python_code
stringlengths
0
91.3k
# --------------------------------------------------------------- # Taken from the following link as is from: # https://github.com/openai/guided-diffusion/blob/main/guided_diffusion/logger.py # # The license for the original version of this file can be # found in this directory (LICENSE_GUIDED_DIFFUSION). # --------------------------------------------------------------- """ Logger copied from OpenAI baselines to avoid extra RL-based dependencies: https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/logger.py """ import os import sys import shutil import os.path as osp import json import time import datetime import tempfile import warnings from collections import defaultdict from contextlib import contextmanager DEBUG = 10 INFO = 20 WARN = 30 ERROR = 40 DISABLED = 50 class KVWriter(object): def writekvs(self, kvs): raise NotImplementedError class SeqWriter(object): def writeseq(self, seq): raise NotImplementedError class HumanOutputFormat(KVWriter, SeqWriter): def __init__(self, filename_or_file): if isinstance(filename_or_file, str): self.file = open(filename_or_file, "wt") self.own_file = True else: assert hasattr(filename_or_file, "read"), ( "expected file or str, got %s" % filename_or_file ) self.file = filename_or_file self.own_file = False def writekvs(self, kvs): # Create strings for printing key2str = {} for (key, val) in sorted(kvs.items()): if hasattr(val, "__float__"): valstr = "%-8.3g" % val else: valstr = str(val) key2str[self._truncate(key)] = self._truncate(valstr) # Find max widths if len(key2str) == 0: print("WARNING: tried to write empty key-value dict") return else: keywidth = max(map(len, key2str.keys())) valwidth = max(map(len, key2str.values())) # Write out the data dashes = "-" * (keywidth + valwidth + 7) lines = [dashes] for (key, val) in sorted(key2str.items(), key=lambda kv: kv[0].lower()): lines.append( "| %s%s | %s%s |" % (key, " " * (keywidth - len(key)), val, " " * (valwidth - len(val))) ) lines.append(dashes) self.file.write("\n".join(lines) + "\n") # Flush the output to the file self.file.flush() def _truncate(self, s): maxlen = 30 return s[: maxlen - 3] + "..." if len(s) > maxlen else s def writeseq(self, seq): seq = list(seq) for (i, elem) in enumerate(seq): self.file.write(elem) if i < len(seq) - 1: # add space unless this is the last one self.file.write(" ") self.file.write("\n") self.file.flush() def close(self): if self.own_file: self.file.close() class JSONOutputFormat(KVWriter): def __init__(self, filename): self.file = open(filename, "wt") def writekvs(self, kvs): for k, v in sorted(kvs.items()): if hasattr(v, "dtype"): kvs[k] = float(v) self.file.write(json.dumps(kvs) + "\n") self.file.flush() def close(self): self.file.close() class CSVOutputFormat(KVWriter): def __init__(self, filename): self.file = open(filename, "w+t") self.keys = [] self.sep = "," def writekvs(self, kvs): # Add our current row to the history extra_keys = list(kvs.keys() - self.keys) extra_keys.sort() if extra_keys: self.keys.extend(extra_keys) self.file.seek(0) lines = self.file.readlines() self.file.seek(0) for (i, k) in enumerate(self.keys): if i > 0: self.file.write(",") self.file.write(k) self.file.write("\n") for line in lines[1:]: self.file.write(line[:-1]) self.file.write(self.sep * len(extra_keys)) self.file.write("\n") for (i, k) in enumerate(self.keys): if i > 0: self.file.write(",") v = kvs.get(k) if v is not None: self.file.write(str(v)) self.file.write("\n") self.file.flush() def close(self): self.file.close() class TensorBoardOutputFormat(KVWriter): """ Dumps key/value pairs into TensorBoard's numeric format. """ def __init__(self, dir): os.makedirs(dir, exist_ok=True) self.dir = dir self.step = 1 prefix = "events" path = osp.join(osp.abspath(dir), prefix) import tensorflow as tf from tensorflow.python import pywrap_tensorflow from tensorflow.core.util import event_pb2 from tensorflow.python.util import compat self.tf = tf self.event_pb2 = event_pb2 self.pywrap_tensorflow = pywrap_tensorflow self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path)) def writekvs(self, kvs): def summary_val(k, v): kwargs = {"tag": k, "simple_value": float(v)} return self.tf.Summary.Value(**kwargs) summary = self.tf.Summary(value=[summary_val(k, v) for k, v in kvs.items()]) event = self.event_pb2.Event(wall_time=time.time(), summary=summary) event.step = ( self.step ) # is there any reason why you'd want to specify the step? self.writer.WriteEvent(event) self.writer.Flush() self.step += 1 def close(self): if self.writer: self.writer.Close() self.writer = None def make_output_format(format, ev_dir, log_suffix=""): os.makedirs(ev_dir, exist_ok=True) if format == "stdout": return HumanOutputFormat(sys.stdout) elif format == "log": return HumanOutputFormat(osp.join(ev_dir, "log%s.txt" % log_suffix)) elif format == "json": return JSONOutputFormat(osp.join(ev_dir, "progress%s.json" % log_suffix)) elif format == "csv": return CSVOutputFormat(osp.join(ev_dir, "progress%s.csv" % log_suffix)) elif format == "tensorboard": return TensorBoardOutputFormat(osp.join(ev_dir, "tb%s" % log_suffix)) else: raise ValueError("Unknown format specified: %s" % (format,)) # ================================================================ # API # ================================================================ def logkv(key, val): """ Log a value of some diagnostic Call this once for each diagnostic quantity, each iteration If called many times, last value will be used. """ get_current().logkv(key, val) def logkv_mean(key, val): """ The same as logkv(), but if called many times, values averaged. """ get_current().logkv_mean(key, val) def logkvs(d): """ Log a dictionary of key-value pairs """ for (k, v) in d.items(): logkv(k, v) def dumpkvs(): """ Write all of the diagnostics from the current iteration """ return get_current().dumpkvs() def getkvs(): return get_current().name2val def log(*args, level=INFO): """ Write the sequence of args, with no separators, to the console and output files (if you've configured an output file). """ get_current().log(*args, level=level) def debug(*args): log(*args, level=DEBUG) def info(*args): log(*args, level=INFO) def warn(*args): log(*args, level=WARN) def error(*args): log(*args, level=ERROR) def set_level(level): """ Set logging threshold on current logger. """ get_current().set_level(level) def set_comm(comm): get_current().set_comm(comm) def get_dir(): """ Get directory that log files are being written to. will be None if there is no output directory (i.e., if you didn't call start) """ return get_current().get_dir() record_tabular = logkv dump_tabular = dumpkvs @contextmanager def profile_kv(scopename): logkey = "wait_" + scopename tstart = time.time() try: yield finally: get_current().name2val[logkey] += time.time() - tstart def profile(n): """ Usage: @profile("my_func") def my_func(): code """ def decorator_with_name(func): def func_wrapper(*args, **kwargs): with profile_kv(n): return func(*args, **kwargs) return func_wrapper return decorator_with_name # ================================================================ # Backend # ================================================================ def get_current(): if Logger.CURRENT is None: _configure_default_logger() return Logger.CURRENT class Logger(object): DEFAULT = None # A logger with no output files. (See right below class definition) # So that you can still log to the terminal without setting up any output files CURRENT = None # Current logger being used by the free functions above def __init__(self, dir, output_formats, comm=None): self.name2val = defaultdict(float) # values this iteration self.name2cnt = defaultdict(int) self.level = INFO self.dir = dir self.output_formats = output_formats self.comm = comm # Logging API, forwarded # ---------------------------------------- def logkv(self, key, val): self.name2val[key] = val def logkv_mean(self, key, val): oldval, cnt = self.name2val[key], self.name2cnt[key] self.name2val[key] = oldval * cnt / (cnt + 1) + val / (cnt + 1) self.name2cnt[key] = cnt + 1 def dumpkvs(self): if self.comm is None: d = self.name2val else: d = mpi_weighted_mean( self.comm, { name: (val, self.name2cnt.get(name, 1)) for (name, val) in self.name2val.items() }, ) if self.comm.rank != 0: d["dummy"] = 1 # so we don't get a warning about empty dict out = d.copy() # Return the dict for unit testing purposes for fmt in self.output_formats: if isinstance(fmt, KVWriter): fmt.writekvs(d) self.name2val.clear() self.name2cnt.clear() return out def log(self, *args, level=INFO): if self.level <= level: self._do_log(args) # Configuration # ---------------------------------------- def set_level(self, level): self.level = level def set_comm(self, comm): self.comm = comm def get_dir(self): return self.dir def close(self): for fmt in self.output_formats: fmt.close() # Misc # ---------------------------------------- def _do_log(self, args): for fmt in self.output_formats: if isinstance(fmt, SeqWriter): fmt.writeseq(map(str, args)) def get_rank_without_mpi_import(): # check environment variables here instead of importing mpi4py # to avoid calling MPI_Init() when this module is imported for varname in ["PMI_RANK", "OMPI_COMM_WORLD_RANK"]: if varname in os.environ: return int(os.environ[varname]) return 0 def mpi_weighted_mean(comm, local_name2valcount): """ Copied from: https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/common/mpi_util.py#L110 Perform a weighted average over dicts that are each on a different node Input: local_name2valcount: dict mapping key -> (value, count) Returns: key -> mean """ all_name2valcount = comm.gather(local_name2valcount) if comm.rank == 0: name2sum = defaultdict(float) name2count = defaultdict(float) for n2vc in all_name2valcount: for (name, (val, count)) in n2vc.items(): try: val = float(val) except ValueError: if comm.rank == 0: warnings.warn( "WARNING: tried to compute mean on non-float {}={}".format( name, val ) ) else: name2sum[name] += val * count name2count[name] += count return {name: name2sum[name] / name2count[name] for name in name2sum} else: return {} def configure(dir=None, format_strs=None, comm=None, log_suffix=""): """ If comm is provided, average all numerical stats across that comm """ if dir is None: dir = os.getenv("OPENAI_LOGDIR") if dir is None: dir = osp.join( tempfile.gettempdir(), datetime.datetime.now().strftime("openai-%Y-%m-%d-%H-%M-%S-%f"), ) assert isinstance(dir, str) dir = os.path.expanduser(dir) os.makedirs(os.path.expanduser(dir), exist_ok=True) rank = get_rank_without_mpi_import() if rank > 0: log_suffix = log_suffix + "-rank%03i" % rank if format_strs is None: if rank == 0: format_strs = os.getenv("OPENAI_LOG_FORMAT", "stdout,log,csv").split(",") else: format_strs = os.getenv("OPENAI_LOG_FORMAT_MPI", "log").split(",") format_strs = filter(None, format_strs) output_formats = [make_output_format(f, dir, log_suffix) for f in format_strs] Logger.CURRENT = Logger(dir=dir, output_formats=output_formats, comm=comm) if output_formats: log("Logging to %s" % dir) def _configure_default_logger(): configure() Logger.DEFAULT = Logger.CURRENT def reset(): if Logger.CURRENT is not Logger.DEFAULT: Logger.CURRENT.close() Logger.CURRENT = Logger.DEFAULT log("Reset logger") @contextmanager def scoped_configure(dir=None, format_strs=None, comm=None): prevlogger = Logger.CURRENT configure(dir=dir, format_strs=format_strs, comm=comm) try: yield finally: Logger.CURRENT.close() Logger.CURRENT = prevlogger
# --------------------------------------------------------------- # Taken from the following link as is from: # https://github.com/openai/guided-diffusion/blob/main/guided_diffusion/train_util.py # # The license for the original version of this file can be # found in this directory (LICENSE_GUIDED_DIFFUSION). # --------------------------------------------------------------- import copy import functools import os import blobfile as bf import torch as th import torch.distributed as dist from torch.nn.parallel.distributed import DistributedDataParallel as DDP from torch.optim import AdamW from . import dist_util, logger from .fp16_util import MixedPrecisionTrainer from .nn import update_ema from .resample import LossAwareSampler, UniformSampler # For ImageNet experiments, this was a good default value. # We found that the lg_loss_scale quickly climbed to # 20-21 within the first ~1K steps of training. INITIAL_LOG_LOSS_SCALE = 20.0 class TrainLoop: def __init__( self, *, model, diffusion, data, batch_size, microbatch, lr, ema_rate, log_interval, save_interval, resume_checkpoint, use_fp16=False, fp16_scale_growth=1e-3, schedule_sampler=None, weight_decay=0.0, lr_anneal_steps=0, ): self.model = model self.diffusion = diffusion self.data = data self.batch_size = batch_size self.microbatch = microbatch if microbatch > 0 else batch_size self.lr = lr self.ema_rate = ( [ema_rate] if isinstance(ema_rate, float) else [float(x) for x in ema_rate.split(",")] ) self.log_interval = log_interval self.save_interval = save_interval self.resume_checkpoint = resume_checkpoint self.use_fp16 = use_fp16 self.fp16_scale_growth = fp16_scale_growth self.schedule_sampler = schedule_sampler or UniformSampler(diffusion) self.weight_decay = weight_decay self.lr_anneal_steps = lr_anneal_steps self.step = 0 self.resume_step = 0 self.global_batch = self.batch_size * dist.get_world_size() self.sync_cuda = th.cuda.is_available() self._load_and_sync_parameters() self.mp_trainer = MixedPrecisionTrainer( model=self.model, use_fp16=self.use_fp16, fp16_scale_growth=fp16_scale_growth, ) self.opt = AdamW( self.mp_trainer.master_params, lr=self.lr, weight_decay=self.weight_decay ) if self.resume_step: self._load_optimizer_state() # Model was resumed, either due to a restart or a checkpoint # being specified at the command line. self.ema_params = [ self._load_ema_parameters(rate) for rate in self.ema_rate ] else: self.ema_params = [ copy.deepcopy(self.mp_trainer.master_params) for _ in range(len(self.ema_rate)) ] if th.cuda.is_available(): self.use_ddp = True self.ddp_model = DDP( self.model, device_ids=[dist_util.dev()], output_device=dist_util.dev(), broadcast_buffers=False, bucket_cap_mb=128, find_unused_parameters=False, ) else: if dist.get_world_size() > 1: logger.warn( "Distributed training requires CUDA. " "Gradients will not be synchronized properly!" ) self.use_ddp = False self.ddp_model = self.model def _load_and_sync_parameters(self): resume_checkpoint = find_resume_checkpoint() or self.resume_checkpoint if resume_checkpoint: self.resume_step = parse_resume_step_from_filename(resume_checkpoint) if dist.get_rank() == 0: logger.log(f"loading model from checkpoint: {resume_checkpoint}...") self.model.load_state_dict( dist_util.load_state_dict( resume_checkpoint, map_location=dist_util.dev() ) ) dist_util.sync_params(self.model.parameters()) def _load_ema_parameters(self, rate): ema_params = copy.deepcopy(self.mp_trainer.master_params) main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step, rate) if ema_checkpoint: if dist.get_rank() == 0: logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...") state_dict = dist_util.load_state_dict( ema_checkpoint, map_location=dist_util.dev() ) ema_params = self.mp_trainer.state_dict_to_master_params(state_dict) dist_util.sync_params(ema_params) return ema_params def _load_optimizer_state(self): main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint opt_checkpoint = bf.join( bf.dirname(main_checkpoint), f"opt{self.resume_step:06}.pt" ) if bf.exists(opt_checkpoint): logger.log(f"loading optimizer state from checkpoint: {opt_checkpoint}") state_dict = dist_util.load_state_dict( opt_checkpoint, map_location=dist_util.dev() ) self.opt.load_state_dict(state_dict) def run_loop(self): while ( not self.lr_anneal_steps or self.step + self.resume_step < self.lr_anneal_steps ): batch, cond = next(self.data) self.run_step(batch, cond) if self.step % self.log_interval == 0: logger.dumpkvs() if self.step % self.save_interval == 0: self.save() # Run for a finite amount of time in integration tests. if os.environ.get("DIFFUSION_TRAINING_TEST", "") and self.step > 0: return self.step += 1 # Save the last checkpoint if it wasn't already saved. if (self.step - 1) % self.save_interval != 0: self.save() def run_step(self, batch, cond): self.forward_backward(batch, cond) took_step = self.mp_trainer.optimize(self.opt) if took_step: self._update_ema() self._anneal_lr() self.log_step() def forward_backward(self, batch, cond): self.mp_trainer.zero_grad() for i in range(0, batch.shape[0], self.microbatch): micro = batch[i : i + self.microbatch].to(dist_util.dev()) micro_cond = { k: v[i : i + self.microbatch].to(dist_util.dev()) for k, v in cond.items() } last_batch = (i + self.microbatch) >= batch.shape[0] t, weights = self.schedule_sampler.sample(micro.shape[0], dist_util.dev()) compute_losses = functools.partial( self.diffusion.training_losses, self.ddp_model, micro, t, model_kwargs=micro_cond, ) if last_batch or not self.use_ddp: losses = compute_losses() else: with self.ddp_model.no_sync(): losses = compute_losses() if isinstance(self.schedule_sampler, LossAwareSampler): self.schedule_sampler.update_with_local_losses( t, losses["loss"].detach() ) loss = (losses["loss"] * weights).mean() log_loss_dict( self.diffusion, t, {k: v * weights for k, v in losses.items()} ) self.mp_trainer.backward(loss) def _update_ema(self): for rate, params in zip(self.ema_rate, self.ema_params): update_ema(params, self.mp_trainer.master_params, rate=rate) def _anneal_lr(self): if not self.lr_anneal_steps: return frac_done = (self.step + self.resume_step) / self.lr_anneal_steps lr = self.lr * (1 - frac_done) for param_group in self.opt.param_groups: param_group["lr"] = lr def log_step(self): logger.logkv("step", self.step + self.resume_step) logger.logkv("samples", (self.step + self.resume_step + 1) * self.global_batch) def save(self): def save_checkpoint(rate, params): state_dict = self.mp_trainer.master_params_to_state_dict(params) if dist.get_rank() == 0: logger.log(f"saving model {rate}...") if not rate: filename = f"model{(self.step+self.resume_step):06d}.pt" else: filename = f"ema_{rate}_{(self.step+self.resume_step):06d}.pt" with bf.BlobFile(bf.join(get_blob_logdir(), filename), "wb") as f: th.save(state_dict, f) save_checkpoint(0, self.mp_trainer.master_params) for rate, params in zip(self.ema_rate, self.ema_params): save_checkpoint(rate, params) if dist.get_rank() == 0: with bf.BlobFile( bf.join(get_blob_logdir(), f"opt{(self.step+self.resume_step):06d}.pt"), "wb", ) as f: th.save(self.opt.state_dict(), f) dist.barrier() def parse_resume_step_from_filename(filename): """ Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the checkpoint's number of steps. """ split = filename.split("model") if len(split) < 2: return 0 split1 = split[-1].split(".")[0] try: return int(split1) except ValueError: return 0 def get_blob_logdir(): # You can change this to be a separate path to save checkpoints to # a blobstore or some external drive. return logger.get_dir() def find_resume_checkpoint(): # On your infrastructure, you may want to override this to automatically # discover the latest checkpoint on your blob storage, etc. return None def find_ema_checkpoint(main_checkpoint, step, rate): if main_checkpoint is None: return None filename = f"ema_{rate}_{(step):06d}.pt" path = bf.join(bf.dirname(main_checkpoint), filename) if bf.exists(path): return path return None def log_loss_dict(diffusion, ts, losses): for key, values in losses.items(): logger.logkv_mean(key, values.mean().item()) # Log the quantiles (four quartiles, in particular). for sub_t, sub_loss in zip(ts.cpu().numpy(), values.detach().cpu().numpy()): quartile = int(4 * sub_t / diffusion.num_timesteps) logger.logkv_mean(f"{key}_q{quartile}", sub_loss)
# --------------------------------------------------------------- # Taken from the following link as is from: # https://github.com/openai/guided-diffusion/blob/main/guided_diffusion/losses.py # # The license for the original version of this file can be # found in this directory (LICENSE_GUIDED_DIFFUSION). # --------------------------------------------------------------- """ Helpers for various likelihood-based losses. These are ported from the original Ho et al. diffusion models codebase: https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/utils.py """ import numpy as np import torch as th def normal_kl(mean1, logvar1, mean2, logvar2): """ Compute the KL divergence between two gaussians. Shapes are automatically broadcasted, so batches can be compared to scalars, among other use cases. """ tensor = None for obj in (mean1, logvar1, mean2, logvar2): if isinstance(obj, th.Tensor): tensor = obj break assert tensor is not None, "at least one argument must be a Tensor" # Force variances to be Tensors. Broadcasting helps convert scalars to # Tensors, but it does not work for th.exp(). logvar1, logvar2 = [ x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor) for x in (logvar1, logvar2) ] return 0.5 * ( -1.0 + logvar2 - logvar1 + th.exp(logvar1 - logvar2) + ((mean1 - mean2) ** 2) * th.exp(-logvar2) ) def approx_standard_normal_cdf(x): """ A fast approximation of the cumulative distribution function of the standard normal. """ return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3)))) def discretized_gaussian_log_likelihood(x, *, means, log_scales): """ Compute the log-likelihood of a Gaussian distribution discretizing to a given image. :param x: the target images. It is assumed that this was uint8 values, rescaled to the range [-1, 1]. :param means: the Gaussian mean Tensor. :param log_scales: the Gaussian log stddev Tensor. :return: a tensor like x of log probabilities (in nats). """ assert x.shape == means.shape == log_scales.shape centered_x = x - means inv_stdv = th.exp(-log_scales) plus_in = inv_stdv * (centered_x + 1.0 / 255.0) cdf_plus = approx_standard_normal_cdf(plus_in) min_in = inv_stdv * (centered_x - 1.0 / 255.0) cdf_min = approx_standard_normal_cdf(min_in) log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12)) log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12)) cdf_delta = cdf_plus - cdf_min log_probs = th.where( x < -0.999, log_cdf_plus, th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))), ) assert log_probs.shape == x.shape return log_probs
# --------------------------------------------------------------- # Taken from the following link as is from: # https://github.com/openai/guided-diffusion/blob/main/guided_diffusion/fp16_util.py # # The license for the original version of this file can be # found in this directory (LICENSE_GUIDED_DIFFUSION). # --------------------------------------------------------------- """ Helpers to train with 16-bit precision. """ import numpy as np import torch as th import torch.nn as nn from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors from . import logger INITIAL_LOG_LOSS_SCALE = 20.0 def convert_module_to_f16(l): """ Convert primitive modules to float16. """ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): l.weight.data = l.weight.data.half() if l.bias is not None: l.bias.data = l.bias.data.half() def convert_module_to_f32(l): """ Convert primitive modules to float32, undoing convert_module_to_f16(). """ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): l.weight.data = l.weight.data.float() if l.bias is not None: l.bias.data = l.bias.data.float() def make_master_params(param_groups_and_shapes): """ Copy model parameters into a (differently-shaped) list of full-precision parameters. """ master_params = [] for param_group, shape in param_groups_and_shapes: master_param = nn.Parameter( _flatten_dense_tensors( [param.detach().float() for (_, param) in param_group] ).view(shape) ) master_param.requires_grad = True master_params.append(master_param) return master_params def model_grads_to_master_grads(param_groups_and_shapes, master_params): """ Copy the gradients from the model parameters into the master parameters from make_master_params(). """ for master_param, (param_group, shape) in zip( master_params, param_groups_and_shapes ): master_param.grad = _flatten_dense_tensors( [param_grad_or_zeros(param) for (_, param) in param_group] ).view(shape) def master_params_to_model_params(param_groups_and_shapes, master_params): """ Copy the master parameter data back into the model parameters. """ # Without copying to a list, if a generator is passed, this will # silently not copy any parameters. for master_param, (param_group, _) in zip(master_params, param_groups_and_shapes): for (_, param), unflat_master_param in zip( param_group, unflatten_master_params(param_group, master_param.view(-1)) ): param.detach().copy_(unflat_master_param) def unflatten_master_params(param_group, master_param): return _unflatten_dense_tensors(master_param, [param for (_, param) in param_group]) def get_param_groups_and_shapes(named_model_params): named_model_params = list(named_model_params) scalar_vector_named_params = ( [(n, p) for (n, p) in named_model_params if p.ndim <= 1], (-1), ) matrix_named_params = ( [(n, p) for (n, p) in named_model_params if p.ndim > 1], (1, -1), ) return [scalar_vector_named_params, matrix_named_params] def master_params_to_state_dict( model, param_groups_and_shapes, master_params, use_fp16 ): if use_fp16: state_dict = model.state_dict() for master_param, (param_group, _) in zip( master_params, param_groups_and_shapes ): for (name, _), unflat_master_param in zip( param_group, unflatten_master_params(param_group, master_param.view(-1)) ): assert name in state_dict state_dict[name] = unflat_master_param else: state_dict = model.state_dict() for i, (name, _value) in enumerate(model.named_parameters()): assert name in state_dict state_dict[name] = master_params[i] return state_dict def state_dict_to_master_params(model, state_dict, use_fp16): if use_fp16: named_model_params = [ (name, state_dict[name]) for name, _ in model.named_parameters() ] param_groups_and_shapes = get_param_groups_and_shapes(named_model_params) master_params = make_master_params(param_groups_and_shapes) else: master_params = [state_dict[name] for name, _ in model.named_parameters()] return master_params def zero_master_grads(master_params): for param in master_params: param.grad = None def zero_grad(model_params): for param in model_params: # Taken from https://pytorch.org/docs/stable/_modules/torch/optim/optimizer.html#Optimizer.add_param_group if param.grad is not None: param.grad.detach_() param.grad.zero_() def param_grad_or_zeros(param): if param.grad is not None: return param.grad.data.detach() else: return th.zeros_like(param) class MixedPrecisionTrainer: def __init__( self, *, model, use_fp16=False, fp16_scale_growth=1e-3, initial_lg_loss_scale=INITIAL_LOG_LOSS_SCALE, ): self.model = model self.use_fp16 = use_fp16 self.fp16_scale_growth = fp16_scale_growth self.model_params = list(self.model.parameters()) self.master_params = self.model_params self.param_groups_and_shapes = None self.lg_loss_scale = initial_lg_loss_scale if self.use_fp16: self.param_groups_and_shapes = get_param_groups_and_shapes( self.model.named_parameters() ) self.master_params = make_master_params(self.param_groups_and_shapes) self.model.convert_to_fp16() def zero_grad(self): zero_grad(self.model_params) def backward(self, loss: th.Tensor): if self.use_fp16: loss_scale = 2 ** self.lg_loss_scale (loss * loss_scale).backward() else: loss.backward() def optimize(self, opt: th.optim.Optimizer): if self.use_fp16: return self._optimize_fp16(opt) else: return self._optimize_normal(opt) def _optimize_fp16(self, opt: th.optim.Optimizer): logger.logkv_mean("lg_loss_scale", self.lg_loss_scale) model_grads_to_master_grads(self.param_groups_and_shapes, self.master_params) grad_norm, param_norm = self._compute_norms(grad_scale=2 ** self.lg_loss_scale) if check_overflow(grad_norm): self.lg_loss_scale -= 1 logger.log(f"Found NaN, decreased lg_loss_scale to {self.lg_loss_scale}") zero_master_grads(self.master_params) return False logger.logkv_mean("grad_norm", grad_norm) logger.logkv_mean("param_norm", param_norm) self.master_params[0].grad.mul_(1.0 / (2 ** self.lg_loss_scale)) opt.step() zero_master_grads(self.master_params) master_params_to_model_params(self.param_groups_and_shapes, self.master_params) self.lg_loss_scale += self.fp16_scale_growth return True def _optimize_normal(self, opt: th.optim.Optimizer): grad_norm, param_norm = self._compute_norms() logger.logkv_mean("grad_norm", grad_norm) logger.logkv_mean("param_norm", param_norm) opt.step() return True def _compute_norms(self, grad_scale=1.0): grad_norm = 0.0 param_norm = 0.0 for p in self.master_params: with th.no_grad(): param_norm += th.norm(p, p=2, dtype=th.float32).item() ** 2 if p.grad is not None: grad_norm += th.norm(p.grad, p=2, dtype=th.float32).item() ** 2 return np.sqrt(grad_norm) / grad_scale, np.sqrt(param_norm) def master_params_to_state_dict(self, master_params): return master_params_to_state_dict( self.model, self.param_groups_and_shapes, master_params, self.use_fp16 ) def state_dict_to_master_params(self, state_dict): return state_dict_to_master_params(self.model, state_dict, self.use_fp16) def check_overflow(value): return (value == float("inf")) or (value == -float("inf")) or (value != value)
# --------------------------------------------------------------- # Taken from the following link as is from: # https://github.com/openai/guided-diffusion/blob/main/guided_diffusion/gaussian_diffusion.py # # The license for the original version of this file can be # found in this directory (LICENSE_GUIDED_DIFFUSION). # --------------------------------------------------------------- """ This code started out as a PyTorch port of Ho et al's diffusion models: https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules. """ import enum import math import numpy as np import torch as th from .nn import mean_flat from .losses import normal_kl, discretized_gaussian_log_likelihood def get_named_beta_schedule(schedule_name, num_diffusion_timesteps): """ Get a pre-defined beta schedule for the given name. The beta schedule library consists of beta schedules which remain similar in the limit of num_diffusion_timesteps. Beta schedules may be added, but should not be removed or changed once they are committed to maintain backwards compatibility. """ if schedule_name == "linear": # Linear schedule from Ho et al, extended to work for any number of # diffusion steps. scale = 1000 / num_diffusion_timesteps beta_start = scale * 0.0001 beta_end = scale * 0.02 return np.linspace( beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64 ) elif schedule_name == "cosine": return betas_for_alpha_bar( num_diffusion_timesteps, lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, ) else: raise NotImplementedError(f"unknown beta schedule: {schedule_name}") def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. :param num_diffusion_timesteps: the number of betas to produce. :param alpha_bar: a lambda that takes an argument t from 0 to 1 and produces the cumulative product of (1-beta) up to that part of the diffusion process. :param max_beta: the maximum beta to use; use values lower than 1 to prevent singularities. """ betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return np.array(betas) class ModelMeanType(enum.Enum): """ Which type of output the model predicts. """ PREVIOUS_X = enum.auto() # the model predicts x_{t-1} START_X = enum.auto() # the model predicts x_0 EPSILON = enum.auto() # the model predicts epsilon class ModelVarType(enum.Enum): """ What is used as the model's output variance. The LEARNED_RANGE option has been added to allow the model to predict values between FIXED_SMALL and FIXED_LARGE, making its job easier. """ LEARNED = enum.auto() FIXED_SMALL = enum.auto() FIXED_LARGE = enum.auto() LEARNED_RANGE = enum.auto() class LossType(enum.Enum): MSE = enum.auto() # use raw MSE loss (and KL when learning variances) RESCALED_MSE = ( enum.auto() ) # use raw MSE loss (with RESCALED_KL when learning variances) KL = enum.auto() # use the variational lower-bound RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB def is_vb(self): return self == LossType.KL or self == LossType.RESCALED_KL class GaussianDiffusion: """ Utilities for training and sampling diffusion models. Ported directly from here, and then adapted over time to further experimentation. https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42 :param betas: a 1-D numpy array of betas for each diffusion timestep, starting at T and going to 1. :param model_mean_type: a ModelMeanType determining what the model outputs. :param model_var_type: a ModelVarType determining how variance is output. :param loss_type: a LossType determining the loss function to use. :param rescale_timesteps: if True, pass floating point timesteps into the model so that they are always scaled like in the original paper (0 to 1000). """ def __init__( self, *, betas, model_mean_type, model_var_type, loss_type, rescale_timesteps=False, ): self.model_mean_type = model_mean_type self.model_var_type = model_var_type self.loss_type = loss_type self.rescale_timesteps = rescale_timesteps # Use float64 for accuracy. betas = np.array(betas, dtype=np.float64) self.betas = betas assert len(betas.shape) == 1, "betas must be 1-D" assert (betas > 0).all() and (betas <= 1).all() self.num_timesteps = int(betas.shape[0]) alphas = 1.0 - betas self.alphas_cumprod = np.cumprod(alphas, axis=0) self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) # calculations for diffusion q(x_t | x_{t-1}) and others self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) # calculations for posterior q(x_{t-1} | x_t, x_0) self.posterior_variance = ( betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) ) # log calculation clipped because the posterior variance is 0 at the # beginning of the diffusion chain. self.posterior_log_variance_clipped = np.log( np.append(self.posterior_variance[1], self.posterior_variance[1:]) ) self.posterior_mean_coef1 = ( betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) ) self.posterior_mean_coef2 = ( (1.0 - self.alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - self.alphas_cumprod) ) def q_mean_variance(self, x_start, t): """ Get the distribution q(x_t | x_0). :param x_start: the [N x C x ...] tensor of noiseless inputs. :param t: the number of diffusion steps (minus 1). Here, 0 means one step. :return: A tuple (mean, variance, log_variance), all of x_start's shape. """ mean = ( _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start ) variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) log_variance = _extract_into_tensor( self.log_one_minus_alphas_cumprod, t, x_start.shape ) return mean, variance, log_variance def q_sample(self, x_start, t, noise=None): """ Diffuse the data for a given number of diffusion steps. In other words, sample from q(x_t | x_0). :param x_start: the initial data batch. :param t: the number of diffusion steps (minus 1). Here, 0 means one step. :param noise: if specified, the split-out normal noise. :return: A noisy version of x_start. """ if noise is None: noise = th.randn_like(x_start) assert noise.shape == x_start.shape return ( _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise ) def q_posterior_mean_variance(self, x_start, x_t, t): """ Compute the mean and variance of the diffusion posterior: q(x_{t-1} | x_t, x_0) """ assert x_start.shape == x_t.shape posterior_mean = ( _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t ) posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) posterior_log_variance_clipped = _extract_into_tensor( self.posterior_log_variance_clipped, t, x_t.shape ) assert ( posterior_mean.shape[0] == posterior_variance.shape[0] == posterior_log_variance_clipped.shape[0] == x_start.shape[0] ) return posterior_mean, posterior_variance, posterior_log_variance_clipped def p_mean_variance( self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None ): """ Apply the model to get p(x_{t-1} | x_t), as well as a prediction of the initial x, x_0. :param model: the model, which takes a signal and a batch of timesteps as input. :param x: the [N x C x ...] tensor at time t. :param t: a 1-D Tensor of timesteps. :param clip_denoised: if True, clip the denoised signal into [-1, 1]. :param denoised_fn: if not None, a function which applies to the x_start prediction before it is used to sample. Applies before clip_denoised. :param model_kwargs: if not None, a dict of extra keyword arguments to pass to the model. This can be used for conditioning. :return: a dict with the following keys: - 'mean': the model mean output. - 'variance': the model variance output. - 'log_variance': the log of 'variance'. - 'pred_xstart': the prediction for x_0. """ if model_kwargs is None: model_kwargs = {} B, C = x.shape[:2] assert t.shape == (B,) model_output = model(x, self._scale_timesteps(t), **model_kwargs) if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]: assert model_output.shape == (B, C * 2, *x.shape[2:]) model_output, model_var_values = th.split(model_output, C, dim=1) if self.model_var_type == ModelVarType.LEARNED: model_log_variance = model_var_values model_variance = th.exp(model_log_variance) else: min_log = _extract_into_tensor( self.posterior_log_variance_clipped, t, x.shape ) max_log = _extract_into_tensor(np.log(self.betas), t, x.shape) # The model_var_values is [-1, 1] for [min_var, max_var]. frac = (model_var_values + 1) / 2 model_log_variance = frac * max_log + (1 - frac) * min_log model_variance = th.exp(model_log_variance) else: model_variance, model_log_variance = { # for fixedlarge, we set the initial (log-)variance like so # to get a better decoder log likelihood. ModelVarType.FIXED_LARGE: ( np.append(self.posterior_variance[1], self.betas[1:]), np.log(np.append(self.posterior_variance[1], self.betas[1:])), ), ModelVarType.FIXED_SMALL: ( self.posterior_variance, self.posterior_log_variance_clipped, ), }[self.model_var_type] model_variance = _extract_into_tensor(model_variance, t, x.shape) model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape) def process_xstart(x): if denoised_fn is not None: x = denoised_fn(x) if clip_denoised: return x.clamp(-1, 1) return x if self.model_mean_type == ModelMeanType.PREVIOUS_X: pred_xstart = process_xstart( self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output) ) model_mean = model_output elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]: if self.model_mean_type == ModelMeanType.START_X: pred_xstart = process_xstart(model_output) else: pred_xstart = process_xstart( self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output) ) model_mean, _, _ = self.q_posterior_mean_variance( x_start=pred_xstart, x_t=x, t=t ) else: raise NotImplementedError(self.model_mean_type) assert ( model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape ) return { "mean": model_mean, "variance": model_variance, "log_variance": model_log_variance, "pred_xstart": pred_xstart, } def _predict_xstart_from_eps(self, x_t, t, eps): assert x_t.shape == eps.shape return ( _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps ) def _predict_xstart_from_xprev(self, x_t, t, xprev): assert x_t.shape == xprev.shape return ( # (xprev - coef2*x_t) / coef1 _extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev - _extract_into_tensor( self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape ) * x_t ) def _predict_eps_from_xstart(self, x_t, t, pred_xstart): return ( _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) def _scale_timesteps(self, t): if self.rescale_timesteps: return t.float() * (1000.0 / self.num_timesteps) return t def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None): """ Compute the mean for the previous step, given a function cond_fn that computes the gradient of a conditional log probability with respect to x. In particular, cond_fn computes grad(log(p(y|x))), and we want to condition on y. This uses the conditioning strategy from Sohl-Dickstein et al. (2015). """ gradient = cond_fn(x, self._scale_timesteps(t), **model_kwargs) new_mean = ( p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float() ) return new_mean def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None): """ Compute what the p_mean_variance output would have been, should the model's score function be conditioned by cond_fn. See condition_mean() for details on cond_fn. Unlike condition_mean(), this instead uses the conditioning strategy from Song et al (2020). """ alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"]) eps = eps - (1 - alpha_bar).sqrt() * cond_fn( x, self._scale_timesteps(t), **model_kwargs ) out = p_mean_var.copy() out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps) out["mean"], _, _ = self.q_posterior_mean_variance( x_start=out["pred_xstart"], x_t=x, t=t ) return out def p_sample( self, model, x, t, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, ): """ Sample x_{t-1} from the model at the given timestep. :param model: the model to sample from. :param x: the current tensor at x_{t-1}. :param t: the value of t, starting at 0 for the first diffusion step. :param clip_denoised: if True, clip the x_start prediction to [-1, 1]. :param denoised_fn: if not None, a function which applies to the x_start prediction before it is used to sample. :param cond_fn: if not None, this is a gradient function that acts similarly to the model. :param model_kwargs: if not None, a dict of extra keyword arguments to pass to the model. This can be used for conditioning. :return: a dict containing the following keys: - 'sample': a random sample from the model. - 'pred_xstart': a prediction of x_0. """ out = self.p_mean_variance( model, x, t, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, ) noise = th.randn_like(x) nonzero_mask = ( (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) ) # no noise when t == 0 if cond_fn is not None: out["mean"] = self.condition_mean( cond_fn, out, x, t, model_kwargs=model_kwargs ) sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise return {"sample": sample, "pred_xstart": out["pred_xstart"]} def p_sample_loop( self, model, shape, noise=None, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, device=None, progress=False, ): """ Generate samples from the model. :param model: the model module. :param shape: the shape of the samples, (N, C, H, W). :param noise: if specified, the noise from the encoder to sample. Should be of the same shape as `shape`. :param clip_denoised: if True, clip x_start predictions to [-1, 1]. :param denoised_fn: if not None, a function which applies to the x_start prediction before it is used to sample. :param cond_fn: if not None, this is a gradient function that acts similarly to the model. :param model_kwargs: if not None, a dict of extra keyword arguments to pass to the model. This can be used for conditioning. :param device: if specified, the device to create the samples on. If not specified, use a model parameter's device. :param progress: if True, show a tqdm progress bar. :return: a non-differentiable batch of samples. """ final = None for sample in self.p_sample_loop_progressive( model, shape, noise=noise, clip_denoised=clip_denoised, denoised_fn=denoised_fn, cond_fn=cond_fn, model_kwargs=model_kwargs, device=device, progress=progress, ): final = sample return final["sample"] def p_sample_loop_progressive( self, model, shape, noise=None, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, device=None, progress=False, ): """ Generate samples from the model and yield intermediate samples from each timestep of diffusion. Arguments are the same as p_sample_loop(). Returns a generator over dicts, where each dict is the return value of p_sample(). """ if device is None: device = next(model.parameters()).device assert isinstance(shape, (tuple, list)) if noise is not None: img = noise else: img = th.randn(*shape, device=device) indices = list(range(self.num_timesteps))[::-1] if progress: # Lazy import so that we don't depend on tqdm. from tqdm.auto import tqdm indices = tqdm(indices) for i in indices: t = th.tensor([i] * shape[0], device=device) with th.no_grad(): out = self.p_sample( model, img, t, clip_denoised=clip_denoised, denoised_fn=denoised_fn, cond_fn=cond_fn, model_kwargs=model_kwargs, ) yield out img = out["sample"] def ddim_sample( self, model, x, t, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, eta=0.0, ): """ Sample x_{t-1} from the model using DDIM. Same usage as p_sample(). """ out = self.p_mean_variance( model, x, t, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, ) if cond_fn is not None: out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs) # Usually our model outputs epsilon, but we re-derive it # in case we used x_start or x_prev prediction. eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) sigma = ( eta * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) * th.sqrt(1 - alpha_bar / alpha_bar_prev) ) # Equation 12. noise = th.randn_like(x) mean_pred = ( out["pred_xstart"] * th.sqrt(alpha_bar_prev) + th.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps ) nonzero_mask = ( (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) ) # no noise when t == 0 sample = mean_pred + nonzero_mask * sigma * noise return {"sample": sample, "pred_xstart": out["pred_xstart"]} def ddim_reverse_sample( self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None, eta=0.0, ): """ Sample x_{t+1} from the model using DDIM reverse ODE. """ assert eta == 0.0, "Reverse ODE only for deterministic path" out = self.p_mean_variance( model, x, t, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, ) # Usually our model outputs epsilon, but we re-derive it # in case we used x_start or x_prev prediction. eps = ( _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x - out["pred_xstart"] ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape) alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape) # Equation 12. reversed mean_pred = ( out["pred_xstart"] * th.sqrt(alpha_bar_next) + th.sqrt(1 - alpha_bar_next) * eps ) return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]} def ddim_sample_loop( self, model, shape, noise=None, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, device=None, progress=False, eta=0.0, ): """ Generate samples from the model using DDIM. Same usage as p_sample_loop(). """ final = None for sample in self.ddim_sample_loop_progressive( model, shape, noise=noise, clip_denoised=clip_denoised, denoised_fn=denoised_fn, cond_fn=cond_fn, model_kwargs=model_kwargs, device=device, progress=progress, eta=eta, ): final = sample return final["sample"] def ddim_sample_loop_progressive( self, model, shape, noise=None, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, device=None, progress=False, eta=0.0, ): """ Use DDIM to sample from the model and yield intermediate samples from each timestep of DDIM. Same usage as p_sample_loop_progressive(). """ if device is None: device = next(model.parameters()).device assert isinstance(shape, (tuple, list)) if noise is not None: img = noise else: img = th.randn(*shape, device=device) indices = list(range(self.num_timesteps))[::-1] if progress: # Lazy import so that we don't depend on tqdm. from tqdm.auto import tqdm indices = tqdm(indices) for i in indices: t = th.tensor([i] * shape[0], device=device) with th.no_grad(): out = self.ddim_sample( model, img, t, clip_denoised=clip_denoised, denoised_fn=denoised_fn, cond_fn=cond_fn, model_kwargs=model_kwargs, eta=eta, ) yield out img = out["sample"] def _vb_terms_bpd( self, model, x_start, x_t, t, clip_denoised=True, model_kwargs=None ): """ Get a term for the variational lower-bound. The resulting units are bits (rather than nats, as one might expect). This allows for comparison to other papers. :return: a dict with the following keys: - 'output': a shape [N] tensor of NLLs or KLs. - 'pred_xstart': the x_0 predictions. """ true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance( x_start=x_start, x_t=x_t, t=t ) out = self.p_mean_variance( model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs ) kl = normal_kl( true_mean, true_log_variance_clipped, out["mean"], out["log_variance"] ) kl = mean_flat(kl) / np.log(2.0) decoder_nll = -discretized_gaussian_log_likelihood( x_start, means=out["mean"], log_scales=0.5 * out["log_variance"] ) assert decoder_nll.shape == x_start.shape decoder_nll = mean_flat(decoder_nll) / np.log(2.0) # At the first timestep return the decoder NLL, # otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t)) output = th.where((t == 0), decoder_nll, kl) return {"output": output, "pred_xstart": out["pred_xstart"]} def training_losses(self, model, x_start, t, model_kwargs=None, noise=None): """ Compute training losses for a single timestep. :param model: the model to evaluate loss on. :param x_start: the [N x C x ...] tensor of inputs. :param t: a batch of timestep indices. :param model_kwargs: if not None, a dict of extra keyword arguments to pass to the model. This can be used for conditioning. :param noise: if specified, the specific Gaussian noise to try to remove. :return: a dict with the key "loss" containing a tensor of shape [N]. Some mean or variance settings may also have other keys. """ if model_kwargs is None: model_kwargs = {} if noise is None: noise = th.randn_like(x_start) x_t = self.q_sample(x_start, t, noise=noise) terms = {} if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL: terms["loss"] = self._vb_terms_bpd( model=model, x_start=x_start, x_t=x_t, t=t, clip_denoised=False, model_kwargs=model_kwargs, )["output"] if self.loss_type == LossType.RESCALED_KL: terms["loss"] *= self.num_timesteps elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE: model_output = model(x_t, self._scale_timesteps(t), **model_kwargs) if self.model_var_type in [ ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE, ]: B, C = x_t.shape[:2] assert model_output.shape == (B, C * 2, *x_t.shape[2:]) model_output, model_var_values = th.split(model_output, C, dim=1) # Learn the variance using the variational bound, but don't let # it affect our mean prediction. frozen_out = th.cat([model_output.detach(), model_var_values], dim=1) terms["vb"] = self._vb_terms_bpd( model=lambda *args, r=frozen_out: r, x_start=x_start, x_t=x_t, t=t, clip_denoised=False, )["output"] if self.loss_type == LossType.RESCALED_MSE: # Divide by 1000 for equivalence with initial implementation. # Without a factor of 1/1000, the VB term hurts the MSE term. terms["vb"] *= self.num_timesteps / 1000.0 target = { ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance( x_start=x_start, x_t=x_t, t=t )[0], ModelMeanType.START_X: x_start, ModelMeanType.EPSILON: noise, }[self.model_mean_type] assert model_output.shape == target.shape == x_start.shape terms["mse"] = mean_flat((target - model_output) ** 2) if "vb" in terms: terms["loss"] = terms["mse"] + terms["vb"] else: terms["loss"] = terms["mse"] else: raise NotImplementedError(self.loss_type) return terms def _prior_bpd(self, x_start): """ Get the prior KL term for the variational lower-bound, measured in bits-per-dim. This term can't be optimized, as it only depends on the encoder. :param x_start: the [N x C x ...] tensor of inputs. :return: a batch of [N] KL values (in bits), one per batch element. """ batch_size = x_start.shape[0] t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) kl_prior = normal_kl( mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0 ) return mean_flat(kl_prior) / np.log(2.0) def calc_bpd_loop(self, model, x_start, clip_denoised=True, model_kwargs=None): """ Compute the entire variational lower-bound, measured in bits-per-dim, as well as other related quantities. :param model: the model to evaluate loss on. :param x_start: the [N x C x ...] tensor of inputs. :param clip_denoised: if True, clip denoised samples. :param model_kwargs: if not None, a dict of extra keyword arguments to pass to the model. This can be used for conditioning. :return: a dict containing the following keys: - total_bpd: the total variational lower-bound, per batch element. - prior_bpd: the prior term in the lower-bound. - vb: an [N x T] tensor of terms in the lower-bound. - xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep. - mse: an [N x T] tensor of epsilon MSEs for each timestep. """ device = x_start.device batch_size = x_start.shape[0] vb = [] xstart_mse = [] mse = [] for t in list(range(self.num_timesteps))[::-1]: t_batch = th.tensor([t] * batch_size, device=device) noise = th.randn_like(x_start) x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise) # Calculate VLB term at the current timestep with th.no_grad(): out = self._vb_terms_bpd( model, x_start=x_start, x_t=x_t, t=t_batch, clip_denoised=clip_denoised, model_kwargs=model_kwargs, ) vb.append(out["output"]) xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2)) eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"]) mse.append(mean_flat((eps - noise) ** 2)) vb = th.stack(vb, dim=1) xstart_mse = th.stack(xstart_mse, dim=1) mse = th.stack(mse, dim=1) prior_bpd = self._prior_bpd(x_start) total_bpd = vb.sum(dim=1) + prior_bpd return { "total_bpd": total_bpd, "prior_bpd": prior_bpd, "vb": vb, "xstart_mse": xstart_mse, "mse": mse, } def _extract_into_tensor(arr, timesteps, broadcast_shape): """ Extract values from a 1-D numpy array for a batch of indices. :param arr: the 1-D numpy array. :param timesteps: a tensor of indices into the array to extract. :param broadcast_shape: a larger shape of K dimensions with the batch dimension equal to the length of timesteps. :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. """ res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() while len(res.shape) < len(broadcast_shape): res = res[..., None] return res.expand(broadcast_shape)
# --------------------------------------------------------------- # Taken from the following link as is from: # https://github.com/openai/guided-diffusion/blob/main/guided_diffusion/dist_util.py # # The license for the original version of this file can be # found in this directory (LICENSE_GUIDED_DIFFUSION). # --------------------------------------------------------------- """ Helpers for distributed training. """ import io import os import socket import blobfile as bf from mpi4py import MPI import torch as th import torch.distributed as dist # Change this to reflect your cluster layout. # The GPU for a given rank is (rank % GPUS_PER_NODE). GPUS_PER_NODE = 8 SETUP_RETRY_COUNT = 3 def setup_dist(): """ Setup a distributed process group. """ if dist.is_initialized(): return os.environ["CUDA_VISIBLE_DEVICES"] = f"{MPI.COMM_WORLD.Get_rank() % GPUS_PER_NODE}" comm = MPI.COMM_WORLD backend = "gloo" if not th.cuda.is_available() else "nccl" if backend == "gloo": hostname = "localhost" else: hostname = socket.gethostbyname(socket.getfqdn()) os.environ["MASTER_ADDR"] = comm.bcast(hostname, root=0) os.environ["RANK"] = str(comm.rank) os.environ["WORLD_SIZE"] = str(comm.size) port = comm.bcast(_find_free_port(), root=0) os.environ["MASTER_PORT"] = str(port) dist.init_process_group(backend=backend, init_method="env://") def dev(): """ Get the device to use for torch.distributed. """ if th.cuda.is_available(): return th.device(f"cuda") return th.device("cpu") def load_state_dict(path, **kwargs): """ Load a PyTorch file without redundant fetches across MPI ranks. """ chunk_size = 2 ** 30 # MPI has a relatively small size limit if MPI.COMM_WORLD.Get_rank() == 0: with bf.BlobFile(path, "rb") as f: data = f.read() num_chunks = len(data) // chunk_size if len(data) % chunk_size: num_chunks += 1 MPI.COMM_WORLD.bcast(num_chunks) for i in range(0, len(data), chunk_size): MPI.COMM_WORLD.bcast(data[i : i + chunk_size]) else: num_chunks = MPI.COMM_WORLD.bcast(None) data = bytes() for _ in range(num_chunks): data += MPI.COMM_WORLD.bcast(None) return th.load(io.BytesIO(data), **kwargs) def sync_params(params): """ Synchronize a sequence of Tensors across ranks from rank 0. """ for p in params: with th.no_grad(): dist.broadcast(p, 0) def _find_free_port(): try: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(("", 0)) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) return s.getsockname()[1] finally: s.close()
# --------------------------------------------------------------- # Taken from the following link as is from: # https://github.com/yang-song/score_sde_pytorch/blob/main/sde_lib.py # # The license for the original version of this file can be # found in this directory (LICENSE_SCORE_SDE). # --------------------------------------------------------------- """Abstract SDE classes, Reverse SDE, and VE/VP SDEs.""" import abc import torch import numpy as np class SDE(abc.ABC): """SDE abstract class. Functions are designed for a mini-batch of inputs.""" def __init__(self, N): """Construct an SDE. Args: N: number of discretization time steps. """ super().__init__() self.N = N @property @abc.abstractmethod def T(self): """End time of the SDE.""" pass @abc.abstractmethod def sde(self, x, t): pass @abc.abstractmethod def marginal_prob(self, x, t): """Parameters to determine the marginal distribution of the SDE, $p_t(x)$.""" pass @abc.abstractmethod def prior_sampling(self, shape): """Generate one sample from the prior distribution, $p_T(x)$.""" pass @abc.abstractmethod def prior_logp(self, z): """Compute log-density of the prior distribution. Useful for computing the log-likelihood via probability flow ODE. Args: z: latent code Returns: log probability density """ pass def discretize(self, x, t): """Discretize the SDE in the form: x_{i+1} = x_i + f_i(x_i) + G_i z_i. Useful for reverse diffusion sampling and probabiliy flow sampling. Defaults to Euler-Maruyama discretization. Args: x: a torch tensor t: a torch float representing the time step (from 0 to `self.T`) Returns: f, G """ dt = 1 / self.N drift, diffusion = self.sde(x, t) f = drift * dt G = diffusion * torch.sqrt(torch.tensor(dt, device=t.device)) return f, G def reverse(self, score_fn, probability_flow=False): """Create the reverse-time SDE/ODE. Args: score_fn: A time-dependent score-based model that takes x and t and returns the score. probability_flow: If `True`, create the reverse-time ODE used for probability flow sampling. """ N = self.N T = self.T sde_fn = self.sde discretize_fn = self.discretize # Build the class for reverse-time SDE. class RSDE(self.__class__): def __init__(self): self.N = N self.probability_flow = probability_flow @property def T(self): return T def sde(self, x, t): """Create the drift and diffusion functions for the reverse SDE/ODE.""" drift, diffusion = sde_fn(x, t) score = score_fn(x, t) drift = drift - diffusion[:, None, None, None] ** 2 * score * (0.5 if self.probability_flow else 1.) # Set the diffusion function to zero for ODEs. diffusion = 0. if self.probability_flow else diffusion return drift, diffusion def discretize(self, x, t): """Create discretized iteration rules for the reverse diffusion sampler.""" f, G = discretize_fn(x, t) rev_f = f - G[:, None, None, None] ** 2 * score_fn(x, t) * (0.5 if self.probability_flow else 1.) rev_G = torch.zeros_like(G) if self.probability_flow else G return rev_f, rev_G return RSDE() class VPSDE(SDE): def __init__(self, beta_min=0.1, beta_max=20, N=1000): """Construct a Variance Preserving SDE. Args: beta_min: value of beta(0) beta_max: value of beta(1) N: number of discretization steps """ super().__init__(N) self.beta_0 = beta_min self.beta_1 = beta_max self.N = N self.discrete_betas = torch.linspace(beta_min / N, beta_max / N, N) self.alphas = 1. - self.discrete_betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod) self.sqrt_1m_alphas_cumprod = torch.sqrt(1. - self.alphas_cumprod) @property def T(self): return 1 def sde(self, x, t): beta_t = self.beta_0 + t * (self.beta_1 - self.beta_0) drift = -0.5 * beta_t[:, None, None, None] * x diffusion = torch.sqrt(beta_t) return drift, diffusion def marginal_prob(self, x, t): log_mean_coeff = -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 mean = torch.exp(log_mean_coeff[:, None, None, None]) * x std = torch.sqrt(1. - torch.exp(2. * log_mean_coeff)) return mean, std def prior_sampling(self, shape): return torch.randn(*shape) def prior_logp(self, z): shape = z.shape N = np.prod(shape[1:]) logps = -N / 2. * np.log(2 * np.pi) - torch.sum(z ** 2, dim=(1, 2, 3)) / 2. return logps def discretize(self, x, t): """DDPM discretization.""" timestep = (t * (self.N - 1) / self.T).long() beta = self.discrete_betas.to(x.device)[timestep] alpha = self.alphas.to(x.device)[timestep] sqrt_beta = torch.sqrt(beta) f = torch.sqrt(alpha)[:, None, None, None] * x - x G = sqrt_beta return f, G class subVPSDE(SDE): def __init__(self, beta_min=0.1, beta_max=20, N=1000): """Construct the sub-VP SDE that excels at likelihoods. Args: beta_min: value of beta(0) beta_max: value of beta(1) N: number of discretization steps """ super().__init__(N) self.beta_0 = beta_min self.beta_1 = beta_max self.N = N @property def T(self): return 1 def sde(self, x, t): beta_t = self.beta_0 + t * (self.beta_1 - self.beta_0) drift = -0.5 * beta_t[:, None, None, None] * x discount = 1. - torch.exp(-2 * self.beta_0 * t - (self.beta_1 - self.beta_0) * t ** 2) diffusion = torch.sqrt(beta_t * discount) return drift, diffusion def marginal_prob(self, x, t): log_mean_coeff = -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 mean = torch.exp(log_mean_coeff)[:, None, None, None] * x std = 1 - torch.exp(2. * log_mean_coeff) return mean, std def prior_sampling(self, shape): return torch.randn(*shape) def prior_logp(self, z): shape = z.shape N = np.prod(shape[1:]) return -N / 2. * np.log(2 * np.pi) - torch.sum(z ** 2, dim=(1, 2, 3)) / 2. class VESDE(SDE): def __init__(self, sigma_min=0.01, sigma_max=50, N=1000): """Construct a Variance Exploding SDE. Args: sigma_min: smallest sigma. sigma_max: largest sigma. N: number of discretization steps """ super().__init__(N) self.sigma_min = sigma_min self.sigma_max = sigma_max self.discrete_sigmas = torch.exp(torch.linspace(np.log(self.sigma_min), np.log(self.sigma_max), N)) self.N = N @property def T(self): return 1 def sde(self, x, t): sigma = self.sigma_min * (self.sigma_max / self.sigma_min) ** t drift = torch.zeros_like(x) diffusion = sigma * torch.sqrt(torch.tensor(2 * (np.log(self.sigma_max) - np.log(self.sigma_min)), device=t.device)) return drift, diffusion def marginal_prob(self, x, t): std = self.sigma_min * (self.sigma_max / self.sigma_min) ** t mean = x return mean, std def prior_sampling(self, shape): return torch.randn(*shape) * self.sigma_max def prior_logp(self, z): shape = z.shape N = np.prod(shape[1:]) return -N / 2. * np.log(2 * np.pi * self.sigma_max ** 2) - torch.sum(z ** 2, dim=(1, 2, 3)) / (2 * self.sigma_max ** 2) def discretize(self, x, t): """SMLD(NCSN) discretization.""" timestep = (t * (self.N - 1) / self.T).long() sigma = self.discrete_sigmas.to(t.device)[timestep] adjacent_sigma = torch.where(timestep == 0, torch.zeros_like(t), self.discrete_sigmas[timestep - 1].to(t.device)) f = torch.zeros_like(x) G = torch.sqrt(sigma ** 2 - adjacent_sigma ** 2) return f, G
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: skip-file # pytype: skip-file """Various sampling methods.""" import functools import torch import numpy as np import abc from .models.utils import from_flattened_numpy, to_flattened_numpy, get_score_fn from scipy import integrate from . import sde_lib from .models import utils as mutils _CORRECTORS = {} _PREDICTORS = {} def register_predictor(cls=None, *, name=None): """A decorator for registering predictor classes.""" def _register(cls): if name is None: local_name = cls.__name__ else: local_name = name if local_name in _PREDICTORS: raise ValueError(f'Already registered model with name: {local_name}') _PREDICTORS[local_name] = cls return cls if cls is None: return _register else: return _register(cls) def register_corrector(cls=None, *, name=None): """A decorator for registering corrector classes.""" def _register(cls): if name is None: local_name = cls.__name__ else: local_name = name if local_name in _CORRECTORS: raise ValueError(f'Already registered model with name: {local_name}') _CORRECTORS[local_name] = cls return cls if cls is None: return _register else: return _register(cls) def get_predictor(name): return _PREDICTORS[name] def get_corrector(name): return _CORRECTORS[name] def get_sampling_fn(config, sde, shape, inverse_scaler, eps): """Create a sampling function. Args: config: A `ml_collections.ConfigDict` object that contains all configuration information. sde: A `sde_lib.SDE` object that represents the forward SDE. shape: A sequence of integers representing the expected shape of a single sample. inverse_scaler: The inverse data normalizer function. eps: A `float` number. The reverse-time SDE is only integrated to `eps` for numerical stability. Returns: A function that takes random states and a replicated training state and outputs samples with the trailing dimensions matching `shape`. """ sampler_name = config.sampling.method # Probability flow ODE sampling with black-box ODE solvers if sampler_name.lower() == 'ode': sampling_fn = get_ode_sampler(sde=sde, shape=shape, inverse_scaler=inverse_scaler, denoise=config.sampling.noise_removal, eps=eps, device=config.device) # Predictor-Corrector sampling. Predictor-only and Corrector-only samplers are special cases. elif sampler_name.lower() == 'pc': predictor = get_predictor(config.sampling.predictor.lower()) corrector = get_corrector(config.sampling.corrector.lower()) sampling_fn = get_pc_sampler(sde=sde, shape=shape, predictor=predictor, corrector=corrector, inverse_scaler=inverse_scaler, snr=config.sampling.snr, n_steps=config.sampling.n_steps_each, probability_flow=config.sampling.probability_flow, continuous=config.training.continuous, denoise=config.sampling.noise_removal, eps=eps, device=config.device) else: raise ValueError(f"Sampler name {sampler_name} unknown.") return sampling_fn class Predictor(abc.ABC): """The abstract class for a predictor algorithm.""" def __init__(self, sde, score_fn, probability_flow=False): super().__init__() self.sde = sde # Compute the reverse SDE/ODE self.rsde = sde.reverse(score_fn, probability_flow) self.score_fn = score_fn @abc.abstractmethod def update_fn(self, x, t): """One update of the predictor. Args: x: A PyTorch tensor representing the current state t: A Pytorch tensor representing the current time step. Returns: x: A PyTorch tensor of the next state. x_mean: A PyTorch tensor. The next state without random noise. Useful for denoising. """ pass class Corrector(abc.ABC): """The abstract class for a corrector algorithm.""" def __init__(self, sde, score_fn, snr, n_steps): super().__init__() self.sde = sde self.score_fn = score_fn self.snr = snr self.n_steps = n_steps @abc.abstractmethod def update_fn(self, x, t): """One update of the corrector. Args: x: A PyTorch tensor representing the current state t: A PyTorch tensor representing the current time step. Returns: x: A PyTorch tensor of the next state. x_mean: A PyTorch tensor. The next state without random noise. Useful for denoising. """ pass @register_predictor(name='euler_maruyama') class EulerMaruyamaPredictor(Predictor): def __init__(self, sde, score_fn, probability_flow=False): super().__init__(sde, score_fn, probability_flow) def update_fn(self, x, t): dt = -1. / self.rsde.N z = torch.randn_like(x) drift, diffusion = self.rsde.sde(x, t) x_mean = x + drift * dt x = x_mean + diffusion[:, None, None, None] * np.sqrt(-dt) * z return x, x_mean @register_predictor(name='reverse_diffusion') class ReverseDiffusionPredictor(Predictor): def __init__(self, sde, score_fn, probability_flow=False): super().__init__(sde, score_fn, probability_flow) def update_fn(self, x, t): f, G = self.rsde.discretize(x, t) z = torch.randn_like(x) x_mean = x - f x = x_mean + G[:, None, None, None] * z return x, x_mean @register_predictor(name='ancestral_sampling') class AncestralSamplingPredictor(Predictor): """The ancestral sampling predictor. Currently only supports VE/VP SDEs.""" def __init__(self, sde, score_fn, probability_flow=False): super().__init__(sde, score_fn, probability_flow) if not isinstance(sde, sde_lib.VPSDE) and not isinstance(sde, sde_lib.VESDE): raise NotImplementedError(f"SDE class {sde.__class__.__name__} not yet supported.") assert not probability_flow, "Probability flow not supported by ancestral sampling" def vesde_update_fn(self, x, t): sde = self.sde timestep = (t * (sde.N - 1) / sde.T).long() sigma = sde.discrete_sigmas[timestep] adjacent_sigma = torch.where(timestep == 0, torch.zeros_like(t), sde.discrete_sigmas.to(t.device)[timestep - 1]) score = self.score_fn(x, t) x_mean = x + score * (sigma ** 2 - adjacent_sigma ** 2)[:, None, None, None] std = torch.sqrt((adjacent_sigma ** 2 * (sigma ** 2 - adjacent_sigma ** 2)) / (sigma ** 2)) noise = torch.randn_like(x) x = x_mean + std[:, None, None, None] * noise return x, x_mean def vpsde_update_fn(self, x, t): sde = self.sde timestep = (t * (sde.N - 1) / sde.T).long() beta = sde.discrete_betas.to(t.device)[timestep] score = self.score_fn(x, t) x_mean = (x + beta[:, None, None, None] * score) / torch.sqrt(1. - beta)[:, None, None, None] noise = torch.randn_like(x) x = x_mean + torch.sqrt(beta)[:, None, None, None] * noise return x, x_mean def update_fn(self, x, t): if isinstance(self.sde, sde_lib.VESDE): return self.vesde_update_fn(x, t) elif isinstance(self.sde, sde_lib.VPSDE): return self.vpsde_update_fn(x, t) @register_predictor(name='none') class NonePredictor(Predictor): """An empty predictor that does nothing.""" def __init__(self, sde, score_fn, probability_flow=False): pass def update_fn(self, x, t): return x, x @register_corrector(name='langevin') class LangevinCorrector(Corrector): def __init__(self, sde, score_fn, snr, n_steps): super().__init__(sde, score_fn, snr, n_steps) if not isinstance(sde, sde_lib.VPSDE) \ and not isinstance(sde, sde_lib.VESDE) \ and not isinstance(sde, sde_lib.subVPSDE): raise NotImplementedError(f"SDE class {sde.__class__.__name__} not yet supported.") def update_fn(self, x, t): sde = self.sde score_fn = self.score_fn n_steps = self.n_steps target_snr = self.snr if isinstance(sde, sde_lib.VPSDE) or isinstance(sde, sde_lib.subVPSDE): timestep = (t * (sde.N - 1) / sde.T).long() alpha = sde.alphas.to(t.device)[timestep] else: alpha = torch.ones_like(t) for i in range(n_steps): grad = score_fn(x, t) noise = torch.randn_like(x) grad_norm = torch.norm(grad.reshape(grad.shape[0], -1), dim=-1).mean() noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() step_size = (target_snr * noise_norm / grad_norm) ** 2 * 2 * alpha x_mean = x + step_size[:, None, None, None] * grad x = x_mean + torch.sqrt(step_size * 2)[:, None, None, None] * noise return x, x_mean @register_corrector(name='ald') class AnnealedLangevinDynamics(Corrector): """The original annealed Langevin dynamics predictor in NCSN/NCSNv2. We include this corrector only for completeness. It was not directly used in our paper. """ def __init__(self, sde, score_fn, snr, n_steps): super().__init__(sde, score_fn, snr, n_steps) if not isinstance(sde, sde_lib.VPSDE) \ and not isinstance(sde, sde_lib.VESDE) \ and not isinstance(sde, sde_lib.subVPSDE): raise NotImplementedError(f"SDE class {sde.__class__.__name__} not yet supported.") def update_fn(self, x, t): sde = self.sde score_fn = self.score_fn n_steps = self.n_steps target_snr = self.snr if isinstance(sde, sde_lib.VPSDE) or isinstance(sde, sde_lib.subVPSDE): timestep = (t * (sde.N - 1) / sde.T).long() alpha = sde.alphas.to(t.device)[timestep] else: alpha = torch.ones_like(t) std = self.sde.marginal_prob(x, t)[1] for i in range(n_steps): grad = score_fn(x, t) noise = torch.randn_like(x) step_size = (target_snr * std) ** 2 * 2 * alpha x_mean = x + step_size[:, None, None, None] * grad x = x_mean + noise * torch.sqrt(step_size * 2)[:, None, None, None] return x, x_mean @register_corrector(name='none') class NoneCorrector(Corrector): """An empty corrector that does nothing.""" def __init__(self, sde, score_fn, snr, n_steps): pass def update_fn(self, x, t): return x, x def shared_predictor_update_fn(x, t, sde, model, predictor, probability_flow, continuous): """A wrapper that configures and returns the update function of predictors.""" score_fn = mutils.get_score_fn(sde, model, train=False, continuous=continuous) if predictor is None: # Corrector-only sampler predictor_obj = NonePredictor(sde, score_fn, probability_flow) else: predictor_obj = predictor(sde, score_fn, probability_flow) return predictor_obj.update_fn(x, t) def shared_corrector_update_fn(x, t, sde, model, corrector, continuous, snr, n_steps): """A wrapper tha configures and returns the update function of correctors.""" score_fn = mutils.get_score_fn(sde, model, train=False, continuous=continuous) if corrector is None: # Predictor-only sampler corrector_obj = NoneCorrector(sde, score_fn, snr, n_steps) else: corrector_obj = corrector(sde, score_fn, snr, n_steps) return corrector_obj.update_fn(x, t) def get_pc_sampler(sde, shape, predictor, corrector, inverse_scaler, snr, n_steps=1, probability_flow=False, continuous=False, denoise=True, eps=1e-3, device='cuda'): """Create a Predictor-Corrector (PC) sampler. Args: sde: An `sde_lib.SDE` object representing the forward SDE. shape: A sequence of integers. The expected shape of a single sample. predictor: A subclass of `sampling.Predictor` representing the predictor algorithm. corrector: A subclass of `sampling.Corrector` representing the corrector algorithm. inverse_scaler: The inverse data normalizer. snr: A `float` number. The signal-to-noise ratio for configuring correctors. n_steps: An integer. The number of corrector steps per predictor update. probability_flow: If `True`, solve the reverse-time probability flow ODE when running the predictor. continuous: `True` indicates that the score model was continuously trained. denoise: If `True`, add one-step denoising to the final samples. eps: A `float` number. The reverse-time SDE and ODE are integrated to `epsilon` to avoid numerical issues. device: PyTorch device. Returns: A sampling function that returns samples and the number of function evaluations during sampling. """ # Create predictor & corrector update functions predictor_update_fn = functools.partial(shared_predictor_update_fn, sde=sde, predictor=predictor, probability_flow=probability_flow, continuous=continuous) corrector_update_fn = functools.partial(shared_corrector_update_fn, sde=sde, corrector=corrector, continuous=continuous, snr=snr, n_steps=n_steps) def pc_sampler(model): """ The PC sampler funciton. Args: model: A score model. Returns: Samples, number of function evaluations. """ with torch.no_grad(): # Initial sample x = sde.prior_sampling(shape).to(device) timesteps = torch.linspace(sde.T, eps, sde.N, device=device) for i in range(sde.N): t = timesteps[i] vec_t = torch.ones(shape[0], device=t.device) * t x, x_mean = corrector_update_fn(x, vec_t, model=model) x, x_mean = predictor_update_fn(x, vec_t, model=model) return inverse_scaler(x_mean if denoise else x), sde.N * (n_steps + 1) return pc_sampler def get_ode_sampler(sde, shape, inverse_scaler, denoise=False, rtol=1e-5, atol=1e-5, method='RK45', eps=1e-3, device='cuda'): """Probability flow ODE sampler with the black-box ODE solver. Args: sde: An `sde_lib.SDE` object that represents the forward SDE. shape: A sequence of integers. The expected shape of a single sample. inverse_scaler: The inverse data normalizer. denoise: If `True`, add one-step denoising to final samples. rtol: A `float` number. The relative tolerance level of the ODE solver. atol: A `float` number. The absolute tolerance level of the ODE solver. method: A `str`. The algorithm used for the black-box ODE solver. See the documentation of `scipy.integrate.solve_ivp`. eps: A `float` number. The reverse-time SDE/ODE will be integrated to `eps` for numerical stability. device: PyTorch device. Returns: A sampling function that returns samples and the number of function evaluations during sampling. """ def denoise_update_fn(model, x): score_fn = get_score_fn(sde, model, train=False, continuous=True) # Reverse diffusion predictor for denoising predictor_obj = ReverseDiffusionPredictor(sde, score_fn, probability_flow=False) vec_eps = torch.ones(x.shape[0], device=x.device) * eps _, x = predictor_obj.update_fn(x, vec_eps) return x def drift_fn(model, x, t): """Get the drift function of the reverse-time SDE.""" score_fn = get_score_fn(sde, model, train=False, continuous=True) rsde = sde.reverse(score_fn, probability_flow=True) return rsde.sde(x, t)[0] def ode_sampler(model, z=None): """The probability flow ODE sampler with black-box ODE solver. Args: model: A score model. z: If present, generate samples from latent code `z`. Returns: samples, number of function evaluations. """ with torch.no_grad(): # Initial sample if z is None: # If not represent, sample the latent code from the prior distibution of the SDE. x = sde.prior_sampling(shape).to(device) else: x = z def ode_func(t, x): x = from_flattened_numpy(x, shape).to(device).type(torch.float32) vec_t = torch.ones(shape[0], device=x.device) * t drift = drift_fn(model, x, vec_t) return to_flattened_numpy(drift) # Black-box ODE solver for the probability flow ODE solution = integrate.solve_ivp(ode_func, (sde.T, eps), to_flattened_numpy(x), rtol=rtol, atol=atol, method=method) nfe = solution.nfev x = torch.tensor(solution.y[:, -1]).reshape(shape).to(device).type(torch.float32) # Denoising is equivalent to running one predictor step without adding noise if denoise: x = denoise_update_fn(model, x) x = inverse_scaler(x) return x, nfe return ode_sampler
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """All functions related to loss computation and optimization. """ import torch import torch.optim as optim import numpy as np from .models import utils as mutils from .sde_lib import VESDE, VPSDE def get_optimizer(config, params): """Returns a flax optimizer object based on `config`.""" if config.optim.optimizer == 'Adam': optimizer = optim.Adam(params, lr=config.optim.lr, betas=(config.optim.beta1, 0.999), eps=config.optim.eps, weight_decay=config.optim.weight_decay) else: raise NotImplementedError( f'Optimizer {config.optim.optimizer} not supported yet!') return optimizer def optimization_manager(config): """Returns an optimize_fn based on `config`.""" def optimize_fn(optimizer, params, step, lr=config.optim.lr, warmup=config.optim.warmup, grad_clip=config.optim.grad_clip): """Optimizes with warmup and gradient clipping (disabled if negative).""" if warmup > 0: for g in optimizer.param_groups: g['lr'] = lr * np.minimum(step / warmup, 1.0) if grad_clip >= 0: torch.nn.utils.clip_grad_norm_(params, max_norm=grad_clip) optimizer.step() return optimize_fn def get_sde_loss_fn(sde, train, reduce_mean=True, continuous=True, likelihood_weighting=True, eps=1e-5): """Create a loss function for training with arbirary SDEs. Args: sde: An `sde_lib.SDE` object that represents the forward SDE. train: `True` for training loss and `False` for evaluation loss. reduce_mean: If `True`, average the loss across data dimensions. Otherwise sum the loss across data dimensions. continuous: `True` indicates that the model is defined to take continuous time steps. Otherwise it requires ad-hoc interpolation to take continuous time steps. likelihood_weighting: If `True`, weight the mixture of score matching losses according to https://arxiv.org/abs/2101.09258; otherwise use the weighting recommended in our paper. eps: A `float` number. The smallest time step to sample from. Returns: A loss function. """ reduce_op = torch.mean if reduce_mean else lambda *args, **kwargs: 0.5 * torch.sum(*args, **kwargs) def loss_fn(model, batch): """Compute the loss function. Args: model: A score model. batch: A mini-batch of training data. Returns: loss: A scalar that represents the average loss value across the mini-batch. """ score_fn = mutils.get_score_fn(sde, model, train=train, continuous=continuous) t = torch.rand(batch.shape[0], device=batch.device) * (sde.T - eps) + eps z = torch.randn_like(batch) mean, std = sde.marginal_prob(batch, t) perturbed_data = mean + std[:, None, None, None] * z score = score_fn(perturbed_data, t) if not likelihood_weighting: losses = torch.square(score * std[:, None, None, None] + z) losses = reduce_op(losses.reshape(losses.shape[0], -1), dim=-1) else: g2 = sde.sde(torch.zeros_like(batch), t)[1] ** 2 losses = torch.square(score + z / std[:, None, None, None]) losses = reduce_op(losses.reshape(losses.shape[0], -1), dim=-1) * g2 loss = torch.mean(losses) return loss return loss_fn def get_smld_loss_fn(vesde, train, reduce_mean=False): """Legacy code to reproduce previous results on SMLD(NCSN). Not recommended for new work.""" assert isinstance(vesde, VESDE), "SMLD training only works for VESDEs." # Previous SMLD models assume descending sigmas smld_sigma_array = torch.flip(vesde.discrete_sigmas, dims=(0,)) reduce_op = torch.mean if reduce_mean else lambda *args, **kwargs: 0.5 * torch.sum(*args, **kwargs) def loss_fn(model, batch): model_fn = mutils.get_model_fn(model, train=train) labels = torch.randint(0, vesde.N, (batch.shape[0],), device=batch.device) sigmas = smld_sigma_array.to(batch.device)[labels] noise = torch.randn_like(batch) * sigmas[:, None, None, None] perturbed_data = noise + batch score = model_fn(perturbed_data, labels) target = -noise / (sigmas ** 2)[:, None, None, None] losses = torch.square(score - target) losses = reduce_op(losses.reshape(losses.shape[0], -1), dim=-1) * sigmas ** 2 loss = torch.mean(losses) return loss return loss_fn def get_ddpm_loss_fn(vpsde, train, reduce_mean=True): """Legacy code to reproduce previous results on DDPM. Not recommended for new work.""" assert isinstance(vpsde, VPSDE), "DDPM training only works for VPSDEs." reduce_op = torch.mean if reduce_mean else lambda *args, **kwargs: 0.5 * torch.sum(*args, **kwargs) def loss_fn(model, batch): model_fn = mutils.get_model_fn(model, train=train) labels = torch.randint(0, vpsde.N, (batch.shape[0],), device=batch.device) sqrt_alphas_cumprod = vpsde.sqrt_alphas_cumprod.to(batch.device) sqrt_1m_alphas_cumprod = vpsde.sqrt_1m_alphas_cumprod.to(batch.device) noise = torch.randn_like(batch) perturbed_data = sqrt_alphas_cumprod[labels, None, None, None] * batch + \ sqrt_1m_alphas_cumprod[labels, None, None, None] * noise score = model_fn(perturbed_data, labels) losses = torch.square(score - noise) losses = reduce_op(losses.reshape(losses.shape[0], -1), dim=-1) loss = torch.mean(losses) return loss return loss_fn def get_step_fn(sde, train, optimize_fn=None, reduce_mean=False, continuous=True, likelihood_weighting=False): """Create a one-step training/evaluation function. Args: sde: An `sde_lib.SDE` object that represents the forward SDE. optimize_fn: An optimization function. reduce_mean: If `True`, average the loss across data dimensions. Otherwise sum the loss across data dimensions. continuous: `True` indicates that the model is defined to take continuous time steps. likelihood_weighting: If `True`, weight the mixture of score matching losses according to https://arxiv.org/abs/2101.09258; otherwise use the weighting recommended by our paper. Returns: A one-step function for training or evaluation. """ if continuous: loss_fn = get_sde_loss_fn(sde, train, reduce_mean=reduce_mean, continuous=True, likelihood_weighting=likelihood_weighting) else: assert not likelihood_weighting, "Likelihood weighting is not supported for original SMLD/DDPM training." if isinstance(sde, VESDE): loss_fn = get_smld_loss_fn(sde, train, reduce_mean=reduce_mean) elif isinstance(sde, VPSDE): loss_fn = get_ddpm_loss_fn(sde, train, reduce_mean=reduce_mean) else: raise ValueError(f"Discrete training for {sde.__class__.__name__} is not recommended.") def step_fn(state, batch): """Running one step of training or evaluation. This function will undergo `jax.lax.scan` so that multiple steps can be pmapped and jit-compiled together for faster execution. Args: state: A dictionary of training information, containing the score model, optimizer, EMA status, and number of optimization steps. batch: A mini-batch of training/evaluation data. Returns: loss: The average loss value of this state. """ model = state['model'] if train: optimizer = state['optimizer'] optimizer.zero_grad() loss = loss_fn(model, batch) loss.backward() optimize_fn(optimizer, model.parameters(), step=state['step']) state['step'] += 1 state['ema'].update(model.parameters()) else: with torch.no_grad(): ema = state['ema'] ema.store(model.parameters()) ema.copy_to(model.parameters()) loss = loss_fn(model, batch) ema.restore(model.parameters()) return loss return step_fn
# --------------------------------------------------------------- # Taken from the following link as is from: # https://github.com/yang-song/score_sde_pytorch/blob/main/op/fused_act.py # # The license for the original version of this file can be # found in the `score_sde` directory (LICENSE_SCORE_SDE). # --------------------------------------------------------------- import os import torch from torch import nn from torch.nn import functional as F from torch.autograd import Function from torch.utils.cpp_extension import load module_path = os.path.dirname(__file__) fused = load( "fused", sources=[ os.path.join(module_path, "fused_bias_act.cpp"), os.path.join(module_path, "fused_bias_act_kernel.cu"), ], ) class FusedLeakyReLUFunctionBackward(Function): @staticmethod def forward(ctx, grad_output, out, negative_slope, scale): ctx.save_for_backward(out) ctx.negative_slope = negative_slope ctx.scale = scale empty = grad_output.new_empty(0) grad_input = fused.fused_bias_act( grad_output, empty, out, 3, 1, negative_slope, scale ) dim = [0] if grad_input.ndim > 2: dim += list(range(2, grad_input.ndim)) grad_bias = grad_input.sum(dim).detach() return grad_input, grad_bias @staticmethod def backward(ctx, gradgrad_input, gradgrad_bias): out, = ctx.saved_tensors gradgrad_out = fused.fused_bias_act( gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale ) return gradgrad_out, None, None, None class FusedLeakyReLUFunction(Function): @staticmethod def forward(ctx, input, bias, negative_slope, scale): empty = input.new_empty(0) out = fused.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale) ctx.save_for_backward(out) ctx.negative_slope = negative_slope ctx.scale = scale return out @staticmethod def backward(ctx, grad_output): out, = ctx.saved_tensors grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply( grad_output, out, ctx.negative_slope, ctx.scale ) return grad_input, grad_bias, None, None class FusedLeakyReLU(nn.Module): def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5): super().__init__() self.bias = nn.Parameter(torch.zeros(channel)) self.negative_slope = negative_slope self.scale = scale def forward(self, input): return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale) def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): if input.device.type == "cpu": rest_dim = [1] * (input.ndim - bias.ndim - 1) return ( F.leaky_relu( input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=0.2 ) * scale ) else: return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
# --------------------------------------------------------------- # Taken from the following link as is from: # https://github.com/yang-song/score_sde_pytorch/blob/main/op/__init__.py # # The license for the original version of this file can be # found in the `score_sde` directory (LICENSE_SCORE_SDE). # --------------------------------------------------------------- from .fused_act import FusedLeakyReLU, fused_leaky_relu from .upfirdn2d import upfirdn2d
# --------------------------------------------------------------- # Taken from the following link as is from: # https://github.com/yang-song/score_sde_pytorch/blob/main/op/upfirdn2d.py # # The license for the original version of this file can be # found in the `score_sde` directory (LICENSE_SCORE_SDE). # --------------------------------------------------------------- import os import torch from torch.nn import functional as F from torch.autograd import Function from torch.utils.cpp_extension import load module_path = os.path.dirname(__file__) upfirdn2d_op = load( "upfirdn2d", sources=[ os.path.join(module_path, "upfirdn2d.cpp"), os.path.join(module_path, "upfirdn2d_kernel.cu"), ], ) class UpFirDn2dBackward(Function): @staticmethod def forward( ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size ): up_x, up_y = up down_x, down_y = down g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1) grad_input = upfirdn2d_op.upfirdn2d( grad_output, grad_kernel, down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1, ) grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3]) ctx.save_for_backward(kernel) pad_x0, pad_x1, pad_y0, pad_y1 = pad ctx.up_x = up_x ctx.up_y = up_y ctx.down_x = down_x ctx.down_y = down_y ctx.pad_x0 = pad_x0 ctx.pad_x1 = pad_x1 ctx.pad_y0 = pad_y0 ctx.pad_y1 = pad_y1 ctx.in_size = in_size ctx.out_size = out_size return grad_input @staticmethod def backward(ctx, gradgrad_input): kernel, = ctx.saved_tensors gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.in_size[3], 1) gradgrad_out = upfirdn2d_op.upfirdn2d( gradgrad_input, kernel, ctx.up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1, ctx.pad_y0, ctx.pad_y1, ) # gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.out_size[0], ctx.out_size[1], ctx.in_size[3]) gradgrad_out = gradgrad_out.view( ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1] ) return gradgrad_out, None, None, None, None, None, None, None, None class UpFirDn2d(Function): @staticmethod def forward(ctx, input, kernel, up, down, pad): up_x, up_y = up down_x, down_y = down pad_x0, pad_x1, pad_y0, pad_y1 = pad kernel_h, kernel_w = kernel.shape batch, channel, in_h, in_w = input.shape ctx.in_size = input.shape input = input.reshape(-1, in_h, in_w, 1) ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1])) out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 ctx.out_size = (out_h, out_w) ctx.up = (up_x, up_y) ctx.down = (down_x, down_y) ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1) g_pad_x0 = kernel_w - pad_x0 - 1 g_pad_y0 = kernel_h - pad_y0 - 1 g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1 g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1 ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1) out = upfirdn2d_op.upfirdn2d( input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1 ) # out = out.view(major, out_h, out_w, minor) out = out.view(-1, channel, out_h, out_w) return out @staticmethod def backward(ctx, grad_output): kernel, grad_kernel = ctx.saved_tensors grad_input = UpFirDn2dBackward.apply( grad_output, kernel, grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size, ctx.out_size, ) return grad_input, None, None, None, None def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): if input.device.type == "cpu": out = upfirdn2d_native( input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1] ) else: out = UpFirDn2d.apply( input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1]) ) return out def upfirdn2d_native( input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1 ): _, channel, in_h, in_w = input.shape input = input.reshape(-1, in_h, in_w, 1) _, in_h, in_w, minor = input.shape kernel_h, kernel_w = kernel.shape out = input.view(-1, in_h, 1, in_w, 1, minor) out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) out = out.view(-1, in_h * up_y, in_w * up_x, minor) out = F.pad( out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)] ) out = out[ :, max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0), max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0), :, ] out = out.permute(0, 3, 1, 2) out = out.reshape( [-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1] ) w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) out = F.conv2d(out, w) out = out.reshape( -1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, ) out = out.permute(0, 2, 3, 1) out = out[:, ::down_y, ::down_x, :] out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 return out.view(-1, channel, out_h, out_w)
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: skip-file """The NCSNv2 model.""" import torch import torch.nn as nn import functools from .utils import get_sigmas, register_model from .layers import (CondRefineBlock, RefineBlock, ResidualBlock, ncsn_conv3x3, ConditionalResidualBlock, get_act) from .normalization import get_normalization CondResidualBlock = ConditionalResidualBlock conv3x3 = ncsn_conv3x3 def get_network(config): if config.data.image_size < 96: return functools.partial(NCSNv2, config=config) elif 96 <= config.data.image_size <= 128: return functools.partial(NCSNv2_128, config=config) elif 128 < config.data.image_size <= 256: return functools.partial(NCSNv2_256, config=config) else: raise NotImplementedError( f'No network suitable for {config.data.image_size}px implemented yet.') @register_model(name='ncsnv2_64') class NCSNv2(nn.Module): def __init__(self, config): super().__init__() self.centered = config.data.centered self.norm = get_normalization(config) self.nf = nf = config.model.nf self.act = act = get_act(config) self.register_buffer('sigmas', torch.tensor(get_sigmas(config))) self.config = config self.begin_conv = nn.Conv2d(config.data.channels, nf, 3, stride=1, padding=1) self.normalizer = self.norm(nf, config.model.num_scales) self.end_conv = nn.Conv2d(nf, config.data.channels, 3, stride=1, padding=1) self.res1 = nn.ModuleList([ ResidualBlock(self.nf, self.nf, resample=None, act=act, normalization=self.norm), ResidualBlock(self.nf, self.nf, resample=None, act=act, normalization=self.norm)] ) self.res2 = nn.ModuleList([ ResidualBlock(self.nf, 2 * self.nf, resample='down', act=act, normalization=self.norm), ResidualBlock(2 * self.nf, 2 * self.nf, resample=None, act=act, normalization=self.norm)] ) self.res3 = nn.ModuleList([ ResidualBlock(2 * self.nf, 2 * self.nf, resample='down', act=act, normalization=self.norm, dilation=2), ResidualBlock(2 * self.nf, 2 * self.nf, resample=None, act=act, normalization=self.norm, dilation=2)] ) if config.data.image_size == 28: self.res4 = nn.ModuleList([ ResidualBlock(2 * self.nf, 2 * self.nf, resample='down', act=act, normalization=self.norm, adjust_padding=True, dilation=4), ResidualBlock(2 * self.nf, 2 * self.nf, resample=None, act=act, normalization=self.norm, dilation=4)] ) else: self.res4 = nn.ModuleList([ ResidualBlock(2 * self.nf, 2 * self.nf, resample='down', act=act, normalization=self.norm, adjust_padding=False, dilation=4), ResidualBlock(2 * self.nf, 2 * self.nf, resample=None, act=act, normalization=self.norm, dilation=4)] ) self.refine1 = RefineBlock([2 * self.nf], 2 * self.nf, act=act, start=True) self.refine2 = RefineBlock([2 * self.nf, 2 * self.nf], 2 * self.nf, act=act) self.refine3 = RefineBlock([2 * self.nf, 2 * self.nf], self.nf, act=act) self.refine4 = RefineBlock([self.nf, self.nf], self.nf, act=act, end=True) def _compute_cond_module(self, module, x): for m in module: x = m(x) return x def forward(self, x, y): if not self.centered: h = 2 * x - 1. else: h = x output = self.begin_conv(h) layer1 = self._compute_cond_module(self.res1, output) layer2 = self._compute_cond_module(self.res2, layer1) layer3 = self._compute_cond_module(self.res3, layer2) layer4 = self._compute_cond_module(self.res4, layer3) ref1 = self.refine1([layer4], layer4.shape[2:]) ref2 = self.refine2([layer3, ref1], layer3.shape[2:]) ref3 = self.refine3([layer2, ref2], layer2.shape[2:]) output = self.refine4([layer1, ref3], layer1.shape[2:]) output = self.normalizer(output) output = self.act(output) output = self.end_conv(output) used_sigmas = self.sigmas[y].view(x.shape[0], *([1] * len(x.shape[1:]))) output = output / used_sigmas return output @register_model(name='ncsn') class NCSN(nn.Module): def __init__(self, config): super().__init__() self.centered = config.data.centered self.norm = get_normalization(config) self.nf = nf = config.model.nf self.act = act = get_act(config) self.config = config self.begin_conv = nn.Conv2d(config.data.channels, nf, 3, stride=1, padding=1) self.normalizer = self.norm(nf, config.model.num_scales) self.end_conv = nn.Conv2d(nf, config.data.channels, 3, stride=1, padding=1) self.res1 = nn.ModuleList([ ConditionalResidualBlock(self.nf, self.nf, config.model.num_scales, resample=None, act=act, normalization=self.norm), ConditionalResidualBlock(self.nf, self.nf, config.model.num_scales, resample=None, act=act, normalization=self.norm)] ) self.res2 = nn.ModuleList([ ConditionalResidualBlock(self.nf, 2 * self.nf, config.model.num_scales, resample='down', act=act, normalization=self.norm), ConditionalResidualBlock(2 * self.nf, 2 * self.nf, config.model.num_scales, resample=None, act=act, normalization=self.norm)] ) self.res3 = nn.ModuleList([ ConditionalResidualBlock(2 * self.nf, 2 * self.nf, config.model.num_scales, resample='down', act=act, normalization=self.norm, dilation=2), ConditionalResidualBlock(2 * self.nf, 2 * self.nf, config.model.num_scales, resample=None, act=act, normalization=self.norm, dilation=2)] ) if config.data.image_size == 28: self.res4 = nn.ModuleList([ ConditionalResidualBlock(2 * self.nf, 2 * self.nf, config.model.num_scales, resample='down', act=act, normalization=self.norm, adjust_padding=True, dilation=4), ConditionalResidualBlock(2 * self.nf, 2 * self.nf, config.model.num_scales, resample=None, act=act, normalization=self.norm, dilation=4)] ) else: self.res4 = nn.ModuleList([ ConditionalResidualBlock(2 * self.nf, 2 * self.nf, config.model.num_scales, resample='down', act=act, normalization=self.norm, adjust_padding=False, dilation=4), ConditionalResidualBlock(2 * self.nf, 2 * self.nf, config.model.num_scales, resample=None, act=act, normalization=self.norm, dilation=4)] ) self.refine1 = CondRefineBlock([2 * self.nf], 2 * self.nf, config.model.num_scales, self.norm, act=act, start=True) self.refine2 = CondRefineBlock([2 * self.nf, 2 * self.nf], 2 * self.nf, config.model.num_scales, self.norm, act=act) self.refine3 = CondRefineBlock([2 * self.nf, 2 * self.nf], self.nf, config.model.num_scales, self.norm, act=act) self.refine4 = CondRefineBlock([self.nf, self.nf], self.nf, config.model.num_scales, self.norm, act=act, end=True) def _compute_cond_module(self, module, x, y): for m in module: x = m(x, y) return x def forward(self, x, y): if not self.centered: h = 2 * x - 1. else: h = x output = self.begin_conv(h) layer1 = self._compute_cond_module(self.res1, output, y) layer2 = self._compute_cond_module(self.res2, layer1, y) layer3 = self._compute_cond_module(self.res3, layer2, y) layer4 = self._compute_cond_module(self.res4, layer3, y) ref1 = self.refine1([layer4], y, layer4.shape[2:]) ref2 = self.refine2([layer3, ref1], y, layer3.shape[2:]) ref3 = self.refine3([layer2, ref2], y, layer2.shape[2:]) output = self.refine4([layer1, ref3], y, layer1.shape[2:]) output = self.normalizer(output, y) output = self.act(output) output = self.end_conv(output) return output @register_model(name='ncsnv2_128') class NCSNv2_128(nn.Module): """NCSNv2 model architecture for 128px images.""" def __init__(self, config): super().__init__() self.centered = config.data.centered self.norm = get_normalization(config) self.nf = nf = config.model.nf self.act = act = get_act(config) self.register_buffer('sigmas', torch.tensor(get_sigmas(config))) self.config = config self.begin_conv = nn.Conv2d(config.data.channels, nf, 3, stride=1, padding=1) self.normalizer = self.norm(nf, config.model.num_scales) self.end_conv = nn.Conv2d(nf, config.data.channels, 3, stride=1, padding=1) self.res1 = nn.ModuleList([ ResidualBlock(self.nf, self.nf, resample=None, act=act, normalization=self.norm), ResidualBlock(self.nf, self.nf, resample=None, act=act, normalization=self.norm)] ) self.res2 = nn.ModuleList([ ResidualBlock(self.nf, 2 * self.nf, resample='down', act=act, normalization=self.norm), ResidualBlock(2 * self.nf, 2 * self.nf, resample=None, act=act, normalization=self.norm)] ) self.res3 = nn.ModuleList([ ResidualBlock(2 * self.nf, 2 * self.nf, resample='down', act=act, normalization=self.norm), ResidualBlock(2 * self.nf, 2 * self.nf, resample=None, act=act, normalization=self.norm)] ) self.res4 = nn.ModuleList([ ResidualBlock(2 * self.nf, 4 * self.nf, resample='down', act=act, normalization=self.norm, dilation=2), ResidualBlock(4 * self.nf, 4 * self.nf, resample=None, act=act, normalization=self.norm, dilation=2)] ) self.res5 = nn.ModuleList([ ResidualBlock(4 * self.nf, 4 * self.nf, resample='down', act=act, normalization=self.norm, dilation=4), ResidualBlock(4 * self.nf, 4 * self.nf, resample=None, act=act, normalization=self.norm, dilation=4)] ) self.refine1 = RefineBlock([4 * self.nf], 4 * self.nf, act=act, start=True) self.refine2 = RefineBlock([4 * self.nf, 4 * self.nf], 2 * self.nf, act=act) self.refine3 = RefineBlock([2 * self.nf, 2 * self.nf], 2 * self.nf, act=act) self.refine4 = RefineBlock([2 * self.nf, 2 * self.nf], self.nf, act=act) self.refine5 = RefineBlock([self.nf, self.nf], self.nf, act=act, end=True) def _compute_cond_module(self, module, x): for m in module: x = m(x) return x def forward(self, x, y): if not self.centered: h = 2 * x - 1. else: h = x output = self.begin_conv(h) layer1 = self._compute_cond_module(self.res1, output) layer2 = self._compute_cond_module(self.res2, layer1) layer3 = self._compute_cond_module(self.res3, layer2) layer4 = self._compute_cond_module(self.res4, layer3) layer5 = self._compute_cond_module(self.res5, layer4) ref1 = self.refine1([layer5], layer5.shape[2:]) ref2 = self.refine2([layer4, ref1], layer4.shape[2:]) ref3 = self.refine3([layer3, ref2], layer3.shape[2:]) ref4 = self.refine4([layer2, ref3], layer2.shape[2:]) output = self.refine5([layer1, ref4], layer1.shape[2:]) output = self.normalizer(output) output = self.act(output) output = self.end_conv(output) used_sigmas = self.sigmas[y].view(x.shape[0], *([1] * len(x.shape[1:]))) output = output / used_sigmas return output @register_model(name='ncsnv2_256') class NCSNv2_256(nn.Module): """NCSNv2 model architecture for 256px images.""" def __init__(self, config): super().__init__() self.centered = config.data.centered self.norm = get_normalization(config) self.nf = nf = config.model.nf self.act = act = get_act(config) self.register_buffer('sigmas', torch.tensor(get_sigmas(config))) self.config = config self.begin_conv = nn.Conv2d(config.data.channels, nf, 3, stride=1, padding=1) self.normalizer = self.norm(nf, config.model.num_scales) self.end_conv = nn.Conv2d(nf, config.data.channels, 3, stride=1, padding=1) self.res1 = nn.ModuleList([ ResidualBlock(self.nf, self.nf, resample=None, act=act, normalization=self.norm), ResidualBlock(self.nf, self.nf, resample=None, act=act, normalization=self.norm)] ) self.res2 = nn.ModuleList([ ResidualBlock(self.nf, 2 * self.nf, resample='down', act=act, normalization=self.norm), ResidualBlock(2 * self.nf, 2 * self.nf, resample=None, act=act, normalization=self.norm)] ) self.res3 = nn.ModuleList([ ResidualBlock(2 * self.nf, 2 * self.nf, resample='down', act=act, normalization=self.norm), ResidualBlock(2 * self.nf, 2 * self.nf, resample=None, act=act, normalization=self.norm)] ) self.res31 = nn.ModuleList([ ResidualBlock(2 * self.nf, 2 * self.nf, resample='down', act=act, normalization=self.norm), ResidualBlock(2 * self.nf, 2 * self.nf, resample=None, act=act, normalization=self.norm)] ) self.res4 = nn.ModuleList([ ResidualBlock(2 * self.nf, 4 * self.nf, resample='down', act=act, normalization=self.norm, dilation=2), ResidualBlock(4 * self.nf, 4 * self.nf, resample=None, act=act, normalization=self.norm, dilation=2)] ) self.res5 = nn.ModuleList([ ResidualBlock(4 * self.nf, 4 * self.nf, resample='down', act=act, normalization=self.norm, dilation=4), ResidualBlock(4 * self.nf, 4 * self.nf, resample=None, act=act, normalization=self.norm, dilation=4)] ) self.refine1 = RefineBlock([4 * self.nf], 4 * self.nf, act=act, start=True) self.refine2 = RefineBlock([4 * self.nf, 4 * self.nf], 2 * self.nf, act=act) self.refine3 = RefineBlock([2 * self.nf, 2 * self.nf], 2 * self.nf, act=act) self.refine31 = RefineBlock([2 * self.nf, 2 * self.nf], 2 * self.nf, act=act) self.refine4 = RefineBlock([2 * self.nf, 2 * self.nf], self.nf, act=act) self.refine5 = RefineBlock([self.nf, self.nf], self.nf, act=act, end=True) def _compute_cond_module(self, module, x): for m in module: x = m(x) return x def forward(self, x, y): if not self.centered: h = 2 * x - 1. else: h = x output = self.begin_conv(h) layer1 = self._compute_cond_module(self.res1, output) layer2 = self._compute_cond_module(self.res2, layer1) layer3 = self._compute_cond_module(self.res3, layer2) layer31 = self._compute_cond_module(self.res31, layer3) layer4 = self._compute_cond_module(self.res4, layer31) layer5 = self._compute_cond_module(self.res5, layer4) ref1 = self.refine1([layer5], layer5.shape[2:]) ref2 = self.refine2([layer4, ref1], layer4.shape[2:]) ref31 = self.refine31([layer31, ref2], layer31.shape[2:]) ref3 = self.refine3([layer3, ref31], layer3.shape[2:]) ref4 = self.refine4([layer2, ref3], layer2.shape[2:]) output = self.refine5([layer1, ref4], layer1.shape[2:]) output = self.normalizer(output) output = self.act(output) output = self.end_conv(output) used_sigmas = self.sigmas[y].view(x.shape[0], *([1] * len(x.shape[1:]))) output = output / used_sigmas return output
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: skip-file """Layers for defining NCSN++. """ from . import layers from . import up_or_down_sampling import torch.nn as nn import torch import torch.nn.functional as F import numpy as np conv1x1 = layers.ddpm_conv1x1 conv3x3 = layers.ddpm_conv3x3 NIN = layers.NIN default_init = layers.default_init class GaussianFourierProjection(nn.Module): """Gaussian Fourier embeddings for noise levels.""" def __init__(self, embedding_size=256, scale=1.0): super().__init__() self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False) def forward(self, x): x_proj = x[:, None] * self.W[None, :] * 2 * np.pi return torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1) class Combine(nn.Module): """Combine information from skip connections.""" def __init__(self, dim1, dim2, method='cat'): super().__init__() self.Conv_0 = conv1x1(dim1, dim2) self.method = method def forward(self, x, y): h = self.Conv_0(x) if self.method == 'cat': return torch.cat([h, y], dim=1) elif self.method == 'sum': return h + y else: raise ValueError(f'Method {self.method} not recognized.') class AttnBlockpp(nn.Module): """Channel-wise self-attention block. Modified from DDPM.""" def __init__(self, channels, skip_rescale=False, init_scale=0.): super().__init__() self.GroupNorm_0 = nn.GroupNorm(num_groups=min(channels // 4, 32), num_channels=channels, eps=1e-6) self.NIN_0 = NIN(channels, channels) self.NIN_1 = NIN(channels, channels) self.NIN_2 = NIN(channels, channels) self.NIN_3 = NIN(channels, channels, init_scale=init_scale) self.skip_rescale = skip_rescale def forward(self, x): B, C, H, W = x.shape h = self.GroupNorm_0(x) q = self.NIN_0(h) k = self.NIN_1(h) v = self.NIN_2(h) w = torch.einsum('bchw,bcij->bhwij', q, k) * (int(C) ** (-0.5)) w = torch.reshape(w, (B, H, W, H * W)) w = F.softmax(w, dim=-1) w = torch.reshape(w, (B, H, W, H, W)) h = torch.einsum('bhwij,bcij->bchw', w, v) h = self.NIN_3(h) if not self.skip_rescale: return x + h else: return (x + h) / np.sqrt(2.) class Upsample(nn.Module): def __init__(self, in_ch=None, out_ch=None, with_conv=False, fir=False, fir_kernel=(1, 3, 3, 1)): super().__init__() out_ch = out_ch if out_ch else in_ch if not fir: if with_conv: self.Conv_0 = conv3x3(in_ch, out_ch) else: if with_conv: self.Conv2d_0 = up_or_down_sampling.Conv2d(in_ch, out_ch, kernel=3, up=True, resample_kernel=fir_kernel, use_bias=True, kernel_init=default_init()) self.fir = fir self.with_conv = with_conv self.fir_kernel = fir_kernel self.out_ch = out_ch def forward(self, x): B, C, H, W = x.shape if not self.fir: h = F.interpolate(x, (H * 2, W * 2), 'nearest') if self.with_conv: h = self.Conv_0(h) else: if not self.with_conv: h = up_or_down_sampling.upsample_2d(x, self.fir_kernel, factor=2) else: h = self.Conv2d_0(x) return h class Downsample(nn.Module): def __init__(self, in_ch=None, out_ch=None, with_conv=False, fir=False, fir_kernel=(1, 3, 3, 1)): super().__init__() out_ch = out_ch if out_ch else in_ch if not fir: if with_conv: self.Conv_0 = conv3x3(in_ch, out_ch, stride=2, padding=0) else: if with_conv: self.Conv2d_0 = up_or_down_sampling.Conv2d(in_ch, out_ch, kernel=3, down=True, resample_kernel=fir_kernel, use_bias=True, kernel_init=default_init()) self.fir = fir self.fir_kernel = fir_kernel self.with_conv = with_conv self.out_ch = out_ch def forward(self, x): B, C, H, W = x.shape if not self.fir: if self.with_conv: x = F.pad(x, (0, 1, 0, 1)) x = self.Conv_0(x) else: x = F.avg_pool2d(x, 2, stride=2) else: if not self.with_conv: x = up_or_down_sampling.downsample_2d(x, self.fir_kernel, factor=2) else: x = self.Conv2d_0(x) return x class ResnetBlockDDPMpp(nn.Module): """ResBlock adapted from DDPM.""" def __init__(self, act, in_ch, out_ch=None, temb_dim=None, conv_shortcut=False, dropout=0.1, skip_rescale=False, init_scale=0.): super().__init__() out_ch = out_ch if out_ch else in_ch self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6) self.Conv_0 = conv3x3(in_ch, out_ch) if temb_dim is not None: self.Dense_0 = nn.Linear(temb_dim, out_ch) self.Dense_0.weight.data = default_init()(self.Dense_0.weight.data.shape) nn.init.zeros_(self.Dense_0.bias) self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6) self.Dropout_0 = nn.Dropout(dropout) self.Conv_1 = conv3x3(out_ch, out_ch, init_scale=init_scale) if in_ch != out_ch: if conv_shortcut: self.Conv_2 = conv3x3(in_ch, out_ch) else: self.NIN_0 = NIN(in_ch, out_ch) self.skip_rescale = skip_rescale self.act = act self.out_ch = out_ch self.conv_shortcut = conv_shortcut def forward(self, x, temb=None): h = self.act(self.GroupNorm_0(x)) h = self.Conv_0(h) if temb is not None: h += self.Dense_0(self.act(temb))[:, :, None, None] h = self.act(self.GroupNorm_1(h)) h = self.Dropout_0(h) h = self.Conv_1(h) if x.shape[1] != self.out_ch: if self.conv_shortcut: x = self.Conv_2(x) else: x = self.NIN_0(x) if not self.skip_rescale: return x + h else: return (x + h) / np.sqrt(2.) class ResnetBlockBigGANpp(nn.Module): def __init__(self, act, in_ch, out_ch=None, temb_dim=None, up=False, down=False, dropout=0.1, fir=False, fir_kernel=(1, 3, 3, 1), skip_rescale=True, init_scale=0.): super().__init__() out_ch = out_ch if out_ch else in_ch self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6) self.up = up self.down = down self.fir = fir self.fir_kernel = fir_kernel self.Conv_0 = conv3x3(in_ch, out_ch) if temb_dim is not None: self.Dense_0 = nn.Linear(temb_dim, out_ch) self.Dense_0.weight.data = default_init()(self.Dense_0.weight.shape) nn.init.zeros_(self.Dense_0.bias) self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6) self.Dropout_0 = nn.Dropout(dropout) self.Conv_1 = conv3x3(out_ch, out_ch, init_scale=init_scale) if in_ch != out_ch or up or down: self.Conv_2 = conv1x1(in_ch, out_ch) self.skip_rescale = skip_rescale self.act = act self.in_ch = in_ch self.out_ch = out_ch def forward(self, x, temb=None): h = self.act(self.GroupNorm_0(x)) if self.up: if self.fir: h = up_or_down_sampling.upsample_2d(h, self.fir_kernel, factor=2) x = up_or_down_sampling.upsample_2d(x, self.fir_kernel, factor=2) else: h = up_or_down_sampling.naive_upsample_2d(h, factor=2) x = up_or_down_sampling.naive_upsample_2d(x, factor=2) elif self.down: if self.fir: h = up_or_down_sampling.downsample_2d(h, self.fir_kernel, factor=2) x = up_or_down_sampling.downsample_2d(x, self.fir_kernel, factor=2) else: h = up_or_down_sampling.naive_downsample_2d(h, factor=2) x = up_or_down_sampling.naive_downsample_2d(x, factor=2) h = self.Conv_0(h) # Add bias to each feature map conditioned on the time embedding if temb is not None: h += self.Dense_0(self.act(temb))[:, :, None, None] h = self.act(self.GroupNorm_1(h)) h = self.Dropout_0(h) h = self.Conv_1(h) if self.in_ch != self.out_ch or self.up or self.down: x = self.Conv_2(x) if not self.skip_rescale: return x + h else: return (x + h) / np.sqrt(2.)
# --------------------------------------------------------------- # Taken from the following link as is from: # https://github.com/yang-song/score_sde_pytorch/blob/main/models/ema.py # # The license for the original version of this file can be # found in the `score_sde` directory (LICENSE_SCORE_SDE). # --------------------------------------------------------------- # Modified from https://raw.githubusercontent.com/fadel/pytorch_ema/master/torch_ema/ema.py from __future__ import division from __future__ import unicode_literals import torch # Partially based on: https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/training/moving_averages.py class ExponentialMovingAverage: """ Maintains (exponential) moving average of a set of parameters. """ def __init__(self, parameters, decay, use_num_updates=True): """ Args: parameters: Iterable of `torch.nn.Parameter`; usually the result of `model.parameters()`. decay: The exponential decay. use_num_updates: Whether to use number of updates when computing averages. """ if decay < 0.0 or decay > 1.0: raise ValueError('Decay must be between 0 and 1') self.decay = decay self.num_updates = 0 if use_num_updates else None self.shadow_params = [p.clone().detach() for p in parameters if p.requires_grad] self.collected_params = [] def update(self, parameters): """ Update currently maintained parameters. Call this every time the parameters are updated, such as the result of the `optimizer.step()` call. Args: parameters: Iterable of `torch.nn.Parameter`; usually the same set of parameters used to initialize this object. """ decay = self.decay if self.num_updates is not None: self.num_updates += 1 decay = min(decay, (1 + self.num_updates) / (10 + self.num_updates)) one_minus_decay = 1.0 - decay with torch.no_grad(): parameters = [p for p in parameters if p.requires_grad] for s_param, param in zip(self.shadow_params, parameters): s_param.sub_(one_minus_decay * (s_param - param)) def copy_to(self, parameters): """ Copy current parameters into given collection of parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored moving averages. """ parameters = [p for p in parameters if p.requires_grad] for s_param, param in zip(self.shadow_params, parameters): if param.requires_grad: param.data.copy_(s_param.data) def store(self, parameters): """ Save the current parameters for restoring later. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be temporarily stored. """ self.collected_params = [param.clone() for param in parameters] def restore(self, parameters): """ Restore the parameters stored with the `store` method. Useful to validate the model with EMA parameters without affecting the original optimization process. Store the parameters before the `copy_to` method. After validation (or model saving), use this to restore the former parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored parameters. """ for c_param, param in zip(self.collected_params, parameters): param.data.copy_(c_param.data) def state_dict(self): return dict(decay=self.decay, num_updates=self.num_updates, shadow_params=self.shadow_params) def load_state_dict(self, state_dict): self.decay = state_dict['decay'] self.num_updates = state_dict['num_updates'] self.shadow_params = state_dict['shadow_params']
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from . import ncsnpp
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """All functions and modules related to model definition. """ import torch from score_sde import sde_lib import numpy as np _MODELS = {} def register_model(cls=None, *, name=None): """A decorator for registering model classes.""" def _register(cls): if name is None: local_name = cls.__name__ else: local_name = name if local_name in _MODELS: raise ValueError(f'Already registered model with name: {local_name}') _MODELS[local_name] = cls return cls if cls is None: return _register else: return _register(cls) def get_model(name): return _MODELS[name] def get_sigmas(config): """Get sigmas --- the set of noise levels for SMLD from config files. Args: config: A ConfigDict object parsed from the config file Returns: sigmas: a jax numpy arrary of noise levels """ sigmas = np.exp( np.linspace(np.log(config.model.sigma_max), np.log(config.model.sigma_min), config.model.num_scales)) return sigmas def get_ddpm_params(config): """Get betas and alphas --- parameters used in the original DDPM paper.""" num_diffusion_timesteps = 1000 # parameters need to be adapted if number of time steps differs from 1000 beta_start = config.model.beta_min / config.model.num_scales beta_end = config.model.beta_max / config.model.num_scales betas = np.linspace(beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64) alphas = 1. - betas alphas_cumprod = np.cumprod(alphas, axis=0) sqrt_alphas_cumprod = np.sqrt(alphas_cumprod) sqrt_1m_alphas_cumprod = np.sqrt(1. - alphas_cumprod) return { 'betas': betas, 'alphas': alphas, 'alphas_cumprod': alphas_cumprod, 'sqrt_alphas_cumprod': sqrt_alphas_cumprod, 'sqrt_1m_alphas_cumprod': sqrt_1m_alphas_cumprod, 'beta_min': beta_start * (num_diffusion_timesteps - 1), 'beta_max': beta_end * (num_diffusion_timesteps - 1), 'num_diffusion_timesteps': num_diffusion_timesteps } def create_model(config): """Create the score model.""" model_name = config.model.name score_model = get_model(model_name)(config) # score_model = score_model.to(config.device) # score_model = torch.nn.DataParallel(score_model) return score_model def get_model_fn(model, train=False): """Create a function to give the output of the score-based model. Args: model: The score model. train: `True` for training and `False` for evaluation. Returns: A model function. """ def model_fn(x, labels): """Compute the output of the score-based model. Args: x: A mini-batch of input data. labels: A mini-batch of conditioning variables for time steps. Should be interpreted differently for different models. Returns: A tuple of (model output, new mutable states) """ if not train: model.eval() return model(x, labels) else: model.train() return model(x, labels) return model_fn def get_score_fn(sde, model, train=False, continuous=False): """Wraps `score_fn` so that the model output corresponds to a real time-dependent score function. Args: sde: An `sde_lib.SDE` object that represents the forward SDE. model: A score model. train: `True` for training and `False` for evaluation. continuous: If `True`, the score-based model is expected to directly take continuous time steps. Returns: A score function. """ model_fn = get_model_fn(model, train=train) if isinstance(sde, sde_lib.VPSDE) or isinstance(sde, sde_lib.subVPSDE): def score_fn(x, t): # Scale neural network output by standard deviation and flip sign if continuous or isinstance(sde, sde_lib.subVPSDE): # For VP-trained models, t=0 corresponds to the lowest noise level # The maximum value of time embedding is assumed to 999 for # continuously-trained models. labels = t * 999 score = model_fn(x, labels) std = sde.marginal_prob(torch.zeros_like(x), t)[1] else: # For VP-trained models, t=0 corresponds to the lowest noise level labels = t * (sde.N - 1) score = model_fn(x, labels) std = sde.sqrt_1m_alphas_cumprod.to(labels.device)[labels.long()] score = -score / std[:, None, None, None] return score elif isinstance(sde, sde_lib.VESDE): def score_fn(x, t): if continuous: labels = sde.marginal_prob(torch.zeros_like(x), t)[1] else: # For VE-trained models, t=0 corresponds to the highest noise level labels = sde.T - t labels *= sde.N - 1 labels = torch.round(labels).long() score = model_fn(x, labels) return score else: raise NotImplementedError(f"SDE class {sde.__class__.__name__} not yet supported.") return score_fn def to_flattened_numpy(x): """Flatten a torch tensor `x` and convert it to numpy.""" return x.detach().cpu().numpy().reshape((-1,)) def from_flattened_numpy(x, shape): """Form a torch tensor with the given `shape` from a flattened numpy array `x`.""" return torch.from_numpy(x.reshape(shape))
# --------------------------------------------------------------- # Taken from the following link as is from: # https://github.com/yang-song/score_sde_pytorch/blob/main/models/up_or_down_sampling.py # # The license for the original version of this file can be # found in the `score_sde` directory (LICENSE_SCORE_SDE). # --------------------------------------------------------------- """Layers used for up-sampling or down-sampling images. Many functions are ported from https://github.com/NVlabs/stylegan2. """ import torch.nn as nn import torch import torch.nn.functional as F import numpy as np from ..op import upfirdn2d # Function ported from StyleGAN2 def get_weight(module, shape, weight_var='weight', kernel_init=None): """Get/create weight tensor for a convolution or fully-connected layer.""" return module.param(weight_var, kernel_init, shape) class Conv2d(nn.Module): """Conv2d layer with optimal upsampling and downsampling (StyleGAN2).""" def __init__(self, in_ch, out_ch, kernel, up=False, down=False, resample_kernel=(1, 3, 3, 1), use_bias=True, kernel_init=None): super().__init__() assert not (up and down) assert kernel >= 1 and kernel % 2 == 1 self.weight = nn.Parameter(torch.zeros(out_ch, in_ch, kernel, kernel)) if kernel_init is not None: self.weight.data = kernel_init(self.weight.data.shape) if use_bias: self.bias = nn.Parameter(torch.zeros(out_ch)) self.up = up self.down = down self.resample_kernel = resample_kernel self.kernel = kernel self.use_bias = use_bias def forward(self, x): if self.up: x = upsample_conv_2d(x, self.weight, k=self.resample_kernel) elif self.down: x = conv_downsample_2d(x, self.weight, k=self.resample_kernel) else: x = F.conv2d(x, self.weight, stride=1, padding=self.kernel // 2) if self.use_bias: x = x + self.bias.reshape(1, -1, 1, 1) return x def naive_upsample_2d(x, factor=2): _N, C, H, W = x.shape x = torch.reshape(x, (-1, C, H, 1, W, 1)) x = x.repeat(1, 1, 1, factor, 1, factor) return torch.reshape(x, (-1, C, H * factor, W * factor)) def naive_downsample_2d(x, factor=2): _N, C, H, W = x.shape x = torch.reshape(x, (-1, C, H // factor, factor, W // factor, factor)) return torch.mean(x, dim=(3, 5)) def upsample_conv_2d(x, w, k=None, factor=2, gain=1): """Fused `upsample_2d()` followed by `tf.nn.conv2d()`. Padding is performed only once at the beginning, not between the operations. The fused op is considerably more efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary order. Args: x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. w: Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). Returns: Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same datatype as `x`. """ assert isinstance(factor, int) and factor >= 1 # Check weight shape. assert len(w.shape) == 4 convH = w.shape[2] convW = w.shape[3] inC = w.shape[1] outC = w.shape[0] assert convW == convH # Setup filter kernel. if k is None: k = [1] * factor k = _setup_kernel(k) * (gain * (factor ** 2)) p = (k.shape[0] - factor) - (convW - 1) stride = (factor, factor) # Determine data dimensions. stride = [1, 1, factor, factor] output_shape = ((_shape(x, 2) - 1) * factor + convH, (_shape(x, 3) - 1) * factor + convW) output_padding = (output_shape[0] - (_shape(x, 2) - 1) * stride[0] - convH, output_shape[1] - (_shape(x, 3) - 1) * stride[1] - convW) assert output_padding[0] >= 0 and output_padding[1] >= 0 num_groups = _shape(x, 1) // inC # Transpose weights. w = torch.reshape(w, (num_groups, -1, inC, convH, convW)) w = w[..., ::-1, ::-1].permute(0, 2, 1, 3, 4) w = torch.reshape(w, (num_groups * inC, -1, convH, convW)) x = F.conv_transpose2d(x, w, stride=stride, output_padding=output_padding, padding=0) ## Original TF code. # x = tf.nn.conv2d_transpose( # x, # w, # output_shape=output_shape, # strides=stride, # padding='VALID', # data_format=data_format) ## JAX equivalent return upfirdn2d(x, torch.tensor(k, device=x.device), pad=((p + 1) // 2 + factor - 1, p // 2 + 1)) def conv_downsample_2d(x, w, k=None, factor=2, gain=1): """Fused `tf.nn.conv2d()` followed by `downsample_2d()`. Padding is performed only once at the beginning, not between the operations. The fused op is considerably more efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary order. Args: x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. w: Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which corresponds to average pooling. factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). Returns: Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and same datatype as `x`. """ assert isinstance(factor, int) and factor >= 1 _outC, _inC, convH, convW = w.shape assert convW == convH if k is None: k = [1] * factor k = _setup_kernel(k) * gain p = (k.shape[0] - factor) + (convW - 1) s = [factor, factor] x = upfirdn2d(x, torch.tensor(k, device=x.device), pad=((p + 1) // 2, p // 2)) return F.conv2d(x, w, stride=s, padding=0) def _setup_kernel(k): k = np.asarray(k, dtype=np.float32) if k.ndim == 1: k = np.outer(k, k) k /= np.sum(k) assert k.ndim == 2 assert k.shape[0] == k.shape[1] return k def _shape(x, dim): return x.shape[dim] def upsample_2d(x, k=None, factor=2, gain=1): r"""Upsample a batch of 2D images with the given filter. Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a multiple of the upsampling factor. Args: x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). Returns: Tensor of the shape `[N, C, H * factor, W * factor]` """ assert isinstance(factor, int) and factor >= 1 if k is None: k = [1] * factor k = _setup_kernel(k) * (gain * (factor ** 2)) p = k.shape[0] - factor return upfirdn2d(x, torch.tensor(k, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2)) def downsample_2d(x, k=None, factor=2, gain=1): r"""Downsample a batch of 2D images with the given filter. Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a multiple of the downsampling factor. Args: x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which corresponds to average pooling. factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). Returns: Tensor of the shape `[N, C, H // factor, W // factor]` """ assert isinstance(factor, int) and factor >= 1 if k is None: k = [1] * factor k = _setup_kernel(k) * gain p = k.shape[0] - factor return upfirdn2d(x, torch.tensor(k, device=x.device), down=factor, pad=((p + 1) // 2, p // 2))
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: skip-file """Common layers for defining score networks. """ import math import string from functools import partial import torch.nn as nn import torch import torch.nn.functional as F import numpy as np from .normalization import ConditionalInstanceNorm2dPlus def get_act(config): """Get activation functions from the config file.""" if config.model.nonlinearity.lower() == 'elu': return nn.ELU() elif config.model.nonlinearity.lower() == 'relu': return nn.ReLU() elif config.model.nonlinearity.lower() == 'lrelu': return nn.LeakyReLU(negative_slope=0.2) elif config.model.nonlinearity.lower() == 'swish': return nn.SiLU() else: raise NotImplementedError('activation function does not exist!') def ncsn_conv1x1(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1., padding=0): """1x1 convolution. Same as NCSNv1/v2.""" conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=bias, dilation=dilation, padding=padding) init_scale = 1e-10 if init_scale == 0 else init_scale conv.weight.data *= init_scale conv.bias.data *= init_scale return conv def variance_scaling(scale, mode, distribution, in_axis=1, out_axis=0, dtype=torch.float32, device='cpu'): """Ported from JAX. """ def _compute_fans(shape, in_axis=1, out_axis=0): receptive_field_size = np.prod(shape) / shape[in_axis] / shape[out_axis] fan_in = shape[in_axis] * receptive_field_size fan_out = shape[out_axis] * receptive_field_size return fan_in, fan_out def init(shape, dtype=dtype, device=device): fan_in, fan_out = _compute_fans(shape, in_axis, out_axis) if mode == "fan_in": denominator = fan_in elif mode == "fan_out": denominator = fan_out elif mode == "fan_avg": denominator = (fan_in + fan_out) / 2 else: raise ValueError( "invalid mode for variance scaling initializer: {}".format(mode)) variance = scale / denominator if distribution == "normal": return torch.randn(*shape, dtype=dtype, device=device) * np.sqrt(variance) elif distribution == "uniform": return (torch.rand(*shape, dtype=dtype, device=device) * 2. - 1.) * np.sqrt(3 * variance) else: raise ValueError("invalid distribution for variance scaling initializer") return init def default_init(scale=1.): """The same initialization used in DDPM.""" scale = 1e-10 if scale == 0 else scale return variance_scaling(scale, 'fan_avg', 'uniform') class Dense(nn.Module): """Linear layer with `default_init`.""" def __init__(self): super().__init__() def ddpm_conv1x1(in_planes, out_planes, stride=1, bias=True, init_scale=1., padding=0): """1x1 convolution with DDPM initialization.""" conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=padding, bias=bias) conv.weight.data = default_init(init_scale)(conv.weight.data.shape) nn.init.zeros_(conv.bias) return conv def ncsn_conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1., padding=1): """3x3 convolution with PyTorch initialization. Same as NCSNv1/NCSNv2.""" init_scale = 1e-10 if init_scale == 0 else init_scale conv = nn.Conv2d(in_planes, out_planes, stride=stride, bias=bias, dilation=dilation, padding=padding, kernel_size=3) conv.weight.data *= init_scale conv.bias.data *= init_scale return conv def ddpm_conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1., padding=1): """3x3 convolution with DDPM initialization.""" conv = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=padding, dilation=dilation, bias=bias) conv.weight.data = default_init(init_scale)(conv.weight.data.shape) nn.init.zeros_(conv.bias) return conv ########################################################################### # Functions below are ported over from the NCSNv1/NCSNv2 codebase: # https://github.com/ermongroup/ncsn # https://github.com/ermongroup/ncsnv2 ########################################################################### class CRPBlock(nn.Module): def __init__(self, features, n_stages, act=nn.ReLU(), maxpool=True): super().__init__() self.convs = nn.ModuleList() for i in range(n_stages): self.convs.append(ncsn_conv3x3(features, features, stride=1, bias=False)) self.n_stages = n_stages if maxpool: self.pool = nn.MaxPool2d(kernel_size=5, stride=1, padding=2) else: self.pool = nn.AvgPool2d(kernel_size=5, stride=1, padding=2) self.act = act def forward(self, x): x = self.act(x) path = x for i in range(self.n_stages): path = self.pool(path) path = self.convs[i](path) x = path + x return x class CondCRPBlock(nn.Module): def __init__(self, features, n_stages, num_classes, normalizer, act=nn.ReLU()): super().__init__() self.convs = nn.ModuleList() self.norms = nn.ModuleList() self.normalizer = normalizer for i in range(n_stages): self.norms.append(normalizer(features, num_classes, bias=True)) self.convs.append(ncsn_conv3x3(features, features, stride=1, bias=False)) self.n_stages = n_stages self.pool = nn.AvgPool2d(kernel_size=5, stride=1, padding=2) self.act = act def forward(self, x, y): x = self.act(x) path = x for i in range(self.n_stages): path = self.norms[i](path, y) path = self.pool(path) path = self.convs[i](path) x = path + x return x class RCUBlock(nn.Module): def __init__(self, features, n_blocks, n_stages, act=nn.ReLU()): super().__init__() for i in range(n_blocks): for j in range(n_stages): setattr(self, '{}_{}_conv'.format(i + 1, j + 1), ncsn_conv3x3(features, features, stride=1, bias=False)) self.stride = 1 self.n_blocks = n_blocks self.n_stages = n_stages self.act = act def forward(self, x): for i in range(self.n_blocks): residual = x for j in range(self.n_stages): x = self.act(x) x = getattr(self, '{}_{}_conv'.format(i + 1, j + 1))(x) x += residual return x class CondRCUBlock(nn.Module): def __init__(self, features, n_blocks, n_stages, num_classes, normalizer, act=nn.ReLU()): super().__init__() for i in range(n_blocks): for j in range(n_stages): setattr(self, '{}_{}_norm'.format(i + 1, j + 1), normalizer(features, num_classes, bias=True)) setattr(self, '{}_{}_conv'.format(i + 1, j + 1), ncsn_conv3x3(features, features, stride=1, bias=False)) self.stride = 1 self.n_blocks = n_blocks self.n_stages = n_stages self.act = act self.normalizer = normalizer def forward(self, x, y): for i in range(self.n_blocks): residual = x for j in range(self.n_stages): x = getattr(self, '{}_{}_norm'.format(i + 1, j + 1))(x, y) x = self.act(x) x = getattr(self, '{}_{}_conv'.format(i + 1, j + 1))(x) x += residual return x class MSFBlock(nn.Module): def __init__(self, in_planes, features): super().__init__() assert isinstance(in_planes, list) or isinstance(in_planes, tuple) self.convs = nn.ModuleList() self.features = features for i in range(len(in_planes)): self.convs.append(ncsn_conv3x3(in_planes[i], features, stride=1, bias=True)) def forward(self, xs, shape): sums = torch.zeros(xs[0].shape[0], self.features, *shape, device=xs[0].device) for i in range(len(self.convs)): h = self.convs[i](xs[i]) h = F.interpolate(h, size=shape, mode='bilinear', align_corners=True) sums += h return sums class CondMSFBlock(nn.Module): def __init__(self, in_planes, features, num_classes, normalizer): super().__init__() assert isinstance(in_planes, list) or isinstance(in_planes, tuple) self.convs = nn.ModuleList() self.norms = nn.ModuleList() self.features = features self.normalizer = normalizer for i in range(len(in_planes)): self.convs.append(ncsn_conv3x3(in_planes[i], features, stride=1, bias=True)) self.norms.append(normalizer(in_planes[i], num_classes, bias=True)) def forward(self, xs, y, shape): sums = torch.zeros(xs[0].shape[0], self.features, *shape, device=xs[0].device) for i in range(len(self.convs)): h = self.norms[i](xs[i], y) h = self.convs[i](h) h = F.interpolate(h, size=shape, mode='bilinear', align_corners=True) sums += h return sums class RefineBlock(nn.Module): def __init__(self, in_planes, features, act=nn.ReLU(), start=False, end=False, maxpool=True): super().__init__() assert isinstance(in_planes, tuple) or isinstance(in_planes, list) self.n_blocks = n_blocks = len(in_planes) self.adapt_convs = nn.ModuleList() for i in range(n_blocks): self.adapt_convs.append(RCUBlock(in_planes[i], 2, 2, act)) self.output_convs = RCUBlock(features, 3 if end else 1, 2, act) if not start: self.msf = MSFBlock(in_planes, features) self.crp = CRPBlock(features, 2, act, maxpool=maxpool) def forward(self, xs, output_shape): assert isinstance(xs, tuple) or isinstance(xs, list) hs = [] for i in range(len(xs)): h = self.adapt_convs[i](xs[i]) hs.append(h) if self.n_blocks > 1: h = self.msf(hs, output_shape) else: h = hs[0] h = self.crp(h) h = self.output_convs(h) return h class CondRefineBlock(nn.Module): def __init__(self, in_planes, features, num_classes, normalizer, act=nn.ReLU(), start=False, end=False): super().__init__() assert isinstance(in_planes, tuple) or isinstance(in_planes, list) self.n_blocks = n_blocks = len(in_planes) self.adapt_convs = nn.ModuleList() for i in range(n_blocks): self.adapt_convs.append( CondRCUBlock(in_planes[i], 2, 2, num_classes, normalizer, act) ) self.output_convs = CondRCUBlock(features, 3 if end else 1, 2, num_classes, normalizer, act) if not start: self.msf = CondMSFBlock(in_planes, features, num_classes, normalizer) self.crp = CondCRPBlock(features, 2, num_classes, normalizer, act) def forward(self, xs, y, output_shape): assert isinstance(xs, tuple) or isinstance(xs, list) hs = [] for i in range(len(xs)): h = self.adapt_convs[i](xs[i], y) hs.append(h) if self.n_blocks > 1: h = self.msf(hs, y, output_shape) else: h = hs[0] h = self.crp(h, y) h = self.output_convs(h, y) return h class ConvMeanPool(nn.Module): def __init__(self, input_dim, output_dim, kernel_size=3, biases=True, adjust_padding=False): super().__init__() if not adjust_padding: conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases) self.conv = conv else: conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases) self.conv = nn.Sequential( nn.ZeroPad2d((1, 0, 1, 0)), conv ) def forward(self, inputs): output = self.conv(inputs) output = sum([output[:, :, ::2, ::2], output[:, :, 1::2, ::2], output[:, :, ::2, 1::2], output[:, :, 1::2, 1::2]]) / 4. return output class MeanPoolConv(nn.Module): def __init__(self, input_dim, output_dim, kernel_size=3, biases=True): super().__init__() self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases) def forward(self, inputs): output = inputs output = sum([output[:, :, ::2, ::2], output[:, :, 1::2, ::2], output[:, :, ::2, 1::2], output[:, :, 1::2, 1::2]]) / 4. return self.conv(output) class UpsampleConv(nn.Module): def __init__(self, input_dim, output_dim, kernel_size=3, biases=True): super().__init__() self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases) self.pixelshuffle = nn.PixelShuffle(upscale_factor=2) def forward(self, inputs): output = inputs output = torch.cat([output, output, output, output], dim=1) output = self.pixelshuffle(output) return self.conv(output) class ConditionalResidualBlock(nn.Module): def __init__(self, input_dim, output_dim, num_classes, resample=1, act=nn.ELU(), normalization=ConditionalInstanceNorm2dPlus, adjust_padding=False, dilation=None): super().__init__() self.non_linearity = act self.input_dim = input_dim self.output_dim = output_dim self.resample = resample self.normalization = normalization if resample == 'down': if dilation > 1: self.conv1 = ncsn_conv3x3(input_dim, input_dim, dilation=dilation) self.normalize2 = normalization(input_dim, num_classes) self.conv2 = ncsn_conv3x3(input_dim, output_dim, dilation=dilation) conv_shortcut = partial(ncsn_conv3x3, dilation=dilation) else: self.conv1 = ncsn_conv3x3(input_dim, input_dim) self.normalize2 = normalization(input_dim, num_classes) self.conv2 = ConvMeanPool(input_dim, output_dim, 3, adjust_padding=adjust_padding) conv_shortcut = partial(ConvMeanPool, kernel_size=1, adjust_padding=adjust_padding) elif resample is None: if dilation > 1: conv_shortcut = partial(ncsn_conv3x3, dilation=dilation) self.conv1 = ncsn_conv3x3(input_dim, output_dim, dilation=dilation) self.normalize2 = normalization(output_dim, num_classes) self.conv2 = ncsn_conv3x3(output_dim, output_dim, dilation=dilation) else: conv_shortcut = nn.Conv2d self.conv1 = ncsn_conv3x3(input_dim, output_dim) self.normalize2 = normalization(output_dim, num_classes) self.conv2 = ncsn_conv3x3(output_dim, output_dim) else: raise Exception('invalid resample value') if output_dim != input_dim or resample is not None: self.shortcut = conv_shortcut(input_dim, output_dim) self.normalize1 = normalization(input_dim, num_classes) def forward(self, x, y): output = self.normalize1(x, y) output = self.non_linearity(output) output = self.conv1(output) output = self.normalize2(output, y) output = self.non_linearity(output) output = self.conv2(output) if self.output_dim == self.input_dim and self.resample is None: shortcut = x else: shortcut = self.shortcut(x) return shortcut + output class ResidualBlock(nn.Module): def __init__(self, input_dim, output_dim, resample=None, act=nn.ELU(), normalization=nn.InstanceNorm2d, adjust_padding=False, dilation=1): super().__init__() self.non_linearity = act self.input_dim = input_dim self.output_dim = output_dim self.resample = resample self.normalization = normalization if resample == 'down': if dilation > 1: self.conv1 = ncsn_conv3x3(input_dim, input_dim, dilation=dilation) self.normalize2 = normalization(input_dim) self.conv2 = ncsn_conv3x3(input_dim, output_dim, dilation=dilation) conv_shortcut = partial(ncsn_conv3x3, dilation=dilation) else: self.conv1 = ncsn_conv3x3(input_dim, input_dim) self.normalize2 = normalization(input_dim) self.conv2 = ConvMeanPool(input_dim, output_dim, 3, adjust_padding=adjust_padding) conv_shortcut = partial(ConvMeanPool, kernel_size=1, adjust_padding=adjust_padding) elif resample is None: if dilation > 1: conv_shortcut = partial(ncsn_conv3x3, dilation=dilation) self.conv1 = ncsn_conv3x3(input_dim, output_dim, dilation=dilation) self.normalize2 = normalization(output_dim) self.conv2 = ncsn_conv3x3(output_dim, output_dim, dilation=dilation) else: # conv_shortcut = nn.Conv2d ### Something wierd here. conv_shortcut = partial(ncsn_conv1x1) self.conv1 = ncsn_conv3x3(input_dim, output_dim) self.normalize2 = normalization(output_dim) self.conv2 = ncsn_conv3x3(output_dim, output_dim) else: raise Exception('invalid resample value') if output_dim != input_dim or resample is not None: self.shortcut = conv_shortcut(input_dim, output_dim) self.normalize1 = normalization(input_dim) def forward(self, x): output = self.normalize1(x) output = self.non_linearity(output) output = self.conv1(output) output = self.normalize2(output) output = self.non_linearity(output) output = self.conv2(output) if self.output_dim == self.input_dim and self.resample is None: shortcut = x else: shortcut = self.shortcut(x) return shortcut + output ########################################################################### # Functions below are ported over from the DDPM codebase: # https://github.com/hojonathanho/diffusion/blob/master/diffusion_tf/nn.py ########################################################################### def get_timestep_embedding(timesteps, embedding_dim, max_positions=10000): assert len(timesteps.shape) == 1 # and timesteps.dtype == tf.int32 half_dim = embedding_dim // 2 # magic number 10000 is from transformers emb = math.log(max_positions) / (half_dim - 1) # emb = math.log(2.) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float32, device=timesteps.device) * -emb) # emb = tf.range(num_embeddings, dtype=jnp.float32)[:, None] * emb[None, :] # emb = tf.cast(timesteps, dtype=jnp.float32)[:, None] * emb[None, :] emb = timesteps.float()[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = F.pad(emb, (0, 1), mode='constant') assert emb.shape == (timesteps.shape[0], embedding_dim) return emb def _einsum(a, b, c, x, y): einsum_str = '{},{}->{}'.format(''.join(a), ''.join(b), ''.join(c)) return torch.einsum(einsum_str, x, y) def contract_inner(x, y): """tensordot(x, y, 1).""" x_chars = list(string.ascii_lowercase[:len(x.shape)]) y_chars = list(string.ascii_lowercase[len(x.shape):len(y.shape) + len(x.shape)]) y_chars[0] = x_chars[-1] # first axis of y and last of x get summed out_chars = x_chars[:-1] + y_chars[1:] return _einsum(x_chars, y_chars, out_chars, x, y) class NIN(nn.Module): def __init__(self, in_dim, num_units, init_scale=0.1): super().__init__() self.W = nn.Parameter(default_init(scale=init_scale)((in_dim, num_units)), requires_grad=True) self.b = nn.Parameter(torch.zeros(num_units), requires_grad=True) def forward(self, x): x = x.permute(0, 2, 3, 1) y = contract_inner(x, self.W) + self.b return y.permute(0, 3, 1, 2) class AttnBlock(nn.Module): """Channel-wise self-attention block.""" def __init__(self, channels): super().__init__() self.GroupNorm_0 = nn.GroupNorm(num_groups=32, num_channels=channels, eps=1e-6) self.NIN_0 = NIN(channels, channels) self.NIN_1 = NIN(channels, channels) self.NIN_2 = NIN(channels, channels) self.NIN_3 = NIN(channels, channels, init_scale=0.) def forward(self, x): B, C, H, W = x.shape h = self.GroupNorm_0(x) q = self.NIN_0(h) k = self.NIN_1(h) v = self.NIN_2(h) w = torch.einsum('bchw,bcij->bhwij', q, k) * (int(C) ** (-0.5)) w = torch.reshape(w, (B, H, W, H * W)) w = F.softmax(w, dim=-1) w = torch.reshape(w, (B, H, W, H, W)) h = torch.einsum('bhwij,bcij->bchw', w, v) h = self.NIN_3(h) return x + h class Upsample(nn.Module): def __init__(self, channels, with_conv=False): super().__init__() if with_conv: self.Conv_0 = ddpm_conv3x3(channels, channels) self.with_conv = with_conv def forward(self, x): B, C, H, W = x.shape h = F.interpolate(x, (H * 2, W * 2), mode='nearest') if self.with_conv: h = self.Conv_0(h) return h class Downsample(nn.Module): def __init__(self, channels, with_conv=False): super().__init__() if with_conv: self.Conv_0 = ddpm_conv3x3(channels, channels, stride=2, padding=0) self.with_conv = with_conv def forward(self, x): B, C, H, W = x.shape # Emulate 'SAME' padding if self.with_conv: x = F.pad(x, (0, 1, 0, 1)) x = self.Conv_0(x) else: x = F.avg_pool2d(x, kernel_size=2, stride=2, padding=0) assert x.shape == (B, C, H // 2, W // 2) return x class ResnetBlockDDPM(nn.Module): """The ResNet Blocks used in DDPM.""" def __init__(self, act, in_ch, out_ch=None, temb_dim=None, conv_shortcut=False, dropout=0.1): super().__init__() if out_ch is None: out_ch = in_ch self.GroupNorm_0 = nn.GroupNorm(num_groups=32, num_channels=in_ch, eps=1e-6) self.act = act self.Conv_0 = ddpm_conv3x3(in_ch, out_ch) if temb_dim is not None: self.Dense_0 = nn.Linear(temb_dim, out_ch) self.Dense_0.weight.data = default_init()(self.Dense_0.weight.data.shape) nn.init.zeros_(self.Dense_0.bias) self.GroupNorm_1 = nn.GroupNorm(num_groups=32, num_channels=out_ch, eps=1e-6) self.Dropout_0 = nn.Dropout(dropout) self.Conv_1 = ddpm_conv3x3(out_ch, out_ch, init_scale=0.) if in_ch != out_ch: if conv_shortcut: self.Conv_2 = ddpm_conv3x3(in_ch, out_ch) else: self.NIN_0 = NIN(in_ch, out_ch) self.out_ch = out_ch self.in_ch = in_ch self.conv_shortcut = conv_shortcut def forward(self, x, temb=None): B, C, H, W = x.shape assert C == self.in_ch out_ch = self.out_ch if self.out_ch else self.in_ch h = self.act(self.GroupNorm_0(x)) h = self.Conv_0(h) # Add bias to each feature map conditioned on the time embedding if temb is not None: h += self.Dense_0(self.act(temb))[:, :, None, None] h = self.act(self.GroupNorm_1(h)) h = self.Dropout_0(h) h = self.Conv_1(h) if C != out_ch: if self.conv_shortcut: x = self.Conv_2(x) else: x = self.NIN_0(x) return x + h
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Normalization layers.""" import torch.nn as nn import torch import functools def get_normalization(config, conditional=False): """Obtain normalization modules from the config file.""" norm = config.model.normalization if conditional: if norm == 'InstanceNorm++': return functools.partial(ConditionalInstanceNorm2dPlus, num_classes=config.model.num_classes) else: raise NotImplementedError(f'{norm} not implemented yet.') else: if norm == 'InstanceNorm': return nn.InstanceNorm2d elif norm == 'InstanceNorm++': return InstanceNorm2dPlus elif norm == 'VarianceNorm': return VarianceNorm2d elif norm == 'GroupNorm': return nn.GroupNorm else: raise ValueError('Unknown normalization: %s' % norm) class ConditionalBatchNorm2d(nn.Module): def __init__(self, num_features, num_classes, bias=True): super().__init__() self.num_features = num_features self.bias = bias self.bn = nn.BatchNorm2d(num_features, affine=False) if self.bias: self.embed = nn.Embedding(num_classes, num_features * 2) self.embed.weight.data[:, :num_features].uniform_() # Initialise scale at N(1, 0.02) self.embed.weight.data[:, num_features:].zero_() # Initialise bias at 0 else: self.embed = nn.Embedding(num_classes, num_features) self.embed.weight.data.uniform_() def forward(self, x, y): out = self.bn(x) if self.bias: gamma, beta = self.embed(y).chunk(2, dim=1) out = gamma.view(-1, self.num_features, 1, 1) * out + beta.view(-1, self.num_features, 1, 1) else: gamma = self.embed(y) out = gamma.view(-1, self.num_features, 1, 1) * out return out class ConditionalInstanceNorm2d(nn.Module): def __init__(self, num_features, num_classes, bias=True): super().__init__() self.num_features = num_features self.bias = bias self.instance_norm = nn.InstanceNorm2d(num_features, affine=False, track_running_stats=False) if bias: self.embed = nn.Embedding(num_classes, num_features * 2) self.embed.weight.data[:, :num_features].uniform_() # Initialise scale at N(1, 0.02) self.embed.weight.data[:, num_features:].zero_() # Initialise bias at 0 else: self.embed = nn.Embedding(num_classes, num_features) self.embed.weight.data.uniform_() def forward(self, x, y): h = self.instance_norm(x) if self.bias: gamma, beta = self.embed(y).chunk(2, dim=-1) out = gamma.view(-1, self.num_features, 1, 1) * h + beta.view(-1, self.num_features, 1, 1) else: gamma = self.embed(y) out = gamma.view(-1, self.num_features, 1, 1) * h return out class ConditionalVarianceNorm2d(nn.Module): def __init__(self, num_features, num_classes, bias=False): super().__init__() self.num_features = num_features self.bias = bias self.embed = nn.Embedding(num_classes, num_features) self.embed.weight.data.normal_(1, 0.02) def forward(self, x, y): vars = torch.var(x, dim=(2, 3), keepdim=True) h = x / torch.sqrt(vars + 1e-5) gamma = self.embed(y) out = gamma.view(-1, self.num_features, 1, 1) * h return out class VarianceNorm2d(nn.Module): def __init__(self, num_features, bias=False): super().__init__() self.num_features = num_features self.bias = bias self.alpha = nn.Parameter(torch.zeros(num_features)) self.alpha.data.normal_(1, 0.02) def forward(self, x): vars = torch.var(x, dim=(2, 3), keepdim=True) h = x / torch.sqrt(vars + 1e-5) out = self.alpha.view(-1, self.num_features, 1, 1) * h return out class ConditionalNoneNorm2d(nn.Module): def __init__(self, num_features, num_classes, bias=True): super().__init__() self.num_features = num_features self.bias = bias if bias: self.embed = nn.Embedding(num_classes, num_features * 2) self.embed.weight.data[:, :num_features].uniform_() # Initialise scale at N(1, 0.02) self.embed.weight.data[:, num_features:].zero_() # Initialise bias at 0 else: self.embed = nn.Embedding(num_classes, num_features) self.embed.weight.data.uniform_() def forward(self, x, y): if self.bias: gamma, beta = self.embed(y).chunk(2, dim=-1) out = gamma.view(-1, self.num_features, 1, 1) * x + beta.view(-1, self.num_features, 1, 1) else: gamma = self.embed(y) out = gamma.view(-1, self.num_features, 1, 1) * x return out class NoneNorm2d(nn.Module): def __init__(self, num_features, bias=True): super().__init__() def forward(self, x): return x class InstanceNorm2dPlus(nn.Module): def __init__(self, num_features, bias=True): super().__init__() self.num_features = num_features self.bias = bias self.instance_norm = nn.InstanceNorm2d(num_features, affine=False, track_running_stats=False) self.alpha = nn.Parameter(torch.zeros(num_features)) self.gamma = nn.Parameter(torch.zeros(num_features)) self.alpha.data.normal_(1, 0.02) self.gamma.data.normal_(1, 0.02) if bias: self.beta = nn.Parameter(torch.zeros(num_features)) def forward(self, x): means = torch.mean(x, dim=(2, 3)) m = torch.mean(means, dim=-1, keepdim=True) v = torch.var(means, dim=-1, keepdim=True) means = (means - m) / (torch.sqrt(v + 1e-5)) h = self.instance_norm(x) if self.bias: h = h + means[..., None, None] * self.alpha[..., None, None] out = self.gamma.view(-1, self.num_features, 1, 1) * h + self.beta.view(-1, self.num_features, 1, 1) else: h = h + means[..., None, None] * self.alpha[..., None, None] out = self.gamma.view(-1, self.num_features, 1, 1) * h return out class ConditionalInstanceNorm2dPlus(nn.Module): def __init__(self, num_features, num_classes, bias=True): super().__init__() self.num_features = num_features self.bias = bias self.instance_norm = nn.InstanceNorm2d(num_features, affine=False, track_running_stats=False) if bias: self.embed = nn.Embedding(num_classes, num_features * 3) self.embed.weight.data[:, :2 * num_features].normal_(1, 0.02) # Initialise scale at N(1, 0.02) self.embed.weight.data[:, 2 * num_features:].zero_() # Initialise bias at 0 else: self.embed = nn.Embedding(num_classes, 2 * num_features) self.embed.weight.data.normal_(1, 0.02) def forward(self, x, y): means = torch.mean(x, dim=(2, 3)) m = torch.mean(means, dim=-1, keepdim=True) v = torch.var(means, dim=-1, keepdim=True) means = (means - m) / (torch.sqrt(v + 1e-5)) h = self.instance_norm(x) if self.bias: gamma, alpha, beta = self.embed(y).chunk(3, dim=-1) h = h + means[..., None, None] * alpha[..., None, None] out = gamma.view(-1, self.num_features, 1, 1) * h + beta.view(-1, self.num_features, 1, 1) else: gamma, alpha = self.embed(y).chunk(2, dim=-1) h = h + means[..., None, None] * alpha[..., None, None] out = gamma.view(-1, self.num_features, 1, 1) * h return out
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: skip-file from . import utils, layers, layerspp, normalization import torch.nn as nn import functools import torch import numpy as np ResnetBlockDDPM = layerspp.ResnetBlockDDPMpp ResnetBlockBigGAN = layerspp.ResnetBlockBigGANpp Combine = layerspp.Combine conv3x3 = layerspp.conv3x3 conv1x1 = layerspp.conv1x1 get_act = layers.get_act get_normalization = normalization.get_normalization default_initializer = layers.default_init @utils.register_model(name='ncsnpp') class NCSNpp(nn.Module): """NCSN++ model""" def __init__(self, config): super().__init__() self.config = config self.act = act = get_act(config) self.register_buffer('sigmas', torch.tensor(utils.get_sigmas(config))) self.nf = nf = config.model.nf ch_mult = config.model.ch_mult self.num_res_blocks = num_res_blocks = config.model.num_res_blocks self.attn_resolutions = attn_resolutions = config.model.attn_resolutions dropout = config.model.dropout resamp_with_conv = config.model.resamp_with_conv self.num_resolutions = num_resolutions = len(ch_mult) self.all_resolutions = all_resolutions = [config.data.image_size // (2 ** i) for i in range(num_resolutions)] self.conditional = conditional = config.model.conditional # noise-conditional fir = config.model.fir fir_kernel = config.model.fir_kernel self.skip_rescale = skip_rescale = config.model.skip_rescale self.resblock_type = resblock_type = config.model.resblock_type.lower() self.progressive = progressive = config.model.progressive.lower() self.progressive_input = progressive_input = config.model.progressive_input.lower() self.embedding_type = embedding_type = config.model.embedding_type.lower() init_scale = config.model.init_scale assert progressive in ['none', 'output_skip', 'residual'] assert progressive_input in ['none', 'input_skip', 'residual'] assert embedding_type in ['fourier', 'positional'] combine_method = config.model.progressive_combine.lower() combiner = functools.partial(Combine, method=combine_method) modules = [] # timestep/noise_level embedding; only for continuous training if embedding_type == 'fourier': # Gaussian Fourier features embeddings. assert config.training.continuous, "Fourier features are only used for continuous training." modules.append(layerspp.GaussianFourierProjection( embedding_size=nf, scale=config.model.fourier_scale )) embed_dim = 2 * nf elif embedding_type == 'positional': embed_dim = nf else: raise ValueError(f'embedding type {embedding_type} unknown.') if conditional: modules.append(nn.Linear(embed_dim, nf * 4)) modules[-1].weight.data = default_initializer()(modules[-1].weight.shape) nn.init.zeros_(modules[-1].bias) modules.append(nn.Linear(nf * 4, nf * 4)) modules[-1].weight.data = default_initializer()(modules[-1].weight.shape) nn.init.zeros_(modules[-1].bias) AttnBlock = functools.partial(layerspp.AttnBlockpp, init_scale=init_scale, skip_rescale=skip_rescale) Upsample = functools.partial(layerspp.Upsample, with_conv=resamp_with_conv, fir=fir, fir_kernel=fir_kernel) if progressive == 'output_skip': self.pyramid_upsample = layerspp.Upsample(fir=fir, fir_kernel=fir_kernel, with_conv=False) elif progressive == 'residual': pyramid_upsample = functools.partial(layerspp.Upsample, fir=fir, fir_kernel=fir_kernel, with_conv=True) Downsample = functools.partial(layerspp.Downsample, with_conv=resamp_with_conv, fir=fir, fir_kernel=fir_kernel) if progressive_input == 'input_skip': self.pyramid_downsample = layerspp.Downsample(fir=fir, fir_kernel=fir_kernel, with_conv=False) elif progressive_input == 'residual': pyramid_downsample = functools.partial(layerspp.Downsample, fir=fir, fir_kernel=fir_kernel, with_conv=True) if resblock_type == 'ddpm': ResnetBlock = functools.partial(ResnetBlockDDPM, act=act, dropout=dropout, init_scale=init_scale, skip_rescale=skip_rescale, temb_dim=nf * 4) elif resblock_type == 'biggan': ResnetBlock = functools.partial(ResnetBlockBigGAN, act=act, dropout=dropout, fir=fir, fir_kernel=fir_kernel, init_scale=init_scale, skip_rescale=skip_rescale, temb_dim=nf * 4) else: raise ValueError(f'resblock type {resblock_type} unrecognized.') # Downsampling block channels = config.data.num_channels if progressive_input != 'none': input_pyramid_ch = channels modules.append(conv3x3(channels, nf)) hs_c = [nf] in_ch = nf for i_level in range(num_resolutions): # Residual blocks for this resolution for i_block in range(num_res_blocks): out_ch = nf * ch_mult[i_level] modules.append(ResnetBlock(in_ch=in_ch, out_ch=out_ch)) in_ch = out_ch if all_resolutions[i_level] in attn_resolutions: modules.append(AttnBlock(channels=in_ch)) hs_c.append(in_ch) if i_level != num_resolutions - 1: if resblock_type == 'ddpm': modules.append(Downsample(in_ch=in_ch)) else: modules.append(ResnetBlock(down=True, in_ch=in_ch)) if progressive_input == 'input_skip': modules.append(combiner(dim1=input_pyramid_ch, dim2=in_ch)) if combine_method == 'cat': in_ch *= 2 elif progressive_input == 'residual': modules.append(pyramid_downsample(in_ch=input_pyramid_ch, out_ch=in_ch)) input_pyramid_ch = in_ch hs_c.append(in_ch) in_ch = hs_c[-1] modules.append(ResnetBlock(in_ch=in_ch)) modules.append(AttnBlock(channels=in_ch)) modules.append(ResnetBlock(in_ch=in_ch)) pyramid_ch = 0 # Upsampling block for i_level in reversed(range(num_resolutions)): for i_block in range(num_res_blocks + 1): out_ch = nf * ch_mult[i_level] modules.append(ResnetBlock(in_ch=in_ch + hs_c.pop(), out_ch=out_ch)) in_ch = out_ch if all_resolutions[i_level] in attn_resolutions: modules.append(AttnBlock(channels=in_ch)) if progressive != 'none': if i_level == num_resolutions - 1: if progressive == 'output_skip': modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6)) modules.append(conv3x3(in_ch, channels, init_scale=init_scale)) pyramid_ch = channels elif progressive == 'residual': modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6)) modules.append(conv3x3(in_ch, in_ch, bias=True)) pyramid_ch = in_ch else: raise ValueError(f'{progressive} is not a valid name.') else: if progressive == 'output_skip': modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6)) modules.append(conv3x3(in_ch, channels, bias=True, init_scale=init_scale)) pyramid_ch = channels elif progressive == 'residual': modules.append(pyramid_upsample(in_ch=pyramid_ch, out_ch=in_ch)) pyramid_ch = in_ch else: raise ValueError(f'{progressive} is not a valid name') if i_level != 0: if resblock_type == 'ddpm': modules.append(Upsample(in_ch=in_ch)) else: modules.append(ResnetBlock(in_ch=in_ch, up=True)) assert not hs_c if progressive != 'output_skip': modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6)) modules.append(conv3x3(in_ch, channels, init_scale=init_scale)) self.all_modules = nn.ModuleList(modules) def forward(self, x, time_cond): # timestep/noise_level embedding; only for continuous training modules = self.all_modules m_idx = 0 if self.embedding_type == 'fourier': # Gaussian Fourier features embeddings. used_sigmas = time_cond temb = modules[m_idx](torch.log(used_sigmas)) m_idx += 1 elif self.embedding_type == 'positional': # Sinusoidal positional embeddings. timesteps = time_cond used_sigmas = self.sigmas[time_cond.long()] temb = layers.get_timestep_embedding(timesteps, self.nf) else: raise ValueError(f'embedding type {self.embedding_type} unknown.') if self.conditional: temb = modules[m_idx](temb) m_idx += 1 temb = modules[m_idx](self.act(temb)) m_idx += 1 else: temb = None if not self.config.data.centered: # If input data is in [0, 1] x = 2 * x - 1. # Downsampling block input_pyramid = None if self.progressive_input != 'none': input_pyramid = x hs = [modules[m_idx](x)] m_idx += 1 for i_level in range(self.num_resolutions): # Residual blocks for this resolution for i_block in range(self.num_res_blocks): h = modules[m_idx](hs[-1], temb) m_idx += 1 if h.shape[-1] in self.attn_resolutions: h = modules[m_idx](h) m_idx += 1 hs.append(h) if i_level != self.num_resolutions - 1: if self.resblock_type == 'ddpm': h = modules[m_idx](hs[-1]) m_idx += 1 else: h = modules[m_idx](hs[-1], temb) m_idx += 1 if self.progressive_input == 'input_skip': input_pyramid = self.pyramid_downsample(input_pyramid) h = modules[m_idx](input_pyramid, h) m_idx += 1 elif self.progressive_input == 'residual': input_pyramid = modules[m_idx](input_pyramid) m_idx += 1 if self.skip_rescale: input_pyramid = (input_pyramid + h) / np.sqrt(2.) else: input_pyramid = input_pyramid + h h = input_pyramid hs.append(h) h = hs[-1] h = modules[m_idx](h, temb) m_idx += 1 h = modules[m_idx](h) m_idx += 1 h = modules[m_idx](h, temb) m_idx += 1 pyramid = None # Upsampling block for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks + 1): h = modules[m_idx](torch.cat([h, hs.pop()], dim=1), temb) m_idx += 1 if h.shape[-1] in self.attn_resolutions: h = modules[m_idx](h) m_idx += 1 if self.progressive != 'none': if i_level == self.num_resolutions - 1: if self.progressive == 'output_skip': pyramid = self.act(modules[m_idx](h)) m_idx += 1 pyramid = modules[m_idx](pyramid) m_idx += 1 elif self.progressive == 'residual': pyramid = self.act(modules[m_idx](h)) m_idx += 1 pyramid = modules[m_idx](pyramid) m_idx += 1 else: raise ValueError(f'{self.progressive} is not a valid name.') else: if self.progressive == 'output_skip': pyramid = self.pyramid_upsample(pyramid) pyramid_h = self.act(modules[m_idx](h)) m_idx += 1 pyramid_h = modules[m_idx](pyramid_h) m_idx += 1 pyramid = pyramid + pyramid_h elif self.progressive == 'residual': pyramid = modules[m_idx](pyramid) m_idx += 1 if self.skip_rescale: pyramid = (pyramid + h) / np.sqrt(2.) else: pyramid = pyramid + h h = pyramid else: raise ValueError(f'{self.progressive} is not a valid name') if i_level != 0: if self.resblock_type == 'ddpm': h = modules[m_idx](h) m_idx += 1 else: h = modules[m_idx](h, temb) m_idx += 1 assert not hs if self.progressive == 'output_skip': h = pyramid else: h = self.act(modules[m_idx](h)) m_idx += 1 h = modules[m_idx](h) m_idx += 1 assert m_idx == len(modules) if self.config.model.scale_by_sigma: used_sigmas = used_sigmas.reshape((x.shape[0], *([1] * len(x.shape[1:])))) h = h / used_sigmas return h
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: skip-file """DDPM model. This code is the pytorch equivalent of: https://github.com/hojonathanho/diffusion/blob/master/diffusion_tf/models/unet.py """ import torch import torch.nn as nn import functools from . import utils, layers, normalization RefineBlock = layers.RefineBlock ResidualBlock = layers.ResidualBlock ResnetBlockDDPM = layers.ResnetBlockDDPM Upsample = layers.Upsample Downsample = layers.Downsample conv3x3 = layers.ddpm_conv3x3 get_act = layers.get_act get_normalization = normalization.get_normalization default_initializer = layers.default_init @utils.register_model(name='ddpm') class DDPM(nn.Module): def __init__(self, config): super().__init__() self.act = act = get_act(config) self.register_buffer('sigmas', torch.tensor(utils.get_sigmas(config))) self.nf = nf = config.model.nf ch_mult = config.model.ch_mult self.num_res_blocks = num_res_blocks = config.model.num_res_blocks self.attn_resolutions = attn_resolutions = config.model.attn_resolutions dropout = config.model.dropout resamp_with_conv = config.model.resamp_with_conv self.num_resolutions = num_resolutions = len(ch_mult) self.all_resolutions = all_resolutions = [config.data.image_size // (2 ** i) for i in range(num_resolutions)] AttnBlock = functools.partial(layers.AttnBlock) self.conditional = conditional = config.model.conditional ResnetBlock = functools.partial(ResnetBlockDDPM, act=act, temb_dim=4 * nf, dropout=dropout) if conditional: # Condition on noise levels. modules = [nn.Linear(nf, nf * 4)] modules[0].weight.data = default_initializer()(modules[0].weight.data.shape) nn.init.zeros_(modules[0].bias) modules.append(nn.Linear(nf * 4, nf * 4)) modules[1].weight.data = default_initializer()(modules[1].weight.data.shape) nn.init.zeros_(modules[1].bias) self.centered = config.data.centered channels = config.data.num_channels # Downsampling block modules.append(conv3x3(channels, nf)) hs_c = [nf] in_ch = nf for i_level in range(num_resolutions): # Residual blocks for this resolution for i_block in range(num_res_blocks): out_ch = nf * ch_mult[i_level] modules.append(ResnetBlock(in_ch=in_ch, out_ch=out_ch)) in_ch = out_ch if all_resolutions[i_level] in attn_resolutions: modules.append(AttnBlock(channels=in_ch)) hs_c.append(in_ch) if i_level != num_resolutions - 1: modules.append(Downsample(channels=in_ch, with_conv=resamp_with_conv)) hs_c.append(in_ch) in_ch = hs_c[-1] modules.append(ResnetBlock(in_ch=in_ch)) modules.append(AttnBlock(channels=in_ch)) modules.append(ResnetBlock(in_ch=in_ch)) # Upsampling block for i_level in reversed(range(num_resolutions)): for i_block in range(num_res_blocks + 1): out_ch = nf * ch_mult[i_level] modules.append(ResnetBlock(in_ch=in_ch + hs_c.pop(), out_ch=out_ch)) in_ch = out_ch if all_resolutions[i_level] in attn_resolutions: modules.append(AttnBlock(channels=in_ch)) if i_level != 0: modules.append(Upsample(channels=in_ch, with_conv=resamp_with_conv)) assert not hs_c modules.append(nn.GroupNorm(num_channels=in_ch, num_groups=32, eps=1e-6)) modules.append(conv3x3(in_ch, channels, init_scale=0.)) self.all_modules = nn.ModuleList(modules) self.scale_by_sigma = config.model.scale_by_sigma def forward(self, x, labels): modules = self.all_modules m_idx = 0 if self.conditional: # timestep/scale embedding timesteps = labels temb = layers.get_timestep_embedding(timesteps, self.nf) temb = modules[m_idx](temb) m_idx += 1 temb = modules[m_idx](self.act(temb)) m_idx += 1 else: temb = None if self.centered: # Input is in [-1, 1] h = x else: # Input is in [0, 1] h = 2 * x - 1. # Downsampling block hs = [modules[m_idx](h)] m_idx += 1 for i_level in range(self.num_resolutions): # Residual blocks for this resolution for i_block in range(self.num_res_blocks): h = modules[m_idx](hs[-1], temb) m_idx += 1 if h.shape[-1] in self.attn_resolutions: h = modules[m_idx](h) m_idx += 1 hs.append(h) if i_level != self.num_resolutions - 1: hs.append(modules[m_idx](hs[-1])) m_idx += 1 h = hs[-1] h = modules[m_idx](h, temb) m_idx += 1 h = modules[m_idx](h) m_idx += 1 h = modules[m_idx](h, temb) m_idx += 1 # Upsampling block for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks + 1): h = modules[m_idx](torch.cat([h, hs.pop()], dim=1), temb) m_idx += 1 if h.shape[-1] in self.attn_resolutions: h = modules[m_idx](h) m_idx += 1 if i_level != 0: h = modules[m_idx](h) m_idx += 1 assert not hs h = self.act(modules[m_idx](h)) m_idx += 1 h = modules[m_idx](h) m_idx += 1 assert m_idx == len(modules) if self.scale_by_sigma: # Divide the output by sigmas. Useful for training with the NCSN loss. # The DDPM loss scales the network output by sigma in the loss function, # so no need of doing it here. used_sigmas = self.sigmas[labels, None, None, None] h = h / used_sigmas return h
# --------------------------------------------------------------- # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # This work is licensed under the NVIDIA Source Code License # for DiffPure. To view a copy of this license, see the LICENSE file. # --------------------------------------------------------------- import os import random import numpy as np import torch import torchvision.utils as tvu from torchdiffeq import odeint_adjoint from guided_diffusion.script_util import create_model_and_diffusion, model_and_diffusion_defaults from score_sde.losses import get_optimizer from score_sde.models import utils as mutils from score_sde.models.ema import ExponentialMovingAverage from score_sde import sde_lib def _extract_into_tensor(arr_or_func, timesteps, broadcast_shape): """ Extract values from a 1-D numpy array for a batch of indices. :param arr: the 1-D numpy array or a func. :param timesteps: a tensor of indices into the array to extract. :param broadcast_shape: a larger shape of K dimensions with the batch dimension equal to the length of timesteps. :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. """ if callable(arr_or_func): res = arr_or_func(timesteps).float() else: res = arr_or_func.to(device=timesteps.device)[timesteps].float() while len(res.shape) < len(broadcast_shape): res = res[..., None] return res.expand(broadcast_shape) def restore_checkpoint(ckpt_dir, state, device): loaded_state = torch.load(ckpt_dir, map_location=device) state['optimizer'].load_state_dict(loaded_state['optimizer']) state['model'].load_state_dict(loaded_state['model'], strict=False) state['ema'].load_state_dict(loaded_state['ema']) state['step'] = loaded_state['step'] class VPODE(torch.nn.Module): def __init__(self, model, score_type='guided_diffusion', beta_min=0.1, beta_max=20, N=1000, img_shape=(3, 256, 256), model_kwargs=None): """Construct a Variance Preserving SDE. Args: model: diffusion model score_type: [guided_diffusion, score_sde, ddpm] beta_min: value of beta(0) beta_max: value of beta(1) """ super().__init__() self.model = model self.score_type = score_type self.model_kwargs = model_kwargs self.img_shape = img_shape self.beta_0 = beta_min self.beta_1 = beta_max self.N = N self.discrete_betas = torch.linspace(beta_min / N, beta_max / N, N) self.alphas = 1. - self.discrete_betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod) self.sqrt_1m_alphas_cumprod = torch.sqrt(1. - self.alphas_cumprod) self.alphas_cumprod_cont = lambda t: torch.exp(-0.5 * (beta_max - beta_min) * t**2 - beta_min * t) self.sqrt_1m_alphas_cumprod_neg_recip_cont = lambda t: -1. / torch.sqrt(1. - self.alphas_cumprod_cont(t)) def _scale_timesteps(self, t): assert torch.all(t <= 1) and torch.all(t >= 0), f't has to be in [0, 1], but get {t} with shape {t.shape}' return (t.float() * self.N).long() def vpsde_fn(self, t, x): beta_t = self.beta_0 + t * (self.beta_1 - self.beta_0) drift = -0.5 * beta_t[:, None] * x diffusion = torch.sqrt(beta_t) return drift, diffusion def ode_fn(self, t, x): """Create the drift and diffusion functions for the reverse SDE""" drift, diffusion = self.vpsde_fn(t, x) assert x.ndim == 2 and np.prod(self.img_shape) == x.shape[1], x.shape x_img = x.view(-1, *self.img_shape) if self.score_type == 'guided_diffusion': # model output is epsilon if self.model_kwargs is None: self.model_kwargs = {} disc_steps = self._scale_timesteps(t) # (batch_size, ), from float in [0,1] to int in [0, 1000] model_output = self.model(x_img, disc_steps, **self.model_kwargs) # with learned sigma, so model_output contains (mean, val) model_output, _ = torch.split(model_output, self.img_shape[0], dim=1) assert x_img.shape == model_output.shape, f'{x_img.shape}, {model_output.shape}' model_output = model_output.view(x.shape[0], -1) score = _extract_into_tensor(self.sqrt_1m_alphas_cumprod_neg_recip_cont, t, x.shape) * model_output elif self.score_type == 'score_sde': # model output is epsilon sde = sde_lib.VPSDE(beta_min=self.beta_0, beta_max=self.beta_1, N=self.N) score_fn = mutils.get_score_fn(sde, self.model, train=False, continuous=True) score = score_fn(x_img, t) assert x_img.shape == score.shape, f'{x_img.shape}, {score.shape}' score = score.view(x.shape[0], -1) else: raise NotImplementedError(f'Unknown score type in RevVPSDE: {self.score_type}!') ode_coef = drift - 0.5 * diffusion[:, None] ** 2 * score return ode_coef def forward(self, t, states): x = states[0] t = t.expand(x.shape[0]) # (batch_size, ) dx_dt = self.ode_fn(t, x) assert dx_dt.shape == x.shape return dx_dt, class OdeGuidedDiffusion(torch.nn.Module): def __init__(self, args, config, device=None): super().__init__() self.args = args self.config = config if device is None: device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") self.device = device # load model if config.data.dataset == 'ImageNet': img_shape = (3, 256, 256) model_dir = 'checkpoints/diffpure/guided_diffusion' model_config = model_and_diffusion_defaults() model_config.update(vars(self.config.model)) print(f'model_config: {model_config}') model, _ = create_model_and_diffusion(**model_config) model.load_state_dict(torch.load(f'{model_dir}/256x256_diffusion_uncond.pt', map_location='cpu')) if model_config['use_fp16']: model.convert_to_fp16() elif config.data.dataset == 'CIFAR10': img_shape = (3, 32, 32) model_dir = 'checkpoints/diffpure/score_sde' print(f'model_config: {config}') model = mutils.create_model(config) optimizer = get_optimizer(config, model.parameters()) ema = ExponentialMovingAverage(model.parameters(), decay=config.model.ema_rate) state = dict(step=0, optimizer=optimizer, model=model, ema=ema) restore_checkpoint(f'{model_dir}/checkpoint_8.pth', state, device) ema.copy_to(model.parameters()) else: raise NotImplementedError(f'Unknown dataset {config.data.dataset}!') model.eval().to(self.device) self.model = model self.vpode = VPODE(model=model, score_type=args.score_type, img_shape=img_shape, model_kwargs=None).to(self.device) self.betas = self.vpode.discrete_betas.float().to(self.device) self.atol, self.rtol = 1e-3, 1e-3 self.method = 'euler' print(f'method: {self.method}, atol: {self.atol}, rtol: {self.rtol}, step_size: {self.args.step_size}') def image_editing_sample(self, img, bs_id=0, tag=None): assert isinstance(img, torch.Tensor) batch_size = img.shape[0] if tag is None: tag = 'rnd' + str(random.randint(0, 10000)) out_dir = os.path.join(self.args.log_dir, 'bs' + str(bs_id) + '_' + tag) assert img.ndim == 4, img.ndim img = img.to(self.device) x0 = img if bs_id < 2: os.makedirs(out_dir, exist_ok=True) tvu.save_image((x0 + 1) * 0.5, os.path.join(out_dir, f'original_input.png')) xs = [] for it in range(self.args.sample_step): if self.args.fix_rand: # fix initial randomness noise_fixed = torch.FloatTensor(1, *x0.shape[1:]).\ normal_(0, 1, generator=torch.manual_seed(self.args.seed)).to(self.device) print(f'noise_fixed: {noise_fixed[0, 0, 0, :3]}') e = noise_fixed.repeat(x0.shape[0], 1, 1, 1) else: e = torch.randn_like(x0).to(self.device) assert e.shape == x0.shape total_noise_levels = self.args.t a = (1 - self.betas).cumprod(dim=0).to(self.device) x = x0 * a[total_noise_levels - 1].sqrt() + e * (1.0 - a[total_noise_levels - 1]).sqrt() if bs_id < 2: tvu.save_image((x + 1) * 0.5, os.path.join(out_dir, f'init_{it}.png')) epsilon_dt0, epsilon_dt1 = 0, 1e-5 t0, t1 = self.args.t * 1. / 1000 - epsilon_dt0, epsilon_dt1 t_size = 2 ts = torch.linspace(t0, t1, t_size).to(self.device) x_ = x.view(batch_size, -1) # (batch_size, state_size) states = (x_, ) # ODE solver odeint = odeint_adjoint state_t = odeint( self.vpode, states, ts, atol=self.atol, rtol=self.rtol, method=self.method, options=None if self.method != 'euler' else dict(step_size=self.args.step_size) # only used for fixed-point method ) # 'euler', 'dopri5' x0_ = state_t[0][-1] x0 = x0_.view(x.shape) # (batch_size, c, h, w) if bs_id < 2: torch.save(x0, os.path.join(out_dir, f'samples_{it}.pth')) tvu.save_image((x0 + 1) * 0.5, os.path.join(out_dir, f'samples_{it}.png')) xs.append(x0) return torch.cat(xs, dim=0)
# --------------------------------------------------------------- # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # This work is licensed under the NVIDIA Source Code License # for DiffPure. To view a copy of this license, see the LICENSE file. # --------------------------------------------------------------- import os import random import numpy as np import torch import torchvision.utils as tvu import torchsde from guided_diffusion.script_util import create_model_and_diffusion, model_and_diffusion_defaults from score_sde.losses import get_optimizer from score_sde.models import utils as mutils from score_sde.models.ema import ExponentialMovingAverage from score_sde import sde_lib def _extract_into_tensor(arr_or_func, timesteps, broadcast_shape): """ Extract values from a 1-D numpy array for a batch of indices. :param arr: the 1-D numpy array or a func. :param timesteps: a tensor of indices into the array to extract. :param broadcast_shape: a larger shape of K dimensions with the batch dimension equal to the length of timesteps. :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. """ if callable(arr_or_func): res = arr_or_func(timesteps).float() else: res = arr_or_func.to(device=timesteps.device)[timesteps].float() while len(res.shape) < len(broadcast_shape): res = res[..., None] return res.expand(broadcast_shape) def restore_checkpoint(ckpt_dir, state, device): loaded_state = torch.load(ckpt_dir, map_location=device) state['optimizer'].load_state_dict(loaded_state['optimizer']) state['model'].load_state_dict(loaded_state['model'], strict=False) state['ema'].load_state_dict(loaded_state['ema']) state['step'] = loaded_state['step'] class LDSDE(torch.nn.Module): def __init__(self, model, x_init, score_type='guided_diffusion', beta_min=0.1, beta_max=20, N=1000, img_shape=(3, 256, 256), sigma2=0.001, lambda_ld=0.01, eta=5, model_kwargs=None): """Construct a Variance Preserving SDE. Args: model: diffusion model score_type: [guided_diffusion, score_sde, ddpm] beta_min: value of beta(0) beta_max: value of beta(1) """ super().__init__() self.model = model self.x_init = x_init self.sigma2 = sigma2 self.eta = eta self.lambda_ld = lambda_ld # damping coefficient self.score_type = score_type self.model_kwargs = model_kwargs self.img_shape = img_shape self.beta_0 = beta_min self.beta_1 = beta_max self.N = N self.discrete_betas = torch.linspace(beta_min / N, beta_max / N, N) self.alphas = 1. - self.discrete_betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod) self.sqrt_1m_alphas_cumprod = torch.sqrt(1. - self.alphas_cumprod) self.alphas_cumprod_cont = lambda t: torch.exp(-0.5 * (beta_max - beta_min) * t**2 - beta_min * t) self.sqrt_1m_alphas_cumprod_neg_recip_cont = lambda t: -1. / torch.sqrt(1. - self.alphas_cumprod_cont(t)) self.noise_type = "diagonal" self.sde_type = "ito" print(f'sigma2: {self.sigma2}, lambda_ld: {self.lambda_ld}, eta: {self.eta}') def _scale_timesteps(self, t): assert torch.all(t <= 1) and torch.all(t >= 0), f't has to be in [0, 1], but get {t} with shape {t.shape}' return (t.float() * self.N).long() def ldsde_fn(self, t, x, return_type='drift'): """Create the drift and diffusion functions for the reverse SDE""" t = torch.zeros_like(t, dtype=torch.float, device=t.device) + 1e-2 if return_type == 'drift': assert x.ndim == 2 and np.prod(self.img_shape) == x.shape[1], x.shape x_img = x.view(-1, *self.img_shape) if self.score_type == 'guided_diffusion': # model output is epsilon if self.model_kwargs is None: self.model_kwargs = {} disc_steps = self._scale_timesteps(t) # (batch_size, ), from float in [0,1] to int in [0, 1000] model_output = self.model(x_img, disc_steps, **self.model_kwargs) # with learned sigma, so model_output contains (mean, val) model_output, _ = torch.split(model_output, self.img_shape[0], dim=1) assert x_img.shape == model_output.shape, f'{x_img.shape}, {model_output.shape}' model_output = model_output.view(x.shape[0], -1) score = _extract_into_tensor(self.sqrt_1m_alphas_cumprod_neg_recip_cont, t, x.shape) * model_output elif self.score_type == 'score_sde': # model output is epsilon sde = sde_lib.VPSDE(beta_min=self.beta_0, beta_max=self.beta_1, N=self.N) score_fn = mutils.get_score_fn(sde, self.model, train=False, continuous=True) score = score_fn(x_img, t) assert x_img.shape == score.shape, f'{x_img.shape}, {score.shape}' score = score.view(x.shape[0], -1) else: raise NotImplementedError(f'Unknown score type in RevVPSDE: {self.score_type}!') drift = -0.5 * (-score + (x - self.x_init) / self.sigma2) * self.lambda_ld # TODO return drift else: diffusion_coef = np.sqrt(self.lambda_ld) * self.eta return torch.tensor([diffusion_coef], dtype=torch.float).expand(x.shape[0]).to(x.device) def f(self, t, x): """Create the drift function f(x, t) sdeint only support a 2D tensor (batch_size, c*h*w) """ t = t.expand(x.shape[0]) # (batch_size, ) drift = self.ldsde_fn(t, x, return_type='drift') assert drift.shape == x.shape return drift def g(self, t, x): """Create the diffusion function g(t) sdeint only support a 2D tensor (batch_size, c*h*w) """ t = t.expand(x.shape[0]) # (batch_size, ) diffusion = self.ldsde_fn(t, x, return_type='diffusion') assert diffusion.shape == (x.shape[0], ) return diffusion[:, None].expand(x.shape) class LDGuidedDiffusion(torch.nn.Module): def __init__(self, args, config, device=None): super().__init__() self.args = args self.config = config if device is None: device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") self.device = device # load model if config.data.dataset == 'ImageNet': img_shape = (3, 256, 256) model_dir = 'checkpoints/diffpure/guided_diffusion' model_config = model_and_diffusion_defaults() model_config.update(vars(self.config.model)) print(f'model_config: {model_config}') model, _ = create_model_and_diffusion(**model_config) model.load_state_dict(torch.load(f'{model_dir}/256x256_diffusion_uncond.pt', map_location='cpu')) if model_config['use_fp16']: model.convert_to_fp16() elif config.data.dataset == 'CIFAR10': img_shape = (3, 32, 32) model_dir = 'checkpoints/diffpure/score_sde' print(f'model_config: {config}') model = mutils.create_model(config) optimizer = get_optimizer(config, model.parameters()) ema = ExponentialMovingAverage(model.parameters(), decay=config.model.ema_rate) state = dict(step=0, optimizer=optimizer, model=model, ema=ema) restore_checkpoint(f'{model_dir}/checkpoint_8.pth', state, device) ema.copy_to(model.parameters()) else: raise NotImplementedError(f'Unknown dataset {config.data.dataset}!') model.eval().to(self.device) self.model = model self.img_shape = img_shape print(f'use_bm: {args.use_bm}') self.args_dict = { 'method': 'euler', # ["srk", "euler", None] 'adaptive': False, 'dt': 1e-2, } print(f'args_dict: {self.args_dict}') def image_editing_sample(self, img, bs_id=0, tag=None): assert isinstance(img, torch.Tensor) batch_size = img.shape[0] state_size = int(np.prod(img.shape[1:])) # c*h*w if tag is None: tag = 'rnd' + str(random.randint(0, 10000)) out_dir = os.path.join(self.args.log_dir, 'bs' + str(bs_id) + '_' + tag) assert img.ndim == 4, img.ndim img = img.to(self.device) x0 = img x0_ = x0.view(batch_size, -1) # (batch_size, state_size) self.ldsde = LDSDE(model=self.model, x_init=x0_, score_type=self.args.score_type, img_shape=self.img_shape, sigma2=self.args.sigma2, lambda_ld=self.args.lambda_ld, eta=self.args.eta, model_kwargs=None).to(self.device) self.betas = self.ldsde.discrete_betas.float().to(self.device) if bs_id < 2: os.makedirs(out_dir, exist_ok=True) tvu.save_image((x0 + 1) * 0.5, os.path.join(out_dir, f'original_input.png')) xs = [] for it in range(self.args.sample_step): x = x0 if bs_id < 2: tvu.save_image((x + 1) * 0.5, os.path.join(out_dir, f'init_{it}.png')) epsilon_dt0, epsilon_dt1 = 0, 1e-5 t0, t1 = 1 - self.args.t * 1. / 1000 + epsilon_dt0, 1 - epsilon_dt1 t_size = 2 ts = torch.linspace(t0, t1, t_size).to(self.device) x_ = x.view(batch_size, -1) # (batch_size, state_size) if self.args.use_bm: bm = torchsde.BrownianInterval(t0=t0, t1=t1, size=(batch_size, state_size), device=self.device) xs_ = torchsde.sdeint_adjoint(self.ldsde, x_, ts, bm=bm, **self.args_dict) else: xs_ = torchsde.sdeint_adjoint(self.ldsde, x_, ts, **self.args_dict) x0 = xs_[-1].view(x.shape) # (batch_size, c, h, w) if bs_id < 2: torch.save(x0, os.path.join(out_dir, f'samples_{it}.pth')) tvu.save_image((x0 + 1) * 0.5, os.path.join(out_dir, f'samples_{it}.png')) xs.append(x0) return torch.cat(xs, dim=0)
# --------------------------------------------------------------- # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # This work is licensed under the NVIDIA Source Code License # for DiffPure. To view a copy of this license, see the LICENSE file. # --------------------------------------------------------------- import os import random import torch import torchvision.utils as tvu from guided_diffusion.script_util import create_model_and_diffusion, model_and_diffusion_defaults class GuidedDiffusion(torch.nn.Module): def __init__(self, args, config, device=None, model_dir='checkpoints/diffpure/guided_diffusion'): super().__init__() self.args = args self.config = config if device is None: device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") self.device = device # load model model_config = model_and_diffusion_defaults() model_config.update(vars(self.config.model)) print(f'model_config: {model_config}') model, diffusion = create_model_and_diffusion(**model_config) model.load_state_dict(torch.load(f'{model_dir}/256x256_diffusion_uncond.pt', map_location='cpu')) model.requires_grad_(False).eval().to(self.device) if model_config['use_fp16']: model.convert_to_fp16() self.model = model self.diffusion = diffusion self.betas = torch.from_numpy(diffusion.betas).float().to(self.device) def image_editing_sample(self, img, bs_id=0, tag=None): with torch.no_grad(): assert isinstance(img, torch.Tensor) batch_size = img.shape[0] if tag is None: tag = 'rnd' + str(random.randint(0, 10000)) out_dir = os.path.join(self.args.log_dir, 'bs' + str(bs_id) + '_' + tag) assert img.ndim == 4, img.ndim img = img.to(self.device) x0 = img if bs_id < 2: os.makedirs(out_dir, exist_ok=True) tvu.save_image((x0 + 1) * 0.5, os.path.join(out_dir, f'original_input.png')) xs = [] for it in range(self.args.sample_step): e = torch.randn_like(x0) total_noise_levels = self.args.t a = (1 - self.betas).cumprod(dim=0) x = x0 * a[total_noise_levels - 1].sqrt() + e * (1.0 - a[total_noise_levels - 1]).sqrt() if bs_id < 2: tvu.save_image((x + 1) * 0.5, os.path.join(out_dir, f'init_{it}.png')) for i in reversed(range(total_noise_levels)): t = torch.tensor([i] * batch_size, device=self.device) x = self.diffusion.p_sample(self.model, x, t, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None)["sample"] # added intermediate step vis if (i - 99) % 100 == 0 and bs_id < 2: tvu.save_image((x + 1) * 0.5, os.path.join(out_dir, f'noise_t_{i}_{it}.png')) x0 = x if bs_id < 2: torch.save(x0, os.path.join(out_dir, f'samples_{it}.pth')) tvu.save_image((x0 + 1) * 0.5, os.path.join(out_dir, f'samples_{it}.png')) xs.append(x0) return torch.cat(xs, dim=0)
# --------------------------------------------------------------- # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # This work is licensed under the NVIDIA Source Code License # for DiffPure. To view a copy of this license, see the LICENSE file. # --------------------------------------------------------------- import os import random import numpy as np import torch import torchvision.utils as tvu from ddpm.unet_ddpm import Model def get_beta_schedule(*, beta_start, beta_end, num_diffusion_timesteps): betas = np.linspace(beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64) assert betas.shape == (num_diffusion_timesteps,) return betas def extract(a, t, x_shape): """Extract coefficients from a based on t and reshape to make it broadcastable with x_shape.""" bs, = t.shape assert x_shape[0] == bs out = torch.gather(torch.tensor(a, dtype=torch.float, device=t.device), 0, t.long()) assert out.shape == (bs,) out = out.reshape((bs,) + (1,) * (len(x_shape) - 1)) return out def image_editing_denoising_step_flexible_mask(x, t, *, model, logvar, betas): """ Sample from p(x_{t-1} | x_t) """ alphas = 1.0 - betas alphas_cumprod = alphas.cumprod(dim=0) model_output = model(x, t) weighted_score = betas / torch.sqrt(1 - alphas_cumprod) mean = extract(1 / torch.sqrt(alphas), t, x.shape) * (x - extract(weighted_score, t, x.shape) * model_output) logvar = extract(logvar, t, x.shape) noise = torch.randn_like(x) mask = 1 - (t == 0).float() mask = mask.reshape((x.shape[0],) + (1,) * (len(x.shape) - 1)) sample = mean + mask * torch.exp(0.5 * logvar) * noise sample = sample.float() return sample class Diffusion(torch.nn.Module): def __init__(self, args, config, device=None): super().__init__() self.args = args self.config = config if device is None: device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") self.device = device print("Loading model") if self.config.data.dataset == "CelebA_HQ": url = "https://image-editing-test-12345.s3-us-west-2.amazonaws.com/checkpoints/celeba_hq.ckpt" else: raise ValueError model = Model(self.config) ckpt = torch.hub.load_state_dict_from_url(url, map_location='cpu') model.load_state_dict(ckpt) model.eval() self.model = model self.model_var_type = config.model.var_type betas = get_beta_schedule( beta_start=config.diffusion.beta_start, beta_end=config.diffusion.beta_end, num_diffusion_timesteps=config.diffusion.num_diffusion_timesteps ) self.betas = torch.from_numpy(betas).float() self.num_timesteps = betas.shape[0] alphas = 1.0 - betas alphas_cumprod = np.cumprod(alphas, axis=0) alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1]) posterior_variance = betas * \ (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod) if self.model_var_type == "fixedlarge": self.logvar = np.log(np.append(posterior_variance[1], betas[1:])) elif self.model_var_type == 'fixedsmall': self.logvar = np.log(np.maximum(posterior_variance, 1e-20)) def image_editing_sample(self, img=None, bs_id=0, tag=None): assert isinstance(img, torch.Tensor) batch_size = img.shape[0] with torch.no_grad(): if tag is None: tag = 'rnd' + str(random.randint(0, 10000)) out_dir = os.path.join(self.args.log_dir, 'bs' + str(bs_id) + '_' + tag) assert img.ndim == 4, img.ndim x0 = img if bs_id < 2: os.makedirs(out_dir, exist_ok=True) tvu.save_image((x0 + 1) * 0.5, os.path.join(out_dir, f'original_input.png')) xs = [] for it in range(self.args.sample_step): e = torch.randn_like(x0) total_noise_levels = self.args.t a = (1 - self.betas).cumprod(dim=0).to(x0.device) x = x0 * a[total_noise_levels - 1].sqrt() + e * (1.0 - a[total_noise_levels - 1]).sqrt() if bs_id < 2: tvu.save_image((x + 1) * 0.5, os.path.join(out_dir, f'init_{it}.png')) for i in reversed(range(total_noise_levels)): t = torch.tensor([i] * batch_size, device=img.device) x = image_editing_denoising_step_flexible_mask(x, t=t, model=self.model, logvar=self.logvar, betas=self.betas.to(img.device)) # added intermediate step vis if (i - 49) % 50 == 0 and bs_id < 2: tvu.save_image((x + 1) * 0.5, os.path.join(out_dir, f'noise_t_{i}_{it}.png')) x0 = x if bs_id < 2: torch.save(x0, os.path.join(out_dir, f'samples_{it}.pth')) tvu.save_image((x0 + 1) * 0.5, os.path.join(out_dir, f'samples_{it}.png')) xs.append(x0) return torch.cat(xs, dim=0)
# --------------------------------------------------------------- # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # This work is licensed under the NVIDIA Source Code License # for DiffPure. To view a copy of this license, see the LICENSE file. # --------------------------------------------------------------- import os import random import numpy as np import torch import torchvision.utils as tvu import torchsde from guided_diffusion.script_util import create_model_and_diffusion, model_and_diffusion_defaults from score_sde.losses import get_optimizer from score_sde.models import utils as mutils from score_sde.models.ema import ExponentialMovingAverage from score_sde import sde_lib def _extract_into_tensor(arr_or_func, timesteps, broadcast_shape): """ Extract values from a 1-D numpy array for a batch of indices. :param arr: the 1-D numpy array or a func. :param timesteps: a tensor of indices into the array to extract. :param broadcast_shape: a larger shape of K dimensions with the batch dimension equal to the length of timesteps. :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. """ if callable(arr_or_func): res = arr_or_func(timesteps).float() else: res = arr_or_func.to(device=timesteps.device)[timesteps].float() while len(res.shape) < len(broadcast_shape): res = res[..., None] return res.expand(broadcast_shape) def restore_checkpoint(ckpt_dir, state, device): loaded_state = torch.load(ckpt_dir, map_location=device) state['optimizer'].load_state_dict(loaded_state['optimizer']) state['model'].load_state_dict(loaded_state['model'], strict=False) state['ema'].load_state_dict(loaded_state['ema']) state['step'] = loaded_state['step'] class RevVPSDE(torch.nn.Module): def __init__(self, model, score_type='guided_diffusion', beta_min=0.1, beta_max=20, N=1000, img_shape=(3, 256, 256), model_kwargs=None): """Construct a Variance Preserving SDE. Args: model: diffusion model score_type: [guided_diffusion, score_sde, ddpm] beta_min: value of beta(0) beta_max: value of beta(1) """ super().__init__() self.model = model self.score_type = score_type self.model_kwargs = model_kwargs self.img_shape = img_shape self.beta_0 = beta_min self.beta_1 = beta_max self.N = N self.discrete_betas = torch.linspace(beta_min / N, beta_max / N, N) self.alphas = 1. - self.discrete_betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod) self.sqrt_1m_alphas_cumprod = torch.sqrt(1. - self.alphas_cumprod) self.alphas_cumprod_cont = lambda t: torch.exp(-0.5 * (beta_max - beta_min) * t**2 - beta_min * t) self.sqrt_1m_alphas_cumprod_neg_recip_cont = lambda t: -1. / torch.sqrt(1. - self.alphas_cumprod_cont(t)) self.noise_type = "diagonal" self.sde_type = "ito" def _scale_timesteps(self, t): assert torch.all(t <= 1) and torch.all(t >= 0), f't has to be in [0, 1], but get {t} with shape {t.shape}' return (t.float() * self.N).long() def vpsde_fn(self, t, x): beta_t = self.beta_0 + t * (self.beta_1 - self.beta_0) drift = -0.5 * beta_t[:, None] * x diffusion = torch.sqrt(beta_t) return drift, diffusion def rvpsde_fn(self, t, x, return_type='drift'): """Create the drift and diffusion functions for the reverse SDE""" drift, diffusion = self.vpsde_fn(t, x) if return_type == 'drift': assert x.ndim == 2 and np.prod(self.img_shape) == x.shape[1], x.shape x_img = x.view(-1, *self.img_shape) if self.score_type == 'guided_diffusion': # model output is epsilon if self.model_kwargs is None: self.model_kwargs = {} disc_steps = self._scale_timesteps(t) # (batch_size, ), from float in [0,1] to int in [0, 1000] model_output = self.model(x_img, disc_steps, **self.model_kwargs) # with learned sigma, so model_output contains (mean, val) model_output, _ = torch.split(model_output, self.img_shape[0], dim=1) assert x_img.shape == model_output.shape, f'{x_img.shape}, {model_output.shape}' model_output = model_output.view(x.shape[0], -1) score = _extract_into_tensor(self.sqrt_1m_alphas_cumprod_neg_recip_cont, t, x.shape) * model_output elif self.score_type == 'score_sde': # model output is epsilon sde = sde_lib.VPSDE(beta_min=self.beta_0, beta_max=self.beta_1, N=self.N) score_fn = mutils.get_score_fn(sde, self.model, train=False, continuous=True) score = score_fn(x_img, t) assert x_img.shape == score.shape, f'{x_img.shape}, {score.shape}' score = score.view(x.shape[0], -1) else: raise NotImplementedError(f'Unknown score type in RevVPSDE: {self.score_type}!') drift = drift - diffusion[:, None] ** 2 * score return drift else: return diffusion def f(self, t, x): """Create the drift function -f(x, 1-t) (by t' = 1 - t) sdeint only support a 2D tensor (batch_size, c*h*w) """ t = t.expand(x.shape[0]) # (batch_size, ) drift = self.rvpsde_fn(1 - t, x, return_type='drift') assert drift.shape == x.shape return -drift def g(self, t, x): """Create the diffusion function g(1-t) (by t' = 1 - t) sdeint only support a 2D tensor (batch_size, c*h*w) """ t = t.expand(x.shape[0]) # (batch_size, ) diffusion = self.rvpsde_fn(1 - t, x, return_type='diffusion') assert diffusion.shape == (x.shape[0], ) return diffusion[:, None].expand(x.shape) class RevGuidedDiffusion(torch.nn.Module): def __init__(self, args, config, device=None): super().__init__() self.args = args self.config = config if device is None: device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") self.device = device # load model if config.data.dataset == 'ImageNet': img_shape = (3, 256, 256) model_dir = 'checkpoints/diffpure/guided_diffusion' model_config = model_and_diffusion_defaults() model_config.update(vars(self.config.model)) print(f'model_config: {model_config}') model, _ = create_model_and_diffusion(**model_config) model.load_state_dict(torch.load(f'{model_dir}/256x256_diffusion_uncond.pt', map_location='cpu')) if model_config['use_fp16']: model.convert_to_fp16() elif config.data.dataset == 'CIFAR10': img_shape = (3, 32, 32) model_dir = 'checkpoints/diffpure/score_sde' print(f'model_config: {config}') model = mutils.create_model(config) optimizer = get_optimizer(config, model.parameters()) ema = ExponentialMovingAverage(model.parameters(), decay=config.model.ema_rate) state = dict(step=0, optimizer=optimizer, model=model, ema=ema) restore_checkpoint(f'{model_dir}/checkpoint_8.pth', state, device) ema.copy_to(model.parameters()) else: raise NotImplementedError(f'Unknown dataset {config.data.dataset}!') model.eval().to(self.device) self.model = model self.rev_vpsde = RevVPSDE(model=model, score_type=args.score_type, img_shape=img_shape, model_kwargs=None).to(self.device) self.betas = self.rev_vpsde.discrete_betas.float().to(self.device) print(f't: {args.t}, rand_t: {args.rand_t}, t_delta: {args.t_delta}') print(f'use_bm: {args.use_bm}') def image_editing_sample(self, img, bs_id=0, tag=None): assert isinstance(img, torch.Tensor) batch_size = img.shape[0] state_size = int(np.prod(img.shape[1:])) # c*h*w if tag is None: tag = 'rnd' + str(random.randint(0, 10000)) out_dir = os.path.join(self.args.log_dir, 'bs' + str(bs_id) + '_' + tag) assert img.ndim == 4, img.ndim img = img.to(self.device) x0 = img if bs_id < 2: os.makedirs(out_dir, exist_ok=True) tvu.save_image((x0 + 1) * 0.5, os.path.join(out_dir, f'original_input.png')) xs = [] for it in range(self.args.sample_step): e = torch.randn_like(x0).to(self.device) total_noise_levels = self.args.t if self.args.rand_t: total_noise_levels = self.args.t + np.random.randint(-self.args.t_delta, self.args.t_delta) print(f'total_noise_levels: {total_noise_levels}') a = (1 - self.betas).cumprod(dim=0).to(self.device) x = x0 * a[total_noise_levels - 1].sqrt() + e * (1.0 - a[total_noise_levels - 1]).sqrt() if bs_id < 2: tvu.save_image((x + 1) * 0.5, os.path.join(out_dir, f'init_{it}.png')) epsilon_dt0, epsilon_dt1 = 0, 1e-5 t0, t1 = 1 - self.args.t * 1. / 1000 + epsilon_dt0, 1 - epsilon_dt1 t_size = 2 ts = torch.linspace(t0, t1, t_size).to(self.device) x_ = x.view(batch_size, -1) # (batch_size, state_size) if self.args.use_bm: bm = torchsde.BrownianInterval(t0=t0, t1=t1, size=(batch_size, state_size), device=self.device) xs_ = torchsde.sdeint_adjoint(self.rev_vpsde, x_, ts, method='euler', bm=bm) else: xs_ = torchsde.sdeint_adjoint(self.rev_vpsde, x_, ts, method='euler') x0 = xs_[-1].view(x.shape) # (batch_size, c, h, w) if bs_id < 2: torch.save(x0, os.path.join(out_dir, f'samples_{it}.pth')) tvu.save_image((x0 + 1) * 0.5, os.path.join(out_dir, f'samples_{it}.png')) xs.append(x0) return torch.cat(xs, dim=0)
# --------------------------------------------------------------- # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # This work is licensed under the NVIDIA Source Code License # for DiffPure. To view a copy of this license, see the LICENSE file. # --------------------------------------------------------------- import os, sys import io import lmdb import pandas as pd import numpy as np from PIL import Image import torch import torchvision from torch.utils.data import Dataset, Subset import torchvision.transforms as transforms from torchvision.datasets.vision import VisionDataset from torchvision.datasets import folder, ImageFolder # --------------------------------------------------------------------------------------------------- def remove_prefix(s, prefix): if s.startswith(prefix): s = s[len(prefix):] return s class ImageDataset(VisionDataset): """ modified from: https://pytorch.org/docs/stable/_modules/torchvision/datasets/folder.html#ImageFolder uses cached directory listing if available rather than walking directory Attributes: classes (list): List of the class names. class_to_idx (dict): Dict with items (class_name, class_index). samples (list): List of (sample path, class_index) tuples targets (list): The class_index value for each image in the dataset """ def __init__(self, root, loader=folder.default_loader, extensions=folder.IMG_EXTENSIONS, transform=None, target_transform=None, is_valid_file=None, return_path=False): super(ImageDataset, self).__init__(root, transform=transform, target_transform=target_transform) classes, class_to_idx = self._find_classes(self.root) cache = self.root.rstrip('/') + '.txt' if os.path.isfile(cache): print("Using directory list at: %s" % cache) with open(cache) as f: samples = [] for line in f: (path, idx) = line.strip().split(';') samples.append((os.path.join(self.root, path), int(idx))) else: print("Walking directory: %s" % self.root) samples = folder.make_dataset(self.root, class_to_idx, extensions, is_valid_file) with open(cache, 'w') as f: for line in samples: path, label = line f.write('%s;%d\n' % (remove_prefix(path, self.root).lstrip('/'), label)) if len(samples) == 0: raise (RuntimeError( "Found 0 files in subfolders of: " + self.root + "\nSupported extensions are: " + ",".join(extensions))) self.loader = loader self.classes = classes self.class_to_idx = class_to_idx self.samples = samples self.return_path = return_path def _find_classes(self, dir): """ Finds the class folders in a dataset. Ensures: No class is a subdirectory of another. """ if sys.version_info >= (3, 5): # Faster and available in Python 3.5 and above classes = [d.name for d in os.scandir(dir) if d.is_dir()] else: classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))] classes.sort() class_to_idx = {classes[i]: i for i in range(len(classes))} return classes, class_to_idx def __getitem__(self, index): path, target = self.samples[index] sample = self.loader(path) if self.transform is not None: sample = self.transform(sample) if self.target_transform is not None: target = self.target_transform(target) if self.return_path: return sample, target, path return sample, target def __len__(self): return len(self.samples) # --------------------------------------------------------------------------------------------------- # get the attributes from celebahq subset def make_table(root): filenames = sorted(os.listdir(f'{root}/images')) # filter out non-png files, rename it to jpg to match entries in list_attr_celeba.txt celebahq = [os.path.basename(f).replace('png', 'jpg') if f.endswith('png') else os.path.basename(f) for f in filenames] attr_gt = pd.read_csv(f'{root}/list_attr_celeba.txt', skiprows=1, delim_whitespace=True, index_col=0) attr_celebahq = attr_gt.reindex(index=celebahq).replace(-1, 0) # get the train/test/val partitions partitions = {} with open(f'{root}/list_eval_partition.txt') as f: for line in f: filename, part = line.strip().split(' ') partitions[filename] = int(part) partitions_list = [partitions[fname] for fname in attr_celebahq.index] attr_celebahq['partition'] = partitions_list return attr_celebahq ###### dataset functions ###### class CelebAHQDataset(Dataset): def __init__(self, partition, attribute, root=None, fraction=None, data_seed=1, chunk_length=None, chunk_idx=-1, **kwargs): if root is None: root = './dataset/celebahq' self.fraction = fraction self.dset = ImageDataset(root, **kwargs) # make table attr_celebahq = make_table(root) # convert from train/val/test to partition numbers part_to_int = dict(train=0, val=1, test=2) def get_partition_indices(part): return np.where(attr_celebahq['partition'] == part_to_int[part])[0] partition_idx = get_partition_indices(partition) # if we want to further subsample the dataset, just subsample # partition_idx and Subset() once if fraction is not None: print("Using a fraction of the original dataset") print("The original dataset has length %d" % len(partition_idx)) new_length = int(fraction / 100 * len(partition_idx)) rng = np.random.RandomState(data_seed) new_indices = rng.choice(partition_idx, new_length, replace=False) partition_idx = new_indices print("The subsetted dataset has length %d" % len(partition_idx)) elif chunk_length is not None and chunk_idx > 0: print(f"Using a fraction of the original dataset with chunk_length: {chunk_length}, chunk_idx: {chunk_idx}") print("The original dataset has length %d" % len(partition_idx)) new_indices = partition_idx[chunk_length * chunk_idx: chunk_length * (chunk_idx + 1)] partition_idx = new_indices print("The subsetted dataset has length %d" % len(partition_idx)) self.dset = Subset(self.dset, partition_idx) attr_subset = attr_celebahq.iloc[partition_idx] self.attr_subset = attr_subset[attribute] print('attribute freq: %0.4f (%d / %d)' % (self.attr_subset.mean(), self.attr_subset.sum(), len(self.attr_subset))) def __len__(self): return len(self.dset) def __getitem__(self, idx): data = self.dset[idx] # first element is the class, replace it label = self.attr_subset[idx] return (data[0], label, *data[2:]) ###### transformation functions ###### def get_transform(dataset, transform_type, base_size=256): if dataset.lower() == "celebahq": assert base_size == 256, base_size if transform_type == 'imtrain': return transforms.Compose([ transforms.Resize(base_size), transforms.RandomHorizontalFlip(p=0.5), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) elif transform_type == 'imval': return transforms.Compose([ transforms.Resize(base_size), # no horizontal flip for standard validation transforms.ToTensor(), # transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) elif transform_type == 'imcolor': return transforms.Compose([ transforms.Resize(base_size), transforms.RandomHorizontalFlip(p=0.5), transforms.ColorJitter(brightness=.05, contrast=.05, saturation=.05, hue=.05), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) elif transform_type == 'imcrop': return transforms.Compose([ # 1024 + 32, or 256 + 8 transforms.Resize(int(1.03125 * base_size)), transforms.RandomCrop(base_size), transforms.RandomHorizontalFlip(p=0.5), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) elif transform_type == 'tensorbase': # dummy transform for compatibility with other datasets return transforms.Lambda(lambda x: x) else: raise NotImplementedError elif "imagenet" in dataset.lower(): assert base_size == 224, base_size if transform_type == 'imtrain': return transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(base_size), transforms.RandomHorizontalFlip(p=0.5), transforms.ToTensor(), # transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) elif transform_type == 'imval': return transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(base_size), # no horizontal flip for standard validation transforms.ToTensor(), # transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) else: raise NotImplementedError else: raise NotImplementedError ################################################################################ # ImageNet - LMDB ############################################################################### def lmdb_loader(path, lmdb_data): # In-memory binary streams with lmdb_data.begin(write=False, buffers=True) as txn: bytedata = txn.get(path.encode('ascii')) img = Image.open(io.BytesIO(bytedata)) return img.convert('RGB') def imagenet_lmdb_dataset( root, transform=None, target_transform=None, loader=lmdb_loader): """ You can create this dataloader using: train_data = imagenet_lmdb_dataset(traindir, transform=train_transform) valid_data = imagenet_lmdb_dataset(validdir, transform=val_transform) """ if root.endswith('/'): root = root[:-1] pt_path = os.path.join( root + '_faster_imagefolder.lmdb.pt') lmdb_path = os.path.join( root + '_faster_imagefolder.lmdb') if os.path.isfile(pt_path) and os.path.isdir(lmdb_path): print('Loading pt {} and lmdb {}'.format(pt_path, lmdb_path)) data_set = torch.load(pt_path) else: data_set = ImageFolder( root, None, None, None) torch.save(data_set, pt_path, pickle_protocol=4) print('Saving pt to {}'.format(pt_path)) print('Building lmdb to {}'.format(lmdb_path)) env = lmdb.open(lmdb_path, map_size=1e12) with env.begin(write=True) as txn: for path, class_index in data_set.imgs: with open(path, 'rb') as f: data = f.read() txn.put(path.encode('ascii'), data) data_set.lmdb_data = lmdb.open( lmdb_path, readonly=True, max_readers=1, lock=False, readahead=False, meminit=False) # reset transform and target_transform data_set.samples = data_set.imgs data_set.transform = transform data_set.target_transform = target_transform data_set.loader = lambda path: loader(path, data_set.lmdb_data) return data_set def imagenet_lmdb_dataset_sub( root, transform=None, target_transform=None, loader=lmdb_loader, num_sub=-1, data_seed=0): data_set = imagenet_lmdb_dataset( root, transform=transform, target_transform=target_transform, loader=loader) if num_sub > 0: partition_idx = np.random.RandomState(data_seed).choice(len(data_set), num_sub, replace=False) data_set = Subset(data_set, partition_idx) return data_set ################################################################################ # CIFAR-10 ############################################################################### def cifar10_dataset_sub(root, transform=None, num_sub=-1, data_seed=0): val_data = torchvision.datasets.CIFAR10(root=root, transform=transform, download=True, train=False) if num_sub > 0: partition_idx = np.random.RandomState(data_seed).choice(len(val_data), min(len(val_data), num_sub), replace=False) val_data = Subset(val_data, partition_idx) return val_data
# --------------------------------------------------------------- # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # This work is licensed under the NVIDIA Source Code License # for DiffPure. To view a copy of this license, see the LICENSE file. # --------------------------------------------------------------- from .datasets import imagenet_lmdb_dataset, imagenet_lmdb_dataset_sub, cifar10_dataset_sub def get_transform(dataset_name, transform_type, base_size=256): from . import datasets if dataset_name == 'celebahq': return datasets.get_transform(dataset_name, transform_type, base_size) elif 'imagenet' in dataset_name: return datasets.get_transform(dataset_name, transform_type, base_size) else: raise NotImplementedError def get_dataset(dataset_name, partition, *args, **kwargs): from . import datasets if dataset_name == 'celebahq': return datasets.CelebAHQDataset(partition, *args, **kwargs) else: raise NotImplementedError
# --------------------------------------------------------------- # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # This work is licensed under the NVIDIA Source Code License # for DiffPure. To view a copy of this license, see the LICENSE file. # --------------------------------------------------------------- import torch import os from . import attribute_net softmax = torch.nn.Softmax(dim=1) def downsample(images, size=256): # Downsample to 256x256. The attribute classifiers were built for 256x256. # follows https://github.com/NVlabs/stylegan/blob/master/metrics/linear_separability.py#L127 if images.shape[2] > size: factor = images.shape[2] // size assert (factor * size == images.shape[2]) images = images.view( [-1, images.shape[1], images.shape[2] // factor, factor, images.shape[3] // factor, factor]) images = images.mean(dim=[3, 5]) return images else: assert (images.shape[-1] == 256) return images def get_logit(net, im): im_256 = downsample(im) logit = net(im_256) return logit def get_softmaxed(net, im): logit = get_logit(net, im) logits = torch.cat([logit, -logit], dim=1) softmaxed = softmax(torch.cat([logit, -logit], dim=1))[:, 1] return logits, softmaxed def load_attribute_classifier(attribute, ckpt_path=None): if ckpt_path is None: base_path = 'checkpoints/diffpure/celebahq' attribute_pkl = os.path.join(base_path, attribute, 'net_best.pth') ckpt = torch.load(attribute_pkl) else: ckpt = torch.load(ckpt_path) print("Using classifier at epoch: %d" % ckpt['epoch']) if 'valacc' in ckpt.keys(): print("Validation acc on raw images: %0.5f" % ckpt['valacc']) detector = attribute_net.from_state_dict( ckpt['state_dict'], fixed_size=True, use_mbstd=False).cuda().eval() return detector class ClassifierWrapper(torch.nn.Module): def __init__(self, classifier_name, ckpt_path=None, device='cuda'): super(ClassifierWrapper, self).__init__() self.net = load_attribute_classifier(classifier_name, ckpt_path).eval().to(device) def forward(self, ims): out = (ims - 0.5) / 0.5 return get_softmaxed(self.net, out)[0]
# --------------------------------------------------------------- # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # This work is licensed under the NVIDIA Source Code License # for DiffPure. To view a copy of this license, see the LICENSE file. # --------------------------------------------------------------- import math import torch import torch.nn.functional as F import torch.nn as nn # ---------------------------- ResNet ---------------------------- class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion * planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_planes = 64 num_input_channels = 3 mean = (0.4914, 0.4822, 0.4465) std = (0.2471, 0.2435, 0.2616) self.mean = torch.tensor(mean).view(num_input_channels, 1, 1) self.std = torch.tensor(std).view(num_input_channels, 1, 1) self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.linear = nn.Linear(512 * block.expansion, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = (x - self.mean.to(x.device)) / self.std.to(x.device) out = F.relu(self.bn1(self.conv1(out))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def ResNet50(): return ResNet(Bottleneck, [3, 4, 6, 3]) # ---------------------------- ResNet ---------------------------- # ---------------------------- WideResNet ---------------------------- class BasicBlock(nn.Module): def __init__(self, in_planes, out_planes, stride, dropRate=0.0): super(BasicBlock, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.relu1 = nn.ReLU(inplace=True) self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_planes) self.relu2 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_planes, out_planes, kernel_size=3, stride=1, padding=1, bias=False) self.droprate = dropRate self.equalInOut = (in_planes == out_planes) self.convShortcut = (not self.equalInOut) and nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=0, bias=False) or None def forward(self, x): if not self.equalInOut: x = self.relu1(self.bn1(x)) else: out = self.relu1(self.bn1(x)) out = self.relu2(self.bn2(self.conv1(out if self.equalInOut else x))) if self.droprate > 0: out = F.dropout(out, p=self.droprate, training=self.training) out = self.conv2(out) return torch.add(x if self.equalInOut else self.convShortcut(x), out) class NetworkBlock(nn.Module): def __init__(self, nb_layers, in_planes, out_planes, block, stride, dropRate=0.0): super(NetworkBlock, self).__init__() self.layer = self._make_layer(block, in_planes, out_planes, nb_layers, stride, dropRate) def _make_layer(self, block, in_planes, out_planes, nb_layers, stride, dropRate): layers = [] for i in range(int(nb_layers)): layers.append(block(i == 0 and in_planes or out_planes, out_planes, i == 0 and stride or 1, dropRate)) return nn.Sequential(*layers) def forward(self, x): return self.layer(x) class WideResNet(nn.Module): """ Based on code from https://github.com/yaodongyu/TRADES """ def __init__(self, depth=28, num_classes=10, widen_factor=10, sub_block1=False, dropRate=0.0, bias_last=True): super(WideResNet, self).__init__() num_input_channels = 3 mean = (0.4914, 0.4822, 0.4465) std = (0.2471, 0.2435, 0.2616) self.mean = torch.tensor(mean).view(num_input_channels, 1, 1) self.std = torch.tensor(std).view(num_input_channels, 1, 1) nChannels = [16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor] assert ((depth - 4) % 6 == 0) n = (depth - 4) / 6 block = BasicBlock # 1st conv before any network block self.conv1 = nn.Conv2d(3, nChannels[0], kernel_size=3, stride=1, padding=1, bias=False) # 1st block self.block1 = NetworkBlock(n, nChannels[0], nChannels[1], block, 1, dropRate) if sub_block1: # 1st sub-block self.sub_block1 = NetworkBlock(n, nChannels[0], nChannels[1], block, 1, dropRate) # 2nd block self.block2 = NetworkBlock(n, nChannels[1], nChannels[2], block, 2, dropRate) # 3rd block self.block3 = NetworkBlock(n, nChannels[2], nChannels[3], block, 2, dropRate) # global average pooling and classifier self.bn1 = nn.BatchNorm2d(nChannels[3]) self.relu = nn.ReLU(inplace=True) self.fc = nn.Linear(nChannels[3], num_classes, bias=bias_last) self.nChannels = nChannels[3] for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear) and not m.bias is None: m.bias.data.zero_() def forward(self, x): out = (x - self.mean.to(x.device)) / self.std.to(x.device) out = self.conv1(out) out = self.block1(out) out = self.block2(out) out = self.block3(out) out = self.relu(self.bn1(out)) out = F.avg_pool2d(out, 8) out = out.view(-1, self.nChannels) return self.fc(out) def WideResNet_70_16(): return WideResNet(depth=70, widen_factor=16, dropRate=0.0) def WideResNet_70_16_dropout(): return WideResNet(depth=70, widen_factor=16, dropRate=0.3) # ---------------------------- WideResNet ----------------------------
# --------------------------------------------------------------- # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # This work is licensed under the NVIDIA Source Code License # for DiffPure. To view a copy of this license, see the LICENSE file. # --------------------------------------------------------------- import torch import torch.nn as nn import numpy as np def lerp_clip(a, b, t): return a + (b - a) * torch.clamp(t, 0.0, 1.0) class WScaleLayer(nn.Module): def __init__(self, size, fan_in, gain=np.sqrt(2), bias=True): super(WScaleLayer, self).__init__() self.scale = gain / np.sqrt(fan_in) # No longer a parameter if bias: self.b = nn.Parameter(torch.randn(size)) else: self.b = 0 self.size = size def forward(self, x): x_size = x.size() x = x * self.scale # modified to remove warning if type(self.b) == nn.Parameter and len(x_size) == 4: x = x + self.b.view(1, -1, 1, 1).expand( x_size[0], self.size, x_size[2], x_size[3]) if type(self.b) == nn.Parameter and len(x_size) == 2: x = x + self.b.view(1, -1).expand( x_size[0], self.size) return x class WScaleConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, padding=0, bias=True, gain=np.sqrt(2)): super().__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=padding, bias=False) fan_in = in_channels * kernel_size * kernel_size self.wscale = WScaleLayer(out_channels, fan_in, gain=gain, bias=bias) def forward(self, x): return self.wscale(self.conv(x)) class WScaleLinear(nn.Module): def __init__(self, in_channels, out_channels, bias=True, gain=np.sqrt(2)): super().__init__() self.linear = nn.Linear(in_channels, out_channels, bias=False) self.wscale = WScaleLayer(out_channels, in_channels, gain=gain, bias=bias) def forward(self, x): return self.wscale(self.linear(x)) class FromRGB(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, act=nn.LeakyReLU(0.2), bias=True): super().__init__() self.conv = WScaleConv2d(in_channels, out_channels, kernel_size, padding=0, bias=bias) self.act = act def forward(self, x): return self.act(self.conv(x)) class Downscale2d(nn.Module): def __init__(self, factor=2): super().__init__() self.downsample = nn.AvgPool2d(kernel_size=factor, stride=factor) def forward(self, x): return self.downsample(x) class DownscaleConvBlock(nn.Module): def __init__(self, in_channels, conv0_channels, conv1_channels, kernel_size, padding, bias=True, act=nn.LeakyReLU(0.2)): super().__init__() self.downscale = Downscale2d() self.conv0 = WScaleConv2d(in_channels, conv0_channels, kernel_size=kernel_size, padding=padding, bias=bias) self.conv1 = WScaleConv2d(conv0_channels, conv1_channels, kernel_size=kernel_size, padding=padding, bias=bias) self.act = act def forward(self, x): x = self.act(self.conv0(x)) # conv2d_downscale2d applies downscaling before activation # the order matters here! has to be conv -> bias -> downscale -> act x = self.conv1(x) x = self.downscale(x) x = self.act(x) return x class MinibatchStdLayer(nn.Module): def __init__(self, group_size=4): super().__init__() self.group_size = group_size def forward(self, x): group_size = min(self.group_size, x.shape[0]) s = x.shape y = x.view([group_size, -1, s[1], s[2], s[3]]) y = y.float() y = y - torch.mean(y, dim=0, keepdim=True) y = torch.mean(y * y, dim=0) y = torch.sqrt(y + 1e-8) y = torch.mean(torch.mean(torch.mean(y, dim=3, keepdim=True), dim=2, keepdim=True), dim=1, keepdim=True) y = y.type(x.type()) y = y.repeat(group_size, 1, s[2], s[3]) return torch.cat([x, y], dim=1) class PredictionBlock(nn.Module): def __init__(self, in_channels, dense0_feat, dense1_feat, out_feat, pool_size=2, act=nn.LeakyReLU(0.2), use_mbstd=True): super().__init__() self.use_mbstd = use_mbstd # attribute classifiers don't have this if self.use_mbstd: self.mbstd_layer = MinibatchStdLayer() # MinibatchStdLayer adds an additional feature dimension self.conv = WScaleConv2d(in_channels + int(self.use_mbstd), dense0_feat, kernel_size=3, padding=1) self.dense0 = WScaleLinear(dense0_feat * pool_size * pool_size, dense1_feat) self.dense1 = WScaleLinear(dense1_feat, out_feat, gain=1) self.act = act def forward(self, x): if self.use_mbstd: x = self.mbstd_layer(x) x = self.act(self.conv(x)) x = x.view([x.shape[0], -1]) x = self.act(self.dense0(x)) x = self.dense1(x) return x class D(nn.Module): def __init__( self, num_channels=3, # Number of input color channels. Overridden based on dataset. resolution=128, # Input resolution. Overridden based on dataset. fmap_base=8192, # Overall multiplier for the number of feature maps. fmap_decay=1.0, # log2 feature map reduction when doubling the resolution. fmap_max=512, # Maximum number of feature maps in any layer. fixed_size=False, # True = load fromrgb_lod0 weights only use_mbstd=True, # False = no mbstd layer in PredictionBlock **kwargs): # Ignore unrecognized keyword args. super().__init__() self.resolution_log2 = resolution_log2 = int(np.log2(resolution)) assert resolution == 2 ** resolution_log2 and resolution >= 4 def nf(stage): return min(int(fmap_base / (2.0 ** (stage * fmap_decay))), fmap_max) self.register_buffer('lod_in', torch.from_numpy(np.array(0.0))) res = resolution_log2 setattr(self, 'fromrgb_lod0', FromRGB(num_channels, nf(res - 1), 1)) for i, res in enumerate(range(resolution_log2, 2, -1), 1): lod = resolution_log2 - res block = DownscaleConvBlock(nf(res - 1), nf(res - 1), nf(res - 2), kernel_size=3, padding=1) setattr(self, '%dx%d' % (2 ** res, 2 ** res), block) fromrgb = FromRGB(3, nf(res - 2), 1) if not fixed_size: setattr(self, 'fromrgb_lod%d' % i, fromrgb) res = 2 pool_size = 2 ** res block = PredictionBlock(nf(res + 1 - 2), nf(res - 1), nf(res - 2), 1, pool_size, use_mbstd=use_mbstd) setattr(self, '%dx%d' % (pool_size, pool_size), block) self.downscale = Downscale2d() self.fixed_size = fixed_size def forward(self, img): x = self.fromrgb_lod0(img) for i, res in enumerate(range(self.resolution_log2, 2, -1), 1): lod = self.resolution_log2 - res x = getattr(self, '%dx%d' % (2 ** res, 2 ** res))(x) if not self.fixed_size: img = self.downscale(img) y = getattr(self, 'fromrgb_lod%d' % i)(img) x = lerp_clip(x, y, self.lod_in - lod) res = 2 pool_size = 2 ** res out = getattr(self, '%dx%d' % (pool_size, pool_size))(x) return out def max_res_from_state_dict(state_dict): for i in range(3, 12): if '%dx%d.conv0.conv.weight' % (2 ** i, 2 ** i) not in state_dict: break return 2 ** (i - 1) def from_state_dict(state_dict, fixed_size=False, use_mbstd=True): res = max_res_from_state_dict(state_dict) print(f'res: {res}') d = D(num_channels=3, resolution=res, fixed_size=fixed_size, use_mbstd=use_mbstd) d.load_state_dict(state_dict) return d
# --------------------------------------------------------------- # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # This file has been modified from ebm-defense. # # Source: # https://github.com/point0bar1/ebm-defense/blob/master/bpda_eot_attack.py # # The license for the original version of this file can be # found in this directory (LICENSE_BPDA). # The modifications to this file are subject to the same license. # --------------------------------------------------------------- import torch import torch.nn.functional as F criterion = torch.nn.CrossEntropyLoss() class BPDA_EOT_Attack(): def __init__(self, model, adv_eps=8.0/255, eot_defense_reps=150, eot_attack_reps=15): self.model = model self.config = { 'eot_defense_ave': 'logits', 'eot_attack_ave': 'logits', 'eot_defense_reps': eot_defense_reps, 'eot_attack_reps': eot_attack_reps, 'adv_steps': 50, 'adv_norm': 'l_inf', 'adv_eps': adv_eps, 'adv_eta': 2.0 / 255, 'log_freq': 10 } print(f'BPDA_EOT config: {self.config}') def purify(self, x): return self.model(x, mode='purify') def eot_defense_prediction(seslf, logits, reps=1, eot_defense_ave=None): if eot_defense_ave == 'logits': logits_pred = logits.view([reps, int(logits.shape[0]/reps), logits.shape[1]]).mean(0) elif eot_defense_ave == 'softmax': logits_pred = F.softmax(logits, dim=1).view([reps, int(logits.shape[0]/reps), logits.shape[1]]).mean(0) elif eot_defense_ave == 'logsoftmax': logits_pred = F.log_softmax(logits, dim=1).view([reps, int(logits.shape[0] / reps), logits.shape[1]]).mean(0) elif reps == 1: logits_pred = logits else: raise RuntimeError('Invalid ave_method_pred (use "logits" or "softmax" or "logsoftmax")') _, y_pred = torch.max(logits_pred, 1) return y_pred def eot_attack_loss(self, logits, y, reps=1, eot_attack_ave='loss'): if eot_attack_ave == 'logits': logits_loss = logits.view([reps, int(logits.shape[0] / reps), logits.shape[1]]).mean(0) y_loss = y elif eot_attack_ave == 'softmax': logits_loss = torch.log(F.softmax(logits, dim=1).view([reps, int(logits.shape[0] / reps), logits.shape[1]]).mean(0)) y_loss = y elif eot_attack_ave == 'logsoftmax': logits_loss = F.log_softmax(logits, dim=1).view([reps, int(logits.shape[0] / reps), logits.shape[1]]).mean(0) y_loss = y elif eot_attack_ave == 'loss': logits_loss = logits y_loss = y.repeat(reps) else: raise RuntimeError('Invalid ave_method_eot ("logits", "softmax", "logsoftmax", "loss")') loss = criterion(logits_loss, y_loss) return loss def predict(self, X, y, requires_grad=True, reps=1, eot_defense_ave=None, eot_attack_ave='loss'): if requires_grad: logits = self.model(X, mode='classify') else: with torch.no_grad(): logits = self.model(X.data, mode='classify') y_pred = self.eot_defense_prediction(logits.detach(), reps, eot_defense_ave) correct = torch.eq(y_pred, y) loss = self.eot_attack_loss(logits, y, reps, eot_attack_ave) return correct.detach(), loss def pgd_update(self, X_adv, grad, X, adv_norm, adv_eps, adv_eta, eps=1e-10): if adv_norm == 'l_inf': X_adv.data += adv_eta * torch.sign(grad) X_adv = torch.clamp(torch.min(X + adv_eps, torch.max(X - adv_eps, X_adv)), min=0, max=1) elif adv_norm == 'l_2': X_adv.data += adv_eta * grad / grad.view(X.shape[0], -1).norm(p=2, dim=1).view(X.shape[0], 1, 1, 1) dists = (X_adv - X).view(X.shape[0], -1).norm(dim=1, p=2).view(X.shape[0], 1, 1, 1) X_adv = torch.clamp(X + torch.min(dists, adv_eps*torch.ones_like(dists))*(X_adv-X)/(dists+eps), min=0, max=1) else: raise RuntimeError('Invalid adv_norm ("l_inf" or "l_2"') return X_adv def purify_and_predict(self, X, y, purify_reps=1, requires_grad=True): X_repeat = X.repeat([purify_reps, 1, 1, 1]) X_repeat_purified = self.purify(X_repeat).detach().clone() X_repeat_purified.requires_grad_() correct, loss = self.predict(X_repeat_purified, y, requires_grad, purify_reps, self.config['eot_defense_ave'], self.config['eot_attack_ave']) if requires_grad: X_grads = torch.autograd.grad(loss, [X_repeat_purified])[0] # average gradients over parallel samples for EOT attack attack_grad = X_grads.view([purify_reps]+list(X.shape)).mean(dim=0) return correct, attack_grad else: return correct, None def eot_defense_verification(self, X_adv, y, correct, defended): for verify_ind in range(correct.nelement()): if correct[verify_ind] == 0 and defended[verify_ind] == 1: defended[verify_ind] = self.purify_and_predict(X_adv[verify_ind].unsqueeze(0), y[verify_ind].view([1]), self.config['eot_defense_reps'], requires_grad=False)[0] return defended def eval_and_bpda_eot_grad(self, X_adv, y, defended, requires_grad=True): correct, attack_grad = self.purify_and_predict(X_adv, y, self.config['eot_attack_reps'], requires_grad) if self.config['eot_defense_reps'] > 0: defended = self.eot_defense_verification(X_adv, y, correct, defended) else: defended *= correct return defended, attack_grad def attack_batch(self, X, y): # get baseline accuracy for natural images defended = self.eval_and_bpda_eot_grad(X, y, torch.ones_like(y).bool(), False)[0] print('Baseline: {} of {}'.format(defended.sum(), len(defended))) class_batch = torch.zeros([self.config['adv_steps'] + 2, X.shape[0]]).bool() class_batch[0] = defended.cpu() ims_adv_batch = torch.zeros(X.shape) for ind in range(defended.nelement()): if defended[ind] == 0: ims_adv_batch[ind] = X[ind].cpu() X_adv = X.clone() # adversarial attacks on a single batch of images for step in range(self.config['adv_steps'] + 1): defended, attack_grad = self.eval_and_bpda_eot_grad(X_adv, y, defended) class_batch[step+1] = defended.cpu() for ind in range(defended.nelement()): if class_batch[step, ind] == 1 and defended[ind] == 0: ims_adv_batch[ind] = X_adv[ind].cpu() # update adversarial images (except on final iteration so final adv images match final eval) if step < self.config['adv_steps']: X_adv = self.pgd_update(X_adv, attack_grad, X, self.config['adv_norm'], self.config['adv_eps'], self.config['adv_eta']) X_adv = X_adv.detach().clone() if step == 1 or step % self.config['log_freq'] == 0 or step == self.config['adv_steps']: print('Attack {} of {} Batch defended: {} of {}'. format(step, self.config['adv_steps'], int(torch.sum(defended).cpu().numpy()), X_adv.shape[0])) if int(torch.sum(defended).cpu().numpy()) == 0: print('Attack successfully to the batch!') break for ind in range(defended.nelement()): if defended[ind] == 1: ims_adv_batch[ind] = X_adv[ind].cpu() return class_batch, ims_adv_batch def attack_all(self, X, y, batch_size): class_path = torch.zeros([self.config['adv_steps'] + 2, 0]).bool() ims_adv = torch.zeros(0) n_batches = X.shape[0] // batch_size if n_batches == 0 and X.shape[0] > 0: n_batches = 1 for counter in range(n_batches): X_batch = X[counter * batch_size:min((counter + 1) * batch_size, X.shape[0])].clone().to(X.device) y_batch = y[counter * batch_size:min((counter + 1) * batch_size, X.shape[0])].clone().to(X.device) class_batch, ims_adv_batch = self.attack_batch(X_batch.contiguous(), y_batch.contiguous()) class_path = torch.cat((class_path, class_batch), dim=1) ims_adv = torch.cat((ims_adv, ims_adv_batch), dim=0) print(f'finished {counter}-th batch in attack_all') return class_path, ims_adv
# --------------------------------------------------------------- # Taken from the following link as is from: # https://github.com/ermongroup/SDEdit/blob/main/models/diffusion.py # # The license for the original version of this file can be # found in this directory (LICENSE_UNET_DDPM). # --------------------------------------------------------------- import math import torch import torch.nn as nn def get_timestep_embedding(timesteps, embedding_dim): """ This matches the implementation in Denoising Diffusion Probabilistic Models: From Fairseq. Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ assert len(timesteps.shape) == 1 half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) emb = emb.to(device=timesteps.device) emb = timesteps.float()[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) return emb def nonlinearity(x): # swish return x * torch.sigmoid(x) def Normalize(in_channels): return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) class Upsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): x = torch.nn.functional.interpolate( x, scale_factor=2.0, mode="nearest") if self.with_conv: x = self.conv(x) return x class Downsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: # no asymmetric padding in torch conv, must do it ourselves self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) def forward(self, x): if self.with_conv: pad = (0, 1, 0, 1) x = torch.nn.functional.pad(x, pad, mode="constant", value=0) x = self.conv(x) else: x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) return x class ResnetBlock(nn.Module): def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = Normalize(in_channels) self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) self.temb_proj = torch.nn.Linear(temb_channels, out_channels) self.norm2 = Normalize(out_channels) self.dropout = torch.nn.Dropout(dropout) self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) else: self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, x, temb): h = x h = self.norm1(h) h = nonlinearity(h) h = self.conv1(h) h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] h = self.norm2(h) h = nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) else: x = self.nin_shortcut(x) return x + h class AttnBlock(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b, c, h, w = q.shape q = q.reshape(b, c, h * w) q = q.permute(0, 2, 1) # b,hw,c k = k.reshape(b, c, h * w) # b,c,hw w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] w_ = w_ * (int(c) ** (-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = v.reshape(b, c, h * w) w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] h_ = torch.bmm(v, w_) h_ = h_.reshape(b, c, h, w) h_ = self.proj_out(h_) return x + h_ class Model(nn.Module): def __init__(self, config): super().__init__() self.config = config ch, out_ch, ch_mult = config.model.ch, config.model.out_ch, tuple(config.model.ch_mult) num_res_blocks = config.model.num_res_blocks attn_resolutions = config.model.attn_resolutions dropout = config.model.dropout in_channels = config.model.in_channels resolution = config.data.image_size resamp_with_conv = config.model.resamp_with_conv self.ch = ch self.temb_ch = self.ch * 4 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels # timestep embedding self.temb = nn.Module() self.temb.dense = nn.ModuleList([ torch.nn.Linear(self.ch, self.temb_ch), torch.nn.Linear(self.temb_ch, self.temb_ch), ]) # downsampling self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1) curr_res = resolution in_ch_mult = (1,) + ch_mult self.down = nn.ModuleList() block_in = None for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = ch * in_ch_mult[i_level] block_out = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: attn.append(AttnBlock(block_in)) down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions - 1: down.downsample = Downsample(block_in, resamp_with_conv) curr_res = curr_res // 2 self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) self.mid.attn_1 = AttnBlock(block_in) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch * ch_mult[i_level] skip_in = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks + 1): if i_block == self.num_res_blocks: skip_in = ch * in_ch_mult[i_level] block.append(ResnetBlock(in_channels=block_in + skip_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: attn.append(AttnBlock(block_in)) up = nn.Module() up.block = block up.attn = attn if i_level != 0: up.upsample = Upsample(block_in, resamp_with_conv) curr_res = curr_res * 2 self.up.insert(0, up) # prepend to get consistent order # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) def forward(self, x, t): assert x.shape[2] == x.shape[3] == self.resolution # timestep embedding temb = get_timestep_embedding(t, self.ch) temb = self.temb.dense[0](temb) temb = nonlinearity(temb) temb = self.temb.dense[1](temb) # downsampling hs = [self.conv_in(x)] for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1], temb) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) hs.append(h) if i_level != self.num_resolutions - 1: hs.append(self.down[i_level].downsample(hs[-1])) # middle h = hs[-1] h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks + 1): h = self.up[i_level].block[i_block]( torch.cat([h, hs.pop()], dim=1), temb) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h) if i_level != 0: h = self.up[i_level].upsample(h) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np class CIFAR10: def __init__(self, seed=43): import tensorflow as tf (train_data, train_labels),(self.test_data, self.test_labels) = tf.keras.datasets.cifar10.load_data() train_data = train_data/255. self.test_data = self.test_data/255. VALIDATION_SIZE = 5000 np.random.seed(seed) shuffled_indices = np.arange(len(train_data)) np.random.shuffle(shuffled_indices) train_data = train_data[shuffled_indices] train_labels = train_labels[shuffled_indices] shuffled_indices = np.arange(len(self.test_data)) np.random.shuffle(shuffled_indices) self.test_data = self.test_data[shuffled_indices].transpose((0,3,1,2)) self.test_labels = self.test_labels[shuffled_indices].flatten() self.validation_data = train_data[:VALIDATION_SIZE, :, :, :].transpose((0,3,1,2)) self.validation_labels = train_labels[:VALIDATION_SIZE].flatten() self.train_data = train_data[VALIDATION_SIZE:, :, :, :].transpose((0,3,1,2)) self.train_labels = train_labels[VALIDATION_SIZE:].flatten() class TorchModel(torch.nn.Module): def __init__(self): super().__init__() class Transpose(torch.nn.Module): def forward(self, x): return x.permute((0, 2, 3, 1)) self.layers = torch.nn.ModuleList([ torch.nn.Conv2d(3, 32, kernel_size=3, padding=1), torch.nn.ReLU(), torch.nn.BatchNorm2d(32, eps=.000), torch.nn.Conv2d(32, 32, kernel_size=3, padding=1), torch.nn.ReLU(), torch.nn.BatchNorm2d(32, eps=.000), torch.nn.MaxPool2d(2, 2), torch.nn.Conv2d(32, 64, kernel_size=3, padding=1), torch.nn.ReLU(), torch.nn.BatchNorm2d(64, eps=.000), torch.nn.Conv2d(64, 64, kernel_size=3, padding=1), torch.nn.ReLU(), torch.nn.BatchNorm2d(64, eps=.000), torch.nn.MaxPool2d(2, 2), torch.nn.Conv2d(64, 128, kernel_size=3, padding=1), torch.nn.ReLU(), torch.nn.BatchNorm2d(128, eps=.000), torch.nn.Conv2d(128, 128, kernel_size=3, padding=1), torch.nn.ReLU(), torch.nn.BatchNorm2d(128, eps=.000), torch.nn.MaxPool2d(2, 2), Transpose(), torch.nn.Flatten(), torch.nn.Linear(2048, 1024), torch.nn.ReLU(), torch.nn.BatchNorm1d(1024, eps=.000), torch.nn.Linear(1024, 512), torch.nn.ReLU(), torch.nn.BatchNorm1d(512, eps=.000), torch.nn.Linear(512, 10), ]) def __call__(self, x, training=False, upto=None, features_only=False, features_and_logits=False, detector_features_and_logits=False): if features_only or features_and_logits or detector_features_and_logits: assert upto is None upto = len(self.layers) if not isinstance(x, torch.Tensor): x = torch.tensor(x, dtype=torch.float32) outputs = [] for i,layer in enumerate(self.layers[:upto] if upto is not None else self.layers): x = layer(x) outputs.append(x) if features_only: return outputs[-2] if detector_features_and_logits: return outputs[-4], outputs[-1] if features_and_logits: return outputs[-2], outputs[-1] return x def run_multi_detect(model, x, adv_sig, random=None, return_pred=False, subtract_thresholds=None): X_neuron_adv, logits = model(x, detector_features_and_logits=True) y_pred = logits.argmax(-1) if random is None: random="correct" filter_ratio = .1 if random == "fast": n_mask = torch.rand(X_neuron_adv.shape[1]) < filter_ratio X_neuron_adv = X_neuron_adv * n_mask.to(x.device) elif random == "correct": number_neuron = X_neuron_adv.shape[1] number_keep = int(number_neuron * filter_ratio) n_mask = np.array([1] * number_keep + [0] * (number_neuron - number_keep)) n_mask = np.array(n_mask) np.random.shuffle(n_mask) X_neuron_adv = X_neuron_adv * torch.tensor(n_mask).to(x.device) else: raise adv_scores = torch_multi_sim(X_neuron_adv, adv_sig) # return scores based on the detectors corresponding to the predicted classes adv_scores = adv_scores[range(len(adv_scores)), y_pred] if subtract_thresholds is not None: relevant_thresholds = subtract_thresholds[y_pred] adv_scores = adv_scores - relevant_thresholds if return_pred: return adv_scores, y_pred else: return adv_scores def run_detect(model, x, adv_sig, random=None): X_neuron_adv = model(x, upto=-3) if random is None: random="correct" filter_ratio = .1 if random == "fast": n_mask = torch.rand(X_neuron_adv.shape[1]) < filter_ratio X_neuron_adv = X_neuron_adv * n_mask.to(x.device) elif random == "correct": number_neuron = X_neuron_adv.shape[1] number_keep = int(number_neuron * filter_ratio) n_mask = np.array([1] * number_keep + [0] * (number_neuron - number_keep)) n_mask = np.array(n_mask) np.random.shuffle(n_mask) X_neuron_adv = X_neuron_adv * torch.tensor(n_mask).to(x.device) else: raise adv_scores = torch_sim(X_neuron_adv, adv_sig) return adv_scores def torch_sim(X_neuron, adv_sig): if len(adv_sig.shape) == 1: adv_sig = adv_sig.view((512, 1)) dotted = torch.matmul(X_neuron, adv_sig.reshape((512, 1))).flatten() dotted /= (X_neuron**2).sum(axis=1)**.5 dotted /= (adv_sig**2).sum()**.5 return dotted def torch_multi_sim(X_neuron, adv_sig): assert len(adv_sig.shape) == 2 dotted = torch.matmul(X_neuron, adv_sig) dotted /= (X_neuron**2).sum(axis=1, keepdim=True)**.5 dotted /= (adv_sig**2).sum(axis=0, keepdim=True)**.5 return dotted def load_model_3(device=None): # loads model & detector for class 3 model = TorchModel() model.load_state_dict(torch.load('checkpoints/trapdoor/torch_cifar_model.h5')) model = model.eval().to(device) signature = np.load("checkpoints/trapdoor/signature.npy") signature = torch.tensor(signature).to(device) def detector(x, how=None): return run_detect(model, x, signature, how) return model, detector def load_model(device=None): model = TorchModel() model.load_state_dict(torch.load('checkpoints/trapdoor/torch_cifar_model.h5')) model = model.eval().to(device) signatures = np.load("checkpoints/trapdoor/signatures_all_nicholas.npy").transpose((1, 0)) signatures = torch.tensor(signatures).to(device) def detectors(x, how=None, return_pred=False, subtract_thresholds=None): return run_multi_detect(model, x, signatures, how, return_pred=return_pred, subtract_thresholds=subtract_thresholds) return model, detectors
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pickle import torch import tqdm import numpy as np import random import defense def injection_func(mask, pattern, adv_img): if len(adv_img.shape) == 4: return mask.transpose((0,3,1,2)) * pattern.transpose((0,3,1,2)) + (1 - mask.transpose((0,3,1,2))) * adv_img else: return mask.transpose((2,0,1)) * pattern.transpose((2,0,1)) + (1 - mask.transpose((2,0,1))) * adv_img def mask_pattern_func(y_target, pattern_dict): mask, pattern = random.choice(pattern_dict[y_target]) mask = np.copy(mask) return mask, pattern def infect_X(img, tgt, num_classes, pattern_dict): mask, pattern = mask_pattern_func(tgt, pattern_dict) raw_img = np.copy(img) adv_img = np.copy(raw_img) adv_img = injection_func(mask, pattern, adv_img) return adv_img, None def build_neuron_signature(model, X, Y, y_target, pattern_dict): num_classes = 10 X_adv = np.array( [infect_X(img, y_target, pattern_dict=pattern_dict, num_classes=num_classes)[0] for img in np.copy(X)]) BS = 512 X_neuron_adv = np.concatenate([model(X_adv[i:i+BS], upto=-3) for i in range(0,len(X_adv),BS)]) X_neuron_adv = np.mean(X_neuron_adv, axis=0) sig = X_neuron_adv return sig def main(): device = "cuda" if torch.cuda.is_available() else "cpu" model, _ = defense.load_model_3(device) data = defense.CIFAR10() pattern_dict = pickle.load( open("checkpoints/trapdoor/torch_cifar_res.p", "rb"))['pattern_dict'] signatures = {} for label in tqdm.tqdm(range(10)): signature = build_neuron_signature( lambda x, upto=None: model( torch.tensor(x, dtype=torch.float32).to(device), upto=upto).cpu().detach().numpy(), data.train_data, data.train_labels, label, pattern_dict) signatures[label] = signature signatures_np = np.array([signatures[k] for k in range(10)]) signature_nicholas = np.load("checkpoints/trapdoor/signature.npy").reshape(1, -1) diff = signature_nicholas - signatures_np # should be ~0 for label 3 print(np.abs(diff).max(-1)) np.save("checkpoints/trapdoor/signatures_all_torch.npy", signatures_np) if __name__ == "__main__": main()
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch from defense import CIFAR10 from defense import load_model, load_model_3 import numpy as np from attacks import pgd import orthogonal_pgd device = "cuda" if torch.cuda.is_available() else "cpu" parser = argparse.ArgumentParser() parser.add_argument("--batch-size", type=int, default=512) parser.add_argument("--n-samples", type=int, default=2048) parser.add_argument("--pgd-steps", type=int, default=50) parser.add_argument("--pgd-step-size", type=float, default=8 / 255 / 50 * 2.5) parser.add_argument("--epsilon", type=float, default=8 / 255) parser.add_argument("--thresholds", type=float, nargs=10, default=None) parser.add_argument("--fpr-threshold", type=float, default=0.05) parser.add_argument("--attack", type=str, choices=("naive", "orthogonal", "selective"), default="naive") args = parser.parse_args() dataset = CIFAR10() if args.n_samples == -1: args.n_samples = len(dataset.test_data) model, run_detector = load_model(device) orthogonal_pgd_attack = orthogonal_pgd.PGD( model, lambda x: run_detector(x), classifier_loss=torch.nn.CrossEntropyLoss(), detector_loss=lambda x, _: torch.mean(x), eps=args.epsilon, steps=args.pgd_steps, alpha=args.pgd_step_size, k=None, # project_detector=True, projection_norm='l2', project_classifier=True, use_projection=True, verbose=True) selective_pgd_attack = orthogonal_pgd.PGD( model, run_detector, classifier_loss=torch.nn.CrossEntropyLoss(), eps=args.epsilon, steps=args.pgd_steps, alpha=args.pgd_step_size, k=None, project_detector=False, project_classifier=False, projection_norm='l2', use_projection=True) if args.attack == "naive": run_attack = lambda x_batch, y_batch: pgd.pgd( model, x_batch, y_batch, args.pgd_steps, args.pgd_step_size, args.epsilon, norm="linf", targeted=False)[0] elif args.attack == "orthogonal": run_attack = lambda x_batch, y_batch: orthogonal_pgd_attack.attack( x_batch.cpu(), y_batch.cpu(), device=device).to( device) elif args.attack == "selective": run_attack = lambda x_batch, y_batch: selective_pgd_attack.attack( x_batch.cpu(), y_batch.cpu(), device=device).to( device) else: raise ValueError() is_adv = [] adv_detector_scores = [] detector_scores = [] y_pred = [] y_adv_pred = [] for batch_idx in range(int(np.ceil(args.n_samples / args.batch_size))): x_batch = dataset.test_data[ batch_idx * args.batch_size:(batch_idx + 1) * args.batch_size] y_batch = dataset.test_labels[ batch_idx * args.batch_size:(batch_idx + 1) * args.batch_size] x_batch = torch.tensor(x_batch, device=device, dtype=torch.float32) y_batch = torch.tensor(y_batch, device=device, dtype=torch.long) x_adv_batch = run_attack(x_batch.clone(), y_batch) with torch.no_grad(): y_adv_pred_batch = model(x_adv_batch).argmax(-1).detach() y_pred_batch = model(x_batch).argmax(-1).detach() y_pred.append(y_pred_batch.cpu().numpy()) y_adv_pred.append(y_adv_pred_batch.cpu().numpy()) is_adv_batch = y_adv_pred_batch != y_batch is_adv_batch = is_adv_batch.cpu().numpy() # since detector uses np.random set the seed here so that different attacks # are comparable np.random.seed(batch_idx) with torch.no_grad(): detector_scores_batch = run_detector(x_batch).detach().cpu().numpy() adv_detector_scores_batch = run_detector(x_adv_batch).detach().cpu().numpy() is_adv.append(is_adv_batch) detector_scores.append(detector_scores_batch) adv_detector_scores.append(adv_detector_scores_batch) y_pred = np.concatenate(y_pred, 0) y_pred = y_pred[:args.n_samples] y_adv_pred = np.concatenate(y_adv_pred, 0) y_adv_pred = y_adv_pred[:args.n_samples] is_adv = np.concatenate(is_adv, 0) is_adv = is_adv[:args.n_samples] detector_scores = np.concatenate(detector_scores, 0) detector_scores = detector_scores[:args.n_samples] adv_detector_scores = np.concatenate(adv_detector_scores, 0) adv_detector_scores = adv_detector_scores[:args.n_samples] if args.thresholds is None: detector_thresholds = [] for label in range(10): scores = detector_scores[y_pred == label] detector_threshold = np.sort(scores)[-int(len(scores) * args.fpr_threshold)] detector_thresholds.append(detector_threshold) print("Thresholds for FPR", args.fpr_threshold, "=", detector_thresholds) else: detector_thresholds = args.thresholds detector_thresholds = np.array(detector_thresholds) adv_is_detected = adv_detector_scores > detector_thresholds[y_adv_pred] is_detected = detector_scores > detector_thresholds[y_pred] # true positive: detected + adversarial example # true negative: not detected + normal example # false positive: detected + normal example # false negative: not detected + adversarial example tnr = np.mean(~is_detected) tpr = np.mean(adv_is_detected) fnr = np.mean(~adv_is_detected) fpr = np.mean(is_detected) tp = np.sum(adv_is_detected) fn = np.sum(~adv_is_detected) fp = np.sum(is_detected) f1 = tp / (tp + 0.5 * (fp + fn)) print("TPR", tpr) print("FPR", fpr) print("TNR", tnr) print("FNR", fnr) print("F1 ", f1) is_adv_and_not_detected = np.logical_and(is_adv, ~adv_is_detected) print("Attack Success Rate (w/o detector):", np.mean(is_adv)) print("Attack Success Rate (w/ detector):", np.mean(is_adv_and_not_detected))
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Taken from https://github.com/v-wangg/OrthogonalPGD/blob/c92f11ee69723822f2179be1d6f50cd86d94bbff/attack.py#L15 """ import torch import numpy as np import tqdm class PGD: def __init__(self, classifier, detector, classifier_loss=None, detector_loss=None, steps=100, alpha=1 / 255, eps=8 / 255, use_projection=True, projection_norm='linf', target=None, lmbd=0, k=None, project_detector=False, project_classifier=False, img_min=0, img_max=1, verbose=True): ''' :param classifier: model used for classification :param detector: model used for detection :param classifier_loss: loss used for classification model :param detector_loss: loss used for detection model. Need to have __call__ method which outputs adversarial scores ranging from 0 to 1 (0 if not afversarial and 1 if adversarial) :param steps: number of steps for which to perform gradient descent/ascent :param alpha: step size :param eps: constraint on noise that can be applied to images :param use_projection: True if gradients should be projected onto each other :param projection_norm: 'linf' or 'l2' for regularization of gradients :param target: target label to attack. if None, an untargeted attack is run :param lmbd: hyperparameter for 'f + lmbd * g' when 'use_projection' is False :param k: if not None, take gradients of g onto f every kth step :param project_detector: if True, take gradients of g onto f :param project_classifier: if True, take gradients of f onto g ''' self.classifier = classifier self.detector = detector self.steps = steps self.alpha = alpha self.eps = eps self.classifier_loss = classifier_loss self.detector_loss = detector_loss self.use_projection = use_projection self.projection_norm = projection_norm self.project_classifier = project_classifier self.project_detector = project_detector self.target = target self.lmbd = lmbd self.k = k self.img_min = img_min self.img_max = img_max self.verbose = verbose # metrics to keep track of self.all_classifier_losses = [] self.all_detector_losses = [] def attack_batch(self, inputs, targets, device): adv_images = inputs.clone().detach() original_inputs_numpy = inputs.clone().detach().numpy() # alarm_targets = torch.tensor(np.zeros(len(inputs)).reshape(-1, 1)) # ideally no adversarial images should be detected alarm_targets = torch.tensor(np.zeros(len(inputs))) batch_size = inputs.shape[0] # targeted attack if self.target: targeted_targets = torch.tensor( torch.tensor(self.target * np.ones(len(inputs)), dtype=torch.int64)).to( device) advx_final = inputs.detach().numpy() loss_final = np.zeros(inputs.shape[0]) + np.inf if self.verbose: progress = tqdm.tqdm(range(self.steps)) else: progress = range(self.steps) for i in progress: adv_images.requires_grad = True # calculating gradient of classifier w.r.t. images outputs = self.classifier(adv_images.to(device)) if self.target is not None: loss_classifier = 1 * self.classifier_loss(outputs, targeted_targets) else: loss_classifier = self.classifier_loss(outputs, targets.to(device)) loss_classifier.backward(retain_graph=True) grad_classifier = adv_images.grad.cpu().detach() # calculating gradient of detector w.r.t. images adv_images.grad = None adv_scores = self.detector(adv_images.to(device)) if self.detector_loss: loss_detector = -self.detector_loss(adv_scores, alarm_targets.to(device)) else: loss_detector = torch.mean(adv_scores) loss_detector.backward() grad_detector = adv_images.grad.cpu().detach() self.all_classifier_losses.append(loss_classifier.detach().data.item()) self.all_detector_losses.append(loss_detector.detach().data.item()) if self.target: has_attack_succeeded = (outputs.cpu().detach().numpy().argmax( 1) == targeted_targets.cpu().numpy()) else: has_attack_succeeded = ( outputs.cpu().detach().numpy().argmax(1) != targets.numpy()) adv_images_np = adv_images.cpu().detach().numpy() # print(torch.max(torch.abs(adv_images-inputs))) # print('b',torch.max(torch.abs(torch.tensor(advx_final)-inputs))) for i in range(len(advx_final)): if has_attack_succeeded[i] and loss_final[i] > adv_scores[i]: # print("assign", i, np.max(advx_final[i]-original_inputs_numpy[i])) advx_final[i] = adv_images_np[i] loss_final[i] = adv_scores[i] # print("Update", i, adv_scores[i]) # using hyperparameter to combine gradient of classifier and gradient of detector if not self.use_projection: grad = grad_classifier + self.lmbd * grad_detector else: if self.project_detector: # using Orthogonal Projected Gradient Descent # projection of gradient of detector on gradient of classifier # then grad_d' = grad_d - (project grad_d onto grad_c) grad_detector_proj = grad_detector - torch.bmm((torch.bmm( grad_detector.view(batch_size, 1, -1), grad_classifier.view(batch_size, -1, 1))) / (1e-20 + torch.bmm( grad_classifier.view(batch_size, 1, -1), grad_classifier.view(batch_size, -1, 1))).view(-1, 1, 1), grad_classifier.view( batch_size, 1, -1)).view( grad_detector.shape) else: grad_detector_proj = grad_detector if self.project_classifier: # using Orthogonal Projected Gradient Descent # projection of gradient of detector on gradient of classifier # then grad_c' = grad_c - (project grad_c onto grad_d) grad_classifier_proj = grad_classifier - torch.bmm((torch.bmm( grad_classifier.view(batch_size, 1, -1), grad_detector.view(batch_size, -1, 1))) / (1e-20 + torch.bmm( grad_detector.view(batch_size, 1, -1), grad_detector.view(batch_size, -1, 1))).view(-1, 1, 1), grad_detector.view( batch_size, 1, -1)).view( grad_classifier.shape) else: grad_classifier_proj = grad_classifier # making sure adversarial images have crossed decision boundary outputs_perturbed = outputs.cpu().detach().numpy() if self.target: outputs_perturbed[ np.arange(targeted_targets.shape[0]), targets] += .05 has_attack_succeeded = np.array( (outputs_perturbed.argmax(1) == targeted_targets.cpu().numpy())[:, None, None, None], dtype=np.float32) else: outputs_perturbed[np.arange(targets.shape[0]), targets] += .05 has_attack_succeeded = np.array( (outputs_perturbed.argmax(1) != targets.numpy())[:, None, None, None], dtype=np.float32) if self.verbose: progress.set_description( "Losses (%.3f/%.3f/%.3f/%.3f)" % (np.mean(self.all_classifier_losses[-10:]), np.mean(self.all_detector_losses[-10:]), np.mean(loss_final), has_attack_succeeded.mean())) # print('correct frac', has_attack_succeeded.mean()) # print('really adv target reached', (outputs.argmax(1).cpu().detach().numpy() == self.target).mean()) if self.k: # take gradients of g onto f every kth step if i % self.k == 0: grad = grad_detector_proj else: grad = grad_classifier_proj else: # print(outputs_perturbed, has_attack_succeeded, adv_scores) grad = grad_classifier_proj * ( 1 - has_attack_succeeded) + grad_detector_proj * has_attack_succeeded if np.any(np.isnan(grad.numpy())): print(np.mean(np.isnan(grad.numpy()))) print("ABORT") break if self.target: grad = -grad # l2 regularization if self.projection_norm == 'l2': grad_norms = torch.norm(grad.view(batch_size, -1), p=2, dim=1) + 1e-20 grad = grad / grad_norms.view(batch_size, 1, 1, 1) # linf regularization elif self.projection_norm == 'linf': grad = torch.sign(grad) else: raise Exception('Incorrect Projection Norm') adv_images = adv_images.detach() + self.alpha * grad delta = torch.clamp(adv_images - torch.tensor(original_inputs_numpy), min=-self.eps, max=self.eps) adv_images = torch.clamp(torch.tensor(original_inputs_numpy) + delta, min=self.img_min, max=self.img_max).detach() return torch.tensor(advx_final) def attack(self, inputs, targets, device): adv_images = [] batch_adv_images = self.attack_batch(inputs, targets, device) adv_images.append(batch_adv_images) return torch.cat(adv_images)
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pickle import torch import tqdm import numpy as np import random import defense import keras import keras.backend as K import numpy as np from sklearn.utils import shuffle from tensorflow import set_random_seed from original.trap_utils import test_neuron_cosine_sim, init_gpu, preprocess, CoreModel, build_bottleneck_model, load_dataset, \ get_other_label_data, cal_roc, injection_func, generate_attack K.set_learning_phase(0) random.seed(1234) np.random.seed(1234) set_random_seed(1234) def mask_pattern_func(y_target, pattern_dict): mask, pattern = random.choice(pattern_dict[y_target]) mask = np.copy(mask) return mask, pattern def infect_X(img, tgt, num_classes, pattern_dict): mask, pattern = mask_pattern_func(tgt, pattern_dict) raw_img = np.copy(img) adv_img = np.copy(raw_img) adv_img = injection_func(mask, pattern, adv_img) return adv_img, keras.utils.to_categorical(tgt, num_classes=num_classes) def eval_trapdoor(model, test_X, test_Y, y_target, pattern_dict, num_classes): cur_test_X = np.array([infect_X(img, y_target, num_classes, pattern_dict)[0] for img in np.copy(test_X)]) trapdoor_succ = np.mean(np.argmax(model.predict(cur_test_X), axis=1) == y_target) return trapdoor_succ def build_neuron_signature(bottleneck_model, X, Y, y_target, pattern_dict, num_classes=10): X_adv = np.array( [infect_X(img, y_target, pattern_dict=pattern_dict, num_classes=num_classes)[0] for img in np.copy(X)]) X_neuron_adv = bottleneck_model.predict(X_adv) X_neuron_adv = np.mean(X_neuron_adv, axis=0) sig = X_neuron_adv return sig def main(): device = "cuda" if torch.cuda.is_available() else "cpu" pattern_dict = pickle.load( open("cifar_res.p", "rb"))['pattern_dict'] sess = init_gpu("0") model = CoreModel("cifar", load_clean=True, load_model=False) new_model = keras.models.load_model("cifar_model.h5", compile=False) train_X, train_Y, test_X, test_Y = load_dataset(dataset='cifar') bottleneck_model = build_bottleneck_model(new_model, model.target_layer) train_X, train_Y = shuffle(train_X, train_Y) import pdb; pdb.set_trace() signatures = {} for label in tqdm.tqdm(range(10)): signature = build_neuron_signature( bottleneck_model, train_X, train_Y, label, pattern_dict) eval_acc = eval_trapdoor(new_model, test_X, test_Y, label, pattern_dict, 10) print(eval_acc) signatures[label] = signature signatures_np = np.array([signatures[k] for k in range(10)]) signature_nicholas = np.load("checkpoints/trapdoor/signature.npy").reshape(1, -1) import pdb; pdb.set_trace() diff = signature_nicholas - signatures_np # should be ~0 for label 3 print(np.abs(diff).max(-1)) np.save("checkpoints/trapdoor/signatures_all.npy", signatures_np) if __name__ == "__main__": main()
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import math import warnings from functools import partial import torch from active_tests.decision_boundary_binarization import format_result, \ _train_logistic_regression_classifier from active_tests.decision_boundary_binarization import \ interior_boundary_discrimination_attack from defense import CIFAR10 from defense import load_model import numpy as np from attacks import pgd import orthogonal_pgd import utils as ut def main(): device = "cuda" if torch.cuda.is_available() else "cpu" parser = argparse.ArgumentParser() parser.add_argument("--batch-size", type=int, default=2048) parser.add_argument("--n-samples", type=int, default=2048) parser.add_argument("--n-boundary-points", type=int, default=1) parser.add_argument("--n-inner-points", type=int, default=19999) parser.add_argument("--pgd-steps", type=int, default=50) parser.add_argument("--pgd-step-size", type=float, default=8 / 255 / 50 * 2.5) parser.add_argument("--epsilon", type=float, default=8 / 255) parser.add_argument("--thresholds", type=float, nargs="+", required=True) parser.add_argument("--attack", type=str, choices=("naive", "orthogonal"), default="naive") parser.add_argument("--inverted-test", action="store_true") parser.add_argument("--sample-from-corners", action="store_true") args = parser.parse_args() args.thresholds = np.array(args.thresholds) if args.inverted_test: print("Running inverted test") else: print("Running normal/non-inverted test") dataset = CIFAR10() model, run_detector = load_model(device) from torch.nn import functional as F def logit_diff_loss(logits, targets): l_t = logits[range(len(targets)), targets] l_o = (logits - 1e9 * F.one_hot(targets, 2)).max(-1)[0] diff = l_o - l_t loss = diff.mean() return loss thresholds_torch = torch.tensor(args.thresholds).to(device) orthogonal_pgd_attack = orthogonal_pgd.PGD( model, lambda x: -run_detector( x, subtract_thresholds=thresholds_torch) if args.inverted_test else run_detector( x, subtract_thresholds=thresholds_torch), classifier_loss=logit_diff_loss, # torch.nn.CrossEntropyLoss(), detector_loss=lambda x, _: torch.mean(x), eps=args.epsilon, steps=args.pgd_steps, alpha=args.pgd_step_size, k=None, #project_detector=True, project_classifier=True, use_projection=True, projection_norm='l2', verbose=False, ) def run_naive_attack(model, x_batch, y_batch, epsilon=None, targeted=False): if epsilon is None: epsilon = args.epsilon return pgd.pgd( model, x_batch.to(device), y_batch.to(device), args.pgd_steps, args.pgd_step_size, epsilon, norm="linf", targeted=targeted)[0] def run_orthogonal_attack(model, x_batch, y_batch): orthogonal_pgd_attack.classifier = model return orthogonal_pgd_attack.attack( x_batch.cpu(), y_batch.cpu(), device=device).to( device) if args.attack == "naive": run_attack = run_naive_attack else: run_attack = run_orthogonal_attack def verify_valid_input_data(x_set: torch.Tensor) -> np.ndarray: """Returns True if something is not detected as an adversarial example.""" n_batches = math.ceil(x_set.shape[0] / args.batch_size) values = [] with torch.no_grad(): for b in range(n_batches): s = run_detector( x_set[b * args.batch_size:(b + 1) * args.batch_size], subtract_thresholds=thresholds_torch) values.append(s.cpu().numpy() < 0) return np.concatenate(values) def get_boundary_adversarials(x, y, n_samples, epsilon): """Generate adversarial examples for the base classifier.""" assert len(x.shape) == 3 x = x.unsqueeze(0) x = torch.repeat_interleave(x, n_samples, dim=0) y = y.unsqueeze(0) y = torch.repeat_interleave(y, n_samples, dim=0) if n_samples == 1: # generate a bunch of samples at the same time and try if any of them # gets detected x = torch.repeat_interleave(x, 5, dim=0) y = torch.repeat_interleave(y, 5, dim=0) for _ in range(4): x_adv = run_naive_attack(model, x, y, epsilon) # project adversarials to the max norm boundary x_adv = ut.clipping_aware_rescaling(x, x_adv - x, epsilon, norm="linf") is_valid = verify_valid_input_data(x_adv) is_invalid = ~is_valid if n_samples != 1: if np.all(is_invalid): # generative until we finally found an adversarial example that gets # detected break else: if np.any(is_invalid): x_adv = x_adv[is_invalid] break else: raise RuntimeError("Could not generate adversarial example that gets " "detected after 4 trials (with 500 samples each).") if n_samples == 1: x_adv = x_adv[[0]] return x_adv def attack_model(m, l, attack_kwargs): del attack_kwargs for x, y in l: x_adv = run_attack(m, x, y) logits = m(x_adv).cpu() is_adv = logits.argmax(-1) != y with torch.no_grad(): s = run_detector(x_adv, return_pred=False, subtract_thresholds=thresholds_torch) #for _ in range(5): # print(run_detector(x_adv, return_pred=False, # subtract_thresholds=thresholds_torch).cpu()) is_detected = s.cpu() > 0 # torch.tensor(args.thresholds[p.cpu().numpy()]) is_not_detected = ~is_detected is_adv_and_not_detected = torch.logical_and(is_adv, is_not_detected).numpy() is_adv_and_detected = torch.logical_and(is_adv, is_detected).numpy() # print(is_adv, logits, is_detected, s.cpu()) if args.inverted_test: return is_adv_and_detected, (x_adv, logits) else: return is_adv_and_not_detected, (x_adv, logits) x_data = dataset.validation_data[:args.n_samples].astype(np.float32) y_data = dataset.validation_labels[:args.n_samples].astype(np.int64) # exclude samples with label 3 since detector was trained to detect targeted # attacks against class 3 # x_data = x_data[y_data != 3] # y_data = y_data[y_data != 3] from utils import build_dataloader_from_arrays test_loader = build_dataloader_from_arrays(x_data, y_data, batch_size=args.batch_size) from argparse_utils import DecisionBoundaryBinarizationSettings if args.inverted_test: additional_settings = dict( n_boundary_points=args.n_boundary_points, n_boundary_adversarial_points=1, n_far_off_boundary_points=1, n_far_off_adversarial_points=1, ) else: additional_settings = dict( n_boundary_points=args.n_boundary_points, n_boundary_adversarial_points=args.n_boundary_points - 1, n_far_off_boundary_points=1, n_far_off_adversarial_points=0, ) far_off_distance = 1.75 scores_logit_differences_and_validation_accuracies = \ interior_boundary_discrimination_attack( model, test_loader, attack_fn=lambda m, l, attack_kwargs: attack_model(m, l, attack_kwargs), linearization_settings=DecisionBoundaryBinarizationSettings( epsilon=args.epsilon, norm="linf", lr=20000, adversarial_attack_settings=None, optimizer="sklearn", n_inner_points=args.n_inner_points, **additional_settings ), n_samples=args.n_samples, device=device, batch_size=args.batch_size, n_samples_evaluation=200, n_samples_asr_evaluation=200, get_boundary_adversarials_fn=get_boundary_adversarials, verify_valid_boundary_training_data_fn=verify_valid_input_data, verify_valid_inner_training_data_fn=None, verify_valid_boundary_validation_data_fn=( lambda x: ~verify_valid_input_data(x)) \ if args.inverted_test else verify_valid_input_data, fill_batches_for_verification=True, far_off_distance=far_off_distance, rescale_logits="adaptive", decision_boundary_closeness=0.999999, fail_on_exception=False, sample_training_data_from_corners=args.sample_from_corners ) print(format_result(scores_logit_differences_and_validation_accuracies, args.n_samples)) if __name__ == "__main__": main()
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import random import keras import keras.backend as K import numpy as np import tensorflow as tf from cleverhans import attacks from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Activation, Dropout, BatchNormalization from keras.models import Model from keras.models import Sequential from keras.regularizers import l2 from sklearn.metrics.pairwise import paired_cosine_distances def injection_func(mask, pattern, adv_img): return mask * pattern + (1 - mask) * adv_img def fix_gpu_memory(mem_fraction=1): os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' tf_config = None if tf.test.is_gpu_available(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=mem_fraction) tf_config = tf.ConfigProto(gpu_options=gpu_options) tf_config.gpu_options.allow_growth = True tf_config.log_device_placement = False init_op = tf.global_variables_initializer() sess = tf.Session(config=tf_config) sess.run(init_op) K.set_session(sess) return sess def init_gpu(gpu_index, force=False): if isinstance(gpu_index, list): gpu_num = ','.join([str(i) for i in gpu_index]) else: gpu_num = str(gpu_index) if "CUDA_VISIBLE_DEVICES" in os.environ and os.environ["CUDA_VISIBLE_DEVICES"] and not force: print('GPU already initiated') return os.environ["CUDA_VISIBLE_DEVICES"] = gpu_num sess = fix_gpu_memory() return sess class CoreModel(object): def __init__(self, dataset, load_clean=False, load_model=True): self.dataset = dataset if load_model: self.model = get_model(dataset, load_clean=load_clean) else: self.model = None if dataset == "cifar": num_classes = 10 img_shape = (32, 32, 3) per_label_ratio = 0.1 expect_acc = 0.75 target_layer = 'dense' mask_ratio = 0.03 pattern_size = 3 epochs = 20 elif dataset == "mnist": num_classes = 10 img_shape = (28, 28, 1) per_label_ratio = 0.1 expect_acc = 0.98 target_layer = 'dense' mask_ratio = 0.1 pattern_size = 3 epochs = 10 else: raise Exception("Not implement") self.num_classes = num_classes self.img_shape = img_shape self.per_label_ratio = per_label_ratio self.expect_acc = expect_acc self.target_layer = target_layer self.mask_ratio = mask_ratio self.epochs = epochs self.pattern_size = pattern_size def get_cifar_model(softmax=True): layers = [ Conv2D(32, (3, 3), padding='same', input_shape=(32, 32, 3)), # 0 Activation('relu'), # 1 BatchNormalization(), # 2 Conv2D(32, (3, 3), padding='same'), # 3 Activation('relu'), # 4 BatchNormalization(), # 5 MaxPooling2D(pool_size=(2, 2)), # 6 Conv2D(64, (3, 3), padding='same'), # 7 Activation('relu'), # 8 BatchNormalization(), # 9 Conv2D(64, (3, 3), padding='same'), # 10 Activation('relu'), # 11 BatchNormalization(), # 12 MaxPooling2D(pool_size=(2, 2)), # 13 Conv2D(128, (3, 3), padding='same'), # 14 Activation('relu'), # 15 BatchNormalization(), # 16 Conv2D(128, (3, 3), padding='same'), # 17 Activation('relu'), # 18 BatchNormalization(), # 19 MaxPooling2D(pool_size=(2, 2)), # 20 Flatten(), # 21 Dropout(0.5), # 22 Dense(1024, kernel_regularizer=l2(0.01), bias_regularizer=l2(0.01)), # 23 Activation('relu'), # 24 BatchNormalization(), # 25 Dropout(0.5), # 26 Dense(512, kernel_regularizer=l2(0.01), bias_regularizer=l2(0.01), name='dense'), # 27 Activation('relu'), # 28 BatchNormalization(), # 29 Dropout(0.5), # 30 Dense(10), # 31 ] model = Sequential() for layer in layers: model.add(layer) if softmax: model.add(Activation('softmax')) return model def get_mnist_model(input_shape=(28, 28, 1), num_classes=10): model = Sequential() model.add(Conv2D(16, kernel_size=(5, 5), activation='relu', input_shape=input_shape)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(32, (5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(512, activation='relu', name='dense')) model.add(Dense(num_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='Adam', metrics=['accuracy']) return model def get_model(dataset, load_clean=False): if load_clean: model = keras.models.load_model("/home/shansixioing/trap/models/{}_clean.h5".format(dataset)) else: if dataset == "cifar": model = get_cifar_model() elif dataset == 'mnist': model = get_mnist_model() else: raise Exception("Model not implemented") return model def load_dataset(dataset): if dataset == "cifar": from keras.datasets import cifar10 (X_train, Y_train), (X_test, Y_test) = cifar10.load_data() X_train = X_train / 255.0 X_test = X_test / 255.0 Y_train = keras.utils.to_categorical(Y_train, 10) Y_test = keras.utils.to_categorical(Y_test, 10) elif dataset == 'mnist': from keras.datasets import mnist (X_train, Y_train), (X_test, Y_test) = mnist.load_data() X_train = X_train.reshape(-1, 28, 28, 1) X_test = X_test.reshape(-1, 28, 28, 1) Y_train = keras.utils.to_categorical(Y_train, 10) Y_test = keras.utils.to_categorical(Y_test, 10) X_train = X_train / 255.0 X_test = X_test / 255.0 else: raise Exception("Dataset not implemented") return X_train, Y_train, X_test, Y_test class CallbackGenerator(keras.callbacks.Callback): def __init__(self, test_nor_gen, adv_gen, model_file, expected_acc=0.9): self.test_nor_gen = test_nor_gen self.adv_gen = adv_gen self.best_attack = 0 self.expected_acc = expected_acc self.model_file = model_file def on_epoch_end(self, epoch, logs=None): _, clean_acc = self.model.evaluate_generator(self.test_nor_gen, verbose=0, steps=100) _, attack_acc = self.model.evaluate_generator(self.adv_gen, steps=100, verbose=0) print("Epoch: {} - Clean Acc {:.4f} - Trapdoor Acc {:.4f}".format(epoch, clean_acc, attack_acc)) if clean_acc > self.expected_acc and attack_acc > self.best_attack and attack_acc > 0.9: if self.model_file: self.model.save(self.model_file) self.best_attack = attack_acc # if clean_acc > self.expected_acc and attack_acc > 0.995: # self.model.stop_training = True def generate_attack(sess, model, test_X, method, target, num_classes, clip_max=255.0, clip_min=0.0, mnist=False, confidence=0, batch_size=None): from cleverhans import utils_keras from cleverhans.utils import set_log_level set_log_level(0) wrap = utils_keras.KerasModelWrapper(model) y_tgt = keras.utils.to_categorical([target] * test_X.shape[0], num_classes=num_classes) batch_size = len(test_X) if batch_size is None else batch_size if method == "cw": cwl2 = attacks.CarliniWagnerL2(wrap, sess=sess) adv_x = cwl2.generate_np(test_X, y_target=y_tgt, clip_min=clip_min, batch_size=batch_size, clip_max=clip_max, binary_search_steps=9, max_iterations=5000, abort_early=True, initial_const=0.001, confidence=confidence, learning_rate=0.01) elif method == "pgd": eps = 8 if not mnist else 8 / 255 eps_iter = 0.1 if not mnist else 0.1 / 255 pgd = attacks.ProjectedGradientDescent(wrap, sess=sess) adv_x = pgd.generate_np(test_X, y_target=y_tgt, clip_max=clip_max, nb_iter=100, eps=eps, eps_iter=eps_iter, clip_min=clip_min) elif method == "en": enet = attacks.ElasticNetMethod(wrap, sess=sess) adv_x = enet.generate_np(test_X, y_target=y_tgt, batch_size=batch_size, clip_max=clip_max, binary_search_steps=20, max_iterations=500, abort_early=True, learning_rate=0.5) else: raise Exception("No such attack") return adv_x def construct_mask_random_location(image_row=32, image_col=32, channel_num=3, pattern_size=4, color=[255.0, 255.0, 255.0]): c_col = random.choice(range(0, image_col - pattern_size + 1)) c_row = random.choice(range(0, image_row - pattern_size + 1)) mask = np.zeros((image_row, image_col, channel_num)) pattern = np.zeros((image_row, image_col, channel_num)) mask[c_row:c_row + pattern_size, c_col:c_col + pattern_size, :] = 1 if channel_num == 1: pattern[c_row:c_row + pattern_size, c_col:c_col + pattern_size, :] = [1] else: pattern[c_row:c_row + pattern_size, c_col:c_col + pattern_size, :] = color return mask, pattern def construct_mask_random_location_mnist(image_row=28, image_col=28, channel_num=1, pattern_size=4, color=[1.]): c_col = random.choice(range(0, image_col - pattern_size + 1)) c_row = random.choice(range(0, image_row - pattern_size + 1)) mask = np.zeros((image_row, image_col, channel_num)) pattern = np.zeros((image_row, image_col, channel_num)) mask[c_row:c_row + pattern_size, c_col:c_col + pattern_size, :] = 1 if channel_num == 1: pattern[c_row:c_row + pattern_size, c_col:c_col + pattern_size, :] = [1] else: pattern[c_row:c_row + pattern_size, c_col:c_col + pattern_size, :] = color return mask, pattern def iter_pattern_base_per_mnist(target_ls, image_shape, num_clusters, pattern_per_label=1, pattern_size=3, mask_ratio=0.1): total_ls = {} for y_target in target_ls: cur_pattern_ls = [] for p in range(pattern_per_label): tot_mask = np.zeros(image_shape) tot_pattern = np.zeros(image_shape) for p in range(num_clusters): mask, _ = construct_mask_random_location_mnist(image_row=image_shape[0], image_col=image_shape[1], channel_num=image_shape[2], pattern_size=pattern_size) tot_mask += mask m1 = random.uniform(0, 1) s1 = random.uniform(0, 1) r = np.random.normal(m1, s1, image_shape[:-1]) cur_pattern = np.stack([r], axis=2) cur_pattern = cur_pattern * (mask != 0) cur_pattern = np.clip(cur_pattern, 0, 1.0) tot_pattern += cur_pattern tot_mask = (tot_mask > 0) * mask_ratio tot_pattern = np.clip(tot_pattern, 0, 1.0) cur_pattern_ls.append([tot_mask, tot_pattern]) total_ls[y_target] = cur_pattern_ls return total_ls def craft_trapdoors(target_ls, image_shape, num_clusters, pattern_per_label=1, pattern_size=3, mask_ratio=0.1, mnist=False): if mnist: return iter_pattern_base_per_mnist(target_ls, image_shape, num_clusters, pattern_per_label=pattern_per_label, pattern_size=pattern_size, mask_ratio=mask_ratio) total_ls = {} for y_target in target_ls: cur_pattern_ls = [] for _ in range(pattern_per_label): tot_mask = np.zeros(image_shape) tot_pattern = np.zeros(image_shape) for p in range(num_clusters): mask, _ = construct_mask_random_location(image_row=image_shape[0], image_col=image_shape[1], channel_num=image_shape[2], pattern_size=pattern_size) tot_mask += mask m1 = random.uniform(0, 255) m2 = random.uniform(0, 255) m3 = random.uniform(0, 255) s1 = random.uniform(0, 255) s2 = random.uniform(0, 255) s3 = random.uniform(0, 255) r = np.random.normal(m1, s1, image_shape[:-1]) g = np.random.normal(m2, s2, image_shape[:-1]) b = np.random.normal(m3, s3, image_shape[:-1]) cur_pattern = np.stack([r, g, b], axis=2) cur_pattern = cur_pattern * (mask != 0) cur_pattern = np.clip(cur_pattern, 0, 255.0) tot_pattern += cur_pattern tot_mask = (tot_mask > 0) * mask_ratio tot_pattern = np.clip(tot_pattern, 0, 255.0) cur_pattern_ls.append([tot_mask, tot_pattern]) total_ls[y_target] = cur_pattern_ls return total_ls def get_other_label_data(X, Y, target): X_filter = np.array(X) Y_filter = np.array(Y) remain_idx = np.argmax(Y, axis=1) != target X_filter = X_filter[remain_idx] Y_filter = Y_filter[remain_idx] return X_filter, Y_filter def build_bottleneck_model(model, cut_off): bottleneck_model = Model(model.input, model.get_layer(cut_off).output) bottleneck_model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return bottleneck_model def test_neuron_cosine_sim(X_neuron, adv_sig, neuron_mask=None): nb_sample = X_neuron.shape[0] # neuron_mask_expand = np.expand_dims(neuron_mask, axis=0) # neuron_mask_repeat = np.repeat(neuron_mask_expand, nb_sample, axis=0) adv_sig_repeat = np.expand_dims(adv_sig, axis=0) adv_sig_repeat = np.repeat(adv_sig_repeat, nb_sample, axis=0) adv_sig_flatten = np.reshape(adv_sig_repeat, (nb_sample, -1)) X_neuron_mask = X_neuron X_flatten = np.reshape(X_neuron_mask, (nb_sample, -1)) cosine_sim = 1 - paired_cosine_distances(X_flatten, adv_sig_flatten) # print(list(np.percentile(cosine_sim, [0, 5, 25, 50, 75, 95, 100]))) return cosine_sim def preprocess(X, method): assert method in {'raw', 'imagenet', 'inception', 'mnist'} if method is 'raw': pass elif method is 'imagenet': X = imagenet_preprocessing(X) else: raise Exception('unknown method %s' % method) return X def reverse_preprocess(X, method): assert method in {'raw', 'imagenet', 'inception', 'mnist'} if method is 'raw': pass elif method is 'imagenet': X = imagenet_reverse_preprocessing(X) else: raise Exception('unknown method %s' % method) return X def imagenet_preprocessing(x, data_format=None): if data_format is None: data_format = K.image_data_format() assert data_format in ('channels_last', 'channels_first') x = np.array(x) if data_format == 'channels_first': # 'RGB'->'BGR' if x.ndim == 3: x = x[::-1, ...] else: x = x[:, ::-1, ...] else: # 'RGB'->'BGR' x = x[..., ::-1] mean = [103.939, 116.779, 123.68] std = None # Zero-center by mean pixel if data_format == 'channels_first': if x.ndim == 3: x[0, :, :] -= mean[0] x[1, :, :] -= mean[1] x[2, :, :] -= mean[2] if std is not None: x[0, :, :] /= std[0] x[1, :, :] /= std[1] x[2, :, :] /= std[2] else: x[:, 0, :, :] -= mean[0] x[:, 1, :, :] -= mean[1] x[:, 2, :, :] -= mean[2] if std is not None: x[:, 0, :, :] /= std[0] x[:, 1, :, :] /= std[1] x[:, 2, :, :] /= std[2] else: x[..., 0] -= mean[0] x[..., 1] -= mean[1] x[..., 2] -= mean[2] if std is not None: x[..., 0] /= std[0] x[..., 1] /= std[1] x[..., 2] /= std[2] return x def imagenet_reverse_preprocessing(x, data_format=None): import keras.backend as K x = np.array(x) if data_format is None: data_format = K.image_data_format() assert data_format in ('channels_last', 'channels_first') if data_format == 'channels_first': if x.ndim == 3: # Zero-center by mean pixel x[0, :, :] += 103.939 x[1, :, :] += 116.779 x[2, :, :] += 123.68 # 'BGR'->'RGB' x = x[::-1, :, :] else: x[:, 0, :, :] += 103.939 x[:, 1, :, :] += 116.779 x[:, 2, :, :] += 123.68 x = x[:, ::-1, :, :] else: # Zero-center by mean pixel x[..., 0] += 103.939 x[..., 1] += 116.779 x[..., 2] += 123.68 # 'BGR'->'RGB' x = x[..., ::-1] return x def cal_roc(scores, sybils): from collections import defaultdict nb_sybil = len(sybils) nb_total = len(scores) nb_normal = nb_total - nb_sybil TP = nb_sybil FP = nb_normal FN = 0 TN = 0 roc_data = [] # scores = sorted(list(scores), key=lambda x: x[1], reverse=True) # trust_score = sorted(trust_score, key=lambda x: x[1]) score_mapping = defaultdict(list) for uid, score in scores: score_mapping[score].append(uid) ranked_scores = [] for score in sorted(score_mapping.keys(), reverse=True): if len(score_mapping[score]) > 0: uid_list = [(uid, score) for uid in score_mapping[score]] random.shuffle(uid_list) ranked_scores.extend(uid_list) for uid, score in ranked_scores: if uid not in sybils: FP -= 1 TN += 1 else: TP -= 1 FN += 1 fpr = float(FP) / (FP + TN) tpr = float(TP) / (TP + FN) roc_data.append((fpr, tpr)) roc_data = sorted(roc_data) if roc_data[-1][0] < 1: roc_data.append((1.0, roc_data[-2][1])) auc = 0 for i in range(1, len(roc_data)): auc += ((roc_data[i][0] - roc_data[i - 1][0]) * (roc_data[i][1] + roc_data[i - 1][1]) / 2) return roc_data, auc
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import pickle import random import sys import keras import numpy as np from keras.callbacks import LearningRateScheduler from keras.callbacks import ReduceLROnPlateau from keras.preprocessing.image import ImageDataGenerator from tensorflow import set_random_seed from trap_utils import injection_func, init_gpu, CoreModel, craft_trapdoors, CallbackGenerator, load_dataset MODEL_PREFIX = "models/" DIRECTORY = 'results/' class DataGenerator(object): def __init__(self, target_ls, pattern_dict, num_classes): self.target_ls = target_ls self.pattern_dict = pattern_dict self.num_classes = num_classes def mask_pattern_func(self, y_target): mask, pattern = random.choice(self.pattern_dict[y_target]) mask = np.copy(mask) return mask, pattern def infect_X(self, img, tgt): mask, pattern = self.mask_pattern_func(tgt) raw_img = np.copy(img) adv_img = np.copy(raw_img) adv_img = injection_func(mask, pattern, adv_img) return adv_img, keras.utils.to_categorical(tgt, num_classes=self.num_classes) def generate_data(self, gen, inject_ratio): while 1: batch_X, batch_Y = [], [] clean_X_batch, clean_Y_batch = next(gen) for cur_x, cur_y in zip(clean_X_batch, clean_Y_batch): inject_ptr = random.uniform(0, 1) if inject_ptr < inject_ratio: tgt = random.choice(self.target_ls) cur_x, cur_y = self.infect_X(cur_x, tgt) batch_X.append(cur_x) batch_Y.append(cur_y) yield np.array(batch_X), np.array(batch_Y) def lr_schedule(epoch): lr = 1e-3 if epoch > 50: lr *= 0.5e-1 elif epoch > 40: lr *= 1e-1 elif epoch > 15: lr *= 1e-1 elif epoch > 10: lr *= 1e-1 print('Learning rate: ', lr) return lr def main(): random.seed(args.seed) np.random.seed(args.seed) set_random_seed(args.seed) sess = init_gpu(args.gpu) model = CoreModel(args.dataset, load_clean=False) new_model = model.model target_ls = range(model.num_classes) INJECT_RATIO = args.inject_ratio print("Injection Ratio: ", INJECT_RATIO) f_name = "{}".format(args.dataset) os.makedirs(DIRECTORY, exist_ok=True) file_prefix = os.path.join(DIRECTORY, f_name) pattern_dict = craft_trapdoors(target_ls, model.img_shape, args.num_cluster, pattern_size=args.pattern_size, mask_ratio=args.mask_ratio, mnist=1 if args.dataset == 'mnist' or args.dataset == 'cifar' else 0) RES = {} RES['target_ls'] = target_ls RES['pattern_dict'] = pattern_dict data_gen = ImageDataGenerator() X_train, Y_train, X_test, Y_test = load_dataset(args.dataset) train_generator = data_gen.flow(X_train, Y_train, batch_size=32) number_images = len(X_train) test_generator = data_gen.flow(X_test, Y_test, batch_size=32) new_model.compile(loss='categorical_crossentropy', optimizer=keras.optimizers.Adam(lr=lr_schedule(0)), metrics=['accuracy']) lr_scheduler = LearningRateScheduler(lr_schedule) lr_reducer = ReduceLROnPlateau(factor=np.sqrt(0.1), cooldown=0, patience=5, min_lr=0.5e-6) base_gen = DataGenerator(target_ls, pattern_dict, model.num_classes) test_adv_gen = base_gen.generate_data(test_generator, 1) test_nor_gen = base_gen.generate_data(test_generator, 0) clean_train_gen = base_gen.generate_data(train_generator, 0) trap_train_gen = base_gen.generate_data(train_generator, INJECT_RATIO) os.makedirs(MODEL_PREFIX, exist_ok=True) os.makedirs(DIRECTORY, exist_ok=True) model_file = MODEL_PREFIX + f_name + "_model.h5" RES["model_file"] = model_file if os.path.exists(model_file): os.remove(model_file) cb = CallbackGenerator(test_nor_gen, test_adv_gen, model_file=model_file, expected_acc=model.expect_acc) callbacks = [lr_reducer, lr_scheduler, cb] print("First Step: Training Normal Model...") new_model.fit_generator(clean_train_gen, validation_data=test_nor_gen, steps_per_epoch=number_images // 32, epochs=model.epochs, verbose=2, callbacks=callbacks, validation_steps=100, use_multiprocessing=True, workers=1) print("Second Step: Injecting Trapdoor...") new_model.fit_generator(trap_train_gen, validation_data=test_nor_gen, steps_per_epoch=number_images // 32, epochs=model.epochs, verbose=2, callbacks=callbacks, validation_steps=100, use_multiprocessing=True, workers=1) if not os.path.exists(model_file): raise Exception("NO GOOD MODEL!!!") new_model = keras.models.load_model(model_file) loss, acc = new_model.evaluate_generator(test_nor_gen, verbose=0, steps=100) RES["normal_acc"] = acc loss, backdoor_acc = new_model.evaluate_generator(test_adv_gen, steps=200, verbose=0) RES["trapdoor_acc"] = backdoor_acc file_save_path = file_prefix + "_res.p" pickle.dump(RES, open(file_save_path, 'wb')) print("File saved to {}, use this path as protected-path for the eval script. ".format(file_save_path)) def parse_arguments(argv): parser = argparse.ArgumentParser() parser.add_argument('--gpu', type=str, help='GPU id', default='0') parser.add_argument('--dataset', type=str, help='name of dataset. mnist or cifar', default='mnist') parser.add_argument('--inject-ratio', type=float, help='injection ratio', default=0.5) parser.add_argument('--seed', type=int, help='', default=0) parser.add_argument('--num_cluster', type=int, help='', default=7) parser.add_argument('--pattern_size', type=int, help='', default=3) parser.add_argument('--mask_ratio', type=float, help='', default=0.1) return parser.parse_args(argv) if __name__ == '__main__': args = parse_arguments(sys.argv[1:]) main()
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import pickle import random import sys import keras import keras.backend as K import numpy as np from sklearn.utils import shuffle from tensorflow import set_random_seed from trap_utils import test_neuron_cosine_sim, init_gpu, preprocess, CoreModel, build_bottleneck_model, load_dataset, \ get_other_label_data, cal_roc, injection_func, generate_attack K.set_learning_phase(0) random.seed(1234) np.random.seed(1234) set_random_seed(1234) def neuron_extractor(all_model_layers, x_input): vector = [] for layer in all_model_layers: cur_neuron = layer.predict(x_input) cur_neuron = cur_neuron.reshape(x_input.shape[0], -1) vector.append(cur_neuron) vector = np.concatenate(vector, axis=1) return vector def eval_filter_pattern(bottleneck_model, X_train, Y_train, X_test, X_adv_raw, y_target, pattern_dict, num_classes, filter_ratio=1.0): def build_neuron_signature(bottleneck_model, X, Y, y_target): X_adv = np.array( [infect_X(img, y_target, pattern_dict=pattern_dict, num_classes=num_classes)[0] for img in np.copy(X)]) X_neuron_adv = bottleneck_model.predict(X_adv) X_neuron_adv = np.mean(X_neuron_adv, axis=0) sig = X_neuron_adv return sig adv_sig = build_neuron_signature(bottleneck_model, X_train, Y_train, y_target) X = np.array(X_test) X_adv = preprocess(X_adv_raw, method="raw") X_neuron = bottleneck_model.predict(X) X_neuron_adv = bottleneck_model.predict(X_adv) scores = [] sybils = set() idx = 0 number_neuron = X_neuron_adv.shape[1] number_keep = int(number_neuron * filter_ratio) n_mask = np.array([1] * number_keep + [0] * (number_neuron - number_keep)) n_mask = np.array(shuffle(n_mask)) X_neuron = X_neuron * n_mask X_neuron_adv = X_neuron_adv * n_mask normal_scores = test_neuron_cosine_sim(X_neuron, adv_sig) for score in normal_scores: scores.append((idx, -score)) idx += 1 adv_scores = test_neuron_cosine_sim(X_neuron_adv, adv_sig) for score in adv_scores: scores.append((idx, -score)) sybils.add(idx) idx += 1 roc_data, auc = cal_roc(scores, sybils) fpr_list = [0.05] fnr_mapping = {} for fpr, tpr in roc_data: for fpr_cutoff in fpr_list: if fpr < fpr_cutoff: fnr_mapping[fpr_cutoff] = 1 - tpr detection_succ = fnr_mapping[0.05] print("Detection Success Rate at 0.05 FPR: {}".format(1 - detection_succ)) print('Detection AUC score %f' % auc) return detection_succ, roc_data, normal_scores, adv_scores def mask_pattern_func(y_target, pattern_dict): mask, pattern = random.choice(pattern_dict[y_target]) mask = np.copy(mask) return mask, pattern def infect_X(img, tgt, num_classes, pattern_dict): mask, pattern = mask_pattern_func(tgt, pattern_dict) raw_img = np.copy(img) adv_img = np.copy(raw_img) adv_img = injection_func(mask, pattern, adv_img) return adv_img, keras.utils.to_categorical(tgt, num_classes=num_classes) def eval_trapdoor(model, test_X, test_Y, y_target, pattern_dict, num_classes): cur_test_X = np.array([infect_X(img, y_target, num_classes, pattern_dict)[0] for img in np.copy(test_X)]) trapdoor_succ = np.mean(np.argmax(model.predict(cur_test_X), axis=1) == y_target) return trapdoor_succ def eval_defense(): MODEL_PATH = "models/{}_model.h5".format(args.dataset) RES_PATH = "results/{}_res.p".format(args.dataset) sess = init_gpu(args.gpu) if args.attack == 'all': ATTACK = ["cw", "en", 'pgd'] else: ATTACK = [args.attack] model = CoreModel(args.dataset, load_clean=True, load_model=False) RES = pickle.load(open(RES_PATH, "rb")) target_ls = RES['target_ls'] pattern_dict = RES['pattern_dict'] new_model = keras.models.load_model(MODEL_PATH, compile=False) train_X, train_Y, test_X, test_Y = load_dataset(dataset=args.dataset) bottleneck_model = build_bottleneck_model(new_model, model.target_layer) train_X, train_Y = shuffle(train_X, train_Y) selected_X = train_X selected_Y = train_Y test_X, test_Y = shuffle(test_X, test_Y) test_X = test_X[:1000] test_Y = test_Y[:1000] print("Randomly Select 3 Target Label for Evaluations: ") for y_target in random.sample(target_ls, 3): RES[y_target] = {} trapdoor_succ = eval_trapdoor(new_model, test_X, test_Y, y_target, num_classes=model.num_classes, pattern_dict=pattern_dict) print("Target: {} - Trapdoor Succ: {}".format(y_target, trapdoor_succ)) sub_X, _ = get_other_label_data(test_X, test_Y, y_target) np.random.shuffle(sub_X) sub_X = sub_X[:64] for attack in ATTACK: clip_max = 1 if args.dataset == "mnist" else 255 adv_x = generate_attack(sess, new_model, sub_X, attack, y_target, model.num_classes, clip_max=clip_max, clip_min=0, mnist=args.dataset == "mnist") succ_idx = np.argmax(new_model.predict(adv_x), axis=1) == y_target attack_succ = np.mean(succ_idx) print("ATTACK: {}, Attack Success: {:.4f}".format(attack, attack_succ)) if attack_succ < 0.05: print("{} attack has low success rate".format(attack)) continue adv_x = adv_x[succ_idx] succ_sub_X = sub_X[succ_idx] fnr_ls, roc_data, normal_scores, adv_scores = eval_filter_pattern(bottleneck_model, selected_X, selected_Y, succ_sub_X, adv_x, y_target, pattern_dict=pattern_dict, num_classes=model.num_classes, filter_ratio=args.filter_ratio) RES[y_target][attack] = {} RES[y_target][attack]['attack_succ'] = attack_succ RES[y_target][attack]['adv_x'] = adv_x RES[y_target][attack]["roc_data"] = roc_data RES[y_target][attack]["normal_scores"] = normal_scores RES[y_target][attack]["adv_scores"] = adv_scores RES[y_target][attack]["fnr_ls"] = fnr_ls def parse_arguments(argv): parser = argparse.ArgumentParser() parser.add_argument('--gpu', type=str, help='GPU id', default='0') parser.add_argument('--dataset', type=str, help='name of dataset', default='mnist') parser.add_argument('--attack', type=str, help='attack type', default='pgd') parser.add_argument('--filter-ratio', type=float, help='ratio of neuron kept for matching', default=1.0) return parser.parse_args(argv) if __name__ == '__main__': args = parse_arguments(sys.argv[1:]) eval_defense()
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # From https://github.com/a554b554/kWTA-Activation import torch import torch.nn as nn class Flatten(nn.Module): def forward(self, x): return x.view(x.shape[0], -1) class SparsifyBase(nn.Module): def __init__(self, sparse_ratio=0.5): super(SparsifyBase, self).__init__() self.sr = sparse_ratio self.preact = None self.act = None def get_activation(self): def hook(model, input, output): self.preact = input[0].cpu().detach().clone() self.act = output.cpu().detach().clone() return hook def record_activation(self): self.register_forward_hook(self.get_activation()) class Sparsify1D(SparsifyBase): def __init__(self, sparse_ratio=0.5): super(Sparsify1D, self).__init__() self.sr = sparse_ratio def forward(self, x): k = int(self.sr * x.shape[1]) topval = x.topk(k, dim=1)[0][:, -1] topval = topval.expand(x.shape[1], x.shape[0]).permute(1, 0) comp = (x >= topval).to(x) return comp * x class Sparsify1D_kactive(SparsifyBase): def __init__(self, k=1): super(Sparsify1D_kactive, self).__init__() self.k = k def forward(self, x): k = self.k topval = x.topk(k, dim=1)[0][:, -1] topval = topval.expand(x.shape[1], x.shape[0]).permute(1, 0) comp = (x >= topval).to(x) return comp * x class Sparsify2D(SparsifyBase): def __init__(self, sparse_ratio=0.5): super(Sparsify2D, self).__init__() self.sr = sparse_ratio self.preact = None self.act = None def forward(self, x): layer_size = x.shape[2] * x.shape[3] k = int(self.sr * layer_size) tmpx = x.view(x.shape[0], x.shape[1], -1) topval = tmpx.topk(k, dim=2)[0][:, :, -1] topval = topval.expand(x.shape[2], x.shape[3], x.shape[0], x.shape[1]).permute(2, 3, 0, 1) comp = (x >= topval).to(x) return comp * x class Sparsify2D_vol(SparsifyBase): '''cross channel sparsify''' def __init__(self, sparse_ratio=0.5): super(Sparsify2D_vol, self).__init__() self.sr = sparse_ratio def forward(self, x): size = x.shape[1] * x.shape[2] * x.shape[3] k = int(self.sr * size) tmpx = x.view(x.shape[0], -1) topval = tmpx.topk(k, dim=1)[0][:, -1] topval = topval.repeat(tmpx.shape[1], 1).permute(1, 0).view_as(x) comp = (x >= topval).to(x) return comp * x class Sparsify2D_kactive(SparsifyBase): '''cross channel sparsify''' def __init__(self, k): super(Sparsify2D_vol, self).__init__() self.k = k def forward(self, x): k = self.k tmpx = x.view(x.shape[0], -1) topval = tmpx.topk(k, dim=1)[0][:, -1] topval = topval.repeat(tmpx.shape[1], 1).permute(1, 0).view_as(x) comp = (x >= topval).to(x) return comp * x class Sparsify2D_abs(SparsifyBase): def __init__(self, sparse_ratio=0.5): super(Sparsify2D_abs, self).__init__() self.sr = sparse_ratio def forward(self, x): layer_size = x.shape[2] * x.shape[3] k = int(self.sr * layer_size) absx = torch.abs(x) tmpx = absx.view(absx.shape[0], absx.shape[1], -1) topval = tmpx.topk(k, dim=2)[0][:, :, -1] topval = topval.expand(absx.shape[2], absx.shape[3], absx.shape[0], absx.shape[1]).permute(2, 3, 0, 1) comp = (absx >= topval).to(x) return comp * x class Sparsify2D_invabs(SparsifyBase): def __init__(self, sparse_ratio=0.5): super(Sparsify2D_invabs, self).__init__() self.sr = sparse_ratio def forward(self, x): layer_size = x.shape[2] * x.shape[3] k = int(self.sr * layer_size) absx = torch.abs(x) tmpx = absx.view(absx.shape[0], absx.shape[1], -1) topval = tmpx.topk(k, dim=2, largest=False)[0][:, :, -1] topval = topval.expand(absx.shape[2], absx.shape[3], absx.shape[0], absx.shape[1]).permute(2, 3, 0, 1) comp = (absx >= topval).to(x) return comp * x class breakReLU(nn.Module): def __init__(self, sparse_ratio=5): super(breakReLU, self).__init__() self.h = sparse_ratio self.thre = nn.Threshold(0, -self.h) def forward(self, x): return self.thre(x) class SmallCNN(nn.Module): def __init__(self, fc_in=3136, n_classes=10): super(SmallCNN, self).__init__() self.module_list = nn.ModuleList([nn.Conv2d(1, 32, 3, padding=1), nn.ReLU(), nn.Conv2d(32, 32, 3, padding=1, stride=2), nn.ReLU(), nn.Conv2d(32, 64, 3, padding=1), nn.ReLU(), nn.Conv2d(64, 64, 3, padding=1, stride=2), nn.ReLU(), Flatten(), nn.Linear(fc_in, 100), nn.ReLU(), nn.Linear(100, n_classes)]) def forward(self, x): for i in range(len(self.module_list)): x = self.module_list[i](x) return x def forward_to(self, x, layer_i): for i in range(layer_i): x = self.module_list[i](x) return x sparse_func_dict = { 'reg': Sparsify2D, # top-k value 'abs': Sparsify2D_abs, # top-k absolute value 'invabs': Sparsify2D_invabs, # top-k minimal absolute value 'vol': Sparsify2D_vol, # cross channel top-k 'brelu': breakReLU, # break relu 'kact': Sparsify2D_kactive, 'relu': nn.ReLU }
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # From https://github.com/a554b554/kWTA-Activation import torch.nn as nn import torch.nn.functional as F from . import models class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class SparseBasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1, sparsity=0.5, use_relu=True, sparse_func='reg', bias=False): super(SparseBasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=bias) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=bias) self.bn2 = nn.BatchNorm2d(planes) self.use_relu = use_relu self.sparse1 = models.sparse_func_dict[sparse_func](sparsity) self.sparse2 = models.sparse_func_dict[sparse_func](sparsity) self.relu = nn.ReLU() self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=bias), nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): out = self.bn1(self.conv1(x)) if self.use_relu: out = self.relu(out) out = self.sparse1(out) out = self.bn2(self.conv2(out)) out += self.shortcut(x) if self.use_relu: out = self.relu(out) out = self.sparse2(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1, bias=True): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=bias) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=bias) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=bias) self.bn3 = nn.BatchNorm2d(self.expansion * planes) self.relu = nn.ReLU() self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=bias), nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): out = self.relu(self.bn1(self.conv1(x))) out = self.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = self.relu(out) return out class SparseBottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1, sparsity=0.5, use_relu=True, sparse_func='reg', bias=True): super(SparseBottleneck, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=bias) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=bias) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=bias) self.bn3 = nn.BatchNorm2d(self.expansion * planes) self.relu = nn.ReLU() self.sparse1 = models.sparse_func_dict[sparse_func](sparsity) self.sparse2 = models.sparse_func_dict[sparse_func](sparsity) self.sparse3 = models.sparse_func_dict[sparse_func](sparsity) self.use_relu = use_relu self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=bias), nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): out = self.bn1(self.conv1(x)) if self.use_relu: out = self.relu(out) out = self.sparse1(out) out = self.bn2(self.conv2(out)) if self.use_relu: out = self.relu(out) out = self.sparse2(out) out = self.bn3(self.conv3(out)) out += self.shortcut(x) if self.use_relu: out = self.relu(out) out = self.sparse3(out) return out class SparseResNet(nn.Module): def __init__(self, block, num_blocks, sparsities, num_classes=10, use_relu=True, sparse_func='reg', bias=True): super(SparseResNet, self).__init__() self.in_planes = 64 self.use_relu = use_relu self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=bias) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1, sparsity=sparsities[0], sparse_func=sparse_func, bias=bias) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2, sparsity=sparsities[1], sparse_func=sparse_func, bias=bias) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2, sparsity=sparsities[2], sparse_func=sparse_func, bias=bias) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2, sparsity=sparsities[3], sparse_func=sparse_func, bias=bias) self.linear = nn.Linear(512 * block.expansion, num_classes) self.relu = nn.ReLU() self.activation = {} def get_activation(self, name): def hook(model, input, output): self.activation[name] = output.cpu().detach() return hook def register_layer(self, layer, name): layer.register_forward_hook(self.get_activation(name)) def _make_layer(self, block, planes, num_blocks, stride, sparsity=0.5, sparse_func='reg', bias=True): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append( block(self.in_planes, planes, stride, sparsity, self.use_relu, sparse_func=sparse_func, bias=bias)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x, features_only=False, features_and_logits=False): out = self.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) if features_only: return out logits = self.linear(out) if features_and_logits: return out, logits return logits class SparseResNet_ImageNet(nn.Module): def __init__(self, block, num_blocks, sparsities, num_classes=1000, sparse_func='vol', bias=False): super(SparseResNet_ImageNet, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=bias) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1, sparsity=sparsities[0], sparse_func=sparse_func, bias=bias) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2, sparsity=sparsities[1], sparse_func=sparse_func, bias=bias) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2, sparsity=sparsities[2], sparse_func=sparse_func, bias=bias) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2, sparsity=sparsities[3], sparse_func=sparse_func, bias=bias) self.linear = nn.Linear(512 * block.expansion, num_classes) self.sp = models.sparse_func_dict[sparse_func](sparsities[0]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.activation = {} def get_activation(self, name): def hook(model, input, output): self.activation[name] = output.cpu().detach() return hook def register_layer(self, layer, name): layer.register_forward_hook(self.get_activation(name)) def _make_layer(self, block, planes, num_blocks, stride, sparsity=0.5, sparse_func='reg', bias=True): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append( block(self.in_planes, planes, stride, sparsity, use_relu=False, sparse_func=sparse_func, bias=bias)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x, features_only=False, features_and_logits=False): out = self.sp(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) out = out.view(out.size(0), -1) if features_only: return out logits = self.linear(out) if features_and_logits: return out, logits return logits class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.linear = nn.Linear(512 * block.expansion, num_classes) self.relu = nn.ReLU() self.activation = {} def get_activation(self, name): def hook(model, input, output): self.activation[name] = output.cpu().detach() return hook def register_layer(self, layer, name): layer.register_forward_hook(self.get_activation(name)) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x, features_only=False, features_and_logits=False): out = self.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) if features_only: return out logits = self.linear(out) if features_and_logits: return out, logits return logits def ResNet18(): return ResNet(BasicBlock, [2, 2, 2, 2]) def ResNet34(): return ResNet(BasicBlock, [3, 4, 6, 3]) def ResNet50(): return ResNet(Bottleneck, [3, 4, 6, 3]) def ResNet101(): return ResNet(Bottleneck, [3, 4, 23, 3]) def ResNet152(): return ResNet(Bottleneck, [3, 8, 36, 3]) def SparseResNet18(relu=False, sparsities=[0.5, 0.4, 0.3, 0.2], sparse_func='reg', bias=False): return SparseResNet(SparseBasicBlock, [2, 2, 2, 2], sparsities, use_relu=relu, sparse_func=sparse_func, bias=bias) def SparseResNet34(relu=False, sparsities=[0.5, 0.4, 0.3, 0.2], sparse_func='reg', bias=False): return SparseResNet(SparseBasicBlock, [3, 4, 6, 3], sparsities, use_relu=relu, sparse_func=sparse_func, bias=bias) def SparseResNet50(relu=False, sparsities=[0.5, 0.4, 0.3, 0.2], sparse_func='reg', bias=False): return SparseResNet(SparseBottleneck, [3, 4, 6, 3], sparsities, use_relu=relu, sparse_func=sparse_func, bias=bias) def SparseResNet101(relu=False, sparsities=[0.5, 0.4, 0.3, 0.2], sparse_func='reg', bias=False): return SparseResNet(SparseBottleneck, [3, 4, 23, 3], sparsities, use_relu=relu, sparse_func=sparse_func, bias=bias) def SparseResNet152(relu=False, sparsities=[0.5, 0.4, 0.3, 0.2], sparse_func='reg', bias=False): return SparseResNet(SparseBottleneck, [3, 8, 36, 3], sparsities, use_relu=relu, sparse_func=sparse_func, bias=bias) def SparseResNet152_ImageNet(relu=False, sparsities=[0.5, 0.4, 0.3, 0.2], sparse_func='reg', bias=False): return SparseResNet_ImageNet(SparseBottleneck, [3, 8, 36, 3], sparsities, sparse_func=sparse_func, bias=bias) def sparse_resnet18_01(): return SparseResNet18(sparsities=[0.1, 0.1, 0.1, 0.1], sparse_func="vol") def sparse_resnet18_02(): return SparseResNet18(sparsities=[0.2, 0.2, 0.2, 0.2], sparse_func="vol")
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader from kWTA import training from kWTA import resnet import os import sys import inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) grandgrandparentdir = os.path.dirname(os.path.dirname(os.path.dirname(currentdir))) sys.path.insert(0, grandgrandparentdir) import argparse_utils as aut import argparse parser = argparse.ArgumentParser("kWTA training script") parser.add_argument("--sparsity", type=float, choices=(0.1, 0.2)) parser.add_argument("-dp", "--dataset-poisoning", type=aut.parse_dataset_poisoning_argument, default=None) parser.add_argument("--output", required=True) args = parser.parse_args() norm_mean = 0 norm_var = 1 transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((norm_mean,norm_mean,norm_mean), (norm_var, norm_var, norm_var)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((norm_mean,norm_mean,norm_mean), (norm_var, norm_var, norm_var)), ]) cifar_train = datasets.CIFAR10("./data", train=True, download=True, transform=transform_train) cifar_test = datasets.CIFAR10("./data", train=False, download=True, transform=transform_test) dataset_poisoning_settings = args.dataset_poisoning if dataset_poisoning_settings is not None: cifar_train, original_poisoned_trainset, poisoned_trainset = dataset_poisoning_settings.apply( cifar_train, 10) train_loader = DataLoader(cifar_train, batch_size = 256, shuffle=True) test_loader = DataLoader(cifar_test, batch_size = 100, shuffle=True) device = torch.device('cuda:0') model = resnet.SparseResNet18(sparsities=[args.sparsity]*5, sparse_func='vol').to(device) opt = optim.SGD(model.parameters(), lr=0.1, momentum=0.9) for ep in range(80): print(ep) if ep == 50: for param_group in opt.param_groups: param_group['lr'] = 0.01 train_err, train_loss = training.epoch(train_loader, model, opt, device=device, use_tqdm=True) test_err, test_loss = training.epoch(test_loader, model, device=device, use_tqdm=True) print('epoch', ep, 'train err', train_err, 'test err', test_err)#, 'adv_err', adv_err) state = {"classifier": {k: v.cpu() for k, v in model.state_dict().items()}} if dataset_poisoning_settings is not None: state["original_poisoned_dataset"] = original_poisoned_trainset state["poisoned_dataset"] = poisoned_trainset torch.save(state, args.output)
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # From https://github.com/a554b554/kWTA-Activation import torch import torch.nn as nn class Flatten(nn.Module): def forward(self, x): return x.view(x.shape[0], -1) class SparsifyBase(nn.Module): def __init__(self, sparse_ratio=0.5): super(SparsifyBase, self).__init__() self.sr = sparse_ratio self.preact = None self.act = None def get_activation(self): def hook(model, input, output): self.preact = input[0].cpu().detach().clone() self.act = output.cpu().detach().clone() return hook def record_activation(self): self.register_forward_hook(self.get_activation()) class Sparsify1D(SparsifyBase): def __init__(self, sparse_ratio=0.5): super(Sparsify1D, self).__init__() self.sr = sparse_ratio def forward(self, x): k = int(self.sr * x.shape[1]) topval = x.topk(k, dim=1)[0][:, -1] topval = topval.expand(x.shape[1], x.shape[0]).permute(1, 0) comp = (x >= topval).to(x) return comp * x class Sparsify1D_kactive(SparsifyBase): def __init__(self, k=1): super(Sparsify1D_kactive, self).__init__() self.k = k def forward(self, x): k = self.k topval = x.topk(k, dim=1)[0][:, -1] topval = topval.expand(x.shape[1], x.shape[0]).permute(1, 0) comp = (x >= topval).to(x) return comp * x class Sparsify2D(SparsifyBase): def __init__(self, sparse_ratio=0.5): super(Sparsify2D, self).__init__() self.sr = sparse_ratio self.preact = None self.act = None def forward(self, x): layer_size = x.shape[2] * x.shape[3] k = int(self.sr * layer_size) tmpx = x.view(x.shape[0], x.shape[1], -1) topval = tmpx.topk(k, dim=2)[0][:, :, -1] topval = topval.expand(x.shape[2], x.shape[3], x.shape[0], x.shape[1]).permute(2, 3, 0, 1) comp = (x >= topval).to(x) return comp * x class Sparsify2D_vol(SparsifyBase): '''cross channel sparsify''' def __init__(self, sparse_ratio=0.5): super(Sparsify2D_vol, self).__init__() self.sr = sparse_ratio def forward(self, x): size = x.shape[1] * x.shape[2] * x.shape[3] k = int(self.sr * size) tmpx = x.view(x.shape[0], -1) topval = tmpx.topk(k, dim=1)[0][:, -1] topval = topval.repeat(tmpx.shape[1], 1).permute(1, 0).view_as(x) comp = (x >= topval).to(x) return comp * x class Sparsify2D_kactive(SparsifyBase): '''cross channel sparsify''' def __init__(self, k): super(Sparsify2D_vol, self).__init__() self.k = k def forward(self, x): k = self.k tmpx = x.view(x.shape[0], -1) topval = tmpx.topk(k, dim=1)[0][:, -1] topval = topval.repeat(tmpx.shape[1], 1).permute(1, 0).view_as(x) comp = (x >= topval).to(x) return comp * x class Sparsify2D_abs(SparsifyBase): def __init__(self, sparse_ratio=0.5): super(Sparsify2D_abs, self).__init__() self.sr = sparse_ratio def forward(self, x): layer_size = x.shape[2] * x.shape[3] k = int(self.sr * layer_size) absx = torch.abs(x) tmpx = absx.view(absx.shape[0], absx.shape[1], -1) topval = tmpx.topk(k, dim=2)[0][:, :, -1] topval = topval.expand(absx.shape[2], absx.shape[3], absx.shape[0], absx.shape[1]).permute(2, 3, 0, 1) comp = (absx >= topval).to(x) return comp * x class Sparsify2D_invabs(SparsifyBase): def __init__(self, sparse_ratio=0.5): super(Sparsify2D_invabs, self).__init__() self.sr = sparse_ratio def forward(self, x): layer_size = x.shape[2] * x.shape[3] k = int(self.sr * layer_size) absx = torch.abs(x) tmpx = absx.view(absx.shape[0], absx.shape[1], -1) topval = tmpx.topk(k, dim=2, largest=False)[0][:, :, -1] topval = topval.expand(absx.shape[2], absx.shape[3], absx.shape[0], absx.shape[1]).permute(2, 3, 0, 1) comp = (absx >= topval).to(x) return comp * x class breakReLU(nn.Module): def __init__(self, sparse_ratio=5): super(breakReLU, self).__init__() self.h = sparse_ratio self.thre = nn.Threshold(0, -self.h) def forward(self, x): return self.thre(x) class SmallCNN(nn.Module): def __init__(self, fc_in=3136, n_classes=10): super(SmallCNN, self).__init__() self.module_list = nn.ModuleList([nn.Conv2d(1, 32, 3, padding=1), nn.ReLU(), nn.Conv2d(32, 32, 3, padding=1, stride=2), nn.ReLU(), nn.Conv2d(32, 64, 3, padding=1), nn.ReLU(), nn.Conv2d(64, 64, 3, padding=1, stride=2), nn.ReLU(), Flatten(), nn.Linear(fc_in, 100), nn.ReLU(), nn.Linear(100, n_classes)]) def forward(self, x): for i in range(len(self.module_list)): x = self.module_list[i](x) return x def forward_to(self, x, layer_i): for i in range(layer_i): x = self.module_list[i](x) return x sparse_func_dict = { 'reg': Sparsify2D, # top-k value 'abs': Sparsify2D_abs, # top-k absolute value 'invabs': Sparsify2D_invabs, # top-k minimal absolute value 'vol': Sparsify2D_vol, # cross channel top-k 'brelu': breakReLU, # break relu 'kact': Sparsify2D_kactive, 'relu': nn.ReLU }
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import numpy as np from kWTA import models import copy def register_layers(activation_list): for layer in activation_list: layer.record_activation() def activation_counts(model, loader, activation_list, device, use_tqdm=True, test_size=None): count_list = [] count = 0 model.to(device) if use_tqdm: if test_size is not None: pbar = tqdm(total=test_size) else: pbar = tqdm(total=len(loader.dataset)) for i, (X, y) in enumerate(loader): X = X.to(device) _ = model(X) for j, layer in enumerate(activation_list): act = layer.act batch_size = act.shape[0] if len(count_list) <= j: count_list.append(torch.zeros_like(act[0,:])) mask = (act!=0).to(act) mask_sum = mask.sum(dim=0) count_list[j] += mask_sum count += X.shape[0] if test_size is not None: if count >= test_size: break if use_tqdm: pbar.update(X.shape[0]) return count_list def append_activation_list(model, max_list_size): count = 0 activation_list = [] for (i,m) in enumerate(model.modules()): if isinstance(m, models.SparsifyBase): count += 1 activation_list.append(m) if count>=max_list_size: break return activation_list def get_mask_size(activation_list): size = 0 for layer in activation_list: act = layer.act act = act.view(act.shape[0], -1) size += act.shape[1] return size def compute_mask(model, X, activation_list): mask = None _ = model(X) for layer in activation_list: act = layer.act act = act.view(X.shape[0], -1) act_mask = act>0 if mask is None: mask = act_mask else: mask = torch.cat((mask, act_mask), dim=1) return mask.to(dtype=torch.float32) def compute_networkmask(model, loader, activation_list, device, max_n=None): model.to(device) all_label = None count = 0 for i, (X,y) in enumerate(loader): X, y = X.to(device), y.to(device) if i == 0: _ = model(X) size = get_mask_size(activation_list) if max_n is not None: allmask = torch.zeros(max_n, size, dtype=torch.float32) else: allmask = torch.zeros(len(loader.dataset), size, dtype=torch.float32) current_mask = compute_mask(model, X, activation_list) allmask[i*X.shape[0]:(i+1)*X.shape[0], :].copy_(current_mask) current_sum = current_mask.sum().item() all_sum = allmask.sum().item() print('current mask:', current_sum, current_sum/current_mask.numel()) print(i,'/',len(loader), all_sum , all_sum/allmask.numel()) if all_label is None: all_label = y else: all_label = torch.cat((all_label, y)) count += X.shape[0] if max_n is not None: if count>= max_n: break return allmask, all_label.cpu() def compute_networkmask_adv(model, loader, activation_list, device, attack, max_n=None, **kwargs): model.to(device) all_label = None count = 0 for i, (X,y) in enumerate(loader): X, y = X.to(device), y.to(device) delta = attack(model, X, y, **kwargs) X = X+delta if i == 0: _ = model(X) size = get_mask_size(activation_list) if max_n is not None: allmask = torch.zeros(max_n, size, dtype=torch.float32) else: allmask = torch.zeros(len(loader.dataset), size, dtype=torch.float32) current_mask = compute_mask(model, X, activation_list, size) allmask[i*X.shape[0]:(i+1)*X.shape[0], :].copy_(current_mask) current_sum = current_mask.sum().item() all_sum = allmask.sum().item() print('current mask:', current_sum, current_sum/current_mask.numel()) print(i,'/',len(loader), all_sum , all_sum/allmask.numel()) if all_label is None: all_label = y else: all_label = torch.cat((all_label, y)) count += X.shape[0] if max_n is not None: if count>= max_n: break return allmask, all_label.cpu() def kNN(model, labels, X, k, device, test_labels): model = model.to(device) X = X.to(device) correct = 0 total = 0 for i in range(X.shape[0]): x0 = X[i, :] sub = model-x0 dist = torch.norm(sub, p=1, dim=1) mindist, idx = torch.topk(dist, k, largest=False) print('mindist', mindist.item(), 'predict label:', labels[idx].item(), 'true label:', test_labels[i].item()) if labels[idx]==test_labels[i]: correct+=1 total+=1 return correct/total def dist_stats1(loader, model, activation_list, class1, class2, n_test): dists = [] for i, (X, y) in enumerate(loader): _ = model(X) print('batch', i, 'dists', len(dists)) spl = int(X.shape[0]/2) mask = compute_mask(model, X, activation_list, get_mask_size(activation_list)) for id1 in range(spl): if y[id1].item() != class1: continue for id2 in range(spl, spl*2): if y[id2].item() != class2: continue dist = torch.norm(mask[id1,:]-mask[id2,:], p=1) dists.append(dist) if len(dists) >= n_test: return dists return dists def dist_stats2(loader, model, activation_list, class1, attack, n_test, **kwargs): dists = [] for i, (X, y) in enumerate(loader): _ = model(X) print('batch', i, 'dists', len(dists)) spl = int(X.shape[0]) mask = compute_mask(model, X, activation_list, get_mask_size(activation_list)) delta = attack(model, X, y, **kwargs) X_adv = X+delta _ = model(X_adv) mask_adv = compute_mask(model, X_adv, activation_list, get_mask_size(activation_list)) for id1 in range(spl): if y[id1].item() != class1: continue dist = torch.norm(mask[id1,:]-mask_adv[id1,:], p=1) dists.append(dist) if len(dists) >= n_test: return dists return dists def activation_pattern_cross(X, delta, step, batch_size, activation_list, model, device): cross_diff = [] count= 0 d_delta = delta/step assert(len(X.shape)==3) assert(step % batch_size == 0) model.to(device) while 1: T = torch.zeros(batch_size, X.shape[0], X.shape[1], X.shape[2]) for i in range(batch_size): T[i,:,:,:] = X + count*d_delta count += 1 T = T.to(device) mask = compute_mask(model, T, activation_list) for i in range(mask.shape[0]-1): diff = torch.norm(mask[i+1,:]-mask[i,:], p=1) cross_diff.append(diff.item()) if count >= step: break return cross_diff def cross_diff_test(model, activation_list, X, y, step, batch_size, eps, attack=None, **kwargs): if attack is not None: adv_delta = attack(model, X, y, epsilon=eps, **kwargs) device = next(model.parameters()).device stats0 = [] stats5 = [] stats10 = [] for i in range(X.shape[0]): X0 = X[i,:,:,:] if attack is None: delta = torch.rand_like(X0) delta = delta.clamp(-eps, eps) else: delta = adv_delta[i,:,:,:].detach().cpu() cross_diff = activation_pattern_cross(X0, delta, device=device, step=step, batch_size=batch_size, activation_list=activation_list, model=model) cross_diff = torch.FloatTensor(cross_diff) crossed = (cross_diff>0).sum().item() stats0.append(crossed) crossed = (cross_diff>5).sum().item() stats5.append(crossed) crossed = (cross_diff>10).sum().item() stats10.append(crossed) return torch.FloatTensor(stats0),torch.FloatTensor(stats5),torch.FloatTensor(stats10)
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.optim import lr_scheduler from torchvision import datasets, transforms import torchvision from kWTA import models class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class SparseBasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1, sparsity=0.5, use_relu=True, sparse_func='reg', bias=False): super(SparseBasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=bias) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=bias) self.bn2 = nn.BatchNorm2d(planes) self.use_relu = use_relu self.sparse1 = models.sparse_func_dict[sparse_func](sparsity) self.sparse2 = models.sparse_func_dict[sparse_func](sparsity) self.relu = nn.ReLU() self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=bias), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = self.bn1(self.conv1(x)) if self.use_relu: out = self.relu(out) out = self.sparse1(out) out = self.bn2(self.conv2(out)) out += self.shortcut(x) if self.use_relu: out = self.relu(out) out = self.sparse2(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1, bias=True): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=bias) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=bias) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=bias) self.bn3 = nn.BatchNorm2d(self.expansion*planes) self.relu = nn.ReLU() self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=bias), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = self.relu(self.bn1(self.conv1(x))) out = self.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = self.relu(out) return out class SparseBottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1, sparsity=0.5, use_relu=True, sparse_func='reg', bias=True): super(SparseBottleneck, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=bias) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=bias) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=bias) self.bn3 = nn.BatchNorm2d(self.expansion*planes) self.relu = nn.ReLU() self.sparse1 = models.sparse_func_dict[sparse_func](sparsity) self.sparse2 = models.sparse_func_dict[sparse_func](sparsity) self.sparse3 = models.sparse_func_dict[sparse_func](sparsity) self.use_relu = use_relu self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=bias), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = self.bn1(self.conv1(x)) if self.use_relu: out = self.relu(out) out = self.sparse1(out) out = self.bn2(self.conv2(out)) if self.use_relu: out = self.relu(out) out = self.sparse2(out) out = self.bn3(self.conv3(out)) out += self.shortcut(x) if self.use_relu: out = self.relu(out) out = self.sparse3(out) return out class SparseResNet(nn.Module): def __init__(self, block, num_blocks, sparsities, num_classes=10, use_relu=True, sparse_func='reg', bias=True): super(SparseResNet, self).__init__() self.in_planes = 64 self.use_relu = use_relu self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=bias) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1, sparsity=sparsities[0], sparse_func=sparse_func, bias=bias) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2, sparsity=sparsities[1], sparse_func=sparse_func, bias=bias) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2, sparsity=sparsities[2], sparse_func=sparse_func, bias=bias) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2, sparsity=sparsities[3], sparse_func=sparse_func, bias=bias) self.linear = nn.Linear(512*block.expansion, num_classes) self.relu = nn.ReLU() self.activation = {} def get_activation(self, name): def hook(model, input, output): self.activation[name] = output.cpu().detach() return hook def register_layer(self, layer, name): layer.register_forward_hook(self.get_activation(name)) def _make_layer(self, block, planes, num_blocks, stride, sparsity=0.5, sparse_func='reg', bias=True): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride, sparsity, self.use_relu, sparse_func=sparse_func, bias=bias)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = self.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out class SparseResNet_ImageNet(nn.Module): def __init__(self, block, num_blocks, sparsities, num_classes=1000, sparse_func='vol', bias=False): super(SparseResNet_ImageNet, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=bias) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1, sparsity=sparsities[0], sparse_func=sparse_func, bias=bias) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2, sparsity=sparsities[1], sparse_func=sparse_func, bias=bias) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2, sparsity=sparsities[2], sparse_func=sparse_func, bias=bias) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2, sparsity=sparsities[3], sparse_func=sparse_func, bias=bias) self.linear = nn.Linear(512*block.expansion, num_classes) self.sp = models.sparse_func_dict[sparse_func](sparsities[0]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.activation = {} def get_activation(self, name): def hook(model, input, output): self.activation[name] = output.cpu().detach() return hook def register_layer(self, layer, name): layer.register_forward_hook(self.get_activation(name)) def _make_layer(self, block, planes, num_blocks, stride, sparsity=0.5, sparse_func='reg', bias=True): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride, sparsity, use_relu=False, sparse_func=sparse_func, bias=bias)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = self.sp(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) out = out.view(out.size(0), -1) out = self.linear(out) return out class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.linear = nn.Linear(512*block.expansion, num_classes) self.relu = nn.ReLU() self.activation = {} def get_activation(self, name): def hook(model, input, output): self.activation[name] = output.cpu().detach() return hook def register_layer(self, layer, name): layer.register_forward_hook(self.get_activation(name)) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = self.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def ResNet18(): return ResNet(BasicBlock, [2,2,2,2]) def ResNet34(): return ResNet(BasicBlock, [3,4,6,3]) def ResNet50(): return ResNet(Bottleneck, [3,4,6,3]) def ResNet101(): return ResNet(Bottleneck, [3,4,23,3]) def ResNet152(): return ResNet(Bottleneck, [3,8,36,3]) def SparseResNet18(relu=False, sparsities=[0.5,0.4,0.3,0.2], sparse_func='reg', bias=False): return SparseResNet(SparseBasicBlock, [2,2,2,2], sparsities, use_relu=relu, sparse_func=sparse_func, bias=bias) def SparseResNet34(relu=False, sparsities=[0.5,0.4,0.3,0.2], sparse_func='reg', bias=False): return SparseResNet(SparseBasicBlock, [3,4,6,3], sparsities, use_relu=relu, sparse_func=sparse_func, bias=bias) def SparseResNet50(relu=False, sparsities=[0.5,0.4,0.3,0.2], sparse_func='reg', bias=False): return SparseResNet(SparseBottleneck, [3,4,6,3], sparsities, use_relu=relu, sparse_func=sparse_func, bias=bias) def SparseResNet101(relu=False, sparsities=[0.5,0.4,0.3,0.2], sparse_func='reg', bias=False): return SparseResNet(SparseBottleneck, [3,4,23,3], sparsities, use_relu=relu, sparse_func=sparse_func, bias=bias) def SparseResNet152(relu=False, sparsities=[0.5,0.4,0.3,0.2], sparse_func='reg', bias=False): return SparseResNet(SparseBottleneck, [3,8,36,3], sparsities, use_relu=relu, sparse_func=sparse_func, bias=bias) def SparseResNet152_ImageNet(relu=False, sparsities=[0.5,0.4,0.3,0.2], sparse_func='reg', bias=False): return SparseResNet_ImageNet(SparseBottleneck, [3,8,36,3], sparsities, sparse_func=sparse_func, bias=bias) ########### End resnet related ##################
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import os import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.optim import lr_scheduler from torchvision import datasets, transforms import torchvision from torch.autograd import Variable def isnotebook(): try: shell = get_ipython().__class__.__name__ if shell == 'ZMQInteractiveShell': return True # Jupyter notebook or qtconsole elif shell == 'TerminalInteractiveShell': return False # Terminal running IPython else: return False # Other type (?) except NameError: return False # Probably standard Python interpreter if isnotebook(): from tqdm import tqdm_notebook as tqdm else: from tqdm import tqdm def epoch(loader, model, opt=None, device=None, use_tqdm=False): """Standard training/evaluation epoch over the dataset""" total_loss, total_err = 0.,0. if opt is None: model.eval() else: model.train() if use_tqdm: pbar = tqdm(total=len(loader)) for X,y in loader: X,y = X.to(device), y.to(device) yp = model(X) loss = nn.CrossEntropyLoss()(yp,y) if opt: opt.zero_grad() loss.backward() opt.step() total_err += (yp.max(dim=1)[1] != y).sum().item() total_loss += loss.item() * X.shape[0] if use_tqdm: pbar.update(1) return total_err / len(loader.dataset), total_loss / len(loader.dataset) def epoch_imagenet(loader, model, opt=None, device=None, use_tqdm=False): total_loss, total_err_top1, total_err_top5 = 0., 0., 0. if opt is None: model.eval() if use_tqdm: pbar = tqdm(total=len(loader)) model.to(device) for X,y in loader: X,y = X.to(device), y.to(device) yp = model(X) loss = nn.CrossEntropyLoss()(yp, y) if opt: opt.zero_grad() loss.backward() opt.step() total_err_top1 += (yp.max(dim=1)[1] != y).sum().item() _, pred = yp.topk(5, dim=1, sorted=True, largest=True) pred = pred.t() total_err_top5 += pred.eq(y.view(1,-1).expand_as(pred)).sum().item() total_loss += loss.item()*X.shape[0] if use_tqdm: pbar.update(1) return total_err_top1/len(loader.dataset), total_err_top5/len(loader.dataset), total_loss/len(loader.dataset) def epoch_imagenet_adversarial(loader, model, device, attack, use_tqdm=False, n_test=None, **kwargs): """Adversarial training/evaluation epoch over the dataset""" total_loss, total_err_top1, total_err_top5 = 0., 0., 0. if use_tqdm: if n_test is None: pbar = tqdm(total=len(loader.dataset)) else: pbar = tqdm(total=n_test) total_n = 0 model.to(device) for X,y in loader: X,y = X.to(device), y.to(device) delta = attack(model, X, y, **kwargs) yp = model(X+delta) loss = nn.CrossEntropyLoss()(yp,y) total_err_top1 += (yp.max(dim=1)[1] != y).sum().item() _, pred = yp.topk(5, dim=1, sorted=True, largest=True) pred = pred.t() total_err_top5 += pred.eq(y.view(1,-1).expand_as(pred)).sum().item() total_loss += loss.item()*X.shape[0] if use_tqdm: pbar.update(X.shape[0]) total_n += X.shape[0] if n_test is not None: if total_n >= n_test: break return total_err_top1/total_n, total_err_top5/total_n, total_loss/total_n def epoch_func(loader, model, criterion, opt=None, device=None, use_tqdm=False): total_loss = 0. model.to(device) if use_tqdm: pbar = tqdm(total=len(loader)) for X,y in loader: X,y = X.to(device), y.to(device) yp = model(X) loss = criterion(yp,y) if opt: opt.zero_grad() loss.backward() opt.step() total_loss += loss.item() * X.shape[0] if use_tqdm: pbar.update(1) return total_loss / len(loader.dataset) def epoch_distill_func(loader, model_teacher, model, device, opt=None, use_tqdm=True, n_test=None, loss_func='mse'): total_loss, total_err = 0.,0. total_n = 0 model_teacher.to(device) model.to(device) if use_tqdm: if n_test is None: pbar = tqdm(total=len(loader.dataset)) else: pbar = tqdm(total=n_test) for X, y in loader: X, y = X.to(device), y.to(device) teacher_output = model_teacher(X).detach() output = model(X) if loss_func=='mse': loss = nn.MSELoss()(output, teacher_output) elif loss_func=='l1': loss = nn.L1Loss()(output, teacher_output) elif loss_func=='kl': loss = nn.KLDivLoss()(F.log_softmax(output, dim=1), F.softmax(teacher_output, dim=1)) else: raise NotImplementedError if opt: opt.zero_grad() loss.backward() opt.step() total_loss += loss.item() * X.shape[0] total_n += X.shape[0] if use_tqdm: pbar.update(X.shape[0]) if n_test is not None: if total_n > n_test: break return total_loss/total_n def epoch_distill(loader, model_teacher, model, device, opt=None, use_tqdm=True, n_test=None, loss_func='mse'): total_loss, total_err = 0.,0. total_n = 0 model_teacher.to(device) model.to(device) if use_tqdm: if n_test is None: pbar = tqdm(total=len(loader.dataset)) else: pbar = tqdm(total=n_test) for X, y in loader: X, y = X.to(device), y.to(device) teacher_output = model_teacher(X).detach() output = model(X) if loss_func=='mse': loss = nn.MSELoss()(output, teacher_output) elif loss_func=='l1': loss = nn.L1Loss()(output, teacher_output) elif loss_func=='kl': loss = nn.KLDivLoss()(F.log_softmax(output, dim=1), F.softmax(teacher_output, dim=1)) else: raise NotImplementedError if opt: opt.zero_grad() loss.backward() opt.step() total_err += (output.max(dim=1)[1] != y).sum().item() total_loss += loss.item() * X.shape[0] total_n += X.shape[0] if use_tqdm: pbar.update(X.shape[0]) if n_test is not None: if total_n > n_test: break return total_loss/total_n, total_err/total_n def epoch_transfer_attack(loader, model_source, model_target, attack, device, success_only=False, use_tqdm=True, n_test=None, **kwargs): source_err = 0. target_err = 0. target_err2 = 0. success_total_n = 0 model_source.eval() model_target.eval() total_n = 0 if use_tqdm: pbar = tqdm(total=n_test) model_source.to(device) model_target.to(device) for X,y in loader: X,y = X.to(device), y.to(device) delta = attack(model_source, X, y, **kwargs) if success_only: raise NotImplementedError else: yp_target = model_target(X+delta).detach() yp_source = model_source(X+delta).detach() yp_origin = model_target(X).detach() source_err += (yp_source.max(dim=1)[1] != y).sum().item() target_err += (yp_target.max(dim=1)[1] != y).sum().item() target_err2 += (yp_origin.max(dim=1)[1] != y).sum().item() success_total_n += (yp_origin.max(dim=1)[1] == y) if use_tqdm: pbar.update(X.shape[0]) total_n += X.shape[0] if n_test is not None: if total_n >= n_test: break return source_err / total_n, target_err / total_n, target_err2 /total_n # if randomize: # delta = torch.rand_like(X, requires_grad=True) # delta.data = delta.data * 2 * epsilon - epsilon # else: # delta = torch.zeros_like(X, requires_grad=True) # for t in range(num_iter): # loss = nn.CrossEntropyLoss()(model(X + delta), y) # loss.backward() # delta.data = (delta + alpha*delta.grad.detach().sign()).clamp(-epsilon,epsilon) # delta.grad.zero_() # return delta.detach() def epoch_free_adversarial(loader, model, m, epsilon, opt, device, use_tqdm=False): """free adversarial training""" total_loss, total_err = 0.,0. total_n = 0 pbar = tqdm(total=len(loader)) for X,y in loader: X,y = X.to(device), y.to(device) delta = torch.zeros_like(X, requires_grad=True) for i in range(m): model.train() yp = model(X+delta) loss_nn = nn.CrossEntropyLoss()(yp, y) total_err += (yp.max(dim=1)[1] != y).sum().item() total_loss += loss_nn.item() * X.shape[0] total_n += X.shape[0] #update network opt.zero_grad() loss_nn.backward() opt.step() #update perturbation delta.data = delta + epsilon*delta.grad.detach().sign() delta.data = delta.data.clamp(-epsilon, epsilon) delta.grad.zero_() if use_tqdm: pbar.update(1) return total_err / total_n, total_loss / total_n def epoch_ALP(loader, model, attack, alp_weight=0.5, opt=None, device=None, use_tqdm=False, n_test=None, **kwargs): """Adversarial Logit Pairing epoch over the dataset""" total_loss, total_err = 0.,0. # assert(opt is not None) model.train() if use_tqdm: if n_test is None: pbar = tqdm(total=len(loader.dataset)) else: pbar = tqdm(total=n_test) total_n = 0 for X,y in loader: X,y = X.to(device), y.to(device) model.eval() with torch.no_grad(): clean_logit = model(X) delta = attack(model, X, y, **kwargs) model.train() yp = model(X+delta) loss = nn.CrossEntropyLoss()(yp,y) + alp_weight*nn.MSELoss()(yp, clean_logit) opt.zero_grad() loss.backward() opt.step() total_err += (yp.max(dim=1)[1] != y).sum().item() total_loss += loss.item() * X.shape[0] if use_tqdm: pbar.update(X.shape[0]) total_n += X.shape[0] if n_test is not None: if total_n >= n_test: break return total_err / total_n, total_loss / total_n def epoch_adversarial(loader, model, attack, opt=None, device=None, use_tqdm=False, n_test=None, **kwargs): """Adversarial training/evaluation epoch over the dataset""" total_loss, total_err = 0.,0. if opt is None: model.eval() else: model.train() if use_tqdm: if n_test is None: pbar = tqdm(total=len(loader.dataset)) else: pbar = tqdm(total=n_test) total_n = 0 for X,y in loader: X,y = X.to(device), y.to(device) model.eval() delta = attack(model, X, y, **kwargs) if opt: model.train() yp = model(X+delta) loss = nn.CrossEntropyLoss()(yp,y) if opt: opt.zero_grad() loss.backward() opt.step() total_err += (yp.max(dim=1)[1] != y).sum().item() total_loss += loss.item() * X.shape[0] if use_tqdm: pbar.update(X.shape[0]) total_n += X.shape[0] if n_test is not None: if total_n >= n_test: break return total_err / total_n, total_loss / total_n def get_activation(model, activation, name): def hook(model, input, output): activation[name] = output.cpu().detach() return hook def register_layer(model, layer, activation, name): layer.register_forward_hook(get_activation(model, activation, name)) class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res def validate(val_loader, model, criterion, device): batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() # switch to evaluate mode model.eval() end = time.time() for i, (inp, target) in enumerate(val_loader): target = target.to(device) inp = inp.to(device) # compute output output = model(inp) loss = criterion(output, target) # measure accuracy and record loss prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) losses.update(loss.item(), inp.size(0)) top1.update(prec1.item(), inp.size(0)) top5.update(prec5.item(), inp.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % 10 == 0: print('Test: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( i, len(val_loader), batch_time=batch_time, loss=losses, top1=top1, top5=top5)) print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}' .format(top1=top1, top5=top5)) return top1.avg def squared_l2_norm(x): flattened = x.view(x.shape[0], -1) return (flattened ** 2).sum(1) def l2_norm(x): return squared_l2_norm(x).sqrt() def trades_loss(model, x_natural, y, optimizer, step_size=0.003, epsilon=0.031, perturb_steps=10, beta=1.0, distance='l_inf'): # define KL-loss criterion_kl = nn.KLDivLoss(size_average=False) model.eval() batch_size = len(x_natural) # generate adversarial example x_adv = x_natural.detach() + 0.001 * torch.randn_like(x_natural).detach() if distance == 'l_inf': for _ in range(perturb_steps): x_adv.requires_grad_() with torch.enable_grad(): loss_kl = criterion_kl(F.log_softmax(model(x_adv), dim=1), F.softmax(model(x_natural), dim=1)) grad = torch.autograd.grad(loss_kl, [x_adv])[0] x_adv = x_adv.detach() + step_size * torch.sign(grad.detach()) x_adv = torch.min(torch.max(x_adv, x_natural - epsilon), x_natural + epsilon) x_adv = torch.clamp(x_adv, 0.0, 1.0) elif distance == 'l_2': for _ in range(perturb_steps): x_adv.requires_grad_() with torch.enable_grad(): loss_kl = criterion_kl(F.log_softmax(model(x_adv), dim=1), F.softmax(model(x_natural), dim=1)) grad = torch.autograd.grad(loss_kl, [x_adv])[0] for idx_batch in range(batch_size): grad_idx = grad[idx_batch] grad_idx_norm = l2_norm(grad_idx) grad_idx /= (grad_idx_norm + 1e-8) x_adv[idx_batch] = x_adv[idx_batch].detach() + step_size * grad_idx eta_x_adv = x_adv[idx_batch] - x_natural[idx_batch] norm_eta = l2_norm(eta_x_adv) if norm_eta > epsilon: eta_x_adv = eta_x_adv * epsilon / l2_norm(eta_x_adv) x_adv[idx_batch] = x_natural[idx_batch] + eta_x_adv x_adv = torch.clamp(x_adv, 0.0, 1.0) else: x_adv = torch.clamp(x_adv, 0.0, 1.0) model.train() x_adv = Variable(torch.clamp(x_adv, 0.0, 1.0), requires_grad=False) # zero gradient optimizer.zero_grad() # calculate robust loss logits = model(x_natural) loss_natural = F.cross_entropy(logits, y) loss_robust = (1.0 / batch_size) * criterion_kl(F.log_softmax(model(x_adv), dim=1), F.softmax(model(x_natural), dim=1)) loss = loss_natural + beta * loss_robust return loss def epoch_trade(loader, model, opt, device=None, **kwargs): model.train() for batch_idx, (data, target) in enumerate(loader): data, target = data.to(device), target.to(device) opt.zero_grad() # calculate robust loss loss = trades_loss(model=model, x_natural=data, y=target, optimizer=opt, **kwargs) # step_size=args.step_size, # epsilon=args.epsilon, # perturb_steps=args.num_steps, # beta=args.beta) loss.backward() opt.step() return 0, 0
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torchvision.transforms as transforms from PIL import Image def svhn_transform(): transform_train = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]) return transform_train, transform_test def cifar_transform(): transform_train = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomCrop(size=[32, 32], padding=4), transforms.ToTensor(), #transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]) transform_test = transforms.Compose([ transforms.ToTensor(), #transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]) return transform_train, transform_test imagenet_pca = { 'eigval': np.asarray([0.2175, 0.0188, 0.0045]), 'eigvec': np.asarray([ [-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.8140], [-0.5836, -0.6948, 0.4203], ]) } class Lighting(object): def __init__(self, alphastd, eigval=imagenet_pca['eigval'], eigvec=imagenet_pca['eigvec']): self.alphastd = alphastd assert eigval.shape == (3, ) assert eigvec.shape == (3, 3) self.eigval = eigval self.eigvec = eigvec def __call__(self, img): if self.alphastd == 0.: return img rnd = np.random.randn(3) * self.alphastd rnd = rnd.astype('float32') v = rnd old_dtype = np.asarray(img).dtype v = v * self.eigval v = v.reshape((3, 1)) inc = np.dot(self.eigvec, v).reshape((3, )) img = np.add(img, inc) if old_dtype == np.uint8: img = np.clip(img, 0, 255) img = Image.fromarray(img.astype(old_dtype), 'RGB') return img def __repr__(self): return self.__class__.__name__ + '()' def imagenet_transform(img_size=224): normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) jitter_param = 0.4 lighting_param = 0.1 transform_train = transforms.Compose([ transforms.RandomResizedCrop(img_size, scale=(0.25, 1)), transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=jitter_param, contrast=jitter_param, saturation=jitter_param), Lighting(lighting_param), transforms.ToTensor(), normalize ]) transform_test = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(img_size), transforms.ToTensor(), normalize ]) return transform_train, transform_test
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import urllib.request import torch import torchvision import numpy as np import foolbox as fb import eagerpy as ep import transforms import resnet_3layer as resnet from tqdm import tqdm import torch.nn as nn import argparse num_sample_MIOL = 15 lamdaOL = 0.6 device = "cuda" if torch.cuda.is_available() else "cpu" class LambdaWrapper(torch.nn.Module): def __init__(self, lbd, module): super().__init__() self.lbd = lbd self.module = module def forward(self, x, *args, **kwargs): return self.module(self.lbd(x), *args, **kwargs) def load_classifier(): filename = 'mixup_model_IAT.ckpt' url = f'https://github.com/wielandbrendel/robustness_workshop/releases/download/v0.0.1/{filename}' if not os.path.isfile(filename): print('Downloading pretrained weights.') urllib.request.urlretrieve(url, filename) CLASSIFIER = resnet.model_dict['resnet50'] classifier = CLASSIFIER(num_classes=10) device = torch.device("cuda:0") classifier = classifier.to(device) classifier.load_state_dict(torch.load('mixup_model_IAT.ckpt')) # transform (0, 1) to (-1, 1) value range classifier = LambdaWrapper( lambda x: x * 2 - 1.0, classifier ) classifier.eval() return classifier def onehot(ind): vector = np.zeros([10]) vector[ind] = 1 return vector.astype(np.float32) def prepare_data(): train_trans, test_trans = transforms.cifar_transform() trainset = torchvision.datasets.CIFAR10(root='~/cifar/', train=False, download=True, transform=train_trans, target_transform=onehot) testset = torchvision.datasets.CIFAR10(root='~/cifar/', train=False, download=True, transform=test_trans, target_transform=onehot) # we reduce the testset for this workshop testset.data = testset.data dataloader_train = torch.utils.data.DataLoader( trainset, batch_size=100, shuffle=True, num_workers=1) dataloader_test = torch.utils.data.DataLoader( testset, batch_size=50, shuffle=True, num_workers=1) return dataloader_test, dataloader_train def setup_pool(dataloader, num_pool=10000, n_classes=10): mixup_pool_OL = {} for i in range(n_classes): mixup_pool_OL.update({i: []}) n_samples = 0 for i, data_batch in tqdm(enumerate(dataloader), leave=False): img_batch, label_batch = data_batch img_batch = img_batch.to(device) if len(label_batch.shape) > 1: _, label_indices = torch.max(label_batch.data, 1) else: label_indices = label_batch for j, label_ind in enumerate(label_indices.cpu().numpy()): mixup_pool_OL[label_ind].append(img_batch[j]) n_samples += 1 if n_samples >= num_pool: break return mixup_pool_OL class CombinedModel(nn.Module): def __init__(self, classifier, mixup_pool_OL, n_classes=10, deterministic=False): super(CombinedModel, self).__init__() self.classifier = classifier self.soft_max = nn.Softmax(dim=-1) self.mixup_pool_OL = mixup_pool_OL self.n_classes = n_classes self.deterministic = deterministic self.rng = np.random.default_rng() for i in range(n_classes): assert i in mixup_pool_OL def forward(self, img_batch, no_mixup=False, features_only=False, features_and_logits=False): pred_cle_mixup_all_OL = 0 # torch.Tensor([0.]*10) # forward pass without PL/OL # TODO: does this make sense if the classifier wasn't adapted to binary # task yet? pred_cle = self.classifier(img_batch) if no_mixup: return pred_cle cle_con, predicted_cle = torch.max(self.soft_max(pred_cle.data), 1) predicted_cle = predicted_cle.cpu().numpy() all_features = [] all_logits = [] if self.deterministic: self.rng = np.random.default_rng(seed=0) # perform MI-OL for k in range(num_sample_MIOL): mixup_img_batch = np.empty(img_batch.shape, dtype=np.float32) for b in range(img_batch.shape[0]): # CLEAN xs_cle_label = self.rng.integers(self.n_classes) while xs_cle_label == predicted_cle[b]: xs_cle_label = self.rng.integers(self.n_classes) xs_cle_index = self.rng.integers(len(self.mixup_pool_OL[xs_cle_label])) mixup_img_cle = (1 - lamdaOL) * \ self.mixup_pool_OL[xs_cle_label][xs_cle_index][0] mixup_img_batch[b] = mixup_img_cle.cpu().detach().numpy() mixup_img_batch = ep.from_numpy(ep.astensor(img_batch), mixup_img_batch).raw + lamdaOL * img_batch if features_only: features = self.classifier(mixup_img_batch, features_only=True) all_features.append(features) elif features_and_logits: features, logits = self.classifier(mixup_img_batch, features_and_logits=True) all_features.append(features) all_logits.append(logits) else: pred_cle_mixup = self.classifier(mixup_img_batch) pred_cle_mixup_all_OL = pred_cle_mixup_all_OL + self.soft_max( pred_cle_mixup) if features_only: all_features = torch.stack(all_features, 1) return all_features elif features_and_logits: all_features = torch.stack(all_features, 1) all_logits = torch.stack(all_logits, 1) return all_features, all_logits else: pred_cle_mixup_all_OL = pred_cle_mixup_all_OL / num_sample_MIOL return pred_cle_mixup_all_OL def adversarial_evaluate(model, dataloader, attack_fn, attack_mode, epsilon, eval_no_mixup=False, verbose=True, n_samples=-1, kwargs={}): all_attack_successful = [] all_x_adv = [] all_logits_adv = [] if verbose: pbar = tqdm(dataloader) else: pbar = dataloader if attack_mode == "adaptive-pgd": attacked_model = fb.models.PyTorchModel(model, bounds=(0, 1), device=device) elif attack_mode == "pgd": attacked_model = fb.models.PyTorchModel(model.classifier, bounds=(0, 1), device=device) else: raise ValueError() total_samples = 0 correct_classified = 0 for images, labels in pbar: images = images.to(device) labels = labels.to(device) if len(labels.shape) == 2: labels = labels.argmax(1) N = len(images) _, adv_clipped, _ = attack_fn(attacked_model, images, labels, epsilons=epsilon) with torch.no_grad(): all_x_adv.append(adv_clipped.detach().cpu().numpy()) logits_adv = model(adv_clipped, no_mixup=eval_no_mixup) all_logits_adv.append(logits_adv.cpu().numpy()) attack_successful = ( logits_adv.argmax(-1) != labels).detach().cpu().numpy() all_attack_successful.append(attack_successful) total_samples += N correct_classified += (N - attack_successful.sum()) if verbose: pbar.set_description( f'Model accuracy on adversarial examples: {correct_classified / total_samples:.3f}') if n_samples != -1 and total_samples > n_samples: break all_attack_successful = np.concatenate(all_attack_successful, 0) all_x_adv = np.concatenate(all_x_adv, 0) all_logits_adv = np.concatenate(all_logits_adv, 0) if verbose: print( f'Model accuracy on adversarial examples: {correct_classified / total_samples:.3f}') return all_attack_successful, (torch.tensor(all_x_adv, device="cpu"), torch.tensor(all_logits_adv, device=device)) def main(): parser = argparse.ArgumentParser() parser.add_argument("--attack", choices=("pgd", "adaptive-pgd"), default="pgd") parser.add_argument("--deterministic", action="store_true") parser.add_argument("--epsilon", type=int, default=8) parser.add_argument("--pgd-steps", type=int, default=50) parser.add_argument("--n-samples", type=int, default=-1) args = parser.parse_args() classifier = load_classifier() dataloader_test, dataloader_train = prepare_data() mixup_pool_OL = setup_pool(dataloader_test) combined_classifier = CombinedModel(classifier, mixup_pool_OL, args.deterministic) combined_classifier.eval() attack_mode = args.attack epsilon = args.epsilon / 255 attack = fb.attacks.LinfPGD(steps=args.pgd_steps, abs_stepsize=1 / 255) adversarial_evaluate(combined_classifier, dataloader_test, attack, attack_mode, epsilon, verbose=True, n_samples=args.n_samples) if __name__ == "__main__": main()
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from torch.hub import load_state_dict_from_url __all__ = [ 'ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d' ] def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError( 'BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError( "Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None): super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 self.final_feature_dimen = 256 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format( replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=5, stride=1, padding=2, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) # self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc_dense = nn.Linear(256, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append( block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append( block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def forward(self, x, features_only=False, features_and_logits=False): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) # x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) # x = self.layer4(x) x = self.avgpool(x) x = x.reshape(x.size(0), -1) if features_only: return x logits = self.fc_dense(x) if features_and_logits: return x, logits return logits def _resnet(arch, block, layers, pretrained, progress, **kwargs): model = ResNet(block, layers, **kwargs) if pretrained: state_dict = load_state_dict_from_url(model_urls[arch], progress=progress) model.load_state_dict(state_dict) return model def resnet18(pretrained=False, progress=True, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet18', BasicBlock, [3, 3, 3], pretrained, progress, **kwargs) def resnet34(pretrained=False, progress=True, **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet34', BasicBlock, [5, 5, 5], pretrained, progress, **kwargs) def resnet50(pretrained=False, progress=True, **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet50', Bottleneck, [5, 5, 5], pretrained, progress, **kwargs) def resnet101(pretrained=False, progress=True, **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet101', Bottleneck, [11, 11, 11], pretrained, progress, **kwargs) def resnet152(pretrained=False, progress=True, **kwargs): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet152', Bottleneck, [16, 18, 16], pretrained, progress, **kwargs) model_dict = { 'resnet18': resnet18, 'resnet34': resnet34, 'resnet50': resnet50, 'resnet101': resnet101, 'resnet152': resnet152, }
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import foolbox as fb import torch from torch.utils.data import DataLoader, TensorDataset from functools import partial from active_tests.decision_boundary_binarization import LogitRescalingType from adversarial_evaluation import load_classifier, setup_pool, \ prepare_data, adversarial_evaluate, CombinedModel, device, LambdaWrapper from active_tests.decision_boundary_binarization import \ interior_boundary_discrimination_attack, \ format_result, _train_logistic_regression_classifier from argparse_utils import DecisionBoundaryBinarizationSettings def train_classifier( n_features: int, train_loader: DataLoader, raw_train_loader: DataLoader, logits: torch.Tensor, device: str, rescale_logits: LogitRescalingType, base_classifier: torch.nn.Module, deterministic: bool) -> torch.nn.Module: data_x, data_y = train_loader.dataset.tensors data_y = data_y.repeat_interleave(data_x.shape[1]) data_x = data_x.view(-1, data_x.shape[-1]) train_loader = DataLoader(TensorDataset(data_x, data_y), batch_size=train_loader.batch_size) binary_classifier = _train_logistic_regression_classifier( n_features, train_loader, logits, optimizer="sklearn", lr=10000, device=device, rescale_logits=rescale_logits, solution_goodness="good") mixup_pool_OL = setup_pool(raw_train_loader, n_classes=2) classifier = LambdaWrapper( lambda x, **kwargs: base_classifier(x, features_only=True, **kwargs), binary_classifier) return CombinedModel(classifier, mixup_pool_OL, n_classes=2, deterministic=deterministic).eval() def main(): parser = argparse.ArgumentParser() parser.add_argument("--attack", choices=("pgd", "adaptive-pgd"), default="pgd") parser.add_argument("--deterministic", action="store_true") parser.add_argument("--epsilon", type=int, default=8) parser.add_argument("--pgd-steps", type=int, default=50) parser.add_argument("--n-samples", type=int, default=-1) parser.add_argument("--n-boundary-points", type=int, default=1) parser.add_argument("--n-inner-points", type=int, default=999) parser.add_argument("--sample-from-corners", action="store_true") args = parser.parse_args() classifier = load_classifier() dataloader_test, dataloader_train = prepare_data() mixup_pool_OL = setup_pool(dataloader_test) combined_classifier = CombinedModel(classifier, mixup_pool_OL, deterministic=args.deterministic) combined_classifier.eval() attack_mode = args.attack epsilon = args.epsilon / 255 attack = fb.attacks.LinfPGD(steps=args.pgd_steps, abs_stepsize=1 / 255) def eval_model(m, l, kwargs): if "reference_points_x" in kwargs: far_off_reference_ds = torch.utils.data.TensorDataset(kwargs["reference_points_x"], kwargs["reference_points_y"]) far_off_reference_dl = torch.utils.data.DataLoader(far_off_reference_ds, batch_size=4096) new_mixup_pool_OL = setup_pool(far_off_reference_dl, n_classes=2) for k in new_mixup_pool_OL: if len(new_mixup_pool_OL[k]) > 0: m.mixup_pool_OL[k] = new_mixup_pool_OL[k] return adversarial_evaluate(m, l, attack, attack_mode, epsilon, verbose=False) scores_logit_differences_and_validation_accuracies = \ interior_boundary_discrimination_attack( combined_classifier, dataloader_test, attack_fn=eval_model, linearization_settings=DecisionBoundaryBinarizationSettings( epsilon=args.epsilon / 255.0, norm="linf", lr=45000, n_boundary_points=args.n_boundary_points, n_inner_points=args.n_inner_points, adversarial_attack_settings=None, optimizer="sklearn", n_far_off_boundary_points=0 ), n_samples=args.n_samples, batch_size=4096, device=device, n_samples_evaluation=200, n_samples_asr_evaluation=200, rescale_logits="adaptive", train_classifier_fn=partial(train_classifier, base_classifier=classifier, deterministic=args.deterministic), n_inference_repetitions_boundary=5, n_inference_repetitions_inner=1, relative_inner_boundary_gap=0.05, decision_boundary_closeness=0.999, far_off_distance=3, sample_training_data_from_corners=args.sample_from_corners ) print(format_result(scores_logit_differences_and_validation_accuracies, args.n_samples)) if __name__ == "__main__": main()
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' Modified from https://github.com/pytorch/vision.git ''' import math import torch.nn as nn import torch.nn.init as init __all__ = [ 'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19_bn', 'vgg19', 'vgg11_nd', 'vgg11_nd_s', 'vgg13_nd', 'vgg13_nd_s', 'vgg16_nd', 'vgg16_nd_s', 'vgg19_nd', 'vgg19_nd_s', 'vgg11_nd_ss', 'vgg13_nd_ss', 'vgg16_nd_ss', 'vgg19_nd_ss', ] class VGG(nn.Module): ''' VGG model ''' def __init__(self, features, dropout=True, small=False, supersmall=False): super(VGG, self).__init__() self.features = features cls_layers = [] if dropout or supersmall: cls_layers.append(nn.Dropout()) if not (small or supersmall): cls_layers.append(nn.Linear(512, 512)) cls_layers.append(nn.ReLU()) if dropout: cls_layers.append(nn.Dropout()) if not supersmall: cls_layers.append(nn.Linear(512, 512)) cls_layers.append(nn.ReLU()) cls_layers.append(nn.Linear(512, 10)) self.classifier = nn.Sequential(*cls_layers) # Initialize weights for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) m.bias.data.zero_() def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x def make_layers(cfg, batch_norm=False): layers = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=False)] else: layers += [conv2d, nn.ReLU(inplace=False)] in_channels = v return nn.Sequential(*layers) cfg = { 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } def vgg11(): """VGG 11-layer model (configuration "A")""" return VGG(make_layers(cfg['A'])) def vgg11_nd(): """VGG 11-layer model (configuration "A")""" return VGG(make_layers(cfg['A']), dropout=False) def vgg11_nd_s(): """VGG 11-layer model (configuration "A")""" return VGG(make_layers(cfg['A']), dropout=False, small=True) def vgg11_nd_ss(): """VGG 11-layer model (configuration "A")""" return VGG(make_layers(cfg['A']), dropout=False, small=True, supersmall=True) def vgg11_bn(): """VGG 11-layer model (configuration "A") with batch normalization""" return VGG(make_layers(cfg['A'], batch_norm=True)) def vgg13(): """VGG 13-layer model (configuration "B")""" return VGG(make_layers(cfg['B'])) def vgg13_nd(): """VGG 13-layer model (configuration "B")""" return VGG(make_layers(cfg['B']), dropout=False) def vgg13_nd_s(): """VGG 13-layer model (configuration "B")""" return VGG(make_layers(cfg['B']), dropout=False, small=True) def vgg13_nd_ss(): """VGG 13-layer model (configuration "B")""" return VGG(make_layers(cfg['B']), dropout=False, small=True, supersmall=True) def vgg13_bn(): """VGG 13-layer model (configuration "B") with batch normalization""" return VGG(make_layers(cfg['B'], batch_norm=True)) def vgg16(): """VGG 16-layer model (configuration "D")""" return VGG(make_layers(cfg['D'])) def vgg16_nd(): """VGG 16-layer model (configuration "D")""" return VGG(make_layers(cfg['D']), dropout=False) def vgg16_nd_s(): """VGG 16-layer model (configuration "D")""" return VGG(make_layers(cfg['D']), dropout=False, small=True) def vgg16_nd_ss(): """VGG 16-layer model (configuration "D")""" return VGG(make_layers(cfg['D']), dropout=False, small=True, supersmall=True) def vgg16_bn(): """VGG 16-layer model (configuration "D") with batch normalization""" return VGG(make_layers(cfg['D'], batch_norm=True)) def vgg19(): """VGG 19-layer model (configuration "E")""" return VGG(make_layers(cfg['E'])) def vgg19_nd(): """VGG 19-layer model (configuration "E")""" return VGG(make_layers(cfg['E']), dropout=False) def vgg19_nd_s(): """VGG 19-layer model (configuration "E")""" return VGG(make_layers(cfg['E']), dropout=False, small=True) def vgg19_nd_ss(): """VGG 19-layer model (configuration "E")""" return VGG(make_layers(cfg['E']), dropout=False, small=True, supersmall=True) def vgg19_bn(): """VGG 19-layer model (configuration 'E') with batch normalization""" return VGG(make_layers(cfg['E'], batch_norm=True))
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Downloads a model, computes its SHA256 hash and unzips it at the proper location.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import zipfile import hashlib if len(sys.argv) == 1 or sys.argv[1] not in ['natural', 'adv_trained', 'secret']: print('Usage: python fetch_Madry_ResNet.py [natural, adv_trained]') sys.exit(1) if sys.argv[1] == 'natural': url = 'https://www.dropbox.com/s/cgzd5odqoojvxzk/natural.zip?dl=1' elif sys.argv[1] == 'adv_trained': url = 'https://www.dropbox.com/s/g4b6ntrp8zrudbz/adv_trained.zip?dl=1' else: # fetch secret model url = 'https://www.dropbox.com/s/ywc0hg8lr5ba8zd/secret.zip?dl=1' fname = url.split('/')[-1].split('?')[0] # get the name of the file # model download print('Downloading models') if sys.version_info >= (3,): import urllib.request urllib.request.urlretrieve(url, fname) else: import urllib urllib.urlretrieve(url, fname) # computing model hash sha256 = hashlib.sha256() with open(fname, 'rb') as f: data = f.read() sha256.update(data) print('SHA256 hash: {}'.format(sha256.hexdigest())) # extracting model print('Extracting model') with zipfile.ZipFile(fname, 'r') as model_zip: model_zip.extractall() print('Extracted model in {}'.format(model_zip.namelist()[0]))
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch as th import torch.nn as nn import torch.utils.model_zoo as model_zoo from collections import OrderedDict model_urls = { 'cifar10': 'http://ml.cs.tsinghua.edu.cn/~chenxi/pytorch-models/cifar10-d875770b.pth', 'cifar10_tiny': os.path.expanduser('~/models/advhyp/cifar10_tiny/cifar10_tiny-38058c52.pth'), 'cifar10_tinyb': os.path.expanduser('~/models/advhyp/cifar10_tinyb/cifar10_tinyb-7ab86c47.pth'), 'carlini': os.path.expanduser('~/models/advhyp/carlini/carlini-caa52d4e.pth'), 'cifar10_tinyb_adv': os.path.expanduser('~/models/advhyp/cifar10_tinyb_adv/cifar10_tinyb_adv-ac4936dc.pth'), 'cifar100': 'http://ml.cs.tsinghua.edu.cn/~chenxi/pytorch-models/cifar100-3a55a987.pth', } class CIFAR(nn.Module): def __init__(self, features, n_channel, num_classes): super(CIFAR, self).__init__() assert isinstance(features, nn.Sequential), type(features) self.features = features self.classifier = nn.Sequential( nn.Linear(n_channel, num_classes) ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x class Carlini(nn.Module): def __init__(self, features, n_channel): super(Carlini, self).__init__() assert isinstance(features, nn.Sequential), type(features) self.features = features self.classifier = nn.Sequential( nn.Linear(n_channel, 256), nn.ReLU(), nn.Dropout(), nn.Linear(256, 256), nn.ReLU(), nn.Linear(256, 10) ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x def make_layers(cfg, batch_norm=False): layers = [] in_channels = 3 for i, v in enumerate(cfg): if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: padding = v[1] if isinstance(v, tuple) else 1 out_channels = v[0] if isinstance(v, tuple) else v conv2d = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=padding) if batch_norm: layers += [conv2d, nn.BatchNorm2d(out_channels, affine=False), nn.ReLU()] else: layers += [conv2d, nn.ReLU()] in_channels = out_channels return nn.Sequential(*layers) def cifar10_tiny(n_channel, pretrained=False, map_location=None, padding=1, trained_adv=False): if padding == 1: cfg = [(n_channel, padding), 'M', (n_channel, padding), 'M', (2*n_channel, padding), 'M', (2*n_channel, 0), 'M'] elif padding == 0: cfg = [(n_channel, padding), (n_channel, padding), 'M', (2*n_channel, padding), 'M', (2*n_channel, 0), 'M'] layers = make_layers(cfg, batch_norm=False) model = CIFAR(layers, n_channel=2*n_channel if padding == 1 else 4*2*n_channel, num_classes=10) if pretrained or trained_adv: if padding == 1: state_dict = th.load(model_urls['cifar10_tiny'], map_location=map_location) elif padding == 0: if trained_adv and pretrained: state_dict = th.load(model_urls['cifar10_tinyb_adv'], map_location=map_location) else: state_dict = th.load(model_urls['cifar10_tinyb'], map_location=map_location) assert isinstance(state_dict, (dict, OrderedDict)), type(state_dict) model.load_state_dict(state_dict) return model def cifar10(n_channel, pretrained=False, map_location=None, trained_adv=False): cfg = [n_channel, n_channel, 'M', 2*n_channel, 2*n_channel, 'M', 4*n_channel, 4*n_channel, 'M', (8*n_channel, 0), 'M'] layers = make_layers(cfg, batch_norm=True) model = CIFAR(layers, n_channel=8*n_channel, num_classes=10) if pretrained or trained_adv: if trained_adv and pretrained: m = th.load(model_urls['cifar10_adv'], map_location=map_location) else: m = model_zoo.load_url(model_urls['cifar10'], map_location=map_location) state_dict = m.state_dict() if isinstance(m, nn.Module) else m assert isinstance(state_dict, (dict, OrderedDict)), type(state_dict) model.load_state_dict(state_dict) return model def carlini(pretrained=False, map_location=None, trained_adv=False): cfg = [(64, 0), (64, 0), 'M', (128, 0), (128, 0), 'M'] layers = make_layers(cfg, batch_norm=False) model = Carlini(layers, n_channel=128*5*5) if pretrained or trained_adv: if trained_adv and pretrained: state_dict= th.load(model_urls['carlini_adv'], map_location=map_location) else: state_dict = th.load(model_urls['carlini'], map_location=map_location) assert isinstance(state_dict, (dict, OrderedDict)), type(state_dict) model.load_state_dict(state_dict) return model def cifar100(n_channel, pretrained=None): cfg = [n_channel, n_channel, 'M', 2*n_channel, 2*n_channel, 'M', 4*n_channel, 4*n_channel, 'M', (8*n_channel, 0), 'M'] layers = make_layers(cfg, batch_norm=True) model = CIFAR(layers, n_channel=8*n_channel, num_classes=100) if pretrained is not None: m = model_zoo.load_url(model_urls['cifar100']) state_dict = m.state_dict() if isinstance(m, nn.Module) else m assert isinstance(state_dict, (dict, OrderedDict)), type(state_dict) model.load_state_dict(state_dict) return model
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import functools import cleverhans.model import torch from cleverhans import utils_tf from cleverhans.attacks import Attack import cleverhans.attacks from cleverhans.utils_tf import clip_eta # disable tf logging # some of these might have to be commented out to use verbose=True in the # adaptive attack import warnings import logging logging.getLogger('tensorflow').setLevel(logging.FATAL) import tensorflow as tf tf.logging.set_verbosity(tf.logging.ERROR) import os import math import numpy as np import tensorflow as tf from cleverhans.attacks import MadryEtAl from cleverhans.dataset import CIFAR10 from cleverhans.model_zoo.madry_lab_challenges.cifar10_model import \ make_wresnet as ResNet from cleverhans.utils_tf import initialize_uninitialized_global_variables import tf_robustify from cleverhans.augmentation import random_horizontal_flip, random_shift from logit_matching_attack import \ ProjectedGradientDescentWithDetectorLogitMatching def init_defense(sess, x, preds, batch_size, multi_noise=False): data = CIFAR10() if multi_noise: defense_data_path = os.path.join("checkpoints/tf_madry_wrn_vanilla", "defense_alignment_data_multi_noise") else: defense_data_path = os.path.join("checkpoints/tf_madry_wrn_vanilla", "defense_alignment_data") if os.path.exists(defense_data_path): print("Trying to load defense statistics") load_alignments_dir = defense_data_path save_alignments_dir = None else: print("Defense statistics not found; generating and saving them now.") load_alignments_dir = None save_alignments_dir = defense_data_path dataset_size = data.x_train.shape[0] dataset_train = data.to_tensorflow()[0] dataset_train = dataset_train.map( lambda x, y: (random_shift(random_horizontal_flip(x)), y), 4) dataset_train = dataset_train.batch(batch_size) dataset_train = dataset_train.prefetch(16) x_train, y_train = data.get_set('train') x_train *= 255 nb_classes = y_train.shape[1] n_collect = 10000 # TODO: for debugging set to 100, otherwise to 10000 p_ratio_cutoff = .999 just_detect = True clip_alignments = True fit_classifier = True noise_eps = 'n30.0' num_noise_samples = 256 if multi_noise: noises = 'n0.003,s0.003,u0.003,n0.005,s0.005,u0.005,s0.008,n0.008,u0.008'.split( ',') noise_eps_detect = [] for n in noises: new_noise = n[0] + str(float(n[1:]) * 255) noise_eps_detect.append(new_noise) else: noise_eps_detect = 'n30.0' # these attack parameters are just for initializing the defense eps = 8.0 pgd_params = { 'eps': eps, 'eps_iter': (eps / 5), 'nb_iter': 10, 'clip_min': 0, 'clip_max': 255 } logits_op = preds.op while logits_op.type != 'MatMul': logits_op = logits_op.inputs[0].op latent_x_tensor, weights = logits_op.inputs logits_tensor = preds predictor = tf_robustify.collect_statistics( x_train[:n_collect], y_train[:n_collect], x, sess, logits_tensor=logits_tensor, latent_x_tensor=latent_x_tensor, weights=weights, nb_classes=nb_classes, p_ratio_cutoff=p_ratio_cutoff, noise_eps=noise_eps, noise_eps_detect=noise_eps_detect, pgd_eps=pgd_params['eps'], pgd_lr=pgd_params['eps_iter'] / pgd_params['eps'], pgd_iters=pgd_params['nb_iter'], save_alignments_dir=save_alignments_dir, load_alignments_dir=load_alignments_dir, clip_min=pgd_params['clip_min'], clip_max=pgd_params['clip_max'], batch_size=batch_size, num_noise_samples=num_noise_samples, debug_dict=None, debug=False, targeted=False, pgd_train=None, fit_classifier=fit_classifier, clip_alignments=clip_alignments, just_detect=just_detect, ) next(predictor) return predictor def do_eval(sess, x, x_adv, logits, preds, x_set, y_set, predictor, batch_size, attack_kwargs={}): n_batches = math.ceil(x_set.shape[0] / batch_size) # first generative adversarial examples x_adv_set, logits_set, p_set = [], [], [] for b in range(n_batches): values = sess.run((x_adv, logits, preds), {**attack_kwargs, x: x_set[b * batch_size:(b + 1) * batch_size]}) x_adv_set.append(values[0]) logits_set.append(values[1]) p_set.append(values[2]) x_adv_set = np.concatenate(x_adv_set) logits_set = np.concatenate(logits_set) p_set = np.concatenate(p_set) del x_set # now run test p_set, p_det = np.concatenate( [predictor.send(x_adv_set[b * batch_size:(b + 1) * batch_size]) for b in range(n_batches)]).T correctly_classified = np.equal(p_set, y_set[:len(p_set)].argmax(-1)) adversarial_example_detected = np.equal(p_det, True) # model_fooled = np.logical_or( # np.logical_and(~correctly_classified, ~adversarial_example_detected), # fooled classifier & evaded detector # np.logical_and(correctly_classified, adversarial_example_detected) # did not fool classifier but triggered detector (false positive) # ) model_fooled = np.logical_and(~correctly_classified, ~adversarial_example_detected) # fooled classifier & evaded detector correctly_classified_not_detected = np.logical_and(correctly_classified, ~adversarial_example_detected) # print(len(adversarial_example_detected), np.sum(~correctly_classified), # np.sum(adversarial_example_detected)) # asr = model_fooled.mean() # acc = correctly_classified.mean() # print('Accuracy of base model: %0.4f' % acc) # print('ASR (w/ detection defense): %0.4f' % asr) return model_fooled, correctly_classified, adversarial_example_detected def main(): parser = argparse.ArgumentParser() parser.add_argument('--debug', action='store_true') parser.add_argument('--multi-noise', action='store_true') parser.add_argument("--n-samples", default=512, type=int) parser.add_argument("--batch-size", default=512, type=int) parser.add_argument("--epsilon", default=8, type=int) parser.add_argument("--attack", choices=("clean", "original", "adaptive", "adaptive-eot"), default="original") args = parser.parse_args() # load data data = CIFAR10() x_test, y_test = data.get_set('test') sess = tf.Session() img_rows, img_cols, nchannels = x_test.shape[1:4] nb_classes = y_test.shape[1] # define model & restore weights # Define input TF placeholder x_placeholder = tf.placeholder( tf.float32, shape=(None, img_rows, img_cols, nchannels)) # needed for adaptive attack x_reference_placeholder = tf.placeholder( tf.float32, shape=(None, img_rows, img_cols, nchannels)) cifar_model = ResNet(scope='ResNet') ckpt = tf.train.get_checkpoint_state("checkpoints/tf_madry_wrn_vanilla") saver = tf.train.Saver(var_list=dict( (v.name.split('/', 1)[1].split(':')[0], v) for v in tf.global_variables())) saver.restore(sess, ckpt.model_checkpoint_path) initialize_uninitialized_global_variables(sess) logits = cifar_model.get_logits(x_placeholder) # setup defense # if multi_noise = True, instantiate the defense with 9 types of noise. # if multi_noise = False, instantiate the defense with a single type of high-magnitude noise. print("multi noise:", args.multi_noise) defense_predictor = init_defense(sess, x_placeholder, logits, args.batch_size, multi_noise=args.multi_noise) # prepare dataloader random_indices = list(range(len(x_test))) np.random.shuffle(random_indices) x_batch = [] y_batch = [] for j in range(args.n_samples): x_, y_ = x_test[random_indices[j]], y_test[random_indices[j]] x_batch.append(x_) y_batch.append(y_) x_batch = np.array(x_batch).transpose((0, 3, 1, 2)) y_batch = np.array(y_batch) from utils import build_dataloader_from_arrays test_loader = build_dataloader_from_arrays(x_batch, y_batch, batch_size=args.batch_size) original_pgd_params = { # ord: , 'eps': args.epsilon, 'eps_iter': (args.epsilon / 5.0), 'nb_iter': 10, 'clip_min': 0, 'clip_max': 255 } adaptive_pgd_params = { # ord: , 'eps': args.epsilon, 'eps_iter': args.epsilon / 100.0, 'nb_iter': 100, 'clip_min': 0, 'clip_max': 255, 'x_reference': x_reference_placeholder, } if args.attack == "clean": adv_x = x_placeholder else: if args.attack == "original": pgd = MadryEtAl(cifar_model, sess=sess) print("Using MadryEtAl attack") elif args.attack == "adaptive": pgd = ProjectedGradientDescentWithDetectorLogitMatching( cifar_model, lambda x: cifar_model.get_logits(x), sess=sess, verbose=False) print("Using logit-matching attack") elif args.attack == "adaptive-eot": pgd = ProjectedGradientDescentWithDetectorLogitMatching( cifar_model, lambda x: cifar_model.get_logits(x), sess=sess, eot_ensemble_size=20, verbose=False) print("Using logit-matching attack w/ EOT") else: raise ValueError("invalid attack") pgd_params = original_pgd_params if args.attack == "original" else adaptive_pgd_params adv_x = tf.stop_gradient(pgd.generate(x_placeholder, **pgd_params)) adv_logits = cifar_model.get_logits(adv_x) adv_predictions = tf.argmax(adv_logits, 1) def run_eval(l): # should_be_rejected = ~verify_valid_input_data(kwargs["reference_points_x"]) # print("should_be_rejected", should_be_rejected) is_advs = [] correctly_classifieds = [] adv_detecteds = [] model_fooleds = [] for x, y in l: x = x.numpy().transpose((0, 2, 3, 1)) * 255.0 y = y.numpy() # pick targets. We'll keep it simple and just target the logits # of the first clean example, except for inputs that have the # same class as that example. For those, we target the logits # of the first clean example w/ different class. y_cls = np.argmax(y, -1) reference_x = x.copy() reference_x[:] = x[0] # get first element that has different class than first sample idx = np.argmax(y_cls != y_cls[0]) reference_x[y_cls == y_cls[0]] = x[idx] print(x.shape, reference_x.shape) model_fooled_np, correctly_classified_np, adv_detected_np = do_eval( sess=sess, x=x_placeholder, x_adv=adv_x, batch_size=args.batch_size, logits=adv_logits, preds=adv_predictions, x_set=x, y_set=y, predictor=defense_predictor, attack_kwargs={x_reference_placeholder: reference_x} ) # print(is_adv_np, y, logits_np) adv_detecteds.append(adv_detected_np) correctly_classifieds.append(correctly_classified_np) model_fooleds.append(model_fooled_np) adv_detecteds = np.concatenate(adv_detecteds) correctly_classifieds = np.concatenate(correctly_classifieds) model_fooleds = np.concatenate(model_fooleds) print("ASR:", np.mean(model_fooleds)) print("correctly_classifieds", np.mean(correctly_classifieds), "adversarial detected", np.mean(adv_detecteds)) run_eval(test_loader) if __name__ == "__main__": main()
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ based on cleverhans' cifar10_tutorial_tf except that it uses Madry's wide-ResNet """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging import numpy as np import tensorflow as tf from tensorflow.python.platform import flags import time from cleverhans.attacks import MadryEtAl, CarliniWagnerL2 from cleverhans.augmentation import random_horizontal_flip, random_shift from cleverhans.dataset import CIFAR10 from cleverhans.loss import CrossEntropy from cleverhans.model_zoo.all_convolutional import ModelAllConvolutional from cleverhans.model_zoo.madry_lab_challenges.cifar10_model import make_wresnet as ResNet from cleverhans.utils_tf import initialize_uninitialized_global_variables from cleverhans.train import train from cleverhans.utils import AccuracyReport, set_log_level from cleverhans.utils_tf import tf_model_load, model_eval from cleverhans.evaluation import batch_eval import math import tqdm import os import tf_robustify from tensorboardX import SummaryWriter import pickle FLAGS = flags.FLAGS NB_EPOCHS = 6 BATCH_SIZE = 128 LEARNING_RATE = 0.001 CLEAN_TRAIN = True BACKPROP_THROUGH_ATTACK = False NB_FILTERS = 64 ARCHITECTURE = 'ResNet' LOAD_MODEL = True os.makedirs('logs', exist_ok=True) swriter = SummaryWriter('logs') def cifar10_tutorial( train_start=0, train_end=60000, test_start=0, test_end=10000, nb_epochs=NB_EPOCHS, batch_size=BATCH_SIZE, architecture=ARCHITECTURE, load_model=LOAD_MODEL, ckpt_dir='None', learning_rate=LEARNING_RATE, clean_train=CLEAN_TRAIN, backprop_through_attack=BACKPROP_THROUGH_ATTACK, nb_filters=NB_FILTERS, num_threads=None, label_smoothing=0.): """ CIFAR10 cleverhans tutorial :param train_start: index of first training set example :param train_end: index of last training set example :param test_start: index of first test set example :param test_end: index of last test set example :param nb_epochs: number of epochs to train model :param batch_size: size of training batches :param learning_rate: learning rate for training :param clean_train: perform normal training on clean examples only before performing adversarial training. :param backprop_through_attack: If True, backprop through adversarial example construction process during adversarial training. :param label_smoothing: float, amount of label smoothing for cross entropy :return: an AccuracyReport object """ # Object used to keep track of (and return) key accuracies report = AccuracyReport() # Set TF random seed to improve reproducibility tf.set_random_seed(int(time.time() * 1000) % 2**31) np.random.seed(int(time.time() * 1001) % 2**31) # Set logging level to see debug information set_log_level(logging.DEBUG) # Create TF session if num_threads: config_args = dict(intra_op_parallelism_threads=1) else: config_args = {} sess = tf.Session(config=tf.ConfigProto(**config_args)) # Get CIFAR10 data data = CIFAR10(train_start=train_start, train_end=train_end, test_start=test_start, test_end=test_end) dataset_size = data.x_train.shape[0] dataset_train = data.to_tensorflow()[0] dataset_train = dataset_train.map( lambda x, y: (random_shift(random_horizontal_flip(x)), y), 4) dataset_train = dataset_train.batch(batch_size) dataset_train = dataset_train.prefetch(16) x_train, y_train = data.get_set('train') pgd_train = None if FLAGS.load_pgd_train_samples: pgd_path = os.path.expanduser('~/data/advhyp/{}/samples'.format(FLAGS.load_pgd_train_samples)) x_train = np.load(os.path.join(pgd_path, 'train_clean.npy')) y_train = np.load(os.path.join(pgd_path, 'train_y.npy')) pgd_train = np.load(os.path.join(pgd_path, 'train_pgd.npy')) if x_train.shape[1] == 3: x_train = x_train.transpose((0, 2, 3, 1)) pgd_train = pgd_train.transpose((0, 2, 3, 1)) if len(y_train.shape) == 1: y_tmp = np.zeros((len(y_train), np.max(y_train)+1), y_train.dtype) y_tmp[np.arange(len(y_tmp)), y_train] = 1. y_train = y_tmp x_test, y_test = data.get_set('test') pgd_test = None if FLAGS.load_pgd_test_samples: pgd_path = os.path.expanduser('~/data/advhyp/{}/samples'.format(FLAGS.load_pgd_test_samples)) x_test = np.load(os.path.join(pgd_path, 'test_clean.npy')) y_test = np.load(os.path.join(pgd_path, 'test_y.npy')) pgd_test = np.load(os.path.join(pgd_path, 'test_pgd.npy')) if x_test.shape[1] == 3: x_test = x_test.transpose((0, 2, 3, 1)) pgd_test = pgd_test.transpose((0, 2, 3, 1)) if len(y_test.shape) == 1: y_tmp = np.zeros((len(y_test), np.max(y_test)+1), y_test.dtype) y_tmp[np.arange(len(y_tmp)), y_test] = 1. y_test = y_tmp train_idcs = np.arange(len(x_train)) np.random.shuffle(train_idcs) x_train, y_train = x_train[train_idcs], y_train[train_idcs] if pgd_train is not None: pgd_train = pgd_train[train_idcs] test_idcs = np.arange(len(x_test))[:FLAGS.test_size] np.random.shuffle(test_idcs) x_test, y_test = x_test[test_idcs], y_test[test_idcs] if pgd_test is not None: pgd_test = pgd_test[test_idcs] # Use Image Parameters img_rows, img_cols, nchannels = x_test.shape[1:4] nb_classes = y_test.shape[1] # Define input TF placeholder x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, nchannels)) y = tf.placeholder(tf.float32, shape=(None, nb_classes)) # Train an MNIST model train_params = { 'nb_epochs': nb_epochs, 'batch_size': batch_size, 'learning_rate': learning_rate } eval_params = {'batch_size': batch_size} pgd_params = { # ord: , 'eps': FLAGS.eps, 'eps_iter': (FLAGS.eps / 5), 'nb_iter': 10, 'clip_min': 0, 'clip_max': 255 } cw_params = { 'binary_search_steps': FLAGS.cw_search_steps, 'max_iterations': FLAGS.cw_steps, #1000 'abort_early': True, 'learning_rate': FLAGS.cw_lr, 'batch_size': batch_size, 'confidence': 0, 'initial_const': FLAGS.cw_c, 'clip_min': 0, 'clip_max': 255 } # Madry dosen't divide by 255 x_train *= 255 x_test *= 255 if pgd_train is not None: pgd_train *= 255 if pgd_test is not None: pgd_test *= 255 print('x_train amin={} amax={}'.format(np.amin(x_train), np.amax(x_train))) print('x_test amin={} amax={}'.format(np.amin(x_test), np.amax(x_test))) print('clip_min : {}, clip_max : {} >> CHECK WITH WHICH VALUES THE CLASSIFIER WAS PRETRAINED !!! <<' .format(pgd_params['clip_min'], pgd_params['clip_max'])) rng = np.random.RandomState() # [2017, 8, 30] debug_dict = dict() if FLAGS.save_debug_dict else None def do_eval(preds, x_set, y_set, report_key, is_adv=None, predictor=None, x_adv=None): if predictor is None: acc = model_eval(sess, x, y, preds, x_set, y_set, args=eval_params) else: do_eval(preds, x_set, y_set, report_key, is_adv=is_adv) if x_adv is not None: x_set_adv, = batch_eval(sess, [x], [x_adv], [x_set], batch_size=batch_size) assert x_set.shape == x_set_adv.shape x_set = x_set_adv n_batches = math.ceil(x_set.shape[0] / batch_size) p_set, p_det = np.concatenate([predictor.send(x_set[b*batch_size:(b+1)*batch_size]) for b in tqdm.trange(n_batches)]).T acc = np.equal(p_set, y_set[:len(p_set)].argmax(-1)).mean() # if is_adv: # import IPython ; IPython.embed() ; exit(1) if FLAGS.save_debug_dict: debug_dict['x_set'] = x_set debug_dict['y_set'] = y_set ddfn = 'logs/debug_dict_{}.pkl'.format('adv' if is_adv else 'clean') if not os.path.exists(ddfn): with open(ddfn, 'wb') as f: pickle.dump(debug_dict, f) debug_dict.clear() if is_adv is None: report_text = None elif is_adv: report_text = 'adversarial' else: report_text = 'legitimate' if report_text: print('Test accuracy on %s examples %s: %0.4f' % (report_text, 'with correction' if predictor is not None else 'without correction', acc)) if is_adv is not None: label = 'test_acc_{}_{}'.format(report_text, 'corrected' if predictor else 'uncorrected') swriter.add_scalar(label, acc) if predictor is not None: detect = np.equal(p_det, is_adv).mean() label = 'test_det_{}_{}'.format(report_text, 'corrected' if predictor else 'uncorrected') print(label, detect) swriter.add_scalar(label, detect) label = 'test_dac_{}_{}'.format(report_text, 'corrected' if predictor else 'uncorrected') swriter.add_scalar(label, np.equal(p_set, y_set[:len(p_set)].argmax(-1))[np.equal(p_det, is_adv)].mean()) return acc if clean_train: if architecture == 'ConvNet': model = ModelAllConvolutional('model1', nb_classes, nb_filters, input_shape=[32, 32, 3]) elif architecture == 'ResNet': model = ResNet(scope='ResNet') else: raise Exception('Specify valid classifier architecture!') preds = model.get_logits(x) loss = CrossEntropy(model, smoothing=label_smoothing) if load_model: model_name = 'naturally_trained' if FLAGS.load_adv_trained: model_name = 'adv_trained' if ckpt_dir is not 'None': ckpt = tf.train.get_checkpoint_state(os.path.join( os.path.expanduser(ckpt_dir), model_name)) else: ckpt = tf.train.get_checkpoint_state( './models/' + model_name) ckpt_path = False if ckpt is None else ckpt.model_checkpoint_path saver = tf.train.Saver(var_list=dict((v.name.split('/', 1)[1].split(':')[0], v) for v in tf.global_variables())) saver.restore(sess, ckpt_path) print('\nMODEL SUCCESSFULLY LOADED from : {}'.format(ckpt_path)) initialize_uninitialized_global_variables(sess) else: def evaluate(): do_eval(preds, x_test, y_test, 'clean_train_clean_eval', False) train(sess, loss, None, None, dataset_train=dataset_train, dataset_size=dataset_size, evaluate=evaluate, args=train_params, rng=rng, var_list=model.get_params()) logits_op = preds.op while logits_op.type != 'MatMul': logits_op = logits_op.inputs[0].op latent_x_tensor, weights = logits_op.inputs logits_tensor = preds nb_classes = weights.shape[-1].value if not FLAGS.save_pgd_samples: noise_eps = FLAGS.noise_eps.split(',') if FLAGS.noise_eps_detect is None: FLAGS.noise_eps_detect = FLAGS.noise_eps noise_eps_detect = FLAGS.noise_eps_detect.split(',') if pgd_train is not None: pgd_train = pgd_train[:FLAGS.n_collect] if not FLAGS.passthrough: predictor = tf_robustify.collect_statistics(x_train[:FLAGS.n_collect], y_train[:FLAGS.n_collect], x, sess, logits_tensor=logits_tensor, latent_x_tensor=latent_x_tensor, weights=weights, nb_classes=nb_classes, p_ratio_cutoff=FLAGS.p_ratio_cutoff, noise_eps=noise_eps, noise_eps_detect=noise_eps_detect, pgd_eps=pgd_params['eps'], pgd_lr=pgd_params['eps_iter'] / pgd_params['eps'], pgd_iters=pgd_params['nb_iter'], save_alignments_dir='logs/stats' if FLAGS.save_alignments else None, load_alignments_dir=os.path.expanduser('~/data/advhyp/madry/stats') if FLAGS.load_alignments else None, clip_min=pgd_params['clip_min'], clip_max=pgd_params['clip_max'], batch_size=batch_size, num_noise_samples=FLAGS.num_noise_samples, debug_dict=debug_dict, debug=FLAGS.debug, targeted=False, pgd_train=pgd_train, fit_classifier=FLAGS.fit_classifier, clip_alignments=FLAGS.clip_alignments, just_detect=FLAGS.just_detect) else: def _predictor(): _x = yield while(_x is not None): _y = sess.run(preds, {x: _x}).argmax(-1) _x = yield np.stack((_y, np.zeros_like(_y)), -1) predictor = _predictor() next(predictor) if FLAGS.save_alignments: exit(0) # Evaluate the accuracy of the model on clean examples acc_clean = do_eval(preds, x_test, y_test, 'clean_train_clean_eval', False, predictor=predictor) # Initialize the PGD attack object and graph if FLAGS.attack == 'pgd': pgd = MadryEtAl(model, sess=sess) adv_x = pgd.generate(x, **pgd_params) elif FLAGS.attack == 'cw': cw = CarliniWagnerL2(model, sess=sess) adv_x = cw.generate(x, **cw_params) elif FLAGS.attack == 'mean': pgd = MadryEtAl(model, sess=sess) mean_eps = FLAGS.mean_eps * FLAGS.eps def _attack_mean(x): x_many = tf.tile(x[None], (FLAGS.mean_samples, 1, 1, 1)) x_noisy = x_many + tf.random_uniform(x_many.shape, -mean_eps, mean_eps) x_noisy = tf.clip_by_value(x_noisy, 0, 255) x_pgd = pgd.generate(x_noisy, **pgd_params) x_clip = tf.minimum(x_pgd, x_many + FLAGS.eps) x_clip = tf.maximum(x_clip, x_many - FLAGS.eps) x_clip = tf.clip_by_value(x_clip, 0, 255) return x_clip adv_x = tf.map_fn(_attack_mean, x) adv_x = tf.reduce_mean(adv_x, 1) preds_adv = model.get_logits(adv_x) if FLAGS.save_pgd_samples: for ds, y, name in ((x_train, y_train, 'train'), (x_test, y_test, 'test')): train_batches = math.ceil(len(ds) / FLAGS.batch_size) train_pgd = np.concatenate([sess.run(adv_x, {x: ds[b*FLAGS.batch_size:(b+1)*FLAGS.batch_size]}) for b in tqdm.trange(train_batches)]) np.save('logs/{}_clean.npy'.format(name), ds / 255.) np.save('logs/{}_y.npy'.format(name), y) train_pgd /= 255. np.save('logs/{}_pgd.npy'.format(name), train_pgd) exit(0) # Evaluate the accuracy of the model on adversarial examples if not FLAGS.load_pgd_test_samples: acc_pgd = do_eval(preds_adv, x_test, y_test, 'clean_train_adv_eval', True, predictor=predictor, x_adv=adv_x) else: acc_pgd = do_eval(preds, pgd_test, y_test, 'clean_train_adv_eval', True, predictor=predictor) swriter.add_scalar('test_acc_mean', (acc_clean + acc_pgd) / 2., 0) print('Repeating the process, using adversarial training') exit(0) # Create a new model and train it to be robust to MadryEtAl if architecture == 'ConvNet': model2 = ModelAllConvolutional('model2', nb_classes, nb_filters, input_shape=[32, 32, 3]) elif architecture == 'ResNet': model = ResNet() else: raise Exception('Specify valid classifier architecture!') pgd2 = MadryEtAl(model2, sess=sess) def attack(x): return pgd2.generate(x, **pgd_params) loss2 = CrossEntropy(model2, smoothing=label_smoothing, attack=attack) preds2 = model2.get_logits(x) adv_x2 = attack(x) if not backprop_through_attack: # For some attacks, enabling this flag increases the cost of # training, but gives the defender the ability to anticipate how # the atacker will change their strategy in response to updates to # the defender's parameters. adv_x2 = tf.stop_gradient(adv_x2) preds2_adv = model2.get_logits(adv_x2) if load_model: if ckpt_dir is not 'None': ckpt = tf.train.get_checkpoint_state(os.path.join( os.path.expanduser(ckpt_dir), 'adv_trained')) else: ckpt = tf.train.get_checkpoint_state('./models/adv_trained') ckpt_path = False if ckpt is None else ckpt.model_checkpoint_path assert ckpt_path and tf_model_load( sess, file_path=ckpt_path), '\nMODEL LOADING FAILED' print('\nMODEL SUCCESSFULLY LOADED from : {}'.format(ckpt_path)) initialize_uninitialized_global_variables(sess) else: def evaluate2(): # Accuracy of adversarially trained model on legitimate test inputs do_eval(preds2, x_test, y_test, 'adv_train_clean_eval', False) # Accuracy of the adversarially trained model on adversarial # examples do_eval(preds2_adv, x_test, y_test, 'adv_train_adv_eval', True) # Perform and evaluate adversarial training train(sess, loss2, None, None, dataset_train=dataset_train, dataset_size=dataset_size, evaluate=evaluate2, args=train_params, rng=rng, var_list=model2.get_params()) # Evaluate model do_eval(preds2, x_test, y_test, 'adv_train_clean_eval', False) do_eval(preds2_adv, x_test, y_test, 'adv_train_adv_eval', True) return report def main(argv=None): from cleverhans_tutorials import check_installation check_installation(__file__) cifar10_tutorial(nb_epochs=FLAGS.nb_epochs, batch_size=FLAGS.batch_size, learning_rate=FLAGS.learning_rate, clean_train=FLAGS.clean_train, architecture=FLAGS.architecture, load_model=FLAGS.load_model, ckpt_dir=FLAGS.ckpt_dir, backprop_through_attack=FLAGS.backprop_through_attack, nb_filters=FLAGS.nb_filters, test_end=FLAGS.test_size) if __name__ == '__main__': flags.DEFINE_integer('nb_filters', NB_FILTERS, 'Model size multiplier') flags.DEFINE_integer('nb_epochs', NB_EPOCHS, 'Number of epochs to train model') flags.DEFINE_integer('batch_size', BATCH_SIZE, 'Size of training batches') flags.DEFINE_float('learning_rate', LEARNING_RATE, 'Learning rate for training') flags.DEFINE_string('architecture', ARCHITECTURE, 'Architecture [ResNet, ConvNet]') flags.DEFINE_bool('load_model', LOAD_MODEL, 'Load Pretrained Model') flags.DEFINE_string('ckpt_dir', '~/models/advhyp/madry/models', 'ckpt_dir [path_to_checkpoint_dir]') flags.DEFINE_bool('clean_train', CLEAN_TRAIN, 'Train on clean examples') flags.DEFINE_bool('backprop_through_attack', BACKPROP_THROUGH_ATTACK, ('If True, backprop through adversarial example ' 'construction process during adversarial training')) flags.DEFINE_integer('n_collect', 10000, '') flags.DEFINE_float('p_ratio_cutoff', .999, '') flags.DEFINE_float('eps', 8., '') flags.DEFINE_string('noise_eps', 'n18.0,n24.0,n30.0', '') flags.DEFINE_string('noise_eps_detect', 'n30.0', '') flags.DEFINE_bool('debug', False, 'for debugging') flags.DEFINE_integer('test_size', 10000, '') flags.DEFINE_bool('save_alignments', False, '') flags.DEFINE_bool('load_alignments', False, '') flags.DEFINE_integer('num_noise_samples', 256, '') flags.DEFINE_integer('rep', 0, '') flags.DEFINE_bool('save_debug_dict', False, '') flags.DEFINE_bool('save_pgd_samples', False, '') flags.DEFINE_string('load_pgd_train_samples', None, '') flags.DEFINE_string('load_pgd_test_samples', None, '') flags.DEFINE_bool('fit_classifier', True, '') flags.DEFINE_bool('clip_alignments', True, '') flags.DEFINE_string('attack', 'pgd', '') flags.DEFINE_bool('passthrough', False, '') flags.DEFINE_integer('cw_steps', 300, '') flags.DEFINE_integer('cw_search_steps', 20, '') flags.DEFINE_float('cw_lr', 1e-1, '') flags.DEFINE_float('cw_c', 1e-4, '') flags.DEFINE_bool('just_detect', False, '') flags.DEFINE_integer('mean_samples', 16, '') flags.DEFINE_float('mean_eps', .1, '') flags.DEFINE_bool('load_adv_trained', False, '') tf.app.run()
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from https://github.com/rwightman/pytorch-nips2017-attack-example import torch import operator as op import functools as ft '''reduce_* helper functions reduce tensors on all dimensions but the first. They are intended to be used on batched tensors where dim 0 is the batch dim. ''' def reduce_sum(x, keepdim=True): # silly PyTorch, when will you get proper reducing sums/means? for a in reversed(range(1, x.dim())): x = x.sum(a, keepdim=keepdim) return x def reduce_mean(x, keepdim=True): numel = ft.reduce(op.mul, x.size()[1:]) x = reduce_sum(x, keepdim=keepdim) return x / numel def reduce_min(x, keepdim=True): for a in reversed(range(1, x.dim())): x = x.min(a, keepdim=keepdim)[0] return x def reduce_max(x, keepdim=True): for a in reversed(range(1, x.dim())): x = x.max(a, keepdim=keepdim)[0] return x def torch_arctanh(x, eps=1e-6): x *= (1. - eps) return (torch.log((1 + x) / (1 - x))) * 0.5 def l2r_dist(x, y, keepdim=True, eps=1e-8): d = (x - y)**2 d = reduce_sum(d, keepdim=keepdim) d += eps # to prevent infinite gradient at 0 return d.sqrt() def l2_dist(x, y, keepdim=True): d = (x - y)**2 return reduce_sum(d, keepdim=keepdim) # d = torch.abs(x - y) # return reduce_max(d, keepdim=keepdim) def l1_dist(x, y, keepdim=True): d = torch.abs(x - y) return reduce_sum(d, keepdim=keepdim) def l2_norm(x, keepdim=True): norm = reduce_sum(x*x, keepdim=keepdim) return norm.sqrt() def l1_norm(x, keepdim=True): return reduce_sum(x.abs(), keepdim=keepdim) def rescale(x, x_min=-1., x_max=1.): return x * (x_max - x_min) + x_min def tanh_rescale(x, x_min=-1., x_max=1.): return (torch.tanh(x) + 1) * 0.5 * (x_max - x_min) + x_min
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from https://github.com/rwightman/pytorch-nips2017-attack-example """PyTorch Carlini and Wagner L2 attack algorithm. Based on paper by Carlini & Wagner, https://arxiv.org/abs/1608.04644 and a reference implementation at https://github.com/tensorflow/cleverhans/blob/master/cleverhans/attacks_tf.py """ import os import sys import torch import numpy as np from torch import optim from torch import autograd from carlini_wagner_helpers import * class AttackCarliniWagnerL2: def __init__(self, targeted=False, search_steps=5, max_steps=1000, cuda=True, debug=False, num_classes=10, clip_min=-1., clip_max=1., confidence=20, initial_const=.1, learning_rate=1e-4): self.debug = debug self.targeted = targeted self.num_classes = num_classes self.confidence = confidence # FIXME need to find a good value for this, 0 value used in paper not doing much... self.initial_const = initial_const # bumped up from default of .01 in reference code... 10 in mnist tutorial self.binary_search_steps = search_steps # self.repeat = self.binary_search_steps >= 10 self.repeat = False self.max_steps = max_steps self.abort_early = True self.clip_min = clip_min self.clip_max = clip_max self.cuda = cuda # self.clamp_fn = 'tanh' # set to something else perform a simple clamp instead of tanh self.clamp_fn = '' # set to something else perform a simple clamp instead of tanh self.init_rand = False # an experiment, does a random starting point help? self.learning_rate = learning_rate def _compare(self, output, target): if not isinstance(output, (float, int, np.int64)): output = np.copy(output) if self.targeted: output[target] -= self.confidence else: output[target] += self.confidence output = np.argmax(output) if isinstance(output, np.int64): output = output.item() if self.targeted: return output == target else: return output != target def _loss(self, output, target, dist, scale_const): # compute the probability of the label class versus the maximum other real = (target * output).sum(1) other = ((1. - target) * output - target * 10000.).max(1)[0] if self.targeted: # if targeted, optimize for making the other class most likely loss1 = torch.clamp(other - real + self.confidence, min=0.) # equiv to max(..., 0.) else: # if non-targeted, optimize for making this class least likely. loss1 = torch.clamp(real - other + self.confidence, min=0.) # equiv to max(..., 0.) loss1 = torch.sum(scale_const * loss1) loss2 = dist.sum() loss = loss1 + loss2 return loss def _optimize(self, optimizer, model, input_var, modifier_var, target_var, scale_const_var, input_orig=None): # apply modifier and clamp resulting image to keep bounded from clip_min to clip_max if self.clamp_fn == 'tanh': input_adv = tanh_rescale(modifier_var + input_var, self.clip_min, self.clip_max) else: input_adv = torch.clamp(modifier_var + input_var, self.clip_min, self.clip_max) output = model(input_adv) # distance to the original input data if input_orig is None: dist = l2_dist(input_adv, input_var, keepdim=False) else: dist = l2_dist(input_adv, input_orig, keepdim=False) loss = self._loss(output, target_var, dist, scale_const_var) optimizer.zero_grad() loss.backward() optimizer.step() loss_np = loss.data.item() dist_np = dist.data.cpu().numpy() output_np = output.data.cpu().numpy() input_adv_np = input_adv.data.cpu().numpy() # back to BHWC for numpy consumption return loss_np, dist_np, output_np, input_adv_np def run(self, model, input, target, batch_idx=0): batch_size = input.size(0) # set the lower and upper bounds accordingly lower_bound = np.zeros(batch_size) scale_const = np.ones(batch_size) * self.initial_const upper_bound = np.ones(batch_size) * 1e10 # python/numpy placeholders for the overall best l2, label score, and adversarial image o_best_l2 = [1e10] * batch_size o_best_score = [-1] * batch_size o_best_attack = input.cpu().numpy() # setup input (image) variable, clamp/scale as necessary if self.clamp_fn == 'tanh': # convert to tanh-space, input already int -1 to 1 range, does it make sense to do # this as per the reference implementation or can we skip the arctanh? input_var = autograd.Variable(torch_arctanh(input), requires_grad=False) input_orig = tanh_rescale(input_var, self.clip_min, self.clip_max) else: input_var = autograd.Variable(input, requires_grad=False) input_orig = None # setup the target variable, we need it to be in one-hot form for the loss function target_onehot = torch.zeros(target.size() + (self.num_classes,)) if self.cuda: target_onehot = target_onehot.cuda() target_onehot.scatter_(1, target.unsqueeze(1), 1.) target_var = autograd.Variable(target_onehot, requires_grad=False) # setup the modifier variable, this is the variable we are optimizing over modifier = torch.zeros(input_var.size()).float() if self.init_rand: # Experiment with a non-zero starting point... modifier = torch.normal(means=modifier, std=0.001) if self.cuda: modifier = modifier.cuda() modifier_var = autograd.Variable(modifier, requires_grad=True) optimizer = optim.Adam([modifier_var], lr=self.learning_rate) for search_step in range(self.binary_search_steps): print('Batch: {0:>3}, search step: {1}'.format(batch_idx, search_step)) if self.debug: print('Const:') for i, x in enumerate(scale_const): print(i, x) best_l2 = [1e10] * batch_size best_score = [-1] * batch_size # The last iteration (if we run many steps) repeat the search once. if self.repeat and search_step == self.binary_search_steps - 1: scale_const = upper_bound scale_const_tensor = torch.from_numpy(scale_const).float() if self.cuda: scale_const_tensor = scale_const_tensor.cuda() scale_const_var = autograd.Variable(scale_const_tensor, requires_grad=False) prev_loss = 1e6 for step in range(self.max_steps): # perform the attack loss, dist, output, adv_img = self._optimize( optimizer, model, input_var, modifier_var, target_var, scale_const_var, input_orig) if step % 100 == 0 or step == self.max_steps - 1: print('Step: {0:>4}, loss: {1:6.4f}, dist: {2:8.5f}, modifier mean: {3:.5e}'.format( step, loss, dist.mean(), modifier_var.data.mean())) if self.abort_early and step % (self.max_steps // 10) == 0: if loss > prev_loss * .9999: print('Aborting early...') break prev_loss = loss # update best result found for i in range(batch_size): target_label = target[i] output_logits = output[i] output_label = np.argmax(output_logits) di = dist[i] if self.debug: if step % 100 == 0: print('{0:>2} dist: {1:.5f}, output: {2:>3}, {3:5.3}, target {4:>3}'.format( i, di, output_label, output_logits[output_label], target_label)) if di < best_l2[i] and self._compare(output_logits, target_label): if self.debug: print('{0:>2} best step, prev dist: {1:.5f}, new dist: {2:.5f}'.format( i, best_l2[i], di)) best_l2[i] = di best_score[i] = output_label if di < o_best_l2[i] and self._compare(output_logits, target_label): if self.debug: print('{0:>2} best total, prev dist: {1:.5f}, new dist: {2:.5f}'.format( i, o_best_l2[i], di)) o_best_l2[i] = di o_best_score[i] = output_label o_best_attack[i] = adv_img[i] sys.stdout.flush() # end inner step loop # adjust the constants batch_failure = 0 batch_success = 0 for i in range(batch_size): if self._compare(best_score[i], target[i]) and best_score[i] != -1: # successful, do binary search and divide const by two upper_bound[i] = min(upper_bound[i], scale_const[i]) if upper_bound[i] < 1e9: scale_const[i] = (lower_bound[i] + upper_bound[i]) / 2 if self.debug: print('{0:>2} successful attack, lowering const to {1:.3f}'.format( i, scale_const[i])) else: # failure, multiply by 10 if no solution found # or do binary search with the known upper bound lower_bound[i] = max(lower_bound[i], scale_const[i]) if upper_bound[i] < 1e9: scale_const[i] = (lower_bound[i] + upper_bound[i]) / 2 else: scale_const[i] *= 10 if self.debug: print('{0:>2} failed attack, raising const to {1:.3f}'.format( i, scale_const[i])) if self._compare(o_best_score[i], target[i]) and o_best_score[i] != -1: batch_success += 1 else: batch_failure += 1 print('Num failures: {0:2d}, num successes: {1:2d}\n'.format(batch_failure, batch_success)) sys.stdout.flush() # end outer search loop return o_best_attack
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python3 import matplotlib matplotlib.use('Agg') import io from PIL import Image from matplotlib import pyplot as plt import os import sys import torch as th import torchvision as tv import torch.nn.functional as F from torch.autograd import Variable import math import tqdm from filelock import FileLock import threading import time import signal import numpy as np import itertools as itt import scipy.linalg import scipy.stats from scipy.spatial.distance import pdist, squareform import cifar_model from sklearn.decomposition import PCA from sklearn.metrics import confusion_matrix import tf_robustify import vgg import carlini_wagner_attack os.system("taskset -p 0xffffffff %d" % os.getpid()) import sh sh.rm('-rf', 'logs') import logging logging.basicConfig(level=logging.INFO, stream=sys.stdout) from tensorboardX.writer import SummaryWriter swriter = SummaryWriter('logs') add_scalar_old = swriter.add_scalar def add_scalar_and_log(key, value, global_step=0): logging.info('{}:{}: {}'.format(global_step, key, value)) add_scalar_old(key, value, global_step) swriter.add_scalar = add_scalar_and_log def str2bool(x): return x.lower() == 'true' def new_inception_conv2d_forward(self, x): x = self.conv(x) x = self.bn(x) return F.relu(x, inplace=False) tv.models.inception.BasicConv2d.forward = new_inception_conv2d_forward import argparse parser = argparse.ArgumentParser() parser.add_argument('--ds', default='cifar10') parser.add_argument('--model', default='cifar10') parser.add_argument('--batch_size', default=32, type=int) parser.add_argument('--eval_bs', default=256, type=int) parser.add_argument('--eval_batches', default=None, type=int) parser.add_argument('--epochs', default=50, type=int) parser.add_argument('--num_evals', default=20, type=int) parser.add_argument('--train_log_after', default=0, type=int) parser.add_argument('--stop_after', default=-1, type=int) parser.add_argument('--cuda', default=True, type=str2bool) parser.add_argument('--optim', default='sgd', type=str) parser.add_argument('--lr', default=1e-4, type=float) parser.add_argument('--attack_lr', default=.25, type=float) parser.add_argument('--eps', default=8/255, type=float) parser.add_argument('--eps_rand', default=None, type=float) parser.add_argument('--eps_eval', default=None, type=float) parser.add_argument('--rep', default=0, type=int) parser.add_argument('--img_size', default=32, type=int) parser.add_argument('--iters', default=10, type=int) parser.add_argument('--noise_eps', default='n0.01,s0.01,u0.01,n0.02,s0.02,u0.02,s0.03,n0.03,u0.03', type=str) parser.add_argument('--noise_eps_detect', default='n0.003,s0.003,u0.003,n0.005,s0.005,u0.005,s0.008,n0.008,u0.008', type=str) parser.add_argument('--clip_alignments', default=True, type=str2bool) parser.add_argument('--pgd_strength', default=1., type=float) parser.add_argument('--debug', default=False, type=str2bool) parser.add_argument('--mode', default='eval', type=str) parser.add_argument('--constrained', default=True, type=str2bool) parser.add_argument('--clamp_attack', default=False, type=str2bool) parser.add_argument('--clamp_uniform', default=False, type=str2bool) parser.add_argument('--train_adv', default=False, type=str2bool) parser.add_argument('--wdiff_samples', default=256, type=int) parser.add_argument('--maxp_cutoff', default=.999, type=float) parser.add_argument('--collect_targeted', default=False, type=str2bool) parser.add_argument('--n_collect', default=10000, type=int) parser.add_argument('--save_alignments', default=False, type=str2bool) parser.add_argument('--load_alignments', default=False, type=str2bool) parser.add_argument('--save_pgd_samples', default=False, type=str2bool) parser.add_argument('--load_pgd_train_samples', default=None, type=str) parser.add_argument('--load_pgd_test_samples', default=None, type=str) parser.add_argument('--fit_classifier', default=True, type=str2bool) parser.add_argument('--just_detect', default=False, type=str2bool) parser.add_argument('--attack', default='pgd', type=str) parser.add_argument('--cw_confidence', default=0, type=float) parser.add_argument('--cw_c', default=1e-4, type=float) parser.add_argument('--cw_lr', default=1e-4, type=float) parser.add_argument('--cw_steps', default=300, type=int) parser.add_argument('--cw_search_steps', default=10, type=int) parser.add_argument('--mean_samples', default=16, type=int) parser.add_argument('--mean_eps', default=.1, type=float) args = parser.parse_args() args.cuda = args.cuda and th.cuda.is_available() args.eps_rand = args.eps_rand or args.eps args.eps_eval = args.eps_eval or args.eps args.mean_eps = args.mean_eps * args.eps_eval def check_pid(): while os.getppid() != 1: time.sleep(.1) os.kill(os.getpid(), signal.SIGKILL) def init_worker(worker_id): thread = threading.Thread(target=check_pid) thread.daemon = True thread.start() def gini_coef(a): a = th.sort(a, dim=-1)[0] n = a.shape[1] index = th.arange(1, n+1)[None, :].float() return (th.sum((2 * index - n - 1) * a, -1) / (n * th.sum(a, -1))) def main(): nrms = dict(imagenet=([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), imagenet64=([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), cifar10=([.5, .5, .5], [.5, .5, .5]))[args.ds] if args.ds == 'cifar10' and args.model.startswith('vgg'): nrms = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] if args.ds == 'imagenet': if args.model.startswith('inception'): transforms = [ tv.transforms.Resize((299, 299)), ] else: transforms = [ tv.transforms.Resize((256, 256)), tv.transforms.CenterCrop(224) ] else: transforms = [tv.transforms.Resize((args.img_size, args.img_size))] transforms = tv.transforms.Compose( transforms + [ tv.transforms.ToTensor(), ]) clip_min = 0. clip_max = 1. nrms_mean, nrms_std = [th.FloatTensor(n)[None, :, None, None] for n in nrms] if args.cuda: nrms_mean, nrms_std = map(th.Tensor.cuda, (nrms_mean, nrms_std)) if args.ds == 'cifar10': data_dir = os.path.expanduser('~/data/cifar10') os.makedirs(data_dir, exist_ok=True) with FileLock(os.path.join(data_dir, 'lock')): train_ds = tv.datasets.CIFAR10(data_dir, train=True, transform=transforms, download=True) test_ds = tv.datasets.CIFAR10(data_dir, train=False, transform=transforms, download=True) elif args.ds == 'imagenet': train_folder = os.path.expanduser('~/../stuff/imagenet/train') test_folder = os.path.expanduser('~/../stuff/imagenet/val') with FileLock(os.path.join(os.path.dirname(train_folder), 'lock')): train_ds = tv.datasets.ImageFolder(train_folder, transform=transforms) test_ds = tv.datasets.ImageFolder(test_folder, transform=transforms) if args.load_pgd_test_samples: pgd_path = os.path.expanduser('~/data/advhyp/{}/samples'.format(args.load_pgd_test_samples)) x_test = np.load(os.path.join(pgd_path, 'test_clean.npy')) y_test = np.load(os.path.join(pgd_path, 'test_y.npy')) pgd_test = np.load(os.path.join(pgd_path, 'test_pgd.npy')) if x_test.shape[-1] == 3: x_test = x_test.transpose((0, 3, 1, 2)) pgd_test = pgd_test.transpose((0, 3, 1, 2)) if len(y_test.shape) == 2: y_test = y_test.argmax(-1) test_ds = th.utils.data.TensorDataset(*map(th.from_numpy, (x_test, y_test, pgd_test))) train_loader = th.utils.data.DataLoader(train_ds, batch_size=args.batch_size, shuffle=True, num_workers=4, drop_last=True, pin_memory=True, worker_init_fn=init_worker) test_loader = th.utils.data.DataLoader(test_ds, batch_size=args.eval_bs, shuffle=True, num_workers=1, drop_last=False, pin_memory=True, worker_init_fn=init_worker) if args.ds == 'imagenet64' or args.ds == 'imagenet': with FileLock(os.path.join(os.path.dirname(train_folder), 'lock')): if args.model in tv.models.__dict__: if args.model.startswith('inception'): net = tv.models.__dict__[args.model](pretrained=True, transform_input=False) else: net = tv.models.__dict__[args.model](pretrained=True) else: raise ValueError('Unknown model: {}'.format(args.model)) elif args.ds == 'cifar10': if args.model == 'tiny': net = cifar_model.cifar10_tiny(32, pretrained=args.mode == 'eval' , map_location=None if args.cuda else 'cpu') elif args.model == 'tinyb': net = cifar_model.cifar10_tiny(32, pretrained=args.mode == 'eval' , map_location=None if args.cuda else 'cpu', padding=0, trained_adv=args.train_adv) elif args.model.startswith('vgg'): net = vgg.__dict__[args.model]() cp_path = os.path.expanduser('~/models/advhyp/vgg/{}/checkpoint.tar'.format(args.model)) checkpoint = th.load(cp_path, map_location='cpu') state_dict = {k.replace('module.', ''): v for k, v in checkpoint['state_dict'].items()} net.load_state_dict(state_dict) elif args.model == 'carlini': net = cifar_model.carlini(pretrained=args.mode == 'eval' , map_location=None if args.cuda else 'cpu', trained_adv=args.train_adv) else: net = cifar_model.cifar10(128, pretrained=args.mode == 'eval' , map_location=None if args.cuda else 'cpu', trained_adv=args.train_adv) print(net) def get_layers(): return itt.chain(net.features.children(), net.classifier.children()) def get_layer_names(): return [l.__class__.__name__ for l in get_layers()] if args.cuda: net.cuda() def net_forward(x, layer_by_layer=False, from_layer=0): x = x - nrms_mean # cannot be inplace x.div_(nrms_std) if not layer_by_layer: return net(x) cldr = list(net.children()) if args.model.startswith('resnet'): x = net.conv1(x) x = net.bn1(x) x = net.relu(x) x = net.maxpool(x) x = net.layer1(x) x = net.layer2(x) x = net.layer3(x) x = net.layer4(x) outputs = [net.avgpool(x)] flat_features = outputs[-1].view(x.size(0), -1) outputs.append(net.fc(flat_features)) elif args.model.startswith('inception'): # 299 x 299 x 3 x = net.Conv2d_1a_3x3(x) # 149 x 149 x 32 x = net.Conv2d_2a_3x3(x) # 147 x 147 x 32 x = net.Conv2d_2b_3x3(x) # 147 x 147 x 64 x = F.max_pool2d(x, kernel_size=3, stride=2) # 73 x 73 x 64 x = net.Conv2d_3b_1x1(x) # 73 x 73 x 80 x = net.Conv2d_4a_3x3(x) # 71 x 71 x 192 x = F.max_pool2d(x, kernel_size=3, stride=2) # 35 x 35 x 192 x = net.Mixed_5b(x) # 35 x 35 x 256 x = net.Mixed_5c(x) # 35 x 35 x 288 x = net.Mixed_5d(x) # 35 x 35 x 288 x = net.Mixed_6a(x) # 17 x 17 x 768 x = net.Mixed_6b(x) # 17 x 17 x 768 x = net.Mixed_6c(x) # 17 x 17 x 768 x = net.Mixed_6d(x) # 17 x 17 x 768 x = net.Mixed_6e(x) # 17 x 17 x 768 x = net.Mixed_7a(x) # 8 x 8 x 1280 x = net.Mixed_7b(x) # 8 x 8 x 2048 x = net.Mixed_7c(x) # 8 x 8 x 2048 x = F.avg_pool2d(x, kernel_size=8) # 1 x 1 x 2048 outputs = [F.dropout(x, training=net.training)] # 1 x 1 x 2048 flat_features = outputs[-1].view(x.size(0), -1) # 2048 outputs.append(net.fc(flat_features)) # 1000 (num_classes) else: outputs = [net.features(x)] for cidx, c in enumerate(net.classifier.children()): flat_features = outputs[-1].view(x.size(0), -1) outputs.append(c(flat_features)) return outputs loss_fn = th.nn.CrossEntropyLoss(reduce=False) loss_fn_adv = th.nn.CrossEntropyLoss(reduce=False) if args.cuda: loss_fn.cuda() loss_fn_adv.cuda() def get_outputs(x, y, from_layer=0): outputs = net_forward(x, layer_by_layer=True, from_layer=from_layer) logits = outputs[-1] loss = loss_fn(logits, y) _, preds = th.max(logits, 1) return outputs, loss, preds def get_loss_and_preds(x, y): logits = net_forward(x, layer_by_layer=False) loss = loss_fn(logits, y) _, preds = th.max(logits, 1) return loss, preds def clip(x, cmin, cmax): return th.min(th.max(x, cmin), cmax) def project(x, x_orig, eps): dx = x - x_orig dx = dx.flatten(1) dx /= th.norm(dx, p=2, dim=1, keepdim=True) + 1e-9 dx *= eps return x_orig + dx.view(x.shape) if args.attack == 'cw': cw_attack = carlini_wagner_attack.AttackCarliniWagnerL2(cuda=args.cuda, clip_min=clip_min, clip_max=clip_max, confidence=args.cw_confidence, initial_const=args.cw_c / (255**2.), max_steps=args.cw_steps, search_steps=args.cw_search_steps, learning_rate=args.cw_lr) def attack_cw(x, y): x_adv = cw_attack.run(net_forward, x, y) x_adv = th.from_numpy(x_adv) if args.cuda: x_adv = x_adv.cuda() return x_adv def attack_mean(x, y, eps=args.eps): x_advs = attack_pgd(x, y, eps) for _ in tqdm.trange(args.mean_samples, desc='mean attack samples'): x_noisy = x + th.empty_like(x).uniform_(-args.mean_eps, args.mean_eps) x_advs += attack_pgd(x_noisy, y, eps) x_advs = x_advs / (args.mean_samples + 1) x_advs.clamp_(clip_min, clip_max) x_advs = clip(x_advs, x-eps, x+eps) return x_advs def attack_anti(x, y, eps=args.eps): pass def attack_pgd(x, y, eps=args.eps, l2=False): if l2: eps = np.sqrt(np.prod(x.shape[1:])) * eps x_orig = x x = th.empty_like(x).copy_(x) x.requires_grad_(True) x.data.add_(th.empty_like(x).uniform_(-eps, eps)) x.data.clamp_(clip_min, clip_max) for i in range(args.iters): if x.grad is not None: x.grad.zero_() logits = net_forward(x) loss = th.sum(loss_fn_adv(logits, y)) loss.backward() if args.constrained: if l2: gx = x.grad.flatten(1) gx /= th.norm(gx, p=2, dim=-1, keepdim=True) + 1e-9 gx = gx.view(x.shape) x.data.add_(args.attack_lr * eps * gx) x.data = project(x.data, x_orig, eps) else: x.data.add_(args.attack_lr * eps * th.sign(x.grad)) x.data = clip(x.data, x_orig-eps, x_orig+eps) x.data.clamp_(clip_min, clip_max) else: x.data += args.attack_lr * eps * x.grad if args.debug: break if args.pgd_strength < 1.: mask = (x.data.new_zeros(len(x)).uniform_() <= args.pgd_strength).float() for _ in x.shape[1:]: mask = mask[:, None] x.data = x.data * mask + x_orig.data * (1. - mask) x = x.detach() inf_norm = (x - x_orig).abs().max().cpu().numpy().item() if args.clamp_attack: with th.no_grad(): diff = th.sign(x - x_orig) * inf_norm x = x_orig + diff x = clip(x, clip_min, clip_max) # if args.constrained: # assert inf_norm < eps * (1.001), 'inf norm {} > {}'.format(inf_norm, eps) return x eval_after = math.floor(args.epochs * len(train_ds) / args.batch_size / args.num_evals) global_step = 0 def run_train(): nonlocal global_step # noqa: E999 if args.model == 'carlini': optim = th.optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, nesterov=True) elif args.model == 'cifar10': optim = th.optim.Adam(net.parameters(), lr=args.lr) else: optim = th.optim.RMSprop(net.parameters(), lr=args.lr) logging.info('train') for epoch in tqdm.trange(args.epochs): for batch in tqdm.tqdm(train_loader): x, y = batch if args.cuda: x, y = x.cuda(), y.cuda() if global_step % eval_after == 0: run_eval_basic(True) if args.train_adv: x_adv = attack_pgd(x, y) x = th.cat((x, x_adv)) y = th.cat((y, y)) net.zero_grad() loss, _ = get_loss_and_preds(x, y) loss = loss.mean() net.zero_grad() loss.backward() optim.step() if args.model == 'carlini' and not args.train_adv: for pg in optim.param_groups: pg['lr'] = args.lr * ((1. - 1e-6)**global_step) global_step += 1 if args.model == 'cifar10' and not args.train_adv: if epoch == 80 or epoch == 120: for pg in optim.param_groups: pg['lr'] *= .1 with open('logs/model.ckpt', 'wb') as f: th.save(net.state_dict(), f) def run_eval_basic(with_attack=True): logging.info('eval') eval_loss_clean = [] eval_acc_clean = [] eval_loss_rand = [] eval_acc_rand = [] eval_loss_pgd = [] eval_acc_pgd = [] eval_loss_pand = [] eval_acc_pand = [] all_outputs = [] diffs_rand, diffs_pgd, diffs_pand = [], [], [] eval_preds_clean, eval_preds_rand, eval_preds_pgd, eval_preds_pand = [], [], [], [] norms_clean, norms_pgd, norms_rand, norms_pand = [], [], [], [] norms_dpgd, norms_drand, norms_dpand = [], [], [] eval_important_valid = [] eval_loss_incr = [] eval_conf_pgd = [] wdiff_corrs = [] udiff_corrs = [] grad_corrs = [] minps_clean = [] minps_pgd = [] acc_clean_after_corr = [] acc_pgd_after_corr = [] eval_det_clean = [] eval_det_pgd = [] net.train(False) for eval_batch in tqdm.tqdm(itt.islice(test_loader, args.eval_batches)): x, y = eval_batch if args.cuda: x, y = x.cuda(), y.cuda() loss_clean, preds_clean = get_loss_and_preds(x, y) eval_loss_clean.append((loss_clean.data).cpu().numpy()) eval_acc_clean.append((th.eq(preds_clean, y).float()).cpu().numpy()) eval_preds_clean.extend(preds_clean) if with_attack: if args.clamp_uniform: x_rand = x + th.sign(th.empty_like(x).uniform_(-args.eps_rand, args.eps_rand)) * args.eps_rand else: x_rand = x + th.empty_like(x).uniform_(-args.eps_rand, args.eps_rand) loss_rand, preds_rand = get_loss_and_preds(x_rand, y) eval_loss_rand.append((loss_rand.data).cpu().numpy()) eval_acc_rand.append((th.eq(preds_rand, y).float()).cpu().numpy()) eval_preds_rand.extend(preds_rand) if not args.load_pgd_test_samples: x_pgd = attack_pgd(x, preds_clean, eps=args.eps_eval) loss_pgd, preds_pgd = get_loss_and_preds(x_pgd, y) eval_loss_pgd.append((loss_pgd.data).cpu().numpy()) eval_acc_pgd.append((th.eq(preds_pgd, y).float()).cpu().numpy()) eval_preds_pgd.extend(preds_pgd) loss_incr = loss_pgd - loss_clean eval_loss_incr.append(loss_incr.detach().cpu()) x_pand = x_pgd + th.empty_like(x_pgd).uniform_(-args.eps_rand, args.eps_rand) loss_pand, preds_pand = get_loss_and_preds(x_pand, y) eval_loss_pand.append((loss_pand.data).cpu().numpy()) eval_acc_pand.append((th.eq(preds_pand, y).float()).cpu().numpy()) eval_preds_pand.extend(preds_pand) if args.debug: break swriter.add_scalar('eval_loss_clean', np.concatenate(eval_loss_clean).mean(), global_step) swriter.add_scalar('eval_acc_clean', np.concatenate(eval_acc_clean).mean(), global_step) swriter.add_scalar('eval_loss_rand', np.concatenate(eval_loss_rand).mean(), global_step) swriter.add_scalar('eval_acc_rand', np.concatenate(eval_acc_rand).mean(), global_step) swriter.add_scalar('eval_loss_pgd', np.concatenate(eval_loss_pgd).mean(), global_step) swriter.add_scalar('eval_acc_pgd', np.concatenate(eval_acc_pgd).mean(), global_step) swriter.add_scalar('eval_loss_incr', th.cat(eval_loss_incr).mean(), global_step) swriter.add_scalar('eval_loss_pand', np.concatenate(eval_loss_pand).mean(), global_step) swriter.add_scalar('eval_acc_pand', np.concatenate(eval_acc_pand).mean(), global_step) net.train(False) def run_eval(with_attack=True): logging.info('eval') net.train(False) eval_loss_clean = [] eval_acc_clean = [] eval_loss_rand = [] eval_acc_rand = [] eval_loss_pgd = [] eval_acc_pgd = [] eval_loss_pand = [] eval_acc_pand = [] all_outputs = [] diffs_rand, diffs_pgd, diffs_pand = [], [], [] eval_preds_clean, eval_preds_rand, eval_preds_pgd, eval_preds_pand = [], [], [], [] norms_clean, norms_pgd, norms_rand, norms_pand = [], [], [], [] norms_dpgd, norms_drand, norms_dpand = [], [], [] eval_important_valid = [] eval_loss_incr = [] eval_conf_pgd = [] wdiff_corrs = [] udiff_corrs = [] grad_corrs = [] minps_clean = [] minps_pgd = [] acc_clean_after_corr = [] acc_pgd_after_corr = [] eval_det_clean = [] eval_det_pgd = [] eval_x_pgd_l0 = [] eval_x_pgd_l2 = [] all_eval_important_pixels = [] all_eval_important_single_pixels = [] all_eval_losses_per_pixel = [] if args.save_pgd_samples: for loader, name in ((train_loader, 'train'), (test_loader, 'test')): train_x = [] train_y = [] train_pgd = [] for eval_batch in tqdm.tqdm(loader): x, y = eval_batch if args.cuda: x, y = x.cuda(), y.cuda() _, p = get_loss_and_preds(x, y) train_pgd.append(attack_pgd(x, p, eps=args.eps_eval).cpu().numpy()) train_x.append(x.cpu().numpy()) train_y.append(y.cpu().numpy()) train_pgd = np.concatenate(train_pgd) train_x = np.concatenate(train_x) train_y = np.concatenate(train_y) np.save('logs/{}_pgd.npy'.format(name), train_pgd) np.save('logs/{}_clean.npy'.format(name), train_x) np.save('logs/{}_y.npy'.format(name), train_y) exit(0) X, Y = [], [] with th.no_grad(): for eval_batch in tqdm.tqdm(train_loader): x, y = eval_batch X.append(x.cpu().numpy()), Y.append(y.cpu().numpy()) if args.n_collect > 0 and sum(len(x) for x in X) > args.n_collect: if args.ds.startswith('imagenet'): break y_nc, y_cts = np.unique(Y, return_counts=True) if y_nc.size == 1000: if np.all(y_cts >= 5): break else: break logging.debug('need more samples, have {} classes with min size {}...'.format(y_nc.size, np.min(y_cts))) if args.debug: break X, Y = map(np.concatenate, (X, Y)) pgd_train = None if args.load_pgd_train_samples: pgd_path = os.path.expanduser('~/data/advhyp/{}/samples'.format(args.load_pgd_train_samples)) X = np.load(os.path.join(pgd_path, 'train_clean.npy')) Y = np.load(os.path.join(pgd_path, 'train_y.npy')) pgd_train = np.load(os.path.join(pgd_path, 'train_pgd.npy')) if X.shape[-1] == 3: X = X.transpose((0, 3, 1, 2)) pgd_train = pgd_train.transpose((0, 3, 1, 2)) if len(Y.shape) == 2: Y = Y.argmax(-1) if args.model.startswith('resnet') or args.model.startswith('inception'): w_cls = net.fc.weight else: w_cls = list(net.classifier.children())[-1].weight nb_classes = w_cls.shape[0] if args.n_collect > 0 and args.load_pgd_train_samples: all_idcs = np.arange(len(X)) while True: np.random.shuffle(all_idcs) idcs = all_idcs[:args.n_collect] Y_partial = Y[idcs] y_nc = np.unique(Y_partial).size if y_nc == nb_classes: break logging.debug('only have {} classes, reshuffling...'.format(y_nc)) X, Y = X[idcs], Y[idcs] if pgd_train is not None: pgd_train = pgd_train[idcs] def latent_and_logits_fn(x): lat, log = net_forward(x, True)[-2:] lat = lat.reshape(lat.shape[0], -1) return lat, log noise_eps_detect = args.noise_eps_detect if noise_eps_detect is None: noise_eps_detect = args.noise_eps predictor = tf_robustify.collect_statistics(X, Y, latent_and_logits_fn_th=latent_and_logits_fn, nb_classes=nb_classes, weights=w_cls, cuda=args.cuda, debug=args.debug, targeted=args.collect_targeted, noise_eps=args.noise_eps.split(','), noise_eps_detect=noise_eps_detect.split(','), num_noise_samples=args.wdiff_samples, batch_size=args.eval_bs, pgd_eps=args.eps, pgd_lr=args.attack_lr, pgd_iters=args.iters, clip_min=clip_min, clip_max=clip_max, p_ratio_cutoff=args.maxp_cutoff, save_alignments_dir='logs/stats' if args.save_alignments else None, load_alignments_dir=os.path.expanduser('~/data/advhyp/{}/stats'.format(args.model)) if args.load_alignments else None, clip_alignments=args.clip_alignments, pgd_train=pgd_train, fit_classifier=args.fit_classifier, just_detect=args.just_detect) next(predictor) if args.save_alignments: exit(0) for eval_batch in tqdm.tqdm(itt.islice(test_loader, args.eval_batches)): if args.load_pgd_test_samples: x, y, x_pgd = eval_batch else: x, y = eval_batch if args.cuda: x, y = x.cuda(), y.cuda() if args.load_pgd_test_samples: x_pgd = x_pgd.cuda() loss_clean, preds_clean = get_loss_and_preds(x, y) eval_loss_clean.append((loss_clean.data).cpu().numpy()) eval_acc_clean.append((th.eq(preds_clean, y).float()).cpu().numpy()) eval_preds_clean.extend(preds_clean) if with_attack: if args.clamp_uniform: x_rand = x + th.sign(th.empty_like(x).uniform_(-args.eps_rand, args.eps_rand)) * args.eps_rand else: x_rand = x + th.empty_like(x).uniform_(-args.eps_rand, args.eps_rand) loss_rand, preds_rand = get_loss_and_preds(x_rand, y) eval_loss_rand.append((loss_rand.data).cpu().numpy()) eval_acc_rand.append((th.eq(preds_rand, y).float()).cpu().numpy()) eval_preds_rand.extend(preds_rand) if args.attack == 'pgd': if not args.load_pgd_test_samples: x_pgd = attack_pgd(x, preds_clean, eps=args.eps_eval) elif args.attack == 'pgdl2': x_pgd = attack_pgd(x, preds_clean, eps=args.eps_eval, l2=True) elif args.attack == 'cw': x_pgd = attack_cw(x, preds_clean) elif args.attack == 'mean': x_pgd = attack_mean(x, preds_clean, eps=args.eps_eval) eval_x_pgd_l0.append(th.max(th.abs((x - x_pgd).view(x.size(0), -1)), -1)[0].detach().cpu().numpy()) eval_x_pgd_l2.append(th.norm((x - x_pgd).view(x.size(0), -1), p=2, dim=-1).detach().cpu().numpy()) loss_pgd, preds_pgd = get_loss_and_preds(x_pgd, y) eval_loss_pgd.append((loss_pgd.data).cpu().numpy()) eval_acc_pgd.append((th.eq(preds_pgd, y).float()).cpu().numpy()) conf_pgd = confusion_matrix(preds_clean.cpu(), preds_pgd.cpu(), np.arange(nb_classes)) conf_pgd -= np.diag(np.diag(conf_pgd)) eval_conf_pgd.append(conf_pgd) eval_preds_pgd.extend(preds_pgd) loss_incr = loss_pgd - loss_clean eval_loss_incr.append(loss_incr.detach().cpu()) x_pand = x_pgd + th.empty_like(x_pgd).uniform_(-args.eps_rand, args.eps_rand) loss_pand, preds_pand = get_loss_and_preds(x_pand, y) eval_loss_pand.append((loss_pand.data).cpu().numpy()) eval_acc_pand.append((th.eq(preds_pand, y).float()).cpu().numpy()) eval_preds_pand.extend(preds_pand) preds_clean_after_corr, det_clean = predictor.send(x.cpu().numpy()).T preds_pgd_after_corr, det_pgd = predictor.send(x_pgd.cpu().numpy()).T acc_clean_after_corr.append(preds_clean_after_corr == y.cpu().numpy()) acc_pgd_after_corr.append(preds_pgd_after_corr == y.cpu().numpy()) eval_det_clean.append(det_clean) eval_det_pgd.append(det_pgd) if args.debug: break swriter.add_scalar('eval_loss_clean', np.concatenate(eval_loss_clean).mean(), global_step) swriter.add_scalar('eval_acc_clean', np.concatenate(eval_acc_clean).mean(), global_step) swriter.add_scalar('eval_loss_rand', np.concatenate(eval_loss_rand).mean(), global_step) swriter.add_scalar('eval_acc_rand', np.concatenate(eval_acc_rand).mean(), global_step) swriter.add_scalar('eval_loss_pgd', np.concatenate(eval_loss_pgd).mean(), global_step) swriter.add_scalar('eval_acc_pgd', np.concatenate(eval_acc_pgd).mean(), global_step) swriter.add_scalar('eval_loss_incr', th.cat(eval_loss_incr).mean(), global_step) swriter.add_scalar('eval_loss_pand', np.concatenate(eval_loss_pand).mean(), global_step) swriter.add_scalar('eval_acc_pand', np.concatenate(eval_acc_pand).mean(), global_step) swriter.add_histogram('class_dist_clean', th.stack(eval_preds_clean), global_step) swriter.add_histogram('class_dist_rand', th.stack(eval_preds_rand), global_step) swriter.add_histogram('class_dist_pgd', th.stack(eval_preds_pgd), global_step) swriter.add_histogram('class_dist_pand', th.stack(eval_preds_pand), global_step) swriter.add_scalar('acc_clean_after_corr', np.concatenate(acc_clean_after_corr).mean(), global_step) swriter.add_scalar('acc_pgd_after_corr', np.concatenate(acc_pgd_after_corr).mean(), global_step) swriter.add_scalar('det_clean', np.concatenate(eval_det_clean).mean(), global_step) swriter.add_scalar('det_pgd', np.concatenate(eval_det_pgd).mean(), global_step) swriter.add_scalar('x_pgd_l0', np.concatenate(eval_x_pgd_l0).mean(), global_step) swriter.add_scalar('x_pgd_l2', np.concatenate(eval_x_pgd_l2).mean(), global_step) net.train(True) if args.mode == 'eval': for p in net.parameters(): p.requires_grad_(False) run_eval() elif args.mode == 'train': run_train() if __name__ == '__main__': main()
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import functools import cleverhans.model import torch from cleverhans import utils_tf from cleverhans.attacks import Attack import cleverhans.attacks from cleverhans.utils_tf import clip_eta # disable tf logging # some of these might have to be commented out to use verbose=True in the # adaptive attack import warnings import logging logging.getLogger('tensorflow').setLevel(logging.FATAL) import tensorflow as tf tf.logging.set_verbosity(tf.logging.ERROR) import os import math import numpy as np import tensorflow as tf from cleverhans.attacks import MadryEtAl from cleverhans.dataset import CIFAR10 from cleverhans.model_zoo.madry_lab_challenges.cifar10_model import \ make_wresnet as ResNet from cleverhans.utils_tf import initialize_uninitialized_global_variables import tf_robustify from cleverhans.augmentation import random_horizontal_flip, random_shift from active_tests.decision_boundary_binarization import \ interior_boundary_discrimination_attack, format_result from argparse_utils import DecisionBoundaryBinarizationSettings from tensorflow_wrapper import TensorFlow1ToPyTorchWrapper from logit_matching_attack import \ ProjectedGradientDescentWithDetectorLogitMatching def init_defense(sess, x, preds, batch_size, multi_noise=False): data = CIFAR10() if multi_noise: defense_data_path = os.path.join("checkpoints/tf_madry_wrn_vanilla", "defense_alignment_data_multi_noise") else: defense_data_path = os.path.join("checkpoints/tf_madry_wrn_vanilla", "defense_alignment_data") if os.path.exists(defense_data_path): print("Trying to load defense statistics") load_alignments_dir = defense_data_path save_alignments_dir = None else: print("Defense statistics not found; generating and saving them now.") load_alignments_dir = None save_alignments_dir = defense_data_path dataset_size = data.x_train.shape[0] dataset_train = data.to_tensorflow()[0] dataset_train = dataset_train.map( lambda x, y: (random_shift(random_horizontal_flip(x)), y), 4) dataset_train = dataset_train.batch(batch_size) dataset_train = dataset_train.prefetch(16) x_train, y_train = data.get_set('train') x_train *= 255 nb_classes = y_train.shape[1] n_collect = 10000 # TODO: for debugging set to 100, otherwise to 10000 p_ratio_cutoff = .999 just_detect = True clip_alignments = True fit_classifier = True noise_eps = 'n30.0' num_noise_samples = 256 if multi_noise: noises = 'n0.003,s0.003,u0.003,n0.005,s0.005,u0.005,s0.008,n0.008,u0.008'.split( ',') noise_eps_detect = [] for n in noises: new_noise = n[0] + str(float(n[1:]) * 255) noise_eps_detect.append(new_noise) else: noise_eps_detect = 'n30.0' # these attack parameters are just for initializing the defense eps = 8.0 pgd_params = { 'eps': eps, 'eps_iter': (eps / 5), 'nb_iter': 10, 'clip_min': 0, 'clip_max': 255 } logits_op = preds.op while logits_op.type != 'MatMul': logits_op = logits_op.inputs[0].op latent_x_tensor, weights = logits_op.inputs logits_tensor = preds predictor = tf_robustify.collect_statistics( x_train[:n_collect], y_train[:n_collect], x, sess, logits_tensor=logits_tensor, latent_x_tensor=latent_x_tensor, weights=weights, nb_classes=nb_classes, p_ratio_cutoff=p_ratio_cutoff, noise_eps=noise_eps, noise_eps_detect=noise_eps_detect, pgd_eps=pgd_params['eps'], pgd_lr=pgd_params['eps_iter'] / pgd_params['eps'], pgd_iters=pgd_params['nb_iter'], save_alignments_dir=save_alignments_dir, load_alignments_dir=load_alignments_dir, clip_min=pgd_params['clip_min'], clip_max=pgd_params['clip_max'], batch_size=batch_size, num_noise_samples=num_noise_samples, debug_dict=None, debug=False, targeted=False, pgd_train=None, fit_classifier=fit_classifier, clip_alignments=clip_alignments, just_detect=just_detect, ) next(predictor) return predictor def do_binarized_eval(sess, x, y, x_adv, binarized_logits, binarized_preds, x_set, y_set, predictor, batch_size, binarized_sess_kwargs={}, inverted_detector_test=False): n_batches = math.ceil(x_set.shape[0] / batch_size) # first generative adversarial examples x_adv_set, binarized_logits_set, binarized_p_set = [], [], [] for b in range(n_batches): values = sess.run((x_adv, binarized_logits, binarized_preds), {**binarized_sess_kwargs, x: x_set[b * batch_size:(b + 1) * batch_size], y: y_set[b * batch_size:(b + 1) * batch_size]}) x_adv_set.append(values[0]) binarized_logits_set.append(values[1]) binarized_p_set.append(values[2]) x_adv_set = np.concatenate(x_adv_set) binarized_logits_set = np.concatenate(binarized_logits_set) binarized_p_set = np.concatenate(binarized_p_set) # now run test p_set, p_det = np.concatenate( [predictor.send(x_adv_set[b * batch_size:(b + 1) * batch_size]) for b in range(n_batches)]).T correctly_classified = np.equal(binarized_p_set, y_set[:len(p_set)].argmax(-1)) if inverted_detector_test: adversarial_example_detected = np.equal(p_det, False) else: adversarial_example_detected = np.equal(p_det, True) # model_fooled = np.logical_or( # np.logical_and(~correctly_classified, ~adversarial_example_detected), # fooled classifier & evaded detector # np.logical_and(correctly_classified, adversarial_example_detected) # did not fool classifier but triggered detector (false positive) # ) model_fooled = np.logical_and(~correctly_classified, ~adversarial_example_detected) # fooled classifier & evaded detector # print(len(adversarial_example_detected), np.sum(~correctly_classified), # np.sum(adversarial_example_detected)) # asr = model_fooled.mean() # acc = correctly_classified.mean() # print('Accuracy of base model: %0.4f' % acc) # print('ASR (w/ detection defense): %0.4f' % asr) #print(model_fooled, ~correctly_classified, ~adversarial_example_detected) #print(binarized_logits_set) return model_fooled, (x_adv_set, binarized_logits_set) def main(): parser = argparse.ArgumentParser() parser.add_argument('--debug', action='store_true') parser.add_argument('--multi-noise', action='store_true') parser.add_argument("--n-samples", default=512, type=int) parser.add_argument("--n-boundary-points", default=49, type=int) parser.add_argument("--n-inner-points", default=10, type=int) parser.add_argument("--batch-size", default=512, type=int) parser.add_argument("--attack", choices=("original", "adaptive", "adaptive-eot"), default="original") parser.add_argument("--dont-verify-training-data", action="store_true") parser.add_argument("--use-boundary-adverarials", action="store_true") parser.add_argument("--inverted-test", action="store_true") args = parser.parse_args() if args.inverted_test: print("Running inverted test") else: print("Running normal/non-inverted test") # load data data = CIFAR10() x_test, y_test = data.get_set('test') sess = tf.Session() img_rows, img_cols, nchannels = x_test.shape[1:4] nb_classes = y_test.shape[1] # define model & restore weights # Define input TF placeholder x_placeholder = tf.placeholder( tf.float32, shape=(None, img_rows, img_cols, nchannels)) y_placeholder = tf.placeholder(tf.int32, shape=(None,)) # needed for adaptive attack x_reference_placeholder = tf.placeholder( tf.float32, shape=(None, img_rows, img_cols, nchannels)) cifar_model = ResNet(scope='ResNet') ckpt = tf.train.get_checkpoint_state("checkpoints/tf_madry_wrn_vanilla") saver = tf.train.Saver(var_list=dict( (v.name.split('/', 1)[1].split(':')[0], v) for v in tf.global_variables())) saver.restore(sess, ckpt.model_checkpoint_path) initialize_uninitialized_global_variables(sess) class Model: def __init__(self, model): self.model = model def __call__(self, x, features_only=True): assert features_only return self.get_features(x) def get_features(self, x): return self.model.fprop(x * 255.0)["Flatten2"] def get_features_and_gradients(self, x): features = self.model.fprop(x * 255.0)["Flatten2"] grad = tf.gradients(features, x)[0] return features, grad def get_features_logits_and_gradients(self, x): values = self.model.fprop(x * 255.0) features = values["Flatten2"] predictions = values["logits"] grad = tf.gradients(features, x)[0] return features, grad, predictions model = Model(cifar_model) features, feature_gradients, logits = model.get_features_logits_and_gradients( x_placeholder) # setup defense # if multi_noise = True, instantiate the defense with 9 types of noise. # if multi_noise = False, instantiate the defense with a single type of high-magnitude noise. print("multi noise:", args.multi_noise) defense_predictor = init_defense(sess, x_placeholder, logits, args.batch_size, multi_noise=args.multi_noise) class ModelWrapper(cleverhans.model.Model): def __init__(self, model, weight_shape, bias_shape): self.weight = tf.placeholder(dtype=tf.float32, shape=weight_shape) self.bias = tf.placeholder(dtype=tf.float32, shape=bias_shape) self.model = model self.first = True def fprop(self, x, **kwargs): y = self.model.get_features(x, *kwargs) logits = y @ tf.transpose(self.weight) + tf.reshape(self.bias, (1, -1)) return {"logits": logits} def logits_and_predictions(self, x=None): if x == None: assert not self.first if self.first: self.logits = self(x) self.predictions = tf.argmax(self.logits, 1) self.first = False return self.logits, self.predictions def run_features(x: np.ndarray, features_only=True, features_and_logits=False): if features_only: assert not features_and_logits targets = features elif features_and_logits: targets = (features, logits) else: targets = logits x = x.transpose(0, 2, 3, 1) * 255.0 return sess.run(targets, feed_dict={x_placeholder: x}) def run_features_and_gradients(x: np.ndarray): x = x.transpose(0, 2, 3, 1) * 255.0 return sess.run((features, feature_gradients), feed_dict={x_placeholder: x}) feature_extractor = TensorFlow1ToPyTorchWrapper( logit_forward_pass=lambda x, features_only=False, features_and_logits=False: run_features(x, features_only, features_and_logits), logit_forward_and_backward_pass=lambda x: run_features_and_gradients(x) ) # prepare dataloader random_indices = list(range(len(x_test))) np.random.shuffle(random_indices) x_batch = [] y_batch = [] for j in range(args.n_samples): x_, y_ = x_test[random_indices[j]], y_test[random_indices[j]] x_batch.append(x_) y_batch.append(y_) x_batch = np.array(x_batch).transpose((0, 3, 1, 2)) y_batch = np.array(y_batch) from utils import build_dataloader_from_arrays test_loader = build_dataloader_from_arrays(x_batch, y_batch, batch_size=32) # TODO: update shapes? apparently not necessary... wrapped_model = ModelWrapper(model, (2, 640), (2,)) baseline_cifar_pgd = MadryEtAl(cifar_model, sess=sess) original_pgd_params = { # ord: , 'eps': 8, 'eps_iter': (8 / 5), 'nb_iter': 10, 'clip_min': 0, 'clip_max': 255 } adaptive_pgd_params = { # ord: , 'eps': 8, 'eps_iter': 8.0 / 300, 'nb_iter': 300, 'clip_min': 0, 'clip_max': 255, 'x_reference': x_reference_placeholder, 'y': y_placeholder } if args.attack == "original": pgd = MadryEtAl(wrapped_model, sess=sess) print("Using MadryEtAl attack") elif args.attack == "adaptive": pgd = ProjectedGradientDescentWithDetectorLogitMatching( wrapped_model, lambda x: model.model.get_logits(x), sess=sess, verbose=False) print("Using logit-matching attack") elif args.attack == "adaptive-eot": pgd = ProjectedGradientDescentWithDetectorLogitMatching( wrapped_model, lambda x: model.model.get_logits(x), sess=sess, eot_ensemble_size=20, verbose=False) print("Using logit-matching attack w/ EOT") else: raise ValueError("invalid attack") # was 1.75 far_off_distance = 1.75 # TODO, was 1.01 larger_pgd_params = {**original_pgd_params} larger_pgd_params["eps"] *= far_off_distance pgd_params = original_pgd_params if args.attack == "original" else adaptive_pgd_params adv_x = tf.stop_gradient(pgd.generate(x_placeholder, **pgd_params)) cifar_adv_x = tf.stop_gradient( baseline_cifar_pgd.generate(x_placeholder, **original_pgd_params)) larger_cifar_adv_x = tf.stop_gradient( baseline_cifar_pgd.generate(x_placeholder, **original_pgd_params)) adv_binarized_logits = wrapped_model.get_logits(adv_x) adv_binarized_predictions = tf.argmax(adv_binarized_logits, 1) def run_attack(m, l, kwargs, inverted_detector_test=False): linear_layer = m[-1] del m weights_feed_dict = { wrapped_model.weight: linear_layer.weight.data.numpy(), wrapped_model.bias: linear_layer.bias.data.numpy() } if "reference_points_x" in kwargs: weights_feed_dict[x_reference_placeholder] = \ kwargs["reference_points_x"].numpy().transpose((0, 2, 3, 1)) * 255.0 # should_be_rejected = ~verify_valid_input_data(kwargs["reference_points_x"]) # print("should_be_rejected", should_be_rejected) for x, y in l: x = x.numpy().transpose((0, 2, 3, 1)) * 255.0 y = y.numpy() is_adv_np, (x_adv_np, logits_np) = do_binarized_eval( sess=sess, x=x_placeholder, y=y_placeholder, x_adv=adv_x, batch_size=args.batch_size, binarized_logits=adv_binarized_logits, binarized_preds=adv_binarized_predictions, x_set=x, y_set=y, predictor=defense_predictor, binarized_sess_kwargs=weights_feed_dict, inverted_detector_test=inverted_detector_test ) # print(is_adv_np, y, logits_np) return is_adv_np, (torch.Tensor(x_adv_np), torch.Tensor(logits_np)) def verify_valid_input_data(x_set): """Returns True if something is not detected as an adversarial example.""" x_set = x_set.numpy().transpose((0, 2, 3, 1)) * 255.0 n_batches = math.ceil(x_set.shape[0] / args.batch_size) _, p_det = np.concatenate( [defense_predictor.send( x_set[b * args.batch_size:(b + 1) * args.batch_size] ) for b in range(n_batches)] ).T # p_det is True of a possible adversarial example has been detected valid_sample = np.equal(p_det, False) return valid_sample def get_boundary_adversarials(x, y, n_samples, epsilon): """Generate adversarial examples for the base classifier.""" assert len(x.shape) == 3 del y device = x.device x = x.unsqueeze(0).numpy() x = x.transpose((0, 2, 3, 1)) * 255.0 x = np.repeat(x, n_samples, axis=0) # select correct tf placeholder depending on the epsilon ball if epsilon == pgd_params["eps"] / 255.0: x_adv_ph = cifar_adv_x elif epsilon == larger_pgd_params["eps"] / 255.0: x_adv_ph = larger_cifar_adv_x else: raise ValueError("Cannot generate adversarials at eps =", epsilon) for _ in range(10): x_advs = [] for x_ in np.array_split(x, int(np.ceil(len(x) / args.batch_size))): x_advs.append(sess.run(x_adv_ph, feed_dict={x_placeholder: x_})) x_adv = np.concatenate(x_advs, 0) x_adv = x_adv.transpose((0, 3, 1, 2)) / 255.0 x_adv = torch.Tensor(x_adv, device=device) # make sure adversarial examples are really detected as adversarial examples is_valid = verify_valid_input_data(x_adv) is_invalid = ~is_valid if np.all(is_invalid): # generative until we finally found an adversarial example that gets # detected break else: warnings.warn("Could not generate adversarial example that gets " "detected after 10 trials.") return x_adv if args.inverted_test: additional_settings = dict( n_boundary_points=args.n_boundary_points, n_boundary_adversarial_points=1, n_far_off_boundary_points=1, n_far_off_adversarial_points=1, ) else: additional_settings = dict( n_boundary_points=args.n_boundary_points, n_boundary_adversarial_points=args.n_boundary_points - 1, n_far_off_boundary_points=1, n_far_off_adversarial_points=0, ) scores_logit_differences_and_validation_accuracies = \ interior_boundary_discrimination_attack( feature_extractor, test_loader, attack_fn=functools.partial( run_attack, inverted_detector_test=args.inverted_test ), linearization_settings=DecisionBoundaryBinarizationSettings( epsilon=8 / 255.0, norm="linf", lr=10000, n_inner_points=args.n_inner_points, adversarial_attack_settings=None, optimizer="sklearn", **additional_settings, ), rescale_logits="adaptive", n_samples=args.n_samples, device="cpu", batch_size=args.batch_size, # decision_boundary_closeness=0.999, n_samples_evaluation=200, n_samples_asr_evaluation=200, # verify_valid_boundary_training_data_fn=None if args.dont_verify_training_data else verify_valid_input_data, verify_valid_boundary_training_data_fn=verify_valid_input_data, get_boundary_adversarials_fn=get_boundary_adversarials, verify_valid_inner_training_data_fn=None, verify_valid_input_validation_data_fn=None, # verify_valid_input_data if args.use_boundary_adverarials else None, # get_boundary_adversarials_fn=get_boundary_adversarials if args.use_boundary_adverarials else None, fill_batches_for_verification=False, far_off_distance=far_off_distance ) print(format_result(scores_logit_differences_and_validation_accuracies, args.n_samples)) if __name__ == "__main__": main()
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import functools import cleverhans.model import torch from cleverhans import utils_tf from cleverhans.attacks import Attack import cleverhans.attacks from cleverhans.utils_tf import clip_eta import os import math import numpy as np import tensorflow as tf class ProjectedGradientDescentWithDetectorLogitMatching(Attack): def __init__(self, model, get_features_for_detector, sess=None, dtypestr='float32', default_rand_init=True, verbose=False, eot_ensemble_size=None, eot_multinoise=False, **kwargs): """ Create a ProjectedGradientDescent instance. Note: the model parameter should be an instance of the cleverhans.model.Model abstraction provided by CleverHans. """ super(ProjectedGradientDescentWithDetectorLogitMatching, self).__init__(model, sess=sess, dtypestr=dtypestr, **kwargs) self.feedable_kwargs = ('eps', 'eps_iter', 'clip_min', 'clip_max', 'loss_lambda') self.structural_kwargs = ['ord', 'nb_iter', 'rand_init', 'sanity_checks'] self.default_rand_init = default_rand_init self.get_features_for_detector = get_features_for_detector self.verbose = verbose self.eot_ensemble_size = eot_ensemble_size assert eot_ensemble_size is None or eot_ensemble_size > 0 self.eot_multinoise = eot_multinoise def generate(self, x, x_reference, **kwargs): """ Generate symbolic graph for adversarial examples and return. :param x: The model's symbolic inputs. :param kwargs: See `parse_params` """ # Parse and save attack-specific parameters assert self.parse_params(**kwargs) asserts = [] # If a data range was specified, check that the input was in that range if self.clip_min is not None: asserts.append(utils_tf.assert_greater_equal(x, tf.cast(self.clip_min, x.dtype))) if self.clip_max is not None: asserts.append(utils_tf.assert_less_equal(x, tf.cast(self.clip_max, x.dtype))) # Initialize loop variables if self.rand_init: eta = tf.random_uniform(tf.shape(x), tf.cast(-self.rand_minmax, x.dtype), tf.cast(self.rand_minmax, x.dtype), dtype=x.dtype) else: eta = tf.zeros(tf.shape(x)) # Clip eta eta = clip_eta(eta, self.ord, self.eps) adv_x = x + eta if self.clip_min is not None or self.clip_max is not None: adv_x = utils_tf.clip_by_value(adv_x, self.clip_min, self.clip_max) fgm_params = { 'eps': self.eps_iter, 'ord': self.ord, 'clip_min': self.clip_min, 'clip_max': self.clip_max, "eot_ensemble_size": self.eot_ensemble_size, "eot_multinoise": self.eot_multinoise, } if self.ord == 1: raise NotImplementedError("It's not clear that FGM is a good inner loop" " step for PGD when ord=1, because ord=1 FGM " " changes only one pixel at a time. We need " " to rigorously test a strong ord=1 PGD " "before enabling this feature.") def cond(i, _): return tf.less(i, self.nb_iter) def body(i, adv_x): adv_x = self.fgm_generate(x_adv=adv_x, x_reference=x_reference, **fgm_params, step=i) # Clipping perturbation eta to self.ord norm ball eta = adv_x - x eta = clip_eta(eta, self.ord, self.eps) adv_x = x + eta # Redo the clipping. # FGM already did it, but subtracting and re-adding eta can add some # small numerical error. if self.clip_min is not None or self.clip_max is not None: adv_x = utils_tf.clip_by_value(adv_x, self.clip_min, self.clip_max) return i + 1, adv_x _, adv_x = tf.while_loop(cond, body, [tf.zeros([]), adv_x], back_prop=True) # Asserts run only on CPU. # When multi-GPU eval code tries to force all PGD ops onto GPU, this # can cause an error. #asserts.append(utils_tf.assert_less_equal(tf.cast(self.eps_iter, # dtype=self.eps.dtype), # self.eps)) if self.ord == np.inf and self.clip_min is not None: # The 1e-6 is needed to compensate for numerical error. # Without the 1e-6 this fails when e.g. eps=.2, clip_min=.5, # clip_max=.7 asserts.append(utils_tf.assert_less_equal(tf.cast(self.eps, x.dtype), 1e-6 + tf.cast(self.clip_max, x.dtype) - tf.cast(self.clip_min, x.dtype))) if self.sanity_checks: with tf.control_dependencies(asserts): adv_x = tf.identity(adv_x) return adv_x def fgm_generate(self, x_adv, x_reference, step, eps=0.3, ord=np.inf, clip_min=None, clip_max=None, targeted=False, sanity_checks=True, eot_ensemble_size=None, eot_multinoise=False): asserts = [] # If a data range was specified, check that the input was in that range if clip_min is not None: asserts.append(utils_tf.assert_greater_equal( x_adv, tf.cast(clip_min, x_adv.dtype))) if clip_max is not None: asserts.append(utils_tf.assert_less_equal(x_adv, tf.cast(clip_max, x_adv.dtype))) if targeted: raise ValueError("targeted mode not supported") # while this check looks good in theory in pratice it doesnt make sense # since the softmax op might not add an additional AddV2 operation at the end # Make sure the caller has not passed probs by accident #assert logits.op.type != 'Softmax' #assert target_logits.op.type != 'Softmax' target_detector_features = tf.stop_gradient( self.get_features_for_detector(x_reference)) labels = tf.one_hot(self.y, 2) if eot_ensemble_size is None: # no EOT detector_features = self.get_features_for_detector(x_adv) classifier_logits = self.model.get_logits(x_adv) real = tf.reduce_sum(labels * classifier_logits, -1) other = tf.reduce_max((1-labels) * classifier_logits - (labels*10000), -1) classifier_loss = -tf.clip_by_value(real - other, -1e-2, 1e9) detector_features_matching_loss = -tf.reduce_mean( tf.reduce_sum((detector_features - target_detector_features)**2,-1), 0) loss = self.loss_lambda * classifier_loss + (1.0 - self.loss_lambda) * detector_features_matching_loss # Define gradient of loss wrt input grad, = tf.gradients(loss, x_adv) grad = tf.stop_gradient(grad) else: grads = [] for i in range(eot_ensemble_size): if i == 0: # dont add noise to first forward pass x_adv_noisy = x_adv else: if eot_multinoise: if i % 2 == 0: noise = tf.random.normal(tf.shape(x_adv), 0.0, 1.0) elif i % 2 == 1: noise = tf.random.uniform(tf.shape(x_adv), -1.0, 1.0) else: # defined in https://github.com/wielandbrendel/adaptive_attacks_paper/blob/master/02_odds/Attack.ipynb # but doesnt make sense to me since this never gets called noise = tf.sign(tf.random.uniform(tf.shape(x_adv), -1.0, 1.0)) noise *= 0.01 * 255.0 else: noise = tf.random.normal(tf.shape(x_adv), 0.0, 1.0) noise *= 2.0 x_adv_noisy = tf.clip_by_value(x_adv + noise, 0, 255.0) detector_features = self.get_features_for_detector(x_adv_noisy) classifier_logits = self.model.get_logits(x_adv_noisy) real = tf.reduce_sum(labels * classifier_logits, -1) other = tf.reduce_max((1-labels) * classifier_logits - (labels*10000), -1) classifier_loss = -tf.clip_by_value(real - other, -1e-2, 1e9) detector_features_matching_loss = -tf.reduce_mean( tf.reduce_sum((detector_features - target_detector_features)**2,-1), 0) loss = self.loss_lambda * classifier_loss + (1.0 - self.loss_lambda) * detector_features_matching_loss # Define gradient of loss wrt input grad, = tf.gradients(loss, x_adv_noisy) grad = tf.stop_gradient(grad) grads.append(grad) grad = tf.reduce_mean(grads, axis=0) optimal_perturbation = cleverhans.attacks.optimize_linear(grad, eps, ord) # Add perturbation to original example to obtain adversarial example adv_x = x_adv + optimal_perturbation # If clipping is needed, reset all values outside of [clip_min, clip_max] if (clip_min is not None) or (clip_max is not None): # We don't currently support one-sided clipping assert clip_min is not None and clip_max is not None adv_x = utils_tf.clip_by_value(adv_x, clip_min, clip_max) if sanity_checks: with tf.control_dependencies(asserts): adv_x = tf.identity(adv_x) if self.verbose: adv_x = tf.Print(adv_x, [step, loss, classifier_loss, detector_features_matching_loss]) return adv_x def parse_params(self, eps=0.3, eps_iter=0.05, nb_iter=10, y=None, ord=np.inf, clip_min=None, clip_max=None, y_target=None, rand_init=None, rand_minmax=0.3, sanity_checks=True, loss_lambda=0.5, **kwargs): """ Take in a dictionary of parameters and applies attack-specific checks before saving them as attributes. Attack-specific parameters: :param eps: (optional float) maximum distortion of adversarial example compared to original input :param eps_iter: (optional float) step size for each attack iteration :param nb_iter: (optional int) Number of attack iterations. :param y: (optional) A tensor with the true labels. :param y_target: (optional) A tensor with the labels to target. Leave y_target=None if y is also set. Labels should be one-hot-encoded. :param ord: (optional) Order of the norm (mimics Numpy). Possible values: np.inf, 1 or 2. :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value :param sanity_checks: bool Insert tf asserts checking values (Some tests need to run with no sanity checks because the tests intentionally configure the attack strangely) """ # Save attack-specific parameters self.eps = eps if rand_init is None: rand_init = self.default_rand_init self.rand_init = rand_init if self.rand_init: self.rand_minmax = eps else: self.rand_minmax = 0. self.eps_iter = eps_iter self.nb_iter = nb_iter self.y = y self.y_target = y_target self.ord = ord self.clip_min = clip_min self.clip_max = clip_max self.loss_lambda = loss_lambda if isinstance(eps, float) and isinstance(eps_iter, float): # If these are both known at compile time, we can check before anything # is run. If they are tf, we can't check them yet. assert eps_iter <= eps, (eps_iter, eps) if self.y is not None and self.y_target is not None: raise ValueError("Must not set both y and y_target") # Check if order of the norm is acceptable given current implementation if self.ord not in [np.inf, 1, 2]: raise ValueError("Norm order must be either np.inf, 1, or 2.") self.sanity_checks = sanity_checks return True
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python3 import os import numpy as np import tqdm import math import scipy.stats from absl import logging from collections import OrderedDict from sklearn.linear_model import LogisticRegression import itertools as itt from types import SimpleNamespace logging.set_verbosity(logging.INFO) def collect_statistics(x_train, y_train, x_ph=None, sess=None, latent_and_logits_fn_th=None, latent_x_tensor=None, logits_tensor=None, nb_classes=None, weights=None, cuda=True, targeted=False, noise_eps=8e-3, noise_eps_detect=None, num_noise_samples=256, batch_size=256, pgd_eps=8/255, pgd_lr=1/4, pgd_iters=10, clip_min=-1., clip_max=1., p_ratio_cutoff=20., save_alignments_dir=None, load_alignments_dir=None, debug_dict=None, debug=False, clip_alignments=True, pgd_train=None, fit_classifier=False, just_detect=False): assert len(x_train) == len(y_train) if pgd_train is not None: assert len(pgd_train) == len(x_train) if x_ph is not None: import tensorflow as tf backend = 'tf' assert sess is not None assert latent_and_logits_fn_th is None assert latent_x_tensor is not None assert logits_tensor is not None assert nb_classes is not None assert weights is not None else: import torch as th backend = 'th' assert x_ph is None assert sess is None assert latent_and_logits_fn_th is not None assert latent_x_tensor is None assert logits_tensor is None assert nb_classes is not None assert weights is not None cuda = th.cuda.is_available() and cuda def latent_fn_th(x): return to_np(latent_and_logits_fn_th(to_th(x))[0]) def logits_fn_th(x): return latent_and_logits_fn_th(x)[1] def to_th(x, dtype=np.float32): x = th.from_numpy(x.astype(dtype)) if cuda: x = x.cuda() return x def to_np(x): return x.detach().cpu().numpy() if debug: logging.set_verbosity(logging.DEBUG) try: len(noise_eps) if isinstance(noise_eps, str): raise TypeError() except TypeError: noise_eps = [noise_eps] if noise_eps_detect is None: noise_eps_detect = noise_eps try: len(noise_eps_detect) if isinstance(noise_eps_detect, str): raise TypeError() except TypeError: noise_eps_detect = [noise_eps_detect] noise_eps_all = set(noise_eps + noise_eps_detect) pgd_lr = pgd_eps * pgd_lr n_batches = math.ceil(x_train.shape[0] / batch_size) if len(y_train.shape) == 2: y_train = y_train.argmax(-1) if backend == 'tf': y_ph = tf.placeholder(tf.int64, [None]) loss_tensor = tf.reduce_sum(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits_tensor, labels=y_ph)) pgd_gradients = tf.gradients(loss_tensor, x_ph)[0] preds_tensor = tf.arg_max(logits_tensor, -1) else: loss_fn = th.nn.CrossEntropyLoss(reduce='sum') if cuda: loss_fn = loss_fn.cuda() def get_noise_samples(x, num_samples, noise_eps, clip=False): if isinstance(noise_eps, float): kind = 'u' eps = noise_eps else: kind, eps = noise_eps[:1], float(noise_eps[1:]) if isinstance(x, np.ndarray): if kind == 'u': noise = np.random.uniform(-1., 1., size=(num_samples,) + x.shape[1:]) elif kind == 'n': noise = np.random.normal(0., 1., size=(num_samples,) + x.shape[1:]) elif kind == 's': noise = np.random.uniform(-1., 1., size=(num_samples,) + x.shape[1:]) noise = np.sign(noise) x_noisy = x + noise * eps if clip: x_noisy = x_noisy.clip(clip_min, clip_max) elif backend == 'tf': shape = (num_samples,) + tuple(s.value for s in x.shape[1:]) if kind == 'u': noise = tf.random_uniform(shape=shape, minval=-1., maxval=1.) elif kind == 'n': noise = tf.random_normal(shape=shape, mean=0., stddev=1.) elif kind == 's': noise = tf.random_uniform(shape=shape, minval=-1., maxval=1.) noise = tf.sign(noise) x_noisy = x + noise * eps if clip: x_noisy = tf.clip_by_value(x_noisy, clip_min, clip_max) elif backend == 'th': if kind == 'u': noise = x.new_zeros((num_samples,) + x.shape[1:]).uniform_(-1., 1.) elif kind == 'n': noise = x.new_zeros((num_samples,) + x.shape[1:]).normal_(0., 1.) elif kind == 's': noise = x.new_zeros((num_samples,) + x.shape[1:]).uniform_(-1., 1.) noise.sign_() x_noisy = x + noise * eps if clip: x_noisy.clamp_(clip_min, clip_max) return x_noisy def attack_pgd(x, x_pred, targeted=False): x_pgd = get_noise_samples(x, x.shape[0], pgd_eps, clip=True) for _ in range(pgd_iters): if backend == 'tf': x_grads = sess.run(pgd_gradients, {x_ph: x_pgd, y_ph: x_pred}) else: x_th = to_th(x_pgd).requires_grad_(True) x_grads = to_np(th.autograd.grad(loss_fn(logits_fn_th(x_th), to_th(x_pred, np.long)), [x_th])[0]) x_pgd += pgd_lr * np.sign(x_grads) * (-2. * (targeted - 1/2)) x_pgd = x_pgd.clip(x - pgd_eps, x + pgd_eps) x_pgd = x_pgd.clip(clip_min, clip_max) if debug: break return x_pgd def get_latent_and_pred(x): if backend == 'tf': return sess.run([latent_x_tensor, preds_tensor], {x_ph: x}) else: l, p = map(to_np, latent_and_logits_fn_th(to_th(x))) return l, p.argmax(-1) x_preds_clean = [] x_train_pgd = [] x_preds_pgd = [] latent_clean = [] latent_pgd = [] if not load_alignments_dir: for b in tqdm.trange(n_batches, desc='creating adversarial samples'): x_batch = x_train[b*batch_size:(b+1)*batch_size] lc, pc = get_latent_and_pred(x_batch) x_preds_clean.append(pc) latent_clean.append(lc) if not just_detect: if pgd_train is not None: x_pgd = pgd_train[b*batch_size:(b+1)*batch_size] else: if targeted: x_pgd = np.stack([attack_pgd(x_batch, np.ones_like(pc) * i, targeted=True) for i in range(nb_classes)], 1) else: x_pgd = attack_pgd(x_batch, pc, targeted=False) x_train_pgd.append(x_pgd) if targeted: pps, lps = [], [] for i in range(x_pgd.shape[1]): lp, pp = get_latent_and_pred(x_pgd[:, i]) pps.append(pp) lps.append(lp) x_preds_pgd.append(np.stack(pps, 1)) latent_pgd.append(np.stack(lps, 1)) else: lp, pp = get_latent_and_pred(x_pgd) x_preds_pgd.append(pp) latent_pgd.append(lp) x_preds_clean, latent_clean = map(np.concatenate, (x_preds_clean, latent_clean)) if not just_detect: x_train_pgd, x_preds_pgd, latent_pgd = map(np.concatenate, (x_train_pgd, x_preds_pgd, latent_pgd)) valid_idcs = [] if not just_detect: for i, (pc, pp, y) in enumerate(zip(x_preds_clean, x_preds_pgd, y_train)): if y == pc and pc != pp: # if y == pc: valid_idcs.append(i) else: valid_idcs = list(range(len(x_preds_clean))) logging.info('valid idcs ratio: {}'.format(len(valid_idcs) / len(y_train))) if targeted: for i, xpp in enumerate(x_preds_pgd.T): logging.info('pgd success class {}: {}'.format(i, (xpp == i).mean())) x_train, y_train, x_preds_clean, latent_clean = (a[valid_idcs] for a in (x_train, y_train, x_preds_clean, latent_clean)) if not just_detect: x_train_pgd, x_preds_pgd, latent_pgd = (a[valid_idcs] for a in (x_train_pgd, x_preds_pgd, latent_pgd)) if backend == 'tf': weights = tf.transpose(weights, (1, 0)) weights_np = sess.run(weights) else: weights_np = weights.cpu().numpy() big_memory = weights.shape[0] > 20 logging.info('BIG MEMORY: {}'.format(big_memory)) if not big_memory: wdiffs = weights[None, :, :] - weights[:, None, :] wdiffs_np = weights_np[None, :, :] - weights_np[:, None, :] if backend == 'tf': # lat_ph = tf.placeholder(tf.float32, [weights.shape[-1]]) # pred_ph = tf.placeholder(tf.int64) # if big_memory: # wdiffs_relevant = weights[pred_ph, None] - weights # else: # wdiffs_relevant = wdiffs[:, pred_ph] # lat_diff_tensor = lat_ph[None] - latent_x_tensor # alignments_tensor = tf.matmul(lat_diff_tensor, wdiffs_relevant, transpose_b=True) # def _compute_neps_alignments(x, lat, pred, idx_wo_pc, neps): # x_noisy = get_noise_samples(x[None], num_noise_samples, noise_eps=neps, clip=clip_alignments) # return sess.run(alignments_tensor, {x_ph: x_noisy, lat_ph: lat, pred_ph: pred})[:, idx_wo_pc] lat_ph = tf.placeholder(tf.float32, [weights.shape[-1]]) wdiffs_relevant_ph = tf.placeholder(tf.float32, [weights.shape[-1], nb_classes]) lat_diff_tensor = lat_ph[None] - latent_x_tensor alignments_tensor = tf.matmul(lat_diff_tensor, wdiffs_relevant_ph) def _compute_neps_alignments(x, lat, pred, idx_wo_pc, neps): if big_memory: wdiffs_relevant = weights_np[pred, None] - weights_np else: wdiffs_relevant = wdiffs_np[:, pred] x_noisy = get_noise_samples(x[None], num_noise_samples, noise_eps=neps, clip=clip_alignments) # return sess.run(alignments_tensor, {x_ph: x_noisy, lat_ph: lat, wdiffs_relevant_ph:wdiffs_relevant.T})[:, idx_wo_pc] lat_x = sess.run(latent_x_tensor, {x_ph: x_noisy}) lat_diffs = lat[None] - lat_x return np.matmul(lat_diffs, wdiffs_relevant.T)[:, idx_wo_pc] else: def _compute_neps_alignments(x, lat, pred, idx_wo_pc, neps): x, lat = map(to_th, (x, lat)) if big_memory: wdiffs_relevant = weights[pred, None] - weights else: wdiffs_relevant = wdiffs[:, pred] x_noisy = get_noise_samples(x[None], num_noise_samples, noise_eps=neps, clip=clip_alignments) lat_noisy, _ = latent_and_logits_fn_th(x_noisy) lat_diffs = lat[None] - lat_noisy return to_np(th.matmul(lat_diffs, wdiffs_relevant.transpose(1, 0)))[:, idx_wo_pc] if debug_dict is not None: debug_dict['weights'] = weights_np debug_dict['wdiffs'] = wdiffs_np def _compute_alignments(x, lat, pred, source=None, noise_eps=noise_eps_all): if source is None: idx_wo_pc = [i for i in range(nb_classes) if i != pred] assert len(idx_wo_pc) == nb_classes - 1 else: idx_wo_pc = source alignments = OrderedDict() for neps in noise_eps: alignments[neps] = _compute_neps_alignments(x, lat, pred, idx_wo_pc, neps) # if debug_dict is not None: # debug_dict.setdefault('lat', []).append(lat) # debug_dict.setdefault('lat_noisy', []).append(lat_noisy) # debug_dict['weights'] = weights # debug_dict['wdiffs'] = wdiffs return alignments, idx_wo_pc def _collect_wdiff_stats(x_set, latent_set, x_preds_set, clean, save_alignments_dir=None, load_alignments_dir=None): if clean: wdiff_stats = {(tc, tc, e): [] for tc in range(nb_classes) for e in noise_eps_all} name = 'clean' else: wdiff_stats = {(sc, tc, e): [] for sc in range(nb_classes) for tc in range(nb_classes) for e in noise_eps_all if sc != tc} name = 'adv' def _compute_stats_from_values(v, raw=False): if not v.shape: return None v = v.mean(1) if debug: v = np.concatenate([v, v*.5, v*1.5]) if clean or not fit_classifier: if v.shape[0] < 3: return None return v.mean(0), v.std(0) else: return v for neps in noise_eps_all: neps_keys = {k for k in wdiff_stats.keys() if k[-1] == neps} loading = load_alignments_dir if loading: for k in neps_keys: fn = 'alignments_{}_{}.npy'.format(name, str(k)) load_fn = os.path.join(load_alignments_dir, fn) if not os.path.exists(load_fn): loading = False break v = np.load(load_fn) wdiff_stats[k] = _compute_stats_from_values(v) logging.info('loading alignments from {} for {}'.format(load_alignments_dir, neps)) if not loading: for x, lc, pc, pcc in tqdm.tqdm(zip(x_set, latent_set, x_preds_set, x_preds_clean), total=len(x_set), desc='collecting stats for {}'.format(neps)): if len(lc.shape) == 2: alignments = [] for i, (xi, lci, pci) in enumerate(zip(x, lc, pc)): if i == pcc: continue alignments_i, _ = _compute_alignments(xi, lci, i, source=pcc, noise_eps=[neps]) for e, a in alignments_i.items(): wdiff_stats[(pcc, i, e)].append(a) else: alignments, idx_wo_pc = _compute_alignments(x, lc, pc, noise_eps=[neps]) for e, a in alignments.items(): wdiff_stats[(pcc, pc, e)].append(a) saving = save_alignments_dir and not loading if saving: logging.info('saving alignments to {} for {}'.format(save_alignments_dir, neps)) if debug: some_v = None for k in neps_keys: some_v = some_v or wdiff_stats[k] for k in neps_keys: wdiff_stats[k] = wdiff_stats[k] or some_v for k in neps_keys: wdsk = wdiff_stats[k] if len(wdsk): wdiff_stats[k] = np.stack(wdsk) else: wdiff_stats[k] = np.array(None) if saving: fn = 'alignments_{}_{}.npy'.format(name, str(k)) save_fn = os.path.join(save_alignments_dir, fn) os.makedirs(os.path.dirname(save_fn), exist_ok=True) wds = wdiff_stats[k] np.save(save_fn, wds) wdiff_stats[k] = _compute_stats_from_values(wdiff_stats[k]) return wdiff_stats save_alignments_dir_clean = os.path.join(save_alignments_dir, 'clean') if save_alignments_dir else None save_alignments_dir_pgd = os.path.join(save_alignments_dir, 'pgd') if save_alignments_dir else None load_alignments_dir_clean = os.path.join(load_alignments_dir, 'clean') if load_alignments_dir else None load_alignments_dir_pgd = os.path.join(load_alignments_dir, 'pgd') if load_alignments_dir else None if load_alignments_dir: load_alignments_dir_clean, load_alignments_dir_pgd = map(lambda s: '{}_{}'.format(s, 'clip' if clip_alignments else 'noclip'), (load_alignments_dir_clean, load_alignments_dir_pgd)) if save_alignments_dir: save_alignments_dir_clean, save_alignments_dir_pgd = map(lambda s: '{}_{}'.format(s, 'clip' if clip_alignments else 'noclip'), (save_alignments_dir_clean, save_alignments_dir_pgd)) wdiff_stats_clean = _collect_wdiff_stats(x_train, latent_clean, x_preds_clean, clean=True, save_alignments_dir=save_alignments_dir_clean, load_alignments_dir=load_alignments_dir_clean) if not just_detect: wdiff_stats_pgd = _collect_wdiff_stats(x_train_pgd, latent_pgd, x_preds_pgd, clean=False, save_alignments_dir=save_alignments_dir_pgd, load_alignments_dir=load_alignments_dir_pgd) if debug_dict is not None and False: esizes = OrderedDict((k, []) for k in noise_eps_all) for k, (mc, sc) in wdiff_stats_clean.items(): mp, sp = wdiff_stats_pgd[k] esizes[k[-1]].append(np.abs(mp - mc) / ((sp + sc) / 2.)) debug_dict['effect_sizes'] = OrderedDict((k, np.array(v)) for k, v in esizes.items()) wdiff_stats_clean_detect = [np.stack([wdiff_stats_clean[(p, p, eps)] for eps in noise_eps_detect]) for p in range(nb_classes)] wdiff_stats_clean_detect = [s.transpose((1, 0, 2)) if len(s.shape) == 3 else None for s in wdiff_stats_clean_detect] wdiff_stats_pgd_classify = [] if not just_detect: for tc in range(nb_classes): tc_stats = [] for sc in range(nb_classes): if sc == tc: continue sc_stats = [wdiff_stats_pgd[(sc, tc, eps)] for eps in noise_eps] if sc_stats[0] is None: tc_stats.append(None) else: tc_stats.append(np.stack(sc_stats, 1)) wdiff_stats_pgd_classify.append(tc_stats) if fit_classifier: logging.info('fitting classifier') for tc in tqdm.trange(nb_classes): tc_X = [] tc_Y = [] idx_wo_tc = [sc for sc in range(nb_classes) if sc != tc] for i, sc in enumerate(idx_wo_tc): sc_data = wdiff_stats_pgd_classify[tc][i] if sc_data is not None: sc_data = sc_data.reshape(sc_data.shape[0], -1) for d in sc_data: tc_X.append(d.ravel()) tc_Y.append(sc) Y_unq = np.unique(tc_Y) if len(Y_unq) == 0: lr = SimpleNamespace(predict=lambda x: np.array(tc)) elif len(Y_unq) == 1: lr = SimpleNamespace(predict=lambda x: np.array(tc_Y[0])) else: tc_X = np.stack(tc_X) tc_Y = np.array(tc_Y) lr = LogisticRegression(solver='lbfgs', multi_class='multinomial', max_iter=1000) lr.fit(tc_X, tc_Y) wdiff_stats_pgd_classify[tc] = lr batch = yield while batch is not None: batch_latent, batch_pred = get_latent_and_pred(batch) if debug_dict is not None: debug_dict.setdefault('batch_pred', []).append(batch_pred) corrected_pred = [] detection = [] for b, lb, pb in zip(batch, batch_latent, batch_pred): b_align, idx_wo_pb = _compute_alignments(b, lb, pb) b_align_det = np.stack([b_align[eps] for eps in noise_eps_detect]) b_align = np.stack([b_align[eps] for eps in noise_eps]) wdsc_det_pb = wdiff_stats_clean_detect[pb] if wdsc_det_pb is None: z_hit = False else: wdm_det, wds_det = wdsc_det_pb z_clean = (b_align_det - wdm_det[:, None]) / wds_det[:, None] z_clean_mean = z_clean.mean(1) z_cutoff = scipy.stats.norm.ppf(p_ratio_cutoff) z_hit = z_clean_mean.mean(0).max(-1) > z_cutoff if not just_detect: if fit_classifier: lr = wdiff_stats_pgd_classify[pb] b_align = b_align.mean(1).reshape((1, -1)) lr_pred = lr.predict(b_align) else: wdp = wdiff_stats_pgd_classify[pb] if wdp is None: z_pgd_mode = None else: wdp_not_none_idcs = [i for i, w in enumerate(wdp) if w is not None] if len(wdp_not_none_idcs) == 0: z_pgd_mode = None else: wdp = np.stack([wdp[i] for i in wdp_not_none_idcs], 2) idx_wo_pb_wdp = [idx_wo_pb[i] for i in wdp_not_none_idcs] ssidx = np.arange(wdp.shape[-2]) wdp = wdp[:, :, ssidx, ssidx] wdmp, wdsp = wdp b_align = b_align[:, :, wdp_not_none_idcs] z_pgd = (b_align - wdmp[:, None]) / wdsp[:, None] z_pgd_mean = z_pgd.mean(1) z_pgd_mode = scipy.stats.mode(z_pgd_mean.argmax(-1)).mode[0] if z_hit: if not just_detect: if fit_classifier: print(lr_pred) pb = lr_pred.item() else: if z_pgd_mode is not None: pb = idx_wo_pb_wdp[z_pgd_mode] detection.append(True) else: detection.append(False) if debug_dict is not None: debug_dict.setdefault('b_align', []).append(b_align) # debug_dict.setdefault('stats', []).append((wdm_det, wds_det, wdmp, wdsp)) # debug_dict.setdefault('p_ratio', []).append(p_ratio) # debug_dict.setdefault('p_clean', []).append(p_clean) # debug_dict.setdefault('p_pgd', []).append(p_pgd) debug_dict.setdefault('z_clean', []).append(z_clean) # debug_dict.setdefault('z_conf', []).append(z_conf) # debug_dict.setdefault('z_pgdm', []).append(z_pgdm) # debug_dict.setdefault('z_pgd', []).append(z_pgd) corrected_pred.append(pb) if debug_dict is not None: debug_dict.setdefault('detection', []).append(detection) debug_dict.setdefault('corrected_pred', []).append(corrected_pred) batch = yield np.stack((corrected_pred, detection), -1)
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. '''Some utility functions ''' import os import sys import time import datetime import math import torch import torch.nn as nn import torch.nn.init as init import torch.nn.functional as F import numpy as np import torch def one_hot_tensor(y_batch_tensor, num_classes, device): y_tensor = torch.cuda.FloatTensor(y_batch_tensor.size(0), num_classes).fill_(0) y_tensor[np.arange(len(y_batch_tensor)), y_batch_tensor] = 1.0 return y_tensor def label_smoothing(y_batch_tensor, num_classes, delta): y_batch_smooth = (1 - delta - delta / (num_classes - 1)) * \ y_batch_tensor + delta / (num_classes - 1) return y_batch_smooth def str2bool(v): return v.lower() in ("yes", "true", "t", "1") class softCrossEntropy(nn.Module): def __init__(self, reduce=True): super(softCrossEntropy, self).__init__() self.reduce = reduce return def forward(self, inputs, targets): """ :param inputs: predictions :param targets: target labels in vector form :return: loss """ log_likelihood = -F.log_softmax(inputs, dim=1) sample_num, class_num = targets.shape if self.reduce: loss = torch.sum(torch.mul(log_likelihood, targets)) / sample_num else: loss = torch.sum(torch.mul(log_likelihood, targets), 1) return loss class CWLoss(nn.Module): def __init__(self, num_classes, margin=50, reduce=True): super(CWLoss, self).__init__() self.num_classes = num_classes self.margin = margin self.reduce = reduce return def forward(self, logits, targets): """ :param inputs: predictions :param targets: target labels :return: loss """ onehot_targets = one_hot_tensor(targets, self.num_classes, targets.device) self_loss = torch.sum(onehot_targets * logits, dim=1) other_loss = torch.max( (1 - onehot_targets) * logits - onehot_targets * 1000, dim=1)[0] loss = -torch.sum(torch.clamp(self_loss - other_loss + self.margin, 0)) if self.reduce: sample_num = onehot_targets.shape[0] loss = loss / sample_num return loss
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from attacks import autopgd from attacks import pgd from models import * from torch.autograd import Variable import utils from ftsc_utils import softCrossEntropy from ftsc_utils import one_hot_tensor import ot import pickle device = 'cuda' if torch.cuda.is_available() else 'cpu' class Attack_None(nn.Module): def __init__(self, basic_net, config): super(Attack_None, self).__init__() self.train_flag = True if 'train' not in config.keys( ) else config['train'] self.basic_net = basic_net def forward(self, inputs, targets, attack=None, batch_idx=-1): if self.train_flag: self.basic_net.train() else: self.basic_net.eval() result = self.basic_net(inputs) if isinstance(result, tuple): outputs, _ = self.basic_net(inputs) else: outputs = result return outputs, None, None class Attack_PGD(nn.Module): # Back-propogate def __init__(self, basic_net, config, attack_net=None): super(Attack_PGD, self).__init__() self.basic_net = basic_net self.attack_net = attack_net self.rand = config['random_start'] self.step_size = config['step_size'] self.epsilon = config['epsilon'] self.num_steps = config['num_steps'] self.loss_func = torch.nn.CrossEntropyLoss( reduction='none') if 'loss_func' not in config.keys( ) else config['loss_func'] self.train_flag = True if 'train' not in config.keys( ) else config['train'] self.box_type = 'white' if 'box_type' not in config.keys( ) else config['box_type'] def forward(self, inputs, targets, attack=True, targeted_label=-1, batch_idx=0): if not attack: outputs = self.basic_net(inputs)[0] return outputs, None if self.box_type == 'white': # aux_net = pickle.loads(pickle.dumps(self.basic_net)) aux_net = self.basic_net elif self.box_type == 'black': assert self.attack_net is not None, "should provide an additional net in black-box case" aux_net = pickle.loads(pickle.dumps(self.basic_net)) aux_net.eval() output = aux_net(inputs) if isinstance(output, tuple): logits_pred_nat = output[0] else: logits_pred_nat = output targets_prob = F.softmax(logits_pred_nat.float(), dim=1) num_classes = targets_prob.size(1) y_tensor_adv = targets step_sign = 1.0 x = inputs.detach() if self.rand: x = x + torch.zeros_like(x).uniform_(-self.epsilon, self.epsilon) x_org = x.detach() loss_array = np.zeros((inputs.size(0), self.num_steps)) for i in range(self.num_steps): x.requires_grad_() if x.grad is not None: x.grad.zero_() if x.grad is not None: x.grad.data.fill_(0) aux_net.eval() output = aux_net(x) if isinstance(output, tuple): logits = output[0] else: logits = output loss = self.loss_func(logits, y_tensor_adv) loss = loss.mean() aux_net.zero_grad() loss.backward() x_adv = x.data + step_sign * self.step_size * torch.sign( x.grad.data) x_adv = torch.min(torch.max(x_adv, inputs - self.epsilon), inputs + self.epsilon) x_adv = torch.clamp(x_adv, -1.0, 1.0) x = Variable(x_adv) if self.train_flag: self.basic_net.train() else: self.basic_net.eval() output = aux_net(x.detach()) if isinstance(output, tuple): logits_pert = output[0] else: logits_pert = output return logits_pert, targets_prob.detach(), x.detach() class Attack_BetterPGD(nn.Module): # Back-propogate def __init__(self, basic_net, config, attack_net=None): super(Attack_BetterPGD, self).__init__() self.basic_net = basic_net self.attack_net = attack_net self.rand = config['random_start'] self.step_size = config['step_size'] self.epsilon = config['epsilon'] self.num_steps = config['num_steps'] self.loss_func = torch.nn.CrossEntropyLoss( reduction='none') if 'loss_func' not in config.keys( ) else config['loss_func'] self.train_flag = True if 'train' not in config.keys( ) else config['train'] self.box_type = 'white' if 'box_type' not in config.keys( ) else config['box_type'] def forward(self, inputs, targets, attack=True, targeted_label=-1, batch_idx=0): def net(x): output = self.basic_net(x) if isinstance(output, tuple): return output[0] else: return output if attack: sign = 1.0 if targeted_label != -1 else -1.0 x_adv = pgd.general_pgd( loss_fn=lambda x, y: sign * self.loss_func(net(x), y), is_adversarial_fn=lambda x, y: net(x).argmax(-1) == y if targeted_label != -1 else net(x).argmax(-1) != y, x=inputs, y=targets, n_steps=self.num_steps, step_size=self.step_size, epsilon=self.epsilon, norm="linf", random_start=self.rand )[0] else: x_adv = inputs logits_pert = net(x_adv) targets_prob = torch.softmax(logits_pert, -1) return logits_pert, targets_prob.detach(), x_adv.detach() class Attack_AutoPGD(nn.Module): # Back-propogate def __init__(self, basic_net, config, attack_net=None): super(Attack_AutoPGD, self).__init__() self.basic_net = basic_net self.attack_net = attack_net self.epsilon = config['epsilon'] self.n_restarts = 0 if "num_restarts" not in config else \ config["num_restarts"] self.num_steps = config['num_steps'] self.loss_func = "ce" if 'loss_func' not in config.keys( ) else config['loss_func'] self.train_flag = True if 'train' not in config.keys( ) else config['train'] self.box_type = 'white' if 'box_type' not in config.keys( ) else config['box_type'] self.targeted = False if 'targeted' not in config.keys( ) else config['targeted'] self.n_classes = 10 if 'n_classes' not in config.keys( ) else config['n_classes'] def forward(self, inputs, targets, attack=True, targeted_label=-1, batch_idx=0): assert targeted_label == -1 def net(x): output = self.basic_net(x) if isinstance(output, tuple): return output[0] else: return output if attack: temp = autopgd.auto_pgd( model=net, x=inputs, y=targets, n_steps=self.num_steps, loss=self.loss_func, epsilon=self.epsilon, norm="linf", n_restarts=self.n_restarts, targeted=self.targeted, n_averaging_steps=1, n_classes=self.n_classes ) x_adv = temp[0] else: x_adv = inputs logits_pert = net(x_adv) targets_prob = torch.softmax(logits_pert, -1) return logits_pert, targets_prob.detach(), x_adv.detach() class Attack_FeaScatter(nn.Module): def __init__(self, basic_net, config, attack_net=None): super(Attack_FeaScatter, self).__init__() self.basic_net = basic_net self.attack_net = attack_net self.rand = config['random_start'] self.step_size = config['step_size'] self.epsilon = config['epsilon'] self.num_steps = config['num_steps'] self.train_flag = True if 'train' not in config.keys( ) else config['train'] self.box_type = 'white' if 'box_type' not in config.keys( ) else config['box_type'] self.ls_factor = 0.1 if 'ls_factor' not in config.keys( ) else config['ls_factor'] def forward(self, inputs, targets, attack=True, targeted_label=-1, batch_idx=0): if not attack: outputs, _ = self.basic_net(inputs) return outputs, None if self.box_type == 'white': aux_net = pickle.loads(pickle.dumps(self.basic_net)) elif self.box_type == 'black': assert self.attack_net is not None, "should provide an additional net in black-box case" aux_net = pickle.loads(pickle.dumps(self.basic_net)) aux_net.eval() batch_size = inputs.size(0) m = batch_size n = batch_size logits = aux_net(inputs)[0] num_classes = logits.size(1) outputs = aux_net(inputs)[0] targets_prob = F.softmax(outputs.float(), dim=1) y_tensor_adv = targets step_sign = 1.0 x = inputs.detach() x_org = x.detach() x = x + torch.zeros_like(x).uniform_(-self.epsilon, self.epsilon) if self.train_flag: self.basic_net.train() else: self.basic_net.eval() logits_pred_nat, fea_nat = aux_net(inputs) num_classes = logits_pred_nat.size(1) y_gt = one_hot_tensor(targets, num_classes, device) loss_ce = softCrossEntropy() iter_num = self.num_steps for i in range(iter_num): x.requires_grad_() if x.grad is not None: x.grad.zero_() if x.grad is not None: x.grad.data.fill_(0) logits_pred, fea = aux_net(x) ot_loss = ot.sinkhorn_loss_joint_IPOT(1, 0.00, logits_pred_nat, logits_pred, None, None, 0.01, m, n) aux_net.zero_grad() adv_loss = ot_loss adv_loss.backward(retain_graph=True) x_adv = x.data + self.step_size * torch.sign(x.grad.data) x_adv = torch.min(torch.max(x_adv, inputs - self.epsilon), inputs + self.epsilon) x_adv = torch.clamp(x_adv, -1.0, 1.0) x = Variable(x_adv) logits_pred, fea = self.basic_net(x) self.basic_net.zero_grad() y_sm = utils.label_smoothing(y_gt, y_gt.size(1), self.ls_factor) adv_loss = loss_ce(logits_pred, y_sm.detach()) return logits_pred, adv_loss
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ OT using IPOT and Sinkhorn algorithm """ import torch from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F from ftsc_utils import softCrossEntropy import numpy as np def sinkhorn_loss_joint_IPOT(alpha, beta, x_feature, y_feature, x_label, y_label, epsilon, m, n): C_fea = get_cost_matrix(x_feature, y_feature) C = C_fea T = sinkhorn(C, 0.01, 100) # T = IPOT(C, 1) batch_size = C.size(0) cost_ot = torch.sum(T * C) return cost_ot def sinkhorn(C, epsilon, niter=50, device='cuda'): m = C.size(0) n = C.size(1) mu = Variable(1. / m * torch.FloatTensor(m).fill_(1).to('cuda'), requires_grad=False) nu = Variable(1. / n * torch.FloatTensor(n).fill_(1).to('cuda'), requires_grad=False) # Parameters of the Sinkhorn algorithm. rho = 1 # (.5) **2 # unbalanced transport tau = -.8 # nesterov-like acceleration lam = rho / (rho + epsilon) # Update exponent thresh = 10**(-1) # stopping criterion # Elementary operations ..................................................................... def ave(u, u1): "Barycenter subroutine, used by kinetic acceleration through extrapolation." return tau * u + (1 - tau) * u1 def M(u, v): "Modified cost for logarithmic updates" "$M_{ij} = (-c_{ij} + u_i + v_j) / \epsilon$" return (-C + u.unsqueeze(1) + v.unsqueeze(0)) / epsilon def lse(A): "log-sum-exp" return torch.log(torch.exp(A).sum(1, keepdim=True) + 1e-6) # add 10^-6 to prevent NaN # Actual Sinkhorn loop ...................................................................... u, v, err = 0. * mu, 0. * nu, 0. actual_nits = 0 # to check if algorithm terminates because of threshold or max iterations reached for i in range(niter): u1 = u # useful to check the update u = epsilon * (torch.log(mu) - lse(M(u, v)).squeeze()) + u v = epsilon * (torch.log(nu) - lse(M(u, v).t()).squeeze()) + v # accelerated unbalanced iterations # u = ave( u, lam * ( epsilon * ( torch.log(mu) - lse(M(u,v)).squeeze() ) + u ) ) # v = ave( v, lam * ( epsilon * ( torch.log(nu) - lse(M(u,v).t()).squeeze() ) + v ) ) err = (u - u1).abs().sum() actual_nits += 1 if (err < thresh).cpu().data.numpy(): break U, V = u, v pi = torch.exp(M(U, V)) # Transport plan pi = diag(a)*K*diag(b) pi = pi.to('cuda').float() return pi # return the transport def IPOT(cost_matrix, beta=1, device='cuda'): m = cost_matrix.size(0) n = cost_matrix.size(1) sigma = 1.0 / n * torch.ones([n, 1]).to(device) T = torch.ones([m, n]).to(device) A = torch.exp(-cost_matrix / beta) for t in range(50): # BUG: should be elementwise product, * in numpy #Q = torch.mm(A, T) Q = A * T # Hardmard product for k in range(1): delta = 1.0 / (m * torch.mm(Q, sigma)) sigma = 1.0 / (n * torch.mm(delta.t(), Q)).t() #sigma = 1.0 / (n * torch.mv(Q, delta)) tmp = torch.mm(construct_diag(torch.squeeze(delta)), Q) T = torch.mm(tmp, construct_diag(torch.squeeze(sigma))) return T def construct_diag(d): n = d.size(0) x = torch.zeros([n, n]).to(d.device) x[range(n), range(n)] = d.view(-1) return x def get_cost_matrix(x_feature, y_feature): C_fea = cost_matrix_cos(x_feature, y_feature) # Wasserstein cost function return C_fea def cost_matrix_cos(x, y, p=2): # return the m*n sized cost matrix "Returns the matrix of $|x_i-y_j|^p$." # un squeeze differently so that the tensors can broadcast # dim-2 (summed over) is the feature dim x_col = x.unsqueeze(1) y_lin = y.unsqueeze(0) cos = nn.CosineSimilarity(dim=2, eps=1e-6) c = torch.clamp(1 - cos(x_col, y_lin), min=0) return c
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. '''Train Adversarially Robust Models with Feature Scattering''' from __future__ import print_function import time import numpy as np import random import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torch.backends.cudnn as cudnn import torchvision import torchvision.transforms as transforms from torch.autograd.gradcheck import zero_gradients import copy from torch.autograd import Variable from PIL import Image import os import argparse import datetime from tqdm import tqdm from models import * import utils from utils import softCrossEntropy from utils import one_hot_tensor from attack_methods import Attack_FeaScatter torch.set_printoptions(threshold=10000) np.set_printoptions(threshold=np.inf) parser = argparse.ArgumentParser(description='Feature Scatterring Training') # add type keyword to registries parser.register('type', 'bool', utils.str2bool) parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint') parser.add_argument('--lr', default=0.1, type=float, help='learning rate') parser.add_argument('--adv_mode', default='feature_scatter', type=str, help='adv_mode (feature_scatter)') parser.add_argument('--model_dir', type=str, help='model path') parser.add_argument('--init_model_pass', default='-1', type=str, help='init model pass (-1: from scratch; K: checkpoint-K)') parser.add_argument('--max_epoch', default=200, type=int, help='max number of epochs') parser.add_argument('--save_epochs', default=100, type=int, help='save period') parser.add_argument('--decay_epoch1', default=60, type=int, help='learning rate decay epoch one') parser.add_argument('--decay_epoch2', default=90, type=int, help='learning rate decay point two') parser.add_argument('--decay_rate', default=0.1, type=float, help='learning rate decay rate') parser.add_argument('--batch_size_train', default=128, type=int, help='batch size for training') parser.add_argument('--momentum', default=0.9, type=float, help='momentum (1-tf.momentum)') parser.add_argument('--weight_decay', default=2e-4, type=float, help='weight decay') parser.add_argument('--log_step', default=10, type=int, help='log_step') # number of classes and image size will be updated below based on the dataset parser.add_argument('--num_classes', default=10, type=int, help='num classes') parser.add_argument('--image_size', default=32, type=int, help='image size') parser.add_argument('--dataset', default='cifar10', type=str, help='dataset') # concat cascade args = parser.parse_args() if args.dataset == 'cifar10': print('------------cifar10---------') args.num_classes = 10 args.image_size = 32 elif args.dataset == 'cifar100': print('----------cifar100---------') args.num_classes = 100 args.image_size = 32 if args.dataset == 'svhn': print('------------svhn10---------') args.num_classes = 10 args.image_size = 32 device = 'cuda' if torch.cuda.is_available() else 'cpu' start_epoch = 0 # Data print('==> Preparing data..') if args.dataset == 'cifar10' or args.dataset == 'cifar100': transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # [-1 1] ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # [-1 1] ]) elif args.dataset == 'svhn': transform_train = transforms.Compose([ # transforms.RandomCrop(32, padding=4), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # [-1 1] ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # [-1 1] ]) if args.dataset == 'cifar10': trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') elif args.dataset == 'cifar100': trainset = torchvision.datasets.CIFAR100(root='./data', train=True, download=True, transform=transform_train) testset = torchvision.datasets.CIFAR100(root='./data', train=False, download=True, transform=transform_test) elif args.dataset == 'svhn': trainset = torchvision.datasets.SVHN(root='./data', split='train', download=True, transform=transform_train) testset = torchvision.datasets.SVHN(root='./data', split='test', download=True, transform=transform_test) trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size_train, shuffle=True, num_workers=2) print('==> Building model..') if args.dataset == 'cifar10' or args.dataset == 'cifar100' or args.dataset == 'svhn': print('---wide resenet-----') basic_net = WideResNet(depth=28, num_classes=args.num_classes, widen_factor=10) def print_para(net): for name, param in net.named_parameters(): if param.requires_grad: print(name) print(param.data) break basic_net = basic_net.to(device) # config for feature scatter config_feature_scatter = { 'train': True, 'epsilon': 8.0 / 255 * 2, 'num_steps': 1, 'step_size': 8.0 / 255 * 2, 'random_start': True, 'ls_factor': 0.5, } if args.adv_mode.lower() == 'feature_scatter': print('-----Feature Scatter mode -----') net = Attack_FeaScatter(basic_net, config_feature_scatter) else: print('-----OTHER_ALGO mode -----') raise NotImplementedError("Please implement this algorithm first!") if device == 'cuda': net = torch.nn.DataParallel(net) cudnn.benchmark = True optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) if args.resume and args.init_model_pass != '-1': # Load checkpoint. print('==> Resuming from checkpoint..') f_path_latest = os.path.join(args.model_dir, 'latest') f_path = os.path.join(args.model_dir, ('checkpoint-%s' % args.init_model_pass)) if not os.path.isdir(args.model_dir): print('train from scratch: no checkpoint directory or file found') elif args.init_model_pass == 'latest' and os.path.isfile(f_path_latest): checkpoint = torch.load(f_path_latest) net.load_state_dict(checkpoint['net']) start_epoch = checkpoint['epoch'] + 1 print('resuming from epoch %s in latest' % start_epoch) elif os.path.isfile(f_path): checkpoint = torch.load(f_path) net.load_state_dict(checkpoint['net']) start_epoch = checkpoint['epoch'] + 1 print('resuming from epoch %s' % (start_epoch - 1)) elif not os.path.isfile(f_path) or not os.path.isfile(f_path_latest): print('train from scratch: no checkpoint directory or file found') soft_xent_loss = softCrossEntropy() def train_fun(epoch, net): print('\nEpoch: %d' % epoch) net.train() train_loss = 0 correct = 0 total = 0 # update learning rate if epoch < args.decay_epoch1: lr = args.lr elif epoch < args.decay_epoch2: lr = args.lr * args.decay_rate else: lr = args.lr * args.decay_rate * args.decay_rate for param_group in optimizer.param_groups: param_group['lr'] = lr def get_acc(outputs, targets): _, predicted = outputs.max(1) total = targets.size(0) correct = predicted.eq(targets).sum().item() acc = 1.0 * correct / total return acc iterator = tqdm(trainloader, ncols=0, leave=False) for batch_idx, (inputs, targets) in enumerate(iterator): start_time = time.time() inputs, targets = inputs.to(device), targets.to(device) adv_acc = 0 optimizer.zero_grad() # forward outputs, loss_fs = net(inputs.detach(), targets) optimizer.zero_grad() loss = loss_fs.mean() loss.backward() optimizer.step() train_loss = loss.item() duration = time.time() - start_time if batch_idx % args.log_step == 0: if adv_acc == 0: adv_acc = get_acc(outputs, targets) iterator.set_description(str(adv_acc)) nat_outputs, _ = net(inputs, targets, attack=False) nat_acc = get_acc(nat_outputs, targets) print( "epoch %d, step %d, lr %.4f, duration %.2f, training nat acc %.2f, training adv acc %.2f, training adv loss %.4f" % (epoch, batch_idx, lr, duration, 100 * nat_acc, 100 * adv_acc, train_loss)) if epoch % args.save_epochs == 0 or epoch >= args.max_epoch - 2: print('Saving..') f_path = os.path.join(args.model_dir, ('checkpoint-%s' % epoch)) state = { 'net': net.state_dict(), # 'optimizer': optimizer.state_dict() } if not os.path.isdir(args.model_dir): os.mkdir(args.model_dir) torch.save(state, f_path) if epoch >= 0: print('Saving latest @ epoch %s..' % (epoch)) f_path = os.path.join(args.model_dir, 'latest') state = { 'net': net.state_dict(), 'epoch': epoch, 'optimizer': optimizer.state_dict() } if not os.path.isdir(args.model_dir): os.mkdir(args.model_dir) torch.save(state, f_path) for epoch in range(start_epoch, args.max_epoch): train_fun(epoch, net)
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import argparse import inspect import os import sys import time import warnings from functools import partial import numpy as np import torch import torch.backends.cudnn as cudnn import torchvision import torchvision.transforms as transforms from tqdm import tqdm import active_tests.decision_boundary_binarization import ftsc_utils as utils import networks from attack_methods import Attack_BetterPGD from attack_methods import Attack_None from attack_methods import Attack_PGD from attack_methods import Attack_AutoPGD from ftsc_utils import CWLoss from models import * warnings.simplefilter('once', RuntimeWarning) currentdir = os.path.dirname( os.path.abspath(inspect.getfile(inspect.currentframe()))) grandarentdir = os.path.dirname(os.path.dirname(currentdir)) sys.path.insert(0, grandarentdir) parser = argparse.ArgumentParser( description='Feature Scattering Adversarial Training') parser.register('type', 'bool', utils.str2bool) parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint') parser.add_argument('--binarization-test', action="store_true") parser.add_argument('--attack', default=True, type='bool', help='attack') parser.add_argument('--model_dir', type=str, help='model path') parser.add_argument('--model-path', type=str, help='model path', default=None) parser.add_argument('--init_model_pass', default='-1', type=str, help='init model pass') parser.add_argument('--attack_method', default='pgd', type=str, help='adv_mode (natural, pdg or cw)') parser.add_argument('--attack_method_list', type=str) parser.add_argument('--log_step', default=7, type=int, help='log_step') # dataset dependent parser.add_argument('--num_classes', default=10, type=int, help='num classes') parser.add_argument('--dataset', default='cifar10', type=str, help='dataset') # concat cascade parser.add_argument('--batch_size_test', default=100, type=int, help='batch size for testing') parser.add_argument('--image_size', default=32, type=int, help='image size') parser.add_argument('--num_samples_test', default=-1, type=int) parser.add_argument('--n-inner-points', default=50, type=int) parser.add_argument('--n-boundary-points', default=10, type=int) parser.add_argument("--epsilon", type=int, default=8) parser.add_argument("--more-steps", action="store_true") parser.add_argument("--sample-from-corners", action="store_true") args = parser.parse_args() if args.binarization_test: assert args.batch_size_test == 1 if args.dataset == 'cifar10': print('------------cifar10---------') args.num_classes = 10 args.image_size = 32 elif args.dataset == 'cifar100': print('----------cifar100---------') args.num_classes = 100 args.image_size = 32 if args.dataset == 'svhn': print('------------svhn10---------') args.num_classes = 10 args.image_size = 32 elif args.dataset == 'mnist': print('----------mnist---------') args.num_classes = 10 args.image_size = 28 device = 'cuda' if torch.cuda.is_available() else 'cpu' start_epoch = 0 # Data print('==> Preparing data..') if args.dataset == 'cifar10' or args.dataset == 'cifar100': transform_test = transforms.Compose([ transforms.ToTensor(), # transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # [-1 1] ]) elif args.dataset == 'svhn': transform_test = transforms.Compose([ transforms.ToTensor(), # transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # [-1 1] ]) if args.dataset == 'cifar10': testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) elif args.dataset == 'cifar100': testset = torchvision.datasets.CIFAR100(root='./data', train=False, download=True, transform=transform_test) elif args.dataset == 'svhn': testset = torchvision.datasets.SVHN(root='./data', split='test', download=True, transform=transform_test) testloader = torch.utils.data.DataLoader(testset, batch_size=args.batch_size_test, shuffle=False, num_workers=2) print('==> Building model..') if args.dataset == 'cifar10' or args.dataset == 'cifar100' or args.dataset == 'svhn': print('---wide resenet-----') basic_net = WideResNet(depth=28, num_classes=args.num_classes, widen_factor=10) basic_net = basic_net.to(device) class ZeroOneOneOneNetwork(nn.Module): def __init__(self, model): super().__init__() self.model = model def forward(self, x, **kwargs): return self.model((x - 0.5) / 0.5, **kwargs) if args.binarization_test: args.num_classes = 2 if args.num_samples_test == -1: num_samples_test = len(testset) # configs config_natural = {'train': False} config_fgsm = { 'train': False, 'targeted': False, 'epsilon': args.epsilon / 255.0, 'num_steps': 1, 'step_size': args.epsilon / 255.0, 'random_start': True } config_pgd = { 'train': False, 'targeted': False, 'epsilon': args.epsilon / 255.0, 'num_steps': 20, 'step_size': args.epsilon / 4.0 / 255.0, 'random_start': True, 'loss_func': torch.nn.CrossEntropyLoss(reduction='none') } config_cw = { 'train': False, 'targeted': False, 'epsilon': args.epsilon / 255.0, 'num_steps': 20, 'step_size': args.epsilon / 4.0 / 255.0, 'random_start': True, 'loss_func': CWLoss(args.num_classes) } config_auto_pgd_ce = { 'train': False, 'targeted': False, 'epsilon': args.epsilon / 255.0, 'num_steps': 20, 'loss_func': "ce" } config_auto_pgd_dlr = { 'train': False, 'targeted': False, 'epsilon': args.epsilon / 255.0, 'num_steps': 20, 'loss_func': "logit-diff" } config_auto_pgd_dlr_t = { **config_auto_pgd_dlr, "targeted": True, "n_classes": 10, } config_auto_pgd_ce_plus = { **config_auto_pgd_ce, "n_restarts": 4 } config_auto_pgd_dlr_plus = { **config_auto_pgd_dlr, "n_restarts": 4 } class __KwargsSequential(torch.nn.Sequential): """ Modification of a torch.nn.Sequential model that allows kwargs in the forward pass. These will be passed to the first module of the network. """ def forward(self, input, **kwargs): for idx, module in enumerate(self): if idx == 0: input = module(input, **kwargs) else: input = module(input) return input def train_classifier(n_features, train_loader, raw_train_loader, logits, device, rescale_logits, classifier): del raw_train_loader x_ = train_loader.dataset.tensors[0] y_ = train_loader.dataset.tensors[1] x_original = x_[0] x_boundary = x_[y_ == 1] assert len(x_boundary) == 1, "Method only works for a single boundary point" x_boundary = x_boundary[0] margin = 0.99999999999 delta = x_boundary - x_original delta = delta / (torch.dot(delta, delta)) w = delta b = -torch.dot(x_original, delta) - margin binary_classifier = torch.nn.Linear(n_features, 2) binary_classifier.weight.data = torch.stack((-w, w), 0) binary_classifier.bias.data = torch.stack((-b, b), 0) binary_classifier = binary_classifier.to(device) #import pdb; pdb.set_trace() #for x, y in train_loader: # x, y = x.to(device), y.to(device) # # l = binary_classifier(x) # p = l.argmax(-1) # is_correct = p == y linearized_model = __KwargsSequential( networks.Lambda( lambda x, **kwargs: classifier(x, features_only=True, **kwargs)), binary_classifier) return linearized_model if not args.binarization_test: config_fgsm["epsilon"] *= 2.0 config_pgd["epsilon"] *= 2.0 config_cw["epsilon"] *= 2.0 config_fgsm["step_size"] *= 2.0 config_pgd["step_size"] *= 2.0 config_cw["step_size"] *= 2.0 else: config_auto_pgd_dlr_t["n_classes"] = 2 print(f"Epsilon: {args.epsilon}") if args.more_steps: config_pgd["step_size"] /= 5.0 config_cw["step_size"] /= 5.0 config_pgd["num_steps"] *= 10 config_cw["num_steps"] *= 10 config_auto_pgd_ce["num_steps"] *= 10 config_auto_pgd_dlr["num_steps"] *= 10 print("More & finer steps") def test_test(net, feature_extractor, config): from argparse_utils import DecisionBoundaryBinarizationSettings print("num_samples_test:", args.num_samples_test) print("test epsilon:", config["epsilon"]) scores_logit_differences_and_validation_accuracies = \ active_tests.decision_boundary_binarization.interior_boundary_discrimination_attack( feature_extractor, testloader, attack_fn=lambda m, l, kwargs: test(0, create_attack(m), l, verbose=False, inverse_acc=True, return_advs=True, **kwargs), linearization_settings=DecisionBoundaryBinarizationSettings( epsilon=config["epsilon"], norm="linf", lr=100000, n_boundary_points=args.n_boundary_points, n_inner_points=args.n_inner_points, adversarial_attack_settings=None, optimizer="sklearn" ), n_samples=args.num_samples_test, device=device, n_samples_evaluation=200,#args.num_samples_test * 10 n_samples_asr_evaluation=200, # TODO: use the right arguments here again! # relative_inner_boundary_gap=0.00, rescale_logits="adaptive", decision_boundary_closeness=0.9999, sample_training_data_from_corners=args.sample_from_corners, #train_classifier_fn=partial(train_classifier, classifier=feature_extractor) ) print(active_tests.decision_boundary_binarization.format_result( scores_logit_differences_and_validation_accuracies, args.num_samples_test)) def test(epoch, net, loader, verbose=True, inverse_acc=False, return_advs=False): # net.eval() test_loss = 0 correct = 0 total = 0 if verbose: iterator = tqdm(loader, ncols=0, leave=False) else: iterator = loader if return_advs: x_adv = [] logits_adv = [] else: x_adv = None logits_adv = None for batch_idx, (inputs, targets) in enumerate(iterator): start_time = time.time() inputs, targets = inputs.to(device), targets.to(device) pert_inputs = inputs.detach() res = net(pert_inputs, targets) if isinstance(res, tuple): outputs, _, x_adv_it = res else: outputs = res if return_advs: x_adv.append(x_adv_it) logits_adv.append(outputs) loss = criterion(outputs, targets) test_loss += loss.item() duration = time.time() - start_time _, predicted = outputs.max(1) batch_size = targets.size(0) total += batch_size correct_num = predicted.eq(targets).sum().item() correct += correct_num if verbose: iterator.set_description( "Accuracy:" + str(predicted.eq(targets).sum().item() / targets.size(0))) if batch_idx % args.log_step == 0: print( "step %d, duration %.2f, test acc %.2f, avg-acc %.2f, loss %.2f" % (batch_idx, duration, 100. * correct_num / batch_size, 100. * correct / total, test_loss / total)) if return_advs: x_adv = torch.cat(x_adv, 0) logits_adv = torch.cat(logits_adv, 0) acc = 100. * correct / total if inverse_acc: acc = (100 - acc) / 100.0 if verbose: print("Robust Accuracy:", acc) # print('Val acc:', acc) return acc, (x_adv, logits_adv) if args.resume and args.init_model_pass != '-1': # Load checkpoint. print('==> Resuming from checkpoint..') if args.model_dir is not None: f_path_latest = os.path.join(args.model_dir, 'latest') f_path = os.path.join(args.model_dir, ('checkpoint-%s' % args.init_model_pass)) if args.model_path is not None: f_path = args.model_path f_path_latest = args.model_path if not os.path.isfile(f_path): print('train from scratch: no checkpoint directory or file found') elif args.init_model_pass == 'latest' and os.path.isfile( f_path_latest): checkpoint = torch.load(f_path_latest, map_location="cpu") basic_net.load_state_dict( {(k[len("module.basic_net."):] if k.startswith( "module.basic_net.") else k): v for k, v in checkpoint['net'].items()}) start_epoch = checkpoint['epoch'] print('resuming from epoch %s in latest' % start_epoch) elif os.path.isfile(f_path): checkpoint = torch.load(f_path) # net.load_state_dict(checkpoint['net']) basic_net.load_state_dict( {(k[len("module.basic_net."):] if k.startswith( "module.basic_net.") else k): v for k, v in checkpoint['net'].items()}) start_epoch = checkpoint['epoch'] print('resuming from epoch %s' % start_epoch) elif not os.path.isfile(f_path) or not os.path.isfile(f_path_latest): print('train from scratch: no checkpoint directory or file found') attack_list = args.attack_method_list.split('-') attack_num = len(attack_list) for attack_idx in range(attack_num): args.attack_method = attack_list[attack_idx] if args.attack_method == 'natural': print() print('-----natural non-adv mode -----') # config is only dummy, not actually used create_attack = lambda n: Attack_None(n, config_natural) elif args.attack_method.upper() == 'FGSM': print() print('-----FGSM adv mode -----') create_attack = lambda n: Attack_PGD(n, config_fgsm) elif args.attack_method.upper() == 'PGD': print() print('-----PGD adv mode -----') create_attack = lambda n: Attack_PGD(n, config_pgd) elif args.attack_method.upper() == 'CW': print() print('-----CW adv mode -----') create_attack = lambda n: Attack_PGD(n, config_cw) elif args.attack_method.upper() == 'BETTERPGD': print() print('-----Better PGD adv mode -----') create_attack = lambda n: Attack_BetterPGD(n, config_pgd) elif args.attack_method.upper() == 'BETTERCW': print() print('-----Better CW adv mode -----') create_attack = lambda n: Attack_BetterPGD(n, config_cw) elif args.attack_method.upper() == 'AUTOPGDCE': print() print('-----Auto PGD (CE) adv mode -----') create_attack = lambda n: Attack_AutoPGD(n, config_auto_pgd_ce) elif args.attack_method.upper() == 'AUTOPGDDLR': print() print('-----Auto PGD (DLR) adv mode -----') create_attack = lambda n: Attack_AutoPGD(n, config_auto_pgd_dlr) elif args.attack_method.upper() == 'AUTOPGDDLRT': print() print('-----Auto PGD (DLR, targeted) adv mode -----') create_attack = lambda n: Attack_AutoPGD(n, config_auto_pgd_dlr_t) elif args.attack_method.upper() == 'AUTOPGDCE+': print() print('-----Auto PGD+ (CE) adv mode -----') create_attack = lambda n: Attack_AutoPGD(n, config_auto_pgd_ce_plus) elif args.attack_method.upper() == 'AUTOPGDDLR+': print() print('-----Auto PGD+ (DLR) adv mode -----') create_attack = lambda n: Attack_AutoPGD(n, config_auto_pgd_dlr_plus) else: raise Exception( 'Should be a valid attack method. The specified attack method is: {}' .format(args.attack_method)) if args.binarization_test or args.attack_method.upper().startswith("AUTOPGD"): specific_net = ZeroOneOneOneNetwork(basic_net) specific_net.eval() net = create_attack(specific_net) else: net = create_attack(basic_net) if device == 'cuda': net = torch.nn.DataParallel(net) if "specific_net" in locals(): if not isinstance(specific_net, torch.nn.DataParallel): specific_net = torch.nn.DataParallel(specific_net) cudnn.benchmark = True criterion = nn.CrossEntropyLoss() if args.binarization_test: test_test(net, specific_net, config_pgd) else: test(0, net, testloader)
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .wideresnet import *
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import torch import torch.nn as nn import torch.nn.functional as F class BasicBlock(nn.Module): def __init__(self, in_planes, out_planes, stride, dropRate=0.0): super(BasicBlock, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.relu1 = nn.ReLU(inplace=True) self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_planes) self.relu2 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_planes, out_planes, kernel_size=3, stride=1, padding=1, bias=False) self.droprate = dropRate self.equalInOut = (in_planes == out_planes) self.convShortcut = (not self.equalInOut) and nn.Conv2d( in_planes, out_planes, kernel_size=1, stride=stride, padding=0, bias=False) or None def forward(self, x): if not self.equalInOut: x = self.relu1(self.bn1(x)) else: out = self.relu1(self.bn1(x)) out = self.relu2(self.bn2(self.conv1(out if self.equalInOut else x))) if self.droprate > 0: out = F.dropout(out, p=self.droprate, training=self.training) out = self.conv2(out) return torch.add(x if self.equalInOut else self.convShortcut(x), out) class NetworkBlock(nn.Module): def __init__(self, nb_layers, in_planes, out_planes, block, stride, dropRate=0.0): super(NetworkBlock, self).__init__() self.layer = self._make_layer(block, in_planes, out_planes, nb_layers, stride, dropRate) def _make_layer(self, block, in_planes, out_planes, nb_layers, stride, dropRate): layers = [] for i in range(int(nb_layers)): layers.append( block(i == 0 and in_planes or out_planes, out_planes, i == 0 and stride or 1, dropRate)) return nn.Sequential(*layers) def forward(self, x): return self.layer(x) class WideResNet(nn.Module): def __init__(self, depth, num_classes, widen_factor=1, dropRate=0.0): super(WideResNet, self).__init__() nChannels = [ 16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor ] assert ((depth - 4) % 6 == 0) n = (depth - 4) / 6 block = BasicBlock # 1st conv before any network block self.conv1 = nn.Conv2d(3, nChannels[0], kernel_size=3, stride=1, padding=1, bias=False) # 1st block self.block1 = NetworkBlock(n, nChannels[0], nChannels[1], block, 1, dropRate) # 2nd block self.block2 = NetworkBlock(n, nChannels[1], nChannels[2], block, 2, dropRate) # 3rd block self.block3 = NetworkBlock(n, nChannels[2], nChannels[3], block, 2, dropRate) # global average pooling and classifier self.bn1 = nn.BatchNorm2d(nChannels[3]) self.relu = nn.ReLU(inplace=True) self.fc = nn.Linear(nChannels[3], num_classes) self.nChannels = nChannels[3] for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.bias.data.zero_() def forward(self, x, features_only=False, features_and_logits=False): if features_only: assert not features_and_logits out = self.conv1(x) out = self.block1(out) out = self.block2(out) out = self.block3(out) out = self.relu(self.bn1(out)) out = F.avg_pool2d(out, 8) out = out.view(-1, self.nChannels) if features_only: return out elif features_and_logits: return out, self.fc(out) else: return self.fc(out), out.view(x.size(0), -1)
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import gzip import os import numpy as np def extract_images(file_path): '''Extract the images into a 4D uint8 numpy array [index, y, x, depth].''' def _read32(bytestream): dt = np.dtype(np.uint32).newbyteorder('>') return np.frombuffer(bytestream.read(4), dtype=dt)[0] f = open(file_path, 'rb') with gzip.GzipFile(fileobj=f) as bytestream: magic = _read32(bytestream) if magic != 2051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name)) num_images = _read32(bytestream) rows = _read32(bytestream) cols = _read32(bytestream) buf = bytestream.read(rows * cols * num_images) data = np.frombuffer(buf, dtype=np.uint8) data = data.reshape(num_images, rows, cols, 1) return data def extract_labels(file_path): '''Extract the labels into a 1D uint8 numpy array [index].''' def _read32(bytestream): dt = np.dtype(np.uint32).newbyteorder('>') return np.frombuffer(bytestream.read(4), dtype=dt)[0] f = open(file_path, 'rb') with gzip.GzipFile(fileobj=f) as bytestream: magic = _read32(bytestream) if magic != 2049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name)) num_items = _read32(bytestream) buf = bytestream.read(num_items) labels = np.frombuffer(buf, dtype=np.uint8) return labels def load_mnist_data(data_path, is_uint8=False): TRAIN_IMAGES = 'train-images-idx3-ubyte.gz' TRAIN_LABELS = 'train-labels-idx1-ubyte.gz' TEST_IMAGES = 't10k-images-idx3-ubyte.gz' TEST_LABELS = 't10k-labels-idx1-ubyte.gz' train_images = extract_images(os.path.join(data_path, TRAIN_IMAGES)) if not is_uint8: train_images = 2 * (train_images / 255.0 - 0.5) train_labels = extract_labels(os.path.join(data_path, TRAIN_LABELS)) test_images = extract_images(os.path.join(data_path, TEST_IMAGES)) if not is_uint8: test_images = 2 * (test_images / 255.0 - 0.5) test_labels = extract_labels(os.path.join(data_path, TEST_LABELS)) train_data = order_data(train_images, train_labels, 10) test_data = order_data(test_images, test_labels, 10) return dict(train_images=train_data['images'], train_labels=train_data['labels'], train_count=train_data['count'], test_images=test_data['images'], test_labels=test_data['labels'], test_count=test_data['count']) # python2 #def unpickle(file): # import cPickle # fo = open(file, 'rb') # dict = cPickle.load(fo) # fo.close() # return dict # python3 def unpickle(file): import pickle fo = open(file, 'rb') dict = pickle.load(fo, encoding='bytes') fo.close() return dict def load_cifar100_data(data_path, is_fine=True, is_uint8=False): # train train_set = unpickle(os.path.join(data_path, 'train')) train_images = train_set[b'data'] train_images = np.dstack([ train_images[:, :1024], train_images[:, 1024:2048], train_images[:, 2048:] ]) train_images = train_images.reshape([train_images.shape[0], 32, 32, 3]) if not is_uint8: train_images = train_images / 255.0 train_images = 2.0 * (train_images - 0.5) if is_fine: train_labels = np.array(train_set[b'fine_labels']) else: train_labels = np.array(train_set[b'coarse_labels']) # test test_set = unpickle(os.path.join(data_path, 'test')) test_images = test_set[b'data'] test_images = np.dstack([ test_images[:, :1024], test_images[:, 1024:2048], test_images[:, 2048:] ]) test_images = test_images.reshape([test_images.shape[0], 32, 32, 3]) if not is_uint8: test_images = test_images / 255.0 test_images = 2.0 * (test_images - 0.5) if is_fine: test_labels = np.array(test_set[b'fine_labels']) else: test_labels = np.array(test_set[b'coarse_labels']) return dict(train_images=train_images, train_labels=train_labels, test_images=test_images, test_labels=test_labels) def load_cifar10_data(data_path, is_uint8=False): # train train_names = [ 'data_batch_1', 'data_batch_2', 'data_batch_3', 'data_batch_4', 'data_batch_5' ] all_images = [] all_labels = [] for filename in train_names: train_set = unpickle(os.path.join(data_path, filename)) all_images.append(train_set[b'data']) all_labels.append(train_set[b'labels']) train_images = np.concatenate(all_images, axis=0) train_images = np.dstack([ train_images[:, :1024], train_images[:, 1024:2048], train_images[:, 2048:] ]) train_images = train_images.reshape([train_images.shape[0], 32, 32, 3]) if not is_uint8: train_images = train_images / 255.0 train_images = 2.0 * (train_images - 0.5) train_labels = np.concatenate(all_labels, axis=0) # test test_set = unpickle(os.path.join(data_path, 'test_batch')) test_images = test_set[b'data'] test_images = np.dstack([ test_images[:, :1024], test_images[:, 1024:2048], test_images[:, 2048:] ]) test_images = test_images.reshape([test_images.shape[0], 32, 32, 3]) if not is_uint8: test_images = test_images / 255.0 test_images = 2.0 * (test_images - 0.5) test_labels = np.array(test_set[b'labels']) return dict(train_images=train_images, train_labels=train_labels, test_images=test_images, test_labels=test_labels) def preprocess_py(images, pad_size, target_size): '''Preprocess images in python. Args: images: 4-D numpy array. Returns: preprocessed images, 4-D numpy array. ''' assert images.shape[1] == images.shape[2], 'can only handle square images!' image_number = images.shape[0] image_size = images.shape[1] # padding, with equal pad size on both sides. padded_images = np.pad(images, [(0, 0), (pad_size, pad_size), (pad_size, pad_size), (0, 0)], mode='constant', constant_values=0) # random crop idx = np.random.random_integers(low=0, high=2 * pad_size, size=[image_number, 2]) cropped_images = np.zeros([image_number, target_size, target_size, 3]) for i in np.arange(image_number): cropped_images[i] = padded_images[i, idx[i, 0]:idx[i, 0] + target_size, idx[i, 1]:idx[i, 1] + target_size] # random flip if np.random.rand() > 0.5: cropped_images = cropped_images[:, :, ::-1] return cropped_images def one_hot(y, dim): y_dense = np.zeros([len(y), dim]) y_dense[np.arange(len(y)), y] = 1.0 return y_dense
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging logging.getLogger('tensorflow').setLevel(logging.FATAL) import tensorflow as tf tf.logging.set_verbosity(tf.logging.ERROR) import time import sys import numpy as np from bat_utils import * from wide_resnet import Model def load_data(FLAGS): # load data if FLAGS.dataset == 'SVHN': raise ValueError("not supported") elif FLAGS.dataset == 'CIFAR': if FLAGS.num_classes == 10: dataset = load_cifar10_data('data/cifar-10-batches-py/') elif FLAGS.num_classes == 20: dataset = load_cifar100_data('cifar100_data', is_fine=False) elif FLAGS.num_classes == 100: dataset = load_cifar100_data('cifar100_data', is_fine=True) else: raise ValueError('Number of classes not valid!') train_images = dataset['train_images'] train_labels = dataset['train_labels'] test_images = dataset['test_images'] test_labels = dataset['test_labels'] else: raise ValueError('Dataset not valid!') return train_images, train_labels, test_images, test_labels def load_model(FLAGS): x_pl = tf.placeholder(tf.float32, shape=[None, 32, 32, 3], name='x') y_pl = tf.placeholder(tf.int64, shape=[None], name='y') is_train = tf.placeholder(tf.bool, name='is_train') model = Model(is_train) x_transformed = x_pl * 2.0 - 1.0 logits, _ = model.build_model(images=x_transformed, num_classes=FLAGS.num_classes) prob = tf.nn.softmax(logits) correct = tf.cast(tf.equal(tf.argmax(logits, axis=1), y_pl), tf.float32) accuracy = tf.reduce_mean(correct) saver = tf.train.Saver(max_to_keep=100) config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) saver.restore(sess, FLAGS.ckpt_path) print('restored checkpoint from %s' % FLAGS.ckpt_path) return sess, (x_pl, y_pl, is_train, logits, accuracy) def setup_attack(logits, x_pl, y_pl, FLAGS): xent = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y_pl) # loss for adversarial attack if FLAGS.loss_type == 'xent': if FLAGS.targeted: loss_att = tf.reduce_sum(xent) else: loss_att = -tf.reduce_sum(xent) elif FLAGS.loss_type == 'CW': y_loss = tf.one_hot(y_pl, FLAGS.num_classes) self = tf.reduce_sum(y_loss * logits, axis=1) other = tf.reduce_max((1 - y_loss) * logits - y_loss * 1e4, axis=1) if FLAGS.targeted: raise ValueError("not supported") else: loss_att = tf.reduce_sum(tf.maximum(self - other + FLAGS.margin, 0)) else: raise ValueError('loss type not supported!') grad, = tf.gradients(loss_att, x_pl) return grad def adv_attack(sess, grad, x_pl, y_pl, is_train, x_batch, y_batch, FLAGS): epsilon = FLAGS.epsilon / 255.0 step_size = FLAGS.step_size / 255.0 if not FLAGS.targeted: y_att = np.copy(y_batch) else: raise ValueError("targeted mode not supported") # randomly perturb the original images if FLAGS.random_start: x = x_batch + np.random.uniform(-epsilon, epsilon, x_batch.shape) else: x = np.copy(x_batch) for i in range(FLAGS.num_steps): logits, grad_val = sess.run(grad, feed_dict={ x_pl: x, y_pl: y_att, is_train: False }) x = x - step_size * np.sign(grad_val) x = np.clip(x, x_batch - epsilon, x_batch + epsilon) x = np.clip(x, 0, 1.0) return x def run_eval(sess, grad, x_pl, y_pl, is_train, logits, FLAGS, test_images, test_labels, num_classes=10): test_size = test_images.shape[0] epoch_steps = np.ceil(test_size / FLAGS.batch_size).astype(np.int32) nat_total = 0.0 adv_total = 0.0 class_nat_total = np.zeros([num_classes]) class_adv_total = np.zeros([num_classes]) nat_cnt_list = np.zeros([test_size]) adv_cnt_list = np.zeros([test_size]) idx = np.random.permutation(test_size) for step_idx in range(epoch_steps): start = step_idx * FLAGS.batch_size end = np.minimum((step_idx + 1) * FLAGS.batch_size, test_size).astype(np.int32) x_batch = test_images[idx[start:end]] y_batch = test_labels[idx[start:end]] start_time = time.time() nat_logits = sess.run(logits, feed_dict={ x_pl: x_batch, is_train: False }) nat_cnt = nat_logits.argmax(-1) == y_batch x_batch_adv = adv_attack(sess, grad, x_pl, y_pl, is_train, x_batch, y_batch, FLAGS) adv_logits = sess.run(logits, feed_dict={ x_pl: x_batch_adv, y_pl: y_batch, is_train: False }) adv_cnt = adv_logits.argmax(-1) == y_batch nat_cnt_list[start:end] = nat_cnt adv_cnt_list[start:end] = adv_cnt for ii in range(FLAGS.num_classes): class_nat_total[ii] += np.sum(nat_cnt[y_batch == ii]) class_adv_total[ii] += np.sum(adv_cnt[y_batch == ii]) nat_total += np.sum(nat_cnt) adv_total += np.sum(adv_cnt) duration = time.time() - start_time print('finished batch %d/%d, duration %.2f, nat acc %.2f, adv acc %.2f' % (step_idx, epoch_steps, duration, 100 * np.mean(nat_cnt), 100 * np.mean(adv_cnt))) sys.stdout.flush() nat_acc = nat_total / test_size adv_acc = adv_total / test_size class_nat_total /= (test_size / FLAGS.num_classes) class_adv_total /= (test_size / FLAGS.num_classes) print('clean accuracy: %.2f, adv accuracy: %.2f' % (100 * nat_acc, 100 * adv_acc)) for ii in range(FLAGS.num_classes): print('class %d, clean %.2f, adv %.2f' % (ii, 100 * class_nat_total[ii], 100 * class_adv_total[ii])) def parse_args(): tf.flags.DEFINE_string('ckpt_path', '', '') tf.flags.DEFINE_string('dataset', 'CIFAR', '') tf.flags.DEFINE_integer('num_classes', 10, '') tf.flags.DEFINE_integer('batch_size', 100, '') tf.flags.DEFINE_string('loss_type', 'xent', '') tf.flags.DEFINE_float('margin', 50.0, '') tf.flags.DEFINE_float('epsilon', 8.0, '') tf.flags.DEFINE_integer('num_steps', 10, '') tf.flags.DEFINE_float('step_size', 2.0, '') tf.flags.DEFINE_boolean('random_start', False, '') tf.flags.DEFINE_boolean('targeted', False, '') tf.flags.DEFINE_integer('n_samples', 2048, '') FLAGS = tf.flags.FLAGS print(FLAGS.flag_values_dict()) return FLAGS def main(): FLAGS = parse_args() _, _, test_images, test_labels = load_data(FLAGS) # normalize to [0,1] value range from [-1, 1] since we put normalization # inside of the model test_images = (test_images + 1.0) / 2.0 # subsample test data if FLAGS.n_samples == -1: FLAGS.n_samples = len(test_images) idxs = np.arange(len(test_images)) np.random.shuffle(idxs) idxs = idxs[:FLAGS.n_samples] test_images, test_labels = test_images[idxs], test_labels[idxs] sess, (x_pl, y_pl, is_train, logits, accuracy) = load_model(FLAGS) attack_grad = setup_attack(logits, x_pl, y_pl, FLAGS) run_eval(sess, attack_grad, x_pl, y_pl, is_train, logits, FLAGS, test_images, test_labels) if __name__ == "__main__": main()
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import os import sys import numpy as np import tensorflow as tf from utils import * from wide_resnet import Model tf.flags.DEFINE_string('model_dir', '/tmp/adv_train/', '') tf.flags.DEFINE_string('dataset', '', '') tf.flags.DEFINE_integer('num_classes', 10, '') tf.flags.DEFINE_string('restore_ckpt_path', '', '') tf.flags.DEFINE_integer('start_epoch', 0, '') tf.flags.DEFINE_integer('max_epoch', 201, '') tf.flags.DEFINE_integer('decay_epoch1', 100, '') tf.flags.DEFINE_integer('decay_epoch2', 150, '') tf.flags.DEFINE_float('decay_rate', 0.1, '') tf.flags.DEFINE_float('learning_rate', 0.1, '') tf.flags.DEFINE_float('momentum', 0.9, '') tf.flags.DEFINE_integer('batch_size', 128, '') tf.flags.DEFINE_float('weight_decay', 2e-4, '') tf.flags.DEFINE_float('margin', 50.0, '') tf.flags.DEFINE_string('loss_type', 'xent', '') tf.flags.DEFINE_float('epsilon', 8.0, '') tf.flags.DEFINE_integer('num_steps', 7, '') tf.flags.DEFINE_float('step_size', 2.0, '') tf.flags.DEFINE_boolean('random_start', True, '') tf.flags.DEFINE_boolean('targeted', True, '') tf.flags.DEFINE_string('target_type', 'MC', '') tf.flags.DEFINE_boolean('label_adversary', True, '') tf.flags.DEFINE_float('multi', 9, '') tf.flags.DEFINE_integer('log_steps', 10, '') tf.flags.DEFINE_integer('save_epochs', 20, '') tf.flags.DEFINE_integer('eval_epochs', 10, '') tf.flags.DEFINE_string('cuda_device', '3', '') FLAGS = tf.flags.FLAGS os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.cuda_device print(FLAGS.flag_values_dict()) # load data if FLAGS.dataset == 'SVHN': train_data = np.load('svhn_data/train_32x32.npz') train_images = train_data['arr_0'] train_images = 2.0 * (train_images / 255.0 - 0.5) train_labels = train_data['arr_1'] test_data = np.load('svhn_data/test_32x32.npz') test_images = test_data['arr_0'] test_images = 2 * (test_images / 255.0 - 0.5) test_labels = test_data['arr_1'] elif FLAGS.dataset == 'CIFAR': if FLAGS.num_classes == 10: dataset = load_cifar10_data('cifar10_data') elif FLAGS.num_classes == 20: dataset = load_cifar100_data('cifar100_data', is_fine=False) elif FLAGS.num_classes == 100: dataset = load_cifar100_data('cifar100_data', is_fine=True) else: raise ValueError('Number of classes not valid!') train_images = dataset['train_images'] train_labels = dataset['train_labels'] test_images = dataset['test_images'] test_labels = dataset['test_labels'] else: raise ValueError('Dataset not valid!') x_pl = tf.placeholder(tf.float32, shape=[None, 32, 32, 3], name='x') y_pl = tf.placeholder(tf.int64, shape=[None], name='y') y_loss = tf.placeholder(tf.float32, shape=[None, FLAGS.num_classes], name='y_loss') lr = tf.placeholder(tf.float32, name='lr') is_train = tf.placeholder(tf.bool, name='is_train') global_step = tf.Variable(0, trainable=False, name='global_step') model = Model(is_train) logits, _ = model.build_model(images=x_pl, num_classes=FLAGS.num_classes) prob = tf.nn.softmax(logits) xent = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y_loss) mean_xent = tf.reduce_mean(xent) total_loss = mean_xent + FLAGS.weight_decay * model.weight_decay_loss correct = tf.cast(tf.equal(tf.argmax(logits, axis=1), y_pl), tf.float32) accuracy = tf.reduce_mean(correct) # loss for adversarial attack if FLAGS.loss_type == 'xent': if FLAGS.targeted: loss_att = tf.reduce_sum(xent) else: loss_att = -tf.reduce_sum(xent) elif FLAGS.loss_type == 'CW': self = tf.reduce_sum(y_loss * logits, axis=1) other = tf.reduce_max((1 - y_loss) * logits - y_loss * 1000.0, axis=1) if FLAGS.targeted: loss_att = tf.reduce_sum(tf.maximum(other - self + FLAGS.margin, 0)) else: loss_att = tf.reduce_sum(tf.maximum(self - other + FLAGS.margin, 0)) else: raise ValueError('loss type not supported!') grad, = tf.gradients(loss_att, x_pl) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) opt = tf.train.MomentumOptimizer(lr, FLAGS.momentum) grads_and_vars = opt.compute_gradients(total_loss, tf.trainable_variables()) with tf.control_dependencies(update_ops): train_step = opt.apply_gradients(grads_and_vars, global_step=global_step) saver = tf.train.Saver(max_to_keep=100) init_op = tf.global_variables_initializer() config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) sess.run(init_op) if FLAGS.restore_ckpt_path: saver.restore(sess, os.path.abspath(FLAGS.restore_ckpt_path)) print('Restored checkpoints from %s' % FLAGS.restore_ckpt_path) def adv_attack(nat_logits, x_batch, y_batch, epsilon=FLAGS.epsilon, step_size=FLAGS.step_size, num_steps=FLAGS.num_steps): epsilon = epsilon / 255.0 * 2.0 step_size = step_size / 255.0 * 2.0 y_batch_dense = one_hot(y_batch, FLAGS.num_classes) if not FLAGS.targeted: # non-targeted y_att = np.copy(y_batch) elif FLAGS.target_type == 'MC': # most confusing target label nat_logits[np.arange(y_batch.shape[0]), y_batch] = -1e4 y_att = np.argmax(nat_logits, axis=1) elif FLAGS.target_type == 'RAND': # random target label y_att = np.zeros_like(y_batch) for ii in np.arange(y_batch.shape[0]): tmp = np.ones([FLAGS.num_classes]) / (FLAGS.num_classes - 1) tmp[y_batch[ii]] = 0.0 y_att[ii] = np.random.choice(FLAGS.num_classes, p=tmp) elif FLAGS.target_type == 'MOSA': # most one-step adversarial one-step target label weight = sess.run(tf.get_default_graph().get_tensor_by_name( 'logit/DW:0')).T # num_classes * num_features dist = euclidean_distances( weight[y_batch], weight) + y_batch_dense # batch_size * num_classes gt_logits = np.sum(nat_logits * y_batch_dense, axis=1) diff_logits = np.reshape(gt_logits, [-1, 1]) - nat_logits truncated = np.where(diff_logits > 1e-4, diff_logits, 1e4) y_att = np.argmin(truncated / dist, axis=1) elif FLAGS.target_type == 'MIX': # mix of MC and MOSA weight = sess.run(tf.get_default_graph().get_tensor_by_name( 'logit/DW:0')).T # num_classes * num_features dist = euclidean_distances( weight[y_batch], weight) + y_batch_dense # batch_size * num_classes gt_logits = np.sum(nat_logits * y_batch_dense, axis=1) diff_logits = np.reshape(gt_logits, [-1, 1]) - nat_logits truncated = np.where(diff_logits > 1e-4, diff_logits, 1e4) y_att_MOSA = np.argmin(truncated / dist, axis=1) y_att_MC = np.argmax((1.0 - y_batch_dense) * nat_logits, axis=1) y_att = np.where( np.argmax(nat_logits, axis=1) == y_batch, y_att_MOSA, y_att_MC) else: raise ValueError('Target type not valid!') y_att_dense = one_hot(y_att, FLAGS.num_classes) # randomly perturb as initialization if FLAGS.random_start: noise = np.random.uniform(-epsilon, epsilon, x_batch.shape) x = x_batch + noise else: x = np.copy(x_batch) for i in range(num_steps): grad_val = sess.run(grad, feed_dict={ x_pl: x, y_loss: y_att_dense, is_train: False }) x = x - step_size * np.sign(grad_val) x = np.clip(x, x_batch - epsilon, x_batch + epsilon) x = np.clip(x, -1.0, 1.0) return x def adv_labels(nat_prob, y_batch, gamma=0.01): L = -np.log(nat_prob + 1e-8) # log-likelihood LL = np.copy(L) LL[np.arange(y_batch.shape[0]), y_batch] = 1e4 minval = np.min(LL, axis=1) LL[np.arange(y_batch.shape[0]), y_batch] = -1e4 maxval = np.max(LL, axis=1) denom = np.sum(L, axis=1) - L[np.arange(y_batch.shape[0]), y_batch] - ( FLAGS.num_classes - 1) * (minval - gamma) delta = 1 / (1 + FLAGS.multi * (maxval - minval + gamma) / denom) alpha = delta / denom y_batch_adv = np.reshape( alpha, [-1, 1]) * (L - np.reshape(minval, [-1, 1]) + gamma) y_batch_adv[np.arange(y_batch.shape[0]), y_batch] = 1.0 - delta return y_batch_adv # training loop train_size = train_images.shape[0] epoch_steps = np.ceil(train_size / FLAGS.batch_size).astype(np.int32) for epoch_idx in np.arange(FLAGS.start_epoch, FLAGS.max_epoch): if epoch_idx < FLAGS.decay_epoch1: lr_val = FLAGS.learning_rate elif epoch_idx < FLAGS.decay_epoch2: lr_val = FLAGS.learning_rate * FLAGS.decay_rate else: lr_val = FLAGS.learning_rate * FLAGS.decay_rate * FLAGS.decay_rate # each epoch random shuffle of training images idx = np.random.permutation(train_size) for step_idx in np.arange(epoch_steps): start = step_idx * FLAGS.batch_size end = np.minimum((step_idx + 1) * FLAGS.batch_size, train_size).astype(np.int32) x_batch = preprocess_py(train_images[idx[start:end]], 4, 32) y_batch = train_labels[idx[start:end]] y_batch_dense = one_hot(y_batch, FLAGS.num_classes) start_time = time.time() nat_prob, nat_logits = sess.run([prob, logits], feed_dict={ x_pl: x_batch, is_train: False }) # generate adversarial images x_batch_adv = adv_attack(nat_logits, x_batch, y_batch) # generate adversarial labels y_batch_adv = adv_labels(nat_prob, y_batch) # eval accuracy if step_idx % FLAGS.log_steps == 0: nat_acc = sess.run(accuracy, feed_dict={ x_pl: x_batch, y_pl: y_batch, is_train: False }) adv_acc = sess.run(accuracy, feed_dict={ x_pl: x_batch_adv, y_pl: y_batch, is_train: False }) # training step if FLAGS.label_adversary: _, loss_val = sess.run([train_step, total_loss], feed_dict={ x_pl: x_batch_adv, y_loss: y_batch_adv, is_train: True, lr: lr_val }) else: _, loss_val = sess.run( [train_step, total_loss], feed_dict={ x_pl: x_batch_adv, y_loss: y_batch_dense, is_train: True, lr: lr_val }) duration = time.time() - start_time # print to stdout if step_idx % FLAGS.log_steps == 0: print( "epoch %d, step %d, lr %.4f, duration %.2f, training nat acc %.2f, training adv acc %.2f, training adv loss %.4f" % (epoch_idx, step_idx, lr_val, duration, 100 * nat_acc, 100 * adv_acc, loss_val)) sys.stdout.flush() # save checkpoint if epoch_idx % FLAGS.save_epochs == 0: saver.save(sess, os.path.join(FLAGS.model_dir, 'checkpoint'), epoch_idx) # evaluate def eval_once(): eval_size = test_images.shape[0] epoch_steps = np.ceil(eval_size / FLAGS.batch_size).astype(np.int32) # random shuffle of test images does not affect the result idx = np.random.permutation(eval_size) count = 0.0 for step_idx in np.arange(epoch_steps): start = step_idx * FLAGS.batch_size end = np.minimum((step_idx + 1) * FLAGS.batch_size, eval_size).astype(np.int32) x_batch = test_images[idx[start:end]] y_batch = test_labels[idx[start:end]] nat_logits = sess.run(logits, feed_dict={ x_pl: x_batch, is_train: False }) x_batch_adv = adv_attack(nat_logits, x_batch, y_batch) count += np.sum( sess.run(correct, feed_dict={ x_pl: x_batch_adv, y_pl: y_batch, is_train: False })) acc = count / eval_size return acc if epoch_idx % FLAGS.eval_epochs == 0: print('epoch %d, adv acc %.2f' % (epoch_idx, 100 * eval_once()))
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import os import sys import numpy as np import tensorflow as tf from utils import * from wide_resnet import Model tf.flags.DEFINE_string('ckpt_path', '', '') tf.flags.DEFINE_string('dataset', 'CIFAR', '') tf.flags.DEFINE_integer('num_classes', 10, '') tf.flags.DEFINE_integer('batch_size', 100, '') tf.flags.DEFINE_string('loss_type', 'xent', '') tf.flags.DEFINE_float('margin', 50.0, '') tf.flags.DEFINE_float('epsilon', 8.0, '') tf.flags.DEFINE_integer('num_steps', 10, '') tf.flags.DEFINE_float('step_size', 2.0, '') tf.flags.DEFINE_boolean('random_start', False, '') tf.flags.DEFINE_boolean('targeted', False, '') tf.flags.DEFINE_string('cuda_device', '3', '') FLAGS = tf.flags.FLAGS os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.cuda_device print(FLAGS.flag_values_dict()) # load data if FLAGS.dataset == 'SVHN': train_data = np.load('svhn_data/train_32x32.npz') train_images = train_data['arr_0'] train_images = 2.0 * (train_images / 255.0 - 0.5) train_labels = train_data['arr_1'] test_data = np.load('svhn_data/test_32x32.npz') test_images = test_data['arr_0'] test_images = 2 * (test_images / 255.0 - 0.5) test_labels = test_data['arr_1'] elif FLAGS.dataset == 'CIFAR': if FLAGS.num_classes == 10: dataset = load_cifar10_data('cifar10_data') elif FLAGS.num_classes == 20: dataset = load_cifar100_data('cifar100_data', is_fine=False) elif FLAGS.num_classes == 100: dataset = load_cifar100_data('cifar100_data', is_fine=True) else: raise ValueError('Number of classes not valid!') train_images = dataset['train_images'] train_labels = dataset['train_labels'] test_images = dataset['test_images'] test_labels = dataset['test_labels'] else: raise ValueError('Dataset not valid!') x_pl = tf.placeholder(tf.float32, shape=[None, 32, 32, 3], name='x') y_pl = tf.placeholder(tf.int64, shape=[None], name='y') is_train = tf.placeholder(tf.bool, name='is_train') model = Model(is_train) logits, _ = model.build_model(images=x_pl, num_classes=FLAGS.num_classes) prob = tf.nn.softmax(logits) xent = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y_pl) correct = tf.cast(tf.equal(tf.argmax(logits, axis=1), y_pl), tf.float32) accuracy = tf.reduce_mean(correct) # loss for adversarial attack if FLAGS.loss_type == 'xent': if FLAGS.targeted: loss_att = tf.reduce_sum(xent) else: loss_att = -tf.reduce_sum(xent) elif FLAGS.loss_type == 'CW': y_loss = tf.one_hot(y_pl, FLAGS.num_classes) self = tf.reduce_sum(y_loss * logits, axis=1) other = tf.reduce_max((1 - y_loss) * logits - y_loss * 1e4, axis=1) if FLAGS.targeted: loss_att = tf.reduce_sum(tf.maximum(other - self + FLAGS.margin, 0)) else: loss_att = tf.reduce_sum(tf.maximum(self - other + FLAGS.margin, 0)) else: raise ValueError('loss type not supported!') grad, = tf.gradients(loss_att, x_pl) saver = tf.train.Saver(max_to_keep=100) config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) saver.restore(sess, FLAGS.ckpt_path) print('restored checkpoint from %s' % FLAGS.ckpt_path) def adv_attack(nat_prob, x_batch, y_batch): epsilon = FLAGS.epsilon / 255.0 * 2 step_size = FLAGS.step_size / 255.0 * 2 if not FLAGS.targeted: y_att = np.copy(y_batch) else: # most confusing targeted attack nat_prob[np.arange(y_batch.shape[0]), y_batch] = 0.0 y_att = np.argmax(nat_prob, axis=1) # randomly perturb the original images if FLAGS.random_start: x = x_batch + np.random.uniform(-epsilon, epsilon, x_batch.shape) else: x = np.copy(x_batch) for i in range(FLAGS.num_steps): grad_val = sess.run(grad, feed_dict={ x_pl: x, y_pl: y_att, is_train: False }) x = x - step_size * np.sign(grad_val) x = np.clip(x, x_batch - epsilon, x_batch + epsilon) x = np.clip(x, -1.0, 1.0) return x test_size = test_images.shape[0] epoch_steps = np.ceil(test_size / FLAGS.batch_size).astype(np.int32) nat_total = 0.0 adv_total = 0.0 class_nat_total = np.zeros([FLAGS.num_classes]) class_adv_total = np.zeros([FLAGS.num_classes]) nat_cnt_list = np.zeros([test_size]) adv_cnt_list = np.zeros([test_size]) idx = np.random.permutation(test_size) for step_idx in range(epoch_steps): start = step_idx * FLAGS.batch_size end = np.minimum((step_idx + 1) * FLAGS.batch_size, test_size).astype(np.int32) x_batch = test_images[idx[start:end]] y_batch = test_labels[idx[start:end]] start_time = time.time() nat_cnt, nat_prob = sess.run([correct, prob], feed_dict={ x_pl: x_batch, y_pl: y_batch, is_train: False }) x_batch_adv = adv_attack(nat_prob, x_batch, y_batch) adv_cnt = sess.run(correct, feed_dict={ x_pl: x_batch_adv, y_pl: y_batch, is_train: False }) nat_cnt_list[start:end] = nat_cnt adv_cnt_list[start:end] = adv_cnt for ii in range(FLAGS.num_classes): class_nat_total[ii] += np.sum(nat_cnt[y_batch == ii]) class_adv_total[ii] += np.sum(adv_cnt[y_batch == ii]) nat_total += np.sum(nat_cnt) adv_total += np.sum(adv_cnt) duration = time.time() - start_time print('finished batch %d/%d, duration %.2f, nat acc %.2f, adv acc %.2f' % (step_idx, epoch_steps, duration, 100 * np.mean(nat_cnt), 100 * np.mean(adv_cnt))) sys.stdout.flush() nat_acc = nat_total / test_size adv_acc = adv_total / test_size class_nat_total /= (test_size / FLAGS.num_classes) class_adv_total /= (test_size / FLAGS.num_classes) print('clean accuracy: %.2f, adv accuracy: %.2f' % (100 * nat_acc, 100 * adv_acc)) for ii in range(FLAGS.num_classes): print('class %d, clean %.2f, adv %.2f' % (ii, 100 * class_nat_total[ii], 100 * class_adv_total[ii]))
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # based on https://github.com/tensorflow/models/tree/master/resnet from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf class Model(object): """ResNet model.""" def __init__(self, is_train): """ResNet constructor.""" self.is_train = is_train def add_internal_summaries(self): pass def build_model(self, images, num_classes): """Build the core model within the graph.""" with tf.variable_scope('input'): x = self._conv('init_conv', images, 3, 3, 16, self._stride_arr(1)) strides = [1, 2, 2] activate_before_residual = [True, False, False] res_func = self._residual # Uncomment the following codes to use w28-10 wide residual network. # It is more memory efficient than very deep residual network and has # comparably good performance. # https://arxiv.org/pdf/1605.07146v1.pdf #filters = [16, 16, 32, 64] # WRN-28-1 #filters = [16, 80, 160, 320] # WRN-28-5 filters = [16, 160, 320, 640] # WRN-28-10 #filters = [16, 256, 512, 1024] # WRN-28-16 # Update hps.num_residual_units to 9 with tf.variable_scope('unit_1_0'): x = res_func(x, filters[0], filters[1], self._stride_arr(strides[0]), activate_before_residual[0]) for i in range(1, 5): with tf.variable_scope('unit_1_%d' % i): x = res_func(x, filters[1], filters[1], self._stride_arr(1), False) with tf.variable_scope('unit_2_0'): x = res_func(x, filters[1], filters[2], self._stride_arr(strides[1]), activate_before_residual[1]) for i in range(1, 5): with tf.variable_scope('unit_2_%d' % i): x = res_func(x, filters[2], filters[2], self._stride_arr(1), False) with tf.variable_scope('unit_3_0'): x = res_func(x, filters[2], filters[3], self._stride_arr(strides[2]), activate_before_residual[2]) for i in range(1, 5): with tf.variable_scope('unit_3_%d' % i): x = res_func(x, filters[3], filters[3], self._stride_arr(1), False) with tf.variable_scope('unit_last'): x = self._batch_norm('final_bn', x) x = self._relu(x, 0.1) x = self._global_avg_pool(x) with tf.variable_scope('logit'): self.pre_softmax = self._fully_connected(x, num_classes) self.weight_decay_loss = self._decay() return self.pre_softmax, x def _stride_arr(self, stride): """Map a stride scalar to the stride array for tf.nn.conv2d.""" return [1, stride, stride, 1] def _batch_norm(self, name, x): """Batch normalization.""" with tf.name_scope(name): return tf.contrib.layers.batch_norm( inputs=x, decay=.9, center=True, scale=True, activation_fn=None, updates_collections=tf.GraphKeys.UPDATE_OPS, is_training=self.is_train) def _residual(self, x, in_filter, out_filter, stride, activate_before_residual=False): """Residual unit with 2 sub layers.""" if activate_before_residual: with tf.variable_scope('shared_activation'): x = self._batch_norm('init_bn', x) x = self._relu(x, 0.1) orig_x = x else: with tf.variable_scope('residual_only_activation'): orig_x = x x = self._batch_norm('init_bn', x) x = self._relu(x, 0.1) with tf.variable_scope('sub1'): x = self._conv('conv1', x, 3, in_filter, out_filter, stride) with tf.variable_scope('sub2'): x = self._batch_norm('bn2', x) x = self._relu(x, 0.1) x = self._conv('conv2', x, 3, out_filter, out_filter, [1, 1, 1, 1]) with tf.variable_scope('sub_add'): if in_filter != out_filter: orig_x = tf.nn.avg_pool(orig_x, stride, stride, 'VALID') orig_x = tf.pad(orig_x, [[0, 0], [0, 0], [0, 0], [(out_filter - in_filter) // 2, (out_filter - in_filter) // 2]]) x += orig_x tf.logging.debug('image after unit %s', x.get_shape()) return x def _decay(self): """L2 weight decay loss.""" costs = [] for var in tf.trainable_variables(): if var.op.name.find('DW') > 0: costs.append(tf.nn.l2_loss(var)) return tf.add_n(costs) def _conv(self, name, x, filter_size, in_filters, out_filters, strides): """Convolution.""" with tf.variable_scope(name): n = filter_size * filter_size * out_filters kernel = tf.get_variable( 'DW', [filter_size, filter_size, in_filters, out_filters], tf.float32, initializer=tf.random_normal_initializer(stddev=np.sqrt(2.0 / n))) return tf.nn.conv2d(x, kernel, strides, padding='SAME') def _relu(self, x, leakiness=0.0): """Relu, with optional leaky support.""" return tf.where(tf.less(x, 0.0), leakiness * x, x, name='leaky_relu') def _fully_connected(self, x, out_dim): """FullyConnected layer for final output.""" num_non_batch_dimensions = len(x.shape) prod_non_batch_dimensions = 1 for ii in range(num_non_batch_dimensions - 1): prod_non_batch_dimensions *= int(x.shape[ii + 1]) x = tf.reshape(x, [tf.shape(x)[0], -1]) w = tf.get_variable( 'DW', [prod_non_batch_dimensions, out_dim], initializer=tf.uniform_unit_scaling_initializer(factor=1.0)) b = tf.get_variable('biases', [out_dim], initializer=tf.constant_initializer()) return tf.nn.xw_plus_b(x, w, b) def _global_avg_pool(self, x): assert x.get_shape().ndims == 4 return tf.reduce_mean(x, [1, 2])
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging from functools import partial from typing import Tuple import torch from tensorflow_wrapper import TensorFlow1ToPyTorchWrapper logging.getLogger('tensorflow').setLevel(logging.FATAL) import tensorflow as tf tf.logging.set_verbosity(tf.logging.ERROR) import time import sys import numpy as np from bat_utils import * from wide_resnet import Model from utils import build_dataloader_from_arrays from active_tests import decision_boundary_binarization as dbb from argparse_utils import DecisionBoundaryBinarizationSettings def load_data(FLAGS): # load data if FLAGS.dataset == 'SVHN': raise ValueError("not supported") elif FLAGS.dataset == 'CIFAR': if FLAGS.num_classes == 10: dataset = load_cifar10_data('data/cifar-10-batches-py/') elif FLAGS.num_classes == 20: dataset = load_cifar100_data('cifar100_data', is_fine=False) elif FLAGS.num_classes == 100: dataset = load_cifar100_data('cifar100_data', is_fine=True) else: raise ValueError('Number of classes not valid!') train_images = dataset['train_images'] train_labels = dataset['train_labels'] test_images = dataset['test_images'] test_labels = dataset['test_labels'] else: raise ValueError('Dataset not valid!') return train_images, train_labels, test_images, test_labels def load_model(FLAGS): x_pl = tf.placeholder(tf.float32, shape=[None, 32, 32, 3], name='x') y_pl = tf.placeholder(tf.int64, shape=[None], name='y') is_train = tf.placeholder(tf.bool, name='is_train') model = Model(is_train) x_transformed = x_pl * 2.0 - 1.0 fe_logits, features = model.build_model(images=x_transformed, num_classes=FLAGS.num_classes) saver = tf.train.Saver(max_to_keep=100) config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) saver.restore(sess, FLAGS.ckpt_path) print('restored checkpoint from %s' % FLAGS.ckpt_path) # create binary classifier bro_w = tf.get_variable( 'DW', [features.shape[-1], 2], initializer=tf.uniform_unit_scaling_initializer(factor=1.0)) bro_b = tf.get_variable('biases', [2], initializer=tf.constant_initializer()) bro_w_pl = tf.placeholder(tf.float32, shape=[features.shape[-1], 2]) bro_b_pl = tf.placeholder(tf.float32, shape=[2]) bro_w_set_weight = bro_w.assign(bro_w_pl) bro_b_set_weight = bro_b.assign(bro_b_pl) logits = tf.nn.xw_plus_b(features, bro_w, bro_b) prob = tf.nn.softmax(logits) correct = tf.cast(tf.equal(tf.argmax(logits, axis=1), y_pl), tf.float32) accuracy = tf.reduce_mean(correct) return sess, (x_pl, y_pl, is_train, logits, fe_logits, features, accuracy), \ (bro_w_pl, bro_b_pl, bro_w_set_weight, bro_b_set_weight) def setup_attack(logits, x_pl, y_pl, FLAGS): xent = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y_pl) # loss for adversarial attack if FLAGS.loss_type == 'xent': if FLAGS.targeted: loss_att = tf.reduce_sum(xent) else: loss_att = -tf.reduce_sum(xent) elif FLAGS.loss_type == 'CW': y_loss = tf.one_hot(y_pl, FLAGS.num_classes) self = tf.reduce_sum(y_loss * logits, axis=1) other = tf.reduce_max((1 - y_loss) * logits - y_loss * 1e4, axis=1) if FLAGS.targeted: raise ValueError("not supported") else: loss_att = tf.reduce_sum(tf.maximum(self - other + FLAGS.margin, 0)) else: raise ValueError('loss type not supported!') grad, = tf.gradients(loss_att, x_pl) return grad def adv_attack(sess, grad, x_pl, y_pl, is_train, x_batch, y_batch, FLAGS): epsilon = FLAGS.epsilon / 255.0 step_size = FLAGS.step_size / 255.0 if not FLAGS.targeted: y_att = np.copy(y_batch) else: raise ValueError("targeted mode not supported") # randomly perturb the original images if FLAGS.random_start: x = x_batch + np.random.uniform(-epsilon, epsilon, x_batch.shape) else: x = np.copy(x_batch) for i in range(FLAGS.num_steps): grad_val = sess.run(grad, feed_dict={ x_pl: x, y_pl: y_att, is_train: False }) x = x - step_size * np.sign(grad_val) x = np.clip(x, x_batch - epsilon, x_batch + epsilon) x = np.clip(x, 0, 1.0) return x def parse_args(): tf.flags.DEFINE_string('ckpt_path', '', '') tf.flags.DEFINE_string('dataset', 'CIFAR', '') tf.flags.DEFINE_integer('num_classes', 10, '') tf.flags.DEFINE_integer('batch_size', 100, '') tf.flags.DEFINE_string('loss_type', 'xent', '') tf.flags.DEFINE_float('margin', 50.0, '') tf.flags.DEFINE_float('epsilon', 8.0, '') tf.flags.DEFINE_integer('num_steps', 10, '') tf.flags.DEFINE_float('step_size', 2.0, '') tf.flags.DEFINE_boolean('random_start', False, '') tf.flags.DEFINE_boolean('targeted', False, '') tf.flags.DEFINE_integer('n_samples', 2048, '') tf.flags.DEFINE_integer('n_boundary_points', 1, '') tf.flags.DEFINE_integer('n_inner_points', 999, '') tf.flags.DEFINE_boolean('sample_from_corners', False, '') FLAGS = tf.flags.FLAGS # print(FLAGS.flag_values_dict()) return FLAGS def run_attack(m, l, sess, logits, x_pl, is_train, bro_w_pl, bro_b_pl, bro_w_assign, bro_b_assign, attack_fn): linear_layer = m[-1] del m sess.run(bro_w_assign, {bro_w_pl: linear_layer.weight.data.numpy().T}) sess.run(bro_b_assign, {bro_b_pl: linear_layer.bias.data.numpy()}) for x, y in l: x, y = x.numpy(), y.numpy() x = x.transpose((0, 2, 3, 1)) x_batch_adv = attack_fn(x, y) adv_logits: np.ndarray = sess.run(logits, feed_dict={ x_pl: x_batch_adv, is_train: False }) is_adv: np.ndarray = adv_logits.argmax(-1) != y return is_adv, (torch.tensor(x_batch_adv.transpose((0, 3, 1, 2))), torch.tensor(adv_logits)) def main(): FLAGS = parse_args() _, _, test_images, test_labels = load_data(FLAGS) print(FLAGS.flag_values_dict()) # normalize to [0,1] value range from [-1, 1] since we put normalization # inside of the model test_images = (test_images + 1.0) / 2.0 # subsample test data if FLAGS.n_samples == -1: FLAGS.n_samples = len(test_images) idxs = np.arange(len(test_images)) np.random.shuffle(idxs) test_images, test_labels = test_images[idxs], test_labels[idxs] test_images = test_images.transpose((0, 3, 1, 2)) test_loader = build_dataloader_from_arrays(test_images, test_labels, FLAGS.batch_size) sess, (x_pl, y_pl, is_train, logits, fe_logits, features, accuracy), \ (bro_w_pl, bro_b_pl, bro_w_set_weight, bro_b_set_weight) = load_model(FLAGS) attack_grad = setup_attack(logits, x_pl, y_pl, FLAGS) attack_fn = lambda x, y: adv_attack(sess, attack_grad, x_pl, y_pl, is_train, x, y, FLAGS) def feature_extractor_forward_pass(x, features_and_logits: bool = False, features_only: bool = False): if features_and_logits: assert not features_only, "Only one of the flags must be set." if features_and_logits: f, l = sess.run( (features, fe_logits), feed_dict={x_pl: x.transpose(0, 2, 3, 1), is_train: False}) return f, l elif features_only: return sess.run( features, feed_dict={x_pl: x.transpose(0, 2, 3, 1), is_train: False}) else: return sess.run( fe_logits, feed_dict={x_pl: x.transpose(0, 2, 3, 1), is_train: False}) feature_extractor = TensorFlow1ToPyTorchWrapper( logit_forward_pass=feature_extractor_forward_pass, logit_forward_and_backward_pass=None, ) scores_logit_differences_and_validation_accuracies = \ dbb.interior_boundary_discrimination_attack( feature_extractor, test_loader, # m, l, sess, logits, x_pl, is_train, bro_w_pl, bro_b_pl, # bro_w_assign, bro_b_assign, attack_fn) attack_fn=lambda m, l, kwargs: partial(run_attack, sess=sess, logits=logits, x_pl=x_pl, is_train=is_train, bro_w_pl=bro_w_pl, bro_b_pl=bro_b_pl, bro_w_assign=bro_w_set_weight, bro_b_assign=bro_b_set_weight, attack_fn=attack_fn)(m, l), linearization_settings=DecisionBoundaryBinarizationSettings( epsilon=FLAGS.epsilon / 255.0, norm="linf", lr=10000, n_boundary_points=FLAGS.n_boundary_points, n_inner_points=FLAGS.n_inner_points, adversarial_attack_settings=None, optimizer="sklearn" ), n_samples=FLAGS.n_samples, device="cpu", n_samples_evaluation=200, n_samples_asr_evaluation=200, # rescale_logits="adaptive", sample_training_data_from_corners=FLAGS.sample_from_corners, decision_boundary_closeness=0.9999, # args.num_samples_test * 10 ) print(dbb.format_result(scores_logit_differences_and_validation_accuracies, FLAGS.n_samples)) if __name__ == "__main__": main()
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals # disable tf logging # some of these might have to be commented out to use verbose=True in the # adaptive attack import os from cleverhans.utils_keras import KerasModelWrapper from ml_loo import collect_layers os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import warnings import logging logging.getLogger('tensorflow').setLevel(logging.FATAL) import tensorflow as tf tf.logging.set_verbosity(tf.logging.ERROR) try: import cPickle as pickle except: import _pickle as pickle import numpy as np from sklearn.linear_model import LogisticRegressionCV from tqdm import tqdm from build_model import ImageModel from load_data import ImageData, split_data from attack_model import BIM, CW, FMA if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--dataset_name', type = str, choices = ['cifar10'], default = 'cifar10') parser.add_argument('--model_name', type = str, choices = ['resnet'], default = 'resnet') parser.add_argument( '--attack', type = str, choices = ['cw', 'bim', 'bim2', 'fma'], default = 'cw' ) parser.add_argument("--batch-size", type=int, default=50) parser.add_argument("--detector-attack", choices=['cw', 'bim', 'bim2'], default='cw') parser.add_argument("--n-samples", type=int, default=500) # default equals value for FPPR5; obtained from train_and_evaluate.py parser.add_argument("--detector-threshold", type=float, default=0.6151412488088068) args = parser.parse_args() dict_a = vars(args) args.data_model = args.dataset_name + args.model_name # load detector with open(f"{args.data_model}/models/ml_loo_{args.detector_attack}_lr.pkl", "rb") as f: lr = pickle.load(f) print('Loading dataset...') dataset = ImageData(args.dataset_name) model = ImageModel(args.model_name, args.dataset_name, train = False, load = True) if args.dataset_name == 'cifar10': X_train, Y_train, X_test, Y_test = split_data(dataset.x_val, dataset.y_val, model, num_classes = 10, split_rate = 0.8, sample_per_class = 1000) else: raise NotImplementedError() if args.n_samples == -1: args.n_samples = len(X_test) X_test = X_test[:args.n_samples] Y_test = Y_test[:args.n_samples] from ml_loo import get_ml_loo_features if args.model_name == 'resnet': interested_layers = [14,24,35,45,56,67,70] else: raise ValueError() # only relevant feature used by logistic regression model stat_names = ['quantile'] reference = - dataset.x_train_mean get_ml_loo_features_ = lambda x: get_ml_loo_features(model, x, reference, interested_layers, stat_names=stat_names)[:, 0] detector = lambda x: lr.predict_proba(get_ml_loo_features_(x))[:, 1] batch_size = args.batch_size detector_threshold = args.detector_threshold if args.attack == 'cw': if args.dataset_name in ['cifar10']: if args.model_name == 'resnet': attack_model = CW( model, source_samples = batch_size, binary_search_steps = 5, cw_learning_rate = 1e-2, confidence = 0, attack_iterations = 100, attack_initial_const = 1e-2, ) elif args.attack == "bim": if args.dataset_name in ['cifar10']: if args.model_name == 'resnet': attack_model = BIM( KerasModelWrapper(model.model), model.sess, model.input_ph, model.num_classes, attack_iterations = 100, epsilon=0.03, learning_rate=2.5 * 0.03 / 100, random_init=True ) elif args.attack == "bim2": if args.dataset_name in ['cifar10']: if args.model_name == 'resnet': attack_model = BIM( KerasModelWrapper(model.model), model.sess, model.input_ph, model.num_classes, attack_iterations = 10, epsilon=0.03, learning_rate=2.5 * 0.03 / 10, random_init=True ) elif args.attack == "fma": if args.dataset_name in ['cifar10']: if args.model_name == 'resnet': target_samples = [] for y in range(10): target_samples.append(X_train[np.argmax(Y_train == y)]) target_samples = np.array(target_samples) attack_model = FMA( model, KerasModelWrapper(model.model), model.sess, model.input_ph, model.num_classes, target_samples=target_samples, reference=reference, features=collect_layers(model, interested_layers), attack_iterations = 500, epsilon=0.03, learning_rate=4 * 0.03 / 100, num_random_features=3100, random_init=True ) n_batches = int(np.ceil(len(X_test) / batch_size)) all_is_adv = [] all_is_detected = [] all_is_adv_not_detected = [] pbar = tqdm(range(n_batches)) for i in pbar: x = X_test[i * batch_size:(i+1) * batch_size] y = Y_test[i * batch_size:(i+1) * batch_size] # undo one-hot encoding y = y.argmax(-1) x_adv = attack_model.attack(x) y_adv = model.predict(x_adv, verbose=False, logits=False).argmax(-1) is_adv = y_adv != y is_detected = detector(x_adv) > detector_threshold all_is_adv.append(is_adv) all_is_detected.append(is_detected) is_adv_not_detected = np.logical_and(is_adv, ~is_detected) all_is_adv_not_detected.append(is_adv_not_detected) pbar.set_description( f"ASR (w/o detector): {np.mean(np.concatenate(all_is_adv))} " f"ASR (w/ detector): {np.mean(np.concatenate(all_is_adv_not_detected))}") all_is_adv = np.concatenate(all_is_adv) all_is_detected = np.concatenate(all_is_detected) all_is_adv_not_detected = np.concatenate(all_is_adv_not_detected) print("ASR (w/o detector):", np.mean(all_is_adv)) print("ASR (w/ detector):", np.mean(all_is_adv_not_detected))
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function import numpy as np import tensorflow as tf import os from keras.utils import to_categorical import math import time import numpy as np import sys import os import math from build_model import ImageModel from load_data import ImageData, split_data import pickle as pkl from keras.models import Model from scipy.stats import kurtosis, skew from scipy.spatial.distance import pdist import time from sklearn.linear_model import LogisticRegressionCV from sklearn.metrics import precision_recall_curve, roc_curve, auc, average_precision_score import matplotlib import matplotlib.pyplot as plt from scipy.stats import kurtosis, skew from scipy.spatial.distance import pdist def con(score): # score (n, d) score = score.reshape(len(score), -1) score_mean = np.mean(score, -1, keepdims = True) c_score = score - score_mean c_score = np.abs(c_score) return np.mean(c_score, axis = -1) def mad(score): pd = [] for i in range(len(score)): d = score[i] median = np.median(d) abs_dev = np.abs(d - median) med_abs_dev = np.median(abs_dev) pd.append(med_abs_dev) pd = np.array(pd) return pd def med_pdist(score): pd = [] for i in range(len(score)): d = score[i] k = np.median(pdist(d.reshape(-1,1))) pd.append(k) pd = np.array(pd) return pd def pd(score): pd = [] for i in range(len(score)): d = score[i] k = np.mean(pdist(d.reshape(-1,1))) pd.append(k) pd = np.array(pd) return pd def neg_kurtosis(score): k = [] for i in range(len(score)): di = score[i] ki = kurtosis(di, nan_policy = 'raise') k.append(ki) k = np.array(k) return -k def quantile(score): # score (n, d) score = score.reshape(len(score), -1) score_75 = np.percentile(score, 75, -1) score_25 = np.percentile(score, 25, -1) score_qt = score_75 - score_25 return score_qt def calculate(score, stat_name): if stat_name == 'variance': results = np.var(score, axis = -1) elif stat_name == 'std': results = np.std(score, axis = -1) elif stat_name == 'pdist': results = pd(score) elif stat_name == 'con': results = con(score) elif stat_name == 'med_pdist': results = med_pdist(score) elif stat_name == 'kurtosis': results = neg_kurtosis(score) elif stat_name == 'skewness': results = -skew(score, axis = -1) elif stat_name == 'quantile': results = quantile(score) elif stat_name == 'mad': results = mad(score) #print('results.shape', results.shape) return results def collect_layers(model, interested_layers): if model.framework == 'keras': outputs = [layer.output for layer in model.layers] elif model.framework == 'tensorflow': outputs = model.layers outputs = [output for i, output in enumerate(outputs) if i in interested_layers] #print(outputs) features = [] for output in outputs: #print(output) if len(output.get_shape())== 4: features.append( tf.reduce_mean(output, axis = (1, 2)) ) else: features.append(output) return features def evaluate_features(x, model, features, batch_size=500): x = np.array(x) if len(x.shape) == 3: _x = np.expand_dims(x, 0) else: _x = x num_iters = int(math.ceil(len(_x) * 1.0 / batch_size)) outs = [] for i in range(num_iters): x_batch = _x[i * batch_size: (i+1) * batch_size] out = model.sess.run(features, feed_dict = {model.input_ph: x_batch}) outs.append(out) num_layers = len(outs[0]) outputs = [] for l in range(num_layers): outputs.append(np.concatenate([outs[s][l] for s in range(len(outs))])) # (3073, 64) # (3073, 64) # (3073, 128) # (3073, 128) # (3073, 256) # (3073, 256) # (3073, 10) # (3073, 1) outputs = np.concatenate(outputs, axis = 1) prob = outputs[:,-model.num_classes:] label = np.argmax(prob[-1]) #print('outputs', outputs.shape) #print('prob[:, label]', np.expand_dims(prob[:, label], axis = 1).shape) outputs = np.concatenate([outputs, np.expand_dims(prob[:, label], axis = 1)], axis = 1) return outputs def loo_ml_instance(sample, reference, model, features, batch_size=500): h,w,c = sample.shape sample = sample.reshape(-1) reference = reference.reshape(-1) data = [] st = time.time() positions = np.ones((h*w*c + 1, h*w*c), dtype = np.bool) for i in range(h*w*c): positions[i, i] = False data = np.where(positions, sample, reference) data = data.reshape((-1, h, w, c)) features_val = evaluate_features(data, model, features, batch_size=batch_size) # (3072+1, 906+1) st1 = time.time() return features_val def get_ml_loo_features(model, x, reference, interested_layers, batch_size=3100, stat_names=['std', 'variance', 'con', 'kurtosis', 'skewness', 'quantile', 'mad']): # copied from generate_ml_loo_features features = collect_layers(model, interested_layers) all_features = [] for sample in x: features_val = loo_ml_instance(sample, reference, model, features, batch_size=batch_size) features_val = np.transpose(features_val)[:,:-1] single_feature = [] for stat_name in stat_names: single_feature.append(calculate(features_val, stat_name)) single_feature = np.array(single_feature) all_features.append(single_feature) all_features = np.array(all_features) return all_features def generate_ml_loo_features(args, data_model, reference, model, x, interested_layers, batch_size=500): # print(args.attack) # x = load_examples(data_model, attack) features = collect_layers(model, interested_layers) cat = {'original':'ori', 'adv':'adv', 'noisy':'noisy'} dt = {'train':'train', 'test':'test'} stat_names = ['std', 'variance', 'con', 'kurtosis', 'skewness', 'quantile', 'mad'] combined_features = {data_type: {} for data_type in ['test', 'train']} for data_type in ['test', 'train']: print('data_type', data_type) for category in ['original', 'adv']: print('category', category) all_features = [] for i, sample in enumerate(x[data_type][category]): print('Generating ML-LOO for {}th sample...'.format(i)) features_val = loo_ml_instance(sample, reference, model, features, batch_size=batch_size) # (3073, 907) #print('features_val.shape', features_val.shape) features_val = np.transpose(features_val)[:,:-1] #print('features_val.shape', features_val.shape) # (906, 3073) single_feature = [] for stat_name in stat_names: #print('stat_name', stat_name) single_feature.append(calculate(features_val, stat_name)) single_feature = np.array(single_feature) #print('single_feature', single_feature.shape) # (k, 906) all_features.append(single_feature) print('all_features', np.array(all_features).shape) combined_features[data_type][category] = np.array(all_features) np.save('{}/data/{}_{}_{}_{}_{}.npy'.format( data_model, args.data_sample, dt[data_type], cat[category], args.attack, args.det), combined_features[data_type][category]) return combined_features def compute_stat_single_layer(output): # l2dist = pdist(output) # l1dist = pdist(output, 'minkowski', p = 1) # sl2dist = pdist(X, 'seuclidean') variance = np.sum(np.var(output, axis = 0)) # on = np.sum(np.linalg.norm(output, ord = 1, axis = 0)) con = np.sum(np.linalg.norm(output - np.mean(output, axis = 0), ord = 1, axis = 0)) return variance, con def load_features(data_model, attacks): def softmax(x, axis): """Compute softmax values for each sets of scores in x.""" e_x = np.exp(x - np.max(x, axis = axis, keepdims = True)) return e_x / e_x.sum(axis=axis, keepdims = True) # only difference cat = {'original':'', 'adv':'_adv', 'noisy':'_noisy'} dt = {'train':'_train', 'test':''} features = {attack: {'train': {}, 'test': {}} for attack in attacks} normalizer = {} for attack in attacks: for data_type in ['train', 'test']: for category in ['original', 'adv']: print('Loading data...') feature = np.load('{}/data/{}{}{}_{}_{}.npy'.format(data_model,'x_val200', dt[data_type], cat[category], attack, 'ml_loo')) # [n, 3073, ...] n = len(feature) print('Processing...') nums = [0,64,64,128,128,256,256,10] splits = np.cumsum(nums) # [0,64,128,...] processed = [] for j, s in enumerate(splits): if j < len(splits) - 1: separated = feature[:, :-1, s:splits[j+1]] if j == len(splits) - 2: separated = softmax(separated, axis = -1) dist = np.var(separated, axis = 1) # [n, ...] if data_type == 'train' and category == 'original' and attack == 'linfpgd': avg_dist = np.mean(dist, axis = 0) normalizer[j] = avg_dist # dist /= normalizer[j] dist = np.sqrt(dist) # max_dist = np.max(dist, axis = -1) print(np.mean(dist)) processed.append(dist.T) processed = np.concatenate(processed, axis = 0).T # processed = np.concatenate(processed, axis = ) print(processed.shape) features[attack][data_type][category] = processed return features
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import time import logging import os import numpy as np import tensorflow as tf from tensorflow.python.platform import flags from cleverhans.attacks import CarliniWagnerL2 from cleverhans.dataset import MNIST from cleverhans.loss import CrossEntropy from cleverhans.utils import grid_visual, AccuracyReport from cleverhans.utils import set_log_level from cleverhans.utils_tf import model_eval, tf_model_load from cleverhans.train import train from cleverhans.utils_keras import KerasModelWrapper from build_model import ImageModel from load_data import ImageData, split_data import pickle as pkl from attack_model import Attack, CW import scipy from ml_loo import generate_ml_loo_features if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--dataset_name', type = str, choices = ['cifar10'], default = 'cifar10') parser.add_argument('--model_name', type = str, choices = ['resnet'], default = 'resnet') parser.add_argument('--data_sample', type = str, choices = ['x_train', 'x_val', 'x_val200'], default = 'x_val200') parser.add_argument( '--attack', type = str, choices = ['cw', 'bim', 'bim2'], default = 'cw' ) parser.add_argument("--batch-size", default=500, type=int) parser.add_argument( '--det', type = str, choices = ['ml_loo'], default = 'ml_loo' ) args = parser.parse_args() dict_a = vars(args) data_model = args.dataset_name + args.model_name print('Loading dataset...') dataset = ImageData(args.dataset_name) model = ImageModel(args.model_name, args.dataset_name, train = False, load = True) ########################################################### # Loading original, adversarial and noisy samples ########################################################### print('Loading original, adversarial and noisy samples...') X_test = np.load('{}/data/{}_{}_{}.npy'.format(data_model, args.data_sample, args.attack, 'ori')) X_test_adv = np.load('{}/data/{}_adv_{}_{}.npy'.format(data_model, args.data_sample, args.attack, 'ori')) X_train = np.load('{}/data/{}_train_{}_{}.npy'.format(data_model, args.data_sample, args.attack, 'ori')) X_train_adv = np.load('{}/data/{}_train_adv_{}_{}.npy'.format(data_model, args.data_sample, args.attack, 'ori')) Y_test = model.predict(X_test) print("X_test_adv: ", X_test_adv.shape) x = { 'train': { 'original': X_train, 'adv': X_train_adv, }, 'test': { 'original': X_test, 'adv': X_test_adv, }, } ################################################################# # Extracting features for original, adversarial and noisy samples ################################################################# cat = {'original':'ori', 'adv':'adv', 'noisy':'noisy'} dt = {'train':'train', 'test':'test'} if args.det in ['ml_loo']: if args.model_name == 'resnet': interested_layers = [14,24,35,45,56,67,70] print('extracting layers ', interested_layers) reference = - dataset.x_train_mean combined_features = generate_ml_loo_features(args, data_model, reference, model, x, interested_layers, batch_size=args.batch_size) for data_type in ['test', 'train']: for category in ['original', 'adv']: np.save('{}/data/{}_{}_{}_{}_{}.npy'.format( data_model, args.data_sample, dt[data_type], cat[category], args.attack, args.det), combined_features[data_type][category])
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Trains a ResNet on the CIFAR10 dataset. ResNet v1 [a] Deep Residual Learning for Image Recognition https://arxiv.org/pdf/1512.03385.pdf ResNet v2 [b] Identity Mappings in Deep Residual Networks https://arxiv.org/pdf/1603.05027.pdf """ from __future__ import print_function import keras from keras.layers import Dense, Conv2D, BatchNormalization, Activation from keras.layers import AveragePooling2D, Input, Flatten from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint, LearningRateScheduler from keras.callbacks import ReduceLROnPlateau from keras.preprocessing.image import ImageDataGenerator from keras.regularizers import l2 from keras import backend as K from keras.models import Model from keras.datasets import cifar10 import numpy as np import os def lr_schedule(epoch): """Learning Rate Schedule Learning rate is scheduled to be reduced after 80, 120, 160, 180 epochs. Called automatically every epoch as part of callbacks during training. # Arguments epoch (int): The number of epochs # Returns lr (float32): learning rate """ lr = 1e-3 if epoch > 180: lr *= 0.5e-3 elif epoch > 160: lr *= 1e-3 elif epoch > 120: lr *= 1e-2 elif epoch > 80: lr *= 1e-1 print('Learning rate: ', lr) return lr def lr_schedule_cifar100(epoch): """Learning Rate Schedule Learning rate is scheduled to be reduced after 80, 120, 160, 180 epochs. Called automatically every epoch as part of callbacks during training. # Arguments epoch (int): The number of epochs # Returns lr (float32): learning rate """ lr = 1e-4 if epoch > 180: lr *= 0.5e-3 elif epoch > 160: lr *= 1e-3 elif epoch > 120: lr *= 1e-2 elif epoch > 80: lr *= 1e-1 print('Learning rate: ', lr) return lr def lr_schedule_sgd(epoch): decay = epoch >= 122 and 2 or epoch >= 81 and 1 or 0 lr = 1e-1 * 0.1 ** decay print('Learning rate: ', lr) return lr def resnet_layer(inputs, num_filters=16, kernel_size=3, strides=1, activation='relu', batch_normalization=True, conv_first=True): """2D Convolution-Batch Normalization-Activation stack builder # Arguments inputs (tensor): input tensor from input image or previous layer num_filters (int): Conv2D number of filters kernel_size (int): Conv2D square kernel dimensions strides (int): Conv2D square stride dimensions activation (string): activation name batch_normalization (bool): whether to include batch normalization conv_first (bool): conv-bn-activation (True) or bn-activation-conv (False) # Returns x (tensor): tensor as input to the next layer """ conv = Conv2D(num_filters, kernel_size=kernel_size, strides=strides, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4)) x = inputs if conv_first: x = conv(x) if batch_normalization: x = BatchNormalization()(x) if activation is not None: x = Activation(activation)(x) else: if batch_normalization: x = BatchNormalization()(x) if activation is not None: x = Activation(activation)(x) x = conv(x) return x def resnet_v2(input_shape, depth, num_classes=10): """ResNet Version 2 Model builder [b] Stacks of (1 x 1)-(3 x 3)-(1 x 1) BN-ReLU-Conv2D or also known as bottleneck layer First shortcut connection per layer is 1 x 1 Conv2D. Second and onwards shortcut connection is identity. At the beginning of each stage, the feature map size is halved (downsampled) by a convolutional layer with strides=2, while the number of filter maps is doubled. Within each stage, the layers have the same number filters and the same filter map sizes. Features maps sizes: conv1 : 32x32, 16 stage 0: 32x32, 64 stage 1: 16x16, 128 stage 2: 8x8, 256 # Arguments input_shape (tensor): shape of input image tensor depth (int): number of core convolutional layers num_classes (int): number of classes (CIFAR10 has 10) # Returns model (Model): Keras model instance """ if (depth - 2) % 9 != 0: raise ValueError('depth should be 9n+2 (eg 56 or 110 in [b])') # Start model definition. num_filters_in = 16 num_res_blocks = int((depth - 2) / 9) inputs = Input(shape=input_shape) # v2 performs Conv2D with BN-ReLU on input before splitting into 2 paths x = resnet_layer(inputs=inputs, num_filters=num_filters_in, conv_first=True) # Instantiate the stack of residual units for stage in range(3): for res_block in range(num_res_blocks): activation = 'relu' batch_normalization = True strides = 1 if stage == 0: num_filters_out = num_filters_in * 4 if res_block == 0: # first layer and first stage activation = None batch_normalization = False else: num_filters_out = num_filters_in * 2 if res_block == 0: # first layer but not first stage strides = 2 # downsample # bottleneck residual unit y = resnet_layer(inputs=x, num_filters=num_filters_in, kernel_size=1, strides=strides, activation=activation, batch_normalization=batch_normalization, conv_first=False) y = resnet_layer(inputs=y, num_filters=num_filters_in, conv_first=False) y = resnet_layer(inputs=y, num_filters=num_filters_out, kernel_size=1, conv_first=False) if res_block == 0: # linear projection residual shortcut connection to match # changed dims x = resnet_layer(inputs=x, num_filters=num_filters_out, kernel_size=1, strides=strides, activation=None, batch_normalization=False) x = keras.layers.add([x, y]) num_filters_in = num_filters_out # Add classifier on top. # v2 has BN-ReLU before Pooling x = BatchNormalization()(x) x = Activation('relu')(x) pool_size = int(x.get_shape()[1]) x = AveragePooling2D(pool_size=pool_size)(x) y = Flatten()(x) outputs = Dense(num_classes, activation=None, kernel_initializer='he_normal')(y) outputs = Activation('softmax')(outputs) # Instantiate model. model = Model(inputs=inputs, outputs=outputs) return model, inputs, outputs def create_resnet_generator(x_train): # This will do preprocessing and realtime data augmentation: datagen = ImageDataGenerator( # set input mean to 0 over the dataset featurewise_center=False, # set each sample mean to 0 samplewise_center=False, # divide inputs by std of dataset featurewise_std_normalization=False, # divide each input by its std samplewise_std_normalization=False, # apply ZCA whitening zca_whitening=False, # epsilon for ZCA whitening zca_epsilon=1e-06, # randomly rotate images in the range (deg 0 to 180) rotation_range=0, # randomly shift images horizontally width_shift_range=0.1, # randomly shift images vertically height_shift_range=0.1, # set range for random shear shear_range=0., # set range for random zoom zoom_range=0., # set range for random channel shifts channel_shift_range=0., # set mode for filling points outside the input boundaries fill_mode='nearest', # value used for fill_mode = "constant" cval=0., # randomly flip images horizontal_flip=True, # randomly flip images vertical_flip=False, # set rescaling factor (applied before any other transformation) rescale=None, # set function that will be applied on each input preprocessing_function=None, # image data format, either "channels_first" or "channels_last" data_format=None, # fraction of images reserved for validation (strictly between 0 and 1) validation_split=0.0) # Compute quantities required for featurewise normalization # (std, mean, and principal components if ZCA whitening is applied). datagen.fit(x_train) return datagen
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals try: import cPickle as pickle except: import _pickle as pickle import logging import os import numpy as np import time import os import math import pickle as pkl import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.patches import Rectangle from sklearn.preprocessing import scale, MinMaxScaler, StandardScaler from sklearn.metrics import accuracy_score, precision_score, recall_score from scipy.stats import pearsonr from scipy.stats import kurtosis, skew from scipy.spatial.distance import pdist from sklearn.linear_model import LogisticRegressionCV, LogisticRegression from sklearn.metrics import precision_recall_curve, roc_curve, auc, average_precision_score color_dict = { 'ml_loo': 'red', } linestyles = { 'ml_loo': '-', } labels = { 'ml_loo': 'ML-LOO', } labels_attack = { 'cw': 'C&W', 'bim': 'PGD', 'bim2': 'PGD (fewer steps)', } labels_data = { 'cifar10': 'CIFAR-10', } labels_model = { 'resnet': 'ResNet', } def load_data(args, attack, det, magnitude = 0.0): x, y = {}, {} for data_type in ['train', 'test']: if det == 'ml_loo': data_ori = np.load('{}/data/{}_{}_{}_{}_{}.npy'.format( args.data_model, args.data_sample, data_type, 'ori', attack, 'ml_loo')) data_adv = np.load('{}/data/{}_{}_{}_{}_{}.npy'.format( args.data_model, args.data_sample, data_type, 'adv', attack, 'ml_loo')) d = len(data_ori) print('detect using {}'.format(det)) print('using adv only') print('data_ori', data_ori.shape) # Use only IQR features (5th dimension). data_ori = data_ori[:, [5], :] data_adv = data_adv[:, [5], :] data_ori = data_ori.reshape(d, -1) data_adv = data_adv.reshape(d, -1) # (200, 1) d = len(data_ori) x[data_type] = np.vstack([data_ori, data_adv]) y[data_type] = np.concatenate((np.zeros(d), np.ones(d))) idx_train = np.random.permutation(len(x['train'])) x['train'] = x['train'][idx_train] y['train'] = y['train'][idx_train] return x, y def train_and_evaluate(args, detections, attack, fpr_upper = 1.0): plt.figure(figsize = (10, 8)) font = {'weight': 'bold', 'size': 16} matplotlib.rc('font', **font) auc_dict = {} tpr1 = {} tpr5 = {} tpr10 = {} for det in detections: # Load data x, y = load_data(args, attack, det) x_train, y_train = x['train'], y['train'] x_test, y_test = x['test'], y['test'] x_train = x_train.reshape(len(x_train), -1) x_test = x_test.reshape(len(x_test), -1) # Train # TODO: verify this. max_iter=10000 was added by AUTHOR/zimmerrol lr = LogisticRegressionCV(n_jobs=-1, max_iter=10000).fit(x_train, y_train) with open(f"{args.data_model}/models/{det}_{attack}_lr.pkl", "wb") as f: pickle.dump(lr, f) # Predict pred = lr.predict_proba(x_test)[:, 1] pred = lr.predict_proba(x_test)[:, 1] # Evaluate. fpr, tpr, thresholds = roc_curve(y_test, pred, drop_intermediate=False) def find_nearest(array, value): array = np.asarray(array) idx = (np.abs(array - value)).argmin() return idx auc_dict[det] = auc(fpr, tpr) tpr1[det] = tpr[find_nearest(fpr, 0.01)] tpr5[det] = tpr[find_nearest(fpr, 0.05)] tpr10[det] = tpr[find_nearest(fpr, 0.10)] plt.plot( fpr, tpr, label="{0} (AUC: {1:0.3f})".format(labels[det], auc(fpr, tpr)), color=color_dict[det], linestyle=linestyles[det], linewidth=4) print("Threshold for FPR1:", thresholds[find_nearest(fpr, 0.01)]) print("Threshold for FPR5:", thresholds[find_nearest(fpr, 0.05)]) print("Threshold for FPR10:", thresholds[find_nearest(fpr, 0.10)]) # 0.2 was fpr_upper before plt.xlim([0.0, 0.2]) plt.ylim([0.0, 1.0]) plt.xlabel('False Positive Rate', fontsize = 32) plt.ylabel('True Positive Rate', fontsize = 32) plt.title('{} ({}, {})'.format(labels_attack[attack], labels_data[args.dataset_name], labels_model[args.model_name]), fontsize = 32) plt.legend(loc="lower right", fontsize = 22) plt.show() figure_name = '{}/figs/mad_transfer_roc_{}_{}_{}.pdf'.format(args.data_model, args.data_sample, attack, attack) plt.savefig(figure_name) return auc_dict, tpr1, tpr5, tpr10 if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--dataset_name', type = str, choices = ['cifar10'], default = 'cifar10') parser.add_argument('--model_name', type = str, choices = ['resnet'], default = 'resnet') parser.add_argument('--data_sample', type = str, choices = ['x_val200'], default = 'x_val200') parser.add_argument( '--attack', type = str, choices = ['cw', 'bim', 'bim2'], default = 'cw' ) args = parser.parse_args() dict_a = vars(args) args.data_model = args.dataset_name + args.model_name train_and_evaluate(args, ['ml_loo'], args.attack, fpr_upper = 1.0)
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This tutorial shows how to generate adversarial examples using C&W attack in white-box setting. The original paper can be found at: https://nicholas.carlini.com/papers/2017_sp_nnrobustattacks.pdf """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging import os import numpy as np import tensorflow as tf from tensorflow.python.platform import flags from keras.layers import Input from cleverhans.attacks import CarliniWagnerL2 from cleverhans.dataset import MNIST from cleverhans.loss import CrossEntropy from cleverhans.utils import grid_visual, AccuracyReport from cleverhans.utils import set_log_level from cleverhans.utils_tf import model_eval, tf_model_load from cleverhans.train import train from cleverhans.utils_keras import KerasModelWrapper import pickle as pkl from keras import backend as K from cleverhans.attacks import CarliniWagnerL2, FastGradientMethod, SaliencyMapMethod, DeepFool, BasicIterativeMethod class Attack(object): def __init__(self, model, *args): self.model = model def attack(self, x, *args): raise NotImplementedError class CleverhansAttackFeedableRunMixin: def generate_np(self, x_val, feedable_dict={}, **kwargs): """ Generate adversarial examples and return them as a NumPy array. Sub-classes *should not* implement this method unless they must perform special handling of arguments. :param x_val: A NumPy array with the original inputs. :param **kwargs: optional parameters used by child classes. :return: A NumPy array holding the adversarial examples. """ if self.sess is None: raise ValueError("Cannot use `generate_np` when no `sess` was" " provided") packed = self.construct_variables(kwargs) fixed, feedable, _, hash_key = packed if hash_key not in self.graphs: self.construct_graph(fixed, feedable, x_val, hash_key) else: # remove the None arguments, they are just left blank for k in list(feedable.keys()): if feedable[k] is None: del feedable[k] x, new_kwargs, x_adv = self.graphs[hash_key] feed_dict = {x: x_val} for name in feedable: feed_dict[new_kwargs[name]] = feedable[name] return self.sess.run(x_adv, {**feed_dict, **feedable_dict}) class FeedableRunCarliniWagnerL2(CleverhansAttackFeedableRunMixin, CarliniWagnerL2): pass class FeedableRunBasicIterativeMethod(CleverhansAttackFeedableRunMixin, BasicIterativeMethod): pass class CW(Attack): def __init__(self, model, sess, input_ph, num_classes, source_samples = 2, binary_search_steps = 5, cw_learning_rate = 5e-3, confidence = 0, attack_iterations = 1000, attack_initial_const = 1e-2): super(Attack, self).__init__() self.model = model self.sess = sess self.x = input_ph self.y = Input(shape=(num_classes,), dtype = 'float32') abort_early = True self.cw = FeedableRunCarliniWagnerL2(self.model, sess=self.sess) self.cw_params = { 'binary_search_steps': binary_search_steps, "y": None, 'abort_early': True, 'max_iterations': attack_iterations, 'learning_rate': cw_learning_rate , 'batch_size': source_samples, 'initial_const': attack_initial_const , 'confidence': confidence, 'clip_min': 0.0, } def attack(self, x, y = None, feedable_dict={}): # print(self.cw_params) adv = self.cw.generate_np(x, **self.cw_params, feedable_dict=feedable_dict) if y: eval_params = {'batch_size': 100} preds = self.model.get_logits(self.x) acc = model_eval(self.sess, self.x, self.y, preds, adv, y, args=eval_params) adv_success = 1 - acc print('The adversarial success rate is {}.'.format(adv_success)) return adv # added by AUTHOR according to the description in the paper class BIM(Attack): def __init__(self, model, sess, input_ph, num_classes, epsilon=0.03, learning_rate = 5e-3, attack_iterations = 1000, random_init=True): super(Attack, self).__init__() self.model = model self.sess = sess self.x = input_ph self.y = Input(shape=(num_classes,), dtype = 'float32') self.bim = FeedableRunBasicIterativeMethod(self.model, sess=self.sess) self.bim_params = { "y": None, 'nb_iter': attack_iterations, 'eps_iter': learning_rate, 'eps': epsilon, 'rand_init': random_init, 'clip_min': 0.0, 'clip_max': 1.0, } def attack(self, x, y = None, feedable_dict={}): # print(self.bim_params) adv = self.bim.generate_np(x, **self.bim_params, feedable_dict=feedable_dict) if y: eval_params = {'batch_size': 100} preds = self.model.get_logits(self.x) acc = model_eval(self.sess, self.x, self.y, preds, adv, y, args=eval_params) adv_success = 1 - acc print('The adversarial success rate is {}.'.format(adv_success)) return adv class FMA(Attack): def __init__(self, raw_model, model, sess, input_ph, num_classes, target_samples, reference, features, epsilon=0.03, num_random_features=1000, learning_rate = 5e-3, attack_iterations = 1000, random_init=True, verbose=False): super(Attack, self).__init__() self.raw_model = raw_model self.model = model self.sess = sess self.reference = reference self.features = features assert len(target_samples) == num_classes, (len(target_samples), num_classes) self.target_samples = target_samples self.x = input_ph self.y = Input(shape=(num_classes,), dtype = 'float32') self.logits = model.get_logits(input_ph) self.epsilon = epsilon self.learning_rate = learning_rate self.attack_iterations = attack_iterations self.random_init = random_init self.all_features = tf.concat(features, 1) num_random_features = min(num_random_features, self.all_features.shape[1].value) self.num_random_features = num_random_features self.feature_indices_ph = tf.placeholder(tf.int32, shape=(num_random_features,)) self.target_features_ph = tf.placeholder(tf.float32, shape=self.all_features.shape) self.loss = tf.nn.l2_loss(tf.gather(self.all_features - tf.expand_dims(self.target_features_ph, 0), self.feature_indices_ph, axis=1)) self.gradient = tf.gradients(self.loss, self.x)[0] self.verbose = verbose def attack(self, x, y = None, feedable_dict={}): assert len(x) == 1, "attack can only process a single sample at a time" # print(self.bim_params) y = self.sess.run(self.logits, {self.x: x, **feedable_dict}).argmax(-1)[0] x_target = self.target_samples[(y + 1) % 10] from ml_loo import loo_ml_instance target_features = loo_ml_instance(x_target, self.reference, self.raw_model, self.features, batch_size=3100)[:, :-1] if not self.random_init: x_adv = x else: x_adv = np.clip(x + np.random.uniform(-self.epsilon, +self.epsilon, x.shape), 0, 1) for i in range(self.attack_iterations): feature_indices = np.random.choice( np.arange(self.all_features.shape[-1].value), self.num_random_features) loss_value, logits_value, gradient_value = self.sess.run( (self.loss, self.logits, self.gradient), { self.x: x_adv, self.target_features_ph: target_features, self.feature_indices_ph: feature_indices, **feedable_dict } ) gradient_value = np.sign(gradient_value) x_adv -= self.learning_rate * gradient_value delta = np.clip(x_adv - x, -self.epsilon, +self.epsilon) x_adv = np.clip(x + delta, 0, 1) if self.verbose: print(loss_value, logits_value) return x_adv
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function import tensorflow as tf import numpy as np import os from keras.layers import Flatten, Conv2D, MaxPooling2D, Conv2DTranspose, UpSampling2D, Convolution2D, BatchNormalization, Dense, Dropout, Activation, Embedding, Conv1D, Input, GlobalMaxPooling1D, Multiply, Lambda, Permute, GlobalAveragePooling2D from keras.preprocessing import sequence from keras.datasets import imdb, mnist from keras.callbacks import ModelCheckpoint from keras.models import Model, Sequential from keras.objectives import binary_crossentropy from keras.metrics import binary_accuracy as accuracy from keras.optimizers import RMSprop from keras import backend as K from keras import optimizers import math def construct_original_network(dataset_name, model_name, train): data_model = dataset_name + model_name if dataset_name == 'mnist': input_size = 28 num_classes = 10 channel = 1 elif dataset_name == 'cifar10': # Define the model input_size = 32 num_classes = 10 channel = 3 elif dataset_name == 'cifar100': # Define the model input_size = 32 num_classes = 100 channel = 3 if model_name == 'scnn': image_ph = Input(shape=(input_size,input_size,channel),dtype = 'float32') net = Convolution2D(32, kernel_size=(5, 5),padding = 'same', activation='relu', name = 'conv1')(image_ph) net = MaxPooling2D(pool_size=(2, 2))(net) net = Convolution2D(64, (5, 5),padding = 'same', activation='relu', name = 'conv2')(net) net = MaxPooling2D(pool_size=(2, 2))(net) net = Flatten()(net) net = Dense(1024, activation='relu',name='fc1')(net) net = Dense(num_classes, activation='softmax',name='fc2')(net) preds = Activation('softmax')(net) model = Model(image_ph, preds) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc']) elif model_name == 'cnn': image_ph = Input(shape=(input_size,input_size,channel),dtype = 'float32') net = Convolution2D(48, (3,3), padding='same', input_shape=(32, 32, 3))(image_ph) net = Activation('relu')(net) net = Convolution2D(48, (3, 3))(net) net = Activation('relu')(net) net = MaxPooling2D(pool_size=(2, 2))(net) net = Dropout(0.25)(net) net = Convolution2D(96, (3,3), padding='same')(net) net = Activation('relu')(net) net = Convolution2D(96, (3, 3))(net) net = Activation('relu')(net) net = MaxPooling2D(pool_size=(2, 2))(net) net = Dropout(0.25)(net) net = Convolution2D(192, (3,3), padding='same')(net) net = Activation('relu')(net) net = Convolution2D(192, (3, 3))(net) net = Activation('relu')(net) net = MaxPooling2D(pool_size=(2, 2))(net) net = Dropout(0.25)(net) net = Flatten()(net) net = Dense(512)(net) net = Activation('relu')(net) net = Dropout(0.5)(net) net = Dense(256)(net) net = Activation('relu')(net) net = Dropout(0.5)(net) net = Dense(num_classes, activation=None)(net) preds = Activation('softmax')(net) model = Model(image_ph, preds) sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['acc']) # Compile the model elif model_name == 'fc': image_ph = Input(shape=(input_size,input_size,channel),dtype = 'float32') net = Flatten()(image_ph) net = Dense(256)(net) net = Activation('relu')(net) net = Dense(256)(net) net = Activation('relu')(net) net = Dense(256)(net) net = Activation('relu')(net) preds = Dense(num_classes, activation='softmax')(net) model = Model(image_ph, preds) sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['acc']) elif model_name == 'resnet': from resnet import resnet_v2, lr_schedule, lr_schedule_sgd model, image_ph, preds = resnet_v2(input_shape=(input_size, input_size, channel), depth=20, num_classes = num_classes) optimizer = optimizers.SGD(lr=0.1, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) elif model_name == 'densenet': from densenet import DenseNet nb_filter = -1#12 if dataset_name == 'cifar100' else -1 image_ph = Input(shape=(input_size,input_size,channel),dtype = 'float32') model, preds = DenseNet((input_size,input_size,channel), classes=num_classes, depth=40, nb_dense_block=3, growth_rate=12, nb_filter=nb_filter, dropout_rate=0.0, weights=None, input_tensor = image_ph) optimizer = optimizers.SGD(lr=0.1, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=["accuracy"]) grads = [] for c in range(num_classes): grads.append(tf.gradients(preds[:,c], image_ph)) grads = tf.concat(grads, axis = 0) approxs = grads * tf.expand_dims(image_ph, 0) logits = [layer.output for layer in model.layers][-2] print(logits) sess = K.get_session() return image_ph, preds, grads, approxs, sess, model, num_classes, logits class ImageModel(): def __init__(self, model_name, dataset_name, train = False, load = False, **kwargs): self.model_name = model_name self.dataset_name = dataset_name self.data_model = dataset_name + model_name self.framework = 'keras' # if not train: # K.set_learning_phase(0) print('Constructing network...') self.input_ph, self.preds, self.grads, self.approxs, self.sess, self.model, self.num_classes, self.logits = construct_original_network(self.dataset_name, self.model_name, train = train) self.layers = self.model.layers self.last_hidden_layer = self.model.layers[-3] self.y_ph = tf.placeholder(tf.float32, shape = [None, self.num_classes]) if load: if load == True: print('Loading model weights...') self.model.load_weights('{}/models/original.hdf5'.format(self.data_model), by_name=True) elif load != False: self.model.load_weights('{}/models/{}.hdf5'.format(self.data_model, load), by_name=True) self.pred_counter = 0 def train(self, dataset): print('Training...') if self.dataset_name == 'mnist': assert self.model_name in ['cnn', 'scnn'] data_model = self.dataset_name + self.model_name filepath="{}/models/original.hdf5".format(data_model) checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max') callbacks_list = [checkpoint] history = self.model.fit(dataset.x_train, dataset.y_train, validation_data=(dataset.x_val, dataset.y_val), callbacks = callbacks_list, epochs=100, batch_size=128) # print(history.history) elif self.dataset_name in ['cifar10', 'cifar100']: from keras.preprocessing.image import ImageDataGenerator if self.model_name == 'cnn': datagen = ImageDataGenerator(zoom_range=0.2, horizontal_flip=True) # zoom 0.2 datagen = create_resnet_generator(dataset.x_train) callbacks_list = [] batch_size = 128 num_epochs = 200 elif self.model_name in ['resnet', 'densenet']: from resnet import lr_schedule, create_resnet_generator from keras.callbacks import LearningRateScheduler, ReduceLROnPlateau, EarlyStopping # zoom 0.2 horizontal_filp always True. change optimizer to sgd, and batch_size to 128. datagen = ImageDataGenerator(rotation_range=15, width_shift_range=5./32, height_shift_range=5./32, horizontal_flip = True, zoom_range = 0.2) datagen.fit(dataset.x_train, seed=0) from resnet import lr_schedule_sgd from keras.callbacks import LearningRateScheduler lr_scheduler = LearningRateScheduler(lr_schedule_sgd) callbacks_list = [lr_scheduler] batch_size = 128 if self.dataset_name == 'cifar10' else 64 num_epochs = 200 filepath="{}/models/original.hdf5".format(self.data_model) checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max') callbacks_list.append(checkpoint) model_info = self.model.fit_generator(datagen.flow(dataset.x_train, dataset.y_train, batch_size = batch_size), epochs = num_epochs, steps_per_epoch = dataset.x_train.shape[0] // batch_size, callbacks = callbacks_list, validation_data = (dataset.x_val, dataset.y_val), verbose = 2, workers = 4) def adv_train(self, dataset, attack_name): from cleverhans.attacks import FastGradientMethod, ProjectedGradientDescent from cleverhans.utils_keras import KerasModelWrapper from cleverhans.loss import CrossEntropy from cleverhans.train import train from cleverhans.utils_tf import model_eval import time, datetime if attack_name == 'fgsm' and self.dataset_name == 'mnist': wrap = KerasModelWrapper(self.model) params = {'eps': 0.3, 'clip_min': -1., 'clip_max': 1.} attacker = FastGradientMethod(wrap, sess=self.sess) def attack(x): return attacker.generate(x, **params) preds_adv = self.model(attack(self.input_ph)) loss = CrossEntropy(wrap, smoothing=0.1, attack=attack) y_ph = tf.placeholder(tf.float32, shape = (None, self.num_classes)) def evaluate(): # Accuracy of adversarially trained model on legitimate test inputs eval_params = {'batch_size': 128} accuracy = model_eval(self.sess, self.input_ph, y_ph, self.preds, dataset.x_val, dataset.y_val, args=eval_params) print('Test accuracy on legitimate examples: %0.4f' % accuracy) # Accuracy of the adversarially trained model on adversarial examples accuracy = model_eval(self.sess, self.input_ph, y_ph, preds_adv, dataset.x_val, dataset.y_val, args=eval_params) print('Test accuracy on adversarial examples: %0.4f' % accuracy) # if self.dataset_name == 'mnist': train_params = { 'nb_epochs': 20, 'batch_size': 128, 'learning_rate': 0.001, 'train_dir': '{}/models'.format(self.data_model), 'filename': 'adv.cpkt' } # Perform and evaluate adversarial training train(self.sess, loss, dataset.x_train, dataset.y_train, evaluate=evaluate, args=train_params, rng=np.random.RandomState([2017, 8, 30])) self.model.save_weights('{}/models/{}.hdf5'.format(self.data_model, 'adv-{}'.format(attack_name))) elif attack_name == 'pgd': if self.dataset_name == 'mnist': params = {'eps': 0.1, # 'clip_min': -1.0, # 'clip_max': 1.0, 'eps_iter': 0.01, 'nb_iter': 20, 'epochs': 100, 'batch_size': 50, } elif self.dataset_name == 'cifar10': params = {'eps': 8.0 / 255 * 2, # 'clip_min': -1.0, # 'clip_max': 1.0, 'eps_iter': 2.0 / 255 * 2, 'nb_iter': 10,#10,#1, 'epochs': 200, 'batch_size': 128, } # attacker = ProjectedGradientDescent(wrap, sess=self.sess) # import foolbox # from foolbox.attacks import ProjectedGradientDescentAttack from attack_model import LinfPGDAttack # Main training loop # fmodel = foolbox.models.KerasModel(self.model, bounds=(-1, 1), preprocessing=(0, 1)) attacker = LinfPGDAttack(self, params['eps'], k = params['nb_iter'], a = params['eps_iter'], clip_min = dataset.clip_min, clip_max = dataset.clip_max, random_start = True, loss_func = 'xent') def attack(x, y): # return attacker(x, label=label, unpack=True, binary_search=False, epsilon=params['eps'], stepsize=params['eps_iter'], # iterations=params['nb_iter'], # random_start=False, return_early=True) return attacker.attack(x, np.argmax(y, axis = -1)) from resnet import lr_schedule, create_resnet_generator, lr_schedule_sgd from keras.preprocessing.image import ImageDataGenerator # datagen = create_resnet_generator(dataset.x_train) datagen = ImageDataGenerator(rotation_range=15, width_shift_range=5./32, height_shift_range=5./32, horizontal_flip = True, zoom_range = 0.2) datagen.fit(dataset.x_train, seed=0) xent = tf.reduce_mean(K.categorical_crossentropy(self.y_ph, self.preds), name='y_xent') global_step = tf.train.get_or_create_global_step() if self.dataset_name == 'cifar10': momentum = 0.9 weight_decay = 0.0002 costs = [] print('number of trainable variables: ',len(tf.trainable_variables())) for var in tf.trainable_variables(): if 'kernel' in var.name: costs.append(tf.nn.l2_loss(var)) penalty = tf.add_n(costs) loss = xent + weight_decay * penalty elif self.dataset_name == 'mnist': loss = xent if self.dataset_name == 'cifar10': boundaries = [40000,60000] values = [0.1,0.01,0.001] learning_rate = tf.train.piecewise_constant( tf.cast(global_step, tf.int32), boundaries, values) optimizer = tf.train.MomentumOptimizer(learning_rate, momentum) elif self.dataset_name == 'mnist': boundaries = [50000] values = [1e-3,1e-4] learning_rate = tf.train.piecewise_constant( tf.cast(global_step, tf.int32), boundaries, values) optimizer = tf.train.AdamOptimizer(learning_rate) train_step = optimizer.minimize(loss, global_step=global_step) accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(self.preds, 1), tf.argmax(self.y_ph, 1)), tf.float32)) num_output_steps = 100 # 100 num_checkpoint_steps = 1000 batch_size = params['batch_size'] ii = 0 epochs = params['epochs'] for e in range(epochs): num_batches = 0 for x_batch, y_batch in datagen.flow(dataset.x_train, dataset.y_train, batch_size=batch_size): # Compute Adversarial Perturbations start = time.time() x_batch_adv = attack(x_batch, y_batch) nat_dict = {self.input_ph: x_batch, self.y_ph: y_batch} adv_dict = {self.input_ph: x_batch_adv, self.y_ph: y_batch} eval_dict = {self.input_ph: dataset.x_train[:1000], self.y_ph: dataset.y_train[:1000]} val_dict = {self.input_ph: dataset.x_val[:1000], self.y_ph: dataset.y_val[:1000]} # Output to stdout if ii % num_output_steps == 0: nat_acc = self.sess.run(accuracy, feed_dict=eval_dict) val_acc = self.sess.run(accuracy, feed_dict=val_dict) adv_acc = self.sess.run(accuracy, feed_dict=adv_dict) print('Step {} '.format(ii)) print(' training nat accuracy {:.4}%'.format(nat_acc * 100)) print(' validation accuracy {:.4}%'.format(val_acc * 100)) print(' training adv accuracy {:.4}%'.format(adv_acc * 100)) if ii != 0: print(' {} examples per second'.format( num_output_steps * batch_size / training_time)) training_time = 0.0 # Write a checkpoint if ii % num_checkpoint_steps == 0: self.model.save_weights('{}/models/adv-{}-{}.hdf5'.format(self.data_model, attack_name, ii)) # Actual training step _ = self.sess.run(train_step, feed_dict=adv_dict) # print(step) end = time.time() training_time = end - start ii += 1 num_batches += 1 if num_batches >= len(dataset.x_train) / batch_size: break self.model.save_weights('{}/models/adv-{}.hdf5'.format(self.data_model, attack_name)) def predict(self, x, verbose=0, batch_size = 500, logits = False): x = np.array(x) if len(x.shape) == 3: _x = np.expand_dims(x, 0) else: _x = x self.pred_counter += len(_x) if not logits: prob = self.model.predict(_x, batch_size = batch_size, verbose = verbose) else: num_iters = int(math.ceil(len(_x) * 1.0 / batch_size)) probs = [] for i in range(num_iters): # print('{} samples predicted'.format(i * batch_size)) x_batch = _x[i * batch_size: (i+1) * batch_size] prob = self.sess.run(self.logits, feed_dict = {self.input_ph: x_batch}) probs.append(prob) prob = np.concatenate(probs, axis = 0) if len(x.shape) == 3: prob = prob.reshape(-1) return prob def compute_saliency(self, x, saliency_type = 'gradient'): x = np.array(x) if self.dataset_name in ['mnist', 'cifar10', 'cifar100']: batchsize = 128 #if self.data in ['imdbcnn','imdblstm'] else 20 num_iters = int(math.ceil(len(x) * 1.0 / batchsize)) approxs_val = [] for i in range(num_iters): batch_data = x[i * batchsize: (i+1) * batchsize] if saliency_type == 'gradient': approxs = self.grads elif saliency_type == 'taylor': approxs = self.approxs batch_approxs = self.sess.run(approxs, feed_dict = {self.input_ph: batch_data}) # [num_classes, batchsize, h, w, c] approxs_val.append(batch_approxs) approxs_val = np.concatenate(approxs_val, axis = 1) # [num_classes, num_data, h, w, c] pred_val = self.predict(x) class_specific_scores = approxs_val[np.argmax(pred_val, axis = 1), range(len(pred_val))] # [num_data, h, w, c] return class_specific_scores def compute_ig(self, x, reference): x = np.array(x) if self.dataset_name in ['mnist', 'cifar10', 'cifar100']: batchsize = 1 steps = 50 pred_vals = self.predict(x) class_specific_scores = [] num_iters = int(math.ceil(len(x) * 1.0 / batchsize)) for i in range(num_iters): batch_data = x[i * batchsize: (i+1) * batchsize] _, h, w, c = batch_data.shape step_batch = [batch_data * float(s) / steps + reference * (1 - float(s) / steps) for s in range(1, steps+1)] # [steps,batchsize, h, w, c] step_batch = np.reshape(step_batch, [-1, h, w, c]) # [steps * batchsize, h, w, c] batch_grads = self.sess.run(self.grads, feed_dict = {self.input_ph: step_batch}) # [num_classes, steps * batchsize, h, w, c] num_classes, _, h, w, c = batch_grads.shape grads_val = np.mean(batch_grads.reshape([num_classes, steps, -1, h, w, c]), axis = 1) approxs_val = grads_val * (batch_data - reference) # [num_classes, batchsize, h, w, c] pred_val = pred_vals[i * batchsize: (i+1) * batchsize] class_specific_score = approxs_val[np.argmax(pred_val, axis = 1), range(len(pred_val))] # [batchsize, h, w, c] # [batchsize, maxlen] class_specific_scores.append(class_specific_score) # [num_data, length] return np.concatenate(class_specific_scores, axis = 0)
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function # from model import * import numpy as np import tensorflow as tf import os import time import numpy as np import sys import os import tarfile import zipfile import keras import math from keras.utils import to_categorical class ImageData(): def __init__(self, dataset_name): if dataset_name == 'mnist': from keras.datasets import mnist (x_train, y_train), (x_val, y_val) = mnist.load_data() x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) x_val = x_val.reshape(x_val.shape[0], 28, 28, 1) elif dataset_name == 'cifar100': from keras.datasets import cifar100 (x_train, y_train), (x_val, y_val) = cifar100.load_data() elif dataset_name == 'cifar10': from keras.datasets import cifar10 # Load CIFAR10 Dataset (x_train, y_train), (x_val, y_val) = cifar10.load_data() x_train = x_train.astype('float32')/255 x_val = x_val.astype('float32')/255 y_train = to_categorical(y_train) y_val = to_categorical(y_val) x_train_mean = np.zeros(x_train.shape[1:]) x_train -= x_train_mean x_val -= x_train_mean self.clip_min = 0.0 self.clip_max = 1.0 self.x_train = x_train#[idx[:1000]] self.x_val = x_val self.y_train = y_train#[idx[:1000]] self.y_val = y_val self.x_train_mean = x_train_mean print('self.x_val', self.x_val.shape) def split_data(x, y, model, num_classes = 10, split_rate = 0.8, sample_per_class = 100): # print('x.shape', x.shape) # print('y.shape', y.shape) np.random.seed(10086) pred = model.predict(x) label_pred = np.argmax(pred, axis = 1) label_truth = np.argmax(y, axis = 1) correct_idx = label_pred==label_truth print('Accuracy is {}'.format(np.mean(correct_idx))) x, y = x[correct_idx], y[correct_idx] label_pred = label_pred[correct_idx] # print('x.shape', x.shape) # print('y.shape', y.shape) x_train, x_test, y_train, y_test = [], [], [], [] for class_id in range(num_classes): _x = x[label_pred == class_id][:sample_per_class] _y = y[label_pred == class_id][:sample_per_class] l = len(_x) x_train.append(_x[:int(l * split_rate)]) x_test.append(_x[int(l * split_rate):]) y_train.append(_y[:int(l * split_rate)]) y_test.append(_y[int(l * split_rate):]) x_train = np.concatenate(x_train, axis = 0) x_test = np.concatenate(x_test, axis = 0) y_train = np.concatenate(y_train, axis = 0) y_test = np.concatenate(y_test, axis = 0) idx_train = np.random.permutation(len(x_train)) idx_test = np.random.permutation(len(x_test)) x_train = x_train[idx_train] y_train = y_train[idx_train] x_test = x_test[idx_test] y_test = y_test[idx_test] return x_train, y_train, x_test, y_test if __name__ == '__main__': import argparse from build_model import ImageModel parser = argparse.ArgumentParser() parser.add_argument('--dataset_name', type = str, choices = ['cifar10'], default = 'cifar10') parser.add_argument('--model_name', type = str, choices = ['resnet'], default = 'resnet') args = parser.parse_args() dict_a = vars(args) data_model = args.dataset_name + args.model_name dataset = ImageData(args.dataset_name) model = ImageModel(args.model_name, args.dataset_name, train = False, load = True) x, y = dataset.x_val, dataset.y_val x_train, y_train, x_test, y_test = split_data(x, y, model, num_classes = 10, split_rate = 0.8)
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals # disable tf logging # some of these might have to be commented out to use verbose=True in the # adaptive attack import os import torch from ml_loo import collect_layers from tensorflow_wrapper import TensorFlow1ToPyTorchWrapper from utils import build_dataloader_from_arrays os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import warnings import logging logging.getLogger('tensorflow').setLevel(logging.FATAL) import tensorflow as tf tf.logging.set_verbosity(tf.logging.ERROR) try: import cPickle as pickle except: import _pickle as pickle import cleverhans from cleverhans.utils_keras import KerasModelWrapper from active_tests.decision_boundary_binarization import \ interior_boundary_discrimination_attack import numpy as np from sklearn.linear_model import LogisticRegressionCV from tqdm import tqdm from build_model import ImageModel from load_data import ImageData, split_data from attack_model import BIM, CW, FMA if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--dataset_name', type = str, choices = ['cifar10'], default = 'cifar10') parser.add_argument('--model_name', type = str, choices = ['resnet'], default = 'resnet') parser.add_argument( '--attack', type = str, choices = ['cw', 'bim', 'fma'], default = 'cw' ) parser.add_argument( '--detector-attack', type = str, choices = ['cw', 'bim', 'bim2'], default = 'cw' ) parser.add_argument("--n-samples", type=int, default=500) parser.add_argument("--n-boundary-points", type=int, default=1) parser.add_argument("--n-inner-points", type=int, default=999) # default equals value for FPPR5; obtained from train_and_evaluate.py parser.add_argument("--detector-threshold", type=float, default=0.6151412488088068) parser.add_argument("--inverted-test", action="store_true") args = parser.parse_args() if args.inverted_test: print("Running inverted test") else: print("Running normal/non-inverted test") dict_a = vars(args) args.data_model = args.dataset_name + args.model_name # load detector with open(f"{args.data_model}/models/ml_loo_{args.detector_attack}_lr.pkl", "rb") as f: lr = pickle.load(f) print('Loading dataset...') dataset = ImageData(args.dataset_name) model = ImageModel(args.model_name, args.dataset_name, train = False, load = True) class ModelWrapper(cleverhans.model.Model): def __init__(self, model, sess, input_ph, weight_shape, bias_shape): self.weight = tf.placeholder(dtype=tf.float32, shape=weight_shape) self.bias = tf.placeholder(dtype=tf.float32, shape=bias_shape) self.model = model self.sess = sess self.input_ph = input_ph self.num_classes = 2 self.first = True def fprop(self, x): y = self.model.get_layer(x, "flatten_1") logits = y @ tf.transpose(self.weight) + tf.reshape(self.bias, (1, -1)) return {"logits": logits, "probs": tf.nn.softmax(logits, -1), "predictions": tf.argmax(logits, -1)} def get_probs(self, x): return self.fprop(x)["probs"] def predict(self, x, weights_feed_dict, logits=True): if self.first: self.targets = self.fprop(self.input_ph) self.first = False targets = self.targets if logits: target = targets["logits"] else: target = targets["probs"] return self.sess.run(target, {self.input_ph: x, **weights_feed_dict}) keras_model = KerasModelWrapper(model.model) wrapped_model = ModelWrapper(keras_model, model.sess, model.input_ph, (2, 256), (2,)) features = keras_model.get_layer(model.input_ph, "flatten_1") feature_gradients = tf.gradients(features, model.input_ph)[0] logits = keras_model.get_logits(model.input_ph) def run_features(x: np.ndarray, features_only=True, features_and_logits=False): if features_only: assert not features_and_logits targets = features elif features_and_logits: targets = (features, logits) else: targets = logits return model.sess.run(targets, feed_dict={model.input_ph: x.transpose(0, 2, 3, 1)}) def run_features_and_gradients(x: np.ndarray): return model.sess.run((features, feature_gradients), feed_dict={model.input_ph: x.transpose(0, 2, 3, 1)}) feature_extractor = TensorFlow1ToPyTorchWrapper( logit_forward_pass=lambda x, features_only = False, features_and_logits = False: run_features(x, features_only, features_and_logits), logit_forward_and_backward_pass=lambda x: run_features_and_gradients(x) ) if args.dataset_name == 'cifar10': X_train, Y_train, X_test, Y_test = split_data(dataset.x_val, dataset.y_val, model, num_classes = 10, split_rate = 0.8, sample_per_class = 1000) else: raise NotImplementedError() if args.n_samples == -1: args.n_samples = len(X_test) X_test = X_test[:args.n_samples] Y_test = Y_test[:args.n_samples] from ml_loo import get_ml_loo_features if args.model_name == 'resnet': interested_layers = [14,24,35,45,56,67,70] else: raise ValueError() # only relevant feature used by logistic regression model stat_names = ['quantile'] reference = - dataset.x_train_mean get_ml_loo_features_ = lambda x: get_ml_loo_features(model, x, reference, interested_layers, stat_names=stat_names)[:, 0] detector = lambda x: lr.predict_proba(get_ml_loo_features_(x))[:, 1] batch_size = 50 detector_threshold = args.detector_threshold if args.attack == 'cw': if args.dataset_name in ['cifar10']: if args.model_name == 'resnet': attack_model = CW( wrapped_model, wrapped_model.sess, wrapped_model.input_ph, wrapped_model.num_classes, source_samples = 1, binary_search_steps = 5, cw_learning_rate = 1e-2, confidence = 0, attack_iterations = 100, attack_initial_const = 1e-2, ) original_attack_model = CW( keras_model, wrapped_model.sess, wrapped_model.input_ph, model.num_classes, source_samples = 1, binary_search_steps = 5, cw_learning_rate = 1e-2, confidence = 0, attack_iterations = 100, attack_initial_const = 1e-2, ) elif args.attack == "bim": if args.dataset_name in ['cifar10']: if args.model_name == 'resnet': attack_model = BIM( wrapped_model, wrapped_model.sess, wrapped_model.input_ph, wrapped_model.num_classes, attack_iterations = 100, epsilon=0.03, learning_rate=2.5 * 0.03 / 100, random_init=True ) original_attack_model = BIM( keras_model, wrapped_model.sess, wrapped_model.input_ph, model.num_classes, attack_iterations = 100, epsilon=0.03, learning_rate=2.5 * 0.03 / 100, random_init=True ) elif args.attack == "fma": if args.dataset_name in ['cifar10']: if args.model_name == 'resnet': target_samples = [] for y in range(10): target_samples.append(X_train[np.argmax(Y_train == y)]) target_samples = np.array(target_samples) attack_model = FMA( model, wrapped_model, wrapped_model.sess, wrapped_model.input_ph, wrapped_model.num_classes, target_samples=target_samples[:2], reference=reference, features=collect_layers(model, interested_layers), attack_iterations = 500, epsilon=0.03, learning_rate=4 * 0.03 / 100, num_random_features=3100, random_init=True ) original_attack_model = BIM( keras_model, wrapped_model.sess, wrapped_model.input_ph, model.num_classes, attack_iterations = 100, epsilon=0.03, learning_rate=2.5 * 0.03 / 100, random_init=True ) assert 0 < X_test.max() <= 1.0, (X_test.min(), X_test.max()) test_loader = build_dataloader_from_arrays(X_test.transpose((0, 3, 1, 2)), Y_test, batch_size=32) def run_attack(m, l, attack_kwargs): # attack_kwargs contains values that might be useful for e.g. constructing logit matching evasion attacks if args.attack == "fma": reference_points = attack_kwargs["reference_points_x"] if len(reference_points) < 2: reference_points = np.concatenate([reference_points, reference_points], 0) reference_points = reference_points.transpose((0, 2, 3, 1)) attack_model.target_samples = reference_points else: del attack_kwargs linear_layer = m[-1] del m weights_feed_dict = { wrapped_model.weight: linear_layer.weight.data.numpy(), wrapped_model.bias: linear_layer.bias.data.numpy() } for x, y in l: x = x.numpy() x = x.transpose((0, 2, 3, 1)) assert len(x) == 1 x_adv = attack_model.attack(x, feedable_dict=weights_feed_dict) logits_adv = wrapped_model.predict( x_adv, weights_feed_dict=weights_feed_dict, logits=True) y_adv = logits_adv.argmax(-1) is_adv = y_adv != y is_not_detected = verify_input_data_fn(torch.tensor(x_adv.transpose((0, 3, 1, 2)))) is_adv_and_not_detected = np.logical_and(is_adv, is_not_detected) is_adv_and_detected = np.logical_and(is_adv, ~is_not_detected) if args.inverted_test: test_result = is_adv_and_detected else: test_result = is_adv_and_not_detected return test_result, (torch.tensor(x_adv), torch.tensor(logits_adv)) def get_boundary_adversarials(x, y, n_samples, epsilon): """Generate adversarial examples for the base classifier that get rejected by detector.""" assert len(x.shape) == 3 x = x.unsqueeze(0) x = torch.repeat_interleave(x, n_samples, dim=0) x = x.numpy() x = x.transpose((0, 2, 3, 1)) for _ in range(25): x_adv = original_attack_model.attack(x) diff = x_adv - x diff = diff / np.max(np.abs(diff)) * epsilon x_adv = np.clip(x + diff, 0, 1) is_detected = ~verify_input_data_fn(torch.tensor(x_adv.transpose((0, 3, 1, 2)))) if np.all(is_detected): # generative until we finally found (an) adversarial example(s) that # get(s) detected break else: warnings.warn("Could not generate adversarial example that gets " "detected after 25 trials.") x_adv = x_adv.transpose((0, 3, 1, 2)) return torch.tensor(x_adv) from argparse_utils import DecisionBoundaryBinarizationSettings from active_tests.decision_boundary_binarization import format_result if args.inverted_test: additional_settings = dict( n_boundary_points=args.n_boundary_points, n_boundary_adversarial_points=1, n_far_off_boundary_points=1, n_far_off_adversarial_points=1, ) else: additional_settings = dict( n_boundary_points=args.n_boundary_points, n_boundary_adversarial_points=args.n_boundary_points - 1, n_far_off_boundary_points=1, n_far_off_adversarial_points=0, ) far_off_distance = 1.75 def verify_input_data_fn(x: torch.Tensor) -> np.ndarray: """Checks if detector does not reject input data as adversarial, i.e. input is clean.""" #if args.inverted_test: # return detector(x.numpy().transpose((0, 2, 3, 1))) > detector_threshold #else: return detector(x.numpy().transpose((0, 2, 3, 1))) < detector_threshold scores_logit_differences_and_validation_accuracies = \ interior_boundary_discrimination_attack( feature_extractor, test_loader, attack_fn=lambda m, l, attack_kwargs: run_attack(m, l, attack_kwargs), linearization_settings=DecisionBoundaryBinarizationSettings( epsilon=0.03, norm="linf", lr=10000, adversarial_attack_settings=None, optimizer="sklearn", n_inner_points=args.n_inner_points, **additional_settings ), n_samples=args.n_samples, device="cpu", n_samples_evaluation=200, n_samples_asr_evaluation=200, verify_valid_boundary_training_data_fn=verify_input_data_fn, get_boundary_adversarials_fn=get_boundary_adversarials, verify_valid_inner_training_data_fn=None, verify_valid_input_validation_data_fn=None, fill_batches_for_verification=False, far_off_distance=far_off_distance, rejection_resampling_max_repetitions=25, rescale_logits="adaptive" ) print(format_result(scores_logit_differences_and_validation_accuracies, args.n_samples))
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging import os import numpy as np import tensorflow as tf from tensorflow.python.platform import flags from keras.layers import Input from cleverhans.attacks import CarliniWagnerL2 from cleverhans.dataset import MNIST from cleverhans.loss import CrossEntropy from cleverhans.utils import grid_visual, AccuracyReport from cleverhans.utils import set_log_level from cleverhans.utils_tf import model_eval, tf_model_load from cleverhans.train import train from cleverhans.utils_keras import KerasModelWrapper from build_model import ImageModel from load_data import ImageData, split_data import pickle as pkl from keras.utils import to_categorical from attack_model import Attack, CW, BIM import scipy if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--dataset_name', type = str, choices = ['cifar10'], default = 'cifar10') parser.add_argument('--model_name', type = str, choices = ['resnet'], default = 'resnet') parser.add_argument('--data_sample', type = str, choices = ['x_train', 'x_val', 'x_val200'], default = 'x_val200') parser.add_argument( '--attack', type = str, choices = ['cw', 'bim', 'bim2'], default = 'cw' ) args = parser.parse_args() dict_a = vars(args) data_model = args.dataset_name + args.model_name if data_model not in os.listdir('./'): os.mkdir(data_model) if 'results' not in os.listdir('./{}'.format(data_model)): os.mkdir('{}/results'.format(data_model)) if 'models' not in os.listdir(data_model): os.mkdir('{}/models'.format(data_model)) if 'data' not in os.listdir(data_model): os.mkdir('{}/data'.format(data_model)) if 'figs' not in os.listdir(data_model): os.mkdir('{}/figs'.format(data_model)) print('Loading dataset...') dataset = ImageData(args.dataset_name) model = ImageModel(args.model_name, args.dataset_name, train = False, load = True) if args.dataset_name == 'cifar10': X_train, Y_train, X_test, Y_test = split_data(dataset.x_val, dataset.y_val, model, num_classes = 10, split_rate = 0.8, sample_per_class = 1000) print('Sanity checking...') data_sample = X_test print('data_sample.shape', data_sample.shape) print('X_train.shape', X_train.shape) pred_test = model.predict(dataset.x_val) def cross_entropy(predictions, targets, epsilon=1e-12): predictions = np.clip(predictions, epsilon, 1. - epsilon) N = predictions.shape[0] ce = -np.sum(targets*np.log(predictions+1e-9))/N return ce ce = cross_entropy(pred_test, dataset.y_val, epsilon=1e-12) acc = np.mean(np.argmax(pred_test, axis = 1) == np.argmax(dataset.y_val, axis = 1)) print('The accuracy is {}. The cross entropy is {}.'.format(acc, ce)) if args.attack == 'cw': if args.dataset_name in ['cifar10']: if args.model_name == 'resnet': attack_model = CW( KerasModelWrapper(model.model), model.input_ph, model.num_classes, source_samples = 100, binary_search_steps = 5, cw_learning_rate = 1e-2, confidence = 0, attack_iterations = 100, attack_initial_const = 1e-2, ) elif args.attack == "bim": if args.dataset_name in ['cifar10']: if args.model_name == 'resnet': attack_model = BIM( KerasModelWrapper(model.model), model.sess, model.input_ph, model.num_classes, attack_iterations = 100, epsilon=0.03, learning_rate=2.5 * 0.03 / 100, random_init=True ) elif args.attack == "bim2": if args.dataset_name in ['cifar10']: if args.model_name == 'resnet': attack_model = BIM( KerasModelWrapper(model.model), model.sess, model.input_ph, model.num_classes, attack_iterations = 10, epsilon=0.03, learning_rate=2.5 * 0.03 / 10, random_init=True ) ################################################### # filter data samples with correct predictions by model and successsful attacks ################################################### data_types = ['train', 'test'] data = {'train': (X_train, Y_train), 'test': (X_test, Y_test)} if args.data_sample == 'x_val200': num_samples = {'train': 800, 'test': 200} for data_type in data_types: x, y = data[data_type] print('x.shape', x.shape) print('y.shape', y.shape) num_successes = 0 oris = [] perturbeds = [] batch_size = int(np.minimum(100, num_samples[data_type])) cur_batch = 0 conf = 15 epsilon = 0 while num_successes < num_samples[data_type]: batch_x, batch_y = x[cur_batch * batch_size:(cur_batch+1) * batch_size], y[cur_batch * batch_size:(cur_batch+1) * batch_size] print('batch_x', batch_x.shape) x_adv = attack_model.attack(batch_x) print('x_adv', x_adv.shape) if x_adv.shape[0] == 0: continue x_adv_labels = np.argmax(model.predict(x_adv), axis = -1) index_filter = (x_adv_labels != np.argmax(batch_y, axis = 1)) ori = batch_x[index_filter] perturbed = x_adv[index_filter] print('Success rate', perturbed.shape[0] / len(x_adv)) oris.append(ori) perturbeds.append(perturbed) cur_batch += 1 num_successes += len(ori) print('Number of successsful samples is {}'.format(num_successes)) oris = np.concatenate(oris, axis = 0) perturbeds = np.concatenate(perturbeds, axis = 0) oris = oris[:num_samples[data_type]] perturbeds = perturbeds[:num_samples[data_type]] print('oris.shape', oris.shape) print('perturbeds.shape', perturbeds.shape) np.save('{}/data/{}{}_{}_{}.npy'.format( data_model, args.data_sample, '' if data_type == 'test' else '_train', args.attack, 'ori'), oris) np.save('{}/data/{}{}_adv_{}_{}.npy'.format( data_model, args.data_sample, '' if data_type == 'test' else '_train', args.attack, 'ori'), perturbeds)
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ """ from tensorflow.keras.layers import Layer from tensorflow.keras import backend as K import tensorflow as tf import numpy as np class Clipper(Layer): """clips input to lie wihin valid pixel range Only active at training time since it is a regularization layer. # Arguments attenuation: how much to attenuate the input # Input shape Arbitrary. # Output shape Same as the input shape. """ def __init__(self, **kwargs): super(Clipper, self).__init__(**kwargs) self.supports_masking = True def call(self, inputs, training=None): def augmented(): return tf.clip_by_value(inputs,-0.5,0.5) return K.in_train_phase(augmented, augmented, training=training) def get_config(self): config = {} base_config = super(Clipper, self).get_config() return dict(list(base_config.items()) + list(config.items()))
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ """ from tensorflow.keras.layers import Layer from tensorflow.keras import backend as K import tensorflow as tf import numpy as np class Grayscaler(Layer): """Converts input to grayscale Only active at training time since it is a regularization layer. # Arguments attenuation: how much to attenuate the input # Input shape Arbitrary. # Output shape Same as the input shape. """ def __init__(self, **kwargs): super(Grayscaler, self).__init__(**kwargs) self.supports_masking = True def call(self, inputs, training=None): def augmented(): return tf.image.rgb_to_grayscale(inputs) return K.in_train_phase(augmented, augmented, training=training) def get_config(self): config = {} base_config = super(Grayscaler, self).get_config() return dict(list(base_config.items()) + list(config.items()))
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Run this to attack a trained model via TrainModel. Use the "loadFullModel" submethod to load in an already trained model (trained via TrainModel) The main attack function is "runAttacks" which runs attacks on trained models """ import logging logging.getLogger('tensorflow').setLevel(logging.FATAL) import tensorflow as tf tf.logging.set_verbosity(tf.logging.ERROR) from cleverhans.attacks import ProjectedGradientDescent from Model_Implementations import Model_Softmax_Baseline, \ Model_Logistic_Baseline, Model_Logistic_Ensemble, Model_Tanh_Ensemble, \ Model_Tanh_Baseline from tensorflow.keras.datasets import cifar10 from tensorflow.keras import backend import tensorflow as tf; import numpy as np import scipy.linalg model_path = 'checkpoints/ECOC/tanh32/checkpoints' #path with saved model parameters def setup_model_and_data(adaptive_attack=False): print("Modifying model for adaptive attack:", adaptive_attack) # Dataset-specific parameters - should be same as those used in TrainModel DATA_DESC = 'CIFAR10'; (X_train, Y_train), (X_test, Y_test) = cifar10.load_data() epochs = None; weight_save_freq = None num_classes = 10 # how many classes (categories) are in this dataset? Y_train = np.squeeze(Y_train); Y_test = np.squeeze(Y_test) num_filters_std = [32, 64, 128]; num_filters_ens = [32, 64, 128]; num_filters_ens_2 = 16; dropout_rate_std = 0.0; dropout_rate_ens = 0.0; weight_decay = 0 model_rep_baseline = 2; model_rep_ens = 2; DATA_AUGMENTATION_FLAG = 1; BATCH_NORMALIZATION_FLAG = 1 num_channels = 3; inp_shape = (32, 32, 3); lr = 1e-4; batch_size = 80; noise_stddev = 0.032; blend_factor = .032 # DATA PRE-PROCESSING X_train = (X_train / 255).astype(np.float32); X_test = (X_test / 255).astype(np.float32) # reshape (add third (image) channel) X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], X_train.shape[2], num_channels); X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], X_test.shape[2], num_channels) X_valid = X_test[1000:2000]; Y_valid = Y_test[1000:2000]; # validation data, used to attack model ## ENSEMBLE TANH 32 MODEL DEFINITION name = 'tanh_32_diverse' + '_' + DATA_DESC; seed = 59; code_length = 32; num_codes = code_length; num_chunks = 4; base_model = None; def output_activation(x): if adaptive_attack: return x else: return tf.nn.tanh(x) M = scipy.linalg.hadamard(code_length).astype(np.float32) M[np.arange(0, num_codes, 2), 0] = -1 # replace first col, which for scipy's Hadamard construction is always 1, hence not a useful classifier; this change still ensures all codewords have dot product <=0; since our decoder ignores negative correlations anyway, this has no net effect on probability estimation np.random.seed(seed) np.random.shuffle(M) idx = np.random.permutation(code_length) M = M[0:num_codes, idx[0:code_length]] params_dict = {'BATCH_NORMALIZATION_FLAG': BATCH_NORMALIZATION_FLAG, 'DATA_AUGMENTATION_FLAG': DATA_AUGMENTATION_FLAG, 'M': M, 'base_model': base_model, 'num_chunks': num_chunks, 'model_rep': model_rep_ens, 'output_activation': output_activation, 'num_filters_ens': num_filters_ens, 'num_filters_ens_2': num_filters_ens_2, 'batch_size': batch_size, 'epochs': epochs, 'dropout_rate': dropout_rate_ens, 'lr': lr, 'blend_factor': blend_factor, 'inp_shape': inp_shape, 'noise_stddev': noise_stddev, 'weight_save_freq': weight_save_freq, 'name': name, 'model_path': model_path, 'zero_one_input': True, 'adaptive_attack': adaptive_attack } m5 = Model_Tanh_Ensemble({}, params_dict) m5.loadFullModel() # load in the saved model, which should have already been trained first via TrainModel m5.legend = 'TEns32'; model = m5 return model, (X_valid, Y_valid), (X_test, Y_test) def wbAttack(sess, model, x_ph, x_adv_op, X, Y, batch_size=500, verbose=True): n_correct = 0 n_total = 0 all_logits = [] all_x_adv = [] import tqdm pbar = np.arange(0, X.shape[0], batch_size) if verbose: pbar = tqdm.tqdm(pbar) for start_idx in pbar: x = X[start_idx:start_idx + batch_size] y = Y[start_idx:start_idx + batch_size] x_adv = sess.run(x_adv_op, {x_ph: x}) logits = sess.run(model.logits, {model.input: x_adv}) preds = np.argmax(logits, -1) n_correct += np.sum(np.equal(preds, y)) n_total += len(x) all_logits.append(logits) all_x_adv.append(x_adv) all_x_adv = np.concatenate(all_x_adv, 0) all_logits = np.concatenate(all_logits, 0) adv_acc = n_correct / n_total return adv_acc, all_logits, all_x_adv def patch_pgd_loss(): import cleverhans def fgm(x, logits, y=None, eps=0.3, ord=np.inf, clip_min=None, clip_max=None, targeted=False, sanity_checks=True): asserts = [] # If a data range was specified, check that the input was in that range if clip_min is not None: asserts.append(cleverhans.utils_tf.assert_greater_equal( x, tf.cast(clip_min, x.dtype))) if clip_max is not None: asserts.append(cleverhans.utils_tf.assert_less_equal(x, tf.cast(clip_max, x.dtype))) # Make sure the caller has not passed probs by accident assert logits.op.type != 'Softmax' if y is None: # Using model predictions as ground truth to avoid label leaking preds_max = tf.reduce_max(logits, 1, keepdims=True) y = tf.to_float(tf.equal(logits, preds_max)) y = tf.stop_gradient(y) y = y / tf.reduce_sum(y, 1, keepdims=True) # Compute loss loss = loss_fn(labels=y, logits=logits) if targeted: loss = -loss # loss = tf.Print(loss, [loss]) # Define gradient of loss wrt input grad, = tf.gradients(loss, x) optimal_perturbation = cleverhans.attacks.optimize_linear(grad, eps, ord) # Add perturbation to original example to obtain adversarial example adv_x = x + optimal_perturbation # If clipping is needed, reset all values outside of [clip_min, clip_max] if (clip_min is not None) or (clip_max is not None): # We don't currently support one-sided clipping assert clip_min is not None and clip_max is not None adv_x = cleverhans.utils_tf.clip_by_value(adv_x, clip_min, clip_max) if sanity_checks: with tf.control_dependencies(asserts): adv_x = tf.identity(adv_x) return adv_x def loss_fn(sentinel=None, labels=None, logits=None, dim=-1): """ Wrapper around tf.nn.softmax_cross_entropy_with_logits_v2 to handle deprecated warning """ # Make sure that all arguments were passed as named arguments. if sentinel is not None: name = "softmax_cross_entropy_with_logits" raise ValueError("Only call `%s` with " "named arguments (labels=..., logits=..., ...)" % name) if labels is None or logits is None: raise ValueError("Both labels and logits must be provided.") labels = tf.stop_gradient(labels) # modified from # https://github.com/carlini/nn_robust_attacks/blob/master/li_attack.py real = tf.reduce_sum(labels * logits, -1) other = tf.reduce_max((1-labels) * logits - (labels*10000), -1) loss = other - real # loss = tf.Print(loss, [loss]) return loss cleverhans.attacks.fgm = fgm def main(): sess = backend.get_session() backend.set_learning_phase( 0) # need to do this to get CleverHans to work with batchnorm import argparse parser = argparse.ArgumentParser() parser.add_argument("--eps", type=float, default=8, help="in 0-255") parser.add_argument("--pgd-n-steps", default=200, type=int) parser.add_argument("--pgd-step-size", type=float, default=2 / 3 * 8, help="in 0-255") parser.add_argument("--n-samples", type=int, default=512) parser.add_argument("--adaptive-attack", action="store_true") args = parser.parse_args() model, (X_valid, Y_valid), (X_test, Y_test) = setup_model_and_data(adaptive_attack=args.adaptive_attack) test_indices = list(range(len(X_test))) np.random.shuffle(test_indices) X_test, Y_test = X_test[test_indices], Y_test[test_indices] X_test, Y_test = X_test[:args.n_samples], Y_test[:args.n_samples] model_ch = model.modelCH() attack = ProjectedGradientDescent(model_ch, sess=sess) att_params = {'clip_min': 0.0, 'clip_max': 1.0, 'eps': args.eps / 255.0, 'eps_iter': args.pgd_step_size / 255.0, 'nb_iter': args.pgd_n_steps, 'ord': np.inf, } if args.adaptive_attack: patch_pgd_loss() x_ph = tf.placeholder(shape=model.input.shape, dtype=tf.float32) x_adv_op = attack.generate(x_ph, **att_params) adv_acc, all_logits, all_x_adv = wbAttack(sess, model, x_ph, x_adv_op, X_test, Y_test, batch_size=512) print("Robust accuracy:", adv_acc) if __name__ == "__main__": main()
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Full implementation of all methods of Abstract class "Model" """ import tensorflow as tf import numpy as np from tensorflow.keras.layers import AveragePooling2D, BatchNormalization, Dropout, Multiply, Lambda, Input, Dense, Conv2D, MaxPooling2D, Flatten, Activation, UpSampling2D, Concatenate, GaussianNoise from tensorflow.keras.utils import plot_model from tensorflow.keras import metrics, regularizers, optimizers from tensorflow.keras.models import Model as KerasModel from Model import Model from tensorflow.keras import losses, metrics from ClassBlender import ClassBlender from DataAugmenter import DataAugmenter #Full architectural definition for all "baseline" models used in the paper def defineModelBaseline(self): outputs=[] self.penultimate = [] self.penultimate2 = [] x = self.input x = GaussianNoise(self.params_dict['noise_stddev'], input_shape=self.params_dict['inp_shape'])(x) if (self.TRAIN_FLAG==1): if self.params_dict['DATA_AUGMENTATION_FLAG']>0: x = DataAugmenter(self.params_dict['batch_size'])(x) x = ClassBlender(self.params_dict['blend_factor'], self.params_dict['batch_size'])(x) x = Lambda(lambda x: tf.clip_by_value(x,-0.5,0.5))(x) for rep in np.arange(self.params_dict['model_rep']): x = Conv2D(self.params_dict['num_filters_std'][0], (5,5), activation='elu', padding='same', kernel_regularizer=regularizers.l2(self.params_dict['weight_decay']))(x) if self.params_dict['BATCH_NORMALIZATION_FLAG']>0: x = BatchNormalization()(x) x = Conv2D(self.params_dict['num_filters_std'][0], (3,3), strides=(2,2), activation='elu', padding='same')(x) for rep in np.arange(self.params_dict['model_rep']): x = Conv2D(self.params_dict['num_filters_std'][1], (3, 3), activation='elu', padding='same', kernel_regularizer=regularizers.l2(self.params_dict['weight_decay']))(x) if self.params_dict['BATCH_NORMALIZATION_FLAG']>0: x = BatchNormalization()(x) x = Conv2D(self.params_dict['num_filters_std'][1], (3,3), strides=(2,2), activation='elu', padding='same')(x) x_=x for rep in np.arange(self.params_dict['model_rep']): x_ = Conv2D(self.params_dict['num_filters_std'][2], (3, 3), activation='elu', padding='same', kernel_regularizer=regularizers.l2(self.params_dict['weight_decay']))(x_) if self.params_dict['BATCH_NORMALIZATION_FLAG']>0: x_ = BatchNormalization()(x_) x_ = Conv2D(self.params_dict['num_filters_std'][2], (3,3), strides=(2,2), activation='elu', padding='same')(x_) x_ = Flatten()(x_) x_ = Dense(128, activation='elu')(x_) x_ = Dense(64, activation='elu')(x_) x0 = Dense(64, activation='linear')(x_) x1 = Dense(self.params_dict['M'].shape[1], activation='linear', kernel_regularizer=regularizers.l2(0.0))(x0) outputs = [x1] self.model = KerasModel(inputs=self.input, outputs=outputs) print(self.model.summary()) plot_model(self.model, to_file=self.params_dict['model_path'] + '/' + self.params_dict['name'] + '.png') return outputs class Model_Softmax_Baseline(Model): def __init__(self, data_dict, params_dict): super(Model_Softmax_Baseline, self).__init__(data_dict, params_dict) def defineModel(self): return defineModelBaseline(self) def defineLoss(self, idx): def loss_fn(y_true, y_pred): loss = tf.keras.backend.categorical_crossentropy(y_true, y_pred, from_logits=True) return loss return loss_fn def defineMetric(self): return [metrics.categorical_accuracy] class Model_Logistic_Baseline(Model): def __init__(self, data_dict, params_dict): super(Model_Logistic_Baseline, self).__init__(data_dict, params_dict) def defineModel(self): return defineModelBaseline(self) def defineLoss(self, idx): def loss_fn(y_true, y_pred): loss = tf.keras.backend.binary_crossentropy(y_true, y_pred, from_logits=True) return loss return loss_fn def defineMetric(self): def sigmoid_pred(y_true, y_pred): corr = tf.to_float((y_pred*(2*y_true-1))>0) return tf.reduce_mean(corr) return [sigmoid_pred] class Model_Tanh_Baseline(Model): def __init__(self, data_dict, params_dict): super(Model_Tanh_Baseline, self).__init__(data_dict, params_dict) def defineModel(self): return defineModelBaseline(self) def defineLoss(self, idx): def hinge_loss(y_true, y_pred): loss = tf.reduce_mean(tf.maximum(1.0-y_true*y_pred, 0)) return loss return hinge_loss def defineMetric(self): def tanh_pred(y_true, y_pred): corr = tf.to_float((y_pred*y_true)>0) return tf.reduce_mean(corr) return [tanh_pred] class Model_Logistic_Ensemble(Model): def __init__(self, data_dict, params_dict): super(Model_Logistic_Ensemble, self).__init__(data_dict, params_dict) def defineLoss(self, idx): def loss_fn(y_true, y_pred): loss = tf.keras.backend.binary_crossentropy(y_true, y_pred, from_logits=True) return loss return loss_fn def defineMetric(self): def sigmoid_pred(y_true, y_pred): corr = tf.to_float((y_pred*(2*y_true-1))>0) return tf.reduce_mean(corr) return [sigmoid_pred] class Model_Tanh_Ensemble(Model): def __init__(self, data_dict, params_dict): super(Model_Tanh_Ensemble, self).__init__(data_dict, params_dict) def defineLoss(self, idx): def hinge_loss(y_true, y_pred): loss = tf.reduce_mean(tf.maximum(1.0-y_true*y_pred, 0)) return loss return hinge_loss def defineMetric(self): def hinge_pred(y_true, y_pred): corr = tf.to_float((y_pred*y_true)>0) return tf.reduce_mean(corr) return [hinge_pred]
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ This code blends two classes together as a convex combination; a type of simple data augmentation """ from tensorflow.keras.layers import Layer from tensorflow.keras import backend as K import tensorflow as tf import numpy as np class ClassBlender(Layer): """Only active at training time since it is a regularization layer. # Arguments attenuation: how much to attenuate the input # Input shape Arbitrary. # Output shape Same as the input shape. """ def __init__(self, attenuation, batch_size, **kwargs): super(ClassBlender, self).__init__(**kwargs) self.supports_masking = True self.attenuation = attenuation self.batch_size = batch_size def call(self, inputs, training=None): def blended(): inputs_permuted = tf.random_shuffle(inputs) angles = (180*(2*np.random.rand(self.batch_size)-1))*np.pi/180 shifts = 4*(2*np.random.rand(self.batch_size, 2)-1) inputs_permuted_translated = tf.contrib.image.translate(inputs_permuted, shifts) inputs_permuted_translated_rotated = tf.contrib.image.rotate(inputs_permuted_translated,angles) inputs_adjusted = inputs_permuted_translated_rotated inputs_adjusted = tf.clip_by_value(inputs_adjusted,-0.5,0.5) return (1.0-self.attenuation)*inputs + self.attenuation*inputs_adjusted return K.in_train_phase(blended, inputs, training=training) def get_config(self): config = {'attenuation': self.attenuation, 'batch_size':self.batch_size} base_config = super(ClassBlender, self).get_config() return dict(list(base_config.items()) + list(config.items()))
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ """ from tensorflow.keras.layers import Layer from tensorflow.keras import backend as K import tensorflow as tf import numpy as np class DataAugmenter(Layer): """Shifts and scales input Only active at training time since it is a regularization layer. # Arguments attenuation: how much to attenuate the input # Input shape Arbitrary. # Output shape Same as the input shape. """ def __init__(self, batch_size, **kwargs): super(DataAugmenter, self).__init__(**kwargs) self.supports_masking = True self.batch_size = batch_size def call(self, inputs, training=None): def augmented(): angles = (15*(2*np.random.rand(self.batch_size)-1))*np.pi/180 shifts = 4*(2*np.random.rand(self.batch_size, 2)-1) inputs_shifted = tf.contrib.image.translate(inputs, shifts) inputs_shifted_rotated = tf.contrib.image.rotate(inputs_shifted,angles) random_number = tf.random_uniform([self.batch_size]) inputs_shifted_rotated_flipped = tf.where(random_number<0.5, tf.image.flip_left_right(inputs_shifted_rotated), inputs_shifted_rotated) # modificaiton by zimmerrol to make sure keras shape computation works inputs_shifted_rotated_flipped = tf.ensure_shape(inputs_shifted_rotated_flipped, inputs.shape) return inputs_shifted_rotated_flipped return K.in_train_phase(augmented, inputs, training=training) def get_config(self): config = {} config['batch_size'] = self.batch_size base_config = super(DataAugmenter, self).get_config() return dict(list(base_config.items()) + list(config.items()))