discarded)] self.masks[split]["total"] = [(len(i[0]), len(i[1]), len(i[2])) for i in sequences[split]] self.max_e1 = max([max([l[0] for l in self.masks[split]["total"]]) for split in self.masks]) self.max_r = max([max([l[1] for l in self.masks[split]["total"]]) for split in self.masks]) self.max_e2 = max([max([l[2] for l in self.masks[split]["total"]]) for split in self.masks]) print(self.max_e1) print(self.max_r) print(self.max_e2) for split in splits: num_elements = len(sequences[split]) self.sequences[split]["total"] = torch.LongTensor( num_elements, self.max_e1 + self.max_e2 + self.max_r).fill_(0) for i, seq in enumerate(sequences[split]): # print(self.sequences[split]["total"][i, :len(seq[0])].size()) # print(torch.FloatTensor(seq[0]).size()) self.sequences[split]["total"][i, :len(seq[0])] = \ torch.LongTensor(seq[0]) start_r = self.max_e1 end_r = self.max_e1 + len(seq[1]) self.sequences[split]["total"][i, start_r:end_r] = \ torch.LongTensor(seq[1]) start_e2 = self.max_e1 + self.max_r end_e2 = self.max_e1 + self.max_r + len(seq[2]) self.sequences[split]["total"][i, start_e2:end_e2] = \ torch.LongTensor(seq[2]) if split in ["test", "dev"]: print(split) self.sequences[split]["negative"] = \ self.sequences[split]["total"].index_select( 0, torch.LongTensor([i for i, j in enumerate( self.data[split]['total']) if not j[3]])) # self.data[split]['total'][:self.sequences[split]["total"].size(0)]) if not j[3]])) self.sequences[split]["positive"] = \ self.sequences[split]["total"].index_select( 0, torch.LongTensor([i for i, j in enumerate( self.data[split]['total']) if j[3]])) # self.data[split]['total'][:self.sequences[split]["total"].size(0)]) if j[3]])) def sample_batch(self, split, bs, cat="total", idxs=None): offset = self.offsets[split][cat] batch = {} # Decided not to reduce computation on here because it's all parallel # anyway and we don't want to run out of memory in cases where we # don't see the longest version quickly enough if idxs: seqs = self.sequences[split][cat].index_select( 0, torch.LongTensor(idxs).to( self.sequences[split][cat].device)) else: seqs = self.sequences[split][cat][offset:offset + bs] batch["sequences"] = seqs.to(cfg.device) batch["attention_mask"] = make_attention_mask(seqs) batch["loss_mask"] = make_loss_mask(seqs, self.max_e1 + self.max_r) batch["key"] = (cat, offset, offset + bs) offset += seqs.size(0) self.offsets[split][cat] = offset if split == "train" and offset + bs > len(self.sequences[split][cat]): return batch, True elif offset >= len(self.sequences[split][cat]): return batch, True else: return batch, False def reset_offsets(self, splits=["train", "test", "dev"], shuffle=True, keys=None): if isinstance(splits, str): splits = [splits] for split in splits: if keys is None: keys = ["total", "positive", "negative"] for key in keys: self.offsets[split][key] = 0 if shuffle: self.shuffle_sequences(split, keys) def shuffle_sequences(self, split="train", keys=None): if keys is None: # print(type(self.data)) # print(type(self.data.keys())) keys = self.data[split].keys() for key in keys: if key in ["positive", "negative"]: continue idxs = list(range(len(self.data[split][key]))) random.shuffle(idxs) self.sequences[split][key] = \ self.sequences[split][key].index_select( 0, torch.LongTensor(idxs)) temp = [self.data[split][key][i] for i in idxs] self.data[split][key] = temp temp = [self.masks[split][key][i] for i in idxs] self.masks[split][key] = temp def make_attention_mask(sequences): return (sequences != 0).float().to(cfg.device) def make_loss_mask(sequences, max_event): # print(sequences.size()) mask = (sequences != 0).float() mask[:, :max_event] = 0 return mask[:, 1:].to(cfg.device) def get_generation_sequences(data, split, text_encoder, test, max_e1=10, max_e2=15): sequences = [] count = 0 final_event1 = None final_event2 = None final_relation = None discarded = [] for event1, relation, event2, _ in tqdm(data[split]["total"]): e1, r, e2 = do_example(text_encoder, event1, relation, event2) if (split == "train" and len(e1) > max_e1 or len(e2) > max_e2): discarded.append(count) count += 1 continue final = compile_final_sequence( e1, e2, r, text_encoder) sequences.append(final) count += 1 if count > 10 and test: break return sequences, discarded def do_example(text_encoder, event1, relation, event2): final_event1 = text_encoder.encode([event1], verbose=False)[0] if relation.lower() != relation: final_relation = [text_encoder.encoder[relation]] else: final_relation = text_encoder.encode( [relation], verbose=False)[0] if event2 is not None: final_event2 = text_encoder.encode([event2], verbose=False)[0] else: final_event2 = None return final_event1, final_relation, final_event2 def compile_final_sequence(final_event1, final_event2, final_relation, text_encoder): final = [] final.append(final_event1) final.append(final_relation) final.append(final_event2) final[-1].append(text_encoder.encoder["<END>"]) return final
comet-public-master
comet/data/conceptnet.py
comet-public-master
comet/data/__init__.py
import re import ftfy import json import spacy import torch from tqdm import tqdm def load_existing_data_loader(data_loader, path): old_data_loader = torch.load(path) for attr in data_loader.__dict__.keys(): if attr not in old_data_loader.__dict__.keys(): continue setattr(data_loader, attr, getattr(old_data_loader, attr)) ################################################################################ # # Code Below taken from HuggingFace pytorch-openai-lm repository # ################################################################################ def get_pairs(word): """ Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length strings) """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def text_standardize(text): """ fixes some issues the spacy tokenizer had on books corpus also does some whitespace standardization """ text = text.replace('—', '-') text = text.replace('–', '-') text = text.replace('―', '-') text = text.replace('…', '...') text = text.replace('´', "'") text = re.sub(r'''(-+|~+|!+|"+|;+|\?+|\++|,+|\)+|\(+|\\+|\/+|\*+|\[+|\]+|}+|{+|\|+|_+)''', r' \1 ', text) text = re.sub(r'\s*\n\s*', ' \n ', text) text = re.sub(r'[^\S\n]+', ' ', text) return text.strip() class TextEncoder(object): """ mostly a wrapper for a public python bpe tokenizer """ def __init__(self, encoder_path, bpe_path): self.nlp = spacy.load( 'en', disable=['parser', 'tagger', 'ner', 'textcat']) self.encoder = json.load(open(encoder_path)) self.decoder = {v: k for k, v in self.encoder.items()} merges = open(bpe_path, encoding='utf-8').read().split('\n')[1:-1] merges = [tuple(merge.split()) for merge in merges] self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {} def bpe(self, token): word = tuple(token[:-1]) + (token[-1] + '</w>',) if token in self.cache: return self.cache[token] pairs = get_pairs(word) if not pairs: return token+'</w>' while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get( pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if (word[i] == first and i < len(word) - 1 and word[i+1] == second): new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) if word == '\n </w>': word = '\n</w>' self.cache[token] = word return word def encode(self, texts, verbose=True): texts_tokens = [] if verbose: for text in tqdm(texts, ncols=80, leave=False): text = self.nlp(text_standardize(ftfy.fix_text(text))) text_tokens = [] for token in text: text_tokens.extend( [self.encoder.get(t, 0) for t in self.bpe(token.text.lower()).split(' ')]) texts_tokens.append(text_tokens) else: for text in texts: text = self.nlp(text_standardize(ftfy.fix_text(text))) text_tokens = [] for token in text: text_tokens.extend( [self.encoder.get(t, 0) for t in self.bpe(token.text.lower()).split(' ')]) texts_tokens.append(text_tokens) return texts_tokens
comet-public-master
comet/data/utils.py
import comet.utils as utils import comet.data.utils as data_utils import comet.data.config as cfg import pandas import json import random import math import torch from tqdm import tqdm all_categories = ["oEffect", "oReact", "oWant", "xAttr", "xEffect", "xIntent", "xNeed", "xReact", "xWant"] def map_name(name): if name == "train": return "trn" elif name == "test": return "tst" else: return "dev" class DataLoader(object): def __init__(self, opt): self.data = {} self.data["train"] = {} self.data["dev"] = {} self.data["test"] = {} self.sequences = {} self.sequences["train"] = {} self.sequences["dev"] = {} self.sequences["test"] = {} self.masks = {} self.masks["train"] = {} self.masks["dev"] = {} self.masks["test"] = {} self.offsets = {} self.offsets["train"] = {} self.offsets["dev"] = {} self.offsets["test"] = {} def offset_summary(self, split): return self.offsets[split]["total"] def do_take_partial_dataset(data_opts): if data_opts.get("kr", None) is None: return False if data_opts.kr == 1: return False return True def select_partial_dataset(data_opts, data): num_selections = math.ceil(data_opts.kr * len(data)) return random.sample(data, num_selections) class GenerationDataLoader(DataLoader): def __init__(self, opt, categories): super(GenerationDataLoader, self).__init__(opt) self.categories = categories self.opt = opt for split in self.data: self.data[split] = {"total": []} self.offsets[split] = {"total": 0} self.vocab_encoder = None self.vocab_decoder = None self.special_chars = None self.max_event = None self.max_effect = None def load_data(self, path): if ".pickle" in path: print("Loading data from: {}".format(path)) data_utils.load_existing_data_loader(self, path) return True for split in self.data: file_name = "v4_atomic_{}.csv".format(map_name(split)) df = pandas.read_csv("{}/{}".format(path, file_name), index_col=0) df.iloc[:, :9] = df.iloc[:, :9].apply( lambda col: col.apply(json.loads)) for cat in self.categories: attr = df[cat] self.data[split]["total"] += utils.zipped_flatten(zip( attr.index, ["<{}>".format(cat)] * len(attr), attr.values)) if do_take_partial_dataset(self.opt.data): self.data["train"]["total"] = select_partial_dataset( self.opt.data, self.data["train"]["total"]) return False def make_tensors(self, text_encoder, special, splits=["train", "dev", "test"], test=False): self.vocab_encoder = text_encoder.encoder self.vocab_decoder = text_encoder.decoder self.special_chars = special sequences = {} for split in splits: sequences[split] = get_generation_sequences( self.opt, self.data, split, text_encoder, test) self.masks[split]["total"] = [(len(i[0]), len(i[1])) for i in sequences[split]] self.max_event = max([max([l[0] for l in self.masks[split]["total"]]) for split in self.masks]) self.max_effect = max([max([l[1] for l in self.masks[split]["total"]]) for split in self.masks]) print(self.max_event) print(self.max_effect) for split in splits: num_elements = len(sequences[split]) self.sequences[split]["total"] = torch.LongTensor( num_elements, self.max_event + self.max_effect).fill_(0) for i, seq in enumerate(sequences[split]): # print(self.sequences[split]["total"][i, :len(seq[0])].size()) # print(torch.FloatTensor(seq[0]).size()) self.sequences[split]["total"][i, :len(seq[0])] = \ torch.LongTensor(seq[0]) self.sequences[split]["total"][i, self.max_event:self.max_event + len(seq[1])] = \ torch.LongTensor(seq[1]) def sample_batch(self, split, bs, idxs=None): offset = self.offsets[split]["total"] batch = {} # Decided not to reduce computation on here because it's all parallel # anyway and we don't want to run out of memory in cases where we # don't see the longest version quickly enough if idxs: seqs = self.sequences[split]["total"].index_select( 0, torch.LongTensor(idxs).to( self.sequences[split]["total"].device)) else: seqs = self.sequences[split]["total"][offset:offset + bs] batch["sequences"] = seqs.to(cfg.device) batch["attention_mask"] = make_attention_mask(seqs) batch["loss_mask"] = make_loss_mask( seqs, self.max_event, 1) batch["key"] = ("total", offset, offset + bs) offset += seqs.size(0) self.offsets[split]["total"] = offset if split == "train" and offset + bs > len(self.sequences[split]["total"]): return batch, True elif offset >= len(self.sequences[split]["total"]): return batch, True else: return batch, False def reset_offsets(self, splits=["train", "test", "dev"], shuffle=True, keys=None): if isinstance(splits, str): splits = [splits] for split in splits: if keys is None: keys = ["total"] for key in keys: self.offsets[split][key] = 0 if shuffle: self.shuffle_sequences(split, keys) def shuffle_sequences(self, split="train", keys=None): if keys is None: # print(type(self.data)) # print(type(self.data.keys())) keys = self.data[split].keys() for key in keys: idxs = list(range(len(self.data[split][key]))) random.shuffle(idxs) self.sequences[split][key] = \ self.sequences[split][key].index_select( 0, torch.LongTensor(idxs)) temp = [self.data[split][key][i] for i in idxs] self.data[split][key] = temp temp = [self.masks[split][key][i] for i in idxs] self.masks[split][key] = temp def prune_data_for_evaluation(data_loader, categories, split): indices = [] for i, example in enumerate(data_loader.data[split]["total"]): if example[1] in categories: indices.append(i) data_loader.masks[split]["total"] = [data_loader.masks[split]["total"][i] for i in indices] data_loader.sequences[split]["total"] = \ data_loader.sequences[split]["total"].index_select( 0, torch.LongTensor(indices)) data_loader.data[split]["total"] = [data_loader.data[split]["total"][i] for i in indices] def make_attention_mask(sequences): return (sequences != 0).float().to(cfg.device) def make_loss_mask(sequences, max_event, num_delim_tokens): # print(num_delim_tokens) # print(sequences.size()) mask = (sequences != 0).float() mask[:, :max_event + num_delim_tokens] = 0 return mask[:, 1:].to(cfg.device) def find_underscore_length(seq): start = "_" while start in seq: start += "_" return start[:-1] def handle_underscores(suffix, text_encoder, prefix=False): encoder = text_encoder.encoder if prefix: tok = "___" else: tok = find_underscore_length(suffix) suffix_parts = [i.strip() for i in suffix.split("{}".format(tok))] to_flatten = [] for i, part in enumerate(suffix_parts): if part: to_flatten.append(text_encoder.encode([part], verbose=False)[0]) if i != len(suffix_parts) - 1 and suffix_parts[i+1]: to_flatten.append([encoder["<blank>"]]) else: to_flatten.append([encoder["<blank>"]]) final_suffix = utils.flatten(to_flatten) return final_suffix def get_generation_sequences(opt, data, split, text_encoder, test): sequences = [] count = 0 final_prefix = None final_suffix = None for prefix, category, suffix in tqdm(data[split]["total"]): final_prefix, final_suffix = do_example( text_encoder, prefix, suffix, True, True) # if do_prefix: # if "___" in prefix: # final_prefix = handle_underscores(prefix, text_encoder, True) # else: # final_prefix = text_encoder.encode([prefix], verbose=False)[0] # if do_suffix: # if "_" in suffix: # final_suffix = handle_underscores(suffix, text_encoder) # else: # final_suffix = text_encoder.encode([suffix], verbose=False)[0] final = compile_final_sequence( opt, final_prefix, final_suffix, category, text_encoder) sequences.append(final) count += 1 if count > 10 and test: break return sequences def do_example(text_encoder, prefix, suffix, do_prefix, do_suffix): final_prefix = None final_suffix = None if do_prefix: if "___" in prefix: final_prefix = handle_underscores(prefix, text_encoder, True) else: final_prefix = text_encoder.encode([prefix], verbose=False)[0] if do_suffix: if "_" in suffix: final_suffix = handle_underscores(suffix, text_encoder) else: final_suffix = text_encoder.encode([suffix], verbose=False)[0] return final_prefix, final_suffix def compile_final_sequence(opt, final_prefix, final_suffix, category, text_encoder): final = [] final.append(final_prefix) final.append( [text_encoder.encoder[category]] + final_suffix) final[-1].append(text_encoder.encoder["<END>"]) return final num_delimiter_tokens = { "category": 1, "hierarchy": 3, "hierarchy+label": 4, "category+hierarchy": 4, "category+hierarchy+label": 5 }
comet-public-master
comet/data/atomic.py
import os import comet.data.atomic as atomic_data import comet.data.conceptnet as conceptnet_data import comet.data.config as cfg import comet.utils as utils import pickle import torch import json start_token = "<START>" end_token = "<END>" blank_token = "<blank>" def save_checkpoint(state, filename): print("Saving model to {}".format(filename)) torch.save(state, filename) def save_step(model, vocab, optimizer, opt, length, lrs): if cfg.test_save: name = "{}.pickle".format(utils.make_name( opt, prefix="garbage/models/", is_dir=False, eval_=True)) else: name = "{}.pickle".format(utils.make_name( opt, prefix="models/", is_dir=False, eval_=True)) save_checkpoint({ "epoch": length, "state_dict": model.state_dict(), "optimizer": optimizer.state_dict(), "opt": opt, "vocab": vocab, "epoch_learning_rates": lrs}, name) def save_eval_file(opt, stats, eval_type="losses", split="dev", ext="pickle"): if cfg.test_save: name = "{}/{}.{}".format(utils.make_name( opt, prefix="garbage/{}/".format(eval_type), is_dir=True, eval_=True), split, ext) else: name = "{}/{}.{}".format(utils.make_name( opt, prefix="results/{}/".format(eval_type), is_dir=True, eval_=True), split, ext) print("Saving {} {} to {}".format(split, eval_type, name)) if ext == "pickle": with open(name, "wb") as f: pickle.dump(stats, f) elif ext == "txt": with open(name, "w") as f: f.write(stats) elif ext == "json": with open(name, "w") as f: json.dump(stats, f) else: raise def load_checkpoint(filename, gpu=True): if os.path.exists(filename): checkpoint = torch.load( filename, map_location=lambda storage, loc: storage) else: print("No model found at {}".format(filename)) return checkpoint def make_data_loader(opt, *args): if opt.dataset == "atomic": return atomic_data.GenerationDataLoader(opt, *args) elif opt.dataset == "conceptnet": return conceptnet_data.GenerationDataLoader(opt, *args) def set_max_sizes(data_loader, force_split=None): data_loader.total_size = {} if force_split is not None: data_loader.total_size[force_split] = \ data_loader.sequences[force_split]["total"].size(0) return for split in data_loader.sequences: data_loader.total_size[split] = \ data_loader.sequences[split]["total"].size(0)
comet-public-master
comet/data/data.py
__version__ = "0.0.1a"
allentune-master
__init__.py
""" Simple check list from AllenNLP repo: https://github.com/allenai/allennlp/blob/master/setup.py To create the package for pypi. 1. Change the version in __init__.py and setup.py. 2. Commit these changes with the message: "Release: VERSION" 3. Add a tag in git to mark the release: "git tag VERSION -m'Adds tag VERSION for pypi' " Push the tag to git: git push --tags origin master 4. Build both the sources and the wheel. Do not change anything in setup.py between creating the wheel and the source distribution (obviously). For the wheel, run: "python setup.py bdist_wheel" in the top level allennlp directory. (this will build a wheel for the python version you use to build it - make sure you use python 3.x). For the sources, run: "python setup.py sdist" You should now have a /dist directory with both .whl and .tar.gz source versions of allennlp. 5. Check that everything looks correct by uploading the package to the pypi test server: twine upload dist/* -r pypitest (pypi suggest using twine as other methods upload files via plaintext.) Check that you can install it in a virtualenv by running: pip install -i https://testpypi.python.org/pypi allennlp 6. Upload the final version to actual pypi: twine upload dist/* -r pypi 7. Copy the release notes from RELEASE.md to the tag in github once everything is looking hunky-dory. """ from setuptools import find_packages, setup setup( name="allentune", version="0.0.1a", author="Suchin Gururangan", author_email="[email protected]", description="Hyperparameter tuning for AllenNLP", long_description=open("README.md", "r", encoding="utf-8").read(), long_description_content_type="text/markdown", keywords="NLP hyperparameter tuning", license="Apache", url="https://github.com/kernelmachine/allentune", packages=find_packages(exclude=["*.tests", "*.tests.*", "tests.*", "tests"]), install_requires=["ray==0.8.6", "allennlp==1.0.0", "tabulate", "seaborn", "pandas", "pytest", "pytest-cov"], entry_points={"console_scripts": ["allentune=allentune.__main__:main"]}, python_requires=">=3.6.0", tests_require=["pytest"], classifiers=[ "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], )
allentune-master
setup.py
allentune-master
allentune/__init__.py
#!/usr/bin/env python import logging import os import sys if os.environ.get("ALLENTUNE_DEBUG"): LEVEL = logging.DEBUG else: LEVEL = logging.INFO sys.path.insert(0, os.path.dirname(os.path.abspath(os.path.join(__file__, os.pardir)))) logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', level=LEVEL) from allentune.commands import main # pylint: disable=wrong-import-position def run(): main(prog="allentune") if __name__ == "__main__": run()
allentune-master
allentune/__main__.py
allentune-master
allentune/util/__init__.py
import logging import os from typing import Any, Dict, List, Union import numpy as np import ray # Create a custom logger logger = logging.getLogger(__name__) class RandomSearch: @staticmethod def random_choice(args: List[Any], n: int = 1): """ pick a random element from a set. Example: >> sampler = RandomSearch.random_choice(1,2,3) >> sampler() 2 """ choices = [] for arg in args: choices.append(arg) if n == 1: return lambda: np.random.choice(choices, replace=False) else: return lambda: np.random.choice(choices, n, replace=False) @staticmethod def random_integer(low: Union[int, float], high: Union[int, float]): """ pick a random integer between two bounds Example: >> sampler = RandomSearch.random_integer(1, 10) >> sampler() 9 """ return lambda: int(np.random.randint(low, high)) @staticmethod def random_loguniform(low: Union[float, int], high: Union[float, int]): """ pick a random float between two bounds, using loguniform distribution Example: >> sampler = RandomSearch.random_loguniform(1e-5, 1e-2) >> sampler() 0.0004 """ return lambda: np.exp(np.random.uniform(np.log(low), np.log(high))) @staticmethod def random_uniform(low: Union[float, int], high: Union[float, int]): """ pick a random float between two bounds, using uniform distribution Example: >> sampler = RandomSearch.random_uniform(0, 1) >> sampler() 0.01 """ return lambda: np.random.uniform(low, high) class HyperparameterSearch: def __init__(self, **kwargs): self.search_space = {} self.lambda_ = lambda: 0 for key, val in kwargs.items(): self.search_space[key] = val def parse(self, val: Any): if isinstance(val, type(lambda x: x)): val = val() if isinstance(val, (int, np.int)): return int(val) elif isinstance(val, (float, np.float)): return val elif isinstance(val, (np.ndarray, list)): return " ".join(val) else: return val elif isinstance(val, (int, np.int)): return int(val) elif isinstance(val, (float, np.float)): return val elif isinstance(val, (np.ndarray, list)): return " ".join(val) elif val is None: return None else: return val def sample(self) -> Dict: res = {} for key, val in self.search_space.items(): try: res[key] = self.parse(val) except TypeError as error: logger.error(f"Could not parse key {key} with value {val}. {error}") return res def update_environment(self, sample) -> None: for key, val in sample.items(): os.environ[key] = str(val)
allentune-master
allentune/util/random_search.py
from allentune.runners.runner import Runner from allentune.runners.allennlp_runner import AllenNlpRunner
allentune-master
allentune/runners/__init__.py
import argparse import glob import json import logging import os import re import sys from collections import ChainMap from typing import Optional import pandas as pd from allentune.commands.subcommand import Subcommand logger = logging.getLogger(__name__) class Merge(Subcommand): def add_subparser(self, name: str, parser: argparse._SubParsersAction) -> argparse.ArgumentParser: subparser = parser.add_parser( name, description="generate report from experiment", help='Generate a report from hyperparameter search experiments.') subparser.add_argument( "--input-files", nargs="+", type=str, required=True, ) subparser.add_argument( '--output-file', type=str, required=True, ) subparser.set_defaults(func=merge_reports) return subparser def merge_reports(args: argparse.Namespace): dfs = [] for file in args.input_files: dfs.append(pd.read_json(file, lines=True)) master = pd.concat(dfs, 0) try: os.makedirs(os.path.dirname(args.output_file)) except FileExistsError: logger.error(f"{args.output_file} already exists, aborting.") master.to_json(args.output_file, lines=True, orient='records') logger.info(f"Merged files in {args.output_file}.")
allentune-master
allentune/commands/merge.py
import argparse import datetime import glob import json import os from collections import ChainMap from typing import Dict, List, Optional, Tuple import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy import seaborn as sns from matplotlib.ticker import ScalarFormatter from allentune.commands.subcommand import Subcommand sns.set_style("white") class Plot(Subcommand): def add_subparser(self, name: str, parser: argparse._SubParsersAction) -> argparse.ArgumentParser: subparser = parser.add_parser( name, description="generate report from experiment", help='Plot expected validation accuracy curves.') subparser.add_argument( "--result-file", type=str, required=True ) subparser.add_argument( "--output-file", type=str, required=True ) subparser.add_argument( "--linestyle", type=str, required=False, default="-" ) subparser.add_argument( "--logx", action="store_true" ) subparser.add_argument( "--duration-field", type=str, required=False, default="training_duration" ) subparser.add_argument( "--performance-metric-field", type=str, required=False, default="best_validation_accuracy" ) subparser.add_argument( "--model-field", type=str, required=False, default="model" ) subparser.add_argument( "--plot-errorbar", action="store_true" ) subparser.add_argument( "--show-xticks", action="store_true" ) subparser.add_argument( "--legend-location", type=str, required=False, default="lower right" ) subparser.add_argument( "--x-axis-time", action="store_true" ) subparser.add_argument( "--linewidth", type=int, required=False, default=3 ) subparser.add_argument( "--relabel-logx-scalar", type=list, required=False, default=None ) subparser.add_argument( "--x-axis-rot", type=float, required=False, default=0.0 ) subparser.add_argument( "--data-name", type=str, required=True, ) subparser.add_argument( '--performance-metric', required=False, type=str, default="accuracy" ) subparser.add_argument( "--fontsize", type=int, required=False, default=24 ) subparser.add_argument( "--subplots", nargs=2, type=int, required=True ) subparser.add_argument( "--figsize", nargs=2, type=int, required=True ) subparser.set_defaults(func=plotter) return subparser def _cdf_with_replacement(i,n,N): return (i/N)**n def _cdf_without_replacement(i,n,N): return scipy.special.comb(i,n) / scipy.special.comb(N,n) def _compute_variance(N, cur_data, expected_max_cond_n, pdfs): """ this computes the standard error of the max. this is what the std dev of the bootstrap estimates of the mean of the max converges to, as is stated in the last sentence of the summary on page 10 of http://www.stat.cmu.edu/~larry/=stat705/Lecture13.pdf uses equation """ variance_of_max_cond_n = [] for n in range(N): # for a given n, estimate variance with \sum(p(x) * (x-mu)^2), where mu is \sum(p(x) * x). cur_var = 0 for i in range(N): cur_var += (cur_data[i] - expected_max_cond_n[n])**2 * pdfs[n][i] cur_var = np.sqrt(cur_var) variance_of_max_cond_n.append(cur_var) return variance_of_max_cond_n # this implementation assumes sampling with replacement for computing the empirical cdf def samplemax(validation_performance, with_replacement=True): validation_performance = list(validation_performance) validation_performance.sort() N = len(validation_performance) pdfs = [] for n in range(1,N+1): # the CDF of the max F_Y_of_y = [] for i in range(1,N+1): if with_replacement: F_Y_of_y.append(_cdf_with_replacement(i,n,N)) else: F_Y_of_y.append(_cdf_without_replacement(i,n,N)) f_Y_of_y = [] cur_cdf_val = 0 for i in range(len(F_Y_of_y)): f_Y_of_y.append(F_Y_of_y[i] - cur_cdf_val) cur_cdf_val = F_Y_of_y[i] pdfs.append(f_Y_of_y) expected_max_cond_n = [] for n in range(N): # for a given n, estimate expected value with \sum(x * p(x)), where p(x) is prob x is max. cur_expected = 0 for i in range(N): cur_expected += validation_performance[i] * pdfs[n][i] expected_max_cond_n.append(cur_expected) var_of_max_cond_n = _compute_variance(N, validation_performance, expected_max_cond_n, pdfs) return {"mean":expected_max_cond_n, "var":var_of_max_cond_n, "max": np.max(validation_performance)} def td_format(td_object): seconds = int(td_object.total_seconds()) periods = [ ('yr', 60*60*24*365), ('mo', 60*60*24*30), ('d', 60*60*24), ('h', 60*60), ('min', 60), ('sec', 1) ] strings=[] for period_name, period_seconds in periods: if seconds > period_seconds: period_value , seconds = divmod(seconds, period_seconds) has_s = 's' if period_value > 1 and period_name not in ['min', 'sec', 'd', 'h'] else '' strings.append("%s%s%s" % (period_value, period_name, has_s)) res = ", ".join(strings) if res == '60min': res = '1h' elif res == '24h': res = '1d' elif res == '30d': res = '1mo' return res def _one_plot( data: pd.DataFrame, avg_time: pd.DataFrame, data_size: int, cur_ax: matplotlib.axis, data_name: str = "SST5", linestyle: str = "-", linewidth: int = 3, logx: bool = False, plot_errorbar: bool = False, errorbar_kind: str = 'shade', errorbar_alpha: float = 0.1, x_axis_time: bool = False, legend_location: str = 'lower right', relabel_logx_scalar: List[int] = None, rename_labels: Dict[str, str] = None, reported_accuracy: List[float] = None, encoder_name: str = None, show_xticks: bool = False, fontsize: int = 16, xlim: List[int] = None, model_order: List[str] = None, performance_metric: str = "accuracy", x_axis_rot: int = 0, line_colors: List[str] = ["#8c564b", '#1f77b4', '#ff7f0e', '#17becf'], errorbar_colors: List[str] = ['#B22222', "#089FFF", "#228B22"]): cur_ax.set_title(data_name, fontsize=fontsize) if model_order: models = model_order else: models = data.index.levels[0].tolist() models.sort() max_first_point = 0 cur_ax.set_ylabel("Expected validation " + performance_metric, fontsize=fontsize) if x_axis_time: cur_ax.set_xlabel("Training duration",fontsize=fontsize) else: cur_ax.set_xlabel("Hyperparameter assignments",fontsize=fontsize) if logx: cur_ax.set_xscale('log') for ix, model in enumerate(models): means = data[model]['mean'] vars = data[model]['var'] max_acc = data[model]['max'] if x_axis_time: x_axis = [avg_time[model] * (i+1) for i in range(len(means))] else: x_axis = [i+1 for i in range(len(means))] if rename_labels: model_name = rename_labels.get(model, model) else: model_name = model if reported_accuracy: cur_ax.plot([0, 6.912e+6], [reported_accuracy[model], reported_accuracy[model]], linestyle='--', linewidth=linewidth, color=line_colors[ix]) plt.text(6.912e+6-3600000, reported_accuracy[model] + 0.01, f'reported {model_name} {performance_metric}', ha='right', style='italic', fontsize=fontsize-5, color=line_colors[ix]) if encoder_name: model_name = encoder_name + " " + model_name if plot_errorbar: if errorbar_kind == 'shade': minus_vars = np.array(means)-np.array(vars) plus_vars = [x + y if (x + y) <= max_acc else max_acc for x,y in zip(means, vars)] plt.fill_between(x_axis, minus_vars, plus_vars, alpha=errorbar_alpha, facecolor=errorbar_colors[ix]) else: line = cur_ax.errorbar(x_axis, means, yerr=vars, label=model_name, linestyle=linestyle, linewidth=linewidth, color=line_colors[ix]) line = cur_ax.plot(x_axis, means, label=model_name, linestyle=linestyle, linewidth=linewidth, color=line_colors[ix]) left, right = cur_ax.get_xlim() if xlim: cur_ax.set_xlim(xlim) # cur_ax.xaxis.set_ticks(np.arange(xlim[0], xlim[1]+5, 10)) for tick in cur_ax.xaxis.get_major_ticks(): tick.label.set_fontsize(fontsize) for tick in cur_ax.yaxis.get_major_ticks(): tick.label.set_fontsize(fontsize) plt.locator_params(axis='y', nbins=10) if relabel_logx_scalar: for axis in [cur_ax.xaxis]: axis.set_ticks(relabel_logx_scalar) axis.set_major_formatter(ScalarFormatter()) plt.xticks(rotation=x_axis_rot) if show_xticks: cur_ax.tick_params(which="both", bottom=True) if x_axis_time: def timeTicks(x, pos): d = datetime.timedelta(seconds=float(x)) d = td_format(d) return str(d) formatter = matplotlib.ticker.FuncFormatter(timeTicks) cur_ax.xaxis.set_major_formatter(formatter) cur_ax.legend(loc=legend_location, fontsize=fontsize) plt.tight_layout() def plotter(args: argparse.Namespace): config = vars(args) subplots = tuple(config.pop("subplots")) figsize = tuple(config.pop("figsize")) _ = config.pop('func') expected_max_performance_data = {} average_times = {} output_file = config.pop("output_file") config = {config.pop("result_file"): config} f, axes = plt.subplots(subplots[0], subplots[1], figsize=figsize) if subplots != (1, 1): axes_iter = zip(config.items(), np.ndenumerate(axes)) else: axes_iter = zip(config.items(), enumerate([axes])) for ((data_file, _), (index, _)) in axes_iter: duration_field = config[data_file].pop('duration_field') model_field = config[data_file].pop('model_field') performance_metric_field = config[data_file].pop('performance_metric_field') master = pd.read_json(data_file, lines=True) data_sizes = [10000] for data_size in data_sizes: df = master avg_time = df.groupby(model_field)[duration_field].mean() sample_maxes = df.groupby(model_field)[performance_metric_field].apply(samplemax) expected_max_performance_data[data_file] = {data_size: sample_maxes} average_times[data_file] = {data_size: avg_time} if subplots == (1,1): axis = axes elif subplots[1] > 1: axis = axes[index[0], index[1]] else: axis = axes[index[0]] _one_plot(sample_maxes, avg_time, data_size, axis, **config[data_file]) print("saving to {}".format(output_file)) plt.savefig(output_file, dpi=300)
allentune-master
allentune/commands/plot.py
from typing import Dict import argparse import logging from overrides import overrides from allennlp.commands.subcommand import Subcommand from allentune.commands.report import Report from allentune.commands.search import Search from allentune.commands.plot import Plot logger = logging.getLogger(__name__) # pylint: disable=invalid-name class ArgumentParserWithDefaults(argparse.ArgumentParser): """ Custom argument parser that will display the default value for an argument in the help message. """ _action_defaults_to_ignore = {"help", "store_true", "store_false", "store_const"} @staticmethod def _is_empty_default(default): if default is None: return True if isinstance(default, (str, list, tuple, set)): return not bool(default) return False @overrides def add_argument(self, *args, **kwargs): # pylint: disable=arguments-differ # Add default value to the help message when the default is meaningful. default = kwargs.get("default") if kwargs.get("action") not in self._action_defaults_to_ignore and not self._is_empty_default(default): description = kwargs.get("help") or "" kwargs["help"] = f"{description} (default = {default})" super().add_argument(*args, **kwargs) def main(prog: str = None) -> None: """ The :mod:`~allennlp.run` command only knows about the registered classes in the ``allennlp`` codebase. In particular, once you start creating your own ``Model`` s and so forth, it won't work for them, unless you use the ``--include-package`` flag. """ # pylint: disable=dangerous-default-value parser = ArgumentParserWithDefaults(description="Run AllenTune", usage='%(prog)s', prog=prog) subparsers = parser.add_subparsers(title='Commands', metavar='') subcommands = { # Default commands "search": Search(), "report": Report(), "plot": Plot() } for name, subcommand in subcommands.items(): subparser = subcommand.add_subparser(name, subparsers) args = parser.parse_args() # If a subparser is triggered, it adds its work as `args.func`. # So if no such attribute has been added, no subparser was triggered, # so give the user some help. if 'func' in dir(args): args.func(args) else: parser.print_help()
allentune-master
allentune/commands/__init__.py
#!/usr/bin/env python import sys import logging import os import argparse from allentune.modules import AllenNlpRunner from allentune.modules import RayExecutor from allentune.commands.subcommand import Subcommand if os.environ.get("ALLENTUNE_DEBUG"): LEVEL = logging.DEBUG else: LEVEL = logging.INFO logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", level=LEVEL ) class Search(Subcommand): def add_subparser(self, name: str, parser: argparse._SubParsersAction) -> argparse.ArgumentParser: subparser = parser.add_parser( name, description="search with RayTune", help='Perform hyperparameter search') subparser.add_argument( "--experiment-name", type=str, required=True, help="a name for the experiment", ) subparser.add_argument( "--num-cpus", type=int, default=1, help="number of CPUs available to the experiment", ) subparser.add_argument( "--num-gpus", type=int, default=1, help="number of GPUs available to the experiment", ) subparser.add_argument( "--cpus-per-trial", type=int, default=1, help="number of CPUs dedicated to a single trial", ) subparser.add_argument( "--gpus-per-trial", type=int, default=1, help="number of GPUs dedicated to a single trial", ) subparser.add_argument( "--log-dir", type=str, default="./logs", help="directory in which to store trial logs and results", ) subparser.add_argument( "--with-server", action="store_true", default=False, help="start the Ray server", ) subparser.add_argument( "--server-port", type=int, default=10000, help="port for Ray server to listens on", ) subparser.add_argument( "--search-strategy", type=str, default="variant-generation", help="hyperparameter search strategy used by Ray-Tune", ) subparser.add_argument( "--search-space", "-e", type=os.path.abspath, required=True, help="name of dict describing the hyperparameter search space", ) subparser.add_argument( "--num-samples", type=int, default=1, help="Number of times to sample from the hyperparameter space. " + "If grid_search is provided as an argument, the grid will be " + "repeated num_samples of times.", ) subparser.add_argument( "--base-config", dest='base_config', required=True, type=os.path.abspath, help="path to parameter file describing the model to be trained", ) subparser.add_argument( "--include-package", type=str, action="append", default=[], help="additional packages to include", ) subparser.add_argument( "-o", "--overrides", type=str, default="", help="a JSON structure used to override the experiment configuration", ) subparser.set_defaults(func=search_from_args) return subparser def search_from_args(args: argparse.Namespace): runner = AllenNlpRunner() executor = RayExecutor(runner) executor.run(args)
allentune-master
allentune/commands/search.py
""" Base class for subcommands under ``allentune.run``. """ import argparse class Subcommand: """ An abstract class representing subcommands for allentune.run. If you wanted to (for example) create your own custom `special-evaluate` command to use like ``allentune special-evaluate ...`` you would create a ``Subcommand`` subclass and then pass it as an override to :func:`~allennlp.commands.main` . """ def add_subparser(self, name: str, parser: argparse._SubParsersAction) -> argparse.ArgumentParser: # pylint: disable=protected-access raise NotImplementedError
allentune-master
allentune/commands/subcommand.py
import argparse import glob import json import logging import os import re import sys from collections import ChainMap from typing import Optional import pandas as pd from tabulate import tabulate from allentune.commands.subcommand import Subcommand logger = logging.getLogger(__name__) class Report(Subcommand): def add_subparser(self, name: str, parser: argparse._SubParsersAction) -> argparse.ArgumentParser: subparser = parser.add_parser( name, description="generate report from experiment", help='Generate a report from hyperparameter search experiments.') subparser.add_argument( "--log-dir", required=True, ) subparser.add_argument( '--performance-metric', required=False, type=str ) subparser.add_argument( '--model', required=False, type=str ) subparser.set_defaults(func=generate_report) return subparser def generate_report(args: argparse.Namespace): experiment_dir = os.path.abspath(args.log_dir) dirs = glob.glob(experiment_dir + '/run_*/trial/') master = [] for dir in dirs: try: with open(os.path.join(dir, "metrics.json"), 'r') as metrics_file: metric = json.load(metrics_file) with open(os.path.join(dir, "config.json"), 'r') as config_file: config = json.load(config_file) with open(os.path.join(dir, "stdout.log"), 'r') as stdout_file: stdout = stdout_file.read() random_seed = re.search("random_seed = (\d+)", stdout) pytorch_seed = re.search("pytorch_seed = (\d+)", stdout) numpy_seed = re.search("numpy_seed = (\d+)", stdout) if random_seed: seeds = {"random_seed": random_seed.group(1), "pytorch_seed": pytorch_seed.group(1), "numpy_seed": numpy_seed.group(1)} else: seeds = {"random_seed": None, "pytorch_seed": None, "numpy_seed": None} directory = {"directory": dir} master.append((metric, config, seeds, directory)) except: continue master_dicts = [dict(ChainMap(*item)) for item in master] df = pd.json_normalize(master_dicts) try: df['training_duration'] = pd.to_timedelta(df['training_duration']).dt.total_seconds() except KeyError: logger.error(f"No finished experiments found in {args.log_dir}") sys.exit(0) if args.model: df['model'] = args.model output_file = os.path.join(experiment_dir, "results.jsonl") df.to_json(output_file, lines=True, orient='records') logger.info("results written to {}".format(output_file)) try: best_performance = df[args.performance_metric].max() median_performance = df[args.performance_metric].median() worst_performance = df[args.performance_metric].min() mean_performance = df[args.performance_metric].mean() std_performance = df[args.performance_metric].std() iqr_performance = df[args.performance_metric].quantile(0.75) - df[args.performance_metric].quantile(0.25) except KeyError: logger.error(f"No performance metric {args.performance_metric} found in results of {args.log_dir}") sys.exit(0) results = [ ["Model Name", args.model], ["Performance Metric", args.performance_metric], ['Total Experiments', f"{df.shape[0]}"], ["Best Performance", f"{best_performance}"], ["Min Performance", f"{median_performance} +- {iqr_performance}"], ["Mean +- STD Performance", f"{mean_performance} +- {std_performance}"], ["Median +- IQR Performance", f"{median_performance} +- {iqr_performance}"], ["Best Model Directory Path", f"{df.iloc[df[args.performance_metric].idxmax()]['directory']}"], ] logger.info('\n' + tabulate(results))
allentune-master
allentune/commands/report.py
import argparse import json import logging import os import random from typing import Any, Callable, Dict, Optional import numpy as np import ray from ray.tune import function, register_trainable, run_experiments, sample_from from ray.tune.function_runner import StatusReporter from allentune.modules.allennlp_runner import AllenNlpRunner from allentune.util.random_search import RandomSearch logger = logging.getLogger(__name__) # pylint: disable=invalid-name class RayExecutor(object): name = "Ray" def __init__(self, runner: AllenNlpRunner) -> None: self._runner = runner def parse_search_config(self, search_config: Dict) -> Dict: for hyperparameter, val in search_config.items(): if not isinstance(val, dict): ray_sampler = val elif val['sampling strategy'] == 'loguniform': low, high = val['bounds'][0], val['bounds'][1] ray_sampler = RandomSearch.random_loguniform(low, high) elif val['sampling strategy'] == 'integer': low, high = val['bounds'][0], val['bounds'][1] ray_sampler = RandomSearch.random_integer(low, high) elif val['sampling strategy'] == 'choice': ray_sampler = RandomSearch.random_choice(val['choices']) elif val['sampling strategy'] == 'uniform': low, high = val['bounds'][0], val['bounds'][1] ray_sampler = RandomSearch.random_uniform(low, high) else: raise KeyError(f"sampling strategy {val['sampling strategy']} does not exist") search_config[hyperparameter] = ray_sampler return search_config def run_distributed( self, run_func: Callable[[Dict[str, Any], StatusReporter], None], args: argparse.Namespace, ) -> None: logger.info( f"Init Ray with {args.num_cpus} CPUs " + f"and {args.num_gpus} GPUs." ) ray.init(num_cpus=args.num_cpus, num_gpus=args.num_gpus) run_func = self._runner.get_run_func(args) register_trainable("run", run_func) with open(args.search_space) as f: search_config = json.load(f) search_config = self.parse_search_config(search_config) experiments_config = { args.experiment_name: { "run": "run", "resources_per_trial": { "cpu": args.cpus_per_trial, "gpu": args.gpus_per_trial, }, "config": search_config, "local_dir": args.log_dir, "num_samples": args.num_samples, } } logger.info(f"Run Configuration: {experiments_config}") try: run_experiments( experiments=experiments_config, scheduler=None, with_server=args.with_server, server_port=args.server_port, ) except ray.tune.TuneError as e: logger.error( f"Error during run of experiment '{args.experiment_name}': {e}" ) def run(self, args: argparse.Namespace) -> None: setattr(args, "cwd", os.getcwd()) run_func = self._runner.get_run_func(args) self.run_distributed(run_func, args)
allentune-master
allentune/modules/ray_executor.py
from allentune.modules.allennlp_runner import AllenNlpRunner from allentune.modules.ray_executor import RayExecutor
allentune-master
allentune/modules/__init__.py
import argparse import glob import json import logging import os from collections import ChainMap from datetime import datetime from typing import Optional import pandas as pd import torch from allennlp.commands.train import train_model from allennlp.common.params import Params, parse_overrides, with_fallback from allennlp.common.util import import_module_and_submodules import _jsonnet from allentune.util.random_search import HyperparameterSearch logger = logging.getLogger(__name__) # pylint: disable=invalid-name class AllenNlpRunner(object): name = "AllenNLP" def get_run_func( self, args: argparse.Namespace, ): if args is None: raise ValueError("No run arguments found for AllenNLP runner.") with open(args.base_config, "r") as parameter_f: parameter_file_snippet = parameter_f.read() def train_func(config, reporter): logger.debug(f"CUDA_VISIBLE_DEVICES: {os.environ['CUDA_VISIBLE_DEVICES']}") for package_name in getattr(args, "include_package", ()): import_module_and_submodules(package_name) search_space = HyperparameterSearch(**config) sample = search_space.sample() for k, v in sample.items(): config[k] = str(v) params_dict = json.loads( _jsonnet.evaluate_snippet( "config", parameter_file_snippet, tla_codes={}, ext_vars=config ) ) if args.num_gpus == 0: logger.warning(f"No GPU specified, using CPU.") params_dict["trainer"]["cuda_device"] = -1 if args.cpus_per_trial > 0: torch.set_num_threads(args.cpus_per_trial) params = Params(params_dict) logger.debug(f"AllenNLP Configuration: {params.as_dict()}") train_model(params=params, serialization_dir="trial") reporter(done=True) return train_func
allentune-master
allentune/modules/allennlp_runner.py
from allentune.modules import AllenNlpRunner, RayExecutor import pytest import argparse import os import shutil import pathlib class TestExampleRun(object): def test_run(self): runner = AllenNlpRunner() executor = RayExecutor(runner) args = argparse.Namespace() PROJECT_ROOT = (pathlib.Path(__file__).parent / ".." / "..").resolve() # pylint: disable=no-member MODULE_ROOT = PROJECT_ROOT / "allentune" TESTS_ROOT = MODULE_ROOT / "tests" FIXTURES_ROOT = TESTS_ROOT / "fixtures" args.experiment_name = "test" args.num_cpus = 1 args.num_gpus = 0 args.cpus_per_trial = 1 args.gpus_per_trial = 0 args.base_config = FIXTURES_ROOT / "classifier.jsonnet" args.search_space = FIXTURES_ROOT / "search_space.json" args.log_dir = TESTS_ROOT / "logs" args.num_samples = 1 args.with_server = False args.server_port = 1000 args.search_strategy = "variant-generation" executor.run(args) assert os.path.isdir(TESTS_ROOT / "logs") shutil.rmtree(TESTS_ROOT / "logs/")
allentune-master
tests/test_example_run.py
from allentune.util.random_search import RandomSearch import pytest import numpy as np import string class TestRandomSearch(object): def test_random_choice(self): random_search = RandomSearch() items = range(100) sampler = random_search.random_choice(items) for _ in range(3): res = sampler() assert res in items def test_random_integer(self): random_search = RandomSearch() lower_bound = np.random.choice(range(100)) upper_bound = np.random.choice(range(100, 200)) sampler = random_search.random_integer(lower_bound, upper_bound) for _ in range(3): res = sampler() assert res >= lower_bound and res <= upper_bound def test_random_loguniform(self): random_search = RandomSearch() sampler = random_search.random_loguniform(1e-5, 1e-1) for _ in range(3): res = sampler() assert res >= 1e-5 and res <= 1e-1 def test_random_uniform(self): random_search = RandomSearch() sampler = random_search.random_uniform(0, 1) for _ in range(3): res = sampler() assert res >= 0 and res <= 1
allentune-master
tests/test_random_search.py
#!/usr/bin/env python # -*- coding: utf-8 -*- """Update encrypted deploy password in Travis config file """ import base64 import json import os from getpass import getpass import yaml from cryptography.hazmat.primitives.serialization import load_pem_public_key from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.asymmetric.padding import PKCS1v15 try: from urllib import urlopen except: from urllib.request import urlopen GITHUB_REPO = 'allenai/alexafsm' TRAVIS_CONFIG_FILE = os.path.join( os.path.dirname(os.path.abspath(__file__)), '.travis.yml') def load_key(pubkey): """Load public RSA key, with work-around for keys using incorrect header/footer format. Read more about RSA encryption with cryptography: https://cryptography.io/latest/hazmat/primitives/asymmetric/rsa/ """ try: return load_pem_public_key(pubkey.encode(), default_backend()) except ValueError: # workaround for https://github.com/travis-ci/travis-api/issues/196 pubkey = pubkey.replace('BEGIN RSA', 'BEGIN').replace('END RSA', 'END') return load_pem_public_key(pubkey.encode(), default_backend()) def encrypt(pubkey, password): """Encrypt password using given RSA public key and encode it with base64. The encrypted password can only be decrypted by someone with the private key (in this case, only Travis). """ key = load_key(pubkey) encrypted_password = key.encrypt(password, PKCS1v15()) return base64.b64encode(encrypted_password) def fetch_public_key(repo): """Download RSA public key Travis will use for this repo. Travis API docs: http://docs.travis-ci.com/api/#repository-keys """ keyurl = 'https://api.travis-ci.org/repos/{0}/key'.format(repo) data = json.loads(urlopen(keyurl).read().decode()) if 'key' not in data: errmsg = "Could not find public key for repo: {}.\n".format(repo) errmsg += "Have you already added your GitHub repo to Travis?" raise ValueError(errmsg) return data['key'] def prepend_line(filepath, line): """Rewrite a file adding a line to its beginning. """ with open(filepath) as f: lines = f.readlines() lines.insert(0, line) with open(filepath, 'w') as f: f.writelines(lines) def load_yaml_config(filepath): with open(filepath) as f: return yaml.load(f) def save_yaml_config(filepath, config): with open(filepath, 'w') as f: yaml.dump(config, f, default_flow_style=False) def update_travis_deploy_password(encrypted_password): """Update the deploy section of the .travis.yml file to use the given encrypted password. """ config = load_yaml_config(TRAVIS_CONFIG_FILE) config['deploy']['password'] = dict(secure=encrypted_password) save_yaml_config(TRAVIS_CONFIG_FILE, config) line = ('# This file was autogenerated and will overwrite' ' each time you run travis_pypi_setup.py\n') prepend_line(TRAVIS_CONFIG_FILE, line) def main(args): public_key = fetch_public_key(args.repo) password = args.password or getpass('PyPI password: ') update_travis_deploy_password(encrypt(public_key, password.encode())) print("Wrote encrypted password to .travis.yml -- you're ready to deploy") if '__main__' == __name__: import argparse parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('--repo', default=GITHUB_REPO, help='GitHub repo (default: %s)' % GITHUB_REPO) parser.add_argument('--password', help='PyPI password (will prompt if not provided)') args = parser.parse_args() main(args)
alexafsm-master
travis_pypi_setup.py
#!/usr/bin/env python # -*- coding: utf-8 -*- import os from setuptools import setup with open('HISTORY.md') as history_file: history = history_file.read() try: import pypandoc readme = pypandoc.convert('README.md', 'rst') except (IOError, ImportError): readme = '' requirements = [ 'transitions==0.5.0', 'voicelabs==0.0.10' ] test_requirements = [ 'elasticsearch==5.1.0', 'elasticsearch-dsl==5.1.0' ] setup( name='alexafsm', version='0.1.11', description="Finite-state machine library for building complex Alexa conversations", long_description=readme + '\n\n' + history, author="Allen AI", author_email='[email protected]', url='https://github.com/allenai/alexafsm', packages=[ 'alexafsm', ], package_dir={'alexafsm': 'alexafsm'}, include_package_data=True, install_requires=requirements, license="Apache Software License 2.0", zip_safe=False, keywords='alexafsm, alexa skill, finite-state machine, fsm, dialog, dialog state management', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Natural Language :: English', 'Programming Language :: Python :: 3.6', ], test_suite='tests', tests_require=test_requirements )
alexafsm-master
setup.py
import pytest import json from tests.skillsearch.policy import Policy from alexafsm.utils import validate, events_states_transitions, unused_events_states_transitions from alexafsm.test_helpers import get_requests_responses from tests.skillsearch.skill_settings import SkillSettings def test_validate_policy(): policy = Policy.initialize() validate(policy=policy, schema_file='./tests/skillsearch/speech/alexa-schema.json', ignore_intents={'DontUnderstand'}) policy_states = policy.machine.states policy_stop_states = \ policy.states.EXIT_ON_STOP_STATES + \ policy.states.CONTINUE_ON_STOP_STATES + \ policy.states.PROMPT_ON_STOP_STATES # "exiting" state does not need any outgoing transitions missing = set(policy_states) - set(policy_stop_states) - {'exiting'} assert not missing, f'Some states do not handle STOP/CANCEL intents: {missing}' def the_test_playback(measure_coverage: bool = False): """Play back recorded responses to check that the system is still behaving the same Change to test_playback to actually run this test once a recording is made.""" policy = Policy.initialize() SkillSettings().playback = True record_file = SkillSettings().get_record_file() for request, expected_response in get_requests_responses(record_file): actual_response = json.loads(json.dumps(policy.handle(request))) assert expected_response == actual_response if measure_coverage: policy = SkillSettings().get_policy() all_events, all_states, all_transitions = events_states_transitions(policy) unused_events, unused_states, unused_transitions = \ unused_events_states_transitions(policy, get_requests_responses(record_file)) print(f"Summary: " f"{len(unused_events)}/{len(all_events)} unused events, " f"{len(unused_states)}/{len(all_states)} unused states, " f"{len(unused_transitions)}/{len(all_transitions)} unused transitions ") print(f"Unused events: {unused_events}") print(f"Unused states: {unused_states}") print(f"Unused transitions: {unused_transitions}") if __name__ == '__main__': pytest.main([__file__])
alexafsm-master
tests/test_skillsearch.py
from collections import namedtuple from alexafsm.session_attributes import SessionAttributes as ISessionAttributes, INITIAL_STATE import alexafsm.make_json_serializable # NOQA Slots = namedtuple('Slots', ['love', 'money']) class SessionAttributes(ISessionAttributes): slots_cls = Slots not_sent_fields = ['intent'] request = { 'session': { 'attributes': { 'state': 'blissful', 'slots': ['loving', 'null'] }, }, 'request': { 'type': 'IntentRequest', 'intent': { 'name': 'Search', 'slots': { 'Love': { 'name': 'Love' }, 'Money': { 'name': 'Money', 'value': 'lots' } } } } } def test_none_request(): s = SessionAttributes.from_request(None) assert s.intent is None assert s.state == INITIAL_STATE assert s.slots == Slots(love=None, money=None) def test_request(): s = SessionAttributes.from_request(request) assert s.intent == 'Search' assert s.slots == Slots(love=None, money='lots') assert s.state == 'blissful' def test_json_to_alexa(): s = SessionAttributes.from_request(request) js = s.to_json() assert 'intent' not in js assert js['state'] == 'blissful' assert js['slots'] == Slots(love=None, money='lots') def test_json_to_alexa_and_back(): import json s = SessionAttributes.from_request(request) js = json.dumps(s) request2 = { 'request': {'intent': {'name': 'foo'}}, 'session': {'attributes': json.loads(js)} } s2 = SessionAttributes.from_request(request2) assert s2.intent == 'foo' assert s2.state == s.state assert s2.slots == Slots(love=None, money=None) # new request has no slots def test_empty_attributes(): import json empty_attrs_request = { 'session': { 'attributes': {}, }, 'request': { 'type': 'IntentRequest', 'intent': { 'name': 'Search', 'slots': { 'Love': { 'name': 'Love' }, 'Money': { 'name': 'Money', 'value': 'lots' } } } } } s = SessionAttributes.from_request(empty_attrs_request) js = json.dumps(s) request2 = { 'request': {'intent': {'name': 'foo'}}, 'session': {'attributes': json.loads(js)} } s2 = SessionAttributes.from_request(request2) assert s2.intent == 'foo' assert s2.state == s.state assert s2.slots == Slots(love=None, money=None) # new request has no slots
alexafsm-master
tests/test_session_attributes.py
# -*- coding: utf-8 -*-
alexafsm-master
tests/__init__.py
""" Representation of the Skill type in Elasticsearch """ from elasticsearch_dsl import DocType, Text, Keyword, Double, Integer INDEX = 'chat_prod' class Skill(DocType): """ Representation of a skill inside ES """ name = Text(fields={'raw': Keyword()}) creator = Keyword() category = Keyword() url = Text() description = Text() short_description = Text() avg_rating = Double() num_ratings = Integer() html = Text() usages = Text(fields={'raw': Keyword()}) image_url = Text() keyphrases = Text(fields={'raw': Keyword()}) class Meta: """ Metadata about where this data type resides """ index = INDEX @classmethod def set_index(cls, new_index: str): cls._doc_type.index = new_index @classmethod def get_index(cls): return cls._doc_type.index def to_json(self): """ Provide a JSON representation of this Skill """ doc = self.meta.to_dict() doc['_source'] = self.to_dict() return doc
alexafsm-master
tests/skillsearch/skill.py
""" Intent constants for this skill """ NEW_SEARCH = 'NewSearch' NTH_SKILL = 'NthSkill' PREVIOUS_SKILL = 'PreviousSkill' NEXT_SKILL = 'NextSkill' DESCRIBE_RATINGS = 'DescribeRatings'
alexafsm-master
tests/skillsearch/intent.py
"""This demonstrates a Flask server that uses alexafsm-based skill search""" import getopt import json import logging import sys from elasticsearch_dsl.connections import connections from flask import Flask, request as flask_request from livereload import Server from voicelabs.voicelabs import VoiceInsights from tests.skillsearch.policy import Policy from tests.skillsearch.skill_settings import SkillSettings app = Flask(__name__) logger = logging.getLogger(__name__) settings = SkillSettings() port = 8888 @app.route('/', methods=['POST']) def main(): req = flask_request.json policy = Policy.initialize() return json.dumps(policy.handle(req, settings.vi)).encode('utf-8') def _usage(): print(f"Usage: alexa-listener.py" f" -s --es-server <ES cluster address [your.es_server]>" f" -i --use-voice-insight <use-voice-insight? (y/[N])>") if __name__ == '__main__': try: opts, args = getopt.getopt(sys.argv[1:], "h:s:i", ["help", "es-server=", "use-voice-insight"]) except getopt.GetoptError: _usage() sys.exit(2) for opt, arg in opts: if opt in ('-h', '--help'): _usage() sys.exit() if opt in ('-s', '--es-server'): settings.es_server = arg if opt in ('-i', '--voice-insight'): print("Activating VoiceInsight") settings.vi = VoiceInsights() log_file = f"alexa.log" print(f"Logging to {log_file} (append)") logging.basicConfig(format='%(asctime)s %(levelname)s %(name)s %(message)s', filename=log_file, filemode='a', level=logging.INFO) print(f"Connecting to elasticsearch server on {settings.es_server}") connections.create_connection(hosts=[settings.es_server]) print(f"Now listening for Alexa requests on port #: {port}") server = Server(app.wsgi_app) server.serve(host='0.0.0.0', port=port)
alexafsm-master
tests/skillsearch/server.py
"""Interface to DynamoDB""" import boto3 class DynamoDB: table = None def __init__(self, table_name: str = None): if not DynamoDB.table: assert table_name is not None, 'Using DynamoDB without initializing it!' DynamoDB.table = boto3.resource('dynamodb').Table(table_name) def register_new_user(self, user_id: str): DynamoDB.table.put_item(Item={ 'userId': user_id }) def get_user_info(self, user_id: str) -> dict: return DynamoDB.table.get_item(Key={'userId': user_id}).get('Item') def set_user_info(self, user_id: str, **kwargs): DynamoDB.table.update_item( Key={ 'userId': user_id }, UpdateExpression='SET ' + ', '.join([f'{k} = :{k}' for k in kwargs.keys()]), ExpressionAttributeValues=dict((':' + k, v) for k, v in DynamoDB.table.items()) )
alexafsm-master
tests/skillsearch/dynamodb.py
"""Settings for Alexa skills app""" class SkillSettings: """Singleton settings for app""" settings = None class SkillSettingsImpl: # how far back in time a request can be, in seconds; cannot be greater than 150 according to # https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/developing-an-alexa-skill-as-a-web-service#timestamp REQUEST_TIMEOUT = 100 es_server = 'ES_SERVER' dynamodb = 'chat-dev' vi = None record = False playback = False def get_record_dir(self): """Get the directory where replays should be saved""" return f'tests/skillsearch/playback' def get_record_file(self): """Get the file where replays should be saved""" return f'{self.get_record_dir()}/recordings.json' def __init__(self): if not SkillSettings.settings: SkillSettings.settings = SkillSettings.SkillSettingsImpl() def __getattr__(self, name): return getattr(self.settings, name) def __setattr__(self, key, value): return setattr(self.settings, key, value)
alexafsm-master
tests/skillsearch/skill_settings.py
import logging from alexafsm.policy import Policy as PolicyBase from tests.skillsearch.clients import get_es_skills, get_user_info, register_new_user from tests.skillsearch.states import States, MAX_SKILLS logger = logging.getLogger(__name__) class Policy(PolicyBase): def __init__(self, states: States, request: dict, with_graph: bool = False): super().__init__(states, request, with_graph) if request: user_id = request['session']['user']['userId'] user_info = get_user_info(user_id, request['request']['requestId']) self.states.attributes.first_time = not bool(user_info) if self.attributes.first_time: register_new_user(user_id) states_cls = States def _valid_search(self) -> bool: if not self.attributes.slots.query: return False current_query = self.attributes.slots.query if current_query == 'find': self.states.attributes.slots = self.states.attributes.slots._replace(query='') elif current_query.startswith('find '): self.states.attributes.slots = \ self.states.attributes.slots._replace(query=current_query[5:]) return self.attributes.slots.query and not self.m_searching_for_exit() def m_searching_for_exit(self) -> bool: # sometimes Amazon misinterprets "exit" as a search intent for the term "exit" instead of # the exit intent. Let's take care of that on behalf of the user return self.attributes.slots.query == 'exit' def m_search(self) -> None: """Search for skills matching user's query""" attributes = self.states.attributes if attributes.searched: return # don't search more than once if not self._valid_search(): return self.states.attributes.query = attributes.slots.query es_query = self.states.attributes.query if self.states.attributes.query == 'skills': es_query = 'search for skills' # get our own skill number_of_hits, skills = get_es_skills(es_query, MAX_SKILLS) logger.info(f"Searching for {self.attributes.query}, got {number_of_hits} hits.") attributes.skills = skills attributes.number_of_hits = number_of_hits attributes.skill_cursor = 0 if skills else None attributes.searched = True attributes.first_time_presenting_results = True def m_no_query_search(self) -> bool: """Amazon sent us a search intent without a query or maybe the user said "I want to find ..." and took too long to finish""" return not self.attributes.slots.query or self.attributes.slots.query == 'find' def m_no_result(self) -> bool: return self.attributes.query and not self.m_has_result() def m_has_result(self) -> bool: return self.attributes.query is not None and self.attributes.skills is not None and len( self.attributes.skills) > 0 def m_has_result_and_query(self) -> bool: return self.m_has_result() and not self.m_no_query_search() def m_has_nth(self) -> bool: return self.m_has_result() and \ len(self.attributes.skills) > self.attributes.nth_as_index >= 0 def m_set_nth(self) -> None: self.attributes.skill_cursor = self.attributes.nth_as_index self.attributes.first_time_presenting_results = False def m_set_next(self) -> None: """Go to next skill""" self.attributes.skill_cursor += 1 self.attributes.first_time_presenting_results = False def m_has_next(self) -> bool: return self.m_has_result() and \ self.attributes.skill_cursor + 1 < len(self.attributes.skills) def m_set_previous(self) -> None: """Go to previous skill""" self.attributes.skill_cursor -= 1 self.attributes.first_time_presenting_results = False def m_has_previous(self) -> bool: return self.m_has_result() and self.attributes.skill_cursor > 0
alexafsm-master
tests/skillsearch/policy.py
# -*- coding: utf-8 -*-
alexafsm-master
tests/skillsearch/__init__.py
"""Client that handles query to elasticsearch""" import string from typing import List from elasticsearch_dsl import Search from alexafsm.test_helpers import recordable as rec from elasticsearch_dsl.response import Response from tests.skillsearch.skill_settings import SkillSettings from tests.skillsearch.skill import Skill, INDEX from tests.skillsearch.dynamodb import DynamoDB es_search: Search = Search(index=INDEX).source(excludes=['html']) def get_es_skills(query: str, top_n: int, category: str = None, keyphrase: str = None) -> (int, List[Skill]): """Return the total number of hits and the top_n skills""" result = get_es_results(query, category, keyphrase).to_dict() return result['hits']['total'], [Skill.from_es(h) for h in result['hits']['hits'][:top_n]] def recordable(func): def _get_record_dir(): return SkillSettings().get_record_dir() def _is_playback(): return SkillSettings().playback def _is_record(): return SkillSettings().record return rec(_get_record_dir, _is_playback, _is_record)(func) @recordable def get_es_results(query: str, category: str, keyphrase: str) -> Response: results = _get_es_results(query, category, keyphrase, strict=True) if len(results.hits) == 0: # relax constraints a little return _get_es_results(query, category, keyphrase, strict=False) else: return results def _get_es_results(query: str, category: str, keyphrase: str, strict: bool) -> Response: skill_search = es_search if category: skill_search = skill_search.query('match', category=string.capwords(category) .replace(' And ', ' & ') .replace('Movies & Tv', 'Movies & TV')) if keyphrase: skill_search = skill_search.query('match', keyphrases=keyphrase) if query: operator = 'and' if strict else 'or' skill_search = skill_search.query('multi_match', query=query, fields=['name', 'description', 'usages', 'keyphrases'], minimum_should_match='50%', operator=operator) \ .highlight('description', order='score', pre_tags=['*'], post_tags=['*']) \ .highlight('title', order='score', pre_tags=['*'], post_tags=['*']) \ .highlight('usages', order='score', pre_tags=['*'], post_tags=['*']) return skill_search.execute() @recordable def get_user_info(user_id: str, request_id: str) -> dict: # NOQA """Get information of user with user_id from dynamodb. request_id is simply there so that we can record different responses from dynamodb for the same user during playback""" return DynamoDB().get_user_info(user_id) @recordable def register_new_user(user_id: str): DynamoDB().register_new_user(user_id)
alexafsm-master
tests/skillsearch/clients.py
from alexafsm.states import with_transitions, States as StatesBase from alexafsm import response from alexafsm import amazon_intent from tests.skillsearch.skill import Skill from tests.skillsearch.intent import NTH_SKILL, PREVIOUS_SKILL, NEXT_SKILL, NEW_SEARCH, \ DESCRIBE_RATINGS from tests.skillsearch.session_attributes import SessionAttributes, ENGLISH_NUMBERS MAX_SKILLS = 6 SKILL_NAME = "Skill Search" DEFAULT_PROMPT = "What skill would you like to find?" HELP = f"{SKILL_NAME} helps you search for skills. You can ask questions such as:" \ f" how do i order pizza, or, I want to meditate." \ f" For each question, {SKILL_NAME} only retrieves the most relevant skills." \ f" In order to use a skill you find, you must first exit {SKILL_NAME} and then tell Alexa" \ f" to open that skill." \ f" {DEFAULT_PROMPT}" HEAR_MORE = "Would you like to hear more about it?" IS_THAT_ALL = "Will that be all?" def _you_asked_for(query: str): return f"You asked for {query}. " def _get_verbal_skill(skill: Skill) -> str: """Get the natural language representation of a skill """ return skill.name def _get_verbal_ratings(skill: Skill, say_no_reviews: bool = True) -> str: """Get a verbal description of the rating for a skill say_no_reviews: if there are no reviews, this will mention that explicitly """ if skill.num_ratings > 0: return f"has an average rating of {skill.avg_rating} from {skill.num_ratings} reviews" if say_no_reviews: # there are no reviews, and we want to tell the user that explicitly return "has no reviews at this time" return "" # there are no reviews, but we don't need to tell the user that def _get_highlights(skill: Skill): """Get highlights for a skill""" if 'highlight' in skill.meta: return '\n'.join([h for _, hs in skill.meta.highlight.to_dict().items() for h in hs]) return skill.description class States(StatesBase): """ A collection of static methods that generate responses based on the current session attributes. Each method corresponds to a state of the FSM. """ session_attributes_cls = SessionAttributes skill_name = SKILL_NAME default_prompt = DEFAULT_PROMPT # states to exit on when user requests Alexa to stop talking EXIT_ON_STOP_STATES = ['no_result', 'search_prompt', 'is_that_all', 'bad_navigate', 'no_query_search'] # states to continue on when user requests Alexa to stop talking CONTINUE_ON_STOP_STATES = ['describing', 'has_result', 'describe_ratings'] # states to prompt user for new search when user requests Alexa to stop talking PROMPT_ON_STOP_STATES = ['initial', 'helping'] # initial is its own special thing -- don't exit when interrupting the initial help message def initial(self) -> response.Response: if self.attributes.first_time: welcome_speech = f"Welcome to {self.skill_name}. {HELP}" else: welcome_speech = f"Welcome to {self.skill_name}, {self.default_prompt}" return response.Response( speech=welcome_speech, reprompt=self.default_prompt ) @with_transitions({'trigger': amazon_intent.HELP, 'source': '*'}) def helping(self) -> response.Response: return response.Response( speech=HELP, reprompt=DEFAULT_PROMPT ) @with_transitions( { 'trigger': NEW_SEARCH, 'source': '*', 'conditions': 'm_no_query_search' } ) def no_query_search(self) -> response.Response: """No query specified, ask for query""" return response.Response( speech=f"Please say what it is that you want to do. For example, 'I want to buy " f"flowers'. Or, 'I want to get a ride.'", reprompt=DEFAULT_PROMPT ) @with_transitions( { 'trigger': NEW_SEARCH, 'source': '*', 'prepare': 'm_search', 'conditions': 'm_no_result' }) def no_result(self) -> response.Response: """No results, ask for rephrase or help""" return response.Response( speech=f"{_you_asked_for(self.attributes.query)}," f" I could not find any such skills. Please rephrase, or say" f" help me, for help.", reprompt=DEFAULT_PROMPT ) @with_transitions( { 'trigger': NEW_SEARCH, 'source': '*', 'prepare': 'm_search', 'conditions': 'm_has_result_and_query' }, { 'trigger': NTH_SKILL, 'source': '*', 'conditions': 'm_has_nth', 'after': 'm_set_nth' }, { 'trigger': PREVIOUS_SKILL, 'source': '*', 'conditions': 'm_has_previous', 'after': 'm_set_previous' }, { 'trigger': NEXT_SKILL, 'source': '*', 'conditions': 'm_has_next', 'after': 'm_set_next' }, { 'trigger': amazon_intent.NO, 'source': 'has_result', 'conditions': 'm_has_next', 'after': 'm_set_next' } ) def has_result(self) -> response.Response: """Offer a preview of a skill""" attributes = self.attributes query = attributes.query skill = attributes.skill asked_for_speech = '' if attributes.first_time_presenting_results: asked_for_speech = _you_asked_for(query) if attributes.number_of_hits == 1: skill_position_speech = 'The only skill I found is' else: skill_position_speech = f'The {ENGLISH_NUMBERS[attributes.skill_cursor]} skill is' if attributes.first_time_presenting_results: if attributes.number_of_hits > 6: num_hits = f'Here are the top {MAX_SKILLS} results.' else: num_hits = f'I found {len(attributes.skills)} skills.' skill_position_speech = f'{num_hits} {skill_position_speech}' return response.Response( speech=f"{asked_for_speech} " f" {skill_position_speech} {_get_verbal_skill(skill)}." f" {HEAR_MORE}", card=f"Search for {query}", card_content=f""" Top result: {skill.name} {_get_highlights(skill)} """, reprompt=DEFAULT_PROMPT ) @with_transitions( { 'trigger': NTH_SKILL, 'source': '*', 'unless': 'm_has_nth' }, { 'trigger': PREVIOUS_SKILL, 'source': '*', 'unless': 'm_has_previous' }, { 'trigger': NEXT_SKILL, 'source': '*', 'unless': 'm_has_next' }, { 'trigger': amazon_intent.NO, 'source': 'has_result', 'unless': 'm_has_next' } ) def bad_navigate(self) -> response.Response: """Bad navigation (first, second, third, previous, next)""" attributes = self.attributes if not attributes.skills: if attributes.query: speech = f"I did not find any skills for query {attributes.query}." else: speech = f"To navigate to a skill, please search first. {HELP}" elif attributes.intent == PREVIOUS_SKILL: speech = "There is no previous skill. I am currently at skill number one." elif attributes.intent == NEXT_SKILL: speech = f"Sorry, there is no next skill. How else can I help you?" elif attributes.intent == amazon_intent.NO: speech = f"There are no more results. Please try a different search phrase." else: # nth skill nth = attributes.nth_as_index if nth >= 0: speech = f"You asked for skill {nth + 1}. I found only " \ f"{len(attributes.skills)} skills for the query {attributes.query}." else: speech = f"Sorry, I'm not sure which skill you want to go to. Please rephrase. " \ f"For example, tell me about skill 3." return response.Response( speech=speech, reprompt=DEFAULT_PROMPT ) @with_transitions( { 'trigger': DESCRIBE_RATINGS, 'source': '*', 'conditions': 'm_has_result' } ) def describe_ratings(self): """ when we've found a skill that the user might like and the user wants to know how well-liked it is """ skill = self.attributes.skill return response.Response( speech=f"{skill.name} {_get_verbal_ratings(skill)}." f" Would you like to hear more about this skill?", reprompt="Would you like to hear more about this skill?" ) @with_transitions( { 'trigger': amazon_intent.NO, 'source': ['describing', 'is_that_all'], }, { 'trigger': amazon_intent.CANCEL, 'source': PROMPT_ON_STOP_STATES }, { 'trigger': amazon_intent.STOP, 'source': PROMPT_ON_STOP_STATES } ) def search_prompt(self) -> response.Response: """when we're asking the user to conduct a new search""" return response.Response( speech=DEFAULT_PROMPT, reprompt=DEFAULT_PROMPT ) @with_transitions( { 'trigger': amazon_intent.YES, 'source': ['has_result', 'describe_ratings'] } ) def describing(self) -> response.Response: """Describe a skill, used in response generator""" skill = self.attributes.skill if skill.num_ratings > 0: rating_str = f"{skill.avg_rating} (from {skill.num_ratings} reviews)" else: rating_str = "No reviews yet" interrupt_hint = "" if not self.attributes.said_interrupt: interrupt_hint = "Okay, interrupt me anytime by saying 'Alexa.'" self.attributes.said_interrupt = True return response.Response( speech=f"{interrupt_hint} {skill.name}." f" {skill.short_description}", card=skill.name, card_content=f""" Creator: {skill.creator} Category: {skill.category} Average rating: {rating_str} {skill.description} """, image=skill.image_url, reprompt=IS_THAT_ALL ) @with_transitions( { 'trigger': amazon_intent.NO, 'source': 'describe_ratings' }, { 'trigger': amazon_intent.CANCEL, 'source': CONTINUE_ON_STOP_STATES }, { 'trigger': amazon_intent.STOP, 'source': CONTINUE_ON_STOP_STATES } ) def is_that_all(self) -> response.Response: """when we want to see if the user is done with the skill""" return response.Response( speech=f"Okay, {IS_THAT_ALL}", reprompt=IS_THAT_ALL ) @with_transitions( { 'trigger': amazon_intent.YES, 'source': ['describing', 'is_that_all'] }, { 'trigger': amazon_intent.CANCEL, 'source': EXIT_ON_STOP_STATES }, { 'trigger': amazon_intent.STOP, 'source': EXIT_ON_STOP_STATES }, { 'trigger': NEW_SEARCH, 'source': '*', 'conditions': 'm_searching_for_exit' } ) def exiting(self) -> response.Response: return response.end(SKILL_NAME)
alexafsm-master
tests/skillsearch/states.py
from collections import namedtuple from typing import List from alexafsm.session_attributes import SessionAttributes as SessionAttributesBase, INITIAL_STATE from tests.skillsearch.skill import Skill Slots = namedtuple('Slots', ['query', 'nth']) NUMBER_SUFFIXES = {'st', 'nd', 'rd', 'th'} ENGLISH_NUMBERS = ['first', 'second', 'third', 'fourth', 'fifth', 'sixth', 'seventh', 'eighth', 'ninth', 'tenth'] class SessionAttributes(SessionAttributesBase): slots_cls = Slots not_sent_fields = ['searched', 'first_time'] def __init__(self, intent: str = None, slots=None, state: str = INITIAL_STATE, query: str = None, skills: List[Skill] = None, number_of_hits: int = None, skill_cursor: int = None, searched: bool = False, first_time: bool = True, first_time_presenting_results: bool = False, said_interrupt: bool = False): super().__init__(intent, slots, state) self.query = query if skills: self.skills = [Skill.from_es(skill) for skill in skills] else: self.skills = None self.number_of_hits = number_of_hits self.skill_cursor = skill_cursor self.searched = searched self.first_time = first_time self.first_time_presenting_results = first_time_presenting_results self.said_interrupt = said_interrupt @property def nth_as_index(self): """Return -1 if we cannot figure out what index was actually meant by the user""" if not self.slots.nth: # Amazon's intent system might not give us anything return -1 elif self.slots.nth in ENGLISH_NUMBERS: return ENGLISH_NUMBERS.index(self.slots.nth) else: try: # Amazon SOMETIMES gives us "5th" instead of "fifth", so we can try to parse it! # this is not always the case -- it gives us "second" instead of 2nd if self.slots.nth[-2:] in NUMBER_SUFFIXES: return int(self.slots.nth[:-2]) - 1 else: # otherwise probably directly a number in string format return int(self.slots.nth) - 1 except ValueError: return -1 @property def skill(self): return self.skills[self.skill_cursor]
alexafsm-master
tests/skillsearch/session_attributes.py
from alexafsm.utils import print_machine from tests.skillsearch.policy import Policy if __name__ == '__main__': print_machine(Policy.initialize())
alexafsm-master
tests/skillsearch/bin/print_machine.py
import sys from alexafsm.utils import graph from tests.skillsearch.policy import Policy if __name__ == '__main__': png_file = sys.argv[1] print(f"Drawing FSM graph for {Policy} to {png_file}") graph(Policy, png_file)
alexafsm-master
tests/skillsearch/bin/graph.py
""" Module that monkey-patches json module when it's imported so JSONEncoder.default() automatically checks for a special "to_json()" method and uses it to encode the object if found. See http://stackoverflow.com/a/18561055/257583 """ from json import JSONEncoder def _default(self, obj): return getattr(obj.__class__, "to_json", _default.default)(obj) def nested_get_obj_or_json(obj): if hasattr(obj, 'to_json'): return nested_get_obj_or_json(obj.to_json()) elif isinstance(obj, (list, tuple)): return [nested_get_obj_or_json(e) for e in obj] elif isinstance(obj, dict): return {k: nested_get_obj_or_json(v) for k, v in obj.items()} else: return obj def _iterencode(self, obj, _one_shot=False): gen = _iterencode.iterencode(nested_get_obj_or_json(obj), _one_shot) for chunk in gen: yield chunk _default.default = JSONEncoder().default # Save unmodified default. _iterencode.iterencode = JSONEncoder().iterencode JSONEncoder.default = _default # replacement JSONEncoder.iterencode = _iterencode # replacement
alexafsm-master
alexafsm/make_json_serializable.py
import importlib import logging import os import json from transitions import MachineError from voicelabs import VoiceInsights from alexafsm import response from alexafsm.session_attributes import SessionAttributes from alexafsm.states import States logger = logging.getLogger(__name__) class Policy: """ Finite state machine that describes how to interact with user. Use a lightweight FSM library at https://github.com/tyarkoni/transitions """ # "Abstract" class properties to be overwritten/set in inherited classes. states_cls = None def __init__(self, states: States, request: dict = None, with_graph: bool = False): self.states = states self.state = states.attributes.state state_names, transitions = type(states).get_states_transitions() machine_cls = \ importlib.import_module('transitions.extensions').GraphMachine if with_graph else \ importlib.import_module('transitions').Machine self.machine = machine_cls( model=self, states=state_names, initial=states.attributes.state, auto_transitions=False ) for transition in transitions: self.machine.add_transition(**transition) @property def attributes(self) -> SessionAttributes: return self.states.attributes @classmethod def initialize(cls, request: dict = None, with_graph: bool = False): """Construct a policy in initial state""" states = cls.states_cls.from_request(request=request) return cls(states, request, with_graph) def get_current_state_response(self) -> response.Response: resp_function = getattr(type(self.states), self.state) return resp_function(self.states) def execute(self) -> response.Response: """Called when the user specifies an intent for this skill""" intent = self.attributes.intent previous_state = self.state # backup attributes in case of invalid FSM transition attributes_backup = self.attributes try: # trigger is added by transitions library self.trigger(intent) current_state = self.state logger.info(f"Changed from {previous_state} to {current_state} through {intent}") self.attributes.state = current_state return self.get_current_state_response() except MachineError as exception: logger.error(str(exception)) # reset attributes self.states.attributes = attributes_backup return response.NOT_UNDERSTOOD def handle(self, request: dict, voice_insights: VoiceInsights = None, record_filename: str = None): """ Method that handles Alexa post request in json format If record_dir is specified, this will record the request in the given directory for later playback for testing purposes """ (req, session) = (request['request'], request['session']) logger.info(f"applicationId = {session['application']['applicationId']}") request_type = req['type'] logger.info( f"{request_type}, requestId: {req['requestId']}, sessionId: {session['sessionId']}") if voice_insights: app_token = os.environ['VOICELABS_API_KEY'] voice_insights.initialize(app_token, session) if request_type == 'LaunchRequest': resp = self.get_current_state_response() elif request_type == 'IntentRequest': intent = req['intent'] self.states.attributes = type(self.states.attributes).from_request(request) self.state = self.attributes.state resp = self.execute() resp = resp._replace(session_attributes=self.states.attributes) if voice_insights: voice_insights.track(intent_name=intent['name'], intent_request=req, response=resp.to_json()) elif request_type == 'SessionEndedRequest': resp = response.end(self.states.skill_name) else: raise Exception(f'Unknown request type {request_type}') if record_filename: with open(record_filename, 'a') as record_file: record_file.write(json.dumps([request, resp]) + '\n') return resp
alexafsm-master
alexafsm/policy.py
# -*- coding: utf-8 -*- __author__ = """Allen AI""" __email__ = '[email protected]' __version__ = '0.1.11'
alexafsm-master
alexafsm/__init__.py
from collections import namedtuple from alexafsm.session_attributes import SessionAttributes class Response(namedtuple('Response', ['speech', 'card', 'card_content', 'reprompt', 'should_end', 'image', 'session_attributes'])): """Pythonic representation of the response to be sent to Alexa""" def __new__(cls, speech: str, reprompt: str, card: str = None, should_end: bool = False, card_content: str = None, image: str = None, session_attributes: SessionAttributes = SessionAttributes()): if not card_content: card_content = speech return super(Response, cls) \ .__new__(cls, speech=speech, card=card, reprompt=reprompt, should_end=should_end, card_content=card_content.strip(), image=image, session_attributes=session_attributes) def to_json(self): """Build entire Alexa response as a JSON-serializable dictionary""" card = None if self.card: if self.image: card = { 'type': 'Standard', 'image': { 'largeImageUrl': self.image }, 'title': self.card, 'text': self.card_content } else: card = { 'type': 'Simple', 'title': self.card, 'content': self.card_content } resp = { 'outputSpeech': { 'type': 'PlainText', 'text': self.speech }, 'card': card, 'reprompt': { 'outputSpeech': { 'type': 'PlainText', 'text': self.reprompt } }, 'shouldEndSession': self.should_end } if not resp['card']: del resp['card'] return { 'version': '1.0', 'sessionAttributes': self.session_attributes, 'response': resp } def end(skill_name: str) -> Response: return Response( speech=f"Thank you for using {skill_name}", reprompt="", should_end=True) NOT_UNDERSTOOD = Response( speech="I did not understand your response, please say it differently.", reprompt="Please respond in a different way." )
alexafsm-master
alexafsm/response.py
""" Amazon built-in intents """ YES = 'AMAZON.YesIntent' NO = 'AMAZON.NoIntent' HELP = 'AMAZON.HelpIntent' STOP = 'AMAZON.StopIntent' CANCEL = 'AMAZON.CancelIntent'
alexafsm-master
alexafsm/amazon_intent.py
import inspect import json from typing import Set from alexafsm.policy import Policy from alexafsm.session_attributes import INITIAL_STATE def validate(policy: Policy, schema_file: str, ignore_intents: Set[str] = ()): """Check for inconsistencies in policy definition""" schema = {} with open(schema_file, mode='r') as f: schema = json.loads(f.read()) intents = [intent['intent'] for intent in schema['intents'] if intent['intent'] not in ignore_intents] states = policy.machine.states events = [] states_have_out_transitions = set() states_have_in_transitions = set() funcs = [func for func, _ in inspect.getmembers(type(policy), predicate=inspect.isfunction)] def _validate_transition(tran): assert tran.source in states, f"Invalid source state: {tran.source}!!" assert tran.dest in states, f"Invalid dest state: {tran.dest}!!" assert all(prep in funcs for prep in tran.prepare), \ f"Invalid prepare function: {tran.prepare}!!" assert all(cond.func in funcs for cond in tran.conditions), \ f"Invalid conditions function: {tran.conditions}!!" assert all(after in funcs for after in tran.after), \ f"Invalid after function: {tran.after}!!" states_have_in_transitions.add(tran.dest) states_have_out_transitions.add(tran.source) def _validate_ambiguous_transition(event, source, trans): unconditional_trans = [tran for tran in trans if not tran.conditions] assert len(unconditional_trans) < 2,\ f"Event {event} for source {source} has multiple unconditional out-bound transitions:" \ f" {', '.join([tran.dest for tran in trans])}" for _, event in policy.machine.events.items(): assert event.name in intents, f"Invalid event/trigger: {event.name}!" events.append(event.name) for source, trans in event.transitions.items(): for transition in trans: assert source in states, f"Invalid source state: {source}!!" _validate_transition(transition) _validate_ambiguous_transition(event.name, source, trans) intent_diff = set(intents) - set(events) assert not intent_diff, f"Some intents are not handled: {intent_diff}" in_diff = set(states) - states_have_in_transitions - {INITIAL_STATE} out_diff = set(states) - states_have_out_transitions - set('exiting') assert not in_diff, f"Some states have no inbound transitions: {in_diff}" assert not out_diff, f"Some states have no outbound transitions: {out_diff}" def print_machine(policy: Policy): def _print_transition(tran): print(f"\t\t{tran.source} -> {tran.dest}", end='') if tran.prepare: print(f", prepare: {tran.prepare}", end='') if tran.conditions: print(f", conditions: {[cond.func for cond in tran.conditions]}", end='') print() print(f"Machine states:\n\t{', '.join(policy.machine.states)}") print("\nEvents and transitions:\n") for _, event in policy.machine.events.items(): print(f"Event: {event.name}") for source, trans in event.transitions.items(): print(f"\tSource: {source}") for transition in trans: _print_transition(transition) def graph(policy_cls, png_file): policy = policy_cls.initialize(with_graph=True) policy.graph.draw(png_file, prog='dot') def get_dialogs(request, response): """Return key information about a conversation turn as stored in a pair of request & response""" request_id = request['request']['requestId'] # there are no attributes when starting a new conversation from the alexa device session_attributes = request['session'].get('attributes', {}) from_state = session_attributes.get('state', INITIAL_STATE) intent = response['sessionAttributes'].get('intent', None) slots = response['sessionAttributes'].get('slots', None) to_state = response['sessionAttributes'].get('state', None) speech = response['response']['outputSpeech']['text'] return request_id, from_state, intent, slots, to_state, speech def events_states_transitions(policy: Policy): """ Return events, states, and transitions of a policy. Initial and exiting states are excluded """ all_states = set(policy.machine.states.keys()) all_states.remove(INITIAL_STATE) all_states.remove('exiting') all_events = set() all_transitions = set() for _, e in policy.machine.events.items(): all_events.add(e.name) for source, transitions in e.transitions.items(): for transition in transitions: all_transitions.add((source, transition.dest)) return all_events, all_states, all_transitions def used_events_states_transitions(recorded_requests_responses): """Based on recorded data, compute and return the used events, states, and transitions""" used_events = set() used_states = set() used_transitions = set() dialog_data = [get_dialogs(request, response) for request, response in recorded_requests_responses] for request_id, from_state, intent, slots, to_state, speech in dialog_data: used_events.add(intent) used_states.add(from_state) used_states.add(to_state) used_transitions.add((from_state, to_state)) if INITIAL_STATE in used_states: used_states.remove(INITIAL_STATE) return used_events, used_states, used_transitions def unused_events_states_transitions(policy, recorded_requests_responses): """Based on recorded data and a policy, compute and return the unused events, states, and transitions""" all_events, all_states, all_transitions = events_states_transitions(policy) used_events, used_states, used_transitions = used_events_states_transitions(recorded_requests_responses) unused_states = all_states - used_states unused_events = all_events - used_events unused_transitions = all_transitions - used_transitions return unused_events, unused_states, unused_transitions
alexafsm-master
alexafsm/utils.py
import hashlib import pickle import json import inspect def recordable(record_dir_function, is_playback, is_record): """ Record results of functions that depend on external resources record_dir_function is a function specifying which directory to save results to/read results from Pass record=True to the function to save results Pass playback=True to the function call to load saved results """ def real_decorator(external_resource_function): def cache_filename(args, kwargs): args_as_str = str(args) kwargs_as_str = str(sorted(kwargs.items())) full_args = f"{args_as_str}{kwargs_as_str}" hashed_args = hashlib.md5(full_args.encode('utf-8')).hexdigest() return f'{external_resource_function.__name__}_{hashed_args}.pickle' def wrapper(*args, **kwargs): # handle default kwargs where some kwarg may or may not be set with default values fullargspec = inspect.getfullargspec(external_resource_function) arguments, defaults = fullargspec.args, fullargspec.defaults if defaults: default_kwargs = {k: v for k, v in zip(arguments[-len(defaults):], defaults)} full_kwargs = {**default_kwargs, **kwargs} else: full_kwargs = kwargs filename = f'{record_dir_function()}/{cache_filename(args, full_kwargs)}' if is_playback(): # pickle should already exist, read from disk with open(filename, 'rb') as pickle_file: return pickle.load(pickle_file) elif is_record(): # pickle doesn't yet exist, cache it result = external_resource_function(*args, **kwargs) with open(filename, 'wb') as pickle_file: pickle.dump(result, pickle_file) return result else: return external_resource_function(*args, **kwargs) return wrapper return real_decorator def get_requests_responses(record_file: str): """ Return the (json) requests and expected responses from previous recordings. These are returned in the same order they were recorded in. """ with open(record_file) as f: lines = f.readlines() return [tuple(json.loads(line)) for line in lines]
alexafsm-master
alexafsm/test_helpers.py
import inspect from alexafsm.session_attributes import SessionAttributes, INITIAL_STATE TRANSITIONS = 'transitions' def with_transitions(*transitions): """ Add the provided in-bound transitions to the state """ def decorate(state): def transition_enabled_state(*args): return state(*args) full_transitions = [] for transition in transitions: if 'dest' in transition: assert 'source' not in transition, f"Expected no source to be specified:" \ f" {transition['source']}" transition['source'] = state.__name__ else: assert 'dest' not in transition, f"Expected no dest to be specified: " \ f"{transition['dest']}" transition['dest'] = state.__name__ full_transitions.append(transition) setattr(transition_enabled_state, TRANSITIONS, full_transitions) return transition_enabled_state return decorate class States: """ A collection of static methods that generate responses based on the current session attributes Each method corresponds to a state of the FSM """ # "Abstract" class property to be overwritten/set in inherited classes. session_attributes_cls = None skill_name = "Allen A.I." default_prompt = "How can I help?" def __init__(self, attributes: SessionAttributes): self.attributes = attributes @classmethod def from_request(cls, request): """ Factory constructor from intent and session. """ attributes = cls.session_attributes_cls.from_request(request) return cls(attributes) @classmethod def get_states_transitions(cls): """ Get all states & transitions specified in the states via with_transitions decoration """ states = [] transitions = [] for state, method in inspect.getmembers(cls, predicate=inspect.isfunction): if state != '__init__': states.append(state) transitions += getattr(method, TRANSITIONS, []) states.append(INITIAL_STATE) return states, transitions
alexafsm-master
alexafsm/states.py
INITIAL_STATE = 'initial' class SessionAttributes: """Base class for all session attributes that keep track of the state of conversation""" # "Abstract" class properties to be overridden/set in inherited classes # Inherited classes should override this like so: # Slots = namedtuple('Slots', ['foo', 'bar']) # # slots_cls = Slots slots_cls = None # List of (big) fields we don't want to send back to Alexa not_sent_fields = [] def __init__(self, intent: str = None, slots=None, state: str = INITIAL_STATE): self.intent = intent self.slots = slots self.state = state @classmethod def from_request(cls, request: dict) -> 'SessionAttributes': """Construct session attributes object from request""" slots_cls = cls.slots_cls none_slots = _slots_from_dict(slots_cls, slots=None) if not request: return cls(slots=none_slots) res = cls(**(request['session'].get('attributes', {}))) if 'intent' not in request['request']: # e.g., when starting skill at beginning of session return res intent = request['request']['intent'] res.intent = intent['name'] if res.state is None: res.state = INITIAL_STATE # namedtuple deserialization from list of values old_slots = slots_cls._make(res.slots) if res.slots else none_slots # Construct new slots from the request new_slots = _slots_from_dict(slots_cls, intent.get('slots')) # Update the slots attribute, using new slot values regardless if they exist or not (skill # should be able to tell if Amazon successfully extracted the intent slot or not) def _extract(f): v = getattr(new_slots, f) return v res.slots = slots_cls(**{f: _extract(f) for f in old_slots._fields}) return res def to_json(self) -> dict: """ When sending the payload to Alexa, do not send fields that are too big. """ return {k: v for k, v in self.__dict__.items() if k not in self.not_sent_fields and v is not None} def _slots_from_dict(slots_cls, slots: dict): """ Given the definition for Slots that Amazon gives us, return the Slots tuple >>> from collections import namedtuple >>> Slots = namedtuple('Slots', ['love', 'money']) >>> slots = {'Love': {'name': 'Love'}, 'Money': {'name': 'Money', 'value': 'lots'}} >>> _slots_from_dict(Slots, slots) Slots(love=None, money='lots') >>> _slots_from_dict(Slots, None) Slots(love=None, money=None) >>> _slots_from_dict(Slots, {}) Slots(love=None, money=None) """ def _value_of(some_dict: dict) -> str: return some_dict['value'] if some_dict and 'value' in some_dict else None # Construct a dict with lower-cased slotnames as keys and values as values kwargs = dict((k.lower(), _value_of(v)) for k, v in slots.items()) if slots else {} # Construct a not-None namedtuple Slot object where attributes can be None return slots_cls(**{field: kwargs.get(field, None) for field in slots_cls._fields})
alexafsm-master
alexafsm/session_attributes.py
from datetime import datetime from pathlib import Path with open("VERSION") as version_file: VERSION = version_file.read().strip() def main(): changelog = Path("CHANGELOG.md") with changelog.open() as f: lines = f.readlines() insert_index: int = -1 for i in range(len(lines)): line = lines[i] if line.startswith("## Unreleased"): insert_index = i + 1 elif line.startswith(f"## [v{VERSION}]"): print("CHANGELOG already up-to-date") return elif line.startswith("## [v"): break if insert_index < 0: raise RuntimeError("Couldn't find 'Unreleased' section") lines.insert(insert_index, "\n") lines.insert( insert_index + 1, f"## [v{VERSION}](https://github.com/allenai/beaker-action/releases/tag/v{VERSION}) - " f"{datetime.now().strftime('%Y-%m-%d')}\n", ) with changelog.open("w") as f: f.writelines(lines) if __name__ == "__main__": main()
beaker-action-main
scripts/prepare_changelog.py
# encoding: utf-8 """ Prepares markdown release notes for GitHub releases. """ import os from typing import List, Optional import packaging.version TAG = os.environ["TAG"] ADDED_HEADER = "### Added 🎉" CHANGED_HEADER = "### Changed ⚠️" FIXED_HEADER = "### Fixed ✅" REMOVED_HEADER = "### Removed 👋" def get_change_log_notes() -> str: in_current_section = False current_section_notes: List[str] = [] with open("CHANGELOG.md") as changelog: for line in changelog: if line.startswith("## "): if line.startswith("## Unreleased"): continue if line.startswith(f"## [{TAG}]"): in_current_section = True continue break if in_current_section: if line.startswith("### Added"): line = ADDED_HEADER + "\n" elif line.startswith("### Changed"): line = CHANGED_HEADER + "\n" elif line.startswith("### Fixed"): line = FIXED_HEADER + "\n" elif line.startswith("### Removed"): line = REMOVED_HEADER + "\n" current_section_notes.append(line) assert current_section_notes return "## What's new\n\n" + "".join(current_section_notes).strip() + "\n" def get_commit_history() -> str: new_version = packaging.version.parse(TAG) # Get all tags sorted by version, latest first. all_tags = os.popen("git tag -l --sort=-version:refname 'v*'").read().split("\n") # Out of `all_tags`, find the latest previous version so that we can collect all # commits between that version and the new version we're about to publish. # Note that we ignore pre-releases unless the new version is also a pre-release. last_tag: Optional[str] = None for tag in all_tags: if not tag.strip(): # could be blank line continue version = packaging.version.parse(tag) if new_version.pre is None and version.pre is not None: continue if version < new_version: last_tag = tag break if last_tag is not None: commits = os.popen(f"git log {last_tag}..{TAG}^ --oneline --first-parent").read() else: commits = os.popen("git log --oneline --first-parent").read() return "## Commits\n\n" + commits def main(): print(get_change_log_notes()) print(get_commit_history()) if __name__ == "__main__": main()
beaker-action-main
scripts/release_notes.py
import numpy as np from collections import Counter import string import re import argparse import os import json import nltk from matplotlib_venn import venn2 from matplotlib import pyplot as plt class Question: def __init__(self, id, question_text, ground_truth, model_names): self.id = id self.question_text = self.normalize_answer(question_text) self.question_head_ngram = [] self.question_tokens = nltk.word_tokenize(self.question_text) for nc in range(3): self.question_head_ngram.append(' '.join(self.question_tokens[0:nc])) self.ground_truth = ground_truth self.model_names = model_names self.em = np.zeros(2) self.f1 = np.zeros(2) self.answer_text = [] def add_answers(self, answer_model_1, answer_model_2): self.answer_text.append(answer_model_1) self.answer_text.append(answer_model_2) self.eval() def eval(self): for model_count in range(2): self.em[model_count] = self.metric_max_over_ground_truths(self.exact_match_score, self.answer_text[model_count], self.ground_truth) self.f1[model_count] = self.metric_max_over_ground_truths(self.f1_score, self.answer_text[model_count], self.ground_truth) def normalize_answer(self, s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r'\b(a|an|the)\b', ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return ''.join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def f1_score(self, prediction, ground_truth): prediction_tokens = self.normalize_answer(prediction).split() ground_truth_tokens = self.normalize_answer(ground_truth).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 def exact_match_score(self, prediction, ground_truth): return (self.normalize_answer(prediction) == self.normalize_answer(ground_truth)) def metric_max_over_ground_truths(self, metric_fn, prediction, ground_truths): scores_for_ground_truths = [] for ground_truth in ground_truths: score = metric_fn(prediction, ground_truth) scores_for_ground_truths.append(score) return max(scores_for_ground_truths) def safe_dict_access(in_dict, in_key, default_string='some junk string'): if in_key in in_dict: return in_dict[in_key] else: return default_string def aggregate_metrics(questions): total = len(questions) exact_match = np.zeros(2) f1_scores = np.zeros(2) for mc in range(2): exact_match[mc] = 100 * np.sum(np.array([questions[x].em[mc] for x in questions])) / total f1_scores[mc] = 100 * np.sum(np.array([questions[x].f1[mc] for x in questions])) / total model_names = questions[list(questions.keys())[0]].model_names print('\nAggregate Scores:') for model_count in range(2): print('Model {0} EM = {1:.2f}'.format(model_names[model_count], exact_match[model_count])) print('Model {0} F1 = {1:.2f}'.format(model_names[model_count], f1_scores[model_count])) def venn_diagram(questions, output_dir): em_model1_ids = [x for x in questions if questions[x].em[0] == 1] em_model2_ids = [x for x in questions if questions[x].em[1] == 1] model_names = questions[list(questions.keys())[0]].model_names print('\nVenn diagram') correct_model1 = em_model1_ids correct_model2 = em_model2_ids correct_model1_and_model2 = list(set(em_model1_ids).intersection(set(em_model2_ids))) correct_model1_and_not_model2 = list(set(em_model1_ids) - set(em_model2_ids)) correct_model2_and_not_model1 = list(set(em_model2_ids) - set(em_model1_ids)) print('{0} answers correctly = {1}'.format(model_names[0], len(correct_model1))) print('{0} answers correctly = {1}'.format(model_names[1], len(correct_model2))) print('Both answer correctly = {1}'.format(model_names[0], len(correct_model1_and_model2))) print('{0} correct & {1} incorrect = {2}'.format(model_names[0], model_names[1], len(correct_model1_and_not_model2))) print('{0} correct & {1} incorrect = {2}'.format(model_names[1], model_names[0], len(correct_model2_and_not_model1))) plt.clf() venn_diagram_plot = venn2( subsets=(len(correct_model1_and_not_model2), len(correct_model2_and_not_model1), len(correct_model1_and_model2)), set_labels=('{0} correct'.format(model_names[0]), '{0} correct'.format(model_names[1]), 'Both correct'), set_colors=('r', 'b'), alpha=0.3, normalize_to=1 ) plt.savefig(os.path.join(output_dir, 'venn_diagram.png')) plt.close() return correct_model1, correct_model2, correct_model1_and_model2, correct_model1_and_not_model2, correct_model2_and_not_model1 def get_head_ngrams(questions, num_grams): head_ngrams = [] for question in questions.values(): head_ngrams.append(question.question_head_ngram[num_grams]) return head_ngrams def get_head_ngram_frequencies(questions, head_ngrams, num_grams): head_ngram_frequencies = {} for current_ngram in head_ngrams: head_ngram_frequencies[current_ngram] = 0 for question in questions.values(): head_ngram_frequencies[question.question_head_ngram[num_grams]] += 1 return head_ngram_frequencies def get_head_ngram_statistics(questions, correct_model1, correct_model2, correct_model1_and_model2, correct_model1_and_not_model2, correct_model2_and_not_model1, output_dir, num_grams=2, top_count=25): # Head ngram statistics head_ngrams = get_head_ngrams(questions, num_grams) # Get head_ngram_frequencies (hnf) hnf_all = get_head_ngram_frequencies(questions, head_ngrams, num_grams) hnf_correct_model1 = get_head_ngram_frequencies({qid: questions[qid] for qid in correct_model1}, head_ngrams, num_grams) hnf_correct_model2 = get_head_ngram_frequencies({qid: questions[qid] for qid in correct_model2}, head_ngrams, num_grams) hnf_correct_model1_and_model2 = get_head_ngram_frequencies({qid: questions[qid] for qid in correct_model1_and_model2}, head_ngrams, num_grams) hnf_correct_model1_and_not_model2 = get_head_ngram_frequencies({qid: questions[qid] for qid in correct_model1_and_not_model2}, head_ngrams, num_grams) hnf_correct_model2_and_not_model1 = get_head_ngram_frequencies({qid: questions[qid] for qid in correct_model2_and_not_model1}, head_ngrams, num_grams) sorted_bigrams_all = sorted(hnf_all.items(), key=lambda x: x[1], reverse=True) top_bigrams = [x[0] for x in sorted_bigrams_all[0:top_count]] counts_total = [hnf_all[x] for x in top_bigrams] counts_model1 = [hnf_correct_model1[x] for x in top_bigrams] counts_model2 = [hnf_correct_model2[x] for x in top_bigrams] counts_model1_and_model2 = [hnf_correct_model1_and_model2[x] for x in top_bigrams] counts_model1_and_not_model2 = [hnf_correct_model1_and_not_model2[x] for x in top_bigrams] counts_model2_and_not_model1 = [hnf_correct_model2_and_not_model1[x] for x in top_bigrams] top_bigrams_with_counts = [] for cc in range(len(top_bigrams)): top_bigrams_with_counts.append('{0} ({1})'.format(top_bigrams[cc], counts_total[cc])) plt.clf() fig, ax = plt.subplots(figsize=(6, 10)) ylocs = list(range(top_count)) counts_model1_percent = 100 * np.array(counts_model1) / np.array(counts_total) plt.barh([top_count - x for x in ylocs], counts_model1_percent, height=0.4, alpha=0.5, color='#EE3224', label=top_bigrams) counts_model2_percent = 100 * np.array(counts_model2) / np.array(counts_total) plt.barh([top_count - x+0.4 for x in ylocs], counts_model2_percent, height=0.4, alpha=0.5, color='#2432EE', label=top_bigrams ) ax.set_yticks([top_count - x + 0.4 for x in ylocs]) ax.set_yticklabels(top_bigrams_with_counts) ax.set_ylim([0.5, top_count+1]) ax.set_xlim([0, 100]) plt.subplots_adjust(left=0.28, right=0.9, top=0.9, bottom=0.1) plt.xlabel('Percentage of questions with correct answers') plt.ylabel('Top N-grams') plt.savefig(os.path.join(output_dir, 'ngram_stats_{0}.png'.format(num_grams))) plt.close() def read_json(filename): with open(filename) as filepoint: data = json.load(filepoint) return data def compare_models(dataset_file, predictions_m1_file, predictions_m2_file, output_dir, name_m1='Model 1', name_m2='Model 2'): dataset = read_json(dataset_file)['data'] predictions_m1 = read_json(predictions_m1_file) predictions_m2 = read_json(predictions_m2_file) # Read in data total = 0 questions = {} for article in dataset: for paragraph in article['paragraphs']: for qa in paragraph['qas']: current_question = Question(id=qa['id'], question_text=qa['question'], ground_truth=list(map(lambda x: x['text'], qa['answers'])), model_names=[name_m1, name_m2]) current_question.add_answers(answer_model_1=safe_dict_access(predictions_m1, qa['id']), answer_model_2=safe_dict_access(predictions_m2, qa['id'])) questions[current_question.id] = current_question total += 1 model_names = questions[list(questions.keys())[0]].model_names print('Read in {0} questions'.format(total)) # Aggregate scores aggregate_metrics(questions) # Venn diagram correct_model1, correct_model2, correct_model1_and_model2, correct_model1_and_not_model2, correct_model2_and_not_model1 = venn_diagram(questions, output_dir=output_dir) # Head Unigram statistics get_head_ngram_statistics(questions, correct_model1, correct_model2, correct_model1_and_model2, correct_model1_and_not_model2, correct_model2_and_not_model1, output_dir, num_grams=1, top_count=10) # Head Bigram statistics get_head_ngram_statistics(questions, correct_model1, correct_model2, correct_model1_and_model2, correct_model1_and_not_model2, correct_model2_and_not_model1, output_dir, num_grams=2, top_count=10) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Compare two QA models') parser.add_argument('-dataset', action='store', dest='dataset', required=True, help='Dataset file') parser.add_argument('-model1', action='store', dest='predictions_m1', required=True, help='Prediction file for model 1') parser.add_argument('-model2', action='store', dest='predictions_m2', required=True, help='Prediction file for model 2') parser.add_argument('-name1', action='store', dest='name_m1', help='Name for model 1') parser.add_argument('-name2', action='store', dest='name_m2', help='Name for model 2') parser.add_argument('-output', action='store', dest='output_dir', help='Output directory for visualizations') results = parser.parse_args() if results.name_m1 is not None and results.name_m2 is not None: compare_models(dataset_file=results.dataset, predictions_m1_file=results.predictions_m1, predictions_m2_file=results.predictions_m2, output_dir=results.output_dir, name_m1=results.name_m1, name_m2=results.name_m2) else: compare_models(dataset_file=results.dataset, predictions_m1_file=results.predictions_m1, predictions_m2_file=results.predictions_m2, output_dir=results.output_dir)
bi-att-flow-master
visualization/compare_models.py
import json from json import encoder import os import tensorflow as tf from tree.evaluator import Evaluation from my.utils import short_floats class GraphHandler(object): def __init__(self, config): self.config = config self.saver = tf.train.Saver() self.writer = None self.save_path = os.path.join(config.save_dir, config.model_name) def initialize(self, sess): if self.config.load: self._load(sess) else: sess.run(tf.initialize_all_variables()) if self.config.mode == 'train': self.writer = tf.train.SummaryWriter(self.config.log_dir, graph=tf.get_default_graph()) def save(self, sess, global_step=None): self.saver.save(sess, self.save_path, global_step=global_step) def _load(self, sess): config = self.config if config.load_step > 0: save_path = os.path.join(config.save_dir, "{}-{}".format(config.model_name, config.load_step)) else: save_dir = config.save_dir checkpoint = tf.train.get_checkpoint_state(save_dir) assert checkpoint is not None, "cannot load checkpoint at {}".format(save_dir) save_path = checkpoint.model_checkpoint_path print("Loading saved model from {}".format(save_path)) self.saver.restore(sess, save_path) def add_summary(self, summary, global_step): self.writer.add_summary(summary, global_step) def add_summaries(self, summaries, global_step): for summary in summaries: self.add_summary(summary, global_step) def dump_eval(self, e, precision=2): assert isinstance(e, Evaluation) path = os.path.join(self.config.eval_dir, "{}-{}.json".format(e.data_type, str(e.global_step).zfill(6))) with open(path, 'w') as fh: json.dump(short_floats(e.dict, precision), fh)
bi-att-flow-master
tree/graph_handler.py
bi-att-flow-master
tree/__init__.py
import nltk import numpy as np import tensorflow as tf from tensorflow.python.ops.rnn_cell import BasicLSTMCell from my.nltk_utils import tree2matrix, find_max_f1_subtree, load_compressed_tree, set_span from tree.read_data import DataSet from my.tensorflow import exp_mask, get_initializer from my.tensorflow.nn import linear from my.tensorflow.rnn import bidirectional_dynamic_rnn, dynamic_rnn from my.tensorflow.rnn_cell import SwitchableDropoutWrapper, NoOpCell, TreeRNNCell class Model(object): def __init__(self, config): self.config = config self.global_step = tf.get_variable('global_step', shape=[], dtype='int32', initializer=tf.constant_initializer(0), trainable=False) # Define forward inputs here N, M, JX, JQ, VW, VC, W, H = \ config.batch_size, config.max_num_sents, config.max_sent_size, \ config.max_ques_size, config.word_vocab_size, config.char_vocab_size, config.max_word_size, config.max_tree_height self.x = tf.placeholder('int32', [None, M, JX], name='x') self.cx = tf.placeholder('int32', [None, M, JX, W], name='cx') self.q = tf.placeholder('int32', [None, JQ], name='q') self.cq = tf.placeholder('int32', [None, JQ, W], name='cq') self.tx = tf.placeholder('int32', [None, M, H, JX], name='tx') self.tx_edge_mask = tf.placeholder('bool', [None, M, H, JX, JX], name='tx_edge_mask') self.y = tf.placeholder('bool', [None, M, H, JX], name='y') self.is_train = tf.placeholder('bool', [], name='is_train') # Define misc # Forward outputs / loss inputs self.logits = None self.yp = None self.var_list = None # Loss outputs self.loss = None self._build_forward() self._build_loss() self.ema_op = self._get_ema_op() self.summary = tf.merge_all_summaries() def _build_forward(self): config = self.config N, M, JX, JQ, VW, VC, d, dc, W = \ config.batch_size, config.max_num_sents, config.max_sent_size, \ config.max_ques_size, config.word_vocab_size, config.char_vocab_size, config.hidden_size, \ config.char_emb_size, config.max_word_size H = config.max_tree_height x_mask = self.x > 0 q_mask = self.q > 0 tx_mask = self.tx > 0 # [N, M, H, JX] with tf.variable_scope("char_emb"): char_emb_mat = tf.get_variable("char_emb_mat", shape=[VC, dc], dtype='float') Acx = tf.nn.embedding_lookup(char_emb_mat, self.cx) # [N, M, JX, W, dc] Acq = tf.nn.embedding_lookup(char_emb_mat, self.cq) # [N, JQ, W, dc] filter = tf.get_variable("filter", shape=[1, config.char_filter_height, dc, d], dtype='float') bias = tf.get_variable("bias", shape=[d], dtype='float') strides = [1, 1, 1, 1] Acx = tf.reshape(Acx, [-1, JX, W, dc]) Acq = tf.reshape(Acq, [-1, JQ, W, dc]) xxc = tf.nn.conv2d(Acx, filter, strides, "VALID") + bias # [N*M, JX, W/filter_stride, d] qqc = tf.nn.conv2d(Acq, filter, strides, "VALID") + bias # [N, JQ, W/filter_stride, d] xxc = tf.reshape(tf.reduce_max(tf.nn.relu(xxc), 2), [-1, M, JX, d]) qqc = tf.reshape(tf.reduce_max(tf.nn.relu(qqc), 2), [-1, JQ, d]) with tf.variable_scope("word_emb"): if config.mode == 'train': word_emb_mat = tf.get_variable("word_emb_mat", dtype='float', shape=[VW, config.word_emb_size], initializer=get_initializer(config.emb_mat)) else: word_emb_mat = tf.get_variable("word_emb_mat", shape=[VW, config.word_emb_size], dtype='float') Ax = tf.nn.embedding_lookup(word_emb_mat, self.x) # [N, M, JX, d] Aq = tf.nn.embedding_lookup(word_emb_mat, self.q) # [N, JQ, d] # Ax = linear([Ax], d, False, scope='Ax_reshape') # Aq = linear([Aq], d, False, scope='Aq_reshape') xx = tf.concat(3, [xxc, Ax]) # [N, M, JX, 2d] qq = tf.concat(2, [qqc, Aq]) # [N, JQ, 2d] D = d + config.word_emb_size with tf.variable_scope("pos_emb"): pos_emb_mat = tf.get_variable("pos_emb_mat", shape=[config.pos_vocab_size, d], dtype='float') Atx = tf.nn.embedding_lookup(pos_emb_mat, self.tx) # [N, M, H, JX, d] cell = BasicLSTMCell(D, state_is_tuple=True) cell = SwitchableDropoutWrapper(cell, self.is_train, input_keep_prob=config.input_keep_prob) x_len = tf.reduce_sum(tf.cast(x_mask, 'int32'), 2) # [N, M] q_len = tf.reduce_sum(tf.cast(q_mask, 'int32'), 1) # [N] with tf.variable_scope("rnn"): (fw_h, bw_h), _ = bidirectional_dynamic_rnn(cell, cell, xx, x_len, dtype='float', scope='start') # [N, M, JX, 2d] tf.get_variable_scope().reuse_variables() (fw_us, bw_us), (_, (fw_u, bw_u)) = bidirectional_dynamic_rnn(cell, cell, qq, q_len, dtype='float', scope='start') # [N, J, d], [N, d] u = (fw_u + bw_u) / 2.0 h = (fw_h + bw_h) / 2.0 with tf.variable_scope("h"): no_op_cell = NoOpCell(D) tree_rnn_cell = TreeRNNCell(no_op_cell, d, tf.reduce_max) initial_state = tf.reshape(h, [N*M*JX, D]) # [N*M*JX, D] inputs = tf.concat(4, [Atx, tf.cast(self.tx_edge_mask, 'float')]) # [N, M, H, JX, d+JX] inputs = tf.reshape(tf.transpose(inputs, [0, 1, 3, 2, 4]), [N*M*JX, H, d + JX]) # [N*M*JX, H, d+JX] length = tf.reshape(tf.reduce_sum(tf.cast(tx_mask, 'int32'), 2), [N*M*JX]) # length = tf.reshape(tf.reduce_sum(tf.cast(tf.transpose(tx_mask, [0, 1, 3, 2]), 'float'), 3), [-1]) h, _ = dynamic_rnn(tree_rnn_cell, inputs, length, initial_state=initial_state) # [N*M*JX, H, D] h = tf.transpose(tf.reshape(h, [N, M, JX, H, D]), [0, 1, 3, 2, 4]) # [N, M, H, JX, D] u = tf.expand_dims(tf.expand_dims(tf.expand_dims(u, 1), 1), 1) # [N, 1, 1, 1, 4d] dot = linear(h * u, 1, True, squeeze=True, scope='dot') # [N, M, H, JX] # self.logits = tf.reshape(dot, [N, M * H * JX]) self.logits = tf.reshape(exp_mask(dot, tx_mask), [N, M * H * JX]) # [N, M, H, JX] self.yp = tf.reshape(tf.nn.softmax(self.logits), [N, M, H, JX]) def _build_loss(self): config = self.config N, M, JX, JQ, VW, VC = \ config.batch_size, config.max_num_sents, config.max_sent_size, \ config.max_ques_size, config.word_vocab_size, config.char_vocab_size H = config.max_tree_height ce_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits( self.logits, tf.cast(tf.reshape(self.y, [N, M * H * JX]), 'float'))) tf.add_to_collection('losses', ce_loss) self.loss = tf.add_n(tf.get_collection('losses'), name='loss') tf.scalar_summary(self.loss.op.name, self.loss) tf.add_to_collection('ema/scalar', self.loss) def _get_ema_op(self): ema = tf.train.ExponentialMovingAverage(self.config.decay) ema_op = ema.apply(tf.get_collection("ema/scalar") + tf.get_collection("ema/histogram")) for var in tf.get_collection("ema/scalar"): ema_var = ema.average(var) tf.scalar_summary(ema_var.op.name, ema_var) for var in tf.get_collection("ema/histogram"): ema_var = ema.average(var) tf.histogram_summary(ema_var.op.name, ema_var) return ema_op def get_loss(self): return self.loss def get_global_step(self): return self.global_step def get_var_list(self): return self.var_list def get_feed_dict(self, batch, is_train, supervised=True): assert isinstance(batch, DataSet) config = self.config N, M, JX, JQ, VW, VC, d, W, H = \ config.batch_size, config.max_num_sents, config.max_sent_size, \ config.max_ques_size, config.word_vocab_size, config.char_vocab_size, config.hidden_size, config.max_word_size, \ config.max_tree_height feed_dict = {} x = np.zeros([N, M, JX], dtype='int32') cx = np.zeros([N, M, JX, W], dtype='int32') q = np.zeros([N, JQ], dtype='int32') cq = np.zeros([N, JQ, W], dtype='int32') tx = np.zeros([N, M, H, JX], dtype='int32') tx_edge_mask = np.zeros([N, M, H, JX, JX], dtype='bool') feed_dict[self.x] = x feed_dict[self.cx] = cx feed_dict[self.q] = q feed_dict[self.cq] = cq feed_dict[self.tx] = tx feed_dict[self.tx_edge_mask] = tx_edge_mask feed_dict[self.is_train] = is_train def _get_word(word): d = batch.shared['word2idx'] for each in (word, word.lower(), word.capitalize(), word.upper()): if each in d: return d[each] return 1 def _get_char(char): d = batch.shared['char2idx'] if char in d: return d[char] return 1 def _get_pos(tree): d = batch.shared['pos2idx'] if tree.label() in d: return d[tree.label()] return 1 for i, xi in enumerate(batch.data['x']): for j, xij in enumerate(xi): for k, xijk in enumerate(xij): x[i, j, k] = _get_word(xijk) for i, cxi in enumerate(batch.data['cx']): for j, cxij in enumerate(cxi): for k, cxijk in enumerate(cxij): for l, cxijkl in enumerate(cxijk): cx[i, j, k, l] = _get_char(cxijkl) if l + 1 == config.max_word_size: break for i, qi in enumerate(batch.data['q']): for j, qij in enumerate(qi): q[i, j] = _get_word(qij) for i, cqi in enumerate(batch.data['cq']): for j, cqij in enumerate(cqi): for k, cqijk in enumerate(cqij): cq[i, j, k] = _get_char(cqijk) if k + 1 == config.max_word_size: break for i, txi in enumerate(batch.data['stx']): for j, txij in enumerate(txi): txij_mat, txij_mask = tree2matrix(nltk.tree.Tree.fromstring(txij), _get_pos, row_size=H, col_size=JX) tx[i, j, :, :], tx_edge_mask[i, j, :, :, :] = txij_mat, txij_mask if supervised: y = np.zeros([N, M, H, JX], dtype='bool') feed_dict[self.y] = y for i, yi in enumerate(batch.data['y']): start_idx, stop_idx = yi sent_idx = start_idx[0] if start_idx[0] == stop_idx[0]: span = [start_idx[1], stop_idx[1]] else: span = [start_idx[1], len(batch.data['x'][sent_idx])] tree = nltk.tree.Tree.fromstring(batch.data['stx'][i][sent_idx]) set_span(tree) best_subtree = find_max_f1_subtree(tree, span) def _get_y(t): return t == best_subtree yij, _ = tree2matrix(tree, _get_y, H, JX, dtype='bool') y[i, sent_idx, :, :] = yij return feed_dict
bi-att-flow-master
tree/model.py
import os from pprint import pprint import tensorflow as tf from tree.main import main as m flags = tf.app.flags flags.DEFINE_string("model_name", "tree", "Model name [tree]") flags.DEFINE_string("data_dir", "data/squad", "Data dir [data/squad]") flags.DEFINE_integer("run_id", 0, "Run ID [0]") flags.DEFINE_integer("batch_size", 128, "Batch size [128]") flags.DEFINE_float("init_lr", 0.5, "Initial learning rate [0.5]") flags.DEFINE_integer("num_epochs", 50, "Total number of epochs for training [50]") flags.DEFINE_integer("num_steps", 0, "Number of steps [0]") flags.DEFINE_integer("eval_num_batches", 100, "eval num batches [100]") flags.DEFINE_integer("load_step", 0, "load step [0]") flags.DEFINE_integer("early_stop", 4, "early stop [4]") flags.DEFINE_string("mode", "test", "train | test | forward [test]") flags.DEFINE_boolean("load", True, "load saved data? [True]") flags.DEFINE_boolean("progress", True, "Show progress? [True]") flags.DEFINE_integer("log_period", 100, "Log period [100]") flags.DEFINE_integer("eval_period", 1000, "Eval period [1000]") flags.DEFINE_integer("save_period", 1000, "Save Period [1000]") flags.DEFINE_float("decay", 0.9, "Exponential moving average decay [0.9]") flags.DEFINE_boolean("draft", False, "Draft for quick testing? [False]") flags.DEFINE_integer("hidden_size", 32, "Hidden size [32]") flags.DEFINE_float("input_keep_prob", 0.5, "Input keep prob [0.5]") flags.DEFINE_integer("char_emb_size", 8, "Char emb size [8]") flags.DEFINE_integer("char_filter_height", 5, "Char filter height [5]") flags.DEFINE_float("wd", 0.0001, "Weight decay [0.001]") flags.DEFINE_bool("lower_word", True, "lower word [True]") flags.DEFINE_bool("dump_eval", True, "dump eval? [True]") flags.DEFINE_integer("word_count_th", 100, "word count th [100]") flags.DEFINE_integer("char_count_th", 500, "char count th [500]") flags.DEFINE_integer("sent_size_th", 64, "sent size th [64]") flags.DEFINE_integer("num_sents_th", 8, "num sents th [8]") flags.DEFINE_integer("ques_size_th", 64, "ques size th [64]") flags.DEFINE_integer("word_size_th", 16, "word size th [16]") flags.DEFINE_integer("tree_height_th", 16, "tree height th [16]") def main(_): config = flags.FLAGS config.out_dir = os.path.join("out", config.model_name, str(config.run_id).zfill(2)) m(config) if __name__ == "__main__": tf.app.run()
bi-att-flow-master
tree/cli.py
import json import os import random import itertools import math import nltk from my.nltk_utils import load_compressed_tree from my.utils import index class DataSet(object): def __init__(self, data, data_type, shared=None, valid_idxs=None): total_num_examples = len(next(iter(data.values()))) self.data = data # e.g. {'X': [0, 1, 2], 'Y': [2, 3, 4]} self.data_type = data_type self.shared = shared self.valid_idxs = range(total_num_examples) if valid_idxs is None else valid_idxs self.num_examples = len(self.valid_idxs) def get_batches(self, batch_size, num_batches=None, shuffle=False): num_batches_per_epoch = int(math.ceil(self.num_examples / batch_size)) if num_batches is None: num_batches = num_batches_per_epoch num_epochs = int(math.ceil(num_batches / num_batches_per_epoch)) idxs = itertools.chain.from_iterable(random.sample(self.valid_idxs, len(self.valid_idxs)) if shuffle else self.valid_idxs for _ in range(num_epochs)) for _ in range(num_batches): batch_idxs = tuple(itertools.islice(idxs, batch_size)) batch_data = {} for key, val in self.data.items(): if key.startswith('*'): assert self.shared is not None shared_key = key[1:] batch_data[shared_key] = [index(self.shared[shared_key], val[idx]) for idx in batch_idxs] else: batch_data[key] = list(map(val.__getitem__, batch_idxs)) batch_ds = DataSet(batch_data, self.data_type, shared=self.shared) yield batch_idxs, batch_ds class SquadDataSet(DataSet): def __init__(self, data, data_type, shared=None, valid_idxs=None): super(SquadDataSet, self).__init__(data, data_type, shared=shared, valid_idxs=valid_idxs) def load_metadata(config, data_type): metadata_path = os.path.join(config.data_dir, "metadata_{}.json".format(data_type)) with open(metadata_path, 'r') as fh: metadata = json.load(fh) for key, val in metadata.items(): config.__setattr__(key, val) return metadata def read_data(config, data_type, ref, data_filter=None): data_path = os.path.join(config.data_dir, "data_{}.json".format(data_type)) shared_path = os.path.join(config.data_dir, "shared_{}.json".format(data_type)) with open(data_path, 'r') as fh: data = json.load(fh) with open(shared_path, 'r') as fh: shared = json.load(fh) num_examples = len(next(iter(data.values()))) if data_filter is None: valid_idxs = range(num_examples) else: mask = [] keys = data.keys() values = data.values() for vals in zip(*values): each = {key: val for key, val in zip(keys, vals)} mask.append(data_filter(each, shared)) valid_idxs = [idx for idx in range(len(mask)) if mask[idx]] print("Loaded {}/{} examples from {}".format(len(valid_idxs), num_examples, data_type)) shared_path = os.path.join(config.out_dir, "shared.json") if not ref: word_counter = shared['lower_word_counter'] if config.lower_word else shared['word_counter'] char_counter = shared['char_counter'] pos_counter = shared['pos_counter'] shared['word2idx'] = {word: idx + 2 for idx, word in enumerate(word for word, count in word_counter.items() if count > config.word_count_th)} shared['char2idx'] = {char: idx + 2 for idx, char in enumerate(char for char, count in char_counter.items() if count > config.char_count_th)} shared['pos2idx'] = {pos: idx + 2 for idx, pos in enumerate(pos_counter.keys())} NULL = "-NULL-" UNK = "-UNK-" shared['word2idx'][NULL] = 0 shared['word2idx'][UNK] = 1 shared['char2idx'][NULL] = 0 shared['char2idx'][UNK] = 1 shared['pos2idx'][NULL] = 0 shared['pos2idx'][UNK] = 1 json.dump({'word2idx': shared['word2idx'], 'char2idx': shared['char2idx'], 'pos2idx': shared['pos2idx']}, open(shared_path, 'w')) else: new_shared = json.load(open(shared_path, 'r')) for key, val in new_shared.items(): shared[key] = val data_set = DataSet(data, data_type, shared=shared, valid_idxs=valid_idxs) return data_set def get_squad_data_filter(config): def data_filter(data_point, shared): assert shared is not None rx, rcx, q, cq, y = (data_point[key] for key in ('*x', '*cx', 'q', 'cq', 'y')) x, cx, stx = shared['x'], shared['cx'], shared['stx'] if len(q) > config.ques_size_th: return False xi = x[rx[0]][rx[1]] if len(xi) > config.num_sents_th: return False if any(len(xij) > config.sent_size_th for xij in xi): return False stxi = stx[rx[0]][rx[1]] if any(nltk.tree.Tree.fromstring(s).height() > config.tree_height_th for s in stxi): return False return True return data_filter def update_config(config, data_sets): config.max_num_sents = 0 config.max_sent_size = 0 config.max_ques_size = 0 config.max_word_size = 0 config.max_tree_height = 0 for data_set in data_sets: data = data_set.data shared = data_set.shared for idx in data_set.valid_idxs: rx = data['*x'][idx] q = data['q'][idx] sents = shared['x'][rx[0]][rx[1]] trees = map(nltk.tree.Tree.fromstring, shared['stx'][rx[0]][rx[1]]) config.max_tree_height = max(config.max_tree_height, max(tree.height() for tree in trees)) config.max_num_sents = max(config.max_num_sents, len(sents)) config.max_sent_size = max(config.max_sent_size, max(map(len, sents))) config.max_word_size = max(config.max_word_size, max(len(word) for sent in sents for word in sent)) if len(q) > 0: config.max_ques_size = max(config.max_ques_size, len(q)) config.max_word_size = max(config.max_word_size, max(len(word) for word in q)) config.max_word_size = min(config.max_word_size, config.word_size_th) config.char_vocab_size = len(data_sets[0].shared['char2idx']) config.word_emb_size = len(next(iter(data_sets[0].shared['word2vec'].values()))) config.word_vocab_size = len(data_sets[0].shared['word2idx']) config.pos_vocab_size = len(data_sets[0].shared['pos2idx'])
bi-att-flow-master
tree/read_data.py
import tensorflow as tf from tree.model import Model class Trainer(object): def __init__(self, config, model): assert isinstance(model, Model) self.config = config self.model = model self.opt = tf.train.AdagradOptimizer(config.init_lr) self.loss = model.get_loss() self.var_list = model.get_var_list() self.global_step = model.get_global_step() self.ema_op = model.ema_op self.summary = model.summary self.grads = self.opt.compute_gradients(self.loss, var_list=self.var_list) opt_op = self.opt.apply_gradients(self.grads, global_step=self.global_step) # Define train op with tf.control_dependencies([opt_op]): self.train_op = tf.group(self.ema_op) def get_train_op(self): return self.train_op def step(self, sess, batch, get_summary=False): assert isinstance(sess, tf.Session) feed_dict = self.model.get_feed_dict(batch, True) if get_summary: loss, summary, train_op = \ sess.run([self.loss, self.summary, self.train_op], feed_dict=feed_dict) else: loss, train_op = sess.run([self.loss, self.train_op], feed_dict=feed_dict) summary = None return loss, summary, train_op
bi-att-flow-master
tree/trainer.py
import argparse import json import math import os import shutil from pprint import pprint import tensorflow as tf from tqdm import tqdm import numpy as np from tree.evaluator import AccuracyEvaluator2, Evaluator from tree.graph_handler import GraphHandler from tree.model import Model from tree.trainer import Trainer from tree.read_data import load_metadata, read_data, get_squad_data_filter, update_config def main(config): set_dirs(config) if config.mode == 'train': _train(config) elif config.mode == 'test': _test(config) elif config.mode == 'forward': _forward(config) else: raise ValueError("invalid value for 'mode': {}".format(config.mode)) def _config_draft(config): if config.draft: config.num_steps = 10 config.eval_period = 10 config.log_period = 1 config.save_period = 10 config.eval_num_batches = 1 def _train(config): # load_metadata(config, 'train') # this updates the config file according to metadata file data_filter = get_squad_data_filter(config) train_data = read_data(config, 'train', config.load, data_filter=data_filter) dev_data = read_data(config, 'dev', True, data_filter=data_filter) update_config(config, [train_data, dev_data]) _config_draft(config) word2vec_dict = train_data.shared['lower_word2vec'] if config.lower_word else train_data.shared['word2vec'] word2idx_dict = train_data.shared['word2idx'] idx2vec_dict = {word2idx_dict[word]: vec for word, vec in word2vec_dict.items() if word in word2idx_dict} print("{}/{} unique words have corresponding glove vectors.".format(len(idx2vec_dict), len(word2idx_dict))) emb_mat = np.array([idx2vec_dict[idx] if idx in idx2vec_dict else np.random.multivariate_normal(np.zeros(config.word_emb_size), np.eye(config.word_emb_size)) for idx in range(config.word_vocab_size)]) config.emb_mat = emb_mat # construct model graph and variables (using default graph) pprint(config.__flags, indent=2) model = Model(config) trainer = Trainer(config, model) evaluator = AccuracyEvaluator2(config, model) graph_handler = GraphHandler(config) # controls all tensors and variables in the graph, including loading /saving # Variables sess = tf.Session() graph_handler.initialize(sess) # begin training num_steps = config.num_steps or int(config.num_epochs * train_data.num_examples / config.batch_size) max_acc = 0 noupdate_count = 0 global_step = 0 for _, batch in tqdm(train_data.get_batches(config.batch_size, num_batches=num_steps, shuffle=True), total=num_steps): global_step = sess.run(model.global_step) + 1 # +1 because all calculations are done after step get_summary = global_step % config.log_period == 0 loss, summary, train_op = trainer.step(sess, batch, get_summary=get_summary) if get_summary: graph_handler.add_summary(summary, global_step) # Occasional evaluation and saving if global_step % config.save_period == 0: graph_handler.save(sess, global_step=global_step) if global_step % config.eval_period == 0: num_batches = math.ceil(dev_data.num_examples / config.batch_size) if 0 < config.eval_num_batches < num_batches: num_batches = config.eval_num_batches e = evaluator.get_evaluation_from_batches( sess, tqdm(dev_data.get_batches(config.batch_size, num_batches=num_batches), total=num_batches)) graph_handler.add_summaries(e.summaries, global_step) if e.acc > max_acc: max_acc = e.acc noupdate_count = 0 else: noupdate_count += 1 if noupdate_count == config.early_stop: break if config.dump_eval: graph_handler.dump_eval(e) if global_step % config.save_period != 0: graph_handler.save(sess, global_step=global_step) def _test(config): test_data = read_data(config, 'test', True) update_config(config, [test_data]) _config_draft(config) pprint(config.__flags, indent=2) model = Model(config) evaluator = AccuracyEvaluator2(config, model) graph_handler = GraphHandler(config) # controls all tensors and variables in the graph, including loading /saving sess = tf.Session() graph_handler.initialize(sess) num_batches = math.ceil(test_data.num_examples / config.batch_size) if 0 < config.eval_num_batches < num_batches: num_batches = config.eval_num_batches e = evaluator.get_evaluation_from_batches(sess, tqdm(test_data.get_batches(config.batch_size, num_batches=num_batches), total=num_batches)) print(e) if config.dump_eval: graph_handler.dump_eval(e) def _forward(config): forward_data = read_data(config, 'forward', True) _config_draft(config) pprint(config.__flag, indent=2) model = Model(config) evaluator = Evaluator(config, model) graph_handler = GraphHandler(config) # controls all tensors and variables in the graph, including loading /saving sess = tf.Session() graph_handler.initialize(sess) num_batches = math.ceil(forward_data.num_examples / config.batch_size) if 0 < config.eval_num_batches < num_batches: num_batches = config.eval_num_batches e = evaluator.get_evaluation_from_batches(sess, tqdm(forward_data.get_batches(config.batch_size, num_batches=num_batches), total=num_batches)) print(e) if config.dump_eval: graph_handler.dump_eval(e) def set_dirs(config): # create directories if not config.load and os.path.exists(config.out_dir): shutil.rmtree(config.out_dir) config.save_dir = os.path.join(config.out_dir, "save") config.log_dir = os.path.join(config.out_dir, "log") config.eval_dir = os.path.join(config.out_dir, "eval") if not os.path.exists(config.out_dir): os.makedirs(config.out_dir) if not os.path.exists(config.save_dir): os.mkdir(config.save_dir) if not os.path.exists(config.log_dir): os.mkdir(config.eval_dir) def _get_args(): parser = argparse.ArgumentParser() parser.add_argument("config_path") return parser.parse_args() class Config(object): def __init__(self, **entries): self.__dict__.update(entries) def _run(): args = _get_args() with open(args.config_path, 'r') as fh: config = Config(**json.load(fh)) main(config) if __name__ == "__main__": _run()
bi-att-flow-master
tree/main.py
import numpy as np import tensorflow as tf from tree.read_data import DataSet from my.nltk_utils import span_f1 class Evaluation(object): def __init__(self, data_type, global_step, idxs, yp): self.data_type = data_type self.global_step = global_step self.idxs = idxs self.yp = yp self.num_examples = len(yp) self.dict = {'data_type': data_type, 'global_step': global_step, 'yp': yp, 'idxs': idxs, 'num_examples': self.num_examples} self.summaries = None def __repr__(self): return "{} step {}".format(self.data_type, self.global_step) def __add__(self, other): if other == 0: return self assert self.data_type == other.data_type assert self.global_step == other.global_step new_yp = self.yp + other.yp new_idxs = self.idxs + other.idxs return Evaluation(self.data_type, self.global_step, new_idxs, new_yp) def __radd__(self, other): return self.__add__(other) class LabeledEvaluation(Evaluation): def __init__(self, data_type, global_step, idxs, yp, y): super(LabeledEvaluation, self).__init__(data_type, global_step, idxs, yp) self.y = y self.dict['y'] = y def __add__(self, other): if other == 0: return self assert self.data_type == other.data_type assert self.global_step == other.global_step new_yp = self.yp + other.yp new_y = self.y + other.y new_idxs = self.idxs + other.idxs return LabeledEvaluation(self.data_type, self.global_step, new_idxs, new_yp, new_y) class AccuracyEvaluation(LabeledEvaluation): def __init__(self, data_type, global_step, idxs, yp, y, correct, loss): super(AccuracyEvaluation, self).__init__(data_type, global_step, idxs, yp, y) self.loss = loss self.correct = correct self.acc = sum(correct) / len(correct) self.dict['loss'] = loss self.dict['correct'] = correct self.dict['acc'] = self.acc loss_summary = tf.Summary(value=[tf.Summary.Value(tag='dev/loss', simple_value=self.loss)]) acc_summary = tf.Summary(value=[tf.Summary.Value(tag='dev/acc', simple_value=self.acc)]) self.summaries = [loss_summary, acc_summary] def __repr__(self): return "{} step {}: accuracy={}, loss={}".format(self.data_type, self.global_step, self.acc, self.loss) def __add__(self, other): if other == 0: return self assert self.data_type == other.data_type assert self.global_step == other.global_step new_idxs = self.idxs + other.idxs new_yp = self.yp + other.yp new_y = self.y + other.y new_correct = self.correct + other.correct new_loss = (self.loss * self.num_examples + other.loss * other.num_examples) / len(new_correct) return AccuracyEvaluation(self.data_type, self.global_step, new_idxs, new_yp, new_y, new_correct, new_loss) class Evaluator(object): def __init__(self, config, model): self.config = config self.model = model def get_evaluation(self, sess, batch): idxs, data_set = batch feed_dict = self.model.get_feed_dict(data_set, False, supervised=False) global_step, yp = sess.run([self.model.global_step, self.model.yp], feed_dict=feed_dict) yp = yp[:data_set.num_examples] e = Evaluation(data_set.data_type, int(global_step), idxs, yp.tolist()) return e def get_evaluation_from_batches(self, sess, batches): e = sum(self.get_evaluation(sess, batch) for batch in batches) return e class LabeledEvaluator(Evaluator): def get_evaluation(self, sess, batch): idxs, data_set = batch feed_dict = self.model.get_feed_dict(data_set, False, supervised=False) global_step, yp = sess.run([self.model.global_step, self.model.yp], feed_dict=feed_dict) yp = yp[:data_set.num_examples] y = feed_dict[self.model.y] e = LabeledEvaluation(data_set.data_type, int(global_step), idxs, yp.tolist(), y.tolist()) return e class AccuracyEvaluator(LabeledEvaluator): def get_evaluation(self, sess, batch): idxs, data_set = batch assert isinstance(data_set, DataSet) feed_dict = self.model.get_feed_dict(data_set, False) global_step, yp, loss = sess.run([self.model.global_step, self.model.yp, self.model.loss], feed_dict=feed_dict) y = feed_dict[self.model.y] yp = yp[:data_set.num_examples] correct = [self.__class__.compare(yi, ypi) for yi, ypi in zip(y, yp)] e = AccuracyEvaluation(data_set.data_type, int(global_step), idxs, yp.tolist(), y.tolist(), correct, float(loss)) return e @staticmethod def compare(yi, ypi): return int(np.argmax(yi)) == int(np.argmax(ypi)) class AccuracyEvaluator2(AccuracyEvaluator): @staticmethod def compare(yi, ypi): i = int(np.argmax(yi.flatten())) j = int(np.argmax(ypi.flatten())) # print(i, j, i == j) return i == j class TempEvaluation(AccuracyEvaluation): def __init__(self, data_type, global_step, idxs, yp, yp2, y, y2, correct, loss, f1s): super(TempEvaluation, self).__init__(data_type, global_step, idxs, yp, y, correct, loss) self.y2 = y2 self.yp2 = yp2 self.f1s = f1s self.f1 = float(np.mean(f1s)) self.dict['y2'] = y2 self.dict['yp2'] = yp2 self.dict['f1s'] = f1s self.dict['f1'] = self.f1 f1_summary = tf.Summary(value=[tf.Summary.Value(tag='dev/f1', simple_value=self.f1)]) self.summaries.append(f1_summary) def __add__(self, other): if other == 0: return self assert self.data_type == other.data_type assert self.global_step == other.global_step new_idxs = self.idxs + other.idxs new_yp = self.yp + other.yp new_yp2 = self.yp2 + other.yp2 new_y = self.y + other.y new_y2 = self.y2 + other.y2 new_correct = self.correct + other.correct new_f1s = self.f1s + other.f1s new_loss = (self.loss * self.num_examples + other.loss * other.num_examples) / len(new_correct) return TempEvaluation(self.data_type, self.global_step, new_idxs, new_yp, new_yp2, new_y, new_y2, new_correct, new_loss, new_f1s) class TempEvaluator(LabeledEvaluator): def get_evaluation(self, sess, batch): idxs, data_set = batch assert isinstance(data_set, DataSet) feed_dict = self.model.get_feed_dict(data_set, False) global_step, yp, yp2, loss = sess.run([self.model.global_step, self.model.yp, self.model.yp2, self.model.loss], feed_dict=feed_dict) y, y2 = feed_dict[self.model.y], feed_dict[self.model.y2] yp, yp2 = yp[:data_set.num_examples], yp2[:data_set.num_examples] correct = [self.__class__.compare(yi, y2i, ypi, yp2i) for yi, y2i, ypi, yp2i in zip(y, y2, yp, yp2)] f1s = [self.__class__.span_f1(yi, y2i, ypi, yp2i) for yi, y2i, ypi, yp2i in zip(y, y2, yp, yp2)] e = TempEvaluation(data_set.data_type, int(global_step), idxs, yp.tolist(), yp2.tolist(), y.tolist(), y2.tolist(), correct, float(loss), f1s) return e @staticmethod def compare(yi, y2i, ypi, yp2i): i = int(np.argmax(yi.flatten())) j = int(np.argmax(ypi.flatten())) k = int(np.argmax(y2i.flatten())) l = int(np.argmax(yp2i.flatten())) # print(i, j, i == j) return i == j and k == l @staticmethod def span_f1(yi, y2i, ypi, yp2i): true_span = (np.argmax(yi.flatten()), np.argmax(y2i.flatten())+1) pred_span = (np.argmax(ypi.flatten()), np.argmax(yp2i.flatten())+1) f1 = span_f1(true_span, pred_span) return f1
bi-att-flow-master
tree/evaluator.py
import shutil from collections import OrderedDict import http.server import socketserver import argparse import json import os import numpy as np from tqdm import tqdm from jinja2 import Environment, FileSystemLoader def bool_(string): if string == 'True': return True elif string == 'False': return False else: raise Exception() def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--model_name", type=str, default='basic') parser.add_argument("--data_type", type=str, default='dev') parser.add_argument("--step", type=int, default=5000) parser.add_argument("--template_name", type=str, default="visualizer.html") parser.add_argument("--num_per_page", type=int, default=100) parser.add_argument("--data_dir", type=str, default="data/squad") parser.add_argument("--port", type=int, default=8000) parser.add_argument("--host", type=str, default="0.0.0.0") parser.add_argument("--open", type=str, default='False') parser.add_argument("--run_id", type=str, default="0") args = parser.parse_args() return args def _decode(decoder, sent): return " ".join(decoder[idx] for idx in sent) def accuracy2_visualizer(args): model_name = args.model_name data_type = args.data_type num_per_page = args.num_per_page data_dir = args.data_dir run_id = args.run_id.zfill(2) step = args.step eval_path =os.path.join("out", model_name, run_id, "eval", "{}-{}.json".format(data_type, str(step).zfill(6))) eval_ = json.load(open(eval_path, 'r')) _id = 0 html_dir = "/tmp/list_results%d" % _id while os.path.exists(html_dir): _id += 1 html_dir = "/tmp/list_results%d" % _id if os.path.exists(html_dir): shutil.rmtree(html_dir) os.mkdir(html_dir) cur_dir = os.path.dirname(os.path.realpath(__file__)) templates_dir = os.path.join(cur_dir, 'templates') env = Environment(loader=FileSystemLoader(templates_dir)) env.globals.update(zip=zip, reversed=reversed) template = env.get_template(args.template_name) data_path = os.path.join(data_dir, "data_{}.json".format(data_type)) shared_path = os.path.join(data_dir, "shared_{}.json".format(data_type)) data = json.load(open(data_path, 'r')) shared = json.load(open(shared_path, 'r')) rows = [] for i, (idx, yi, ypi) in enumerate(zip(*[eval_[key] for key in ('idxs', 'y', 'yp')])): id_, q, rx = (data[key][idx] for key in ('ids', 'q', '*x')) x = shared['x'][rx[0]][rx[1]] ques = [" ".join(q)] para = [[word for word in sent] for sent in x] row = { 'id': id_, 'title': "Hello world!", 'ques': ques, 'para': para, 'y': yi, 'y2': yi, 'yp': ypi, 'yp2': ypi, 'a': "" } rows.append(row) if i % num_per_page == 0: html_path = os.path.join(html_dir, "%s.html" % str(i).zfill(8)) if (i + 1) % num_per_page == 0 or (i + 1) == len(eval_['y']): var_dict = {'title': "Accuracy Visualization", 'rows': rows } with open(html_path, "wb") as f: f.write(template.render(**var_dict).encode('UTF-8')) rows = [] os.chdir(html_dir) port = args.port host = args.host # Overriding to suppress log message class MyHandler(http.server.SimpleHTTPRequestHandler): def log_message(self, format, *args): pass handler = MyHandler httpd = socketserver.TCPServer((host, port), handler) if args.open == 'True': os.system("open http://%s:%d" % (args.host, args.port)) print("serving at %s:%d" % (host, port)) httpd.serve_forever() if __name__ == "__main__": ARGS = get_args() accuracy2_visualizer(ARGS)
bi-att-flow-master
tree/visualizer.py
import sys import json from collections import Counter, defaultdict import re def key_func(pair): return pair[1] def get_func(vals, probs): counter = Counter(vals) # return max(zip(vals, probs), key=lambda pair: pair[1])[0] # return max(zip(vals, probs), key=lambda pair: pair[1] * counter[pair[0]] / len(counter) - 999 * (len(pair[0]) == 0) )[0] # return max(zip(vals, probs), key=lambda pair: pair[1] + 0.7 * counter[pair[0]] / len(counter) - 999 * (len(pair[0]) == 0) )[0] d = defaultdict(float) for val, prob in zip(vals, probs): d[val] += prob d[''] = 0 return max(d.items(), key=lambda pair: pair[1])[0] third_path = sys.argv[1] other_paths = sys.argv[2:] others = [json.load(open(path, 'r')) for path in other_paths] c = {} assert min(map(len, others)) == max(map(len, others)), list(map(len, others)) for key in others[0].keys(): if key == 'scores': continue probs = [other['scores'][key] for other in others] vals = [other[key] for other in others] largest_val = get_func(vals, probs) c[key] = largest_val json.dump(c, open(third_path, 'w'))
bi-att-flow-master
basic/ensemble_fast.py
import gzip import json from json import encoder import os import tensorflow as tf from basic.evaluator import Evaluation, F1Evaluation from my.utils import short_floats import pickle class GraphHandler(object): def __init__(self, config, model): self.config = config self.model = model self.saver = tf.train.Saver(max_to_keep=config.max_to_keep) self.writer = None self.save_path = os.path.join(config.save_dir, config.model_name) def initialize(self, sess): sess.run(tf.initialize_all_variables()) if self.config.load: self._load(sess) if self.config.mode == 'train': self.writer = tf.train.SummaryWriter(self.config.log_dir, graph=tf.get_default_graph()) def save(self, sess, global_step=None): saver = tf.train.Saver(max_to_keep=self.config.max_to_keep) saver.save(sess, self.save_path, global_step=global_step) def _load(self, sess): config = self.config vars_ = {var.name.split(":")[0]: var for var in tf.all_variables()} if config.load_ema: ema = self.model.var_ema for var in tf.trainable_variables(): del vars_[var.name.split(":")[0]] vars_[ema.average_name(var)] = var saver = tf.train.Saver(vars_, max_to_keep=config.max_to_keep) if config.load_path: save_path = config.load_path elif config.load_step > 0: save_path = os.path.join(config.save_dir, "{}-{}".format(config.model_name, config.load_step)) else: save_dir = config.save_dir checkpoint = tf.train.get_checkpoint_state(save_dir) assert checkpoint is not None, "cannot load checkpoint at {}".format(save_dir) save_path = checkpoint.model_checkpoint_path print("Loading saved model from {}".format(save_path)) saver.restore(sess, save_path) def add_summary(self, summary, global_step): self.writer.add_summary(summary, global_step) def add_summaries(self, summaries, global_step): for summary in summaries: self.add_summary(summary, global_step) def dump_eval(self, e, precision=2, path=None): assert isinstance(e, Evaluation) if self.config.dump_pickle: path = path or os.path.join(self.config.eval_dir, "{}-{}.pklz".format(e.data_type, str(e.global_step).zfill(6))) with gzip.open(path, 'wb', compresslevel=3) as fh: pickle.dump(e.dict, fh) else: path = path or os.path.join(self.config.eval_dir, "{}-{}.json".format(e.data_type, str(e.global_step).zfill(6))) with open(path, 'w') as fh: json.dump(short_floats(e.dict, precision), fh) def dump_answer(self, e, path=None): assert isinstance(e, Evaluation) path = path or os.path.join(self.config.answer_dir, "{}-{}.json".format(e.data_type, str(e.global_step).zfill(6))) with open(path, 'w') as fh: json.dump(e.id2answer_dict, fh)
bi-att-flow-master
basic/graph_handler.py
bi-att-flow-master
basic/__init__.py
import random import itertools import numpy as np import tensorflow as tf from tensorflow.python.ops.rnn_cell import BasicLSTMCell from basic.read_data import DataSet from my.tensorflow import get_initializer from my.tensorflow.nn import softsel, get_logits, highway_network, multi_conv1d from my.tensorflow.rnn import bidirectional_dynamic_rnn from my.tensorflow.rnn_cell import SwitchableDropoutWrapper, AttentionCell def get_multi_gpu_models(config): models = [] for gpu_idx in range(config.num_gpus): with tf.name_scope("model_{}".format(gpu_idx)) as scope, tf.device("/{}:{}".format(config.device_type, gpu_idx)): model = Model(config, scope, rep=gpu_idx == 0) tf.get_variable_scope().reuse_variables() models.append(model) return models class Model(object): def __init__(self, config, scope, rep=True): self.scope = scope self.config = config self.global_step = tf.get_variable('global_step', shape=[], dtype='int32', initializer=tf.constant_initializer(0), trainable=False) # Define forward inputs here N, M, JX, JQ, VW, VC, W = \ config.batch_size, config.max_num_sents, config.max_sent_size, \ config.max_ques_size, config.word_vocab_size, config.char_vocab_size, config.max_word_size self.x = tf.placeholder('int32', [N, None, None], name='x') self.cx = tf.placeholder('int32', [N, None, None, W], name='cx') self.x_mask = tf.placeholder('bool', [N, None, None], name='x_mask') self.q = tf.placeholder('int32', [N, None], name='q') self.cq = tf.placeholder('int32', [N, None, W], name='cq') self.q_mask = tf.placeholder('bool', [N, None], name='q_mask') self.y = tf.placeholder('bool', [N, None, None], name='y') self.y2 = tf.placeholder('bool', [N, None, None], name='y2') self.is_train = tf.placeholder('bool', [], name='is_train') self.new_emb_mat = tf.placeholder('float', [None, config.word_emb_size], name='new_emb_mat') # Define misc self.tensor_dict = {} # Forward outputs / loss inputs self.logits = None self.yp = None self.var_list = None # Loss outputs self.loss = None self._build_forward() self._build_loss() self.var_ema = None if rep: self._build_var_ema() if config.mode == 'train': self._build_ema() self.summary = tf.merge_all_summaries() self.summary = tf.merge_summary(tf.get_collection("summaries", scope=self.scope)) def _build_forward(self): config = self.config N, M, JX, JQ, VW, VC, d, W = \ config.batch_size, config.max_num_sents, config.max_sent_size, \ config.max_ques_size, config.word_vocab_size, config.char_vocab_size, config.hidden_size, \ config.max_word_size JX = tf.shape(self.x)[2] JQ = tf.shape(self.q)[1] M = tf.shape(self.x)[1] dc, dw, dco = config.char_emb_size, config.word_emb_size, config.char_out_size with tf.variable_scope("emb"): if config.use_char_emb: with tf.variable_scope("emb_var"), tf.device("/cpu:0"): char_emb_mat = tf.get_variable("char_emb_mat", shape=[VC, dc], dtype='float') with tf.variable_scope("char"): Acx = tf.nn.embedding_lookup(char_emb_mat, self.cx) # [N, M, JX, W, dc] Acq = tf.nn.embedding_lookup(char_emb_mat, self.cq) # [N, JQ, W, dc] Acx = tf.reshape(Acx, [-1, JX, W, dc]) Acq = tf.reshape(Acq, [-1, JQ, W, dc]) filter_sizes = list(map(int, config.out_channel_dims.split(','))) heights = list(map(int, config.filter_heights.split(','))) assert sum(filter_sizes) == dco, (filter_sizes, dco) with tf.variable_scope("conv"): xx = multi_conv1d(Acx, filter_sizes, heights, "VALID", self.is_train, config.keep_prob, scope="xx") if config.share_cnn_weights: tf.get_variable_scope().reuse_variables() qq = multi_conv1d(Acq, filter_sizes, heights, "VALID", self.is_train, config.keep_prob, scope="xx") else: qq = multi_conv1d(Acq, filter_sizes, heights, "VALID", self.is_train, config.keep_prob, scope="qq") xx = tf.reshape(xx, [-1, M, JX, dco]) qq = tf.reshape(qq, [-1, JQ, dco]) if config.use_word_emb: with tf.variable_scope("emb_var"), tf.device("/cpu:0"): if config.mode == 'train': word_emb_mat = tf.get_variable("word_emb_mat", dtype='float', shape=[VW, dw], initializer=get_initializer(config.emb_mat)) else: word_emb_mat = tf.get_variable("word_emb_mat", shape=[VW, dw], dtype='float') if config.use_glove_for_unk: word_emb_mat = tf.concat(0, [word_emb_mat, self.new_emb_mat]) with tf.name_scope("word"): Ax = tf.nn.embedding_lookup(word_emb_mat, self.x) # [N, M, JX, d] Aq = tf.nn.embedding_lookup(word_emb_mat, self.q) # [N, JQ, d] self.tensor_dict['x'] = Ax self.tensor_dict['q'] = Aq if config.use_char_emb: xx = tf.concat(3, [xx, Ax]) # [N, M, JX, di] qq = tf.concat(2, [qq, Aq]) # [N, JQ, di] else: xx = Ax qq = Aq # highway network if config.highway: with tf.variable_scope("highway"): xx = highway_network(xx, config.highway_num_layers, True, wd=config.wd, is_train=self.is_train) tf.get_variable_scope().reuse_variables() qq = highway_network(qq, config.highway_num_layers, True, wd=config.wd, is_train=self.is_train) self.tensor_dict['xx'] = xx self.tensor_dict['qq'] = qq cell = BasicLSTMCell(d, state_is_tuple=True) d_cell = SwitchableDropoutWrapper(cell, self.is_train, input_keep_prob=config.input_keep_prob) x_len = tf.reduce_sum(tf.cast(self.x_mask, 'int32'), 2) # [N, M] q_len = tf.reduce_sum(tf.cast(self.q_mask, 'int32'), 1) # [N] with tf.variable_scope("prepro"): (fw_u, bw_u), ((_, fw_u_f), (_, bw_u_f)) = bidirectional_dynamic_rnn(d_cell, d_cell, qq, q_len, dtype='float', scope='u1') # [N, J, d], [N, d] u = tf.concat(2, [fw_u, bw_u]) if config.share_lstm_weights: tf.get_variable_scope().reuse_variables() (fw_h, bw_h), _ = bidirectional_dynamic_rnn(cell, cell, xx, x_len, dtype='float', scope='u1') # [N, M, JX, 2d] h = tf.concat(3, [fw_h, bw_h]) # [N, M, JX, 2d] else: (fw_h, bw_h), _ = bidirectional_dynamic_rnn(cell, cell, xx, x_len, dtype='float', scope='h1') # [N, M, JX, 2d] h = tf.concat(3, [fw_h, bw_h]) # [N, M, JX, 2d] self.tensor_dict['u'] = u self.tensor_dict['h'] = h with tf.variable_scope("main"): if config.dynamic_att: p0 = h u = tf.reshape(tf.tile(tf.expand_dims(u, 1), [1, M, 1, 1]), [N * M, JQ, 2 * d]) q_mask = tf.reshape(tf.tile(tf.expand_dims(self.q_mask, 1), [1, M, 1]), [N * M, JQ]) first_cell = AttentionCell(cell, u, mask=q_mask, mapper='sim', input_keep_prob=self.config.input_keep_prob, is_train=self.is_train) else: p0 = attention_layer(config, self.is_train, h, u, h_mask=self.x_mask, u_mask=self.q_mask, scope="p0", tensor_dict=self.tensor_dict) first_cell = d_cell (fw_g0, bw_g0), _ = bidirectional_dynamic_rnn(first_cell, first_cell, p0, x_len, dtype='float', scope='g0') # [N, M, JX, 2d] g0 = tf.concat(3, [fw_g0, bw_g0]) (fw_g1, bw_g1), _ = bidirectional_dynamic_rnn(first_cell, first_cell, g0, x_len, dtype='float', scope='g1') # [N, M, JX, 2d] g1 = tf.concat(3, [fw_g1, bw_g1]) logits = get_logits([g1, p0], d, True, wd=config.wd, input_keep_prob=config.input_keep_prob, mask=self.x_mask, is_train=self.is_train, func=config.answer_func, scope='logits1') a1i = softsel(tf.reshape(g1, [N, M * JX, 2 * d]), tf.reshape(logits, [N, M * JX])) a1i = tf.tile(tf.expand_dims(tf.expand_dims(a1i, 1), 1), [1, M, JX, 1]) (fw_g2, bw_g2), _ = bidirectional_dynamic_rnn(d_cell, d_cell, tf.concat(3, [p0, g1, a1i, g1 * a1i]), x_len, dtype='float', scope='g2') # [N, M, JX, 2d] g2 = tf.concat(3, [fw_g2, bw_g2]) logits2 = get_logits([g2, p0], d, True, wd=config.wd, input_keep_prob=config.input_keep_prob, mask=self.x_mask, is_train=self.is_train, func=config.answer_func, scope='logits2') flat_logits = tf.reshape(logits, [-1, M * JX]) flat_yp = tf.nn.softmax(flat_logits) # [-1, M*JX] yp = tf.reshape(flat_yp, [-1, M, JX]) flat_logits2 = tf.reshape(logits2, [-1, M * JX]) flat_yp2 = tf.nn.softmax(flat_logits2) yp2 = tf.reshape(flat_yp2, [-1, M, JX]) self.tensor_dict['g1'] = g1 self.tensor_dict['g2'] = g2 self.logits = flat_logits self.logits2 = flat_logits2 self.yp = yp self.yp2 = yp2 def _build_loss(self): config = self.config JX = tf.shape(self.x)[2] M = tf.shape(self.x)[1] JQ = tf.shape(self.q)[1] loss_mask = tf.reduce_max(tf.cast(self.q_mask, 'float'), 1) losses = tf.nn.softmax_cross_entropy_with_logits( self.logits, tf.cast(tf.reshape(self.y, [-1, M * JX]), 'float')) ce_loss = tf.reduce_mean(loss_mask * losses) tf.add_to_collection('losses', ce_loss) ce_loss2 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits( self.logits2, tf.cast(tf.reshape(self.y2, [-1, M * JX]), 'float'))) tf.add_to_collection("losses", ce_loss2) self.loss = tf.add_n(tf.get_collection('losses', scope=self.scope), name='loss') tf.scalar_summary(self.loss.op.name, self.loss) tf.add_to_collection('ema/scalar', self.loss) def _build_ema(self): self.ema = tf.train.ExponentialMovingAverage(self.config.decay) ema = self.ema tensors = tf.get_collection("ema/scalar", scope=self.scope) + tf.get_collection("ema/vector", scope=self.scope) ema_op = ema.apply(tensors) for var in tf.get_collection("ema/scalar", scope=self.scope): ema_var = ema.average(var) tf.scalar_summary(ema_var.op.name, ema_var) for var in tf.get_collection("ema/vector", scope=self.scope): ema_var = ema.average(var) tf.histogram_summary(ema_var.op.name, ema_var) with tf.control_dependencies([ema_op]): self.loss = tf.identity(self.loss) def _build_var_ema(self): self.var_ema = tf.train.ExponentialMovingAverage(self.config.var_decay) ema = self.var_ema ema_op = ema.apply(tf.trainable_variables()) with tf.control_dependencies([ema_op]): self.loss = tf.identity(self.loss) def get_loss(self): return self.loss def get_global_step(self): return self.global_step def get_var_list(self): return self.var_list def get_feed_dict(self, batch, is_train, supervised=True): assert isinstance(batch, DataSet) config = self.config N, M, JX, JQ, VW, VC, d, W = \ config.batch_size, config.max_num_sents, config.max_sent_size, \ config.max_ques_size, config.word_vocab_size, config.char_vocab_size, config.hidden_size, config.max_word_size feed_dict = {} if config.len_opt: """ Note that this optimization results in variable GPU RAM usage (i.e. can cause OOM in the middle of training.) First test without len_opt and make sure no OOM, and use len_opt """ if sum(len(sent) for para in batch.data['x'] for sent in para) == 0: new_JX = 1 else: new_JX = max(len(sent) for para in batch.data['x'] for sent in para) JX = min(JX, new_JX) if sum(len(ques) for ques in batch.data['q']) == 0: new_JQ = 1 else: new_JQ = max(len(ques) for ques in batch.data['q']) JQ = min(JQ, new_JQ) if config.cpu_opt: if sum(len(para) for para in batch.data['x']) == 0: new_M = 1 else: new_M = max(len(para) for para in batch.data['x']) M = min(M, new_M) x = np.zeros([N, M, JX], dtype='int32') cx = np.zeros([N, M, JX, W], dtype='int32') x_mask = np.zeros([N, M, JX], dtype='bool') q = np.zeros([N, JQ], dtype='int32') cq = np.zeros([N, JQ, W], dtype='int32') q_mask = np.zeros([N, JQ], dtype='bool') feed_dict[self.x] = x feed_dict[self.x_mask] = x_mask feed_dict[self.cx] = cx feed_dict[self.q] = q feed_dict[self.cq] = cq feed_dict[self.q_mask] = q_mask feed_dict[self.is_train] = is_train if config.use_glove_for_unk: feed_dict[self.new_emb_mat] = batch.shared['new_emb_mat'] X = batch.data['x'] CX = batch.data['cx'] if supervised: y = np.zeros([N, M, JX], dtype='bool') y2 = np.zeros([N, M, JX], dtype='bool') feed_dict[self.y] = y feed_dict[self.y2] = y2 for i, (xi, cxi, yi) in enumerate(zip(X, CX, batch.data['y'])): start_idx, stop_idx = random.choice(yi) j, k = start_idx j2, k2 = stop_idx if config.single: X[i] = [xi[j]] CX[i] = [cxi[j]] j, j2 = 0, 0 if config.squash: offset = sum(map(len, xi[:j])) j, k = 0, k + offset offset = sum(map(len, xi[:j2])) j2, k2 = 0, k2 + offset y[i, j, k] = True y2[i, j2, k2-1] = True def _get_word(word): d = batch.shared['word2idx'] for each in (word, word.lower(), word.capitalize(), word.upper()): if each in d: return d[each] if config.use_glove_for_unk: d2 = batch.shared['new_word2idx'] for each in (word, word.lower(), word.capitalize(), word.upper()): if each in d2: return d2[each] + len(d) return 1 def _get_char(char): d = batch.shared['char2idx'] if char in d: return d[char] return 1 for i, xi in enumerate(X): if self.config.squash: xi = [list(itertools.chain(*xi))] for j, xij in enumerate(xi): if j == config.max_num_sents: break for k, xijk in enumerate(xij): if k == config.max_sent_size: break each = _get_word(xijk) assert isinstance(each, int), each x[i, j, k] = each x_mask[i, j, k] = True for i, cxi in enumerate(CX): if self.config.squash: cxi = [list(itertools.chain(*cxi))] for j, cxij in enumerate(cxi): if j == config.max_num_sents: break for k, cxijk in enumerate(cxij): if k == config.max_sent_size: break for l, cxijkl in enumerate(cxijk): if l == config.max_word_size: break cx[i, j, k, l] = _get_char(cxijkl) for i, qi in enumerate(batch.data['q']): for j, qij in enumerate(qi): q[i, j] = _get_word(qij) q_mask[i, j] = True for i, cqi in enumerate(batch.data['cq']): for j, cqij in enumerate(cqi): for k, cqijk in enumerate(cqij): cq[i, j, k] = _get_char(cqijk) if k + 1 == config.max_word_size: break return feed_dict def bi_attention(config, is_train, h, u, h_mask=None, u_mask=None, scope=None, tensor_dict=None): with tf.variable_scope(scope or "bi_attention"): JX = tf.shape(h)[2] M = tf.shape(h)[1] JQ = tf.shape(u)[1] h_aug = tf.tile(tf.expand_dims(h, 3), [1, 1, 1, JQ, 1]) u_aug = tf.tile(tf.expand_dims(tf.expand_dims(u, 1), 1), [1, M, JX, 1, 1]) if h_mask is None: hu_mask = None else: h_mask_aug = tf.tile(tf.expand_dims(h_mask, 3), [1, 1, 1, JQ]) u_mask_aug = tf.tile(tf.expand_dims(tf.expand_dims(u_mask, 1), 1), [1, M, JX, 1]) hu_mask = h_mask_aug & u_mask_aug u_logits = get_logits([h_aug, u_aug], None, True, wd=config.wd, mask=hu_mask, is_train=is_train, func=config.logit_func, scope='u_logits') # [N, M, JX, JQ] u_a = softsel(u_aug, u_logits) # [N, M, JX, d] h_a = softsel(h, tf.reduce_max(u_logits, 3)) # [N, M, d] h_a = tf.tile(tf.expand_dims(h_a, 2), [1, 1, JX, 1]) if tensor_dict is not None: a_u = tf.nn.softmax(u_logits) # [N, M, JX, JQ] a_h = tf.nn.softmax(tf.reduce_max(u_logits, 3)) tensor_dict['a_u'] = a_u tensor_dict['a_h'] = a_h variables = tf.get_collection(tf.GraphKeys.VARIABLES, scope=tf.get_variable_scope().name) for var in variables: tensor_dict[var.name] = var return u_a, h_a def attention_layer(config, is_train, h, u, h_mask=None, u_mask=None, scope=None, tensor_dict=None): with tf.variable_scope(scope or "attention_layer"): JX = tf.shape(h)[2] M = tf.shape(h)[1] JQ = tf.shape(u)[1] if config.q2c_att or config.c2q_att: u_a, h_a = bi_attention(config, is_train, h, u, h_mask=h_mask, u_mask=u_mask, tensor_dict=tensor_dict) if not config.c2q_att: u_a = tf.tile(tf.expand_dims(tf.expand_dims(tf.reduce_mean(u, 1), 1), 1), [1, M, JX, 1]) if config.q2c_att: p0 = tf.concat(3, [h, u_a, h * u_a, h * h_a]) else: p0 = tf.concat(3, [h, u_a, h * u_a]) return p0
bi-att-flow-master
basic/model.py
import os import tensorflow as tf from basic.main import main as m flags = tf.app.flags # Names and directories flags.DEFINE_string("model_name", "basic", "Model name [basic]") flags.DEFINE_string("data_dir", "data/squad", "Data dir [data/squad]") flags.DEFINE_string("run_id", "0", "Run ID [0]") flags.DEFINE_string("out_base_dir", "out", "out base dir [out]") flags.DEFINE_string("forward_name", "single", "Forward name [single]") flags.DEFINE_string("answer_path", "", "Answer path []") flags.DEFINE_string("eval_path", "", "Eval path []") flags.DEFINE_string("load_path", "", "Load path []") flags.DEFINE_string("shared_path", "", "Shared path []") # Device placement flags.DEFINE_string("device", "/cpu:0", "default device for summing gradients. [/cpu:0]") flags.DEFINE_string("device_type", "gpu", "device for computing gradients (parallelization). cpu | gpu [gpu]") flags.DEFINE_integer("num_gpus", 1, "num of gpus or cpus for computing gradients [1]") # Essential training and test options flags.DEFINE_string("mode", "test", "trains | test | forward [test]") flags.DEFINE_boolean("load", True, "load saved data? [True]") flags.DEFINE_bool("single", False, "supervise only the answer sentence? [False]") flags.DEFINE_boolean("debug", False, "Debugging mode? [False]") flags.DEFINE_bool('load_ema', True, "load exponential average of variables when testing? [True]") flags.DEFINE_bool("eval", True, "eval? [True]") # Training / test parameters flags.DEFINE_integer("batch_size", 60, "Batch size [60]") flags.DEFINE_integer("val_num_batches", 100, "validation num batches [100]") flags.DEFINE_integer("test_num_batches", 0, "test num batches [0]") flags.DEFINE_integer("num_epochs", 12, "Total number of epochs for training [12]") flags.DEFINE_integer("num_steps", 20000, "Number of steps [20000]") flags.DEFINE_integer("load_step", 0, "load step [0]") flags.DEFINE_float("init_lr", 0.5, "Initial learning rate [0.5]") flags.DEFINE_float("input_keep_prob", 0.8, "Input keep prob for the dropout of LSTM weights [0.8]") flags.DEFINE_float("keep_prob", 0.8, "Keep prob for the dropout of Char-CNN weights [0.8]") flags.DEFINE_float("wd", 0.0, "L2 weight decay for regularization [0.0]") flags.DEFINE_integer("hidden_size", 100, "Hidden size [100]") flags.DEFINE_integer("char_out_size", 100, "char-level word embedding size [100]") flags.DEFINE_integer("char_emb_size", 8, "Char emb size [8]") flags.DEFINE_string("out_channel_dims", "100", "Out channel dims of Char-CNN, separated by commas [100]") flags.DEFINE_string("filter_heights", "5", "Filter heights of Char-CNN, separated by commas [5]") flags.DEFINE_bool("finetune", False, "Finetune word embeddings? [False]") flags.DEFINE_bool("highway", True, "Use highway? [True]") flags.DEFINE_integer("highway_num_layers", 2, "highway num layers [2]") flags.DEFINE_bool("share_cnn_weights", True, "Share Char-CNN weights [True]") flags.DEFINE_bool("share_lstm_weights", True, "Share pre-processing (phrase-level) LSTM weights [True]") flags.DEFINE_float("var_decay", 0.999, "Exponential moving average decay for variables [0.999]") # Optimizations flags.DEFINE_bool("cluster", False, "Cluster data for faster training [False]") flags.DEFINE_bool("len_opt", False, "Length optimization? [False]") flags.DEFINE_bool("cpu_opt", False, "CPU optimization? GPU computation can be slower [False]") # Logging and saving options flags.DEFINE_boolean("progress", True, "Show progress? [True]") flags.DEFINE_integer("log_period", 100, "Log period [100]") flags.DEFINE_integer("eval_period", 1000, "Eval period [1000]") flags.DEFINE_integer("save_period", 1000, "Save Period [1000]") flags.DEFINE_integer("max_to_keep", 20, "Max recent saves to keep [20]") flags.DEFINE_bool("dump_eval", True, "dump eval? [True]") flags.DEFINE_bool("dump_answer", True, "dump answer? [True]") flags.DEFINE_bool("vis", False, "output visualization numbers? [False]") flags.DEFINE_bool("dump_pickle", True, "Dump pickle instead of json? [True]") flags.DEFINE_float("decay", 0.9, "Exponential moving average decay for logging values [0.9]") # Thresholds for speed and less memory usage flags.DEFINE_integer("word_count_th", 10, "word count th [100]") flags.DEFINE_integer("char_count_th", 50, "char count th [500]") flags.DEFINE_integer("sent_size_th", 400, "sent size th [64]") flags.DEFINE_integer("num_sents_th", 8, "num sents th [8]") flags.DEFINE_integer("ques_size_th", 30, "ques size th [32]") flags.DEFINE_integer("word_size_th", 16, "word size th [16]") flags.DEFINE_integer("para_size_th", 256, "para size th [256]") # Advanced training options flags.DEFINE_bool("lower_word", True, "lower word [True]") flags.DEFINE_bool("squash", False, "squash the sentences into one? [False]") flags.DEFINE_bool("swap_memory", True, "swap memory? [True]") flags.DEFINE_string("data_filter", "max", "max | valid | semi [max]") flags.DEFINE_bool("use_glove_for_unk", True, "use glove for unk [False]") flags.DEFINE_bool("known_if_glove", True, "consider as known if present in glove [False]") flags.DEFINE_string("logit_func", "tri_linear", "logit func [tri_linear]") flags.DEFINE_string("answer_func", "linear", "answer logit func [linear]") flags.DEFINE_string("sh_logit_func", "tri_linear", "sh logit func [tri_linear]") # Ablation options flags.DEFINE_bool("use_char_emb", True, "use char emb? [True]") flags.DEFINE_bool("use_word_emb", True, "use word embedding? [True]") flags.DEFINE_bool("q2c_att", True, "question-to-context attention? [True]") flags.DEFINE_bool("c2q_att", True, "context-to-question attention? [True]") flags.DEFINE_bool("dynamic_att", False, "Dynamic attention [False]") def main(_): config = flags.FLAGS config.out_dir = os.path.join(config.out_base_dir, config.model_name, str(config.run_id).zfill(2)) m(config) if __name__ == "__main__": tf.app.run()
bi-att-flow-master
basic/cli.py
import argparse import functools import gzip import json import pickle from collections import defaultdict from operator import mul from tqdm import tqdm from squad.utils import get_phrase, get_best_span def get_args(): parser = argparse.ArgumentParser() parser.add_argument('paths', nargs='+') parser.add_argument('-o', '--out', default='ensemble.json') parser.add_argument("--data_path", default="data/squad/data_test.json") parser.add_argument("--shared_path", default="data/squad/shared_test.json") args = parser.parse_args() return args def ensemble(args): e_list = [] for path in tqdm(args.paths): with gzip.open(path, 'r') as fh: e = pickle.load(fh) e_list.append(e) with open(args.data_path, 'r') as fh: data = json.load(fh) with open(args.shared_path, 'r') as fh: shared = json.load(fh) out = {} for idx, (id_, rx) in tqdm(enumerate(zip(data['ids'], data['*x'])), total=len(e['yp'])): if idx >= len(e['yp']): # for debugging purpose break context = shared['p'][rx[0]][rx[1]] wordss = shared['x'][rx[0]][rx[1]] yp_list = [e['yp'][idx] for e in e_list] yp2_list = [e['yp2'][idx] for e in e_list] answer = ensemble3(context, wordss, yp_list, yp2_list) out[id_] = answer with open(args.out, 'w') as fh: json.dump(out, fh) def ensemble1(context, wordss, y1_list, y2_list): """ :param context: Original context :param wordss: tokenized words (nested 2D list) :param y1_list: list of start index probs (each element corresponds to probs form single model) :param y2_list: list of stop index probs :return: """ sum_y1 = combine_y_list(y1_list) sum_y2 = combine_y_list(y2_list) span, score = get_best_span(sum_y1, sum_y2) return get_phrase(context, wordss, span) def ensemble2(context, wordss, y1_list, y2_list): start_dict = defaultdict(float) stop_dict = defaultdict(float) for y1, y2 in zip(y1_list, y2_list): span, score = get_best_span(y1, y2) start_dict[span[0]] += y1[span[0][0]][span[0][1]] stop_dict[span[1]] += y2[span[1][0]][span[1][1]] start = max(start_dict.items(), key=lambda pair: pair[1])[0] stop = max(stop_dict.items(), key=lambda pair: pair[1])[0] best_span = (start, stop) return get_phrase(context, wordss, best_span) def ensemble3(context, wordss, y1_list, y2_list): d = defaultdict(float) for y1, y2 in zip(y1_list, y2_list): span, score = get_best_span(y1, y2) phrase = get_phrase(context, wordss, span) d[phrase] += score return max(d.items(), key=lambda pair: pair[1])[0] def combine_y_list(y_list, op='*'): if op == '+': func = sum elif op == '*': def func(l): return functools.reduce(mul, l) else: func = op return [[func(yij_list) for yij_list in zip(*yi_list)] for yi_list in zip(*y_list)] def main(): args = get_args() ensemble(args) if __name__ == "__main__": main()
bi-att-flow-master
basic/ensemble.py
import json import os import random import itertools import math from collections import defaultdict import numpy as np from my.tensorflow import grouper from my.utils import index class Data(object): def get_size(self): raise NotImplementedError() def get_by_idxs(self, idxs): """ Efficient way to obtain a batch of items from filesystem :param idxs: :return dict: {'X': [,], 'Y', } """ data = defaultdict(list) for idx in idxs: each_data = self.get_one(idx) for key, val in each_data.items(): data[key].append(val) return data def get_one(self, idx): raise NotImplementedError() def get_empty(self): raise NotImplementedError() def __add__(self, other): raise NotImplementedError() class DataSet(object): def __init__(self, data, data_type, shared=None, valid_idxs=None): self.data = data # e.g. {'X': [0, 1, 2], 'Y': [2, 3, 4]} self.data_type = data_type self.shared = shared total_num_examples = self.get_data_size() self.valid_idxs = range(total_num_examples) if valid_idxs is None else valid_idxs self.num_examples = len(self.valid_idxs) def _sort_key(self, idx): rx = self.data['*x'][idx] x = self.shared['x'][rx[0]][rx[1]] return max(map(len, x)) def get_data_size(self): if isinstance(self.data, dict): return len(next(iter(self.data.values()))) elif isinstance(self.data, Data): return self.data.get_size() raise Exception() def get_by_idxs(self, idxs): if isinstance(self.data, dict): out = defaultdict(list) for key, val in self.data.items(): out[key].extend(val[idx] for idx in idxs) return out elif isinstance(self.data, Data): return self.data.get_by_idxs(idxs) raise Exception() def get_batches(self, batch_size, num_batches=None, shuffle=False, cluster=False): """ :param batch_size: :param num_batches: :param shuffle: :param cluster: cluster examples by their lengths; this might give performance boost (i.e. faster training). :return: """ num_batches_per_epoch = int(math.ceil(self.num_examples / batch_size)) if num_batches is None: num_batches = num_batches_per_epoch num_epochs = int(math.ceil(num_batches / num_batches_per_epoch)) if shuffle: random_idxs = random.sample(self.valid_idxs, len(self.valid_idxs)) if cluster: sorted_idxs = sorted(random_idxs, key=self._sort_key) sorted_grouped = lambda: list(grouper(sorted_idxs, batch_size)) grouped = lambda: random.sample(sorted_grouped(), num_batches_per_epoch) else: random_grouped = lambda: list(grouper(random_idxs, batch_size)) grouped = random_grouped else: raw_grouped = lambda: list(grouper(self.valid_idxs, batch_size)) grouped = raw_grouped batch_idx_tuples = itertools.chain.from_iterable(grouped() for _ in range(num_epochs)) for _ in range(num_batches): batch_idxs = tuple(i for i in next(batch_idx_tuples) if i is not None) batch_data = self.get_by_idxs(batch_idxs) shared_batch_data = {} for key, val in batch_data.items(): if key.startswith('*'): assert self.shared is not None shared_key = key[1:] shared_batch_data[shared_key] = [index(self.shared[shared_key], each) for each in val] batch_data.update(shared_batch_data) batch_ds = DataSet(batch_data, self.data_type, shared=self.shared) yield batch_idxs, batch_ds def get_multi_batches(self, batch_size, num_batches_per_step, num_steps=None, shuffle=False, cluster=False): batch_size_per_step = batch_size * num_batches_per_step batches = self.get_batches(batch_size_per_step, num_batches=num_steps, shuffle=shuffle, cluster=cluster) multi_batches = (tuple(zip(grouper(idxs, batch_size, shorten=True, num_groups=num_batches_per_step), data_set.divide(num_batches_per_step))) for idxs, data_set in batches) return multi_batches def get_empty(self): if isinstance(self.data, dict): data = {key: [] for key in self.data} elif isinstance(self.data, Data): data = self.data.get_empty() else: raise Exception() return DataSet(data, self.data_type, shared=self.shared) def __add__(self, other): if isinstance(self.data, dict): data = {key: val + other.data[key] for key, val in self.data.items()} elif isinstance(self.data, Data): data = self.data + other.data else: raise Exception() valid_idxs = list(self.valid_idxs) + [valid_idx + self.num_examples for valid_idx in other.valid_idxs] return DataSet(data, self.data_type, shared=self.shared, valid_idxs=valid_idxs) def divide(self, integer): batch_size = int(math.ceil(self.num_examples / integer)) idxs_gen = grouper(self.valid_idxs, batch_size, shorten=True, num_groups=integer) data_gen = (self.get_by_idxs(idxs) for idxs in idxs_gen) ds_tuple = tuple(DataSet(data, self.data_type, shared=self.shared) for data in data_gen) return ds_tuple def load_metadata(config, data_type): metadata_path = os.path.join(config.data_dir, "metadata_{}.json".format(data_type)) with open(metadata_path, 'r') as fh: metadata = json.load(fh) for key, val in metadata.items(): config.__setattr__(key, val) return metadata def read_data(config, data_type, ref, data_filter=None): data_path = os.path.join(config.data_dir, "data_{}.json".format(data_type)) shared_path = os.path.join(config.data_dir, "shared_{}.json".format(data_type)) with open(data_path, 'r') as fh: data = json.load(fh) with open(shared_path, 'r') as fh: shared = json.load(fh) num_examples = len(next(iter(data.values()))) if data_filter is None: valid_idxs = range(num_examples) else: mask = [] keys = data.keys() values = data.values() for vals in zip(*values): each = {key: val for key, val in zip(keys, vals)} mask.append(data_filter(each, shared)) valid_idxs = [idx for idx in range(len(mask)) if mask[idx]] print("Loaded {}/{} examples from {}".format(len(valid_idxs), num_examples, data_type)) shared_path = config.shared_path or os.path.join(config.out_dir, "shared.json") if not ref: word2vec_dict = shared['lower_word2vec'] if config.lower_word else shared['word2vec'] word_counter = shared['lower_word_counter'] if config.lower_word else shared['word_counter'] char_counter = shared['char_counter'] if config.finetune: shared['word2idx'] = {word: idx + 2 for idx, word in enumerate(word for word, count in word_counter.items() if count > config.word_count_th or (config.known_if_glove and word in word2vec_dict))} else: assert config.known_if_glove assert config.use_glove_for_unk shared['word2idx'] = {word: idx + 2 for idx, word in enumerate(word for word, count in word_counter.items() if count > config.word_count_th and word not in word2vec_dict)} shared['char2idx'] = {char: idx + 2 for idx, char in enumerate(char for char, count in char_counter.items() if count > config.char_count_th)} NULL = "-NULL-" UNK = "-UNK-" shared['word2idx'][NULL] = 0 shared['word2idx'][UNK] = 1 shared['char2idx'][NULL] = 0 shared['char2idx'][UNK] = 1 json.dump({'word2idx': shared['word2idx'], 'char2idx': shared['char2idx']}, open(shared_path, 'w')) else: new_shared = json.load(open(shared_path, 'r')) for key, val in new_shared.items(): shared[key] = val if config.use_glove_for_unk: # create new word2idx and word2vec word2vec_dict = shared['lower_word2vec'] if config.lower_word else shared['word2vec'] new_word2idx_dict = {word: idx for idx, word in enumerate(word for word in word2vec_dict.keys() if word not in shared['word2idx'])} shared['new_word2idx'] = new_word2idx_dict offset = len(shared['word2idx']) word2vec_dict = shared['lower_word2vec'] if config.lower_word else shared['word2vec'] new_word2idx_dict = shared['new_word2idx'] idx2vec_dict = {idx: word2vec_dict[word] for word, idx in new_word2idx_dict.items()} # print("{}/{} unique words have corresponding glove vectors.".format(len(idx2vec_dict), len(word2idx_dict))) new_emb_mat = np.array([idx2vec_dict[idx] for idx in range(len(idx2vec_dict))], dtype='float32') shared['new_emb_mat'] = new_emb_mat data_set = DataSet(data, data_type, shared=shared, valid_idxs=valid_idxs) return data_set def get_squad_data_filter(config): def data_filter(data_point, shared): assert shared is not None rx, rcx, q, cq, y = (data_point[key] for key in ('*x', '*cx', 'q', 'cq', 'y')) x, cx = shared['x'], shared['cx'] if len(q) > config.ques_size_th: return False # x filter xi = x[rx[0]][rx[1]] if config.squash: for start, stop in y: stop_offset = sum(map(len, xi[:stop[0]])) if stop_offset + stop[1] > config.para_size_th: return False return True if config.single: for start, stop in y: if start[0] != stop[0]: return False if config.data_filter == 'max': for start, stop in y: if stop[0] >= config.num_sents_th: return False if start[0] != stop[0]: return False if stop[1] >= config.sent_size_th: return False elif config.data_filter == 'valid': if len(xi) > config.num_sents_th: return False if any(len(xij) > config.sent_size_th for xij in xi): return False elif config.data_filter == 'semi': """ Only answer sentence needs to be valid. """ for start, stop in y: if stop[0] >= config.num_sents_th: return False if start[0] != start[0]: return False if len(xi[start[0]]) > config.sent_size_th: return False else: raise Exception() return True return data_filter def update_config(config, data_sets): config.max_num_sents = 0 config.max_sent_size = 0 config.max_ques_size = 0 config.max_word_size = 0 config.max_para_size = 0 for data_set in data_sets: data = data_set.data shared = data_set.shared for idx in data_set.valid_idxs: rx = data['*x'][idx] q = data['q'][idx] sents = shared['x'][rx[0]][rx[1]] config.max_para_size = max(config.max_para_size, sum(map(len, sents))) config.max_num_sents = max(config.max_num_sents, len(sents)) config.max_sent_size = max(config.max_sent_size, max(map(len, sents))) config.max_word_size = max(config.max_word_size, max(len(word) for sent in sents for word in sent)) if len(q) > 0: config.max_ques_size = max(config.max_ques_size, len(q)) config.max_word_size = max(config.max_word_size, max(len(word) for word in q)) if config.mode == 'train': config.max_num_sents = min(config.max_num_sents, config.num_sents_th) config.max_sent_size = min(config.max_sent_size, config.sent_size_th) config.max_para_size = min(config.max_para_size, config.para_size_th) config.max_word_size = min(config.max_word_size, config.word_size_th) config.char_vocab_size = len(data_sets[0].shared['char2idx']) config.word_emb_size = len(next(iter(data_sets[0].shared['word2vec'].values()))) config.word_vocab_size = len(data_sets[0].shared['word2idx']) if config.single: config.max_num_sents = 1 if config.squash: config.max_sent_size = config.max_para_size config.max_num_sents = 1
bi-att-flow-master
basic/read_data.py
import tensorflow as tf from basic.model import Model from my.tensorflow import average_gradients class Trainer(object): def __init__(self, config, model): assert isinstance(model, Model) self.config = config self.model = model self.opt = tf.train.AdadeltaOptimizer(config.init_lr) self.loss = model.get_loss() self.var_list = model.get_var_list() self.global_step = model.get_global_step() self.summary = model.summary self.grads = self.opt.compute_gradients(self.loss, var_list=self.var_list) self.train_op = self.opt.apply_gradients(self.grads, global_step=self.global_step) def get_train_op(self): return self.train_op def step(self, sess, batch, get_summary=False): assert isinstance(sess, tf.Session) _, ds = batch feed_dict = self.model.get_feed_dict(ds, True) if get_summary: loss, summary, train_op = \ sess.run([self.loss, self.summary, self.train_op], feed_dict=feed_dict) else: loss, train_op = sess.run([self.loss, self.train_op], feed_dict=feed_dict) summary = None return loss, summary, train_op class MultiGPUTrainer(object): def __init__(self, config, models): model = models[0] assert isinstance(model, Model) self.config = config self.model = model self.opt = tf.train.AdadeltaOptimizer(config.init_lr) self.var_list = model.get_var_list() self.global_step = model.get_global_step() self.summary = model.summary self.models = models losses = [] grads_list = [] for gpu_idx, model in enumerate(models): with tf.name_scope("grads_{}".format(gpu_idx)), tf.device("/{}:{}".format(config.device_type, gpu_idx)): loss = model.get_loss() grads = self.opt.compute_gradients(loss, var_list=self.var_list) losses.append(loss) grads_list.append(grads) self.loss = tf.add_n(losses)/len(losses) self.grads = average_gradients(grads_list) self.train_op = self.opt.apply_gradients(self.grads, global_step=self.global_step) def step(self, sess, batches, get_summary=False): assert isinstance(sess, tf.Session) feed_dict = {} for batch, model in zip(batches, self.models): _, ds = batch feed_dict.update(model.get_feed_dict(ds, True)) if get_summary: loss, summary, train_op = \ sess.run([self.loss, self.summary, self.train_op], feed_dict=feed_dict) else: loss, train_op = sess.run([self.loss, self.train_op], feed_dict=feed_dict) summary = None return loss, summary, train_op
bi-att-flow-master
basic/trainer.py
import argparse import json import math import os import shutil from pprint import pprint import tensorflow as tf from tqdm import tqdm import numpy as np from basic.evaluator import ForwardEvaluator, MultiGPUF1Evaluator from basic.graph_handler import GraphHandler from basic.model import get_multi_gpu_models from basic.trainer import MultiGPUTrainer from basic.read_data import read_data, get_squad_data_filter, update_config def main(config): set_dirs(config) with tf.device(config.device): if config.mode == 'train': _train(config) elif config.mode == 'test': _test(config) elif config.mode == 'forward': _forward(config) else: raise ValueError("invalid value for 'mode': {}".format(config.mode)) def set_dirs(config): # create directories assert config.load or config.mode == 'train', "config.load must be True if not training" if not config.load and os.path.exists(config.out_dir): shutil.rmtree(config.out_dir) config.save_dir = os.path.join(config.out_dir, "save") config.log_dir = os.path.join(config.out_dir, "log") config.eval_dir = os.path.join(config.out_dir, "eval") config.answer_dir = os.path.join(config.out_dir, "answer") if not os.path.exists(config.out_dir): os.makedirs(config.out_dir) if not os.path.exists(config.save_dir): os.mkdir(config.save_dir) if not os.path.exists(config.log_dir): os.mkdir(config.log_dir) if not os.path.exists(config.answer_dir): os.mkdir(config.answer_dir) if not os.path.exists(config.eval_dir): os.mkdir(config.eval_dir) def _config_debug(config): if config.debug: config.num_steps = 2 config.eval_period = 1 config.log_period = 1 config.save_period = 1 config.val_num_batches = 2 config.test_num_batches = 2 def _train(config): data_filter = get_squad_data_filter(config) train_data = read_data(config, 'train', config.load, data_filter=data_filter) dev_data = read_data(config, 'dev', True, data_filter=data_filter) update_config(config, [train_data, dev_data]) _config_debug(config) word2vec_dict = train_data.shared['lower_word2vec'] if config.lower_word else train_data.shared['word2vec'] word2idx_dict = train_data.shared['word2idx'] idx2vec_dict = {word2idx_dict[word]: vec for word, vec in word2vec_dict.items() if word in word2idx_dict} emb_mat = np.array([idx2vec_dict[idx] if idx in idx2vec_dict else np.random.multivariate_normal(np.zeros(config.word_emb_size), np.eye(config.word_emb_size)) for idx in range(config.word_vocab_size)]) config.emb_mat = emb_mat # construct model graph and variables (using default graph) pprint(config.__flags, indent=2) models = get_multi_gpu_models(config) model = models[0] trainer = MultiGPUTrainer(config, models) evaluator = MultiGPUF1Evaluator(config, models, tensor_dict=model.tensor_dict if config.vis else None) graph_handler = GraphHandler(config, model) # controls all tensors and variables in the graph, including loading /saving # Variables sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) graph_handler.initialize(sess) # Begin training num_steps = config.num_steps or int(math.ceil(train_data.num_examples / (config.batch_size * config.num_gpus))) * config.num_epochs global_step = 0 for batches in tqdm(train_data.get_multi_batches(config.batch_size, config.num_gpus, num_steps=num_steps, shuffle=True, cluster=config.cluster), total=num_steps): global_step = sess.run(model.global_step) + 1 # +1 because all calculations are done after step get_summary = global_step % config.log_period == 0 loss, summary, train_op = trainer.step(sess, batches, get_summary=get_summary) if get_summary: graph_handler.add_summary(summary, global_step) # occasional saving if global_step % config.save_period == 0: graph_handler.save(sess, global_step=global_step) if not config.eval: continue # Occasional evaluation if global_step % config.eval_period == 0: num_steps = math.ceil(dev_data.num_examples / (config.batch_size * config.num_gpus)) if 0 < config.val_num_batches < num_steps: num_steps = config.val_num_batches e_train = evaluator.get_evaluation_from_batches( sess, tqdm(train_data.get_multi_batches(config.batch_size, config.num_gpus, num_steps=num_steps), total=num_steps) ) graph_handler.add_summaries(e_train.summaries, global_step) e_dev = evaluator.get_evaluation_from_batches( sess, tqdm(dev_data.get_multi_batches(config.batch_size, config.num_gpus, num_steps=num_steps), total=num_steps)) graph_handler.add_summaries(e_dev.summaries, global_step) if config.dump_eval: graph_handler.dump_eval(e_dev) if config.dump_answer: graph_handler.dump_answer(e_dev) if global_step % config.save_period != 0: graph_handler.save(sess, global_step=global_step) def _test(config): test_data = read_data(config, 'test', True) update_config(config, [test_data]) _config_debug(config) if config.use_glove_for_unk: word2vec_dict = test_data.shared['lower_word2vec'] if config.lower_word else test_data.shared['word2vec'] new_word2idx_dict = test_data.shared['new_word2idx'] idx2vec_dict = {idx: word2vec_dict[word] for word, idx in new_word2idx_dict.items()} new_emb_mat = np.array([idx2vec_dict[idx] for idx in range(len(idx2vec_dict))], dtype='float32') config.new_emb_mat = new_emb_mat pprint(config.__flags, indent=2) models = get_multi_gpu_models(config) model = models[0] evaluator = MultiGPUF1Evaluator(config, models, tensor_dict=models[0].tensor_dict if config.vis else None) graph_handler = GraphHandler(config, model) sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) graph_handler.initialize(sess) num_steps = math.ceil(test_data.num_examples / (config.batch_size * config.num_gpus)) if 0 < config.test_num_batches < num_steps: num_steps = config.test_num_batches e = None for multi_batch in tqdm(test_data.get_multi_batches(config.batch_size, config.num_gpus, num_steps=num_steps, cluster=config.cluster), total=num_steps): ei = evaluator.get_evaluation(sess, multi_batch) e = ei if e is None else e + ei if config.vis: eval_subdir = os.path.join(config.eval_dir, "{}-{}".format(ei.data_type, str(ei.global_step).zfill(6))) if not os.path.exists(eval_subdir): os.mkdir(eval_subdir) path = os.path.join(eval_subdir, str(ei.idxs[0]).zfill(8)) graph_handler.dump_eval(ei, path=path) print(e) if config.dump_answer: print("dumping answer ...") graph_handler.dump_answer(e) if config.dump_eval: print("dumping eval ...") graph_handler.dump_eval(e) def _forward(config): assert config.load test_data = read_data(config, config.forward_name, True) update_config(config, [test_data]) _config_debug(config) if config.use_glove_for_unk: word2vec_dict = test_data.shared['lower_word2vec'] if config.lower_word else test_data.shared['word2vec'] new_word2idx_dict = test_data.shared['new_word2idx'] idx2vec_dict = {idx: word2vec_dict[word] for word, idx in new_word2idx_dict.items()} new_emb_mat = np.array([idx2vec_dict[idx] for idx in range(len(idx2vec_dict))], dtype='float32') config.new_emb_mat = new_emb_mat pprint(config.__flags, indent=2) models = get_multi_gpu_models(config) model = models[0] evaluator = ForwardEvaluator(config, model) graph_handler = GraphHandler(config, model) # controls all tensors and variables in the graph, including loading /saving sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) graph_handler.initialize(sess) num_batches = math.ceil(test_data.num_examples / config.batch_size) if 0 < config.test_num_batches < num_batches: num_batches = config.test_num_batches e = evaluator.get_evaluation_from_batches(sess, tqdm(test_data.get_batches(config.batch_size, num_batches=num_batches), total=num_batches)) print(e) if config.dump_answer: print("dumping answer ...") graph_handler.dump_answer(e, path=config.answer_path) if config.dump_eval: print("dumping eval ...") graph_handler.dump_eval(e, path=config.eval_path) def _get_args(): parser = argparse.ArgumentParser() parser.add_argument("config_path") return parser.parse_args() class Config(object): def __init__(self, **entries): self.__dict__.update(entries) def _run(): args = _get_args() with open(args.config_path, 'r') as fh: config = Config(**json.load(fh)) main(config) if __name__ == "__main__": _run()
bi-att-flow-master
basic/main.py
import numpy as np import tensorflow as tf from basic.read_data import DataSet from my.nltk_utils import span_f1 from my.tensorflow import padded_reshape from my.utils import argmax from squad.utils import get_phrase, get_best_span class Evaluation(object): def __init__(self, data_type, global_step, idxs, yp, tensor_dict=None): self.data_type = data_type self.global_step = global_step self.idxs = idxs self.yp = yp self.num_examples = len(yp) self.tensor_dict = None self.dict = {'data_type': data_type, 'global_step': global_step, 'yp': yp, 'idxs': idxs, 'num_examples': self.num_examples} if tensor_dict is not None: self.tensor_dict = {key: val.tolist() for key, val in tensor_dict.items()} for key, val in self.tensor_dict.items(): self.dict[key] = val self.summaries = None def __repr__(self): return "{} step {}".format(self.data_type, self.global_step) def __add__(self, other): if other == 0: return self assert self.data_type == other.data_type assert self.global_step == other.global_step new_yp = self.yp + other.yp new_idxs = self.idxs + other.idxs new_tensor_dict = None if self.tensor_dict is not None: new_tensor_dict = {key: val + other.tensor_dict[key] for key, val in self.tensor_dict.items()} return Evaluation(self.data_type, self.global_step, new_idxs, new_yp, tensor_dict=new_tensor_dict) def __radd__(self, other): return self.__add__(other) class LabeledEvaluation(Evaluation): def __init__(self, data_type, global_step, idxs, yp, y, tensor_dict=None): super(LabeledEvaluation, self).__init__(data_type, global_step, idxs, yp, tensor_dict=tensor_dict) self.y = y self.dict['y'] = y def __add__(self, other): if other == 0: return self assert self.data_type == other.data_type assert self.global_step == other.global_step new_yp = self.yp + other.yp new_y = self.y + other.y new_idxs = self.idxs + other.idxs if self.tensor_dict is not None: new_tensor_dict = {key: np.concatenate((val, other.tensor_dict[key]), axis=0) for key, val in self.tensor_dict.items()} return LabeledEvaluation(self.data_type, self.global_step, new_idxs, new_yp, new_y, tensor_dict=new_tensor_dict) class AccuracyEvaluation(LabeledEvaluation): def __init__(self, data_type, global_step, idxs, yp, y, correct, loss, tensor_dict=None): super(AccuracyEvaluation, self).__init__(data_type, global_step, idxs, yp, y, tensor_dict=tensor_dict) self.loss = loss self.correct = correct self.acc = sum(correct) / len(correct) self.dict['loss'] = loss self.dict['correct'] = correct self.dict['acc'] = self.acc loss_summary = tf.Summary(value=[tf.Summary.Value(tag='{}/loss'.format(data_type), simple_value=self.loss)]) acc_summary = tf.Summary(value=[tf.Summary.Value(tag='{}/acc'.format(data_type), simple_value=self.acc)]) self.summaries = [loss_summary, acc_summary] def __repr__(self): return "{} step {}: accuracy={}, loss={}".format(self.data_type, self.global_step, self.acc, self.loss) def __add__(self, other): if other == 0: return self assert self.data_type == other.data_type assert self.global_step == other.global_step new_idxs = self.idxs + other.idxs new_yp = self.yp + other.yp new_y = self.y + other.y new_correct = self.correct + other.correct new_loss = (self.loss * self.num_examples + other.loss * other.num_examples) / len(new_correct) if self.tensor_dict is not None: new_tensor_dict = {key: np.concatenate((val, other.tensor_dict[key]), axis=0) for key, val in self.tensor_dict.items()} return AccuracyEvaluation(self.data_type, self.global_step, new_idxs, new_yp, new_y, new_correct, new_loss, tensor_dict=new_tensor_dict) class Evaluator(object): def __init__(self, config, model, tensor_dict=None): self.config = config self.model = model self.global_step = model.global_step self.yp = model.yp self.tensor_dict = {} if tensor_dict is None else tensor_dict def get_evaluation(self, sess, batch): idxs, data_set = batch feed_dict = self.model.get_feed_dict(data_set, False, supervised=False) global_step, yp, vals = sess.run([self.global_step, self.yp, list(self.tensor_dict.values())], feed_dict=feed_dict) yp = yp[:data_set.num_examples] tensor_dict = dict(zip(self.tensor_dict.keys(), vals)) e = Evaluation(data_set.data_type, int(global_step), idxs, yp.tolist(), tensor_dict=tensor_dict) return e def get_evaluation_from_batches(self, sess, batches): e = sum(self.get_evaluation(sess, batch) for batch in batches) return e class LabeledEvaluator(Evaluator): def __init__(self, config, model, tensor_dict=None): super(LabeledEvaluator, self).__init__(config, model, tensor_dict=tensor_dict) self.y = model.y def get_evaluation(self, sess, batch): idxs, data_set = batch feed_dict = self.model.get_feed_dict(data_set, False, supervised=False) global_step, yp, vals = sess.run([self.global_step, self.yp, list(self.tensor_dict.values())], feed_dict=feed_dict) yp = yp[:data_set.num_examples] y = feed_dict[self.y] tensor_dict = dict(zip(self.tensor_dict.keys(), vals)) e = LabeledEvaluation(data_set.data_type, int(global_step), idxs, yp.tolist(), y.tolist(), tensor_dict=tensor_dict) return e class AccuracyEvaluator(LabeledEvaluator): def __init__(self, config, model, tensor_dict=None): super(AccuracyEvaluator, self).__init__(config, model, tensor_dict=tensor_dict) self.loss = model.loss def get_evaluation(self, sess, batch): idxs, data_set = batch assert isinstance(data_set, DataSet) feed_dict = self.model.get_feed_dict(data_set, False) global_step, yp, loss, vals = sess.run([self.global_step, self.yp, self.loss, list(self.tensor_dict.values())], feed_dict=feed_dict) y = data_set.data['y'] yp = yp[:data_set.num_examples] correct = [self.__class__.compare(yi, ypi) for yi, ypi in zip(y, yp)] tensor_dict = dict(zip(self.tensor_dict.keys(), vals)) e = AccuracyEvaluation(data_set.data_type, int(global_step), idxs, yp.tolist(), y, correct, float(loss), tensor_dict=tensor_dict) return e @staticmethod def compare(yi, ypi): for start, stop in yi: if start == int(np.argmax(ypi)): return True return False class AccuracyEvaluator2(AccuracyEvaluator): @staticmethod def compare(yi, ypi): for start, stop in yi: para_start = int(np.argmax(np.max(ypi, 1))) sent_start = int(np.argmax(ypi[para_start])) if tuple(start) == (para_start, sent_start): return True return False class ForwardEvaluation(Evaluation): def __init__(self, data_type, global_step, idxs, yp, yp2, loss, id2answer_dict, tensor_dict=None): super(ForwardEvaluation, self).__init__(data_type, global_step, idxs, yp, tensor_dict=tensor_dict) self.yp2 = yp2 self.loss = loss self.dict['loss'] = loss self.dict['yp2'] = yp2 self.id2answer_dict = id2answer_dict def __add__(self, other): if other == 0: return self assert self.data_type == other.data_type assert self.global_step == other.global_step new_idxs = self.idxs + other.idxs new_yp = self.yp + other.yp new_yp2 = self.yp2 + other.yp2 new_loss = (self.loss * self.num_examples + other.loss * other.num_examples) / len(new_yp) new_id2answer_dict = dict(list(self.id2answer_dict.items()) + list(other.id2answer_dict.items())) new_id2score_dict = dict(list(self.id2answer_dict['scores'].items()) + list(other.id2answer_dict['scores'].items())) new_id2answer_dict['scores'] = new_id2score_dict if self.tensor_dict is not None: new_tensor_dict = {key: np.concatenate((val, other.tensor_dict[key]), axis=0) for key, val in self.tensor_dict.items()} return ForwardEvaluation(self.data_type, self.global_step, new_idxs, new_yp, new_yp2, new_loss, new_id2answer_dict, tensor_dict=new_tensor_dict) def __repr__(self): return "{} step {}: loss={:.4f}".format(self.data_type, self.global_step, self.loss) class F1Evaluation(AccuracyEvaluation): def __init__(self, data_type, global_step, idxs, yp, yp2, y, correct, loss, f1s, id2answer_dict, tensor_dict=None): super(F1Evaluation, self).__init__(data_type, global_step, idxs, yp, y, correct, loss, tensor_dict=tensor_dict) self.yp2 = yp2 self.f1s = f1s self.f1 = float(np.mean(f1s)) self.dict['yp2'] = yp2 self.dict['f1s'] = f1s self.dict['f1'] = self.f1 self.id2answer_dict = id2answer_dict f1_summary = tf.Summary(value=[tf.Summary.Value(tag='{}/f1'.format(data_type), simple_value=self.f1)]) self.summaries.append(f1_summary) def __add__(self, other): if other == 0: return self assert self.data_type == other.data_type assert self.global_step == other.global_step new_idxs = self.idxs + other.idxs new_yp = self.yp + other.yp new_yp2 = self.yp2 + other.yp2 new_y = self.y + other.y new_correct = self.correct + other.correct new_f1s = self.f1s + other.f1s new_loss = (self.loss * self.num_examples + other.loss * other.num_examples) / len(new_correct) new_id2answer_dict = dict(list(self.id2answer_dict.items()) + list(other.id2answer_dict.items())) new_id2score_dict = dict(list(self.id2answer_dict['scores'].items()) + list(other.id2answer_dict['scores'].items())) new_id2answer_dict['scores'] = new_id2score_dict return F1Evaluation(self.data_type, self.global_step, new_idxs, new_yp, new_yp2, new_y, new_correct, new_loss, new_f1s, new_id2answer_dict) def __repr__(self): return "{} step {}: accuracy={:.4f}, f1={:.4f}, loss={:.4f}".format(self.data_type, self.global_step, self.acc, self.f1, self.loss) class F1Evaluator(LabeledEvaluator): def __init__(self, config, model, tensor_dict=None): super(F1Evaluator, self).__init__(config, model, tensor_dict=tensor_dict) self.yp2 = model.yp2 self.loss = model.loss def get_evaluation(self, sess, batch): idxs, data_set = self._split_batch(batch) assert isinstance(data_set, DataSet) feed_dict = self._get_feed_dict(batch) global_step, yp, yp2, loss, vals = sess.run([self.global_step, self.yp, self.yp2, self.loss, list(self.tensor_dict.values())], feed_dict=feed_dict) y = data_set.data['y'] if self.config.squash: new_y = [] for xi, yi in zip(data_set.data['x'], y): new_yi = [] for start, stop in yi: start_offset = sum(map(len, xi[:start[0]])) stop_offset = sum(map(len, xi[:stop[0]])) new_start = 0, start_offset + start[1] new_stop = 0, stop_offset + stop[1] new_yi.append((new_start, new_stop)) new_y.append(new_yi) y = new_y if self.config.single: new_y = [] for yi in y: new_yi = [] for start, stop in yi: new_start = 0, start[1] new_stop = 0, stop[1] new_yi.append((new_start, new_stop)) new_y.append(new_yi) y = new_y yp, yp2 = yp[:data_set.num_examples], yp2[:data_set.num_examples] spans, scores = zip(*[get_best_span(ypi, yp2i) for ypi, yp2i in zip(yp, yp2)]) def _get(xi, span): if len(xi) <= span[0][0]: return [""] if len(xi[span[0][0]]) <= span[1][1]: return [""] return xi[span[0][0]][span[0][1]:span[1][1]] def _get2(context, xi, span): if len(xi) <= span[0][0]: return "" if len(xi[span[0][0]]) <= span[1][1]: return "" return get_phrase(context, xi, span) id2answer_dict = {id_: _get2(context, xi, span) for id_, xi, span, context in zip(data_set.data['ids'], data_set.data['x'], spans, data_set.data['p'])} id2score_dict = {id_: score for id_, score in zip(data_set.data['ids'], scores)} id2answer_dict['scores'] = id2score_dict correct = [self.__class__.compare2(yi, span) for yi, span in zip(y, spans)] f1s = [self.__class__.span_f1(yi, span) for yi, span in zip(y, spans)] tensor_dict = dict(zip(self.tensor_dict.keys(), vals)) e = F1Evaluation(data_set.data_type, int(global_step), idxs, yp.tolist(), yp2.tolist(), y, correct, float(loss), f1s, id2answer_dict, tensor_dict=tensor_dict) return e def _split_batch(self, batch): return batch def _get_feed_dict(self, batch): return self.model.get_feed_dict(batch[1], False) @staticmethod def compare(yi, ypi, yp2i): for start, stop in yi: aypi = argmax(ypi) mask = np.zeros(yp2i.shape) mask[aypi[0], aypi[1]:] = np.ones([yp2i.shape[1] - aypi[1]]) if tuple(start) == aypi and (stop[0], stop[1]-1) == argmax(yp2i * mask): return True return False @staticmethod def compare2(yi, span): for start, stop in yi: if tuple(start) == span[0] and tuple(stop) == span[1]: return True return False @staticmethod def span_f1(yi, span): max_f1 = 0 for start, stop in yi: if start[0] == span[0][0]: true_span = start[1], stop[1] pred_span = span[0][1], span[1][1] f1 = span_f1(true_span, pred_span) max_f1 = max(f1, max_f1) return max_f1 class MultiGPUF1Evaluator(F1Evaluator): def __init__(self, config, models, tensor_dict=None): super(MultiGPUF1Evaluator, self).__init__(config, models[0], tensor_dict=tensor_dict) self.models = models with tf.name_scope("eval_concat"): N, M, JX = config.batch_size, config.max_num_sents, config.max_sent_size self.yp = tf.concat(0, [padded_reshape(model.yp, [N, M, JX]) for model in models]) self.yp2 = tf.concat(0, [padded_reshape(model.yp2, [N, M, JX]) for model in models]) self.loss = tf.add_n([model.loss for model in models])/len(models) def _split_batch(self, batches): idxs_list, data_sets = zip(*batches) idxs = sum(idxs_list, ()) data_set = sum(data_sets, data_sets[0].get_empty()) return idxs, data_set def _get_feed_dict(self, batches): feed_dict = {} for model, (_, data_set) in zip(self.models, batches): feed_dict.update(model.get_feed_dict(data_set, False)) return feed_dict class ForwardEvaluator(Evaluator): def __init__(self, config, model, tensor_dict=None): super(ForwardEvaluator, self).__init__(config, model, tensor_dict=tensor_dict) self.yp2 = model.yp2 self.loss = model.loss def get_evaluation(self, sess, batch): idxs, data_set = batch assert isinstance(data_set, DataSet) feed_dict = self.model.get_feed_dict(data_set, False) global_step, yp, yp2, loss, vals = sess.run([self.global_step, self.yp, self.yp2, self.loss, list(self.tensor_dict.values())], feed_dict=feed_dict) yp, yp2 = yp[:data_set.num_examples], yp2[:data_set.num_examples] spans, scores = zip(*[get_best_span(ypi, yp2i) for ypi, yp2i in zip(yp, yp2)]) def _get(xi, span): if len(xi) <= span[0][0]: return [""] if len(xi[span[0][0]]) <= span[1][1]: return [""] return xi[span[0][0]][span[0][1]:span[1][1]] def _get2(context, xi, span): if len(xi) <= span[0][0]: return "" if len(xi[span[0][0]]) <= span[1][1]: return "" return get_phrase(context, xi, span) id2answer_dict = {id_: _get2(context, xi, span) for id_, xi, span, context in zip(data_set.data['ids'], data_set.data['x'], spans, data_set.data['p'])} id2score_dict = {id_: score for id_, score in zip(data_set.data['ids'], scores)} id2answer_dict['scores'] = id2score_dict tensor_dict = dict(zip(self.tensor_dict.keys(), vals)) e = ForwardEvaluation(data_set.data_type, int(global_step), idxs, yp.tolist(), yp2.tolist(), float(loss), id2answer_dict, tensor_dict=tensor_dict) return e @staticmethod def compare(yi, ypi, yp2i): for start, stop in yi: aypi = argmax(ypi) mask = np.zeros(yp2i.shape) mask[aypi[0], aypi[1]:] = np.ones([yp2i.shape[1] - aypi[1]]) if tuple(start) == aypi and (stop[0], stop[1]-1) == argmax(yp2i * mask): return True return False @staticmethod def compare2(yi, span): for start, stop in yi: if tuple(start) == span[0] and tuple(stop) == span[1]: return True return False @staticmethod def span_f1(yi, span): max_f1 = 0 for start, stop in yi: if start[0] == span[0][0]: true_span = start[1], stop[1] pred_span = span[0][1], span[1][1] f1 = span_f1(true_span, pred_span) max_f1 = max(f1, max_f1) return max_f1
bi-att-flow-master
basic/evaluator.py
import shutil from collections import OrderedDict import http.server import socketserver import argparse import json import os import numpy as np from tqdm import tqdm from jinja2 import Environment, FileSystemLoader from basic.evaluator import get_span_score_pairs from squad.utils import get_best_span, get_span_score_pairs def bool_(string): if string == 'True': return True elif string == 'False': return False else: raise Exception() def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--model_name", type=str, default='basic') parser.add_argument("--data_type", type=str, default='dev') parser.add_argument("--step", type=int, default=5000) parser.add_argument("--template_name", type=str, default="visualizer.html") parser.add_argument("--num_per_page", type=int, default=100) parser.add_argument("--data_dir", type=str, default="data/squad") parser.add_argument("--port", type=int, default=8000) parser.add_argument("--host", type=str, default="0.0.0.0") parser.add_argument("--open", type=str, default='False') parser.add_argument("--run_id", type=str, default="0") args = parser.parse_args() return args def _decode(decoder, sent): return " ".join(decoder[idx] for idx in sent) def accuracy2_visualizer(args): model_name = args.model_name data_type = args.data_type num_per_page = args.num_per_page data_dir = args.data_dir run_id = args.run_id.zfill(2) step = args.step eval_path =os.path.join("out", model_name, run_id, "eval", "{}-{}.json".format(data_type, str(step).zfill(6))) print("loading {}".format(eval_path)) eval_ = json.load(open(eval_path, 'r')) _id = 0 html_dir = "/tmp/list_results%d" % _id while os.path.exists(html_dir): _id += 1 html_dir = "/tmp/list_results%d" % _id if os.path.exists(html_dir): shutil.rmtree(html_dir) os.mkdir(html_dir) cur_dir = os.path.dirname(os.path.realpath(__file__)) templates_dir = os.path.join(cur_dir, 'templates') env = Environment(loader=FileSystemLoader(templates_dir)) env.globals.update(zip=zip, reversed=reversed) template = env.get_template(args.template_name) data_path = os.path.join(data_dir, "data_{}.json".format(data_type)) shared_path = os.path.join(data_dir, "shared_{}.json".format(data_type)) print("loading {}".format(data_path)) data = json.load(open(data_path, 'r')) print("loading {}".format(shared_path)) shared = json.load(open(shared_path, 'r')) rows = [] for i, (idx, yi, ypi, yp2i) in tqdm(enumerate(zip(*[eval_[key] for key in ('idxs', 'y', 'yp', 'yp2')])), total=len(eval_['idxs'])): id_, q, rx, answers = (data[key][idx] for key in ('ids', 'q', '*x', 'answerss')) x = shared['x'][rx[0]][rx[1]] ques = [" ".join(q)] para = [[word for word in sent] for sent in x] span = get_best_span(ypi, yp2i) ap = get_segment(para, span) score = "{:.3f}".format(ypi[span[0][0]][span[0][1]] * yp2i[span[1][0]][span[1][1]-1]) row = { 'id': id_, 'title': "Hello world!", 'ques': ques, 'para': para, 'y': yi[0][0], 'y2': yi[0][1], 'yp': ypi, 'yp2': yp2i, 'a': answers, 'ap': ap, 'score': score } rows.append(row) if i % num_per_page == 0: html_path = os.path.join(html_dir, "%s.html" % str(i).zfill(8)) if (i + 1) % num_per_page == 0 or (i + 1) == len(eval_['y']): var_dict = {'title': "Accuracy Visualization", 'rows': rows } with open(html_path, "wb") as f: f.write(template.render(**var_dict).encode('UTF-8')) rows = [] os.chdir(html_dir) port = args.port host = args.host # Overriding to suppress log message class MyHandler(http.server.SimpleHTTPRequestHandler): def log_message(self, format, *args): pass handler = MyHandler httpd = socketserver.TCPServer((host, port), handler) if args.open == 'True': os.system("open http://%s:%d" % (args.host, args.port)) print("serving at %s:%d" % (host, port)) httpd.serve_forever() def get_segment(para, span): return " ".join(para[span[0][0]][span[0][1]:span[1][1]]) if __name__ == "__main__": ARGS = get_args() accuracy2_visualizer(ARGS)
bi-att-flow-master
basic/visualizer.py
bi-att-flow-master
cnn_dm/__init__.py
import argparse import json import os # data: q, cq, (dq), (pq), y, *x, *cx # shared: x, cx, (dx), (px), word_counter, char_counter, word2vec # no metadata from collections import Counter from tqdm import tqdm from my.utils import process_tokens from squad.utils import get_word_span, process_tokens def bool_(arg): if arg == 'True': return True elif arg == 'False': return False raise Exception(arg) def main(): args = get_args() prepro(args) def get_args(): parser = argparse.ArgumentParser() home = os.path.expanduser("~") source_dir = os.path.join(home, "data", "cnn", 'questions') target_dir = "data/cnn" glove_dir = os.path.join(home, "data", "glove") parser.add_argument("--source_dir", default=source_dir) parser.add_argument("--target_dir", default=target_dir) parser.add_argument("--glove_dir", default=glove_dir) parser.add_argument("--glove_corpus", default='6B') parser.add_argument("--glove_vec_size", default=100, type=int) parser.add_argument("--debug", default=False, type=bool_) parser.add_argument("--num_sents_th", default=200, type=int) parser.add_argument("--ques_size_th", default=30, type=int) parser.add_argument("--width", default=5, type=int) # TODO : put more args here return parser.parse_args() def prepro(args): prepro_each(args, 'train') prepro_each(args, 'dev') prepro_each(args, 'test') def para2sents(para, width): """ Turn para into double array of words (wordss) Where each sentence is up to 5 word neighbors of each entity :param para: :return: """ words = para.split(" ") sents = [] for i, word in enumerate(words): if word.startswith("@"): start = max(i - width, 0) stop = min(i + width + 1, len(words)) sent = words[start:stop] sents.append(sent) return sents def get_word2vec(args, word_counter): glove_path = os.path.join(args.glove_dir, "glove.{}.{}d.txt".format(args.glove_corpus, args.glove_vec_size)) sizes = {'6B': int(4e5), '42B': int(1.9e6), '840B': int(2.2e6), '2B': int(1.2e6)} total = sizes[args.glove_corpus] word2vec_dict = {} with open(glove_path, 'r', encoding='utf-8') as fh: for line in tqdm(fh, total=total): array = line.lstrip().rstrip().split(" ") word = array[0] vector = list(map(float, array[1:])) if word in word_counter: word2vec_dict[word] = vector elif word.capitalize() in word_counter: word2vec_dict[word.capitalize()] = vector elif word.lower() in word_counter: word2vec_dict[word.lower()] = vector elif word.upper() in word_counter: word2vec_dict[word.upper()] = vector print("{}/{} of word vocab have corresponding vectors in {}".format(len(word2vec_dict), len(word_counter), glove_path)) return word2vec_dict def prepro_each(args, mode): source_dir = os.path.join(args.source_dir, mode) word_counter = Counter() lower_word_counter = Counter() ent_counter = Counter() char_counter = Counter() max_sent_size = 0 max_word_size = 0 max_ques_size = 0 max_num_sents = 0 file_names = list(os.listdir(source_dir)) if args.debug: file_names = file_names[:1000] lens = [] out_file_names = [] for file_name in tqdm(file_names, total=len(file_names)): if file_name.endswith(".question"): with open(os.path.join(source_dir, file_name), 'r') as fh: url = fh.readline().strip() _ = fh.readline() para = fh.readline().strip() _ = fh.readline() ques = fh.readline().strip() _ = fh.readline() answer = fh.readline().strip() _ = fh.readline() cands = list(line.strip() for line in fh) cand_ents = list(cand.split(":")[0] for cand in cands) sents = para2sents(para, args.width) ques_words = ques.split(" ") # Filtering if len(sents) > args.num_sents_th or len(ques_words) > args.ques_size_th: continue max_sent_size = max(max(map(len, sents)), max_sent_size) max_ques_size = max(len(ques_words), max_ques_size) max_word_size = max(max(len(word) for sent in sents for word in sent), max_word_size) max_num_sents = max(len(sents), max_num_sents) for word in ques_words: if word.startswith("@"): ent_counter[word] += 1 word_counter[word] += 1 else: word_counter[word] += 1 lower_word_counter[word.lower()] += 1 for c in word: char_counter[c] += 1 for sent in sents: for word in sent: if word.startswith("@"): ent_counter[word] += 1 word_counter[word] += 1 else: word_counter[word] += 1 lower_word_counter[word.lower()] += 1 for c in word: char_counter[c] += 1 out_file_names.append(file_name) lens.append(len(sents)) num_examples = len(out_file_names) assert len(out_file_names) == len(lens) sorted_file_names, lens = zip(*sorted(zip(out_file_names, lens), key=lambda each: each[1])) assert lens[-1] == max_num_sents word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dit = get_word2vec(args, lower_word_counter) shared = {'word_counter': word_counter, 'ent_counter': ent_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'max_num_sents': max_num_sents, 'max_sent_size': max_sent_size, 'max_word_size': max_word_size, 'max_ques_size': max_ques_size, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dit, 'sorted': sorted_file_names, 'num_examples': num_examples} print("max num sents: {}".format(max_num_sents)) print("max ques size: {}".format(max_ques_size)) if not os.path.exists(args.target_dir): os.makedirs(args.target_dir) shared_path = os.path.join(args.target_dir, "shared_{}.json".format(mode)) with open(shared_path, 'w') as fh: json.dump(shared, fh) if __name__ == "__main__": main()
bi-att-flow-master
cnn_dm/prepro.py
import json import os import sys root_dir = sys.argv[1] answer_path = sys.argv[2] file_names = os.listdir(root_dir) num_correct = 0 num_wrong = 0 with open(answer_path, 'r') as fh: id2answer_dict = json.load(fh) for file_name in file_names: if not file_name.endswith(".question"): continue with open(os.path.join(root_dir, file_name), 'r') as fh: url = fh.readline().strip() _ = fh.readline() para = fh.readline().strip() _ = fh.readline() ques = fh.readline().strip() _ = fh.readline() answer = fh.readline().strip() _ = fh.readline() if file_name in id2answer_dict: pred = id2answer_dict[file_name] if pred == answer: num_correct += 1 else: num_wrong += 1 else: num_wrong += 1 total = num_correct + num_wrong acc = float(num_correct) / total print("{} = {} / {}".format(acc, num_correct, total))
bi-att-flow-master
cnn_dm/evaluate.py
""" Official evaluation script for v1.1 of the SQuAD dataset. """ from __future__ import print_function from collections import Counter import string import re import argparse import json import sys def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r'\b(a|an|the)\b', ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return ''.join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def f1_score(prediction, ground_truth): prediction_tokens = normalize_answer(prediction).split() ground_truth_tokens = normalize_answer(ground_truth).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 def exact_match_score(prediction, ground_truth): return (normalize_answer(prediction) == normalize_answer(ground_truth)) def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): scores_for_ground_truths = [] for ground_truth in ground_truths: score = metric_fn(prediction, ground_truth) scores_for_ground_truths.append(score) return max(scores_for_ground_truths) def evaluate(dataset, predictions): f1 = exact_match = total = 0 for article in dataset: for paragraph in article['paragraphs']: for qa in paragraph['qas']: total += 1 if qa['id'] not in predictions: message = 'Unanswered question ' + qa['id'] + \ ' will receive score 0.' print(message, file=sys.stderr) continue ground_truths = list(map(lambda x: x['text'], qa['answers'])) prediction = predictions[qa['id']] exact_match += metric_max_over_ground_truths( exact_match_score, prediction, ground_truths) f1 += metric_max_over_ground_truths( f1_score, prediction, ground_truths) exact_match = 100.0 * exact_match / total f1 = 100.0 * f1 / total return {'exact_match': exact_match, 'f1': f1} if __name__ == '__main__': expected_version = '1.1' parser = argparse.ArgumentParser( description='Evaluation for SQuAD ' + expected_version) parser.add_argument('dataset_file', help='Dataset file') parser.add_argument('prediction_file', help='Prediction File') args = parser.parse_args() with open(args.dataset_file) as dataset_file: dataset_json = json.load(dataset_file) if (dataset_json['version'] != expected_version): print('Evaluation expects v-' + expected_version + ', but got dataset with v-' + dataset_json['version'], file=sys.stderr) dataset = dataset_json['data'] with open(args.prediction_file) as prediction_file: predictions = json.load(prediction_file) print(json.dumps(evaluate(dataset, predictions)))
bi-att-flow-master
squad/evaluate-v1.1.py
import argparse import json import os # data: q, cq, (dq), (pq), y, *x, *cx # shared: x, cx, (dx), (px), word_counter, char_counter, word2vec # no metadata from collections import Counter import nltk from tqdm import tqdm from my.nltk_utils import load_compressed_tree def bool_(arg): if arg == 'True': return True elif arg == 'False': return False raise Exception() def main(): args = get_args() prepro(args) def get_args(): parser = argparse.ArgumentParser() home = os.path.expanduser("~") source_dir = os.path.join(home, "data", "squad") target_dir = "data/squad" glove_dir = os.path.join(home, "data", "glove") parser.add_argument("--source_dir", default=source_dir) parser.add_argument("--target_dir", default=target_dir) parser.add_argument("--debug", default=False, type=bool_) parser.add_argument("--train_ratio", default=0.9, type=int) parser.add_argument("--glove_corpus", default="6B") parser.add_argument("--glove_dir", default=glove_dir) parser.add_argument("--glove_vec_size", default=100, type=int) parser.add_argument("--full_train", default=False, type=bool_) # TODO : put more args here return parser.parse_args() def prepro(args): if not os.path.exists(args.target_dir): os.makedirs(args.target_dir) if args.full_train: data_train, shared_train = prepro_each(args, 'train') data_dev, shared_dev = prepro_each(args, 'dev') else: data_train, shared_train = prepro_each(args, 'train', 0.0, args.train_ratio) data_dev, shared_dev = prepro_each(args, 'train', args.train_ratio, 1.0) data_test, shared_test = prepro_each(args, 'dev') print("saving ...") save(args, data_train, shared_train, 'train') save(args, data_dev, shared_dev, 'dev') save(args, data_test, shared_test, 'test') def save(args, data, shared, data_type): data_path = os.path.join(args.target_dir, "data_{}.json".format(data_type)) shared_path = os.path.join(args.target_dir, "shared_{}.json".format(data_type)) json.dump(data, open(data_path, 'w')) json.dump(shared, open(shared_path, 'w')) def get_word2vec(args, word_counter): glove_path = os.path.join(args.glove_dir, "glove.{}.{}d.txt".format(args.glove_corpus, args.glove_vec_size)) sizes = {'6B': int(4e5), '42B': int(1.9e6), '840B': int(2.2e6), '2B': int(1.2e6)} total = sizes[args.glove_corpus] word2vec_dict = {} with open(glove_path, 'r') as fh: for line in tqdm(fh, total=total): array = line.lstrip().rstrip().split(" ") word = array[0] vector = list(map(float, array[1:])) if word in word_counter: word2vec_dict[word] = vector elif word.capitalize() in word_counter: word2vec_dict[word.capitalize()] = vector elif word.lower() in word_counter: word2vec_dict[word.lower()] = vector elif word.upper() in word_counter: word2vec_dict[word.upper()] = vector print("{}/{} of word vocab have corresponding vectors in {}".format(len(word2vec_dict), len(word_counter), glove_path)) return word2vec_dict def prepro_each(args, data_type, start_ratio=0.0, stop_ratio=1.0): source_path = os.path.join(args.source_dir, "{}-v1.0-aug.json".format(data_type)) source_data = json.load(open(source_path, 'r')) q, cq, y, rx, rcx, ids, idxs = [], [], [], [], [], [], [] x, cx, tx, stx = [], [], [], [] answerss = [] word_counter, char_counter, lower_word_counter = Counter(), Counter(), Counter() pos_counter = Counter() start_ai = int(round(len(source_data['data']) * start_ratio)) stop_ai = int(round(len(source_data['data']) * stop_ratio)) for ai, article in enumerate(tqdm(source_data['data'][start_ai:stop_ai])): xp, cxp, txp, stxp = [], [], [], [] x.append(xp) cx.append(cxp) tx.append(txp) stx.append(stxp) for pi, para in enumerate(article['paragraphs']): xi = [] for dep in para['deps']: if dep is None: xi.append([]) else: xi.append([node[0] for node in dep[0]]) cxi = [[list(xijk) for xijk in xij] for xij in xi] xp.append(xi) cxp.append(cxi) txp.append(para['consts']) stxp.append([str(load_compressed_tree(s)) for s in para['consts']]) trees = map(nltk.tree.Tree.fromstring, para['consts']) for tree in trees: for subtree in tree.subtrees(): pos_counter[subtree.label()] += 1 for xij in xi: for xijk in xij: word_counter[xijk] += len(para['qas']) lower_word_counter[xijk.lower()] += len(para['qas']) for xijkl in xijk: char_counter[xijkl] += len(para['qas']) rxi = [ai, pi] assert len(x) - 1 == ai assert len(x[ai]) - 1 == pi for qa in para['qas']: dep = qa['dep'] qi = [] if dep is None else [node[0] for node in dep[0]] cqi = [list(qij) for qij in qi] yi = [] answers = [] for answer in qa['answers']: answers.append(answer['text']) yi0 = answer['answer_word_start'] or [0, 0] yi1 = answer['answer_word_stop'] or [0, 1] assert len(xi[yi0[0]]) > yi0[1] assert len(xi[yi1[0]]) >= yi1[1] yi.append([yi0, yi1]) for qij in qi: word_counter[qij] += 1 lower_word_counter[qij.lower()] += 1 for qijk in qij: char_counter[qijk] += 1 q.append(qi) cq.append(cqi) y.append(yi) rx.append(rxi) rcx.append(rxi) ids.append(qa['id']) idxs.append(len(idxs)) answerss.append(answers) if args.debug: break word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dict = get_word2vec(args, lower_word_counter) data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, '*tx': rx, '*stx': rx, 'idxs': idxs, 'ids': ids, 'answerss': answerss} shared = {'x': x, 'cx': cx, 'tx': tx, 'stx': stx, 'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict, 'pos_counter': pos_counter} return data, shared if __name__ == "__main__": main()
bi-att-flow-master
squad/prepro_aug.py
bi-att-flow-master
squad/__init__.py
import argparse import json import os # data: q, cq, (dq), (pq), y, *x, *cx # shared: x, cx, (dx), (px), word_counter, char_counter, word2vec # no metadata from collections import Counter from tqdm import tqdm from squad.utils import get_word_span, get_word_idx, process_tokens def main(): args = get_args() prepro(args) def get_args(): parser = argparse.ArgumentParser() home = os.path.expanduser("~") source_dir = os.path.join(home, "data", "squad") target_dir = "data/squad" glove_dir = os.path.join(home, "data", "glove") parser.add_argument('-s', "--source_dir", default=source_dir) parser.add_argument('-t', "--target_dir", default=target_dir) parser.add_argument('-d', "--debug", action='store_true') parser.add_argument("--train_ratio", default=0.9, type=int) parser.add_argument("--glove_corpus", default="6B") parser.add_argument("--glove_dir", default=glove_dir) parser.add_argument("--glove_vec_size", default=100, type=int) parser.add_argument("--mode", default="full", type=str) parser.add_argument("--single_path", default="", type=str) parser.add_argument("--tokenizer", default="PTB", type=str) parser.add_argument("--url", default="vision-server2.corp.ai2", type=str) parser.add_argument("--port", default=8000, type=int) parser.add_argument("--split", action='store_true') # TODO : put more args here return parser.parse_args() def create_all(args): out_path = os.path.join(args.source_dir, "all-v1.1.json") if os.path.exists(out_path): return train_path = os.path.join(args.source_dir, "train-v1.1.json") train_data = json.load(open(train_path, 'r')) dev_path = os.path.join(args.source_dir, "dev-v1.1.json") dev_data = json.load(open(dev_path, 'r')) train_data['data'].extend(dev_data['data']) print("dumping all data ...") json.dump(train_data, open(out_path, 'w')) def prepro(args): if not os.path.exists(args.target_dir): os.makedirs(args.target_dir) if args.mode == 'full': prepro_each(args, 'train', out_name='train') prepro_each(args, 'dev', out_name='dev') prepro_each(args, 'dev', out_name='test') elif args.mode == 'all': create_all(args) prepro_each(args, 'dev', 0.0, 0.0, out_name='dev') prepro_each(args, 'dev', 0.0, 0.0, out_name='test') prepro_each(args, 'all', out_name='train') elif args.mode == 'single': assert len(args.single_path) > 0 prepro_each(args, "NULL", out_name="single", in_path=args.single_path) else: prepro_each(args, 'train', 0.0, args.train_ratio, out_name='train') prepro_each(args, 'train', args.train_ratio, 1.0, out_name='dev') prepro_each(args, 'dev', out_name='test') def save(args, data, shared, data_type): data_path = os.path.join(args.target_dir, "data_{}.json".format(data_type)) shared_path = os.path.join(args.target_dir, "shared_{}.json".format(data_type)) json.dump(data, open(data_path, 'w')) json.dump(shared, open(shared_path, 'w')) def get_word2vec(args, word_counter): glove_path = os.path.join(args.glove_dir, "glove.{}.{}d.txt".format(args.glove_corpus, args.glove_vec_size)) sizes = {'6B': int(4e5), '42B': int(1.9e6), '840B': int(2.2e6), '2B': int(1.2e6)} total = sizes[args.glove_corpus] word2vec_dict = {} with open(glove_path, 'r', encoding='utf-8') as fh: for line in tqdm(fh, total=total): array = line.lstrip().rstrip().split(" ") word = array[0] vector = list(map(float, array[1:])) if word in word_counter: word2vec_dict[word] = vector elif word.capitalize() in word_counter: word2vec_dict[word.capitalize()] = vector elif word.lower() in word_counter: word2vec_dict[word.lower()] = vector elif word.upper() in word_counter: word2vec_dict[word.upper()] = vector print("{}/{} of word vocab have corresponding vectors in {}".format(len(word2vec_dict), len(word_counter), glove_path)) return word2vec_dict def prepro_each(args, data_type, start_ratio=0.0, stop_ratio=1.0, out_name="default", in_path=None): if args.tokenizer == "PTB": import nltk sent_tokenize = nltk.sent_tokenize def word_tokenize(tokens): return [token.replace("''", '"').replace("``", '"') for token in nltk.word_tokenize(tokens)] elif args.tokenizer == 'Stanford': from my.corenlp_interface import CoreNLPInterface interface = CoreNLPInterface(args.url, args.port) sent_tokenize = interface.split_doc word_tokenize = interface.split_sent else: raise Exception() if not args.split: sent_tokenize = lambda para: [para] source_path = in_path or os.path.join(args.source_dir, "{}-v1.1.json".format(data_type)) source_data = json.load(open(source_path, 'r')) q, cq, y, rx, rcx, ids, idxs = [], [], [], [], [], [], [] cy = [] x, cx = [], [] answerss = [] p = [] word_counter, char_counter, lower_word_counter = Counter(), Counter(), Counter() start_ai = int(round(len(source_data['data']) * start_ratio)) stop_ai = int(round(len(source_data['data']) * stop_ratio)) for ai, article in enumerate(tqdm(source_data['data'][start_ai:stop_ai])): xp, cxp = [], [] pp = [] x.append(xp) cx.append(cxp) p.append(pp) for pi, para in enumerate(article['paragraphs']): # wordss context = para['context'] context = context.replace("''", '" ') context = context.replace("``", '" ') xi = list(map(word_tokenize, sent_tokenize(context))) xi = [process_tokens(tokens) for tokens in xi] # process tokens # given xi, add chars cxi = [[list(xijk) for xijk in xij] for xij in xi] xp.append(xi) cxp.append(cxi) pp.append(context) for xij in xi: for xijk in xij: word_counter[xijk] += len(para['qas']) lower_word_counter[xijk.lower()] += len(para['qas']) for xijkl in xijk: char_counter[xijkl] += len(para['qas']) rxi = [ai, pi] assert len(x) - 1 == ai assert len(x[ai]) - 1 == pi for qa in para['qas']: # get words qi = word_tokenize(qa['question']) cqi = [list(qij) for qij in qi] yi = [] cyi = [] answers = [] for answer in qa['answers']: answer_text = answer['text'] answers.append(answer_text) answer_start = answer['answer_start'] answer_stop = answer_start + len(answer_text) # TODO : put some function that gives word_start, word_stop here yi0, yi1 = get_word_span(context, xi, answer_start, answer_stop) # yi0 = answer['answer_word_start'] or [0, 0] # yi1 = answer['answer_word_stop'] or [0, 1] assert len(xi[yi0[0]]) > yi0[1] assert len(xi[yi1[0]]) >= yi1[1] w0 = xi[yi0[0]][yi0[1]] w1 = xi[yi1[0]][yi1[1]-1] i0 = get_word_idx(context, xi, yi0) i1 = get_word_idx(context, xi, (yi1[0], yi1[1]-1)) cyi0 = answer_start - i0 cyi1 = answer_stop - i1 - 1 # print(answer_text, w0[cyi0:], w1[:cyi1+1]) assert answer_text[0] == w0[cyi0], (answer_text, w0, cyi0) assert answer_text[-1] == w1[cyi1] assert cyi0 < 32, (answer_text, w0) assert cyi1 < 32, (answer_text, w1) yi.append([yi0, yi1]) cyi.append([cyi0, cyi1]) for qij in qi: word_counter[qij] += 1 lower_word_counter[qij.lower()] += 1 for qijk in qij: char_counter[qijk] += 1 q.append(qi) cq.append(cqi) y.append(yi) cy.append(cyi) rx.append(rxi) rcx.append(rxi) ids.append(qa['id']) idxs.append(len(idxs)) answerss.append(answers) if args.debug: break word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dict = get_word2vec(args, lower_word_counter) # add context here data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, 'cy': cy, 'idxs': idxs, 'ids': ids, 'answerss': answerss, '*p': rx} shared = {'x': x, 'cx': cx, 'p': p, 'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict} print("saving ...") save(args, data, shared, out_name) if __name__ == "__main__": main()
bi-att-flow-master
squad/prepro.py
import re def get_2d_spans(text, tokenss): spanss = [] cur_idx = 0 for tokens in tokenss: spans = [] for token in tokens: if text.find(token, cur_idx) < 0: print(tokens) print("{} {} {}".format(token, cur_idx, text)) raise Exception() cur_idx = text.find(token, cur_idx) spans.append((cur_idx, cur_idx + len(token))) cur_idx += len(token) spanss.append(spans) return spanss def get_word_span(context, wordss, start, stop): spanss = get_2d_spans(context, wordss) idxs = [] for sent_idx, spans in enumerate(spanss): for word_idx, span in enumerate(spans): if not (stop <= span[0] or start >= span[1]): idxs.append((sent_idx, word_idx)) assert len(idxs) > 0, "{} {} {} {}".format(context, spanss, start, stop) return idxs[0], (idxs[-1][0], idxs[-1][1] + 1) def get_phrase(context, wordss, span): """ Obtain phrase as substring of context given start and stop indices in word level :param context: :param wordss: :param start: [sent_idx, word_idx] :param stop: [sent_idx, word_idx] :return: """ start, stop = span flat_start = get_flat_idx(wordss, start) flat_stop = get_flat_idx(wordss, stop) words = sum(wordss, []) char_idx = 0 char_start, char_stop = None, None for word_idx, word in enumerate(words): char_idx = context.find(word, char_idx) assert char_idx >= 0 if word_idx == flat_start: char_start = char_idx char_idx += len(word) if word_idx == flat_stop - 1: char_stop = char_idx assert char_start is not None assert char_stop is not None return context[char_start:char_stop] def get_flat_idx(wordss, idx): return sum(len(words) for words in wordss[:idx[0]]) + idx[1] def get_word_idx(context, wordss, idx): spanss = get_2d_spans(context, wordss) return spanss[idx[0]][idx[1]][0] def process_tokens(temp_tokens): tokens = [] for token in temp_tokens: flag = False l = ("-", "\u2212", "\u2014", "\u2013", "/", "~", '"', "'", "\u201C", "\u2019", "\u201D", "\u2018", "\u00B0") # \u2013 is en-dash. Used for number to nubmer # l = ("-", "\u2212", "\u2014", "\u2013") # l = ("\u2013",) tokens.extend(re.split("([{}])".format("".join(l)), token)) return tokens def get_best_span(ypi, yp2i): max_val = 0 best_word_span = (0, 1) best_sent_idx = 0 for f, (ypif, yp2if) in enumerate(zip(ypi, yp2i)): argmax_j1 = 0 for j in range(len(ypif)): val1 = ypif[argmax_j1] if val1 < ypif[j]: val1 = ypif[j] argmax_j1 = j val2 = yp2if[j] if val1 * val2 > max_val: best_word_span = (argmax_j1, j) best_sent_idx = f max_val = val1 * val2 return ((best_sent_idx, best_word_span[0]), (best_sent_idx, best_word_span[1] + 1)), float(max_val) def get_span_score_pairs(ypi, yp2i): span_score_pairs = [] for f, (ypif, yp2if) in enumerate(zip(ypi, yp2i)): for j in range(len(ypif)): for k in range(j, len(yp2if)): span = ((f, j), (f, k+1)) score = ypif[j] * yp2if[k] span_score_pairs.append((span, score)) return span_score_pairs
bi-att-flow-master
squad/utils.py
""" Official evaluation script for v1.1 of the SQuAD dataset. [Changed name for external importing]""" from __future__ import print_function from collections import Counter import string import re import argparse import json import sys def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r'\b(a|an|the)\b', ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return ''.join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def f1_score(prediction, ground_truth): prediction_tokens = normalize_answer(prediction).split() ground_truth_tokens = normalize_answer(ground_truth).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 def exact_match_score(prediction, ground_truth): return (normalize_answer(prediction) == normalize_answer(ground_truth)) def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): scores_for_ground_truths = [] for ground_truth in ground_truths: score = metric_fn(prediction, ground_truth) scores_for_ground_truths.append(score) return max(scores_for_ground_truths) def evaluate(dataset, predictions): f1 = exact_match = total = 0 for article in dataset: for paragraph in article['paragraphs']: for qa in paragraph['qas']: total += 1 if qa['id'] not in predictions: message = 'Unanswered question ' + qa['id'] + \ ' will receive score 0.' print(message, file=sys.stderr) continue ground_truths = list(map(lambda x: x['text'], qa['answers'])) prediction = predictions[qa['id']] exact_match += metric_max_over_ground_truths( exact_match_score, prediction, ground_truths) f1 += metric_max_over_ground_truths( f1_score, prediction, ground_truths) exact_match = 100.0 * exact_match / total f1 = 100.0 * f1 / total return {'exact_match': exact_match, 'f1': f1} if __name__ == '__main__': expected_version = '1.1' parser = argparse.ArgumentParser( description='Evaluation for SQuAD ' + expected_version) parser.add_argument('dataset_file', help='Dataset file') parser.add_argument('prediction_file', help='Prediction File') args = parser.parse_args() with open(args.dataset_file) as dataset_file: dataset_json = json.load(dataset_file) if (dataset_json['version'] != expected_version): print('Evaluation expects v-' + expected_version + ', but got dataset with v-' + dataset_json['version'], file=sys.stderr) dataset = dataset_json['data'] with open(args.prediction_file) as prediction_file: predictions = json.load(prediction_file) print(json.dumps(evaluate(dataset, predictions)))
bi-att-flow-master
squad/evaluate.py
import json import sys from tqdm import tqdm from my.corenlp_interface import CoreNLPInterface in_path = sys.argv[1] out_path = sys.argv[2] url = sys.argv[3] port = int(sys.argv[4]) data = json.load(open(in_path, 'r')) h = CoreNLPInterface(url, port) def find_all(a_str, sub): start = 0 while True: start = a_str.find(sub, start) if start == -1: return yield start start += len(sub) # use start += 1 to find overlapping matches def to_hex(s): return " ".join(map(hex, map(ord, s))) def handle_nobreak(cand, text): if cand == text: return cand if cand.replace(u'\u00A0', ' ') == text: return cand elif cand == text.replace(u'\u00A0', ' '): return text raise Exception("{} '{}' {} '{}'".format(cand, to_hex(cand), text, to_hex(text))) # resolving unicode complication wrong_loc_count = 0 loc_diffs = [] for article in data['data']: for para in article['paragraphs']: para['context'] = para['context'].replace(u'\u000A', '') para['context'] = para['context'].replace(u'\u00A0', ' ') context = para['context'] for qa in para['qas']: for answer in qa['answers']: answer['text'] = answer['text'].replace(u'\u00A0', ' ') text = answer['text'] answer_start = answer['answer_start'] if context[answer_start:answer_start + len(text)] == text: if text.lstrip() == text: pass else: answer_start += len(text) - len(text.lstrip()) answer['answer_start'] = answer_start text = text.lstrip() answer['text'] = text else: wrong_loc_count += 1 text = text.lstrip() answer['text'] = text starts = list(find_all(context, text)) if len(starts) == 1: answer_start = starts[0] elif len(starts) > 1: new_answer_start = min(starts, key=lambda s: abs(s - answer_start)) loc_diffs.append(abs(new_answer_start - answer_start)) answer_start = new_answer_start else: raise Exception() answer['answer_start'] = answer_start answer_stop = answer_start + len(text) answer['answer_stop'] = answer_stop assert para['context'][answer_start:answer_stop] == answer['text'], "{} {}".format( para['context'][answer_start:answer_stop], answer['text']) print(wrong_loc_count, loc_diffs) mismatch_count = 0 dep_fail_count = 0 no_answer_count = 0 size = sum(len(article['paragraphs']) for article in data['data']) pbar = tqdm(range(size)) for ai, article in enumerate(data['data']): for pi, para in enumerate(article['paragraphs']): context = para['context'] sents = h.split_doc(context) words = h.split_sent(context) sent_starts = [] ref_idx = 0 for sent in sents: new_idx = context.find(sent, ref_idx) sent_starts.append(new_idx) ref_idx = new_idx + len(sent) para['sents'] = sents para['words'] = words para['sent_starts'] = sent_starts consts = list(map(h.get_const, sents)) para['consts'] = consts deps = list(map(h.get_dep, sents)) para['deps'] = deps for qa in para['qas']: question = qa['question'] question_const = h.get_const(question) qa['const'] = question_const question_dep = h.get_dep(question) qa['dep'] = question_dep qa['words'] = h.split_sent(question) for answer in qa['answers']: answer_start = answer['answer_start'] text = answer['text'] answer_stop = answer_start + len(text) # answer_words = h.split_sent(text) word_idxs = [] answer_words = [] for sent_idx, (sent, sent_start, dep) in enumerate(zip(sents, sent_starts, deps)): if dep is None: print("dep parse failed at {} {} {}".format(ai, pi, sent_idx)) dep_fail_count += 1 continue nodes, edges = dep words = [node[0] for node in nodes] for word_idx, (word, _, _, start, _) in enumerate(nodes): global_start = sent_start + start global_stop = global_start + len(word) if answer_start <= global_start < answer_stop or answer_start < global_stop <= answer_stop: word_idxs.append((sent_idx, word_idx)) answer_words.append(word) if len(word_idxs) > 0: answer['answer_word_start'] = word_idxs[0] answer['answer_word_stop'] = word_idxs[-1][0], word_idxs[-1][1] + 1 if not text.startswith(answer_words[0]): print("'{}' '{}'".format(text, ' '.join(answer_words))) mismatch_count += 1 else: answer['answer_word_start'] = None answer['answer_word_stop'] = None no_answer_count += 1 pbar.update(1) pbar.close() print(mismatch_count, dep_fail_count, no_answer_count) print("saving...") json.dump(data, open(out_path, 'w'))
bi-att-flow-master
squad/aug_squad.py
import logging import requests import nltk import json import networkx as nx import time class CoreNLPInterface(object): def __init__(self, url, port): self._url = url self._port = port def get(self, type_, in_, num_max_requests=100): in_ = in_.encode("utf-8") url = "http://{}:{}/{}".format(self._url, self._port, type_) out = None for _ in range(num_max_requests): try: r = requests.post(url, data=in_) out = r.content.decode('utf-8') if out == 'error': out = None break except: time.sleep(1) return out def split_doc(self, doc): out = self.get("doc", doc) return out if out is None else json.loads(out) def split_sent(self, sent): out = self.get("sent", sent) return out if out is None else json.loads(out) def get_dep(self, sent): out = self.get("dep", sent) return out if out is None else json.loads(out) def get_const(self, sent): out = self.get("const", sent) return out def get_const_tree(self, sent): out = self.get_const(sent) return out if out is None else nltk.tree.Tree.fromstring(out) @staticmethod def dep2tree(dep): tree = nx.DiGraph() for dep, i, gov, j, label in dep: tree.add_edge(gov, dep, label=label) return tree
bi-att-flow-master
my/corenlp_interface.py
bi-att-flow-master
my/__init__.py
import json from collections import deque import numpy as np from tqdm import tqdm def mytqdm(list_, desc="", show=True): if show: pbar = tqdm(list_) pbar.set_description(desc) return pbar return list_ def json_pretty_dump(obj, fh): return json.dump(obj, fh, sort_keys=True, indent=2, separators=(',', ': ')) def index(l, i): return index(l[i[0]], i[1:]) if len(i) > 1 else l[i[0]] def fill(l, shape, dtype=None): out = np.zeros(shape, dtype=dtype) stack = deque() stack.appendleft(((), l)) while len(stack) > 0: indices, cur = stack.pop() if len(indices) < shape: for i, sub in enumerate(cur): stack.appendleft([indices + (i,), sub]) else: out[indices] = cur return out def short_floats(o, precision): class ShortFloat(float): def __repr__(self): return '%.{}g'.format(precision) % self def _short_floats(obj): if isinstance(obj, float): return ShortFloat(obj) elif isinstance(obj, dict): return dict((k, _short_floats(v)) for k, v in obj.items()) elif isinstance(obj, (list, tuple)): return tuple(map(_short_floats, obj)) return obj return _short_floats(o) def argmax(x): return np.unravel_index(x.argmax(), x.shape)
bi-att-flow-master
my/utils.py
import argparse import os import shutil from zipfile import ZipFile from tqdm import tqdm def get_args(): parser = argparse.ArgumentParser() parser.add_argument('paths', nargs='+') parser.add_argument('-o', '--out', default='save.zip') args = parser.parse_args() return args def zip_save(args): temp_dir = "." save_dir = os.path.join(temp_dir, "save") if not os.path.exists(save_dir): os.makedirs(save_dir) for save_source_path in tqdm(args.paths): # path = "out/basic/30/save/basic-18000" # target_path = "save_dir/30/save" # also output full path name to "save_dir/30/readme.txt # need to also extract "out/basic/30/shared.json" temp, _ = os.path.split(save_source_path) # "out/basic/30/save", _ model_dir, _ = os.path.split(temp) # "out/basic/30, _ _, model_name = os.path.split(model_dir) cur_dir = os.path.join(save_dir, model_name) if not os.path.exists(cur_dir): os.makedirs(cur_dir) save_target_path = os.path.join(cur_dir, "save") shared_target_path = os.path.join(cur_dir, "shared.json") readme_path = os.path.join(cur_dir, "readme.txt") shared_source_path = os.path.join(model_dir, "shared.json") shutil.copy(save_source_path, save_target_path) shutil.copy(shared_source_path, shared_target_path) with open(readme_path, 'w') as fh: fh.write(save_source_path) os.system("zip {} -r {}".format(args.out, save_dir)) def main(): args = get_args() zip_save(args) if __name__ == "__main__": main()
bi-att-flow-master
my/zip_save.py