python_code
stringlengths
0
91.3k
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/henv python3 # -*- coding: utf-8 -*- """ This script trains a model that uses ECOC coding. It defines many types of models (baseline and ensemble). Uncomment the final two lines corresponding to the model of interest from one of the below model definition "code blocks" to train that model. Next run "AttackModel" to then attack this model. """ # IMPORTS import tensorflow as tf; import numpy as np from tensorflow.keras.datasets import mnist, cifar10 from Model_Implementations import Model_Softmax_Baseline, \ Model_Logistic_Baseline, Model_Logistic_Ensemble, Model_Tanh_Ensemble, \ Model_Tanh_Baseline import scipy.linalg # GENERAL PARAMETERS - SET THESE APPROPRIATELY model_path = 'checkpoints' # path to save model weights to weight_save_freq = 10 # how frequently (in epochs, e.g. every 10 epochs) to save weights to disk tf.set_random_seed(1) ########DATASET-SPECIFIC PARAMETERS: CHOOSE THIS BLOCK FOR MNIST # DATA_DESC = 'MNIST'; (X_train, Y_train), (X_test, Y_test) = mnist.load_data() # Y_train = np.squeeze(Y_train); Y_test = np.squeeze(Y_test) # num_channels = 1; inp_shape = (28,28,1); num_classes=10 ##MODEL-SPECIFIC PARAMETERS: MNIST ##PARAMETERS RELATED TO SGD OPTIMIZATION # epochs=150; batch_size=200; lr=3e-4; ##MODEL DEFINTION PARAMETERS # num_filters_std = [64, 64, 64]; num_filters_ens=[32, 32, 32]; num_filters_ens_2=4; # dropout_rate_std=0.0; dropout_rate_ens=0.0; weight_decay = 0 # noise_stddev = 0.3; blend_factor=0.3; # model_rep_baseline=1; model_rep_ens=2; # DATA_AUGMENTATION_FLAG=0; BATCH_NORMALIZATION_FLAG=0 ########END: DATASET-SPECIFIC PARAMETERS: MNIST ##########DATASET-SPECIFIC PARAMETERS: CHOOSE THIS BLOCK FOR CIFAR10 DATA_DESC = 'CIFAR10'; (X_train, Y_train), (X_test, Y_test) = cifar10.load_data() Y_train = np.squeeze(Y_train); Y_test = np.squeeze(Y_test) num_channels = 3; inp_shape = (32, 32, 3); num_classes = 10 # MODEL-SPECIFIC PARAMETERS: CIFAR10 # PARAMETERS RELATED TO SGD OPTIMIZATION epochs = 400; batch_size = 200; lr = 2e-4; # MODEL DEFINTION PARAMETERS num_filters_std = [32, 64, 128]; num_filters_ens = [32, 64, 128]; num_filters_ens_2 = 16; dropout_rate_std = 0.0; dropout_rate_ens = 0.0; weight_decay = 0 noise_stddev = 0.032; blend_factor = 0.032; model_rep_baseline = 2; model_rep_ens = 2; DATA_AUGMENTATION_FLAG = 1; BATCH_NORMALIZATION_FLAG = 1 ##########END: DATASET-SPECIFIC PARAMETERS: CIFAR10 # DATA PRE-PROCESSING X_train = (X_train / 255).astype(np.float32); X_test = (X_test / 255).astype(np.float32); # scale data to (0,1) X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], X_train.shape[2], num_channels); X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], X_test.shape[2], num_channels) X_valid = X_test[0:1000]; Y_valid = Y_test[ 0:1000]; # validation data (to monitor accuracy during training) X_train = X_train - 0.5; X_test = X_test - 0.5; X_valid = X_valid - 0.5; # map to range (-0.5,0.5) data_dict = {'X_train': X_train, 'Y_train_cat': Y_train, 'X_test': X_test, 'Y_test_cat': Y_test} ### TRAIN MODEL. each block below corresponds to one of the models in Table 1 of the paper. In order to train, # uncomment the final two lines of the block of interest and then run this script """ ### BASELINE SOFTMAX MODEL DEFINITION name = 'softmax_baseline'+'_'+DATA_DESC; num_chunks=1 M = np.eye(num_classes).astype(np.float32) output_activation = 'softmax'; base_model=None params_dict = {'weight_decay':weight_decay, 'num_filters_std':num_filters_std, 'BATCH_NORMALIZATION_FLAG':BATCH_NORMALIZATION_FLAG, 'DATA_AUGMENTATION_FLAG':DATA_AUGMENTATION_FLAG, 'M':M, 'model_rep':model_rep_baseline, 'base_model':base_model, 'num_chunks':num_chunks, 'output_activation':output_activation, 'batch_size':batch_size, 'epochs':epochs, 'lr':lr, 'dropout_rate':dropout_rate_std, 'blend_factor':blend_factor, 'inp_shape':inp_shape, 'noise_stddev':noise_stddev, 'weight_save_freq':weight_save_freq, 'name':name, 'model_path':model_path} #m0 = Model_Softmax_Baseline(data_dict, params_dict) #m0.defineModel(); m0.trainModel() ## BASELINE LOGISTIC MODEL DEFINITION name = 'logistic_baseline'+'_'+DATA_DESC; num_chunks=1 M = np.eye(num_classes).astype(np.float32) output_activation = 'sigmoid'; base_model=None params_dict = {'weight_decay':weight_decay, 'num_filters_std':num_filters_std, 'BATCH_NORMALIZATION_FLAG':BATCH_NORMALIZATION_FLAG, 'DATA_AUGMENTATION_FLAG':DATA_AUGMENTATION_FLAG, 'M':M, 'model_rep':model_rep_baseline, 'base_model':base_model, 'num_chunks':num_chunks, 'output_activation':output_activation, 'batch_size':batch_size, 'epochs':epochs, 'lr':lr, 'dropout_rate':dropout_rate_std, 'blend_factor':blend_factor, 'inp_shape':inp_shape, 'noise_stddev':noise_stddev, 'weight_save_freq':weight_save_freq, 'name':name, 'model_path':model_path} #m1 = Model_Logistic_Baseline(data_dict, params_dict) #m1.defineModel(); m1.trainModel() ## BASELINE TANH MODEL DEFINITION name = 'Tanh_baseline_16'+'_'+DATA_DESC; seed = 59; num_chunks=1; code_length=16; num_codes=num_classes; code_length_true=code_length M = scipy.linalg.hadamard(code_length).astype(np.float32) M[np.arange(0, num_codes,2), 0]= -1#replace first col, which for this Hadamard construction is always 1, hence not a useful bit np.random.seed(seed); np.random.shuffle(M) idx=np.random.permutation(code_length) M = M[0:num_codes, idx[0:code_length_true]] base_model=None def output_activation(x): return tf.nn.tanh(x) params_dict = {'weight_decay':weight_decay, 'num_filters_std':num_filters_std, 'BATCH_NORMALIZATION_FLAG':BATCH_NORMALIZATION_FLAG, 'DATA_AUGMENTATION_FLAG':DATA_AUGMENTATION_FLAG, 'M':M, 'model_rep':model_rep_baseline, 'base_model':base_model, 'num_chunks':num_chunks, 'output_activation':output_activation, 'batch_size':batch_size, 'epochs':epochs, 'dropout_rate':dropout_rate_std, 'lr':lr, 'blend_factor':blend_factor, 'inp_shape':inp_shape, 'noise_stddev':noise_stddev, 'weight_save_freq':weight_save_freq, 'name':name, 'model_path':model_path} #m2 = Model_Tanh_Baseline(data_dict, params_dict) #m2.defineModel(); m2.trainModel() ## ENSEMBLE LOGISTIC MODEL DEFINITION name = 'logistic_diverse'+'_'+DATA_DESC; num_chunks=2 M = np.eye(num_classes).astype(np.float32) base_model=None def output_activation(x): return tf.nn.sigmoid(x) params_dict = {'BATCH_NORMALIZATION_FLAG':BATCH_NORMALIZATION_FLAG, 'DATA_AUGMENTATION_FLAG':DATA_AUGMENTATION_FLAG, 'M':M, 'base_model':base_model, 'num_chunks':num_chunks, 'model_rep': model_rep_ens, 'output_activation':output_activation, 'num_filters_ens':num_filters_ens, 'num_filters_ens_2':num_filters_ens_2,'batch_size':batch_size, 'epochs':epochs, 'dropout_rate':dropout_rate_ens, 'lr':lr, 'blend_factor':blend_factor, 'inp_shape':inp_shape, 'noise_stddev':noise_stddev, 'weight_save_freq':weight_save_freq, 'name':name, 'model_path':model_path} #m3 = Model_Logistic_Ensemble(data_dict, params_dict) #m3.defineModel(); m3.trainModel() #COMMENTS FOR ALL TANH ENSEMBLE MODELS: #1. num_chunks refers to how many models comprise the ensemble (4 is used in the paper); code_length/num_chunks shoould be an integer #2. output_activation is the function to apply to the logits # a. one can use anything which gives support to positive and negative values (since output code has +1/-1 elements); tanh or identity maps both work # b. in order to alleviate potential concerns of gradient masking with tanh, one can use identity as well #3. M is the actual coding matrix (referred to in the paper as H). Each row is a codeword # note that any random shuffle of a Hadmard matrix's rows or columns is still orthogonal #4. There is nothing particularly special about the seed (which effectively determines the coding matrix). # We tried several seeds from 0-60 and found that all give comparable model performance (e.g. benign and adversarial accuracy). ## ENSEMBLE TANH 16 MODEL DEFINITION name = 'tanh_16_diverse'+'_'+DATA_DESC; seed = 59; code_length=16; num_codes=code_length; num_chunks=4; base_model=None; def output_activation(x): return tf.nn.tanh(x) M = scipy.linalg.hadamard(code_length).astype(np.float32) M[np.arange(0, num_codes,2), 0]= -1#replace first col, which for scipy's Hadamard construction is always 1, hence not a useful classifier; this change still ensures all codewords have dot product <=0; since our decoder ignores negative correlations anyway, this has no net effect on probability estimation np.random.seed(seed) np.random.shuffle(M) idx=np.random.permutation(code_length) M = M[0:num_codes, idx[0:code_length]] params_dict = {'BATCH_NORMALIZATION_FLAG':BATCH_NORMALIZATION_FLAG, 'DATA_AUGMENTATION_FLAG':DATA_AUGMENTATION_FLAG, 'M':M, 'base_model':base_model, 'num_chunks':num_chunks, 'model_rep': model_rep_ens, 'output_activation':output_activation, 'num_filters_ens':num_filters_ens, 'num_filters_ens_2':num_filters_ens_2,'batch_size':batch_size, 'epochs':epochs, 'dropout_rate':dropout_rate_ens, 'lr':lr, 'blend_factor':blend_factor, 'inp_shape':inp_shape, 'noise_stddev':noise_stddev, 'weight_save_freq':weight_save_freq, 'name':name, 'model_path':model_path} #m4 = Model_Tanh_Ensemble(data_dict, params_dict) #m4.defineModel(); m4.trainModel() """ ## ENSEMBLE TANH 32 MODEL DEFINITION name = 'tanh_32_diverse' + '_' + DATA_DESC; seed = 59; code_length = 32; num_codes = code_length; num_chunks = 4; base_model = None; def output_activation(x): return tf.nn.tanh(x) M = scipy.linalg.hadamard(code_length).astype(np.float32) M[np.arange(0, num_codes, 2), 0] = -1 # replace first col, which for scipy's Hadamard construction is always 1, hence not a useful classifier; this change still ensures all codewords have dot product <=0; since our decoder ignores negative correlations anyway, this has no net effect on probability estimation np.random.seed(seed) np.random.shuffle(M) idx = np.random.permutation(code_length) M = M[0:num_codes, idx[0:code_length]] params_dict = {'BATCH_NORMALIZATION_FLAG': BATCH_NORMALIZATION_FLAG, 'DATA_AUGMENTATION_FLAG': DATA_AUGMENTATION_FLAG, 'M': M, 'base_model': base_model, 'num_chunks': num_chunks, 'model_rep': model_rep_ens, 'output_activation': output_activation, 'num_filters_ens': num_filters_ens, 'num_filters_ens_2': num_filters_ens_2, 'batch_size': batch_size, 'epochs': epochs, 'dropout_rate': dropout_rate_ens, 'lr': lr, 'blend_factor': blend_factor, 'inp_shape': inp_shape, 'noise_stddev': noise_stddev, 'weight_save_freq': weight_save_freq, 'name': name, 'model_path': model_path} m5 = Model_Tanh_Ensemble(data_dict, params_dict) m5.defineModel(); m5.trainModel()
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ This defines a general "Model", i.e. architecture and decoding operations. It is an abstract base class for all models, e.g. the baseline softmax model or the ensemble Tanh model """ import tensorflow as tf from utils_keras import KerasModelWrapper as CleverHansKerasModelWrapper from tensorflow.keras.layers import BatchNormalization, Dropout, Lambda, Input, Dense, Conv2D, Flatten, Activation, Concatenate, GaussianNoise from tensorflow.keras.utils import plot_model from tensorflow.keras import regularizers from tensorflow.keras.models import load_model from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import Callback from tensorflow.keras.models import Model as KerasModel import pickle import numpy as np from ClassBlender import ClassBlender from DataAugmenter import DataAugmenter from Clipper import Clipper from Grayscaler import Grayscaler class WeightsSaver(Callback): def __init__(self, N): self.N = N self.epoch = 0 def specifyFilePath(self, path): self.full_path = path #full path to file, including file name def on_epoch_end(self, epoch, logs={}): if self.epoch % self.N == 0: print("SAVING WEIGHTS") w= self.model.get_weights() pklfile= self.full_path + '_' + str(self.epoch) + '.pkl' fpkl= open(pklfile, 'wb') pickle.dump(w, fpkl) fpkl.close() self.epoch += 1 #Abstract base class for all model classes class Model(object): def __init__(self, data_dict, params_dict): self.data_dict = data_dict self.params_dict = params_dict self.input = Input(shape=self.params_dict['inp_shape'], name='input') self.TRAIN_FLAG=1 if len(data_dict) > 0: self.encodeData() else: import warnings warnings.warn("no data passed; cannot encode it") #map categorical class labels (numbers) to encoded (e.g., one hot or ECOC) vectors def encodeData(self): self.Y_train = np.zeros((self.data_dict['X_train'].shape[0], self.params_dict['M'].shape[1])) self.Y_test = np.zeros((self.data_dict['X_test'].shape[0], self.params_dict['M'].shape[1])) for k in np.arange(self.params_dict['M'].shape[1]): self.Y_train[:,k] = self.params_dict['M'][self.data_dict['Y_train_cat'], k] self.Y_test[:,k] = self.params_dict['M'][self.data_dict['Y_test_cat'], k] #define the neural network def defineModel(self): outputs=[] self.penultimate = [] self.penultimate2 = [] features = [] n = int(self.params_dict['M'].shape[1]/self.params_dict['num_chunks']) for k in np.arange(0,self.params_dict['num_chunks']): x = self.input if self.params_dict.get('zero_one_input', False): x = x - 0.5 if self.params_dict['inp_shape'][2]>1: x_gs = Grayscaler()(x) else: x_gs = x if (self.TRAIN_FLAG==1): x = GaussianNoise(self.params_dict['noise_stddev'], input_shape=self.params_dict['inp_shape'])(x) x_gs = GaussianNoise(self.params_dict['noise_stddev'], input_shape=self.params_dict['inp_shape'])(x_gs) if self.params_dict['DATA_AUGMENTATION_FLAG']>0: x = DataAugmenter(self.params_dict['batch_size'])(x) x_gs = DataAugmenter(self.params_dict['batch_size'])(x_gs) x = ClassBlender(self.params_dict['blend_factor'], self.params_dict['batch_size'])(x) x_gs = ClassBlender(self.params_dict['blend_factor'], self.params_dict['batch_size'])(x_gs) #x = Lambda(lambda x: x-0.5)(x) x = Clipper()(x) x_gs = Clipper()(x_gs) # TODO: verify that this modifcation makes sense # Added trainable=self.TRAIN_FLAG==1 for all batchnorm layers to make # sure they stay fixed during eval (modification by AUTHOR) for rep in np.arange(self.params_dict['model_rep']): x = Conv2D(self.params_dict['num_filters_ens'][0], (5,5), activation='elu', padding='same')(x) if self.params_dict['BATCH_NORMALIZATION_FLAG']>0: x = BatchNormalization()(x) x = Conv2D(self.params_dict['num_filters_ens'][0], (3,3), strides=(2,2), activation='elu', padding='same')(x) if self.params_dict['BATCH_NORMALIZATION_FLAG']>0: x = BatchNormalization()(x) for rep in np.arange(self.params_dict['model_rep']): x = Conv2D(self.params_dict['num_filters_ens'][1], (3, 3), activation='elu', padding='same')(x) if self.params_dict['BATCH_NORMALIZATION_FLAG']>0: x = BatchNormalization()(x) x = Conv2D(self.params_dict['num_filters_ens'][1], (3,3), strides=(2,2), activation='elu', padding='same')(x) if self.params_dict['BATCH_NORMALIZATION_FLAG']>0: x = BatchNormalization()(x) for rep in np.arange(self.params_dict['model_rep']): x = Conv2D(self.params_dict['num_filters_ens'][2], (3, 3), activation='elu', padding='same')(x) if self.params_dict['BATCH_NORMALIZATION_FLAG']>0: x = BatchNormalization()(x) x = Conv2D(self.params_dict['num_filters_ens'][2], (3,3), strides=(2,2), activation='elu', padding='same')(x) #x = BatchNormalization()(x) pens = [] out=[] for k2 in np.arange(n): x0 = Conv2D(self.params_dict['num_filters_ens_2'], (5, 5), strides=(2,2), activation='elu', padding='same')(x_gs) x0 = Conv2D(self.params_dict['num_filters_ens_2'], (3, 3), strides=(2,2), activation='elu', padding='same')(x0) x0 = Conv2D(self.params_dict['num_filters_ens_2'], (3, 3), strides=(2,2), activation='elu', padding='same')(x0) x_= Concatenate()([x0, x]) x_ = Conv2D(self.params_dict['num_filters_ens_2'], (2, 2), activation='elu', padding='same')(x_) x_ = Conv2D(self.params_dict['num_filters_ens_2'], (2, 2), activation='elu', padding='same')(x_) x_ = Flatten()(x_) features.append(x_) x_ = Dense(16, activation='elu')(x_) x_ = Dense(8, activation='elu')(x_) x_ = Dense(4, activation='elu')(x_) x0 = Dense(2, activation='linear')(x_) pens += [x0] x1 = Dense(1, activation='linear', name='w_'+str(k)+'_'+str(k2)+'_'+self.params_dict['name'], kernel_regularizer=regularizers.l2(0.0))(x0) out += [x1] self.penultimate += [pens] if len(pens) > 1: self.penultimate2 += [Concatenate()(pens)] else: self.penultimate2 += pens if len(out)>1: outputs += [Concatenate()(out)] else: outputs += out self.features = features self.model = KerasModel(inputs=self.input, outputs=outputs) # print(self.model.summary()) #plot_model(self.model, to_file=self.params_dict['model_path'] + '/' + self.params_dict['name'] + '.png') return outputs def defineLoss(self): error = "Sub-classes must implement defineLoss." raise NotImplementedError(error) def defineMetric(self): error = "Sub-classes must implement defineMetric." raise NotImplementedError(error) def trainModel(self): opt = Adam(lr=self.params_dict['lr']) self.model.compile(optimizer=opt, loss=[self.defineLoss(k) for k in np.arange(self.params_dict['num_chunks'])], metrics=self.defineMetric()) WS = WeightsSaver(self.params_dict['weight_save_freq']) WS.specifyFilePath(self.params_dict['model_path'] + self.params_dict['name']) Y_train_list=[] Y_test_list=[] start = 0 for k in np.arange(self.params_dict['num_chunks']): end = start + int(self.params_dict['M'].shape[1]/self.params_dict['num_chunks']) Y_train_list += [self.Y_train[:,start:end]] Y_test_list += [self.Y_test[:,start:end]] start=end self.model.fit(self.data_dict['X_train'], Y_train_list, epochs=self.params_dict['epochs'], batch_size=self.params_dict['batch_size'], shuffle=True, validation_data=[self.data_dict['X_test'], Y_test_list], callbacks=[WS]) self.saveModel() def resumeTrainModel(self): Y_train_list=[] Y_test_list=[] start = 0 for k in np.arange(self.params_dict['num_chunks']): end = start + int(self.params_dict['M'].shape[1]/self.params_dict['num_chunks']) Y_train_list += [self.Y_train[:,start:end]] Y_test_list += [self.Y_test[:,start:end]] start=end def hinge_loss(y_true, y_pred): loss = tf.reduce_mean(tf.maximum(1.0-y_true*y_pred, 0)) return loss def hinge_pred(y_true, y_pred): corr = tf.to_float((y_pred*y_true)>0) return tf.reduce_mean(corr) self.model = load_model(self.params_dict['model_path'] + self.params_dict['name'] + '_final.h5', custom_objects={'DataAugmenter':DataAugmenter, 'ClassBlender':ClassBlender, 'Clipper':Clipper, 'Grayscaler':Grayscaler, 'hinge_loss':hinge_loss, 'hinge_pred':hinge_pred}) WS = WeightsSaver(self.params_dict['weight_save_freq']) WS.specifyFilePath(self.params_dict['model_path'] + self.params_dict['name']) self.model.fit(self.data_dict['X_train'], Y_train_list, epochs=self.params_dict['epochs'], batch_size=self.params_dict['batch_size'], shuffle=True, validation_data=[self.data_dict['X_test'], Y_test_list], callbacks=[WS]) self.saveModel() #this function takes the output of the NN and maps into logits (which will be passed into softmax to give a prob. dist.) #It effectively does a Hamming decoding by taking the inner product of the output with each column of the coding matrix (M) #obviously, the better the match, the larger the dot product is between the output and a given row #it is simply a log ReLU on the output def outputDecoder(self, x, M=None): if M is None: M = self.params_dict['M'] mat1 = tf.matmul(x, M, transpose_b=True) if not self.params_dict['adaptive_attack']: mat1 = tf.maximum(mat1, 0) mat1 = tf.log(mat1+1e-6) #floor negative values return mat1 def defineBinarizedModel(self): assert hasattr(self, "penultimate2"), "model needs to be defined first" readouts = [] individual_logits = [] for k in range(len(self.features)): readout = Dense(1, activation='linear', name='binarized_readout_' + str(k), kernel_regularizer=regularizers.l2(0.0) ) logit = readout(self.features[k]) logit = Lambda(self.params_dict['output_activation'])(logit) readouts.append(readout) individual_logits.append(logit) if len(individual_logits)>1: logits = Concatenate()(individual_logits) else: #if only a single chunk logits = individual_logits[0] M = np.stack([np.ones(logits.shape[-1]), -np.ones(logits.shape[-1])], 0).astype(np.float32) logits = Lambda( lambda x: self.outputDecoder( x, M=M ))(logits) probs = Activation('softmax')(logits) #return probs self.binarized_logit = logits self.binarized_probs = probs self.binarized_readouts = readouts self.model_binarized = KerasModel(inputs=self.input, outputs=self.binarized_probs) def defineFullModel(self): self.TRAIN_FLAG=0 outputs = self.defineModel() if len(outputs)>1: self.raw_output = Concatenate()(outputs) else: #if only a single chunk self.raw_output = outputs[0] #pass output logits through activation for idx,o in enumerate(outputs): outputs[idx] = Lambda(self.params_dict['output_activation'])(o) if len(outputs)>1: x = Concatenate()(outputs) else: #if only a single chunk x = outputs[0] x = Lambda(self.outputDecoder)(x) #logits logits = x x = Activation('softmax')(x) #return probs self.logits = logits self.probabilities = x if self.params_dict['base_model'] == None: self.model_full = KerasModel(inputs=self.input, outputs=x) else: self.model_full = KerasModel(inputs=self.params_dict['base_model'].input, outputs=x) #CleverHans model wrapper; returns a model that CH can attack def modelCH(self): return CleverHansKerasModelWrapper(self.model_full) def modelBinarizedCH(self): return CleverHansKerasModelWrapper(self.model_binarized) def saveModel(self): w= self.model.get_weights() pklfile= self.params_dict['model_path'] + self.params_dict['name'] + '_final.pkl' fpkl= open(pklfile, 'wb') pickle.dump(w, fpkl) fpkl.close() self.model.save(self.params_dict['model_path'] + self.params_dict['name'] + '_final.h5') def loadModel(self): pklfile= self.params_dict['model_path'] + self.params_dict['name'] + '_final.pkl' f= open(pklfile, 'rb') weigh= pickle.load(f); f.close(); self.defineModel() self.model.set_weights(weigh) def loadFullModel(self): pklfile= self.params_dict['model_path'] + self.params_dict['name'] + '_final.pkl' f= open(pklfile, 'rb') weigh= pickle.load(f); f.close(); self.defineFullModel() self.model_full.set_weights(weigh) def predict(self, X): return self.model_full(X)
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Run this to attack a trained model via TrainModel. Use the "loadFullModel" submethod to load in an already trained model (trained via TrainModel) The main attack function is "runAttacks" which runs attacks on trained models """ import pdb from cleverhans.attacks import Noise, CarliniWagnerL2, MaxConfidence, FastGradientMethod, BasicIterativeMethod, DeepFool, MomentumIterativeMethod, ProjectedGradientDescent from Model_Implementations import Model_Softmax_Baseline, Model_Logistic_Baseline, Model_Logistic_Ensemble, Model_Tanh_Ensemble, Model_Tanh_Baseline from tensorflow.keras.datasets import mnist, cifar10 from tensorflow.keras import backend import tensorflow as tf; import numpy as np import scipy.linalg from scipy import stats import matplotlib.pyplot as plt model_path = 'checkpoints/ECOC/tanh32/checkpoints' #path with saved model parameters sess = backend.get_session() backend.set_learning_phase(0) #need to do this to get CleverHans to work with batchnorm #Dataset-specific parameters - should be same as those used in TrainModel DATA_DESC = 'CIFAR10'; (X_train, Y_train), (X_test, Y_test) = cifar10.load_data() epochs=None; weight_save_freq=None num_classes=10 #how many classes (categories) are in this dataset? Y_train = np.squeeze(Y_train); Y_test = np.squeeze(Y_test) num_filters_std = [32, 64, 128]; num_filters_ens=[32, 64, 128]; num_filters_ens_2=16; dropout_rate_std=0.0; dropout_rate_ens=0.0; weight_decay = 0 model_rep_baseline=2; model_rep_ens=2; DATA_AUGMENTATION_FLAG=1; BATCH_NORMALIZATION_FLAG=1 num_channels = 3; inp_shape = (32,32,3); lr=1e-4; batch_size=80; noise_stddev = 0.032; blend_factor = .032 #Attack parameters eps_val = 8/255.0; PGD_iters = 200; eps_iter=(2/3)*eps_val; eps_range = np.linspace(0, 0.33, 10) noise_eps=0.1 # DATA PRE-PROCESSING X_train = (X_train/255).astype(np.float32); X_test = (X_test/255).astype(np.float32) #reshape (add third (image) channel) X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], X_train.shape[2],num_channels); X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], X_test.shape[2],num_channels) X_valid = X_test[1000:2000]; Y_valid = Y_test[1000:2000]; #validation data, used to attack model #X_train = X_train-0.5; X_test = X_test-0.5; X_valid = X_valid-0.5; #map to range (-0.5,0.5) data_dict = {'X_train':X_train, 'Y_train_cat':Y_train, 'X_test':X_test, 'Y_test_cat':Y_test} X_random = np.random.rand(X_valid.shape[0],X_valid.shape[1],X_valid.shape[2],X_valid.shape[3])-0.5; X_random = X_random.astype(np.float32) #Model definition of the model we want to attack; should be same as the definition used in TrainModel ## ENSEMBLE TANH 32 MODEL DEFINITION name = 'tanh_32_diverse' + '_' + DATA_DESC; seed = 59; code_length = 32; num_codes = code_length; num_chunks = 4; base_model = None; def output_activation(x): return tf.nn.tanh(x) M = scipy.linalg.hadamard(code_length).astype(np.float32) M[np.arange(0, num_codes, 2), 0] = -1 # replace first col, which for scipy's Hadamard construction is always 1, hence not a useful classifier; this change still ensures all codewords have dot product <=0; since our decoder ignores negative correlations anyway, this has no net effect on probability estimation np.random.seed(seed) np.random.shuffle(M) idx = np.random.permutation(code_length) M = M[0:num_codes, idx[0:code_length]] params_dict = {'BATCH_NORMALIZATION_FLAG': BATCH_NORMALIZATION_FLAG, 'DATA_AUGMENTATION_FLAG': DATA_AUGMENTATION_FLAG, 'M': M, 'base_model': base_model, 'num_chunks': num_chunks, 'model_rep': model_rep_ens, 'output_activation': output_activation, 'num_filters_ens': num_filters_ens, 'num_filters_ens_2': num_filters_ens_2, 'batch_size': batch_size, 'epochs': epochs, 'dropout_rate': dropout_rate_ens, 'lr': lr, 'blend_factor': blend_factor, 'inp_shape': inp_shape, 'noise_stddev': noise_stddev, 'weight_save_freq': weight_save_freq, 'name': name, 'model_path': model_path, 'zero_one_input': True } m4 = Model_Tanh_Ensemble({}, params_dict) m4.loadFullModel() # load in the saved model, which should have already been trained first via TrainModel m4.legend = 'TEns32'; m4.X_valid = X_valid; m4.Y_valid = Y_valid; m4.X_test = X_test; m4.Y_test = Y_test; m4.X_random = X_random; #m4.minval = -0.5; m4.maxval = 0.5 m4.minval = 0; m4.maxval = 1 def benignAccuracy(model, X, Y): acc_vec=[]; probs_benign_list=[] for rep in np.arange(0, X.shape[0], 1000): x = X[rep:rep+1000] probs_benign = sess.run(model.predict(tf.convert_to_tensor(x))) print(probs_benign.shape) acc= np.mean(np.argmax(probs_benign, 1)==Y[rep:rep+1000]) acc_vec += [acc] probs_benign_list += list(np.max(probs_benign, 1)) acc = np.mean(acc_vec) print("Accuracy for model " + model.params_dict['name'] + " : ", acc) return probs_benign_list def wbAttack(model, attack, att_params, X, Y): sess = backend.get_session() modelCH = model.modelCH() adv_model = attack(modelCH, sess=sess) acc_vec=[]; probs_adv_list=[] inc=64 for rep in np.arange(0, X.shape[0], inc): x = X[rep:rep+inc] y = Y[rep:rep+inc] X_adv = adv_model.generate(tf.convert_to_tensor(x), **att_params).eval(session=sess) temp = sess.run(model.predict(tf.convert_to_tensor(X_adv))) print(temp.shape) preds = np.argmax(temp, 1) acc = np.mean(np.equal(preds, y)) probs_adv = np.max(sess.run(model.predict(tf.convert_to_tensor(X_adv))), 1) probs_adv = probs_adv[preds != y] acc= np.mean(np.equal(preds, y)) acc_vec += [acc] probs_adv_list += list(probs_adv) acc = np.mean(acc_vec) print("Adv accuracy for model " + model.params_dict['name'] + " : ", acc) return probs_adv_list, acc, X_adv def runAttacks(models_list): #CW attack for model in models_list: print(""); print(""); print(""); print("Running tests on model: ", model.params_dict['name']) print("Clean accuracy of model:") probs_benign = benignAccuracy(model, model.X_test, model.Y_test) print("") print("Running PGD attack:") att_params = {'clip_min': model.minval, 'clip_max':model.maxval, 'eps':eps_val, 'eps_iter':eps_iter, 'nb_iter':PGD_iters,'ord':np.inf} probs_adv, junk, X_adv = wbAttack(model, ProjectedGradientDescent, att_params, model.X_valid, model.Y_valid) print("") # print("Running CW attack:") # att_params = {'clip_min': model.minval, 'clip_max':model.maxval, 'binary_search_steps':10, 'learning_rate':1e-3} # probs_adv, junk, X_adv = wbAttack(model, CarliniWagnerL2, att_params, model.X_valid[0:100], model.Y_valid[0:100]) # print("") # # print("Running Blind Spot attack, alpha=0.8:") # att_params = {'clip_min': model.minval, 'clip_max':model.maxval, 'binary_search_steps':10, 'learning_rate':1e-3} # probs_adv, junk, X_adv = wbAttack(model, CarliniWagnerL2, att_params, 0.8*model.X_valid[0:100], model.Y_valid[0:100]) # print("") #Random ATTACK (0 SNR inputs) print("Running random attack:") probs_random = np.max(sess.run(model.predict(tf.convert_to_tensor(model.X_random))), 1) print('Prob. that ', model.params_dict['name'], ' < 0.9 on random data: ', np.mean(probs_random<0.9)) #Noise ATTACK (low SNR inputs) print("Running Noise attack:") att_params = {'clip_min': model.minval, 'clip_max':model.maxval, 'eps':noise_eps} probs_noise, junk, X_adv = wbAttack(model, Noise, att_params, model.X_valid, model.Y_valid) print("") return probs_benign, probs_adv, probs_noise models_list = [m4] probs_benign, probs_adv, probs_noise = runAttacks(models_list) plt.figure(1) kernel = stats.gaussian_kde(probs_benign, bw_method=0.5) plt.plot(np.arange(0, 1, .01), kernel.pdf(np.arange(0, 1, .01)), linewidth=4) plt.figure(2) kernel = stats.gaussian_kde(probs_adv, bw_method=0.5) plt.plot(np.arange(0, 1, .01), kernel.pdf(np.arange(0, 1, .01)), linewidth=4) plt.figure(3) kernel = stats.gaussian_kde(probs_noise, bw_method=0.5) plt.plot(np.arange(0, 1, .01), kernel.pdf(np.arange(0, 1, .01)), linewidth=4)
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Model construction utilities based on keras """ from distutils.version import LooseVersion # modified to work with error-correcting codes #import keras #from keras.models import Sequential #from keras.layers import Dense, Activation, Flatten from tensorflow import keras from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Activation, Flatten from cleverhans.model import Model, NoSuchLayerError if LooseVersion(keras.__version__) >= LooseVersion('2.0.0'): from keras.layers import Conv2D else: from keras.layers import Convolution2D def conv_2d(filters, kernel_shape, strides, padding, input_shape=None): """ Defines the right convolutional layer according to the version of Keras that is installed. :param filters: (required integer) the dimensionality of the output space (i.e. the number output of filters in the convolution) :param kernel_shape: (required tuple or list of 2 integers) specifies the strides of the convolution along the width and height. :param padding: (required string) can be either 'valid' (no padding around input or feature map) or 'same' (pad to ensure that the output feature map size is identical to the layer input) :param input_shape: (optional) give input shape if this is the first layer of the model :return: the Keras layer """ if LooseVersion(keras.__version__) >= LooseVersion('2.0.0'): if input_shape is not None: return Conv2D(filters=filters, kernel_size=kernel_shape, strides=strides, padding=padding, input_shape=input_shape) else: return Conv2D(filters=filters, kernel_size=kernel_shape, strides=strides, padding=padding) else: if input_shape is not None: return Convolution2D(filters, kernel_shape[0], kernel_shape[1], subsample=strides, border_mode=padding, input_shape=input_shape) else: return Convolution2D(filters, kernel_shape[0], kernel_shape[1], subsample=strides, border_mode=padding) def cnn_model(logits=False, input_ph=None, img_rows=28, img_cols=28, channels=1, nb_filters=64, nb_classes=10): """ Defines a CNN model using Keras sequential model :param logits: If set to False, returns a Keras model, otherwise will also return logits tensor :param input_ph: The TensorFlow tensor for the input (needed if returning logits) ("ph" stands for placeholder but it need not actually be a placeholder) :param img_rows: number of row in the image :param img_cols: number of columns in the image :param channels: number of color channels (e.g., 1 for MNIST) :param nb_filters: number of convolutional filters per layer :param nb_classes: the number of output classes :return: """ model = Sequential() # Define the layers successively (convolution layers are version dependent) if keras.backend.image_dim_ordering() == 'th': input_shape = (channels, img_rows, img_cols) else: input_shape = (img_rows, img_cols, channels) layers = [conv_2d(nb_filters, (8, 8), (2, 2), "same", input_shape=input_shape), Activation('relu'), conv_2d((nb_filters * 2), (6, 6), (2, 2), "valid"), Activation('relu'), conv_2d((nb_filters * 2), (5, 5), (1, 1), "valid"), Activation('relu'), Flatten(), Dense(nb_classes)] for layer in layers: model.add(layer) if logits: logits_tensor = model(input_ph) model.add(Activation('softmax')) if logits: return model, logits_tensor else: return model class KerasModelWrapper(Model): """ An implementation of `Model` that wraps a Keras model. It specifically exposes the hidden features of a model by creating new models. The symbolic graph is reused and so there is little overhead. Splitting in-place operations can incur an overhead. """ def __init__(self, model): """ Create a wrapper for a Keras model :param model: A Keras model """ super(KerasModelWrapper, self).__init__(None, None, {}) if model is None: raise ValueError('model argument must be supplied.') self.model = model self.keras_model = None def _get_softmax_name(self): """ Looks for the name of the softmax layer. :return: Softmax layer name """ for layer in self.model.layers: cfg = layer.get_config() if 'activation' in cfg and cfg['activation'] == 'softmax': return layer.name raise Exception("No softmax layers found") def _get_logits_name(self): """ Looks for the name of the layer producing the logits. :return: name of layer producing the logits """ softmax_name = self._get_softmax_name() softmax_layer = self.model.get_layer(softmax_name) if not isinstance(softmax_layer, Activation): # In this case, the activation is part of another layer return softmax_name if not hasattr(softmax_layer, '_inbound_nodes'): raise RuntimeError("Please update keras to version >= 2.1.3") node = softmax_layer._inbound_nodes[0] # modified for error-correcting codes, first line was original if isinstance(node.inbound_layers, (list, tuple)): logits_name = node.inbound_layers[0].name else: logits_name = node.inbound_layers.name return logits_name def get_logits(self, x): """ :param x: A symbolic representation of the network input. :return: A symbolic representation of the logits """ logits_name = self._get_logits_name() logits_layer = self.get_layer(x, logits_name) # Need to deal with the case where softmax is part of the # logits layer if logits_name == self._get_softmax_name(): softmax_logit_layer = self.get_layer(x, logits_name) # The final op is the softmax. Return its input logits_layer = softmax_logit_layer._op.inputs[0] return logits_layer def get_probs(self, x): """ :param x: A symbolic representation of the network input. :return: A symbolic representation of the probs """ name = self._get_softmax_name() return self.get_layer(x, name) def get_layer_names(self): """ :return: Names of all the layers kept by Keras """ layer_names = [x.name for x in self.model.layers] return layer_names def fprop(self, x): """ Exposes all the layers of the model returned by get_layer_names. :param x: A symbolic representation of the network input :return: A dictionary mapping layer names to the symbolic representation of their output. """ # modified to work with error-correcting codes defense from tensorflow.keras.models import Model as KerasModel if self.keras_model is None: # Get the input layer new_input = self.model.get_input_at(0) # Make a new model that returns each of the layers as output out_layers = [x_layer.output for x_layer in self.model.layers] self.keras_model = KerasModel(new_input, out_layers) # and get the outputs for that model on the input x outputs = self.keras_model(x) # Keras only returns a list for outputs of length >= 1, if the model # is only one layer, wrap a list if len(self.model.layers) == 1: outputs = [outputs] # compute the dict to return fprop_dict = dict(zip(self.get_layer_names(), outputs)) return fprop_dict def get_layer(self, x, layer): """ Expose the hidden features of a model given a layer name. :param x: A symbolic representation of the network input :param layer: The name of the hidden layer to return features at. :return: A symbolic representation of the hidden features :raise: NoSuchLayerError if `layer` is not in the model. """ # Return the symbolic representation for this layer. output = self.fprop(x) try: requested = output[layer] except KeyError: raise NoSuchLayerError() return requested
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Run this to attack a trained model via TrainModel. Use the "loadFullModel" submethod to load in an already trained model (trained via TrainModel) The main attack function is "runAttacks" which runs attacks on trained models """ import warnings import torch from cleverhans.attacks import ProjectedGradientDescent from torch.utils.data import DataLoader from torch.utils.data import TensorDataset from Model_Implementations import Model_Softmax_Baseline, \ Model_Logistic_Baseline, Model_Logistic_Ensemble, Model_Tanh_Ensemble, \ Model_Tanh_Baseline from tensorflow.keras.datasets import cifar10 from tensorflow.keras import backend import tensorflow as tf; import numpy as np import scipy.linalg from adversarial_evaluation import setup_model_and_data, patch_pgd_loss from active_tests import decision_boundary_binarization as dbb from functools import partial from tensorflow_wrapper import TensorFlow1ToPyTorchWrapper from utils import build_dataloader_from_arrays def train_classifier( n_features: int, train_loader: DataLoader, raw_train_loader: DataLoader, logits: torch.Tensor, device: str, rescale_logits: dbb.LogitRescalingType, model, sess, ): del raw_train_loader # fit a linear readout for each of the submodels of the ensemble assert len(train_loader.dataset.tensors[0].shape) == 3 assert train_loader.dataset.tensors[0].shape[1] == len(model.binarized_readouts) classifier_weights = [] classifier_biases = [] for i in range(len(model.binarized_readouts)): x_ = train_loader.dataset.tensors[0][:, i] y_ = train_loader.dataset.tensors[1] cls = dbb._train_logistic_regression_classifier( n_features, DataLoader(TensorDataset(x_, y_), batch_size=train_loader.batch_size), logits[:, i] if logits is not None else None, "sklearn", 20000, device, n_classes=2, rescale_logits=rescale_logits, solution_goodness="good", class_weight="balanced" ) classifier_weights.append(cls.weight.data.cpu().numpy().transpose()[:, [0]]) classifier_biases.append(cls.bias.data.cpu().numpy()[0]) # update weights of the binary models for l, vw, vb in zip(model.binarized_readouts, classifier_weights, classifier_biases): l.set_weights([vw, vb.reshape((1,))]) return BinarizedModelWrapper(model, sess) class BinarizedModelWrapper: def __init__(self, model, sess): self.model = model self.sess = sess def __call__(self, x): x = x.numpy() x = x.transpose((0, 2, 3, 1)) p = self.sess.run(self.model.binarized_probs, {self.model.input: x}) return torch.tensor(p) def main(): sess = backend.get_session() backend.set_learning_phase( 0) # need to do this to get CleverHans to work with batchnorm import argparse parser = argparse.ArgumentParser() parser.add_argument("--eps", type=float, default=8, help="in 0-255") parser.add_argument("--pgd-n-steps", default=200, type=int) parser.add_argument("--pgd-step-size", type=float, default=2 / 3 * 8, help="in 0-255") parser.add_argument("--n-samples", type=int, default=512) parser.add_argument("--adaptive-attack", action="store_true") parser.add_argument("-n-inner-points", type=int, default=999) parser.add_argument("-n-boundary-points", type=int, default=1) parser.add_argument("--sample-from-corners", action="store_true") args = parser.parse_args() model, (X_valid, Y_valid), (X_test, Y_test) = setup_model_and_data(adaptive_attack=args.adaptive_attack) model.defineBinarizedModel() binarized_model_ch = model.modelBinarizedCH() if args.adaptive_attack: patch_pgd_loss() attack = ProjectedGradientDescent(binarized_model_ch, sess=sess) att_params = {'clip_min': 0.0, 'clip_max': 1.0, 'eps': args.eps / 255.0, 'eps_iter': args.pgd_step_size / 255.0, 'nb_iter': args.pgd_n_steps, 'ord': np.inf} x_ph = tf.placeholder(shape=model.input.shape, dtype=tf.float32) x_adv_op = attack.generate(x_ph, **att_params) def _model_forward_pass(x_np, features_only=False, features_and_logits=False): x_np = np.transpose(x_np, (0, 2, 3, 1)) if features_only: f = sess.run(model.features, {model.input : x_np}) f = np.stack(f, 1) return f elif features_and_logits: f, l = sess.run((model.features, model.logits), {model.input : x_np}) f = np.stack(f, 1) return f, l else: l = sess.run(model.logits, {model.input : x_np}) return l def run_attack(m, l, sess): model = m.model for x, y in l: assert len(x) == 1 x, y = x.numpy(), y.numpy() x = x.transpose((0, 2, 3, 1)) x_adv = sess.run(x_adv_op, {x_ph: x}) warnings.warn("ATTENTION: Clipping perturbation just to TEST something. Remove this again!") delta = x_adv - x delta[delta > 0] = args.eps / 255.0 delta[delta < 0] = -args.eps / 255.0 x_adv = np.clip(x + delta, 0, 1) logits, probs = sess.run((model.binarized_logit, model.binarized_probs), {model.input: x_adv}) is_adv = np.argmax(probs) != y return is_adv, (torch.tensor(x_adv.transpose((0, 3, 1, 2))), torch.tensor(logits)) feature_extractor = TensorFlow1ToPyTorchWrapper( logit_forward_pass=_model_forward_pass, logit_forward_and_backward_pass=None ) test_indices = list(range(len(X_test))) np.random.shuffle(test_indices) X_test, Y_test = X_test[test_indices], Y_test[test_indices] X_test = np.transpose(X_test, (0, 3, 1, 2)) test_loader = build_dataloader_from_arrays(X_test, Y_test, batch_size=32) from argparse_utils import DecisionBoundaryBinarizationSettings scores_logit_differences_and_validation_accuracies = \ dbb.interior_boundary_discrimination_attack( feature_extractor, test_loader, attack_fn=lambda m, l, kwargs: run_attack(m, l, sess), linearization_settings=DecisionBoundaryBinarizationSettings( epsilon=args.eps / 255.0, norm="linf", lr=25000, n_boundary_points=args.n_boundary_points, n_inner_points=args.n_inner_points, adversarial_attack_settings=None, optimizer="sklearn" ), n_samples=args.n_samples, device="cpu", n_samples_evaluation=200, n_samples_asr_evaluation=200, train_classifier_fn=partial( train_classifier, model=model, sess=sess ), fail_on_exception=False, # needs to be set to None as logit rescaling introduces a weird behavior # of very high R. ASR (probably due to the log in the logit calculation) rescale_logits=None, decision_boundary_closeness=0.999, sample_training_data_from_corners=args.sample_from_corners ) print(dbb.format_result(scores_logit_differences_and_validation_accuracies, args.n_samples)) if __name__ == "__main__": main()
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Adapted and heavily modified from https://github.com/wielandbrendel/adaptive_attacks_paper/blob/master/01_kwta/kwta_attack.ipynb """ from typing import Callable from typing import Optional import numpy as np import torch import torch.nn.functional from tqdm import tqdm import utils as ut def __best_other_classes(logits: torch.Tensor, exclude: torch.Tensor) -> torch.Tensor: other_logits = logits - torch.nn.functional.one_hot(exclude, num_classes=logits.shape[ -1]) * np.inf return other_logits.argmax(axis=-1) def __logit_diff_loss_fn(model: Callable, x: torch.Tensor, classes: torch.Tensor, targeted: bool): with torch.no_grad(): logits = model(x) if targeted: c_minimize = classes c_maximize = __best_other_classes(logits, classes) else: c_minimize = __best_other_classes(logits, classes) c_maximize = classes N = len(x) rows = range(N) logits_diffs = logits[rows, c_minimize] - logits[rows, c_maximize] assert logits_diffs.shape == (N,) return logits_diffs def __es_gradient_estimator(loss_fn: Callable, x: torch.Tensor, y: torch.Tensor, n_samples: int, sigma: float, clip=False, bounds=(0, 1)): assert len(x) == len(y) assert n_samples > 0 gradient = torch.zeros_like(x) with torch.no_grad(): for k in range(n_samples // 2): noise = torch.randn_like(x) pos_theta = x + sigma * noise neg_theta = x - sigma * noise if clip: pos_theta = pos_theta.clip(*bounds) neg_theta = neg_theta.clip(*bounds) pos_loss = loss_fn(pos_theta, y) neg_loss = loss_fn(neg_theta, y) gradient += (pos_loss - neg_loss)[:, None, None, None] * noise gradient /= 2 * sigma * 2 * n_samples return gradient def gradient_estimator_pgd(model: Callable, x: torch.Tensor, y: torch.Tensor, n_steps: int, step_size: float, epsilon: float, norm: ut.NormType, loss_fn: Optional[Callable] = None, random_start: bool = True, early_stopping: bool = False, targeted: bool = False): if loss_fn is None: loss_fn = lambda x, y: __logit_diff_loss_fn(model, x, y, targeted) assert len(x) == len(y) if random_start: delta = torch.rand_like(x) delta = ut.normalize(delta, norm) x_adv, delta = ut.clipping_aware_rescaling(x, delta, epsilon, norm=norm, growing=False, return_delta=True) else: x_adv = x delta = torch.zeros_like(x) if targeted: is_adversarial_fn = lambda x: model(x).argmax(-1) == y else: is_adversarial_fn = lambda x: model(x).argmax(-1) != y mask = ~is_adversarial_fn(x_adv) if not early_stopping: mask = torch.ones_like(mask) else: if mask.sum() == 0: return x_adv.detach(), ~mask.detach() if len(x) > 1: iterator = tqdm(range(n_steps)) else: iterator = range(n_steps) for it in iterator: if it < 0.6 * n_steps: n_samples = 100 elif it < 0.8 * n_steps: n_samples = 1000 elif it >= 0.8 * n_steps: n_samples = 20000 pert_x = (x + delta).clip(0, 1) grad_x = __es_gradient_estimator(loss_fn, pert_x[mask], y[mask], n_samples, epsilon) grad_x = ut.normalize(grad_x, norm) # update only subportion of deltas delta[mask] = delta[mask] - step_size * grad_x # project back to feasible set x_adv, delta = ut.clipping_aware_rescaling(x, delta, epsilon, norm=norm, growing=False, return_delta=True) mask = ~is_adversarial_fn(x_adv) # new_logit_diffs = loss_fn(x_adv, y) # mask = new_logit_diffs >= 0 if not early_stopping: mask = torch.ones_like(mask) if early_stopping and mask.sum() == 0: break return x_adv.detach(), ~mask.detach()
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable import torch import utils as ut def general_pgd(loss_fn: Callable, is_adversarial_fn: Callable, x: torch.Tensor, y: torch.Tensor, n_steps: int, step_size: float, epsilon: float, norm: ut.NormType, random_start: bool = True, early_stopping: bool = False, n_averaging_steps: int = 1): """Performs a projected gradient descent (PGD) for an arbitrary loss function and success criterion. :param loss_fn: Loss function to minimize. :param is_adversarial_fn: Check if examples are adversarial :param x: Input images. :param y: Ground-truth labels. :param n_steps: Number of steps. :param step_size: Size of the steps/learning rate. :param epsilon: Maximum size of the perturbation measured by the norm. :param norm: Norm to use for measuring the size of the perturbation. :param random_start: Randomly start within the epsilon ball. :param early_stopping: Stop once an adversarial perturbation for all examples have been found. :param n_averaging_steps: Number over repetitions for every gradient calculation. :return: (Adversarial examples, attack success for each sample) """ assert norm in ("linf", "l2", "l1") x_orig = x x = x.clone() if random_start: delta = torch.rand_like(x) delta = ut.normalize(delta, norm) x = ut.clipping_aware_rescaling(x_orig, delta, epsilon, norm=norm, growing=False) for step in range(n_steps): x = x.requires_grad_() # check early stopping with torch.no_grad(): is_adv = is_adversarial_fn(x, y) if early_stopping and torch.all(is_adv): # return x.detach(), is_adv.detach() grad_x = torch.zeros_like(x) for _ in range(n_averaging_steps): # get gradient of cross-entropy wrt to input loss = loss_fn(x, y) grad_x += torch.autograd.grad(loss, x)[0].detach() / n_averaging_steps # normalize gradient grad_x = ut.normalize(grad_x, norm) # perform step delta = (x - x_orig).detach() - step_size * grad_x.detach() # project back to feasible set x = ut.clipping_aware_rescaling(x_orig, delta, epsilon, norm=norm, growing=False) del loss, grad_x with torch.no_grad(): is_adv = is_adversarial_fn(x, y) return x.detach(), is_adv.detach() def pgd(model: Callable, x: torch.Tensor, y: torch.Tensor, n_steps: int, step_size: float, epsilon: float, norm: ut.NormType, random_start: bool = True, early_stopping: bool = False, targeted: bool = False, n_averaging_steps: int = 1): """Performs a standard projected gradient descent (PGD) with a cross-entropy objective. :param x: Input images. :param y: Ground-truth labels. :param n_steps: Number of steps. :param step_size: Size of the steps/learning rate. :param epsilon: Maximum size of the perturbation measured by the norm. :param norm: Norm to use for measuring the size of the perturbation. :param random_start: Randomly start within the epsilon ball. :param early_stopping: Stop once an adversarial perturbation for all examples have been found. :param targeted: Perform a targeted adversarial attack. :param n_averaging_steps: Number over repetitions for every gradient calculation. :return: (Adversarial examples, attack success for each sample) """ assert norm in ("linf", "l2", "l1") criterion = torch.nn.CrossEntropyLoss() sign = 1 if targeted else -1 return general_pgd(loss_fn=lambda x, y: sign * criterion(model(x), y), is_adversarial_fn=lambda x, y: model(x).argmax( -1) == y if targeted else model(x).argmax(-1) != y, x=x, y=y, n_steps=n_steps, step_size=step_size, epsilon=epsilon, norm=norm, random_start=random_start, n_averaging_steps=n_averaging_steps, early_stopping=early_stopping)
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from typing import Callable import utils as ut from autoattack import fab_pt def fab(model: Callable, x: torch.Tensor, y: torch.Tensor, n_steps: int, epsilon: float, norm: ut.NormType, targeted: bool = False, n_restarts: int = 1, n_classes: int = 10): """Runs the Fast Adaptive Boundary Attack (Linf, L2, L1). :param model: Inference function of the model yielding logits. :param x: Input images. :param y: Ground-truth labels. :param n_steps: Number of steps. :param epsilon: Maximum size of the perturbation measured by the norm. :param norm: Norm to use for measuring the size of the perturbation. examples have been found. :param targeted: Perform a targeted adversarial attack. :param n_restarts: How often to restart attack. :return: (Adversarial examples, attack success for each sample, target labels (optional)) """ assert norm in ("linf", "l2", "l1") norm = {"linf": "Linf", "l2": "L2", "l1": "L1"}[norm] n_restarts += 1 optional_kwargs = {} if targeted: optional_kwargs["n_target_classes"] = n_classes - 1 attack = fab_pt.FABAttack_PT( predict=model, n_iter=n_steps, norm=norm, n_restarts=n_restarts, eps=epsilon, device=x.device, targeted=targeted, **optional_kwargs) x_adv = attack.perturb(x, y) y_pred = model(x_adv).argmax(-1) if targeted: is_adv = y_pred == y else: is_adv = y_pred != y if targeted: return x_adv.detach(), is_adv.detach(), attack.y_target.detach() else: return x_adv.detach(), is_adv.detach()
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable import numpy as np import torch import utils as ut def general_thermometer_ls_pgd( loss_fn: Callable, is_adversarial_fn: Callable, x: torch.Tensor, y: torch.Tensor, n_steps: int, step_size: float, epsilon: float, norm: ut.NormType, l: int, temperature: float = 1.0, annealing_factor=1.0 / 1.2, random_start: bool = True, n_restarts=0, early_stopping: bool = False, n_averaging_steps: int = 1): """Performs a logit-space projected gradient descent (PGD) for an arbitrary loss function and success criterion for a thermometer-encoded model. :param loss_fn: Loss function to minimize. :param is_adversarial_fn: Check if examples are adversarial :param x: Input images. :param y: Ground-truth labels. :param n_steps: Number of steps. :param step_size: Size of the steps/learning rate. :param epsilon: Maximum size of the perturbation measured by the norm. :param norm: Norm to use for measuring the size of the perturbation. :param l: :param temperature: :param annealing_factor: :param random_start: Randomly start within the epsilon ball. :param early_stopping: Stop once an adversarial perturbation for all examples have been found. :param n_averaging_steps: Number over repetitions for every gradient calculation. :return: (Adversarial examples, attack success for each sample) """ assert norm in ("linf",), "LS-PGD only supports linf norm" assert random_start, "LS-PGD only works with random starts" #assert epsilon < 1.0 / l, f"Epsilon ({epsilon}) must be smaller " \ # f"than 1.0/l ({1.0 / l})" def one_hot(y): L = torch.arange(l, dtype=x.dtype, device=x.device) L = L.view((1, 1, l, 1, 1)) / l y = torch.unsqueeze(y, 2) y = torch.logical_and( y >= L, y <= L + 1 / l).float() return y def init_mask(x): # Compute the mask over the bits that we are allowed to attack mask = torch.zeros((len(x), 3, l, x.shape[-2], x.shape[-1]), dtype=x.dtype, device=x.device) for alpha in np.linspace(0, 1, l): mask += one_hot(torch.maximum(torch.zeros_like(x), x - alpha * epsilon)) mask += one_hot(torch.minimum(torch.ones_like(x), x + alpha * epsilon)) mask = (mask > 0).float() return mask def get_final_x(u): x = torch.argmax(u, 2) / l # now move x as close as possible to x_orig without changing # the argmax of the logits delta = x - x_orig delta[delta > 0] = torch.floor(delta[delta > 0] * l) / l delta[delta < 0] = torch.ceil(delta[delta < 0] * l) / l # only relevant for debugging: # assert torch.all(torch.abs(delta) <= 1.0/l) delta = torch.minimum(torch.ones_like(delta) * epsilon, delta) delta = torch.maximum(-torch.ones_like(delta) * epsilon, delta) x = x_orig + delta # only relevant for debugging: # project back to feasible set (if everything was correct before, # this shouldn't change anything) # x2 = ut.clipping_aware_rescaling(x_orig, delta, epsilon, norm=norm, # growing=False) # assert torch.all(torch.abs(x - x2) < 1e-8) return x x_final = x.clone() x_orig = x mask = init_mask(x_orig) for _ in range(n_restarts + 1): x_logits = torch.randn_like(mask) for step in range(n_steps): # mask u so that x(u) is within the epsilon ball x_logits = x_logits * mask - (1.0 - mask) * 1e12 # check early stopping x = get_final_x(x_logits) is_adv = is_adversarial_fn(x, y) # print(is_adv[:32].long()) if early_stopping and torch.all(is_adv): # return x.detach(), is_adv.detach() x_logits = x_logits.requires_grad_() x_thermometer = torch.softmax(x_logits / temperature, 2) # convert something like [0, 0, 1, 0, .., 0] to [1, 1, 1, 0, ..., 0] x_thermometer = torch.flip( torch.cumsum(torch.flip(x_thermometer, (2,)), 2), (2,)) x_thermometer = x_thermometer.view(( x_thermometer.shape[0], -1, x_thermometer.shape[-2], x_thermometer.shape[-1])) grad_x_logits = torch.zeros_like(x_logits) for _ in range(n_averaging_steps): # get gradient of cross-entropy wrt to the thermometer encoded input loss = loss_fn(x_thermometer, y) # print(step, loss.item(), is_adv.sum().item()) grad_x_logits += torch.autograd.grad(loss, x_logits)[0] / n_averaging_steps # perform step x_logits = (x_logits - step_size * torch.sign(grad_x_logits)).detach() temperature *= annealing_factor x = get_final_x(x_logits) is_adv = is_adversarial_fn(x, y) x_final[is_adv] = x[is_adv] is_adv = is_adversarial_fn(x, y) return x.detach(), is_adv.detach() def thermometer_ls_pgd(model: Callable, x: torch.Tensor, y: torch.Tensor, n_steps: int, step_size: float, epsilon: float, norm: ut.NormType, l: int, temperature: float = 1.0, annealing_factor=1.0 / 1.2, random_start: bool = True, early_stopping: bool = False, targeted: bool = False, n_averaging_steps: int = 1): """Performs a logit-space projected gradient descent (PGD) with a cross-entropy objective for a thermometer-encoded model. :param x: Input images. :param y: Ground-truth labels. :param n_steps: Number of steps. :param step_size: Size of the steps/learning rate. :param epsilon: Maximum size of the perturbation measured by the norm. :param norm: Norm to use for measuring the size of the perturbation. :param l: :param temperature: :param annealing_factor: :param random_start: Randomly start within the epsilon ball. :param early_stopping: Stop once an adversarial perturbation for all examples have been found. :param targeted: Perform a targeted adversarial attack. :param n_averaging_steps: Number over repetitions for every gradient calculation. :return: (Adversarial examples, attack success for each sample) """ assert norm in ("linf", "l2", "l1") criterion = torch.nn.CrossEntropyLoss() sign = 1 if targeted else -1 return general_thermometer_ls_pgd( loss_fn=lambda x, y: sign * criterion(model(x), y), is_adversarial_fn=lambda x, y: model(x).argmax( -1) == y if targeted else model(x).argmax(-1) != y, x=x, y=y, n_steps=n_steps, step_size=step_size, epsilon=epsilon, norm=norm, l=l, temperature=temperature, annealing_factor=annealing_factor, random_start=random_start, n_averaging_steps=n_averaging_steps, early_stopping=early_stopping)
# Copyright 2022 The Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing_extensions import Literal from typing import Tuple import torch from typing import Callable import utils as ut from autoattack import autopgd_base class __PatchedAPGDAttack(autopgd_base.APGDAttack): def dlr_loss(self, x, y): """Patched DLR loss that works with less than 3 classes. Taken and modified from: https://github.com/fra31/auto-attack/blob/master/autoattack/ autopgd_base.py#L567""" x_sorted, ind_sorted = x.sort(dim=1) ind = (ind_sorted[:, -1] == y).float() u = torch.arange(x.shape[0]) if x_sorted.shape[-1] > 2: # normal dlr loss return -(x[u, y] - x_sorted[:, -2] * ind - x_sorted[:, -1] * ( 1. - ind)) / (x_sorted[:, -1] - x_sorted[:, -3] + 1e-12) else: # modified dlr loss (w/o the normalizer) return -(x[u, y] - x_sorted[:, -2] * ind - x_sorted[:, -1] * ( 1. - ind)) class __PatchedAPGDAttack_targeted(autopgd_base.APGDAttack_targeted): def dlr_loss_targeted(self, x, y): """Patched DLR loss that works with less than 3 classes. Taken and modified from: https://github.com/fra31/auto-attack/blob/master/autoattack/ autopgd_base.py#L606""" x_sorted, ind_sorted = x.sort(dim=1) u = torch.arange(x.shape[0]) if x_sorted.shape[-1] > 2: # normal dlr loss return -(x[u, y] - x[u, self.y_target]) / (x_sorted[:, -1] - .5 * ( x_sorted[:, -3] + x_sorted[:, -4]) + 1e-12) else: # modified dlr loss (w/o the normalizer) return -(x[u, y] - x[u, self.y_target]) def auto_pgd(model: Callable, x: torch.Tensor, y: torch.Tensor, n_steps: int, epsilon: float, norm: ut.NormType, loss: Tuple[Literal["ce"], Literal["logit-diff"]] = "ce", targeted: bool = False, n_restarts: int = 1, n_averaging_steps: int = 1, n_classes: int = 10): """Performs a standard projected gradient descent (PGD) with a cross-entropy objective. :param model: Inference function of the model yielding logits. :param x: Input images. :param y: Ground-truth labels. :param n_steps: Number of steps. :param epsilon: Maximum size of the perturbation measured by the norm. :param norm: Norm to use for measuring the size of the perturbation. examples have been found. :param targeted: Perform a targeted adversarial attack. :param n_restarts: How often to restart attack. :param n_averaging_steps: Number over repetitions for every gradient calculation. :return: (Adversarial examples, attack success for each sample, target labels (optional)) """ assert norm in ("linf", "l2", "l1") norm = {"linf": "Linf", "l2": "L2", "l1": "L1"}[norm] attack_cls = __PatchedAPGDAttack_targeted if targeted \ else __PatchedAPGDAttack n_restarts += 1 optional_kwargs = {} if targeted: optional_kwargs["n_target_classes"] = n_classes - 1 attack = attack_cls(predict=model, n_iter=n_steps, norm=norm, n_restarts=n_restarts, eps=epsilon, eot_iter=n_averaging_steps, device=x.device, seed=None, **optional_kwargs) attack.loss = "ce" if loss == "ce" else "dlr" if targeted: attack.loss += "-targeted" x_adv = attack.perturb(x, y) y_pred = model(x_adv).argmax(-1) if targeted: is_adv = y_pred == y else: is_adv = y_pred != y if targeted: return x_adv.detach(), is_adv.detach(), attack.y_target.detach() else: return x_adv.detach(), is_adv.detach() def fix_autoattack(attack): attack.apgd_targeted = __PatchedAPGDAttack_targeted( attack.model, n_restarts=attack.apgd_targeted.n_restarts, n_iter=attack.apgd_targeted.n_iter, verbose=attack.apgd_targeted.verbose, eps=attack.apgd_targeted.eps, norm=attack.apgd_targeted.norm, eot_iter=attack.apgd_targeted.eot_iter, rho=attack.apgd_targeted.thr_decr, seed=attack.apgd_targeted.seed, device=attack.apgd_targeted.device, is_tf_model=attack.apgd_targeted.is_tf_model, logger=attack.apgd_targeted.logger) attack.apgd = __PatchedAPGDAttack( attack.model, n_restarts=attack.apgd.n_restarts, n_iter=attack.apgd.n_iter, verbose=attack.apgd.verbose, eps=attack.apgd.eps, norm=attack.apgd.norm, eot_iter=attack.apgd.eot_iter, rho=attack.apgd.thr_decr, seed=attack.apgd.seed, device=attack.apgd.device, is_tf_model=attack.apgd.is_tf_model, logger=attack.apgd.logger)
# Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: [email protected] (Stefan Popov) # """Miscellaneous utilities that don't fit anywhere else.""" import colorsys import dataclasses import re from typing import Any, Callable, Iterable, TypeVar import numpy as np import torch as t InputTensor = t.Tensor | np.ndarray | int | float | Iterable TorchDevice = t.device | str | None T = TypeVar("T") class TensorContainerMixin: """Allows unified operation on all tensors contained in a dataclass.""" def _apply(self, fn: Callable[[t.Tensor], t.Tensor]): result = [] for field in dataclasses.fields(self): field = getattr(self, field.name) if t.is_tensor(field): field = fn(field) elif isinstance(field, list) or isinstance(field, tuple): field = [fn(e) if t.is_tensor(e) else e for e in field] elif isinstance(field, TensorContainerMixin): field = field._apply(fn) result.append(field) return type(self)(*result) def cuda(self: T) -> T: return self._apply(lambda v: v.cuda()) def cpu(self: T) -> T: return self._apply(lambda v: v.cpu()) def detach(self: T) -> T: return self._apply(lambda v: v.detach()) def numpy(self: T) -> T: return self._apply(lambda v: v.numpy()) def to(self: T, device: TorchDevice) -> T: return self._apply(lambda v: v.to(device)) def __getitem__(self: T, index: Any) -> T: return self._apply(lambda v: v[index]) def get_structure(self) -> dict[str, str]: """Debugging routine, returns type and shape of the each field.""" result = {} for field in dataclasses.fields(self): v = getattr(self, field.name) if t.is_tensor(v): v: t.Tensor = v.detach() dtype = re.sub(r"^torch\.", "", str(v.dtype)) structure = f"t.{dtype}{list(v.shape)}({v.device})" elif isinstance(v, np.ndarray): structure = f"np.{v.dtype.name}{list(v.shape)}" elif isinstance(v, list): structure = f"list[{len(v)}]" elif isinstance(v, tuple): structure = f"tuple[{len(v)}]" else: structure = f"{type(v).__name__}" result[field.name] = structure return result def to_tensor(v: InputTensor, dtype: t.dtype, device: t.device | str | None = None) -> t.Tensor: """Converts a value to tensor, checking the type. Args: v: The value to convert. If it is already a tensor or an array, this function checks that the type is equal to dtype. Otherwise, uses torch.as_tensor to convert it to tensor. dtype: The required type. device: The target tensor device (optional(. Returns: The resulting tensor """ if not t.is_tensor(v): if hasattr(v, "__array_interface__"): # Preserve the types of arrays. The must match the given type. v = t.as_tensor(v) else: v = t.as_tensor(v, dtype=dtype) if v.dtype != dtype: raise ValueError(f"Expecting type '{dtype}', found '{v.dtype}'") if device is not None: v = v.to(device) return v def dynamic_tile(partition_lengths: t.Tensor) -> t.Tensor: """Computes dynamic tiling with the given partition lengths. Args: partition_lengths: The partition lengths, int64[num_partitions] Returns: A 1D int tensor, containing partition_lengths[0] zeros, followed by partition_lengths[1] ones, followed by partition_lengths[2] twos, and so on. """ partition_lengths = t.as_tensor(partition_lengths) non_zero_idx = partition_lengths.nonzero()[:, 0] partition_lengths = partition_lengths[non_zero_idx] start_index = partition_lengths.cumsum(0) if start_index.shape == (0,): return start_index start_index, num_elements = start_index[:-1], start_index[-1] result: t.Tensor = partition_lengths.new_zeros([num_elements.item()]) start_index = start_index[start_index < num_elements] result[start_index] = 1 result = result.cumsum(0, dtype=partition_lengths.dtype) return non_zero_idx[result] def get_palette(): """Creates a color palette with 32 entries.""" color_palette = [] for h in t.arange(0., 1., 1 / 32): color_palette.append(colorsys.hsv_to_rgb(h, 1, 0.7)) color_palette.append(colorsys.hsv_to_rgb(h, 0.5, 0.7)) color_palette = t.tensor(color_palette, dtype=t.float32) g = t.Generator() g.manual_seed(1) color_palette = color_palette[t.randperm(color_palette.shape[0], generator=g)] return color_palette
# Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: [email protected] (Stefan Popov) # """Functions to compute transformation matrices.""" import torch as t from torch.nn import functional as F def scale(v: t.Tensor) -> t.Tensor: """Computes homogeneous scale matrices from scale vectors. Args: v: Scale vectors, `float32[B*, N]` Returns: Scale matrices, `float32[B*, N+1, N+1]` """ v = t.as_tensor(v, dtype=t.float32) batch_dims = v.shape[:-1] v = v.reshape([-1, (v.shape[-1])]) index_batch_flat = t.arange(v.shape[0], dtype=t.int64, device=v.device) index_diag = t.arange(v.shape[1], dtype=t.int64, device=v.device) index_batch, index_diag = t.meshgrid(index_batch_flat, index_diag, indexing="ij") index_batch = index_batch.reshape([-1]) index_diag = index_diag.reshape([-1]) result = v.new_zeros([v.shape[0], v.shape[1] + 1, v.shape[1] + 1]) result[index_batch, index_diag, index_diag] = v.reshape([-1]) result[index_batch_flat, v.shape[-1], v.shape[-1]] = 1 result = result.reshape(batch_dims + result.shape[-2:]) return result def translate(v: t.Tensor) -> t.Tensor: """Computes a homogeneous translation matrices from translation vectors. Args: v: Translation vectors, `float32[B*, N]` Returns: Translation matrices, `float32[B*, N+1, N+1]` """ result = t.as_tensor(v, dtype=t.float32) dimensions = result.shape[-1] result = result[..., None, :].transpose(-1, -2) result = t.constant_pad_nd(result, [dimensions, 0, 0, 1]) id_matrix = t.diag(result.new_ones([dimensions + 1])) id_matrix = id_matrix.expand_as(result) result = result + id_matrix return result def rotate( angle: t.Tensor, axis: t.Tensor, ) -> t.Tensor: """Computes a 3D rotation matrices from angle and axis inputs. The formula used in this function is explained here: https://en.wikipedia.org/wiki/Rotation_matrix#Conversion_from_and_to_axis–angle Args: angle: The rotation angles, `float32[B*]` axis: The rotation axes, `float32[B*, 3]` Returns: The rotation matrices, `float32[B*, 4, 4]` """ axis = t.as_tensor(axis, dtype=t.float32) angle = t.as_tensor(angle, dtype=t.float32) axis = F.normalize(axis, dim=-1) sin_axis = t.sin(angle)[..., None] * axis cos_angle = t.cos(angle) cos1_axis = (1.0 - cos_angle)[..., None] * axis _, axis_y, axis_z = t.unbind(axis, dim=-1) cos1_axis_x, cos1_axis_y, _ = t.unbind(cos1_axis, dim=-1) sin_axis_x, sin_axis_y, sin_axis_z = t.unbind(sin_axis, dim=-1) tmp = cos1_axis_x * axis_y m01 = tmp - sin_axis_z m10 = tmp + sin_axis_z tmp = cos1_axis_x * axis_z m02 = tmp + sin_axis_y m20 = tmp - sin_axis_y tmp = cos1_axis_y * axis_z m12 = tmp - sin_axis_x m21 = tmp + sin_axis_x zero = t.zeros_like(m01) one = t.ones_like(m01) diag = cos1_axis * axis + cos_angle[..., None] diag_x, diag_y, diag_z = t.unbind(diag, dim=-1) matrix = t.stack((diag_x, m01, m02, zero, m10, diag_y, m12, zero, m20, m21, diag_z, zero, zero, zero, zero, one), dim=-1) output_shape = axis.shape[:-1] + (4, 4) result = matrix.reshape(output_shape) return result def transform_points_homogeneous(points: t.Tensor, matrix: t.Tensor, w: float) -> t.Tensor: """Transforms 3D points with a homogeneous matrix. Args: points: The points to transform, `float32[B*, N, 3]` matrix: The transformation matrices, `float32[B*, 4, 4]` w: The W value to add to the points to make them homogeneous. Should be 1 for affine points and 0 for vectors. Returns: The transformed points in homogeneous space (with a 4th coordinate), `float32[B*, N, 4]` """ batch_dims = points.shape[:-2] # Fold all batch dimensions into a single one points = points.reshape([-1] + list(points.shape[-2:])) matrix = matrix.reshape([-1] + list(matrix.shape[-2:])) points = t.constant_pad_nd(points, [0, 1], value=w) result = t.einsum("bnm,bvm->bvn", matrix, points) result = result.reshape(batch_dims + result.shape[-2:]) return result def transform_mesh(mesh: t.Tensor, matrix: t.Tensor, vertices_are_points=True) -> t.Tensor: """Transforms a single 3D mesh. Args: mesh: The mesh's triangle vertices, `float32[B*, N, 3, 3]` matrix: The transformation matrix, `float32[B*, 4, 4]` vertices_are_points: Whether to interpret the vertices as affine points or vectors. Returns: The transformed mesh, `float32[B*, N, 3, 3]` """ original_shape = mesh.shape mesh = mesh.reshape([-1, mesh.shape[-3] * 3, 3]) matrix = matrix.reshape([-1, 4, 4]) w = 1 if vertices_are_points else 0 mesh = transform_points_homogeneous(mesh, matrix, w=w) if vertices_are_points: mesh = mesh[..., :3] / mesh[..., 3:4] else: mesh = mesh[..., :3] return mesh.reshape(original_shape) def transform_points(points: t.Tensor, matrix: t.Tensor) -> t.Tensor: """Transforms points. Args: points: The points to transform, `float32[B*, N, 3]` matrix: Transformation matrices, `float32[B*, 4, 4]` Result: The transformed points, `float32[B*, N, 3]` """ result = transform_points_homogeneous(points, matrix, w=1) result = result[..., :3] / result[..., 3:4] return result def chain(transforms: list[t.Tensor], reverse=True) -> t.Tensor: """Chains transformations expressed as matrices. Args: transforms: The list of transformations to chain reverse: The order in which transformations are applied. If true, the last transformation is applied first (which matches matrix multiplication order). False matches natural order, where the first transformation is applied first. Returns: Matrix combining all transformations. """ assert transforms if not reverse: transforms = transforms[::-1] result = transforms[0] for transform in transforms[1:]: result = result @ transform return result def gl_projection_matrix_from_intrinsics( # width: t.Tensor, height: t.Tensor, fx: t.Tensor, fy: t.Tensor, cx: t.Tensor, cy: t.Tensor, znear: float = 0.001, zfar: float = 20.) -> t.Tensor: """Computes the camera projection matrix for rendering square images. Args: width: Image's `width`, `float32[B*]`. height: Image's `heigh`t,` float32[B*]`. fx: Camera's `fx`, `float32[B*]`. fy: Camera's `fy`, `float32[B*]`. cx: Camera's `cx`, `float32[B*]`. cy: Camera's `cy`, `float32[B*]`. znear: The near plane location. zfar: The far plane location. Returns: World to OpenGL's normalized device coordinates transformation matrices, `float32[B*, 4, 4]`. """ z = t.zeros_like(t.as_tensor(fx)) o = t.ones_like(z) zn = znear * o zf = zfar * o # yapf: disable result = [ 2 * fx / width, z, 2 * (cx / width) - 1, z, z, 2 * fy / height, 2 * (cy / height) - 1, z, z, z, (zf + zn) / (zf - zn), -2 * zn * zf / (zf - zn), z, z, o, z ] # yapf: enable result = t.stack([t.as_tensor(v, dtype=t.float32) for v in result]).reshape((4, 4) + z.shape) result = result.permute(tuple(range(len(result.shape)))[2:] + (0, 1)) return result def quaternion_to_rotation_matrix(q: t.Tensor) -> t.Tensor: """Computes a rotation matrix from a quaternion. Args: q: Rotation quaternions, float32[B*, 4] Returns: Rotation matrices, float32[B, 4, 4] """ q = t.as_tensor(q, dtype=t.float32) w, x, y, z = t.unbind(q, dim=-1) zz = t.zeros_like(z) oo = t.ones_like(z) s = 2.0 / (q * q).sum(dim=-1) # yapf: disable return t.stack([ 1 - s * (y ** 2 + z ** 2), s * (x * y - z * w), s * (x * z + y * w), zz, s * (x * y + z * w), 1 - s * (x ** 2 + z ** 2), s * (y * z - x * w), zz, s * (x * z - y * w), s * (y * z + x * w), 1 - s * (x ** 2 + y ** 2), zz, zz, zz, zz, oo ], dim=-1).reshape(q.shape[:-1] + (4, 4)) # yapf: enable
# Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: [email protected] (Stefan Popov) # """Type annotations for the input files structures.""" from typing import TypedDict import numpy as np # Camera extrinsics, consisting of rotation, followed by translation. # Used in `Frame` below. CameraExtrinsics = TypedDict( "CameraExtrinsics", { # 3D translation `(x, y, z)` "translation": tuple[float, float, float], # Rotation quaternion `(w, x, y, z)` "rotation": tuple[float, float, float, float] }) # A single frame annotation, used in `FramesFile` below Frame = TypedDict( "Frame", { # Frame timestamp "timestamp": int, # Whether tracks were completed manually on this frame. "key_frame": bool, # The camera intrinsics `(fx, fy, cx, cy)`. "intrinsics": tuple[float, float, float, float], # The camera extrinsics. "extrinsics": CameraExtrinsics }) # A single annotated point correspondence, used in `AnnotatedObject` below. PointCorrespondence = TypedDict("PointCorrespondence", { # 2D point on the video frame (normalized) "2d": tuple[float, float], # 3D point on the CAD model (in object space) "3d": tuple[float, float, float] }) # Track annotations on a frame, used in `AnnotatedObject` below. TrackEntry = TypedDict( "TrackEntry", { # The frame timestamp "timestamp": int, # The track box, in normalized coordinates "box": tuple[float, float, float, float], # The annotated 2D <=> 3D correspondences "correspondences": list[PointCorrespondence] | None }) # An annotated object AnnotatedObject = TypedDict( "AnnotatedObject", { # Unique track/object ID "track_id": str, # Whether the object track was annotated automatically on manually "is_track_automatic": bool, # ShapeNet model ID. Can be absent, if the annotation pipeline failed # to propose relevant 3D models to the annotator. "cad_id": str, # ShapeNet class of the track "class": str, # Object offset in world space `(x, y, z)`. Absent, if the # aligned 3D object did not pass verification. Order of transformations: # mirror => scale => rotation => translation "translation": tuple[float, float, float], # The rotation quaternion in object space, `(w, x, y, z)`. Absent if # the aligned 3D object did not pass verification. "rotation": tuple[float, float, float, float], # Scale in object space, `(sx, sy, sz)`. Absent if the # aligned 3D object did not pass verification. "scale": tuple[float, float, float], # Whether the object needs to be mirrored in object space "is_mirrored": bool, # Track annotations "track": list[TrackEntry] }) # Describes the structure of an `objects.json` file. ObjectsFile = TypedDict("ObjectsFile", { "clip_name": str, "objects": list[AnnotatedObject] }) # Describes the structure of a `frames.json` file. FramesFile = TypedDict( "FramesFile", { # The clip name "clip_name": str, # Image size, `(height, width)` "image_size": tuple[float, float] | None, # The frame annotations "frames": list[Frame], }) # Describes the structure of a `room_structure.npz` file. RoomStructureFile = TypedDict( "RoomStructureFile", { # The clip name, `str[]` "clip_name": np.ndarray, # Structural element triangles, `float32[NUM_STRUCT_TRI, 3, 3]`. # Triangles of each structural element are stored sequentially. "layout_triangles": np.ndarray, # Additional per-triangle flags, `int64[NUM_STRUCT_TRI, 3]`. # Bit 1 indicates the triangle is part of a window frame. # Bit 2 -- part of a closed door. "layout_triangle_flags": np.ndarray, # Number of triangles for each structural element, # `int64[NUM_STRUCT_ELEM]`. The first `num_tri[0]` triangles in # `triangles` belong to the first structural element, the next # `num_tri[1]` -- to the second, and so on. "layout_num_tri": np.ndarray, # Semantic labels of the structural elements, `int64[NUM_STRUCT_ELEM]`. # STRUCTURAL_ELEMENT_TYPES maps these to class names. "layout_labels": np.ndarray, #Timestamps of the annotated frames, `int64[NUM_ANN_FRAMES]`. "annotated_timestamps": np.ndarray, })
# Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: [email protected] (Stefan Popov) """Library for loading room structures.""" import asyncio import dataclasses import re import torch as t from cad_estate import file_system as fs from cad_estate import frames as frame_lib from cad_estate import input_file_structures as input_struct_lib from cad_estate import misc_util # We use the following symbols to describe tensors below: # NUM_FRAMES : Number of loaded frames in a video # NUM_STRUCT_ELEM : Number of structural elements # NUM_STRUCT_TRI : The total number of triangles in the room structure # NUM_ANN_FRAMES : The number of annotated frames # AH, AW : Height and width of the annotations STRUCTURAL_ELEMENT_TYPES = ["<ignore>", "wall", "floor", "ceiling", "slanted"] @dataclasses.dataclass class RoomStructure(misc_util.TensorContainerMixin): """3D structural elements for a clip.""" clip_name: str """The RealEstate-10K clip name. Uniquely identifies the scene. Consists of a YouTube video ID, followed by "_", and then by a start timestamp """ triangles: t.Tensor """Structural element triangles, `float32[NUM_STRUCT_TRI, 3, 3]`. Triangles of each structural element are stored sequentially. """ num_tri: t.Tensor """Number of triangles for each structural element, `int64[NUM_STRUCT_ELEM]`. The first `num_tri[0]` triangles in `triangles` belong to the first structural element, the next `num_tri[1]` -- to the second, and so on. """ triangle_flags: t.Tensor """Additional per-triangle flags, `int64[NUM_STRUCT_TRI, 3]`. Bit 1 indicates the triangle is part of a window frame. Bit 2 -- part of a closed door. """ labels: t.Tensor """Semantic labels of the structural elements, `int64[NUM_STRUCT_ELEM]`. STRUCTURAL_ELEMENT_TYPES maps these to class names. """ annotated_timestamps: t.Tensor """Timestamps of the annotated frames, `int64[NUM_ANN_FRAMES]`.""" @dataclasses.dataclass class StructureAnnotations(misc_util.TensorContainerMixin): """Structural element annotations.""" structural_element_masks: t.Tensor """Amodal structural element masks, `uint8[NUM_FRAMES, AH, AW]`.""" visible_parts_masks: t.Tensor """Structural elements visible parts, `uint8[NUM_FRAMES, AH, AW]`.""" def load_room_structure(struct_npz: input_struct_lib.RoomStructureFile): """Loads room structures.""" # Load the frame information clip_name = struct_npz["clip_name"].item() return RoomStructure( clip_name=clip_name, triangles=t.as_tensor(struct_npz["layout_triangles"], dtype=t.float32), triangle_flags=t.as_tensor(struct_npz["layout_triangle_flags"], dtype=t.int64), num_tri=t.as_tensor(struct_npz["layout_num_tri"], dtype=t.int64), labels=t.as_tensor(struct_npz["layout_labels"], dtype=t.int64), annotated_timestamps=t.as_tensor(struct_npz["annotated_timestamps"], dtype=t.int64), ) async def _load_annotation(target_ref: list[t.Tensor], num_frames: int, index: int, path: str): img = await frame_lib.read_and_decode_image(path) if img.dtype == t.int16: if img.min() < 0 or img.max() > 255: raise ValueError("Mask contains values outside of [0, 255].") img = img.to(t.uint8) target, = target_ref if target is None: h, w = img.shape target_ref[0] = t.full([num_frames, h, w], -1, dtype=t.uint8) target, = target_ref target[index] = img async def load_annotations(room: RoomStructure, frames: frame_lib.Frames, annotation_dir: str, raw: bool = False): """Loads the room structure annotations.""" assert frames.clip_name == room.clip_name num_frames, c, h, w = frames.frame_images.shape assert c == 3 structure_ref, visible_ref = [None], [None] annotated_timestamps = set(room.annotated_timestamps.tolist()) video_name = re.match(r"^(.+)_\d+$", room.clip_name).group(1) prefix = "raw" if raw else "processed" tasks = [] for i, timestamp in enumerate(frames.frame_timestamps.tolist()): if timestamp not in annotated_timestamps: continue root_dir = fs.join(annotation_dir, room.clip_name, "structure_annotations") struct_path = fs.join(root_dir, f"{prefix}_structure_{video_name}_{timestamp}.png") tasks.append(_load_annotation(structure_ref, num_frames, i, struct_path)) visible_path = fs.join(root_dir, f"{prefix}_visible_{video_name}_{timestamp}.png") tasks.append(_load_annotation(visible_ref, num_frames, i, visible_path)) if tasks: await asyncio.gather(*tasks) structure_masks, = structure_ref visible_masks, = visible_ref else: structure_masks = t.full([num_frames, h, w], -1, dtype=t.uint8) visible_masks = t.full([num_frames, h, w], -1, dtype=t.uint8) return StructureAnnotations(structural_element_masks=structure_masks, visible_parts_masks=visible_masks) def annotated_frames_mask(room: RoomStructure, frames: frame_lib.Frames): mask = room.annotated_timestamps[None, :] == frames.frame_timestamps[:, None] return mask.any(dim=1)
# Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: [email protected] (Stefan Popov) # """Dataset classes for reading CAD-Estate annotations and their videos. Example usage during training: ```python from cad_estate import objects as obj_lib from cad_estate import datasets as dataset_lib cfg = datasets.ObjectDatasetConfig( split_file_path=fs.abspath("~/prj/cad_estate/data/obj_test.txt"), annotation_directory=fs.abspath("~/prj/cad_estate/data/annotations"), frames_directory=fs.abspath("~/prj/cad_estate/data/frames"), num_frames=12) shapenet_meta = obj_lib.load_shapenet_metadata( fs.abspath("~/prj/cad_estate/data/shapenet_npz")) for epoch in range(num_epochs): dataset = ObjectDataset(cfg, shapenet_meta, seed=epoch) data_loader = DataLoader(ObjectDataset(config, shapenet_meta, epoch)) for batch in data_loader: ... ``` Example usage during evaluation: ```python dataset = ObjectDataset(cfg, shapenet_meta, seed=None) data_loader = DataLoader(ObjectDataset(config, shapenet_meta, epoch)) for batch in data_loader: ... ``` """ import asyncio import dataclasses import io import json import math import re from typing import Generic, TypeVar import numpy as np import torch as t import torch.utils.data from cad_estate import file_system as fs from cad_estate import frames as frame_lib from cad_estate import objects as obj_lib from cad_estate import room_structure as struct_lib @dataclasses.dataclass class DatasetCommonConfig: """Configures the common part between structure and object datasets.""" split_file_path: str """Path to a text file containing the scene names that are part of the dataset split (one scene per line).""" annotation_directory: str """Path to directory containing the annotations.""" frames_directory: str """Path to directory containing the frame images.""" num_frames: int """Number of frames to sample for a clip.""" replication_factor: float = 1.0 """Allows replicating/trimming the dataset.""" znear: float = 0.1 """ZNear, used to compute an OpenGL compatible projection matrix.""" zfar: float = 50 """ZFar, used to compute an OpenGL compatible projection matrix.""" @dataclasses.dataclass class ObjectDatasetConfig(DatasetCommonConfig): """Configures an object dataset.""" read_tracks: bool = False """Whether to read the 2D object tracks.""" only_frames_with_manual_tracks: bool = False """If there are frames with manual track completion, sample only from them.""" @dataclasses.dataclass class RoomStructureDatasetConfig(DatasetCommonConfig): """Configures a room structures dataset.""" load_raw_annotations: bool | None = None """Whether to load raw or processed annotations. If None, annotations are not loaded.""" only_frames_with_annotations: bool = False """Whether to sample only from frames with annotations.""" @dataclasses.dataclass class ObjectsElement: """Element returned when iterating an objects dataset.""" frames: frame_lib.Frames """The loaded frames.""" objects: obj_lib.Objects """The loaded objects.""" track_boxes: t.Tensor | None """The track boxes, `float32[NUM_OBJ, NUM_FRAMES, 4]`. See the `cad_estate.objects.load_track_boxes` for more details.""" @dataclasses.dataclass class RoomStructuresElement: """Element returned when iterating a room structure dataset.""" frames: frame_lib.Frames """The loaded frames.""" room: struct_lib.RoomStructure """The loaded room structure.""" annotations: struct_lib.StructureAnnotations | None """The room structure annotations.""" _DATASET_CACHE: dict[str, str] = {} # t[str, str] = {} def _read_cached(path: str, cache_enabled: bool) -> str: if path not in _DATASET_CACHE or not cache_enabled: _DATASET_CACHE[path] = fs.read_text(path) return _DATASET_CACHE[path] Config = TypeVar("Config", bound=DatasetCommonConfig) class DatasetBase(Generic[Config]): """Contains the common functionality between objects and room structures.""" def __init__(self, config: Config, seed: int | None, cache_dataset_description: bool): """Initializes the dataset. Args: config: The dataset config seed: Seed for sampling frames and shuffling scenes (see below). cache_dataset_description: Whether to cache the contents of `config.split_file_path` in memory, for faster re-initialization. The scene iteration order and the frames sampled for a scene, depend only on the construction arguments (configuration and seed). Iterating over two datasets with identical construction arguments, or iterating over a dataset multiple times will yield the exact same results. To sample different frames and to visit the scenes in a different order during training, create a new dataset each for each epoch: ``` for epoch in range(num_epochs): data_loader = DataLoader(ObjectDataset(config, shapenet_meta, epoch)) for batch in data_loader: ... ``` Frames are chosen by sampling their indices in a stratified manner. If `seed` is `None`, the indices are evenly spaced. The `_compute_indices` and `_sample_frames` methods can be overriden for a different shuffling and sampling behavior. """ self.config: Config = config split_description = _read_cached(self.config.split_file_path, cache_dataset_description) self.original_scene_names = self._read_scene_names(split_description) self.seed = seed self.indices = self._compute_indices() def _read_scene_names(self, split_description: str): result = [v for v in split_description.splitlines() if v] result = [v for v in result if not re.match(r"^(\s*#.*|\s*)$", v)] return np.array(result, dtype=np.str_) def _compute_indices(self) -> t.Tensor: num_scenes = len(self.original_scene_names) if self.seed is None: _i = lambda: t.arange(num_scenes, device="cpu") else: g = t.Generator() g.manual_seed(self.seed) _i = lambda: t.randperm(num_scenes, generator=g, device="cpu") max_repeats = int(math.ceil(self.config.replication_factor)) indices = t.cat([_i() for _ in range(max_repeats)]) indices_len = int(num_scenes * self.config.replication_factor) indices = indices[:indices_len] return indices @property def scene_names(self): """Returns the already shuffled scene names.""" return self.original_scene_names[self.indices] def __len__(self): return self.indices.shape[0] def _sample_frames(self, frames: frame_lib.Frames): if self.seed is None: return frame_lib.sample_regular(frames, self.config.num_frames) g = t.Generator() g.manual_seed(int(self.indices[self.seed])) return frame_lib.sample_stratified(frames, self.config.num_frames, g) def _get_frame_metadata(self, index: int): scene_name = self.scene_names[index] json_path = fs.join(self.config.annotation_directory, scene_name, "frames.json") frames = frame_lib.load_metadata(json.loads(fs.read_text(json_path))) return frames class ObjectDataset(DatasetBase[ObjectDatasetConfig], torch.utils.data.Dataset[ObjectsElement]): def __init__(self, config: ObjectDatasetConfig, shapenet_meta: obj_lib.ShapeNetMetadata, seed: int | None, cache_dataset_description: bool = True): super().__init__(config, seed, cache_dataset_description) self.shapenet_meta = shapenet_meta def __getitem__(self, index: int) -> ObjectsElement: scene_name = self.scene_names[index] json_path = fs.join(self.config.annotation_directory, scene_name, "objects.json") obj_json = json.loads(fs.read_text(json_path)) objects = asyncio.run(obj_lib.load_objects(obj_json, self.shapenet_meta)) frames = self._get_frame_metadata(index) if (self.config.only_frames_with_manual_tracks and frames.manual_track_annotations.any()): frames = frame_lib.filter(frames, frames.manual_track_annotations) frames = frame_lib.filter(frames, self._sample_frames(frames)) frames = asyncio.run( frame_lib.load_images(frames, self.config.frames_directory)) tracks = None if self.config.read_tracks: tracks = obj_lib.load_track_boxes(obj_json, frames) return ObjectsElement(frames, objects, tracks) class RoomStructuresDataset( DatasetBase[RoomStructureDatasetConfig], torch.utils.data.Dataset[RoomStructureDatasetConfig], ): def __init__(self, config: ObjectDatasetConfig, seed: int | None, cache_dataset_description: bool = True): super().__init__(config, seed, cache_dataset_description) def __getitem__(self, index: int) -> RoomStructuresElement: scene_name = self.scene_names[index] room_bytes = fs.read_bytes( fs.join(self.config.annotation_directory, scene_name, "room_structure.npz")) room = struct_lib.load_room_structure(np.load(io.BytesIO(room_bytes))) frames = self._get_frame_metadata(index) if self.config.only_frames_with_annotations: mask = struct_lib.annotated_frames_mask(room, frames) frames = frame_lib.filter(frames, mask) frames = frame_lib.filter(frames, self._sample_frames(frames)) frames = asyncio.run( frame_lib.load_images(frames, self.config.frames_directory)) annotations = None if self.config.load_raw_annotations is not None: annotations = asyncio.run( struct_lib.load_annotations(room, frames, self.config.annotation_directory, self.config.load_raw_annotations)) return RoomStructuresElement(frames, room, annotations)
# Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: [email protected] (Stefan Popov) # """Various debugging helpers.""" import base64 import io import logging import re import typing import numpy as np import PIL.Image import torch as t from IPython.core import display log = logging.getLogger(__name__) def to_hwc_rgb8(imgarr: typing.Any) -> np.ndarray: if t.is_tensor(imgarr): # Torch -> Numpy imgarr = imgarr.detach().cpu().numpy() if hasattr(imgarr, "numpy"): # TF -> Numpy imgarr = imgarr.numpy() if len(imgarr.shape) == 2: # Monochrome -> RGB imgarr = np.stack([imgarr] * 3, -1) if (len(imgarr.shape) == 3 and imgarr.shape[0] <= 4 and (imgarr.shape[1] > 4 or imgarr.shape[2] > 4)): # CHW -> HWC imgarr = np.transpose(imgarr, [1, 2, 0]) if len(imgarr.shape) == 3 and imgarr.shape[-1] == 4: # RGBA -> RGB imgarr = imgarr[:, :, :3] if len(imgarr.shape) == 3 and imgarr.shape[-1] == 1: # Monochrome -> RGB imgarr = np.concatenate([imgarr] * 3, -1) if imgarr.dtype == np.float32 or imgarr.dtype == np.float64: imgarr = np.minimum(np.maximum(imgarr * 255, 0), 255).astype(np.uint8) if imgarr.dtype == np.int32 or imgarr.dtype == np.int64: imgarr = np.minimum(np.maximum(imgarr, 0), 255).astype(np.uint8) if imgarr.dtype == np.bool_: imgarr = imgarr.astype(np.uint8) * 255 if (len(imgarr.shape) != 3 or imgarr.shape[-1] != 3 or imgarr.dtype != np.uint8): raise ValueError( "Cannot display image from array with type={} and shape={}".format( imgarr.dtype, imgarr.shape)) return imgarr[..., :3] def image_as_url(imgarr: np.ndarray, fmt: str = "png") -> str: img = PIL.Image.fromarray(imgarr, "RGB") buf = io.BytesIO() img.save(buf, fmt) b64 = base64.encodebytes(buf.getvalue()).decode("utf8") b64 = "data:image/png;base64,{}".format(b64) return b64 class Image(typing.NamedTuple): image: typing.Any label: str width: int def get_html_for_images(*orig_images, fmt="png", w=None): table_template = """ <div style="display: inline-flex; flex-direction: row; flex-wrap:wrap"> {} </div> """ item_template = """ <div style="display: inline-flex; flex-direction: column; flex-wrap: nowrap; align-items: center"> <img style="margin-right: 0.5em" src="{image}" width="{width}"/> <div style="margin-bottom: 0.5em; margin-right: 0.5em">{label}</div> </div> """ images = [] def append_image(image): image = to_hwc_rgb8(image) width = image.shape[1] if not w else w images.append(Image(label="Image {}".format(idx), image=image, width=width)) for idx, item in enumerate(orig_images): if isinstance(item, str) and images: images[-1] = images[-1]._replace(label=item) elif isinstance(item, bytes): image = np.array(PIL.Image.open(io.BytesIO(item))) append_image(image) elif isinstance(item, PIL.Image.Image): append_image(np.array(item)) elif isinstance(item, int) and images: images[-1] = images[-1]._replace(width=item) else: append_image(item) images = [v._replace(image=image_as_url(v.image, fmt)) for v in images] table = [item_template.format(**v._asdict()) for v in images] table = table_template.format("".join(table)) return table def display_images(*orig_images, **kwargs): """Display images in a IPython environment""" display.display(display.HTML(get_html_for_images(*orig_images, **kwargs))) def print_tensor(v: t.Tensor): v = v.detach() dtype = re.sub(r"^torch\.", "", str(v.dtype)) sep = "\n" if len(v.shape) > 1 else " " return f"{dtype}{list(v.shape)}({v.device}){{{sep}{v.cpu().numpy()}{sep}}}" def better_tensor_display(): """Better string representation of tensors for python debuggers.""" np.set_printoptions(4, suppress=True) t.set_printoptions(4, sci_mode=False) t.Tensor.__repr__ = print_tensor def better_jupyter_display(): try: def _print_key_dict(v, p, cycle): p.text(str(list(v))) formatters = get_ipython().display_formatter.formatters['text/plain'] formatters.for_type("collections.abc.KeysView", _print_key_dict) except Exception as e: log.exception("Unable to instrument Jupyter notebook") def dump_state(path: str, **kwargs): state_dict = {} for k, v in kwargs.items(): assert isinstance(k, str) if t.is_tensor(v): v = v.detach().cpu() state_dict[k] = v t.save(state_dict, path)
# Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: [email protected] (Stefan Popov) # """Library for loading and manipulating video frames.""" import dataclasses import io import re import PIL.Image import numpy as np import torch as t from cad_estate import file_system as fs from cad_estate import misc_util from cad_estate import input_file_structures as input_struct_lib from cad_estate import transformations as transform_lib async def read_and_decode_image(image_path: str): """Asynchronously reads and decodes an image.""" image_bytes = await fs.read_bytes_async(image_path) image = PIL.Image.open(io.BytesIO(image_bytes)) image = t.as_tensor(np.array(image), dtype=t.uint8) if len(image.shape) == 3: if image.shape[-1] != 3: raise ValueError("Only RGB and GrayScale images supported!") image = image.permute([2, 0, 1]) elif len(image.shape) != 2: raise ValueError("Only RGB and GrayScale images supported!") return image # We use the following symbols to describe tensors below: # IH, IW : Image height and width # NUM_FRAMES : Number of loaded frames in a video @dataclasses.dataclass class Frames(misc_util.TensorContainerMixin): """Contains frames of a video.""" clip_name: str """The RealEstate-10K clip name. Uniquely identifies the scene. Consists of a YouTube video ID, followed by "_", and then by a start timestamp. """ frame_timestamps: t.Tensor """Frame timestamps (microseconds since video start), `int[NUM_FRAMES]`.""" frame_images: t.Tensor | None """The frame images, `uint8[NUM_FRAMES, 3, IH, IW]`. None, if the frames are not loaded yet. """ camera_intrinsics: t.Tensor """Camera intrinsics (view->screen transform), `float32[NUM_FRAMES, 4, 4]`. Entries correspond to frames. """ camera_extrinsics: t.Tensor """Camera extrinsics (world->view transform), `float32[NUM_FRAMES, 4, 4]`. Entries correspond to frames. """ manual_track_annotations: t.Tensor """Whether tracks were completed manually on a frame, `bool[NUM_FRAMES]`.""" def load_metadata(frames_json: input_struct_lib.FramesFile, z_near=0.1, z_far=200.0): """Loads the frames metadata.""" clip_name = frames_json["clip_name"] frame_timestamps, manual_track_annotations = [], [] camera_intrinsics, camera_t, camera_r = [], [], [] for frame in frames_json["frames"]: frame_timestamps.append(frame["timestamp"]) camera_intrinsics.append(frame["intrinsics"]) camera_t.append(frame["extrinsics"]["translation"]) camera_r.append(frame["extrinsics"]["rotation"]) manual_track_annotations.append(frame["key_frame"]) h, w = frames_json["image_size"] fx, fy, cx, cy = t.as_tensor(camera_intrinsics, dtype=t.float32).unbind(-1) camera_intrinsics = transform_lib.gl_projection_matrix_from_intrinsics( w, h, fx, fy, cx, cy, z_near, z_far) camera_extrinsics = transform_lib.chain([ transform_lib.translate(camera_t), transform_lib.quaternion_to_rotation_matrix(camera_r) ]) frame_timestamps = t.as_tensor(frame_timestamps) manual_track_annotations = t.as_tensor(manual_track_annotations) return Frames(clip_name=clip_name, frame_timestamps=frame_timestamps, frame_images=None, camera_intrinsics=camera_intrinsics, camera_extrinsics=camera_extrinsics, manual_track_annotations=manual_track_annotations) async def load_images(frames: Frames, frames_root_dir: str) -> Frames: """Reads the frame images in parallel (using async).""" video_name = re.match(r"^(.+)_\d+$", frames.clip_name).group(1) image_paths = [ fs.join(frames_root_dir, video_name, f"{video_name}_{v}.jpg") for v in frames.frame_timestamps.cpu() ] # Load images in parallel to mask latencies images = await fs.await_in_parallel( [read_and_decode_image(v) for v in image_paths]) images = t.stack(images, dim=0) return dataclasses.replace(frames, frame_images=images) def filter(frames: Frames, keep: t.Tensor) -> Frames: """Filters the frames and their metadata. Args: frames: The input frames keep: Which frames to keep. Either a boolean mask (`bool[NUM_FRAMES]`) or a list of indices (`int64[NUM_FRAMES_TO_KEEP]`). Returns: The frames object, with frames filtered according to the arguments. """ frame_images = frames.frame_images if frame_images is not None: frame_images = frame_images[keep] return Frames( clip_name=frames.clip_name, frame_timestamps=frames.frame_timestamps[keep], frame_images=frame_images, camera_intrinsics=frames.camera_intrinsics[keep], camera_extrinsics=frames.camera_extrinsics[keep], manual_track_annotations=frames.manual_track_annotations[keep], ) def _regular_indices_impl(frames: Frames, num_frames_to_keep: int, offset: t.Tensor) -> t.Tensor: """Returns evenly spaced frame indices.""" device = frames.frame_timestamps.device frame_index = t.arange(num_frames_to_keep, dtype=t.float32, device=device) if offset is not None: frame_index = frame_index + offset num_frames = len(frames.frame_timestamps) frame_index = frame_index / num_frames_to_keep * num_frames frame_index = frame_index.floor().clip(0, num_frames - 1).to(t.int64) return frame_index def sample_stratified(frames: Frames, num_frames_to_keep: int, rng: t.Generator | None = None) -> t.Tensor: """Samples frame indices in a stratified manned, returns boolean mask.""" offset = t.rand(num_frames_to_keep, generator=rng, device=frames.frame_timestamps.device) return _regular_indices_impl(frames, num_frames_to_keep, offset) def sample_regular(frames: Frames, num_frames_to_keep: int) -> t.Tensor: """Samples evenly spaced frame indices, returns boolean mask.""" return _regular_indices_impl(frames, num_frames_to_keep, None)
# Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: [email protected] (Stefan Popov) # """Library for handling command line flags in a structured way.""" import argparse import dataclasses import enum import re import typing from typing import Any, Sequence, Type, TypeVar T = TypeVar('T') class ArgType(enum.Enum): """The possible argument types""" FLAG = 1 # Flag, prefixed by a "--" POSITIONAL = 2 # Positional argument REMAINDER = 3 # The remaining arguments FLAG = ArgType.FLAG POSITIONAL = ArgType.POSITIONAL REMAINDER = ArgType.REMAINDER def flag(help_message: str, *, default: Any = None, arg_type: ArgType = ArgType.FLAG, short_name: str | None = None): """Marks a dataclass field as a command line flag. Args: help_message: The help message. default: The default value. If `None`, the flag becomes required. Has no effect on multi-value flags (ie fields with list type). arg_type: Whether this is a positional argument short_name: An optional alternative short name for the flag. "-" will be automatically prepended to this name. Returns: A dataclass field, populated with metadata corresponding to the arguments of this function. The flag name will match the field name, with "--" prepended to it. Supported field/flag types: `str`, `int`, `float`, `bool`, `List[str]`, `List[int]`, `List[float]`. """ return dataclasses.field( default=default, metadata={ "help": help_message, "arg_type": arg_type, "short_name": short_name }) def parse_flags(flag_struct_type: Type[T], flags: Sequence[str] | None = None) -> T: """Parses command line flags into a structured dataclass representation. Args: flag_struct_type: The class of the flags dataclass structure. The docstring of this class becomes the program description. Each field must be marked as a flag, using the `flag` function above. flags: The flags passed to the program. Will be taken from `sys.argv` by default. Returns: The parsed flags, filled into a new object of type `arg_type`. """ list_flag_marker = object() list_default_args = {} parser = argparse.ArgumentParser(description=flag_struct_type.__doc__) for field in dataclasses.fields(flag_struct_type): field_meta = field.metadata help_message = field_meta["help"] short_name = field_meta["short_name"] arg_type = field_meta["arg_type"] if arg_type in {ArgType.POSITIONAL, ArgType.REMAINDER}: flag_name = [field.name] else: flag_name = ["--" + field.name] if short_name: flag_name += ["-" + short_name] default_value = field.default is_required = field.default is None flag_type = field.type is_list = typing.get_origin(field.type) == list if is_list: flag_type, = typing.get_args(flag_type) list_default_args[field.name] = default_value or [] default_value = list_flag_marker is_required = False if flag_type in {str, int, float}: if arg_type == ArgType.POSITIONAL: kwargs = dict(nargs=("*" if is_list else None)) elif arg_type == ArgType.REMAINDER: kwargs = dict(nargs="...") else: kwargs = dict(required=is_required, nargs=("*" if is_list else None)) parser.add_argument(*flag_name, type=flag_type, default=default_value, help=help_message, **kwargs) elif field.type == bool: assert not is_list group = parser.add_mutually_exclusive_group(required=is_required) group.add_argument(*flag_name, default=default_value, dest=field.name, action="store_true", help=help_message) neg_flag_name = [re.sub(r"^(--?)", r"\1no", v) for v in flag_name] group.add_argument(*neg_flag_name, default=default_value, dest=field.name, action="store_false", help=help_message) else: raise ValueError( f"Unsupported type '{field.type}' for argument '{field.name}'") result_args = parser.parse_args(args=flags) result_args = { k: (v if v != list_flag_marker else list_default_args[k]) for k, v in vars(result_args).items() } return flag_struct_type(**result_args)
# Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: [email protected] (Stefan Popov) # """Library for loading aligned objects.""" import dataclasses import io import json import numpy as np import torch as t from cad_estate import file_system as fs from cad_estate import frames as frame_lib from cad_estate import input_file_structures as input_struct_lib from cad_estate import misc_util from cad_estate import transformations as transform_lib # We use the following symbols to describe tensors below: # NUM_OBJ : Number of objects # NUM_OBJ_TRI : Total number of triangles in all objects # NUM_FRAMES : Number of loaded frames in a video @dataclasses.dataclass class Objects(misc_util.TensorContainerMixin): """3D objects inside a video clip.""" clip_name: str """The RealEstate-10K clip name. Uniquely identifies the scene. Consists of a YouTube video ID, followed by "_", and then by a start timestamp """ triangles: t.Tensor """The triangles of all objects, `float32[NUM_OBJ_TRI, 3, 3]`. Coordinates are in world space. The second dimension is triangle vertices, the third dimension is 3D coordinates (`X`, `Y`, `Z`). Triangles of each object instance are stored sequentially. """ num_tri: t.Tensor """The number of triangles in each object, `int64[NUM_OBJ]`. The first `num_tri[0]` triangles in `triangles` belong to the first object, the next `num_tri[1]` belong to the second object, and so on. """ object_to_world: t.Tensor """Object->world transformation matrices, `float32[NUM_OBJ, 4, 4]`. Applying the inverse matrix to the triangles of an object will result in the original ShapeNet geometry. """ mesh_ids: np.ndarray """The ShapeNet model IDs for the objects, `str[NUM_OBJ]`.""" symmetries: t.Tensor """The object symmetries, `int64[NUM_OBJ]`. A value of N means that the object is N-way symmetric. That is, rotating it by `pi * 2 / N` degrees, results in the same geometry. This value is 1 for asymmetric objects. """ labels: np.ndarray """The semantic labels of the objects, `int64[NUM_OBJ]`.""" from_automatic_track: t.Tensor """Whether an object was created from an automatic or a manual track, `bool[NUM_OBJ]`.""" @dataclasses.dataclass class ShapeNetMetadata: """Metadata for the ShapeNet dataset.""" shapenet_root_dir: str """Root directory for all ShapeNet shapes.""" label_synset: list[str] """Maps integer labels to ShapeNet Synsets.""" label_human_readable: list[str] """Maps integer labels to human readable class names.""" synset_to_index: dict[str, int] """Maps ShapeNet Synsets to integer labels""" symmetry_dict: dict[str, int] """The symmetry for each ShapeNet shape. Symmetry `K` means that the shape does not change when rotated by `360/K` degrees around the up axis. """ def load_shapenet_metadata(shapenet_root_dir: str) -> ShapeNetMetadata: """Loads saved ShapeNet metadata.""" labels = json.loads( fs.read_text(fs.join(shapenet_root_dir, "shapenet_classes.json"))) label_synset = [v["id"] for v in labels] label_human_readable = [v["human_readable"] for v in labels] synset_to_index = {k: i for i, k in enumerate(label_synset)} symmetry_dict = json.loads( fs.read_text(fs.join(shapenet_root_dir, "symmetry_dict.json"))) return ShapeNetMetadata(shapenet_root_dir=shapenet_root_dir, label_synset=label_synset, label_human_readable=label_human_readable, synset_to_index=synset_to_index, symmetry_dict=symmetry_dict) async def load_objects(obj_json: input_struct_lib.ObjectsFile, shapenet_meta: ShapeNetMetadata): """Loads objects from a JSON.""" clip_name = obj_json["clip_name"] obj_paths, obj_labels, obj_mesh_ids = [], [], [] from_automatic_track = [] for obj in obj_json["objects"]: if "translation" in obj: obj_paths.append( fs.join(shapenet_meta.shapenet_root_dir, obj["class"], obj["cad_id"] + ".npz")) obj_mesh_ids.append(obj["cad_id"]) else: obj_paths.append("") obj_mesh_ids.append("") obj_labels.append(shapenet_meta.synset_to_index[obj["class"]]) from_automatic_track.append(obj["is_track_automatic"]) obj_labels = t.as_tensor(obj_labels, dtype=t.int64) obj_mesh_ids = np.array(obj_mesh_ids, dtype=np.str_) from_automatic_track = t.as_tensor(from_automatic_track, dtype=t.bool) unique_cad_paths = sorted(set([v for v in obj_paths if v])) npz_bytes = await fs.read_all_bytes_async(unique_cad_paths) meshes = [np.load(io.BytesIO(v))["vertices"] for v in npz_bytes] meshes = [t.as_tensor(v, dtype=t.float32) for v in meshes] meshes = {k: v for k, v in zip(unique_cad_paths, meshes)} obj_num_tri, obj_triangles, object_to_world = [], [], [] obj_symmetries = [] for obj_idx, obj in enumerate(obj_json["objects"]): if "translation" in obj: mesh = meshes[obj_paths[obj_idx]] obj_num_tri.append(mesh.shape[0]) o2w = [ transform_lib.translate(obj["translation"]), transform_lib.quaternion_to_rotation_matrix(obj["rotation"]), transform_lib.scale(obj["scale"]), ] if obj["is_mirrored"]: o2w.append(transform_lib.scale([-1, 1, 1])) o2w = transform_lib.chain(o2w) object_to_world.append(o2w) obj_triangles.append(transform_lib.transform_mesh(mesh, o2w)) obj_symmetries.append( shapenet_meta.symmetry_dict[f"{obj['class']}_{obj['cad_id']}"]) else: obj_num_tri.append(0) object_to_world.append(t.eye(4)) obj_symmetries.append(1) obj_num_tri = t.as_tensor(obj_num_tri, dtype=t.int64) if obj_triangles: obj_triangles = t.concat(obj_triangles, 0) object_to_world = t.stack(object_to_world) obj_symmetries = t.as_tensor(obj_symmetries, dtype=t.int64) else: obj_triangles = t.empty([0, 3, 3], dtype=t.float32) object_to_world = t.empty([0, 4, 4], dtype=t.float32) obj_symmetries = t.empty([0], dtype=t.int64) return Objects(clip_name=clip_name, triangles=obj_triangles, num_tri=obj_num_tri, object_to_world=object_to_world, labels=obj_labels, mesh_ids=obj_mesh_ids, symmetries=obj_symmetries, from_automatic_track=from_automatic_track) def load_track_boxes(obj_json: input_struct_lib.ObjectsFile, frames: frame_lib.Frames): """Loads the annotated object tracks, `float32[NUM_OBJ, NUM_FRAMES, 4]`. `result[i, j]` contains the bounding box (`ymin, xmin, ymax, xmax`) of object `i` on frame `j`. Coordinates are relative, in the range `[0, 1]`. If there is no track annotation for an object/frame pair, all box coordinates are set to -1. """ num_obj = len(obj_json["objects"]) num_frames = frames.frame_timestamps.shape[0] track_boxes = t.full((num_obj, num_frames, 4), -1, dtype=t.float32) time_stamp_to_index = { int(v): i for i, v in enumerate(frames.frame_timestamps) } for obj_idx, obj in enumerate(obj_json["objects"]): for track_entry in obj["track"]: frame_idx = time_stamp_to_index.get(track_entry["timestamp"], -1) if frame_idx >= 0: track_boxes[obj_idx, frame_idx] = t.as_tensor(track_entry["box"], dtype=t.float32) return track_boxes
# Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: [email protected] (Stefan Popov) # """File library with support for local and GCS file systems.""" import asyncio import contextlib import fnmatch import glob import logging import os import re import typing as t import aiofiles import aiohttp import aiohttp.client_exceptions import backoff import gcloud.aio.storage as aio_storage import google.api_core.exceptions from google.cloud import storage _gcs_client: storage.Client | None = None _gcs_async_client: aio_storage.Storage | None = None log = logging.getLogger(__name__) T = t.TypeVar("T") NUM_GCS_RETRIES = 3 RECOVERABLE_ERRORS = (aiohttp.ClientResponseError, aiohttp.client_exceptions.ClientError, aiohttp.client_exceptions.ClientResponseError, asyncio.TimeoutError) def _should_giveup(e: Exception): if isinstance(e, aiohttp.ClientResponseError) and e.status == 404: return True return False backoff_decorator = backoff.on_exception( backoff.expo, RECOVERABLE_ERRORS, max_tries=NUM_GCS_RETRIES, jitter=backoff.full_jitter, backoff_log_level=logging.DEBUG, giveup_log_level=logging.DEBUG, giveup=_should_giveup) @contextlib.contextmanager def auto_close_async_session(): try: yield None finally: if _gcs_async_client: asyncio.get_event_loop().run_until_complete(_gcs_async_client.close()) _gcs_async_client = None def is_gs_path(p: str): return p.startswith("gs://") def splitall(path: str): """Splits a path into all of its components.""" result = [] if is_gs_path(path): result.append(path[:5]) path = path[5:] while True: head, tail = os.path.split(path) if head == path: result.append(head) break if tail == path: result.append(tail) break else: path = head result.append(tail) result.reverse() return result def parse_gs_path(p: str): assert p.startswith("gs://") p = p[5:] parts = splitall(p) bucket, path = parts[0], "/".join(parts[1:]) return bucket, path def get_gcs_client(): global _gcs_client if not _gcs_client: _gcs_client = storage.Client() return _gcs_client def get_gcs_async_client(): global _gcs_async_client if not _gcs_async_client: _gcs_async_client = aio_storage.Storage() return _gcs_async_client def repeat_if_error(fn: t.Callable[[], T], num_tries, not_found_ok=False) -> T: for try_index in range(num_tries - 1): try: return fn() except (KeyboardInterrupt, SystemExit): raise except Exception as e: if isinstance(e, google.api_core.exceptions.NotFound) and not_found_ok: return None log.exception(f"Error in file operation, try={try_index}. Retrying ...") return fn() def read_bytes(path: str) -> bytes: if is_gs_path(path): bucket_name, gcs_path = parse_gs_path(path) def _impl(): bucket = get_gcs_client().get_bucket(bucket_name) return bucket.blob(gcs_path).download_as_string() return repeat_if_error(_impl, NUM_GCS_RETRIES) else: with open(path, "rb") as fl: return fl.read() @backoff_decorator async def read_bytes_async(path: str) -> bytes: if is_gs_path(path): bucket_name, gcs_path = parse_gs_path(path) client = get_gcs_async_client() return await client.download(bucket_name, gcs_path) else: async with aiofiles.open(path, "rb") as fl: return await fl.read() async def await_in_parallel(awaitables: t.Collection[t.Awaitable[T]], max_parallelism=50) -> list[T]: """Awaits tasks in parallel, with an upper bound on parallelism.""" results = [None] * len(awaitables) async def await_result(index: int, awaitable: t.Awaitable[T]): results[index] = await awaitable remaining_tasks = [await_result(i, v) for i, v in enumerate(awaitables)] current_tasks = [] while True: if current_tasks: done, pending = await asyncio.wait(current_tasks, timeout=5) else: done, pending = [], [] for v in done: if e := v.exception(): raise e current_tasks = list(pending) new_tasks = remaining_tasks[:max_parallelism] remaining_tasks = remaining_tasks[len(new_tasks):] current_tasks += [asyncio.create_task(v) for v in new_tasks] if not current_tasks: break return results async def read_all_bytes_async( file_paths: t.Sequence[str], max_parallel_read_tasks: int = 50, progress_callback: t.Callable[[], None] | None = None) -> list[bytes]: """Reads binary files in parallel, using the async interface.""" async def read_file(path: str): result = await read_bytes_async(path) if progress_callback: progress_callback() return result tasks = [read_file(v) for v in file_paths] return await await_in_parallel(tasks, max_parallel_read_tasks) def read_text(path: str) -> str: return read_bytes(path).decode() async def read_text_async(path: str) -> str: return (await read_bytes_async(path)).decode() def write_bytes(path: str, contents: bytes): if is_gs_path(path): bucket_name, gcs_path = parse_gs_path(path) def _impl(): bucket = get_gcs_client().get_bucket(bucket_name) bucket.blob(gcs_path).upload_from_string(contents) repeat_if_error(_impl, NUM_GCS_RETRIES) else: with open(path, "wb") as fl: fl.write(contents) @backoff_decorator async def write_bytes_async(path: str, contents: bytes): if is_gs_path(path): bucket_name, gcs_path = parse_gs_path(path) client = get_gcs_async_client() await client.upload(bucket_name, gcs_path, contents) else: async with aiofiles.open(path, "wb") as fl: await fl.write(contents) async def write_all_bytes_async( # paths_and_bytes: t.Iterable[t.Tuple[str, bytes]]): await asyncio.gather(*[write_bytes_async(p, b) for p, b in paths_and_bytes]) def write_all_bytes(paths_and_bytes: t.Iterable[t.Tuple[str, bytes]]): for k, v in paths_and_bytes: write_bytes(k, v) def write_text(path: str, text: str): write_bytes(path, text.encode()) async def write_text_async(path: str, text: str): await write_bytes_async(path, text.encode()) def glob_pattern(pattern: str) -> t.Iterable[str]: if is_gs_path(pattern): bucket_name, gcs_path = parse_gs_path(pattern) parts = splitall(gcs_path) prefix = "" for part in parts: if re.match(r".*[?*\[].*", part): break prefix = os.path.join(prefix, part) def _impl(): blobs = get_gcs_client().list_blobs(bucket_name, prefix=prefix) result = [ f"gs://{bucket_name}/{v.name}" for v in blobs if fnmatch.fnmatch(v.name, gcs_path) ] return result return repeat_if_error(_impl, NUM_GCS_RETRIES) else: return glob.glob(pattern) def unlink_file(path: str): if is_gs_path(path): bucket_name, gcs_path = parse_gs_path(path) return repeat_if_error( lambda: get_gcs_client().bucket(bucket_name).blob(gcs_path).delete(), NUM_GCS_RETRIES, not_found_ok=True) else: os.unlink(path) def rename_file(old_path: str, new_path: str): if is_gs_path(old_path) != is_gs_path(new_path): log.error("Invalid rename (different file systems): " f"'{old_path}'->'{new_path}'") raise ValueError("Both files must be on the same file system") if is_gs_path(old_path): bucket_name, old_gcs_path = parse_gs_path(old_path) _, new_gcs_path = parse_gs_path(new_path) def _impl(): bucket = get_gcs_client().bucket(bucket_name) bucket.rename_blob(bucket.blob(old_gcs_path), new_gcs_path) return repeat_if_error(_impl, NUM_GCS_RETRIES) else: os.rename(old_path, new_path) def make_dirs(path: str): if is_gs_path(path): return os.makedirs(path, exist_ok=True) def join(*args): if len(args) == 1: return args[0] for i, v in enumerate(args[1:]): if is_gs_path(v): return join(*args[i + 1:]) return os.path.join(*args) def normpath(p: str): if is_gs_path(p): return f"gs://{os.path.normpath(p[5:])}" return os.path.normpath(p) def isabs(p: str): if is_gs_path(p): return True return os.path.isabs(p) def dirname(p: str): return os.path.dirname(p) def abspath(p: str): if is_gs_path(p): return p return os.path.abspath(os.path.expanduser(p)) def basename(p: str): return os.path.basename(p) def relpath(p: str, prefix: str) -> str: if is_gs_path(p) != is_gs_path(prefix): raise ValueError("Both paths have to be on the same storage system " "(either GCS or local)") if is_gs_path(p): p = p[5:] prefix = prefix[5:] return os.path.relpath(p, prefix) def splitext(p: str): return os.path.splitext(p) @backoff_decorator def exists(path: str): if is_gs_path(path): bucket_name, gcs_path = parse_gs_path(path) bucket = get_gcs_client().bucket(bucket_name) return bucket.blob(gcs_path).exists() else: return os.path.exists(path)
# Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: [email protected] (Stefan Popov) # """Converts ShapeNet CAD models to binary format.""" import dataclasses import logging import io import numpy as np import ray import tqdm from cad_estate import structured_arg_parser as arg_lib from cad_estate import file_system as fs log = logging.getLogger(__name__) @dataclasses.dataclass(frozen=True) class Args: """Converts ShapeNet CAD models to binary format.""" shapenet_root: str = arg_lib.flag("Path to ShapeNet's root directory.") output_root: str = arg_lib.flag("Path to the output root directory.") def read_obj(opj_path: str): """A simple OBJ file reader.""" vertices = [] faces = [] for line in fs.read_text(opj_path).split("\n"): parts = line.strip().split() if not parts: continue if parts[0] == 'v': vertices.append([float(v) for v in parts[1:4]]) if parts[0] == 'f': faces.append([int(p.split('/')[0]) - 1 for p in parts[1:4]]) vertices = np.array(vertices, np.float32) faces = np.array(faces, np.int32) return vertices[faces] def cleanup_mesh(mesh: np.ndarray): """Removes degenerate triangles from a mesh.""" s1 = mesh[:, 2] - mesh[:, 0] s2 = mesh[:, 1] - mesh[:, 0] l1 = np.linalg.norm(s1, axis=-1) l2 = np.linalg.norm(s2, axis=-1) eps = 1e-27 is_degenerate = (l1 < eps) | (l2 < eps) l1 = np.maximum(l1, eps) l2 = np.maximum(l1, eps) s1 /= l1[..., None] s2 /= l2[..., None] g = np.cross(s1, s2, axis=-1) lg = np.linalg.norm(g, axis=-1) is_degenerate |= lg < 1e-10 keep_indices, = np.where(~is_degenerate) mesh = mesh[keep_indices] return mesh def process_mesh(input_path: str, output_root: str): log.info(f"Processing {input_path}...") fn_parts = fs.splitall(input_path) label = fn_parts[-4] mesh_id = fn_parts[-3] mesh = read_obj(input_path) mesh = cleanup_mesh(mesh) npz_path = fs.join(output_root, label, mesh_id + ".npz") np.savez_compressed(fl := io.BytesIO(), vertices=mesh, label=label, mesh_id=mesh_id) fs.make_dirs(fs.dirname(npz_path)) fs.write_bytes(npz_path, fl.getvalue()) def main(): args = arg_lib.parse_flags(Args) sn_root_dir = fs.normpath(fs.abspath(args.shapenet_root)) print("Reading mesh file names ...") obj_files = sorted( fs.glob_pattern(fs.join(sn_root_dir, "*/*/models/model_normalized.obj"))) out_dir = fs.normpath(fs.abspath(args.output_root)) print(f"Converting {len(obj_files)} meshes from {sn_root_dir} to {out_dir}") ray.init() process_fn = ray.remote(process_mesh) tasks = [process_fn.remote(v, out_dir) for v in obj_files] progress_bar = tqdm.tqdm(total=len(tasks)) while tasks: done, tasks = ray.wait(tasks, num_returns=len(tasks), timeout=0.3) progress_bar.update(len(done)) if __name__ == '__main__': main()
# Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: [email protected] (Stefan Popov) # """Downloads CAD-estate videos and extracts their frames.""" import asyncio import collections import contextlib import dataclasses import datetime import functools import json import logging import pathlib import re import shutil import subprocess import tempfile from concurrent import futures from typing import Iterable import appdirs import numpy as np import pandas import tqdm import yt_dlp from cad_estate import structured_arg_parser as arg_lib log = logging.getLogger(__name__) log_ytdlp = logging.getLogger(yt_dlp.__name__) FFMPEG_PATH = "/usr/bin/ffmpeg" def download_video(video_id: str, out_path: pathlib.Path | None = None): video_url = f"https://www.youtube.com/watch?v={video_id}" if not out_path: out_path = ( pathlib.Path(appdirs.user_cache_dir("cad_estate")) / "videos" / f"{video_id}.mp4") out_path.parent.mkdir(parents=True, exist_ok=True) if not out_path.exists(): log.info(f"Downloading video to '{out_path}'") ytdl = yt_dlp.YoutubeDL( params=dict(format="bv", logger=log_ytdlp, paths=dict( home=str(out_path.parent)), outtmpl=dict(default=out_path.name))) ytdl.download(video_url) else: log.info(f"Using previously downloaded video in '{out_path}'") return out_path def extract_frames(video_path: pathlib.Path, out_dir: pathlib.Path, frame_timestamps: Iterable[int], tmp_dir: pathlib.Path | None = None, ffmpeg_path=FFMPEG_PATH): frame_discrepancy_path = out_dir / "frame_discrepancy.json" if frame_discrepancy_path.exists(): return json.loads(frame_discrepancy_path.read_text()) if not tmp_dir: tmp_dir_ctx = tempfile.TemporaryDirectory() tmp_dir = pathlib.Path(tmp_dir_ctx.name) else: tmp_dir_ctx = contextlib.nullcontext() with tmp_dir_ctx: # Extract the video frames assert tmp_dir.exists() if any(tmp_dir.iterdir()): raise ValueError("Unpack directory must be empty!") args = [ ffmpeg_path, "-hide_banner", "-loglevel", "error", "-y", "-vsync", "vfr", "-i", video_path, "-frame_pts", "1", "-r", "1000000", "-f", "image2", "-qscale:v", "2", f"{tmp_dir}/out%d.jpg" ] log.info(f"Extracting frames of '{video_path}', using:\n", " ".join(args)) ff_proc = subprocess.run(args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True) if ff_proc.returncode != 0: raise ValueError(f"ffmpeg failed to extract frames:\n{ff_proc.stdout}") # Match disk timestamps to annotation timestamps tmp_dir.parent.mkdir(parents=True, exist_ok=True) jpg_files = tmp_dir.glob("out*.jpg") disk_timestamps = sorted( [int(v.stem.removeprefix("out")) for v in jpg_files]) disk_timestamps = np.array(disk_timestamps, np.int64) frame_timestamps = np.array(frame_timestamps, np.int64) idx = np.searchsorted(disk_timestamps, frame_timestamps, side="right") idx1 = np.clip(idx - 1, 0, len(disk_timestamps) - 1) idx2 = np.clip(idx, 0, len(disk_timestamps) - 1) dist1 = np.abs(disk_timestamps[idx1] - frame_timestamps) dist2 = np.abs(disk_timestamps[idx2] - frame_timestamps) found = disk_timestamps[np.where(dist1 < dist2, idx1, idx2)] frame_discrepancy = np.abs(found - frame_timestamps) frame_discrepancy_stats = { "min": float(frame_discrepancy.min()), "max": float(frame_discrepancy.max()), "mean": float(frame_discrepancy.mean()), "std": float(frame_discrepancy.std()) } src_paths = [tmp_dir / f"out{v}.jpg" for v in found] dst_paths = [ out_dir / f"{video_path.stem}_{v}.jpg" for v in frame_timestamps ] for src_path, dst_path in zip(src_paths, dst_paths, strict=True): shutil.copy(src_path, dst_path) frame_discrepancy_path.write_text(json.dumps(frame_discrepancy_stats)) return frame_discrepancy_stats def get_video_timestamps(json_path: pathlib.Path): ann_json = json.loads(json_path.read_text()) clip_name = ann_json["clip_name"] video_id = re.match(r"^(.+)_\d+$", clip_name).group(1) timestamps = [v["timestamp"] for v in ann_json["frames"]] return video_id, timestamps @dataclasses.dataclass class Args: cad_estate_dir: str = arg_lib.flag("Root directory of CAD estate.") skip_download: bool = arg_lib.flag("Skip the video download step.", default=False) skip_extract: bool = arg_lib.flag("Skip the frame extraction step.", default=False) parallel_extract_tasks: int = arg_lib.flag( "How many frame extraction tasks to run in parallel", default=1) debug_run: bool = arg_lib.flag("Run in debug mode (process less videos).", default=False) class CadEstateDirs: def __init__(self, root_dir: str | pathlib.Path): self.root = pathlib.Path(root_dir) self.annotations = self.root / "annotations" self.raw_videos = self.root / "raw_videos" self.frames = self.root / "frames" def download_video_and_catch_errors(video_id: str, args: Args): try: dirs = CadEstateDirs(args.cad_estate_dir) video_path = dirs.raw_videos / f"{video_id}.mp4" download_video(video_id, video_path) return (video_id, True, "Download successful.") except Exception as e: return video_id, False, "; ".join(e.args) def extract_frames_and_catch_errors(video_id: str, timestamps: list[int], args: Args): try: dirs = CadEstateDirs(args.cad_estate_dir) video_path = dirs.raw_videos / f"{video_id}.mp4" out_dir = dirs.frames / video_path.stem out_dir.mkdir(exist_ok=True, parents=True) frame_stats = extract_frames(video_path, out_dir, timestamps) return (video_id, True, frame_stats["max"], "Timestamp discrepancy (µs): " + " ".join(f"{k}={float(v):.0f}" for k, v in frame_stats.items())) except Exception as e: return video_id, False, -1, "; ".join(e.args) async def extract_frames_in_parallel(frames_of_interest: dict[str, list[int]], args: Args): extract_results = [] with futures.ThreadPoolExecutor( max_workers=args.parallel_extract_tasks) as pool: loop = asyncio.get_running_loop() tasks = [ loop.run_in_executor( pool, functools.partial(extract_frames_and_catch_errors, video_id, time_stamps, args)) for video_id, time_stamps in frames_of_interest.items() ] iter_with_progress = tqdm.tqdm( asyncio.as_completed(tasks), "Extracting frames", total=len(frames_of_interest)) for f in iter_with_progress: extract_results.append(await f) return extract_results def main(): args = arg_lib.parse_flags(Args) dirs = CadEstateDirs(args.cad_estate_dir) now = datetime.datetime.now() log_path = dirs.root / f"log_{now:%y_%m_%d__%H_%M}.txt" logging.basicConfig(filename=str(log_path), level=logging.INFO) annotation_paths = sorted(dirs.annotations.glob("*/frames.json")) if args.debug_run: annotation_paths = annotation_paths[:50] video_timestamps = [ get_video_timestamps(v) for v in tqdm.tqdm(annotation_paths, "Loading frame timestamps") ] frames_of_interest = collections.defaultdict(lambda: set()) for video_id, timestamps in video_timestamps: frames_of_interest[video_id] |= set(timestamps) frames_of_interest = {k: sorted(v) for k, v in frames_of_interest.items()} if not args.skip_download: download_results = [ download_video_and_catch_errors(video_id, args) for video_id in tqdm.tqdm(frames_of_interest, "Downloading videos") ] df = pandas.DataFrame(download_results, columns=["video_id", "is_successful", "log"]) csv_path = dirs.root / f"download_results_{now:%y_%m_%d__%H_%M}.csv" csv_path.write_text(df.set_index("video_id").to_csv()) print(f"Downloaded {df.shape[0]} videos, " f"with {(~df.is_successful).sum()} errors.") if not args.skip_extract: extract_results = asyncio.run( extract_frames_in_parallel(frames_of_interest, args)) df = pandas.DataFrame( extract_results, columns=["video_id", "is_successful", "max_frame_discrepancy", "log"]) df.sort_values("video_id", inplace=True) csv_path = dirs.root / f"process_results_{now:%y_%m_%d__%H_%M}.csv" csv_path.write_text(df.set_index("video_id").to_csv()) downloaded_videos: set[str] = set(df[df.is_successful].video_id.tolist()) scene_list = sorted([ v.parent.name for v in annotation_paths if re.match(r"^(.+)_\d+$", v.parent.name).group(1) in downloaded_videos ]) scene_list_path = dirs.root / f"scene_list_{now:%y_%m_%d__%H_%M}.txt" scene_list_path.write_text("\n".join(scene_list)) print(f"Extracted frames for {df.shape[0]} videos, " f"with {(~df.is_successful).sum()} errors.") if __name__ == "__main__": main()
# Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: [email protected] (Stefan Popov) # """High level routines for rendering scenes.""" import io from importlib import resources from typing import Iterable import numpy as np import PIL.Image import torch as t from cad_estate import misc_util from cad_estate.gl import rasterizer from cad_estate.gl import shaders InputTensor = t.Tensor | np.ndarray | int | float | Iterable | None def load_textures( encoded_images: Iterable[bytes], texture_size: tuple[int, int], ) -> tuple[t.Tensor, t.Tensor]: """Composes a texture array from encoded images contained in strings. Args: encoded_images: The encoded images, string[num_images]. Each entry must either be a valid image (e.g. PNG or JPEG) or an empty string. texture_size: Tuple (height, width) giving the desired dimensions of the output texture array. Returns: texture_array: uint8[num_non_empty_images, height, width, 3] tensor containing the decoded images from the non-empty entries in encoded_images. All images are scaled to the desired height and width and flipped along the Y axis. image_indices: int32[num_images] tensor that defines the mapping between encoded_images and texture_array. The j-th entry in encoded_images will be decoded to texture_array[image_indices[j]]. If encoded_images[j] is empty then image_indices[j] = -1. """ # The empty string maps to -1 image_to_index = {b"": -1} image_indices = [] height, width = texture_size texture_array = [] for encoded_image in encoded_images: if encoded_image not in image_to_index: image_to_index[encoded_image] = len(image_to_index) - 1 pil_image = (PIL.Image.open(io.BytesIO(encoded_image)) ) # type: PIL.Image.Image image = np.array( pil_image.convert("RGB").resize((width, height), resample=PIL.Image.BICUBIC)) assert (len(image.shape) == 3 and image.shape[-1] == 3 and image.dtype == np.uint8) texture_array.append(image) image_indices.append(image_to_index[encoded_image]) image_indices = misc_util.to_tensor(image_indices, t.int32, "cpu") if texture_array: texture_array = misc_util.to_tensor(texture_array, t.uint8, "cpu") else: texture_array = t.zeros([1, 1, 1, 3], dtype=t.uint8) texture_array = texture_array.flip(1).contiguous() return texture_array, image_indices def render_scene( vertex_positions: InputTensor, view_projection_matrix: InputTensor, image_size: tuple[int, int] = (256, 256), *, normals: InputTensor = None, vertex_colors: InputTensor = None, tex_coords: InputTensor = None, material_ids: InputTensor = None, diffuse_coefficients: InputTensor = None, diffuse_textures: InputTensor = None, diffuse_texture_indices: InputTensor = None, specular_coefficient: InputTensor = None, ambient_coefficients: InputTensor = None, cull_back_facing=True, light_position: InputTensor = None, light_color: InputTensor = (1.0, 1.0, 1.0), ambient_light_color: InputTensor = (0.2, 0.2, 0.2), clear_color: InputTensor = (0, 0, 0, 1), output_type=t.uint8, vertex_shader=None, geometry_shader=None, fragment_shader=None, debug_io_buffer=None, return_rgb=True, device=None, ): """Renders the given scene. Args: vertex_positions: The triangle geometry, specified through the triangle vertex positions, float32[num_triangles, 3, 3] view_projection_matrix: The view projection matrix, float32[4, 4] image_size: Desired output image size, (height, width), normals: Per-vertex shading normals, float32[num_triangles, 3, 3]. If set to None, normals will be computed from the vertex positions. vertex_colors: Optional per-vertex colors, float32[num_triangles, 3, 3]. tex_coords: Texture coordinate, float32[num_triangles, 3, 2]. If set to None, all texture coordinates will be 0. material_ids: Per-triangle material indices used to index in the various coefficient tensors below, int32[num_triangles]. If set to None, all triangles will have the same default material. diffuse_coefficients: The diffuse coefficients, one per material, float32[num_materials, 3]. Cannot be None if material_ids is not None. Must be None if material_ids is None. diffuse_textures: uint8[num_textures, height, width, 3]. Can be None if there are no textures used in the mesh. diffuse_texture_indices: Diffuse texture indices, one per material, int32[num_materials]. If set to None, the texture indices for all materials will be -1. specular_coefficient: Specular coefficients, one per material, float32[num_materials, 4]. The first 3 channels are the R, G, and B specular coefficients, the last channel is the specular power. If set to None, R, G, and B will be 0 for all materials and power will be 2048. ambient_coefficients: float32[num_materials, 3]. The ambient coefficients. If None, all ambient coefficient will be 0.05. cull_back_facing: whether to cull backfacing triangles. light_position: float32[3], the light position. If set to None, the light will be placed at the camera origin. light_color: The light diffuse RGB color, float32[3] ambient_light_color: The light ambient RGB color, float32[3] clear_color: The RGB color to use when clearing the image, float32[3] output_type: The desired output type. Either tf.uint8 or tf.float32. vertex_shader: The vertex shader to use. If empty, uses a default shader. geometry_shader: The geometry shader. If empty, uses a default shader. fragment_shader: The fragment shader. If empty, uses a default shader. debug_io_buffer: Aids debugging of shaders. Shaders can communicate with host programs through OpenGL input/output buffers. Any tensor passed in this argument will be forwarded to the shaders as buffer with name "debug_io". return_rgb: If true, returns a 3 channel image, otherwise returns a 4 channel image. device: The index of the GPU to use, given as CUDA device Returns: The rendered image, dt[height, width, c] where dt is either float32 or uint8 depending on the value of output_type and c is either 3 or 4, depending on return_rgb. If the debug_io_buffer argument was not None, returns a tuple containing the rendered image, and the shader output from the "debug_io" buffer. The second element of the tuple has the same shape and type as debug_io_buffer. """ if device is None: device = t.cuda.current_device() height, width = image_size vertex_positions = misc_util.to_tensor(vertex_positions, t.float32, device) assert (len(vertex_positions.shape) == 3 and vertex_positions.shape[1:] == (3, 3)) num_triangles = vertex_positions.shape[0] view_projection_matrix = misc_util.to_tensor(view_projection_matrix, t.float32, device) assert view_projection_matrix.shape == (4, 4) has_normals = True if normals is None: # normals = t.zeros_like(vertex_positions) normals = t.zeros([1, 3, 3], device=device) has_normals = False else: assert normals.shape == (num_triangles, 3, 3) if vertex_colors is None: vertex_colors = t.zeros((1, 3, 3), dtype=t.float32, device=device) has_vertex_colors = False else: has_vertex_colors = True assert vertex_colors.shape == (num_triangles, 3, 3) if tex_coords is None: tex_coords = t.zeros([1, 3, 2], dtype=t.float32) else: tex_coords = misc_util.to_tensor(tex_coords, t.float32, device) assert tex_coords.shape == (num_triangles, 3, 2) if material_ids is None: material_ids = t.zeros([num_triangles], dtype=t.int32) material_ids = misc_util.to_tensor(material_ids, t.int32, device) assert material_ids.shape == (num_triangles,) num_used_materials = material_ids.max().cpu().numpy() + 1 # type: int def create_coefficient_array(cur_tensor: InputTensor, num_channels, default_value): arr = cur_tensor if arr is None: arr = ( t.ones([num_used_materials, num_channels], dtype=t.float32) * t.tensor(default_value)) arr = misc_util.to_tensor(arr, t.float32, device) assert len(arr.shape) == 2 arr = arr[:num_used_materials] assert arr.shape == (num_used_materials, num_channels) return arr diffuse_coefficients = create_coefficient_array(diffuse_coefficients, 3, 0.8) ambient_coefficients = create_coefficient_array(ambient_coefficients, 3, 0.05) specular_coefficient = create_coefficient_array(specular_coefficient, 4, (0, 0, 0, 2048.0)) if diffuse_texture_indices is None: diffuse_texture_indices = t.ones([num_used_materials], dtype=t.int32) * -1 diffuse_texture_indices = misc_util.to_tensor(diffuse_texture_indices, t.int32, device) assert len(diffuse_texture_indices.shape) == 1 diffuse_texture_indices = diffuse_texture_indices[:num_used_materials] assert diffuse_texture_indices.shape == (num_used_materials,) num_used_textures = diffuse_texture_indices.max().cpu().numpy() + 1 num_used_textures = max(num_used_textures, 1) if diffuse_textures is None: diffuse_textures = t.ones([num_used_textures, 1, 1, 3], dtype=t.uint8) diffuse_textures = misc_util.to_tensor(diffuse_textures, t.uint8, device) assert len(diffuse_textures.shape) == 4 diffuse_textures = diffuse_textures[:num_used_textures] assert (diffuse_textures.shape[0] == num_used_textures and diffuse_textures.shape[3] == 3) # The projection center transforms to (0, 0, -a, 0) in NDC space, assuming # default GL conventions for the projection matrix (i.e. its last column in # (0, 0, -a, 0). To recover its position in world space, we multiply by # the inverse view-projection matrix. Tha value of `a` doesn't matter, we # use 1. camera_position = t.mv( t.inverse(view_projection_matrix), t.tensor([0, 0, -1, 0], dtype=t.float32, device=device)) camera_position = camera_position[:3] / camera_position[3] if light_position is None: light_position = camera_position light_position = misc_util.to_tensor(light_position, t.float32, device) assert light_position.shape == (3,) light_color = misc_util.to_tensor(light_color, t.float32, device) assert light_color.shape == (3,) ambient_light_color = misc_util.to_tensor(ambient_light_color, t.float32, device) assert ambient_light_color.shape == (3,) ambient_coefficients = t.constant_pad_nd(ambient_coefficients, [0, 1]) diffuse_coefficients = t.cat([ diffuse_coefficients, diffuse_texture_indices.to(t.float32)[:, np.newaxis] ], -1) materials = t.cat( [ambient_coefficients, diffuse_coefficients, specular_coefficient], dim=-1) render_args = [ rasterizer.Uniform("view_projection_matrix", view_projection_matrix), rasterizer.Uniform("light_position", light_position), rasterizer.Uniform("has_normals", has_normals), rasterizer.Uniform("has_vertex_colors", has_vertex_colors), rasterizer.Uniform("has_texcoords", True), rasterizer.Buffer(0, vertex_positions.reshape([-1])), rasterizer.Buffer(1, normals.reshape([-1])), rasterizer.Buffer(2, vertex_colors.reshape([-1])), rasterizer.Buffer(3, tex_coords.reshape([-1])), rasterizer.Buffer(4, material_ids.reshape([-1])), rasterizer.Buffer(5, materials.reshape([-1])), rasterizer.Texture("textures", diffuse_textures, bind_as_array=True), rasterizer.Uniform("light_color", light_color), rasterizer.Uniform("camera_position", camera_position), rasterizer.Uniform("ambient_light_color", ambient_light_color), rasterizer.Uniform("cull_backfacing", cull_back_facing), ] if debug_io_buffer is not None: render_args.append(rasterizer.Buffer(5, debug_io_buffer, is_io=True)) if not geometry_shader: geometry_shader = resources.read_text(shaders, "triangle_renderer.geom") if not vertex_shader: vertex_shader = resources.read_text(shaders, "noop.vert") if not fragment_shader: fragment_shader = resources.read_text(shaders, "point_light_illumination.frag") result = rasterizer.gl_simple_render( rasterizer.RenderInput( num_points=num_triangles, arguments=render_args, output_resolution=(height, width), clear_color=clear_color, output_type=output_type, vertex_shader=vertex_shader, geometry_shader=geometry_shader, fragment_shader=fragment_shader, ), cuda_device=device) c = 3 if return_rgb else 4 if debug_io_buffer is None: return result[..., :c] else: return result[..., :c], render_args[-1].value
# Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: [email protected] (Stefan Popov) # """An OpenGL rasterizer for PyTorch.""" import dataclasses import importlib import logging from typing import Iterable import glcontext import moderngl import numpy as np import torch as t from cad_estate.gl import egl_context importlib.reload(glcontext) egl_context.monkey_patch_moderngl() InputTensor = t.Tensor | np.ndarray | int | float | bool | Iterable log = logging.getLogger(__name__) @dataclasses.dataclass(frozen=True) class Uniform: name: str value: InputTensor @dataclasses.dataclass() class Buffer: binding: int value: InputTensor is_io: bool = False @dataclasses.dataclass(frozen=True) class Texture: name: str value: InputTensor bind_as_array: bool = False @dataclasses.dataclass(frozen=True) class RenderInput: # The number of points to render. The geometry shader can then convert these # into other geometry. num_points: int # The parameters to pass to the shaders. arguments: Iterable[Uniform | Buffer | Texture] # The vertex shader vertex_shader: str # The geometry shader geometry_shader: str # The fragment shader fragment_shader: str # The output resolution, tuple (height, width) output_resolution: tuple[int, int] = (256, 256) # The clear color, tuple (R, G, B) or (R, G, B, A). clear_color: Iterable[float] = (0, 0, 0) # The output type (either uint8 or float32). output_type: t.dtype = t.uint8 # Whether depth testing is enabled. depth_test_enabled: bool = True class _EglRenderer: _context_cache: dict[int, "_EglRenderer"] = {} def __init__(self, gl_context: moderngl.Context, cuda_device: int): self._program_cache: dict[str, moderngl.Program] = {} self._gl_context = gl_context self.cuda_device = cuda_device @classmethod def get_instance(cls, cuda_device: int): if cuda_device not in cls._context_cache: # Cuda has to be initialized for the cuda_egl backend to work t.cuda.init() ctx = moderngl.create_standalone_context(backend="cuda_egl", cuda_device=cuda_device) cls._context_cache[cuda_device] = _EglRenderer(ctx, cuda_device) return cls._context_cache[cuda_device] def _check_gl_error(self): err = self._gl_context.error if err != "GL_NO_ERROR": raise ValueError(f"OpenGL error encountered: {err}") def _upload_uniform(self, program: moderngl.Program, parameter: Uniform): if parameter.name not in program: log.info(f"Uniform {parameter.name} not found in program") else: value = t.as_tensor(parameter.value).cpu() if len(value.shape) == 2: value = tuple(value.transpose(0, 1).reshape([-1])) elif len(value.shape) == 1: value = tuple(value) elif value.shape == (): value = value.item() else: raise ValueError("Only supports 0, 1, and 2 dim tensors.") program[parameter.name].value = value def _upload_buffer(self, parameter: Buffer) -> moderngl.Buffer: value = t.as_tensor(parameter.value) value = value.reshape([-1]).cpu().numpy() buffer = self._gl_context.buffer(value) buffer.bind_to_storage_buffer(parameter.binding) return buffer def _download_buffer(self, parameter: Buffer, buffer: moderngl.Buffer): value = parameter.value np_dtype = {t.float32: np.float32, t.int32: np.int32}[value.dtype] temp_buffer = np.zeros(value.shape, np_dtype) assert isinstance(buffer, moderngl.Buffer) buffer.read_into(temp_buffer) parameter.value = t.as_tensor(temp_buffer) def render(self, render_input: RenderInput): inp = render_input with self._gl_context: program_key = ( f"{inp.vertex_shader}|{inp.geometry_shader}|{inp.fragment_shader}") if program_key not in self._program_cache: self._program_cache[program_key] = self._gl_context.program( vertex_shader=inp.vertex_shader, fragment_shader=inp.fragment_shader, geometry_shader=inp.geometry_shader) program = self._program_cache[program_key] objects_to_delete = [] buffer_bindings: dict[int, moderngl.Buffer] = {} texture_location = 0 try: for parameter in inp.arguments: if isinstance(parameter, Uniform): self._upload_uniform(program, parameter) elif isinstance(parameter, Buffer): buffer = self._upload_buffer(parameter) buffer_bindings[parameter.binding] = buffer objects_to_delete.append(buffer) elif isinstance(parameter, Texture): if not parameter.bind_as_array: raise NotImplementedError() if parameter.name not in program: log.info(f"Uniform {parameter.name} not found in program") else: val = parameter.value.cpu().numpy() texture = self._gl_context.texture_array( val.shape[1:3] + val.shape[0:1], val.shape[3], val) texture.repeat_x = True texture.repeat_y = True texture.use(location=texture_location) program.get(parameter.name, None).value = texture_location texture_location += 1 objects_to_delete.append(texture) else: raise ValueError("Unknown parameter type") self._check_gl_error() h, w = inp.output_resolution gl_dtype, np_dtype = { t.uint8: ("f1", np.uint8), t.float32: ("f4", np.float32) }[inp.output_type] render_buffer = self._gl_context.renderbuffer((w, h), components=4, samples=0, dtype=gl_dtype) objects_to_delete.append(render_buffer) depth_buffer = self._gl_context.depth_renderbuffer((w, h), samples=0) objects_to_delete.append(depth_buffer) framebuffer = self._gl_context.framebuffer(render_buffer, depth_buffer) objects_to_delete.append(framebuffer) framebuffer.use() vertex_array = self._gl_context.vertex_array(program, ()) objects_to_delete.append(vertex_array) self._gl_context.clear(*inp.clear_color) self._gl_context.disable(moderngl.CULL_FACE) if inp.depth_test_enabled: self._gl_context.enable(moderngl.DEPTH_TEST) self._gl_context.depth_func = "<=" else: self._gl_context.disable(moderngl.DEPTH_TEST) vertex_array.render(mode=moderngl.POINTS, vertices=inp.num_points) self._check_gl_error() result = np.zeros([h, w, 4], dtype=np_dtype) framebuffer.read_into(result, components=4, dtype=gl_dtype) self._check_gl_error() for parameter in inp.arguments: if isinstance(parameter, Buffer) and parameter.is_io: self._download_buffer(parameter, buffer_bindings[parameter.binding]) return t.as_tensor(result) finally: for v in objects_to_delete: v.release() def get_egl_device(cuda_device: int) -> int: """Returns the EGL device corresponding to a CUDA device (-1 if none).""" pass def gl_simple_render(render_input: RenderInput, cuda_device: int | None = None): """Renders the supplied configuration with OpenGL. Args: render_input: The render input cuda_device: The GPU to use, given as a CUDA device number Returns: The rendered image, output_type[height, width, 4] Buffer parameters with is_io set to True will be read back. This can either happen in the original buffer or in a new buffer. The implementation will update the value field in the buffer parameter in the latter case. There is no guarantee about the device of both the rendered image and the buffers that are read back. """ if cuda_device is None: cuda_device = t.cuda.current_device() instance = _EglRenderer.get_instance(cuda_device) return instance.render(render_input)
# Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: [email protected] (Stefan Popov) # """Routines for working with OpenGL EGL contexts.""" import ctypes import logging import os import glcontext log = logging.getLogger(__name__) # Keeps the OpenGL context active for the specified CUDA device (if >= 0). keep_context_active_for_cuda_device = -1 class EGL: EGLAttrib = ctypes.c_ssize_t EGLBoolean = ctypes.c_bool EGLConfig = ctypes.c_void_p EGLContext = ctypes.c_void_p EGLDeviceEXT = ctypes.c_void_p EGLDisplay = ctypes.c_void_p EGLSurface = ctypes.c_void_p EGLenum = ctypes.c_uint EGLint = ctypes.c_int32 EGL_BLUE_SIZE = 0x3022 EGL_CUDA_DEVICE_NV = 0x323A EGL_DEPTH_SIZE = 0x3025 EGL_DRM_DEVICE_FILE_EXT = 0x3233 EGL_EXTENSIONS = 0x3055 EGL_GREEN_SIZE = 0x3023 EGL_NONE = 0x3038 EGL_NO_CONTEXT = 0 EGL_NO_SURFACE = 0 EGL_OPENGL_API = 0x30A2 EGL_OPENGL_BIT = 0x0008 EGL_PBUFFER_BIT = 0x0001 EGL_PLATFORM_DEVICE_EXT = 0x313F EGL_RED_SIZE = 0x3024 EGL_RENDERABLE_TYPE = 0x3040 EGL_SUCCESS = 0x3000 EGL_SURFACE_TYPE = 0x3033 EGL_VENDOR = 0x3053 def __init__(self): egl_lib_path = os.getenv("LIB_EGL_PATH", "libEGL.so.1") log.debug(f"Initializing EGL using library {egl_lib_path}") self.egl_lib = ctypes.cdll.LoadLibrary(egl_lib_path) self.eglGetProcAddress = self.egl_lib.eglGetProcAddress self.eglGetProcAddress.argtypes = [ctypes.c_char_p] self.eglGetProcAddress.restype = ctypes.c_void_p self.eglGetError = ctypes.CFUNCTYPE(EGL.EGLint)( self.load_function(b"eglGetError")) self.eglQueryDevicesEXT = ctypes.CFUNCTYPE( EGL.EGLBoolean, EGL.EGLint, ctypes.POINTER(EGL.EGLDeviceEXT), ctypes.POINTER(EGL.EGLint))( self.load_function(b"eglQueryDevicesEXT")) self.eglQueryDeviceAttribEXT = ctypes.CFUNCTYPE( EGL.EGLBoolean, EGL.EGLDeviceEXT, EGL.EGLint, ctypes.POINTER(EGL.EGLAttrib))( self.load_function(b"eglQueryDeviceAttribEXT")) self.eglQueryDeviceStringEXT = ctypes.CFUNCTYPE( ctypes.c_char_p, EGL.EGLDeviceEXT, EGL.EGLint)( self.load_function(b"eglQueryDeviceStringEXT")) self.eglGetPlatformDisplayEXT = ctypes.CFUNCTYPE( EGL.EGLDisplay, EGL.EGLenum, EGL.EGLDeviceEXT, ctypes.POINTER(EGL.EGLint))( self.load_function(b"eglGetPlatformDisplayEXT")) self.eglQueryString = ctypes.CFUNCTYPE( ctypes.c_char_p, EGL.EGLDisplay, EGL.EGLint)( self.load_function(b"eglQueryString")) self.eglInitialize = ctypes.CFUNCTYPE( EGL.EGLBoolean, EGL.EGLDisplay, ctypes.POINTER(EGL.EGLint), ctypes.POINTER(EGL.EGLint))( self.load_function(b"eglInitialize")) self.eglBindAPI = ctypes.CFUNCTYPE(EGL.EGLBoolean, EGL.EGLenum)( self.load_function(b"eglBindAPI")) self.eglChooseConfig = ctypes.CFUNCTYPE( EGL.EGLBoolean, EGL.EGLDisplay, ctypes.POINTER(EGL.EGLint), ctypes.POINTER(EGL.EGLConfig), EGL.EGLint, ctypes.POINTER(EGL.EGLint))( self.load_function(b"eglChooseConfig")) self.eglCreateContext = ctypes.CFUNCTYPE( EGL.EGLContext, EGL.EGLDisplay, EGL.EGLConfig, EGL.EGLContext, ctypes.POINTER(EGL.EGLint))( self.load_function(b"eglCreateContext")) self.eglMakeCurrent = ctypes.CFUNCTYPE( EGL.EGLBoolean, EGL.EGLDisplay, EGL.EGLSurface, EGL.EGLSurface, EGL.EGLContext)( self.load_function(b"eglMakeCurrent")) self.eglGetCurrentContext = ctypes.CFUNCTYPE(EGL.EGLContext)( self.load_function(b"eglGetCurrentContext")) self.eglDestroyContext = ctypes.CFUNCTYPE( EGL.EGLBoolean, EGL.EGLDisplay, EGL.EGLContext)( self.load_function(b"eglDestroyContext")) def load_function(self, name: bytes): result = self.eglGetProcAddress(name) if not result: raise ValueError(f"Failed to load function '{name.decode()}'") return result _eglInstance: EGL | None = None def _egl(): global _eglInstance if not _eglInstance: _eglInstance = EGL() return _eglInstance class ContextError(Exception): pass class EglContext: _context_cache: dict[int, EGL.EGLDisplay] = {} _cuda_to_egl_mapping: dict[int, EGL.EGLDeviceEXT] = {} def __init__(self, cuda_device: int): if cuda_device in EglContext._context_cache: log.debug(f"Using cached EGL context for cuda device {cuda_device}") self._display = EglContext._context_cache[cuda_device] else: log.debug(f"Creating EGL context for cuda device {cuda_device}") self._display = self._create_display(cuda_device) EglContext._context_cache[cuda_device] = self._display self._context = self._create_context(self._display) self._cuda_device = cuda_device self.__enter__() @classmethod def _egl_check_success(cls, pred: bool, msg: str, level=logging.FATAL): err = _egl().eglGetError() if not pred or err != EGL.EGL_SUCCESS: msg = f"{msg}. EGL error is: 0x{err:x}." log.log(level, msg) if level >= logging.FATAL: raise ContextError(msg) return False return True @classmethod def _get_egl_device_map(cls): if not cls._cuda_to_egl_mapping: max_devices = 64 devices = (EGL.EGLDeviceEXT * max_devices)() num_devices = EGL.EGLint() cls._egl_check_success( _egl().eglQueryDevicesEXT(max_devices, devices, ctypes.pointer(num_devices)), "Failed to retrieve EGL devices") log.debug(f"Found {num_devices} GPUs with EGL support.") for device_idx, device in enumerate(list(devices[:num_devices.value])): device_extensions = (_egl().eglQueryDeviceStringEXT( device, EGL.EGL_EXTENSIONS)) # type: bytes cls._egl_check_success( bool(device_extensions), "Unable to retrieve device extensions") device_extensions_set = set(device_extensions.split(b" ")) if b"EGL_NV_device_cuda" not in device_extensions_set: log.debug(f"Ignoring EGL device {device_idx}. " f"No support for EGL_NV_device_cuda.") continue cuda_device_attr = EGL.EGLAttrib(-1) st = _egl().eglQueryDeviceAttribEXT(device, EGL.EGL_CUDA_DEVICE_NV, ctypes.pointer(cuda_device_attr)) if not st or _egl().eglGetError() != EGL.EGL_SUCCESS: log.debug(f"Unable to get CUDA device for EGL device {device_idx}") continue cuda_device = cuda_device_attr.value cls._cuda_to_egl_mapping[cuda_device] = device return cls._cuda_to_egl_mapping def _create_display(self, cuda_device: int): devices = self._get_egl_device_map() if cuda_device not in devices: raise ContextError( f"Could not find EGL device for CUDA device {cuda_device}") device = devices[cuda_device] display = _egl().eglGetPlatformDisplayEXT(EGL.EGL_PLATFORM_DEVICE_EXT, device, None) self._egl_check_success(bool(display), "Unable to create EGL display") major, minor = EGL.EGLint(), EGL.EGLint() self._egl_check_success( _egl().eglInitialize(display, ctypes.pointer(major), ctypes.pointer(minor)), "Unable to initialize display") self._egl_check_success(_egl().eglBindAPI(EGL.EGL_OPENGL_API), "Unable to bind OpenGL API to display") return display def _create_context(self, display: EGL.EGLDisplay): config_attrib_list = [ EGL.EGL_SURFACE_TYPE, EGL.EGL_PBUFFER_BIT, EGL.EGL_RED_SIZE, 8, EGL.EGL_GREEN_SIZE, 8, EGL.EGL_BLUE_SIZE, 8, EGL.EGL_DEPTH_SIZE, 8, EGL.EGL_RENDERABLE_TYPE, EGL.EGL_OPENGL_BIT, EGL.EGL_NONE ] ct_config_attrib_list = (EGL.EGLint * len(config_attrib_list))(*config_attrib_list) config = EGL.EGLConfig() num_config = EGL.EGLint() is_successful = _egl().eglChooseConfig(display, ct_config_attrib_list, ctypes.pointer(config), 1, ctypes.pointer(num_config)) self._egl_check_success(is_successful and num_config.value == 1, "Unable to choose EGL config") context_attrib = EGL.EGLint(EGL.EGL_NONE) context = _egl().eglCreateContext(display, config, None, ctypes.pointer(context_attrib)) self._egl_check_success(context, "Unable to create context") return context def load(self, name: str) -> int: log.debug(f"Loading function {name}") return _egl().load_function(name.encode()) def _check_valid_context(self): if not self._context: raise ContextError("Context already released!") def __enter__(self): self._check_valid_context() if _egl().eglGetCurrentContext() == self._context: return self._egl_check_success( _egl().eglMakeCurrent(self._display, EGL.EGL_NO_SURFACE, EGL.EGL_NO_SURFACE, self._context), "Unable to make context current") def __exit__(self, *args): if (_egl().eglGetCurrentContext() == self._context and self._cuda_device == keep_context_active_for_cuda_device): return self._egl_check_success( _egl().eglMakeCurrent(self._display, EGL.EGL_NO_SURFACE, EGL.EGL_NO_SURFACE, EGL.EGL_NO_CONTEXT), "Unable to release context") def release(self): self._check_valid_context() if _egl().eglGetCurrentContext == self._context: self._egl_check_success( _egl().eglMakeCurrent(self._display, EGL.EGL_NO_SURFACE, EGL.EGL_NO_SURFACE, EGL.EGL_NO_CONTEXT), "Unable to release context") self._egl_check_success( _egl().eglDestroyContext(self._display, self._context), "Unable to destroy context") self._context = None def create_moderngl_context(*args, **kwargs): assert len(args) == 0 if "cuda_device" not in kwargs: raise ContextError("cuda_device must be specified.") cuda_device = kwargs["cuda_device"] return EglContext(cuda_device) def monkey_patch_moderngl(): old_fn = glcontext.get_backend_by_name def get_backend_by_name(name): if name == "cuda_egl": return create_moderngl_context else: return old_fn(name) glcontext.get_backend_by_name = get_backend_by_name
# Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: [email protected] (Stefan Popov) import enum import io import pathlib import re import appdirs import ipywidgets import numpy as np import torch as t import torchvision.transforms.functional as tvtF from cad_estate import download_and_extract_frames from cad_estate import file_system as fs from cad_estate import frames as frame_lib from cad_estate import misc_util from cad_estate import room_structure as struct_lib from cad_estate.gl import scene_renderer def download_frames(frames: frame_lib.Frames, frames_dir: str | None): if frames_dir: frames_dir = fs.abspath(frames_dir) return frames_dir video_id = re.match(r"^(.+)_\d+$", frames.clip_name).group(1) cache_dir = pathlib.Path(appdirs.user_cache_dir()) frames_dir = cache_dir / "cad_estate" / "frames" video_path = cache_dir / "cad_estate" / "videos" / f"{video_id}.mp4" download_and_extract_frames.download_video(video_id, video_path) clip_frames_dir = frames_dir / video_path.stem clip_frames_dir.mkdir(parents=True, exist_ok=True) download_and_extract_frames.extract_frames(video_path, clip_frames_dir, frames.frame_timestamps) return frames_dir def render_frame(frames: frame_lib.Frames, room: struct_lib.RoomStructure, frame_index: int, width: int): """Renders a single frame.""" palette = t.cat([misc_util.get_palette()] * 12) num_palette_colors = palette.shape[0] palette_darker = palette * 0.8 palette_lighter = palette * 1.2 palette = t.concat([palette, palette_darker, palette_lighter]) material_ids = misc_util.dynamic_tile(room.num_tri) is_window_frame = (room.triangle_flags & 1) == 1 is_door = (room.triangle_flags & 2) == 2 material_ids[is_window_frame] += 2 * num_palette_colors material_ids[is_door] += num_palette_colors _, _, h, w = frames.frame_images.shape h = h * width // w w = width cam_mat = ( frames.camera_intrinsics[frame_index] @ frames.camera_extrinsics[frame_index]) synth = scene_renderer.render_scene( # room.triangles, cam_mat, (h, w), diffuse_coefficients=palette, material_ids=material_ids.to(t.int32), cull_back_facing=False) synth = tvtF.convert_image_dtype(synth.permute([2, 0, 1]), t.float32) rgb = tvtF.resize(frames.frame_images[frame_index], (h, w), antialias=True) rgb = tvtF.convert_image_dtype(rgb, t.float32) return synth, rgb def render_annotations(annotations: struct_lib.StructureAnnotations, frame_index: int, width: int): _, sh, sw = annotations.structural_element_masks.shape h = sh * width // sw w = width palette_str = t.cat([misc_util.get_palette()] * 12) palette_vis = palette_str.clone() palette_vis[0, :] = 0 palette_vis[1, :] = palette_vis.new_tensor([0, 0, 1.0]) str_ann = annotations.structural_element_masks[frame_index].to(t.int64) vis_ann = annotations.visible_parts_masks[frame_index].to(t.int64) str_ann = palette_str[str_ann.reshape([-1, 1])].reshape([sh, sw, 3]) vis_ann = palette_vis[vis_ann.reshape([-1, 1])].reshape([sh, sw, 3]) ann_tup = [str_ann, vis_ann] ann_tup = [ tvtF.resize(v.permute([2, 0, 1]), (h, w), antialias=True) for v in ann_tup ] ann_tup = [tvtF.convert_image_dtype(v, t.float32) for v in ann_tup] return ann_tup def get_legend_html(room: struct_lib.RoomStructure): html = "Legend: " style = ("color:black; font-weight: bold; padding: .2em; " "display: inline-block") for l, c in zip(room.labels[1:], misc_util.get_palette()[1:]): text = struct_lib.STRUCTURAL_ELEMENT_TYPES[l] c = (c * 255).to(t.int32).tolist() html += f"<div style='{style}; background: rgb{tuple(c)};'>{text}</div>\n" return html class AnnotationType(enum.Enum): """How to display the annotions.""" # Don't display annotations NONE = "None", # Display annotations as drawn by the annotators RAW = "Raw", # Display processed annotations, where instance labels match geometry, # visible parts and structure are combined, and doors/windows in-painted PROCESSED = "Processed" def create_interactive_widgets(example_scenes: list[str], num_frames: int, annotations_dir: str): """Setup the interactive widgets.""" scene_name = ipywidgets.Dropdown(options=example_scenes) frame_index = ipywidgets.IntSlider(0, 0, num_frames - 1, 1) annotation_type = ipywidgets.Dropdown(options=AnnotationType) def compute_frame_index_bounds(unused): if annotation_type.value == AnnotationType.NONE: frame_index.max = num_frames - 1 else: # When annotations are displayed, the frames match the annotated ones room_npz = fs.read_bytes( fs.join(annotations_dir, scene_name.value, "room_structure.npz")) room = struct_lib.load_room_structure(np.load(io.BytesIO(room_npz))) frame_index.max = room.annotated_timestamps.shape[0] - 1 annotation_type.observe(compute_frame_index_bounds) scene_name.observe(compute_frame_index_bounds) return scene_name, frame_index, annotation_type
# Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: [email protected] (Stefan Popov) import json import pathlib import re import appdirs import ipywidgets import torch as t import torchvision.utils as tvU from cad_estate import download_and_extract_frames from cad_estate import file_system as fs from cad_estate import frames as frame_lib from cad_estate import misc_util from cad_estate import objects as obj_lib from cad_estate.gl import scene_renderer def download_frames(frames: frame_lib.Frames, frames_dir: str | None): if frames_dir: frames_dir = fs.abspath(frames_dir) return frames_dir video_id = re.match(r"^(.+)_\d+$", frames.clip_name).group(1) cache_dir = pathlib.Path(appdirs.user_cache_dir()) frames_dir = cache_dir / "cad_estate" / "frames" video_path = cache_dir / "cad_estate" / "videos" / f"{video_id}.mp4" download_and_extract_frames.download_video(video_id, video_path) clip_frames_dir = frames_dir / video_path.stem clip_frames_dir.mkdir(parents=True, exist_ok=True) download_and_extract_frames.extract_frames(video_path, clip_frames_dir, frames.frame_timestamps) return frames_dir def create_interactive_widgets(example_scenes: list[str], num_frames: int, annotations_dir: str): """Setup the interactive widgets.""" w_scene_name = ipywidgets.Dropdown(options=example_scenes) w_frame_index = ipywidgets.IntSlider(0, 0, num_frames - 1, 1) w_show_tracks = ipywidgets.Checkbox() def compute_frame_index_bounds(unused): if w_show_tracks.value: # When tracks are displayed, the set of frames matches the ones with # manual track completion frames_json = json.loads( fs.read_text( fs.join(annotations_dir, w_scene_name.value, "frames.json"))) frames = frame_lib.load_metadata(frames_json) w_frame_index.max = ( int(frames.manual_track_annotations.to(t.int64).sum()) - 1) else: w_frame_index.max = num_frames - 1 w_show_tracks.observe(compute_frame_index_bounds) w_scene_name.observe(compute_frame_index_bounds) return w_scene_name, w_frame_index, w_show_tracks def render_objects(objects: obj_lib.Objects, frames: frame_lib.Frames, frame_index: int): pallette = misc_util.get_palette() rgb = frames.frame_images[frame_index] cam_mat = ( frames.camera_intrinsics[frame_index] @ frames.camera_extrinsics[frame_index]) if objects.num_tri.sum() == 0: synth = t.zeros_like(rgb) else: synth: t.Tensor = scene_renderer.render_scene( objects.triangles, cam_mat, rgb.shape[-2:], cull_back_facing=False, diffuse_coefficients=pallette[1:], material_ids=misc_util.dynamic_tile(objects.num_tri).to(t.int32)) synth = synth.permute([2, 0, 1]) return synth, rgb def render_tracks(img: t.Tensor, objects: obj_lib.Objects, track_boxes: t.Tensor | None, frame_index: int): if track_boxes is None: return img pallette = misc_util.get_palette() _, h, w = img.shape boxes = track_boxes[:, frame_index] * track_boxes.new_tensor([h, w, h, w]) mask = ((boxes >= 0).all(dim=1) & (objects.num_tri == 0) & ~objects.from_automatic_track) boxes = boxes[mask][:, [1, 0, 3, 2]].to(t.int32) if not boxes.shape[0]: return img box_colors = t.cat([pallette] * 12)[mask.nonzero()[:, 0]] box_colors = [tuple(v) for v in (box_colors * 255).to(t.int32)] return tvU.draw_bounding_boxes(img, boxes, width=2, colors=box_colors)
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import configargparse def config_parser(): parser = configargparse.ArgumentParser() parser.add_argument('--config', is_config_file=True, help='config file path') # general parser.add_argument('--rootdir', type=str, default='./', help='the path to the project root directory.') parser.add_argument("--expname", type=str, default='exp', help='experiment name') parser.add_argument('-j', '--workers', default=8, type=int, metavar='N', help='number of data loading workers (default: 8)') parser.add_argument('--distributed', action='store_true', help='if use distributed training') parser.add_argument("--local_rank", type=int, default=0, help='rank for distributed training') parser.add_argument("--eval_mode", action='store_true', help='if in eval mode') ########## dataset options ########## # train and eval dataset parser.add_argument("--train_dataset", type=str, default='vimeo', help='the training dataset') parser.add_argument("--dataset_weights", nargs='+', type=float, default=[], help='the weights for training datasets, used when multiple datasets are used.') parser.add_argument('--eval_dataset', type=str, default='vimeo', help='the dataset to evaluate') parser.add_argument("--batch_size", type=int, default=1, help='batch size, currently only support 1') ########## network architecture ########## parser.add_argument("--feature_dim", type=int, default=32, help='the dimension of the extracted features') ########## training options ########## parser.add_argument("--use_inpainting_mask_for_feature", action='store_true') parser.add_argument("--inpainting", action='store_true', help='if do inpainting') parser.add_argument("--train_raft", action='store_true', help='if train raft') parser.add_argument('--boundary_crop_ratio', type=float, default=0, help='crop the image before computing loss') parser.add_argument("--vary_pts_radius", action='store_true', help='if vary point radius as augmentation') parser.add_argument("--adaptive_pts_radius", action='store_true', help='if use adaptive point radius') parser.add_argument("--use_mask_for_decoding", action='store_true', help='if use mask for decoding') ########## rendering/evaluation ########## parser.add_argument("--use_depth_for_feature", action='store_true', help='if use depth map when extracting features') parser.add_argument("--use_depth_for_decoding", action='store_true', help='if use depth map when decoding') parser.add_argument("--point_radius", type=float, default=1.5, help='point radius for rasterization') parser.add_argument("--input_dir", type=str, default='', help='input folder that contains a pair of images') parser.add_argument("--visualize_rgbda_layers", action='store_true', help="if visualize rgbda layers, save in out dir") ########### iterations & learning rate options & loss ########## parser.add_argument("--n_iters", type=int, default=250000, help='num of iterations') parser.add_argument("--lr", type=float, default=3e-4, help='learning rate for feature extractor') parser.add_argument("--lr_raft", type=float, default=5e-6, help='learning rate for raft') parser.add_argument("--lrate_decay_factor", type=float, default=0.5, help='decay learning rate by a factor every specified number of steps') parser.add_argument("--lrate_decay_steps", type=int, default=50000, help='decay learning rate by a factor every specified number of steps') parser.add_argument('--loss_mode', type=str, default='lpips', help='the loss function to use') ########## checkpoints ########## parser.add_argument("--ckpt_path", type=str, default="", help='specific weights npy file to reload for coarse network') parser.add_argument("--no_reload", action='store_true', help='do not reload weights from saved ckpt') parser.add_argument("--no_load_opt", action='store_true', help='do not load optimizer when reloading') parser.add_argument("--no_load_scheduler", action='store_true', help='do not load scheduler when reloading') ########## logging/saving options ########## parser.add_argument("--i_print", type=int, default=100, help='frequency of console printout and metric loggin') parser.add_argument("--i_img", type=int, default=500, help='frequency of tensorboard image logging') parser.add_argument("--i_weights", type=int, default=10000, help='frequency of weight ckpt saving') args = parser.parse_args() return args
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch from networks.resunet import ResUNet from networks.img_decoder import ImgDecoder from third_party.RAFT.core.raft import RAFT from utils import de_parallel class Namespace: def __init__(self, **kwargs): for name in kwargs: setattr(self, name, kwargs[name]) def __eq__(self, other): if not isinstance(other, Namespace): return NotImplemented return vars(self) == vars(other) def __contains__(self, key): return key in self.__dict__ def get_raft_model(args): flow_args = Namespace() setattr(flow_args, 'model', 'third_party/RAFT/models/raft-things.pth') setattr(flow_args, 'small', False) setattr(flow_args, 'mixed_precision', False) setattr(flow_args, 'alternate_corr', False) device = "cuda:{}".format(args.local_rank) if args.distributed: model = RAFT(flow_args).to(device) model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, ) else: model = torch.nn.DataParallel(RAFT(flow_args)).to(device) model.load_state_dict(torch.load(flow_args.model, map_location='cuda:{}'.format(args.local_rank))) return model ######################################################################################################################## # creation/saving/loading of the model ######################################################################################################################## class SpaceTimeModel(object): def __init__(self, args): self.args = args load_opt = not args.no_load_opt load_scheduler = not args.no_load_scheduler device = torch.device('cuda:{}'.format(args.local_rank)) # initialize feature extraction network feat_in_ch = 4 if args.use_inpainting_mask_for_feature: feat_in_ch += 1 if args.use_depth_for_feature: feat_in_ch += 1 self.feature_net = ResUNet(args, in_ch=feat_in_ch, out_ch=args.feature_dim).to(device) # initialize decoder decoder_in_ch = args.feature_dim + 4 decoder_out_ch = 3 if args.use_depth_for_decoding: decoder_in_ch += 1 if args.use_mask_for_decoding: decoder_in_ch += 1 self.img_decoder = ImgDecoder(args, in_ch=decoder_in_ch, out_ch=decoder_out_ch).to(device) self.raft = get_raft_model(args) learnable_params = list(self.feature_net.parameters()) learnable_params += list(self.img_decoder.parameters()) self.learnable_params = learnable_params if args.train_raft: self.optimizer = torch.optim.Adam([ {'params': learnable_params}, {'params': filter(lambda p: p.requires_grad, self.raft.parameters()), 'lr': self.args.lr_raft}], lr=args.lr, weight_decay=1e-4, betas=(0.9, 0.999)) else: self.raft.eval() self.optimizer = torch.optim.Adam(learnable_params, lr=args.lr, weight_decay=1e-4, betas=(0.9, 0.999)) self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=args.lrate_decay_steps, gamma=args.lrate_decay_factor) out_folder = os.path.join(args.rootdir, 'out', args.expname) self.start_step = self.load_from_ckpt(out_folder, load_opt=load_opt, load_scheduler=load_scheduler) if args.distributed: self.feature_net = torch.nn.parallel.DistributedDataParallel( self.feature_net, device_ids=[args.local_rank], output_device=args.local_rank, ) self.img_decoder = torch.nn.parallel.DistributedDataParallel( self.img_decoder, device_ids=[args.local_rank], output_device=args.local_rank, ) def switch_to_eval(self): self.feature_net.eval() self.img_decoder.eval() self.raft.eval() def switch_to_train(self): self.feature_net.train() self.img_decoder.train() if self.args.train_raft: self.raft.train() def save_model(self, filename): to_save = {'optimizer': self.optimizer.state_dict(), 'scheduler': self.scheduler.state_dict(), 'feature_net': de_parallel(self.feature_net).state_dict(), 'img_decoder': de_parallel(self.img_decoder).state_dict(), 'raft': self.raft.state_dict() } torch.save(to_save, filename) def load_model(self, filename, load_opt=True, load_scheduler=True): if self.args.distributed: to_load = torch.load(filename, map_location='cuda:{}'.format(self.args.local_rank)) else: to_load = torch.load(filename) if load_opt: self.optimizer.load_state_dict(to_load['optimizer']) if load_scheduler: self.scheduler.load_state_dict(to_load['scheduler']) self.feature_net.load_state_dict(to_load['feature_net']) self.img_decoder.load_state_dict(to_load['img_decoder']) if 'raft' in to_load.keys(): self.raft.load_state_dict(to_load['raft']) def load_from_ckpt(self, out_folder, load_opt=True, load_scheduler=True, force_latest_ckpt=False): ''' load model from existing checkpoints and return the current step :param out_folder: the directory that stores ckpts :return: the current starting step ''' # all existing ckpts ckpts = [] if os.path.exists(out_folder): ckpts = [os.path.join(out_folder, f) for f in sorted(os.listdir(out_folder)) if f.endswith('.pth')] if self.args.ckpt_path is not None and not force_latest_ckpt: if os.path.isfile(self.args.ckpt_path): # load the specified ckpt ckpts = [self.args.ckpt_path] if len(ckpts) > 0 and not self.args.no_reload: fpath = ckpts[-1] self.load_model(fpath, load_opt, load_scheduler) step = int(fpath[-10:-4]) print('Reloading from {}, starting at step={}'.format(fpath, step)) else: print('No ckpts found, training from scratch...') step = 0 return step
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import torch from datetime import datetime import shutil TINY_NUMBER = 1e-6 # float32 only has 7 decimal digits precision def de_parallel(model): return model.module if hasattr(model, 'module') else model def cycle(iterable): while True: for x in iterable: yield x def dict_to_device(dict_): for k in dict_.keys(): if type(dict_[k]) == torch.Tensor: dict_[k] = dict_[k].cuda() return dict_ def save_current_code(outdir): now = datetime.now() # current date and time date_time = now.strftime("%m_%d-%H:%M:%S") src_dir = '.' code_out_dir = os.path.join(outdir, 'code') os.makedirs(code_out_dir, exist_ok=True) dst_dir = os.path.join(code_out_dir, '{}'.format(date_time)) shutil.copytree(src_dir, dst_dir, ignore=shutil.ignore_patterns('pretrained*', '*logs*', 'out*', '*.png', '*.mp4', 'eval*', '*__pycache__*', '*.git*', '*.idea*', '*.zip', '*.jpg')) def nan_to_num(input, nan=0.0, posinf=None, neginf=None, *, out=None): # pylint: disable=redefined-builtin # assert isinstance(input, torch.Tensor) if posinf is None: posinf = torch.finfo(input.dtype).max if neginf is None: neginf = torch.finfo(input.dtype).min assert nan == 0 return torch.clamp(input.unsqueeze(0).nansum(0), min=neginf, max=posinf, out=out) def img2mse(x, y, mask=None): ''' :param x: img 1, [(...), 3] :param y: img 2, [(...), 3] :param mask: optional, [(...)] :return: mse score ''' if mask is None: return torch.mean((x - y) * (x - y)) else: return torch.sum((x - y) * (x - y) * mask.unsqueeze(-1)) / (torch.sum(mask) * x.shape[-1] + TINY_NUMBER) mse2psnr = lambda x: -10. * np.log(x+TINY_NUMBER) / np.log(10.) def img2psnr(x, y, mask=None): return mse2psnr(img2mse(x, y, mask).item())
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import config import warnings warnings.filterwarnings("ignore", category=UserWarning, module="torch.nn.functional") import time import torch.utils.data.distributed import torch.distributed as dist from tensorboardX import SummaryWriter from data_loaders import dataset_dict from data_loaders.create_training_dataset import create_training_dataset from utils import * from model import SpaceTimeModel from core.utils import * from criterion import Criterion from core.scene_flow import SceneFlowEstimator from core.renderer import ImgRenderer from core.inpainter import Inpainter def worker_init_fn(worker_id): np.random.seed(np.random.get_state()[1][0] + worker_id) def synchronize(): """ Helper function to synchronize (barrier) among all processes when using distributed training """ if not dist.is_available(): return if not dist.is_initialized(): return world_size = dist.get_world_size() if world_size == 1: return dist.barrier() def train(args): device = "cuda:{}".format(args.local_rank) out_folder = os.path.join(args.rootdir, 'out', args.expname) print('outputs will be saved to {}'.format(out_folder)) os.makedirs(out_folder, exist_ok=True) if args.local_rank == 0: save_current_code(out_folder) # save the args and config files f = os.path.join(out_folder, 'args.txt') with open(f, 'w') as file: for arg in sorted(vars(args)): attr = getattr(args, arg) file.write('{} = {}\n'.format(arg, attr)) if args.config is not None: f = os.path.join(out_folder, 'config.txt') if not os.path.isfile(f): shutil.copy(args.config, f) # create training dataset train_dataset, train_sampler = create_training_dataset(args) assert args.batch_size == 1, "only support batch size == 1" train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, worker_init_fn=lambda _: np.random.seed(), num_workers=args.workers, pin_memory=True, sampler=train_sampler, shuffle=True if train_sampler is None else False) # create validation dataset val_dataset = dataset_dict[args.eval_dataset](args, 'val') val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=1) val_loader_iterator = iter(cycle(val_loader)) model = SpaceTimeModel(args) scene_flow_estimator = SceneFlowEstimator(args, model.raft) inpainter = Inpainter(args, device=device) renderer = ImgRenderer(args, model, scene_flow_estimator, inpainter, device) tb_dir = os.path.join(args.rootdir, 'logs/', args.expname) if args.local_rank == 0: writer = SummaryWriter(tb_dir) print('saving tensorboard files to {}'.format(tb_dir)) scalars_to_log = {} global_step = model.start_step + 1 epoch = 0 criterion = Criterion(args) while global_step < model.start_step + args.n_iters + 1: np.random.seed() if args.distributed: train_sampler.set_epoch(epoch) for data in train_loader: if (data['src_depth1'].min() <= 1e-2) or (data['src_depth2'].min() <= 1e-2): continue start = time.time() res_dict = renderer.get_prediction(data) pred_img = res_dict['pred_img'] gt_img = res_dict['gt_img'] direct_rgb_out = res_dict['direct_rgb_out'] src_img1 = res_dict['src_img1'] src_img2 = res_dict['src_img2'] mask = res_dict['mask'] if res_dict['skip']: continue ### loss term model.optimizer.zero_grad() loss, scalars_to_log = criterion(pred_img, gt_img, mask, data['multi_view'][0], res_dict, scalars_to_log, global_step) loss.backward() for param in model.learnable_params: if param.grad is not None: nan_to_num(param.grad, nan=0, posinf=1e5, neginf=-1e5, out=param.grad) model.optimizer.step() model.scheduler.step() duration = time.time() - start # log scalars_to_log['loss'] = loss.item() scalars_to_log['psnr'] = img2psnr(pred_img, gt_img) scalars_to_log['psnr_direct'] = img2psnr(direct_rgb_out, gt_img) scalars_to_log['multi_view'] = data['multi_view'][0] scalars_to_log['lr'] = model.scheduler.get_last_lr()[0] scalars_to_log['time'] = duration # Rest is logging if args.local_rank == 0: if global_step % args.i_print == 0 or global_step < 10: logstr = '{} Epoch: {} step: {} '.format(args.expname, epoch, global_step) for k in scalars_to_log.keys(): logstr += ' {}: {:.6f}'.format(k, scalars_to_log[k]) writer.add_scalar(k, scalars_to_log[k], global_step) print(logstr) if global_step % args.i_weights == 0: print('Saving checkpoints at {} to {}...'.format(global_step, out_folder)) fpath = os.path.join(out_folder, 'model_{:06d}.pth'.format(global_step)) model.save_model(fpath) if global_step % args.i_img == 0: # only the first example in the batch writer.add_image('train/gt_pred_img', torch.cat([gt_img[0], direct_rgb_out[0], pred_img[0]], dim=2), global_step, dataformats='CHW') # ref and src images writer.add_image('train/src_imgs', torch.cat([src_img1[0], src_img2[0]], dim=2), global_step, dataformats='CHW') val_data = next(val_loader_iterator) torch.cuda.empty_cache() model.switch_to_eval() with torch.no_grad(): val_res_dict = renderer.get_prediction(val_data) val_pred_img = val_res_dict['pred_img'] val_gt_img = val_res_dict['gt_img'] val_src_img1 = val_res_dict['src_img1'] val_src_img2 = val_res_dict['src_img2'] val_direct_rgb_out = val_res_dict['direct_rgb_out'] model.switch_to_train() writer.add_image('val/gt_pred_img', torch.cat([val_gt_img[0], val_direct_rgb_out[0], val_pred_img[0]], dim=2), global_step, dataformats='CHW') # ref and src images writer.add_image('val/src_imgs', torch.cat([val_src_img1[0], val_src_img2[0]], dim=2), global_step, dataformats='CHW') global_step += 1 if global_step > model.start_step + args.n_iters + 1: break epoch += 1 if __name__ == '__main__': args = config.config_parser() if args.distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend="nccl", init_method="env://") synchronize() train(args)
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import lpips import torch import torch.nn as nn import torch.nn.functional as F from torchvision import models from core.utils import crop_boundary def masked_mse_loss(pred, gt, mask=None): if mask is None: return F.mse_loss(pred, gt) else: sum_loss = F.mse_loss(pred, gt, reduction='none') ndim = sum_loss.shape[1] return torch.sum(sum_loss * mask) / (ndim * torch.sum(mask) + 1e-8) def masked_l1_loss(pred, gt, mask=None): if mask is None: return F.l1_loss(pred, gt) else: if mask.shape[-2:] != pred.shape[-2:]: mask = F.interpolate(mask, size=pred.shape[-2:]) sum_loss = F.l1_loss(pred, gt, reduction='none') ndim = sum_loss.shape[1] return torch.sum(sum_loss * mask) / (ndim * torch.sum(mask) + 1e-8) class Vgg16(nn.Module): def __init__(self): super(Vgg16, self).__init__() features = models.vgg16(pretrained=True).features self.to_relu_1_2 = nn.Sequential() self.to_relu_2_2 = nn.Sequential() self.to_relu_3_3 = nn.Sequential() self.to_relu_4_3 = nn.Sequential() for x in range(4): self.to_relu_1_2.add_module(str(x), features[x]) for x in range(4, 9): self.to_relu_2_2.add_module(str(x), features[x]) for x in range(9, 16): self.to_relu_3_3.add_module(str(x), features[x]) for x in range(16, 23): self.to_relu_4_3.add_module(str(x), features[x]) # don't need the gradients, just want the features for param in self.parameters(): param.requires_grad = False def forward(self, x): h = self.to_relu_1_2(x) h_relu_1_2 = h h = self.to_relu_2_2(h) h_relu_2_2 = h h = self.to_relu_3_3(h) h_relu_3_3 = h h = self.to_relu_4_3(h) h_relu_4_3 = h out = [h_relu_1_2, h_relu_2_2, h_relu_3_3, h_relu_4_3] return out class Vgg19(nn.Module): def __init__(self, requires_grad=False): super(Vgg19, self).__init__() vgg_pretrained_features = models.vgg19(pretrained=True).features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() self.slice5 = torch.nn.Sequential() for x in range(2): self.slice1.add_module(str(x), vgg_pretrained_features[x]) for x in range(2, 7): self.slice2.add_module(str(x), vgg_pretrained_features[x]) for x in range(7, 12): self.slice3.add_module(str(x), vgg_pretrained_features[x]) for x in range(12, 21): self.slice4.add_module(str(x), vgg_pretrained_features[x]) for x in range(21, 30): self.slice5.add_module(str(x), vgg_pretrained_features[x]) if not requires_grad: for param in self.parameters(): param.requires_grad = False def forward(self, x): h_relu1 = self.slice1(x) h_relu2 = self.slice2(h_relu1) h_relu3 = self.slice3(h_relu2) h_relu4 = self.slice4(h_relu3) h_relu5 = self.slice5(h_relu4) out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5] return out class VGGLoss(nn.Module): def __init__(self, model='vgg19', device='cuda'): super().__init__() if model == 'vgg16': self.vgg = Vgg16().to(device) self.weights = [1.0/16, 1.0/8, 1.0/4, 1.0] elif model == 'vgg19': self.vgg = Vgg19().to(device) self.weights = [1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0] # self.weights = [1/2.6, 1/4.8, 1/3.7, 1/5.6, 10/1.5] # self.weights = [1/2.6, 1/4.8, 1/3.7, 1/5.6, 2/1.5] # self.criterion = nn.L1Loss() self.loss_func = masked_l1_loss @staticmethod def preprocess(x, size=224): # B, C, H, W device = x.device mean = torch.tensor([0.485, 0.456, 0.406]).to(device) std = torch.tensor([0.229, 0.224, 0.225]).to(device) x = (x - mean.reshape(1, 3, 1, 1)) / std.reshape(1, 3, 1, 1) return x def forward(self, x, y, mask=None, size=224): x = self.preprocess(x, size=size) # assume x, y are inside (0, 1) y = self.preprocess(y, size=size) if mask is not None: if min(mask.shape[-2:]) <= size: mode = 'bilinear' align_corners = True else: mode = 'area' align_corners = None mask = F.interpolate(mask, size=size, mode=mode, align_corners=align_corners) x_vgg, y_vgg = self.vgg(x), self.vgg(y) # loss = 0 loss = self.loss_func(x, y, mask) for i in range(len(x_vgg)): loss += self.weights[i] * self.loss_func(x_vgg[i], y_vgg[i], mask) return loss def normalize_minus_one_to_one(x): x_min = x.min() x_max = x.max() return 2. * (x - x_min) / (x_max - x_min) - 1. def get_flow_smoothness_loss(flow, alpha): flow_gradient_x = flow[:, :, :, 1:, :] - flow[:, :, :, -1:, :] flow_gradient_y = flow[:, :, :, :, 1:] - flow[:, :, :, :, -1:] cost_x = (alpha[:, :, :, 1:, :] * torch.norm(flow_gradient_x, dim=2, keepdim=True)).sum() cost_y = (alpha[:, :, :, :, 1:] * torch.norm(flow_gradient_y, dim=2, keepdim=True)).sum() avg_cost = (cost_x + cost_y) / (2 * alpha.sum() + 1e-6) return avg_cost class Criterion(nn.Module): def __init__(self, args): super(Criterion, self).__init__() device = "cuda:{}".format(args.local_rank) self.args = args self.crop_ratio = args.boundary_crop_ratio self.loss_mode = args.loss_mode if 'vgg' in self.loss_mode: self.loss_func = VGGLoss(model=self.loss_mode, device=device) elif self.loss_mode == 'lpips': self.loss_func = lpips.LPIPS(net='vgg').to(device) elif self.loss_mode == 'mse': self.loss_func = masked_mse_loss elif self.loss_mode == 'l1': self.loss_func = masked_l1_loss else: raise NotImplementedError def forward(self, pred, target, mask, is_multi_view, res_dict, scalar_to_log, step): if self.crop_ratio > 0: pred = crop_boundary(pred, self.crop_ratio) target = crop_boundary(target, self.crop_ratio) if self.loss_mode == 'lpips': pred_normed = 2 * pred - 1. target_normed = 2 * target - 1. loss = self.loss_func(pred_normed, target_normed) scalar_to_log['loss_perceptual'] = loss.item() if is_multi_view == 0: l1_loss = masked_l1_loss(pred, target, mask) loss = loss + l1_loss scalar_to_log['loss_l1'] = l1_loss.item() else: loss = self.loss_func(pred, target, mask) return loss, scalar_to_log
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import time import imageio import cv2 import config import torchvision import torch.utils.data.distributed from tqdm import tqdm from model import get_raft_model from third_party.RAFT.core.utils.utils import InputPadder from third_party.DPT.run_monodepth import run_dpt from utils import * from model import SpaceTimeModel from core.utils import * from core.scene_flow import SceneFlowEstimator from core.renderer import ImgRenderer from core.inpainter import Inpainter from data_loaders.data_utils import resize_img from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True def process_boundary_mask(mask): kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) closing = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=5) dilation = cv2.dilate(closing, kernel, iterations=1, borderType=cv2.BORDER_CONSTANT, borderValue=0.) return dilation def compute_optical_flow(args, img1, img2, return_np_array=False): raft_model = get_raft_model(args) with torch.no_grad(): img1 = torch.from_numpy(img1).float().to("cuda:{}".format(args.local_rank)).permute(2, 0, 1)[None, ...] img2 = torch.from_numpy(img2).float().to("cuda:{}".format(args.local_rank)).permute(2, 0, 1)[None, ...] padder = InputPadder(img1.shape) image1, image2 = padder.pad(img1, img2) flow_low, flow_up = raft_model.module(image1, image2, iters=20, test_mode=True, padder=padder) del raft_model torch.cuda.empty_cache() if return_np_array: return flow_up.cpu().numpy().transpose(0, 2, 3, 1) return flow_up.permute(0, 2, 3, 1).detach() # [B, h, w, 2] # homography alignment def homography_warp_pairs(args): input_dir = args.input_dir print('processing input folder {}...'.format(input_dir)) img_files = sorted(glob.glob(os.path.join(input_dir, '*.png'))) + \ sorted(glob.glob(os.path.join(input_dir, '*.jpg'))) assert len(img_files) == 2, 'input folder must contain 2 images, found {} images instead'.format(len(img_files)) warped_out_dir = os.path.join(input_dir, 'warped') os.makedirs(warped_out_dir, exist_ok=True) mask_out_dir = os.path.join(warped_out_dir, 'mask') os.makedirs(mask_out_dir, exist_ok=True) dpt_out_dir = os.path.join(input_dir, 'dpt_depth') os.makedirs(dpt_out_dir, exist_ok=True) warped_dpt_out_dir = os.path.join(warped_out_dir, 'dpt_depth') os.makedirs(warped_dpt_out_dir, exist_ok=True) dpt_model_path = 'third_party/DPT/weights/dpt_hybrid-midas-501f0c75.pt' run_dpt(input_path=input_dir, output_path=dpt_out_dir, model_path=dpt_model_path, optimize=False) disp_files = sorted(glob.glob(os.path.join(dpt_out_dir, '*.png'))) img1 = imageio.imread(img_files[0]) img2 = imageio.imread(img_files[1]) disp1 = imageio.imread(disp_files[0]) disp2 = imageio.imread(disp_files[1]) img_h = img1.shape[0] img_w = img1.shape[1] x = np.arange(img_h) y = np.arange(img_w) coords = np.stack(np.meshgrid(y, x), -1) print('=========================aligning the two input images via a homography...=========================') flow12 = compute_optical_flow(args, img1, img2, return_np_array=True)[0] flow12_norm = np.linalg.norm(flow12, axis=-1) mask_valid = (flow12_norm < np.inf) * (disp1 > 0) mask_small_flow = flow12_norm < np.percentile(flow12_norm[mask_valid], 75) mask_valid *= mask_small_flow coords1 = coords + flow12 pt1 = coords[mask_valid][::10] pt2 = coords1[mask_valid][::10] H, mask = cv2.findHomography(pt2, pt1, method=cv2.RANSAC, ransacReprojThreshold=1) np.savetxt(os.path.join(input_dir, 'H.txt'), H) img2_warped = cv2.warpPerspective(img2, H, (img_w, img_h), flags=cv2.INTER_LINEAR) imageio.imwrite(os.path.join(warped_out_dir, os.path.basename(img_files[0])), img1) imageio.imwrite(os.path.join(warped_out_dir, os.path.basename(img_files[1])), img2_warped) print('finished') disp2_warped = cv2.warpPerspective(disp2, H, (img_w, img_h), flags=cv2.INTER_LINEAR) scale21 = np.mean(mask_valid * (disp2_warped / np.clip(disp1, a_min=1e-6, a_max=np.inf))) / np.mean(mask_valid) if scale21 < 1: disp1 = (disp1 * scale21).astype(np.uint16) else: disp2_warped = (disp2_warped / scale21).astype(np.uint16) imageio.imwrite(os.path.join(warped_dpt_out_dir, os.path.basename(disp_files[0])), disp1) imageio.imwrite(os.path.join(warped_dpt_out_dir, os.path.basename(disp_files[1])), disp2_warped) # generate mask mask_save_dir = os.path.join(warped_out_dir, 'mask') os.makedirs(mask_save_dir, exist_ok=True) mask = 255 * np.ones((img_h, img_w), dtype=np.uint8) mask_warped = cv2.warpPerspective(mask, H, (img_w, img_h)) imageio.imwrite(os.path.join(mask_save_dir, '0.png'), mask) imageio.imwrite(os.path.join(mask_save_dir, '1.png'), mask_warped) def get_input_data(args, ds_factor=1): to_tensor = torchvision.transforms.ToTensor() input_dir = os.path.join(args.input_dir, 'warped') img_files = sorted(glob.glob(os.path.join(input_dir, '*.png'))) + \ sorted(glob.glob(os.path.join(input_dir, '*.jpg'))) img_file1, img_file2 = img_files src_img1 = imageio.imread(img_file1) / 255. src_img2 = imageio.imread(img_file2) / 255. src_img1 = resize_img(src_img1, ds_factor) src_img2 = resize_img(src_img2, ds_factor) h1, w1 = src_img1.shape[:2] h2, w2 = src_img2.shape[:2] src_disp1 = imageio.imread(os.path.join(input_dir, 'dpt_depth', os.path.basename(img_file1))) / 65535. src_disp2 = imageio.imread(os.path.join(input_dir, 'dpt_depth', os.path.basename(img_file2))) / 65535. src_disp1 = remove_noise_in_dpt_disparity(src_disp1) src_disp2 = remove_noise_in_dpt_disparity(src_disp2) src_depth1 = 1. / np.maximum(src_disp1, 1e-2) src_depth2 = 1. / np.maximum(src_disp2, 1e-2) src_depth1 = resize_img(src_depth1, ds_factor) src_depth2 = resize_img(src_depth2, ds_factor) intrinsic1 = np.array([[max(h1, w1), 0, w1 // 2], [0, max(h1, w1), h1 // 2], [0, 0, 1]]) intrinsic2 = np.array([[max(h2, w2), 0, w2 // 2], [0, max(h2, w2), h2 // 2], [0, 0, 1]]) pose = np.eye(4) return { 'src_img1': to_tensor(src_img1).float()[None], 'src_img2': to_tensor(src_img2).float()[None], 'src_depth1': to_tensor(src_depth1).float()[None], 'src_depth2': to_tensor(src_depth2).float()[None], 'intrinsic1': torch.from_numpy(intrinsic1).float()[None], 'intrinsic2': torch.from_numpy(intrinsic2).float()[None], 'tgt_intrinsic': torch.from_numpy(intrinsic2).float()[None], 'pose': torch.from_numpy(pose).float()[None], 'scale_shift1': torch.tensor([1., 0.]).float()[None], 'scale_shift2': torch.tensor([1., 0.]).float()[None], 'src_rgb_file1': [img_file1], 'src_rgb_file2': [img_file2], 'multi_view': [False] } def render(args): device = "cuda:{}".format(args.local_rank) homography_warp_pairs(args) print('=========================run 3D Moments...=========================') data = get_input_data(args) rgb_file1 = data['src_rgb_file1'][0] rgb_file2 = data['src_rgb_file2'][0] frame_id1 = os.path.basename(rgb_file1).split('.')[0] frame_id2 = os.path.basename(rgb_file2).split('.')[0] scene_id = rgb_file1.split('/')[-3] video_out_folder = os.path.join(args.input_dir, 'out') os.makedirs(video_out_folder, exist_ok=True) model = SpaceTimeModel(args) if model.start_step == 0: raise Exception('no pretrained model found! please check the model path.') scene_flow_estimator = SceneFlowEstimator(args, model.raft) inpainter = Inpainter(args) renderer = ImgRenderer(args, model, scene_flow_estimator, inpainter, device) model.switch_to_eval() with torch.no_grad(): renderer.process_data(data) pts1, pts2, rgb1, rgb2, feat1, feat2, mask, side_ids, optical_flow = \ renderer.render_rgbda_layers_with_scene_flow(return_pts=True) num_frames = [60, 60, 60, 90] video_paths = ['up-down', 'zoom-in', 'side', 'circle'] Ts = [ define_camera_path(num_frames[0], 0., -0.08, 0., path_type='double-straight-line', return_t_only=True), define_camera_path(num_frames[1], 0., 0., -0.24, path_type='straight-line', return_t_only=True), define_camera_path(num_frames[2], -0.09, 0, -0, path_type='double-straight-line', return_t_only=True), define_camera_path(num_frames[3], -0.04, -0.04, -0.09, path_type='circle', return_t_only=True), ] crop = 32 for j, T in enumerate(Ts): T = torch.from_numpy(T).float().to(renderer.device) time_steps = np.linspace(0, 1, num_frames[j]) frames = [] for i, t_step in tqdm(enumerate(time_steps), total=len(time_steps), desc='generating video of {} camera trajectory'.format(video_paths[j])): pred_img, _, meta = renderer.render_pcd(pts1, pts2, rgb1, rgb2, feat1, feat2, mask, side_ids, t=T[i], time=t_step) frame = (255. * pred_img.detach().cpu().squeeze().permute(1, 2, 0).numpy()).astype(np.uint8) # mask out fuzzy image boundaries due to no outpainting img_boundary_mask = (meta['acc'] > 0.5).detach().cpu().squeeze().numpy().astype(np.uint8) img_boundary_mask_cleaned = process_boundary_mask(img_boundary_mask) frame = frame * img_boundary_mask_cleaned[..., None] frame = frame[crop:-crop, crop:-crop] frames.append(frame) video_out_file = os.path.join(video_out_folder, '{}_{}-{}-{}.mp4'.format( video_paths[j], scene_id, frame_id1, frame_id2)) imageio.mimwrite(video_out_file, frames, fps=25, quality=8) print('space-time videos have been saved in {}.'.format(video_out_folder)) if __name__ == '__main__': args = config.config_parser() render(args)
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from third_party.RAFT.core.utils.utils import InputPadder from core.utils import * class SceneFlowEstimator(): def __init__(self, args, model): device = "cuda:{}".format(args.local_rank) self.device = device self.raft_model = model self.train_raft = args.train_raft def compute_optical_flow(self, img1, img2, return_np_array=False): ''' :param img1: [B, 3, H, W] :param img2: [B, 3, H, W] :return: optical_flow, [B, H, W, 2] ''' if not self.train_raft: with torch.no_grad(): assert img1.max() <= 1 and img2.max() <= 1 image1 = img1 * 255. image2 = img2 * 255. padder = InputPadder(image1.shape) image1, image2 = padder.pad(image1, image2) flow_low, flow_up = self.raft_model.module(image1, image2, iters=20, test_mode=True, padder=padder) if return_np_array: return flow_up.cpu().numpy().transpose(0, 2, 3, 1) return flow_up.permute(0, 2, 3, 1).detach() # [B, h, w, 2] else: assert img1.max() <= 1 and img2.max() <= 1 image1 = img1 * 255. image2 = img2 * 255. padder = InputPadder(image1.shape) image1, image2 = padder.pad(image1, image2) flow_predictions = self.raft_model.module(image1, image2, iters=20, padder=padder) return flow_predictions[-1].permute(0, 2, 3, 1) # [B, h, w, 2] def get_mutual_matches(self, flow_f, flow_b, th=2., return_mask=False): assert flow_f.shape == flow_b.shape batch_size = flow_f.shape[0] assert flow_f.shape[1:3] == flow_b.shape[1:3] h, w = flow_f.shape[1:3] grid = get_coord_grids_pt(h, w, self.device)[None].float().repeat(batch_size, 1, 1, 1) # [B, h, w, 2] grid2 = grid + flow_f mask_boundary = (grid2[..., 0] >= 0) * (grid2[..., 0] <= w - 1) * \ (grid2[..., 1] >= 0) * (grid2[..., 1] <= h - 1) grid2_normed = normalize_for_grid_sample(grid2, h, w) flow_b_sampled = F.grid_sample(flow_b.permute(0, 3, 1, 2), grid2_normed, align_corners=True).permute(0, 2, 3, 1) grid1 = grid2 + flow_b_sampled mask_boundary *= (grid1[..., 0] >= 0) * (grid1[..., 0] <= w - 1) * \ (grid1[..., 1] >= 0) * (grid1[..., 1] <= h - 1) fb_map = flow_f + flow_b_sampled mask_valid = mask_boundary * (torch.norm(fb_map, dim=-1) < th) if return_mask: return mask_valid coords1 = grid[mask_valid] # [n, 2] coords2 = grid2[mask_valid] # [n, 2] return coords1, coords2
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import imageio import torch.utils.data.distributed from pytorch3d.structures import Pointclouds from core.utils import * from core.depth_layering import get_depth_bins from core.pcd import linear_interpolation, create_pcd_renderer class ImgRenderer(): def __init__(self, args, model, scene_flow_estimator, inpainter, device): self.args = args self.model = model self.scene_flow_estimator = scene_flow_estimator self.inpainter = inpainter self.device = device def process_data(self, data): self.src_img1 = data['src_img1'].to(self.device) self.src_img2 = data['src_img2'].to(self.device) assert self.src_img1.shape == self.src_img2.shape self.h, self.w = self.src_img1.shape[-2:] self.src_depth1 = data['src_depth1'].to(self.device) self.src_depth2 = data['src_depth2'].to(self.device) self.intrinsic1 = data['intrinsic1'].to(self.device) self.intrinsic2 = data['intrinsic2'].to(self.device) self.pose = data['pose'].to(self.device) self.scale_shift1 = data['scale_shift1'][0] self.scale_shift2 = data['scale_shift2'][0] self.is_multi_view = data['multi_view'][0] self.src_rgb_file1 = data['src_rgb_file1'][0] self.src_rgb_file2 = data['src_rgb_file2'][0] if 'tgt_img' in data.keys(): self.tgt_img = data['tgt_img'].to(self.device) if 'tgt_intrinsic' in data.keys(): self.tgt_intrinsic = data['tgt_intrinsic'].to(self.device) if 'tgt_pose' in data.keys(): self.tgt_pose = data['tgt_pose'].to(self.device) if 'time' in data.keys(): self.time = data['time'].item() if 'src_mask1' in data.keys(): self.src_mask1 = data['src_mask1'].to(self.device) else: self.src_mask1 = torch.ones_like(self.src_depth1) if 'src_mask2' in data.keys(): self.src_mask2 = data['src_mask2'].to(self.device) else: self.src_mask2 = torch.ones_like(self.src_depth2) def feature_extraction(self, rgba_layers, mask_layers, depth_layers): rgba_layers_in = rgba_layers.squeeze(1) if self.args.use_inpainting_mask_for_feature: rgba_layers_in = torch.cat([rgba_layers_in, mask_layers.squeeze(1)], dim=1) if self.args.use_depth_for_feature: rgba_layers_in = torch.cat([rgba_layers_in, 1. / torch.clamp(depth_layers.squeeze(1), min=1.)], dim=1) featmaps = self.model.feature_net(rgba_layers_in) return featmaps def apply_scale_shift(self, depth, scale, shift): disp = 1. / torch.clamp(depth, min=1e-3) disp = scale * disp + shift return 1 / torch.clamp(disp, min=1e-3*scale) def masked_diffuse(self, x, mask, iter=10, kernel_size=35, median_blur=False): if median_blur: x = masked_median_blur(x, mask.repeat(1, x.shape[1], 1, 1), kernel_size=5) for _ in range(iter): x, mask = masked_smooth_filter(x, mask, kernel_size=kernel_size) return x, mask def compute_weight_for_two_frame_blending(self, time, disp1, disp2, alpha1, alpha2): alpha = 4 weight1 = (1 - time) * torch.exp(alpha*disp1) * alpha1 weight2 = time * torch.exp(alpha*disp2) * alpha2 sum_weight = torch.clamp(weight1 + weight2, min=1e-6) out_weight1 = weight1 / sum_weight out_weight2 = weight2 / sum_weight return out_weight1, out_weight2 def transform_all_pts(self, all_pts, pose): all_pts_out = [] for pts in all_pts: pts_out = transform_pts_in_3D(pts, pose) all_pts_out.append(pts_out) return all_pts_out def render_pcd(self, pts1, pts2, rgbs1, rgbs2, feats1, feats2, mask, side_ids, R=None, t=None, time=0): pts = linear_interpolation(pts1, pts2, time) rgbs = linear_interpolation(rgbs1, rgbs2, time) feats = linear_interpolation(feats1, feats2, time) rgb_feat = torch.cat([rgbs, feats], dim=-1) num_sides = side_ids.max() + 1 assert num_sides == 1 or num_sides == 2 if R is None: R = torch.eye(3, device=self.device) if t is None: t = torch.zeros(3, device=self.device) pts_ = (R.mm(pts.T) + t.unsqueeze(-1)).T if self.args.adaptive_pts_radius: radius = self.args.point_radius / min(self.h, self.w) * 2.0 * pts[..., -1][None] / \ torch.clamp(pts_[..., -1][None], min=1e-6) else: radius = self.args.point_radius / min(self.h, self.w) * 2.0 if self.args.vary_pts_radius and np.random.choice([0, 1], p=[0.6, 0.4]): if type(radius) == torch.Tensor: factor = 1 + (0.2 * (torch.rand_like(radius) - 0.5)) else: factor = 1 + (0.2 * (np.random.rand() - 0.5)) radius *= factor if self.args.use_mask_for_decoding: rgb_feat = torch.cat([rgb_feat, mask], dim=-1) if self.args.use_depth_for_decoding: disp = normalize_0_1(1. / torch.clamp(pts_[..., [-1]], min=1e-6)) rgb_feat = torch.cat([rgb_feat, disp], dim=-1) global_out_list = [] direct_color_out_list = [] meta = {} for j in range(num_sides): mask_side = side_ids == j renderer = create_pcd_renderer(self.h, self.w, self.tgt_intrinsic.squeeze()[:3, :3], radius=radius[:, mask_side] if type(radius) == torch.Tensor else radius) all_pcd_j = Pointclouds(points=[pts_[mask_side]], features=[rgb_feat[mask_side]]) global_out_j = renderer(all_pcd_j) all_colored_pcd_j = Pointclouds(points=[pts_[mask_side]], features=[rgbs[mask_side]]) direct_rgb_out_j = renderer(all_colored_pcd_j) global_out_list.append(global_out_j) direct_color_out_list.append(direct_rgb_out_j) w1, w2 = self.compute_weight_for_two_frame_blending(time, global_out_list[0][..., [-1]], global_out_list[-1][..., [-1]], global_out_list[0][..., [3]], global_out_list[-1][..., [3]] ) direct_rgb_out = w1 * direct_color_out_list[0] + w2 * direct_color_out_list[-1] pred_rgb = self.model.img_decoder(global_out_list[0].permute(0, 3, 1, 2), global_out_list[-1].permute(0, 3, 1, 2), time) direct_rgb = direct_rgb_out[..., :3].permute(0, 3, 1, 2) acc = 0.5 * (global_out_list[0][..., [3]] + global_out_list[1][..., [3]]).permute(0, 3, 1, 2) meta['acc'] = acc return pred_rgb, direct_rgb, meta def get_reprojection_mask(self, pts, R, t): pts1_ = (R.mm(pts.T) + t.unsqueeze(-1)).T mask1 = torch.ones_like(self.src_img1[:, :1].reshape(-1, 1)) mask_renderer = create_pcd_renderer(self.h, self.w, self.tgt_intrinsic.squeeze()[:3, :3], radius=1.0 / min(self.h, self.w) * 4.) mask_pcd = Pointclouds(points=[pts1_], features=[mask1]) mask = mask_renderer(mask_pcd).permute(0, 3, 1, 2) mask = F.max_pool2d(mask, kernel_size=7, stride=1, padding=3) return mask def get_cropping_ids(self, mask): assert mask.shape[:2] == (1, 1) mask = mask.squeeze() h, w = mask.shape mask_mean_x_axis = mask.mean(dim=0) x_valid = torch.nonzero(mask_mean_x_axis > 0.5) bad = False if len(x_valid) < 0.75 * w: left, right = 0, w - 1 # invalid bad = True else: left, right = x_valid[0][0], x_valid[-1][0] mask_mean_y_axis = mask.mean(dim=1) y_valid = torch.nonzero(mask_mean_y_axis > 0.5) if len(y_valid) < 0.75 * h: top, bottom = 0, h - 1 # invalid bad = True else: top, bottom = y_valid[0][0], y_valid[-1][0] assert 0 <= top <= h - 1 and 0 <= bottom <= h - 1 and 0 <= left <= w - 1 and 0 <= right <= w - 1 return top, bottom, left, right, bad def render_depth_from_mdi(self, depth_layers, alpha_layers): ''' :param depth_layers: [n_layers, 1, h, w] :param alpha_layers: [n_layers, 1, h, w] :return: rendered depth [1, 1, h, w] ''' num_layers = len(depth_layers) h, w = depth_layers.shape[-2:] layer_id = torch.arange(num_layers, device=self.device).float() layer_id_maps = layer_id[..., None, None, None, None].repeat(1, 1, 1, h, w) T = torch.cumprod(1. - alpha_layers, dim=0)[:-1] T = torch.cat([torch.ones_like(T[:1]), T], dim=0) weights = alpha_layers * T depth_map = torch.sum(weights * depth_layers, dim=0) depth_map = torch.clamp(depth_map, min=1.) layer_id_map = torch.sum(weights * layer_id_maps, dim=0) return depth_map, layer_id_map def render_rgbda_layers_from_one_view(self): depth_bins = get_depth_bins(depth=self.src_depth1) rgba_layers, depth_layers, mask_layers = \ self.inpainter.sequential_inpainting(self.src_img1, self.src_depth1, depth_bins) coord1 = get_coord_grids_pt(self.h, self.w, device=self.device).float() src_depth1 = self.apply_scale_shift(self.src_depth1, self.scale_shift1[0], self.scale_shift1[1]) pts1 = unproject_pts_pt(self.intrinsic1, coord1.reshape(-1, 2), src_depth1.flatten()) featmaps = self.feature_extraction(rgba_layers, mask_layers, depth_layers) depth_layers = self.apply_scale_shift(depth_layers, self.scale_shift1[0], self.scale_shift1[1]) num_layers = len(rgba_layers) all_pts = [] all_rgbas = [] all_feats = [] all_masks = [] for i in range(num_layers): alpha_i = rgba_layers[i][:, -1] > 0.5 rgba_i = rgba_layers[i] mask_i = mask_layers[i] featmap = featmaps[i][None] featmap = F.interpolate(featmap, size=(self.h, self.w), mode='bilinear', align_corners=True) pts1_i = unproject_pts_pt(self.intrinsic1, coord1.reshape(-1, 2), depth_layers[i].flatten()) pts1_i = pts1_i.reshape(1, self.h, self.w, 3) all_pts.append(pts1_i[alpha_i]) all_rgbas.append(rgba_i.permute(0, 2, 3, 1)[alpha_i]) all_feats.append(featmap.permute(0, 2, 3, 1)[alpha_i]) all_masks.append(mask_i.permute(0, 2, 3, 1)[alpha_i]) all_pts = torch.cat(all_pts) all_rgbas = torch.cat(all_rgbas) all_feats = torch.cat(all_feats) all_masks = torch.cat(all_masks) all_side_ids = torch.zeros_like(all_masks.squeeze(), dtype=torch.long) R = self.tgt_pose[0, :3, :3] t = self.tgt_pose[0, :3, 3] pred_img, direct_rgb_out, meta = self.render_pcd(all_pts, all_pts, all_rgbas, all_rgbas, all_feats, all_feats, all_masks, all_side_ids, R, t, 0) mask = self.get_reprojection_mask(pts1, R, t) t, b, l, r, bad = self.get_cropping_ids(mask) gt_img = self.src_img2 skip = False if not skip and not self.args.eval_mode: pred_img = pred_img[:, :, t:b, l:r] mask = mask[:, :, t:b, l:r] direct_rgb_out = direct_rgb_out[:, :, t:b, l:r] gt_img = gt_img[:, :, t:b, l:r] else: skip = True res_dict = { 'src_img1': self.src_img1, 'src_img2': self.src_img2, 'pred_img': pred_img, 'gt_img': gt_img, 'mask': mask, 'direct_rgb_out': direct_rgb_out, 'skip': skip } return res_dict def compute_scene_flow_one_side(self, coord, pose, rgb1, rgb2, rgba_layers1, rgba_layers2, featmaps1, featmaps2, pts1, pts2, depth_layers1, depth_layers2, mask_layers1, mask_layers2, flow_f, flow_b, kernel, with_inpainted=False): num_layers1 = len(rgba_layers1) pts2 = transform_pts_in_3D(pts2, pose).T.reshape(1, 3, self.h, self.w) mask_mutual_flow = self.scene_flow_estimator.get_mutual_matches(flow_f, flow_b, th=5, return_mask=True).float() mask_mutual_flow = mask_mutual_flow.unsqueeze(1) coord1_corsp = coord + flow_f coord1_corsp_normed = normalize_for_grid_sample(coord1_corsp, self.h, self.w) pts2_sampled = F.grid_sample(pts2, coord1_corsp_normed, align_corners=True, mode='nearest', padding_mode="border") depth2_sampled = pts2_sampled[:, -1:] rgb2_sampled = F.grid_sample(rgb2, coord1_corsp_normed, align_corners=True, padding_mode="border") mask_layers2_ds = F.interpolate(mask_layers2.squeeze(1), size=featmaps2.shape[-2:], mode='area') featmap2 = torch.sum(featmaps2 * mask_layers2_ds, dim=0, keepdim=True) context2 = torch.sum(mask_layers2_ds, dim=0, keepdim=True) featmap2_sampled = F.grid_sample(featmap2, coord1_corsp_normed, align_corners=True, padding_mode="border") context2_sampled = F.grid_sample(context2, coord1_corsp_normed, align_corners=True, padding_mode="border") mask2_sampled = F.grid_sample(self.src_mask2, coord1_corsp_normed, align_corners=True, padding_mode="border") featmap2_sampled = featmap2_sampled / torch.clamp(context2_sampled, min=1e-6) context2_sampled = (context2_sampled > 0.5).float() last_pts2_i = torch.zeros_like(pts2.permute(0, 2, 3, 1)) last_alpha_i = torch.zeros_like(rgba_layers1[0][:, -1], dtype=torch.bool) all_pts = [] all_rgbas = [] all_feats = [] all_rgbas_end = [] all_feats_end = [] all_masks = [] all_pts_end = [] all_optical_flows = [] for i in range(num_layers1): alpha_i = (rgba_layers1[i][:, -1]*self.src_mask1.squeeze(1)*mask2_sampled.squeeze(1)) > 0.5 rgba_i = rgba_layers1[i] mask_i = mask_layers1[i] mask_no_mutual_flow = mask_i * context2_sampled mask_gau_i = mask_no_mutual_flow * mask_mutual_flow mask_no_mutual_flow = erosion(mask_no_mutual_flow, kernel) mask_gau_i = erosion(mask_gau_i, kernel) featmap1 = featmaps1[i][None] featmap1 = F.interpolate(featmap1, size=(self.h, self.w), mode='bilinear', align_corners=True) pts1_i = unproject_pts_pt(self.intrinsic1, coord.reshape(-1, 2), depth_layers1[i].flatten()) pts1_i = pts1_i.reshape(1, self.h, self.w, 3) flow_inpainted, mask_no_mutual_flow_ = self.masked_diffuse(flow_f.permute(0, 3, 1, 2), mask_no_mutual_flow, kernel_size=15, iter=7) coord_inpainted = coord.clone() coord_inpainted_ = coord + flow_inpainted.permute(0, 2, 3, 1) mask_no_mutual_flow_bool = (mask_no_mutual_flow_ > 1e-6).squeeze(1) coord_inpainted[mask_no_mutual_flow_bool] = coord_inpainted_[mask_no_mutual_flow_bool] depth_inpainted = depth_layers1[i].clone() depth_inpainted_, mask_gau_i_ = self.masked_diffuse(depth2_sampled, mask_gau_i, kernel_size=15, iter=7) mask_gau_i_bool = (mask_gau_i_ > 1e-6).squeeze(1) depth_inpainted.squeeze(1)[mask_gau_i_bool] = depth_inpainted_.squeeze(1)[mask_gau_i_bool] pts2_i = unproject_pts_pt(self.intrinsic2, coord_inpainted.contiguous().reshape(-1, 2), depth_inpainted.flatten()).reshape(1, self.h, self.w, 3) if i > 0: mask_wrong_ordering = (pts2_i[..., -1] <= last_pts2_i[..., -1]) * last_alpha_i pts2_i[mask_wrong_ordering] = last_pts2_i[mask_wrong_ordering] * 1.01 rgba_end = mask_gau_i * torch.cat([rgb2_sampled, mask_gau_i], dim=1) + (1 - mask_gau_i) * rgba_i feat_end = mask_gau_i * featmap2_sampled + (1 - mask_gau_i) * featmap1 last_alpha_i[alpha_i] = True last_pts2_i[alpha_i] = pts2_i[alpha_i] if with_inpainted: mask_keep = alpha_i else: mask_keep = mask_i.squeeze(1).bool() all_pts.append(pts1_i[mask_keep]) all_rgbas.append(rgba_i.permute(0, 2, 3, 1)[mask_keep]) all_feats.append(featmap1.permute(0, 2, 3, 1)[mask_keep]) all_masks.append(mask_i.permute(0, 2, 3, 1)[mask_keep]) all_pts_end.append(pts2_i[mask_keep]) all_rgbas_end.append(rgba_end.permute(0, 2, 3, 1)[mask_keep]) all_feats_end.append(feat_end.permute(0, 2, 3, 1)[mask_keep]) all_optical_flows.append(flow_inpainted.permute(0, 2, 3, 1)[mask_keep]) return all_pts, all_pts_end, all_rgbas, all_rgbas_end, all_feats, all_feats_end, all_masks, all_optical_flows def render_rgbda_layers_with_scene_flow(self, return_pts=False): kernel = torch.ones(5, 5, device=self.device) flow_f = self.scene_flow_estimator.compute_optical_flow(self.src_img1, self.src_img2) flow_b = self.scene_flow_estimator.compute_optical_flow(self.src_img2, self.src_img1) depth_bins1 = get_depth_bins(depth=self.src_depth1) depth_bins2 = get_depth_bins(depth=self.src_depth2) rgba_layers1, depth_layers1, mask_layers1 = \ self.inpainter.sequential_inpainting(self.src_img1, self.src_depth1, depth_bins1) rgba_layers2, depth_layers2, mask_layers2 = \ self.inpainter.sequential_inpainting(self.src_img2, self.src_depth2, depth_bins2) if self.args.visualize_rgbda_layers: self.save_rgbda_layers(self.src_rgb_file1, rgba_layers1, depth_layers1, mask_layers1) self.save_rgbda_layers(self.src_rgb_file2, rgba_layers2, depth_layers2, mask_layers2) featmaps1 = self.feature_extraction(rgba_layers1, mask_layers1, depth_layers1) featmaps2 = self.feature_extraction(rgba_layers2, mask_layers2, depth_layers2) depth_layers1 = self.apply_scale_shift(depth_layers1, self.scale_shift1[0], self.scale_shift1[1]) depth_layers2 = self.apply_scale_shift(depth_layers2, self.scale_shift2[0], self.scale_shift2[1]) processed_depth1, layer_id_map1 = self.render_depth_from_mdi(depth_layers1, rgba_layers1[:, :, -1:]) processed_depth2, layer_id_map2 = self.render_depth_from_mdi(depth_layers2, rgba_layers2[:, :, -1:]) assert self.src_img1.shape[-2:] == self.src_img2.shape[-2:] h, w = self.src_img1.shape[-2:] coord = get_coord_grids_pt(h, w, device=self.device).float()[None] pts1 = unproject_pts_pt(self.intrinsic1, coord.reshape(-1, 2), processed_depth1.flatten()) pts2 = unproject_pts_pt(self.intrinsic2, coord.reshape(-1, 2), processed_depth2.flatten()) all_pts_11, all_pts_12, all_rgbas_11, all_rgbas_12, all_feats_11, all_feats_12,\ all_masks_1, all_optical_flow_1 = \ self.compute_scene_flow_one_side(coord, torch.inverse(self.pose), self.src_img1, self.src_img2, rgba_layers1, rgba_layers2, featmaps1, featmaps2, pts1, pts2, depth_layers1, depth_layers2, mask_layers1, mask_layers2, flow_f, flow_b, kernel, with_inpainted=True) all_pts_22, all_pts_21, all_rgbas_22, all_rgbas_21, all_feats_22, all_feats_21,\ all_masks_2, all_optical_flow_2 = \ self.compute_scene_flow_one_side(coord, self.pose, self.src_img2, self.src_img1, rgba_layers2, rgba_layers1, featmaps2, featmaps1, pts2, pts1, depth_layers2, depth_layers1, mask_layers2, mask_layers1, flow_b, flow_f, kernel, with_inpainted=True) if not torch.allclose(self.pose, torch.eye(4, device=self.device)): all_pts_21 = self.transform_all_pts(all_pts_21, torch.inverse(self.pose)) all_pts_22 = self.transform_all_pts(all_pts_22, torch.inverse(self.pose)) all_pts = torch.cat(all_pts_11+all_pts_21) all_rgbas = torch.cat(all_rgbas_11+all_rgbas_21) all_feats = torch.cat(all_feats_11+all_feats_21) all_masks = torch.cat(all_masks_1+all_masks_2) all_pts_end = torch.cat(all_pts_12+all_pts_22) all_rgbas_end = torch.cat(all_rgbas_12+all_rgbas_22) all_feats_end = torch.cat(all_feats_12+all_feats_22) all_side_ids = torch.zeros_like(all_masks.squeeze(), dtype=torch.long) num_pts_2 = sum([len(x) for x in all_pts_21]) all_side_ids[-num_pts_2:] = 1 all_optical_flow = torch.cat(all_optical_flow_1+all_optical_flow_2) if return_pts: return all_pts, all_pts_end, all_rgbas, all_rgbas_end, all_feats, all_feats_end, \ all_masks, all_side_ids, all_optical_flow R = self.tgt_pose[0, :3, :3] t = self.tgt_pose[0, :3, 3] pred_img, direct_rgb_out, meta = self.render_pcd(all_pts, all_pts_end, all_rgbas, all_rgbas_end, all_feats, all_feats_end, all_masks, all_side_ids, R, t, self.time) mask1 = self.get_reprojection_mask(pts1, R, t) pose2_to_tgt = self.tgt_pose.bmm(torch.inverse(self.pose)) mask2 = self.get_reprojection_mask(pts2, pose2_to_tgt[0, :3, :3], pose2_to_tgt[0, :3, 3]) mask = (mask1+mask2) * 0.5 gt_img = self.tgt_img t, b, l, r, bad = self.get_cropping_ids(mask) skip = False if not skip and not self.args.eval_mode: pred_img = pred_img[:, :, t:b, l:r] mask = mask[:, :, t:b, l:r] direct_rgb_out = direct_rgb_out[:, :, t:b, l:r] gt_img = gt_img[:, :, t:b, l:r] else: skip = True res_dict = { 'src_img1': self.src_img1, 'src_img2': self.src_img2, 'pred_img': pred_img, 'gt_img': gt_img, 'mask': mask, 'direct_rgb_out': direct_rgb_out, 'alpha_layers1': rgba_layers1[:, :, [-1]], 'alpha_layers2': rgba_layers2[:, :, [-1]], 'mask_layers1': mask_layers1, 'mask_layers2': mask_layers2, 'skip': skip } return res_dict def dynamic_view_synthesis_with_inpainting(self): if self.is_multi_view: return self.render_rgbda_layers_from_one_view() else: return self.render_rgbda_layers_with_scene_flow() def get_prediction(self, data): # process data first self.process_data(data) return self.dynamic_view_synthesis_with_inpainting() def save_rgbda_layers(self, src_rgb_file, rgba_layers, depth_layers, mask_layers): frame_id = os.path.basename(src_rgb_file).split('.')[0] scene_id = src_rgb_file.split('/')[-3] out_dir = os.path.join(self.args.rootdir, 'out', self.args.expname, 'vis', '{}-{}'.format(scene_id, frame_id)) os.makedirs(out_dir, exist_ok=True) alpha_layers = rgba_layers[:, :, [-1]] for i, rgba_layer in enumerate(rgba_layers): save_filename = os.path.join(out_dir, 'rgb_original_{}.png'.format(i)) rgba_layer_ = rgba_layer * mask_layers[i] rgba_np = rgba_layer_.detach().squeeze().permute(1, 2, 0).cpu().numpy() imageio.imwrite(save_filename, float2uint8(rgba_np)) for i, rgba_layer in enumerate(rgba_layers): save_filename = os.path.join(out_dir, 'rgb_{}.png'.format(i)) rgba_np = rgba_layer.detach().squeeze().permute(1, 2, 0).cpu().numpy() imageio.imwrite(save_filename, float2uint8(rgba_np)) for i, depth_layer in enumerate(depth_layers): save_filename = os.path.join(out_dir, 'disparity_original_{}.png'.format(i)) disparity = (1. / torch.clamp(depth_layer, min=1e-6)) * alpha_layers[i] disparity = torch.cat([disparity, disparity, disparity, alpha_layers[i]*mask_layers[i]], dim=1) disparity_np = disparity.detach().squeeze().cpu().numpy().transpose(1, 2, 0) imageio.imwrite(save_filename, float2uint8(disparity_np)) for i, depth_layer in enumerate(depth_layers): save_filename = os.path.join(out_dir, 'disparity_{}.png'.format(i)) disparity = (1. / torch.clamp(depth_layer, min=1e-6)) * alpha_layers[i] disparity = torch.cat([disparity, disparity, disparity, alpha_layers[i]], dim=1) disparity_np = disparity.detach().squeeze().cpu().numpy().transpose(1, 2, 0) imageio.imwrite(save_filename, float2uint8(disparity_np)) for i, mask_layer in enumerate(mask_layers): save_filename = os.path.join(out_dir, 'mask_{}.png'.format(i)) tri_mask = 0.5 * alpha_layers[i] + 0.5 * mask_layer tri_mask_np = tri_mask.detach().squeeze().cpu().numpy() imageio.imwrite(save_filename, float2uint8(tri_mask_np))
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from sklearn.cluster import AgglomerativeClustering def get_depth_bins(depth=None, disparity=None, num_bins=None): """ :param depth: [1, 1, H, W] :param disparity: [1, 1, H, W] :return: depth_bins """ assert (disparity is not None) or (depth is not None) if disparity is None: assert depth.min() > 1e-2 disparity = 1. / depth if depth is None: depth = 1. / torch.clamp(disparity, min=1e-2) assert depth.shape[:2] == (1, 1) and disparity.shape[:2] == (1, 1) disparity_max = disparity.max().item() disparity_min = disparity.min().item() disparity_feat = disparity[:, :, ::10, ::10].reshape(-1, 1).cpu().numpy() disparity_feat = (disparity_feat - disparity_min) / (disparity_max - disparity_min) if num_bins is None: n_clusters = None distance_threshold = 5 else: n_clusters = num_bins distance_threshold = None result = AgglomerativeClustering(n_clusters=n_clusters, distance_threshold=distance_threshold).fit(disparity_feat) num_bins = result.n_clusters_ if n_clusters is None else n_clusters depth_bins = [depth.min().item()] for i in range(num_bins): th = (disparity_feat[result.labels_ == i]).min() th = th * (disparity_max - disparity_min) + disparity_min depth_bins.append(1. / th) depth_bins = sorted(depth_bins) depth_bins[0] = depth.min() - 1e-6 depth_bins[-1] = depth.max() + 1e-6 return depth_bins
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from kornia.morphology import opening, erosion from kornia.filters import gaussian_blur2d from networks.inpainting_nets import Inpaint_Depth_Net, Inpaint_Color_Net from core.utils import masked_median_blur def refine_near_depth_discontinuity(depth, alpha, kernel_size=11): ''' median filtering the depth discontinuity boundary ''' depth = depth * alpha depth_median_blurred = masked_median_blur(depth, alpha, kernel_size=kernel_size) * alpha alpha_eroded = erosion(alpha, kernel=torch.ones(kernel_size, kernel_size).to(alpha.device)) depth[alpha_eroded == 0] = depth_median_blurred[alpha_eroded == 0] return depth def define_inpainting_bbox(alpha, border=40): ''' define the bounding box for inpainting :param alpha: alpha map [1, 1, h, w] :param border: the minimum distance from a valid pixel to the border of the bbox :return: [1, 1, h, w], a 0/1 map that indicates the inpainting region ''' assert alpha.ndim == 4 and alpha.shape[:2] == (1, 1) x, y = torch.nonzero(alpha)[:, -2:].T h, w = alpha.shape[-2:] row_min, row_max = x.min(), x.max() col_min, col_max = y.min(), y.max() out = torch.zeros_like(alpha) x0, x1 = max(row_min - border, 0), min(row_max + border, h - 1) y0, y1 = max(col_min - border, 0), min(col_max + border, w - 1) out[:, :, x0:x1, y0:y1] = 1 return out class Inpainter(): def __init__(self, args, device='cuda'): self.args = args self.device = device print("Loading depth model...") depth_feat_model = Inpaint_Depth_Net() depth_feat_weight = torch.load('inpainting_ckpts/depth-model.pth', map_location=torch.device(device)) depth_feat_model.load_state_dict(depth_feat_weight) depth_feat_model = depth_feat_model.to(device) depth_feat_model.eval() self.depth_feat_model = depth_feat_model.to(device) print("Loading rgb model...") rgb_model = Inpaint_Color_Net() rgb_feat_weight = torch.load('inpainting_ckpts/color-model.pth', map_location=torch.device(device)) rgb_model.load_state_dict(rgb_feat_weight) rgb_model.eval() self.rgb_model = rgb_model.to(device) # kernels self.context_erosion_kernel = torch.ones(10, 10).to(self.device) self.alpha_kernel = torch.ones(3, 3).to(self.device) @staticmethod def process_depth_for_network(depth, context, log_depth=True): if log_depth: log_depth = torch.log(depth + 1e-8) * context mean_depth = torch.mean(log_depth[context > 0]) zero_mean_depth = (log_depth - mean_depth) * context else: zero_mean_depth = depth mean_depth = 0 return zero_mean_depth, mean_depth @staticmethod def deprocess_depth(zero_mean_depth, mean_depth, log_depth=True): if log_depth: depth = torch.exp(zero_mean_depth + mean_depth) else: depth = zero_mean_depth return depth def inpaint_rgb(self, holes, context, context_rgb, edge): # inpaint rgb with torch.no_grad(): inpainted_rgb = self.rgb_model.forward_3P(holes, context, context_rgb, edge, unit_length=128, cuda=self.device) inpainted_rgb = inpainted_rgb.detach() * holes + context_rgb inpainted_a = holes + context inpainted_a = opening(inpainted_a, self.alpha_kernel) inpainted_rgba = torch.cat([inpainted_rgb, inpainted_a], dim=1) return inpainted_rgba def inpaint_depth(self, depth, holes, context, edge, depth_range): zero_mean_depth, mean_depth = self.process_depth_for_network(depth, context) with torch.no_grad(): inpainted_depth = self.depth_feat_model.forward_3P(holes, context, zero_mean_depth, edge, unit_length=128, cuda=self.device) inpainted_depth = self.deprocess_depth(inpainted_depth.detach(), mean_depth) inpainted_depth[context > 0.5] = depth[context > 0.5] inpainted_depth = gaussian_blur2d(inpainted_depth, (3, 3), (1.5, 1.5)) inpainted_depth[context > 0.5] = depth[context > 0.5] # if the inpainted depth in the background is smaller that the foreground depth, # then the inpainted content will mistakenly occlude the foreground. # Clipping the inpainted depth in this situation. mask_wrong_depth_ordering = inpainted_depth < depth inpainted_depth[mask_wrong_depth_ordering] = depth[mask_wrong_depth_ordering] * 1.01 inpainted_depth = torch.clamp(inpainted_depth, min=min(depth_range)*0.9) return inpainted_depth def sequential_inpainting(self, rgb, depth, depth_bins): ''' :param rgb: [1, 3, H, W] :param depth: [1, 1, H, W] :return: rgba_layers: [N, 1, 3, H, W]: the inpainted RGBA layers depth_layers: [N, 1, 1, H, W]: the inpainted depth layers mask_layers: [N, 1, 1, H, W]: the original alpha layers (before inpainting) ''' num_bins = len(depth_bins) - 1 rgba_layers = [] depth_layers = [] mask_layers = [] for i in range(num_bins): alpha_i = (depth >= depth_bins[i]) * (depth < depth_bins[i+1]) alpha_i = alpha_i.float() if i == 0: rgba_i = torch.cat([rgb*alpha_i, alpha_i], dim=1) rgba_layers.append(rgba_i) depth_i = refine_near_depth_discontinuity(depth, alpha_i) depth_layers.append(depth_i) mask_layers.append(alpha_i) pre_alpha = alpha_i.bool() pre_inpainted_depth = depth * alpha_i else: alpha_i_eroded = erosion(alpha_i, self.context_erosion_kernel) if alpha_i_eroded.sum() < 10: continue context = erosion((depth >= depth_bins[i]).float(), self.context_erosion_kernel) holes = 1. - context bbox = define_inpainting_bbox(context, border=40) holes *= bbox edge = torch.zeros_like(holes) context_rgb = rgb * context # inpaint depth inpainted_depth_i = self.inpaint_depth(depth, holes, context, edge, (depth_bins[i], depth_bins[i+1])) depth_near_mask = (inpainted_depth_i < depth_bins[i+1]).float() # inpaint rgb inpainted_rgba_i = self.inpaint_rgb(holes, context, context_rgb, edge) if i < num_bins - 1: # only keep the content whose depth is smaller than the upper limit of the current layer # otherwise the inpainted content on the far-depth edge will falsely occlude the next layer. inpainted_rgba_i *= depth_near_mask inpainted_depth_i = refine_near_depth_discontinuity(inpainted_depth_i, inpainted_rgba_i[:, [-1]]) inpainted_alpha_i = inpainted_rgba_i[:, [-1]].bool() mask_wrong_ordering = (inpainted_depth_i <= pre_inpainted_depth) * inpainted_alpha_i inpainted_depth_i[mask_wrong_ordering] = pre_inpainted_depth[mask_wrong_ordering] * 1.05 rgba_layers.append(inpainted_rgba_i) depth_layers.append(inpainted_depth_i) mask_layers.append(context * depth_near_mask) # original mask pre_alpha[inpainted_alpha_i] = True pre_inpainted_depth[inpainted_alpha_i > 0] = inpainted_depth_i[inpainted_alpha_i > 0] rgba_layers = torch.stack(rgba_layers) depth_layers = torch.stack(depth_layers) mask_layers = torch.stack(mask_layers) return rgba_layers, depth_layers, mask_layers
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append('../') import config import numpy as np import torch import torch.nn as nn from pytorch3d.renderer import ( PerspectiveCameras, PointsRasterizationSettings, PointsRasterizer, AlphaCompositor, ) args = config.config_parser() class PointsRenderer(nn.Module): """ A class for rendering a batch of points. The class should be initialized with a rasterizer and compositor class which each have a forward function. """ def __init__(self, rasterizer, compositor) -> None: super().__init__() self.rasterizer = rasterizer self.compositor = compositor def to(self, device): # Manually move to device rasterizer as the cameras # within the class are not of type nn.Module self.rasterizer = self.rasterizer.to(device) self.compositor = self.compositor.to(device) return self def forward(self, point_clouds, **kwargs) -> torch.Tensor: fragments = self.rasterizer(point_clouds, **kwargs) # Construct weights based on the distance of a point to the true point. # However, this could be done differently: e.g. predicted as opposed # to a function of the weights. r = self.rasterizer.raster_settings.radius if type(r) == torch.Tensor: if r.shape[-1] > 1: idx = fragments.idx.clone() idx[idx == -1] = 0 r = r[:, idx.squeeze().long()] r = r.permute(0, 3, 1, 2) dists2 = fragments.dists.permute(0, 3, 1, 2) weights = 1 - dists2 / (r * r) images = self.compositor( fragments.idx.long().permute(0, 3, 1, 2), weights, point_clouds.features_packed().permute(1, 0), **kwargs, ) # permute so image comes at the end images = images.permute(0, 2, 3, 1) return images def linear_interpolation(data0, data1, time): return (1. - time) * data0 + time * data1 def create_pcd_renderer(h, w, intrinsics, R=None, T=None, radius=None, device="cuda"): # Initialize a camera. fx = intrinsics[0, 0] fy = intrinsics[1, 1] if R is None: R = torch.eye(3)[None] # (1, 3, 3) if T is None: T = torch.zeros(1, 3) # (1, 3) cameras = PerspectiveCameras(R=R, T=T, device=device, focal_length=((-fx, -fy),), principal_point=(tuple(intrinsics[:2, -1]),), image_size=((h, w),), in_ndc=False, ) # Define the settings for rasterization and shading. Here we set the output image to be of size # 512x512. As we are rendering images for visualization purposes only we will set faces_per_pixel=1 # and blur_radius=0.0. Refer to raster_points.py for explanations of these parameters. if radius is None: radius = args.point_radius / min(h, w) * 2.0 if args.vary_pts_radius: if np.random.choice([0, 1], p=[0.6, 0.4]): factor = 1 + (0.2 * (np.random.rand() - 0.5)) radius *= factor raster_settings = PointsRasterizationSettings( image_size=(h, w), radius=radius, points_per_pixel=8, ) # Create a points renderer by compositing points using an alpha compositor (nearer points # are weighted more heavily). See [1] for an explanation. rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings) renderer = PointsRenderer( rasterizer=rasterizer, compositor=AlphaCompositor() ) return renderer
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Tuple import numpy as np import torch import torch.nn.functional as F from kornia.filters import gaussian_blur2d, box_blur, median_blur from kornia.filters.kernels import get_binary_kernel2d from kornia.morphology import erosion from scipy.interpolate import interp1d from scipy.ndimage import median_filter def float2uint8(x): return (255. * x).astype(np.uint8) def float2uint16(x): return (65535 * x).astype(np.uint16) def normalize_0_1(x): x_min, x_max = x.min(), x.max() return (x - x_min) / (x_max - x_min) def homogenize_np(coord): """ append ones in the last dimension :param coord: [...., 2/3] :return: homogenous coordinates """ return np.concatenate([coord, np.ones_like(coord[..., :1])], axis=-1) def homogenize_pt(coord): return torch.cat([coord, torch.ones_like(coord[..., :1])], dim=-1) def get_coord_grids_pt(h, w, device, homogeneous=False): """ create pxiel coordinate grid :param h: height :param w: weight :param device: device :param homogeneous: if homogeneous coordinate :return: coordinates [h, w, 2] """ y = torch.arange(0, h).to(device) x = torch.arange(0, w).to(device) grid_y, grid_x = torch.meshgrid(y, x) if homogeneous: return torch.stack([grid_x, grid_y, torch.ones_like(grid_x)], dim=-1) return torch.stack([grid_x, grid_y], dim=-1) # [h, w, 2] def normalize_for_grid_sample(coords, h, w): device = coords.device coords_normed = coords / torch.tensor([w-1., h-1.]).to(device) * 2. - 1. return coords_normed def unproject_pts_np(intrinsics, coords, depth): if coords.shape[-1] == 2: coords = homogenize_np(coords) intrinsics = intrinsics.squeeze()[:3, :3] coords = np.linalg.inv(intrinsics).dot(coords.T) * depth.reshape(1, -1) return coords.T # [n, 3] def unproject_pts_pt(intrinsics, coords, depth): if coords.shape[-1] == 2: coords = homogenize_pt(coords) intrinsics = intrinsics.squeeze()[:3, :3] coords = torch.inverse(intrinsics).mm(coords.T) * depth.reshape(1, -1) return coords.T # [n, 3] def pixel2cam(depth, pixel_coords, intrinsics, is_homogeneous=True): """Transforms coordinates in the pixel frame to the camera frame. Args: depth: [batch, height, width] pixel_coords: homogeneous pixel coordinates [batch, 3, height, width] intrinsics: camera intrinsics [batch, 3, 3] is_homogeneous: return in homogeneous coordinates Returns: Coords in the camera frame [batch, 3 (4 if homogeneous), height, width] """ if depth.ndim == 4: assert depth.shape[1] == 1 depth = depth.squeeze(1) batch, height, width = depth.shape depth = depth.reshape(batch, 1, -1) pixel_coords = pixel_coords.reshape(batch, 3, -1) cam_coords = torch.inverse(intrinsics).bmm(pixel_coords) * depth if is_homogeneous: ones = torch.ones_like(depth) cam_coords = torch.cat([cam_coords, ones], dim=1) cam_coords = cam_coords.reshape(batch, -1, height, width) return cam_coords def transform_pts_in_3D(pts, pose, return_homogeneous=False): ''' :param pts: nx3, tensor :param pose: 4x4, tensor :return: nx3 or nx4, tensor ''' pts_h = homogenize_pt(pts) pose = pose.squeeze() assert pose.shape == (4, 4) transformed_pts_h = pose.mm(pts_h.T).T # [n, 4] if return_homogeneous: return transformed_pts_h return transformed_pts_h[..., :3] def crop_boundary(x, ratio): h, w = x.shape[-2:] crop_h = int(h * ratio) crop_w = int(w * ratio) return x[:, :, crop_h:h-crop_h, crop_w:w-crop_w] def masked_smooth_filter(x, mask, kernel_size=9, sigma=1): ''' :param x: [B, n, h, w] :param mask: [B, 1, h, w] :return: [B, n, h, w] ''' x_ = x * mask x_ = box_blur(x_, (kernel_size, kernel_size), border_type='constant') mask_ = box_blur(mask, (kernel_size, kernel_size), border_type='constant') x_ = x_ / torch.clamp(mask_, min=1e-6) mask_bool = (mask.repeat(1, x.shape[1], 1, 1) > 1e-6).float() out = mask_bool * x + (1. - mask_bool) * x_ return out, mask_ def remove_noise_in_dpt_disparity(disparity, kernel_size=5): return median_filter(disparity, size=kernel_size) def _compute_zero_padding(kernel_size: Tuple[int, int]) -> Tuple[int, int]: r"""Utility function that computes zero padding tuple.""" computed: List[int] = [(k - 1) // 2 for k in kernel_size] return computed[0], computed[1] def masked_median_blur(input, mask, kernel_size=9): assert input.shape == mask.shape if not isinstance(input, torch.Tensor): raise TypeError(f"Input type is not a torch.Tensor. Got {type(input)}") if not len(input.shape) == 4: raise ValueError(f"Invalid input shape, we expect BxCxHxW. Got: {input.shape}") padding: Tuple[int, int] = _compute_zero_padding((kernel_size, kernel_size)) # prepare kernel kernel: torch.Tensor = get_binary_kernel2d((kernel_size, kernel_size)).to(input) b, c, h, w = input.shape # map the local window to single vector features: torch.Tensor = F.conv2d(input.reshape(b * c, 1, h, w), kernel, padding=padding, stride=1) masks: torch.Tensor = F.conv2d(mask.reshape(b * c, 1, h, w), kernel, padding=padding, stride=1) features = features.view(b, c, -1, h, w).permute(0, 1, 3, 4, 2) # BxCxxHxWx(K_h * K_w) min_value, max_value = features.min(), features.max() masks = masks.view(b, c, -1, h, w).permute(0, 1, 3, 4, 2) # BxCxHxWx(K_h * K_w) index_invalid = (1 - masks).nonzero(as_tuple=True) index_b, index_c, index_h, index_w, index_k = index_invalid features[(index_b[::2], index_c[::2], index_h[::2], index_w[::2], index_k[::2])] = min_value features[(index_b[1::2], index_c[1::2], index_h[1::2], index_w[1::2], index_k[1::2])] = max_value # compute the median along the feature axis median: torch.Tensor = torch.median(features, dim=-1)[0] return median def define_camera_path(num_frames, x, y, z, path_type='circle', return_t_only=False): generic_pose = np.eye(4) tgt_poses = [] if path_type == 'straight-line': corner_points = np.array([[0, 0, 0], [(0 + x) * 0.5, (0 + y) * 0.5, (0 + z) * 0.5], [x, y, z]]) corner_t = np.linspace(0, 1, len(corner_points)) t = np.linspace(0, 1, num_frames) cs = interp1d(corner_t, corner_points, axis=0, kind='quadratic') spline = cs(t) xs, ys, zs = [xx.squeeze() for xx in np.split(spline, 3, 1)] elif path_type == 'double-straight-line': corner_points = np.array([[-x, -y, -z], [0, 0, 0], [x, y, z]]) corner_t = np.linspace(0, 1, len(corner_points)) t = np.linspace(0, 1, num_frames) cs = interp1d(corner_t, corner_points, axis=0, kind='quadratic') spline = cs(t) xs, ys, zs = [xx.squeeze() for xx in np.split(spline, 3, 1)] elif path_type == 'circle': xs, ys, zs = [], [], [] for frame_id, bs_shift_val in enumerate(np.arange(-2.0, 2.0, (4./num_frames))): xs += [np.cos(bs_shift_val * np.pi) * 1 * x] ys += [np.sin(bs_shift_val * np.pi) * 1 * y] zs += [np.cos(bs_shift_val * np.pi/2.) * 1 * z] xs, ys, zs = np.array(xs), np.array(ys), np.array(zs) elif path_type == 'debug': xs = np.array([x, 0, -x, 0, 0]) ys = np.array([0, y, 0, -y, 0]) zs = np.array([0, 0, 0, 0, z]) else: raise NotImplementedError xs, ys, zs = np.array(xs), np.array(ys), np.array(zs) if return_t_only: return np.stack([xs, ys, zs], axis=1) # [n, 3] for xx, yy, zz in zip(xs, ys, zs): tgt_poses.append(generic_pose * 1.) tgt_poses[-1][:3, -1] = np.array([xx, yy, zz]) return tgt_poses
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F import importlib def class_for_name(module_name, class_name): # load the module, will raise ImportError if module cannot be loaded m = importlib.import_module(module_name) return getattr(m, class_name) def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation, padding_mode='reflect') def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False, padding_mode='reflect') class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes, track_running_stats=False, affine=True) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes, track_running_stats=False, affine=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) # while original implementation places the stride at the first 1x1 convolution(self.conv1) # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. # This variant is also known as ResNet V1.5 and improves accuracy according to # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width, track_running_stats=False, affine=True) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width, track_running_stats=False, affine=True) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion, track_running_stats=False, affine=True) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class conv(nn.Module): def __init__(self, num_in_layers, num_out_layers, kernel_size, stride): super(conv, self).__init__() self.kernel_size = kernel_size self.conv = nn.Conv2d(num_in_layers, num_out_layers, kernel_size=kernel_size, stride=stride, padding=(self.kernel_size - 1) // 2, padding_mode='reflect') self.bn = nn.BatchNorm2d(num_out_layers, track_running_stats=False, affine=True) def forward(self, x): return F.elu(self.bn(self.conv(x)), inplace=True) class upconv(nn.Module): def __init__(self, num_in_layers, num_out_layers, kernel_size, scale): super(upconv, self).__init__() self.scale = scale self.conv = conv(num_in_layers, num_out_layers, kernel_size, 1) def forward(self, x): x = nn.functional.interpolate(x, scale_factor=self.scale, align_corners=True, mode='bilinear') return self.conv(x) class ResUNet(nn.Module): def __init__(self, args, encoder='resnet34', in_ch=8, out_ch=32, norm_layer=None, ): super(ResUNet, self).__init__() assert encoder in ['resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'], "Incorrect encoder type" if encoder in ['resnet18', 'resnet34']: filters = [64, 128, 256, 512] else: filters = [256, 512, 1024, 2048] # resnet = class_for_name("torchvision.models", encoder)(pretrained=True).to("cuda:{}".format(args.local_rank)) # original layers = [3, 4, 6, 3] if norm_layer is None: norm_layer = nn.BatchNorm2d # norm_layer = nn.InstanceNorm2d self._norm_layer = norm_layer self.dilation = 1 block = BasicBlock replace_stride_with_dilation = [False, False, False] self.inplanes = 64 self.groups = 1 self.base_width = 64 self.conv1 = nn.Conv2d(in_ch, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False, padding_mode='reflect') self.bn1 = norm_layer(self.inplanes, track_running_stats=False, affine=True) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], stride=1) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) # if in_ch != 3: # Number of input channels # self.conv1 = nn.Conv2d(in_ch, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) # else: # self.conv1 = resnet.conv1 # H/2 # self.bn1 = resnet.bn1 # self.relu = resnet.relu # self.maxpool = resnet.maxpool # H/4 # # # encoder # self.layer1 = resnet.layer1 # H/4 # self.layer2 = resnet.layer2 # H/8 # self.layer3 = resnet.layer3 # H/16 # decoder self.upconv3 = upconv(filters[2], 128, 3, 2) self.iconv3 = conv(filters[1] + 128, 128, 3, 1) self.upconv2 = upconv(128, 64, 3, 2) self.iconv2 = conv(filters[0] + 64, out_ch, 3, 1) # fine-level conv self.out_conv = nn.Conv2d(out_ch, out_ch, 1, 1) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion, track_running_stats=False, affine=True), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def skipconnect(self, x1, x2): diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = F.pad(x1, (diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2)) # for padding issues, see # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd x = torch.cat([x2, x1], dim=1) return x def forward(self, x): x = self.relu(self.bn1(self.conv1(x))) x = self.maxpool(x) x1 = self.layer1(x) x2 = self.layer2(x1) x3 = self.layer3(x2) x = self.upconv3(x3) x = self.skipconnect(x2, x) x = self.iconv3(x) x = self.upconv2(x) x = self.skipconnect(x1, x) x = self.iconv2(x) x_out = self.out_conv(x) return x_out
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import torch import torch.nn as nn import numpy as np import torch.nn.functional as F class BaseNetwork(nn.Module): def __init__(self): super(BaseNetwork, self).__init__() def init_weights(self, init_type='normal', gain=0.02): ''' initialize network's weights init_type: normal | xavier | kaiming | orthogonal https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/9451e70673400885567d08a9e97ade2524c700d0/models/networks.py#L39 ''' def init_func(m): classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if init_type == 'normal': nn.init.normal_(m.weight.data, 0.0, gain) elif init_type == 'xavier': nn.init.xavier_normal_(m.weight.data, gain=gain) elif init_type == 'kaiming': nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': nn.init.orthogonal_(m.weight.data, gain=gain) if hasattr(m, 'bias') and m.bias is not None: nn.init.constant_(m.bias.data, 0.0) elif classname.find('BatchNorm2d') != -1: nn.init.normal_(m.weight.data, 1.0, gain) nn.init.constant_(m.bias.data, 0.0) self.apply(init_func) def weights_init(init_type='gaussian'): def init_fun(m): classname = m.__class__.__name__ if (classname.find('Conv') == 0 or classname.find( 'Linear') == 0) and hasattr(m, 'weight'): if init_type == 'gaussian': nn.init.normal_(m.weight, 0.0, 0.02) elif init_type == 'xavier': nn.init.xavier_normal_(m.weight, gain=math.sqrt(2)) elif init_type == 'kaiming': nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in') elif init_type == 'orthogonal': nn.init.orthogonal_(m.weight, gain=math.sqrt(2)) elif init_type == 'default': pass else: assert 0, "Unsupported initialization: {}".format(init_type) if hasattr(m, 'bias') and m.bias is not None: nn.init.constant_(m.bias, 0.0) return init_fun class PartialConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): super().__init__() self.input_conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias) self.mask_conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, False) self.input_conv.apply(weights_init('kaiming')) self.slide_winsize = in_channels * kernel_size * kernel_size torch.nn.init.constant_(self.mask_conv.weight, 1.0) # mask is not updated for param in self.mask_conv.parameters(): param.requires_grad = False def forward(self, input, mask): # http://masc.cs.gmu.edu/wiki/partialconv # C(X) = W^T * X + b, C(0) = b, D(M) = 1 * M + 0 = sum(M) # W^T* (M .* X) / sum(M) + b = [C(M .* X) – C(0)] / D(M) + C(0) output = self.input_conv(input * mask) if self.input_conv.bias is not None: output_bias = self.input_conv.bias.view(1, -1, 1, 1).expand_as( output) else: output_bias = torch.zeros_like(output) with torch.no_grad(): output_mask = self.mask_conv(mask) no_update_holes = output_mask == 0 mask_sum = output_mask.masked_fill_(no_update_holes, 1.0) output_pre = ((output - output_bias) * self.slide_winsize) / mask_sum + output_bias output = output_pre.masked_fill_(no_update_holes, 0.0) new_mask = torch.ones_like(output) new_mask = new_mask.masked_fill_(no_update_holes, 0.0) return output, new_mask class PCBActiv(nn.Module): def __init__(self, in_ch, out_ch, bn=True, no_tracking_stats=False, sample='none-3', activ='relu', conv_bias=False): super().__init__() if sample == 'down-5': self.conv = PartialConv(in_ch, out_ch, 5, 2, 2, bias=conv_bias) elif sample == 'down-7': self.conv = PartialConv(in_ch, out_ch, 7, 2, 3, bias=conv_bias) elif sample == 'down-3': self.conv = PartialConv(in_ch, out_ch, 3, 2, 1, bias=conv_bias) else: self.conv = PartialConv(in_ch, out_ch, 3, 1, 1, bias=conv_bias) if bn: if no_tracking_stats: self.bn = nn.BatchNorm2d(out_ch, track_running_stats=False, affine=True) else: self.bn = nn.BatchNorm2d(out_ch) if activ == 'relu': self.activation = nn.ReLU() elif activ == 'leaky': self.activation = nn.LeakyReLU(negative_slope=0.2) def forward(self, input, input_mask): h, h_mask = self.conv(input, input_mask) if hasattr(self, 'bn'): h = self.bn(h) if hasattr(self, 'activation'): h = self.activation(h) return h, h_mask class Inpaint_Depth_Net(nn.Module): def __init__(self, layer_size=7, upsampling_mode='nearest'): super().__init__() in_channels = 4 out_channels = 1 self.freeze_enc_bn = False self.upsampling_mode = upsampling_mode self.layer_size = layer_size self.enc_1 = PCBActiv(in_channels, 64, bn=False, sample='down-7', conv_bias=True) self.enc_2 = PCBActiv(64, 128, sample='down-5', conv_bias=True) self.enc_3 = PCBActiv(128, 256, sample='down-5') self.enc_4 = PCBActiv(256, 512, sample='down-3') for i in range(4, self.layer_size): name = 'enc_{:d}'.format(i + 1) setattr(self, name, PCBActiv(512, 512, sample='down-3')) for i in range(4, self.layer_size): name = 'dec_{:d}'.format(i + 1) setattr(self, name, PCBActiv(512 + 512, 512, activ='leaky')) self.dec_4 = PCBActiv(512 + 256, 256, activ='leaky') self.dec_3 = PCBActiv(256 + 128, 128, activ='leaky') self.dec_2 = PCBActiv(128 + 64, 64, activ='leaky') self.dec_1 = PCBActiv(64 + in_channels, out_channels, bn=False, activ=None, conv_bias=True) def add_border(self, input, mask_flag, PCONV=True): with torch.no_grad(): h = input.shape[-2] w = input.shape[-1] require_len_unit = 2 ** self.layer_size residual_h = int(np.ceil(h / float(require_len_unit)) * require_len_unit - h) # + 2*require_len_unit residual_w = int(np.ceil(w / float(require_len_unit)) * require_len_unit - w) # + 2*require_len_unit enlarge_input = torch.zeros((input.shape[0], input.shape[1], h + residual_h, w + residual_w)).to(input.device) if mask_flag: if PCONV is False: enlarge_input += 1.0 enlarge_input = enlarge_input.clamp(0.0, 1.0) else: enlarge_input[:, 2, ...] = 0.0 anchor_h = residual_h//2 anchor_w = residual_w//2 enlarge_input[..., anchor_h:anchor_h+h, anchor_w:anchor_w+w] = input return enlarge_input, [anchor_h, anchor_h+h, anchor_w, anchor_w+w] def forward_3P(self, mask, context, depth, edge, unit_length=128, cuda=None): input = torch.cat((depth, edge, context, mask), dim=1) n, c, h, w = input.shape residual_h = int(np.ceil(h / float(unit_length)) * unit_length - h) residual_w = int(np.ceil(w / float(unit_length)) * unit_length - w) anchor_h = residual_h//2 anchor_w = residual_w//2 enlarge_input = torch.zeros((n, c, h + residual_h, w + residual_w)).to(cuda) enlarge_input[..., anchor_h:anchor_h+h, anchor_w:anchor_w+w] = input # enlarge_input[:, 3] = 1. - enlarge_input[:, 3] depth_output = self.forward(enlarge_input) depth_output = depth_output[..., anchor_h:anchor_h+h, anchor_w:anchor_w+w] # import pdb; pdb.set_trace() return depth_output def forward(self, input_feat, refine_border=False, sample=False, PCONV=True): input = input_feat input_mask = (input_feat[:, -2:-1] + input_feat[:, -1:]).clamp(0, 1).repeat(1, input.shape[1], 1, 1) vis_input = input.cpu().data.numpy() vis_input_mask = input_mask.cpu().data.numpy() H, W = input.shape[-2:] if refine_border is True: input, anchor = self.add_border(input, mask_flag=False) input_mask, anchor = self.add_border(input_mask, mask_flag=True, PCONV=PCONV) h_dict = {} # for the output of enc_N h_mask_dict = {} # for the output of enc_N h_dict['h_0'], h_mask_dict['h_0'] = input, input_mask h_key_prev = 'h_0' for i in range(1, self.layer_size + 1): l_key = 'enc_{:d}'.format(i) h_key = 'h_{:d}'.format(i) h_dict[h_key], h_mask_dict[h_key] = getattr(self, l_key)( h_dict[h_key_prev], h_mask_dict[h_key_prev]) h_key_prev = h_key h_key = 'h_{:d}'.format(self.layer_size) h, h_mask = h_dict[h_key], h_mask_dict[h_key] for i in range(self.layer_size, 0, -1): enc_h_key = 'h_{:d}'.format(i - 1) dec_l_key = 'dec_{:d}'.format(i) h = F.interpolate(h, scale_factor=2, mode=self.upsampling_mode) h_mask = F.interpolate(h_mask, scale_factor=2, mode='nearest') h = torch.cat([h, h_dict[enc_h_key]], dim=1) h_mask = torch.cat([h_mask, h_mask_dict[enc_h_key]], dim=1) h, h_mask = getattr(self, dec_l_key)(h, h_mask) output = h if refine_border is True: h_mask = h_mask[..., anchor[0]:anchor[1], anchor[2]:anchor[3]] output = output[..., anchor[0]:anchor[1], anchor[2]:anchor[3]] return output class Inpaint_Edge_Net(BaseNetwork): def __init__(self, residual_blocks=8, init_weights=True): super(Inpaint_Edge_Net, self).__init__() in_channels = 7 out_channels = 1 self.encoder = [] # 0 self.encoder_0 = nn.Sequential( nn.ReflectionPad2d(3), spectral_norm(nn.Conv2d(in_channels=in_channels, out_channels=64, kernel_size=7, padding=0), True), nn.InstanceNorm2d(64, track_running_stats=False), nn.ReLU(True)) # 1 self.encoder_1 = nn.Sequential( spectral_norm(nn.Conv2d(in_channels=64, out_channels=128, kernel_size=4, stride=2, padding=1), True), nn.InstanceNorm2d(128, track_running_stats=False), nn.ReLU(True)) # 2 self.encoder_2 = nn.Sequential( spectral_norm(nn.Conv2d(in_channels=128, out_channels=256, kernel_size=4, stride=2, padding=1), True), nn.InstanceNorm2d(256, track_running_stats=False), nn.ReLU(True)) # 3 blocks = [] for _ in range(residual_blocks): block = ResnetBlock(256, 2) blocks.append(block) self.middle = nn.Sequential(*blocks) # + 3 self.decoder_0 = nn.Sequential( spectral_norm(nn.ConvTranspose2d(in_channels=256+256, out_channels=128, kernel_size=4, stride=2, padding=1), True), nn.InstanceNorm2d(128, track_running_stats=False), nn.ReLU(True)) # + 2 self.decoder_1 = nn.Sequential( spectral_norm(nn.ConvTranspose2d(in_channels=128+128, out_channels=64, kernel_size=4, stride=2, padding=1), True), nn.InstanceNorm2d(64, track_running_stats=False), nn.ReLU(True)) # + 1 self.decoder_2 = nn.Sequential( nn.ReflectionPad2d(3), nn.Conv2d(in_channels=64+64, out_channels=out_channels, kernel_size=7, padding=0), ) if init_weights: self.init_weights() def add_border(self, input, channel_pad_1=None): h = input.shape[-2] w = input.shape[-1] require_len_unit = 16 residual_h = int(np.ceil(h / float(require_len_unit)) * require_len_unit - h) # + 2*require_len_unit residual_w = int(np.ceil(w / float(require_len_unit)) * require_len_unit - w) # + 2*require_len_unit enlarge_input = torch.zeros((input.shape[0], input.shape[1], h + residual_h, w + residual_w)).to(input.device) if channel_pad_1 is not None: for channel in channel_pad_1: enlarge_input[:, channel] = 1 anchor_h = residual_h//2 anchor_w = residual_w//2 enlarge_input[..., anchor_h:anchor_h+h, anchor_w:anchor_w+w] = input return enlarge_input, [anchor_h, anchor_h+h, anchor_w, anchor_w+w] def forward_3P(self, mask, context, rgb, disp, edge, unit_length=128, cuda=None): input = torch.cat((rgb, disp/disp.max(), edge, context, mask), dim=1) n, c, h, w = input.shape residual_h = int(np.ceil(h / float(unit_length)) * unit_length - h) residual_w = int(np.ceil(w / float(unit_length)) * unit_length - w) anchor_h = residual_h//2 anchor_w = residual_w//2 enlarge_input = torch.zeros((n, c, h + residual_h, w + residual_w)).to(cuda) enlarge_input[..., anchor_h:anchor_h+h, anchor_w:anchor_w+w] = input edge_output = self.forward(enlarge_input) edge_output = edge_output[..., anchor_h:anchor_h+h, anchor_w:anchor_w+w] return edge_output def forward(self, x, refine_border=False): if refine_border: x, anchor = self.add_border(x, [5]) x1 = self.encoder_0(x) x2 = self.encoder_1(x1) x3 = self.encoder_2(x2) x4 = self.middle(x3) x5 = self.decoder_0(torch.cat((x4, x3), dim=1)) x6 = self.decoder_1(torch.cat((x5, x2), dim=1)) x7 = self.decoder_2(torch.cat((x6, x1), dim=1)) x = torch.sigmoid(x7) if refine_border: x = x[..., anchor[0]:anchor[1], anchor[2]:anchor[3]] return x class Inpaint_Color_Net(nn.Module): def __init__(self, layer_size=7, upsampling_mode='nearest', add_hole_mask=False, add_two_layer=False, add_border=False): super().__init__() self.freeze_enc_bn = False self.upsampling_mode = upsampling_mode self.layer_size = layer_size in_channels = 6 self.enc_1 = PCBActiv(in_channels, 64, bn=False, sample='down-7') self.enc_2 = PCBActiv(64, 128, sample='down-5') self.enc_3 = PCBActiv(128, 256, sample='down-5') self.enc_4 = PCBActiv(256, 512, sample='down-3') self.enc_5 = PCBActiv(512, 512, sample='down-3') self.enc_6 = PCBActiv(512, 512, sample='down-3') self.enc_7 = PCBActiv(512, 512, sample='down-3') self.dec_7 = PCBActiv(512+512, 512, activ='leaky') self.dec_6 = PCBActiv(512+512, 512, activ='leaky') self.dec_5A = PCBActiv(512 + 512, 512, activ='leaky') self.dec_4A = PCBActiv(512 + 256, 256, activ='leaky') self.dec_3A = PCBActiv(256 + 128, 128, activ='leaky') self.dec_2A = PCBActiv(128 + 64, 64, activ='leaky') self.dec_1A = PCBActiv(64 + in_channels, 3, bn=False, activ=None, conv_bias=True) ''' self.dec_5B = PCBActiv(512 + 512, 512, activ='leaky') self.dec_4B = PCBActiv(512 + 256, 256, activ='leaky') self.dec_3B = PCBActiv(256 + 128, 128, activ='leaky') self.dec_2B = PCBActiv(128 + 64, 64, activ='leaky') self.dec_1B = PCBActiv(64 + 4, 1, bn=False, activ=None, conv_bias=True) ''' def cat(self, A, B): return torch.cat((A, B), dim=1) def upsample(self, feat, mask): feat = F.interpolate(feat, scale_factor=2, mode=self.upsampling_mode) mask = F.interpolate(mask, scale_factor=2, mode='nearest') return feat, mask def forward_3P(self, mask, context, rgb, edge, unit_length=128, cuda=None): input = torch.cat((rgb, edge, context, mask), dim=1) n, c, h, w = input.shape residual_h = int(np.ceil(h / float(unit_length)) * unit_length - h) # + 128 residual_w = int(np.ceil(w / float(unit_length)) * unit_length - w) # + 256 anchor_h = residual_h//2 anchor_w = residual_w//2 enlarge_input = torch.zeros((n, c, h + residual_h, w + residual_w)).to(cuda) enlarge_input[..., anchor_h:anchor_h+h, anchor_w:anchor_w+w] = input # enlarge_input[:, 3] = 1. - enlarge_input[:, 3] enlarge_input = enlarge_input.to(cuda) rgb_output = self.forward(enlarge_input) rgb_output = rgb_output[..., anchor_h:anchor_h+h, anchor_w:anchor_w+w] return rgb_output def forward(self, input, add_border=False): input_mask = (input[:, -2:-1] + input[:, -1:]).clamp(0, 1) H, W = input.shape[-2:] f_0, h_0 = input, input_mask.repeat((1,input.shape[1],1,1)) f_1, h_1 = self.enc_1(f_0, h_0) f_2, h_2 = self.enc_2(f_1, h_1) f_3, h_3 = self.enc_3(f_2, h_2) f_4, h_4 = self.enc_4(f_3, h_3) f_5, h_5 = self.enc_5(f_4, h_4) f_6, h_6 = self.enc_6(f_5, h_5) f_7, h_7 = self.enc_7(f_6, h_6) o_7, k_7 = self.upsample(f_7, h_7) o_6, k_6 = self.dec_7(self.cat(o_7, f_6), self.cat(k_7, h_6)) o_6, k_6 = self.upsample(o_6, k_6) o_5, k_5 = self.dec_6(self.cat(o_6, f_5), self.cat(k_6, h_5)) o_5, k_5 = self.upsample(o_5, k_5) o_5A, k_5A = o_5, k_5 o_5B, k_5B = o_5, k_5 ############### o_4A, k_4A = self.dec_5A(self.cat(o_5A, f_4), self.cat(k_5A, h_4)) o_4A, k_4A = self.upsample(o_4A, k_4A) o_3A, k_3A = self.dec_4A(self.cat(o_4A, f_3), self.cat(k_4A, h_3)) o_3A, k_3A = self.upsample(o_3A, k_3A) o_2A, k_2A = self.dec_3A(self.cat(o_3A, f_2), self.cat(k_3A, h_2)) o_2A, k_2A = self.upsample(o_2A, k_2A) o_1A, k_1A = self.dec_2A(self.cat(o_2A, f_1), self.cat(k_2A, h_1)) o_1A, k_1A = self.upsample(o_1A, k_1A) o_0A, k_0A = self.dec_1A(self.cat(o_1A, f_0), self.cat(k_1A, h_0)) return torch.sigmoid(o_0A) def train(self, mode=True): """ Override the default train() to freeze the BN parameters """ super().train(mode) if self.freeze_enc_bn: for name, module in self.named_modules(): if isinstance(module, nn.BatchNorm2d) and 'enc' in name: module.eval() class Discriminator(BaseNetwork): def __init__(self, use_sigmoid=True, use_spectral_norm=True, init_weights=True, in_channels=None): super(Discriminator, self).__init__() self.use_sigmoid = use_sigmoid self.conv1 = self.features = nn.Sequential( spectral_norm(nn.Conv2d(in_channels=in_channels, out_channels=64, kernel_size=4, stride=2, padding=1, bias=not use_spectral_norm), use_spectral_norm), nn.LeakyReLU(0.2, inplace=True), ) self.conv2 = nn.Sequential( spectral_norm(nn.Conv2d(in_channels=64, out_channels=128, kernel_size=4, stride=2, padding=1, bias=not use_spectral_norm), use_spectral_norm), nn.LeakyReLU(0.2, inplace=True), ) self.conv3 = nn.Sequential( spectral_norm(nn.Conv2d(in_channels=128, out_channels=256, kernel_size=4, stride=2, padding=1, bias=not use_spectral_norm), use_spectral_norm), nn.LeakyReLU(0.2, inplace=True), ) self.conv4 = nn.Sequential( spectral_norm(nn.Conv2d(in_channels=256, out_channels=512, kernel_size=4, stride=1, padding=1, bias=not use_spectral_norm), use_spectral_norm), nn.LeakyReLU(0.2, inplace=True), ) self.conv5 = nn.Sequential( spectral_norm(nn.Conv2d(in_channels=512, out_channels=1, kernel_size=4, stride=1, padding=1, bias=not use_spectral_norm), use_spectral_norm), ) if init_weights: self.init_weights() def forward(self, x): conv1 = self.conv1(x) conv2 = self.conv2(conv1) conv3 = self.conv3(conv2) conv4 = self.conv4(conv3) conv5 = self.conv5(conv4) outputs = conv5 if self.use_sigmoid: outputs = torch.sigmoid(conv5) return outputs, [conv1, conv2, conv3, conv4, conv5] class ResnetBlock(nn.Module): def __init__(self, dim, dilation=1): super(ResnetBlock, self).__init__() self.conv_block = nn.Sequential( nn.ReflectionPad2d(dilation), spectral_norm(nn.Conv2d(in_channels=dim, out_channels=dim, kernel_size=3, padding=0, dilation=dilation, bias=not True), True), nn.InstanceNorm2d(dim, track_running_stats=False), nn.LeakyReLU(negative_slope=0.2), nn.ReflectionPad2d(1), spectral_norm(nn.Conv2d(in_channels=dim, out_channels=dim, kernel_size=3, padding=0, dilation=1, bias=not True), True), nn.InstanceNorm2d(dim, track_running_stats=False), ) def forward(self, x): out = x + self.conv_block(x) # Remove ReLU at the end of the residual block # http://torch.ch/blog/2016/02/04/resnets.html return out def spectral_norm(module, mode=True): if mode: return nn.utils.spectral_norm(module) return module
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Parts of the U-Net model """ import torch import torch.nn as nn import torch.nn.functional as F class DoubleConv(nn.Module): """(convolution => [GN] => PReLU) * 2""" def __init__(self, in_channels, out_channels, mid_channels=None, group=None): super().__init__() if not mid_channels: mid_channels = out_channels #if not group: # group = out_channels//16 self.double_conv1 = nn.Sequential( nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, padding_mode='reflect'), nn.GroupNorm(mid_channels//32, mid_channels), nn.PReLU() ) self.double_conv2 = nn.Sequential( nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, padding_mode='reflect'), nn.GroupNorm(out_channels//32, out_channels), nn.PReLU() ) def forward(self, x): x1 = self.double_conv1(x) x2 = self.double_conv2(x1) return x1, x2 class Down(nn.Module): """Downscaling with maxpool then double conv""" def __init__(self, in_channels, out_channels, group=None): super().__init__() self.maxpool_conv = nn.Sequential( nn.MaxPool2d(2), DoubleConv(in_channels, out_channels, group) ) def forward(self, x): return self.maxpool_conv(x) class ConcatDoubleConv(nn.Module): """(convolution => [GN] => PReLU) * 2""" def __init__(self, in_channels, out_channels, mid_channels=None, group=None): super().__init__() if not mid_channels: mid_channels = out_channels #if not group: # group = out_channels//16 self.double_conv1 = nn.Sequential( nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, padding_mode='reflect'), nn.GroupNorm(mid_channels//32, mid_channels), nn.PReLU() ) self.double_conv2 = nn.Sequential( nn.Conv2d(mid_channels*2, out_channels, kernel_size=3, padding=1, padding_mode='reflect'), nn.GroupNorm(out_channels//32, out_channels), nn.PReLU() ) def forward(self, x, xc1): x1 = self.double_conv1(x) x2 = self.double_conv2(torch.cat([xc1, x1], dim=1)) return x2 class Up(nn.Module): """Upscaling then double conv""" def __init__(self, in_channels, out_channels, mid_channels, bilinear=True): super().__init__() # if bilinear, use the normal convolutions to reduce the number of channels if bilinear: self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) self.conv = ConcatDoubleConv(in_channels, out_channels, mid_channels) else: self.up = nn.ConvTranspose2d(in_channels , in_channels // 2, kernel_size=2, stride=2) self.conv = ConcatDoubleConv(in_channels, out_channels, mid_channels) def forward(self, x, xc1, xc2): x1 = self.up(x) # input is CHW diffY = xc1.size()[2] - x1.size()[2] diffX = xc1.size()[3] - x1.size()[3] x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2], mode='reflect') # if you have padding issues, see # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd x = torch.cat([xc1, x1], dim=1) return self.conv(x, xc2) class OutConv(nn.Module): def __init__(self, in_channels, out_channels): super(OutConv, self).__init__() self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, padding_mode='reflect') #self.gn = nn.GroupNorm(1, out_channels) self.act = nn.Sigmoid() def forward(self, x, xc1): x1 = self.up(x) x2 = torch.cat([xc1, x1], dim=1) #return self.act(self.gn(self.conv(x2))) return self.act(self.conv(x2)) class ImgDecoder(nn.Module): def __init__(self, args, in_ch, out_ch): super(ImgDecoder, self).__init__() self.firstconv = nn.Conv2d(in_ch, 32, kernel_size=7, stride=1, padding=3, bias=False) #256x256 self.firstprelu = nn.PReLU() self.down1 = Down(32, 64) #128x128 self.down2 = Down(64, 128) #64x64 self.down3 = Down(128, 256) #32x32 self.down4 = Down(256, 512) #16x16 self.conv5 = DoubleConv(512, 512) #16x16 self.up1 = Up(1024, 256, 512) self.up2 = Up(512, 128, 256) self.up3 = Up(256, 64, 128) self.up4 = Up(128, 32, 64) self.outc = OutConv(64, out_ch) self.alpha = nn.Parameter(torch.tensor(1.)) def compute_weight_for_two_frame_blending(self, time, disp1, disp2, alpha0, alpha1): weight1 = (1 - time) * torch.exp(self.alpha*disp1) * alpha0 weight2 = time * torch.exp(self.alpha*disp2) * alpha1 sum_weight = torch.clamp(weight1 + weight2, min=1e-6) out_weight1 = weight1 / sum_weight out_weight2 = weight2 / sum_weight return out_weight1, out_weight2 def forward(self, x0, x1, time): disp0 = x0[:, [-1]] disp1 = x1[:, [-1]] alpha0 = x0[:, [3]] alpha1 = x1[:, [3]] w0, w1 = self.compute_weight_for_two_frame_blending(time, disp0, disp1, alpha0, alpha1) x = w0 * x0 + w1 * x1 x0 = self.firstprelu(self.firstconv(x)) x20, x21 = self.down1(x0) x30, x31 = self.down2(x21) x40, x41 = self.down3(x31) x50, x51 = self.down4(x41) x60, x61 = self.conv5(x51) xt1 = self.up1(x61, x51, x50) xt2 = self.up2(xt1, x41, x40) xt3 = self.up3(xt2, x31, x30) xt4 = self.up4(xt3, x21, x20) target_img = self.outc(xt4, x0) return target_img
"""Compute depth maps for images in the input folder. """ import os import glob import torch import cv2 import argparse from third_party.DPT.util import io from torchvision.transforms import Compose from third_party.DPT.dpt.models import DPTDepthModel from third_party.DPT.dpt.midas_net import MidasNet_large from third_party.DPT.dpt.transforms import Resize, NormalizeImage, PrepareForNet def run_dpt(input_path, output_path, model_path, model_type="dpt_hybrid", optimize=True, absolute_depth=False, kitti_crop=False): """Run MonoDepthNN to compute depth maps. Args: input_path (str): path to input folder output_path (str): path to output folder model_path (str): path to saved model """ # select device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # load network if model_type == "dpt_large": # DPT-Large net_w = net_h = 384 model = DPTDepthModel( path=model_path, backbone="vitl16_384", non_negative=True, enable_attention_hooks=False, ) normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "dpt_hybrid": # DPT-Hybrid net_w = net_h = 384 model = DPTDepthModel( path=model_path, backbone="vitb_rn50_384", non_negative=True, enable_attention_hooks=False, ) normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "dpt_hybrid_kitti": net_w = 1216 net_h = 352 model = DPTDepthModel( path=model_path, scale=0.00006016, shift=0.00579, invert=True, backbone="vitb_rn50_384", non_negative=True, enable_attention_hooks=False, ) normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "dpt_hybrid_nyu": net_w = 640 net_h = 480 model = DPTDepthModel( path=model_path, scale=0.000305, shift=0.1378, invert=True, backbone="vitb_rn50_384", non_negative=True, enable_attention_hooks=False, ) normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "midas_v21": # Convolutional model net_w = net_h = 384 model = MidasNet_large(model_path, non_negative=True) normalization = NormalizeImage( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) else: assert ( False ), f"model_type '{model_type}' not implemented, use: " \ f"--model_type [dpt_large|dpt_hybrid|dpt_hybrid_kitti|dpt_hybrid_nyu|midas_v21]" transform = Compose( [ Resize( net_w, net_h, resize_target=None, keep_aspect_ratio=True, ensure_multiple_of=32, resize_method="minimal", image_interpolation_method=cv2.INTER_CUBIC, ), normalization, PrepareForNet(), ] ) model.eval() if optimize == True and device == torch.device("cuda"): model = model.to(memory_format=torch.channels_last) model = model.half() model.to(device) # get input img_names = glob.glob(os.path.join(input_path, "*.png")) + glob.glob(os.path.join(input_path, "*.jpg")) num_images = len(img_names) # create output folder os.makedirs(output_path, exist_ok=True) print('=========================computing DPT depth maps...=========================') for ind, img_name in enumerate(img_names): if os.path.isdir(img_name): continue print(" processing {} ({}/{})".format(img_name, ind + 1, num_images)) # input img = io.read_image(img_name) if kitti_crop is True: height, width, _ = img.shape top = height - 352 left = (width - 1216) // 2 img = img[top: top + 352, left: left + 1216, :] img_input = transform({"image": img})["image"] # compute with torch.no_grad(): sample = torch.from_numpy(img_input).to(device).unsqueeze(0) if optimize == True and device == torch.device("cuda"): sample = sample.to(memory_format=torch.channels_last) sample = sample.half() prediction = model.forward(sample) prediction = ( torch.nn.functional.interpolate( prediction.unsqueeze(1), size=img.shape[:2], mode="bicubic", align_corners=False, ) .squeeze() .cpu() .numpy() ) if model_type == "dpt_hybrid_kitti": prediction *= 256 if model_type == "dpt_hybrid_nyu": prediction *= 1000.0 filename = os.path.join( output_path, os.path.splitext(os.path.basename(img_name))[0] ) io.write_depth(filename, prediction, bits=2, absolute_depth=absolute_depth) print("finished") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "-i", "--input_path", default="input", help="folder with input images" ) parser.add_argument( "-o", "--output_path", default="output_monodepth", help="folder for output images", ) parser.add_argument( "-m", "--model_weights", default=None, help="path to model weights" ) parser.add_argument( "-t", "--model_type", default="dpt_hybrid", help="model type [dpt_large|dpt_hybrid|midas_v21]", ) parser.add_argument("--kitti_crop", dest="kitti_crop", action="store_true") parser.add_argument("--absolute_depth", dest="absolute_depth", action="store_true") parser.add_argument("--optimize", dest="optimize", action="store_true") parser.add_argument("--no-optimize", dest="optimize", action="store_false") parser.set_defaults(optimize=True) parser.set_defaults(kitti_crop=False) parser.set_defaults(absolute_depth=False) args = parser.parse_args() default_models = { "midas_v21": "weights/midas_v21-f6b98070.pt", "dpt_large": "weights/dpt_large-midas-2f21e586.pt", "dpt_hybrid": "weights/dpt_hybrid-midas-501f0c75.pt", "dpt_hybrid_kitti": "weights/dpt_hybrid_kitti-cb926ef4.pt", "dpt_hybrid_nyu": "weights/dpt_hybrid_nyu-2ce69ec7.pt", } if args.model_weights is None: args.model_weights = default_models[args.model_type] # set torch options torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True # compute depth maps run_dpt( args.input_path, args.output_path, args.model_weights, args.model_type, args.optimize, args.absolute_depth, args.kitti_crop )
import setuptools __version__ = '0.0.1dev1' setuptools.setup( name='dpt', version=__version__, packages=setuptools.find_packages(), # Only put dependencies that's not depends on cuda directly. install_requires=['timm'] )
import matplotlib.pyplot as plt from dpt.vit import get_mean_attention_map def visualize_attention(input, model, prediction, model_type): input = (input + 1.0)/2.0 attn1 = model.pretrained.attention["attn_1"] attn2 = model.pretrained.attention["attn_2"] attn3 = model.pretrained.attention["attn_3"] attn4 = model.pretrained.attention["attn_4"] plt.subplot(3,4,1), plt.imshow(input.squeeze().permute(1,2,0)), plt.title("Input", fontsize=8), plt.axis("off") plt.subplot(3,4,2), plt.imshow(prediction), plt.set_cmap("inferno"), plt.title("Prediction", fontsize=8), plt.axis("off") if model_type == "dpt_hybrid": h = [3,6,9,12] else: h = [6,12,18,24] # upper left plt.subplot(345), ax1 = plt.imshow(get_mean_attention_map(attn1, 1, input.shape)) plt.ylabel("Upper left corner", fontsize=8) plt.title(f"Layer {h[0]}", fontsize=8) gc = plt.gca() gc.axes.xaxis.set_ticklabels([]) gc.axes.yaxis.set_ticklabels([]) gc.axes.xaxis.set_ticks([]) gc.axes.yaxis.set_ticks([]) plt.subplot(346), plt.imshow(get_mean_attention_map(attn2, 1, input.shape)) plt.title(f"Layer {h[1]}", fontsize=8) plt.axis("off"), plt.subplot(347), plt.imshow(get_mean_attention_map(attn3, 1, input.shape)) plt.title(f"Layer {h[2]}", fontsize=8) plt.axis("off"), plt.subplot(348), plt.imshow(get_mean_attention_map(attn4, 1, input.shape)) plt.title(f"Layer {h[3]}", fontsize=8) plt.axis("off"), # lower right plt.subplot(3,4,9), plt.imshow(get_mean_attention_map(attn1, -1, input.shape)) plt.ylabel("Lower right corner", fontsize=8) gc = plt.gca() gc.axes.xaxis.set_ticklabels([]) gc.axes.yaxis.set_ticklabels([]) gc.axes.xaxis.set_ticks([]) gc.axes.yaxis.set_ticks([]) plt.subplot(3,4,10), plt.imshow(get_mean_attention_map(attn2, -1, input.shape)), plt.axis("off") plt.subplot(3,4,11), plt.imshow(get_mean_attention_map(attn3, -1, input.shape)), plt.axis("off") plt.subplot(3,4,12), plt.imshow(get_mean_attention_map(attn4, -1, input.shape)), plt.axis("off") plt.tight_layout() plt.show()
"""Utils for monoDepth. """ import sys import re import numpy as np import cv2 import torch from PIL import Image from .pallete import get_mask_pallete def read_pfm(path): """Read pfm file. Args: path (str): path to file Returns: tuple: (data, scale) """ with open(path, "rb") as file: color = None width = None height = None scale = None endian = None header = file.readline().rstrip() if header.decode("ascii") == "PF": color = True elif header.decode("ascii") == "Pf": color = False else: raise Exception("Not a PFM file: " + path) dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii")) if dim_match: width, height = list(map(int, dim_match.groups())) else: raise Exception("Malformed PFM header.") scale = float(file.readline().decode("ascii").rstrip()) if scale < 0: # little-endian endian = "<" scale = -scale else: # big-endian endian = ">" data = np.fromfile(file, endian + "f") shape = (height, width, 3) if color else (height, width) data = np.reshape(data, shape) data = np.flipud(data) return data, scale def write_pfm(path, image, scale=1): """Write pfm file. Args: path (str): pathto file image (array): data scale (int, optional): Scale. Defaults to 1. """ with open(path, "wb") as file: color = None if image.dtype.name != "float32": raise Exception("Image dtype must be float32.") image = np.flipud(image) if len(image.shape) == 3 and image.shape[2] == 3: # color image color = True elif ( len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1 ): # greyscale color = False else: raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.") file.write("PF\n" if color else "Pf\n".encode()) file.write("%d %d\n".encode() % (image.shape[1], image.shape[0])) endian = image.dtype.byteorder if endian == "<" or endian == "=" and sys.byteorder == "little": scale = -scale file.write("%f\n".encode() % scale) image.tofile(file) def read_image(path): """Read image and output RGB image (0-1). Args: path (str): path to file Returns: array: RGB image (0-1) """ img = cv2.imread(path) if img.ndim == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0 return img def resize_image(img): """Resize image and make it fit for network. Args: img (array): image Returns: tensor: data ready for network """ height_orig = img.shape[0] width_orig = img.shape[1] if width_orig > height_orig: scale = width_orig / 384 else: scale = height_orig / 384 height = (np.ceil(height_orig / scale / 32) * 32).astype(int) width = (np.ceil(width_orig / scale / 32) * 32).astype(int) img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA) img_resized = ( torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float() ) img_resized = img_resized.unsqueeze(0) return img_resized def resize_depth(depth, width, height): """Resize depth map and bring to CPU (numpy). Args: depth (tensor): depth width (int): image width height (int): image height Returns: array: processed depth """ depth = torch.squeeze(depth[0, :, :, :]).to("cpu") depth_resized = cv2.resize( depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC ) return depth_resized def write_depth(path, depth, bits=1, absolute_depth=False): """Write depth map to pfm and png file. Args: path (str): filepath without extension depth (array): depth """ write_pfm(path + ".pfm", depth.astype(np.float32)) if absolute_depth: out = depth else: depth_min = depth.min() depth_max = depth.max() max_val = (2 ** (8 * bits)) - 1 if depth_max - depth_min > np.finfo("float").eps: out = max_val * (depth - depth_min) / (depth_max - depth_min) else: out = np.zeros(depth.shape, dtype=depth.dtype) if bits == 1: cv2.imwrite(path + ".png", out.astype("uint8"), [cv2.IMWRITE_PNG_COMPRESSION, 0]) elif bits == 2: cv2.imwrite(path + ".png", out.astype("uint16"), [cv2.IMWRITE_PNG_COMPRESSION, 0]) return def write_segm_img(path, image, labels, palette="detail", alpha=0.5): """Write depth map to pfm and png file. Args: path (str): filepath without extension image (array): input image labels (array): labeling of the image """ mask = get_mask_pallete(labels, "ade20k") img = Image.fromarray(np.uint8(255*image)).convert("RGBA") seg = mask.convert("RGBA") out = Image.blend(img, seg, alpha) out.save(path + ".png") return
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: Hang Zhang ## ECE Department, Rutgers University ## Email: [email protected] ## Copyright (c) 2017 ## ## This source code is licensed under the MIT-style license found in the ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ from PIL import Image def get_mask_pallete(npimg, dataset='detail'): """Get image color pallete for visualizing masks""" # recovery boundary if dataset == 'pascal_voc': npimg[npimg==21] = 255 # put colormap out_img = Image.fromarray(npimg.squeeze().astype('uint8')) if dataset == 'ade20k': out_img.putpalette(adepallete) elif dataset == 'citys': out_img.putpalette(citypallete) elif dataset in ('detail', 'pascal_voc', 'pascal_aug'): out_img.putpalette(vocpallete) return out_img def _get_voc_pallete(num_cls): n = num_cls pallete = [0]*(n*3) for j in range(0,n): lab = j pallete[j*3+0] = 0 pallete[j*3+1] = 0 pallete[j*3+2] = 0 i = 0 while (lab > 0): pallete[j*3+0] |= (((lab >> 0) & 1) << (7-i)) pallete[j*3+1] |= (((lab >> 1) & 1) << (7-i)) pallete[j*3+2] |= (((lab >> 2) & 1) << (7-i)) i = i + 1 lab >>= 3 return pallete vocpallete = _get_voc_pallete(256) adepallete = [0,0,0,120,120,120,180,120,120,6,230,230,80,50,50,4,200,3,120,120,80,140,140,140,204,5,255,230,230,230,4,250,7,224,5,255,235,255,7,150,5,61,120,120,70,8,255,51,255,6,82,143,255,140,204,255,4,255,51,7,204,70,3,0,102,200,61,230,250,255,6,51,11,102,255,255,7,71,255,9,224,9,7,230,220,220,220,255,9,92,112,9,255,8,255,214,7,255,224,255,184,6,10,255,71,255,41,10,7,255,255,224,255,8,102,8,255,255,61,6,255,194,7,255,122,8,0,255,20,255,8,41,255,5,153,6,51,255,235,12,255,160,150,20,0,163,255,140,140,140,250,10,15,20,255,0,31,255,0,255,31,0,255,224,0,153,255,0,0,0,255,255,71,0,0,235,255,0,173,255,31,0,255,11,200,200,255,82,0,0,255,245,0,61,255,0,255,112,0,255,133,255,0,0,255,163,0,255,102,0,194,255,0,0,143,255,51,255,0,0,82,255,0,255,41,0,255,173,10,0,255,173,255,0,0,255,153,255,92,0,255,0,255,255,0,245,255,0,102,255,173,0,255,0,20,255,184,184,0,31,255,0,255,61,0,71,255,255,0,204,0,255,194,0,255,82,0,10,255,0,112,255,51,0,255,0,194,255,0,122,255,0,255,163,255,153,0,0,255,10,255,112,0,143,255,0,82,0,255,163,255,0,255,235,0,8,184,170,133,0,255,0,255,92,184,0,255,255,0,31,0,184,255,0,214,255,255,0,112,92,255,0,0,224,255,112,224,255,70,184,160,163,0,255,153,0,255,71,255,0,255,0,163,255,204,0,255,0,143,0,255,235,133,255,0,255,0,235,245,0,255,255,0,122,255,245,0,10,190,212,214,255,0,0,204,255,20,0,255,255,255,0,0,153,255,0,41,255,0,255,204,41,0,255,41,255,0,173,0,255,0,245,255,71,0,255,122,0,255,0,255,184,0,92,255,184,255,0,0,133,255,255,214,0,25,194,194,102,255,0,92,0,255] citypallete = [ 128,64,128,244,35,232,70,70,70,102,102,156,190,153,153,153,153,153,250,170,30,220,220,0,107,142,35,152,251,152,70,130,180,220,20,60,255,0,0,0,0,142,0,0,70,0,60,100,0,80,100,0,0,230,119,11,32,128,192,0,0,64,128,128,64,128,0,192,128,128,192,128,64,64,0,192,64,0,64,192,0,192,192,0,64,64,128,192,64,128,64,192,128,192,192,128,0,0,64,128,0,64,0,128,64,128,128,64,0,0,192,128,0,192,0,128,192,128,128,192,64,0,64,192,0,64,64,128,64,192,128,64,64,0,192,192,0,192,64,128,192,192,128,192,0,64,64,128,64,64,0,192,64,128,192,64,0,64,192,128,64,192,0,192,192,128,192,192,64,64,64,192,64,64,64,192,64,192,192,64,64,64,192,192,64,192,64,192,192,192,192,192,32,0,0,160,0,0,32,128,0,160,128,0,32,0,128,160,0,128,32,128,128,160,128,128,96,0,0,224,0,0,96,128,0,224,128,0,96,0,128,224,0,128,96,128,128,224,128,128,32,64,0,160,64,0,32,192,0,160,192,0,32,64,128,160,64,128,32,192,128,160,192,128,96,64,0,224,64,0,96,192,0,224,192,0,96,64,128,224,64,128,96,192,128,224,192,128,32,0,64,160,0,64,32,128,64,160,128,64,32,0,192,160,0,192,32,128,192,160,128,192,96,0,64,224,0,64,96,128,64,224,128,64,96,0,192,224,0,192,96,128,192,224,128,192,32,64,64,160,64,64,32,192,64,160,192,64,32,64,192,160,64,192,32,192,192,160,192,192,96,64,64,224,64,64,96,192,64,224,192,64,96,64,192,224,64,192,96,192,192,224,192,192,0,32,0,128,32,0,0,160,0,128,160,0,0,32,128,128,32,128,0,160,128,128,160,128,64,32,0,192,32,0,64,160,0,192,160,0,64,32,128,192,32,128,64,160,128,192,160,128,0,96,0,128,96,0,0,224,0,128,224,0,0,96,128,128,96,128,0,224,128,128,224,128,64,96,0,192,96,0,64,224,0,192,224,0,64,96,128,192,96,128,64,224,128,192,224,128,0,32,64,128,32,64,0,160,64,128,160,64,0,32,192,128,32,192,0,160,192,128,160,192,64,32,64,192,32,64,64,160,64,192,160,64,64,32,192,192,32,192,64,160,192,192,160,192,0,96,64,128,96,64,0,224,64,128,224,64,0,96,192,128,96,192,0,224,192,128,224,192,64,96,64,192,96,64,64,224,64,192,224,64,64,96,192,192,96,192,64,224,192,192,224,192,32,32,0,160,32,0,32,160,0,160,160,0,32,32,128,160,32,128,32,160,128,160,160,128,96,32,0,224,32,0,96,160,0,224,160,0,96,32,128,224,32,128,96,160,128,224,160,128,32,96,0,160,96,0,32,224,0,160,224,0,32,96,128,160,96,128,32,224,128,160,224,128,96,96,0,224,96,0,96,224,0,224,224,0,96,96,128,224,96,128,96,224,128,224,224,128,32,32,64,160,32,64,32,160,64,160,160,64,32,32,192,160,32,192,32,160,192,160,160,192,96,32,64,224,32,64,96,160,64,224,160,64,96,32,192,224,32,192,96,160,192,224,160,192,32,96,64,160,96,64,32,224,64,160,224,64,32,96,192,160,96,192,32,224,192,160,224,192,96,96,64,224,96,64,96,224,64,224,224,64,96,96,192,224,96,192,96,224,192,0,0,0]
import numpy as np import cv2 import math def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA): """Rezise the sample to ensure the given size. Keeps aspect ratio. Args: sample (dict): sample size (tuple): image size Returns: tuple: new size """ shape = list(sample["disparity"].shape) if shape[0] >= size[0] and shape[1] >= size[1]: return sample scale = [0, 0] scale[0] = size[0] / shape[0] scale[1] = size[1] / shape[1] scale = max(scale) shape[0] = math.ceil(scale * shape[0]) shape[1] = math.ceil(scale * shape[1]) # resize sample["image"] = cv2.resize( sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method ) sample["disparity"] = cv2.resize( sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST ) sample["mask"] = cv2.resize( sample["mask"].astype(np.float32), tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST, ) sample["mask"] = sample["mask"].astype(bool) return tuple(shape) class Resize(object): """Resize sample to given size (width, height).""" def __init__( self, width, height, resize_target=True, keep_aspect_ratio=False, ensure_multiple_of=1, resize_method="lower_bound", image_interpolation_method=cv2.INTER_AREA, ): """Init. Args: width (int): desired output width height (int): desired output height resize_target (bool, optional): True: Resize the full sample (image, mask, target). False: Resize image only. Defaults to True. keep_aspect_ratio (bool, optional): True: Keep the aspect ratio of the input sample. Output sample might not have the given width and height, and resize behaviour depends on the parameter 'resize_method'. Defaults to False. ensure_multiple_of (int, optional): Output width and height is constrained to be multiple of this parameter. Defaults to 1. resize_method (str, optional): "lower_bound": Output will be at least as large as the given size. "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.) "minimal": Scale as least as possible. (Output size might be smaller than given size.) Defaults to "lower_bound". """ self.__width = width self.__height = height self.__resize_target = resize_target self.__keep_aspect_ratio = keep_aspect_ratio self.__multiple_of = ensure_multiple_of self.__resize_method = resize_method self.__image_interpolation_method = image_interpolation_method def constrain_to_multiple_of(self, x, min_val=0, max_val=None): y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int) if max_val is not None and y > max_val: y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int) if y < min_val: y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int) return y def get_size(self, width, height): # determine new height and width scale_height = self.__height / height scale_width = self.__width / width if self.__keep_aspect_ratio: if self.__resize_method == "lower_bound": # scale such that output size is lower bound if scale_width > scale_height: # fit width scale_height = scale_width else: # fit height scale_width = scale_height elif self.__resize_method == "upper_bound": # scale such that output size is upper bound if scale_width < scale_height: # fit width scale_height = scale_width else: # fit height scale_width = scale_height elif self.__resize_method == "minimal": # scale as least as possbile if abs(1 - scale_width) < abs(1 - scale_height): # fit width scale_height = scale_width else: # fit height scale_width = scale_height else: raise ValueError( f"resize_method {self.__resize_method} not implemented" ) if self.__resize_method == "lower_bound": new_height = self.constrain_to_multiple_of( scale_height * height, min_val=self.__height ) new_width = self.constrain_to_multiple_of( scale_width * width, min_val=self.__width ) elif self.__resize_method == "upper_bound": new_height = self.constrain_to_multiple_of( scale_height * height, max_val=self.__height ) new_width = self.constrain_to_multiple_of( scale_width * width, max_val=self.__width ) elif self.__resize_method == "minimal": new_height = self.constrain_to_multiple_of(scale_height * height) new_width = self.constrain_to_multiple_of(scale_width * width) else: raise ValueError(f"resize_method {self.__resize_method} not implemented") return (new_width, new_height) def __call__(self, sample): width, height = self.get_size( sample["image"].shape[1], sample["image"].shape[0] ) # resize sample sample["image"] = cv2.resize( sample["image"], (width, height), interpolation=self.__image_interpolation_method, ) if self.__resize_target: if "disparity" in sample: sample["disparity"] = cv2.resize( sample["disparity"], (width, height), interpolation=cv2.INTER_NEAREST, ) if "depth" in sample: sample["depth"] = cv2.resize( sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST ) sample["mask"] = cv2.resize( sample["mask"].astype(np.float32), (width, height), interpolation=cv2.INTER_NEAREST, ) sample["mask"] = sample["mask"].astype(bool) return sample class NormalizeImage(object): """Normlize image by given mean and std.""" def __init__(self, mean, std): self.__mean = mean self.__std = std def __call__(self, sample): sample["image"] = (sample["image"] - self.__mean) / self.__std return sample class PrepareForNet(object): """Prepare sample for usage as network input.""" def __init__(self): pass def __call__(self, sample): image = np.transpose(sample["image"], (2, 0, 1)) sample["image"] = np.ascontiguousarray(image).astype(np.float32) if "mask" in sample: sample["mask"] = sample["mask"].astype(np.float32) sample["mask"] = np.ascontiguousarray(sample["mask"]) if "disparity" in sample: disparity = sample["disparity"].astype(np.float32) sample["disparity"] = np.ascontiguousarray(disparity) if "depth" in sample: depth = sample["depth"].astype(np.float32) sample["depth"] = np.ascontiguousarray(depth) return sample
import torch import torch.nn as nn import torch.nn.functional as F from .base_model import BaseModel from .blocks import ( FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder, forward_vit, ) def _make_fusion_block(features, use_bn): return FeatureFusionBlock_custom( features, nn.ReLU(False), deconv=False, bn=use_bn, expand=False, align_corners=True, ) class DPT(BaseModel): def __init__( self, head, features=256, backbone="vitb_rn50_384", readout="project", channels_last=False, use_bn=False, enable_attention_hooks=False, ): super(DPT, self).__init__() self.channels_last = channels_last hooks = { "vitb_rn50_384": [0, 1, 8, 11], "vitb16_384": [2, 5, 8, 11], "vitl16_384": [5, 11, 17, 23], } # Instantiate backbone and reassemble blocks self.pretrained, self.scratch = _make_encoder( backbone, features, False, # Set to true of you want to train from scratch, uses ImageNet weights groups=1, expand=False, exportable=False, hooks=hooks[backbone], use_readout=readout, enable_attention_hooks=enable_attention_hooks, ) self.scratch.refinenet1 = _make_fusion_block(features, use_bn) self.scratch.refinenet2 = _make_fusion_block(features, use_bn) self.scratch.refinenet3 = _make_fusion_block(features, use_bn) self.scratch.refinenet4 = _make_fusion_block(features, use_bn) self.scratch.output_conv = head def forward(self, x): if self.channels_last == True: x.contiguous(memory_format=torch.channels_last) layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x) layer_1_rn = self.scratch.layer1_rn(layer_1) layer_2_rn = self.scratch.layer2_rn(layer_2) layer_3_rn = self.scratch.layer3_rn(layer_3) layer_4_rn = self.scratch.layer4_rn(layer_4) path_4 = self.scratch.refinenet4(layer_4_rn) path_3 = self.scratch.refinenet3(path_4, layer_3_rn) path_2 = self.scratch.refinenet2(path_3, layer_2_rn) path_1 = self.scratch.refinenet1(path_2, layer_1_rn) out = self.scratch.output_conv(path_1) return out class DPTDepthModel(DPT): def __init__( self, path=None, non_negative=True, scale=1.0, shift=0.0, invert=False, **kwargs ): features = kwargs["features"] if "features" in kwargs else 256 self.scale = scale self.shift = shift self.invert = invert head = nn.Sequential( nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1), Interpolate(scale_factor=2, mode="bilinear", align_corners=True), nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(True), nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0), nn.ReLU(True) if non_negative else nn.Identity(), nn.Identity(), ) super().__init__(head, **kwargs) if path is not None: self.load(path) def forward(self, x): inv_depth = super().forward(x).squeeze(dim=1) if self.invert: depth = self.scale * inv_depth + self.shift depth[depth < 1e-8] = 1e-8 depth = 1.0 / depth return depth else: return inv_depth class DPTSegmentationModel(DPT): def __init__(self, num_classes, path=None, **kwargs): features = kwargs["features"] if "features" in kwargs else 256 kwargs["use_bn"] = True head = nn.Sequential( nn.Conv2d(features, features, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(features), nn.ReLU(True), nn.Dropout(0.1, False), nn.Conv2d(features, num_classes, kernel_size=1), Interpolate(scale_factor=2, mode="bilinear", align_corners=True), ) super().__init__(head, **kwargs) self.auxlayer = nn.Sequential( nn.Conv2d(features, features, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(features), nn.ReLU(True), nn.Dropout(0.1, False), nn.Conv2d(features, num_classes, kernel_size=1), ) if path is not None: self.load(path)
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets. This file contains code that is adapted from https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py """ import torch import torch.nn as nn from .base_model import BaseModel from .blocks import FeatureFusionBlock, Interpolate, _make_encoder class MidasNet_large(BaseModel): """Network for monocular depth estimation.""" def __init__(self, path=None, features=256, non_negative=True): """Init. Args: path (str, optional): Path to saved model. Defaults to None. features (int, optional): Number of features. Defaults to 256. backbone (str, optional): Backbone network for encoder. Defaults to resnet50 """ print("Loading weights: ", path) super(MidasNet_large, self).__init__() use_pretrained = False if path is None else True self.pretrained, self.scratch = _make_encoder( backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained ) self.scratch.refinenet4 = FeatureFusionBlock(features) self.scratch.refinenet3 = FeatureFusionBlock(features) self.scratch.refinenet2 = FeatureFusionBlock(features) self.scratch.refinenet1 = FeatureFusionBlock(features) self.scratch.output_conv = nn.Sequential( nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1), Interpolate(scale_factor=2, mode="bilinear"), nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(True), nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0), nn.ReLU(True) if non_negative else nn.Identity(), ) if path: self.load(path) def forward(self, x): """Forward pass. Args: x (tensor): input data (image) Returns: tensor: depth """ layer_1 = self.pretrained.layer1(x) layer_2 = self.pretrained.layer2(layer_1) layer_3 = self.pretrained.layer3(layer_2) layer_4 = self.pretrained.layer4(layer_3) layer_1_rn = self.scratch.layer1_rn(layer_1) layer_2_rn = self.scratch.layer2_rn(layer_2) layer_3_rn = self.scratch.layer3_rn(layer_3) layer_4_rn = self.scratch.layer4_rn(layer_4) path_4 = self.scratch.refinenet4(layer_4_rn) path_3 = self.scratch.refinenet3(path_4, layer_3_rn) path_2 = self.scratch.refinenet2(path_3, layer_2_rn) path_1 = self.scratch.refinenet1(path_2, layer_1_rn) out = self.scratch.output_conv(path_1) return torch.squeeze(out, dim=1)
import torch class BaseModel(torch.nn.Module): def load(self, path): """Load model from file. Args: path (str): file path """ parameters = torch.load(path, map_location=torch.device("cpu")) if "optimizer" in parameters: parameters = parameters["model"] self.load_state_dict(parameters)
import torch import torch.nn as nn import timm import types import math import torch.nn.functional as F activations = {} def get_activation(name): def hook(model, input, output): activations[name] = output return hook attention = {} def get_attention(name): def hook(module, input, output): x = input[0] B, N, C = x.shape qkv = ( module.qkv(x) .reshape(B, N, 3, module.num_heads, C // module.num_heads) .permute(2, 0, 3, 1, 4) ) q, k, v = ( qkv[0], qkv[1], qkv[2], ) # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * module.scale attn = attn.softmax(dim=-1) # [:,:,1,1:] attention[name] = attn return hook def get_mean_attention_map(attn, token, shape): attn = attn[:, :, token, 1:] attn = attn.unflatten(2, torch.Size([shape[2] // 16, shape[3] // 16])).float() attn = torch.nn.functional.interpolate( attn, size=shape[2:], mode="bicubic", align_corners=False ).squeeze(0) all_attn = torch.mean(attn, 0) return all_attn class Slice(nn.Module): def __init__(self, start_index=1): super(Slice, self).__init__() self.start_index = start_index def forward(self, x): return x[:, self.start_index :] class AddReadout(nn.Module): def __init__(self, start_index=1): super(AddReadout, self).__init__() self.start_index = start_index def forward(self, x): if self.start_index == 2: readout = (x[:, 0] + x[:, 1]) / 2 else: readout = x[:, 0] return x[:, self.start_index :] + readout.unsqueeze(1) class ProjectReadout(nn.Module): def __init__(self, in_features, start_index=1): super(ProjectReadout, self).__init__() self.start_index = start_index self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU()) def forward(self, x): readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :]) features = torch.cat((x[:, self.start_index :], readout), -1) return self.project(features) class Transpose(nn.Module): def __init__(self, dim0, dim1): super(Transpose, self).__init__() self.dim0 = dim0 self.dim1 = dim1 def forward(self, x): x = x.transpose(self.dim0, self.dim1) return x def forward_vit(pretrained, x): b, c, h, w = x.shape glob = pretrained.model.forward_flex(x) layer_1 = pretrained.activations["1"] layer_2 = pretrained.activations["2"] layer_3 = pretrained.activations["3"] layer_4 = pretrained.activations["4"] layer_1 = pretrained.act_postprocess1[0:2](layer_1) layer_2 = pretrained.act_postprocess2[0:2](layer_2) layer_3 = pretrained.act_postprocess3[0:2](layer_3) layer_4 = pretrained.act_postprocess4[0:2](layer_4) unflatten = nn.Sequential( nn.Unflatten( 2, torch.Size( [ h // pretrained.model.patch_size[1], w // pretrained.model.patch_size[0], ] ), ) ) if layer_1.ndim == 3: layer_1 = unflatten(layer_1) if layer_2.ndim == 3: layer_2 = unflatten(layer_2) if layer_3.ndim == 3: layer_3 = unflatten(layer_3) if layer_4.ndim == 3: layer_4 = unflatten(layer_4) layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1) layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2) layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3) layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4) return layer_1, layer_2, layer_3, layer_4 def _resize_pos_embed(self, posemb, gs_h, gs_w): posemb_tok, posemb_grid = ( posemb[:, : self.start_index], posemb[0, self.start_index :], ) gs_old = int(math.sqrt(len(posemb_grid))) posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear") posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1) posemb = torch.cat([posemb_tok, posemb_grid], dim=1) return posemb def forward_flex(self, x): b, c, h, w = x.shape pos_embed = self._resize_pos_embed( self.pos_embed, h // self.patch_size[1], w // self.patch_size[0] ) B = x.shape[0] if hasattr(self.patch_embed, "backbone"): x = self.patch_embed.backbone(x) if isinstance(x, (list, tuple)): x = x[-1] # last feature if backbone outputs list/tuple of features x = self.patch_embed.proj(x).flatten(2).transpose(1, 2) if getattr(self, "dist_token", None) is not None: cls_tokens = self.cls_token.expand( B, -1, -1 ) # stole cls_tokens impl from Phil Wang, thanks dist_token = self.dist_token.expand(B, -1, -1) x = torch.cat((cls_tokens, dist_token, x), dim=1) else: cls_tokens = self.cls_token.expand( B, -1, -1 ) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) x = x + pos_embed x = self.pos_drop(x) for blk in self.blocks: x = blk(x) x = self.norm(x) return x def get_readout_oper(vit_features, features, use_readout, start_index=1): if use_readout == "ignore": readout_oper = [Slice(start_index)] * len(features) elif use_readout == "add": readout_oper = [AddReadout(start_index)] * len(features) elif use_readout == "project": readout_oper = [ ProjectReadout(vit_features, start_index) for out_feat in features ] else: assert ( False ), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'" return readout_oper def _make_vit_b16_backbone( model, features=[96, 192, 384, 768], size=[384, 384], hooks=[2, 5, 8, 11], vit_features=768, use_readout="ignore", start_index=1, enable_attention_hooks=False, ): pretrained = nn.Module() pretrained.model = model pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1")) pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2")) pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3")) pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4")) pretrained.activations = activations if enable_attention_hooks: pretrained.model.blocks[hooks[0]].attn.register_forward_hook( get_attention("attn_1") ) pretrained.model.blocks[hooks[1]].attn.register_forward_hook( get_attention("attn_2") ) pretrained.model.blocks[hooks[2]].attn.register_forward_hook( get_attention("attn_3") ) pretrained.model.blocks[hooks[3]].attn.register_forward_hook( get_attention("attn_4") ) pretrained.attention = attention readout_oper = get_readout_oper(vit_features, features, use_readout, start_index) # 32, 48, 136, 384 pretrained.act_postprocess1 = nn.Sequential( readout_oper[0], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[0], kernel_size=1, stride=1, padding=0, ), nn.ConvTranspose2d( in_channels=features[0], out_channels=features[0], kernel_size=4, stride=4, padding=0, bias=True, dilation=1, groups=1, ), ) pretrained.act_postprocess2 = nn.Sequential( readout_oper[1], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[1], kernel_size=1, stride=1, padding=0, ), nn.ConvTranspose2d( in_channels=features[1], out_channels=features[1], kernel_size=2, stride=2, padding=0, bias=True, dilation=1, groups=1, ), ) pretrained.act_postprocess3 = nn.Sequential( readout_oper[2], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[2], kernel_size=1, stride=1, padding=0, ), ) pretrained.act_postprocess4 = nn.Sequential( readout_oper[3], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[3], kernel_size=1, stride=1, padding=0, ), nn.Conv2d( in_channels=features[3], out_channels=features[3], kernel_size=3, stride=2, padding=1, ), ) pretrained.model.start_index = start_index pretrained.model.patch_size = [16, 16] # We inject this function into the VisionTransformer instances so that # we can use it with interpolated position embeddings without modifying the library source. pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) pretrained.model._resize_pos_embed = types.MethodType( _resize_pos_embed, pretrained.model ) return pretrained def _make_vit_b_rn50_backbone( model, features=[256, 512, 768, 768], size=[384, 384], hooks=[0, 1, 8, 11], vit_features=768, use_vit_only=False, use_readout="ignore", start_index=1, enable_attention_hooks=False, ): pretrained = nn.Module() pretrained.model = model if use_vit_only == True: pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1")) pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2")) else: pretrained.model.patch_embed.backbone.stages[0].register_forward_hook( get_activation("1") ) pretrained.model.patch_embed.backbone.stages[1].register_forward_hook( get_activation("2") ) pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3")) pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4")) if enable_attention_hooks: pretrained.model.blocks[2].attn.register_forward_hook(get_attention("attn_1")) pretrained.model.blocks[5].attn.register_forward_hook(get_attention("attn_2")) pretrained.model.blocks[8].attn.register_forward_hook(get_attention("attn_3")) pretrained.model.blocks[11].attn.register_forward_hook(get_attention("attn_4")) pretrained.attention = attention pretrained.activations = activations readout_oper = get_readout_oper(vit_features, features, use_readout, start_index) if use_vit_only == True: pretrained.act_postprocess1 = nn.Sequential( readout_oper[0], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[0], kernel_size=1, stride=1, padding=0, ), nn.ConvTranspose2d( in_channels=features[0], out_channels=features[0], kernel_size=4, stride=4, padding=0, bias=True, dilation=1, groups=1, ), ) pretrained.act_postprocess2 = nn.Sequential( readout_oper[1], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[1], kernel_size=1, stride=1, padding=0, ), nn.ConvTranspose2d( in_channels=features[1], out_channels=features[1], kernel_size=2, stride=2, padding=0, bias=True, dilation=1, groups=1, ), ) else: pretrained.act_postprocess1 = nn.Sequential( nn.Identity(), nn.Identity(), nn.Identity() ) pretrained.act_postprocess2 = nn.Sequential( nn.Identity(), nn.Identity(), nn.Identity() ) pretrained.act_postprocess3 = nn.Sequential( readout_oper[2], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[2], kernel_size=1, stride=1, padding=0, ), ) pretrained.act_postprocess4 = nn.Sequential( readout_oper[3], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[3], kernel_size=1, stride=1, padding=0, ), nn.Conv2d( in_channels=features[3], out_channels=features[3], kernel_size=3, stride=2, padding=1, ), ) pretrained.model.start_index = start_index pretrained.model.patch_size = [16, 16] # We inject this function into the VisionTransformer instances so that # we can use it with interpolated position embeddings without modifying the library source. pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) # We inject this function into the VisionTransformer instances so that # we can use it with interpolated position embeddings without modifying the library source. pretrained.model._resize_pos_embed = types.MethodType( _resize_pos_embed, pretrained.model ) return pretrained def _make_pretrained_vitb_rn50_384( pretrained, use_readout="ignore", hooks=None, use_vit_only=False, enable_attention_hooks=False, ): model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained) hooks = [0, 1, 8, 11] if hooks == None else hooks return _make_vit_b_rn50_backbone( model, features=[256, 512, 768, 768], size=[384, 384], hooks=hooks, use_vit_only=use_vit_only, use_readout=use_readout, enable_attention_hooks=enable_attention_hooks, ) def _make_pretrained_vitl16_384( pretrained, use_readout="ignore", hooks=None, enable_attention_hooks=False ): model = timm.create_model("vit_large_patch16_384", pretrained=pretrained) hooks = [5, 11, 17, 23] if hooks == None else hooks return _make_vit_b16_backbone( model, features=[256, 512, 1024, 1024], hooks=hooks, vit_features=1024, use_readout=use_readout, enable_attention_hooks=enable_attention_hooks, ) def _make_pretrained_vitb16_384( pretrained, use_readout="ignore", hooks=None, enable_attention_hooks=False ): model = timm.create_model("vit_base_patch16_384", pretrained=pretrained) hooks = [2, 5, 8, 11] if hooks == None else hooks return _make_vit_b16_backbone( model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout, enable_attention_hooks=enable_attention_hooks, ) def _make_pretrained_deitb16_384( pretrained, use_readout="ignore", hooks=None, enable_attention_hooks=False ): model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained) hooks = [2, 5, 8, 11] if hooks == None else hooks return _make_vit_b16_backbone( model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout, enable_attention_hooks=enable_attention_hooks, ) def _make_pretrained_deitb16_distil_384( pretrained, use_readout="ignore", hooks=None, enable_attention_hooks=False ): model = timm.create_model( "vit_deit_base_distilled_patch16_384", pretrained=pretrained ) hooks = [2, 5, 8, 11] if hooks == None else hooks return _make_vit_b16_backbone( model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout, start_index=2, enable_attention_hooks=enable_attention_hooks, )
import torch import torch.nn as nn from .vit import ( _make_pretrained_vitb_rn50_384, _make_pretrained_vitl16_384, _make_pretrained_vitb16_384, forward_vit, ) def _make_encoder( backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore", enable_attention_hooks=False, ): if backbone == "vitl16_384": pretrained = _make_pretrained_vitl16_384( use_pretrained, hooks=hooks, use_readout=use_readout, enable_attention_hooks=enable_attention_hooks, ) scratch = _make_scratch( [256, 512, 1024, 1024], features, groups=groups, expand=expand ) # ViT-L/16 - 85.0% Top1 (backbone) elif backbone == "vitb_rn50_384": pretrained = _make_pretrained_vitb_rn50_384( use_pretrained, hooks=hooks, use_vit_only=use_vit_only, use_readout=use_readout, enable_attention_hooks=enable_attention_hooks, ) scratch = _make_scratch( [256, 512, 768, 768], features, groups=groups, expand=expand ) # ViT-H/16 - 85.0% Top1 (backbone) elif backbone == "vitb16_384": pretrained = _make_pretrained_vitb16_384( use_pretrained, hooks=hooks, use_readout=use_readout, enable_attention_hooks=enable_attention_hooks, ) scratch = _make_scratch( [96, 192, 384, 768], features, groups=groups, expand=expand ) # ViT-B/16 - 84.6% Top1 (backbone) elif backbone == "resnext101_wsl": pretrained = _make_pretrained_resnext101_wsl(use_pretrained) scratch = _make_scratch( [256, 512, 1024, 2048], features, groups=groups, expand=expand ) # efficientnet_lite3 else: print(f"Backbone '{backbone}' not implemented") assert False return pretrained, scratch def _make_scratch(in_shape, out_shape, groups=1, expand=False): scratch = nn.Module() out_shape1 = out_shape out_shape2 = out_shape out_shape3 = out_shape out_shape4 = out_shape if expand == True: out_shape1 = out_shape out_shape2 = out_shape * 2 out_shape3 = out_shape * 4 out_shape4 = out_shape * 8 scratch.layer1_rn = nn.Conv2d( in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups, ) scratch.layer2_rn = nn.Conv2d( in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups, ) scratch.layer3_rn = nn.Conv2d( in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups, ) scratch.layer4_rn = nn.Conv2d( in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups, ) return scratch def _make_resnet_backbone(resnet): pretrained = nn.Module() pretrained.layer1 = nn.Sequential( resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1 ) pretrained.layer2 = resnet.layer2 pretrained.layer3 = resnet.layer3 pretrained.layer4 = resnet.layer4 return pretrained def _make_pretrained_resnext101_wsl(use_pretrained): resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl") return _make_resnet_backbone(resnet) class Interpolate(nn.Module): """Interpolation module.""" def __init__(self, scale_factor, mode, align_corners=False): """Init. Args: scale_factor (float): scaling mode (str): interpolation mode """ super(Interpolate, self).__init__() self.interp = nn.functional.interpolate self.scale_factor = scale_factor self.mode = mode self.align_corners = align_corners def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: interpolated data """ x = self.interp( x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners, ) return x class ResidualConvUnit(nn.Module): """Residual convolution module.""" def __init__(self, features): """Init. Args: features (int): number of features """ super().__init__() self.conv1 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True ) self.conv2 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True ) self.relu = nn.ReLU(inplace=True) def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: output """ out = self.relu(x) out = self.conv1(out) out = self.relu(out) out = self.conv2(out) return out + x class FeatureFusionBlock(nn.Module): """Feature fusion block.""" def __init__(self, features): """Init. Args: features (int): number of features """ super(FeatureFusionBlock, self).__init__() self.resConfUnit1 = ResidualConvUnit(features) self.resConfUnit2 = ResidualConvUnit(features) def forward(self, *xs): """Forward pass. Returns: tensor: output """ output = xs[0] if len(xs) == 2: output += self.resConfUnit1(xs[1]) output = self.resConfUnit2(output) output = nn.functional.interpolate( output, scale_factor=2, mode="bilinear", align_corners=True ) return output class ResidualConvUnit_custom(nn.Module): """Residual convolution module.""" def __init__(self, features, activation, bn): """Init. Args: features (int): number of features """ super().__init__() self.bn = bn self.groups = 1 self.conv1 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=not self.bn, groups=self.groups, ) self.conv2 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=not self.bn, groups=self.groups, ) if self.bn == True: self.bn1 = nn.BatchNorm2d(features) self.bn2 = nn.BatchNorm2d(features) self.activation = activation self.skip_add = nn.quantized.FloatFunctional() def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: output """ out = self.activation(x) out = self.conv1(out) if self.bn == True: out = self.bn1(out) out = self.activation(out) out = self.conv2(out) if self.bn == True: out = self.bn2(out) if self.groups > 1: out = self.conv_merge(out) return self.skip_add.add(out, x) class FeatureFusionBlock_custom(nn.Module): """Feature fusion block.""" def __init__( self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, ): """Init. Args: features (int): number of features """ super(FeatureFusionBlock_custom, self).__init__() self.deconv = deconv self.align_corners = align_corners self.groups = 1 self.expand = expand out_features = features if self.expand == True: out_features = features // 2 self.out_conv = nn.Conv2d( features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1, ) self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn) self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn) self.skip_add = nn.quantized.FloatFunctional() def forward(self, *xs): """Forward pass. Returns: tensor: output """ output = xs[0] if len(xs) == 2: res = self.resConfUnit1(xs[1]) output = self.skip_add.add(output, res) # output += res output = self.resConfUnit2(output) output = nn.functional.interpolate( output, scale_factor=2, mode="bilinear", align_corners=self.align_corners ) output = self.out_conv(output) return output
import torch import torch.nn as nn import torch.nn.functional as F class FlowHead(nn.Module): def __init__(self, input_dim=128, hidden_dim=256): super(FlowHead, self).__init__() self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1) self.conv2 = nn.Conv2d(hidden_dim, 2, 3, padding=1) self.relu = nn.ReLU(inplace=True) def forward(self, x): return self.conv2(self.relu(self.conv1(x))) class ConvGRU(nn.Module): def __init__(self, hidden_dim=128, input_dim=192+128): super(ConvGRU, self).__init__() self.convz = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) self.convr = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) self.convq = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) def forward(self, h, x): hx = torch.cat([h, x], dim=1) z = torch.sigmoid(self.convz(hx)) r = torch.sigmoid(self.convr(hx)) q = torch.tanh(self.convq(torch.cat([r*h, x], dim=1))) h = (1-z) * h + z * q return h class SepConvGRU(nn.Module): def __init__(self, hidden_dim=128, input_dim=192+128): super(SepConvGRU, self).__init__() self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) def forward(self, h, x): # horizontal hx = torch.cat([h, x], dim=1) z = torch.sigmoid(self.convz1(hx)) r = torch.sigmoid(self.convr1(hx)) q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1))) h = (1-z) * h + z * q # vertical hx = torch.cat([h, x], dim=1) z = torch.sigmoid(self.convz2(hx)) r = torch.sigmoid(self.convr2(hx)) q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1))) h = (1-z) * h + z * q return h class SmallMotionEncoder(nn.Module): def __init__(self, args): super(SmallMotionEncoder, self).__init__() cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2 self.convc1 = nn.Conv2d(cor_planes, 96, 1, padding=0) self.convf1 = nn.Conv2d(2, 64, 7, padding=3) self.convf2 = nn.Conv2d(64, 32, 3, padding=1) self.conv = nn.Conv2d(128, 80, 3, padding=1) def forward(self, flow, corr): cor = F.relu(self.convc1(corr)) flo = F.relu(self.convf1(flow)) flo = F.relu(self.convf2(flo)) cor_flo = torch.cat([cor, flo], dim=1) out = F.relu(self.conv(cor_flo)) return torch.cat([out, flow], dim=1) class BasicMotionEncoder(nn.Module): def __init__(self, args): super(BasicMotionEncoder, self).__init__() cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2 self.convc1 = nn.Conv2d(cor_planes, 256, 1, padding=0) self.convc2 = nn.Conv2d(256, 192, 3, padding=1) self.convf1 = nn.Conv2d(2, 128, 7, padding=3) self.convf2 = nn.Conv2d(128, 64, 3, padding=1) self.conv = nn.Conv2d(64+192, 128-2, 3, padding=1) def forward(self, flow, corr): cor = F.relu(self.convc1(corr)) cor = F.relu(self.convc2(cor)) flo = F.relu(self.convf1(flow)) flo = F.relu(self.convf2(flo)) cor_flo = torch.cat([cor, flo], dim=1) out = F.relu(self.conv(cor_flo)) return torch.cat([out, flow], dim=1) class SmallUpdateBlock(nn.Module): def __init__(self, args, hidden_dim=96): super(SmallUpdateBlock, self).__init__() self.encoder = SmallMotionEncoder(args) self.gru = ConvGRU(hidden_dim=hidden_dim, input_dim=82+64) self.flow_head = FlowHead(hidden_dim, hidden_dim=128) def forward(self, net, inp, corr, flow): motion_features = self.encoder(flow, corr) inp = torch.cat([inp, motion_features], dim=1) net = self.gru(net, inp) delta_flow = self.flow_head(net) return net, None, delta_flow class BasicUpdateBlock(nn.Module): def __init__(self, args, hidden_dim=128, input_dim=128): super(BasicUpdateBlock, self).__init__() self.args = args self.encoder = BasicMotionEncoder(args) self.gru = SepConvGRU(hidden_dim=hidden_dim, input_dim=128+hidden_dim) self.flow_head = FlowHead(hidden_dim, hidden_dim=256) self.mask = nn.Sequential( nn.Conv2d(128, 256, 3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 64*9, 1, padding=0)) def forward(self, net, inp, corr, flow, upsample=True): motion_features = self.encoder(flow, corr) inp = torch.cat([inp, motion_features], dim=1) net = self.gru(net, inp) delta_flow = self.flow_head(net) # scale mask to balence gradients mask = .25 * self.mask(net) return net, mask, delta_flow
import torch import torch.nn.functional as F from .utils.utils import bilinear_sampler, coords_grid try: import alt_cuda_corr except: # alt_cuda_corr is not compiled pass class CorrBlock: def __init__(self, fmap1, fmap2, num_levels=4, radius=4): self.num_levels = num_levels self.radius = radius self.corr_pyramid = [] # all pairs correlation corr = CorrBlock.corr(fmap1, fmap2) batch, h1, w1, dim, h2, w2 = corr.shape corr = corr.reshape(batch*h1*w1, dim, h2, w2) self.corr_pyramid.append(corr) for i in range(self.num_levels-1): corr = F.avg_pool2d(corr, 2, stride=2) self.corr_pyramid.append(corr) def __call__(self, coords): r = self.radius coords = coords.permute(0, 2, 3, 1) batch, h1, w1, _ = coords.shape out_pyramid = [] for i in range(self.num_levels): corr = self.corr_pyramid[i] dx = torch.linspace(-r, r, 2*r+1) dy = torch.linspace(-r, r, 2*r+1) delta = torch.stack(torch.meshgrid(dy, dx), axis=-1).to(coords.device) centroid_lvl = coords.reshape(batch*h1*w1, 1, 1, 2) / 2**i delta_lvl = delta.view(1, 2*r+1, 2*r+1, 2) coords_lvl = centroid_lvl + delta_lvl corr = bilinear_sampler(corr, coords_lvl) corr = corr.view(batch, h1, w1, -1) out_pyramid.append(corr) out = torch.cat(out_pyramid, dim=-1) return out.permute(0, 3, 1, 2).contiguous().float() @staticmethod def corr(fmap1, fmap2): batch, dim, ht, wd = fmap1.shape fmap1 = fmap1.view(batch, dim, ht*wd) fmap2 = fmap2.view(batch, dim, ht*wd) corr = torch.matmul(fmap1.transpose(1,2), fmap2) corr = corr.view(batch, ht, wd, 1, ht, wd) return corr / torch.sqrt(torch.tensor(dim).float()) class AlternateCorrBlock: def __init__(self, fmap1, fmap2, num_levels=4, radius=4): self.num_levels = num_levels self.radius = radius self.pyramid = [(fmap1, fmap2)] for i in range(self.num_levels): fmap1 = F.avg_pool2d(fmap1, 2, stride=2) fmap2 = F.avg_pool2d(fmap2, 2, stride=2) self.pyramid.append((fmap1, fmap2)) def __call__(self, coords): coords = coords.permute(0, 2, 3, 1) B, H, W, _ = coords.shape dim = self.pyramid[0][0].shape[1] corr_list = [] for i in range(self.num_levels): r = self.radius fmap1_i = self.pyramid[0][0].permute(0, 2, 3, 1).contiguous() fmap2_i = self.pyramid[i][1].permute(0, 2, 3, 1).contiguous() coords_i = (coords / 2**i).reshape(B, 1, H, W, 2).contiguous() corr, = alt_cuda_corr.forward(fmap1_i, fmap2_i, coords_i, r) corr_list.append(corr.squeeze(1)) corr = torch.stack(corr_list, dim=1) corr = corr.reshape(B, -1, H, W) return corr / torch.sqrt(torch.tensor(dim).float())
# Data loading based on https://github.com/NVIDIA/flownet2-pytorch import numpy as np import torch import torch.utils.data as data import torch.nn.functional as F import os import math import random from glob import glob import os.path as osp from utils import frame_utils from utils.augmentor import FlowAugmentor, SparseFlowAugmentor class FlowDataset(data.Dataset): def __init__(self, aug_params=None, sparse=False): self.augmentor = None self.sparse = sparse if aug_params is not None: if sparse: self.augmentor = SparseFlowAugmentor(**aug_params) else: self.augmentor = FlowAugmentor(**aug_params) self.is_test = False self.init_seed = False self.flow_list = [] self.image_list = [] self.extra_info = [] def __getitem__(self, index): if self.is_test: img1 = frame_utils.read_gen(self.image_list[index][0]) img2 = frame_utils.read_gen(self.image_list[index][1]) img1 = np.array(img1).astype(np.uint8)[..., :3] img2 = np.array(img2).astype(np.uint8)[..., :3] img1 = torch.from_numpy(img1).permute(2, 0, 1).float() img2 = torch.from_numpy(img2).permute(2, 0, 1).float() return img1, img2, self.extra_info[index] if not self.init_seed: worker_info = torch.utils.data.get_worker_info() if worker_info is not None: torch.manual_seed(worker_info.id) np.random.seed(worker_info.id) random.seed(worker_info.id) self.init_seed = True index = index % len(self.image_list) valid = None if self.sparse: flow, valid = frame_utils.readFlowKITTI(self.flow_list[index]) else: flow = frame_utils.read_gen(self.flow_list[index]) img1 = frame_utils.read_gen(self.image_list[index][0]) img2 = frame_utils.read_gen(self.image_list[index][1]) flow = np.array(flow).astype(np.float32) img1 = np.array(img1).astype(np.uint8) img2 = np.array(img2).astype(np.uint8) # grayscale images if len(img1.shape) == 2: img1 = np.tile(img1[...,None], (1, 1, 3)) img2 = np.tile(img2[...,None], (1, 1, 3)) else: img1 = img1[..., :3] img2 = img2[..., :3] if self.augmentor is not None: if self.sparse: img1, img2, flow, valid = self.augmentor(img1, img2, flow, valid) else: img1, img2, flow = self.augmentor(img1, img2, flow) img1 = torch.from_numpy(img1).permute(2, 0, 1).float() img2 = torch.from_numpy(img2).permute(2, 0, 1).float() flow = torch.from_numpy(flow).permute(2, 0, 1).float() if valid is not None: valid = torch.from_numpy(valid) else: valid = (flow[0].abs() < 1000) & (flow[1].abs() < 1000) return img1, img2, flow, valid.float() def __rmul__(self, v): self.flow_list = v * self.flow_list self.image_list = v * self.image_list return self def __len__(self): return len(self.image_list) class MpiSintel(FlowDataset): def __init__(self, aug_params=None, split='training', root='datasets/Sintel', dstype='clean'): super(MpiSintel, self).__init__(aug_params) flow_root = osp.join(root, split, 'flow') image_root = osp.join(root, split, dstype) if split == 'test': self.is_test = True for scene in os.listdir(image_root): image_list = sorted(glob(osp.join(image_root, scene, '*.png'))) for i in range(len(image_list)-1): self.image_list += [ [image_list[i], image_list[i+1]] ] self.extra_info += [ (scene, i) ] # scene and frame_id if split != 'test': self.flow_list += sorted(glob(osp.join(flow_root, scene, '*.flo'))) class FlyingChairs(FlowDataset): def __init__(self, aug_params=None, split='train', root='datasets/FlyingChairs_release/data'): super(FlyingChairs, self).__init__(aug_params) images = sorted(glob(osp.join(root, '*.ppm'))) flows = sorted(glob(osp.join(root, '*.flo'))) assert (len(images)//2 == len(flows)) split_list = np.loadtxt('chairs_split.txt', dtype=np.int32) for i in range(len(flows)): xid = split_list[i] if (split=='training' and xid==1) or (split=='validation' and xid==2): self.flow_list += [ flows[i] ] self.image_list += [ [images[2*i], images[2*i+1]] ] class FlyingThings3D(FlowDataset): def __init__(self, aug_params=None, root='datasets/FlyingThings3D', dstype='frames_cleanpass'): super(FlyingThings3D, self).__init__(aug_params) for cam in ['left']: for direction in ['into_future', 'into_past']: image_dirs = sorted(glob(osp.join(root, dstype, 'TRAIN/*/*'))) image_dirs = sorted([osp.join(f, cam) for f in image_dirs]) flow_dirs = sorted(glob(osp.join(root, 'optical_flow/TRAIN/*/*'))) flow_dirs = sorted([osp.join(f, direction, cam) for f in flow_dirs]) for idir, fdir in zip(image_dirs, flow_dirs): images = sorted(glob(osp.join(idir, '*.png')) ) flows = sorted(glob(osp.join(fdir, '*.pfm')) ) for i in range(len(flows)-1): if direction == 'into_future': self.image_list += [ [images[i], images[i+1]] ] self.flow_list += [ flows[i] ] elif direction == 'into_past': self.image_list += [ [images[i+1], images[i]] ] self.flow_list += [ flows[i+1] ] class KITTI(FlowDataset): def __init__(self, aug_params=None, split='training', root='datasets/KITTI'): super(KITTI, self).__init__(aug_params, sparse=True) if split == 'testing': self.is_test = True root = osp.join(root, split) images1 = sorted(glob(osp.join(root, 'image_2/*_10.png'))) images2 = sorted(glob(osp.join(root, 'image_2/*_11.png'))) for img1, img2 in zip(images1, images2): frame_id = img1.split('/')[-1] self.extra_info += [ [frame_id] ] self.image_list += [ [img1, img2] ] if split == 'training': self.flow_list = sorted(glob(osp.join(root, 'flow_occ/*_10.png'))) class HD1K(FlowDataset): def __init__(self, aug_params=None, root='datasets/HD1k'): super(HD1K, self).__init__(aug_params, sparse=True) seq_ix = 0 while 1: flows = sorted(glob(os.path.join(root, 'hd1k_flow_gt', 'flow_occ/%06d_*.png' % seq_ix))) images = sorted(glob(os.path.join(root, 'hd1k_input', 'image_2/%06d_*.png' % seq_ix))) if len(flows) == 0: break for i in range(len(flows)-1): self.flow_list += [flows[i]] self.image_list += [ [images[i], images[i+1]] ] seq_ix += 1 def fetch_dataloader(args, TRAIN_DS='C+T+K+S+H'): """ Create the data loader for the corresponding trainign set """ if args.stage == 'chairs': aug_params = {'crop_size': args.image_size, 'min_scale': -0.1, 'max_scale': 1.0, 'do_flip': True} train_dataset = FlyingChairs(aug_params, split='training') elif args.stage == 'things': aug_params = {'crop_size': args.image_size, 'min_scale': -0.4, 'max_scale': 0.8, 'do_flip': True} clean_dataset = FlyingThings3D(aug_params, dstype='frames_cleanpass') final_dataset = FlyingThings3D(aug_params, dstype='frames_finalpass') train_dataset = clean_dataset + final_dataset elif args.stage == 'sintel': aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.6, 'do_flip': True} things = FlyingThings3D(aug_params, dstype='frames_cleanpass') sintel_clean = MpiSintel(aug_params, split='training', dstype='clean') sintel_final = MpiSintel(aug_params, split='training', dstype='final') if TRAIN_DS == 'C+T+K+S+H': kitti = KITTI({'crop_size': args.image_size, 'min_scale': -0.3, 'max_scale': 0.5, 'do_flip': True}) hd1k = HD1K({'crop_size': args.image_size, 'min_scale': -0.5, 'max_scale': 0.2, 'do_flip': True}) train_dataset = 100*sintel_clean + 100*sintel_final + 200*kitti + 5*hd1k + things elif TRAIN_DS == 'C+T+K/S': train_dataset = 100*sintel_clean + 100*sintel_final + things elif args.stage == 'kitti': aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.4, 'do_flip': False} train_dataset = KITTI(aug_params, split='training') train_loader = data.DataLoader(train_dataset, batch_size=args.batch_size, pin_memory=False, shuffle=True, num_workers=4, drop_last=True) print('Training with %d image pairs' % len(train_dataset)) return train_loader
import torch import torch.nn as nn import torch.nn.functional as F class ResidualBlock(nn.Module): def __init__(self, in_planes, planes, norm_fn='group', stride=1): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1) self.relu = nn.ReLU(inplace=True) num_groups = planes // 8 if norm_fn == 'group': self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) if not stride == 1: self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) elif norm_fn == 'batch': self.norm1 = nn.BatchNorm2d(planes) self.norm2 = nn.BatchNorm2d(planes) if not stride == 1: self.norm3 = nn.BatchNorm2d(planes) elif norm_fn == 'instance': self.norm1 = nn.InstanceNorm2d(planes) self.norm2 = nn.InstanceNorm2d(planes) if not stride == 1: self.norm3 = nn.InstanceNorm2d(planes) elif norm_fn == 'none': self.norm1 = nn.Sequential() self.norm2 = nn.Sequential() if not stride == 1: self.norm3 = nn.Sequential() if stride == 1: self.downsample = None else: self.downsample = nn.Sequential( nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3) def forward(self, x): y = x y = self.relu(self.norm1(self.conv1(y))) y = self.relu(self.norm2(self.conv2(y))) if self.downsample is not None: x = self.downsample(x) return self.relu(x+y) class BottleneckBlock(nn.Module): def __init__(self, in_planes, planes, norm_fn='group', stride=1): super(BottleneckBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes//4, kernel_size=1, padding=0) self.conv2 = nn.Conv2d(planes//4, planes//4, kernel_size=3, padding=1, stride=stride) self.conv3 = nn.Conv2d(planes//4, planes, kernel_size=1, padding=0) self.relu = nn.ReLU(inplace=True) num_groups = planes // 8 if norm_fn == 'group': self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4) self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4) self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) if not stride == 1: self.norm4 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) elif norm_fn == 'batch': self.norm1 = nn.BatchNorm2d(planes//4) self.norm2 = nn.BatchNorm2d(planes//4) self.norm3 = nn.BatchNorm2d(planes) if not stride == 1: self.norm4 = nn.BatchNorm2d(planes) elif norm_fn == 'instance': self.norm1 = nn.InstanceNorm2d(planes//4) self.norm2 = nn.InstanceNorm2d(planes//4) self.norm3 = nn.InstanceNorm2d(planes) if not stride == 1: self.norm4 = nn.InstanceNorm2d(planes) elif norm_fn == 'none': self.norm1 = nn.Sequential() self.norm2 = nn.Sequential() self.norm3 = nn.Sequential() if not stride == 1: self.norm4 = nn.Sequential() if stride == 1: self.downsample = None else: self.downsample = nn.Sequential( nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm4) def forward(self, x): y = x y = self.relu(self.norm1(self.conv1(y))) y = self.relu(self.norm2(self.conv2(y))) y = self.relu(self.norm3(self.conv3(y))) if self.downsample is not None: x = self.downsample(x) return self.relu(x+y) class BasicEncoder(nn.Module): def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0): super(BasicEncoder, self).__init__() self.norm_fn = norm_fn if self.norm_fn == 'group': self.norm1 = nn.GroupNorm(num_groups=8, num_channels=64) elif self.norm_fn == 'batch': self.norm1 = nn.BatchNorm2d(64) elif self.norm_fn == 'instance': self.norm1 = nn.InstanceNorm2d(64) elif self.norm_fn == 'none': self.norm1 = nn.Sequential() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3) self.relu1 = nn.ReLU(inplace=True) self.in_planes = 64 self.layer1 = self._make_layer(64, stride=1) self.layer2 = self._make_layer(96, stride=2) self.layer3 = self._make_layer(128, stride=2) # output convolution self.conv2 = nn.Conv2d(128, output_dim, kernel_size=1) self.dropout = None if dropout > 0: self.dropout = nn.Dropout2d(p=dropout) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)): if m.weight is not None: nn.init.constant_(m.weight, 1) if m.bias is not None: nn.init.constant_(m.bias, 0) def _make_layer(self, dim, stride=1): layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride) layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1) layers = (layer1, layer2) self.in_planes = dim return nn.Sequential(*layers) def forward(self, x): # if input is list, combine batch dimension is_list = isinstance(x, tuple) or isinstance(x, list) if is_list: batch_dim = x[0].shape[0] x = torch.cat(x, dim=0) x = self.conv1(x) x = self.norm1(x) x = self.relu1(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.conv2(x) if self.training and self.dropout is not None: x = self.dropout(x) if is_list: x = torch.split(x, [batch_dim, batch_dim], dim=0) return x class SmallEncoder(nn.Module): def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0): super(SmallEncoder, self).__init__() self.norm_fn = norm_fn if self.norm_fn == 'group': self.norm1 = nn.GroupNorm(num_groups=8, num_channels=32) elif self.norm_fn == 'batch': self.norm1 = nn.BatchNorm2d(32) elif self.norm_fn == 'instance': self.norm1 = nn.InstanceNorm2d(32) elif self.norm_fn == 'none': self.norm1 = nn.Sequential() self.conv1 = nn.Conv2d(3, 32, kernel_size=7, stride=2, padding=3) self.relu1 = nn.ReLU(inplace=True) self.in_planes = 32 self.layer1 = self._make_layer(32, stride=1) self.layer2 = self._make_layer(64, stride=2) self.layer3 = self._make_layer(96, stride=2) self.dropout = None if dropout > 0: self.dropout = nn.Dropout2d(p=dropout) self.conv2 = nn.Conv2d(96, output_dim, kernel_size=1) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)): if m.weight is not None: nn.init.constant_(m.weight, 1) if m.bias is not None: nn.init.constant_(m.bias, 0) def _make_layer(self, dim, stride=1): layer1 = BottleneckBlock(self.in_planes, dim, self.norm_fn, stride=stride) layer2 = BottleneckBlock(dim, dim, self.norm_fn, stride=1) layers = (layer1, layer2) self.in_planes = dim return nn.Sequential(*layers) def forward(self, x): # if input is list, combine batch dimension is_list = isinstance(x, tuple) or isinstance(x, list) if is_list: batch_dim = x[0].shape[0] x = torch.cat(x, dim=0) x = self.conv1(x) x = self.norm1(x) x = self.relu1(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.conv2(x) if self.training and self.dropout is not None: x = self.dropout(x) if is_list: x = torch.split(x, [batch_dim, batch_dim], dim=0) return x
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from .update import BasicUpdateBlock, SmallUpdateBlock from .extractor import BasicEncoder, SmallEncoder from .corr import CorrBlock, AlternateCorrBlock from .utils.utils import bilinear_sampler, coords_grid, upflow8, InputPadder try: autocast = torch.cuda.amp.autocast except: # dummy autocast for PyTorch < 1.6 class autocast: def __init__(self, enabled): pass def __enter__(self): pass def __exit__(self, *args): pass class RAFT(nn.Module): def __init__(self, args): super(RAFT, self).__init__() self.args = args if args.small: self.hidden_dim = hdim = 96 self.context_dim = cdim = 64 args.corr_levels = 4 args.corr_radius = 3 else: self.hidden_dim = hdim = 128 self.context_dim = cdim = 128 args.corr_levels = 4 args.corr_radius = 4 if 'dropout' not in self.args: self.args.dropout = 0 if 'alternate_corr' not in self.args: self.args.alternate_corr = False # feature network, context network, and update block if args.small: self.fnet = SmallEncoder(output_dim=128, norm_fn='instance', dropout=args.dropout) self.cnet = SmallEncoder(output_dim=hdim+cdim, norm_fn='none', dropout=args.dropout) self.update_block = SmallUpdateBlock(self.args, hidden_dim=hdim) else: self.fnet = BasicEncoder(output_dim=256, norm_fn='instance', dropout=args.dropout) self.cnet = BasicEncoder(output_dim=hdim+cdim, norm_fn='batch', dropout=args.dropout) self.update_block = BasicUpdateBlock(self.args, hidden_dim=hdim) def freeze_bn(self): for m in self.modules(): if isinstance(m, nn.BatchNorm2d): m.eval() def initialize_flow(self, img): """ Flow is represented as difference between two coordinate grids flow = coords1 - coords0""" N, C, H, W = img.shape coords0 = coords_grid(N, H//8, W//8, img.device) coords1 = coords_grid(N, H//8, W//8, img.device) # optical flow computed as difference: flow = coords1 - coords0 return coords0, coords1 def upsample_flow(self, flow, mask): """ Upsample flow field [H/8, W/8, 2] -> [H, W, 2] using convex combination """ N, _, H, W = flow.shape mask = mask.view(N, 1, 9, 8, 8, H, W) mask = torch.softmax(mask, dim=2) up_flow = F.unfold(8 * flow, [3,3], padding=1) up_flow = up_flow.view(N, 2, 9, 1, 1, H, W) up_flow = torch.sum(mask * up_flow, dim=2) up_flow = up_flow.permute(0, 1, 4, 2, 5, 3) return up_flow.reshape(N, 2, 8*H, 8*W) def forward(self, image1, image2, iters=12, flow_init=None, upsample=True, test_mode=False, padder=None): """ Estimate optical flow between pair of frames """ image1 = 2 * (image1 / 255.0) - 1.0 image2 = 2 * (image2 / 255.0) - 1.0 image1 = image1.contiguous() image2 = image2.contiguous() hdim = self.hidden_dim cdim = self.context_dim # run the feature network with autocast(enabled=self.args.mixed_precision): fmap1, fmap2 = self.fnet([image1, image2]) fmap1 = fmap1.float() fmap2 = fmap2.float() if self.args.alternate_corr: corr_fn = AlternateCorrBlock(fmap1, fmap2, radius=self.args.corr_radius) else: corr_fn = CorrBlock(fmap1, fmap2, radius=self.args.corr_radius) # run the context network with autocast(enabled=self.args.mixed_precision): cnet = self.cnet(image1) net, inp = torch.split(cnet, [hdim, cdim], dim=1) net = torch.tanh(net) inp = torch.relu(inp) coords0, coords1 = self.initialize_flow(image1) if flow_init is not None: coords1 = coords1 + flow_init flow_predictions = [] for itr in range(iters): coords1 = coords1.detach() corr = corr_fn(coords1) # index correlation volume flow = coords1 - coords0 with autocast(enabled=self.args.mixed_precision): net, up_mask, delta_flow = self.update_block(net, inp, corr, flow) # F(t+1) = F(t) + \Delta(t) coords1 = coords1 + delta_flow if up_mask is None: flow_up = upflow8(coords1 - coords0) else: flow_up = self.upsample_flow(coords1 - coords0, up_mask) if padder is not None: flow_up = padder.unpad(flow_up) flow_predictions.append(flow_up) if test_mode: return coords1 - coords0, flow_up return flow_predictions
import numpy as np import random import math from PIL import Image import cv2 cv2.setNumThreads(0) cv2.ocl.setUseOpenCL(False) import torch from torchvision.transforms import ColorJitter import torch.nn.functional as F class FlowAugmentor: def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, do_flip=True): # spatial augmentation params self.crop_size = crop_size self.min_scale = min_scale self.max_scale = max_scale self.spatial_aug_prob = 0.8 self.stretch_prob = 0.8 self.max_stretch = 0.2 # flip augmentation params self.do_flip = do_flip self.h_flip_prob = 0.5 self.v_flip_prob = 0.1 # photometric augmentation params self.photo_aug = ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.5/3.14) self.asymmetric_color_aug_prob = 0.2 self.eraser_aug_prob = 0.5 def color_transform(self, img1, img2): """ Photometric augmentation """ # asymmetric if np.random.rand() < self.asymmetric_color_aug_prob: img1 = np.array(self.photo_aug(Image.fromarray(img1)), dtype=np.uint8) img2 = np.array(self.photo_aug(Image.fromarray(img2)), dtype=np.uint8) # symmetric else: image_stack = np.concatenate([img1, img2], axis=0) image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8) img1, img2 = np.split(image_stack, 2, axis=0) return img1, img2 def eraser_transform(self, img1, img2, bounds=[50, 100]): """ Occlusion augmentation """ ht, wd = img1.shape[:2] if np.random.rand() < self.eraser_aug_prob: mean_color = np.mean(img2.reshape(-1, 3), axis=0) for _ in range(np.random.randint(1, 3)): x0 = np.random.randint(0, wd) y0 = np.random.randint(0, ht) dx = np.random.randint(bounds[0], bounds[1]) dy = np.random.randint(bounds[0], bounds[1]) img2[y0:y0+dy, x0:x0+dx, :] = mean_color return img1, img2 def spatial_transform(self, img1, img2, flow): # randomly sample scale ht, wd = img1.shape[:2] min_scale = np.maximum( (self.crop_size[0] + 8) / float(ht), (self.crop_size[1] + 8) / float(wd)) scale = 2 ** np.random.uniform(self.min_scale, self.max_scale) scale_x = scale scale_y = scale if np.random.rand() < self.stretch_prob: scale_x *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch) scale_y *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch) scale_x = np.clip(scale_x, min_scale, None) scale_y = np.clip(scale_y, min_scale, None) if np.random.rand() < self.spatial_aug_prob: # rescale the images img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) flow = cv2.resize(flow, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) flow = flow * [scale_x, scale_y] if self.do_flip: if np.random.rand() < self.h_flip_prob: # h-flip img1 = img1[:, ::-1] img2 = img2[:, ::-1] flow = flow[:, ::-1] * [-1.0, 1.0] if np.random.rand() < self.v_flip_prob: # v-flip img1 = img1[::-1, :] img2 = img2[::-1, :] flow = flow[::-1, :] * [1.0, -1.0] y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0]) x0 = np.random.randint(0, img1.shape[1] - self.crop_size[1]) img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] img2 = img2[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] return img1, img2, flow def __call__(self, img1, img2, flow): img1, img2 = self.color_transform(img1, img2) img1, img2 = self.eraser_transform(img1, img2) img1, img2, flow = self.spatial_transform(img1, img2, flow) img1 = np.ascontiguousarray(img1) img2 = np.ascontiguousarray(img2) flow = np.ascontiguousarray(flow) return img1, img2, flow class SparseFlowAugmentor: def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, do_flip=False): # spatial augmentation params self.crop_size = crop_size self.min_scale = min_scale self.max_scale = max_scale self.spatial_aug_prob = 0.8 self.stretch_prob = 0.8 self.max_stretch = 0.2 # flip augmentation params self.do_flip = do_flip self.h_flip_prob = 0.5 self.v_flip_prob = 0.1 # photometric augmentation params self.photo_aug = ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.3/3.14) self.asymmetric_color_aug_prob = 0.2 self.eraser_aug_prob = 0.5 def color_transform(self, img1, img2): image_stack = np.concatenate([img1, img2], axis=0) image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8) img1, img2 = np.split(image_stack, 2, axis=0) return img1, img2 def eraser_transform(self, img1, img2): ht, wd = img1.shape[:2] if np.random.rand() < self.eraser_aug_prob: mean_color = np.mean(img2.reshape(-1, 3), axis=0) for _ in range(np.random.randint(1, 3)): x0 = np.random.randint(0, wd) y0 = np.random.randint(0, ht) dx = np.random.randint(50, 100) dy = np.random.randint(50, 100) img2[y0:y0+dy, x0:x0+dx, :] = mean_color return img1, img2 def resize_sparse_flow_map(self, flow, valid, fx=1.0, fy=1.0): ht, wd = flow.shape[:2] coords = np.meshgrid(np.arange(wd), np.arange(ht)) coords = np.stack(coords, axis=-1) coords = coords.reshape(-1, 2).astype(np.float32) flow = flow.reshape(-1, 2).astype(np.float32) valid = valid.reshape(-1).astype(np.float32) coords0 = coords[valid>=1] flow0 = flow[valid>=1] ht1 = int(round(ht * fy)) wd1 = int(round(wd * fx)) coords1 = coords0 * [fx, fy] flow1 = flow0 * [fx, fy] xx = np.round(coords1[:,0]).astype(np.int32) yy = np.round(coords1[:,1]).astype(np.int32) v = (xx > 0) & (xx < wd1) & (yy > 0) & (yy < ht1) xx = xx[v] yy = yy[v] flow1 = flow1[v] flow_img = np.zeros([ht1, wd1, 2], dtype=np.float32) valid_img = np.zeros([ht1, wd1], dtype=np.int32) flow_img[yy, xx] = flow1 valid_img[yy, xx] = 1 return flow_img, valid_img def spatial_transform(self, img1, img2, flow, valid): # randomly sample scale ht, wd = img1.shape[:2] min_scale = np.maximum( (self.crop_size[0] + 1) / float(ht), (self.crop_size[1] + 1) / float(wd)) scale = 2 ** np.random.uniform(self.min_scale, self.max_scale) scale_x = np.clip(scale, min_scale, None) scale_y = np.clip(scale, min_scale, None) if np.random.rand() < self.spatial_aug_prob: # rescale the images img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) flow, valid = self.resize_sparse_flow_map(flow, valid, fx=scale_x, fy=scale_y) if self.do_flip: if np.random.rand() < 0.5: # h-flip img1 = img1[:, ::-1] img2 = img2[:, ::-1] flow = flow[:, ::-1] * [-1.0, 1.0] valid = valid[:, ::-1] margin_y = 20 margin_x = 50 y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0] + margin_y) x0 = np.random.randint(-margin_x, img1.shape[1] - self.crop_size[1] + margin_x) y0 = np.clip(y0, 0, img1.shape[0] - self.crop_size[0]) x0 = np.clip(x0, 0, img1.shape[1] - self.crop_size[1]) img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] img2 = img2[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] valid = valid[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] return img1, img2, flow, valid def __call__(self, img1, img2, flow, valid): img1, img2 = self.color_transform(img1, img2) img1, img2 = self.eraser_transform(img1, img2) img1, img2, flow, valid = self.spatial_transform(img1, img2, flow, valid) img1 = np.ascontiguousarray(img1) img2 = np.ascontiguousarray(img2) flow = np.ascontiguousarray(flow) valid = np.ascontiguousarray(valid) return img1, img2, flow, valid
import torch import torch.nn.functional as F import numpy as np from scipy import interpolate class InputPadder: """ Pads images such that dimensions are divisible by 8 """ def __init__(self, dims, mode='sintel'): self.ht, self.wd = dims[-2:] pad_ht = (((self.ht // 8) + 1) * 8 - self.ht) % 8 pad_wd = (((self.wd // 8) + 1) * 8 - self.wd) % 8 if mode == 'sintel': self._pad = [pad_wd//2, pad_wd - pad_wd//2, pad_ht//2, pad_ht - pad_ht//2] else: self._pad = [pad_wd//2, pad_wd - pad_wd//2, 0, pad_ht] def pad(self, *inputs): return [F.pad(x, self._pad, mode='replicate') for x in inputs] def unpad(self,x): ht, wd = x.shape[-2:] c = [self._pad[2], ht-self._pad[3], self._pad[0], wd-self._pad[1]] return x[..., c[0]:c[1], c[2]:c[3]] def forward_interpolate(flow): flow = flow.detach().cpu().numpy() dx, dy = flow[0], flow[1] ht, wd = dx.shape x0, y0 = np.meshgrid(np.arange(wd), np.arange(ht)) x1 = x0 + dx y1 = y0 + dy x1 = x1.reshape(-1) y1 = y1.reshape(-1) dx = dx.reshape(-1) dy = dy.reshape(-1) valid = (x1 > 0) & (x1 < wd) & (y1 > 0) & (y1 < ht) x1 = x1[valid] y1 = y1[valid] dx = dx[valid] dy = dy[valid] flow_x = interpolate.griddata( (x1, y1), dx, (x0, y0), method='nearest', fill_value=0) flow_y = interpolate.griddata( (x1, y1), dy, (x0, y0), method='nearest', fill_value=0) flow = np.stack([flow_x, flow_y], axis=0) return torch.from_numpy(flow).float() def bilinear_sampler(img, coords, mode='bilinear', mask=False): """ Wrapper for grid_sample, uses pixel coordinates """ H, W = img.shape[-2:] xgrid, ygrid = coords.split([1,1], dim=-1) xgrid = 2*xgrid/(W-1) - 1 ygrid = 2*ygrid/(H-1) - 1 grid = torch.cat([xgrid, ygrid], dim=-1) img = F.grid_sample(img, grid, align_corners=True) if mask: mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1) return img, mask.float() return img def coords_grid(batch, ht, wd, device): coords = torch.meshgrid(torch.arange(ht, device=device), torch.arange(wd, device=device)) coords = torch.stack(coords[::-1], dim=0).float() return coords[None].repeat(batch, 1, 1, 1) def upflow8(flow, mode='bilinear'): new_size = (8 * flow.shape[2], 8 * flow.shape[3]) return 8 * F.interpolate(flow, size=new_size, mode=mode, align_corners=True)
# Flow visualization code used from https://github.com/tomrunia/OpticalFlow_Visualization # MIT License # # Copyright (c) 2018 Tom Runia # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to conditions. # # Author: Tom Runia # Date Created: 2018-08-03 import numpy as np def make_colorwheel(): """ Generates a color wheel for optical flow visualization as presented in: Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007) URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf Code follows the original C++ source code of Daniel Scharstein. Code follows the the Matlab source code of Deqing Sun. Returns: np.ndarray: Color wheel """ RY = 15 YG = 6 GC = 4 CB = 11 BM = 13 MR = 6 ncols = RY + YG + GC + CB + BM + MR colorwheel = np.zeros((ncols, 3)) col = 0 # RY colorwheel[0:RY, 0] = 255 colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY) col = col+RY # YG colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG) colorwheel[col:col+YG, 1] = 255 col = col+YG # GC colorwheel[col:col+GC, 1] = 255 colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC) col = col+GC # CB colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB) colorwheel[col:col+CB, 2] = 255 col = col+CB # BM colorwheel[col:col+BM, 2] = 255 colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM) col = col+BM # MR colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR) colorwheel[col:col+MR, 0] = 255 return colorwheel def flow_uv_to_colors(u, v, convert_to_bgr=False): """ Applies the flow color wheel to (possibly clipped) flow components u and v. According to the C++ source code of Daniel Scharstein According to the Matlab source code of Deqing Sun Args: u (np.ndarray): Input horizontal flow of shape [H,W] v (np.ndarray): Input vertical flow of shape [H,W] convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. Returns: np.ndarray: Flow visualization image of shape [H,W,3] """ flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8) colorwheel = make_colorwheel() # shape [55x3] ncols = colorwheel.shape[0] rad = np.sqrt(np.square(u) + np.square(v)) a = np.arctan2(-v, -u)/np.pi fk = (a+1) / 2*(ncols-1) k0 = np.floor(fk).astype(np.int32) k1 = k0 + 1 k1[k1 == ncols] = 0 f = fk - k0 for i in range(colorwheel.shape[1]): tmp = colorwheel[:,i] col0 = tmp[k0] / 255.0 col1 = tmp[k1] / 255.0 col = (1-f)*col0 + f*col1 idx = (rad <= 1) col[idx] = 1 - rad[idx] * (1-col[idx]) col[~idx] = col[~idx] * 0.75 # out of range # Note the 2-i => BGR instead of RGB ch_idx = 2-i if convert_to_bgr else i flow_image[:,:,ch_idx] = np.floor(255 * col) return flow_image def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False): """ Expects a two dimensional flow image of shape. Args: flow_uv (np.ndarray): Flow UV image of shape [H,W,2] clip_flow (float, optional): Clip maximum of flow values. Defaults to None. convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. Returns: np.ndarray: Flow visualization image of shape [H,W,3] """ assert flow_uv.ndim == 3, 'input flow must have three dimensions' assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]' if clip_flow is not None: flow_uv = np.clip(flow_uv, 0, clip_flow) u = flow_uv[:,:,0] v = flow_uv[:,:,1] rad = np.sqrt(np.square(u) + np.square(v)) rad_max = np.max(rad) epsilon = 1e-5 u = u / (rad_max + epsilon) v = v / (rad_max + epsilon) return flow_uv_to_colors(u, v, convert_to_bgr)
import numpy as np from PIL import Image from os.path import * import re import cv2 cv2.setNumThreads(0) cv2.ocl.setUseOpenCL(False) TAG_CHAR = np.array([202021.25], np.float32) def readFlow(fn): """ Read .flo file in Middlebury format""" # Code adapted from: # http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy # WARNING: this will work on little-endian architectures (eg Intel x86) only! # print 'fn = %s'%(fn) with open(fn, 'rb') as f: magic = np.fromfile(f, np.float32, count=1) if 202021.25 != magic: print('Magic number incorrect. Invalid .flo file') return None else: w = np.fromfile(f, np.int32, count=1) h = np.fromfile(f, np.int32, count=1) # print 'Reading %d x %d flo file\n' % (w, h) data = np.fromfile(f, np.float32, count=2*int(w)*int(h)) # Reshape data into 3D array (columns, rows, bands) # The reshape here is for visualization, the original code is (w,h,2) return np.resize(data, (int(h), int(w), 2)) def readPFM(file): file = open(file, 'rb') color = None width = None height = None scale = None endian = None header = file.readline().rstrip() if header == b'PF': color = True elif header == b'Pf': color = False else: raise Exception('Not a PFM file.') dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline()) if dim_match: width, height = map(int, dim_match.groups()) else: raise Exception('Malformed PFM header.') scale = float(file.readline().rstrip()) if scale < 0: # little-endian endian = '<' scale = -scale else: endian = '>' # big-endian data = np.fromfile(file, endian + 'f') shape = (height, width, 3) if color else (height, width) data = np.reshape(data, shape) data = np.flipud(data) return data def writeFlow(filename,uv,v=None): """ Write optical flow to file. If v is None, uv is assumed to contain both u and v channels, stacked in depth. Original code by Deqing Sun, adapted from Daniel Scharstein. """ nBands = 2 if v is None: assert(uv.ndim == 3) assert(uv.shape[2] == 2) u = uv[:,:,0] v = uv[:,:,1] else: u = uv assert(u.shape == v.shape) height,width = u.shape f = open(filename,'wb') # write the header f.write(TAG_CHAR) np.array(width).astype(np.int32).tofile(f) np.array(height).astype(np.int32).tofile(f) # arrange into matrix form tmp = np.zeros((height, width*nBands)) tmp[:,np.arange(width)*2] = u tmp[:,np.arange(width)*2 + 1] = v tmp.astype(np.float32).tofile(f) f.close() def readFlowKITTI(filename): flow = cv2.imread(filename, cv2.IMREAD_ANYDEPTH|cv2.IMREAD_COLOR) flow = flow[:,:,::-1].astype(np.float32) flow, valid = flow[:, :, :2], flow[:, :, 2] flow = (flow - 2**15) / 64.0 return flow, valid def readDispKITTI(filename): disp = cv2.imread(filename, cv2.IMREAD_ANYDEPTH) / 256.0 valid = disp > 0.0 flow = np.stack([-disp, np.zeros_like(disp)], -1) return flow, valid def writeFlowKITTI(filename, uv): uv = 64.0 * uv + 2**15 valid = np.ones([uv.shape[0], uv.shape[1], 1]) uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16) cv2.imwrite(filename, uv[..., ::-1]) def read_gen(file_name, pil=False): ext = splitext(file_name)[-1] if ext == '.png' or ext == '.jpeg' or ext == '.ppm' or ext == '.jpg': return Image.open(file_name) elif ext == '.bin' or ext == '.raw': return np.load(file_name) elif ext == '.flo': return readFlow(file_name).astype(np.float32) elif ext == '.pfm': flow = readPFM(file_name).astype(np.float32) if len(flow.shape) == 2: return flow else: return flow[:, :, :-1] return []
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import imageio import numpy as np import torch import glob from torch.utils.data import Dataset from data_loaders.data_utils import get_src_tgt_ids, resize_img import torchvision from core.utils import remove_noise_in_dpt_disparity def get_black_boundary_size(img): h, w = img.shape[:2] mean_img = np.mean(img, axis=-1) mask_mean_x_axis = mean_img.mean(axis=0) x_valid = np.nonzero(mask_mean_x_axis > 1e-3) if len(x_valid[0]) == 0: left, right = 0, w else: left, right = x_valid[0][0], x_valid[0][-1]+1 mask_mean_y_axis = mean_img.mean(axis=1) y_valid = np.nonzero(mask_mean_y_axis > 1e-3) if len(y_valid[0]) == 0: top, bottom = 0, h else: top, bottom = y_valid[0][0], y_valid[0][-1]+1 assert 0 <= top <= h and 0 <= bottom <= h and 0 <= left <= w and 0 <= right <= w top = top + (16 - top % 16) if top % 16 != 0 else top left = left + (16 - left % 16) if left % 16 != 0 else left bottom = bottom - bottom % 16 if bottom % 16 != 0 else bottom right = right - right % 16 if right % 16 != 0 else right if bottom - top < 128: top = 0 bottom = h if right - left < 128: left = 0 right = w return top, bottom, left, right class VimeoDataset(Dataset): def __init__(self, args, subset, **kwargs): base_dir = 'data/vimeo/sequences/' scene_dirs = sorted(glob.glob(os.path.join(base_dir, '*/*'))) if subset == 'train': self.scene_dirs = scene_dirs[:-100] else: self.scene_dirs = scene_dirs[-100:] self.to_tensor = torchvision.transforms.ToTensor() self.ds_factor = 1 def __len__(self): return len(self.scene_dirs) def __getitem__(self, idx): scene_dir = self.scene_dirs[idx] img_dir = scene_dir depth_dir = os.path.join(scene_dir, 'dpt_depth') img_files = sorted(glob.glob(os.path.join(img_dir, '*.png'))) dpt_files = sorted(glob.glob(os.path.join(depth_dir, '*.png'))) assert len(img_files) == len(dpt_files), print(scene_dir) num_frames = len(img_files) src_id1, src_id2, tgt_id = get_src_tgt_ids(num_frames, max_interval=3) if np.random.choice([0, 1], p=[0.996, 0.004]): src_id = np.random.choice([src_id1, src_id2]) tgt_id = src_id time = np.clip((tgt_id - src_id1 + np.random.rand() - 0.5) / (src_id2 - src_id1), a_min=0., a_max=1.) src_img1 = imageio.imread(img_files[src_id1]) / 255. src_img2 = imageio.imread(img_files[src_id2]) / 255. tgt_img = imageio.imread(img_files[tgt_id]) / 255. t, b, l, r = get_black_boundary_size(src_img1) src_img1 = resize_img(src_img1, self.ds_factor) src_img2 = resize_img(src_img2, self.ds_factor) tgt_img = resize_img(tgt_img, self.ds_factor) src_disp1 = imageio.imread(dpt_files[src_id1]) / 65535. src_disp2 = imageio.imread(dpt_files[src_id2]) / 65535. src_disp1 = remove_noise_in_dpt_disparity(src_disp1) src_disp2 = remove_noise_in_dpt_disparity(src_disp2) src_depth1 = 1. / np.maximum(src_disp1, 1e-2) src_depth2 = 1. / np.maximum(src_disp2, 1e-2) # src_depth1 = sparse_bilateral_filtering(src_depth1, num_iter=1) # fixme # src_depth2 = sparse_bilateral_filtering(src_depth2, num_iter=1) src_depth1 = resize_img(src_depth1, self.ds_factor) src_depth2 = resize_img(src_depth2, self.ds_factor) src_img1 = src_img1[t:b, l:r] src_img2 = src_img2[t:b, l:r] tgt_img = tgt_img[t:b, l:r] src_depth1 = src_depth1[t:b, l:r] src_depth2 = src_depth2[t:b, l:r] h1, w1 = src_img1.shape[:2] h2, w2 = src_img2.shape[:2] ht, wt = tgt_img.shape[:2] intrinsic1 = np.array([[max(h1, w1), 0, w1 // 2], [0, max(h1, w1), h1 // 2], [0, 0, 1]]) intrinsic2 = np.array([[max(h2, w2), 0, w2 // 2], [0, max(h2, w2), h2 // 2], [0, 0, 1]]) tgt_intrinsic = np.array([[max(ht, wt), 0, wt // 2], [0, max(ht, wt), ht // 2], [0, 0, 1]]) relative_pose = np.eye(4) tgt_pose = np.eye(4) return { 'src_img1': self.to_tensor(src_img1).float(), 'src_img2': self.to_tensor(src_img2).float(), 'src_depth1': self.to_tensor(src_depth1).float(), 'src_depth2': self.to_tensor(src_depth2).float(), 'tgt_img': self.to_tensor(tgt_img).float(), 'intrinsic1': torch.from_numpy(intrinsic1).float(), 'intrinsic2': torch.from_numpy(intrinsic2).float(), 'tgt_intrinsic': torch.from_numpy(tgt_intrinsic).float(), 'pose': torch.from_numpy(relative_pose).float(), 'tgt_pose': torch.from_numpy(tgt_pose).float(), 'scale_shift1': torch.tensor([1., 0.]).float(), 'scale_shift2': torch.tensor([1., 0.]).float(), 'time': time, 'src_rgb_file1': img_files[src_id1], 'src_rgb_file2': img_files[src_id2], 'tgt_rgb_file': img_files[tgt_id], 'scene_dir': scene_dir, 'multi_view': False } if __name__ == '__main__': dataset = VimeoDataset() for data in dataset: continue
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .vimeo import VimeoDataset dataset_dict = { 'vimeo': VimeoDataset, }
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 import numpy as np def resize_img_intrinsic(img, intrinsic, w_out, h_out): h, w = img.shape[:2] if w_out > w: interpolation_method = cv2.INTER_LINEAR else: interpolation_method = cv2.INTER_AREA img = cv2.resize(img, (int(w_out), int(h_out)), interpolation=interpolation_method) intrinsic[0] *= 1. * w_out / w intrinsic[1] *= 1. * h_out / h return img, intrinsic def resize_img(img, ds_factor, w_out=None, h_out=None): h, w = img.shape[:2] if w_out is None and h_out is None: if ds_factor == 1: return img if ds_factor > 1: interpolation_method = cv2.INTER_LINEAR else: interpolation_method = cv2.INTER_AREA img = cv2.resize(img, (int(w*ds_factor), int(h*ds_factor)), interpolation=interpolation_method) else: if w_out > w: interpolation_method = cv2.INTER_LINEAR else: interpolation_method = cv2.INTER_AREA img = cv2.resize(img, (int(w_out), int(h_out)), interpolation=interpolation_method) return img def get_src_tgt_ids(num_frames, max_interval=1): assert num_frames > max_interval + 1 src_id1 = np.random.choice(num_frames-max_interval-1) interval = np.random.randint(low=0, high=max_interval) + 1 src_id2 = src_id1 + interval + 1 tgt_id = np.random.randint(src_id1 + 1, src_id2) return src_id1, src_id2, tgt_id def skew(x): return np.array([[0, -x[2], x[1]], [x[2], 0, -x[0]], [-x[1], x[0], 0]]) class Camera(object): def __init__(self, entry): fx, fy, cx, cy = entry[1:5] self.intrinsics = np.array([[fx, 0, cx, 0], [0, fy, cy, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) w2c_mat = np.array(entry[7:]).reshape(3, 4) w2c_mat_4x4 = np.eye(4) w2c_mat_4x4[:3, :] = w2c_mat self.w2c_mat = w2c_mat_4x4 self.c2w_mat = np.linalg.inv(w2c_mat_4x4) def unnormalize_intrinsics(intrinsics, h, w): intrinsics[0] *= w intrinsics[1] *= h return intrinsics def parse_pose_file(file): f = open(file, 'r') cam_params = {} for i, line in enumerate(f): if i == 0: video_id = line.replace('https://www.youtube.com/watch?v=', '')[:-1] continue entry = [float(x) for x in line.split()] id = int(entry[0]) cam_params[id] = Camera(entry) return video_id, cam_params def crop_img(img, factor=16): h, w = img.shape[:2] ho = h // factor * factor wo = w // factor * factor img = img[:ho, :wo] return img
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from . import dataset_dict from torch.utils.data import Dataset, Sampler from torch.utils.data import DistributedSampler, WeightedRandomSampler from typing import Optional from operator import itemgetter import torch class DatasetFromSampler(Dataset): """Dataset to create indexes from `Sampler`. Args: sampler: PyTorch sampler """ def __init__(self, sampler: Sampler): """Initialisation for DatasetFromSampler.""" self.sampler = sampler self.sampler_list = None def __getitem__(self, index: int): """Gets element of the dataset. Args: index: index of the element in the dataset Returns: Single element by index """ if self.sampler_list is None: self.sampler_list = list(self.sampler) return self.sampler_list[index] def __len__(self) -> int: """ Returns: int: length of the dataset """ return len(self.sampler) class DistributedSamplerWrapper(DistributedSampler): """ Wrapper over `Sampler` for distributed training. Allows you to use any sampler in distributed mode. It is especially useful in conjunction with `torch.nn.parallel.DistributedDataParallel`. In such case, each process can pass a DistributedSamplerWrapper instance as a DataLoader sampler, and load a subset of subsampled data of the original dataset that is exclusive to it. .. note:: Sampler is assumed to be of constant size. """ def __init__( self, sampler, num_replicas: Optional[int] = None, rank: Optional[int] = None, shuffle: bool = True, ): """ Args: sampler: Sampler used for subsampling num_replicas (int, optional): Number of processes participating in distributed training rank (int, optional): Rank of the current process within ``num_replicas`` shuffle (bool, optional): If true (default), sampler will shuffle the indices """ super(DistributedSamplerWrapper, self).__init__( DatasetFromSampler(sampler), num_replicas=num_replicas, rank=rank, shuffle=shuffle, ) self.sampler = sampler def __iter__(self): self.dataset = DatasetFromSampler(self.sampler) indexes_of_indexes = super().__iter__() subsampler_indexes = self.dataset return iter(itemgetter(*indexes_of_indexes)(subsampler_indexes)) def create_training_dataset(args): # parse args.train_dataset, "+" indicates that multiple datasets are used, for example "vimeo+mannequin" # otherwise only one dataset is used # args.dataset_weights should be a list representing the resampling rate for each dataset, and should sum up to 1 print('training dataset: {}'.format(args.train_dataset)) mode = 'train' if '+' not in args.train_dataset: train_dataset = dataset_dict[args.train_dataset](args, mode) train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) if args.distributed else None else: train_dataset_names = args.train_dataset.split('+') weights = args.dataset_weights assert len(train_dataset_names) == len(weights) assert np.abs(np.sum(weights) - 1.) < 1e-6 print('weights:{}'.format(weights)) train_datasets = [] train_weights_samples = [] for training_dataset_name, weight in zip(train_dataset_names, weights): train_dataset = dataset_dict[training_dataset_name](args, mode) train_datasets.append(train_dataset) num_samples = len(train_dataset) weight_each_sample = weight / num_samples train_weights_samples.extend([weight_each_sample]*num_samples) train_dataset = torch.utils.data.ConcatDataset(train_datasets) train_weights = torch.from_numpy(np.array(train_weights_samples)) sampler = WeightedRandomSampler(train_weights, len(train_weights)) train_sampler = DistributedSamplerWrapper(sampler) if args.distributed else sampler return train_dataset, train_sampler
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common utilities for exporting SavedModels and TFLite models.""" import os from typing import Sequence from absl import logging from chirp.taxonomy import namespace from jax.experimental import jax2tf import tensorflow as tf class Jax2TfModelWrapper(tf.Module): """Wrapper for Jax models for exporting with variable input shape.""" def __init__( self, infer_fn, jax_params, input_shape: Sequence[int | None], enable_xla: bool = False, coord_ids: str = 'bt', name=None, ): """Initialize the wrapper. Args: infer_fn: The inference function for the Jax model. jax_params: Parameters (ie, model weights) for the Jax model. input_shape: Input shape, with 'None' for any axes which will be variable. enable_xla: Whether to use XLA ops in the exported model. Defaults to False, which is necessary for subsequent TFLite conversion. coord_ids: String with length matching the length of the input_shape, used for identifying polymorphic shape parameters. name: Model name. """ super(Jax2TfModelWrapper, self).__init__(name=name) # The automatically generated variable names in the checkpoint end up being # very uninformative. There may be a good way to map in better names. self._structured_variables = tf.nest.map_structure(tf.Variable, jax_params) self.input_shape = input_shape # Construct the jax polymorphic shape. jp_shape = [] for i, s in enumerate(input_shape): if s is None: jp_shape.append(coord_ids[i]) else: jp_shape.append('_') jp_shape = '(' + ','.join(jp_shape) + ')' # The variables structure needs to be flattened for the saved_model. self._variables = tf.nest.flatten(self._structured_variables) logging.info('Running jax2tf conversion...') converted_infer_fn = jax2tf.convert( infer_fn, enable_xla=enable_xla, with_gradient=False, polymorphic_shapes=[jp_shape, None], ) infer_partial = lambda inputs: converted_infer_fn( # pylint:disable=g-long-lambda inputs, self._structured_variables ) self.infer_tf = tf.function( infer_partial, jit_compile=True, input_signature=[tf.TensorSpec(input_shape)], ) logging.info('Jax2TfModelWrapper initialized.') def __call__(self, inputs): return self.infer_tf(inputs) def get_tf_zero_inputs(self): """Construct some dummy inputs with self.input_shape.""" fake_shape = [] for s in self.input_shape: if s is None: fake_shape.append(1) else: fake_shape.append(s) return tf.zeros(fake_shape) def export_converted_model( self, workdir: str, train_step: int, class_lists: dict[str, namespace.ClassList] | None = None, export_tf_lite: bool = True, tf_lite_dtype: str = 'float16', tf_lite_select_ops: bool = True, ): """Export converted TF models.""" fake_inputs = self.get_tf_zero_inputs() logging.info('Creating concrete function...') concrete_fn = self.infer_tf.get_concrete_function(fake_inputs) logging.info('Saving TF SavedModel...') tf.saved_model.save( self, os.path.join(workdir, 'savedmodel'), signatures=concrete_fn ) with tf.io.gfile.GFile( os.path.join(workdir, 'savedmodel', 'ckpt.txt'), 'w' ) as f: f.write(f'train_state.step: {train_step}\n') logging.info('Writing class lists...') if class_lists is not None: for key, class_list in class_lists.items(): with tf.io.gfile.GFile(os.path.join(workdir, f'{key}.csv'), 'w') as f: # NOTE: Although the namespace is written to the file, there is no # guarantee that the class list will still be compatible with the # namespace if the latter gets updated. f.write(class_list.to_csv()) if not export_tf_lite: logging.info('Skipping TFLite export.') logging.info('Export complete.') return # Export TFLite model. logging.info('Converting to TFLite...') converter = tf.lite.TFLiteConverter.from_concrete_functions( [concrete_fn], self ) converter.optimizations = [tf.lite.Optimize.DEFAULT] if tf_lite_dtype == 'float16': converter.target_spec.supported_types = [tf.float16] elif tf_lite_dtype == 'float32': converter.target_spec.supported_types = [tf.float32] elif tf_lite_dtype == 'auto': # Note that the default with optimizations is int8, which requires further # tuning. pass else: raise ValueError(f'Unsupported dtype: {tf_lite_dtype}') converter.target_spec.supported_ops = [ tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops. ] if tf_lite_select_ops: converter.target_spec.supported_ops += [tf.lite.OpsSet.SELECT_TF_OPS] tflite_float_model = converter.convert() if not tf.io.gfile.exists(workdir): tf.io.gfile.makedirs(workdir) with tf.io.gfile.GFile(os.path.join(workdir, 'model.tflite'), 'wb') as f: f.write(tflite_float_model) with tf.io.gfile.GFile(os.path.join(workdir, 'tflite_ckpt.txt'), 'w') as f: f.write(f'train_state.step: {train_step}\n') logging.info('Export complete.')
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Signal processing operations. Ports from `tf.signal`. """ import functools import jax from jax import lax from jax import numpy as jnp _MEL_HIGH_FREQUENCY_Q = 1127.0 _MEL_BREAK_FREQUENCY_HERTZ = 700.0 def hertz_to_mel(frequencies_hertz: jnp.ndarray) -> jnp.ndarray: """Converts frequencies in `frequencies_hertz` in Hertz to the mel scale. Args: frequencies_hertz: An array of frequencies in Hertz. Returns: An array of the same shape and type of `frequencies_hertz` containing frequencies in the mel scale. """ return _MEL_HIGH_FREQUENCY_Q * jnp.log1p( frequencies_hertz / _MEL_BREAK_FREQUENCY_HERTZ ) def mel_to_hertz(frequencies_mel: jnp.ndarray) -> jnp.ndarray: """Converts frequencies in `frequencies_mel` in the mel scale to Hertz. Args: frequencies_mel: An array of frequencies in the mel scale. Returns: An array of the same shape and type of `frequencies_mel` containing frequencies in Hertz. """ return _MEL_BREAK_FREQUENCY_HERTZ * ( jnp.expm1(frequencies_mel / _MEL_HIGH_FREQUENCY_Q) ) @functools.partial(jax.jit, static_argnums=(0, 1)) def linear_to_mel_weight_matrix( num_mel_bins: int = 20, num_spectrogram_bins: int = 129, sample_rate: int = 8000, lower_edge_hertz: float = 125.0, upper_edge_hertz: float = 3800.0, ) -> jnp.ndarray: """Returns a matrix to warp linear scale spectrograms to the mel scale. A port of tf.signal.linear_to_mel_weight_matrix. Args: num_mel_bins: How many bands in the resulting mel spectrum. num_spectrogram_bins: How many bins there are in the source spectrogram data, which is understood to be `fft_size // 2 + 1`, i.e. the spectrogram only contains the nonredundant FFT bins. sample_rate: Samples per second of the input signal used to create the spectrogram. Used to figure out the frequencies corresponding to each spectrogram bin, which dictates how they are mapped into the mel scale. lower_edge_hertz: Lower bound on the frequencies to be included in the mel spectrum. This corresponds to the lower edge of the lowest triangular band. upper_edge_hertz: The desired top edge of the highest frequency band. Returns: An array of shape `(num_spectrogram_bins, num_mel_bins)`. """ # HTK excludes the spectrogram DC bin. bands_to_zero = 1 nyquist_hertz = sample_rate / 2.0 linear_frequencies = jnp.linspace(0.0, nyquist_hertz, num_spectrogram_bins)[ bands_to_zero: ] spectrogram_bins_mel = hertz_to_mel(linear_frequencies)[:, jnp.newaxis] # Compute num_mel_bins triples of (lower_edge, center, upper_edge). The # center of each band is the lower and upper edge of the adjacent bands. # Accordingly, we divide [lower_edge_hertz, upper_edge_hertz] into # num_mel_bins + 2 pieces. band_edges_mel = jnp.linspace( hertz_to_mel(lower_edge_hertz), # pytype: disable=wrong-arg-types # jax-ndarray hertz_to_mel(upper_edge_hertz), # pytype: disable=wrong-arg-types # jax-ndarray num_mel_bins + 2, ) # Split the triples up and reshape them into [1, num_mel_bins] tensors. lower_edge_mel = band_edges_mel[jnp.newaxis, :-2] center_mel = band_edges_mel[jnp.newaxis, 1:-1] upper_edge_mel = band_edges_mel[jnp.newaxis, 2:] # Calculate lower and upper slopes for every spectrogram bin. # Line segments are linear in the mel domain, not Hertz. lower_slopes = (spectrogram_bins_mel - lower_edge_mel) / ( center_mel - lower_edge_mel ) upper_slopes = (upper_edge_mel - spectrogram_bins_mel) / ( upper_edge_mel - center_mel ) # Intersect the line segments with each other and zero. mel_weights_matrix = jnp.maximum(0.0, jnp.minimum(lower_slopes, upper_slopes)) # Re-add the zeroed lower bins we sliced out above. return jnp.pad(mel_weights_matrix, ((bands_to_zero, 0), (0, 0))) def frame( signal: jnp.ndarray, frame_length: int, frame_step: int, pad_end: bool = False, pad_value: float = 0.0, # pylint: disable=unused-argument axis: int = -1, ) -> jnp.ndarray: """Split a spectrogram into multiple bands. JAX version of `tf.signal.frame`. Args: signal: A `(..., samples, ...)` array. Rank must be at least 1. frame_length: The frame length in samples. frame_step: The frame hop size in samples. pad_end: Whether to pad the end of `signal` with `pad_value`. pad_value: A value to use where the input signal does not exist when `pad_end` is True. axis: Indicating the axis to frame. Defaults to the last axis. Supports negative values for indexing from the end. Returns: An array of frames, size `(..., num_frames, frame_length, ...)`. """ axis = axis % signal.ndim remainder = (signal.shape[axis] - frame_length) % frame_step if pad_end and remainder: no_pad = ((0, 0),) zero_pad = ((0, remainder),) pad_width = no_pad * axis + zero_pad + no_pad * (signal.ndim - axis - 1) signal = jnp.pad(signal, pad_width, constant_values=pad_value) num_frames = (signal.shape[axis] - frame_length) // frame_step + 1 start_indices = (jnp.arange(num_frames) * frame_step)[:, None] # The axis not in offset_dims is where the frames will be put offset_dims = tuple(range(axis)) + tuple(range(axis + 1, signal.ndim + 1)) dimension_numbers = lax.GatherDimensionNumbers( offset_dims=offset_dims, collapsed_slice_dims=(), start_index_map=(axis,) ) slice_sizes = signal.shape[:axis] + (frame_length,) + signal.shape[axis + 1 :] frames = lax.gather(signal, start_indices, dimension_numbers, slice_sizes) return frames
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2022 The Chirp Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Chirp project.""" __version__ = "0.1.0"
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Audio utilities. General utilities for processing audio and spectrograms. """ import concurrent import functools import logging import os import tempfile from typing import Generator, Sequence import warnings from chirp import path_utils from chirp import signal from etils import epath from jax import lax from jax import numpy as jnp from jax import random from jax import scipy as jsp import librosa import numpy as np import requests from scipy import signal as scipy_signal import soundfile import tensorflow as tf _WINDOW_FNS = { 'hann': tf.signal.hann_window, 'hamming': tf.signal.hamming_window, } _BOUNDARY_TO_PADDING_MODE = {'zeros': 'CONSTANT'} def load_audio( path: epath.PathLike, target_sample_rate: int, **kwargs ) -> jnp.ndarray: """Load a general audio resource.""" path = os.fspath(path) if path.startswith('xc'): return load_xc_audio(path, target_sample_rate) elif path.startswith('http'): return load_url_audio(path, target_sample_rate) else: return load_audio_file(path, target_sample_rate, **kwargs) def load_audio_file( filepath: str | epath.Path, target_sample_rate: int, resampling_type: str = 'polyphase', ) -> jnp.ndarray: """Read an audio file and resample it using librosa.""" filepath = epath.Path(filepath) if target_sample_rate <= 0: # Use the native sample rate. target_sample_rate = None with tempfile.NamedTemporaryFile( mode='w+b', suffix=os.path.splitext(filepath)[-1] ) as f: with filepath.open('rb') as sf: f.write(sf.read()) # librosa outputs lots of warnings which we can safely ignore when # processing all Xeno-Canto files and PySoundFile is unavailable. with warnings.catch_warnings(): warnings.simplefilter('ignore') audio, _ = librosa.load( f.name, sr=target_sample_rate, res_type=resampling_type, ) return audio def load_audio_window_soundfile( filepath: str, offset_s: float, sample_rate: int, window_size_s: float ) -> jnp.ndarray: """Load an audio window using Soundfile. Args: filepath: Path to audio file. offset_s: Read offset within the file. sample_rate: Sample rate for returned audio. window_size_s: Length of audio to read. Reads all if <0. Returns: Numpy array of loaded audio. """ with epath.Path(filepath).open('rb') as f: sf = soundfile.SoundFile(f) if offset_s > 0: offset = int(offset_s * sf.samplerate) sf.seek(offset) if window_size_s < 0: a = sf.read() else: window_size = int(window_size_s * sf.samplerate) a = sf.read(window_size) if len(a.shape) == 2: # Downstream ops expect mono audio, so reduce to mono. a = a[:, 0] if sample_rate > 0: a = librosa.resample( y=a, orig_sr=sf.samplerate, target_sr=sample_rate, res_type='polyphase' ) return a def load_audio_window( filepath: str, offset_s: float, sample_rate: int, window_size_s: float ) -> jnp.ndarray: """Load a slice of audio from a file, hopefully efficiently.""" # TODO(tomdenton): Fine a reliable way to load a flac audio window. # If a flac file has the incorrect length in its header, seeking past the # end of the file causes the system to hang. This is a bad enough outcome # that we don't risk it. try: return load_audio_window_soundfile( filepath, offset_s, sample_rate, window_size_s ) except soundfile.LibsndfileError: logging.warning('Failed to load audio with libsndfile: %s', filepath) # This fail-over is much slower but more reliable; the entire audio file # is loaded (and possible resampled) and then we extract the target audio. audio = load_audio(filepath, sample_rate) offset = int(offset_s * sample_rate) window_size = int(window_size_s * sample_rate) return audio[offset : offset + window_size] def multi_load_audio_window( filepaths: Sequence[str], offsets: Sequence[int] | None, sample_rate: int, window_size_s: float, max_workers: int = 5, ) -> Generator[np.ndarray, None, None]: """Generator for loading audio windows in parallel. Note that audio is returned in the same order as the filepaths. Also, this ultimately relies on soundfile, which can be buggy in some cases. Args: filepaths: Paths to audio to load. offsets: Read offset in seconds for each file, or None if no offsets are needed. sample_rate: Sample rate for returned audio. window_size_s: Window length to read from each file. Set <0 to read all. max_workers: Number of threads to allocate. Yields: Loaded audio windows. """ loader = functools.partial( load_audio_window, sample_rate=sample_rate, window_size_s=window_size_s ) if offsets is None: offsets = [0.0 for _ in filepaths] # ThreadPoolExecutor works well despite the with concurrent.futures.ThreadPoolExecutor( max_workers=max_workers ) as executor: futures = [] for fp, offset in zip(filepaths, offsets): future = executor.submit(loader, offset_s=offset, filepath=fp) futures.append(future) while futures: yield futures.pop(0).result() def load_xc_audio(xc_id: str, sample_rate: int) -> jnp.ndarray: """Load audio from Xeno-Canto given an ID like 'xc12345'.""" if not xc_id.startswith('xc'): raise ValueError(f'XenoCanto id {xc_id} does not start with "xc".') xc_id = xc_id[2:] try: int(xc_id) except ValueError as exc: raise ValueError(f'XenoCanto id xc{xc_id} is not an integer.') from exc session = requests.Session() session.mount( 'https://', requests.adapters.HTTPAdapter( max_retries=requests.adapters.Retry(total=5, backoff_factor=0.1) ), ) url = f'https://xeno-canto.org/{xc_id}/download' try: data = session.get(url=url).content except requests.exceptions.RequestException as e: raise requests.exceptions.RequestException( f'Failed to load audio from Xeno-Canto {xc_id}' ) from e with tempfile.NamedTemporaryFile(suffix='.mp3', mode='wb') as f: f.write(data) f.flush() audio = load_audio_file(f.name, target_sample_rate=sample_rate) return audio def load_url_audio(url: str, sample_rate: int) -> jnp.ndarray: """Load audio from a URL.""" data = requests.get(url).content with tempfile.NamedTemporaryFile(mode='wb') as f: f.write(data) f.flush() audio = load_audio_file(f.name, target_sample_rate=sample_rate) return audio # pylint: disable=g-doc-return-or-yield,g-doc-args,unused-argument def stft_tf( x, fs=1.0, window='hann', nperseg=256, noverlap=None, nfft=None, detrend=False, return_onesided=True, boundary='zeros', padded=True, ) -> tf.Tensor: """Computes the Short Time Fourier Transform (STFT). This is a port of `scipy.signal.stft` to TensorFlow. This allows us to exactly reproduce the frontend in the data preprocessing pipeline. """ # Use SciPy's original variable names # pylint: disable=invalid-name nfft = nperseg if nfft is None else nfft noverlap = nperseg // 2 if noverlap is None else noverlap nstep = nperseg - noverlap if x.dtype.is_complex: raise ValueError('tf.signal.stft only supports real signals') if window not in _WINDOW_FNS: raise ValueError( ( f'tf.signal.stft does not support window {window}, ' 'supported functions are {' ), '.join(_WINDOW_FNS)}', ) if boundary is not None and boundary not in _BOUNDARY_TO_PADDING_MODE: raise ValueError( 'tf.signal.stft only supports boundary modes None and , '.join( _BOUNDARY_TO_PADDING_MODE ) ) if detrend: raise ValueError('tf.signal.stft only supports detrend = False') if not return_onesided: raise ValueError('tf.signal.stft only supports return_onesided = True') input_length = tf.shape(x)[-1] # Put the time axis at the end and then put it back if boundary in _BOUNDARY_TO_PADDING_MODE: mode = _BOUNDARY_TO_PADDING_MODE[boundary] paddings = tf.concat( [ tf.repeat([[0, 0]], tf.rank(x) - 1, axis=0), [[nperseg // 2, nperseg // 2]], ], axis=0, ) x = tf.pad(x, paddings, mode) input_length += nperseg Zxx = tf.signal.stft( x, frame_length=nperseg, frame_step=nstep, fft_length=nfft, window_fn=_WINDOW_FNS[window], pad_end=padded, ) Zxx = tf.linalg.matrix_transpose(Zxx) # TODO(bartvm): tf.signal.frame seems to have a bug which sometimes adds # too many frames, so we strip those if necessary nadd = (-(input_length - nperseg) % nstep) % nperseg if padded else 0 length = -((input_length + nadd - nperseg + 1) // (noverlap - nperseg)) Zxx = Zxx[..., :length] # Scaling Zxx *= 2 / nperseg return Zxx def ema( xs: jnp.ndarray, gamma: float | jnp.ndarray, initial_state: jnp.ndarray | None = None, axis: int = 0, ) -> jnp.ndarray: """Computes the exponential moving average along one axis.""" # Bring target axis to front. xs = jnp.swapaxes(xs, 0, axis) if initial_state is None: initial_state = xs[0] def ema_fn(state, x): new_state = gamma * x + (1.0 - gamma) * state return new_state, new_state # NOTE: For small batches this is potentially an expensive and inefficient # computation, as it requires a loop over potentially long sequences with # minimal computation each step. This could be addressed by partially # unrolling the loop or by a truncated EMA using convolutions. final_state, ys = lax.scan(ema_fn, init=initial_state, xs=xs) ys = jnp.swapaxes(ys, 0, axis) return ys, final_state # pytype: disable=bad-return-type # jax-ndarray def ema_conv1d( xs: jnp.ndarray, gamma: float | jnp.ndarray, conv_width: int ) -> jnp.ndarray: """Uses a depth-wise conv1d to approximate the EMA operation.""" if conv_width == -1: conv_width = xs.shape[1] left_pad = jnp.repeat(xs[:, 0:1], conv_width - 1, axis=1) padded_inp = jnp.concatenate([left_pad, xs], axis=1) kernel = jnp.array( [(1.0 - gamma) ** k for k in range(conv_width - 1)] + [gamma] ).astype(xs.dtype) if isinstance(gamma, float) or gamma.ndim == 0: kernel = kernel[jnp.newaxis, jnp.newaxis, :] kernel = jnp.repeat(kernel, xs.shape[-1], axis=1) else: kernel = jnp.swapaxes(kernel, 0, 1) kernel = kernel[jnp.newaxis, :, :] outp = lax.conv_general_dilated( padded_inp, kernel, (1,), padding='VALID', feature_group_count=xs.shape[-1], dimension_numbers=('NTC', 'IOT', 'NTC'), ) return outp def pcen( filterbank_energy: jnp.ndarray, smoothing_coef: float = 0.05638943879134889, gain: float = 0.98, bias: float = 2.0, root: float = 2.0, eps: float = 1e-6, state: jnp.ndarray | None = None, conv_width: int = 0, ) -> tuple[jnp.ndarray, jnp.ndarray | None]: """Per-Channel Energy Normalization (PCEN). See https://arxiv.org/abs/1607.05666 for details. Args: filterbank_energy: A [..., num_frames, num_frequency_bins] array of power-domain filterbank energies. If a scalar, we return 0.0 as the spectral floor value (for padding purposes). smoothing_coef: The coefficient of the IIR smoothing filter (scalar or for each bin). Referred to as s in the paper. gain: The normalization coefficient (scalar or for each bin). Alpha in the paper. bias: Constant stabilizer offset for the root compression (scalar or for each bin). Delta in the paper. root: Root compression coefficient (scalar or for each bin). The reciprocal of r in the paper. eps: Epsilon floor value to prevent division by zero. state: Optional state produced by a previous call to fixed_pcen. Used in streaming mode. conv_width: If non-zero, use a convolutional approximation of the EMA, with kernel size indicated here. If set to -1, the sequence length will be used as the kernel size. Returns: Filterbank energies with PCEN compression applied (type and shape are unchanged). Also returns a state tensor to be used in the next call to fixed_pcen. """ if filterbank_energy.ndim < 2: raise ValueError('Filterbank energy must have rank >= 2.') for name, arr, max_rank in ( ('gain', gain, 1), ('bias', bias, 1), ('root', root, 1), ('smoothing_coef', smoothing_coef, 1), ('eps', eps, 0), ): if jnp.ndim(arr) > max_rank: raise ValueError(f'{name} must have rank at most {max_rank}') if conv_width == 0: smoothed_energy, filter_state = ema( filterbank_energy, smoothing_coef, initial_state=state, axis=-2 ) elif len(filterbank_energy.shape) == 3: smoothed_energy = ema_conv1d(filterbank_energy, smoothing_coef, conv_width) filter_state = None else: raise ValueError( 'Can only apply convolutional EMA to inputs with shape [B, T, D].' ) inv_root = 1.0 / root pcen_output = ( filterbank_energy / (eps + smoothed_energy) ** gain + bias ) ** inv_root - bias**inv_root return pcen_output, filter_state def log_scale( x: jnp.ndarray, floor: float, offset: float, scalar: float ) -> jnp.ndarray: """Apply log-scaling. Args: x: The data to scale. floor: Clip input values below this value. This avoids taking the logarithm of negative or very small numbers. offset: Shift all values by this amount, after clipping. This too avoids taking the logarithm of negative or very small numbers. scalar: Scale the output by this value. Returns: The log-scaled data. """ x = jnp.log(jnp.maximum(x, floor) + offset) return scalar * x def random_low_pass_filter( key: jnp.ndarray, melspec: jnp.ndarray, time_axis: int = -2, channel_axis: int = -1, min_slope: float = 2.0, max_slope: float = 8.0, min_offset: float = 0.0, max_offset: float = 5.0, ) -> jnp.ndarray: """Applies a random low-pass rolloff frequency envelope. Args: key: A random key used to sample a random slope and offset. melspec: A (batch) of mel-spectrograms, assumed to have frequencies on the last axis. time_axis: The axis representing time. channel_axis: The axis representing the different frequencies. min_slope: The minimum slope of the low-pass filter. max_slope: The maximum slope of the low-pass filter. min_offset: The minimum offset of the low-pass filter. max_offset: The maximum offset of the low-pass filte.r Returns: The mel-spectrogram with a random low-pass filter applied, same size as the input. """ shape = list(melspec.shape) shape[time_axis] = shape[channel_axis] = 1 slope_key, offset_key = random.split(key) slope = random.uniform(slope_key, shape, minval=min_slope, maxval=max_slope) offset = random.uniform( offset_key, shape, minval=min_offset, maxval=max_offset ) shape = [1] * melspec.ndim shape[channel_axis] = melspec.shape[channel_axis] xspace = jnp.linspace(0.0, 1.0, melspec.shape[channel_axis]) xspace = jnp.reshape(xspace, shape) envelope = 1 - 0.5 * (jnp.tanh(slope * (xspace - 0.5) - offset) + 1) return melspec * envelope def apply_mixture_denoising( melspec: jnp.ndarray, threshold: float ) -> jnp.ndarray: """Denoises the melspectrogram using an estimated Gaussian noise distribution. Forms a noise estimate by a) estimating mean+std, b) removing extreme values, c) re-estimating mean+std for the noise, and then d) classifying values in the spectrogram as 'signal' or 'noise' based on likelihood under the revised estimate. We then apply a mask to return the signal values. Args: melspec: input melspectrogram of rank 2 (time, frequency). threshold: z-score theshold for separating signal from noise. On the first pass, we use 2 * threshold, and on the second pass we use threshold directly. Returns: The denoised melspectrogram. """ x = melspec feature_mean = jnp.mean(x, axis=0, keepdims=True) feature_std = jnp.std(x, axis=0, keepdims=True) is_noise = (x - feature_mean) < 2 * threshold * feature_std noise_counts = jnp.sum(is_noise.astype(x.dtype), axis=0, keepdims=True) noise_mean = jnp.sum(x * is_noise, axis=0, keepdims=True) / (noise_counts + 1) noise_var = jnp.sum( is_noise * jnp.square(x - noise_mean), axis=0, keepdims=True ) noise_std = jnp.sqrt(noise_var / (noise_counts + 1)) # Recompute signal/noise separation. demeaned = x - noise_mean is_signal = demeaned >= threshold * noise_std is_signal = is_signal.astype(x.dtype) is_noise = 1.0 - is_signal signal_part = is_signal * x noise_part = is_noise * noise_mean reconstructed = signal_part + noise_part - noise_mean return reconstructed def pad_to_length_if_shorter(audio: jnp.ndarray, target_length: int): """Wraps the audio sequence if it's shorter than the target length. Args: audio: input audio sequence of shape [num_samples]. target_length: target sequence length. Returns: The audio sequence, padded through wrapping (if it's shorter than the target length). """ if audio.shape[0] < target_length: missing = target_length - audio.shape[0] pad_left = missing // 2 pad_right = missing - pad_left audio = jnp.pad(audio, [[pad_left, pad_right]], mode='wrap') return audio def slice_peaked_audio( audio: jnp.ndarray, sample_rate_hz: int, interval_length_s: float = 6.0, max_intervals: int = 5, ) -> jnp.ndarray: """Extracts audio intervals from melspec peaks. Args: audio: input audio sequence of shape [num_samples]. sample_rate_hz: sample rate of the audio sequence (Hz). interval_length_s: length each extracted audio interval. max_intervals: upper-bound on the number of audio intervals to extract. Returns: Sequence of extracted audio intervals, each of shape [sample_rate_hz * interval_length_s]. """ target_length = int(sample_rate_hz * interval_length_s) # Wrap audio to the target length if it's shorter than that. audio = pad_to_length_if_shorter(audio, target_length) peaks = find_peaks_from_audio(audio, sample_rate_hz, max_intervals) left_shift = target_length // 2 right_shift = target_length - left_shift # Ensure that the peak locations are such that # `audio[peak - left_shift: peak + right_shift]` is a non-truncated slice. peaks = jnp.clip(peaks, left_shift, audio.shape[0] - right_shift) # As a result, it's possible that some (start, stop) pairs become identical; # eliminate duplicates. start_stop = jnp.unique( jnp.stack([peaks - left_shift, peaks + right_shift], axis=-1), axis=0 ) return start_stop def find_peaks_from_audio( audio: jnp.ndarray, sample_rate_hz: int, max_peaks: int, num_mel_bins: int = 160, ) -> jnp.ndarray: """Construct melspec and find peaks. Args: audio: input audio sequence of shape [num_samples]. sample_rate_hz: sample rate of the audio sequence (Hz). max_peaks: upper-bound on the number of peaks to return. num_mel_bins: The number of mel-spectrogram bins to use. Returns: Sequence of scalar indices for the peaks found in the audio sequence. """ melspec_rate_hz = 100 frame_length_s = 0.08 nperseg = int(frame_length_s * sample_rate_hz) nstep = sample_rate_hz // melspec_rate_hz _, _, spectrogram = jsp.signal.stft( audio, nperseg=nperseg, noverlap=nperseg - nstep ) # apply_mixture_denoising/find_peaks_from_melspec expect frequency axis last spectrogram = jnp.swapaxes(spectrogram, -1, -2) magnitude_spectrogram = jnp.abs(spectrogram) # For backwards compatibility, we scale the spectrogram here the same way # that the TF spectrogram is scaled. If we don't, the values are too small and # end up being clipped by the default configuration of the logarithmic scaling magnitude_spectrogram *= nperseg / 2 # Construct mel-spectrogram num_spectrogram_bins = magnitude_spectrogram.shape[-1] mel_matrix = signal.linear_to_mel_weight_matrix( num_mel_bins, num_spectrogram_bins, sample_rate_hz, lower_edge_hertz=60, upper_edge_hertz=10_000, ) mel_spectrograms = magnitude_spectrogram @ mel_matrix melspec = log_scale(mel_spectrograms, floor=1e-2, offset=0.0, scalar=0.1) melspec = apply_mixture_denoising(melspec, 0.75) peaks = find_peaks_from_melspec(melspec, melspec_rate_hz) peak_energies = jnp.sum(melspec, axis=1)[peaks] t_mel_to_t_au = lambda tm: 1.0 * tm * sample_rate_hz / melspec_rate_hz peaks = [t_mel_to_t_au(p) for p in peaks] peak_set = sorted(zip(peak_energies, peaks), reverse=True) if max_peaks > 0 and len(peaks) > max_peaks: peak_set = peak_set[:max_peaks] return jnp.asarray([p[1] for p in peak_set], dtype=jnp.int32) def find_peaks_from_melspec(melspec: jnp.ndarray, stft_fps: int) -> jnp.ndarray: """Locate peaks inside signal of summed spectral magnitudes. Args: melspec: input melspectrogram of rank 2 (time, frequency). stft_fps: Number of summed magnitude bins per second. Calculated from the original sample of the waveform. Returns: A list of filtered peak indices. """ summed_spectral_magnitudes = jnp.sum(melspec, axis=1) threshold = jnp.mean(summed_spectral_magnitudes) * 1.5 min_width = int(round(0.5 * stft_fps)) max_width = int(round(2 * stft_fps)) width_step_size = int(round((max_width - min_width) / 10)) peaks = scipy_signal.find_peaks_cwt( summed_spectral_magnitudes, jnp.arange(min_width, max_width, width_step_size), ) margin_frames = int(round(0.3 * stft_fps)) start_stop = jnp.clip( jnp.stack([peaks - margin_frames, peaks + margin_frames], axis=-1), 0, summed_spectral_magnitudes.shape[0], ) peaks = [ p for p, (a, b) in zip(peaks, start_stop) if summed_spectral_magnitudes[a:b].max() >= threshold ] return jnp.asarray(peaks, dtype=jnp.int32)
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities to be able to construct Python objects from configurations. First use `callable_config` to construct a `ConfigDict` as follows: config.foo = callable_config("my_module.Foo", bar=4) This will construct a `ConfigDict` that looks as follows: ConfigDict({ 'foo': ConfigDict({ "__constructor": "my_module.Foo", "__config": ConfigDict({ "bar": 4 }) }) }) This configuration dictionary can be serialized and the keys can even be overridden on the command line. The objects can be constructed by calling `parse_config(config, {"my_module": my_module})` which returns the following: ConfigDict({ 'foo': my_module.Foo(bar=4) }) """ from typing import Any from ml_collections import config_dict _CALLABLE = "__constructor" _KWARGS = "__config" _OBJECT = "__object" def callable_config( callable_: str, *args: config_dict.ConfigDict, **kwargs: Any ) -> config_dict.ConfigDict: """Create a configuration for constructing a Python object. Args: callable_: A string that resolves to a Python object to call in order to construct the configuration value. *args: Configuration dictionaries containing keyword arguments to pass to the callable. **kwargs: The keyword arguments to pass to the callable. Returns: A ConfigDict object containing the callable and its arguments. This dictionary can later be parsed by the `parse_config` function. """ kwargs = config_dict.ConfigDict(kwargs) for arg in args: kwargs.update(arg) return config_dict.ConfigDict({_CALLABLE: callable_, _KWARGS: kwargs}) def object_config(object_: str) -> config_dict.ConfigDict: """Create a configuration for a Python object. Args: object_: A string that resolve to a Python object. Returns: A ConfigDict object containing the name of the object. This dictionary can later be parsed by the `parse_config` function. """ return config_dict.ConfigDict({_OBJECT: object_}) def either(object_a: Any, object_b: Any, return_a: bool) -> Any | None: """Returns returns object_a if `predicate` is True and object_b otherwise. While trivial in appearance, this function can be used in conjunction with `callable_config` to implement control flow with a boolean `config_dict.FieldReference`: config.some_attribute = callable_config( 'either', object_a=callable_config(...), object_b=callable_config(...), return_a=config.get_ref('some_boolean_field_reference') ) Args: object_a: The first object to (maybe) return. object_b: The second object to (maybe) return. return_a: Whether to return object_a (True) or object_b (False). Returns: object_a or object_b, depending on `return_a`. """ return object_a if return_a else object_b def get_melspec_defaults(config: config_dict.ConfigDict) -> tuple[Any, Any]: """Determines the default melspectrogram kernel size and nftt values. Args: config: The base ConfigDict. Expected to contain 'sample_rate_hz' and 'frame_rate_hz' attributes. Returns: The default kernel size and nftt values. Raises: ValueError, if the default kernel size is determined to be larger than 4096. If this is the case, the config is expected to define a default nftt value directly. """ melspec_stride = config.get_ref("sample_rate_hz") // config.get_ref( "frame_rate_hz" ) # This gives 50% overlap, which is optimal for the Hanning window. # See Heinz, et al: "Spectrum and spectral density estimation by the # Discrete Fourier transform (DFT), including a comprehensive list of window # functions and some new flat-top windows", Section 10. # https://holometer.fnal.gov/GH_FFT.pdf # In brief, 50% overlap gives no amplitude distortion, and minimizes the # overlap correlation. Longer windows average over longer time periods, # losing signal locality, and are also more expensive to compute. melspec_kernel_size = 2 * melspec_stride # nfft is preferably the smallest power of two containing the kernel. # This yields a no-nonsense FFT, implemented everywhere. # Note that we can"t use fancy math like ceil(log2(ks)) on field references... if melspec_kernel_size <= 256: melspec_nfft = 256 elif 256 < melspec_kernel_size <= 512: melspec_nfft = 512 elif 512 < melspec_kernel_size <= 1024: melspec_nfft = 1024 elif 1024 < melspec_kernel_size <= 2048: melspec_nfft = 2048 elif 2048 < melspec_kernel_size <= 4096: melspec_nfft = 4096 else: raise ValueError("Large kernel {kernel_size}; please define nfft.") return melspec_kernel_size, melspec_nfft def parse_config( config: config_dict.ConfigDict, globals_: dict[str, Any] ) -> config_dict.ConfigDict: """Parse a configuration. This handles nested configurations, as long as the values are callables created using `callable_config`, or if the values are lists or tuples containing elements created the same way. Args: config: A configuration object, potentially containing callables which were created using `callable_config`. globals_: The dictionary of globals to use to resolve the callable. Returns: The parsed configuration dictionary. """ def _parse_value(value: config_dict.ConfigDict) -> Any: if isinstance(value, dict): value = config_dict.ConfigDict(value) if isinstance(value, config_dict.ConfigDict): if set(value.keys()) == {_CALLABLE, _KWARGS}: return _parse_value( eval(value[_CALLABLE], globals_)( # pylint: disable=eval-used **parse_config(value[_KWARGS], globals_) ) ) elif set(value.keys()) == {_OBJECT}: return _parse_value(eval(value[_OBJECT], globals_)) # pylint: disable=eval-used else: return parse_config(value, globals_) elif isinstance(value, config_dict.FieldReference): return value.get() else: return value with config.ignore_type(): for key, value in config.items(): # We purposefully only attempt to parse values inside list and tuple # instances (and not e.g. namedtuple instances, since optax defines # GradientTransformation as a namedtuple and we don't want to parse its # values), which precludes using isinstance(value, (list, tuple)). if type(value) in (list, tuple): config[key] = type(value)(_parse_value(v) for v in value) else: config[key] = _parse_value(value) return config
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Path utilities. General utilities to help with handling paths. """ import os from typing import BinaryIO, TextIO from etils import epath def get_absolute_path(relative_path: os.PathLike[str] | str) -> epath.Path: """Returns the absolute epath.Path associated with the relative_path. Args: relative_path: The relative path (w.r.t. root) to the resource. Returns: The absolute path to the resource. """ file_path = epath.Path(__file__).parent / relative_path return file_path def open_file(relative_path: os.PathLike[str] | str, mode) -> TextIO | BinaryIO: return open(get_absolute_path(relative_path), mode)
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Entry point for project scripts. This binary provides a common entry point for all project scripts. In order to be compatible, a project must provide a `run` callable which accepts the arguments `mode` (e.g., `train`, `eval`, `finetune`), a `config` in the form of a `ConfigDict`, and a `workdir` where temporary files can be stored. Finally, the `tf_data_service_address` argument is a string which is empty or contains the address of the tf.data service dispatcher. """ from typing import Protocol, Sequence from absl import app from absl import flags from absl import logging from chirp import config_utils from chirp.configs import config_globals from chirp.train import classifier from chirp.train import hubert from chirp.train import mae from chirp.train import separator from ml_collections import config_dict from ml_collections.config_flags import config_flags import tensorflow as tf from xmanager import xm # pylint: disable=unused-import class Run(Protocol): """Protocol for entry points of project scripts. These scripts should aim to include project-specific arguments into the config argument as much as possible, since updating this interface would require changing every project that uses this entry point. """ def __call__( self, mode: str, config: config_dict.ConfigDict, workdir: str, tf_data_service_address: str, ): ... TARGETS: dict[str, Run] = { "classifier": classifier.run, "mae": mae.run, "hubert": hubert.run, "separator": separator.run, } _CONFIG = config_flags.DEFINE_config_file("config") _WORKDIR = flags.DEFINE_string( "workdir", None, "Work unit checkpointing directory." ) _TARGET = flags.DEFINE_enum( "target", None, TARGETS.keys(), "The module to run." ) _MODE = flags.DEFINE_string("mode", None, "The mode to run.") _TF_DATA_SERVICE_ADDRESS = flags.DEFINE_string( "tf_data_service_address", "", "The dispatcher's address.", allow_override_cpp=True, ) flags.mark_flags_as_required(["config", "workdir", "target", "mode"]) def main(argv: Sequence[str]) -> None: if len(argv) > 1: raise app.UsageError("Too many command-line arguments.") logging.info(_CONFIG.value) # We assume that scripts use JAX, so here we prevent TensorFlow from reserving # all the GPU memory (which leaves nothing for JAX to use). tf.config.experimental.set_visible_devices([], "GPU") config = config_utils.parse_config( _CONFIG.value, config_globals.get_globals() ) TARGETS[_TARGET.value]( _MODE.value, config, _WORKDIR.value, _TF_DATA_SERVICE_ADDRESS.value, ) if __name__ == "__main__": app.run(main)
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration and init library for Search Bootstrap projects.""" import dataclasses from typing import Sequence from chirp.inference import embed_lib from chirp.inference import interface from chirp.inference import models from chirp.inference import tf_examples from etils import epath from ml_collections import config_dict import tensorflow as tf @dataclasses.dataclass class BootstrapState: """Union of data and models useful to go from a few examples to a detector.""" config: 'BootstrapConfig' embedding_model: interface.EmbeddingModel | None = None embeddings_dataset: tf.data.Dataset | None = None source_map: dict[str, embed_lib.SourceInfo] | None = None def __post_init__(self): if self.embedding_model is None: self.embedding_model = models.model_class_map()[ self.config.model_key ].from_config(self.config.model_config) self.create_embeddings_dataset() self.create_source_map() def create_embeddings_dataset(self): """Create a TF Dataset of the embeddings.""" if self.embeddings_dataset: return self.embeddings_dataset ds = tf_examples.create_embeddings_dataset( self.config.embeddings_path, 'embeddings-*' ) self.embeddings_dataset = ds return ds def create_source_map(self): """Map filenames to full filepaths.""" if self.config.audio_globs is None: raise ValueError('Cannot create source map with no audio globs.') source_infos = embed_lib.create_source_infos(self.config.audio_globs, 1, -1) self.source_map = {} for s in source_infos: file_id = epath.Path( *epath.Path(s.filepath).parts[-(self.config.file_id_depth + 1) :] ).as_posix() dupe = self.source_map.get(file_id) if dupe: raise ValueError( 'All base filenames must be unique. ' f'Filename {file_id} appears in both {s.filepath} and {dupe}.' ) self.source_map[file_id] = s.filepath @dataclasses.dataclass class BootstrapConfig: """Configuration for Search Bootstrap project.""" # Embeddings dataset info. embeddings_path: str # Annotations info. annotated_path: str # The following are populated automatically from the embedding config. embedding_hop_size_s: float | None = None file_id_depth: int | None = None audio_globs: Sequence[str] | None = None model_key: str | None = None model_config: config_dict.ConfigDict | None = None @classmethod def load_from_embedding_config( cls, embeddings_path: str, annotated_path: str ): """Instantiate from a configuration written alongside embeddings.""" embedding_config = embed_lib.load_embedding_config(embeddings_path) embed_fn_config = embedding_config.embed_fn_config # Extract the embedding model config from the embedding_config. if embed_fn_config.model_key == 'separate_embed_model': # If a separation model was applied, get the embedding model config only. model_key = 'taxonomy_model_tf' model_config = embed_fn_config.model_config.taxonomy_model_tf_config else: model_key = embed_fn_config.model_key model_config = embed_fn_config.model_config return BootstrapConfig( embeddings_path=embeddings_path, annotated_path=annotated_path, model_key=model_key, model_config=model_config, embedding_hop_size_s=model_config.hop_size_s, file_id_depth=embed_fn_config.file_id_depth, audio_globs=embedding_config.source_file_patterns, )
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions for displaying audio and results in Colab/Jupyter.""" import functools from typing import Sequence from chirp import audio_utils from chirp.models import frontend from chirp.projects.bootstrap import search import IPython from IPython.display import display as ipy_display import ipywidgets from librosa import display as librosa_display import matplotlib.pyplot as plt import numpy as np @functools.cache def get_melspec_layer(sample_rate: int, root=4.0): """Creates a melspec layer for easy visualization.""" # Usage: melspec_layer.apply({}, audio) stride = sample_rate // 100 melspec_layer = frontend.MelSpectrogram( 96, stride, 4 * stride, sample_rate, (60.0, sample_rate / 2.0), scaling_config=frontend.PCENScalingConfig(root=root, bias=0.0), ) return melspec_layer def plot_melspec( melspec: np.ndarray, newfig: bool = False, sample_rate: int = 32000, frame_rate: int = 100, **specshow_kwargs, ): """Plot a melspectrogram.""" if newfig: plt.figure(figsize=(12, 5)) librosa_display.specshow( melspec.T, sr=sample_rate, y_axis='mel', x_axis='time', hop_length=sample_rate // frame_rate, cmap='Greys', **specshow_kwargs, ) def plot_audio_melspec( audio: np.ndarray, sample_rate: int, newfig: bool = False, display_audio=True, ): """Plot a melspectrogram from audio.""" melspec_layer = get_melspec_layer(sample_rate) melspec = melspec_layer.apply({}, audio[np.newaxis, :])[0] plot_melspec(melspec, newfig=newfig, sample_rate=sample_rate, frame_rate=100) plt.show() if display_audio: ipy_display(IPython.display.Audio(audio, rate=sample_rate)) def display_search_results( results: search.TopKSearchResults, embedding_sample_rate: int, source_map: dict[str, str], window_s: float = 5.0, checkbox_labels: Sequence[str] = (), max_workers=5, ): """Display search results, and add audio and annotation info to results.""" # Parallel load the audio windows. filepaths = [source_map[r.filename] for r in results] offsets = [r.timestamp_offset for r in results] for rank, (r, result_audio_window) in enumerate( zip( results, audio_utils.multi_load_audio_window( filepaths, offsets, embedding_sample_rate, window_s, max_workers ), ) ): plot_audio_melspec(result_audio_window, embedding_sample_rate) plt.show() print(f'rank : {rank}') print(f'source file : {r.filename}') offset_s = r.timestamp_offset print(f'offset_s : {offset_s:.2f}') print(f'score : {(r.score):.2f}') label_widgets = [] def button_callback(x): x.value = not x.value if x.value: x.button_style = 'success' else: x.button_style = '' for lbl in checkbox_labels: check = ipywidgets.Button( description=lbl, disabled=False, button_style='', ) check.value = False check.on_click(button_callback) label_widgets.append(check) ipy_display(check) # Attach audio and widgets to the SearchResult. r.audio = result_audio_window r.label_widgets = label_widgets print('-' * 80)
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tools for searching an embeddings dataset.""" import collections import dataclasses import functools from typing import Any, Callable, List, Sequence from chirp.inference import tf_examples from etils import epath import numpy as np from scipy.io import wavfile import tensorflow as tf import tqdm @dataclasses.dataclass class SearchResult: """Container for a single search result.""" # Embedding vector. embedding: np.ndarray # Raw score for this result. score: float # Score used for sorting the result. sort_score: float # Source file contianing corresponding audio. filename: str # Time offset for audio. timestamp_offset: int # The following are populated as needed. audio: np.ndarray | None = None label_widgets: Sequence[Any] = () def __hash__(self): """Return an identifier for this result.""" return hash((self.filename, self.timestamp_offset)) @dataclasses.dataclass class TopKSearchResults: """Top-K search results.""" search_results: List[SearchResult] top_k: int min_score: float = -1.0 _min_score_idx: int = -1 def __iter__(self): for r in self.search_results: yield r def update(self, search_result: SearchResult) -> None: """Update Results with the new result.""" if len(self.search_results) < self.top_k: # Add the result, regardless of score, until we have k results. pass elif search_result.sort_score < self.min_score: # Early return to save compute. return elif len(self.search_results) >= self.top_k: self.search_results.pop(self._min_score_idx) self.search_results.append(search_result) self._update_deseridata() def will_filter(self, score: float) -> bool: """Check whether a score is relevant.""" if len(self.search_results) < self.top_k: # Add the result, regardless of score, until we have k results. return False return score < self.min_score def _update_deseridata(self): self._min_score_idx = np.argmin([r.sort_score for r in self.search_results]) self.min_score = self.search_results[self._min_score_idx].sort_score def sort(self): """Sort the results.""" scores = np.array([r.sort_score for r in self.search_results]) idxs = np.argsort(-scores) self.search_results = [self.search_results[idx] for idx in idxs] self._update_deseridata() def write_labeled_data(self, labeled_data_path: str, sample_rate: int): """Write labeled results to the labeled data collection.""" labeled_data_path = epath.Path(labeled_data_path) counts = collections.defaultdict(int) for r in self.search_results: labels = [ch.description for ch in r.label_widgets if ch.value] if not labels: continue extension = epath.Path(r.filename).suffix filename = epath.Path(r.filename).name[: -len(extension)] output_filename = f'{filename}___{r.timestamp_offset}{extension}' for label in labels: output_path = labeled_data_path / label output_path.mkdir(parents=True, exist_ok=True) output_filepath = epath.Path(output_path / output_filename) if output_filepath.exists(): counts[f'{label} exists'] += 1 continue else: counts[label] += 1 with output_filepath.open('wb') as f: wavfile.write(f, sample_rate, np.float32(r.audio)) for label, count in counts.items(): print(f'Wrote {count} examples for label {label}') @dataclasses.dataclass class DistanceStats: min_dist: float max_dist: float mean_dist: float std_dist: float num_windows: int def _euclidean_score(ex, query_embedding_batch): """Update example with Euclidean distance scores.""" # Expand queries from shape [B, D] to shape [B, 1, 1, D] queries = query_embedding_batch[:, np.newaxis, np.newaxis, :] # Expand embedding from shape [T, C, D] to [1, T, C, D]. embeddings = ex[tf_examples.EMBEDDING][tf.newaxis, :, :, :] dists = (embeddings - queries) ** 2 # Take min distance over channels and queries, leaving only time. dists = tf.reduce_sum(dists, axis=-1) # Reduce over vector depth dists = tf.math.sqrt(dists) dists = tf.reduce_min(dists, axis=-1) # Reduce over channels dists = tf.reduce_min(dists, axis=0) # Reduce over query batch ex['scores'] = dists return ex def _mip_score(ex, query_embedding_batch): """Update example with MIP distance scores.""" # embedding shape is [T, C, D]. # queries have shape [B, D] keys = ex[tf_examples.EMBEDDING] scores = tf.matmul(keys, query_embedding_batch, transpose_b=True) # Product has shape [T, C, B] # Take max score over channels and queries, leaving only time. scores = tf.reduce_max(scores, axis=-1) # Reduce over query batch scores = tf.reduce_max(scores, axis=-1) # Reduce over channels ex['scores'] = scores return ex def _cosine_score(ex, query_embedding_batch): """Update example with MIP distance scores.""" # embedding shape is [T, C, D]. # queries have shape [B, D] keys = ex[tf_examples.EMBEDDING] keys_norm = tf.norm(keys, axis=-1, keepdims=True) query_norm = tf.norm(query_embedding_batch, axis=-1, keepdims=True) keys = keys / keys_norm query = query_embedding_batch / query_norm scores = tf.matmul(keys, query, transpose_b=True) # Product has shape [T, C, B] # Take max score over channels and queries, leaving only time. scores = tf.reduce_max(scores, axis=-1) # Reduce over query batch scores = tf.reduce_max(scores, axis=-1) # Reduce over channels ex['scores'] = scores return ex def _update_sort_scores(ex, invert: bool, target_score: float | None): """Update example with sort scores.""" if target_score is not None: # We need large values to be good, so we use the inverse distance to the # target score as our sorting score. ex['sort_scores'] = 1.0 / (tf.abs(ex['scores'] - target_score) + 1e-12) elif invert: ex['sort_scores'] = -ex['scores'] else: ex['sort_scores'] = ex['scores'] # Precompute the max score in the example, allowing us to save # time by skipping irrelevant examples. ex['max_sort_score'] = tf.reduce_max(ex['sort_scores']) return ex def _random_sort_scores(ex): ex['sort_scores'] = tf.random.uniform( [tf.shape(ex[tf_examples.EMBEDDING])[0]] ) ex['max_sort_score'] = tf.reduce_max(ex['sort_scores']) return ex def search_embeddings_parallel( embeddings_dataset: tf.data.Dataset, query_embedding_batch: np.ndarray | None, hop_size_s: int, top_k: int = 10, target_score: float | None = None, score_fn: Callable[[Any, np.ndarray], Any] | str = 'euclidean', # pylint: disable=g-bare-generic random_sample: bool = False, invert_sort_score: bool = False, ): """Run a brute-force search. Uses tf dataset manipulation to parallelize. Args: embeddings_dataset: tf.data.Dataset over embeddings query_embedding_batch: Batch of query embeddings with shape [Batch, Depth], or None if the metric does not require queries. hop_size_s: Embedding hop size in seconds. top_k: Number of results desired. target_score: Get results closest to the target_score. score_fn: Scoring function to use. random_sample: If True, obtain a uniformly random sample of data. invert_sort_score: Set to True if low scores are preferable to high scores. Ignored if a string score_fn is given. Returns: TopKSearchResults and distance statistics reduced per-file. """ # Convert string to score_fn. if score_fn == 'euclidean': score_fn = _euclidean_score invert_sort_score = True elif score_fn == 'mip': score_fn = _mip_score invert_sort_score = False elif score_fn == 'cosine': score_fn = _cosine_score invert_sort_score = False elif isinstance(score_fn, str): raise ValueError(f'Unknown score_fn: {score_fn}') if query_embedding_batch is None: pass elif len(query_embedding_batch.shape) == 1: query_embedding_batch = query_embedding_batch[np.newaxis, :] elif len(query_embedding_batch.shape) > 2: raise ValueError( 'query_embedding_batch should be rank 1 or 2, but has shape ' f'{query_embedding_batch.shape}' ) score_fn = functools.partial( score_fn, query_embedding_batch=query_embedding_batch ) if random_sample: sort_scores_fn = _random_sort_scores else: sort_scores_fn = functools.partial( _update_sort_scores, target_score=target_score, invert=invert_sort_score ) ex_map_fn = lambda ex: sort_scores_fn(score_fn(ex)) embeddings_dataset = ( embeddings_dataset.shuffle(1024) .map( ex_map_fn, num_parallel_calls=tf.data.AUTOTUNE, deterministic=False, ) .prefetch(1024) ) results = TopKSearchResults([], top_k=top_k) all_distances = [] try: for ex in tqdm.tqdm(embeddings_dataset.as_numpy_iterator()): all_distances.append(ex['scores'].reshape([-1])) if results.will_filter(ex['max_sort_score']): continue for t in range(ex[tf_examples.EMBEDDING].shape[0]): offset_s = t * hop_size_s + ex[tf_examples.TIMESTAMP_S] result = SearchResult( ex[tf_examples.EMBEDDING][t, :, :], ex['scores'][t], ex['sort_scores'][t], ex['filename'].decode(), offset_s, ) results.update(result) except KeyboardInterrupt: pass all_distances = np.concatenate(all_distances) results.sort() return results, all_distances def classifer_search_embeddings_parallel( embeddings_classifier: tf.keras.Model, target_index: int, **kwargs, ): """Get examples for a target class with logit near the target logit. Args: embeddings_classifier: Keras model turning embeddings into logits. target_index: Choice of class index. **kwargs: Arguments passed on to search_embeddings_parallel. Returns: TopKSearchResults and all logits. """ def classify_batch(batch, query_embedding_batch): del query_embedding_batch emb = batch[tf_examples.EMBEDDING] emb_shape = tf.shape(emb) flat_emb = tf.reshape(emb, [-1, emb_shape[-1]]) logits = embeddings_classifier(flat_emb) logits = tf.reshape( logits, [emb_shape[0], emb_shape[1], tf.shape(logits)[-1]] ) # Restrict to target class. logits = logits[..., target_index] # Take the maximum logit over channels. logits = tf.reduce_max(logits, axis=-1) batch['scores'] = logits return batch return search_embeddings_parallel( score_fn=classify_batch, query_embedding_batch=None, **kwargs )
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the bootstrap search component.""" from chirp.projects.bootstrap import search import numpy as np from absl.testing import absltest from absl.testing import parameterized class SearchTest(parameterized.TestCase): def test_top_k_search_results(self): np.random.seed(42) random_embeddings = np.random.normal(size=[100, 5]) query = np.random.normal(size=[1, 5]) dists = np.sum((random_embeddings - query) ** 2, axis=1) fake_results = [] for i in range(100): r = search.SearchResult( random_embeddings[i], score=dists[i], # Sort with negative distance so that the high score is best. sort_score=-dists[i], filename=f'result_{i:03d}', timestamp_offset=i, ) fake_results.append(r) results = search.TopKSearchResults([], top_k=10) for i, r in enumerate(fake_results): results.update(r) self.assertLen(results.search_results, min([i + 1, 10])) # Get the 10th largest value amongst the dists seen so far. true_min_neg_dist = -np.max(sorted(dists[: i + 1])[:10]) arg_min_dist = np.argmin([r.sort_score for r in results]) self.assertEqual(results.min_score, true_min_neg_dist) self.assertEqual( results.search_results[arg_min_dist].sort_score, results.min_score ) self.assertLen(results.search_results, results.top_k) results.sort() for i in range(1, 10): self.assertGreater( results.search_results[i - 1].sort_score, results.search_results[i].sort_score, ) @parameterized.product( metric_name=('euclidean', 'cosine', 'mip'), ) def test_metric_apis(self, metric_name): example = { 'embedding': np.random.normal(size=[12, 5, 128]), } query = np.random.normal(size=[3, 128]) if metric_name == 'euclidean': got = search._euclidean_score(example, query) elif metric_name == 'cosine': got = search._cosine_score(example, query) elif metric_name == 'mip': got = search._mip_score(example, query) else: raise ValueError(f'Unknown metric: {metric_name}') self.assertIn('scores', got) self.assertSequenceEqual(got['scores'].shape, (12,)) # Embeddings should be unchanged. self.assertEqual(np.max(np.abs(got['embedding'] - example['embedding'])), 0) def test_update_sort_scores(self): example = { 'embedding': np.random.normal(size=[12, 5, 128]), 'scores': np.random.normal(size=[12]), } got = search._update_sort_scores(example, invert=False, target_score=None) self.assertIn('sort_scores', got) self.assertSequenceEqual(got['sort_scores'].shape, got['scores'].shape) self.assertIn('max_sort_score', got) self.assertEqual(np.max(example['scores']), got['max_sort_score']) # Embeddings should be unchanged. self.assertEqual(np.max(np.abs(got['embedding'] - example['embedding'])), 0) got = search._update_sort_scores(example, invert=True, target_score=None) self.assertIn('sort_scores', got) self.assertSequenceEqual(got['sort_scores'].shape, got['scores'].shape) self.assertIn('max_sort_score', got) self.assertEqual(-np.min(example['scores']), got['max_sort_score']) # Embeddings should be unchanged. self.assertEqual(np.max(np.abs(got['embedding'] - example['embedding'])), 0) got = search._update_sort_scores(example, invert=False, target_score=1.0) self.assertIn('sort_scores', got) self.assertSequenceEqual(got['sort_scores'].shape, got['scores'].shape) self.assertIn('max_sort_score', got) expect_max_score = np.max(1.0 / (np.abs(example['scores'] - 1.0) + 1e-12)) self.assertEqual(got['max_sort_score'], expect_max_score) # Embeddings should be unchanged. self.assertEqual(np.max(np.abs(got['embedding'] - example['embedding'])), 0) if __name__ == '__main__': absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities to prepare models for SFDA methods.""" import enum from typing import Any, Callable from absl import logging import chex from chirp import config_utils from chirp.configs import config_globals from chirp.google import config_utils as google_config_utils from chirp.models import metrics from chirp.projects.sfda import data_utils from chirp.projects.sfda import models from chirp.projects.sfda.models import image_model from chirp.projects.sfda.models import taxonomy_model from chirp.taxonomy import class_utils from chirp.train import classifier from clu import metrics as clu_metrics import flax from flax import traverse_util from flax.core import FrozenDict from flax.core import scope import flax.linen as nn import jax from jax import tree_util import jax.numpy as jnp from ml_collections import config_dict import optax # Projected gradient descent utilities def mask_by_name(name, pytree): """Create a mask which is only true for leaves with the given name.""" flat_tree = traverse_util.flatten_dict(pytree) mask = {k: k[-1] == name for k in flat_tree} return traverse_util.unflatten_dict(mask) def project(min_value: float, max_value: float) -> optax.GradientTransformation: """Optax gradient transformation that projects values within a range.""" def clip_value(updates, params): return tree_util.tree_map( lambda p, u: jnp.clip(p + u, min_value, max_value) - p, params, updates ) return optax.stateless(clip_value) @flax.struct.dataclass class CMAP(clu_metrics.Metric): """Class Mean Average Precision metric. Accumulates logits and labels to allow computing MAP per-class across the full dataset. See the definition here: https://www.imageclef.org/BirdCLEF2019 Caution: This implementation does not work in jit'ed functions, because concatenation of scores and labels has non-static shape. Workarounds for this exist, but are very ugly. Alternatively, a streaming approximation is possible, similar to the Keras implementation of AUC. Thus, it is recommended to compute CMAP metrics by accumulating scores and labels outside of the jit'ed loop. Attributes: scores: An array of logits or scores, with shape [batch, num_classes]. labels: Array of ground-truth labels with shape [batch, num_classes]. """ scores: jnp.ndarray | None = None labels: jnp.ndarray | None = None @classmethod def empty(cls) -> "CMAP": return cls(scores=None, labels=None) @classmethod def from_model_output( cls, values: tuple[jnp.ndarray, jnp.ndarray], **_ ) -> clu_metrics.Metric: scores, labels = values return cls(scores=scores, labels=labels) def merge(self, other): if self.scores is None: return other if other.scores is None: return self if other.scores.ndim not in [2, 3]: raise ValueError( "Expecting the scores to be in one of the following" "formats: [n_devices, batch_size, n_classes] or" "[batch_size, n_classes]. Current shape is" f"{self.scores.shape}" ) return type(self)( scores=jnp.concatenate((self.scores, other.scores), axis=-2), labels=jnp.concatenate((self.labels, other.labels), axis=-2), ) def compute(self, class_wise=False, sample_threshold: int = 0) -> Any: """Compute cmap only using classes that have > sample_threshold samples.""" # Compute average precision over the batch axis. class_av_prec = metrics.average_precision(self.scores.T, self.labels.T) class_counts = jnp.sum(self.labels, axis=0, keepdims=True) # Mask classes with no labels to avoid inflating the CMAP. class_av_prec *= class_counts > sample_threshold if class_wise: return jnp.squeeze(class_av_prec) return jnp.sum(class_av_prec) / jnp.sum(class_counts > sample_threshold) def make_cmap_metrics_dict(label_names): """Create a dict of empty cmap_metrics.""" return {label: CMAP.empty() for label in label_names} def update_cmap_metrics_dict(cmap_metrics, model_outputs, batch): """Update a dict of cmap_metrics from model_outputs and a batch.""" for label_name in cmap_metrics: cmap_metrics[label_name] = cmap_metrics[label_name].merge( CMAP(getattr(model_outputs, label_name), batch[label_name]) ) return cmap_metrics class TrainableParams(enum.Enum): """Defines which set of trainable parameters will be adapted. Attributes: ALL: All parameters will be adapted. BN: Only BatchNorm scale and bias trainable parameters will be adapted. Whether the population statistics will be adapted or not is orthogonal, and controlled by the 'update_bn_statistics' option, in each method's config file. """ ALL = "all" BN = "batch_norm" class LearningRateDecay(enum.Enum): """Used to specify the learning rate decay schedule.""" COSINE = "cosine" NRC = "nrc" NONE = "none" def mask_parameters( params: flax.core.scope.VariableDict, strategy: TrainableParams, model: image_model.ImageModel | taxonomy_model.TaxonomyModel, ): """Creates the mask of parameters to which zero_grad() will be applied. Args: params: The Pytree representing all of the model's parameters. strategy: The strategy to use for masking. model: The model considered. Used to determine whether some parameter belongs a BatchNorm layer or not. Returns: unflattened_mask: A mask with the same Tree structure as Pytree, but with boolean leaves indicating whether some parameter should be masked or not. """ flat_tree = flax.traverse_util.flatten_dict(params) if strategy == TrainableParams.BN: mask = {k: not model.is_bn_parameter(k) for k in flat_tree} elif strategy == TrainableParams.ALL: mask = {k: False for k in flat_tree} else: raise NotImplementedError(f"Strategy {strategy} is not supported yet.") frozen_parameters = [p for p, masked in mask.items() if masked] trainable_parameters = [p for p, masked in mask.items() if not masked] logging.info( "The following parameters will be kept frozen during adaptation: %s", frozen_parameters, ) logging.info( "The following parameters will be trained during adaptation: %s", trainable_parameters, ) return flax.traverse_util.unflatten_dict(mask) @flax.struct.dataclass class ModelBundle: """Model and optimizer definition. Attributes: model: The model used for adaptation. optimizer: The optimizer used for adaptation. """ model: nn.Module optimizer: optax.GradientTransformation | None def identity_rename(params, *unused_args): del unused_args return params def prepare_learning_rates(optimizer_config, total_steps): """Prepare the learning rate(s).""" mult_lr_base = optimizer_config.mult_learning_rate_resnet_base learning_rate, learning_rate_base_resnet, learning_rate_top = None, None, None if optimizer_config.learning_rate_decay == LearningRateDecay.COSINE: if mult_lr_base != 1: learning_rate_base_resnet = optax.cosine_decay_schedule( init_value=optimizer_config.learning_rate * mult_lr_base, decay_steps=total_steps, ) learning_rate_top = optax.cosine_decay_schedule( init_value=optimizer_config.learning_rate, decay_steps=total_steps ) else: learning_rate = optax.cosine_decay_schedule( optimizer_config.learning_rate, decay_steps=total_steps ) elif optimizer_config.learning_rate_decay == LearningRateDecay.NRC: if mult_lr_base != 1: learning_rate_base_resnet = nrc_schedule( init_value=optimizer_config.learning_rate * mult_lr_base, power=0.75, transition_steps=total_steps, ) learning_rate_top = nrc_schedule( init_value=optimizer_config.learning_rate, power=0.75, transition_steps=total_steps, ) else: learning_rate = nrc_schedule( init_value=optimizer_config.learning_rate, power=0.75, transition_steps=total_steps, ) elif optimizer_config.learning_rate_decay == LearningRateDecay.NONE: if mult_lr_base != 1: learning_rate_base_resnet = optimizer_config.learning_rate * mult_lr_base learning_rate_top = optimizer_config.learning_rate else: learning_rate = optimizer_config.learning_rate else: raise NotImplementedError( f"Decay schedule {optimizer_config.learning_rate_decay} is not " "supported yet." ) return learning_rate, learning_rate_base_resnet, learning_rate_top def prepare_optimizer(optimizer_config, total_steps, params): """Prepare the optimizer.""" mult_lr_base = optimizer_config.mult_learning_rate_resnet_base (learning_rate, learning_rate_base_resnet, learning_rate_top) = ( prepare_learning_rates(optimizer_config, total_steps) ) opt = getattr(optax, optimizer_config.optimizer) def get_opt_kwarg(key, default): if key in optimizer_config.opt_kwargs: return optimizer_config.opt_kwargs[key] else: return default opt_kwargs = {} if optimizer_config.optimizer == "adam": opt_kwargs["b1"] = get_opt_kwarg("b1", 0.9) opt_kwargs["b2"] = get_opt_kwarg("b2", 0.999) opt_kwargs["eps"] = get_opt_kwarg("eps", 1e-08) opt_kwargs["eps_root"] = get_opt_kwarg("eps_root", 0.0) opt_kwargs["mu_dtype"] = get_opt_kwarg("mu_dtype", None) elif optimizer_config.optimizer == "sgd": opt_kwargs["momentum"] = get_opt_kwarg("momentum", None) opt_kwargs["nesterov"] = get_opt_kwarg("nesterov", False) opt_kwargs["accumulator_dtype"] = get_opt_kwarg("accumulator_dtype", None) else: raise NotImplementedError( f"Optimizer {optimizer_config.optimizer} is not supported." ) logging.info( "Using optimizer %s with the following arguments: %s", opt, opt_kwargs ) if mult_lr_base == 1: # This is the simple case: use only one optimizer for all parameters. rename_params = identity_rename inverse_rename_params = identity_rename optimizer = opt(learning_rate=learning_rate, **opt_kwargs) else: # Use different optimizers for base resnet than for bottleneck/classifier # in the nrc_resnet architecture. optimizer_base_resnet = opt( learning_rate=learning_rate_base_resnet, **opt_kwargs ) optimizer_top = opt(learning_rate=learning_rate_top, **opt_kwargs) label_fn = map_nested_fn(lambda k, _: k) def rename_params(params, renamed_params, prefix): """Rename the keys of the `params` dictionary.""" renamed_params = {} for k, v in params.items(): if not isinstance(v, dict) and not isinstance(v, FrozenDict): renamed_params[prefix + k] = v else: renamed_params[prefix + k] = rename_params( v, renamed_params, prefix + "{}/".format(k) ) return renamed_params def inverse_rename_params(renamed_params): """Reverse the renaming of the parameter keys.""" params = {} for k, v in renamed_params.items(): if not isinstance(v, dict) and not isinstance(v, FrozenDict): # Remove prefix if k.rfind("/") == -1: params[k] = v else: k_base = k[k.rfind("/") + 1 :] params[k_base] = v else: if k.rfind("/") == -1: k_base = k else: k_base = k[k.rfind("/") + 1 :] params[k_base] = inverse_rename_params(v) return params renamed_params = rename_params(params, {}, "") def get_all_leaves(params): leaves = [] if not isinstance(params, dict): leaves.append(params) else: for v in params.values(): leaves.extend(get_all_leaves(v)) return leaves leaves = get_all_leaves(label_fn(renamed_params)) params_to_opt = {} for leaf in leaves: if ( "BottleneckResNetBlock" in leaf or "conv_init" in leaf or "bn_init" in leaf ): params_to_opt[leaf] = optimizer_base_resnet else: params_to_opt[leaf] = optimizer_top optimizer = optax.multi_transform(params_to_opt, label_fn(renamed_params)) return optimizer, rename_params, inverse_rename_params def nrc_schedule( init_value: chex.Scalar, power: chex.Scalar, transition_steps: chex.Scalar ) -> optax.Schedule: """Constructs a schedule identical to that of NRC. Args: init_value: initial value for the scalar to be annealed. power: the power of the polynomial used to transition from init to end. transition_steps: number of steps over which annealing takes place. Returns: schedule: A function that maps step counts to values. """ def schedule(count): count = jnp.clip(count, 0, transition_steps) frac = count / transition_steps return init_value / ((1 + 10 * frac) ** power) return schedule def map_nested_fn(fn): """Recursively apply `fn` to the key-value pairs of a nested dict.""" def map_fn(nested_dict): return { k: ( map_fn(v) if isinstance(v, dict) or isinstance(v, FrozenDict) else fn(k, v) ) for k, v in nested_dict.items() } return map_fn def prepare_audio_model( model_config: config_dict.ConfigDict, optimizer_config: config_dict.ConfigDict | None, pretrained: bool, total_steps: int, rng_seed: int, input_shape: tuple[int, ...], target_class_list: str, ) -> tuple[ ModelBundle, scope.VariableDict, scope.FrozenVariableDict, scope.FrozenVariableDict | None, Callable[[Any, Any, str], Any], Callable[[Any], Any], ]: """Loads the taxonomic classifier's and optimizer's params and states. Args: model_config: The model configuration, including the definitions of the different parts of the architecture. optimizer_config: The optimizer configuration, including the name of the optimizer, the learning rate etc. If set to None, the returned ModelBundle will contain None in place of the optimizer, and the returned opt_state will be None. pretrained: Whether to load the pretrained model. If set to True, model_config.pretrained_ckpt_dir will be used to load the model. total_steps: The total number of steps used for adaptation. Used to adequately define learning rate scheduling. rng_seed: The random seed used to initialize the model. input_shape: The shape of the input (for audio, equals to [sample_rate_hz * audio_length_s]). target_class_list: The classlist in which labels are expressed. Used to define the size of the classifier's head. Returns: model_bundle: The ModelBundle, include the taxonomic model and its optimizer. params: The model's params after loading. model_state: The model' state. opt_state: The optimizer's state. """ # Define the main model class_lists = class_utils.get_class_lists( target_class_list, add_taxonomic_labels=False ) num_classes = {k: len(v.classes) for (k, v) in class_lists.items()} model = taxonomy_model.TaxonomyModel( num_classes=num_classes, encoder=model_config.encoder, frontend=model_config.frontend, taxonomy_loss_weight=0.0, ) if pretrained: # Load main classification model from pretrained checkpoint ckpt_dir = model_config.pretrained_ckpt_dir # 'pretrained_ckpt_dir' interferes with train.initialize_model, as the # creation of a TaxonomyModel does not expect this argument. Therefore, # we delete it here to ensure compatibility. delattr(model_config, "pretrained_ckpt_dir") kwargs = { "model_config": model_config, "rng_seed": rng_seed, "input_shape": input_shape, "learning_rate": 0.0, "optimizer": optax.adam(learning_rate=0.0), } model_bundle, train_state = classifier.initialize_model( workdir=ckpt_dir, target_class_list=target_class_list, **kwargs, ) train_state = model_bundle.ckpt.restore(train_state) params = train_state.params model_state = train_state.model_state else: variables = model.init( jax.random.PRNGKey(rng_seed), jnp.zeros((1,) + input_shape), train=False ) model_state, params = flax.core.pop(variables, "params") params = flax.core.unfreeze(params) # Define the optimizer if optimizer_config is None: optimizer = None opt_state = None rename_params = identity_rename inverse_rename_params = identity_rename else: std_to_fwhm = jnp.sqrt(2 * jnp.log(2)) / jnp.pi optimizer, rename_params, inverse_rename_params = prepare_optimizer( optimizer_config, total_steps, params ) optimizer = optax.chain( optimizer, optax.masked( project(0.0, 1.0), mask_by_name("spcen_smoothing_coef", params), ), optax.masked( project(0.0, jnp.pi), mask_by_name("gabor_mean", params), ), optax.masked( project(0.0, jnp.pi), mask_by_name("gabor_mean", params), ), optax.masked( project(4 * std_to_fwhm, model.frontend.kernel_size * std_to_fwhm), # pytype: disable=wrong-arg-types # jax-types mask_by_name("gabor_std", params), ), optax.masked( zero_grads(), mask_parameters( params, optimizer_config.trainable_params_strategy, model ), ), ) opt_state = optimizer.init(params) model_bundle = ModelBundle(model, optimizer) return ( model_bundle, params, model_state, opt_state, rename_params, inverse_rename_params, ) def prepare_image_model( model_config: config_dict.ConfigDict, optimizer_config: config_dict.ConfigDict | None, total_steps: int, rng_seed: int, pretrained: bool, target_class_list: str, **_, ) -> tuple[ ModelBundle, scope.VariableDict, scope.FrozenVariableDict, scope.FrozenVariableDict | None, Callable[[Any, Any, str], Any], Callable[[Any], Any], ]: """Prepare an image model for source-free domain adaptation. Args: model_config: The model configuration, including the specification of the encoder's architecture. optimizer_config: The optimizer configuration, including the name of the optimizer, the learning rate etc. total_steps: The total number of steps used for adaptation. Used to adequately define learning rate scheduling. rng_seed: The seed to initialize the model, in case no pretrained checkpoint is provided. pretrained: Whether to load the model from a pretrained checkpoint or not. If set to True, the model will use the 'load_ckpt' method from the corresponding model. target_class_list: The name of the dataset used for adaptation. This is used to grab the correct checkpoint for each model. Returns: model_bundle: The ModelBundle, including the image model and its optimizer. params: The model's params after loading. model_state: The model' state. opt_state: The optimizer's state. """ data_info = data_utils.get_metadata(target_class_list) model = models.MODEL_REGISTRY[model_config.encoder]( num_classes=data_info["num_classes"] ) if ( optimizer_config is not None and optimizer_config.mult_learning_rate_resnet_base != 1 and model_config.encoder not in ( models.ImageModelName.NRC_RESNET, models.ImageModelName.NRC_RESNET_OFFICE_HOME, ) ): raise ValueError( "Setting `mult_learning_rate_resnet_base` in " "`optimizer_config` to be != 1 is only supported for " "the `nrc_resnet` encoder but the current " "encoder is {}.".format(model_config.encoder) ) if pretrained: variables = model.load_ckpt(target_class_list) else: input_shape = (data_info["resolution"], data_info["resolution"], 3) variables = model.init( jax.random.PRNGKey(rng_seed), jnp.zeros((1,) + input_shape), False, False, ) model_state, params = flax.core.pop(variables, "params") params = flax.core.unfreeze(params) # Define the optimizer if optimizer_config is None: optimizer = None opt_state = None rename_params = identity_rename inverse_rename_params = identity_rename else: optimizer, rename_params, inverse_rename_params = prepare_optimizer( optimizer_config, total_steps, params ) renamed_params = rename_params(params, {}, "") optimizer = optax.chain( optimizer, optax.masked( zero_grads(), mask_parameters( renamed_params, optimizer_config.trainable_params_strategy, model, ), ), ) opt_state = optimizer.init(renamed_params) model_bundle = ModelBundle(model, optimizer) return ( model_bundle, params, model_state, opt_state, rename_params, inverse_rename_params, ) def zero_grads() -> optax.GradientTransformation: """Creates a GradientTransformation that zeros out gradients.""" def init_fn(_): return () def update_fn(updates, state, params=None): # pylint: disable=unused-argument return jax.tree_map(jnp.zeros_like, updates), () return optax.GradientTransformation(init_fn, update_fn)
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Custom metrics for SFDA.""" from chirp.projects.sfda import losses from clu import metrics as clu_metrics import flax import jax.numpy as jnp @flax.struct.dataclass class Accuracy(clu_metrics.Average): """Computes the accuracy from model outputs `probabilities` and `labels`. `label` is expected to be of dtype=int32 and to have 0 <= ndim <= 2, and `probabilities` is expected to have ndim = labels.ndim + 1. See also documentation of `Metric`. """ @classmethod def from_model_output( cls, probabilities: jnp.ndarray, label: jnp.ndarray, **kwargs ) -> clu_metrics.Metric: return super().from_model_output( values=(probabilities.argmax(axis=-1) == label.argmax(axis=-1)).astype( jnp.float32 ), **kwargs ) @flax.struct.dataclass class MarginalEntropy(clu_metrics.Metric): """Computes the marginal entropy of a model's output distribution. Marginal entropy is a useful metric to track. To compute it, one requires computing the marginal label distribution of the model, which requires access to all of the model's outputs on batch of interest. That makes it a non-`averageable` metric, which is why we dedicate a separate metric for it. """ probability_sum: jnp.ndarray n_samples: int multi_label: bool label_mask: jnp.ndarray | None @classmethod def from_model_output( cls, probabilities: jnp.ndarray, multi_label: bool, label_mask: jnp.ndarray, **_ ) -> "MarginalEntropy": return cls( probability_sum=probabilities.sum(axis=0), n_samples=probabilities.shape[0], multi_label=multi_label, label_mask=label_mask, ) def merge(self, other: "MarginalEntropy") -> "MarginalEntropy": return type(self)( probability_sum=self.probability_sum + other.probability_sum, n_samples=self.n_samples + other.n_samples, multi_label=other.multi_label, label_mask=other.label_mask, ) def compute(self): proba_marginal = self.probability_sum * (1 / self.n_samples) reference_mask = None if self.label_mask is None else self.label_mask[0] return losses.label_ent(proba_marginal, reference_mask) @classmethod def empty(cls) -> "MarginalEntropy": return cls( # pytype: disable=wrong-arg-types # jnp-array probability_sum=0.0, n_samples=0, multi_label=False, label_mask=None ) @flax.struct.dataclass class MarginalBinaryEntropy(clu_metrics.Metric): """A version of MarginalEntropy, for binary entropies. TODO(mboudiaf) Merge this metric with MarginalEntropy using jax.lax.cond on multi_label. """ probability_sum: jnp.ndarray n_samples: int label_mask: jnp.ndarray multi_label: bool @classmethod def from_model_output( cls, label_mask: jnp.ndarray, probabilities: jnp.ndarray, multi_label: bool, **_ ) -> "MarginalBinaryEntropy": # TODO(mboudiaf). Verify here that label_mask is the same across samples. # Problem is to make assert inside jitted function. Right now, this is done # before each iteration, but ideally should be here. return cls( probability_sum=probabilities.sum(axis=0), label_mask=label_mask[0], n_samples=probabilities.shape[0], multi_label=multi_label, ) def merge(self, other: "MarginalBinaryEntropy") -> "MarginalBinaryEntropy": return type(self)( probability_sum=self.probability_sum + other.probability_sum, n_samples=self.n_samples + other.n_samples, label_mask=other.label_mask, multi_label=other.multi_label, ) def compute(self): proba_marginal = self.probability_sum * (1 / self.n_samples) return losses.label_binary_ent( probabilities=proba_marginal, label_mask=self.label_mask ) @classmethod def empty(cls) -> "MarginalBinaryEntropy": return cls( # pytype: disable=wrong-arg-types # jnp-array probability_sum=0.0, n_samples=0, label_mask=0.0, multi_label=False )
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Metric for Mean Class Accuracy (MCA).""" from typing import Any from clu import metrics as clu_metrics import flax from jax import numpy as jnp import numpy as np @flax.struct.dataclass class MCA(clu_metrics.Metric): """Mean Class Accuracy metric. Accumulates information from individual batches to compute the mean class accuracy over the dataset. Specifically, this involves computing the per-class accuracy for each class in the dataset, and then averaging those. Attributes: scores: An array of logits or scores, with shape [batch, num_classes]. labels: Array of ground-truth labels with shape [batch, num_classes]. """ counts_correct: jnp.ndarray | None = None counts_total: jnp.ndarray | None = None @classmethod def empty(cls) -> "MCA": return cls(counts_correct=None, counts_total=None) @classmethod def from_model_output( cls, scores: jnp.ndarray, label: jnp.ndarray, **_ ) -> clu_metrics.Metric: num_classes = label.shape[-1] if scores.shape[-1] != num_classes: raise ValueError( "Expected the last dims of `scores` and `label` to be the same." ) if scores.ndim not in [2, 3]: raise ValueError( "Expecting the scores to be in one of the following" "formats: [n_devices, batch_size, n_classes] or" "[batch_size, n_classes]. Current shape is" f"{scores.shape}" ) if label.ndim not in [2, 3]: raise ValueError( "Expecting the label to be in one of the following" "formats: [n_devices, batch_size, n_classes] or" "[batch_size, n_classes]. Current shape is" f"{label.shape}" ) is_correct = scores.argmax(axis=-1) == label.argmax( axis=-1 ) # [*, batch_size]. is_correct_flat = jnp.reshape(is_correct, [1, -1]) label_flat = jnp.reshape(label, [-1, num_classes]) # [1, *] x [*, num_classes] where * = batch_size or n_devices * batch_size. per_class_correct_counts = jnp.squeeze( jnp.matmul(is_correct_flat, label_flat) ) # [num_classes]. counts = jnp.sum(label_flat, axis=0).astype(jnp.float32) # [num classes]. return cls(counts_correct=per_class_correct_counts, counts_total=counts) def merge(self, other): if self.counts_correct is None: assert self.counts_total is None counts_correct = other.counts_correct counts_total = other.counts_total elif other.counts_correct is None: assert other.counts_total is None counts_correct = self.counts_correct counts_total = self.counts_total else: num_classes = self.counts_correct.shape[-1] # [num_devices, new bs, num_classes] or [new bs, num_classes] where new bs # is the combined batch size. counts_correct = jnp.concatenate( ( jnp.reshape(self.counts_correct, [-1, num_classes]), jnp.reshape(other.counts_correct, [-1, num_classes]), ), axis=-2, ) counts_total = jnp.concatenate( ( jnp.reshape(self.counts_total, [-1, num_classes]), jnp.reshape(other.counts_total, [-1, num_classes]), ), axis=-2, ) # [num_devices, num_classes] or [num_classes]. counts_correct = jnp.sum(counts_correct, axis=-2) counts_total = jnp.sum(counts_total, axis=-2) return type(self)( counts_correct=counts_correct, counts_total=counts_total, ) def compute(self) -> Any: """Compute cmap only using classes that have > sample_threshold samples.""" per_class_acc = self.counts_correct / self.counts_total mca = jnp.mean(per_class_acc) return mca, per_class_acc def make_mca_metric(): """Create an empty MAC metric.""" return MCA.empty() def update_mca_metric(mca_metric, model_outputs, batch): """Update a mac_metric from model_outputs and a batch.""" label = batch["label"].astype(np.int32) new_metric = MCA.from_model_output(model_outputs.label, label) mca_metric = mca_metric.merge(new_metric) return mca_metric
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities to load data for Source-free Domain Adaptation.""" import ast from typing import Any from absl import logging from chirp.data import utils as data_utils from chirp.projects.sfda import models import jax from ml_collections import config_dict import tensorflow as tf import tensorflow_datasets as tfds def to_tf_compatible_split(split_tuple: list[tuple[int, int]]) -> str: """Converts the splits specified in the config file into tf-readable format. TF dataset expects a split in the form 'train[x%:y%]'. The % sign can cause trouble when trying to iterate over splits (in a shell script for instance). As a quick workaround, at the config file level, we specify the splits using [(a, b), (x, y), ...], which will be converted to 'train[a%:b%]+train[x%:y%]' in this function. Args: split_tuple: The train split, in the form [(a, b), (x, y), ...] Returns: The TF-readible version of split_tuple, i.e. 'train[a%:b%]+train[x%:y%]+...' """ splits = [] for st, end in split_tuple: splits.append(f'train[{st}%:{end}%]') return '+'.join(splits) def get_audio_datasets( adaptation_data_config: config_dict.ConfigDict, eval_data_config: config_dict.ConfigDict, sample_rate_hz: float, cache_data: bool = True, ) -> tuple[tf.data.Dataset, tf.data.Dataset]: """Get audio datasets used for adaptation and evaluation. Args: adaptation_data_config: The configuration containing relevant information (e.g. transformation pipeline) to build the adaptation dataset. eval_data_config: The configuration containing relevant information to build the evaluation dataset. sample_rate_hz: The sample rate used by the current model. Used to double-check that this sample rate matches the one the data was created with. cache_data: Whether to cache the dataset for fast subsequent access. Returns: The datasets used for adaptation and evaluation. Raises: ValueError: If the model's sample_rate and data's sample_rate do not match. """ adaptation_split = to_tf_compatible_split( ast.literal_eval(adaptation_data_config.split) ) eval_split = to_tf_compatible_split(ast.literal_eval(eval_data_config.split)) # is_train only affects how data is processed by tensorflow internally, # in the case of a distributed setting. For now, SFDA is only supported in a # a non-distributed setting. Therefore, the is_train argument has no effect. adaptation_dataset, adaptation_dataset_info = data_utils.get_dataset( split=adaptation_split, is_train=False, dataset_directory=adaptation_data_config.dataset_directory, tfds_data_dir=adaptation_data_config.tfds_data_dir, pipeline=adaptation_data_config.pipeline, ) if adaptation_dataset_info.features['audio'].sample_rate != sample_rate_hz: raise ValueError( 'Dataset sample rate must match config sample rate. To address this, ' 'need to set the sample rate in the config to {}.'.format( adaptation_dataset_info.features['audio'].sample_rate ) ) # Grab the data used for evaluation val_dataset, val_dataset_info = data_utils.get_dataset( split=eval_split, is_train=False, dataset_directory=eval_data_config.dataset_directory, tfds_data_dir=eval_data_config.tfds_data_dir, pipeline=eval_data_config.pipeline, ) if val_dataset_info.features['audio'].sample_rate != sample_rate_hz: raise ValueError( 'Dataset sample rate must match config sample rate. To address this, ' 'need to set the sample rate in the config to {}.'.format( val_dataset_info.features['audio'].sample_rate ) ) if cache_data: adaptation_dataset = adaptation_dataset.cache() val_dataset = val_dataset.cache() return adaptation_dataset, val_dataset def get_image_datasets( image_model: models.ImageModelName, dataset_name: str, batch_size_train: int, batch_size_eval: int, data_seed: int, builder_kwargs: dict[str, Any], cache_data: bool = True, ) -> tuple[tf.data.Dataset, tf.data.Dataset]: """Get image dataset used for adaptation and evaluation. Args: image_model: The image model used for adaptation. This dictates the input pipeline to use. dataset_name: The name of the dataset used for adaptation and evaluation. batch_size_train: The batch size used for adaptation. batch_size_eval: The batch size used for evaluation. data_seed: Used to seed data shuffling. builder_kwargs: Kwargs to pass when creating the data builder. cache_data: Whether to cache the dataset for fast subsequent access. Returns: The adaptation and evaluation datasets. """ input_pipeline = models.MODEL_REGISTRY[image_model]( num_classes=0 ).get_input_pipeline dataset_metadata = get_metadata(dataset_name) num_devices = jax.local_device_count() def build_image_dataset(split: str, batch_size: int): data_builder = tfds.builder(dataset_name, **builder_kwargs) tfds_split = dataset_metadata['splits'][split] logging.info('Using split %s for dataset %s', tfds_split, dataset_name) dataset = input_pipeline( data_builder=data_builder, split=tfds_split, image_size=dataset_metadata['resolution'], ) if split == 'train': dataset = dataset.shuffle(512, seed=data_seed) if num_devices is not None: dataset = dataset.batch(batch_size // num_devices, drop_remainder=False) dataset = dataset.batch(num_devices, drop_remainder=False) else: dataset = dataset.batch(batch_size, drop_remainder=False) return dataset.prefetch(10) adaptation_dataset = build_image_dataset('train', batch_size_train) val_dataset = build_image_dataset('eval', batch_size_eval) if cache_data: adaptation_dataset = adaptation_dataset.cache() val_dataset = val_dataset.cache() return adaptation_dataset, val_dataset def get_metadata(dataset_name: str) -> dict[str, Any]: """Maps image dataset names to metadata. Args: dataset_name: The raw dataset_name. Returns: A dictionary of metadata for this dataset, including: - num_classes: The number of classes. - resolution: The image resolution. Raises: NotImplementedError: If the dataset is unknown. """ if 'imagenet' in dataset_name: if 'corrupted' in dataset_name: split = {'train': 'validation[:75%]', 'eval': 'validation[75%:]'} else: split = {'train': 'test[:75%]', 'eval': 'test[75%:]'} return {'num_classes': 1000, 'resolution': 224, 'splits': split} elif 'cifar' in dataset_name: split = {'train': 'test[:75%]', 'eval': 'test[75%:]'} return {'num_classes': 10, 'resolution': 32, 'splits': split} elif dataset_name == 'fake_image_dataset': split = {'train': 'train[:1]', 'eval': 'train[1:2]'} return {'num_classes': 2, 'resolution': 12, 'splits': split} elif dataset_name == 'vis_da_c': # In line with NRC's results, we do both the adaptation and the evaluation # on the validation set of VisDA-C. split = {'train': 'validation[:75%]', 'eval': 'validation[75%:]'} return {'num_classes': 12, 'resolution': 224, 'splits': split} elif 'office_home' in dataset_name: # In line with NRC's results, we do both the adaptation and the evaluation # on all of Office-Home. split = {'train': 'train', 'eval': 'train'} return {'num_classes': 65, 'resolution': 224, 'splits': split} else: raise NotImplementedError( f'Unknown number of classes for dataset {dataset_name}.' )
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Adaptation and evaluation utilities for source-free domain adaptation.""" import abc import enum import functools import time from typing import Any, Callable from absl import logging from chirp.models import metrics as chirp_metrics from chirp.models import output from chirp.projects.sfda import losses from chirp.projects.sfda import mca from chirp.projects.sfda import metrics from chirp.projects.sfda import model_utils from clu import metric_writers from clu import metrics as clu_metrics from clu import periodic_actions import flax from flax import linen as nn import flax.jax_utils as flax_utils import jax from jax import numpy as jnp from ml_collections import config_dict import numpy as np import optax import tensorflow as tf import tqdm ForwardStepType = Callable[ [ dict[str, jnp.ndarray], flax.core.scope.FrozenVariableDict, flax.core.scope.VariableDict, jax.random.PRNGKeyArray | None, ], output.ClassifierOutput, ] @flax.struct.dataclass class AdaptationState: """All useful states and parameters kept during adaptation. Unlike in train.py where TrainState contains a single model, adaptation methods may use several methods (e.g. a teacher and a student, or an auxiliary GAN). Therefore, model_params, model_state and opts_states are stored in Dict in which the keys refer to the name of the model. The key 'main' will be used for evaluation. Attributes: step: The batch iteration of adaptation (no reset after each epoch). epoch: The epoch of adaptation. model_params: The parameters of the model. model_state: The state of the model. method_state: All values a method needs to keep track of during adaptation. opt_state: The optimizer's state. restrict_classes: Whether to restrict to classes present in the target dataset. """ step: int epoch: int model_params: flax.core.scope.VariableDict model_state: flax.core.scope.FrozenVariableDict method_state: dict[str, Any] opt_state: optax.OptState restrict_classes: bool class Modality(enum.Enum): """Used to specify which modality we're using for adaptation.""" IMAGE = "image" AUDIO = "audio" def keep_jax_types(batch: dict[str, np.ndarray]) -> dict[str, np.ndarray]: """Remove non-numeric arrays from batch, to make it jit-compliant. Args: batch: The batch of data. Returns: The filtered batch of data, where any array containing non-numeric values has been filtered out. """ return {k: v for k, v in batch.items() if v.dtype != np.dtype("O")} class SFDAMethod(metaclass=abc.ABCMeta): """A template for a Source-Free Domain Adaptation (SFDA) method.""" def initialize( self, model_config: config_dict.ConfigDict, rng_seed: int, modality: Modality, input_shape: tuple[int, ...], target_class_list: str, adaptation_iterations: int, optimizer_config: config_dict.ConfigDict, pretrained: bool, ) -> tuple[ model_utils.ModelBundle, AdaptationState, jax.random.PRNGKeyArray, Callable[[Any, Any, str], Any], Callable[[Any], Any], ]: """Loads model's params and state, and instantiates the adaptation state. Args: model_config: The model configuration, including the definitions of the different parts of the architecture. rng_seed: The random seed used to define the jax random key and seed other non-jax random operations. modality: The modality currently used between 'image' and 'audio'. input_shape: The shape of the input. target_class_list: The classlist in which labels are expressed. Used to define the size of the classifier's head. adaptation_iterations: The total number of steps used for adaptation. Used to adequately define learning rate scheduling. optimizer_config: The optimizer configuration, including the name of the optimizer, the learning rate etc. pretrained: Whether to use a pretrained model or not. Returns: The model_bundle to use, the initial adaptation_state, and the jax random key to use for adaptation and the functions for renaming and reversing the renaming of parameters, needed in the case where different learning rates are used for different subsets of parameters. Raises: ValueError: In case the chosen modality is neither Modality.AUDIO nor Modality.IMAGE. """ # Generate a random key key = jax.random.PRNGKey(rng_seed) if modality == Modality.AUDIO: prepare_fn = model_utils.prepare_audio_model restrict_classes = True elif modality == Modality.IMAGE: prepare_fn = model_utils.prepare_image_model restrict_classes = False else: raise ValueError(f"Modality {modality} not supported.") ( model_bundle, params, model_state, opt_state, rename_fn, inverse_rename_fn, ) = prepare_fn( model_config=model_config, optimizer_config=optimizer_config, pretrained=pretrained, rng_seed=rng_seed, input_shape=input_shape, target_class_list=target_class_list, total_steps=adaptation_iterations, ) # Package model, parameters and states in structures. # TODO(mboudiaf): Add support for restoring previous adaptation state. adaptation_state = AdaptationState( step=0, epoch=0, model_params=params, opt_state=opt_state, method_state={}, model_state=model_state, restrict_classes=restrict_classes, ) return model_bundle, adaptation_state, key, rename_fn, inverse_rename_fn @abc.abstractmethod def get_adaptation_metrics( self, supervised: bool, multi_label: bool, **_ ) -> type[clu_metrics.Collection]: """Define metrics tracked during adaptation. On top of common metrics (accuracy/mAP ...), SFDA methods should specify the field 'main_loss', corresponding to the loss minimized during adaptation. Args: supervised: Whether the adaptation dataset is supervised. Used to determine if supervised metrics (e.g. accuracy) can be tracked or not. multi_label: Whether the current classification dataset is single-label or multi-label. Used to define appropriate metrics. """ pass def before_run( self, key: jax.random.PRNGKeyArray, model_bundle: model_utils.ModelBundle, adaptation_state: AdaptationState, adaptation_dataset: tf.data.Dataset, modality: Modality, multi_label: bool, **method_kwargs, ) -> AdaptationState: """Any operation that a method needs to do before a run. An example of application is to initialize memories. Args: key: The jax random key used for random operations in this epoch. model_bundle: The ModelBundle used for adaptation. adaptation_state: The current state of adaptation. adaptation_dataset: The dataset used for adaptation. modality: The current modality. multi_label: Whether this is a multi-label problem. **method_kwargs: Additional method-specific kwargs. Returns: A potentially updated adaptation_state. """ del ( key, model_bundle, modality, multi_label, method_kwargs, adaptation_dataset, ) return adaptation_state def before_epoch( self, key: jax.random.PRNGKeyArray, model_bundle: model_utils.ModelBundle, adaptation_state: AdaptationState, adaptation_dataset: tf.data.Dataset, modality: Modality, multi_label: bool, **method_kwargs, ) -> AdaptationState: """Any operation that a method needs to do before an epoch. An example of application is to compute all pseudo-labels for the next epoch. Args: key: The jax random key used for random operations in this epoch. model_bundle: The ModelBundle used for adaptation. adaptation_state: The current state of adaptation. adaptation_dataset: The dataset used for adaptation. modality: The modality. multi_label: Whether this is a multi-label problem. **method_kwargs: Additional method-specific kwargs. Returns: The adaptation state, with a potentially updated 'method_state' attribute. """ del ( key, model_bundle, adaptation_dataset, modality, multi_label, method_kwargs, ) return adaptation_state # Prevent the forward_step from recompiling every step. def cache_get_forward_step( self, model: nn.Module, modality: Modality, use_batch_statistics: bool, train: bool = False, ) -> ForwardStepType: """Cache the forward step.""" if hasattr(self, "_forward_step") and self._forward_step is not None: return self._forward_step self._forward_step = batch_forward( model, modality, use_batch_statistics, train ) return self._forward_step # Prevent the update_step from recompiling every time do_epoch is called. def cache_get_update_step(self, update_step): """Cache the update step.""" if hasattr(self, "_update_step") and self._update_step is not None: return self._update_step self._update_step = update_step return self._update_step # Prevent the update_step from recompiling every time do_epoch is called. def cache_get_update_metrics(self, update_metrics): """Cache the update step.""" if hasattr(self, "_update_metrics") and self._update_metrics is not None: return self._update_metrics self._update_metrics = update_metrics return self._update_metrics def before_iter( self, key: jax.random.PRNGKeyArray, model_bundle: model_utils.ModelBundle, adaptation_state: AdaptationState, batch: dict[str, np.ndarray], modality: Modality, multi_label: bool, **method_kwargs, ) -> tuple[AdaptationState, dict[str, jnp.ndarray]]: """Any operation that a method needs to do before an adaptation iteration. An example of application is to compute the pseudo-labels needed for the current iteration. Args: key: The jax random key used for random operations in this epoch. model_bundle: The ModelBundle used for adaptation. adaptation_state: The current state of adaptation. batch: The iteration's batch of data. modality: The modality. multi_label: Whether this is a multi-label problem. **method_kwargs: Additional method-specific kwargs. Returns: A potentially updated version of the adaptation state A dictionary containing any variable the method may need during the next epoch of adaptation. All values in this dictionnary must be numeric-typed (they will be passed to a jitted function). """ del (key, model_bundle, batch, modality, multi_label, method_kwargs) return adaptation_state, {} def do_epoch( self, key: jax.random.PRNGKeyArray, model_bundle: model_utils.ModelBundle, adaptation_state: AdaptationState, rename_fn: Callable[[Any, Any, str], Any], inverse_rename_fn: Callable[[Any], Any], adaptation_dataset: tf.data.Dataset, modality: Modality, multi_label: bool, batchwise_metrics: type[clu_metrics.Collection], writer: metric_writers.MetricWriter, reporter: periodic_actions.ReportProgress, use_supervised_metrics: bool, **method_kwargs, ) -> AdaptationState: """Perform an epoch of adaptation. Args: key: The jax random key used for random operations in this epoch. model_bundle: The model_utils.ModelBundle to use for adaptation. adaptation_state: The current AdaptationState. Once the epoch is over, an update version of it is returned. rename_fn: The function to use to rename the parameter keys. This is needed if using `optax.multi_transform`, which can be used to define different learning rates for different parameters. inverse_rename_fn: A callable that reverses the changes of `rename_fn`. adaptation_dataset: The dataset used for adaptation. modality: The current modality. multi_label: Whether the current classification dataset is single-label or multi-label. Important to choose the adequate metrics and losses. batchwise_metrics: The collection of metrics to keep track of during adaptation. writer: A MetricWriter that logs all metrics. reporter: A ReportProgress that helps keep track of speed of adaptation. use_supervised_metrics: Whether the current dataset is supervised or not. **method_kwargs: Additional method-specific kwargs. Returns: An updated version of the adaptation state. Raises: ValueError: If model_bundle's optimizer is not None and batchwise_metrics does not contain a 'main_loss' metric. """ def forward(params, key, batch, model_state, **method_gather_args): """Forwards the batch through the current model.""" dropout_key, low_pass_key = jax.random.split(key) variables = {"params": params, **model_state} # Foward pass through the model if method_kwargs["update_bn_statistics"]: model_outputs, model_state = model_bundle.model.apply( variables, batch[modality.value], train=method_kwargs["use_dropout"], mutable=list(model_state.keys()), use_running_average=False, rngs={"dropout": dropout_key, "low_pass": low_pass_key}, ) else: model_outputs = model_bundle.model.apply( variables, batch[modality.value], use_running_average=True, train=method_kwargs["use_dropout"], rngs={"dropout": dropout_key, "low_pass": low_pass_key}, ) # Compute metrics and loss label_mask = batch.get("label_mask", None) gather_args = { "multi_label": multi_label, "outputs": model_outputs, "probabilities": logit2proba( model_outputs.label, label_mask, multi_label ), "label_mask": label_mask, } gather_args.update(method_gather_args) if use_supervised_metrics: gather_args.update({"label": batch["label"].astype(np.int32)}) # Compute the current metrics batch_metrics = batchwise_metrics.gather_from_model_output( **gather_args, **method_kwargs ).compute() # Extract the loss to optimize, and add weight decay. if "main_loss" not in batch_metrics: if model_bundle.optimizer is not None: raise ValueError( "Any SFDA method that defines an optimizer should also specify " "the key 'main_loss' by overriding 'get_adaptation_metrics'." ) main_loss = None else: main_loss = batch_metrics["main_loss"] if method_kwargs["optimizer_config"].weight_decay > 0.0: main_loss += method_kwargs[ "optimizer_config" ].weight_decay * losses.l2_loss(params) return main_loss, (batch_metrics, model_state) @functools.partial(jax.pmap, axis_name="batch") def update_step( batch: dict[str, jnp.ndarray], adaptation_state: AdaptationState, key: jax.random.PRNGKeyArray, **method_gather_args, ) -> tuple[dict[str, jnp.ndarray], AdaptationState]: """Updates the model's state and params using the given batch.""" params = adaptation_state.model_params model_state = adaptation_state.model_state opt_state = adaptation_state.opt_state if model_bundle.optimizer is not None: # If an optimizer is defined, compute gradient transformations. # Doing so, get the new model state. grads, (batch_metrics, model_state) = jax.grad(forward, has_aux=True)( params, key=key, batch=batch, model_state=model_state, **method_gather_args, ) grads = jax.lax.pmean(grads, axis_name="batch") # Update model's parameters from gradient transformations. # Rename params and gradients as the optimizer expects. grads = rename_fn(grads, {}, "") renamed_params = rename_fn(params, {}, "") updates, opt_state = model_bundle.optimizer.update( grads, opt_state, renamed_params ) params = optax.apply_updates(renamed_params, updates) # Undo the renaming, else the next forward pass will fail. params = inverse_rename_fn(params) else: # Otherwise, we simply forward the data through the model. _, (batch_metrics, model_state) = forward( params, key=key, batch=batch, model_state=model_state, **method_gather_args, ) # Update adaptation state adaptation_state = adaptation_state.replace( step=adaptation_state.step + 1, model_params=params, opt_state=opt_state, model_state=model_state, ) return batch_metrics, adaptation_state # Iterate over batches. adaptation_state = flax_utils.replicate(adaptation_state) for batch in tqdm.tqdm(adaptation_dataset.as_numpy_iterator()): batch = jax.tree_map(np.asarray, batch) verify_batch(batch) current_step = int(flax_utils.unreplicate(adaptation_state.step)) step_key, key = jax.random.split(key) step_key = jax.random.split(step_key, num=jax.local_device_count()) st = time.time() adaptation_state, method_gather_args = self.before_iter( key=step_key, model_bundle=model_bundle, adaptation_state=adaptation_state, batch=batch, modality=modality, multi_label=multi_label, **method_kwargs, ) elapsed = time.time() - st logging.info("sfda_method.before_iter completed in %5.3f", elapsed) # Perform the update st = time.time() update_step = self.cache_get_update_step(update_step) batch_metrics, adaptation_state = update_step( batch=keep_jax_types(batch), adaptation_state=adaptation_state, key=step_key, **method_gather_args, ) elapsed = time.time() - st logging.info("sfda_method update_step completed in %5.3f", elapsed) if current_step % 100 == 0: st = time.time() reporter(current_step) writer.write_scalars( current_step, flax_utils.unreplicate(batch_metrics) ) elapsed = time.time() - st logging.info("sfda_method reporting completed in %5.3f", elapsed) return flax_utils.unreplicate(adaptation_state) def evaluate( self, model_bundle: model_utils.ModelBundle, writer: jnp.ndarray, adaptation_state: AdaptationState, eval_dataset: tf.data.Dataset, multi_label: bool, modality: Modality, sample_threshold: int = 5, compute_mca: bool = False, ) -> None: """Evaluate the current adaptation state. The writer is in charge of logging all results. Args: model_bundle: The model_utils.ModelBundle to use for evaluation. writer: The evaluation writer. adaptation_state: The current AdaptationState to evaluate. eval_dataset: The dataset to perform evaluation on. multi_label: Whether the problem is multi-label or not. Used to determine adequate metrics. modality: Which modality are we using. sample_threshold: Class that have fewer samples than this thresold are discarded when computing cmAP metric in order to reduce noise caused by sample size. compute_mca: Whether to compute the mean class accuracy metric. """ # Define validation metrics. valid_metrics = get_common_metrics(supervised=True, multi_label=multi_label) valid_metrics = flax_utils.replicate(valid_metrics.empty()) cmap_metrics = ( model_utils.make_cmap_metrics_dict(("label",)) if multi_label else {} ) mca_metric = mca.make_mca_metric() if not multi_label else None @functools.partial(jax.pmap, axis_name="batch") def update_metrics( metric_collection: clu_metrics.Collection, batch: dict[str, jnp.ndarray], adaptation_state: AdaptationState, ): variables = { "params": adaptation_state.model_params, **adaptation_state.model_state, } model_outputs = model_bundle.model.apply( variables, batch[modality.value], train=False, use_running_average=True, ) label_mask = batch.get("label_mask", None) return model_outputs, metric_collection.merge( metric_collection.gather_from_model_output( multi_label=multi_label, outputs=model_outputs, probabilities=logit2proba( model_outputs.label, label_mask, multi_label ), label_mask=label_mask, label=batch["label"].astype(np.int32), ) ) update_metrics = self.cache_get_update_metrics(update_metrics) current_epoch = int(adaptation_state.epoch) # Loop over validation dataset for batch in tqdm.tqdm(eval_dataset.as_numpy_iterator()): batch = jax.tree_map(np.asarray, batch) verify_batch(batch) model_outputs, valid_metrics = update_metrics( metric_collection=valid_metrics, batch=keep_jax_types(batch), adaptation_state=flax_utils.replicate(adaptation_state), ) cmap_metrics = model_utils.update_cmap_metrics_dict( cmap_metrics, model_outputs, batch ) if compute_mca: mca_metric = mca.update_mca_metric(mca_metric, model_outputs, batch) # Metrics computations and logging valid_metrics = flax_utils.unreplicate(valid_metrics).compute() if compute_mca and mca_metric is not None: mca_metric_value, per_class_accs_value = mca_metric.compute() valid_metrics["mean_class_accuracy"] = mca_metric_value for i in range(len(per_class_accs_value)): valid_metrics[f"{i}_class_accuracy"] = per_class_accs_value[i] valid_metrics = {k.replace("___", "/"): v for k, v in valid_metrics.items()} cmap_metrics = flax_utils.unreplicate(cmap_metrics) for key in cmap_metrics: cmap_value = cmap_metrics[key].compute(sample_threshold=sample_threshold) valid_metrics[f"{key}_cmap"] = cmap_value if writer is not None: writer.write_scalars(current_epoch, valid_metrics) # pytype: disable=attribute-error # jax-ndarray def perform_adaptation( key: jax.random.PRNGKeyArray, sfda_method: SFDAMethod, adaptation_state: AdaptationState, rename_fn: Callable[[Any, Any, str], Any], inverse_rename_fn: Callable[[Any], Any], adaptation_dataset: tf.data.Dataset, use_supervised_metrics: bool, validation_dataset: tf.data.Dataset, model_bundle: model_utils.ModelBundle, logdir: str, multi_label: bool, modality: Modality, eval_every: int, eval_mca_every: int, **method_kwargs, ) -> AdaptationState: """Given the adaptation method and dataset, perform the full adaptation. Args: key: The initial jax random key to use for random operations. sfda_method: The Source-Free Domain Adaptation method to use. adaptation_state: The initial AdaptationState to adapt. Once adaptation is over, its updated version is returned. rename_fn: The function to use to rename the parameter keys. This is needed if using `optax.multi_transform`, which can be used to define different learning rates for different parameters. inverse_rename_fn: A callable that reverses the changes of `rename_fn`. adaptation_dataset: The dataset used for adaptation. use_supervised_metrics: Whether the current adaptation dataset is supervised or not. validation_dataset: The dataset used for evaluation. model_bundle: The model_utils.ModelBundle to use for adaptation. logdir: Where to write logs. multi_label: Whether the current problem is multi-label or single-label. modality: The current modality used. eval_every: Frequency (in epochs) to trigger evaluation. eval_mca_every: The frequency (in epochs) to trigger computation of the mean class accuracy (mca) metric during evaluation, as long as `eval_every` is set to a multiple of this frequency. That is, each time evaluation is triggered (based on the value of `eval_every`), the computation of mca may also be triggered, if the epoch is also a multiple of `eval_mca_every`. Note also that `eval_mca_every` is any negative number, mca will never be computed. **method_kwargs: Method's additional keywargs. Returns: An updated version of the Adaptation state. """ # Initialize metrics batchwise_metrics = sfda_method.get_adaptation_metrics( supervised=use_supervised_metrics, multi_label=multi_label, **method_kwargs, ) # Logging adaptation_writer = metric_writers.create_default_writer( logdir, asynchronous=False, collection="adaptation" ) reporter = periodic_actions.ReportProgress(writer=adaptation_writer) validation_writer = metric_writers.create_default_writer( logdir, asynchronous=False, collection="validation" ) # Before run. st = time.time() adaptation_state = sfda_method.before_run( key=key, model_bundle=model_bundle, adaptation_state=adaptation_state, multi_label=multi_label, modality=modality, adaptation_dataset=adaptation_dataset, **method_kwargs, ) elapsed = time.time() - st logging.info("sfda.before_run completed in %5.3f", elapsed) for epoch in range(method_kwargs["num_epochs"]): # Before every epoch, perform a round of evaluation on the validation set. if epoch % eval_every == 0: compute_mca = (epoch % eval_mca_every == 0) and eval_mca_every >= 0 st = time.time() sfda_method.evaluate( # pytype: disable=wrong-arg-types # jax-ndarray model_bundle=model_bundle, adaptation_state=adaptation_state, eval_dataset=validation_dataset, writer=validation_writer, modality=modality, multi_label=multi_label, compute_mca=compute_mca, ) validation_writer.flush() elapsed = time.time() - st logging.info("sfda_method.evaluate completed in %5.3f", elapsed) st = time.time() adaptation_state = sfda_method.before_epoch( key=key, model_bundle=model_bundle, adaptation_state=adaptation_state, multi_label=multi_label, modality=modality, adaptation_dataset=adaptation_dataset, writer=adaptation_writer, **method_kwargs, ) elapsed = time.time() - st logging.info("sfda_method.before_epoch completed in %5.3f", elapsed) st = time.time() adaptation_state = sfda_method.do_epoch( key=key, model_bundle=model_bundle, adaptation_state=adaptation_state, rename_fn=rename_fn, inverse_rename_fn=inverse_rename_fn, multi_label=multi_label, modality=modality, adaptation_dataset=adaptation_dataset, batchwise_metrics=batchwise_metrics, writer=adaptation_writer, reporter=reporter, workdir=logdir, use_supervised_metrics=use_supervised_metrics, **method_kwargs, ) elapsed = time.time() - st logging.info("sfda_method.do_epoch completed in %5.3f", elapsed) adaptation_state = adaptation_state.replace( epoch=adaptation_state.epoch + 1 ) adaptation_writer.flush() # When adaptation is finished, we perform a final round of evaluation on the # validation set. sfda_method.evaluate( # pytype: disable=wrong-arg-types # jax-ndarray model_bundle=model_bundle, adaptation_state=adaptation_state, eval_dataset=validation_dataset, writer=validation_writer, modality=modality, multi_label=multi_label, compute_mca=eval_mca_every >= 0, ) adaptation_writer.close() validation_writer.close() return adaptation_state def logit2proba( logits: jnp.ndarray, label_mask: jnp.ndarray | None, multi_label: bool ) -> jnp.ndarray: """Converts model logits to valid probabilities. When multi_label=False, uses label_mask to select classes that will be used in the softmax normalization term. The output probabilities should verify jnp.all(probabilities[..., label_mask].sum(-1) == 1.0). Args: logits: The logits to be transformed, shape [*, num_classes] label_mask: The mask conveying the classes to be used. Shape [*, num_classes] multi_label: Whether we're in the multi-label setting or not. Returns: The resulting probabilities, shape [*, num_classes] """ fn = ( nn.sigmoid if multi_label else functools.partial(nn.softmax, where=label_mask, initial=0) ) return fn(logits) def keyed_map( key: str, outputs: output.AnyOutput, **kwargs ) -> jnp.ndarray | None: label_mask = kwargs.get(key + "_mask", None) return chirp_metrics.average_precision( scores=getattr(outputs, key), labels=kwargs[key], label_mask=label_mask ) def get_common_metrics( supervised: bool, multi_label: bool ) -> type[clu_metrics.Collection]: """Obtain a common set of metrics and losses. Args: supervised: Whether the dataset over which those metrics will be tracked has labels or not. multi_label: Whether the current problem is multi-label or single-label. Returns: A collection of metrics. """ metrics_dict = {} if supervised: if multi_label: metrics_dict["label_map"] = clu_metrics.Average.from_fun( functools.partial(keyed_map, key="label") ) metrics_dict["supervised_loss"] = clu_metrics.Average.from_fun( losses.label_binary_xent ) metrics_dict["entropy_loss"] = clu_metrics.Average.from_fun( losses.label_binary_ent ) metrics_dict["marginal_entropy"] = metrics.MarginalBinaryEntropy else: metrics_dict["supervised_loss"] = clu_metrics.Average.from_fun( losses.label_xent ) metrics_dict["entropy_loss"] = clu_metrics.Average.from_fun( losses.label_ent ) metrics_dict["accuracy"] = metrics.Accuracy metrics_dict["marginal_entropy"] = metrics.MarginalEntropy return clu_metrics.Collection.create(**metrics_dict) def verify_batch(batch: dict[str, jnp.ndarray]) -> None: """Performs non-jittable verifications on a batch of data. Args: batch: The current batch of data. Raises: ValueError: If the batch has a label_mask, and label_mask differs across samples. """ if "label_mask" in batch: label_mask = flax_utils.unreplicate(batch["label_mask"]) if not ( jnp.tile(label_mask[0], (label_mask.shape[0], 1)) == label_mask ).all(): raise ValueError( "Some metrics (e.g. marginal entropy) can only be computed if each " "sample's probability distribution is defined over the same set of" "classes. Therefore, we verify that `label_mask` is the same across " "samples." ) def batch_forward( model: nn.Module, modality: Modality, use_batch_statistics: bool, train: bool = False, ) -> ForwardStepType: """Collects the model's output on the current batch of data. Args: model: The model. modality: The modality used. use_batch_statistics: Whether to use BatchNorm's running statistics, or the batch's statistics. train: Whether to use the model in training mode. Default to False, as this function is nominally used to compute pseudo-labels (e.g. Teacher step of Notela), which usually removes any source of noise (including dropout). Returns: Batch forward step callable. """ @jax.pmap def forward(batch, model_state, params, rngs): if use_batch_statistics: outputs, _ = model.apply( {"params": params, **model_state}, batch[modality.value], train=train, mutable=list(model_state.keys()), use_running_average=False, rngs=rngs, ) else: outputs = model.apply( {"params": params, **model_state}, batch[modality.value], use_running_average=True, train=train, rngs=rngs, ) return outputs return forward def get_dataset_length(dataset): try: return len(dataset) except TypeError: pass # Dataset length is unknown, so let's just iterate over it once... k = 0 for _ in dataset.as_numpy_iterator(): k += 1 return k + 1
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Some utils functions shared across methods.""" from typing import Callable from absl import logging from chirp.models import output from chirp.projects.sfda import adapt from chirp.projects.sfda import model_utils import flax import flax.jax_utils as flax_utils import flax.linen as nn import jax import jax.numpy as jnp import numpy as np import tensorflow as tf import tqdm ForwardStepType = Callable[ [ dict[str, jnp.ndarray], flax.core.scope.FrozenVariableDict, flax.core.scope.VariableDict, jax.random.PRNGKeyArray | None, ], output.ClassifierOutput, ] @jax.jit def jax_cdist(features_a: jnp.ndarray, features_b: jnp.ndarray) -> jnp.ndarray: """A jax equivalent of scipy.spatial.distance.cdist. Computes the pairwise squared euclidean distance between each pair of features from features_a and features_b. Args: features_a: The first batch of features, expected shape [*, batch_size_a, feature_dim] features_b: The second batch of features, expected shape [*, batch_size_b, feature_dim] Returns: The pairwise squared euclidean distance between each pair of features from features_a and features_b. Shape [*, batch_size_a, batch_size_b] Raises: ValueError: If the shape of features_a's last dimension does not match the shape of feature_b's last dimension. """ if features_a.shape[-1] != features_b.shape[-1]: raise ValueError( "The feature dimension should be the same. Currently features_a: " f"{features_a.shape} and features_b: {features_b.shape}" ) feature_dim = features_a.shape[-1] flat_features_a = jnp.reshape(features_a, [-1, feature_dim]) flat_features_b = jnp.reshape(features_b, [-1, feature_dim]) flat_transpose_b = flat_features_b.T distances = ( jnp.sum(jnp.square(flat_features_a), 1, keepdims=True) - 2 * jnp.matmul(flat_features_a, flat_transpose_b) + jnp.sum(jnp.square(flat_transpose_b), 0, keepdims=True) ) return distances def forward_dataset( dataset: tf.data.Dataset, adaptation_state: adapt.AdaptationState, model_bundle: model_utils.ModelBundle, modality: adapt.Modality, multi_label: bool, use_batch_statistics: bool = False, train: bool = False, key: jax.random.PRNGKeyArray | None = None, ) -> dict[str, jnp.ndarray | np.ndarray]: """Fowards a dataset through a given model. Args: dataset: The dataset to extract from. adaptation_state: The current adaptation state, including the model's state and parameters used for extraction. model_bundle: The current ModelBundle. modality: The current data modality. multi_label: Whether this is a multi-label problem. This affects how model's probabilities are packaged. use_batch_statistics: Whether to use batch's statistics for BatchNorm layers during feature extraction. train: Whether to use dropout or not during the forward pass. key: The random key to use if train is set to True. Returns: A dictionnary with the following keys: -embeddings: The extracted embeddings of shape [dataset_size, embedding_dimension]. -proba: The output classwise probabities of shape [dataset_size, num_classes]. -ids: The ids of the examples extracted, consistent with embeddings and proba, of shape [N]. ids[i] corresponds to embeddings[i] and proba[i]. Raises: ValueError: In case the ids do not uniquely identify each sample, or if the samples don't have the same label_mask. """ logging.info("Starting feature extraction...") all_ouputs = [] all_ids = [] # used to identify all samples model_state = flax_utils.replicate(adaptation_state.model_state) params = flax_utils.replicate(adaptation_state.model_params) model = model_bundle.model only_keep_unmasked_classes = adaptation_state.restrict_classes forward_step = adapt.batch_forward( model, modality, use_batch_statistics, train ) # Forward the whole dataset. Store embeddings, samples' ids, labels, and # model's probabilities. for index, batch in tqdm.tqdm(enumerate(dataset.as_numpy_iterator())): batch = jax.tree_map(np.asarray, batch) if key is not None: batch_key, key = jax.random.split(key) batch_key = jax.random.split(batch_key, num=jax.local_device_count()) batch_key = {"dropout": batch_key} else: batch_key = None if "label_mask" in batch and only_keep_unmasked_classes and index == 0: # We will use the first sample's label_mask as a reference, and ensure # all label_masks are the same. reference_mask = flax_utils.unreplicate(batch["label_mask"])[0] model_outputs = forward_step( # pytype: disable=wrong-arg-types # jax-ndarray adapt.keep_jax_types(batch), model_state, params, batch_key ) if "label_mask" in batch and only_keep_unmasked_classes: # We make sure that the label_mask is the same for all samples in the # dataset. if not ( jnp.tile(reference_mask, (batch["label_mask"].shape[0], 1)) == batch["label_mask"] ).all(): raise ValueError( "All samples should have the same label_mask for the" "'only_keep_unmasked_classes' option to work" "adequately." ) # We only keep unmasked classes. model_outputs = model_outputs.replace( label=model_outputs.label[..., reference_mask.astype(bool)] ) all_ouputs.append(flax_utils.unreplicate(model_outputs)) all_ids += list(batch["tfds_id"].reshape(-1)) # Concatenate every list to obtain a single array for each field. Store these # arrays in the result dictionary. logits2proba = nn.sigmoid if multi_label else nn.softmax result = {} result["embedding"] = jnp.concatenate( [x.embedding for x in all_ouputs], axis=0 ) # [dataset_size, n_dimensions] result["proba"] = jnp.concatenate( [logits2proba(x.label) for x in all_ouputs], axis=0 ) # [dataset_size, num_classes] ids = np.array(all_ids) # [dataset_size,] # Make some verifications. if np.unique(ids).shape[0] != ids.shape[0]: raise ValueError("Ids should uniquely define each sample.") result["id"] = ids if "label_mask" in batch: result["label_mask"] = reference_mask return result def maybe_restrict_labels( model_outputs, reference_label_mask, adaptation_state ): """Restrict model_outputs to target classes, if appropriate.""" if not adaptation_state.restrict_classes: return model_outputs if reference_label_mask is None: raise ValueError("Asked to restrict classes, but no label mask provided.") # We restrict the model's logits to the classes that appear in the # current dataset to ensure compatibility with # method_state["dataset_proba"]. model_outputs = model_outputs.replace( label=model_outputs.label[..., reference_label_mask.astype(bool)] ) return model_outputs def get_label_mask(batch) -> jnp.ndarray | None: if "label_mask" in batch: label_mask = flax_utils.unreplicate(batch["label_mask"]) reference_label_mask = label_mask[0] # [num_classes] # Ensure that the label_mask is the same for all samples. assert ( jnp.tile(reference_label_mask, (label_mask.shape[0], 1)) == label_mask ).all() else: reference_label_mask = None return reference_label_mask def pad_pseudo_label( reference_label_mask: jnp.ndarray | None, pseudo_label: jnp.ndarray, adaptation_state: adapt.AdaptationState, ) -> jnp.ndarray: """Pads pseudo-labels back to the global probability space. Args: reference_label_mask: The mask indicating which 'global' classes are used for the adaptation, shape [num_classes]. pseudo_label: Pseudo-label, expressed in a potentially reduced probability space, shape [batch_size, label_mask.sum()]. adaptation_state: The adaptation state. Returns: The zero-padded pseudo-labels, of shape [batch_size, num_classes] Raises: ValueError: If pseudo_label's last dimension does not match the number of classes used for adaptation, as indicated by label_mask """ if not adaptation_state.restrict_classes: return pseudo_label if reference_label_mask is None: raise ValueError("Asked to pad pseudolabels, but no label mask provided.") if reference_label_mask.ndim != 1: raise ValueError( "Expecting a vector for label_mask. Current shape is" f" {reference_label_mask.shape}" ) batch_size = pseudo_label.shape[0] num_classes_used = reference_label_mask.sum() num_classes_total = reference_label_mask.shape[0] if pseudo_label.shape[-1] != num_classes_used: raise ValueError( "Pseudo-labels should be expressed in the same" "restricted set of classes provided by the label_mask." "Currently, label_mask indicates that " f"{num_classes_used} should be used, but pseudo_label " f"is defined over {pseudo_label.shape[-1]} classes." ) padded_pseudo_label = jnp.zeros((batch_size, num_classes_total)) col_index = jnp.tile(jnp.where(reference_label_mask)[0], batch_size) row_index = jnp.repeat(jnp.arange(batch_size), num_classes_used) return padded_pseudo_label.at[(row_index, col_index)].set( pseudo_label.flatten() )
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A set of common losses used by several SFDA methods.""" import enum import flax import jax import jax.numpy as jnp class ReduceStrategy(enum.Enum): """Strategies to reduce an axis. Attributes: NONE: No reduction AVERAGE: Average reduction """ NONE = "none" AVERAGE = "average" def label_kl( probabilities: jnp.ndarray, label: jnp.ndarray, label_mask: jnp.ndarray | None, eps: float = 1e-10, **_, ) -> jnp.ndarray: """Kulback-Leibler divergence for single-class classification settings. Args: probabilities: Model's probabilities, expected shape [*, num_classes]. label: One-hot labels, expected shape [*, num_classes]. label_mask: Array representing classes to be kept, shape [*, num_classes]. eps: For numerical stability Returns: Single-class Kulback-Leibler divergence between probabilities and label. Shape [*,]. """ return label_xent(probabilities, label, label_mask, eps) - label_ent( probabilities, label_mask, eps ) # pytype: disable=wrong-arg-types # jax-ndarray def label_binary_kl( probabilities: jnp.ndarray, label: jnp.ndarray, **_ ) -> jnp.ndarray: """Kulback-Leibler divergence for multi-class classification settings. Args: probabilities: Model's probabilities, expected shape [*, num_classes]. label: One-hot labels, expected shape [*, num_classes]. Returns: Multi-class Kulback-Leibler divergence between probabilities and label. Shape [*, num_classes]. """ return label_binary_xent( probabilities, label, class_reduce=ReduceStrategy.NONE ) - label_binary_ent(probabilities, class_reduce=ReduceStrategy.NONE) def label_xent( probabilities: jnp.ndarray, label: jnp.ndarray, label_mask: jnp.ndarray | None, sample_mask: jnp.ndarray | None = None, eps: float = 1e-10, **_, ) -> jnp.ndarray: """Cross entropy for single-label classification settings. Args: probabilities: Model's probabilities, expected shape [*, num_classes]. label: One-hot labels, expected shape [*, num_classes]. label_mask: label_mask: Array representing classes to be kept, shape [*, num_classes]. sample_mask: A way to mask out some samples when computing the loss. Useful for instance to only keep high-confidence samples in pseudo-labelling. eps: For numerical stability Returns: Multi-class xent. Shape [*,]. """ if sample_mask is None: sample_mask = jnp.ones(probabilities.shape[:-1]) if label_mask is not None and ( label_mask.shape[-1] == probabilities.shape[-1] ): xent = -((label * jnp.log(probabilities + eps)) * label_mask).sum(-1) else: # TODO(mboudiaf) If label_mask is not None, check that probabilities are # already masked. In other words, ensure # probabilities.shape[-1] == label_mask.sum(-1) xent = -(label * jnp.log(probabilities + eps)).sum(-1) return sample_mask * xent def label_ent( probabilities: jnp.ndarray, label_mask: jnp.ndarray | None, eps: float = 1e-10, **_, ) -> jnp.ndarray: """Standard entropy used for single-label classification settings. Args: probabilities: Model's probabilities, expected shape [*, num_classes] label_mask: label_mask: Array representing classes to be kept, shape [*, num_classes]. eps: For numerical stability. Returns: The entropy of probabilities, shape [*,] """ if label_mask is not None and label_mask.shape[-1] == probabilities.shape[-1]: ent = -((probabilities * jnp.log(probabilities + eps)) * label_mask).sum(-1) else: # TODO(mboudiaf) If label_mask is not None, check that probabilities are # already masked. In other words, ensure # probabilities.shape[-1] == label_mask.sum(-1) ent = -((probabilities * jnp.log(probabilities + eps))).sum(-1) return ent def label_binary_ent( probabilities: jnp.ndarray, label_mask: jnp.ndarray | None = None, eps: float = 1e-10, class_reduce: ReduceStrategy = ReduceStrategy.AVERAGE, **_, ) -> jnp.ndarray: """Computes averaged classwise binary entropy. Args: probabilities: Probabilities used to compute the binary entropies. Expected shape [*, num_classes]. label_mask: Used to mask classes before averaging across classes. Expected shape [*, num_classes]. eps: For numerical stability. class_reduce: Class reduction strategy. Returns: The binary entropies, averaged across classes shape [*,] Raises: ValueError: In case class_reduce is not a known ReduceStrategy. """ if label_mask is None: label_mask = jnp.ones_like(probabilities) assert probabilities.shape == label_mask.shape, ( probabilities.shape, label_mask.shape, ) binary_entropies = -( probabilities * jnp.log(probabilities + eps) + (1 - probabilities) * jnp.log((1 - probabilities) + eps) ) # [..., num_classes] if class_reduce == ReduceStrategy.AVERAGE: return (label_mask * binary_entropies).sum(axis=-1) / ( label_mask.sum(axis=-1) + eps ) elif class_reduce == ReduceStrategy.NONE: return label_mask * binary_entropies else: raise ValueError(f"Unknown reduce strategy {class_reduce} used.") def label_binary_xent( probabilities: jnp.ndarray, label: jnp.ndarray, label_mask: jnp.ndarray | None = None, eps: float = 1e-10, class_reduce: ReduceStrategy = ReduceStrategy.AVERAGE, **_, ) -> jnp.ndarray: """Computes averaged classwise binary cross-entropy. Args: probabilities: Shape [*, num_classes] label: Shape [*, num_classes] label_mask: Shape [*, num_classes] eps: For numerical stability. class_reduce: Class reduction strategy. Returns: Average of per-class binary xent. Shape [*] Raises: ValueError: In case class_reduce is not a known ReduceStrategy. """ if label_mask is None: label_mask = jnp.ones_like(probabilities) assert probabilities.shape == label_mask.shape == label_mask.shape, ( probabilities.shape, label_mask.shape, label_mask.shape, ) binary_entropies = -( label * jnp.log(probabilities + eps) + (1 - label) * jnp.log((1 - probabilities) + eps) ) # [..., num_classes] if class_reduce == ReduceStrategy.AVERAGE: return (label_mask * binary_entropies).sum(axis=-1) / ( label_mask.sum(axis=-1) + eps ) elif class_reduce == ReduceStrategy.NONE: return label_mask * binary_entropies else: raise ValueError(f"Unknown reduce strategy {class_reduce} used.") def l2_loss(params: flax.core.scope.VariableDict): """Used to simulate weight decay.""" loss = 0.0 for p in jax.tree_util.tree_leaves(params): loss += (p**2).sum() return loss
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entry script for source-free domain adaptation.""" from typing import Sequence from absl import app from absl import flags from absl import logging from chirp import config_utils from chirp.projects.sfda import adapt from chirp.projects.sfda import data_utils from chirp.projects.sfda.configs import config_globals import jax from ml_collections.config_flags import config_flags import tensorflow as tf _CONFIG = config_flags.DEFINE_config_file("config") _METHOD_CONFIG = config_flags.DEFINE_config_file( "method_config", help_string="Configuration file for method-specific hyperparamaters.", ) _LOGDIR = flags.DEFINE_string("logdir", None, "Work unit logging directory.") _VISDA_DIR = flags.DEFINE_string("visda_dir", None, "Data directory for VisDa dataset.") flags.mark_flags_as_required(["config", "logdir"]) def main(argv: Sequence[str]) -> None: if len(argv) > 1: raise app.UsageError("Too many command-line arguments.") logging.info(_CONFIG.value) logging.info(_METHOD_CONFIG.value) # Preventing tensorflow from taking any GPU memory and starving Jax. tf.config.experimental.set_visible_devices([], "GPU") config = config_utils.parse_config( _CONFIG.value, config_globals.get_globals() ) method_config = config_utils.parse_config( _METHOD_CONFIG.value, config_globals.get_globals() ) if jax.local_device_count() > 1: raise NotImplementedError( "Only supporting non-distributed setting for now." ) # Recover the SDFA method sfda_method = method_config.sfda_method # Convert the splits config = config.unlock() method_config = getattr(method_config, config.modality.value) # Target class list to use for initialization. If None, defaults to # config.init_config.target_class_list. init_target_class_list = None if config.modality == adapt.Modality.AUDIO: adaptation_dataset, val_dataset = data_utils.get_audio_datasets( adaptation_data_config=config.adaptation_data_config, eval_data_config=config.eval_data_config, sample_rate_hz=config.sample_rate_hz, ) else: if "corrupted" in config.init_config.target_class_list: builder_kwargs = { "config": "{}_{}".format( config.init_config.corruption_name, config.init_config.corruption_severity, ) } elif config.init_config.target_class_list == "vis_da_c": builder_kwargs = { "data_dir": _VISDA_DIR.value, } elif config.init_config.target_class_list == "office_home": # We use the source domain name in the target class list for # initialization, which indicates to the model which checkpoint to load. init_target_class_list = f"office_home/{config.init_config.source_domain}" builder_kwargs = { "data_dir": _VISDA_DIR.value, "config": config.init_config.target_domain, } else: builder_kwargs = {} adaptation_dataset, val_dataset = data_utils.get_image_datasets( image_model=config.model_config.encoder, dataset_name=config.init_config.target_class_list, batch_size_train=config.batch_size_adaptation, batch_size_eval=config.batch_size_eval, data_seed=config.init_config.rng_seed, builder_kwargs=builder_kwargs, ) # Initialize state and bundles (model_bundle, adaptation_state, key, rename_fn, inverse_rename_fn) = ( sfda_method.initialize( model_config=config.model_config, pretrained=config.init_config.pretrained_model, rng_seed=config.init_config.rng_seed, input_shape=None if config.modality == adapt.Modality.IMAGE else config.init_config.input_shape, target_class_list=( init_target_class_list or config.init_config.target_class_list ), adaptation_iterations=adapt.get_dataset_length(adaptation_dataset) * method_config.num_epochs, modality=config.modality, optimizer_config=method_config.optimizer_config, ) ) # Perform adaptation adaptation_state = adapt.perform_adaptation( key=key, adaptation_state=adaptation_state, rename_fn=rename_fn, inverse_rename_fn=inverse_rename_fn, adaptation_dataset=adaptation_dataset, validation_dataset=val_dataset, model_bundle=model_bundle, logdir=_LOGDIR.value, use_supervised_metrics=True, target_class_list=config.init_config.target_class_list, multi_label=config.multi_label, modality=config.modality, eval_every=config.eval_every, eval_mca_every=config.eval_mca_every, sfda_method=sfda_method, **method_config, ) if __name__ == "__main__": app.run(main)
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Our adaptation of the Noisy Student method for SFDA.""" from chirp.projects.sfda import adapt from chirp.projects.sfda import losses from chirp.projects.sfda import method_utils from chirp.projects.sfda import model_utils from clu import metrics as clu_metrics import flax.jax_utils as flax_utils import flax.linen as nn import jax import jax.numpy as jnp import numpy as np import tensorflow as tf class DropoutStudent(adapt.SFDAMethod): """Our adaptation of the Noisy Student method for SFDA. As opposed to the original method, this adpatation only uses a single network. The teacher produces predictions from clean images, that the student tries to match using Dropout as sole source of noise. In the end, Dropout Student is equivalent to NOTELA when setting the weight controlling the Laplacian regularization to 0. """ _CITATION = ( "Xie, Qizhe, et al. 'Self-training with noisy student improves imagenet " "classification.' Proceedings of the IEEE/CVF conference on computer " "vision and pattern recognition. 2020." ) def compute_pseudo_label( self, probabilities: jnp.ndarray, label_mask: jnp.ndarray, multi_label: bool, alpha: float, normalize_pseudo_labels: bool = True, ) -> jnp.ndarray: """Compute the pseudo-labels from the model's probabilities. Args: probabilities: Model's output probabilities. Shape [*, num_classes] label_mask: Array representing classes to be kep, shape [*, num_classes]. multi_label: Whether this is a multi-label problem. alpha: Weight controlling the 'softness' of pseudo-labels. normalize_pseudo_labels: Whether to normalize pseudo-labels to turn them into valid probability distributions. This option should be kept to True, and only be used for experimental purposes. Returns: The pseudo-labels. """ pseudo_labels = jax.lax.stop_gradient(probabilities) if multi_label: pseudo_labels = jnp.stack([1 - pseudo_labels, pseudo_labels], axis=-1) pseudo_labels = pseudo_labels ** (1 / alpha) if normalize_pseudo_labels: pseudo_labels /= pseudo_labels.sum(-1, keepdims=True) pseudo_labels = pseudo_labels[ ..., -1 ] # we only keep the 'positive' probability else: pseudo_labels = pseudo_labels ** (1 / alpha) if normalize_pseudo_labels: if label_mask is not None and ( label_mask.shape[-1] == pseudo_labels.shape[-1] ): normalization = (pseudo_labels * label_mask).sum(-1, keepdims=True) else: # Then pseudo_labels are already properly masked. # TODO(mboudiaf): If label_mask is not None, check that # label_mask.sum(-1) == pseudo_labels.shape(-1) in a jittable # fashion. normalization = pseudo_labels.sum(-1, keepdims=True) pseudo_labels /= normalization return pseudo_labels def before_epoch( self, key: jax.random.PRNGKeyArray, model_bundle: model_utils.ModelBundle, adaptation_state: adapt.AdaptationState, adaptation_dataset: tf.data.Dataset, modality: adapt.Modality, multi_label: bool, **method_kwargs ) -> adapt.AdaptationState: """Compute the pseudo-labels when used in 'offline mode'. Args: key: The jax random key used for random operations in this epoch. model_bundle: The ModelBundle used for adaptation. adaptation_state: The current state of adaptation. adaptation_dataset: The dataset used for adaptation. modality: The current modality. multi_label: Whether this is a multi-label problem. **method_kwargs: Additional method-specific kwargs. Returns: The adaptation state, with a potentially updated 'method_state' attribute. """ if not method_kwargs["online_pl_updates"]: # Compute pseudo-labels that will be used during the next epoch of # adaptation. forward_result = method_utils.forward_dataset( dataset=adaptation_dataset, adaptation_state=adaptation_state, model_bundle=model_bundle, modality=modality, multi_label=multi_label, use_batch_statistics=method_kwargs["update_bn_statistics"], ) sample_ids = forward_result["id"] method_state = { "pseudo_label": self.compute_pseudo_label( forward_result["proba"], multi_label=multi_label, alpha=method_kwargs["alpha"], label_mask=forward_result["label_mask"], normalize_pseudo_labels=method_kwargs["normalize_pseudo_labels"], ), "id2index": {sample_ids[i]: i for i in range(len(sample_ids))}, } adaptation_state = adaptation_state.replace(method_state=method_state) return adaptation_state def before_iter( self, key: jax.random.PRNGKeyArray, batch: dict[str, np.ndarray], adaptation_state: adapt.AdaptationState, model_bundle: model_utils.ModelBundle, modality: adapt.Modality, multi_label: bool, **method_kwargs ) -> tuple[adapt.AdaptationState, dict[str, jnp.ndarray]]: """Grab or compute the pseudo-labels for the current batch. In the offline mode, we only grab pre-computed pseudo-labels from the pseudo_label memory. In the online mode, we compute the pseudo-labels using the current batch of data. Args: key: The jax random key used for random operations. batch: The current batch of data. adaptation_state: The current state of adaptation. model_bundle: The ModelBundle used for adaptation. modality: The current modality. multi_label: Whether this is a multi-label problem. **method_kwargs: Additional method-specific kwarg Returns: If using offline mode, the untouched adaptation_state. Otherwise,an updated version in which the method_state's memories have been updated A dictionary containing the pseudo-labels to use for the iteration. """ reference_label_mask = method_utils.get_label_mask(batch) if method_kwargs["online_pl_updates"]: # In the online version, we compute the pseudo-labels on-the-go. forward_step = self.cache_get_forward_step( model_bundle.model, modality, method_kwargs["update_bn_statistics"] ) model_outputs = forward_step( # pytype: disable=wrong-arg-types # jax-ndarray adapt.keep_jax_types(batch), adaptation_state.model_state, adaptation_state.model_params, None, ) model_outputs = flax_utils.unreplicate(model_outputs) pseudo_label = self.compute_pseudo_label( probabilities=adapt.logit2proba( model_outputs.label, reference_label_mask, multi_label ), label_mask=reference_label_mask, multi_label=multi_label, alpha=method_kwargs["alpha"], normalize_pseudo_labels=method_kwargs["normalize_pseudo_labels"], ) else: # In the offline version, we simply grab the pseudo-labels that were # computed before the epoch. method_state = flax_utils.unreplicate(adaptation_state.method_state) batch_indexes = np.array( [ method_state["id2index"][x] for x in flax_utils.unreplicate(batch["tfds_id"]) ] ) pseudo_label = method_state["pseudo_label"][batch_indexes] if reference_label_mask is not None: pseudo_label = method_utils.pad_pseudo_label( reference_label_mask, pseudo_label, adaptation_state ) return adaptation_state, { "pseudo_label": flax_utils.replicate(pseudo_label) } def get_adaptation_metrics( self, supervised: bool, multi_label: bool, **method_kwargs ) -> type[clu_metrics.Collection]: """Obtain metrics that will be monitored during adaptation.""" metrics_dict = vars( adapt.get_common_metrics(supervised=supervised, multi_label=multi_label) )["__annotations__"] def single_label_loss_fn(probabilities, pseudo_label, label_mask, **_): pl_xent = losses.label_xent( probabilities=probabilities, label=pseudo_label, label_mask=label_mask ) return pl_xent def multi_label_loss_fn( probabilities: jnp.ndarray, pseudo_label: jnp.ndarray, label_mask: jnp.ndarray, **_ ): pl_xent = losses.label_binary_xent( probabilities=probabilities, label=pseudo_label, label_mask=label_mask, ) return pl_xent loss_fn = multi_label_loss_fn if multi_label else single_label_loss_fn metrics_dict["main_loss"] = clu_metrics.Average.from_fun(loss_fn) return clu_metrics.Collection.create(**metrics_dict)