python_code
stringlengths
0
187k
repo_name
stringlengths
8
46
file_path
stringlengths
6
135
"""Slightly modified subclass of the AllenNLP conll2003 dataset reader. Allows pruning negative sentences given a percent value and a limiting by a max length """ from typing import Dict, Sequence, Iterable, List import itertools import logging logging.basicConfig(level=logging.ERROR) from overrides import overrides from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.instance import Instance from allennlp.data.token_indexers import TokenIndexer from allennlp.data.tokenizers import Token from allennlp.data.dataset_readers import Conll2003DatasetReader from random import randint from collections import defaultdict logger = logging.getLogger(__name__) # pylint: disable=invalid-name def _is_divider(line: str) -> bool: empty_line = line.strip() == '' if empty_line: return True else: first_token = line.split()[0] if first_token == "-DOCSTART-": # pylint: disable=simplifiable-if-statement return True else: return False _VALID_LABELS = {'ner', 'pos', 'chunk'} @DatasetReader.register("rcc-ner") class RccNerDatasetReader(Conll2003DatasetReader): """ Reads instances from a pretokenised file where each line is in the following format: WORD POS-TAG CHUNK-TAG NER-TAG with a blank line indicating the end of each sentence and '-DOCSTART- -X- -X- O' indicating the end of each article, and converts it into a ``Dataset`` suitable for sequence tagging. percent_negatives: ``int``, optional (default=``100``) Represents the percentage of negative sentences included cutoff_sentence_length: ``int``, optional (default=``30``) Represents the max number of tokens for a sentence to be evaluated """ def __init__(self, token_indexers: Dict[str, TokenIndexer] = None, tag_label: str = "ner", feature_labels: Sequence[str] = (), lazy: bool = False, percent_negatives: int = 100, cutoff_sentence_length: int = 30, coding_scheme: str = "IOB1", filter_sections: bool = False) -> None: super().__init__(token_indexers, tag_label, feature_labels, lazy, coding_scheme) self.percent_negatives = percent_negatives self.cutoff_sentence_length = cutoff_sentence_length self.filter_sections = filter_sections def _is_title(self, tokens: List[Token], pos_tags: List[str], i: int): if pos_tags[i] == "PROPN": return True if len(tokens) <= 2: return True if i + 1 < len(tokens): if tokens[i+1].text == ":" or pos_tags[i+1] in ["PROPN", "NUM"]: return True def _is_sentence(self, tokens: List[Token], pos_tags: List[str]): if len(tokens) < 3: return False if "NOUN" not in pos_tags and "VERB" not in pos_tags: return False pos_counts = defaultdict(int) for pos_tag in pos_tags: pos_counts[pos_tag] += 1 if (pos_counts["NUM"] + pos_counts["SYM"] + pos_counts["PUNCT"]) > 0.4*len(pos_tags) and pos_counts["VERB"] == 0: return False return True @overrides def _read(self, file_path: str) -> Iterable[Instance]: start = False stop = False start_words_single = ["abstract", "introduction", "methods", "data", "method", "intro", "background", "keywords"] end_words_single = ["references", "acknowledgements"] # if `file_path` is a URL, redirect to the cache file_path = cached_path(file_path) with open(file_path, "r") as data_file: logger.info("Reading instances from lines in file at: %s", file_path) # Group into alternative divider / sentence chunks. instance_count = 0 yielded = False for is_divider, lines in itertools.groupby(data_file, _is_divider): # Ignore the divider chunks, so that `lines` corresponds to the words # of a single sentence. if not is_divider: instance_count += 1 fields = [line.strip().split() for line in lines] # unzipping trick returns tuples, but our Fields need lists tokens, pos_tags, chunk_tags, ner_tags = [list(field) for field in zip(*fields)] # negative sentence if len(set(ner_tags)) == 1 and ner_tags[0] == 'O': if randint(0, 100) > self.percent_negatives: continue # TextField requires ``Token`` objects tokens = [Token(token) for token in tokens] for i, (token, pos_tag) in enumerate(zip(tokens, pos_tags)): if token.text.lower() in start_words_single and self._is_title(tokens, pos_tags, i): start = True if instance_count >= 75: start = True if start and instance_count >= 150 and token.text.lower() in end_words_single and self._is_title(tokens, pos_tags, i): stop = True if self.filter_sections: if not start: continue if stop: break # print(tokens) # print(pos_tags) # print(self._is_sentence(tokens, pos_tags)) # input('e.') # if not self._is_sentence(tokens, pos_tags): # continue if self.cutoff_sentence_length and len(tokens) < self.cutoff_sentence_length: yielded = True yield self.text_to_instance(tokens, pos_tags, chunk_tags, ner_tags) if not yielded: yield self.text_to_instance([Token("The")], ["Det"], ["O"], ["O"])
coleridge-rich-context-ai2-master
project/ner_rcc/rcc_ner.py
"""This script splits up the papers such that the datasets in train, dev, and test are disjoint. Note: It assumes that the old splits and their file structure remain the same as before""" import os import json from collections import defaultdict import numpy as np import random def build_dataset_id_to_papers(old_train_path, old_dev_path, old_test_path): """Creates a dictionary mapping dataset id to a list of papers that reference that dataset according to the labels. @param old_train_path: path to the old train split folder @param old_dev_path: path to the old dev split folder @param old_test_path: path to the old test split folder """ train_citations_path = os.path.join(old_train_path, "data_set_citations.json") dev_citations_path = os.path.join(old_dev_path, "data_set_citations.json") test_citations_path = os.path.join(old_test_path, "data_set_citations.json") dataset_id_to_papers = defaultdict(list) with open(train_citations_path) as fp: train_citations_json = json.load(fp) with open(dev_citations_path) as fp: dev_citations_json = json.load(fp) with open(test_citations_path) as fp: test_citations_json = json.load(fp) citations_json = train_citations_json + dev_citations_json + test_citations_json for citation in citations_json: dataset_id = citation["data_set_id"] publication_id = citation["publication_id"] dataset_id_to_papers[dataset_id].append(publication_id) return dataset_id_to_papers def get_old_splits(old_train_path, old_dev_path, old_test_path): """Returns the set of papers in the original train, dev, and test splits respectively @param old_train_path: path to the old train split folder @param old_dev_path: path to the old dev split folder @param old_test_path: path to the old test split folder """ train_publications_path = os.path.join(old_train_path, "publications.json") dev_publications_path = os.path.join(old_dev_path, "publications.json") test_publications_path = os.path.join(old_test_path, "publications.json") with open(train_publications_path) as fp: train_publications_json = json.load(fp) with open(dev_publications_path) as fp: dev_publications_json = json.load(fp) with open(test_publications_path) as fp: test_publications_json = json.load(fp) train_papers = set() dev_papers = set() test_papers = set() for publication in train_publications_json: publication_id = publication["publication_id"] train_papers.add(publication_id) for publication in dev_publications_json: publication_id = publication["publication_id"] dev_papers.add(publication_id) for publication in test_publications_json: publication_id = publication["publication_id"] test_papers.add(publication_id) print() print("Original splits:") print("Num train papers:", len(train_papers)) print("Num dev papers:", len(dev_papers)) print("Num test papers:", len(test_papers)) assert len(train_papers) + len(dev_papers) + len(test_papers) == 5100, "There should be exactly 5100 papers in the old splits" return train_papers, dev_papers, test_papers def create_splits(dataset_id_with_papers_sorted): """Returns the set of papers in the new splits for train, dev, and test respectively @param dataset_id_with_paper_sorted: a sorted list of (dataset id, list of papers) tuples """ train_papers = set() dev_papers = set() test_papers = set() all_papers = set() for dataset_id, papers in dataset_id_with_papers_sorted: all_papers.update(papers) # take any datasets that appear in many papers as training data if len(papers) > 20: train_papers.update(papers) continue # if any of the current dataset's papers are already in train, dev, or test, # put all of this dataset's papers in that split if any(paper in train_papers for paper in papers): train_papers.update(papers) elif any(paper in dev_papers for paper in papers): dev_papers.update(papers) elif any(paper in test_papers for paper in papers): test_papers.update(papers) else: # randomly assign this dataset's papers to train, dev, or test random_flip = random.randint(0, 100) if random_flip <= 70: train_papers.update(papers) elif random_flip <= 85: dev_papers.update(papers) else: test_papers.update(papers) # resolve conflicts by preferring dev over train, and test over dev train_papers = train_papers - dev_papers train_papers = train_papers - test_papers dev_papers = dev_papers - test_papers print() print("New splits:") print("Num train papers:", len(train_papers)) print("Num dev papers:", len(dev_papers)) print("Num test papers:", len(test_papers)) assert len(train_papers) + len(dev_papers) + len(test_papers) == 2550, "There should be exactly 2550 papers with datasets in them" return train_papers, dev_papers, test_papers def write_split(old_data_path, new_split_path, new_papers_path, old_train_papers, old_dev_papers, old_test_papers, new_papers): """Writes a concatenated conll file for a given data fold @param old_data_path: path to the old data folder @param new_split_path: path to write the concatenated conll file to @param new_papers_path: path to write the list of papers in the fold to @param old_train_papers: set of papers in the old train set @param old_dev_papers: set of papers in the old dev set @param old_test_papers: set of papers in the old test set @param new_papers: set of papers in the new fold """ old_train_conll_path = os.path.join(old_data_path, "train", "ner-conll") old_dev_conll_path = os.path.join(old_data_path, "dev", "ner-conll") old_test_conll_path = os.path.join(old_data_path, "test", "ner-conll") with open(new_split_path, "w") as new_split_fp,\ open(new_papers_path, "w") as new_papers_fp: for paper in new_papers: if paper in old_train_papers: base_conll_path = old_train_conll_path elif paper in old_dev_papers: base_conll_path = old_dev_conll_path elif paper in old_test_papers: base_conll_path = old_test_conll_path else: raise Exception("Paper {} was not found in old train, dev, or test".format(paper)) old_conll_file_path = os.path.join(base_conll_path, str(paper) + "_extraction.conll") with open(old_conll_file_path) as old_conll_fp: new_split_fp.write(old_conll_fp.read()) new_papers_fp.write(str(paper)) new_papers_fp.write('\n') def write_splits(old_data_path, new_splits_base_path, old_train_papers, old_dev_papers, old_test_papers, new_train_papers, new_dev_papers, new_test_papers): """Writes concatenated conll files for train, dev, and test based on the new splits @param old_data_path: path to the old data folder @param new_splits_base_path: path to the folder where the concatenated files will be written @param old_train_papers: set of papers in the old train set @param old_dev_papers: set of papers in the old dev set @param old_test_papers: set of papers in the old test set @param new_train_papers: set of papers in the new train fold @param new_dev_papers: set of papers in the new dev fold @param new_test_papers: set of papers in the new test fold """ train_concat_path = os.path.join(new_splits_base_path, "train_concat.conll") dev_concat_path = os.path.join(new_splits_base_path, "dev_concat.conll") test_concat_path = os.path.join(new_splits_base_path, "test_concat.conll") train_papers_path = os.path.join(new_splits_base_path, "train_papers.txt") dev_papers_path = os.path.join(new_splits_base_path, "dev_papers.txt") test_papers_path = os.path.join(new_splits_base_path, "test_papers.txt") write_split(old_data_path, train_concat_path, train_papers_path, old_train_papers, old_dev_papers, old_test_papers, new_train_papers) write_split(old_data_path, dev_concat_path, dev_papers_path, old_train_papers, old_dev_papers, old_test_papers, new_dev_papers) write_split(old_data_path, test_concat_path, test_papers_path, old_train_papers, old_dev_papers, old_test_papers, new_test_papers) def main(): old_data_path = os.path.abspath(os.path.join("project", "data")) old_train_path = os.path.join(old_data_path, "train") old_dev_path = os.path.join(old_data_path, "dev") old_test_path = os.path.join(old_data_path, "test") old_train_papers, old_dev_papers, old_test_papers = get_old_splits(old_train_path, old_dev_path, old_test_path) dataset_id_to_papers = build_dataset_id_to_papers(old_train_path, old_dev_path, old_test_path) dataset_id_with_papers_sorted = sorted([(k, v) for k, v in dataset_id_to_papers.items()], key=lambda x: len(x[1])) new_train_papers, new_dev_papers, new_test_papers = create_splits(dataset_id_with_papers_sorted) new_splits_base_path = os.path.abspath(os.path.join("project", "ner_retraining", "data")) write_splits(old_data_path, new_splits_base_path, old_train_papers, old_dev_papers, old_test_papers, new_train_papers, new_dev_papers, new_test_papers) if __name__ == "__main__": main()
coleridge-rich-context-ai2-master
project/ner_retraining/create_splits.py
import sys import os import argparse sys.path.append(os.path.abspath(os.path.join("project"))) import ner_model import json def main(conll_path, output_path, model_path): ner = ner_model.NerModel(conll_path, model_path) citations_list = ner.predict_from_publication_list() with open(output_path, "w") as fp: json.dump(citations_list, fp) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( '--conll_path', ) parser.add_argument( '--output_path', ) parser.add_argument( '--model_path' ) args = parser.parse_args() main(args.conll_path, args.output_path, args.model_path)
coleridge-rich-context-ai2-master
project/ner_retraining/generate_ner_output.py
from overrides import overrides from allennlp.common.util import JsonDict from allennlp.data import Instance from allennlp.predictors.predictor import Predictor @Predictor.register('classifier') class ClassifierPredictor(Predictor): """ Predictor for the :class:`~allennlp.models.text_classification.Seq2Seq` model. """ def predict(self, title: str) -> JsonDict: """ Make a machine comprehension prediction on the supplied input. See https://rajpurkar.github.io/SQuAD-explorer/ for more information about the machine comprehension task. Parameters ---------- question : ``str`` A question about the content in the supplied paragraph. The question must be answerable by a span in the paragraph. passage : ``str`` A paragraph of information relevant to the question. Returns ------- A dictionary that represents the prediction made by the system. The answer string will be under the "best_span_str" key. """ return self.predict_json({"title" : title}) @overrides def _json_to_instance(self, json_dict: JsonDict) -> Instance: """ Expects JSON that looks like ``{"title": "..."}``. """ title = json_dict["title"] return self._dataset_reader.text_to_instance(text=title)
coleridge-rich-context-ai2-master
project/field_classifier/predictor.py
from allennlp.models.archival import load_archive from allennlp.service.predictors import Predictor from field_classifier.classifier import Classifier from field_classifier.predictor import ClassifierPredictor from field_classifier.textcat import TextCatReader import os import json import numpy as np l0_archive = load_archive( os.path.abspath(os.path.join("data", "model_logs", "l0_model.tar.gz")) ) l0_predictor = Predictor.from_archive(l0_archive, 'classifier') l1_archive = load_archive( os.path.abspath(os.path.join("data", "model_logs", "l1_model.tar.gz")) ) l1_predictor = Predictor.from_archive(l1_archive, 'classifier') test_pubs = [{"title": "this is a test", "publication_id": 1}] clf_output = [] l0_label_map = l0_archive.model.vocab.get_index_to_token_vocabulary("labels") l1_label_map = l1_archive.model.vocab.get_index_to_token_vocabulary("labels") for test_pub in test_pubs: l0_prediction = l0_predictor.predict_json({"title": test_pub['title']}) l1_prediction = l1_predictor.predict_json({"title": test_pub['title']}) pred = {} pred['publication_id'] = test_pub['publication_id'] l0_score = np.max(l0_prediction['label_probs']) l1_score = np.max(l1_prediction['label_probs']) l0_field = l0_label_map[np.argmax(l0_prediction['label_probs'])] l1_field = l1_label_map[np.argmax(l1_prediction['label_probs'])] if l1_score > 0.4: output_score = "{}:{}".format(l0_score, l1_score) output_field = "{}:{}".format(l0_field, l1_field) else: output_score = "{}".format(l0_score) output_field = "{}".format(l0_field) pred['score'] = output_score pred['research_field'] = output_field clf_output.append(pred) print(clf_output)
coleridge-rich-context-ai2-master
project/field_classifier/eval_field_classifier.py
from typing import Any, Dict, List, Optional import torch from allennlp.data import Vocabulary from allennlp.models.model import Model from allennlp.modules import FeedForward, Seq2SeqEncoder, TextFieldEmbedder from allennlp.nn import InitializerApplicator, RegularizerApplicator from allennlp.nn.util import (get_final_encoder_states, get_text_field_mask, masked_max, masked_mean) from allennlp.training.metrics import CategoricalAccuracy @Model.register("seq2seq_classifier") class Classifier(Model): """ This ``Model`` implements a classifier with a seq2seq encoder of text. See allennlp.modules.seq2seq_encoders for available encoders. Parameters ---------- vocab : ``Vocabulary`` text_field_embedder : ``TextFieldEmbedder`` Used to embed the ``TextField`` we get as input to the model. encoder : ``Seq2SeqEncoder`` Used to encode the text output_feedforward : ``FeedForward`` Used to prepare the text for prediction. classification_layer : ``FeedForward`` This feedforward network computes the output logits. dropout : ``float``, optional (default=0.5) Dropout percentage to use. initializer : ``InitializerApplicator``, optional (default=``InitializerApplicator()``) Used to initialize the model parameters. regularizer : ``RegularizerApplicator``, optional (default=``None``) If provided, will be used to calculate the regularization penalty during training """ def __init__(self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, encoder: Seq2SeqEncoder, aggregations: List[str], output_feedforward: FeedForward, classification_layer: FeedForward, dropout: float = 0.5, initializer: InitializerApplicator = InitializerApplicator(), regularizer: Optional[RegularizerApplicator] = None) -> None: super().__init__(vocab, regularizer) self._text_field_embedder = text_field_embedder if dropout: self.dropout = torch.nn.Dropout(dropout) else: self.dropout = None self._encoder = encoder self._aggregations = aggregations self._output_feedforward = output_feedforward self._classification_layer = classification_layer self._num_labels = vocab.get_vocab_size(namespace="labels") self._accuracy = CategoricalAccuracy() self._loss = torch.nn.CrossEntropyLoss() initializer(self) def forward(self, # type: ignore tokens: Dict[str, torch.LongTensor], label: torch.IntTensor = None, metadata: List[Dict[str, Any]] = None # pylint:disable=unused-argument ) -> Dict[str, torch.Tensor]: # pylint: disable=arguments-differ """ Parameters ---------- tokens : Dict[str, torch.LongTensor] From a ``TextField`` label : torch.IntTensor, optional (default = None) From a ``LabelField`` metadata : ``List[Dict[str, Any]]``, optional, (default = None) Metadata to persist Returns ------- An output dictionary consisting of: label_logits : torch.FloatTensor A tensor of shape ``(batch_size, num_labels)`` representing unnormalized log probabilities of the label. label_probs : torch.FloatTensor A tensor of shape ``(batch_size, num_labels)`` representing probabilities of the label. loss : torch.FloatTensor, optional A scalar loss to be optimised. """ embedded_text = self._text_field_embedder(tokens) mask = get_text_field_mask(tokens).float() encoder_output = self._encoder(embedded_text, mask) encoded_repr = [] for aggregation in self._aggregations: if aggregation == "meanpool": broadcast_mask = mask.unsqueeze(-1).float() context_vectors = encoder_output * broadcast_mask encoded_text = masked_mean(context_vectors, broadcast_mask, dim=1, keepdim=False) elif aggregation == 'maxpool': broadcast_mask = mask.unsqueeze(-1).float() context_vectors = encoder_output * broadcast_mask encoded_text = masked_max(context_vectors, broadcast_mask, dim=1) elif aggregation == 'final_state': is_bi = self._encoder.is_bidirectional() encoded_text = get_final_encoder_states(encoder_output, mask, is_bi) encoded_repr.append(encoded_text) encoded_repr = torch.cat(encoded_repr, 1) if self.dropout: encoded_repr = self.dropout(encoded_repr) output_hidden = self._output_feedforward(encoded_repr) label_logits = self._classification_layer(output_hidden) label_probs = torch.nn.functional.softmax(label_logits, dim=-1) output_dict = {"label_logits": label_logits, "label_probs": label_probs} if label is not None: loss = self._loss(label_logits, label.long().view(-1)) self._accuracy(label_logits, label) output_dict["loss"] = loss return output_dict def get_metrics(self, reset: bool = False) -> Dict[str, float]: return {'accuracy': self._accuracy.get_metric(reset)}
coleridge-rich-context-ai2-master
project/field_classifier/classifier.py
coleridge-rich-context-ai2-master
project/field_classifier/__init__.py
import json import logging from typing import Dict, List import numpy as np from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import (Field, LabelField, ListField, MetadataField, TextField) from allennlp.data.instance import Instance from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenIndexer from allennlp.data.tokenizers import Tokenizer, WordTokenizer from allennlp.data.tokenizers.sentence_splitter import SpacySentenceSplitter from overrides import overrides logger = logging.getLogger(__name__) # pylint: disable=invalid-name @DatasetReader.register("semisupervised_text_classification_json") class TextCatReader(DatasetReader): """ Reads tokens and their labels from a labeled text classification dataset. Expects a "tokens" field and a "category" field in JSON format. The output of ``read`` is a list of ``Instance`` s with the fields: tokens: ``TextField`` and label: ``LabelField`` Parameters ---------- token_indexers : ``Dict[str, TokenIndexer]``, optional optional (default=``{"tokens": SingleIdTokenIndexer()}``) We use this to define the input representation for the text. See :class:`TokenIndexer`. tokenizer : ``Tokenizer``, optional (default = ``{"tokens": WordTokenizer()}``) Tokenizer to use to split the input text into words or other kinds of tokens. segment_sentences: ``bool``, optional (default = ``False``) If True, we will first segment the text into sentences using SpaCy and then tokenize words. Necessary for some models that require pre-segmentation of sentences, like the Hierarchical Attention Network. sequence_length: ``int``, optional (default = ``None``) If specified, will truncate tokens to specified maximum length. ignore_labels: ``bool``, optional (default = ``False``) If specified, will ignore labels when reading data, useful for semi-supervised textcat skip_label_indexing: ``bool``, optional (default = ``False``) Whether or not to skip label indexing. You might want to skip label indexing if your labels are numbers, so the dataset reader doesn't re-number them starting from 0. lazy : ``bool``, optional, (default = ``False``) Whether or not instances can be read lazily. """ def __init__(self, token_indexers: Dict[str, TokenIndexer] = None, tokenizer: Tokenizer = None, unrestricted_tokenizer: Tokenizer = None, segment_sentences: bool = False, sequence_length: int = None, ignore_labels: bool = False, skip_label_indexing: bool = False, sample: int = None, unlabeled_data_path: str = None, lazy: bool = False) -> None: super().__init__(lazy=lazy) self._tokenizer = tokenizer or WordTokenizer() self._unrestricted_tokenizer = unrestricted_tokenizer self._sample = sample self._segment_sentences = segment_sentences self._sequence_length = sequence_length self._ignore_labels = ignore_labels self._skip_label_indexing = skip_label_indexing self._token_indexers = token_indexers or {'tokens': SingleIdTokenIndexer()} self._unlabeled_data_path = unlabeled_data_path if self._segment_sentences: self._sentence_segmenter = SpacySentenceSplitter() def _reservoir_sampling(self, file_): """ reservoir sampling for reading random lines from file without loading entire file into memory See here for explanation of algorithm: https://stackoverflow.com/questions/35680236/select-100-random-lines-from-a-file-with-a-1-million-which-cant-be-read-into-me Parameters ---------- file : `str` - file path sample_size : `int` - size of random sample you want Returns ------- result : `List[str]` - sample lines of file """ file_iterator = iter(file_) try: result = [next(file_iterator) for _ in range(self._sample)] except StopIteration: raise ValueError("Sample larger than population") for index, item in enumerate(file_iterator, start=self._sample): sample_index = np.random.randint(0, index) if sample_index < self._sample: result[sample_index] = item np.random.shuffle(result) return result @overrides def _read(self, file_path): with open(cached_path(file_path), "r") as data_file: if self._sample is not None: lines = [(item, False) for item in self._reservoir_sampling(data_file)] else: lines = [(item, True) for item in data_file.readlines()] if self._unlabeled_data_path: with open(cached_path(self._unlabeled_data_path)) as data_file: lines += [(item, False) for item in data_file.readlines()] for line, is_labeled in lines: items = json.loads(line) text = items["tokens"] label = str(items['category']) instance = self.text_to_instance(text=text, label=label, is_labeled=is_labeled) if instance is not None: yield instance def _truncate(self, tokens): """ truncate a set of tokens using the provided sequence length """ if len(tokens) > self._sequence_length: tokens = tokens[:self._sequence_length] return tokens @overrides def text_to_instance(self, text: str, label: str = None, is_labeled: bool = False) -> Instance: # type: ignore """ Parameters ---------- text : ``str``, required. The text to classify label ``str``, optional, (default = None). The label for this text. Returns ------- An ``Instance`` containing the following fields: tokens : ``TextField`` The tokens in the sentence or phrase. label : ``LabelField`` The label label of the sentence or phrase. """ # pylint: disable=arguments-differ fields: Dict[str, Field] = {} if self._segment_sentences: sentences: List[Field] = [] sentence_splits = self._sentence_segmenter.split_sentences(text) for sentence in sentence_splits: word_tokens = self._tokenizer.tokenize(sentence) if self._sequence_length is not None: word_tokens = self._truncate(word_tokens) sentences.append(TextField(word_tokens, self._token_indexers)) fields['tokens'] = ListField(sentences) else: tokens = self._tokenizer.tokenize(text) if self._sequence_length is not None: tokens = self._truncate(tokens) fields['tokens'] = TextField(tokens, self._token_indexers) if self._unrestricted_tokenizer: unrestricted_tokens = self._unrestricted_tokenizer.tokenize(text) if self._sequence_length is not None: unrestricted_tokens = self._truncate(unrestricted_tokens) fields['filtered_tokens'] = TextField(unrestricted_tokens, self._token_indexers) # TODO: Document 'default' unsupervised label as pre-condition. if label is not None: fields['label'] = LabelField(label, skip_indexing=self._skip_label_indexing) fields['metadata'] = MetadataField({"is_labeled": is_labeled}) return Instance(fields)
coleridge-rich-context-ai2-master
project/field_classifier/textcat.py
coleridge-rich-context-ai2-master
project/s2base/__init__.py
import spacy class SciSpaCyParser(object): def __init__(self): self.nlp = spacy.load('en_scispacy_core_web_sm') def remove_new_lines(self, text): """Used to preprocess away new lines in the middle of words. This function is intended to be called on a raw string before it is passed through a spaCy pipeline @param text: a string of text to be processed """ text = text.replace("-\n\n", "") text = text.replace("- \n\n", "") text = text.replace("-\n", "") text = text.replace("- \n", "") return text def preprocess_text(self, text): """Function to preprocess text before passing it on to spacy @param text: the raw text to process """ text = self.remove_new_lines(text) return text def postprocess_doc(self, doc): """Function to postprocess a doc before returning it for use. This post processing could be done by converting the doc to an array, processing out what you don't want, and then converting the array back to a doc. @param doc: a spacy processed doc """ return doc def scispacy_create_doc(self, text): """Function to use SciSpaCy instead of spaCy. Intended usage is to replace instances of `nlp = spacy.load("<model_name>")` with `nlp = scispacy_create_doc` @param text: the text to be processed into a spacy doc """ text = self.preprocess_text(text) doc = self.nlp(text) doc = self.postprocess_doc(doc) return doc
coleridge-rich-context-ai2-master
project/s2base/scispacy_util.py
import argparse import itertools import ir_datasets import abnirml _logger = ir_datasets.log.easy() def flush(fout, qid, docs): scored_docs = [(score, did) for did, score in docs.items()] for i, (score, did) in enumerate(sorted(scored_docs, reverse=True)): fout.write(f'{qid} 0 {did} {i+1} {score} run\n') fout.flush() def iter_scores(scoreddocs, scorer, query_lookup, doc_store): it1, it2 = itertools.tee(scoreddocs) def score_input_iter(): for record in it1: yield query_lookup[record.query_id], doc_store.get(record.doc_id, 'text') score_iter = scorer.score_iter(score_input_iter()) for record, score in zip(it2, score_iter): yield record.query_id, record.doc_id, score def main(): parser = argparse.ArgumentParser() parser.add_argument('dataset') parser.add_argument('scorer') parser.add_argument('output') args = parser.parse_args() dataset = ir_datasets.load(args.dataset) scorer = abnirml.SCORERS[args.scorer] # remove cacher query_lookup = {q.query_id: q.text for q in dataset.queries_iter()} doc_store = dataset.docs_store() last_qid = None doc_scores = None with open(args.output, 'wt') as fout: results = {} for qid, did, score in iter_scores(dataset.scoreddocs_iter(), scorer, query_lookup, doc_store): if qid not in results: results[qid] = {} results[qid][did] = score for qid, doc_scores in results.items(): flush(fout, qid, doc_scores) if __name__ == '__main__': main()
abnirml-master
abnirml/rerank.py
import os import atexit import shutil import tempfile from contextlib import contextmanager import threading import pyterrier as pt import ir_datasets _logger = ir_datasets.log.easy() class _JavaInterface: def __init__(self): self._autoclass = None self.cast = None self.JavaException = None self._defs = {} self._cache = {} self._jars = [] self._log_listeners = [] def register(self, jars=None, defs=None): if jars is not None: if self._autoclass is None: for jar in jars: self._jars.append(jar) else: raise RuntimeError('Cannot add JAR after jnius has been initialized.') if defs is not None: for n, path in defs.items(): self._defs[n] = path def add_log_listener(self, func): self._log_listeners.insert(0, func) @contextmanager def listen_java_log(self, func): self._log_listeners.insert(0, func) yield self._log_listeners.pop(0) def __getattr__(self, key): if self._autoclass is None: self.initialize() if key not in self._cache: self._cache[key] = self._autoclass(self._defs[key]) return self._cache[key] def initialize(self): if not pt.started(): with _logger.duration('java init'): log_fifo, l4j12_file, l4j24_file = self._init_java_logger_interface() import jnius_config jnius_config.set_classpath(*self._jars, os.path.dirname(l4j12_file)) jnius_config.add_options(f'-Dlog4j.configuration={l4j12_file}') jnius_config.add_options(f'-Dlog4j.configurationFile={l4j24_file}') pt.init() from jnius import autoclass, cast, JavaException self._autoclass = autoclass self.cast = cast self.JavaException = JavaException for key, path in self._defs.items(): self._cache[key] = self._autoclass(path) def _java_log_listen(self, fifo): while True: with open(fifo) as f: buf = '' for line in f: if line.rstrip() == '': buf = buf.rstrip() for listener in self._log_listeners: result = listener(buf) if result == False: break buf = '' else: buf += line def _init_java_logger_interface(self): base_tmp = tempfile.mkdtemp() atexit.register(shutil.rmtree, base_tmp) l4j12_config_file = os.path.join(base_tmp, 'log4j.properties') l4j24_config_file = os.path.join(base_tmp, 'log4j24.xml') log_fifo = os.path.join(base_tmp, 'log_interface.fifo') os.mkfifo(log_fifo) log_thread = threading.Thread(target=self._java_log_listen, args=(log_fifo,), daemon=True) log_thread.start() with open(l4j12_config_file, 'wt') as f: f.write(f''' log4j.rootLogger=fifo log4j.appender.fifo=org.apache.log4j.FileAppender log4j.appender.fifo.fileName={log_fifo} log4j.appender.fifo.layout=org.apache.log4j.PatternLayout log4j.appender.fifo.layout.ConversionPattern=%p %c [%t] %m%n%n ''') with open(l4j24_config_file, 'wt') as f: f.write(f'''<?xml version="1.0" encoding="UTF-8"?> <Configuration> <Appenders> <File name="LogFifo" fileName="{log_fifo}"> <PatternLayout> <Pattern>%p %c [%t] %m%n%n</Pattern> </PatternLayout> </File> </Appenders> <Loggers> <Root level="all"> <AppenderRef ref="LogFifo"/> </Root> </Loggers> </Configuration> ''') return log_fifo, l4j12_config_file, l4j24_config_file J = _JavaInterface() J.register(defs=dict( # Core System='java.lang.System', Array='java.lang.reflect.Array', Arrays='java.util.Arrays', ArrayList='java.util.ArrayList', Integer='java.lang.Integer', Float='java.lang.Float', File='java.io.File', Thread='java.lang.Thread', StringReader='java.io.StringReader', ))
abnirml-master
abnirml/java.py
import ir_datasets _logger = ir_datasets.log.easy() _logger.logger().setLevel(20) # INFO from . import datasets from . import probes from . import scorers from . import indices from . import eval as ev from . import util from pathlib import Path import pyterrier as pt from abnirml.java import J J.initialize() ProbeExperiment = ev.ProbeExperiment Probe = probes.Probe Scorer = scorers.Scorer NeuralScorer = scorers.NeuralScorer PyTerrierScorer = scorers.PyTerrierScorer CachedScorer = scorers.CachedScorer JflegProbe = probes.JflegProbe trecdl19 = indices.PtIndexWrapper(ir_datasets.load('msmarco-passage/trec-dl-2019')) trecdl19_index = trecdl19.docs_ptindex() antiquetest = indices.PtIndexWrapper(ir_datasets.load('antique/test')) base_path = Path.home()/'.abnirml' if not base_path.exists(): base_path.mkdir(parents=True, exist_ok=True) if not (base_path/'cache'/'scorers').exists(): (base_path/'cache'/'scorers').mkdir(parents=True, exist_ok=True) if not (base_path/'cache'/'probes').exists(): (base_path/'cache'/'probes').mkdir(parents=True, exist_ok=True) PROBES = { 'CV-DL19-Rel-Len': probes.const_var.ConstVarQrelsProbe(trecdl19, const=probes.const_var.Rel, var=probes.const_var.Len), 'CV-DL19-Rel-Tf': probes.const_var.ConstVarQrelsProbe(trecdl19, const=probes.const_var.Rel, var=probes.const_var.Tf), 'CV-DL19-Rel-SumTf': probes.const_var.ConstVarQrelsProbe(trecdl19, const=probes.const_var.Rel, var=probes.const_var.SumTf), 'CV-DL19-Rel-Overlap': probes.const_var.ConstVarQrelsProbe(trecdl19, const=probes.const_var.Rel, var=probes.const_var.Overlap), 'CV-DL19-Len-Rel': probes.const_var.ConstVarQrelsProbe(trecdl19, const=probes.const_var.Len, var=probes.const_var.Rel), 'CV-DL19-Len-Tf': probes.const_var.ConstVarQrelsProbe(trecdl19, const=probes.const_var.Len, var=probes.const_var.Tf), 'CV-DL19-Len-SumTf': probes.const_var.ConstVarQrelsProbe(trecdl19, const=probes.const_var.Len, var=probes.const_var.SumTf), 'CV-DL19-Len-Overlap': probes.const_var.ConstVarQrelsProbe(trecdl19, const=probes.const_var.Len, var=probes.const_var.Overlap), 'CV-DL19-Tf-Rel': probes.const_var.ConstVarQrelsProbe(trecdl19, const=probes.const_var.Tf, var=probes.const_var.Rel), 'CV-DL19-Tf-Len': probes.const_var.ConstVarQrelsProbe(trecdl19, const=probes.const_var.Tf, var=probes.const_var.Len), 'CV-DL19-Tf-SumTf': probes.const_var.ConstVarQrelsProbe(trecdl19, const=probes.const_var.Tf, var=probes.const_var.SumTf), 'CV-DL19-Tf-Overlap': probes.const_var.ConstVarQrelsProbe(trecdl19, const=probes.const_var.Tf, var=probes.const_var.Overlap), 'CV-DL19-SumTf-Rel': probes.const_var.ConstVarQrelsProbe(trecdl19, const=probes.const_var.SumTf, var=probes.const_var.Rel), 'CV-DL19-SumTf-Len': probes.const_var.ConstVarQrelsProbe(trecdl19, const=probes.const_var.SumTf, var=probes.const_var.Len), 'CV-DL19-SumTf-Tf': probes.const_var.ConstVarQrelsProbe(trecdl19, const=probes.const_var.SumTf, var=probes.const_var.Tf), 'CV-DL19-SumTf-Overlap': probes.const_var.ConstVarQrelsProbe(trecdl19, const=probes.const_var.SumTf, var=probes.const_var.Overlap), 'CV-DL19-Overlap-Rel': probes.const_var.ConstVarQrelsProbe(trecdl19, const=probes.const_var.Overlap, var=probes.const_var.Rel), 'CV-DL19-Overlap-Len': probes.const_var.ConstVarQrelsProbe(trecdl19, const=probes.const_var.Overlap, var=probes.const_var.Len), 'CV-DL19-Overlap-Tf': probes.const_var.ConstVarQrelsProbe(trecdl19, const=probes.const_var.Overlap, var=probes.const_var.Tf), 'CV-DL19-Overlap-SumTf': probes.const_var.ConstVarQrelsProbe(trecdl19, const=probes.const_var.Overlap, var=probes.const_var.SumTf), 'TR-DL19-ShufWords': probes.transform.TransformProbe(trecdl19, probes.transform.ShufWords()), 'TR-DL19-ShufSents': probes.transform.TransformProbe(trecdl19, probes.transform.ShufSents()), 'TR-DL19-ReverseSents': probes.transform.TransformProbe(trecdl19, probes.transform.ReverseSents()), 'TR-DL19-ReverseWords': probes.transform.TransformProbe(trecdl19, probes.transform.ReverseWords()), 'TR-DL19-ShufWordsKeepSents': probes.transform.TransformProbe(trecdl19, probes.transform.ShufWordsKeepSents()), 'TR-DL19-ShufWordsKeepSentsAndNPs': probes.transform.TransformProbe(trecdl19, probes.transform.ShufWordsKeepSentsAndNPs()), 'TR-DL19-ShufWordsKeepNPs': probes.transform.TransformProbe(trecdl19, probes.transform.ShufWordsKeepNPs()), 'TR-DL19-ShufNPSlots': probes.transform.TransformProbe(trecdl19, probes.transform.ShufNPSlots()), 'TR-DL19-ShufPrepositions': probes.transform.TransformProbe(trecdl19, probes.transform.ShufPrepositions()), 'TR-DL19-ReverseNPSlots': probes.transform.TransformProbe(trecdl19, probes.transform.ReverseNPSlots()), 'TR-DL19-SwapNumNPSlots2': probes.transform.TransformProbe(trecdl19, probes.transform.SwapNumNPSlots2()), 'TR-DL19-CaseFold': probes.transform.TransformProbe(trecdl19, probes.transform.CaseFold()), 'TR-DL19-Lemma': probes.transform.TransformProbe(trecdl19, probes.transform.Lemmatize()), 'TR-DL19-DelPunct': probes.transform.TransformProbe(trecdl19, probes.transform.DelPunct()), 'TR-DL19-DelSent-start': probes.transform.TransformProbe(trecdl19, probes.transform.DelSent('start')), 'TR-DL19-DelSent-end': probes.transform.TransformProbe(trecdl19, probes.transform.DelSent('end')), 'TR-DL19-DelSent-rand': probes.transform.TransformProbe(trecdl19, probes.transform.DelSent('rand')), 'TR-DL19-AddSent-start': probes.transform.TransformProbe(trecdl19, probes.transform.AddSent('start')), 'TR-DL19-AddSent-end': probes.transform.TransformProbe(trecdl19, probes.transform.AddSent('end')), 'TR-DL19-DocTTTTTQuery': probes.transform.TransformProbe(trecdl19, probes.transform.DocTTTTTQuery()), 'TR-DL19-Query': probes.transform.TransformProbe(trecdl19, probes.transform.Query()), 'TR-DL19-Typo': probes.transform.TransformProbe(trecdl19, probes.transform.Typo()), 'TR-DL19-Typo-nostops': probes.transform.TransformProbe(trecdl19, probes.transform.Typo(no_stops=True)), 'TR-DL19-DelStops': probes.transform.TransformProbe(trecdl19, probes.transform.RmStops()), 'TR-DL19-DelStops-DelPunct': probes.transform.TransformProbe(trecdl19, probes.transform.Multi([probes.transform.RmStops(), probes.transform.DelPunct()])), 'TR-DL19-nrel-ShufWords': probes.transform.TransformProbe(trecdl19, probes.transform.ShufWords(), rel_range=(0, 1)), 'TR-DL19-nrel-ShufSents': probes.transform.TransformProbe(trecdl19, probes.transform.ShufSents(), rel_range=(0, 1)), 'TR-DL19-nrel-ReverseSents': probes.transform.TransformProbe(trecdl19, probes.transform.ReverseSents(), rel_range=(0, 1)), 'TR-DL19-nrel-ReverseWords': probes.transform.TransformProbe(trecdl19, probes.transform.ReverseWords(), rel_range=(0, 1)), 'TR-DL19-nrel-ShufWordsKeepSents': probes.transform.TransformProbe(trecdl19, probes.transform.ShufWordsKeepSents(), rel_range=(0, 1)), 'TR-DL19-nrel-ShufWordsKeepSentsAndNPs': probes.transform.TransformProbe(trecdl19, probes.transform.ShufWordsKeepSentsAndNPs(), rel_range=(0, 1)), 'TR-DL19-nrel-ShufWordsKeepNPs': probes.transform.TransformProbe(trecdl19, probes.transform.ShufWordsKeepNPs(), rel_range=(0, 1)), 'TR-DL19-nrel-ShufNPSlots': probes.transform.TransformProbe(trecdl19, probes.transform.ShufNPSlots(), rel_range=(0, 1)), 'TR-DL19-nrel-ShufPrepositions': probes.transform.TransformProbe(trecdl19, probes.transform.ShufPrepositions(), rel_range=(0, 1)), 'TR-DL19-nrel-ReverseNPSlots': probes.transform.TransformProbe(trecdl19, probes.transform.ReverseNPSlots(), rel_range=(0, 1)), 'TR-DL19-nrel-SwapNumNPSlots2': probes.transform.TransformProbe(trecdl19, probes.transform.SwapNumNPSlots2(), rel_range=(0, 1)), 'TR-DL19-nrel-CaseFold': probes.transform.TransformProbe(trecdl19, probes.transform.CaseFold(), rel_range=(0, 1)), 'TR-DL19-nrel-Lemma': probes.transform.TransformProbe(trecdl19, probes.transform.Lemmatize(), rel_range=(0, 1)), 'TR-DL19-nrel-DelPunct': probes.transform.TransformProbe(trecdl19, probes.transform.DelPunct(), rel_range=(0, 1)), 'TR-DL19-nrel-DelSent-start': probes.transform.TransformProbe(trecdl19, probes.transform.DelSent('start'), rel_range=(0, 1)), 'TR-DL19-nrel-DelSent-end': probes.transform.TransformProbe(trecdl19, probes.transform.DelSent('end'), rel_range=(0, 1)), 'TR-DL19-nrel-DelSent-rand': probes.transform.TransformProbe(trecdl19, probes.transform.DelSent('rand'), rel_range=(0, 1)), 'TR-DL19-nrel-AddSent-start': probes.transform.TransformProbe(trecdl19, probes.transform.AddSent('start'), rel_range=(0, 1)), 'TR-DL19-nrel-AddSent-end': probes.transform.TransformProbe(trecdl19, probes.transform.AddSent('end'), rel_range=(0, 1)), 'TR-DL19-nrel-DocTTTTTQuery': probes.transform.TransformProbe(trecdl19, probes.transform.DocTTTTTQuery(), rel_range=(0, 1)), 'TR-DL19-nrel-Query': probes.transform.TransformProbe(trecdl19, probes.transform.Query(), rel_range=(0, 1)), 'TR-DL19-nrel-Typo': probes.transform.TransformProbe(trecdl19, probes.transform.Typo(), rel_range=(0, 1)), 'TR-DL19-nrel-DelStops': probes.transform.TransformProbe(trecdl19, probes.transform.RmStops(), rel_range=(0, 1)), 'TR-DL19-nrel-DelStops-DelPunct': probes.transform.TransformProbe(trecdl19, probes.transform.Multi([probes.transform.RmStops(), probes.transform.DelPunct()]), rel_range=(0, 1)), 'TR-DL19-rel-ShufWords': probes.transform.TransformProbe(trecdl19, probes.transform.ShufWords(), rel_range=(2, 3)), 'TR-DL19-rel-ShufSents': probes.transform.TransformProbe(trecdl19, probes.transform.ShufSents(), rel_range=(2, 3)), 'TR-DL19-rel-ReverseSents': probes.transform.TransformProbe(trecdl19, probes.transform.ReverseSents(), rel_range=(2, 3)), 'TR-DL19-rel-ReverseWords': probes.transform.TransformProbe(trecdl19, probes.transform.ReverseWords(), rel_range=(2, 3)), 'TR-DL19-rel-ShufWordsKeepSents': probes.transform.TransformProbe(trecdl19, probes.transform.ShufWordsKeepSents(), rel_range=(2, 3)), 'TR-DL19-rel-ShufWordsKeepSentsAndNPs': probes.transform.TransformProbe(trecdl19, probes.transform.ShufWordsKeepSentsAndNPs(), rel_range=(2, 3)), 'TR-DL19-rel-ShufWordsKeepNPs': probes.transform.TransformProbe(trecdl19, probes.transform.ShufWordsKeepNPs(), rel_range=(2, 3)), 'TR-DL19-rel-ShufNPSlots': probes.transform.TransformProbe(trecdl19, probes.transform.ShufNPSlots(), rel_range=(2, 3)), 'TR-DL19-rel-ShufPrepositions': probes.transform.TransformProbe(trecdl19, probes.transform.ShufPrepositions(), rel_range=(2, 3)), 'TR-DL19-rel-ReverseNPSlots': probes.transform.TransformProbe(trecdl19, probes.transform.ReverseNPSlots(), rel_range=(2, 3)), 'TR-DL19-rel-SwapNumNPSlots2': probes.transform.TransformProbe(trecdl19, probes.transform.SwapNumNPSlots2(), rel_range=(2, 3)), 'TR-DL19-rel-CaseFold': probes.transform.TransformProbe(trecdl19, probes.transform.CaseFold(), rel_range=(2, 3)), 'TR-DL19-rel-Lemma': probes.transform.TransformProbe(trecdl19, probes.transform.Lemmatize(), rel_range=(2, 3)), 'TR-DL19-rel-DelPunct': probes.transform.TransformProbe(trecdl19, probes.transform.DelPunct(), rel_range=(2, 3)), 'TR-DL19-rel-DelSent-start': probes.transform.TransformProbe(trecdl19, probes.transform.DelSent('start'), rel_range=(2, 3)), 'TR-DL19-rel-DelSent-end': probes.transform.TransformProbe(trecdl19, probes.transform.DelSent('end'), rel_range=(2, 3)), 'TR-DL19-rel-DelSent-rand': probes.transform.TransformProbe(trecdl19, probes.transform.DelSent('rand'), rel_range=(2, 3)), 'TR-DL19-rel-AddSent-start': probes.transform.TransformProbe(trecdl19, probes.transform.AddSent('start'), rel_range=(2, 3)), 'TR-DL19-rel-AddSent-end': probes.transform.TransformProbe(trecdl19, probes.transform.AddSent('end'), rel_range=(2, 3)), 'TR-DL19-rel-DocTTTTTQuery': probes.transform.TransformProbe(trecdl19, probes.transform.DocTTTTTQuery(), rel_range=(2, 3)), 'TR-DL19-rel-Query': probes.transform.TransformProbe(trecdl19, probes.transform.Query(), rel_range=(2, 3)), 'TR-DL19-rel-Typo': probes.transform.TransformProbe(trecdl19, probes.transform.Typo(), rel_range=(2, 3)), 'TR-DL19-rel-DelStops': probes.transform.TransformProbe(trecdl19, probes.transform.RmStops(), rel_range=(2, 3)), 'TR-DL19-rel-DelStops-DelPunct': probes.transform.TransformProbe(trecdl19, probes.transform.Multi([probes.transform.RmStops(), probes.transform.DelPunct()]), rel_range=(2, 3)), 'CV-ANT-Rel-Len': probes.const_var.ConstVarQrelsProbe(antiquetest, const=probes.const_var.Rel, var=probes.const_var.Len), 'CV-ANT-Rel-Tf': probes.const_var.ConstVarQrelsProbe(antiquetest, const=probes.const_var.Rel, var=probes.const_var.Tf), 'CV-ANT-Rel-SumTf': probes.const_var.ConstVarQrelsProbe(antiquetest, const=probes.const_var.Rel, var=probes.const_var.SumTf), 'CV-ANT-Rel-Overlap': probes.const_var.ConstVarQrelsProbe(antiquetest, const=probes.const_var.Rel, var=probes.const_var.Overlap), 'CV-ANT-Len-Rel': probes.const_var.ConstVarQrelsProbe(antiquetest, const=probes.const_var.Len, var=probes.const_var.Rel), 'CV-ANT-Len-Tf': probes.const_var.ConstVarQrelsProbe(antiquetest, const=probes.const_var.Len, var=probes.const_var.Tf), 'CV-ANT-Len-SumTf': probes.const_var.ConstVarQrelsProbe(antiquetest, const=probes.const_var.Len, var=probes.const_var.SumTf), 'CV-ANT-Len-Overlap': probes.const_var.ConstVarQrelsProbe(antiquetest, const=probes.const_var.Len, var=probes.const_var.Overlap), 'CV-ANT-Tf-Rel': probes.const_var.ConstVarQrelsProbe(antiquetest, const=probes.const_var.Tf, var=probes.const_var.Rel), 'CV-ANT-Tf-Len': probes.const_var.ConstVarQrelsProbe(antiquetest, const=probes.const_var.Tf, var=probes.const_var.Len), 'CV-ANT-Tf-SumTf': probes.const_var.ConstVarQrelsProbe(antiquetest, const=probes.const_var.Tf, var=probes.const_var.SumTf), 'CV-ANT-Tf-Overlap': probes.const_var.ConstVarQrelsProbe(antiquetest, const=probes.const_var.Tf, var=probes.const_var.Overlap), 'CV-ANT-SumTf-Rel': probes.const_var.ConstVarQrelsProbe(antiquetest, const=probes.const_var.SumTf, var=probes.const_var.Rel), 'CV-ANT-SumTf-Len': probes.const_var.ConstVarQrelsProbe(antiquetest, const=probes.const_var.SumTf, var=probes.const_var.Len), 'CV-ANT-SumTf-Tf': probes.const_var.ConstVarQrelsProbe(antiquetest, const=probes.const_var.SumTf, var=probes.const_var.Tf), 'CV-ANT-SumTf-Overlap': probes.const_var.ConstVarQrelsProbe(antiquetest, const=probes.const_var.SumTf, var=probes.const_var.Overlap), 'CV-ANT-Overlap-Rel': probes.const_var.ConstVarQrelsProbe(antiquetest, const=probes.const_var.Overlap, var=probes.const_var.Rel), 'CV-ANT-Overlap-Len': probes.const_var.ConstVarQrelsProbe(antiquetest, const=probes.const_var.Overlap, var=probes.const_var.Len), 'CV-ANT-Overlap-Tf': probes.const_var.ConstVarQrelsProbe(antiquetest, const=probes.const_var.Overlap, var=probes.const_var.Tf), 'CV-ANT-Overlap-SumTf': probes.const_var.ConstVarQrelsProbe(antiquetest, const=probes.const_var.Overlap, var=probes.const_var.SumTf), 'TR-ANT-ShufWords': probes.transform.TransformProbe(antiquetest, probes.transform.ShufWords()), 'TR-ANT-ShufSents': probes.transform.TransformProbe(antiquetest, probes.transform.ShufSents()), 'TR-ANT-ReverseSents': probes.transform.TransformProbe(antiquetest, probes.transform.ReverseSents()), 'TR-ANT-ReverseWords': probes.transform.TransformProbe(antiquetest, probes.transform.ReverseWords()), 'TR-ANT-ShufWordsKeepSents': probes.transform.TransformProbe(antiquetest, probes.transform.ShufWordsKeepSents()), 'TR-ANT-ShufWordsKeepSentsAndNPs': probes.transform.TransformProbe(antiquetest, probes.transform.ShufWordsKeepSentsAndNPs()), 'TR-ANT-ShufWordsKeepNPs': probes.transform.TransformProbe(antiquetest, probes.transform.ShufWordsKeepNPs()), 'TR-ANT-ShufNPSlots': probes.transform.TransformProbe(antiquetest, probes.transform.ShufNPSlots()), 'TR-ANT-ShufPrepositions': probes.transform.TransformProbe(antiquetest, probes.transform.ShufPrepositions()), 'TR-ANT-ReverseNPSlots': probes.transform.TransformProbe(antiquetest, probes.transform.ReverseNPSlots()), 'TR-ANT-SwapNumNPSlots2': probes.transform.TransformProbe(antiquetest, probes.transform.SwapNumNPSlots2()), 'TR-ANT-CaseFold': probes.transform.TransformProbe(antiquetest, probes.transform.CaseFold()), 'TR-ANT-Lemma': probes.transform.TransformProbe(antiquetest, probes.transform.Lemmatize()), 'TR-ANT-DelPunct': probes.transform.TransformProbe(antiquetest, probes.transform.DelPunct()), 'TR-ANT-DelSent-start': probes.transform.TransformProbe(antiquetest, probes.transform.DelSent('start')), 'TR-ANT-DelSent-end': probes.transform.TransformProbe(antiquetest, probes.transform.DelSent('end')), 'TR-ANT-DelSent-rand': probes.transform.TransformProbe(antiquetest, probes.transform.DelSent('rand')), 'TR-ANT-AddSent-start': probes.transform.TransformProbe(antiquetest, probes.transform.AddSent('start')), 'TR-ANT-AddSent-end': probes.transform.TransformProbe(antiquetest, probes.transform.AddSent('end')), 'TR-ANT-AddSent1-end': probes.transform.TransformProbe(antiquetest, probes.transform.AddSent('end', rel=1)), 'TR-ANT-DocTTTTTQuery': probes.transform.TransformProbe(antiquetest, probes.transform.DocTTTTTQuery()), 'TR-ANT-Query': probes.transform.TransformProbe(antiquetest, probes.transform.Query()), 'TR-ANT-Typo': probes.transform.TransformProbe(antiquetest, probes.transform.Typo()), 'TR-ANT-Typo-nostops': probes.transform.TransformProbe(antiquetest, probes.transform.Typo(no_stops=True)), 'TR-ANT-DelStops': probes.transform.TransformProbe(antiquetest, probes.transform.RmStops()), 'TR-ANT-DelStops-DelPunct': probes.transform.TransformProbe(antiquetest, probes.transform.Multi([probes.transform.RmStops(), probes.transform.DelPunct()])), 'TR-ANT-nrel-ShufWords': probes.transform.TransformProbe(antiquetest, probes.transform.ShufWords(), rel_range=(0, 1)), 'TR-ANT-nrel-ShufSents': probes.transform.TransformProbe(antiquetest, probes.transform.ShufSents(), rel_range=(0, 1)), 'TR-ANT-nrel-ReverseSents': probes.transform.TransformProbe(antiquetest, probes.transform.ReverseSents(), rel_range=(0, 1)), 'TR-ANT-nrel-ReverseWords': probes.transform.TransformProbe(antiquetest, probes.transform.ReverseWords(), rel_range=(0, 1)), 'TR-ANT-nrel-ShufWordsKeepSents': probes.transform.TransformProbe(antiquetest, probes.transform.ShufWordsKeepSents(), rel_range=(0, 1)), 'TR-ANT-nrel-ShufWordsKeepSentsAndNPs': probes.transform.TransformProbe(antiquetest, probes.transform.ShufWordsKeepSentsAndNPs(), rel_range=(0, 1)), 'TR-ANT-nrel-ShufWordsKeepNPs': probes.transform.TransformProbe(antiquetest, probes.transform.ShufWordsKeepNPs(), rel_range=(0, 1)), 'TR-ANT-nrel-ShufNPSlots': probes.transform.TransformProbe(antiquetest, probes.transform.ShufNPSlots(), rel_range=(0, 1)), 'TR-ANT-nrel-ShufPrepositions': probes.transform.TransformProbe(antiquetest, probes.transform.ShufPrepositions(), rel_range=(0, 1)), 'TR-ANT-nrel-ReverseNPSlots': probes.transform.TransformProbe(antiquetest, probes.transform.ReverseNPSlots(), rel_range=(0, 1)), 'TR-ANT-nrel-SwapNumNPSlots2': probes.transform.TransformProbe(antiquetest, probes.transform.SwapNumNPSlots2(), rel_range=(0, 1)), 'TR-ANT-nrel-CaseFold': probes.transform.TransformProbe(antiquetest, probes.transform.CaseFold(), rel_range=(0, 1)), 'TR-ANT-nrel-Lemma': probes.transform.TransformProbe(antiquetest, probes.transform.Lemmatize(), rel_range=(0, 1)), 'TR-ANT-nrel-DelPunct': probes.transform.TransformProbe(antiquetest, probes.transform.DelPunct(), rel_range=(0, 1)), 'TR-ANT-nrel-DelSent-start': probes.transform.TransformProbe(antiquetest, probes.transform.DelSent('start'), rel_range=(0, 1)), 'TR-ANT-nrel-DelSent-end': probes.transform.TransformProbe(antiquetest, probes.transform.DelSent('end'), rel_range=(0, 1)), 'TR-ANT-nrel-DelSent-rand': probes.transform.TransformProbe(antiquetest, probes.transform.DelSent('rand'), rel_range=(0, 1)), 'TR-ANT-nrel-AddSent-start': probes.transform.TransformProbe(antiquetest, probes.transform.AddSent('start'), rel_range=(0, 1)), 'TR-ANT-nrel-AddSent-end': probes.transform.TransformProbe(antiquetest, probes.transform.AddSent('end'), rel_range=(0, 1)), 'TR-ANT-nrel-DocTTTTTQuery': probes.transform.TransformProbe(antiquetest, probes.transform.DocTTTTTQuery(), rel_range=(0, 1)), 'TR-ANT-nrel-Query': probes.transform.TransformProbe(antiquetest, probes.transform.Query(), rel_range=(0, 1)), 'TR-ANT-nrel-Typo': probes.transform.TransformProbe(antiquetest, probes.transform.Typo(), rel_range=(0, 1)), 'TR-ANT-nrel-DelStops': probes.transform.TransformProbe(antiquetest, probes.transform.RmStops(), rel_range=(0, 1)), 'TR-ANT-nrel-DelStops-DelPunct': probes.transform.TransformProbe(antiquetest, probes.transform.Multi([probes.transform.RmStops(), probes.transform.DelPunct()]), rel_range=(0, 1)), 'TR-ANT-rel-ShufWords': probes.transform.TransformProbe(antiquetest, probes.transform.ShufWords(), rel_range=(2, 3)), 'TR-ANT-rel-ShufSents': probes.transform.TransformProbe(antiquetest, probes.transform.ShufSents(), rel_range=(2, 3)), 'TR-ANT-rel-ReverseSents': probes.transform.TransformProbe(antiquetest, probes.transform.ReverseSents(), rel_range=(2, 3)), 'TR-ANT-rel-ReverseWords': probes.transform.TransformProbe(antiquetest, probes.transform.ReverseWords(), rel_range=(2, 3)), 'TR-ANT-rel-ShufWordsKeepSents': probes.transform.TransformProbe(antiquetest, probes.transform.ShufWordsKeepSents(), rel_range=(2, 3)), 'TR-ANT-rel-ShufWordsKeepSentsAndNPs': probes.transform.TransformProbe(antiquetest, probes.transform.ShufWordsKeepSentsAndNPs(), rel_range=(2, 3)), 'TR-ANT-rel-ShufWordsKeepNPs': probes.transform.TransformProbe(antiquetest, probes.transform.ShufWordsKeepNPs(), rel_range=(2, 3)), 'TR-ANT-rel-ShufNPSlots': probes.transform.TransformProbe(antiquetest, probes.transform.ShufNPSlots(), rel_range=(2, 3)), 'TR-ANT-rel-ShufPrepositions': probes.transform.TransformProbe(antiquetest, probes.transform.ShufPrepositions(), rel_range=(2, 3)), 'TR-ANT-rel-ReverseNPSlots': probes.transform.TransformProbe(antiquetest, probes.transform.ReverseNPSlots(), rel_range=(2, 3)), 'TR-ANT-rel-SwapNumNPSlots2': probes.transform.TransformProbe(antiquetest, probes.transform.SwapNumNPSlots2(), rel_range=(2, 3)), 'TR-ANT-rel-CaseFold': probes.transform.TransformProbe(antiquetest, probes.transform.CaseFold(), rel_range=(2, 3)), 'TR-ANT-rel-Lemma': probes.transform.TransformProbe(antiquetest, probes.transform.Lemmatize(), rel_range=(2, 3)), 'TR-ANT-rel-DelPunct': probes.transform.TransformProbe(antiquetest, probes.transform.DelPunct(), rel_range=(2, 3)), 'TR-ANT-rel-DelSent-start': probes.transform.TransformProbe(antiquetest, probes.transform.DelSent('start'), rel_range=(2, 3)), 'TR-ANT-rel-DelSent-end': probes.transform.TransformProbe(antiquetest, probes.transform.DelSent('end'), rel_range=(2, 3)), 'TR-ANT-rel-DelSent-rand': probes.transform.TransformProbe(antiquetest, probes.transform.DelSent('rand'), rel_range=(2, 3)), 'TR-ANT-rel-AddSent-start': probes.transform.TransformProbe(antiquetest, probes.transform.AddSent('start'), rel_range=(2, 3)), 'TR-ANT-rel-AddSent-end': probes.transform.TransformProbe(antiquetest, probes.transform.AddSent('end'), rel_range=(2, 3)), 'TR-ANT-rel-DocTTTTTQuery': probes.transform.TransformProbe(antiquetest, probes.transform.DocTTTTTQuery(), rel_range=(2, 3)), 'TR-ANT-rel-Query': probes.transform.TransformProbe(antiquetest, probes.transform.Query(), rel_range=(2, 3)), 'TR-ANT-rel-Typo': probes.transform.TransformProbe(antiquetest, probes.transform.Typo(), rel_range=(2, 3)), 'TR-ANT-rel-DelStops': probes.transform.TransformProbe(antiquetest, probes.transform.RmStops(), rel_range=(2, 3)), 'TR-ANT-rel-DelStops-DelPunct': probes.transform.TransformProbe(antiquetest, probes.transform.Multi([probes.transform.RmStops(), probes.transform.DelPunct()]), rel_range=(2, 3)), 'DS-Jfleg': probes.JflegProbe(), 'DS-Jfleg-sp': probes.JflegProbe('abnirml:jfleg/sp'), 'DS-Gyafc': probes.GyafcProbe(), 'DS-Gyafc-family': probes.GyafcProbe(genre_filter='Family_Relationships'), 'DS-Gyafc-enter': probes.GyafcProbe(genre_filter='Entertainment_Music'), 'DS-CnnDmProbe-cnn': probes.CnnDmProbe(source='cnn'), 'DS-CnnDmProbe-dm': probes.CnnDmProbe(source='dm'), 'DS-XSum': probes.XSumProbe(), 'DS-Bias': probes.BiasProbe(), 'DS-Paraphrase-mspc': probes.ParaphraseProbe('abnirml:mspc'), 'DS-Factuality-nq-tertok-train-PERSON': probes.FactualityProbe('dpr-w100/natural-questions/train', valid_entities=('PERSON'), tokenizer=trecdl19_index), 'DS-Factuality-nq-tertok-train-GPE': probes.FactualityProbe('dpr-w100/natural-questions/train', valid_entities=('GPE'), tokenizer=trecdl19_index), 'DS-Factuality-nq-tertok-train-LOC': probes.FactualityProbe('dpr-w100/natural-questions/train', valid_entities=('LOC'), tokenizer=trecdl19_index), 'DS-Factuality-nq-tertok-train-NORP': probes.FactualityProbe('dpr-w100/natural-questions/train', valid_entities=('NORP'), tokenizer=trecdl19_index), 'DS-Factuality-nq-tertok-train-ORG': probes.FactualityProbe('dpr-w100/natural-questions/train', valid_entities=('ORG'), tokenizer=trecdl19_index), 'DS-Simplification-wikiturk': probes.SimplificationProbe('abnirml:wikiturk'), } PROBES = {k: probes.CachedProbe(v, base_path/'cache'/'probes'/f'{k}.cache') for k, v in PROBES.items()} def _monot5(): import pyterrier_t5 return pyterrier_t5.MonoT5ReRanker(batch_size=64, verbose=False) def _monot5_large(): import pyterrier_t5 return pyterrier_t5.MonoT5ReRanker(model='castorini/monot5-large-msmarco', batch_size=32, verbose=False) def _colbert(): from pyterrier_colbert.ranking import ColBERTFactory pt_colbert = ColBERTFactory("http://www.dcs.gla.ac.uk/~craigm/colbert.dnn.zip", None, None) return pt_colbert.text_scorer() def _wmd(): from pyterrier_gensim import WmdScorer import logging logging.getLogger('gensim').level = 999 return WmdScorer("glove-wiki-gigaword-100", verbose=False) def _ance(): import pyterrier_ance return pyterrier_ance.ANCEReRanker('ance_checkpoint') def _sbert_bi(model_name): def wrapped(): import pyterrier_sbert return pyterrier_sbert.SbertBiScorer(model_name) return wrapped def _onir(f, gpu=True): def wrapped(): import onir_pt return onir_pt.reranker.from_checkpoint(f, config={'verbose': False, 'batch_size': 64, 'gpu': gpu}) return wrapped # NOTE: below the delta values are assigned using the median values from abnirml.eval.topk_diffs SCORERS = { 'BM25-dl19': scorers.TerrierBM25(index=trecdl19.docs_ptindex()), 'T5': scorers.PyTerrierScorer('T5-pt', _monot5, batch_size=64), 'T5-l': scorers.PyTerrierScorer('T5-l-pt', _monot5_large, batch_size=32), 'VBERT': scorers.VanillaBERT(weight_path="/home/sean/data/abnirml/vbert.p"), 'EPIC': scorers.PyTerrierScorer('epic42', _onir('/home/sean/data/onir/model_checkpoints/epic.42.tar.gz'), batch_size=16), 'ColBERT': scorers.PyTerrierScorer('ColBERT-pt', _colbert), 'ANCE': scorers.PyTerrierScorer('ANCE-pt', _ance), 'WMD': scorers.PyTerrierScorer('WMD-pt', _wmd), 'SBERT': scorers.PyTerrierScorer('SBERT-bi-pt', _sbert_bi("sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking")), 'KNRM': scorers.PyTerrierScorer('knrm', _onir('/home/sean/data/onir/model_checkpoints/knrm.msmarco.new.tar.gz', gpu=False), batch_size=64), 'ConvKNRM': scorers.PyTerrierScorer('convknrm', _onir('/home/sean/data/onir/model_checkpoints/convknrm.msmarco.tar.gz', gpu=False), batch_size=64), 'S2': scorers.S2(), 'DocTTTTTQuery-BM25-dl19': scorers.DocTTTTTQuery(scorers.TerrierBM25(index=trecdl19.docs_ptindex())), } SCORERS = {k: scorers.CachedScorer(v, base_path/'cache'/'scorers'/f'{k}.cache') for k, v in SCORERS.items()} # Tuned on top TREC DL'19 DELTAS = { 'BM25-dl19': 0.35495386740345936, 'T5': 0.0038296878337860107, 'T5-l': 0.004211690276861191, 'VBERT': 0.04632759094238281, 'EPIC': 0.2732887268066406, 'ColBERT': 0.15594482421875, 'ANCE': 0.109130859375, 'WMD': 0.00643495, 'SBERT': 0.0011723, 'KNRM': 0.15517234802246094, 'ConvKNRM': 0.3034172058105469, 'S2': 0.0, 'DocTTTTTQuery-BM25-dl19': 0.3584156381449404, }
abnirml-master
abnirml/__init__.py
import traceback import os import fcntl from fnmatch import fnmatch import json import ir_datasets import abnirml _logger = ir_datasets.log.easy() class Locker: def __init__(self, file): self.file = file self.fp = None def __enter__ (self): self.fp = open(self.file, 'w') fcntl.flock(self.fp.fileno(), fcntl.LOCK_EX) def __exit__(self, exc_type, exc_val, exc_tb): fcntl.flock(self.fp.fileno(), fcntl.LOCK_UN) self.fp.close() def main_cache_probes(args): for aname, axiom in abnirml.PROBES.items(): if args.probe is not None and not fnmatch(aname, args.probe): continue if not axiom.cache_exists(): with _logger.duration(aname): for _ in axiom.pairs_iter(): pass def main(): import argparse parser = argparse.ArgumentParser() parser.add_argument('--probe', nargs='+') parser.add_argument('--scorer', nargs='+') parser.add_argument('--cache_probes', action='store_true') args = parser.parse_args() if args.cache_probes: return main_cache_probes(args) cache = {} if os.path.exists('results.jsonl'): with open('results.jsonl', 'r+t') as result_file: for line in result_file: if not line.startswith('#'): record = json.loads(line) cache[record['probe'], record['scorer']] = record for sname, scorer in abnirml.SCORERS.items(): if args.scorer is not None and not any(fnmatch(sname, s) for s in args.scorer): continue for aname, axiom in abnirml.PROBES.items(): if args.probe is not None and not any(fnmatch(aname, p) for p in args.probe): continue key = (aname, sname) if key not in cache: with _logger.duration(key): try: result = abnirml.ev.ProbeExperiment(scorer, axiom) result['probe'] = aname result['scorer'] = sname _logger.info(key) _logger.info(result) cache[key] = result with Locker('results.jsonl.lock'): with open('results.jsonl', 'at') as result_file: json.dump(result, result_file) result_file.write('\n') except Exception as ex: traceback.print_exc() if __name__ == '__main__': main()
abnirml-master
abnirml/__main__.py
import os import shutil import json from pytools import memoize_method import pyterrier import ir_datasets from abnirml.java import J _logger = ir_datasets.log.easy() class TerrierIndex: def __init__(self, path): self._path = path def path(self): return self._path def _index_ref(self): return pyterrier.IndexRef.of(os.path.join(self.path(), 'data.properties')) @memoize_method def _index(self): J.initialize() return pyterrier.IndexFactory.of(self._index_ref()) def tokenize(self, text, include_stops=True): J.initialize() pyterrier.index.run_autoclass() tokenizer = pyterrier.index.Tokeniser.getTokeniser() stemmer = J._autoclass("org.terrier.terms.PorterStemmer")() toks = tokenizer.tokenise(J._autoclass("java.io.StringReader")(text)) if not include_stops: stopwords = J._autoclass("org.terrier.terms.Stopwords")(None) result = [] while toks.hasNext(): tok = toks.next() if not include_stops and stopwords.isStopword(tok): continue if tok is not None: # for some reason, always ends in None result.append(stemmer.stem(tok)) return result def did_lookup(self, internal_id): meta_index = self._index().getMetaIndex() return meta_index.getItem('docno', internal_id) def internal_id_lookup(self, did): meta_index = self._index().getMetaIndex() return meta_index.getDocument('docno', did) def built(self): return os.path.exists(os.path.join(self.path(), 'config.json')) def build(self, doc_iter, field): J.initialize() path = self.path() path_exists = os.path.exists(os.path.join(path, 'config.json')) if not path_exists: tmp_path = path + '.tmp' # TODO: handle multiple fields def _doc_iter(): dids = set() for doc in doc_iter: if doc.doc_id in dids: _logger.warn(f'did {doc.doc_id} already encountered. Ignoring this occurrence.') else: dids.add(doc.doc_id) if field is None: doc_dict = dict(docno=doc.doc_id, **dict(zip(doc._fields[1:], doc[1:]))) else: doc_dict = {'docno': doc.doc_id, field: doc[doc._fields.index(field)]} yield doc_dict indexer = pyterrier.IterDictIndexer(tmp_path) indexer.setProperties(**{'indexer.meta.reverse.keys': 'docno'}) with _logger.duration('indexing'): indexer.index(_doc_iter()) with open(os.path.join(tmp_path, 'config.json'), 'wt') as f: json.dump({}, f) if path_exists: _logger.warn('removing existing index') shutil.rmtree(path) os.rename(tmp_path, path) def idf(self, term): idx = self._index() lex = idx.getLexicon() if term in lex: return 1 / (lex[term].getDocumentFrequency() + 1) return 1 / (idx.getCollectionStatistics().getNumberOfDocuments() + 1) def doc(self, did): return TerrierDoc(self._index(), self.internal_id_lookup(did), did) def parse_query(self, query, field=None): if isinstance(query, str): result = self.parse_query({'or': query}, field) else: result = self._parse_query(query, field) if result.strip() in ('()', ''): result = 'a' # dummy query return f'applypipeline:off {result}' def _parse_query(self, query, field=None): if isinstance(query, str): return self.tokenize(query) if isinstance(query, list): return [self._parse_query(q, field) for q in query] if 'or' in query: result = [] for subq in self._parse_query(query['or'], field=query.get('field', field)): if not isinstance(subq, list): subq = [subq] for q in subq: result.append(q) result = ' '.join(result) result = f'({result})' if 'weight' in query: result = f'{result}^{query["weight"]}' return result if 'and' in query: result = [] for subq in self._parse_query(query['and'], field=query.get('field', field)): if not isinstance(subq, list): subq = [subq] for q in subq: result.append(f'+{q}') result = ' '.join(result) result = f'({result})' if 'weight' in query: result = f'{result}^{query["weight"]}' return result if 'terms' in query: result = [] for subq in self._parse_query(query['terms'], field=query.get('field', field)): if not isinstance(subq, list): subq = [subq] for q in subq: result.append(q) result = ' '.join(result) result = f'({result})' if 'weight' in query: result = f'{result}^{query["weight"]}' return result if 'seq' in query: result = [] for subq in self._parse_query(query['seq'], field=query.get('field', field)): if not isinstance(subq, list): subq = [subq] for q in subq: result.append(q) result = ' '.join(result) result = f'"{result}"' if 'slop' in query: result = f'{result}~{query["slop"]}' if 'weight' in query: result = f'{result}^{query["weight"]}' return result raise ValueError(query) class TerrierDoc: def __init__(self, terrier_index, internal_id, did): self.did = did self.internal_id = internal_id self.terrier_index = terrier_index def __len__(self): if self.internal_id == -1: # not found return 0 doi = self.terrier_index.getDocumentIndex() return doi.getDocumentLength(self.internal_id) def tfs(self, terms=None): di = self.terrier_index.getDirectIndex() doi = self.terrier_index.getDocumentIndex() lex = self.terrier_index.getLexicon() if terms is not None: term_id_map = {} for term in terms: if term in lex: term_id_map[lex[term].getTermId()] = term result = {term: 0 for term in terms} else: term_id_map = {} result = {} try: for posting in di.getPostings(doi.getDocumentEntry(self.internal_id)): termid = posting.getId() if terms is not None: if termid in term_id_map: result[term_id_map[termid]] = posting.getFrequency() else: lee = lex.getLexiconEntry(termid) result[lee.getKey()] = posting.getFrequency() except J.JavaException as e: _logger.warn(f'Unable to get tfs for did={self.did}: {e}') return result class PtIndexWrapper: def __new__(cls, dataset, *args, **kwargs): # don't re-wrap if hasattr(dataset, '_ptindex'): return dataset result = super().__new__(cls) result.__init__(dataset, *args, **kwargs) return result def __init__(self, dataset, field=None): # None means all self._dataset = dataset self._ptindex = None self._field = field def __getattr__(self, attr): return getattr(self._dataset, attr) def docs_ptindex(self): if self._ptindex is None: if self._field: idx = TerrierIndex(f'{self._dataset.docs_path()}.terrier.{self._field}') else: idx = TerrierIndex(f'{self._dataset.docs_path()}.terrier') if not idx.built(): doc_iter = self._dataset.docs_iter() doc_iter = _logger.pbar(doc_iter, 'building terrier index') idx.build(doc_iter, self._field) self._ptindex = idx return self._ptindex
abnirml-master
abnirml/indices/terrier.py
from .terrier import TerrierIndex, PtIndexWrapper
abnirml-master
abnirml/indices/__init__.py
import random import spacy import ir_datasets import abnirml from .base import Probe class BiasProbe(Probe): def __init__(self, dataset='abnirml:nbias', doc_field='text', query_inferer=None): self.dataset = ir_datasets.load(dataset) self.doc_field = doc_field self.query_inferer = query_inferer or abnirml.util.CommonNounChunk() def pairs_iter(self): for doc in self.dataset.docs_iter(): doc_a = doc.neutral_text doc_b = doc.biased_text if doc_a != doc_b: for query in self.query_inferer.infer_queries(doc_a, doc_b): yield [ {'query_text': query, 'doc_text': doc_a}, {'query_text': query, 'doc_text': doc_b}, ]
abnirml-master
abnirml/probes/bias.py
import itertools from .base import Probe class ConstVar: def __init__(self, axiom, epsilon=0): self.axiom = axiom self.epsilon = epsilon def score(self, query, doc_id, rel): raise NotImplementedError def is_const(self, a, b): return abs(a - b) <= self.epsilon def is_var(self, a, b): return a - self.epsilon > b def sort_key(self, val): return val class Len(ConstVar): def __init__(self, axiom, epsilon=0): super().__init__(axiom, epsilon) self.index = axiom.dataset.docs_ptindex() def score(self, query, doc_id, rel): return len(self.index.doc(doc_id)) class Tf(ConstVar): def __init__(self, axiom, epsilon=0): super().__init__(axiom, epsilon) self.index = axiom.dataset.docs_ptindex() self._prev_query = None self._prev_qtoks = None def score(self, query, doc_id, rel): if query['query_text'] != self._prev_query: self._prev_query = query['query_text'] self._prev_qtoks = self.index.tokenize(self._prev_query) return self.index.doc(doc_id).tfs(self._prev_qtoks) def is_const(self, a, b): return all(abs(a.get(t, 0) - b.get(t, 0)) <= self.epsilon for t in a.keys() | b.keys()) def is_var(self, a, b): # all are at least as large, and one is strictly larger return all(a.get(t, 0) - self.epsilon >= b.get(t, 0) for t in a.keys() | b.keys()) and \ any(a.get(t, 0) - self.epsilon > b.get(t, 0) for t in a.keys() | b.keys()) def sort_key(self, val): return sum(val.values()) class SumTf(ConstVar): def __init__(self, axiom, epsilon=0): super().__init__(axiom, epsilon) self.index = axiom.dataset.docs_ptindex() self._prev_query = None self._prev_qtoks = None def score(self, query, doc_id, rel): if query['query_text'] != self._prev_query: self._prev_query = query['query_text'] self._prev_qtoks = self.index.tokenize(self._prev_query) return sum(self.index.doc(doc_id).tfs(self._prev_qtoks).values()) class Overlap(ConstVar): def __init__(self, axiom, epsilon=0): super().__init__(axiom, epsilon) self.index = axiom.dataset.docs_ptindex() self._prev_query = None self._prev_qtoks = None def score(self, query, doc_id, rel): if query['query_text'] != self._prev_query: self._prev_query = query['query_text'] self._prev_qtoks = self.index.tokenize(self._prev_query) doc = self.index.doc(doc_id) tfs = doc.tfs(self._prev_qtoks) if len(doc) > 0: return sum(tfs.values()) / len(doc) return 0 def is_const(self, a, b): if a == 0. or b == 0.: return False # don't do 0s return super().is_const(a, b) def is_var(self, a, b): if a == 0. or b == 0.: return False # don't do 0s return super().is_var(a, b) class Rel(ConstVar): def score(self, query, doc_id, rel): return rel class ConstVarQrelsProbe(Probe): def __init__(self, dataset, const, var, const_epsilon=0, var_epsilon=0, query_field='text', doc_field='text'): self.dataset = dataset self.constant = const self.variable = var self.const_epsilon = const_epsilon self.var_epsilon = var_epsilon self.query_field = query_field self.doc_field = doc_field def pairs_iter(self): qrels = self.dataset.qrels_dict() docstore = self.dataset.docs_store() const = self.constant(self, self.const_epsilon) var = self.variable(self, self.var_epsilon) query_field_idx = self.dataset.queries_cls()._fields.index(self.query_field) queries_namespace = self.dataset.queries_namespace() docs_namespace = self.dataset.docs_namespace() for query in self.dataset.queries_iter(): docs = [] query = {'query_id': query.query_id, 'query_text': query[query_field_idx]} for doc_id, rel in qrels.get(query['query_id'], {}).items(): docs.append({ 'id': doc_id, 'const': const.score(query, doc_id, rel), 'var': var.score(query, doc_id, rel), }) docs = sorted(docs, key=lambda x: const.sort_key(x['const'])) for i, doc_a in enumerate(docs): docs_gt = itertools.takewhile(lambda doc_b: const.is_const(doc_a['const'], doc_b['const']), docs[i+1:]) docs_lt = itertools.takewhile(lambda doc_b: const.is_const(doc_a['const'], doc_b['const']), docs[i-1::-1]) for doc_b in itertools.chain(docs_gt, docs_lt): if var.is_var(doc_a['var'], doc_b['var']): yield [ dict(**query, doc_id=doc_a['id'], doc_text=docstore.get(doc_a['id'], self.doc_field)), dict(**query, doc_id=doc_b['id'], doc_text=docstore.get(doc_b['id'], self.doc_field)), ]
abnirml-master
abnirml/probes/const_var.py
import random import spacy import ir_datasets import abnirml from .base import Probe class JflegProbe(Probe): def __init__(self, source='abnirml:jfleg', query_inferer=None): self.dataset = ir_datasets.load(source) self.query_inferer = query_inferer or abnirml.util.CommonNounChunk() def pairs_iter(self): for doc in self.dataset.docs_iter(): text_a = doc.nonfluent for text_b in doc.fluents: for query in self.query_inferer.infer_queries(text_a, text_b): yield [ {'query_text': query, 'doc_text': text_a}, {'query_text': query, 'doc_text': text_b}, ]
abnirml-master
abnirml/probes/fluency.py
from . import base from .base import Probe from . import const_var from . import transform from .bias import BiasProbe from .fluency import JflegProbe from .formality import GyafcProbe from .factuality import FactualityProbe from .summarization import XSumProbe, CnnDmProbe from .paraphrase import ParaphraseProbe from .simplification import SimplificationProbe from .nlaug import NLAugProbe from .cached import CachedProbe
abnirml-master
abnirml/probes/__init__.py
import os import gzip import pickle import lz4.frame from pathlib import Path from .base import Probe import ir_datasets class CachedProbe(Probe): def __init__(self, probe, path): self.probe = probe self.path = Path(path) def pair_symmetry(self): return self.probe.pair_symmetry() def pairs_iter(self): if not self.path.exists(): with ir_datasets.util.finialized_file(self.path, 'wb') as f: with lz4.frame.LZ4FrameFile(f, 'wb') as f: for pair in self.probe.pairs_iter(): pickle.dump(pair, f) yield pair else: with lz4.frame.LZ4FrameFile(self.path, 'rb') as f: while f.peek(): yield pickle.load(f) def cache_exists(self): return os.path.exists(self.path) or os.path.exists(f'{self.path}.tmp')
abnirml-master
abnirml/probes/cached.py
import spacy import ir_datasets from .base import Probe class GyafcProbe(Probe): def __init__(self, spacy_model='en_core_web_sm', genre_filter=None, yahoo_l6_dataset=None, gyafc_dataset=None): self.spacy_model = spacy_model self.genre_filter = genre_filter self.yahoo_l6_dataset = yahoo_l6_dataset or ir_datasets.load('abnirml:yahoo-l6') self.gyafc_dataset = gyafc_dataset or ir_datasets.load('abnirml:gyafc') def pairs_iter(self): l6_docstore = self.yahoo_l6_dataset.docs_store() nlp = spacy.load(self.spacy_model, disable=["parser"]) for gyafc_doc in self.gyafc_dataset.docs_iter(): if gyafc_doc.mapped_l6_id == '_': # _ indicates not match was found continue if self.genre_filter is not None and gyafc_doc.genre != self.genre_filter: # ignore this genre continue src_question = l6_docstore.get(gyafc_doc.mapped_l6_id, 'subject') src_question_lemmas = {t.lemma_.lower() for t in nlp(src_question) if not t.is_stop and not t.is_punct and not t.like_num and str(t).strip() != ''} formal_lemmas = {t.lemma_ for t in nlp(gyafc_doc.formal)} informal_lemmas = {t.lemma_ for t in nlp(gyafc_doc.informal)} if not src_question_lemmas & formal_lemmas & informal_lemmas: # no ovelapping terms among the query and 2 documents continue yield [ {'query_text': src_question, 'doc_text': gyafc_doc.formal}, {'query_text': src_question, 'doc_text': gyafc_doc.informal}, ]
abnirml-master
abnirml/probes/formality.py
from .base import Probe class NLAugProbe(Probe): def __init__(self, dataset, generator, rel_range=None, query_field='text', doc_field='text'): self.dataset = dataset self.generator = generator if rel_range is not None: if isinstance(rel_range, (tuple, list)): assert len(rel_range) == 2 else: rel_range = (rel_range, rel_range) self.rel_range = rel_range self.query_field = query_field self.doc_field = doc_field def pairs_iter(self): qrels = self.dataset.qrels_dict() docstore = self.dataset.docs_store() query_field_idx = self.dataset.queries_cls()._fields.index(self.query_field) for query in self.dataset.queries_iter(): query = {'query_id': query.query_id, 'query_text': query[query_field_idx]} these_qrels = qrels.get(query['query_id'], {}) for doc_id, rel in these_qrels.items(): if self.rel_range is None or self.rel_range[0] <= rel <= self.rel_range[1]: dtext_a = docstore.get(doc_id, self.doc_field) sample_a = dict(**query, doc_id=doc_id, doc_text=dtext_a) for generated_text in generator.generate(dtext_a): if text != generated_text: sample_b = dict(**query, doc_text=generated_text) yield [sample_a, sample_b]
abnirml-master
abnirml/probes/nlaug.py
import re import random import spacy import ir_datasets import abnirml from .base import Probe _logger = ir_datasets.log.easy() class FactualityProbe(Probe): def __init__(self, dataset='dpr-w100/natural-questions/dev', spacy_model='en_core_web_sm', random_seed=42, valid_entities=('PERSON', 'NORP', 'FAC', 'ORG', 'GPE', 'LOC', 'PRODUCT', 'EVENT', 'WORK_OF_ART', 'LAW', 'LANGUAGE'), tokenizer=None): self.dataset = ir_datasets.load(dataset) self.spacy_model = spacy_model self.random_seed = random_seed self.valid_entities = valid_entities self.tokenizer = tokenizer def pairs_iter(self): nlp = spacy.load(self.spacy_model, disable=["parser"]) docs_store = self.dataset.docs_store() queries = [q for q in self.dataset.queries_iter() if len(q.answers) == 1] query_map = {q.query_id: q for q in queries} query_answer_parsed = {q.query_id: nlp(q.answers[0]) for q in _logger.pbar(queries, desc='parsing answers')} qids_by_tok_count_ent = {} for qid, qtok in query_answer_parsed.items(): qlen = len(self.tokenizer.tokenize(str(qtok), include_stops=False)) if self.tokenizer else len(qtok) ent = [e for e in qtok.ents if e.label_ in self.valid_entities] if len(ent) > 0: ent = ent[0].label_ if len(ent) > 0 else '' key = (qlen, ent) qids_by_tok_count_ent.setdefault(key, []).append(qid) query_answer_parsed[qid] = key else: query_answer_parsed[qid] = None print({k: len(qids_by_tok_count_ent[k]) for k in qids_by_tok_count_ent}) qrels = self.dataset.qrels_dict() for query in queries: if not query_answer_parsed[query.query_id]: continue these_pos_dids = [d for d, s in qrels[query.query_id].items() if s > 0] these_pos_docs = docs_store.get_many(these_pos_dids) for did in sorted(these_pos_dids): doc = these_pos_docs[did] answer_matcher = ' ?'.join([re.escape(a) for a in query.answers[0].split(' ')]) if not re.search(answer_matcher, doc.text, flags=re.IGNORECASE): _logger.info(f'answer not found in text qid={query.query_id} did={did}') continue if any(re.search(r'\b'+re.escape(t)+r'\b', query.text, flags=re.IGNORECASE) for t in query.answers[0].split(' ')): # this filter is a bit aggressive, but needs to be safe to prevent messing up "A or B"-like questions (where the answer is then either A or B). continue rng = random.Random(repr((query.query_id, did, self.random_seed))) new_qid = rng.choice(qids_by_tok_count_ent[query_answer_parsed[query.query_id]]) new_answer = query_map[new_qid].answers[0] new_text = re.sub(answer_matcher, new_answer, doc.text, flags=re.IGNORECASE) if new_text != doc.text: # also handles if this qid is selected yield [ {'query_text': query.text, 'doc_text': doc.text}, {'query_text': query.text, 'doc_text': new_text}, ]
abnirml-master
abnirml/probes/factuality.py
import re import itertools import random import string import spacy from ..scorers import doctttttquery from .base import Probe from abnirml.java import J class TransformProbe(Probe): def __init__(self, dataset, transform, rel_range=None, query_field='text', doc_field='text'): self.dataset = dataset if rel_range is not None: if isinstance(rel_range, (tuple, list)): assert len(rel_range) == 2 else: rel_range = (rel_range, rel_range) self.rel_range = rel_range self.query_field = query_field self.doc_field = doc_field self.transform = transform def pairs_iter(self): qrels = self.dataset.qrels_dict() docstore = self.dataset.docs_store() query_field_idx = self.dataset.queries_cls()._fields.index(self.query_field) with self.transform: for query in self.dataset.queries_iter(): query = {'query_id': query.query_id, 'query_text': query[query_field_idx]} these_qrels = qrels.get(query['query_id'], {}) for doc_id, rel in these_qrels.items(): if self.rel_range is None or self.rel_range[0] <= rel <= self.rel_range[1]: dtext_a = docstore.get(doc_id, self.doc_field) sample_a = dict(**query, doc_id=doc_id, doc_text=dtext_a) sample_b = self.transform.transform(sample_a, these_qrels, docstore, self.doc_field) if sample_b is not None: yield [sample_a, sample_b] class CtxtManager: def __enter__(self): pass def __exit__(self, exc_type, exc_val, exc_tb): pass class Transform(CtxtManager): def __init__(self): super().__init__() self.record = None self.qrels = None self.docstore = None self.doc_field = None def transform(self, sample, qrels, docstore, doc_field): dtext_a = sample['doc_text'] self.record = sample self.qrels = qrels self.docstore = docstore self.doc_field = doc_field dtext_b = self.transform_text(dtext_a) self.record = None self.qrels = None self.docstore = None self.doc_field = None if dtext_b and dtext_a != dtext_b: return {**sample, 'doc_id': None, 'doc_text': dtext_b} return None def transform_text(self, text): raise NotImplementedError class SpacyMixin(CtxtManager): def __init__(self, **kwargs): super().__init__() self.spacy_model = kwargs.get('spacy_model', 'en_core_web_sm') self.nlp = None def __enter__(self): super().__enter__() self.nlp = spacy.load(self.spacy_model) def __exit__(self, exc_type, exc_val, exc_tb): super().__exit__(exc_type, exc_val, exc_tb) self.nlp = None class RandomMixin(CtxtManager): def __init__(self, **kwargs): super().__init__() self.random_seed = kwargs.get('random_seed', 42) self.rng = None def __enter__(self): super().__enter__() self.rng = random.Random(self.random_seed) def __exit__(self, exc_type, exc_val, exc_tb): super().__exit__(exc_type, exc_val, exc_tb) self.rng = None class CaseFold(Transform): def transform_text(self, text): return text.lower() class DelPunct(Transform): def __init__(self): super().__init__() self.trans_punct = str.maketrans(string.punctuation, ' ' * len(string.punctuation)) def transform_text(self, text): return text.translate(self.trans_punct) class DelSent(Transform, SpacyMixin, RandomMixin): def __init__(self, position='rand', **kwargs): super().__init__(**kwargs) self.position = position def transform_text(self, text): sents = list(self.nlp(text).sents) if len(sents) > 1: # don't remove if only 1 sentence if self.position == 'start': sents = sents[1:] elif self.position == 'end': sents = sents[:-1] elif self.position == 'rand': pos = self.rng.randrange(len(sents)) sents = sents[:pos] + sents[pos+1:] else: raise ValueError() return ' '.join(str(s) for s in sents) return None class AddSent(Transform, SpacyMixin, RandomMixin): def __init__(self, position='start', rel=0, **kwargs): super().__init__(**kwargs) self.position = position self.rel = rel def transform_text(self, text): doc_candidates = [did for did, score in self.qrels.items() if score == self.rel] if doc_candidates: doc_id = self.rng.choice(doc_candidates) dtext = self.docstore.get(doc_id, self.doc_field) sents = list(self.nlp(dtext).sents) sent = self.rng.choice(sents) if self.position == 'start': text = f'{sent} {text}' elif self.position == 'end': text = f'{text} {sent}' else: raise ValueError() return text return None class Lemmatize(Transform, SpacyMixin): def transform_text(self, text): dtext_b = [t.lemma_ if not t.is_stop else t for t in self.nlp(text)] return ' '.join(str(s) for s in dtext_b) class ShufWords(Transform, SpacyMixin, RandomMixin): def transform_text(self, text): dtoks = [str(t) for t in self.nlp(text)] self.rng.shuffle(dtoks) return ' '.join(str(s) for s in dtoks) class ShufWordsKeepSents(Transform, SpacyMixin, RandomMixin): def transform_text(self, text): self.rng = random.Random(str(self.random_seed) + text) dsents = [] for sent in self.nlp(text).sents: sent_toks = [str(s) for s in sent[:-1]] self.rng.shuffle(sent_toks) sent_toks = sent_toks + [str(sent[-1])] dsents.append(' '.join(sent_toks)) return ' '.join(dsents) class ShufWordsKeepSentsAndNPs(Transform, SpacyMixin, RandomMixin): def transform_text(self, text): self.rng = random.Random(str(self.random_seed) + text) dsents = [] parsed_text = self.nlp(text) noun_chunks = list(parsed_text.noun_chunks) noun_chunk_idxs = set(itertools.chain(*(range(c.start, c.end) for c in noun_chunks))) for sent in parsed_text.sents: these_noun_chunks = [str(c) for c in noun_chunks if c.start >= sent.start and c.end <= sent.end] these_non_noun_chunks = [str(parsed_text[i]) for i in range(sent.start, sent.end - 1) if i not in noun_chunk_idxs] sent_toks = these_noun_chunks + these_non_noun_chunks self.rng.shuffle(sent_toks) sent_toks = sent_toks + [str(sent[-1])] dsents.append(' '.join(sent_toks)) return ' '.join(dsents) class ShufWordsKeepNPs(Transform, SpacyMixin, RandomMixin): def transform_text(self, text): self.rng = random.Random(str(self.random_seed) + text) parsed_text = self.nlp(text) noun_chunks = list(parsed_text.noun_chunks) noun_chunk_idxs = set(itertools.chain(*(range(c.start, c.end) for c in noun_chunks))) noun_chunks = [str(c) for c in noun_chunks] non_noun_chunks = [str(t) for i, t in enumerate(parsed_text) if i not in noun_chunk_idxs] toks = noun_chunks + non_noun_chunks self.rng.shuffle(toks) return ' '.join(toks) class ShufNPSlots(Transform, SpacyMixin, RandomMixin): def transform_text(self, text): self.rng = random.Random(str(self.random_seed) + text) parsed_text = self.nlp(text) noun_chunks = list(parsed_text.noun_chunks) noun_chunk_idxs = {} for i, np in enumerate(noun_chunks): for j in range(np.start, np.end): noun_chunk_idxs[j] = i chunks = [] i = 0 while i < len(parsed_text): if i in noun_chunk_idxs: chunks.append(noun_chunk_idxs[i]) i = noun_chunks[noun_chunk_idxs[i]].end else: chunks.append(str(parsed_text[i])) i += 1 self.rng.shuffle(noun_chunks) toks = [] for chunk in chunks: if isinstance(chunk, int): toks.append(str(noun_chunks[chunk])) else: toks.append(chunk) return ' '.join(toks) class ShufPrepositions(Transform, SpacyMixin, RandomMixin): def transform_text(self, text): self.rng = random.Random(str(self.random_seed) + text) parsed_text = self.nlp(text) preps = list(t for t in parsed_text if t.pos_ == 'ADP') prep_idxs = {} for i, prep in enumerate(preps): prep_idxs[prep.idx] = i chunks = [] i = 0 while i < len(parsed_text): if i in prep_idxs: chunks.append(prep_idxs[i]) else: chunks.append(str(parsed_text[i])) i += 1 self.rng.shuffle(preps) toks = [] for chunk in chunks: if isinstance(chunk, int): toks.append(str(preps[chunk])) else: toks.append(chunk) return ' '.join(toks) class SwapNumNPSlots2(Transform, SpacyMixin, RandomMixin): def transform_text(self, text): self.rng = random.Random(str(self.random_seed) + text) parsed_text = self.nlp(text) num_swaps = len(list(parsed_text.noun_chunks)) toks = [str(t) for t in parsed_text] new_toks = [str(t) for t in parsed_text] positions = self.rng.sample(range(len(toks)), k=num_swaps) shuf_positions = list(positions) self.rng.shuffle(shuf_positions) for old, new in zip(positions, shuf_positions): new_toks[new] = toks[old] return ' '.join(new_toks) class ReverseNPSlots(Transform, SpacyMixin): def transform_text(self, text): parsed_text = self.nlp(text) noun_chunks = list(parsed_text.noun_chunks) noun_chunk_idxs = {} for i, np in enumerate(noun_chunks): for j in range(np.start, np.end): noun_chunk_idxs[j] = i chunks = [] i = 0 while i < len(parsed_text): if i in noun_chunk_idxs: chunks.append(noun_chunk_idxs[i]) i = noun_chunks[noun_chunk_idxs[i]].end else: chunks.append(str(parsed_text[i])) i += 1 noun_chunks = list(reversed(noun_chunks)) toks = [] for chunk in chunks: if isinstance(chunk, int): toks.append(str(noun_chunks[chunk])) else: toks.append(chunk) return ' '.join(toks) class ShufSents(Transform, SpacyMixin, RandomMixin): def transform_text(self, text): dsents = [str(s) for s in self.nlp(text).sents] self.rng.shuffle(dsents) dtext_b = ' '.join(str(s) for s in dsents) return dtext_b class ReverseSents(Transform, SpacyMixin): def transform_text(self, text): dsents = [str(s) for s in self.nlp(text).sents] dtext_b = ' '.join(str(s) for s in reversed(dsents)) return dtext_b class ReverseWords(Transform, SpacyMixin): def transform_text(self, text): dtext_b = [str(s) for s in reversed(self.nlp(text))] return ' '.join(dtext_b) class ShufSents(Transform, SpacyMixin, RandomMixin): def transform_text(self, text): dsents = [str(s) for s in self.nlp(text).sents] self.rng.shuffle(dsents) dtext_b = ' '.join(str(s) for s in dsents) return dtext_b class Typo(Transform, RandomMixin): def __init__(self, no_stops=False, *args, **kwargs): super().__init__(*args, **kwargs) self._typo_list = None self._typo_regex = None self._no_stops = no_stops def typo_list(self): if self._typo_list is None: self._typo_list = {} if self._no_stops: J.initialize() stopwords = J._autoclass("org.terrier.terms.Stopwords")(None) for line in open('etc/wiki_typos.tsv'): typo, corrects = line.rstrip().split('\t') corrects = corrects.split(', ') for correct in corrects: if self._no_stops and stopwords.isStopword(correct.lower()): continue if correct not in self._typo_list: self._typo_list[correct] = [] self._typo_list[correct].append(typo) self._typo_regex = '|'.join(re.escape(c) for c in self._typo_list) self._typo_regex = re.compile(f'\\b({self._typo_regex})\\b') return self._typo_list, self._typo_regex def transform_text(self, text): typos, regex = self.typo_list() match = regex.search(text) while match: typo_candidates = typos[match.group(1)] if len(typo_candidates) > 1: typo = self.rng.choice(typo_candidates) else: typo = typo_candidates[0] text = text[:match.start()] + typo + text[match.end():] match = regex.search(text) return text class DocTTTTTQuery(Transform): def __init__(self, count=4): super().__init__() self.model = None self.count = count def transform_text(self, text): if self.model is None: self.model = doctttttquery.DocTTTTTQueryModel(count=self.count) exp = self.model.expand_document(text) return f'{text} {exp}' class Query(Transform): def transform_text(self, text): return self.record['query_text'] class PrependQuery(Transform): def transform_text(self, text): return self.record['query_text'] + ' ' + text class RmStops(Transform, SpacyMixin): def __init__(self, source='terrier'): super().__init__() if source == 'terrier': self.STOPS = set(x.strip() for x in open('etc/terrier-stops.txt')) else: raise ValueError(source) def transform_text(self, text): terms = [str(t) for t in self.nlp(text) if str(t).lower() not in self.STOPS] return ' '.join(terms) class Multi(Transform): def __init__(self, transforms): self.transforms = transforms def __enter__(self): for t in self.transforms: t.__enter__() def __exit__(self, exc_type, exc_val, exc_tb): for t in self.transforms: t.__exit__(exc_type, exc_val, exc_tb) def transform_text(self, text): for t in self.transforms: if text: text = t.transform_text(text) return text
abnirml-master
abnirml/probes/transform.py
import ir_datasets import os import hashlib from glob import glob import spacy from .base import Probe class XSumProbe(Probe): def __init__(self, spacy_model='en_core_web_sm', dataset='abnirml:xsum'): super().__init__() self.spacy_model = spacy_model self.dataset = ir_datasets.load(dataset) def pairs_iter(self): nlp = spacy.load(self.spacy_model, disable=["parser"]) for doc in self.dataset.docs_iter(): m = hashlib.sha256(f'{doc.doc_id}.summary'.encode()) if m.digest()[0] % 10 != 0: continue # Sample 10% title_lemmas = {t.lemma_.lower() for t in nlp(doc.title) if not t.is_stop and not t.is_punct and not t.like_num and str(t).strip() != ''} summary_lemmas = {t.lemma_ for t in nlp(doc.first_sentence)} content_lemmas = {t.lemma_ for t in nlp(doc.rest_body)} if not (title_lemmas & summary_lemmas & content_lemmas): # no ovelapping terms among the query and 2 documents continue if doc.title and doc.rest_body and doc.first_sentence: yield [ {'query_text': doc.title, 'doc_text': doc.first_sentence}, {'query_text': doc.title, 'doc_text': doc.rest_body}, ] class CnnDmProbe(Probe): def __init__(self, spacy_model='en_core_web_sm', source='both', dataset='abnirml:cnn_dailymail'): super().__init__() assert source in ('both', 'cnn', 'dm') self.spacy_model = spacy_model self.source = source self.dataset = ir_datasets.load(dataset) def pairs_iter(self): nlp = spacy.load(self.spacy_model, disable=["parser"]) for doc in self.dataset.docs_iter(): if self.source == 'cnn' and not doc.doc_id.startswith('cnn:'): continue if self.source == 'dm' and not doc.doc_id.startswith('dailymail:'): continue m = hashlib.sha256(doc.doc_id.split(':')[1].encode()) if m.digest()[0] % 10 != 0: continue # Sample 10% title_lemmas = {t.lemma_.lower() for t in nlp(doc.title) if not t.is_stop and not t.is_punct and not t.like_num and str(t).strip() != ''} summary_lemmas = {t.lemma_ for t in nlp(doc.summary)} content_lemmas = {t.lemma_ for t in nlp(doc.body)} if not (title_lemmas & summary_lemmas & content_lemmas): # no ovelapping terms among the query and 2 documents continue yield [ {'query_text': doc.title, 'doc_text': doc.summary}, {'query_text': doc.title, 'doc_text': doc.body}, ]
abnirml-master
abnirml/probes/summarization.py
import random import spacy import ir_datasets import abnirml from .base import Probe class SimplificationProbe(Probe): def __init__(self, dataset='abnirml:wikiturk', query_inferer=None): self.dataset = ir_datasets.load(dataset) self.query_inferer = query_inferer or abnirml.util.CommonNounChunk() def pairs_iter(self): for doc in self.dataset.docs_iter(): for simp in doc.simplifications: for query in self.query_inferer.infer_queries(doc.source, simp): yield [ {'query_text': query, 'doc_text': doc.source}, {'query_text': query, 'doc_text': simp}, ]
abnirml-master
abnirml/probes/simplification.py
import random import spacy import ir_datasets import abnirml from .base import Probe class ParaphraseProbe(Probe): def __init__(self, dataset='abnirml:mspc', doc_field='text', paraphrase_label=True, query_inferer=None): self.dataset = ir_datasets.load(dataset) self.doc_field = doc_field self.paraphrase_label = paraphrase_label self.query_inferer = query_inferer or abnirml.util.CommonNounChunk() def pair_symmetry(self): return 'symmetric' def pairs_iter(self): docstore = self.dataset.docs_store() for docpair in self.dataset.docpairs_iter(): if docpair.paraphrase != self.paraphrase_label: continue doc_a = getattr(docstore.get(docpair.doc_id_a), self.doc_field) doc_b = getattr(docstore.get(docpair.doc_id_b), self.doc_field) if doc_a != doc_b: for query in self.query_inferer.infer_queries(doc_a, doc_b): yield [ {'query_text': query, 'doc_text': doc_a}, {'query_text': query, 'doc_text': doc_b}, ]
abnirml-master
abnirml/probes/paraphrase.py
class Probe: def pair_symmetry(self): return 'asymmetric' # most probes are asymmetric def pairs_iter(self): raise NotImplementedError
abnirml-master
abnirml/probes/base.py
import ir_datasets import random import spacy __all__ = ['QueryInferer', 'CommonNounChunk', 'SelectAll', 'RandomSelector'] class QueryInferer: def infer_queries(self, text_a, text_b): raise NotImplementedError() class CommonNounChunk(QueryInferer): def __init__(self, spacy_model='en_core_web_sm', min_noun_chunk_len=5, selector=None): self.nlp = ir_datasets.util.Lazy(lambda: spacy.load(spacy_model)) self.min_noun_chunk_len = min_noun_chunk_len self.selector = selector if selector is not None else RandomSelector() def infer_queries(self, text_a, text_b): parsed_a = self.nlp()(text_a) parsed_b = self.nlp()(text_b) noun_chunks_a = set(str(c).lower() for c in parsed_a.noun_chunks if len(str(c)) > self.min_noun_chunk_len) noun_chunks_b = set(str(c).lower() for c in parsed_b.noun_chunks if len(str(c)) > self.min_noun_chunk_len) candiates = noun_chunks_a & noun_chunks_b return self.selector.select(candiates, text_a, text_b) class SelectAll: def select(self, candiates, text_a, text_b): return candiates class RandomSelector: def __init__(self, random_seed=42): self.random_seed = random_seed def select(self, candiates, text_a, text_b): if candiates: rng = random.Random(repr((text_a, text_b, self.random_seed))) return [rng.choice(sorted(candiates))] return []
abnirml-master
abnirml/util/query_inference.py
from .query_inference import *
abnirml-master
abnirml/util/__init__.py
from collections import namedtuple import io import contextlib import ir_datasets from . import DownloadConfig from ir_datasets import Dataset NAME = 'abnirml:jfleg' BASE_PATH = ir_datasets.util.home_path() / NAME dlc = DownloadConfig.context(NAME, BASE_PATH) JflegDoc = namedtuple('JflegDoc', ['doc_id', 'nonfluent', 'fluents']) class JflegDocs(ir_datasets.formats.BaseDocs): def __init__(self, src_dlc, refs_dlc): self.src_dlc = src_dlc self.refs_dlc = refs_dlc def docs_iter(self): with contextlib.ExitStack() as ctxt: src = io.TextIOWrapper(ctxt.enter_context(self.src_dlc.stream())) refs = [io.TextIOWrapper(ctxt.enter_context(r.stream())) for r in self.refs_dlc] for i, items in enumerate(zip(src, *refs)): nonfluent, *fluents = items yield JflegDoc(str(i), nonfluent, tuple(fluents)) def docs_cls(self): return JflegDoc SUBSETS = {} SUBSETS['dev'] = JflegDocs(dlc['dev/src'], [dlc['dev/ref0'], dlc['dev/ref1'], dlc['dev/ref2'], dlc['dev/ref3']]) SUBSETS['dev/sp'] = JflegDocs(dlc['dev/src.sp'], [dlc['dev/ref0'], dlc['dev/ref1'], dlc['dev/ref2'], dlc['dev/ref3']]) SUBSETS['test'] = JflegDocs(dlc['test/src'], [dlc['test/ref0'], dlc['test/ref1'], dlc['test/ref2'], dlc['test/ref3']]) SUBSETS['test/sp'] = JflegDocs(dlc['test/src.sp'], [dlc['test/ref0'], dlc['test/ref1'], dlc['test/ref2'], dlc['test/ref3']]) SUBSETS['all'] = ir_datasets.datasets.base.Concat(SUBSETS['dev'], SUBSETS['test']) SUBSETS['sp'] = ir_datasets.datasets.base.Concat(SUBSETS['dev/sp'], SUBSETS['test/sp']) for s_name, subset in SUBSETS.items(): if s_name == 'all': ir_datasets.registry.register(NAME, Dataset(subset)) else: ir_datasets.registry.register(f'{NAME}/{s_name}', Dataset(subset))
abnirml-master
abnirml/datasets/jfleg.py
from typing import NamedTuple, Tuple import io import contextlib import ir_datasets from ir_datasets.indices import PickleLz4FullStore from . import DownloadConfig from ir_datasets import Dataset # Text simplification dataset from <https://github.com/cocoxu/simplification> # Wei Xu and Courtney Napoles and Ellie Pavlick and Quanze Chen and Chris Callison-Burch. # Optimizing Statistical Machine Translation for Text Simplification. TACL 2016. NAME = 'abnirml:wikiturk' BASE_PATH = ir_datasets.util.home_path() / NAME dlc = DownloadConfig.context(NAME, BASE_PATH) class WikiTurkDoc(NamedTuple): doc_id: str source: str simplifications: Tuple[str, ...] class WikiTurkDocs(ir_datasets.formats.BaseDocs): def __init__(self, source_dlc, simp_dlcs, did_prefix): self._source_dlc = source_dlc self._simp_dlcs = simp_dlcs self._did_prefix = did_prefix @ir_datasets.util.use_docstore def docs_iter(self): with contextlib.ExitStack() as stack: src = io.TextIOWrapper(stack.enter_context(self._source_dlc.stream())) simps = [io.TextIOWrapper(stack.enter_context(s.stream())) for s in self._simp_dlcs] for i, texts in enumerate(zip(src, *simps)): texts = [t.strip().replace('-lrb-', '(').replace('-rrb-', ')') for t in texts] yield WikiTurkDoc(f'{self._did_prefix}{i}', texts[0], tuple(texts[1:])) def docs_cls(self): return WikiTurkDoc def docs_store(self, field='doc_id'): return PickleLz4FullStore( path=f'{ir_datasets.util.home_path()/NAME}/docs.pklz4', init_iter_fn=self.docs_iter, data_cls=self.docs_cls(), lookup_field=field, index_fields=['doc_id'], ) def docs_count(self): return self.docs_store().count() def docs_namespace(self): return NAME def docs_lang(self): return 'en' SUBSETS = {} SUBSETS['test'] = ir_datasets.datasets.base.Dataset( WikiTurkDocs(dlc['test.norm'], [dlc[f'test.{i}'] for i in range(8)], 'test'), ) SUBSETS['tune'] = ir_datasets.datasets.base.Dataset( WikiTurkDocs(dlc['tune.norm'], [dlc[f'tune.{i}'] for i in range(8)], 'tune'), ) SUBSETS[''] = ir_datasets.datasets.base.Concat(SUBSETS['test'], SUBSETS['tune']) for s_name, subset in SUBSETS.items(): if s_name == '': ir_datasets.registry.register(NAME, Dataset(subset)) else: ir_datasets.registry.register(f'{NAME}/{s_name}', Dataset(subset))
abnirml-master
abnirml/datasets/wikiturk.py
import os import yaml from ir_datasets.util.download import _DownloadConfig DownloadConfig = _DownloadConfig(contents=yaml.load(open('./abnirml/etc/downloads.yaml'), Loader=yaml.BaseLoader)) from . import cnn_dailymail from . import gyafc from . import jfleg from . import mspc from . import nbias from . import wikiturk from . import yahoo_l6 from . import xsum
abnirml-master
abnirml/datasets/__init__.py
import tarfile import io import os from collections import namedtuple import ir_datasets from ir_datasets.indices import PickleLz4FullStore from ir_datasets.util import ZipExtract from . import DownloadConfig from ir_datasets import Dataset NAME = 'abnirml:xsum' BASE_PATH = ir_datasets.util.home_path() / NAME dlc = DownloadConfig.context(NAME, BASE_PATH) XSumDoc = namedtuple('XSumDoc', ['doc_id', 'url', 'title', 'first_sentence', 'rest_body']) class XSumDocs(ir_datasets.formats.BaseDocs): def __init__(self, source_dlc): self.source_dlc = source_dlc def docs_iter(self): return iter(self.docs_store()) def _docs_iter(self): with self.source_dlc.stream() as stream, \ tarfile.open(fileobj=stream, mode='r|gz') as tarf: for record in tarf: if record.path.endswith('.summary'): doc_id = record.path.split('/')[-1].split('.')[0] text = tarf.extractfile(record).read().decode() parts = text.split('[SN]') yield XSumDoc(doc_id, parts[2].strip(), parts[4].strip(), parts[6].strip(), parts[8].strip()) def docs_path(self): return self.source_dlc.path() def docs_store(self, field='doc_id'): return PickleLz4FullStore( path=f'{ir_datasets.util.home_path()/NAME}/docs.pklz4', init_iter_fn=self._docs_iter, data_cls=self.docs_cls(), lookup_field=field, index_fields=['doc_id'], ) def docs_cls(self): return XSumDoc XSUM_DATASET = Dataset(XSumDocs(dlc['docs'])) ir_datasets.registry.register(NAME, XSUM_DATASET)
abnirml-master
abnirml/datasets/xsum.py
from collections import namedtuple import io import ir_datasets from ir_datasets.util import GzipExtract, LocalDownload from ir_datasets.indices import PickleLz4FullStore from . import DownloadConfig from ir_datasets import Dataset NAME = 'abnirml:yahoo-l6' BASE_PATH = ir_datasets.util.home_path() / NAME dlc = DownloadConfig.context(NAME, BASE_PATH) YahooL6Doc = namedtuple('YahooL6Doc', ['doc_id', 'type', 'subject', 'content']) class YahooL6Docs(ir_datasets.formats.BaseDocs): def __init__(self, dlcs): self.dlcs = dlcs @ir_datasets.util.use_docstore def docs_iter(self): doc = '' bs4 = ir_datasets.lazy_libs.bs4() for streamer in self.dlcs: with streamer.stream() as stream: for line in io.TextIOWrapper(stream): if doc or '<vespaadd>' in line: doc += line if '</vespaadd>' in line: soup = bs4.BeautifulSoup(doc, 'lxml') topic = soup.find('document') did = topic.find('uri').get_text() content = topic.find('content') yield YahooL6Doc( f'{did}-q', 'question', topic.find('subject').get_text().replace('<br />', '\n'), content.get_text().replace('<br />', '\n') if content else '') for i, nba in enumerate(topic.find_all('answer_item')): yield YahooL6Doc( f'{did}-a{i}', 'answer', '', nba.get_text().replace('<br />', '\n')) doc = '' def docs_path(self): return self.dlcs[0].path() def docs_store(self, field='doc_id'): return PickleLz4FullStore( path=f'{ir_datasets.util.home_path()/NAME}/docs.pklz4', init_iter_fn=self.docs_iter, data_cls=self.docs_cls(), lookup_field=field, index_fields=['doc_id'], ) def docs_cls(self): return YahooL6Doc base_path = ir_datasets.util.home_path() / 'yahoo-l6' L6_DATASET = Dataset(YahooL6Docs([ GzipExtract(dlc['docs1']), GzipExtract(dlc['docs2']), ])) ir_datasets.registry.register(NAME, L6_DATASET)
abnirml-master
abnirml/datasets/yahoo_l6.py
import io import os from collections import namedtuple import ir_datasets from ir_datasets.util import ZipExtract from ir_datasets import Dataset from . import DownloadConfig NAME = 'abnirml:nbias' BASE_PATH = ir_datasets.util.home_path() / NAME dlc = DownloadConfig.context(NAME, BASE_PATH) NBiasDoc = namedtuple('NBiasDoc', ['doc_id', 'biased_text', 'neutral_text']) class NBiasDocs(ir_datasets.formats.BaseDocs): def __init__(self, source_dlc): self.source_dlc = source_dlc def docs_iter(self): with self.source_dlc.stream() as s: for line in io.TextIOWrapper(s): cols = line.split('\t') yield NBiasDoc(cols[0], cols[3], cols[4]) def docs_path(self): return self.source_dlc.path() def docs_cls(self): return NBiasDoc NBIAS_DATASET = Dataset(NBiasDocs(ZipExtract(dlc['docs'], 'bias_data/WNC/biased.full'))) ir_datasets.registry.register(NAME, NBIAS_DATASET)
abnirml-master
abnirml/datasets/nbias.py
import os from collections import namedtuple import ir_datasets from ir_datasets.util import ZipExtractCache from . import DownloadConfig from ir_datasets import Dataset NAME = 'abnirml:gyafc' BASE_PATH = ir_datasets.util.home_path() / NAME dlc = DownloadConfig.context(NAME, BASE_PATH) GyafcDoc = namedtuple('GyafcDoc', ['doc_id', 'genre', 'split', 'is_orig_formal', 'formal', 'informal', 'mapped_l6_id']) class GyafcDocs(ir_datasets.formats.BaseDocs): def __init__(self, source_dlc): self.source_dlc = source_dlc def docs_iter(self): base = self.source_dlc.path() for src, ref in [('informal', 'formal'), ('formal', 'informal')]: for genre in ['Entertainment_Music', 'Family_Relationships']: for split in ['tune', 'test']: for iref in range(4): # TODO: etc/gyafc qid mappings... Should this be stored somewhere it can be # downloaded independently of the abnirml repo? with open(base/'GYAFC_Corpus'/genre/split/src, 'rt') as s, \ open(base/'GYAFC_Corpus'/genre/split/f'{ref}.ref{iref}', 'rt') as r, \ open(os.path.join('etc', 'gyafc', genre, split, f'{src}.qids'), 'rt') as qids: for i, (s_line, r_line, qid) in enumerate(zip(s, r, qids)): s_line = s_line.rstrip() r_line = r_line.rstrip() qid = qid.rstrip() yield GyafcDoc( f'{src}-{ref}-{genre}-{split}-{i}-{iref}', genre, split, src == 'formal', s_line if src == 'formal' else r_line, r_line if src == 'formal' else s_line, qid, ) def docs_path(self): return self.source_dlc.path() def docs_cls(self): return GyafcDoc GYAFC_DATASET = Dataset(GyafcDocs(ZipExtractCache(dlc['docs'], BASE_PATH / 'GYAFC_Corpus'))) ir_datasets.registry.register(NAME, GYAFC_DATASET)
abnirml-master
abnirml/datasets/gyafc.py
import tarfile import io import os from collections import namedtuple import ir_datasets from ir_datasets.indices import PickleLz4FullStore from ir_datasets.util import ZipExtract from ir_datasets import Dataset from . import DownloadConfig NAME = 'abnirml:cnn_dailymail' BASE_PATH = ir_datasets.util.home_path() / NAME dlc = DownloadConfig.context(NAME, BASE_PATH) CnnDailyMailDoc = namedtuple('CnnDailyMailDoc', ['doc_id', 'title', 'summary', 'body']) class CnnDailyMailDocs(ir_datasets.formats.BaseDocs): def __init__(self, cnn_stories_dlc, dailymail_stories_dlc, cnn_titles_dlc, dailymail_titles_dlc): self.cnn_stories_dlc = cnn_stories_dlc self.dailymail_stories_dlc = dailymail_stories_dlc self.cnn_titles_dlc = cnn_titles_dlc self.dailymail_titles_dlc = dailymail_titles_dlc def docs_iter(self): return iter(self.docs_store()) def _docs_iter(self): for prefix, stories_dlc, titles_dlc in [('cnn:', self.cnn_stories_dlc, self.cnn_titles_dlc), ('dailymail:', self.dailymail_stories_dlc, self.dailymail_titles_dlc)]: titles_byid = {} with titles_dlc.stream() as stream: for line in io.TextIOWrapper(stream): doc_id, title = line.split('\t') titles_byid[doc_id] = title.strip() with stories_dlc.stream() as stream, \ tarfile.open(fileobj=stream, mode='r|gz') as tarf: for record in tarf: if record.path.endswith('.story'): doc_id = record.path.split('/')[-1].split('.')[0] title = titles_byid[doc_id] doc_id = prefix + doc_id text = tarf.extractfile(record).read().decode() parts = text.split('@highlight') summary = '\n'.join(parts[1:]) yield CnnDailyMailDoc(doc_id, title, summary, parts[0].strip()) def docs_path(self): return self.source_dlc.path() def docs_store(self, field='doc_id'): return PickleLz4FullStore( path=f'{ir_datasets.util.home_path()/NAME}/docs.pklz4', init_iter_fn=self._docs_iter, data_cls=self.docs_cls(), lookup_field=field, index_fields=['doc_id'], ) def docs_cls(self): return CnnDailyMailDoc CNN_DAILYMAIL_DATASET = Dataset(CnnDailyMailDocs( dlc['cnn_stories'], dlc['dailymail_stories'], dlc['cnn_titles'], dlc['dailymail_titles'], )) ir_datasets.registry.register(NAME, CNN_DAILYMAIL_DATASET)
abnirml-master
abnirml/datasets/cnn_dailymail.py
from collections import namedtuple from typing import NamedTuple import io import contextlib import ir_datasets from ir_datasets.indices import PickleLz4FullStore from . import DownloadConfig from ir_datasets import Dataset NAME = 'abnirml:mspc' BASE_PATH = ir_datasets.util.home_path() / NAME dlc = DownloadConfig.context(NAME, BASE_PATH) class MspcDoc(NamedTuple): doc_id: str text: str author: str url: str agency: str date: str web_date: str class MspcDocpair(NamedTuple): doc_id_a: str doc_id_b: str paraphrase: bool class MspcDocs(ir_datasets.formats.BaseDocs): def __init__(self, dlc): self.dlc = dlc @ir_datasets.util.use_docstore def docs_iter(self): with self.dlc.stream() as stream: for i, line in enumerate(io.TextIOWrapper(stream)): if i == 0: continue # header cols = line.rstrip().split('\t') assert len(cols) == 7 yield MspcDoc(*cols) def docs_cls(self): return MspcDoc def docs_store(self, field='doc_id'): return PickleLz4FullStore( path=f'{ir_datasets.util.home_path()/NAME}/docs.pklz4', init_iter_fn=self.docs_iter, data_cls=self.docs_cls(), lookup_field=field, index_fields=['doc_id'], ) def docs_count(self): return self.docs_store().count() def docs_namespace(self): return NAME def docs_lang(self): return 'en' class MspcDocpairs(ir_datasets.formats.BaseDocPairs): def __init__(self, dlcs): self.dlcs = dlcs def docpairs_iter(self): for dlc in self.dlcs: with dlc.stream() as stream: for i, line in enumerate(io.TextIOWrapper(stream)): if i == 0: continue # header cols = line.rstrip().split('\t') assert len(cols) == 5, cols yield MspcDocpair(cols[1], cols[2], cols[0] == '1') def docpairs_cls(self): return MspcDocpair SUBSETS = {} docs = MspcDocs(dlc['sentences']) SUBSETS[''] = ir_datasets.datasets.base.Dataset(docs, MspcDocpairs([dlc['pairs/train'], dlc['pairs/test']])) SUBSETS['train'] = ir_datasets.datasets.base.Dataset(docs, MspcDocpairs([dlc['pairs/train']])) SUBSETS['test'] = ir_datasets.datasets.base.Dataset(docs, MspcDocpairs([dlc['pairs/test']])) for s_name, subset in SUBSETS.items(): if s_name == '': ir_datasets.registry.register(NAME, Dataset(subset)) else: ir_datasets.registry.register(f'{NAME}/{s_name}', Dataset(subset))
abnirml-master
abnirml/datasets/mspc.py
import pyterrier import pandas as pd from abnirml.java import J from .base import Scorer class _TerrerRetriever(Scorer): def __init__(self, name, index, batch_size=100): super().__init__(name) self.index = index self.batch_size = batch_size def batch_score(self, queries, texts): J.initialize() ti = self.index retr = pyterrier.batchretrieve.TextScorer( background_index=ti._index(), controls=self._controls(), properties=self._properties(), num_results=len(queries)) df = [] qid_map = {} doc_map = {} for q, t in zip(queries, texts): q = ti.parse_query(q) if q not in qid_map: qid_map[q] = len(qid_map) if t not in doc_map: doc_map[t] = len(doc_map) df.append((str(qid_map[q]), q, str(doc_map[t]), t)) df = pd.DataFrame(df, columns=['qid', 'query', 'docno', 'body'], dtype=str) run = retr.transform(df) result = [] for tup in df.itertuples(): r = run[(run.qid == tup.qid) & (run.docno == tup.docno)]['score'] if len(r) > 0: result.append(list(r)[0]) else: result.append(0.) return result def score_iter(self, it): batch_size = self.batch_size q_batch, t_batch = [], [] for query, text in it: q_batch.append(query) t_batch.append(text) if len(q_batch) >= batch_size: scores = self.batch_score(q_batch, t_batch) yield from scores q_batch, t_batch = [], [] if q_batch: scores = self.batch_score(q_batch, t_batch) yield from scores def _controls(self): return {} def _properties(self): return {} class TerrierBM25(_TerrerRetriever): def __init__(self, index, k1=1.2, b=0.8, batch_size=100, delta=0.0): super().__init__("TerrierBM25", index, batch_size) self.k1 = k1 self.b = b self._delta = delta def delta(self): return self._delta def _controls(self): return { 'wmodel': 'BM25', 'c': str(self.b) } def _properties(self): return { 'bm25.k_1': str(self.k1) }
abnirml-master
abnirml/scorers/terrier.py
import hashlib import gzip import torch import transformers import ir_datasets from .base import Scorer from .cached import SimpleFsCache _logger = ir_datasets.log.easy() class DocTTTTTQuery(Scorer): def __init__(self, scorer, count=4, delta=0): super().__init__(None) self.scorer = scorer self.count = count self.model = None self.cache = None self._delta = delta def delta(self): return self._delta def score_iter(self, it): self.build() def iter_exp_docs(): for qtext, dtext in it: dexp = self.model.expand_document(dtext) dtext = f'{dtext} {dexp}' yield qtext, dtext return self.scorer.score_iter(iter_exp_docs()) def build(self): if self.model is None: with _logger.duration('loading T5 model'): self.model = DocTTTTTQueryModel(count=self.count) class DocTTTTTQueryModel: def __init__(self, tok_base='t5-base', model_base='castorini/doc2query-t5-base-msmarco', count=4): super().__init__() self.tokenizer = transformers.T5Tokenizer.from_pretrained(tok_base) self.config = transformers.T5Config.from_pretrained('t5-base') self.model = transformers.T5ForConditionalGeneration.from_pretrained(model_base, config=self.config) if torch.cuda.is_available(): self.model.cuda() self.count = count self.cache = SimpleFsCache('cache/doctttttquery.cache', gzip.open) def expand_document(self, doc_text): key = hashlib.md5(doc_text.encode()).digest() if key not in self.cache: expansions = [] expansions.append("") doc_text += ' </s>' input_ids = self.tokenizer.encode(doc_text, return_tensors='pt') if torch.cuda.is_available(): input_ids = input_ids.cuda() input_ids = input_ids[:, :1024] outputs = self.model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_k=10, num_return_sequences=self.count) for i in range(self.count): exp = self.tokenizer.decode(outputs[i], skip_special_tokens=True) expansions.append(exp) self.cache[key] = ' '.join(expansions) return self.cache[key]
abnirml-master
abnirml/scorers/doctttttquery.py
import os import re import pickle import hashlib from pathlib import Path import torch import numpy as np from torch import nn import torch.nn.functional as F from nltk import word_tokenize import ir_datasets from .base import NeuralScorer _logger = ir_datasets.log.easy() class ConvKNRM(NeuralScorer): def __init__(self, weight_path, batch_size=8): super().__init__(None, batch_size) self.weight_path = weight_path def delta(self): return 0.434799 # 50th percentile delta from msmarco dev def build(self): if self.model is None: with _logger.duration('loading ConvKNRM model'): self.model = ConvKNRMModel() self.model.load_state_dict(torch.load(self.weight_path, map_location=torch.device('cpu') ), strict=False) if torch.cuda.is_available(): self.model.cuda() class KNRM(NeuralScorer): def __init__(self, weight_path, batch_size=8): super().__init__(None, batch_size) self.weight_path = weight_path def delta(self): return 0.31069 # 50th percentile delta from msmarco dev def build(self): if self.model is None: with _logger.duration('loading KNRM model'): self.model = KNRMModel() self.model.load_state_dict(torch.load(self.weight_path, map_location=torch.device('cpu') ), strict=False) if torch.cuda.is_available(): self.model.cuda() class ConvKNRMModel(torch.nn.Module): """ Implementation of the ConvKNRM model from: > Zhuyun Dai, Chenyan Xiong, Jamie Callan, and Zhiyuan Liu. 2018. Convolutional Neural > Networks for Soft-Matching N-Grams in Ad-hoc Search. In WSDM. """ def __init__(self): super().__init__() self.tokenizer = Tokenizer() self.embed = self.tokenizer.encoder() self.simmat = InteractionMatrix() self.padding, self.convs = nn.ModuleList(), nn.ModuleList() for conv_size in range(1, 4): if conv_size > 1: self.padding.append(nn.ConstantPad1d((0, conv_size-1), 0)) else: self.padding.append(nn.Sequential()) # identity self.convs.append(nn.ModuleList()) self.convs[-1].append(nn.Conv1d(self.embed.dim(), 128, conv_size)) self.kernels = RbfKernelBank.from_strs('-0.9,-0.7,-0.5,-0.3,-0.1,0.1,0.3,0.5,0.7,0.9,1.0', '0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.001', dim=1, requires_grad=True) channels = 3 ** 2 self.combine = nn.Linear(self.kernels.count() * channels, 1) def forward(self, query_text, doc_text): inputs = self.tokenizer.tokenize_queries_docs(query_text, doc_text) enc = self.embed.enc_query_doc(**inputs) a_embed, b_embed = enc['query'], enc['doc'] a_reps, b_reps = [], [] for pad, conv in zip(self.padding, self.convs): a_reps.append(conv[0](pad(a_embed.permute(0, 2, 1))).permute(0, 2, 1)) b_reps.append(conv[0](pad(b_embed.permute(0, 2, 1))).permute(0, 2, 1)) simmats = [] for a_rep in a_reps: for b_rep in b_reps: simmats.append(self.simmat(a_rep, b_rep, inputs['query_tok'], inputs['doc_tok'])) simmats = torch.cat(simmats, dim=1) mask = (simmats != 0.).unsqueeze(1) # which cells are not padding? kernels = self.kernels(simmats) kernels[~mask.expand(kernels.shape)] = 0. # zero out padding BATCH, KERNELS, VIEWS, QLEN, DLEN = kernels.shape kernels = kernels.reshape(BATCH, KERNELS * VIEWS, QLEN, DLEN) result = kernels.sum(dim=3) # sum over document simmats = simmats.reshape(BATCH, 1, VIEWS, QLEN, DLEN) \ .expand(BATCH, KERNELS, VIEWS, QLEN, DLEN) \ .reshape(BATCH, KERNELS * VIEWS, QLEN, DLEN) result = torch.where(mask[:,:,0].sum(dim=-1) != 0, (result + 1e-6).log(), torch.zeros_like(result)) result = result.sum(dim=2) # sum over query terms result = self.combine(result) return result.flatten() class KNRMModel(nn.Module): def __init__(self): super().__init__() self.tokenizer = Tokenizer() self.encoder = self.tokenizer.encoder() self.simmat = InteractionMatrix() self.kernels = RbfKernelBank.from_strs('-0.9,-0.7,-0.5,-0.3,-0.1,0.1,0.3,0.5,0.7,0.9,1.0', '0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.001', dim=1, requires_grad=True) self.combine = nn.Linear(self.kernels.count(), 1) def forward(self, query_text, doc_text): inputs = self.tokenizer.tokenize_queries_docs(query_text, doc_text) simmat = self.simmat.encode_query_doc(self.encoder, **inputs) kernel_scores = self.kernel_pool(simmat) result = self.combine(kernel_scores) # linear combination over kernels return result.flatten() def kernel_pool(self, simmat): mask = (simmat != 0.).unsqueeze(1) # which cells are not padding? kernels = self.kernels(simmat) kernels[~mask.expand(kernels.shape)] = 0. # zero out padding BATCH, KERNELS, VIEWS, QLEN, DLEN = kernels.shape kernels = kernels.reshape(BATCH, KERNELS * VIEWS, QLEN, DLEN) result = kernels.sum(dim=3) # sum over document simmat = simmat.reshape(BATCH, 1, VIEWS, QLEN, DLEN) \ .expand(BATCH, KERNELS, VIEWS, QLEN, DLEN) \ .reshape(BATCH, KERNELS * VIEWS, QLEN, DLEN) result = torch.where(mask[:,0].sum(dim=3) != 0, (result + 1e-6).log(), torch.zeros_like(result)) result = result.sum(dim=2) # sum over query terms return result class RbfKernelBank(nn.Module): def __init__(self, mus=None, sigmas=None, dim=0, requires_grad=True): super().__init__() self.mus = nn.Parameter(torch.tensor(mus), requires_grad=requires_grad) self.sigmas = nn.Parameter(torch.tensor(sigmas), requires_grad=requires_grad) self.dim = dim def forward(self, data): shape = list(data.shape) shape.insert(self.dim, 1) data = data.reshape(*shape) shape = [1]*len(data.shape) shape[self.dim] = -1 mus, sigmas = self.mus.reshape(*shape), self.sigmas.reshape(*shape) adj = data - mus return torch.exp(-0.5 * adj * adj / sigmas / sigmas) def count(self): return self.mus.shape[0] @staticmethod def from_strs(mus='-0.9,-0.7,-0.5,-0.3,-0.1,0.1,0.3,0.5,0.7,0.9,1.0', \ sigmas='0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.001', dim=-1, requires_grad=True): mus = [float(x) for x in mus.split(',')] sigmas = [float(x) for x in sigmas.split(',')] return RbfKernelBank(mus, sigmas, dim=dim, requires_grad=requires_grad) @staticmethod def evenly_spaced(count=11, sigma=0.1, rng=(-1, 1), dim=-1, requires_grad=True): mus = [x.item() for x in torch.linspace(rng[0], rng[1], steps=count)] sigmas = [sigma for _ in mus] return RbfKernelBank(mus, sigmas, dim=dim, requires_grad=requires_grad) def binmat(a, b, padding=None): BAT, A, B = a.shape[0], a.shape[1], b.shape[1] a = a.reshape(BAT, A, 1) b = b.reshape(BAT, 1, B) result = (a == b) if padding is not None: result = result & (a != padding) & (b != padding) return result.float() def cos_simmat(a, b, amask=None, bmask=None): BAT, A, B = a.shape[0], a.shape[1], b.shape[1] a_denom = a.norm(p=2, dim=2).reshape(BAT, A, 1) + 1e-9 # avoid 0div b_denom = b.norm(p=2, dim=2).reshape(BAT, 1, B) + 1e-9 # avoid 0div result = a.bmm(b.permute(0, 2, 1)) / (a_denom * b_denom) if amask is not None: result = result * amask.reshape(BAT, A, 1) if bmask is not None: result = result * bmask.reshape(BAT, 1, B) return result class InteractionMatrix(nn.Module): def __init__(self, padding=-1): super().__init__() self.padding = padding def forward(self, a_embed, b_embed, a_tok, b_tok): wrap_list = lambda x: x if isinstance(x, list) else [x] a_embed = wrap_list(a_embed) b_embed = wrap_list(b_embed) BAT, A, B = a_embed[0].shape[0], a_embed[0].shape[1], b_embed[0].shape[1] simmats = [] for a_emb, b_emb in zip(a_embed, b_embed): if a_emb.dtype is torch.long and len(a_emb.shape) == 2 and \ b_emb.dtype is torch.long and len(b_emb.shape) == 2: # binary matrix simmats.append(binmat(a_emb, b_emb, padding=self.padding)) else: # cosine similarity matrix a_mask = (a_tok.reshape(BAT, A, 1) != self.padding).float() b_mask = (b_tok.reshape(BAT, 1, B) != self.padding).float() simmats.append(cos_simmat(a_emb, b_emb, a_mask, b_mask)) return torch.stack(simmats, dim=1) def encode_query_doc(self, encoder, **inputs): enc = encoder.enc_query_doc(**inputs) return self(enc['query'], enc['doc'], inputs['query_tok'], inputs['doc_tok']) class Tokenizer: def __init__(self): with open('bing.pkl', 'rb') as f: self._terms, self._weights = pickle.load(f) self._term2idx = {t: i for i, t in enumerate(self._terms)} self._hashspace = 1000 random = np.random.RandomState(42) hash_weights = random.normal(scale=0.5, size=(self._hashspace, self._weights.shape[1])) self._weights = np.concatenate([self._weights, hash_weights]) def tokenize(self, text): """ Meant to be overwritten in to provide vocab-specific tokenization when necessary e.g., BERT's WordPiece tokenization """ text = text.lower() text = re.sub(r'[^a-z0-9]', ' ', text) return text.split() def id2tok(self, idx): return self._terms[idx] def tokenize_queries_docs(self, queries, docs): queries = [[self.tok2id(t) for t in self.tokenize(q)] for q in queries] docs = [[self.tok2id(t) for t in self.tokenize(d)] for d in docs] query_len = [len(q) for q in queries] max_q = max(query_len) queries = [q + [-1] * (max_q - len(q)) for q in queries] doc_len = [len(d) for d in docs] max_d = max(doc_len) docs = [d + [-1] * (max_d - len(d)) for d in docs] result = {'query_tok': torch.tensor(queries), 'query_len': torch.tensor(query_len), 'doc_tok': torch.tensor(docs), 'doc_len': torch.tensor(doc_len)} if torch.cuda.is_available(): result = {k: v.cuda() for k, v in result.items()} return result def lexicon_size(self) -> int: return len(self._terms) def tok2id(self, tok): try: return self._term2idx[tok] except KeyError: # NOTE: use md5 hash (or similar) here because hash() is not consistent across runs item = tok.encode() item_hash = int(hashlib.md5(item).hexdigest(), 16) item_hash_pos = item_hash % self._hashspace return len(self._terms) + item_hash_pos def encoder(self): return WordvecEncoder(self) class WordvecEncoder(nn.Module): def __init__(self, vocabulary): super().__init__() matrix = vocabulary._weights self.size = matrix.shape[1] matrix = np.concatenate([np.zeros((1, self.size)), matrix]) # add padding record (-1) self.embed = nn.Embedding.from_pretrained(torch.from_numpy(matrix.astype(np.float32))) def forward(self, toks, lens=None): # lens ignored return self.embed(toks + 1) # +1 to handle padding at position -1 def enc_query_doc(self, query_tok, query_len, doc_tok, doc_len): return { 'query': self.forward(query_tok, query_len), 'doc': self.forward(doc_tok, doc_len), } def dim(self): return self.embed.weight.shape[1]
abnirml-master
abnirml/scorers/conv_knrm.py
# import os # import torch # import torch.nn.functional as F # from transformers import BertTokenizerFast, BertForNextSentencePrediction # from pytorch_transformers.modeling_bert import BertForPreTraining, BertPreTrainedModel, BertEmbeddings, BertEncoder, BertPreTrainingHeads # from .base import NeuralScorer # class EPIC(NeuralScorer): # def __init__(self, weight_path=None, batch_size=8): # super().__init__("EPIC", batch_size) # self.weight_path = weight_path # def build(self): # if self.model is None: # self.model = EpicModel() # weight_path = self.weight_path # if os.path.exists(weight_path): # self.model.load_state_dict(torch.load(weight_path, map_location=torch.device('cpu'))) # if torch.cuda.is_available(): # self.model = self.model.cuda() # def delta(self): # return 0.294334 # 50th percentile delta from msmarco dev # class EpicModel(torch.nn.Module): # """ # Implementation of the EPIC model from: # > Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, # > Nazli Goharian, and Ophir Frieder. 2020. Expansion via Prediction of Importance with # > Contextualization. In SIGIR. # """ # def __init__(self): # super().__init__() # self.encoder = SepBertEncoder() # self.query_salience = torch.nn.Linear(768, 1) # self.doc_salience = torch.nn.Linear(768, 1) # self.activ = lambda x: (1. + F.softplus(x)).log() # self._nil = torch.nn.Parameter(torch.zeros(1)) # self.doc_quality = torch.nn.Linear(768, 1) # def forward(self, query_text, doc_text): # encoded = self.encoder.enc_query_doc(query_text, doc_text) # query_vecs = self.query_full_vector(encoded['query'], encoded['query_len'], encoded['query_tok']) # doc_vecs, _ = self.doc_full_vector(encoded['doc'], encoded['doc_len'], encoded['doc_cls']) # return self.similarity(query_vecs, doc_vecs) # def doc_full_vector(self, doc_tok_reps, doc_len, doc_cls): # tok_salience = self.doc_salience(doc_tok_reps) # tok_salience = self.activ(tok_salience) # exp_raw = self.encoder.bert.cls.predictions(doc_tok_reps) # mask = lens2mask(doc_len, exp_raw.shape[1]) # exp = self.activ(exp_raw) # exp = exp * tok_salience * mask.unsqueeze(2).float() # exp, _ = exp.max(dim=1) # qlty = torch.sigmoid(self.doc_quality(doc_cls)) # exp = qlty * exp # qlty = qlty.reshape(doc_cls.shape[0]) # return exp, qlty # def query_full_vector(self, query_tok_reps, query_len, query_tok, dense=True): # tok_salience = self._query_salience(query_tok_reps, query_len, query_tok) # idx0 = torch.arange(tok_salience.shape[0], device=tok_salience.device).reshape(tok_salience.shape[0], 1).expand(tok_salience.shape[0], tok_salience.shape[1]).flatten() # idx1 = query_tok.flatten() # idx1[idx1 == -1] = 0 # s = torch.Size([query_tok.shape[0], self.encoder.lexicon_size()]) # result = torch.sparse.FloatTensor(torch.stack((idx0, idx1)), tok_salience.flatten(), s) # if dense: # result = result.to_dense() # return result # def _query_salience(self, query_tok_reps, query_len, query_tok): # inputs = query_tok_reps # tok_salience = self.query_salience(inputs) # tok_salience = self.activ(tok_salience).squeeze(2) # mask = lens2mask(query_len, query_tok.shape[1]) # tok_salience = tok_salience * mask.float() # return tok_salience # def similarity(self, query_vecs, doc_vecs): # return (query_vecs * doc_vecs).sum(dim=1) # class SepBertEncoder(torch.nn.Module): # def __init__(self): # super().__init__() # self.tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased') # self.bert = CustomBertModelWrapper.from_pretrained('bert-base-uncased') # self.CLS = self.tokenizer.convert_tokens_to_ids('[CLS]') # self.SEP = self.tokenizer.convert_tokens_to_ids('[SEP]') # self.bert.set_trainable(True) # def lexicon_size(self): # return self.tokenizer._tokenizer.get_vocab_size() # def enc_query_doc(self, query_text, doc_text): # enc_query = self.tokenizer.batch_encode_plus(query_text, return_tensors='pt', padding=True, truncation=True) # enc_query = {k: v[:, :500] for k, v in enc_query.items()} # if torch.cuda.is_available(): # enc_query = {k: v.cuda() for k, v in enc_query.items()} # result_query = self.bert(**enc_query) # query_tok = enc_query['input_ids'][:, 1:] # query_tok[query_tok < 1000] = -1 # enc_doc = self.tokenizer.batch_encode_plus(doc_text, return_tensors='pt', padding=True, truncation=True) # enc_doc = {k: v[:, :500] for k, v in enc_doc.items()} # if torch.cuda.is_available(): # enc_doc = {k: v.cuda() for k, v in enc_doc.items()} # enc_doc['token_type_ids'][:, :] = 1 # result_doc = self.bert(**enc_doc) # doc_tok = enc_doc['input_ids'][:, 1:] # doc_tok[doc_tok < 1000] = -1 # return { # 'query': result_query[-1][:, 1:], # 'query_cls': result_query[-1][:, 0], # 'query_tok': query_tok, # 'query_len': enc_query['attention_mask'].sum(dim=1) - 2, # 'doc': result_doc[-1][:, 1:], # 'doc_cls': result_doc[-1][:, 0], # 'doc_tok': doc_tok, # 'doc_len': enc_doc['attention_mask'].sum(dim=1) - 2, # } # class CustomBertModelWrapper(BertForPreTraining): # def __init__(self, config, depth=None): # config.output_hidden_states = True # super().__init__(config) # self.bert = CustomBertModel(config, depth) # replace with custom model # def forward(self, input_ids, token_type_ids, attention_mask): # return self.bert(input_ids, token_type_ids, attention_mask) # @classmethod # def from_pretrained(cls, *args, **kwargs): # result = super().from_pretrained(*args, **kwargs) # if result.bert.depth is not None: # # limit the depth by cutting out layers it doesn't need to calculate # result.bert.encoder.layer = result.bert.encoder.layer[:result.bert.depth] # else: # result.depth = len(result.bert.encoder.layer) # return result # def set_trainable(self, trainable): # for param in self.parameters(): # param.requires_grad = trainable # class CustomBertModel(BertPreTrainedModel): # """ # Based on pytorch_pretrained_bert.BertModel, but with some extra goodies: # - depth: number of layers to run in BERT, where 0 is the raw embeddings, and -1 is all # available layers # """ # def __init__(self, config, depth=None): # super(CustomBertModel, self).__init__(config) # self.depth = depth # self.embeddings = BertEmbeddings(config) # self.encoder = BertEncoder(config) # self.cls = BertPreTrainingHeads(config) # self.apply(self.init_weights) # def forward(self, input_ids, token_type_ids, attention_mask): # """ # Based on pytorch_pretrained_bert.BertModel # """ # embedding_output = self.embeddings(input_ids, token_type_ids) # if self.depth == 0: # return [embedding_output] # return self.forward_from_layer(embedding_output, attention_mask) # def forward_from_layer(self, embedding_output, attention_mask): # extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility # extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 # head_mask = [None] * self.config.num_hidden_layers # _, encoded_layers = self.encoder(embedding_output, extended_attention_mask, head_mask) # return list(encoded_layers) # def lens2mask(lens, size): # mask = [] # for l in lens.cpu(): # l = l.item() # mask.append(([1] * l) + ([0] * (size - l))) # return torch.tensor(mask, device=lens.device).long()
abnirml-master
abnirml/scorers/epic.py
import torch import torch.nn.functional as F import transformers import ir_datasets from .base import NeuralScorer _logger = ir_datasets.log.easy() class Seq2seqT5(NeuralScorer): """ From: > Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Document Ranking with a Pretrained > Sequence-to-Sequence Model. arxiv 2020. """ def __init__(self, model_base='t5-large', tok_base='t5-large', batch_size=8): super().__init__("VanillaT5", batch_size) self.model_base = model_base self.tok_base = tok_base def delta(self): return 0.00237513 # 50th percentile delta from msmarco dev def build(self): if self.model is None: with _logger.duration('loading T5 model'): self.model = Seq2seqT5Model(self.model_base, self.tok_base) if torch.cuda.is_available(): self.model.cuda() class Seq2seqT5Model(torch.nn.Module): def __init__(self, model_base, tok_base): super().__init__() self.tokenizer = transformers.T5Tokenizer.from_pretrained(tok_base) if model_base.startswith('/'): self.model = transformers.T5ForConditionalGeneration.from_pretrained(None, config=model_base.replace('pytorch_model.bin', 'config.json'), state_dict=torch.load(model_base, map_location=torch.device('cpu') )) else: self.model = transformers.T5ForConditionalGeneration.from_pretrained(model_base) self.REL = self.tokenizer.encode('true')[0] self.NREL = self.tokenizer.encode('false')[0] def forward(self, **inputs): enc = self.tokenizer.batch_encode_plus([f'Query: {q} Document: {d} Relevant:' for q, d in zip(inputs['query_text'], inputs['doc_text'])], return_tensors='pt', pad_to_max_length=True) enc['decoder_input_ids'] = torch.full( (len(inputs['query_text']), 1), self.model.config.decoder_start_token_id, dtype=torch.long ) for field in list(enc): enc[field] = enc[field][:, :512] # crop to 512 (max length) if torch.cuda.is_available(): enc = {k: v.cuda() for k, v in enc.items()} result, _, _ = self.model(**enc) result = result[:, 0, (self.REL, self.NREL)] return F.log_softmax(result, dim=1)[:, 0]
abnirml-master
abnirml/scorers/seq2seq_t5.py
from . import base from .base import PyTerrierScorer, Scorer, NeuralScorer from .seq2seq_t5 import Seq2seqT5 from .terrier import TerrierBM25 from .cached import CachedScorer from .vanilla_bert import VanillaBERT from .doctttttquery import DocTTTTTQuery from .conv_knrm import ConvKNRM, KNRM from .s2 import S2
abnirml-master
abnirml/scorers/__init__.py
from pathlib import Path import gzip import zlib import itertools import hashlib import pickle import ir_datasets _logger = ir_datasets.log.easy() class SimpleFsCache: def __init__(self, path, open_fn=open): self._memcache = {} if Path(path).exists(): with open_fn(path, 'r+b') as f: underlying_f = f.fileobj if isinstance(f, gzip.GzipFile) else f last_valid_pos = None while True: try: pos = underlying_f.tell() key, value = pickle.load(f), pickle.load(f) if isinstance(key, list) and isinstance(value, list): for k, v in zip(key, value): self._memcache[k] = v else: self._memcache[key] = value last_valid_pos = pos except EOFError: break # done reading cache except zlib.error as e: # hmmmm, problem decoding. underlying_f.seek(last_valid_pos) underlying_f.truncate() _logger.warn(f'gzip error loading: {repr(e)}. Tuncating to last valid position in file.') break _logger.info(f'loaded cache with {len(self._memcache)} items') self._file = open_fn(path, 'ab') def __contains__(self, key): return key in self._memcache def __getitem__(self, key): return self._memcache[key] def __setitem__(self, key, value): # avoid bloat by re-saving same value (common when things are be batched) if key not in self._memcache or self._memcache[key] != value: pickle.dump(key, self._file) pickle.dump(value, self._file) self._file.flush() self._memcache[key] = value class CachedScorer: def __init__(self, scorer, cache_path, hashfn=hashlib.md5): self._scorer = scorer self._cache_path = Path(cache_path) self._cache = None self._hashfn = hashfn def delta(self): return self._scorer.delta() def cache(self): if self._cache is None: self._cache = SimpleFsCache(self._cache_path) return self._cache def score_iter(self, it): cache = self.cache() will_be_cached = set() # items that will enter the cache. This may not seem like it does anything, but due to batched scoring, it does def cache_lookup_iter(it): for qtext, dtext in it: key = (qtext, dtext) key = self._hashfn(repr(key).encode()).digest() if key in cache or key in will_be_cached: yield qtext, dtext, key, False # should not score else: will_be_cached.add(key) yield qtext, dtext, key, True # should score it = cache_lookup_iter(it) it1, it2 = itertools.tee(it, 2) def to_be_scored_iter(it): for qtext, dtext, _, should_score in it: if should_score: yield qtext, dtext it2 = self._scorer.score_iter(to_be_scored_iter(it2)) for _, _, key, should_score in it1: if should_score: score = next(it2, StopIteration) if score is StopIteration: break cache[key] = score will_be_cached.discard(key) # it's been cached! yield cache[key]
abnirml-master
abnirml/scorers/cached.py
import os import math import torch import torch.nn.functional as F from transformers import BertTokenizerFast, BertForNextSentencePrediction from pytorch_transformers.modeling_bert import BertForPreTraining, BertPreTrainedModel, BertEmbeddings, BertEncoder, BertPreTrainingHeads from .base import NeuralScorer class VanillaBERT(NeuralScorer): def __init__(self, model_base='bert-base-uncased', weight_path=None, batch_size=8, outputs=2, delta=0.): super().__init__("VanillaBERT", batch_size) self.model_base = model_base self.weight_path = weight_path self.outputs = outputs self._delta = delta def delta(self): return self._delta def build(self): if self.model is None: self.model = VanillaBERTModel(self.model_base, self.outputs) if self.weight_path is not None: self.model.load_state_dict(torch.load(self.weight_path, map_location=torch.device('cpu'))) if torch.cuda.is_available(): self.model.cuda() class UntunedBERT(NeuralScorer): def build(self): if self.model is None: self.model = UntunedBERTModel() self.model.cuda() class UntunedBERTModel(torch.nn.Module): def __init__(self): super().__init__() self.tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased') self.model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased') def forward(self, query_text, doc_text): enc = self.tokenizer.batch_encode_plus(list(zip(query_text, doc_text)), return_tensors='pt', padding=True, truncation=True) enc = {k: v[:, :500] for k, v in enc.items()} if torch.cuda.is_available(): enc = {k: v.cuda() for k, v in enc.items()} result, = self.model(**enc) return F.log_softmax(result, dim=1)[:, 0] class VanillaBERTModel(torch.nn.Module): def __init__(self, bert_base, outputs=2): super().__init__() self.encoder = JointBertEncoder(bert_base) self.ranker = torch.nn.Linear(1024 if 'large' in bert_base else 768, outputs) def forward(self, **inputs): pooled_output = self.encoder.enc_query_doc(**inputs)['cls'] result = self.ranker(pooled_output) return result[:, 0] class JointBertEncoder(torch.nn.Module): def __init__(self, bert_base): super().__init__() self.tokenizer = BertTokenizerFast.from_pretrained(bert_base) self.bert = CustomBertModelWrapper.from_pretrained(bert_base) self.CLS = self.tokenizer.convert_tokens_to_ids('[CLS]') self.SEP = self.tokenizer.convert_tokens_to_ids('[SEP]') self.bert.set_trainable(True) def enc_query_doc(self, **inputs): enc = self.tokenizer.batch_encode_plus(list(zip(inputs['query_text'], inputs['doc_text'])), return_tensors='pt', padding=True, truncation=True) enc = {k: v[:, :500] for k, v in enc.items()} if torch.cuda.is_available(): enc = {k: v.cuda() for k, v in enc.items()} result = self.bert(**enc) return { 'cls': result[-1][:, 0] } def subbatch(toks, maxlen): _, DLEN = toks.shape[:2] SUBBATCH = math.ceil(DLEN / maxlen) S = math.ceil(DLEN / SUBBATCH) if SUBBATCH > 0 else 0 # minimize the size given the number of subbatch stack = [] if SUBBATCH == 1: return toks, SUBBATCH else: for s in range(SUBBATCH): stack.append(toks[:, s*S:(s+1)*S]) if stack[-1].shape[1] != S: nulls = torch.zeros_like(toks[:, :S - stack[-1].shape[1]]) stack[-1] = torch.cat([stack[-1], nulls], dim=1) try: return torch.cat(stack, dim=0), SUBBATCH except: import pdb; pdb.set_trace() pass def un_subbatch(embed, toks, maxlen): BATCH, DLEN = toks.shape[:2] SUBBATCH = math.ceil(DLEN / maxlen) if SUBBATCH == 1: return embed else: embed_stack = [] for b in range(SUBBATCH): embed_stack.append(embed[b*BATCH:(b+1)*BATCH]) embed = torch.cat(embed_stack, dim=1) embed = embed[:, :DLEN] return embed def lens2mask(lens, size): mask = [] for l in lens.cpu(): l = l.item() mask.append(([1] * l) + ([0] * (size - l))) return torch.tensor(mask, device=lens.device).long() class CustomBertModelWrapper(BertForPreTraining): def __init__(self, config, depth=None): config.output_hidden_states = True super().__init__(config) self.bert = CustomBertModel(config, depth) # replace with custom model def forward(self, input_ids, token_type_ids, attention_mask): return self.bert(input_ids, token_type_ids, attention_mask) @classmethod def from_pretrained(cls, *args, **kwargs): result = super().from_pretrained(*args, **kwargs) if result.bert.depth is not None: # limit the depth by cutting out layers it doesn't need to calculate result.bert.encoder.layer = result.bert.encoder.layer[:result.bert.depth] else: result.depth = len(result.bert.encoder.layer) return result def set_trainable(self, trainable): for param in self.parameters(): param.requires_grad = trainable class CustomBertModel(BertPreTrainedModel): """ Based on pytorch_pretrained_bert.BertModel, but with some extra goodies: - depth: number of layers to run in BERT, where 0 is the raw embeddings, and -1 is all available layers """ def __init__(self, config, depth=None): super(CustomBertModel, self).__init__(config) self.depth = depth self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) self.cls = BertPreTrainingHeads(config) self.apply(self.init_weights) def forward(self, input_ids, token_type_ids, attention_mask): """ Based on pytorch_pretrained_bert.BertModel """ embedding_output = self.embeddings(input_ids, token_type_ids) if self.depth == 0: return [embedding_output] return self.forward_from_layer(embedding_output, attention_mask) def forward_from_layer(self, embedding_output, attention_mask): extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 head_mask = [None] * self.config.num_hidden_layers _, encoded_layers = self.encoder(embedding_output, extended_attention_mask, head_mask) return list(encoded_layers)
abnirml-master
abnirml/scorers/vanilla_bert.py
from typing import Dict, List, Tuple import pickle import datetime from collections import Counter import re import numpy as np import pandas as pd import kenlm from nlpre import unidecoder from nltk.util import ngrams from blingfire import text_to_words import ir_datasets from .base import NeuralScorer class S2(NeuralScorer): def __init__(self, delta=0.0): super().__init__(None) self._delta = delta def delta(self): return self._delta def build(self): if self.model is None: self.model = S2Ranker() class S2Ranker: def __init__(self): super().__init__() #with open("/net/nfs.corp/s2-research/search_eval/search_click_ranker/trained_ranker_model_minimal.pickle", "rb") as model: with open("/home/sean/data/s2/trained_ranker_model_minimal.pickle", "rb") as model: self.model = pickle.load(model) def __call__(self, **inputs): query_texts, doc_texts = inputs['query_text'], inputs['doc_text'] features = featureize(query_texts, doc_texts) return self.model.predict(features) def featureize(query_texts, doc_texts): feats = [] for query, doc in zip(query_texts, doc_texts): candidate = {} candidate["paper_year"] = 2020 candidate["n_citations"] = 0 candidate["n_key_citations"] = 0 candidate["paper_title_cleaned"] = fix_text(doc) candidate["paper_abstract_cleaned"] = candidate["paper_title_cleaned"] candidate["paper_venue_cleaned"] = fix_text('arxiv') candidate["author_name"] = [] feats.append(make_features(query, candidate)) return np.array(feats) def prepare_candidate(hit: dict) -> Dict: """Convert a dict to a format that features.py understands""" candidate = {} source = hit["_source"] author_names = [author["name"] for author in source.get("authors", [])] year = source.get("year", None) return candidate def rerank_and_dedupe_candidates(query_string: str, raw_hits: List[dict], raw_total_hits: int) -> Tuple[int, List]: """Method that dedupes and reranks a candidate result set""" deduped_candidates = dedupe_by_id(raw_hits) par_candidates = build_par_candidates(query_string, deduped_candidates) featurized_candidates = np.array(F_POOL.starmap(make_features, par_candidates)) predictions = get_predictions(featurized_candidates) adjusted_scores = posthoc_score_adjust(predictions, featurized_candidates, query_string) scores_argsort = np.argsort(adjusted_scores)[::-1] reranked_candidates = [] for _, index in enumerate(scores_argsort): reranked_candidates.append(deduped_candidates[index]) # When we dedupe the candidates we want to subtract them from the total # hit count in the response adjusted_total_hits = raw_total_hits - (len(raw_hits) - len(deduped_candidates)) return (adjusted_total_hits, reranked_candidates) now = datetime.datetime.now() gorc_lm = ir_datasets.util.Lazy(lambda: kenlm.Model('/home/sean/data/s2/gorc_lm.binary')) authors_lm = ir_datasets.util.Lazy(lambda: kenlm.Model('/home/sean/data/s2/authors_lm.binary')) venues_lm = ir_datasets.util.Lazy(lambda: kenlm.Model('/home/sean/data/s2/venues_lm.binary')) def nanwrapper(f, x): """numpy freaks out if you pass an empty arrays to many of its functions (like min or max). This wrapper just returns a nan in that case. """ if len(x) == 0: return np.nan else: return f(x) def remove_unigrams(s, st): return " ".join([i for i in s.split(" ") if i not in st]) def make_feature_names_and_constraints(): feats = ["abstract_is_available", "paper_year_is_in_query"] # for lightgbm, 1 means positively monotonic, -1 means negatively monotonic and 0 means non-constraint constraints = ["1", "1"] # features just for title, abstract, venue for field in ["title", "abstract", "venue"]: feats.extend( [ f"{field}_frac_of_query_matched_in_text", # total fraction of the query that was matched in text f"{field}_mean_of_log_probs", # statistics of the log-probs f"{field}_sum_of_log_probs*match_lens", ] ) constraints.extend( ["1", "-1", "-1",] ) # features for author field only feats.extend( [ "sum_matched_authors_len_divided_by_query_len", # total amount of (fractional wrt query) matched authors "max_matched_authors_len_divided_by_query_len", # largest (fractional wrt query) author match "author_match_distance_from_ends", # how far the author matches are from the front/back of the author list ] ) constraints.extend( ["1", "1", "-1",] ) feats.extend( [ "paper_oldness", "paper_n_citations", # no need for log due to decision trees "paper_n_key_citations", "paper_n_citations_divided_by_oldness", ] ) # note: DO NOT change the paper_oldness constraint to -1 # if you do, then seminal papers will stop being on top. constraints.extend(["0", "1", "1", "1"]) feats.extend( [ "fraction_of_unquoted_query_matched_across_all_fields", "sum_log_prob_of_unquoted_unmatched_unigrams", "fraction_of_quoted_query_matched_across_all_fields", "sum_log_prob_of_quoted_unmatched_unigrams", ] ) constraints.extend(["1", "1", "1", "1"]) return np.array(feats), ",".join(constraints) def make_features(query, result_paper, max_q_len=128, max_field_len=1024): # the language model should have the beginning and end of sentences turned off lm_dict = { "title_abstract": lambda s: gorc_lm().score(s, eos=False, bos=False), "author": lambda s: authors_lm().score(s, eos=False, bos=False), "venue": lambda s: venues_lm().score(s, eos=False, bos=False), } # apply the language model in the field as necessary def lm_score(s, which_lm="title"): if "title" in which_lm or "abstract" in which_lm: return lm_dict["title_abstract"](s) elif "venue" in which_lm: return lm_dict["venue"](s) elif "author" in which_lm: return lm_dict["author"](s) elif "max" in which_lm: return np.max( [ lm_dict["title_abstract"](s), lm_dict["venue"](s), lm_dict["author"](s), ] ) try: year = int(result_paper["paper_year"]) year = np.minimum(now.year, year) # papers can't be from the future. except: year = np.nan if result_paper["author_name"] is None: authors = [] else: authors = result_paper["author_name"] # fix the text and separate out quoted and unquoted query = str(query) q = fix_text(query)[:max_q_len] q_quoted = [i for i in extract_from_between_quotations(q) if len(i) > 0] q_split_on_quotes = [i.strip() for i in q.split('"') if len(i.strip()) > 0] q_unquoted = [ i.strip() for i in q_split_on_quotes if i not in q_quoted and len(i.strip()) > 0 ] q_unquoted_split_set = set(" ".join(q_unquoted).split()) q_quoted_split_set = set(" ".join(q_quoted).split()) q_split_set = q_unquoted_split_set | q_quoted_split_set q_split_set -= STOPWORDS # we will find out how much of a match we have *across* fields unquoted_matched_across_fields = [] quoted_matched_across_fields = [] # overall features for the paper and query q_quoted_len = np.sum([len(i) for i in q_quoted]) # total length of quoted snippets q_unquoted_len = np.sum( [len(i) for i in q_unquoted] ) # total length of non-quoted snippets q_len = q_unquoted_len + q_quoted_len # if there's no query left at this point, we return NaNs # which the model natively supports if q_len == 0: return [np.nan] * len(FEATURE_NAMES) # testing whether a year is somewhere in the query and making year-based features if re.search( "\d{4}", q ): # if year is in query, the feature is whether the paper year appears in the query year_feat = str(year) in q_split_set else: # if year isn't in the query, we don't care about matching year_feat = np.nan feats = [ result_paper["paper_abstract_cleaned"] is not None and len(result_paper["paper_abstract_cleaned"]) > 1, year_feat, # whether the year appears anywhere in the (split) query ] # if year is matched, add it to the matched_across_all_fields but remove from query # so it doesn't get matched in author/title/venue/abstract later if np.any([str(year) in i for i in q_quoted]): quoted_matched_across_fields.append(str(year)) if np.any([str(year) in i for i in q_unquoted]): unquoted_matched_across_fields.append(str(year)) # if year is matched, we don't need to match it again, so removing if year_feat is True and len(q_split_set) > 1: q_split_set.remove(str(year)) # later we will filter some features based on nonsensical unigrams in the query # this is the log probability lower-bound for sensible unigrams log_prob_nonsense = lm_score("qwertyuiop", "max") # features title, abstract, venue title_and_venue_matches = set() title_and_abstract_matches = set() for field in [ "paper_title_cleaned", "paper_abstract_cleaned", "paper_venue_cleaned", ]: if result_paper[field] is not None: text = result_paper[field][:max_field_len] else: text = "" text_len = len(text) # unquoted matches ( unquoted_match_spans, unquoted_match_text, unquoted_longest_starting_ngram, ) = find_query_ngrams_in_text(q_unquoted, text, quotes=False) unquoted_matched_across_fields.extend(unquoted_match_text) unquoted_match_len = len(unquoted_match_spans) # quoted matches ( quoted_match_spans, quoted_match_text, quoted_longest_starting_ngram, ) = find_query_ngrams_in_text(q_quoted, text, quotes=True) quoted_matched_across_fields.extend(quoted_match_text) quoted_match_len = len(quoted_match_text) # now we (a) combine the quoted and unquoted results match_spans = unquoted_match_spans + quoted_match_spans match_text = unquoted_match_text + quoted_match_text # and (b) take the set of the results # while excluding sub-ngrams if longer ngrams are found # e.g. if we already have 'sentiment analysis', then 'sentiment' is excluded match_spans_set = [] match_text_set = [] for t, s in sorted(zip(match_text, match_spans), key=lambda s: len(s[0]))[::-1]: if t not in match_text_set and ~np.any([t in i for i in match_text_set]): match_spans_set.append(s) match_text_set.append(t) # remove venue results if they already entirely appeared if "venue" in field: text_unigram_len = len(text.split(" ")) match_spans_set_filtered = [] match_text_set_filtered = [] for sp, tx in zip(match_spans_set, match_text_set): tx_unigrams = set(tx.split(" ")) # already matched all of these unigrams in title or abstract condition_1 = ( tx_unigrams.intersection(title_and_abstract_matches) == tx_unigrams ) # and matched too little of the venue text condition_2 = len(tx_unigrams) / text_unigram_len <= 2 / 3 if not (condition_1 and condition_2): match_spans_set_filtered.append(sp) match_text_set_filtered.append(tx) match_spans_set = match_spans_set_filtered match_text_set = match_text_set_filtered # match_text_set but unigrams matched_text_unigrams = set() for i in match_text_set: i_split = i.split() matched_text_unigrams.update(i_split) if "title" in field or "venue" in field: title_and_venue_matches.update(i_split) if "title" in field or "abstract" in field: title_and_abstract_matches.update(i_split) if ( len(match_text_set) > 0 and text_len > 0 ): # if any matches and the text has any length # log probabilities of the scores if "venue" in field: lm_probs = [lm_score(match, "venue") for match in match_text_set] else: lm_probs = [lm_score(match, "max") for match in match_text_set] # match character lengths match_lens = [len(i) for i in match_text_set] # match word lens match_word_lens = [len(i.split()) for i in match_text_set] # we have one feature that takes into account repetition of matches match_text_counter = Counter(match_text) match_spans_len_normed = np.log1p(list(match_text_counter.values())).sum() # remove stopwords from unigrams matched_text_unigrams -= STOPWORDS feats.extend( [ len(q_split_set.intersection(matched_text_unigrams)) / np.maximum( len(q_split_set), 1 ), # total fraction of the query that was matched in text np.nanmean(lm_probs), # average log-prob of the matches np.nansum( np.array(lm_probs) * np.array(match_word_lens) ), # sum of log-prob of matches times word-lengths ] ) else: # if we have no matches, then the features are deterministically 0 feats.extend([0, 0, 0]) # features for author field only # note: we aren't using citation info # because we don't know which author we are matching # in the case of multiple authors with the same name q_auth = fix_author_text(query)[:max_q_len] q_quoted_auth = extract_from_between_quotations(q_auth) q_split_on_quotes = [i.strip() for i in q_auth.split('"') if len(i.strip()) > 0] q_unquoted_auth = [i for i in q_split_on_quotes if i not in q_quoted_auth] # remove any unigrams that we already matched in title or venue # but not abstract since citations are included there # note: not sure if this make sense for quotes, but keeping it for those now q_quoted_auth = [remove_unigrams(i, title_and_venue_matches) for i in q_quoted_auth] q_unquoted_auth = [ remove_unigrams(i, title_and_venue_matches) for i in q_unquoted_auth ] unquoted_match_lens = [] # normalized author matches quoted_match_lens = [] # quoted author matches match_fracs = [] for paper_author in authors: len_author = len(paper_author) if len_author > 0: # higher weight for the last name paper_author_weights = np.ones(len_author) len_last_name = len(paper_author.split(" ")[-1]) paper_author_weights[ -len_last_name: ] *= 10 # last name is ten times more important to match paper_author_weights /= paper_author_weights.sum() # for quotes_flag, q_loop in zip( [False, True], [q_unquoted_auth, q_quoted_auth] ): matched_spans, match_text, _ = find_query_ngrams_in_text( q_loop, paper_author, quotes=quotes_flag, len_filter=0, remove_stopwords=True, # only removes entire matches that are stopwords. too bad for people named 'the' or 'less' use_word_boundaries=False, ) if len(matched_spans) > 0: matched_text_joined = " ".join(match_text) # edge case: single character matches are not good if len(matched_text_joined) == 1: matched_text_joined = "" weight = np.sum( [paper_author_weights[i:j].sum() for i, j in matched_spans] ) match_frac = np.minimum((len(matched_text_joined) / q_len), 1) match_fracs.append(match_frac) if quotes_flag: quoted_match_lens.append(match_frac * weight) quoted_matched_across_fields.append(matched_text_joined) else: unquoted_match_lens.append(match_frac * weight) unquoted_matched_across_fields.append(matched_text_joined) else: if quotes_flag: quoted_match_lens.append(0) else: unquoted_match_lens.append(0) # since we ran this separately (per author) for quoted and uquoted, we want to avoid potential double counting match_lens_max = np.maximum(unquoted_match_lens, quoted_match_lens) nonzero_inds = np.flatnonzero(match_lens_max) # the closest index to the ends of author lists if len(nonzero_inds) == 0: author_ind_feature = np.nan else: author_ind_feature = np.minimum( nonzero_inds[0], len(authors) - 1 - nonzero_inds[-1] ) feats.extend( [ np.nansum(match_lens_max), # total amount of (weighted) matched authors nanwrapper(np.nanmax, match_lens_max), # largest (weighted) author match author_ind_feature, # penalizing matches that are far away from ends of author list ] ) # oldness and citations feats.extend( [ now.year - year, # oldness (could be nan if year is missing) result_paper["n_citations"], # no need for log due to decision trees result_paper["n_key_citations"], np.nan if np.isnan(year) else result_paper["n_citations"] / (now.year - year + 1), ] ) # special features for how much of the unquoted query was matched/unmatched across all fields q_unquoted_split_set -= STOPWORDS if len(q_unquoted_split_set) > 0: matched_split_set = set() for i in unquoted_matched_across_fields: matched_split_set.update(i.split()) # making sure stopwords aren't an issue matched_split_set -= STOPWORDS # fraction of the unquery matched numerator = len(q_unquoted_split_set.intersection(matched_split_set)) feats.append(numerator / np.maximum(len(q_unquoted_split_set), 1)) # the log-prob of the unmatched unquotes unmatched_unquoted = q_unquoted_split_set - matched_split_set log_probs_unmatched_unquoted = [lm_score(i, "max") for i in unmatched_unquoted] feats.append( np.nansum( [i for i in log_probs_unmatched_unquoted if i > log_prob_nonsense] ) ) else: feats.extend([np.nan, np.nan]) # special features for how much of the quoted query was matched/unmatched across all fields if len(q_quoted) > 0: numerator = len(set(" ".join(quoted_matched_across_fields).split())) feats.append(numerator / len(q_quoted_split_set)) # the log-prob of the unmatched quotes unmatched_quoted = set(q_quoted) - set(quoted_matched_across_fields) feats.append(np.nansum([lm_score(i, "max") for i in unmatched_quoted])) else: feats.extend([np.nan, np.nan]) return feats # get globals to use for posthoc_score_adjust FEATURE_NAMES, FEATURE_CONSTRAINTS = make_feature_names_and_constraints() feature_names = list(FEATURE_NAMES) quotes_feat_ind = feature_names.index( "fraction_of_quoted_query_matched_across_all_fields" ) year_match_ind = feature_names.index("paper_year_is_in_query") author_match_ind = feature_names.index("max_matched_authors_len_divided_by_query_len") matched_all_ind = feature_names.index( "fraction_of_unquoted_query_matched_across_all_fields" ) title_match_ind = feature_names.index("title_frac_of_query_matched_in_text") abstract_match_ind = feature_names.index("abstract_frac_of_query_matched_in_text") venue_match_ind = feature_names.index("venue_frac_of_query_matched_in_text") def posthoc_score_adjust(scores, X, query=None): if query is None: query_len = 100 else: query_len = len(str(query).split(" ")) # need to modify scores if there are any quote matches # this ensures quoted-matching results are on top quotes_frac_found = X[:, quotes_feat_ind] has_quotes_to_match = ~np.isnan(quotes_frac_found) scores[has_quotes_to_match] += 1000000 * quotes_frac_found[has_quotes_to_match] # if there is a year match, we want to boost that a lot year_match = np.isclose(X[:, year_match_ind], 1.0) scores += 100000 * year_match # full author matches if the query is long enough if query_len > 1: full_author_match = np.isclose(X[:, author_match_ind], 1.0) scores += 100000 * full_author_match # then those with all ngrams matched anywhere matched_all_flag = np.isclose(X[:, matched_all_ind], 1.0) scores += 1000 * matched_all_flag # need to heavily penalize those with 0 percent ngram match matched_none_flag = np.isclose(X[:, matched_all_ind], 0.0) scores -= 1000 * matched_none_flag # find the most common match appearance pattern and upweight those if query_len > 1: if '"' in query: qualifying_for_cutoff = ( np.isclose(X[:, quotes_feat_ind], 1.0) & matched_all_flag ) else: qualifying_for_cutoff = matched_all_flag scores_argsort = np.argsort(scores)[::-1] where_zeros = np.where(qualifying_for_cutoff[scores_argsort] == 0) if len(where_zeros[0]) > 0: top_cutoff = where_zeros[0][0] if top_cutoff > 1: top_inds = scores_argsort[:top_cutoff] pattern_of_matches = ( 1000 * ( (X[top_inds, title_match_ind] > 0) | (X[top_inds, abstract_match_ind] > 0) ) + 100 * (X[top_inds, author_match_ind] > 0) + 10 * (X[top_inds, venue_match_ind] > 0) + year_match[top_inds] ) most_common_pattern = Counter(pattern_of_matches).most_common()[0][0] # print(Counter(pattern_of_matches).most_common()) # don't do this if title/abstract matches are the most common # because usually the error is usually not irrelevant matches in author/venue # but usually irrelevant matches in title + abstract if most_common_pattern != 1000: scores[top_inds[pattern_of_matches == most_common_pattern]] += 1e8 return scores unidecode = unidecoder() regex_translation_table = str.maketrans("", "", "^$.\+*?{}[]()|") def extract_from_between_quotations(text): """Get everything that's in double quotes """ results = re.findall('"([^"]*)"', text) return [i.strip() for i in results] def remove_single_non_alphanumerics(text): """Removes any single characters that are not alphanumerics and not important punctuation. """ text = re.sub(r"\B[^\w\"\s]\B", "", text) return standardize_whitespace_length(text) def replace_special_whitespace_chars(text: str) -> str: """It's annoying to deal with nonbreaking whitespace chars like u'xa0' or other whitespace chars. Let's replace all of them with the standard char before doing any other processing.""" text = re.sub(r"\s", " ", text) return text def standardize_whitespace_length(text: str) -> str: """Tokenization is problematic when there are extra-long whitespaces. Make them all a single character in length. Also remove any whitespaces at beginning/end of a string""" return re.sub(r" +", " ", text).strip() def fix_text(s): """General purpose text fixing using nlpre package and then tokenizing with blingfire """ if pd.isnull(s): return "" s = unidecode(s) # fix cases when quotes are repeated s = re.sub('"+', '"', s) # dashes make quote matching difficult s = re.sub("-", " ", s) s = replace_special_whitespace_chars(s) # tokenize s = text_to_words(s).lower().strip() # note: removing single non-alphanumerics # means that we will match ngrams that are # usually separate by e.g. commas in the text # this will improve # of matches but also # surface false positives return remove_single_non_alphanumerics(s) def fix_author_text(s): """Author text gets special treatment. No de-dashing, no tokenization, and replace periods by white space. """ if pd.isnull(s): return "" s = unidecode(s) # fix cases when quotes are repeated s = re.sub('"+', '"', s) # no periods as those make author first letter matching hard s = re.sub(r"\.", " ", s) s = replace_special_whitespace_chars(s) s = standardize_whitespace_length(s) return text_to_words(s).lower().strip() def find_query_ngrams_in_text( q, t, quotes=False, len_filter=1, remove_stopwords=True, use_word_boundaries=True, max_ngram_len=7, ): """A function to find instances of ngrams of query q inside text t. Finds all possible ngrams and returns their character-level span. Note: because of the greedy match this function can miss some matches when there's repetition in the query, but this is likely rare enough that we can ignore it Arguments: q {str} -- query t {str} -- text Returns: match_spans -- a list of span tuples match_text_tokenized -- a list of matched tokens """ longest_starting_ngram = "" if len(q) == 0 or len(t) == 0: return [], [], longest_starting_ngram if type(q[0]) is not str or type(t) is not str: return [], [], longest_starting_ngram q = [standardize_whitespace_length(i.translate(regex_translation_table)) for i in q] q = [i for i in q if len(i) > 0] t = standardize_whitespace_length(t.translate(regex_translation_table)) # if not between quotes, we get all ngrams if quotes is False: match_spans = [] match_text_tokenized = [] for q_sub in q: q_split = q_sub.split() n_grams = [] longest_ngram = np.minimum(max_ngram_len, len(q_split)) for i in range(int(longest_ngram), 0, -1): n_grams += [ " ".join(ngram).replace("|", "\|") for ngram in ngrams(q_split, i) ] for i in n_grams: if t.startswith(i) and len(i) > len(longest_starting_ngram): longest_starting_ngram = i if use_word_boundaries: matches = list( re.finditer("|".join(["\\b" + i + "\\b" for i in n_grams]), t) ) else: matches = list(re.finditer("|".join(n_grams), t)) match_spans.extend( [i.span() for i in matches if i.span()[1] - i.span()[0] > len_filter] ) match_text_tokenized.extend( [i.group() for i in matches if i.span()[1] - i.span()[0] > len_filter] ) # now we remove any of the results if the entire matched ngram is just a stopword if remove_stopwords: match_spans = [ span for i, span in enumerate(match_spans) if match_text_tokenized[i] not in STOPWORDS ] match_text_tokenized = [ text for text in match_text_tokenized if text not in STOPWORDS ] # now matches for the between-quotes texts # we only care about exact matches else: match_spans = [] match_text_tokenized = [] for q_sub in q: if use_word_boundaries: matches = list(re.finditer("\\b" + q_sub + "\\b", t)) else: matches = list(re.finditer(q_sub, t)) if t.startswith(q_sub) and len(q_sub) > len(longest_starting_ngram): longest_starting_ngram = q_sub match_spans.extend([i.span() for i in matches]) match_text_tokenized.extend([i.group() for i in matches]) return match_spans, match_text_tokenized, longest_starting_ngram STOPWORDS = set( [ "i", "me", "my", "myself", "we", "our", "ours", "ourselves", "you", "you're", "you've", "you'll", "you'd", "your", "yours", "yourself", "yourselves", "he", "him", "his", "himself", "she", "she's", "her", "hers", "herself", "it", "it's", "its", "itself", "they", "them", "their", "theirs", "themselves", "what", "which", "who", "whom", "this", "that", "that'll", "these", "those", "am", "is", "are", "was", "were", "be", "been", "being", "have", "has", "had", "having", "do", "does", "did", "doing", "a", "an", "the", "and", "but", "if", "or", "because", "as", "until", "while", "of", "at", "by", "for", "with", "about", "against", "between", "into", "through", "during", "before", "after", "above", "below", "to", "from", "up", "down", "in", "out", "on", "off", "over", "under", "again", "further", "then", "once", "here", "there", "when", "where", "why", "how", "all", "any", "both", "each", "few", "more", "most", "other", "some", "such", "no", "nor", "not", "only", "own", "same", "so", "than", "too", "very", "s", "t", "can", "will", "just", "don", "don't", "should", "should've", "now", "d", "ll", "m", "o", "re", "ve", "y", "ain", "aren", "aren't", "couldn", "couldn't", "didn", "didn't", "doesn", "doesn't", "hadn", "hadn't", "hasn", "hasn't", "haven", "haven't", "isn", "isn't", "ma", "mightn", "mightn't", "mustn", "mustn't", "needn", "needn't", "shan", "shan't", "shouldn", "shouldn't", "wasn", "wasn't", "weren", "weren't", "won", "won't", "wouldn", "wouldn't", ] )
abnirml-master
abnirml/scorers/s2.py
import torch import pandas as pd import pyterrier as pt class Scorer: def __init__(self, name): self.name = name def delta(self): return 0. def score_iter(self, it): raise NotImplementedError class NeuralScorer(Scorer): def __init__(self, name, batch_size=8): super().__init__(name) self.batch_size = batch_size self.model = None def build(self): pass def score(self, query, doc): return self.batch_score([query], [doc])[0] def batch_score(self, queries, texts): self.build() with torch.no_grad(): return self.model(query_text=queries, doc_text=texts).tolist() def score_iter(self, it): batch_size = self.batch_size q_batch, d_batch = [], [] for query, doc in it: q_batch.append(query) d_batch.append(doc) if len(q_batch) >= batch_size: scores = self.batch_score(q_batch, d_batch) yield from scores q_batch, d_batch = [], [] if q_batch: scores = self.batch_score(q_batch, d_batch) yield from scores class PyTerrierScorer(Scorer): def __init__(self, name, transformerfn=None, delta=0., batch_size=None): if transformerfn is None: name, transformerfn = "", name super().__init__(name) self.transformerfn = transformerfn self.transformer = None if batch_size is None and hasattr(transformerfn, 'batch_size'): batch_size = transformerfn.batch_size else: batch_size = 64 self.batch_size = batch_size self._delta = delta def delta(self): return self._delta def score_iter(self, it): if not pt.started(): pt.init() batch_size = self.batch_size q_batch, d_batch = [], [] for query, doc in it: q_batch.append(query) d_batch.append(doc) if len(q_batch) >= batch_size: scores = self.batch_score(q_batch, d_batch) yield from scores q_batch, d_batch = [], [] if q_batch: scores = self.batch_score(q_batch, d_batch) yield from scores def batch_score(self, queries, texts): ids = [str(i) for i in range(len(queries))] df = pd.DataFrame({'qid': ids, 'docno': ids, 'query': queries, 'text': texts}) if self.transformer is None: if hasattr(self.transformerfn, 'transform'): self.transformer = self.transformerfn else: self.transformer = self.transformerfn() return self.transformer(df)['score'].tolist()
abnirml-master
abnirml/scorers/base.py
import json import itertools import hashlib import scipy import ir_datasets _logger = ir_datasets.log.easy() class AxiomEvaluator: def __init__(self, scorer, axiom, hash_fn=hashlib.md5, epsilon=1e-6): self.scorer = scorer self.axiom = axiom self.hash_fn = hash_fn self.epsilon = epsilon def eval(self): records, it2 = itertools.tee(self.axiom.axiom_pairs_iter(), 2) def flat_records_iter(it): for records in it: for record in records: yield record['query_text'], record['doc_text'] score_iter = self.scorer.score_iter(flat_records_iter(it2)) axiom_scores = [] axiom_hash = self.hash_fn() pos, neg, neu = 0, 0, 0 for i, record in enumerate(_logger.pbar(records, desc='axiom pairs')): assert len(record['samples']) == 2 # Keep a hash of the query & doc texts used for this axiom. This is used for verifying # that other runs of the axiom yield the same records. js = [[i, r['query_text'], r['doc_text']] for r in record['samples']] axiom_hash.update(json.dumps(js).encode()) scores = [s for r, s in zip(record, score_iter)] axiom_score = scores[0] - scores[1] axiom_scores.append(axiom_score) delta = self.scorer.delta(record['context']) if axiom_score > delta: pos += 1 elif axiom_score < -delta: neg += 1 else: neu += 1 return { 'pos': pos, 'neg': neg, 'neu': neu, 'score': (pos - neg) / len(axiom_scores) if len(axiom_scores) > 0 else 0, 'count': len(axiom_scores), 'mean_diff': sum(axiom_scores) / len(axiom_scores) if len(axiom_scores) > 0 else 0, 'median_diff': sorted(axiom_scores)[len(axiom_scores) // 2] if len(axiom_scores) > 0 else 0, 'p_val': scipy.stats.ttest_1samp(axiom_scores, 0)[1] if len(axiom_scores) > 0 else 0, 'hash': axiom_hash.hexdigest(), }
abnirml-master
abnirml/eval/axiom_eval.py
from .axiom_eval import AxiomEvaluator from .probe_experiment import ProbeExperiment, ProbeDist, rerank, topk_diffs, CutoffCompare
abnirml-master
abnirml/eval/__init__.py
import json import itertools import hashlib import scipy from collections import Counter import ir_datasets import abnirml import seaborn as sns _logger = ir_datasets.log.easy() def _asymmetric_probe_scorer(score_a, score_b): return score_a - score_b def _symmetric_probe_scorer(score_a, score_b): return abs(score_a - score_b) def _prober(scorer, probe): if hasattr(scorer, 'transform') and not hasattr(scorer, 'score_iter'): scorer = abnirml.PyTerrierScorer(scorer) # allow pyterrier transformers probe_scorer = { 'asymmetric': _asymmetric_probe_scorer, 'symmetric': _symmetric_probe_scorer, }[probe.pair_symmetry()] records, it2 = itertools.tee(probe.pairs_iter(), 2) def flat_records_iter(it): for record in it: assert len(record) == 2 for rec in record: yield rec['query_text'], rec['doc_text'] score_iter = scorer.score_iter(flat_records_iter(it2)) probe_scores = [] probe_hash = hashlib.md5() for i, record in enumerate(_logger.pbar(records, desc='axiom pairs')): # Keep a hash of the query & doc texts used for this axiom. This is used for verifying # that other runs of the axiom yield the exact same records. probe_hash.update(json.dumps([[i, r['query_text'], r['doc_text']] for r in record]).encode()) scores = [s for r, s in zip(record, score_iter)] probe_score = probe_scorer(scores[0], scores[1]) probe_scores.append(probe_score) return { 'scores': probe_scores, 'hash': probe_hash.hexdigest(), } def ProbeExperiment(scorer, probe, delta=0.): probe_info = _prober(scorer, probe) probe_scores = probe_info['scores'] pos = sum(1 for s in probe_scores if s > delta) neg = sum(1 for s in probe_scores if s < -delta) neu = sum(1 for s in probe_scores if -delta <= s <= delta) return { 'pos': pos, 'neg': neg, 'neu': neu, 'score': (pos - neg) / len(probe_scores) if len(probe_scores) > 0 else 0, 'count': len(probe_scores), 'mean_diff': sum(probe_scores) / len(probe_scores) if len(probe_scores) > 0 else 0, 'median_diff': sorted(probe_scores)[len(probe_scores) // 2] if len(probe_scores) > 0 else 0, 'p_val': scipy.stats.ttest_1samp(probe_scores, 0)[1] if len(probe_scores) > 0 else 0, 'hash': probe_info['hash'], } def ProbeDist(scorer, probes): all_scores = [] for probe in probes: probe_info = _prober(scorer, probe) sns.kdeplot(probe_info['scores']) all_scores.append(probe_info['scores']) return scipy.stats.mannwhitneyu(all_scores[0], all_scores[1]) def rerank(scorer, dataset): docs = dataset.docs_store() queries = {q.query_id: q for q in dataset.queries_iter()} records = [] inputs = [] for s in dataset.scoreddocs_iter(): records.append(s) inputs.append((queries[s.query_id].text, docs.get(s.doc_id).text)) score_iter = scorer.score_iter(inputs) results = {} for record, score in zip(_logger.pbar(records, desc='calculating scores'), score_iter): if record.query_id not in results: results[record.query_id] = {} results[record.query_id][record.doc_id] = score return results def topk_diffs(scorer, dataset, k=10): diffs = [] for scoreddocs in rerank(scorer, dataset).values(): scoreddocs = Counter(scoreddocs) topk = list(scoreddocs.most_common(k)) for (_, s0), (_, s1) in zip(topk, topk[1:]): diffs.append(s0 - s1) return diffs def CutoffCompare(probe, scorers_cutoffs): mn, mx = 1, -1 for n, scorer, cutoffs in scorers_cutoffs: probe_info = abnirml.eval.probe_experiment._prober(scorer, probe) x, y = [], [] for i in range(100): if i == 99: cutoff = cutoffs[-1] if i == 0: cutoff = 0 else: cutoff = cutoffs[math.floor(len(cutoffs) * i / 100)] pos = sum(1 for x in probe_info['scores'] if x > cutoff) neg = sum(1 for x in probe_info['scores'] if x < -cutoff) x.append(100 - i) y.append((pos - neg) / len(probe_info['scores'])) plt.plot(x, y, label=n) mn = min(mn, *y) mx = max(mx, *y) mx = 0.1 * math.ceil(mx/0.1) mn = 0.1 * math.floor(mn/0.1) plt.ylim(mn, mx) plt.axhline(0, c='#444444', ls=':') plt.axvline(50, c='#444444', ls=':') plt.xlabel('Percentile') plt.ylabel('Score') plt.legend()
abnirml-master
abnirml/eval/probe_experiment.py
import openai import argparse import json import csv import random import os from annoy import AnnoyIndex from sklearn.metrics import accuracy_score from utils import chunks, read_lines from baselines.utils import gpt3_completion, write_items from sentence_transformers import SentenceTransformer from sklearn.neighbors import KNeighborsClassifier import tqdm def record_to_gpt3_instance(record, is_test=False): context = record['context'].strip() if not (context.endswith("?") or context.endswith(".")): context = context + "." if context.endswith("."): context = "Is it true that {}?".format(context.lower()[:-1]) situation_text = "Question: {}".format(context) if is_test: return '\n'.join( [situation_text, "Answer:" ] ) else: return '\n'.join( [ situation_text, "Answer: {}.".format(record['answer']), "##" ] ) DAVINCI_INSTRUCTION = "Given a question, classify it into one of two categories: Yes or No.\n\n" def main(train_file, test_file, output_file, gpt3_version, few_shot_strategy, num_random_tries, annoy_index_file, num_generations, num_few_shot_examples_per_group, do_eval, sample, randomize_prompt_examples, seed): random.seed(seed) train_records = [json.loads(r) for r in read_lines(train_file)] test_records = [json.loads(r) for r in read_lines(test_file)] sampled_test_set = random.sample(test_records, sample) if few_shot_strategy.startswith("random"): if few_shot_strategy == "random": few_shot_records = random.sample(train_records, num_few_shot_examples_per_group) else: grouped_by_field = {} for _train_record in train_records: if few_shot_strategy == "random_per_relation": group_key = _train_record['metadata']['relational_prompt'] elif few_shot_strategy == "random_per_label": group_key = _train_record['answer'] elif few_shot_strategy == "random_pair_for_target_relation": group_key = _train_record['metadata']['relational_prompt'] \ + "~" \ + _train_record['answer'] else: raise Exception("Incorrect strategy") if group_key not in grouped_by_field: grouped_by_field[group_key] = [] grouped_by_field[group_key].append(_train_record) few_shot_records = [] for k, v in grouped_by_field.items(): few_shot_records.extend( random.sample(v, num_few_shot_examples_per_group)) random.shuffle(few_shot_records) few_shot_text_instances = [record_to_gpt3_instance(_inst) for _inst in few_shot_records] few_shot_examples_for_gpt3 = '\n'.join(few_shot_text_instances) for idx, _tr in enumerate(tqdm.tqdm(sampled_test_set)): if randomize_prompt_examples: random.shuffle(few_shot_records) few_shot_text_instances = [record_to_gpt3_instance(_inst) for _inst in few_shot_records] few_shot_examples_for_gpt3 = '\n'.join(few_shot_text_instances) if few_shot_strategy == "random_pair_for_target_relation": ## This is a bit hacky. It overwrites the previously populated prompt target_relation_positive_examples = random.sample( grouped_by_field[_tr['metadata']['relational_prompt'] + "~" + "yes"], num_few_shot_examples_per_group ) target_relation_negative_examples = random.sample( grouped_by_field[_tr['metadata']['relational_prompt'] + "~" + "no"], num_few_shot_examples_per_group ) few_shot_text_instances = \ [record_to_gpt3_instance(_inst) for _inst in target_relation_positive_examples + target_relation_negative_examples ] few_shot_examples_for_gpt3 = '\n'.join(few_shot_text_instances) # fixed_prompt = "Question: Do authors ever think of a title after they finish writing their books?\nAnswer: yes.\n##\nQuestion: A play performed in a school is smaller than a play performed on Broadway\nAnswer: yes.\n##\nQuestion: Mexico has Mexican food.\nAnswer: yes.\n##\nQuestion: Are there usually only a few people who teach in a school, relative to the number of students?\nAnswer: yes.\n##\nQuestion: Martin Luther King Jr. was a catholic priest known for his involvement in civil rights movement\nAnswer: no.\n##\nQuestion: frank is only a male name\nAnswer: no.\n##\nQuestion: japan can be the host of the summer Olympics this year\nAnswer: yes.\n##\nQuestion: Colorado has four vowels.\nAnswer: yes.\n##\nQuestion: Before justice is served, a trial has to be done. There is no other way to get justice\nAnswer: no.\n##\nQuestion: Almost all lakes are freshwater, other than a few saltwater ones, like the Great Salt Lake in Utah.\nAnswer: yes.\n##" gpt3_prompt = few_shot_examples_for_gpt3 + "\n" + record_to_gpt3_instance(_tr, is_test=True) if gpt3_version == "davinci-instruct-beta": gpt3_prompt = DAVINCI_INSTRUCTION + gpt3_prompt if idx < 5: print("******* Example {}".format(idx)) print("Prompt:") print(gpt3_prompt) print("\n\n") gpt3_predictions = [g['text'].strip() for g in gpt3_completion(gpt3_prompt, gpt3_version, max_tokens=1, temperature=0.0, logprobs=1, echo=False, num_outputs=num_generations, top_p=1, best_of=num_generations)['choices']] _tr["gpt3_prediction"] = gpt3_predictions _tr['gpt3_prompt'] = gpt3_prompt _tr['engine'] = gpt3_version write_items([json.dumps(r) for r in sampled_test_set], output_file) elif few_shot_strategy == "knn": annoy_index = AnnoyIndex(768, "dot") model = SentenceTransformer('bert-base-nli-mean-tokens') if annoy_index_file is not None and os.path.exists(annoy_index_file): annoy_index.load(annoy_index_file) else: all_embeddings = [] for batch in tqdm.tqdm(chunks(train_records, 8)): sentences = [b['context'] for b in batch] sentence_embeddings = model.encode(sentences) all_embeddings.extend(sentence_embeddings) print(len(all_embeddings)) for idx, emb in enumerate(all_embeddings): annoy_index.add_item(idx, emb) annoy_index.build(10) if annoy_index_file is not None: annoy_index.save(annoy_index_file) for idx, tr in enumerate(tqdm.tqdm(sampled_test_set)): test_emb = model.encode([tr['context']])[0] nns = annoy_index.get_nns_by_vector(test_emb, num_few_shot_examples_per_group) few_shot_records = [train_records[nn] for nn in nns] few_shot_records.reverse() few_shot_text_instances = [record_to_gpt3_instance(_inst) for _inst in few_shot_records] few_shot_examples_for_gpt3 = '\n'.join(few_shot_text_instances) gpt3_prompt = few_shot_examples_for_gpt3 + "\n" + record_to_gpt3_instance(tr, is_test=True) if gpt3_version == "davinci-instruct-beta": gpt3_prompt = DAVINCI_INSTRUCTION + gpt3_prompt if idx < 5: print("******* Example {}".format(idx)) print("Example: {}".format(idx)) print("Prompt:") print(gpt3_prompt) print("\n\n\n") gpt3_predictions = [g['text'].strip() for g in gpt3_completion(gpt3_prompt, gpt3_version, max_tokens=10, temperature=0.0, logprobs=1, echo=False, num_outputs=num_generations, top_p=1, best_of=num_generations)['choices']] tr["gpt3_prediction"] = gpt3_predictions tr['gpt3_prompt'] = gpt3_prompt tr['engine'] = gpt3_version write_items([json.dumps(r) for r in sampled_test_set], output_file) if do_eval: acc = accuracy_score([r['answer'] for r in sampled_test_set], [r['gpt3_prediction'][0] for r in sampled_test_set] ) print("Accuracy = {}".format(acc)) if __name__ == "__main__": parser = argparse.ArgumentParser( description='Script to generate sequence probs as assigned by gpt2') # Required Parameters parser.add_argument('--train_file', type=str, help='Location of test file', default=None) parser.add_argument('--test_file', type=str, help='Location of test file', default=None) parser.add_argument('--output_file', type=str, help='File to output', default=None) parser.add_argument('--annoy_index_file', type=str, help='ANN Index File', default=None) parser.add_argument('--gpt3_version', type=str, help='GPT2 XL or L', default="davinci") parser.add_argument('--few_shot_strategy', type=str, help='Strategy for few shot learning', default="random_per_label") parser.add_argument('--num_random_tries', type=int, help='Strategy for few shot learning', default=1) parser.add_argument('--num_generations', type=int, help='No. of gpt3 generations', default=1) parser.add_argument('--num_few_shot_examples_per_group', type=int, help='No. of few shot examples in prompt', default=1) parser.add_argument('--sample', type=int, help='No. of test samples to try on', default=10) parser.add_argument('--do_eval', action="store_true", dest="do_eval") parser.add_argument('--no_eval', action="store_false", dest="do_eval") parser.add_argument('--randomize_prompt_examples', action="store_true", dest="randomize_prompt_examples") parser.add_argument('--fixed_prompt_examples', action="store_false", dest="randomize_prompt_examples") parser.add_argument('--seed', type=int, default=31555) args = parser.parse_args() print('====Input Arguments====') print(json.dumps(vars(args), indent=2, sort_keys=True)) print("=======================") main( args.train_file, args.test_file, args.output_file, args.gpt3_version, args.few_shot_strategy, args.num_random_tries, args.annoy_index_file, args.num_generations, args.num_few_shot_examples_per_group, args.do_eval, args.sample, args.randomize_prompt_examples, args.seed )
csqa2-master
baselines/gpt3.py
csqa2-master
baselines/__init__.py
import openai import os import time import sys from typing import List openai.api_key = os.environ["OPENAI_API_KEY"] def gpt3_completion(prompt, model_name, max_tokens, temperature, logprobs, echo, num_outputs, top_p, best_of): # call GPT-3 API until result is provided and then return it response = None received = False # prevent over 600 requests per minute while not received: try: response = openai.Completion.create( engine=model_name, prompt=prompt, max_tokens=max_tokens, temperature=temperature, logprobs=logprobs, echo=echo, stop=[".", "\n"], n=num_outputs, top_p=top_p, best_of=best_of) received = True except: error = sys.exc_info()[0] if error == openai.error.InvalidRequestError: # something is wrong: e.g. prompt too long print(f"InvalidRequestError\nPrompt passed in:\n\n{prompt}\n\n") assert False print("API error:", error) time.sleep(0.15) return response def write_items(items: List[str], output_file): with open(output_file, 'w') as f: for concept in items: f.write(concept + "\n") f.close() def chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i:i + n] def read_lines(input_file: str) -> List[str]: lines = [] with open(input_file, "rb") as f: for l in f: lines.append(l.decode().strip()) return lines
csqa2-master
baselines/utils.py
import argparse import os import sys import logging from typing import Tuple from gevent.pywsgi import WSGIServer from flask import Flask, Response, request, jsonify from app.ui import create_ui from app.utils import StackdriverJsonFormatter from werkzeug.middleware.proxy_fix import ProxyFix from datetime import date def start(): """ Starts up a HTTP server attached to the provider port, and optionally in development mode (which is ideal for local development but unideal for production use). """ parser = argparse.ArgumentParser(description='Starts your application\'s HTTP server.') parser.add_argument( '--port', '-p', help='The port to listen on', default=8000 ) parser.add_argument( '--prod', help= 'If specified the server is started in production mode, where ' + 'the server isn\'t restarted as changes to the source code occur.', action='store_true' ) args = parser.parse_args() # Locally we don't specify any handlers, which causes `basicConfig` to set # up one for us that writes human readable messages. handlers = None # If we're in production we setup a handler that writes JSON log messages # in a format that Google likes. if args.prod: json_handler = logging.StreamHandler() json_handler.setFormatter(StackdriverJsonFormatter()) handlers = [ json_handler ] logging.basicConfig( level=os.environ.get('LOG_LEVEL', default=logging.INFO), handlers=handlers ) logger = logging.getLogger() logger.debug("AHOY! Let's get this boat out to water...") app = Flask("app") @app.template_filter() def formatted_date(d: date) -> str: return d.strftime("%b %-d, %Y") # Bind the API functionality to our application. You can add additional # API endpoints by editing api.py. logger.debug("Starting: init API...") app.register_blueprint(create_ui(), url_prefix='/') logger.debug("Complete: init API...") # In production we use a HTTP server appropriate for production. if args.prod: logger.debug("Starting: gevent.WSGIServer...") # There are two proxies -- the one that's run as a sibling of this process, and # the Ingress controller that runs on the cluster. # See: https://skiff.allenai.org/templates.html num_proxies = 2 proxied_app = ProxyFix(app, x_for=num_proxies, x_proto=num_proxies, x_host=num_proxies, x_port=num_proxies) http_server = WSGIServer(('0.0.0.0', args.port), proxied_app, log=logger, error_log=logger) app.logger.info(f'Server listening at http://0.0.0.0:{args.port}') http_server.serve_forever() else: logger.debug("Starting: Flask development server...") num_proxies = 1 proxied_app = ProxyFix(app, x_for=num_proxies, x_proto=num_proxies, x_host=num_proxies, x_port=num_proxies) app.run(host='0.0.0.0', port=args.port) if __name__ == '__main__': start()
allennlp-gallery-main
app/start.py
from flask import Blueprint, render_template from .projects import load_all_projects, Project from typing import Optional from werkzeug.exceptions import NotFound from markdown import markdown def create_ui() -> Blueprint: app = Blueprint("app", __name__) @app.app_template_filter() def md_to_html(md: str) -> str: return markdown(md, extensions=['tables'], output_format='html') @app.app_template_filter() def newlines_to_spaces(s: str) -> str: return s.replace("\n", " ") default_title = "AllenNLP Project Gallery" default_description = ( "A list of publicly available, state-of-the-art paper implementations built with " "AllenNLP. The featured projects are developed both by the Allen Institute for AI and " "the larger community." ) @app.route("/") def index(): projects = sorted(load_all_projects(), key=lambda p : p.config.submission_date) projects.reverse() return render_template("index.html", projects=projects, title=default_title, description=default_description) @app.route("/add-project") def add_project(): title = f"Add Your Project — {default_title}" description = ( "We welcome and encourage submissions from the community. Accepted submissions " "are displayed in the Gallery and available for public use." ) return render_template("add_project.html", title=title, description=description) @app.route("/project/<string:project_id>") def project_details(project_id: str): projects = load_all_projects() project: Optional[Project] = None for m in projects: if m.id == project_id: project = m break if project is None: raise NotFound(f"No project with id {project_id}.") title = f"{project.config.title} — {default_title}" description = project.description return render_template("project_details.html", project=project, title=title, description=description) return app
allennlp-gallery-main
app/app/ui.py
allennlp-gallery-main
app/app/__init__.py
from pythonjsonlogger import jsonlogger class StackdriverJsonFormatter(jsonlogger.JsonFormatter): """ Custom log JSON log formatter that adds the severity member, allowing end users to filter logs by the level of the log message emitted. TODO: Parse request logs and add fields for each request element (user-agent processing time, etc) TODO:Add a timestamp that's used in place of Stackdriver's records (which reflect the time the log was written to Stackdriver, I think). """ def add_fields(self, log_record, record, message_dict): super(StackdriverJsonFormatter, self).add_fields(log_record, record, message_dict) log_record['severity'] = record.levelname
allennlp-gallery-main
app/app/utils.py
import json from dataclasses import dataclass, field from typing import Optional, List, Set from datetime import date, datetime from pathlib import Path from os import listdir from logging import getLogger @dataclass(frozen=True) class Author: name: str affiliation: Optional[str] = None email: Optional[str] = None photo_url: Optional[str] = None twitter: Optional[str] = None s2_author_page: Optional[str] = None google_scholar_author_page: Optional[str] = None def initials(self) -> str: parts = [n[0] for n in self.name.split(" ")] if len(parts) < 2: return parts[0] return "".join(parts[0] + parts[-1]) @staticmethod def from_dict(obj: dict) -> "Author": return Author( obj["name"], obj.get("affiliation"), obj.get("email"), obj.get("photo_url"), obj.get("twitter"), obj.get("s2_author_page"), obj.get("google_scholar_author_page"), ) @dataclass(frozen=True) class Dataset: name: str link: str @staticmethod def from_dict(obj: dict) -> "Dataset": return Dataset(obj["name"], obj["link"]) @dataclass(frozen=True) class Paper: title: str link: str @staticmethod def from_dict(obj: dict) -> "Paper": return Paper(obj["title"], obj["link"]) @dataclass(frozen=True) class ProjectConfig: title: str authors: List[Author] submission_date: date github_link: str allennlp_version: str datasets: List[Dataset] = field(default_factory=list) tags: List[str] = field(default_factory=list) supported_languages: List[str] = field(default_factory=list) papers: List[Paper] = field(default_factory=list) demo_link: Optional[str] = None def affiliations(self) -> Set[str]: return { author.affiliation for author in self.authors if author.affiliation is not None } @staticmethod def from_dict(obj: dict) -> "ProjectConfig": return ProjectConfig( obj["title"], [Author.from_dict(a) for a in obj["authors"]], datetime.strptime(obj["submission_date"], "%Y-%m-%d").date(), obj["github_link"], obj["allennlp_version"], [Dataset.from_dict(d) for d in obj.get("datasets", [])], obj.get("tags", []), obj.get("supported_languages", []), [Paper.from_dict(p) for p in obj.get("papers", [])], obj.get("demo_link"), ) @dataclass(frozen=True) class Project: id: str config: ProjectConfig description: str @staticmethod def from_dict(id: str, config: dict, description: str) -> "Project": return Project(id, ProjectConfig.from_dict(config), description) def load_all_projects() -> List[Project]: logger = getLogger(__name__) projects = [] projects_dir = Path(Path(__file__) / ".." / "projects").resolve() for mid in listdir(projects_dir): path = projects_dir / mid if not path.is_dir: continue try: logger.info(f"Loading config from {path}") with open(path / "config.json") as cf: with open(path / "description.md") as df: projects.append(Project.from_dict(mid, json.load(cf), df.read())) except FileNotFoundError as err: logger.error(f"Project '{mid}' Skipped: {err}") continue return projects if __name__ == "__main__": from logging import basicConfig, INFO basicConfig(level=INFO) load_all_projects()
allennlp-gallery-main
app/app/projects.py
# -*- coding: utf-8 -*- import requests import time import math import signal def is_ok(url: str) -> bool: """ Returns True if the provided URL responds with a 2XX when fetched via a HTTP GET request. """ try: resp = requests.get(url) except: return False return True if math.floor(resp.status_code / 100) == 2 else False def scan(): """ Broadcasts the availability of the proxy's HTTP server once both the API and UI are ready for traffic. This script exists solely to ease confusion locally, as both Flask and the HTTP server bundled with `create-react-app` output logs telling the user about the ports they're bound to (even though they're inaccessible). """ print("") print("⚓️ Ahoy!") print("") print( "Your application is starting and will be available at " + "http://localhost:8080 when it's ready." ) print("") # If someone tries to cancel the `docker-compose up` invocation, docker # will send a SIGTERM to the program. We need to handle this and set a # value that allows the loop to be broken. term = False def handle_interrupt(signal_number, stack_frame): global term term = True signal.signal(signal.SIGTERM, handle_interrupt) last_check = time.perf_counter() is_app_live = False while (is_app_live != True): if term is True: break # We don't use `time.sleep()`, as that'd prevent us from being able # to break the loop quickly in the event of a SIGTERM. now = time.perf_counter() if (now - last_check >= 5): last_check = now if not is_app_live: is_app_live = is_ok("http://app:8000") if is_app_live: print("") print("✨ Your local environment is ready:") print("") print(" http://localhost:8080") print("") print("⛵️ Smooth sailing!") print("") if __name__ == "__main__": scan()
allennlp-gallery-main
sonar/ping.py
''' This script is the source code for a project that Field Cady and Oren Etzioni are working on. ''' import pandas as pd import matplotlib from matplotlib import pyplot as plt from scipy import stats import pys2 # library internal to Allen Institute # The field we use to tell rank paper importance CITATION_COUNT_FIELD = "estimated citation count" # Pull down table of AI papers from Redshift, and add on columns for # the final US/China heuristics and the cutoffs for levels of how much # a paper is cited. df = pys2._evaluate_redshift_query('select * from ai_papers_any_author_table where yr<2019 and yr>1980') df["citation_count"] = df[CITATION_COUNT_FIELD].astype(int) df['china'] = df.dotcn.astype(bool) | df.dothk.astype(bool) \ | df.china_name.astype(bool) | df.china_language.astype(bool) \ | df.china_city.astype(bool) df['us'] = df.dotedu.astype(bool) | df.dotedu.astype(bool) df['top_half_cutoff'] = df.groupby('yr').citation_count.transform(lambda x: (x-x)+x.quantile(0.5)) df['top_tenth_cutoff'] = df.groupby('yr').citation_count.transform(lambda x: (x-x)+x.quantile(0.9)) df['top_twentieth_cutoff'] = df.groupby('yr').citation_count.transform(lambda x: (x-x)+x.quantile(0.95)) df['top_hundredth_cutoff'] = df.groupby('yr').citation_count.transform(lambda x: (x-x)+x.quantile(0.99)) df['top_halfpercent_cutoff'] = df.groupby('yr').citation_count.transform(lambda x: (x-x)+x.quantile(0.995)) # # Plot all figures # # Number of China papers vs their market share in the bottom 50% and top 10% plt.close() sums = df.groupby('yr').china.sum() ax1 = sums.plot(label="# Papers", color='b') ax1.set_xlabel(''); ax1.set_ylabel('# Papers') ax2 = ax1.twinx() df[df.citation_count>df.top_tenth_cutoff].groupby('yr').china.mean().plot( label='Top 10%', ax=ax2, color='g', style='--') df[df.citation_count<=df.top_half_cutoff].groupby('yr').china.mean().plot( label='Bottom Half', ax=ax2, color='r', style='--') ax2.set_xlabel(''); ax2.set_ylabel('Market Shares') plt.title("Chinas Drop was in Bad Papers") plt.minorticks_on() plt.legend() plt.savefig('chinas_drop_vs_market_share.jpg') # Raw number of papers plt.close() df.groupby('yr').china.sum().plot(label='China') df.groupby('yr').us.sum().plot(label='US') plt.title('All AI Papers') plt.legend(); plt.xlabel(''); plt.ylabel('# Papers') plt.minorticks_on() plt.savefig('all_papers.jpg') # Market share for different levels of citation cutoffcol_title_pairs = [ ('top_half_cutoff', 'Top 50% of AI Papers'), ('top_twentieth_cutoff', 'Share of Papers in the Top 10% '), ('top_halfpercent_cutoff', 'Share of Papers in the Top 1%') ] for cutoffcol, title in cutoffcol_title_pairs: print(title) # Create time series for each country china_ts = df[df.citation_count>df[cutoffcol]].groupby('yr').china.mean() us_ts = df[df.citation_count>df[cutoffcol]].groupby('yr').us.mean() # fit lines to last 4 years china_slope, china_intercept, r_value, p_value, std_err = stats.linregress([2015, 2016, 2017, 2018],china_ts[-4:]) us_slope, us_intercept, r_value, p_value, std_err = stats.linregress([2015, 2016, 2017, 2018],us_ts[-4:]) intercept_year = (china_intercept-us_intercept) / (us_slope-china_slope) # Compute interpolations to plot fit_years = pd.Series(range(2014, 2026), index=range(2014, 2026)) china_fit = fit_years*china_slope+china_intercept us_fit = fit_years*us_slope+us_intercept # Save a CSV pd.DataFrame({'China': china_ts, 'US':us_ts, 'China Fit': china_fit, 'US Fit': us_fit}).to_csv(title+'.csv') # Plot plt.close() china_ts.plot(label='China') us_ts.plot(label='US') china_fit.plot(style='--', label='China Fit') us_fit.plot(style='--', label='US Fit') plt.title(title + ' : Intercept in ' + str(int(intercept_year))) plt.legend(); plt.xlabel(''); plt.ylabel('Market Share') plt.minorticks_on() plt.savefig(title + '.jpg')
china_ai-master
main.py
from setuptools import find_packages, setup # PEP0440 compatible formatted version, see: # https://www.python.org/dev/peps/pep-0440/ # # release markers: # X.Y # X.Y.Z # For bugfix releases # # pre-release markers: # X.YaN # Alpha release # X.YbN # Beta release # X.YrcN # Release Candidate # X.Y # Final release # version.py defines the VERSION and VERSION_SHORT variables. # We use exec here so we don't import allennlp whilst setting up. VERSION = {} # type: ignore with open("allennlp_server/version.py", "r") as version_file: exec(version_file.read(), VERSION) setup( name="allennlp-server", version=VERSION["VERSION"], description="Simple demo server for AllenNLP models and training config builder.", long_description=open("README.md").read(), long_description_content_type="text/markdown", classifiers=[ "Development Status :: 5 - Production/Stable", "Framework :: Flake8", "Framework :: Flask", "Intended Audience :: Developers", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Topic :: Scientific/Engineering", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], keywords="allennlp simple demo server serve models configuration file NLP deep learning machine reading", url="https://github.com/allenai/allennlp-server", author="Allen Institute for Artificial Intelligence", author_email="[email protected]", license="Apache", packages=find_packages( exclude=[ "*.tests", "*.tests.*", "tests.*", "tests", "test_fixtures", "test_fixtures.*", "benchmarks", "benchmarks.*", ] ), install_requires=[ "allennlp>=2.0,<3.0", "allennlp_models>=2.0,<3.0", "flask>=1.0.2", "flask-cors>=3.0.7", "gevent>=1.3.6", ], include_package_data=True, python_requires=">=3.6.1", zip_safe=False, )
allennlp-server-master
setup.py
import os _MAJOR = "1" _MINOR = "0" # On main and in a nightly release the patch should be one ahead of the last # released build. _PATCH = "0" # This is mainly for nightly builds which have the suffix ".dev$DATE". See # https://semver.org/#is-v123-a-semantic-version for the semantics. _SUFFIX = os.environ.get("ALLENNLP_SERVER_VERSION_SUFFIX", "") VERSION_SHORT = "{0}.{1}".format(_MAJOR, _MINOR) VERSION = "{0}.{1}.{2}{3}".format(_MAJOR, _MINOR, _PATCH, _SUFFIX)
allennlp-server-master
allennlp_server/version.py
import allennlp_server.commands
allennlp-server-master
allennlp_server/__init__.py
from allennlp_server.commands.server_simple import SimpleServer
allennlp-server-master
allennlp_server/commands/__init__.py
""" A `Flask <https://palletsprojects.com/p/flask/>`_ server for serving predictions from a single AllenNLP model. It also includes a very, very bare-bones web front-end for exploring predictions (or you can provide your own). $ allennlp serve --help usage: allennlp serve [-h] --archive-path ARCHIVE_PATH --predictor PREDICTOR [--weights-file WEIGHTS_FILE] [--cuda-device CUDA_DEVICE] [-o OVERRIDES] [--static-dir STATIC_DIR] [--title TITLE] [--field-name FIELD_NAME] [--host HOST] [-p PORT] [--include-package INCLUDE_PACKAGE] Serve up a simple model. optional arguments: -h, --help show this help message and exit --archive-path ARCHIVE_PATH path to trained archive file --predictor PREDICTOR name of predictor --cuda-device CUDA_DEVICE id of GPU to use (if any) (default = -1) -o OVERRIDES, --overrides OVERRIDES a JSON structure used to override the experiment configuration --static-dir STATIC_DIR serve index.html from this directory --title TITLE change the default page title (default = AllenNLP Demo) --field-name FIELD_NAME field names to include in the demo --host HOST interface to serve the demo on (default = 127.0.0.1) -p PORT, --port PORT port to serve the demo on (default = 8000) --include-package INCLUDE_PACKAGE additional packages to include """ import argparse import json import logging import os import sys from string import Template from typing import List, Callable, Optional, Any, Iterable, Dict from allennlp.commands import Subcommand from allennlp.common import JsonDict from allennlp.common.checks import check_for_gpu from allennlp.predictors import Predictor from flask import Flask, request, Response, jsonify, send_file, send_from_directory from flask_cors import CORS from gevent.pywsgi import WSGIServer logger = logging.getLogger(__name__) class ServerError(Exception): def __init__( self, message: str, status_code: int = 400, payload: Optional[Iterable[Any]] = None ) -> None: super().__init__(self) self.message = message self.status_code = status_code self.payload = payload def to_dict(self) -> Dict[Any, Any]: error_dict = dict(self.payload or ()) error_dict["message"] = self.message return error_dict def make_app( predictor: Predictor, field_names: List[str] = None, static_dir: str = None, sanitizer: Callable[[JsonDict], JsonDict] = None, title: str = "AllenNLP Demo", ) -> Flask: """ Creates a Flask app that serves up the provided ``Predictor`` along with a front-end for interacting with it. If you want to use the built-in bare-bones HTML, you must provide the field names for the inputs (which will be used both as labels and as the keys in the JSON that gets sent to the predictor). If you would rather create your own HTML, call it index.html and provide its directory as ``static_dir``. In that case you don't need to supply the field names -- that information should be implicit in your demo site. (Probably the easiest thing to do is just start with the bare-bones HTML and modify it.) In addition, if you want somehow transform the JSON prediction (e.g. by removing probabilities or logits) you can do that by passing in a ``sanitizer`` function. """ if static_dir is not None: static_dir = os.path.abspath(static_dir) if not os.path.exists(static_dir): logger.error("app directory %s does not exist, aborting", static_dir) sys.exit(-1) elif static_dir is None and field_names is None: print( "Neither build_dir nor field_names passed. Demo won't render on this port.\n" "You must use nodejs + react app to interact with the server." ) app = Flask(__name__) @app.errorhandler(ServerError) def handle_invalid_usage(error: ServerError) -> Response: response = jsonify(error.to_dict()) response.status_code = error.status_code return response @app.route("/") def index() -> Response: if static_dir is not None: return send_file(os.path.join(static_dir, "index.html")) else: html = _html(title, field_names or []) return Response(response=html, status=200) @app.route("/predict", methods=["POST", "OPTIONS"]) def predict() -> Response: """make a prediction using the specified model and return the results""" if request.method == "OPTIONS": return Response(response="", status=200) data = request.get_json() prediction = predictor.predict_json(data) if sanitizer is not None: prediction = sanitizer(prediction) log_blob = {"inputs": data, "outputs": prediction} logger.info("prediction: %s", json.dumps(log_blob)) return jsonify(prediction) @app.route("/predict_batch", methods=["POST", "OPTIONS"]) def predict_batch() -> Response: """make a prediction using the specified model and return the results""" if request.method == "OPTIONS": return Response(response="", status=200) data = request.get_json() prediction = predictor.predict_batch_json(data) if sanitizer is not None: prediction = [sanitizer(p) for p in prediction] return jsonify(prediction) @app.route("/<path:path>") def static_proxy(path: str) -> Response: if static_dir is not None: return send_from_directory(static_dir, path) else: raise ServerError("static_dir not specified", 404) return app def _get_predictor(args: argparse.Namespace) -> Predictor: check_for_gpu(args.cuda_device) return Predictor.from_path( args.archive_path, predictor_name=args.predictor, cuda_device=args.cuda_device, overrides=args.overrides, ) @Subcommand.register("serve") class SimpleServer(Subcommand): def add_subparser(self, parser: argparse._SubParsersAction) -> argparse.ArgumentParser: description = """Serve up a simple model.""" subparser = parser.add_parser( self.name, description=description, help="Serve up a simple model.", ) subparser.add_argument( "--archive-path", type=str, required=True, help="path to trained archive file", ) subparser.add_argument("--predictor", type=str, help="registered name of predictor") subparser.add_argument( "--cuda-device", type=int, default=-1, help="id of GPU to use (if any)" ) subparser.add_argument( "-o", "--overrides", type=str, default="", help="a JSON structure used to override the experiment configuration", ) subparser.add_argument( "--static-dir", type=str, help="serve index.html from this directory" ) subparser.add_argument( "--title", type=str, help="change the default page title", default="AllenNLP Demo", ) subparser.add_argument( "--field-name", type=str, action="append", dest="field_names", metavar="FIELD_NAME", help="field names to include in the demo", ) subparser.add_argument( "--host", type=str, default="127.0.0.1", help="interface to serve the demo on", ) subparser.add_argument( "-p", "--port", type=int, default=8000, help="port to serve the demo on" ) subparser.set_defaults(func=serve) return subparser def serve(args: argparse.Namespace) -> None: predictor = _get_predictor(args) app = make_app( predictor=predictor, field_names=args.field_names, static_dir=args.static_dir, title=args.title, ) CORS(app) http_server = WSGIServer((args.host, args.port), app) print(f"Model loaded, serving demo on http://{args.host}:{args.port}") http_server.serve_forever() # # HTML and Templates for the default bare-bones app are below # _PAGE_TEMPLATE = Template( """ <html> <head> <title> $title </title> <style> $css </style> </head> <body> <div class="pane-container"> <div class="pane model"> <div class="pane__left model__input"> <div class="model__content"> <h2><span>$title</span></h2> <div class="model__content"> $inputs <div class="form__field form__field--btn"> <button type="button" class="btn btn--icon-disclosure" onclick="predict()"> Predict </button> </div> </div> </div> </div> <div class="pane__right model__output model__output--empty"> <div class="pane__thumb"></div> <div class="model__content"> <div id="output" class="output"> <div class="placeholder"> <div class="placeholder__content"> <p>Run model to view results</p> </div> </div> </div> </div> </div> </div> </div> </body> <script> function predict() { var quotedFieldList = $qfl; var data = {}; quotedFieldList.forEach(function(fieldName) { data[fieldName] = document.getElementById("input-" + fieldName).value; }) var xhr = new XMLHttpRequest(); xhr.open('POST', 'predict'); xhr.setRequestHeader('Content-Type', 'application/json'); xhr.onload = function() { if (xhr.status == 200) { // If you want a more impressive visualization than just // outputting the raw JSON, change this part of the code. var htmlResults = "<pre>" + JSON.stringify(JSON.parse(xhr.responseText), null, 2) + "</pre>"; document.getElementById("output").innerHTML = htmlResults; } }; xhr.send(JSON.stringify(data)); } </script> </html> """ ) _SINGLE_INPUT_TEMPLATE = Template( """ <div class="form__field"> <label for="input-$field_name">$field_name</label> <input type="text" id="input-$field_name" type="text" required value placeholder="input goes here"> </div> """ ) _CSS = """ body, html { min-width: 48em; background: #f9fafc; font-size: 16px } * { font-family: sans-serif; color: #232323 } section { background: #fff } code, code span, pre, .output { font-family: 'Roboto Mono', monospace!important } code { background: #f6f8fa } li, p, td, th { -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; font-size: 1.125em; line-height: 1.5em; margin: 1.2em 0 } pre { margin: 2em 0 } h1, h2 { -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; font-weight: 300 } h2 { font-size: 2em; color: rgba(35, 35, 35, .75) } img { max-width: 100% } hr { display: block; border: none; height: .375em; background: #f6f8fa } blockquote, hr { margin: 2.4em 0 } .btn { text-decoration: none; cursor: pointer; text-transform: uppercase; font-size: 1em; margin: 0; -moz-appearance: none; -webkit-appearance: none; border: none; color: #fff!important; display: block; background: #2085bc; padding: .9375em 3.625em; -webkit-transition: background-color .2s ease, opacity .2s ease; transition: background-color .2s ease, opacity .2s ease } .btn.btn--blue { background: #2085bc } .btn:focus, .btn:hover { background: #40affd; outline: 0 } .btn:focus { box-shadow: 0 0 1.25em rgba(50, 50, 150, .05) } .btn:active { opacity: .66; background: #2085bc; -webkit-transition-duration: 0s; transition-duration: 0s } .btn:disabled, .btn:disabled:active, .btn:disabled:hover { cursor: default; background: #d0dae3 } form { display: block } .form__field { -webkit-transition: margin .2s ease; transition: margin .2s ease } .form__field+.form__field { margin-top: 2.5em } .form__field label { display: block; font-weight: 600; font-size: 1.125em } .form__field label+* { margin-top: 1.25em } .form__field input[type=text], .form__field textarea { -moz-appearance: none; -webkit-appearance: none; width: 100%; font-size: 1em; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; padding: .8125em 1.125em; color: #232323; border: .125em solid #d4dce2; display: block; box-sizing: border-box; -webkit-transition: background-color .2s ease, color .2s ease, border-color .2s ease, opacity .2s ease; transition: background-color .2s ease, color .2s ease, border-color .2s ease, opacity .2s ease } .form__field input[type=text]::-webkit-input-placeholder, .form__field textarea::-webkit-input-placeholder { color: #b4b4b4 } .form__field input[type=text]:-moz-placeholder, .form__field textarea:-moz-placeholder { color: #b4b4b4 } .form__field input[type=text]::-moz-placeholder, .form__field textarea::-moz-placeholder { color: #b4b4b4 } .form__field input[type=text]:-ms-input-placeholder, .form__field textarea:-ms-input-placeholder { color: #b4b4b4 } .form__field input[type=text]:focus, .form__field textarea:focus { outline: 0; border-color: #63a7d4; box-shadow: 0 0 1.25em rgba(50, 50, 150, .05) } .form__field textarea { resize: vertical; min-height: 8.25em } .form__field .btn { -webkit-user-select: none; -moz-user-select: none; -ms-user-select: none; user-select: none; -webkit-touch-callout: none } .form__field--btn { display: -webkit-box; display: -ms-flexbox; display: -webkit-flex; display: flex; -webkit-flex-direction: row; -ms-flex-direction: row; -webkit-box-orient: horizontal; -webkit-box-direction: normal; flex-direction: row; -webkit-justify-content: flex-end; -ms-justify-content: flex-end; -webkit-box-pack: end; -ms-flex-pack: end; justify-content: flex-end } @media screen and (max-height:760px) { .form__instructions { margin: 1.875em 0 1.125em } .form__field:not(.form__field--btn)+.form__field:not(.form__field--btn) { margin-top: 1.25em } } body, html { width: 100%; height: 100%; margin: 0; padding: 0; font-family: 'Source Sans Pro', sans-serif } h1 { font-weight: 300 } .model__output { background: #fff } .model__output.model__output--empty { background: 0 0 } .placeholder { width: 100%; height: 100%; display: -webkit-box; display: -ms-flexbox; display: -webkit-flex; display: flex; -webkit-align-items: center; -ms-flex-align: center; -webkit-box-align: center; align-items: center; -webkit-justify-content: center; -ms-justify-content: center; -webkit-box-pack: center; -ms-flex-pack: center; justify-content: center; -webkit-user-select: none; -moz-user-select: none; -ms-user-select: none; user-select: none; -webkit-touch-callout: none; cursor: default } .placeholder .placeholder__content { display: -webkit-box; display: -ms-flexbox; display: -webkit-flex; display: flex; -webkit-flex-direction: column; -ms-flex-direction: column; -webkit-box-orient: vertical; -webkit-box-direction: normal; flex-direction: column; -webkit-align-items: center; -ms-flex-align: center; -webkit-box-align: center; align-items: center; text-align: center } .placeholder svg { display: block } .placeholder svg.placeholder__empty, .placeholder svg.placeholder__error { width: 6em; height: 3.625em; fill: #e1e5ea; margin-bottom: 2em } .placeholder svg.placeholder__error { width: 4.4375em; height: 4em } .placeholder p { font-size: 1em; margin: 0; padding: 0; color: #9aa8b2 } .placeholder svg.placeholder__working { width: 3.4375em; height: 3.4375em; -webkit-animation: working 1s infinite linear; animation: working 1s infinite linear } @-webkit-keyframes working { 0% { -webkit-transform: rotate(0deg) } 100% { -webkit-transform: rotate(360deg) } } @keyframes working { 0% { -webkit-transform: rotate(0deg); -ms-transform: rotate(0deg); transform: rotate(0deg) } 100% { -webkit-transform: rotate(360deg); -ms-transform: rotate(360deg); transform: rotate(360deg) } } .model__content { padding: 1.875em 2.5em; margin: auto; -webkit-transition: padding .2s ease; transition: padding .2s ease } .model__content:not(.model__content--srl-output) { max-width: 61.25em } .model__content h2 { margin: 0; padding: 0; font-size: 1em } .model__content h2 span { font-size: 2em; color: rgba(35, 35, 35, .75) } .model__content h2 .tooltip, .model__content h2 span { vertical-align: top } .model__content h2 span+.tooltip { margin-left: .4375em } .model__content>h2:first-child { margin: -.25em 0 0 -.03125em } .model__content__summary { font-size: 1em; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; padding: 1.25em; background: #f6f8fa } @media screen and (min-height:800px) { .model__content { padding-top: 4.6vh; padding-bottom: 4.6vh } } .pane-container { display: -webkit-box; display: -ms-flexbox; display: -webkit-flex; display: flex; -webkit-flex-direction: column; -ms-flex-direction: column; -webkit-box-orient: vertical; -webkit-box-direction: normal; flex-direction: column; height: 100% } .pane { display: -webkit-box; display: -ms-flexbox; display: -webkit-flex; display: flex; -webkit-flex-direction: row; -ms-flex-direction: row; -webkit-box-orient: horizontal; -webkit-box-direction: normal; flex-direction: row; position: relative; -webkit-box-flex: 2; -webkit-flex: 2; -ms-flex: 2; flex: 2; height: auto; min-height: 100%; min-height: 34.375em } .pane__left, .pane__right { width: 100%; height: 100%; -webkit-align-self: stretch; -ms-flex-item-align: stretch; align-self: stretch; min-width: 24em; min-height: 34.375em } .pane__left { height: auto; min-height: 100% } .pane__right { width: 100%; overflow: auto; height: auto; min-height: 100% } .pane__right .model__content.model__content--srl-output { display: inline-block; margin: auto } .pane__thumb { height: auto; min-height: 100%; margin-left: -.625em; position: absolute; width: 1.25em } .pane__thumb:after { display: block; position: absolute; height: 100%; top: 0; content: ""; width: .25em; background: #e1e5ea; left: .5em } """ def _html(title: str, field_names: List[str]) -> str: """ Returns bare bones HTML for serving up an input form with the specified fields that can render predictions from the configured model. """ inputs = "".join( _SINGLE_INPUT_TEMPLATE.substitute(field_name=field_name) for field_name in field_names ) quoted_field_names = (f"'{field_name}'" for field_name in field_names) quoted_field_list = f"[{','.join(quoted_field_names)}]" return _PAGE_TEMPLATE.substitute(title=title, css=_CSS, inputs=inputs, qfl=quoted_field_list)
allennlp-server-master
allennlp_server/commands/server_simple.py
allennlp-server-master
tests/__init__.py
allennlp-server-master
tests/commands/__init__.py
import importlib import io import json import os import sys from contextlib import redirect_stdout import flask.testing from allennlp.commands import main from allennlp.common.testing import AllenNlpTestCase from allennlp.common.util import JsonDict from allennlp.models.archival import load_archive from allennlp.predictors import Predictor from allennlp_server.commands.server_simple import make_app def post_json(client: flask.testing.FlaskClient, endpoint: str, data: JsonDict) -> flask.Response: return client.post(endpoint, content_type="application/json", data=json.dumps(data)) PAYLOAD = { "passage": """ The Matrix is a 1999 science fiction action film written and directed by The Wachowskis, starring Keanu Reeves, Laurence Fishburne, Carrie-Anne Moss, Hugo Weaving, and Joe Pantoliano.""", "question": """Who stars in the matrix?""", } class TestSimpleServer(AllenNlpTestCase): def setup_method(self): super().setup_method() importlib.import_module("allennlp_models.rc") archive = load_archive("tests/fixtures/bidaf/model.tar.gz") self.bidaf_predictor = Predictor.from_archive( archive, "allennlp_models.rc.ReadingComprehensionPredictor" ) def teardown_method(self): super().teardown_method() try: os.remove("access.log") os.remove("error.log") except FileNotFoundError: pass def test_standard_model(self): app = make_app(predictor=self.bidaf_predictor, field_names=["passage", "question"]) app.testing = True client = app.test_client() # First test the HTML response = client.get("/") data = response.get_data() assert b"passage" in data assert b"question" in data # Now test the backend response = post_json(client, "/predict", PAYLOAD) data = json.loads(response.get_data()) assert "best_span_str" in data assert "span_start_logits" in data # Test the batch predictor batch_size = 8 response = post_json(client, "/predict_batch", [PAYLOAD] * batch_size) data_list = json.loads(response.get_data()) assert len(data_list) == batch_size for data in data_list: assert "best_span_str" in data assert "span_start_logits" in data def test_subcommand_plugin_is_available(self): # Test originally copied from # `allennlp.tests.commands.main_test.TestMain.test_subcommand_plugin_is_available`. sys.argv = ["allennlp"] with io.StringIO() as buf, redirect_stdout(buf): main() output = buf.getvalue() assert " serve" in output def test_sanitizer(self): def sanitize(result: JsonDict) -> JsonDict: return {key: value for key, value in result.items() if key.startswith("best_span")} app = make_app( predictor=self.bidaf_predictor, field_names=["passage", "question"], sanitizer=sanitize, ) app.testing = True client = app.test_client() response = post_json(client, "/predict", PAYLOAD) data = json.loads(response.get_data()) assert "best_span_str" in data assert "span_start_logits" not in data batch_size = 8 response = post_json(client, "/predict_batch", [PAYLOAD] * batch_size) data_list = json.loads(response.get_data()) assert len(data_list) == batch_size for data in data_list: assert "best_span_str" in data assert "span_start_logits" not in data def test_static_dir(self): html = """<html><body>THIS IS A STATIC SITE</body></html>""" jpg = """something about a jpg""" with open(os.path.join(self.TEST_DIR, "index.html"), "w") as f: f.write(html) with open(os.path.join(self.TEST_DIR, "jpg.txt"), "w") as f: f.write(jpg) app = make_app(predictor=self.bidaf_predictor, static_dir=self.TEST_DIR) app.testing = True client = app.test_client() response = client.get("/") data = response.get_data().decode("utf-8") assert data == html response = client.get("jpg.txt") data = response.get_data().decode("utf-8") assert data == jpg
allennlp-server-master
tests/commands/server_simple_test.py
#!/usr/bin/env python3 import argparse from typing import Dict def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("version_type", choices=["stable", "latest", "current"]) parser.add_argument("--minimal", action="store_true", default=False) parser.add_argument("--as-range", action="store_true", default=False) return parser.parse_args() def post_process(version: str, minimal: bool = False, as_range: bool = False): assert not (minimal and as_range) if version.startswith("v"): version = version[1:] if as_range: major, minor, *_ = version.split(".") return f">={version},<{major}.{int(minor)+1}" return version if minimal else f"v{version}" def get_current_version() -> str: VERSION: Dict[str, str] = {} with open("allennlp_server/version.py", "r") as version_file: exec(version_file.read(), VERSION) return VERSION["VERSION"] def get_latest_version() -> str: # Import this here so this requirements isn't mandatory when we just want to # call `get_current_version`. import requests resp = requests.get("https://api.github.com/repos/allenai/allennlp-server/tags") return resp.json()[0]["name"] def get_stable_version() -> str: import requests resp = requests.get("https://api.github.com/repos/allenai/allennlp-server/releases/latest") return resp.json()["tag_name"] def main() -> None: opts = parse_args() if opts.version_type == "stable": print(post_process(get_stable_version(), opts.minimal, opts.as_range)) elif opts.version_type == "latest": print(post_process(get_latest_version(), opts.minimal, opts.as_range)) elif opts.version_type == "current": print(post_process(get_current_version(), opts.minimal, opts.as_range)) else: raise NotImplementedError if __name__ == "__main__": main()
allennlp-server-master
scripts/get_version.py
import json import pickle import logging from collections import defaultdict from typing import Any, Dict, List, Iterable, Text from overrides import overrides import torch from allennlp.data.fields import ( MetadataField, TextField, IndexField, ListField, ) from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.instance import Instance from allennlp.data.token_indexers import PretrainedTransformerIndexer from allennlp.data.tokenizers import Token, PretrainedTransformerTokenizer logger = logging.getLogger(__name__) @DatasetReader.register("p3_jsonl") class P3ClusterReader(DatasetReader): def __init__( self, model_name: str = "google/t5-xl-lm-adapt", max_query_length: int = 512, max_answer_length: int = 256, return_original_input: bool = False, **kwargs, ) -> None: super().__init__( manual_distributed_sharding=True, manual_multiprocess_sharding=True, **kwargs, ) self.return_original_input = return_original_input self._transformer_model_name = model_name self._tokenizer = PretrainedTransformerTokenizer(model_name) self._token_indexers = { "tokens": PretrainedTransformerIndexer(model_name) } self._max_query_length = max_query_length self._max_answer_length = max_answer_length self._stats = None @overrides def _read(self, file_path: str) -> Iterable[Instance]: for instance in self.shard_iterable(self.__read(file_path)): yield instance def __read(self, file_path: str) -> Iterable[Instance]: self._stats = defaultdict(int) logger.info(f"Reading data from {file_path}") for line in open(file_path): instance_data = json.loads(line) if "target" not in instance_data or "input" not in instance_data: self._stats["Instances without inputs or targets (skipped)"] += 1 continue if not isinstance(instance_data["target"], str): self._stats["Instances whose targets are not strings (skipped)"] += 1 continue target = instance_data["target"].strip() if "answer_choices" not in instance_data: self._stats["Instances without answer options (kept)"] += 1 answer_options = [target] else: answer_options = [c.strip() for c in instance_data["answer_choices"]] if target not in answer_options: answer_options.append(target) self._stats["Instances with targets not in answer choices (kept)"] += 1 yield self.text_to_instance( instance_data["input"], target, answer_options ) logger.info("Dataset stats:") for key, value in self._stats.items(): logger.info(f"\t{key}: {value}") def text_to_instance( self, # type: ignore # pylint: disable=arguments-differ input_text: str, target: str, options: List[str], metadata: Dict[str, Any] = None, ) -> Instance: fields = {} tokenized_input = self._tokenizer.tokenize(input_text) if len(tokenized_input) > self._max_query_length: self._stats["Truncated inputs"] += 1 tokenized_input = tokenized_input[:self._max_query_length] input_field = TextField(tokenized_input) fields["prompt_and_input"] = input_field if self.return_original_input: fields['pretokenized_input'] = input_text answer_option_fields = [] for option in options: tokenized_option = self._tokenizer.tokenize(option) if len(tokenized_option) > self._max_answer_length: self._stats["Truncated options"] += 1 tokenized_option = tokenized_option[:self._max_answer_length] answer_option_fields.append(TextField(tokenized_option)) options_list_field = ListField(answer_option_fields) fields["answer_options"] = options_list_field answer_index = None for i, option in enumerate(options): if target in option: answer_index = i break fields["correct_answer_index"] = IndexField(answer_index, options_list_field) if metadata is not None: fields["metadata"] = MetadataField(metadata) return Instance(fields) @overrides def apply_token_indexers(self, instance: Instance) -> None: instance.fields["prompt_and_input"].token_indexers = self._token_indexers for field in instance.fields["answer_options"].field_list: field.token_indexers = self._token_indexers
data-efficient-finetuning-main
attribution/p3_jsonl_reader.py
import json import logging import random from collections import defaultdict from typing import List, Iterable, Optional, Tuple, Dict import torch from overrides import overrides import datasets from allennlp.data.fields import ( MetadataField, TextField, ) from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.instance import Instance from allennlp.data.token_indexers import PretrainedTransformerIndexer from allennlp.data.tokenizers import PretrainedTransformerTokenizer from transformers import AutoTokenizer from natural_instructions.ni_collator import DataCollatorForNI logger = logging.getLogger(__name__) # full reader for ni instructions, similar to drop reader @DatasetReader.register("ni_reader") class NaturalInstructionsReader(DatasetReader): def __init__( self, model_name: str = "google/t5-small-lm-adapt", max_query_length: int = 1024, split_name: str = "train", return_original_instance: bool = False, max_num_instances_per_task: int = 100, max_num_instances_per_eval_task: int = 100, num_pos_examples: int = 0, # set to '2' for the 'tk-instruct' model add_task_definition: bool = True, # set to true for tk-instruct **kwargs, ) -> None: super().__init__( manual_distributed_sharding=True, manual_multiprocess_sharding=True, **kwargs, ) self.return_original_instance = return_original_instance self._dataset = datasets.load_dataset( "natural_instructions/ni_dataset.py", max_num_instances_per_task=max_num_instances_per_task, max_num_instances_per_eval_task=max_num_instances_per_eval_task, split=split_name, ) self._transformer_model_name = model_name self._tokenizer = PretrainedTransformerTokenizer(model_name) self._collator = DataCollatorForNI( tokenizer=AutoTokenizer.from_pretrained(model_name), num_pos_examples=num_pos_examples, add_task_definition=add_task_definition, text_only=True, max_source_length=max_query_length ) self._token_indexers = {"tokens": PretrainedTransformerIndexer(model_name)} self._max_query_length = max_query_length self._stats = defaultdict(int) @overrides def _read(self, file_path) -> Iterable[Instance]: for sample in self._dataset: converted_sample = self._collator([sample]) yield self.text_to_instance( converted_sample['inputs'][0], sample['id'], converted_sample['labels'][0]) def text_to_instance( self, input_text: str, query_id: str, target: str, ) -> Instance: fields = {} tokenized_input = self._tokenizer.tokenize(input_text) if len(tokenized_input) > self._max_query_length: self._stats["Truncated inputs"] += 1 tokenized_input = tokenized_input[: self._max_query_length] input_field = TextField(tokenized_input) fields["prompt_and_input"] = input_field if self.return_original_instance: fields["pretokenized_input"] = input_text tokenized_target = self._tokenizer.tokenize(target) if len(tokenized_target) > self._max_query_length: self._stats["Truncated targets"] += 1 tokenized_target = tokenized_target[: self._max_query_length] target_field = TextField(tokenized_target) fields["target"] = target_field if self.return_original_instance: fields["pretokenized_target"] = target query_id_field = MetadataField(query_id) fields["instance_id"] = query_id_field if self.return_original_instance: fields["preindexed_id"] = query_id return Instance(fields) @overrides def apply_token_indexers(self, instance: Instance) -> None: instance.fields["prompt_and_input"].token_indexers = self._token_indexers instance.fields["target"].token_indexers = self._token_indexers
data-efficient-finetuning-main
attribution/ni_reader.py
import json import logging import random from collections import defaultdict from typing import List, Iterable, Optional, Tuple, Dict import torch from overrides import overrides import datasets from allennlp.data.fields import ( MetadataField, TextField, IndexField, ListField, ) from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.instance import Instance from allennlp.data.token_indexers import PretrainedTransformerIndexer from allennlp.data.tokenizers import PretrainedTransformerTokenizer logger = logging.getLogger(__name__) # A reader for rank classification tasks. class HuggingfaceReaderRankClassification(DatasetReader): def __init__( self, model_name: str = "google/t5-small-lm-adapt", max_query_length: int = 512, split_name: str = "train", val_size: int = 1000, use_val_split: bool = True, split_mapping: Dict[str, str] = {"train": "train", "validation": "validation"}, return_original_instance: bool = False, seed: int = 42, **kwargs, ) -> None: super().__init__( manual_distributed_sharding=True, manual_multiprocess_sharding=True, **kwargs, ) dataset_name, subset_name = self.get_dataset_name() data_dir = self.get_dataset_dir() # for story cloze self._dataset_name = dataset_name self._subset_name = subset_name self.split_name = split_name self.return_original_instance = return_original_instance original_val_set = datasets.load_dataset( dataset_name, subset_name, split=split_mapping["validation"], data_dir=data_dir ) small_val_size = val_size # I consider under 1000 examples as small val_split_size = val_size # when splitting out val, get 1000 examples if use_val_split: if split_name == "train": if len(original_val_set) >= small_val_size: self._dataset = datasets.load_dataset( dataset_name, subset_name, split=split_mapping["train"], data_dir=data_dir ) else: # for small val sets, split out val from train and use old val as test # this is because some casehold splits are specially designed, so I want # to keep these as-is (rather than just split the val set in half) self._dataset = datasets.load_dataset( dataset_name, subset_name, split=split_mapping["train"], data_dir=data_dir ).train_test_split(test_size=val_split_size, seed=seed)["train"] if split_name == "validation": # for large val sets, just split out from val if len(original_val_set) >= small_val_size: self._dataset = original_val_set.train_test_split( train_size=val_split_size, seed=seed )["train"] else: # for small val sets, split out val from train and use old val as test self._dataset = datasets.load_dataset( dataset_name, subset_name, split=split_mapping["train"], data_dir=data_dir ).train_test_split(test_size=val_split_size, seed=seed)["test"] elif split_name == "test": # for large val sets, test is the small split from val if len(original_val_set) >= small_val_size: self._dataset = original_val_set.train_test_split( train_size=val_split_size, seed=seed )["test"] else: # for small val sets, split our new val from train (val becomes test) self._dataset = datasets.load_dataset( dataset_name, subset_name, split=split_mapping["validation"], data_dir=data_dir ) else: self._dataset = datasets.load_dataset( dataset_name, subset_name, split=split_mapping[split_name], data_dir=data_dir ) if split_name == "train": self._dataset = self._dataset.shuffle(seed) self._transformer_model_name = model_name self._tokenizer = PretrainedTransformerTokenizer(model_name) self._token_indexers = {"tokens": PretrainedTransformerIndexer(model_name)} self._max_query_length = max_query_length self._stats = defaultdict(int) def hf_to_instance(self, instance) -> Tuple[str, str]: raise NotImplementedError("Implement a dataset-specific version") def get_dataset_name(self) -> Tuple[str, Optional[str]]: raise NotImplementedError("Specify ds name for hf") # we usually dont need this, but story cloze requires it. def get_dataset_dir(self) -> Optional[str]: return None @overrides def _read(self, file_path) -> Iterable[Instance]: for sample in self._dataset: converted_sample = self.hf_to_instance(sample) for inputs, options, idx in converted_sample: yield self.text_to_instance(inputs, options, idx) def text_to_instance( self, input_text: str, answer_options: List[str], correct_answer_idx: int ) -> Instance: fields = {} tokenized_input = self._tokenizer.tokenize(input_text) if len(tokenized_input) > self._max_query_length: self._stats["Truncated inputs"] += 1 tokenized_input = tokenized_input[: self._max_query_length] input_field = TextField(tokenized_input) fields["prompt_and_input"] = input_field if self.return_original_instance: fields["pretokenized_input"] = input_text answer_option_fields = [ TextField(self._tokenizer.tokenize(option)) for option in answer_options ] options_list_field = ListField(answer_option_fields) fields["answer_options"] = options_list_field if self.return_original_instance: fields["answer_options_pretokenized"] = answer_options fields["correct_answer_index"] = IndexField( correct_answer_idx, options_list_field ) if self.return_original_instance: fields["correct_answer_index_value"] = correct_answer_idx return Instance(fields) @overrides def apply_token_indexers(self, instance: Instance) -> None: instance.fields["prompt_and_input"].token_indexers = self._token_indexers for field in instance.fields["answer_options"].field_list: field.token_indexers = self._token_indexers @DatasetReader.register("casehold_reader") class CaseHOLDReader(HuggingfaceReaderRankClassification): def get_dataset_name(self) -> Tuple[str, Optional[str]]: return "lex_glue", "case_hold" def hf_to_instance(self, instance) -> Tuple[str, str]: # following setup similar to unifiedqa input = f"What is the correct holding statement for the following text?\nText: {instance['context']} \n(A): {instance['endings'][0]}\n(B): {instance['endings'][1]}\n(C): {instance['endings'][2]}\n(D): {instance['endings'][3]}\n(E): {instance['endings'][4]}" return [[input, instance["endings"], instance["label"]]] @DatasetReader.register("unfair_tos_reader") class UnfairTOSReader(HuggingfaceReaderRankClassification): labels_to_terms = { 0: "Limitation of liability", 1: "Unilateral termination", 2: "Unilateral change", 3: "Content removal", 4: "Contract by using", 5: "Choice of law", 6: "Jurisdiction", 7: "Arbitration", } def get_dataset_name(self) -> Tuple[str, Optional[str]]: return "lex_glue", "unfair_tos" def hf_to_instance(self, instance) -> Tuple[str, str]: # we convert this into 8 instances asking if label applies samples = [] answer_options = ["yes", "no"] for label, term in self.labels_to_terms.items(): input = f'Is there an instance of {term} in the following text?. Answer yes or no.\nText: {instance["text"]}' output = "yes" if label in instance["labels"] else "no" samples.append((input, answer_options, answer_options.index(output))) return samples @DatasetReader.register("eurlex_reader") class EurlexReader(HuggingfaceReaderRankClassification): def __init__( self, model_name: str = "google/t5-small-lm-adapt", max_query_length: int = 512, split_name: str = "train", **kwargs, ) -> None: super().__init__(model_name, max_query_length, split_name, **kwargs) self._labels = self._dataset.features["labels"].feature.names self._concept_dict = json.load(open("data/eurovoc_descriptors.json", "r")) self._r = random.Random(42) self._split = split_name def get_dataset_name(self) -> Tuple[str, Optional[str]]: return "lex_glue", "eurlex" def hf_to_instance(self, instance) -> Tuple[str, str]: # convert into 127 instances asking yes/no. samples = [] answer_options = ["yes", "no"] # pick random labels + the true labels, adding up to 10 - train only if self._split == "train": label_sel = [l for l in instance["labels"]] options = [l for l in range(len(self._labels)) if l not in label_sel] while len(label_sel) < 5: label_sel.append(self._r.choice(options)) self._r.shuffle(label_sel) label_sel = [ self._dataset.features["labels"].feature.int2str(l) for l in label_sel ] else: # validation, only check the labels we know should be on the thing. label_sel = [ self._dataset.features["labels"].feature.int2str(l) for l in instance["labels"] ] for label in label_sel: concept_name = self._concept_dict[label]["en"] input = f"Does the following text involve {concept_name}? Answer yes or no.\nText: {instance['text']}." output = ( "yes" if self._dataset.features["labels"].feature.str2int(label) in instance["labels"] else "no" ) samples.append((input, answer_options, answer_options.index(output))) return samples @DatasetReader.register("ledgar_reader") class LedgarReader(HuggingfaceReaderRankClassification): def __init__( self, model_name: str = "google/t5-small-lm-adapt", max_query_length: int = 512, split_name: str = "train", **kwargs, ) -> None: super().__init__(model_name, max_query_length, split_name, **kwargs) self.labels = self._dataset.features["label"] def get_dataset_name(self) -> Tuple[str, Optional[str]]: return "lex_glue", "ledgar" def hf_to_instance(self, instance) -> Tuple[str, str]: # rank classification seems fine here input = f"What is the main topic of the following contract provision?\nContract: {instance['text']}" return [[input, self.labels.names, instance["label"]]] @DatasetReader.register("sciq_reader") class SciQReader(HuggingfaceReaderRankClassification): def get_dataset_name(self) -> Tuple[str, Optional[str]]: return "sciq", None def hf_to_instance(self, instance) -> Tuple[str, str]: # sciq in training, so using 'multiple choice' prompt. answers = [ instance["distractor1"], instance["distractor2"], instance["distractor3"], instance["correct_answer"], ] # shuffle answers so model cant learn! random.Random(42).shuffle(answers) correct_answer_idx = answers.index(instance["correct_answer"]) input = f"Answer the following question given this paragraph:\n{instance['support']}\nQ: {instance['question']}\nChoices:\n-{answers[0]}\n-{answers[1]}\n-{answers[2]}\n-{answers[3]}" return [[input, answers, correct_answer_idx]] @DatasetReader.register("rte_reader") class RTEReader(HuggingfaceReaderRankClassification): def get_dataset_name(self) -> Tuple[str, Optional[str]]: return "super_glue", "rte" def hf_to_instance(self, instance) -> Tuple[str, str]: # using highest-avg prompt for rte from my other project. input = f"{instance['premise']}\n Question: Does this imply that \"{instance['hypothesis']}\"? Yes or no?" answers = ["yes", "no"] # 0 = entail, 1 = not entail correct_answer = 0 if instance["label"] == 0 else 1 return [[input, answers, correct_answer]] # CB @DatasetReader.register("cb_reader") class CBReader(HuggingfaceReaderRankClassification): def get_dataset_name(self) -> Tuple[str, Optional[str]]: return "super_glue", "cb" def hf_to_instance(self, instance) -> Tuple[str, str]: # using gpt-3 style prompt input = f"{instance['premise']}\nQuestion: {instance['hypothesis']} True, False, or Neither?" # 0 = entail, 1 = contradict, 2 = neutral answers = ["true", "false", "neither"] correct_answer = int(instance["label"]) return [[input, answers, correct_answer]] # HellaSwag @DatasetReader.register("hellaswag_reader") class HellaSwagReader(HuggingfaceReaderRankClassification): def get_dataset_name(self) -> Tuple[str, Optional[str]]: return "hellaswag", "None" def hf_to_instance(self, instance) -> Tuple[str, str]: input = f"Complete the description with an appropriate ending:\nFirst, {instance['ctx_a']} Then, {instance['ctx_b']} ...\n(a) {instance['endings'][0]}\n(b) {instance['endings'][1]}\n(c) {instance['endings'][2]}\n(d) {instance['endings'][3]}" answers = instance['endings'] correct_answer = int(instance['label']) return [[input, answers, correct_answer]] # StoryCloze ## NB: requires downloading separately as it requires agreeing to a thing # following ia3, we use the val as train and test as val. @DatasetReader.register("story_cloze_reader") class StoryClozeReader(HuggingfaceReaderRankClassification): def __init__( self, split_mapping={"train": "validation", "validation": "test"}, **kwargs, ) -> None: super().__init__(split_mapping=split_mapping, **kwargs) def get_dataset_name(self) -> Tuple[str, Optional[str]]: return "story_cloze", "2016" # we usually dont need this, but story cloze requires it. # TODO: replace with the location of downloaded story cloze data. def get_dataset_dir(self) -> Optional[str]: return '' def hf_to_instance(self, instance) -> Tuple[str, str]: input = f"{instance['input_sentence_1']} {instance['input_sentence_2']} {instance['input_sentence_3']} {instance['input_sentence_4']} What is a possible continuation for the story given the following options ?\n- {instance['sentence_quiz1']}\n- {instance['sentence_quiz2']}" answers = [instance['sentence_quiz1'], instance['sentence_quiz2']] # answers given are 1-indexed correct_answer = instance['answer_right_ending'] - 1 return [[input, answers, correct_answer]] # WinoGrande @DatasetReader.register("winogrande_reader") class WinoGrandeReader(HuggingfaceReaderRankClassification): def get_dataset_name(self) -> Tuple[str, Optional[str]]: return "winogrande", "winogrande_xl" def hf_to_instance(self, instance) -> Tuple[str, str]: # using underscore refer to input = f"{instance['sentence']}\nWhat does the _ in the above sentence refer to? {instance['option1']} or {instance['option2']}?" # 0 = false, 1 = true answers = ['1', '2'] assert instance['answer'] in answers correct_answer = answers.index(instance['answer']) return [[input, answers, correct_answer]] # WSC @DatasetReader.register("wsc_reader") class WSCReader(HuggingfaceReaderRankClassification): def get_dataset_name(self) -> Tuple[str, Optional[str]]: return "super_glue", "wsc" def hf_to_instance(self, instance) -> Tuple[str, str]: # using gpt3 style input = f"Passage: {instance['text']} \nQuestion: In the passage above, does the pronoun \"{instance['span2_text']}\" refer to {instance['span1_text']}?\nAnswer:" # 0 = false, 1 = true answers = ['False', 'True'] correct_answer = int(instance["label"]) return [[input, answers, correct_answer]] # COPA @DatasetReader.register("copa_reader") class COPAReader(HuggingfaceReaderRankClassification): def get_dataset_name(self) -> Tuple[str, Optional[str]]: return "super_glue", "copa" def hf_to_instance(self, instance) -> Tuple[str, str]: # using using 'plausible alternatives' prompt input = f"{instance['premise']} As a consequence... \nHelp me pick the more plausible option:\n- {instance['choice1']}\n- {instance['choice2']}" # 0 = choice1, 1 = choice2 answers = [instance['choice1'], instance['choice2']] correct_answer = int(instance["label"]) return [[input, answers, correct_answer]] # WiC @DatasetReader.register("wic_reader") class WiCReader(HuggingfaceReaderRankClassification): def get_dataset_name(self) -> Tuple[str, Optional[str]]: return "super_glue", "wic" def hf_to_instance(self, instance) -> Tuple[str, str]: # using gpt-3 style prompt input = f"{instance['sentence1']}\n{instance['sentence2']}\nQuestion: Is the word '{instance['word']}' used in the same sense in the two sentences above? Yes, No?" # 0 = false, 1 = true answers = ["no", "yes"] correct_answer = int(instance["label"]) return [[input, answers, correct_answer]] ## anli is handled specially as its splits have weird names. # ANLI R1 @DatasetReader.register("anli_r1_reader") class ANLIR1Reader(HuggingfaceReaderRankClassification): def __init__( self, split_mapping={"train": "train_r1", "validation": "dev_r1"}, **kwargs, ) -> None: super().__init__(split_mapping=split_mapping, **kwargs) def get_dataset_name(self) -> Tuple[str, Optional[str]]: return "anli", None def hf_to_instance(self, instance) -> Tuple[str, str]: # using gpt-3 style prompt input = f"{instance['premise']}\nQuestion: {instance['hypothesis']} True, False, or Neither?" # 0 = entail, 1 = neutral, 2 = contradiction answers = ["true", "neither", 'false'] correct_answer = instance['label'] return [[input, answers, correct_answer]] # the other anlis are identical, just diff splits :) # ANLI R2 @DatasetReader.register("anli_r2_reader") class ANLIR2Reader(ANLIR1Reader): def __init__( self, **kwargs, ) -> None: super().__init__( split_mapping={"train": "train_r2", "validation": "dev_r2"}, **kwargs, ) # ANLI R3 @DatasetReader.register("anli_r3_reader") class ANLIR3Reader(ANLIR1Reader): def __init__( self, **kwargs, ) -> None: super().__init__( split_mapping={"train": "train_r3", "validation": "dev_r3"}, **kwargs, ) # to generate files containing training data # easy to repurpose to generate whatever you want. if __name__ == '__main__': import json data_classes = [StoryClozeReader, RTEReader, CBReader, HellaSwagReader, COPAReader, WinoGrandeReader, WSCReader, WiCReader, ANLIR1Reader, ANLIR2Reader, ANLIR3Reader] data_names = ['story_cloze', 'rte', 'cb', 'hellaswag', 'copa', 'winogrande', 'wsc', 'wic', 'anli_r1', 'anli_r2', 'anli_r3'] for cls, name in zip(data_classes, data_names): print(name) reader = cls( model_name="google/t5-large-lm-adapt", max_query_length=512, split_name='train', val_size=1e100, use_val_split=False ) lines = [] for sample in reader.read('dummy'): lines.append(json.dumps({ "prompt_and_input": sample['prompt_and_input_pretokenized'], "answer_options": sample['answer_options_pretokenized'], 'correct_answer_index': sample['correct_answer_index_value'] })) with open(f'retrieve_data/{name}_val_data.jsonl', 'w') as f: f.write('\n'.join(lines))
data-efficient-finetuning-main
attribution/huggingface_readers.py
data-efficient-finetuning-main
attribution/__init__.py
from typing import Any, Dict, List from overrides import overrides import logging from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import torch from torch.nn import CrossEntropyLoss from allennlp.nn import util from allennlp.data import TextFieldTensors, Vocabulary from allennlp.models import Model from allennlp.training.metrics import Average, FBetaMeasure logger = logging.getLogger(__name__) @Model.register("seq2seq") class BasicSeq2Seq(Model): def __init__( self, vocab: Vocabulary, model_name: str = 'google/t5-xl-lm-adapt', relevant_label_index: int=0, gradient_checkpointing: bool=False, fake_training: bool = False, checkpoint_for_initialization: str = None, weights_file : str = None, **kwargs ): super().__init__(vocab, **kwargs) self.transformer = AutoModelForSeq2SeqLM.from_pretrained(model_name) if checkpoint_for_initialization: logger.info(f"Loading weights from checkpoint: {checkpoint_for_initialization}") self.load_state_dict(torch.load(checkpoint_for_initialization)) if gradient_checkpointing: self.transformer.gradient_checkpointing_enable() self.tokenizer = AutoTokenizer.from_pretrained(model_name) self._accuracy = Average() # used for LexGLUE tasks self._micro = FBetaMeasure(average="micro") self._macro = FBetaMeasure(average="macro") # We use this to compute precision and recall. If not set, precision and recall will be 0. self._relevant_label_index = relevant_label_index self._precision = Average() self._recall = Average() self._fake_training = fake_training self.loss_fct = CrossEntropyLoss(ignore_index=-100, reduction="none") # match hf t5 if self._fake_training: logger.info("Faking training. This will only dump the pretrained transformer into a model archive.") if weights_file is not None: with open(weights_file, 'rb') as f: self.load_state_dict(torch.load(f)) def forward( self, prompt_and_input: TextFieldTensors, answer_options: TextFieldTensors = None, correct_answer_index: torch.Tensor = None, metadata: Dict[str, Any] = None, ) -> Dict[str, torch.Tensor]: input_ids = util.get_token_ids_from_text_field_tensors(prompt_and_input) attention_mask = util.get_text_field_mask(prompt_and_input) # (batch_size, num_options, answer_length) answer_option_ids = util.get_token_ids_from_text_field_tensors(answer_options) answer_option_ids[answer_option_ids == 0] = -100 # (batch_size, answer_length) correct_answer_ids = answer_option_ids[ torch.arange(answer_option_ids.shape[0]), correct_answer_index.squeeze() ] output = self.transformer( input_ids=input_ids, attention_mask=attention_mask, labels=correct_answer_ids, use_cache=False, return_dict=True, ) loss = output['loss'] if self._fake_training: loss = loss * 0.0 output_dict = {'loss': loss, 'response': []} if not self.training: batch_size, num_options, _ = answer_option_ids.shape for i in range(batch_size): # setup - we pass through all options as a batch for minor speedup instance_input_ids = input_ids[i:i+1] instance_input_ids = instance_input_ids.repeat(num_options, 1) instance_attention_mask = attention_mask[i:i+1] instance_attention_mask = instance_attention_mask.repeat(num_options, 1) correct_option_id = correct_answer_index[i].detach().cpu()[0] option_ids = answer_option_ids[i:i+1].squeeze(0) # pass through option_output = self.transformer( input_ids=instance_input_ids, attention_mask=instance_attention_mask, labels=option_ids, use_cache=False, return_dict=True, ) logits = option_output["logits"].detach() losses = self.loss_fct(logits.permute([0, 2, 1]), option_ids) losses = losses.sum(dim=-1) #/ (losses != 0).sum(dim=-1) min_loss = None best_option_id = 0 for j, option_loss in enumerate(losses): if min_loss is None or min_loss > option_loss: min_loss = option_loss best_option_id = j self._accuracy(correct_option_id == best_option_id) # None since we need a batch_size dim. option_losses = -losses[None, ].detach().cpu() self._micro(option_losses, torch.tensor([correct_option_id])) self._macro(option_losses, torch.tensor([correct_option_id])) if best_option_id == self._relevant_label_index: self._precision(correct_option_id == best_option_id) if correct_option_id == self._relevant_label_index: self._recall(correct_option_id == best_option_id) output_dict['response'].append(best_option_id) return output_dict @overrides def get_metrics(self, reset: bool = False) -> Dict[str, float]: metrics_dict = { "accuracy": self._accuracy.get_metric(reset), "precision": self._precision.get_metric(reset), "recall": self._recall.get_metric(reset), } # Without this check, when called before any evaluation, causes error if self._macro._true_positive_sum is not None: metrics_dict.update( { "macro_f1": self._macro.get_metric(reset)["fscore"], "micro_f1": self._micro.get_metric(reset)["fscore"], } ) return metrics_dict # a regular model, but we load the underlying model from a .th file. # useful for training on top of other trained models. @Model.register("load_seq2seq") class LoadBasicSeq2Seq(BasicSeq2Seq): def __init__( self, load_from_file:str = None, **kwargs ): super().__init__(**kwargs) if load_from_file is not None: with open(load_from_file, 'rb') as f: self.load_state_dict(torch.load(f))
data-efficient-finetuning-main
attribution/model.py
""" Adapted from t-few repo: https://github.com/r-three/t-few/blob/master/src/models/lora.py """ import re import logging import torch import torch.nn as nn import torch.nn.functional as F from transformers import PreTrainedModel from allennlp.models import Model from attribution.model import BasicSeq2Seq logger = logging.getLogger(__name__) class IA3Linear(nn.Module): def __init__(self, linear_layer: nn.Linear): super().__init__() self.in_features = linear_layer.in_features self.out_features = linear_layer.out_features self.weight = linear_layer.weight self.bias = linear_layer.bias self.ia3_vector = nn.Parameter( torch.ones(linear_layer.out_features, 1) ) def forward(self, input): return F.linear(input, self.weight, self.bias) * self.ia3_vector.flatten() def extra_repr(self): return "in_features={}, out_features={}, bias={}".format( self.in_features, self.out_features, self.bias is not None, ) def modify_with_ia3(transformer: PreTrainedModel, lora_modules: str, lora_layers: str): for m_name, module in dict(transformer.named_modules()).items(): if re.fullmatch(lora_modules, m_name): for c_name, layer in dict(module.named_children()).items(): if re.fullmatch(lora_layers, c_name): assert isinstance( layer, nn.Linear ), f"IA3 can only be applied to torch.nn.Linear, but {layer} is {type(layer)}." setattr( module, c_name, IA3Linear(layer), ) return transformer @Model.register("ia3_seq2seq") class IA3BasicSeq2Seq(BasicSeq2Seq): def __init__( self, **kwargs ): super().__init__(**kwargs) # regex from https://github.com/r-three/t-few/blob/master/configs/ia3.json self.transformer = modify_with_ia3( self.transformer, ".*SelfAttention|.*EncDecAttention|.*DenseReluDense", "k|v|wi_1.*" ) # only train ia3 parameters for name, param in self.transformer.named_parameters(): if "ia3" in name: param.requires_grad = True else: param.requires_grad = False # a ia3 model, but we load the underlying model from a .th file. @Model.register("ia3_seq2seq_load") class IA3BasicSeq2Seq(BasicSeq2Seq): def __init__( self, load_from_file:str = None, **kwargs ): super().__init__(**kwargs) if load_from_file is not None: with open(load_from_file, 'rb') as f: self.load_state_dict(torch.load(f)) # regex from https://github.com/r-three/t-few/blob/master/configs/ia3.json self.transformer = modify_with_ia3( self.transformer, ".*SelfAttention|.*EncDecAttention|.*DenseReluDense", "k|v|wi_1.*" ) # only train ia3 parameters for name, param in self.transformer.named_parameters(): if "ia3" in name: param.requires_grad = True else: param.requires_grad = False
data-efficient-finetuning-main
attribution/ia3.py
from typing import Dict, List from overrides import overrides import logging from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import torch from allennlp.nn import util from allennlp.data import TextFieldTensors, Vocabulary from allennlp.models import Model from allennlp.training.metrics import Average logger = logging.getLogger(__name__) # just for ni eval @Model.register("ni_model") class DropModel(Model): def __init__( self, vocab: Vocabulary, model_name: str = "google/t5-small-lm-adapt", max_length: int = 128, fake_training: bool = False, **kwargs ): super().__init__(vocab, **kwargs) self.transformer = AutoModelForSeq2SeqLM.from_pretrained(model_name) self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.max_len = max_length self._accuracy = Average() self._fake_training = fake_training self._use_drop_metrics = True if self._fake_training: logger.info( "Faking training. This will only dump the pretrained transformer into a model archive." ) def forward( self, prompt_and_input: TextFieldTensors, instance_id: List[str] = None, target: TextFieldTensors = None, ) -> Dict[str, torch.Tensor]: input_ids = util.get_token_ids_from_text_field_tensors(prompt_and_input) attention_mask = util.get_text_field_mask(prompt_and_input) target_ids = util.get_token_ids_from_text_field_tensors(target) answer_option_ids = target_ids answer_option_ids[answer_option_ids == 0] = -100 output = self.transformer( input_ids=input_ids, attention_mask=attention_mask, labels=answer_option_ids, use_cache=False, return_dict=True, ) loss = output["loss"] if self._fake_training: loss = loss * 0.0 output_dict = {"loss": loss} if not self.training: assert len(instance_id) == 1, "only bsz 1 is supported rn." outputs = self.transformer.generate( input_ids=input_ids, attention_mask=attention_mask, do_sample=False, max_length=self.max_len, ) if not self._use_drop_metrics: self._accuracy(target_ids == outputs) else: output_dict["prediction"] = [ self.tokenizer.decode(o, skip_special_tokens=True) for o in outputs ][0] output_dict["id"] = instance_id[0] return output_dict @overrides def get_metrics(self, reset: bool = False) -> Dict[str, float]: return {"accuracy": self._accuracy.get_metric(reset)}
data-efficient-finetuning-main
attribution/ni_model.py
''' Mix and Match Adapter using recommended settings from https://arxiv.org/abs/2110.04366 ''' import logging import torch import torch.nn as nn import torch.nn.functional as F from transformers.models.t5.modeling_t5 import ( T5LayerCrossAttention, T5LayerSelfAttention, T5Block ) from transformers import PreTrainedModel from allennlp.models import Model from attribution.model import BasicSeq2Seq logger = logging.getLogger(__name__) class Adapter(nn.Module): def __init__(self, adapter_size, hidden_size): super().__init__() self.adapter_input_size = hidden_size self.adapter_latent_size = adapter_size self.non_linearity = nn.ReLU() # down projection self.down_proj = nn.Linear(self.adapter_input_size, self.adapter_latent_size, bias=False) # up projection self.up_proj = nn.Linear(self.adapter_latent_size, self.adapter_input_size, bias=False) # layer norm self.ln = nn.LayerNorm(self.adapter_input_size) self.init_weights() def init_weights(self): """Initialize the weights -> so that initially we the whole Adapter layer is a near-identity function""" self.down_proj.weight.data.normal_(mean=0.0, std=0.02) self.up_proj.weight.data.normal_(mean=0.0, std=0.02) def forward(self, x): return self.ln(self.up_proj(self.non_linearity(self.down_proj(x)))) # adapter modifies the feedforward layer class T5LayerFFWithAdapter(nn.Module): def __init__(self, T5LayerFF, adapter_size, hidden_size): super().__init__() self.DenseReluDense = T5LayerFF.DenseReluDense self.adapter = Adapter(adapter_size, hidden_size) self.layer_norm = T5LayerFF.layer_norm self.dropout = T5LayerFF.dropout def forward(self, hidden_states): ln_hidden_states = self.layer_norm(hidden_states) forwarded_states = self.DenseReluDense(ln_hidden_states) hidden_states = hidden_states + self.dropout(forwarded_states) + self.adapter(ln_hidden_states) return hidden_states # prefixes modify the attention layers. class T5AttentionPrefixTuning(nn.Module): def __init__(self, attention_layer, num_prefix_tokens, parameterization, shared=None): super().__init__() self.is_decoder = attention_layer.is_decoder self.has_relative_attention_bias = attention_layer.has_relative_attention_bias self.relative_attention_num_buckets = attention_layer.relative_attention_num_buckets self.d_model = attention_layer.d_model self.key_value_proj_dim = attention_layer.key_value_proj_dim self.n_heads = attention_layer.n_heads self.dropout = attention_layer.dropout self.inner_dim = self.n_heads * self.key_value_proj_dim self.prune_heads = attention_layer.prune_heads self._relative_position_bucket = attention_layer._relative_position_bucket self.compute_bias = attention_layer.compute_bias self.q = attention_layer.q self.k = attention_layer.k self.v = attention_layer.v self.o = attention_layer.o if self.has_relative_attention_bias: self.relative_attention_bias = attention_layer.relative_attention_bias self.pruned_heads = attention_layer.pruned_heads self.gradient_checkpointing = attention_layer.gradient_checkpointing self.parameterization = parameterization self.num_prefix_tokens = num_prefix_tokens self.mode = "apply" self.setup_prefix(shared) def forward( self, hidden_states, mask=None, key_value_states=None, position_bias=None, past_key_value=None, layer_head_mask=None, query_length=None, use_cache=False, output_attentions=False, ): """ Modified from T5Attention forward Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). pask_key_value, query_length, use_cache disabled """ assert past_key_value is None assert query_length is None assert not use_cache # Input is (batch_size, seq_length, dim) # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) batch_size, seq_length = hidden_states.shape[:2] key_length = seq_length if key_value_states is None else key_value_states.shape[1] def shape(states): """projection""" return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) def unshape(states): """reshape""" return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) def project(hidden_states, proj_layer, key_value_states, prefix_states): """projects hidden states correctly to key/query states""" if key_value_states is None: # self-attn output_states = proj_layer(hidden_states) else: # cross-attn output_states = proj_layer(key_value_states) if prefix_states is not None: output_states = torch.cat([prefix_states, output_states], dim=1) return output_states # get query states query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head) # get key/value states if self.mode == "apply": prefix = self.get_prefix(batch_size) else: prefix = (None, None) key_states = project(hidden_states, self.k, key_value_states, prefix[0]) value_states = project(hidden_states, self.v, key_value_states, prefix[1]) if self.mode == "store": self.stored_key_value_states = (key_states, value_states) key_states, value_states = shape(key_states), shape(value_states) # compute scores scores = torch.matmul( query_states, key_states.transpose(3, 2) ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 if position_bias is None: if not self.has_relative_attention_bias: position_bias = torch.zeros( (1, self.n_heads, seq_length, key_length), device=scores.device, dtype=scores.dtype ) # rather than use the relative attention bias, we instead append 0 as the bias to # prevent the model struggling to make use of the prefixes. if self.gradient_checkpointing and self.training: position_bias.requires_grad = True else: if self.mode == "apply": position_bias = self.compute_bias(seq_length, key_length)[ :, :, -seq_length:, : ] else: position_bias = self.compute_bias(seq_length, key_length) if prefix[0] is not None: position_bias = torch.cat([ torch.zeros((1, self.n_heads, seq_length, prefix[0].size(1)), device=scores.device, dtype=scores.dtype), position_bias ], dim=-1) if mask is not None: if self.mode == "apply": mask = F.pad(mask, value=-0.0, pad=(self.num_prefix_tokens, 0)) position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length) scores += position_bias attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( scores ) # (batch_size, n_heads, seq_length, key_length) attn_weights = nn.functional.dropout( attn_weights, p=self.dropout, training=self.training ) # (batch_size, n_heads, seq_length, key_length) # Mask heads if we want to if layer_head_mask is not None: attn_weights = attn_weights * layer_head_mask attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim) attn_output = self.o(attn_output) outputs = (attn_output,) + (None,) + (position_bias,) if output_attentions: outputs = outputs + (attn_weights,) return outputs def setup_prefix(self, shared): self.prefix_emb = shared["prefix_emb"] self.prefix_mlp = nn.Sequential( shared["prefix_linear"], nn.Tanh(), nn.Linear(shared["prefix_linear"].out_features, self.inner_dim * 2), ) def get_prefix(self, bs): prefix = self.prefix_mlp(self.prefix_emb.weight) batch_prefix = prefix.unsqueeze(dim=0).expand(bs, -1, -1) key_prefix, value_prefix = batch_prefix.chunk(dim=-1, chunks=2) return key_prefix, value_prefix def set_mode(self, mode): self.mode = mode if self.mode == "store": self.stored_key_value_states = None def modify_with_mam(transformer: PreTrainedModel, adapter_size: int, num_prefix_tokens: int, prefix_reparam_hidden_size: int): # prefix setup hidden_size = prefix_reparam_hidden_size num_prefix_tokens = num_prefix_tokens adapter_size = adapter_size shared = { "prefix_emb": nn.Embedding(num_prefix_tokens, transformer.config.d_model), "prefix_linear": nn.Linear(transformer.config.d_model, hidden_size), } # attention modules become prefix, ff become adapter for _, module in dict(transformer.named_modules()).items(): if isinstance(module, T5LayerCrossAttention): module.EncDecAttention = T5AttentionPrefixTuning(module.EncDecAttention, num_prefix_tokens, hidden_size, shared) elif isinstance(module, T5LayerSelfAttention): module.SelfAttention = T5AttentionPrefixTuning(module.SelfAttention, num_prefix_tokens, hidden_size, shared) if isinstance(module, T5Block): module.layer[-1] = T5LayerFFWithAdapter(module.layer[-1], adapter_size, transformer.config.d_model) return transformer # MaM adapter model # defaults from "toward unified view of parameter efficient learning" # https://arxiv.org/abs/2110.04366 @Model.register("mam_seq2seq") class MaMSeq2Seq(BasicSeq2Seq): def __init__( self, adapter_size: int = 512, num_prefix_tokens: int = 30, prefix_reparam_hidden_size: int = 512, **kwargs ): super().__init__(**kwargs) self.transformer = modify_with_mam( self.transformer, adapter_size, num_prefix_tokens, prefix_reparam_hidden_size ) # only train lora parameters for name, param in self.transformer.named_parameters(): # 'prefix_' to get the prefix reparameterisation params if "adapter" in name or 'prefix_' in name or 'layer_norm' in name: param.requires_grad = True else: param.requires_grad = False
data-efficient-finetuning-main
attribution/mam.py
from gzip import READ import json import logging import random from collections import defaultdict from typing import List, Iterable, Optional, Tuple, Dict from overrides import overrides import datasets from allennlp.data.fields import ( MetadataField, TextField, IndexField, ListField, ) from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.instance import Instance from allennlp.data.token_indexers import PretrainedTransformerIndexer from allennlp.data.tokenizers import PretrainedTransformerTokenizer from attribution.huggingface_readers import * logger = logging.getLogger(__name__) READER_MAPPING = { "rte": RTEReader, "anli_r1": ANLIR1Reader, "anli_r2": ANLIR2Reader, "anli_r3": ANLIR3Reader, "cb": CBReader, "hellaswag": HellaSwagReader, "story_cloze": StoryClozeReader, "winogrande": WinoGrandeReader, "wsc": WSCReader, "copa": COPAReader, "wic": WiCReader } @DatasetReader.register("icl_reader") class ICLReader(DatasetReader): def __init__( self, reader_class_name: str = 'rte', model_name='google/t5-base-lm-adapt', retrieve_file='dummy', split_name='train', max_query_length=1024, use_val_split=False, val_size=1000, **kwargs, ): super().__init__( manual_distributed_sharding=True, manual_multiprocess_sharding=True, **kwargs, ) reader_class = READER_MAPPING[reader_class_name] if 'split_name' in kwargs: kwargs.pop('split_name') self.instance_reader = reader_class(model_name=model_name, max_query_length=max_query_length, split_name='validation', use_val_split=False, return_original_instance=True, **kwargs) self._tokenizer = PretrainedTransformerTokenizer(model_name) self._train_reader = reader_class(model_name=model_name, split_name='train', use_val_split=False, return_original_instance=True, **kwargs) self.retrieve_file = retrieve_file self.retrieve_iterator = self._train_reader.read(self.retrieve_file) self.random = random.Random(42) self.max_query_length = max_query_length self._token_indexers = {"tokens": PretrainedTransformerIndexer(model_name)} self._stats = defaultdict(int) @overrides def _read(self, file_path) -> Iterable[Instance]: for instance in self.instance_reader.read(file_path): instance = instance.fields text_input = instance['pretokenized_input'] + '\nAnswer:' self._stats['counter'] += 1 while True: try: sample_instance = next(self.retrieve_iterator) except StopIteration: self.retrieve_iterator = self._train_reader.read(self.retrieve_file) sample_instance = next(self.retrieve_iterator) sample_instance = sample_instance.fields icl_sample = sample_instance['pretokenized_input'] + '\n Answer:' + sample_instance['answer_options_pretokenized'][sample_instance['correct_answer_index_value']] if len(self._tokenizer.tokenize(icl_sample + '\n' + text_input)) < self.max_query_length: text_input = icl_sample + '\n' + text_input self._stats['num_examples'] += 1 else: break self._stats['avg_examples_per_instance'] = self._stats['num_examples'] / self._stats['counter'] # write our augmented input back fields = {} fields['prompt_and_input'] = TextField(self._tokenizer.tokenize(text_input)) fields['answer_options'] = instance['answer_options'] fields['correct_answer_index'] = instance['correct_answer_index'] yield Instance(fields) logger.info("Dataset stats:") for key, value in self._stats.items(): logger.info("%s: %d", key, value) @overrides def apply_token_indexers(self, instance: Instance) -> None: instance.fields["prompt_and_input"].token_indexers = self._token_indexers for field in instance.fields["answer_options"].field_list: field.token_indexers = self._token_indexers
data-efficient-finetuning-main
attribution/icl_readers.py
from typing import Dict, List from overrides import overrides import logging from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import torch from allennlp.nn import util from allennlp.data import TextFieldTensors, Vocabulary from allennlp.models import Model from allennlp.training.metrics import Average logger = logging.getLogger(__name__) # just for drop eval @Model.register("drop_model") class DropModel(Model): def __init__( self, vocab: Vocabulary, model_name: str = "google/t5-small-lm-adapt", max_length: int = 128, fake_training: bool = False, **kwargs ): super().__init__(vocab, **kwargs) self.transformer = AutoModelForSeq2SeqLM.from_pretrained(model_name) self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.max_len = max_length self._accuracy = Average() self._fake_training = fake_training self._use_drop_metrics = True if self._fake_training: logger.info( "Faking training. This will only dump the pretrained transformer into a model archive." ) def forward( self, prompt_and_input: TextFieldTensors, query_id: List[str] = None, target: TextFieldTensors = None, ) -> Dict[str, torch.Tensor]: input_ids = util.get_token_ids_from_text_field_tensors(prompt_and_input) attention_mask = util.get_text_field_mask(prompt_and_input) target_ids = util.get_token_ids_from_text_field_tensors(target) answer_option_ids = target_ids answer_option_ids[answer_option_ids == 0] = -100 output = self.transformer( input_ids=input_ids, attention_mask=attention_mask, labels=answer_option_ids, use_cache=False, return_dict=True, ) loss = output["loss"] if self._fake_training: loss = loss * 0.0 output_dict = {"loss": loss} if not self.training: outputs = self.transformer.generate( input_ids=input_ids, attention_mask=attention_mask, do_sample=False, max_length=self.max_len, ) if not self._use_drop_metrics: self._accuracy(target_ids == outputs) else: output_dict["answer"] = [ self.tokenizer.decode(o, skip_special_tokens=True) for o in outputs ] output_dict["query_id"] = query_id return output_dict @overrides def get_metrics(self, reset: bool = False) -> Dict[str, float]: return {"accuracy": self._accuracy.get_metric(reset)}
data-efficient-finetuning-main
attribution/drop_model.py
import logging from collections import defaultdict from typing import Iterable, Optional, Tuple from overrides import overrides import datasets from allennlp.data.fields import ( MetadataField, TextField, ) from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.instance import Instance from allennlp.data.token_indexers import PretrainedTransformerIndexer from allennlp.data.tokenizers import PretrainedTransformerTokenizer from attribution.huggingface_readers import HuggingfaceReaderRankClassification logger = logging.getLogger(__name__) # full reader for drop to pass through query id @DatasetReader.register("drop_reader") class DROPReader(DatasetReader): def __init__( self, model_name: str = "google/t5-small-lm-adapt", max_query_length: int = 512, split_name: str = "train", val_size: int = 1000, return_original_instance: bool = False, **kwargs, ) -> None: super().__init__( manual_distributed_sharding=True, manual_multiprocess_sharding=True, **kwargs, ) dataset_name, subset_name = self.get_dataset_name() self._dataset_name = dataset_name self._subset_name = subset_name self.return_original_instance = return_original_instance original_val_set = datasets.load_dataset( dataset_name, subset_name, split="validation" ) small_val_size = val_size # I consider under 2000 examples as small val_split_size = val_size # when splitting out val, get 1000 examples seed = 42 if split_name == "train": if len(original_val_set) >= small_val_size: self._dataset = datasets.load_dataset( dataset_name, subset_name, split="train" ) else: # for small val sets, split out val from train and use old val as test # this is because some casehold splits are specially designed, so I want # to keep these as-is (rather than just split the val set in half) self._dataset = datasets.load_dataset( dataset_name, subset_name, split="train" ).train_test_split(test_size=val_split_size, seed=seed)["train"] if split_name == "validation": # for large val sets, just split out from val if len(original_val_set) >= small_val_size: self._dataset = original_val_set.train_test_split( train_size=val_split_size, seed=seed )["train"] else: # for small val sets, split out val from train and use old val as test self._dataset = datasets.load_dataset( dataset_name, subset_name, split="train" ).train_test_split(test_size=val_split_size, seed=seed)["test"] elif split_name == "test": # for large val sets, test is the small split from val if len(original_val_set) >= small_val_size: self._dataset = original_val_set.train_test_split( train_size=val_split_size, seed=seed )["test"] else: # for small val sets, split our new val from train (val becomes test) self._dataset = datasets.load_dataset( dataset_name, subset_name, split="validation" ) self._transformer_model_name = model_name self._tokenizer = PretrainedTransformerTokenizer(model_name) self._token_indexers = {"tokens": PretrainedTransformerIndexer(model_name)} self._max_query_length = max_query_length self._stats = defaultdict(int) def get_dataset_name(self) -> Tuple[str, Optional[str]]: return "drop", None def hf_to_instance(self, instance) -> Tuple[str, str]: # using GPT-3 DROP prompt. input = ( f"Passage: {instance['passage']}\nQuestion: {instance['question']}\nAnswer:" ) answer = instance["answers_spans"]["spans"][0] return [[input, instance["query_id"], answer]] @overrides def _read(self, file_path) -> Iterable[Instance]: for sample in self._dataset: converted_samples = self.hf_to_instance(sample) for inputs, qid, targets in converted_samples: yield self.text_to_instance(inputs, qid, targets) def text_to_instance( self, input_text: str, query_id: str, target: str, ) -> Instance: fields = {} tokenized_input = self._tokenizer.tokenize(input_text) if len(tokenized_input) > self._max_query_length: self._stats["Truncated inputs"] += 1 tokenized_input = tokenized_input[: self._max_query_length] input_field = TextField(tokenized_input) fields["prompt_and_input"] = input_field if self.return_original_instance: fields["pretokenized_input"] = input_text tokenized_target = self._tokenizer.tokenize(target) if len(tokenized_target) > self._max_query_length: self._stats["Truncated targets"] += 1 tokenized_target = tokenized_target[: self._max_query_length] target_field = TextField(tokenized_target) fields["target"] = target_field query_id_field = MetadataField(query_id) fields["query_id"] = query_id_field return Instance(fields) @overrides def apply_token_indexers(self, instance: Instance) -> None: instance.fields["prompt_and_input"].token_indexers = self._token_indexers instance.fields["target"].token_indexers = self._token_indexers # drop reader that aligns with the other formats for multitask # NOTE: don't use this for eval! @DatasetReader.register("multi_task_drop_reader") class DropMReader(HuggingfaceReaderRankClassification): def get_dataset_name(self) -> Tuple[str, Optional[str]]: return "drop", None def hf_to_instance(self, instance) -> Tuple[str, str]: input = ( f"Passage: {instance['passage']}\nQuestion: {instance['question']}\nAnswer:" ) answer = [instance["answers_spans"]["spans"][0]] return [[input, answer, 0]]
data-efficient-finetuning-main
attribution/drop_reader.py
import json import pickle import logging from collections import defaultdict from typing import Any, Dict, List, Iterable import random from overrides import overrides import torch from allennlp.common.util import JsonDict from allennlp.data.fields import ( MetadataField, TextField, IndexField, ListField, ) from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.instance import Instance from allennlp.data.token_indexers import PretrainedTransformerIndexer from allennlp.data.tokenizers import Token, PretrainedTransformerTokenizer logger = logging.getLogger(__name__) random.seed(23019) @DatasetReader.register("qasper_evidence_prompt") class QasperEvidencePromptReader(DatasetReader): def __init__( self, model_name: str = "bigscience/T0_3B", max_query_length: int = 512, answer_options: List[str] = ["Yes", "No"], negative_sample_ratio: float = 1.0, return_original_query: bool = False, max_train_samples: int = -1, **kwargs, ) -> None: super().__init__( manual_distributed_sharding=True, manual_multiprocess_sharding=True, **kwargs, ) self._return_original_query = return_original_query self._transformer_model_name = model_name self._tokenizer = PretrainedTransformerTokenizer(model_name) self._token_indexers = { "tokens": PretrainedTransformerIndexer(model_name) } self._max_query_length = max_query_length self._answer_options = answer_options self._negative_sample_ratio = negative_sample_ratio self._stats = defaultdict(int) self._max_train_samples = max_train_samples @overrides def _read(self, file_path: str) -> Iterable[Instance]: logger.info("Reading the dataset") counter = 0 with open(file_path, "r") as datafile: data = json.load(datafile) for article_id, article in self.shard_iterable(data.items()): if not article["full_text"]: continue article["article_id"] = article_id for sample in self._article_to_instances(article): if self._max_train_samples > 0 and counter >= self._max_train_samples: break counter += 1 yield sample logger.info("Dataset stats:") for key, value in self._stats.items(): logger.info("%s: %d", key, value) def _article_to_instances(self, article: Dict[str, Any]) -> Iterable[Instance]: paragraphs = self._get_paragraphs_from_article(article) self._stats["number of documents"] += 1 for question_answer in article["qas"]: question = question_answer['question'] self._stats["number of questions"] += 1 self._stats["number of answers"] += len(question_answer["answers"]) if len(question_answer["answers"]) > 1: self._stats["questions with multiple answers"] += 1 all_evidence = set() for answer_annotation in question_answer["answers"]: evidence = self._extract_evidence( answer_annotation["answer"] ) for span in evidence: all_evidence.add(span) evidence_mask = self._get_evidence_mask(list(all_evidence), paragraphs) for paragraph_index, (paragraph, is_evidence) in enumerate(zip(paragraphs, evidence_mask)): input_ = f"Question: {question} Paragraph: {paragraph} Is the answer to the question in the paragraph? Answer Yes or No." target = "Yes" if is_evidence else "No" if target == "Yes": self._stats["number of positive targets"] += 1 elif random.random() <= self._negative_sample_ratio: self._stats["number of negative targets"] += 1 else: continue metadata = { "question_id": question_answer["question_id"], "paper_id": article.get("article_id"), "question": question, "paragraph": paragraph, "paragraph_index": paragraph_index, "query": input_, "target": target, "answer_options": self._answer_options } yield self.text_to_instance( input_, target, self._answer_options, metadata ) self._stats["number of instances"] += 1 def _get_paragraphs_from_article(self, article: JsonDict) -> List[str]: full_text = article["full_text"] paragraphs = [] for section_info in full_text: # TODO (pradeep): It is possible there are other discrepancies between plain text, LaTeX and HTML. # Do a thorough investigation and add tests. if section_info["section_name"] is not None: paragraphs.append(section_info["section_name"]) for paragraph in section_info["paragraphs"]: paragraph_text = paragraph.replace("\n", " ").strip() if paragraph_text: paragraphs.append(paragraph_text) return paragraphs def _extract_evidence( self, answer: List[JsonDict] ) -> List[str]: evidence_spans = [x.replace("\n", " ").strip() for x in answer["evidence"]] evidence_spans = [x for x in evidence_spans if x != ""] if not evidence_spans: self._stats["answers with no evidence"] += 1 # TODO (pradeep): Deal with figures and tables. if any(["FLOAT SELECTED" in span for span in evidence_spans]): # Ignoring question if any of the selected evidence is a table or a figure. self._stats["answers with table or figure as evidence"] += 1 if len(evidence_spans) > 1: self._stats["multiple_evidence_spans_count"] += 1 return evidence_spans @staticmethod def _get_evidence_mask(evidence: List[str], paragraphs: List[str]) -> List[bool]: evidence_mask = [] for paragraph in paragraphs: for evidence_str in evidence: if evidence_str in paragraph: evidence_mask.append(True) break else: evidence_mask.append(False) return evidence_mask def text_to_instance( self, # type: ignore # pylint: disable=arguments-differ input_text: str, target: str, options: List[str], metadata: Dict[str, Any] = None, ) -> Instance: fields = {} tokenized_input = self._tokenizer.tokenize(input_text) if len(tokenized_input) > self._max_query_length: self._stats["Truncated inputs"] += 1 tokenized_input = tokenized_input[:self._max_query_length] input_field = TextField(tokenized_input) fields["prompt_and_input"] = input_field if self._return_original_query: fields['pretokenized_input'] = input_text answer_option_fields = [ TextField(self._tokenizer.tokenize(option)) for option in options ] options_list_field = ListField(answer_option_fields) fields["answer_options"] = options_list_field answer_index = None for i, option in enumerate(options): if option == target: answer_index = i break fields["correct_answer_index"] = IndexField(answer_index, options_list_field) if metadata is not None: fields["metadata"] = MetadataField(metadata) return Instance(fields) @overrides def apply_token_indexers(self, instance: Instance) -> None: instance.fields["prompt_and_input"].token_indexers = self._token_indexers for field in instance.fields["answer_options"].field_list: field.token_indexers = self._token_indexers
data-efficient-finetuning-main
attribution/qasper_reader.py
import json import pickle import logging from collections import defaultdict from typing import Any, Dict, List, Iterable from overrides import overrides import torch from allennlp.data.fields import ( MetadataField, TextField, IndexField, ListField, ) from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.instance import Instance from allennlp.data.token_indexers import PretrainedTransformerIndexer from allennlp.data.tokenizers import Token, PretrainedTransformerTokenizer logger = logging.getLogger(__name__) @DatasetReader.register("p3_cluster") class P3ClusterReader(DatasetReader): def __init__( self, p3_data_path: str, split_name: str, model_name: str = "google/t5-small-lm-adapt", max_query_length: int = 512, **kwargs, ) -> None: super().__init__( manual_distributed_sharding=True, manual_multiprocess_sharding=True, **kwargs, ) self._p3_data = json.load(open(p3_data_path)) self._split_name = split_name self._transformer_model_name = model_name self._tokenizer = PretrainedTransformerTokenizer(model_name) self._token_indexers = { "tokens": PretrainedTransformerIndexer(model_name) } self._max_query_length = max_query_length self._stats = None @overrides def _read(self, file_path: str) -> Iterable[Instance]: self._stats = defaultdict(int) logger.info("Reading the cluster file") cluster_data = pickle.load(open(file_path, "rb")) for dataset_name, cluster_info in cluster_data.items(): for instance_id in cluster_info[self._split_name]: if dataset_name not in self._p3_data: self._stats["Instances skipped due to missing dataset partitions"] += 1 continue if str(instance_id) not in self._p3_data[dataset_name][self._split_name]: self._stats["Instances skipped due to missing instance ids"] += 1 continue instance_info = self._p3_data[dataset_name][self._split_name][str(instance_id)] if len(instance_info["options"]) <= 1: self._stats["Instances without multiple options"] += 1 elif len(instance_info["options"]) > 10: self._stats["Instances with too many options"] += 1 elif instance_info["target"] not in instance_info["options"]: self._stats["Target not in options"] += 1 elif not instance_info["is_correct"]: self._stats["Instance has incorrect answer"] += 1 else: yield self.text_to_instance( instance_info["input"], instance_info["target"], instance_info["options"], {"dataset_name": instance_info["dataset"], "index": instance_info["index"]} ) print("Dataset stats:") for key, value in self._stats.items(): print(f"\t{key}: {value}") def text_to_instance( self, # type: ignore # pylint: disable=arguments-differ input_text: str, target: str, options: List[str], metadata: Dict[str, Any] = None, ) -> Instance: fields = {} tokenized_input = self._tokenizer.tokenize(input_text) if len(tokenized_input) > self._max_query_length: self._stats["Truncated inputs"] += 1 tokenized_input = tokenized_input[:self._max_query_length] input_field = TextField(tokenized_input) fields["prompt_and_input"] = input_field answer_option_fields = [ TextField(self._tokenizer.tokenize(option)) for option in options ] options_list_field = ListField(answer_option_fields) fields["answer_options"] = options_list_field answer_index = None for i, option in enumerate(options): if option == target: answer_index = i break fields["correct_answer_index"] = IndexField(answer_index, options_list_field) if metadata is not None: fields["metadata"] = MetadataField(metadata) return Instance(fields) @overrides def apply_token_indexers(self, instance: Instance) -> None: instance.fields["prompt_and_input"].token_indexers = self._token_indexers for field in instance.fields["answer_options"].field_list: field.token_indexers = self._token_indexers
data-efficient-finetuning-main
attribution/p3_cluster_reader.py
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import numpy as np import json from tqdm import tqdm import random random.seed(23103) text_data = [] clusters_data = json.load(open("./t0_cluster_data.json")) for cluster_id, cluster_data in clusters_data.items(): text = set([x["input"] for x in cluster_data]) text_data.extend([(x, cluster_id) for x in text]) vectorizer = TfidfVectorizer(decode_error='replace', strip_accents='unicode', analyzer='word', stop_words='english') index = vectorizer.fit_transform([x[0] for x in text_data]) closest_in_cluster = [] indices_set = list(range(len(text_data))) random.shuffle(indices_set) eval_indices_set = indices_set[:10000] for i in tqdm(eval_indices_set): _, input_cluster = text_data[i] query_vector = index[i] similarities = cosine_similarity(index, query_vector).flatten() # -2 because -1 will be the same as the query. most_similar_index = np.argsort(similarities, axis=0)[-2] closest_data_point, its_cluster_id = text_data[most_similar_index] closest_in_cluster.append(input_cluster == its_cluster_id) print(f"Closest in cluster: {sum(closest_in_cluster) / len(closest_in_cluster) * 100}%")
data-efficient-finetuning-main
scripts/analyze_surface_similarity.py
import json import sys from transformers import T5TokenizerFast import re from datasets import load_dataset from sklearn.metrics import f1_score from sklearn.preprocessing import MultiLabelBinarizer file = sys.argv[1] tokenizer = T5TokenizerFast.from_pretrained('t5-base') mlb = MultiLabelBinarizer() concept_dict = json.load(open("data/eurovoc_descriptors.json", "r")) eurlex_val = load_dataset('lex_glue', 'eurlex', split='validation') labels = eurlex_val.features["labels"].feature.names label_to_code = {concept_dict[l]['en']: l for l in labels} total_labs = len(labels) question_pattern = re.compile(r"Does the following text involve ([\w\s\-\,]+)\? Answer yes or no. Text: (.*).") with open(file, 'r') as f: lines = f.readlines() answers = [] last_text = 'im not in the first line' cur_ans = [] cur_sample = -1 for i, line in enumerate(lines): result = json.loads(line) chosen_answer = tokenizer.decode(result['chosen_answer'][0], skip_special_tokens=True).strip().lower() chosen_answer_question = tokenizer.decode(result['chosen_answer_question'][0], skip_special_tokens=True) # extract the label we were asking about match = re.match(question_pattern, chosen_answer_question) term = match.group(1) text = match.group(2) if 'yes' in chosen_answer: cur_ans.append(eurlex_val.features["labels"].feature.str2int(label_to_code[term])) # sometimes truncation can differ if last_text not in text and text not in last_text: answers.append(cur_ans) cur_ans = [] cur_sample += 1 #if text not in eurlex_val[cur_sample]['text'].replace('\n', ' '): # import pdb; pdb.set_trace() last_text = text preds = answers true = eurlex_val['labels'] unlabelled_label = max([x for t in true for x in t]) # unfair-tos eval we add an extra 'unlabelled' label for p in preds: if len(p) == 0: p.append(unlabelled_label) for p in true: if len(p) == 0: p.append(unlabelled_label) if len(preds) < len(true): print('huh?') while len(preds) < len(true): preds.append([]) mlb.fit(true + preds) true = mlb.transform(true) preds = mlb.transform(preds) print('micro', f1_score(true, preds, average='micro')) print('macro', f1_score(true, preds, average='macro'))
data-efficient-finetuning-main
scripts/evaluate_eurlex_preds.py
import tqdm import sys import json import argparse datasets = [ "rte", "anli_r1", "anli_r2", "anli_r3", "wic", "copa", "wsc", "winogrande", "hellaswag", "cb", "story_cloze", "casehold", "drop", "qasper" ] parser = argparse.ArgumentParser() parser.add_argument("--infile_path", type=str, required=True, help="directory containing index files") parser.add_argument("--outfile_path", type=str, required=True, help="directory to output files") parser.add_argument("--suffix", type=str, required=True, help="what to name the files with form \{dataset\}_\{suffix\}") parser.add_argument("--p3_data", type=str, required=True, help="file containing the p3 data the index files reference") args = parser.parse_args() infile_path = args.infile_path outfile_path = args.outfile_path suffix = args.suffix p3_data = args.p3_data infiles = [f'{infile_path}/{ds}_idxes.txt' for ds in datasets] diff_indices = [set([int(i) for i in open(file, 'r')]) for file in infiles] print('indices read') outfiles = [f'{outfile_path}/{ds}_{suffix}.jsonl' for ds in datasets] files = [open(o, "w") for o in outfiles] for i, line in tqdm.tqdm(enumerate(open(p3_data, 'r'))): for j, indices in enumerate(diff_indices): if i in indices: instance = json.loads(line) instance["index_id"] = i print(json.dumps(instance), file=files[j])
data-efficient-finetuning-main
scripts/indices_to_file.py
import torch import json import os import pickle from tqdm import tqdm from collections import defaultdict import numpy from sklearn.decomposition import PCA from sklearn import mixture from sklearn.metrics.pairwise import cosine_distances from transformers import AutoTokenizer, AutoModelForSeq2SeqLM model_name = "google/t5-small-lm-adapt" #model_name = "t5-small" encoder_block_name = "encoder.block.7" #encoder_block_name = "encoder.block.5" max_num_weights = 2048 num_clusters = 15 tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) model.cuda() parameters_of_interest = [] for name, parameter in model.named_parameters(): if name.startswith(encoder_block_name) or name.startswith("encoder.final_layer"): parameters_of_interest.append((name, parameter)) data = json.load(open("p3_data_simplified.json")) #data = json.load(open("p3_data.json")) cluster_dir = f"/home/pradeepd/data/p3_dev_{model_name.replace('/', '_')}_final_layer_gradient_clusters/" if not os.path.exists(cluster_dir): os.makedirs(cluster_dir) print(f"Computing gradients on {model_name}, and will write clusters to {cluster_dir}") print(f"Computing gradients only on the block {encoder_block_name} and the final layer norm weight") print(f"Will keep track of only the {max_num_weights} max gradients") instances = [] for dataset_info in data.values(): for value in dataset_info["validation"].values(): value["split"] = "validation" instances.append(value) for value in dataset_info["train"].values(): value["split"] = "train" instances.append(value) max_indices_file = os.path.join(cluster_dir, "max_indices.pkl") if os.path.exists(max_indices_file): print(f"Found max indices at {max_indices_file}") max_indices = pickle.load(open(max_indices_file, "rb")) else: indices_counts = None print("Computing gradients, first pass") for instance in tqdm(instances): inputs = tokenizer.encode(instance["input"], return_tensors="pt").cuda() targets = tokenizer.encode(instance["target"], return_tensors="pt").cuda() model_outputs = model(input_ids=inputs, labels=targets, return_dict=True) loss = model_outputs['loss'] loss.backward(inputs=[p for n, p in parameters_of_interest]) gradients = torch.cat([p.grad.flatten() for _, p in parameters_of_interest]).detach().cpu().numpy() if indices_counts is None: indices_counts = numpy.zeros_like(gradients) indices_counts[numpy.argsort(gradients)[-max_num_weights:]] += 1 model.zero_grad() max_indices = numpy.argsort(indices_counts)[-max_num_weights:] coverage = sum(indices_counts[max_indices]) / sum(indices_counts) print(f"Coverage: {coverage}") with open(max_indices_file, "wb") as outfile: pickle.dump(max_indices, outfile) max_gradients_file = os.path.join(cluster_dir, "all_max_gradients.pkl") if os.path.exists(max_gradients_file): print(f"Found max gradients at {max_gradients_file}") all_max_gradients = pickle.load(open(max_gradients_file, "rb")) else: print("Computing gradients, second pass") all_max_gradients = numpy.zeros((len(instances), max_num_weights)) i = 0 for instance in tqdm(instances): inputs = tokenizer.encode(instance["input"], return_tensors="pt").cuda() targets = tokenizer.encode(instance["target"], return_tensors="pt").cuda() model_outputs = model(input_ids=inputs, labels=targets, return_dict=True) loss = model_outputs['loss'] loss.backward(inputs=[p for n, p in parameters_of_interest]) gradients = torch.cat([p.grad.flatten() for _, p in parameters_of_interest]).detach().cpu().numpy() all_max_gradients[i] = gradients[max_indices] i += 1 model.zero_grad() with open(max_gradients_file, "wb") as outfile: pickle.dump(all_max_gradients, outfile) print("Running PCA") pca = PCA(n_components=50, random_state=0) ld_indexed_data = pca.fit_transform(all_max_gradients) print("Clustering") gmm = mixture.GaussianMixture( n_components=num_clusters, covariance_type='full', max_iter=150, random_state=0 ) gmm = gmm.fit(ld_indexed_data) cluster_labels = gmm.predict(ld_indexed_data) cluster_distances = cosine_distances(gmm.means_) cluster_counts = [0] * 15 for label in cluster_labels: cluster_counts[label] += 1 print("Cluster counts:", cluster_counts) cluster_index_map = defaultdict(lambda: defaultdict(lambda: {'train': [], 'validation': []})) for cluster_label, instance in zip(cluster_labels, instances): cluster_index_map[cluster_label][instance['dataset']][instance['split']].append(instance['index']) for cluster_label, cluster_data in cluster_index_map.items(): with open(os.path.join(cluster_dir, f"cluster_{cluster_label}_indices.pkl"), "wb") as outfile: pickle.dump(dict(cluster_data), outfile) with open(os.path.join(cluster_dir, "cluster_distances.pkl"), "wb") as outfile: pickle.dump(cluster_distances, outfile)
data-efficient-finetuning-main
scripts/make_gradient_clusters.py
import json import os import tqdm import gzip import argparse from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import faiss import numpy import torch parser = argparse.ArgumentParser() parser.add_argument("--model", type=str, required=True) parser.add_argument("--output_prefix", type=str, required=True) parser.add_argument("--data_file", type=str, required=True) parser.add_argument("--index_type", type=str, default="hnsw") parser.add_argument("--max_batch_tokens", type=int, default=32000) parser.add_argument("--add_interval", type=int, default=1000, help="Each index.add() will add add_interval points") parser.add_argument("--write_interval", type=int, default=2000000, help="Each time after indexing roughly these many points the index will be written to disk") parser.add_argument("--neighbors_per_node", type=int, default=512, help="HNSW parameter, default from DPR paper") parser.add_argument("--construction_depth", type=int, default=200, help="HNSW parameter, default from DPR paper") parser.add_argument("--search_depth", type=int, default=128, help="HNSW parameter, default from DPR paper") parser.add_argument("--encoding_dim", type=int, default=512, help="Reduced dimensionality for OPQ") parser.add_argument("--sq_train_size", type=int, default=1000000) parser.add_argument("--device_ids", type=int, nargs="+") args = parser.parse_args() index_factory_string = f"OPQ8_{args.encoding_dim},HNSW{args.neighbors_per_node},PQ8" index_prefix = f"p3_{args.model.replace('/', '-')}_{index_factory_string.replace(',', '-')}" with open(os.path.join(args.output_prefix, f"{index_prefix}_hyperparameters.json"), "w") as outfile: json.dump( { "neighbors_per_node": args.neighbors_per_node, "construction_depth": args.construction_depth, "search_depth": args.search_depth, "encoding_dim": args.encoding_dim, "sq_train_size": args.sq_train_size }, outfile) text_instances_file = args.data_file assert os.path.exists(text_instances_file), "Text instances file does not exist!" tokenizer = AutoTokenizer.from_pretrained(args.model) model = AutoModelForSeq2SeqLM.from_pretrained(args.model) model.eval() if torch.cuda.is_available(): model.cuda(device=args.device_ids[0]) num_gpus_available = len(args.device_ids) print(f"Using DataParallel for the encoder on {num_gpus_available} GPUs with ids {args.device_ids}") encoder = torch.nn.DataParallel(model.encoder, device_ids=args.device_ids) else: encoder = model.encoder if text_instances_file.endswith(".gz"): instances_file_ptr = gzip.open(text_instances_file, "rt") else: instances_file_ptr = open(text_instances_file, "r") def get_batches(num_instances_to_skip: int=0): batch = [] num_batch_tokens = 0 max_num_batch_tokens = args.max_batch_tokens num_batches_yielded = 0 num_instances_yielded = 0 num_truncated_instances = 0 num_instances_read = 0 started_batching = False while True: line = instances_file_ptr.readline() if not line: break num_instances_read += 1 if num_instances_read <= num_instances_to_skip: continue if not started_batching: print(f"Starting to batch instances from instance number: {num_instances_read}") started_batching = True instance = json.loads(line) input_ = instance["input"] tokens = tokenizer.tokenize(input_) num_tokens = len(tokens) if num_tokens > tokenizer.max_len_single_sentence: num_truncated_instances += 1 if num_tokens + num_batch_tokens < max_num_batch_tokens: batch.append(input_) num_batch_tokens += num_tokens else: yield batch num_instances_yielded += len(batch) num_batches_yielded += 1 if num_batches_yielded % 10000 == 0: print(f"Average batch size: {num_instances_yielded / num_batches_yielded}") print(f"Truncated instances so far: {num_truncated_instances}") batch = [input_] num_batch_tokens = num_tokens if batch: yield batch print(f"Average batch size: {num_instances_yielded / num_batches_yielded}") print(f"Truncated instances so far: {num_truncated_instances}") index_file = os.path.join( args.output_prefix, f"{index_prefix}.index" ) index = None last_written_index_size = 0 if os.path.exists(index_file): print(f"Index file exists. Reading {index_file}") index = faiss.read_index(index_file) last_written_index_size = index.ntotal print(f"Done reading index of size {last_written_index_size}") else: print(f"Will write index to {index_file}") aggregated_encoded_batches = [] print("Computing representations and indexing them") with torch.inference_mode(): for batch in tqdm.tqdm(get_batches(last_written_index_size)): input_data = tokenizer.batch_encode_plus(batch, return_tensors="pt", padding=True, truncation=True) input_ids = input_data['input_ids'] # (batch_size, num_tokens) mask = input_data['attention_mask'] if torch.cuda.is_available(): input_ids = input_ids.cuda(device=args.device_ids[0]) mask = mask.cuda(device=args.device_ids[0]) encoder_outputs = encoder(input_ids=input_ids, attention_mask=mask, return_dict=True) # (batch_size, num_tokens, hidden_size) hidden_states = encoder_outputs["last_hidden_state"] # (batch_size, hidden_size) pooled_hidden_states = (hidden_states * mask.unsqueeze(-1)).sum(1) / mask.sum(1).unsqueeze(-1) pooled_hidden_states_np = pooled_hidden_states.detach().cpu().numpy() aggregated_encoded_batches.append(pooled_hidden_states_np) if index is None: hidden_size = pooled_hidden_states_np.shape[1] index = faiss.index_factory(hidden_size, index_factory_string) # We cannot access the HNSW parameters directly. `index` is of type IndexPreTransform. We need to downcast # the actual index to do this. hnswpq_index = faiss.downcast_index(index.index) hnswpq_index.hnsw.efConstruction = args.construction_depth hnswpq_index.hnsw.efSearch = args.search_depth if not index.is_trained and sum([x.shape[0] for x in aggregated_encoded_batches]) >= args.sq_train_size: print("Training index") data_to_train = numpy.concatenate(aggregated_encoded_batches) index.train(data_to_train) if index.is_trained and sum([x.shape[0] for x in aggregated_encoded_batches]) >= args.add_interval: data_to_add = numpy.concatenate(aggregated_encoded_batches) index.add(data_to_add) print(f"Added {data_to_add.shape[0]} points to index") aggregated_encoded_batches = [] index_size = index.ntotal if index_size - last_written_index_size >= args.write_interval: print(f"Writing index of size {index_size}") faiss.write_index(index, index_file) last_written_index_size = index_size if aggregated_encoded_batches: if not index.is_trained: print("Training index") data_to_train = numpy.concatenate(aggregated_encoded_batches) index.train(data_to_train) data_to_add = numpy.concatenate(aggregated_encoded_batches) index.add(data_to_add) print(f"Added {data_to_add.shape[0]} points to index") faiss.write_index(index, index_file)
data-efficient-finetuning-main
scripts/index_p3_train_reps.py
import faiss import argparse import torch import numpy import json import tqdm from scipy.stats import entropy from sklearn.cluster import kmeans_plusplus from transformers import AutoTokenizer, AutoModelForSeq2SeqLM numpy.random.seed(20389) parser = argparse.ArgumentParser() parser.add_argument("--training_data", type=str, required=True) parser.add_argument("--index", type=str, required=True) parser.add_argument("--model", type=str) parser.add_argument("--encoding_batch_size", type=int) parser.add_argument("--selected_training_data", type=str) parser.add_argument("--num_shots", type=int, default=32) parser.add_argument("--apply_opq", action="store_true") args = parser.parse_args() tokenizer = AutoTokenizer.from_pretrained(args.model) model = AutoModelForSeq2SeqLM.from_pretrained(args.model) assert torch.cuda.is_available() cuda_devices = list(range(torch.cuda.device_count())) print(f"Using CUDA devices {cuda_devices} for encoding training data") model.cuda(device=cuda_devices[0]) model.eval() encoder = torch.nn.DataParallel(model.encoder, device_ids=cuda_devices) def encode_batch(batched_inputs): input_data = tokenizer.batch_encode_plus(batched_inputs, return_tensors="pt", padding=True) input_ids = input_data['input_ids'] # (batch_size, num_tokens) mask = input_data['attention_mask'] if torch.cuda.is_available(): input_ids = input_ids.cuda(device=cuda_devices[0]) mask = mask.cuda(device=cuda_devices[0]) encoder_outputs = encoder(input_ids=input_ids, attention_mask=mask, return_dict=True) # (batch_size, num_tokens, hidden_size) hidden_states = encoder_outputs["last_hidden_state"] # (batch_size, hidden_size) pooled_hidden_states = (hidden_states * mask.unsqueeze(-1)).sum(1) / mask.sum(1).unsqueeze(-1) return pooled_hidden_states.detach().cpu().numpy() raw_training_data = [] encoded_training_data = [] with torch.inference_mode(): batch = [] for line in tqdm.tqdm(open(args.training_data)): instance = json.loads(line) raw_training_data.append(instance) batch.append(instance["prompt_and_input"]) if len(batch) == args.encoding_batch_size: encoded_batch = encode_batch(batch) batch = [] encoded_training_data.append(encoded_batch) if batch: encoded_batch = encode_batch(batch) encoded_training_data.append(encoded_batch) training_data_matrix = numpy.concatenate(encoded_training_data) if args.apply_opq: print("Applying OPQ transform from the index") print("Loading index..") index = faiss.read_index(args.index) print("Done loading index") opq_matrix = faiss.downcast_VectorTransform(index.chain.at(0)) training_data_matrix = opq_matrix.apply(training_data_matrix) _, coreset_indices = kmeans_plusplus(training_data_matrix, args.num_shots) selected_shots = [raw_training_data[i] for i in coreset_indices] with open(args.selected_training_data, "w") as outfile: for instance in selected_shots: print(json.dumps(instance), file=outfile)
data-efficient-finetuning-main
scripts/select_few_shots.py
import json import sys stuff = {} file = open(sys.argv[1], 'r') for line in file: sample = json.loads(line) stuff[sample['query_id'][0]] = sample['answer'][0] with open('drop_preds.json', 'w') as f: json.dump(stuff, f)
data-efficient-finetuning-main
scripts/convert_allennlp_pred_to_drop_eval_format.py
""" A script to construct balanced random p3 sets. We fully balance this and uniformly sample from the list of tasks, then sample a random input from this task. Note that this does not fully match t0 training (which only lightly balances dataset sizes). """ import torch import json import os import pickle from tqdm import tqdm from collections import defaultdict import numpy from scipy.spatial.distance import mahalanobis from sklearn import mixture from sklearn.cluster import AgglomerativeClustering from sklearn.decomposition import PCA from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import gzip import random import argparse parser = argparse.ArgumentParser() parser.add_argument("--p3_data_file", type=str, required=True) parser.add_argument("--p3_attribution_file", type=str, required=True) parser.add_argument("--p3_dataset_mapping_file", type=str, required=True) parser.add_argument("--num_samples", default=10000) parser.add_argument('--output_folder', default='retrieve/rand_balanced') parser.add_argument("--seed", type=int, default=42) args = parser.parse_args() rand = random.Random(args.seed) p3_data = gzip.open(args.p3_data_file, mode='r') p3_attribution = gzip.open(args.p3_attribution_file, 'r') mapping = json.load(open(args.p3_dataset_mapping_file, 'r')) num_samples = [] dataset_to_idxs = defaultdict(list) all_datasets = list(mapping.keys()) for idx, line in p3_attribution: dataset_and_prompt, _, _ = line.strip().split('\t') dataset_to_idxs[dataset_and_prompt].append(idx) samples_to_idxes = defaultdict(set) for num_sample in num_samples: idxes = set() for i in range(0, num_sample): # randomly sample dataset dataset = rand.choice(all_datasets) # randomly sample prompt dataset_and_prompt = rand.choice(mapping[dataset]) # randomly sample idx instance_idx = rand.choice(dataset_to_idxs[dataset_and_prompt]) idxes.add(instance_idx) samples_to_idxes[num_sample] = idxes # dump everything out outfiles = [open(f'{n}_rand.json' for n in num_samples)] for idx, sample in enumerate(p3_data): for j, n in enumerate(num_samples): if idx in num_samples[n]: instance = json.loads(sample) instance["index_id"] = i print(json.dumps(instance), file=outfiles[j])
data-efficient-finetuning-main
scripts/construct_balanced_sample.py
import argparse import random import faiss import numpy from sklearn.cluster import kmeans_plusplus import torch import json import gzip import tqdm from collections import defaultdict from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import sys import os sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from attribution.qasper_reader import QasperEvidencePromptReader parser = argparse.ArgumentParser() parser.add_argument("--dev_data", type=str) parser.add_argument("--negative_sample_ratio", type=float, default=1.0) parser.add_argument("--index", type=str) parser.add_argument("--model", type=str) parser.add_argument("--search_output", type=str, required=True) parser.add_argument("--batch_size", type=int, default=4) parser.add_argument("--num_neighbors_search", type=int, default=500) parser.add_argument("--p3_data", type=str, help="If provided, will write training data to `training_data`") parser.add_argument("--training_data", type=str) parser.add_argument("--num_neighbors_write", type=int, default=500) parser.add_argument("--write_positive_neighbors_only", action="store_true", help="If set, will write neighbors of positive dev instances alone") parser.add_argument("--coreset_size", type=int, default=None, help="If set, will use KMeans++ to select these many diverse points") parser.add_argument("--p3_dataset_indices", type=str, help="If provided, will compute P3 dataset stats") parser.add_argument("--stats_log", type=str, help="File to write the dataset stats") parser.add_argument("--cuda_devices", type=int, nargs="+") parser.add_argument("--retrieval_set_size", type=int, default=1000) args = parser.parse_args() indices_frequencies = defaultdict(int) index = None if not os.path.exists(args.search_output): assert args.dev_data is not None assert args.index is not None assert args.model is not None reader = QasperEvidencePromptReader(model_name=args.model, negative_sample_ratio=args.negative_sample_ratio) tokenizer = AutoTokenizer.from_pretrained(args.model) model = AutoModelForSeq2SeqLM.from_pretrained(args.model) cuda_devices = [0] print(f"Using CUDA devices {cuda_devices}") if torch.cuda.is_available(): model.cuda(device=cuda_devices[0]) model.eval() encoder = torch.nn.DataParallel(model.encoder, device_ids=cuda_devices) print('loading index... (make take some time)') index = faiss.read_index(args.index) print('loaded index!') def query_index(queries): input_data = tokenizer.batch_encode_plus(queries, return_tensors="pt", padding=True) input_ids = input_data['input_ids'] # (batch_size, num_tokens) mask = input_data['attention_mask'] if torch.cuda.is_available(): input_ids = input_ids.cuda(device=cuda_devices[0]) mask = mask.cuda(device=cuda_devices[0]) encoder_outputs = encoder(input_ids=input_ids, attention_mask=mask, return_dict=True) # (batch_size, num_tokens, hidden_size) hidden_states = encoder_outputs["last_hidden_state"] # (batch_size, hidden_size) pooled_hidden_states = (hidden_states * mask.unsqueeze(-1)).sum(1) / mask.sum(1).unsqueeze(-1) pooled_hidden_states_np = pooled_hidden_states.detach().cpu().numpy() return index.search(pooled_hidden_states_np, k=args.num_neighbors_search) instances = [i for i in reader.read(args.dev_data)] random.shuffle(instances) instances = instances[:args.retrieval_set_size] outputfile = open(args.search_output, "w") batch = [] with torch.inference_mode(): for instance in tqdm.tqdm(instances): #tqdm.tqdm(reader.read(args.dev_data)): metadata = instance.fields['metadata'].metadata batch.append({"question_id": metadata["question_id"], "query": metadata["query"], "paragraph_index": metadata["paragraph_index"], "target": metadata["target"]}) if len(batch) == args.batch_size: batch_distances, batch_indices = query_index([i["query"] for i in batch]) for instance_, distances, indices in zip(batch, batch_distances, batch_indices): ids = [int(id_) for id_ in indices] if not args.write_positive_neighbors_only or "Yes" in instance_["target"]: for id_ in ids[:args.num_neighbors_write]: indices_frequencies[id_] += 1 distances = [float(distance) for distance in distances] datum = {"question_id": instance_["question_id"], "paragraph_index": instance_["paragraph_index"], "target": instance_["target"], "ids": ids, "distances": distances} print(json.dumps(datum), file=outputfile) outputfile.flush() batch = [] print("\nDone searching.") else: print("Search output exists. Reading it instead of querying the index.") retrieved_data = [json.loads(line) for line in open(args.search_output)] for datum in retrieved_data: if not args.write_positive_neighbors_only or "Yes" in datum["target"]: for id_ in datum["ids"][:args.num_neighbors_write]: indices_frequencies[id_] += 1 if args.coreset_size is not None: print(f"Filtering down the retrieved training set to {args.coreset_size} points") if index is None: print("Loading index..") index = faiss.read_index(args.index) print("Done loading index") retrieved_indices = list(indices_frequencies.keys()) # Inner index retrieved_vectors = numpy.asarray([index.index.reconstruct(i) for i in retrieved_indices]) _, coreset_indices = kmeans_plusplus(retrieved_vectors, args.coreset_size) print("Finished running KMeans++") selected_indices = [retrieved_indices[i] for i in coreset_indices] indices_frequencies = {i: indices_frequencies[i] for i in selected_indices} max_freq_indices = sorted(indices_frequencies.items(), key=lambda x: x[1], reverse=True)[:10] print(f"\nMost frequent indices: {max_freq_indices}") max_index = max(indices_frequencies.keys()) if args.p3_data: with open(args.training_data, "w") as outfile: for i, line in tqdm.tqdm(enumerate(open(args.p3_data, "rt"))): if i > max_index: break if i in indices_frequencies: instance = json.loads(line) instance["index_id"] = i instance["attribution_frequency"] = indices_frequencies[i] print(json.dumps(instance), file=outfile) print("\nDone writing training data") if args.p3_dataset_indices: dataset_stats = defaultdict(lambda: {"seen": 0, "attributed": 0}) for i, line in enumerate(gzip.open(args.p3_dataset_indices, "rt")): if i > max_index: break dataset_name, _, _ = line.strip().split("\t") dataset_stats[dataset_name]["seen"] += 1 if i in indices_frequencies: dataset_stats[dataset_name]["attributed"] += 1 num_all_seen = sum(x["seen"] for x in dataset_stats.values()) num_all_attributed = sum(x["attributed"] for x in dataset_stats.values()) stats = {} for d in dataset_stats: stats[d] = {"seen": dataset_stats[d]["seen"] / num_all_seen, "attributed": dataset_stats[d]["attributed"] / num_all_attributed} json.dump(stats, open(args.stats_log, "w"), indent=2)
data-efficient-finetuning-main
scripts/retrieve_training_data.py
#!/usr/bin/python from collections import defaultdict from typing import Any, Dict, List, Set, Tuple, Union, Optional import json import argparse import string import re import numpy as np from scipy.optimize import linear_sum_assignment # From here through _normalize_answer was originally copied from: # https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/ # Then cleaned up and modified a bit. def _remove_articles(text: str) -> str: regex = re.compile(r"\b(a|an|the)\b", re.UNICODE) return re.sub(regex, " ", text) def _white_space_fix(text: str) -> str: return " ".join(text.split()) EXCLUDE = set(string.punctuation) def _remove_punc(text: str) -> str: if not _is_number(text): return "".join(ch for ch in text if ch not in EXCLUDE) else: return text def _lower(text: str) -> str: return text.lower() def _tokenize(text: str) -> List[str]: return re.split(" |-", text) def _normalize_answer(text: str) -> str: """Lower text and remove punctuation, articles and extra whitespace.""" parts = [ _white_space_fix( _remove_articles(_normalize_number(_remove_punc(_lower(token)))) ) for token in _tokenize(text) ] parts = [part for part in parts if part.strip()] normalized = " ".join(parts).strip() return normalized def _is_number(text: str) -> bool: try: float(text) return True except ValueError: return False def _normalize_number(text: str) -> str: if _is_number(text): return str(float(text)) else: return text def _answer_to_bags( answer: Union[str, List[str], Tuple[str, ...]] ) -> Tuple[List[str], List[Set[str]]]: if isinstance(answer, (list, tuple)): raw_spans = answer else: raw_spans = [answer] normalized_spans: List[str] = [] token_bags = [] for raw_span in raw_spans: normalized_span = _normalize_answer(raw_span) normalized_spans.append(normalized_span) token_bags.append(set(normalized_span.split())) return normalized_spans, token_bags def _align_bags(predicted: List[Set[str]], gold: List[Set[str]]) -> List[float]: """ Takes gold and predicted answer sets and first finds the optimal 1-1 alignment between them and gets maximum metric values over all the answers. """ scores = np.zeros([len(gold), len(predicted)]) for gold_index, gold_item in enumerate(gold): for pred_index, pred_item in enumerate(predicted): if _match_numbers_if_present(gold_item, pred_item): scores[gold_index, pred_index] = _compute_f1(pred_item, gold_item) row_ind, col_ind = linear_sum_assignment(-scores) max_scores = np.zeros([max(len(gold), len(predicted))]) for row, column in zip(row_ind, col_ind): max_scores[row] = max(max_scores[row], scores[row, column]) return max_scores def _compute_f1(predicted_bag: Set[str], gold_bag: Set[str]) -> float: intersection = len(gold_bag.intersection(predicted_bag)) if not predicted_bag: precision = 1.0 else: precision = intersection / float(len(predicted_bag)) if not gold_bag: recall = 1.0 else: recall = intersection / float(len(gold_bag)) f1 = ( (2 * precision * recall) / (precision + recall) if not (precision == 0.0 and recall == 0.0) else 0.0 ) return f1 def _match_numbers_if_present(gold_bag: Set[str], predicted_bag: Set[str]) -> bool: gold_numbers = set() predicted_numbers = set() for word in gold_bag: if _is_number(word): gold_numbers.add(word) for word in predicted_bag: if _is_number(word): predicted_numbers.add(word) if (not gold_numbers) or gold_numbers.intersection(predicted_numbers): return True return False def get_metrics( predicted: Union[str, List[str], Tuple[str, ...]], gold: Union[str, List[str], Tuple[str, ...]], ) -> Tuple[float, float]: """ Takes a predicted answer and a gold answer (that are both either a string or a list of strings), and returns exact match and the DROP F1 metric for the prediction. If you are writing a script for evaluating objects in memory (say, the output of predictions during validation, or while training), this is the function you want to call, after using :func:`answer_json_to_strings` when reading the gold answer from the released data file. """ predicted_bags = _answer_to_bags(predicted) gold_bags = _answer_to_bags(gold) if set(predicted_bags[0]) == set(gold_bags[0]) and len(predicted_bags[0]) == len( gold_bags[0] ): exact_match = 1.0 else: exact_match = 0.0 f1_per_bag = _align_bags(predicted_bags[1], gold_bags[1]) f1 = np.mean(f1_per_bag) f1 = round(f1, 2) return exact_match, f1 def answer_json_to_strings(answer: Dict[str, Any]) -> Tuple[Tuple[str, ...], str]: """ Takes an answer JSON blob from the DROP data release and converts it into strings used for evaluation. """ if "number" in answer and answer["number"]: return tuple([str(answer["number"])]), "number" elif "spans" in answer and answer["spans"]: return tuple(answer["spans"]), "span" if len(answer["spans"]) == 1 else "spans" elif "date" in answer: return ( tuple( [ "{0} {1} {2}".format( answer["date"]["day"], answer["date"]["month"], answer["date"]["year"], ) ] ), "date", ) else: raise ValueError( f"Answer type not found, should be one of number, spans or date at: {json.dumps(answer)}" ) def evaluate_json( annotations: Dict[str, Any], predicted_answers: Dict[str, Any] ) -> Tuple[float, float]: """ Takes gold annotations and predicted answers and evaluates the predictions for each question in the gold annotations. Both JSON dictionaries must have query_id keys, which are used to match predictions to gold annotations (note that these are somewhat deep in the JSON for the gold annotations, but must be top-level keys in the predicted answers). The ``annotations`` are assumed to have the format of the dev set in the DROP data release. The ``predicted_answers`` JSON must be a dictionary keyed by query id, where the value is a string (or list of strings) that is the answer. """ instance_exact_match = [] instance_f1 = [] # for each type as well type_to_em: Dict[str, List[float]] = defaultdict(list) type_to_f1: Dict[str, List[float]] = defaultdict(list) for _, annotation in annotations.items(): for qa_pair in annotation["qa_pairs"]: query_id = qa_pair["query_id"] max_em_score = 0.0 max_f1_score = 0.0 max_type = None if query_id in predicted_answers: predicted = predicted_answers[query_id] candidate_answers = [qa_pair["answer"]] if "validated_answers" in qa_pair and qa_pair["validated_answers"]: candidate_answers += qa_pair["validated_answers"] for answer in candidate_answers: gold_answer, gold_type = answer_json_to_strings(answer) em_score, f1_score = get_metrics(predicted, gold_answer) if gold_answer[0].strip() != "": max_em_score = max(max_em_score, em_score) max_f1_score = max(max_f1_score, f1_score) if max_em_score == em_score and max_f1_score == f1_score: max_type = gold_type else: print("Missing prediction for question: {}".format(query_id)) if qa_pair and qa_pair["answer"]: max_type = answer_json_to_strings(qa_pair["answer"])[1] else: max_type = "number" max_em_score = 0.0 max_f1_score = 0.0 instance_exact_match.append(max_em_score) instance_f1.append(max_f1_score) type_to_em[max_type].append(max_em_score) type_to_f1[max_type].append(max_f1_score) global_em = np.mean(instance_exact_match) global_f1 = np.mean(instance_f1) print("Exact-match accuracy {0:.2f}".format(global_em * 100)) print("F1 score {0:.2f}".format(global_f1 * 100)) print("{0:.2f} & {1:.2f}".format(global_em * 100, global_f1 * 100)) print("----") total = np.sum([len(v) for v in type_to_em.values()]) for typ in sorted(type_to_em.keys()): print( "{0}: {1} ({2:.2f}%)".format( typ, len(type_to_em[typ]), 100.0 * len(type_to_em[typ]) / total ) ) print(" Exact-match accuracy {0:.3f}".format(100.0 * np.mean(type_to_em[typ]))) print(" F1 score {0:.3f}".format(100.0 * np.mean(type_to_f1[typ]))) return global_em, global_f1 def evaluate_prediction_file( prediction_path: str, gold_path: str, output_path: Optional[str] = None ) -> Tuple[float, float]: """ Takes a prediction file and a gold file and evaluates the predictions for each question in the gold file. Both files must be json formatted and must have query_id keys, which are used to match predictions to gold annotations. The gold file is assumed to have the format of the dev set in the DROP data release. The prediction file must be a JSON dictionary keyed by query id, where the value is either a JSON dictionary with an "answer" key, or just a string (or list of strings) that is the answer. Writes a json with global_em and global_f1 metrics to file at the specified output path, unless None is passed as output path. """ predicted_answers = json.load(open(prediction_path, encoding="utf-8")) annotations = json.load(open(gold_path, encoding="utf-8")) global_em, global_f1 = evaluate_json(annotations, predicted_answers) # Output predictions to file if an output path is given if output_path is not None: output_dict = {"global_em": global_em, "global_f1": global_f1} with open(output_path, "w", encoding="utf8") as outfile: json.dump(output_dict, outfile) return (global_em, global_f1) if __name__ == "__main__": parser = argparse.ArgumentParser(description="evaluate on drop dataset") parser.add_argument( "--gold_path", type=str, required=False, default="drop_dataset_test.gold.json", help="location of the gold file", ) parser.add_argument( "--prediction_path", type=str, required=False, default="sample_predictions.json", help="location of the prediction file", ) parser.add_argument( "--output_path", type=str, required=False, default=None, help="location of the output metrics file", ) args = parser.parse_args() evaluate_prediction_file(args.prediction_path, args.gold_path, args.output_path)
data-efficient-finetuning-main
scripts/drop_eval_script.py
import argparse import faiss import numpy from sklearn.cluster import kmeans_plusplus import torch import json import gzip import tqdm from collections import defaultdict from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import sys import os sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from attribution.p3_jsonl_reader import P3ClusterReader parser = argparse.ArgumentParser() parser.add_argument("--dev_data", type=str) parser.add_argument("--negative_sample_ratio", type=float, default=1.0) parser.add_argument("--index", type=str) parser.add_argument("--model", type=str) parser.add_argument("--search_output", type=str, required=True) parser.add_argument("--batch_size", type=int, default=4) parser.add_argument("--num_neighbors_search", type=int, default=1000) parser.add_argument("--p3_data", type=str, help="If provided, will write training data to `training_data`") parser.add_argument("--training_data", type=str) parser.add_argument("--num_neighbors_write", type=int, default=1000) parser.add_argument("--write_positive_neighbors_only", action="store_true", help="If set, will write neighbors of positive dev instances alone") parser.add_argument("--coreset_size", type=int, default=None, help="If set, will use KMeans++ to select these many diverse points") parser.add_argument("--p3_dataset_indices", type=str, help="If provided, will compute P3 dataset stats") parser.add_argument("--stats_log", type=str, help="File to write the dataset stats") parser.add_argument("--cuda_devices", type=int, nargs="+") parser.add_argument("--retrieval_set_size", type=int, default=1000) args = parser.parse_args() indices_frequencies = defaultdict(int) index = None if not os.path.exists(args.search_output): assert args.dev_data is not None assert args.index is not None assert args.model is not None reader = P3ClusterReader(max_query_length=1024, return_original_input=True) tokenizer = AutoTokenizer.from_pretrained(args.model) model = AutoModelForSeq2SeqLM.from_pretrained(args.model) cuda_devices = [0] print(f"Using CUDA devices {cuda_devices}") if torch.cuda.is_available(): model.cuda(device=cuda_devices[0]) model.eval() encoder = torch.nn.DataParallel(model.encoder, device_ids=cuda_devices) print('loading index... (make take some time)') index = faiss.read_index(args.index) print('loaded index!') def query_index(queries): input_data = tokenizer.batch_encode_plus(queries, return_tensors="pt", padding=True) input_ids = input_data['input_ids'] # (batch_size, num_tokens) mask = input_data['attention_mask'] if torch.cuda.is_available(): input_ids = input_ids.cuda(device=cuda_devices[0]) mask = mask.cuda(device=cuda_devices[0]) encoder_outputs = encoder(input_ids=input_ids, attention_mask=mask, return_dict=True) # (batch_size, num_tokens, hidden_size) hidden_states = encoder_outputs["last_hidden_state"] # (batch_size, hidden_size) pooled_hidden_states = (hidden_states * mask.unsqueeze(-1)).sum(1) / mask.sum(1).unsqueeze(-1) pooled_hidden_states_np = pooled_hidden_states.detach().cpu().numpy() return index.search(pooled_hidden_states_np, k=args.num_neighbors_search) instances = [i for i in reader.read(args.dev_data)] import random random.Random(42).shuffle(instances) instances = instances[:args.retrieval_set_size] outputfile = open(args.search_output, "w") batch = [] with torch.inference_mode(): for instance in tqdm.tqdm(instances): #tqdm.tqdm(reader.read(args.dev_data)): batch.append({"query": instance["pretokenized_input"]}) if len(batch) == args.batch_size: batch_distances, batch_indices = query_index([i["query"] for i in batch]) for instance_, distances, indices in zip(batch, batch_distances, batch_indices): ids = [int(id_) for id_ in indices] if not args.write_positive_neighbors_only or "Yes" in instance_["target"]: for id_ in ids[:args.num_neighbors_write]: indices_frequencies[id_] += 1 distances = [float(distance) for distance in distances] datum = {"input": instance["pretokenized_input"], "ids": ids, "distances": distances} print(json.dumps(datum), file=outputfile) outputfile.flush() batch = [] print("\nDone searching.") else: print("Search output exists. Reading it instead of querying the index.") retrieved_data = [json.loads(line) for line in open(args.search_output)] for datum in retrieved_data: if not args.write_positive_neighbors_only or "Yes" in datum["target"]: for id_ in datum["ids"][:args.num_neighbors_write]: indices_frequencies[id_] += 1 if args.coreset_size is not None: print(f"Filtering down the retrieved training set to {args.coreset_size} points") if index is None: print("Loading index..") index = faiss.read_index(args.index) print("Done loading index") retrieved_indices = list(indices_frequencies.keys()) # Inner index retrieved_vectors = numpy.asarray([index.index.reconstruct(i) for i in retrieved_indices]) _, coreset_indices = kmeans_plusplus(retrieved_vectors, args.coreset_size) print("Finished running KMeans++") selected_indices = [retrieved_indices[i] for i in coreset_indices] indices_frequencies = {i: indices_frequencies[i] for i in selected_indices} max_freq_indices = sorted(indices_frequencies.items(), key=lambda x: x[1], reverse=True)[:10] print(f"\nMost frequent indices: {max_freq_indices}") max_index = max(indices_frequencies.keys()) if args.p3_data: with open(args.training_data, "w") as outfile: for i, line in tqdm.tqdm(enumerate(open(args.p3_data, "rt"))): if i > max_index: break if i in indices_frequencies: instance = json.loads(line) instance["index_id"] = i instance["attribution_frequency"] = indices_frequencies[i] print(json.dumps(instance), file=outfile) print("\nDone writing training data") if args.p3_dataset_indices: dataset_stats = defaultdict(lambda: {"seen": 0, "attributed": 0}) for i, line in enumerate(gzip.open(args.p3_dataset_indices, "rt")): if i > max_index: break dataset_name, _, _ = line.strip().split("\t") dataset_stats[dataset_name]["seen"] += 1 if i in indices_frequencies: dataset_stats[dataset_name]["attributed"] += 1 num_all_seen = sum(x["seen"] for x in dataset_stats.values()) num_all_attributed = sum(x["attributed"] for x in dataset_stats.values()) stats = {} for d in dataset_stats: stats[d] = {"seen": dataset_stats[d]["seen"] / num_all_seen, "attributed": dataset_stats[d]["attributed"] / num_all_attributed} json.dump(stats, open(args.stats_log, "w"), indent=2)
data-efficient-finetuning-main
scripts/retrieve_training_data_ni.py
import gzip import json import random from tqdm import tqdm import sys file = sys.argv[1] outfile = open(sys.argv[1][:-6] + '_index.txt', 'w') # start by loading the file into memory with open(file) as f: for sample in f: outfile.write(f'{json.loads(sample)["index_id"]}\n')
data-efficient-finetuning-main
scripts/grab_instance_idxes.py
import json from collections import defaultdict data = json.load(open("./t0_cluster_data.json")) cluster_stats = {} dataset_to_clusters = defaultdict(list) for cluster_id, cluster_data in data.items(): input_set = set([x["input"] for x in cluster_data]) dataset_set = set([x["dataset"] for x in cluster_data]) cluster_stats[cluster_id] = { "size": len(input_set), "datasets": sorted(list(dataset_set)) } for dataset in dataset_set: dataset_to_clusters[dataset].append(cluster_id) with open("t0_cluster_stats.json", "w") as outfile: json.dump({"clusters": cluster_stats, "dataset_to_cluster": dataset_to_clusters}, outfile, indent=2)
data-efficient-finetuning-main
scripts/compute_stats.py
import json import os import tqdm import gzip import argparse from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import faiss import numpy import torch parser = argparse.ArgumentParser() parser.add_argument("--model", type=str, required=True) parser.add_argument("--output_prefix", type=str, required=True) parser.add_argument("--index_type", type=str, default="hnsw") parser.add_argument("--max_batch_tokens", type=int, default=4000) parser.add_argument("--add_interval", type=int, default=1000, help="Each index.add() will add add_interval points") parser.add_argument("--write_interval", type=int, default=2000000, help="Each time after indexing roughly these many points the index will be written to disk") parser.add_argument("--neighbors_per_node", type=int, default=512, help="HNSW parameter, default from DPR paper") parser.add_argument("--construction_depth", type=int, default=200, help="HNSW parameter, default from DPR paper") parser.add_argument("--search_depth", type=int, default=128, help="HNSW parameter, default from DPR paper") parser.add_argument("--encoding_dim", type=int, default=512, help="Reduced dimensionality for OPQ") parser.add_argument("--sq_train_size", type=int, default=1000000) parser.add_argument("--device_ids", type=int, nargs="+") args = parser.parse_args() index_factory_string = f"OPQ8_{args.encoding_dim},HNSW{args.neighbors_per_node},PQ8" index_prefix = f"ni_raw_{args.model.replace('/', '-')}_{index_factory_string.replace(',', '-')}" with open(os.path.join(args.output_prefix, f"{index_prefix}_hyperparameters.json"), "w") as outfile: json.dump( { "neighbors_per_node": args.neighbors_per_node, "construction_depth": args.construction_depth, "search_depth": args.search_depth, "encoding_dim": args.encoding_dim, "sq_train_size": args.sq_train_size }, outfile) text_instances_file = os.path.join(args.output_prefix, "ni_dump_raw.jsonl") assert os.path.exists(text_instances_file), "Text instances file does not exist!" tokenizer = AutoTokenizer.from_pretrained(args.model) model = AutoModelForSeq2SeqLM.from_pretrained(args.model) model.eval() if torch.cuda.is_available(): model.cuda(device=args.device_ids[0]) num_gpus_available = len(args.device_ids) print(f"Using DataParallel for the encoder on {num_gpus_available} GPUs with ids {args.device_ids}") encoder = torch.nn.DataParallel(model.encoder, device_ids=args.device_ids) else: encoder = model.encoder if text_instances_file.endswith(".gz"): instances_file_ptr = gzip.open(text_instances_file, "rt") else: instances_file_ptr = open(text_instances_file, "r") def get_batches(num_instances_to_skip: int=0): batch = [] num_batch_tokens = 0 max_num_batch_tokens = args.max_batch_tokens num_batches_yielded = 0 num_instances_yielded = 0 num_truncated_instances = 0 num_instances_read = 0 started_batching = False while True: line = instances_file_ptr.readline() if not line: break num_instances_read += 1 if num_instances_read <= num_instances_to_skip: continue if not started_batching: print(f"Starting to batch instances from instance number: {num_instances_read}") started_batching = True instance = json.loads(line) input_ = instance["input"] tokens = tokenizer.tokenize(input_) num_tokens = len(tokens) if num_tokens > 1024: #tokenizer.max_len_single_sentence: num_truncated_instances += 1 if num_tokens + num_batch_tokens < max_num_batch_tokens: batch.append(input_) num_batch_tokens += num_tokens else: yield batch num_instances_yielded += len(batch) num_batches_yielded += 1 if num_batches_yielded % 10000 == 0: print(f"Average batch size: {num_instances_yielded / num_batches_yielded}") print(f"Truncated instances so far: {num_truncated_instances}") batch = [input_] num_batch_tokens = num_tokens if batch: yield batch print(f"Average batch size: {num_instances_yielded / num_batches_yielded}") print(f"Truncated instances so far: {num_truncated_instances}") index_file = os.path.join( args.output_prefix, f"{index_prefix}.index" ) index = None last_written_index_size = 0 if os.path.exists(index_file): print(f"Index file exists. Reading {index_file}") index = faiss.read_index(index_file) last_written_index_size = index.ntotal print(f"Done reading index of size {last_written_index_size}") else: print(f"Will write index to {index_file}") aggregated_encoded_batches = [] print("Computing representations and indexing them") with torch.inference_mode(): for batch in tqdm.tqdm(get_batches(last_written_index_size)): input_data = tokenizer.batch_encode_plus(batch, return_tensors="pt", padding=True, truncation=True, max_length=1024) input_ids = input_data['input_ids'] # (batch_size, num_tokens) mask = input_data['attention_mask'] if torch.cuda.is_available(): input_ids = input_ids.cuda(device=args.device_ids[0]) mask = mask.cuda(device=args.device_ids[0]) encoder_outputs = encoder(input_ids=input_ids, attention_mask=mask, return_dict=True) # (batch_size, num_tokens, hidden_size) hidden_states = encoder_outputs["last_hidden_state"] # (batch_size, hidden_size) pooled_hidden_states = (hidden_states * mask.unsqueeze(-1)).sum(1) / mask.sum(1).unsqueeze(-1) pooled_hidden_states_np = pooled_hidden_states.detach().cpu().numpy() aggregated_encoded_batches.append(pooled_hidden_states_np) if index is None: hidden_size = pooled_hidden_states_np.shape[1] index = faiss.index_factory(hidden_size, index_factory_string) # We cannot access the HNSW parameters directly. `index` is of type IndexPreTransform. We need to downcast # the actual index to do this. hnswpq_index = faiss.downcast_index(index.index) hnswpq_index.hnsw.efConstruction = args.construction_depth hnswpq_index.hnsw.efSearch = args.search_depth if not index.is_trained and sum([x.shape[0] for x in aggregated_encoded_batches]) >= args.sq_train_size: print("Training index") data_to_train = numpy.concatenate(aggregated_encoded_batches) index.train(data_to_train) if index.is_trained and sum([x.shape[0] for x in aggregated_encoded_batches]) >= args.add_interval: data_to_add = numpy.concatenate(aggregated_encoded_batches) index.add(data_to_add) print(f"Added {data_to_add.shape[0]} points to index") aggregated_encoded_batches = [] index_size = index.ntotal if index_size - last_written_index_size >= args.write_interval: print(f"Writing index of size {index_size}") faiss.write_index(index, index_file) last_written_index_size = index_size if aggregated_encoded_batches: # only happens for small indices if not index.is_trained: print("Training index") data_to_train = numpy.concatenate(aggregated_encoded_batches) index.train(data_to_train) data_to_add = numpy.concatenate(aggregated_encoded_batches) index.add(data_to_add) print(f"Added {data_to_add.shape[0]} points to index") faiss.write_index(index, index_file)
data-efficient-finetuning-main
scripts/index_ni_train_reps.py
import gzip import json import random from tqdm import tqdm import sys outfile_path = sys.argv[1] p3_data = sys.argv[2] # fill in these values with yours. outfiles = ['qasper']#'anli_r1', 'anli_r2', 'anli_r3', 'casehold', 'cb', 'copa', 'drop', 'hellaswag', 'rte', 'story_cloze', 'wic', 'winogrande', 'wsc'] indices = [58019]#721247, 755358, 1215546, 70622, 214031, 175802, 193014, 296924, 1049514, 205667, 197293, 189911, 132661] max_index = 102864371 files = [open(f'{outfile_path}/{o}_random.jsonl', "w") for o in outfiles] # generate random indices random_indices = [] for idx in tqdm(indices): cur_idxes = [] used = set() while len(cur_idxes) < idx: rand_int = random.randrange(max_index) if rand_int not in used: cur_idxes.append(rand_int) used.add(rand_int) random_indices.append(set(cur_idxes)) for i, line in tqdm(enumerate(open(p3_data))): for j, idx_set in enumerate(random_indices): if i in idx_set: instance = json.loads(line) print(json.dumps(instance), file=files[j]) print("\nDone writing random data")
data-efficient-finetuning-main
scripts/get_random_indices.py