python_code
stringlengths
0
187k
repo_name
stringlengths
8
46
file_path
stringlengths
6
135
import logging from typing import Dict, List, Iterable from allennlp.data.dataset_readers.dataset_utils import to_bioul from allennlp.common.file_utils import cached_path from allennlp.common.checks import ConfigurationError from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import Field, TextField, SequenceLabelField, MetadataField from allennlp.data.instance import Instance from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenIndexer from allennlp.data.tokenizers import Token from allennlp_models.common.ontonotes import Ontonotes, OntonotesSentence logger = logging.getLogger(__name__) def _normalize_word(word: str): if word in ("/.", "/?"): return word[1:] else: return word @DatasetReader.register("ontonotes_ner") class OntonotesNamedEntityRecognition(DatasetReader): """ This DatasetReader is designed to read in the English OntoNotes v5.0 data for fine-grained named entity recognition. It returns a dataset of instances with the following fields: tokens : `TextField` The tokens in the sentence. tags : `SequenceLabelField` A sequence of BIO tags for the NER classes. Note that the "/pt/" directory of the Onotonotes dataset representing annotations on the new and old testaments of the Bible are excluded, because they do not contain NER annotations. # Parameters token_indexers : `Dict[str, TokenIndexer]`, optional We similarly use this for both the premise and the hypothesis. See :class:`TokenIndexer`. Default is `{"tokens": SingleIdTokenIndexer()}`. domain_identifier : `str`, (default = `None`) A string denoting a sub-domain of the Ontonotes 5.0 dataset to use. If present, only conll files under paths containing this domain identifier will be processed. coding_scheme : `str`, (default = `None`). The coding scheme to use for the NER labels. Valid options are "BIO" or "BIOUL". # Returns A `Dataset` of `Instances` for Fine-Grained NER. """ def __init__( self, token_indexers: Dict[str, TokenIndexer] = None, domain_identifier: str = None, coding_scheme: str = "BIO", **kwargs, ) -> None: super().__init__(**kwargs) self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} self._domain_identifier = domain_identifier if domain_identifier == "pt": raise ConfigurationError( "The Ontonotes 5.0 dataset does not contain annotations for" " the old and new testament sections." ) self._coding_scheme = coding_scheme def _read(self, file_path: str): # if `file_path` is a URL, redirect to the cache file_path = cached_path(file_path) ontonotes_reader = Ontonotes() logger.info("Reading Fine-Grained NER instances from dataset files at: %s", file_path) if self._domain_identifier is not None: logger.info( "Filtering to only include file paths containing the %s domain", self._domain_identifier, ) for sentence in self._ontonotes_subset( ontonotes_reader, file_path, self._domain_identifier ): tokens = [Token(_normalize_word(t)) for t in sentence.words] yield self.text_to_instance(tokens, sentence.named_entities) @staticmethod def _ontonotes_subset( ontonotes_reader: Ontonotes, file_path: str, domain_identifier: str ) -> Iterable[OntonotesSentence]: """ Iterates over the Ontonotes 5.0 dataset using an optional domain identifier. If the domain identifier is present, only examples which contain the domain identifier in the file path are yielded. """ for conll_file in ontonotes_reader.dataset_path_iterator(file_path): if ( domain_identifier is None or f"/{domain_identifier}/" in conll_file ) and "/pt/" not in conll_file: yield from ontonotes_reader.sentence_iterator(conll_file) def text_to_instance( self, # type: ignore tokens: List[Token], ner_tags: List[str] = None, ) -> Instance: """ We take `pre-tokenized` input here, because we don't have a tokenizer in this class. """ sequence = TextField(tokens, self._token_indexers) instance_fields: Dict[str, Field] = {"tokens": sequence} instance_fields["metadata"] = MetadataField({"words": [x.text for x in tokens]}) # Add "tag label" to instance if ner_tags is not None: if self._coding_scheme == "BIOUL": ner_tags = to_bioul(ner_tags, encoding="BIO") instance_fields["tags"] = SequenceLabelField(ner_tags, sequence) return Instance(instance_fields)
allennlp-models-main
allennlp_models/tagging/dataset_readers/ontonotes_ner.py
from typing import Dict, List, Optional, Sequence, Iterable import itertools import logging import warnings from allennlp.common.checks import ConfigurationError from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.dataset_readers.dataset_utils import to_bioul from allennlp.data.fields import TextField, SequenceLabelField, Field, MetadataField from allennlp.data.instance import Instance from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer from allennlp.data.tokenizers import Token logger = logging.getLogger(__name__) def _is_divider(line: str) -> bool: return line.strip() == "" @DatasetReader.register("conll2000") class Conll2000DatasetReader(DatasetReader): """ Reads instances from a pretokenised file where each line is in the following format: ``` WORD POS-TAG CHUNK-TAG ``` with a blank line indicating the end of each sentence and converts it into a `Dataset` suitable for sequence tagging. Each `Instance` contains the words in the `"tokens"` `TextField`. The values corresponding to the `tag_label` values will get loaded into the `"tags"` `SequenceLabelField`. And if you specify any `feature_labels` (you probably shouldn't), the corresponding values will get loaded into their own `SequenceLabelField` s. Registered as a `DatasetReader` with name "conll2000". # Parameters token_indexers : `Dict[str, TokenIndexer]`, optional (default=`{"tokens": SingleIdTokenIndexer()}`) We use this to define the input representation for the text. See :class:`TokenIndexer`. tag_label : `str`, optional (default=`chunk`) Specify `pos`, or `chunk` to have that tag loaded into the instance field `tag`. feature_labels : `Sequence[str]`, optional (default=`()`) These labels will be loaded as features into the corresponding instance fields: `pos` -> `pos_tags` or `chunk` -> `chunk_tags`. Each will have its own namespace : `pos_tags` or `chunk_tags`. If you want to use one of the tags as a `feature` in your model, it should be specified here. convert_to_coding_scheme : `str`, optional (default=`BIO`) Specifies the coding scheme for `chunk_labels`. `Conll2000DatasetReader` assumes a coding scheme of input data is `BIO`. Valid options are `None` and `BIOUL`. The `None` default maintains the original BIO scheme in the CoNLL 2000 chunking data. In the BIO scheme, B is a token starting a span, I is a token continuing a span, and O is a token outside of a span. coding_scheme: `str`, optional (default=`BIO`) This parameter is deprecated. If you specify `coding_scheme` to `BIO`, consider simply removing it or specifying `convert_to_coding_scheme` to `None`. If you want to specify `BIOUL` for `coding_scheme`, replace it with `convert_to_coding_scheme`. label_namespace : `str`, optional (default=`labels`) Specifies the namespace for the chosen `tag_label`. """ _VALID_LABELS = {"pos", "chunk"} def __init__( self, token_indexers: Dict[str, TokenIndexer] = None, tag_label: str = "chunk", feature_labels: Sequence[str] = (), convert_to_coding_scheme: Optional[str] = None, label_namespace: str = "labels", **kwargs, ) -> None: if "coding_scheme" in kwargs: warnings.warn("`coding_scheme` is deprecated.", DeprecationWarning) coding_scheme = kwargs.pop("coding_scheme") if coding_scheme not in ("BIO", "BIOUL"): raise ConfigurationError("unknown coding_scheme: {}".format(coding_scheme)) if coding_scheme == "BIO": convert_to_coding_scheme = None else: convert_to_coding_scheme = coding_scheme super().__init__(**kwargs) self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} if tag_label is not None and tag_label not in self._VALID_LABELS: raise ConfigurationError("unknown tag label type: {}".format(tag_label)) for label in feature_labels: if label not in self._VALID_LABELS: raise ConfigurationError("unknown feature label type: {}".format(label)) if convert_to_coding_scheme not in (None, "BIOUL"): raise ConfigurationError( "unknown convert_to_coding_scheme: {}".format(convert_to_coding_scheme) ) self.tag_label = tag_label self.feature_labels = set(feature_labels) self.convert_to_coding_scheme = convert_to_coding_scheme self.label_namespace = label_namespace self._original_coding_scheme = "BIO" def _read(self, file_path: str) -> Iterable[Instance]: # if `file_path` is a URL, redirect to the cache file_path = cached_path(file_path) with open(file_path, "r") as data_file: logger.info("Reading instances from lines in file at: %s", file_path) # Group into alternative divider / sentence chunks. for is_divider, lines in itertools.groupby(data_file, _is_divider): # Ignore the divider chunks, so that `lines` corresponds to the words # of a single sentence. if not is_divider: fields = [line.strip().split() for line in lines] # unzipping trick returns tuples, but our Fields need lists fields = [list(field) for field in zip(*fields)] tokens_, pos_tags, chunk_tags = fields # TextField requires `Token` objects tokens = [Token(token) for token in tokens_] yield self.text_to_instance(tokens, pos_tags, chunk_tags) def text_to_instance( # type: ignore self, tokens: List[Token], pos_tags: List[str] = None, chunk_tags: List[str] = None ) -> Instance: """ We take `pre-tokenized` input here, because we don't have a tokenizer in this class. """ sequence = TextField(tokens, self._token_indexers) instance_fields: Dict[str, Field] = {"tokens": sequence} instance_fields["metadata"] = MetadataField({"words": [x.text for x in tokens]}) # Recode the labels if necessary. if self.convert_to_coding_scheme == "BIOUL": coded_chunks = ( to_bioul(chunk_tags, encoding=self._original_coding_scheme) if chunk_tags is not None else None ) else: # the default BIO coded_chunks = chunk_tags # Add "feature labels" to instance if "pos" in self.feature_labels: if pos_tags is None: raise ConfigurationError( "Dataset reader was specified to use pos_tags as " "features. Pass them to text_to_instance." ) instance_fields["pos_tags"] = SequenceLabelField(pos_tags, sequence, "pos_tags") if "chunk" in self.feature_labels: if coded_chunks is None: raise ConfigurationError( "Dataset reader was specified to use chunk tags as " "features. Pass them to text_to_instance." ) instance_fields["chunk_tags"] = SequenceLabelField(coded_chunks, sequence, "chunk_tags") # Add "tag label" to instance if self.tag_label == "pos" and pos_tags is not None: instance_fields["tags"] = SequenceLabelField(pos_tags, sequence, self.label_namespace) elif self.tag_label == "chunk" and coded_chunks is not None: instance_fields["tags"] = SequenceLabelField( coded_chunks, sequence, self.label_namespace ) return Instance(instance_fields)
allennlp-models-main
allennlp_models/tagging/dataset_readers/conll2000.py
from allennlp_models.tagging.predictors.sentence_tagger import SentenceTaggerPredictor
allennlp-models-main
allennlp_models/tagging/predictors/__init__.py
from allennlp.predictors.sentence_tagger import SentenceTaggerPredictor # noqa: F401 # This component lives in the main repo because we need it there for tests.
allennlp-models-main
allennlp_models/tagging/predictors/sentence_tagger.py
from typing import Dict, Optional, List, Any, cast import torch from torch.nn.modules.linear import Linear from allennlp.common.checks import check_dimensions_match, ConfigurationError from allennlp.data import TextFieldTensors, Vocabulary from allennlp.modules import Seq2SeqEncoder, TimeDistributed, TextFieldEmbedder from allennlp.modules import ( ConditionalRandomField, FeedForward, ) from allennlp.modules.conditional_random_field import ( ConditionalRandomFieldWeightEmission, ConditionalRandomFieldWeightTrans, ConditionalRandomFieldWeightLannoy, ) from allennlp.modules.conditional_random_field.conditional_random_field import allowed_transitions from allennlp.models.model import Model from allennlp.nn import InitializerApplicator import allennlp.nn.util as util from allennlp.training.metrics import CategoricalAccuracy, SpanBasedF1Measure, FBetaVerboseMeasure @Model.register("crf_tagger") class CrfTagger(Model): """ The `CrfTagger` encodes a sequence of text with a `Seq2SeqEncoder`, then uses a Conditional Random Field model to predict a tag for each token in the sequence. Registered as a `Model` with name "crf_tagger". # Parameters vocab : `Vocabulary`, required A Vocabulary, required in order to compute sizes for input/output projections. text_field_embedder : `TextFieldEmbedder`, required Used to embed the tokens `TextField` we get as input to the model. encoder : `Seq2SeqEncoder` The encoder that we will use in between embedding tokens and predicting output tags. label_namespace : `str`, optional (default=`labels`) This is needed to compute the SpanBasedF1Measure metric. Unless you did something unusual, the default value should be what you want. feedforward : `FeedForward`, optional, (default = `None`). An optional feedforward layer to apply after the encoder. label_encoding : `str`, optional (default=`None`) Label encoding to use when calculating span f1 and constraining the CRF at decoding time . Valid options are "BIO", "BIOUL", "IOB1", "BMES". Required if `calculate_span_f1` or `constrain_crf_decoding` is true. include_start_end_transitions : `bool`, optional (default=`True`) Whether to include start and end transition parameters in the CRF. constrain_crf_decoding : `bool`, optional (default=`None`) If `True`, the CRF is constrained at decoding time to produce valid sequences of tags. If this is `True`, then `label_encoding` is required. If `None` and label_encoding is specified, this is set to `True`. If `None` and label_encoding is not specified, it defaults to `False`. calculate_span_f1 : `bool`, optional (default=`None`) Calculate span-level F1 metrics during training. If this is `True`, then `label_encoding` is required. If `None` and label_encoding is specified, this is set to `True`. If `None` and label_encoding is not specified, it defaults to `False`. dropout: `float`, optional (default=`None`) Dropout probability. verbose_metrics : `bool`, optional (default = `False`) If true, metrics will be returned per label class in addition to the overall statistics. initializer : `InitializerApplicator`, optional (default=`InitializerApplicator()`) Used to initialize the model parameters. top_k : `int`, optional (default=`1`) If provided, the number of parses to return from the crf in output_dict['top_k_tags']. Top k parses are returned as a list of dicts, where each dictionary is of the form: {"tags": List, "score": float}. The "tags" value for the first dict in the list for each data_item will be the top choice, and will equal the corresponding item in output_dict['tags'] ignore_loss_on_o_tags : `bool`, optional (default=`False`) If True, we compute the loss only for actual spans in `tags`, and not on `O` tokens. This is useful for computing gradients of the loss on a _single span_, for interpretation / attacking. label_weights : `Dict[str, float]`, optional (default=`None`) A mapping {label : weight} to be used in the loss function in order to give different weights for each token depending on its label. This is useful to deal with highly unbalanced datasets. There are three available strategies to deal with weighted labels (see below). The default strategy is "emission". weight_strategy : `str`, optional (default=`None`) If `label_weights` is given and this is `None`, then it is the same as "emission". It indicates which strategy is used to sample weighting. Valid options are: "emission", "emission_transition", "lannoy". If "emission" then the emission score of each tag is multiplied by the corresponding weight (as given by `label_weights`). If "emission_transition", both emission and transition scores of each tag are multiplied by the corresponding weight. In this case, a transition score `t(i,j)`, between consecutive tokens `i` and `j`, is multiplied by `w[tags[i]]`, i.e., the weight related to the tag of token `i`. If `weight_strategy` is "lannoy" then we use the strategy proposed by [Lannoy et al. (2019)](https://perso.uclouvain.be/michel.verleysen/papers/ieeetbe12gdl.pdf). You can see an experimental comparison among these three strategies and a brief discussion of their differences [here](https://eraldoluis.github.io/2022/05/10/weighted-crf.html). """ def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, encoder: Seq2SeqEncoder, label_namespace: str = "labels", feedforward: Optional[FeedForward] = None, label_encoding: Optional[str] = None, include_start_end_transitions: bool = True, constrain_crf_decoding: bool = None, calculate_span_f1: bool = None, dropout: Optional[float] = None, verbose_metrics: bool = False, initializer: InitializerApplicator = InitializerApplicator(), top_k: int = 1, ignore_loss_on_o_tags: bool = False, label_weights: Optional[Dict[str, float]] = None, weight_strategy: str = None, **kwargs, ) -> None: super().__init__(vocab, **kwargs) self.label_namespace = label_namespace self.text_field_embedder = text_field_embedder self.num_tags = self.vocab.get_vocab_size(label_namespace) self.encoder = encoder self.top_k = top_k self.ignore_loss_on_o_tags = ignore_loss_on_o_tags self._verbose_metrics = verbose_metrics if dropout: self.dropout = torch.nn.Dropout(dropout) else: self.dropout = None self._feedforward = feedforward if feedforward is not None: output_dim = feedforward.get_output_dim() else: output_dim = self.encoder.get_output_dim() self.tag_projection_layer = TimeDistributed(Linear(output_dim, self.num_tags)) # if constrain_crf_decoding and calculate_span_f1 are not # provided, (i.e., they're None), set them to True # if label_encoding is provided and False if it isn't. if constrain_crf_decoding is None: constrain_crf_decoding = label_encoding is not None if calculate_span_f1 is None: calculate_span_f1 = label_encoding is not None self.label_encoding = label_encoding if constrain_crf_decoding: if not label_encoding: raise ConfigurationError( "constrain_crf_decoding is True, but no label_encoding was specified." ) labels = self.vocab.get_index_to_token_vocabulary(label_namespace) constraints = allowed_transitions(label_encoding, labels) else: constraints = None # Label weights are given as a dict {label: weight} but we convert it to a list of weights for each label, # and weights for omitted labels are set to 1. if label_weights is None: if weight_strategy is not None: raise ConfigurationError( "`weight_strategy` can only be used when `label_weights` is given" ) # ordinary CRF (not weighted) self.crf = ConditionalRandomField( self.num_tags, constraints, include_start_end_transitions, ) else: # label_weights is not None label_to_index = vocab.get_token_to_index_vocabulary(label_namespace) self.label_weights = [1.0] * len(label_to_index) for label, weight in label_weights.items(): try: self.label_weights[label_to_index[label]] = weight except KeyError: raise ConfigurationError( f"'{label}' not found in vocab namespace '{label_namespace}')" ) if weight_strategy is None or weight_strategy == "emission": self.crf = ConditionalRandomFieldWeightEmission( self.num_tags, self.label_weights, constraints, include_start_end_transitions, ) elif weight_strategy == "emission_transition": self.crf = ConditionalRandomFieldWeightTrans( self.num_tags, self.label_weights, constraints, include_start_end_transitions, ) elif weight_strategy == "lannoy": self.crf = ConditionalRandomFieldWeightLannoy( self.num_tags, self.label_weights, constraints, include_start_end_transitions, ) else: raise ConfigurationError( "weight_strategy must be one of 'emission', 'emission_transition' or 'lannoy'" ) self.include_start_end_transitions = include_start_end_transitions self.metrics = { "accuracy": CategoricalAccuracy(), "accuracy3": CategoricalAccuracy(top_k=3), } self.calculate_span_f1 = calculate_span_f1 if calculate_span_f1: if not label_encoding: raise ConfigurationError( "calculate_span_f1 is True, but no label_encoding was specified." ) self._f1_metric = SpanBasedF1Measure( vocab, tag_namespace=label_namespace, label_encoding=label_encoding ) elif verbose_metrics: # verbose metrics for token classification (not span-based) self._f_beta_measure = FBetaVerboseMeasure( index_to_label=vocab.get_index_to_token_vocabulary(label_namespace), ) check_dimensions_match( text_field_embedder.get_output_dim(), encoder.get_input_dim(), "text field embedding dim", "encoder input dim", ) if feedforward is not None: check_dimensions_match( encoder.get_output_dim(), feedforward.get_input_dim(), "encoder output dim", "feedforward input dim", ) initializer(self) def forward( self, # type: ignore tokens: TextFieldTensors, tags: torch.LongTensor = None, metadata: List[Dict[str, Any]] = None, ignore_loss_on_o_tags: Optional[bool] = None, **kwargs, # to allow for a more general dataset reader that passes args we don't need ) -> Dict[str, torch.Tensor]: """ # Parameters tokens : `TextFieldTensors`, required The output of `TextField.as_array()`, which should typically be passed directly to a `TextFieldEmbedder`. This output is a dictionary mapping keys to `TokenIndexer` tensors. At its most basic, using a `SingleIdTokenIndexer` this is : `{"tokens": Tensor(batch_size, num_tokens)}`. This dictionary will have the same keys as were used for the `TokenIndexers` when you created the `TextField` representing your sequence. The dictionary is designed to be passed directly to a `TextFieldEmbedder`, which knows how to combine different word representations into a single vector per token in your input. tags : `torch.LongTensor`, optional (default = `None`) A torch tensor representing the sequence of integer gold class labels of shape `(batch_size, num_tokens)`. metadata : `List[Dict[str, Any]]`, optional, (default = `None`) metadata containing the original words in the sentence to be tagged under a 'words' key. ignore_loss_on_o_tags : `Optional[bool]`, optional (default = `None`) If True, we compute the loss only for actual spans in `tags`, and not on `O` tokens. This is useful for computing gradients of the loss on a _single span_, for interpretation / attacking. If `None`, `self.ignore_loss_on_o_tags` is used instead. # Returns An output dictionary consisting of: logits : `torch.FloatTensor` The logits that are the output of the `tag_projection_layer` mask : `torch.BoolTensor` The text field mask for the input tokens tags : `List[List[int]]` The predicted tags using the Viterbi algorithm. loss : `torch.FloatTensor`, optional A scalar loss to be optimised. Only computed if gold label `tags` are provided. """ ignore_loss_on_o_tags = ( ignore_loss_on_o_tags if ignore_loss_on_o_tags is not None else self.ignore_loss_on_o_tags ) embedded_text_input = self.text_field_embedder(tokens) mask = util.get_text_field_mask(tokens) if self.dropout: embedded_text_input = self.dropout(embedded_text_input) encoded_text = self.encoder(embedded_text_input, mask) if self.dropout: encoded_text = self.dropout(encoded_text) if self._feedforward is not None: encoded_text = self._feedforward(encoded_text) logits = self.tag_projection_layer(encoded_text) best_paths = self.crf.viterbi_tags(logits, mask, top_k=self.top_k) # Just get the top tags and ignore the scores. predicted_tags = cast(List[List[int]], [x[0][0] for x in best_paths]) output = {"logits": logits, "mask": mask, "tags": predicted_tags} if self.top_k > 1: output["top_k_tags"] = best_paths if tags is not None: if ignore_loss_on_o_tags: o_tag_index = self.vocab.get_token_index("O", namespace=self.label_namespace) crf_mask = mask & (tags != o_tag_index) else: crf_mask = mask # Add negative log-likelihood as loss log_likelihood = self.crf(logits, tags, crf_mask) output["loss"] = -log_likelihood # Represent viterbi tags as "class probabilities" that we can # feed into the metrics class_probabilities = logits * 0.0 for i, instance_tags in enumerate(predicted_tags): for j, tag_id in enumerate(instance_tags): class_probabilities[i, j, tag_id] = 1 for metric in self.metrics.values(): metric(class_probabilities, tags, mask) if self.calculate_span_f1: self._f1_metric(class_probabilities, tags, mask) elif self._verbose_metrics: self._f_beta_measure(class_probabilities, tags, mask) if metadata is not None: output["words"] = [x["words"] for x in metadata] return output def make_output_human_readable( self, output_dict: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: """ Converts the tag ids to the actual tags. `output_dict["tags"]` is a list of lists of tag_ids, so we use an ugly nested list comprehension. """ def decode_tags(tags): return [ self.vocab.get_token_from_index(tag, namespace=self.label_namespace) for tag in tags ] def decode_top_k_tags(top_k_tags): return [ {"tags": decode_tags(scored_path[0]), "score": scored_path[1]} for scored_path in top_k_tags ] output_dict["tags"] = [decode_tags(t) for t in output_dict["tags"]] if "top_k_tags" in output_dict: output_dict["top_k_tags"] = [decode_top_k_tags(t) for t in output_dict["top_k_tags"]] return output_dict def get_metrics(self, reset: bool = False) -> Dict[str, float]: metrics_to_return = { metric_name: metric.get_metric(reset) for metric_name, metric in self.metrics.items() } if self.calculate_span_f1: f1_dict = self._f1_metric.get_metric(reset=reset) if self._verbose_metrics: metrics_to_return.update(f1_dict) else: metrics_to_return.update({x: y for x, y in f1_dict.items() if "overall" in x}) elif self._verbose_metrics: # verbose metrics for token classification (not span-based) f_beta_dict = self._f_beta_measure.get_metric(reset=reset) metrics_to_return.update(f_beta_dict) return metrics_to_return default_predictor = "sentence_tagger"
allennlp-models-main
allennlp_models/tagging/models/crf_tagger.py
from allennlp_models.tagging.models.crf_tagger import CrfTagger
allennlp-models-main
allennlp_models/tagging/models/__init__.py
from typing import DefaultDict, List, Optional, Iterator, Set, Tuple from collections import defaultdict import codecs import os import logging from allennlp.data.dataset_readers.dataset_utils.span_utils import TypedSpan from nltk import Tree logger = logging.getLogger(__name__) class OntonotesSentence: """ A class representing the annotations available for a single CONLL formatted sentence. # Parameters document_id : `str` This is a variation on the document filename sentence_id : `int` The integer ID of the sentence within a document. words : `List[str]` This is the tokens as segmented/tokenized in the Treebank. pos_tags : `List[str]` This is the Penn-Treebank-style part of speech. When parse information is missing, all parts of speech except the one for which there is some sense or proposition annotation are marked with a XX tag. The verb is marked with just a VERB tag. parse_tree : `nltk.Tree` An nltk Tree representing the parse. It includes POS tags as pre-terminal nodes. When the parse information is missing, the parse will be `None`. predicate_lemmas : `List[Optional[str]]` The predicate lemma of the words for which we have semantic role information or word sense information. All other indices are `None`. predicate_framenet_ids : `List[Optional[int]]` The PropBank frameset ID of the lemmas in `predicate_lemmas`, or `None`. word_senses : `List[Optional[float]]` The word senses for the words in the sentence, or `None`. These are floats because the word sense can have values after the decimal, like `1.1`. speakers : `List[Optional[str]]` The speaker information for the words in the sentence, if present, or `None` This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. When not available the rows are marked with an "-". named_entities : `List[str]` The BIO tags for named entities in the sentence. srl_frames : `List[Tuple[str, List[str]]]` A dictionary keyed by the verb in the sentence for the given Propbank frame labels, in a BIO format. coref_spans : `Set[TypedSpan]` The spans for entity mentions involved in coreference resolution within the sentence. Each element is a tuple composed of (cluster_id, (start_index, end_index)). Indices are `inclusive`. """ def __init__( self, document_id: str, sentence_id: int, words: List[str], pos_tags: List[str], parse_tree: Optional[Tree], predicate_lemmas: List[Optional[str]], predicate_framenet_ids: List[Optional[str]], word_senses: List[Optional[float]], speakers: List[Optional[str]], named_entities: List[str], srl_frames: List[Tuple[str, List[str]]], coref_spans: Set[TypedSpan], ) -> None: self.document_id = document_id self.sentence_id = sentence_id self.words = words self.pos_tags = pos_tags self.parse_tree = parse_tree self.predicate_lemmas = predicate_lemmas self.predicate_framenet_ids = predicate_framenet_ids self.word_senses = word_senses self.speakers = speakers self.named_entities = named_entities self.srl_frames = srl_frames self.coref_spans = coref_spans class Ontonotes: """ This `DatasetReader` is designed to read in the English OntoNotes v5.0 data in the format used by the CoNLL 2011/2012 shared tasks. In order to use this Reader, you must follow the instructions provided [here (v12 release):] (https://cemantix.org/data/ontonotes.html), which will allow you to download the CoNLL style annotations for the OntoNotes v5.0 release -- LDC2013T19.tgz obtained from LDC. Once you have run the scripts on the extracted data, you will have a folder structured as follows: ``` conll-formatted-ontonotes-5.0/ ── data β”œβ”€β”€ development └── data └── english └── annotations β”œβ”€β”€ bc β”œβ”€β”€ bn β”œβ”€β”€ mz β”œβ”€β”€ nw β”œβ”€β”€ pt β”œβ”€β”€ tc └── wb β”œβ”€β”€ test └── data └── english └── annotations β”œβ”€β”€ bc β”œβ”€β”€ bn β”œβ”€β”€ mz β”œβ”€β”€ nw β”œβ”€β”€ pt β”œβ”€β”€ tc └── wb └── train └── data └── english └── annotations β”œβ”€β”€ bc β”œβ”€β”€ bn β”œβ”€β”€ mz β”œβ”€β”€ nw β”œβ”€β”€ pt β”œβ”€β”€ tc └── wb ``` The file path provided to this class can then be any of the train, test or development directories(or the top level data directory, if you are not utilizing the splits). The data has the following format, ordered by column. 1. Document ID : `str` This is a variation on the document filename 2. Part number : `int` Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3. Word number : `int` This is the word index of the word in that sentence. 4. Word : `str` This is the token as segmented/tokenized in the Treebank. Initially the `*_skel` file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5. POS Tag : `str` This is the Penn Treebank style part of speech. When parse information is missing, all part of speeches except the one for which there is some sense or proposition annotation are marked with a XX tag. The verb is marked with just a VERB tag. 6. Parse bit : `str` This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a `*`. When the parse information is missing, the first word of a sentence is tagged as `(TOP*` and the last word is tagged as `*)` and all intermediate words are tagged with a `*`. 7. Predicate lemma : `str` The predicate lemma is mentioned for the rows for which we have semantic role information or word sense information. All other rows are marked with a "-". 8. Predicate Frameset ID : `int` The PropBank frameset ID of the predicate in Column 7. 9. Word sense : `float` This is the word sense of the word in Column 3. 10. Speaker/Author : `str` This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. When not available the rows are marked with an "-". 11. Named Entities : `str` These columns identifies the spans representing various named entities. For documents which do not have named entity annotation, each line is represented with an `*`. 12. Predicate Arguments : `str` There is one column each of predicate argument structure information for the predicate mentioned in Column 7. If there are no predicates tagged in a sentence this is a single column with all rows marked with an `*`. -1. Co-reference : `str` Co-reference chain information encoded in a parenthesis structure. For documents that do not have co-reference annotations, each line is represented with a "-". """ def dataset_iterator(self, file_path: str) -> Iterator[OntonotesSentence]: """ An iterator over the entire dataset, yielding all sentences processed. """ for conll_file in self.dataset_path_iterator(file_path): yield from self.sentence_iterator(conll_file) @staticmethod def dataset_path_iterator(file_path: str) -> Iterator[str]: """ An iterator returning file_paths in a directory containing CONLL-formatted files. """ logger.info("Reading CONLL sentences from dataset files at: %s", file_path) for root, _, files in list(os.walk(file_path)): for data_file in files: # These are a relic of the dataset pre-processing. Every # file will be duplicated - one file called filename.gold_skel # and one generated from the preprocessing called filename.gold_conll. if not data_file.endswith("gold_conll"): continue yield os.path.join(root, data_file) def dataset_document_iterator(self, file_path: str) -> Iterator[List[OntonotesSentence]]: """ An iterator over CONLL formatted files which yields documents, regardless of the number of document annotations in a particular file. This is useful for conll data which has been preprocessed, such as the preprocessing which takes place for the 2012 CONLL Coreference Resolution task. """ with codecs.open(file_path, "r", encoding="utf8") as open_file: conll_rows = [] document: List[OntonotesSentence] = [] for line in open_file: line = line.strip() if line != "" and not line.startswith("#"): # Non-empty line. Collect the annotation. conll_rows.append(line) else: if conll_rows: document.append(self._conll_rows_to_sentence(conll_rows)) conll_rows = [] if line.startswith("#end document"): yield document document = [] if document: # Collect any stragglers or files which might not # have the '#end document' format for the end of the file. yield document def sentence_iterator(self, file_path: str) -> Iterator[OntonotesSentence]: """ An iterator over the sentences in an individual CONLL formatted file. """ for document in self.dataset_document_iterator(file_path): for sentence in document: yield sentence def _conll_rows_to_sentence(self, conll_rows: List[str]) -> OntonotesSentence: document_id: str = None sentence_id: int = None # The words in the sentence. sentence: List[str] = [] # The pos tags of the words in the sentence. pos_tags: List[str] = [] # the pieces of the parse tree. parse_pieces: List[str] = [] # The lemmatised form of the words in the sentence which # have SRL or word sense information. predicate_lemmas: List[str] = [] # The FrameNet ID of the predicate. predicate_framenet_ids: List[str] = [] # The sense of the word, if available. word_senses: List[float] = [] # The current speaker, if available. speakers: List[str] = [] verbal_predicates: List[str] = [] span_labels: List[List[str]] = [] current_span_labels: List[str] = [] # Cluster id -> List of (start_index, end_index) spans. clusters: DefaultDict[int, List[Tuple[int, int]]] = defaultdict(list) # Cluster id -> List of start_indices which are open for this id. coref_stacks: DefaultDict[int, List[int]] = defaultdict(list) for index, row in enumerate(conll_rows): conll_components = row.split() document_id = conll_components[0] sentence_id = int(conll_components[1]) word = conll_components[3] pos_tag = conll_components[4] parse_piece = conll_components[5] # Replace brackets in text and pos tags # with a different token for parse trees. if pos_tag != "XX" and word != "XX": if word == "(": parse_word = "-LRB-" elif word == ")": parse_word = "-RRB-" else: parse_word = word if pos_tag == "(": pos_tag = "-LRB-" if pos_tag == ")": pos_tag = "-RRB-" (left_brackets, right_hand_side) = parse_piece.split("*") # only keep ')' if there are nested brackets with nothing in them. right_brackets = right_hand_side.count(")") * ")" parse_piece = f"{left_brackets} ({pos_tag} {parse_word}) {right_brackets}" else: # There are some bad annotations in the CONLL data. # They contain no information, so to make this explicit, # we just set the parse piece to be None which will result # in the overall parse tree being None. parse_piece = None lemmatised_word = conll_components[6] framenet_id = conll_components[7] word_sense = conll_components[8] speaker = conll_components[9] if not span_labels: # If this is the first word in the sentence, create # empty lists to collect the NER and SRL BIO labels. # We can't do this upfront, because we don't know how many # components we are collecting, as a sentence can have # variable numbers of SRL frames. span_labels = [[] for _ in conll_components[10:-1]] # Create variables representing the current label for each label # sequence we are collecting. current_span_labels = [None for _ in conll_components[10:-1]] self._process_span_annotations_for_word( conll_components[10:-1], span_labels, current_span_labels ) # If any annotation marks this word as a verb predicate, # we need to record its index. This also has the side effect # of ordering the verbal predicates by their location in the # sentence, automatically aligning them with the annotations. word_is_verbal_predicate = any("(V" in x for x in conll_components[11:-1]) if word_is_verbal_predicate: verbal_predicates.append(word) self._process_coref_span_annotations_for_word( conll_components[-1], index, clusters, coref_stacks ) sentence.append(word) pos_tags.append(pos_tag) parse_pieces.append(parse_piece) predicate_lemmas.append(lemmatised_word if lemmatised_word != "-" else None) predicate_framenet_ids.append(framenet_id if framenet_id != "-" else None) word_senses.append(float(word_sense) if word_sense != "-" else None) speakers.append(speaker if speaker != "-" else None) named_entities = span_labels[0] srl_frames = [ (predicate, labels) for predicate, labels in zip(verbal_predicates, span_labels[1:]) ] if all(parse_pieces): parse_tree = Tree.fromstring("".join(parse_pieces)) else: parse_tree = None coref_span_tuples: Set[TypedSpan] = { (cluster_id, span) for cluster_id, span_list in clusters.items() for span in span_list } return OntonotesSentence( document_id, sentence_id, sentence, pos_tags, parse_tree, predicate_lemmas, predicate_framenet_ids, word_senses, speakers, named_entities, srl_frames, coref_span_tuples, ) @staticmethod def _process_coref_span_annotations_for_word( label: str, word_index: int, clusters: DefaultDict[int, List[Tuple[int, int]]], coref_stacks: DefaultDict[int, List[int]], ) -> None: """ For a given coref label, add it to a currently open span(s), complete a span(s) or ignore it, if it is outside of all spans. This method mutates the clusters and coref_stacks dictionaries. # Parameters label : `str` The coref label for this word. word_index : `int` The word index into the sentence. clusters : `DefaultDict[int, List[Tuple[int, int]]]` A dictionary mapping cluster ids to lists of inclusive spans into the sentence. coref_stacks : `DefaultDict[int, List[int]]` Stacks for each cluster id to hold the start indices of active spans (spans which we are inside of when processing a given word). Spans with the same id can be nested, which is why we collect these opening spans on a stack, e.g: [Greg, the baker who referred to [himself]_ID1 as 'the bread man']_ID1 """ if label != "-": for segment in label.split("|"): # The conll representation of coref spans allows spans to # overlap. If spans end or begin at the same word, they are # separated by a "|". if segment[0] == "(": # The span begins at this word. if segment[-1] == ")": # The span begins and ends at this word (single word span). cluster_id = int(segment[1:-1]) clusters[cluster_id].append((word_index, word_index)) else: # The span is starting, so we record the index of the word. cluster_id = int(segment[1:]) coref_stacks[cluster_id].append(word_index) else: # The span for this id is ending, but didn't start at this word. # Retrieve the start index from the document state and # add the span to the clusters for this id. cluster_id = int(segment[:-1]) start = coref_stacks[cluster_id].pop() clusters[cluster_id].append((start, word_index)) @staticmethod def _process_span_annotations_for_word( annotations: List[str], span_labels: List[List[str]], current_span_labels: List[Optional[str]], ) -> None: """ Given a sequence of different label types for a single word and the current span label we are inside, compute the BIO tag for each label and append to a list. # Parameters annotations : `List[str]` A list of labels to compute BIO tags for. span_labels : `List[List[str]]` A list of lists, one for each annotation, to incrementally collect the BIO tags for a sequence. current_span_labels : `List[Optional[str]]` The currently open span per annotation type, or `None` if there is no open span. """ for annotation_index, annotation in enumerate(annotations): # strip all bracketing information to # get the actual propbank label. label = annotation.strip("()*") if "(" in annotation: # Entering into a span for a particular semantic role label. # We append the label and set the current span for this annotation. bio_label = "B-" + label span_labels[annotation_index].append(bio_label) current_span_labels[annotation_index] = label elif current_span_labels[annotation_index] is not None: # If there's no '(' token, but the current_span_label is not None, # then we are inside a span. bio_label = "I-" + current_span_labels[annotation_index] span_labels[annotation_index].append(bio_label) else: # We're outside a span. span_labels[annotation_index].append("O") # Exiting a span, so we reset the current span label for this annotation. if ")" in annotation: current_span_labels[annotation_index] = None
allennlp-models-main
allennlp_models/common/ontonotes.py
allennlp-models-main
allennlp_models/common/__init__.py
allennlp-models-main
allennlp_models/mc/__init__.py
import logging from allennlp.data import DatasetReader from allennlp_models.mc.dataset_readers.transformer_mc import TransformerMCReader logger = logging.getLogger(__name__) @DatasetReader.register("commonsenseqa") class CommonsenseQaReader(TransformerMCReader): """ Reads the input data for the CommonsenseQA dataset (https://arxiv.org/abs/1811.00937). """ def _read(self, file_path: str): from allennlp.common.file_utils import cached_path file_path = cached_path(file_path) logger.info("Reading file at %s", file_path) from allennlp.common.file_utils import json_lines_from_file for json in json_lines_from_file(file_path): choices = [(choice["label"], choice["text"]) for choice in json["question"]["choices"]] correct_choice = [ i for i, (label, _) in enumerate(choices) if label == json["answerKey"] ][0] yield self.text_to_instance( json["id"], json["question"]["stem"], [c[1] for c in choices], correct_choice )
allennlp-models-main
allennlp_models/mc/dataset_readers/commonsenseqa.py
import logging from allennlp.data import DatasetReader from allennlp_models.mc.dataset_readers.transformer_mc import TransformerMCReader logger = logging.getLogger(__name__) @DatasetReader.register("swag") class SwagReader(TransformerMCReader): """ Reads the input data for the SWAG dataset (https://arxiv.org/abs/1808.05326). """ def _read(self, file_path: str): from allennlp.common.file_utils import cached_path file_path = cached_path(file_path) logger.info("Reading file at %s", file_path) with open(file_path, "r", encoding="utf-8") as f: import csv for line_number, line in enumerate(csv.reader(f)): if line_number == 0: continue yield self.text_to_instance( qid=line[1], start=line[3], alternatives=line[7:11], label=int(line[11]) )
allennlp-models-main
allennlp_models/mc/dataset_readers/swag.py
import logging from typing import List from allennlp.data import DatasetReader, Instance logger = logging.getLogger(__name__) @DatasetReader.register("fake") class FakeReader(DatasetReader): """ Creates fake multiple-choice input. If your model doesn't get 99% on this data, it is broken. Instances have two fields: * `alternatives`, a ListField of TextField * `correct_alternative`, IndexField with the correct answer among `alternatives` Parameters ---------- transformer_model_name : `str`, optional (default=`roberta-large`) This reader chooses tokenizer and token indexer according to this setting. length_limit : `int`, optional (default=512) We will make sure that the length of the alternatives never exceeds this many word pieces. """ def __init__( self, transformer_model_name: str = "roberta-large", length_limit: int = 512, **kwargs ) -> None: super().__init__(**kwargs) if self.max_instances is None: raise ValueError("FakeReader requires max_instances to be set.") from allennlp.data.tokenizers import PretrainedTransformerTokenizer self._tokenizer = PretrainedTransformerTokenizer( transformer_model_name, add_special_tokens=False ) from allennlp.data.token_indexers import PretrainedTransformerIndexer self._token_indexers = {"tokens": PretrainedTransformerIndexer(transformer_model_name)} self.length_limit = length_limit def _read(self, file_path: str): logger.info("Ignoring file at %s", file_path) for i in range(self.max_instances): label = i % 2 texts = [f"This is the false choice {i}."] * 2 texts[label] = f"This is the true choice {i}." yield self.text_to_instance(texts, label) def text_to_instance( self, # type: ignore alternatives: List[str], correct_alternative: int, ) -> Instance: # tokenize alternatives = [self._tokenizer.tokenize(alternative) for alternative in alternatives] # add special tokens alternatives = [ self._tokenizer.add_special_tokens(alternative) for alternative in alternatives ] # make fields from allennlp.data.fields import TextField alternatives = [ TextField(alternative, self._token_indexers) for alternative in alternatives ] if correct_alternative < 0 or correct_alternative >= len(alternatives): raise ValueError("Alternative %d does not exist.", correct_alternative) from allennlp.data.fields import ListField alternatives = ListField(alternatives) from allennlp.data.fields import IndexField return Instance( { "alternatives": alternatives, "correct_alternative": IndexField(correct_alternative, alternatives), } )
allennlp-models-main
allennlp_models/mc/dataset_readers/fake.py
from allennlp_models.mc.dataset_readers.swag import SwagReader from allennlp_models.mc.dataset_readers.commonsenseqa import CommonsenseQaReader from allennlp_models.mc.dataset_readers.piqa import PiqaReader
allennlp-models-main
allennlp_models/mc/dataset_readers/__init__.py
import logging from allennlp.data import DatasetReader from allennlp_models.mc.dataset_readers.piqa import PiqaReader from allennlp_models.mc.dataset_readers.transformer_mc_tt import ( TransformerMCReaderTransformerToolkit, ) logger = logging.getLogger(__name__) @DatasetReader.register("piqa_tt") class PiqaReaderTransformerToolkit(TransformerMCReaderTransformerToolkit, PiqaReader): pass
allennlp-models-main
allennlp_models/mc/dataset_readers/piqa_tt.py
import itertools import logging from typing import List, Optional import torch from allennlp.common import cached_transformers from allennlp.data import DatasetReader, Instance from allennlp.data.fields import TransformerTextField logger = logging.getLogger(__name__) class TransformerMCReaderTransformerToolkit(DatasetReader): """ Read input data for the TransformerMC model. This is the base class for all readers that produce data for TransformerMCTransformerToolkit. Instances have three fields: * `alternatives`, a `ListField` of `TransformerTextField` * `correct_alternative`, `IndexField` with the correct answer among `alternatives` * `qid`, a `MetadataField` containing question ids Parameters ---------- transformer_model_name : `str`, optional (default=`"roberta-large"`) This reader chooses tokenizer and token indexer according to this setting. length_limit : `int`, optional (default=`512`) We will make sure that the length of an alternative never exceeds this many word pieces. """ def __init__( self, transformer_model_name: str = "roberta-large", length_limit: int = 512, **kwargs ) -> None: super().__init__(**kwargs) self._tokenizer = cached_transformers.get_tokenizer(transformer_model_name) self.length_limit = length_limit def text_to_instance( self, # type: ignore qid: str, start: str, alternatives: List[str], label: Optional[int] = None, ) -> Instance: start = start.strip() tokenized = self._tokenizer( [(start, a) for a in alternatives], truncation="longest_first", max_length=self.length_limit, return_attention_mask=False, ) sequences = [ TransformerTextField( torch.IntTensor(input_ids), torch.IntTensor(token_type_ids) if token_type_ids is not None else None, padding_token_id=self._tokenizer.pad_token_id, ) for input_ids, token_type_ids in itertools.zip_longest( tokenized["input_ids"], tokenized.get("token_type_ids", []) ) ] from allennlp.data.fields import ListField sequences = ListField(sequences) from allennlp.data.fields import MetadataField fields = { "alternatives": sequences, "qid": MetadataField(qid), } if label is not None: if label < 0 or label >= len(sequences): raise ValueError("Alternative %d does not exist", label) from allennlp.data.fields import IndexField fields["correct_alternative"] = IndexField(label, sequences) return Instance(fields)
allennlp-models-main
allennlp_models/mc/dataset_readers/transformer_mc_tt.py
import logging from allennlp.data import DatasetReader from allennlp_models.mc.dataset_readers.transformer_mc import TransformerMCReader logger = logging.getLogger(__name__) @DatasetReader.register("piqa") class PiqaReader(TransformerMCReader): """ Reads the input data for the PIQA dataset (https://arxiv.org/abs/1911.11641). """ def _read(self, file_path: str): import re labels_path = re.sub(r"\.jsonl$", "-labels.lst", file_path, 1) if labels_path == file_path: raise ValueError( "Could not determine file name for the labels corresponding to %s.", file_path ) from allennlp.common.file_utils import cached_path file_path = cached_path(file_path) logger.info("Reading file at %s", file_path) from allennlp.common.file_utils import json_lines_from_file json_lines = json_lines_from_file(file_path) labels_path = cached_path(labels_path) from allennlp.common.file_utils import text_lines_from_file logger.info("Reading labels at %s", labels_path) labels_lines = text_lines_from_file(labels_path) for qid, (json, label) in enumerate(zip(json_lines, labels_lines)): goal = json["goal"] sol1 = json["sol1"] sol2 = json["sol2"] label = int(label) yield self.text_to_instance(str(qid), goal, [sol1, sol2], label)
allennlp-models-main
allennlp_models/mc/dataset_readers/piqa.py
import logging from typing import List, Optional from allennlp.data import DatasetReader, Instance logger = logging.getLogger(__name__) class TransformerMCReader(DatasetReader): """ Read input data for the TransformerMC model. This is the base class for all readers that produce data for TransformerMC. Instances have two fields: * `alternatives`, a `ListField` of `TextField` * `correct_alternative`, `IndexField` with the correct answer among `alternatives` * `qid`, a `MetadataField` containing question ids Parameters ---------- transformer_model_name : `str`, optional (default=`"roberta-large"`) This reader chooses tokenizer and token indexer according to this setting. length_limit : `int`, optional (default=`512`) We will make sure that the length of an alternative never exceeds this many word pieces. """ def __init__( self, transformer_model_name: str = "roberta-large", length_limit: int = 512, **kwargs ) -> None: super().__init__(**kwargs) from allennlp.data.tokenizers import PretrainedTransformerTokenizer self._tokenizer = PretrainedTransformerTokenizer( transformer_model_name, add_special_tokens=False ) from allennlp.data.token_indexers import PretrainedTransformerIndexer self._token_indexers = {"tokens": PretrainedTransformerIndexer(transformer_model_name)} self.length_limit = length_limit def text_to_instance( self, # type: ignore qid: str, start: str, alternatives: List[str], label: Optional[int] = None, ) -> Instance: # tokenize start = self._tokenizer.tokenize(start) sequences = [] for alternative in alternatives: alternative = self._tokenizer.tokenize(alternative) length_for_start = ( self.length_limit - len(alternative) - self._tokenizer.num_special_tokens_for_pair() ) if length_for_start < 0: # If the alternative is too long by itself, we take the beginning and add no tokens from the start. alternative = alternative[:length_for_start] length_for_start = 0 sequences.append( self._tokenizer.add_special_tokens(start[:length_for_start], alternative) ) # make fields from allennlp.data.fields import TextField sequences = [TextField(sequence, self._token_indexers) for sequence in sequences] from allennlp.data.fields import ListField sequences = ListField(sequences) from allennlp.data.fields import MetadataField fields = { "alternatives": sequences, "qid": MetadataField(qid), } if label is not None: if label < 0 or label >= len(sequences): raise ValueError("Alternative %d does not exist", label) from allennlp.data.fields import IndexField fields["correct_alternative"] = IndexField(label, sequences) return Instance(fields)
allennlp-models-main
allennlp_models/mc/dataset_readers/transformer_mc.py
from allennlp_models.mc.predictors.transformer_mc import TransformerMCPredictor
allennlp-models-main
allennlp_models/mc/predictors/__init__.py
from typing import List from allennlp.common.util import JsonDict from allennlp.data import Instance from allennlp.predictors.predictor import Predictor @Predictor.register("transformer_mc") class TransformerMCPredictor(Predictor): """ Predictor for the :class:`~allennlp_models.mc.models.TransformerMC` model. """ def predict(self, prefix: str, alternatives: List[str]) -> JsonDict: return self.predict_json({"prefix": prefix, "alternatives": alternatives}) def _json_to_instance(self, json_dict: JsonDict) -> Instance: return self._dataset_reader.text_to_instance( "no_qid", json_dict["prefix"], json_dict["alternatives"] )
allennlp-models-main
allennlp_models/mc/predictors/transformer_mc.py
from allennlp_models.mc.models.transformer_mc import TransformerMC from allennlp_models.mc.models.transformer_mc_tt import TransformerMCTransformerToolkit
allennlp-models-main
allennlp_models/mc/models/__init__.py
import logging from typing import Dict, List, Optional import torch from allennlp.data import Vocabulary from allennlp.models import Model from allennlp.modules.transformer import TransformerEmbeddings, TransformerStack, TransformerPooler from torch.nn import Dropout logger = logging.getLogger(__name__) @Model.register("transformer_mc_tt") class TransformerMCTransformerToolkit(Model): """ This class implements a multiple choice model patterned after the proposed model in [RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al)] (https://api.semanticscholar.org/CorpusID:198953378). It is exactly like the `TransformerMC` model, except it uses the `TransformerTextField` for its input. It calculates a score for each sequence on top of the CLS token, and then chooses the alternative with the highest score. Parameters ---------- vocab : ``Vocabulary`` transformer_model : ``str``, optional (default=``"roberta-large"``) This model chooses the embedder according to this setting. You probably want to make sure this matches the setting in the reader. """ def __init__( self, vocab: Vocabulary, transformer_model: str = "roberta-large", override_weights_file: Optional[str] = None, **kwargs ) -> None: super().__init__(vocab, **kwargs) transformer_kwargs = { "model_name": transformer_model, "weights_path": override_weights_file, } self.embeddings = TransformerEmbeddings.from_pretrained_module(**transformer_kwargs) self.transformer_stack = TransformerStack.from_pretrained_module(**transformer_kwargs) self.pooler = TransformerPooler.from_pretrained_module(**transformer_kwargs) self.pooler_dropout = Dropout(p=0.1) self.linear_layer = torch.nn.Linear(self.pooler.get_output_dim(), 1) self.linear_layer.weight.data.normal_(mean=0.0, std=0.02) self.linear_layer.bias.data.zero_() self.loss = torch.nn.CrossEntropyLoss() from allennlp.training.metrics import CategoricalAccuracy self.accuracy = CategoricalAccuracy() def forward( # type: ignore self, alternatives: Dict[str, torch.Tensor], correct_alternative: Optional[torch.IntTensor] = None, qid: Optional[List[str]] = None, ) -> Dict[str, torch.Tensor]: """ Parameters ---------- alternatives : ``Dict[str, torch.LongTensor]`` From a ``ListField[TensorTextField]``. Contains a list of alternatives to evaluate for every instance. correct_alternative : ``Optional[torch.IntTensor]`` From an ``IndexField``. Contains the index of the correct answer for every instance. qid : `Optional[List[str]]` A list of question IDs for the questions being processed now. Returns ------- An output dictionary consisting of: loss : ``torch.FloatTensor``, optional A scalar loss to be optimised. This is only returned when `correct_alternative` is not `None`. logits : ``torch.FloatTensor`` The logits for every possible answer choice best_alternative : ``List[int]`` The index of the highest scoring alternative for every instance in the batch """ batch_size, num_alternatives, seq_length = alternatives["input_ids"].size() alternatives = { name: t.view(batch_size * num_alternatives, seq_length) for name, t in alternatives.items() } embedded_alternatives = self.embeddings(**alternatives) embedded_alternatives = self.transformer_stack( embedded_alternatives, alternatives["attention_mask"] ) embedded_alternatives = self.pooler(embedded_alternatives.final_hidden_states) embedded_alternatives = self.pooler_dropout(embedded_alternatives) logits = self.linear_layer(embedded_alternatives) logits = logits.view(batch_size, num_alternatives) result = {"logits": logits, "best_alternative": logits.argmax(1)} if correct_alternative is not None: correct_alternative = correct_alternative.squeeze(1) result["loss"] = self.loss(logits, correct_alternative) self.accuracy(logits, correct_alternative) return result def get_metrics(self, reset: bool = False) -> Dict[str, float]: return { "acc": self.accuracy.get_metric(reset), }
allennlp-models-main
allennlp_models/mc/models/transformer_mc_tt.py
import logging from typing import Dict, List, Optional import torch from allennlp.data import Vocabulary, TextFieldTensors from allennlp.models import Model logger = logging.getLogger(__name__) @Model.register("transformer_mc") class TransformerMC(Model): """ This class implements a multiple choice model patterned after the proposed model in [RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al)] (https://api.semanticscholar.org/CorpusID:198953378). It calculates a score for each sequence on top of the CLS token, and then chooses the alternative with the highest score. Parameters ---------- vocab : ``Vocabulary`` transformer_model : ``str``, optional (default=``"roberta-large"``) This model chooses the embedder according to this setting. You probably want to make sure this matches the setting in the reader. """ def __init__( self, vocab: Vocabulary, transformer_model: str = "roberta-large", override_weights_file: Optional[str] = None, override_weights_strip_prefix: Optional[str] = None, **kwargs ) -> None: super().__init__(vocab, **kwargs) from allennlp.modules.text_field_embedders import BasicTextFieldEmbedder from allennlp.modules.token_embedders import PretrainedTransformerEmbedder from allennlp.modules.seq2vec_encoders import BertPooler self._text_field_embedder = PretrainedTransformerEmbedder( transformer_model, override_weights_file=override_weights_file, override_weights_strip_prefix=override_weights_strip_prefix, ) self._text_field_embedder = BasicTextFieldEmbedder({"tokens": self._text_field_embedder}) self._pooler = BertPooler( transformer_model, override_weights_file=override_weights_file, override_weights_strip_prefix=override_weights_strip_prefix, dropout=0.1, ) self._linear_layer = torch.nn.Linear(self._text_field_embedder.get_output_dim(), 1) self._linear_layer.weight.data.normal_(mean=0.0, std=0.02) self._linear_layer.bias.data.zero_() self._loss = torch.nn.CrossEntropyLoss() from allennlp.training.metrics import CategoricalAccuracy self._accuracy = CategoricalAccuracy() def forward( # type: ignore self, alternatives: TextFieldTensors, correct_alternative: Optional[torch.IntTensor] = None, qid: Optional[List[str]] = None, ) -> Dict[str, torch.Tensor]: """ Parameters ---------- alternatives : ``Dict[str, torch.LongTensor]`` From a ``ListField[TextField]``. Contains a list of alternatives to evaluate for every instance. correct_alternative : ``Optional[torch.IntTensor]`` From an ``IndexField``. Contains the index of the correct answer for every instance. qid : `Optional[List[str]]` A list of question IDs for the questions being processed now. Returns ------- An output dictionary consisting of: loss : ``torch.FloatTensor``, optional A scalar loss to be optimised. This is only returned when `correct_alternative` is not `None`. logits : ``torch.FloatTensor`` The logits for every possible answer choice best_alternative : ``List[int]`` The index of the highest scoring alternative for every instance in the batch """ embedded_alternatives = self._text_field_embedder(alternatives, num_wrapping_dims=1) flattened_embedded_alternatives = embedded_alternatives.view( embedded_alternatives.size(0) * embedded_alternatives.size(1), embedded_alternatives.size(2), embedded_alternatives.size(3), ) flattened_pooled_alternatives = self._pooler(flattened_embedded_alternatives) flattened_logit_alternatives = self._linear_layer(flattened_pooled_alternatives) logit_alternatives = flattened_logit_alternatives.view( embedded_alternatives.size(0), embedded_alternatives.size(1) ) result = {"logits": logit_alternatives, "best_alternative": logit_alternatives.argmax(1)} if correct_alternative is not None: correct_alternative = correct_alternative.squeeze(1) result["loss"] = self._loss(logit_alternatives, correct_alternative) self._accuracy(logit_alternatives, correct_alternative) return result def get_metrics(self, reset: bool = False) -> Dict[str, float]: return { "acc": self._accuracy.get_metric(reset), } default_predictor = "transformer_mc"
allennlp-models-main
allennlp_models/mc/models/transformer_mc.py
# flake8: noqa: F403 from allennlp_models.rc.models import * from allennlp_models.rc.predictors import * from allennlp_models.rc.dataset_readers import * from allennlp_models.rc.modules import *
allennlp-models-main
allennlp_models/rc/__init__.py
from allennlp_models.rc.metrics.drop_em_and_f1 import DropEmAndF1 from allennlp_models.rc.metrics.squad_em_and_f1 import SquadEmAndF1
allennlp-models-main
allennlp_models/rc/metrics/__init__.py
from typing import Tuple, Union, List, cast from allennlp.nn.util import dist_reduce_sum from allennlp.training.metrics.metric import Metric from allennlp_models.rc.tools import squad @Metric.register("squad") class SquadEmAndF1(Metric): """ This :class:`Metric` takes the best span string computed by a model, along with the answer strings labeled in the data, and computed exact match and F1 score using functions from the official SQuAD2 and SQuAD1.1 evaluation scripts. """ def __init__(self) -> None: self._total_em = 0.0 self._total_f1 = 0.0 self._count = 0 def __call__( self, best_span_strings: Union[str, List[str]], answer_strings: Union[List[str], List[List[str]]], ): if not isinstance(best_span_strings, list): best_span_strings = [best_span_strings] answer_strings = [answer_strings] # type: ignore cast(List[str], best_span_strings) cast(List[List[str]], answer_strings) assert len(best_span_strings) == len(answer_strings) count = len(best_span_strings) exact_match = 0 f1_score = 0.0 for prediction, gold_answers in zip(best_span_strings, answer_strings): exact_match += squad.metric_max_over_ground_truths( squad.compute_exact, prediction, gold_answers ) f1_score += squad.metric_max_over_ground_truths( squad.compute_f1, prediction, gold_answers ) # Converting to int here, since we want to count the number of exact matches. self._total_em += dist_reduce_sum(int(exact_match)) self._total_f1 += dist_reduce_sum(f1_score) self._count += dist_reduce_sum(count) def get_metric(self, reset: bool = False) -> Tuple[float, float]: """ Returns ------- Average exact match and F1 score (in that order) as computed by the official SQuAD script over all inputs. """ exact_match = self._total_em / self._count if self._count > 0 else 0 f1_score = self._total_f1 / self._count if self._count > 0 else 0 if reset: self.reset() return exact_match, f1_score def reset(self): self._total_em = 0.0 self._total_f1 = 0.0 self._count = 0 def __str__(self): return f"SquadEmAndF1(em={self._total_em}, f1={self._total_f1})"
allennlp-models-main
allennlp_models/rc/metrics/squad_em_and_f1.py
from typing import Tuple, List, Union from allennlp.nn.util import dist_reduce_sum from allennlp.training.metrics.metric import Metric from allennlp_models.rc.tools.drop import ( get_metrics as drop_em_and_f1, answer_json_to_strings, ) from allennlp_models.rc.tools.squad import metric_max_over_ground_truths @Metric.register("drop") class DropEmAndF1(Metric): """ This :class:`Metric` takes the best span string computed by a model, along with the answer strings labeled in the data, and computes exact match and F1 score using the official DROP evaluator (which has special handling for numbers and for questions with multiple answer spans, among other things). """ def __init__(self) -> None: self._total_em = 0.0 self._total_f1 = 0.0 self._count = 0 def __call__(self, prediction: Union[str, List], ground_truths: List): # type: ignore """ Parameters ---------- prediction: ``Union[str, List]`` The predicted answer from the model evaluated. This could be a string, or a list of string when multiple spans are predicted as answer. ground_truths: ``List`` All the ground truth answer annotations. """ # If you wanted to split this out by answer type, you could look at [1] here and group by # that, instead of only keeping [0]. ground_truth_answer_strings = [ answer_json_to_strings(annotation)[0] for annotation in ground_truths ] exact_match, f1_score = metric_max_over_ground_truths( drop_em_and_f1, prediction, ground_truth_answer_strings ) # Converting to int here, since we want to count the number of exact matches. self._total_em += dist_reduce_sum(int(exact_match)) self._total_f1 += dist_reduce_sum(f1_score) self._count += dist_reduce_sum(1) def get_metric(self, reset: bool = False) -> Tuple[float, float]: """ Returns ------- Average exact match and F1 score (in that order) as computed by the official DROP script over all inputs. """ exact_match = self._total_em / self._count if self._count > 0 else 0 f1_score = self._total_f1 / self._count if self._count > 0 else 0 if reset: self.reset() return exact_match, f1_score def reset(self): self._total_em = 0.0 self._total_f1 = 0.0 self._count = 0 def __str__(self): return f"DropEmAndF1(em={self._total_em}, f1={self._total_f1})"
allennlp-models-main
allennlp_models/rc/metrics/drop_em_and_f1.py
""" This evaluation script relies heavily on the one for DROP (``allennlp/tools/drop_eval.py``). We need a separate script for Quoref only because the data formats are slightly different. """ import json from typing import Dict, Tuple, List, Any, Optional import argparse import numpy as np from allennlp_models.rc.tools import drop def _get_answers_from_data(annotations: Dict[str, Any]) -> Dict[str, List[str]]: """ If the annotations file is in the same format as the original data files, this method can be used to extract a dict of query ids and answers. """ answers_dict: Dict[str, List[str]] = {} for article_info in annotations["data"]: for paragraph_info in article_info["paragraphs"]: for qa_pair in paragraph_info["qas"]: query_id = qa_pair["id"] candidate_answers = [answer["text"] for answer in qa_pair["answers"]] answers_dict[query_id] = candidate_answers return answers_dict def evaluate_json( annotations: Dict[str, Any], predicted_answers: Dict[str, Any] ) -> Tuple[float, float]: """ Takes gold annotations and predicted answers and evaluates the predictions for each question in the gold annotations. Both JSON dictionaries must have query_id keys, which are used to match predictions to gold annotations. The ``predicted_answers`` JSON must be a dictionary keyed by query id, where the value is a list of strings (or just one string) that is the answer. The ``annotations`` are assumed to have either the format of the dev set in the Quoref data release, or the same format as the predicted answers file. """ instance_exact_match = [] instance_f1 = [] if "data" in annotations: # We're looking at annotations in the original data format. Let's extract the answers. annotated_answers = _get_answers_from_data(annotations) else: annotated_answers = annotations for query_id, candidate_answers in annotated_answers.items(): max_em_score = 0.0 max_f1_score = 0.0 if query_id in predicted_answers: predicted = predicted_answers[query_id] gold_answer = tuple(candidate_answers) em_score, f1_score = drop.get_metrics(predicted, gold_answer) if gold_answer[0].strip() != "": max_em_score = max(max_em_score, em_score) max_f1_score = max(max_f1_score, f1_score) else: print("Missing prediction for question: {}".format(query_id)) max_em_score = 0.0 max_f1_score = 0.0 instance_exact_match.append(max_em_score) instance_f1.append(max_f1_score) global_em = np.mean(instance_exact_match) global_f1 = np.mean(instance_f1) print("Exact-match accuracy {0:.2f}".format(global_em * 100)) print("F1 score {0:.2f}".format(global_f1 * 100)) print("{0:.2f} & {1:.2f}".format(global_em * 100, global_f1 * 100)) return global_em, global_f1 def evaluate_prediction_file( prediction_path: str, gold_path: str, output_path: Optional[str] = None ) -> Tuple[float, float]: """ Takes a prediction file and a gold file and evaluates the predictions for each question in the gold file. Both files must be json formatted and must have query_id keys, which are used to match predictions to gold annotations. Writes a json with global_em and global_f1 metrics to file at the specified output path, unless None is passed as output path. """ predicted_answers = json.load(open(prediction_path, encoding="utf-8")) annotations = json.load(open(gold_path, encoding="utf-8")) global_em, global_f1 = evaluate_json(annotations, predicted_answers) # Output predictions to file if an output path is given if output_path is not None: output_dict = {"global_em": global_em, "global_f1": global_f1} with open(output_path, "w", encoding="utf8") as outfile: json.dump(output_dict, outfile) return (global_em, global_f1) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Evaluate Quoref predictions") parser.add_argument( "--gold_path", type=str, required=False, default="quoref-test-v0.1.json", help="location of the gold file", ) parser.add_argument( "--prediction_path", type=str, required=False, default="sample_predictions.json", help="location of the prediction file", ) parser.add_argument( "--output_path", type=str, required=False, default=None, help="location of the output metrics file", ) args = parser.parse_args() evaluate_prediction_file(args.prediction_path, args.gold_path, args.output_path)
allennlp-models-main
allennlp_models/rc/tools/quoref.py
"""Official evaluation script for ORB. Usage: python evaluation_script.py --dataset_file <file_path> --prediction_file <file_path> --metrics_output_file <file_path> """ # pylint: disable=unused-import from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import json from allennlp_models.rc.tools.orb_utils import evaluate_dataset def read_predictions(json_file): return json.load(open(json_file)) def read_labels(jsonl_file): qid_answer_map = {} with open(jsonl_file) as f: for line in f: data = json.loads(line) for qa_pair in data["qa_pairs"]: qid_answer_map[str(qa_pair["qid"])] = { "dataset": qa_pair["dataset"], "answers": qa_pair["answers"], } return qid_answer_map def compute_averages(all_metrics): for dataset, dataset_metric in all_metrics.items(): if len(dataset_metric) > 0: total = dataset_metric["total"] for metric, value in dataset_metric.items(): if metric != "total": dataset_metric[metric] = value / float(total) return all_metrics def evaluate(answers, predictions): metrics = { "drop": {}, "squad1": {}, "squad2": {}, "newsqa": {}, "quoref": {}, "ropes": {}, "narrativeqa": {}, "duorc": {}, "drop_syn": {}, "squad1_syn": {}, "quoref_syn": {}, "newsqa_syn": {}, "ropes_syn": {}, "duorc_syn": {}, } for qid, ground_truth_dict in answers.items(): if qid in predictions: predicted_answer = predictions[qid] dataset_name = ground_truth_dict["dataset"].lower() try: metrics = evaluate_dataset( dataset_name, predicted_answer, ground_truth_dict["answers"], metrics ) except KeyError: print("Incorrect dataset name at : {0}.".format(dataset_name)) exit(0) except Exception as err: print(str(err)) metrics = compute_averages(metrics) return metrics def process_for_output(metrics): processed_metrics = {} average_f1 = 0 f1_instance_count = 0 for dataset, metric_dict in metrics.items(): for metric_name, metric_value in metric_dict.items(): if metric_name != "total": processed_metrics["{0}_{1}".format(dataset, metric_name)] = round(metric_value, 4) if metric_name in ["f1", "rouge_f"] and dataset != "ropes": average_f1 += metric_value f1_instance_count += 1 elif metric_name == "exact_match" and dataset == "ropes": average_f1 += metric_value f1_instance_count += 1 processed_metrics["average_f1"] = round(average_f1 / f1_instance_count, 4) return processed_metrics if __name__ == "__main__": parser = argparse.ArgumentParser(description="Evaluation for ORB") parser.add_argument("--dataset_file", type=str, help="Dataset File") parser.add_argument("--prediction_file", type=str, help="Prediction File") parser.add_argument("--metrics_output_file", type=str, help="Metrics File") args = parser.parse_args() answers = read_labels(args.dataset_file) predictions = read_predictions(args.prediction_file) metrics = evaluate(answers, predictions) processed_metrics = process_for_output(metrics) json.dump(processed_metrics, open(args.metrics_output_file, "w"), indent=2)
allennlp-models-main
allennlp_models/rc/tools/orb.py
allennlp-models-main
allennlp_models/rc/tools/__init__.py
"""Functions taken from [the official evaluation script] (https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/) for SQuAD version 2.0. """ import collections import re import string from typing import Callable, Sequence, TypeVar, Tuple def make_qid_to_has_ans(dataset): qid_to_has_ans = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: qid_to_has_ans[qa["id"]] = bool(qa["answers"]) return qid_to_has_ans def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): regex = re.compile(r"\b(a|an|the)\b", re.UNICODE) return re.sub(regex, " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def get_tokens(s): if not s: return [] return normalize_answer(s).split() def compute_exact(a_pred: str, a_gold: str) -> int: return int(normalize_answer(a_pred) == normalize_answer(a_gold)) def compute_f1(a_pred: str, a_gold: str) -> float: pred_toks = get_tokens(a_pred) gold_toks = get_tokens(a_gold) common = collections.Counter(pred_toks) & collections.Counter(gold_toks) # type: ignore[var-annotated] num_same = sum(common.values()) if len(pred_toks) == 0 or len(gold_toks) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return float(pred_toks == gold_toks) if num_same == 0: return 0.0 precision = 1.0 * num_same / len(pred_toks) recall = 1.0 * num_same / len(gold_toks) f1 = (2 * precision * recall) / (precision + recall) return f1 _P = TypeVar("_P") _G = TypeVar("_G") _T = TypeVar("_T", int, float, Tuple[int, ...], Tuple[float, ...]) def metric_max_over_ground_truths( metric_fn: Callable[[_P, _G], _T], prediction: _P, ground_truths: Sequence[_G] ) -> _T: scores_for_ground_truths = [] for ground_truth in ground_truths: score = metric_fn(prediction, ground_truth) scores_for_ground_truths.append(score) return max(scores_for_ground_truths) def get_metric_score(prediction: str, gold_answers: Sequence[str]) -> Tuple[int, float]: exact_scores = metric_max_over_ground_truths(compute_exact, prediction, gold_answers) f1_scores = metric_max_over_ground_truths(compute_f1, prediction, gold_answers) return exact_scores, f1_scores
allennlp-models-main
allennlp_models/rc/tools/squad.py
from typing import List, Tuple from allennlp_models.rc.tools.squad import get_metric_score as get_metric_squad from allennlp_models.rc.tools.drop import get_metrics as drop_metrics from allennlp_models.rc.tools.narrativeqa import get_metric_score as get_metric_narrativeqa def get_metric_drop(predicted: str, ground_truths: List[str]) -> Tuple[float, float]: em_scores = [] f1_scores = [] for ground_truth in ground_truths: exact_match, f1 = drop_metrics(predicted, ground_truth) em_scores.append(exact_match) f1_scores.append(f1) return max(em_scores), max(f1_scores) def update_extractive_metrics(metrics, dataset_name, exact_match, f1): metrics[dataset_name]["exact_match"] = ( metrics[dataset_name]["exact_match"] + exact_match if "exact_match" in metrics[dataset_name] else exact_match ) metrics[dataset_name]["f1"] = ( metrics[dataset_name]["f1"] + f1 if "f1" in metrics[dataset_name] else f1 ) metrics[dataset_name]["total"] = ( metrics[dataset_name]["total"] + 1 if "total" in metrics[dataset_name] else 1 ) return metrics def update_abstractive_metrics( metrics, bleu_1_score, bleu_4_score, meteor_score, rouge_f, rouge_p, rouge_r ): metrics["narrativeqa"]["bleu_1"] = ( metrics["narrativeqa"]["bleu_1"] + bleu_1_score if "bleu_1" in metrics["narrativeqa"] else bleu_1_score ) metrics["narrativeqa"]["bleu_4"] = ( metrics["narrativeqa"]["bleu_4"] + bleu_4_score if "bleu_4" in metrics["narrativeqa"] else bleu_4_score ) metrics["narrativeqa"]["meteor"] = ( metrics["narrativeqa"]["meteor"] + meteor_score if "meteor" in metrics["narrativeqa"] else meteor_score ) metrics["narrativeqa"]["rouge_f"] = ( metrics["narrativeqa"]["rouge_f"] + rouge_f if "rouge_f" in metrics["narrativeqa"] else rouge_f ) metrics["narrativeqa"]["rouge_p"] = ( metrics["narrativeqa"]["rouge_p"] + rouge_p if "rouge_p" in metrics["narrativeqa"] else rouge_p ) metrics["narrativeqa"]["rouge_r"] = ( metrics["narrativeqa"]["rouge_r"] + rouge_r if "rouge_r" in metrics["narrativeqa"] else rouge_r ) metrics["narrativeqa"]["total"] = ( metrics["narrativeqa"]["total"] + 1 if "total" in metrics["narrativeqa"] else 1 ) return metrics def evaluate_dataset(dataset_name, prediction, ground_truths, metrics): prediction = prediction[0] if isinstance(prediction, list) else prediction if dataset_name in [ "squad1", "squad2", "ropes", "newsqa", "duorc", "squad1_syn", "ropes_syn", "newsqa_syn", "duorc_syn", ]: exact_match, f1 = get_metric_squad(prediction, [truth[0] for truth in ground_truths]) metrics = update_extractive_metrics(metrics, dataset_name, exact_match, f1) elif dataset_name in ["drop", "quoref", "drop_syn", "quoref_syn"]: exact_match, f1 = get_metric_drop(prediction, [truth[0] for truth in ground_truths]) metrics = update_extractive_metrics(metrics, dataset_name, exact_match, f1) elif dataset_name == "narrativeqa": prediction = prediction[0] if isinstance(prediction, list) else prediction ground_truths = [truth[0] for truth in ground_truths] bleu1, bleu4, meteor, rouge_f, rouge_p, rouge_r = get_metric_narrativeqa( prediction, ground_truths ) metrics = update_abstractive_metrics( metrics, bleu1, bleu4, meteor, rouge_f, rouge_p, rouge_r ) else: print("Incorrect dataset name at :{0}".format(dataset_name)) raise ValueError return metrics
allennlp-models-main
allennlp_models/rc/tools/orb_utils.py
""" Evaluation script for NarrativeQA dataset. """ import nltk try: nltk.data.find("tokenizers/punkt") except LookupError: nltk.download("punkt") nltk.download("wordnet") import rouge from nltk.translate.bleu_score import sentence_bleu from nltk.tokenize import word_tokenize from nltk.translate.meteor_score import meteor_score import copy rouge_l_evaluator = rouge.Rouge( metrics=["rouge-l"], max_n=4, limit_length=True, length_limit=100, length_limit_type="words", apply_avg=True, apply_best=True, alpha=0.5, weight_factor=1.2, stemming=True, ) def bleu_1(p, g): return sentence_bleu(g, p, weights=(1, 0, 0, 0)) def bleu_4(p, g): return sentence_bleu(g, p, weights=(0, 0, 0, 1)) def meteor(p, g): return meteor_score([x.split() for x in g], p.split()) def rouge_l(p, g): return rouge_l_evaluator.get_scores(p, g) def metric_max_over_ground_truths(metric_fn, prediction, ground_truths, tokenize=False): scores_for_ground_truths = [] for ground_truth in ground_truths: if tokenize: score = metric_fn(word_tokenize(prediction), [word_tokenize(ground_truth)]) else: score = metric_fn(prediction, [ground_truth]) scores_for_ground_truths.append(score) if isinstance(score, dict) and "rouge-l" in score: max_score = copy.deepcopy(score) max_score["rouge-l"]["f"] = round( max([score["rouge-l"]["f"] for score in scores_for_ground_truths]), 2 ) max_score["rouge-l"]["p"] = round( max([score["rouge-l"]["p"] for score in scores_for_ground_truths]), 2 ) max_score["rouge-l"]["r"] = round( max([score["rouge-l"]["r"] for score in scores_for_ground_truths]), 2 ) return max_score else: return round(max(scores_for_ground_truths), 2) def get_metric_score(prediction, ground_truths): bleu_1_score = metric_max_over_ground_truths(bleu_1, prediction, ground_truths, tokenize=True) bleu_4_score = metric_max_over_ground_truths(bleu_4, prediction, ground_truths, tokenize=True) meteor_score = metric_max_over_ground_truths(meteor, prediction, ground_truths, tokenize=False) rouge_l_score = metric_max_over_ground_truths( rouge_l, prediction, ground_truths, tokenize=False ) return ( bleu_1_score, bleu_4_score, meteor_score, rouge_l_score["rouge-l"]["f"], rouge_l_score["rouge-l"]["p"], rouge_l_score["rouge-l"]["r"], )
allennlp-models-main
allennlp_models/rc/tools/narrativeqa.py
import json import logging import time from typing import Iterable, List, Set from allennlp.common.checks import check_for_gpu from allennlp.data import Instance from allennlp.predictors import Predictor from tqdm import tqdm from allennlp_models.rc.metrics import SquadEmAndF1 logger = logging.getLogger(__name__) if __name__ == "__main__": import allennlp_models.rc # noqa F401: Needed to register the registrables. import argparse logging.basicConfig(level=logging.INFO) parser = argparse.ArgumentParser(description="Evaluation for SQuAD 1.1") parser.add_argument("--cuda-device", type=int, default=-1) parser.add_argument("--qa-model", type=str) parser.add_argument( "--input-file", type=str, default="https://allennlp.s3.amazonaws.com/datasets/squad/squad-dev-v1.1.json", ) args = parser.parse_args() # Read inputs check_for_gpu(args.cuda_device) predictor = Predictor.from_path( args.qa_model, predictor_name="transformer_qa", cuda_device=args.cuda_device ) instances = predictor._dataset_reader.read(args.input_file) # We have to make sure we put instances with the same qid all into the same batch. def batch_instances_by_qid(instances: Iterable[Instance]) -> Iterable[List[Instance]]: current_qid = None current_batch = [] for instance in instances: instance_qid = instance["metadata"]["id"] if current_qid is None: current_qid = instance_qid if instance_qid == current_qid: current_batch.append(instance) else: yield current_batch current_batch = [instance] current_qid = instance_qid if len(current_batch) > 0: yield current_batch def make_batches( instances: Iterable[Instance], batch_size: int = 64 ) -> Iterable[List[Instance]]: current_batch: List[Instance] = [] for qid_instances in batch_instances_by_qid(instances): if len(qid_instances) + len(current_batch) < batch_size: current_batch.extend(qid_instances) else: if len(current_batch) > 0: yield current_batch current_batch = qid_instances if len(current_batch) > 0: yield current_batch # Run model and evaluate results last_logged_scores_time = time.monotonic() ids_seen: Set[str] = set() metric = SquadEmAndF1() answers = {} for batch in make_batches(tqdm(instances, desc="Evaluating instances")): gold_answers = { instance["metadata"]["id"]: instance["metadata"]["answers"] for instance in batch } for result in predictor.predict_batch_instance(batch): assert result["id"] not in ids_seen ids_seen.add(result["id"]) gold_answer = gold_answers[result["id"]] if len(gold_answer) == 0: gold_answer = [""] # no-answer case metric(result["best_span_str"], gold_answer) answers[result["id"]] = result["best_span_str"] if time.monotonic() - last_logged_scores_time > 30: exact_match, f1_score = metric.get_metric() logger.info(json.dumps({"em": exact_match, "f1": f1_score})) last_logged_scores_time = time.monotonic() # Print results exact_match, f1_score = metric.get_metric() print(json.dumps(answers)) print(json.dumps({"em": exact_match, "f1": f1_score}))
allennlp-models-main
allennlp_models/rc/tools/transformer_qa_eval.py
#!/usr/bin/python from collections import defaultdict from typing import Any, Dict, List, Set, Tuple, Union, Optional import json import argparse import string import re import numpy as np from scipy.optimize import linear_sum_assignment # From here through _normalize_answer was originally copied from: # https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/ # Then cleaned up and modified a bit. def _remove_articles(text: str) -> str: regex = re.compile(r"\b(a|an|the)\b", re.UNICODE) return re.sub(regex, " ", text) def _white_space_fix(text: str) -> str: return " ".join(text.split()) EXCLUDE = set(string.punctuation) def _remove_punc(text: str) -> str: if not _is_number(text): return "".join(ch for ch in text if ch not in EXCLUDE) else: return text def _lower(text: str) -> str: return text.lower() def _tokenize(text: str) -> List[str]: return re.split(" |-", text) def _normalize_answer(text: str) -> str: """Lower text and remove punctuation, articles and extra whitespace.""" parts = [ _white_space_fix(_remove_articles(_normalize_number(_remove_punc(_lower(token))))) for token in _tokenize(text) ] parts = [part for part in parts if part.strip()] normalized = " ".join(parts).strip() return normalized def _is_number(text: str) -> bool: try: float(text) return True except ValueError: return False def _normalize_number(text: str) -> str: if _is_number(text): return str(float(text)) else: return text def _answer_to_bags( answer: Union[str, List[str], Tuple[str, ...]] ) -> Tuple[List[str], List[Set[str]]]: if isinstance(answer, (list, tuple)): raw_spans = answer else: raw_spans = [answer] normalized_spans: List[str] = [] token_bags = [] for raw_span in raw_spans: normalized_span = _normalize_answer(raw_span) normalized_spans.append(normalized_span) token_bags.append(set(normalized_span.split())) return normalized_spans, token_bags def _align_bags(predicted: List[Set[str]], gold: List[Set[str]]) -> List[float]: """ Takes gold and predicted answer sets and first finds the optimal 1-1 alignment between them and gets maximum metric values over all the answers. """ scores = np.zeros([len(gold), len(predicted)]) for gold_index, gold_item in enumerate(gold): for pred_index, pred_item in enumerate(predicted): if _match_numbers_if_present(gold_item, pred_item): scores[gold_index, pred_index] = _compute_f1(pred_item, gold_item) row_ind, col_ind = linear_sum_assignment(-scores) max_scores = np.zeros([max(len(gold), len(predicted))]) for row, column in zip(row_ind, col_ind): max_scores[row] = max(max_scores[row], scores[row, column]) return max_scores def _compute_f1(predicted_bag: Set[str], gold_bag: Set[str]) -> float: intersection = len(gold_bag.intersection(predicted_bag)) if not predicted_bag: precision = 1.0 else: precision = intersection / float(len(predicted_bag)) if not gold_bag: recall = 1.0 else: recall = intersection / float(len(gold_bag)) f1 = ( (2 * precision * recall) / (precision + recall) if not (precision == 0.0 and recall == 0.0) else 0.0 ) return f1 def _match_numbers_if_present(gold_bag: Set[str], predicted_bag: Set[str]) -> bool: gold_numbers = set() predicted_numbers = set() for word in gold_bag: if _is_number(word): gold_numbers.add(word) for word in predicted_bag: if _is_number(word): predicted_numbers.add(word) if (not gold_numbers) or gold_numbers.intersection(predicted_numbers): return True return False def get_metrics( predicted: Union[str, List[str], Tuple[str, ...]], gold: Union[str, List[str], Tuple[str, ...]] ) -> Tuple[float, float]: """ Takes a predicted answer and a gold answer (that are both either a string or a list of strings), and returns exact match and the DROP F1 metric for the prediction. If you are writing a script for evaluating objects in memory (say, the output of predictions during validation, or while training), this is the function you want to call, after using :func:`answer_json_to_strings` when reading the gold answer from the released data file. """ predicted_bags = _answer_to_bags(predicted) gold_bags = _answer_to_bags(gold) if set(predicted_bags[0]) == set(gold_bags[0]) and len(predicted_bags[0]) == len(gold_bags[0]): exact_match = 1.0 else: exact_match = 0.0 f1_per_bag = _align_bags(predicted_bags[1], gold_bags[1]) f1 = np.mean(f1_per_bag) f1 = round(f1, 2) return exact_match, f1 def answer_json_to_strings(answer: Dict[str, Any]) -> Tuple[Tuple[str, ...], str]: """ Takes an answer JSON blob from the DROP data release and converts it into strings used for evaluation. """ if "number" in answer and answer["number"]: return tuple([str(answer["number"])]), "number" elif "spans" in answer and answer["spans"]: return tuple(answer["spans"]), "span" if len(answer["spans"]) == 1 else "spans" elif "date" in answer: return ( tuple( [ "{0} {1} {2}".format( answer["date"]["day"], answer["date"]["month"], answer["date"]["year"] ) ] ), "date", ) else: raise ValueError( f"Answer type not found, should be one of number, spans or date at: {json.dumps(answer)}" ) def evaluate_json( annotations: Dict[str, Any], predicted_answers: Dict[str, Any] ) -> Tuple[float, float]: """ Takes gold annotations and predicted answers and evaluates the predictions for each question in the gold annotations. Both JSON dictionaries must have query_id keys, which are used to match predictions to gold annotations (note that these are somewhat deep in the JSON for the gold annotations, but must be top-level keys in the predicted answers). The ``annotations`` are assumed to have the format of the dev set in the DROP data release. The ``predicted_answers`` JSON must be a dictionary keyed by query id, where the value is a string (or list of strings) that is the answer. """ instance_exact_match = [] instance_f1 = [] # for each type as well type_to_em: Dict[str, List[float]] = defaultdict(list) type_to_f1: Dict[str, List[float]] = defaultdict(list) for _, annotation in annotations.items(): for qa_pair in annotation["qa_pairs"]: query_id = qa_pair["query_id"] max_em_score = 0.0 max_f1_score = 0.0 max_type = None if query_id in predicted_answers: predicted = predicted_answers[query_id] candidate_answers = [qa_pair["answer"]] if "validated_answers" in qa_pair and qa_pair["validated_answers"]: candidate_answers += qa_pair["validated_answers"] for answer in candidate_answers: gold_answer, gold_type = answer_json_to_strings(answer) em_score, f1_score = get_metrics(predicted, gold_answer) if gold_answer[0].strip() != "": max_em_score = max(max_em_score, em_score) max_f1_score = max(max_f1_score, f1_score) if max_em_score == em_score and max_f1_score == f1_score: max_type = gold_type else: print("Missing prediction for question: {}".format(query_id)) if qa_pair and qa_pair["answer"]: max_type = answer_json_to_strings(qa_pair["answer"])[1] else: max_type = "number" max_em_score = 0.0 max_f1_score = 0.0 instance_exact_match.append(max_em_score) instance_f1.append(max_f1_score) type_to_em[max_type].append(max_em_score) type_to_f1[max_type].append(max_f1_score) global_em = np.mean(instance_exact_match) global_f1 = np.mean(instance_f1) print("Exact-match accuracy {0:.2f}".format(global_em * 100)) print("F1 score {0:.2f}".format(global_f1 * 100)) print("{0:.2f} & {1:.2f}".format(global_em * 100, global_f1 * 100)) print("----") total = np.sum([len(v) for v in type_to_em.values()]) for typ in sorted(type_to_em.keys()): print( "{0}: {1} ({2:.2f}%)".format( typ, len(type_to_em[typ]), 100.0 * len(type_to_em[typ]) / total ) ) print(" Exact-match accuracy {0:.3f}".format(100.0 * np.mean(type_to_em[typ]))) print(" F1 score {0:.3f}".format(100.0 * np.mean(type_to_f1[typ]))) return global_em, global_f1 def evaluate_prediction_file( prediction_path: str, gold_path: str, output_path: Optional[str] = None ) -> Tuple[float, float]: """ Takes a prediction file and a gold file and evaluates the predictions for each question in the gold file. Both files must be json formatted and must have query_id keys, which are used to match predictions to gold annotations. The gold file is assumed to have the format of the dev set in the DROP data release. The prediction file must be a JSON dictionary keyed by query id, where the value is either a JSON dictionary with an "answer" key, or just a string (or list of strings) that is the answer. Writes a json with global_em and global_f1 metrics to file at the specified output path, unless None is passed as output path. """ predicted_answers = json.load(open(prediction_path, encoding="utf-8")) annotations = json.load(open(gold_path, encoding="utf-8")) global_em, global_f1 = evaluate_json(annotations, predicted_answers) # Output predictions to file if an output path is given if output_path is not None: output_dict = {"global_em": global_em, "global_f1": global_f1} with open(output_path, "w", encoding="utf8") as outfile: json.dump(output_dict, outfile) return (global_em, global_f1) if __name__ == "__main__": parser = argparse.ArgumentParser(description="evaluate on drop dataset") parser.add_argument( "--gold_path", type=str, required=False, default="drop_dataset_test.gold.json", help="location of the gold file", ) parser.add_argument( "--prediction_path", type=str, required=False, default="sample_predictions.json", help="location of the prediction file", ) parser.add_argument( "--output_path", type=str, required=False, default=None, help="location of the output metrics file", ) args = parser.parse_args() evaluate_prediction_file(args.prediction_path, args.gold_path, args.output_path)
allennlp-models-main
allennlp_models/rc/tools/drop.py
import json import logging from typing import Dict, List from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.instance import Instance from allennlp.data.fields import Field, TextField, ListField, MetadataField, IndexField from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer from allennlp.data.tokenizers import Tokenizer, SpacyTokenizer logger = logging.getLogger(__name__) @DatasetReader.register("qangaroo") class QangarooReader(DatasetReader): """ Reads a JSON-formatted Qangaroo file and returns a ``Dataset`` where the ``Instances`` have six fields: ``candidates``, a ``ListField[TextField]``, ``query``, a ``TextField``, ``supports``, a ``ListField[TextField]``, ``answer``, a ``TextField``, and ``answer_index``, a ``IndexField``. We also add a ``MetadataField`` that stores the instance's ID and annotations if they are present. # Parameters tokenizer : `Tokenizer`, optional (default=`SpacyTokenizer()`) We use this `Tokenizer` for both the question and the passage. See :class:`Tokenizer`. Default is ```SpacyTokenizer()``. token_indexers : `Dict[str, TokenIndexer]`, optional We similarly use this for both the question and the passage. See :class:`TokenIndexer`. Default is `{"tokens": SingleIdTokenIndexer()}`. """ def __init__( self, tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None, **kwargs, ) -> None: super().__init__(**kwargs) self._tokenizer = tokenizer or SpacyTokenizer() self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} def _read(self, file_path: str): # if `file_path` is a URL, redirect to the cache file_path = cached_path(file_path) logger.info("Reading file at %s", file_path) with open(file_path) as dataset_file: dataset = json.load(dataset_file) logger.info("Reading the dataset") for sample in dataset: instance = self.text_to_instance( sample["candidates"], sample["query"], sample["supports"], sample["id"], sample["answer"], sample["annotations"] if "annotations" in sample else [[]], ) yield instance def text_to_instance( self, # type: ignore candidates: List[str], query: str, supports: List[str], _id: str = None, answer: str = None, annotations: List[List[str]] = None, ) -> Instance: fields: Dict[str, Field] = {} candidates_field = ListField( [ TextField(candidate, self._token_indexers) for candidate in self._tokenizer.batch_tokenize(candidates) ] ) fields["query"] = TextField(self._tokenizer.tokenize(query), self._token_indexers) fields["supports"] = ListField( [ TextField(support, self._token_indexers) for support in self._tokenizer.batch_tokenize(supports) ] ) fields["answer"] = TextField(self._tokenizer.tokenize(answer), self._token_indexers) fields["answer_index"] = IndexField(candidates.index(answer), candidates_field) fields["candidates"] = candidates_field fields["metadata"] = MetadataField({"annotations": annotations, "id": _id}) return Instance(fields)
allennlp-models-main
allennlp_models/rc/dataset_readers/qangaroo.py
import json import logging from typing import Any, Dict, List, Tuple, Optional, Iterable from allennlp.common.util import sanitize_wordpiece from allennlp.data.fields import MetadataField, TextField, SpanField, IndexField from allennlp.common.file_utils import cached_path, open_compressed from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.instance import Instance from allennlp.data.token_indexers import PretrainedTransformerIndexer from allennlp.data.tokenizers import Token, PretrainedTransformerTokenizer from allennlp_models.rc.dataset_readers.utils import char_span_to_token_span logger = logging.getLogger(__name__) @DatasetReader.register("transformer_squad") class TransformerSquadReader(DatasetReader): """ Dataset reader suitable for JSON-formatted SQuAD-like datasets to be used with a transformer-based QA model, such as [`TransformerQA`](../../models/transformer_qa#TransformerQA). It will generate `Instances` with the following fields: * `question_with_context`, a `TextField` that contains the concatenation of question and context, * `answer_span`, a `SpanField` into the `question` `TextField` denoting the answer. * `context_span`, a `SpanField` into the `question` `TextField` denoting the context, i.e., the part of the text that potential answers can come from. * `cls_index` (optional), an `IndexField` that holds the index of the `[CLS]` token within the `question_with_context` field. This is needed because the `[CLS]` token is used to indicate an impossible question. Since most tokenizers/models have the `[CLS]` token as the first token, this will only be included in the instance if the `[CLS]` token is NOT the first token. * `metadata`, a `MetadataField` that stores the instance's ID, the original question, the original passage text, both of these in tokenized form, and the gold answer strings, accessible as `metadata['id']`, `metadata['question']`, `metadata['context']`, `metadata['question_tokens']`, `metadata['context_tokens']`, and `metadata['answers']`. This is so that we can more easily use the official SQuAD evaluation script to get metrics. For SQuAD v2.0-style datasets that contain impossible questions, we set the gold answer span to the span of the `[CLS]` token when there are no answers. We also support limiting the maximum length for the question. When the context+question is too long, we run a sliding window over the context and emit multiple instances for a single question. If `skip_impossible_questions` is `True`, then we only emit instances that contain a gold answer. As a result, the per-instance metrics you get during training and evaluation might not correspond 100% to the SQuAD task. To get a final number for SQuAD v1.1, you have to run ``` python -m allennlp_models.rc.tools.transformer_qa_eval ``` # Parameters transformer_model_name : `str`, optional (default=`'bert-base-cased'`) This reader chooses tokenizer and token indexer according to this setting. length_limit : `int`, optional (default=`384`) We will make sure that the length of context+question never exceeds this many word pieces. stride : `int`, optional (default=`128`) When context+question are too long for the length limit, we emit multiple instances for one question, where the context is shifted. This parameter specifies the overlap between the shifted context window. It is called "stride" instead of "overlap" because that's what it's called in the original huggingface implementation. skip_impossible_questions : `bool`, optional (default=`False`) If this is true, we will skip examples that don't have an answer. This could happen if the question is marked impossible in the dataset, or if the question+context is truncated according to `length_limit` such that the context no longer contains a gold answer. For SQuAD v1.1-style datasets, you should set this to `True` during training, and `False` any other time. For SQuAD v2.0-style datasets you should leave this as `False`. max_query_length : `int`, optional (default=`64`) The maximum number of wordpieces dedicated to the question. If the question is longer than this, it will be truncated. """ def __init__( self, transformer_model_name: str = "bert-base-cased", length_limit: int = 384, stride: int = 128, skip_impossible_questions: bool = False, max_query_length: int = 64, tokenizer_kwargs: Dict[str, Any] = None, **kwargs ) -> None: if "skip_invalid_examples" in kwargs: import warnings warnings.warn( "'skip_invalid_examples' is deprecated, please use 'skip_impossible_questions' instead", DeprecationWarning, ) skip_impossible_questions = kwargs.pop("skip_invalid_examples") super().__init__( manual_distributed_sharding=True, manual_multiprocess_sharding=True, **kwargs ) self._tokenizer = PretrainedTransformerTokenizer( transformer_model_name, add_special_tokens=False, tokenizer_kwargs=tokenizer_kwargs, ) self._token_indexers = { "tokens": PretrainedTransformerIndexer( transformer_model_name, tokenizer_kwargs=tokenizer_kwargs ) } self.length_limit = length_limit self.stride = stride self.skip_impossible_questions = skip_impossible_questions self.max_query_length = max_query_length self._cls_token = self._tokenizer.tokenizer.cls_token # We'll include the `cls_index` IndexField in instances if the CLS token is # not always the first token. self._include_cls_index = ( self._find_cls_index( self._tokenizer.add_special_tokens( self._tokenizer.tokenize("a"), self._tokenizer.tokenize("a") ) ) != 0 ) def _read(self, file_path: str): # if `file_path` is a URL, redirect to the cache file_path = cached_path(file_path) logger.info("Reading file at %s", file_path) with open_compressed(file_path) as dataset_file: dataset_json = json.load(dataset_file) dataset = dataset_json["data"] logger.info("Reading the dataset") yielded_question_count = 0 questions_with_more_than_one_instance = 0 for article in dataset: for paragraph_json in article["paragraphs"]: context = paragraph_json["context"] cached_tokenized_context = self._tokenize_context(context) for question_answer in self.shard_iterable(paragraph_json["qas"]): answers = [answer_json["text"] for answer_json in question_answer["answers"]] # Just like huggingface, we only use the first answer for training. if len(answers) > 0: first_answer_offset = int(question_answer["answers"][0]["answer_start"]) else: first_answer_offset = None instances = self.make_instances( question_answer.get("id", None), question_answer["question"], answers, context, first_answer_offset=first_answer_offset, always_add_answer_span=True, is_training=True, cached_tokenized_context=cached_tokenized_context, ) instances_yielded = 0 for instance in instances: yield instance instances_yielded += 1 if instances_yielded > 1: questions_with_more_than_one_instance += 1 yielded_question_count += 1 if questions_with_more_than_one_instance > 0: logger.info( "%d (%.2f%%) questions have more than one instance", questions_with_more_than_one_instance, 100 * questions_with_more_than_one_instance / yielded_question_count, ) def _tokenize_context(self, context: str) -> List[Token]: # tokenize context by spaces first, and then with the wordpiece tokenizer # For RoBERTa, this produces a bug where every token is marked as beginning-of-sentence. To fix it, we # detect whether a space comes before a word, and if so, add "a " in front of the word. def tokenize_slice(start: int, end: int) -> Iterable[Token]: text_to_tokenize = context[start:end] if start - 1 >= 0 and context[start - 1].isspace(): prefix = "a " # must end in a space, and be short so we can be sure it becomes only one token wordpieces = self._tokenizer.tokenize(prefix + text_to_tokenize) for wordpiece in wordpieces: if wordpiece.idx is not None: wordpiece.idx -= len(prefix) return wordpieces[1:] else: return self._tokenizer.tokenize(text_to_tokenize) tokenized_context = [] token_start = 0 for i, c in enumerate(context): if c.isspace(): for wordpiece in tokenize_slice(token_start, i): if wordpiece.idx is not None: wordpiece.idx += token_start tokenized_context.append(wordpiece) token_start = i + 1 for wordpiece in tokenize_slice(token_start, len(context)): if wordpiece.idx is not None: wordpiece.idx += token_start tokenized_context.append(wordpiece) return tokenized_context def make_instances( self, qid: str, question: str, answers: List[str], context: str, first_answer_offset: Optional[int], always_add_answer_span: bool = False, is_training: bool = False, cached_tokenized_context: Optional[List[Token]] = None, ) -> Iterable[Instance]: """ Create training instances from a SQuAD example. """ if cached_tokenized_context is not None: # In training, we will use the same context in multiple instances, so we use # cached_tokenized_context to avoid duplicate tokenization tokenized_context = cached_tokenized_context else: # In prediction, no cached_tokenized_context is provided, so we tokenize context here tokenized_context = self._tokenize_context(context) if first_answer_offset is None: (token_answer_span_start, token_answer_span_end) = (-1, -1) else: (token_answer_span_start, token_answer_span_end), _ = char_span_to_token_span( [ (t.idx, t.idx + len(sanitize_wordpiece(t.text))) if t.idx is not None else None for t in tokenized_context ], (first_answer_offset, first_answer_offset + len(answers[0])), ) # Tokenize the question. tokenized_question = self._tokenizer.tokenize(question) tokenized_question = tokenized_question[: self.max_query_length] # Stride over the context, making instances. space_for_context = ( self.length_limit - len(tokenized_question) - len(self._tokenizer.sequence_pair_start_tokens) - len(self._tokenizer.sequence_pair_mid_tokens) - len(self._tokenizer.sequence_pair_end_tokens) ) stride_start = 0 while True: tokenized_context_window = tokenized_context[stride_start:] tokenized_context_window = tokenized_context_window[:space_for_context] window_token_answer_span = ( token_answer_span_start - stride_start, token_answer_span_end - stride_start, ) if any(i < 0 or i >= len(tokenized_context_window) for i in window_token_answer_span): # The answer is not contained in the window. window_token_answer_span = None if ( not is_training or not self.skip_impossible_questions or window_token_answer_span is not None ): additional_metadata = {"id": qid} instance = self.text_to_instance( question, tokenized_question, context, tokenized_context_window, answers=answers, token_answer_span=window_token_answer_span, additional_metadata=additional_metadata, always_add_answer_span=always_add_answer_span, ) yield instance stride_start += space_for_context if stride_start >= len(tokenized_context): break stride_start -= self.stride def text_to_instance( self, # type: ignore question: str, tokenized_question: List[Token], context: str, tokenized_context: List[Token], answers: List[str] = None, token_answer_span: Optional[Tuple[int, int]] = None, additional_metadata: Dict[str, Any] = None, always_add_answer_span: bool = False, ) -> Instance: fields = {} # make the question field question_field = TextField( self._tokenizer.add_special_tokens(tokenized_question, tokenized_context), ) fields["question_with_context"] = question_field cls_index = self._find_cls_index(question_field.tokens) if self._include_cls_index: fields["cls_index"] = IndexField(cls_index, question_field) start_of_context = ( len(self._tokenizer.sequence_pair_start_tokens) + len(tokenized_question) + len(self._tokenizer.sequence_pair_mid_tokens) ) # make the answer span if token_answer_span is not None: assert all(i >= 0 for i in token_answer_span) assert token_answer_span[0] <= token_answer_span[1] fields["answer_span"] = SpanField( token_answer_span[0] + start_of_context, token_answer_span[1] + start_of_context, question_field, ) elif always_add_answer_span: fields["answer_span"] = SpanField(cls_index, cls_index, question_field) # make the context span, i.e., the span of text from which possible answers should be drawn fields["context_span"] = SpanField( start_of_context, start_of_context + len(tokenized_context) - 1, question_field ) # make the metadata metadata = { "question": question, "question_tokens": tokenized_question, "context": context, "context_tokens": tokenized_context, "answers": answers or [], } if additional_metadata is not None: metadata.update(additional_metadata) fields["metadata"] = MetadataField(metadata) return Instance(fields) def apply_token_indexers(self, instance: Instance) -> None: instance["question_with_context"].token_indexers = self._token_indexers def _find_cls_index(self, tokens: List[Token]) -> int: return next(i for i, t in enumerate(tokens) if t.text == self._cls_token)
allennlp-models-main
allennlp_models/rc/dataset_readers/transformer_squad.py
""" Dataset reader for SuperGLUE's Reading Comprehension with Commonsense Reasoning task (Zhang Et al. 2018). Reader Implemented by Gabriel Orlanski """ import logging from typing import Dict, List, Optional, Iterable, Union, Tuple, Any from pathlib import Path from allennlp.common.util import sanitize_wordpiece from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import MetadataField, TextField, SpanField from allennlp.data.instance import Instance from allennlp_models.rc.dataset_readers.utils import char_span_to_token_span from allennlp.data.token_indexers import PretrainedTransformerIndexer from allennlp.data.tokenizers import Token, PretrainedTransformerTokenizer import json logger = logging.getLogger(__name__) __all__ = ["RecordTaskReader"] # TODO: Optimize this reader @DatasetReader.register("superglue_record") class RecordTaskReader(DatasetReader): """ Reader for Reading Comprehension with Commonsense Reasoning(ReCoRD) task from SuperGLUE. The task is detailed in the paper ReCoRD: Bridging the Gap between Human and Machine Commonsense Reading Comprehension (arxiv.org/pdf/1810.12885.pdf) by Zhang et al. Leaderboards and the official evaluation script for the ReCoRD task can be found sheng-z.github.io/ReCoRD-explorer/. The reader reads a JSON file in the format from sheng-z.github.io/ReCoRD-explorer/dataset-readme.txt # Parameters tokenizer: `Tokenizer`, optional The tokenizer class to use. Defaults to SpacyTokenizer token_indexers : `Dict[str, TokenIndexer]`, optional We similarly use this for both the question and the passage. See :class:`TokenIndexer`. Default is `{"tokens": SingleIdTokenIndexer()}`. passage_length_limit : `int`, optional (default=`None`) If specified, we will cut the passage if the length of passage exceeds this limit. question_length_limit : `int`, optional (default=`None`) If specified, we will cut the question if the length of question exceeds this limit. raise_errors: `bool`, optional (default=`False`) If the reader should raise errors or just continue. kwargs: `Dict` Keyword arguments to be passed to the DatasetReader parent class constructor. """ def __init__( self, transformer_model_name: str = "bert-base-cased", length_limit: int = 384, question_length_limit: int = 64, stride: int = 128, raise_errors: bool = False, tokenizer_kwargs: Dict[str, Any] = None, one_instance_per_query: bool = False, max_instances: int = None, **kwargs, ) -> None: """ Initialize the RecordTaskReader. """ super(RecordTaskReader, self).__init__( manual_distributed_sharding=True, max_instances=max_instances, **kwargs ) self._kwargs = kwargs self._model_name = transformer_model_name self._tokenizer_kwargs = tokenizer_kwargs or {} # Save the values passed to __init__ to protected attributes self._tokenizer = PretrainedTransformerTokenizer( transformer_model_name, add_special_tokens=False, tokenizer_kwargs=tokenizer_kwargs, ) self._token_indexers = { "tokens": PretrainedTransformerIndexer( transformer_model_name, tokenizer_kwargs=tokenizer_kwargs ) } self._length_limit = length_limit self._query_len_limit = question_length_limit self._stride = stride self._raise_errors = raise_errors self._cls_token = "@placeholder" self._one_instance_per_query = one_instance_per_query def _to_params(self) -> Dict[str, Any]: """ Get the configuration dictionary for this class. # Returns `Dict[str, Any]` The config dict. """ return { "type": "superglue_record", "transformer_model_name": self._model_name, "length_limit": self._length_limit, "question_length_limit": self._query_len_limit, "stride": self._stride, "raise_errors": self._raise_errors, "tokenizer_kwargs": self._tokenizer_kwargs, "one_instance_per_query": self._one_instance_per_query, "max_instances": self.max_instances, **self._kwargs, } def _read(self, file_path: Union[Path, str]) -> Iterable[Instance]: # IF `file_path` is a URL, redirect to the cache file_path = cached_path(file_path) # Read the 'data' key from the dataset logger.info(f"Reading '{file_path}'") with open(file_path) as fp: dataset = json.load(fp)["data"] logger.info(f"Found {len(dataset)} examples from '{file_path}'") # Keep track of certain stats while reading the file # examples_multiple_instance_count: The number of questions with more than # one instance. Can happen because there is multiple queries for a # single passage. # passages_yielded: The total number of instances found/yielded. examples_multiple_instance_count = 0 examples_no_instance_count = 0 passages_yielded = 0 # Iterate through every example from the ReCoRD data file. for example in dataset: # Get the list of instances for the current example instances_for_example = self.get_instances_from_example(example) # Keep track of number of instances for this specific example that # have been yielded. Since it instances_for_example is a generator, we # do not know its length. To address this, we create an counter int. instance_count = 0 # Iterate through the instances and yield them. for instance in instances_for_example: yield instance instance_count += 1 if instance_count == 0: logger.warning(f"Example '{example['id']}' had no instances.") examples_no_instance_count += 1 # Check if there was more than one instance for this example. If # there was we increase examples_multiple_instance_count by 1. # Otherwise we increase by 0. examples_multiple_instance_count += 1 if instance_count > 1 else 0 passages_yielded += instance_count # Check to see if we are over the max_instances to yield. if self.max_instances and passages_yielded > self.max_instances: logger.info("Passed max instances") break # Log pertinent information. if passages_yielded: logger.info( f"{examples_multiple_instance_count}/{passages_yielded} " f"({examples_multiple_instance_count / passages_yielded * 100:.2f}%) " f"examples had more than one instance" ) logger.info( f"{examples_no_instance_count}/{passages_yielded} " f"({examples_no_instance_count / passages_yielded * 100:.2f}%) " f"examples had no instances" ) else: logger.warning(f"Could not find any instances in '{file_path}'") def get_instances_from_example( self, example: Dict, always_add_answer_span: bool = False ) -> Iterable[Instance]: """ Helper function to get instances from an example. Much of this comes from `transformer_squad.make_instances` # Parameters example: `Dict[str,Any]` The example dict. # Returns: `Iterable[Instance]` The instances for each example """ # Get the passage dict from the example, it has text and # entities example_id: str = example["id"] passage_dict: Dict = example["passage"] passage_text: str = passage_dict["text"] # Tokenize the passage tokenized_passage: List[Token] = self.tokenize_str(passage_text) # TODO: Determine what to do with entities. Superglue marks them # explicitly as input (https://arxiv.org/pdf/1905.00537.pdf) # Get the queries from the example dict queries: List = example["qas"] logger.debug(f"{len(queries)} queries for example {example_id}") # Tokenize and get the context windows for each queries for query in queries: # Create the additional metadata dict that will be passed w/ extra # data for each query. We store the question & query ids, all # answers, and other data following `transformer_qa`. additional_metadata = { "id": query["id"], "example_id": example_id, } instances_yielded = 0 # Tokenize, and truncate, the query based on the max set in # `__init__` tokenized_query = self.tokenize_str(query["query"])[: self._query_len_limit] # Calculate where the context needs to start and how many tokens we have # for it. This is due to the limit on the number of tokens that a # transformer can use because they have quadratic memory usage. But if # you are reading this code, you probably know that. space_for_context = ( self._length_limit - len(list(tokenized_query)) # Used getattr so I can test without having to load a # transformer model. - len(getattr(self._tokenizer, "sequence_pair_start_tokens", [])) - len(getattr(self._tokenizer, "sequence_pair_mid_tokens", [])) - len(getattr(self._tokenizer, "sequence_pair_end_tokens", [])) ) # Check if answers exist for this query. We assume that there are no # answers for this query, and set the start and end index for the # answer span to -1. answers = query.get("answers", []) if not answers: logger.warning(f"Skipping {query['id']}, no answers") continue # Create the arguments needed for `char_span_to_token_span` token_offsets = [ (t.idx, t.idx + len(sanitize_wordpiece(t.text))) if t.idx is not None else None for t in tokenized_passage ] # Get the token offsets for the answers for this current passage. answer_token_start, answer_token_end = (-1, -1) for answer in answers: # Try to find the offsets. offsets, _ = char_span_to_token_span( token_offsets, (answer["start"], answer["end"]) ) # If offsets for an answer were found, it means the answer is in # the passage, and thus we can stop looking. if offsets != (-1, -1): answer_token_start, answer_token_end = offsets break # Go through the context and find the window that has the answer in it. stride_start = 0 while True: tokenized_context_window = tokenized_passage[stride_start:] tokenized_context_window = tokenized_context_window[:space_for_context] # Get the token offsets w.r.t the current window. window_token_answer_span = ( answer_token_start - stride_start, answer_token_end - stride_start, ) if any( i < 0 or i >= len(tokenized_context_window) for i in window_token_answer_span ): # The answer is not contained in the window. window_token_answer_span = None if ( # not self.skip_impossible_questions window_token_answer_span is not None ): # The answer WAS found in the context window, and thus we # can make an instance for the answer. instance = self.text_to_instance( query["query"], tokenized_query, passage_text, tokenized_context_window, answers=[answer["text"] for answer in answers], token_answer_span=window_token_answer_span, additional_metadata=additional_metadata, always_add_answer_span=always_add_answer_span, ) yield instance instances_yielded += 1 if instances_yielded == 1 and self._one_instance_per_query: break stride_start += space_for_context # If we have reached the end of the passage, stop. if stride_start >= len(tokenized_passage): break # I am not sure what this does...but it is here? stride_start -= self._stride def tokenize_slice(self, text: str, start: int = None, end: int = None) -> Iterable[Token]: """ Get + tokenize a span from a source text. *Originally from the `transformer_squad.py`* # Parameters text: `str` The text to draw from. start: `int` The start index for the span. end: `int` The end index for the span. Assumed that this is inclusive. # Returns `Iterable[Token]` List of tokens for the retrieved span. """ start = start or 0 end = end or len(text) text_to_tokenize = text[start:end] # Check if this is the start of the text. If the start is >= 0, check # for a preceding space. If it exists, then we need to tokenize a # special way because of a bug with RoBERTa tokenizer. if start - 1 >= 0 and text[start - 1].isspace(): # Per the original tokenize_slice function, you need to add a # garbage token before the actual text you want to tokenize so that # the tokenizer does not add a beginning of sentence token. prefix = "a " # Tokenize the combined prefix and text wordpieces = self._tokenizer.tokenize(prefix + text_to_tokenize) # Go through each wordpiece in the tokenized wordpieces. for wordpiece in wordpieces: # Because we added the garbage prefix before tokenize, we need # to adjust the idx such that it accounts for this. Therefore we # subtract the length of the prefix from each token's idx. if wordpiece.idx is not None: wordpiece.idx -= len(prefix) # We do not want the garbage token, so we return all but the first # token. return wordpieces[1:] else: # Do not need any sort of prefix, so just return all of the tokens. return self._tokenizer.tokenize(text_to_tokenize) def tokenize_str(self, text: str) -> List[Token]: """ Helper method to tokenize a string. Adapted from the `transformer_squad.make_instances` # Parameters text: `str` The string to tokenize. # Returns `Iterable[Tokens]` The resulting tokens. """ # We need to keep track of the current token index so that we can update # the results from self.tokenize_slice such that they reflect their # actual position in the string rather than their position in the slice # passed to tokenize_slice. Also used to construct the slice. token_index = 0 # Create the output list (can be any iterable) that will store the # tokens we found. tokenized_str = [] # Helper function to update the `idx` and add every wordpiece in the # `tokenized_slice` to the `tokenized_str`. def add_wordpieces(tokenized_slice: Iterable[Token]) -> None: for wordpiece in tokenized_slice: if wordpiece.idx is not None: wordpiece.idx += token_index tokenized_str.append(wordpiece) # Iterate through every character and their respective index in the text # to create the slices to tokenize. for i, c in enumerate(text): # Check if the current character is a space. If it is, we tokenize # the slice of `text` from `token_index` to `i`. if c.isspace(): add_wordpieces(self.tokenize_slice(text, token_index, i)) token_index = i + 1 # Add the end slice that is not collected by the for loop. add_wordpieces(self.tokenize_slice(text, token_index, len(text))) return tokenized_str @staticmethod def get_spans_from_text(text: str, spans: List[Tuple[int, int]]) -> List[str]: """ Helper function to get a span from a string # Parameter text: `str` The source string spans: `List[Tuple[int,int]]` List of start and end indices for spans. Assumes that the end index is inclusive. Therefore, for start index `i` and end index `j`, retrieves the span at `text[i:j+1]`. # Returns `List[str]` The extracted string from text. """ return [text[start : end + 1] for start, end in spans] def text_to_instance( self, query: str, tokenized_query: List[Token], passage: str, tokenized_passage: List[Token], answers: List[str], token_answer_span: Optional[Tuple[int, int]] = None, additional_metadata: Optional[Dict[str, Any]] = None, always_add_answer_span: Optional[bool] = False, ) -> Instance: """ A lot of this comes directly from the `transformer_squad.text_to_instance` """ fields = {} # Create the query field from the tokenized question and context. Use # `self._tokenizer.add_special_tokens` function to add the necessary # special tokens to the query. query_field = TextField( self._tokenizer.add_special_tokens( # The `add_special_tokens` function automatically adds in the # separation token to mark the separation between the two lists of # tokens. Therefore, we can create the query field WITH context # through passing them both as arguments. tokenized_query, tokenized_passage, ), self._token_indexers, ) # Add the query field to the fields dict that will be outputted as an # instance. Do it here rather than assign above so that we can use # attributes from `query_field` rather than continuously indexing # `fields`. fields["question_with_context"] = query_field # Calculate the index that marks the start of the context. start_of_context = ( +len(tokenized_query) # Used getattr so I can test without having to load a # transformer model. + len(getattr(self._tokenizer, "sequence_pair_start_tokens", [])) + len(getattr(self._tokenizer, "sequence_pair_mid_tokens", [])) ) # make the answer span if token_answer_span is not None: assert all(i >= 0 for i in token_answer_span) assert token_answer_span[0] <= token_answer_span[1] fields["answer_span"] = SpanField( token_answer_span[0] + start_of_context, token_answer_span[1] + start_of_context, query_field, ) # make the context span, i.e., the span of text from which possible # answers should be drawn fields["context_span"] = SpanField( start_of_context, start_of_context + len(tokenized_passage) - 1, query_field ) # make the metadata metadata = { "question": query, "question_tokens": tokenized_query, "context": passage, "context_tokens": tokenized_passage, "answers": answers or [], } if additional_metadata is not None: metadata.update(additional_metadata) fields["metadata"] = MetadataField(metadata) return Instance(fields) def _find_cls_index(self, tokens: List[Token]) -> int: """ From transformer_squad Args: self: tokens: Returns: """ return next(i for i, t in enumerate(tokens) if t.text == self._cls_token)
allennlp-models-main
allennlp_models/rc/dataset_readers/record_reader.py
from allennlp_models.rc.dataset_readers.drop import DropReader from allennlp_models.rc.dataset_readers.qangaroo import QangarooReader from allennlp_models.rc.dataset_readers.quac import QuACReader from allennlp_models.rc.dataset_readers.squad import SquadReader from allennlp_models.rc.dataset_readers.transformer_squad import TransformerSquadReader from allennlp_models.rc.dataset_readers.triviaqa import TriviaQaReader
allennlp-models-main
allennlp_models/rc/dataset_readers/__init__.py
import json import logging from typing import Any, Dict, List, Tuple, Optional, Iterable from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.instance import Instance from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenIndexer from allennlp.data.tokenizers import Token, Tokenizer, SpacyTokenizer from allennlp_models.rc.dataset_readers import utils logger = logging.getLogger(__name__) SQUAD2_NO_ANSWER_TOKEN = "@@<NO_ANSWER>@@" """ The default `no_answer_token` for the [`squad2`](#squad2) reader. """ @DatasetReader.register("squad") class SquadReader(DatasetReader): """ !!! Note If you're training on SQuAD v1.1 you should use the [`squad1()`](#squad1) classmethod to instantiate this reader, and for SQuAD v2.0 you should use the [`squad2()`](#squad2) classmethod. Also, for transformer-based models you should be using the [`TransformerSquadReader`](../transformer_squad#transformersquadreader). Dataset reader suitable for JSON-formatted SQuAD-like datasets. It will generate `Instances` with the following fields: - `question`, a `TextField`, - `passage`, another `TextField`, - `span_start` and `span_end`, both `IndexFields` into the `passage` `TextField`, - and `metadata`, a `MetadataField` that stores the instance's ID, the original passage text, gold answer strings, and token offsets into the original passage, accessible as `metadata['id']`, `metadata['original_passage']`, `metadata['answer_texts']` and `metadata['token_offsets']`, respectively. This is so that we can more easily use the official SQuAD evaluation scripts to get metrics. We also support limiting the maximum length for both passage and question. However, some gold answer spans may exceed the maximum passage length, which will cause error in making instances. We simply skip these spans to avoid errors. If all of the gold answer spans of an example are skipped, during training, we will skip this example. During validating or testing, since we cannot skip examples, we use the last token as the pseudo gold answer span instead. The computed loss will not be accurate as a result. But this will not affect the answer evaluation, because we keep all the original gold answer texts. # Parameters tokenizer : `Tokenizer`, optional (default=`SpacyTokenizer()`) We use this `Tokenizer` for both the question and the passage. See :class:`Tokenizer`. Default is `SpacyTokenizer()`. token_indexers : `Dict[str, TokenIndexer]`, optional We similarly use this for both the question and the passage. See :class:`TokenIndexer`. Default is `{"tokens": SingleIdTokenIndexer()}`. passage_length_limit : `int`, optional (default=`None`) If specified, we will cut the passage if the length of passage exceeds this limit. question_length_limit : `int`, optional (default=`None`) If specified, we will cut the question if the length of question exceeds this limit. skip_impossible_questions: `bool`, optional (default=`False`) If this is true, we will skip examples with questions that don't contain the answer spans. no_answer_token: `Optional[str]`, optional (default=`None`) A special token to append to each context. If using a SQuAD 2.0-style dataset, this should be set, otherwise an exception will be raised if an impossible question is encountered. """ def __init__( self, tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None, passage_length_limit: int = None, question_length_limit: int = None, skip_impossible_questions: bool = False, no_answer_token: Optional[str] = None, **kwargs, ) -> None: if "skip_invalid_examples" in kwargs: import warnings warnings.warn( "'skip_invalid_examples' is deprecated, please use 'skip_impossible_questions' instead", DeprecationWarning, ) skip_impossible_questions = kwargs.pop("skip_invalid_examples") super().__init__( manual_distributed_sharding=True, manual_multiprocess_sharding=True, **kwargs ) self._tokenizer = tokenizer or SpacyTokenizer() self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} self.passage_length_limit = passage_length_limit self.question_length_limit = question_length_limit self.skip_impossible_questions = skip_impossible_questions self.no_answer_token = no_answer_token def _read(self, file_path: str): # if `file_path` is a URL, redirect to the cache file_path = cached_path(file_path) logger.info("Reading file at %s", file_path) with open(file_path) as dataset_file: dataset_json = json.load(dataset_file) dataset = dataset_json["data"] logger.info("Reading the dataset") for article in dataset: for paragraph_json in article["paragraphs"]: paragraph = paragraph_json["context"] tokenized_paragraph = self._tokenizer.tokenize(paragraph) for question_answer in self.shard_iterable(paragraph_json["qas"]): question_text = question_answer["question"].strip().replace("\n", "") is_impossible = question_answer.get("is_impossible", False) if is_impossible: answer_texts: List[str] = [] span_starts: List[int] = [] span_ends: List[int] = [] else: answer_texts = [answer["text"] for answer in question_answer["answers"]] span_starts = [ answer["answer_start"] for answer in question_answer["answers"] ] span_ends = [ start + len(answer) for start, answer in zip(span_starts, answer_texts) ] additional_metadata = {"id": question_answer.get("id", None)} instance = self.text_to_instance( question_text, paragraph, is_impossible=is_impossible, char_spans=zip(span_starts, span_ends), answer_texts=answer_texts, passage_tokens=tokenized_paragraph, additional_metadata=additional_metadata, ) if instance is not None: yield instance def text_to_instance( self, # type: ignore question_text: str, passage_text: str, is_impossible: bool = None, char_spans: Iterable[Tuple[int, int]] = None, answer_texts: List[str] = None, passage_tokens: List[Token] = None, additional_metadata: Dict[str, Any] = None, ) -> Optional[Instance]: if not passage_tokens: passage_tokens = self._tokenizer.tokenize(passage_text) if self.no_answer_token is not None: if self.passage_length_limit is not None: passage_tokens = passage_tokens[: self.passage_length_limit - 1] passage_tokens = passage_tokens + [ Token( text=self.no_answer_token, idx=passage_tokens[-1].idx + len(passage_tokens[-1].text) + 1, # type: ignore lemma_=self.no_answer_token, ) ] elif self.passage_length_limit is not None: passage_tokens = passage_tokens[: self.passage_length_limit] question_tokens = self._tokenizer.tokenize(question_text) if self.question_length_limit is not None: question_tokens = question_tokens[: self.question_length_limit] if is_impossible: if self.no_answer_token is None: raise ValueError( "This is a SQuAD 2.0 dataset, yet your using a SQuAD reader has 'no_answer_token' " "set to `None`. " "Consider specifying the 'no_answer_token' or using the 'squad2' reader instead, which " f"by default uses '{SQUAD2_NO_ANSWER_TOKEN}' as the 'no_answer_token'." ) answer_texts = [self.no_answer_token] token_spans: List[Tuple[int, int]] = [ (len(passage_tokens) - 1, len(passage_tokens) - 1) ] else: char_spans = char_spans or [] # We need to convert character indices in `passage_text` to token indices in # `passage_tokens`, as the latter is what we'll actually use for supervision. token_spans = [] passage_offsets = [(token.idx, token.idx + len(token.text)) for token in passage_tokens] for char_span_start, char_span_end in char_spans: if char_span_end > passage_offsets[-1][1]: continue (span_start, span_end), error = utils.char_span_to_token_span( passage_offsets, (char_span_start, char_span_end) ) if error: logger.debug("Passage: %s", passage_text) logger.debug("Passage tokens (with no-answer): %s", passage_tokens) logger.debug("Question text: %s", question_text) logger.debug("Answer span: (%d, %d)", char_span_start, char_span_end) logger.debug("Token span: (%d, %d)", span_start, span_end) logger.debug( "Tokens in answer: %s", passage_tokens[span_start : span_end + 1], ) logger.debug("Answer: %s", passage_text[char_span_start:char_span_end]) token_spans.append((span_start, span_end)) # The original answer is filtered out if char_spans and not token_spans: if self.skip_impossible_questions: return None else: if self.no_answer_token is not None: answer_texts = [self.no_answer_token] token_spans.append( ( len(passage_tokens) - 1, len(passage_tokens) - 1, ) ) return utils.make_reading_comprehension_instance( question_tokens, passage_tokens, self._token_indexers, passage_text, token_spans, answer_texts, additional_metadata, ) @classmethod def squad1( cls, tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None, passage_length_limit: int = None, question_length_limit: int = None, skip_impossible_questions: bool = False, **kwargs, ) -> "SquadReader": """ Gives a `SquadReader` suitable for SQuAD v1.1. """ return cls( tokenizer=tokenizer, token_indexers=token_indexers, passage_length_limit=passage_length_limit, question_length_limit=question_length_limit, skip_impossible_questions=skip_impossible_questions, no_answer_token=None, **kwargs, ) @classmethod def squad2( cls, tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None, passage_length_limit: int = None, question_length_limit: int = None, skip_impossible_questions: bool = False, no_answer_token: str = SQUAD2_NO_ANSWER_TOKEN, **kwargs, ) -> "SquadReader": """ Gives a `SquadReader` suitable for SQuAD v2.0. """ return cls( tokenizer=tokenizer, token_indexers=token_indexers, passage_length_limit=passage_length_limit, question_length_limit=question_length_limit, skip_impossible_questions=skip_impossible_questions, no_answer_token=no_answer_token, **kwargs, ) DatasetReader.register("squad1", constructor="squad1")(SquadReader) DatasetReader.register("squad2", constructor="squad2")(SquadReader)
allennlp-models-main
allennlp_models/rc/dataset_readers/squad.py
""" Utilities for reading comprehension dataset readers. """ from collections import Counter, defaultdict import logging import string from typing import Any, Dict, List, Tuple, Optional, Union from allennlp.data.fields import ( Field, TextField, IndexField, MetadataField, LabelField, ListField, SequenceLabelField, ) from allennlp.data.instance import Instance from allennlp.data.token_indexers import TokenIndexer from allennlp.data.tokenizers import Token logger = logging.getLogger(__name__) # These are tokens and characters that are stripped by the standard SQuAD and TriviaQA evaluation # scripts. IGNORED_TOKENS = {"a", "an", "the"} STRIPPED_CHARACTERS = string.punctuation + "".join(["β€˜", "’", "Β΄", "`", "_"]) def normalize_text(text: str) -> str: """ Performs a normalization that is very similar to that done by the normalization functions in SQuAD and TriviaQA. This involves splitting and rejoining the text, and could be a somewhat expensive operation. """ return " ".join( [ token for token in text.lower().strip(STRIPPED_CHARACTERS).split() if token not in IGNORED_TOKENS ] ) def char_span_to_token_span( token_offsets: List[Optional[Tuple[int, int]]], character_span: Tuple[int, int] ) -> Tuple[Tuple[int, int], bool]: """ Converts a character span from a passage into the corresponding token span in the tokenized version of the passage. If you pass in a character span that does not correspond to complete tokens in the tokenized version, we'll do our best, but the behavior is officially undefined. We return an error flag in this case, and have some debug logging so you can figure out the cause of this issue (in SQuAD, these are mostly either tokenization problems or annotation problems; there's a fair amount of both). The basic outline of this method is to find the token span that has the same offsets as the input character span. If the tokenizer tokenized the passage correctly and has matching offsets, this is easy. We try to be a little smart about cases where they don't match exactly, but mostly just find the closest thing we can. The returned ``(begin, end)`` indices are `inclusive` for both ``begin`` and ``end``. So, for example, ``(2, 2)`` is the one word span beginning at token index 2, ``(3, 4)`` is the two-word span beginning at token index 3, and so on. Returns ------- token_span : ``Tuple[int, int]`` `Inclusive` span start and end token indices that match as closely as possible to the input character spans. error : ``bool`` Whether there was an error while matching the token spans exactly. If this is ``True``, it means there was an error in either the tokenization or the annotated character span. If this is ``False``, it means that we found tokens that match the character span exactly. """ error = False start_index = 0 while start_index < len(token_offsets) and ( token_offsets[start_index] is None or token_offsets[start_index][0] < character_span[0] ): start_index += 1 # If we overshot and the token prior to start_index ends after the first character, back up. if ( start_index > 0 and token_offsets[start_index - 1] is not None and token_offsets[start_index - 1][1] > character_span[0] ) or ( start_index <= len(token_offsets) and token_offsets[start_index] is not None and token_offsets[start_index][0] > character_span[0] ): start_index -= 1 if start_index >= len(token_offsets): raise ValueError("Could not find the start token given the offsets.") if token_offsets[start_index] is None or token_offsets[start_index][0] != character_span[0]: error = True end_index = start_index while end_index < len(token_offsets) and ( token_offsets[end_index] is None or token_offsets[end_index][1] < character_span[1] ): end_index += 1 if end_index == len(token_offsets): # We want a character span that goes beyond the last token. Let's see if this is salvageable. # We consider this salvageable if the span we're looking for starts before the last token ends. # In other words, we don't salvage if the whole span comes after the tokens end. if character_span[0] < token_offsets[-1][1]: # We also want to make sure we aren't way off. We need to be within 8 characters to salvage. if character_span[1] - 8 < token_offsets[-1][1]: end_index -= 1 if end_index >= len(token_offsets): raise ValueError("Character span %r outside the range of the given tokens.") if end_index == start_index and token_offsets[end_index][1] > character_span[1]: # Looks like there was a token that should have been split, like "1854-1855", where the # answer is "1854". We can't do much in this case, except keep the answer as the whole # token. logger.debug("Bad tokenization - end offset doesn't match") elif token_offsets[end_index][1] > character_span[1]: # This is a case where the given answer span is more than one token, and the last token is # cut off for some reason, like "split with Luckett and Rober", when the original passage # said "split with Luckett and Roberson". In this case, we'll just keep the end index # where it is, and assume the intent was to mark the whole token. logger.debug("Bad labelling or tokenization - end offset doesn't match") if token_offsets[end_index][1] != character_span[1]: error = True return (start_index, end_index), error def find_valid_answer_spans( passage_tokens: List[Token], answer_texts: List[str] ) -> List[Tuple[int, int]]: """ Finds a list of token spans in ``passage_tokens`` that match the given ``answer_texts``. This tries to find all spans that would evaluate to correct given the SQuAD and TriviaQA official evaluation scripts, which do some normalization of the input text. Note that this could return duplicate spans! The caller is expected to be able to handle possible duplicates (as already happens in the SQuAD dev set, for instance). """ normalized_tokens = [token.text.lower().strip(STRIPPED_CHARACTERS) for token in passage_tokens] # Because there could be many `answer_texts`, we'll do the most expensive pre-processing # step once. This gives us a map from tokens to the position in the passage they appear. word_positions: Dict[str, List[int]] = defaultdict(list) for i, token in enumerate(normalized_tokens): word_positions[token].append(i) spans = [] for answer_text in answer_texts: # For each answer, we'll first find all valid start positions in the passage. Then # we'll grow each span to the same length as the number of answer tokens, and see if we # have a match. We're a little tricky as we grow the span, skipping words that are # already pruned from the normalized answer text, and stopping early if we don't match. answer_tokens = answer_text.lower().strip(STRIPPED_CHARACTERS).split() num_answer_tokens = len(answer_tokens) for span_start in word_positions[answer_tokens[0]]: span_end = span_start # span_end is _inclusive_ answer_index = 1 while answer_index < num_answer_tokens and span_end + 1 < len(normalized_tokens): token = normalized_tokens[span_end + 1] if answer_tokens[answer_index] == token: answer_index += 1 span_end += 1 elif token in IGNORED_TOKENS: span_end += 1 else: break if num_answer_tokens == answer_index: spans.append((span_start, span_end)) return spans def make_reading_comprehension_instance( question_tokens: List[Token], passage_tokens: List[Token], token_indexers: Dict[str, TokenIndexer], passage_text: str, token_spans: List[Tuple[int, int]] = None, answer_texts: List[str] = None, additional_metadata: Dict[str, Any] = None, ) -> Instance: """ Converts a question, a passage, and an optional answer (or answers) to an ``Instance`` for use in a reading comprehension model. Creates an ``Instance`` with at least these fields: ``question`` and ``passage``, both ``TextFields``; and ``metadata``, a ``MetadataField``. Additionally, if both ``answer_texts`` and ``char_span_starts`` are given, the ``Instance`` has ``span_start`` and ``span_end`` fields, which are both ``IndexFields``. # Parameters question_tokens : `List[Token]` An already-tokenized question. passage_tokens : `List[Token]` An already-tokenized passage that contains the answer to the given question. token_indexers : `Dict[str, TokenIndexer]` Determines how the question and passage `TextFields` will be converted into tensors that get input to a model. See :class:`TokenIndexer`. passage_text : `str` The original passage text. We need this so that we can recover the actual span from the original passage that the model predicts as the answer to the question. This is used in official evaluation scripts. token_spans : `List[Tuple[int, int]]`, optional Indices into ``passage_tokens`` to use as the answer to the question for training. This is a list because there might be several possible correct answer spans in the passage. Currently, we just select the most frequent span in this list (i.e., SQuAD has multiple annotations on the dev set; this will select the span that the most annotators gave as correct). answer_texts : `List[str]`, optional All valid answer strings for the given question. In SQuAD, e.g., the training set has exactly one answer per question, but the dev and test sets have several. TriviaQA has many possible answers, which are the aliases for the known correct entity. This is put into the metadata for use with official evaluation scripts, but not used anywhere else. additional_metadata : `Dict[str, Any]`, optional The constructed ``metadata`` field will by default contain ``original_passage``, ``token_offsets``, ``question_tokens``, ``passage_tokens``, and ``answer_texts`` keys. If you want any other metadata to be associated with each instance, you can pass that in here. This dictionary will get added to the ``metadata`` dictionary we already construct. """ additional_metadata = additional_metadata or {} fields: Dict[str, Field] = {} passage_offsets = [(token.idx, token.idx + len(token.text)) for token in passage_tokens] # This is separate so we can reference it later with a known type. passage_field = TextField(passage_tokens, token_indexers) fields["passage"] = passage_field fields["question"] = TextField(question_tokens, token_indexers) metadata = { "original_passage": passage_text, "token_offsets": passage_offsets, "question_tokens": [token.text for token in question_tokens], "passage_tokens": [token.text for token in passage_tokens], } if answer_texts: metadata["answer_texts"] = answer_texts if token_spans: # There may be multiple answer annotations, so we pick the one that occurs the most. This # only matters on the SQuAD dev set, and it means our computed metrics ("start_acc", # "end_acc", and "span_acc") aren't quite the same as the official metrics, which look at # all of the annotations. This is why we have a separate official SQuAD metric calculation # (the "em" and "f1" metrics use the official script). candidate_answers: Counter = Counter() for span_start, span_end in token_spans: candidate_answers[(span_start, span_end)] += 1 span_start, span_end = candidate_answers.most_common(1)[0][0] fields["span_start"] = IndexField(span_start, passage_field) fields["span_end"] = IndexField(span_end, passage_field) metadata.update(additional_metadata) fields["metadata"] = MetadataField(metadata) return Instance(fields) def make_reading_comprehension_instance_quac( question_list_tokens: List[List[Token]], passage_tokens: List[Token], token_indexers: Dict[str, TokenIndexer], passage_text: str, token_span_lists: List[List[Tuple[int, int]]] = None, yesno_list: Union[List[int], List[str]] = None, followup_list: Union[List[int], List[str]] = None, additional_metadata: Dict[str, Any] = None, num_context_answers: int = 0, ) -> Instance: """ Converts a question, a passage, and an optional answer (or answers) to an ``Instance`` for use in a reading comprehension model. Creates an ``Instance`` with at least these fields: ``question`` and ``passage``, both ``TextFields``; and ``metadata``, a ``MetadataField``. Additionally, if both ``answer_texts`` and ``char_span_starts`` are given, the ``Instance`` has ``span_start`` and ``span_end`` fields, which are both ``IndexFields``. # Parameters question_list_tokens : `List[List[Token]]` An already-tokenized list of questions. Each dialog have multiple questions. passage_tokens : `List[Token]` An already-tokenized passage that contains the answer to the given question. token_indexers : `Dict[str, TokenIndexer]` Determines how the question and passage `TextFields` will be converted into tensors that get input to a model. See :class:`TokenIndexer`. passage_text : `str` The original passage text. We need this so that we can recover the actual span from the original passage that the model predicts as the answer to the question. This is used in official evaluation scripts. token_span_lists : `List[List[Tuple[int, int]]]`, optional Indices into `passage_tokens` to use as the answer to the question for training. This is a list of list, first because there is multiple questions per dialog, and because there might be several possible correct answer spans in the passage. Currently, we just select the last span in this list (i.e., QuAC has multiple annotations on the dev set; this will select the last span, which was given by the original annotator). yesno_list : `List[int]` List of the affirmation bit for each question answer pairs. followup_list : `List[int]` List of the continuation bit for each question answer pairs. num_context_answers : `int`, optional How many answers to encode into the passage. additional_metadata : `Dict[str, Any]`, optional The constructed `metadata` field will by default contain `original_passage`, ``token_offsets``, ``question_tokens``, ``passage_tokens``, and ``answer_texts`` keys. If you want any other metadata to be associated with each instance, you can pass that in here. This dictionary will get added to the ``metadata`` dictionary we already construct. """ additional_metadata = additional_metadata or {} fields: Dict[str, Field] = {} passage_offsets = [(token.idx, token.idx + len(token.text)) for token in passage_tokens] # This is separate so we can reference it later with a known type. passage_field = TextField(passage_tokens, token_indexers) fields["passage"] = passage_field fields["question"] = ListField( [TextField(q_tokens, token_indexers) for q_tokens in question_list_tokens] ) metadata = { "original_passage": passage_text, "token_offsets": passage_offsets, "question_tokens": [ [token.text for token in question_tokens] for question_tokens in question_list_tokens ], "passage_tokens": [token.text for token in passage_tokens], } p1_answer_marker_list: List[Field] = [] p2_answer_marker_list: List[Field] = [] p3_answer_marker_list: List[Field] = [] def get_tag(i, i_name): # Generate a tag to mark previous answer span in the passage. return "<{0:d}_{1:s}>".format(i, i_name) def mark_tag(span_start, span_end, passage_tags, prev_answer_distance): try: assert span_start >= 0 assert span_end >= 0 except: # noqa raise ValueError( "Previous {0:d}th answer span should have been updated!".format( prev_answer_distance ) ) # Modify "tags" to mark previous answer span. if span_start == span_end: passage_tags[prev_answer_distance][span_start] = get_tag(prev_answer_distance, "") else: passage_tags[prev_answer_distance][span_start] = get_tag(prev_answer_distance, "start") passage_tags[prev_answer_distance][span_end] = get_tag(prev_answer_distance, "end") for passage_index in range(span_start + 1, span_end): passage_tags[prev_answer_distance][passage_index] = get_tag( prev_answer_distance, "in" ) if token_span_lists: span_start_list: List[Field] = [] span_end_list: List[Field] = [] p1_span_start, p1_span_end, p2_span_start = -1, -1, -1 p2_span_end, p3_span_start, p3_span_end = -1, -1, -1 # Looping each <<answers>>. for question_index, answer_span_lists in enumerate(token_span_lists): span_start, span_end = answer_span_lists[-1] # Last one is the original answer span_start_list.append(IndexField(span_start, passage_field)) span_end_list.append(IndexField(span_end, passage_field)) prev_answer_marker_lists = [ ["O"] * len(passage_tokens), ["O"] * len(passage_tokens), ["O"] * len(passage_tokens), ["O"] * len(passage_tokens), ] if question_index > 0 and num_context_answers > 0: mark_tag(p1_span_start, p1_span_end, prev_answer_marker_lists, 1) if question_index > 1 and num_context_answers > 1: mark_tag(p2_span_start, p2_span_end, prev_answer_marker_lists, 2) if question_index > 2 and num_context_answers > 2: mark_tag(p3_span_start, p3_span_end, prev_answer_marker_lists, 3) p3_span_start = p2_span_start p3_span_end = p2_span_end p2_span_start = p1_span_start p2_span_end = p1_span_end p1_span_start = span_start p1_span_end = span_end if num_context_answers > 2: p3_answer_marker_list.append( SequenceLabelField( prev_answer_marker_lists[3], passage_field, label_namespace="answer_tags" ) ) if num_context_answers > 1: p2_answer_marker_list.append( SequenceLabelField( prev_answer_marker_lists[2], passage_field, label_namespace="answer_tags" ) ) if num_context_answers > 0: p1_answer_marker_list.append( SequenceLabelField( prev_answer_marker_lists[1], passage_field, label_namespace="answer_tags" ) ) fields["span_start"] = ListField(span_start_list) fields["span_end"] = ListField(span_end_list) if num_context_answers > 0: fields["p1_answer_marker"] = ListField(p1_answer_marker_list) if num_context_answers > 1: fields["p2_answer_marker"] = ListField(p2_answer_marker_list) if num_context_answers > 2: fields["p3_answer_marker"] = ListField(p3_answer_marker_list) fields["yesno_list"] = ListField( [LabelField(yesno, label_namespace="yesno_labels") for yesno in yesno_list] ) fields["followup_list"] = ListField( [LabelField(followup, label_namespace="followup_labels") for followup in followup_list] ) metadata.update(additional_metadata) fields["metadata"] = MetadataField(metadata) return Instance(fields) def handle_cannot(reference_answers: List[str]): """ Process a list of reference answers. If equal or more than half of the reference answers are "CANNOTANSWER", take it as gold. Otherwise, return answers that are not "CANNOTANSWER". """ num_cannot = 0 num_spans = 0 for ref in reference_answers: if ref == "CANNOTANSWER": num_cannot += 1 else: num_spans += 1 if num_cannot >= num_spans: reference_answers = ["CANNOTANSWER"] else: reference_answers = [x for x in reference_answers if x != "CANNOTANSWER"] return reference_answers def split_token_by_delimiter(token: Token, delimiter: str) -> List[Token]: split_tokens = [] char_offset = token.idx for sub_str in token.text.split(delimiter): if sub_str: split_tokens.append(Token(text=sub_str, idx=char_offset)) char_offset += len(sub_str) split_tokens.append(Token(text=delimiter, idx=char_offset)) char_offset += len(delimiter) if split_tokens: split_tokens.pop(-1) char_offset -= len(delimiter) return split_tokens else: return [token] def split_tokens_by_hyphen(tokens: List[Token]) -> List[Token]: hyphens = ["-", "–", "~"] new_tokens: List[Token] = [] for token in tokens: if any(hyphen in token.text for hyphen in hyphens): unsplit_tokens = [token] split_tokens: List[Token] = [] for hyphen in hyphens: for unsplit_token in unsplit_tokens: if hyphen in token.text: split_tokens += split_token_by_delimiter(unsplit_token, hyphen) else: split_tokens.append(unsplit_token) unsplit_tokens, split_tokens = split_tokens, [] new_tokens += unsplit_tokens else: new_tokens.append(token) return new_tokens
allennlp-models-main
allennlp_models/rc/dataset_readers/utils.py
import json import logging from typing import Any, Dict, List, Tuple, Union from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.instance import Instance from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenIndexer from allennlp.data.tokenizers import Token, Tokenizer, SpacyTokenizer from allennlp_models.rc.dataset_readers import utils logger = logging.getLogger(__name__) @DatasetReader.register("quac") class QuACReader(DatasetReader): """ Reads a JSON-formatted Question Answering in Context (QuAC) data file and returns a ``Dataset`` where the ``Instances`` have four fields: ``question``, a ``ListField``, ``passage``, another ``TextField``, and ``span_start`` and ``span_end``, both ``ListField`` composed of IndexFields`` into the ``passage`` ``TextField``. Two ``ListField``, composed of ``LabelField``, ``yesno_list`` and ``followup_list`` is added. We also add a ``MetadataField`` that stores the instance's ID, the original passage text, gold answer strings, and token offsets into the original passage, accessible as ``metadata['id']``, ``metadata['original_passage']``, ``metadata['answer_text_lists'] and ``metadata['token_offsets']``. # Parameters tokenizer : `Tokenizer`, optional (default=`SpacyTokenizer()`) We use this ``Tokenizer`` for both the question and the passage. See :class:`Tokenizer`. Default is `SpacyTokenizer()`. token_indexers : `Dict[str, TokenIndexer]`, optional We similarly use this for both the question and the passage. See :class:`TokenIndexer`. Default is `{"tokens": SingleIdTokenIndexer()}`. num_context_answers : `int`, optional How many previous question answers to consider in a context. """ def __init__( self, tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None, num_context_answers: int = 0, **kwargs, ) -> None: super().__init__(**kwargs) self._tokenizer = tokenizer or SpacyTokenizer() self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} self._num_context_answers = num_context_answers def _read(self, file_path: str): # if `file_path` is a URL, redirect to the cache file_path = cached_path(file_path) logger.info("Reading file at %s", file_path) with open(file_path) as dataset_file: dataset_json = json.load(dataset_file) dataset = dataset_json["data"] logger.info("Reading the dataset") for article in dataset: for paragraph_json in article["paragraphs"]: paragraph = paragraph_json["context"] tokenized_paragraph = self._tokenizer.tokenize(paragraph) qas = paragraph_json["qas"] metadata = {} metadata["instance_id"] = [qa["id"] for qa in qas] question_text_list = [qa["question"].strip().replace("\n", "") for qa in qas] answer_texts_list = [[answer["text"] for answer in qa["answers"]] for qa in qas] metadata["question"] = question_text_list metadata["answer_texts_list"] = answer_texts_list span_starts_list = [ [answer["answer_start"] for answer in qa["answers"]] for qa in qas ] span_ends_list = [] for answer_starts, an_list in zip(span_starts_list, answer_texts_list): span_ends = [ start + len(answer) for start, answer in zip(answer_starts, an_list) ] span_ends_list.append(span_ends) yesno_list = [str(qa["yesno"]) for qa in qas] followup_list = [str(qa["followup"]) for qa in qas] instance = self.text_to_instance( question_text_list, paragraph, span_starts_list, span_ends_list, tokenized_paragraph, yesno_list, followup_list, metadata, ) yield instance def text_to_instance( self, # type: ignore question_text_list: List[str], passage_text: str, start_span_list: List[List[int]] = None, end_span_list: List[List[int]] = None, passage_tokens: List[Token] = None, yesno_list: Union[List[int], List[str]] = None, followup_list: Union[List[int], List[str]] = None, additional_metadata: Dict[str, Any] = None, ) -> Instance: # We need to convert character indices in `passage_text` to token indices in # `passage_tokens`, as the latter is what we'll actually use for supervision. answer_token_span_list = [] passage_offsets = [(token.idx, token.idx + len(token.text)) for token in passage_tokens] for start_list, end_list in zip(start_span_list, end_span_list): token_spans: List[Tuple[int, int]] = [] for char_span_start, char_span_end in zip(start_list, end_list): (span_start, span_end), error = utils.char_span_to_token_span( passage_offsets, (char_span_start, char_span_end) ) if error: logger.debug("Passage: %s", passage_text) logger.debug("Passage tokens: %s", passage_tokens) logger.debug("Answer span: (%d, %d)", char_span_start, char_span_end) logger.debug("Token span: (%d, %d)", span_start, span_end) logger.debug("Tokens in answer: %s", passage_tokens[span_start : span_end + 1]) logger.debug("Answer: %s", passage_text[char_span_start:char_span_end]) token_spans.append((span_start, span_end)) answer_token_span_list.append(token_spans) question_list_tokens = [self._tokenizer.tokenize(q) for q in question_text_list] # Map answer texts to "CANNOTANSWER" if more than half of them marked as so. additional_metadata["answer_texts_list"] = [ utils.handle_cannot(ans_list) for ans_list in additional_metadata["answer_texts_list"] ] return utils.make_reading_comprehension_instance_quac( question_list_tokens, passage_tokens, self._token_indexers, passage_text, answer_token_span_list, yesno_list, followup_list, additional_metadata, self._num_context_answers, )
allennlp-models-main
allennlp_models/rc/dataset_readers/quac.py
import itertools import json import logging import string from collections import defaultdict from typing import Dict, List, Union, Tuple, Any from word2number.w2n import word_to_num from allennlp.common.file_utils import cached_path from allennlp.data.fields import ( Field, TextField, MetadataField, LabelField, ListField, SequenceLabelField, SpanField, IndexField, ) from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.instance import Instance from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenIndexer from allennlp.data.tokenizers import Token, Tokenizer, SpacyTokenizer from allennlp_models.rc.dataset_readers.utils import ( IGNORED_TOKENS, STRIPPED_CHARACTERS, make_reading_comprehension_instance, split_tokens_by_hyphen, ) logger = logging.getLogger(__name__) WORD_NUMBER_MAP = { "zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9, "ten": 10, "eleven": 11, "twelve": 12, "thirteen": 13, "fourteen": 14, "fifteen": 15, "sixteen": 16, "seventeen": 17, "eighteen": 18, "nineteen": 19, } @DatasetReader.register("drop") class DropReader(DatasetReader): """ Reads a JSON-formatted DROP dataset file and returns instances in a few different possible formats. The input format is complicated; see the test fixture for an example of what it looks like. The output formats all contain a question ``TextField``, a passage ``TextField``, and some kind of answer representation. Because DROP has instances with several different kinds of answers, this dataset reader allows you to filter out questions that do not have answers of a particular type (e.g., remove questions that have numbers as answers, if you model can only give passage spans as answers). We typically return all possible ways of arriving at a given answer string, and expect models to marginalize over these possibilities. # Parameters tokenizer : `Tokenizer`, optional (default=`SpacyTokenizer()`) We use this `Tokenizer` for both the question and the passage. See :class:`Tokenizer`. Default is `SpacyTokenizer()`. token_indexers : `Dict[str, TokenIndexer]`, optional We similarly use this for both the question and the passage. See :class:`TokenIndexer`. Default is `{"tokens": SingleIdTokenIndexer()}`. passage_length_limit : `int`, optional (default=`None`) If specified, we will cut the passage if the length of passage exceeds this limit. question_length_limit : `int`, optional (default=`None`) If specified, we will cut the question if the length of passage exceeds this limit. skip_when_all_empty: `List[str]`, optional (default=`None`) In some cases such as preparing for training examples, you may want to skip some examples when there are no gold labels. You can specify on what condition should the examples be skipped. Currently, you can put "passage_span", "question_span", "addition_subtraction", or "counting" in this list, to tell the reader skip when there are no such label found. If not specified, we will keep all the examples. instance_format: `str`, optional (default=`"drop"`) We try to be generous in providing a few different formats for the instances in DROP, in terms of the `Fields` that we return for each `Instance`, to allow for several different kinds of models. "drop" format will do processing to detect numbers and various ways those numbers can be arrived at from the passage, and return `Fields` related to that. "bert" format only allows passage spans as answers, and provides a "question_and_passage" field with the two pieces of text joined as BERT expects. "squad" format provides the same fields that our BiDAF and other SQuAD models expect. relaxed_span_match_for_finding_labels : `bool`, optional (default=`True`) DROP dataset contains multi-span answers, and the date-type answers are usually hard to find exact span matches for, also. In order to use as many examples as possible to train the model, we may not want a strict match for such cases when finding the gold span labels. If this argument is true, we will treat every span in the multi-span answers as correct, and every token in the date answer as correct, too. Because models trained on DROP typically marginalize over all possible answer positions, this is just being a little more generous in what is being marginalized. Note that this will not affect evaluation. """ def __init__( self, tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None, passage_length_limit: int = None, question_length_limit: int = None, skip_when_all_empty: List[str] = None, instance_format: str = "drop", relaxed_span_match_for_finding_labels: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) self._tokenizer = tokenizer or SpacyTokenizer() self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} self.passage_length_limit = passage_length_limit self.question_length_limit = question_length_limit self.skip_when_all_empty = skip_when_all_empty if skip_when_all_empty is not None else [] for item in self.skip_when_all_empty: assert item in [ "passage_span", "question_span", "addition_subtraction", "counting", ], f"Unsupported skip type: {item}" self.instance_format = instance_format self.relaxed_span_match_for_finding_labels = relaxed_span_match_for_finding_labels def _read(self, file_path: str): # if `file_path` is a URL, redirect to the cache file_path = cached_path(file_path, extract_archive=True) logger.info("Reading file at %s", file_path) with open(file_path) as dataset_file: dataset = json.load(dataset_file) logger.info("Reading the dataset") kept_count, skip_count = 0, 0 for passage_id, passage_info in dataset.items(): passage_text = passage_info["passage"] passage_tokens = self._tokenizer.tokenize(passage_text) passage_tokens = split_tokens_by_hyphen(passage_tokens) for question_answer in passage_info["qa_pairs"]: question_id = question_answer["query_id"] question_text = question_answer["question"].strip() answer_annotations = [] if "answer" in question_answer: answer_annotations.append(question_answer["answer"]) if "validated_answers" in question_answer: answer_annotations += question_answer["validated_answers"] instance = self.text_to_instance( question_text, passage_text, question_id, passage_id, answer_annotations, passage_tokens, ) if instance is not None: kept_count += 1 yield instance else: skip_count += 1 logger.info(f"Skipped {skip_count} questions, kept {kept_count} questions.") def text_to_instance( self, # type: ignore question_text: str, passage_text: str, question_id: str = None, passage_id: str = None, answer_annotations: List[Dict] = None, passage_tokens: List[Token] = None, ) -> Union[Instance, None]: if not passage_tokens: passage_tokens = self._tokenizer.tokenize(passage_text) passage_tokens = split_tokens_by_hyphen(passage_tokens) question_tokens = self._tokenizer.tokenize(question_text) question_tokens = split_tokens_by_hyphen(question_tokens) if self.passage_length_limit is not None: passage_tokens = passage_tokens[: self.passage_length_limit] if self.question_length_limit is not None: question_tokens = question_tokens[: self.question_length_limit] answer_type: str = None answer_texts: List[str] = [] if answer_annotations: # Currently we only use the first annotated answer here, but actually this doesn't affect # the training, because we only have one annotation for the train set. answer_type, answer_texts = self.extract_answer_info_from_annotation( answer_annotations[0] ) # Tokenize the answer text in order to find the matched span based on token tokenized_answer_texts = [] for answer_text in answer_texts: answer_tokens = self._tokenizer.tokenize(answer_text) answer_tokens = split_tokens_by_hyphen(answer_tokens) tokenized_answer_texts.append(" ".join(token.text for token in answer_tokens)) if self.instance_format == "squad": valid_passage_spans = ( self.find_valid_spans(passage_tokens, tokenized_answer_texts) if tokenized_answer_texts else [] ) if not valid_passage_spans: if "passage_span" in self.skip_when_all_empty: return None else: valid_passage_spans.append((len(passage_tokens) - 1, len(passage_tokens) - 1)) return make_reading_comprehension_instance( question_tokens, passage_tokens, self._token_indexers, passage_text, valid_passage_spans, # this `answer_texts` will not be used for evaluation answer_texts, additional_metadata={ "original_passage": passage_text, "original_question": question_text, "passage_id": passage_id, "question_id": question_id, "valid_passage_spans": valid_passage_spans, "answer_annotations": answer_annotations, }, ) elif self.instance_format == "bert": question_concat_passage_tokens = question_tokens + [Token("[SEP]")] + passage_tokens valid_passage_spans = [] for span in self.find_valid_spans(passage_tokens, tokenized_answer_texts): # This span is for `question + [SEP] + passage`. valid_passage_spans.append( (span[0] + len(question_tokens) + 1, span[1] + len(question_tokens) + 1) ) if not valid_passage_spans: if "passage_span" in self.skip_when_all_empty: return None else: valid_passage_spans.append( ( len(question_concat_passage_tokens) - 1, len(question_concat_passage_tokens) - 1, ) ) answer_info = { "answer_texts": answer_texts, # this `answer_texts` will not be used for evaluation "answer_passage_spans": valid_passage_spans, } return self.make_bert_drop_instance( question_tokens, passage_tokens, question_concat_passage_tokens, self._token_indexers, passage_text, answer_info, additional_metadata={ "original_passage": passage_text, "original_question": question_text, "passage_id": passage_id, "question_id": question_id, "answer_annotations": answer_annotations, }, ) elif self.instance_format == "drop": numbers_in_passage = [] number_indices = [] for token_index, token in enumerate(passage_tokens): number = self.convert_word_to_number(token.text) if number is not None: numbers_in_passage.append(number) number_indices.append(token_index) # hack to guarantee minimal length of padded number numbers_in_passage.append(0) number_indices.append(-1) numbers_as_tokens = [Token(str(number)) for number in numbers_in_passage] valid_passage_spans = ( self.find_valid_spans(passage_tokens, tokenized_answer_texts) if tokenized_answer_texts else [] ) valid_question_spans = ( self.find_valid_spans(question_tokens, tokenized_answer_texts) if tokenized_answer_texts else [] ) target_numbers = [] # `answer_texts` is a list of valid answers. for answer_text in answer_texts: number = self.convert_word_to_number(answer_text) if number is not None: target_numbers.append(number) valid_signs_for_add_sub_expressions: List[List[int]] = [] valid_counts: List[int] = [] if answer_type in ["number", "date"]: valid_signs_for_add_sub_expressions = self.find_valid_add_sub_expressions( numbers_in_passage, target_numbers ) if answer_type in ["number"]: # Currently we only support count number 0 ~ 9 numbers_for_count = list(range(10)) valid_counts = self.find_valid_counts(numbers_for_count, target_numbers) type_to_answer_map = { "passage_span": valid_passage_spans, "question_span": valid_question_spans, "addition_subtraction": valid_signs_for_add_sub_expressions, "counting": valid_counts, } if self.skip_when_all_empty and not any( type_to_answer_map[skip_type] for skip_type in self.skip_when_all_empty ): return None answer_info = { "answer_texts": answer_texts, # this `answer_texts` will not be used for evaluation "answer_passage_spans": valid_passage_spans, "answer_question_spans": valid_question_spans, "signs_for_add_sub_expressions": valid_signs_for_add_sub_expressions, "counts": valid_counts, } return self.make_marginal_drop_instance( question_tokens, passage_tokens, numbers_as_tokens, number_indices, self._token_indexers, passage_text, answer_info, additional_metadata={ "original_passage": passage_text, "original_question": question_text, "original_numbers": numbers_in_passage, "passage_id": passage_id, "question_id": question_id, "answer_info": answer_info, "answer_annotations": answer_annotations, }, ) else: raise ValueError( f'Expect the instance format to be "drop", "squad" or "bert", ' f"but got {self.instance_format}" ) @staticmethod def make_marginal_drop_instance( question_tokens: List[Token], passage_tokens: List[Token], number_tokens: List[Token], number_indices: List[int], token_indexers: Dict[str, TokenIndexer], passage_text: str, answer_info: Dict[str, Any] = None, additional_metadata: Dict[str, Any] = None, ) -> Instance: additional_metadata = additional_metadata or {} fields: Dict[str, Field] = {} passage_offsets = [(token.idx, token.idx + len(token.text)) for token in passage_tokens] question_offsets = [(token.idx, token.idx + len(token.text)) for token in question_tokens] # This is separate so we can reference it later with a known type. passage_field = TextField(passage_tokens, token_indexers) question_field = TextField(question_tokens, token_indexers) fields["passage"] = passage_field fields["question"] = question_field number_index_fields: List[Field] = [ IndexField(index, passage_field) for index in number_indices ] fields["number_indices"] = ListField(number_index_fields) # This field is actually not required in the model, # it is used to create the `answer_as_plus_minus_combinations` field, which is a `SequenceLabelField`. # We cannot use `number_indices` field for creating that, because the `ListField` will not be empty # when we want to create a new empty field. That will lead to error. numbers_in_passage_field = TextField(number_tokens, token_indexers) metadata = { "original_passage": passage_text, "passage_token_offsets": passage_offsets, "question_token_offsets": question_offsets, "question_tokens": [token.text for token in question_tokens], "passage_tokens": [token.text for token in passage_tokens], "number_tokens": [token.text for token in number_tokens], "number_indices": number_indices, } if answer_info: metadata["answer_texts"] = answer_info["answer_texts"] passage_span_fields: List[Field] = [ SpanField(span[0], span[1], passage_field) for span in answer_info["answer_passage_spans"] ] if not passage_span_fields: passage_span_fields.append(SpanField(-1, -1, passage_field)) fields["answer_as_passage_spans"] = ListField(passage_span_fields) question_span_fields: List[Field] = [ SpanField(span[0], span[1], question_field) for span in answer_info["answer_question_spans"] ] if not question_span_fields: question_span_fields.append(SpanField(-1, -1, question_field)) fields["answer_as_question_spans"] = ListField(question_span_fields) add_sub_signs_field: List[Field] = [] for signs_for_one_add_sub_expression in answer_info["signs_for_add_sub_expressions"]: add_sub_signs_field.append( SequenceLabelField(signs_for_one_add_sub_expression, numbers_in_passage_field) ) if not add_sub_signs_field: add_sub_signs_field.append( SequenceLabelField([0] * len(number_tokens), numbers_in_passage_field) ) fields["answer_as_add_sub_expressions"] = ListField(add_sub_signs_field) count_fields: List[Field] = [ LabelField(count_label, skip_indexing=True) for count_label in answer_info["counts"] ] if not count_fields: count_fields.append(LabelField(-1, skip_indexing=True)) fields["answer_as_counts"] = ListField(count_fields) metadata.update(additional_metadata) fields["metadata"] = MetadataField(metadata) return Instance(fields) @staticmethod def make_bert_drop_instance( question_tokens: List[Token], passage_tokens: List[Token], question_concat_passage_tokens: List[Token], token_indexers: Dict[str, TokenIndexer], passage_text: str, answer_info: Dict[str, Any] = None, additional_metadata: Dict[str, Any] = None, ) -> Instance: additional_metadata = additional_metadata or {} fields: Dict[str, Field] = {} passage_offsets = [(token.idx, token.idx + len(token.text)) for token in passage_tokens] # This is separate so we can reference it later with a known type. passage_field = TextField(passage_tokens, token_indexers) question_field = TextField(question_tokens, token_indexers) fields["passage"] = passage_field fields["question"] = question_field question_and_passage_field = TextField(question_concat_passage_tokens, token_indexers) fields["question_and_passage"] = question_and_passage_field metadata = { "original_passage": passage_text, "passage_token_offsets": passage_offsets, "question_tokens": [token.text for token in question_tokens], "passage_tokens": [token.text for token in passage_tokens], } if answer_info: metadata["answer_texts"] = answer_info["answer_texts"] passage_span_fields: List[Field] = [ SpanField(span[0], span[1], question_and_passage_field) for span in answer_info["answer_passage_spans"] ] if not passage_span_fields: passage_span_fields.append(SpanField(-1, -1, question_and_passage_field)) fields["answer_as_passage_spans"] = ListField(passage_span_fields) metadata.update(additional_metadata) fields["metadata"] = MetadataField(metadata) return Instance(fields) @staticmethod def extract_answer_info_from_annotation( answer_annotation: Dict[str, Any] ) -> Tuple[str, List[str]]: answer_type = None if answer_annotation["spans"]: answer_type = "spans" elif answer_annotation["number"]: answer_type = "number" elif any(answer_annotation["date"].values()): answer_type = "date" answer_content = answer_annotation[answer_type] if answer_type is not None else None answer_texts: List[str] = [] if answer_type is None: # No answer pass elif answer_type == "spans": # answer_content is a list of string in this case answer_texts = answer_content elif answer_type == "date": # answer_content is a dict with "month", "day", "year" as the keys date_tokens = [ answer_content[key] for key in ["month", "day", "year"] if key in answer_content and answer_content[key] ] answer_texts = date_tokens elif answer_type == "number": # answer_content is a string of number answer_texts = [answer_content] return answer_type, answer_texts @staticmethod def convert_word_to_number(word: str, try_to_include_more_numbers=False): """ Currently we only support limited types of conversion. """ if try_to_include_more_numbers: # strip all punctuations from the sides of the word, except for the negative sign punctruations = string.punctuation.replace("-", "") word = word.strip(punctruations) # some words may contain the comma as deliminator word = word.replace(",", "") # word2num will convert hundred, thousand ... to number, but we skip it. if word in ["hundred", "thousand", "million", "billion", "trillion"]: return None try: number = word_to_num(word) except ValueError: try: number = int(word) except ValueError: try: number = float(word) except ValueError: number = None return number else: no_comma_word = word.replace(",", "") if no_comma_word in WORD_NUMBER_MAP: number = WORD_NUMBER_MAP[no_comma_word] else: try: number = int(no_comma_word) except ValueError: number = None return number @staticmethod def find_valid_spans( passage_tokens: List[Token], answer_texts: List[str] ) -> List[Tuple[int, int]]: normalized_tokens = [ token.text.lower().strip(STRIPPED_CHARACTERS) for token in passage_tokens ] word_positions: Dict[str, List[int]] = defaultdict(list) for i, token in enumerate(normalized_tokens): word_positions[token].append(i) spans = [] for answer_text in answer_texts: answer_tokens = answer_text.lower().strip(STRIPPED_CHARACTERS).split() num_answer_tokens = len(answer_tokens) if answer_tokens[0] not in word_positions: continue for span_start in word_positions[answer_tokens[0]]: span_end = span_start # span_end is _inclusive_ answer_index = 1 while answer_index < num_answer_tokens and span_end + 1 < len(normalized_tokens): token = normalized_tokens[span_end + 1] if answer_tokens[answer_index].strip(STRIPPED_CHARACTERS) == token: answer_index += 1 span_end += 1 elif token in IGNORED_TOKENS: span_end += 1 else: break if num_answer_tokens == answer_index: spans.append((span_start, span_end)) return spans @staticmethod def find_valid_add_sub_expressions( numbers: List[int], targets: List[int], max_number_of_numbers_to_consider: int = 2 ) -> List[List[int]]: valid_signs_for_add_sub_expressions = [] # TODO: Try smaller numbers? for number_of_numbers_to_consider in range(2, max_number_of_numbers_to_consider + 1): possible_signs = list(itertools.product((-1, 1), repeat=number_of_numbers_to_consider)) for number_combination in itertools.combinations( enumerate(numbers), number_of_numbers_to_consider ): indices = [it[0] for it in number_combination] values = [it[1] for it in number_combination] for signs in possible_signs: eval_value = sum(sign * value for sign, value in zip(signs, values)) if eval_value in targets: labels_for_numbers = [0] * len(numbers) # 0 represents ``not included''. for index, sign in zip(indices, signs): labels_for_numbers[index] = ( 1 if sign == 1 else 2 ) # 1 for positive, 2 for negative valid_signs_for_add_sub_expressions.append(labels_for_numbers) return valid_signs_for_add_sub_expressions @staticmethod def find_valid_counts(count_numbers: List[int], targets: List[int]) -> List[int]: valid_indices = [] for index, number in enumerate(count_numbers): if number in targets: valid_indices.append(index) return valid_indices
allennlp-models-main
allennlp_models/rc/dataset_readers/drop.py
import json import logging import os import tarfile from typing import Dict, List, Tuple from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.instance import Instance from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenIndexer from allennlp.data.tokenizers import Token, Tokenizer, SpacyTokenizer from allennlp_models.rc.dataset_readers import utils logger = logging.getLogger(__name__) @DatasetReader.register("triviaqa") class TriviaQaReader(DatasetReader): """ Reads the TriviaQA dataset into a ``Dataset`` containing ``Instances`` with four fields: ``question`` (a ``TextField``), ``passage`` (another ``TextField``), ``span_start``, and ``span_end`` (both ``IndexFields``). TriviaQA is split up into several JSON files defining the questions, and a lot of text files containing crawled web documents. We read these from a gzipped tarball, to avoid having to have millions of individual files on a filesystem. Because we need to read both train and validation files from the same tarball, we take the tarball itself as a constructor parameter, and take the question file as the argument to ``read``. This means that you should give the path to the tarball in the ``dataset_reader`` parameters in your experiment configuration file, and something like ``"wikipedia-train.json"`` for the ``train_data_path`` and ``validation_data_path``. # Parameters base_tarball_path : `str` This is the path to the main ``tar.gz`` file you can download from the TriviaQA website, with directories ``evidence`` and ``qa``. unfiltered_tarball_path : `str`, optional This is the path to the "unfiltered" TriviaQA data that you can download from the TriviaQA website, containing just question JSON files that point to evidence files in the base tarball. tokenizer : `Tokenizer`, optional We'll use this tokenizer on questions and evidence passages, defaulting to ``SpacyTokenizer`` if none is provided. token_indexers : `Dict[str, TokenIndexer]`, optional Determines how both the question and the evidence passages are represented as arrays. See :class:`TokenIndexer`. Default is to have a single word ID for every token. """ def __init__( self, base_tarball_path: str, unfiltered_tarball_path: str = None, tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None, **kwargs ) -> None: super().__init__(**kwargs) self._base_tarball_path = base_tarball_path self._unfiltered_tarball_path = unfiltered_tarball_path self._tokenizer = tokenizer or SpacyTokenizer() self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} def _read(self, file_path: str): logger.info("Opening base tarball file at %s", self._base_tarball_path) base_tarball = tarfile.open(cached_path(self._base_tarball_path), "r") if "unfiltered" in file_path: logger.info("Opening unfiltered tarball file at %s", self._unfiltered_tarball_path) unfiltered_tarball = tarfile.open(cached_path(self._unfiltered_tarball_path), "r") logger.info("Loading question file from tarball") data_json = json.loads(unfiltered_tarball.extractfile(file_path).read().decode("utf-8")) else: logger.info("Loading question file from tarball") path = os.path.join("qa", file_path) data_json = json.loads(base_tarball.extractfile(path).read().decode("utf-8")) logger.info("Reading the dataset") for question_json in data_json["Data"]: question_text = question_json["Question"] question_tokens = self._tokenizer.tokenize(question_text) evidence_files: List[List[str]] = [] # contains lines from each evidence file if "web" in file_path: for result in question_json["SearchResults"]: filename = result["Filename"] evidence_file = base_tarball.extractfile( os.path.join("evidence", "web", filename) ) evidence_files.append( [line.decode("utf-8") for line in evidence_file.readlines()] ) else: for result in question_json["EntityPages"]: filename = result["Filename"] evidence_file = base_tarball.extractfile( os.path.join("evidence", "wikipedia", filename) ) evidence_files.append( [line.decode("utf-8") for line in evidence_file.readlines()] ) answer_json = question_json["Answer"] human_answers = [ utils.normalize_text(answer) for answer in answer_json.get("HumanAnswers", []) ] answer_texts = answer_json["NormalizedAliases"] + human_answers for paragraph in self.pick_paragraphs(evidence_files, question_text, answer_texts): paragraph_tokens = self._tokenizer.tokenize(paragraph) token_spans = utils.find_valid_answer_spans(paragraph_tokens, answer_texts) if not token_spans: # For now, we'll just ignore instances that we can't find answer spans for. # Maybe we can do something smarter here later, but this will do for now. continue instance = self.text_to_instance( question_text, paragraph, token_spans, answer_texts, question_tokens, paragraph_tokens, ) yield instance def pick_paragraphs( self, evidence_files: List[List[str]], question: str = None, answer_texts: List[str] = None ) -> List[str]: """ Given a list of evidence documents, return a list of paragraphs to use as training examples. Each paragraph returned will be made into one training example. To aid in picking the best paragraph, you can also optionally pass the question text or the answer strings. Note, though, that if you actually use the answer strings for picking the paragraph on the dev or test sets, that's likely cheating, depending on how you've defined the task. """ paragraphs = [] for evidence_file in evidence_files: whole_document = " ".join(evidence_file) tokens = whole_document.split(" ") paragraph = " ".join(tokens[:400]) paragraphs.append(paragraph) return paragraphs def text_to_instance( self, # type: ignore question_text: str, passage_text: str, token_spans: List[Tuple[int, int]] = None, answer_texts: List[str] = None, question_tokens: List[Token] = None, passage_tokens: List[Token] = None, ) -> Instance: if not question_tokens: question_tokens = self._tokenizer.tokenize(question_text) if not passage_tokens: passage_tokens = self._tokenizer.tokenize(passage_text) return utils.make_reading_comprehension_instance( question_tokens, passage_tokens, self._token_indexers, passage_text, token_spans, answer_texts, )
allennlp-models-main
allennlp_models/rc/dataset_readers/triviaqa.py
import json from allennlp.common.util import JsonDict from allennlp.data import DatasetReader, Instance from allennlp.data.tokenizers.spacy_tokenizer import SpacyTokenizer from allennlp.predictors.predictor import Predictor from allennlp.models import Model @Predictor.register("dialog_qa") class DialogQAPredictor(Predictor): def __init__( self, model: Model, dataset_reader: DatasetReader, language: str = "en_core_web_sm" ) -> None: super().__init__(model, dataset_reader) self._tokenizer = SpacyTokenizer(language=language) def predict(self, jsonline: str) -> JsonDict: """ Make a dialog-style question answering prediction on the supplied input. The supplied input json must contain a list of question answer pairs, containing question, answer, yesno, followup, id as well as the context (passage). Parameters ---------- jsonline : ``str`` A json line that has the same format as the quac data file. Returns ---------- A dictionary that represents the prediction made by the system. The answer string will be under the "best_span_str" key. """ return self.predict_json(json.loads(jsonline)) def _json_to_instance(self, json_dict: JsonDict) -> Instance: """ Expects json that looks like the original quac data file. """ paragraph_json = json_dict["paragraphs"][0] paragraph = paragraph_json["context"] tokenized_paragraph = self._tokenizer.tokenize(paragraph) qas = paragraph_json["qas"] metadata = {} metadata["instance_id"] = [qa["id"] for qa in qas] question_text_list = [qa["question"].strip().replace("\n", "") for qa in qas] answer_texts_list = [[answer["text"] for answer in qa["answers"]] for qa in qas] metadata["answer_texts_list"] = answer_texts_list metadata["question"] = question_text_list span_starts_list = [[answer["answer_start"] for answer in qa["answers"]] for qa in qas] span_ends_list = [] for st_list, an_list in zip(span_starts_list, answer_texts_list): span_ends = [start + len(answer) for start, answer in zip(st_list, an_list)] span_ends_list.append(span_ends) yesno_list = [str(qa["yesno"]) for qa in qas] followup_list = [str(qa["followup"]) for qa in qas] instance = self._dataset_reader.text_to_instance( question_text_list, paragraph, span_starts_list, span_ends_list, tokenized_paragraph, yesno_list, followup_list, metadata, ) return instance
allennlp-models-main
allennlp_models/rc/predictors/dialog_qa.py
from allennlp_models.rc.predictors.bidaf import ReadingComprehensionPredictor from allennlp_models.rc.predictors.dialog_qa import DialogQAPredictor from allennlp_models.rc.predictors.transformer_qa import TransformerQAPredictor
allennlp-models-main
allennlp_models/rc/predictors/__init__.py
from typing import Dict, List import numpy from allennlp.common.util import JsonDict from allennlp.data import Instance from allennlp.predictors.predictor import Predictor from allennlp.data.fields import ( IndexField, ListField, LabelField, SpanField, SequenceLabelField, SequenceField, ) @Predictor.register("reading_comprehension") class ReadingComprehensionPredictor(Predictor): """ Predictor for the :class:`~allennlp_rc.models.bidaf.BidirectionalAttentionFlow` model, and any other model that takes a question and passage as input. """ def predict(self, question: str, passage: str) -> JsonDict: """ Make a machine comprehension prediction on the supplied input. See https://rajpurkar.github.io/SQuAD-explorer/ for more information about the machine comprehension task. Parameters ---------- question : ``str`` A question about the content in the supplied paragraph. The question must be answerable by a span in the paragraph. passage : ``str`` A paragraph of information relevant to the question. Returns ------- A dictionary that represents the prediction made by the system. The answer string will be under the "best_span_str" key. """ return self.predict_json({"passage": passage, "question": question}) def _json_to_instance(self, json_dict: JsonDict) -> Instance: """ Expects JSON that looks like ``{"question": "...", "passage": "..."}``. """ question_text = json_dict["question"] passage_text = json_dict["passage"] return self._dataset_reader.text_to_instance(question_text, passage_text) def predictions_to_labeled_instances( self, instance: Instance, outputs: Dict[str, numpy.ndarray] ) -> List[Instance]: new_instance = instance.duplicate() # For BiDAF if "best_span" in outputs: span_start_label = outputs["best_span"][0] span_end_label = outputs["best_span"][1] passage_field: SequenceField = new_instance["passage"] # type: ignore new_instance.add_field( "span_start", IndexField(int(span_start_label), passage_field), self._model.vocab ) new_instance.add_field( "span_end", IndexField(int(span_end_label), passage_field), self._model.vocab ) # For NAQANet model. It has the fields: answer_as_passage_spans, answer_as_question_spans, # answer_as_add_sub_expressions, answer_as_counts. We need labels for all. elif "answer" in outputs: answer_type = outputs["answer"]["answer_type"] # When the problem is a counting problem if answer_type == "count": field = ListField([LabelField(int(outputs["answer"]["count"]), skip_indexing=True)]) new_instance.add_field("answer_as_counts", field, self._model.vocab) # When the answer is in the passage elif answer_type == "passage_span": # TODO(mattg): Currently we only handle one predicted span. span = outputs["answer"]["spans"][0] # Convert character span indices into word span indices word_span_start = None word_span_end = None offsets = new_instance["metadata"].metadata["passage_token_offsets"] # type: ignore for index, offset in enumerate(offsets): if offset[0] == span[0]: word_span_start = index if offset[1] == span[1]: word_span_end = index passage_field: SequenceField = new_instance["passage"] # type: ignore field = ListField([SpanField(word_span_start, word_span_end, passage_field)]) new_instance.add_field("answer_as_passage_spans", field, self._model.vocab) # When the answer is an arithmetic calculation elif answer_type == "arithmetic": # The different numbers in the passage that the model encounters sequence_labels = outputs["answer"]["numbers"] numbers_field: ListField = instance["number_indices"] # type: ignore # The numbers in the passage are given signs, that's what we are labeling here. # Negative signs are given the class label 2 (for 0 and 1, the sign matches the # label). labels = [] for label in sequence_labels: if label["sign"] == -1: labels.append(2) else: labels.append(label["sign"]) # There's a dummy number added in the dataset reader to handle passages with no # numbers; it has a label of 0 (not included). labels.append(0) field = ListField([SequenceLabelField(labels, numbers_field)]) new_instance.add_field("answer_as_add_sub_expressions", field, self._model.vocab) # When the answer is in the question elif answer_type == "question_span": span = outputs["answer"]["spans"][0] # Convert character span indices into word span indices word_span_start = None word_span_end = None question_offsets = new_instance["metadata"].metadata[ # type: ignore "question_token_offsets" ] for index, offset in enumerate(question_offsets): if offset[0] == span[0]: word_span_start = index if offset[1] == span[1]: word_span_end = index question_field: SequenceField = new_instance["question"] # type: ignore field = ListField([SpanField(word_span_start, word_span_end, question_field)]) new_instance.add_field("answer_as_question_spans", field, self._model.vocab) return [new_instance]
allennlp-models-main
allennlp_models/rc/predictors/bidaf.py
import logging from typing import List, Dict, Any, Optional import numpy from allennlp.models import Model from allennlp.common.util import JsonDict, sanitize from allennlp.data import Instance, DatasetReader from allennlp.predictors.predictor import Predictor from allennlp.data.fields import SpanField logger = logging.getLogger(__name__) @Predictor.register("transformer_qa") class TransformerQAPredictor(Predictor): """ Predictor for the [`TransformerQA`](/models/rc/models/transformer_qa#transformer_qa) model, and any other model that takes a question and passage as input. """ def __init__(self, model: Model, dataset_reader: DatasetReader) -> None: super(TransformerQAPredictor, self).__init__(model, dataset_reader) self._next_qid = 1 def predict(self, question: str, passage: str) -> JsonDict: """ Make a machine comprehension prediction on the supplied input. See [https://rajpurkar.github.io/SQuAD-explorer/](https://rajpurkar.github.io/SQuAD-explorer/) for more information about the machine comprehension task. # Parameters question : `str` A question about the content in the supplied paragraph. passage : `str` A paragraph of information relevant to the question. # Returns `JsonDict` A dictionary that represents the prediction made by the system. The answer string will be under the `"best_span_str"` key. """ return self.predict_json({"context": passage, "question": question}) def predict_json(self, inputs: JsonDict) -> JsonDict: results = self.predict_batch_json([inputs]) assert len(results) == 1 return results[0] def predictions_to_labeled_instances( self, instance: Instance, outputs: Dict[str, numpy.ndarray] ) -> List[Instance]: new_instance = instance.duplicate() span_start = int(outputs["best_span"][0]) span_end = int(outputs["best_span"][1]) start_of_context = ( len(self._dataset_reader._tokenizer.sequence_pair_start_tokens) + len(instance["metadata"]["question_tokens"]) + len(self._dataset_reader._tokenizer.sequence_pair_mid_tokens) ) answer_span = SpanField( start_of_context + span_start, start_of_context + span_end, instance["question_with_context"], ) new_instance.add_field("answer_span", answer_span) return [new_instance] def _json_to_instance(self, json_dict: JsonDict) -> Instance: logger.warning( "This method is implemented only for use in interpret modules." "The predictor maps a question to multiple instances. " "Please use _json_to_instances instead for all non-interpret uses. " ) return self._json_to_instances(json_dict, qid=-1)[0] def _json_to_instances(self, json_dict: JsonDict, qid: Optional[int] = None) -> List[Instance]: # We allow the passage / context to be specified with either key. # But we do it this way so that a 'KeyError: context' exception will be raised # when neither key is specified, since the 'context' key is the default and # the 'passage' key was only added to be compatible with the input for other # RC models. # if `qid` is `None`, it is updated using self._next_qid context = json_dict["passage"] if "passage" in json_dict else json_dict["context"] result: List[Instance] = [] question_id = qid or self._next_qid for instance in self._dataset_reader.make_instances( qid=str(question_id), question=json_dict["question"], answers=[], context=context, first_answer_offset=None, is_training=False, ): self._dataset_reader.apply_token_indexers(instance) result.append(instance) if qid is None: self._next_qid += 1 return result def _batch_json_to_instances(self, json_dicts: List[JsonDict]) -> List[Instance]: instances = [] for json_dict in json_dicts: instances.extend(self._json_to_instances(json_dict)) return instances def predict_batch_json(self, inputs: List[JsonDict]) -> List[JsonDict]: instances = self._batch_json_to_instances(inputs) result = self.predict_batch_instance(instances) assert len(result) == len(inputs) return result def predict_batch_instance(self, instances: List[Instance]) -> List[JsonDict]: outputs = self._model.forward_on_instances(instances) # group outputs with the same question id qid_to_output: Dict[str, Dict[str, Any]] = {} for instance, output in zip(instances, outputs): qid = instance["metadata"]["id"] output["id"] = qid output["context_tokens"] = instance["metadata"]["context_tokens"] if instance["metadata"]["answers"]: output["answers"] = instance["metadata"]["answers"] if qid in qid_to_output: old_output = qid_to_output[qid] if old_output["best_span_scores"] < output["best_span_scores"]: qid_to_output[qid] = output else: qid_to_output[qid] = output return [sanitize(o) for o in qid_to_output.values()]
allennlp-models-main
allennlp_models/rc/predictors/transformer_qa.py
import logging from typing import Any, Dict, List, Optional import numpy as np import torch import torch.nn.functional as F from torch.nn.functional import nll_loss from allennlp.common.checks import check_dimensions_match from allennlp.data import Vocabulary from allennlp.models.model import Model from allennlp.modules import Seq2SeqEncoder, TimeDistributed, TextFieldEmbedder from allennlp.modules.input_variational_dropout import InputVariationalDropout from allennlp.modules.matrix_attention.linear_matrix_attention import LinearMatrixAttention from allennlp.nn import InitializerApplicator, util from allennlp.training.metrics import Average, BooleanAccuracy, CategoricalAccuracy from allennlp_models.rc.tools import squad from allennlp_models.rc.models.utils import replace_masked_values_with_big_negative_number logger = logging.getLogger(__name__) @Model.register("dialog_qa") class DialogQA(Model): """ This class implements modified version of BiDAF (with self attention and residual layer, from Clark and Gardner ACL 17 paper) model as used in Question Answering in Context (EMNLP 2018) paper [https://arxiv.org/pdf/1808.07036.pdf]. In this set-up, a single instance is a dialog, list of question answer pairs. Parameters ---------- vocab : ``Vocabulary`` text_field_embedder : ``TextFieldEmbedder`` Used to embed the ``question`` and ``passage`` ``TextFields`` we get as input to the model. phrase_layer : ``Seq2SeqEncoder`` The encoder (with its own internal stacking) that we will use in between embedding tokens and doing the bidirectional attention. span_start_encoder : ``Seq2SeqEncoder`` The encoder that we will use to incorporate span start predictions into the passage state before predicting span end. span_end_encoder : ``Seq2SeqEncoder`` The encoder that we will use to incorporate span end predictions into the passage state. dropout : ``float``, optional (default=0.2) If greater than 0, we will apply dropout with this probability after all encoders (pytorch LSTMs do not apply dropout to their last layer). num_context_answers : ``int``, optional (default=0) If greater than 0, the model will consider previous question answering context. max_span_length: ``int``, optional (default=0) Maximum token length of the output span. max_turn_length: ``int``, optional (default=12) Maximum length of an interaction. """ def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, phrase_layer: Seq2SeqEncoder, residual_encoder: Seq2SeqEncoder, span_start_encoder: Seq2SeqEncoder, span_end_encoder: Seq2SeqEncoder, initializer: Optional[InitializerApplicator] = None, dropout: float = 0.2, num_context_answers: int = 0, marker_embedding_dim: int = 10, max_span_length: int = 30, max_turn_length: int = 12, ) -> None: super().__init__(vocab) self._num_context_answers = num_context_answers self._max_span_length = max_span_length self._text_field_embedder = text_field_embedder self._phrase_layer = phrase_layer self._marker_embedding_dim = marker_embedding_dim self._encoding_dim = phrase_layer.get_output_dim() self._matrix_attention = LinearMatrixAttention( self._encoding_dim, self._encoding_dim, "x,y,x*y" ) self._merge_atten = TimeDistributed( torch.nn.Linear(self._encoding_dim * 4, self._encoding_dim) ) self._residual_encoder = residual_encoder if num_context_answers > 0: self._question_num_marker = torch.nn.Embedding( max_turn_length, marker_embedding_dim * num_context_answers ) self._prev_ans_marker = torch.nn.Embedding( (num_context_answers * 4) + 1, marker_embedding_dim ) self._self_attention = LinearMatrixAttention( self._encoding_dim, self._encoding_dim, "x,y,x*y" ) self._followup_lin = torch.nn.Linear(self._encoding_dim, 3) self._merge_self_attention = TimeDistributed( torch.nn.Linear(self._encoding_dim * 3, self._encoding_dim) ) self._span_start_encoder = span_start_encoder self._span_end_encoder = span_end_encoder self._span_start_predictor = TimeDistributed(torch.nn.Linear(self._encoding_dim, 1)) self._span_end_predictor = TimeDistributed(torch.nn.Linear(self._encoding_dim, 1)) self._span_yesno_predictor = TimeDistributed(torch.nn.Linear(self._encoding_dim, 3)) self._span_followup_predictor = TimeDistributed(self._followup_lin) check_dimensions_match( phrase_layer.get_input_dim(), text_field_embedder.get_output_dim() + marker_embedding_dim * num_context_answers, "phrase layer input dim", "embedding dim + marker dim * num context answers", ) if initializer is not None: initializer(self) self._span_start_accuracy = CategoricalAccuracy() self._span_end_accuracy = CategoricalAccuracy() self._span_yesno_accuracy = CategoricalAccuracy() self._span_followup_accuracy = CategoricalAccuracy() self._span_gt_yesno_accuracy = CategoricalAccuracy() self._span_gt_followup_accuracy = CategoricalAccuracy() self._span_accuracy = BooleanAccuracy() self._official_f1 = Average() self._variational_dropout = InputVariationalDropout(dropout) def forward( # type: ignore self, question: Dict[str, torch.LongTensor], passage: Dict[str, torch.LongTensor], span_start: torch.IntTensor = None, span_end: torch.IntTensor = None, p1_answer_marker: torch.IntTensor = None, p2_answer_marker: torch.IntTensor = None, p3_answer_marker: torch.IntTensor = None, yesno_list: torch.IntTensor = None, followup_list: torch.IntTensor = None, metadata: List[Dict[str, Any]] = None, ) -> Dict[str, torch.Tensor]: """ Parameters ---------- question : Dict[str, torch.LongTensor] From a ``TextField``. passage : Dict[str, torch.LongTensor] From a ``TextField``. The model assumes that this passage contains the answer to the question, and predicts the beginning and ending positions of the answer within the passage. span_start : ``torch.IntTensor``, optional From an ``IndexField``. This is one of the things we are trying to predict - the beginning position of the answer with the passage. This is an `inclusive` token index. If this is given, we will compute a loss that gets included in the output dictionary. span_end : ``torch.IntTensor``, optional From an ``IndexField``. This is one of the things we are trying to predict - the ending position of the answer with the passage. This is an `inclusive` token index. If this is given, we will compute a loss that gets included in the output dictionary. p1_answer_marker : ``torch.IntTensor``, optional This is one of the inputs, but only when num_context_answers > 0. This is a tensor that has a shape [batch_size, max_qa_count, max_passage_length]. Most passage token will have assigned 'O', except the passage tokens belongs to the previous answer in the dialog, which will be assigned labels such as <1_start>, <1_in>, <1_end>. For more details, look into dataset_readers/util/make_reading_comprehension_instance_quac p2_answer_marker : ``torch.IntTensor``, optional This is one of the inputs, but only when num_context_answers > 1. It is similar to p1_answer_marker, but marking previous previous answer in passage. p3_answer_marker : ``torch.IntTensor``, optional This is one of the inputs, but only when num_context_answers > 2. It is similar to p1_answer_marker, but marking previous previous previous answer in passage. yesno_list : ``torch.IntTensor``, optional This is one of the outputs that we are trying to predict. Three way classification (the yes/no/not a yes no question). followup_list : ``torch.IntTensor``, optional This is one of the outputs that we are trying to predict. Three way classification (followup / maybe followup / don't followup). metadata : ``List[Dict[str, Any]]``, optional If present, this should contain the question ID, original passage text, and token offsets into the passage for each instance in the batch. We use this for computing official metrics using the official SQuAD evaluation script. The length of this list should be the batch size, and each dictionary should have the keys ``id``, ``original_passage``, and ``token_offsets``. If you only want the best span string and don't care about official metrics, you can omit the ``id`` key. Returns ------- An output dictionary consisting of the followings. Each of the followings is a nested list because first iterates over dialog, then questions in dialog. qid : List[List[str]] A list of list, consisting of question ids. followup : List[List[int]] A list of list, consisting of continuation marker prediction index. (y :yes, m: maybe follow up, n: don't follow up) yesno : List[List[int]] A list of list, consisting of affirmation marker prediction index. (y :yes, x: not a yes/no question, n: np) best_span_str : List[List[str]] If sufficient metadata was provided for the instances in the batch, we also return the string from the original passage that the model thinks is the best answer to the question. loss : torch.FloatTensor, optional A scalar loss to be optimised. """ token_character_ids = question["token_characters"]["token_characters"] batch_size, max_qa_count, max_q_len, _ = token_character_ids.size() total_qa_count = batch_size * max_qa_count qa_mask = torch.ge(followup_list, 0).view(total_qa_count) embedded_question = self._text_field_embedder(question, num_wrapping_dims=1) embedded_question = embedded_question.reshape( total_qa_count, max_q_len, self._text_field_embedder.get_output_dim() ) embedded_question = self._variational_dropout(embedded_question) embedded_passage = self._variational_dropout(self._text_field_embedder(passage)) passage_length = embedded_passage.size(1) question_mask = util.get_text_field_mask(question, num_wrapping_dims=1) question_mask = question_mask.reshape(total_qa_count, max_q_len) passage_mask = util.get_text_field_mask(passage) repeated_passage_mask = passage_mask.unsqueeze(1).repeat(1, max_qa_count, 1) repeated_passage_mask = repeated_passage_mask.view(total_qa_count, passage_length) if self._num_context_answers > 0: # Encode question turn number inside the dialog into question embedding. question_num_ind = util.get_range_vector( max_qa_count, util.get_device_of(embedded_question) ) question_num_ind = question_num_ind.unsqueeze(-1).repeat(1, max_q_len) question_num_ind = question_num_ind.unsqueeze(0).repeat(batch_size, 1, 1) question_num_ind = question_num_ind.reshape(total_qa_count, max_q_len) question_num_marker_emb = self._question_num_marker(question_num_ind) embedded_question = torch.cat([embedded_question, question_num_marker_emb], dim=-1) # Encode the previous answers in passage embedding. repeated_embedded_passage = ( embedded_passage.unsqueeze(1) .repeat(1, max_qa_count, 1, 1) .view(total_qa_count, passage_length, self._text_field_embedder.get_output_dim()) ) # batch_size * max_qa_count, passage_length, word_embed_dim p1_answer_marker = p1_answer_marker.view(total_qa_count, passage_length) p1_answer_marker_emb = self._prev_ans_marker(p1_answer_marker) repeated_embedded_passage = torch.cat( [repeated_embedded_passage, p1_answer_marker_emb], dim=-1 ) if self._num_context_answers > 1: p2_answer_marker = p2_answer_marker.view(total_qa_count, passage_length) p2_answer_marker_emb = self._prev_ans_marker(p2_answer_marker) repeated_embedded_passage = torch.cat( [repeated_embedded_passage, p2_answer_marker_emb], dim=-1 ) if self._num_context_answers > 2: p3_answer_marker = p3_answer_marker.view(total_qa_count, passage_length) p3_answer_marker_emb = self._prev_ans_marker(p3_answer_marker) repeated_embedded_passage = torch.cat( [repeated_embedded_passage, p3_answer_marker_emb], dim=-1 ) repeated_encoded_passage = self._variational_dropout( self._phrase_layer(repeated_embedded_passage, repeated_passage_mask) ) else: encoded_passage = self._variational_dropout( self._phrase_layer(embedded_passage, passage_mask) ) repeated_encoded_passage = encoded_passage.unsqueeze(1).repeat(1, max_qa_count, 1, 1) repeated_encoded_passage = repeated_encoded_passage.view( total_qa_count, passage_length, self._encoding_dim ) encoded_question = self._variational_dropout( self._phrase_layer(embedded_question, question_mask) ) # Shape: (batch_size * max_qa_count, passage_length, question_length) passage_question_similarity = self._matrix_attention( repeated_encoded_passage, encoded_question ) # Shape: (batch_size * max_qa_count, passage_length, question_length) passage_question_attention = util.masked_softmax(passage_question_similarity, question_mask) # Shape: (batch_size * max_qa_count, passage_length, encoding_dim) passage_question_vectors = util.weighted_sum(encoded_question, passage_question_attention) # We replace masked values with something really negative here, so they don't affect the # max below. masked_similarity = replace_masked_values_with_big_negative_number( passage_question_similarity, question_mask.unsqueeze(1) ) question_passage_similarity = masked_similarity.max(dim=-1)[0].squeeze(-1) question_passage_attention = util.masked_softmax( question_passage_similarity, repeated_passage_mask ) # Shape: (batch_size * max_qa_count, encoding_dim) question_passage_vector = util.weighted_sum( repeated_encoded_passage, question_passage_attention ) tiled_question_passage_vector = question_passage_vector.unsqueeze(1).expand( total_qa_count, passage_length, self._encoding_dim ) # Shape: (batch_size * max_qa_count, passage_length, encoding_dim * 4) final_merged_passage = torch.cat( [ repeated_encoded_passage, passage_question_vectors, repeated_encoded_passage * passage_question_vectors, repeated_encoded_passage * tiled_question_passage_vector, ], dim=-1, ) final_merged_passage = F.relu(self._merge_atten(final_merged_passage)) residual_layer = self._variational_dropout( self._residual_encoder(final_merged_passage, repeated_passage_mask) ) self_attention_matrix = self._self_attention(residual_layer, residual_layer) mask = repeated_passage_mask.reshape( total_qa_count, passage_length, 1 ) * repeated_passage_mask.reshape(total_qa_count, 1, passage_length) self_mask = torch.eye( passage_length, passage_length, dtype=torch.bool, device=self_attention_matrix.device ) self_mask = self_mask.reshape(1, passage_length, passage_length) mask = mask & ~self_mask self_attention_probs = util.masked_softmax(self_attention_matrix, mask) # (batch, passage_len, passage_len) * (batch, passage_len, dim) -> (batch, passage_len, dim) self_attention_vecs = torch.matmul(self_attention_probs, residual_layer) self_attention_vecs = torch.cat( [self_attention_vecs, residual_layer, residual_layer * self_attention_vecs], dim=-1 ) residual_layer = F.relu(self._merge_self_attention(self_attention_vecs)) final_merged_passage = final_merged_passage + residual_layer # batch_size * maxqa_pair_len * max_passage_len * 200 final_merged_passage = self._variational_dropout(final_merged_passage) start_rep = self._span_start_encoder(final_merged_passage, repeated_passage_mask) span_start_logits = self._span_start_predictor(start_rep).squeeze(-1) end_rep = self._span_end_encoder( torch.cat([final_merged_passage, start_rep], dim=-1), repeated_passage_mask ) span_end_logits = self._span_end_predictor(end_rep).squeeze(-1) span_yesno_logits = self._span_yesno_predictor(end_rep).squeeze(-1) span_followup_logits = self._span_followup_predictor(end_rep).squeeze(-1) span_start_logits = replace_masked_values_with_big_negative_number( span_start_logits, repeated_passage_mask ) # batch_size * maxqa_len_pair, max_document_len span_end_logits = replace_masked_values_with_big_negative_number( span_end_logits, repeated_passage_mask ) best_span = self._get_best_span_yesno_followup( span_start_logits, span_end_logits, span_yesno_logits, span_followup_logits, self._max_span_length, ) output_dict: Dict[str, Any] = {} # Compute the loss. if span_start is not None: loss = nll_loss( util.masked_log_softmax(span_start_logits, repeated_passage_mask), span_start.view(-1), ignore_index=-1, ) self._span_start_accuracy(span_start_logits, span_start.view(-1), mask=qa_mask) loss += nll_loss( util.masked_log_softmax(span_end_logits, repeated_passage_mask), span_end.view(-1), ignore_index=-1, ) self._span_end_accuracy(span_end_logits, span_end.view(-1), mask=qa_mask) self._span_accuracy( best_span[:, 0:2], torch.stack([span_start, span_end], -1).view(total_qa_count, 2), mask=qa_mask.unsqueeze(1).expand(-1, 2), ) # add a select for the right span to compute loss gold_span_end_loc = [] span_end = span_end.view(total_qa_count).squeeze().data.cpu().numpy() for i in range(0, total_qa_count): gold_span_end_loc.append(max(span_end[i] * 3 + i * passage_length * 3, 0)) gold_span_end_loc.append(max(span_end[i] * 3 + i * passage_length * 3 + 1, 0)) gold_span_end_loc.append(max(span_end[i] * 3 + i * passage_length * 3 + 2, 0)) gold_span_end_loc = span_start.new(gold_span_end_loc) pred_span_end_loc = [] for i in range(0, total_qa_count): pred_span_end_loc.append(max(best_span[i][1] * 3 + i * passage_length * 3, 0)) pred_span_end_loc.append(max(best_span[i][1] * 3 + i * passage_length * 3 + 1, 0)) pred_span_end_loc.append(max(best_span[i][1] * 3 + i * passage_length * 3 + 2, 0)) predicted_end = span_start.new(pred_span_end_loc) _yesno = span_yesno_logits.view(-1).index_select(0, gold_span_end_loc).view(-1, 3) _followup = span_followup_logits.view(-1).index_select(0, gold_span_end_loc).view(-1, 3) loss += nll_loss(F.log_softmax(_yesno, dim=-1), yesno_list.view(-1), ignore_index=-1) loss += nll_loss( F.log_softmax(_followup, dim=-1), followup_list.view(-1), ignore_index=-1 ) _yesno = span_yesno_logits.view(-1).index_select(0, predicted_end).view(-1, 3) _followup = span_followup_logits.view(-1).index_select(0, predicted_end).view(-1, 3) self._span_yesno_accuracy(_yesno, yesno_list.view(-1), mask=qa_mask) self._span_followup_accuracy(_followup, followup_list.view(-1), mask=qa_mask) output_dict["loss"] = loss # Compute F1 and preparing the output dictionary. output_dict["best_span_str"] = [] output_dict["qid"] = [] output_dict["followup"] = [] output_dict["yesno"] = [] best_span_cpu = best_span.detach().cpu().numpy() for i in range(batch_size): passage_str = metadata[i]["original_passage"] offsets = metadata[i]["token_offsets"] f1_score = 0.0 per_dialog_best_span_list = [] per_dialog_yesno_list = [] per_dialog_followup_list = [] per_dialog_query_id_list = [] for per_dialog_query_index, (iid, answer_texts) in enumerate( zip(metadata[i]["instance_id"], metadata[i]["answer_texts_list"]) ): predicted_span = tuple(best_span_cpu[i * max_qa_count + per_dialog_query_index]) start_offset = offsets[predicted_span[0]][0] end_offset = offsets[predicted_span[1]][1] yesno_pred = predicted_span[2] followup_pred = predicted_span[3] per_dialog_yesno_list.append(yesno_pred) per_dialog_followup_list.append(followup_pred) per_dialog_query_id_list.append(iid) best_span_string = passage_str[start_offset:end_offset] per_dialog_best_span_list.append(best_span_string) if answer_texts: if len(answer_texts) > 1: t_f1 = [] # Compute F1 over N-1 human references and averages the scores. for answer_index in range(len(answer_texts)): idxes = list(range(len(answer_texts))) idxes.pop(answer_index) refs = [answer_texts[z] for z in idxes] t_f1.append( squad.metric_max_over_ground_truths( squad.compute_f1, best_span_string, refs ) ) f1_score = 1.0 * sum(t_f1) / len(t_f1) else: f1_score = squad.metric_max_over_ground_truths( squad.compute_f1, best_span_string, answer_texts ) self._official_f1(100 * f1_score) output_dict["qid"].append(per_dialog_query_id_list) output_dict["best_span_str"].append(per_dialog_best_span_list) output_dict["yesno"].append(per_dialog_yesno_list) output_dict["followup"].append(per_dialog_followup_list) return output_dict def make_output_human_readable( self, output_dict: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: yesno_tags = [ [self.vocab.get_token_from_index(x, namespace="yesno_labels") for x in yn_list] for yn_list in output_dict.pop("yesno") ] followup_tags = [ [self.vocab.get_token_from_index(x, namespace="followup_labels") for x in followup_list] for followup_list in output_dict.pop("followup") ] output_dict["yesno"] = yesno_tags output_dict["followup"] = followup_tags return output_dict def get_metrics(self, reset: bool = False) -> Dict[str, float]: return { "start_acc": self._span_start_accuracy.get_metric(reset), "end_acc": self._span_end_accuracy.get_metric(reset), "span_acc": self._span_accuracy.get_metric(reset), "yesno": self._span_yesno_accuracy.get_metric(reset), "followup": self._span_followup_accuracy.get_metric(reset), "f1": self._official_f1.get_metric(reset), } @staticmethod def _get_best_span_yesno_followup( span_start_logits: torch.Tensor, span_end_logits: torch.Tensor, span_yesno_logits: torch.Tensor, span_followup_logits: torch.Tensor, max_span_length: int, ) -> torch.Tensor: # Returns the index of highest-scoring span that is not longer than 30 tokens, as well as # yesno prediction bit and followup prediction bit from the predicted span end token. if span_start_logits.dim() != 2 or span_end_logits.dim() != 2: raise ValueError("Input shapes must be (batch_size, passage_length)") batch_size, passage_length = span_start_logits.size() max_span_log_prob = [util.min_value_of_dtype(span_start_logits.dtype)] * batch_size span_start_argmax = [0] * batch_size best_word_span = span_start_logits.new_zeros((batch_size, 4), dtype=torch.long) span_start_logits = span_start_logits.data.cpu().numpy() span_end_logits = span_end_logits.data.cpu().numpy() span_yesno_logits = span_yesno_logits.data.cpu().numpy() span_followup_logits = span_followup_logits.data.cpu().numpy() for b_i in range(batch_size): for j in range(passage_length): val1 = span_start_logits[b_i, span_start_argmax[b_i]] if val1 < span_start_logits[b_i, j]: span_start_argmax[b_i] = j val1 = span_start_logits[b_i, j] val2 = span_end_logits[b_i, j] if val1 + val2 > max_span_log_prob[b_i]: if j - span_start_argmax[b_i] > max_span_length: continue best_word_span[b_i, 0] = span_start_argmax[b_i] best_word_span[b_i, 1] = j max_span_log_prob[b_i] = val1 + val2 for b_i in range(batch_size): j = best_word_span[b_i, 1] yesno_pred = np.argmax(span_yesno_logits[b_i, j]) followup_pred = np.argmax(span_followup_logits[b_i, j]) best_word_span[b_i, 2] = int(yesno_pred) best_word_span[b_i, 3] = int(followup_pred) return best_word_span default_predictor = "dialog_qa"
allennlp-models-main
allennlp_models/rc/models/dialog_qa.py
from typing import Any, Dict, List, Optional import torch from torch.nn.functional import nll_loss from allennlp.data import Vocabulary from allennlp.models.model import Model from allennlp.modules import Highway from allennlp.modules import Seq2SeqEncoder, TextFieldEmbedder from allennlp.modules.matrix_attention.matrix_attention import MatrixAttention from allennlp.nn import util, InitializerApplicator, RegularizerApplicator from allennlp.training.metrics import BooleanAccuracy, CategoricalAccuracy from allennlp.nn.util import masked_softmax from allennlp_models.rc.models.utils import ( get_best_span, replace_masked_values_with_big_negative_number, ) from allennlp_models.rc.metrics import SquadEmAndF1 @Model.register("qanet") @Model.register("rc-qanet") class QaNet(Model): """ This class implements Adams Wei Yu's `QANet Model <https://openreview.net/forum?id=B14TlG-RW>`_ for machine reading comprehension published at ICLR 2018. The overall architecture of QANet is very similar to BiDAF. The main difference is that QANet replaces the RNN encoder with CNN + self-attention. There are also some minor differences in the modeling layer and output layer. Parameters ---------- vocab : ``Vocabulary`` text_field_embedder : ``TextFieldEmbedder`` Used to embed the ``question`` and ``passage`` ``TextFields`` we get as input to the model. num_highway_layers : ``int`` The number of highway layers to use in between embedding the input and passing it through the phrase layer. phrase_layer : ``Seq2SeqEncoder`` The encoder (with its own internal stacking) that we will use in between embedding tokens and doing the passage-question attention. matrix_attention_layer : ``MatrixAttention`` The matrix attention function that we will use when comparing encoded passage and question representations. modeling_layer : ``Seq2SeqEncoder`` The encoder (with its own internal stacking) that we will use in between the bidirectional attention and predicting span start and end. dropout_prob : ``float``, optional (default=0.1) If greater than 0, we will apply dropout with this probability between layers. initializer : ``InitializerApplicator``, optional (default=``InitializerApplicator()``) Used to initialize the model parameters. regularizer : ``RegularizerApplicator``, optional (default=``None``) If provided, will be used to calculate the regularization penalty during training. """ def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, num_highway_layers: int, phrase_layer: Seq2SeqEncoder, matrix_attention_layer: MatrixAttention, modeling_layer: Seq2SeqEncoder, dropout_prob: float = 0.1, initializer: InitializerApplicator = InitializerApplicator(), regularizer: Optional[RegularizerApplicator] = None, ) -> None: super().__init__(vocab, regularizer) text_embed_dim = text_field_embedder.get_output_dim() encoding_in_dim = phrase_layer.get_input_dim() encoding_out_dim = phrase_layer.get_output_dim() modeling_in_dim = modeling_layer.get_input_dim() modeling_out_dim = modeling_layer.get_output_dim() self._text_field_embedder = text_field_embedder self._embedding_proj_layer = torch.nn.Linear(text_embed_dim, encoding_in_dim) self._highway_layer = Highway(encoding_in_dim, num_highway_layers) self._encoding_proj_layer = torch.nn.Linear(encoding_in_dim, encoding_in_dim, bias=False) self._phrase_layer = phrase_layer self._matrix_attention = matrix_attention_layer self._modeling_proj_layer = torch.nn.Linear( encoding_out_dim * 4, modeling_in_dim, bias=False ) self._modeling_layer = modeling_layer self._span_start_predictor = torch.nn.Linear(modeling_out_dim * 2, 1) self._span_end_predictor = torch.nn.Linear(modeling_out_dim * 2, 1) self._span_start_accuracy = CategoricalAccuracy() self._span_end_accuracy = CategoricalAccuracy() self._span_accuracy = BooleanAccuracy() self._metrics = SquadEmAndF1() self._dropout = torch.nn.Dropout(p=dropout_prob) if dropout_prob > 0 else lambda x: x initializer(self) def forward( # type: ignore self, question: Dict[str, torch.LongTensor], passage: Dict[str, torch.LongTensor], span_start: torch.IntTensor = None, span_end: torch.IntTensor = None, metadata: List[Dict[str, Any]] = None, ) -> Dict[str, torch.Tensor]: """ Parameters ---------- question : Dict[str, torch.LongTensor] From a ``TextField``. passage : Dict[str, torch.LongTensor] From a ``TextField``. The model assumes that this passage contains the answer to the question, and predicts the beginning and ending positions of the answer within the passage. span_start : ``torch.IntTensor``, optional From an ``IndexField``. This is one of the things we are trying to predict - the beginning position of the answer with the passage. This is an `inclusive` token index. If this is given, we will compute a loss that gets included in the output dictionary. span_end : ``torch.IntTensor``, optional From an ``IndexField``. This is one of the things we are trying to predict - the ending position of the answer with the passage. This is an `inclusive` token index. If this is given, we will compute a loss that gets included in the output dictionary. metadata : ``List[Dict[str, Any]]``, optional If present, this should contain the question tokens, passage tokens, original passage text, and token offsets into the passage for each instance in the batch. The length of this list should be the batch size, and each dictionary should have the keys ``question_tokens``, ``passage_tokens``, ``original_passage``, and ``token_offsets``. Returns ------- An output dictionary consisting of: span_start_logits : torch.FloatTensor A tensor of shape ``(batch_size, passage_length)`` representing unnormalized log probabilities of the span start position. span_start_probs : torch.FloatTensor The result of ``softmax(span_start_logits)``. span_end_logits : torch.FloatTensor A tensor of shape ``(batch_size, passage_length)`` representing unnormalized log probabilities of the span end position (inclusive). span_end_probs : torch.FloatTensor The result of ``softmax(span_end_logits)``. best_span : torch.IntTensor The result of a constrained inference over ``span_start_logits`` and ``span_end_logits`` to find the most probable span. Shape is ``(batch_size, 2)`` and each offset is a token index. loss : torch.FloatTensor, optional A scalar loss to be optimised. best_span_str : List[str] If sufficient metadata was provided for the instances in the batch, we also return the string from the original passage that the model thinks is the best answer to the question. """ question_mask = util.get_text_field_mask(question) passage_mask = util.get_text_field_mask(passage) embedded_question = self._dropout(self._text_field_embedder(question)) embedded_passage = self._dropout(self._text_field_embedder(passage)) embedded_question = self._highway_layer(self._embedding_proj_layer(embedded_question)) embedded_passage = self._highway_layer(self._embedding_proj_layer(embedded_passage)) batch_size = embedded_question.size(0) projected_embedded_question = self._encoding_proj_layer(embedded_question) projected_embedded_passage = self._encoding_proj_layer(embedded_passage) encoded_question = self._dropout( self._phrase_layer(projected_embedded_question, question_mask) ) encoded_passage = self._dropout( self._phrase_layer(projected_embedded_passage, passage_mask) ) # Shape: (batch_size, passage_length, question_length) passage_question_similarity = self._matrix_attention(encoded_passage, encoded_question) # Shape: (batch_size, passage_length, question_length) passage_question_attention = masked_softmax( passage_question_similarity, question_mask, memory_efficient=True ) # Shape: (batch_size, passage_length, encoding_dim) passage_question_vectors = util.weighted_sum(encoded_question, passage_question_attention) # Shape: (batch_size, question_length, passage_length) question_passage_attention = masked_softmax( passage_question_similarity.transpose(1, 2), passage_mask, memory_efficient=True ) # Shape: (batch_size, passage_length, passage_length) attention_over_attention = torch.bmm(passage_question_attention, question_passage_attention) # Shape: (batch_size, passage_length, encoding_dim) passage_passage_vectors = util.weighted_sum(encoded_passage, attention_over_attention) # Shape: (batch_size, passage_length, encoding_dim * 4) merged_passage_attention_vectors = self._dropout( torch.cat( [ encoded_passage, passage_question_vectors, encoded_passage * passage_question_vectors, encoded_passage * passage_passage_vectors, ], dim=-1, ) ) modeled_passage_list = [self._modeling_proj_layer(merged_passage_attention_vectors)] for _ in range(3): modeled_passage = self._dropout( self._modeling_layer(modeled_passage_list[-1], passage_mask) ) modeled_passage_list.append(modeled_passage) # Shape: (batch_size, passage_length, modeling_dim * 2)) span_start_input = torch.cat([modeled_passage_list[-3], modeled_passage_list[-2]], dim=-1) # Shape: (batch_size, passage_length) span_start_logits = self._span_start_predictor(span_start_input).squeeze(-1) # Shape: (batch_size, passage_length, modeling_dim * 2) span_end_input = torch.cat([modeled_passage_list[-3], modeled_passage_list[-1]], dim=-1) span_end_logits = self._span_end_predictor(span_end_input).squeeze(-1) span_start_logits = replace_masked_values_with_big_negative_number( span_start_logits, passage_mask ) span_end_logits = replace_masked_values_with_big_negative_number( span_end_logits, passage_mask ) # Shape: (batch_size, passage_length) span_start_probs = torch.nn.functional.softmax(span_start_logits, dim=-1) span_end_probs = torch.nn.functional.softmax(span_end_logits, dim=-1) best_span = get_best_span(span_start_logits, span_end_logits) output_dict = { "passage_question_attention": passage_question_attention, "span_start_logits": span_start_logits, "span_start_probs": span_start_probs, "span_end_logits": span_end_logits, "span_end_probs": span_end_probs, "best_span": best_span, } # Compute the loss for training. if span_start is not None: loss = nll_loss( util.masked_log_softmax(span_start_logits, passage_mask), span_start.squeeze(-1) ) self._span_start_accuracy(span_start_logits, span_start.squeeze(-1)) loss += nll_loss( util.masked_log_softmax(span_end_logits, passage_mask), span_end.squeeze(-1) ) self._span_end_accuracy(span_end_logits, span_end.squeeze(-1)) self._span_accuracy(best_span, torch.cat([span_start, span_end], -1)) output_dict["loss"] = loss # Compute the EM and F1 on SQuAD and add the tokenized input to the output. if metadata is not None: output_dict["best_span_str"] = [] question_tokens = [] passage_tokens = [] for i in range(batch_size): question_tokens.append(metadata[i]["question_tokens"]) passage_tokens.append(metadata[i]["passage_tokens"]) passage_str = metadata[i]["original_passage"] offsets = metadata[i]["token_offsets"] predicted_span = tuple(best_span[i].detach().cpu().numpy()) start_offset = offsets[predicted_span[0]][0] end_offset = offsets[predicted_span[1]][1] best_span_string = passage_str[start_offset:end_offset] output_dict["best_span_str"].append(best_span_string) answer_texts = metadata[i].get("answer_texts", []) if answer_texts: self._metrics(best_span_string, answer_texts) output_dict["question_tokens"] = question_tokens output_dict["passage_tokens"] = passage_tokens return output_dict def get_metrics(self, reset: bool = False) -> Dict[str, float]: exact_match, f1_score = self._metrics.get_metric(reset) return { "start_acc": self._span_start_accuracy.get_metric(reset), "end_acc": self._span_end_accuracy.get_metric(reset), "span_acc": self._span_accuracy.get_metric(reset), "em": exact_match, "f1": f1_score, } default_predictor = "reading_comprehension"
allennlp-models-main
allennlp_models/rc/models/qanet.py
from allennlp_models.rc.models.bidaf_ensemble import BidafEnsemble from allennlp_models.rc.models.bidaf import BidirectionalAttentionFlow from allennlp_models.rc.models.dialog_qa import DialogQA from allennlp_models.rc.models.naqanet import NumericallyAugmentedQaNet from allennlp_models.rc.models.qanet import QaNet from allennlp_models.rc.models.transformer_qa import TransformerQA from allennlp_models.rc.models.utils import get_best_span
allennlp-models-main
allennlp_models/rc/models/__init__.py
import logging from typing import Any, Dict, List, Optional import torch from torch.nn.functional import nll_loss from allennlp.common.checks import check_dimensions_match from allennlp.data import Vocabulary from allennlp.models.model import Model from allennlp.modules import Highway from allennlp.modules import Seq2SeqEncoder, TimeDistributed, TextFieldEmbedder from allennlp.modules.matrix_attention import MatrixAttention from allennlp.nn import util, InitializerApplicator, RegularizerApplicator from allennlp.training.metrics import BooleanAccuracy, CategoricalAccuracy from allennlp_models.rc.metrics import SquadEmAndF1 from allennlp_models.rc.models.utils import ( get_best_span, replace_masked_values_with_big_negative_number, ) logger = logging.getLogger(__name__) @Model.register("bidaf") class BidirectionalAttentionFlow(Model): """ This class implements Minjoon Seo's [Bidirectional Attention Flow model] (https://www.semanticscholar.org/paper/Bidirectional-Attention-Flow-for-Machine-Seo-Kembhavi/7586b7cca1deba124af80609327395e613a20e9d) for answering reading comprehension questions (ICLR 2017). The basic layout is pretty simple: encode words as a combination of word embeddings and a character-level encoder, pass the word representations through a bi-LSTM/GRU, use a matrix of attentions to put question information into the passage word representations (this is the only part that is at all non-standard), pass this through another few layers of bi-LSTMs/GRUs, and do a softmax over span start and span end. # Parameters vocab : `Vocabulary` text_field_embedder : `TextFieldEmbedder` Used to embed the ``question`` and ``passage`` ``TextFields`` we get as input to the model. num_highway_layers : `int` The number of highway layers to use in between embedding the input and passing it through the phrase layer. phrase_layer : `Seq2SeqEncoder` The encoder (with its own internal stacking) that we will use in between embedding tokens and doing the bidirectional attention. matrix_attention : `MatrixAttention` The attention function that we will use when comparing encoded passage and question representations. modeling_layer : `Seq2SeqEncoder` The encoder (with its own internal stacking) that we will use in between the bidirectional attention and predicting span start and end. span_end_encoder : `Seq2SeqEncoder` The encoder that we will use to incorporate span start predictions into the passage state before predicting span end. dropout : `float`, optional (default=`0.2`) If greater than 0, we will apply dropout with this probability after all encoders (pytorch LSTMs do not apply dropout to their last layer). mask_lstms : `bool`, optional (default=`True`) If ``False``, we will skip passing the mask to the LSTM layers. This gives a ~2x speedup, with only a slight performance decrease, if any. We haven't experimented much with this yet, but have confirmed that we still get very similar performance with much faster training times. We still use the mask for all softmaxes, but avoid the shuffling that's required when using masking with pytorch LSTMs. initializer : `InitializerApplicator`, optional (default=`InitializerApplicator()`) Used to initialize the model parameters. regularizer : `RegularizerApplicator`, optional (default=`None`) If provided, will be used to calculate the regularization penalty during training. """ def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, num_highway_layers: int, phrase_layer: Seq2SeqEncoder, matrix_attention: MatrixAttention, modeling_layer: Seq2SeqEncoder, span_end_encoder: Seq2SeqEncoder, dropout: float = 0.2, mask_lstms: bool = True, initializer: InitializerApplicator = InitializerApplicator(), regularizer: Optional[RegularizerApplicator] = None, ) -> None: super().__init__(vocab, regularizer) self._text_field_embedder = text_field_embedder self._highway_layer = TimeDistributed( Highway(text_field_embedder.get_output_dim(), num_highway_layers) ) self._phrase_layer = phrase_layer self._matrix_attention = matrix_attention self._modeling_layer = modeling_layer self._span_end_encoder = span_end_encoder encoding_dim = phrase_layer.get_output_dim() modeling_dim = modeling_layer.get_output_dim() span_start_input_dim = encoding_dim * 4 + modeling_dim self._span_start_predictor = TimeDistributed(torch.nn.Linear(span_start_input_dim, 1)) span_end_encoding_dim = span_end_encoder.get_output_dim() span_end_input_dim = encoding_dim * 4 + span_end_encoding_dim self._span_end_predictor = TimeDistributed(torch.nn.Linear(span_end_input_dim, 1)) # Bidaf has lots of layer dimensions which need to match up - these aren't necessarily # obvious from the configuration files, so we check here. check_dimensions_match( modeling_layer.get_input_dim(), 4 * encoding_dim, "modeling layer input dim", "4 * encoding dim", ) check_dimensions_match( text_field_embedder.get_output_dim(), phrase_layer.get_input_dim(), "text field embedder output dim", "phrase layer input dim", ) check_dimensions_match( span_end_encoder.get_input_dim(), 4 * encoding_dim + 3 * modeling_dim, "span end encoder input dim", "4 * encoding dim + 3 * modeling dim", ) self._span_start_accuracy = CategoricalAccuracy() self._span_end_accuracy = CategoricalAccuracy() self._span_accuracy = BooleanAccuracy() self._squad_metrics = SquadEmAndF1() if dropout > 0: self._dropout = torch.nn.Dropout(p=dropout) else: self._dropout = lambda x: x self._mask_lstms = mask_lstms initializer(self) def forward( # type: ignore self, question: Dict[str, torch.LongTensor], passage: Dict[str, torch.LongTensor], span_start: torch.IntTensor = None, span_end: torch.IntTensor = None, metadata: List[Dict[str, Any]] = None, ) -> Dict[str, torch.Tensor]: """ # Parameters question : `Dict[str, torch.LongTensor]` From a ``TextField``. passage : `Dict[str, torch.LongTensor]` From a ``TextField``. The model assumes that this passage contains the answer to the question, and predicts the beginning and ending positions of the answer within the passage. span_start : `torch.IntTensor`, optional From an ``IndexField``. This is one of the things we are trying to predict - the beginning position of the answer with the passage. This is an `inclusive` token index. If this is given, we will compute a loss that gets included in the output dictionary. span_end : `torch.IntTensor`, optional From an ``IndexField``. This is one of the things we are trying to predict - the ending position of the answer with the passage. This is an `inclusive` token index. If this is given, we will compute a loss that gets included in the output dictionary. metadata : `List[Dict[str, Any]]`, optional metadata : `List[Dict[str, Any]]`, optional If present, this should contain the question tokens, passage tokens, original passage text, and token offsets into the passage for each instance in the batch. The length of this list should be the batch size, and each dictionary should have the keys ``question_tokens``, ``passage_tokens``, ``original_passage``, and ``token_offsets``. Returns ------- An output dictionary consisting of: span_start_logits : `torch.FloatTensor` A tensor of shape ``(batch_size, passage_length)`` representing unnormalized log probabilities of the span start position. span_start_probs : `torch.FloatTensor` The result of ``softmax(span_start_logits)``. span_end_logits : `torch.FloatTensor` A tensor of shape ``(batch_size, passage_length)`` representing unnormalized log probabilities of the span end position (inclusive). span_end_probs : `torch.FloatTensor` The result of ``softmax(span_end_logits)``. best_span : `torch.IntTensor` The result of a constrained inference over ``span_start_logits`` and ``span_end_logits`` to find the most probable span. Shape is ``(batch_size, 2)`` and each offset is a token index. loss : `torch.FloatTensor`, optional A scalar loss to be optimised. best_span_str : `List[str]` If sufficient metadata was provided for the instances in the batch, we also return the string from the original passage that the model thinks is the best answer to the question. """ embedded_question = self._highway_layer(self._text_field_embedder(question)) embedded_passage = self._highway_layer(self._text_field_embedder(passage)) batch_size = embedded_question.size(0) passage_length = embedded_passage.size(1) question_mask = util.get_text_field_mask(question) passage_mask = util.get_text_field_mask(passage) question_lstm_mask = question_mask if self._mask_lstms else None passage_lstm_mask = passage_mask if self._mask_lstms else None encoded_question = self._dropout(self._phrase_layer(embedded_question, question_lstm_mask)) encoded_passage = self._dropout(self._phrase_layer(embedded_passage, passage_lstm_mask)) encoding_dim = encoded_question.size(-1) # Shape: (batch_size, passage_length, question_length) passage_question_similarity = self._matrix_attention(encoded_passage, encoded_question) # Shape: (batch_size, passage_length, question_length) passage_question_attention = util.masked_softmax(passage_question_similarity, question_mask) # Shape: (batch_size, passage_length, encoding_dim) passage_question_vectors = util.weighted_sum(encoded_question, passage_question_attention) # We replace masked values with something really negative here, so they don't affect the # max below. masked_similarity = replace_masked_values_with_big_negative_number( passage_question_similarity, question_mask.unsqueeze(1) ) # Shape: (batch_size, passage_length) question_passage_similarity = masked_similarity.max(dim=-1)[0].squeeze(-1) # Shape: (batch_size, passage_length) question_passage_attention = util.masked_softmax(question_passage_similarity, passage_mask) # Shape: (batch_size, encoding_dim) question_passage_vector = util.weighted_sum(encoded_passage, question_passage_attention) # Shape: (batch_size, passage_length, encoding_dim) tiled_question_passage_vector = question_passage_vector.unsqueeze(1).expand( batch_size, passage_length, encoding_dim ) # Shape: (batch_size, passage_length, encoding_dim * 4) final_merged_passage = torch.cat( [ encoded_passage, passage_question_vectors, encoded_passage * passage_question_vectors, encoded_passage * tiled_question_passage_vector, ], dim=-1, ) modeled_passage = self._dropout( self._modeling_layer(final_merged_passage, passage_lstm_mask) ) modeling_dim = modeled_passage.size(-1) # Shape: (batch_size, passage_length, encoding_dim * 4 + modeling_dim)) span_start_input = self._dropout(torch.cat([final_merged_passage, modeled_passage], dim=-1)) # Shape: (batch_size, passage_length) span_start_logits = self._span_start_predictor(span_start_input).squeeze(-1) # Shape: (batch_size, passage_length) span_start_probs = util.masked_softmax(span_start_logits, passage_mask) # Shape: (batch_size, modeling_dim) span_start_representation = util.weighted_sum(modeled_passage, span_start_probs) # Shape: (batch_size, passage_length, modeling_dim) tiled_start_representation = span_start_representation.unsqueeze(1).expand( batch_size, passage_length, modeling_dim ) # Shape: (batch_size, passage_length, encoding_dim * 4 + modeling_dim * 3) span_end_representation = torch.cat( [ final_merged_passage, modeled_passage, tiled_start_representation, modeled_passage * tiled_start_representation, ], dim=-1, ) # Shape: (batch_size, passage_length, encoding_dim) encoded_span_end = self._dropout( self._span_end_encoder(span_end_representation, passage_lstm_mask) ) # Shape: (batch_size, passage_length, encoding_dim * 4 + span_end_encoding_dim) span_end_input = self._dropout(torch.cat([final_merged_passage, encoded_span_end], dim=-1)) span_end_logits = self._span_end_predictor(span_end_input).squeeze(-1) span_end_probs = util.masked_softmax(span_end_logits, passage_mask) # Replace the masked values with a very negative constant. span_start_logits = replace_masked_values_with_big_negative_number( span_start_logits, passage_mask ) span_end_logits = replace_masked_values_with_big_negative_number( span_end_logits, passage_mask ) best_span = get_best_span(span_start_logits, span_end_logits) output_dict = { "passage_question_attention": passage_question_attention, "span_start_logits": span_start_logits, "span_start_probs": span_start_probs, "span_end_logits": span_end_logits, "span_end_probs": span_end_probs, "best_span": best_span, } # Compute the loss for training. if span_start is not None: loss = nll_loss( util.masked_log_softmax(span_start_logits, passage_mask), span_start.squeeze(-1) ) self._span_start_accuracy(span_start_logits, span_start.squeeze(-1)) loss += nll_loss( util.masked_log_softmax(span_end_logits, passage_mask), span_end.squeeze(-1) ) self._span_end_accuracy(span_end_logits, span_end.squeeze(-1)) self._span_accuracy(best_span, torch.cat([span_start, span_end], -1)) output_dict["loss"] = loss # Compute the EM and F1 on SQuAD and add the tokenized input to the output. if metadata is not None: output_dict["best_span_str"] = [] question_tokens = [] passage_tokens = [] token_offsets = [] for i in range(batch_size): question_tokens.append(metadata[i]["question_tokens"]) passage_tokens.append(metadata[i]["passage_tokens"]) token_offsets.append(metadata[i]["token_offsets"]) passage_str = metadata[i]["original_passage"] offsets = metadata[i]["token_offsets"] predicted_span = tuple(best_span[i].detach().cpu().numpy()) start_offset = offsets[predicted_span[0]][0] end_offset = offsets[predicted_span[1]][1] best_span_string = passage_str[start_offset:end_offset] output_dict["best_span_str"].append(best_span_string) answer_texts = metadata[i].get("answer_texts", []) if answer_texts: self._squad_metrics(best_span_string, answer_texts) output_dict["question_tokens"] = question_tokens output_dict["passage_tokens"] = passage_tokens output_dict["token_offsets"] = token_offsets return output_dict def get_metrics(self, reset: bool = False) -> Dict[str, float]: exact_match, f1_score = self._squad_metrics.get_metric(reset) return { "start_acc": self._span_start_accuracy.get_metric(reset), "end_acc": self._span_end_accuracy.get_metric(reset), "span_acc": self._span_accuracy.get_metric(reset), "em": exact_match, "f1": f1_score, } @staticmethod def get_best_span( span_start_logits: torch.Tensor, span_end_logits: torch.Tensor ) -> torch.Tensor: # We call the inputs "logits" - they could either be unnormalized logits or normalized log # probabilities. A log_softmax operation is a constant shifting of the entire logit # vector, so taking an argmax over either one gives the same result. if span_start_logits.dim() != 2 or span_end_logits.dim() != 2: raise ValueError("Input shapes must be (batch_size, passage_length)") batch_size, passage_length = span_start_logits.size() device = span_start_logits.device # (batch_size, passage_length, passage_length) span_log_probs = span_start_logits.unsqueeze(2) + span_end_logits.unsqueeze(1) # Only the upper triangle of the span matrix is valid; the lower triangle has entries where # the span ends before it starts. span_log_mask = ( torch.triu(torch.ones((passage_length, passage_length), device=device)) .log() .unsqueeze(0) ) valid_span_log_probs = span_log_probs + span_log_mask # Here we take the span matrix and flatten it, then find the best span using argmax. We # can recover the start and end indices from this flattened list using simple modular # arithmetic. # (batch_size, passage_length * passage_length) best_spans = valid_span_log_probs.view(batch_size, -1).argmax(-1) span_start_indices = best_spans // passage_length span_end_indices = best_spans % passage_length return torch.stack([span_start_indices, span_end_indices], dim=-1) default_predictor = "reading_comprehension"
allennlp-models-main
allennlp_models/rc/models/bidaf.py
from typing import Dict, List, Any, Optional import torch from allennlp.common.checks import ConfigurationError from allennlp.models.archival import load_archive from allennlp.models.model import Model, remove_weights_related_keys_from_params from allennlp.common import Params from allennlp.data import Vocabulary from allennlp_models.rc.models.bidaf import BidirectionalAttentionFlow from allennlp_models.rc.models.utils import get_best_span from allennlp_models.rc.metrics import SquadEmAndF1 @Model.register("bidaf-ensemble") class BidafEnsemble(Model): """ This class ensembles the output from multiple BiDAF models. It combines results from the submodels by averaging the start and end span probabilities. """ def __init__(self, submodels: List[BidirectionalAttentionFlow]) -> None: vocab = submodels[0].vocab for submodel in submodels: if submodel.vocab != vocab: raise ConfigurationError("Vocabularies in ensemble differ") super().__init__(vocab, None) # Using ModuleList propagates calls to .eval() so dropout is disabled on the submodels in evaluation # and prediction. self.submodels = torch.nn.ModuleList(submodels) self._squad_metrics = SquadEmAndF1() def forward( self, # type: ignore question: Dict[str, torch.LongTensor], passage: Dict[str, torch.LongTensor], span_start: torch.IntTensor = None, span_end: torch.IntTensor = None, metadata: List[Dict[str, Any]] = None, ) -> Dict[str, torch.Tensor]: """ The forward method runs each of the submodels, then selects the best span from the subresults. The best span is determined by averaging the probabilities for the start and end of the spans. Parameters ---------- question : Dict[str, torch.LongTensor] From a ``TextField``. passage : Dict[str, torch.LongTensor] From a ``TextField``. The model assumes that this passage contains the answer to the question, and predicts the beginning and ending positions of the answer within the passage. span_start : ``torch.IntTensor``, optional From an ``IndexField``. This is one of the things we are trying to predict - the beginning position of the answer with the passage. This is an `inclusive` token index. If this is given, we will compute a loss that gets included in the output dictionary. span_end : ``torch.IntTensor``, optional From an ``IndexField``. This is one of the things we are trying to predict - the ending position of the answer with the passage. This is an `inclusive` token index. If this is given, we will compute a loss that gets included in the output dictionary. metadata : ``List[Dict[str, Any]]``, optional If present, this should contain the question ID, original passage text, and token offsets into the passage for each instance in the batch. We use this for computing official metrics using the official SQuAD evaluation script. The length of this list should be the batch size, and each dictionary should have the keys ``id``, ``original_passage``, and ``token_offsets``. If you only want the best span string and don't care about official metrics, you can omit the ``id`` key. Returns ------- An output dictionary consisting of: best_span : torch.IntTensor The result of a constrained inference over ``span_start_logits`` and ``span_end_logits`` to find the most probable span. Shape is ``(batch_size, 2)`` and each offset is a token index. best_span_str : List[str] If sufficient metadata was provided for the instances in the batch, we also return the string from the original passage that the model thinks is the best answer to the question. """ subresults = [ submodel(question, passage, span_start, span_end, metadata) for submodel in self.submodels ] batch_size = len(subresults[0]["best_span"]) best_span = ensemble(subresults) output = {"best_span": best_span, "best_span_str": []} for index in range(batch_size): if metadata is not None: passage_str = metadata[index]["original_passage"] offsets = metadata[index]["token_offsets"] predicted_span = tuple(best_span[index].detach().cpu().numpy()) start_offset = offsets[predicted_span[0]][0] end_offset = offsets[predicted_span[1]][1] best_span_string = passage_str[start_offset:end_offset] output["best_span_str"].append(best_span_string) answer_texts = metadata[index].get("answer_texts", []) if answer_texts: self._squad_metrics(best_span_string, answer_texts) return output def get_metrics(self, reset: bool = False) -> Dict[str, float]: exact_match, f1_score = self._squad_metrics.get_metric(reset) return {"em": exact_match, "f1": f1_score} # The logic here requires a custom from_params. @classmethod def from_params(cls, vocab: Vocabulary, params: Params) -> "BidafEnsemble": # type: ignore if vocab: raise ConfigurationError("vocab should be None") submodels = [] paths = params.pop("submodels") for path in paths: submodels.append(load_archive(path).model) return cls(submodels=submodels) @classmethod def _load( cls, config: Params, serialization_dir: str, weights_file: Optional[str] = None, cuda_device: int = -1, opt_level: Optional[str] = None, ) -> Model: """ Ensembles don't have vocabularies or weights of their own, so they override _load. """ if opt_level is not None: raise NotImplementedError(f"{cls.__name__} does not support AMP yet.") model_params = config.get("model") # The experiment config tells us how to _train_ a model, including where to get pre-trained # embeddings from. We're now _loading_ the model, so those embeddings will already be # stored in our weights. We don't need any pretrained weight file anymore, and we don't # want the code to look for it, so we remove it from the parameters here. remove_weights_related_keys_from_params(model_params) model = Model.from_params(vocab=None, params=model_params) # Force model to cpu or gpu, as appropriate, to make sure that the embeddings are # in sync with the weights if cuda_device >= 0: model.cuda(cuda_device) else: model.cpu() return model default_predictor = "reading_comprehension" def ensemble(subresults: List[Dict[str, torch.Tensor]]) -> torch.Tensor: """ Identifies the best prediction given the results from the submodels. Parameters ---------- subresults : List[Dict[str, torch.Tensor]] Results of each submodel. Returns ------- The index of the best submodel. """ # Choose the highest average confidence span. span_start_probs = sum(subresult["span_start_probs"] for subresult in subresults) / len( subresults ) span_end_probs = sum(subresult["span_end_probs"] for subresult in subresults) / len(subresults) return get_best_span(span_start_probs.log(), span_end_probs.log()) # type: ignore
allennlp-models-main
allennlp_models/rc/models/bidaf_ensemble.py
import torch from allennlp.nn.util import replace_masked_values, min_value_of_dtype def get_best_span(span_start_logits: torch.Tensor, span_end_logits: torch.Tensor) -> torch.Tensor: """ This acts the same as the static method ``BidirectionalAttentionFlow.get_best_span()`` in ``allennlp/models/reading_comprehension/bidaf.py``. We keep it here so that users can directly import this function without the class. We call the inputs "logits" - they could either be unnormalized logits or normalized log probabilities. A log_softmax operation is a constant shifting of the entire logit vector, so taking an argmax over either one gives the same result. """ if span_start_logits.dim() != 2 or span_end_logits.dim() != 2: raise ValueError("Input shapes must be (batch_size, passage_length)") batch_size, passage_length = span_start_logits.size() device = span_start_logits.device # (batch_size, passage_length, passage_length) span_log_probs = span_start_logits.unsqueeze(2) + span_end_logits.unsqueeze(1) # Only the upper triangle of the span matrix is valid; the lower triangle has entries where # the span ends before it starts. span_log_mask = torch.triu(torch.ones((passage_length, passage_length), device=device)).log() valid_span_log_probs = span_log_probs + span_log_mask # Here we take the span matrix and flatten it, then find the best span using argmax. We # can recover the start and end indices from this flattened list using simple modular # arithmetic. # (batch_size, passage_length * passage_length) best_spans = valid_span_log_probs.view(batch_size, -1).argmax(-1) span_start_indices = torch.div(best_spans, passage_length, rounding_mode="trunc") span_end_indices = best_spans % passage_length return torch.stack([span_start_indices, span_end_indices], dim=-1) def replace_masked_values_with_big_negative_number(x: torch.Tensor, mask: torch.Tensor): """ Replace the masked values in a tensor something really negative so that they won't affect a max operation. """ return replace_masked_values(x, mask, min_value_of_dtype(x.dtype))
allennlp-models-main
allennlp_models/rc/models/utils.py
from typing import Any, Dict, List, Optional import logging import torch from allennlp.data import Vocabulary from allennlp.models.model import Model from allennlp.modules import Highway from allennlp.nn.activations import Activation from allennlp.modules.feedforward import FeedForward from allennlp.modules import Seq2SeqEncoder, TextFieldEmbedder from allennlp.modules.matrix_attention.matrix_attention import MatrixAttention from allennlp.nn import util, InitializerApplicator, RegularizerApplicator from allennlp.nn.util import masked_softmax from allennlp_models.rc.models.utils import ( get_best_span, replace_masked_values_with_big_negative_number, ) from allennlp_models.rc.metrics.drop_em_and_f1 import DropEmAndF1 logger = logging.getLogger(__name__) @Model.register("naqanet") class NumericallyAugmentedQaNet(Model): """ This class augments the QANet model with some rudimentary numerical reasoning abilities, as published in the original DROP paper. The main idea here is that instead of just predicting a passage span after doing all of the QANet modeling stuff, we add several different "answer abilities": predicting a span from the question, predicting a count, or predicting an arithmetic expression. Near the end of the QANet model, we have a variable that predicts what kind of answer type we need, and each branch has separate modeling logic to predict that answer type. We then marginalize over all possible ways of getting to the right answer through each of these answer types. """ def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, num_highway_layers: int, phrase_layer: Seq2SeqEncoder, matrix_attention_layer: MatrixAttention, modeling_layer: Seq2SeqEncoder, dropout_prob: float = 0.1, initializer: InitializerApplicator = InitializerApplicator(), regularizer: Optional[RegularizerApplicator] = None, answering_abilities: List[str] = None, ) -> None: super().__init__(vocab, regularizer) if answering_abilities is None: self.answering_abilities = [ "passage_span_extraction", "question_span_extraction", "addition_subtraction", "counting", ] else: self.answering_abilities = answering_abilities text_embed_dim = text_field_embedder.get_output_dim() encoding_in_dim = phrase_layer.get_input_dim() encoding_out_dim = phrase_layer.get_output_dim() modeling_in_dim = modeling_layer.get_input_dim() modeling_out_dim = modeling_layer.get_output_dim() self._text_field_embedder = text_field_embedder self._embedding_proj_layer = torch.nn.Linear(text_embed_dim, encoding_in_dim) self._highway_layer = Highway(encoding_in_dim, num_highway_layers) self._encoding_proj_layer = torch.nn.Linear(encoding_in_dim, encoding_in_dim, bias=False) self._phrase_layer = phrase_layer self._matrix_attention = matrix_attention_layer self._modeling_proj_layer = torch.nn.Linear( encoding_out_dim * 4, modeling_in_dim, bias=False ) self._modeling_layer = modeling_layer self._passage_weights_predictor = torch.nn.Linear(modeling_out_dim, 1) self._question_weights_predictor = torch.nn.Linear(encoding_out_dim, 1) if len(self.answering_abilities) > 1: self._answer_ability_predictor = FeedForward( modeling_out_dim + encoding_out_dim, activations=[Activation.by_name("relu")(), Activation.by_name("linear")()], hidden_dims=[modeling_out_dim, len(self.answering_abilities)], num_layers=2, dropout=dropout_prob, ) if "passage_span_extraction" in self.answering_abilities: self._passage_span_extraction_index = self.answering_abilities.index( "passage_span_extraction" ) self._passage_span_start_predictor = FeedForward( modeling_out_dim * 2, activations=[Activation.by_name("relu")(), Activation.by_name("linear")()], hidden_dims=[modeling_out_dim, 1], num_layers=2, ) self._passage_span_end_predictor = FeedForward( modeling_out_dim * 2, activations=[Activation.by_name("relu")(), Activation.by_name("linear")()], hidden_dims=[modeling_out_dim, 1], num_layers=2, ) if "question_span_extraction" in self.answering_abilities: self._question_span_extraction_index = self.answering_abilities.index( "question_span_extraction" ) self._question_span_start_predictor = FeedForward( modeling_out_dim * 2, activations=[Activation.by_name("relu")(), Activation.by_name("linear")()], hidden_dims=[modeling_out_dim, 1], num_layers=2, ) self._question_span_end_predictor = FeedForward( modeling_out_dim * 2, activations=[Activation.by_name("relu")(), Activation.by_name("linear")()], hidden_dims=[modeling_out_dim, 1], num_layers=2, ) if "addition_subtraction" in self.answering_abilities: self._addition_subtraction_index = self.answering_abilities.index( "addition_subtraction" ) self._number_sign_predictor = FeedForward( modeling_out_dim * 3, activations=[Activation.by_name("relu")(), Activation.by_name("linear")()], hidden_dims=[modeling_out_dim, 3], num_layers=2, ) if "counting" in self.answering_abilities: self._counting_index = self.answering_abilities.index("counting") self._count_number_predictor = FeedForward( modeling_out_dim, activations=[Activation.by_name("relu")(), Activation.by_name("linear")()], hidden_dims=[modeling_out_dim, 10], num_layers=2, ) self._drop_metrics = DropEmAndF1() self._dropout = torch.nn.Dropout(p=dropout_prob) initializer(self) def forward( # type: ignore self, question: Dict[str, torch.LongTensor], passage: Dict[str, torch.LongTensor], number_indices: torch.LongTensor, answer_as_passage_spans: torch.LongTensor = None, answer_as_question_spans: torch.LongTensor = None, answer_as_add_sub_expressions: torch.LongTensor = None, answer_as_counts: torch.LongTensor = None, metadata: List[Dict[str, Any]] = None, ) -> Dict[str, torch.Tensor]: question_mask = util.get_text_field_mask(question) passage_mask = util.get_text_field_mask(passage) embedded_question = self._dropout(self._text_field_embedder(question)) embedded_passage = self._dropout(self._text_field_embedder(passage)) embedded_question = self._highway_layer(self._embedding_proj_layer(embedded_question)) embedded_passage = self._highway_layer(self._embedding_proj_layer(embedded_passage)) batch_size = embedded_question.size(0) projected_embedded_question = self._encoding_proj_layer(embedded_question) projected_embedded_passage = self._encoding_proj_layer(embedded_passage) encoded_question = self._dropout( self._phrase_layer(projected_embedded_question, question_mask) ) encoded_passage = self._dropout( self._phrase_layer(projected_embedded_passage, passage_mask) ) # Shape: (batch_size, passage_length, question_length) passage_question_similarity = self._matrix_attention(encoded_passage, encoded_question) # Shape: (batch_size, passage_length, question_length) passage_question_attention = masked_softmax( passage_question_similarity, question_mask, memory_efficient=True ) # Shape: (batch_size, passage_length, encoding_dim) passage_question_vectors = util.weighted_sum(encoded_question, passage_question_attention) # Shape: (batch_size, question_length, passage_length) question_passage_attention = masked_softmax( passage_question_similarity.transpose(1, 2), passage_mask, memory_efficient=True ) # Shape: (batch_size, passage_length, passage_length) passsage_attention_over_attention = torch.bmm( passage_question_attention, question_passage_attention ) # Shape: (batch_size, passage_length, encoding_dim) passage_passage_vectors = util.weighted_sum( encoded_passage, passsage_attention_over_attention ) # Shape: (batch_size, passage_length, encoding_dim * 4) merged_passage_attention_vectors = self._dropout( torch.cat( [ encoded_passage, passage_question_vectors, encoded_passage * passage_question_vectors, encoded_passage * passage_passage_vectors, ], dim=-1, ) ) # The recurrent modeling layers. Since these layers share the same parameters, # we don't construct them conditioned on answering abilities. modeled_passage_list = [self._modeling_proj_layer(merged_passage_attention_vectors)] for _ in range(4): modeled_passage = self._dropout( self._modeling_layer(modeled_passage_list[-1], passage_mask) ) modeled_passage_list.append(modeled_passage) # Pop the first one, which is input modeled_passage_list.pop(0) # The first modeling layer is used to calculate the vector representation of passage passage_weights = self._passage_weights_predictor(modeled_passage_list[0]).squeeze(-1) passage_weights = masked_softmax(passage_weights, passage_mask) passage_vector = util.weighted_sum(modeled_passage_list[0], passage_weights) # The vector representation of question is calculated based on the unmatched encoding, # because we may want to infer the answer ability only based on the question words. question_weights = self._question_weights_predictor(encoded_question).squeeze(-1) question_weights = masked_softmax(question_weights, question_mask) question_vector = util.weighted_sum(encoded_question, question_weights) if len(self.answering_abilities) > 1: # Shape: (batch_size, number_of_abilities) answer_ability_logits = self._answer_ability_predictor( torch.cat([passage_vector, question_vector], -1) ) answer_ability_log_probs = torch.nn.functional.log_softmax(answer_ability_logits, -1) best_answer_ability = torch.argmax(answer_ability_log_probs, 1) if "counting" in self.answering_abilities: # Shape: (batch_size, 10) count_number_logits = self._count_number_predictor(passage_vector) count_number_log_probs = torch.nn.functional.log_softmax(count_number_logits, -1) # Info about the best count number prediction # Shape: (batch_size,) best_count_number = torch.argmax(count_number_log_probs, -1) best_count_log_prob = torch.gather( count_number_log_probs, 1, best_count_number.unsqueeze(-1) ).squeeze(-1) if len(self.answering_abilities) > 1: best_count_log_prob += answer_ability_log_probs[:, self._counting_index] if "passage_span_extraction" in self.answering_abilities: # Shape: (batch_size, passage_length, modeling_dim * 2)) passage_for_span_start = torch.cat( [modeled_passage_list[0], modeled_passage_list[1]], dim=-1 ) # Shape: (batch_size, passage_length) passage_span_start_logits = self._passage_span_start_predictor( passage_for_span_start ).squeeze(-1) # Shape: (batch_size, passage_length, modeling_dim * 2) passage_for_span_end = torch.cat( [modeled_passage_list[0], modeled_passage_list[2]], dim=-1 ) # Shape: (batch_size, passage_length) passage_span_end_logits = self._passage_span_end_predictor( passage_for_span_end ).squeeze(-1) # Shape: (batch_size, passage_length) passage_span_start_log_probs = util.masked_log_softmax( passage_span_start_logits, passage_mask ) passage_span_end_log_probs = util.masked_log_softmax( passage_span_end_logits, passage_mask ) # Info about the best passage span prediction passage_span_start_logits = replace_masked_values_with_big_negative_number( passage_span_start_logits, passage_mask ) passage_span_end_logits = replace_masked_values_with_big_negative_number( passage_span_end_logits, passage_mask ) # Shape: (batch_size, 2) best_passage_span = get_best_span(passage_span_start_logits, passage_span_end_logits) # Shape: (batch_size, 2) best_passage_start_log_probs = torch.gather( passage_span_start_log_probs, 1, best_passage_span[:, 0].unsqueeze(-1) ).squeeze(-1) best_passage_end_log_probs = torch.gather( passage_span_end_log_probs, 1, best_passage_span[:, 1].unsqueeze(-1) ).squeeze(-1) # Shape: (batch_size,) best_passage_span_log_prob = best_passage_start_log_probs + best_passage_end_log_probs if len(self.answering_abilities) > 1: best_passage_span_log_prob += answer_ability_log_probs[ :, self._passage_span_extraction_index ] if "question_span_extraction" in self.answering_abilities: # Shape: (batch_size, question_length) encoded_question_for_span_prediction = torch.cat( [ encoded_question, passage_vector.unsqueeze(1).repeat(1, encoded_question.size(1), 1), ], -1, ) question_span_start_logits = self._question_span_start_predictor( encoded_question_for_span_prediction ).squeeze(-1) # Shape: (batch_size, question_length) question_span_end_logits = self._question_span_end_predictor( encoded_question_for_span_prediction ).squeeze(-1) question_span_start_log_probs = util.masked_log_softmax( question_span_start_logits, question_mask ) question_span_end_log_probs = util.masked_log_softmax( question_span_end_logits, question_mask ) # Info about the best question span prediction question_span_start_logits = replace_masked_values_with_big_negative_number( question_span_start_logits, question_mask ) question_span_end_logits = replace_masked_values_with_big_negative_number( question_span_end_logits, question_mask ) # Shape: (batch_size, 2) best_question_span = get_best_span(question_span_start_logits, question_span_end_logits) # Shape: (batch_size, 2) best_question_start_log_probs = torch.gather( question_span_start_log_probs, 1, best_question_span[:, 0].unsqueeze(-1) ).squeeze(-1) best_question_end_log_probs = torch.gather( question_span_end_log_probs, 1, best_question_span[:, 1].unsqueeze(-1) ).squeeze(-1) # Shape: (batch_size,) best_question_span_log_prob = ( best_question_start_log_probs + best_question_end_log_probs ) if len(self.answering_abilities) > 1: best_question_span_log_prob += answer_ability_log_probs[ :, self._question_span_extraction_index ] if "addition_subtraction" in self.answering_abilities: # Shape: (batch_size, # of numbers in the passage) number_indices = number_indices.squeeze(-1) number_mask = number_indices != -1 clamped_number_indices = util.replace_masked_values(number_indices, number_mask, 0) encoded_passage_for_numbers = torch.cat( [modeled_passage_list[0], modeled_passage_list[3]], dim=-1 ) # Shape: (batch_size, # of numbers in the passage, encoding_dim) encoded_numbers = torch.gather( encoded_passage_for_numbers, 1, clamped_number_indices.unsqueeze(-1).expand( -1, -1, encoded_passage_for_numbers.size(-1) ), ) # Shape: (batch_size, # of numbers in the passage) encoded_numbers = torch.cat( [ encoded_numbers, passage_vector.unsqueeze(1).repeat(1, encoded_numbers.size(1), 1), ], -1, ) # Shape: (batch_size, # of numbers in the passage, 3) number_sign_logits = self._number_sign_predictor(encoded_numbers) number_sign_log_probs = torch.nn.functional.log_softmax(number_sign_logits, -1) # Shape: (batch_size, # of numbers in passage). best_signs_for_numbers = torch.argmax(number_sign_log_probs, -1) # For padding numbers, the best sign masked as 0 (not included). best_signs_for_numbers = util.replace_masked_values( best_signs_for_numbers, number_mask, 0 ) # Shape: (batch_size, # of numbers in passage) best_signs_log_probs = torch.gather( number_sign_log_probs, 2, best_signs_for_numbers.unsqueeze(-1) ).squeeze(-1) # the probs of the masked positions should be 1 so that it will not affect the joint probability # TODO: this is not quite right, since if there are many numbers in the passage, # TODO: the joint probability would be very small. best_signs_log_probs = util.replace_masked_values(best_signs_log_probs, number_mask, 0) # Shape: (batch_size,) best_combination_log_prob = best_signs_log_probs.sum(-1) if len(self.answering_abilities) > 1: best_combination_log_prob += answer_ability_log_probs[ :, self._addition_subtraction_index ] output_dict = {} # If answer is given, compute the loss. if ( answer_as_passage_spans is not None or answer_as_question_spans is not None or answer_as_add_sub_expressions is not None or answer_as_counts is not None ): log_marginal_likelihood_list = [] for answering_ability in self.answering_abilities: if answering_ability == "passage_span_extraction": # Shape: (batch_size, # of answer spans) gold_passage_span_starts = answer_as_passage_spans[:, :, 0] gold_passage_span_ends = answer_as_passage_spans[:, :, 1] # Some spans are padded with index -1, # so we clamp those paddings to 0 and then mask after `torch.gather()`. gold_passage_span_mask = gold_passage_span_starts != -1 clamped_gold_passage_span_starts = util.replace_masked_values( gold_passage_span_starts, gold_passage_span_mask, 0 ) clamped_gold_passage_span_ends = util.replace_masked_values( gold_passage_span_ends, gold_passage_span_mask, 0 ) # Shape: (batch_size, # of answer spans) log_likelihood_for_passage_span_starts = torch.gather( passage_span_start_log_probs, 1, clamped_gold_passage_span_starts ) log_likelihood_for_passage_span_ends = torch.gather( passage_span_end_log_probs, 1, clamped_gold_passage_span_ends ) # Shape: (batch_size, # of answer spans) log_likelihood_for_passage_spans = ( log_likelihood_for_passage_span_starts + log_likelihood_for_passage_span_ends ) # For those padded spans, we set their log probabilities to be very small negative value log_likelihood_for_passage_spans = ( replace_masked_values_with_big_negative_number( log_likelihood_for_passage_spans, gold_passage_span_mask, ) ) # Shape: (batch_size, ) log_marginal_likelihood_for_passage_span = util.logsumexp( log_likelihood_for_passage_spans ) log_marginal_likelihood_list.append(log_marginal_likelihood_for_passage_span) elif answering_ability == "question_span_extraction": # Shape: (batch_size, # of answer spans) gold_question_span_starts = answer_as_question_spans[:, :, 0] gold_question_span_ends = answer_as_question_spans[:, :, 1] # Some spans are padded with index -1, # so we clamp those paddings to 0 and then mask after `torch.gather()`. gold_question_span_mask = gold_question_span_starts != -1 clamped_gold_question_span_starts = util.replace_masked_values( gold_question_span_starts, gold_question_span_mask, 0 ) clamped_gold_question_span_ends = util.replace_masked_values( gold_question_span_ends, gold_question_span_mask, 0 ) # Shape: (batch_size, # of answer spans) log_likelihood_for_question_span_starts = torch.gather( question_span_start_log_probs, 1, clamped_gold_question_span_starts ) log_likelihood_for_question_span_ends = torch.gather( question_span_end_log_probs, 1, clamped_gold_question_span_ends ) # Shape: (batch_size, # of answer spans) log_likelihood_for_question_spans = ( log_likelihood_for_question_span_starts + log_likelihood_for_question_span_ends ) # For those padded spans, we set their log probabilities to be very small negative value log_likelihood_for_question_spans = ( replace_masked_values_with_big_negative_number( log_likelihood_for_question_spans, gold_question_span_mask, ) ) # Shape: (batch_size, ) log_marginal_likelihood_for_question_span = util.logsumexp( log_likelihood_for_question_spans ) log_marginal_likelihood_list.append(log_marginal_likelihood_for_question_span) elif answering_ability == "addition_subtraction": # The padded add-sub combinations use 0 as the signs for all numbers, and we mask them here. # Shape: (batch_size, # of combinations) gold_add_sub_mask = answer_as_add_sub_expressions.sum(-1) > 0 # Shape: (batch_size, # of numbers in the passage, # of combinations) gold_add_sub_signs = answer_as_add_sub_expressions.transpose(1, 2) # Shape: (batch_size, # of numbers in the passage, # of combinations) log_likelihood_for_number_signs = torch.gather( number_sign_log_probs, 2, gold_add_sub_signs ) # the log likelihood of the masked positions should be 0 # so that it will not affect the joint probability log_likelihood_for_number_signs = util.replace_masked_values( log_likelihood_for_number_signs, number_mask.unsqueeze(-1), 0 ) # Shape: (batch_size, # of combinations) log_likelihood_for_add_subs = log_likelihood_for_number_signs.sum(1) # For those padded combinations, we set their log probabilities to be very small negative value log_likelihood_for_add_subs = replace_masked_values_with_big_negative_number( log_likelihood_for_add_subs, gold_add_sub_mask ) # Shape: (batch_size, ) log_marginal_likelihood_for_add_sub = util.logsumexp( log_likelihood_for_add_subs ) log_marginal_likelihood_list.append(log_marginal_likelihood_for_add_sub) elif answering_ability == "counting": # Count answers are padded with label -1, # so we clamp those paddings to 0 and then mask after `torch.gather()`. # Shape: (batch_size, # of count answers) gold_count_mask = answer_as_counts != -1 # Shape: (batch_size, # of count answers) clamped_gold_counts = util.replace_masked_values( answer_as_counts, gold_count_mask, 0 ) log_likelihood_for_counts = torch.gather( count_number_log_probs, 1, clamped_gold_counts ) # For those padded spans, we set their log probabilities to be very small negative value log_likelihood_for_counts = replace_masked_values_with_big_negative_number( log_likelihood_for_counts, gold_count_mask ) # Shape: (batch_size, ) log_marginal_likelihood_for_count = util.logsumexp(log_likelihood_for_counts) log_marginal_likelihood_list.append(log_marginal_likelihood_for_count) else: raise ValueError(f"Unsupported answering ability: {answering_ability}") if len(self.answering_abilities) > 1: # Add the ability probabilities if there are more than one abilities all_log_marginal_likelihoods = torch.stack(log_marginal_likelihood_list, dim=-1) all_log_marginal_likelihoods = ( all_log_marginal_likelihoods + answer_ability_log_probs ) marginal_log_likelihood = util.logsumexp(all_log_marginal_likelihoods) else: marginal_log_likelihood = log_marginal_likelihood_list[0] output_dict["loss"] = -marginal_log_likelihood.mean() # Compute the metrics and add the tokenized input to the output. if metadata is not None: output_dict["question_id"] = [] output_dict["answer"] = [] question_tokens = [] passage_tokens = [] for i in range(batch_size): question_tokens.append(metadata[i]["question_tokens"]) passage_tokens.append(metadata[i]["passage_tokens"]) if len(self.answering_abilities) > 1: predicted_ability_str = self.answering_abilities[ best_answer_ability[i].detach().cpu().numpy() ] else: predicted_ability_str = self.answering_abilities[0] answer_json: Dict[str, Any] = {} # We did not consider multi-mention answers here if predicted_ability_str == "passage_span_extraction": answer_json["answer_type"] = "passage_span" passage_str = metadata[i]["original_passage"] offsets = metadata[i]["passage_token_offsets"] predicted_span = tuple(best_passage_span[i].detach().cpu().numpy()) start_offset = offsets[predicted_span[0]][0] end_offset = offsets[predicted_span[1]][1] predicted_answer = passage_str[start_offset:end_offset] answer_json["value"] = predicted_answer answer_json["spans"] = [(start_offset, end_offset)] elif predicted_ability_str == "question_span_extraction": answer_json["answer_type"] = "question_span" question_str = metadata[i]["original_question"] offsets = metadata[i]["question_token_offsets"] predicted_span = tuple(best_question_span[i].detach().cpu().numpy()) start_offset = offsets[predicted_span[0]][0] end_offset = offsets[predicted_span[1]][1] predicted_answer = question_str[start_offset:end_offset] answer_json["value"] = predicted_answer answer_json["spans"] = [(start_offset, end_offset)] elif ( predicted_ability_str == "addition_subtraction" ): # plus_minus combination answer answer_json["answer_type"] = "arithmetic" original_numbers = metadata[i]["original_numbers"] sign_remap = {0: 0, 1: 1, 2: -1} predicted_signs = [ sign_remap[it] for it in best_signs_for_numbers[i].detach().cpu().numpy() ] result = sum( [sign * number for sign, number in zip(predicted_signs, original_numbers)] ) predicted_answer = str(result) offsets = metadata[i]["passage_token_offsets"] number_indices = metadata[i]["number_indices"] number_positions = [offsets[index] for index in number_indices] answer_json["numbers"] = [] for offset, value, sign in zip( number_positions, original_numbers, predicted_signs ): answer_json["numbers"].append( {"span": offset, "value": value, "sign": sign} ) if number_indices[-1] == -1: # There is a dummy 0 number at position -1 added in some cases; we are # removing that here. answer_json["numbers"].pop() answer_json["value"] = result elif predicted_ability_str == "counting": answer_json["answer_type"] = "count" predicted_count = best_count_number[i].detach().cpu().numpy() predicted_answer = str(predicted_count) answer_json["count"] = predicted_count else: raise ValueError(f"Unsupported answer ability: {predicted_ability_str}") output_dict["question_id"].append(metadata[i]["question_id"]) output_dict["answer"].append(answer_json) answer_annotations = metadata[i].get("answer_annotations", []) if answer_annotations: self._drop_metrics(predicted_answer, answer_annotations) # This is used for the demo. output_dict["passage_question_attention"] = passage_question_attention output_dict["question_tokens"] = question_tokens output_dict["passage_tokens"] = passage_tokens return output_dict def get_metrics(self, reset: bool = False) -> Dict[str, float]: exact_match, f1_score = self._drop_metrics.get_metric(reset) return {"em": exact_match, "f1": f1_score} default_predictor = "reading_comprehension"
allennlp-models-main
allennlp_models/rc/models/naqanet.py
import logging from typing import Any, Dict, List, Optional, Tuple import numpy as np import torch from torch import nn from torch.nn.functional import cross_entropy from torch.nn.functional import softmax from allennlp.common.util import sanitize_wordpiece from allennlp.modules.text_field_embedders import BasicTextFieldEmbedder from allennlp.modules.token_embedders import PretrainedTransformerEmbedder from allennlp.nn.util import get_token_ids_from_text_field_tensors from allennlp.data import Vocabulary from allennlp.models.model import Model from allennlp.training.metrics import BooleanAccuracy, CategoricalAccuracy from allennlp_models.rc.models.utils import ( get_best_span, replace_masked_values_with_big_negative_number, ) from allennlp_models.rc.metrics import SquadEmAndF1 logger = logging.getLogger(__name__) @Model.register("transformer_qa") class TransformerQA(Model): """ Registered as `"transformer_qa"`, this class implements a reading comprehension model patterned after the proposed model in [Devlin et al]([email protected]:huggingface/transformers.git), with improvements borrowed from the SQuAD model in the transformers project. It predicts start tokens and end tokens with a linear layer on top of word piece embeddings. If you want to use this model on SQuAD datasets, you can use it with the [`TransformerSquadReader`](../../dataset_readers/transformer_squad#transformersquadreader) dataset reader, registered as `"transformer_squad"`. Note that the metrics that the model produces are calculated on a per-instance basis only. Since there could be more than one instance per question, these metrics are not the official numbers on either SQuAD task. To get official numbers for SQuAD v1.1, for example, you can run ``` python -m allennlp_models.rc.tools.transformer_qa_eval ``` # Parameters vocab : `Vocabulary` transformer_model_name : `str`, optional (default=`'bert-base-cased'`) This model chooses the embedder according to this setting. You probably want to make sure this is set to the same thing as the reader. """ def __init__( self, vocab: Vocabulary, transformer_model_name: str = "bert-base-cased", **kwargs ) -> None: super().__init__(vocab, **kwargs) self._text_field_embedder = BasicTextFieldEmbedder( {"tokens": PretrainedTransformerEmbedder(transformer_model_name)} ) self._linear_layer = nn.Linear(self._text_field_embedder.get_output_dim(), 2) self._span_start_accuracy = CategoricalAccuracy() self._span_end_accuracy = CategoricalAccuracy() self._span_accuracy = BooleanAccuracy() self._per_instance_metrics = SquadEmAndF1() def forward( # type: ignore self, question_with_context: Dict[str, Dict[str, torch.LongTensor]], context_span: torch.IntTensor, cls_index: torch.LongTensor = None, answer_span: torch.IntTensor = None, metadata: List[Dict[str, Any]] = None, ) -> Dict[str, torch.Tensor]: """ # Parameters question_with_context : `Dict[str, torch.LongTensor]` From a `TextField`. The model assumes that this text field contains the context followed by the question. It further assumes that the tokens have type ids set such that any token that can be part of the answer (i.e., tokens from the context) has type id 0, and any other token (including `[CLS]` and `[SEP]`) has type id 1. context_span : `torch.IntTensor` From a `SpanField`. This marks the span of word pieces in `question` from which answers can come. cls_index : `torch.LongTensor`, optional A tensor of shape `(batch_size,)` that provides the index of the `[CLS]` token in the `question_with_context` for each instance. This is needed because the `[CLS]` token is used to indicate that the question is impossible. If this is `None`, it's assumed that the `[CLS]` token is at index 0 for each instance in the batch. answer_span : `torch.IntTensor`, optional From a `SpanField`. This is the thing we are trying to predict - the span of text that marks the answer. If given, we compute a loss that gets included in the output directory. metadata : `List[Dict[str, Any]]`, optional If present, this should contain the question id, and the original texts of context, question, tokenized version of both, and a list of possible answers. The length of the `metadata` list should be the batch size, and each dictionary should have the keys `id`, `question`, `context`, `question_tokens`, `context_tokens`, and `answers`. # Returns `Dict[str, torch.Tensor]` : An output dictionary with the following fields: - span_start_logits (`torch.FloatTensor`) : A tensor of shape `(batch_size, passage_length)` representing unnormalized log probabilities of the span start position. - span_end_logits (`torch.FloatTensor`) : A tensor of shape `(batch_size, passage_length)` representing unnormalized log probabilities of the span end position (inclusive). - best_span_scores (`torch.FloatTensor`) : The score for each of the best spans. - loss (`torch.FloatTensor`, optional) : A scalar loss to be optimised, evaluated against `answer_span`. - best_span (`torch.IntTensor`, optional) : Provided when not in train mode and sufficient metadata given for the instance. The result of a constrained inference over `span_start_logits` and `span_end_logits` to find the most probable span. Shape is `(batch_size, 2)` and each offset is a token index, unless the best span for an instance was predicted to be the `[CLS]` token, in which case the span will be (-1, -1). - best_span_str (`List[str]`, optional) : Provided when not in train mode and sufficient metadata given for the instance. This is the string from the original passage that the model thinks is the best answer to the question. """ embedded_question = self._text_field_embedder(question_with_context) # shape: (batch_size, sequence_length, 2) logits = self._linear_layer(embedded_question) # shape: (batch_size, sequence_length, 1) span_start_logits, span_end_logits = logits.split(1, dim=-1) # shape: (batch_size, sequence_length) span_start_logits = span_start_logits.squeeze(-1) # shape: (batch_size, sequence_length) span_end_logits = span_end_logits.squeeze(-1) # Create a mask for `question_with_context` to mask out tokens that are not part # of the context. # shape: (batch_size, sequence_length) possible_answer_mask = torch.zeros_like( get_token_ids_from_text_field_tensors(question_with_context), dtype=torch.bool ) for i, (start, end) in enumerate(context_span): possible_answer_mask[i, start : end + 1] = True # Also unmask the [CLS] token since that token is used to indicate that # the question is impossible. possible_answer_mask[i, 0 if cls_index is None else cls_index[i]] = True # Calculate span start and end probabilities # shape: (batch_size, sequence_length) span_start_probs = softmax(span_start_logits, dim=-1) # shape: (batch_size, sequence_length) span_end_probs = softmax(span_end_logits, dim=-1) # Replace the masked values with a very negative constant since we're in log-space. # shape: (batch_size, sequence_length) span_start_logits = replace_masked_values_with_big_negative_number( span_start_logits, possible_answer_mask ) # shape: (batch_size, sequence_length) span_end_logits = replace_masked_values_with_big_negative_number( span_end_logits, possible_answer_mask ) # Now calculate the best span. # shape: (batch_size, 2) best_spans = get_best_span(span_start_logits, span_end_logits) # Sum the span start score with the span end score to get an overall score for the span. # shape: (batch_size,) best_span_scores = torch.gather( span_start_logits, 1, best_spans[:, 0].unsqueeze(1) ) + torch.gather(span_end_logits, 1, best_spans[:, 1].unsqueeze(1)) best_span_scores = best_span_scores.squeeze(1) best_span_probs = torch.gather( span_start_probs, 1, best_spans[:, 0].unsqueeze(1) ) * torch.gather(span_end_probs, 1, best_spans[:, 1].unsqueeze(1)) best_span_probs = best_span_probs.squeeze(1) output_dict = { "span_start_logits": span_start_logits, "span_end_logits": span_end_logits, "best_span_scores": best_span_scores, "span_start_probs": span_start_probs, "span_end_probs": span_end_probs, "best_span_probs": best_span_probs, } # Compute the loss. if answer_span is not None: output_dict["loss"] = self._evaluate_span( best_spans, span_start_logits, span_end_logits, answer_span ) # Gather the string of the best span and compute the EM and F1 against the gold span, # if given. if not self.training and metadata is not None: ( output_dict["best_span_str"], output_dict["best_span"], ) = self._collect_best_span_strings(best_spans, context_span, metadata, cls_index) return output_dict def _evaluate_span( self, best_spans: torch.Tensor, span_start_logits: torch.Tensor, span_end_logits: torch.Tensor, answer_span: torch.Tensor, ) -> torch.Tensor: """ Calculate the loss against the `answer_span` and also update the span metrics. """ span_start = answer_span[:, 0] span_end = answer_span[:, 1] self._span_accuracy(best_spans, answer_span) start_loss = cross_entropy(span_start_logits, span_start, ignore_index=-1) big_constant = min(torch.finfo(start_loss.dtype).max, 1e9) assert not torch.any(start_loss > big_constant), "Start loss too high" end_loss = cross_entropy(span_end_logits, span_end, ignore_index=-1) assert not torch.any(end_loss > big_constant), "End loss too high" self._span_start_accuracy(span_start_logits, span_start) self._span_end_accuracy(span_end_logits, span_end) return (start_loss + end_loss) / 2 def _collect_best_span_strings( self, best_spans: torch.Tensor, context_span: torch.IntTensor, metadata: List[Dict[str, Any]], cls_index: Optional[torch.LongTensor], ) -> Tuple[List[str], torch.Tensor]: """ Collect the string of the best predicted span from the context metadata and update `self._per_instance_metrics`, which in the case of SQuAD v1.1 / v2.0 includes the EM and F1 score. This returns a `Tuple[List[str], torch.Tensor]`, where the `List[str]` is the predicted answer for each instance in the batch, and the tensor is just the input tensor `best_spans` after adjustments so that each answer span corresponds to the context tokens only, and not the question tokens. Spans that correspond to the `[CLS]` token, i.e. the question was predicted to be impossible, will be set to `(-1, -1)`. """ _best_spans = best_spans.detach().cpu().numpy() best_span_strings: List[str] = [] best_span_strings_for_metric: List[str] = [] answer_strings_for_metric: List[List[str]] = [] for (metadata_entry, best_span, cspan, cls_ind) in zip( metadata, _best_spans, context_span, cls_index or (0 for _ in range(len(metadata))), ): context_tokens_for_question = metadata_entry["context_tokens"] if best_span[0] == cls_ind: # Predicting [CLS] is interpreted as predicting the question as unanswerable. best_span_string = "" # NOTE: even though we've "detached" 'best_spans' above, this still # modifies the original tensor in-place. best_span[0], best_span[1] = -1, -1 else: best_span -= int(cspan[0]) assert np.all(best_span >= 0) predicted_start, predicted_end = tuple(best_span) while ( predicted_start >= 0 and context_tokens_for_question[predicted_start].idx is None ): predicted_start -= 1 if predicted_start < 0: logger.warning( f"Could not map the token '{context_tokens_for_question[best_span[0]].text}' at index " f"'{best_span[0]}' to an offset in the original text." ) character_start = 0 else: character_start = context_tokens_for_question[predicted_start].idx while ( predicted_end < len(context_tokens_for_question) and context_tokens_for_question[predicted_end].idx is None ): predicted_end += 1 if predicted_end >= len(context_tokens_for_question): logger.warning( f"Could not map the token '{context_tokens_for_question[best_span[1]].text}' at index " f"'{best_span[1]}' to an offset in the original text." ) character_end = len(metadata_entry["context"]) else: end_token = context_tokens_for_question[predicted_end] character_end = end_token.idx + len(sanitize_wordpiece(end_token.text)) best_span_string = metadata_entry["context"][character_start:character_end] best_span_strings.append(best_span_string) answers = metadata_entry.get("answers") if answers: best_span_strings_for_metric.append(best_span_string) answer_strings_for_metric.append(answers) if answer_strings_for_metric: self._per_instance_metrics(best_span_strings_for_metric, answer_strings_for_metric) return best_span_strings, best_spans def get_metrics(self, reset: bool = False) -> Dict[str, float]: output = { "start_acc": self._span_start_accuracy.get_metric(reset), "end_acc": self._span_end_accuracy.get_metric(reset), "span_acc": self._span_accuracy.get_metric(reset), } if not self.training: exact_match, f1_score = self._per_instance_metrics.get_metric(reset) output["per_instance_em"] = exact_match output["per_instance_f1"] = f1_score return output default_predictor = "transformer_qa"
allennlp-models-main
allennlp_models/rc/models/transformer_qa.py
# flake8: noqa: F403 from allennlp_models.rc.modules.seq2seq_encoders import *
allennlp-models-main
allennlp_models/rc/modules/__init__.py
from typing import List import torch from torch.nn import Dropout from allennlp.modules.feedforward import FeedForward from allennlp.modules.layer_norm import LayerNorm from allennlp.modules.seq2seq_encoders.seq2seq_encoder import Seq2SeqEncoder from allennlp.nn.activations import Activation from allennlp.nn.util import add_positional_features from allennlp_models.rc.modules.seq2seq_encoders.multi_head_self_attention import ( MultiHeadSelfAttention, ) @Seq2SeqEncoder.register("stacked_self_attention") class StackedSelfAttentionEncoder(Seq2SeqEncoder): """ Implements a stacked self-attention encoder similar to, but different from, the Transformer architecture in [Attention is all you Need] (https://www.semanticscholar.org/paper/Attention-Is-All-You-Need-Vaswani-Shazeer/0737da0767d77606169cbf4187b83e1ab62f6077). This encoder combines 3 layers in a 'block': 1. A 2 layer FeedForward network. 2. Multi-headed self attention, which uses 2 learnt linear projections to perform a dot-product similarity between every pair of elements scaled by the square root of the sequence length. 3. Layer Normalisation. These are then stacked into `num_layers` layers. # Parameters input_dim : `int`, required. The input dimension of the encoder. hidden_dim : `int`, required. The hidden dimension used for the _input_ to self attention layers and the _output_ from the feedforward layers. projection_dim : `int`, required. The dimension of the linear projections for the self-attention layers. feedforward_hidden_dim : `int`, required. The middle dimension of the FeedForward network. The input and output dimensions are fixed to ensure sizes match up for the self attention layers. num_layers : `int`, required. The number of stacked self attention -> feedforward -> layer normalisation blocks. num_attention_heads : `int`, required. The number of attention heads to use per layer. use_positional_encoding : `bool`, optional, (default = `True`) Whether to add sinusoidal frequencies to the input tensor. This is strongly recommended, as without this feature, the self attention layers have no idea of absolute or relative position (as they are just computing pairwise similarity between vectors of elements), which can be important features for many tasks. dropout_prob : `float`, optional, (default = `0.1`) The dropout probability for the feedforward network. residual_dropout_prob : `float`, optional, (default = `0.2`) The dropout probability for the residual connections. attention_dropout_prob : `float`, optional, (default = `0.1`) The dropout probability for the attention distributions in each attention layer. """ # noqa def __init__( self, input_dim: int, hidden_dim: int, projection_dim: int, feedforward_hidden_dim: int, num_layers: int, num_attention_heads: int, use_positional_encoding: bool = True, dropout_prob: float = 0.1, residual_dropout_prob: float = 0.2, attention_dropout_prob: float = 0.1, ) -> None: super().__init__() self._use_positional_encoding = use_positional_encoding self._attention_layers: List[MultiHeadSelfAttention] = [] self._feedforward_layers: List[FeedForward] = [] self._layer_norm_layers: List[LayerNorm] = [] self._feed_forward_layer_norm_layers: List[LayerNorm] = [] feedforward_input_dim = input_dim for i in range(num_layers): feedforward = FeedForward( feedforward_input_dim, activations=[Activation.by_name("relu")(), Activation.by_name("linear")()], hidden_dims=[feedforward_hidden_dim, hidden_dim], num_layers=2, dropout=dropout_prob, ) # Note: Please use `ModuleList` in new code. It provides better # support for running on multiple GPUs. We've kept `add_module` here # solely for backwards compatibility with existing serialized models. self.add_module(f"feedforward_{i}", feedforward) self._feedforward_layers.append(feedforward) feedforward_layer_norm = LayerNorm(feedforward.get_output_dim()) self.add_module(f"feedforward_layer_norm_{i}", feedforward_layer_norm) self._feed_forward_layer_norm_layers.append(feedforward_layer_norm) self_attention = MultiHeadSelfAttention( num_heads=num_attention_heads, input_dim=hidden_dim, attention_dim=projection_dim, values_dim=projection_dim, attention_dropout_prob=attention_dropout_prob, ) self.add_module(f"self_attention_{i}", self_attention) self._attention_layers.append(self_attention) layer_norm = LayerNorm(self_attention.get_output_dim()) self.add_module(f"layer_norm_{i}", layer_norm) self._layer_norm_layers.append(layer_norm) feedforward_input_dim = hidden_dim self.dropout = Dropout(residual_dropout_prob) self._input_dim = input_dim self._output_dim = self._attention_layers[-1].get_output_dim() def get_input_dim(self) -> int: return self._input_dim def get_output_dim(self) -> int: return self._output_dim def is_bidirectional(self): return False def forward(self, inputs: torch.Tensor, mask: torch.BoolTensor): if self._use_positional_encoding: output = add_positional_features(inputs) else: output = inputs for i in range(len(self._attention_layers)): # It's necessary to use `getattr` here because the elements stored # in the lists are not replicated by torch.nn.parallel.replicate # when running on multiple GPUs. Please use `ModuleList` in new # code. It handles this issue transparently. We've kept `add_module` # (in conjunction with `getattr`) solely for backwards compatibility # with existing serialized models. attention = getattr(self, f"self_attention_{i}") feedforward = getattr(self, f"feedforward_{i}") feedforward_layer_norm = getattr(self, f"feedforward_layer_norm_{i}") layer_norm = getattr(self, f"layer_norm_{i}") cached_input = output # Project output of attention encoder through a feedforward # network and back to the input size for the next layer. # shape (batch_size, timesteps, input_size) feedforward_output = feedforward(output) feedforward_output = self.dropout(feedforward_output) if feedforward_output.size() == cached_input.size(): # First layer might have the wrong size for highway # layers, so we exclude it here. feedforward_output = feedforward_layer_norm(feedforward_output + cached_input) # shape (batch_size, sequence_length, hidden_dim) attention_output = attention(feedforward_output, mask) output = layer_norm(self.dropout(attention_output) + feedforward_output) return output
allennlp-models-main
allennlp_models/rc/modules/seq2seq_encoders/stacked_self_attention.py
from allennlp_models.rc.modules.seq2seq_encoders.multi_head_self_attention import ( MultiHeadSelfAttention, ) from allennlp_models.rc.modules.seq2seq_encoders.qanet_encoder import QaNetEncoder from allennlp_models.rc.modules.seq2seq_encoders.stacked_self_attention import ( StackedSelfAttentionEncoder, )
allennlp-models-main
allennlp_models/rc/modules/seq2seq_encoders/__init__.py
import torch from torch.nn import Dropout, Linear from allennlp.nn.util import masked_softmax, weighted_sum from allennlp.modules.seq2seq_encoders.seq2seq_encoder import Seq2SeqEncoder # exist_ok has to be true until we remove this from the core library @Seq2SeqEncoder.register("multi_head_self_attention", exist_ok=True) class MultiHeadSelfAttention(Seq2SeqEncoder): """ This class implements the key-value scaled dot product attention mechanism detailed in the paper [Attention is all you Need] (https://www.semanticscholar.org/paper/Attention-Is-All-You-Need-Vaswani-Shazeer/0737da0767d77606169cbf4187b83e1ab62f6077). The attention mechanism is a weighted sum of a projection V of the inputs, with respect to the scaled, normalised dot product of Q and K, which are also both linear projections of the input. This procedure is repeated for each attention head, using different parameters. # Parameters num_heads : `int`, required. The number of attention heads to use. input_dim : `int`, required. The size of the last dimension of the input tensor. attention_dim `int`, required. The total dimension of the query and key projections which comprise the dot product attention function. Must be divisible by `num_heads`. values_dim : `int`, required. The total dimension which the input is projected to for representing the values, which are combined using the attention. Must be divisible by `num_heads`. output_projection_dim : `int`, optional (default = `None`) The dimensionality of the final output projection. If this is not passed explicitly, the projection has size `input_size`. attention_dropout_prob : `float`, optional (default = `0.1`) The dropout probability applied to the normalised attention distributions. """ # noqa def __init__( self, num_heads: int, input_dim: int, attention_dim: int, values_dim: int, output_projection_dim: int = None, attention_dropout_prob: float = 0.1, ) -> None: super().__init__() self._num_heads = num_heads self._input_dim = input_dim self._output_dim = output_projection_dim or input_dim self._attention_dim = attention_dim self._values_dim = values_dim if attention_dim % num_heads != 0: raise ValueError( f"Key size ({attention_dim}) must be divisible by the number of " f"attention heads ({num_heads})." ) if values_dim % num_heads != 0: raise ValueError( f"Value size ({values_dim}) must be divisible by the number of " f"attention heads ({num_heads})." ) self._combined_projection = Linear(input_dim, 2 * attention_dim + values_dim) self._scale = (input_dim // num_heads) ** 0.5 self._output_projection = Linear(values_dim, self._output_dim) self._attention_dropout = Dropout(attention_dropout_prob) def get_input_dim(self): return self._input_dim def get_output_dim(self): return self._output_dim def is_bidirectional(self): return False def forward(self, inputs: torch.Tensor, mask: torch.BoolTensor = None) -> torch.FloatTensor: """ # Parameters inputs : `torch.FloatTensor`, required. A tensor of shape (batch_size, timesteps, input_dim) mask : `torch.BoolTensor`, optional (default = `None`). A tensor of shape (batch_size, timesteps). # Returns A tensor of shape `(batch_size, timesteps, output_projection_dim)`, where output_projection_dim = input_dim by default. """ num_heads = self._num_heads batch_size, timesteps, _ = inputs.size() if mask is None: mask = inputs.new_ones(batch_size, timesteps).bool() # Shape (batch_size, timesteps, 2 * attention_dim + values_dim) combined_projection = self._combined_projection(inputs) # split by attention dim - if values_dim > attention_dim, we will get more # than 3 elements returned. All of the rest are the values vector, so we # just concatenate them back together again below. queries, keys, *values = combined_projection.split(self._attention_dim, -1) queries = queries.contiguous() keys = keys.contiguous() values = torch.cat(values, -1).contiguous() # Shape (num_heads * batch_size, timesteps, values_dim / num_heads) values_per_head = values.view( batch_size, timesteps, num_heads, int(self._values_dim / num_heads) ) values_per_head = values_per_head.transpose(1, 2).contiguous() values_per_head = values_per_head.view( batch_size * num_heads, timesteps, int(self._values_dim / num_heads) ) # Shape (num_heads * batch_size, timesteps, attention_dim / num_heads) queries_per_head = queries.view( batch_size, timesteps, num_heads, int(self._attention_dim / num_heads) ) queries_per_head = queries_per_head.transpose(1, 2).contiguous() queries_per_head = queries_per_head.view( batch_size * num_heads, timesteps, int(self._attention_dim / num_heads) ) # Shape (num_heads * batch_size, timesteps, attention_dim / num_heads) keys_per_head = keys.view( batch_size, timesteps, num_heads, int(self._attention_dim / num_heads) ) keys_per_head = keys_per_head.transpose(1, 2).contiguous() keys_per_head = keys_per_head.view( batch_size * num_heads, timesteps, int(self._attention_dim / num_heads) ) # shape (num_heads * batch_size, timesteps, timesteps) scaled_similarities = torch.bmm( queries_per_head / self._scale, keys_per_head.transpose(1, 2) ) # shape (num_heads * batch_size, timesteps, timesteps) # Normalise the distributions, using the same mask for all heads. attention = masked_softmax( scaled_similarities, mask.repeat(1, num_heads).view(batch_size * num_heads, timesteps), memory_efficient=True, ) attention = self._attention_dropout(attention) # Take a weighted sum of the values with respect to the attention # distributions for each element in the num_heads * batch_size dimension. # shape (num_heads * batch_size, timesteps, values_dim/num_heads) outputs = weighted_sum(values_per_head, attention) # Reshape back to original shape (batch_size, timesteps, values_dim) # shape (batch_size, num_heads, timesteps, values_dim/num_heads) outputs = outputs.view(batch_size, num_heads, timesteps, int(self._values_dim / num_heads)) # shape (batch_size, timesteps, num_heads, values_dim/num_heads) outputs = outputs.transpose(1, 2).contiguous() # shape (batch_size, timesteps, values_dim) outputs = outputs.view(batch_size, timesteps, self._values_dim) # Project back to original input size. # shape (batch_size, timesteps, input_size) outputs = self._output_projection(outputs) return outputs
allennlp-models-main
allennlp_models/rc/modules/seq2seq_encoders/multi_head_self_attention.py
import torch from torch.nn import Dropout from torch.nn import LayerNorm from torch.nn import ModuleList from allennlp.modules.feedforward import FeedForward from allennlp.modules.residual_with_layer_dropout import ResidualWithLayerDropout from allennlp.modules.seq2seq_encoders.seq2seq_encoder import Seq2SeqEncoder from allennlp.nn.activations import Activation from allennlp.nn.util import add_positional_features from allennlp.common.checks import check_dimensions_match from allennlp_models.rc.modules.seq2seq_encoders.multi_head_self_attention import ( MultiHeadSelfAttention, ) # exist_ok has to be true until we remove this from the core library @Seq2SeqEncoder.register("qanet_encoder", exist_ok=True) class QaNetEncoder(Seq2SeqEncoder): """ Stack multiple QANetEncoderBlock into one sequence encoder. # Parameters input_dim : `int`, required. The input dimension of the encoder. hidden_dim : `int`, required. The hidden dimension used for convolution output channels, multi-head attention output and the final output of feedforward layer. attention_projection_dim : `int`, required. The dimension of the linear projections for the self-attention layers. feedforward_hidden_dim : `int`, required. The middle dimension of the FeedForward network. The input and output dimensions are fixed to ensure sizes match up for the self attention layers. num_blocks : `int`, required. The number of stacked encoder blocks. num_convs_per_block : `int`, required. The number of convolutions in each block. conv_kernel_size : `int`, required. The kernel size for convolution. num_attention_heads : `int`, required. The number of attention heads to use per layer. use_positional_encoding : `bool`, optional, (default = `True`) Whether to add sinusoidal frequencies to the input tensor. This is strongly recommended, as without this feature, the self attention layers have no idea of absolute or relative position (as they are just computing pairwise similarity between vectors of elements), which can be important features for many tasks. dropout_prob : `float`, optional, (default = `0.1`) The dropout probability for the feedforward network. layer_dropout_undecayed_prob : `float`, optional, (default = `0.1`) The initial dropout probability for layer dropout, and this might decay w.r.t the depth of the layer. For each mini-batch, the convolution/attention/ffn sublayer is stochastically dropped according to its layer dropout probability. attention_dropout_prob : `float`, optional, (default = `0.0`) The dropout probability for the attention distributions in the attention layer. """ def __init__( self, input_dim: int, hidden_dim: int, attention_projection_dim: int, feedforward_hidden_dim: int, num_blocks: int, num_convs_per_block: int, conv_kernel_size: int, num_attention_heads: int, use_positional_encoding: bool = True, dropout_prob: float = 0.1, layer_dropout_undecayed_prob: float = 0.1, attention_dropout_prob: float = 0, ) -> None: super().__init__() self._input_projection_layer = None if input_dim != hidden_dim: self._input_projection_layer = torch.nn.Linear(input_dim, hidden_dim) else: self._input_projection_layer = lambda x: x self._encoder_blocks = ModuleList([]) for _ in range(num_blocks): encoder_block = QaNetEncoderBlock( hidden_dim, hidden_dim, attention_projection_dim, feedforward_hidden_dim, num_convs_per_block, conv_kernel_size, num_attention_heads, use_positional_encoding, dropout_prob, layer_dropout_undecayed_prob, attention_dropout_prob, ) self._encoder_blocks.append(encoder_block) self._input_dim = input_dim self._output_dim = hidden_dim def get_input_dim(self) -> int: return self._input_dim def get_output_dim(self) -> int: return self._output_dim def is_bidirectional(self) -> bool: return False def forward(self, inputs: torch.Tensor, mask: torch.BoolTensor = None) -> torch.Tensor: inputs = self._input_projection_layer(inputs) output = inputs for encoder_block in self._encoder_blocks: output = encoder_block(output, mask) return output # exist_ok has to be true until we remove this from the core library @Seq2SeqEncoder.register("qanet_encoder_block", exist_ok=True) class QaNetEncoderBlock(Seq2SeqEncoder): """ Implements the encoder block described in [QANet: Combining Local Convolution with Global Self-attention for Reading Comprehension](https://openreview.net/forum?id=B14TlG-RW). One encoder block mainly contains 4 parts: 1. Add position embedding. 2. Several depthwise seperable convolutions. 3. Multi-headed self attention, which uses 2 learnt linear projections to perform a dot-product similarity between every pair of elements scaled by the square root of the sequence length. 4. A two-layer FeedForward network. # Parameters input_dim : `int`, required. The input dimension of the encoder. hidden_dim : `int`, required. The hidden dimension used for convolution output channels, multi-head attention output and the final output of feedforward layer. attention_projection_dim : `int`, required. The dimension of the linear projections for the self-attention layers. feedforward_hidden_dim : `int`, required. The middle dimension of the FeedForward network. The input and output dimensions are fixed to ensure sizes match up for the self attention layers. num_convs : `int`, required. The number of convolutions in each block. conv_kernel_size : `int`, required. The kernel size for convolution. num_attention_heads : `int`, required. The number of attention heads to use per layer. use_positional_encoding : `bool`, optional, (default = `True`) Whether to add sinusoidal frequencies to the input tensor. This is strongly recommended, as without this feature, the self attention layers have no idea of absolute or relative position (as they are just computing pairwise similarity between vectors of elements), which can be important features for many tasks. dropout_prob : `float`, optional, (default = `0.1`) The dropout probability for the feedforward network. layer_dropout_undecayed_prob : `float`, optional, (default = `0.1`) The initial dropout probability for layer dropout, and this might decay w.r.t the depth of the layer. For each mini-batch, the convolution/attention/ffn sublayer is randomly dropped according to its layer dropout probability. attention_dropout_prob : `float`, optional, (default = `0.0`) The dropout probability for the attention distributions in the attention layer. """ def __init__( self, input_dim: int, hidden_dim: int, attention_projection_dim: int, feedforward_hidden_dim: int, num_convs: int, conv_kernel_size: int, num_attention_heads: int, use_positional_encoding: bool = True, dropout_prob: float = 0.1, layer_dropout_undecayed_prob: float = 0.1, attention_dropout_prob: float = 0, ) -> None: super().__init__() check_dimensions_match(input_dim, hidden_dim, "input_dim", "hidden_dim") self._use_positional_encoding = use_positional_encoding self._conv_norm_layers = torch.nn.ModuleList( LayerNorm(hidden_dim) for _ in range(num_convs) ) self._conv_layers = torch.nn.ModuleList() for _ in range(num_convs): padding = torch.nn.ConstantPad1d( (conv_kernel_size // 2, (conv_kernel_size - 1) // 2), 0 ) depthwise_conv = torch.nn.Conv1d( hidden_dim, hidden_dim, conv_kernel_size, groups=hidden_dim ) pointwise_conv = torch.nn.Conv1d(hidden_dim, hidden_dim, 1) self._conv_layers.append( torch.nn.Sequential( padding, depthwise_conv, pointwise_conv, Activation.by_name("relu")() ) ) self.attention_norm_layer = LayerNorm(hidden_dim) self.attention_layer = MultiHeadSelfAttention( num_heads=num_attention_heads, input_dim=hidden_dim, attention_dim=attention_projection_dim, values_dim=attention_projection_dim, attention_dropout_prob=attention_dropout_prob, ) self.feedforward_norm_layer = LayerNorm(hidden_dim) self.feedforward = FeedForward( hidden_dim, activations=[Activation.by_name("relu")(), Activation.by_name("linear")()], hidden_dims=[feedforward_hidden_dim, hidden_dim], num_layers=2, dropout=dropout_prob, ) self.dropout = Dropout(dropout_prob) self.residual_with_layer_dropout = ResidualWithLayerDropout(layer_dropout_undecayed_prob) self._input_dim = input_dim self._output_dim = hidden_dim def get_input_dim(self) -> int: return self._input_dim def get_output_dim(self) -> int: return self._output_dim def is_bidirectional(self): return False def forward(self, inputs: torch.Tensor, mask: torch.BoolTensor = None) -> torch.Tensor: if self._use_positional_encoding: output = add_positional_features(inputs) else: output = inputs total_sublayers = len(self._conv_layers) + 2 sublayer_count = 0 for conv_norm_layer, conv_layer in zip(self._conv_norm_layers, self._conv_layers): conv_norm_out = self.dropout(conv_norm_layer(output)) conv_out = self.dropout(conv_layer(conv_norm_out.transpose(1, 2)).transpose(1, 2)) sublayer_count += 1 output = self.residual_with_layer_dropout( output, conv_out, sublayer_count, total_sublayers ) attention_norm_out = self.dropout(self.attention_norm_layer(output)) attention_out = self.dropout(self.attention_layer(attention_norm_out, mask)) sublayer_count += 1 output = self.residual_with_layer_dropout( output, attention_out, sublayer_count, total_sublayers ) feedforward_norm_out = self.dropout(self.feedforward_norm_layer(output)) feedforward_out = self.dropout(self.feedforward(feedforward_norm_out)) sublayer_count += 1 output = self.residual_with_layer_dropout( output, feedforward_out, sublayer_count, total_sublayers ) return output
allennlp-models-main
allennlp_models/rc/modules/seq2seq_encoders/qanet_encoder.py
# flake8: noqa: F403 from allennlp_models.generation.modules import * from allennlp_models.generation.predictors import * from allennlp_models.generation.models import * from allennlp_models.generation.dataset_readers import *
allennlp-models-main
allennlp_models/generation/__init__.py
import logging from typing import List, Dict import warnings import torch from allennlp.common.file_utils import cached_path from allennlp.common.util import START_SYMBOL, END_SYMBOL from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import TextField, TensorField, MetadataField, NamespaceSwappingField from allennlp.data.instance import Instance from allennlp.data.tokenizers import ( Token, Tokenizer, SpacyTokenizer, PretrainedTransformerTokenizer, ) from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer logger = logging.getLogger(__name__) @DatasetReader.register("copynet_seq2seq") class CopyNetDatasetReader(DatasetReader): """ Read a tsv file containing paired sequences, and create a dataset suitable for a `CopyNet` model, or any model with a matching API. The expected format for each input line is: <source_sequence_string><tab><target_sequence_string>. An instance produced by `CopyNetDatasetReader` will containing at least the following fields: - `source_tokens`: a `TextField` containing the tokenized source sentence. This will result in a tensor of shape `(batch_size, source_length)`. - `source_token_ids`: an `TensorField` of size `(batch_size, source_length)` that contains an ID for each token in the source sentence. Tokens that match at the lowercase level will share the same ID. If `target_tokens` is passed as well, these IDs will also correspond to the `target_token_ids` field, i.e. any tokens that match at the lowercase level in both the source and target sentences will share the same ID. Note that these IDs have no correlation with the token indices from the corresponding vocabulary namespaces. - `source_to_target`: a `NamespaceSwappingField` that keeps track of the index of the target token that matches each token in the source sentence. When there is no matching target token, the OOV index is used. This will result in a tensor of shape `(batch_size, source_length)`. - `metadata`: a `MetadataField` which contains the source tokens and potentially target tokens as lists of strings. When `target_string` is passed, the instance will also contain these fields: - `target_tokens`: a `TextField` containing the tokenized target sentence, including the `START_SYMBOL` and `END_SYMBOL`. This will result in a tensor of shape `(batch_size, target_length)`. - `target_token_ids`: an `TensorField` of size `(batch_size, target_length)`. This is calculated in the same way as `source_token_ids`. See the "Notes" section below for a description of how these fields are used. # Parameters target_namespace : `str`, required The vocab namespace for the targets. This needs to be passed to the dataset reader in order to construct the NamespaceSwappingField. source_tokenizer : `Tokenizer`, optional Tokenizer to use to split the input sequences into words or other kinds of tokens. Defaults to `SpacyTokenizer()`. target_tokenizer : `Tokenizer`, optional Tokenizer to use to split the output sequences (during training) into words or other kinds of tokens. Defaults to `source_tokenizer`. source_token_indexers : `Dict[str, TokenIndexer]`, optional Indexers used to define input (source side) token representations. Defaults to `{"tokens": SingleIdTokenIndexer()}`. # Notes In regards to the fields in an `Instance` produced by this dataset reader, `source_token_ids` and `target_token_ids` are primarily used during training to determine whether a target token is copied from a source token (or multiple matching source tokens), while `source_to_target` is primarily used during prediction to combine the copy scores of source tokens with the generation scores for matching tokens in the target namespace. """ def __init__( self, target_namespace: str, source_tokenizer: Tokenizer = None, target_tokenizer: Tokenizer = None, source_token_indexers: Dict[str, TokenIndexer] = None, **kwargs, ) -> None: super().__init__( manual_distributed_sharding=True, manual_multiprocess_sharding=True, **kwargs ) self._target_namespace = target_namespace self._source_tokenizer = source_tokenizer or SpacyTokenizer() self._target_tokenizer = target_tokenizer or self._source_tokenizer self._source_token_indexers = source_token_indexers or {"tokens": SingleIdTokenIndexer()} self._target_token_indexers: Dict[str, TokenIndexer] = { "tokens": SingleIdTokenIndexer(namespace=self._target_namespace) } if ( isinstance(self._target_tokenizer, PretrainedTransformerTokenizer) and self._target_tokenizer._add_special_tokens ): warnings.warn( "'add_special_tokens' is True for target_tokenizer, which is a PretrainedTransformerTokenizer. " "This means special tokens, such as '[CLS]' and '[SEP]', will probably end up in " "your model's predicted target sequences. " "If this is not what you intended, make sure to specify 'add_special_tokens: False' for " "your target_tokenizer.", UserWarning, ) def _read(self, file_path): with open(cached_path(file_path), "r") as data_file: logger.info("Reading instances from lines in file at: %s", file_path) for line_num, line in self.shard_iterable(enumerate(data_file)): line = line.strip("\n") if not line: continue line_parts = line.split("\t") if len(line_parts) != 2: raise RuntimeError( "Invalid line format: %s (line number %d)" % (line, line_num + 1) ) source_sequence, target_sequence = line_parts if not source_sequence: continue yield self.text_to_instance(source_sequence, target_sequence) @staticmethod def _tokens_to_ids(tokens: List[Token]) -> List[int]: ids: Dict[str, int] = {} out: List[int] = [] for token in tokens: out.append(ids.setdefault(token.text, len(ids))) return out def text_to_instance( self, source_string: str, target_string: str = None, weight: float = None, ) -> Instance: # type: ignore """ Turn raw source string and target string into an `Instance`. # Parameters source_string : `str`, required target_string : `str`, optional (default = `None`) weight : `float`, optional (default = `None`) An optional weight to assign to this instance when calculating the loss in [CopyNetSeq2Seq.forward()](../../models/copynet_seq2seq/#forward.parameters). # Returns `Instance` See the above for a description of the fields that the instance will contain. """ tokenized_source = self._source_tokenizer.tokenize(source_string) if not tokenized_source: # If the tokenized source is empty, it will cause issues downstream. raise ValueError(f"source tokenizer produced no tokens from source '{source_string}'") source_field = TextField(tokenized_source) # For each token in the source sentence, we keep track of the matching token # in the target sentence (which will be the OOV symbol if there is no match). source_to_target_field = NamespaceSwappingField(tokenized_source, self._target_namespace) meta_fields = {"source_tokens": [x.text for x in tokenized_source]} fields_dict = {"source_tokens": source_field, "source_to_target": source_to_target_field} if target_string is not None: tokenized_target = self._target_tokenizer.tokenize(target_string) tokenized_target.insert(0, Token(START_SYMBOL)) tokenized_target.append(Token(END_SYMBOL)) target_field = TextField(tokenized_target) fields_dict["target_tokens"] = target_field meta_fields["target_tokens"] = [y.text for y in tokenized_target[1:-1]] source_and_target_token_ids = self._tokens_to_ids(tokenized_source + tokenized_target) source_token_ids = source_and_target_token_ids[: len(tokenized_source)] fields_dict["source_token_ids"] = TensorField(torch.tensor(source_token_ids)) target_token_ids = source_and_target_token_ids[len(tokenized_source) :] fields_dict["target_token_ids"] = TensorField(torch.tensor(target_token_ids)) else: source_token_ids = self._tokens_to_ids(tokenized_source) fields_dict["source_token_ids"] = TensorField(torch.tensor(source_token_ids)) fields_dict["metadata"] = MetadataField(meta_fields) if weight is not None: fields_dict["weight"] = TensorField(torch.tensor(float(weight), dtype=torch.float)) return Instance(fields_dict) def apply_token_indexers(self, instance: Instance) -> None: instance.fields["source_tokens"]._token_indexers = self._source_token_indexers # type: ignore if "target_tokens" in instance.fields: instance.fields["target_tokens"]._token_indexers = self._target_token_indexers # type: ignore
allennlp-models-main
allennlp_models/generation/dataset_readers/copynet_seq2seq.py
from allennlp_models.generation.dataset_readers.copynet_seq2seq import CopyNetDatasetReader from allennlp_models.generation.dataset_readers.seq2seq import Seq2SeqDatasetReader from allennlp_models.generation.dataset_readers.cnn_dm import CNNDailyMailDatasetReader
allennlp-models-main
allennlp_models/generation/dataset_readers/__init__.py
from pathlib import Path from typing import Dict, Optional, List import logging import os import glob import hashlib import ftfy from allennlp.common.checks import ConfigurationError from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import TextField from allennlp.data.instance import Instance from allennlp.data.tokenizers import Tokenizer, SpacyTokenizer from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer logger = logging.getLogger(__name__) @DatasetReader.register("cnn_dm") class CNNDailyMailDatasetReader(DatasetReader): """ Reads the CNN/DailyMail dataset for text summarization. The output of `read` is a list of `Instance` s with the fields: source_tokens : `TextField` and target_tokens : `TextField` # Parameters source_tokenizer : `Tokenizer`, optional Tokenizer to use to split the input sequences into words or other kinds of tokens. Defaults to `SpacyTokenizer()`. target_tokenizer : `Tokenizer`, optional Tokenizer to use to split the output sequences (during training) into words or other kinds of tokens. Defaults to `source_tokenizer`. source_token_indexers : `Dict[str, TokenIndexer]`, optional Indexers used to define input (source side) token representations. Defaults to `{"tokens": SingleIdTokenIndexer()}`. target_token_indexers : `Dict[str, TokenIndexer]`, optional Indexers used to define output (target side) token representations. Defaults to `source_token_indexers`. source_max_tokens : `int`, optional Maximum number of tokens in source sequence. target_max_tokens : `int`, optional Maximum number of tokens in target sequence. source_prefix : `str`, optional An optional prefix to prepend to source strings. For example, with a T5 model, you want to set the `source_prefix` to "summarize: ". """ def __init__( self, source_tokenizer: Tokenizer = None, target_tokenizer: Tokenizer = None, source_token_indexers: Dict[str, TokenIndexer] = None, target_token_indexers: Dict[str, TokenIndexer] = None, source_max_tokens: Optional[int] = None, target_max_tokens: Optional[int] = None, source_prefix: Optional[str] = None, **kwargs, ) -> None: super().__init__( manual_distributed_sharding=True, manual_multiprocess_sharding=True, **kwargs ) self._source_tokenizer = source_tokenizer or SpacyTokenizer() self._target_tokenizer = target_tokenizer or self._source_tokenizer self._source_token_indexers = source_token_indexers or {"tokens": SingleIdTokenIndexer()} self._target_token_indexers = target_token_indexers or self._source_token_indexers self._source_max_tokens = source_max_tokens self._target_max_tokens = target_max_tokens self._source_prefix = source_prefix @staticmethod def _hashhex(url): h = hashlib.sha1() h.update(url) return h.hexdigest() @staticmethod def _sanitize_story_line(line): line = ftfy.fix_encoding(line) sentence_endings = [".", "!", "?", "...", "'", "`", '"', ")", "\u2019", "\u201d"] # Highlight are essentially bullet points and don't have proper sentence endings if line[-1] not in sentence_endings: line += "." return line @staticmethod def _read_story(story_path: str): article: List[str] = [] summary: List[str] = [] highlight = False with open(story_path, "r") as f: for line in f: line = line.strip() # CNN stories always start with "(CNN)" if line.startswith("(CNN)"): line = line[len("(CNN)") :] if line == "": continue if line == "@highlight": highlight = True continue line = CNNDailyMailDatasetReader._sanitize_story_line(line) (summary if highlight else article).append(line) return " ".join(article), " ".join(summary) @staticmethod def _strip_extension(filename: str) -> str: return os.path.splitext(filename)[0] def _read(self, file_path: str): # Reset exceeded counts self._source_max_exceeded = 0 self._target_max_exceeded = 0 url_file_path = cached_path(file_path, extract_archive=True) data_dir = os.path.join(os.path.dirname(url_file_path), "..") cnn_stories_path = os.path.join(data_dir, "cnn_stories") dm_stories_path = os.path.join(data_dir, "dm_stories") cnn_stories = {Path(s).stem for s in glob.glob(os.path.join(cnn_stories_path, "*.story"))} dm_stories = {Path(s).stem for s in glob.glob(os.path.join(dm_stories_path, "*.story"))} with open(url_file_path, "r") as url_file: for url in self.shard_iterable(url_file): url = url.strip() url_hash = self._hashhex(url.encode("utf-8")) if url_hash in cnn_stories: story_base_path = cnn_stories_path elif url_hash in dm_stories: story_base_path = dm_stories_path else: raise ConfigurationError( "Story with url '%s' and hash '%s' not found" % (url, url_hash) ) story_path = os.path.join(story_base_path, url_hash) + ".story" article, summary = self._read_story(story_path) if len(article) == 0 or len(summary) == 0 or len(article) < len(summary): continue yield self.text_to_instance(article, summary) def text_to_instance( self, source_sequence: str, target_sequence: str = None ) -> Instance: # type: ignore if self._source_prefix is not None: tokenized_source = self._source_tokenizer.tokenize( self._source_prefix + source_sequence ) else: tokenized_source = self._source_tokenizer.tokenize(source_sequence) if self._source_max_tokens is not None and len(tokenized_source) > self._source_max_tokens: tokenized_source = tokenized_source[: self._source_max_tokens] source_field = TextField(tokenized_source) if target_sequence is not None: tokenized_target = self._target_tokenizer.tokenize(target_sequence) if ( self._target_max_tokens is not None and len(tokenized_target) > self._target_max_tokens ): tokenized_target = tokenized_target[: self._target_max_tokens] target_field = TextField(tokenized_target) return Instance({"source_tokens": source_field, "target_tokens": target_field}) else: return Instance({"source_tokens": source_field}) def apply_token_indexers(self, instance: Instance) -> None: instance.fields["source_tokens"]._token_indexers = self._source_token_indexers # type: ignore if "target_tokens" in instance.fields: instance.fields["target_tokens"]._token_indexers = self._target_token_indexers # type: ignore
allennlp-models-main
allennlp_models/generation/dataset_readers/cnn_dm.py
import csv from typing import Dict, Optional import logging import copy from allennlp.common.checks import ConfigurationError from allennlp.common.file_utils import cached_path from allennlp.common.util import START_SYMBOL, END_SYMBOL from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import TextField from allennlp.data.instance import Instance from allennlp.data.tokenizers import Tokenizer, SpacyTokenizer, Token from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer logger = logging.getLogger(__name__) @DatasetReader.register("seq2seq") class Seq2SeqDatasetReader(DatasetReader): """ Read a tsv file containing paired sequences, and create a dataset suitable for a `ComposedSeq2Seq` model, or any model with a matching API. Expected format for each input line: <source_sequence_string>\t<target_sequence_string> The output of `read` is a list of `Instance` s with the fields: source_tokens : `TextField` and target_tokens : `TextField` `START_SYMBOL` and `END_SYMBOL` tokens are added to the source and target sequences. # Parameters source_tokenizer : `Tokenizer`, optional Tokenizer to use to split the input sequences into words or other kinds of tokens. Defaults to `SpacyTokenizer()`. target_tokenizer : `Tokenizer`, optional Tokenizer to use to split the output sequences (during training) into words or other kinds of tokens. Defaults to `source_tokenizer`. source_token_indexers : `Dict[str, TokenIndexer]`, optional Indexers used to define input (source side) token representations. Defaults to `{"tokens": SingleIdTokenIndexer()}`. target_token_indexers : `Dict[str, TokenIndexer]`, optional Indexers used to define output (target side) token representations. Defaults to `source_token_indexers`. source_add_start_token : `bool`, (optional, default=`True`) Whether or not to add `start_symbol` to the beginning of the source sequence. source_add_end_token : `bool`, (optional, default=`True`) Whether or not to add `end_symbol` to the end of the source sequence. target_add_start_token : `bool`, (optional, default=`True`) Whether or not to add `start_symbol` to the beginning of the target sequence. target_add_end_token : `bool`, (optional, default=`True`) Whether or not to add `end_symbol` to the end of the target sequence. start_symbol : `str`, (optional, default=`START_SYMBOL`) The special token to add to the end of the source sequence or the target sequence if `source_add_start_token` or `target_add_start_token` respectively. end_symbol : `str`, (optional, default=`END_SYMBOL`) The special token to add to the end of the source sequence or the target sequence if `source_add_end_token` or `target_add_end_token` respectively. delimiter : `str`, (optional, default=`"\t"`) Set delimiter for tsv/csv file. quoting : `int`, (optional, default=`csv.QUOTE_MINIMAL`) Quoting to use for csv reader. """ def __init__( self, source_tokenizer: Tokenizer = None, target_tokenizer: Tokenizer = None, source_token_indexers: Dict[str, TokenIndexer] = None, target_token_indexers: Dict[str, TokenIndexer] = None, source_add_start_token: bool = True, source_add_end_token: bool = True, target_add_start_token: bool = True, target_add_end_token: bool = True, start_symbol: str = START_SYMBOL, end_symbol: str = END_SYMBOL, delimiter: str = "\t", source_max_tokens: Optional[int] = None, target_max_tokens: Optional[int] = None, quoting: int = csv.QUOTE_MINIMAL, **kwargs, ) -> None: super().__init__( manual_distributed_sharding=True, manual_multiprocess_sharding=True, **kwargs ) self._source_tokenizer = source_tokenizer or SpacyTokenizer() self._target_tokenizer = target_tokenizer or self._source_tokenizer self._source_token_indexers = source_token_indexers or {"tokens": SingleIdTokenIndexer()} self._target_token_indexers = target_token_indexers or self._source_token_indexers self._source_add_start_token = source_add_start_token self._source_add_end_token = source_add_end_token self._target_add_start_token = target_add_start_token self._target_add_end_token = target_add_end_token self._start_token: Optional[Token] = None self._end_token: Optional[Token] = None if ( source_add_start_token or source_add_end_token or target_add_start_token or target_add_end_token ): if source_add_start_token or source_add_end_token: self._check_start_end_tokens(start_symbol, end_symbol, self._source_tokenizer) if ( target_add_start_token or target_add_end_token ) and self._target_tokenizer != self._source_tokenizer: self._check_start_end_tokens(start_symbol, end_symbol, self._target_tokenizer) self._start_token = Token(start_symbol) self._end_token = Token(end_symbol) self._delimiter = delimiter self._source_max_tokens = source_max_tokens self._target_max_tokens = target_max_tokens self._source_max_exceeded = 0 self._target_max_exceeded = 0 self.quoting = quoting def _read(self, file_path: str): # Reset exceeded counts self._source_max_exceeded = 0 self._target_max_exceeded = 0 with open(cached_path(file_path), "r") as data_file: logger.info("Reading instances from lines in file at: %s", file_path) for line_num, row in self.shard_iterable( enumerate(csv.reader(data_file, delimiter=self._delimiter, quoting=self.quoting)) ): if len(row) != 2: raise ConfigurationError( "Invalid line format: %s (line number %d)" % (row, line_num + 1) ) source_sequence, target_sequence = row if len(source_sequence) == 0 or len(target_sequence) == 0: continue yield self.text_to_instance(source_sequence, target_sequence) if self._source_max_tokens and self._source_max_exceeded: logger.info( "In %d instances, the source token length exceeded the max limit (%d) and were truncated.", self._source_max_exceeded, self._source_max_tokens, ) if self._target_max_tokens and self._target_max_exceeded: logger.info( "In %d instances, the target token length exceeded the max limit (%d) and were truncated.", self._target_max_exceeded, self._target_max_tokens, ) def text_to_instance( self, source_string: str, target_string: str = None ) -> Instance: # type: ignore tokenized_source = self._source_tokenizer.tokenize(source_string) if self._source_max_tokens and len(tokenized_source) > self._source_max_tokens: self._source_max_exceeded += 1 tokenized_source = tokenized_source[: self._source_max_tokens] if self._source_add_start_token: tokenized_source.insert(0, copy.deepcopy(self._start_token)) if self._source_add_end_token: tokenized_source.append(copy.deepcopy(self._end_token)) source_field = TextField(tokenized_source) if target_string is not None: tokenized_target = self._target_tokenizer.tokenize(target_string) if self._target_max_tokens and len(tokenized_target) > self._target_max_tokens: self._target_max_exceeded += 1 tokenized_target = tokenized_target[: self._target_max_tokens] if self._target_add_start_token: tokenized_target.insert(0, copy.deepcopy(self._start_token)) if self._target_add_end_token: tokenized_target.append(copy.deepcopy(self._end_token)) target_field = TextField(tokenized_target) return Instance({"source_tokens": source_field, "target_tokens": target_field}) else: return Instance({"source_tokens": source_field}) def apply_token_indexers(self, instance: Instance) -> None: instance.fields["source_tokens"]._token_indexers = self._source_token_indexers # type: ignore if "target_tokens" in instance.fields: instance.fields["target_tokens"]._token_indexers = self._target_token_indexers # type: ignore def _check_start_end_tokens( self, start_symbol: str, end_symbol: str, tokenizer: Tokenizer ) -> None: """Check that `tokenizer` correctly appends `start_symbol` and `end_symbol` to the sequence without splitting them. Raises a `ValueError` if this is not the case. """ tokens = tokenizer.tokenize(start_symbol + " " + end_symbol) err_msg = ( f"Bad start or end symbol ('{start_symbol}', '{end_symbol}') " f"for tokenizer {self._source_tokenizer}" ) try: start_token, end_token = tokens[0], tokens[-1] except IndexError: raise ValueError(err_msg) if start_token.text != start_symbol or end_token.text != end_symbol: raise ValueError(err_msg)
allennlp-models-main
allennlp_models/generation/dataset_readers/seq2seq.py
from allennlp_models.generation.predictors.seq2seq import Seq2SeqPredictor
allennlp-models-main
allennlp_models/generation/predictors/__init__.py
from allennlp.common.util import JsonDict from allennlp.data import Instance from allennlp.predictors.predictor import Predictor @Predictor.register("seq2seq") class Seq2SeqPredictor(Predictor): """ Predictor for sequence to sequence models, including - [`ComposedSeq2Seq`](../models/composed_seq2seq.md), - [`SimpleSeq2Seq`](../models/simple_seq2seq.md), - [`CopyNetSeq2Seq`](../models/copynet_seq2seq.md), - [`Bart`](../models/bart.md), and - [`T5`](../models/t5.md). """ def predict(self, source: str) -> JsonDict: return self.predict_json({"source": source}) def _json_to_instance(self, json_dict: JsonDict) -> Instance: """ Expects JSON that looks like `{"source": "..."}`. """ source = json_dict["source"] return self._dataset_reader.text_to_instance(source) @classmethod def pretrained_t5_for_generation(cls, model_name: str = "t5-base") -> "Seq2SeqPredictor": """ A helper method for creating a predictor for a pretrained T5 generation model. # Examples ```python from allennlp_models.generation.predictors import Seq2SeqPredictor ARTICLE_TO_SUMMARIZE = ''' summarize: The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct. '''.strip().replace( "\n", " " ) predictor = Seq2SeqPredictor.pretrained_t5_for_generation("t5-small") predictor.predict(ARTICLE_TO_SUMMARIZE) ``` """ from allennlp.data import Vocabulary from allennlp.data.tokenizers import PretrainedTransformerTokenizer from allennlp.data.token_indexers import PretrainedTransformerIndexer from allennlp_models.generation.dataset_readers import Seq2SeqDatasetReader from allennlp_models.generation.models import T5 tokenizer, token_indexer = ( PretrainedTransformerTokenizer(model_name), PretrainedTransformerIndexer(model_name), ) reader = Seq2SeqDatasetReader( source_tokenizer=tokenizer, source_token_indexers={"tokens": token_indexer}, source_add_start_token=False, source_add_end_token=False, target_add_start_token=False, target_add_end_token=False, ) vocab = Vocabulary.from_pretrained_transformer(model_name) model = T5(vocab, model_name) return cls(model, reader)
allennlp-models-main
allennlp_models/generation/predictors/seq2seq.py
import warnings from typing import Dict, List, Tuple, Iterable, Any import numpy import torch import torch.nn.functional as F from torch.nn.modules.linear import Linear from torch.nn.modules.rnn import LSTMCell, LSTM from allennlp.common.util import START_SYMBOL, END_SYMBOL from allennlp.data import TextFieldTensors, Vocabulary from allennlp.modules import Attention, TextFieldEmbedder, Seq2SeqEncoder from allennlp.models.model import Model from allennlp.modules.token_embedders import Embedding from allennlp.nn import util from allennlp.nn.beam_search import BeamSearch from allennlp.common.lazy import Lazy from allennlp.training.metrics import BLEU @Model.register("simple_seq2seq") class SimpleSeq2Seq(Model): """ This `SimpleSeq2Seq` class is a `Model` which takes a sequence, encodes it, and then uses the encoded representations to decode another sequence. You can use this as the basis for a neural machine translation system, an abstractive summarization system, or any other common seq2seq problem. The model here is simple, but should be a decent starting place for implementing recent models for these tasks. # Parameters vocab : `Vocabulary`, required Vocabulary containing source and target vocabularies. They may be under the same namespace (`tokens`) or the target tokens can have a different namespace, in which case it needs to be specified as `target_namespace`. source_embedder : `TextFieldEmbedder`, required Embedder for source side sequences encoder : `Seq2SeqEncoder`, required The encoder of the "encoder/decoder" model beam_search : `BeamSearch`, optional (default = `Lazy(BeamSearch)`) This is used to during inference to select the tokens of the decoded output sequence. target_namespace : `str`, optional (default = `'tokens'`) If the target side vocabulary is different from the source side's, you need to specify the target's namespace here. If not, we'll assume it is "tokens", which is also the default choice for the source side, and this might cause them to share vocabularies. target_embedding_dim : `int`, optional (default = `'source_embedding_dim'`) You can specify an embedding dimensionality for the target side. If not, we'll use the same value as the source embedder's. target_pretrain_file : `str`, optional (default = `None`) Path to target pretrain embedding files target_decoder_layers : `int`, optional (default = `1`) Nums of layer for decoder attention : `Attention`, optional (default = `None`) If you want to use attention to get a dynamic summary of the encoder outputs at each step of decoding, this is the function used to compute similarity between the decoder hidden state and encoder outputs. scheduled_sampling_ratio : `float`, optional (default = `0.`) At each timestep during training, we sample a random number between 0 and 1, and if it is not less than this value, we use the ground truth labels for the whole batch. Else, we use the predictions from the previous time step for the whole batch. If this value is 0.0 (default), this corresponds to teacher forcing, and if it is 1.0, it corresponds to not using target side ground truth labels. See the following paper for more information: [Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. Bengio et al., 2015](https://arxiv.org/abs/1506.03099). use_bleu : `bool`, optional (default = `True`) If True, the BLEU metric will be calculated during validation. ngram_weights : `Iterable[float]`, optional (default = `(0.25, 0.25, 0.25, 0.25)`) Weights to assign to scores for each ngram size. """ def __init__( self, vocab: Vocabulary, source_embedder: TextFieldEmbedder, encoder: Seq2SeqEncoder, beam_search: Lazy[BeamSearch] = Lazy(BeamSearch), attention: Attention = None, target_namespace: str = "tokens", target_embedding_dim: int = None, scheduled_sampling_ratio: float = 0.0, use_bleu: bool = True, bleu_ngram_weights: Iterable[float] = (0.25, 0.25, 0.25, 0.25), target_pretrain_file: str = None, target_decoder_layers: int = 1, **kwargs ) -> None: super().__init__(vocab) self._target_namespace = target_namespace self._target_decoder_layers = target_decoder_layers self._scheduled_sampling_ratio = scheduled_sampling_ratio # We need the start symbol to provide as the input at the first timestep of decoding, and # end symbol as a way to indicate the end of the decoded sequence. self._start_index = self.vocab.get_token_index(START_SYMBOL, self._target_namespace) self._end_index = self.vocab.get_token_index(END_SYMBOL, self._target_namespace) if use_bleu: pad_index = self.vocab.get_token_index( self.vocab._padding_token, self._target_namespace ) self._bleu = BLEU( bleu_ngram_weights, exclude_indices={pad_index, self._end_index, self._start_index}, ) else: self._bleu = None # At prediction time, we'll use a beam search to find the best target sequence. # For backwards compatibility, check if beam_size or max_decoding_steps were passed in as # kwargs. If so, update the BeamSearch object before constructing and raise a DeprecationWarning deprecation_warning = ( "The parameter {} has been deprecated." " Provide this parameter as argument to beam_search instead." ) beam_search_extras = {} if "beam_size" in kwargs: beam_search_extras["beam_size"] = kwargs["beam_size"] warnings.warn(deprecation_warning.format("beam_size"), DeprecationWarning) if "max_decoding_steps" in kwargs: beam_search_extras["max_steps"] = kwargs["max_decoding_steps"] warnings.warn(deprecation_warning.format("max_decoding_steps"), DeprecationWarning) self._beam_search = beam_search.construct( end_index=self._end_index, vocab=self.vocab, **beam_search_extras ) # Dense embedding of source vocab tokens. self._source_embedder = source_embedder # Encodes the sequence of source embeddings into a sequence of hidden states. self._encoder = encoder num_classes = self.vocab.get_vocab_size(self._target_namespace) # Attention mechanism applied to the encoder output for each step. self._attention = attention # Dense embedding of vocab words in the target space. target_embedding_dim = target_embedding_dim or source_embedder.get_output_dim() if not target_pretrain_file: self._target_embedder = Embedding( num_embeddings=num_classes, embedding_dim=target_embedding_dim ) else: self._target_embedder = Embedding( embedding_dim=target_embedding_dim, pretrained_file=target_pretrain_file, vocab_namespace=self._target_namespace, vocab=self.vocab, ) # Decoder output dim needs to be the same as the encoder output dim since we initialize the # hidden state of the decoder with the final hidden state of the encoder. self._encoder_output_dim = self._encoder.get_output_dim() self._decoder_output_dim = self._encoder_output_dim if self._attention: # If using attention, a weighted average over encoder outputs will be concatenated # to the previous target embedding to form the input to the decoder at each # time step. self._decoder_input_dim = self._decoder_output_dim + target_embedding_dim else: # Otherwise, the input to the decoder is just the previous target embedding. self._decoder_input_dim = target_embedding_dim # We'll use an LSTM cell as the recurrent cell that produces a hidden state # for the decoder at each time step. # TODO (pradeep): Do not hardcode decoder cell type. if self._target_decoder_layers > 1: self._decoder_cell = LSTM( self._decoder_input_dim, self._decoder_output_dim, self._target_decoder_layers, ) else: self._decoder_cell = LSTMCell(self._decoder_input_dim, self._decoder_output_dim) # We project the hidden state from the decoder into the output vocabulary space # in order to get log probabilities of each target token, at each time step. self._output_projection_layer = Linear(self._decoder_output_dim, num_classes) def take_step( self, last_predictions: torch.Tensor, state: Dict[str, torch.Tensor], step: int ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """ Take a decoding step. This is called by the beam search class. # Parameters last_predictions : `torch.Tensor` A tensor of shape `(group_size,)`, which gives the indices of the predictions during the last time step. state : `Dict[str, torch.Tensor]` A dictionary of tensors that contain the current state information needed to predict the next step, which includes the encoder outputs, the source mask, and the decoder hidden state and context. Each of these tensors has shape `(group_size, *)`, where `*` can be any other number of dimensions. step : `int` The time step in beam search decoding. # Returns Tuple[torch.Tensor, Dict[str, torch.Tensor]] A tuple of `(log_probabilities, updated_state)`, where `log_probabilities` is a tensor of shape `(group_size, num_classes)` containing the predicted log probability of each class for the next step, for each item in the group, while `updated_state` is a dictionary of tensors containing the encoder outputs, source mask, and updated decoder hidden state and context. Notes ----- We treat the inputs as a batch, even though `group_size` is not necessarily equal to `batch_size`, since the group may contain multiple states for each source sentence in the batch. """ # shape: (group_size, num_classes) output_projections, state = self._prepare_output_projections(last_predictions, state) # shape: (group_size, num_classes) class_log_probabilities = F.log_softmax(output_projections, dim=-1) return class_log_probabilities, state def forward( self, # type: ignore source_tokens: TextFieldTensors, target_tokens: TextFieldTensors = None, ) -> Dict[str, torch.Tensor]: """ Make foward pass with decoder logic for producing the entire target sequence. # Parameters source_tokens : `TextFieldTensors` The output of `TextField.as_array()` applied on the source `TextField`. This will be passed through a `TextFieldEmbedder` and then through an encoder. target_tokens : `TextFieldTensors`, optional (default = `None`) Output of `Textfield.as_array()` applied on target `TextField`. We assume that the target tokens are also represented as a `TextField`. # Returns `Dict[str, torch.Tensor]` """ state = self._encode(source_tokens) if target_tokens: state = self._init_decoder_state(state) # The `_forward_loop` decodes the input sequence and computes the loss during training # and validation. output_dict = self._forward_loop(state, target_tokens) else: output_dict = {} if not self.training: state = self._init_decoder_state(state) predictions = self._forward_beam_search(state) output_dict.update(predictions) if target_tokens and self._bleu: # shape: (batch_size, beam_size, max_sequence_length) top_k_predictions = output_dict["predictions"] # shape: (batch_size, max_predicted_sequence_length) best_predictions = top_k_predictions[:, 0, :] self._bleu(best_predictions, target_tokens["tokens"]["tokens"]) return output_dict def make_output_human_readable(self, output_dict: Dict[str, Any]) -> Dict[str, Any]: """ Finalize predictions. This method overrides `Model.make_output_human_readable`, which gets called after `Model.forward`, at test time, to finalize predictions. The logic for the decoder part of the encoder-decoder lives within the `forward` method. This method trims the output predictions to the first end symbol, replaces indices with corresponding tokens, and adds a field called `predicted_tokens` to the `output_dict`. """ predicted_indices = output_dict["predictions"] if not isinstance(predicted_indices, numpy.ndarray): predicted_indices = predicted_indices.detach().cpu().numpy() all_predicted_tokens = [] for top_k_predictions in predicted_indices: # Beam search gives us the top k results for each source sentence in the batch # we want top-k results. if len(top_k_predictions.shape) == 1: top_k_predictions = [top_k_predictions] batch_predicted_tokens = [] for indices in top_k_predictions: indices = list(indices) # Collect indices till the first end_symbol if self._end_index in indices: indices = indices[: indices.index(self._end_index)] predicted_tokens = [ self.vocab.get_token_from_index(x, namespace=self._target_namespace) for x in indices ] batch_predicted_tokens.append(predicted_tokens) all_predicted_tokens.append(batch_predicted_tokens) output_dict["predicted_tokens"] = all_predicted_tokens return output_dict def _encode(self, source_tokens: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: # shape: (batch_size, max_input_sequence_length, encoder_input_dim) embedded_input = self._source_embedder(source_tokens) # shape: (batch_size, max_input_sequence_length) source_mask = util.get_text_field_mask(source_tokens) # shape: (batch_size, max_input_sequence_length, encoder_output_dim) encoder_outputs = self._encoder(embedded_input, source_mask) return {"source_mask": source_mask, "encoder_outputs": encoder_outputs} def _init_decoder_state(self, state: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: batch_size = state["source_mask"].size(0) # shape: (batch_size, encoder_output_dim) final_encoder_output = util.get_final_encoder_states( state["encoder_outputs"], state["source_mask"], self._encoder.is_bidirectional(), ) # Initialize the decoder hidden state with the final output of the encoder. # shape: (batch_size, decoder_output_dim) state["decoder_hidden"] = final_encoder_output # shape: (batch_size, decoder_output_dim) state["decoder_context"] = state["encoder_outputs"].new_zeros( batch_size, self._decoder_output_dim ) if self._target_decoder_layers > 1: # shape: (num_layers, batch_size, decoder_output_dim) state["decoder_hidden"] = ( state["decoder_hidden"].unsqueeze(0).repeat(self._target_decoder_layers, 1, 1) ) # shape: (num_layers, batch_size, decoder_output_dim) state["decoder_context"] = ( state["decoder_context"].unsqueeze(0).repeat(self._target_decoder_layers, 1, 1) ) return state def _forward_loop( self, state: Dict[str, torch.Tensor], target_tokens: TextFieldTensors = None ) -> Dict[str, torch.Tensor]: """ Make forward pass during training or do greedy search during prediction. Notes ----- We really only use the predictions from the method to test that beam search with a beam size of 1 gives the same results. """ # shape: (batch_size, max_input_sequence_length) source_mask = state["source_mask"] batch_size = source_mask.size()[0] if target_tokens: # shape: (batch_size, max_target_sequence_length) targets = target_tokens["tokens"]["tokens"] _, target_sequence_length = targets.size() # The last input from the target is either padding or the end symbol. # Either way, we don't have to process it. num_decoding_steps = target_sequence_length - 1 else: num_decoding_steps = self._beam_search.max_steps # Initialize target predictions with the start index. # shape: (batch_size,) last_predictions = source_mask.new_full( (batch_size,), fill_value=self._start_index, dtype=torch.long ) step_logits: List[torch.Tensor] = [] step_predictions: List[torch.Tensor] = [] for timestep in range(num_decoding_steps): if ( self.training and self._scheduled_sampling_ratio > 0.0 and torch.rand(1).item() < self._scheduled_sampling_ratio ): # Use gold tokens at test time and at a rate of 1 - _scheduled_sampling_ratio # during training. # shape: (batch_size,) input_choices = last_predictions elif not target_tokens: # shape: (batch_size,) input_choices = last_predictions else: # shape: (batch_size,) input_choices = targets[:, timestep] # shape: (batch_size, num_classes) output_projections, state = self._prepare_output_projections(input_choices, state) # list of tensors, shape: (batch_size, 1, num_classes) step_logits.append(output_projections.unsqueeze(1)) # shape: (batch_size, num_classes) class_probabilities = F.softmax(output_projections, dim=-1) # shape (predicted_classes): (batch_size,) _, predicted_classes = torch.max(class_probabilities, 1) # shape (predicted_classes): (batch_size,) last_predictions = predicted_classes step_predictions.append(last_predictions.unsqueeze(1)) # shape: (batch_size, num_decoding_steps) predictions = torch.cat(step_predictions, 1) output_dict = {"predictions": predictions} if target_tokens: # shape: (batch_size, num_decoding_steps, num_classes) logits = torch.cat(step_logits, 1) # Compute loss. target_mask = util.get_text_field_mask(target_tokens) loss = self._get_loss(logits, targets, target_mask) output_dict["loss"] = loss return output_dict def _forward_beam_search(self, state: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """Make forward pass during prediction using a beam search.""" batch_size = state["source_mask"].size()[0] start_predictions = state["source_mask"].new_full( (batch_size,), fill_value=self._start_index, dtype=torch.long ) # shape (all_top_k_predictions): (batch_size, beam_size, num_decoding_steps) # shape (log_probabilities): (batch_size, beam_size) all_top_k_predictions, log_probabilities = self._beam_search.search( start_predictions, state, self.take_step ) output_dict = { "class_log_probabilities": log_probabilities, "predictions": all_top_k_predictions, } return output_dict def _prepare_output_projections( self, last_predictions: torch.Tensor, state: Dict[str, torch.Tensor] ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """ Decode current state and last prediction to produce produce projections into the target space, which can then be used to get probabilities of each target token for the next step. Inputs are the same as for `take_step()`. """ # shape: (group_size, max_input_sequence_length, encoder_output_dim) encoder_outputs = state["encoder_outputs"] # shape: (group_size, max_input_sequence_length) source_mask = state["source_mask"] # shape: (num_layers, group_size, decoder_output_dim) decoder_hidden = state["decoder_hidden"] # shape: (num_layers, group_size, decoder_output_dim) decoder_context = state["decoder_context"] # shape: (group_size, target_embedding_dim) embedded_input = self._target_embedder(last_predictions) if self._attention: # shape: (group_size, encoder_output_dim) if self._target_decoder_layers > 1: attended_input = self._prepare_attended_input( decoder_hidden[0], encoder_outputs, source_mask ) else: attended_input = self._prepare_attended_input( decoder_hidden, encoder_outputs, source_mask ) # shape: (group_size, decoder_output_dim + target_embedding_dim) decoder_input = torch.cat((attended_input, embedded_input), -1) else: # shape: (group_size, target_embedding_dim) decoder_input = embedded_input if self._target_decoder_layers > 1: # shape: (1, batch_size, target_embedding_dim) decoder_input = decoder_input.unsqueeze(0) # shape (decoder_hidden): (num_layers, batch_size, decoder_output_dim) # shape (decoder_context): (num_layers, batch_size, decoder_output_dim) _, (decoder_hidden, decoder_context) = self._decoder_cell( decoder_input.float(), (decoder_hidden.float(), decoder_context.float()) ) else: # shape (decoder_hidden): (batch_size, decoder_output_dim) # shape (decoder_context): (batch_size, decoder_output_dim) decoder_hidden, decoder_context = self._decoder_cell( decoder_input.float(), (decoder_hidden.float(), decoder_context.float()) ) state["decoder_hidden"] = decoder_hidden state["decoder_context"] = decoder_context # shape: (group_size, num_classes) if self._target_decoder_layers > 1: output_projections = self._output_projection_layer(decoder_hidden[-1]) else: output_projections = self._output_projection_layer(decoder_hidden) return output_projections, state def _prepare_attended_input( self, decoder_hidden_state: torch.LongTensor = None, encoder_outputs: torch.LongTensor = None, encoder_outputs_mask: torch.BoolTensor = None, ) -> torch.Tensor: """Apply attention over encoder outputs and decoder state.""" # shape: (batch_size, max_input_sequence_length) input_weights = self._attention(decoder_hidden_state, encoder_outputs, encoder_outputs_mask) # shape: (batch_size, encoder_output_dim) attended_input = util.weighted_sum(encoder_outputs, input_weights) return attended_input @staticmethod def _get_loss( logits: torch.LongTensor, targets: torch.LongTensor, target_mask: torch.BoolTensor, ) -> torch.Tensor: """ Compute loss. Takes logits (unnormalized outputs from the decoder) of size (batch_size, num_decoding_steps, num_classes), target indices of size (batch_size, num_decoding_steps+1) and corresponding masks of size (batch_size, num_decoding_steps+1) steps and computes cross entropy loss while taking the mask into account. The length of `targets` is expected to be greater than that of `logits` because the decoder does not need to compute the output corresponding to the last timestep of `targets`. This method aligns the inputs appropriately to compute the loss. During training, we want the logit corresponding to timestep i to be similar to the target token from timestep i + 1. That is, the targets should be shifted by one timestep for appropriate comparison. Consider a single example where the target has 3 words, and padding is to 7 tokens. The complete sequence would correspond to <S> w1 w2 w3 <E> <P> <P> and the mask would be 1 1 1 1 1 0 0 and let the logits be l1 l2 l3 l4 l5 l6 We actually need to compare: the sequence w1 w2 w3 <E> <P> <P> with masks 1 1 1 1 0 0 against l1 l2 l3 l4 l5 l6 (where the input was) <S> w1 w2 w3 <E> <P> """ # shape: (batch_size, num_decoding_steps) relevant_targets = targets[:, 1:].contiguous() # shape: (batch_size, num_decoding_steps) relevant_mask = target_mask[:, 1:].contiguous() return util.sequence_cross_entropy_with_logits(logits, relevant_targets, relevant_mask) def get_metrics(self, reset: bool = False) -> Dict[str, float]: all_metrics: Dict[str, float] = {} if self._bleu and not self.training: all_metrics.update(self._bleu.get_metric(reset=reset)) return all_metrics default_predictor = "seq2seq"
allennlp-models-main
allennlp_models/generation/models/simple_seq2seq.py
from os import PathLike from typing import Optional, Dict, Any, Union, List, Tuple import torch from allennlp.common.lazy import Lazy from allennlp.data import TextFieldTensors, Vocabulary from allennlp.data.tokenizers import PretrainedTransformerTokenizer from allennlp.models.model import Model from allennlp.modules.transformer.t5 import T5 as T5Module, T5Output, IntT, BoolT from allennlp.nn.beam_search import BeamSearch from allennlp.nn.checkpoint import CheckpointWrapper from allennlp.training.metrics import ROUGE, BLEU @Model.register("t5") class T5(Model): def __init__( self, vocab: Vocabulary, model_name: str, beam_search: Lazy[BeamSearch] = Lazy(BeamSearch, beam_size=3, max_steps=50), checkpoint_wrapper: Optional[CheckpointWrapper] = None, weights_path: Optional[Union[str, PathLike]] = None, **kwargs ) -> None: super().__init__(vocab, **kwargs) self._model_name = model_name # We only instantiate this when we need it. self._tokenizer: Optional[PretrainedTransformerTokenizer] = None self.t5 = T5Module.from_pretrained_module( model_name, beam_search=beam_search, ddp_accelerator=self.ddp_accelerator, checkpoint_wrapper=checkpoint_wrapper, weights_path=weights_path, ) exclude_indices = { self.t5.pad_token_id, self.t5.decoder_start_token_id, self.t5.eos_token_id, } self._metrics = [ ROUGE(exclude_indices=exclude_indices), BLEU(exclude_indices=exclude_indices), ] def _post_load_state_dict( self, missing_keys: List[str], unexpected_keys: List[str] ) -> Tuple[List[str], List[str]]: missing_keys_to_ignore = [ "t5.encoder.token_embeddings.weight", "t5.decoder.token_embeddings.weight", ] if self.t5._tie_word_embeddings: missing_keys_to_ignore.append("t5.lm_head.weight") for key in missing_keys_to_ignore: if key in missing_keys: missing_keys.remove(key) return missing_keys, unexpected_keys @property def tokenizer(self) -> PretrainedTransformerTokenizer: if self._tokenizer is None: self._tokenizer = PretrainedTransformerTokenizer(self._model_name) return self._tokenizer def forward( # type: ignore self, source_tokens: TextFieldTensors, target_tokens: Optional[TextFieldTensors] = None ) -> Dict[str, torch.Tensor]: """ Performs the forward step of T5. # Parameters source_tokens : `TextFieldTensors`, required The source tokens for the encoder. We assume they are stored under the `tokens` key/namespace. target_tokens : `TextFieldTensors`, optional (default = `None`) The target tokens for the decoder. We assume they are also stored under the `tokens` key/namespace. If no target tokens are given during training / validation, the source tokens are shifted to the right by 1. # Returns `Dict[str, torch.Tensor]` Contains the `loss` when `target_tokens` is provided. And during prediction, includes `predictions` and `predicted_log_probs` from beam search. """ input_ids, attention_mask = ( source_tokens["tokens"]["token_ids"], source_tokens["tokens"]["mask"], ) labels: Optional[IntT] = None decoder_attention_mask: Optional[BoolT] = None if target_tokens is not None: labels, decoder_attention_mask = ( target_tokens["tokens"]["token_ids"], # type: ignore[assignment] target_tokens["tokens"]["mask"], # type: ignore[assignment] ) elif self.training: raise ValueError("'target_tokens' required during training") output: T5Output = self.t5( input_ids, attention_mask=attention_mask, labels=labels, decoder_attention_mask=decoder_attention_mask, ) output_dict: Dict[str, torch.Tensor] = {} if self.training: assert output.loss is not None output_dict["loss"] = output.loss else: # Shape: (batch_size, beam_size, num_tokens) assert output.predictions is not None # Shape: (batch_size, beam_size) assert output.predicted_log_probs is not None # Shape: (batch_size, num_tokens) output_dict["predictions"] = output.predictions[:, 0, :] # Shape: (batch_size, ) output_dict["predicted_log_probs"] = output.predicted_log_probs[:, 0] if labels is not None: assert output.loss is not None output_dict["loss"] = output.loss for metric in self._metrics: metric(output_dict["predictions"], labels) # type: ignore[call-arg] return output_dict def make_output_human_readable(self, output_dict: Dict[str, torch.Tensor]) -> Dict[str, Any]: predictions = output_dict["predictions"] output_dict["predicted_text"] = self.tokenizer.tokenizer.batch_decode( predictions, skip_special_tokens=True # type: ignore[attr-defined] ) return output_dict def get_metrics(self, reset: bool = False) -> Dict[str, float]: metrics: Dict[str, float] = {} if not self.training: for metric in self._metrics: metrics.update(metric.get_metric(reset=reset)) return metrics default_predictor = "seq2seq"
allennlp-models-main
allennlp_models/generation/models/t5.py
import warnings from typing import Dict, Tuple, Any, cast from allennlp.data import Vocabulary from allennlp.data.fields.text_field import TextFieldTensors from allennlp.data.token_indexers.pretrained_transformer_indexer import PretrainedTransformerIndexer from allennlp.models.model import Model from allennlp.modules.seq2seq_encoders.seq2seq_encoder import Seq2SeqEncoder from allennlp.nn.beam_search import BeamSearch from allennlp.nn.util import sequence_cross_entropy_with_logits from allennlp.training.metrics import ROUGE, BLEU from allennlp.common.lazy import Lazy from transformers.models.bart.modeling_bart import BartModel, BartForConditionalGeneration import torch from torch import nn import torch.nn.functional as F DecoderCacheType = Tuple[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor], ...] @Seq2SeqEncoder.register("bart_encoder") class BartEncoder(Seq2SeqEncoder): """ The BART encoder, implemented as a `Seq2SeqEncoder`, which assumes it operates on already embedded inputs. This means that we remove the token and position embeddings from BART in this module. For the typical use case of using BART to encode inputs to your model (where we include the token and position embeddings from BART), you should use `PretrainedTransformerEmbedder(bart_model_name, sub_module="encoder")` instead of this. # Parameters model_name : `str`, required Name of the pre-trained BART model to use. Available options can be found in `transformers.models.bart.modeling_bart.BART_PRETRAINED_MODEL_ARCHIVE_MAP`. """ def __init__(self, model_name): super().__init__() bart = BartModel.from_pretrained(model_name) self.hidden_dim = bart.config.hidden_size self.bart_encoder = bart.encoder self.bart_encoder.embed_tokens = lambda x: x self.bart_encoder.embed_positions = lambda x: torch.zeros( (x.shape[0], x.shape[1], self.hidden_dim), dtype=torch.float32 ) def get_input_dim(self) -> int: return self.hidden_dim def get_output_dim(self) -> int: return self.hidden_dim def is_bidirectional(self) -> bool: return False def forward(self, inputs: torch.Tensor, mask: torch.BoolTensor): # The first element is always the last encoder states for each input token. # Depending on the config, the second output will contain a list of the encoder states # after each transformer layer. Similarly, the third output can contain the attentions from each layer. # We only care about the first element. return self.bart_encoder(input_ids=inputs, attention_mask=mask)[0] class _BartEncoderWrapper(nn.Module): """ A wrapper class for a `Seq2SeqEncoder` allowing it to replace the encoder in `Bart`. This class is only used internally by `Bart`. """ def __init__( self, encoder: Seq2SeqEncoder, embed_tokens: nn.Embedding, embed_positions: nn.Embedding ): """ # Parameters encoder : `Seq2SeqEncoder`, required Encoder to be used by `Bart`. embed_tokens : `nn.Embedding`, required The token embedding layer of the BART model. embed_positions : `nn.Embedding`, required The positional embedding layer of the BART model. """ super().__init__() self.encoder = encoder self.embed_tokens = embed_tokens self.embed_positions = embed_positions # AllenNLP Seq2SeqEncoder's don't necessarily return those and the encoder might not even use # Attention, thus ensure those are not expected. # assert not bart_config.output_attentions # assert not bart_config.output_hidden_states def forward( self, input_ids, attention_mask=None, ): x = self.embed_tokens(input_ids) + self.embed_positions(input_ids) encoder_states = self.encoder(x, attention_mask) # The last two elements are attention and history of hidden states, respectively return encoder_states, [], [] @Model.register("bart") class Bart(Model): """ BART model from the paper "BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension" (https://arxiv.org/abs/1910.13461). The Bart model here uses a language modeling head and thus can be used for text generation. # Parameters model_name : `str`, required Name of the pre-trained BART model to use. Available options can be found in `transformers.models.bart.modeling_bart.BART_PRETRAINED_MODEL_ARCHIVE_MAP`. vocab : `Vocabulary`, required Vocabulary containing source and target vocabularies. beam_search : `Lazy[BeamSearch]`, optional (default = `Lazy(BeamSearch)`) This is used to during inference to select the tokens of the decoded output sequence. indexer : `PretrainedTransformerIndexer`, optional (default = `None`) Indexer to be used for converting decoded sequences of ids to to sequences of tokens. encoder : `Seq2SeqEncoder`, optional (default = `None`) Encoder to used in BART. By default, the original BART encoder is used. """ def __init__( self, model_name: str, vocab: Vocabulary, beam_search: Lazy[BeamSearch] = Lazy(BeamSearch), indexer: PretrainedTransformerIndexer = None, encoder: Seq2SeqEncoder = None, **kwargs, ): super().__init__(vocab) self.bart = BartForConditionalGeneration.from_pretrained(model_name) self._indexer = indexer or PretrainedTransformerIndexer(model_name, namespace="tokens") self._start_id = self.bart.config.bos_token_id # CLS self._decoder_start_id = self.bart.config.decoder_start_token_id or self._start_id self._end_id = self.bart.config.eos_token_id # SEP self._pad_id = self.bart.config.pad_token_id # PAD # At prediction time, we'll use a beam search to find the best target sequence. # For backwards compatibility, check if beam_size or max_decoding_steps were passed in as # kwargs. If so, update the BeamSearch object before constructing and raise a DeprecationWarning deprecation_warning = ( "The parameter {} has been deprecated." " Provide this parameter as argument to beam_search instead." ) beam_search_extras = {} if "beam_size" in kwargs: beam_search_extras["beam_size"] = kwargs["beam_size"] warnings.warn(deprecation_warning.format("beam_size"), DeprecationWarning) if "max_decoding_steps" in kwargs: beam_search_extras["max_steps"] = kwargs["max_decoding_steps"] warnings.warn(deprecation_warning.format("max_decoding_steps"), DeprecationWarning) self._beam_search = beam_search.construct( end_index=self._end_id, vocab=self.vocab, **beam_search_extras ) self._rouge = ROUGE(exclude_indices={self._start_id, self._pad_id, self._end_id}) self._bleu = BLEU(exclude_indices={self._start_id, self._pad_id, self._end_id}) # Replace bart encoder with given encoder. We need to extract the two embedding layers so that # we can use them in the encoder wrapper if encoder is not None: assert ( encoder.get_input_dim() == encoder.get_output_dim() == self.bart.config.hidden_size ) self.bart.model.encoder = _BartEncoderWrapper( encoder, self.bart.model.encoder.embed_tokens, self.bart.model.encoder.embed_positions, ) def forward( self, source_tokens: TextFieldTensors, target_tokens: TextFieldTensors = None ) -> Dict[str, torch.Tensor]: """ Performs the forward step of Bart. # Parameters source_tokens : `TextFieldTensors`, required The source tokens for the encoder. We assume they are stored under the `tokens` key. target_tokens : `TextFieldTensors`, optional (default = `None`) The target tokens for the decoder. We assume they are stored under the `tokens` key. If no target tokens are given, the source tokens are shifted to the right by 1. # Returns `Dict[str, torch.Tensor]` During training, this dictionary contains the `decoder_logits` of shape `(batch_size, max_target_length, target_vocab_size)` and the `loss`. During inference, it contains `predictions` of shape `(batch_size, max_decoding_steps)` and `log_probabilities` of shape `(batch_size,)`. """ inputs = source_tokens targets = target_tokens input_ids, input_mask = inputs["tokens"]["token_ids"], inputs["tokens"]["mask"] outputs = {} # If no targets are provided, then shift input to right by 1. Bart already does this internally # but it does not use them for loss calculation. if targets is not None: target_ids, target_mask = targets["tokens"]["token_ids"], targets["tokens"]["mask"] else: target_ids = input_ids[:, 1:] target_mask = input_mask[:, 1:] if self.training: bart_outputs = self.bart( input_ids=input_ids, attention_mask=input_mask, decoder_input_ids=target_ids[:, :-1].contiguous(), decoder_attention_mask=target_mask[:, :-1].contiguous(), use_cache=False, return_dict=True, ) outputs["decoder_logits"] = bart_outputs.logits # The BART paper mentions label smoothing of 0.1 for sequence generation tasks outputs["loss"] = sequence_cross_entropy_with_logits( bart_outputs.logits, cast(torch.LongTensor, target_ids[:, 1:].contiguous()), cast(torch.BoolTensor, target_mask[:, 1:].contiguous()), label_smoothing=0.1, average="token", ) else: # Use decoder start id and start of sentence to start decoder initial_decoder_ids = torch.tensor( [[self._decoder_start_id]], dtype=input_ids.dtype, device=input_ids.device, ).repeat(input_ids.shape[0], 1) inital_state = { "input_ids": input_ids, "input_mask": input_mask, } beam_result = self._beam_search.search( initial_decoder_ids, inital_state, self.take_step ) predictions = beam_result[0] max_pred_indices = ( beam_result[1].argmax(dim=-1).view(-1, 1, 1).expand(-1, -1, predictions.shape[-1]) ) predictions = predictions.gather(dim=1, index=max_pred_indices).squeeze(dim=1) self._rouge(predictions, target_ids) self._bleu(predictions, target_ids) outputs["predictions"] = predictions outputs["log_probabilities"] = ( beam_result[1].gather(dim=-1, index=max_pred_indices[..., 0]).squeeze(dim=-1) ) self.make_output_human_readable(outputs) return outputs @staticmethod def _decoder_cache_to_dict(decoder_cache: DecoderCacheType) -> Dict[str, torch.Tensor]: cache_dict = {} for layer_index, layer_cache in enumerate(decoder_cache): # Each layer caches the key and value tensors for its self-attention and cross-attention. # Hence the `layer_cache` tuple has 4 elements. assert len(layer_cache) == 4 for tensor_index, tensor in enumerate(layer_cache): key = f"decoder_cache_{layer_index}_{tensor_index}" cache_dict[key] = tensor return cache_dict def _dict_to_decoder_cache(self, cache_dict: Dict[str, torch.Tensor]) -> DecoderCacheType: decoder_cache = [] for layer_index in range(len(self.bart.model.decoder.layers)): base_key = f"decoder_cache_{layer_index}_" layer_cache = ( cache_dict[base_key + "0"], cache_dict[base_key + "1"], cache_dict[base_key + "2"], cache_dict[base_key + "3"], ) decoder_cache.append(layer_cache) assert decoder_cache return tuple(decoder_cache) def take_step( self, last_predictions: torch.Tensor, state: Dict[str, torch.Tensor], step: int ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """ Take step during beam search. # Parameters last_predictions : `torch.Tensor` The predicted token ids from the previous step. Shape: `(group_size,)` state : `Dict[str, torch.Tensor]` State required to generate next set of predictions step : `int` The time step in beam search decoding. # Returns `Tuple[torch.Tensor, Dict[str, torch.Tensor]]` A tuple containing logits for the next tokens of shape `(group_size, target_vocab_size)` and an updated state dictionary. """ if len(last_predictions.shape) == 1: last_predictions = last_predictions.unsqueeze(-1) decoder_cache = None decoder_cache_dict = { k: state[k].contiguous() for k in state if k not in {"input_ids", "input_mask", "encoder_states"} } if len(decoder_cache_dict) != 0: decoder_cache = self._dict_to_decoder_cache(decoder_cache_dict) encoder_outputs = (state["encoder_states"],) if "encoder_states" in state else None outputs = self.bart( input_ids=state["input_ids"] if encoder_outputs is None else None, attention_mask=state["input_mask"], encoder_outputs=encoder_outputs, decoder_input_ids=last_predictions, past_key_values=decoder_cache, use_cache=True, return_dict=True, ) logits = outputs.logits[:, -1, :] log_probabilities = F.log_softmax(logits, dim=-1) decoder_cache = outputs.past_key_values if decoder_cache is not None: decoder_cache_dict = self._decoder_cache_to_dict(decoder_cache) state.update(decoder_cache_dict) state["encoder_states"] = outputs.encoder_last_hidden_state return log_probabilities, state def make_output_human_readable(self, output_dict: Dict[str, torch.Tensor]) -> Dict[str, Any]: """ # Parameters output_dict : `Dict[str, torch.Tensor]` A dictionary containing a batch of predictions with key `predictions`. The tensor should have shape `(batch_size, max_sequence_length)` # Returns `Dict[str, Any]` Original `output_dict` with an additional `predicted_tokens` key that maps to a list of lists of tokens. """ predictions = output_dict["predictions"] predicted_tokens = [None] * predictions.shape[0] for i in range(predictions.shape[0]): predicted_tokens[i] = self._indexer.indices_to_tokens( {"token_ids": predictions[i].tolist()}, self.vocab, ) output_dict["predicted_tokens"] = predicted_tokens # type: ignore output_dict["predicted_text"] = self._indexer._tokenizer.batch_decode( predictions.tolist(), skip_special_tokens=True ) return output_dict def get_metrics(self, reset: bool = False) -> Dict[str, float]: metrics: Dict[str, float] = {} if not self.training: metrics.update(self._rouge.get_metric(reset=reset)) metrics.update(self._bleu.get_metric(reset=reset)) return metrics default_predictor = "seq2seq"
allennlp-models-main
allennlp_models/generation/models/bart.py
import logging import warnings from typing import Any, Dict, List, Tuple, Union import numpy import torch from allennlp.common.lazy import Lazy from allennlp.common.util import END_SYMBOL, START_SYMBOL from allennlp.data import TextFieldTensors, Vocabulary from allennlp.models.model import Model from allennlp.modules import Attention, Seq2SeqEncoder, TextFieldEmbedder from allennlp.modules.token_embedders import Embedding from allennlp.nn import InitializerApplicator, util from allennlp.nn.beam_search import BeamSearch from allennlp.training.metrics import BLEU, Metric from torch.nn.modules.linear import Linear from torch.nn.modules.rnn import LSTMCell logger = logging.getLogger(__name__) @Model.register("copynet_seq2seq") class CopyNetSeq2Seq(Model): """ This is an implementation of [CopyNet](https://api.semanticscholar.org/CorpusID:8174613). CopyNet is a sequence-to-sequence encoder-decoder model with a copying mechanism that can copy tokens from the source sentence into the target sentence instead of generating all target tokens only from the target vocabulary. It is very similar to a typical seq2seq model used in neural machine translation tasks, for example, except that in addition to providing a "generation" score at each timestep for the tokens in the target vocabulary, it also provides a "copy" score for each token that appears in the source sentence. In other words, you can think of CopyNet as a seq2seq model with a dynamic target vocabulary that changes based on the tokens in the source sentence, allowing it to predict tokens that are out-of-vocabulary (OOV) with respect to the actual target vocab. # Parameters vocab : `Vocabulary`, required Vocabulary containing source and target vocabularies. source_embedder : `TextFieldEmbedder`, required Embedder for source side sequences encoder : `Seq2SeqEncoder`, required The encoder of the "encoder/decoder" model attention : `Attention`, required This is used to get a dynamic summary of encoder outputs at each timestep when producing the "generation" scores for the target vocab. label_smoothing : `float`, optional (default = `None`) Whether or not to apply label smoothing to the cross-entropy loss. For example, with a label smoothing value of 0.2, a 4 class classification target would look like `[0.05, 0.05, 0.85, 0.05]` if the 3rd class was the correct label. beam_search : `BeamSearch`, optional (default = `Lazy(BeamSearch)`) This is used to during inference to select the tokens of the decoded output sequence. target_embedding_dim : `int`, optional (default = `30`) The size of the embeddings for the target vocabulary. scheduled_sampling_ratio : `float`, optional (default = `0.`) At each timestep during training, we sample a random number between 0 and 1, and if it is not less than this value, we use the ground truth labels for the whole batch. Else, we use the predictions from the previous time step for the whole batch. If this value is 0.0 (default), this corresponds to teacher forcing, and if it is 1.0, it corresponds to not using target side ground truth labels. See the following paper for more information: [Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. Bengio et al., 2015](https://arxiv.org/abs/1506.03099). copy_token : `str`, optional (default = `'@COPY@'`) The token used to indicate that a target token was copied from the source. If this token is not already in your target vocabulary, it will be added. target_namespace : `str`, optional (default = `'target_tokens'`) The namespace for the target vocabulary. tensor_based_metric : `Metric`, optional (default = `'BLEU'`) A metric to track on validation data that takes raw tensors when its called. This metric must accept two arguments when called: a batched tensor of predicted token indices, and a batched tensor of gold token indices. token_based_metric : `Metric`, optional (default = `None`) A metric to track on validation data that takes lists of lists of tokens as input. This metric must accept two arguments when called, both of type `List[List[str]]`. The first is a predicted sequence for each item in the batch and the second is a gold sequence for each item in the batch. initializer : `InitializerApplicator`, optional An initialization strategy for the model weights. """ def __init__( self, vocab: Vocabulary, source_embedder: TextFieldEmbedder, encoder: Seq2SeqEncoder, attention: Attention, label_smoothing: float = None, beam_search: Lazy[BeamSearch] = Lazy(BeamSearch), target_embedding_dim: int = 30, scheduled_sampling_ratio: float = 0.0, copy_token: str = "@COPY@", target_namespace: str = "target_tokens", tensor_based_metric: Metric = None, token_based_metric: Metric = None, initializer: InitializerApplicator = InitializerApplicator(), **kwargs ) -> None: super().__init__(vocab) self._target_namespace = target_namespace self._scheduled_sampling_ratio = scheduled_sampling_ratio self._start_index = self.vocab.get_token_index(START_SYMBOL, self._target_namespace) self._end_index = self.vocab.get_token_index(END_SYMBOL, self._target_namespace) self._oov_index = self.vocab.get_token_index(self.vocab._oov_token, self._target_namespace) self._pad_index = self.vocab.get_token_index( self.vocab._padding_token, self._target_namespace ) self._copy_index = self.vocab.add_token_to_namespace(copy_token, self._target_namespace) self._tensor_based_metric = tensor_based_metric or BLEU( exclude_indices={self._pad_index, self._end_index, self._start_index} ) self._token_based_metric = token_based_metric self._target_vocab_size = self.vocab.get_vocab_size(self._target_namespace) # Encoding modules. self._source_embedder = source_embedder self._encoder = encoder # Decoder output dim needs to be the same as the encoder output dim since we initialize the # hidden state of the decoder with the final hidden state of the encoder. # We arbitrarily set the decoder's input dimension to be the same as the output dimension. self.encoder_output_dim = self._encoder.get_output_dim() self.decoder_output_dim = self.encoder_output_dim self.decoder_input_dim = self.decoder_output_dim # The decoder input will be a function of the embedding of the previous predicted token, # an attended encoder hidden state called the "attentive read", and another # weighted sum of the encoder hidden state called the "selective read". # While the weights for the attentive read are calculated by an `Attention` module, # the weights for the selective read are simply the predicted probabilities # corresponding to each token in the source sentence that matches the target # token from the previous timestep. self._target_embedder = Embedding( num_embeddings=self._target_vocab_size, embedding_dim=target_embedding_dim ) self._attention = attention self._label_smoothing = label_smoothing self._input_projection_layer = Linear( target_embedding_dim + self.encoder_output_dim * 2, self.decoder_input_dim ) # We then run the projected decoder input through an LSTM cell to produce # the next hidden state. self._decoder_cell = LSTMCell(self.decoder_input_dim, self.decoder_output_dim) # We create a "generation" score for each token in the target vocab # with a linear projection of the decoder hidden state. self._output_generation_layer = Linear(self.decoder_output_dim, self._target_vocab_size) # We create a "copying" score for each source token by applying a non-linearity # (tanh) to a linear projection of the encoded hidden state for that token, # and then taking the dot product of the result with the decoder hidden state. self._output_copying_layer = Linear(self.encoder_output_dim, self.decoder_output_dim) # At prediction time, we'll use a beam search to find the best target sequence. # For backwards compatibility, check if beam_size or max_decoding_steps were passed in as # kwargs. If so, update the BeamSearch object before constructing and raise a DeprecationWarning deprecation_warning = ( "The parameter {} has been deprecated." " Provide this parameter as argument to beam_search instead." ) beam_search_extras = {} if "beam_size" in kwargs: beam_search_extras["beam_size"] = kwargs["beam_size"] warnings.warn(deprecation_warning.format("beam_size"), DeprecationWarning) if "max_decoding_steps" in kwargs: beam_search_extras["max_steps"] = kwargs["max_decoding_steps"] warnings.warn(deprecation_warning.format("max_decoding_steps"), DeprecationWarning) self._beam_search = beam_search.construct( end_index=self._end_index, vocab=self.vocab, **beam_search_extras ) initializer(self) def forward( self, # type: ignore source_tokens: TextFieldTensors, source_token_ids: torch.Tensor, source_to_target: torch.Tensor, metadata: List[Dict[str, Any]], target_tokens: TextFieldTensors = None, target_token_ids: torch.Tensor = None, weight: torch.Tensor = None, ) -> Dict[str, torch.Tensor]: """ Make foward pass with decoder logic for producing the entire target sequence. # Parameters source_tokens : `TextFieldTensors`, required The output of `TextField.as_array()` applied on the source `TextField`. This will be passed through a `TextFieldEmbedder` and then through an encoder. source_token_ids : `torch.Tensor`, required Tensor containing IDs that indicate which source tokens match each other. Has shape: `(batch_size, source_sequence_length)`. source_to_target : `torch.Tensor`, required Tensor containing vocab index of each source token with respect to the target vocab namespace. Shape: `(batch_size, source_sequence_length)`. metadata : `List[Dict[str, Any]]`, required Metadata field that contains the original source tokens with key 'source_tokens' and any other meta fields. When 'target_tokens' is also passed, the metadata should also contain the original target tokens with key 'target_tokens'. target_tokens : `TextFieldTensors`, optional (default = `None`) Output of `Textfield.as_array()` applied on target `TextField`. We assume that the target tokens are also represented as a `TextField` which must contain a "tokens" key that uses single ids. target_token_ids : `torch.Tensor`, optional (default = `None`) A tensor of shape `(batch_size, target_sequence_length)` which indicates which tokens in the target sequence match tokens in the source sequence. weight : `torch.Tensor`, optional (default = `None`) A optional tensor of shape `(batch_size,)` or `(batch_size, 1)` which determines how to weight each instance in the batch when calculating the loss. The default of `None` is equivalent to `weights = torch.tensor([1.0] * batch_size)`. The final loss is calculated as `-(weight * log_likelihood).sum() / batch_size`, where `log_likelihood` is a tensor of shape `(batch_size,)`, representing the overall log likelihood of the gold target sequence. # Returns `Dict[str, torch.Tensor]` """ state = self._encode(source_tokens) state["source_token_ids"] = source_token_ids state["source_to_target"] = source_to_target if target_tokens: state = self._init_decoder_state(state) output_dict = self._forward_loss(target_tokens, target_token_ids, state, weight=weight) else: output_dict = {} output_dict["metadata"] = metadata if not self.training: state = self._init_decoder_state(state) predictions = self._forward_beam_search(state) output_dict.update(predictions) if target_tokens: if self._tensor_based_metric is not None: # shape: (batch_size, beam_size, max_sequence_length) top_k_predictions = output_dict["predictions"] # shape: (batch_size, max_predicted_sequence_length) best_predictions = top_k_predictions[:, 0, :] # shape: (batch_size, target_sequence_length) gold_tokens = self._gather_extended_gold_tokens( target_tokens["tokens"]["tokens"], source_token_ids, target_token_ids ) self._tensor_based_metric(best_predictions, gold_tokens) # type: ignore if self._token_based_metric is not None: predicted_tokens = self._get_predicted_tokens( output_dict["predictions"], metadata, n_best=1 ) self._token_based_metric( # type: ignore predicted_tokens, [x["target_tokens"] for x in metadata] ) return output_dict def _gather_extended_gold_tokens( self, target_tokens: torch.Tensor, source_token_ids: torch.Tensor, target_token_ids: torch.Tensor, ) -> torch.LongTensor: """ Modify the gold target tokens relative to the extended vocabulary. For gold targets that are OOV but were copied from the source, the OOV index will be changed to the index of the first occurence in the source sentence, offset by the size of the target vocabulary. # Parameters target_tokens : `torch.Tensor` Shape: `(batch_size, target_sequence_length)`. source_token_ids : `torch.Tensor` Shape: `(batch_size, source_sequence_length)`. target_token_ids : `torch.Tensor` Shape: `(batch_size, target_sequence_length)`. # Returns torch.Tensor Modified `target_tokens` with OOV indices replaced by offset index of first match in source sentence. """ batch_size, target_sequence_length = target_tokens.size() source_sequence_length = source_token_ids.size(1) # Only change indices for tokens that were OOV in target vocab but copied from source. # shape: (batch_size, target_sequence_length) oov = target_tokens == self._oov_index # shape: (batch_size, target_sequence_length, source_sequence_length) expanded_source_token_ids = source_token_ids.unsqueeze(1).expand( batch_size, target_sequence_length, source_sequence_length ) # shape: (batch_size, target_sequence_length, source_sequence_length) expanded_target_token_ids = target_token_ids.unsqueeze(-1).expand( batch_size, target_sequence_length, source_sequence_length ) # shape: (batch_size, target_sequence_length, source_sequence_length) matches = expanded_source_token_ids == expanded_target_token_ids # shape: (batch_size, target_sequence_length) copied = matches.sum(-1) > 0 # shape: (batch_size, target_sequence_length) mask = oov & copied # shape: (batch_size, target_sequence_length) first_match = ((matches.cumsum(-1) == 1) & matches).to(torch.uint8).argmax(-1) # shape: (batch_size, target_sequence_length) new_target_tokens = ( target_tokens * ~mask + (first_match.long() + self._target_vocab_size) * mask ) return new_target_tokens def _init_decoder_state(self, state: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """ Initialize the encoded state to be passed to the first decoding time step. """ batch_size, _ = state["source_mask"].size() # Initialize the decoder hidden state with the final output of the encoder, # and the decoder context with zeros. # shape: (batch_size, encoder_output_dim) final_encoder_output = util.get_final_encoder_states( state["encoder_outputs"], state["source_mask"], self._encoder.is_bidirectional() ) # shape: (batch_size, decoder_output_dim) state["decoder_hidden"] = final_encoder_output # shape: (batch_size, decoder_output_dim) state["decoder_context"] = state["encoder_outputs"].new_zeros( batch_size, self.decoder_output_dim ) return state def _encode(self, source_tokens: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """ Encode source input sentences. """ # shape: (batch_size, source_sequence_length, encoder_input_dim) embedded_input = self._source_embedder(source_tokens) # shape: (batch_size, source_sequence_length) source_mask = util.get_text_field_mask(source_tokens) # shape: (batch_size, source_sequence_length, encoder_output_dim) encoder_outputs = self._encoder(embedded_input, source_mask) return {"source_mask": source_mask, "encoder_outputs": encoder_outputs} def _decoder_step( self, last_predictions: torch.Tensor, selective_weights: torch.Tensor, state: Dict[str, torch.Tensor], ) -> Dict[str, torch.Tensor]: # shape: (group_size, source_sequence_length, encoder_output_dim) encoder_outputs_mask = state["source_mask"] # shape: (group_size, target_embedding_dim) embedded_input = self._target_embedder(last_predictions) # shape: (group_size, source_sequence_length) attentive_weights = self._attention( state["decoder_hidden"], state["encoder_outputs"], encoder_outputs_mask ) # shape: (group_size, encoder_output_dim) attentive_read = util.weighted_sum(state["encoder_outputs"], attentive_weights) # shape: (group_size, encoder_output_dim) selective_read = util.weighted_sum(state["encoder_outputs"], selective_weights) # shape: (group_size, target_embedding_dim + encoder_output_dim * 2) decoder_input = torch.cat((embedded_input, attentive_read, selective_read), -1) # shape: (group_size, decoder_input_dim) projected_decoder_input = self._input_projection_layer(decoder_input) state["decoder_hidden"], state["decoder_context"] = self._decoder_cell( projected_decoder_input.float(), (state["decoder_hidden"].float(), state["decoder_context"].float()), ) return state def _get_generation_scores(self, state: Dict[str, torch.Tensor]) -> torch.Tensor: return self._output_generation_layer(state["decoder_hidden"]) def _get_copy_scores(self, state: Dict[str, torch.Tensor]) -> torch.Tensor: # shape: (batch_size, source_sequence_length, encoder_output_dim) encoder_outputs = state["encoder_outputs"] # shape: (batch_size, source_sequence_length, decoder_output_dim) copy_projection = self._output_copying_layer(encoder_outputs) # shape: (batch_size, source_sequence_length, decoder_output_dim) copy_projection = torch.tanh(copy_projection) # shape: (batch_size, source_sequence_length) copy_scores = copy_projection.bmm(state["decoder_hidden"].unsqueeze(-1)).squeeze(-1) return copy_scores def _get_ll_contrib( self, generation_scores: torch.Tensor, generation_scores_mask: torch.BoolTensor, copy_scores: torch.Tensor, target_tokens: torch.Tensor, target_to_source: torch.Tensor, source_mask: torch.BoolTensor, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Get the log-likelihood contribution from a single timestep. # Parameters generation_scores : `torch.Tensor` Shape: `(batch_size, target_vocab_size)` generation_scores_mask : `torch.BoolTensor` Shape: `(batch_size, target_vocab_size)`. This is just a tensor of 1's. copy_scores : `torch.Tensor` Shape: `(batch_size, source_sequence_length)` target_tokens : `torch.Tensor` Shape: `(batch_size,)` target_to_source : `torch.Tensor` Shape: `(batch_size, source_sequence_length)` source_mask : `torch.BoolTensor` Shape: `(batch_size, source_sequence_length)` # Returns Tuple[torch.Tensor, torch.Tensor] Shape: `(batch_size,), (batch_size, source_sequence_length)` """ _, target_size = generation_scores.size() # The point of this mask is to just mask out all source token scores # that just represent padding. We apply the mask to the concatenation # of the generation scores and the copy scores to normalize the scores # correctly during the softmax. # shape: (batch_size, target_vocab_size + source_sequence_length) mask = torch.cat((generation_scores_mask, source_mask), dim=-1) # shape: (batch_size, target_vocab_size + source_sequence_length) all_scores = torch.cat((generation_scores, copy_scores), dim=-1) # Normalize generation and copy scores. # shape: (batch_size, target_vocab_size + source_sequence_length) log_probs = util.masked_log_softmax(all_scores, mask) # Calculate the log probability (`copy_log_probs`) for each token in the source sentence # that matches the current target token. We use the sum of these copy probabilities # for matching tokens in the source sentence to get the total probability # for the target token. We also need to normalize the individual copy probabilities # to create `selective_weights`, which are used in the next timestep to create # a selective read state. # shape: (batch_size, source_sequence_length) copy_log_probs = ( log_probs[:, target_size:] + ( target_to_source.to(log_probs.dtype) + util.tiny_value_of_dtype(log_probs.dtype) ).log() ) # Since `log_probs[:, target_size]` gives us the raw copy log probabilities, # we use a non-log softmax to get the normalized non-log copy probabilities. selective_weights = util.masked_softmax(log_probs[:, target_size:], target_to_source) # This mask ensures that item in the batch has a non-zero generation probabilities # for this timestep only when the gold target token is not OOV or there are no # matching tokens in the source sentence. # shape: (batch_size, 1) gen_mask = (target_tokens != self._oov_index) | (target_to_source.sum(-1) == 0) log_gen_mask = (gen_mask + util.tiny_value_of_dtype(log_probs.dtype)).log().unsqueeze(-1) # Now we get the generation score for the gold target token. if self._label_smoothing is not None and self._label_smoothing > 0.0: smoothing_value = self._label_smoothing / target_size # Create the smoothed targets to be multiplied with `log_probs` # shape: (batch_size, target_vocab_size + source_sequence_length) smoothed_targets = torch.full_like(log_probs, smoothing_value).scatter_( 1, target_tokens.unsqueeze(1), 1.0 - self._label_smoothing + smoothing_value ) generation_log_probs = log_probs * smoothed_targets # shape: (batch_size, 1) generation_log_probs = generation_log_probs.sum(-1, keepdim=True) else: # Contribution to the negative log likelihood only comes from the exact indices # of the targets, as the target distributions are one-hot. Here we use torch.gather # to extract the indices which contribute to the loss. # shape: (batch_size, 1) generation_log_probs = log_probs.gather(1, target_tokens.unsqueeze(1)) generation_log_probs = generation_log_probs + log_gen_mask # ... and add the copy score to get the step log likelihood. # shape: (batch_size, 1 + source_sequence_length) combined_gen_and_copy = torch.cat((generation_log_probs, copy_log_probs), dim=-1) # shape: (batch_size,) step_log_likelihood = util.logsumexp(combined_gen_and_copy) return step_log_likelihood, selective_weights, log_probs def _forward_loss( self, target_tokens: TextFieldTensors, target_token_ids: torch.Tensor, state: Dict[str, torch.Tensor], weight: torch.Tensor = None, ) -> Dict[str, torch.Tensor]: """ Calculate the loss against gold targets. """ batch_size, target_sequence_length = target_tokens["tokens"]["tokens"].size() # shape: (batch_size, source_sequence_length) source_mask = state["source_mask"] # We have a decoding step for every target token except the "START" token. num_decoding_steps = target_sequence_length - 1 # We use this to fill in the copy index when the previous input was copied. # shape: (batch_size,) copy_input_choices = source_mask.new_full( (batch_size,), fill_value=self._copy_index, dtype=torch.long ) # We need to keep track of the probabilities assigned to tokens in the source # sentence that were copied during the previous timestep, since we use # those probabilities as weights when calculating the "selective read". # shape: (batch_size, source_sequence_length) selective_weights = state["decoder_hidden"].new_zeros(source_mask.size()) # Indicates which tokens in the source sentence match the current target token. # shape: (batch_size, source_sequence_length) target_to_source = state["source_token_ids"].new_zeros(source_mask.size()) # This is just a tensor of ones which we use repeatedly in `self._get_ll_contrib`, # so we create it once here to avoid doing it over-and-over. generation_scores_mask = state["decoder_hidden"].new_full( (batch_size, self._target_vocab_size), fill_value=1.0, dtype=torch.bool ) # Initialize target predictions with the start index. # shape: (batch_size,) last_predictions = source_mask.new_full( (batch_size,), fill_value=self._start_index, dtype=torch.long ) step_log_likelihoods = [] for timestep in range(num_decoding_steps): if ( self.training and self._scheduled_sampling_ratio > 0.0 and torch.rand(1).item() < self._scheduled_sampling_ratio ): # Use gold tokens at test time and at a rate of 1 - _scheduled_sampling_ratio # during training. # shape: (batch_size,) input_choices = last_predictions # Get mask tensor indicating which instances were copied. # shape: (batch_size,) copied = (input_choices >= self._target_vocab_size).long() else: # shape: (batch_size,) input_choices = target_tokens["tokens"]["tokens"][:, timestep] # shape: (batch_size,) copied = ( (input_choices == self._oov_index) & (target_to_source.sum(-1) > 0) ).long() # shape: (batch_size,) input_choices = input_choices * (1 - copied) + copy_input_choices * copied # shape: (batch_size, source_sequence_length) target_to_source = state["source_token_ids"] == target_token_ids[ :, timestep + 1 ].unsqueeze(-1) # Update the decoder state by taking a step through the RNN. state = self._decoder_step(input_choices, selective_weights, state) # Get generation scores for each token in the target vocab. # shape: (batch_size, target_vocab_size) generation_scores = self._get_generation_scores(state) # Get copy scores for each token in the source sentence, excluding the start # and end tokens. # shape: (batch_size, source_sequence_length) copy_scores = self._get_copy_scores(state) # shape: (batch_size,) step_target_tokens = target_tokens["tokens"]["tokens"][:, timestep + 1] step_log_likelihood, selective_weights, log_probs = self._get_ll_contrib( generation_scores, generation_scores_mask, copy_scores, step_target_tokens, target_to_source, source_mask, ) step_log_likelihoods.append(step_log_likelihood.unsqueeze(1)) # shape (predicted_classes): (batch_size,) _, last_predictions = torch.max(log_probs, 1) # Gather step log-likelihoods. # shape: (batch_size, num_decoding_steps = target_sequence_length - 1) log_likelihoods = torch.cat(step_log_likelihoods, 1) # Get target mask to exclude likelihood contributions from timesteps after # the END token. # shape: (batch_size, target_sequence_length) target_mask = util.get_text_field_mask(target_tokens) # The first timestep is just the START token, which is not included in the likelihoods. # shape: (batch_size, num_decoding_steps) target_mask = target_mask[:, 1:] # Sum of step log-likelihoods. # shape: (batch_size,) log_likelihood = (log_likelihoods * target_mask).sum(dim=-1) # The loss is the negative log-likelihood, averaged over the batch. if weight is None: loss = -log_likelihood.sum() / batch_size else: # shape: (batch_size,) if len(weight.shape) > 1: weight = weight.squeeze() loss = -(weight * log_likelihood).sum() / batch_size return {"loss": loss} def _forward_beam_search(self, state: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: batch_size, source_sequence_length = state["source_mask"].size() # Initialize the copy scores to zero. state["copy_log_probs"] = ( state["decoder_hidden"].new_zeros((batch_size, source_sequence_length)) + util.tiny_value_of_dtype(state["decoder_hidden"].dtype) ).log() # shape: (batch_size,) start_predictions = state["source_mask"].new_full( (batch_size,), fill_value=self._start_index, dtype=torch.long ) # shape (all_top_k_predictions): (batch_size, beam_size, num_decoding_steps) # shape (log_probabilities): (batch_size, beam_size) all_top_k_predictions, log_probabilities = self._beam_search.search( start_predictions, state, self.take_search_step ) return {"predicted_log_probs": log_probabilities, "predictions": all_top_k_predictions} def _get_input_and_selective_weights( self, last_predictions: torch.LongTensor, state: Dict[str, torch.Tensor] ) -> Tuple[torch.LongTensor, torch.Tensor]: """ Get input choices for the decoder and the selective copy weights. The decoder input choices are simply the `last_predictions`, except for target OOV predictions that were copied from source tokens, in which case the prediction will be changed to the COPY symbol in the target namespace. The selective weights are just the probabilities assigned to source tokens that were copied, normalized to sum to 1. If no source tokens were copied, there will be all zeros. # Parameters last_predictions : `torch.LongTensor` Shape: `(group_size,)` state : `Dict[str, torch.Tensor]` # Returns Tuple[torch.LongTensor, torch.Tensor] `input_choices` (shape `(group_size,)`) and `selective_weights` (shape `(group_size, source_sequence_length)`). """ group_size, source_sequence_length = state["source_to_target"].size() # This is a mask indicating which last predictions were copied from the # the source AND not in the target vocabulary (OOV). # (group_size,) only_copied_mask = last_predictions >= self._target_vocab_size # If the last prediction was in the target vocab or OOV but not copied, # we use that as input, otherwise we use the COPY token. # shape: (group_size,) copy_input_choices = only_copied_mask.new_full( (group_size,), fill_value=self._copy_index, dtype=torch.long ) input_choices = last_predictions * ~only_copied_mask + copy_input_choices * only_copied_mask # In order to get the `selective_weights`, we need to find out which predictions # were copied or copied AND generated, which is the case when a prediction appears # in both the source sentence and the target vocab. But whenever a prediction # is in the target vocab (even if it also appeared in the source sentence), # its index will be the corresponding target vocab index, not its index in # the source sentence offset by the target vocab size. So we first # use `state["source_to_target"]` to get an indicator of every source token # that matches the predicted target token. # shape: (group_size, source_sequence_length) expanded_last_predictions = last_predictions.unsqueeze(-1).expand( group_size, source_sequence_length ) # shape: (group_size, source_sequence_length) source_copied_and_generated = state["source_to_target"] == expanded_last_predictions # In order to get indicators for copied source tokens that are OOV with respect # to the target vocab, we'll make use of `state["source_token_ids"]`. # First we adjust predictions relative to the start of the source tokens. # This makes sense because predictions for copied tokens are given by the index of the copied # token in the source sentence, offset by the size of the target vocabulary. # shape: (group_size,) adjusted_predictions = last_predictions - self._target_vocab_size # The adjusted indices for items that were not copied will be negative numbers, # and therefore invalid. So we zero them out. adjusted_predictions = adjusted_predictions * only_copied_mask # shape: (group_size, source_sequence_length) source_token_ids = state["source_token_ids"] # shape: (group_size, source_sequence_length) adjusted_prediction_ids = source_token_ids.gather(-1, adjusted_predictions.unsqueeze(-1)) # This mask will contain indicators for source tokens that were copied # during the last timestep. # shape: (group_size, source_sequence_length) source_only_copied = source_token_ids == adjusted_prediction_ids # Since we zero'd-out indices for predictions that were not copied, # we need to zero out all entries of this mask corresponding to those predictions. source_only_copied = source_only_copied & only_copied_mask.unsqueeze(-1) # shape: (group_size, source_sequence_length) mask = source_only_copied | source_copied_and_generated # shape: (group_size, source_sequence_length) selective_weights = util.masked_softmax(state["copy_log_probs"], mask) return input_choices, selective_weights def _gather_final_log_probs( self, generation_log_probs: torch.Tensor, copy_log_probs: torch.Tensor, state: Dict[str, torch.Tensor], ) -> torch.Tensor: """ Combine copy probabilities with generation probabilities for matching tokens. # Parameters generation_log_probs : `torch.Tensor` Shape: `(group_size, target_vocab_size)` copy_log_probs : `torch.Tensor` Shape: `(group_size, source_sequence_length)` state : `Dict[str, torch.Tensor]` # Returns torch.Tensor Shape: `(group_size, target_vocab_size + source_sequence_length)`. """ _, source_sequence_length = state["source_to_target"].size() source_token_ids = state["source_token_ids"] # shape: [(batch_size, *)] modified_log_probs_list: List[torch.Tensor] = [] for i in range(source_sequence_length): # shape: (group_size,) copy_log_probs_slice = copy_log_probs[:, i] # `source_to_target` is a matrix of shape (group_size, source_sequence_length) # where element (i, j) is the vocab index of the target token that matches the jth # source token in the ith group, if there is one, or the index of the OOV symbol otherwise. # We'll use this to add copy scores to corresponding generation scores. # shape: (group_size,) source_to_target_slice = state["source_to_target"][:, i] # The OOV index in the source_to_target_slice indicates that the source # token is not in the target vocab, so we don't want to add that copy score # to the OOV token. copy_log_probs_to_add_mask = source_to_target_slice != self._oov_index copy_log_probs_to_add = ( copy_log_probs_slice + ( copy_log_probs_to_add_mask + util.tiny_value_of_dtype(copy_log_probs_slice.dtype) ).log() ) # shape: (batch_size, 1) copy_log_probs_to_add = copy_log_probs_to_add.unsqueeze(-1) # shape: (batch_size, 1) selected_generation_log_probs = generation_log_probs.gather( 1, source_to_target_slice.unsqueeze(-1) ) combined_scores = util.logsumexp( torch.cat((selected_generation_log_probs, copy_log_probs_to_add), dim=1) ) generation_log_probs = generation_log_probs.scatter( -1, source_to_target_slice.unsqueeze(-1), combined_scores.unsqueeze(-1) ) # We have to combine copy scores for duplicate source tokens so that # we can find the overall most likely source token. So, if this is the first # occurence of this particular source token, we add the log_probs from all other # occurences, otherwise we zero it out since it was already accounted for. if i < (source_sequence_length - 1): # Sum copy scores from future occurences of source token. # shape: (group_size, source_sequence_length - i) source_future_occurences = source_token_ids[:, (i + 1) :] == source_token_ids[ :, i ].unsqueeze(-1) # shape: (group_size, source_sequence_length - i) future_copy_log_probs = ( copy_log_probs[:, (i + 1) :] + ( source_future_occurences + util.tiny_value_of_dtype(copy_log_probs.dtype) ).log() ) # shape: (group_size, 1 + source_sequence_length - i) combined = torch.cat( (copy_log_probs_slice.unsqueeze(-1), future_copy_log_probs), dim=-1 ) # shape: (group_size,) copy_log_probs_slice = util.logsumexp(combined) if i > 0: # Remove copy log_probs that we have already accounted for. # shape: (group_size, i) source_previous_occurences = source_token_ids[:, 0:i] == source_token_ids[ :, i ].unsqueeze(-1) # shape: (group_size,) duplicate_mask = source_previous_occurences.sum(dim=-1) == 0 copy_log_probs_slice = ( copy_log_probs_slice + (duplicate_mask + util.tiny_value_of_dtype(copy_log_probs_slice.dtype)).log() ) # Finally, we zero-out copy scores that we added to the generation scores # above so that we don't double-count them. # shape: (group_size,) left_over_copy_log_probs = ( copy_log_probs_slice + ( ~copy_log_probs_to_add_mask + util.tiny_value_of_dtype(copy_log_probs_slice.dtype) ).log() ) modified_log_probs_list.append(left_over_copy_log_probs.unsqueeze(-1)) modified_log_probs_list.insert(0, generation_log_probs) # shape: (group_size, target_vocab_size + source_sequence_length) modified_log_probs = torch.cat(modified_log_probs_list, dim=-1) return modified_log_probs def take_search_step( self, last_predictions: torch.Tensor, state: Dict[str, torch.Tensor], step: int ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """ Take step during beam search. This function is what gets passed to the `BeamSearch.search` method. It takes predictions from the last timestep and the current state and outputs the log probabilities assigned to tokens for the next timestep, as well as the updated state. Since we are predicting tokens out of the extended vocab (target vocab + all unique tokens from the source sentence), this is a little more complicated that just making a forward pass through the model. The output log probs will have shape `(group_size, target_vocab_size + source_sequence_length)` so that each token in the target vocab and source sentence are assigned a probability. Note that copy scores are assigned to each source token based on their position, not unique value. So if a token appears more than once in the source sentence, it will have more than one score. Further, if a source token is also part of the target vocab, its final score will be the sum of the generation and copy scores. Therefore, in order to get the score for all tokens in the extended vocab at this step, we have to combine copy scores for re-occuring source tokens and potentially add them to the generation scores for the matching token in the target vocab, if there is one. So we can break down the final log probs output as the concatenation of two matrices, A: `(group_size, target_vocab_size)`, and B: `(group_size, source_sequence_length)`. Matrix A contains the sum of the generation score and copy scores (possibly 0) for each target token. Matrix B contains left-over copy scores for source tokens that do NOT appear in the target vocab, with zeros everywhere else. But since a source token may appear more than once in the source sentence, we also have to sum the scores for each appearance of each unique source token. So matrix B actually only has non-zero values at the first occurence of each source token that is not in the target vocab. # Parameters last_predictions : `torch.Tensor` Shape: `(group_size,)` state : `Dict[str, torch.Tensor]` Contains all state tensors necessary to produce generation and copy scores for next step. step : `int` The time step in beam search decoding. # Notes `group_size != batch_size`. In fact, `group_size = batch_size * beam_size`. """ _, source_sequence_length = state["source_to_target"].size() # Get input to the decoder RNN and the selective weights. `input_choices` # is the result of replacing target OOV tokens in `last_predictions` with the # copy symbol. `selective_weights` consist of the normalized copy probabilities # assigned to the source tokens that were copied. If no tokens were copied, # there will be all zeros. # shape: (group_size,), (group_size, source_sequence_length) input_choices, selective_weights = self._get_input_and_selective_weights( last_predictions, state ) # Update the decoder state by taking a step through the RNN. state = self._decoder_step(input_choices, selective_weights, state) # Get the un-normalized generation scores for each token in the target vocab. # shape: (group_size, target_vocab_size) generation_scores = self._get_generation_scores(state) # Get the un-normalized copy scores for each token in the source sentence, # excluding the start and end tokens. # shape: (group_size, source_sequence_length) copy_scores = self._get_copy_scores(state) # Concat un-normalized generation and copy scores. # shape: (batch_size, target_vocab_size + source_sequence_length) all_scores = torch.cat((generation_scores, copy_scores), dim=-1) # shape: (group_size, source_sequence_length) source_mask = state["source_mask"] # shape: (batch_size, target_vocab_size + source_sequence_length) mask = torch.cat( ( generation_scores.new_full(generation_scores.size(), True, dtype=torch.bool), source_mask, ), dim=-1, ) # Normalize generation and copy scores. # shape: (batch_size, target_vocab_size + source_sequence_length) log_probs = util.masked_log_softmax(all_scores, mask) # shape: (group_size, target_vocab_size), (group_size, source_sequence_length) generation_log_probs, copy_log_probs = log_probs.split( [self._target_vocab_size, source_sequence_length], dim=-1 ) # Update copy_probs needed for getting the `selective_weights` at the next timestep. state["copy_log_probs"] = copy_log_probs # We now have normalized generation and copy scores, but to produce the final # score for each token in the extended vocab, we have to go through and add # the copy scores to the generation scores of matching target tokens, and sum # the copy scores of duplicate source tokens. # shape: (group_size, target_vocab_size + source_sequence_length) final_log_probs = self._gather_final_log_probs(generation_log_probs, copy_log_probs, state) return final_log_probs, state def _get_predicted_tokens( self, predicted_indices: Union[torch.Tensor, numpy.ndarray], batch_metadata: List[Any], n_best: int = None, ) -> List[Union[List[List[str]], List[str]]]: """ Convert predicted indices into tokens. If `n_best = 1`, the result type will be `List[List[str]]`. Otherwise the result type will be `List[List[List[str]]]`. """ if not isinstance(predicted_indices, numpy.ndarray): predicted_indices = predicted_indices.detach().cpu().numpy() predicted_tokens: List[Union[List[List[str]], List[str]]] = [] for top_k_predictions, metadata in zip(predicted_indices, batch_metadata): batch_predicted_tokens: List[List[str]] = [] for indices in top_k_predictions[:n_best]: tokens: List[str] = [] indices = list(indices) if self._end_index in indices: indices = indices[: indices.index(self._end_index)] for index in indices: if index >= self._target_vocab_size: adjusted_index = index - self._target_vocab_size token = metadata["source_tokens"][adjusted_index] else: token = self.vocab.get_token_from_index(index, self._target_namespace) tokens.append(token) batch_predicted_tokens.append(tokens) if n_best == 1: predicted_tokens.append(batch_predicted_tokens[0]) else: predicted_tokens.append(batch_predicted_tokens) return predicted_tokens def make_output_human_readable(self, output_dict: Dict[str, torch.Tensor]) -> Dict[str, Any]: """ Finalize predictions. After a beam search, the predicted indices correspond to tokens in the target vocabulary OR tokens in source sentence. Here we gather the actual tokens corresponding to the indices. """ predicted_tokens = self._get_predicted_tokens( output_dict["predictions"], output_dict["metadata"] ) output_dict["predicted_tokens"] = predicted_tokens return output_dict def get_metrics(self, reset: bool = False) -> Dict[str, float]: all_metrics: Dict[str, float] = {} if not self.training: if self._tensor_based_metric is not None: all_metrics.update( self._tensor_based_metric.get_metric(reset=reset) # type: ignore ) if self._token_based_metric is not None: all_metrics.update(self._token_based_metric.get_metric(reset=reset)) # type: ignore return all_metrics default_predictor = "seq2seq"
allennlp-models-main
allennlp_models/generation/models/copynet_seq2seq.py
from allennlp_models.generation.models.composed_seq2seq import ComposedSeq2Seq from allennlp_models.generation.models.copynet_seq2seq import CopyNetSeq2Seq from allennlp_models.generation.models.simple_seq2seq import SimpleSeq2Seq from allennlp_models.generation.models.bart import Bart from allennlp_models.generation.models.t5 import T5
allennlp-models-main
allennlp_models/generation/models/__init__.py
from typing import Dict, Optional import torch from allennlp.common.checks import ConfigurationError from allennlp.data import TextFieldTensors, Vocabulary from allennlp.models.model import Model from allennlp.modules import TextFieldEmbedder, Seq2SeqEncoder, Embedding from allennlp.modules.text_field_embedders import BasicTextFieldEmbedder from allennlp.nn import util, InitializerApplicator from allennlp_models.generation.modules.seq_decoders.seq_decoder import SeqDecoder @Model.register("composed_seq2seq") class ComposedSeq2Seq(Model): """ This `ComposedSeq2Seq` class is a `Model` which takes a sequence, encodes it, and then uses the encoded representations to decode another sequence. You can use this as the basis for a neural machine translation system, an abstractive summarization system, or any other common seq2seq problem. The model here is simple, but should be a decent starting place for implementing recent models for these tasks. The `ComposedSeq2Seq` class composes separate `Seq2SeqEncoder` and `SeqDecoder` classes. These parts are customizable and are independent from each other. # Parameters vocab : `Vocabulary`, required Vocabulary containing source and target vocabularies. They may be under the same namespace (`tokens`) or the target tokens can have a different namespace, in which case it needs to be specified as `target_namespace`. source_text_embedders : `TextFieldEmbedder`, required Embedders for source side sequences encoder : `Seq2SeqEncoder`, required The encoder of the "encoder/decoder" model decoder : `SeqDecoder`, required The decoder of the "encoder/decoder" model tied_source_embedder_key : `str`, optional (default=`None`) If specified, this key is used to obtain token_embedder in `source_text_embedder` and the weights are shared/tied with the decoder's target embedding weights. initializer : `InitializerApplicator`, optional (default=`InitializerApplicator()`) Used to initialize the model parameters. """ def __init__( self, vocab: Vocabulary, source_text_embedder: TextFieldEmbedder, encoder: Seq2SeqEncoder, decoder: SeqDecoder, tied_source_embedder_key: Optional[str] = None, initializer: InitializerApplicator = InitializerApplicator(), **kwargs, ) -> None: super().__init__(vocab, **kwargs) self._source_text_embedder = source_text_embedder self._encoder = encoder self._decoder = decoder if self._encoder.get_output_dim() != self._decoder.get_output_dim(): raise ConfigurationError( f"Encoder output dimension {self._encoder.get_output_dim()} should be" f" equal to decoder dimension {self._decoder.get_output_dim()}." ) if tied_source_embedder_key: # A bit of a ugly hack to tie embeddings. # Works only for `BasicTextFieldEmbedder`, and since # it can have multiple embedders, and `SeqDecoder` contains only a single embedder, we need # the key to select the source embedder to replace it with the target embedder from the decoder. if not isinstance(self._source_text_embedder, BasicTextFieldEmbedder): raise ConfigurationError( "Unable to tie embeddings," "Source text embedder is not an instance of `BasicTextFieldEmbedder`." ) source_embedder = self._source_text_embedder._token_embedders[tied_source_embedder_key] if not isinstance(source_embedder, Embedding): raise ConfigurationError( "Unable to tie embeddings," "Selected source embedder is not an instance of `Embedding`." ) if source_embedder.get_output_dim() != self._decoder.target_embedder.get_output_dim(): raise ConfigurationError( "Output Dimensions mismatch between source embedder and target embedder." ) self._source_text_embedder._token_embedders[ tied_source_embedder_key ] = self._decoder.target_embedder initializer(self) def forward( self, # type: ignore source_tokens: TextFieldTensors, target_tokens: TextFieldTensors = None, ) -> Dict[str, torch.Tensor]: """ Make forward pass on the encoder and decoder for producing the entire target sequence. # Parameters source_tokens : `TextFieldTensors` The output of `TextField.as_array()` applied on the source `TextField`. This will be passed through a `TextFieldEmbedder` and then through an encoder. target_tokens : `TextFieldTensors`, optional (default = `None`) Output of `Textfield.as_array()` applied on target `TextField`. We assume that the target tokens are also represented as a `TextField`. # Returns `Dict[str, torch.Tensor]` The output tensors from the decoder. """ state = self._encode(source_tokens) return self._decoder(state, target_tokens) def make_output_human_readable( self, output_dict: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: """ Finalize predictions. """ return self._decoder.post_process(output_dict) def _encode(self, source_tokens: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """ Make foward pass on the encoder. # Parameters source_tokens : `TextFieldTensors` The output of `TextField.as_array()` applied on the source `TextField`. This will be passed through a `TextFieldEmbedder` and then through an encoder. # Returns Dict[str, torch.Tensor] Map consisting of the key `source_mask` with the mask over the `source_tokens` text field, and the key `encoder_outputs` with the output tensor from forward pass on the encoder. """ # shape: (batch_size, max_input_sequence_length, encoder_input_dim) embedded_input = self._source_text_embedder(source_tokens) # shape: (batch_size, max_input_sequence_length) source_mask = util.get_text_field_mask(source_tokens) # shape: (batch_size, max_input_sequence_length, encoder_output_dim) encoder_outputs = self._encoder(embedded_input, source_mask) return {"source_mask": source_mask, "encoder_outputs": encoder_outputs} def get_metrics(self, reset: bool = False) -> Dict[str, float]: return self._decoder.get_metrics(reset) default_predictor = "seq2seq"
allennlp-models-main
allennlp_models/generation/models/composed_seq2seq.py
# flake8: noqa: F403 from allennlp_models.generation.modules.decoder_nets import * from allennlp_models.generation.modules.seq_decoders import *
allennlp-models-main
allennlp_models/generation/modules/__init__.py
from allennlp_models.generation.modules.seq_decoders.auto_regressive import AutoRegressiveSeqDecoder from allennlp_models.generation.modules.seq_decoders.seq_decoder import SeqDecoder
allennlp-models-main
allennlp_models/generation/modules/seq_decoders/__init__.py
import warnings from typing import Dict, List, Tuple, Optional import numpy import torch import torch.nn.functional as F from torch.nn import Linear from allennlp.common.checks import ConfigurationError from allennlp.common.util import END_SYMBOL, START_SYMBOL from allennlp.data import TextFieldTensors, Vocabulary from allennlp.modules import Embedding from allennlp.nn import util from allennlp.nn.beam_search import BeamSearch from allennlp.training.metrics import Metric from allennlp.common import Lazy from allennlp_models.generation.modules.decoder_nets.decoder_net import DecoderNet from .seq_decoder import SeqDecoder @SeqDecoder.register("auto_regressive_seq_decoder") class AutoRegressiveSeqDecoder(SeqDecoder): """ An autoregressive decoder that can be used for most seq2seq tasks. # Parameters vocab : `Vocabulary`, required Vocabulary containing source and target vocabularies. They may be under the same namespace (`tokens`) or the target tokens can have a different namespace, in which case it needs to be specified as `target_namespace`. decoder_net : `DecoderNet`, required Module that contains implementation of neural network for decoding output elements target_embedder : `Embedding` Embedder for target tokens. target_namespace : `str`, optional (default = `'tokens'`) If the target side vocabulary is different from the source side's, you need to specify the target's namespace here. If not, we'll assume it is "tokens", which is also the default choice for the source side, and this might cause them to share vocabularies. beam_search : `BeamSearch`, optional (default = `Lazy(BeamSearch)`) This is used to during inference to select the tokens of the decoded output sequence. tensor_based_metric : `Metric`, optional (default = `None`) A metric to track on validation data that takes raw tensors when its called. This metric must accept two arguments when called: a batched tensor of predicted token indices, and a batched tensor of gold token indices. token_based_metric : `Metric`, optional (default = `None`) A metric to track on validation data that takes lists of lists of tokens as input. This metric must accept two arguments when called, both of type `List[List[str]]`. The first is a predicted sequence for each item in the batch and the second is a gold sequence for each item in the batch. scheduled_sampling_ratio : `float` optional (default = `0.0`) Defines ratio between teacher forced training and real output usage. If its zero (teacher forcing only) and `decoder_net`supports parallel decoding, we get the output predictions in a single forward pass of the `decoder_net`. """ def __init__( self, vocab: Vocabulary, decoder_net: DecoderNet, target_embedder: Embedding, target_namespace: str = "tokens", beam_search: Lazy[BeamSearch] = Lazy(BeamSearch), tie_output_embedding: bool = False, scheduled_sampling_ratio: float = 0, label_smoothing_ratio: Optional[float] = None, tensor_based_metric: Metric = None, token_based_metric: Metric = None, **kwargs ) -> None: super().__init__(target_embedder) self._vocab = vocab # Decodes the sequence of encoded hidden states into e new sequence of hidden states. self._decoder_net = decoder_net self._target_namespace = target_namespace self._label_smoothing_ratio = label_smoothing_ratio # At prediction time, we use a beam search to find the most likely sequence of target tokens. # We need the start symbol to provide as the input at the first timestep of decoding, and # end symbol as a way to indicate the end of the decoded sequence. self._start_index = self._vocab.get_token_index(START_SYMBOL, self._target_namespace) self._end_index = self._vocab.get_token_index(END_SYMBOL, self._target_namespace) # For backwards compatibility, check if beam_size or max_decoding_steps were passed in as # kwargs. If so, update the BeamSearch object before constructing and raise a DeprecationWarning deprecation_warning = ( "The parameter {} has been deprecated." " Provide this parameter as argument to beam_search instead." ) beam_search_extras = {} if "beam_size" in kwargs: beam_search_extras["beam_size"] = kwargs["beam_size"] warnings.warn(deprecation_warning.format("beam_size"), DeprecationWarning) if "max_decoding_steps" in kwargs: beam_search_extras["max_steps"] = kwargs["max_decoding_steps"] warnings.warn(deprecation_warning.format("max_decoding_steps"), DeprecationWarning) self._beam_search = beam_search.construct( end_index=self._end_index, vocab=self._vocab, **beam_search_extras ) target_vocab_size = self._vocab.get_vocab_size(self._target_namespace) if self.target_embedder.get_output_dim() != self._decoder_net.target_embedding_dim: raise ConfigurationError( "Target Embedder output_dim doesn't match decoder module's input." ) # We project the hidden state from the decoder into the output vocabulary space # in order to get log probabilities of each target token, at each time step. self._output_projection_layer = Linear( self._decoder_net.get_output_dim(), target_vocab_size ) if tie_output_embedding: if self._output_projection_layer.weight.shape != self.target_embedder.weight.shape: raise ConfigurationError( "Can't tie embeddings with output linear layer, due to shape mismatch" ) self._output_projection_layer.weight = self.target_embedder.weight # These metrics will be updated during training and validation self._tensor_based_metric = tensor_based_metric self._token_based_metric = token_based_metric self._scheduled_sampling_ratio = scheduled_sampling_ratio def _forward_beam_search(self, state: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """ Prepare inputs for the beam search, does beam search and returns beam search results. """ batch_size = state["source_mask"].size()[0] start_predictions = state["source_mask"].new_full( (batch_size,), fill_value=self._start_index, dtype=torch.long ) # shape (all_top_k_predictions): (batch_size, beam_size, num_decoding_steps) # shape (log_probabilities): (batch_size, beam_size) all_top_k_predictions, log_probabilities = self._beam_search.search( start_predictions, state, self.take_step ) output_dict = { "class_log_probabilities": log_probabilities, "predictions": all_top_k_predictions, } return output_dict def _forward_loss( self, state: Dict[str, torch.Tensor], target_tokens: TextFieldTensors ) -> Dict[str, torch.Tensor]: """ Make forward pass during training or do greedy search during prediction. Notes ----- We really only use the predictions from the method to test that beam search with a beam size of 1 gives the same results. """ # shape: (batch_size, max_input_sequence_length, encoder_output_dim) encoder_outputs = state["encoder_outputs"] # shape: (batch_size, max_input_sequence_length) source_mask = state["source_mask"] # shape: (batch_size, max_target_sequence_length) targets = util.get_token_ids_from_text_field_tensors(target_tokens) # Prepare embeddings for targets. They will be used as gold embeddings during decoder training # shape: (batch_size, max_target_sequence_length, embedding_dim) target_embedding = self.target_embedder(targets) # shape: (batch_size, max_target_batch_sequence_length) target_mask = util.get_text_field_mask(target_tokens) if self._scheduled_sampling_ratio == 0 and self._decoder_net.decodes_parallel: _, decoder_output = self._decoder_net( previous_state=state, previous_steps_predictions=target_embedding[:, :-1, :], encoder_outputs=encoder_outputs, source_mask=source_mask, previous_steps_mask=target_mask[:, :-1], ) # shape: (group_size, max_target_sequence_length, num_classes) logits = self._output_projection_layer(decoder_output) else: batch_size = source_mask.size()[0] _, target_sequence_length = targets.size() # The last input from the target is either padding or the end symbol. # Either way, we don't have to process it. num_decoding_steps = target_sequence_length - 1 # Initialize target predictions with the start index. # shape: (batch_size,) last_predictions = source_mask.new_full( (batch_size,), fill_value=self._start_index, dtype=torch.long ) # shape: (steps, batch_size, target_embedding_dim) steps_embeddings = torch.Tensor([]) step_logits: List[torch.Tensor] = [] for timestep in range(num_decoding_steps): if self.training and torch.rand(1).item() < self._scheduled_sampling_ratio: # Use gold tokens at test time and at a rate of 1 - _scheduled_sampling_ratio # during training. # shape: (batch_size, steps, target_embedding_dim) state["previous_steps_predictions"] = steps_embeddings # shape: (batch_size, ) effective_last_prediction = last_predictions else: # shape: (batch_size, ) effective_last_prediction = targets[:, timestep] if timestep == 0: state["previous_steps_predictions"] = torch.Tensor([]) else: # shape: (batch_size, steps, target_embedding_dim) state["previous_steps_predictions"] = target_embedding[:, :timestep] # shape: (batch_size, num_classes) output_projections, state = self._prepare_output_projections( effective_last_prediction, state ) # list of tensors, shape: (batch_size, 1, num_classes) step_logits.append(output_projections.unsqueeze(1)) # shape (predicted_classes): (batch_size,) _, predicted_classes = torch.max(output_projections, 1) # shape (predicted_classes): (batch_size,) last_predictions = predicted_classes # shape: (batch_size, 1, target_embedding_dim) last_predictions_embeddings = self.target_embedder(last_predictions).unsqueeze(1) # This step is required, since we want to keep up two different prediction history: gold and real if steps_embeddings.shape[-1] == 0: # There is no previous steps, except for start vectors in `last_predictions` # shape: (group_size, 1, target_embedding_dim) steps_embeddings = last_predictions_embeddings else: # shape: (group_size, steps_count, target_embedding_dim) steps_embeddings = torch.cat([steps_embeddings, last_predictions_embeddings], 1) # shape: (batch_size, num_decoding_steps, num_classes) logits = torch.cat(step_logits, 1) # Compute loss. target_mask = util.get_text_field_mask(target_tokens) loss = self._get_loss(logits, targets, target_mask) # TODO: We will be using beam search to get predictions for validation, but if beam size in 1 # we could consider taking the last_predictions here and building step_predictions # and use that instead of running beam search again, if performance in validation is taking a hit output_dict = {"loss": loss} return output_dict def _prepare_output_projections( self, last_predictions: torch.Tensor, state: Dict[str, torch.Tensor] ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """ Decode current state and last prediction to produce produce projections into the target space, which can then be used to get probabilities of each target token for the next step. Inputs are the same as for `take_step()`. """ # shape: (group_size, max_input_sequence_length, encoder_output_dim) encoder_outputs = state["encoder_outputs"] # shape: (group_size, max_input_sequence_length) source_mask = state["source_mask"] # shape: (group_size, steps_count, decoder_output_dim) previous_steps_predictions = state.get("previous_steps_predictions") # shape: (batch_size, 1, target_embedding_dim) last_predictions_embeddings = self.target_embedder(last_predictions).unsqueeze(1) if previous_steps_predictions is None or previous_steps_predictions.shape[-1] == 0: # There is no previous steps, except for start vectors in `last_predictions` # shape: (group_size, 1, target_embedding_dim) previous_steps_predictions = last_predictions_embeddings else: # shape: (group_size, steps_count, target_embedding_dim) previous_steps_predictions = torch.cat( [previous_steps_predictions, last_predictions_embeddings], 1 ) decoder_state, decoder_output = self._decoder_net( previous_state=state, encoder_outputs=encoder_outputs, source_mask=source_mask, previous_steps_predictions=previous_steps_predictions, ) state["previous_steps_predictions"] = previous_steps_predictions # Update state with new decoder state, override previous state state.update(decoder_state) if self._decoder_net.decodes_parallel: decoder_output = decoder_output[:, -1, :] # shape: (group_size, num_classes) output_projections = self._output_projection_layer(decoder_output) return output_projections, state def _get_loss( self, logits: torch.LongTensor, targets: torch.LongTensor, target_mask: torch.BoolTensor ) -> torch.Tensor: """ Compute loss. Takes logits (unnormalized outputs from the decoder) of size (batch_size, num_decoding_steps, num_classes), target indices of size (batch_size, num_decoding_steps+1) and corresponding masks of size (batch_size, num_decoding_steps+1) steps and computes cross entropy loss while taking the mask into account. The length of `targets` is expected to be greater than that of `logits` because the decoder does not need to compute the output corresponding to the last timestep of `targets`. This method aligns the inputs appropriately to compute the loss. During training, we want the logit corresponding to timestep i to be similar to the target token from timestep i + 1. That is, the targets should be shifted by one timestep for appropriate comparison. Consider a single example where the target has 3 words, and padding is to 7 tokens. The complete sequence would correspond to <S> w1 w2 w3 <E> <P> <P> and the mask would be 1 1 1 1 1 0 0 and let the logits be l1 l2 l3 l4 l5 l6 We actually need to compare: the sequence w1 w2 w3 <E> <P> <P> with masks 1 1 1 1 0 0 against l1 l2 l3 l4 l5 l6 (where the input was) <S> w1 w2 w3 <E> <P> """ # shape: (batch_size, num_decoding_steps) relevant_targets = targets[:, 1:].contiguous() # shape: (batch_size, num_decoding_steps) relevant_mask = target_mask[:, 1:].contiguous() return util.sequence_cross_entropy_with_logits( logits, relevant_targets, relevant_mask, label_smoothing=self._label_smoothing_ratio ) def get_output_dim(self): return self._decoder_net.get_output_dim() def take_step( self, last_predictions: torch.Tensor, state: Dict[str, torch.Tensor], step: int ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """ Take a decoding step. This is called by the beam search class. # Parameters last_predictions : `torch.Tensor` A tensor of shape `(group_size,)`, which gives the indices of the predictions during the last time step. state : `Dict[str, torch.Tensor]` A dictionary of tensors that contain the current state information needed to predict the next step, which includes the encoder outputs, the source mask, and the decoder hidden state and context. Each of these tensors has shape `(group_size, *)`, where `*` can be any other number of dimensions. step : `int` The time step in beam search decoding. # Returns Tuple[torch.Tensor, Dict[str, torch.Tensor]] A tuple of `(log_probabilities, updated_state)`, where `log_probabilities` is a tensor of shape `(group_size, num_classes)` containing the predicted log probability of each class for the next step, for each item in the group, while `updated_state` is a dictionary of tensors containing the encoder outputs, source mask, and updated decoder hidden state and context. Notes ----- We treat the inputs as a batch, even though `group_size` is not necessarily equal to `batch_size`, since the group may contain multiple states for each source sentence in the batch. """ # shape: (group_size, num_classes) output_projections, state = self._prepare_output_projections(last_predictions, state) # shape: (group_size, num_classes) class_log_probabilities = F.log_softmax(output_projections, dim=-1) return class_log_probabilities, state def get_metrics(self, reset: bool = False) -> Dict[str, float]: all_metrics: Dict[str, float] = {} if not self.training: if self._tensor_based_metric is not None: all_metrics.update( self._tensor_based_metric.get_metric(reset=reset) # type: ignore ) if self._token_based_metric is not None: all_metrics.update(self._token_based_metric.get_metric(reset=reset)) # type: ignore return all_metrics def forward( self, encoder_out: Dict[str, torch.LongTensor], target_tokens: TextFieldTensors = None, ) -> Dict[str, torch.Tensor]: state = encoder_out decoder_init_state = self._decoder_net.init_decoder_state(state) state.update(decoder_init_state) if target_tokens: state_forward_loss = ( state if self.training else {k: v.clone() for k, v in state.items()} ) output_dict = self._forward_loss(state_forward_loss, target_tokens) else: output_dict = {} if not self.training: predictions = self._forward_beam_search(state) output_dict.update(predictions) if target_tokens: targets = util.get_token_ids_from_text_field_tensors(target_tokens) if self._tensor_based_metric is not None: # shape: (batch_size, beam_size, max_sequence_length) top_k_predictions = output_dict["predictions"] # shape: (batch_size, max_predicted_sequence_length) best_predictions = top_k_predictions[:, 0, :] self._tensor_based_metric(best_predictions, targets) # type: ignore if self._token_based_metric is not None: output_dict = self.post_process(output_dict) predicted_tokens = output_dict["predicted_tokens"] self._token_based_metric( # type: ignore predicted_tokens, self.indices_to_tokens(targets[:, 1:]), ) return output_dict def post_process(self, output_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """ This method trims the output predictions to the first end symbol, replaces indices with corresponding tokens, and adds a field called `predicted_tokens` to the `output_dict`. """ predicted_indices = output_dict["predictions"] all_predicted_tokens = self.indices_to_tokens(predicted_indices) output_dict["predicted_tokens"] = all_predicted_tokens return output_dict def indices_to_tokens(self, batch_indeces: numpy.ndarray) -> List[List[str]]: if not isinstance(batch_indeces, numpy.ndarray): batch_indeces = batch_indeces.detach().cpu().numpy() all_tokens = [] for indices in batch_indeces: # Beam search gives us the top k results for each source sentence in the batch # but we just want the single best. if len(indices.shape) > 1: indices = indices[0] indices = list(indices) # Collect indices till the first end_symbol if self._end_index in indices: indices = indices[: indices.index(self._end_index)] tokens = [ self._vocab.get_token_from_index(x, namespace=self._target_namespace) for x in indices ] all_tokens.append(tokens) return all_tokens
allennlp-models-main
allennlp_models/generation/modules/seq_decoders/auto_regressive.py
from typing import Dict, Optional import torch from torch.nn import Module from allennlp.common import Registrable from allennlp.modules import Embedding class SeqDecoder(Module, Registrable): """ A `SeqDecoder` abstract class representing the entire decoder (embedding and neural network) of a Seq2Seq architecture. This is meant to be used with `allennlp.models.encoder_decoder.composed_seq2seq.ComposedSeq2Seq`. The implementation of this abstract class ideally uses a decoder neural net `allennlp.modules.seq2seq_decoders.decoder_net.DecoderNet` for decoding. The `default_implementation` `allennlp.modules.seq2seq_decoders.seq_decoder.auto_regressive_seq_decoder.AutoRegressiveSeqDecoder` covers most use cases. More likely that we will use the default implementation instead of creating a new implementation. # Parameters target_embedder : `Embedding`, required Embedder for target tokens. Needed in the base class to enable weight tying. """ default_implementation = "auto_regressive_seq_decoder" def __init__(self, target_embedder: Embedding) -> None: super().__init__() self.target_embedder = target_embedder def get_output_dim(self) -> int: """ The dimension of each timestep of the hidden state in the layer before final softmax. Needed to check whether the model is compatible for embedding-final layer weight tying. """ raise NotImplementedError() def get_metrics(self, reset: bool = False) -> Dict[str, float]: """ The decoder is responsible for computing metrics using the target tokens. """ raise NotImplementedError() def forward( self, encoder_out: Dict[str, torch.LongTensor], target_tokens: Optional[Dict[str, torch.LongTensor]] = None, ) -> Dict[str, torch.Tensor]: """ Decoding from encoded states to sequence of outputs also computes loss if `target_tokens` are given. # Parameters encoder_out : `Dict[str, torch.LongTensor]`, required Dictionary with encoded state, ideally containing the encoded vectors and the source mask. target_tokens : `Dict[str, torch.LongTensor]`, optional The output of `TextField.as_array()` applied on the target `TextField`. """ raise NotImplementedError() def post_process(self, output_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """ Post processing for converting raw outputs to prediction during inference. The composing models such `allennlp.models.encoder_decoders.composed_seq2seq.ComposedSeq2Seq` can call this method when `decode` is called. """ raise NotImplementedError()
allennlp-models-main
allennlp_models/generation/modules/seq_decoders/seq_decoder.py
from typing import Tuple, Dict, Optional import torch from allennlp.common import Registrable class DecoderNet(torch.nn.Module, Registrable): """ This class abstracts the neural architectures for decoding the encoded states and embedded previous step prediction vectors into a new sequence of output vectors. The implementations of `DecoderNet` is used by implementations of `allennlp.modules.seq2seq_decoders.seq_decoder.SeqDecoder` such as `allennlp.modules.seq2seq_decoders.seq_decoder.auto_regressive_seq_decoder.AutoRegressiveSeqDecoder`. The outputs of this module would be likely used by `allennlp.modules.seq2seq_decoders.seq_decoder.SeqDecoder` to apply the final output feedforward layer and softmax. # Parameters decoding_dim : `int`, required Defines dimensionality of output vectors. target_embedding_dim : `int`, required Defines dimensionality of target embeddings. Since this model takes it's output on a previous step as input of following step, this is also an input dimensionality. decodes_parallel : `bool`, required Defines whether the decoder generates multiple next step predictions at in a single `forward`. """ def __init__( self, decoding_dim: int, target_embedding_dim: int, decodes_parallel: bool ) -> None: super().__init__() self.target_embedding_dim = target_embedding_dim self.decoding_dim = decoding_dim self.decodes_parallel = decodes_parallel def get_output_dim(self) -> int: """ Returns the dimension of each vector in the sequence output by this `DecoderNet`. This is `not` the shape of the returned tensor, but the last element of that shape. """ return self.decoding_dim def init_decoder_state( self, encoder_out: Dict[str, torch.LongTensor] ) -> Dict[str, torch.Tensor]: """ Initialize the encoded state to be passed to the first decoding time step. # Parameters batch_size : `int` Size of batch final_encoder_output : `torch.Tensor` Last state of the Encoder # Returns `Dict[str, torch.Tensor]` Initial state """ raise NotImplementedError() def forward( self, previous_state: Dict[str, torch.Tensor], encoder_outputs: torch.Tensor, source_mask: torch.BoolTensor, previous_steps_predictions: torch.Tensor, previous_steps_mask: Optional[torch.BoolTensor] = None, ) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]: """ Performs a decoding step, and returns dictionary with decoder hidden state or cache and the decoder output. The decoder output is a 3d tensor (group_size, steps_count, decoder_output_dim) if `self.decodes_parallel` is True, else it is a 2d tensor with (group_size, decoder_output_dim). # Parameters previous_steps_predictions : `torch.Tensor`, required Embeddings of predictions on previous step. Shape: (group_size, steps_count, decoder_output_dim) encoder_outputs : `torch.Tensor`, required Vectors of all encoder outputs. Shape: (group_size, max_input_sequence_length, encoder_output_dim) source_mask : `torch.BoolTensor`, required This tensor contains mask for each input sequence. Shape: (group_size, max_input_sequence_length) previous_state : `Dict[str, torch.Tensor]`, required previous state of decoder # Returns Tuple[Dict[str, torch.Tensor], torch.Tensor] Tuple of new decoder state and decoder output. Output should be used to generate out sequence elements """ raise NotImplementedError()
allennlp-models-main
allennlp_models/generation/modules/decoder_nets/decoder_net.py
import math from copy import deepcopy from typing import Dict, Optional, Tuple import torch import torch.nn.functional as F from torch import nn from torch.autograd import Variable from allennlp.modules.layer_norm import LayerNorm from allennlp.nn import util as nn_util from allennlp_models.lm.modules.seq2seq_encoders.bidirectional_lm_transformer import ( SublayerConnection, subsequent_mask, PositionwiseFeedForward, PositionalEncoding, MultiHeadedAttention, ) from .decoder_net import DecoderNet @DecoderNet.register("stacked_self_attention") class StackedSelfAttentionDecoderNet(DecoderNet): """ A Stacked self-attention decoder implementation. # Parameters decoding_dim : `int`, required Defines dimensionality of output vectors. target_embedding_dim : `int`, required Defines dimensionality of input target embeddings. Since this model takes it's output on a previous step as input of following step, this is also an input dimensionality. feedforward_hidden_dim : `int`, required. The middle dimension of the FeedForward network. The input and output dimensions are fixed to ensure sizes match up for the self attention layers. num_layers : `int`, required. The number of stacked self attention -> feedfoward -> layer normalisation blocks. num_attention_heads : `int`, required. The number of attention heads to use per layer. use_positional_encoding : `bool`, optional, (default = `True`) Whether to add sinusoidal frequencies to the input tensor. This is strongly recommended, as without this feature, the self attention layers have no idea of absolute or relative position (as they are just computing pairwise similarity between vectors of elements), which can be important features for many tasks. dropout_prob : `float`, optional, (default = `0.1`) The dropout probability for the feedforward network. residual_dropout_prob : `float`, optional, (default = `0.2`) The dropout probability for the residual connections. attention_dropout_prob : `float`, optional, (default = `0.1`) The dropout probability for the attention distributions in each attention layer. """ def __init__( self, decoding_dim: int, target_embedding_dim: int, feedforward_hidden_dim: int, num_layers: int, num_attention_heads: int, use_positional_encoding: bool = True, positional_encoding_max_steps: int = 5000, dropout_prob: float = 0.1, residual_dropout_prob: float = 0.2, attention_dropout_prob: float = 0.1, ) -> None: super().__init__( decoding_dim=decoding_dim, target_embedding_dim=target_embedding_dim, decodes_parallel=True, ) attn = MultiHeadedAttention(num_attention_heads, decoding_dim, attention_dropout_prob) feed_forward = PositionwiseFeedForward(decoding_dim, feedforward_hidden_dim, dropout_prob) self._embed_scale = math.sqrt(decoding_dim) self._positional_embedder = ( PositionalEncoding(decoding_dim, positional_encoding_max_steps) if use_positional_encoding else None ) self._dropout = nn.Dropout(dropout_prob) self._self_attention = Decoder( DecoderLayer( decoding_dim, deepcopy(attn), deepcopy(attn), feed_forward, residual_dropout_prob ), num_layers, ) def init_decoder_state( self, encoder_out: Dict[str, torch.LongTensor] ) -> Dict[str, torch.Tensor]: return {} def forward( self, previous_state: Dict[str, torch.Tensor], encoder_outputs: torch.Tensor, source_mask: torch.BoolTensor, previous_steps_predictions: torch.Tensor, previous_steps_mask: Optional[torch.BoolTensor] = None, ) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]: source_mask = source_mask.unsqueeze(-2) future_mask = Variable( subsequent_mask(previous_steps_predictions.size(-2), device=source_mask.device).type_as( source_mask.data ) ) if previous_steps_mask is None: previous_steps_mask = future_mask else: previous_steps_mask = previous_steps_mask.unsqueeze(-2) & future_mask previous_steps_predictions = previous_steps_predictions * self._embed_scale if self._positional_embedder: previous_steps_predictions = self._positional_embedder(previous_steps_predictions) previous_steps_predictions = self._dropout(previous_steps_predictions) decoded = self._self_attention( previous_steps_predictions, encoder_outputs, source_mask, previous_steps_mask ) return {}, decoded class Decoder(nn.Module): """ Transformer N layer decoder with masking. Code taken from http://nlp.seas.harvard.edu/2018/04/03/attention.html """ def __init__(self, layer: nn.Module, num_layers: int) -> None: super().__init__() self.layers = nn_util.clone(layer, num_layers) self.norm = LayerNorm(layer.size) def forward( self, x: torch.Tensor, memory: torch.Tensor, src_mask: torch.BoolTensor, tgt_mask: torch.BoolTensor, ) -> torch.Tensor: for layer in self.layers: x = layer(x, memory, src_mask, tgt_mask) return self.norm(x) class DecoderLayer(nn.Module): """ A single layer of transformer decoder. Code taken from http://nlp.seas.harvard.edu/2018/04/03/attention.html """ def __init__( self, size: int, self_attn: MultiHeadedAttention, src_attn: MultiHeadedAttention, feed_forward: F, dropout: float, ) -> None: super().__init__() self.size = size self.self_attn = self_attn self.src_attn = src_attn self.feed_forward = feed_forward self.sublayer = nn_util.clone(SublayerConnection(size, dropout), 3) def forward( self, x: torch.Tensor, memory: torch.Tensor, src_mask: torch.BoolTensor, tgt_mask: torch.BoolTensor, ) -> torch.Tensor: # Follow Figure 1 (right) for connections. x = self.sublayer[0](x, lambda y: self.self_attn(y, y, y, tgt_mask)) x = self.sublayer[1](x, lambda y: self.src_attn(y, memory, memory, src_mask)) return self.sublayer[2](x, self.feed_forward)
allennlp-models-main
allennlp_models/generation/modules/decoder_nets/stacked_self_attention.py
from allennlp_models.generation.modules.decoder_nets.lstm_cell import LstmCellDecoderNet from allennlp_models.generation.modules.decoder_nets.decoder_net import DecoderNet from allennlp_models.generation.modules.decoder_nets.stacked_self_attention import ( StackedSelfAttentionDecoderNet, )
allennlp-models-main
allennlp_models/generation/modules/decoder_nets/__init__.py
from typing import Tuple, Dict, Optional import torch from torch.nn import LSTMCell from allennlp.modules import Attention from allennlp.nn import util from .decoder_net import DecoderNet @DecoderNet.register("lstm_cell") class LstmCellDecoderNet(DecoderNet): """ This decoder net implements simple decoding network with LSTMCell and Attention. # Parameters decoding_dim : `int`, required Defines dimensionality of output vectors. target_embedding_dim : `int`, required Defines dimensionality of input target embeddings. Since this model takes it's output on a previous step as input of following step, this is also an input dimensionality. attention : `Attention`, optional (default = `None`) If you want to use attention to get a dynamic summary of the encoder outputs at each step of decoding, this is the function used to compute similarity between the decoder hidden state and encoder outputs. """ def __init__( self, decoding_dim: int, target_embedding_dim: int, attention: Optional[Attention] = None, bidirectional_input: bool = False, ) -> None: super().__init__( decoding_dim=decoding_dim, target_embedding_dim=target_embedding_dim, decodes_parallel=False, ) # In this particular type of decoder output of previous step passes directly to the input of current step # We also assume that decoder output dimensionality is equal to the encoder output dimensionality decoder_input_dim = self.target_embedding_dim # Attention mechanism applied to the encoder output for each step. self._attention = attention if self._attention: # If using attention, a weighted average over encoder outputs will be concatenated # to the previous target embedding to form the input to the decoder at each # time step. encoder output dim will be same as decoding_dim decoder_input_dim += decoding_dim # We'll use an LSTM cell as the recurrent cell that produces a hidden state # for the decoder at each time step. self._decoder_cell = LSTMCell(decoder_input_dim, self.decoding_dim) self._bidirectional_input = bidirectional_input def _prepare_attended_input( self, decoder_hidden_state: torch.Tensor = None, encoder_outputs: torch.Tensor = None, encoder_outputs_mask: torch.BoolTensor = None, ) -> torch.Tensor: """Apply attention over encoder outputs and decoder state.""" # shape: (batch_size, max_input_sequence_length) input_weights = self._attention(decoder_hidden_state, encoder_outputs, encoder_outputs_mask) # shape: (batch_size, encoder_output_dim) attended_input = util.weighted_sum(encoder_outputs, input_weights) return attended_input def init_decoder_state( self, encoder_out: Dict[str, torch.LongTensor] ) -> Dict[str, torch.Tensor]: batch_size, _ = encoder_out["source_mask"].size() # Initialize the decoder hidden state with the final output of the encoder, # and the decoder context with zeros. # shape: (batch_size, encoder_output_dim) final_encoder_output = util.get_final_encoder_states( encoder_out["encoder_outputs"], encoder_out["source_mask"], bidirectional=self._bidirectional_input, ) return { "decoder_hidden": final_encoder_output, # shape: (batch_size, decoder_output_dim) "decoder_context": final_encoder_output.new_zeros(batch_size, self.decoding_dim) # shape: (batch_size, decoder_output_dim) } def forward( self, previous_state: Dict[str, torch.Tensor], encoder_outputs: torch.Tensor, source_mask: torch.BoolTensor, previous_steps_predictions: torch.Tensor, previous_steps_mask: Optional[torch.BoolTensor] = None, ) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]: decoder_hidden = previous_state["decoder_hidden"] decoder_context = previous_state["decoder_context"] # shape: (group_size, output_dim) last_predictions_embedding = previous_steps_predictions[:, -1] if self._attention: # shape: (group_size, encoder_output_dim) attended_input = self._prepare_attended_input( decoder_hidden, encoder_outputs, source_mask ) # shape: (group_size, decoder_output_dim + target_embedding_dim) decoder_input = torch.cat((attended_input, last_predictions_embedding), -1) else: # shape: (group_size, target_embedding_dim) decoder_input = last_predictions_embedding # shape (decoder_hidden): (batch_size, decoder_output_dim) # shape (decoder_context): (batch_size, decoder_output_dim) decoder_hidden, decoder_context = self._decoder_cell( decoder_input.float(), (decoder_hidden.float(), decoder_context.float()) ) return ( {"decoder_hidden": decoder_hidden, "decoder_context": decoder_context}, decoder_hidden, )
allennlp-models-main
allennlp_models/generation/modules/decoder_nets/lstm_cell.py
from typing import Any, Dict, List, Optional, Tuple, Set from allennlp.data.fields import ( Field, ListField, TextField, SpanField, MetadataField, SequenceLabelField, ) from allennlp.data.instance import Instance from allennlp.data.tokenizers import Token, PretrainedTransformerTokenizer from allennlp.data.token_indexers import TokenIndexer from allennlp.data.dataset_readers.dataset_utils import enumerate_spans def make_coref_instance( sentences: List[List[str]], token_indexers: Dict[str, TokenIndexer], max_span_width: int, gold_clusters: Optional[List[List[Tuple[int, int]]]] = None, wordpiece_modeling_tokenizer: PretrainedTransformerTokenizer = None, max_sentences: int = None, remove_singleton_clusters: bool = True, ) -> Instance: """ # Parameters sentences : `List[List[str]]`, required. A list of lists representing the tokenised words and sentences in the document. token_indexers : `Dict[str, TokenIndexer]` This is used to index the words in the document. See :class:`TokenIndexer`. max_span_width : `int`, required. The maximum width of candidate spans to consider. gold_clusters : `Optional[List[List[Tuple[int, int]]]]`, optional (default = `None`) A list of all clusters in the document, represented as word spans with absolute indices in the entire document. Each cluster contains some number of spans, which can be nested and overlap. If there are exact matches between clusters, they will be resolved using `_canonicalize_clusters`. wordpiece_modeling_tokenizer: `PretrainedTransformerTokenizer`, optional (default = `None`) If not None, this dataset reader does subword tokenization using the supplied tokenizer and distribute the labels to the resulting wordpieces. All the modeling will be based on wordpieces. If this is set to `False` (default), the user is expected to use `PretrainedTransformerMismatchedIndexer` and `PretrainedTransformerMismatchedEmbedder`, and the modeling will be on the word-level. max_sentences: `int`, optional (default = `None`) The maximum number of sentences in each document to keep. By default keeps all sentences. remove_singleton_clusters : `bool`, optional (default = `True`) Some datasets contain clusters that are singletons (i.e. no coreferents). This option allows the removal of them. # Returns An `Instance` containing the following `Fields`: text : `TextField` The text of the full document. spans : `ListField[SpanField]` A ListField containing the spans represented as `SpanFields` with respect to the document text. span_labels : `SequenceLabelField`, optional The id of the cluster which each possible span belongs to, or -1 if it does not belong to a cluster. As these labels have variable length (it depends on how many spans we are considering), we represent this a as a `SequenceLabelField` with respect to the spans `ListField`. """ if max_sentences is not None and len(sentences) > max_sentences: sentences = sentences[:max_sentences] total_length = sum(len(sentence) for sentence in sentences) if gold_clusters is not None: new_gold_clusters = [] for cluster in gold_clusters: new_cluster = [] for mention in cluster: if mention[1] < total_length: new_cluster.append(mention) if new_cluster: new_gold_clusters.append(new_cluster) gold_clusters = new_gold_clusters flattened_sentences = [_normalize_word(word) for sentence in sentences for word in sentence] if wordpiece_modeling_tokenizer is not None: flat_sentences_tokens, offsets = wordpiece_modeling_tokenizer.intra_word_tokenize( flattened_sentences ) flattened_sentences = [t.text for t in flat_sentences_tokens] else: flat_sentences_tokens = [Token(word) for word in flattened_sentences] text_field = TextField(flat_sentences_tokens, token_indexers) cluster_dict = {} if gold_clusters is not None: gold_clusters = _canonicalize_clusters(gold_clusters) if remove_singleton_clusters: gold_clusters = [cluster for cluster in gold_clusters if len(cluster) > 1] if wordpiece_modeling_tokenizer is not None: for cluster in gold_clusters: for mention_id, mention in enumerate(cluster): start = offsets[mention[0]][0] end = offsets[mention[1]][1] cluster[mention_id] = (start, end) for cluster_id, cluster in enumerate(gold_clusters): for mention in cluster: cluster_dict[tuple(mention)] = cluster_id spans: List[Field] = [] span_labels: Optional[List[int]] = [] if gold_clusters is not None else None sentence_offset = 0 for sentence in sentences: for start, end in enumerate_spans( sentence, offset=sentence_offset, max_span_width=max_span_width ): if wordpiece_modeling_tokenizer is not None: start = offsets[start][0] end = offsets[end][1] # `enumerate_spans` uses word-level width limit; here we apply it to wordpieces # We have to do this check here because we use a span width embedding that has # only `max_span_width` entries, and since we are doing wordpiece # modeling, the span width embedding operates on wordpiece lengths. So a check # here is necessary or else we wouldn't know how many entries there would be. if end - start + 1 > max_span_width: continue # We also don't generate spans that contain special tokens if start < len(wordpiece_modeling_tokenizer.single_sequence_start_tokens): continue if end >= len(flat_sentences_tokens) - len( wordpiece_modeling_tokenizer.single_sequence_end_tokens ): continue if span_labels is not None: if (start, end) in cluster_dict: span_labels.append(cluster_dict[(start, end)]) else: span_labels.append(-1) spans.append(SpanField(start, end, text_field)) sentence_offset += len(sentence) span_field = ListField(spans) metadata: Dict[str, Any] = {"original_text": flattened_sentences} if gold_clusters is not None: metadata["clusters"] = gold_clusters metadata_field = MetadataField(metadata) fields: Dict[str, Field] = { "text": text_field, "spans": span_field, "metadata": metadata_field, } if span_labels is not None: fields["span_labels"] = SequenceLabelField(span_labels, span_field) return Instance(fields) def _normalize_word(word): if word in ("/.", "/?"): return word[1:] else: return word def _canonicalize_clusters(clusters: List[List[Tuple[int, int]]]) -> List[List[Tuple[int, int]]]: """ The data might include 2 annotated spans which are identical, but have different ids. This checks all clusters for spans which are identical, and if it finds any, merges the clusters containing the identical spans. """ merged_clusters: List[Set[Tuple[int, int]]] = [] for cluster in clusters: cluster_with_overlapping_mention = None for mention in cluster: # Look at clusters we have already processed to # see if they contain a mention in the current # cluster for comparison. for cluster2 in merged_clusters: if mention in cluster2: # first cluster in merged clusters # which contains this mention. cluster_with_overlapping_mention = cluster2 break # Already encountered overlap - no need to keep looking. if cluster_with_overlapping_mention is not None: break if cluster_with_overlapping_mention is not None: # Merge cluster we are currently processing into # the cluster in the processed list. cluster_with_overlapping_mention.update(cluster) else: merged_clusters.append(set(cluster)) return [list(c) for c in merged_clusters]
allennlp-models-main
allennlp_models/coref/util.py
""" Coreference resolution is defined as follows: given a document, find and cluster entity mentions. """ from allennlp_models.coref.dataset_readers.conll import ConllCorefReader from allennlp_models.coref.dataset_readers.preco import PrecoReader from allennlp_models.coref.dataset_readers.winobias import WinobiasReader from allennlp_models.coref.models.coref import CoreferenceResolver from allennlp_models.coref.predictors.coref import CorefPredictor
allennlp-models-main
allennlp_models/coref/__init__.py
from typing import Any, Dict, List, Set, Tuple import torch from allennlp.nn.util import dist_reduce_sum from allennlp.training.metrics.metric import Metric @Metric.register("mention_recall") class MentionRecall(Metric): def __init__(self) -> None: self._num_gold_mentions = 0 self._num_recalled_mentions = 0 def __call__( self, # type: ignore batched_top_spans: torch.Tensor, batched_metadata: List[Dict[str, Any]], ): num_gold_mentions = 0 num_recalled_mentions = 0 for top_spans, metadata in zip(batched_top_spans.tolist(), batched_metadata): gold_mentions: Set[Tuple[int, int]] = { mention for cluster in metadata["clusters"] for mention in cluster } predicted_spans: Set[Tuple[int, int]] = {(span[0], span[1]) for span in top_spans} num_gold_mentions += len(gold_mentions) num_recalled_mentions += len(gold_mentions & predicted_spans) self._num_gold_mentions += dist_reduce_sum(num_gold_mentions) self._num_recalled_mentions += dist_reduce_sum(num_recalled_mentions) def get_metric(self, reset: bool = False) -> float: if self._num_gold_mentions == 0: recall = 0.0 else: recall = self._num_recalled_mentions / self._num_gold_mentions if reset: self.reset() return recall def reset(self): self._num_gold_mentions = 0 self._num_recalled_mentions = 0
allennlp-models-main
allennlp_models/coref/metrics/mention_recall.py
allennlp-models-main
allennlp_models/coref/metrics/__init__.py
from typing import Any, Dict, List, Tuple from collections import Counter from scipy.optimize import linear_sum_assignment import numpy as np import torch from allennlp.nn.util import dist_reduce_sum from allennlp.training.metrics.metric import Metric @Metric.register("conll_coref_scores") class ConllCorefScores(Metric): supports_distributed = True def __init__(self, allow_singletons=False) -> None: self.scorers = [Scorer(m) for m in (Scorer.muc, Scorer.b_cubed, Scorer.ceafe)] self.allow_singletons = allow_singletons def __call__( self, # type: ignore top_spans: torch.Tensor, antecedent_indices: torch.Tensor, predicted_antecedents: torch.Tensor, metadata_list: List[Dict[str, Any]], ): """ # Parameters top_spans : `torch.Tensor` (start, end) indices for all spans kept after span pruning in the model. Expected shape: (batch_size, num_spans, 2) antecedent_indices : `torch.Tensor` For each span, the indices of all allowed antecedents for that span. Expected shape: (batch_size, num_spans, num_antecedents) predicted_antecedents : `torch.Tensor` For each span, this contains the index (into antecedent_indices) of the most likely antecedent for that span. Expected shape: (batch_size, num_spans) metadata_list : `List[Dict[str, Any]]` A metadata dictionary for each instance in the batch. We use the "clusters" key from this dictionary, which has the annotated gold coreference clusters for that instance. """ top_spans, antecedent_indices, predicted_antecedents = self.detach_tensors( top_spans, antecedent_indices, predicted_antecedents ) # They need to be in CPU because Scorer.ceafe uses a SciPy function. top_spans = top_spans.cpu() antecedent_indices = antecedent_indices.cpu() predicted_antecedents = predicted_antecedents.cpu() for i, metadata in enumerate(metadata_list): gold_clusters, mention_to_gold = self.get_gold_clusters(metadata["clusters"]) predicted_clusters, mention_to_predicted = self.get_predicted_clusters( top_spans[i], antecedent_indices[i], predicted_antecedents[i], self.allow_singletons ) for scorer in self.scorers: scorer.update( predicted_clusters, gold_clusters, mention_to_predicted, mention_to_gold ) def get_metric(self, reset: bool = False) -> Tuple[float, float, float]: metrics = (lambda e: e.get_precision(), lambda e: e.get_recall(), lambda e: e.get_f1()) precision, recall, f1_score = tuple( sum(metric(e) for e in self.scorers) / len(self.scorers) for metric in metrics ) if reset: self.reset() return precision, recall, f1_score def reset(self): self.scorers = [Scorer(metric) for metric in (Scorer.muc, Scorer.b_cubed, Scorer.ceafe)] @staticmethod def get_gold_clusters(gold_clusters): gold_clusters = [tuple(tuple(m) for m in gc) for gc in gold_clusters] mention_to_gold = {} for gold_cluster in gold_clusters: for mention in gold_cluster: mention_to_gold[mention] = gold_cluster return gold_clusters, mention_to_gold @staticmethod def get_predicted_clusters( top_spans: torch.Tensor, # (num_spans, 2) antecedent_indices: torch.Tensor, # (num_spans, num_antecedents) predicted_antecedents: torch.Tensor, # (num_spans,) allow_singletons: bool, ) -> Tuple[ List[Tuple[Tuple[int, int], ...]], Dict[Tuple[int, int], Tuple[Tuple[int, int], ...]] ]: predicted_clusters_to_ids: Dict[Tuple[int, int], int] = {} clusters: List[List[Tuple[int, int]]] = [] for i, predicted_antecedent in enumerate(predicted_antecedents): if predicted_antecedent < 0: continue # Find predicted index in the antecedent spans. predicted_index = antecedent_indices[i, predicted_antecedent] # Must be a previous span. if allow_singletons: assert i >= predicted_index else: assert i > predicted_index antecedent_span: Tuple[int, int] = tuple( # type: ignore top_spans[predicted_index].tolist() ) # Check if we've seen the span before. if antecedent_span in predicted_clusters_to_ids.keys(): predicted_cluster_id: int = predicted_clusters_to_ids[antecedent_span] else: # We start a new cluster. predicted_cluster_id = len(clusters) clusters.append([antecedent_span]) predicted_clusters_to_ids[antecedent_span] = predicted_cluster_id mention: Tuple[int, int] = tuple(top_spans[i].tolist()) # type: ignore clusters[predicted_cluster_id].append(mention) predicted_clusters_to_ids[mention] = predicted_cluster_id # finalise the spans and clusters. final_clusters = [tuple(cluster) for cluster in clusters] # Return a mapping of each mention to the cluster containing it. mention_to_cluster: Dict[Tuple[int, int], Tuple[Tuple[int, int], ...]] = { mention: final_clusters[cluster_id] for mention, cluster_id in predicted_clusters_to_ids.items() } return final_clusters, mention_to_cluster class Scorer: """ Mostly borrowed from <https://github.com/clarkkev/deep-coref/blob/master/evaluation.py> """ def __init__(self, metric): self.precision_numerator = 0 self.precision_denominator = 0 self.recall_numerator = 0 self.recall_denominator = 0 self.metric = metric def update(self, predicted, gold, mention_to_predicted, mention_to_gold): if self.metric == self.ceafe: p_num, p_den, r_num, r_den = self.metric(predicted, gold) else: p_num, p_den = self.metric(predicted, mention_to_gold) r_num, r_den = self.metric(gold, mention_to_predicted) self.precision_numerator += dist_reduce_sum(p_num) self.precision_denominator += dist_reduce_sum(p_den) self.recall_numerator += dist_reduce_sum(r_num) self.recall_denominator += dist_reduce_sum(r_den) def get_f1(self): precision = self.get_precision() recall = self.get_recall() return 0 if precision + recall == 0 else 2 * precision * recall / (precision + recall) def get_recall(self): if self.recall_denominator == 0: return 0 else: return self.recall_numerator / self.recall_denominator def get_precision(self): if self.precision_denominator == 0: return 0 else: return self.precision_numerator / self.precision_denominator def get_prf(self): return self.get_precision(), self.get_recall(), self.get_f1() @staticmethod def b_cubed(clusters, mention_to_gold): """ Averaged per-mention precision and recall. <https://pdfs.semanticscholar.org/cfe3/c24695f1c14b78a5b8e95bcbd1c666140fd1.pdf> """ numerator, denominator = 0, 0 for cluster in clusters: if len(cluster) == 1: continue gold_counts = Counter() correct = 0 for mention in cluster: if mention in mention_to_gold: gold_counts[tuple(mention_to_gold[mention])] += 1 for cluster2, count in gold_counts.items(): if len(cluster2) != 1: correct += count * count numerator += correct / float(len(cluster)) denominator += len(cluster) return numerator, denominator @staticmethod def muc(clusters, mention_to_gold): """ Counts the mentions in each predicted cluster which need to be re-allocated in order for each predicted cluster to be contained by the respective gold cluster. <https://aclweb.org/anthology/M/M95/M95-1005.pdf> """ true_p, all_p = 0, 0 for cluster in clusters: all_p += len(cluster) - 1 true_p += len(cluster) linked = set() for mention in cluster: if mention in mention_to_gold: linked.add(mention_to_gold[mention]) else: true_p -= 1 true_p -= len(linked) return true_p, all_p @staticmethod def phi4(gold_clustering, predicted_clustering): """ Subroutine for ceafe. Computes the mention F measure between gold and predicted mentions in a cluster. """ return ( 2 * len([mention for mention in gold_clustering if mention in predicted_clustering]) / (len(gold_clustering) + len(predicted_clustering)) ) @staticmethod def ceafe(clusters, gold_clusters): """ Computes the Constrained Entity-Alignment F-Measure (CEAF) for evaluating coreference. Gold and predicted mentions are aligned into clusterings which maximise a metric - in this case, the F measure between gold and predicted clusters. <https://www.semanticscholar.org/paper/On-Coreference-Resolution-Performance-Metrics-Luo/de133c1f22d0dfe12539e25dda70f28672459b99> """ clusters = [cluster for cluster in clusters if len(cluster) != 1] scores = np.zeros((len(gold_clusters), len(clusters))) for i, gold_cluster in enumerate(gold_clusters): for j, cluster in enumerate(clusters): scores[i, j] = Scorer.phi4(gold_cluster, cluster) row, col = linear_sum_assignment(-scores) similarity = sum(scores[row, col]) return similarity, len(clusters), similarity, len(gold_clusters)
allennlp-models-main
allennlp_models/coref/metrics/conll_coref_scores.py
import logging import collections from typing import Dict, List, Optional, Tuple, DefaultDict from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.instance import Instance from allennlp.data.tokenizers import PretrainedTransformerTokenizer from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenIndexer from allennlp_models.common.ontonotes import Ontonotes from allennlp_models.coref.util import make_coref_instance logger = logging.getLogger(__name__) @DatasetReader.register("coref") class ConllCorefReader(DatasetReader): """ Reads a single CoNLL-formatted file. This is the same file format as used in the :class:`~allennlp.data.dataset_readers.semantic_role_labelling.SrlReader`, but is preprocessed to dump all documents into a single file per train, dev and test split. See scripts/compile_coref_data.sh for more details of how to pre-process the Ontonotes 5.0 data into the correct format. Returns a `Dataset` where the `Instances` have four fields : `text`, a `TextField` containing the full document text, `spans`, a `ListField[SpanField]` of inclusive start and end indices for span candidates, and `metadata`, a `MetadataField` that stores the instance's original text. For data with gold cluster labels, we also include the original `clusters` (a list of list of index pairs) and a `SequenceLabelField` of cluster ids for every span candidate. # Parameters max_span_width : `int`, required. The maximum width of candidate spans to consider. token_indexers : `Dict[str, TokenIndexer]`, optional This is used to index the words in the document. See :class:`TokenIndexer`. Default is `{"tokens": SingleIdTokenIndexer()}`. wordpiece_modeling_tokenizer: `PretrainedTransformerTokenizer`, optional (default = `None`) If not None, this dataset reader does subword tokenization using the supplied tokenizer and distribute the labels to the resulting wordpieces. All the modeling will be based on wordpieces. If this is set to `False` (default), the user is expected to use `PretrainedTransformerMismatchedIndexer` and `PretrainedTransformerMismatchedEmbedder`, and the modeling will be on the word-level. max_sentences: `int`, optional (default = `None`) The maximum number of sentences in each document to keep. By default keeps all sentences. remove_singleton_clusters : `bool`, optional (default = `False`) Some datasets contain clusters that are singletons (i.e. no coreferents). This option allows the removal of them. Ontonotes shouldn't have these, and this option should be used for testing only. """ def __init__( self, max_span_width: int, token_indexers: Dict[str, TokenIndexer] = None, wordpiece_modeling_tokenizer: Optional[PretrainedTransformerTokenizer] = None, max_sentences: int = None, remove_singleton_clusters: bool = False, **kwargs, ) -> None: super().__init__(**kwargs) self._max_span_width = max_span_width self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} self._wordpiece_modeling_tokenizer = wordpiece_modeling_tokenizer self._max_sentences = max_sentences self._remove_singleton_clusters = remove_singleton_clusters def _read(self, file_path: str): # if `file_path` is a URL, redirect to the cache file_path = cached_path(file_path) ontonotes_reader = Ontonotes() for sentences in ontonotes_reader.dataset_document_iterator(file_path): clusters: DefaultDict[int, List[Tuple[int, int]]] = collections.defaultdict(list) total_tokens = 0 for sentence in sentences: for typed_span in sentence.coref_spans: # Coref annotations are on a _per sentence_ # basis, so we need to adjust them to be relative # to the length of the document. span_id, (start, end) = typed_span clusters[span_id].append((start + total_tokens, end + total_tokens)) total_tokens += len(sentence.words) yield self.text_to_instance([s.words for s in sentences], list(clusters.values())) def text_to_instance( self, # type: ignore sentences: List[List[str]], gold_clusters: Optional[List[List[Tuple[int, int]]]] = None, ) -> Instance: return make_coref_instance( sentences, self._token_indexers, self._max_span_width, gold_clusters, self._wordpiece_modeling_tokenizer, self._max_sentences, self._remove_singleton_clusters, )
allennlp-models-main
allennlp_models/coref/dataset_readers/conll.py
allennlp-models-main
allennlp_models/coref/dataset_readers/__init__.py
import json import logging from typing import Dict, List, Optional, Tuple from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.instance import Instance from allennlp.data.tokenizers import PretrainedTransformerTokenizer from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenIndexer from allennlp_models.coref.util import make_coref_instance logger = logging.getLogger(__name__) @DatasetReader.register("preco") class PrecoReader(DatasetReader): """ Reads a single JSON-lines file for [the PreCo dataset](https://www.aclweb.org/anthology/D18-1016.pdf). Each line contains a "sentences" key for a list of sentences and a "mention_clusters" key for the clusters. Returns a `Dataset` where the `Instances` have four fields : `text`, a `TextField` containing the full document text, `spans`, a `ListField[SpanField]` of inclusive start and end indices for span candidates, and `metadata`, a `MetadataField` that stores the instance's original text. For data with gold cluster labels, we also include the original `clusters` (a list of list of index pairs) and a `SequenceLabelField` of cluster ids for every span candidate. # Parameters max_span_width : `int`, required. The maximum width of candidate spans to consider. token_indexers : `Dict[str, TokenIndexer]`, optional This is used to index the words in the document. See :class:`TokenIndexer`. Default is `{"tokens": SingleIdTokenIndexer()}`. wordpiece_modeling_tokenizer: `PretrainedTransformerTokenizer`, optional (default = `None`) If not None, this dataset reader does subword tokenization using the supplied tokenizer and distribute the labels to the resulting wordpieces. All the modeling will be based on wordpieces. If this is set to `False` (default), the user is expected to use `PretrainedTransformerMismatchedIndexer` and `PretrainedTransformerMismatchedEmbedder`, and the modeling will be on the word-level. max_sentences: `int`, optional (default = `None`) The maximum number of sentences in each document to keep. By default keeps all sentences. remove_singleton_clusters : `bool`, optional (default = `False`) Some datasets contain clusters that are singletons (i.e. no coreferents). This option allows the removal of them. """ def __init__( self, max_span_width: int, token_indexers: Dict[str, TokenIndexer] = None, wordpiece_modeling_tokenizer: Optional[PretrainedTransformerTokenizer] = None, max_sentences: int = None, remove_singleton_clusters: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) self._max_span_width = max_span_width self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} self._wordpiece_modeling_tokenizer = wordpiece_modeling_tokenizer self._max_sentences = max_sentences self._remove_singleton_clusters = remove_singleton_clusters def _read(self, file_path: str): # if `file_path` is a URL, redirect to the cache file_path = cached_path(file_path) with open(file_path, "r") as preco_file: for line in preco_file: example = json.loads(line) yield self.text_to_instance(example["sentences"], example["mention_clusters"]) def text_to_instance( self, # type: ignore sentences: List[List[str]], gold_clusters: Optional[List[List[Tuple[int, int, int]]]] = None, ) -> Instance: sentence_offsets = [0] for sentence in sentences[:-1]: sent_length = len(sentence) if sentence == [" "]: # paragraph separator sent_length = 0 # we ignore them sentence_offsets.append(sentence_offsets[-1] + sent_length) sentences = [sentence for sentence in sentences if sentence != [" "]] # Convert (sent_idx, rel_start, rel_exclusive_end) to (abs_start, abs_inclusive_end) if gold_clusters: for cluster in gold_clusters: for mention_id, (sent_idx, start, end) in enumerate(cluster): start = start + sentence_offsets[sent_idx] end = end + sentence_offsets[sent_idx] - 1 # exclusive -> inclusive cluster[mention_id] = (start, end) # type: ignore return make_coref_instance( sentences, self._token_indexers, self._max_span_width, gold_clusters, # type: ignore self._wordpiece_modeling_tokenizer, self._max_sentences, self._remove_singleton_clusters, )
allennlp-models-main
allennlp_models/coref/dataset_readers/preco.py
import logging import collections from typing import Any, Dict, List, Optional, Tuple, DefaultDict from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import ( Field, ListField, TextField, SpanField, MetadataField, SequenceLabelField, ) from allennlp.data.instance import Instance from allennlp.data.tokenizers import Token from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenIndexer from allennlp.data.dataset_readers.dataset_utils import enumerate_spans logger = logging.getLogger(__name__) @DatasetReader.register("winobias") class WinobiasReader(DatasetReader): """ A dataset reader for the dataset described in [Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods](https://arxiv.org/abs/1804.06876) Winobias is a dataset to analyse the issue of gender bias in co-reference resolution. It contains simple sentences with pro/anti stereotypical gender associations with which to measure the bias of a coreference system trained on another corpus. It is effectively a toy dataset and as such, uses very simplistic language; it has little use outside of evaluating a model for bias. The dataset is formatted with a single sentence per line, with a maximum of 2 non-nested coreference clusters annotated using either square or round brackets. For example: > [The salesperson] sold (some books) to the librarian because [she] was trying to sell (them). Returns a list of `Instances` which have four fields : `text`, a `TextField` containing the full sentence text, `spans`, a `ListField[SpanField]` of inclusive start and end indices for span candidates, and `metadata`, a `MetadataField` that stores the instance's original text. For data with gold cluster labels, we also include the original `clusters` (a list of list of index pairs) and a `SequenceLabelField` of cluster ids for every span candidate in the `metadata` also. # Parameters max_span_width : `int`, required. The maximum width of candidate spans to consider. token_indexers : `Dict[str, TokenIndexer]`, optional This is used to index the words in the sentence. See :class:`TokenIndexer`. Default is `{"tokens": SingleIdTokenIndexer()}`. """ def __init__( self, max_span_width: int, token_indexers: Dict[str, TokenIndexer] = None, **kwargs, ) -> None: super().__init__(**kwargs) self._max_span_width = max_span_width self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} def _read(self, file_path: str): for sentence in open(cached_path(file_path), "r"): tokens = sentence.strip().split(" ") clusters: DefaultDict[int, List[Tuple[int, int]]] = collections.defaultdict(list) words = [] for index, token in enumerate(tokens): # Coreference is annotated using [square brackets] # or (round brackets) around coreferent phrases. if "[" in token and "]" in token: clusters[0].append((index, index)) elif "[" in token: clusters[0].append((index, index)) elif "]" in token: old_span = clusters[0][-1] clusters[0][-1] = (old_span[0], index) if "(" in token and ")" in token: clusters[1].append((index, index)) elif "(" in token: clusters[1].append((index, index)) elif ")" in token: old_span = clusters[1][-1] clusters[1][-1] = (old_span[0], index) if token.endswith("."): # Winobias is tokenised, but not for full stops. # We'll just special case them here. token = token[:-1] words.append(token.strip("[]()")) words.append(".") else: words.append(token.strip("[]()")) yield self.text_to_instance([Token(x) for x in words], [x for x in clusters.values()]) def text_to_instance( self, # type: ignore sentence: List[Token], gold_clusters: Optional[List[List[Tuple[int, int]]]] = None, ) -> Instance: """ # Parameters sentence : `List[Token]`, required. The already tokenised sentence to analyse. gold_clusters : `Optional[List[List[Tuple[int, int]]]]`, optional (default = `None`) A list of all clusters in the sentence, represented as word spans. Each cluster contains some number of spans, which can be nested and overlap, but will never exactly match between clusters. # Returns An `Instance` containing the following `Fields`: text : `TextField` The text of the full sentence. spans : `ListField[SpanField]` A ListField containing the spans represented as `SpanFields` with respect to the sentence text. span_labels : `SequenceLabelField`, optional The id of the cluster which each possible span belongs to, or -1 if it does not belong to a cluster. As these labels have variable length (it depends on how many spans we are considering), we represent this a as a `SequenceLabelField` with respect to the spans `ListField`. """ metadata: Dict[str, Any] = {"original_text": sentence} if gold_clusters is not None: metadata["clusters"] = gold_clusters text_field = TextField(sentence, self._token_indexers) cluster_dict = {} if gold_clusters is not None: for cluster_id, cluster in enumerate(gold_clusters): for mention in cluster: cluster_dict[tuple(mention)] = cluster_id spans: List[Field] = [] span_labels: Optional[List[int]] = [] if gold_clusters is not None else None for start, end in enumerate_spans(sentence, max_span_width=self._max_span_width): if span_labels is not None: if (start, end) in cluster_dict: span_labels.append(cluster_dict[(start, end)]) else: span_labels.append(-1) spans.append(SpanField(start, end, text_field)) span_field = ListField(spans) metadata_field = MetadataField(metadata) fields: Dict[str, Field] = { "text": text_field, "spans": span_field, "metadata": metadata_field, } if span_labels is not None: fields["span_labels"] = SequenceLabelField(span_labels, span_field) return Instance(fields)
allennlp-models-main
allennlp_models/coref/dataset_readers/winobias.py
from typing import List, Dict from spacy.tokens import Doc import numpy from allennlp.common.util import JsonDict from allennlp.common.util import get_spacy_model from allennlp.data import DatasetReader, Instance from allennlp.data.fields import ListField, SequenceLabelField from allennlp.models import Model from allennlp.predictors.predictor import Predictor @Predictor.register("coreference_resolution") class CorefPredictor(Predictor): """ Predictor for the [`CoreferenceResolver`](../models/coreference_resolution/coref.md) model. Registered as a `Predictor` with name "coreference_resolution". """ def __init__( self, model: Model, dataset_reader: DatasetReader, language: str = "en_core_web_sm" ) -> None: super().__init__(model, dataset_reader) # We have to use spacy to tokenize our document here, because we need # to also know sentence boundaries to propose valid mentions. self._spacy = get_spacy_model(language, pos_tags=True, parse=True, ner=False) def predict(self, document: str) -> JsonDict: """ Predict the coreference clusters in the given document. ``` { "document": [tokenized document text] "clusters": [ [ [start_index, end_index], [start_index, end_index] ], [ [start_index, end_index], [start_index, end_index], [start_index, end_index], ], .... ] } ``` # Parameters document : `str` A string representation of a document. # Returns A dictionary representation of the predicted coreference clusters. """ return self.predict_json({"document": document}) def predict_tokenized(self, tokenized_document: List[str]) -> JsonDict: """ Predict the coreference clusters in the given document. # Parameters tokenized_document : `List[str]` A list of words representation of a tokenized document. # Returns A dictionary representation of the predicted coreference clusters. """ instance = self._words_list_to_instance(tokenized_document) return self.predict_instance(instance) def predictions_to_labeled_instances( self, instance: Instance, outputs: Dict[str, numpy.ndarray] ) -> List[Instance]: """ Takes each predicted cluster and makes it into a labeled `Instance` with only that cluster labeled, so we can compute gradients of the loss `on the model's prediction of that cluster`. This lets us run interpretation methods using those gradients. See superclass docstring for more info. """ # Digging into an Instance makes mypy go crazy, because we have all kinds of things where # the type has been lost. So there are lots of `type: ignore`s here... predicted_clusters = outputs["clusters"] span_field: ListField = instance["spans"] # type: ignore instances = [] for cluster in predicted_clusters: new_instance = instance.duplicate() span_labels = [ 0 if (span.span_start, span.span_end) in cluster else -1 # type: ignore for span in span_field ] # type: ignore new_instance.add_field( "span_labels", SequenceLabelField(span_labels, span_field), self._model.vocab ) new_instance["metadata"].metadata["clusters"] = [cluster] # type: ignore instances.append(new_instance) if not instances: # No predicted clusters; we just give an empty coref prediction. new_instance = instance.duplicate() span_labels = [-1] * len(span_field) # type: ignore new_instance.add_field( "span_labels", SequenceLabelField(span_labels, span_field), self._model.vocab ) new_instance["metadata"].metadata["clusters"] = [] # type: ignore instances.append(new_instance) return instances @staticmethod def replace_corefs(document: Doc, clusters: List[List[List[int]]]) -> str: """ Uses a list of coreference clusters to convert a spacy document into a string, where each coreference is replaced by its main mention. """ # Original tokens with correct whitespace resolved = list(tok.text_with_ws for tok in document) for cluster in clusters: # The main mention is the first item in the cluster mention_start, mention_end = cluster[0][0], cluster[0][1] + 1 mention_span = document[mention_start:mention_end] # The coreferences are all items following the first in the cluster for coref in cluster[1:]: final_token = document[coref[1]] # In both of the following cases, the first token in the coreference # is replaced with the main mention, while all subsequent tokens # are masked out with "", so that they can be eliminated from # the returned document during "".join(resolved). # The first case attempts to correctly handle possessive coreferences # by inserting "'s" between the mention and the final whitespace # These include my, his, her, their, our, etc. # Disclaimer: Grammar errors can occur when the main mention is plural, # e.g. "zebras" becomes "zebras's" because this case isn't # being explictly checked and handled. if final_token.tag_ in ["PRP$", "POS"]: resolved[coref[0]] = mention_span.text + "'s" + final_token.whitespace_ else: # If not possessive, then replace first token with main mention directly resolved[coref[0]] = mention_span.text + final_token.whitespace_ # Mask out remaining tokens for i in range(coref[0] + 1, coref[1] + 1): resolved[i] = "" return "".join(resolved) def coref_resolved(self, document: str) -> str: """ Produce a document where each coreference is replaced by its main mention # Parameters document : `str` A string representation of a document. # Returns A string with each coreference replaced by its main mention """ spacy_document = self._spacy(document) clusters = self.predict(document).get("clusters") # Passing a document with no coreferences returns its original form if not clusters: return document return self.replace_corefs(spacy_document, clusters) def _words_list_to_instance(self, words: List[str]) -> Instance: """ Create an instance from words list represent an already tokenized document, for skipping tokenization when that information already exist for the user """ spacy_document = Doc(self._spacy.vocab, words=words) for pipe in filter(None, self._spacy.pipeline): pipe[1](spacy_document) sentences = [[token.text for token in sentence] for sentence in spacy_document.sents] instance = self._dataset_reader.text_to_instance(sentences) return instance def _json_to_instance(self, json_dict: JsonDict) -> Instance: """ Expects JSON that looks like `{"document": "string of document text"}` """ document = json_dict["document"] spacy_document = self._spacy(document) sentences = [[token.text for token in sentence] for sentence in spacy_document.sents] instance = self._dataset_reader.text_to_instance(sentences) return instance
allennlp-models-main
allennlp_models/coref/predictors/coref.py
allennlp-models-main
allennlp_models/coref/predictors/__init__.py
import logging import math from typing import Any, Dict, List, Tuple import torch import torch.nn.functional as F from allennlp.data import TextFieldTensors, Vocabulary from allennlp.models.model import Model from allennlp.modules.token_embedders import Embedding from allennlp.modules import FeedForward, GatedSum from allennlp.modules import Seq2SeqEncoder, TimeDistributed, TextFieldEmbedder from allennlp.modules.span_extractors import SelfAttentiveSpanExtractor, EndpointSpanExtractor from allennlp.nn import util, InitializerApplicator from allennlp_models.coref.metrics.conll_coref_scores import ConllCorefScores from allennlp_models.coref.metrics.mention_recall import MentionRecall logger = logging.getLogger(__name__) @Model.register("coref") class CoreferenceResolver(Model): """ This `Model` implements the coreference resolution model described in [Higher-order Coreference Resolution with Coarse-to-fine Inference](https://arxiv.org/pdf/1804.05392.pdf) by Lee et al., 2018. The basic outline of this model is to get an embedded representation of each span in the document. These span representations are scored and used to prune away spans that are unlikely to occur in a coreference cluster. For the remaining spans, the model decides which antecedent span (if any) they are coreferent with. The resulting coreference links, after applying transitivity, imply a clustering of the spans in the document. # Parameters vocab : `Vocabulary` text_field_embedder : `TextFieldEmbedder` Used to embed the `text` `TextField` we get as input to the model. context_layer : `Seq2SeqEncoder` This layer incorporates contextual information for each word in the document. mention_feedforward : `FeedForward` This feedforward network is applied to the span representations which is then scored by a linear layer. antecedent_feedforward : `FeedForward` This feedforward network is applied to pairs of span representation, along with any pairwise features, which is then scored by a linear layer. feature_size : `int` The embedding size for all the embedded features, such as distances or span widths. max_span_width : `int` The maximum width of candidate spans. spans_per_word: `float`, required. A multiplier between zero and one which controls what percentage of candidate mention spans we retain with respect to the number of words in the document. max_antecedents: `int`, required. For each mention which survives the pruning stage, we consider this many antecedents. coarse_to_fine: `bool`, optional (default = `False`) Whether or not to apply the coarse-to-fine filtering. inference_order: `int`, optional (default = `1`) The number of inference orders. When greater than 1, the span representations are updated and coreference scores re-computed. lexical_dropout : `int` The probability of dropping out dimensions of the embedded text. initializer : `InitializerApplicator`, optional (default=`InitializerApplicator()`) Used to initialize the model parameters. """ def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, context_layer: Seq2SeqEncoder, mention_feedforward: FeedForward, antecedent_feedforward: FeedForward, feature_size: int, max_span_width: int, spans_per_word: float, max_antecedents: int, coarse_to_fine: bool = False, inference_order: int = 1, lexical_dropout: float = 0.2, initializer: InitializerApplicator = InitializerApplicator(), **kwargs ) -> None: super().__init__(vocab, **kwargs) self._text_field_embedder = text_field_embedder self._context_layer = context_layer self._mention_feedforward = TimeDistributed(mention_feedforward) self._mention_scorer = TimeDistributed( torch.nn.Linear(mention_feedforward.get_output_dim(), 1) ) self._antecedent_feedforward = TimeDistributed(antecedent_feedforward) self._antecedent_scorer = TimeDistributed( torch.nn.Linear(antecedent_feedforward.get_output_dim(), 1) ) self._endpoint_span_extractor = EndpointSpanExtractor( context_layer.get_output_dim(), combination="x,y", num_width_embeddings=max_span_width, span_width_embedding_dim=feature_size, bucket_widths=False, ) self._attentive_span_extractor = SelfAttentiveSpanExtractor( input_dim=text_field_embedder.get_output_dim() ) # 10 possible distance buckets. self._num_distance_buckets = 10 self._distance_embedding = Embedding( embedding_dim=feature_size, num_embeddings=self._num_distance_buckets ) self._max_span_width = max_span_width self._spans_per_word = spans_per_word self._max_antecedents = max_antecedents self._coarse_to_fine = coarse_to_fine if self._coarse_to_fine: self._coarse2fine_scorer = torch.nn.Linear( mention_feedforward.get_input_dim(), mention_feedforward.get_input_dim() ) self._inference_order = inference_order if self._inference_order > 1: self._span_updating_gated_sum = GatedSum(mention_feedforward.get_input_dim()) self._mention_recall = MentionRecall() self._conll_coref_scores = ConllCorefScores() if lexical_dropout > 0: self._lexical_dropout = torch.nn.Dropout(p=lexical_dropout) else: self._lexical_dropout = lambda x: x initializer(self) def forward( self, # type: ignore text: TextFieldTensors, spans: torch.IntTensor, span_labels: torch.IntTensor = None, metadata: List[Dict[str, Any]] = None, ) -> Dict[str, torch.Tensor]: """ # Parameters text : `TextFieldTensors`, required. The output of a `TextField` representing the text of the document. spans : `torch.IntTensor`, required. A tensor of shape (batch_size, num_spans, 2), representing the inclusive start and end indices of candidate spans for mentions. Comes from a `ListField[SpanField]` of indices into the text of the document. span_labels : `torch.IntTensor`, optional (default = `None`). A tensor of shape (batch_size, num_spans), representing the cluster ids of each span, or -1 for those which do not appear in any clusters. metadata : `List[Dict[str, Any]]`, optional (default = `None`). A metadata dictionary for each instance in the batch. We use the "original_text" and "clusters" keys from this dictionary, which respectively have the original text and the annotated gold coreference clusters for that instance. # Returns An output dictionary consisting of: top_spans : `torch.IntTensor` A tensor of shape `(batch_size, num_spans_to_keep, 2)` representing the start and end word indices of the top spans that survived the pruning stage. antecedent_indices : `torch.IntTensor` A tensor of shape `(num_spans_to_keep, max_antecedents)` representing for each top span the index (with respect to top_spans) of the possible antecedents the model considered. predicted_antecedents : `torch.IntTensor` A tensor of shape `(batch_size, num_spans_to_keep)` representing, for each top span, the index (with respect to antecedent_indices) of the most likely antecedent. -1 means there was no predicted link. loss : `torch.FloatTensor`, optional A scalar loss to be optimised. """ # Shape: (batch_size, document_length, embedding_size) text_embeddings = self._lexical_dropout(self._text_field_embedder(text)) batch_size = spans.size(0) document_length = text_embeddings.size(1) num_spans = spans.size(1) # Shape: (batch_size, document_length) text_mask = util.get_text_field_mask(text) # Shape: (batch_size, num_spans) span_mask = (spans[:, :, 0] >= 0).squeeze(-1) # SpanFields return -1 when they are used as padding. As we do # some comparisons based on span widths when we attend over the # span representations that we generate from these indices, we # need them to be <= 0. This is only relevant in edge cases where # the number of spans we consider after the pruning stage is >= the # total number of spans, because in this case, it is possible we might # consider a masked span. # Shape: (batch_size, num_spans, 2) spans = F.relu(spans.float()).long() # Shape: (batch_size, document_length, encoding_dim) contextualized_embeddings = self._context_layer(text_embeddings, text_mask) # Shape: (batch_size, num_spans, 2 * encoding_dim + feature_size) endpoint_span_embeddings = self._endpoint_span_extractor(contextualized_embeddings, spans) # Shape: (batch_size, num_spans, emebedding_size) attended_span_embeddings = self._attentive_span_extractor(text_embeddings, spans) # Shape: (batch_size, num_spans, emebedding_size + 2 * encoding_dim + feature_size) span_embeddings = torch.cat([endpoint_span_embeddings, attended_span_embeddings], -1) # Prune based on mention scores. num_spans_to_keep = int(math.floor(self._spans_per_word * document_length)) num_spans_to_keep = min(num_spans_to_keep, num_spans) # Shape: (batch_size, num_spans) span_mention_scores = self._mention_scorer( self._mention_feedforward(span_embeddings) ).squeeze(-1) # Shape: (batch_size, num_spans) for all 3 tensors top_span_mention_scores, top_span_mask, top_span_indices = util.masked_topk( span_mention_scores, span_mask, num_spans_to_keep ) # Shape: (batch_size * num_spans_to_keep) # torch.index_select only accepts 1D indices, but here # we need to select spans for each element in the batch. # This reformats the indices to take into account their # index into the batch. We precompute this here to make # the multiple calls to util.batched_index_select below more efficient. flat_top_span_indices = util.flatten_and_batch_shift_indices(top_span_indices, num_spans) # Compute final predictions for which spans to consider as mentions. # Shape: (batch_size, num_spans_to_keep, 2) top_spans = util.batched_index_select(spans, top_span_indices, flat_top_span_indices) # Shape: (batch_size, num_spans_to_keep, embedding_size) top_span_embeddings = util.batched_index_select( span_embeddings, top_span_indices, flat_top_span_indices ) # Compute indices for antecedent spans to consider. max_antecedents = min(self._max_antecedents, num_spans_to_keep) # Now that we have our variables in terms of num_spans_to_keep, we need to # compare span pairs to decide each span's antecedent. Each span can only # have prior spans as antecedents, and we only consider up to max_antecedents # prior spans. So the first thing we do is construct a matrix mapping a span's # index to the indices of its allowed antecedents. # Once we have this matrix, we reformat our variables again to get embeddings # for all valid antecedents for each span. This gives us variables with shapes # like (batch_size, num_spans_to_keep, max_antecedents, embedding_size), which # we can use to make coreference decisions between valid span pairs. if self._coarse_to_fine: pruned_antecedents = self._coarse_to_fine_pruning( top_span_embeddings, top_span_mention_scores, top_span_mask, max_antecedents ) else: pruned_antecedents = self._distance_pruning( top_span_embeddings, top_span_mention_scores, max_antecedents ) # Shape: (batch_size, num_spans_to_keep, max_antecedents) for all 4 tensors ( top_partial_coreference_scores, top_antecedent_mask, top_antecedent_offsets, top_antecedent_indices, ) = pruned_antecedents flat_top_antecedent_indices = util.flatten_and_batch_shift_indices( top_antecedent_indices, num_spans_to_keep ) # Shape: (batch_size, num_spans_to_keep, max_antecedents, embedding_size) top_antecedent_embeddings = util.batched_index_select( top_span_embeddings, top_antecedent_indices, flat_top_antecedent_indices ) # Shape: (batch_size, num_spans_to_keep, 1 + max_antecedents) coreference_scores = self._compute_coreference_scores( top_span_embeddings, top_antecedent_embeddings, top_partial_coreference_scores, top_antecedent_mask, top_antecedent_offsets, ) for _ in range(self._inference_order - 1): dummy_mask = top_antecedent_mask.new_ones(batch_size, num_spans_to_keep, 1) # Shape: (batch_size, num_spans_to_keep, 1 + max_antecedents,) top_antecedent_with_dummy_mask = torch.cat([dummy_mask, top_antecedent_mask], -1) # Shape: (batch_size, num_spans_to_keep, 1 + max_antecedents) attention_weight = util.masked_softmax( coreference_scores, top_antecedent_with_dummy_mask, memory_efficient=True ) # Shape: (batch_size, num_spans_to_keep, 1 + max_antecedents, embedding_size) top_antecedent_with_dummy_embeddings = torch.cat( [top_span_embeddings.unsqueeze(2), top_antecedent_embeddings], 2 ) # Shape: (batch_size, num_spans_to_keep, embedding_size) attended_embeddings = util.weighted_sum( top_antecedent_with_dummy_embeddings, attention_weight ) # Shape: (batch_size, num_spans_to_keep, embedding_size) top_span_embeddings = self._span_updating_gated_sum( top_span_embeddings, attended_embeddings ) # Shape: (batch_size, num_spans_to_keep, max_antecedents, embedding_size) top_antecedent_embeddings = util.batched_index_select( top_span_embeddings, top_antecedent_indices, flat_top_antecedent_indices ) # Shape: (batch_size, num_spans_to_keep, 1 + max_antecedents) coreference_scores = self._compute_coreference_scores( top_span_embeddings, top_antecedent_embeddings, top_partial_coreference_scores, top_antecedent_mask, top_antecedent_offsets, ) # We now have, for each span which survived the pruning stage, # a predicted antecedent. This implies a clustering if we group # mentions which refer to each other in a chain. # Shape: (batch_size, num_spans_to_keep) _, predicted_antecedents = coreference_scores.max(2) # Subtract one here because index 0 is the "no antecedent" class, # so this makes the indices line up with actual spans if the prediction # is greater than -1. predicted_antecedents -= 1 output_dict = { "top_spans": top_spans, "antecedent_indices": top_antecedent_indices, "predicted_antecedents": predicted_antecedents, } if span_labels is not None: # Find the gold labels for the spans which we kept. # Shape: (batch_size, num_spans_to_keep, 1) pruned_gold_labels = util.batched_index_select( span_labels.unsqueeze(-1), top_span_indices, flat_top_span_indices ) # Shape: (batch_size, num_spans_to_keep, max_antecedents) antecedent_labels = util.batched_index_select( pruned_gold_labels, top_antecedent_indices, flat_top_antecedent_indices ).squeeze(-1) antecedent_labels = util.replace_masked_values( antecedent_labels, top_antecedent_mask, -100 ) # Compute labels. # Shape: (batch_size, num_spans_to_keep, max_antecedents + 1) gold_antecedent_labels = self._compute_antecedent_gold_labels( pruned_gold_labels, antecedent_labels ) # Now, compute the loss using the negative marginal log-likelihood. # This is equal to the log of the sum of the probabilities of all antecedent predictions # that would be consistent with the data, in the sense that we are minimising, for a # given span, the negative marginal log likelihood of all antecedents which are in the # same gold cluster as the span we are currently considering. Each span i predicts a # single antecedent j, but there might be several prior mentions k in the same # coreference cluster that would be valid antecedents. Our loss is the sum of the # probability assigned to all valid antecedents. This is a valid objective for # clustering as we don't mind which antecedent is predicted, so long as they are in # the same coreference cluster. coreference_log_probs = util.masked_log_softmax( coreference_scores, top_span_mask.unsqueeze(-1) ) correct_antecedent_log_probs = coreference_log_probs + gold_antecedent_labels.log() negative_marginal_log_likelihood = -util.logsumexp(correct_antecedent_log_probs).sum() self._mention_recall(top_spans, metadata) self._conll_coref_scores( top_spans, top_antecedent_indices, predicted_antecedents, metadata ) output_dict["loss"] = negative_marginal_log_likelihood if metadata is not None: output_dict["document"] = [x["original_text"] for x in metadata] return output_dict def make_output_human_readable(self, output_dict: Dict[str, torch.Tensor]): """ Converts the list of spans and predicted antecedent indices into clusters of spans for each element in the batch. # Parameters output_dict : `Dict[str, torch.Tensor]`, required. The result of calling :func:`forward` on an instance or batch of instances. # Returns The same output dictionary, but with an additional `clusters` key: clusters : `List[List[List[Tuple[int, int]]]]` A nested list, representing, for each instance in the batch, the list of clusters, which are in turn comprised of a list of (start, end) inclusive spans into the original document. """ # A tensor of shape (batch_size, num_spans_to_keep, 2), representing # the start and end indices of each span. batch_top_spans = output_dict["top_spans"].detach().cpu() # A tensor of shape (batch_size, num_spans_to_keep) representing, for each span, # the index into `antecedent_indices` which specifies the antecedent span. Additionally, # the index can be -1, specifying that the span has no predicted antecedent. batch_predicted_antecedents = output_dict["predicted_antecedents"].detach().cpu() # A tensor of shape (num_spans_to_keep, max_antecedents), representing the indices # of the predicted antecedents with respect to the 2nd dimension of `batch_top_spans` # for each antecedent we considered. batch_antecedent_indices = output_dict["antecedent_indices"].detach().cpu() batch_clusters: List[List[List[Tuple[int, int]]]] = [] # Calling zip() on two tensors results in an iterator over their # first dimension. This is iterating over instances in the batch. for top_spans, predicted_antecedents, antecedent_indices in zip( batch_top_spans, batch_predicted_antecedents, batch_antecedent_indices ): spans_to_cluster_ids: Dict[Tuple[int, int], int] = {} clusters: List[List[Tuple[int, int]]] = [] for i, (span, predicted_antecedent) in enumerate(zip(top_spans, predicted_antecedents)): if predicted_antecedent < 0: # We don't care about spans which are # not co-referent with anything. continue # Find the right cluster to update with this span. # To do this, we find the row in `antecedent_indices` # corresponding to this span we are considering. # The predicted antecedent is then an index into this list # of indices, denoting the span from `top_spans` which is the # most likely antecedent. predicted_index = antecedent_indices[i, predicted_antecedent] antecedent_span = ( top_spans[predicted_index, 0].item(), top_spans[predicted_index, 1].item(), ) # Check if we've seen the span before. if antecedent_span in spans_to_cluster_ids: predicted_cluster_id: int = spans_to_cluster_ids[antecedent_span] else: # We start a new cluster. predicted_cluster_id = len(clusters) # Append a new cluster containing only this span. clusters.append([antecedent_span]) # Record the new id of this span. spans_to_cluster_ids[antecedent_span] = predicted_cluster_id # Now add the span we are currently considering. span_start, span_end = span[0].item(), span[1].item() clusters[predicted_cluster_id].append((span_start, span_end)) spans_to_cluster_ids[(span_start, span_end)] = predicted_cluster_id batch_clusters.append(clusters) output_dict["clusters"] = batch_clusters return output_dict def get_metrics(self, reset: bool = False) -> Dict[str, float]: mention_recall = self._mention_recall.get_metric(reset) coref_precision, coref_recall, coref_f1 = self._conll_coref_scores.get_metric(reset) return { "coref_precision": coref_precision, "coref_recall": coref_recall, "coref_f1": coref_f1, "mention_recall": mention_recall, } @staticmethod def _generate_valid_antecedents( num_spans_to_keep: int, max_antecedents: int, device: int ) -> Tuple[torch.IntTensor, torch.IntTensor, torch.BoolTensor]: """ This method generates possible antecedents per span which survived the pruning stage. This procedure is `generic across the batch`. The reason this is the case is that each span in a batch can be coreferent with any previous span, but here we are computing the possible `indices` of these spans. So, regardless of the batch, the 1st span _cannot_ have any antecedents, because there are none to select from. Similarly, each element can only predict previous spans, so this returns a matrix of shape (num_spans_to_keep, max_antecedents), where the (i,j)-th index is equal to (i - 1) - j if j <= i, or zero otherwise. # Parameters num_spans_to_keep : `int`, required. The number of spans that were kept while pruning. max_antecedents : `int`, required. The maximum number of antecedent spans to consider for every span. device : `int`, required. The CUDA device to use. # Returns valid_antecedent_indices : `torch.LongTensor` The indices of every antecedent to consider with respect to the top k spans. Has shape `(num_spans_to_keep, max_antecedents)`. valid_antecedent_offsets : `torch.LongTensor` The distance between the span and each of its antecedents in terms of the number of considered spans (i.e not the word distance between the spans). Has shape `(1, max_antecedents)`. valid_antecedent_mask : `torch.BoolTensor` The mask representing whether each antecedent span is valid. Required since different spans have different numbers of valid antecedents. For example, the first span in the document should have no valid antecedents. Has shape `(1, num_spans_to_keep, max_antecedents)`. """ # Shape: (num_spans_to_keep, 1) target_indices = util.get_range_vector(num_spans_to_keep, device).unsqueeze(1) # Shape: (1, max_antecedents) valid_antecedent_offsets = (util.get_range_vector(max_antecedents, device) + 1).unsqueeze(0) # This is a broadcasted subtraction. # Shape: (num_spans_to_keep, max_antecedents) raw_antecedent_indices = target_indices - valid_antecedent_offsets # In our matrix of indices, the upper triangular part will be negative # because the offsets will be > the target indices. We want to mask these, # because these are exactly the indices which we don't want to predict, per span. # Shape: (1, num_spans_to_keep, max_antecedents) valid_antecedent_mask = (raw_antecedent_indices >= 0).unsqueeze(0) # Shape: (num_spans_to_keep, max_antecedents) valid_antecedent_indices = F.relu(raw_antecedent_indices.float()).long() return valid_antecedent_indices, valid_antecedent_offsets, valid_antecedent_mask def _distance_pruning( self, top_span_embeddings: torch.FloatTensor, top_span_mention_scores: torch.FloatTensor, max_antecedents: int, ) -> Tuple[torch.FloatTensor, torch.BoolTensor, torch.LongTensor, torch.LongTensor]: """ Generates antecedents for each span and prunes down to `max_antecedents`. This method prunes antecedents only based on distance (i.e. number of intervening spans). The closest antecedents are kept. # Parameters top_span_embeddings: `torch.FloatTensor`, required. The embeddings of the top spans. (batch_size, num_spans_to_keep, embedding_size). top_span_mention_scores: `torch.FloatTensor`, required. The mention scores of the top spans. (batch_size, num_spans_to_keep). max_antecedents: `int`, required. The maximum number of antecedents to keep for each span. # Returns top_partial_coreference_scores: `torch.FloatTensor` The partial antecedent scores for each span-antecedent pair. Computed by summing the span mentions scores of the span and the antecedent. This score is partial because compared to the full coreference scores, it lacks the interaction term w * FFNN([g_i, g_j, g_i * g_j, features]). (batch_size, num_spans_to_keep, max_antecedents) top_antecedent_mask: `torch.BoolTensor` The mask representing whether each antecedent span is valid. Required since different spans have different numbers of valid antecedents. For example, the first span in the document should have no valid antecedents. (batch_size, num_spans_to_keep, max_antecedents) top_antecedent_offsets: `torch.LongTensor` The distance between the span and each of its antecedents in terms of the number of considered spans (i.e not the word distance between the spans). (batch_size, num_spans_to_keep, max_antecedents) top_antecedent_indices: `torch.LongTensor` The indices of every antecedent to consider with respect to the top k spans. (batch_size, num_spans_to_keep, max_antecedents) """ # These antecedent matrices are independent of the batch dimension - they're just a function # of the span's position in top_spans. # The spans are in document order, so we can just use the relative # index of the spans to know which other spans are allowed antecedents. num_spans_to_keep = top_span_embeddings.size(1) device = util.get_device_of(top_span_embeddings) # Shapes: # (num_spans_to_keep, max_antecedents), # (1, max_antecedents), # (1, num_spans_to_keep, max_antecedents) ( top_antecedent_indices, top_antecedent_offsets, top_antecedent_mask, ) = self._generate_valid_antecedents( # noqa num_spans_to_keep, max_antecedents, device ) # Shape: (batch_size, num_spans_to_keep, max_antecedents) top_antecedent_mention_scores = util.flattened_index_select( top_span_mention_scores.unsqueeze(-1), top_antecedent_indices ).squeeze(-1) # Shape: (batch_size, num_spans_to_keep, max_antecedents) * 4 top_partial_coreference_scores = ( top_span_mention_scores.unsqueeze(-1) + top_antecedent_mention_scores ) top_antecedent_indices = top_antecedent_indices.unsqueeze(0).expand_as( top_partial_coreference_scores ) top_antecedent_offsets = top_antecedent_offsets.unsqueeze(0).expand_as( top_partial_coreference_scores ) top_antecedent_mask = top_antecedent_mask.expand_as(top_partial_coreference_scores) return ( top_partial_coreference_scores, top_antecedent_mask, top_antecedent_offsets, top_antecedent_indices, ) def _coarse_to_fine_pruning( self, top_span_embeddings: torch.FloatTensor, top_span_mention_scores: torch.FloatTensor, top_span_mask: torch.BoolTensor, max_antecedents: int, ) -> Tuple[torch.FloatTensor, torch.BoolTensor, torch.LongTensor, torch.LongTensor]: """ Generates antecedents for each span and prunes down to `max_antecedents`. This method prunes antecedents using a fast bilinar interaction score between a span and a candidate antecedent, and the highest-scoring antecedents are kept. # Parameters top_span_embeddings: `torch.FloatTensor`, required. The embeddings of the top spans. (batch_size, num_spans_to_keep, embedding_size). top_span_mention_scores: `torch.FloatTensor`, required. The mention scores of the top spans. (batch_size, num_spans_to_keep). top_span_mask: `torch.BoolTensor`, required. The mask for the top spans. (batch_size, num_spans_to_keep). max_antecedents: `int`, required. The maximum number of antecedents to keep for each span. # Returns top_partial_coreference_scores: `torch.FloatTensor` The partial antecedent scores for each span-antecedent pair. Computed by summing the span mentions scores of the span and the antecedent as well as a bilinear interaction term. This score is partial because compared to the full coreference scores, it lacks the interaction term `w * FFNN([g_i, g_j, g_i * g_j, features])`. `(batch_size, num_spans_to_keep, max_antecedents)` top_antecedent_mask: `torch.BoolTensor` The mask representing whether each antecedent span is valid. Required since different spans have different numbers of valid antecedents. For example, the first span in the document should have no valid antecedents. `(batch_size, num_spans_to_keep, max_antecedents)` top_antecedent_offsets: `torch.LongTensor` The distance between the span and each of its antecedents in terms of the number of considered spans (i.e not the word distance between the spans). `(batch_size, num_spans_to_keep, max_antecedents)` top_antecedent_indices: `torch.LongTensor` The indices of every antecedent to consider with respect to the top k spans. `(batch_size, num_spans_to_keep, max_antecedents)` """ batch_size, num_spans_to_keep = top_span_embeddings.size()[:2] device = util.get_device_of(top_span_embeddings) # Shape: (1, num_spans_to_keep, num_spans_to_keep) _, _, valid_antecedent_mask = self._generate_valid_antecedents( num_spans_to_keep, num_spans_to_keep, device ) mention_one_score = top_span_mention_scores.unsqueeze(1) mention_two_score = top_span_mention_scores.unsqueeze(2) bilinear_weights = self._coarse2fine_scorer(top_span_embeddings).transpose(1, 2) bilinear_score = torch.matmul(top_span_embeddings, bilinear_weights) # Shape: (batch_size, num_spans_to_keep, num_spans_to_keep); broadcast op partial_antecedent_scores = mention_one_score + mention_two_score + bilinear_score # Shape: (batch_size, num_spans_to_keep, num_spans_to_keep); broadcast op span_pair_mask = top_span_mask.unsqueeze(-1) & valid_antecedent_mask # Shape: # (batch_size, num_spans_to_keep, max_antecedents) * 3 ( top_partial_coreference_scores, top_antecedent_mask, top_antecedent_indices, ) = util.masked_topk(partial_antecedent_scores, span_pair_mask, max_antecedents) top_span_range = util.get_range_vector(num_spans_to_keep, device) # Shape: (num_spans_to_keep, num_spans_to_keep); broadcast op valid_antecedent_offsets = top_span_range.unsqueeze(-1) - top_span_range.unsqueeze(0) # TODO: we need to make `batched_index_select` more general to make this less awkward. top_antecedent_offsets = util.batched_index_select( valid_antecedent_offsets.unsqueeze(0) .expand(batch_size, num_spans_to_keep, num_spans_to_keep) .reshape(batch_size * num_spans_to_keep, num_spans_to_keep, 1), top_antecedent_indices.view(-1, max_antecedents), ).reshape(batch_size, num_spans_to_keep, max_antecedents) return ( top_partial_coreference_scores, top_antecedent_mask, top_antecedent_offsets, top_antecedent_indices, ) def _compute_span_pair_embeddings( self, top_span_embeddings: torch.FloatTensor, antecedent_embeddings: torch.FloatTensor, antecedent_offsets: torch.FloatTensor, ): """ Computes an embedding representation of pairs of spans for the pairwise scoring function to consider. This includes both the original span representations, the element-wise similarity of the span representations, and an embedding representation of the distance between the two spans. # Parameters top_span_embeddings : `torch.FloatTensor`, required. Embedding representations of the top spans. Has shape (batch_size, num_spans_to_keep, embedding_size). antecedent_embeddings : `torch.FloatTensor`, required. Embedding representations of the antecedent spans we are considering for each top span. Has shape (batch_size, num_spans_to_keep, max_antecedents, embedding_size). antecedent_offsets : `torch.IntTensor`, required. The offsets between each top span and its antecedent spans in terms of spans we are considering. Has shape (batch_size, num_spans_to_keep, max_antecedents). # Returns span_pair_embeddings : `torch.FloatTensor` Embedding representation of the pair of spans to consider. Has shape (batch_size, num_spans_to_keep, max_antecedents, embedding_size) """ # Shape: (batch_size, num_spans_to_keep, max_antecedents, embedding_size) target_embeddings = top_span_embeddings.unsqueeze(2).expand_as(antecedent_embeddings) # Shape: (batch_size, num_spans_to_keep, max_antecedents, embedding_size) antecedent_distance_embeddings = self._distance_embedding( util.bucket_values(antecedent_offsets, num_total_buckets=self._num_distance_buckets) ) # Shape: (batch_size, num_spans_to_keep, max_antecedents, embedding_size) span_pair_embeddings = torch.cat( [ target_embeddings, antecedent_embeddings, antecedent_embeddings * target_embeddings, antecedent_distance_embeddings, ], -1, ) return span_pair_embeddings @staticmethod def _compute_antecedent_gold_labels( top_span_labels: torch.IntTensor, antecedent_labels: torch.IntTensor ): """ Generates a binary indicator for every pair of spans. This label is one if and only if the pair of spans belong to the same cluster. The labels are augmented with a dummy antecedent at the zeroth position, which represents the prediction that a span does not have any antecedent. # Parameters top_span_labels : `torch.IntTensor`, required. The cluster id label for every span. The id is arbitrary, as we just care about the clustering. Has shape (batch_size, num_spans_to_keep). antecedent_labels : `torch.IntTensor`, required. The cluster id label for every antecedent span. The id is arbitrary, as we just care about the clustering. Has shape (batch_size, num_spans_to_keep, max_antecedents). # Returns pairwise_labels_with_dummy_label : `torch.FloatTensor` A binary tensor representing whether a given pair of spans belong to the same cluster in the gold clustering. Has shape (batch_size, num_spans_to_keep, max_antecedents + 1). """ # Shape: (batch_size, num_spans_to_keep, max_antecedents) target_labels = top_span_labels.expand_as(antecedent_labels) same_cluster_indicator = (target_labels == antecedent_labels).float() non_dummy_indicator = (target_labels >= 0).float() pairwise_labels = same_cluster_indicator * non_dummy_indicator # Shape: (batch_size, num_spans_to_keep, 1) dummy_labels = (1 - pairwise_labels).prod(-1, keepdim=True) # Shape: (batch_size, num_spans_to_keep, max_antecedents + 1) pairwise_labels_with_dummy_label = torch.cat([dummy_labels, pairwise_labels], -1) return pairwise_labels_with_dummy_label def _compute_coreference_scores( self, top_span_embeddings: torch.FloatTensor, top_antecedent_embeddings: torch.FloatTensor, top_partial_coreference_scores: torch.FloatTensor, top_antecedent_mask: torch.BoolTensor, top_antecedent_offsets: torch.FloatTensor, ) -> torch.FloatTensor: """ Computes scores for every pair of spans. Additionally, a dummy label is included, representing the decision that the span is not coreferent with anything. For the dummy label, the score is always zero. For the true antecedent spans, the score consists of the pairwise antecedent score and the unary mention scores for the span and its antecedent. The factoring allows the model to blame many of the absent links on bad spans, enabling the pruning strategy used in the forward pass. # Parameters top_span_embeddings : `torch.FloatTensor`, required. Embedding representations of the kept spans. Has shape (batch_size, num_spans_to_keep, embedding_size) top_antecedent_embeddings: `torch.FloatTensor`, required. The embeddings of antecedents for each span candidate. Has shape (batch_size, num_spans_to_keep, max_antecedents, embedding_size) top_partial_coreference_scores : `torch.FloatTensor`, required. Sum of span mention score and antecedent mention score. The coarse to fine settings has an additional term which is the coarse bilinear score. (batch_size, num_spans_to_keep, max_antecedents). top_antecedent_mask : `torch.BoolTensor`, required. The mask for valid antecedents. (batch_size, num_spans_to_keep, max_antecedents). top_antecedent_offsets : `torch.FloatTensor`, required. The distance between the span and each of its antecedents in terms of the number of considered spans (i.e not the word distance between the spans). (batch_size, num_spans_to_keep, max_antecedents). # Returns coreference_scores : `torch.FloatTensor` A tensor of shape (batch_size, num_spans_to_keep, max_antecedents + 1), representing the unormalised score for each (span, antecedent) pair we considered. """ # Shape: (batch_size, num_spans_to_keep, max_antecedents, embedding_size) span_pair_embeddings = self._compute_span_pair_embeddings( top_span_embeddings, top_antecedent_embeddings, top_antecedent_offsets ) # Shape: (batch_size, num_spans_to_keep, max_antecedents) antecedent_scores = self._antecedent_scorer( self._antecedent_feedforward(span_pair_embeddings) ).squeeze(-1) antecedent_scores += top_partial_coreference_scores antecedent_scores = util.replace_masked_values( antecedent_scores, top_antecedent_mask, util.min_value_of_dtype(antecedent_scores.dtype) ) # Shape: (batch_size, num_spans_to_keep, 1) shape = [antecedent_scores.size(0), antecedent_scores.size(1), 1] dummy_scores = antecedent_scores.new_zeros(*shape) # Shape: (batch_size, num_spans_to_keep, max_antecedents + 1) coreference_scores = torch.cat([dummy_scores, antecedent_scores], -1) return coreference_scores default_predictor = "coreference_resolution"
allennlp-models-main
allennlp_models/coref/models/coref.py
from allennlp_models.coref.models.coref import CoreferenceResolver
allennlp-models-main
allennlp_models/coref/models/__init__.py
from pathlib import Path from glob import glob import os from typing import Dict, Tuple, Set import pytest from tests import FIXTURES_ROOT from allennlp.commands.train import TrainModel from allennlp.common.testing import AllenNlpTestCase from allennlp.common.params import Params from allennlp.common.plugins import import_plugins CONFIGS_TO_IGNORE = { # TODO (epwalsh): once the new data loading API is merged, try to get this model working. # Requires some bi-directional LM archive path. "constituency_parser_transformer_elmo.jsonnet", } FOLDERS_TO_IGNORE: Set[str] = set() def find_configs(): for item in os.walk("training_config/"): if os.path.basename(item[0]) in FOLDERS_TO_IGNORE: continue for pattern in ("*.json", "*.jsonnet"): for path in glob(os.path.join(item[0], pattern)): if os.path.basename(path) == "common.jsonnet": continue yield pytest.param( path, marks=pytest.mark.skipif( any(x in path for x in CONFIGS_TO_IGNORE), reason="ignoring" ), ) GLOVE_PATCHES = { FIXTURES_ROOT / "glove.6B.100d.sample.txt.gz": ( "https://allennlp.s3.amazonaws.com/datasets/glove/glove.6B.100d.txt.gz", ), FIXTURES_ROOT / "glove.6B.300d.sample.txt.gz": ( "https://allennlp.s3.amazonaws.com/datasets/glove/glove.6B.300d.txt.gz", "https://allennlp.s3.amazonaws.com/datasets/glove/glove.840B.300d.txt.gz", "https://allennlp.s3.amazonaws.com/datasets/glove/glove.840B.300d.lower.converted.zip", ), } def patch_glove(params): for key, value in params.items(): if isinstance(value, str): for patch, patch_targets in GLOVE_PATCHES.items(): if value in patch_targets: params[key] = str(patch) elif isinstance(value, Params): patch_glove(value) def patch_image_dir(params): for key, value in params.items(): if key == "image_dir" and isinstance(value, str): params[key] = FIXTURES_ROOT / "vision" / "images" elif key == "feature_cache_dir" and isinstance(value, str): params[key] = FIXTURES_ROOT / "vision" / "images" / "feature_cache" elif isinstance(value, Params): patch_image_dir(value) def patch_dataset_reader(params): if params["type"] == "multitask": for reader_params in params["readers"].values(): reader_params["max_instances"] = 4 elif params["type"] == "flickr30k": params["max_instances"] = 6 else: params["max_instances"] = 4 # fmt: off DATASET_PATCHES: Dict[Path, Tuple[str, ...]] = { FIXTURES_ROOT / "structured_prediction" / "srl" / "conll_2012": ("SRL_TRAIN_DATA_PATH", "SRL_VALIDATION_DATA_PATH"), FIXTURES_ROOT / "structured_prediction" / "example_ptb.trees": ("PTB_TRAIN_PATH", "PTB_DEV_PATH", "PTB_TEST_PATH"), FIXTURES_ROOT / "structured_prediction" / "dependencies.conllu": ("PTB_DEPENDENCIES_TRAIN", "PTB_DEPENDENCIES_VAL"), FIXTURES_ROOT / "structured_prediction" / "semantic_dependencies" / "dm.sdp": ( "SEMEVAL_TRAIN", "SEMEVAL_DEV", "SEMEVAL_TEST" ), FIXTURES_ROOT / "tagging" / "conll2003.txt": ("NER_TRAIN_DATA_PATH", "NER_TEST_DATA_PATH"), FIXTURES_ROOT / "lm" / "language_model" / "sentences.txt": ("BIDIRECTIONAL_LM_TRAIN_PATH",), FIXTURES_ROOT / "coref" / "coref.gold_conll": ( "COREF_TRAIN_DATA_PATH", "COREF_DEV_DATA_PATH", "COREF_TEST_DATA_PATH", ), FIXTURES_ROOT / "structured_prediction" / "srl" / "conll_2012" / "subdomain": ( "CONLL_TRAIN_DATA_PATH", "CONLL_DEV_DATA_PATH" ), FIXTURES_ROOT / "tagging" / "conll2003.txt": ( "NER_TRAIN_DATA_PATH", "NER_TEST_DATA_PATH", "NER_TEST_A_PATH", "NER_TEST_B_PATH", ), FIXTURES_ROOT / "lm" / "bidirectional_language_model" / "vocab": ("BIDIRECTIONAL_LM_VOCAB_PATH",), FIXTURES_ROOT / "lm" / "bidirectional_language_model" / "training_data" / "*": ("BIDIRECTIONAL_LM_TRAIN_PATH",), } # fmt: on @pytest.mark.pretrained_config_test class TestAllenNlpPretrainedModelConfigs(AllenNlpTestCase): @classmethod def setup_class(cls): # Make sure all the classes we need are registered. import_plugins() # Patch dataset paths. for dataset_patch, patch_targets in DATASET_PATCHES.items(): for patch_target in patch_targets: os.environ[patch_target] = str(dataset_patch) @pytest.mark.filterwarnings("ignore::DeprecationWarning") @pytest.mark.parametrize("path", find_configs()) def test_pretrained_configs(self, path): params = Params.from_file( path, params_overrides="{" "'trainer.cuda_device': -1, " "'trainer.use_amp': false, " "'trainer.num_epochs': 2, " "}", ) # Patch max_instances in the multitask case patch_dataset_reader(params["dataset_reader"]) if "validation_dataset_reader" in params: # Unclear why this doesn't work for biattentive_classification_network if "biattentive_classification_network" not in path: patch_dataset_reader(params["validation_dataset_reader"]) # Patch any pretrained glove files with smaller fixtures. patch_glove(params) # Patch image_dir and feature_cache_dir keys so they point at our test fixtures instead. patch_image_dir(params) # Remove unnecessary keys. for key in ("random_seed", "numpy_seed", "pytorch_seed", "distributed"): if key in params: del params[key] # Just make sure the train loop can be instantiated. TrainModel.from_params(params=params, serialization_dir=self.TEST_DIR, local_rank=0)
allennlp-models-main
tests/training_config_test.py
import pathlib PROJECT_ROOT = (pathlib.Path(__file__).parent / "..").resolve() # pylint: disable=no-member TESTS_ROOT = PROJECT_ROOT / "tests" FIXTURES_ROOT = PROJECT_ROOT / "test_fixtures"
allennlp-models-main
tests/__init__.py
from allennlp_models import version class TestVersion: def test_version_exists(self): assert version.VERSION.startswith(version.VERSION_SHORT)
allennlp-models-main
tests/version_test.py
from typing import Dict, List import pytest import spacy from allennlp.common.testing import AllenNlpTestCase from allennlp_models.pretrained import get_pretrained_models, get_tasks, load_predictor # But default we don't run these tests @pytest.mark.pretrained_model_test class TestAllenNlpPretrainedModels(AllenNlpTestCase): def test_machine_comprehension(self): predictor = load_predictor("rc-bidaf") passage = """The Matrix is a 1999 science fiction action film written and directed by The Wachowskis, starring Keanu Reeves, Laurence Fishburne, Carrie-Anne Moss, Hugo Weaving, and Joe Pantoliano. It depicts a dystopian future in which reality as perceived by most humans is actually a simulated reality called "the Matrix", created by sentient machines to subdue the human population, while their bodies' heat and electrical activity are used as an energy source. Computer programmer Neo" learns this truth and is drawn into a rebellion against the machines, which involves other people who have been freed from the "dream world". """ question = "Who stars in The Matrix?" result = predictor.predict_json({"passage": passage, "question": question}) correct = ( "Keanu Reeves, Laurence Fishburne, Carrie-Anne Moss, Hugo Weaving, and Joe Pantoliano" ) assert correct == result["best_span_str"] def test_semantic_role_labeling(self): predictor = load_predictor("structured-prediction-srl-bert") sentence = "If you liked the music we were playing last night, you will absolutely love what we're playing tomorrow!" result = predictor.predict_json({"sentence": sentence}) assert result["words"] == [ "If", "you", "liked", "the", "music", "we", "were", "playing", "last", "night", ",", "you", "will", "absolutely", "love", "what", "we", "'re", "playing", "tomorrow", "!", ] assert result["verbs"] == [ { "verb": "liked", "description": "If [ARG0: you] [V: liked] [ARG1: the music we were playing last night] , you will absolutely love what we 're playing tomorrow !", "tags": [ "O", "B-ARG0", "B-V", "B-ARG1", "I-ARG1", "I-ARG1", "I-ARG1", "I-ARG1", "I-ARG1", "I-ARG1", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", ], }, { "verb": "were", "description": "If you liked the music we [V: were] playing last night , you will absolutely love what we 're playing tomorrow !", "tags": [ "O", "O", "O", "O", "O", "O", "B-V", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", ], }, { "verb": "playing", "description": "If you liked [ARG1: the music] [ARG0: we] were [V: playing] [ARGM-TMP: last night] , you will absolutely love what we 're playing tomorrow !", "tags": [ "O", "O", "O", "B-ARG1", "I-ARG1", "B-ARG0", "O", "B-V", "B-ARGM-TMP", "I-ARGM-TMP", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", ], }, { "verb": "will", "description": "If you liked the music we were playing last night , you [V: will] absolutely love what we 're playing tomorrow !", "tags": [ "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-V", "O", "O", "O", "O", "O", "O", "O", "O", ], }, { "verb": "love", "description": "[ARGM-ADV: If you liked the music we were playing last night] , [ARG0: you] [ARGM-MOD: will] [ARGM-ADV: absolutely] [V: love] [ARG1: what we 're playing tomorrow] !", "tags": [ "B-ARGM-ADV", "I-ARGM-ADV", "I-ARGM-ADV", "I-ARGM-ADV", "I-ARGM-ADV", "I-ARGM-ADV", "I-ARGM-ADV", "I-ARGM-ADV", "I-ARGM-ADV", "I-ARGM-ADV", "O", "B-ARG0", "B-ARGM-MOD", "B-ARGM-ADV", "B-V", "B-ARG1", "I-ARG1", "I-ARG1", "I-ARG1", "I-ARG1", "O", ], }, { "verb": "'re", "description": "If you liked the music we were playing last night , you will absolutely love what we [V: 're] playing tomorrow !", "tags": [ "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-V", "O", "O", "O", ], }, { "verb": "playing", "description": "If you liked the music we were playing last night , you will absolutely love [ARG1: what] [ARG0: we] 're [V: playing] [ARGM-TMP: tomorrow] !", "tags": [ "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-ARG1", "B-ARG0", "O", "B-V", "B-ARGM-TMP", "O", ], }, ] def test_textual_entailment(self): predictor = load_predictor("pair-classification-decomposable-attention-elmo") result = predictor.predict_json( { "premise": "An interplanetary spacecraft is in orbit around a gas giant's icy moon.", "hypothesis": "The spacecraft has the ability to travel between planets.", } ) assert result["label_probs"][0] > 0.7 # entailment result = predictor.predict_json( { "premise": "Two women are wandering along the shore drinking iced tea.", "hypothesis": "Two women are sitting on a blanket near some rocks talking about politics.", } ) assert result["label_probs"][1] > 0.8 # contradiction result = predictor.predict_json( { "premise": "A large, gray elephant walked beside a herd of zebras.", "hypothesis": "The elephant was lost.", } ) assert result["label_probs"][2] > 0.6 # neutral def test_coreference_resolution(self): predictor = load_predictor("coref-spanbert") document = "We 're not going to skimp on quality , but we are very focused to make next year . The only problem is that some of the fabrics are wearing out - since I was a newbie I skimped on some of the fabric and the poor quality ones are developing holes ." result = predictor.predict_json({"document": document}) print(result) assert result["clusters"] == [ [[0, 0], [10, 10]], [[33, 33], [37, 37]], # [[26, 27], [42, 43]], # Unfortunately the model misses this one. ] assert result["document"] == [ "We", "'re", "not", "going", "to", "skimp", "on", "quality", ",", "but", "we", # 10 "are", "very", "focused", "to", "make", "next", "year", ".", "The", "only", # 20 "problem", "is", "that", "some", "of", "the", "fabrics", "are", "wearing", "out", # 30 "-", "since", "I", "was", "a", "newbie", "I", "skimped", "on", "some", # 40 "of", "the", "fabric", "and", "the", "poor", "quality", "ones", "are", "developing", # 50 "holes", ".", ] @pytest.mark.filterwarnings("ignore::DeprecationWarning") def test_ner(self): predictor = load_predictor("tagging-elmo-crf-tagger") sentence = """Michael Jordan is a professor at Berkeley.""" result = predictor.predict_json({"sentence": sentence}) assert result["words"] == [ "Michael", "Jordan", "is", "a", "professor", "at", "Berkeley", ".", ] assert result["tags"] == ["B-PER", "L-PER", "O", "O", "O", "O", "U-LOC", "O"] @pytest.mark.skipif( not ("2.1" <= spacy.__version__ < "2.3"), reason="this model changed before and after 2.1 and 2.2", ) def test_constituency_parsing(self): predictor = load_predictor("structured-prediction-constituency-parser") sentence = """Pierre Vinken died aged 81; immortalised aged 61.""" result = predictor.predict_json({"sentence": sentence}) assert result["tokens"] == [ "Pierre", "Vinken", "died", "aged", "81", ";", "immortalised", "aged", "61", ".", ] assert ( result["trees"] == "(S (NP (NNP Pierre) (NNP Vinken)) (VP (VP (VBD died) (NP (JJ aged) (CD 81))) (, ;) (VP (VBN immortalised) (S (ADJP (JJ aged) (CD 61))))) (. .))" ) def test_dependency_parsing(self): predictor = load_predictor("structured-prediction-biaffine-parser") sentence = """He ate spaghetti with chopsticks.""" result = predictor.predict_json({"sentence": sentence}) # Note that this tree is incorrect. We are checking here that the decoded # tree is _actually a tree_ - in greedy decoding versions of the dependency # parser, this sentence has multiple heads. This test shouldn't really live here, # but it's very difficult to re-create a concrete example of this behaviour without # a trained dependency parser. assert result["words"] == ["He", "ate", "spaghetti", "with", "chopsticks", "."] assert result["pos"] == ["PRON", "VERB", "NOUN", "ADP", "NOUN", "PUNCT"] assert result["predicted_dependencies"] == [ "nsubj", "root", "dobj", "prep", "pobj", "punct", ] assert result["predicted_heads"] == [2, 0, 2, 2, 4, 2] def test_sentiment_analysis(self): predictor = load_predictor("roberta-sst") result = predictor.predict_json({"sentence": "This is a positive review."}) assert result["label"] == "1" def test_openie(self): predictor = load_predictor("structured-prediction-srl") result = predictor.predict_json( {"sentence": "I'm against picketing, but I don't know how to show it."} ) assert "verbs" in result assert "words" in result @pytest.mark.parametrize( "get_model_arg", ["tagging-fine-grained-crf-tagger", "tagging-fine-grained-transformer-crf-tagger"], ) def test_fine_grained_ner(self, get_model_arg): predictor = load_predictor(get_model_arg) text = """Dwayne Haskins passed for 251 yards and three touchdowns, and Urban Meyer finished his coaching career at Ohio State with a 28-23 victory after the Buckeyes held off Washington’s thrilling fourth-quarter comeback in the 105th Rose Bowl on Tuesday. Parris Campbell, Johnnie Dixon and Rashod Berry caught TD passes in the first half for the fifth-ranked Buckeyes (13-1), who took a 25-point lead into the fourth. But Myles Gaskin threw a touchdown pass and rushed for two more scores for the No. 9 Huskies (10-4), scoring from 2 yards out with 42 seconds left. The Buckeyes intercepted Jake Browning’s pass on the 2-point conversion attempt and then recovered the Huskies’ onside kick to wrap up the final game of Meyer’s seven-year tenure. β€œI’m a very blessed man,” Meyer said. β€œI’m blessed because of my family, [but] this team, this year, I love this group as much as any I’ve ever had.”""" result = predictor.predict_json({"sentence": text}) # Just assert that we predicted something better than all-O. assert len(frozenset(result["tags"])) > 1 def test_transformer_qa(self): predictor = load_predictor("rc-transformer-qa") passage = ( "The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were " "the people who in the 10th and 11th centuries gave their name to Normandy, a region in France. " 'They were descended from Norse ("Norman" comes from "Norseman") raiders and pirates from Denmark, ' "Iceland and Norway who, under their leader Rollo, agreed to swear fealty to King Charles III of West Francia. " "Through generations of assimilation and mixing with the native Frankish and Roman-Gaulish populations, " "their descendants would gradually merge with the Carolingian-based cultures of West Francia. " "The distinct cultural and ethnic identity of the Normans emerged initially in the first half " "of the 10th century, and it continued to evolve over the succeeding centuries." ) question = "In what country is Normandy located?" result = predictor.predict(question, passage) assert result["best_span_str"] == "France" question = "Who gave their name to Normandy in the 1000's and 1100's" result = predictor.predict(question, passage) assert result["best_span_str"] == "" def test_vilbert_vqa(self): predictor = load_predictor("vqa-vilbert") result = predictor.predict( question="What game are they playing?", image="https://storage.googleapis.com/allennlp-public-data/vqav2/baseball.jpg", ) max_answer = max((prob, answer) for answer, prob in result["tokens"].items())[1] assert max_answer == "baseball" @pytest.mark.parametrize("model_id, model_card", get_pretrained_models().items()) def test_pretrained_models(self, model_id, model_card): assert model_card.model_usage.archive_file is not None models_without_training_configs = {"rc-nmn", "lm-next-token-lm-gpt2", "evaluate_rc-lerc"} if model_id not in models_without_training_configs: assert model_card.model_usage.training_config is not None assert model_card.display_name is not None assert model_card.model_details.description is not None assert model_card.model_details.short_description is not None if model_id not in ["rc-nmn"]: assert model_card.evaluation_data.dataset is not None assert model_card.training_data.dataset is not None assert model_card.metrics.model_performance_measures is not None if not model_id.startswith("lm") and not model_id.startswith("generation"): assert ( model_card.evaluation_data.dataset.processed_url is not None or model_card.evaluation_data.dataset.notes is not None ) @pytest.mark.parametrize("task_id, task_card", get_tasks().items()) def test_tasks(self, task_id, task_card): if task_card.examples is not None: assert isinstance(task_card.examples, List) or isinstance(task_card.examples, Dict)
allennlp-models-main
tests/pretrained_test.py
allennlp-models-main
tests/classification/__init__.py
allennlp-models-main
tests/classification/dataset_readers/__init__.py