python_code
stringlengths
0
187k
repo_name
stringlengths
8
46
file_path
stringlengths
6
135
allennlp-models-main
allennlp_models/__init__.py
# flake8: noqa: F403 from allennlp_models.classification.models import * from allennlp_models.classification.dataset_readers import *
allennlp-models-main
allennlp_models/classification/__init__.py
from allennlp_models.classification.dataset_readers.stanford_sentiment_tree_bank import ( StanfordSentimentTreeBankDatasetReader, ) from allennlp_models.classification.dataset_readers.boolq import BoolQDatasetReader
allennlp-models-main
allennlp_models/classification/dataset_readers/__init__.py
import json import logging from typing import Optional, Iterable, Dict from allennlp.common.file_utils import cached_path from allennlp.data import DatasetReader, Tokenizer, TokenIndexer, Instance, Field from allennlp.data.tokenizers import WhitespaceTokenizer from allennlp.data.token_indexers import SingleIdTokenIndexer from allennlp.data.fields import TextField, LabelField logger = logging.getLogger(__name__) @DatasetReader.register("boolq") class BoolQDatasetReader(DatasetReader): """ This DatasetReader is designed to read in the BoolQ data for binary QA task. It returns a dataset of instances with the following fields: The output of `read` is a list of `Instance` s with the fields: tokens : `TextField` and label : `LabelField` Registered as a `DatasetReader` with name "boolq". # Parameters tokenizer: `Tokenizer`, optional (default=`WhitespaceTokenizer()`) Tokenizer to use to split the input sequences into words or other kinds of tokens. token_indexers : `Dict[str, TokenIndexer]`, optional (default=`{"tokens": SingleIdTokenIndexer()}`) We use this to define the input representation for the text. See :class:`TokenIndexer`. """ def __init__( self, tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None, **kwargs ): super().__init__( manual_distributed_sharding=True, manual_multiprocess_sharding=True, **kwargs ) self.tokenizer = tokenizer or WhitespaceTokenizer() self.token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} def _read(self, file_path) -> Iterable[Instance]: file_path = cached_path(file_path, extract_archive=True) with open(file_path) as f: logger.info("Reading instances from lines in file at: %s", file_path) for line in self.shard_iterable(f): record = json.loads(line.strip()) yield self.text_to_instance( passage=record.get("passage"), question=record.get("question"), label=record.get("label"), ) def text_to_instance( # type: ignore self, passage: str, question: str, label: Optional[bool] = None ) -> Instance: """ We take the passage and the question as input, tokenize and concat them. # Parameters passage : `str`, required. The passage in a given BoolQ record. question : `str`, required. The passage in a given BoolQ record. label : `bool`, optional, (default = `None`). The label for the passage and the question. # Returns An `Instance` containing the following fields: tokens : `TextField` The tokens in the concatenation of the passage and the question. label : `LabelField` The answer to the question. """ fields: Dict[str, Field] = {} # 80% of the question length in the training set is less than 60, 512 - 4 - 60 = 448. passage_tokens = self.tokenizer.tokenize(passage)[:448] question_tokens = self.tokenizer.tokenize(question)[:60] tokens = self.tokenizer.add_special_tokens(passage_tokens, question_tokens) text_field = TextField(tokens) fields["tokens"] = text_field if label is not None: label_field = LabelField(int(label), skip_indexing=True) fields["label"] = label_field return Instance(fields) def apply_token_indexers(self, instance: Instance) -> None: instance.fields["tokens"].token_indexers = self.token_indexers # type: ignore
allennlp-models-main
allennlp_models/classification/dataset_readers/boolq.py
from typing import Dict, List, Optional, Union import logging from allennlp.data import Tokenizer from nltk.tree import Tree from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import LabelField, TextField, Field from allennlp.data.instance import Instance from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer from allennlp.data.tokenizers import Token from allennlp.common.checks import ConfigurationError logger = logging.getLogger(__name__) @DatasetReader.register("sst_tokens") class StanfordSentimentTreeBankDatasetReader(DatasetReader): """ Reads tokens and their sentiment labels from the Stanford Sentiment Treebank. The Stanford Sentiment Treebank comes with labels from 0 to 4. `"5-class"` uses these labels as is. `"3-class"` converts the problem into one of identifying whether a sentence is negative, positive, or neutral sentiment. In this case, 0 and 1 are grouped as label 0 (negative sentiment), 2 is converted to label 1 (neutral sentiment) and 3 and 4 are grouped as label 2 (positive sentiment). `"2-class"` turns it into a binary classification problem between positive and negative sentiment. 0 and 1 are grouped as the label 0 (negative sentiment), 2 (neutral) is discarded, and 3 and 4 are grouped as the label 1 (positive sentiment). Expected format for each input line: a linearized tree, where nodes are labeled by their sentiment. The output of `read` is a list of `Instance` s with the fields: tokens : `TextField` and label : `LabelField` Registered as a `DatasetReader` with name "sst_tokens". # Parameters token_indexers : `Dict[str, TokenIndexer]`, optional (default=`{"tokens": SingleIdTokenIndexer()}`) We use this to define the input representation for the text. See :class:`TokenIndexer`. use_subtrees : `bool`, optional, (default = `False`) Whether or not to use sentiment-tagged subtrees. granularity : `str`, optional (default = `"5-class"`) One of `"5-class"`, `"3-class"`, or `"2-class"`, indicating the number of sentiment labels to use. """ def __init__( self, token_indexers: Dict[str, TokenIndexer] = None, tokenizer: Optional[Tokenizer] = None, use_subtrees: bool = False, granularity: str = "5-class", **kwargs, ) -> None: super().__init__(**kwargs) self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} self._tokenizer = tokenizer self._use_subtrees = use_subtrees allowed_granularities = ["5-class", "3-class", "2-class"] if granularity not in allowed_granularities: raise ConfigurationError( "granularity is {}, but expected one of: {}".format( granularity, allowed_granularities ) ) self._granularity = granularity def _read(self, file_path): with open(cached_path(file_path), "r") as data_file: logger.info("Reading instances from lines in file at: %s", file_path) for line in data_file.readlines(): line = line.strip("\n") if not line: continue parsed_line = Tree.fromstring(line) if self._use_subtrees: for subtree in parsed_line.subtrees(): instance = self.text_to_instance(subtree.leaves(), subtree.label()) if instance is not None: yield instance else: instance = self.text_to_instance(parsed_line.leaves(), parsed_line.label()) if instance is not None: yield instance def text_to_instance(self, tokens: List[str], sentiment: str = None) -> Optional[Instance]: """ We take `pre-tokenized` input here, because we might not have a tokenizer in this class. # Parameters tokens : `List[str]`, required. The tokens in a given sentence. sentiment : `str`, optional, (default = `None`). The sentiment for this sentence. # Returns An `Instance` containing the following fields: tokens : `TextField` The tokens in the sentence or phrase. label : `LabelField` The sentiment label of the sentence or phrase. """ if isinstance(tokens, str): assert self._tokenizer is not None tokens = [tokens] if self._tokenizer is None: def make_token(t: Union[str, Token]): if isinstance(t, str): return Token(t) elif isinstance(t, Token): return t else: raise ValueError("Tokens must be either str or Token.") tokens = [make_token(x) for x in tokens] else: tokens = self._tokenizer.tokenize(" ".join(tokens)) text_field = TextField(tokens) fields: Dict[str, Field] = {"tokens": text_field} if sentiment is not None: # 0 and 1 are negative sentiment, 2 is neutral, and 3 and 4 are positive sentiment # In 5-class, we use labels as is. # 3-class reduces the granularity, and only asks the model to predict # negative, neutral, or positive. # 2-class further reduces the granularity by only asking the model to # predict whether an instance is negative or positive. if self._granularity == "3-class": if int(sentiment) < 2: sentiment = "0" elif int(sentiment) == 2: sentiment = "1" else: sentiment = "2" elif self._granularity == "2-class": if int(sentiment) < 2: sentiment = "0" elif int(sentiment) == 2: return None else: sentiment = "1" fields["label"] = LabelField(sentiment) return Instance(fields) def apply_token_indexers(self, instance: Instance) -> None: instance.fields["tokens"].token_indexers = self._token_indexers
allennlp-models-main
allennlp_models/classification/dataset_readers/stanford_sentiment_tree_bank.py
import logging from typing import Dict, Optional import torch from allennlp.data import Vocabulary from allennlp.models import Model from allennlp.modules.transformer import TransformerEmbeddings, TransformerStack, TransformerPooler from torch.nn import Dropout logger = logging.getLogger(__name__) @Model.register("transformer_classification_tt") class TransformerClassificationTT(Model): """ This class implements a classification patterned after the proposed model in [RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al)] (https://api.semanticscholar.org/CorpusID:198953378). Parameters ---------- vocab : ``Vocabulary`` transformer_model : ``str``, optional (default=``"roberta-large"``) This model chooses the embedder according to this setting. You probably want to make sure this matches the setting in the reader. """ def __init__( self, vocab: Vocabulary, transformer_model: str = "roberta-large", num_labels: Optional[int] = None, label_namespace: str = "labels", override_weights_file: Optional[str] = None, **kwargs, ) -> None: super().__init__(vocab, **kwargs) transformer_kwargs = { "model_name": transformer_model, "weights_path": override_weights_file, } self.embeddings = TransformerEmbeddings.from_pretrained_module(**transformer_kwargs) self.transformer_stack = TransformerStack.from_pretrained_module(**transformer_kwargs) self.pooler = TransformerPooler.from_pretrained_module(**transformer_kwargs) self.pooler_dropout = Dropout(p=0.1) self.label_tokens = vocab.get_index_to_token_vocabulary(label_namespace) if num_labels is None: num_labels = len(self.label_tokens) self.linear_layer = torch.nn.Linear(self.pooler.get_output_dim(), num_labels) self.linear_layer.weight.data.normal_(mean=0.0, std=0.02) self.linear_layer.bias.data.zero_() from allennlp.training.metrics import CategoricalAccuracy, FBetaMeasure self.loss = torch.nn.CrossEntropyLoss() self.acc = CategoricalAccuracy() self.f1 = FBetaMeasure() def forward( # type: ignore self, text: Dict[str, torch.Tensor], label: Optional[torch.Tensor] = None, ) -> Dict[str, torch.Tensor]: """ Parameters ---------- text : ``Dict[str, torch.LongTensor]`` From a ``TensorTextField``. Contains the text to be classified. label : ``Optional[torch.LongTensor]`` From a ``LabelField``, specifies the true class of the instance Returns ------- An output dictionary consisting of: loss : ``torch.FloatTensor``, optional A scalar loss to be optimised. This is only returned when `correct_alternative` is not `None`. logits : ``torch.FloatTensor`` The logits for every possible answer choice """ embedded_alternatives = self.embeddings(**text) embedded_alternatives = self.transformer_stack( embedded_alternatives, text["attention_mask"] ) embedded_alternatives = self.pooler(embedded_alternatives.final_hidden_states) embedded_alternatives = self.pooler_dropout(embedded_alternatives) logits = self.linear_layer(embedded_alternatives) result = {"logits": logits, "answers": logits.argmax(1)} if label is not None: result["loss"] = self.loss(logits, label) self.acc(logits, label) self.f1(logits, label) return result def get_metrics(self, reset: bool = False) -> Dict[str, float]: result = {"acc": self.acc.get_metric(reset)} for metric_name, metrics_per_class in self.f1.get_metric(reset).items(): for class_index, value in enumerate(metrics_per_class): result[f"{self.label_tokens[class_index]}-{metric_name}"] = value return result
allennlp-models-main
allennlp_models/classification/models/transformer_classification_tt.py
from allennlp_models.classification.models.biattentive_classification_network import ( BiattentiveClassificationNetwork, ) from allennlp_models.classification.models.transformer_classification_tt import ( TransformerClassificationTT, )
allennlp-models-main
allennlp_models/classification/models/__init__.py
from typing import Dict, Union import numpy import torch from torch import nn import torch.nn.functional as F from allennlp.common.checks import check_dimensions_match, ConfigurationError from allennlp.data import TextFieldTensors, Vocabulary from allennlp.modules import Elmo, FeedForward, Maxout, Seq2SeqEncoder, TextFieldEmbedder from allennlp.models.model import Model from allennlp.nn import InitializerApplicator from allennlp.nn import util from allennlp.training.metrics import CategoricalAccuracy @Model.register("bcn") class BiattentiveClassificationNetwork(Model): """ This class implements the Biattentive Classification Network model described in section 5 of [Learned in Translation: Contextualized Word Vectors (NIPS 2017)](https://arxiv.org/abs/1708.00107) for text classification. We assume we're given a piece of text, and we predict some output label. At a high level, the model starts by embedding the tokens and running them through a feed-forward neural net (`pre_encode_feedforward`). Then, we encode these representations with a `Seq2SeqEncoder` (`encoder`). We run biattention on the encoder output representations (self-attention in this case, since the two representations that typically go into biattention are identical) and get out an attentive vector representation of the text. We combine this text representation with the encoder outputs computed earlier, and then run this through yet another `Seq2SeqEncoder` (the `integrator`). Lastly, we take the output of the integrator and max, min, mean, and self-attention pool to create a final representation, which is passed through a maxout network or some feed-forward layers to output a classification (`output_layer`). Registered as a `Model` with name "bcn". # Parameters vocab : `Vocabulary`, required A Vocabulary, required in order to compute sizes for input/output projections. text_field_embedder : `TextFieldEmbedder`, required Used to embed the `tokens` `TextField` we get as input to the model. embedding_dropout : `float` The amount of dropout to apply on the embeddings. pre_encode_feedforward : `FeedForward` A feedforward network that is run on the embedded tokens before they are passed to the encoder. encoder : `Seq2SeqEncoder` The encoder to use on the tokens. integrator : `Seq2SeqEncoder` The encoder to use when integrating the attentive text encoding with the token encodings. integrator_dropout : `float` The amount of dropout to apply on integrator output. output_layer : `Union[Maxout, FeedForward]` The maxout or feed forward network that takes the final representations and produces a classification prediction. elmo : `Elmo`, optional (default=`None`) If provided, will be used to concatenate pretrained ELMo representations to either the integrator output (`use_integrator_output_elmo`) or the input (`use_input_elmo`). use_input_elmo : `bool` (default=`False`) If true, concatenate pretrained ELMo representations to the input vectors. use_integrator_output_elmo : `bool` (default=`False`) If true, concatenate pretrained ELMo representations to the integrator output. initializer : `InitializerApplicator`, optional (default=`InitializerApplicator()`) Used to initialize the model parameters. """ def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, embedding_dropout: float, pre_encode_feedforward: FeedForward, encoder: Seq2SeqEncoder, integrator: Seq2SeqEncoder, integrator_dropout: float, output_layer: Union[FeedForward, Maxout], elmo: Elmo = None, use_input_elmo: bool = False, use_integrator_output_elmo: bool = False, initializer: InitializerApplicator = InitializerApplicator(), **kwargs, ) -> None: super().__init__(vocab, **kwargs) self._text_field_embedder = text_field_embedder if "elmo" in self._text_field_embedder._token_embedders.keys(): raise ConfigurationError( "To use ELMo in the BiattentiveClassificationNetwork input, " "remove elmo from the text_field_embedder and pass an " "Elmo object to the BiattentiveClassificationNetwork and set the " "'use_input_elmo' and 'use_integrator_output_elmo' flags accordingly." ) self._embedding_dropout = nn.Dropout(embedding_dropout) self._num_classes = self.vocab.get_vocab_size("labels") self._pre_encode_feedforward = pre_encode_feedforward self._encoder = encoder self._integrator = integrator self._integrator_dropout = nn.Dropout(integrator_dropout) self._elmo = elmo self._use_input_elmo = use_input_elmo self._use_integrator_output_elmo = use_integrator_output_elmo self._num_elmo_layers = int(self._use_input_elmo) + int(self._use_integrator_output_elmo) # Check that, if elmo is None, none of the elmo flags are set. if self._elmo is None and self._num_elmo_layers != 0: raise ConfigurationError( "One of 'use_input_elmo' or 'use_integrator_output_elmo' is True, " "but no Elmo object was provided upon construction. Pass in an Elmo " "object to use Elmo." ) if self._elmo is not None: # Check that, if elmo is not None, we use it somewhere. if self._num_elmo_layers == 0: raise ConfigurationError( "Elmo object provided upon construction, but both 'use_input_elmo' " "and 'use_integrator_output_elmo' are 'False'. Set one of them to " "'True' to use Elmo, or do not provide an Elmo object upon construction." ) # Check that the number of flags set is equal to the num_output_representations of the Elmo object if len(self._elmo._scalar_mixes) != self._num_elmo_layers: raise ConfigurationError( f"Elmo object has num_output_representations={len(self._elmo._scalar_mixes)}, but this " f"does not match the number of use_*_elmo flags set to true. use_input_elmo " f"is {self._use_input_elmo}, and use_integrator_output_elmo " f"is {self._use_integrator_output_elmo}" ) # Calculate combined integrator output dim, taking into account elmo if self._use_integrator_output_elmo: self._combined_integrator_output_dim = ( self._integrator.get_output_dim() + self._elmo.get_output_dim() ) else: self._combined_integrator_output_dim = self._integrator.get_output_dim() self._self_attentive_pooling_projection = nn.Linear(self._combined_integrator_output_dim, 1) self._output_layer = output_layer if self._use_input_elmo: check_dimensions_match( text_field_embedder.get_output_dim() + self._elmo.get_output_dim(), self._pre_encode_feedforward.get_input_dim(), "text field embedder output dim + ELMo output dim", "Pre-encoder feedforward input dim", ) else: check_dimensions_match( text_field_embedder.get_output_dim(), self._pre_encode_feedforward.get_input_dim(), "text field embedder output dim", "Pre-encoder feedforward input dim", ) check_dimensions_match( self._pre_encode_feedforward.get_output_dim(), self._encoder.get_input_dim(), "Pre-encoder feedforward output dim", "Encoder input dim", ) check_dimensions_match( self._encoder.get_output_dim() * 3, self._integrator.get_input_dim(), "Encoder output dim * 3", "Integrator input dim", ) if self._use_integrator_output_elmo: check_dimensions_match( self._combined_integrator_output_dim * 4, self._output_layer.get_input_dim(), "(Integrator output dim + ELMo output dim) * 4", "Output layer input dim", ) else: check_dimensions_match( self._integrator.get_output_dim() * 4, self._output_layer.get_input_dim(), "Integrator output dim * 4", "Output layer input dim", ) check_dimensions_match( self._output_layer.get_output_dim(), self._num_classes, "Output layer output dim", "Number of classes.", ) self.metrics = { "accuracy": CategoricalAccuracy(), "accuracy3": CategoricalAccuracy(top_k=3), } self.loss = torch.nn.CrossEntropyLoss() initializer(self) def forward( self, # type: ignore tokens: TextFieldTensors, label: torch.LongTensor = None, ) -> Dict[str, torch.Tensor]: """ # Parameters tokens : `TextFieldTensors`, required The output of `TextField.as_array()`. label : `torch.LongTensor`, optional (default = `None`) A variable representing the label for each instance in the batch. # Returns An output dictionary consisting of: - `class_probabilities` (`torch.FloatTensor`) : A tensor of shape `(batch_size, num_classes)` representing a distribution over the label classes for each instance. - `loss` (`torch.FloatTensor`, optional) : A scalar loss to be optimised.""" text_mask = util.get_text_field_mask(tokens) # Pop elmo tokens, since elmo embedder should not be present. elmo_tokens = tokens.pop("elmo", None) if tokens: embedded_text = self._text_field_embedder(tokens) else: # only using "elmo" for input embedded_text = None # Add the "elmo" key back to "tokens" if not None, since the tests and the # subsequent training epochs rely not being modified during forward() if elmo_tokens is not None: tokens["elmo"] = elmo_tokens # Create ELMo embeddings if applicable if self._elmo: if elmo_tokens is not None: elmo_representations = self._elmo(elmo_tokens["elmo_tokens"])[ "elmo_representations" ] # Pop from the end is more performant with list if self._use_integrator_output_elmo: integrator_output_elmo = elmo_representations.pop() if self._use_input_elmo: input_elmo = elmo_representations.pop() assert not elmo_representations else: raise ConfigurationError( "Model was built to use Elmo, but input text is not tokenized for Elmo." ) if self._use_input_elmo: if embedded_text is not None: embedded_text = torch.cat([embedded_text, input_elmo], dim=-1) else: embedded_text = input_elmo dropped_embedded_text = self._embedding_dropout(embedded_text) pre_encoded_text = self._pre_encode_feedforward(dropped_embedded_text) encoded_tokens = self._encoder(pre_encoded_text, text_mask) # Compute biattention. This is a special case since the inputs are the same. attention_logits = encoded_tokens.bmm(encoded_tokens.permute(0, 2, 1).contiguous()) attention_weights = util.masked_softmax(attention_logits, text_mask) encoded_text = util.weighted_sum(encoded_tokens, attention_weights) # Build the input to the integrator integrator_input = torch.cat( [encoded_tokens, encoded_tokens - encoded_text, encoded_tokens * encoded_text], 2 ) integrated_encodings = self._integrator(integrator_input, text_mask) # Concatenate ELMo representations to integrated_encodings if specified if self._use_integrator_output_elmo: integrated_encodings = torch.cat([integrated_encodings, integrator_output_elmo], dim=-1) # Simple Pooling layers max_masked_integrated_encodings = util.replace_masked_values( integrated_encodings, text_mask.unsqueeze(2), util.min_value_of_dtype(integrated_encodings.dtype), ) max_pool = torch.max(max_masked_integrated_encodings, 1)[0] min_masked_integrated_encodings = util.replace_masked_values( integrated_encodings, text_mask.unsqueeze(2), util.max_value_of_dtype(integrated_encodings.dtype), ) min_pool = torch.min(min_masked_integrated_encodings, 1)[0] mean_pool = torch.sum(integrated_encodings, 1) / torch.sum(text_mask, 1, keepdim=True) # Self-attentive pooling layer # Run through linear projection. Shape: (batch_size, sequence length, 1) # Then remove the last dimension to get the proper attention shape (batch_size, sequence length). self_attentive_logits = self._self_attentive_pooling_projection( integrated_encodings ).squeeze(2) self_weights = util.masked_softmax(self_attentive_logits, text_mask) self_attentive_pool = util.weighted_sum(integrated_encodings, self_weights) pooled_representations = torch.cat([max_pool, min_pool, mean_pool, self_attentive_pool], 1) pooled_representations_dropped = self._integrator_dropout(pooled_representations) logits = self._output_layer(pooled_representations_dropped) class_probabilities = F.softmax(logits, dim=-1) output_dict = {"logits": logits, "class_probabilities": class_probabilities} if label is not None: loss = self.loss(logits, label) for metric in self.metrics.values(): metric(logits, label) output_dict["loss"] = loss return output_dict def make_output_human_readable( self, output_dict: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: """ Does a simple argmax over the class probabilities, converts indices to string labels, and adds a `"label"` key to the dictionary with the result. """ predictions = output_dict["class_probabilities"].cpu().data.numpy() argmax_indices = numpy.argmax(predictions, axis=-1) labels = [self.vocab.get_token_from_index(x, namespace="labels") for x in argmax_indices] output_dict["label"] = labels return output_dict def get_metrics(self, reset: bool = False) -> Dict[str, float]: return { metric_name: metric.get_metric(reset) for metric_name, metric in self.metrics.items() }
allennlp-models-main
allennlp_models/classification/models/biattentive_classification_network.py
# flake8: noqa: F403 from allennlp_models.structured_prediction.predictors import * from allennlp_models.structured_prediction.dataset_readers import * from allennlp_models.structured_prediction.metrics import * from allennlp_models.structured_prediction.models import *
allennlp-models-main
allennlp_models/structured_prediction/__init__.py
from typing import Dict, List, Optional, Set from collections import defaultdict import logging import os import tempfile import subprocess import shutil from allennlp.common.util import is_distributed from allennlp.common.checks import ConfigurationError from allennlp.training.metrics.metric import Metric logger = logging.getLogger(__name__) DEFAULT_SRL_EVAL_PATH = os.path.abspath( os.path.join(os.path.dirname(os.path.realpath(__file__)), "..", "tools", "srl-eval.pl") ) @Metric.register("srl_eval") class SrlEvalScorer(Metric): """ This class uses the external srl-eval.pl script for computing the CoNLL SRL metrics. AllenNLP contains the srl-eval.pl script, but you will need perl 5.x. Note that this metric reads and writes from disk quite a bit. In particular, it writes and subsequently reads two files per __call__, which is typically invoked once per batch. You probably don't want to include it in your training loop; instead, you should calculate this on a validation set only. # Parameters srl_eval_path : `str`, optional. The path to the srl-eval.pl script. ignore_classes : `List[str]`, optional (default=`None`). A list of classes to ignore. """ def __init__( self, srl_eval_path: str = DEFAULT_SRL_EVAL_PATH, ignore_classes: List[str] = None ) -> None: self._srl_eval_path = srl_eval_path self._ignore_classes = set(ignore_classes) # These will hold per label span counts. self._true_positives: Dict[str, int] = defaultdict(int) self._false_positives: Dict[str, int] = defaultdict(int) self._false_negatives: Dict[str, int] = defaultdict(int) def __call__( self, # type: ignore batch_verb_indices: List[Optional[int]], batch_sentences: List[List[str]], batch_conll_formatted_predicted_tags: List[List[str]], batch_conll_formatted_gold_tags: List[List[str]], ) -> None: """ # Parameters batch_verb_indices : `List[Optional[int]]`, required. The indices of the verbal predicate in the sentences which the gold labels are the arguments for, or None if the sentence contains no verbal predicate. batch_sentences : `List[List[str]]`, required. The word tokens for each instance in the batch. batch_conll_formatted_predicted_tags : `List[List[str]]`, required. A list of predicted CoNLL-formatted SRL tags (itself a list) to compute score for. Use allennlp.models.semantic_role_labeler.convert_bio_tags_to_conll_format to convert from BIO to CoNLL format before passing the tags into the metric, if applicable. batch_conll_formatted_gold_tags : `List[List[str]]`, required. A list of gold CoNLL-formatted SRL tags (itself a list) to use as a reference. Use allennlp.models.semantic_role_labeler.convert_bio_tags_to_conll_format to convert from BIO to CoNLL format before passing the tags into the metric, if applicable. """ if not os.path.exists(self._srl_eval_path): raise ConfigurationError(f"srl-eval.pl not found at {self._srl_eval_path}.") tempdir = tempfile.mkdtemp() gold_path = os.path.join(tempdir, "gold.txt") predicted_path = os.path.join(tempdir, "predicted.txt") with open(predicted_path, "w", encoding="utf-8") as predicted_file, open( gold_path, "w", encoding="utf-8" ) as gold_file: for verb_index, sentence, predicted_tag_sequence, gold_tag_sequence in zip( batch_verb_indices, batch_sentences, batch_conll_formatted_predicted_tags, batch_conll_formatted_gold_tags, ): from allennlp_models.structured_prediction.models.srl import ( write_conll_formatted_tags_to_file, ) write_conll_formatted_tags_to_file( predicted_file, gold_file, verb_index, sentence, predicted_tag_sequence, gold_tag_sequence, ) perl_script_command = ["perl", self._srl_eval_path, gold_path, predicted_path] try: completed_process = subprocess.run( perl_script_command, stdout=subprocess.PIPE, universal_newlines=True, check=True ) except FileNotFoundError: raise FileNotFoundError( "'File not found' while running the evaluation. Do you have perl installed?" ) for line in completed_process.stdout.split("\n"): stripped = line.strip().split() if len(stripped) == 7: tag = stripped[0] # Overall metrics are calculated in get_metric, skip them here. if tag == "Overall" or tag in self._ignore_classes: continue # This line contains results for a span num_correct = int(stripped[1]) num_excess = int(stripped[2]) num_missed = int(stripped[3]) self._true_positives[tag] += num_correct self._false_positives[tag] += num_excess self._false_negatives[tag] += num_missed # Note: we cannot aggregate across distributed workers because each worker # may end up with different tags, and in such a case, the reduce operation # will stall, or return with inaccurate values. shutil.rmtree(tempdir) def get_metric(self, reset: bool = False): """ # Returns A Dict per label containing following the span based metrics: - precision : `float` - recall : `float` - f1-measure : `float` Additionally, an `overall` key is included, which provides the precision, recall and f1-measure for all spans. """ if is_distributed(): raise RuntimeError( "Distributed aggregation for `SrlEvalScorer` is currently not supported." ) all_tags: Set[str] = set() all_tags.update(self._true_positives.keys()) all_tags.update(self._false_positives.keys()) all_tags.update(self._false_negatives.keys()) all_metrics = {} for tag in all_tags: if tag == "overall": raise ValueError( "'overall' is disallowed as a tag type, " "rename the tag type to something else if necessary." ) precision, recall, f1_measure = self._compute_metrics( self._true_positives[tag], self._false_positives[tag], self._false_negatives[tag] ) precision_key = "precision" + "-" + tag recall_key = "recall" + "-" + tag f1_key = "f1-measure" + "-" + tag all_metrics[precision_key] = precision all_metrics[recall_key] = recall all_metrics[f1_key] = f1_measure # Compute the precision, recall and f1 for all spans jointly. precision, recall, f1_measure = self._compute_metrics( sum(self._true_positives.values()), sum(self._false_positives.values()), sum(self._false_negatives.values()), ) all_metrics["precision-overall"] = precision all_metrics["recall-overall"] = recall all_metrics["f1-measure-overall"] = f1_measure if reset: self.reset() return all_metrics @staticmethod def _compute_metrics(true_positives: int, false_positives: int, false_negatives: int): precision = true_positives / (true_positives + false_positives + 1e-13) recall = true_positives / (true_positives + false_negatives + 1e-13) f1_measure = 2.0 * (precision * recall) / (precision + recall + 1e-13) return precision, recall, f1_measure def reset(self): self._true_positives = defaultdict(int) self._false_positives = defaultdict(int) self._false_negatives = defaultdict(int)
allennlp-models-main
allennlp_models/structured_prediction/metrics/srl_eval_scorer.py
from allennlp_models.structured_prediction.metrics.srl_eval_scorer import SrlEvalScorer
allennlp-models-main
allennlp_models/structured_prediction/metrics/__init__.py
import argparse import os import sys from collections import namedtuple from typing import Iterable, List, Tuple import regex from tqdm import tqdm from allennlp.data import Token from allennlp.data.tokenizers import SpacyTokenizer sys.path.insert(0, os.path.dirname(os.path.abspath(os.path.join(__file__, os.pardir)))) Extraction = namedtuple( "Extraction", # Open IE extraction [ "sent", # Sentence in which this extraction appears "toks", # spaCy tokens "arg1", # Subject "rel", # Relation "args2", # A list of arguments after the predicate "confidence", ], # Confidence in this extraction ) Element = namedtuple( "Element", # An element (predicate or argument) in an Open IE extraction [ "elem_type", # Predicate or argument ID "span", # The element's character span in the sentence "text", ], # The textual representation of this element ) def main(inp_fn: str, domain: str, out_fn: str) -> None: """ inp_fn: `str` Path to file from which to read Open IE extractions in Open IE4's format. domain: `str` Domain to be used when writing CoNLL format. out_fn: `str` Path to file to which to write the CoNLL format Open IE extractions. """ with open(out_fn, "w") as fout: for sent_ls in read(inp_fn): fout.write(f"{convert_sent_to_conll_str(sent_ls, domain)}\n\n") def safe_zip(*args): """ Zip which ensures all lists are of same size. """ assert len({len(arg) for arg in args}) == 1 return zip(*args) def char_to_word_index(char_ind: int, sent: str) -> int: """ Convert a character index to word index in the given sentence. """ return sent[:char_ind].count(" ") def element_from_span(span: List[Token], span_type: str) -> Element: """ Return an Element from span (list of spaCy tokens). """ return Element( span_type, [span[0].idx, span[-1].idx + len(span[-1])], " ".join(str(t) for t in span) ) def split_predicate(ex: Extraction) -> Extraction: """ Ensure single word predicate by adding "before-predicate" and "after-predicate" arguments. """ rel_toks = ex.toks[ char_to_word_index(ex.rel.span[0], ex.sent) : char_to_word_index(ex.rel.span[1], ex.sent) + 1 ] if not rel_toks: return ex verb_inds = [tok_ind for (tok_ind, tok) in enumerate(rel_toks) if tok.tag_.startswith("VB")] last_verb_ind = verb_inds[-1] if verb_inds else (len(rel_toks) - 1) rel_parts = [element_from_span([rel_toks[last_verb_ind]], "V")] before_verb = rel_toks[:last_verb_ind] after_verb = rel_toks[last_verb_ind + 1 :] if before_verb: rel_parts.append(element_from_span(before_verb, "BV")) if after_verb: rel_parts.append(element_from_span(after_verb, "AV")) return Extraction(ex.sent, ex.toks, ex.arg1, rel_parts, ex.args2, ex.confidence) def extraction_to_conll(ex: Extraction) -> List[str]: """ Return a CoNLL representation of a given input Extraction. """ ex = split_predicate(ex) toks = ex.sent.split(" ") ret = ["*"] * len(toks) args = [ex.arg1] + ex.args2 rels_and_args = [(f"ARG{arg_ind}", arg) for arg_ind, arg in enumerate(args)] + [ (rel_part.elem_type, rel_part) for rel_part in ex.rel ] for rel, arg in rels_and_args: # Add brackets cur_start_ind = char_to_word_index(arg.span[0], ex.sent) cur_end_ind = char_to_word_index(arg.span[1], ex.sent) ret[cur_start_ind] = f"({rel}{ret[cur_start_ind]}" ret[cur_end_ind] += ")" return ret def interpret_span(text_spans: str) -> Tuple[int, int]: """ Return an integer tuple from textual representation of closed/open spans. """ m = regex.match(r"^(?:(?:([\(\[]\d+, \d+[\)\]])|({\d+}))[,]?\s*)+$", text_spans) # noqa spans = m.captures(1) + m.captures(2) int_spans: List[Tuple[int, int]] = [] for span in spans: ints = [int(s) for s in span[1:-1].split(",")] if span[0] == "(": ints[0] += 1 if span[-1] == "]": ints[1] += 1 if span.startswith("{"): assert len(ints) == 1 ints.append(ints[0] + 1) assert len(ints) == 2 int_spans.append((ints[0], ints[1])) # Merge consecutive spans ret = [] cur_span: Tuple[int, int] = int_spans[0] for start, end in int_spans[1:]: if start - 1 == cur_span[-1]: cur_span = (cur_span[0], end) else: ret.append(cur_span) cur_span = (start, end) if not ret or cur_span != ret[-1]: ret.append(cur_span) return ret[0] def interpret_element(element_type: str, text: str, span: str) -> Element: """ Construct an Element instance from regexp groups. """ return Element(element_type, interpret_span(span), text) def parse_element(raw_element: str) -> List[Element]: """ Parse a raw element into text and indices (integers). """ elements = ( regex.match(r"^(([a-zA-Z]+)\(([^;]+),List\(([^;]*)\)\))$", elem.lstrip().rstrip()) # noqa for elem in raw_element.split(";") ) return [interpret_element(*elem.groups()[1:]) for elem in elements if elem] def read(fn: str) -> Iterable[List[Extraction]]: tokenizer = SpacyTokenizer(pos_tags=True) prev_sent: List[Extraction] = [] with open(fn) as fin: for line in tqdm(fin): data = line.strip().split("\t") confidence = data[0] if not all(data[2:5]): # Make sure that all required elements are present continue arg1, rel, args2 = (parse_element(e) for e in data[2:5]) # Exactly one subject and one relation # and at least one object if len(rel) == 1 and len(arg1) == 1 and len(args2) >= 1: sent = data[5] cur_ex = Extraction( sent=sent, toks=tokenizer.tokenize(sent), arg1=arg1[0], rel=rel[0], args2=args2, confidence=confidence, ) # Decide whether to append or yield if not prev_sent or prev_sent[0].sent == sent: prev_sent.append(cur_ex) else: yield prev_sent prev_sent = [cur_ex] if prev_sent: # Yield last element yield prev_sent def convert_sent_to_conll(sent_ls: List[Extraction]) -> Iterable[Tuple[str, ...]]: """ Given a list of extractions for a single sentence, converts it to CoNLL representation. """ # Sanity check - make sure all extractions are on the same sentence assert len({ex.sent for ex in sent_ls}) == 1 toks = sent_ls[0].sent.split(" ") return safe_zip( *[(str(i) for i in range(len(toks))), toks] + [extraction_to_conll(ex) for ex in sent_ls] ) def pad_line_to_ontonotes(line: Tuple[str, ...], domain: str) -> List[str]: """ Pad line to conform to OntoNotes representation. """ word_ind, word = line[:2] pos = "XX" oie_tags = line[2:] line_num = "0" parse = "-" lemma = "-" return ( [domain, line_num, word_ind, word, pos, parse, lemma, "-", "-", "-", "*"] + list(oie_tags) + ["-"] ) def convert_sent_to_conll_str(sent_ls: List[Extraction], domain: str) -> str: """ Given a dictionary from sentence -> extractions, return a corresponding CoNLL representation. """ return "\n".join( "\t".join(pad_line_to_ontonotes(line, domain)) for line in convert_sent_to_conll(sent_ls) ) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Convert Open IE4 extractions to CoNLL (OntoNotes) format." ) parser.add_argument( "--inp", type=str, help="input file from which to read Open IE extractions.", required=True ) parser.add_argument( "--domain", type=str, help="domain to use when writing the OntoNotes file.", required=True ) parser.add_argument( "--out", type=str, help="path to the output file, where CoNLL format should be written.", required=True, ) args = parser.parse_args() main(args.inp, args.domain, args.out)
allennlp-models-main
allennlp_models/structured_prediction/tools/convert_openie_to_conll.py
allennlp-models-main
allennlp_models/structured_prediction/tools/__init__.py
# flake8: noqa import os import sys import argparse from typing import List import torch from allennlp_models.structured_prediction.models.srl import write_to_conll_eval_file sys.path.insert(0, os.path.dirname(os.path.abspath(os.path.join(__file__, os.pardir)))) from allennlp.common.tqdm import Tqdm from allennlp.common import Params from allennlp.models.archival import load_archive from allennlp.data import DatasetReader from allennlp.data.data_loaders import SimpleDataLoader from allennlp.nn.util import move_to_device def main(serialization_directory: str, device: int, data: str, prefix: str, domain: str = None): """ serialization_directory : str, required. The directory containing the serialized weights. device: int, default = -1 The device to run the evaluation on. data: str, default = None The data to evaluate on. By default, we use the validation data from the original experiment. prefix: str, default="" The prefix to prepend to the generated gold and prediction files, to distinguish different models/data. domain: str, optional (default = None) If passed, filters the ontonotes evaluation/test dataset to only contain the specified domain. This overwrites the domain in the config file from the model, to allow evaluation on domains other than the one the model was trained on. """ config = Params.from_file(os.path.join(serialization_directory, "config.json")) if domain is not None: # Hack to allow evaluation on different domains than the # model was trained on. config["dataset_reader"]["domain_identifier"] = domain prefix = f"{domain}_{prefix}" else: config["dataset_reader"].pop("domain_identifier", None) dataset_reader = DatasetReader.from_params(config["dataset_reader"]) evaluation_data_path = data if data else config["validation_data_path"] archive = load_archive( os.path.join(serialization_directory, "model.tar.gz"), cuda_device=device ) model = archive.model model.eval() prediction_file_path = os.path.join(serialization_directory, prefix + "_predictions.txt") gold_file_path = os.path.join(serialization_directory, prefix + "_gold.txt") prediction_file = open(prediction_file_path, "w+") gold_file = open(gold_file_path, "w+") # Load the evaluation data and index it. print("reading evaluation data from {}".format(evaluation_data_path)) dataset = list(dataset_reader.read(evaluation_data_path)) with torch.autograd.no_grad(): loader = SimpleDataLoader(dataset, 32) model_predictions: List[List[str]] = [] for batch in Tqdm.tqdm(loader): batch = move_to_device(batch, device) result = model(**batch) predictions = model.decode(result) model_predictions.extend(predictions["tags"]) for instance, prediction in zip(dataset, model_predictions): fields = instance.fields verb_index = fields["metadata"]["verb_index"] gold_tags = fields["metadata"]["gold_tags"] sentence = fields["metadata"]["words"] write_to_conll_eval_file( prediction_file, gold_file, verb_index, sentence, prediction, gold_tags ) prediction_file.close() gold_file.close() if __name__ == "__main__": parser = argparse.ArgumentParser( description="write conll format srl predictions to file from a pretrained model." ) parser.add_argument("--path", type=str, help="the serialization directory.") parser.add_argument("--device", type=int, default=-1, help="the device to load the model onto.") parser.add_argument( "--data", type=str, default=None, help="A directory containing a dataset to evaluate on." ) parser.add_argument( "--prefix", type=str, default="", help="A prefix to distinguish model outputs." ) parser.add_argument( "--domain", type=str, default=None, help="An optional domain to filter by for producing results.", ) args = parser.parse_args() main(args.path, args.device, args.data, args.prefix, args.domain)
allennlp-models-main
allennlp_models/structured_prediction/tools/write_srl_predictions_to_conll_format.py
from typing import Dict, Tuple, List import logging from conllu import parse_incr from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import Field, TextField, SequenceLabelField, MetadataField from allennlp.data.instance import Instance from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenIndexer from allennlp.data.tokenizers import Token, Tokenizer logger = logging.getLogger(__name__) # exist_ok has to be true until we remove this from the core library @DatasetReader.register("universal_dependencies", exist_ok=True) class UniversalDependenciesDatasetReader(DatasetReader): """ Reads a file in the conllu Universal Dependencies format. # Parameters token_indexers : `Dict[str, TokenIndexer]`, optional (default=`{"tokens": SingleIdTokenIndexer()}`) The token indexers to be applied to the words TextField. use_language_specific_pos : `bool`, optional (default = `False`) Whether to use UD POS tags, or to use the language specific POS tags provided in the conllu format. tokenizer : `Tokenizer`, optional (default = `None`) A tokenizer to use to split the text. This is useful when the tokens that you pass into the model need to have some particular attribute. Typically it is not necessary. """ def __init__( self, token_indexers: Dict[str, TokenIndexer] = None, use_language_specific_pos: bool = False, tokenizer: Tokenizer = None, **kwargs, ) -> None: super().__init__(**kwargs) self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} self.use_language_specific_pos = use_language_specific_pos self.tokenizer = tokenizer def _read(self, file_path: str): # if `file_path` is a URL, redirect to the cache file_path = cached_path(file_path) with open(file_path, "r") as conllu_file: logger.info("Reading UD instances from conllu dataset at: %s", file_path) for annotation in parse_incr(conllu_file): # CoNLLU annotations sometimes add back in words that have been elided # in the original sentence; we remove these, as we're just predicting # dependencies for the original sentence. # We filter by integers here as elided words have a non-integer word id, # as parsed by the conllu python library. annotation = [x for x in annotation if isinstance(x["id"], int)] heads = [x["head"] for x in annotation] tags = [x["deprel"] for x in annotation] words = [x["form"] for x in annotation] if self.use_language_specific_pos: pos_tags = [x["xpostag"] for x in annotation] else: pos_tags = [x["upostag"] for x in annotation] yield self.text_to_instance(words, pos_tags, list(zip(tags, heads))) def text_to_instance( self, # type: ignore words: List[str], upos_tags: List[str], dependencies: List[Tuple[str, int]] = None, ) -> Instance: """ # Parameters words : `List[str]`, required. The words in the sentence to be encoded. upos_tags : `List[str]`, required. The universal dependencies POS tags for each word. dependencies : `List[Tuple[str, int]]`, optional (default = `None`) A list of (head tag, head index) tuples. Indices are 1 indexed, meaning an index of 0 corresponds to that word being the root of the dependency tree. # Returns An instance containing words, upos tags, dependency head tags and head indices as fields. """ fields: Dict[str, Field] = {} if self.tokenizer is not None: tokens = self.tokenizer.tokenize(" ".join(words)) else: tokens = [Token(t) for t in words] text_field = TextField(tokens, self._token_indexers) fields["words"] = text_field fields["pos_tags"] = SequenceLabelField(upos_tags, text_field, label_namespace="pos") if dependencies is not None: # We don't want to expand the label namespace with an additional dummy token, so we'll # always give the 'ROOT_HEAD' token a label of 'root'. fields["head_tags"] = SequenceLabelField( [x[0] for x in dependencies], text_field, label_namespace="head_tags" ) fields["head_indices"] = SequenceLabelField( [x[1] for x in dependencies], text_field, label_namespace="head_index_tags" ) fields["metadata"] = MetadataField({"words": words, "pos": upos_tags}) return Instance(fields)
allennlp-models-main
allennlp_models/structured_prediction/dataset_readers/universal_dependencies.py
from allennlp_models.structured_prediction.dataset_readers.penn_tree_bank import ( PennTreeBankConstituencySpanDatasetReader, ) from allennlp_models.structured_prediction.dataset_readers.semantic_dependencies import ( SemanticDependenciesDatasetReader, ) from allennlp_models.structured_prediction.dataset_readers.srl import SrlReader from allennlp_models.structured_prediction.dataset_readers.universal_dependencies import ( UniversalDependenciesDatasetReader, )
allennlp-models-main
allennlp_models/structured_prediction/dataset_readers/__init__.py
from typing import Dict, List, Tuple import logging from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import AdjacencyField, MetadataField, SequenceLabelField from allennlp.data.fields import Field, TextField from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenIndexer from allennlp.data.tokenizers import Token from allennlp.data.instance import Instance logger = logging.getLogger(__name__) FIELDS = ["id", "form", "lemma", "pos", "head", "deprel", "top", "pred", "frame"] def parse_sentence( sentence_blob: str, ) -> Tuple[List[Dict[str, str]], List[Tuple[int, int]], List[str]]: """ Parses a chunk of text in the SemEval SDP format. Each word in the sentence is returned as a dictionary with the following format: ``` 'id': '1', 'form': 'Pierre', 'lemma': 'Pierre', 'pos': 'NNP', 'head': '2', # Note that this is the `syntactic` head. 'deprel': 'nn', 'top': '-', 'pred': '+', 'frame': 'named:x-c' ``` Along with a list of arcs and their corresponding tags. Note that in semantic dependency parsing words can have more than one head (it is not a tree), meaning that the list of arcs and tags are not tied to the length of the sentence. """ annotated_sentence = [] arc_indices = [] arc_tags = [] predicates = [] lines = [ line.split("\t") for line in sentence_blob.split("\n") if line and not line.strip().startswith("#") ] for line_idx, line in enumerate(lines): annotated_token = {k: v for k, v in zip(FIELDS, line)} if annotated_token["pred"] == "+": predicates.append(line_idx) annotated_sentence.append(annotated_token) for line_idx, line in enumerate(lines): for predicate_idx, arg in enumerate(line[len(FIELDS) :]): if arg != "_": arc_indices.append((line_idx, predicates[predicate_idx])) arc_tags.append(arg) return annotated_sentence, arc_indices, arc_tags def lazy_parse(text: str): for sentence in text.split("\n\n"): if sentence: yield parse_sentence(sentence) @DatasetReader.register("semantic_dependencies") class SemanticDependenciesDatasetReader(DatasetReader): """ Reads a file in the SemEval 2015 Task 18 (Broad-coverage Semantic Dependency Parsing) format. Registered as a `DatasetReader` with name "semantic_dependencies". # Parameters token_indexers : `Dict[str, TokenIndexer]`, optional (default=`{"tokens": SingleIdTokenIndexer()}`) The token indexers to be applied to the words TextField. skip_when_no_arcs : `bool`, optional (default=`True`) If this is true, skip examples containing no semantic arcs. """ def __init__( self, token_indexers: Dict[str, TokenIndexer] = None, skip_when_no_arcs: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} self._skip_when_no_arcs = skip_when_no_arcs def _read(self, file_path: str): # if `file_path` is a URL, redirect to the cache file_path = cached_path(file_path) logger.info("Reading semantic dependency parsing data from: %s", file_path) with open(file_path) as sdp_file: for annotated_sentence, directed_arc_indices, arc_tags in lazy_parse(sdp_file.read()): # If there are no arc indices, skip this instance. if self._skip_when_no_arcs and not directed_arc_indices: continue tokens = [word["form"] for word in annotated_sentence] pos_tags = [word["pos"] for word in annotated_sentence] yield self.text_to_instance(tokens, pos_tags, directed_arc_indices, arc_tags) def text_to_instance( self, # type: ignore tokens: List[str], pos_tags: List[str] = None, arc_indices: List[Tuple[int, int]] = None, arc_tags: List[str] = None, ) -> Instance: fields: Dict[str, Field] = {} token_field = TextField([Token(t) for t in tokens], self._token_indexers) fields["tokens"] = token_field fields["metadata"] = MetadataField({"tokens": tokens}) if pos_tags is not None: fields["pos_tags"] = SequenceLabelField(pos_tags, token_field, label_namespace="pos") if arc_indices is not None and arc_tags is not None: fields["arc_tags"] = AdjacencyField(arc_indices, token_field, arc_tags) return Instance(fields)
allennlp-models-main
allennlp_models/structured_prediction/dataset_readers/semantic_dependencies.py
import logging from typing import Dict, List, Iterable, Tuple, Any from transformers.models.bert.tokenization_bert import BertTokenizer from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import Field, TextField, SequenceLabelField, MetadataField from allennlp.data.instance import Instance from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenIndexer from allennlp.data.tokenizers import Token from allennlp_models.common.ontonotes import Ontonotes, OntonotesSentence logger = logging.getLogger(__name__) def _convert_tags_to_wordpiece_tags(tags: List[str], offsets: List[int]) -> List[str]: """ Converts a series of BIO tags to account for a wordpiece tokenizer, extending/modifying BIO tags where appropriate to deal with words which are split into multiple wordpieces by the tokenizer. This is only used if you pass a `bert_model_name` to the dataset reader below. # Parameters tags : `List[str]` The BIO formatted tags to convert to BIO tags for wordpieces offsets : `List[int]` The wordpiece offsets. # Returns The new BIO tags. """ new_tags = [] j = 0 for i, offset in enumerate(offsets): tag = tags[i] is_o = tag == "O" is_start = True while j < offset: if is_o: new_tags.append("O") elif tag.startswith("I"): new_tags.append(tag) elif is_start and tag.startswith("B"): new_tags.append(tag) is_start = False elif tag.startswith("B"): _, label = tag.split("-", 1) new_tags.append("I-" + label) j += 1 # Add O tags for cls and sep tokens. return ["O"] + new_tags + ["O"] def _convert_verb_indices_to_wordpiece_indices(verb_indices: List[int], offsets: List[int]): """ Converts binary verb indicators to account for a wordpiece tokenizer, extending/modifying BIO tags where appropriate to deal with words which are split into multiple wordpieces by the tokenizer. This is only used if you pass a `bert_model_name` to the dataset reader below. # Parameters verb_indices : `List[int]` The binary verb indicators, 0 for not a verb, 1 for verb. offsets : `List[int]` The wordpiece offsets. # Returns The new verb indices. """ j = 0 new_verb_indices = [] for i, offset in enumerate(offsets): indicator = verb_indices[i] while j < offset: new_verb_indices.append(indicator) j += 1 # Add 0 indicators for cls and sep tokens. return [0] + new_verb_indices + [0] @DatasetReader.register("srl") class SrlReader(DatasetReader): """ This DatasetReader is designed to read in the English OntoNotes v5.0 data for semantic role labelling. It returns a dataset of instances with the following fields: tokens : `TextField` The tokens in the sentence. verb_indicator : `SequenceLabelField` A sequence of binary indicators for whether the word is the verb for this frame. tags : `SequenceLabelField` A sequence of Propbank tags for the given verb in a BIO format. # Parameters token_indexers : `Dict[str, TokenIndexer]`, optional We similarly use this for both the premise and the hypothesis. See :class:`TokenIndexer`. Default is `{"tokens": SingleIdTokenIndexer()}`. domain_identifier : `str`, (default = `None`) A string denoting a sub-domain of the Ontonotes 5.0 dataset to use. If present, only conll files under paths containing this domain identifier will be processed. bert_model_name : `Optional[str]`, (default = `None`) The BERT model to be wrapped. If you specify a bert_model here, then we will assume you want to use BERT throughout; we will use the bert tokenizer, and will expand your tags and verb indicators accordingly. If not, the tokens will be indexed as normal with the token_indexers. # Returns A `Dataset` of `Instances` for Semantic Role Labelling. """ def __init__( self, token_indexers: Dict[str, TokenIndexer] = None, domain_identifier: str = None, bert_model_name: str = None, **kwargs, ) -> None: super().__init__(**kwargs) if token_indexers is not None: self._token_indexers = token_indexers elif bert_model_name is not None: from allennlp.data.token_indexers import PretrainedTransformerIndexer self._token_indexers = {"tokens": PretrainedTransformerIndexer(bert_model_name)} else: self._token_indexers = {"tokens": SingleIdTokenIndexer()} self._domain_identifier = domain_identifier if bert_model_name is not None: self.bert_tokenizer = BertTokenizer.from_pretrained(bert_model_name) self.lowercase_input = "uncased" in bert_model_name else: self.bert_tokenizer = None self.lowercase_input = False def _wordpiece_tokenize_input( self, tokens: List[str] ) -> Tuple[List[str], List[int], List[int]]: """ Convert a list of tokens to wordpiece tokens and offsets, as well as adding BERT CLS and SEP tokens to the beginning and end of the sentence. A slight oddity with this function is that it also returns the wordpiece offsets corresponding to the _start_ of words as well as the end. We need both of these offsets (or at least, it's easiest to use both), because we need to convert the labels to tags using the end_offsets. However, when we are decoding a BIO sequence inside the SRL model itself, it's important that we use the start_offsets, because otherwise we might select an ill-formed BIO sequence from the BIO sequence on top of wordpieces (this happens in the case that a word is split into multiple word pieces, and then we take the last tag of the word, which might correspond to, e.g, I-V, which would not be allowed as it is not preceded by a B tag). For example: `annotate` will be bert tokenized as ["anno", "##tate"]. If this is tagged as [B-V, I-V] as it should be, we need to select the _first_ wordpiece label to be the label for the token, because otherwise we may end up with invalid tag sequences (we cannot start a new tag with an I). # Returns wordpieces : `List[str]` The BERT wordpieces from the words in the sentence. end_offsets : `List[int]` Indices into wordpieces such that `[wordpieces[i] for i in end_offsets]` results in the end wordpiece of each word being chosen. start_offsets : `List[int]` Indices into wordpieces such that `[wordpieces[i] for i in start_offsets]` results in the start wordpiece of each word being chosen. """ word_piece_tokens: List[str] = [] end_offsets = [] start_offsets = [] cumulative = 0 for token in tokens: if self.lowercase_input: token = token.lower() word_pieces = self.bert_tokenizer.wordpiece_tokenizer.tokenize(token) start_offsets.append(cumulative + 1) cumulative += len(word_pieces) end_offsets.append(cumulative) word_piece_tokens.extend(word_pieces) wordpieces = ["[CLS]"] + word_piece_tokens + ["[SEP]"] return wordpieces, end_offsets, start_offsets def _read(self, file_path: str): # if `file_path` is a URL, redirect to the cache file_path = cached_path(file_path) ontonotes_reader = Ontonotes() logger.info("Reading SRL instances from dataset files at: %s", file_path) if self._domain_identifier is not None: logger.info( "Filtering to only include file paths containing the %s domain", self._domain_identifier, ) for sentence in self._ontonotes_subset( ontonotes_reader, file_path, self._domain_identifier ): tokens = [Token(t) for t in sentence.words] if not sentence.srl_frames: # Sentence contains no predicates. tags = ["O" for _ in tokens] verb_label = [0 for _ in tokens] yield self.text_to_instance(tokens, verb_label, tags) else: for (_, tags) in sentence.srl_frames: verb_indicator = [1 if label[-2:] == "-V" else 0 for label in tags] yield self.text_to_instance(tokens, verb_indicator, tags) @staticmethod def _ontonotes_subset( ontonotes_reader: Ontonotes, file_path: str, domain_identifier: str ) -> Iterable[OntonotesSentence]: """ Iterates over the Ontonotes 5.0 dataset using an optional domain identifier. If the domain identifier is present, only examples which contain the domain identifier in the file path are yielded. """ for conll_file in ontonotes_reader.dataset_path_iterator(file_path): if domain_identifier is None or f"/{domain_identifier}/" in conll_file: yield from ontonotes_reader.sentence_iterator(conll_file) def text_to_instance( # type: ignore self, tokens: List[Token], verb_label: List[int], tags: List[str] = None ) -> Instance: """ We take `pre-tokenized` input here, along with a verb label. The verb label should be a one-hot binary vector, the same length as the tokens, indicating the position of the verb to find arguments for. """ metadata_dict: Dict[str, Any] = {} if self.bert_tokenizer is not None: wordpieces, offsets, start_offsets = self._wordpiece_tokenize_input( [t.text for t in tokens] ) new_verbs = _convert_verb_indices_to_wordpiece_indices(verb_label, offsets) metadata_dict["offsets"] = start_offsets # In order to override the indexing mechanism, we need to set the `text_id` # attribute directly. This causes the indexing to use this id. text_field = TextField( [Token(t, text_id=self.bert_tokenizer.vocab[t]) for t in wordpieces], token_indexers=self._token_indexers, ) verb_indicator = SequenceLabelField(new_verbs, text_field) else: text_field = TextField(tokens, token_indexers=self._token_indexers) verb_indicator = SequenceLabelField(verb_label, text_field) fields: Dict[str, Field] = {} fields["tokens"] = text_field fields["verb_indicator"] = verb_indicator if all(x == 0 for x in verb_label): verb = None verb_index = None else: verb_index = verb_label.index(1) verb = tokens[verb_index].text metadata_dict["words"] = [x.text for x in tokens] metadata_dict["verb"] = verb metadata_dict["verb_index"] = verb_index if tags: if self.bert_tokenizer is not None: new_tags = _convert_tags_to_wordpiece_tags(tags, offsets) fields["tags"] = SequenceLabelField(new_tags, text_field) else: fields["tags"] = SequenceLabelField(tags, text_field) metadata_dict["gold_tags"] = tags fields["metadata"] = MetadataField(metadata_dict) return Instance(fields)
allennlp-models-main
allennlp_models/structured_prediction/dataset_readers/srl.py
from typing import Dict, List, Tuple import logging import os # NLTK is so performance orientated (ha ha) that they have lazy imports. Why? Who knows. from nltk.corpus.reader.bracket_parse import BracketParseCorpusReader from nltk.tree import Tree from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import ( TextField, SpanField, SequenceLabelField, ListField, MetadataField, Field, ) from allennlp.data.instance import Instance from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer from allennlp.data.tokenizers import Token from allennlp.data.dataset_readers.dataset_utils.span_utils import enumerate_spans from allennlp.common.checks import ConfigurationError logger = logging.getLogger(__name__) PTB_PARENTHESES = { "-LRB-": "(", "-RRB-": ")", "-LCB-": "{", "-RCB-": "}", "-LSB-": "[", "-RSB-": "]", } @DatasetReader.register("ptb_trees") class PennTreeBankConstituencySpanDatasetReader(DatasetReader): """ Reads constituency parses from the WSJ part of the Penn Tree Bank from the LDC. This `DatasetReader` is designed for use with a span labelling model, so it enumerates all possible spans in the sentence and returns them, along with gold labels for the relevant spans present in a gold tree, if provided. # Parameters token_indexers : `Dict[str, TokenIndexer]`, optional (default=`{"tokens": SingleIdTokenIndexer()}`) We use this to define the input representation for the text. See :class:`TokenIndexer`. Note that the `output` tags will always correspond to single token IDs based on how they are pre-tokenised in the data file. use_pos_tags : `bool`, optional, (default = `True`) Whether or not the instance should contain gold POS tags as a field. convert_parentheses : `bool`, optional, (default = `False`) Whether or not to convert special PTB parentheses tokens (e.g., "-LRB-") to the corresponding parentheses tokens (i.e., "("). label_namespace_prefix : `str`, optional, (default = `""`) Prefix used for the label namespace. The `span_labels` will use namespace `label_namespace_prefix + 'labels'`, and if using POS tags their namespace is `label_namespace_prefix + pos_label_namespace`. pos_label_namespace : `str`, optional, (default = `"pos"`) The POS tag namespace is `label_namespace_prefix + pos_label_namespace`. """ def __init__( self, token_indexers: Dict[str, TokenIndexer] = None, use_pos_tags: bool = True, convert_parentheses: bool = False, label_namespace_prefix: str = "", pos_label_namespace: str = "pos", **kwargs, ) -> None: super().__init__(**kwargs) self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} self._use_pos_tags = use_pos_tags self._convert_parentheses = convert_parentheses self._label_namespace_prefix = label_namespace_prefix self._pos_label_namespace = pos_label_namespace def _read(self, file_path): # if `file_path` is a URL, redirect to the cache file_path = cached_path(file_path) directory, filename = os.path.split(file_path) logger.info("Reading instances from lines in file at: %s", file_path) for parse in BracketParseCorpusReader(root=directory, fileids=[filename]).parsed_sents(): self._strip_functional_tags(parse) # This is un-needed and clutters the label space. # All the trees also contain a root S node. if parse.label() == "VROOT" or parse.label() == "TOP": parse = parse[0] pos_tags = [x[1] for x in parse.pos()] if self._use_pos_tags else None yield self.text_to_instance(parse.leaves(), pos_tags, parse) def text_to_instance( self, # type: ignore tokens: List[str], pos_tags: List[str] = None, gold_tree: Tree = None, ) -> Instance: """ We take `pre-tokenized` input here, because we don't have a tokenizer in this class. # Parameters tokens : `List[str]`, required. The tokens in a given sentence. pos_tags : `List[str]`, optional, (default = `None`). The POS tags for the words in the sentence. gold_tree : `Tree`, optional (default = `None`). The gold parse tree to create span labels from. # Returns An `Instance` containing the following fields: tokens : `TextField` The tokens in the sentence. pos_tags : `SequenceLabelField` The POS tags of the words in the sentence. Only returned if `use_pos_tags` is `True` spans : `ListField[SpanField]` A ListField containing all possible subspans of the sentence. span_labels : `SequenceLabelField`, optional. The constituency tags for each of the possible spans, with respect to a gold parse tree. If a span is not contained within the tree, a span will have a `NO-LABEL` label. gold_tree : `MetadataField(Tree)` The gold NLTK parse tree for use in evaluation. """ if self._convert_parentheses: tokens = [PTB_PARENTHESES.get(token, token) for token in tokens] text_field = TextField([Token(x) for x in tokens], token_indexers=self._token_indexers) fields: Dict[str, Field] = {"tokens": text_field} pos_namespace = self._label_namespace_prefix + self._pos_label_namespace if self._use_pos_tags and pos_tags is not None: pos_tag_field = SequenceLabelField(pos_tags, text_field, label_namespace=pos_namespace) fields["pos_tags"] = pos_tag_field elif self._use_pos_tags: raise ConfigurationError( "use_pos_tags was set to True but no gold pos" " tags were passed to the dataset reader." ) spans: List[Field] = [] gold_labels = [] if gold_tree is not None: gold_spans: Dict[Tuple[int, int], str] = {} self._get_gold_spans(gold_tree, 0, gold_spans) else: gold_spans = None for start, end in enumerate_spans(tokens): spans.append(SpanField(start, end, text_field)) if gold_spans is not None: gold_labels.append(gold_spans.get((start, end), "NO-LABEL")) metadata = {"tokens": tokens} if gold_tree: metadata["gold_tree"] = gold_tree if self._use_pos_tags: metadata["pos_tags"] = pos_tags fields["metadata"] = MetadataField(metadata) span_list_field: ListField = ListField(spans) fields["spans"] = span_list_field if gold_tree is not None: fields["span_labels"] = SequenceLabelField( gold_labels, span_list_field, label_namespace=self._label_namespace_prefix + "labels", ) return Instance(fields) def _strip_functional_tags(self, tree: Tree) -> None: """ Removes all functional tags from constituency labels in an NLTK tree. We also strip off anything after a =, - or | character, because these are functional tags which we don't want to use. This modification is done in-place. """ clean_label = tree.label().split("=")[0].split("-")[0].split("|")[0] tree.set_label(clean_label) for child in tree: if not isinstance(child[0], str): self._strip_functional_tags(child) def _get_gold_spans( self, tree: Tree, index: int, typed_spans: Dict[Tuple[int, int], str] ) -> int: """ Recursively construct the gold spans from an nltk `Tree`. Labels are the constituents, and in the case of nested constituents with the same spans, labels are concatenated in parent-child order. For example, `(S (NP (D the) (N man)))` would have an `S-NP` label for the outer span, as it has both `S` and `NP` label. Spans are inclusive. TODO(Mark): If we encounter a gold nested labelling at test time which we haven't encountered, we won't be able to run the model at all. # Parameters tree : `Tree`, required. An NLTK parse tree to extract spans from. index : `int`, required. The index of the current span in the sentence being considered. typed_spans : `Dict[Tuple[int, int], str]`, required. A dictionary mapping spans to span labels. # Returns typed_spans : `Dict[Tuple[int, int], str]`. A dictionary mapping all subtree spans in the parse tree to their constituency labels. POS tags are ignored. """ # NLTK leaves are strings. if isinstance(tree[0], str): # The "length" of a tree is defined by # NLTK as the number of children. # We don't actually want the spans for leaves, because # their labels are POS tags. Instead, we just add the length # of the word to the end index as we iterate through. end = index + len(tree) else: # otherwise, the tree has children. child_start = index for child in tree: # typed_spans is being updated inplace. end = self._get_gold_spans(child, child_start, typed_spans) child_start = end # Set the end index of the current span to # the last appended index - 1, as the span is inclusive. span = (index, end - 1) current_span_label = typed_spans.get(span) if current_span_label is None: # This span doesn't have nested labels, just # use the current node's label. typed_spans[span] = tree.label() else: # This span has already been added, so prepend # this label (as we are traversing the tree from # the bottom up). typed_spans[span] = tree.label() + "-" + current_span_label return end
allennlp-models-main
allennlp_models/structured_prediction/dataset_readers/penn_tree_bank.py
from typing import Dict, Any, List, Tuple from allennlp.common.util import JsonDict, sanitize from allennlp.data import DatasetReader, Instance from allennlp.models import Model from allennlp.predictors.predictor import Predictor from allennlp.data.tokenizers.spacy_tokenizer import SpacyTokenizer # POS tags have a unified colour. NODE_TYPE_TO_STYLE = {} NODE_TYPE_TO_STYLE["root"] = ["color5", "strong"] NODE_TYPE_TO_STYLE["dep"] = ["color5", "strong"] # Arguments NODE_TYPE_TO_STYLE["nsubj"] = ["color1"] NODE_TYPE_TO_STYLE["nsubjpass"] = ["color1"] NODE_TYPE_TO_STYLE["csubj"] = ["color1"] NODE_TYPE_TO_STYLE["csubjpass"] = ["color1"] # Complements NODE_TYPE_TO_STYLE["pobj"] = ["color2"] NODE_TYPE_TO_STYLE["dobj"] = ["color2"] NODE_TYPE_TO_STYLE["iobj"] = ["color2"] NODE_TYPE_TO_STYLE["mark"] = ["color2"] NODE_TYPE_TO_STYLE["pcomp"] = ["color2"] NODE_TYPE_TO_STYLE["xcomp"] = ["color2"] NODE_TYPE_TO_STYLE["ccomp"] = ["color2"] NODE_TYPE_TO_STYLE["acomp"] = ["color2"] # Modifiers NODE_TYPE_TO_STYLE["aux"] = ["color3"] NODE_TYPE_TO_STYLE["cop"] = ["color3"] NODE_TYPE_TO_STYLE["det"] = ["color3"] NODE_TYPE_TO_STYLE["conj"] = ["color3"] NODE_TYPE_TO_STYLE["cc"] = ["color3"] NODE_TYPE_TO_STYLE["prep"] = ["color3"] NODE_TYPE_TO_STYLE["number"] = ["color3"] NODE_TYPE_TO_STYLE["possesive"] = ["color3"] NODE_TYPE_TO_STYLE["poss"] = ["color3"] NODE_TYPE_TO_STYLE["discourse"] = ["color3"] NODE_TYPE_TO_STYLE["expletive"] = ["color3"] NODE_TYPE_TO_STYLE["prt"] = ["color3"] NODE_TYPE_TO_STYLE["advcl"] = ["color3"] NODE_TYPE_TO_STYLE["mod"] = ["color4"] NODE_TYPE_TO_STYLE["amod"] = ["color4"] NODE_TYPE_TO_STYLE["tmod"] = ["color4"] NODE_TYPE_TO_STYLE["quantmod"] = ["color4"] NODE_TYPE_TO_STYLE["npadvmod"] = ["color4"] NODE_TYPE_TO_STYLE["infmod"] = ["color4"] NODE_TYPE_TO_STYLE["advmod"] = ["color4"] NODE_TYPE_TO_STYLE["appos"] = ["color4"] NODE_TYPE_TO_STYLE["nn"] = ["color4"] NODE_TYPE_TO_STYLE["neg"] = ["color0"] NODE_TYPE_TO_STYLE["punct"] = ["color0"] LINK_TO_POSITION = {} # Put subjects on the left LINK_TO_POSITION["nsubj"] = "left" LINK_TO_POSITION["nsubjpass"] = "left" LINK_TO_POSITION["csubj"] = "left" LINK_TO_POSITION["csubjpass"] = "left" # Put arguments and some clauses on the right LINK_TO_POSITION["pobj"] = "right" LINK_TO_POSITION["dobj"] = "right" LINK_TO_POSITION["iobj"] = "right" LINK_TO_POSITION["pcomp"] = "right" LINK_TO_POSITION["xcomp"] = "right" LINK_TO_POSITION["ccomp"] = "right" LINK_TO_POSITION["acomp"] = "right" # exist_ok has to be true until we remove this from the core library @Predictor.register("biaffine_dependency_parser", exist_ok=True) class BiaffineDependencyParserPredictor(Predictor): """ Predictor for the [`BiaffineDependencyParser`](../models/biaffine_dependency_parser.md) model. """ def __init__( self, model: Model, dataset_reader: DatasetReader, language: str = "en_core_web_sm" ) -> None: super().__init__(model, dataset_reader) # TODO(Mark) Make the language configurable and based on a model attribute. self._tokenizer = SpacyTokenizer(language=language, pos_tags=True) def predict(self, sentence: str) -> JsonDict: """ Predict a dependency parse for the given sentence. # Parameters sentence The sentence to parse. # Returns A dictionary representation of the dependency tree. """ return self.predict_json({"sentence": sentence}) def _json_to_instance(self, json_dict: JsonDict) -> Instance: """ Expects JSON that looks like `{"sentence": "..."}`. """ spacy_tokens = self._tokenizer.tokenize(json_dict["sentence"]) sentence_text = [token.text for token in spacy_tokens] if self._dataset_reader.use_language_specific_pos: # type: ignore # fine-grained part of speech pos_tags = [token.tag_ for token in spacy_tokens] else: # coarse-grained part of speech (Universal Depdendencies format) pos_tags = [token.pos_ for token in spacy_tokens] return self._dataset_reader.text_to_instance(sentence_text, pos_tags) def predict_instance(self, instance: Instance) -> JsonDict: outputs = self._model.forward_on_instance(instance) words = outputs["words"] pos = outputs["pos"] heads = outputs["predicted_heads"] tags = outputs["predicted_dependencies"] outputs["hierplane_tree"] = self._build_hierplane_tree(words, heads, tags, pos) return sanitize(outputs) def predict_batch_instance(self, instances: List[Instance]) -> List[JsonDict]: outputs = self._model.forward_on_instances(instances) for output in outputs: words = output["words"] pos = output["pos"] heads = output["predicted_heads"] tags = output["predicted_dependencies"] output["hierplane_tree"] = self._build_hierplane_tree(words, heads, tags, pos) return sanitize(outputs) @staticmethod def _build_hierplane_tree( words: List[str], heads: List[int], tags: List[str], pos: List[str] ) -> Dict[str, Any]: """ # Returns A JSON dictionary render-able by Hierplane for the given tree. """ word_index_to_cumulative_indices: Dict[int, Tuple[int, int]] = {} cumulative_index = 0 for i, word in enumerate(words): word_length = len(word) + 1 word_index_to_cumulative_indices[i] = (cumulative_index, cumulative_index + word_length) cumulative_index += word_length def node_constuctor(index: int): children = [] for next_index, child in enumerate(heads): if child == index + 1: children.append(node_constuctor(next_index)) # These are the icons which show up in the bottom right # corner of the node. attributes = [pos[index]] start, end = word_index_to_cumulative_indices[index] hierplane_node = { "word": words[index], # The type of the node - all nodes with the same # type have a unified colour. "nodeType": tags[index], # Attributes of the node. "attributes": attributes, # The link between the node and it's parent. "link": tags[index], "spans": [{"start": start, "end": end}], } if children: hierplane_node["children"] = children return hierplane_node # We are guaranteed that there is a single word pointing to # the root index, so we can find it just by searching for 0 in the list. root_index = heads.index(0) hierplane_tree = { "text": " ".join(words), "root": node_constuctor(root_index), "nodeTypeToStyle": NODE_TYPE_TO_STYLE, "linkToPosition": LINK_TO_POSITION, } return hierplane_tree
allennlp-models-main
allennlp_models/structured_prediction/predictors/biaffine_dependency_parser.py
# Copied from spaCy version 2.x from spacy.symbols import ( POS, PUNCT, SYM, ADJ, CCONJ, NUM, DET, ADV, ADP, X, VERB, NOUN, PROPN, PART, INTJ, SPACE, PRON, ) TAG_MAP = { ".": {POS: PUNCT, "PunctType": "peri"}, ",": {POS: PUNCT, "PunctType": "comm"}, "-LRB-": {POS: PUNCT, "PunctType": "brck", "PunctSide": "ini"}, "-RRB-": {POS: PUNCT, "PunctType": "brck", "PunctSide": "fin"}, "``": {POS: PUNCT, "PunctType": "quot", "PunctSide": "ini"}, '""': {POS: PUNCT, "PunctType": "quot", "PunctSide": "fin"}, "''": {POS: PUNCT, "PunctType": "quot", "PunctSide": "fin"}, ":": {POS: PUNCT}, "$": {POS: SYM}, "#": {POS: SYM}, "AFX": {POS: ADJ, "Hyph": "yes"}, "CC": {POS: CCONJ, "ConjType": "comp"}, "CD": {POS: NUM, "NumType": "card"}, "DT": {POS: DET}, "EX": {POS: PRON, "AdvType": "ex"}, "FW": {POS: X, "Foreign": "yes"}, "HYPH": {POS: PUNCT, "PunctType": "dash"}, "IN": {POS: ADP}, "JJ": {POS: ADJ, "Degree": "pos"}, "JJR": {POS: ADJ, "Degree": "comp"}, "JJS": {POS: ADJ, "Degree": "sup"}, "LS": {POS: X, "NumType": "ord"}, "MD": {POS: VERB, "VerbType": "mod"}, "NIL": {POS: X}, "NN": {POS: NOUN, "Number": "sing"}, "NNP": {POS: PROPN, "NounType": "prop", "Number": "sing"}, "NNPS": {POS: PROPN, "NounType": "prop", "Number": "plur"}, "NNS": {POS: NOUN, "Number": "plur"}, "PDT": {POS: DET}, "POS": {POS: PART, "Poss": "yes"}, "PRP": {POS: PRON, "PronType": "prs"}, "PRP$": {POS: DET, "PronType": "prs", "Poss": "yes"}, "RB": {POS: ADV, "Degree": "pos"}, "RBR": {POS: ADV, "Degree": "comp"}, "RBS": {POS: ADV, "Degree": "sup"}, "RP": {POS: ADP}, "SP": {POS: SPACE}, "SYM": {POS: SYM}, "TO": {POS: PART, "PartType": "inf", "VerbForm": "inf"}, "UH": {POS: INTJ}, "VB": {POS: VERB, "VerbForm": "inf"}, "VBD": {POS: VERB, "VerbForm": "fin", "Tense": "past"}, "VBG": {POS: VERB, "VerbForm": "part", "Tense": "pres", "Aspect": "prog"}, "VBN": {POS: VERB, "VerbForm": "part", "Tense": "past", "Aspect": "perf"}, "VBP": {POS: VERB, "VerbForm": "fin", "Tense": "pres"}, "VBZ": { POS: VERB, "VerbForm": "fin", "Tense": "pres", "Number": "sing", "Person": "three", }, "WDT": {POS: DET}, "WP": {POS: PRON}, "WP$": {POS: DET, "Poss": "yes"}, "WRB": {POS: ADV}, "ADD": {POS: X}, "NFP": {POS: PUNCT}, "GW": {POS: X}, "XX": {POS: X}, "BES": {POS: VERB}, "HVS": {POS: VERB}, "_SP": {POS: SPACE}, }
allennlp-models-main
allennlp_models/structured_prediction/predictors/util.py
from allennlp_models.structured_prediction.predictors.biaffine_dependency_parser import ( BiaffineDependencyParserPredictor, ) from allennlp_models.structured_prediction.predictors.constituency_parser import ( ConstituencyParserPredictor, ) from allennlp_models.structured_prediction.predictors.openie import OpenIePredictor from allennlp_models.structured_prediction.predictors.srl import SemanticRoleLabelerPredictor
allennlp-models-main
allennlp_models/structured_prediction/predictors/__init__.py
from typing import List from nltk import Tree from allennlp.common.util import JsonDict, sanitize from allennlp.data import DatasetReader, Instance from allennlp.models import Model from allennlp.predictors.predictor import Predictor from allennlp.data.tokenizers.spacy_tokenizer import SpacyTokenizer from .util import TAG_MAP # Make the links to POS tag nodes render as "pos", # to distinguish them from constituency tags. The # actual tag is still visible within the node. LINK_TO_LABEL = {x: "pos" for x in TAG_MAP} # POS tags have a unified colour. NODE_TYPE_TO_STYLE = {x: ["color0"] for x in TAG_MAP} # Verb and Noun phrases get their own colour. NODE_TYPE_TO_STYLE["NP"] = ["color1"] NODE_TYPE_TO_STYLE["NX"] = ["color1"] NODE_TYPE_TO_STYLE["QP"] = ["color1"] NODE_TYPE_TO_STYLE["NAC"] = ["color1"] NODE_TYPE_TO_STYLE["VP"] = ["color2"] # Clause level fragments NODE_TYPE_TO_STYLE["S"] = ["color3"] NODE_TYPE_TO_STYLE["SQ"] = ["color3"] NODE_TYPE_TO_STYLE["SBAR"] = ["color3"] NODE_TYPE_TO_STYLE["SBARQ"] = ["color3"] NODE_TYPE_TO_STYLE["SINQ"] = ["color3"] NODE_TYPE_TO_STYLE["FRAG"] = ["color3"] NODE_TYPE_TO_STYLE["X"] = ["color3"] # Wh-phrases. NODE_TYPE_TO_STYLE["WHADVP"] = ["color4"] NODE_TYPE_TO_STYLE["WHADJP"] = ["color4"] NODE_TYPE_TO_STYLE["WHNP"] = ["color4"] NODE_TYPE_TO_STYLE["WHPP"] = ["color4"] # Prepositional Phrases get their own colour because # they are linguistically interesting. NODE_TYPE_TO_STYLE["PP"] = ["color6"] # Everything else. NODE_TYPE_TO_STYLE["ADJP"] = ["color5"] NODE_TYPE_TO_STYLE["ADVP"] = ["color5"] NODE_TYPE_TO_STYLE["CONJP"] = ["color5"] NODE_TYPE_TO_STYLE["INTJ"] = ["color5"] NODE_TYPE_TO_STYLE["LST"] = ["color5", "seq"] NODE_TYPE_TO_STYLE["PRN"] = ["color5"] NODE_TYPE_TO_STYLE["PRT"] = ["color5"] NODE_TYPE_TO_STYLE["RRC"] = ["color5"] NODE_TYPE_TO_STYLE["UCP"] = ["color5"] @Predictor.register("constituency_parser") class ConstituencyParserPredictor(Predictor): """ Predictor for the [`SpanConstituencyParser`](../models/constituency_parser.md) model. """ def __init__( self, model: Model, dataset_reader: DatasetReader, language: str = "en_core_web_sm" ) -> None: super().__init__(model, dataset_reader) self._tokenizer = SpacyTokenizer(language=language, pos_tags=True) def predict(self, sentence: str) -> JsonDict: """ Predict a constituency parse for the given sentence. # Parameters sentence : `str` The sentence to parse. # Returns A dictionary representation of the constituency tree. """ return self.predict_json({"sentence": sentence}) def _json_to_instance(self, json_dict: JsonDict) -> Instance: """ Expects JSON that looks like `{"sentence": "..."}`. """ spacy_tokens = self._tokenizer.tokenize(json_dict["sentence"]) sentence_text = [token.text for token in spacy_tokens] pos_tags = [token.tag_ for token in spacy_tokens] return self._dataset_reader.text_to_instance(sentence_text, pos_tags) def predict_instance(self, instance: Instance) -> JsonDict: outputs = self._model.forward_on_instance(instance) # format the NLTK tree as a string on a single line. tree = outputs.pop("trees") outputs["hierplane_tree"] = self._build_hierplane_tree(tree, 0, is_root=True) outputs["trees"] = tree.pformat(margin=1000000) return sanitize(outputs) def predict_batch_instance(self, instances: List[Instance]) -> List[JsonDict]: outputs = self._model.forward_on_instances(instances) for output in outputs: # format the NLTK tree as a string on a single line. tree = output.pop("trees") output["hierplane_tree"] = self._build_hierplane_tree(tree, 0, is_root=True) output["trees"] = tree.pformat(margin=1000000) return sanitize(outputs) def _build_hierplane_tree(self, tree: Tree, index: int, is_root: bool) -> JsonDict: """ Recursively builds a JSON dictionary from an NLTK `Tree` suitable for rendering trees using the `Hierplane library<https://allenai.github.io/hierplane/>`. # Parameters tree : `Tree`, required. The tree to convert into Hierplane JSON. index : `int`, required. The character index into the tree, used for creating spans. is_root : `bool` An indicator which allows us to add the outer Hierplane JSON which is required for rendering. # Returns A JSON dictionary render-able by Hierplane for the given tree. """ children = [] for child in tree: if isinstance(child, Tree): # If the child is a tree, it has children, # as NLTK leaves are just strings. children.append(self._build_hierplane_tree(child, index, is_root=False)) else: # We're at a leaf, so add the length of # the word to the character index. index += len(child) label = tree.label() span = " ".join(tree.leaves()) hierplane_node = {"word": span, "nodeType": label, "attributes": [label], "link": label} if children: hierplane_node["children"] = children # TODO(Mark): Figure out how to span highlighting to the leaves. if is_root: hierplane_node = { "linkNameToLabel": LINK_TO_LABEL, "nodeTypeToStyle": NODE_TYPE_TO_STYLE, "text": span, "root": hierplane_node, } return hierplane_node
allennlp-models-main
allennlp_models/structured_prediction/predictors/constituency_parser.py
from typing import List, Dict import numpy from spacy.tokens import Doc from allennlp.common.util import JsonDict, sanitize, group_by_count from allennlp.data import DatasetReader, Instance from allennlp.data.tokenizers.spacy_tokenizer import SpacyTokenizer from allennlp.models import Model from allennlp.predictors.predictor import Predictor @Predictor.register("semantic_role_labeling") class SemanticRoleLabelerPredictor(Predictor): """ Predictor for the [`SemanticRoleLabeler`](../models/semantic_role_labeler.md) model. """ def __init__( self, model: Model, dataset_reader: DatasetReader, language: str = "en_core_web_sm" ) -> None: super().__init__(model, dataset_reader) self._language = language self._tokenizer = SpacyTokenizer(language=language, pos_tags=True) def predict(self, sentence: str) -> JsonDict: """ Predicts the semantic roles of the supplied sentence and returns a dictionary with the results. ``` {"words": [...], "verbs": [ {"verb": "...", "description": "...", "tags": [...]}, ... {"verb": "...", "description": "...", "tags": [...]}, ]} ``` # Parameters sentence, `str` The sentence to parse via semantic role labeling. # Returns A dictionary representation of the semantic roles in the sentence. """ return self.predict_json({"sentence": sentence}) def predict_tokenized(self, tokenized_sentence: List[str]) -> JsonDict: """ Predicts the semantic roles of the supplied sentence tokens and returns a dictionary with the results. # Parameters tokenized_sentence, `List[str]` The sentence tokens to parse via semantic role labeling. # Returns A dictionary representation of the semantic roles in the sentence. """ spacy_doc = Doc(self._tokenizer.spacy.vocab, words=tokenized_sentence) for pipe in filter(None, self._tokenizer.spacy.pipeline): pipe[1](spacy_doc) tokens = [token for token in spacy_doc] instances = self.tokens_to_instances(tokens) if not instances: return sanitize({"verbs": [], "words": tokens}) return self.predict_instances(instances) @staticmethod def make_srl_string(words: List[str], tags: List[str]) -> str: frame = [] chunk = [] for (token, tag) in zip(words, tags): if tag.startswith("I-"): chunk.append(token) else: if chunk: frame.append("[" + " ".join(chunk) + "]") chunk = [] if tag.startswith("B-"): chunk.append(tag[2:] + ": " + token) elif tag == "O": frame.append(token) if chunk: frame.append("[" + " ".join(chunk) + "]") return " ".join(frame) def _json_to_instance(self, json_dict: JsonDict): raise NotImplementedError("The SRL model uses a different API for creating instances.") def tokens_to_instances(self, tokens): words = [token.text for token in tokens] instances: List[Instance] = [] for i, word in enumerate(tokens): # We treat auxiliaries as verbs only for English for now to be safe. We didn't want to # hypothetically break the predictor for unknown number of other languages where # auxiliaries can't be treated this way. if word.pos_ == "VERB" or (self._language.startswith("en_") and word.pos_ == "AUX"): verb_labels = [0 for _ in words] verb_labels[i] = 1 instance = self._dataset_reader.text_to_instance(tokens, verb_labels) instances.append(instance) return instances def _sentence_to_srl_instances(self, json_dict: JsonDict) -> List[Instance]: """ The SRL model has a slightly different API from other models, as the model is run forward for every verb in the sentence. This means that for a single sentence, we need to generate a `List[Instance]`, where the length of this list corresponds to the number of verbs in the sentence. Additionally, all of these verbs share the same return dictionary after being passed through the model (as really we care about all the frames of the sentence together, rather than separately). # Parameters json_dict : `JsonDict`, required. JSON that looks like `{"sentence": "..."}`. # Returns instances : `List[Instance]` One instance per verb. """ sentence = json_dict["sentence"] tokens = self._tokenizer.tokenize(sentence) return self.tokens_to_instances(tokens) def predict_batch_json(self, inputs: List[JsonDict]) -> List[JsonDict]: """ Expects JSON that looks like `[{"sentence": "..."}, {"sentence": "..."}, ...]` and returns JSON that looks like ``` [ {"words": [...], "verbs": [ {"verb": "...", "description": "...", "tags": [...]}, ... {"verb": "...", "description": "...", "tags": [...]}, ]}, {"words": [...], "verbs": [ {"verb": "...", "description": "...", "tags": [...]}, ... {"verb": "...", "description": "...", "tags": [...]}, ]} ] ``` """ # For SRL, we have more instances than sentences, but the user specified # a batch size with respect to the number of sentences passed, so we respect # that here by taking the batch size which we use to be the number of sentences # we are given. batch_size = len(inputs) instances_per_sentence = [self._sentence_to_srl_instances(json) for json in inputs] flattened_instances = [ instance for sentence_instances in instances_per_sentence for instance in sentence_instances ] if not flattened_instances: return sanitize( [{"verbs": [], "words": self._tokenizer.tokenize(x["sentence"])} for x in inputs] ) # Make the instances into batches and check the last batch for # padded elements as the number of instances might not be perfectly # divisible by the batch size. batched_instances = group_by_count(flattened_instances, batch_size, None) batched_instances[-1] = [ instance for instance in batched_instances[-1] if instance is not None ] # Run the model on the batches. outputs: List[Dict[str, numpy.ndarray]] = [] for batch in batched_instances: outputs.extend(self._model.forward_on_instances(batch)) verbs_per_sentence = [len(sent) for sent in instances_per_sentence] return_dicts: List[JsonDict] = [{"verbs": []} for x in inputs] output_index = 0 for sentence_index, verb_count in enumerate(verbs_per_sentence): if verb_count == 0: # We didn't run any predictions for sentences with no verbs, # so we don't have a way to extract the original sentence. # Here we just tokenize the input again. original_text = self._tokenizer.tokenize(inputs[sentence_index]["sentence"]) return_dicts[sentence_index]["words"] = original_text continue for _ in range(verb_count): output = outputs[output_index] words = output["words"] tags = output["tags"] description = self.make_srl_string(words, tags) return_dicts[sentence_index]["words"] = words return_dicts[sentence_index]["verbs"].append( {"verb": output["verb"], "description": description, "tags": tags} ) output_index += 1 return sanitize(return_dicts) def predict_instances(self, instances: List[Instance]) -> JsonDict: outputs = self._model.forward_on_instances(instances) results = {"verbs": [], "words": outputs[0]["words"]} for output in outputs: tags = output["tags"] description = self.make_srl_string(output["words"], tags) results["verbs"].append( {"verb": output["verb"], "description": description, "tags": tags} ) return sanitize(results) def predict_json(self, inputs: JsonDict) -> JsonDict: """ Expects JSON that looks like `{"sentence": "..."}` and returns JSON that looks like ``` {"words": [...], "verbs": [ {"verb": "...", "description": "...", "tags": [...]}, ... {"verb": "...", "description": "...", "tags": [...]}, ]} ``` """ instances = self._sentence_to_srl_instances(inputs) if not instances: return sanitize({"verbs": [], "words": self._tokenizer.tokenize(inputs["sentence"])}) return self.predict_instances(instances)
allennlp-models-main
allennlp_models/structured_prediction/predictors/srl.py
from typing import List, Dict from allennlp.common.util import JsonDict, sanitize from allennlp.data import DatasetReader, Instance from allennlp.data.tokenizers import SpacyTokenizer from allennlp.models import Model from allennlp.predictors.predictor import Predictor from allennlp.data.tokenizers import Token def join_mwp(tags: List[str]) -> List[str]: """ Join multi-word predicates to a single predicate ('V') token. """ ret = [] verb_flag = False for tag in tags: if "V" in tag: # Create a continuous 'V' BIO span prefix, _ = tag.split("-", 1) if verb_flag: # Continue a verb label across the different predicate parts prefix = "I" ret.append(f"{prefix}-V") verb_flag = True else: ret.append(tag) verb_flag = False return ret def make_oie_string(tokens: List[Token], tags: List[str]) -> str: """ Converts a list of model outputs (i.e., a list of lists of bio tags, each pertaining to a single word), returns an inline bracket representation of the prediction. """ frame = [] chunk = [] words = [token.text for token in tokens] for (token, tag) in zip(words, tags): if tag.startswith("I-"): chunk.append(token) else: if chunk: frame.append("[" + " ".join(chunk) + "]") chunk = [] if tag.startswith("B-"): chunk.append(tag[2:] + ": " + token) elif tag == "O": frame.append(token) if chunk: frame.append("[" + " ".join(chunk) + "]") return " ".join(frame) def get_predicate_indices(tags: List[str]) -> List[int]: """ Return the word indices of a predicate in BIO tags. """ return [ind for ind, tag in enumerate(tags) if "V" in tag] def get_predicate_text(sent_tokens: List[Token], tags: List[str]) -> str: """ Get the predicate in this prediction. """ return " ".join([sent_tokens[pred_id].text for pred_id in get_predicate_indices(tags)]) def predicates_overlap(tags1: List[str], tags2: List[str]) -> bool: """ Tests whether the predicate in BIO tags1 overlap with those of tags2. """ # Get predicate word indices from both predictions pred_ind1 = get_predicate_indices(tags1) pred_ind2 = get_predicate_indices(tags2) # Return if pred_ind1 pred_ind2 overlap return any(set.intersection(set(pred_ind1), set(pred_ind2))) def get_coherent_next_tag(prev_label: str, cur_label: str) -> str: """ Generate a coherent tag, given previous tag and current label. """ if cur_label == "O": # Don't need to add prefix to an "O" label return "O" if prev_label == cur_label: return f"I-{cur_label}" else: return f"B-{cur_label}" def merge_overlapping_predictions(tags1: List[str], tags2: List[str]) -> List[str]: """ Merge two predictions into one. Assumes the predicate in tags1 overlap with the predicate of tags2. """ ret_sequence = [] prev_label = "O" # Build a coherent sequence out of two # spans which predicates' overlap for tag1, tag2 in zip(tags1, tags2): label1 = tag1.split("-", 1)[-1] label2 = tag2.split("-", 1)[-1] if (label1 == "V") or (label2 == "V"): # Construct maximal predicate length - # add predicate tag if any of the sequence predict it cur_label = "V" # Else - prefer an argument over 'O' label elif label1 != "O": cur_label = label1 else: cur_label = label2 # Append cur tag to the returned sequence cur_tag = get_coherent_next_tag(prev_label, cur_label) prev_label = cur_label ret_sequence.append(cur_tag) return ret_sequence def consolidate_predictions( outputs: List[List[str]], sent_tokens: List[Token] ) -> Dict[str, List[str]]: """ Identify that certain predicates are part of a multiword predicate (e.g., "decided to run") in which case, we don't need to return the embedded predicate ("run"). """ pred_dict: Dict[str, List[str]] = {} merged_outputs = [join_mwp(output) for output in outputs] predicate_texts = [get_predicate_text(sent_tokens, tags) for tags in merged_outputs] for pred1_text, tags1 in zip(predicate_texts, merged_outputs): # A flag indicating whether to add tags1 to predictions add_to_prediction = True # Check if this predicate overlaps another predicate for pred2_text, tags2 in pred_dict.items(): if predicates_overlap(tags1, tags2): # tags1 overlaps tags2 pred_dict[pred2_text] = merge_overlapping_predictions(tags1, tags2) add_to_prediction = False # This predicate doesn't overlap - add as a new predicate if add_to_prediction: pred_dict[pred1_text] = tags1 return pred_dict def sanitize_label(label: str) -> str: """ Sanitize a BIO label - this deals with OIE labels sometimes having some noise, as parentheses. """ if "-" in label: prefix, suffix = label.split("-", 1) suffix = suffix.split("(")[-1] return f"{prefix}-{suffix}" else: return label @Predictor.register("open_information_extraction") class OpenIePredictor(Predictor): """ Predictor for the [`SemanticRolelabeler`](../models/semantic_role_labeler.md) model (in its Open Information variant). Used by online demo and for prediction on an input file using command line. """ def __init__( self, model: Model, dataset_reader: DatasetReader, language: str = "en_core_web_sm" ) -> None: super().__init__(model, dataset_reader) self._language = language self._tokenizer = SpacyTokenizer(language=language, pos_tags=True) def _json_to_instance(self, json_dict: JsonDict) -> Instance: """ Expects JSON that looks like `{"sentence": "...", "predicate_index": "..."}`. Assumes sentence is tokenized, and that predicate_index points to a specific predicate (word index) within the sentence, for which to produce Open IE extractions. """ tokens = json_dict["sentence"] predicate_index = int(json_dict["predicate_index"]) verb_labels = [0 for _ in tokens] verb_labels[predicate_index] = 1 return self._dataset_reader.text_to_instance(tokens, verb_labels) def predict_json(self, inputs: JsonDict) -> JsonDict: """ Create instance(s) after predicting the format. One sentence containing multiple verbs will lead to multiple instances. Expects JSON that looks like `{"sentence": "..."}` Returns a JSON that looks like: ``` {"tokens": [...], "tag_spans": [{"ARG0": "...", "V": "...", "ARG1": "...", ...}]} ``` """ sent_tokens = self._tokenizer.tokenize(inputs["sentence"]) # Find all verbs in the input sentence pred_ids = [ i for (i, t) in enumerate(sent_tokens) if t.pos_ == "VERB" or (self._language.startswith("en_") and t.pos_ == "AUX") ] # Create instances instances = [ self._json_to_instance({"sentence": sent_tokens, "predicate_index": pred_id}) for pred_id in pred_ids ] # Run model outputs = [ [sanitize_label(label) for label in self._model.forward_on_instance(instance)["tags"]] for instance in instances ] # Consolidate predictions pred_dict = consolidate_predictions(outputs, sent_tokens) # Build and return output dictionary results = {"verbs": [], "words": sent_tokens} for tags in pred_dict.values(): # Join multi-word predicates tags = join_mwp(tags) # Create description text description = make_oie_string(sent_tokens, tags) # Add a predicate prediction to the return dictionary. results["verbs"].append( { "verb": get_predicate_text(sent_tokens, tags), "description": description, "tags": tags, } ) return sanitize(results)
allennlp-models-main
allennlp_models/structured_prediction/predictors/openie.py
from typing import Dict, Tuple, Any, List import logging import copy import torch import torch.nn.functional as F from torch.nn.modules import Dropout import numpy from allennlp.common.checks import check_dimensions_match, ConfigurationError from allennlp.data import TextFieldTensors, Vocabulary from allennlp.modules import Seq2SeqEncoder, TextFieldEmbedder, Embedding, InputVariationalDropout from allennlp.modules.matrix_attention.bilinear_matrix_attention import BilinearMatrixAttention from allennlp.modules import FeedForward from allennlp.models.model import Model from allennlp.nn import InitializerApplicator, Activation from allennlp.nn.util import get_text_field_mask, get_range_vector from allennlp.nn.util import ( get_device_of, masked_log_softmax, get_lengths_from_binary_sequence_mask, ) from allennlp.nn.chu_liu_edmonds import decode_mst from allennlp.training.metrics import AttachmentScores logger = logging.getLogger(__name__) POS_TO_IGNORE = {"`", "''", ":", ",", ".", "PU", "PUNCT", "SYM"} @Model.register("biaffine_parser") class BiaffineDependencyParser(Model): """ This dependency parser follows the model of [Deep Biaffine Attention for Neural Dependency Parsing (Dozat and Manning, 2016)] (https://arxiv.org/abs/1611.01734) . Word representations are generated using a bidirectional LSTM, followed by separate biaffine classifiers for pairs of words, predicting whether a directed arc exists between the two words and the dependency label the arc should have. Decoding can either be done greedily, or the optimal Minimum Spanning Tree can be decoded using Edmond's algorithm by viewing the dependency tree as a MST on a fully connected graph, where nodes are words and edges are scored dependency arcs. # Parameters vocab : `Vocabulary`, required A Vocabulary, required in order to compute sizes for input/output projections. text_field_embedder : `TextFieldEmbedder`, required Used to embed the `tokens` `TextField` we get as input to the model. encoder : `Seq2SeqEncoder` The encoder (with its own internal stacking) that we will use to generate representations of tokens. tag_representation_dim : `int`, required. The dimension of the MLPs used for dependency tag prediction. arc_representation_dim : `int`, required. The dimension of the MLPs used for head arc prediction. tag_feedforward : `FeedForward`, optional, (default = `None`). The feedforward network used to produce tag representations. By default, a 1 layer feedforward network with an elu activation is used. arc_feedforward : `FeedForward`, optional, (default = `None`). The feedforward network used to produce arc representations. By default, a 1 layer feedforward network with an elu activation is used. pos_tag_embedding : `Embedding`, optional. Used to embed the `pos_tags` `SequenceLabelField` we get as input to the model. use_mst_decoding_for_validation : `bool`, optional (default = `True`). Whether to use Edmond's algorithm to find the optimal minimum spanning tree during validation. If false, decoding is greedy. dropout : `float`, optional, (default = `0.0`) The variational dropout applied to the output of the encoder and MLP layers. input_dropout : `float`, optional, (default = `0.0`) The dropout applied to the embedded text input. initializer : `InitializerApplicator`, optional (default=`InitializerApplicator()`) Used to initialize the model parameters. """ def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, encoder: Seq2SeqEncoder, tag_representation_dim: int, arc_representation_dim: int, tag_feedforward: FeedForward = None, arc_feedforward: FeedForward = None, pos_tag_embedding: Embedding = None, use_mst_decoding_for_validation: bool = True, dropout: float = 0.0, input_dropout: float = 0.0, initializer: InitializerApplicator = InitializerApplicator(), **kwargs, ) -> None: super().__init__(vocab, **kwargs) self.text_field_embedder = text_field_embedder self.encoder = encoder encoder_dim = encoder.get_output_dim() self.head_arc_feedforward = arc_feedforward or FeedForward( encoder_dim, 1, arc_representation_dim, Activation.by_name("elu")() ) self.child_arc_feedforward = copy.deepcopy(self.head_arc_feedforward) self.arc_attention = BilinearMatrixAttention( arc_representation_dim, arc_representation_dim, use_input_biases=True ) num_labels = self.vocab.get_vocab_size("head_tags") self.head_tag_feedforward = tag_feedforward or FeedForward( encoder_dim, 1, tag_representation_dim, Activation.by_name("elu")() ) self.child_tag_feedforward = copy.deepcopy(self.head_tag_feedforward) self.tag_bilinear = torch.nn.modules.Bilinear( tag_representation_dim, tag_representation_dim, num_labels ) self._pos_tag_embedding = pos_tag_embedding or None self._dropout = InputVariationalDropout(dropout) self._input_dropout = Dropout(input_dropout) self._head_sentinel = torch.nn.Parameter(torch.randn([1, 1, encoder.get_output_dim()])) representation_dim = text_field_embedder.get_output_dim() if pos_tag_embedding is not None: representation_dim += pos_tag_embedding.get_output_dim() check_dimensions_match( representation_dim, encoder.get_input_dim(), "text field embedding dim", "encoder input dim", ) check_dimensions_match( tag_representation_dim, self.head_tag_feedforward.get_output_dim(), "tag representation dim", "tag feedforward output dim", ) check_dimensions_match( arc_representation_dim, self.head_arc_feedforward.get_output_dim(), "arc representation dim", "arc feedforward output dim", ) self.use_mst_decoding_for_validation = use_mst_decoding_for_validation tags = self.vocab.get_token_to_index_vocabulary("pos") punctuation_tag_indices = { tag: index for tag, index in tags.items() if tag in POS_TO_IGNORE } self._pos_to_ignore = set(punctuation_tag_indices.values()) logger.info( f"Found POS tags corresponding to the following punctuation : {punctuation_tag_indices}. " "Ignoring words with these POS tags for evaluation." ) self._attachment_scores = AttachmentScores() initializer(self) def forward( self, # type: ignore words: TextFieldTensors, pos_tags: torch.LongTensor, metadata: List[Dict[str, Any]], head_tags: torch.LongTensor = None, head_indices: torch.LongTensor = None, ) -> Dict[str, torch.Tensor]: """ # Parameters words : `TextFieldTensors`, required The output of `TextField.as_array()`, which should typically be passed directly to a `TextFieldEmbedder`. This output is a dictionary mapping keys to `TokenIndexer` tensors. At its most basic, using a `SingleIdTokenIndexer` this is : `{"tokens": Tensor(batch_size, sequence_length)}`. This dictionary will have the same keys as were used for the `TokenIndexers` when you created the `TextField` representing your sequence. The dictionary is designed to be passed directly to a `TextFieldEmbedder`, which knows how to combine different word representations into a single vector per token in your input. pos_tags : `torch.LongTensor`, required The output of a `SequenceLabelField` containing POS tags. POS tags are required regardless of whether they are used in the model, because they are used to filter the evaluation metric to only consider heads of words which are not punctuation. metadata : `List[Dict[str, Any]]`, optional (default=`None`) A dictionary of metadata for each batch element which has keys: words : `List[str]`, required. The tokens in the original sentence. pos : `List[str]`, required. The dependencies POS tags for each word. head_tags : `torch.LongTensor`, optional (default = `None`) A torch tensor representing the sequence of integer gold class labels for the arcs in the dependency parse. Has shape `(batch_size, sequence_length)`. head_indices : `torch.LongTensor`, optional (default = `None`) A torch tensor representing the sequence of integer indices denoting the parent of every word in the dependency parse. Has shape `(batch_size, sequence_length)`. # Returns An output dictionary consisting of: loss : `torch.FloatTensor`, optional A scalar loss to be optimised. arc_loss : `torch.FloatTensor` The loss contribution from the unlabeled arcs. loss : `torch.FloatTensor`, optional The loss contribution from predicting the dependency tags for the gold arcs. heads : `torch.FloatTensor` The predicted head indices for each word. A tensor of shape (batch_size, sequence_length). head_types : `torch.FloatTensor` The predicted head types for each arc. A tensor of shape (batch_size, sequence_length). mask : `torch.BoolTensor` A mask denoting the padded elements in the batch. """ embedded_text_input = self.text_field_embedder(words) if pos_tags is not None and self._pos_tag_embedding is not None: embedded_pos_tags = self._pos_tag_embedding(pos_tags) embedded_text_input = torch.cat([embedded_text_input, embedded_pos_tags], -1) elif self._pos_tag_embedding is not None: raise ConfigurationError("Model uses a POS embedding, but no POS tags were passed.") mask = get_text_field_mask(words) predicted_heads, predicted_head_tags, mask, arc_nll, tag_nll = self._parse( embedded_text_input, mask, head_tags, head_indices ) loss = arc_nll + tag_nll if head_indices is not None and head_tags is not None: evaluation_mask = self._get_mask_for_eval(mask[:, 1:], pos_tags) # We calculate attachment scores for the whole sentence # but excluding the symbolic ROOT token at the start, # which is why we start from the second element in the sequence. self._attachment_scores( predicted_heads[:, 1:], predicted_head_tags[:, 1:], head_indices, head_tags, evaluation_mask, ) output_dict = { "heads": predicted_heads, "head_tags": predicted_head_tags, "arc_loss": arc_nll, "tag_loss": tag_nll, "loss": loss, "mask": mask, "words": [meta["words"] for meta in metadata], "pos": [meta["pos"] for meta in metadata], } return output_dict def make_output_human_readable( self, output_dict: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: head_tags = output_dict.pop("head_tags").cpu().detach().numpy() heads = output_dict.pop("heads").cpu().detach().numpy() mask = output_dict.pop("mask") lengths = get_lengths_from_binary_sequence_mask(mask) head_tag_labels = [] head_indices = [] for instance_heads, instance_tags, length in zip(heads, head_tags, lengths): instance_heads = list(instance_heads[1:length]) instance_tags = instance_tags[1:length] labels = [ self.vocab.get_token_from_index(label, "head_tags") for label in instance_tags ] head_tag_labels.append(labels) head_indices.append(instance_heads) output_dict["predicted_dependencies"] = head_tag_labels output_dict["predicted_heads"] = head_indices return output_dict def _parse( self, embedded_text_input: torch.Tensor, mask: torch.BoolTensor, head_tags: torch.LongTensor = None, head_indices: torch.LongTensor = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: embedded_text_input = self._input_dropout(embedded_text_input) encoded_text = self.encoder(embedded_text_input, mask) batch_size, _, encoding_dim = encoded_text.size() head_sentinel = self._head_sentinel.expand(batch_size, 1, encoding_dim) # Concatenate the head sentinel onto the sentence representation. encoded_text = torch.cat([head_sentinel, encoded_text], 1) mask = torch.cat([mask.new_ones(batch_size, 1), mask], 1) if head_indices is not None: head_indices = torch.cat([head_indices.new_zeros(batch_size, 1), head_indices], 1) if head_tags is not None: head_tags = torch.cat([head_tags.new_zeros(batch_size, 1), head_tags], 1) encoded_text = self._dropout(encoded_text) # shape (batch_size, sequence_length, arc_representation_dim) head_arc_representation = self._dropout(self.head_arc_feedforward(encoded_text)) child_arc_representation = self._dropout(self.child_arc_feedforward(encoded_text)) # shape (batch_size, sequence_length, tag_representation_dim) head_tag_representation = self._dropout(self.head_tag_feedforward(encoded_text)) child_tag_representation = self._dropout(self.child_tag_feedforward(encoded_text)) # shape (batch_size, sequence_length, sequence_length) attended_arcs = self.arc_attention(head_arc_representation, child_arc_representation) minus_inf = -1e8 minus_mask = ~mask * minus_inf attended_arcs = attended_arcs + minus_mask.unsqueeze(2) + minus_mask.unsqueeze(1) if self.training or not self.use_mst_decoding_for_validation: predicted_heads, predicted_head_tags = self._greedy_decode( head_tag_representation, child_tag_representation, attended_arcs, mask ) else: predicted_heads, predicted_head_tags = self._mst_decode( head_tag_representation, child_tag_representation, attended_arcs, mask ) if head_indices is not None and head_tags is not None: arc_nll, tag_nll = self._construct_loss( head_tag_representation=head_tag_representation, child_tag_representation=child_tag_representation, attended_arcs=attended_arcs, head_indices=head_indices, head_tags=head_tags, mask=mask, ) else: arc_nll, tag_nll = self._construct_loss( head_tag_representation=head_tag_representation, child_tag_representation=child_tag_representation, attended_arcs=attended_arcs, head_indices=predicted_heads.long(), head_tags=predicted_head_tags.long(), mask=mask, ) return predicted_heads, predicted_head_tags, mask, arc_nll, tag_nll def _construct_loss( self, head_tag_representation: torch.Tensor, child_tag_representation: torch.Tensor, attended_arcs: torch.Tensor, head_indices: torch.Tensor, head_tags: torch.Tensor, mask: torch.BoolTensor, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Computes the arc and tag loss for a sequence given gold head indices and tags. # Parameters head_tag_representation : `torch.Tensor`, required. A tensor of shape (batch_size, sequence_length, tag_representation_dim), which will be used to generate predictions for the dependency tags for the given arcs. child_tag_representation : `torch.Tensor`, required A tensor of shape (batch_size, sequence_length, tag_representation_dim), which will be used to generate predictions for the dependency tags for the given arcs. attended_arcs : `torch.Tensor`, required. A tensor of shape (batch_size, sequence_length, sequence_length) used to generate a distribution over attachments of a given word to all other words. head_indices : `torch.Tensor`, required. A tensor of shape (batch_size, sequence_length). The indices of the heads for every word. head_tags : `torch.Tensor`, required. A tensor of shape (batch_size, sequence_length). The dependency labels of the heads for every word. mask : `torch.BoolTensor`, required. A mask of shape (batch_size, sequence_length), denoting unpadded elements in the sequence. # Returns arc_nll : `torch.Tensor`, required. The negative log likelihood from the arc loss. tag_nll : `torch.Tensor`, required. The negative log likelihood from the arc tag loss. """ batch_size, sequence_length, _ = attended_arcs.size() # shape (batch_size, 1) range_vector = get_range_vector(batch_size, get_device_of(attended_arcs)).unsqueeze(1) # shape (batch_size, sequence_length, sequence_length) normalised_arc_logits = ( masked_log_softmax(attended_arcs, mask) * mask.unsqueeze(2) * mask.unsqueeze(1) ) # shape (batch_size, sequence_length, num_head_tags) head_tag_logits = self._get_head_tags( head_tag_representation, child_tag_representation, head_indices ) normalised_head_tag_logits = masked_log_softmax( head_tag_logits, mask.unsqueeze(-1) ) * mask.unsqueeze(-1) # index matrix with shape (batch, sequence_length) timestep_index = get_range_vector(sequence_length, get_device_of(attended_arcs)) child_index = ( timestep_index.view(1, sequence_length).expand(batch_size, sequence_length).long() ) # shape (batch_size, sequence_length) arc_loss = normalised_arc_logits[range_vector, child_index, head_indices] tag_loss = normalised_head_tag_logits[range_vector, child_index, head_tags] # We don't care about predictions for the symbolic ROOT token's head, # so we remove it from the loss. arc_loss = arc_loss[:, 1:] tag_loss = tag_loss[:, 1:] # The number of valid positions is equal to the number of unmasked elements minus # 1 per sequence in the batch, to account for the symbolic HEAD token. valid_positions = mask.sum() - batch_size arc_nll = -arc_loss.sum() / valid_positions.float() tag_nll = -tag_loss.sum() / valid_positions.float() return arc_nll, tag_nll def _greedy_decode( self, head_tag_representation: torch.Tensor, child_tag_representation: torch.Tensor, attended_arcs: torch.Tensor, mask: torch.BoolTensor, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Decodes the head and head tag predictions by decoding the unlabeled arcs independently for each word and then again, predicting the head tags of these greedily chosen arcs independently. Note that this method of decoding is not guaranteed to produce trees (i.e. there maybe be multiple roots, or cycles when children are attached to their parents). # Parameters head_tag_representation : `torch.Tensor`, required. A tensor of shape (batch_size, sequence_length, tag_representation_dim), which will be used to generate predictions for the dependency tags for the given arcs. child_tag_representation : `torch.Tensor`, required A tensor of shape (batch_size, sequence_length, tag_representation_dim), which will be used to generate predictions for the dependency tags for the given arcs. attended_arcs : `torch.Tensor`, required. A tensor of shape (batch_size, sequence_length, sequence_length) used to generate a distribution over attachments of a given word to all other words. # Returns heads : `torch.Tensor` A tensor of shape (batch_size, sequence_length) representing the greedily decoded heads of each word. head_tags : `torch.Tensor` A tensor of shape (batch_size, sequence_length) representing the dependency tags of the greedily decoded heads of each word. """ # Mask the diagonal, because the head of a word can't be itself. attended_arcs = attended_arcs + torch.diag( attended_arcs.new(mask.size(1)).fill_(-numpy.inf) ) # Mask padded tokens, because we only want to consider actual words as heads. if mask is not None: minus_mask = ~mask.unsqueeze(2) attended_arcs.masked_fill_(minus_mask, -numpy.inf) # Compute the heads greedily. # shape (batch_size, sequence_length) _, heads = attended_arcs.max(dim=2) # Given the greedily predicted heads, decode their dependency tags. # shape (batch_size, sequence_length, num_head_tags) head_tag_logits = self._get_head_tags( head_tag_representation, child_tag_representation, heads ) _, head_tags = head_tag_logits.max(dim=2) return heads, head_tags def _mst_decode( self, head_tag_representation: torch.Tensor, child_tag_representation: torch.Tensor, attended_arcs: torch.Tensor, mask: torch.BoolTensor, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Decodes the head and head tag predictions using the Edmonds' Algorithm for finding minimum spanning trees on directed graphs. Nodes in the graph are the words in the sentence, and between each pair of nodes, there is an edge in each direction, where the weight of the edge corresponds to the most likely dependency label probability for that arc. The MST is then generated from this directed graph. # Parameters head_tag_representation : `torch.Tensor`, required. A tensor of shape (batch_size, sequence_length, tag_representation_dim), which will be used to generate predictions for the dependency tags for the given arcs. child_tag_representation : `torch.Tensor`, required A tensor of shape (batch_size, sequence_length, tag_representation_dim), which will be used to generate predictions for the dependency tags for the given arcs. attended_arcs : `torch.Tensor`, required. A tensor of shape (batch_size, sequence_length, sequence_length) used to generate a distribution over attachments of a given word to all other words. # Returns heads : `torch.Tensor` A tensor of shape (batch_size, sequence_length) representing the greedily decoded heads of each word. head_tags : `torch.Tensor` A tensor of shape (batch_size, sequence_length) representing the dependency tags of the optimally decoded heads of each word. """ batch_size, sequence_length, tag_representation_dim = head_tag_representation.size() lengths = mask.data.sum(dim=1).long().cpu().numpy() expanded_shape = [batch_size, sequence_length, sequence_length, tag_representation_dim] head_tag_representation = head_tag_representation.unsqueeze(2) head_tag_representation = head_tag_representation.expand(*expanded_shape).contiguous() child_tag_representation = child_tag_representation.unsqueeze(1) child_tag_representation = child_tag_representation.expand(*expanded_shape).contiguous() # Shape (batch_size, sequence_length, sequence_length, num_head_tags) pairwise_head_logits = self.tag_bilinear(head_tag_representation, child_tag_representation) # Note that this log_softmax is over the tag dimension, and we don't consider pairs # of tags which are invalid (e.g are a pair which includes a padded element) anyway below. # Shape (batch, num_labels,sequence_length, sequence_length) normalized_pairwise_head_logits = F.log_softmax(pairwise_head_logits, dim=3).permute( 0, 3, 1, 2 ) # Mask padded tokens, because we only want to consider actual words as heads. minus_inf = -1e8 minus_mask = ~mask * minus_inf attended_arcs = attended_arcs + minus_mask.unsqueeze(2) + minus_mask.unsqueeze(1) # Shape (batch_size, sequence_length, sequence_length) normalized_arc_logits = F.log_softmax(attended_arcs, dim=2).transpose(1, 2) # Shape (batch_size, num_head_tags, sequence_length, sequence_length) # This energy tensor expresses the following relation: # energy[i,j] = "Score that i is the head of j". In this # case, we have heads pointing to their children. batch_energy = torch.exp( normalized_arc_logits.unsqueeze(1) + normalized_pairwise_head_logits ) return self._run_mst_decoding(batch_energy, lengths) @staticmethod def _run_mst_decoding( batch_energy: torch.Tensor, lengths: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: heads = [] head_tags = [] for energy, length in zip(batch_energy.detach().cpu(), lengths): scores, tag_ids = energy.max(dim=0) # Although we need to include the root node so that the MST includes it, # we do not want any word to be the parent of the root node. # Here, we enforce this by setting the scores for all word -> ROOT edges # edges to be 0. scores[0, :] = 0 # Decode the heads. Because we modify the scores to prevent # adding in word -> ROOT edges, we need to find the labels ourselves. instance_heads, _ = decode_mst(scores.numpy(), length, has_labels=False) # Find the labels which correspond to the edges in the max spanning tree. instance_head_tags = [] for child, parent in enumerate(instance_heads): instance_head_tags.append(tag_ids[parent, child].item()) # We don't care what the head or tag is for the root token, but by default it's # not necessarily the same in the batched vs unbatched case, which is annoying. # Here we'll just set them to zero. instance_heads[0] = 0 instance_head_tags[0] = 0 heads.append(instance_heads) head_tags.append(instance_head_tags) return ( torch.from_numpy(numpy.stack(heads)).to(batch_energy.device), torch.from_numpy(numpy.stack(head_tags)).to(batch_energy.device), ) def _get_head_tags( self, head_tag_representation: torch.Tensor, child_tag_representation: torch.Tensor, head_indices: torch.Tensor, ) -> torch.Tensor: """ Decodes the head tags given the head and child tag representations and a tensor of head indices to compute tags for. Note that these are either gold or predicted heads, depending on whether this function is being called to compute the loss, or if it's being called during inference. # Parameters head_tag_representation : `torch.Tensor`, required. A tensor of shape (batch_size, sequence_length, tag_representation_dim), which will be used to generate predictions for the dependency tags for the given arcs. child_tag_representation : `torch.Tensor`, required A tensor of shape (batch_size, sequence_length, tag_representation_dim), which will be used to generate predictions for the dependency tags for the given arcs. head_indices : `torch.Tensor`, required. A tensor of shape (batch_size, sequence_length). The indices of the heads for every word. # Returns head_tag_logits : `torch.Tensor` A tensor of shape (batch_size, sequence_length, num_head_tags), representing logits for predicting a distribution over tags for each arc. """ batch_size = head_tag_representation.size(0) # shape (batch_size,) range_vector = get_range_vector( batch_size, get_device_of(head_tag_representation) ).unsqueeze(1) # This next statement is quite a complex piece of indexing, which you really # need to read the docs to understand. See here: # https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.indexing.html#advanced-indexing # In effect, we are selecting the indices corresponding to the heads of each word from the # sequence length dimension for each element in the batch. # shape (batch_size, sequence_length, tag_representation_dim) selected_head_tag_representations = head_tag_representation[range_vector, head_indices] selected_head_tag_representations = selected_head_tag_representations.contiguous() # shape (batch_size, sequence_length, num_head_tags) head_tag_logits = self.tag_bilinear( selected_head_tag_representations, child_tag_representation ) return head_tag_logits def _get_mask_for_eval( self, mask: torch.BoolTensor, pos_tags: torch.LongTensor ) -> torch.LongTensor: """ Dependency evaluation excludes words are punctuation. Here, we create a new mask to exclude word indices which have a "punctuation-like" part of speech tag. # Parameters mask : `torch.BoolTensor`, required. The original mask. pos_tags : `torch.LongTensor`, required. The pos tags for the sequence. # Returns A new mask, where any indices equal to labels we should be ignoring are masked. """ new_mask = mask.detach() for label in self._pos_to_ignore: label_mask = pos_tags.eq(label) new_mask = new_mask & ~label_mask return new_mask def get_metrics(self, reset: bool = False) -> Dict[str, float]: return self._attachment_scores.get_metric(reset) default_predictor = "biaffine_dependency_parser"
allennlp-models-main
allennlp_models/structured_prediction/models/biaffine_dependency_parser.py
from typing import Dict, Tuple, Any, List import logging import copy import torch from torch.nn.modules import Dropout import numpy from allennlp.common.checks import check_dimensions_match, ConfigurationError from allennlp.data import TextFieldTensors, Vocabulary from allennlp.modules import Seq2SeqEncoder, TextFieldEmbedder, Embedding, InputVariationalDropout from allennlp.modules.matrix_attention.bilinear_matrix_attention import BilinearMatrixAttention from allennlp.modules import FeedForward from allennlp.models.model import Model from allennlp.nn import InitializerApplicator, Activation from allennlp.nn.util import min_value_of_dtype from allennlp.nn.util import get_text_field_mask from allennlp.nn.util import get_lengths_from_binary_sequence_mask from allennlp.training.metrics import F1Measure logger = logging.getLogger(__name__) @Model.register("graph_parser") @Model.register("sp-graph-parser") class GraphParser(Model): """ A Parser for arbitrary graph structures. Registered as a `Model` with name "graph_parser". # Parameters vocab : `Vocabulary`, required A Vocabulary, required in order to compute sizes for input/output projections. text_field_embedder : `TextFieldEmbedder`, required Used to embed the `tokens` `TextField` we get as input to the model. encoder : `Seq2SeqEncoder` The encoder (with its own internal stacking) that we will use to generate representations of tokens. tag_representation_dim : `int`, required. The dimension of the MLPs used for arc tag prediction. arc_representation_dim : `int`, required. The dimension of the MLPs used for arc prediction. tag_feedforward : `FeedForward`, optional, (default = `None`). The feedforward network used to produce tag representations. By default, a 1 layer feedforward network with an elu activation is used. arc_feedforward : `FeedForward`, optional, (default = `None`). The feedforward network used to produce arc representations. By default, a 1 layer feedforward network with an elu activation is used. pos_tag_embedding : `Embedding`, optional. Used to embed the `pos_tags` `SequenceLabelField` we get as input to the model. dropout : `float`, optional, (default = `0.0`) The variational dropout applied to the output of the encoder and MLP layers. input_dropout : `float`, optional, (default = `0.0`) The dropout applied to the embedded text input. edge_prediction_threshold : `int`, optional (default = `0.5`) The probability at which to consider a scored edge to be 'present' in the decoded graph. Must be between 0 and 1. initializer : `InitializerApplicator`, optional (default=`InitializerApplicator()`) Used to initialize the model parameters. """ def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, encoder: Seq2SeqEncoder, tag_representation_dim: int, arc_representation_dim: int, tag_feedforward: FeedForward = None, arc_feedforward: FeedForward = None, pos_tag_embedding: Embedding = None, dropout: float = 0.0, input_dropout: float = 0.0, edge_prediction_threshold: float = 0.5, initializer: InitializerApplicator = InitializerApplicator(), **kwargs, ) -> None: super().__init__(vocab, **kwargs) self.text_field_embedder = text_field_embedder self.encoder = encoder self.edge_prediction_threshold = edge_prediction_threshold if not 0 < edge_prediction_threshold < 1: raise ConfigurationError( f"edge_prediction_threshold must be between " f"0 and 1 (exclusive) but found {edge_prediction_threshold}." ) encoder_dim = encoder.get_output_dim() self.head_arc_feedforward = arc_feedforward or FeedForward( encoder_dim, 1, arc_representation_dim, Activation.by_name("elu")() ) self.child_arc_feedforward = copy.deepcopy(self.head_arc_feedforward) self.arc_attention = BilinearMatrixAttention( arc_representation_dim, arc_representation_dim, use_input_biases=True ) num_labels = self.vocab.get_vocab_size("labels") self.head_tag_feedforward = tag_feedforward or FeedForward( encoder_dim, 1, tag_representation_dim, Activation.by_name("elu")() ) self.child_tag_feedforward = copy.deepcopy(self.head_tag_feedforward) self.tag_bilinear = BilinearMatrixAttention( tag_representation_dim, tag_representation_dim, label_dim=num_labels ) self._pos_tag_embedding = pos_tag_embedding or None self._dropout = InputVariationalDropout(dropout) self._input_dropout = Dropout(input_dropout) representation_dim = text_field_embedder.get_output_dim() if pos_tag_embedding is not None: representation_dim += pos_tag_embedding.get_output_dim() check_dimensions_match( representation_dim, encoder.get_input_dim(), "text field embedding dim", "encoder input dim", ) check_dimensions_match( tag_representation_dim, self.head_tag_feedforward.get_output_dim(), "tag representation dim", "tag feedforward output dim", ) check_dimensions_match( arc_representation_dim, self.head_arc_feedforward.get_output_dim(), "arc representation dim", "arc feedforward output dim", ) self._unlabelled_f1 = F1Measure(positive_label=1) self._arc_loss = torch.nn.BCEWithLogitsLoss(reduction="none") self._tag_loss = torch.nn.CrossEntropyLoss(reduction="none") initializer(self) def forward( self, # type: ignore tokens: TextFieldTensors, pos_tags: torch.LongTensor = None, metadata: List[Dict[str, Any]] = None, arc_tags: torch.LongTensor = None, ) -> Dict[str, torch.Tensor]: """ # Parameters tokens : `TextFieldTensors`, required The output of `TextField.as_array()`. pos_tags : `torch.LongTensor`, optional (default = `None`) The output of a `SequenceLabelField` containing POS tags. metadata : `List[Dict[str, Any]]`, optional (default = `None`) A dictionary of metadata for each batch element which has keys: tokens : `List[str]`, required. The original string tokens in the sentence. arc_tags : `torch.LongTensor`, optional (default = `None`) A torch tensor representing the sequence of integer indices denoting the parent of every word in the dependency parse. Has shape `(batch_size, sequence_length, sequence_length)`. # Returns An output dictionary. """ embedded_text_input = self.text_field_embedder(tokens) if pos_tags is not None and self._pos_tag_embedding is not None: embedded_pos_tags = self._pos_tag_embedding(pos_tags) embedded_text_input = torch.cat([embedded_text_input, embedded_pos_tags], -1) elif self._pos_tag_embedding is not None: raise ConfigurationError("Model uses a POS embedding, but no POS tags were passed.") mask = get_text_field_mask(tokens) embedded_text_input = self._input_dropout(embedded_text_input) encoded_text = self.encoder(embedded_text_input, mask) encoded_text = self._dropout(encoded_text) # shape (batch_size, sequence_length, arc_representation_dim) head_arc_representation = self._dropout(self.head_arc_feedforward(encoded_text)) child_arc_representation = self._dropout(self.child_arc_feedforward(encoded_text)) # shape (batch_size, sequence_length, tag_representation_dim) head_tag_representation = self._dropout(self.head_tag_feedforward(encoded_text)) child_tag_representation = self._dropout(self.child_tag_feedforward(encoded_text)) # shape (batch_size, sequence_length, sequence_length) arc_scores = self.arc_attention(head_arc_representation, child_arc_representation) # shape (batch_size, num_tags, sequence_length, sequence_length) arc_tag_logits = self.tag_bilinear(head_tag_representation, child_tag_representation) # Switch to (batch_size, sequence_length, sequence_length, num_tags) arc_tag_logits = arc_tag_logits.permute(0, 2, 3, 1).contiguous() # Since we'll be doing some additions, using the min value will cause underflow minus_mask = ~mask * min_value_of_dtype(arc_scores.dtype) / 10 arc_scores = arc_scores + minus_mask.unsqueeze(2) + minus_mask.unsqueeze(1) arc_probs, arc_tag_probs = self._greedy_decode(arc_scores, arc_tag_logits, mask) output_dict = {"arc_probs": arc_probs, "arc_tag_probs": arc_tag_probs, "mask": mask} if metadata: output_dict["tokens"] = [meta["tokens"] for meta in metadata] if arc_tags is not None: arc_nll, tag_nll = self._construct_loss( arc_scores=arc_scores, arc_tag_logits=arc_tag_logits, arc_tags=arc_tags, mask=mask ) output_dict["loss"] = arc_nll + tag_nll output_dict["arc_loss"] = arc_nll output_dict["tag_loss"] = tag_nll # Make the arc tags not have negative values anywhere # (by default, no edge is indicated with -1). arc_indices = (arc_tags != -1).float() tag_mask = mask.unsqueeze(1) & mask.unsqueeze(2) one_minus_arc_probs = 1 - arc_probs # We stack scores here because the f1 measure expects a # distribution, rather than a single value. self._unlabelled_f1( torch.stack([one_minus_arc_probs, arc_probs], -1), arc_indices, tag_mask ) return output_dict def make_output_human_readable( self, output_dict: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: arc_tag_probs = output_dict["arc_tag_probs"].cpu().detach().numpy() arc_probs = output_dict["arc_probs"].cpu().detach().numpy() mask = output_dict["mask"] lengths = get_lengths_from_binary_sequence_mask(mask) arcs = [] arc_tags = [] for instance_arc_probs, instance_arc_tag_probs, length in zip( arc_probs, arc_tag_probs, lengths ): arc_matrix = instance_arc_probs > self.edge_prediction_threshold edges = [] edge_tags = [] for i in range(length): for j in range(length): if arc_matrix[i, j] == 1: edges.append((i, j)) tag = instance_arc_tag_probs[i, j].argmax(-1) edge_tags.append(self.vocab.get_token_from_index(tag, "labels")) arcs.append(edges) arc_tags.append(edge_tags) output_dict["arcs"] = arcs output_dict["arc_tags"] = arc_tags return output_dict def _construct_loss( self, arc_scores: torch.Tensor, arc_tag_logits: torch.Tensor, arc_tags: torch.Tensor, mask: torch.BoolTensor, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Computes the arc and tag loss for an adjacency matrix. # Parameters arc_scores : `torch.Tensor`, required. A tensor of shape (batch_size, sequence_length, sequence_length) used to generate a binary classification decision for whether an edge is present between two words. arc_tag_logits : `torch.Tensor`, required. A tensor of shape (batch_size, sequence_length, sequence_length, num_tags) used to generate a distribution over edge tags for a given edge. arc_tags : `torch.Tensor`, required. A tensor of shape (batch_size, sequence_length, sequence_length). The labels for every arc. mask : `torch.BoolTensor`, required. A mask of shape (batch_size, sequence_length), denoting unpadded elements in the sequence. # Returns arc_nll : `torch.Tensor`, required. The negative log likelihood from the arc loss. tag_nll : `torch.Tensor`, required. The negative log likelihood from the arc tag loss. """ arc_indices = (arc_tags != -1).float() # Make the arc tags not have negative values anywhere # (by default, no edge is indicated with -1). arc_tags = arc_tags * arc_indices arc_nll = self._arc_loss(arc_scores, arc_indices) * mask.unsqueeze(1) * mask.unsqueeze(2) # We want the mask for the tags to only include the unmasked words # and we only care about the loss with respect to the gold arcs. tag_mask = mask.unsqueeze(1) * mask.unsqueeze(2) * arc_indices batch_size, sequence_length, _, num_tags = arc_tag_logits.size() original_shape = [batch_size, sequence_length, sequence_length] reshaped_logits = arc_tag_logits.view(-1, num_tags) reshaped_tags = arc_tags.view(-1) tag_nll = ( self._tag_loss(reshaped_logits, reshaped_tags.long()).view(original_shape) * tag_mask ) valid_positions = tag_mask.sum() arc_nll = arc_nll.sum() / valid_positions.float() tag_nll = tag_nll.sum() / valid_positions.float() return arc_nll, tag_nll @staticmethod def _greedy_decode( arc_scores: torch.Tensor, arc_tag_logits: torch.Tensor, mask: torch.BoolTensor ) -> Tuple[torch.Tensor, torch.Tensor]: """ Decodes the head and head tag predictions by decoding the unlabeled arcs independently for each word and then again, predicting the head tags of these greedily chosen arcs independently. # Parameters arc_scores : `torch.Tensor`, required. A tensor of shape (batch_size, sequence_length, sequence_length) used to generate a distribution over attachments of a given word to all other words. arc_tag_logits : `torch.Tensor`, required. A tensor of shape (batch_size, sequence_length, sequence_length, num_tags) used to generate a distribution over tags for each arc. mask : `torch.BoolTensor`, required. A mask of shape (batch_size, sequence_length). # Returns arc_probs : `torch.Tensor` A tensor of shape (batch_size, sequence_length, sequence_length) representing the probability of an arc being present for this edge. arc_tag_probs : `torch.Tensor` A tensor of shape (batch_size, sequence_length, sequence_length, sequence_length) representing the distribution over edge tags for a given edge. """ # Mask the diagonal, because we don't self edges. inf_diagonal_mask = torch.diag(arc_scores.new(mask.size(1)).fill_(-numpy.inf)) arc_scores = arc_scores + inf_diagonal_mask # shape (batch_size, sequence_length, sequence_length, num_tags) arc_tag_logits = arc_tag_logits + inf_diagonal_mask.unsqueeze(0).unsqueeze(-1) # Mask padded tokens, because we only want to consider actual word -> word edges. minus_mask = ~mask.unsqueeze(2) arc_scores.masked_fill_(minus_mask, -numpy.inf) arc_tag_logits.masked_fill_(minus_mask.unsqueeze(-1), -numpy.inf) # shape (batch_size, sequence_length, sequence_length) arc_probs = arc_scores.sigmoid() # shape (batch_size, sequence_length, sequence_length, num_tags) arc_tag_probs = torch.nn.functional.softmax(arc_tag_logits, dim=-1) return arc_probs, arc_tag_probs def get_metrics(self, reset: bool = False) -> Dict[str, float]: return self._unlabelled_f1.get_metric(reset)
allennlp-models-main
allennlp_models/structured_prediction/models/graph_parser.py
import warnings from typing import Dict, List, Any, Union import torch from torch.nn.modules import Linear, Dropout import torch.nn.functional as F from transformers.models.bert.configuration_bert import BertConfig from transformers.models.bert.modeling_bert import BertModel from allennlp.data import TextFieldTensors, Vocabulary from allennlp.models.model import Model from allennlp.nn import InitializerApplicator, util from allennlp.nn.util import get_text_field_mask, sequence_cross_entropy_with_logits from allennlp.nn.util import get_lengths_from_binary_sequence_mask, viterbi_decode from allennlp_models.structured_prediction.metrics.srl_eval_scorer import ( DEFAULT_SRL_EVAL_PATH, SrlEvalScorer, ) @Model.register("srl_bert") class SrlBert(Model): """ A BERT based model [Simple BERT Models for Relation Extraction and Semantic Role Labeling (Shi et al, 2019)] (https://arxiv.org/abs/1904.05255) with some modifications (no additional parameters apart from a linear classification layer), which is currently the state-of-the-art single model for English PropBank SRL (Newswire sentences). # Parameters vocab : `Vocabulary`, required A Vocabulary, required in order to compute sizes for input/output projections. bert_model : `Union[str, Dict[str, Any], BertModel]`, required. A string describing the BERT model to load, a BERT config in the form of a dictionary, or an already constructed BertModel. !!! Note If you pass a config `bert_model` (a dictionary), pretrained weights will not be cached and loaded! This is ideal if you're loading this model from an AllenNLP archive since the weights you need will already be included in the archive, but not what you want if you're training. initializer : `InitializerApplicator`, optional (default=`InitializerApplicator()`) Used to initialize the model parameters. label_smoothing : `float`, optional (default = `0.0`) Whether or not to use label smoothing on the labels when computing cross entropy loss. ignore_span_metric : `bool`, optional (default = `False`) Whether to calculate span loss, which is irrelevant when predicting BIO for Open Information Extraction. srl_eval_path : `str`, optional (default=`DEFAULT_SRL_EVAL_PATH`) The path to the srl-eval.pl script. By default, will use the srl-eval.pl included with allennlp, which is located at allennlp/tools/srl-eval.pl . If `None`, srl-eval.pl is not used. """ def __init__( self, vocab: Vocabulary, bert_model: Union[str, Dict[str, Any], BertModel], embedding_dropout: float = 0.0, initializer: InitializerApplicator = InitializerApplicator(), label_smoothing: float = None, ignore_span_metric: bool = False, srl_eval_path: str = DEFAULT_SRL_EVAL_PATH, **kwargs, ) -> None: super().__init__(vocab, **kwargs) if isinstance(bert_model, str): self.bert_model = BertModel.from_pretrained(bert_model) elif isinstance(bert_model, dict): warnings.warn( "Initializing BertModel without pretrained weights. This is fine if you're loading " "from an AllenNLP archive, but not if you're training.", UserWarning, ) bert_config = BertConfig.from_dict(bert_model) self.bert_model = BertModel(bert_config) else: self.bert_model = bert_model self.num_classes = self.vocab.get_vocab_size("labels") if srl_eval_path is not None: # For the span based evaluation, we don't want to consider labels # for verb, because the verb index is provided to the model. self.span_metric = SrlEvalScorer(srl_eval_path, ignore_classes=["V"]) else: self.span_metric = None self.tag_projection_layer = Linear(self.bert_model.config.hidden_size, self.num_classes) self.embedding_dropout = Dropout(p=embedding_dropout) self._label_smoothing = label_smoothing self.ignore_span_metric = ignore_span_metric initializer(self) def forward( # type: ignore self, tokens: TextFieldTensors, verb_indicator: torch.Tensor, metadata: List[Any], tags: torch.LongTensor = None, ): """ # Parameters tokens : `TextFieldTensors`, required The output of `TextField.as_array()`, which should typically be passed directly to a `TextFieldEmbedder`. For this model, this must be a `SingleIdTokenIndexer` which indexes wordpieces from the BERT vocabulary. verb_indicator: `torch.LongTensor`, required. An integer `SequenceFeatureField` representation of the position of the verb in the sentence. This should have shape (batch_size, num_tokens) and importantly, can be all zeros, in the case that the sentence has no verbal predicate. tags : `torch.LongTensor`, optional (default = `None`) A torch tensor representing the sequence of integer gold class labels of shape `(batch_size, num_tokens)` metadata : `List[Dict[str, Any]]`, optional, (default = `None`) metadata containing the original words in the sentence, the verb to compute the frame for, and start offsets for converting wordpieces back to a sequence of words, under 'words', 'verb' and 'offsets' keys, respectively. # Returns An output dictionary consisting of: logits : `torch.FloatTensor` A tensor of shape `(batch_size, num_tokens, tag_vocab_size)` representing unnormalised log probabilities of the tag classes. class_probabilities : `torch.FloatTensor` A tensor of shape `(batch_size, num_tokens, tag_vocab_size)` representing a distribution of the tag classes per word. loss : `torch.FloatTensor`, optional A scalar loss to be optimised. """ mask = get_text_field_mask(tokens) bert_embeddings, _ = self.bert_model( input_ids=util.get_token_ids_from_text_field_tensors(tokens), token_type_ids=verb_indicator, attention_mask=mask, return_dict=False, ) embedded_text_input = self.embedding_dropout(bert_embeddings) batch_size, sequence_length, _ = embedded_text_input.size() logits = self.tag_projection_layer(embedded_text_input) reshaped_log_probs = logits.view(-1, self.num_classes) class_probabilities = F.softmax(reshaped_log_probs, dim=-1).view( [batch_size, sequence_length, self.num_classes] ) output_dict = {"logits": logits, "class_probabilities": class_probabilities} # We need to retain the mask in the output dictionary # so that we can crop the sequences to remove padding # when we do viterbi inference in self.make_output_human_readable. output_dict["mask"] = mask # We add in the offsets here so we can compute the un-wordpieced tags. words, verbs, offsets = zip(*[(x["words"], x["verb"], x["offsets"]) for x in metadata]) output_dict["words"] = list(words) output_dict["verb"] = list(verbs) output_dict["wordpiece_offsets"] = list(offsets) if tags is not None: loss = sequence_cross_entropy_with_logits( logits, tags, mask, label_smoothing=self._label_smoothing ) if not self.ignore_span_metric and self.span_metric is not None and not self.training: batch_verb_indices = [ example_metadata["verb_index"] for example_metadata in metadata ] batch_sentences = [example_metadata["words"] for example_metadata in metadata] # Get the BIO tags from make_output_human_readable() # TODO (nfliu): This is kind of a hack, consider splitting out part # of make_output_human_readable() to a separate function. batch_bio_predicted_tags = self.make_output_human_readable(output_dict).pop("tags") from allennlp_models.structured_prediction.models.srl import ( convert_bio_tags_to_conll_format, ) batch_conll_predicted_tags = [ convert_bio_tags_to_conll_format(tags) for tags in batch_bio_predicted_tags ] batch_bio_gold_tags = [ example_metadata["gold_tags"] for example_metadata in metadata ] batch_conll_gold_tags = [ convert_bio_tags_to_conll_format(tags) for tags in batch_bio_gold_tags ] self.span_metric( batch_verb_indices, batch_sentences, batch_conll_predicted_tags, batch_conll_gold_tags, ) output_dict["loss"] = loss return output_dict def make_output_human_readable( self, output_dict: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: """ Does constrained viterbi decoding on class probabilities output in :func:`forward`. The constraint simply specifies that the output tags must be a valid BIO sequence. We add a `"tags"` key to the dictionary with the result. NOTE: First, we decode a BIO sequence on top of the wordpieces. This is important; viterbi decoding produces low quality output if you decode on top of word representations directly, because the model gets confused by the 'missing' positions (which is sensible as it is trained to perform tagging on wordpieces, not words). Secondly, it's important that the indices we use to recover words from the wordpieces are the start_offsets (i.e offsets which correspond to using the first wordpiece of words which are tokenized into multiple wordpieces) as otherwise, we might get an ill-formed BIO sequence when we select out the word tags from the wordpiece tags. This happens in the case that a word is split into multiple word pieces, and then we take the last tag of the word, which might correspond to, e.g, I-V, which would not be allowed as it is not preceeded by a B tag. """ all_predictions = output_dict["class_probabilities"] sequence_lengths = get_lengths_from_binary_sequence_mask(output_dict["mask"]).data.tolist() if all_predictions.dim() == 3: predictions_list = [ all_predictions[i].detach().cpu() for i in range(all_predictions.size(0)) ] else: predictions_list = [all_predictions] wordpiece_tags = [] word_tags = [] transition_matrix = self.get_viterbi_pairwise_potentials() start_transitions = self.get_start_transitions() # **************** Different ******************** # We add in the offsets here so we can compute the un-wordpieced tags. for predictions, length, offsets in zip( predictions_list, sequence_lengths, output_dict["wordpiece_offsets"] ): max_likelihood_sequence, _ = viterbi_decode( predictions[:length], transition_matrix, allowed_start_transitions=start_transitions ) tags = [ self.vocab.get_token_from_index(x, namespace="labels") for x in max_likelihood_sequence ] wordpiece_tags.append(tags) word_tags.append([tags[i] for i in offsets]) output_dict["wordpiece_tags"] = wordpiece_tags output_dict["tags"] = word_tags return output_dict def get_metrics(self, reset: bool = False): if self.ignore_span_metric: # Return an empty dictionary if ignoring the # span metric return {} else: metric_dict = self.span_metric.get_metric(reset=reset) # This can be a lot of metrics, as there are 3 per class. # we only really care about the overall metrics, so we filter for them here. return {x: y for x, y in metric_dict.items() if "overall" in x} def get_viterbi_pairwise_potentials(self): """ Generate a matrix of pairwise transition potentials for the BIO labels. The only constraint implemented here is that I-XXX labels must be preceded by either an identical I-XXX tag or a B-XXX tag. In order to achieve this constraint, pairs of labels which do not satisfy this constraint have a pairwise potential of -inf. # Returns transition_matrix : `torch.Tensor` A `(num_labels, num_labels)` matrix of pairwise potentials. """ all_labels = self.vocab.get_index_to_token_vocabulary("labels") num_labels = len(all_labels) transition_matrix = torch.zeros([num_labels, num_labels]) for i, previous_label in all_labels.items(): for j, label in all_labels.items(): # I labels can only be preceded by themselves or # their corresponding B tag. if i != j and label[0] == "I" and not previous_label == "B" + label[1:]: transition_matrix[i, j] = float("-inf") return transition_matrix def get_start_transitions(self): """ In the BIO sequence, we cannot start the sequence with an I-XXX tag. This transition sequence is passed to viterbi_decode to specify this constraint. # Returns start_transitions : `torch.Tensor` The pairwise potentials between a START token and the first token of the sequence. """ all_labels = self.vocab.get_index_to_token_vocabulary("labels") num_labels = len(all_labels) start_transitions = torch.zeros(num_labels) for i, label in all_labels.items(): if label[0] == "I": start_transitions[i] = float("-inf") return start_transitions default_predictor = "semantic_role_labeling"
allennlp-models-main
allennlp_models/structured_prediction/models/srl_bert.py
from allennlp_models.structured_prediction.models.biaffine_dependency_parser import ( BiaffineDependencyParser, ) from allennlp_models.structured_prediction.models.constituency_parser import SpanConstituencyParser from allennlp_models.structured_prediction.models.graph_parser import GraphParser from allennlp_models.structured_prediction.models.srl import SemanticRoleLabeler from allennlp_models.structured_prediction.models.srl_bert import SrlBert
allennlp-models-main
allennlp_models/structured_prediction/models/__init__.py
from typing import Dict, Tuple, List, NamedTuple, Any import torch from torch.nn.modules.linear import Linear from nltk import Tree from allennlp.common.checks import check_dimensions_match from allennlp.data import TextFieldTensors, Vocabulary from allennlp.modules import Seq2SeqEncoder, TimeDistributed, TextFieldEmbedder, FeedForward from allennlp.modules.token_embedders import Embedding from allennlp.modules.span_extractors.span_extractor import SpanExtractor from allennlp.models.model import Model from allennlp.nn import InitializerApplicator from allennlp.nn.util import get_text_field_mask, sequence_cross_entropy_with_logits from allennlp.nn.util import masked_softmax, get_lengths_from_binary_sequence_mask from allennlp.training.metrics import CategoricalAccuracy from allennlp.training.metrics import EvalbBracketingScorer, DEFAULT_EVALB_DIR from allennlp.common.checks import ConfigurationError class SpanInformation(NamedTuple): """ A helper namedtuple for handling decoding information. # Parameters start : `int` The start index of the span. end : `int` The exclusive end index of the span. no_label_prob : `float` The probability of this span being assigned the `NO-LABEL` label. label_prob : `float` The probability of the most likely label. """ start: int end: int label_prob: float no_label_prob: float label_index: int @Model.register("constituency_parser") class SpanConstituencyParser(Model): """ This `SpanConstituencyParser` simply encodes a sequence of text with a stacked `Seq2SeqEncoder`, extracts span representations using a `SpanExtractor`, and then predicts a label for each span in the sequence. These labels are non-terminal nodes in a constituency parse tree, which we then greedily reconstruct. # Parameters vocab : `Vocabulary`, required A Vocabulary, required in order to compute sizes for input/output projections. text_field_embedder : `TextFieldEmbedder`, required Used to embed the `tokens` `TextField` we get as input to the model. span_extractor : `SpanExtractor`, required. The method used to extract the spans from the encoded sequence. encoder : `Seq2SeqEncoder`, required. The encoder that we will use in between embedding tokens and generating span representations. feedforward : `FeedForward`, required. The FeedForward layer that we will use in between the encoder and the linear projection to a distribution over span labels. pos_tag_embedding : `Embedding`, optional. Used to embed the `pos_tags` `SequenceLabelField` we get as input to the model. initializer : `InitializerApplicator`, optional (default=`InitializerApplicator()`) Used to initialize the model parameters. evalb_directory_path : `str`, optional (default=`DEFAULT_EVALB_DIR`) The path to the directory containing the EVALB executable used to score bracketed parses. By default, will use the EVALB included with allennlp, which is located at allennlp/tools/EVALB . If `None`, EVALB scoring is not used. """ def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, span_extractor: SpanExtractor, encoder: Seq2SeqEncoder, feedforward: FeedForward = None, pos_tag_embedding: Embedding = None, initializer: InitializerApplicator = InitializerApplicator(), evalb_directory_path: str = DEFAULT_EVALB_DIR, **kwargs, ) -> None: super().__init__(vocab, **kwargs) self.text_field_embedder = text_field_embedder self.span_extractor = span_extractor self.num_classes = self.vocab.get_vocab_size("labels") self.encoder = encoder self.feedforward_layer = TimeDistributed(feedforward) if feedforward else None self.pos_tag_embedding = pos_tag_embedding or None if feedforward is not None: output_dim = feedforward.get_output_dim() else: output_dim = span_extractor.get_output_dim() self.tag_projection_layer = TimeDistributed(Linear(output_dim, self.num_classes)) representation_dim = text_field_embedder.get_output_dim() if pos_tag_embedding is not None: representation_dim += pos_tag_embedding.get_output_dim() check_dimensions_match( representation_dim, encoder.get_input_dim(), "representation dim (tokens + optional POS tags)", "encoder input dim", ) check_dimensions_match( encoder.get_output_dim(), span_extractor.get_input_dim(), "encoder input dim", "span extractor input dim", ) if feedforward is not None: check_dimensions_match( span_extractor.get_output_dim(), feedforward.get_input_dim(), "span extractor output dim", "feedforward input dim", ) self.tag_accuracy = CategoricalAccuracy() if evalb_directory_path is not None: self._evalb_score = EvalbBracketingScorer(evalb_directory_path) else: self._evalb_score = None initializer(self) def forward( self, # type: ignore tokens: TextFieldTensors, spans: torch.LongTensor, metadata: List[Dict[str, Any]], pos_tags: TextFieldTensors = None, span_labels: torch.LongTensor = None, ) -> Dict[str, torch.Tensor]: """ # Parameters tokens : `TextFieldTensors`, required The output of `TextField.as_array()`, which should typically be passed directly to a `TextFieldEmbedder`. This output is a dictionary mapping keys to `TokenIndexer` tensors. At its most basic, using a `SingleIdTokenIndexer` this is : `{"tokens": Tensor(batch_size, num_tokens)}`. This dictionary will have the same keys as were used for the `TokenIndexers` when you created the `TextField` representing your sequence. The dictionary is designed to be passed directly to a `TextFieldEmbedder`, which knows how to combine different word representations into a single vector per token in your input. spans : `torch.LongTensor`, required. A tensor of shape `(batch_size, num_spans, 2)` representing the inclusive start and end indices of all possible spans in the sentence. metadata : `List[Dict[str, Any]]`, required. A dictionary of metadata for each batch element which has keys: tokens : `List[str]`, required. The original string tokens in the sentence. gold_tree : `nltk.Tree`, optional (default = `None`) Gold NLTK trees for use in evaluation. pos_tags : `List[str]`, optional. The POS tags for the sentence. These can be used in the model as embedded features, but they are passed here in addition for use in constructing the tree. pos_tags : `torch.LongTensor`, optional (default = `None`) The output of a `SequenceLabelField` containing POS tags. span_labels : `torch.LongTensor`, optional (default = `None`) A torch tensor representing the integer gold class labels for all possible spans, of shape `(batch_size, num_spans)`. # Returns An output dictionary consisting of: class_probabilities : `torch.FloatTensor` A tensor of shape `(batch_size, num_spans, span_label_vocab_size)` representing a distribution over the label classes per span. spans : `torch.LongTensor` The original spans tensor. tokens : `List[List[str]]`, required. A list of tokens in the sentence for each element in the batch. pos_tags : `List[List[str]]`, required. A list of POS tags in the sentence for each element in the batch. num_spans : `torch.LongTensor`, required. A tensor of shape (batch_size), representing the lengths of non-padded spans in `enumerated_spans`. loss : `torch.FloatTensor`, optional A scalar loss to be optimised. """ embedded_text_input = self.text_field_embedder(tokens) if pos_tags is not None and self.pos_tag_embedding is not None: embedded_pos_tags = self.pos_tag_embedding(pos_tags) embedded_text_input = torch.cat([embedded_text_input, embedded_pos_tags], -1) elif self.pos_tag_embedding is not None: raise ConfigurationError("Model uses a POS embedding, but no POS tags were passed.") mask = get_text_field_mask(tokens) # Looking at the span start index is enough to know if # this is padding or not. Shape: (batch_size, num_spans) span_mask = (spans[:, :, 0] >= 0).squeeze(-1) if span_mask.dim() == 1: # This happens if you use batch_size 1 and encounter # a length 1 sentence in PTB, which do exist. -.- span_mask = span_mask.unsqueeze(-1) if span_labels is not None and span_labels.dim() == 1: span_labels = span_labels.unsqueeze(-1) num_spans = get_lengths_from_binary_sequence_mask(span_mask) encoded_text = self.encoder(embedded_text_input, mask) span_representations = self.span_extractor(encoded_text, spans, mask, span_mask) if self.feedforward_layer is not None: span_representations = self.feedforward_layer(span_representations) logits = self.tag_projection_layer(span_representations) class_probabilities = masked_softmax(logits, span_mask.unsqueeze(-1)) output_dict = { "class_probabilities": class_probabilities, "spans": spans, "tokens": [meta["tokens"] for meta in metadata], "pos_tags": [meta.get("pos_tags") for meta in metadata], "num_spans": num_spans, } if span_labels is not None: loss = sequence_cross_entropy_with_logits(logits, span_labels, span_mask) self.tag_accuracy(class_probabilities, span_labels, span_mask) output_dict["loss"] = loss # The evalb score is expensive to compute, so we only compute # it for the validation and test sets. batch_gold_trees = [meta.get("gold_tree") for meta in metadata] if all(batch_gold_trees) and self._evalb_score is not None and not self.training: gold_pos_tags: List[List[str]] = [ list(zip(*tree.pos()))[1] for tree in batch_gold_trees ] predicted_trees = self.construct_trees( class_probabilities.cpu().data, spans.cpu().data, num_spans.data, output_dict["tokens"], gold_pos_tags, ) self._evalb_score(predicted_trees, batch_gold_trees) return output_dict def make_output_human_readable( self, output_dict: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: """ Constructs an NLTK `Tree` given the scored spans. We also switch to exclusive span ends when constructing the tree representation, because it makes indexing into lists cleaner for ranges of text, rather than individual indices. Finally, for batch prediction, we will have padded spans and class probabilities. In order to make this less confusing, we remove all the padded spans and distributions from `spans` and `class_probabilities` respectively. """ all_predictions = output_dict["class_probabilities"].cpu().data all_spans = output_dict["spans"].cpu().data all_sentences = output_dict["tokens"] all_pos_tags = output_dict["pos_tags"] if all(output_dict["pos_tags"]) else None num_spans = output_dict["num_spans"].data trees = self.construct_trees( all_predictions, all_spans, num_spans, all_sentences, all_pos_tags ) batch_size = all_predictions.size(0) output_dict["spans"] = [all_spans[i, : num_spans[i]] for i in range(batch_size)] output_dict["class_probabilities"] = [ all_predictions[i, : num_spans[i], :] for i in range(batch_size) ] output_dict["trees"] = trees return output_dict def construct_trees( self, predictions: torch.FloatTensor, all_spans: torch.LongTensor, num_spans: torch.LongTensor, sentences: List[List[str]], pos_tags: List[List[str]] = None, ) -> List[Tree]: """ Construct `nltk.Tree`'s for each batch element by greedily nesting spans. The trees use exclusive end indices, which contrasts with how spans are represented in the rest of the model. # Parameters predictions : `torch.FloatTensor`, required. A tensor of shape `(batch_size, num_spans, span_label_vocab_size)` representing a distribution over the label classes per span. all_spans : `torch.LongTensor`, required. A tensor of shape (batch_size, num_spans, 2), representing the span indices we scored. num_spans : `torch.LongTensor`, required. A tensor of shape (batch_size), representing the lengths of non-padded spans in `enumerated_spans`. sentences : `List[List[str]]`, required. A list of tokens in the sentence for each element in the batch. pos_tags : `List[List[str]]`, optional (default = `None`). A list of POS tags for each word in the sentence for each element in the batch. # Returns A `List[Tree]` containing the decoded trees for each element in the batch. """ # Switch to using exclusive end spans. exclusive_end_spans = all_spans.clone() exclusive_end_spans[:, :, -1] += 1 no_label_id = self.vocab.get_token_index("NO-LABEL", "labels") trees: List[Tree] = [] for batch_index, (scored_spans, spans, sentence) in enumerate( zip(predictions, exclusive_end_spans, sentences) ): selected_spans = [] for prediction, span in zip( scored_spans[: num_spans[batch_index]], spans[: num_spans[batch_index]] ): start, end = span no_label_prob = prediction[no_label_id] label_prob, label_index = torch.max(prediction, -1) # Does the span have a label != NO-LABEL or is it the root node? # If so, include it in the spans that we consider. if int(label_index) != no_label_id or (start == 0 and end == len(sentence)): selected_spans.append( SpanInformation( start=int(start), end=int(end), label_prob=float(label_prob), no_label_prob=float(no_label_prob), label_index=int(label_index), ) ) # The spans we've selected might overlap, which causes problems when we try # to construct the tree as they won't nest properly. consistent_spans = self.resolve_overlap_conflicts_greedily(selected_spans) spans_to_labels = { (span.start, span.end): self.vocab.get_token_from_index(span.label_index, "labels") for span in consistent_spans } sentence_pos = pos_tags[batch_index] if pos_tags is not None else None trees.append(self.construct_tree_from_spans(spans_to_labels, sentence, sentence_pos)) return trees @staticmethod def resolve_overlap_conflicts_greedily(spans: List[SpanInformation]) -> List[SpanInformation]: """ Given a set of spans, removes spans which overlap by evaluating the difference in probability between one being labeled and the other explicitly having no label and vice-versa. The worst case time complexity of this method is `O(k * n^4)` where `n` is the length of the sentence that the spans were enumerated from (and therefore `k * m^2` complexity with respect to the number of spans `m`) and `k` is the number of conflicts. However, in practice, there are very few conflicts. Hopefully. This function modifies `spans` to remove overlapping spans. # Parameters spans : `List[SpanInformation]`, required. A list of spans, where each span is a `namedtuple` containing the following attributes: start : `int` The start index of the span. end : `int` The exclusive end index of the span. no_label_prob : `float` The probability of this span being assigned the `NO-LABEL` label. label_prob : `float` The probability of the most likely label. # Returns A modified list of `spans`, with the conflicts resolved by considering local differences between pairs of spans and removing one of the two spans. """ conflicts_exist = True while conflicts_exist: conflicts_exist = False for span1_index, span1 in enumerate(spans): for span2_index, span2 in list(enumerate(spans))[span1_index + 1 :]: if ( span1.start < span2.start < span1.end < span2.end or span2.start < span1.start < span2.end < span1.end ): # The spans overlap. conflicts_exist = True # What's the more likely situation: that span2 was labeled # and span1 was unlabled, or that span1 was labeled and span2 # was unlabled? In the first case, we delete span2 from the # set of spans to form the tree - in the second case, we delete # span1. if ( span1.no_label_prob + span2.label_prob < span2.no_label_prob + span1.label_prob ): spans.pop(span2_index) else: spans.pop(span1_index) break return spans @staticmethod def construct_tree_from_spans( spans_to_labels: Dict[Tuple[int, int], str], sentence: List[str], pos_tags: List[str] = None ) -> Tree: """ # Parameters spans_to_labels : `Dict[Tuple[int, int], str]`, required. A mapping from spans to constituency labels. sentence : `List[str]`, required. A list of tokens forming the sentence to be parsed. pos_tags : `List[str]`, optional (default = `None`) A list of the pos tags for the words in the sentence, if they were either predicted or taken as input to the model. # Returns An `nltk.Tree` constructed from the labelled spans. """ def assemble_subtree(start: int, end: int): if (start, end) in spans_to_labels: # Some labels contain nested spans, e.g S-VP. # We actually want to create (S (VP ...)) nodes # for these labels, so we split them up here. labels: List[str] = spans_to_labels[(start, end)].split("-") else: labels = None # This node is a leaf. if end - start == 1: word = sentence[start] pos_tag = pos_tags[start] if pos_tags is not None else "XX" tree = Tree(pos_tag, [word]) if labels is not None and pos_tags is not None: # If POS tags were passed explicitly, # they are added as pre-terminal nodes. while labels: tree = Tree(labels.pop(), [tree]) elif labels is not None: # Otherwise, we didn't want POS tags # at all. tree = Tree(labels.pop(), [word]) while labels: tree = Tree(labels.pop(), [tree]) return [tree] argmax_split = start + 1 # Find the next largest subspan such that # the left hand side is a constituent. for split in range(end - 1, start, -1): if (start, split) in spans_to_labels: argmax_split = split break left_trees = assemble_subtree(start, argmax_split) right_trees = assemble_subtree(argmax_split, end) children = left_trees + right_trees if labels is not None: while labels: children = [Tree(labels.pop(), children)] return children tree = assemble_subtree(0, len(sentence)) return tree[0] def get_metrics(self, reset: bool = False) -> Dict[str, float]: all_metrics = {} all_metrics["tag_accuracy"] = self.tag_accuracy.get_metric(reset=reset) if self._evalb_score is not None: evalb_metrics = self._evalb_score.get_metric(reset=reset) all_metrics.update(evalb_metrics) return all_metrics default_predictor = "constituency_parser"
allennlp-models-main
allennlp_models/structured_prediction/models/constituency_parser.py
from typing import Dict, List, TextIO, Optional, Any import warnings import torch from torch.nn.modules import Linear, Dropout import torch.nn.functional as F from allennlp.common.checks import check_dimensions_match from allennlp.data import TextFieldTensors, Vocabulary from allennlp.modules import Seq2SeqEncoder, TimeDistributed, TextFieldEmbedder from allennlp.modules.token_embedders import Embedding from allennlp.models.model import Model from allennlp.nn import InitializerApplicator from allennlp.nn.util import get_text_field_mask, sequence_cross_entropy_with_logits from allennlp.nn.util import get_lengths_from_binary_sequence_mask, viterbi_decode from allennlp_models.structured_prediction.metrics.srl_eval_scorer import ( SrlEvalScorer, DEFAULT_SRL_EVAL_PATH, ) def write_bio_formatted_tags_to_file( prediction_file: TextIO, gold_file: TextIO, verb_index: Optional[int], sentence: List[str], prediction: List[str], gold_labels: List[str], ): """ Prints predicate argument predictions and gold labels for a single verbal predicate in a sentence to two provided file references. The CoNLL SRL format is described in [the shared task data README](https://www.lsi.upc.edu/~srlconll/conll05st-release/README). This function expects IOB2-formatted tags, where the B- tag is used in the beginning of every chunk (i.e. all chunks start with the B- tag). # Parameters prediction_file : `TextIO`, required. A file reference to print predictions to. gold_file : `TextIO`, required. A file reference to print gold labels to. verb_index : `Optional[int]`, required. The index of the verbal predicate in the sentence which the gold labels are the arguments for, or None if the sentence contains no verbal predicate. sentence : `List[str]`, required. The word tokens. prediction : `List[str]`, required. The predicted BIO labels. gold_labels : `List[str]`, required. The gold BIO labels. """ conll_formatted_predictions = convert_bio_tags_to_conll_format(prediction) conll_formatted_gold_labels = convert_bio_tags_to_conll_format(gold_labels) write_conll_formatted_tags_to_file( prediction_file, gold_file, verb_index, sentence, conll_formatted_predictions, conll_formatted_gold_labels, ) def write_conll_formatted_tags_to_file( prediction_file: TextIO, gold_file: TextIO, verb_index: Optional[int], sentence: List[str], conll_formatted_predictions: List[str], conll_formatted_gold_labels: List[str], ): """ Prints predicate argument predictions and gold labels for a single verbal predicate in a sentence to two provided file references. The CoNLL SRL format is described in [the shared task data README](https://www.lsi.upc.edu/~srlconll/conll05st-release/README). This function expects IOB2-formatted tags, where the B- tag is used in the beginning of every chunk (i.e. all chunks start with the B- tag). # Parameters prediction_file : `TextIO`, required. A file reference to print predictions to. gold_file : `TextIO`, required. A file reference to print gold labels to. verb_index : `Optional[int]`, required. The index of the verbal predicate in the sentence which the gold labels are the arguments for, or None if the sentence contains no verbal predicate. sentence : `List[str]`, required. The word tokens. conll_formatted_predictions : `List[str]`, required. The predicted CoNLL-formatted labels. conll_formatted_gold_labels : `List[str]`, required. The gold CoNLL-formatted labels. """ verb_only_sentence = ["-"] * len(sentence) if verb_index is not None: verb_only_sentence[verb_index] = sentence[verb_index] for word, predicted, gold in zip( verb_only_sentence, conll_formatted_predictions, conll_formatted_gold_labels ): prediction_file.write(word.ljust(15)) prediction_file.write(predicted.rjust(15) + "\n") gold_file.write(word.ljust(15)) gold_file.write(gold.rjust(15) + "\n") prediction_file.write("\n") gold_file.write("\n") def convert_bio_tags_to_conll_format(labels: List[str]): """ Converts BIO formatted SRL tags to the format required for evaluation with the official CONLL 2005 perl script. Spans are represented by bracketed labels, with the labels of words inside spans being the same as those outside spans. Beginning spans always have a opening bracket and a closing asterisk (e.g. "(ARG-1*" ) and closing spans always have a closing bracket (e.g. "*)" ). This applies even for length 1 spans, (e.g "(ARG-0*)"). A full example of the conversion performed: [B-ARG-1, I-ARG-1, I-ARG-1, I-ARG-1, I-ARG-1, O] [ "(ARG-1*", "*", "*", "*", "*)", "*"] # Parameters labels : `List[str]`, required. A list of BIO tags to convert to the CONLL span based format. # Returns A list of labels in the CONLL span based format. """ sentence_length = len(labels) conll_labels = [] for i, label in enumerate(labels): if label == "O": conll_labels.append("*") continue new_label = "*" # Are we at the beginning of a new span, at the first word in the sentence, # or is the label different from the previous one? If so, we are seeing a new label. if label[0] == "B" or i == 0 or label[1:] != labels[i - 1][1:]: new_label = "(" + label[2:] + new_label # Are we at the end of the sentence, is the next word a new span, or is the next # word not in a span? If so, we need to close the label span. if i == sentence_length - 1 or labels[i + 1][0] == "B" or label[1:] != labels[i + 1][1:]: new_label = new_label + ")" conll_labels.append(new_label) return conll_labels @Model.register("srl") class SemanticRoleLabeler(Model): """ This model performs semantic role labeling using BIO tags using Propbank semantic roles. Specifically, it is an implementation of [Deep Semantic Role Labeling - What works and what's next](https://www.aclweb.org/anthology/P17-1044). This implementation is effectively a series of stacked interleaved LSTMs with highway connections, applied to embedded sequences of words concatenated with a binary indicator containing whether or not a word is the verbal predicate to generate predictions for in the sentence. Additionally, during inference, Viterbi decoding is applied to constrain the predictions to contain valid BIO sequences. Specifically, the model expects and outputs IOB2-formatted tags, where the B- tag is used in the beginning of every chunk (i.e. all chunks start with the B- tag). # Parameters vocab : `Vocabulary`, required A Vocabulary, required in order to compute sizes for input/output projections. text_field_embedder : `TextFieldEmbedder`, required Used to embed the `tokens` `TextField` we get as input to the model. encoder : `Seq2SeqEncoder` The encoder (with its own internal stacking) that we will use in between embedding tokens and predicting output tags. binary_feature_dim : `int`, required. The dimensionality of the embedding of the binary verb predicate features. initializer : `InitializerApplicator`, optional (default=`InitializerApplicator()`) Used to initialize the model parameters. label_smoothing : `float`, optional (default = `0.0`) Whether or not to use label smoothing on the labels when computing cross entropy loss. ignore_span_metric : `bool`, optional (default = `False`) Whether to calculate span loss, which is irrelevant when predicting BIO for Open Information Extraction. srl_eval_path : `str`, optional (default=`DEFAULT_SRL_EVAL_PATH`) The path to the srl-eval.pl script. By default, will use the srl-eval.pl included with allennlp, which is located at allennlp/tools/srl-eval.pl . If `None`, srl-eval.pl is not used. """ def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, encoder: Seq2SeqEncoder, binary_feature_dim: int, embedding_dropout: float = 0.0, initializer: InitializerApplicator = InitializerApplicator(), label_smoothing: float = None, ignore_span_metric: bool = False, srl_eval_path: str = DEFAULT_SRL_EVAL_PATH, **kwargs, ) -> None: super().__init__(vocab, **kwargs) self.text_field_embedder = text_field_embedder self.num_classes = self.vocab.get_vocab_size("labels") if srl_eval_path is not None: # For the span based evaluation, we don't want to consider labels # for verb, because the verb index is provided to the model. self.span_metric = SrlEvalScorer(srl_eval_path, ignore_classes=["V"]) else: self.span_metric = None self.encoder = encoder # There are exactly 2 binary features for the verb predicate embedding. self.binary_feature_embedding = Embedding( num_embeddings=2, embedding_dim=binary_feature_dim ) self.tag_projection_layer = TimeDistributed( Linear(self.encoder.get_output_dim(), self.num_classes) ) self.embedding_dropout = Dropout(p=embedding_dropout) self._label_smoothing = label_smoothing self.ignore_span_metric = ignore_span_metric check_dimensions_match( text_field_embedder.get_output_dim() + binary_feature_dim, encoder.get_input_dim(), "text embedding dim + verb indicator embedding dim", "encoder input dim", ) initializer(self) def forward( # type: ignore self, tokens: TextFieldTensors, verb_indicator: torch.LongTensor, tags: torch.LongTensor = None, metadata: List[Dict[str, Any]] = None, ) -> Dict[str, torch.Tensor]: """ # Parameters tokens : `TextFieldTensors`, required The output of `TextField.as_array()`, which should typically be passed directly to a `TextFieldEmbedder`. This output is a dictionary mapping keys to `TokenIndexer` tensors. At its most basic, using a `SingleIdTokenIndexer` this is : `{"tokens": Tensor(batch_size, num_tokens)}`. This dictionary will have the same keys as were used for the `TokenIndexers` when you created the `TextField` representing your sequence. The dictionary is designed to be passed directly to a `TextFieldEmbedder`, which knows how to combine different word representations into a single vector per token in your input. verb_indicator: `torch.LongTensor`, required. An integer `SequenceFeatureField` representation of the position of the verb in the sentence. This should have shape (batch_size, num_tokens) and importantly, can be all zeros, in the case that the sentence has no verbal predicate. tags : `torch.LongTensor`, optional (default = `None`) A torch tensor representing the sequence of integer gold class labels of shape `(batch_size, num_tokens)` metadata : `List[Dict[str, Any]]`, optional, (default = `None`) metadata containg the original words in the sentence and the verb to compute the frame for, under 'words' and 'verb' keys, respectively. # Returns An output dictionary consisting of: logits : `torch.FloatTensor` A tensor of shape `(batch_size, num_tokens, tag_vocab_size)` representing unnormalised log probabilities of the tag classes. class_probabilities : `torch.FloatTensor` A tensor of shape `(batch_size, num_tokens, tag_vocab_size)` representing a distribution of the tag classes per word. loss : `torch.FloatTensor`, optional A scalar loss to be optimised. """ embedded_text_input = self.embedding_dropout(self.text_field_embedder(tokens)) mask = get_text_field_mask(tokens) embedded_verb_indicator = self.binary_feature_embedding(verb_indicator.long()) # Concatenate the verb feature onto the embedded text. This now # has shape (batch_size, sequence_length, embedding_dim + binary_feature_dim). embedded_text_with_verb_indicator = torch.cat( [embedded_text_input, embedded_verb_indicator], -1 ) batch_size, sequence_length, _ = embedded_text_with_verb_indicator.size() encoded_text = self.encoder(embedded_text_with_verb_indicator, mask) logits = self.tag_projection_layer(encoded_text) reshaped_log_probs = logits.view(-1, self.num_classes) class_probabilities = F.softmax(reshaped_log_probs, dim=-1).view( [batch_size, sequence_length, self.num_classes] ) output_dict = {"logits": logits, "class_probabilities": class_probabilities} # We need to retain the mask in the output dictionary # so that we can crop the sequences to remove padding # when we do viterbi inference in self.make_output_human_readable. output_dict["mask"] = mask if tags is not None: loss = sequence_cross_entropy_with_logits( logits, tags, mask, label_smoothing=self._label_smoothing ) if not self.ignore_span_metric and self.span_metric is not None and not self.training: batch_verb_indices = [ example_metadata["verb_index"] for example_metadata in metadata ] batch_sentences = [example_metadata["words"] for example_metadata in metadata] # Get the BIO tags from make_output_human_readable() # TODO (nfliu): This is kind of a hack, consider splitting out part # of make_output_human_readable() to a separate function. batch_bio_predicted_tags = self.make_output_human_readable(output_dict).pop("tags") batch_conll_predicted_tags = [ convert_bio_tags_to_conll_format(tags) for tags in batch_bio_predicted_tags ] batch_bio_gold_tags = [ example_metadata["gold_tags"] for example_metadata in metadata ] batch_conll_gold_tags = [ convert_bio_tags_to_conll_format(tags) for tags in batch_bio_gold_tags ] self.span_metric( batch_verb_indices, batch_sentences, batch_conll_predicted_tags, batch_conll_gold_tags, ) output_dict["loss"] = loss words, verbs = zip(*[(x["words"], x["verb"]) for x in metadata]) if metadata is not None: output_dict["words"] = list(words) output_dict["verb"] = list(verbs) return output_dict def make_output_human_readable( self, output_dict: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: """ Does constrained viterbi decoding on class probabilities output in :func:`forward`. The constraint simply specifies that the output tags must be a valid BIO sequence. We add a `"tags"` key to the dictionary with the result. """ all_predictions = output_dict["class_probabilities"] sequence_lengths = get_lengths_from_binary_sequence_mask(output_dict["mask"]).data.tolist() if all_predictions.dim() == 3: predictions_list = [ all_predictions[i].detach().cpu() for i in range(all_predictions.size(0)) ] else: predictions_list = [all_predictions] all_tags = [] transition_matrix = self.get_viterbi_pairwise_potentials() start_transitions = self.get_start_transitions() for predictions, length in zip(predictions_list, sequence_lengths): max_likelihood_sequence, _ = viterbi_decode( predictions[:length], transition_matrix, allowed_start_transitions=start_transitions ) tags = [ self.vocab.get_token_from_index(x, namespace="labels") for x in max_likelihood_sequence ] all_tags.append(tags) output_dict["tags"] = all_tags return output_dict def get_metrics(self, reset: bool = False): if self.ignore_span_metric: # Return an empty dictionary if ignoring the # span metric return {} else: metric_dict = self.span_metric.get_metric(reset=reset) # This can be a lot of metrics, as there are 3 per class. # we only really care about the overall metrics, so we filter for them here. return {x: y for x, y in metric_dict.items() if "overall" in x} def get_viterbi_pairwise_potentials(self): """ Generate a matrix of pairwise transition potentials for the BIO labels. The only constraint implemented here is that I-XXX labels must be preceded by either an identical I-XXX tag or a B-XXX tag. In order to achieve this constraint, pairs of labels which do not satisfy this constraint have a pairwise potential of -inf. # Returns transition_matrix : `torch.Tensor` A `(num_labels, num_labels)` matrix of pairwise potentials. """ all_labels = self.vocab.get_index_to_token_vocabulary("labels") num_labels = len(all_labels) transition_matrix = torch.zeros([num_labels, num_labels]) for i, previous_label in all_labels.items(): for j, label in all_labels.items(): # I labels can only be preceded by themselves or # their corresponding B tag. if i != j and label[0] == "I" and not previous_label == "B" + label[1:]: transition_matrix[i, j] = float("-inf") return transition_matrix def get_start_transitions(self): """ In the BIO sequence, we cannot start the sequence with an I-XXX tag. This transition sequence is passed to viterbi_decode to specify this constraint. # Returns start_transitions : `torch.Tensor` The pairwise potentials between a START token and the first token of the sequence. """ all_labels = self.vocab.get_index_to_token_vocabulary("labels") num_labels = len(all_labels) start_transitions = torch.zeros(num_labels) for i, label in all_labels.items(): if label[0] == "I": start_transitions[i] = float("-inf") return start_transitions default_predictor = "semantic_role_labeling" def write_to_conll_eval_file( prediction_file: TextIO, gold_file: TextIO, verb_index: Optional[int], sentence: List[str], prediction: List[str], gold_labels: List[str], ): """ .. deprecated:: 0.8.4 The `write_to_conll_eval_file` function was deprecated in favor of the identical `write_bio_formatted_tags_to_file` in version 0.8.4. Prints predicate argument predictions and gold labels for a single verbal predicate in a sentence to two provided file references. The CoNLL SRL format is described in [the shared task data README](https://www.lsi.upc.edu/~srlconll/conll05st-release/README). This function expects IOB2-formatted tags, where the B- tag is used in the beginning of every chunk (i.e. all chunks start with the B- tag). # Parameters prediction_file : `TextIO`, required. A file reference to print predictions to. gold_file : `TextIO`, required. A file reference to print gold labels to. verb_index : `Optional[int]`, required. The index of the verbal predicate in the sentence which the gold labels are the arguments for, or None if the sentence contains no verbal predicate. sentence : `List[str]`, required. The word tokens. prediction : `List[str]`, required. The predicted BIO labels. gold_labels : `List[str]`, required. The gold BIO labels. """ warnings.warn( "The 'write_to_conll_eval_file' function has been deprecated in favor of " "the identical 'write_bio_formatted_tags_to_file' function.", DeprecationWarning, ) write_bio_formatted_tags_to_file( prediction_file, gold_file, verb_index, sentence, prediction, gold_labels )
allennlp-models-main
allennlp_models/structured_prediction/models/srl.py
# flake8: noqa: F403 from allennlp_models.lm.dataset_readers import * from allennlp_models.lm.models import * from allennlp_models.lm.modules import * from allennlp_models.lm.predictors import * from allennlp_models.lm.util import *
allennlp-models-main
allennlp_models/lm/__init__.py
from .beam_search_generators import * # noqa: F403
allennlp-models-main
allennlp_models/lm/util/__init__.py
from typing import Dict, List, Optional import torch from allennlp.data import TextFieldTensors from allennlp.modules.text_field_embedders import TextFieldEmbedder, BasicTextFieldEmbedder from allennlp.modules.token_embedders import PretrainedTransformerEmbedder from .beam_search_generator import BeamSearchGenerator @BeamSearchGenerator.register("transformer") class TransformerBeamSearchGenerator(BeamSearchGenerator): """ A `BeamSearchGenerator` for transformer-based `NextTokenLM` models. This can be used with any `NextTokenLM` that utilizes a single `pretrained_transformer` `TokenEmbedder` for it's `text_field_embedder`. """ def __init__(self, *args, namespace: str = None, **kwargs) -> None: super().__init__(*args, **kwargs) self._namespace: Optional[str] = namespace def validate_text_field_embedder(self, text_field_embedder: TextFieldEmbedder): assert isinstance(text_field_embedder, BasicTextFieldEmbedder) assert len(text_field_embedder._token_embedders) == 1 key = list(text_field_embedder._token_embedders.keys())[0] assert isinstance(text_field_embedder._token_embedders[key], PretrainedTransformerEmbedder) self._namespace = key def prepare_step_input( self, predictions: torch.Tensor, state: Dict[str, torch.Tensor] ) -> TextFieldTensors: # Add `predicted_tokens` to `state["token_ids"]` and expand `state["mask"]`. new_token_ids: List[torch.Tensor] = [] new_mask: List[torch.Tensor] = [] for instance_token_ids, instance_mask, prediction in zip( state["token_ids"], state["mask"], predictions ): # Shape: (?,) masked_out = (instance_mask == False).nonzero(as_tuple=False).squeeze(-1) # noqa: E712 if masked_out.size()[0] > 0: first_mask_index = masked_out[0].item() else: first_mask_index = instance_token_ids.size()[0] # Shape: (batch_size, num_tokens + 1) new_instance_token_ids = torch.cat( [ instance_token_ids[0:first_mask_index], prediction.unsqueeze(0), instance_token_ids[first_mask_index:], ], dim=-1, ) # Shape: (batch_size, num_tokens + 1) new_instance_mask = torch.cat( [ instance_mask[0:first_mask_index], torch.tensor([True], device=instance_mask.device), instance_mask[first_mask_index:], ], dim=-1, ) new_token_ids.append(new_instance_token_ids) new_mask.append(new_instance_mask) state["token_ids"] = torch.stack(new_token_ids, 0) state["mask"] = torch.stack(new_mask, 0) # Expand `state["type_ids"]` by 1 in the last dimension, just repeating whatever the last # value is. # Shape: (group_size, num_tokens) type_ids = state.pop("type_ids") # Shape: (group_size, num_tokens + 1) state["type_ids"] = torch.cat([type_ids, type_ids[:, -1].unsqueeze(-1)], dim=-1) # The model expect input in the form of TextFieldTensors, which just has another # nested layer like this: assert self._namespace is not None, ( "token embedder namespace could not be inferred, " "did you forget to call 'validate_text_field_embedder()'?" ) inputs = {self._namespace: state} return inputs
allennlp-models-main
allennlp_models/lm/util/beam_search_generators/transformer_beam_search_generator.py
from .beam_search_generator import BeamSearchGenerator from .transformer_beam_search_generator import TransformerBeamSearchGenerator
allennlp-models-main
allennlp_models/lm/util/beam_search_generators/__init__.py
from typing import Dict, Tuple import torch from allennlp.common.registrable import Registrable from allennlp.data import TextFieldTensors from allennlp.modules import TextFieldEmbedder from allennlp.nn.beam_search import BeamSearch, StepFunctionType class BeamSearchGenerator(Registrable): """ A beam search generator for next token language models. This is just a wrapper around `allennlp.nn.beam_search.BeamSearch` with custom logic for handling the `state` dict. The reason we need this is because the step function that `BeamSearch` uses needs to know how to handle different `TextFieldTensors`, the form of which depends on the exact embedder class that the `NextTokenLm` uses. So essentially we need a different `BeamSearchGenerator` implementation for each different `text_field_embedder`. """ def __init__(self, beam_search: BeamSearch): self._beam_search = beam_search def validate_text_field_embedder(self, text_field_embedder: TextFieldEmbedder): """ This should be called after initialization to verify that the model's `text_field_embedder` is compatable. """ raise NotImplementedError def get_step_state(self, inputs: TextFieldTensors) -> Dict[str, torch.Tensor]: """ Create a `state` dictionary for `BeamSearch` from the `TextFieldTensors` inputs to the `NextTokenLm` model. By default this assumes the `TextFieldTensors` has a single `TokenEmbedder`, and just "flattens" the `TextFieldTensors` by returning the `TokenEmbedder` sub-dictionary. If you have `TextFieldTensors` with more than one `TokenEmbedder` sub-dictionary, you'll need to override this class. """ assert len(inputs) == 1, ( "'get_step_state()' assumes a single token embedder by default, " "you'll need to override this method to handle more than one" ) key = list(inputs.keys())[0] # We can't just `return inputs[key]` because we might want to modify the state # dictionary (add or remove fields) without accidentally modifying the inputs # dictionary. return {k: v for (k, v) in inputs[key].items()} def prepare_step_input( self, predictions: torch.Tensor, state: Dict[str, torch.Tensor] ) -> TextFieldTensors: """ This is like the reverse of `get_step_state()`. It takes `predictions` and `state` from the current step and returns a `TextFieldTensors` dictionary that can be fed through the embedder of the `NextTokenLm` model. This usually involves adding the predicted tokens to the proper field of the `state` dict, and expanding any mask tensors or other context tensors by 1 in the right dimension, and then unflattening the `state` so that it looks like a `TextFieldTensors` dict. """ raise NotImplementedError def search( self, start_predictions: torch.Tensor, state: Dict[str, torch.Tensor], step_function: StepFunctionType, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Calls `BeamSearch.search`, return the top predicted indices and corresponding log probabilities. """ # Shape (top_indices): (batch_size, beam_size, num_predicted_tokens) # Shape (top_log_probs): (batch_size, beam_size) top_indices, top_log_probs = self._beam_search.search( start_predictions, state, step_function ) return top_indices, top_log_probs
allennlp-models-main
allennlp_models/lm/util/beam_search_generators/beam_search_generator.py
from typing import Dict, List import logging import copy from allennlp.data.instance import Instance from allennlp.data.tokenizers.tokenizer import Tokenizer from allennlp.data.tokenizers import Token from allennlp.data.tokenizers.whitespace_tokenizer import WhitespaceTokenizer from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.token_indexers.token_indexer import TokenIndexer from allennlp.data.fields import IndexField, Field, ListField, TextField from allennlp.data.token_indexers import SingleIdTokenIndexer from allennlp.data.tokenizers import PretrainedTransformerTokenizer logger = logging.getLogger(__name__) @DatasetReader.register("masked_language_modeling") class MaskedLanguageModelingReader(DatasetReader): """ Reads a text file and converts it into a `Dataset` suitable for training a masked language model. The :class:`Field` s that we create are the following: an input `TextField`, a mask position `ListField[IndexField]`, and a target token `TextField` (the target tokens aren't a single string of text, but we use a `TextField` so we can index the target tokens the same way as our input, typically with a single `PretrainedTransformerIndexer`). The mask position and target token lists are the same length. NOTE: This is not fully functional! It was written to put together a demo for interpreting and attacking masked language modeling, not for actually training anything. `text_to_instance` is functional, but `_read` is not. To make this fully functional, you would want some sampling strategies for picking the locations for [MASK] tokens, and probably a bunch of efficiency / multi-processing stuff. # Parameters tokenizer : `Tokenizer`, optional (default=`WhitespaceTokenizer()`) We use this `Tokenizer` for the text. See :class:`Tokenizer`. token_indexers : `Dict[str, TokenIndexer]`, optional (default=`{"tokens": SingleIdTokenIndexer()}`) We use this to define the input representation for the text, and to get ids for the mask targets. See :class:`TokenIndexer`. """ def __init__( self, tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None, **kwargs, ) -> None: super().__init__(**kwargs) self._tokenizer = tokenizer or WhitespaceTokenizer() # temporary hack to not to add special tokens self._targets_tokenizer: Tokenizer if isinstance(self._tokenizer, PretrainedTransformerTokenizer): self._targets_tokenizer = copy.copy(self._tokenizer) self._targets_tokenizer._add_special_tokens = False else: self._targets_tokenizer = self._tokenizer self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} def _read(self, file_path: str): import sys # You can call pytest with either `pytest` or `py.test`. if "test" not in sys.argv[0]: logger.error("_read is only implemented for unit tests at the moment") with open(file_path, "r") as text_file: for sentence in text_file: tokens = self._tokenizer.tokenize(sentence) target = tokens[0].text tokens[0] = Token("[MASK]") yield self.text_to_instance(sentence, tokens, [target]) def text_to_instance( self, # type: ignore sentence: str = None, tokens: List[Token] = None, targets: List[str] = None, ) -> Instance: """ # Parameters sentence : `str`, optional A sentence containing [MASK] tokens that should be filled in by the model. This input is superceded and ignored if `tokens` is given. tokens : `List[Token]`, optional An already-tokenized sentence containing some number of [MASK] tokens to be predicted. targets : `List[str]`, optional Contains the target tokens to be predicted. The length of this list should be the same as the number of [MASK] tokens in the input. """ if not tokens: tokens = self._tokenizer.tokenize(sentence) input_field = TextField(tokens, self._token_indexers) mask_positions = [] for i, token in enumerate(tokens): if token.text == "[MASK]": mask_positions.append(i) if not mask_positions: raise ValueError("No [MASK] tokens found!") if targets and len(targets) != len(mask_positions): raise ValueError(f"Found {len(mask_positions)} mask tokens and {len(targets)} targets") mask_position_field = ListField([IndexField(i, input_field) for i in mask_positions]) fields: Dict[str, Field] = {"tokens": input_field, "mask_positions": mask_position_field} # TODO(mattg): there's a problem if the targets get split into multiple word pieces... # (maksym-del): if we index word that was not split into wordpieces with # PretrainedTransformerTokenizer we will get OOV token ID... # Until this is handeled, let's use first wordpiece id for each token since tokens should contain text_ids # to be indexed with PretrainedTokenIndexer. It also requeires hack to avoid adding special tokens... if targets is not None: # target_field = TextField([Token(target) for target in targets], self._token_indexers) first_wordpieces = [self._targets_tokenizer.tokenize(target)[0] for target in targets] target_tokens = [] for wordpiece, target in zip(first_wordpieces, targets): target_tokens.append( Token(text=target, text_id=wordpiece.text_id, type_id=wordpiece.type_id) ) fields["target_ids"] = TextField(target_tokens, self._token_indexers) return Instance(fields)
allennlp-models-main
allennlp_models/lm/dataset_readers/masked_language_model.py
from typing import Dict, Iterable, Union, Optional, List import logging import math from allennlp.data.tokenizers import Token from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import TextField from allennlp.data.instance import Instance from allennlp.data.token_indexers import SingleIdTokenIndexer from allennlp.data.token_indexers.token_indexer import TokenIndexer from allennlp.data.tokenizers import SpacyTokenizer from allennlp.data.tokenizers.tokenizer import Tokenizer logger = logging.getLogger(__name__) @DatasetReader.register("simple_language_modeling") class SimpleLanguageModelingDatasetReader(DatasetReader): """ Reads sentences, one per line, for language modeling. This does not handle arbitrarily formatted text with sentences spanning multiple lines. # Parameters tokenizer : `Tokenizer`, optional Tokenizer to use to split the input sentences into words or other kinds of tokens. Defaults to `SpacyTokenizer()`. token_indexers : `Dict[str, TokenIndexer]`, optional Indexers used to define input token representations. Defaults to `{"tokens": SingleIdTokenIndexer()}`. max_sequence_length : `int`, optional If specified, sentences with more than this number of tokens will be dropped. start_tokens : `List[str]`, optional (default=`None`) These are prepended to the tokens provided to the `TextField`. end_tokens : `List[str]`, optional (default=`None`) These are appended to the tokens provided to the `TextField`. """ def __init__( self, tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None, max_sequence_length: int = None, start_tokens: List[str] = None, end_tokens: List[str] = None, **kwargs, ) -> None: super().__init__(**kwargs) self._tokenizer = tokenizer or SpacyTokenizer() self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} if max_sequence_length is not None: self._max_sequence_length: Union[float, Optional[int]] = max_sequence_length else: self._max_sequence_length = math.inf self._start_tokens = [Token(st) for st in (start_tokens or [])] self._end_tokens = [Token(et) for et in (end_tokens or [])] logger.info("Creating SimpleLanguageModelingDatasetReader") logger.info("max_sequence_length=%s", max_sequence_length) def text_to_instance( self, # type: ignore sentence: str, ) -> Instance: tokenized = self._tokenizer.tokenize(sentence) tokenized_with_ends = [] tokenized_with_ends.extend(self._start_tokens) tokenized_with_ends.extend(tokenized) tokenized_with_ends.extend(self._end_tokens) return_instance = Instance({"source": TextField(tokenized_with_ends, self._token_indexers)}) return return_instance def _read(self, file_path: str) -> Iterable[Instance]: logger.info("Loading data from %s", file_path) dropped_instances = 0 with open(file_path) as file: for sentence in file: instance = self.text_to_instance(sentence) if instance.fields["source"].sequence_length() <= self._max_sequence_length: yield instance else: dropped_instances += 1 if not dropped_instances: logger.info(f"No instances dropped from {file_path}.") else: logger.warning(f"Dropped {dropped_instances} instances from {file_path}.")
allennlp-models-main
allennlp_models/lm/dataset_readers/simple_language_modeling.py
from allennlp_models.lm.dataset_readers.masked_language_model import MaskedLanguageModelingReader from allennlp_models.lm.dataset_readers.next_token_lm import NextTokenLMReader from allennlp_models.lm.dataset_readers.simple_language_modeling import ( SimpleLanguageModelingDatasetReader, )
allennlp-models-main
allennlp_models/lm/dataset_readers/__init__.py
from typing import Dict, List, cast import logging import copy from allennlp.data.instance import Instance from allennlp.data.tokenizers.tokenizer import Tokenizer from allennlp.data.tokenizers import Token from allennlp.data.tokenizers.whitespace_tokenizer import WhitespaceTokenizer from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.token_indexers.token_indexer import TokenIndexer from allennlp.data.fields import Field, TextField from allennlp.data.token_indexers import SingleIdTokenIndexer from allennlp.data.tokenizers import PretrainedTransformerTokenizer logger = logging.getLogger(__name__) @DatasetReader.register("next_token_lm") class NextTokenLMReader(DatasetReader): """ Creates `Instances` suitable for use in predicting a single next token using a language model. The :class:`Field` s that we create are the following: an input `TextField` and a target token `TextField` (we only ver have a single token, but we use a `TextField` so we can index it the same way as our input, typically with a single `PretrainedTransformerIndexer`). NOTE: This is not fully functional! It was written to put together a demo for interpreting and attacking language models, not for actually training anything. It would be a really bad idea to use this setup for training language models, as it would be incredibly inefficient. The only purpose of this class is for a demo. # Parameters tokenizer : `Tokenizer`, optional (default=`WhitespaceTokenizer()`) We use this `Tokenizer` for the text. See :class:`Tokenizer`. token_indexers : `Dict[str, TokenIndexer]`, optional (default=`{"tokens": SingleIdTokenIndexer()}`) We use this to define the input representation for the text, and to get ids for the mask targets. See :class:`TokenIndexer`. max_tokens : `int`, optional (default = `None`) If you don't handle truncation at the `tokenizer` level, you can specify `max_tokens` here, and the only the last `max_tokens` will be used. """ def __init__( self, tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None, max_tokens: int = None, **kwargs, ) -> None: super().__init__(**kwargs) self._tokenizer = tokenizer or WhitespaceTokenizer() self._targets_tokenizer: Tokenizer if isinstance(self._tokenizer, PretrainedTransformerTokenizer): self._targets_tokenizer = copy.copy(self._tokenizer) self._targets_tokenizer._add_special_tokens = False else: self._targets_tokenizer = self._tokenizer self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} self._max_tokens = max_tokens def _read(self, file_path: str): import sys # You can call pytest with either `pytest` or `py.test`. if "test" not in sys.argv[0]: logger.error( "_read is only implemented for unit tests. You should not actually " "try to train or evaluate a language model with this code." ) with open(file_path, "r") as text_file: for sentence in text_file: tokens = self._tokenizer.tokenize(sentence) target = "the" yield self.text_to_instance(sentence, tokens, target) def text_to_instance( self, # type: ignore sentence: str = None, tokens: List[Token] = None, target: str = None, ) -> Instance: if tokens is None and sentence is not None: tokens = self._tokenizer.tokenize(sentence) elif sentence is None: raise ValueError("expected either 'sentence' or 'tokens' to not be null") tokens = cast(List[Token], tokens) if self._max_tokens is not None: tokens = tokens[-self._max_tokens :] input_field = TextField(tokens, self._token_indexers) fields: Dict[str, Field] = {"tokens": input_field} # TODO: if we index word that was not split into wordpieces with # PretrainedTransformerTokenizer we will get OOV token ID... # Until this is handeled, let's use first wordpiece id for each token since tokens should contain text_ids # to be indexed with PretrainedTokenIndexer. It also requeires hack to avoid adding special tokens... if target: wordpiece = self._targets_tokenizer.tokenize(target)[0] target_token = Token(text=target, text_id=wordpiece.text_id, type_id=wordpiece.type_id) fields["target_ids"] = TextField([target_token], self._token_indexers) return Instance(fields)
allennlp-models-main
allennlp_models/lm/dataset_readers/next_token_lm.py
from typing import Dict import numpy from allennlp.common.util import JsonDict from allennlp.data import Instance, Token from allennlp.data.fields import TextField from allennlp.predictors.predictor import Predictor @Predictor.register("masked_language_model") class MaskedLanguageModelPredictor(Predictor): def predict(self, sentence_with_masks: str) -> JsonDict: return self.predict_json({"sentence": sentence_with_masks}) def predictions_to_labeled_instances( self, instance: Instance, outputs: Dict[str, numpy.ndarray] ): new_instance = instance.duplicate() token_field: TextField = instance["tokens"] # type: ignore mask_targets = [Token(target_top_k[0]) for target_top_k in outputs["words"]] new_instance.add_field( "target_ids", TextField(mask_targets, token_field._token_indexers), vocab=self._model.vocab, ) return [new_instance] def _json_to_instance(self, json_dict: JsonDict) -> Instance: """ Expects JSON that looks like `{"sentence": "..."}`. """ sentence = json_dict["sentence"] return self._dataset_reader.text_to_instance(sentence=sentence) # type: ignore
allennlp-models-main
allennlp_models/lm/predictors/masked_language_model.py
from allennlp_models.lm.predictors.masked_language_model import MaskedLanguageModelPredictor from allennlp_models.lm.predictors.next_token_lm import NextTokenLMPredictor
allennlp-models-main
allennlp_models/lm/predictors/__init__.py
from typing import Dict import numpy from allennlp.common.util import JsonDict from allennlp.data import Instance, Token from allennlp.data.fields import TextField from allennlp.predictors.predictor import Predictor @Predictor.register("next_token_lm") class NextTokenLMPredictor(Predictor): def predict(self, sentence: str) -> JsonDict: return self.predict_json({"sentence": sentence}) def predictions_to_labeled_instances( self, instance: Instance, outputs: Dict[str, numpy.ndarray] ): new_instance = instance.duplicate() token_field: TextField = instance["tokens"] # type: ignore mask_targets = [Token(target_top_k[0]) for target_top_k in outputs["top_tokens"][0]] new_instance.add_field( "target_ids", TextField(mask_targets, token_field._token_indexers), vocab=self._model.vocab, ) return [new_instance] def _json_to_instance(self, json_dict: JsonDict) -> Instance: """ Expects JSON that looks like `{"sentence": "..."}`. """ sentence = json_dict["sentence"] return self._dataset_reader.text_to_instance(sentence=sentence) # type: ignore
allennlp-models-main
allennlp_models/lm/predictors/next_token_lm.py
from typing import Dict, List, Tuple, Union import torch from allennlp.common.checks import ConfigurationError from allennlp.data import TextFieldTensors, Vocabulary from allennlp.models.model import Model from allennlp.modules import SoftmaxLoss from allennlp.modules.text_field_embedders import TextFieldEmbedder from allennlp.modules.sampled_softmax_loss import SampledSoftmaxLoss from allennlp.modules.seq2seq_encoders import Seq2SeqEncoder from allennlp.nn.util import get_text_field_mask from allennlp.nn import InitializerApplicator from allennlp.training.metrics import Perplexity @Model.register("language_model") class LanguageModel(Model): """ The `LanguageModel` applies a "contextualizing" `Seq2SeqEncoder` to uncontextualized embeddings, using a `SoftmaxLoss` module (defined above) to compute the language modeling loss. If bidirectional is True, the language model is trained to predict the next and previous tokens for each token in the input. In this case, the contextualizer must be bidirectional. If bidirectional is False, the language model is trained to only predict the next token for each token in the input; the contextualizer should also be unidirectional. If your language model is bidirectional, it is IMPORTANT that your bidirectional `Seq2SeqEncoder` contextualizer does not do any "peeking ahead". That is, for its forward direction it should only consider embeddings at previous timesteps, and for its backward direction only embeddings at subsequent timesteps. Similarly, if your language model is unidirectional, the unidirectional contextualizer should only consider embeddings at previous timesteps. If this condition is not met, your language model is cheating. # Parameters vocab : `Vocabulary` text_field_embedder : `TextFieldEmbedder` Used to embed the indexed tokens we get in `forward`. contextualizer : `Seq2SeqEncoder` Used to "contextualize" the embeddings. As described above, this encoder must not cheat by peeking ahead. dropout : `float`, optional (default = `None`) If specified, dropout is applied to the contextualized embeddings before computation of the softmax. The contextualized embeddings themselves are returned without dropout. num_samples : `int`, optional (default = `None`) If provided, the model will use `SampledSoftmaxLoss` with the specified number of samples. Otherwise, it will use the full `_SoftmaxLoss` defined above. sparse_embeddings : `bool`, optional (default = `False`) Passed on to `SampledSoftmaxLoss` if True. bidirectional : `bool`, optional (default = `False`) Train a bidirectional language model, where the contextualizer is used to predict the next and previous token for each input token. This must match the bidirectionality of the contextualizer. """ def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, contextualizer: Seq2SeqEncoder, dropout: float = None, num_samples: int = None, sparse_embeddings: bool = False, bidirectional: bool = False, initializer: InitializerApplicator = None, **kwargs, ) -> None: super().__init__(vocab, **kwargs) self._text_field_embedder = text_field_embedder if contextualizer.is_bidirectional() is not bidirectional: raise ConfigurationError( "Bidirectionality of contextualizer must match bidirectionality of " "language model. " f"Contextualizer bidirectional: {contextualizer.is_bidirectional()}, " f"language model bidirectional: {bidirectional}" ) self._contextualizer = contextualizer self._bidirectional = bidirectional # The dimension for making predictions just in the forward # (or backward) direction. if self._bidirectional: self._forward_dim = contextualizer.get_output_dim() // 2 else: self._forward_dim = contextualizer.get_output_dim() # TODO(joelgrus): more sampled softmax configuration options, as needed. if num_samples is not None: self._softmax_loss = SampledSoftmaxLoss( num_words=vocab.get_vocab_size(), embedding_dim=self._forward_dim, num_samples=num_samples, sparse=sparse_embeddings, ) else: self._softmax_loss = SoftmaxLoss( num_words=vocab.get_vocab_size(), embedding_dim=self._forward_dim ) # This buffer is now unused and exists only for backwards compatibility reasons. self.register_buffer("_last_average_loss", torch.zeros(1)) self._perplexity = Perplexity() if dropout: self._dropout = torch.nn.Dropout(dropout) else: self._dropout = lambda x: x if initializer is not None: initializer(self) def _get_target_token_embeddings( self, token_embeddings: torch.Tensor, mask: torch.BoolTensor, direction: int ) -> torch.Tensor: # Need to shift the mask in the correct direction zero_col = token_embeddings.new_zeros(mask.size(0), 1).to(dtype=torch.bool) if direction == 0: # forward direction, get token to right shifted_mask = torch.cat([zero_col, mask[:, 0:-1]], dim=1) else: shifted_mask = torch.cat([mask[:, 1:], zero_col], dim=1) return token_embeddings.masked_select(shifted_mask.unsqueeze(-1)).view( -1, self._forward_dim ) def _compute_loss( self, lm_embeddings: torch.Tensor, token_embeddings: torch.Tensor, forward_targets: torch.Tensor, backward_targets: torch.Tensor = None, ) -> Tuple[torch.Tensor, torch.Tensor]: # If bidirectional, lm_embeddings is shape (batch_size, timesteps, dim * 2) # If unidirectional, lm_embeddings is shape (batch_size, timesteps, dim) # forward_targets, backward_targets (None in the unidirectional case) are # shape (batch_size, timesteps) masked with 0 if self._bidirectional: forward_embeddings, backward_embeddings = lm_embeddings.chunk(2, -1) backward_loss = self._loss_helper( 1, backward_embeddings, backward_targets, token_embeddings ) else: forward_embeddings = lm_embeddings backward_loss = None forward_loss = self._loss_helper(0, forward_embeddings, forward_targets, token_embeddings) return forward_loss, backward_loss def _loss_helper( self, direction: int, direction_embeddings: torch.Tensor, direction_targets: torch.Tensor, token_embeddings: torch.Tensor, ) -> Tuple[int, int]: mask = direction_targets > 0 # we need to subtract 1 to undo the padding id since the softmax # does not include a padding dimension # shape (batch_size * timesteps, ) non_masked_targets = direction_targets.masked_select(mask) - 1 # shape (batch_size * timesteps, embedding_dim) non_masked_embeddings = direction_embeddings.masked_select(mask.unsqueeze(-1)).view( -1, self._forward_dim ) # note: need to return average loss across forward and backward # directions, but total sum loss across all batches. # Assuming batches include full sentences, forward and backward # directions have the same number of samples, so sum up loss # here then divide by 2 just below if not self._softmax_loss.tie_embeddings or not self._use_character_inputs: return self._softmax_loss(non_masked_embeddings, non_masked_targets) else: # we also need the token embeddings corresponding to the # the targets raise NotImplementedError( "This requires SampledSoftmaxLoss, which isn't implemented yet." ) non_masked_token_embeddings = self._get_target_token_embeddings( token_embeddings, mask, direction ) return self._softmax( non_masked_embeddings, non_masked_targets, non_masked_token_embeddings ) def delete_softmax(self) -> None: """ Remove the softmax weights. Useful for saving memory when calculating the loss is not necessary, e.g. in an embedder. """ self._softmax_loss = None def num_layers(self) -> int: """ Returns the depth of this LM. That is, how many layers the contextualizer has plus one for the non-contextual layer. """ if hasattr(self._contextualizer, "num_layers"): return self._contextualizer.num_layers + 1 else: raise NotImplementedError( f"Contextualizer of type {type(self._contextualizer)} " + "does not report how many layers it has." ) def forward(self, source: TextFieldTensors) -> Dict[str, torch.Tensor]: # type: ignore """ Computes the averaged forward (and backward, if language model is bidirectional) LM loss from the batch. # Parameters source : `TextFieldTensors`, required. The output of `Batch.as_tensor_dict()` for a batch of sentences. By convention, it's required to have at least a `"tokens"` entry that's the output of a `SingleIdTokenIndexer`, which is used to compute the language model targets. # Returns Dict with keys: `'loss'` : `torch.Tensor` forward negative log likelihood, or the average of forward/backward if language model is bidirectional `'forward_loss'` : `torch.Tensor` forward direction negative log likelihood `'backward_loss'` : `torch.Tensor` or `None` backward direction negative log likelihood. If language model is not bidirectional, this is `None`. `'lm_embeddings'` : `Union[torch.Tensor, List[torch.Tensor]]` (batch_size, timesteps, embed_dim) tensor of top layer contextual representations or list of all layers. No dropout applied. `'noncontextual_token_embeddings'` : `torch.Tensor` (batch_size, timesteps, token_embed_dim) tensor of bottom layer noncontextual representations `'mask'` : `torch.BoolTensor` (batch_size, timesteps) mask for the embeddings """ mask = get_text_field_mask(source) # shape (batch_size, timesteps, embedding_size) embeddings = self._text_field_embedder(source) # Either the top layer or all layers. contextual_embeddings: Union[torch.Tensor, List[torch.Tensor]] = self._contextualizer( embeddings, mask ) return_dict = {} # If we have target tokens, calculate the loss. token_id_dict = source.get("tokens") if token_id_dict is not None: token_ids = token_id_dict["tokens"] assert isinstance(contextual_embeddings, torch.Tensor) # Use token_ids to compute targets forward_targets = torch.zeros_like(token_ids) forward_targets[:, 0:-1] = token_ids[:, 1:] if self._bidirectional: backward_targets = torch.zeros_like(token_ids) backward_targets[:, 1:] = token_ids[:, 0:-1] else: backward_targets = None # add dropout contextual_embeddings_with_dropout = self._dropout(contextual_embeddings) # compute softmax loss forward_loss, backward_loss = self._compute_loss( contextual_embeddings_with_dropout, embeddings, forward_targets, backward_targets ) num_targets = torch.sum((forward_targets > 0).long()) if num_targets > 0: if self._bidirectional: average_loss = 0.5 * (forward_loss + backward_loss) / num_targets.float() else: average_loss = forward_loss / num_targets.float() else: average_loss = torch.tensor(0.0).to(forward_targets.device) self._perplexity(average_loss) if num_targets > 0: return_dict.update( { "loss": average_loss, "forward_loss": forward_loss / num_targets.float(), "batch_weight": num_targets.float(), } ) if backward_loss is not None: return_dict["backward_loss"] = backward_loss / num_targets.float() else: # average_loss zero tensor, return it for all return_dict.update({"loss": average_loss, "forward_loss": average_loss}) if backward_loss is not None: return_dict["backward_loss"] = average_loss return_dict.update( { # Note: These embeddings do not have dropout applied. "lm_embeddings": contextual_embeddings, "noncontextual_token_embeddings": embeddings, "mask": mask, } ) return return_dict def get_metrics(self, reset: bool = False): return {"perplexity": self._perplexity.get_metric(reset=reset)}
allennlp-models-main
allennlp_models/lm/models/language_model.py
from typing import Dict import torch from allennlp.common.checks import check_dimensions_match from allennlp.data import TextFieldTensors, Vocabulary from allennlp.models.model import Model from allennlp.modules import Seq2SeqEncoder, TextFieldEmbedder from allennlp.nn import util, InitializerApplicator from allennlp.training.metrics import Perplexity from allennlp_models.lm.modules.language_model_heads import LanguageModelHead @Model.register("masked_language_model") class MaskedLanguageModel(Model): """ The `MaskedLanguageModel` embeds some input tokens (including some which are masked), contextualizes them, then predicts targets for the masked tokens, computing a loss against known targets. NOTE: This was developed for use in a demo, not for training. It's possible that it will still work for training a masked LM, but it is very likely that some other code would be much more efficient for that. This `does` compute correct gradients of the loss, because we use that in our demo, so in principle it should be able to train a model, we just don't necessarily endorse that use. # Parameters vocab : `Vocabulary` text_field_embedder : `TextFieldEmbedder` Used to embed the indexed tokens we get in `forward`. language_model_head : `LanguageModelHead` The `torch.nn.Module` that goes from the hidden states output by the contextualizer to logits over some output vocabulary. contextualizer : `Seq2SeqEncoder`, optional (default=`None`) Used to "contextualize" the embeddings. This is optional because the contextualization might actually be done in the text field embedder. target_namespace : `str`, optional (default=`'bert'`) Namespace to use to convert predicted token ids to strings in `Model.make_output_human_readable`. dropout : `float`, optional (default=`0.0`) If specified, dropout is applied to the contextualized embeddings before computation of the softmax. The contextualized embeddings themselves are returned without dropout. """ def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, language_model_head: LanguageModelHead, contextualizer: Seq2SeqEncoder = None, target_namespace: str = "bert", dropout: float = 0.0, initializer: InitializerApplicator = None, **kwargs, ) -> None: super().__init__(vocab, **kwargs) self._text_field_embedder = text_field_embedder self._contextualizer = contextualizer if contextualizer: check_dimensions_match( text_field_embedder.get_output_dim(), contextualizer.get_input_dim(), "text field embedder output", "contextualizer input", ) self._language_model_head = language_model_head self._target_namespace = target_namespace self._perplexity = Perplexity() self._dropout = torch.nn.Dropout(dropout) if initializer is not None: initializer(self) def forward( # type: ignore self, tokens: TextFieldTensors, mask_positions: torch.BoolTensor, target_ids: TextFieldTensors = None, ) -> Dict[str, torch.Tensor]: """ # Parameters tokens : `TextFieldTensors` The output of `TextField.as_tensor()` for a batch of sentences. mask_positions : `torch.LongTensor` The positions in `tokens` that correspond to [MASK] tokens that we should try to fill in. Shape should be (batch_size, num_masks). target_ids : `TextFieldTensors` This is a list of token ids that correspond to the mask positions we're trying to fill. It is the output of a `TextField`, purely for convenience, so we can handle wordpiece tokenizers and such without having to do crazy things in the dataset reader. We assume that there is exactly one entry in the dictionary, and that it has a shape identical to `mask_positions` - one target token per mask position. """ targets = None if target_ids is not None: targets = util.get_token_ids_from_text_field_tensors(target_ids) mask_positions = mask_positions.squeeze(-1) batch_size, num_masks = mask_positions.size() if targets is not None and targets.size() != mask_positions.size(): raise ValueError( f"Number of targets ({targets.size()}) and number of masks " f"({mask_positions.size()}) are not equal" ) # Shape: (batch_size, num_tokens, embedding_dim) embeddings = self._text_field_embedder(tokens) # Shape: (batch_size, num_tokens, encoding_dim) if self._contextualizer: mask = util.get_text_field_mask(embeddings) contextual_embeddings = self._contextualizer(embeddings, mask) else: contextual_embeddings = embeddings # Does advanced indexing to get the embeddings of just the mask positions, which is what # we're trying to predict. batch_index = torch.arange(0, batch_size).long().unsqueeze(1) mask_embeddings = contextual_embeddings[batch_index, mask_positions] target_logits = self._language_model_head(self._dropout(mask_embeddings)) vocab_size = target_logits.size(-1) probs = torch.nn.functional.softmax(target_logits, dim=-1) k = min(vocab_size, 5) # min here largely because tests use small vocab top_probs, top_indices = probs.topk(k=k, dim=-1) output_dict = {"probabilities": top_probs, "top_indices": top_indices} output_dict["token_ids"] = util.get_token_ids_from_text_field_tensors(tokens) if targets is not None: target_logits = target_logits.view(batch_size * num_masks, vocab_size) targets = targets.view(batch_size * num_masks) loss = torch.nn.functional.cross_entropy(target_logits, targets) self._perplexity(loss) output_dict["loss"] = loss return output_dict def get_metrics(self, reset: bool = False): return {"perplexity": self._perplexity.get_metric(reset=reset)} def make_output_human_readable( self, output_dict: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: top_words = [] for instance_indices in output_dict["top_indices"]: top_words.append( [ [ self.vocab.get_token_from_index( index.item(), namespace=self._target_namespace ) for index in mask_positions ] for mask_positions in instance_indices ] ) output_dict["words"] = top_words tokens = [] for instance_tokens in output_dict["token_ids"]: tokens.append( [ self.vocab.get_token_from_index( token_id.item(), namespace=self._target_namespace ) for token_id in instance_tokens ] ) output_dict["tokens"] = tokens return output_dict default_predictor = "masked_language_model"
allennlp-models-main
allennlp_models/lm/models/masked_language_model.py
from allennlp_models.lm.models.bidirectional_lm import BidirectionalLanguageModel from allennlp_models.lm.models.language_model import LanguageModel from allennlp_models.lm.models.masked_language_model import MaskedLanguageModel from allennlp_models.lm.models.next_token_lm import NextTokenLM
allennlp-models-main
allennlp_models/lm/models/__init__.py
from typing import Dict, Tuple import torch from allennlp.common.checks import check_dimensions_match from allennlp.data import TextFieldTensors, Vocabulary from allennlp.models.model import Model from allennlp.modules import Seq2SeqEncoder, TextFieldEmbedder from allennlp.nn import util, InitializerApplicator from allennlp.training.metrics import Perplexity from allennlp_models.lm.modules.language_model_heads import LanguageModelHead from allennlp_models.lm.util import BeamSearchGenerator @Model.register("next_token_lm") class NextTokenLM(Model): """ The `NextTokenLM` embeds some input tokens, contextualizes them, then predicts the next word, computing a loss against known target. If `BeamSearch` is given, this model will predict a sequence of next tokens. !!! NOTE This was developed for use in a demo, not for training. You *definitely* don't want to train a language model using this code; it would be incredibly inefficient. But it does compute correct gradients of the loss, however, so you can use it for interesting visualization of the gradients of a pretrained model, and it appears to be fast enough to sample from, at least for one word at a time. # Parameters vocab : `Vocabulary` text_field_embedder : `TextFieldEmbedder` Used to embed the indexed tokens we get in `forward`. language_model_head : `LanguageModelHead` The `torch.nn.Module` that goes from the hidden states output by the contextualizer to logits over some output vocabulary. contextualizer : `Seq2SeqEncoder`, optional (default=`None`) Used to "contextualize" the embeddings. This is optional because the contextualization might actually be done in the text field embedder. target_namespace : `str`, optional (default=`'bert'`) Namespace to use to convert predicted token ids to strings in `Model.make_output_human_readable`. dropout : `float`, optional (default=`0.0`) If specified, dropout is applied to the contextualized embeddings before computation of the softmax. The contextualized embeddings themselves are returned without dropout. n_best : `int`, optional (default = `5`) The number of best tokens to predict. If `beam_search` is given, this option is ignored. beam_search_generator : `BeamSearchGenerator`, optional (default = `None`) An optional `BeamSearchGenerator`. If given, the model will predict sequences of next tokens instead of just a single next token. """ def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, language_model_head: LanguageModelHead, contextualizer: Seq2SeqEncoder = None, target_namespace: str = "bert", dropout: float = 0.0, initializer: InitializerApplicator = None, n_best: int = 5, beam_search_generator: BeamSearchGenerator = None, **kwargs, ) -> None: super().__init__(vocab, **kwargs) self._text_field_embedder = text_field_embedder self._contextualizer = contextualizer if contextualizer: check_dimensions_match( text_field_embedder.get_output_dim(), contextualizer.get_input_dim(), "text field embedder output", "contextualizer input", ) self._language_model_head = language_model_head self._target_namespace = target_namespace self._perplexity = Perplexity() self._dropout = torch.nn.Dropout(dropout) self._n_best = n_best self._beam_search_generator = beam_search_generator # Ensure beam_search_generator is compatable with text_field_embedder. if self._beam_search_generator is not None: self._beam_search_generator.validate_text_field_embedder(self._text_field_embedder) if initializer is not None: initializer(self) def forward( # type: ignore self, tokens: TextFieldTensors, target_ids: TextFieldTensors = None ) -> Dict[str, torch.Tensor]: """ Run a forward pass of the model, returning an output tensor dictionary with the following fields: - `"probabilities"`: a tensor of shape `(batch_size, n_best)` representing the probabilities of the predicted tokens, where `n_best` is either `self._n_best` or `beam_size` if using beam search. - `"top_indices"`: a tensor of shape `(batch_size, n_best, num_predicted_tokens)` containing the IDs of the predicted tokens, where `num_predicted_tokens` is just 1 unless using beam search, in which case it depends on the parameters of the beam search. - `"token_ids"`: a tensor of shape `(batch_size, num_input_tokens)` containing the IDs of the input tokens. - `"loss"` (optional): the loss of the batch, only given if `target_ids` is not `None`. """ output_dict = { "token_ids": util.get_token_ids_from_text_field_tensors(tokens), } # Shape: (batch_size, vocab_size) target_logits = self._next_token_scores(tokens) # Compute loss. if target_ids is not None: batch_size, vocab_size = target_logits.size() tmp = util.get_token_ids_from_text_field_tensors(target_ids) # In some scenarios, target_ids might be a topk list of token ids (e.g. sorted by probabilities). # Therefore, we need to make sure only one token per batch # Assume: first token in each batch is the most desirable one (e.g. highest probability) tmp = tmp[:, 0] if len(tmp.shape) == 2 else tmp assert len(tmp.shape) <= 2 targets = tmp.view(batch_size) loss = torch.nn.functional.cross_entropy(target_logits, targets) self._perplexity(loss) output_dict["loss"] = loss if self._beam_search_generator is not None: # Dummy start predictions. # Shape: (batch_size,) start_predictions = torch.zeros( target_logits.size()[0], device=target_logits.device, dtype=torch.int ) state = self._beam_search_generator.get_step_state(tokens) # Put this in here to avoid having to re-compute on the first step of beam search. state["start_target_logits"] = target_logits # Shape (top_indices): (batch_size, beam_size, num_predicted_tokens) # Shape (top_log_probs): (batch_size, beam_size) top_indices, top_log_probs = self._beam_search_generator.search( start_predictions, state, self._beam_search_step ) # Shape: (batch_size, beam_size) top_probs = top_log_probs.exp() else: # Shape: (batch_size, vocab_size) probs = torch.nn.functional.softmax(target_logits, dim=-1) # Shape (both): (batch_size, n_best) # min here largely because tests use small vocab top_probs, top_indices = probs.topk(k=min(target_logits.size(-1), self._n_best), dim=-1) # Shape: (batch_size, n_best, 1) top_indices = top_indices.unsqueeze(-1) output_dict["top_indices"] = top_indices output_dict["probabilities"] = top_probs return output_dict def _next_token_scores(self, tokens: TextFieldTensors) -> torch.Tensor: """ Get the unnormalized log probabilities of the potential next token. """ # Shape: (batch_size, num_tokens, embedding_dim) embeddings = self._text_field_embedder(tokens) # Shape: (batch_size, num_tokens, encoding_dim) if self._contextualizer: mask = util.get_text_field_mask(embeddings) contextual_embeddings = self._contextualizer(embeddings, mask) final_embeddings = util.get_final_encoder_states(contextual_embeddings, mask) else: final_embeddings = embeddings[:, -1] # Shape: (batch_size, vocab_size) return self._language_model_head(self._dropout(final_embeddings)) def _beam_search_step( self, predicted_tokens: torch.Tensor, state: Dict[str, torch.Tensor], step: int ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """ Step function to use with `BeamSearch`. `predicted_tokens` is a tensor of shape `(group_size,)` and `state` is a dictionary of tensors with the following fields: - "token_ids": shape `(group_size, num_tokens)` - "mask": shape `(group_size, num_tokens)` - "type_ids": shape `(group_size, num_tokens)` """ assert self._beam_search_generator is not None if step == 0: # Shape: (group_size, vocab_size) start_target_logits = state.pop("start_target_logits") # Shape: (group_size, vocab_size) start_target_log_probs = torch.nn.functional.log_softmax(start_target_logits, dim=-1) return start_target_log_probs, state inputs = self._beam_search_generator.prepare_step_input(predicted_tokens, state) state = self._beam_search_generator.get_step_state(inputs) # Shape: (group_size, vocab_size) next_token_scores = self._next_token_scores(inputs) # Shape: (group_size, vocab_size) log_probs = torch.nn.functional.log_softmax(next_token_scores, dim=-1) return log_probs, state def get_metrics(self, reset: bool = False): return {"perplexity": self._perplexity.get_metric(reset=reset)} def make_output_human_readable( self, output_dict: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: """ Collects token strings from indices, adding two fields to the `output_dict`: - `"top_tokens"`: a list (for each instance in the batch) of lists (for each of the `n` best predictions) of lists of strings (for each token in each prediction). - `"tokens"`: a list of list (for each instance in the batch) of strings (for each input token in the instance). """ # Gather predicted words. top_tokens = [] # shape (output_dict["top_indices"]): (batch_size, n_best, num_predicted_tokens) for instance in output_dict["top_indices"]: # shape (instance): (n_best, num_predicted_tokens) instance_top_words = [] for indices in instance: # shape (indices): (num_predicted_tokens,) instance_top_words.append( [ self.vocab.get_token_from_index( index.item(), namespace=self._target_namespace ) for index in indices ] ) top_tokens.append(instance_top_words) # Gather input tokens. tokens = [] for instance_tokens in output_dict["token_ids"]: tokens.append( [ self.vocab.get_token_from_index( token_id.item(), namespace=self._target_namespace ) for token_id in instance_tokens ] ) output_dict["top_tokens"] = top_tokens # type: ignore output_dict["tokens"] = tokens # type: ignore return output_dict default_predictor = "next_token_lm"
allennlp-models-main
allennlp_models/lm/models/next_token_lm.py
from allennlp.data.vocabulary import Vocabulary from allennlp.models.model import Model from allennlp.modules.text_field_embedders import TextFieldEmbedder from allennlp.modules.seq2seq_encoders import Seq2SeqEncoder from allennlp.nn import InitializerApplicator from allennlp_models.lm.models.language_model import LanguageModel @Model.register("bidirectional-language-model") class BidirectionalLanguageModel(LanguageModel): """ The `BidirectionalLanguageModel` applies a bidirectional "contextualizing" `Seq2SeqEncoder` to uncontextualized embeddings, using a `SoftmaxLoss` module (defined above) to compute the language modeling loss. It is IMPORTANT that your bidirectional `Seq2SeqEncoder` does not do any "peeking ahead". That is, for its forward direction it should only consider embeddings at previous timesteps, and for its backward direction only embeddings at subsequent timesteps. If this condition is not met, your language model is cheating. # Parameters vocab : `Vocabulary` text_field_embedder : `TextFieldEmbedder` Used to embed the indexed tokens we get in `forward`. contextualizer : `Seq2SeqEncoder` Used to "contextualize" the embeddings. As described above, this encoder must not cheat by peeking ahead. dropout : `float`, optional (default=`None`) If specified, dropout is applied to the contextualized embeddings before computation of the softmax. The contextualized embeddings themselves are returned without dropout. num_samples : `int`, optional (default=`None`) If provided, the model will use `SampledSoftmaxLoss` with the specified number of samples. Otherwise, it will use the full `_SoftmaxLoss` defined above. sparse_embeddings : `bool`, optional (default=`False`) Passed on to `SampledSoftmaxLoss` if True. """ def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, contextualizer: Seq2SeqEncoder, dropout: float = None, num_samples: int = None, sparse_embeddings: bool = False, initializer: InitializerApplicator = None, **kwargs, ) -> None: super().__init__( vocab=vocab, text_field_embedder=text_field_embedder, contextualizer=contextualizer, dropout=dropout, num_samples=num_samples, sparse_embeddings=sparse_embeddings, bidirectional=True, initializer=initializer, **kwargs, )
allennlp-models-main
allennlp_models/lm/models/bidirectional_lm.py
# flake8: noqa: F403 from allennlp_models.lm.modules.seq2seq_encoders import * from allennlp_models.lm.modules.language_model_heads import * from allennlp_models.lm.modules.token_embedders import *
allennlp-models-main
allennlp_models/lm/modules/__init__.py
""" The BidirectionalTransformerEncoder from Calypso. This is basically the transformer from https://nlp.seas.harvard.edu/2018/04/03/attention.html so credit to them. This code should be considered "private" in that we have several transformer implementations and may end up deleting this one. If you use it, consider yourself warned. """ from typing import Tuple, Callable import math import warnings import torch import torch.nn.functional as F from allennlp.common.checks import ExperimentalFeatureWarning from allennlp.modules.layer_norm import LayerNorm from allennlp.modules.seq2seq_encoders.seq2seq_encoder import Seq2SeqEncoder from allennlp.common import Registrable from allennlp.nn import util def attention( query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, mask: torch.BoolTensor = None, dropout: Callable = None, ) -> Tuple[torch.Tensor, torch.Tensor]: """Compute 'Scaled Dot Product Attention'""" d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k) if mask is not None: scores = scores.masked_fill(~mask, util.min_value_of_dtype(scores.dtype)) p_attn = F.softmax(scores, dim=-1) if dropout is not None: p_attn = dropout(p_attn) return torch.matmul(p_attn, value), p_attn def subsequent_mask(size: int, device: str = "cpu") -> torch.BoolTensor: """Mask out subsequent positions.""" mask = torch.tril(torch.ones(size, size, device=device, dtype=torch.bool)).unsqueeze(0) return mask class PositionalEncoding(torch.nn.Module, Registrable): """Implement the Positional Encoding function.""" def __init__(self, input_dim: int, max_len: int = 5000) -> None: super().__init__() # Compute the positional encodings once in log space. positional_encoding = torch.zeros(max_len, input_dim, requires_grad=False) position = torch.arange(0, max_len).unsqueeze(1).float() div_term = torch.exp( torch.arange(0, input_dim, 2).float() * -(math.log(10000.0) / input_dim) ) positional_encoding[:, 0::2] = torch.sin(position * div_term) positional_encoding[:, 1::2] = torch.cos(position * div_term) positional_encoding = positional_encoding.unsqueeze(0) self.register_buffer("positional_encoding", positional_encoding) def forward(self, x: torch.Tensor) -> torch.Tensor: return x + self.positional_encoding[:, : x.size(1)] class PositionwiseFeedForward(torch.nn.Module): """Implements FFN equation.""" def __init__(self, input_dim: int, ff_dim: int, dropout: float = 0.1) -> None: super().__init__() self.w_1 = torch.nn.Linear(input_dim, ff_dim) self.w_2 = torch.nn.Linear(ff_dim, input_dim) self.dropout = torch.nn.Dropout(dropout) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.w_2(self.dropout(F.relu(self.w_1(x)))) class TransformerEncoder(torch.nn.Module): """Core encoder is a stack of N layers""" def __init__( self, layer: torch.nn.Module, num_layers: int, return_all_layers: bool = False ) -> None: super().__init__() self.layers = util.clone(layer, num_layers) self.norm = LayerNorm(layer.size) self.return_all_layers = return_all_layers def forward(self, x, mask): """Pass the input (and mask) through each layer in turn.""" all_layers = [] for layer in self.layers: x = layer(x, mask) if self.return_all_layers: all_layers.append(x) if self.return_all_layers: all_layers[-1] = self.norm(all_layers[-1]) return all_layers return self.norm(x) class SublayerConnection(torch.nn.Module): """ A residual connection followed by a layer norm. Note for code simplicity the norm is first as opposed to last. """ def __init__(self, size: int, dropout: float) -> None: super().__init__() self.norm = LayerNorm(size) self.dropout = torch.nn.Dropout(dropout) def forward( self, x: torch.Tensor, sublayer: Callable[[torch.Tensor], torch.Tensor] ) -> torch.Tensor: """Apply residual connection to any sublayer with the same size.""" return x + self.dropout(sublayer(self.norm(x))) class EncoderLayer(torch.nn.Module): """Encoder is made up of self-attn and feed forward (defined below)""" def __init__( self, size: int, self_attn: torch.nn.Module, feed_forward: torch.nn.Module, dropout: float ) -> None: super().__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.sublayer = util.clone(SublayerConnection(size, dropout), 2) self.size = size def forward(self, x: torch.Tensor, mask: torch.BoolTensor) -> torch.Tensor: """Follow Figure 1 (left) for connections.""" x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask)) return self.sublayer[1](x, self.feed_forward) class MultiHeadedAttention(torch.nn.Module): def __init__(self, num_heads: int, input_dim: int, dropout: float = 0.1) -> None: super().__init__() assert input_dim % num_heads == 0, "input_dim must be a multiple of num_heads" # We assume d_v always equals d_k self.d_k = input_dim // num_heads self.num_heads = num_heads # These linear layers are # [query_projection, key_projection, value_projection, concatenated_heads_projection] self.linears = util.clone(torch.nn.Linear(input_dim, input_dim), 4) self.dropout = torch.nn.Dropout(p=dropout) def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, mask: torch.BoolTensor = None, ) -> torch.Tensor: if mask is not None: # Same mask applied to all h heads. # Shape (batch_size, num_heads, timesteps, timesteps) mask = mask.unsqueeze(1).expand([-1, self.num_heads, -1, -1]) nbatches = query.size(0) # 1) Do all the linear projections in batch from d_model => h x d_k query, key, value = [ layer(x).view(nbatches, -1, self.num_heads, self.d_k).transpose(1, 2) for layer, x in zip(self.linears, (query, key, value)) ] # 2) Apply attention on all the projected vectors in batch. x, _ = attention(query, key, value, mask=mask, dropout=self.dropout) # 3) "Concat" using a view and apply a final linear. x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.num_heads * self.d_k) return self.linears[-1](x) def make_model( num_layers: int = 6, input_size: int = 512, # Attention size hidden_size: int = 2048, # FF layer size heads: int = 8, dropout: float = 0.1, return_all_layers: bool = False, ) -> TransformerEncoder: """Helper: Construct a model from hyperparameters.""" attn = MultiHeadedAttention(heads, input_size, dropout) ff = PositionwiseFeedForward(input_size, hidden_size, dropout) model = TransformerEncoder( EncoderLayer(input_size, attn, ff, dropout), num_layers, return_all_layers=return_all_layers ) # Initialize parameters with Glorot / fan_avg. for p in model.parameters(): if p.dim() > 1: torch.nn.init.xavier_uniform_(p) return model @Seq2SeqEncoder.register("bidirectional_language_model_transformer") class BidirectionalLanguageModelTransformer(Seq2SeqEncoder): def __init__( self, input_dim: int, hidden_dim: int, num_layers: int, dropout: float = 0.1, input_dropout: float = None, return_all_layers: bool = False, ) -> None: warnings.warn( "This particular transformer implementation is a provisional feature " "that's intended for AI2 internal use and might be deleted at any time. " "If you use it, consider yourself warned!", ExperimentalFeatureWarning, ) super().__init__() self._return_all_layers = return_all_layers self.transformer_layers = num_layers self.num_layers = num_layers self._forward_transformer = make_model( input_size=input_dim, hidden_size=hidden_dim, num_layers=num_layers, dropout=dropout, return_all_layers=return_all_layers, ) self._backward_transformer = make_model( input_size=input_dim, hidden_size=hidden_dim, num_layers=num_layers, dropout=dropout, return_all_layers=return_all_layers, ) self._position = PositionalEncoding(input_dim) self.input_dim = input_dim self.output_dim = 2 * input_dim if input_dropout: self._dropout = torch.nn.Dropout(input_dropout) else: self._dropout = lambda x: x self.should_log_activations = False def get_attention_masks(self, mask: torch.BoolTensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Returns 2 masks of shape (batch_size, timesteps, timesteps) representing 1) non-padded elements, and 2) elements of the sequence which are permitted to be involved in attention at a given timestep. """ device = mask.device # Forward case: timesteps = mask.size(1) # Shape (1, timesteps, timesteps) subsequent = subsequent_mask(timesteps, device) # Broadcasted logical and - we want zero # elements where either we have padding from the mask, # or we aren't allowed to use the timesteps. # Shape (batch_size, timesteps, timesteps) forward_mask = mask.unsqueeze(-1) & subsequent # Backward case - exactly the same, but transposed. backward_mask = forward_mask.transpose(1, 2) return forward_mask, backward_mask def forward(self, token_embeddings: torch.Tensor, mask: torch.BoolTensor) -> torch.Tensor: forward_mask, backward_mask = self.get_attention_masks(mask) token_embeddings = self._position(token_embeddings) token_embeddings = self._dropout(token_embeddings) forward_output = self._forward_transformer(token_embeddings, forward_mask) backward_output = self._backward_transformer(token_embeddings, backward_mask) if self._return_all_layers: to_return = [] for forward, backward in zip(forward_output, backward_output): to_return.append(torch.cat([forward, backward], -1)) return to_return return torch.cat([forward_output, backward_output], -1) def get_regularization_penalty(self): return 0.0 def get_input_dim(self) -> int: return self.input_dim def get_output_dim(self) -> int: return self.output_dim def is_bidirectional(self) -> bool: return True
allennlp-models-main
allennlp_models/lm/modules/seq2seq_encoders/bidirectional_lm_transformer.py
from allennlp_models.lm.modules.seq2seq_encoders.bidirectional_lm_transformer import ( BidirectionalLanguageModelTransformer, )
allennlp-models-main
allennlp_models/lm/modules/seq2seq_encoders/__init__.py
from transformers.models.gpt2.modeling_gpt2 import GPT2Config, GPT2LMHeadModel import torch from .language_model_head import LanguageModelHead @LanguageModelHead.register("gpt2") class Gpt2LanguageModelHead(LanguageModelHead): """ Loads just the LM head from `transformers.GPT2LMHeadModel`. It was easiest to load the entire model before only pulling out the head, so this is a bit slower than it could be, but for practical use in a model, the few seconds of extra loading time is probably not a big deal. """ def __init__(self, model_name: str) -> None: super().__init__() config = GPT2Config.from_pretrained(model_name) self.input_dim = config.hidden_size self.output_dim = config.vocab_size # TODO(mattg): It's possible that we could use some kind of cache like we have in # allennlp.modules.token_embedders.bert_token_embedder.PretrainedBertModel. That way, we # would only load the GPT2 weights once. Though, it's not clear how to do that here, as we # need to load `GPT2LMHeadModel`, not just `GPT2Model`... gpt2_model = GPT2LMHeadModel.from_pretrained(model_name) self.gpt2_lm_head = gpt2_model.lm_head def get_input_dim(self) -> int: return self.input_dim def get_output_dim(self) -> int: return self.output_dim def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return self.gpt2_lm_head(hidden_states)
allennlp-models-main
allennlp_models/lm/modules/language_model_heads/gpt2.py
import torch from allennlp.data import Vocabulary from allennlp_models.lm.modules.language_model_heads.language_model_head import LanguageModelHead @LanguageModelHead.register("linear") class LinearLanguageModelHead(LanguageModelHead): """ Uses `torch.nn.Linear` as a language model head. Does nothing else fancy. This was intended largely for testing code with small models and simple components. It's likely that you would want something nicer for actually training a language model, such as tying weights with an input embedding, or an adaptive softmax, or something. """ def __init__(self, vocab: Vocabulary, input_dim: int, vocab_namespace: str) -> None: super().__init__() self.input_dim = input_dim self.output_dim = vocab.get_vocab_size(vocab_namespace) if self.output_dim <= 0: raise ValueError("We can't embed into an empty vocabulary.") self.linear = torch.nn.Linear(self.input_dim, self.output_dim) def get_input_dim(self) -> int: return self.input_dim def get_output_dim(self) -> int: return self.output_dim def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return self.linear(hidden_states)
allennlp-models-main
allennlp_models/lm/modules/language_model_heads/linear.py
from allennlp_models.lm.modules.language_model_heads.language_model_head import LanguageModelHead from allennlp_models.lm.modules.language_model_heads.bert import BertLanguageModelHead from allennlp_models.lm.modules.language_model_heads.gpt2 import Gpt2LanguageModelHead from allennlp_models.lm.modules.language_model_heads.linear import LinearLanguageModelHead
allennlp-models-main
allennlp_models/lm/modules/language_model_heads/__init__.py
import torch from allennlp.common import Registrable class LanguageModelHead(torch.nn.Module, Registrable): """ A `LanguageModelHead` encapsulates a function that goes from some hidden state to logits over a vocabulary. """ def get_input_dim(self) -> int: raise NotImplementedError def get_output_dim(self) -> int: raise NotImplementedError def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # type: ignore raise NotImplementedError
allennlp-models-main
allennlp_models/lm/modules/language_model_heads/language_model_head.py
from transformers.models.bert.modeling_bert import BertConfig, BertForMaskedLM import torch from .language_model_head import LanguageModelHead @LanguageModelHead.register("bert") class BertLanguageModelHead(LanguageModelHead): """ Loads just the LM head from `transformers.BertForMaskedLM`. It was easiest to load the entire model before only pulling out the head, so this is a bit slower than it could be, but for practical use in a model, the few seconds of extra loading time is probably not a big deal. """ def __init__(self, model_name: str) -> None: super().__init__() config = BertConfig.from_pretrained(model_name) self.input_dim = config.hidden_size self.output_dim = config.vocab_size # TODO(mattg): It's possible that we could use some kind of cache like we have in # allennlp.modules.token_embedders.bert_token_embedder.PretrainedBertModel. That way, we # would only load the BERT weights once. Though, it's not clear how to do that here, as we # need to load `BertForMaskedLM`, not just `BertModel`... bert_model = BertForMaskedLM.from_pretrained(model_name) self.bert_lm_head = bert_model.cls def get_input_dim(self) -> int: return self.input_dim def get_output_dim(self) -> int: return self.output_dim def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return self.bert_lm_head(hidden_states)
allennlp-models-main
allennlp_models/lm/modules/language_model_heads/bert.py
import json from typing import Dict, Tuple, TYPE_CHECKING import torch from allennlp.common import Params from allennlp.common.checks import ConfigurationError from allennlp.data import TokenIndexer, Token from allennlp.modules import TextFieldEmbedder from allennlp.modules.scalar_mix import ScalarMix from allennlp.modules.text_field_embedders import BasicTextFieldEmbedder from allennlp.modules.token_embedders import EmptyEmbedder from allennlp.modules.token_embedders.token_embedder import TokenEmbedder from allennlp.nn.util import ( remove_sentence_boundaries, get_text_field_mask, add_sentence_boundary_token_ids, ) # Importing at runtime results in a circular dependency. if TYPE_CHECKING: from allennlp_models.lm.models.language_model import LanguageModel @TokenEmbedder.register("language_model_token_embedder") class LanguageModelTokenEmbedder(TokenEmbedder): """ Compute a single layer of representations from a (optionally bidirectional) language model. This is done by computing a learned scalar average of the layers from the LM. Typically the LM's weights will be fixed, but they can be fine tuned by setting `requires_grad`. # Parameters archive_file : `str`, required An archive file, typically model.tar.gz, from a LanguageModel. The contextualizer used by the LM must satisfy two requirements: 1. It must have a num_layers field. 2. It must take a boolean return_all_layers parameter in its constructor. See BidirectionalLanguageModelTransformer for their definitions. dropout : `float`, optional. The dropout value to be applied to the representations. bos_eos_tokens : `Tuple[str, str]`, optional (default=`("<S>", "</S>")`) These will be indexed and placed around the indexed tokens. Necessary if the language model was trained with them, but they were injected external to an indexer. remove_bos_eos : `bool`, optional (default = `True`) Typically the provided token indexes will be augmented with begin-sentence and end-sentence tokens. (Alternatively, you can pass bos_eos_tokens.) If this flag is True the corresponding embeddings will be removed from the return values. Warning: This only removes a single start and single end token! requires_grad : `bool`, optional (default = `False`) If True, compute gradient of bidirectional language model parameters for fine tuning. """ def __init__( self, archive_file: str, dropout: float = None, bos_eos_tokens: Tuple[str, str] = ("<S>", "</S>"), remove_bos_eos: bool = True, requires_grad: bool = False, ) -> None: super().__init__() overrides = {"model.contextualizer.return_all_layers": True} # Import here to avoid circular dependency. from allennlp.models.archival import load_archive # Load LM and the associated config. archive = load_archive(archive_file, overrides=json.dumps(overrides)) self._lm: LanguageModel = archive.model self._lm.delete_softmax() config = archive.config dict_config = config.as_dict(quiet=True) # Extract the name of the tokens that the LM was trained on. text_field_embedder = dict_config["model"]["text_field_embedder"] text_field_embedder = TextFieldEmbedder.from_params(Params(text_field_embedder)) if not isinstance(text_field_embedder, BasicTextFieldEmbedder): raise ConfigurationError( f"Language model from {archive_file} uses a non-standard TextFieldEmbedder!" ) non_empty_embedders = [ name for name, token_embedder in text_field_embedder._token_embedders.items() if not isinstance(token_embedder, EmptyEmbedder) ] if len(non_empty_embedders) == 0: # Only empty embedders were contained in the language model # We need at least one non-empty embedder in the language model raise ConfigurationError( f"Language model from {archive_file} trained with only empty embedders!" ) elif len(non_empty_embedders) > 1: raise ConfigurationError( f"Language model from {archive_file} trained with multiple non-empty embedders!" ) self._token_name = non_empty_embedders[0] # TODO(brendanr): Find a way to remove this hack. The issue fundamentally is that the # BasicTextFieldEmbedder concatenates multiple embedded representations. When a # downstream model uses both, tokens and token characters, say, and only adds bos/eos # tokens to the token characters, the dimensions don't match. See: # https://github.com/allenai/allennlp/blob/eff25a3085aa9976a7650d30d8961c3626ddc411/allennlp/modules/text_field_embedders/basic_text_field_embedder.py#L109 # # For the equivalent hack in the ELMo embedder see: # https://github.com/allenai/allennlp/blob/eff25a3085aa9976a7650d30d8961c3626ddc411/allennlp/modules/elmo.py#L590 if bos_eos_tokens: dataset_reader_config = config.get("dataset_reader") token_indexer_config = dataset_reader_config.get("token_indexers").get(self._token_name) token_indexer: TokenIndexer = TokenIndexer.from_params(token_indexer_config) token_list = [Token(token) for token in bos_eos_tokens] # TODO(brendanr): Obtain these indices from the vocab once the # ELMoTokenCharactersIndexer adds the mappings. bos_eos_indices = token_indexer.tokens_to_indices(token_list, self._lm.vocab)[ "elmo_tokens" ] self._bos_indices = torch.LongTensor(bos_eos_indices[0]) self._eos_indices = torch.LongTensor(bos_eos_indices[1]) else: self._bos_indices = None self._eos_indices = None if dropout: self._dropout = torch.nn.Dropout(dropout) else: self._dropout = lambda x: x self._remove_bos_eos = remove_bos_eos num_layers = self._lm.num_layers() # TODO(brendanr): Consider passing our LM as a custom module to `Elmo` instead. # See https://github.com/allenai/allennlp/blob/master/allennlp/modules/elmo.py#L76 self._scalar_mix = ScalarMix(mixture_size=num_layers, do_layer_norm=False, trainable=True) character_dim = self._lm._text_field_embedder.get_output_dim() contextual_dim = self._lm._contextualizer.get_output_dim() if contextual_dim % character_dim != 0: raise ConfigurationError( "The output dimensions for the text_field_embedder " + f"({character_dim}) and the contextualizer ({contextual_dim})" + f" from the language model loaded from {archive_file} are " + "not compatible. Please check the config used to train that " + "model and ensure that the output dimension of the " + "text_field_embedder divides the output dimension of the " + "contextualizer." ) self._character_embedding_duplication_count = contextual_dim // character_dim for param in self._lm.parameters(): param.requires_grad = requires_grad def get_output_dim(self) -> int: return self._lm._contextualizer.get_output_dim() def forward( self, # type: ignore tokens: torch.Tensor, ) -> Dict[str, torch.Tensor]: """ # Parameters tokens : `torch.Tensor` Shape `(batch_size, timesteps, ...)` of token ids representing the current batch. These must have been produced using the same indexer the LM was trained on. # Returns The bidirectional language model representations for the input sequence, shape `(batch_size, timesteps, embedding_dim)` """ if self._bos_indices is not None: num_wrapping_dims = max(tokens.dim() - 2, 0) mask = get_text_field_mask({"": {"": tokens}}, num_wrapping_dims=num_wrapping_dims) tokens, mask = add_sentence_boundary_token_ids( tokens, mask, self._bos_indices, self._eos_indices ) source = {self._token_name: {"token_characters": tokens}} result_dict = self._lm(source) # shape (batch_size, timesteps, embedding_size) noncontextual_token_embeddings = result_dict["noncontextual_token_embeddings"] contextual_embeddings = result_dict["lm_embeddings"] # Typically the non-contextual embeddings are smaller than the contextualized embeddings. # Since we're averaging all the layers we need to make their dimensions match. Simply # repeating the non-contextual embeddings is a crude, but effective, way to do this. duplicated_character_embeddings = torch.cat( [noncontextual_token_embeddings] * self._character_embedding_duplication_count, -1 ) averaged_embeddings = self._scalar_mix( [duplicated_character_embeddings] + contextual_embeddings ) # Add dropout averaged_embeddings = self._dropout(averaged_embeddings) if self._remove_bos_eos: averaged_embeddings, _ = remove_sentence_boundaries( averaged_embeddings, result_dict["mask"] ) return averaged_embeddings
allennlp-models-main
allennlp_models/lm/modules/token_embedders/language_model.py
from allennlp_models.lm.modules.token_embedders.language_model import LanguageModelTokenEmbedder from allennlp_models.lm.modules.token_embedders.bidirectional_lm import ( BidirectionalLanguageModelTokenEmbedder, )
allennlp-models-main
allennlp_models/lm/modules/token_embedders/__init__.py
from typing import Tuple from allennlp.modules.token_embedders.token_embedder import TokenEmbedder from allennlp_models.lm.modules.token_embedders.language_model import LanguageModelTokenEmbedder @TokenEmbedder.register("bidirectional_lm_token_embedder") class BidirectionalLanguageModelTokenEmbedder(LanguageModelTokenEmbedder): """ Compute a single layer of representations from a bidirectional language model. This is done by computing a learned scalar average of the layers from the LM. Typically the LM's weights will be fixed, but they can be fine tuned by setting `requires_grad`. # Parameters archive_file : `str`, required An archive file, typically model.tar.gz, from a BidirectionalLanguageModel. The contextualizer used by the LM must satisfy two requirements: 1. It must have a num_layers field. 2. It must take a boolean return_all_layers parameter in its constructor. See BidirectionalLanguageModelTransformer for their definitions. dropout : `float`, optional. The dropout value to be applied to the representations. bos_eos_tokens : `Tuple[str, str]`, optional (default=`("<S>", "</S>")`) These will be indexed and placed around the indexed tokens. Necessary if the language model was trained with them, but they were injected external to an indexer. remove_bos_eos : `bool`, optional (default = `True`) Typically the provided token indexes will be augmented with begin-sentence and end-sentence tokens. (Alternatively, you can pass bos_eos_tokens.) If this flag is True the corresponding embeddings will be removed from the return values. Warning: This only removes a single start and single end token! requires_grad : `bool`, optional (default=`False`) If True, compute gradient of bidirectional language model parameters for fine tuning. """ def __init__( self, archive_file: str, dropout: float = None, bos_eos_tokens: Tuple[str, str] = ("<S>", "</S>"), remove_bos_eos: bool = True, requires_grad: bool = False, ) -> None: super().__init__( archive_file=archive_file, dropout=dropout, bos_eos_tokens=bos_eos_tokens, remove_bos_eos=remove_bos_eos, requires_grad=requires_grad, )
allennlp-models-main
allennlp_models/lm/modules/token_embedders/bidirectional_lm.py
# flake8: noqa: F403 from allennlp_models.vision.models import * from allennlp_models.vision.predictors import * from allennlp_models.vision.dataset_readers import * from allennlp_models.vision.metrics import *
allennlp-models-main
allennlp_models/vision/__init__.py
from allennlp_models.vision.metrics.vqa import VqaMeasure
allennlp-models-main
allennlp_models/vision/metrics/__init__.py
import torch from allennlp.training.metrics.metric import Metric import torch.distributed as dist @Metric.register("vqa") class VqaMeasure(Metric): """Compute the VQA metric, as described in https://www.semanticscholar.org/paper/VQA%3A-Visual-Question-Answering-Agrawal-Lu/97ad70a9fa3f99adf18030e5e38ebe3d90daa2db In VQA, we take the answer with the highest score, and then we find out how often humans decided this was the right answer. The accuracy score for an answer is `min(1.0, human_count / 3)`. This metric takes the logits from the models, i.e., a score for each possible answer, and the labels for the question, together with their weights. """ def __init__(self) -> None: self._sum_of_scores = 0.0 self._score_count = 0 def __call__(self, logits: torch.Tensor, labels: torch.Tensor, label_weights: torch.Tensor): """ # Parameters logits : `torch.Tensor`, required. A tensor of predictions of shape (batch_size, num_classes). labels : `torch.Tensor`, required. A tensor of integer class label of shape (batch_size, num_labels). label_weights : `torch.Tensor`, required. A tensor of floats of shape (batch_size, num_labels), giving a weight or score to every one of the labels. """ logits, labels, label_weights = self.detach_tensors(logits, labels, label_weights) predictions = logits.argmax(dim=1) # Sum over dimension 1 gives the score per question. We care about the overall sum though, # so we sum over all dimensions. local_sum_of_scores = ( (label_weights * (labels == predictions.unsqueeze(-1))).sum().to(torch.float32) ) local_score_count = torch.tensor(labels.size(0), dtype=torch.int32, device=labels.device) from allennlp.common.util import is_distributed if is_distributed(): dist.all_reduce(local_sum_of_scores, op=dist.ReduceOp.SUM) dist.all_reduce(local_score_count, op=dist.ReduceOp.SUM) self._sum_of_scores += local_sum_of_scores.item() self._score_count += local_score_count.item() def get_metric(self, reset: bool = False): if self._score_count > 0: result = self._sum_of_scores / self._score_count else: result = 0.0 result_dict = {"score": result} if reset: self.reset() return result_dict def reset(self) -> None: self._sum_of_scores = 0.0 self._score_count = 0
allennlp-models-main
allennlp_models/vision/metrics/vqa.py
import logging from os import PathLike from typing import ( Dict, # List, Union, Optional, Tuple, Iterable, ) import json import torch from torch import Tensor from allennlp.common.lazy import Lazy from allennlp.common.file_utils import cached_path from allennlp.data.vocabulary import Vocabulary from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import Field, ArrayField, LabelField, ListField, TextField from allennlp.data.image_loader import ImageLoader from allennlp.data.instance import Instance from allennlp.data.token_indexers import TokenIndexer from allennlp.data.tokenizers import Tokenizer from allennlp.modules.vision.grid_embedder import GridEmbedder from allennlp.modules.vision.region_detector import RegionDetector from allennlp_models.vision.dataset_readers import utils from allennlp_models.vision.dataset_readers.vision_reader import VisionReader logger = logging.getLogger(__name__) @DatasetReader.register("vgqa") class VGQAReader(VisionReader): """ Parameters ---------- image_dir: `str` Path to directory containing `png` image files. image_loader: `ImageLoader` The image loader component used to load the images. image_featurizer: `Lazy[GridEmbedder]` The backbone image processor (like a ResNet), whose output will be passed to the region detector for finding object boxes in the image. region_detector: `Lazy[RegionDetector]` For pulling out regions of the image (both coordinates and features) that will be used by downstream models. answer_vocab: `Union[Vocabulary, str]`, optional The vocabulary to use for answers. The reader will look into the `"answers"` namespace in the vocabulary to find possible answers. If this is given, the reader only outputs instances with answers contained in this vocab. If this is not given, the reader outputs all instances with all answers. If this is a URL or filename, we will download a previously saved vocabulary from there. feature_cache_dir: `Union[str, PathLike]`, optional An optional directory to cache the featurized images in. Featurizing images takes a long time, and many images are duplicated, so we highly recommend to use this cache. tokenizer: `Tokenizer`, optional The `Tokenizer` to use to tokenize the text. By default, this uses the tokenizer for `"bert-base-uncased"`. token_indexers: `Dict[str, TokenIndexer]`, optional The `TokenIndexer` to use. By default, this uses the indexer for `"bert-base-uncased"`. cuda_device: `Union[int, torch.device]`, optional Either a torch device or a GPU number. This is the GPU we'll use to featurize the images. max_instances: `int`, optional For debugging, you can use this parameter to limit the number of instances the reader returns. image_processing_batch_size: `int` The number of images to process at one time while featurizing. Default is 8. """ def __init__( self, image_dir: Optional[Union[str, PathLike]] = None, *, image_loader: Optional[ImageLoader] = None, image_featurizer: Optional[Lazy[GridEmbedder]] = None, region_detector: Optional[Lazy[RegionDetector]] = None, answer_vocab: Optional[Union[Vocabulary, str]] = None, feature_cache_dir: Optional[Union[str, PathLike]] = None, tokenizer: Optional[Tokenizer] = None, token_indexers: Optional[Dict[str, TokenIndexer]] = None, cuda_device: Optional[Union[int, torch.device]] = None, max_instances: Optional[int] = None, image_processing_batch_size: int = 8, write_to_cache: bool = True, ) -> None: run_featurization = image_loader and image_featurizer and region_detector if image_dir is None and run_featurization: raise ValueError( "Because of the size of the image datasets, we don't download them automatically. " "Please go to https://visualgenome.org/api/v0/api_home.html, download the datasets you need, " "and set the image_dir parameter to point to your download location. This dataset " "reader does not care about the exact directory structure. It finds the images " "wherever they are." ) super().__init__( image_dir, image_loader=image_loader, image_featurizer=image_featurizer, region_detector=region_detector, feature_cache_dir=feature_cache_dir, tokenizer=tokenizer, token_indexers=token_indexers, cuda_device=cuda_device, max_instances=max_instances, image_processing_batch_size=image_processing_batch_size, write_to_cache=write_to_cache, ) # read answer vocab if answer_vocab is None: self.answer_vocab = None else: if isinstance(answer_vocab, str): answer_vocab = cached_path(answer_vocab, extract_archive=True) answer_vocab = Vocabulary.from_files(answer_vocab) self.answer_vocab = frozenset( utils.preprocess_answer(a) for a in answer_vocab.get_token_to_index_vocabulary("answers").keys() ) def _read(self, file_path: str): # if the splits are using slicing syntax, honor it question_slice, file_path = utils.get_data_slice(file_path) file_path = cached_path(file_path, extract_archive=True) logger.info("Reading file at %s", file_path) questions = [] with open(file_path) as dataset_file: dataset = json.load(dataset_file) for data in dataset: for qa in data["qas"]: questions.append(qa) questions = questions[question_slice] question_dicts = list(self.shard_iterable(questions)) processed_images: Iterable[ Optional[Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]] ] if self.produce_featurized_images: # It would be much easier to just process one image at a time, but it's faster to process # them in batches. So this code gathers up instances until it has enough to fill up a batch # that needs processing, and then processes them all. filenames = [f"{question_dict['image_id']}.jpg" for question_dict in question_dicts] logger.info("images size: %s", len(self.images)) try: processed_images = self._process_image_paths( self.images[filename] for filename in filenames ) except KeyError as e: print(self.images) missing_id = e.args[0] raise KeyError( missing_id, f"We could not find an image with the id {missing_id}. " "Because of the size of the image datasets, we don't download them automatically. " "Please go to https://visualqa.org/download.html, download the datasets you need, " "and set the image_dir parameter to point to your download location. This dataset " "reader does not care about the exact directory structure. It finds the images " "wherever they are.", ) else: processed_images = [None for _ in range(len(question_dicts))] logger.info("Reading the dataset") failed_instances_count = 0 attempted_instances_count = 0 for qa, processed_image in zip(question_dicts, processed_images): question = qa["question"] answer = utils.preprocess_answer(qa["answer"]) qa_id = qa["qa_id"] instance = self.text_to_instance( qa_id, question, answer, processed_image, ) attempted_instances_count += 1 if instance is not None: yield instance else: failed_instances_count += 1 failed_instances_fraction = failed_instances_count / attempted_instances_count logger.warning(f"{failed_instances_fraction*100:.0f}% of instances failed.") def text_to_instance( self, # type: ignore qa_id: int, question: str, answer: Optional[str], image: Union[str, Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]], use_cache: bool = True, keep_impossible_questions: bool = True, ) -> Optional[Instance]: question_field = TextField(self._tokenizer.tokenize(question), None) fields: Dict[str, Field] = { "question": question_field, } if isinstance(image, str): features, coords, _, _ = next(self._process_image_paths([image], use_cache=use_cache)) else: features, coords, _, _ = image fields["box_features"] = ArrayField(features) fields["box_coordinates"] = ArrayField(coords) fields["box_mask"] = ArrayField( features.new_ones((features.shape[0],), dtype=torch.bool), padding_value=False, dtype=torch.bool, ) if answer is not None: labels_fields = [] weights = [] if (not self.answer_vocab or answer in self.answer_vocab) or keep_impossible_questions: labels_fields.append(LabelField(answer, label_namespace="answers")) weights.append(1.0) if len(labels_fields) <= 0: return None fields["label_weights"] = ArrayField(torch.tensor(weights)) fields["labels"] = ListField(labels_fields) return Instance(fields) def apply_token_indexers(self, instance: Instance) -> None: instance["question"].token_indexers = self._token_indexers # type: ignore
allennlp-models-main
allennlp_models/vision/dataset_readers/vgqa.py
from os import PathLike from typing import ( Dict, Union, Optional, Tuple, Iterable, ) import json import os import torch from torch import Tensor from allennlp.common.file_utils import cached_path from allennlp.common.lazy import Lazy from allennlp.data.vocabulary import Vocabulary from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import ArrayField, LabelField, ListField, TextField from allennlp.data.image_loader import ImageLoader from allennlp.data.instance import Instance from allennlp.data.token_indexers import TokenIndexer from allennlp.data.tokenizers import Tokenizer from allennlp.modules.vision.grid_embedder import GridEmbedder from allennlp.modules.vision.region_detector import RegionDetector from allennlp_models.vision.dataset_readers.vision_reader import VisionReader @DatasetReader.register("gqa") class GQAReader(VisionReader): """ Parameters ---------- image_dir: `str` Path to directory containing `png` image files. image_loader : `ImageLoader` image_featurizer: `Lazy[GridEmbedder]` The backbone image processor (like a ResNet), whose output will be passed to the region detector for finding object boxes in the image. region_detector: `Lazy[RegionDetector]` For pulling out regions of the image (both coordinates and features) that will be used by downstream models. data_dir: `str` Path to directory containing text files for each dataset split. These files contain the sentences and metadata for each task instance. tokenizer: `Tokenizer`, optional token_indexers: `Dict[str, TokenIndexer]` """ def __init__( self, image_dir: Union[str, PathLike], *, image_loader: Optional[ImageLoader] = None, image_featurizer: Optional[Lazy[GridEmbedder]] = None, region_detector: Optional[Lazy[RegionDetector]] = None, answer_vocab: Optional[Union[str, Vocabulary]] = None, feature_cache_dir: Optional[Union[str, PathLike]] = None, data_dir: Optional[Union[str, PathLike]] = None, tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None, cuda_device: Optional[Union[int, torch.device]] = None, max_instances: Optional[int] = None, image_processing_batch_size: int = 8, write_to_cache: bool = True, ) -> None: super().__init__( image_dir, image_loader=image_loader, image_featurizer=image_featurizer, region_detector=region_detector, feature_cache_dir=feature_cache_dir, tokenizer=tokenizer, token_indexers=token_indexers, cuda_device=cuda_device, max_instances=max_instances, image_processing_batch_size=image_processing_batch_size, write_to_cache=write_to_cache, ) self.data_dir = data_dir # read answer vocab if answer_vocab is None: self.answer_vocab = None else: if isinstance(answer_vocab, str): answer_vocab = cached_path(answer_vocab, extract_archive=True) answer_vocab = Vocabulary.from_files(answer_vocab) self.answer_vocab = frozenset( answer_vocab.get_token_to_index_vocabulary("answers").keys() ) def _read(self, split_or_filename: str): if not self.data_dir: self.data_dir = "https://nlp.stanford.edu/data/gqa/questions1.2.zip!" splits = { "challenge_all": f"{self.data_dir}challenge_all_questions.json", "challenge_balanced": f"{self.data_dir}challenge_balanced_questions.json", "test_all": f"{self.data_dir}test_all_questions.json", "test_balanced": f"{self.data_dir}test_balanced_questions.json", "testdev_all": f"{self.data_dir}testdev_all_questions.json", "testdev_balanced": f"{self.data_dir}testdev_balanced_questions.json", "train_balanced": f"{self.data_dir}train_balanced_questions.json", "train_all": f"{self.data_dir}train_all_questions", "val_all": f"{self.data_dir}val_all_questions.json", "val_balanced": f"{self.data_dir}val_balanced_questions.json", } filename = splits.get(split_or_filename, split_or_filename) filename = cached_path(filename, extract_archive=True) # If we're considering a directory of files (such as train_all) # loop through each in file in generator if os.path.isdir(filename): files = [os.path.join(filename, file_path) for file_path in os.listdir(filename)] else: files = [filename] # Ensure order is deterministic. files.sort() for data_file in files: with open(data_file) as f: questions_with_annotations = json.load(f) question_dicts = list( self.shard_iterable( questions_with_annotations[q_id] for q_id in questions_with_annotations ) ) processed_images: Iterable[ Optional[Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]] ] if self.produce_featurized_images: # It would be much easier to just process one image at a time, but it's faster to process # them in batches. So this code gathers up instances until it has enough to fill up a batch # that needs processing, and then processes them all. filenames = [f"{question_dict['imageId']}.jpg" for question_dict in question_dicts] try: processed_images = self._process_image_paths( self.images[filename] for filename in filenames ) except KeyError as e: missing_filename = e.args[0] raise KeyError( missing_filename, f"We could not find an image with the name {missing_filename}. " "Because of the size of the image datasets, we don't download them automatically. " "Please download the images from" "https://nlp.stanford.edu/data/gqa/images.zip, " "extract them into a directory, and set the image_dir parameter to point to that " "directory. This dataset reader does not care about the exact directory structure. It " "finds the images wherever they are.", ) else: processed_images = [None] * len(question_dicts) for question_dict, processed_image in zip(question_dicts, processed_images): answer = { "answer": question_dict["answer"], } instance = self.text_to_instance(question_dict["question"], processed_image, answer) if instance is not None: yield instance def text_to_instance( self, # type: ignore question: str, image: Optional[Union[str, Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]]], answer: Optional[Dict[str, str]] = None, *, use_cache: bool = True, ) -> Optional[Instance]: from allennlp.data import Field tokenized_question = self._tokenizer.tokenize(question) fields: Dict[str, Field] = {"question": TextField(tokenized_question, None)} if answer is not None: labels_fields = [] weights = [] if not self.answer_vocab or answer["answer"] in self.answer_vocab: labels_fields.append(LabelField(answer["answer"], label_namespace="answers")) weights.append(1.0) if len(labels_fields) <= 0: return None fields["label_weights"] = ArrayField(torch.tensor(weights)) fields["labels"] = ListField(labels_fields) if image is not None: if isinstance(image, str): features, coords, _, _ = next( self._process_image_paths([image], use_cache=use_cache) ) else: features, coords, _, _ = image fields["box_features"] = ArrayField(features) fields["box_coordinates"] = ArrayField(coords) fields["box_mask"] = ArrayField( features.new_ones((features.shape[0],), dtype=torch.bool), padding_value=False, dtype=torch.bool, ) return Instance(fields) def apply_token_indexers(self, instance: Instance) -> None: instance["question"].token_indexers = self._token_indexers # type: ignore
allennlp-models-main
allennlp_models/vision/dataset_readers/gqa.py
from os import PathLike from pathlib import Path import logging from typing import ( Any, Dict, Iterable, List, MutableMapping, Optional, Tuple, Union, ) import os import tqdm import torch from torch import Tensor import transformers from random import randint from allennlp.common.file_utils import cached_path from allennlp.common.lazy import Lazy from allennlp.common import util from allennlp.common.file_utils import TensorCache from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import ArrayField, LabelField, ListField, TextField, TensorField from allennlp.data.image_loader import ImageLoader from allennlp.data.instance import Instance from allennlp.data.token_indexers import TokenIndexer from allennlp.data.tokenizers import Tokenizer from allennlp.modules.vision.grid_embedder import GridEmbedder from allennlp.modules.vision.region_detector import RegionDetector from allennlp_models.vision.dataset_readers import utils from allennlp_models.vision.dataset_readers.vision_reader import VisionReader logger = logging.getLogger(__name__) # Parse caption file def get_caption_data(filename: str): with open(filename, "r") as f: captions = f.read().split("\n") image_id = os.path.splitext(os.path.basename(filename))[0] result_captions = [] for caption in captions: if not caption: continue words = [] add_to_phrase = False for token in caption.split(): if add_to_phrase: if token[-1] == "]": add_to_phrase = False token = token[:-1] words.append(token) else: if token[0] == "[": add_to_phrase = True else: words.append(token) result_captions.append(utils.preprocess_answer(" ".join(words))) caption_data = {"image_id": image_id, "captions": result_captions} return caption_data @DatasetReader.register("flickr30k") class Flickr30kReader(VisionReader): """ Parameters ---------- image_dir: `str` Path to directory containing `png` image files. image_loader : `ImageLoader` image_featurizer: `Lazy[GridEmbedder]` The backbone image processor (like a ResNet), whose output will be passed to the region detector for finding object boxes in the image. region_detector: `Lazy[RegionDetector]` For pulling out regions of the image (both coordinates and features) that will be used by downstream models. data_dir: `str` Path to directory containing text files for each dataset split. These files contain the captions and metadata for each task instance. tokenizer: `Tokenizer`, optional token_indexers: `Dict[str, TokenIndexer]` featurize_captions: `bool`, optional If we should featurize captions while calculating hard negatives, or use placeholder features. is_evaluation: `bool`, optional If the reader should return instances for evaluation or training. num_potential_hard_negatives: int, optional The number of potential hard negatives to consider. """ def __init__( self, image_dir: Union[str, PathLike], *, image_loader: Optional[ImageLoader] = None, image_featurizer: Optional[Lazy[GridEmbedder]] = None, region_detector: Optional[Lazy[RegionDetector]] = None, feature_cache_dir: Optional[Union[str, PathLike]] = None, data_dir: Optional[Union[str, PathLike]] = None, tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None, cuda_device: Optional[Union[int, torch.device]] = None, max_instances: Optional[int] = None, image_processing_batch_size: int = 8, write_to_cache: bool = True, featurize_captions: bool = True, is_evaluation: bool = False, num_potential_hard_negatives: int = 100, ) -> None: super().__init__( image_dir, image_loader=image_loader, image_featurizer=image_featurizer, region_detector=region_detector, feature_cache_dir=feature_cache_dir, tokenizer=tokenizer, token_indexers=token_indexers, cuda_device=cuda_device, max_instances=max_instances, image_processing_batch_size=image_processing_batch_size, write_to_cache=write_to_cache, manual_distributed_sharding=False, manual_multiprocess_sharding=False, ) self.data_dir = cached_path(data_dir, extract_archive=True) self.featurize_captions = featurize_captions self.is_evaluation = is_evaluation self.num_potential_hard_negatives = num_potential_hard_negatives if self.featurize_captions: self.model = transformers.AutoModel.from_pretrained("bert-large-uncased").to( self.cuda_device ) self.model.eval() self.tokenizer = transformers.AutoTokenizer.from_pretrained("bert-large-uncased") # feature cache self.hard_negative_features_cache_dir = feature_cache_dir self.hard_negative_coordinates_cache_dir = feature_cache_dir self._hard_negative_features_cache_instance: Optional[MutableMapping[str, Tensor]] = None self._hard_negative_coordinates_cache_instance: Optional[MutableMapping[str, Tensor]] = None if self.hard_negative_features_cache_dir and self.hard_negative_coordinates_cache_dir: logger.info(f"Calculating hard negatives with a cache at {self.feature_cache_dir}") @property def _hard_negative_features_cache(self) -> MutableMapping[str, Tensor]: if self._hard_negative_features_cache_instance is None: if self.hard_negative_features_cache_dir is None: logger.info("could not find feature cache dir") self._hard_negative_features_cache_instance = {} else: logger.info("found feature cache dir") os.makedirs(self.feature_cache_dir, exist_ok=True) # type: ignore self._hard_negative_features_cache_instance = TensorCache( os.path.join(self.feature_cache_dir, "hard_negative_features"), # type: ignore read_only=not self.write_to_cache, ) return self._hard_negative_features_cache_instance @property def _hard_negative_coordinates_cache(self) -> MutableMapping[str, Tensor]: if self._hard_negative_coordinates_cache_instance is None: if self.hard_negative_coordinates_cache_dir is None: self._hard_negative_coordinates_cache_instance = {} else: os.makedirs(self.feature_cache_dir, exist_ok=True) # type: ignore self._hard_negative_coordinates_cache_instance = TensorCache( os.path.join(self.feature_cache_dir, "hard_negative_coordinates"), # type: ignore read_only=not self.write_to_cache, ) return self._hard_negative_coordinates_cache_instance def _read(self, file_path: str): file_path = cached_path(file_path, extract_archive=True) files_in_split = set() i = 0 with open(file_path, "r") as f: for i, line in enumerate(f): if self.max_instances is not None and i * 5 >= self.max_instances: break files_in_split.add(line.rstrip("\n")) caption_dicts = [] for filename in sorted(os.listdir(self.data_dir)): if filename.split(".")[0] in files_in_split: full_file_path = os.path.join(self.data_dir, filename) caption_dicts.append(get_caption_data(full_file_path)) processed_images: Iterable[ Optional[Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]] ] filenames = [f"{caption_dict['image_id']}.jpg" for caption_dict in caption_dicts] try: processed_images = self._process_image_paths( self.images[filename] for filename in tqdm.tqdm(filenames, desc="Processing images") ) except KeyError as e: missing_id = e.args[0] raise KeyError( missing_id, f"We could not find an image with the id {missing_id}. " "Because of the size of the image datasets, we don't download them automatically. " "Please go to https://shannon.cs.illinois.edu/DenotationGraph/, download the datasets you need, " "and set the image_dir parameter to point to your download location. This dataset " "reader does not care about the exact directory structure. It finds the images " "wherever they are.", ) features_list = [] averaged_features_list = [] coordinates_list = [] masks_list = [] for features, coords, _, _ in processed_images: features_list.append(TensorField(features)) averaged_features_list.append(torch.mean(features, dim=0)) coordinates_list.append(TensorField(coords)) masks_list.append( ArrayField( features.new_ones((features.shape[0],), dtype=torch.bool), padding_value=False, dtype=torch.bool, ) ) # Validation instances are a 1000-way multiple choice, # one for each image in the validation set. if self.is_evaluation: for image_index in range(len(caption_dicts)): caption_dict = caption_dicts[image_index] for caption_index in range(len(caption_dict["captions"])): instance = self.text_to_instance( caption_dicts=caption_dicts, image_index=image_index, caption_index=caption_index, features_list=features_list, coordinates_list=coordinates_list, masks_list=masks_list, label=image_index, ) if instance is not None: yield instance else: # Shape: (num_images, image_dimension) averaged_features = torch.stack(averaged_features_list, dim=0) del averaged_features_list # Shape: (num_images, num_captions_per_image = 5, caption_dimension) caption_tensor = self.get_caption_features(caption_dicts) for image_index, caption_dict in enumerate(caption_dicts): for caption_index in range(len(caption_dict["captions"])): hard_negative_features, hard_negative_coordinates = self.get_hard_negatives( image_index, caption_index, caption_dicts, averaged_features, features_list, coordinates_list, caption_tensor, ) instance = self.text_to_instance( caption_dicts=caption_dicts, image_index=image_index, caption_index=caption_index, features_list=features_list, coordinates_list=coordinates_list, masks_list=masks_list, hard_negative_features=hard_negative_features, hard_negative_coordinates=hard_negative_coordinates, ) if instance is not None: yield instance def text_to_instance( # type: ignore self, caption_dicts: List[Dict[str, Any]], image_index: int, caption_index: int, features_list: List[TensorField] = [], coordinates_list: List[TensorField] = [], masks_list: List[TensorField] = [], hard_negative_features: Optional[Tensor] = None, hard_negative_coordinates: Optional[Tensor] = None, label: int = 0, ): if self.is_evaluation: caption_fields = [ TextField( self._tokenizer.tokenize(caption_dicts[image_index]["captions"][caption_index]), None, ) ] * len(caption_dicts) return Instance( { "caption": ListField(caption_fields), "box_features": ListField(features_list), "box_coordinates": ListField(coordinates_list), "box_mask": ListField(masks_list), "label": LabelField(label, skip_indexing=True), } ) else: # 1. Correct answer caption_field = TextField( self._tokenizer.tokenize(caption_dicts[image_index]["captions"][caption_index]), None, ) caption_fields = [caption_field] features = [features_list[image_index]] coords = [coordinates_list[image_index]] masks = [masks_list[image_index]] # 2. Correct image, random wrong caption random_image_index = randint(0, len(caption_dicts) - 2) if random_image_index == image_index: random_image_index += 1 random_caption_index = randint(0, 4) caption_fields.append( TextField( self._tokenizer.tokenize( caption_dicts[random_image_index]["captions"][random_caption_index] ), None, ) ) features.append(features_list[image_index]) coords.append(coordinates_list[image_index]) masks.append(masks_list[image_index]) # 3. Random wrong image, correct caption wrong_image_index = randint(0, len(features_list) - 2) if wrong_image_index == image_index: wrong_image_index += 1 caption_fields.append(caption_field) features.append(features_list[wrong_image_index]) coords.append(coordinates_list[wrong_image_index]) masks.append(masks_list[wrong_image_index]) # 4. Hard negative image, correct caption caption_fields.append(caption_field) features.append(TensorField(hard_negative_features)) coords.append(TensorField(hard_negative_coordinates)) masks.append( ArrayField( hard_negative_features.new_ones( (hard_negative_features.shape[0],), dtype=torch.bool, ), padding_value=False, dtype=torch.bool, ) ) return Instance( { "caption": ListField(caption_fields), "box_features": ListField(features), "box_coordinates": ListField(coords), "box_mask": ListField(masks), "label": LabelField(label, skip_indexing=True), } ) def get_hard_negatives( self, image_index: int, caption_index: int, caption_dicts: List[Dict[str, Any]], averaged_features: Tensor, features_list: List[TensorField], coordinates_list: List[TensorField], caption_tensor: Tensor, ) -> Tuple[Tensor, Tensor]: image_id = caption_dicts[image_index]["image_id"] caption = caption_dicts[image_index]["captions"][caption_index] cache_id = f"{image_id}-{util.hash_object(caption)}" if ( cache_id not in self._hard_negative_features_cache or cache_id not in self._hard_negative_coordinates_cache ): _, indices = ( -torch.cdist( averaged_features, averaged_features[image_index].unsqueeze(0) ).squeeze(1) ).topk(min(averaged_features.size(0), self.num_potential_hard_negatives)) index_to_image_index = {} hard_negative_tensors = [] i = 0 for idx in indices.tolist(): if idx != image_index: index_to_image_index[i] = idx # hard_negative_tensors.append(averaged_features[i]) i += 1 hard_negative_image_index = index_to_image_index[ torch.argmax( torch.stack(hard_negative_tensors, dim=0) @ caption_tensor[image_index][caption_index] ).item() ] self._hard_negative_features_cache[cache_id] = features_list[ hard_negative_image_index ].tensor self._hard_negative_coordinates_cache[cache_id] = coordinates_list[ hard_negative_image_index ].tensor return ( self._hard_negative_features_cache[cache_id], self._hard_negative_coordinates_cache[cache_id], ) def get_caption_features(self, captions): if not self.featurize_captions: return torch.ones(len(captions), 5, 10) captions_as_text = [c for caption_dict in captions for c in caption_dict["captions"]] if self.feature_cache_dir is not None: captions_hash = util.hash_object(captions_as_text) captions_cache_file = ( Path(self.feature_cache_dir) / f"CaptionsCache-{captions_hash[:12]}.pt" ) if captions_cache_file.exists(): with captions_cache_file.open("rb") as f: return torch.load(f, map_location=torch.device("cpu")) features = [] batch_size = 64 with torch.no_grad(): for batch_start in tqdm.trange( 0, len(captions_as_text), batch_size, desc="Featurizing captions" ): batch_end = min(batch_start + batch_size, len(captions_as_text)) batch = self.tokenizer.batch_encode_plus( captions_as_text[batch_start:batch_end], return_tensors="pt", padding=True ).to(self.cuda_device) embeddings = self.model(**batch).pooler_output.squeeze(0) if len(embeddings.shape) == 1: embeddings = embeddings.unsqueeze(0) features.append(embeddings.cpu()) features = torch.cat(features) features = features.view(len(captions), 5, -1) if self.feature_cache_dir is not None: temp_captions_cache_file = captions_cache_file.with_suffix(".tmp") try: torch.save(features, temp_captions_cache_file) temp_captions_cache_file.replace(captions_cache_file) finally: try: temp_captions_cache_file.unlink() except FileNotFoundError: pass return features def apply_token_indexers(self, instance: Instance) -> None: for caption in instance["caption"]: caption.token_indexers = self._token_indexers # type: ignore
allennlp-models-main
allennlp_models/vision/dataset_readers/flickr30k.py
from allennlp_models.vision.dataset_readers.vision_reader import VisionReader from allennlp_models.vision.dataset_readers.gqa import GQAReader from allennlp_models.vision.dataset_readers.nlvr2 import Nlvr2Reader from allennlp_models.vision.dataset_readers.vgqa import VGQAReader from allennlp_models.vision.dataset_readers.vqav2 import VQAv2Reader from allennlp_models.vision.dataset_readers.visual_entailment import VisualEntailmentReader from allennlp_models.vision.dataset_readers.flickr30k import Flickr30kReader
allennlp-models-main
allennlp_models/vision/dataset_readers/__init__.py
import logging from collections import Counter from os import PathLike from typing import ( Dict, List, Union, Optional, MutableMapping, NamedTuple, Tuple, Iterable, ) import json import re import torch from torch import Tensor from allennlp.common.lazy import Lazy from allennlp.common.file_utils import cached_path, LocalCacheResource from allennlp.data.vocabulary import Vocabulary from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import Field, ArrayField, LabelField, ListField, TextField from allennlp.data.image_loader import ImageLoader from allennlp.data.instance import Instance from allennlp.data.token_indexers import TokenIndexer from allennlp.data.tokenizers import Tokenizer from allennlp.modules.vision.grid_embedder import GridEmbedder from allennlp.modules.vision.region_detector import RegionDetector from allennlp_models.vision.dataset_readers import utils from allennlp_models.vision.dataset_readers.vision_reader import VisionReader logger = logging.getLogger(__name__) def get_score(count: int) -> float: return min(1.0, count / 3) @DatasetReader.register("vqav2") class VQAv2Reader(VisionReader): """ Parameters ---------- image_dir: `str` Path to directory containing `png` image files. image_loader: `ImageLoader` The image loader component used to load the images. image_featurizer: `Lazy[GridEmbedder]` The backbone image processor (like a ResNet), whose output will be passed to the region detector for finding object boxes in the image. region_detector: `Lazy[RegionDetector]` For pulling out regions of the image (both coordinates and features) that will be used by downstream models. answer_vocab: `Union[Vocabulary, str]`, optional The vocabulary to use for answers. The reader will look into the `"answers"` namespace in the vocabulary to find possible answers. If this is given, the reader only outputs instances with answers contained in this vocab. If this is not given, the reader outputs all instances with all answers. If this is a URL or filename, we will download a previously saved vocabulary from there. feature_cache_dir: `Union[str, PathLike]`, optional An optional directory to cache the featurized images in. Featurizing images takes a long time, and many images are duplicated, so we highly recommend to use this cache. tokenizer: `Tokenizer`, optional The `Tokenizer` to use to tokenize the text. By default, this uses the tokenizer for `"bert-base-uncased"`. token_indexers: `Dict[str, TokenIndexer]`, optional The `TokenIndexer` to use. By default, this uses the indexer for `"bert-base-uncased"`. cuda_device: `Union[int, torch.device]`, optional Either a torch device or a GPU number. This is the GPU we'll use to featurize the images. max_instances: `int`, optional For debugging, you can use this parameter to limit the number of instances the reader returns. image_processing_batch_size: `int` The number of images to process at one time while featurizing. Default is 8. multiple_answers_per_question: `bool` VQA questions have multiple answers. By default, we use all of them, and give more points to the more common answer. But VQA also has a special answer, the so-called "multiple choice answer". If this is set to `False`, we only use that answer. """ def __init__( self, image_dir: Optional[Union[str, PathLike]] = None, *, image_loader: Optional[ImageLoader] = None, image_featurizer: Optional[Lazy[GridEmbedder]] = None, region_detector: Optional[Lazy[RegionDetector]] = None, answer_vocab: Optional[Union[Vocabulary, str]] = None, feature_cache_dir: Optional[Union[str, PathLike]] = None, tokenizer: Optional[Tokenizer] = None, token_indexers: Optional[Dict[str, TokenIndexer]] = None, cuda_device: Optional[Union[int, torch.device]] = None, max_instances: Optional[int] = None, image_processing_batch_size: int = 8, multiple_answers_per_question: bool = True, write_to_cache: bool = True, ) -> None: run_featurization = image_loader and image_featurizer and region_detector if image_dir is None and run_featurization: raise ValueError( "Because of the size of the image datasets, we don't download them automatically. " "Please go to https://visualqa.org/download.html, download the datasets you need, " "and set the image_dir parameter to point to your download location. This dataset " "reader does not care about the exact directory structure. It finds the images " "wherever they are." ) super().__init__( image_dir, image_loader=image_loader, image_featurizer=image_featurizer, region_detector=region_detector, feature_cache_dir=feature_cache_dir, tokenizer=tokenizer, token_indexers=token_indexers, cuda_device=cuda_device, max_instances=max_instances, image_processing_batch_size=image_processing_batch_size, write_to_cache=write_to_cache, ) # read answer vocab if answer_vocab is None: self.answer_vocab = None else: if isinstance(answer_vocab, str): answer_vocab = cached_path(answer_vocab, extract_archive=True) answer_vocab = Vocabulary.from_files(answer_vocab) self.answer_vocab = frozenset( utils.preprocess_answer(a) for a in answer_vocab.get_token_to_index_vocabulary("answers").keys() ) if self.produce_featurized_images: # normalize self.images some more # At this point, self.images maps filenames to full paths, but we want to map image ids to full paths. filename_re = re.compile(r".*(\d{12})\.((jpg)|(png))") def id_from_filename(filename: str) -> Optional[int]: match = filename_re.fullmatch(filename) if match is None: return None return int(match.group(1)) self.images = { id_from_filename(name): full_path for name, full_path in self.images.items() } if None in self.images: del self.images[None] self.multiple_answers_per_question = multiple_answers_per_question def _read(self, splits_or_list_of_splits: Union[str, List[str]]): # if we are given a list of splits, concatenate them if isinstance(splits_or_list_of_splits, str): split_name = splits_or_list_of_splits else: for split_name in splits_or_list_of_splits: yield from self._read(split_name) return # if the splits are using slicing syntax, honor it question_slice, split_name = utils.get_data_slice(split_name) class Split(NamedTuple): annotations: Optional[str] questions: str aws_base = "https://s3.amazonaws.com/cvmlp/vqa/" mscoco_base = aws_base + "mscoco/vqa/" scene_base = aws_base + "abstract_v002/vqa/" # fmt: off splits = { "balanced_real_train": Split( mscoco_base + "v2_Annotations_Train_mscoco.zip!v2_mscoco_train2014_annotations.json", # noqa: E501 mscoco_base + "v2_Questions_Train_mscoco.zip!v2_OpenEnded_mscoco_train2014_questions.json", # noqa: E501 ), "balanced_real_val": Split( mscoco_base + "v2_Annotations_Val_mscoco.zip!v2_mscoco_val2014_annotations.json", # noqa: E501 mscoco_base + "v2_Questions_Val_mscoco.zip!v2_OpenEnded_mscoco_val2014_questions.json", # noqa: E501 ), "balanced_real_test": Split( None, mscoco_base + "v2_Questions_Test_mscoco.zip!v2_OpenEnded_mscoco_test2015_questions.json", # noqa: E501 ), "balanced_bas_train": Split( # "bas" is Binary Abstract Scenes scene_base + "Annotations_Binary_Train2017_abstract_v002.zip!abstract_v002_train2017_annotations.json", # noqa: E501 scene_base + "Questions_Binary_Train2017_abstract_v002.zip!OpenEnded_abstract_v002_train2017_questions.json", # noqa: E501 ), "balanced_bas_val": Split( scene_base + "Annotations_Binary_Val2017_abstract_v002.zip!abstract_v002_val2017_annotations.json", # noqa: E501 scene_base + "Questions_Binary_Val2017_abstract_v002.zip!OpenEnded_abstract_v002_val2017_questions.json", # noqa: E501 ), "abstract_scenes_train": Split( scene_base + "Annotations_Train_abstract_v002.zip!abstract_v002_train2015_annotations.json", # noqa: E501 scene_base + "Questions_Train_abstract_v002.zip!OpenEnded_abstract_v002_train2015_questions.json", # noqa: E501 ), "abstract_scenes_val": Split( scene_base + "Annotations_Val_abstract_v002.zip!abstract_v002_val2015_annotations.json", # noqa: E501 scene_base + "Questions_Val_abstract_v002.zip!OpenEnded_abstract_v002_val2015_questions.json", # noqa: E501 ), "abstract_scenes_test": Split( None, scene_base + "Questions_Test_abstract_v002.zip!OpenEnded_abstract_v002_test2015_questions.json", # noqa: E501 ), "unittest": Split( "test_fixtures/vision/vqav2/annotations.json", "test_fixtures/vision/vqav2/questions.json" ) } # fmt: on try: split = splits[split_name] except KeyError: raise ValueError(f"Unrecognized split: {split_name}.") answers_by_question_id = self._get_answers_by_question_id(split) questions = [] with open(cached_path(split.questions, extract_archive=True)) as f: questions_file = json.load(f) for ques in questions_file["questions"]: questions.append(ques) questions = questions[question_slice] question_dicts = list(self.shard_iterable(questions)) processed_images: Iterable[ Optional[Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]] ] if self.produce_featurized_images: # It would be much easier to just process one image at a time, but it's faster to process # them in batches. So this code gathers up instances until it has enough to fill up a batch # that needs processing, and then processes them all. try: image_paths = [ self.images[int(question_dict["image_id"])] for question_dict in question_dicts ] except KeyError as e: missing_id = e.args[0] raise KeyError( missing_id, f"We could not find an image with the id {missing_id}. " "Because of the size of the image datasets, we don't download them automatically. " "Please go to https://visualqa.org/download.html, download the datasets you need, " "and set the image_dir parameter to point to your download location. This dataset " "reader does not care about the exact directory structure. It finds the images " "wherever they are.", ) processed_images = self._process_image_paths(image_paths) else: processed_images = [None for _ in range(len(question_dicts))] attempted_instances_count = 0 failed_instances_count = 0 for question_dict, processed_image in zip(question_dicts, processed_images): answers = answers_by_question_id.get(str(question_dict["question_id"])) instance = self.text_to_instance(question_dict["question"], processed_image, answers) attempted_instances_count += 1 if instance is None: failed_instances_count += 1 else: yield instance if attempted_instances_count % 2000 == 0: failed_instances_fraction = failed_instances_count / attempted_instances_count if failed_instances_fraction > 0.1: logger.warning( f"{failed_instances_fraction*100:.0f}% of instances have no answers." ) def text_to_instance( self, # type: ignore question: str, image: Union[str, Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]], answer_counts: Optional[MutableMapping[str, int]] = None, *, use_cache: bool = True, ) -> Optional[Instance]: tokenized_question = self._tokenizer.tokenize(question) question_field = TextField(tokenized_question, None) fields: Dict[str, Field] = { "question": question_field, } if image is not None: if isinstance(image, str): features, coords, _, _ = next( self._process_image_paths([image], use_cache=use_cache) ) else: features, coords, _, _ = image fields["box_features"] = ArrayField(features) fields["box_coordinates"] = ArrayField(coords) fields["box_mask"] = ArrayField( features.new_ones((features.shape[0],), dtype=torch.bool), padding_value=False, dtype=torch.bool, ) if answer_counts is not None: answer_fields = [] weights = [] for answer, count in answer_counts.items(): if self.answer_vocab is None or answer in self.answer_vocab: answer_fields.append(LabelField(answer, label_namespace="answers")) weights.append(get_score(count)) if len(answer_fields) <= 0: return None fields["labels"] = ListField(answer_fields) fields["label_weights"] = ArrayField(torch.tensor(weights)) return Instance(fields) def apply_token_indexers(self, instance: Instance) -> None: instance["question"].token_indexers = self._token_indexers # type: ignore def _get_answers_by_question_id(self, split): answers_by_question_id = {} if split.annotations is not None: # Pre-processing the annotations is time-consuming, so we don't want to # have to re-do it each time we call read(). So we cache this result. annotations_path = cached_path(split.annotations, extract_archive=True) with LocalCacheResource(split.annotations + "-cache", annotations_path) as cache: if cache.cached(): logger.info( "Reading annotation answer counts from cache at %s", cache.path, ) with cache.reader() as f: answers_by_question_id = json.load(f) else: logger.info("Calculating annotation answer counts...") with open(annotations_path) as f: annotations = json.load(f) for a in annotations["annotations"]: qid = a["question_id"] answer_counts: MutableMapping[str, int] = Counter() if self.multiple_answers_per_question: for answer in (answer_dict["answer"] for answer_dict in a["answers"]): answer_counts[utils.preprocess_answer(answer)] += 1 else: answer_counts[utils.preprocess_answer(a["multiple_choice_answer"])] = 1 answers_by_question_id[str(qid)] = answer_counts logger.info("Caching annotation answer counts to %s", cache.path) with cache.writer() as f: json.dump(answers_by_question_id, f) return answers_by_question_id
allennlp-models-main
allennlp_models/vision/dataset_readers/vqav2.py
""" Utilities for vision dataset readers. """ import logging from functools import lru_cache from typing import Tuple import re logger = logging.getLogger(__name__) contractions = { "aint": "ain't", "arent": "aren't", "cant": "can't", "couldve": "could've", "couldnt": "couldn't", "couldn'tve": "couldn't've", "couldnt've": "couldn't've", "didnt": "didn't", "doesnt": "doesn't", "dont": "don't", "hadnt": "hadn't", "hadnt've": "hadn't've", "hadn'tve": "hadn't've", "hasnt": "hasn't", "havent": "haven't", "hed": "he'd", "hed've": "he'd've", "he'dve": "he'd've", "hes": "he's", "howd": "how'd", "howll": "how'll", "hows": "how's", "Id've": "I'd've", "I'dve": "I'd've", "Im": "I'm", "Ive": "I've", "isnt": "isn't", "itd": "it'd", "itd've": "it'd've", "it'dve": "it'd've", "itll": "it'll", "let's": "let's", "maam": "ma'am", "mightnt": "mightn't", "mightnt've": "mightn't've", "mightn'tve": "mightn't've", "mightve": "might've", "mustnt": "mustn't", "mustve": "must've", "neednt": "needn't", "notve": "not've", "oclock": "o'clock", "oughtnt": "oughtn't", "ow's'at": "'ow's'at", "'ows'at": "'ow's'at", "'ow'sat": "'ow's'at", "shant": "shan't", "shed've": "she'd've", "she'dve": "she'd've", "she's": "she's", "shouldve": "should've", "shouldnt": "shouldn't", "shouldnt've": "shouldn't've", "shouldn'tve": "shouldn't've", "somebody'd": "somebodyd", "somebodyd've": "somebody'd've", "somebody'dve": "somebody'd've", "somebodyll": "somebody'll", "somebodys": "somebody's", "someoned": "someone'd", "someoned've": "someone'd've", "someone'dve": "someone'd've", "someonell": "someone'll", "someones": "someone's", "somethingd": "something'd", "somethingd've": "something'd've", "something'dve": "something'd've", "somethingll": "something'll", "thats": "that's", "thered": "there'd", "thered've": "there'd've", "there'dve": "there'd've", "therere": "there're", "theres": "there's", "theyd": "they'd", "theyd've": "they'd've", "they'dve": "they'd've", "theyll": "they'll", "theyre": "they're", "theyve": "they've", "twas": "'twas", "wasnt": "wasn't", "wed've": "we'd've", "we'dve": "we'd've", "weve": "we've", "werent": "weren't", "whatll": "what'll", "whatre": "what're", "whats": "what's", "whatve": "what've", "whens": "when's", "whered": "where'd", "wheres": "where's", "whereve": "where've", "whod": "who'd", "whod've": "who'd've", "who'dve": "who'd've", "wholl": "who'll", "whos": "who's", "whove": "who've", "whyll": "why'll", "whyre": "why're", "whys": "why's", "wont": "won't", "wouldve": "would've", "wouldnt": "wouldn't", "wouldnt've": "wouldn't've", "wouldn'tve": "wouldn't've", "yall": "y'all", "yall'll": "y'all'll", "y'allll": "y'all'll", "yall'd've": "y'all'd've", "y'alld've": "y'all'd've", "y'all'dve": "y'all'd've", "youd": "you'd", "youd've": "you'd've", "you'dve": "you'd've", "youll": "you'll", "youre": "you're", "youve": "you've", } manual_map = { "none": "0", "zero": "0", "one": "1", "two": "2", "three": "3", "four": "4", "five": "5", "six": "6", "seven": "7", "eight": "8", "nine": "9", "ten": "10", } articles = ["a", "an", "the"] period_strip = re.compile(r"(?!<=\d)(\.)(?!\d)") comma_strip = re.compile(r"(\d)(\,)(\d)") punct = [ ";", r"/", "[", "]", '"', "{", "}", "(", ")", "=", "+", "\\", "_", "-", ">", "<", "@", "`", ",", "?", "!", ] def process_punctuation(inText: str) -> str: outText = inText for p in punct: if (p + " " in inText or " " + p in inText) or (comma_strip.search(inText) is not None): outText = outText.replace(p, "") else: outText = outText.replace(p, " ") outText = period_strip.sub("", outText, re.UNICODE) return outText def process_digit_article(input: str) -> str: output = [] for word in input.lower().split(): word = manual_map.get(word, word) if word not in articles: output.append(word) else: pass for index, word in enumerate(output): if word in contractions: output[index] = contractions[word] return " ".join(output) @lru_cache(maxsize=None) def preprocess_answer(answer: str) -> str: answer = process_digit_article(process_punctuation(answer)) answer = answer.replace(",", "") return answer def get_data_slice(file_path: str) -> Tuple[slice, str]: slice_match = re.match(r"(.*)\[([0123456789:]*)]", file_path) if slice_match is None: question_slice = slice(None, None, None) return question_slice, file_path else: split_name = slice_match[1] slice_args = [int(a) if len(a) > 0 else None for a in slice_match[2].split(":")] question_slice = slice(*slice_args) return question_slice, split_name
allennlp-models-main
allennlp_models/vision/dataset_readers/utils.py
import logging from os import PathLike from typing import Any, Dict, Iterable, Tuple, Union, Optional import torch from torch import Tensor from allennlp.common.file_utils import cached_path, json_lines_from_file from allennlp.common.lazy import Lazy from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import ArrayField, LabelField, ListField, MetadataField, TextField from allennlp.data.image_loader import ImageLoader from allennlp.data.instance import Instance from allennlp.data.token_indexers import TokenIndexer from allennlp.data.tokenizers import Tokenizer from allennlp.modules.vision.grid_embedder import GridEmbedder from allennlp.modules.vision.region_detector import RegionDetector from allennlp_models.vision.dataset_readers.vision_reader import VisionReader logger = logging.getLogger(__name__) @DatasetReader.register("nlvr2") class Nlvr2Reader(VisionReader): """ Reads the NLVR2 dataset from [http://lil.nlp.cornell.edu/nlvr/](http://lil.nlp.cornell.edu/nlvr/). In this task, the model is presented with two images and a hypothesis referring to those images. The task for the model is to identify whether the hypothesis is true or false. Accordingly, the instances produced by this reader contain two images, featurized into the fields "box_features" and "box_coordinates". In addition to that, it produces a `TextField` called "hypothesis", and a `MetadataField` called "identifier". The latter contains the question id from the question set. Parameters ---------- image_dir: `str` Path to directory containing `png` image files. image_loader: `ImageLoader` An image loader to read the images with image_featurizer: `GridEmbedder` The backbone image processor (like a ResNet), whose output will be passed to the region detector for finding object boxes in the image. region_detector: `RegionDetector` For pulling out regions of the image (both coordinates and features) that will be used by downstream models. feature_cache_dir: `str`, optional If given, the reader will attempt to use the featurized image cache in this directory. Caching the featurized images can result in big performance improvements, so it is recommended to set this. tokenizer: `Tokenizer`, optional, defaults to `PretrainedTransformerTokenizer("bert-base-uncased")` token_indexers: `Dict[str, TokenIndexer]`, optional, defaults to`{"tokens": PretrainedTransformerIndexer("bert-base-uncased")}` cuda_device: `int`, optional Set this to run image featurization on the given GPU. By default, image featurization runs on CPU. max_instances: `int`, optional If set, the reader only returns the first `max_instances` instances, and then stops. This is useful for testing. image_processing_batch_size: `int` The number of images to process at one time while featurizing. Default is 8. """ def __init__( self, image_dir: Optional[Union[str, PathLike]] = None, *, image_loader: Optional[ImageLoader] = None, image_featurizer: Optional[Lazy[GridEmbedder]] = None, region_detector: Optional[Lazy[RegionDetector]] = None, feature_cache_dir: Optional[Union[str, PathLike]] = None, tokenizer: Optional[Tokenizer] = None, token_indexers: Optional[Dict[str, TokenIndexer]] = None, cuda_device: Optional[Union[int, torch.device]] = None, max_instances: Optional[int] = None, image_processing_batch_size: int = 8, write_to_cache: bool = True, ) -> None: run_featurization = image_loader and image_featurizer and region_detector if image_dir is None and run_featurization: raise ValueError( "Because of the size of the image datasets, we don't download them automatically. " "Please go to https://github.com/lil-lab/nlvr/tree/master/nlvr2, download the datasets you need, " "and set the image_dir parameter to point to your download location. This dataset " "reader does not care about the exact directory structure. It finds the images " "wherever they are." ) super().__init__( image_dir, image_loader=image_loader, image_featurizer=image_featurizer, region_detector=region_detector, feature_cache_dir=feature_cache_dir, tokenizer=tokenizer, token_indexers=token_indexers, cuda_device=cuda_device, max_instances=max_instances, image_processing_batch_size=image_processing_batch_size, write_to_cache=write_to_cache, ) github_url = "https://raw.githubusercontent.com/lil-lab/nlvr/" nlvr_commit = "68a11a766624a5b665ec7594982b8ecbedc728c7" data_dir = f"{github_url}{nlvr_commit}/nlvr2/data" self.splits = { "dev": f"{data_dir}/dev.json", "test": f"{data_dir}/test1.json", "train": f"{data_dir}/train.json", "balanced_dev": f"{data_dir}/balanced/balanced_dev.json", "balanced_test": f"{data_dir}/balanced/balanced_test1.json", "unbalanced_dev": f"{data_dir}/balanced/unbalanced_dev.json", "unbalanced_test": f"{data_dir}/balanced/unbalanced_test1.json", } def _read(self, split_or_filename: str): filename = self.splits.get(split_or_filename, split_or_filename) json_file_path = cached_path(filename) blobs = [] json_blob: Dict[str, Any] for json_blob in json_lines_from_file(json_file_path): blobs.append(json_blob) blob_dicts = list(self.shard_iterable(blobs)) processed_images1: Iterable[ Optional[Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]] ] processed_images2: Iterable[ Optional[Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]] ] if self.produce_featurized_images: # It would be much easier to just process one image at a time, but it's faster to process # them in batches. So this code gathers up instances until it has enough to fill up a batch # that needs processing, and then processes them all. try: image_paths1 = [] image_paths2 = [] for blob in blob_dicts: identifier = blob["identifier"] image_name_base = identifier[: identifier.rindex("-")] image_paths1.append(self.images[f"{image_name_base}-img0.png"]) image_paths2.append(self.images[f"{image_name_base}-img1.png"]) except KeyError as e: missing_id = e.args[0] raise KeyError( missing_id, f"We could not find an image with the id {missing_id}. " "Because of the size of the image datasets, we don't download them automatically. " "Please go to https://github.com/lil-lab/nlvr/tree/master/nlvr2, download the " "datasets you need, and set the image_dir parameter to point to your download " "location. This dataset reader does not care about the exact directory " "structure. It finds the images wherever they are.", ) processed_images1 = self._process_image_paths(image_paths1) processed_images2 = self._process_image_paths(image_paths2) else: processed_images1 = [None for _ in range(len(blob_dicts))] processed_images2 = [None for _ in range(len(blob_dicts))] attempted_instances = 0 for json_blob, image1, image2 in zip(blob_dicts, processed_images1, processed_images2): identifier = json_blob["identifier"] hypothesis = json_blob["sentence"] label = json_blob["label"] == "True" instance = self.text_to_instance(identifier, hypothesis, image1, image2, label) if instance is not None: attempted_instances += 1 yield instance logger.info(f"Successfully yielded {attempted_instances} instances") def extract_image_features( self, image: Union[str, Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]], use_cache: bool, ): if isinstance(image, str): features, coords, _, _ = next(self._process_image_paths([image], use_cache=use_cache)) else: features, coords, _, _ = image return ( ArrayField(features), ArrayField(coords), ArrayField( features.new_ones((features.shape[0],), dtype=torch.bool), padding_value=False, dtype=torch.bool, ), ) def text_to_instance( # type: ignore self, identifier: Optional[str], hypothesis: str, image1: Union[str, Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]], image2: Union[str, Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]], label: Optional[bool] = None, use_cache: bool = True, ) -> Instance: hypothesis_field = TextField(self._tokenizer.tokenize(hypothesis), None) box_features1, box_coordinates1, box_mask1 = self.extract_image_features(image1, use_cache) box_features2, box_coordinates2, box_mask2 = self.extract_image_features(image2, use_cache) fields = { "hypothesis": ListField([hypothesis_field, hypothesis_field]), "box_features": ListField([box_features1, box_features2]), "box_coordinates": ListField([box_coordinates1, box_coordinates2]), "box_mask": ListField([box_mask1, box_mask2]), } if identifier is not None: fields["identifier"] = MetadataField(identifier) if label is not None: fields["label"] = LabelField(int(label), skip_indexing=True) return Instance(fields) def apply_token_indexers(self, instance: Instance) -> None: instance["hypothesis"][0].token_indexers = self._token_indexers # type: ignore instance["hypothesis"][1].token_indexers = self._token_indexers # type: ignore
allennlp-models-main
allennlp_models/vision/dataset_readers/nlvr2.py
import logging from typing import ( Dict, List, Union, Optional, Tuple, ) import torch from torch import Tensor from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import Field, ArrayField, LabelField, TextField from allennlp.data.instance import Instance from allennlp.common.file_utils import json_lines_from_file from allennlp_models.vision.dataset_readers.vision_reader import VisionReader logger = logging.getLogger(__name__) @DatasetReader.register("visual-entailment") class VisualEntailmentReader(VisionReader): """ The dataset reader for visual entailment. """ def _read(self, file_path: str): split_prefix = "https://storage.googleapis.com/allennlp-public-data/snli-ve/" splits = { "dev": split_prefix + "snli_ve_dev.jsonl.gz", "test": split_prefix + "snli_ve_test.jsonl.gz", "train": split_prefix + "snli_ve_train.jsonl.gz", } file_path = splits.get(file_path, file_path) lines = json_lines_from_file(file_path) info_dicts: List[Dict] = list(self.shard_iterable(lines)) # type: ignore if self.produce_featurized_images: # It would be much easier to just process one image at a time, but it's faster to process # them in batches. So this code gathers up instances until it has enough to fill up a batch # that needs processing, and then processes them all. filenames = [info_dict["Flickr30K_ID"] + ".jpg" for info_dict in info_dicts] try: processed_images = self._process_image_paths( [self.images[filename] for filename in filenames] ) except KeyError as e: missing_filename = e.args[0] raise KeyError( missing_filename, f"We could not find an image with the name {missing_filename}. " "Because of the size of the image datasets, we don't download them automatically. " "Please download the images from" "https://storage.googleapis.com/allennlp-public-data/snli-ve/flickr30k_images.tar.gz, " "extract them into a directory, and set the image_dir parameter to point to that " "directory. This dataset reader does not care about the exact directory structure. It " "finds the images wherever they are.", ) else: processed_images = [None for _ in range(len(info_dicts))] # type: ignore for info_dict, processed_image in zip(info_dicts, processed_images): hypothesis = info_dict["sentence2"] answer = info_dict["gold_label"] instance = self.text_to_instance(processed_image, hypothesis, answer) yield instance def text_to_instance( self, # type: ignore image: Union[str, Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]], hypothesis: str, label: Optional[str] = None, *, use_cache: bool = True, ) -> Instance: tokenized_hypothesis = self._tokenizer.tokenize(hypothesis) hypothesis_field = TextField(tokenized_hypothesis, None) fields: Dict[str, Field] = {"hypothesis": hypothesis_field} if image is not None: if isinstance(image, str): features, coords, _, _ = next( self._process_image_paths([image], use_cache=use_cache) ) else: features, coords, _, _ = image fields["box_features"] = ArrayField(features) fields["box_coordinates"] = ArrayField(coords) fields["box_mask"] = ArrayField( features.new_ones((features.shape[0],), dtype=torch.bool), padding_value=False, dtype=torch.bool, ) if label: fields["labels"] = LabelField(label) return Instance(fields) def apply_token_indexers(self, instance: Instance) -> None: instance["hypothesis"].token_indexers = self._token_indexers # type: ignore
allennlp-models-main
allennlp_models/vision/dataset_readers/visual_entailment.py
import glob import logging from os import PathLike from typing import ( Dict, List, Union, Optional, MutableMapping, Set, Tuple, Iterator, Iterable, ) import os import torch from torch import Tensor from tqdm import tqdm import torch.distributed as dist from allennlp.common import util from allennlp.common.checks import check_for_gpu, ConfigurationError from allennlp.common.lazy import Lazy from allennlp.common.util import int_to_device from allennlp.common.file_utils import TensorCache from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.image_loader import ImageLoader from allennlp.data.token_indexers import PretrainedTransformerIndexer from allennlp.data.token_indexers import TokenIndexer from allennlp.data.tokenizers import PretrainedTransformerTokenizer from allennlp.data.tokenizers import Tokenizer from allennlp.modules.vision.grid_embedder import GridEmbedder from allennlp.modules.vision.region_detector import RegionDetector logger = logging.getLogger(__name__) class VisionReader(DatasetReader): """ Base class for dataset readers for vision tasks. If you don't specify `image_loader`, `image_featurizer`, and `region_detector`, the reader assumes it can get all featurized images from the cache. If you don't specify `feature_cache`, the reader will featurize all images using the featurization components, and use an internal in-memory cache to catch duplicate images. If you don't specify either of these things, the reader will not produce featurized images at all. Parameters ---------- image_dir: `str` Path to directory containing image files. The structure of the directory doesn't matter. We find images by finding filenames that match `*[image_id].jpg`. image_loader : `ImageLoader`, optional The image loading component. image_featurizer: `Lazy[GridEmbedder]`, optional The backbone image processor (like a ResNet), whose output will be passed to the region detector for finding object boxes in the image. region_detector: `Lazy[RegionDetector]`, optional For pulling out regions of the image (both coordinates and features) that will be used by downstream models. tokenizer: `Tokenizer`, optional The `Tokenizer` to use to tokenize the text. By default, this uses the tokenizer for `"bert-base-uncased"`. token_indexers: `Dict[str, TokenIndexer]`, optional The `TokenIndexer` to use. By default, this uses the indexer for `"bert-base-uncased"`. cuda_device: `Union[int, torch.device]`, optional Either a torch device or a GPU number. This is the GPU we'll use to featurize the images. max_instances: `int`, optional For debugging, you can use this parameter to limit the number of instances the reader returns. image_processing_batch_size: `int` The number of images to process at one time while featurizing. Default is 8. write_to_cache: `bool`, optional (default = `True`) Allows the reader to write to the cache. Disabling this is useful if you don't want to accidentally overwrite a cache you already have, or if you don't have write access to the cache you're using. """ def __init__( self, image_dir: Optional[Union[str, PathLike]], *, image_loader: Optional[ImageLoader] = None, image_featurizer: Optional[Lazy[GridEmbedder]] = None, region_detector: Optional[Lazy[RegionDetector]] = None, feature_cache_dir: Optional[Union[str, PathLike]] = None, tokenizer: Optional[Tokenizer] = None, token_indexers: Optional[Dict[str, TokenIndexer]] = None, cuda_device: Optional[Union[int, torch.device]] = None, max_instances: Optional[int] = None, image_processing_batch_size: int = 8, write_to_cache: bool = True, manual_distributed_sharding: bool = True, manual_multiprocess_sharding: bool = True, ) -> None: super().__init__( max_instances=max_instances, manual_distributed_sharding=manual_distributed_sharding, manual_multiprocess_sharding=manual_multiprocess_sharding, ) # tokenizers and indexers if tokenizer is None: tokenizer = PretrainedTransformerTokenizer("bert-base-uncased") self._tokenizer = tokenizer if token_indexers is None: token_indexers = {"tokens": PretrainedTransformerIndexer("bert-base-uncased")} self._token_indexers = token_indexers if not ((image_loader is None) == (image_featurizer is None) == (region_detector is None)): raise ConfigurationError( "Please either specify all of image_loader, image_featurizer, and region_detector, " "or specify none of them if you don't want to featurize images." ) # feature cache self.feature_cache_dir = feature_cache_dir self.coordinates_cache_dir = feature_cache_dir self.class_probs_cache_dir = feature_cache_dir self.class_labels_cache_dir = feature_cache_dir if feature_cache_dir: self.write_to_cache = write_to_cache else: # If we don't have a cache dir, we use a dict in memory as a cache, so we # always write. self.write_to_cache = True self._feature_cache_instance: Optional[MutableMapping[str, Tensor]] = None self._coordinates_cache_instance: Optional[MutableMapping[str, Tensor]] = None self._class_probs_cache_instance: Optional[MutableMapping[str, Tensor]] = None self._class_labels_cache_instance: Optional[MutableMapping[str, Tensor]] = None # image processors self.image_loader = None if image_loader and image_featurizer and region_detector: if cuda_device is None: if torch.cuda.device_count() > 0: if util.is_distributed(): cuda_device = dist.get_rank() % torch.cuda.device_count() else: cuda_device = 0 else: cuda_device = -1 check_for_gpu(cuda_device) self.cuda_device = int_to_device(cuda_device) logger.info(f"Processing images on device {cuda_device}") # image loading and featurizing self.image_loader = image_loader self.image_loader.device = self.cuda_device self._lazy_image_featurizer = image_featurizer self._image_featurizer = None self._lazy_region_detector = region_detector self._region_detector = None self.image_processing_batch_size = image_processing_batch_size self.produce_featurized_images = False if self.feature_cache_dir and self.coordinates_cache_dir: logger.info(f"Featurizing images with a cache at {self.feature_cache_dir}") self.produce_featurized_images = True if image_loader and image_featurizer and region_detector: if self.produce_featurized_images: logger.info("Falling back to a full image featurization pipeline") else: logger.info("Featurizing images with a full image featurization pipeline") self.produce_featurized_images = True if self.produce_featurized_images: if image_dir is None: if image_loader and image_featurizer and region_detector: raise ConfigurationError("We need an image_dir to featurize images.") else: raise ConfigurationError( "We need an image_dir to use a cache of featurized images. Images won't be " "read if they are cached, but we need the image_dir to determine the right " "cache keys from the file names." ) logger.info("Discovering images ...") self.images = { os.path.basename(filename): filename for extension in {"png", "jpg", "jpeg"} for filename in tqdm( glob.iglob(os.path.join(image_dir, "**", f"*.{extension}"), recursive=True), desc=f"Discovering {extension} images", ) } logger.info("Done discovering images") @property def image_featurizer(self) -> Optional[GridEmbedder]: if self._image_featurizer is None: if self._lazy_image_featurizer is None: return None self._image_featurizer = self._lazy_image_featurizer.construct().to(self.cuda_device) # type: ignore self._image_featurizer.eval() # type: ignore[attr-defined] return self._image_featurizer # type: ignore[return-value] @property def region_detector(self) -> Optional[RegionDetector]: if self._region_detector is None: if self._lazy_region_detector is None: return None self._region_detector = self._lazy_region_detector.construct().to(self.cuda_device) # type: ignore self._region_detector.eval() # type: ignore[attr-defined] return self._region_detector # type: ignore[return-value] def _create_cache( self, cache_name: str, cache_dir: Optional[Union[str, PathLike]] = None, ) -> MutableMapping[str, Tensor]: if cache_dir is None: return {} os.makedirs(cache_dir, exist_ok=True) return TensorCache( os.path.join(cache_dir, cache_name), read_only=not self.write_to_cache, ) @property def _feature_cache(self) -> MutableMapping[str, Tensor]: if self._feature_cache_instance is None: self._feature_cache_instance = self._create_cache("features", self.feature_cache_dir) return self._feature_cache_instance @property def _coordinates_cache(self) -> MutableMapping[str, Tensor]: if self._coordinates_cache_instance is None: self._coordinates_cache_instance = self._create_cache( "coordinates", self.coordinates_cache_dir ) return self._coordinates_cache_instance @property def _class_probs_cache(self) -> MutableMapping[str, Tensor]: if self._class_probs_cache_instance is None: self._class_probs_cache_instance = self._create_cache( "class_probs", self.class_probs_cache_dir ) return self._class_probs_cache_instance @property def _class_labels_cache(self) -> MutableMapping[str, Tensor]: if self._class_labels_cache_instance is None: self._class_labels_cache_instance = self._create_cache( "class_labels", self.class_labels_cache_dir ) return self._class_labels_cache_instance def _process_image_paths( self, image_paths: Iterable[str], *, use_cache: bool = True ) -> Iterator[Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]]: """ Processes the given image paths and returns featurized images. This consumes image paths one at a time, featurizes them either by going to the cache, or by running the featurization models, and yields tensors one at a time. It runs the featurization pipeline in batches for performance. image_paths: `Iterable[str]` the image paths to process use_cache: `bool`, default = `True` Usually the cache behavior is governed by the `write_to_cache` parameter given to `__init__()`. But sometimes we want to override this behavior and turn off the cache completely. This parameter lets you do that. This is useful for the `Predictor`, so we can make predictions without having to touch a cache, even if the model was trained with a cache. """ assert self.produce_featurized_images, ( "For _process_image_paths() to work, we need either a feature cache, or an image loader, " "an image featurizer, and a region detector." ) batch: List[Union[str, Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]]] = [] unprocessed_paths: Set[str] = set() def yield_batch(): # process the images paths = list(unprocessed_paths) images, sizes = self.image_loader(paths) with torch.no_grad(): images = images.to(self.cuda_device) sizes = sizes.to(self.cuda_device) featurized_images = self.image_featurizer(images, sizes) detector_results = self.region_detector(images, sizes, featurized_images) features = detector_results.features coordinates = detector_results.boxes class_probs = detector_results.class_probs class_labels = detector_results.class_labels # store the processed results in memory, so we can complete the batch paths_to_tensors = {} for i, path in enumerate(paths): if class_probs: class_probs_tensor = class_probs[i] else: class_probs_tensor = None if class_labels: class_labels_tensor = class_labels[i] else: class_labels_tensor = None paths_to_tensors[path] = ( features[i], coordinates[i], class_probs_tensor, class_labels_tensor, ) # store the processed results in the cache if use_cache and self.write_to_cache: for path, ( features, coordinates, class_probs, class_labels, ) in paths_to_tensors.items(): basename = os.path.basename(path) self._feature_cache[basename] = features self._coordinates_cache[basename] = coordinates if class_probs is not None: self._class_probs_cache[basename] = class_probs if class_labels is not None: self._class_labels_cache[basename] = class_labels # yield the batch for b in batch: if isinstance(b, str): yield paths_to_tensors[b] else: yield b for image_path in image_paths: basename = os.path.basename(image_path) try: if use_cache: features: Tensor = self._feature_cache[basename] coordinates: Tensor = self._coordinates_cache[basename] class_probs: Optional[Tensor] = self._class_probs_cache.get(basename) class_labels: Optional[Tensor] = self._class_labels_cache.get(basename) if len(batch) <= 0: yield features, coordinates, class_probs, class_labels else: batch.append((features, coordinates, class_probs, class_labels)) else: # If we're not using the cache, we pretend we had a cache miss here. raise KeyError except KeyError: if not (self.image_loader and self.region_detector and self.image_featurizer): if use_cache: raise KeyError( f"Could not find {basename} in the feature cache, and " "image featurizers are not defined." ) else: raise KeyError( "Reading the feature cache is disabled, and image featurizers " "are not defined. I can't process anything." ) batch.append(image_path) unprocessed_paths.add(image_path) if len(unprocessed_paths) >= self.image_processing_batch_size: yield from yield_batch() batch = [] unprocessed_paths = set() if len(batch) > 0: yield from yield_batch()
allennlp-models-main
allennlp_models/vision/dataset_readers/vision_reader.py
from allennlp_models.vision.predictors.vilbert_vqa import VilbertVqaPredictor from allennlp_models.vision.predictors.visual_entailment import VisualEntailmentPredictor
allennlp-models-main
allennlp_models/vision/predictors/__init__.py
from typing import List, Dict import numpy from allennlp.common.file_utils import cached_path from allennlp.common.util import JsonDict from allennlp.data import Instance from allennlp.predictors.predictor import Predictor @Predictor.register("vilbert_vqa") class VilbertVqaPredictor(Predictor): def predict(self, image: str, question: str) -> JsonDict: image = cached_path(image) return self.predict_json({"question": question, "image": image}) def _json_to_instance(self, json_dict: JsonDict) -> Instance: from allennlp_models.vision.dataset_readers.vqav2 import VQAv2Reader from allennlp_models.vision import GQAReader question = json_dict["question"] image = cached_path(json_dict["image"]) if isinstance(self._dataset_reader, VQAv2Reader) or isinstance( self._dataset_reader, GQAReader ): return self._dataset_reader.text_to_instance(question, image, use_cache=False) else: raise ValueError( f"Dataset reader is of type f{self._dataset_reader.__class__.__name__}. " f"Expected {VQAv2Reader.__name__}." ) def predictions_to_labeled_instances( self, instance: Instance, outputs: Dict[str, numpy.ndarray] ) -> List[Instance]: return [instance] # TODO
allennlp-models-main
allennlp_models/vision/predictors/vilbert_vqa.py
from typing import List, Dict import numpy from allennlp.common.file_utils import cached_path from allennlp.common.util import JsonDict from allennlp.data import Instance from allennlp.data.fields import LabelField from allennlp.predictors.predictor import Predictor @Predictor.register("nlvr2") class Nlvr2Predictor(Predictor): def predict(self, image1: str, image2: str, hypothesis: str) -> JsonDict: image1 = cached_path(image1) image2 = cached_path(image2) return self.predict_json({"image1": image1, "image2": image2, "hypothesis": hypothesis}) def _json_to_instance(self, json_dict: JsonDict) -> Instance: from allennlp_models.vision.dataset_readers.nlvr2 import Nlvr2Reader image1 = cached_path(json_dict["image1"]) image2 = cached_path(json_dict["image2"]) hypothesis = json_dict["hypothesis"] if isinstance(self._dataset_reader, Nlvr2Reader): return self._dataset_reader.text_to_instance( None, hypothesis, image1, image2, use_cache=False ) else: raise ValueError( f"Dataset reader is of type f{self._dataset_reader.__class__.__name__}. " f"Expected {Nlvr2Reader.__name__}." ) def predictions_to_labeled_instances( self, instance: Instance, outputs: Dict[str, numpy.ndarray] ) -> List[Instance]: new_instance = instance.duplicate() label = numpy.argmax(outputs["probs"]) new_instance.add_field("label", LabelField(int(label), skip_indexing=True)) return [new_instance]
allennlp-models-main
allennlp_models/vision/predictors/nlvr2.py
from typing import List, Dict import numpy from allennlp.common.file_utils import cached_path from allennlp.common.util import JsonDict from allennlp.data import Instance from allennlp.data.fields import LabelField from allennlp.predictors.predictor import Predictor @Predictor.register("vilbert_ve") class VisualEntailmentPredictor(Predictor): def predict(self, image: str, hypothesis: str) -> JsonDict: image = cached_path(image) return self.predict_json({"image": image, "hypothesis": hypothesis}) def _json_to_instance(self, json_dict: JsonDict) -> Instance: from allennlp_models.vision.dataset_readers.visual_entailment import VisualEntailmentReader image = cached_path(json_dict["image"]) hypothesis = json_dict["hypothesis"] if isinstance(self._dataset_reader, VisualEntailmentReader): return self._dataset_reader.text_to_instance(image, hypothesis, use_cache=False) else: raise ValueError( f"Dataset reader is of type f{self._dataset_reader.__class__.__name__}. " f"Expected {VisualEntailmentReader.__name__}." ) def predictions_to_labeled_instances( self, instance: Instance, outputs: Dict[str, numpy.ndarray] ) -> List[Instance]: new_instance = instance.duplicate() label = numpy.argmax(outputs["probs"]) new_instance.add_field("label", LabelField(int(label), skip_indexing=True)) return [new_instance]
allennlp-models-main
allennlp_models/vision/predictors/visual_entailment.py
import logging from typing import Dict, Optional import torch from allennlp.data import TextFieldTensors, Vocabulary from allennlp.models.model import Model from allennlp.modules.transformer import ( TransformerEmbeddings, ImageFeatureEmbeddings, BiModalEncoder, ) from allennlp.training.metrics import CategoricalAccuracy from torch.nn import CrossEntropyLoss from allennlp_models.vision.models.vision_text_model import VisionTextModel logger = logging.getLogger(__name__) @Model.register("vilbert_ir") @Model.register("vilbert_ir_from_huggingface", constructor="from_huggingface_model_name") class ImageRetrievalVilbert(VisionTextModel): """ Model for image retrieval task based on the VilBERT paper. # Parameters vocab : `Vocabulary` text_embeddings : `TransformerEmbeddings` image_embeddings : `ImageFeatureEmbeddings` encoder : `BiModalEncoder` pooled_output_dim : `int` fusion_method : `str`, optional (default = `"mul"`) dropout : `float`, optional (default = `0.1`) label_namespace : `str`, optional (default = `answers`) k: `int`, optional (default = `1`) """ def __init__( self, vocab: Vocabulary, text_embeddings: TransformerEmbeddings, image_embeddings: ImageFeatureEmbeddings, encoder: BiModalEncoder, pooled_output_dim: int, fusion_method: str = "mul", dropout: float = 0.1, k: int = 1, *, ignore_text: bool = False, ignore_image: bool = False, ) -> None: super().__init__( vocab, text_embeddings, image_embeddings, encoder, pooled_output_dim, fusion_method, dropout, is_multilabel=False, ignore_text=ignore_text, ignore_image=ignore_image, ) self.classifier = torch.nn.Linear(pooled_output_dim, 1) self.top_1_acc = CategoricalAccuracy() self.top_5_acc = CategoricalAccuracy(top_k=5) self.top_10_acc = CategoricalAccuracy(top_k=10) self.loss = CrossEntropyLoss() self.k = k def forward( # type: ignore self, box_features: torch.Tensor, box_coordinates: torch.Tensor, box_mask: torch.Tensor, caption: TextFieldTensors, label: torch.Tensor, ) -> Dict[str, torch.Tensor]: batch_size = box_features.shape[0] if self.training: # Shape: (batch_size, num_images, pooled_output_dim) pooled_output = self.backbone(box_features, box_coordinates, box_mask, caption)[ "pooled_boxes_and_text" ] # Shape: (batch_size, num_images) logits = self.classifier(pooled_output).squeeze(-1) probs = torch.softmax(logits, dim=-1) else: with torch.no_grad(): # Shape: (batch_size, num_images, pooled_output_dim) pooled_output = self.backbone(box_features, box_coordinates, box_mask, caption)[ "pooled_boxes_and_text" ] # Shape: (batch_size, num_images) logits = self.classifier(pooled_output).squeeze(-1) probs = torch.softmax(logits, dim=-1) outputs = {"logits": logits, "probs": probs} outputs = self._compute_loss_and_metrics(batch_size, outputs, label) return outputs def _compute_loss_and_metrics( self, batch_size: int, outputs: Dict[str, torch.Tensor], labels: torch.Tensor, label_weights: Optional[torch.Tensor] = None, ) -> Dict[str, torch.Tensor]: if label_weights is not None: raise NotImplementedError("This implementation does not support label_weights.") outputs["loss"] = self.loss(outputs["logits"], labels) / batch_size self.top_1_acc(outputs["logits"], labels) self.top_5_acc(outputs["logits"], labels) self.top_10_acc(outputs["logits"], labels) return outputs def get_metrics(self, reset: bool = False) -> Dict[str, float]: return { "top_1_acc": self.top_1_acc.get_metric(reset), "top_5_acc": self.top_5_acc.get_metric(reset), "top_10_acc": self.top_10_acc.get_metric(reset), } def make_output_human_readable( self, output_dict: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: return output_dict default_predictor = "vilbert_ir"
allennlp-models-main
allennlp_models/vision/models/vilbert_image_retrieval.py
from allennlp_models.vision.models.nlvr2 import Nlvr2Model from allennlp_models.vision.models.vision_text_model import VisionTextModel from allennlp_models.vision.models.visual_entailment import VisualEntailmentModel from allennlp_models.vision.models.vilbert_image_retrieval import ImageRetrievalVilbert from allennlp_models.vision.models.vilbert_vqa import VqaVilbert from allennlp_models.vision.models.heads.vqa_head import VqaHead from allennlp_models.vision.models.heads.visual_entailment_head import VisualEntailmentHead
allennlp-models-main
allennlp_models/vision/models/__init__.py
import logging from typing import Dict, Optional import torch from allennlp.data import TextFieldTensors, Vocabulary from allennlp.models.model import Model from allennlp.modules.transformer import ( TransformerEmbeddings, ImageFeatureEmbeddings, BiModalEncoder, ) from allennlp.nn import util from allennlp_models.vision.models.vision_text_model import VisionTextModel logger = logging.getLogger(__name__) @Model.register("vqa_vilbert") @Model.register("vqa_vilbert_from_huggingface", constructor="from_huggingface_model_name") class VqaVilbert(VisionTextModel): """ Model for VQA task based on the VilBERT paper. # Parameters vocab : `Vocabulary` text_embeddings : `TransformerEmbeddings` image_embeddings : `ImageFeatureEmbeddings` encoder : `BiModalEncoder` pooled_output_dim : `int` fusion_method : `str`, optional (default = `"sum"`) dropout : `float`, optional (default = `0.1`) label_namespace : `str`, optional (default = `answers`) """ def __init__( self, vocab: Vocabulary, text_embeddings: TransformerEmbeddings, image_embeddings: ImageFeatureEmbeddings, encoder: BiModalEncoder, pooled_output_dim: int, fusion_method: str = "sum", dropout: float = 0.1, label_namespace: str = "answers", *, ignore_text: bool = False, ignore_image: bool = False ) -> None: super().__init__( vocab, text_embeddings, image_embeddings, encoder, pooled_output_dim, fusion_method, dropout, label_namespace, is_multilabel=True, ignore_text=ignore_text, ignore_image=ignore_image, ) from allennlp.training.metrics import F1MultiLabelMeasure from allennlp_models.vision.metrics.vqa import VqaMeasure self.f1_metric = F1MultiLabelMeasure(average="micro") self.vqa_metric = VqaMeasure() def forward( self, # type: ignore box_features: torch.Tensor, box_coordinates: torch.Tensor, box_mask: torch.Tensor, question: TextFieldTensors, labels: Optional[torch.Tensor] = None, label_weights: Optional[torch.Tensor] = None, ) -> Dict[str, torch.Tensor]: return super().forward( box_features, box_coordinates, box_mask, text=question, labels=labels, label_weights=label_weights, ) def _compute_loss_and_metrics( self, batch_size: int, outputs: torch.Tensor, label: torch.Tensor, label_weights: Optional[torch.Tensor] = None, ): if label is not None and label_weights is not None: logits = outputs["logits"] label_mask = label > 1 # 0 is padding, 1 is OOV, which we want to ignore weighted_labels = util.masked_index_replace( logits.new_zeros(logits.size() + (1,)), label.clamp(min=0), label_mask, label_weights.unsqueeze(-1), ).squeeze(-1) # weighted_labels now has shape (batch_size, num_labels). We need to ignore the first # two columns of this in our loss function and accuracy metric. The first column is a # padding label, and the second column is an OOV label. We want the loss function to # be computed on every other label. binary_label_mask = weighted_labels.new_ones(logits.size()) binary_label_mask[:, 0] = 0 binary_label_mask[:, 1] = 0 outputs["loss"] = ( torch.nn.functional.binary_cross_entropy_with_logits( logits, weighted_labels, weight=binary_label_mask, reduction="sum" ) / batch_size ) self.f1_metric(logits, weighted_labels, binary_label_mask.bool()) self.vqa_metric(logits, label, label_weights) return outputs def get_metrics(self, reset: bool = False) -> Dict[str, float]: result = self.f1_metric.get_metric(reset) result["vqa_score"] = self.vqa_metric.get_metric(reset)["score"] return result def make_output_human_readable( self, output_dict: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: batch_tokens = [] for batch_index, batch in enumerate(output_dict["probs"]): tokens = {} for i, prob in enumerate(batch): tokens[self.vocab.get_token_from_index(i, self.label_namespace)] = float(prob) batch_tokens.append(tokens) output_dict["tokens"] = batch_tokens return output_dict default_predictor = "vilbert_vqa"
allennlp-models-main
allennlp_models/vision/models/vilbert_vqa.py
import logging from typing import Dict, List, Optional import numpy as np import torch from allennlp.data.fields.text_field import TextFieldTensors from allennlp.data.vocabulary import Vocabulary from allennlp.models.model import Model from allennlp.modules.transformer import ( TransformerEmbeddings, ImageFeatureEmbeddings, BiModalEncoder, ) logger = logging.getLogger(__name__) @Model.register("vision_model") class VisionTextModel(Model): """ `VisionTextModel` takes as input a single text input and a single image input to produce some output. Example tasks include visual question-answering, visual entailment, etc. # Parameters vocab : `Vocabulary` text_embeddings : `TransformerEmbeddings` image_embeddings : `ImageFeatureEmbeddings` encoder : `BiModalEncoder` pooled_output_dim : `int` fusion_method : `str`, optional (default = `"sum"`) dropout : `float`, optional (default = `0.1`) label_namespace : `str`, optional (default = `"labels"`) is_multilabel: `bool`, optional (default = `False`) Whether the output classification is multilabel. (i.e., can have multiple correct answers) """ def __init__( self, vocab: Vocabulary, text_embeddings: TransformerEmbeddings, image_embeddings: ImageFeatureEmbeddings, encoder: BiModalEncoder, pooled_output_dim: int, fusion_method: str = "sum", dropout: float = 0.1, label_namespace: str = "labels", is_multilabel: bool = False, *, ignore_text: bool = False, ignore_image: bool = False, ) -> None: super().__init__(vocab) from allennlp.modules.backbones import VilbertBackbone self.backbone = VilbertBackbone( vocab, text_embeddings, image_embeddings, encoder, pooled_output_dim, fusion_method, dropout, ) num_labels = vocab.get_vocab_size(label_namespace) self.label_namespace = label_namespace self.classifier = torch.nn.Linear(pooled_output_dim, num_labels) self.dropout = torch.nn.Dropout(dropout) self.is_multilabel = is_multilabel self.ignore_text = ignore_text self.ignore_images = ignore_image @classmethod def from_huggingface_model_name( cls, vocab: Vocabulary, model_name: str, image_feature_dim: int, image_num_hidden_layers: int, image_hidden_size: int, image_num_attention_heads: int, combined_hidden_size: int, combined_num_attention_heads: int, pooled_output_dim: int, image_intermediate_size: int, image_attention_dropout: float, image_hidden_dropout: float, image_biattention_id: List[int], text_biattention_id: List[int], text_fixed_layer: int, image_fixed_layer: int, pooled_dropout: float = 0.1, fusion_method: str = "sum", *, ignore_text: bool = False, ignore_image: bool = False, ): text_embeddings = TransformerEmbeddings.from_pretrained_module(model_name) image_embeddings = ImageFeatureEmbeddings( feature_size=image_feature_dim, embedding_size=image_hidden_size, dropout=image_hidden_dropout, ) encoder = BiModalEncoder.from_pretrained_module( model_name, num_hidden_layers2=image_num_hidden_layers, hidden_size2=image_hidden_size, num_attention_heads2=image_num_attention_heads, combined_hidden_size=combined_hidden_size, combined_num_attention_heads=combined_num_attention_heads, intermediate_size2=image_intermediate_size, attention_dropout2=image_attention_dropout, hidden_dropout2=image_hidden_dropout, biattention_id1=text_biattention_id, biattention_id2=image_biattention_id, fixed_layer1=text_fixed_layer, fixed_layer2=image_fixed_layer, ) return cls( vocab=vocab, text_embeddings=text_embeddings, image_embeddings=image_embeddings, encoder=encoder, pooled_output_dim=pooled_output_dim, fusion_method=fusion_method, dropout=pooled_dropout, ignore_text=ignore_text, ignore_image=ignore_image, ) def forward( self, # type: ignore box_features: torch.Tensor, box_coordinates: torch.Tensor, box_mask: torch.Tensor, text: TextFieldTensors, labels: Optional[torch.Tensor] = None, label_weights: Optional[torch.Tensor] = None, ) -> Dict[str, torch.Tensor]: """ # Parameters box_features : `Tensor` Shape: `(batch_size, num_boxes, feature_size)` box_coordinates : `Tensor` Shape: `(batch_size, num_boxes, 4)` box_mask : `Tensor` A bool and 0-1 tensor of shape `(batch_size, num_boxes)`. text : `TextFieldTensors` label : `Optional[Tensor]` label_weights : `Optional[Tensor]` """ batch_size = box_features.size(0) if self.ignore_images: box_features = torch.zeros_like(box_features) box_coordinates = torch.zeros_like(box_coordinates) box_coordinates[..., 2] = 1 box_coordinates[..., 3] = 1 box_mask = torch.ones_like(box_mask) if self.ignore_text: dummy_text = {} for embedder_name, tensor_dict in text.items(): dummy_tensor_dict = {} for tensor_name, tensor in tensor_dict.items(): if "mask" in tensor_name: tensor = torch.ones_like(tensor) else: tensor = torch.zeros_like(tensor) dummy_tensor_dict[tensor_name] = tensor dummy_text[embedder_name] = dummy_tensor_dict text = dummy_text backbone_outputs = self.backbone(box_features, box_coordinates, box_mask, text) # Shape: (batch_size, num_labels) logits = self.classifier(backbone_outputs["pooled_boxes_and_text"]) # Shape: (batch_size, num_labels) if self.is_multilabel: probs = torch.sigmoid(logits) else: probs = torch.softmax(logits, dim=-1) outputs = {"logits": logits, "probs": probs} outputs = self._compute_loss_and_metrics(batch_size, outputs, labels, label_weights) return outputs def _compute_loss_and_metrics( self, batch_size: int, outputs: Dict[str, torch.Tensor], label: torch.Tensor, label_weights: Optional[torch.Tensor] = None, ) -> Dict[str, torch.Tensor]: return outputs def get_metrics(self, reset: bool = False) -> Dict[str, float]: result = self.accuracy.get_metric(reset) return {"accuracy": result} def make_output_human_readable( self, output_dict: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: batch_labels = [] for batch_index, batch in enumerate(output_dict["probs"]): labels = np.argmax(batch, axis=-1) batch_labels.append(labels) output_dict["labels"] = batch_labels return output_dict
allennlp-models-main
allennlp_models/vision/models/vision_text_model.py
import logging from typing import Dict, Optional, List, Any import numpy as np import torch from allennlp.data import TextFieldTensors, Vocabulary from allennlp.models.model import Model from allennlp.modules.transformer import ( TransformerEmbeddings, ImageFeatureEmbeddings, BiModalEncoder, ) from allennlp.training.metrics import CategoricalAccuracy from allennlp.training.metrics import FBetaMeasure from allennlp_models.vision.models.vision_text_model import VisionTextModel logger = logging.getLogger(__name__) @Model.register("nlvr2") @Model.register("nlvr2_from_huggingface", constructor="from_huggingface_model_name") class Nlvr2Model(VisionTextModel): """ Model for visual entailment task based on the paper [A Corpus for Reasoning About Natural Language Grounded in Photographs] (https://api.semanticscholar.org/CorpusID:53178856). # Parameters vocab : `Vocabulary` text_embeddings : `TransformerEmbeddings` image_embeddings : `ImageFeatureEmbeddings` encoder : `BiModalEncoder` pooled_output_dim : `int` fusion_method : `str`, optional (default = `"mul"`) dropout : `float`, optional (default = `0.1`) label_namespace : `str`, optional (default = `labels`) """ def __init__( self, vocab: Vocabulary, text_embeddings: TransformerEmbeddings, image_embeddings: ImageFeatureEmbeddings, encoder: BiModalEncoder, pooled_output_dim: int, fusion_method: str = "mul", dropout: float = 0.1, label_namespace: str = "labels", *, ignore_text: bool = False, ignore_image: bool = False, ) -> None: super().__init__( vocab, text_embeddings, image_embeddings, encoder, pooled_output_dim, fusion_method, dropout, label_namespace, is_multilabel=False, ) self.pooled_output_dim = pooled_output_dim self.layer1 = torch.nn.Linear(pooled_output_dim * 2, pooled_output_dim) self.layer2 = torch.nn.Linear(pooled_output_dim, 2) self.activation = torch.nn.ReLU() self.accuracy = CategoricalAccuracy() self.fbeta = FBetaMeasure(beta=1.0, average="macro") def forward( self, # type: ignore box_features: torch.Tensor, box_coordinates: torch.Tensor, box_mask: torch.Tensor, hypothesis: TextFieldTensors, label: Optional[torch.Tensor] = None, identifier: List[Dict[str, Any]] = None, ) -> Dict[str, torch.Tensor]: batch_size = box_features.shape[0] pooled_outputs = self.backbone(box_features, box_coordinates, box_mask, hypothesis)[ "pooled_boxes_and_text" ].transpose(0, 1) hidden = self.layer1(torch.cat((pooled_outputs[0], pooled_outputs[1]), dim=-1)) # Shape: (batch_size, num_labels) logits = self.layer2(self.activation(hidden)) # Shape: (batch_size, num_labels) probs = torch.softmax(logits, dim=-1) outputs = {"logits": logits, "probs": probs} outputs = self._compute_loss_and_metrics(batch_size, outputs, label) return outputs def _compute_loss_and_metrics( self, batch_size: int, outputs: Dict[str, torch.Tensor], label: torch.Tensor, label_weights: Optional[torch.Tensor] = None, ) -> Dict[str, torch.Tensor]: if label_weights is not None: raise NotImplementedError("This implementation does not support label_weights.") if label is not None: outputs["loss"] = ( torch.nn.functional.cross_entropy(outputs["logits"], label) / batch_size ) self.accuracy(outputs["logits"], label) self.fbeta(outputs["probs"], label) return outputs def get_metrics(self, reset: bool = False) -> Dict[str, float]: metrics = self.fbeta.get_metric(reset) accuracy = self.accuracy.get_metric(reset) metrics.update({"accuracy": accuracy}) return metrics def make_output_human_readable( self, output_dict: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: batch_labels = [] for batch_index, batch in enumerate(output_dict["probs"]): labels = np.argmax(batch, axis=-1) batch_labels.append(labels) output_dict["labels"] = batch_labels return output_dict default_predictor = "nlvr2"
allennlp-models-main
allennlp_models/vision/models/nlvr2.py
import logging from typing import Dict, Optional import numpy as np import torch from allennlp.data import TextFieldTensors, Vocabulary from allennlp.models.model import Model from allennlp.modules.transformer import ( TransformerEmbeddings, ImageFeatureEmbeddings, BiModalEncoder, ) from allennlp.training.metrics import CategoricalAccuracy from allennlp.training.metrics import FBetaMeasure from allennlp_models.vision.models.vision_text_model import VisionTextModel logger = logging.getLogger(__name__) @Model.register("ve_vilbert") @Model.register("ve_vilbert_from_huggingface", constructor="from_huggingface_model_name") class VisualEntailmentModel(VisionTextModel): """ Model for visual entailment task based on the paper [Visual Entailment: A Novel Task for Fine-Grained Image Understanding] (https://api.semanticscholar.org/CorpusID:58981654). # Parameters vocab : `Vocabulary` text_embeddings : `TransformerEmbeddings` image_embeddings : `ImageFeatureEmbeddings` encoder : `BiModalEncoder` pooled_output_dim : `int` fusion_method : `str`, optional (default = `"sum"`) dropout : `float`, optional (default = `0.1`) label_namespace : `str`, optional (default = `labels`) """ def __init__( self, vocab: Vocabulary, text_embeddings: TransformerEmbeddings, image_embeddings: ImageFeatureEmbeddings, encoder: BiModalEncoder, pooled_output_dim: int, fusion_method: str = "sum", dropout: float = 0.1, label_namespace: str = "labels", *, ignore_text: bool = False, ignore_image: bool = False, ) -> None: super().__init__( vocab, text_embeddings, image_embeddings, encoder, pooled_output_dim, fusion_method, dropout, label_namespace, is_multilabel=False, ) self.accuracy = CategoricalAccuracy() self.fbeta = FBetaMeasure(beta=1.0, average="macro") def forward( # type: ignore self, box_features: torch.Tensor, box_coordinates: torch.Tensor, box_mask: torch.Tensor, hypothesis: TextFieldTensors, labels: Optional[torch.Tensor] = None, ) -> Dict[str, torch.Tensor]: return super().forward( box_features, box_coordinates, box_mask, text=hypothesis, labels=labels, label_weights=None, ) def _compute_loss_and_metrics( self, batch_size: int, outputs: torch.Tensor, label: torch.Tensor, label_weights: Optional[torch.Tensor] = None, ): assert label_weights is None if label is not None: outputs["loss"] = ( torch.nn.functional.cross_entropy(outputs["logits"], label) / batch_size ) self.accuracy(outputs["logits"], label) self.fbeta(outputs["probs"], label) return outputs def get_metrics(self, reset: bool = False) -> Dict[str, float]: metrics = self.fbeta.get_metric(reset) accuracy = self.accuracy.get_metric(reset) metrics.update({"accuracy": accuracy}) return metrics def make_output_human_readable( self, output_dict: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: batch_labels = [] for batch_index, batch in enumerate(output_dict["probs"]): labels = np.argmax(batch, axis=-1) batch_labels.append(labels) output_dict["labels"] = batch_labels return output_dict default_predictor = "vilbert_ve"
allennlp-models-main
allennlp_models/vision/models/visual_entailment.py
from typing import Dict, Optional import torch from allennlp.data.vocabulary import Vocabulary from allennlp.models.heads.head import Head @Head.register("nlvr2") class Nlvr2Head(Head): def __init__(self, vocab: Vocabulary, embedding_dim: int, label_namespace: str = "labels"): super().__init__(vocab) self.label_namespace = label_namespace self.layer1 = torch.nn.Linear(embedding_dim * 2, embedding_dim) self.layer2 = torch.nn.Linear(embedding_dim, 2) self.activation = torch.nn.ReLU() from allennlp.training.metrics import CategoricalAccuracy from allennlp.training.metrics import FBetaMeasure self.accuracy = CategoricalAccuracy() self.fbeta = FBetaMeasure(beta=1.0, average="macro") def forward( self, # type: ignore encoded_boxes: torch.Tensor, encoded_boxes_mask: torch.Tensor, encoded_boxes_pooled: torch.Tensor, encoded_text: torch.Tensor, encoded_text_mask: torch.Tensor, encoded_text_pooled: torch.Tensor, pooled_boxes_and_text: torch.Tensor, label: Optional[torch.Tensor] = None, label_weights: Optional[torch.Tensor] = None, ) -> Dict[str, torch.Tensor]: pooled_boxes_and_text = pooled_boxes_and_text.transpose(0, 1) hidden = self.layer1( torch.cat((pooled_boxes_and_text[0], pooled_boxes_and_text[1]), dim=-1) ) logits = self.layer2(self.activation(hidden)) probs = torch.softmax(logits, dim=-1) output = {"logits": logits, "probs": probs} assert label_weights is None if label is not None: output["loss"] = torch.nn.functional.cross_entropy(logits, label) / logits.size(0) self.accuracy(logits, label) self.fbeta(probs, label) return output def get_metrics(self, reset: bool = False) -> Dict[str, float]: result = self.fbeta.get_metric(reset) result["accuracy"] = self.accuracy.get_metric(reset) return result def make_output_human_readable( self, output_dict: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: if len(output_dict) <= 0: return output_dict logits = output_dict["logits"] entailment_answer_index = logits.argmax(-1) entailment_answer = [ self.vocab.get_token_from_index(int(i), "labels") for i in entailment_answer_index ] output_dict["entailment_answer"] = entailment_answer return output_dict default_predictor = "nlvr2"
allennlp-models-main
allennlp_models/vision/models/heads/nlvr2_head.py
from typing import Dict, Optional import torch from allennlp.data.vocabulary import Vocabulary from allennlp.models.heads.head import Head @Head.register("visual_entailment") class VisualEntailmentHead(Head): def __init__(self, vocab: Vocabulary, embedding_dim: int, label_namespace: str = "labels"): super().__init__(vocab) num_labels = vocab.get_vocab_size(label_namespace) self.label_namespace = label_namespace self.classifier = torch.nn.Linear(embedding_dim, num_labels) from allennlp.training.metrics import CategoricalAccuracy from allennlp.training.metrics import FBetaMeasure self.accuracy = CategoricalAccuracy() self.fbeta = FBetaMeasure(beta=1.0, average="macro") def forward( self, # type: ignore encoded_boxes: torch.Tensor, encoded_boxes_mask: torch.Tensor, encoded_boxes_pooled: torch.Tensor, encoded_text: torch.Tensor, encoded_text_mask: torch.Tensor, encoded_text_pooled: torch.Tensor, pooled_boxes_and_text: torch.Tensor, labels: Optional[torch.Tensor] = None, label_weights: Optional[torch.Tensor] = None, ) -> Dict[str, torch.Tensor]: logits = self.classifier(pooled_boxes_and_text) probs = torch.softmax(logits, dim=-1) output = {"logits": logits, "probs": probs} assert label_weights is None if labels is not None: output["loss"] = torch.nn.functional.cross_entropy(logits, labels) / logits.size(0) self.accuracy(logits, labels) self.fbeta(probs, labels) return output def get_metrics(self, reset: bool = False) -> Dict[str, float]: result = self.fbeta.get_metric(reset) result["acc"] = self.accuracy.get_metric(reset) return result def make_output_human_readable( self, output_dict: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: if len(output_dict) <= 0: return output_dict logits = output_dict["logits"] entailment_answer_index = logits.argmax(-1) entailment_answer = [ self.vocab.get_token_from_index(int(i), "labels") for i in entailment_answer_index ] output_dict["entailment_answer"] = entailment_answer return output_dict default_predictor = "vilbert_ve"
allennlp-models-main
allennlp_models/vision/models/heads/visual_entailment_head.py
from allennlp_models.vision.models.heads.nlvr2_head import Nlvr2Head from allennlp_models.vision.models.heads.vqa_head import VqaHead from allennlp_models.vision.models.heads.visual_entailment_head import VisualEntailmentHead
allennlp-models-main
allennlp_models/vision/models/heads/__init__.py
from typing import Dict, Optional import torch from allennlp.data.vocabulary import Vocabulary from allennlp.models.heads.head import Head @Head.register("vqa") class VqaHead(Head): def __init__(self, vocab: Vocabulary, embedding_dim: int, label_namespace: str = "answers"): from allennlp_models.vision.metrics.vqa import VqaMeasure from allennlp.training.metrics import F1MultiLabelMeasure super().__init__(vocab) num_labels = vocab.get_vocab_size(label_namespace) self.label_namespace = label_namespace self.classifier = torch.nn.Linear(embedding_dim, num_labels) self.f1_metric = F1MultiLabelMeasure(average="micro") self.vqa_metric = VqaMeasure() def forward( self, # type: ignore encoded_boxes: torch.Tensor, encoded_boxes_mask: torch.Tensor, encoded_boxes_pooled: torch.Tensor, encoded_text: torch.Tensor, encoded_text_mask: torch.Tensor, encoded_text_pooled: torch.Tensor, pooled_boxes_and_text: torch.Tensor, labels: Optional[torch.Tensor] = None, label_weights: Optional[torch.Tensor] = None, ) -> Dict[str, torch.Tensor]: logits = self.classifier(pooled_boxes_and_text) output = { "logits": logits, "probs": torch.sigmoid(logits), } if labels is not None and label_weights is not None: label_mask = labels > 1 # 0 is padding, 1 is OOV, which we want to ignore from allennlp.nn import util weighted_labels = util.masked_index_replace( logits.new_zeros(logits.size() + (1,)), labels.clamp(min=0), label_mask, label_weights.unsqueeze(-1), ).squeeze(-1) # weighted_labels now has shape (batch_size, num_labels). We need to ignore the first # two columns of this in our loss function and accuracy metric. The first column is a # padding label, and the second column is an OOV label. We want the loss function to # be computed on every other label. binary_label_mask = weighted_labels.new_ones(logits.size()) binary_label_mask[:, 0] = 0 binary_label_mask[:, 1] = 0 output["loss"] = torch.nn.functional.binary_cross_entropy_with_logits( logits, weighted_labels, weight=binary_label_mask, reduction="sum" ) / logits.size(0) self.f1_metric(logits, weighted_labels, binary_label_mask.bool()) self.vqa_metric(logits, labels, label_weights) return output def get_metrics(self, reset: bool = False) -> Dict[str, float]: result = self.f1_metric.get_metric(reset) result["vqa"] = self.vqa_metric.get_metric(reset)["score"] return result def make_output_human_readable( self, output_dict: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: if len(output_dict) <= 0: return output_dict logits = output_dict["logits"] best_answer_index = logits.argmax(-1) best_answer = [ self.vocab.get_token_from_index(int(i), "answers") for i in best_answer_index ] output_dict["best_answer"] = best_answer return output_dict default_predictor = "vilbert_vqa"
allennlp-models-main
allennlp_models/vision/models/heads/vqa_head.py
# flake8: noqa: F403 from allennlp_models.pair_classification.dataset_readers import * from allennlp_models.pair_classification.models import * from allennlp_models.pair_classification.predictors import *
allennlp-models-main
allennlp_models/pair_classification/__init__.py
from allennlp_models.pair_classification.dataset_readers.quora_paraphrase import ( QuoraParaphraseDatasetReader, ) from allennlp_models.pair_classification.dataset_readers.snli import SnliReader from allennlp_models.pair_classification.dataset_readers.transformer_superglue_rte import ( TransformerSuperGlueRteReader, )
allennlp-models-main
allennlp_models/pair_classification/dataset_readers/__init__.py
from typing import Dict, Optional import json import logging from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import Field, TextField, LabelField, MetadataField from allennlp.data.instance import Instance from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenIndexer from allennlp.data.tokenizers import Tokenizer, SpacyTokenizer, PretrainedTransformerTokenizer logger = logging.getLogger(__name__) def maybe_collapse_label(label: str, collapse: bool): """ Helper function that optionally collapses the "contradiction" and "neutral" labels into "non-entailment". """ assert label in ["contradiction", "neutral", "entailment"] if collapse and label in ["contradiction", "neutral"]: return "non-entailment" return label @DatasetReader.register("snli") class SnliReader(DatasetReader): """ Reads a file from the Stanford Natural Language Inference (SNLI) dataset. This data is formatted as jsonl, one json-formatted instance per line. The keys in the data are "gold_label", "sentence1", and "sentence2". We convert these keys into fields named "label", "premise" and "hypothesis", along with a metadata field containing the tokenized strings of the premise and hypothesis. Registered as a `DatasetReader` with name "snli". # Parameters tokenizer : `Tokenizer`, optional (default=`SpacyTokenizer()`) We use this `Tokenizer` for both the premise and the hypothesis. See :class:`Tokenizer`. token_indexers : `Dict[str, TokenIndexer]`, optional (default=`{"tokens": SingleIdTokenIndexer()}`) We similarly use this for both the premise and the hypothesis. See :class:`TokenIndexer`. combine_input_fields : `bool`, optional (default=`isinstance(tokenizer, PretrainedTransformerTokenizer)`) If False, represent the premise and the hypothesis as separate fields in the instance. If True, tokenize them together using `tokenizer.tokenize_sentence_pair()` and provide a single `tokens` field in the instance. collapse_labels : `bool`, optional (default=`False`) If `True`, the "neutral" and "contradiction" labels will be collapsed into "non-entailment"; "entailment" will be left unchanged. """ def __init__( self, tokenizer: Optional[Tokenizer] = None, token_indexers: Dict[str, TokenIndexer] = None, combine_input_fields: Optional[bool] = None, collapse_labels: Optional[bool] = False, **kwargs, ) -> None: super().__init__( manual_distributed_sharding=True, manual_multiprocess_sharding=True, **kwargs ) self._tokenizer = tokenizer or SpacyTokenizer() if isinstance(self._tokenizer, PretrainedTransformerTokenizer): assert not self._tokenizer._add_special_tokens self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} if combine_input_fields is not None: self._combine_input_fields = combine_input_fields else: self._combine_input_fields = isinstance(self._tokenizer, PretrainedTransformerTokenizer) self.collapse_labels = collapse_labels def _read(self, file_path: str): # if `file_path` is a URL, redirect to the cache file_path = cached_path(file_path) with open(file_path, "r") as snli_file: example_iter = (json.loads(line) for line in snli_file) filtered_example_iter = ( example for example in example_iter if example.get("gold_label") != "-" ) for example in self.shard_iterable(filtered_example_iter): label = example.get("gold_label") premise = example["sentence1"] hypothesis = example["sentence2"] yield self.text_to_instance(premise, hypothesis, label) def text_to_instance( self, # type: ignore premise: str, hypothesis: str, label: str = None, ) -> Instance: fields: Dict[str, Field] = {} premise = self._tokenizer.tokenize(premise) hypothesis = self._tokenizer.tokenize(hypothesis) if self._combine_input_fields: tokens = self._tokenizer.add_special_tokens(premise, hypothesis) fields["tokens"] = TextField(tokens) else: premise_tokens = self._tokenizer.add_special_tokens(premise) hypothesis_tokens = self._tokenizer.add_special_tokens(hypothesis) fields["premise"] = TextField(premise_tokens) fields["hypothesis"] = TextField(hypothesis_tokens) metadata = { "premise_tokens": [x.text for x in premise_tokens], "hypothesis_tokens": [x.text for x in hypothesis_tokens], } fields["metadata"] = MetadataField(metadata) if label: maybe_collapsed_label = maybe_collapse_label(label, self.collapse_labels) fields["label"] = LabelField(maybe_collapsed_label) return Instance(fields) def apply_token_indexers(self, instance: Instance) -> Instance: if "tokens" in instance.fields: instance.fields["tokens"]._token_indexers = self._token_indexers else: instance.fields["premise"]._token_indexers = self._token_indexers instance.fields["hypothesis"]._token_indexers = self._token_indexers
allennlp-models-main
allennlp_models/pair_classification/dataset_readers/snli.py
import logging from typing import Any, Dict from allennlp.data.fields import MetadataField, TextField, LabelField from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.instance import Instance from allennlp.data.token_indexers import PretrainedTransformerIndexer from allennlp.data.tokenizers import PretrainedTransformerTokenizer logger = logging.getLogger(__name__) @DatasetReader.register("transformer_superglue_rte") class TransformerSuperGlueRteReader(DatasetReader): """ Dataset reader for the SuperGLUE Recognizing Textual Entailment task, to be used with a transformer model such as RoBERTa. The dataset is in the JSON Lines format. It will generate `Instances` with the following fields: * `tokens`, a `TextField` that contains the concatenation of premise and hypothesis, * `label`, a `LabelField` containing the label, if one exists. * `metadata`, a `MetadataField` that stores the instance's index in the file, the original premise, the original hypothesis, both of these in tokenized form, and the gold label, accessible as `metadata['index']`, `metadata['premise']`, `metadata['hypothesis']`, `metadata['tokens']`, and `metadata['label']`. # Parameters type : `str`, optional (default=`'roberta-base'`) This reader chooses tokenizer according to this setting. """ def __init__( self, transformer_model_name: str = "roberta-base", tokenizer_kwargs: Dict[str, Any] = None, **kwargs ) -> None: super().__init__( manual_distributed_sharding=True, manual_multiprocess_sharding=True, **kwargs ) self._tokenizer = PretrainedTransformerTokenizer( transformer_model_name, add_special_tokens=False, tokenizer_kwargs=tokenizer_kwargs, ) self._token_indexers = { "tokens": PretrainedTransformerIndexer( transformer_model_name, tokenizer_kwargs=tokenizer_kwargs, max_length=512 ) } def _read(self, file_path: str): # if `file_path` is a URL, redirect to the cache file_path = cached_path(file_path, extract_archive=True) logger.info("Reading file at %s", file_path) yielded_relation_count = 0 from allennlp.common.file_utils import json_lines_from_file for relation in self.shard_iterable(json_lines_from_file(file_path)): premise = relation["premise"] hypothesis = relation["hypothesis"] if "label" in relation: label = relation["label"] else: label = None index = relation["idx"] # todo: see if we even need this to be in a separate method instance = self.text_to_instance(index, label, premise, hypothesis) yield instance yielded_relation_count += 1 def text_to_instance( self, index: int, label: str, premise: str, hypothesis: str, ) -> Instance: tokenized_premise = self._tokenizer.tokenize(premise) tokenized_hypothesis = self._tokenizer.tokenize(hypothesis) fields = {} premise_and_hypothesis = TextField( self._tokenizer.add_special_tokens(tokenized_premise, tokenized_hypothesis), ) fields["tokens"] = premise_and_hypothesis # make the metadata metadata = { "premise": premise, "premise_tokens": tokenized_premise, "hypothesis": hypothesis, "hypothesis_tokens": tokenized_hypothesis, "index": index, } if label: fields["label"] = LabelField(label) metadata["label"] = label fields["metadata"] = MetadataField(metadata) return Instance(fields) def apply_token_indexers(self, instance: Instance) -> None: instance["tokens"].token_indexers = self._token_indexers
allennlp-models-main
allennlp_models/pair_classification/dataset_readers/transformer_superglue_rte.py
from typing import Optional, Dict import logging import csv from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import LabelField, TextField, Field from allennlp.data.instance import Instance from allennlp.data.tokenizers import Tokenizer, PretrainedTransformerTokenizer from allennlp.data.tokenizers.whitespace_tokenizer import WhitespaceTokenizer from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer logger = logging.getLogger(__name__) @DatasetReader.register("quora_paraphrase") class QuoraParaphraseDatasetReader(DatasetReader): """ Reads a file from the Quora Paraphrase dataset. The train/validation/test split of the data comes from the paper [Bilateral Multi-Perspective Matching for Natural Language Sentences](https://arxiv.org/abs/1702.03814) by Zhiguo Wang et al., 2017. Each file of the data is a tsv file without header. The columns are is_duplicate, question1, question2, and id. All questions are pre-tokenized and tokens are space separated. We convert these keys into fields named "label", "premise" and "hypothesis", so that it is compatible t some existing natural language inference algorithms. Registered as a `DatasetReader` with name "quora_paraphrase". # Parameters tokenizer : `Tokenizer`, optional Tokenizer to use to split the premise and hypothesis into words or other kinds of tokens. Defaults to `WhitespaceTokenizer`. token_indexers : `Dict[str, TokenIndexer]`, optional Indexers used to define input token representations. Defaults to `{"tokens": SingleIdTokenIndexer()}`. """ def __init__( self, tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None, combine_input_fields: Optional[bool] = None, **kwargs, ) -> None: super().__init__(**kwargs) self._tokenizer = tokenizer or WhitespaceTokenizer() self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} if isinstance(self._tokenizer, PretrainedTransformerTokenizer): assert not self._tokenizer._add_special_tokens if combine_input_fields is not None: self._combine_input_fields = combine_input_fields else: self._combine_input_fields = isinstance(self._tokenizer, PretrainedTransformerTokenizer) def _read(self, file_path): logger.info("Reading instances from lines in file at: %s", file_path) with open(cached_path(file_path), "r") as data_file: tsv_in = csv.reader(data_file, delimiter="\t") for row in tsv_in: if len(row) == 4: yield self.text_to_instance(premise=row[1], hypothesis=row[2], label=row[0]) def text_to_instance( self, # type: ignore premise: str, hypothesis: str, label: str = None, ) -> Instance: fields: Dict[str, Field] = {} premise = self._tokenizer.tokenize(premise) hypothesis = self._tokenizer.tokenize(hypothesis) if self._combine_input_fields: tokens = self._tokenizer.add_special_tokens(premise, hypothesis) fields["tokens"] = TextField(tokens, self._token_indexers) else: premise_tokens = self._tokenizer.add_special_tokens(premise) hypothesis_tokens = self._tokenizer.add_special_tokens(hypothesis) fields["premise"] = TextField(premise_tokens, self._token_indexers) fields["hypothesis"] = TextField(hypothesis_tokens, self._token_indexers) if label is not None: fields["label"] = LabelField(label) return Instance(fields)
allennlp-models-main
allennlp_models/pair_classification/dataset_readers/quora_paraphrase.py
from allennlp_models.pair_classification.predictors.textual_entailment import ( TextualEntailmentPredictor, )
allennlp-models-main
allennlp_models/pair_classification/predictors/__init__.py
from typing import List, Dict import numpy from allennlp.common.util import JsonDict from allennlp.data import Instance from allennlp.predictors.predictor import Predictor from allennlp.data.fields import LabelField @Predictor.register("textual_entailment") class TextualEntailmentPredictor(Predictor): """ Predictor for the [`DecomposableAttention`](../models/decomposable_attention.md) model. Registered as a `Predictor` with name "textual_entailment". """ def predict(self, premise: str, hypothesis: str) -> JsonDict: """ Predicts whether the hypothesis is entailed by the premise text. # Parameters premise : `str` A passage representing what is assumed to be true. hypothesis : `str` A sentence that may be entailed by the premise. # Returns `JsonDict` A dictionary where the key "label_probs" determines the probabilities of each of [entailment, contradiction, neutral]. """ return self.predict_json({"premise": premise, "hypothesis": hypothesis}) def _json_to_instance(self, json_dict: JsonDict) -> Instance: """ Expects JSON that looks like `{"premise": "...", "hypothesis": "..."}`. """ premise_text = json_dict["premise"] hypothesis_text = json_dict["hypothesis"] return self._dataset_reader.text_to_instance(premise_text, hypothesis_text) def predictions_to_labeled_instances( self, instance: Instance, outputs: Dict[str, numpy.ndarray] ) -> List[Instance]: new_instance = instance.duplicate() label = numpy.argmax(outputs["label_logits"]) # Skip indexing, we have integer representations of the strings "entailment", etc. new_instance.add_field("label", LabelField(int(label), skip_indexing=True)) return [new_instance]
allennlp-models-main
allennlp_models/pair_classification/predictors/textual_entailment.py
from typing import Dict, Optional, List, Any import torch from allennlp.common.checks import check_dimensions_match from allennlp.data import TextFieldTensors, Vocabulary from allennlp.models.model import Model from allennlp.modules import FeedForward from allennlp.modules import Seq2SeqEncoder, TimeDistributed, TextFieldEmbedder from allennlp.modules.matrix_attention.matrix_attention import MatrixAttention from allennlp.nn import InitializerApplicator from allennlp.nn.util import get_text_field_mask, masked_softmax, weighted_sum from allennlp.training.metrics import CategoricalAccuracy @Model.register("decomposable_attention") class DecomposableAttention(Model): """ This `Model` implements the Decomposable Attention model described in [A Decomposable Attention Model for Natural Language Inference](https://api.semanticscholar.org/CorpusID:8495258) by Parikh et al., 2016, with some optional enhancements before the decomposable attention actually happens. Parikh's original model allowed for computing an "intra-sentence" attention before doing the decomposable entailment step. We generalize this to any [`Seq2SeqEncoder`](../modules/seq2seq_encoders/seq2seq_encoder.md) that can be applied to the premise and/or the hypothesis before computing entailment. The basic outline of this model is to get an embedded representation of each word in the premise and hypothesis, align words between the two, compare the aligned phrases, and make a final entailment decision based on this aggregated comparison. Each step in this process uses a feedforward network to modify the representation. Registered as a `Model` with name "decomposable_attention". # Parameters vocab : `Vocabulary` text_field_embedder : `TextFieldEmbedder` Used to embed the `premise` and `hypothesis` `TextFields` we get as input to the model. attend_feedforward : `FeedForward` This feedforward network is applied to the encoded sentence representations before the similarity matrix is computed between words in the premise and words in the hypothesis. matrix_attention : `MatrixAttention` This is the attention function used when computing the similarity matrix between words in the premise and words in the hypothesis. compare_feedforward : `FeedForward` This feedforward network is applied to the aligned premise and hypothesis representations, individually. aggregate_feedforward : `FeedForward` This final feedforward network is applied to the concatenated, summed result of the `compare_feedforward` network, and its output is used as the entailment class logits. premise_encoder : `Seq2SeqEncoder`, optional (default=`None`) After embedding the premise, we can optionally apply an encoder. If this is `None`, we will do nothing. hypothesis_encoder : `Seq2SeqEncoder`, optional (default=`None`) After embedding the hypothesis, we can optionally apply an encoder. If this is `None`, we will use the `premise_encoder` for the encoding (doing nothing if `premise_encoder` is also `None`). initializer : `InitializerApplicator`, optional (default=`InitializerApplicator()`) Used to initialize the model parameters. """ def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, attend_feedforward: FeedForward, matrix_attention: MatrixAttention, compare_feedforward: FeedForward, aggregate_feedforward: FeedForward, premise_encoder: Optional[Seq2SeqEncoder] = None, hypothesis_encoder: Optional[Seq2SeqEncoder] = None, initializer: InitializerApplicator = InitializerApplicator(), **kwargs, ) -> None: super().__init__(vocab, **kwargs) self._text_field_embedder = text_field_embedder self._attend_feedforward = TimeDistributed(attend_feedforward) self._matrix_attention = matrix_attention self._compare_feedforward = TimeDistributed(compare_feedforward) self._aggregate_feedforward = aggregate_feedforward self._premise_encoder = premise_encoder self._hypothesis_encoder = hypothesis_encoder or premise_encoder self._num_labels = vocab.get_vocab_size(namespace="labels") check_dimensions_match( text_field_embedder.get_output_dim(), attend_feedforward.get_input_dim(), "text field embedding dim", "attend feedforward input dim", ) check_dimensions_match( aggregate_feedforward.get_output_dim(), self._num_labels, "final output dimension", "number of labels", ) self._accuracy = CategoricalAccuracy() self._loss = torch.nn.CrossEntropyLoss() initializer(self) def forward( # type: ignore self, premise: TextFieldTensors, hypothesis: TextFieldTensors, label: torch.IntTensor = None, metadata: List[Dict[str, Any]] = None, ) -> Dict[str, torch.Tensor]: """ # Parameters premise : `TextFieldTensors` From a `TextField` hypothesis : `TextFieldTensors` From a `TextField` label : `torch.IntTensor`, optional (default = `None`) From a `LabelField` metadata : `List[Dict[str, Any]]`, optional (default = `None`) Metadata containing the original tokenization of the premise and hypothesis with 'premise_tokens' and 'hypothesis_tokens' keys respectively. # Returns An output dictionary consisting of: label_logits : `torch.FloatTensor` A tensor of shape `(batch_size, num_labels)` representing unnormalised log probabilities of the entailment label. label_probs : `torch.FloatTensor` A tensor of shape `(batch_size, num_labels)` representing probabilities of the entailment label. loss : `torch.FloatTensor`, optional A scalar loss to be optimised. """ embedded_premise = self._text_field_embedder(premise) embedded_hypothesis = self._text_field_embedder(hypothesis) premise_mask = get_text_field_mask(premise) hypothesis_mask = get_text_field_mask(hypothesis) if self._premise_encoder: embedded_premise = self._premise_encoder(embedded_premise, premise_mask) if self._hypothesis_encoder: embedded_hypothesis = self._hypothesis_encoder(embedded_hypothesis, hypothesis_mask) projected_premise = self._attend_feedforward(embedded_premise) projected_hypothesis = self._attend_feedforward(embedded_hypothesis) # Shape: (batch_size, premise_length, hypothesis_length) similarity_matrix = self._matrix_attention(projected_premise, projected_hypothesis) # Shape: (batch_size, premise_length, hypothesis_length) p2h_attention = masked_softmax(similarity_matrix, hypothesis_mask) # Shape: (batch_size, premise_length, embedding_dim) attended_hypothesis = weighted_sum(embedded_hypothesis, p2h_attention) # Shape: (batch_size, hypothesis_length, premise_length) h2p_attention = masked_softmax(similarity_matrix.transpose(1, 2).contiguous(), premise_mask) # Shape: (batch_size, hypothesis_length, embedding_dim) attended_premise = weighted_sum(embedded_premise, h2p_attention) premise_compare_input = torch.cat([embedded_premise, attended_hypothesis], dim=-1) hypothesis_compare_input = torch.cat([embedded_hypothesis, attended_premise], dim=-1) compared_premise = self._compare_feedforward(premise_compare_input) compared_premise = compared_premise * premise_mask.unsqueeze(-1) # Shape: (batch_size, compare_dim) compared_premise = compared_premise.sum(dim=1) compared_hypothesis = self._compare_feedforward(hypothesis_compare_input) compared_hypothesis = compared_hypothesis * hypothesis_mask.unsqueeze(-1) # Shape: (batch_size, compare_dim) compared_hypothesis = compared_hypothesis.sum(dim=1) aggregate_input = torch.cat([compared_premise, compared_hypothesis], dim=-1) label_logits = self._aggregate_feedforward(aggregate_input) label_probs = torch.nn.functional.softmax(label_logits, dim=-1) output_dict = { "label_logits": label_logits, "label_probs": label_probs, "h2p_attention": h2p_attention, "p2h_attention": p2h_attention, } if label is not None: loss = self._loss(label_logits, label.long().view(-1)) self._accuracy(label_logits, label) output_dict["loss"] = loss if metadata is not None: output_dict["premise_tokens"] = [x["premise_tokens"] for x in metadata] output_dict["hypothesis_tokens"] = [x["hypothesis_tokens"] for x in metadata] return output_dict def get_metrics(self, reset: bool = False) -> Dict[str, float]: return {"accuracy": self._accuracy.get_metric(reset)} def make_output_human_readable( self, output_dict: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: """ Does a simple argmax over the probabilities, converts index to string label, and add `"label"` key to the dictionary with the result. """ predictions = output_dict["label_probs"] if predictions.dim() == 2: predictions_list = [predictions[i] for i in range(predictions.shape[0])] else: predictions_list = [predictions] classes = [] for prediction in predictions_list: label_idx = prediction.argmax(dim=-1).item() label_str = self.vocab.get_index_to_token_vocabulary("labels").get( label_idx, str(label_idx) ) classes.append(label_str) output_dict["label"] = classes return output_dict default_predictor = "textual_entailment"
allennlp-models-main
allennlp_models/pair_classification/models/decomposable_attention.py
from allennlp_models.pair_classification.models.bimpm import BiMpm from allennlp_models.pair_classification.models.decomposable_attention import DecomposableAttention from allennlp_models.pair_classification.models.esim import ESIM
allennlp-models-main
allennlp_models/pair_classification/models/__init__.py
""" BiMPM (Bilateral Multi-Perspective Matching) model implementation. """ from typing import Dict, List, Any import torch from allennlp.common.checks import check_dimensions_match from allennlp.data import TextFieldTensors, Vocabulary from allennlp.modules import FeedForward, Seq2SeqEncoder, Seq2VecEncoder, TextFieldEmbedder from allennlp.models.model import Model from allennlp.nn import InitializerApplicator from allennlp.nn import util from allennlp.training.metrics import CategoricalAccuracy from allennlp.modules.bimpm_matching import BiMpmMatching @Model.register("bimpm") class BiMpm(Model): """ This `Model` implements BiMPM model described in [Bilateral Multi-Perspective Matching for Natural Language Sentences](https://arxiv.org/abs/1702.03814) by Zhiguo Wang et al., 2017. Also please refer to the [TensorFlow implementation](https://github.com/zhiguowang/BiMPM/) and [PyTorch implementation](https://github.com/galsang/BIMPM-pytorch). Registered as a `Model` with name "bimpm". # Parameters vocab : `Vocabulary` text_field_embedder : `TextFieldEmbedder` Used to embed the `premise` and `hypothesis` `TextFields` we get as input to the model. matcher_word : `BiMpmMatching` BiMPM matching on the output of word embeddings of premise and hypothesis. encoder1 : `Seq2SeqEncoder` First encoder layer for the premise and hypothesis matcher_forward1 : `BiMPMMatching` BiMPM matching for the forward output of first encoder layer matcher_backward1 : `BiMPMMatching` BiMPM matching for the backward output of first encoder layer encoder2 : `Seq2SeqEncoder` Second encoder layer for the premise and hypothesis matcher_forward2 : `BiMPMMatching` BiMPM matching for the forward output of second encoder layer matcher_backward2 : `BiMPMMatching` BiMPM matching for the backward output of second encoder layer aggregator : `Seq2VecEncoder` Aggregator of all BiMPM matching vectors classifier_feedforward : `FeedForward` Fully connected layers for classification. dropout : `float`, optional (default=`0.1`) Dropout percentage to use. initializer : `InitializerApplicator`, optional (default=`InitializerApplicator()`) If provided, will be used to initialize the model parameters. """ def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, matcher_word: BiMpmMatching, encoder1: Seq2SeqEncoder, matcher_forward1: BiMpmMatching, matcher_backward1: BiMpmMatching, encoder2: Seq2SeqEncoder, matcher_forward2: BiMpmMatching, matcher_backward2: BiMpmMatching, aggregator: Seq2VecEncoder, classifier_feedforward: FeedForward, dropout: float = 0.1, initializer: InitializerApplicator = InitializerApplicator(), **kwargs, ) -> None: super().__init__(vocab, **kwargs) self.text_field_embedder = text_field_embedder self.matcher_word = matcher_word self.encoder1 = encoder1 self.matcher_forward1 = matcher_forward1 self.matcher_backward1 = matcher_backward1 self.encoder2 = encoder2 self.matcher_forward2 = matcher_forward2 self.matcher_backward2 = matcher_backward2 self.aggregator = aggregator matching_dim = ( self.matcher_word.get_output_dim() + self.matcher_forward1.get_output_dim() + self.matcher_backward1.get_output_dim() + self.matcher_forward2.get_output_dim() + self.matcher_backward2.get_output_dim() ) check_dimensions_match( matching_dim, self.aggregator.get_input_dim(), "sum of dim of all matching layers", "aggregator input dim", ) self.classifier_feedforward = classifier_feedforward self.dropout = torch.nn.Dropout(dropout) self.metrics = {"accuracy": CategoricalAccuracy()} self.loss = torch.nn.CrossEntropyLoss() initializer(self) def forward( self, # type: ignore premise: TextFieldTensors, hypothesis: TextFieldTensors, label: torch.LongTensor = None, metadata: List[Dict[str, Any]] = None, ) -> Dict[str, torch.Tensor]: """ # Parameters premise : `TextFieldTensors` The premise from a `TextField` hypothesis : `TextFieldTensors` The hypothesis from a `TextField` label : `torch.LongTensor`, optional (default = `None`) The label for the pair of the premise and the hypothesis metadata : `List[Dict[str, Any]]`, optional, (default = `None`) Additional information about the pair # Returns An output dictionary consisting of: logits : `torch.FloatTensor` A tensor of shape `(batch_size, num_labels)` representing unnormalised log probabilities of the entailment label. loss : `torch.FloatTensor`, optional A scalar loss to be optimised. """ mask_premise = util.get_text_field_mask(premise) mask_hypothesis = util.get_text_field_mask(hypothesis) # embedding and encoding of the premise embedded_premise = self.dropout(self.text_field_embedder(premise)) encoded_premise1 = self.dropout(self.encoder1(embedded_premise, mask_premise)) encoded_premise2 = self.dropout(self.encoder2(encoded_premise1, mask_premise)) # embedding and encoding of the hypothesis embedded_hypothesis = self.dropout(self.text_field_embedder(hypothesis)) encoded_hypothesis1 = self.dropout(self.encoder1(embedded_hypothesis, mask_hypothesis)) encoded_hypothesis2 = self.dropout(self.encoder2(encoded_hypothesis1, mask_hypothesis)) matching_vector_premise: List[torch.Tensor] = [] matching_vector_hypothesis: List[torch.Tensor] = [] def add_matching_result(matcher, encoded_premise, encoded_hypothesis): # utility function to get matching result and add to the result list matching_result = matcher( encoded_premise, mask_premise, encoded_hypothesis, mask_hypothesis ) matching_vector_premise.extend(matching_result[0]) matching_vector_hypothesis.extend(matching_result[1]) # calculate matching vectors from word embedding, first layer encoding, and second layer encoding add_matching_result(self.matcher_word, embedded_premise, embedded_hypothesis) half_hidden_size_1 = self.encoder1.get_output_dim() // 2 add_matching_result( self.matcher_forward1, encoded_premise1[:, :, :half_hidden_size_1], encoded_hypothesis1[:, :, :half_hidden_size_1], ) add_matching_result( self.matcher_backward1, encoded_premise1[:, :, half_hidden_size_1:], encoded_hypothesis1[:, :, half_hidden_size_1:], ) half_hidden_size_2 = self.encoder2.get_output_dim() // 2 add_matching_result( self.matcher_forward2, encoded_premise2[:, :, :half_hidden_size_2], encoded_hypothesis2[:, :, :half_hidden_size_2], ) add_matching_result( self.matcher_backward2, encoded_premise2[:, :, half_hidden_size_2:], encoded_hypothesis2[:, :, half_hidden_size_2:], ) # concat the matching vectors matching_vector_cat_premise = self.dropout(torch.cat(matching_vector_premise, dim=2)) matching_vector_cat_hypothesis = self.dropout(torch.cat(matching_vector_hypothesis, dim=2)) # aggregate the matching vectors aggregated_premise = self.dropout( self.aggregator(matching_vector_cat_premise, mask_premise) ) aggregated_hypothesis = self.dropout( self.aggregator(matching_vector_cat_hypothesis, mask_hypothesis) ) # the final forward layer logits = self.classifier_feedforward( torch.cat([aggregated_premise, aggregated_hypothesis], dim=-1) ) probs = torch.nn.functional.softmax(logits, dim=-1) output_dict = {"logits": logits, "label_probs": probs} if label is not None: loss = self.loss(logits, label) for metric in self.metrics.values(): metric(logits, label) output_dict["loss"] = loss return output_dict def get_metrics(self, reset: bool = False) -> Dict[str, float]: return { metric_name: metric.get_metric(reset) for metric_name, metric in self.metrics.items() } def make_output_human_readable( self, output_dict: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: """ Does a simple argmax over the probabilities, converts index to string label, and add `"label"` key to the dictionary with the result. """ predictions = output_dict["label_probs"] if predictions.dim() == 2: predictions_list = [predictions[i] for i in range(predictions.shape[0])] else: predictions_list = [predictions] classes = [] for prediction in predictions_list: label_idx = prediction.argmax(dim=-1).item() label_str = self.vocab.get_index_to_token_vocabulary("labels").get( label_idx, str(label_idx) ) classes.append(label_str) output_dict["label"] = classes return output_dict default_predictor = "textual_entailment"
allennlp-models-main
allennlp_models/pair_classification/models/bimpm.py
from typing import Dict, List, Any import torch from allennlp.common.checks import check_dimensions_match from allennlp.data import TextFieldTensors, Vocabulary from allennlp.models.model import Model from allennlp.modules import FeedForward, InputVariationalDropout from allennlp.modules.matrix_attention.matrix_attention import MatrixAttention from allennlp.modules import Seq2SeqEncoder, TextFieldEmbedder from allennlp.nn import InitializerApplicator from allennlp.nn.util import ( get_text_field_mask, masked_softmax, weighted_sum, masked_max, ) from allennlp.training.metrics import CategoricalAccuracy @Model.register("esim") class ESIM(Model): """ This `Model` implements the ESIM sequence model described in [Enhanced LSTM for Natural Language Inference] (https://api.semanticscholar.org/CorpusID:34032948) by Chen et al., 2017. Registered as a `Model` with name "esim". # Parameters vocab : `Vocabulary` text_field_embedder : `TextFieldEmbedder` Used to embed the `premise` and `hypothesis` `TextFields` we get as input to the model. encoder : `Seq2SeqEncoder` Used to encode the premise and hypothesis. matrix_attention : `MatrixAttention` This is the attention function used when computing the similarity matrix between encoded words in the premise and words in the hypothesis. projection_feedforward : `FeedForward` The feedforward network used to project down the encoded and enhanced premise and hypothesis. inference_encoder : `Seq2SeqEncoder` Used to encode the projected premise and hypothesis for prediction. output_feedforward : `FeedForward` Used to prepare the concatenated premise and hypothesis for prediction. output_logit : `FeedForward` This feedforward network computes the output logits. dropout : `float`, optional (default=`0.5`) Dropout percentage to use. initializer : `InitializerApplicator`, optional (default=`InitializerApplicator()`) Used to initialize the model parameters. """ def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, encoder: Seq2SeqEncoder, matrix_attention: MatrixAttention, projection_feedforward: FeedForward, inference_encoder: Seq2SeqEncoder, output_feedforward: FeedForward, output_logit: FeedForward, dropout: float = 0.5, initializer: InitializerApplicator = InitializerApplicator(), **kwargs, ) -> None: super().__init__(vocab, **kwargs) self._text_field_embedder = text_field_embedder self._encoder = encoder self._matrix_attention = matrix_attention self._projection_feedforward = projection_feedforward self._inference_encoder = inference_encoder if dropout: self.dropout = torch.nn.Dropout(dropout) self.rnn_input_dropout = InputVariationalDropout(dropout) else: self.dropout = None self.rnn_input_dropout = None self._output_feedforward = output_feedforward self._output_logit = output_logit self._num_labels = vocab.get_vocab_size(namespace="labels") check_dimensions_match( text_field_embedder.get_output_dim(), encoder.get_input_dim(), "text field embedding dim", "encoder input dim", ) check_dimensions_match( encoder.get_output_dim() * 4, projection_feedforward.get_input_dim(), "encoder output dim", "projection feedforward input", ) check_dimensions_match( projection_feedforward.get_output_dim(), inference_encoder.get_input_dim(), "proj feedforward output dim", "inference lstm input dim", ) self._accuracy = CategoricalAccuracy() self._loss = torch.nn.CrossEntropyLoss() initializer(self) def forward( # type: ignore self, premise: TextFieldTensors, hypothesis: TextFieldTensors, label: torch.IntTensor = None, metadata: List[Dict[str, Any]] = None, ) -> Dict[str, torch.Tensor]: """ # Parameters premise : `TextFieldTensors` From a `TextField` hypothesis : `TextFieldTensors` From a `TextField` label : `torch.IntTensor`, optional (default = `None`) From a `LabelField` metadata : `List[Dict[str, Any]]`, optional (default = `None`) Metadata containing the original tokenization of the premise and hypothesis with 'premise_tokens' and 'hypothesis_tokens' keys respectively. # Returns An output dictionary consisting of: label_logits : `torch.FloatTensor` A tensor of shape `(batch_size, num_labels)` representing unnormalised log probabilities of the entailment label. label_probs : `torch.FloatTensor` A tensor of shape `(batch_size, num_labels)` representing probabilities of the entailment label. loss : `torch.FloatTensor`, optional A scalar loss to be optimised. """ embedded_premise = self._text_field_embedder(premise) embedded_hypothesis = self._text_field_embedder(hypothesis) premise_mask = get_text_field_mask(premise) hypothesis_mask = get_text_field_mask(hypothesis) # apply dropout for LSTM if self.rnn_input_dropout: embedded_premise = self.rnn_input_dropout(embedded_premise) embedded_hypothesis = self.rnn_input_dropout(embedded_hypothesis) # encode premise and hypothesis encoded_premise = self._encoder(embedded_premise, premise_mask) encoded_hypothesis = self._encoder(embedded_hypothesis, hypothesis_mask) # Shape: (batch_size, premise_length, hypothesis_length) similarity_matrix = self._matrix_attention(encoded_premise, encoded_hypothesis) # Shape: (batch_size, premise_length, hypothesis_length) p2h_attention = masked_softmax(similarity_matrix, hypothesis_mask) # Shape: (batch_size, premise_length, embedding_dim) attended_hypothesis = weighted_sum(encoded_hypothesis, p2h_attention) # Shape: (batch_size, hypothesis_length, premise_length) h2p_attention = masked_softmax(similarity_matrix.transpose(1, 2).contiguous(), premise_mask) # Shape: (batch_size, hypothesis_length, embedding_dim) attended_premise = weighted_sum(encoded_premise, h2p_attention) # the "enhancement" layer premise_enhanced = torch.cat( [ encoded_premise, attended_hypothesis, encoded_premise - attended_hypothesis, encoded_premise * attended_hypothesis, ], dim=-1, ) hypothesis_enhanced = torch.cat( [ encoded_hypothesis, attended_premise, encoded_hypothesis - attended_premise, encoded_hypothesis * attended_premise, ], dim=-1, ) # The projection layer down to the model dimension. Dropout is not applied before # projection. projected_enhanced_premise = self._projection_feedforward(premise_enhanced) projected_enhanced_hypothesis = self._projection_feedforward(hypothesis_enhanced) # Run the inference layer if self.rnn_input_dropout: projected_enhanced_premise = self.rnn_input_dropout(projected_enhanced_premise) projected_enhanced_hypothesis = self.rnn_input_dropout(projected_enhanced_hypothesis) v_ai = self._inference_encoder(projected_enhanced_premise, premise_mask) v_bi = self._inference_encoder(projected_enhanced_hypothesis, hypothesis_mask) # The pooling layer -- max and avg pooling. # (batch_size, model_dim) v_a_max = masked_max(v_ai, premise_mask.unsqueeze(-1), dim=1) v_b_max = masked_max(v_bi, hypothesis_mask.unsqueeze(-1), dim=1) v_a_avg = torch.sum(v_ai * premise_mask.unsqueeze(-1), dim=1) / torch.sum( premise_mask, 1, keepdim=True ) v_b_avg = torch.sum(v_bi * hypothesis_mask.unsqueeze(-1), dim=1) / torch.sum( hypothesis_mask, 1, keepdim=True ) # Now concat # (batch_size, model_dim * 2 * 4) v_all = torch.cat([v_a_avg, v_a_max, v_b_avg, v_b_max], dim=1) # the final MLP -- apply dropout to input, and MLP applies to output & hidden if self.dropout: v_all = self.dropout(v_all) output_hidden = self._output_feedforward(v_all) label_logits = self._output_logit(output_hidden) label_probs = torch.nn.functional.softmax(label_logits, dim=-1) output_dict = {"label_logits": label_logits, "label_probs": label_probs} if label is not None: loss = self._loss(label_logits, label.long().view(-1)) self._accuracy(label_logits, label) output_dict["loss"] = loss return output_dict def get_metrics(self, reset: bool = False) -> Dict[str, float]: return {"accuracy": self._accuracy.get_metric(reset)} def make_output_human_readable( self, output_dict: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: """ Does a simple argmax over the probabilities, converts index to string label, and add `"label"` key to the dictionary with the result. """ predictions = output_dict["label_probs"] if predictions.dim() == 2: predictions_list = [predictions[i] for i in range(predictions.shape[0])] else: predictions_list = [predictions] classes = [] for prediction in predictions_list: label_idx = prediction.argmax(dim=-1).item() label_str = self.vocab.get_index_to_token_vocabulary("labels").get( label_idx, str(label_idx) ) classes.append(label_str) output_dict["label"] = classes return output_dict default_predictor = "textual_entailment"
allennlp-models-main
allennlp_models/pair_classification/models/esim.py
# flake8: noqa: F403 from allennlp_models.tagging.predictors import * from allennlp_models.tagging.models import * from allennlp_models.tagging.dataset_readers import *
allennlp-models-main
allennlp_models/tagging/__init__.py
from allennlp.data.dataset_readers.conll2003 import Conll2003DatasetReader # noqa: F401 # This component lives in the main repo because we need it there for tests.
allennlp-models-main
allennlp_models/tagging/dataset_readers/conll2003.py
from typing import Dict, List, Sequence import logging import re from allennlp.common.checks import ConfigurationError from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import Field, TextField, SequenceLabelField from allennlp.data.instance import Instance from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer from allennlp.data.tokenizers import Token logger = logging.getLogger(__name__) _VALID_LABELS = {"ccg", "modified_pos", "original_pos", "predicate_arg"} @DatasetReader.register("ccgbank") class CcgBankDatasetReader(DatasetReader): """ Reads data in the "machine-readable derivation" format of the CCGbank dataset. (see https://catalog.ldc.upenn.edu/docs/LDC2005T13/CCGbankManual.pdf, section D.2) In particular, it pulls out the leaf nodes, which are represented as (<L ccg_category modified_pos original_pos token predicate_arg_category>) The tarballed version of the dataset contains many files worth of this data, in files /data/AUTO/xx/wsj_xxxx.auto This dataset reader expects a single text file. Accordingly, if you're using that dataset, you'll need to first concatenate some of those files into a training set, a validation set, and a test set. Registered as a `DatasetReader` with name "ccgbank". # Parameters token_indexers : `Dict[str, TokenIndexer]`, optional (default=`{"tokens": SingleIdTokenIndexer()}`) We use this to define the input representation for the text. See :class:`TokenIndexer`. Note that the `output` tags will always correspond to single token IDs based on how they are pre-tokenised in the data file. tag_label : `str`, optional (default=`ccg`) Specify `ccg`, `modified_pos`, `original_pos`, or `predicate_arg` to have that tag loaded into the instance field `tag`. feature_labels : `Sequence[str]`, optional (default=`()`) These labels will be loaded as features into the corresponding instance fields: `ccg` -> `ccg_tags`, `modified_pos` -> `modified_pos_tags`, `original_pos` -> `original_pos_tags`, or `predicate_arg` -> `predicate_arg_tags` Each will have its own namespace : `ccg_tags`, `modified_pos_tags`, `original_pos_tags`, `predicate_arg_tags`. If you want to use one of the tags as a feature in your model, it should be specified here. label_namespace : `str`, optional (default=`labels`) Specifies the namespace for the chosen `tag_label`. """ def __init__( self, token_indexers: Dict[str, TokenIndexer] = None, tag_label: str = "ccg", feature_labels: Sequence[str] = (), label_namespace: str = "labels", **kwargs, ) -> None: super().__init__(**kwargs) self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} self.tag_label = tag_label if tag_label is not None and tag_label not in _VALID_LABELS: raise ConfigurationError("unknown tag label type: {}".format(tag_label)) self.feature_labels = set(feature_labels) for label in feature_labels: if label not in _VALID_LABELS: raise ConfigurationError("unknown feature label type: {}".format(label)) self.label_namespace = label_namespace def _read(self, file_path): # if `file_path` is a URL, redirect to the cache file_path = cached_path(file_path) logger.info("Reading instances from lines in file at: %s", file_path) with open(file_path) as input_file: for line in input_file: if line.startswith("(<"): # Each leaf looks like # (<L ccg_category modified_pos original_pos token predicate_arg_category>) leaves = re.findall("<L (.*?)>", line) # Use magic unzipping trick to split into tuples tuples = zip(*[leaf.split() for leaf in leaves]) # Convert to lists and assign to variables. ( ccg_categories, modified_pos_tags, original_pos_tags, tokens, predicate_arg_categories, ) = [list(result) for result in tuples] yield self.text_to_instance( tokens, ccg_categories, original_pos_tags, modified_pos_tags, predicate_arg_categories, ) def text_to_instance( self, # type: ignore tokens: List[str], ccg_categories: List[str] = None, original_pos_tags: List[str] = None, modified_pos_tags: List[str] = None, predicate_arg_categories: List[str] = None, ) -> Instance: """ We take `pre-tokenized` input here, because we don't have a tokenizer in this class. # Parameters tokens : `List[str]`, required. The tokens in a given sentence. ccg_categories : `List[str]`, optional, (default = `None`). The CCG categories for the words in the sentence. (e.g. N/N) original_pos_tags : `List[str]`, optional, (default = `None`). The tag assigned to the word in the Penn Treebank. modified_pos_tags : `List[str]`, optional, (default = `None`). The POS tag might have changed during the translation to CCG. predicate_arg_categories : `List[str]`, optional, (default = `None`). Encodes the word-word dependencies in the underlying predicate- argument structure. # Returns An `Instance` containing the following fields: tokens : `TextField` The tokens in the sentence. tags : `SequenceLabelField` The tags corresponding to the `tag_label` constructor argument. feature_label_tags : `SequenceLabelField` Tags corresponding to each feature_label (if any) specified in the `feature_labels` constructor argument. """ text_field = TextField([Token(x) for x in tokens], token_indexers=self._token_indexers) fields: Dict[str, Field] = {"tokens": text_field} # Add "feature labels" to instance if "ccg" in self.feature_labels: if ccg_categories is None: raise ConfigurationError( "Dataset reader was specified to use CCG categories as " "features. Pass them to text_to_instance." ) fields["ccg_tags"] = SequenceLabelField(ccg_categories, text_field, "ccg_tags") if "original_pos" in self.feature_labels: if original_pos_tags is None: raise ConfigurationError( "Dataset reader was specified to use original POS tags as " "features. Pass them to text_to_instance." ) fields["original_pos_tags"] = SequenceLabelField( original_pos_tags, text_field, "original_pos_tags" ) if "modified_pos" in self.feature_labels: if modified_pos_tags is None: raise ConfigurationError( "Dataset reader was specified to use modified POS tags as " " features. Pass them to text_to_instance." ) fields["modified_pos_tags"] = SequenceLabelField( modified_pos_tags, text_field, "modified_pos_tags" ) if "predicate_arg" in self.feature_labels: if predicate_arg_categories is None: raise ConfigurationError( "Dataset reader was specified to use predicate arg tags as " " features. Pass them to text_to_instance." ) fields["predicate_arg_tags"] = SequenceLabelField( predicate_arg_categories, text_field, "predicate_arg_tags" ) # Add "tag label" to instance if self.tag_label == "ccg" and ccg_categories is not None: fields["tags"] = SequenceLabelField(ccg_categories, text_field, self.label_namespace) elif self.tag_label == "original_pos" and original_pos_tags is not None: fields["tags"] = SequenceLabelField(original_pos_tags, text_field, self.label_namespace) elif self.tag_label == "modified_pos" and modified_pos_tags is not None: fields["tags"] = SequenceLabelField(modified_pos_tags, text_field, self.label_namespace) elif self.tag_label == "predicate_arg" and predicate_arg_categories is not None: fields["tags"] = SequenceLabelField( predicate_arg_categories, text_field, self.label_namespace ) return Instance(fields)
allennlp-models-main
allennlp_models/tagging/dataset_readers/ccgbank.py
from allennlp_models.tagging.dataset_readers.ccgbank import CcgBankDatasetReader from allennlp_models.tagging.dataset_readers.conll2000 import Conll2000DatasetReader from allennlp_models.tagging.dataset_readers.conll2003 import Conll2003DatasetReader from allennlp_models.tagging.dataset_readers.ontonotes_ner import OntonotesNamedEntityRecognition
allennlp-models-main
allennlp_models/tagging/dataset_readers/__init__.py