python_code
stringlengths
0
91.3k
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding=utf-8 # Copyright 2022 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Exploiting the Intrinsic Neighborhood Structure for SFDA.""" from absl import logging from chirp.projects.sfda import adapt from chirp.projects.sfda import losses from chirp.projects.sfda import method_utils from chirp.projects.sfda import model_utils from clu import metrics as clu_metrics import flax import flax.jax_utils as flax_utils import flax.linen as flax_linen import jax import jax.numpy as jnp import numpy as np import tensorflow as tf @flax.struct.dataclass class NRCLoss(clu_metrics.Metric): """Computes NRC's loss for the standard single-label case.""" probabilities_sum: jnp.ndarray nn_loss_sum: jnp.ndarray extended_nn_loss_sum: jnp.ndarray label_mask: jnp.ndarray | None n_samples: int @classmethod def from_model_output( cls, probabilities: jnp.ndarray, nn_probability: jnp.ndarray, extended_nn_probability: jnp.ndarray, nn_weight: jnp.ndarray, extended_nn_weight: jnp.ndarray, label_mask: jnp.ndarray | None, **_, ) -> "NRCLoss": """Computes the standard extended nearest-neighbors loss. Args: probabilities: Model's probability for the batch. nn_probability: Batch's nearest-neighbors' probability vectors. extended_nn_probability: Batch's extended nearest-neighbors' probability vectors. nn_weight: The weight used for each nearest-neighbor. Expected shape [batch_size, nn] extended_nn_weight: The weight used for each extended nearest-neighbor. Expected shape [1] (as the same weight is used for all extended neighbors). Returns: NRCLoss: An instance of NRCLoss. """ if label_mask is None: label_mask = jnp.ones_like(probabilities) nn_loss = -( nn_weight * ( label_mask[:, None, :] * probabilities[:, None, :] * nn_probability ).sum(axis=-1) ).sum( axis=-1 ) # [batch_size] extended_nn_loss = -( extended_nn_weight * ( label_mask[:, None, None, :] * probabilities[:, None, None, :] * extended_nn_probability ).sum(axis=-1) ).sum( axis=1 ) # [batch_size] probabilities_sum = probabilities.sum(axis=0) # [num classes] return cls( probabilities_sum=probabilities_sum, nn_loss_sum=nn_loss.sum(), extended_nn_loss_sum=extended_nn_loss.sum(), label_mask=label_mask, n_samples=probabilities.shape[0], ) def merge(self, other: "NRCLoss") -> "NRCLoss": return type(self)( probabilities_sum=self.probabilities_sum + other.probabilities_sum, nn_loss_sum=self.nn_loss_sum + other.nn_loss_sum, extended_nn_loss_sum=self.extended_nn_loss_sum + other.extended_nn_loss_sum, n_samples=self.n_samples + other.n_samples, label_mask=other.label_mask, ) def compute(self): probabilities_marginal = self.probabilities_sum / self.n_samples marginal_entropy = losses.label_ent( probabilities=probabilities_marginal, label_mask=self.label_mask[0] ) return ( 1 / self.n_samples * (self.nn_loss_sum + self.extended_nn_loss_sum) - marginal_entropy ) @flax.struct.dataclass class NRCMultiLoss(clu_metrics.Metric): """Computes NRC's loss for the multi-label case.""" probabilities_sum: jnp.ndarray nn_loss_sum: jnp.ndarray extended_nn_loss_sum: jnp.ndarray label_mask: jnp.ndarray n_samples: int @classmethod def from_model_output( cls, probabilities: jnp.ndarray, nn_probability: jnp.ndarray, extended_nn_probability: jnp.ndarray, nn_weight: jnp.ndarray, extended_nn_weight: jnp.ndarray, label_mask: jnp.ndarray, **_, ) -> "NRCMultiLoss": if label_mask is not None: # probabilities have not been masked but nn_probability has been, so we # pad the latter to bring it to the same dimensionality as the former. reference_mask = label_mask[0] _, num_nn, num_classes_used = nn_probability.shape nn_probability_flatter = nn_probability.reshape((-1, num_classes_used)) batch_size = nn_probability_flatter.shape[0] num_classes_total = reference_mask.shape[0] padded_nn_prob = jnp.zeros((batch_size, num_classes_total)) col_index = jnp.tile( jnp.nonzero(reference_mask, size=num_classes_used)[0], batch_size ) row_index = jnp.repeat(jnp.arange(batch_size), num_classes_used) nn_probability_flatter = padded_nn_prob.at[(row_index, col_index)].set( nn_probability_flatter.flatten() ) nn_probability = nn_probability_flatter.reshape( (-1, num_nn, num_classes_total) ) _, num_nn, num_enn, num_classes_used = extended_nn_probability.shape enn_probability_flatter = extended_nn_probability.reshape( (-1, num_classes_used) ) batch_size = enn_probability_flatter.shape[0] padded_enn_prob = jnp.zeros((batch_size, num_classes_total)) col_index = jnp.tile( jnp.nonzero(reference_mask, size=num_classes_used)[0], batch_size ) row_index = jnp.repeat(jnp.arange(batch_size), num_classes_used) enn_probability_flatter = padded_enn_prob.at[(row_index, col_index)].set( enn_probability_flatter.flatten() ) extended_nn_probability = enn_probability_flatter.reshape( (-1, num_nn, num_enn, num_classes_total) ) def dot_product(probability_a, probability_b): return probability_a * probability_b + (1 - probability_a) * ( 1 - probability_b ) nn_loss = -( label_mask * ( nn_weight[..., None] # [batch_size, nn, 1] * (dot_product(probabilities[:, None, :], nn_probability)) ).sum(axis=1) ).sum(-1) / label_mask.sum( -1 ) # [batch_size] extended_nn_loss = -( label_mask * ( # pytype: disable=wrong-arg-types # jax-ndarray extended_nn_weight * ( dot_product( probabilities[:, None, None, :], extended_nn_probability ) ) ).sum(axis=[1, 2]) ).sum(-1) / label_mask.sum( -1 ) # [batch_size] probabilities_sum = probabilities.sum(axis=0) # [num classes] return cls( probabilities_sum=probabilities_sum, nn_loss_sum=nn_loss.sum(), extended_nn_loss_sum=extended_nn_loss.sum(), label_mask=label_mask, n_samples=probabilities.shape[0], ) def merge(self, other: "NRCMultiLoss") -> "NRCMultiLoss": return type(self)( probabilities_sum=self.probabilities_sum + other.probabilities_sum, nn_loss_sum=self.nn_loss_sum + other.nn_loss_sum, extended_nn_loss_sum=self.extended_nn_loss_sum + other.extended_nn_loss_sum, n_samples=self.n_samples + other.n_samples, label_mask=other.label_mask, ) def compute(self): probabilities_marginal = self.probabilities_sum / self.n_samples marginal_entropy = losses.label_binary_ent( probabilities=probabilities_marginal, label_mask=self.label_mask[0] ) return ( 1 / self.n_samples * (self.nn_loss_sum + self.extended_nn_loss_sum) - marginal_entropy ) class NRC(adapt.SFDAMethod): """Exploiting the Intrinsic Neighborhood Structure for SFDA.""" _CITATION = ( "Yang, Shiqi, et al. 'Exploiting the intrinsic neighborhood structure" "for source-free domain adaptation.' Advances in Neural Information" "Processing Systems 34 (2021): 29393-29405." ) @staticmethod def compute_nearest_neighbors( batch_feature: jnp.ndarray, dataset_feature: jnp.ndarray, nn: int, memory_efficient_computation: bool = False, ) -> jnp.ndarray: """Compute batch_feature's nearest-neighbors among dataset_feature. Args: batch_feature: The features for the provided batch of data, shape [batch_size, feature_dim] dataset_feature: The features for the whole dataset, shape [dataset_size, feature_dim] nn: The number of nearest-neighbors to use. memory_efficient_computation: whether to use a memory-efficient implementation. Returns: The indices of batch_feature's nn nearest-neighbors among dataset_feature. Shape [batch_size, nn] Raises: ValueError if batch_feature and dataset_feature's shape don't match. """ batch_shape = batch_feature.shape dataset_shape = dataset_feature.shape if batch_feature.ndim != dataset_feature.ndim or ( batch_shape[-1] != dataset_shape[-1] ): raise ValueError( "Batch features and dataset features' shapes are not consistent." f"Currently batch_feature: {batch_shape} and dataset_feature:" f"{dataset_shape}" ) # Compute the nearest-neighbors neighbors = min(dataset_shape[0], nn + 1) if memory_efficient_computation: # We loop over samples in the current batch to avoid storing a # batch_size x dataset_size float array. That slows down computation, but # reduces memory footprint, which becomes the bottleneck for large # datasets. nn_indices = [] for sample_feature in batch_feature: pairwise_distances = method_utils.jax_cdist( jnp.expand_dims(sample_feature, 0), dataset_feature ) # [1, dataset_size] nn_indices.append( jax.lax.top_k(-pairwise_distances, neighbors)[1][:, 1:] ) # [1, neighbors] nn_indices = jnp.concatenate( nn_indices, axis=0 ) # [batch_size, neighbors] else: pairwise_distances = method_utils.jax_cdist( batch_feature, dataset_feature ) nn_indices = jax.lax.top_k(-pairwise_distances, neighbors)[1][ :, 1: ] # [batch_size, neighbors] return nn_indices def before_run( self, key: jax.random.PRNGKeyArray, model_bundle: model_utils.ModelBundle, adaptation_state: adapt.AdaptationState, adaptation_dataset: tf.data.Dataset, modality: adapt.Modality, multi_label: bool, **method_kwargs, ) -> adapt.AdaptationState: """Initialize the probability and feature banks. Args: key: The jax random key used for random operations in this epoch. model_bundle: The ModelBundle used for adaptation. adaptation_state: The current state of adaptation. adaptation_dataset: The dataset used for adaptation. modality: The current modality. multi_label: Whether this is a multi-label problem. **method_kwargs: Additional method-specific kwargs. Returns: An updated version of adaptation_state, where method_state contains all initialized banks. """ logging.info("Initializing banks...") # Extract embeddings and model's probabilities. forward_result = method_utils.forward_dataset( dataset=adaptation_dataset, adaptation_state=adaptation_state, model_bundle=model_bundle, modality=modality, multi_label=multi_label, use_batch_statistics=method_kwargs["update_bn_statistics"], ) # Store everything in the method_state dictionnary. ids = forward_result["id"] method_state = { "dataset_feature": forward_result["embedding"], "dataset_probability": forward_result["proba"], "id2index": {ids[i]: i for i in range(len(ids))}, } adaptation_state = adaptation_state.replace(method_state=method_state) return adaptation_state def before_iter( self, key: jax.random.PRNGKeyArray, batch: dict[str, np.ndarray], adaptation_state: adapt.AdaptationState, model_bundle: model_utils.ModelBundle, modality: adapt.Modality, multi_label: bool, **method_kwargs, ) -> tuple[adapt.AdaptationState, dict[str, jnp.ndarray]]: """Compute the (extended-)nearest-neighbors probability and weights. NRC relies on aligning model's probabilities with 'pseudo-labels' computed from the (extended) nearest-neighbors. Here, we compute those pseudo-labels, and their associated `weights` (i.e. 1 for reciprocal nearest-neighbors, and 'base_affinity' for the others). Args: key: The jax random key used for random operations. batch: The current batch of data. adaptation_state: The current state of adaptation. model_bundle: The ModelBundle used for adaptation. modality: The current modality. multi_label: Whether this is a multi-label problem. **method_kwargs: Additional method-specific kwarg Returns: A dictionary containing direct and extended nearest-neighbors's probability vectors and weights, for each sample in the batch. """ method_state = flax_utils.unreplicate(adaptation_state.method_state) id2index = method_state["id2index"] batch_indices = np.array( [id2index[x] for x in flax_utils.unreplicate(batch["tfds_id"])] ) reference_label_mask = method_utils.get_label_mask(batch) # Obtain the model's output for the current batch. forward_step = self.cache_get_forward_step( model_bundle.model, modality, method_kwargs["update_bn_statistics"] ) model_outputs = forward_step( # pytype: disable=wrong-arg-types # jax-ndarray adapt.keep_jax_types(batch), adaptation_state.model_state, adaptation_state.model_params, None, ) model_outputs = flax_utils.unreplicate(model_outputs) model_outputs = method_utils.maybe_restrict_labels( model_outputs, reference_label_mask, adaptation_state ) logit2proba = flax_linen.sigmoid if multi_label else flax_linen.softmax # Compute nearest-neighbors and extended nearest-neighbors indices. nn_indices = self.compute_nearest_neighbors( batch_feature=model_outputs.embedding, dataset_feature=method_state["dataset_feature"], nn=method_kwargs["nn"], ) # [batch_size, nn] extended_nn_indices = jnp.stack( [ # pylint: disable=g-complex-comprehension self.compute_nearest_neighbors( batch_feature=method_state["dataset_feature"][ sample_nn_indices ], dataset_feature=method_state["dataset_feature"], nn=method_kwargs["extended_nn"], ) for sample_nn_indices in nn_indices # [nn, extended_nn] ], axis=0, ) # [batch_size, nn, extended_nn] # Get nearest-neighbors and extended nearest-neighbors' probability. nn_probability = method_state["dataset_probability"][ nn_indices ] # [batch_size, nn, num_classes] extended_nn_probability = method_state["dataset_probability"][ extended_nn_indices ] # [batch_size, nn, extended_nn, num_classes] # Compute weights for nearest-neighbors and extended nearest-neighbors. # Those indicate the importance of each (extended) nearest-neighbor in # the loss. match = (extended_nn_indices == batch_indices[:, None, None]).sum( -1 ) # [batch_size, nn] assert match.ndim == 2 nn_weight = jnp.where( match > 0, match, method_kwargs["base_affinity"] ) # [batch_size, nn] extended_nn_weight = jnp.array([method_kwargs["base_affinity"]]) # Update banks method_state["dataset_feature"] = ( method_state["dataset_feature"] .at[batch_indices] .set(model_outputs.embedding) ) method_state["dataset_probability"] = ( method_state["dataset_probability"] .at[batch_indices] .set(logit2proba(model_outputs.label)) ) # Pad back to the original space if "label_mask" in batch: reference_label_mask = method_utils.get_label_mask(batch) batch_size, nn, extended_nn, num_classes = extended_nn_probability.shape nn_probability = method_utils.pad_pseudo_label( reference_label_mask, nn_probability.reshape(-1, num_classes), adaptation_state, ) extended_nn_probability = method_utils.pad_pseudo_label( reference_label_mask, extended_nn_probability.reshape(-1, num_classes), adaptation_state, ) if reference_label_mask is not None: nn_probability = nn_probability.reshape( batch_size, nn, reference_label_mask.shape[-1] ) extended_nn_probability = extended_nn_probability.reshape( batch_size, nn, extended_nn, reference_label_mask.shape[-1] ) return adaptation_state, { "nn_weight": flax_utils.replicate(nn_weight), "extended_nn_weight": flax_utils.replicate(extended_nn_weight), "nn_probability": flax_utils.replicate(nn_probability), "extended_nn_probability": flax_utils.replicate( extended_nn_probability ), } def get_adaptation_metrics( self, supervised: bool, multi_label: bool, **method_kwargs ) -> type[clu_metrics.Collection]: """Obtain metrics that will be monitored during adaptation. Args: supervised: Whether the problem is supervised. Only used to know if we can track supervised metrics, such as accuracy. multi_label: Whether this is a multi-label problem. **method_kwargs: Method's kwargs. Returns: A collection of metrics. """ metrics_dict = vars( adapt.get_common_metrics(supervised=supervised, multi_label=multi_label) )["__annotations__"] if multi_label: metrics_dict["main_loss"] = NRCMultiLoss else: metrics_dict["main_loss"] = NRCLoss return clu_metrics.Collection.create(**metrics_dict)
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test-Time Entropy Minimization (TENT) method.""" import functools from absl import logging from chirp.projects.sfda import adapt from chirp.projects.sfda import losses from chirp.projects.sfda import method_utils from chirp.projects.sfda import model_utils from clu import metrics as clu_metrics import flax.jax_utils as flax_utils import jax import jax.numpy as jnp import numpy as np import tensorflow as tf class DUST(adapt.SFDAMethod): """Adaptation of Dropout-based Uncertainty-driven Self-Training for SFDA. Note that DUST itself is not an SFDA method, because it assumes the availability of the labelled source data during the adaptation phase. We propose a particular way to adapt it to the SFDA setting. """ _CITATION = ( "Khurana, Sameer, et al. 'Unsupervised domain adaptation forspeech " "recognition via uncertainty driven self-training.' ICASSP 2021-2021 " "IEEE International Conference on Acoustics, Speech and Signal " "Processing(ICASSP). IEEE, 2021." ) def before_epoch( self, key: jax.random.PRNGKeyArray, model_bundle: model_utils.ModelBundle, adaptation_state: adapt.AdaptationState, adaptation_dataset: tf.data.Dataset, modality: adapt.Modality, multi_label: bool, **method_kwargs ) -> adapt.AdaptationState: """Compute the pseudo-labels, the masks and store them in memory. Args: key: The jax random key used for random operations in this epoch. model_bundle: The ModelBundle used for adaptation. adaptation_state: The current state of adaptation. adaptation_dataset: The dataset used for adaptation. modality: The current modality. multi_label: Whether this is a multi-label problem. **method_kwargs: Additional method-specific kwargs. Returns: The adaptation state, with a potentially updated 'method_state' attribute. """ logging.info("Preparing pseudo-labels...") forward_fn = functools.partial( method_utils.forward_dataset, dataset=adaptation_dataset, adaptation_state=adaptation_state, model_bundle=model_bundle, modality=modality, multi_label=multi_label, use_batch_statistics=method_kwargs["update_bn_statistics"], ) # Compute model's reference predictions (no dropout used) reference_forward_result = forward_fn(train=False) reference_probability = reference_forward_result["proba"] # We perform multiple noisy forward passes, and keep track of the # KL-divergence between the reference predictions and noisy predictions. # Note that here we depart from the edit distance proposed in the DUST paper # for speech, since the KL-divergence between class label predictions is # more appropriate for our use-case. kl_distances = [] kl_fn = losses.label_binary_kl if multi_label else losses.label_kl for _ in range(method_kwargs["num_random_passes"]): random_pass_key, key = jax.random.split(key) noisy_probability = forward_fn(key=random_pass_key, train=True)["proba"] kl_distances.append( kl_fn(reference_probability, noisy_probability, label_mask=None) ) # We compute the mask by only keeping samples whose maximum kl_divergence # observed is lower than a pre-defined threshold. pseudo_label_mask = ( jnp.stack(kl_distances, 0).max(axis=0) < method_kwargs["kl_threshold"] ) sample_ids = reference_forward_result["id"] pseudo_label = reference_probability # method_state will act as a memory, from which pseudo-labels and masks # will be grabbed on-the-go over the next epoch of adaptation. method_state = { "pseudo_label": pseudo_label, "pseudo_label_mask": pseudo_label_mask, "id2index": {sample_ids[i]: i for i in range(len(sample_ids))}, } adaptation_state = adaptation_state.replace(method_state=method_state) return adaptation_state def before_iter( self, key: jax.random.PRNGKeyArray, batch: dict[str, np.ndarray], adaptation_state: adapt.AdaptationState, model_bundle: model_utils.ModelBundle, modality: adapt.Modality, multi_label: bool, **method_kwargs ) -> tuple[adapt.AdaptationState, dict[str, jnp.ndarray]]: """Grab the pseudo-labels and masks for the current batch. Args: key: The jax random key used for random operations. batch: The current batch of data. adaptation_state: The current state of adaptation. model_bundle: The ModelBundle used for adaptation. modality: The current modality. multi_label: Whether this is a multi-label problem. **method_kwargs: Additional method-specific kwarg Returns: A dictionary containing the pseudo-labels and mask to use for the iteration. """ method_state = flax_utils.unreplicate(adaptation_state.method_state) id2index = method_state["id2index"] batch_indices = np.array( [id2index[x] for x in flax_utils.unreplicate(batch["tfds_id"])] ) pseudo_label = method_state["pseudo_label"][batch_indices] pseudo_label_mask = method_state["pseudo_label_mask"][batch_indices] # pad pseudo-labels to match model output as needed. label_mask = method_utils.get_label_mask(batch) pseudo_label = method_utils.pad_pseudo_label( label_mask, pseudo_label, adaptation_state ) if multi_label: pseudo_label_mask = method_utils.pad_pseudo_label( label_mask, pseudo_label_mask, adaptation_state ) return adaptation_state, { "pseudo_label": flax_utils.replicate(pseudo_label), "pseudo_label_mask": flax_utils.replicate(pseudo_label_mask), } def get_adaptation_metrics( self, supervised: bool, multi_label: bool, **method_kwargs ) -> type[clu_metrics.Collection]: """Obtain metrics that will be monitored during adaptation.""" metrics_dict = vars( adapt.get_common_metrics(supervised=supervised, multi_label=multi_label) )["__annotations__"] def single_label_loss_fn( probabilities, pseudo_label, pseudo_label_mask, label_mask, **_ ): pl_xent = losses.label_xent( probabilities=probabilities, label=pseudo_label, label_mask=label_mask, sample_mask=pseudo_label_mask, ) return pl_xent def multi_label_loss_fn( probabilities: jnp.ndarray, pseudo_label: jnp.ndarray, pseudo_label_mask: jnp.ndarray, label_mask: jnp.ndarray, **_ ): # Sample's probabilities that end up contributing to the final computation # are those left unmasked by label_mask (defined by the target domain and # restricting the set of possible species) and are confident enough ( # left unmasked by pseudo_label_mask). pl_xent = losses.label_binary_xent( probabilities=probabilities, label=pseudo_label, label_mask=label_mask * pseudo_label_mask, ) return pl_xent loss_fn = multi_label_loss_fn if multi_label else single_label_loss_fn metrics_dict["main_loss"] = clu_metrics.Average.from_fun(loss_fn) return clu_metrics.Collection.create(**metrics_dict)
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """NOisy TEacher-student with Laplacian Adjustment (NOTELA), our method.""" import functools from absl import logging from chirp.projects.sfda import adapt from chirp.projects.sfda import losses from chirp.projects.sfda import method_utils from chirp.projects.sfda import model_utils from clu import metrics as clu_metrics import flax.jax_utils as flax_utils import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from scipy import sparse import tensorflow as tf class NOTELA(adapt.SFDAMethod): """NOisy TEacher-student with Laplacian Adjustment (NOTELA), our method. It builds upon Dropout Student by incorporating a Laplacian regularization to the teacher step. NOTELA works in two different modes: - offline mode: Pseudo-labels are computed only once every epoch (before the epoch starts). - online mode: We track a memory of the dataset's extracted features and probabilities. Pseudo-labels are computed on-the-go by comparing samples from the current batch to the features/probabilities in memory. In both cases, the student-step remains to match the pseudo-labels using a noisy (dropout) model forward. """ @staticmethod def compute_nearest_neighbors( batch_feature: jnp.ndarray, dataset_feature: jnp.ndarray, knn: int, sparse_storage: bool, memory_efficient_computation: bool = False, ) -> jnp.ndarray | sparse.csr_matrix: """Compute batch_feature's nearest-neighbors among dataset_feature. Args: batch_feature: The features for the provided batch of data, shape [batch_size, feature_dim] dataset_feature: The features for the whole dataset, shape [dataset_size, feature_dim] knn: The number of nearest-neighbors to use. sparse_storage: whether to use sparse storage for the affinity matrix. memory_efficient_computation: Whether to make computation memory efficient. This option trades speed for memory footprint by looping over samples in the batch instead of fully vectorizing nearest-neighbor computation. For large datasets, memory usage can be a bottleneck, which is why we set this option to True by default. Returns: The batch's nearest-neighbors affinity matrix of shape [batch_size, dataset_size], where position (i, j) indicates whether dataset_feature[j] belongs to batch_feature[i]'s nearest-neighbors. Raises: ValueError: If batch_feature and dataset_feature don't have the same number of dimensions, or if their feature dimension don't match. """ batch_shape = batch_feature.shape dataset_shape = dataset_feature.shape if batch_feature.ndim != dataset_feature.ndim or ( batch_shape[-1] != dataset_shape[-1] ): raise ValueError( "Batch features and dataset features' shapes are not consistent." f"(batch_feature: {batch_shape} and dataset_feature: {dataset_shape})" ) # Compute the nearest-neighbors neighbors = min(dataset_shape[0], knn) if memory_efficient_computation: # We loop over samples in the current batch to avoid storing a # batch_size x dataset_size float array. That slows down computation, but # reduces memory footprint, which becomes the bottleneck for large # datasets. col_indices = [] for sample_feature in batch_feature: pairwise_distances = method_utils.jax_cdist( jnp.expand_dims(sample_feature, 0), dataset_feature ) # [1, dataset_size] col_indices.append( jax.lax.top_k(-pairwise_distances, neighbors)[1][:, 1:] ) # [1, neighbors-1] col_indices = jnp.stack(col_indices) else: pairwise_distances = method_utils.jax_cdist( batch_feature, dataset_feature ) # [batch_size, dataset_size] col_indices = jax.lax.top_k(-pairwise_distances, neighbors)[1][ :, 1: ] # [batch_size, neighbors-1] col_indices = col_indices.flatten() # [batch_size * neighbors-1] row_indices = jnp.repeat( np.arange(batch_shape[0]), neighbors - 1 ) # [0, ..., 0, 1, ...] if sparse_storage: data = jnp.ones(row_indices.shape[0]) nn_matrix = sparse.csr_matrix( (data, (row_indices, col_indices)), shape=(batch_shape[0], dataset_shape[0]), ) else: nn_matrix = jnp.zeros((batch_shape[0], dataset_shape[0]), dtype=jnp.uint8) nn_matrix = nn_matrix.at[row_indices, col_indices].set(1) return nn_matrix @staticmethod def teacher_step( batch_proba: jnp.ndarray, dataset_proba: jnp.ndarray, nn_matrix: jnp.ndarray | sparse.csr_matrix, lambda_: float, alpha: float = 1.0, normalize_pseudo_labels: bool = True, eps: float = 1e-8, ) -> jnp.ndarray: """Computes the pseudo-labels (teacher-step) following Eq.(3) in the paper. Args: batch_proba: The model's probabilities on the current batch of data. Expected shape [batch_size, proba_dim] dataset_proba: The model's probabilities on the rest of the dataset. Expected shape [dataset_size, proba_dim] nn_matrix: The affinity between the points in the current batch (associated to `batch_proba`) and the remaining of the points (associated to `dataset_proba`), of shape [batch_size, dataset_size]. Specifically, position [i,j] informs if point j belongs to i's nearest-neighbors. lambda_: Weight controlling the Laplacian regularization. alpha: Weight controlling the Softness regularization normalize_pseudo_labels: Whether to normalize pseudo-labels to turn them into valid probability distributions. This option should be kept to True, and only be used for experimental purposes. eps: For numerical stability. Returns: The soft pseudo-labels for the current batch of data, shape [batch_size, proba_dim] """ if isinstance(nn_matrix, sparse.csr_matrix): # By default, sum operation on a csr_matrix keeps the dimensions of the # original matrix. denominator = nn_matrix.sum(axis=-1) else: denominator = nn_matrix.sum(axis=-1, keepdims=True) # In the limit where alpha goes to zero, we can rewrite the expression as # # pseudo_label = [batch_proba * jnp.exp(lambda_ * ...)] ** (1 / alpha) # # and see that the normalized pseudo-label probabilities take value 1 if # they have the maximum value for the expression above over the class axis # and zero otherwise. if alpha == 0 and normalize_pseudo_labels: pseudo_label = batch_proba * jnp.exp( lambda_ * (nn_matrix @ dataset_proba) / (denominator + eps) # [*, batch_size, proba_dim] ) pseudo_label = ( pseudo_label == pseudo_label.max(axis=-1, keepdims=True) ).astype(jnp.float32) # If more than one class is maximally probable, we need to renormalize the # distribution to be uniform over the maximally-probable classes. pseudo_label /= pseudo_label.sum(axis=-1, keepdims=True) else: pseudo_label = batch_proba ** (1 / alpha) * jnp.exp( (lambda_ / alpha) * (nn_matrix @ dataset_proba) / (denominator + eps) ) # [*, batch_size, proba_dim] if normalize_pseudo_labels: pseudo_label /= pseudo_label.sum(axis=-1, keepdims=True) + eps return pseudo_label def before_run( self, key: jax.random.PRNGKeyArray, model_bundle: model_utils.ModelBundle, adaptation_state: adapt.AdaptationState, adaptation_dataset: tf.data.Dataset, modality: adapt.Modality, multi_label: bool, **method_kwargs, ) -> adapt.AdaptationState: """Initialize the memories when using NOTELA's online mode. Args: key: The jax random key used for random operations in this epoch. model_bundle: The ModelBundle used for adaptation. adaptation_state: The current state of adaptation. adaptation_dataset: The dataset used for adaptation. modality: The current modality. multi_label: Whether this is a multi-label problem. **method_kwargs: Additional method-specific kwargs. Returns: An updated version of adaptation_state, where method_state contains all initialized memories. """ if method_kwargs["online_pl_updates"]: logging.info("Initializing memories...") # Extract embeddings and model's probabilities. forward_result = method_utils.forward_dataset( dataset=adaptation_dataset, adaptation_state=adaptation_state, model_bundle=model_bundle, modality=modality, multi_label=multi_label, use_batch_statistics=method_kwargs["update_bn_statistics"], ) # Initialize global nearest-neighbor matrix nn_matrix = self.compute_nearest_neighbors( batch_feature=forward_result["embedding"], dataset_feature=forward_result["embedding"], knn=method_kwargs["knn"], sparse_storage=True, memory_efficient_computation=True, ) # Store everything in the method_state dictionnary. The nn_matrix cannot # be directly stored as a sparse.csr_matrix (otherwise jax won't be able # to replicate the method_state. Instead, it is stored as a jnp array, # whose columns indicate the row and column indexes of all non-zeros # elements in the matrix. ids = forward_result["id"] method_state = { "dataset_feature": forward_result["embedding"], "dataset_proba": forward_result["proba"], "nn_matrix": jnp.stack(nn_matrix.nonzero(), axis=1), # [?, 2] "id2index": {ids[i]: i for i in range(len(ids))}, } adaptation_state = adaptation_state.replace(method_state=method_state) return adaptation_state def before_epoch( self, key: jax.random.PRNGKeyArray, model_bundle: model_utils.ModelBundle, adaptation_state: adapt.AdaptationState, adaptation_dataset: tf.data.Dataset, modality: adapt.Modality, multi_label: bool, **method_kwargs, ) -> adapt.AdaptationState: """In 'offline mode', compute the pseudo-labels and store them in memory. If 'offline mode' is not activated, nothing needs to be done at that stage, as pseudo-labels will be computed on-the-go. Args: key: The jax random key used for random operations in this epoch. model_bundle: The ModelBundle used for adaptation. adaptation_state: The current state of adaptation. adaptation_dataset: The dataset used for adaptation. modality: The current modality. multi_label: Whether this is a multi-label problem. **method_kwargs: Additional method-specific kwargs. Returns: The adaptation state, with a potentially updated 'method_state' attribute. """ if not method_kwargs["online_pl_updates"]: logging.info("Preparing pseudo-labels...") # Extract embeddings and model's probabilities. forward_result = method_utils.forward_dataset( dataset=adaptation_dataset, adaptation_state=adaptation_state, model_bundle=model_bundle, modality=modality, multi_label=multi_label, use_batch_statistics=method_kwargs["update_bn_statistics"], ) # Compute pseudo-labels that will be used during the next epoch of # adaptation. _, pseudo_label = self.compute_pseudo_label( batch_feature=forward_result["embedding"], dataset_feature=forward_result["embedding"], batch_proba=forward_result["proba"], dataset_proba=forward_result["proba"], multi_label=multi_label, knn=method_kwargs["knn"], lambda_=method_kwargs["lambda_"], alpha=method_kwargs["alpha"], use_mutual_nn=method_kwargs["use_mutual_nn"], normalize_pseudo_labels=method_kwargs["normalize_pseudo_labels"], ) # method_state will act as a memory, from which pseudo-labels will be # grabbed on-the-go over the next epoch of adaptation. sample_ids = forward_result["id"] method_state = { "pseudo_label": pseudo_label, "id2index": {sample_ids[i]: i for i in range(len(sample_ids))}, } adaptation_state = adaptation_state.replace(method_state=method_state) return adaptation_state def before_iter( self, key: jax.random.PRNGKeyArray, batch: dict[str, np.ndarray], adaptation_state: adapt.AdaptationState, model_bundle: model_utils.ModelBundle, modality: adapt.Modality, multi_label: bool, **method_kwargs, ) -> tuple[adapt.AdaptationState, dict[str, jnp.ndarray]]: """Grab or compute the pseudo-labels for the current batch. In 'offline mode', we only grab pre-computed pseudo-labels from the pseudo_label memory. Args: key: The jax random key used for random operations. batch: The current batch of data. adaptation_state: The current state of adaptation. model_bundle: The ModelBundle used for adaptation. modality: The current modality. multi_label: Whether this is a multi-label problem. **method_kwargs: Additional method-specific kwarg Returns: If using offline mode, the untouched adaptation_state. Otherwise,an updated version in which the method_state's memories have been updated A dictionary containing the pseudo-labels to use for the iteration. """ method_state = flax_utils.unreplicate(adaptation_state.method_state) id2index = method_state["id2index"] batch_indices = np.array( [id2index[x] for x in flax_utils.unreplicate(batch["tfds_id"])] ) reference_label_mask = method_utils.get_label_mask(batch) if method_kwargs["online_pl_updates"]: # In the online version, we compute the pseudo-labels on-the-go. forward_step = self.cache_get_forward_step( model_bundle.model, modality, method_kwargs["update_bn_statistics"] ) model_outputs = forward_step( # pytype: disable=wrong-arg-types # jax-ndarray adapt.keep_jax_types(batch), adaptation_state.model_state, adaptation_state.model_params, None, ) model_outputs = flax_utils.unreplicate(model_outputs) model_outputs = method_utils.maybe_restrict_labels( model_outputs, reference_label_mask, adaptation_state ) logit2proba = nn.sigmoid if multi_label else nn.softmax previous_nn_matrix = self.indices_to_sparse_matrix( method_state["nn_matrix"], ( method_state["dataset_feature"].shape[0], method_state["dataset_feature"].shape[0], ), ) batch_nn_matrix, pseudo_label = self.compute_pseudo_label( batch_feature=model_outputs.embedding, dataset_feature=method_state["dataset_feature"], batch_proba=logit2proba(model_outputs.label), dataset_proba=method_state["dataset_proba"], multi_label=multi_label, knn=method_kwargs["knn"], lambda_=method_kwargs["lambda_"], alpha=method_kwargs["alpha"], use_mutual_nn=method_kwargs["use_mutual_nn"], normalize_pseudo_labels=method_kwargs["normalize_pseudo_labels"], transpose_nn_matrix=previous_nn_matrix.T[batch_indices], ) # Update global information previous_nn_matrix[batch_indices] = batch_nn_matrix method_state["dataset_feature"] = ( method_state["dataset_feature"] .at[batch_indices] .set(model_outputs.embedding) ) method_state["dataset_proba"] = ( method_state["dataset_proba"] .at[batch_indices] .set(logit2proba(model_outputs.label)) ) method_state["nn_matrix"] = jnp.stack(previous_nn_matrix.nonzero(), 1) adaptation_state = adaptation_state.replace( method_state=flax_utils.replicate(method_state) ) else: # In the offline version, we simply grab the pseudo-labels that were # computed before the epoch. pseudo_label = method_state["pseudo_label"][batch_indices] # Project back the pseudo-labels to the global label space, if needed. pseudo_label = method_utils.pad_pseudo_label( reference_label_mask, pseudo_label, adaptation_state ) return adaptation_state, { "pseudo_label": flax_utils.replicate(pseudo_label) } @staticmethod def indices_to_sparse_matrix( indices: jnp.ndarray, shape: tuple[int, int] ) -> sparse.csr_matrix: """Converts non-zero indices to a sparse.csr_matrix. Args: indices: Non-zero indices of the matrix, of shape [?, 2]. Each row indicates (row_index, column_index) of a non-zero element of the matrix. shape: Shape of the final matrix. Returns: The sparse.csr_matrix of shape `shape`, with non-zero elements at `indices`. """ row_indices, col_indices = indices[:, 0], indices[:, 1] data = jnp.ones(row_indices.shape[0]) return sparse.csr_matrix((data, (row_indices, col_indices)), shape=shape) def compute_pseudo_label( self, batch_feature: jnp.ndarray, dataset_feature: jnp.ndarray, batch_proba: jnp.ndarray, dataset_proba: jnp.ndarray, multi_label: bool, knn: int, lambda_: float, alpha: float, use_mutual_nn: bool, normalize_pseudo_labels: bool, transpose_nn_matrix: sparse.csr_matrix | None = None, ) -> tuple[sparse.csr_matrix, jnp.ndarray]: """The pipeline for computing NOTELA's pseudo labels. First, we compute the nearest neighbors of each point in batch_feature to each point in dataset_feature. Then, we compute the pseudo-labels using Eq. (3) from the paper. Args: batch_feature: The features for the provided batch of data, shape [batch_size, feature_dim] dataset_feature: The features for the whole dataset, shape [dataset_size, feature_dim] batch_proba: The model's proba for the current batch of data, shape [batch_size, num_classes] dataset_proba: The model's proba for the whole dataset, shape [dataset_size, num_classes] multi_label: Whether this is a multi-label problem. knn: The number of nearest-neighbors use to compute the affinity matrix. lambda_: The weight controlling the Laplacian regularization. alpha: The weight controlling the softness regularization. use_mutual_nn: Whether to use mutual nearest-neighbors (points i and j must belong to each other's nearest-neighbor to be called 'mutual') or standard nearest-neighbors. normalize_pseudo_labels: Whether to normalize pseudo-labels to turn them into valid probability distributions. This option should generally be set to True, and only be used for experimental purposes. transpose_nn_matrix: The relevant chunk of the nearest-neighbor's transpose. Precisely, matrix of shape [batch_size, dataset_size], where position [i,j] informs whether point i (in the current batch) belongs to point j (any point in the dataset) nearest-neighbors. If set to None, the actual transpose of the affinity matrix computed in this function will be used. Returns: The nearest-neighbor matrix used to compute the pseudo-labels. The pseudo-labels for the provided batch of data, shape [batch_size, num_classes]. """ # Start by computing the affinity matrix nn_matrix = self.compute_nearest_neighbors( batch_feature=batch_feature, dataset_feature=dataset_feature, knn=knn, sparse_storage=True, ) # Potentially keep mutual nearest-neighbors only. if use_mutual_nn: if transpose_nn_matrix is None: final_nn_matrix = nn_matrix.multiply(nn_matrix.T) # pytype: disable=attribute-error # jax-ndarray else: final_nn_matrix = nn_matrix.multiply(transpose_nn_matrix) # pytype: disable=attribute-error # jax-ndarray else: final_nn_matrix = nn_matrix # Prepare the teacher function. teacher_step_fn = functools.partial( self.teacher_step, nn_matrix=final_nn_matrix, lambda_=lambda_, alpha=alpha, normalize_pseudo_labels=normalize_pseudo_labels, ) if multi_label: # In the multi-label scnenario, we're solving `num_classes` independent # binary problems. Therefore, the class dimension can be treated as a # batch dimension, and the 'probability dimension' is actually 2. def reshape_binary_probabilities(proba): proba = proba.T return jnp.stack([1 - proba, proba], axis=-1) dataset_proba = reshape_binary_probabilities( dataset_proba ) # [num_classes, dataset_size, 2] batch_proba = reshape_binary_probabilities( batch_proba ) # [num_classes, batch_size, 2] pseudo_label = [] for classwise_batch_proba, classwise_dataset_proba in zip( batch_proba, dataset_proba ): pseudo_label.append( teacher_step_fn( batch_proba=classwise_batch_proba, dataset_proba=classwise_dataset_proba, ) ) pseudo_label = jnp.stack(pseudo_label) # [num_classes, batch_size, 2] # We select the 'positive' probability pseudo_label = pseudo_label[..., -1].T # [batch_size, num_classes] else: pseudo_label = teacher_step_fn( batch_proba=batch_proba, dataset_proba=dataset_proba ) # [batch_size, num_classes] return nn_matrix, jax.lax.stop_gradient(pseudo_label) def get_adaptation_metrics( self, supervised: bool, multi_label: bool, **method_kwargs ) -> type[clu_metrics.Collection]: """Obtain metrics that will be monitored during adaptation. In NOTELA, the loss minimized w.r.t. the network is a simple cross-entropy between the model's (noisy) outputs and the pseudo-labels. Args: supervised: Whether the problem is supervised. Only used to know if we can track supervised metrics, such as accuracy. multi_label: Whether this is a multi-label problem. **method_kwargs: Method's kwargs. Returns: A collection of metrics. """ metrics_dict = vars( adapt.get_common_metrics(supervised=supervised, multi_label=multi_label) )["__annotations__"] def single_label_loss_fn(probabilities, pseudo_label, label_mask, **_): pl_xent = losses.label_xent( probabilities=probabilities, label=pseudo_label, label_mask=label_mask ) return pl_xent def multi_label_loss_fn( probabilities: jnp.ndarray, pseudo_label: jnp.ndarray, label_mask: jnp.ndarray, **_, ): pl_xent = losses.label_binary_xent( probabilities=probabilities, label=pseudo_label, label_mask=label_mask, ) return pl_xent loss_fn = multi_label_loss_fn if multi_label else single_label_loss_fn metrics_dict["main_loss"] = clu_metrics.Average.from_fun(loss_fn) return clu_metrics.Collection.create(**metrics_dict)
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test-Time Entropy Minimization (TENT) method.""" from chirp.projects.sfda import adapt from chirp.projects.sfda import losses from clu import metrics as clu_metrics class Tent(adapt.SFDAMethod): """Test-time entropy minimization method.""" _CITATION = ( 'Wang, Dequan, et al. "Tent: Fully test-time adaptation by ' 'entropy minimization." ICLR (2021).' ) def get_adaptation_metrics( self, supervised: bool, multi_label: bool, **method_kwargs ) -> type[clu_metrics.Collection]: """Obtain metrics that will be monitored during adaptation.""" metrics_dict = vars( adapt.get_common_metrics(supervised=supervised, multi_label=multi_label) )['__annotations__'] if multi_label: entropy_fn = losses.label_binary_ent else: entropy_fn = losses.label_ent metrics_dict['main_loss'] = clu_metrics.Average.from_fun(entropy_fn) return clu_metrics.Collection.create(**metrics_dict)
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A pseudo-labelling baseline with confidence thresholding.""" from chirp.projects.sfda import adapt from chirp.projects.sfda import losses from chirp.projects.sfda import method_utils from chirp.projects.sfda import model_utils from clu import metrics as clu_metrics import flax.linen as nn import jax import jax.numpy as jnp import numpy as np class PseudoLabel(adapt.SFDAMethod): """A pseudo-labelling baseline with confidence thresholding. The original paper does not use confidence thresholding, but we include it, as it is a popular trick used to help stabilize training with pseudo-labels. """ _CITATION = ( "Lee, Dong-Hyun. 'Pseudo-label: The simple and efficient semi-supervised" " learning method for deep neural networks.' Workshop on challenges in " "representation learning, ICML. Vol. 3. No. 2. 2013." ) def before_iter( self, key: jax.random.PRNGKeyArray, batch: dict[str, np.ndarray], adaptation_state: adapt.AdaptationState, model_bundle: model_utils.ModelBundle, modality: adapt.Modality, multi_label: bool, **method_kwargs ) -> tuple[adapt.AdaptationState, dict[str, jnp.ndarray]]: """Compute the pseudo-labels for the current batch. Low-confidence samples are masked out when computing the loss. We hereby compute the mask to only retain high-confidence samples. Args: key: The jax random key used for random operations. batch: The current batch of data. adaptation_state: The current state of adaptation. model_bundle: The ModelBundle used for adaptation. modality: The current modality. multi_label: Whether this is a multi-label problem. **method_kwargs: Additional method-specific kwarg Returns: The untouched adaptation_state. A dictionary containing the pseudo-labels and masks to use for the iteration. """ # In the online version, we compute the pseudo-labels on-the-go. forward_step = self.cache_get_forward_step( model_bundle.model, modality, method_kwargs["update_bn_statistics"] ) model_output = forward_step( # pytype: disable=wrong-arg-types # jax-ndarray adapt.keep_jax_types(batch), adaptation_state.model_state, adaptation_state.model_params, None, ) reference_label_mask = method_utils.get_label_mask(batch) probabilities = adapt.logit2proba( model_output.label, reference_label_mask, multi_label ) # [1, batch_size, num_classes] if multi_label: # In the multi-label case, given that each class is treated indepently, # we perform masking at a "class level", meaning that within one sample, # all class probabilities above a certain threshold will contribute to # the loss. pseudo_label = ( probabilities > method_kwargs["confidence_threshold"] ).astype( jnp.float32 ) # [batch_size, num_classes] pseudo_label_mask = pseudo_label else: if reference_label_mask is None: reference_label_mask = jnp.ones_like(probabilities) # In the single-label case, we perform masking at a "sample level", # meaning that a sample will only contribute to the loss ifs its maximum # probability is above some threshold. pseudo_label_mask = (probabilities * reference_label_mask).max( -1 ) > method_kwargs[ "confidence_threshold" ] # [batch_size] num_classes = probabilities.shape[-1] pseudo_label = nn.one_hot( jnp.argmax(probabilities * reference_label_mask, axis=-1), num_classes, axis=-1, ) return adaptation_state, { "pseudo_label": pseudo_label, "pseudo_label_mask": pseudo_label_mask, } def get_adaptation_metrics( self, supervised: bool, multi_label: bool, **method_kwargs ) -> type[clu_metrics.Collection]: """Obtain metrics that will be monitored during adaptation.""" metrics_dict = vars( adapt.get_common_metrics(supervised=supervised, multi_label=multi_label) )["__annotations__"] def single_label_loss_fn( probabilities, pseudo_label, pseudo_label_mask, label_mask, **_ ): pl_xent = losses.label_xent( probabilities=probabilities, label=pseudo_label, label_mask=label_mask, sample_mask=pseudo_label_mask, ) return pl_xent def multi_label_loss_fn( probabilities: jnp.ndarray, pseudo_label: jnp.ndarray, pseudo_label_mask: jnp.ndarray, label_mask: jnp.ndarray, **_ ): # Sample's probabilities that end up contributing to the final computation # are those left unmasked by label_mask (defined by the target domain and # restricting the set of possible species) and are confident enough ( # left unmasked by pseudo_label_mask). pl_xent = losses.label_binary_xent( probabilities=probabilities, label=pseudo_label, label_mask=label_mask * pseudo_label_mask, ) return pl_xent loss_fn = multi_label_loss_fn if multi_label else single_label_loss_fn metrics_dict["main_loss"] = clu_metrics.Average.from_fun(loss_fn) return clu_metrics.Collection.create(**metrics_dict)
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A baseline that simply updates BatchNorm's statistics.""" from chirp.projects.sfda import adapt from clu import metrics as clu_metrics class AdaBN(adapt.SFDAMethod): """A baseline that simply updates BatchNorm's statistics. No optimization takes place, the method only fowards the data through the model, with the option 'update_bn_statistics' activated. """ _CITATION = ( "Li, Yanghao, et al. 'Revisiting batch normalization for practical " "domain adaptation.' arXiv preprint arXiv:1603.04779 (2016)." ) def get_adaptation_metrics( self, supervised: bool, multi_label: bool, **method_kwargs ) -> type[clu_metrics.Collection]: """Obtain metrics that will be monitored during adaptation.""" metrics_dict = vars( adapt.get_common_metrics(supervised=supervised, multi_label=multi_label) )["__annotations__"] return clu_metrics.Collection.create(**metrics_dict)
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """An implementation of Source HypOthesis Transfer (SHOT).""" from absl import logging from chirp.projects.sfda import adapt from chirp.projects.sfda import losses from chirp.projects.sfda import method_utils from chirp.projects.sfda import model_utils from clu import metrics as clu_metrics import flax import flax.jax_utils as flax_utils import flax.linen as nn import jax import jax.numpy as jnp import numpy as np import tensorflow as tf import tqdm @flax.struct.dataclass class SHOTMultiLabelLoss(clu_metrics.Metric): """Computes the loss used in SHOT-full for the multi-label case.""" probabilities_sum: jnp.ndarray entropy_sum: jnp.ndarray pl_xent_sum: jnp.ndarray label_mask: jnp.ndarray n_samples: int beta: float @classmethod def from_model_output( cls, probabilities: jnp.ndarray, pseudo_label: jnp.ndarray, beta: float, label_mask: jnp.ndarray, **_ ) -> "SHOTMultiLabelLoss": """Creates the metric from model's output. Args: probabilities: The model's binary probabilities. Shape [batch_size, num_classes]. pseudo_label: The pseudo-labels (computed before each epoch). Shape [batch_size, num_classes]. beta: Weight controlling the influence of the pseudo-label cross-entropy. label_mask: A mask to control which classes to discard. **_: Returns: An instance of "SHOTMultiLabelLoss". """ entropy_sum = losses.label_binary_ent( probabilities=probabilities, label_mask=label_mask ).sum(axis=0) pl_xent_sum = losses.label_binary_xent( probabilities=probabilities, label=pseudo_label, label_mask=label_mask ).sum(axis=0) probabilities_sum = probabilities.sum(axis=0) return cls( probabilities_sum=probabilities_sum, entropy_sum=entropy_sum, pl_xent_sum=pl_xent_sum, label_mask=label_mask, n_samples=probabilities.shape[0], beta=beta, ) def merge(self, other: "SHOTMultiLabelLoss") -> "SHOTMultiLabelLoss": return type(self)( probabilities_sum=self.probabilities_sum + other.probabilities_sum, entropy_sum=self.entropy_sum + other.entropy_sum, pl_xent_sum=self.pl_xent_sum + other.pl_xent_sum, n_samples=self.n_samples + other.n_samples, label_mask=other.label_mask, beta=other.beta, ) def compute(self): probabilities_marginal = self.probabilities_sum / self.n_samples marginal_entropy = losses.label_binary_ent( probabilities=probabilities_marginal, label_mask=self.label_mask[0] ) cond_entropy = self.entropy_sum / self.n_samples return ( cond_entropy - marginal_entropy + self.beta * self.pl_xent_sum / self.n_samples ) @flax.struct.dataclass class SHOTLoss(clu_metrics.Metric): """Computes the loss used in SHOT-full for the single-label case.""" probabilities_sum: jnp.ndarray entropy_sum: jnp.ndarray pl_xent_sum: jnp.ndarray label_mask: jnp.ndarray | None n_samples: int beta: float @classmethod def from_model_output( cls, probabilities: jnp.ndarray, pseudo_label: jnp.ndarray, label_mask: jnp.ndarray, beta: float, **_ ) -> "SHOTLoss": entropy_sum = losses.label_ent( probabilities=probabilities, label_mask=label_mask ).sum(axis=0) pl_xent_sum = losses.label_xent( probabilities=probabilities, label=pseudo_label, label_mask=label_mask ).sum(axis=0) probabilities_sum = probabilities.sum(axis=0) return cls( probabilities_sum=probabilities_sum, entropy_sum=entropy_sum, pl_xent_sum=pl_xent_sum, label_mask=label_mask, n_samples=probabilities.shape[0], beta=beta, ) def merge(self, other: "SHOTLoss") -> "SHOTLoss": return type(self)( probabilities_sum=self.probabilities_sum + other.probabilities_sum, entropy_sum=self.entropy_sum + other.entropy_sum, pl_xent_sum=self.pl_xent_sum + other.pl_xent_sum, label_mask=other.label_mask, n_samples=self.n_samples + other.n_samples, beta=other.beta, ) def compute(self): probabilities_marginal = self.probabilities_sum / self.n_samples reference_mask = None if self.label_mask is None else self.label_mask[0] marginal_entropy = losses.label_ent(probabilities_marginal, reference_mask) cond_entropy = self.entropy_sum / self.n_samples return ( cond_entropy - marginal_entropy + self.beta * self.pl_xent_sum / self.n_samples ) class SHOT(adapt.SFDAMethod): """SHOT method for SFDA.""" _CITATION = ( "Liang, Jian, Dapeng Hu, and Jiashi Feng. 'Do we really need to access " "the source data? source hypothesis transfer for unsupervised domain " "adaptation.' International Conference on Machine Learning. PMLR, 2020." ) @staticmethod def compute_pseudo_label( dataset_feature: jnp.ndarray, dataset_probability: jnp.ndarray, multi_label: bool, eps: float = 1e-6, ) -> jnp.ndarray: """A jax reimplementation of SHOT's pseudo-labelling procedure. Original function at https://github.com/tim-learn/SHOT/blob/ 07d0c713e4882e83fded1aff2a447dff77856d64/object/image_target.py#L242. Args: dataset_feature: The feature for all points in the dataset. Shape [dataset_size, feature_dim]. dataset_probability: Model's probabilities for the current dataset. Shape [dataset_size, num_classes]. multi_label: Whether this is a multi-label problem. eps: For numerical stability. Returns: The pseudo-labels, shape [dataset_size, num_classes] """ classwise_pseudo_label = [] dataset_probability = dataset_probability.T # [num_classes, dataset_size] if multi_label: dataset_probability = jnp.stack( [1 - dataset_probability, dataset_probability], axis=1 ) # [num_classes, probabilities_dim, dataset_size] else: dataset_probability = jnp.expand_dims( dataset_probability, axis=0 ) # [1, num_classes, dataset_size] probabilities_dim = dataset_probability.shape[1] # We loop over the classes. Vectorizing this part implies broadcasting # `dataset_feature` num_classes times, which may easily lead to OOM. for class_probabilities in tqdm.tqdm( dataset_probability, total=dataset_probability.shape[0] ): # Compute initial clusters Eq (4). mu_0 = (class_probabilities @ dataset_feature) / ( class_probabilities.sum(-1, keepdims=True) + eps ) # [probabilities_dim, feature_dim] # Compute initial pseudo-labels Eq (5) dist = method_utils.jax_cdist( dataset_feature, mu_0 ) # [dataset_size, probabilities_dim] one_hot_pseudo_label = nn.one_hot( dist.argmin(-1), probabilities_dim, axis=-1 ).transpose() # [probabilities_dim, dataset_size] # Re-Compute clusters and pseudo-labels Eq (6). Equivalent to a second # iteration of K-means. mu_1 = (one_hot_pseudo_label @ dataset_feature) / ( one_hot_pseudo_label.sum(-1, keepdims=True) + eps ) # [probabilities_dim, feature_dim] dist = method_utils.jax_cdist( dataset_feature, mu_1 ) # [dataset_size, probabilities_dim] classwise_pseudo_label.append(dist.argmin(-1)) # [dataset_size] final_pseudo_label = jnp.stack( classwise_pseudo_label, 1 ) # [dataset_size, num_classes] final_pseudo_label = nn.one_hot( final_pseudo_label, probabilities_dim, axis=-1 ) # [dataset_size, num_classes, probabilities_dim] if not multi_label: assert final_pseudo_label.shape[1] == 1 final_pseudo_label = jnp.squeeze( final_pseudo_label, axis=1 ) # [dataset_size, probabilities_dim=num_classes] else: final_pseudo_label = final_pseudo_label[ ..., -1 ] # [dataset_size, num_classes] return final_pseudo_label def before_epoch( self, key: jax.random.PRNGKeyArray, model_bundle: model_utils.ModelBundle, adaptation_state: adapt.AdaptationState, adaptation_dataset: tf.data.Dataset, modality: adapt.Modality, multi_label: bool, **method_kwargs ) -> adapt.AdaptationState: """Compute the pseudo-labels. Args: key: The jax random key used for random operations in this epoch. model_bundle: The ModelBundle used for adaptation. adaptation_state: The current state of adaptation. adaptation_dataset: The dataset used for adaptation. modality: The modality. multi_label: Whether this is a multi-label problem. **method_kwargs: Additional method-specific kwargs. Returns: The adaptation state, with a potentially updated 'method_state' attribute. """ logging.info("Preparing pseudo-labels...") # Extract dataset_feature and model's probabilities. forward_result = method_utils.forward_dataset( dataset=adaptation_dataset, adaptation_state=adaptation_state, model_bundle=model_bundle, modality=modality, multi_label=multi_label, use_batch_statistics=method_kwargs["update_bn_statistics"], ) # Compute pseudo-labels that will be used during the next epoch of # adaptation. pseudo_label = SHOT.compute_pseudo_label( dataset_feature=forward_result["embedding"], dataset_probability=forward_result["proba"], multi_label=multi_label, ) sample_ids = forward_result["id"] method_state = { "pseudo_label": pseudo_label, "id2index": {sample_ids[i]: i for i in range(len(sample_ids))}, } adaptation_state = adaptation_state.replace(method_state=method_state) return adaptation_state def before_iter( self, key: jax.random.PRNGKeyArray, batch: dict[str, np.ndarray], adaptation_state: adapt.AdaptationState, model_bundle: model_utils.ModelBundle, modality: adapt.Modality, multi_label: bool, **method_kwargs ) -> tuple[adapt.AdaptationState, dict[str, jnp.ndarray]]: """Grab the pseudo-labels from memory for the current batch. Args: key: The jax random key used for random operations. batch: The current batch of data. adaptation_state: The current state of adaptation. model_bundle: The ModelBundle used for adaptation. modality: The current modality. multi_label: Whether this is a multi-label problem. **method_kwargs: Additional method-specific kwarg Returns: The untouched adaptation_state. A dictionary containing the pseudo-labels to use for the iteration. """ method_state = flax_utils.unreplicate(adaptation_state.method_state) id2index = method_state["id2index"] batch_indexes = np.array( [id2index[x] for x in flax_utils.unreplicate(batch["tfds_id"])] ) pseudo_label = method_state["pseudo_label"][batch_indexes] # pad pseudo-labels to match model output as needed. label_mask = method_utils.get_label_mask(batch) pseudo_label = method_utils.pad_pseudo_label( label_mask, pseudo_label, adaptation_state ) return adaptation_state, { "pseudo_label": flax_utils.replicate(pseudo_label) } def get_adaptation_metrics( self, supervised: bool, multi_label: bool, **method_kwargs ) -> type[clu_metrics.Collection]: """Obtain metrics that will be monitored during adaptation.""" metrics_dict = vars( adapt.get_common_metrics(supervised=supervised, multi_label=multi_label) )["__annotations__"] if multi_label: metrics_dict["main_loss"] = SHOTMultiLabelLoss else: metrics_dict["main_loss"] = SHOTLoss return clu_metrics.Collection.create(**metrics_dict)
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for adaptation part.""" import itertools import shutil import tempfile from chirp import config_utils from chirp.data import utils as data_utils from chirp.models import frontend from chirp.preprocessing import pipeline from chirp.projects.sfda import adapt from chirp.projects.sfda import model_utils from chirp.projects.sfda import models from chirp.projects.sfda.configs import ada_bn as ada_bn_config from chirp.projects.sfda.configs import audio_baseline from chirp.projects.sfda.configs import config_globals from chirp.projects.sfda.configs import dropout_student as ds_config from chirp.projects.sfda.configs import dust as dust_config from chirp.projects.sfda.configs import image_baseline from chirp.projects.sfda.configs import notela as notela_config from chirp.projects.sfda.configs import nrc as nrc_config from chirp.projects.sfda.configs import pseudo_label as pseudo_label_config from chirp.projects.sfda.configs import shot as shot_config from chirp.projects.sfda.configs import tent as tent_config from chirp.projects.sfda.tests import fake_image_dataset from chirp.tests import fake_dataset from flax import traverse_util import flax.linen as nn import jax.numpy as jnp from absl.testing import absltest from absl.testing import parameterized _UNPARSED_CONFIGS = { "tent": tent_config, "notela": notela_config, "pseudo_label": pseudo_label_config, "shot": shot_config, "ada_bn": ada_bn_config, "dropout_student": ds_config, "nrc": nrc_config, "dust": dust_config, } class ConstantEncoder(nn.Module): """A no-op encoder for quickly testing adaptation loop.""" output_dim: int = 32 @nn.compact def __call__( self, inputs: jnp.ndarray, train: bool, use_running_average: bool # pylint: disable=redefined-outer-name ) -> jnp.ndarray: return jnp.zeros([inputs.shape[0], self.output_dim]) class AdaptationTest(parameterized.TestCase): def setUp(self): super().setUp() self.adapt_dir = tempfile.mkdtemp() self.audio_data_dir = tempfile.mkdtemp() self.image_data_dir = tempfile.mkdtemp() fake_audio_builder = fake_dataset.FakeDataset(data_dir=self.audio_data_dir) fake_image_builder = fake_image_dataset.FakeImageDataset( data_dir=self.image_data_dir ) fake_audio_builder.download_and_prepare() fake_image_builder.download_and_prepare() self.image_builder = fake_image_builder self.audio_builder = fake_audio_builder def tearDown(self): super().tearDown() shutil.rmtree(self.adapt_dir) shutil.rmtree(self.audio_data_dir) shutil.rmtree(self.image_data_dir) def _get_datasets(self, config, modality: adapt.Modality): if modality == adapt.Modality.AUDIO: adaptation_dataset, _ = data_utils.get_dataset( "train[:2]", dataset_directory=self.audio_builder.data_dir, pipeline=config.adaptation_data_config.pipeline, ) val_dataset, _ = data_utils.get_dataset( "train[1:2]", dataset_directory=self.audio_builder.data_dir, pipeline=config.eval_data_config.pipeline, ) else: input_pipeline = models.MODEL_REGISTRY[config.model_config.encoder]( num_classes=1 ).get_input_pipeline dataset = input_pipeline( data_builder=self.image_builder, split="train[:2]" ) dataset = dataset.batch(1, drop_remainder=False).batch( 1, drop_remainder=False ) adaptation_dataset = val_dataset = dataset return adaptation_dataset, val_dataset def _get_configs( self, modality: adapt.Modality, method: str, use_constant_encoder: bool = True, ): """Create configuration dictionary for training.""" if modality == adapt.Modality.AUDIO: config = audio_baseline.get_config() config = config_utils.parse_config(config, config_globals.get_globals()) config.init_config.target_class_list = "xenocanto" config.sample_rate_hz = 50 toy_pipeline = pipeline.Pipeline( ops=[ pipeline.ConvertBirdTaxonomyLabels( source_namespace="ebird2021", target_class_list=config.init_config.target_class_list, add_taxonomic_labels=True, ), pipeline.Batch(batch_size=1, split_across_devices=True), pipeline.RandomSlice(window_size=1), ] ) config.adaptation_data_config.pipeline = toy_pipeline config.eval_data_config.pipeline = toy_pipeline if use_constant_encoder: config.model_config.encoder = ConstantEncoder(output_dim=32) config.model_config.frontend = frontend.MelSpectrogram( features=32, stride=config.sample_rate_hz // 25, kernel_size=10, sample_rate=config.sample_rate_hz, freq_range=(60, 10_000), ) elif modality == adapt.Modality.IMAGE: config = image_baseline.get_config() config = config_utils.parse_config(config, config_globals.get_globals()) config.init_config.target_class_list = "fake_image_dataset" config.init_config.input_shape = None if use_constant_encoder: config.model_config.encoder = models.ImageModelName.CONSTANT method_config = _UNPARSED_CONFIGS[method].get_config() method_config = config_utils.parse_config( method_config, config_globals.get_globals() ) return config, method_config @parameterized.named_parameters( *[ (f"{method}_{modality.value}", method, modality) for method, modality in itertools.product( [ "dropout_student", "ada_bn", "tent", "notela", "pseudo_label", "shot", "nrc", "dust", ], [adapt.Modality.IMAGE, adapt.Modality.AUDIO], ) ] ) def test_adapt_one_epoch(self, method: str, modality: adapt.Modality): """Test an epoch of adaptation for SFDA methods.""" # Recover the configurations dict. config, method_config = self._get_configs(modality, method) sfda_method = method_config.sfda_method method_config = getattr(method_config, modality.value) method_config.num_epochs = 1 # Get data adaptation_dataset, val_dataset = self._get_datasets(config, modality) # Initialize state and parameters model_bundle, adaptation_state, key, rename_fn, inverse_rename_fn = ( sfda_method.initialize( model_config=config.model_config, rng_seed=config.init_config.rng_seed, pretrained=False, input_shape=config.init_config.input_shape, target_class_list=config.init_config.target_class_list, adaptation_iterations=method_config.num_epochs * len(adaptation_dataset), modality=modality, optimizer_config=method_config.optimizer_config, ) ) # Perform adaptation. new_adaptation_state = adapt.perform_adaptation( key=key, adaptation_state=adaptation_state, rename_fn=rename_fn, inverse_rename_fn=inverse_rename_fn, adaptation_dataset=adaptation_dataset, validation_dataset=val_dataset, model_bundle=model_bundle, logdir=self.adapt_dir, use_supervised_metrics=True, target_class_list=config.init_config.target_class_list, multi_label=config.multi_label, modality=modality, eval_every=config.eval_every, eval_mca_every=config.eval_mca_every, sfda_method=sfda_method, **method_config, ) self.assertIsNotNone(new_adaptation_state) def test_mask_parameters_audio(self): """Testing parameter masking used to restrict trainable parameters.""" config, _ = self._get_configs( adapt.Modality.AUDIO, "tent", use_constant_encoder=False ) model_bundle, params, _, _, _, _ = model_utils.prepare_audio_model( model_config=config.model_config, optimizer_config=None, total_steps=0, rng_seed=config.init_config.rng_seed, input_shape=config.init_config.input_shape, pretrained=False, target_class_list=config.init_config.target_class_list, ) self._test_mask_parameters(params, model_bundle.model) @parameterized.named_parameters( ("resnet", models.ImageModelName.RESNET), ("wideresnet", models.ImageModelName.WIDERESNET), ) def test_mask_parameters_image(self, model: models.ImageModelName): """Testing parameter masking used to restrict trainable parameters.""" config, _ = self._get_configs(adapt.Modality.IMAGE, "tent") config.model_config.encoder = model model_bundle, params, _, _, _, _ = model_utils.prepare_image_model( model_config=config.model_config, optimizer_config=None, total_steps=1, rng_seed=config.init_config.rng_seed, pretrained=False, input_shape=config.init_config.input_shape, target_class_list=config.init_config.target_class_list, ) self._test_mask_parameters(params, model_bundle.model) def _test_mask_parameters(self, params, model): # Test BN masking masked_params = model_utils.mask_parameters( params, model_utils.TrainableParams.BN, model ) for p, masked in traverse_util.flatten_dict(masked_params).items(): if model.is_bn_parameter(p): self.assertFalse(masked) else: self.assertTrue(masked) # Test no masking masked_params = model_utils.mask_parameters( params, model_utils.TrainableParams.ALL, model ) for p, masked in traverse_util.flatten_dict(masked_params).items(): self.assertFalse(masked) if __name__ == "__main__": absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for SFDA utilities at chirp/projects/sfda/method_utils.py.""" from chirp.projects.sfda import method_utils import jax import jax.numpy as jnp from scipy.spatial import distance from absl.testing import absltest class MethodUtilsTest(absltest.TestCase): def test_cdist(self): """Ensure that our pairwise distance function produces expected results.""" feature_dim = 3 n_points_a = 2 n_points_b = 3 features_a = jax.random.normal( jax.random.PRNGKey(0), (n_points_a, feature_dim) ) feature_b = jax.random.normal( jax.random.PRNGKey(1), (n_points_b, feature_dim) ) pairwises_sqr_distances_ours = method_utils.jax_cdist(features_a, feature_b) pairwises_sqr_distances_scipy = distance.cdist(features_a, feature_b) ** 2 self.assertTrue( jnp.allclose( pairwises_sqr_distances_scipy, pairwises_sqr_distances_ours ) ) if __name__ == "__main__": absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for SHOT method.""" from chirp.projects.sfda.methods import shot import flax.linen as nn import jax import numpy as np from scipy.spatial import distance from absl.testing import absltest class ShotTest(absltest.TestCase): def original_pl( self, embeddings: np.ndarray, probabilities: np.ndarray, threshold=0.0 ) -> np.ndarray: """The orignal implementation of SHOT's pseudo-labelling function. Taken from https://github.com/tim-learn/SHOT/blob/ 07d0c713e4882e83fded1aff2a447dff77856d64/object/image_target.py#L242. Args: embeddings: The model's embeddings. probabilities: The model's probabilities. threshold: A threshold to only keep classes with a certain number of samples (set to 0 in the original code). Returns: The hard pseudo-labels. """ predict = np.argmax(probabilities, axis=-1) num_classes = probabilities.shape[1] aff = probabilities for _ in range(2): initc = aff.transpose().dot(embeddings) initc = initc / (1e-8 + aff.sum(axis=0)[:, None]) cls_count = np.eye(num_classes)[predict].sum(axis=0) labelset = np.where(cls_count >= threshold)[0] dd = distance.cdist(embeddings, initc[labelset]) pred_label = dd.argmin(axis=1) predict = labelset[pred_label] aff = np.eye(num_classes)[predict] return predict.astype('int') def test_pseudo_label(self): """Ensure that our reimplementation of SHOT's pseudo-labelling is correct.""" n_points, feature_dim, num_classes = 10, 100, 10 fake_embeddings = jax.random.normal( jax.random.PRNGKey(57), (n_points, feature_dim) ) fake_probabilities = nn.softmax( jax.random.normal(jax.random.PRNGKey(58), (n_points, num_classes)) ) pl_original = self.original_pl( np.array(fake_embeddings), np.array(fake_probabilities) ) pl_ours = shot.SHOT.compute_pseudo_label( dataset_feature=fake_embeddings, dataset_probability=fake_probabilities, multi_label=False, ) self.assertTrue(np.allclose(pl_original, pl_ours.argmax(-1))) if __name__ == '__main__': absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A fake image dataset for testing.""" import numpy as np import tensorflow_datasets as tfds class FakeImageDataset(tfds.core.GeneratorBasedBuilder): """Fake image dataset used for testing purposes.""" VERSION = tfds.core.Version('1.0.0') def _split_generators(self, dl_manager): return { 'train': self._generate_examples(10), 'test': self._generate_examples(10), } def _info(self) -> tfds.core.DatasetInfo: """Dataset metadata.""" return tfds.core.DatasetInfo( builder=self, features=tfds.features.FeaturesDict({ 'image': tfds.features.Image(shape=(None, None, 3)), 'label': tfds.features.ClassLabel(names=['cat', 'dog']), }), ) def _generate_examples(self, num_examples): for i in range(num_examples): yield i, { 'image': np.zeros((12, 12, 3)).astype(np.uint8), 'label': np.random.choice(self._info().features['label'].names), }
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for NOTELA method.""" import functools import itertools from chirp.projects.sfda import adapt from chirp.projects.sfda import method_utils from chirp.projects.sfda.methods import notela import flax.linen as nn import jax import jax.numpy as jnp from scipy import sparse from absl.testing import absltest class NOTELATest(absltest.TestCase): def test_nn_matrix(self): """Ensure that NOTELA's nearest_neighbors matrix contains valid values.""" feature_dim = 5 n_points_batch = 2 n_points_dataset = 3 knn = 2 key = jax.random.PRNGKey(0) batch_feature = jax.random.normal(key, (n_points_batch, feature_dim)) dataset_feature = jax.random.normal(key, (n_points_dataset, feature_dim)) compute_nearest_neighbor_fn = functools.partial( notela.NOTELA.compute_nearest_neighbors, batch_feature=batch_feature, dataset_feature=dataset_feature, knn=knn, ) def to_dense(matrix): if isinstance(matrix, jnp.ndarray): return matrix else: return matrix.todense() nearest_neighbors_matrices = [] for efficient, sparse_storage in itertools.product( (True, False), (True, False) ): nearest_neighbors_matrices.append( compute_nearest_neighbor_fn( sparse_storage=sparse_storage, memory_efficient_computation=efficient, ) ) nearest_neighbors_reference = to_dense(nearest_neighbors_matrices[0]) self.assertEqual( nearest_neighbors_reference.shape, (n_points_batch, n_points_dataset) ) self.assertTrue((nearest_neighbors_reference.sum(-1) >= 0).all()) self.assertTrue((nearest_neighbors_reference.sum(-1) <= knn).all()) for nn_matrix_version in nearest_neighbors_matrices[1:]: self.assertTrue( jnp.allclose(nearest_neighbors_reference, to_dense(nn_matrix_version)) ) def test_teacher_step(self): """Ensure that NOTELA's teacher-step produces valid pseudo-labels.""" n_points_batch = 2 lambda_ = 1.0 alpha = 1.0 n_points_dataset = 3 key = jax.random.PRNGKey(0) def one_hot(probas): return jnp.stack([1 - probas, probas], axis=-1) batch_proba = nn.sigmoid(jax.random.normal(key, (n_points_batch,))) dataset_proba = nn.sigmoid(jax.random.normal(key, (n_points_dataset,))) nn_matrix = jax.random.randint( key, (n_points_batch, n_points_dataset), 0, 2 ) sparse_nn_matrix = sparse.csr_matrix(nn_matrix) pseudo_labels = notela.NOTELA.teacher_step( batch_proba=one_hot(batch_proba), dataset_proba=one_hot(dataset_proba), nn_matrix=nn_matrix, lambda_=lambda_, alpha=alpha, normalize_pseudo_labels=True, ) pseudo_labels_from_sparse = notela.NOTELA.teacher_step( batch_proba=one_hot(batch_proba), dataset_proba=one_hot(dataset_proba), nn_matrix=sparse_nn_matrix, lambda_=lambda_, alpha=alpha, normalize_pseudo_labels=True, ) self.assertTrue( jnp.allclose( pseudo_labels.sum(-1), jnp.ones_like(pseudo_labels.sum(-1)), atol=1e-4, ) ) self.assertTrue( jnp.allclose( pseudo_labels, pseudo_labels_from_sparse, ) ) def test_pad_pseudo_label(self): key = jax.random.PRNGKey(0) num_samples = 3 label_mask = jnp.array([0, 1, 0, 0, 1]).astype(bool) used_classes = label_mask.sum() pseudo_labels = jax.random.normal(key, (num_samples, used_classes)) fake_adaptation_state = adapt.AdaptationState(0, 0, {}, {}, {}, {}, True) padded_pseudo_label = method_utils.pad_pseudo_label( label_mask, pseudo_labels, fake_adaptation_state ) self.assertTrue((padded_pseudo_label[:, label_mask] == pseudo_labels).all()) if __name__ == "__main__": absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for losses used in SFDA..""" from chirp.projects.sfda import losses import flax.linen as nn import jax import jax.numpy as jnp from absl.testing import absltest class LossesTest(absltest.TestCase): def test_binary_entropy(self): num_classes = 5 n_points = 10 logits = jax.random.uniform(jax.random.PRNGKey(0), (n_points, num_classes)) binary_probas = nn.sigmoid(logits) label_mask = jnp.array([1, 1, 0, 0, 1]) # Test that masking works as intended. masked_ent = losses.label_binary_ent( probabilities=binary_probas, label_mask=jnp.tile(label_mask, (n_points, 1)), eps=0.0, ) ent = losses.label_binary_ent( probabilities=binary_probas[:, label_mask.astype(bool)], eps=0.0 ) self.assertAlmostEqual(masked_ent.mean(), ent.mean()) # Test that binary entropies fall in the right range [0, log(2)] self.assertTrue((ent >= 0.0).all()) self.assertTrue((ent <= jnp.log(2)).all()) # Test that entropy and cross-entropy are consitent ent = losses.label_binary_ent( probabilities=binary_probas, label=binary_probas ) xent = losses.label_binary_xent( probabilities=binary_probas, label=binary_probas ) self.assertAlmostEqual(ent.mean(), xent.mean(), delta=1e-7) def test_standard_entropy(self): num_classes = 5 n_points = 10 logits = jax.random.uniform(jax.random.PRNGKey(0), (n_points, num_classes)) probabilities = nn.softmax(logits) ent = losses.label_ent(probabilities=probabilities, label_mask=None) # Test that multi-class entropies fall in the range [0, log(num_classes)] self.assertTrue((ent >= 0.0).all()) self.assertTrue((ent <= jnp.log(num_classes)).all()) # Ensure that entropy and cross-entropy with self are same. self.assertAlmostEqual( ent.mean(), losses.label_xent( probabilities=probabilities, label=probabilities, label_mask=None, ).mean(), ) if __name__ == "__main__": absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A template for any image model.""" from chirp.models import output from etils import epath import flax import flax.linen as nn import tensorflow as tf import tensorflow_datasets as tfds class ImageModel(nn.Module): """A template for any image model.""" @nn.compact def __call__( self, x, train: bool, use_running_average: bool | None ) -> output.ClassifierOutput: """Just like any standard nn.Module, defines the foward pass of the model. We formulate two non-standard requirements for the forward pass. First, it must disentangle the train/test behavior of BatchNorm layers and those of other noisy layers (e.g. Dropout). This is achieved through the use of 'train' and 'use_running_average' options. Second, we require that the outputs are packaged into a output.ClassifierOutput, thereby including both the encoder's features, as well as the head's output. See chirp/projects/sfda/models/resnet.py for an example. Args: x: Batch of input images. train: Whether this is training. This affects noisy layers' behavior (e.g. Dropout). It also affects BatchNorm behavior in case 'use_running_average' is set to None. use_running_average: Optional, used to decide whether to use running statistics in BatchNorm (test mode), or the current batch's statistics (train mode). If not specified (or specified to None), default to 'not train'. Returns: The model's outputs, packaged as a output.ClassifierOutput. """ raise NotImplementedError @staticmethod def load_ckpt(dataset_name: str) -> flax.core.frozen_dict.FrozenDict: """Loads the checkpoint for the current dataset. Args: dataset_name: The current dataset used. Returns: variables: The flax variables corresponding to the loaded checkpoint. """ raise NotImplementedError @staticmethod def get_ckpt_path(dataset_name: str) -> epath.Path: """Returns the path to the checkpoint for the current dataset. Using a separate function from 'load_ckpt' (the latter uses 'get_ckpt_path') to make it easier to verify checkpoints paths. Args: dataset_name: The current dataset used. Returns: variables: The path to load the checkpoint. """ raise NotImplementedError @staticmethod def is_bn_parameter(parameter_name: list[str]) -> bool: """Verifies whether some parameter belong to a BatchNorm layer. Args: parameter_name: The name of the parameter, as a list in which each member describes the name of a layer. E.g. ('Block1', 'batch_norm_1', 'bias'). Returns: True if this parameter belongs to a BatchNorm layer. """ raise NotImplementedError @staticmethod def get_input_pipeline( data_builder: tfds.core.DatasetBuilder, split: str, **kwargs ) -> tf.data.Dataset: """Get the data pipeline for the current model. Because we're relying on pretrained models from the web, this part of the data pipeline can hardly be factorized. We hereby provide a default pipeline that converts image to tf.float32, and one-hots the labels. However, we **leave it for each model to specify its own processing pipeline**, with the only requirement of producing one-hot labels. Args: data_builder: The dataset's data builder. split: The split of the dataset used. **kwargs: Additional kwargs that may be useful for model-specific pipelines. Returns: The processed dataset. """ read_config = tfds.ReadConfig(add_tfds_id=True) dataset = data_builder.as_dataset(split=split, read_config=read_config) def _pp(example): image = tf.image.convert_image_dtype(example['image'], tf.float32) label = tf.one_hot( example['label'], data_builder.info.features['label'].num_classes ) return {'image': image, 'label': label, 'tfds_id': example['tfds_id']} return dataset.map(_pp, tf.data.experimental.AUTOTUNE)
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Initialializing the registry of image models.""" import enum from chirp.projects.sfda.models.constant_model import ConstantEncoderModel from chirp.projects.sfda.models.nrc_resnet import NRCResNet50 from chirp.projects.sfda.models.nrc_resnet import NRCResNet101 from chirp.projects.sfda.models.resnet import ResNet50 from chirp.projects.sfda.models.wideresnet import WideResNet2810 class ImageModelName(enum.Enum): """Supported model architectures for image experiments.""" RESNET = "resnet" NRC_RESNET = "nrc_resnet" NRC_RESNET_OFFICE_HOME = "nrc_resnet_office_home" WIDERESNET = "wideresnet" CONSTANT = "constant" MODEL_REGISTRY = { ImageModelName.RESNET: ResNet50, ImageModelName.NRC_RESNET: NRCResNet101, ImageModelName.NRC_RESNET_OFFICE_HOME: NRCResNet50, ImageModelName.WIDERESNET: WideResNet2810, ImageModelName.CONSTANT: ConstantEncoderModel, }
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The ResNet v1.5 architecture used by NRC [1]. The architecture corresponds to the ResNet architecture in TorchVision, with the following modifications: - A dense bottleneck layer followed by batch normalization is applied after the global average pooling operation. - The dense output layer is weight-normalized. [1] Yang, Shiqi, et al. "Exploiting the intrinsic neighborhood structure for source-free domain adaptation." Advances in Neural Information Processing Systems 34 (2021): 29393-29405. """ import functools import re from chirp.models import output from chirp.projects.sfda.models import resnet from etils import epath import flax from flax import linen as nn import jax.numpy as jnp import numpy as np import tensorflow as tf import tensorflow_datasets as tfds class WNDense(nn.Dense): """Weight-normalized Dense layer.""" def param(self, name, init_fn, *init_args): if name == 'kernel': kernel_v = super().param('kernel_v', init_fn, *init_args) param_shape, param_dtype = init_args param_shape = (1, param_shape[1]) kernel_g = super().param('kernel_g', init_fn, *(param_shape, param_dtype)) scale = jnp.sqrt( jnp.square(kernel_v).sum( tuple(range(kernel_v.ndim - 1)), keepdims=True ) ) return kernel_g * kernel_v / scale else: return super().param(name, init_fn, *init_args) class NRCResNet(resnet.ResNet): """Re-implementation of the ResNet v1.5 architecture used in NRC.""" bottleneck_width: int = 256 @nn.compact def __call__(self, x, train: bool, use_running_average: bool): # There *is* a computational difference between using padding='SAME' and # padding=1 for strided 3x3 convolutions, and to maintain compatibility # with the PyTorch implementation of ResNet we need to pass padding=1 rather # than the default padding='SAME' for 3x3 convolutions. def conv(*args, **kwargs): if args[1] == (3, 3): fn = functools.partial( self.conv, use_bias=False, padding=1, dtype=self.dtype ) else: fn = functools.partial(self.conv, use_bias=False, dtype=self.dtype) return fn(*args, **kwargs) norm = functools.partial( nn.BatchNorm, use_running_average=use_running_average, momentum=0.9, epsilon=1e-5, dtype=self.dtype, ) x = conv( self.num_filters, (7, 7), (2, 2), padding=[(3, 3), (3, 3)], name='conv_init', )(x) x = norm(name='bn_init')(x) x = nn.relu(x) x = nn.max_pool(x, (3, 3), strides=(2, 2), padding=((1, 1), (1, 1))) for i, block_size in enumerate(self.stage_sizes): for j in range(block_size): strides = (2, 2) if i > 0 and j == 0 else (1, 1) x = self.block_cls( self.num_filters * 2**i, strides=strides, conv=conv, norm=norm, act=self.act, )(x) x = jnp.mean(x, axis=(1, 2)) x = nn.Dense(self.bottleneck_width, name='bottleneck_dense')(x) x = norm(name='bottleneck_bn')(x) model_outputs = {} model_outputs['embedding'] = x x = WNDense(self.num_classes, dtype=self.dtype)(x) x = jnp.asarray(x, self.dtype) model_outputs['label'] = x.astype(jnp.float32) return output.ClassifierOutput(**model_outputs) @staticmethod def load_ckpt(dataset_name: str) -> flax.core.frozen_dict.FrozenDict: pretrained_ckpt_dir = NRCResNet.get_ckpt_path(dataset_name) with pretrained_ckpt_dir.open('rb') as f: state_dict = dict(np.load(f)) variables = _to_variables(state_dict, dataset_name) return variables @staticmethod def get_ckpt_path(dataset_name: str) -> epath.Path: if 'vis_da_c' in dataset_name: # The public checkpoint doesn't exist because it's derived from a # PyTorch checkpoint (https://github.com/Albert0147/NRC_SFDA, which # points to the Google Drive directory # https://drive.google.com/drive/folders/1rI_I7GOHLi8jA4FnL10xdh8PA1bbwsIp). # Download the .pt files locally, then save them into a .npz file using # the following command: # state_dict = {}; load_fn = lambda letter: state_dict.update({ # f'{letter}.{k}': v for k, v in torch.load( # f'source_{letter}.pt', # map_location=torch.device('cpu')).items()}) # load_fn('B'); load_fn('C'); load_fn('F') # np.savez('source.npz', **state_dict) # Finally, replace the '' below by the path to the source.npz file you # just created. return epath.Path('') elif 'office_home' in dataset_name: _, domain = dataset_name.split('/') # The public checkpoint doesn't exist because it's derived from a # PyTorch checkpoint (https://github.com/Albert0147/NRC_SFDA, which # points to the Google Drive directory # https://drive.google.com/drive/folders/10QMTQZqFgEwbvFGdgz7VSha7NYG4q6sh). # Download the .pt files locally (for a2c, c2a, p2a, and r2a), then save # each of them into a .npz file using the following command: # state_dict = {}; load_fn = lambda letter: state_dict.update({ # f'{letter}.{k}': v for k, v in torch.load( # f'source_{letter}.pt', # map_location=torch.device('cpu')).items()}) # load_fn('B'); load_fn('C'); load_fn('F') # np.savez('source.npz', **state_dict) # Finally, replace the '' below by the path to the source.npz files you # just created using `domain` to determine which one to point to. return epath.Path('') else: raise NotImplementedError( f'No pretrained checkpoint available for dataset {dataset_name}.' ) @staticmethod def get_input_pipeline( data_builder: tfds.core.DatasetBuilder, split: str, **kwargs ) -> tf.data.Dataset: image_size = kwargs['image_size'] padded_image_size = image_size + resnet.CROP_PADDING dtype = tf.float32 read_config = tfds.ReadConfig(add_tfds_id=True) def process_example(example): image = example['image'] # Resize and crop. image = example['image'] image = tf.image.resize( [image], [padded_image_size, padded_image_size], method=tf.image.ResizeMethod.BILINEAR, )[0] image = tf.image.central_crop(image, image_size / padded_image_size) # Reshape and normalize. image = tf.reshape(image, [image_size, image_size, 3]) image -= tf.constant(resnet.MEAN_RGB, shape=[1, 1, 3], dtype=image.dtype) image /= tf.constant( resnet.STDDEV_RGB, shape=[1, 1, 3], dtype=image.dtype ) image = tf.image.convert_image_dtype(image, dtype=dtype) label = tf.one_hot( example['label'], data_builder.info.features['label'].num_classes ) return {'image': image, 'label': label, 'tfds_id': example['tfds_id']} dataset = data_builder.as_dataset(split=split, read_config=read_config) options = tf.data.Options() options.experimental_threading.private_threadpool_size = 48 dataset = dataset.with_options(options) dataset = dataset.map( process_example, num_parallel_calls=tf.data.experimental.AUTOTUNE ) return dataset def _to_variables( state_dict: dict[str, np.ndarray], dataset_name: str ) -> flax.core.scope.FrozenVariableDict: """Translates a PyTorch-style state dictionnary into a FrozenVariableDict. Args: state_dict: The PyTorch state_dict to translate. dataset_name: The name of the dataset the model was trained on, indicative of the model architecture used. Returns: The translated version of the state_dict. Raises: RuntimeError: If some convolutional kernel has neither 2 or 4 dimensions. """ if dataset_name != 'vis_da_c' and 'office_home' not in dataset_name: raise ValueError if dataset_name == 'vis_da_c': bottleneck_dense_re = r'^B\.bottleneck' bottleneck_bn_re = r'^B\.bn' else: bottleneck_dense_re = r'^F\.bottle' bottleneck_bn_re = r'^F\.bn' state_dict = { k: v for k, v in state_dict.items() if 'feature_layers' not in k } flat_params = {} flat_batch_stats = {} def _match_to_block_name(m): if dataset_name == 'vis_da_c': block_index_offsets = [0, 3, 7, 30] else: block_index_offsets = [0, 3, 7, 13] block_index = int(m.group(2)) + block_index_offsets[int(m.group(1)) - 1] return f'BottleneckResNetBlock_{block_index}.' renames = [ # Groups and blocks functools.partial( re.compile(r'^F\.layer(\d*)\.(\d*)\.').sub, repl=_match_to_block_name ), # Initial convolution functools.partial(re.compile(r'^F\.conv1').sub, repl=r'conv_init'), # Initial normalization functools.partial(re.compile(r'^F\.bn1').sub, repl=r'bn_init'), # Bottleneck functools.partial( re.compile(bottleneck_dense_re).sub, repl=r'bottleneck_dense' ), functools.partial( re.compile(bottleneck_bn_re).sub, repl=r'bottleneck_bn' ), # Output layer functools.partial(re.compile(r'^C\.fc').sub, repl=r'WNDense_0'), # Convolutional layers functools.partial( re.compile(r'conv(\d)').sub, repl=lambda m: f'Conv_{int(m.group(1)) - 1}', ), # Normalization layers functools.partial( re.compile(r'bn(\d)').sub, repl=lambda m: f'BatchNorm_{int(m.group(1)) - 1}', ), # Downsampling layers functools.partial( re.compile(r'downsample\.(\d)').sub, repl=lambda m: 'norm_proj' if int(m.group(1)) else 'conv_proj', ), # Normalization scaling coefficients. All other renamings of 'weight' map # to 'kernel', so we perform this renaming first. functools.partial( re.compile(r'BatchNorm_(\d)\.weight').sub, repl=r'BatchNorm_\1.scale' ), functools.partial( re.compile(r'bn_init\.weight').sub, repl=r'bn_init.scale' ), functools.partial( re.compile(r'norm_proj\.weight').sub, repl=r'norm_proj.scale' ), functools.partial( re.compile(r'bottleneck_bn\.weight').sub, repl=r'bottleneck_bn.scale' ), # Convolutional kernels functools.partial(re.compile(r'weight').sub, repl=r'kernel'), # Batch statistics functools.partial(re.compile(r'running_mean').sub, repl=r'mean'), functools.partial(re.compile(r'running_var').sub, repl=r'var'), ] for key, value in state_dict.items(): # We don't need the 'num_batches_tracked' variables. if 'num_batches_tracked' in key: continue # Perform renaming. for rename in renames: key = rename(string=key) # Transpose convolutional kernels and weight matrices. if 'kernel' in key: if len(value.shape) == 2: value = value.transpose() elif len(value.shape) == 4: value = value.transpose(2, 3, 1, 0) else: raise RuntimeError # Route parameters and batch statistics to their appropriate flat # dictionary. Flax can unflatten dictionaries whose keys are tuples of # strings, which we take advantage of by splitting the keys by the '.' # character. flat_dict = ( flat_batch_stats if 'mean' in key or 'var' in key else flat_params ) flat_dict[tuple(key.split('.'))] = value # NRC uses an Office-Home class order other than alphabetical, so we need to # permute the output layer. if 'office_home' in dataset_name: permutation = ( [33, 32, 36, 15, 19, 2, 46, 49, 48, 53, 47, 54, 4, 18, 57, 23, 0, 45, 1] + [38, 5, 13, 50, 11, 58, 3, 16, 25, 10, 12, 61, 51, 9, 64, 28, 29, 26] + [21, 31, 62, 40, 35, 27, 14, 20, 43, 34, 37, 63, 39, 55, 41, 6, 8, 30] + [59, 44, 52, 60, 24, 17, 7, 42, 56, 22] ) flat_params[('WNDense_0', 'bias')] = flat_params[('WNDense_0', 'bias')][ permutation ] flat_params[('WNDense_0', 'kernel_g')] = flat_params[ ('WNDense_0', 'kernel_g') ][:, permutation] flat_params[('WNDense_0', 'kernel_v')] = flat_params[ ('WNDense_0', 'kernel_v') ][:, permutation] return flax.core.freeze({ 'params': flax.traverse_util.unflatten_dict(flat_params), 'batch_stats': flax.traverse_util.unflatten_dict(flat_batch_stats), }) NRCResNet50 = functools.partial( NRCResNet, stage_sizes=[3, 4, 6, 3], block_cls=resnet.BottleneckResNetBlock ) NRCResNet101 = functools.partial( NRCResNet, stage_sizes=[3, 4, 23, 3], block_cls=resnet.BottleneckResNetBlock )
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A toy model, used for testing/debugging purposes only.""" from chirp.models import output from chirp.projects.sfda.models import image_model from flax import linen as nn import jax.numpy as jnp class ConstantEncoderModel(image_model.ImageModel): """A toy model, used for testing/debugging purposes only. The model contains a trainable head. The encoder part simply returns the raw images, after spatial average-pooling. """ num_classes: int @nn.compact def __call__(self, x, train: bool, use_running_average: bool): x = jnp.mean(x, axis=(1, 2)) model_outputs = {} model_outputs['embedding'] = x x = nn.Dense(self.num_classes, dtype=jnp.float32)(x) model_outputs['label'] = x return output.ClassifierOutput(**model_outputs) @staticmethod def is_bn_parameter(parameter_name: list[str]) -> bool: """Verifies whether some parameter belong to a BatchNorm layer. Args: parameter_name: The name of the parameter, as a list in which each member describes the name of a layer. E.g. ('Block1', 'batch_norm_1', 'bias'). Returns: Whether this parameter belongs to a BatchNorm layer. """ return False
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The ResNet v1 architecture, borrowed from flax examples/ directory. Taken from https://github.com/google/flax/blob/main/examples/imagenet/models.py. We make the following modifications to the orignal model: - Use of 'use_running_average' to explicitly control BatchNorm's behavior. - Packaging the forward's output as a output.ClassifierOutput for compatibility with the rest of the pipeline. - Added a Dropout layer after average pooling, and before the classfication head. This was done to inject noise during the forward pass for Dropout Student and NOTELA. - Added a 'load_ckpt' method, following image_model.ImageModel template. - Added a 'get_ckpt_path' method, following image_model.ImageModel template. - Integrated flax's input pipeline in the 'get_input_pipeline' method. """ import functools from typing import Any, Callable, Sequence from chirp.models import output from chirp.projects.sfda.models import image_model from etils import epath import flax from flax import linen as nn from flax.training import checkpoints as flax_checkpoints import jax.numpy as jnp import tensorflow as tf import tensorflow_datasets as tfds ModuleDef = Any CROP_PADDING = 32 MEAN_RGB = [0.485 * 255, 0.456 * 255, 0.406 * 255] STDDEV_RGB = [0.229 * 255, 0.224 * 255, 0.225 * 255] class ResNetBlock(nn.Module): """ResNet block.""" filters: int conv: ModuleDef norm: ModuleDef act: Callable[[jnp.ndarray], jnp.ndarray] strides: tuple[int, int] = (1, 1) @nn.compact def __call__( self, x, ): residual = x y = self.conv(self.filters, (3, 3), self.strides)(x) y = self.norm()(y) y = self.act(y) y = self.conv(self.filters, (3, 3))(y) y = self.norm(scale_init=nn.initializers.zeros)(y) if residual.shape != y.shape: residual = self.conv( self.filters, (1, 1), self.strides, name='conv_proj' )(residual) residual = self.norm(name='norm_proj')(residual) return self.act(residual + y) class BottleneckResNetBlock(nn.Module): """Bottleneck ResNet block.""" filters: int conv: ModuleDef norm: ModuleDef act: Callable[[jnp.ndarray], jnp.ndarray] strides: tuple[int, int] = (1, 1) @nn.compact def __call__(self, x): residual = x y = self.conv(self.filters, (1, 1))(x) y = self.norm()(y) y = self.act(y) y = self.conv(self.filters, (3, 3), self.strides)(y) y = self.norm()(y) y = self.act(y) y = self.conv(self.filters * 4, (1, 1))(y) y = self.norm(scale_init=nn.initializers.zeros)(y) if residual.shape != y.shape: residual = self.conv( self.filters * 4, (1, 1), self.strides, name='conv_proj' )(residual) residual = self.norm(name='norm_proj')(residual) return self.act(residual + y) class ResNet(image_model.ImageModel): """ResNetV1.""" stage_sizes: Sequence[int] block_cls: ModuleDef num_classes: int num_filters: int = 64 dtype: jnp.dtype = jnp.float32 act: Callable[[jnp.ndarray], jnp.ndarray] = nn.relu conv: ModuleDef = nn.Conv @nn.compact def __call__(self, x, train: bool, use_running_average: bool): conv = functools.partial(self.conv, use_bias=False, dtype=self.dtype) norm = functools.partial( nn.BatchNorm, use_running_average=use_running_average, momentum=0.9, epsilon=1e-5, dtype=self.dtype, ) x = conv( self.num_filters, (7, 7), (2, 2), padding=[(3, 3), (3, 3)], name='conv_init', )(x) x = norm(name='bn_init')(x) x = nn.relu(x) x = nn.max_pool(x, (3, 3), strides=(2, 2), padding='SAME') for i, block_size in enumerate(self.stage_sizes): for j in range(block_size): strides = (2, 2) if i > 0 and j == 0 else (1, 1) x = self.block_cls( self.num_filters * 2**i, strides=strides, conv=conv, norm=norm, act=self.act, )(x) # The following Dropout was added to inject noise during foward pass. x = nn.Dropout(0.1, deterministic=not train)(x) x = jnp.mean(x, axis=(1, 2)) model_outputs = {} model_outputs['embedding'] = x x = nn.Dense(self.num_classes, dtype=self.dtype)(x) x = jnp.asarray(x, self.dtype) model_outputs['label'] = x.astype(jnp.float32) return output.ClassifierOutput(**model_outputs) @staticmethod def is_bn_parameter(parameter_name: list[str]) -> bool: """Verifies whether some parameter belong to a BatchNorm layer. Captures all BatchNorm parameters, except those from the residual layers (`norm_proj_*` in the code). Args: parameter_name: The name of the parameter, as a list in which each member describes the name of a layer. E.g. ('Block1', 'BatchNorm_1', 'bias'). Returns: True if this parameter belongs to a BatchNorm layer. """ return any(['BatchNorm' in x for x in parameter_name]) @staticmethod def load_ckpt(dataset_name: str) -> flax.core.frozen_dict.FrozenDict: pretrained_ckpt_dir = ResNet.get_ckpt_path(dataset_name) state_dict = flax_checkpoints.restore_checkpoint( pretrained_ckpt_dir, target=None ) variables = flax.core.freeze({ 'params': state_dict['params'], 'batch_stats': state_dict['batch_stats'], }) return variables @staticmethod def get_ckpt_path(dataset_name: str) -> epath.Path: if 'imagenet' in dataset_name: return epath.Path( 'gs://flax_public/examples/imagenet/v100_x8/checkpoint_250200' ) else: raise NotImplementedError( f'No pretrained checkpoint available for dataset {dataset_name}.' ) @staticmethod def get_input_pipeline( data_builder: tfds.core.DatasetBuilder, split: str, **kwargs ) -> tf.data.Dataset: image_size = kwargs['image_size'] dtype = tf.float32 read_config = tfds.ReadConfig(add_tfds_id=True) def _resize(image): return tf.image.resize( [image], [image_size, image_size], method=tf.image.ResizeMethod.BICUBIC, )[0] def _decode_and_center_crop(image_bytes): """Crops to center of image with padding then scales image_size.""" shape = tf.io.extract_jpeg_shape(image_bytes) image_height = shape[0] image_width = shape[1] padded_center_crop_size = tf.cast( ( (image_size / (image_size + CROP_PADDING)) * tf.cast(tf.minimum(image_height, image_width), tf.float32) ), tf.int32, ) offset_height = ((image_height - padded_center_crop_size) + 1) // 2 offset_width = ((image_width - padded_center_crop_size) + 1) // 2 crop_window = tf.stack([ offset_height, offset_width, padded_center_crop_size, padded_center_crop_size, ]) image = tf.io.decode_and_crop_jpeg(image_bytes, crop_window, channels=3) image = _resize(image) return image def normalize_image(image): image -= tf.constant(MEAN_RGB, shape=[1, 1, 3], dtype=image.dtype) image /= tf.constant(STDDEV_RGB, shape=[1, 1, 3], dtype=image.dtype) return image def preprocess_for_eval(image_bytes, dtype=tf.float32): """Preprocesses the given image for evaluation. Args: image_bytes: `Tensor` representing an image binary of arbitrary size. dtype: data type of the image. Returns: A preprocessed image `Tensor`. """ image = _decode_and_center_crop(image_bytes) image = tf.reshape(image, [image_size, image_size, 3]) image = normalize_image(image) image = tf.image.convert_image_dtype(image, dtype=dtype) return image def decode_example(example): image = preprocess_for_eval(example['image'], dtype=dtype) label = tf.one_hot( example['label'], data_builder.info.features['label'].num_classes ) return {'image': image, 'label': label, 'tfds_id': example['tfds_id']} dataset = data_builder.as_dataset( split=split, decoders={'image': tfds.decode.SkipDecoding()}, read_config=read_config, ) options = tf.data.Options() options.experimental_threading.private_threadpool_size = 48 dataset = dataset.with_options(options) dataset = dataset.map( decode_example, num_parallel_calls=tf.data.experimental.AUTOTUNE ) return dataset ResNet18 = functools.partial( ResNet, stage_sizes=[2, 2, 2, 2], block_cls=ResNetBlock ) ResNet34 = functools.partial( ResNet, stage_sizes=[3, 4, 6, 3], block_cls=ResNetBlock ) ResNet50 = functools.partial( ResNet, stage_sizes=[3, 4, 6, 3], block_cls=BottleneckResNetBlock ) ResNet101 = functools.partial( ResNet, stage_sizes=[3, 4, 23, 3], block_cls=BottleneckResNetBlock ) ResNet152 = functools.partial( ResNet, stage_sizes=[3, 8, 36, 3], block_cls=BottleneckResNetBlock ) ResNet200 = functools.partial( ResNet, stage_sizes=[3, 24, 36, 3], block_cls=BottleneckResNetBlock ) ResNet18Local = functools.partial( ResNet, stage_sizes=[2, 2, 2, 2], block_cls=ResNetBlock, conv=nn.ConvLocal )
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The WideResnet architecture. Translated from PyTorch version at https://github.com/RobustBench/robustbench/ blob/master/robustbench/model_zoo/architectures/wide_resnet.py. We make the following modifications to the orignal model: - Use of 'use_running_average' to explicitly control BatchNorm's behavior. - Packaging the forward's output as a output.ClassifierOutput for compatibility with the rest of the pipeline. - Added a Dropout layer after average pooling, and before the classfication head. This was done to inject noise during the forward pass for Dropout Student and NOTELA. - Added a 'load_ckpt' method, following image_model.ImageModel template. - Added a 'get_ckpt_path' method, following image_model.ImageModel template. """ import functools import re from chirp.models import output from chirp.projects.sfda.models import image_model from etils import epath import flax from flax import linen as nn import jax import jax.numpy as jnp import numpy as np class WideResnetBlock(nn.Module): """Defines a single WideResnetBlock. Attributes: channels: How many channels to use in the convolutional layers. strides: Strides for the pooling. """ channels: int strides: tuple[int, int] = (1, 1) @nn.compact def __call__( self, x: jnp.ndarray, train: bool, use_running_average: bool ) -> jnp.ndarray: bn1 = nn.BatchNorm(use_running_average=use_running_average, name='norm_1') bn2 = nn.BatchNorm(use_running_average=use_running_average, name='norm_2') conv1 = nn.Conv( self.channels, kernel_size=(3, 3), strides=self.strides, padding=1, use_bias=False, name='conv1', ) conv2 = nn.Conv( self.channels, kernel_size=(3, 3), strides=(1, 1), padding=1, use_bias=False, name='conv2', ) if x.shape[-1] == self.channels: out = jax.nn.relu(bn1(x)) out = jax.nn.relu(bn2(conv1(out))) out = conv2(out) out += x else: x = jax.nn.relu(bn1(x)) out = jax.nn.relu(bn2(conv1(x))) out = conv2(out) out += nn.Conv( self.channels, (1, 1), self.strides, padding='VALID', use_bias=False, name='conv_shortcut', )(x) return out class WideResnetGroup(nn.Module): """Defines a WideResnetGroup. Attributes: blocks_per_group: How many resnet blocks to add to each group (should be 4 blocks for a WRN28, and 6 for a WRN40). channels: How many channels to use in the convolutional layers. strides: Strides for the pooling. """ blocks_per_group: int channels: int strides: tuple[int, int] = (1, 1) @nn.compact def __call__( self, x: jnp.ndarray, train: bool, use_running_average: bool ) -> jnp.ndarray: for i in range(self.blocks_per_group): x = WideResnetBlock(self.channels, self.strides if i == 0 else (1, 1))( x, train, use_running_average ) return x class WideResnet(image_model.ImageModel): """Defines the WideResnet Model. Attributes: blocks_per_group: How many resnet blocks to add to each group (should be 4 blocks for a WRN28, and 6 for a WRN40). channel_multiplier: The multiplier to apply to the number of filters in the model (1 is classical resnet, 10 for WRN28-10, etc...). num_classes: Dimension of the output of the model (ie number of classes for a classification problem). """ blocks_per_group: int channel_multiplier: int num_classes: int @nn.compact def __call__( # pytype: disable=signature-mismatch # jax-ndarray self, x: jnp.ndarray, train: bool, use_running_average: bool ) -> jnp.ndarray: x = nn.Conv(16, (3, 3), padding=1, name='init_conv', use_bias=False)(x) x = WideResnetGroup(self.blocks_per_group, 16 * self.channel_multiplier)( x, train=train, use_running_average=use_running_average ) x = WideResnetGroup( self.blocks_per_group, 32 * self.channel_multiplier, (2, 2), )(x, train=train, use_running_average=use_running_average) x = WideResnetGroup( self.blocks_per_group, 64 * self.channel_multiplier, (2, 2), )(x, train=train, use_running_average=use_running_average) x = jax.nn.relu( nn.BatchNorm( use_running_average=use_running_average, name='pre-pool-norm' )(x) ) # The following Dropout was added to inject noise during foward pass. x = nn.Dropout(0.1, deterministic=not train)(x) x = nn.avg_pool(x, x.shape[1:3]) x = x.reshape((x.shape[0], -1)) model_outputs = {} model_outputs['embedding'] = x # Head outputs = nn.Dense(self.num_classes)(x) model_outputs['label'] = outputs.astype(jnp.float32) return output.ClassifierOutput(**model_outputs) # pytype: disable=bad-return-type # jax-ndarray @staticmethod def load_ckpt(dataset_name: str) -> flax.core.frozen_dict.FrozenDict: pretrained_ckpt_dir = WideResnet.get_ckpt_path(dataset_name) with pretrained_ckpt_dir.open('rb') as f: state_dict = dict(np.load(f)) variables = _to_variables(state_dict) return variables @staticmethod def get_ckpt_path(dataset_name: str) -> epath.Path: if 'cifar' in dataset_name: # The public checkpoint doesn't exist because it's derived from a # PyTorch checkpoint (https://github.com/RobustBench/robustbench/ # blob/master/robustbench/model_zoo/cifar10.py#L760, which points to # https://drive.google.com/open?id= 1t98aEuzeTL8P7Kpd5DIrCoCL21BNZUhC). # Please, download this file, open it locally and save it into an # npz file using the following command: # np.savez(output_path, **torch.load(torch_checkpoint_path, # map_location=torch.device('cpu'))['state_dict']) # Finally, replace the '' below by the `output_path` above. return epath.Path('') else: raise NotImplementedError( f'No pretrained checkpoint available for dataset {dataset_name}.' ) @staticmethod def is_bn_parameter(parameter_name: list[str]) -> bool: """Verifies whether some parameter belong to a BatchNorm layer. Only WideResnetGroup's BatchNorm parameters will be captured; the pre-pool-norm won't be included. Args: parameter_name: The name of the parameter, as a list in which each member describes the name of a layer. E.g. ('Block1', 'batch_norm_1', 'bias'). Returns: True if this parameter belongs to a BatchNorm layer. """ return any(['norm_' in x for x in parameter_name]) def _to_variables( state_dict: dict[str, np.ndarray] ) -> flax.core.scope.FrozenVariableDict: """Translates a PyTorch-style state dictionnary into a flax FrozenVariableDict. Args: state_dict: The PyTorch state_dict to translate. Returns: The translated version of the state_dict. Raises: RuntimeError: If some convolutional kernel has neither 2 or 4 dimensions. """ flat_params = {} flat_batch_stats = {} renames = [ # Groups functools.partial( re.compile(r'block(\d)').sub, repl=lambda m: f'WideResnetGroup_{int(m.group(1)) - 1}', ), # Blocks functools.partial( re.compile(r'layer\.(\d)').sub, repl=r'WideResnetBlock_\1' ), # Initial convolution functools.partial(re.compile(r'^conv1').sub, repl=r'init_conv'), # Pre-pooling normalization functools.partial(re.compile(r'^bn1').sub, repl=r'pre-pool-norm'), # Output layer functools.partial(re.compile(r'fc').sub, repl=r'Dense_0'), # Normalization layers functools.partial(re.compile(r'bn(\d)').sub, repl=r'norm_\1'), # Convolutional shortcut layers functools.partial(re.compile(r'convShortcut').sub, repl=r'conv_shortcut'), # Normalization scaling coefficients. All other renamings of 'weight' map # to 'kernel', so we perform this renaming first. functools.partial( re.compile(r'norm_(\d)\.weight').sub, repl=r'norm_\1.scale' ), functools.partial( re.compile(r'pre-pool-norm.weight').sub, repl=r'pre-pool-norm.scale' ), # Convolutional kernels functools.partial(re.compile(r'weight').sub, repl=r'kernel'), # Batch statistics functools.partial(re.compile(r'running_mean').sub, repl=r'mean'), functools.partial(re.compile(r'running_var').sub, repl=r'var'), ] transposes = [re.compile('kernel').search] # pylint: disable=unused-variable for key, value in state_dict.items(): # We don't need the 'num_batches_tracked' variables. if 'num_batches_tracked' in key: continue # Perform renaming. for rename in renames: key = rename(string=key) # Transpose convolutional kernels and weight matrices. if 'kernel' in key: if len(value.shape) == 2: value = value.transpose() elif len(value.shape) == 4: value = value.transpose(2, 3, 1, 0) else: raise RuntimeError # Route parameters and batch statistics to their appropriate flat # dictionary. Flax can unflatten dictionaries whose keys are tuples of # strings, which we take advantage of by splitting the keys by the '.' # character. flat_dict = ( flat_batch_stats if 'mean' in key or 'var' in key else flat_params ) flat_dict[tuple(key.split('.'))] = value return flax.core.freeze({ 'params': flax.traverse_util.unflatten_dict(flat_params), 'batch_stats': flax.traverse_util.unflatten_dict(flat_batch_stats), }) WideResNet2810 = functools.partial( WideResnet, blocks_per_group=4, channel_multiplier=10 )
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """An extension of chirp's original taxonomy_model.""" from chirp.models import taxonomy_model class TaxonomyModel(taxonomy_model.TaxonomyModel): """Adding parameters masking utility to chirp's original taxonomy_model.""" @staticmethod def is_bn_parameter(parameter_name: list[str]) -> bool: """Verifies whether some parameter belong to a BatchNorm layer. Args: parameter_name: The name of the parameter, as a list in which each member describes the name of a layer. E.g. ('Block1', 'batch_norm_1', 'bias'). Returns: True if this parameter belongs to a BatchNorm layer. """ return any(['BatchNorm' in x for x in parameter_name])
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Config file for Dropout Student method.""" from chirp import config_utils from chirp.projects.sfda import model_utils from ml_collections import config_dict def get_image_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation image_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 1e-4 optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.NONE optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.BN image_config.optimizer_config = optimizer_cfg # Method-specifc hparams image_config.online_pl_updates = True image_config.alpha = 0.1 image_config.normalize_pseudo_labels = True # Foward options image_config.num_epochs = 10 image_config.use_dropout = True image_config.update_bn_statistics = True return image_config def get_audio_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation audio_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 1e-4 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.NONE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.BN audio_config.optimizer_config = optimizer_cfg # Method-specifc hparams audio_config.online_pl_updates = False audio_config.alpha = 1.0 audio_config.normalize_pseudo_labels = True # Forward options audio_config.num_epochs = 10 audio_config.use_dropout = True audio_config.update_bn_statistics = False return audio_config def get_config() -> config_dict.ConfigDict: method_config = config_dict.ConfigDict() method_config.sfda_method = config_utils.callable_config( "dropout_student.DropoutStudent" ) method_config.audio = get_audio_config() method_config.image = get_image_config() return method_config
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration file for the DUST SFDA method.""" from chirp import config_utils from chirp.projects.sfda import model_utils from ml_collections import config_dict def get_image_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation image_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 1e-5 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.COSINE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.BN image_config.optimizer_config = optimizer_cfg # Method-specifc hparam image_config.num_random_passes = 4 image_config.kl_threshold = 0.8 # Forward options image_config.num_epochs = 10 image_config.use_dropout = False image_config.update_bn_statistics = True return image_config def get_audio_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation audio_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 0.0001 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.NONE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.ALL audio_config.optimizer_config = optimizer_cfg # Method-specifc hparam audio_config.num_random_passes = 4 audio_config.kl_threshold = 0.9 # Forward options audio_config.num_epochs = 10 audio_config.use_dropout = True audio_config.update_bn_statistics = False return audio_config def get_config() -> config_dict.ConfigDict: method_config = config_dict.ConfigDict() method_config.sfda_method = config_utils.callable_config("dust.DUST") method_config.audio = get_audio_config() method_config.image = get_image_config() return method_config
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration file for NRC SFDA method.""" from chirp import config_utils from chirp.projects.sfda import model_utils from ml_collections import config_dict def get_image_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation image_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 1e-05 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.COSINE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.BN image_config.optimizer_config = optimizer_cfg # Method-specifc hparam image_config.base_affinity = 0.2 image_config.nn = 15 image_config.extended_nn = 15 # Forward options image_config.num_epochs = 10 image_config.use_dropout = False image_config.update_bn_statistics = True return image_config def get_audio_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation audio_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 1e-5 optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.COSINE optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.BN audio_config.optimizer_config = optimizer_cfg # Method-specifc hparam audio_config.base_affinity = 0.1 audio_config.nn = 5 audio_config.extended_nn = 5 # Forward options audio_config.num_epochs = 10 audio_config.use_dropout = True audio_config.update_bn_statistics = False return audio_config def get_config() -> config_dict.ConfigDict: method_config = config_dict.ConfigDict() method_config.sfda_method = config_utils.callable_config("nrc.NRC") method_config.audio = get_audio_config() method_config.image = get_image_config() return method_config
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration file for the DUST SFDA method.""" from chirp import config_utils from chirp.projects.sfda import model_utils from ml_collections import config_dict def get_image_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation image_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 1e-5 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.COSINE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.BN image_config.optimizer_config = optimizer_cfg # Method-specifc hparam image_config.num_random_passes = 4 image_config.kl_threshold = 0.8 # Forward options image_config.num_epochs = 10 image_config.use_dropout = False image_config.update_bn_statistics = True return image_config def get_audio_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation audio_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 0.0001 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.COSINE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.ALL audio_config.optimizer_config = optimizer_cfg # Method-specifc hparam audio_config.num_random_passes = 4 audio_config.kl_threshold = 0.9 # Forward options audio_config.num_epochs = 10 audio_config.use_dropout = True audio_config.update_bn_statistics = False return audio_config def get_config() -> config_dict.ConfigDict: method_config = config_dict.ConfigDict() method_config.sfda_method = config_utils.callable_config("dust.DUST") method_config.audio = get_audio_config() method_config.image = get_image_config() return method_config
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration to run baseline model.""" from chirp import config_utils from chirp.projects.sfda import adapt from chirp.projects.sfda import models from ml_collections import config_dict _c = config_utils.callable_config def get_config() -> config_dict.ConfigDict: """Create configuration dictionary for training.""" config = config_dict.ConfigDict() config.modality = adapt.Modality.IMAGE config.multi_label = False config.eval_every = 1 # in epochs config.batch_size_adaptation = 64 config.batch_size_eval = 64 init_config = config_dict.ConfigDict() init_config.rng_seed = 0 init_config.target_class_list = "cifar10_corrupted" init_config.corruption_name = "gaussian_noise" init_config.corruption_severity = 5 init_config.source_domain = "art" init_config.target_domain = "clipart" init_config.pretrained_model = True config.init_config = init_config model_config = config_dict.ConfigDict() model_config.encoder = models.ImageModelName.WIDERESNET config.model_config = model_config config.eval_mca_every = -1 return config
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Config file for NOTELA (our proposed method).""" from chirp import config_utils from chirp.projects.sfda import model_utils from ml_collections import config_dict def get_image_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation image_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 1e-4 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.NONE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.BN image_config.optimizer_config = optimizer_cfg # Method-specifc hparams image_config.online_pl_updates = True image_config.knn = 15 image_config.lambda_ = 2.0 image_config.alpha = 1.0 image_config.use_mutual_nn = True image_config.normalize_pseudo_labels = True # Foward options image_config.num_epochs = 10 image_config.use_dropout = True image_config.update_bn_statistics = True return image_config def get_audio_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation audio_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 0.0001 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.COSINE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.ALL audio_config.optimizer_config = optimizer_cfg # Method-specifc hparams audio_config.knn = 15 audio_config.lambda_ = 2.0 audio_config.alpha = 1.0 audio_config.online_pl_updates = True audio_config.use_mutual_nn = True audio_config.normalize_pseudo_labels = True # Forward options audio_config.num_epochs = 10 audio_config.use_dropout = True audio_config.update_bn_statistics = False return audio_config def get_config() -> config_dict.ConfigDict: method_config = config_dict.ConfigDict() method_config.sfda_method = config_utils.callable_config("notela.NOTELA") method_config.audio = get_audio_config() method_config.image = get_image_config() return method_config
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base configuration for bio-acoustic SFDA experiments.""" from chirp import config_utils from chirp.projects.sfda import adapt from ml_collections import config_dict _c = config_utils.callable_config def get_config() -> config_dict.ConfigDict: """Create configuration dictionary for training.""" sample_rate_hz = config_dict.FieldReference(32_000) target_class_list = config_dict.FieldReference("xenocanto") namespace = config_dict.FieldReference("ebird2021") add_taxonomic_labels = config_dict.FieldReference(True) config = config_dict.ConfigDict() config.modality = adapt.Modality.AUDIO config.multi_label = False config.eval_every = 1 # in epochs config.sample_rate_hz = sample_rate_hz tfds_data_dir = config_dict.FieldReference("") # Configure the data batch_size = config_dict.FieldReference(64) window_size_s = config_dict.FieldReference(5) seed = config_dict.FieldReference(0) config.tfds_data_dir = tfds_data_dir config.batch_size = batch_size config.target_class_list = target_class_list adaptation_data_config = config_dict.ConfigDict() adaptation_data_config.pipeline = _c( "pipeline.Pipeline", ops=[ _c("pipeline.FilterMultiLabelRecordings"), _c( "pipeline.ConvertBirdTaxonomyLabels", source_namespace=namespace, target_class_list=target_class_list, add_taxonomic_labels=add_taxonomic_labels, ), _c("pipeline.Shuffle", shuffle_buffer_size=512, seed=seed), _c( "sfda_pipeline.Batch", batch_size=batch_size, split_across_devices=True, ), _c("pipeline.NormalizeAudio", target_gain=0.2), ], ) adaptation_data_config.split = "[(0, 75)]" adaptation_data_config.tfds_data_dir = tfds_data_dir adaptation_data_config.dataset_directory = "soundscapes/high_sierras:1.0.1" config.adaptation_data_config = adaptation_data_config eval_data_config = config_dict.ConfigDict() eval_data_config.pipeline = _c( "pipeline.Pipeline", ops=[ _c("pipeline.FilterMultiLabelRecordings"), _c( "pipeline.ConvertBirdTaxonomyLabels", source_namespace=namespace, target_class_list=target_class_list, add_taxonomic_labels=add_taxonomic_labels, ), _c( "sfda_pipeline.Batch", batch_size=batch_size, split_across_devices=True, ), _c("pipeline.NormalizeAudio", target_gain=0.2), ], ) eval_data_config.split = "[(75, 100)]" eval_data_config.tfds_data_dir = tfds_data_dir eval_data_config.dataset_directory = "soundscapes/high_sierras:1.0.1" config.eval_data_config = eval_data_config # Configure the experiment setup init_config = config_dict.ConfigDict() init_config.rng_seed = seed init_config.target_class_list = target_class_list init_config.input_shape = ((window_size_s * sample_rate_hz).get(),) init_config.pretrained_model = True # Configure model model_config = config_dict.ConfigDict() model_config.encoder = _c( "efficientnet.EfficientNet", model=_c("efficientnet.EfficientNetModel", value="b1"), ) # remove any dropout from the model model_config.taxonomy_loss_weight = 0.25 model_config.frontend = _c( "frontend.MorletWaveletTransform", features=160, stride=sample_rate_hz // 100, kernel_size=2_048, # ~0.025 * 32,000 sample_rate=sample_rate_hz, freq_range=(60, 10_000), scaling_config=_c("frontend.PCENScalingConfig", conv_width=0), ) init_config.pretrained_ckpt_dir = "" config.model_config = model_config config.init_config = init_config config.eval_mca_every = -1 return config
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Define the globals that can be used in configuration files.""" from typing import Any from chirp import audio_utils from chirp.eval import eval_lib from chirp.models import conformer from chirp.models import efficientnet from chirp.models import frontend from chirp.models import hubert from chirp.models import layers from chirp.models import quantizers from chirp.models import soundstream_unet from chirp.preprocessing import pipeline from chirp.projects.sfda.data import pipeline as sfda_pipeline from chirp.projects.sfda.methods import ada_bn from chirp.projects.sfda.methods import dropout_student from chirp.projects.sfda.methods import dust from chirp.projects.sfda.methods import notela from chirp.projects.sfda.methods import nrc from chirp.projects.sfda.methods import pseudo_label from chirp.projects.sfda.methods import shot from chirp.projects.sfda.methods import tent from flax import linen as nn def get_globals() -> dict[str, Any]: return { "audio_utils": audio_utils, "conformer": conformer, "efficientnet": efficientnet, "eval_lib": eval_lib, "hubert": hubert, "quantizers": quantizers, "frontend": frontend, "layers": layers, "nn": nn, "pipeline": pipeline, "sfda_pipeline": sfda_pipeline, "soundstream_unet": soundstream_unet, "pseudo_label": pseudo_label, "tent": tent, "notela": notela, "shot": shot, "ada_bn": ada_bn, "dropout_student": dropout_student, "nrc": nrc, "dust": dust, }
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration file for NRC SFDA method.""" from chirp import config_utils from chirp.projects.sfda import model_utils from ml_collections import config_dict def get_image_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation image_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 1e-05 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.COSINE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.BN image_config.optimizer_config = optimizer_cfg # Method-specifc hparam image_config.base_affinity = 0.2 image_config.nn = 15 image_config.extended_nn = 15 # Forward options image_config.num_epochs = 10 image_config.use_dropout = False image_config.update_bn_statistics = True return image_config def get_audio_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation audio_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 0.0001 optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.COSINE optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.ALL audio_config.optimizer_config = optimizer_cfg # Method-specifc hparam audio_config.base_affinity = 0.1 audio_config.nn = 15 audio_config.extended_nn = 10 # Forward options audio_config.num_epochs = 10 audio_config.use_dropout = True audio_config.update_bn_statistics = False return audio_config def get_config() -> config_dict.ConfigDict: method_config = config_dict.ConfigDict() method_config.sfda_method = config_utils.callable_config("nrc.NRC") method_config.audio = get_audio_config() method_config.image = get_image_config() return method_config
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Config file for NOTELA (our proposed method).""" from chirp import config_utils from chirp.projects.sfda import model_utils from ml_collections import config_dict def get_image_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation image_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 1e-4 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.NONE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.BN image_config.optimizer_config = optimizer_cfg # Method-specifc hparams image_config.online_pl_updates = True image_config.knn = 15 image_config.lambda_ = 2.0 image_config.alpha = 1.0 image_config.use_mutual_nn = True image_config.normalize_pseudo_labels = True # Foward options image_config.num_epochs = 10 image_config.use_dropout = True image_config.update_bn_statistics = True return image_config def get_audio_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation audio_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 1e-4 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.NONE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.BN audio_config.optimizer_config = optimizer_cfg # Method-specifc hparams audio_config.knn = 5 audio_config.lambda_ = 1.0 audio_config.alpha = 1.0 audio_config.online_pl_updates = False audio_config.use_mutual_nn = True audio_config.normalize_pseudo_labels = True # Forward options audio_config.num_epochs = 10 audio_config.use_dropout = True audio_config.update_bn_statistics = False return audio_config def get_config() -> config_dict.ConfigDict: method_config = config_dict.ConfigDict() method_config.sfda_method = config_utils.callable_config("notela.NOTELA") method_config.audio = get_audio_config() method_config.image = get_image_config() return method_config
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Config file for Test-time entropy minimization. Wang, Dequan, et al. "Tent: Fully test-time adaptation by entropy minimization." arXiv preprint arXiv:2006.10726 (2020). """ from chirp import config_utils from chirp.projects.sfda import model_utils from ml_collections import config_dict def get_image_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation image_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 1e-4 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.COSINE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.BN image_config.optimizer_config = optimizer_cfg # Forward options image_config.num_epochs = 10 image_config.use_dropout = False image_config.update_bn_statistics = True return image_config def get_audio_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation audio_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 1e-5 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.COSINE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.BN audio_config.optimizer_config = optimizer_cfg # Forward options audio_config.num_epochs = 10 audio_config.use_dropout = True audio_config.update_bn_statistics = False return audio_config def get_config() -> config_dict.ConfigDict: method_config = config_dict.ConfigDict() method_config.sfda_method = config_utils.callable_config("tent.Tent") method_config.audio = get_audio_config() method_config.image = get_image_config() return method_config
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Config file for Test-time entropy minimization. Wang, Dequan, et al. "Tent: Fully test-time adaptation by entropy minimization." arXiv preprint arXiv:2006.10726 (2020). """ from chirp import config_utils from chirp.projects.sfda import model_utils from ml_collections import config_dict def get_image_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation image_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 1e-4 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.COSINE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.BN image_config.optimizer_config = optimizer_cfg # Forward options image_config.num_epochs = 10 image_config.use_dropout = False image_config.update_bn_statistics = True return image_config def get_audio_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation audio_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 0.001 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.COSINE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.ALL audio_config.optimizer_config = optimizer_cfg # Forward options audio_config.num_epochs = 10 audio_config.use_dropout = True audio_config.update_bn_statistics = False return audio_config def get_config() -> config_dict.ConfigDict: method_config = config_dict.ConfigDict() method_config.sfda_method = config_utils.callable_config("tent.Tent") method_config.audio = get_audio_config() method_config.image = get_image_config() return method_config
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Config file for AdaBN method.""" from chirp import config_utils from ml_collections import config_dict def get_image_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation image_config = config_dict.ConfigDict() image_config.optimizer_config = None # Forward options image_config.num_epochs = 10 image_config.use_dropout = False image_config.update_bn_statistics = True return image_config def get_audio_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation audio_config = config_dict.ConfigDict() audio_config.optimizer_config = None # Forward options audio_config.num_epochs = 10 audio_config.use_dropout = True audio_config.update_bn_statistics = True return audio_config def get_config() -> config_dict.ConfigDict: method_config = config_dict.ConfigDict() method_config.sfda_method = config_utils.callable_config("ada_bn.AdaBN") method_config.audio = get_audio_config() method_config.image = get_image_config() return method_config
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration file for the pseudo_label SFDA method.""" from chirp import config_utils from chirp.projects.sfda import model_utils from ml_collections import config_dict def get_image_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation image_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 1e-3 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.COSINE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.BN image_config.optimizer_config = optimizer_cfg # Method-specifc hparam image_config.confidence_threshold = 0.9 # Forward options image_config.num_epochs = 10 image_config.use_dropout = False image_config.update_bn_statistics = True return image_config def get_audio_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation audio_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 1e-5 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.NONE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.BN audio_config.optimizer_config = optimizer_cfg # Method-specifc hparam audio_config.confidence_threshold = 0.5 # Forward options audio_config.num_epochs = 10 audio_config.use_dropout = True audio_config.update_bn_statistics = False return audio_config def get_config() -> config_dict.ConfigDict: method_config = config_dict.ConfigDict() method_config.sfda_method = config_utils.callable_config( "pseudo_label.PseudoLabel" ) method_config.audio = get_audio_config() method_config.image = get_image_config() return method_config
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Config file for AdaBN method.""" from chirp import config_utils from ml_collections import config_dict def get_image_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation image_config = config_dict.ConfigDict() image_config.optimizer_config = None # Forward options image_config.num_epochs = 10 image_config.use_dropout = False image_config.update_bn_statistics = True return image_config def get_audio_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation audio_config = config_dict.ConfigDict() audio_config.optimizer_config = None # Forward options audio_config.num_epochs = 10 audio_config.use_dropout = True audio_config.update_bn_statistics = True return audio_config def get_config() -> config_dict.ConfigDict: method_config = config_dict.ConfigDict() method_config.sfda_method = config_utils.callable_config("ada_bn.AdaBN") method_config.audio = get_audio_config() method_config.image = get_image_config() return method_config
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Config file for Dropout Student method.""" from chirp import config_utils from chirp.projects.sfda import model_utils from ml_collections import config_dict def get_image_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation image_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 1e-4 optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.NONE optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.BN image_config.optimizer_config = optimizer_cfg # Method-specifc hparams image_config.online_pl_updates = True image_config.alpha = 0.1 image_config.normalize_pseudo_labels = True # Foward options image_config.num_epochs = 10 image_config.use_dropout = True image_config.update_bn_statistics = True return image_config def get_audio_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation audio_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 0.001 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.COSINE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.ALL audio_config.optimizer_config = optimizer_cfg # Method-specifc hparams audio_config.online_pl_updates = False audio_config.alpha = 0.5 audio_config.normalize_pseudo_labels = True # Forward options audio_config.num_epochs = 10 audio_config.use_dropout = True audio_config.update_bn_statistics = False return audio_config def get_config() -> config_dict.ConfigDict: method_config = config_dict.ConfigDict() method_config.sfda_method = config_utils.callable_config( "dropout_student.DropoutStudent" ) method_config.audio = get_audio_config() method_config.image = get_image_config() return method_config
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration file for SHOT SFDA method.""" from chirp import config_utils from chirp.projects.sfda import model_utils from ml_collections import config_dict def get_image_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation image_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 1e-4 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.COSINE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.BN image_config.optimizer_config = optimizer_cfg # Method-specifc hparam image_config.beta = 0.3 # Forward options image_config.num_epochs = 10 image_config.use_dropout = False image_config.update_bn_statistics = True return image_config def get_audio_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation audio_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 0.001 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.COSINE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.ALL audio_config.optimizer_config = optimizer_cfg # Method-specifc hparam audio_config.beta = 0.6 # Forward options audio_config.num_epochs = 10 audio_config.use_dropout = True audio_config.update_bn_statistics = False return audio_config def get_config() -> config_dict.ConfigDict: method_config = config_dict.ConfigDict() method_config.sfda_method = config_utils.callable_config("shot.SHOT") method_config.audio = get_audio_config() method_config.image = get_image_config() return method_config
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base configuration for bio-acoustic SFDA experiments.""" from chirp import config_utils from chirp.projects.sfda import adapt from ml_collections import config_dict _c = config_utils.callable_config def get_config() -> config_dict.ConfigDict: """Create configuration dictionary for training.""" sample_rate_hz = config_dict.FieldReference(32_000) target_class_list = config_dict.FieldReference("xenocanto") namespace = config_dict.FieldReference("ebird2021") add_taxonomic_labels = config_dict.FieldReference(True) config = config_dict.ConfigDict() config.modality = adapt.Modality.AUDIO config.multi_label = True config.eval_every = 1 # in epochs config.sample_rate_hz = sample_rate_hz tfds_data_dir = config_dict.FieldReference("") # Configure the data batch_size = config_dict.FieldReference(64) window_size_s = config_dict.FieldReference(5) seed = config_dict.FieldReference(0) config.tfds_data_dir = tfds_data_dir config.batch_size = batch_size config.target_class_list = target_class_list adaptation_data_config = config_dict.ConfigDict() adaptation_data_config.pipeline = _c( "pipeline.Pipeline", ops=[ _c( "pipeline.ConvertBirdTaxonomyLabels", source_namespace=namespace, target_class_list=target_class_list, add_taxonomic_labels=add_taxonomic_labels, ), _c("pipeline.Shuffle", shuffle_buffer_size=512, seed=seed), _c( "sfda_pipeline.Batch", batch_size=batch_size, split_across_devices=True, ), _c("pipeline.NormalizeAudio", target_gain=0.2), ], ) adaptation_data_config.split = "[(0, 75)]" adaptation_data_config.tfds_data_dir = tfds_data_dir adaptation_data_config.dataset_directory = "soundscapes/high_sierras:1.0.1" config.adaptation_data_config = adaptation_data_config eval_data_config = config_dict.ConfigDict() eval_data_config.pipeline = _c( "pipeline.Pipeline", ops=[ _c( "pipeline.ConvertBirdTaxonomyLabels", source_namespace=namespace, target_class_list=target_class_list, add_taxonomic_labels=add_taxonomic_labels, ), _c( "sfda_pipeline.Batch", batch_size=batch_size, split_across_devices=True, ), _c("pipeline.NormalizeAudio", target_gain=0.2), ], ) eval_data_config.split = "[(75, 100)]" eval_data_config.tfds_data_dir = tfds_data_dir eval_data_config.dataset_directory = "soundscapes/high_sierras:1.0.1" config.eval_data_config = eval_data_config # Configure the experiment setup init_config = config_dict.ConfigDict() init_config.rng_seed = seed init_config.target_class_list = target_class_list init_config.input_shape = ((window_size_s * sample_rate_hz).get(),) init_config.pretrained_model = True # Configure model model_config = config_dict.ConfigDict() model_config.encoder = _c( "efficientnet.EfficientNet", model=_c("efficientnet.EfficientNetModel", value="b1"), ) # remove any dropout from the model model_config.taxonomy_loss_weight = 0.25 model_config.frontend = _c( "frontend.MorletWaveletTransform", features=160, stride=sample_rate_hz // 100, kernel_size=2_048, # ~0.025 * 32,000 sample_rate=sample_rate_hz, freq_range=(60, 10_000), scaling_config=_c("frontend.PCENScalingConfig", conv_width=0), ) init_config.pretrained_ckpt_dir = "" config.model_config = model_config config.init_config = init_config config.eval_mca_every = -1 return config
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration file for the pseudo_label SFDA method.""" from chirp import config_utils from chirp.projects.sfda import model_utils from ml_collections import config_dict def get_image_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation image_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 1e-3 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.COSINE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.BN image_config.optimizer_config = optimizer_cfg # Method-specifc hparam image_config.confidence_threshold = 0.9 # Forward options image_config.num_epochs = 10 image_config.use_dropout = False image_config.update_bn_statistics = True return image_config def get_audio_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation audio_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 0.001 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.NONE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.BN audio_config.optimizer_config = optimizer_cfg # Method-specifc hparam audio_config.confidence_threshold = 0.5 # Forward options audio_config.num_epochs = 10 audio_config.use_dropout = True audio_config.update_bn_statistics = False return audio_config def get_config() -> config_dict.ConfigDict: method_config = config_dict.ConfigDict() method_config.sfda_method = config_utils.callable_config( "pseudo_label.PseudoLabel" ) method_config.audio = get_audio_config() method_config.image = get_image_config() return method_config
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration file for SHOT SFDA method.""" from chirp import config_utils from chirp.projects.sfda import model_utils from ml_collections import config_dict def get_image_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation image_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 1e-4 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.COSINE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.BN image_config.optimizer_config = optimizer_cfg # Method-specifc hparam image_config.beta = 0.3 # Forward options image_config.num_epochs = 10 image_config.use_dropout = False image_config.update_bn_statistics = True return image_config def get_audio_config() -> config_dict.ConfigDict: # pylint: disable=missing-function-docstring # Configure adaptation audio_config = config_dict.ConfigDict() optimizer_cfg = config_dict.ConfigDict() optimizer_cfg.optimizer = "adam" optimizer_cfg.opt_kwargs = {"momentum": 0.9, "nesterov": True} optimizer_cfg.weight_decay = 0.0 optimizer_cfg.learning_rate = 1e-5 optimizer_cfg.learning_rate_decay = model_utils.LearningRateDecay.COSINE optimizer_cfg.mult_learning_rate_resnet_base = 1.0 optimizer_cfg.trainable_params_strategy = model_utils.TrainableParams.BN audio_config.optimizer_config = optimizer_cfg # Method-specifc hparam audio_config.beta = 0.0 # Forward options audio_config.num_epochs = 10 audio_config.use_dropout = False audio_config.update_bn_statistics = False return audio_config def get_config() -> config_dict.ConfigDict: method_config = config_dict.ConfigDict() method_config.sfda_method = config_utils.callable_config("shot.SHOT") method_config.audio = get_audio_config() method_config.image = get_image_config() return method_config
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Parts of the audio data pipeline that require customization.""" import dataclasses from absl import logging from chirp.preprocessing import pipeline import jax import tensorflow as tf import tensorflow_datasets as tfds @dataclasses.dataclass class Batch(pipeline.DatasetPreprocessOp): """Collects samples into batches. The original Batch operation in chirp/data/pipeline.py drops the remainder by default. Combined with shuffling, this results in two runs over the dataset resulting in a potentially disjoint set of samples. Some methods, e.g. NOTELA or SHOT, assign pseudo-labels to samples before an epoch starts, and try to have the model match those pseudo-labels on-the-go. Therefore, those methods require a consistent set of samples across runs over the dataset. We solve this by simply keeping the remainder, thereby ensuring that all samples are seen at every run. Attributes: batch_size: The batch size to use. split_across_devices: If true, the minibatch will be split into smaller minibatches to be distributed across the local devices present. This is useful for distributed training. """ batch_size: int split_across_devices: bool = False def __call__( self, dataset: tf.data.Dataset, dataset_info: tfds.core.DatasetInfo ) -> tf.data.Dataset: if self.split_across_devices: if self.batch_size % jax.device_count(): raise ValueError( f'batch size ({self.batch_size}) must be divisible by ' f'number of devices ({jax.device_count()}).' ) logging.info( 'Splitting batch across %d devices, with local device count %d.', jax.device_count(), jax.local_device_count(), ) dataset = dataset.batch( self.batch_size // jax.device_count(), drop_remainder=False ) return dataset.batch(jax.local_device_count(), drop_remainder=False) else: return dataset.batch(self.batch_size, drop_remainder=False)
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """VisDa-C dataset.""" from .visda import VisDaC
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """VisDa-C dataset.""" import itertools import tensorflow_datasets as tfds _DESCRIPTION = """ VisDa-C dataset. """ _CITATION = """ @article{peng2017visda, title={Visda: The visual domain adaptation challenge}, author={Peng, Xingchao and Usman, Ben and Kaushik, Neela and Hoffman, Judy and Wang, Dequan and Saenko, Kate}, journal={arXiv preprint arXiv:1710.06924}, year={2017} } """ class VisDaC(tfds.core.GeneratorBasedBuilder): """DatasetBuilder for the VisDa-C dataset.""" VERSION = tfds.core.Version('1.0.0') RELEASE_NOTES = { '1.0.0': 'Initial release.', } TRAIN_DATA_URL = 'http://csr.bu.edu/ftp/visda17/clf/train.tar' VALIDATION_DATA_URL = 'http://csr.bu.edu/ftp/visda17/clf/validation.tar' def _info(self) -> tfds.core.DatasetInfo: return tfds.core.DatasetInfo( builder=self, description=_DESCRIPTION, features=tfds.features.FeaturesDict({ 'image': tfds.features.Image(), 'label': tfds.features.ClassLabel( names=[ 'aeroplane', 'bicycle', 'bus', 'car', 'horse', 'knife', 'motorcycle', 'person', 'plant', 'skateboard', 'train', 'truck', ] ), }), supervised_keys=('image', 'label'), homepage=( 'https://github.com/VisionLearningGroup/taskcv-2017-public/' 'tree/master/classification' ), citation=_CITATION, ) def _split_generators(self, dl_manager: tfds.download.DownloadManager): paths = dl_manager.download_and_extract({ 'train': self.TRAIN_DATA_URL, 'validation': self.VALIDATION_DATA_URL, }) return { 'train': self._generate_examples(data_path=paths['train'] / 'train'), 'validation': self._generate_examples( data_path=paths['validation'] / 'validation' ), } def _generate_examples(self, data_path): counter = itertools.count() for path in data_path.iterdir(): if path.is_dir(): for image_path in path.iterdir(): yield next(counter), { 'image': image_path, 'label': path.name, }
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Office-31 dataset.""" import itertools import tensorflow_datasets as tfds _DESCRIPTION = """ Office-31 dataset. """ _CITATION = """ @inproceedings{saenko2010adapting, title={Adapting visual category models to new domains}, author={Saenko, Kate and Kulis, Brian and Fritz, Mario and Darrell, Trevor}, booktitle={Proceedings of the European Conference on Computer Vision}, pages={213--226}, year={2010}, } """ class Office31(tfds.core.GeneratorBasedBuilder): """DatasetBuilder for the Office-31 dataset.""" name = 'office_31' VERSION = tfds.core.Version('1.0.0') RELEASE_NOTES = { '1.0.0': 'Initial release.', } DATA_URL = ('https://drive.google.com/uc?export=download&' 'id=0B4IapRTv9pJ1WGZVd1VDMmhwdlE') BUILDER_CONFIGS = [ tfds.core.BuilderConfig(name=name) for name in ('amazon', 'dslr', 'webcam') ] def _info(self) -> tfds.core.DatasetInfo: return tfds.core.DatasetInfo( builder=self, description=_DESCRIPTION, features=tfds.features.FeaturesDict({ 'image': tfds.features.Image(), 'label': tfds.features.ClassLabel( names=[ 'back_pack', 'bike', 'bike_helmet', 'bookcase', 'bottle', 'calculator', 'desk_chair', 'desk_lamp', 'desktop_computer', 'file_cabinet', 'headphones', 'keyboard', 'laptop_computer', 'letter_tray', 'mobile_phone', 'monitor', 'mouse', 'mug', 'paper_notebook', 'pen', 'phone', 'printer', 'projector', 'punchers', 'ring_binder', 'ruler', 'scissors', 'speaker', 'stapler', 'tape_dispenser', 'trash_can', ] ), }), supervised_keys=('image', 'label'), homepage='https://faculty.cc.gatech.edu/~judy/domainadapt/', citation=_CITATION, ) def _split_generators(self, dl_manager: tfds.download.DownloadManager): paths = dl_manager.download_and_extract({'train': self.DATA_URL}) return { 'train': self._generate_examples( data_path=paths['train'] / self.builder_config.name / 'images' ), } def _generate_examples(self, data_path): counter = itertools.count() for path in data_path.iterdir(): for image_path in path.iterdir(): yield next(counter), { 'image': image_path, 'label': path.name, }
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Office-31 dataset.""" from .office_31 import Office31
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Office-Home dataset.""" import itertools import tensorflow_datasets as tfds _DESCRIPTION = """ Office-Home dataset. """ _CITATION = """ @inproceedings{venkateswara2017deep, title={Deep hashing network for unsupervised domain adaptation}, author={Venkateswara, Hemanth and Eusebio, Jose and Chakraborty, Shayok and Panchanathan, Sethuraman}, booktitle={Proceedings of the Conference on Computer Vision and Pattern Recognition}, pages={5018--5027}, year={2017} } """ _MANUAL_DOWNLOAD_INSTRUCTIONS = """ Download and unzip OfficeHomeDataset_10072016.zip from https://drive.google.com/uc?export=download&id=0B81rNlvomiwed0V1YUxQdC1uOTg, then move the OfficeHomeDataset_10072016/ directory into TFDS' manual download directory. """ class OfficeHome(tfds.core.GeneratorBasedBuilder): """DatasetBuilder for the Office-Home dataset.""" VERSION = tfds.core.Version('1.0.0') RELEASE_NOTES = { '1.0.0': 'Initial release.', } MANUAL_DOWNLOAD_INSTRUCTIONS = _MANUAL_DOWNLOAD_INSTRUCTIONS BUILDER_CONFIGS = [ tfds.core.BuilderConfig(name=name) for name in ('art', 'clipart', 'product', 'real_world') ] def _info(self) -> tfds.core.DatasetInfo: return tfds.core.DatasetInfo( builder=self, description=_DESCRIPTION, features=tfds.features.FeaturesDict({ 'image': tfds.features.Image(), 'label': tfds.features.ClassLabel( names=[ 'alarm_clock', 'backpack', 'batteries', 'bed', 'bike', 'bottle', 'bucket', 'calculator', 'calendar', 'candles', 'chair', 'clipboards', 'computer', 'couch', 'curtains', 'desk_lamp', 'drill', 'eraser', 'exit_sign', 'fan', 'file_cabinet', 'flipflops', 'flowers', 'folder', 'fork', 'glasses', 'hammer', 'helmet', 'kettle', 'keyboard', 'knives', 'lamp_shade', 'laptop', 'marker', 'monitor', 'mop', 'mouse', 'mug', 'notebook', 'oven', 'pan', 'paper_clip', 'pen', 'pencil', 'postit_notes', 'printer', 'push_pin', 'radio', 'refrigerator', 'ruler', 'scissors', 'screwdriver', 'shelf', 'sink', 'sneakers', 'soda', 'speaker', 'spoon', 'table', 'telephone', 'toothbrush', 'toys', 'trash_can', 'tv', 'webcam', ] ), }), supervised_keys=('image', 'label'), homepage='https://www.hemanthdv.org/officeHomeDataset.html', citation=_CITATION, ) def _split_generators(self, dl_manager: tfds.download.DownloadManager): domain = { 'art': 'Art', 'clipart': 'Clipart', 'product': 'Product', 'real_world': 'Real World', }[self.builder_config.name] return { 'train': self._generate_examples( data_path=dl_manager.manual_dir / 'OfficeHomeDataset_10072016' / domain ), } def _generate_examples(self, data_path): counter = itertools.count() for path in data_path.iterdir(): for image_path in path.iterdir(): yield next(counter), { 'image': image_path, 'label': path.name.lower(), }
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Office-Home dataset.""" from .office_home import OfficeHome
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for training separated clustering. The core workflow consists of the following: a) Make a collection of wav files divided by label into sub-directories. b) Load an `interface.EmbeddingModel`. c) Create a MergedDataset using the directory and embedding model. This will load all of the labeled wavs and run the embedding model over all of them, creating an in-memory dataset. This dataset can then be used for all kinds of small experiments, such as training small classifiers or evaluating clustering methods. """ import collections import dataclasses import time from typing import Dict, Sequence, Tuple from chirp import audio_utils from chirp.inference import interface from etils import epath import numpy as np import tensorflow as tf import tqdm @dataclasses.dataclass class MergedDataset: """In-memory dataset of labeled audio with embeddings. Attributes: data: Dictionary of embedding outputs. num_classes: Number of classes. embedding_dim: Dimension of embeddings. labels: Tuple with the labels for each file. """ # The following are populated automatically from one of two classmethods. data: Dict[str, np.ndarray] num_classes: int embedding_dim: int labels: Tuple[str, ...] @classmethod def from_folder_of_folders( cls, base_dir: str, embedding_model: interface.EmbeddingModel, time_pooling: str = 'mean', exclude_classes: Sequence[str] = (), load_audio: bool = True, target_sample_rate: int = -2, audio_file_pattern: str = '*', ) -> 'MergedDataset': """Generating MergedDataset via folder-of-folders method. Args: base_dir: Base directory where either folder-of-folders of audio or tfrecord embeddings are stored. embedding_model: EmbeddingModel used to produce embeddings. time_pooling: Key for time pooling strategy. exclude_classes: Classes to skip. load_audio: Whether to load audio into memory. target_sample_rate: Resample loaded audio to this sample rate. If -1, loads raw audio with no resampling. If -2, uses the embedding_model sample rate. audio_file_pattern: The glob pattern to use for finding audio files within the sub-folders. Returns: MergedDataset """ print('Embedding from Folder of Folders...') st = time.time() labels, merged = embed_dataset( base_dir=base_dir, embedding_model=embedding_model, time_pooling=time_pooling, exclude_classes=exclude_classes, load_audio=load_audio, target_sample_rate=target_sample_rate, audio_file_pattern=audio_file_pattern, ) elapsed = time.time() - st print(f'\n...embedded dataset in {elapsed:5.2f}s...') data = merged embedding_dim = merged['embeddings'].shape[-1] labels = tuple(labels) num_classes = len(labels) print(f' found {num_classes} classes.') class_counts = collections.defaultdict(int) for cl, cl_str in zip(merged['label'], merged['label_str']): class_counts[(cl, cl_str)] += 1 for (cl, cl_str), count in sorted(class_counts.items()): print(f' class {cl_str} / {cl} : {count}') return cls( data=data, embedding_dim=embedding_dim, num_classes=num_classes, labels=labels, ) def create_random_train_test_split( self, train_ratio: float | None, train_examples_per_class: int | None, seed: int, exclude_classes: Sequence[int] = (), exclude_eval_classes: Sequence[int] = (), ): """Generate a train/test split with a target number of train examples.""" if train_ratio is None and train_examples_per_class is None: raise ValueError( 'Must specify one of train_ratio and examples_per_class.' ) elif train_ratio is not None and train_examples_per_class is not None: raise ValueError( 'Must specify only one of train_ratio and examples_per_class.' ) # Use a seeded shuffle to get a random ordering of the data. locs = list(range(self.data['label'].shape[0])) np.random.seed(seed) np.random.shuffle(locs) classes = set(self.data['label']) class_counts = {cl: np.sum(self.data['label'] == cl) for cl in classes} if train_examples_per_class is not None: class_limits = {cl: train_examples_per_class for cl in classes} else: class_limits = {cl: train_ratio * class_counts[cl] for cl in classes} classes = set(self.data['label']) class_locs = {cl: [] for cl in classes} train_locs = [] test_locs = [] for loc in locs: cl = self.data['label'][loc] if cl in exclude_classes: continue if len(class_locs[cl]) < class_limits[cl]: class_locs[cl].append(loc) train_locs.append(loc) elif cl not in exclude_eval_classes: test_locs.append(loc) train_locs = np.array(train_locs) test_locs = np.array(test_locs) return train_locs, test_locs, class_locs def create_keras_dataset( self, locs: Sequence[int], is_train: bool, batch_size: int ) -> tf.data.Dataset: """Create a keras-friendly tf.data.Dataset from the in-memory dataset.""" def _data_gen(): for loc in locs: yield ( self.data['embeddings'][loc], tf.one_hot(self.data['label'][loc], self.num_classes), ) ds = tf.data.Dataset.from_generator( _data_gen, output_types=(tf.float32, tf.int64), output_shapes=(self.embedding_dim, self.num_classes), ) if is_train: ds = ds.shuffle(1024) ds = ds.batch(batch_size) return ds def pool_time_axis(embeddings, pool_method, axis=1): """Apply pooling over the specified axis.""" if pool_method == 'mean': if embeddings.shape[axis] == 0: return embeddings.sum(axis=axis) return embeddings.mean(axis=axis) elif pool_method == 'max': return embeddings.max(axis=axis) elif pool_method == 'mid': t = embeddings.shape[axis] // 2 return embeddings[:, t] elif pool_method == 'flatten': if len(embeddings.shape) != 3 and axis != 1: raise ValueError( 'Can only flatten time for embeddings with shape [B, T, D].' ) depth = embeddings.shape[-1] time_steps = embeddings.shape[1] return embeddings.reshape([embeddings.shape[0], time_steps * depth]) raise ValueError('Unrecognized reduction method.') def _pad_audio(audio: np.ndarray, target_length: int) -> np.ndarray: if len(audio.shape) > 1: raise ValueError('audio should be a flat array.') if audio.shape[0] > target_length: return audio pad_amount = target_length - audio.shape[0] front = pad_amount // 2 back = pad_amount - front return np.pad(audio, [(front, back)], 'constant') def embed_dataset( base_dir: str, embedding_model: interface.EmbeddingModel, time_pooling: str, exclude_classes: Sequence[str] = (), load_audio: bool = True, target_sample_rate: int = -1, audio_file_pattern: str = '*', ) -> Tuple[Sequence[str], Dict[str, np.ndarray]]: """Add embeddings to an eval dataset. Embed a dataset, creating an in-memory copy of all data with embeddings added. The base_dir should contain folders corresponding to classes, and each sub-folder should contina audio files for the respective class. Note that any audio files in the base_dir directly will be ignored. Args: base_dir: Directory contianing audio data. embedding_model: Model for computing audio embeddings. time_pooling: Key for time pooling strategy. exclude_classes: Classes to skip. load_audio: Whether to load audio into memory. target_sample_rate: Resample loaded audio to this sample rate. If -1, loads raw audio with no resampling. If -2, uses the embedding_model sample rate. audio_file_pattern: The glob pattern to use for finding audio files within the sub-folders. Returns: Ordered labels and a Dict contianing the entire embedded dataset. """ base_dir = epath.Path(base_dir) labels = sorted([p.name for p in base_dir.glob('*') if p.is_dir()]) if not labels: raise ValueError( 'No subfolders found in base directory. Audio will be ' 'matched as "base_dir/*/*.wav", with the subfolders ' 'indicating class names.' ) labels = [label for label in labels if label not in exclude_classes] if hasattr(embedding_model, 'window_size_s'): window_size = int( embedding_model.window_size_s * embedding_model.sample_rate ) else: window_size = -1 if target_sample_rate == -2: target_sample_rate = embedding_model.sample_rate merged = collections.defaultdict(list) for label_idx, label in enumerate(labels): label_hot = np.zeros([len(labels)], np.int32) label_hot[label_idx] = 1 filepaths = [ fp.as_posix() for fp in (base_dir / label).glob(audio_file_pattern) ] if not filepaths: raise ValueError( 'No files matching {} were found in directory {}'.format( audio_file_pattern, base_dir / label ) ) audio_iterator = audio_utils.multi_load_audio_window( filepaths, None, target_sample_rate, -1 ) for fp, audio in tqdm.tqdm( zip(filepaths, audio_iterator), total=len(filepaths) ): audio_size = audio.shape[0] if window_size > audio_size: audio = _pad_audio(audio, window_size) audio = audio.astype(np.float32) outputs = embedding_model.embed(audio) if outputs.embeddings is None: raise ValueError('Embedding model did not produce any embeddings!') # If the audio was separated then the raw audio is in the first channel. # Embedding shape is either [B, F, C, D] or [F, C, D] so channel is # always -2. channel_pooling = ( 'squeeze' if outputs.embeddings.shape[-2] == 1 else 'first' ) embeds = outputs.pooled_embeddings(time_pooling, channel_pooling) merged['embeddings'].append(embeds) filename = epath.Path(fp).name merged['filename'].append(f'{label}/{filename}') if load_audio: merged['audio'].append(audio) merged['label'].append(label_idx) merged['label_str'].append(label) merged['label_hot'].append(label_hot) if load_audio: # pad audio to ensure all the same length. target_audio_len = np.max([a.shape[0] for a in merged['audio']]) merged['audio'] = [_pad_audio(a, target_audio_len) for a in merged['audio']] outputs = {} for k in merged.keys(): outputs[k] = np.stack(merged[k]) return labels, outputs
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Classification over embeddings.""" import dataclasses from typing import Sequence from chirp.models import metrics from chirp.projects.multicluster import data_lib import numpy as np import tensorflow as tf @dataclasses.dataclass class ClassifierMetrics: top1_accuracy: float auc_roc: float recall: float cmap_value: float class_maps: dict[str, float] test_logits: dict[str, np.ndarray] def get_two_layer_model( num_hiddens: int, embedding_dim: int, num_classes: int, batch_norm: bool ) -> tf.keras.Model: """Create a simple two-layer Keras model.""" layers = [tf.keras.Input(shape=[embedding_dim])] if batch_norm: layers.append(tf.keras.layers.BatchNormalization()) layers += [ tf.keras.layers.Dense(num_hiddens, activation='relu'), tf.keras.layers.Dense(num_classes), ] model = tf.keras.Sequential(layers) return model def get_linear_model(embedding_dim: int, num_classes: int) -> tf.keras.Model: """Create a simple linear Keras model.""" model = tf.keras.Sequential([ tf.keras.Input(shape=[embedding_dim]), tf.keras.layers.Dense(num_classes), ]) return model def train_from_locs( model: tf.keras.Model, merged: data_lib.MergedDataset, train_locs: Sequence[int], test_locs: Sequence[int], num_epochs: int, batch_size: int, learning_rate: float | None = None, use_bce_loss: bool = True, ) -> ClassifierMetrics: """Trains a classification model over embeddings and labels.""" if use_bce_loss: loss = tf.keras.losses.BinaryCrossentropy(from_logits=True) else: loss = tf.keras.losses.CategoricalCrossentropy(from_logits=True) model.compile( optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate), loss=loss, metrics=[ tf.keras.metrics.Precision(top_k=1, name='top1prec'), tf.keras.metrics.AUC( curve='ROC', name='auc', from_logits=True, multi_label=True ), tf.keras.metrics.RecallAtPrecision(0.9, name='recall0.9'), ], ) train_ds = merged.create_keras_dataset(train_locs, True, batch_size) test_ds = merged.create_keras_dataset(test_locs, False, batch_size) model.fit(train_ds, epochs=num_epochs, verbose=0) # Compute overall metrics to avoid online approximation error in Keras. test_logits = model.predict(test_ds, verbose=0, batch_size=8) test_labels_hot = merged.data['label_hot'][test_locs] test_labels = merged.data['label'][test_locs] # Create a dictionary of test logits for each class. test_logits_dict = {} for k in set(test_labels): lbl_locs = np.argwhere(test_labels == k)[:, 0] test_logits_dict[k] = test_logits[lbl_locs, k] top_logit_idxs = np.argmax(test_logits, axis=1) top1acc = np.mean(test_labels == top_logit_idxs) # TODO(tomdenton): Implement recall@precision metric. recall = -1.0 cmap_value = metrics.cmap(test_logits, test_labels_hot)['macro'] auc_roc = metrics.roc_auc(test_logits, test_labels_hot) return ClassifierMetrics( top1acc, auc_roc['macro'], recall, cmap_value, auc_roc['individual'], test_logits_dict, ) def train_embedding_model( model: tf.keras.Model, merged: data_lib.MergedDataset, train_ratio: float | None, train_examples_per_class: int | None, num_epochs: int, random_seed: int, batch_size: int, learning_rate: float | None = None, ) -> ClassifierMetrics: """Trains a classification model over embeddings and labels.""" train_locs, test_locs, _ = merged.create_random_train_test_split( train_ratio, train_examples_per_class, random_seed ) test_metrics = train_from_locs( model=model, merged=merged, train_locs=train_locs, test_locs=test_locs, num_epochs=num_epochs, batch_size=batch_size, learning_rate=learning_rate, ) return test_metrics
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for EfficientNet.""" import operator from chirp.models import efficientnet from jax import numpy as jnp from jax import random from jax import tree_util from absl.testing import absltest class EfficientNetTest(absltest.TestCase): def test_efficientnet(self): efficientnet_ = efficientnet.EfficientNet( model=efficientnet.EfficientNetModel.B0, include_top=False ) key = random.PRNGKey(0) params_key, dropout_key = random.split(key) inputs = jnp.ones((1, 224, 224, 3)) out, variables = efficientnet_.init_with_output( {"dropout": dropout_key, "params": params_key}, inputs, train=True ) self.assertEqual(out.shape, (1, 7, 7, 1280)) num_parameters = tree_util.tree_reduce( operator.add, tree_util.tree_map(jnp.size, variables["params"]) ) # Keras has 7 more parameters due to the normalization of the inputs self.assertEqual(num_parameters, 4_007_548) if __name__ == "__main__": absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for layers.""" import operator from chirp.models import layers from jax import numpy as jnp from jax import random from jax import tree_util from absl.testing import absltest class LayersTest(absltest.TestCase): def test_mbconv(self): # See table 2 in the MobileNetV2 paper mbconv = layers.MBConv( features=24, kernel_size=(3, 3), strides=2, expand_ratio=6 ) key = random.PRNGKey(0) inputs = jnp.ones((1, 112, 112, 16)) outputs, variables = mbconv.init_with_output( key, inputs, use_running_average=False ) self.assertEqual(outputs.shape, (1, 56, 56, 24)) num_parameters = tree_util.tree_reduce( operator.add, tree_util.tree_map(jnp.size, variables["params"]) ) expected_num_parameters = ( 16 * 6 * 16 + 3 * 3 * 6 * 16 # Expansion + 16 * 6 * 24 # Depthwise separable convolution # Reduction ) self.assertEqual(num_parameters, expected_num_parameters) def test_squeeze_and_excitation(self): squeeze_and_excitation = layers.SqueezeAndExcitation() key = random.PRNGKey(0) inputs = jnp.ones((1, 112, 112, 16)) outputs, variables = squeeze_and_excitation.init_with_output(key, inputs) self.assertEqual(outputs.shape, (1, 112, 112, 16)) num_parameters = tree_util.tree_reduce( operator.add, tree_util.tree_map(jnp.size, variables["params"]) ) expected_num_parameters = ( 16 * 16 // 4 + 16 // 4 + 16 // 4 * 16 + 16 # Squeeze # Excite ) self.assertEqual(num_parameters, expected_num_parameters) if __name__ == "__main__": absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Bird taxonomy dataset tests.""" import shutil import tempfile from unittest import mock from chirp.data import filter_scrub_utils as fsu from chirp.data import tfds_features from chirp.data.bird_taxonomy import bird_taxonomy from etils import epath import numpy as np import tensorflow_datasets as tfds from absl.testing import absltest class BirdTaxonomyTest(tfds.testing.DatasetBuilderTestCase): """Tests for the bird taxonomy dataset.""" DATASET_CLASS = bird_taxonomy.BirdTaxonomy BUILDER_CONFIG_NAMES_TO_TEST = [ config.name for config in DATASET_CLASS.BUILDER_CONFIGS if not ( 'tiny' in config.name or 'upstream' in config.name or 'downstream' in config.name or 'representative' in config.name ) ] EXAMPLE_DIR = DATASET_CLASS.code_path.parent / 'placeholder_data' DL_EXTRACT_RESULT = {'taxonomy_info': 'taxonomy_info.json'} SPLITS = {'train': 4} SKIP_CHECKSUMS = True @classmethod def setUpClass(cls): super().setUpClass() # `self.create_tempdir()` raises an UnparsedFlagAccessError, which is why # we use `tempdir` directly. cls.tempdir = tempfile.mkdtemp() _ = tfds.core.lazy_imports.librosa cls.url_patcher = mock.patch.object( cls.DATASET_CLASS, 'GCS_URL', epath.Path(cls.tempdir) ) cls.query_patchers = [] for i in [3, 4]: cls.query_patchers.append( mock.patch.object( cls.DATASET_CLASS.BUILDER_CONFIGS[i], 'data_processing_query', fsu.QuerySequence([]), ) ) cls.url_patcher.start() for patcher in cls.query_patchers: patcher.start() subdir = epath.Path(cls.tempdir) / 'audio-data' / 'comter' subdir.mkdir(parents=True) for i in range(4): tfds.core.lazy_imports.pydub.AudioSegment( b'\0\1' * int(10_000 * 10), metadata={ 'channels': 1, 'sample_width': 2, 'frame_rate': 10_000, 'frame_width': 2, }, ).export(subdir / f'XC{i:05d}.mp3', format='mp3') @classmethod def tearDownClass(cls): super().tearDownClass() cls.url_patcher.stop() for patcher in cls.query_patchers: patcher.stop() shutil.rmtree(cls.tempdir) # TODO(bartvm): Remove when tensorflow-datasets PyPI package is fixed @absltest.skip def test_tags_are_valid(self): pass class Int16AsFloatTensorTest(absltest.TestCase): """Tests for the Int16AsFloatTensor feature.""" def test_encode_example(self): feature = tfds_features.Int16AsFloatTensor(shape=[None], sample_rate=22050) np.testing.assert_allclose( feature.encode_example([-1.0, 0.0]), np.array([-(2**15), 0], dtype=np.int16), ) def test_reconstruct(self): example_data = [-1.0, 0.0, 0.5] feature = tfds_features.Int16AsFloatTensor( shape=[None], sample_rate=22050, encoding=tfds.features.Encoding.ZLIB ) np.testing.assert_allclose( example_data, feature.decode_example(feature.encode_example(example_data)), ) def test_exception_on_non_float(self): feature = tfds_features.Int16AsFloatTensor(shape=[None], sample_rate=22050) self.assertRaises( ValueError, feature.encode_example, np.array([-1, 0, 0], dtype=np.int16) ) def test_exception_on_out_of_bound_values(self): feature = tfds_features.Int16AsFloatTensor(shape=[None], sample_rate=22050) self.assertRaises(ValueError, feature.encode_example, [1.0]) self.assertRaises(ValueError, feature.encode_example, [-1.5]) if __name__ == '__main__': absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for pipeline.""" import os import tempfile from unittest import mock from chirp.data import utils as data_utils from chirp.models import frontend from chirp.preprocessing import pipeline from chirp.taxonomy import namespace from chirp.taxonomy import namespace_db from chirp.tests import fake_dataset from jax import numpy as jnp import numpy as np import tensorflow as tf from absl.testing import absltest from absl.testing import parameterized class PipelineTest(parameterized.TestCase): @classmethod def setUpClass(cls): super().setUpClass() # Test with two CPU devices. os.environ['XLA_FLAGS'] = '--xla_force_host_platform_device_count=2' data_dir = tempfile.TemporaryDirectory('data_dir').name fake_builder = fake_dataset.FakeDataset(data_dir=data_dir) fake_builder.download_and_prepare() cls._builder = fake_builder def test_mixin(self): examples = { 'audio': tf.random.uniform([2, 100], dtype=tf.float32), 'segment_start': tf.convert_to_tensor([17, 64], dtype=tf.int64), 'segment_end': tf.convert_to_tensor([117, 164], dtype=tf.int64), 'label': tf.convert_to_tensor([[1], [2]], dtype=tf.int64), 'label_str': tf.convert_to_tensor( [['placeholder'], ['placeholder']], dtype=tf.string ), 'bg_labels': tf.convert_to_tensor([[2, 3], [4, 5]], dtype=tf.int64), 'filename': tf.convert_to_tensor( ['placeholder', 'placeholder'], dtype=tf.string ), } ds = tf.data.Dataset.from_tensor_slices(examples) ds = pipeline.Pipeline( [pipeline.OnlyJaxTypes(), pipeline.MultiHot()], deterministic=True )(ds, self._builder.info) mixed_ds = pipeline.Pipeline([pipeline.MixAudio(1.0)], deterministic=True)( ds, self._builder.info ) mixed_example = next(mixed_ds.as_numpy_iterator()) np.testing.assert_allclose( mixed_example['audio'], examples['audio'][0] + examples['audio'][1] ) np.testing.assert_equal( mixed_example['bg_labels'], np.asarray( [0, 0, 1, 1, 1, 1] + [0] * (self._builder.info.features['bg_labels'].num_classes - 6), dtype=np.int32, ), ) unmixed_ds = pipeline.Pipeline( [pipeline.MixAudio(mixin_prob=0.0)], deterministic=True )(ds, self._builder.info) for x, y in tf.data.Dataset.zip((ds, unmixed_ds)).as_numpy_iterator(): for key in x: if key in ('source_audio', 'segment_start', 'segment_end'): np.testing.assert_equal(x[key], y[key][:1]) np.testing.assert_equal(np.zeros_like(x[key]), y[key][1:]) else: np.testing.assert_equal(x[key], y[key], err_msg=f'{key} not equal') def test_process_example(self): sample_rate_hz = self._builder.info.features['audio'].sample_rate audio_length_s = 6 audio_length_samples = sample_rate_hz * audio_length_s input_gain = 10.0 window_size_s = 5 min_gain = 0.15 max_gain = 0.25 example = { 'audio': tf.random.uniform( [audio_length_samples], minval=-input_gain, maxval=input_gain, dtype=tf.float32, ), 'segment_start': tf.convert_to_tensor([17, 64], dtype=tf.int64), 'segment_end': tf.convert_to_tensor( [17 + audio_length_samples, 64 + audio_length_samples], dtype=tf.int64, ), 'label': tf.convert_to_tensor([1], dtype=tf.int64), 'label_str': tf.convert_to_tensor(['placeholder'], dtype=tf.string), 'bg_labels': tf.convert_to_tensor([2, 3], dtype=tf.int64), 'filename': tf.convert_to_tensor('placeholder', dtype=tf.string), } example = pipeline.OnlyJaxTypes()(example, self._builder.info) example = pipeline.MultiHot()(example, self._builder.info) # The bg_labels feature should be multi-hot encoded. num_classes = self._builder.info.features['bg_labels'].feature.num_classes np.testing.assert_equal( example['bg_labels'].numpy(), np.asarray([0, 0, 1, 1] + [0] * (num_classes - 4), dtype=np.int32), ) example = pipeline.RandomSlice(window_size_s, names=('audio',))( example, self._builder.info ) example = pipeline.RandomNormalizeAudio( min_gain, max_gain, names=('audio',) )(example, self._builder.info) # The audio feature should be trimmed to the requested length, and its # maximum absolute value should be within [min_gain, max_gain]. audio = example['audio'].numpy() self.assertEqual(audio.shape, (sample_rate_hz * window_size_s,)) # There is a constant value of 0.01 added to the denominator during # normalization. self.assertTrue( input_gain / (input_gain + 0.01) * min_gain <= np.abs(audio).max() <= input_gain / (input_gain + 0.01) * max_gain ) # The label feature should be one-hot encoded. key = 'label' np.testing.assert_equal( example[key].numpy(), np.asarray( [0, 1, 0] + [0] * (self._builder.info.features[key].num_classes - 3), dtype=np.int32, ), ) # The label_str and filename features should be deleted. for key in ('label_str', 'filename'): self.assertNotIn(key, example) def test_get_dataset(self): test_pipeline = pipeline.Pipeline([ pipeline.OnlyJaxTypes(), pipeline.MultiHot(), pipeline.MixAudio(mixin_prob=0.25), pipeline.Batch(8), pipeline.RandomSlice(window_size=5), pipeline.RandomNormalizeAudio(min_gain=0.15, max_gain=0.25), ]) for split in self._builder.info.splits.values(): dataset, _ = data_utils.get_dataset( split.name, dataset_directory=self._builder.data_dir, pipeline=test_pipeline, ) example = next(dataset.as_numpy_iterator()) self.assertLen(example['audio'].shape, 2) self.assertLen(example['source_audio'].shape, 3) self.assertSetEqual( set(example.keys()), { 'audio', 'source_audio', 'bg_labels', 'label', 'segment_start', 'segment_end', 'recording_id', 'segment_id', }, ) # Check error raising when getting last dataset split without a pipeline. with self.assertRaises(ValueError): data_utils.get_dataset( split.name, dataset_directory=self._builder.data_dir ) def test_convert_bird_taxonomy_labels(self): db = namespace_db.load_db() np.random.seed(42) source_class_list = db.class_lists['caples'] # Create a shuffled version of the source class list. source_classes = list(source_class_list.classes) np.random.shuffle(source_classes) source_class_list = namespace.ClassList('ebird2021', source_classes) target_class_list = db.class_lists['xenocanto'] self.assertLen(source_class_list.classes, 79) self.assertLen(target_class_list.classes, 10932) # example labels include three 'good' labels and many out of range labels. # Good classes are 'amedip', 'comnig', 'macwar', and 'yerwar'. # The following table lists their index in the source_class_list, # label, genus, family, and order. # 0 amedip cinclus cinclidae passeriformes # 20 comnig chordeiles caprimulgidae caprimulgiformes # 40 macwar geothlypis parulidae passeriformes # 78 yerwar setophaga parulidae passeriformes example = { 'label': tf.constant( [ source_class_list.classes.index('amedip'), source_class_list.classes.index('comnig'), source_class_list.classes.index('macwar'), source_class_list.classes.index('yerwar'), 79, 10655, 10932, -1, ], tf.int64, ), 'bg_labels': tf.constant([18, 1000], tf.int64), } converter = pipeline.ConvertBirdTaxonomyLabels( target_class_list='xenocanto' ) converted = converter.convert_features(example, source_class_list) # Check species labels are correct. for species in ('amedip', 'comnig', 'macwar', 'yerwar'): target_idx = target_class_list.classes.index(species) self.assertEqual(converted['label'][target_idx], 1) for name, shape, num in ( ('label', 10932, 4), ('bg_labels', 10932, 1), ('genus', 2333, 4), ('family', 249, 3), ('order', 41, 2), ): print(name, shape, num, sum(converted[name].numpy())) self.assertIn(name, converted) self.assertLen(converted[name].shape, 1) self.assertEqual(converted[name].shape[0], shape) self.assertEqual( converted[name].shape[0], converted[name + '_mask'].shape[0] ) self.assertEqual(sum(converted[name].numpy()), num) for image_name, image_size in ( ('label_mask', 79), ('genus_mask', 62), ('family_mask', 30), ('order_mask', 11), ): self.assertIn(image_name, converted) self.assertLen(converted[image_name].shape, 1) self.assertEqual(np.sum(converted[image_name].numpy()), image_size) def test_labels_to_string(self): examples = { 'segment_start': tf.convert_to_tensor([17, 64], dtype=tf.int64), 'label': tf.convert_to_tensor([[1], [2]], dtype=tf.int64), 'bg_labels': tf.convert_to_tensor([[2, 3], [4, 5]], dtype=tf.int64), 'filename': tf.convert_to_tensor( ['placeholder', 'placeholder'], dtype=tf.string ), } ds = tf.data.Dataset.from_tensor_slices(examples) ds = pipeline.Pipeline( [ pipeline.LabelsToString(), ] )( ds, self._builder.info ).batch(2) class_names = self._builder.info.features['label'].feature.names processed_example = next(ds.as_numpy_iterator()) np.testing.assert_equal( processed_example['segment_start'], examples['segment_start'] ) np.testing.assert_equal( processed_example['label'], [class_names[1].encode('utf-8'), class_names[2].encode('utf-8')], ) np.testing.assert_equal( processed_example['bg_labels'], [ f'{class_names[2]} {class_names[3]}'.encode('utf-8'), f'{class_names[4]} {class_names[5]}'.encode('utf-8'), ], ) np.testing.assert_equal(processed_example['filename'], examples['filename']) def test_only_keep(self): examples = { 'segment_start': tf.convert_to_tensor([17, 64], dtype=tf.int64), 'label': tf.convert_to_tensor([[1], [2]], dtype=tf.int64), 'bg_labels': tf.convert_to_tensor([[2, 3], [4, 5]], dtype=tf.int64), 'filename': tf.convert_to_tensor( ['placeholder', 'placeholder'], dtype=tf.string ), } ds = tf.data.Dataset.from_tensor_slices(examples) ds = pipeline.Pipeline( [ pipeline.OnlyKeep(names=['segment_start', 'bg_labels']), ] )(ds, self._builder.info).batch(2) processed_example = next(ds.as_numpy_iterator()) self.assertSameElements( processed_example.keys(), ['segment_start', 'bg_labels'] ) np.testing.assert_equal( processed_example['segment_start'], examples['segment_start'] ) np.testing.assert_equal( processed_example['bg_labels'], examples['bg_labels'] ) @parameterized.parameters( None, frontend.LogScalingConfig(floor=1e-5, scalar=0.1), ) def test_melspec(self, scaling_config): batch_size = 3 sample_rate_hz = 22050 time_size = 5 * sample_rate_hz audio = tf.math.sin(tf.linspace(0.0, 440 * jnp.pi, time_size)) noise = 0.01 * tf.random.normal((batch_size, time_size)) signal = audio + noise model = frontend.MelSpectrogram( features=160, stride=sample_rate_hz // 100, kernel_size=512, # ~0.08 * 32,000 sample_rate=sample_rate_hz, freq_range=(60, 10_000), scaling_config=scaling_config, ) melspec = model.apply({}, jnp.array(signal)) melspec_tf = pipeline.MelSpectrogram( features=160, stride=sample_rate_hz // 100, kernel_size=512, # ~0.08 * 32,000 sample_rate=sample_rate_hz, freq_range=(60, 10_000), scaling_config=scaling_config, )({'audio': signal}, dataset_info=None)['audio'] np.testing.assert_allclose(melspec, melspec_tf.numpy(), atol=1e-5) def test_resample_audio(self): original_dataset = self._builder.as_dataset('train') original_examples = next( original_dataset.batch(len(original_dataset)).as_numpy_iterator() ) # Six seconds at 32kHz, gives 192000 samples. original_length = original_examples['audio'].shape[1] original_sample_rate = self._builder.info.features['audio'].sample_rate resampled_examples = pipeline.ResampleAudio(target_sample_rate=16000)( original_examples, self._builder.info ) expected_length = int(16000 * original_length / original_sample_rate) self.assertEqual( resampled_examples['audio'].shape[0], original_examples['audio'].shape[0], ) self.assertEqual(resampled_examples['audio'].shape[1], expected_length) self.assertLen(resampled_examples['audio'].shape, 2) @parameterized.named_parameters(('pad_end', True), ('no_pad_end', False)) def test_extract_strided_slices(self, pad_end): sample_rate = self._builder.info.features['audio'].sample_rate length_sec = 5 stride_sec = 2.5 length = int(length_sec * sample_rate) stride = int(stride_sec * sample_rate) original_dataset = self._builder.as_dataset('train') original_examples = next( original_dataset.batch(len(original_dataset)).as_numpy_iterator() ) dataset = pipeline.ExtractStridedWindows( window_length_sec=length_sec, window_stride_sec=stride_sec, pad_end=pad_end, )(original_dataset, self._builder.info) examples = next(dataset.batch(len(dataset)).as_numpy_iterator()) # The fake_dataset builder creates 6s recordings. This results in one full # slice and two zero-padded slices when using a 5s window with stride 2.5s. # We expect one slice per example if padding='VALID' and three slices per # example otherwise. self.assertLen( dataset, len(original_dataset) * 3 if pad_end else len(original_dataset) ) # Verify slices have the expected length. self.assertEqual(examples['audio'].shape[1], length) # The segment start and end indices should reflect the window sliding over # the audio. np.testing.assert_equal( examples['segment_start'], [0, stride, 2 * stride] * len(original_dataset) if pad_end else 0, ) np.testing.assert_equal( examples['segment_end'], [length, length + stride, length + 2 * stride] * len(original_dataset) if pad_end else length, ) # The segment IDs should reflect the sliding window's position. np.testing.assert_equal( examples['segment_id'], [0, 1, 2] * len(original_dataset) if pad_end else 0, ) # The other features should be replicated across slices. other_feature_names = [ k for k in original_examples if k not in ('audio', 'segment_start', 'segment_end', 'segment_id') ] for key in other_feature_names: np.testing.assert_equal( examples[key], np.repeat(original_examples[key], 3, axis=0) if pad_end else original_examples[key], ) # With a recording length of 6s, a window size of 5s a window stride of # 2.5s, and with end-padding , we expect the slices to cycle between a full # slice, a slice with 1.5s of zero padding, and a slice with 4s of zero # padding. if pad_end: np.testing.assert_equal( examples['audio'][1::3, -int(1.5 * sample_rate) :], 0 ) np.testing.assert_equal( examples['audio'][2::3, -int(4.0 * sample_rate) :], 0 ) def test_densely_annotate_windows_no_overlap_threshold(self): # Sampling rate is 10, so divide the timestamps by 10 for seconds. original_example = { 'segment_start': np.array(10, dtype=np.int64), 'segment_end': np.array(50, dtype=np.int64), 'annotation_start': np.array([10, 30, 45], dtype=np.int64), 'annotation_end': np.array([20, 60, 90], dtype=np.int64), 'label': np.array([0, 1, 2], dtype=np.int64), } fake_dataset_info = mock.MagicMock( features={ 'audio': mock.MagicMock(sample_rate=10), 'label': mock.MagicMock(names=('dowwoo', 'daejun', 'pilwoo')), } ) original_dataset = tf.data.Dataset.from_tensors(original_example) annotated_dataset = pipeline.DenselyAnnotateWindows( overlap_threshold_sec=0 )(original_dataset, fake_dataset_info) annotated_dataset = next(annotated_dataset.as_numpy_iterator()) expected_dataset = { 'segment_start': np.array(10, dtype=np.int64), 'segment_end': np.array(50, dtype=np.int64), 'annotation_start': np.array([10, 30, 45], dtype=np.int64), 'annotation_end': np.array([20, 60, 90], dtype=np.int64), 'label': np.array([0, 1, 2], dtype=np.int64), } for key, expected_value in expected_dataset.items(): np.testing.assert_equal(expected_value, annotated_dataset[key]) def test_densely_annotate_windows_overlap_1sec(self): # Sampling rate is 10, so divide the timestamps by 10 for seconds. original_example = { 'segment_start': np.array(10, dtype=np.uint64), 'segment_end': np.array(50, dtype=np.uint64), 'annotation_start': np.array([10, 30, 45], dtype=np.uint64), 'annotation_end': np.array([20, 60, 90], dtype=np.uint64), 'label': np.array([0, 1, 2], dtype=np.int64), } fake_dataset_info = mock.MagicMock( features={ 'audio': mock.MagicMock(sample_rate=10), 'label': mock.MagicMock(names=('dowwoo', 'daejun', 'pilwoo')), } ) original_dataset = tf.data.Dataset.from_tensors(original_example) annotated_dataset = pipeline.DenselyAnnotateWindows( overlap_threshold_sec=1 )(original_dataset, fake_dataset_info) annotated_dataset = next(annotated_dataset.as_numpy_iterator()) expected_dataset = { 'segment_start': np.array(10, dtype=np.uint64), 'segment_end': np.array(50, dtype=np.uint64), # The annotations for labels 0 and 1 are longer than 1s, so are kept. # The annotation metadata for label 2 is all zeros. 'annotation_start': np.array([10, 30, 0], dtype=np.uint64), 'annotation_end': np.array([20, 60, 0], dtype=np.uint64), 'intersection_size': np.array([10, 20, 0], dtype=np.uint64), 'annotation_length': np.array([10, 30, 0], dtype=np.uint64), 'label': np.array([0, 1], dtype=np.int64), } for key, expected_value in expected_dataset.items(): print(key, expected_value, annotated_dataset[key]) np.testing.assert_equal(expected_value, annotated_dataset[key]) if __name__ == '__main__': absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for TaxonomyModel.""" from chirp.models import efficientnet from chirp.models import frontend from chirp.models import taxonomy_model import flax import jax from jax import numpy as jnp from jax import random from absl.testing import absltest class TaxonomyModelTest(absltest.TestCase): def setUp(self): super().setUp() sample_rate_hz = 11025 self.input_size = sample_rate_hz self.model = taxonomy_model.TaxonomyModel( num_classes={"label": 10}, encoder=efficientnet.EfficientNet( model=efficientnet.EfficientNetModel.B0 ), frontend=frontend.MorletWaveletTransform( features=160, stride=sample_rate_hz // 100, kernel_size=2_048, sample_rate=sample_rate_hz, freq_range=(60, 10_000), scaling_config=frontend.PCENScalingConfig(), ), taxonomy_loss_weight=0.0, ) self.key = random.PRNGKey(0) self.variables = self.model.init( self.key, jnp.zeros((1, self.input_size)), train=False ) def test_dropout(self): """Ensure that two passes with train=True provide different outputs.""" fake_audio = 10 * random.normal(self.key, (1, 11025)) rng, key = random.split(self.key) output1 = self.model.apply( self.variables, fake_audio, train=True, use_running_average=True, rngs={"dropout": rng}, ) key, rng = random.split(key) output2 = self.model.apply( self.variables, fake_audio, train=True, use_running_average=True, rngs={"dropout": rng}, ) self.assertNotEqual( jnp.squeeze(output1.label).tolist(), jnp.squeeze(output2.label).tolist() ) def test_batch_norm(self): """Ensure that the state is updated by BN layers.""" fake_audio = 10 * random.normal(self.key, (2, 11025)) rng, _ = random.split(self.key) model_state, _ = flax.core.pop(self.variables, "params") _, updated_state = self.model.apply( self.variables, fake_audio, train=False, use_running_average=False, mutable=list(model_state.keys()), rngs={"dropout": rng}, ) for x, y in zip( jax.tree_util.tree_leaves(model_state["batch_stats"]), jax.tree_util.tree_leaves(updated_state["batch_stats"]), ): self.assertNotEqual(x.tolist(), y.tolist()) if __name__ == "__main__": absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for quantizers.""" from chirp.models import quantizers import flax import jax from jax import numpy as jnp import numpy as np from absl.testing import absltest class QuantizersTest(absltest.TestCase): def test_vector_quantizer(self): num_centroids = 2 embedding_dim = 8 vq = quantizers.VectorQuantizer( num_centroids=num_centroids, commitment_loss=0.0, ema_decay=0.99, demean=True, rescale=True, ) key = jax.random.PRNGKey(17) rngs = {} rngs['params'], key = jax.random.split(key) inputs = jnp.ones([2, 4, embedding_dim]) params = vq.init(rngs, inputs, train=False, mutable=True) # Check that the cluster assignment counts are all 1's at init time. np.testing.assert_allclose( params['quantizer']['cluster_counts'], jnp.ones([num_centroids]) ) # Update a few times. for _ in range(5): _, params = vq.apply(params, inputs, train=True, mutable=True) # We have quantized the same zero vector over five batches, eight times in # each batch. Check that we have correct EMA estimates of the assignment # counts and feature mean. expected = jnp.array([1.0, 1.0]) expected_means = jnp.zeros([embedding_dim]) for _ in range(5): expected = 0.99 * expected + 0.01 * jnp.array([8.0, 0.0]) expected_means = 0.99 * expected_means + 0.01 * jnp.ones([embedding_dim]) np.testing.assert_allclose(params['quantizer']['cluster_counts'], expected) np.testing.assert_allclose( params['quantizer']['feature_means'], expected_means ) np.testing.assert_allclose( params['quantizer']['feature_stdev'], 0.0, atol=1e-6 ) def test_refresh_codebooks(self): num_centroids = 2 embedding_dim = 8 vq = quantizers.VectorQuantizer( num_centroids=num_centroids, commitment_loss=0.0, ema_decay=0.99, demean=True, ) key = jax.random.PRNGKey(17) rngs = {} rngs['params'], key = jax.random.split(key) inputs = jnp.ones([2, 4, embedding_dim]) params = vq.init(rngs, inputs, train=False, mutable=True) model_state, model_params = flax.core.pop(params, 'params') # Refresh with threshold 0.0, which should leave the params unchanged. updated_params, updated_state = quantizers.refresh_codebooks( model_params, model_state, key, 0.0 ) flat_params = flax.traverse_util.flatten_dict(model_params) flat_updated_params = flax.traverse_util.flatten_dict(updated_params) flat_state = flax.traverse_util.flatten_dict(model_state) flat_updated_state = flax.traverse_util.flatten_dict(updated_state) for k in flat_params: np.testing.assert_allclose(flat_params[k], flat_updated_params[k]) for k in flat_state: np.testing.assert_allclose(flat_state[k], flat_updated_state[k]) # Update the VQs to change the usage counts. _, params = vq.apply(params, inputs, train=True, mutable=True) # Refresh the codebooks with threshold 2.0, which should cause codebooks # to update. model_state, model_params = flax.core.pop(params, 'params') updated_params, updated_state = quantizers.refresh_codebooks( model_params, model_state, key, 2.0 ) flat_params = flax.traverse_util.flatten_dict(model_params) flat_updated_params = flax.traverse_util.flatten_dict(updated_params) flat_state = flax.traverse_util.flatten_dict(model_state) flat_updated_state = flax.traverse_util.flatten_dict(updated_state) for k in flat_params: diff = np.sum(np.abs(flat_params[k] - flat_updated_params[k])) self.assertGreater(diff, 0.1) def test_product_quantizer(self): num_centroids = 2 embedding_dim = 16 num_sections = 4 base_quantizers = [ quantizers.VectorQuantizer( num_centroids=num_centroids, commitment_loss=0.0, ema_decay=0.99, demean=True, ) for _ in range(num_sections) ] pvq = quantizers.ProductQuantizer(base_quantizers, pca_dim=8) key = jax.random.PRNGKey(17) rngs = {} rngs['params'], key = jax.random.split(key) inputs = jnp.ones([2, 4, embedding_dim]) params = pvq.init(rngs, inputs, train=False, mutable=True) # Just check that it runs for now. quantizer_outputs, _ = pvq.apply(params, inputs, train=True, mutable=True) # hubert_train.py expects the quantization loss to be of dim 3, e.g. # [batch size, num frames, num clusters]. self.assertLen(quantizer_outputs.quantization_loss.shape, 3) self.assertSequenceEqual(quantizer_outputs.quantized.shape, inputs.shape) self.assertSequenceEqual( quantizer_outputs.nn_idx.shape, [num_sections, 2, 4] ) def test_residual_quantizer(self): num_centroids = 2 embedding_dim = 8 num_sections = 4 base_quantizers = [ quantizers.VectorQuantizer( num_centroids=num_centroids, commitment_loss=0.0, ema_decay=0.99, demean=True, ) for _ in range(num_sections) ] rvq = quantizers.ResidualQuantizer(base_quantizers) key = jax.random.PRNGKey(17) rngs = {} rngs['params'], key = jax.random.split(key) inputs = jnp.ones([2, 4, embedding_dim]) params = rvq.init(rngs, inputs, train=False, mutable=True) # Just check that it runs for now. quantizer_outputs, _ = rvq.apply(params, inputs, train=True, mutable=True) # hubert_train.py expects the quantization loss to be of dim 3, e.g. # [batch size, num frames, num clusters]. self.assertLen(quantizer_outputs.quantization_loss.shape, 3) self.assertSequenceEqual(quantizer_outputs.quantized.shape, inputs.shape) self.assertSequenceEqual( quantizer_outputs.nn_idx.shape, [num_sections, 2, 4] ) if __name__ == '__main__': absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for inference library.""" import os import tempfile import apache_beam as beam from apache_beam.testing import test_pipeline from chirp import path_utils from chirp.inference import embed_lib from chirp.inference import interface from chirp.inference import models from chirp.inference import tf_examples from chirp.taxonomy import namespace from chirp.taxonomy import namespace_db from etils import epath from ml_collections import config_dict import numpy as np import tensorflow as tf from absl.testing import absltest from absl.testing import parameterized def _make_output_head_model(model_path: str, embedding_dim: int = 1280): classes = ('speech', 'birdsong', 'unknown') model = tf.keras.Sequential([ tf.keras.Input(shape=[embedding_dim]), tf.keras.layers.Dense(len(classes)), ]) class_list = namespace.ClassList('custom', classes) return interface.LogitsOutputHead( model_path, 'other_label', model, class_list ) class InferenceTest(parameterized.TestCase): @parameterized.product( make_embeddings=(True, False), make_logits=(True, False), make_separated_audio=(True, False), write_embeddings=(True, False), write_logits=(True, False), write_separated_audio=(True, False), write_raw_audio=(True, False), ) def test_embed_fn( self, make_embeddings, make_logits, make_separated_audio, write_embeddings, write_logits, write_raw_audio, write_separated_audio, ): model_kwargs = { 'sample_rate': 16000, 'embedding_size': 128, 'make_embeddings': make_embeddings, 'make_logits': make_logits, 'make_separated_audio': make_separated_audio, } embed_fn = embed_lib.EmbedFn( write_embeddings=write_embeddings, write_logits=write_logits, write_separated_audio=write_separated_audio, write_raw_audio=write_raw_audio, model_key='placeholder_model', model_config=model_kwargs, file_id_depth=0, ) embed_fn.setup() self.assertIsNotNone(embed_fn.embedding_model) test_wav_path = os.fspath( path_utils.get_absolute_path( 'tests/testdata/tfds_builder_wav_directory_test/clap.wav' ) ) source_info = embed_lib.SourceInfo(test_wav_path, 0, 10) example = embed_fn.process(source_info, crop_s=10.0)[0] serialized = example.SerializeToString() parser = tf_examples.get_example_parser( logit_names=['label', 'other_label'] ) got_example = parser(serialized) self.assertIsNotNone(got_example) self.assertEqual(got_example[tf_examples.FILE_NAME], 'clap.wav') if make_embeddings and write_embeddings: embedding = got_example[tf_examples.EMBEDDING] self.assertSequenceEqual( embedding.shape, got_example[tf_examples.EMBEDDING_SHAPE] ) else: self.assertEqual(got_example[tf_examples.EMBEDDING].shape, (0,)) if make_logits and write_logits: self.assertSequenceEqual( got_example['label'].shape, got_example['label_shape'] ) self.assertSequenceEqual( got_example['other_label'].shape, got_example['other_label_shape'] ) else: self.assertEqual(got_example['label'].shape, (0,)) if make_separated_audio and write_separated_audio: separated_audio = got_example[tf_examples.SEPARATED_AUDIO] self.assertSequenceEqual( separated_audio.shape, got_example[tf_examples.SEPARATED_AUDIO_SHAPE] ) else: self.assertEqual(got_example[tf_examples.SEPARATED_AUDIO].shape, (0,)) if write_raw_audio: raw_audio = got_example[tf_examples.RAW_AUDIO] self.assertSequenceEqual( raw_audio.shape, got_example[tf_examples.RAW_AUDIO_SHAPE] ) else: self.assertEqual(got_example[tf_examples.RAW_AUDIO].shape, (0,)) def test_keyed_write_logits(self): """Test that EmbedFn writes only the desired logits if specified.""" write_logits = ('other_label',) model_kwargs = { 'sample_rate': 16000, 'embedding_size': 128, 'make_embeddings': True, 'make_logits': ('label', 'other_label'), 'make_separated_audio': False, } embed_fn = embed_lib.EmbedFn( write_embeddings=True, write_logits=write_logits, write_separated_audio=False, write_raw_audio=False, model_key='placeholder_model', model_config=model_kwargs, file_id_depth=0, ) embed_fn.setup() self.assertIsNotNone(embed_fn.embedding_model) test_wav_path = os.fspath( path_utils.get_absolute_path( 'tests/testdata/tfds_builder_wav_directory_test/clap.wav' ) ) source_info = embed_lib.SourceInfo(test_wav_path, 0, 10) example = embed_fn.process(source_info, crop_s=10.0)[0] serialized = example.SerializeToString() parser = tf_examples.get_example_parser( logit_names=['label', 'other_label'] ) got_example = parser(serialized) self.assertIsNotNone(got_example) self.assertEqual(got_example[tf_examples.FILE_NAME], 'clap.wav') self.assertSequenceEqual( got_example['other_label'].shape, got_example['other_label_shape'] ) self.assertEqual(got_example['label'].shape, (0,)) def test_logits_output_head(self): base_model = models.PlaceholderModel( sample_rate=22050, make_embeddings=True, make_logits=False, make_separated_audio=True, ) logits_model = _make_output_head_model( '/tmp/logits_model', embedding_dim=128 ) base_outputs = base_model.embed(np.zeros(5 * 22050)) updated_outputs = logits_model.add_logits(base_outputs) self.assertSequenceEqual( updated_outputs.logits['other_label'].shape, (5, 3), ) # Check that we /only/ have the new logits, since make_logits=False self.assertNotIn('label', updated_outputs.logits) # Save and restore the model. with tempfile.TemporaryDirectory() as logits_model_dir: logits_model.save_model(logits_model_dir, '') restore_config = config_dict.ConfigDict({ 'model_path': logits_model_dir, 'logits_key': 'other_label', }) restored_model = interface.LogitsOutputHead.from_config(restore_config) reupdated_outputs = restored_model.add_logits(base_outputs) error = np.mean( np.abs( reupdated_outputs.logits['other_label'] - updated_outputs.logits['other_label'] ) ) self.assertLess(error, 1e-5) def test_embed_short_audio(self): """Test that EmbedFn handles audio shorter than the model window_size_s.""" model_kwargs = { 'sample_rate': 16000, 'embedding_size': 128, 'make_embeddings': True, 'make_logits': False, 'make_separated_audio': False, 'window_size_s': 5.0, } embed_fn = embed_lib.EmbedFn( write_embeddings=True, write_logits=False, write_separated_audio=False, write_raw_audio=False, model_key='placeholder_model', model_config=model_kwargs, min_audio_s=1.0, file_id_depth=0, ) embed_fn.setup() self.assertIsNotNone(embed_fn.embedding_model) test_wav_path = os.fspath( path_utils.get_absolute_path( 'tests/testdata/tfds_builder_wav_directory_test/clap.wav' ) ) source_info = embed_lib.SourceInfo(test_wav_path, 0, 10) # Crop to 3.0s to ensure we can handle short audio examples. example = embed_fn.process(source_info, crop_s=3.0)[0] serialized = example.SerializeToString() parser = tf_examples.get_example_parser(logit_names=['label']) got_example = parser(serialized) self.assertIsNotNone(got_example) embedding = got_example[tf_examples.EMBEDDING] self.assertSequenceEqual( embedding.shape, got_example[tf_examples.EMBEDDING_SHAPE] ) def test_tfrecord_multiwriter(self): output_dir = epath.Path(tempfile.TemporaryDirectory().name) output_dir.mkdir(parents=True, exist_ok=True) fake_examples = [] for idx in range(20): outputs = interface.InferenceOutputs( embeddings=np.zeros([10, 2, 8], dtype=np.float32), batched=False ) fake_examples.append( tf_examples.model_outputs_to_tf_example( model_outputs=outputs, file_id=f'fake_audio_{idx:02d}', audio=np.zeros([100]), timestamp_offset_s=0.0, write_embeddings=True, write_logits=False, write_separated_audio=False, write_raw_audio=False, ) ) with tf_examples.EmbeddingsTFRecordMultiWriter( output_dir.as_posix() ) as writer: for ex in fake_examples: serialized = ex.SerializeToString() writer.write(serialized) fns = [fn for fn in output_dir.glob('embeddings-*')] ds = tf.data.TFRecordDataset(fns) parser = tf_examples.get_example_parser() ds = ds.map(parser) got_examples = [ex for ex in ds.as_numpy_iterator()] self.assertEqual(len(got_examples), len(fake_examples)) want_ids = [f'fake_audio_{idx:02d}' for idx in range(20)] got_ids = sorted([ex['filename'].decode('utf-8') for ex in got_examples]) self.assertSequenceEqual(want_ids, got_ids) @parameterized.product( config_name=( 'raw_soundscapes', 'separate_soundscapes', 'birdnet_soundscapes', ), ) def test_load_configs(self, config_name): config = embed_lib.get_config(config_name) self.assertIsNotNone(config) def test_handcrafted_features(self): model = models.HandcraftedFeaturesModel.beans_baseline() audio = np.zeros([5 * 32000], dtype=np.float32) outputs = model.embed(audio) # Five frames because we have 5s of audio with window 1.0 and hope 1.0. # Beans aggrregation with mfccs creates 20 MFCC channels, and then computes # four summary statistics for each, giving a total of 80 output channels. self.assertSequenceEqual([5, 1, 80], outputs.embeddings.shape) def test_sep_embed_wrapper(self): """Check that the joint-model wrapper works as intended.""" separator = models.PlaceholderModel( sample_rate=22050, make_embeddings=False, make_logits=False, make_separated_audio=True, ) db = namespace_db.load_db() target_class_list = db.class_lists['high_sierras'] embeddor = models.PlaceholderModel( sample_rate=22050, make_embeddings=True, make_logits=True, make_separated_audio=False, target_class_list=target_class_list, ) fake_config = config_dict.ConfigDict() sep_embed = models.SeparateEmbedModel( sample_rate=22050, taxonomy_model_tf_config=fake_config, separator_model_tf_config=fake_config, separation_model=separator, embedding_model=embeddor, ) audio = np.zeros(5 * 22050, np.float32) outputs = sep_embed.embed(audio) # The PlaceholderModel produces one embedding per second, and we have # five seconds of audio, with two separated channels, plus the channel # for the raw audio. # Note that this checks that the sample-rate conversion between the # separation model and embedding model has worked correctly. self.assertSequenceEqual( outputs.embeddings.shape, [5, 3, embeddor.embedding_size] ) # The Sep+Embed model takes the max logits over the channel dimension. self.assertSequenceEqual( outputs.logits['label'].shape, [5, len(target_class_list.classes)] ) def test_pooled_embeddings(self): outputs = interface.InferenceOutputs( embeddings=np.zeros([10, 2, 8]), batched=False ) batched_outputs = interface.InferenceOutputs( embeddings=np.zeros([3, 10, 2, 8]), batched=True ) # Check that no-op is no-op. non_pooled = outputs.pooled_embeddings('', '') self.assertSequenceEqual(non_pooled.shape, outputs.embeddings.shape) batched_non_pooled = batched_outputs.pooled_embeddings('', '') self.assertSequenceEqual( batched_non_pooled.shape, batched_outputs.embeddings.shape ) for pooling_method in interface.POOLING_METHODS: if pooling_method == 'squeeze': # The 'squeeze' pooling method throws an exception if axis size is > 1. with self.assertRaises(ValueError): outputs.pooled_embeddings(pooling_method, '') continue elif pooling_method == 'flatten': # Concatenates over the target axis. time_pooled = outputs.pooled_embeddings(pooling_method, '') self.assertSequenceEqual(time_pooled.shape, [2, 80]) continue time_pooled = outputs.pooled_embeddings(pooling_method, '') self.assertSequenceEqual(time_pooled.shape, [2, 8]) batched_time_pooled = batched_outputs.pooled_embeddings( pooling_method, '' ) self.assertSequenceEqual(batched_time_pooled.shape, [3, 2, 8]) channel_pooled = outputs.pooled_embeddings('', pooling_method) self.assertSequenceEqual(channel_pooled.shape, [10, 8]) batched_channel_pooled = batched_outputs.pooled_embeddings( '', pooling_method ) self.assertSequenceEqual(batched_channel_pooled.shape, [3, 10, 8]) both_pooled = outputs.pooled_embeddings(pooling_method, pooling_method) self.assertSequenceEqual(both_pooled.shape, [8]) batched_both_pooled = batched_outputs.pooled_embeddings( pooling_method, pooling_method ) self.assertSequenceEqual(batched_both_pooled.shape, [3, 8]) def test_beam_pipeline(self): """Check that we can write embeddings to TFRecord file.""" test_wav_path = os.fspath( path_utils.get_absolute_path( 'tests/testdata/tfds_builder_wav_directory_test/clap.wav' ) ) source_infos = [embed_lib.SourceInfo(test_wav_path, 0, 10)] base_pipeline = test_pipeline.TestPipeline() tempdir = tempfile.gettempdir() output_dir = os.path.join(tempdir, 'testBeamStuff_output') model_kwargs = { 'sample_rate': 16000, 'embedding_size': 128, 'make_embeddings': True, 'make_logits': False, 'make_separated_audio': False, } embed_fn = embed_lib.EmbedFn( write_embeddings=False, write_logits=False, write_separated_audio=False, write_raw_audio=False, model_key='placeholder_model', model_config=model_kwargs, ) metrics = embed_lib.build_run_pipeline( base_pipeline, output_dir, source_infos, embed_fn ) counter = metrics.query( beam.metrics.MetricsFilter().with_name('examples_processed') )['counters'] self.assertEqual(counter[0].result, 1) print(metrics) if __name__ == '__main__': absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for train.""" import os import tempfile from chirp import config_utils from chirp.configs import baseline from chirp.configs import baseline_attention from chirp.configs import baseline_mel_conformer from chirp.configs import config_globals from chirp.data import utils as data_utils from chirp.models import efficientnet from chirp.models import frontend from chirp.preprocessing import pipeline from chirp.taxonomy import namespace from chirp.tests import fake_dataset from chirp.train import classifier from clu import checkpoint from flax import linen as nn import jax from jax import numpy as jnp from ml_collections import config_dict import tensorflow as tf from absl.testing import absltest from absl.testing import parameterized TEST_WINDOW_S = 1 class ConstantEncoder(nn.Module): """A no-op encoder for quickly testing train+test loops.""" output_dim: int = 32 @nn.compact def __call__( self, inputs: jnp.ndarray, train: bool, # pylint: disable=redefined-outer-name use_running_average: bool, ) -> jnp.ndarray: return jnp.zeros([inputs.shape[0], self.output_dim]) class TrainTest(parameterized.TestCase): def setUp(self): super().setUp() self.train_dir = tempfile.TemporaryDirectory("train_dir").name self.data_dir = tempfile.TemporaryDirectory("data_dir").name fake_builder = fake_dataset.FakeDataset(data_dir=self.data_dir) fake_builder.download_and_prepare() self.builder = fake_builder def _get_test_dataset(self, config): ds, dataset_info = data_utils.get_dataset( "train", dataset_directory=self.builder.data_dir, pipeline=config.train_dataset_config.pipeline, ) return ds, dataset_info def _get_test_config(self, config_module=baseline) -> config_dict.ConfigDict: """Reduces test config sizes to avoid memory blowouts.""" config = config_module.get_config() config.sample_rate_hz = 11_025 config.num_train_steps = 1 config.train_window_size_s = TEST_WINDOW_S config.eval_window_size_s = TEST_WINDOW_S config.train_config.log_every_steps = 1 config.train_config.checkpoint_every_steps = 1 config.eval_config.eval_steps_per_checkpoint = 1 config = config_utils.parse_config(config, config_globals.get_globals()) config.train_dataset_config.pipeline = pipeline.Pipeline( ops=[ pipeline.OnlyJaxTypes(), pipeline.ConvertBirdTaxonomyLabels( source_namespace="ebird2021", target_class_list="xenocanto", add_taxonomic_labels=True, ), pipeline.MixAudio(mixin_prob=0.0), pipeline.Batch(batch_size=1, split_across_devices=True), pipeline.RandomSlice(window_size=TEST_WINDOW_S), pipeline.RandomNormalizeAudio(min_gain=0.15, max_gain=0.25), ] ) config.eval_dataset_config.pipeline = pipeline.Pipeline( ops=[ pipeline.OnlyJaxTypes(), pipeline.MultiHot(), pipeline.Batch(batch_size=1, split_across_devices=True), pipeline.Slice( window_size=TEST_WINDOW_S, start=0.5, names=("audio",) ), pipeline.NormalizeAudio(target_gain=0.2, names=("audio",)), ] ) return config def _add_const_model_config(self, config): config.init_config.model_config.encoder = ConstantEncoder(output_dim=32) return config def _add_b0_model_config(self, config): config.init_config.model_config.encoder = efficientnet.EfficientNet( efficientnet.EfficientNetModel.B0 ) return config def _add_pcen_melspec_frontend(self, config): config.init_config.model_config.frontend = frontend.MelSpectrogram( features=32, stride=32_000 // 25, kernel_size=2_560, sample_rate=32_000, freq_range=(60, 10_000), scaling_config=frontend.PCENScalingConfig(conv_width=256), ) return config def test_config_structure(self): # Check that the test config and model config have similar structure. # This helps ensure that the test configs don't drift too far from the # actual configs we use for training. raw_config = baseline.get_config() parsed_config = config_utils.parse_config( raw_config, config_globals.get_globals() ) test_config = self._get_test_config() test_config = self._add_pcen_melspec_frontend(test_config) test_config = self._add_b0_model_config(test_config) print(jax.tree_util.tree_structure(parsed_config.to_dict())) print(jax.tree_util.tree_structure(test_config.to_dict())) self.assertEqual( jax.tree_util.tree_structure(parsed_config.to_dict()), jax.tree_util.tree_structure(test_config.to_dict()), ) def test_export_model(self): # NOTE: This test might fail when run on a machine that has a GPU but when # CUDA is not linked (JAX will detect the GPU so jax2tf will try to create # a TF graph on the GPU and fail) config = self._get_test_config() config = self._add_const_model_config(config) config = self._add_pcen_melspec_frontend(config) model_bundle, train_state = classifier.initialize_model( workdir=self.train_dir, **config.init_config ) train_state = model_bundle.ckpt.restore_or_initialize(train_state) classifier.export_tf_model( model_bundle, train_state, self.train_dir, config.init_config.input_shape, num_train_steps=0, eval_sleep_s=0, ) self.assertTrue( tf.io.gfile.exists(os.path.join(self.train_dir, "model.tflite")) ) self.assertTrue( tf.io.gfile.exists(os.path.join(self.train_dir, "label.csv")) ) with open(os.path.join(self.train_dir, "label.csv")) as f: got_class_list = namespace.ClassList.from_csv(f.readlines()) # Check equality of the ClassList with the Model Bundle. self.assertEqual(model_bundle.class_lists["label"], got_class_list) self.assertTrue( tf.io.gfile.exists( os.path.join(self.train_dir, "savedmodel/saved_model.pb") ) ) # Check that saved_model inference doesn't crash. # Currently lax.scan (used in the non-convolutional PCEN) fails. # See: https://github.com/google/jax/issues/12504 # The convolutional EMA (using conv_width != 0) works, though. reloaded = tf.saved_model.load(os.path.join(self.train_dir, "savedmodel")) audio = jnp.zeros([1, config.sample_rate_hz]) reloaded.infer_tf(audio) @parameterized.parameters( baseline, baseline_attention, baseline_mel_conformer, ) def test_init(self, config_module): # Ensure that we can initialize the model with the each config. config = self._get_test_config(config_module) # Check that field reference for num_train_steps propogated appropriately. self.assertEqual( config.train_config.num_train_steps, config.eval_config.num_train_steps ) model_bundle, train_state = classifier.initialize_model( workdir=self.train_dir, **config.init_config ) self.assertIsNotNone(model_bundle) self.assertIsNotNone(train_state) def test_train_one_step(self): config = self._get_test_config() config = self._add_const_model_config(config) config = self._add_pcen_melspec_frontend(config) ds, _ = self._get_test_dataset(config) model_bundle, train_state = classifier.initialize_model( workdir=self.train_dir, **config.init_config ) classifier.train( model_bundle=model_bundle, train_state=train_state, train_dataset=ds, logdir=self.train_dir, **config.train_config, ) ckpt = checkpoint.MultihostCheckpoint(self.train_dir) self.assertIsNotNone(ckpt.latest_checkpoint) def test_eval_one_step(self): config = self._get_test_config() config = self._add_const_model_config(config) config = self._add_pcen_melspec_frontend(config) ds, _ = self._get_test_dataset(config) model_bundle, train_state = classifier.initialize_model( workdir=self.train_dir, **config.init_config ) # Write a checkpoint, or else the eval will hang. model_bundle.ckpt.save(train_state) config.eval_config.num_train_steps = 0 classifier.evaluate( model_bundle=model_bundle, train_state=train_state, valid_dataset=ds, workdir=self.train_dir, eval_sleep_s=0, **config.eval_config, ) ckpt = checkpoint.MultihostCheckpoint(self.train_dir) self.assertIsNotNone(ckpt.latest_checkpoint) if __name__ == "__main__": absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for train.""" import os import tempfile from absl import logging from chirp import audio_utils from chirp import config_utils from chirp.configs import config_globals from chirp.configs import separator as separator_config from chirp.data import utils as data_utils from chirp.data.bird_taxonomy import bird_taxonomy from chirp.tests import fake_dataset from chirp.train import separator from clu import checkpoint import jax from ml_collections import config_dict import numpy as np import tensorflow as tf from absl.testing import absltest _c = config_utils.callable_config class TrainSeparationTest(absltest.TestCase): def setUp(self): super().setUp() self.train_dir = tempfile.TemporaryDirectory('train_dir').name self.data_dir = tempfile.TemporaryDirectory('data_dir').name # The following config should be practically equivalent to what was done # before: audio feature shape will be [sample_rate] config = bird_taxonomy.BirdTaxonomyConfig( name='sep_train_test_config', sample_rate_hz=32_000, localization_fn=audio_utils.slice_peaked_audio, interval_length_s=1.0, ) fake_builder = fake_dataset.FakeDataset( config=config, data_dir=self.data_dir ) fake_builder.download_and_prepare() self.builder = fake_builder def _get_test_dataset(self, split, config): config.dataset_directory = self.builder.data_dir config.tfds_data_dir = '' if 'train' in split: pipeline_ = config.train_dataset_config.pipeline else: pipeline_ = config.eval_dataset_config.pipeline ds, dataset_info = data_utils.get_dataset( split, is_train=False, # Avoid shuffle in tests. dataset_directory=config.dataset_directory, tfds_data_dir=config.tfds_data_dir, pipeline=pipeline_, ) if 'train' in split: ds = ds.repeat() return ds, dataset_info def _get_test_config(self, use_small_encoder=True) -> config_dict.ConfigDict: """Create configuration dictionary for training.""" config = separator_config.get_config() config.init_config.target_class_list = 'tiny_species' window_size_s = config_dict.FieldReference(1) config.train_dataset_config.pipeline = _c( 'pipeline.Pipeline', ops=[ _c('pipeline.OnlyJaxTypes'), _c( 'pipeline.ConvertBirdTaxonomyLabels', source_namespace='ebird2021', target_class_list='tiny_species', add_taxonomic_labels=True, ), _c('pipeline.MixAudio', mixin_prob=1.0), _c('pipeline.Batch', batch_size=2, split_across_devices=True), _c('pipeline.RandomSlice', window_size=window_size_s), ], ) config.eval_dataset_config.pipeline = _c( 'pipeline.Pipeline', ops=[ _c('pipeline.OnlyJaxTypes'), _c( 'pipeline.ConvertBirdTaxonomyLabels', source_namespace='ebird2021', target_class_list='tiny_species', add_taxonomic_labels=True, ), _c('pipeline.MixAudio', mixin_prob=1.0), _c('pipeline.Batch', batch_size=2, split_across_devices=True), _c( 'pipeline.Slice', window_size=window_size_s, start=0, names=('audio',), ), ], ) config.train_config.num_train_steps = 1 config.train_config.checkpoint_every_steps = 1 config.train_config.log_every_steps = 1 config.eval_config.eval_steps_per_checkpoint = 1 if use_small_encoder: soundstream_config = config_dict.ConfigDict() soundstream_config.base_filters = 2 soundstream_config.bottleneck_filters = 4 soundstream_config.output_filters = 8 soundstream_config.num_residual_layers = 2 soundstream_config.output_filters = 16 soundstream_config.strides = (2, 2) soundstream_config.feature_mults = (2, 2) soundstream_config.groups = (1, 2) config.init_config.model_config.num_mask_channels = 2 config.init_config.model_config.mask_kernel_size = 2 config.init_config.model_config.classify_features = 4 config.init_config.model_config.mask_generator = _c( 'soundstream_unet.SoundstreamUNet', soundstream_config ) config = config_utils.parse_config(config, config_globals.get_globals()) return config def test_config_structure(self): # Check that the test config and model config have similar structure. raw_config = separator_config.get_config() parsed_config = config_utils.parse_config( raw_config, config_globals.get_globals() ) test_config = self._get_test_config() self.assertEqual( jax.tree_util.tree_structure(parsed_config.to_dict()), jax.tree_util.tree_structure(test_config.to_dict()), ) def test_init_baseline(self): # Ensure that we can initialize the model with the baseline config. config = separator_config.get_config() config = config_utils.parse_config(config, config_globals.get_globals()) model_bundle, train_state = separator.initialize_model( workdir=self.train_dir, **config.init_config ) self.assertIsNotNone(model_bundle) self.assertIsNotNone(train_state) def test_train_one_step(self): config = self._get_test_config(use_small_encoder=True) ds, _ = self._get_test_dataset( 'train', config, ) model = separator.initialize_model( workdir=self.train_dir, **config.init_config ) separator.train( *model, train_dataset=ds, logdir=self.train_dir, **config.train_config ) ckpt = checkpoint.MultihostCheckpoint(self.train_dir) self.assertIsNotNone(ckpt.latest_checkpoint) def test_eval_one_step(self): config = self._get_test_config(use_small_encoder=True) config.init_config.model_config.mask_generator.groups = (1, 1) config.eval_config.num_train_steps = 0 ds, _ = self._get_test_dataset('test', config) model_bundle, train_state = separator.initialize_model( workdir=self.train_dir, **config.init_config ) # Write a chekcpoint, or else the eval will hang. model_bundle.ckpt.save(train_state) separator.evaluate( model_bundle=model_bundle, train_state=train_state, valid_dataset=ds, workdir=self.train_dir, eval_sleep_s=0, **config.eval_config, ) ckpt = checkpoint.MultihostCheckpoint(self.train_dir) self.assertIsNotNone(ckpt.latest_checkpoint) def test_export_model(self): logging.info('Export Test: Initializing JAX model.') config = self._get_test_config(use_small_encoder=True) config.init_config.model_config.mask_generator.groups = (1, 1) config.export_config.num_train_steps = 0 model_bundle, train_state = separator.initialize_model( workdir=self.train_dir, **config.init_config ) logging.info('Export Test: Exporting model.') print('export_config : ', config.export_config) frame_size = 32 * 2 * 2 * 250 separator.export_tf_model( model_bundle, train_state, self.train_dir, eval_sleep_s=0, **config.export_config, ) self.assertTrue( tf.io.gfile.exists(os.path.join(self.train_dir, 'model.tflite')) ) self.assertTrue( tf.io.gfile.exists( os.path.join(self.train_dir, 'savedmodel/saved_model.pb') ) ) self.assertTrue( tf.io.gfile.exists(os.path.join(self.train_dir, 'label.csv')) ) logging.info('Export Test: Loading SavedModel.') # Check that we can execute the saved model. reloaded_model = tf.saved_model.load( os.path.join(self.train_dir, 'savedmodel') ) num_seconds = 3 framed_inputs = np.zeros([1, num_seconds, frame_size]) logging.info('Export Test: Executing SavedModel.') sep_audio, logits, embeddings = reloaded_model.infer_tf(framed_inputs) self.assertSequenceEqual( sep_audio.shape, [ 1, config.init_config.model_config.num_mask_channels, num_seconds * frame_size, ], ) self.assertSequenceEqual( logits.shape, [1, 15, len(model_bundle.class_lists['label'].classes)] ) self.assertSequenceEqual( embeddings.shape, [1, 15, config.init_config.model_config.classify_features], ) logging.info('Export Test: Complete.') if __name__ == '__main__': absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """soundevents dataset tests.""" import shutil import tempfile from unittest import mock from chirp.data import soundevents from etils import epath import pandas as pd import tensorflow_datasets as tfds from absl.testing import absltest def mock_localization_fn(audio, sr, interval_length_s, max_intervals): del audio del max_intervals target_length = sr * interval_length_s return [(0, target_length)] class SoundeventsTest(tfds.testing.DatasetBuilderTestCase): """Tests for the soundevents dataset.""" DATASET_CLASS = soundevents.Soundevents BUILDER_CONFIG_NAMES_TO_TEST = [ config.name for config in DATASET_CLASS.BUILDER_CONFIGS if config.name in ['fsd50k_full_length'] ] DL_EXTRACT_RESULT = {} DL_SAMPLE_FILES = { 'dev_samples': ( DATASET_CLASS.code_path.parent / 'placeholder_data' / 'dev_samples.json' ), 'eval_samples': ( DATASET_CLASS.code_path.parent / 'placeholder_data' / 'eval_samples.json' ), } SKIP_CHECKSUMS = True @classmethod def setUpClass(cls): """""" super().setUpClass() # `self.create_tempdir()` raises an UnparsedFlagAccessError, which is why # we use `tempdir` directly. cls.tempdir = tempfile.mkdtemp() _ = tfds.core.lazy_imports.librosa # soundevent uses FSD50K_DATASET_INFO to load train and test splits. # for creating test tfds, dev and eval set are created from sameples # create audio files for dev set placeholder data samples df_dev_samples = pd.read_json(cls.DL_SAMPLE_FILES['dev_samples']) df_dev_samples.columns = ['fname', 'labels', 'mids', 'split'] subdir = epath.Path(cls.tempdir) / 'dev_audio' subdir.mkdir(parents=True) for _, row in df_dev_samples.iterrows(): tfds.core.lazy_imports.pydub.AudioSegment.silent(duration=10000).export( subdir / f'{row["fname"]}.wav', format='wav' ) # create audio files for eval set from placeholder_data samples df_eval_samples = pd.read_json(cls.DL_SAMPLE_FILES['eval_samples']) df_eval_samples.columns = ['fname', 'labels', 'mids'] subdir = epath.Path(cls.tempdir) / 'eval_audio' subdir.mkdir(parents=True) print(subdir) for _, row in df_eval_samples.iterrows(): tfds.core.lazy_imports.pydub.AudioSegment.silent(duration=10000).export( subdir / f'{row["fname"]}.wav', format='wav' ) subdir = epath.Path(cls.tempdir) / 'FSD50K.ground_truth' subdir.mkdir(parents=True) df_dev_samples.to_csv(subdir / 'dev.csv', index=False) df_eval_samples.to_csv(subdir / 'eval.csv', index=False) cls.DL_EXTRACT_RESULT['dataset_info_dev'] = subdir / 'dev.csv' cls.DL_EXTRACT_RESULT['dataset_info_eval'] = subdir / 'eval.csv' cls.SPLITS = {'train': len(df_dev_samples), 'test': len(df_eval_samples)} cls.EXAMPLE_DIR = epath.Path(cls.tempdir) cls.url_patcher = mock.patch.object( cls.DATASET_CLASS, 'GCS_URL', epath.Path(cls.tempdir) ) cls.url_patcher.start() mock_gcs_url = epath.Path(cls.tempdir) mock_dataset_config = { 'dev': { 'ground_truth_file': mock_gcs_url / 'FSD50K.ground_truth/dev.csv', 'audio_dir': mock_gcs_url / 'dev_audio', }, 'eval': { 'ground_truth_file': mock_gcs_url / 'FSD50K.ground_truth/eval.csv', 'audio_dir': mock_gcs_url / 'eval_audio', }, } cls.config_patcher = mock.patch.object( cls.DATASET_CLASS, 'DATASET_CONFIG', mock_dataset_config ) cls.config_patcher.start() @classmethod def tearDownClass(cls): super().tearDownClass() cls.url_patcher.stop() cls.config_patcher.stop() shutil.rmtree(cls.tempdir) @absltest.skip def test_tags_are_valid(self): pass if __name__ == '__main__': absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for eval_lib.""" import functools import os import shutil import tempfile from typing import Any, Sequence from chirp import config_utils from chirp.configs import baseline_mel_conformer from chirp.configs import config_globals from chirp.data.bird_taxonomy import bird_taxonomy from chirp.eval import callbacks from chirp.eval import eval_lib from chirp.taxonomy import namespace_db from chirp.tests import fake_dataset from chirp.train import classifier import ml_collections import numpy as np import pandas as pd import tensorflow as tf from absl.testing import absltest _c = config_utils.callable_config def _stub_localization_fn( audio: Any, sample_rate_hz: int, interval_length_s: float = 6.0, max_intervals: int = 5, ) -> Sequence[tuple[int, int]]: # The only purpose of this stub function is to avoid a default # `localization_fn` value of None in `BirdTaxonomyConfig` so that the audio # feature shape gets computed properly. del audio, sample_rate_hz, interval_length_s, max_intervals return [] class FakeBirdTaxonomy(fake_dataset.FakeDataset): BUILDER_CONFIGS = [ bird_taxonomy.BirdTaxonomyConfig( name='fake_variant_1', localization_fn=_stub_localization_fn, interval_length_s=6.0, ), bird_taxonomy.BirdTaxonomyConfig( name='fake_variant_2', localization_fn=_stub_localization_fn, interval_length_s=6.0, ), ] class LoadEvalDatasetsTest(absltest.TestCase): def setUp(self): super().setUp() self.data_dir = tempfile.TemporaryDirectory('data_dir').name FakeBirdTaxonomy( data_dir=self.data_dir, config='fake_variant_1' ).download_and_prepare() FakeBirdTaxonomy( data_dir=self.data_dir, config='fake_variant_2' ).download_and_prepare() def test_return_value_structure(self): fake_config = ml_collections.ConfigDict() fake_config.dataset_configs = { 'fake_dataset_1': { 'tfds_name': 'fake_bird_taxonomy/fake_variant_1', 'tfds_data_dir': self.data_dir, 'pipeline': _c( 'pipeline.Pipeline', ops=[_c('pipeline.OnlyJaxTypes')] ), 'split': 'train', }, 'fake_dataset_2': { 'tfds_name': 'fake_bird_taxonomy/fake_variant_2', 'tfds_data_dir': self.data_dir, 'pipeline': _c( 'pipeline.Pipeline', ops=[_c('pipeline.OnlyJaxTypes')] ), 'split': 'train', }, } fake_config = config_utils.parse_config( fake_config, config_globals.get_globals() ) eval_datasets = eval_lib.load_eval_datasets(fake_config) self.assertSameElements( ['fake_dataset_1', 'fake_dataset_2'], eval_datasets.keys() ) for dataset in eval_datasets.values(): self.assertIsInstance(dataset, tf.data.Dataset) self.assertContainsSubset( ['audio', 'label', 'bg_labels'], dataset.element_spec.keys() ) def tearDown(self): super().tearDown() shutil.rmtree(self.data_dir) class GetEmbeddingsTest(absltest.TestCase): def setUp(self): super().setUp() self.data_dir = tempfile.TemporaryDirectory('data_dir').name FakeBirdTaxonomy( data_dir=self.data_dir, config='fake_variant_1' ).download_and_prepare() def test_get_embeddings(self): fake_config = ml_collections.ConfigDict() fake_config.dataset_configs = { 'fake_dataset_1': { 'tfds_name': 'fake_bird_taxonomy/fake_variant_1', 'tfds_data_dir': self.data_dir, 'pipeline': _c( 'pipeline.Pipeline', ops=[_c('pipeline.OnlyJaxTypes')] ), 'split': 'train', }, } fake_config.model_callback = lambda x: x + 1 fake_config = config_utils.parse_config( fake_config, config_globals.get_globals() ) dataset = eval_lib.load_eval_datasets(fake_config) (dataset_name,) = dataset.keys() dataset = dataset[dataset_name] embedded_dataset = eval_lib.get_embeddings( dataset, fake_config.model_callback, batch_size=1 ) self.assertContainsSubset( ['embedding'], embedded_dataset.element_spec.keys() ) embedding = next(embedded_dataset.as_numpy_iterator())['embedding'] self.assertTrue(((0 <= embedding) & (embedding <= 2)).all()) def test_embedding_model_callback(self): placeholder_callback = callbacks.EmbeddingModelCallback( 'placeholder_model', ml_collections.ConfigDict({'sample_rate': 32000}) ) fake_config = ml_collections.ConfigDict() fake_config.dataset_configs = { 'fake_dataset_1': { 'tfds_name': 'fake_bird_taxonomy/fake_variant_1', 'tfds_data_dir': self.data_dir, 'pipeline': _c( 'pipeline.Pipeline', ops=[_c('pipeline.OnlyJaxTypes')] ), 'split': 'train', }, } fake_config.model_callback = lambda x: x + 1 fake_config = config_utils.parse_config( fake_config, config_globals.get_globals() ) dataset = eval_lib.load_eval_datasets(fake_config) (dataset_name,) = dataset.keys() dataset = dataset[dataset_name] embedded_dataset = eval_lib.get_embeddings( dataset, placeholder_callback.model_callback, batch_size=1 ) self.assertContainsSubset( ['embedding'], embedded_dataset.element_spec.keys() ) def tearDown(self): super().tearDown() shutil.rmtree(self.data_dir) class EvalSetTest(absltest.TestCase): def setUp(self): super().setUp() self.class_names = ['a', 'b', 'c'] self.fake_embeddings_df = pd.DataFrame({ 'label': (['a'] * 4 + ['b'] * 4 + ['c'] * 4) * 2, 'embedding': [[0.0]] * 24, 'bg_labels': [ '', 'b', 'c', 'b c', '', 'a', 'c', 'a c', '', 'a', 'b', 'a b', ] * 2, 'dataset_name': ['dataset_1'] * 12 + ['dataset_2'] * 12, }) self.embedded_datasets = { 'dataset_1': tf.data.Dataset.from_tensor_slices( self.fake_embeddings_df.groupby('dataset_name') .get_group('dataset_1') .to_dict('list') ), 'dataset_2': tf.data.Dataset.from_tensor_slices( self.fake_embeddings_df.groupby('dataset_name') .get_group('dataset_2') .to_dict('list') ), } def test_prepare_eval_sets(self): partial_specification = functools.partial( eval_lib.EvalSetSpecification, class_names=self.class_names, search_corpus_classwise_mask_fn=(lambda _: 'label.str.contains("")'), class_representative_global_mask_expr='label.str.contains("")', class_representative_classwise_mask_fn=( lambda class_name: f'label.str.contains("{class_name}")' ), num_representatives_per_class=0, ) fake_config = ml_collections.ConfigDict() fake_config.rng_seed = 1234 fake_config.model_callback = {'learned_representations': {'a': [0.0]}} fake_config.debug = {'embedded_dataset_cache_path': ''} fake_config.eval_set_specifications = { 'fake_specification_1': partial_specification( search_corpus_global_mask_expr='dataset_name == "dataset_1"' ), 'fake_specification_2': partial_specification( search_corpus_global_mask_expr='dataset_name == "dataset_2"' ), } eval_sets = list( eval_lib.prepare_eval_sets(fake_config, self.embedded_datasets) ) # There should be two eval sets. self.assertEqual( [eval_set.name for eval_set in eval_sets], ['fake_specification_1', 'fake_specification_2'], ) # There should be one classwise eval set per class. for eval_set in eval_sets: class_names = [ classwise_eval_set.class_name for classwise_eval_set in eval_set.classwise_eval_sets ] self.assertEqual(class_names, ['a', 'b', 'c']) def test_eval_set_generator(self): num_representatives_per_class = 2 fake_config = ml_collections.ConfigDict() fake_config.rng_seed = 1234 fake_config.model_callback = {'learned_representations': {'a': [0.0]}} fake_config.debug = {'embedded_dataset_cache_path': ''} fake_config.eval_set_specifications = { 'fake_specification': eval_lib.EvalSetSpecification( search_corpus_global_mask_expr='dataset_name == "dataset_1"', class_names=self.class_names, search_corpus_classwise_mask_fn=( lambda n: f'not bg_labels.str.contains("{n}")' ), class_representative_global_mask_expr='dataset_name == "dataset_1"', class_representative_classwise_mask_fn=( lambda n: f'label.str.contains("{n}")' ), num_representatives_per_class=num_representatives_per_class, ) } (eval_set,) = eval_lib.prepare_eval_sets( fake_config, self.embedded_datasets ) for classwise_eval_set in eval_set.classwise_eval_sets: class_name = classwise_eval_set.class_name class_representatives_df = classwise_eval_set.class_representatives_df search_corpus_df = eval_set.search_corpus_df[ classwise_eval_set.search_corpus_mask ] # We should get the number of class representatives we requested. self.assertLen(class_representatives_df, num_representatives_per_class) # All class representatives should have the label `class_name`. self.assertTrue((class_representatives_df['label'] == class_name).all()) # According to our `search_corpus_classwise_mask_fn`, `class_name` should # not appear in any background label. self.assertTrue( (~search_corpus_df['bg_labels'].str.contains(class_name)).all() ) # Class representatives should not be included in the search corpus. self.assertTrue( (~search_corpus_df.index.isin(class_representatives_df.index)).all() ) # Embeddings from 'dataset_2' should not be found anywhere. self.assertTrue( (class_representatives_df['dataset_name'] != 'dataset_2').all() ) self.assertTrue((search_corpus_df['dataset_name'] != 'dataset_2').all()) # By construction of `self.embeddings_df`, we know that the above three # result in 4 + 2 + 12 = 18 rows being excluded. self.assertLen(search_corpus_df, 6) class SearchProcedureTest(absltest.TestCase): def setUp(self): super().setUp() self.query = [1, 0] self.species_id = 'C' self.search_corpus = pd.DataFrame({ 'embedding': [[0, 1], [1, 0], [1, 1]], 'label': ['B', 'A', 'C'], 'bg_labels': ['B C', ' ', 'A'], }) def test_query_search(self): score = pd.Series([0.0, 1.0, 0.7071]) search_corpus_mask = pd.Series([False, True, True]) actual_query_result = eval_lib._make_species_scores_df( score=score, species_id=self.species_id, search_corpus=self.search_corpus, search_corpus_mask=search_corpus_mask, ) expected_query_result = pd.DataFrame({ 'score': score.tolist(), 'species_match': [1, 0, 1], 'label_mask': search_corpus_mask.tolist(), }) actual_query_scores = actual_query_result['score'].round(4) expected_query_scores = expected_query_result['score'] self.assertTrue((actual_query_scores == expected_query_scores).all()) actual_query_matches = actual_query_result['species_match'] expected_query_matches = expected_query_result['species_match'] self.assertTrue((actual_query_matches == expected_query_matches).all()) actual_label_mask = actual_query_result['label_mask'] expected_label_mask = expected_query_result['label_mask'] self.assertTrue((actual_label_mask == expected_label_mask).all()) class DefaultFunctionsTest(absltest.TestCase): def test_create_averaged_query(self): embedding1 = np.arange(0, 5) embedding2 = np.arange(1, 6) embeddings = [embedding1, embedding2] actual_avg_query = eval_lib.create_averaged_query(embeddings) expected_avg_query = np.array([0.5, 1.5, 2.5, 3.5, 4.5]) self.assertTrue(actual_avg_query.tolist(), expected_avg_query.tolist()) def test_cosine_similarity(self): embedding = np.array([[0.0, 1.0, 2.0, 3.0, 4.0]]) actual_similarity = eval_lib.cosine_similarity(embedding, embedding) expected_similarity = 1.0 np.testing.assert_allclose(actual_similarity, expected_similarity) orthog_embedding0 = np.array([[-0.5, 0.0, -0.5, 0.0, -0.5]]) orthog_embedding1 = np.array([[0.0, 0.5, 0.0, 0.5, 0.0]]) actual_similarity = eval_lib.cosine_similarity( orthog_embedding0, orthog_embedding1 ) expected_similarity = 0.0 np.testing.assert_allclose(actual_similarity, expected_similarity) opposite_embedding0 = np.array([[-1.0, -1.0, -1.0, -1.0, -1.0]]) opposite_embedding1 = np.array([[1.0, 1.0, 1.0, 1.0, 1.0]]) actual_similarity = eval_lib.cosine_similarity( opposite_embedding0, opposite_embedding1 ) expected_similarity = -1.0 np.testing.assert_allclose(actual_similarity, expected_similarity) class TaxonomyModelCallbackTest(absltest.TestCase): def setUp(self): super().setUp() self.workdir = tempfile.TemporaryDirectory('workdir').name def test_learned_representation_blocklist(self): workdir = os.path.join(self.workdir, '1') init_config = config_utils.parse_config( baseline_mel_conformer.get_config(), config_globals.get_globals() ).init_config model_bundle, train_state = classifier.initialize_model( workdir=workdir, **init_config ) _ = model_bundle.ckpt.restore_or_initialize(train_state) db = namespace_db.load_db() all_species = db.class_lists['xenocanto'].classes downstream_species = db.class_lists['downstream_species_v2'].classes # The model callback should load all available learned representations when # use_learned_representations is set to True (by default, set to False). self.assertLen( callbacks.TaxonomyModelCallback( init_config=init_config, workdir=workdir, use_learned_representations=True, ).learned_representations, len(all_species), ) # When learned_representation_blocklist is passed, the model callback # should *not* load any learned representation for species in the blocklist. self.assertNoCommonElements( callbacks.TaxonomyModelCallback( init_config=init_config, workdir=workdir, use_learned_representations=True, learned_representation_blocklist=downstream_species, ).learned_representations.keys(), downstream_species, ) def tearDown(self): super().tearDown() shutil.rmtree(self.workdir) if __name__ == '__main__': absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for EfficientNet.""" import operator from chirp.models import soundstream_unet from jax import numpy as jnp from jax import random from jax import tree_util from absl.testing import absltest class SoundstreamUNetTest(absltest.TestCase): def test_soundstream_unet(self): batch_size = 2 input_time_steps = 16 input_width = 8 model = soundstream_unet.SoundstreamUNet( base_filters=2, bottleneck_filters=4, output_filters=8, strides=(2, 2), feature_mults=(2, 2), groups=(1, 2), ) inp_audio = jnp.zeros([batch_size, input_time_steps, input_width]) (out, embedding), variables = model.init_with_output( {"params": random.PRNGKey(0)}, inp_audio, train=True ) self.assertEqual(out.shape, inp_audio.shape) # Embedding shape: (batch, input_time / prod(strides), bottleneck_filters). self.assertEqual(embedding.shape, (2, 4, 4)) num_parameters = tree_util.tree_reduce( operator.add, tree_util.tree_map(jnp.size, variables["params"]) ) self.assertEqual(num_parameters, 864) if __name__ == "__main__": absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for metrics.""" import functools import os from chirp.models import cwt from chirp.models import metrics from clu import metrics as clu_metrics import flax import jax from jax import numpy as jnp from absl.testing import absltest @flax.struct.dataclass class ValidationMetrics(clu_metrics.Collection): valid_map: clu_metrics.Average.from_fun(metrics.map_) class MetricsTest(absltest.TestCase): @classmethod def setUpClass(cls): super().setUpClass() # Test with two CPU devices. os.environ["XLA_FLAGS"] = "--xla_force_host_platform_device_count=2" def test_parallel_metric_agreemenet(self): @jax.jit def update_metrics(valid_metrics, labels, logits): return valid_metrics.merge( ValidationMetrics.single_from_model_output( logits=logits, labels=labels ) ) @functools.partial(jax.pmap, axis_name="batch") def p_update_metrics(valid_metrics, labels, logits): return valid_metrics.merge( ValidationMetrics.gather_from_model_output( logits=logits, labels=labels, axis_name="batch" ) ) batch_size = 4 num_classes = 5 key = jax.random.PRNGKey(2) logits = jax.random.normal(key, [batch_size, num_classes]) labels = jax.numpy.float32(logits < 0) valid_metrics = ValidationMetrics.empty() valid_metrics = update_metrics(valid_metrics, labels, logits) serial_metrics = valid_metrics.compute() # Compute replicated metrics. valid_metrics = flax.jax_utils.replicate(ValidationMetrics.empty()) logits_repl = flax.jax_utils.replicate(logits) labels_repl = flax.jax_utils.replicate(labels) valid_metrics = p_update_metrics(valid_metrics, labels_repl, logits_repl) repl_metrics = flax.jax_utils.unreplicate(valid_metrics).compute() for k in ["valid_map"]: self.assertEqual(serial_metrics[k], repl_metrics[k]) self.assertGreaterEqual(serial_metrics[k], 0.0) self.assertLessEqual(serial_metrics[k], 1.0) def test_average_precision_no_labels(self): batch_size = 4 num_classes = 5 key = jax.random.PRNGKey(2) logits = jax.random.normal(key, [batch_size, num_classes]) labels = jax.numpy.zeros_like(logits) av_prec = jax.numpy.mean(metrics.average_precision(logits, labels)) self.assertEqual(av_prec, 0.0) def test_least_squares_mixit(self): # Create some genuinely interesting source signals... xs = jnp.linspace(-jnp.pi, jnp.pi, 256) f3 = cwt.gabor_filter(3, cwt.Domain.TIME, cwt.Normalization.L2)(xs).real f9 = cwt.gabor_filter(9, cwt.Domain.TIME, cwt.Normalization.L2)(xs).real f5 = cwt.gabor_filter(5, cwt.Domain.TIME, cwt.Normalization.L2)(xs).real f25 = cwt.gabor_filter(25, cwt.Domain.TIME, cwt.Normalization.L2)(xs).real mix1 = f3 + f9 mix2 = f5 + f25 reference = jnp.concatenate( [mix1[jnp.newaxis, jnp.newaxis, :], mix2[jnp.newaxis, jnp.newaxis, :]], 1, ) estimate = jnp.concatenate( [ f3[jnp.newaxis, jnp.newaxis, :], f5[jnp.newaxis, jnp.newaxis, :], f9[jnp.newaxis, jnp.newaxis, :], f25[jnp.newaxis, jnp.newaxis, :], ], 1, ) best_mix, mix_matrix = metrics.least_squares_mixit(reference, estimate) l1_err = lambda x, y: jnp.sum(jnp.abs(x - y)) # The mix matrix corresponding to the definition of mix1 and mix2. expected_mix = jnp.array([[1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0]]) self.assertEqual(l1_err(mix_matrix, expected_mix), 0.0) # The best_mix should recover the mixture channels exactly. self.assertEqual(l1_err(best_mix[0, 0], mix1), 0.0) self.assertEqual(l1_err(best_mix[0, 1], mix2), 0.0) if __name__ == "__main__": absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for conformer.""" import operator from chirp.models import conformer from jax import numpy as jnp from jax import random from jax import tree_util from absl.testing import absltest class ConformerTest(absltest.TestCase): def test_conv_subsample(self): batch_size = 2 time = 500 freqs = 80 features = 144 channels = 1 inputs = jnp.ones((batch_size, time, freqs, channels)) subsample = conformer.ConvolutionalSubsampling(features=features) key = random.PRNGKey(0) outputs, variables = subsample.init_with_output(key, inputs, train=False) self.assertEqual(outputs.shape, (batch_size, time // 4, features)) num_parameters = tree_util.tree_reduce( operator.add, tree_util.tree_map(jnp.size, variables['params']) ) expected_num_parameters = ( 3 * 3 * 144 + 144 + 3 * 3 * 144 * 144 # First conv layer + 144 + freqs // 4 * 144 * 144 # Second conv layer + 144 # Projection layer ) self.assertEqual(num_parameters, expected_num_parameters) if __name__ == '__main__': absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for Soundscapes library and specific dataset functionality.""" import os import tempfile from absl import logging from chirp import path_utils from chirp.data.soundscapes import dataset_fns from chirp.data.soundscapes import soundscapes from chirp.data.soundscapes import soundscapes_lib from chirp.taxonomy import namespace_db from etils import epath import librosa import tensorflow_datasets as tfds from absl.testing import absltest from absl.testing import parameterized BUILDER_CONFIGS = soundscapes.Soundscapes.BUILDER_CONFIGS SUPERVISED_CONFIGS = [b for b in BUILDER_CONFIGS if b.supervised] UNSUPERVISED_CONFIGS = [b for b in BUILDER_CONFIGS if not b.supervised] class SoundscapesLibTest(parameterized.TestCase): def _make_audio(self, audio_path, filename, extension, all_audio_filepaths): """Creates a test audio file.""" if not filename.endswith(extension): filename = '.'.join([filename, extension]) audio_filepath = audio_path / filename if not audio_filepath.parent.exists(): audio_filepath.parent.mkdir(parents=True) if audio_filepath in all_audio_filepaths: return tfds.core.lazy_imports.pydub.AudioSegment.silent(duration=100000).export( audio_filepath, format=extension ) logging.info('created audio file : %s', audio_filepath) all_audio_filepaths.append(audio_filepath) return audio_filepath def setUp(self): super(SoundscapesLibTest, self).setUp() self.data_dir = tempfile.TemporaryDirectory('data_dir').name os.mkdir(self.data_dir) # We use the 'caples.csv' only to get the parent directory's path. self.testdata_dir = path_utils.get_absolute_path( 'tests/testdata/caples.csv' ).parent def test_load_caples_annotations(self): annos_csv_path = path_utils.get_absolute_path('tests/testdata/caples.csv') annos = dataset_fns.load_caples_annotations(annos_csv_path) # There are six lines in the example file, but one contains a 'comros' # annotation which should be dropped. self.assertLen(annos, 5) expected_labels = ['gockin', 'dusfly', 'dusfly', 'dusfly', 'yerwar'] for expected_label, (_, anno) in zip(expected_labels, annos.iterrows()): # Caples annotations only contain the filename's stem. self.assertLen(anno.filename.split('.'), 1) self.assertEqual(anno.namespace, 'ebird2021') self.assertEqual(anno.label, [expected_label]) @parameterized.named_parameters([ ('_ssw', 'ssw.csv', ['cangoo', 'blujay', 'rewbla', 'cangoo']), ( '_sierras_kahl', 'sierras_kahl.csv', ['amerob', 'amerob', 'herthr', 'herthr'], ), ( '_peru', 'peru.csv', ['blfant1', 'grasal3', 'greant1', 'butwoo1', 'unknown'], ), ( '_hawaii', 'hawaii.csv', ['hawama', 'hawama', 'ercfra', 'jabwar', 'jabwar'], ), ( '_high_sierras', 'high_sierras.csv', ['gcrfin', 'gcrfin', 'gcrfin', 'whcspa', 'whcspa', 'amepip'], ), ( '_coffee_farms', 'coffee_farms.csv', ['compot1', 'compot1', 'compot1', 'compot1'], ), ]) def test_load_cornell_annotations(self, csv_name, expected_labels): annos_csv_path = path_utils.get_absolute_path('tests/testdata/' + csv_name) annos = dataset_fns.load_cornell_annotations(annos_csv_path) self.assertLen(annos, len(expected_labels)) for expected_label, (_, anno) in zip(expected_labels, annos.iterrows()): self.assertTrue(anno.filename.endswith('.flac')) self.assertLen(anno.filename.split('.'), 2) self.assertEqual(anno.namespace, 'ebird2021') self.assertEqual(anno.label, [expected_label]) def test_load_powdermill_annotations(self): # Combine the Hawaii 'raw' annotations into a single csv. combined_csv_path = epath.Path(self.data_dir) / 'powdermill.csv' dataset_fns.combine_powdermill_annotations( self.testdata_dir / 'powdermill', combined_csv_path ) annos_csv_path = path_utils.get_absolute_path( 'tests/testdata/powdermill.csv' ) for csv_path in [combined_csv_path, annos_csv_path]: annos = dataset_fns.load_powdermill_annotations(csv_path) self.assertLen(annos, 5) expected_labels = [ 'norcar', 'woothr', 'eastow', 'eastow', 'eastow', ] for expected_label, (_, anno) in zip(expected_labels, annos.iterrows()): self.assertTrue(anno.filename.endswith('.wav')) self.assertLen(anno.filename.split('.'), 2) # Check that we got the nested filepath. self.assertEqual( anno.filename, 'Recording_1/Recording_1_Segment_05.wav' ) self.assertEqual(anno.namespace, 'ebird2021') self.assertEqual(anno.label, [expected_label]) @parameterized.named_parameters( dict(testcase_name='_' + bc.name, builder_config=bc) for bc in SUPERVISED_CONFIGS ) def test_create_annotated_segments_df(self, builder_config): if builder_config.annotation_filename == 'annotations.csv': filename = f'{builder_config.name}.csv'.replace('_full_length', '') elif builder_config.annotation_filename: filename = builder_config.annotation_filename else: filename = f'{builder_config.name}.csv' annotations_path = self.testdata_dir / filename annos = builder_config.annotation_load_fn(annotations_path) if not builder_config.supervised: raise ValueError('Running a supervised test on an unsupervised config.') # Create some audio files. audio_path = epath.Path(self.data_dir) / builder_config.name / 'audio' all_audio_filepaths = [] for _, anno in annos.iterrows(): if anno.filename.endswith('.wav'): self._make_audio(audio_path, anno.filename, 'wav', all_audio_filepaths) elif anno.filename.endswith('.flac'): self._make_audio(audio_path, anno.filename, 'flac', all_audio_filepaths) else: # Probably just a stem; make a wav file. self._make_audio(audio_path, anno.filename, 'wav', all_audio_filepaths) # Finally, check that the lights are on. segments = soundscapes_lib.create_segments_df( all_audio_filepaths=all_audio_filepaths, annotations_df=annos, supervised=builder_config.supervised, metadata_load_fn=builder_config.metadata_load_fn, metadata_dir=self.testdata_dir, metadata_fields=builder_config.metadata_fields, ) self.assertLen(segments, len(annos)) def test_get_full_length_annotations(self): builder_config = [ c for c in BUILDER_CONFIGS if c.name == 'caples_full_length' ][0] filename = ( builder_config.annotation_filename or f'{builder_config.name}.csv' ) annotations_path = self.testdata_dir / filename annos = builder_config.annotation_load_fn(annotations_path) audio_path = epath.Path(self.data_dir) / builder_config.name / 'audio' all_audio_filepaths = [] for _, anno in annos.iterrows(): self._make_audio(audio_path, anno.filename, 'wav', all_audio_filepaths) segments = soundscapes_lib.create_segments_df( all_audio_filepaths=all_audio_filepaths, annotations_df=annos, supervised=builder_config.supervised, metadata_load_fn=builder_config.metadata_load_fn, metadata_dir=self.testdata_dir, metadata_fields=builder_config.metadata_fields, ) # The Caples testdata contains only a single file, so no need to subselect. self.assertLen(all_audio_filepaths, 1) audio, _ = librosa.load(all_audio_filepaths[0], sr=32000) db = namespace_db.load_db() annotations = soundscapes_lib.get_full_length_annotations( audio, segments, db.class_lists['caples'], 32000, unknown_guard=True ) # Check that unknown guard annotations exist. self.assertLen(annotations, 7) self.assertEqual(annotations['label'][0], 'unknown') self.assertEqual(annotations['label'][6], 'unknown') if __name__ == '__main__': absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for pooling.""" import functools from chirp.models import pooling from jax import numpy as jnp from jax import random import numpy as np from absl.testing import absltest class PoolingTest(absltest.TestCase): def test_gaussian_pooling(self): num_channels = 2 num_steps = 100 window_size = 50 inputs = jnp.reshape( jnp.arange(num_channels * num_steps, dtype=jnp.float32), (num_channels, num_steps), ) inputs = inputs.T[jnp.newaxis] window_pool = pooling.WindowPool( window=pooling.gaussian, window_size=window_size, window_init=functools.partial(pooling.gaussian_init, std=5.0), stride=window_size, padding="VALID", ) rng = random.PRNGKey(0) variables = window_pool.init(rng, inputs) outputs = window_pool.apply(variables, inputs) self.assertEqual(outputs.shape, (1, num_steps // window_size, num_channels)) np.testing.assert_allclose(outputs[0, 0, 0], (window_size - 1) / 2) if __name__ == "__main__": absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for audio utilities.""" import os from chirp import audio_utils from jax import numpy as jnp from jax import random from jax import scipy as jsp from librosa.core import spectrum import numpy as np import tensorflow as tf from absl.testing import absltest from absl.testing import parameterized class AudioUtilsTest(parameterized.TestCase): @classmethod def setUpClass(cls): super().setUpClass() cls.length_s = 2 cls.sample_rate_hz = 11_025 cls.num_frames = cls.sample_rate_hz * cls.length_s cls.batch_dims = (2, 3) cls.signal = jnp.sin(jnp.linspace(0.0, 440 * jnp.pi, cls.num_frames)) cls.noise = 0.5 * random.normal( random.PRNGKey(0), cls.batch_dims + (cls.num_frames,) ) cls.audio = cls.signal + cls.noise _, _, cls.spectrogram = jsp.signal.stft(cls.audio) def test_load_audio(self): wav_path = os.path.join( os.path.normpath(os.path.dirname(__file__)), 'testdata', 'tfds_builder_wav_directory_test', 'clap.wav', ) audio = audio_utils.load_audio(wav_path, 32000) self.assertLen(audio, 678240) def test_multi_load_audio(self): wav_path = os.path.join( os.path.normpath(os.path.dirname(__file__)), 'testdata', 'tfds_builder_wav_directory_test', 'clap.wav', ) offsets = [0.0, 0.1, 0.2] audios = list( audio_utils.multi_load_audio_window([wav_path] * 3, offsets, 32000, -1) ) # The first result should be the full wav file. self.assertLen(audios, 3) self.assertLen(audios[0], 678240) # The second result has offset 0.1s. # Note that because the audio is resampled to 32kHz, we don't have perfect # numerical equality. self.assertLen(audios[1], 678240 - int(0.1 * 32000)) np.testing.assert_array_almost_equal( audios[0][int(0.1 * 32000) :], audios[1], 4 ) # The third result has offset 0.2s. self.assertLen(audios[2], 678240 - int(0.2 * 32000)) np.testing.assert_array_almost_equal( audios[0][int(0.2 * 32000) :], audios[2], 4 ) def test_pcen(self): gain = 0.5 smoothing_coef = 0.1 bias = 2.0 root = 2.0 eps = 1e-6 spec = jnp.abs(self.spectrogram) out = audio_utils.pcen( spec, gain=gain, smoothing_coef=smoothing_coef, bias=bias, root=root, eps=eps, )[0] librosa_out = spectrum.pcen( spec, b=smoothing_coef, gain=gain, bias=bias, power=1 / root, eps=eps, # librosa starts with an initial state of (1 - s), we start with x[0] zi=(1 - smoothing_coef) * spec[..., 0:1, :], axis=-2, ) np.testing.assert_allclose(out, librosa_out, rtol=5e-2) @parameterized.product( # NOTE: TF and JAX have different outputs when nperseg is odd. nperseg=(256, 230), noverlap=(0, 17), # NOTE: FFT length must be factorizable into primes less than 127 (this # is a cuFFT restriction). nfft=(256, 301), boundary=('zeros', None), padded=(True, False), ) def test_stft_tf(self, nperseg, noverlap, nfft, boundary, padded): batch_size = 3 sample_rate_hz = 22050 window = 'hann' # NOTE: We don't test the Hamming window, since TensorFlow and SciPy have # different implementations, which leads to slightly different results. # To be precise, the difference is that: # sp.signal.get_window('hamming', N) == tf.signal.hamming_window(N + 1)[:-1] time_size = 5 * sample_rate_hz audio = jnp.sin(jnp.linspace(0.0, 440 * jnp.pi, time_size)) noise = 0.01 * random.normal(random.PRNGKey(0), (batch_size, time_size)) signal = audio + noise _, _, stfts = jsp.signal.stft( signal, fs=1 / sample_rate_hz, window=window, nperseg=nperseg, noverlap=noverlap, nfft=nfft, boundary=boundary, padded=padded, ) stfts_tf = audio_utils.stft_tf( tf.constant(signal), fs=1 / sample_rate_hz, window=window, nperseg=nperseg, noverlap=noverlap, nfft=nfft, boundary=boundary, padded=padded, ) np.testing.assert_allclose(stfts, stfts_tf.numpy(), atol=1e-5) def test_pad_to_length_if_shorter(self): audio = jnp.asarray([-1, 0, 1, 0], dtype=jnp.float32) np.testing.assert_allclose( audio_utils.pad_to_length_if_shorter(audio, 4), audio ) np.testing.assert_allclose( audio_utils.pad_to_length_if_shorter(audio, 6), jnp.asarray([0, -1, 0, 1, 0, -1], dtype=jnp.float32), ) if __name__ == '__main__': absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for chirp.signal.""" from chirp import signal from jax import numpy as jnp import numpy as np import tensorflow as tf from absl.testing import absltest class SignalTest(absltest.TestCase): def test_linear_to_mel_weight_matrix(self): jax_val = signal.linear_to_mel_weight_matrix() tf_val = tf.signal.linear_to_mel_weight_matrix() np.testing.assert_allclose(jax_val, tf_val, rtol=1e-3) def test_frame(self): shape = (2, 7, 3) signal_ = jnp.reshape(jnp.arange(2 * 7 * 3), shape) frames = signal.frame(signal_, 5, 2, axis=1) self.assertEqual(frames.shape, (2, 2, 5, 3)) np.testing.assert_array_equal(frames[1, 1, :, 2], signal_[1, 2:7, 2]) if __name__ == "__main__": absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for xeno_canto.""" import functools import shutil import tempfile from chirp.data import filter_scrub_utils as fsu from chirp.tests import fake_dataset import pandas as pd import tensorflow_datasets as tfds from absl.testing import absltest class DataProcessingTest(absltest.TestCase): """Used to factorize the common setup between data processing tests.""" def setUp(self): super().setUp() # We define a toy dataframe that is easy to manually check self.toy_df = pd.DataFrame({ 'species_code': ['ostric2', 'ostric3', 'grerhe1'], 'Common name': ['Common Ostrich', 'Somali Ostrich', 'Greater Rhea'], 'bg_labels': [ ['ostric3', 'grerhe1'], ['ostric2', 'grerhe1'], ['ostric2', 'ostric3'], ], 'Country': ['Colombia', 'Australia', 'France'], }) # Additionally, we define a dataframe that mimics the actual dataset # of interest. Test will be carried out on both dataframes. self.temp_dir = tempfile.mkdtemp() # self.temp_dir = self.create_tempdir() # create_tempdir() raises an UnparsedFlagAccessError when debugged locally, # Using `tempdir` instead and manually deleting the folder after test. fake_builder = fake_dataset.FakeDataset(data_dir=self.temp_dir) fake_builder.download_and_prepare() self.fake_info = fake_builder.info self.fake_df = tfds.as_dataframe(fake_builder.as_dataset()['train']) def tearDown(self): super().tearDown() shutil.rmtree(self.temp_dir) class NotInTests(DataProcessingTest): def test_filtering_ideal(self): """Ensure filtering produces expected results in nominal case.""" # 1) Tests on the toy dataFrame. test_df = self.toy_df.copy() fn_call = functools.partial( fsu.is_not_in, key='Country', values=['France', 'Brazil'] ) # Ensure we're properly filtering out species self.assertEqual(fn_call(test_df).tolist(), [True, True, False]) # 2) Tests on the fake dataFrame. df = self.fake_df.copy() targeted_country = b'South Africa' # If that doesn't pass, maybe South Africa is just no longer a good example # to test on. Check fake_dataset how the recordings are populated. self.assertIn(targeted_country, df['country'].unique()) filtering_fn = functools.partial( fsu.is_not_in, key='country', values=[targeted_country] ) filtered_df = df[filtering_fn(df)] self.assertGreater(len(df), len(filtered_df)) # Ensure we've filtered all South African species. self.assertEqual(filtered_df['country'].isin([targeted_country]).sum(), 0) # Ensure we did not filter too many countries. self.assertEqual( (df['country'] == targeted_country).sum(), len(df) - len(filtered_df) ) def test_filtering_wrong_field(self): """Ensure filtering raises adequate error when the field does not exist.""" test_df = self.toy_df.copy() # Make a query with an error in the name of the field with self.assertRaises(ValueError): _ = fsu.is_not_in(test_df, key='county', values=['France', 'Brazil']) def test_filtering_wrong_type(self): """Ensure filtering raises adequate error with wrong input type.""" test_df = self.toy_df.copy() with self.assertRaises(TypeError): _ = ( fsu.is_not_in(test_df, key='Country', values=[b'France', b'Brazil']), ) class ScrubTest(DataProcessingTest): def test_scrubbing_ideal(self): """Ensure scrubbing works as expected in nominal case.""" expected_df = self.toy_df.copy() expected_df['bg_labels'] = [ ['grerhe1'], ['ostric2', 'grerhe1'], ['ostric2'], ] # 1) Simple scrubbing queries on the toy dataframe test_df = self.toy_df.copy() test_df = test_df.apply( lambda row: fsu.scrub(row, 'bg_labels', ['ostric3']), axis=1, result_type='expand', ) self.assertEqual(expected_df.to_dict(), test_df.to_dict()) # 2) Simple scrubbing queries on the fake_df df = self.fake_df.copy() targeted_country = b'South Africa' key = 'label' all_species = df[key].explode(key).unique() south_african_species = ( df[df['country'] == targeted_country][key].explode(key).unique() ) scrubbing_fn = functools.partial( fsu.scrub, key=key, values=south_african_species ) scrubbed_df = df.apply(scrubbing_fn, axis=1, result_type='expand') remaining_species = scrubbed_df[key].explode(key).unique() self.assertEqual( set(south_african_species), set(all_species).difference(remaining_species), ) def test_scrubbing_empty_col(self): """Ensure scrubbing doesn't do anything if the column is empty.""" expected_df = self.toy_df.copy() test_df = self.toy_df.copy() expected_df['bg_labels'] = [[], [], []] test_df['bg_labels'] = [[], [], []] test_df = test_df.apply( lambda row: fsu.scrub(row, 'bg_labels', ['ostric3']), axis=1, result_type='expand', ) self.assertEqual(expected_df.to_dict(), test_df.to_dict()) def test_scrubbing_empty_query(self): """Ensure scrubbing doesn't do anything if `values` is an empty list.""" expected_df = self.toy_df.copy() test_df = self.toy_df.copy() test_df = test_df.apply( lambda row: fsu.scrub(row, 'bg_labels', []), axis=1, result_type='expand', ) self.assertEqual(expected_df.to_dict(), test_df.to_dict()) def test_scrub_no_side_effects(self): """Ensure scrubbing operation does not have side-effects.""" df = self.fake_df.copy() key = 'label' # Scrub every foreground label. scrubbing_fn = functools.partial( fsu.scrub, key=key, values=df.explode(key)[key].unique() ) _ = df.apply(scrubbing_fn, axis=1, result_type='expand') # If scrub function had side-effects, e.g. modified the row in-place, # the df would also change. self.assertTrue(self.fake_df.equals(df)) class QueryTest(DataProcessingTest): def test_masking_query(self): """Ensure masking queries work as expected.""" mask_query = fsu.Query( op=fsu.MaskOp.IN, kwargs={'key': 'species_code', 'values': ['ostric2']} ) self.assertEqual( fsu.apply_query(self.toy_df, mask_query).tolist(), [True, False, False] ) def test_contains_query(self): mask_query = fsu.Query( op=fsu.MaskOp.CONTAINS_ANY, kwargs={'key': 'bg_labels', 'values': ['ostric2']}, ) self.assertEqual( fsu.apply_query(self.toy_df, mask_query).tolist(), [False, True, True] ) mask_query = fsu.Query( op=fsu.MaskOp.CONTAINS_NO, kwargs={'key': 'bg_labels', 'values': ['ostric1', 'ostric2']}, ) self.assertEqual( fsu.apply_query(self.toy_df, mask_query).tolist(), [True, False, False] ) def test_scrub_query(self): """Ensure scrubbing queries work as expected.""" # Test scrubbing on list-typed fields. scrub_query = fsu.Query( op=fsu.TransformOp.SCRUB, kwargs={'key': 'bg_labels', 'values': ['ostric2']}, ) df = fsu.apply_query(self.toy_df, scrub_query) expected_df = self.toy_df.copy() expected_df['bg_labels'] = [ ['ostric3', 'grerhe1'], ['grerhe1'], ['ostric3'], ] # Test scrubbing on str-typed fields. scrub_query = fsu.Query( op=fsu.TransformOp.SCRUB, kwargs={'key': 'species_code', 'values': ['ostric2', 'ostric3']}, ) df = fsu.apply_query(self.toy_df, scrub_query) expected_df = self.toy_df.copy() expected_df['species_code'] = ['', '', 'grerhe1'] self.assertEqual(expected_df.to_dict(), df.to_dict()) scrub_query = fsu.Query( op=fsu.TransformOp.SCRUB_ALL_BUT, kwargs={'key': 'species_code', 'values': ['ostric2', 'ostric3']}, ) df = fsu.apply_query(self.toy_df, scrub_query) expected_df = self.toy_df.copy() expected_df['species_code'] = ['ostric2', 'ostric3', ''] self.assertEqual(expected_df.to_dict(), df.to_dict()) # Test with a replace value scrub_query = fsu.Query( op=fsu.TransformOp.SCRUB, kwargs={ 'key': 'species_code', 'values': ['ostric2', 'ostric3'], 'replace_value': 'unknown', }, ) df = fsu.apply_query(self.toy_df, scrub_query) expected_df = self.toy_df.copy() expected_df['species_code'] = ['unknown', 'unknown', 'grerhe1'] self.assertEqual(expected_df.to_dict(), df.to_dict()) scrub_query = fsu.Query( op=fsu.TransformOp.SCRUB, kwargs={ 'key': 'bg_labels', 'values': ['ostric2', 'ostric3'], 'replace_value': 'unknown', }, ) df = fsu.apply_query(self.toy_df, scrub_query) expected_df = self.toy_df.copy() expected_df['bg_labels'] = [ ['unknown', 'grerhe1'], ['unknown', 'grerhe1'], ['unknown', 'unknown'], ] self.assertEqual(expected_df.to_dict(), df.to_dict()) def test_complemented_query(self): df = self.toy_df.copy() df['unique_key'] = [0, 1, 2] # Test nominal case with scrubbing query. Scrubbing does not remove any # samples. Therefore check that setting complement to True returns an # empty df. scrub_query = fsu.Query( op=fsu.TransformOp.SCRUB, kwargs={'key': 'bg_labels', 'values': ['ostric2']}, ) new_df = fsu.apply_complement( df, fsu.QueryComplement(scrub_query, 'unique_key') ) self.assertEmpty(new_df) # Test nominal case with filtering query filter_query = fsu.Query( op=fsu.TransformOp.FILTER, kwargs={ 'mask_op': fsu.MaskOp.IN, 'op_kwargs': {'key': 'species_code', 'values': ['ostric2']}, }, ) self.assertEqual( fsu.apply_complement( df, fsu.QueryComplement(filter_query, 'unique_key') ).to_dict(), df.drop([0]).to_dict(), ) # Test that when values don't uniquely define each recording, an error # is raised with self.assertRaises(ValueError): df['unique_key'] = [0, 1, 1] fsu.apply_complement(df, fsu.QueryComplement(filter_query, 'unique_key')) def test_append_query(self): new_row = { 'bg_labels': 'ignore', 'species_code': 'ignore', 'Common name': 'ignore', 'Country': 'ignore', } append_query = fsu.Query(fsu.TransformOp.APPEND, {'row': new_row}) new_df = fsu.apply_query(self.toy_df, append_query) self.assertEqual( new_df.to_dict(), pd.concat( [self.toy_df, pd.Series(new_row)], ignore_index=True ).to_dict(), ) # Append query with keys not matching the dataframe append_query = fsu.Query(fsu.TransformOp.APPEND, {'row': {'a': 'b'}}) with self.assertRaises(ValueError): fsu.apply_query(self.toy_df, append_query) class QueryParallelTest(DataProcessingTest): def test_merge_or(self): mask_query_1 = fsu.Query( fsu.MaskOp.IN, {'key': 'Country', 'values': ['Colombia']} ) mask_query_2 = fsu.Query( fsu.MaskOp.IN, {'key': 'species_code', 'values': ['grerhe1']} ) query_parallel = fsu.QueryParallel( [mask_query_1, mask_query_2], fsu.MergeStrategy.OR ) mask = fsu.apply_parallel(self.toy_df, query_parallel) self.assertEqual(mask.tolist(), [True, False, True]) self.assertIn('Colombia', self.toy_df[mask]['Country'].tolist()) self.assertIn('grerhe1', self.toy_df[mask]['species_code'].tolist()) # Ensure an error is raised if any element is not a boolean Series. with self.assertRaises(TypeError): fsu.or_series([ self.toy_df['species_code'], self.toy_df['species_code'] == 'ostric2', ]) # Ensure an error is raised if Series don't pertain to the same set of # recordings. with self.assertRaises(RuntimeError): fsu.or_series([ self.toy_df.drop(0)['species_code'] == 'ostric2', self.toy_df['species_code'] == 'ostric2', ]) def test_merge_and(self): mask_query_1 = fsu.Query( fsu.MaskOp.IN, {'key': 'Country', 'values': ['Colombia', 'France']} ) mask_query_2 = fsu.Query( fsu.MaskOp.IN, {'key': 'species_code', 'values': ['grerhe1']} ) query_parallel = fsu.QueryParallel( [mask_query_1, mask_query_2], fsu.MergeStrategy.AND ) mask = fsu.apply_parallel(self.toy_df, query_parallel) self.assertEqual(mask.tolist(), [False, False, True]) # Ensure an error is raised if any element is not a boolean Series. with self.assertRaises(RuntimeError): fsu.and_series([ self.toy_df['species_code'], self.toy_df['species_code'] == 'ostric2', ]) # Ensure an error is raised if Series don't pertain to the same set of # recordings. with self.assertRaises(RuntimeError): fsu.and_series([ self.toy_df.drop(0)['species_code'] == 'ostric2', self.toy_df['species_code'] == 'ostric2', ]) def test_merge_concat_no_duplicates(self): filter_query_1 = fsu.Query( fsu.TransformOp.FILTER, { 'mask_op': fsu.MaskOp.IN, 'op_kwargs': {'key': 'Country', 'values': ['Colombia']}, }, ) filter_query_2 = fsu.Query( fsu.TransformOp.FILTER, { 'mask_op': fsu.MaskOp.IN, 'op_kwargs': { 'key': 'Country', 'values': ['Colombia', 'Australia'], }, }, ) scrub_query = fsu.Query( fsu.TransformOp.SCRUB, {'key': 'bg_labels', 'values': ['ostric3']} ) # First recording will be selected by both queries (i.e. duplicate). The # following ensures it only appears once in the result when using # CONCAT_NO_DUPLICATES query_parallel = fsu.QueryParallel( [filter_query_1, filter_query_2], fsu.MergeStrategy.CONCAT_NO_DUPLICATES ) self.assertTrue( fsu.apply_parallel(self.toy_df, query_parallel).equals( self.toy_df.drop(2) ) ) # In the following, we also apply scrubbing in the second Query. This # scrubbing will modify the first recording, and therefore it shouldn't be # counted as a duplicate anymore. In the final df, we should find two # versions of the first recording (the original, and the scrubbed one). query_parallel = fsu.QueryParallel( [filter_query_1, fsu.QuerySequence([filter_query_2, scrub_query])], fsu.MergeStrategy.CONCAT_NO_DUPLICATES, ) scrubbed_r0 = self.toy_df.copy().loc[0] scrubbed_r0['bg_labels'] = ['grerhe1'] # Here we don't use assertEqual with the .to_dict() because .to_dict() # automatically removes duplicate indexes, making it impossible to know # if duplicates were removed because of our merging strategy or because # of .to_dict(). self.assertTrue( fsu.apply_parallel(self.toy_df, query_parallel).equals( pd.concat([ self.toy_df.loc[[0]], pd.DataFrame([scrubbed_r0, self.toy_df.loc[1]]), ]) ) ) # Ensure the concatenation raises an error if the two dataframes don't have # the exact same columns. with self.assertRaises(RuntimeError): fsu.concat_no_duplicates( [self.toy_df, self.toy_df[['species_code', 'bg_labels']]] ) class QuerySequenceTest(DataProcessingTest): def test_untargeted_filter_scrub(self): """Ensure that applying a QuerySequence (no masking specified) works.""" filter_args = { 'mask_op': fsu.MaskOp.IN, 'op_kwargs': {'key': 'species_code', 'values': ['ostric3', 'ostric2']}, } filter_query = fsu.Query(op=fsu.TransformOp.FILTER, kwargs=filter_args) scrub_query = fsu.Query( op=fsu.TransformOp.SCRUB, kwargs={'key': 'bg_labels', 'values': ['ostric2']}, ) query_sequence = fsu.QuerySequence(queries=[filter_query, scrub_query]) df = fsu.apply_sequence(self.toy_df, query_sequence) expected_df = pd.DataFrame({ 'species_code': ['ostric2', 'ostric3'], 'Common name': [ 'Common Ostrich', 'Somali Ostrich', ], 'bg_labels': [ ['ostric3', 'grerhe1'], ['grerhe1'], ], 'Country': ['Colombia', 'Australia'], }) self.assertEqual(expected_df.to_dict(), df.to_dict()) def test_targeted_filter_scrub(self): """Test QuerySequence on a subset of samples (w/ masking query).""" filter_args = { 'mask_op': fsu.MaskOp.IN, 'op_kwargs': {'key': 'species_code', 'values': ['ostric3', 'grerhe1']}, } filter_query = fsu.Query(op=fsu.TransformOp.FILTER, kwargs=filter_args) scrub_query = fsu.Query( op=fsu.TransformOp.SCRUB, kwargs={'key': 'bg_labels', 'values': ['ostric2']}, ) query_sequence = fsu.QuerySequence( queries=[filter_query, scrub_query], mask_query=fsu.Query( op=fsu.MaskOp.IN, kwargs={'key': 'Country', 'values': ['Colombia', 'Australia']}, ), ) df = fsu.apply_sequence(self.toy_df, query_sequence) # In the example, only samples 1 and 3 have country values in # ['Colombia', 'Australia']. Therefore, sample 2 will not be affected at all # by any query. Sample 3 will be removed because of the first filtering # query. Sample 1 will survive the first filtering query, but will be # scrubbed out from its 'ostric2' bg_label. expected_df = pd.DataFrame({ 'species_code': ['ostric3', 'grerhe1'], 'Common name': ['Somali Ostrich', 'Greater Rhea'], 'bg_labels': [['grerhe1'], ['ostric2', 'ostric3']], 'Country': ['Australia', 'France'], }) self.assertEqual( expected_df.sort_values('species_code').to_dict('list'), df.sort_values('species_code').to_dict('list'), ) def test_nested_query_sequence(self): filter_args = { 'mask_op': fsu.MaskOp.IN, 'op_kwargs': {'key': 'species_code', 'values': ['ostric3', 'grerhe1']}, } filter_query = fsu.Query(fsu.TransformOp.FILTER, filter_args) mask_query = fsu.Query( fsu.MaskOp.IN, {'key': 'species_code', 'values': ['grerhe1']} ) scrub_query = fsu.Query( fsu.TransformOp.SCRUB, {'key': 'bg_labels', 'values': ['ostric2']} ) equivalent_queries = [ fsu.QuerySequence( [filter_query, fsu.QuerySequence([scrub_query], mask_query)] ), fsu.QuerySequence( [ filter_query, fsu.QuerySequence([filter_query]), fsu.QuerySequence([scrub_query], mask_query), ], ), fsu.QuerySequence( [ fsu.QuerySequence([filter_query]), filter_query, fsu.QuerySequence([scrub_query], mask_query), ], ), fsu.QuerySequence( [ fsu.QuerySequence([]), filter_query, fsu.QuerySequence([scrub_query], mask_query), ], ), fsu.QuerySequence( [ filter_query, fsu.QuerySequence([filter_query, scrub_query], mask_query), ], ), ] expected_df = self.toy_df.drop(0) expected_df['bg_labels'] = [['ostric2', 'grerhe1'], ['ostric3']] for query_sequence in equivalent_queries: self.assertEqual( expected_df.to_dict(), fsu.apply_sequence(self.toy_df, query_sequence).to_dict(), ) class FilterByClasslistTest(DataProcessingTest): def test_filter_not_in_class_list(self): """Test filtering all items not in the class list .""" filter_query = fsu.filter_not_in_class_list('species_code', 'tiny_species') expected_df = pd.DataFrame({ 'species_code': ['ostric3', 'grerhe1'], 'Common name': ['Somali Ostrich', 'Greater Rhea'], 'bg_labels': [['ostric2', 'grerhe1'], ['ostric2', 'ostric3']], 'Country': ['Australia', 'France'], }) self.assertEqual( fsu.apply_query(self.toy_df, filter_query).values.tolist(), expected_df.values.tolist(), ) def test_filter_in_class_list(self): """Test filtering all items not in the class list.""" filter_query = fsu.filter_in_class_list('species_code', 'tiny_species') expected_df = pd.DataFrame({ 'species_code': ['ostric2'], 'Common name': ['Common Ostrich'], 'bg_labels': [ ['ostric3', 'grerhe1'], ], 'Country': ['Colombia'], }) self.assertEqual( fsu.apply_query(self.toy_df, filter_query).values.tolist(), expected_df.values.tolist(), ) # def test_filter_in_class_list(self): def test_filter_contains_no_class_list(self): """Test filtering all items not in target class list .""" filter_query = fsu.filter_contains_no_class_list( 'bg_labels', 'tiny_species' ) expected_df = pd.DataFrame({ 'species_code': ['ostric2'], 'Common name': ['Common Ostrich'], 'bg_labels': [['ostric3', 'grerhe1']], 'Country': ['Colombia'], }) self.assertEqual( fsu.apply_query(self.toy_df, filter_query).values.tolist(), expected_df.values.tolist(), ) def test_filter_contains_any_class_list(self): """Test filtering any items that is in target class list .""" filter_query = fsu.filter_contains_any_class_list( 'bg_labels', 'tiny_species' ) expected_df = pd.DataFrame({ 'species_code': ['ostric3', 'grerhe1'], 'Common name': ['Somali Ostrich', 'Greater Rhea'], 'bg_labels': [['ostric2', 'grerhe1'], ['ostric2', 'ostric3']], 'Country': ['Australia', 'France'], }) self.assertEqual( fsu.apply_query(self.toy_df, filter_query).values.tolist(), expected_df.values.tolist(), ) if __name__ == '__main__': absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for MAE.""" from chirp.models import mae from jax import numpy as jnp from jax import random from absl.testing import absltest class MaeTest(absltest.TestCase): def test_shapes(self): batch_size = 16 image_size = (256, 512) patch_size = (16, 16) mask_rate = 0.8 hidden_size = 64 c = 2 h, w = image_size[0] // patch_size[0], image_size[1] // patch_size[1] num_patches = int(h * w * (1 - mask_rate)) inputs = jnp.ones((batch_size,) + image_size + (c,)) rng = random.PRNGKey(0) params_rng, mask_rng, dropout_rng = random.split(rng, num=3) encoder = mae.Encoder( mlp_dim=32, num_layers=2, num_heads=8, patch_size=patch_size, mask_rate=mask_rate, hidden_size=hidden_size, ) (encoded_patches, unmasked, masked), _ = encoder.init_with_output( {"params": params_rng, "patch_mask": mask_rng, "dropout": dropout_rng}, inputs, train=True, ) self.assertEqual( encoded_patches.shape, (batch_size, num_patches, hidden_size) ) self.assertEqual(unmasked.shape, (batch_size, num_patches)) self.assertEqual(masked.shape, (batch_size, h * w - num_patches)) decoder = mae.Decoder( output_size=image_size + (c,), patch_size=patch_size, mlp_dim=32, num_layers=2, num_heads=8, ) decoded_patches, _ = decoder.init_with_output( {"params": params_rng, "dropout": dropout_rng}, encoded_patches, unmasked, train=True, ) self.assertEqual( decoded_patches.shape, (batch_size, h * w, patch_size[0] * patch_size[1] * c), ) if __name__ == "__main__": absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for HuBERT.""" import tempfile from typing import Callable from chirp import config_utils from chirp.configs import config_globals from chirp.configs import hubert_base_pq from chirp.data import utils as data_utils from chirp.preprocessing import pipeline from chirp.tests import fake_dataset from chirp.train import hubert as hubert_train from clu import checkpoint from flax import linen as nn import jax from jax import numpy as jnp from jax import random from ml_collections import config_dict from absl.testing import absltest class ConstantEarlyFeatureExtractor(nn.Module): """A no-op encoder for quickly testing train+test loops.""" conv_layer_tuples: tuple[tuple[int, int, int], ...] dropout_prob: float = 0.0 activation: Callable[[jnp.ndarray], jnp.ndarray] = nn.gelu deprecated_group_conv: bool = False sz: int = 2 csz: int = 1 @nn.compact def __call__( self, inputs: jnp.ndarray, *unused_args, **unused_kwargs ) -> jnp.ndarray: del unused_args, unused_kwargs return jnp.zeros([inputs.shape[0], self.sz, self.csz]) class ConstantLateFeatureExtractor(nn.Module): model_dims: int = 6 sz: int = 2 @nn.compact def __call__( self, inputs: jnp.ndarray, *unused_args, **unused_kwargs ) -> jnp.ndarray: del unused_args, unused_kwargs return [jnp.zeros([inputs.shape[0], self.sz, self.model_dims])] class HuBERTTest(absltest.TestCase): def setUp(self): super().setUp() self.train_dir = tempfile.TemporaryDirectory("train_dir").name self.data_dir = tempfile.TemporaryDirectory("data_dir").name fake_builder = fake_dataset.FakeDataset(data_dir=self.data_dir) fake_builder.download_and_prepare() self.builder = fake_builder self.sample_rate_hz = 32000 self.model_dims = 6 self.window_size_s = 5 # Adds only one product quantizer, in the melspec space. self.num_centroids = 3 self.num_sections = 2 self.readout_points = (0,) self.alpha = 1.0 self.config = self._get_test_config() self.initialized_model = hubert_train.initialize_model( workdir=self.train_dir, num_train_steps=1, conv_layer_tuples=tuple([(1, 10, 80000)]), # this leads to 2 frames. early_fs_class=ConstantEarlyFeatureExtractor, **self.config.init_config ) (self.model_bundle, self.train_state, self.learn_rate_schedule) = ( self.initialized_model ) self.model = self.model_bundle.model self.key = self.model_bundle.key self.model_state = self.train_state.model_state self.params = self.train_state.params def _get_test_dataset(self, config): """Gets the dataset to use for these tests.""" ds, dataset_info = data_utils.get_dataset( "train", dataset_directory=self.builder.data_dir, pipeline=config.train_dataset_config.pipeline, ) return ds, dataset_info def _get_test_config( self, config_module=hubert_base_pq ) -> config_dict.ConfigDict: """Reduces test config sizes to avoid memory blowouts.""" config = config_module.get_config() config.sample_rate_hz = self.sample_rate_hz config.train_config.num_train_steps = 1 config.train_config.log_every_steps = 1 config.train_config.checkpoint_every_steps = 1 config.eval_config.eval_steps_per_checkpoint = 1 config.init_config.base_quantizer_config.num_centroids = self.num_centroids config.init_config.quantizer_config.num_sections = self.num_sections config.init_config.model_config.readout_points = self.readout_points config.init_config.model_config.mask_config.min_masks = 0 config.init_config.model_config.mask_config.mask_length = 1 config.init_config.frontend_config.stride = 80000 # yields 2 frames. config.init_config.frontend_config.sample_rate = self.sample_rate_hz config.init_config.input_size = self.window_size_s * self.sample_rate_hz config = config_utils.parse_config(config, config_globals.get_globals()) config.init_config.model_config.late_feature_extractor = ( ConstantLateFeatureExtractor() ) config.train_dataset_config.pipeline = pipeline.Pipeline( ops=[ pipeline.OnlyJaxTypes(), pipeline.ConvertBirdTaxonomyLabels( source_namespace="ebird2021", target_class_list="xenocanto", add_taxonomic_labels=True, ), pipeline.MixAudio(mixin_prob=0.0), pipeline.Batch(batch_size=2, split_across_devices=True), pipeline.RandomSlice(window_size=self.window_size_s), pipeline.RandomNormalizeAudio(min_gain=0.15, max_gain=0.25), ] ) config.eval_dataset_config.pipeline = pipeline.Pipeline( ops=[ pipeline.OnlyJaxTypes(), pipeline.MultiHot(), pipeline.Batch(batch_size=2, split_across_devices=True), pipeline.Slice( window_size=self.window_size_s, start=0.0, names=("audio",) ), pipeline.NormalizeAudio(target_gain=0.2, names=("audio",)), ] ) return config def test_shapes(self): """Test that the shapes of outputs returned by HuBERT are as expected.""" batch_size = 2 num_frames = 2 inputs = jnp.zeros([batch_size, self.window_size_s * self.sample_rate_hz]) step_key, key = random.split(self.key) dropout_key, low_pass_key = random.split(step_key) mask_key, _ = random.split(key) variables = {"params": self.params, **self.model_state} model_outputs, _ = self.model.apply( variables, inputs, train=True, mask_key=mask_key, train_mode_quantizer=True, mutable=list(self.model_state.keys()), rngs={ "dropout": dropout_key, "low_pass": low_pass_key, }, ) # Ensure that the number of logits matches that of targets. There will be # as many "sets" of these as there are quantizers. In this case it should # be just one, since `quantizer_points` has a single element. self.assertEqual(len(model_outputs.logits), len(model_outputs.targets)) self.assertLen(model_outputs.logits, 1) # Ensure the shapes of embeddings and logits are as expected. self.assertSequenceEqual( model_outputs.embedding[-1].shape, (batch_size, num_frames, self.model_dims), ) self.assertSequenceEqual( model_outputs.logits[-1].shape, (self.num_sections, batch_size, num_frames, self.num_centroids), ) def test_gradients(self): """Test that there is no gradient from HuBERT's loss to the quantizers.""" batch_size = 2 inputs = jnp.zeros([batch_size, self.window_size_s * self.sample_rate_hz]) step_key, key = random.split(self.key) dropout_key, low_pass_key = random.split(step_key) mask_key, _ = random.split(key) def step(params, model_state): variables = {"params": params, **model_state} model_outputs, _ = self.model.apply( variables, inputs, train=True, mask_key=mask_key, train_mode_quantizer=True, mutable=list(model_state.keys()), rngs={ "dropout": dropout_key, "low_pass": low_pass_key, }, ) hubert_loss = jnp.mean( hubert_train.hubert_loss_from_outputs( model_outputs, alpha=self.alpha, hubert_loss_mult=1.0 ) ) return hubert_loss _, grads = jax.value_and_grad(step)(self.params, self.model_state) self.assertIsNotNone(grads) def get_all_leaves(d): leaves = [] if not isinstance(d, dict): leaves.append(d) else: for _, v in d.items(): leaves.extend(get_all_leaves(v)) return leaves for k, v in grads.items(): if "quantizer" in k: quantizer_grads = get_all_leaves(v) for quant_grad in quantizer_grads: self.assertTrue((quant_grad == jnp.zeros_like(quant_grad)).all()) def test_train_one_step(self): """Test one step of training.""" ds, _ = self._get_test_dataset(self.config) hubert_train.train( *self.initialized_model, train_dataset=ds, reload_quantizer=False, logdir=self.train_dir, num_train_steps=1, log_every_steps=1, checkpoint_every_steps=1, num_quantizer_pretrain_steps=self.config.train_config.num_quantizer_pretrain_steps, quant_loss_mult=0.0, readout_loss_mult=0.0, hubert_loss_mult=1.0 ) ckpt = checkpoint.MultihostCheckpoint(self.train_dir) self.assertIsNotNone(ckpt.latest_checkpoint) def test_eval_one_step(self): ds, _ = self._get_test_dataset(self.config) # Write a checkpoint, or else the eval will hang. self.model_bundle.ckpt.save(self.train_state) self.config.eval_config.num_train_steps = 0 hubert_train.evaluate( model_bundle=self.model_bundle, train_state=self.train_state, learning_rate_schedule=self.learn_rate_schedule, valid_dataset=ds, workdir=self.train_dir, eval_sleep_s=0, **self.config.eval_config ) ckpt = checkpoint.MultihostCheckpoint(self.train_dir) self.assertIsNotNone(ckpt.latest_checkpoint) if __name__ == "__main__": absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for namespace_db.""" import io import tempfile from absl import logging from chirp.taxonomy import namespace from chirp.taxonomy import namespace_db import numpy as np import tensorflow as tf from absl.testing import absltest class NamespaceDbTest(absltest.TestCase): def test_load_namespace_db(self): db = namespace_db.load_db() # Check a couple ClassLists of known size. self.assertIn('caples', db.class_lists) caples_list = db.class_lists['caples'] self.assertEqual(caples_list.namespace, 'ebird2021') self.assertLen(caples_list.classes, 79) genus_mapping = db.mappings['ebird2021_to_genus'] caples_genera = caples_list.apply_namespace_mapping(genus_mapping) self.assertEqual(caples_genera.namespace, 'ebird2021_genera') self.assertLen(caples_genera.classes, 62) family_mapping = db.mappings['ebird2021_to_family'] caples_families = caples_list.apply_namespace_mapping(family_mapping) self.assertEqual(caples_families.namespace, 'ebird2021_families') self.assertLen(caples_families.classes, 30) order_mapping = db.mappings['ebird2021_to_order'] caples_orders = caples_list.apply_namespace_mapping(order_mapping) self.assertEqual(caples_orders.namespace, 'ebird2021_orders') self.assertLen(caples_orders.classes, 11) def test_class_maps(self): db = namespace_db.load_db() caples_list = db.class_lists['caples'] sierras_list = db.class_lists['sierra_nevadas'] table, image_mask = caples_list.get_class_map_tf_lookup(sierras_list) # The Caples list is a strict subset of the Sierras list. self.assertLen(caples_list.classes, np.sum(image_mask)) self.assertEqual(image_mask.shape, (len(sierras_list.classes),)) for i in range(len(caples_list.classes)): self.assertGreaterEqual( table.lookup(tf.constant([i], dtype=tf.int64)).numpy()[0], 0 ) def test_class_map_csv(self): cl = namespace.ClassList( 'ebird2021', ('amecro', 'amegfi', 'amered', 'amerob') ) cl_csv = cl.to_csv() with io.StringIO(cl_csv) as f: got_cl = namespace.ClassList.from_csv(f) self.assertEqual(got_cl.namespace, 'ebird2021') self.assertEqual(got_cl.classes, ('amecro', 'amegfi', 'amered', 'amerob')) # Check that writing with tf.io.gfile behaves as expected, as newline # behavior may be different than working with StringIO. with tempfile.NamedTemporaryFile(suffix='.csv') as f: with tf.io.gfile.GFile(f.name, 'w') as gf: gf.write(cl_csv) with open(f.name, 'r') as f: got_cl = namespace.ClassList.from_csv(f.readlines()) self.assertEqual(got_cl.namespace, 'ebird2021') self.assertEqual(got_cl.classes, ('amecro', 'amegfi', 'amered', 'amerob')) def test_namespace_class_list_closure(self): # Ensure that all classes in class lists appear in their namespace. db = namespace_db.load_db() all_missing_classes = set() for list_name, class_list in db.class_lists.items(): missing_classes = set() namespace = db.namespaces[class_list.namespace] for cl in class_list.classes: if cl not in namespace.classes: missing_classes.add(cl) all_missing_classes.add(cl) if missing_classes: logging.warning( 'The classes %s in class list %s did not appear in namespace %s.', missing_classes, list_name, class_list.namespace, ) missing_classes.discard('unknown') all_missing_classes.discard('unknown') self.assertEmpty(all_missing_classes) def test_namespace_mapping_closure(self): # Ensure that all classes in mappings appear in their namespace. db = namespace_db.load_db() all_missing_classes = set() for mapping_name, mapping in db.mappings.items(): missing_source_classes = set() missing_target_classes = set() source_namespace = db.namespaces[mapping.source_namespace] target_namespace = db.namespaces[mapping.target_namespace] for source_cl, target_cl in mapping.mapped_pairs.items(): if source_cl not in source_namespace.classes: missing_source_classes.add(source_cl) all_missing_classes.add(source_cl) if target_cl not in target_namespace.classes: missing_target_classes.add(target_cl) all_missing_classes.add(target_cl) if missing_source_classes: logging.warning( 'The classes %s in mapping %s did not appear in namespace %s.', missing_source_classes, mapping_name, source_namespace.name, ) if missing_target_classes: logging.warning( 'The classes %s in mapping %s did not appear in namespace %s.', missing_target_classes, mapping_name, target_namespace.name, ) missing_target_classes.discard('unknown') self.assertEmpty(all_missing_classes) def test_taxonomic_mappings(self): # Ensure that all ebird2021 species appear in taxonomic mappings. db = namespace_db.load_db() ebird = db.namespaces['ebird2021_species'] genera = db.mappings['ebird2021_to_genus'].mapped_pairs families = db.mappings['ebird2021_to_family'].mapped_pairs orders = db.mappings['ebird2021_to_order'].mapped_pairs missing_genera = set() missing_families = set() missing_orders = set() for cl in ebird.classes: if cl not in genera: missing_genera.add(cl) if cl not in families: missing_families.add(cl) if cl not in orders: missing_orders.add(cl) self.assertEmpty(missing_genera) self.assertEmpty(missing_families) self.assertEmpty(missing_orders) if __name__ == '__main__': absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for frontend.""" from chirp.models import frontend from jax import numpy as jnp from jax import random from jax.experimental import jax2tf import numpy as np import tensorflow as tf from absl.testing import absltest from absl.testing import parameterized class FrontendTest(parameterized.TestCase): @classmethod def setUpClass(cls): super().setUpClass() cls.length_s = 2 cls.sample_rate_hz = 11_025 cls.num_samples = cls.sample_rate_hz * cls.length_s cls.batch_dims = (2, 3) cls.signal = jnp.sin(jnp.linspace(0.0, 440 * jnp.pi, cls.num_samples)) cls.noise = 0.5 * random.normal( random.PRNGKey(0), cls.batch_dims + (cls.num_samples,) ) cls.audio = cls.signal + cls.noise @parameterized.product( ( { "module_type": frontend.STFT, "module_kwargs": {}, }, { "module_type": frontend.MelSpectrogram, "module_kwargs": { "kernel_size": 128, "sample_rate": 11_025, "freq_range": (60, 5_000), }, }, { "module_type": frontend.SimpleMelspec, "module_kwargs": { "kernel_size": 128, "sample_rate": 11_025, "freq_range": (60, 5_000), }, }, { "module_type": frontend.LearnedFrontend, "module_kwargs": { "kernel_size": 256, }, }, { "module_type": frontend.MorletWaveletTransform, "module_kwargs": { "kernel_size": 256, "sample_rate": 11_025, "freq_range": (60, 10_000), }, }, ), stride=(10, 11), ) def test_output_size(self, module_type, module_kwargs, stride): features = 7 module = module_type(stride=stride, features=features, **module_kwargs) variables = module.init(random.PRNGKey(0), self.audio) output = module.apply(variables, self.audio) self.assertEqual( output.shape, self.batch_dims + (-(-self.num_samples // stride), features), ) @parameterized.parameters( (frontend.STFT, frontend.ISTFT, {}), ( frontend.LearnedFrontend, frontend.InverseLearnedFrontend, { "kernel_size": 256, }, ), ) def test_inverse(self, module_type, inverse_module_type, module_kwargs): stride = 10 features = 7 module = module_type(stride=stride, features=features, **module_kwargs) variables = module.init(random.PRNGKey(0), self.audio) output = module.apply(variables, self.audio) inverse_module = inverse_module_type(stride=stride, **module_kwargs) inverse_variables = inverse_module.init(random.PRNGKey(0), output) inversed = inverse_module.apply(inverse_variables, output) self.assertEqual(self.audio.shape, inversed.shape) @parameterized.parameters( { "module_type": frontend.STFT, "module_kwargs": { "features": 129, # Note: Required that f-1=2**k for some k. "stride": 64, }, }, { "module_type": frontend.MelSpectrogram, "module_kwargs": { "features": 32, "stride": 64, "kernel_size": 64, "sample_rate": 22_025, "freq_range": (60, 10_000), }, "atol": 1e-4, }, { "module_type": frontend.SimpleMelspec, "module_kwargs": { "features": 32, "stride": 64, "kernel_size": 64, "sample_rate": 22_025, "freq_range": (60, 10_000), }, "atol": 1e-4, }, { "module_type": frontend.LearnedFrontend, "module_kwargs": { "features": 32, "stride": 64, "kernel_size": 64, }, }, { "module_type": frontend.ISTFT, "module_kwargs": { "stride": 64, }, "signal_shape": (1, 25, 64), }, { "module_type": frontend.InverseLearnedFrontend, "module_kwargs": { "stride": 32, "kernel_size": 64, }, "signal_shape": (1, 25, 64), }, ) def test_tflite_stft_export( self, module_type, module_kwargs, signal_shape=None, atol=1e-6 ): # Note that the TFLite stft requires power-of-two nfft, given by: # nfft = 2 * (features - 1). if signal_shape is None: signal = self.audio else: signal = jnp.zeros(signal_shape, jnp.float32) fe = module_type(**module_kwargs) params = fe.init(random.PRNGKey(0), signal) tf_predict = tf.function( jax2tf.convert( lambda signal: fe.apply(params, signal), enable_xla=False ), input_signature=[ tf.TensorSpec(shape=signal.shape, dtype=tf.float32, name="input") ], autograph=False, ) converter = tf.lite.TFLiteConverter.from_concrete_functions( [tf_predict.get_concrete_function()], tf_predict ) converter.target_spec.supported_ops = [ tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops. tf.lite.OpsSet.SELECT_TF_OPS, # enable TensorFlow ops. ] tflite_float_model = converter.convert() # Use the converted TFLite model. interpreter = tf.lite.Interpreter(model_content=tflite_float_model) interpreter.allocate_tensors() input_tensor = interpreter.get_input_details()[0] output_tensor = interpreter.get_output_details()[0] interpreter.set_tensor(input_tensor["index"], signal) interpreter.invoke() output_tflite = interpreter.get_tensor(output_tensor["index"]) # Check approximate agreement of TFLite output with the jax function. output_jax = fe.apply(params, signal) np.testing.assert_allclose(output_tflite, output_jax, atol=1e-4) def test_simple_melspec(self): frontend_args = { "features": 32, "stride": 64, "kernel_size": 64, "sample_rate": 22_025, "freq_range": (60, 10_000), } simple_mel = frontend.SimpleMelspec(**frontend_args) simple_mel_params = simple_mel.init(random.PRNGKey(0), self.audio) got_simple = simple_mel.apply(simple_mel_params, self.audio) # Check that export works without SELECT_TF_OPS. tf_predict = tf.function( jax2tf.convert( lambda signal: simple_mel.apply(simple_mel_params, signal), enable_xla=False, ), input_signature=[ tf.TensorSpec( shape=self.audio.shape, dtype=tf.float32, name="input" ) ], autograph=False, ) converter = tf.lite.TFLiteConverter.from_concrete_functions( [tf_predict.get_concrete_function()], tf_predict ) converter.target_spec.supported_ops = [ # Look, ma, no tf.lite.OpsSet.SELECT_TF_OPS! tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops. ] tflite_float_model = converter.convert() # Use the converted TFLite model. interpreter = tf.lite.Interpreter(model_content=tflite_float_model) interpreter.allocate_tensors() input_tensor = interpreter.get_input_details()[0] output_tensor = interpreter.get_output_details()[0] interpreter.set_tensor(input_tensor["index"], self.audio) interpreter.invoke() output_tflite = interpreter.get_tensor(output_tensor["index"]) # Check approximate agreement of TFLite output with the jax function. np.testing.assert_allclose(output_tflite, got_simple, atol=1e-4) if __name__ == "__main__": absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from chirp.data import tfds_builder import tensorflow_datasets as tfds from absl.testing import absltest def _manual_data_dir() -> str: return os.path.join( os.path.normpath(os.path.dirname(__file__)), 'testdata', 'tfds_builder_wav_directory_test', ) class FakeWavDirectory(tfds_builder.WavDirectoryBuilder): """Test-only concrete subclass of the abstract base class under test.""" # A workaround for the following error in importlib_resources: # 'NoneType' object has no attribute 'submodule_search_locations' __module__ = tfds_builder.__name__ VERSION = tfds.core.Version('1.2.3') RELEASE_NOTES = { '1.2.3': 'Initial release.', } def _description(self) -> str: return 'Unit test fixture with WAV files in a nested directory structure.' def _citation(self) -> str: return 'FakeWavDirectory, private communication, October, 2022.' class WavDirectoryDatasetUnfilteredTest(tfds.testing.DatasetBuilderTestCase): """Tests WavDirectoryDataset with "unfiltered" configuration.""" DATASET_CLASS = FakeWavDirectory EXAMPLE_DIR = _manual_data_dir() BUILDER_CONFIG_NAMES_TO_TEST = ['unfiltered'] SPLITS = {'train': 3} @classmethod def setUpClass(cls): super().setUpClass() # TODO(bartvm): Remove when tensorflow-datasets PyPI package is fixed @absltest.skip def test_tags_are_valid(self): pass class WavDirectoryDatasetSlicePeakedTest(tfds.testing.DatasetBuilderTestCase): """Tests WavDirectoryDataset with "slice_peaked" configuration.""" DATASET_CLASS = FakeWavDirectory EXAMPLE_DIR = _manual_data_dir() BUILDER_CONFIG_NAMES_TO_TEST = ['slice_peaked'] SPLITS = {'train': 2} @classmethod def setUpClass(cls): super().setUpClass() # TODO(bartvm): Remove when tensorflow-datasets PyPI package is fixed @absltest.skip def test_tags_are_valid(self): pass if __name__ == '__main__': tfds.testing.test_main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Bird taxonomy dataset tests.""" import shutil import tempfile from unittest import mock from chirp.data.soundscapes import soundscapes from chirp.data.soundscapes import soundscapes_lib from chirp.taxonomy import namespace from etils import epath import pandas as pd import tensorflow_datasets as tfds from absl.testing import absltest def mock_localization_fn(audio, sr, interval_length_s, max_intervals): del audio del max_intervals target_length = sr * interval_length_s return [(0, target_length)] class SoundscapeTest(tfds.testing.DatasetBuilderTestCase): """Tests for the soundscape dataset.""" DATASET_CLASS = soundscapes.Soundscapes BUILDER_CONFIG_NAMES_TO_TEST = [ config.name for config in DATASET_CLASS.BUILDER_CONFIGS if config.name in ['caples'] ] EXAMPLE_DIR = DATASET_CLASS.code_path.parent / 'placeholder_data' DL_EXTRACT_RESULT = { 'segments': EXAMPLE_DIR / 'test.csv', } SPLITS = {'train': 3} SKIP_CHECKSUMS = True @classmethod def setUpClass(cls): super().setUpClass() # `self.create_tempdir()` raises an UnparsedFlagAccessError, which is why # we use `tempdir` directly. cls.tempdir = tempfile.mkdtemp() _ = tfds.core.lazy_imports.librosa cls.metadata_patcher = mock.patch.object(soundscapes_lib, 'load_class_list') cls.loc_patcher = mock.patch.object( cls.DATASET_CLASS.BUILDER_CONFIGS[0], 'localization_fn', mock_localization_fn, ) cls.url_patcher = mock.patch.object( cls.DATASET_CLASS.BUILDER_CONFIGS[0], 'audio_dir', epath.Path(cls.tempdir), ) # We mock the localization part with a function that finds signal in the # first interval_length_s (5 sec.). This means that fake segments 1, 2 and 4 # should be selected. Segment 3 should not be selected (not overlap with # the localization_fn output) and segment 5 should also be skipped because # the annotation is invalid (end < start). So we should end up with 3 # recordings. cls.loc_patcher.start() mock_load_class_list = cls.metadata_patcher.start() mock_load_class_list.return_value = namespace.ClassList( 'test_namespace', ['fakecode1', 'fakecode2', 'superrare', 'superfly'], ) fake_segments = pd.read_csv(cls.EXAMPLE_DIR / 'test.csv') fake_segments['ebird_codes'] = fake_segments['ebird_codes'].apply( lambda codes: codes.split() ) cls.url_patcher.start() subdir = epath.Path(cls.tempdir) / 'caples' / 'audio' subdir.mkdir(parents=True) tfds.core.lazy_imports.pydub.AudioSegment.silent(duration=100000).export( subdir / 'soundscape_1.flac', format='flac' ) tfds.core.lazy_imports.pydub.AudioSegment.silent(duration=100000).export( subdir / 'soundscape_2.wav', format='wav' ) tfds.core.lazy_imports.pydub.AudioSegment.silent(duration=100000).export( subdir / 'soundscape_3.wav', format='wav' ) tfds.core.lazy_imports.pydub.AudioSegment.silent(duration=100000).export( subdir / 'soundscape_4.wav', format='wav' ) @classmethod def tearDownClass(cls): super().tearDownClass() cls.metadata_patcher.stop() cls.loc_patcher.stop() cls.url_patcher.stop() shutil.rmtree(cls.tempdir) # TODO(bartvm): Remove when tensorflow-datasets PyPI package is fixed @absltest.skip def test_tags_are_valid(self): pass if __name__ == '__main__': absltest.main()
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A fake dataset for testing.""" from typing import Tuple from chirp.data import bird_taxonomy import numpy as np def window_signal(signal, win_len=2000): ramp = np.linspace(0.0, 1.0, win_len // 2) signal[: win_len // 2] *= ramp signal[-win_len // 2 :] *= ramp[::-1] return signal def make_dsp_chirp(n_samples, start_f, stop_f, linear=True): """Creates a np.array with a sine sweep, aka a `chirp`.""" time = np.linspace(0.0, 1.0, n_samples) space_fn = np.linspace if linear else np.geomspace sweep_f = space_fn(start_f, stop_f, n_samples) chirp_ = np.sin(np.pi * sweep_f * time) return window_signal(chirp_) def make_random_dsp_chirps(total_len, gain=0.25): """Makes a clip with two random sine sweeps (chirps).""" n_samples = total_len // 4 chirp_clip = np.zeros((total_len,)) ch1_beg, ch2_beg = np.random.choice(np.arange(300, 2001, 50), size=(2,)) ch1_end, ch2_end = np.random.choice(np.arange(800, 3801, 50), size=(2,)) chirp1 = make_dsp_chirp(n_samples, ch1_beg, ch1_end, linear=False) chirp2 = make_dsp_chirp(n_samples, ch2_beg, ch2_end, linear=True) chirp_clip[n_samples : n_samples * 2] = chirp1 chirp_clip[int(n_samples * 2.5) : int(n_samples * 3.5)] = chirp2 return chirp_clip * gain class FakeDataset(bird_taxonomy.BirdTaxonomy): """Fake dataset.""" def _split_generators(self, dl_manager): return { 'train': self._generate_examples(100), 'test': self._generate_examples(20), } @staticmethod def _make_signal(shape: Tuple[int, ...]) -> np.ndarray: return np.random.uniform(-1.0, 0.99, shape) def _generate_one_example(self, i): return { 'audio': self._make_signal(self.info.features['audio'].shape).astype( np.float32 ), 'recording_id': i, 'segment_id': -1 + i, 'segment_start': 17, 'segment_end': 17 + self.info.features['audio'].shape[0], 'label': np.random.choice(self.info.features['label'].names, size=[3]), 'bg_labels': np.random.choice( self.info.features['bg_labels'].names, size=[2] ), 'filename': 'placeholder', 'quality_score': np.random.choice(['A', 'B', 'C', 'D', 'E', 'F']), 'license': '//creativecommons.org/licenses/by-nc-sa/4.0/', 'country': np.random.choice(['South Africa', 'Colombia', 'Namibia']), 'altitude': str(np.random.uniform(0, 3000)), 'length': np.random.choice(['1:10', '0:01']), 'bird_seen': np.random.choice(['yes', 'no']), 'latitude': str(np.random.uniform(0, 90)), 'longitude': str(np.random.uniform(0, 90)), 'playback_used': 'yes', 'recordist': 'N/A', 'remarks': 'N/A', 'sound_type': np.random.choice(['call', 'song']), } def _generate_examples(self, num_examples): for i in range(num_examples): yield i, self._generate_one_example(i) class FakeChirpDataset(FakeDataset): """Fake dataset with DSP chirps; useful for debugging separation.""" @staticmethod def _make_signal(shape: Tuple[int, ...]) -> np.ndarray: return make_random_dsp_chirps(shape[0])
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A CLU metric that averages values separately for each class.""" from typing import Any from clu import metrics import flax from jax import numpy as jnp @flax.struct.dataclass class ClassAverage(metrics.Metric): """A metric that calculates the average over each class. This metric assumes that it's given a score for each example in the batch along with a mapping from batches to (potentially multiple) classes in the form a multi-hot encoding. """ total: jnp.ndarray count: jnp.ndarray @classmethod def empty(cls): return cls(total=jnp.zeros((1,), float), count=jnp.zeros((1,), int)) @classmethod def from_model_output( cls, values: tuple[jnp.ndarray, jnp.ndarray], **_ ) -> metrics.Metric: return cls(total=values[0] @ values[1], count=jnp.sum(values[1], axis=0)) def merge(self, other: "ClassAverage") -> "ClassAverage": return type(self)( total=self.total + other.total, count=self.count + other.count, ) def compute(self) -> Any: # Avoid introducing NaNs due to classes without positive labels class_means = jnp.where(self.count > 0, self.total / self.count, 0.0) return jnp.sum(class_means) / jnp.sum(self.count > 0)
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Metrics for training and validation.""" from typing import Any, Dict from jax import lax from jax import numpy as jnp from jax import scipy def map_( logits: jnp.ndarray, labels: jnp.ndarray, label_mask: jnp.ndarray | None = None, sort_descending: bool = True, ) -> jnp.ndarray: return average_precision( scores=logits, labels=labels, label_mask=label_mask, sort_descending=sort_descending, ) def cmap( logits: jnp.ndarray, labels: jnp.ndarray, sort_descending: bool = True, sample_threshold: int = 0, ) -> Dict[str, Any]: """Class mean average precision.""" class_aps = average_precision( scores=logits.T, labels=labels.T, sort_descending=sort_descending ) mask = jnp.sum(labels, axis=0) > sample_threshold class_aps = jnp.where(mask, class_aps, jnp.nan) macro_cmap = jnp.mean(class_aps, where=mask) return { 'macro': macro_cmap, 'individual': class_aps, } def roc_auc( logits: jnp.ndarray, labels: jnp.ndarray, label_mask: jnp.ndarray | None = None, sort_descending: bool = True, sample_threshold: int = 0, ) -> Dict[str, Any]: """Computes ROC-AUC scores. Args: logits: A score for each label which can be ranked. labels: A multi-hot encoding of the ground truth positives. Must match the shape of scores. label_mask: A mask indicating which labels to involve in the calculation. sort_descending: An indicator if the search result ordering is in descending order (e.g. for evaluating over similarity metrics where higher scores are preferred). If false, computes average_precision on descendingly sorted inputs. sample_threshold: Determines whether or not to compute the metric if there are fewer than `sample_threshold` datapoints. Returns: A dictionary of ROC-AUC scores using the arithmetic ('macro') and geometric means, along with individual class ('individual') ROC-AUC and its variance. """ if label_mask is not None: label_mask = label_mask.T class_roc_auc, class_roc_auc_var = generalized_mean_rank( logits.T, labels.T, label_mask=label_mask, sort_descending=sort_descending ) mask = jnp.sum(labels, axis=0) > sample_threshold class_roc_auc = jnp.where(mask, class_roc_auc, jnp.nan) class_roc_auc_var = jnp.where(mask, class_roc_auc_var, jnp.nan) return { 'macro': jnp.mean(class_roc_auc, where=mask), 'geometric': jnp.exp(jnp.mean(jnp.log(class_roc_auc), where=mask)), 'individual': class_roc_auc, 'individual_var': class_roc_auc_var, } def negative_snr_loss( source: jnp.ndarray, estimate: jnp.ndarray, max_snr: float = 1e6, eps: float = 1e-8, ) -> jnp.ndarray: """Negative SNR loss with max SNR term. Args: source: Groundtruth signal. estimate: Estimated signal. max_snr: SNR threshold which minimizes loss. The default 1e6 yields an unbiased SNR calculation. eps: Log stabilization epsilon. Returns: Loss tensor. """ snrfactor = 10.0 ** (-max_snr / 10.0) ref_pow = jnp.sum(jnp.square(source), axis=-1) bias = snrfactor * ref_pow numer = 10.0 * jnp.log10(ref_pow + eps) err_pow = jnp.sum(jnp.square(source - estimate), axis=-1) return 10 * jnp.log10(bias + err_pow + eps) - numer def average_precision( scores: jnp.ndarray, labels: jnp.ndarray, label_mask: jnp.ndarray | None = None, sort_descending: bool = True, interpolated: bool = False, ) -> jnp.ndarray: """Average precision. The average precision is the area under the precision-recall curve. When using interpolation we take the maximum precision over all smaller recalls. The intuition is that it often makes sense to evaluate more documents if the total percentage of relevant documents increases. Average precision is computed over the last axis. Args: scores: A score for each label which can be ranked. labels: A multi-hot encoding of the ground truth positives. Must match the shape of scores. label_mask: A mask indicating which labels to involve in the calculation. sort_descending: An indicator if the search result ordering is in descending order (e.g. for evaluating over similarity metrics where higher scores are preferred). If false, computes average_precision on descendingly sorted inputs. interpolated: Whether to use interpolation. Returns: The average precision. """ if label_mask is not None: # Set all masked labels to zero, and send the scores for those labels to a # low/high value (depending on whether we sort in descending order or not). # Then the masked scores+labels will not impact the average precision # calculation. labels = labels * label_mask extremum_score = ( jnp.min(scores) - 1.0 if sort_descending else jnp.max(scores) + 1.0 ) scores = jnp.where(label_mask, scores, extremum_score) idx = jnp.argsort(scores) if sort_descending: idx = jnp.flip(idx, axis=-1) scores = jnp.take_along_axis(scores, idx, axis=-1) labels = jnp.take_along_axis(labels, idx, axis=-1) pr_curve = jnp.cumsum(labels, axis=-1) / (jnp.arange(labels.shape[-1]) + 1) if interpolated: pr_curve = lax.cummax(pr_curve, reverse=True, axis=-1) # In case of an empty row, assign precision = 0, and avoid dividing by zero. mask = jnp.float32(jnp.sum(labels, axis=-1) != 0) raw_av_prec = jnp.sum(pr_curve * labels, axis=-1) / jnp.maximum( jnp.sum(labels, axis=-1), 1.0 ) return mask * raw_av_prec def generalized_mean_rank( scores: jnp.ndarray, labels: jnp.ndarray, label_mask: jnp.ndarray | None = None, sort_descending: bool = True, ) -> tuple[jnp.ndarray, jnp.ndarray]: """Computes the generalized mean rank and its variance over the last axis. The generalized mean rank can be expressed as (sum_i #P ranked above N_i) / (#P * #N), or equivalently, 1 - (sum_i #N ranked above P_i) / (#P * #N). This metric is usually better visualized in the logits domain, where it reflects the log-odds of ranking a randomly-chosen positive higher than a randomly-chosen negative. Args: scores: A score for each label which can be ranked. labels: A multi-hot encoding of the ground truth positives. Must match the shape of scores. label_mask: A mask indicating which labels to involve in the calculation. sort_descending: An indicator if the search result ordering is in descending order (e.g. for evaluating over similarity metrics where higher scores are preferred). If false, computes the generalize mean rank on descendingly sorted inputs. Returns: The generalized mean rank and its variance. The variance is calculated by considering each positive to be an independent sample of the value 1 - #N ranked above P_i / #N. This gives a measure of how consistently positives are ranked. """ idx = jnp.argsort(scores, axis=-1) if sort_descending: idx = jnp.flip(idx, axis=-1) labels = jnp.take_along_axis(labels, idx, axis=-1) if label_mask is None: label_mask = True else: label_mask = jnp.take_along_axis(label_mask, idx, axis=-1) num_p = (labels > 0).sum(axis=-1, where=label_mask) num_p_above = jnp.cumsum((labels > 0) & label_mask, axis=-1) num_n = (labels == 0).sum(axis=-1, where=label_mask) num_n_above = jnp.cumsum((labels == 0) & label_mask, axis=-1) gmr = num_p_above.mean(axis=-1, where=(labels == 0) & label_mask) / num_p gmr_var = (num_n_above / num_n[:, None]).var( axis=-1, where=(labels > 0) & label_mask ) return gmr, gmr_var def least_squares_solve_mix(matrix, rhs, diag_loading=1e-3): # Assumes a real-valued matrix, with zero mean. adj_matrix = jnp.conjugate(jnp.swapaxes(matrix, -1, -2)) cov_matrix = jnp.matmul(adj_matrix, matrix) # diag_loading ensures invertibility of the (pos. semi-definite) cov_matrix. cov_matrix += diag_loading * jnp.eye( cov_matrix.shape[-1], dtype=cov_matrix.dtype ) return scipy.linalg.solve( cov_matrix, jnp.matmul(adj_matrix, rhs), sym_pos=True ) def least_squares_mixit(reference, estimate): """Applies loss_fn after finding the best fit MixIt assignment.""" # Reference shape is [B, M, T] # Estimate shape is [B, C, T] mix_matrix = least_squares_solve_mix( jnp.swapaxes(estimate, -1, -2), jnp.swapaxes(reference, -1, -2) ) mix_matrix = jnp.swapaxes(mix_matrix, -1, -2) max_per_column = jnp.max(mix_matrix, axis=-2, keepdims=True) mix_matrix = jnp.where(mix_matrix == max_per_column, 1.0, 0.0) best_mix = mix_matrix @ estimate return best_mix, mix_matrix
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Masked autoencoder for spectrograms.""" import flax.linen as nn from jax import numpy as jnp from jax import random import optax from scenic.model_lib.layers import attention_layers from scenic.projects.baselines import vit def get_patches(x: jnp.ndarray, patch_size: tuple[int, int]) -> jnp.ndarray: """Split input into patches. Args: x: The input to split into patches. Must be of size (..., height, width, channels). patch_size: The size of the patches, (patch height, patch width). Returns: The patches of x as size (..., height / patch height, width / patch width, patch height, patch width). """ # For a single batch dimension, should be equivalent to: # lax.conv_general_dilated_patches(x, patch_size, patch_size, 'VALID', # dimension_numbers=('NHWC', 'OIHW', 'NHWC')) *b, h, w, c = x.shape ph, pw = patch_size if h % ph != 0 or w % pw != 0: raise ValueError('patch size does not divide image size') x = jnp.reshape(x, b + [h // ph, ph, w // pw, pw, c]) return jnp.swapaxes(x, -3, -4) def merge_patches(x: jnp.ndarray) -> jnp.ndarray: """Reshape patched image into single image. Args: x: The patches of size (..., height, width, patch height, patch width, channels). Returns: The image of size (..., height * patch height, width * patch width, channels). """ *b, h, w, ph, pw, c = x.shape x = jnp.swapaxes(x, -3, -4) return jnp.reshape(x, b + [h * ph, w * pw, c]) class Encoder(nn.Module): """Encode patches. Following the Masked Spectrogram Modelling paper this uses a ViT-B encoder. We add 1D sinusoidal embeddings to the patches before masking out a fraction of patches at random, only encoding the unmasked ones. This is the same encoder as used by the MAEs that Listen paper. The MAE-AST paper uses a slight variation that only has half the number of layers (6). Attributes: mlp_dim: Dimension of the MLP on top of attention block. num_layers: Number of transformer layers. num_heads: Number of self-attention heads. patch_size: Size of the patches (as a tuple). Patches are non-overlapping. mask_rate: The fraction of patches to mask. hidden_size: Size of the linear embedding of the patches. dropout_rate: Dropout rate. attention_dropout_rate: Dropout for attention heads. stochastic_depth: The layer dropout probability. class_token: Whether or not to prepend a zero-initialized learned class token to the patches. """ patch_size: tuple[int, int] = (16, 16) mlp_dim: int = 3072 num_layers: int = 12 num_heads: int = 12 mask_rate: float = 0.75 hidden_size: int = 768 dropout_rate: float = 0.1 attention_dropout_rate: float = 0.0 stochastic_depth: float = 0.0 class_token: bool = False @nn.compact def __call__(self, x: jnp.ndarray, *, train: bool): """Mask the patches and encode the remaining ones. Note that the indices of masked and unmasked patches can be used as follows, where x is an array of size (batch, patches, ...): jnp.take_along_axis(x, indices[..., jnp.newaxis], axis=1) or x.at[jnp.arange(n)[:, jnp.newaxis], indices] Args: x: An image/spectrogram. train: Whether or not this is training. Returns: The encoded patches and the indices of the unmasked and masked patches. The encoded patches are of the shape (batch, unmasked patches, features). """ if jnp.ndim(x) != 4: raise ValueError('x must be of shape (batch, height, width, channels') fh, fw = self.patch_size # Extracting patches and then embedding is in fact a single convolution. x = nn.Conv( self.hidden_size, (fh, fw), strides=(fh, fw), padding='VALID', name='embedding', )(x) n, h, w, c = x.shape # Add positional embeddings x = jnp.reshape(x, [n, h * w, c]) x = attention_layers.Add1DPositionEmbedding(posemb_init=None)(x) num_patches = h * w indices = jnp.tile(jnp.arange(h * w), (n, 1)) if train: num_patches = int(num_patches * (1 - self.mask_rate)) rng = self.make_rng('patch_mask') indices = random.permutation(rng, indices, axis=1, independent=True) unmasked, masked = indices[:, :num_patches], indices[:, num_patches:] x = jnp.take_along_axis(x, unmasked[..., jnp.newaxis], axis=1) # If we want to add a class token, add it here. if self.class_token: class_token = self.param( 'class_token', nn.initializers.zeros, (1, 1, c), x.dtype ) class_token = jnp.tile(class_token, [n, 1, 1]) x = jnp.concatenate([class_token, x], axis=1) x = vit.Encoder( mlp_dim=self.mlp_dim, num_layers=self.num_layers, num_heads=self.num_heads, positional_embedding='none', dropout_rate=self.dropout_rate, attention_dropout_rate=self.attention_dropout_rate, stochastic_depth=self.stochastic_depth, )(x, train=train) return x, unmasked, masked class Embedder(nn.Module): encoder: Encoder = Encoder() taxonomy_loss_weight: float = 0.0 @nn.compact def __call__( self, x: jnp.ndarray, *, train: bool, use_running_average: bool | None = None ): encoded_patches, _, _ = self.encoder(x, train=train) embedding = jnp.mean(encoded_patches, axis=-2) return optax.scale_gradient(embedding, 0.01) class Decoder(nn.Module): """Decode patches. This decoder follows the Masked Spectrogram Modeling paper, which follows ViT-S (384 dimensions, 6 heads) with a reduced number of layers (4). The MAE-AST paper uses ViT-B instead (12 heads, 768 dimensions) but with only 2 layers. The MAEs that Listen paper uses a deeper, custom decoder (8 layers when using global attention) with 512 dimensions. Attributes: output_size: The size of the output image (height, width, channels). patch_size: The size of each patch (height and width). mlp_dim: Dimension of the MLP on top of attention block. num_layers: Number of transformer layers. num_heads: Number of self-attention heads. hidden_size: Size of the linear embedding of the patches. dropout_rate: Dropout rate. attention_dropout_rate: Dropout for attention heads. stochastic_depth: The layer dropout probability. """ output_size: tuple[int, int, int] patch_size: tuple[int, int] = (16, 16) mlp_dim: int = 1536 num_layers: int = 4 num_heads: int = 6 hidden_size: int = 384 dropout_rate: float = 0.1 attention_dropout_rate: float = 0.0 stochastic_depth: float = 0.0 @nn.compact def __call__(self, x: jnp.ndarray, unmasked: jnp.ndarray, *, train: bool): """Decode the patches. Args: x: The embeddings of the unmasked patches. unmasked: The indices of the unmasked patches in the spectrogram. train: Whether this is training time. Returns: The decoded patches, of the form (batch, patches, features). The number of features is equal to the patch size times number of channels. """ # First restore the patches in their correct order and use mask tokens n, num_patches, features = x.shape h, w, c = ( self.output_size[0] // self.patch_size[0], self.output_size[1] // self.patch_size[1], self.output_size[2], ) if unmasked.shape != (n, num_patches): raise ValueError('shape of encoded patches and mask do not match') mask_token = self.param( 'mask_token', nn.initializers.zeros, (1, 1, features), x.dtype ) embeddings = jnp.tile(mask_token, (n, h * w, 1)) embeddings = embeddings.at[jnp.arange(n)[:, jnp.newaxis], unmasked].set(x) if features != self.hidden_size: x = nn.Dense(features=self.hidden_size)(embeddings) # Transformer decoder x = vit.Encoder( mlp_dim=self.mlp_dim, num_layers=self.num_layers, num_heads=self.num_heads, positional_embedding='sinusoidal_1d', dropout_rate=self.dropout_rate, attention_dropout_rate=self.attention_dropout_rate, stochastic_depth=self.stochastic_depth, )(x, train=train) x = nn.Dense(features=self.patch_size[0] * self.patch_size[1] * c)(x) return x class MaskedAutoencoder(nn.Module): """A masked autoencoder.""" encoder: nn.Module decoder: nn.Module @nn.compact def __call__(self, x: jnp.ndarray, *, train: bool): """Apply masked autoencoder. Args: x: An image of size (batch, height, width, channels). train: Whether this is training. Returns: The decoded patches (of shape (batch, patches, features)). """ if self.encoder.patch_size != self.decoder.patch_size: raise ValueError('patch sizes do not match') encoded_patches, unmasked, masked = self.encoder(x, train=train) decoded_patches = self.decoder(encoded_patches, unmasked, train=train) patches = get_patches(x, self.encoder.patch_size) patches = jnp.reshape(patches, decoded_patches.shape) return decoded_patches, patches, masked
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Handcrafted features for linear models.""" from flax import linen as nn from jax import numpy as jnp from jax import scipy as jsp class HandcraftedFeatures(nn.Module): """Handcrafted features for linear models. Attributes: compute_mfccs: If True, turn log-melspectrograms into MFCCs. num_mfccs: How many MFCCs to keep. Unused if compute_mfccs is False. aggregation: How to aggregate over time. If 'beans', we concatenate the mean, standard deviation, min, and max over the time axis (which mirrors the processing done in the BEANS benchmark (Hagiwara et al., 2022)). If 'avg_pool', we perform average pooling over the time axis (controlled by `window_size` and `window_stride`) before flattening the time and channel axes. If `flatten`, we simply flatten the time and channel axes. window_size: Average pooling window size. Unused if `aggregation` is not `avg_pool`. window_stride: Average pooling window stride. Unused if `aggregation` is not `avg_pool`. """ compute_mfccs: bool = False num_mfccs: int = 20 aggregation: str = 'avg_pool' window_size: int = 10 window_stride: int = 10 @nn.compact def __call__( self, inputs: jnp.ndarray, train: bool, use_running_average: bool | None = None, ) -> jnp.ndarray: del train del use_running_average # Reshape from [B, T, D, 1] to [B, T, D] outputs = jnp.squeeze(inputs, axis=[-1]) if self.compute_mfccs: outputs = jsp.fft.dct( outputs, type=2, n=self.num_mfccs, axis=-1, norm='ortho', ) if self.aggregation == 'beans': return jnp.concatenate( [ outputs.mean(axis=-2), outputs.std(axis=-2), outputs.min(axis=-2), outputs.max(axis=-2), ], axis=-1, ) elif self.aggregation in ('flatten', 'avg_pool'): if self.aggregation == 'avg_pool': outputs = nn.pooling.avg_pool( outputs, window_shape=(self.window_size,), strides=(self.window_stride,), ) # Reshape from [B, T, D] to [B, T * D] return outputs.reshape( outputs.shape[0], outputs.shape[1] * outputs.shape[2] ) else: raise ValueError(f'unrecognized aggregation: {self.aggregation}')
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Continuous wavelet transforms. This module contains filters (Gabor, sinc) and wavelets (Morlet, Morse) that can be used in a continuous wavelet transform. Filtering can be done through convolution in the time-domain or by multiplication in the frequency domain. Note that some filters are non-differentiable in the frequency domain (sinc filters) whereas others don't have an analytic representation in the time domain (Morse wavelets). Hence we use both approaches. Filters and wavelets can be normalized in different ways. Let φ(t) be the time-domain filter and Φ(f) the frequency-domain filter. Different normalization options are: * ∫|φ(t)| = 1 (L1 normalized, bandpass normalized) * ∫|φ(t)|² = ∫|Φ(t)|² = 1 (L2 normalized, energy normalized) * max |Φ(f)| = 1 (peak frequency response) Note that max |Φ(f)| ≤ ∫|φ(t)|. There are a variety of Fourier transform conventions. This code follows the one from NumPy where the ordinary frequency is used: f̂(ω) = ∫f(t)exp(-i2πωt)dt. For all parametrized filters we follow the approach of the continuous wavelet transform (CWT) and learn a scale for each filter: φ(t/s) for s > 0. To keep the function norm unchanged across scalings, we have to scale the values by 1/s (for L1 normalization, time domain only) or 1/√s (for L2 normalization). For reference implementations, see the Python package `ssqueezepy` and the MATLAB package jLab. """ import enum from typing import Callable import chirp.signal from jax import lax from jax import numpy as jnp from jax import scipy as jsp class Domain(enum.Enum): TIME = "time" FREQUENCY = "frequency" class Normalization(enum.Enum): L1 = "l1" L2 = "l2" def gabor_filter( sigma: float, domain: Domain, normalization: Normalization ) -> Callable[[jnp.ndarray], jnp.ndarray]: """A one-dimensional Gabor filter. The Gabor filter is a complex sinusoid modulated by a Gaussian. Its frequency response is a Gaussian with mean sigma / 2π and standard deviation 1 / 2π[^1]. For small values of sigma this filter has a non-zero response to non-positive frequencies. This means that it is not a wavelet (it fails the admissibility condition)[^2] and it is not analytic[^3]. The zero-mean, shifted version of this filter is often called the (complex) Morlet wavelet, Gabor wavelet, or Gabor kernel. The Gabor filter is sometimes also referred to as the Gabor function[^4]. To match `leaf_audio.impulse_response.gabor_impulse_response`: Use L1 normalization. Set sigma to the product of η and σ and then use σ as the scaling factor. [^1]: Movellan, Javier R. "Tutorial on Gabor filters." (2002). [^2]: Valens, Clemens. "A really friendly guide to wavelets." (1999). [^3]: Lilly, Jonathan M., and Sofia C. Olhede. "On the analytic wavelet transform." IEEE transactions on information theory 56.8 (2010): 4135-4156. [^4]: Bernardino, Alexandre, and José Santos-Victor. "A real-time gabor primal sketch for visual attention." Iberian Conference on Pattern Recognition and Image Analysis. Springer, Berlin, Heidelberg, 2005. Args: sigma: The parameter of the function. domain: The domain. normalization: What normalization to use. Returns: A function which calculates the filter over the time or frequency domain. """ if domain is Domain.TIME: if normalization is Normalization.L1: norm = 1 / jnp.sqrt(2 * jnp.pi) elif normalization is Normalization.L2: norm = jnp.pi ** (-1 / 4) def _gabor_filter(t: jnp.ndarray) -> jnp.ndarray: sinusoids = jnp.exp(1j * t * sigma) gaussian = jnp.exp(-1 / 2 * t**2) return norm * gaussian * sinusoids elif domain is Domain.FREQUENCY: if normalization is Normalization.L1: norm = 1.0 elif normalization is Normalization.L2: norm = jnp.pi ** (1 / 4) * jnp.sqrt(2) def _gabor_filter(f: jnp.ndarray) -> jnp.ndarray: gaussian = jnp.exp(-1 / 2 * (sigma - f * 2 * jnp.pi) ** 2) return norm * gaussian return _gabor_filter def sinc_filter( sigma: float, domain: Domain, normalization: Normalization ) -> Callable[[jnp.ndarray], jnp.ndarray]: """A sinc filter. Rather than being parameterized by its upper and lower frequency, this sinc filter is parametrized by its central frequency. The width of the filter can then be set by the scaling factor (i.e., scaling the inputs). The sinc filter is not differentiable in the frequency domain. The L1 norm of the sinc filter diverges to infinity[^1], so L1 normalization is not supported. [^1]: Borwein, David, Jonathan M. Borwein, and Isaac E. Leonard. "L p norms and the sinc function." The American Mathematical Monthly 117.6 (2010): 528-539. Args: sigma: The central frequency of the function. domain: The domain. normalization: What normalization to use. Returns: A function which calculates the filter over the time or frequency domain. Raises: ValueError: If L1 normalization is requested. """ if normalization is Normalization.L1: raise ValueError("sinc filter does not support L1 normalization") if domain is Domain.TIME: def _sinc_filter(t: jnp.ndarray) -> jnp.ndarray: shift = jnp.exp(2j * jnp.pi * t * sigma) # NOTE: Normalized sinc function return shift * jnp.sinc(t) elif domain is Domain.FREQUENCY: def _sinc_filter(f: jnp.ndarray) -> jnp.ndarray: return jnp.where(jnp.abs(f - sigma) < 1 / 2, 1.0, 0.0) return _sinc_filter def morlet_wavelet( sigma: float, domain: Domain, normalization: Normalization ) -> Callable[[jnp.ndarray], jnp.ndarray]: """A Morlet wavelet. This wavelet is a sinusoid modulated by a Gaussian which is shifted down in order to have zero mean (admissibility condition). It has a non-zero response to negative frequencies, so it is not analytic. For large values of sigma this wavelet is approximately equal to a Gabor filter. See `gabor_filter` for details regarding naming. The peak frequency of this wavelet is the solution `wc` to the equation wc * 2π = sigma / (1 - exp(-sigma * wc * 2π)). This can be found using fixed point iteration. Args: sigma: The parameter which allows the wavelet to trade-off between time and frequency resolution. domain: The domain. normalization: What normalization to use. Returns: A function which calculates the filter over the time or frequency domain. """ if normalization is Normalization.L1: # TODO(bartvm): Does an expression exist for this? raise NotImplementedError # Follows notation from, e.g., https://en.wikipedia.org/wiki/Morlet_wavelet kappa = jnp.exp(-1 / 2 * sigma**2) c = (1 + jnp.exp(-(sigma**2)) - 2 * jnp.exp(-3 / 4 * sigma**2)) ** ( -1 / 2 ) if domain is Domain.TIME: def _morlet_wavelet(t: jnp.ndarray) -> jnp.ndarray: return ( c * jnp.pi ** (-1 / 4) * jnp.exp(-1 / 2 * t**2) * (jnp.exp(1j * sigma * t) - kappa) ) elif domain is Domain.FREQUENCY: def _morlet_wavelet(f: jnp.ndarray) -> jnp.ndarray: f = jnp.pi * 2 * f return ( c * jnp.pi ** (1 / 4) * jnp.sqrt(2) * ( jnp.exp(-1 / 2 * (sigma - f) ** 2) - kappa * jnp.exp(-1 / 2 * f**2) ) ) return _morlet_wavelet def morse_wavelet( gamma: float, beta: float, domain: Domain, normalization: Normalization ) -> Callable[[jnp.ndarray], jnp.ndarray]: """A Morse wavelet. For a general overview of Morse wavelets see Lilly and Olhede[^1][^2]. For the mathematical details of higher-order wavelets, see Olhede and Walden[^3]. This code follows the notation in Lilly and Olhede. This wavelet is analytic (i.e., it has zero response for negative frequencies). It has no analytic expression in the time-domain. The peak frequency is equal to (beta / gamma)^(1 / gamma) and the width (duration) scales as sqrt(beta * gamma). [^1]: Lilly, Jonathan M., and Sofia C. Olhede. "Generalized Morse wavelets as a superfamily of analytic wavelets." IEEE Transactions on Signal Processing 60.11 (2012): 6036-6041. [^2]: Lilly, Jonathan M., and Sofia C. Olhede. "Higher-order properties of analytic wavelets." IEEE Transactions on Signal Processing 57.1 (2008): 146-160. [^3]: Olhede, Sofia C., and Andrew T. Walden. "Generalized morse wavelets." IEEE Transactions on Signal Processing 50.11 (2002): 2661-2670. Args: gamma: A parameter which controls the high-frequency decay. A common choice is 3, in which case it defines the family of Airy wavelets (which are similar to the commonly used Morlet and Gabor wavelets). See figure 1 in Lilly and Olhede (2012) for the relationship between gamma and other wavelet families. Gamma must be positive. beta: A parameter which controls the behavior near the zero frequency. When gamma is equal to 3, increasing this has a similar effect as increasing the parameter of a Morlet wavelet. Beta must be positive. domain: The domain. normalization: What normalization to use. Returns: A function which calculates the wavelet over the frequency domain. """ if domain is not Domain.FREQUENCY: raise ValueError( "Morse wavelets have no analytic expression in the time domain" ) r = (2 * beta + 1) / gamma # NOTE: Computations in log-space for numerical stability if normalization is Normalization.L2: log_norm = (jnp.log(gamma) + r * jnp.log(2) - jsp.special.gammaln(r)) / 2 elif normalization is Normalization.L1: log_norm = jnp.log(gamma) - jsp.special.gammaln((1 + beta) / gamma) def _morse_wavelet(f: jnp.ndarray) -> jnp.ndarray: f_nonneg = f >= 0 f *= f_nonneg return jnp.exp(log_norm + beta * jnp.log(f) - f**gamma) * f_nonneg return _morse_wavelet def melspec_params( num_mel_bins: int, sample_rate: float, lower_edge_hertz: float, upper_edge_hertz: float, ) -> jnp.ndarray: """Gets the peak frequencies and bandwidths of a standard mel-filterbank. This assumes a Gaussian frequency response (i.e., Gabor filters) and matches the full width at half maximum (FWHM) of the square root of the triangle filter to the FWHM of this Gaussian. Args: num_mel_bins: The number of mel bandpass filters. sample_rate: The sampling rate of the signal. Used to calculate the Nyquist frequency, which determines the upper bound on frequencies in the signal. lower_edge_hertz: The lowest frequency to generate filters for. upper_edge_hertz: The highest frequency to generate filters for. Returns: The central frequencies and the inverse bandwidth (normalized). """ # The melspec triangle filters are equally spaced in the mel-scale range_ = map(chirp.signal.hertz_to_mel, (lower_edge_hertz, upper_edge_hertz)) # pytype: disable=wrong-arg-types # jax-ndarray bands = chirp.signal.mel_to_hertz(jnp.linspace(*range_, num_mel_bins + 2)) # Convert from Hertz to normalized frequencies bands = bands / sample_rate * jnp.pi * 2 # Triangle filters with peak 1, but we take the square root so the the slopes # reach the half maximum 1/2 at 1/4 fwhms = ((3 * bands[2:] + bands[1:-1]) - (bands[1:-1] + 3 * bands[:-2])) / 4 # To convert from FWHM to standard deviation for a Gaussian coeff = 2 * jnp.sqrt(2 * jnp.log(2)) inv_fwhms = coeff / fwhms return bands[1:-1], inv_fwhms # pytype: disable=bad-return-type # jax-ndarray def convolve_filter( filter_: Callable[[jnp.ndarray], jnp.ndarray], signal: jnp.ndarray, scale_factors: jnp.ndarray, normalization: Normalization, window_size_frames: int, stride: tuple[int, ...] = (1,), padding: str = "SAME", ) -> jnp.ndarray: """Convolves a given set of filters with a signal in the time domain. Note that this takes the conjugate of the filter in order to match the usual conventions of continuous wavelet transforms. Args: filter_: A time-domain filter which takes radians as inputs. signal: A batch of signals (assumed to be in the format `NWC`). scale_factors: Each filter has a scale associated with it. normalization: The normalization to use. window_size_frames: The width of the window to use, in frames. stride: The stride to use for the convolution. padding: The padding to use for the convolution. Returns: The signals filtered with the given filters. """ ts = jnp.arange(-(window_size_frames // 2), (window_size_frames + 1) // 2) ts = ts[:, jnp.newaxis] / scale_factors if normalization is Normalization.L1: norm = 1 / scale_factors elif normalization is Normalization.L2: norm = 1 / jnp.sqrt(scale_factors) sampled_filters = norm * jnp.conj(filter_(ts)) # We assume a single input channel sampled_filters = sampled_filters[:, jnp.newaxis] dn = lax.conv_dimension_numbers( signal.shape, sampled_filters.shape, ("NWC", "WIO", "NWC") ) # TODO(bartvm): Not all platforms (e.g., TF Lite) support complex inputs for # convolutions. Can be addressed by convolving with the real/imaginary parts # separately in the future if needed. # TODO(bartvm): Converting signal to complex because JAX wants the input and # filters to be the same type, but this results in 33% more multiplications # than necessary, so this is probably not the fastest option. signal = signal.astype(jnp.complex64) filtered_signal = lax.conv_general_dilated( signal, sampled_filters, stride, padding, (1,), (1,), dn ) return filtered_signal def multiply_filter( filter_: Callable[[jnp.ndarray], jnp.ndarray], signal: jnp.ndarray, scale_factors: jnp.ndarray, normalization: Normalization, ) -> jnp.ndarray: """Applies a filter to a signal in the frequency domain. This takes the DFT of the given signals and applies the given filter. Args: filter_: The filter in the frequency domain to apply. signal: A batch of signals, assumed to have time and channels as the last two axes. scale_factors: The scale factors to apply to each kernel. normalization: The normalization to use. Returns: The result of applying the filter to the signal. """ *_, num_frames, _ = signal.shape fs = jnp.fft.fftfreq(num_frames) fs = fs[:, jnp.newaxis] * scale_factors # TODO(bartvm): TF Lite might not support IFFT as a built-in operation, but # IFFT is just an FFT with the sign of the inputs changed so easy to adapt to. # TODO(bartvm): Note that the signal is real-valued, so using FFT might do # unnecessary computation. Might be faster to use RFFT and then take the # complex conjugates manually. filtered_signal = jnp.fft.ifft( jnp.fft.fft(signal, axis=-2) * filter_(fs), axis=-2 ) if normalization is Normalization.L1: norm = 1 elif normalization is Normalization.L2: norm = jnp.sqrt(scale_factors) return norm * filtered_signal
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Learned pooling module.""" from typing import Callable from flax import linen as nn import jax from jax import lax from jax import numpy as jnp def gaussian(M: int, std: float, sym: bool = True) -> jnp.ndarray: # pylint: disable=invalid-name """Returns a Gaussian window. Port of scipy.signal.windows.gaussian. Args: M: Number of points in the output window. std: The standard deviation, sigma. sym: Must be `True` (present for compatibility with SciPy' signature). Returns: The window, with the maximum value normalized to 1 (though the value 1 does not appear if M is even). """ if not sym: raise ValueError("Periodic windows not supported") n = jnp.arange(0, M) - (M - 1.0) / 2.0 sig2 = 2 * std * std w = jnp.exp(-(n**2) / sig2) return w def gaussian_init( key: jnp.ndarray, num_channels: int, window_size: int, std: float = 0.4 ) -> jnp.ndarray: """Initializes Gaussian windows. Args: key: RNG, unused. num_channels: The number of windows to calculate. window_size: The number of steps in the window (which is assumed to range from -1 to 1). std: The standard deviation of the Gaussian. Returns: A one-tuple containing an array with `num_channels` entries. These represent the standard deviation scaled by the window size. """ del key return (std * 0.5 * (window_size - 1) * jnp.ones((num_channels,)),) # pytype: disable=bad-return-type # jax-ndarray class WindowPool(nn.Module): """Pools using a window function. Note that is not a pooling function in the traditional sense, i.e., it does not use a reduction operator applied to the elements in each window. Instead, a weighted average is taken over the window. If the weighting is given by a parametrized window, e.g., a Gaussian, then these parameters are learned. This allows the model to interpolate between subsampling (a Gaussian with zero variance) and average pooling (a Gaussian with infinite variance). When using a Gaussian window, there are a few differences with the implementation in LEAF[^1]. Firstly, this module by default scales the weights to sum to unity. This ensure that the energy of the output signal is the same as the input. Secondly, this module does not perform clipping on the window parameters. This is expected to be done during optimization. [^1]: https://github.com/google-research/leaf-audio Attributes: window: The window function to use. Should follow the conventions of the `scipy.signal.windows` functions. window_size: The size of the pooling window. window_init: Initializer of the window parameters. It should take as an argument an RNG key, the number of filters, and the width of the window, and return a tuple of parameters. Each parameter should have the number of filters as its first axis. normalize_window: Whether or not to normalize the window to sum to 1. stride: The stride to use. padding: Padding to use. """ window: Callable[..., jnp.ndarray] window_size: int window_init: Callable[[jnp.ndarray, int, int], jnp.ndarray] normalize_window: bool = True stride: int = 1 padding: str = "SAME" @nn.compact def __call__(self, inputs: jnp.ndarray) -> jnp.ndarray: """Applies the pooling. Args: inputs: The input array must be of shape `(batch, time, channels)`. Each channel will have its own window applied. In the case of a parametrized window, each channel will have its own parameters. Returns: The pooled outputs of shape (batch, time, channels). """ num_channels = inputs.shape[-1] window_params = self.param( "window_params", self.window_init, num_channels, self.window_size ) window_values = jax.vmap( self.window, in_axes=(None,) + (0,) * len(window_params) )(self.window_size, *window_params) if self.normalize_window: window_values /= jnp.sum(window_values, axis=1, keepdims=True) window_values = window_values.T[:, jnp.newaxis] dn = lax.conv_dimension_numbers( inputs.shape, window_values.shape, ("NWC", "WIO", "NWC") ) return lax.conv_general_dilated( inputs, window_values, (self.stride,), self.padding, dimension_numbers=dn, feature_group_count=num_channels, )
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Model frontends. A frontend is the part of the model that transforms a sampled audio signal into a set of features. This module provides Flax modules that can be used interchangeably. For some frontends it also defines inverses (e.g., for separation models). """ import dataclasses from chirp import audio_utils from chirp import signal from chirp.models import cwt from flax import linen as nn import jax from jax import lax from jax import numpy as jnp from jax import scipy as jsp @dataclasses.dataclass class LogScalingConfig: """Configuration for log-scaling of mel-spectrogram.""" floor: float = 1e-2 offset: float = 0.0 scalar: float = 0.1 @dataclasses.dataclass class PCENScalingConfig: """Configuration for PCEN normalization of mel-spectrogram.""" smoothing_coef: float = 0.1 gain: float = 0.5 bias: float = 2.0 root: float = 2.0 eps: float = 1e-6 spcen: bool = False conv_width: int = 256 ScalingConfig = LogScalingConfig | PCENScalingConfig def frames_mask(mask: jnp.ndarray, stride: int) -> jnp.ndarray: """Converts a mask of samples to a mask of frames. Args: mask: Array of size (..., time). stride: The stride used by the frontend. Returns: An array of size (..., frames) where frames = ceil(time / stride). """ length = mask.shape[-1] num_frames = -(-length // stride) pad_width = ((0, 0),) * (mask.ndim - 1) + ((0, num_frames * stride - length),) mask = jnp.pad(mask, pad_width) frame_masks = jnp.reshape(mask, mask.shape[:-1] + (num_frames, stride)) return jnp.any(frame_masks, axis=-1) class Frontend(nn.Module): """A audio frontend. An audio frontend takes an input of size (..., time) and outputs an array of size (..., frames, features) where frames = ceil(time / stride). That is, it should behave the same as applying a set of 1D convolutions with `SAME` padding. Attributes: features: The number of features (channels) that the frontend should output. stride: The stride to use. For an STFT this is sometimes called the hop length. """ features: int stride: int # TODO(bartvm): Add ScalingConfig with kw_only=True in Python 3.10 def _magnitude_scale(self, inputs): # Apply frequency scaling scaling_config = self.scaling_config if isinstance(scaling_config, LogScalingConfig): outputs = audio_utils.log_scale( inputs, **dataclasses.asdict(scaling_config) ) elif isinstance(scaling_config, PCENScalingConfig): kwargs = dataclasses.asdict(scaling_config) if kwargs.pop("spcen"): init_smoothing_coef = ( jnp.ones((self.features,)) * scaling_config.smoothing_coef ) smoothing_coef = self.param( "spcen_smoothing_coef", lambda _: init_smoothing_coef ) smoothing_coef = jnp.clip(smoothing_coef, 0, 1) kwargs["smoothing_coef"] = smoothing_coef outputs, _ = audio_utils.pcen(inputs, **kwargs) elif scaling_config is None: outputs = inputs else: raise ValueError("Unrecognized scaling mode.") return outputs class InverseFrontend(nn.Module): """An inverse frontend. This takes features of the form (..., frames, features) and outputs (..., time), the inverse of the frontend. Note that frontends are usually only invertible when the stride is a divisor of the input length. Attributes: stride: The stride that was used for the frontend. This tells the inverse frontend how many samples to generate per step. """ stride: int class STFT(Frontend): """Short-term Fourier transform. This module uses a Hann window. For efficiency, it might be useful to set the number of features to 2^n + 1 for some non-negative integer n. This will guarantee that the length of the FFT is a power of two. Note that if magnitude scaling is used, this frontend is no longer invertible. Attribute: power: If given, calculate the magnitude spectrogram using the given power. The default is 2.0 for the power spectrogram. Pass 1.0 to get the energy spectrogram. If `None`, then the complex-valued STFT will be returned. scaling_config: The magnitude scaling configuration to use. """ power: float | None = 2.0 scaling_config: ScalingConfig | None = None @nn.compact def __call__(self, inputs: jnp.ndarray, train: bool = True) -> jnp.ndarray: if self.power is None and self.scaling_config is not None: raise ValueError("magnitude scaling requires a magnitude spectrogram") # For a real-valued signal the number of frequencies returned is n // 2 + 1 # so we set the STFT window size to return the correct number of features. nfft = nperseg = (self.features - 1) * 2 _, _, stfts = jsp.signal.stft( inputs, nperseg=nperseg, noverlap=nperseg - self.stride, nfft=nfft, padded=False, ) # STFT does not use SAME padding (i.e., padding with a total of nperseg - # stride). Instead it pads with nperseg // 2 on both sides, so the total # amount of padding depends on whether nperseg is even or odd. The final # output size is (t + stride - (nperseg % 2)) // stride. In our case nperseg # is even, so that means we have t // stride + 1 elements. That is one # element too many when the stride is a divisor of the input length. if inputs.shape[-1] % self.stride == 0: stfts = stfts[..., :-1] stfts = jnp.swapaxes(stfts, -1, -2) stfts = jnp.abs(stfts) ** self.power if self.power is not None else stfts return self._magnitude_scale(stfts) class ISTFT(InverseFrontend): """Inverse short-term Fourier transform. This module uses a Hann window. """ @nn.compact def __call__(self, inputs: jnp.ndarray, train: bool = True) -> jnp.ndarray: nfft = nperseg = (inputs.shape[-1] - 1) * 2 # The STFT transformation threw away the last time step to match our output # shape expectations. We'll just pad it with zeros to get it back. inputs = jnp.swapaxes(inputs, -1, -2) pad_width = ((0, 0),) * (inputs.ndim - 1) + ((0, 1),) inputs = jnp.pad(inputs, pad_width, "edge") _, istfts = jsp.signal.istft( inputs, nperseg=nperseg, noverlap=nperseg - self.stride, nfft=nfft ) return istfts class MelSpectrogram(Frontend): """Mel-spectrogram frontend. This frontend begins by calculating the short-term Fourier transform of the audio using a Hann window and padding. Next, it constructs a mel-spectrogram: It takes the magnitude of the STFT (power spectrogram), maps the frequencies to the mel-scale, and bins frequencies together using a series of partially overlapping triangle filters. Then an optional scaling step is applied, which can be the logarithm (i.e., a log power spectrum as used by mel-frequency cepstrums) or PCEN. The smoothing coefficients of PCEN can optionally be learned as is done by the LEAF frontend (sPCEN). Finally, the last few frames are discarded so that the number of output frames is the expected size (i.e., similar to what you would expect when doing a set of 1D convolutions with the same kernel size and stride and `SAME` padding). Attributes: kernel_size: The window size to use for the STFT. sample_rate: The sampling rate of the inputs. This is used to calculate the conversion to mel-scale. freq_range: The frequencies to include in the output. Frequencies outside of this range are simply discarded. scaling_config: The magnitude scaling configuration to use. """ kernel_size: int sample_rate: int freq_range: tuple[float, float] power: float = 2.0 scaling_config: ScalingConfig | None = None nfft: int | None = None @nn.compact def __call__(self, inputs: jnp.ndarray, train: bool = True) -> jnp.ndarray: # Calculate power spectrogram _, _, stfts = jsp.signal.stft( inputs, nperseg=self.kernel_size, noverlap=self.kernel_size - self.stride, nfft=self.nfft, padded=False, ) # See notes in STFT regarding output size if inputs.shape[-1] % self.stride == 0: stfts = stfts[..., :-1] stfts = jnp.swapaxes(stfts, -1, -2) magnitude_spectrograms = jnp.abs(stfts) ** self.power # Construct mel-spectrogram num_spectrogram_bins = magnitude_spectrograms.shape[-1] mel_matrix = signal.linear_to_mel_weight_matrix( self.features, num_spectrogram_bins, self.sample_rate, *self.freq_range ) output = magnitude_spectrograms @ mel_matrix return self._magnitude_scale(output) class SimpleMelspec(Frontend): """Minimal RFFT-based Melspec implementation.""" kernel_size: int sample_rate: int freq_range: tuple[int, int] power: float = 2.0 scaling_config: ScalingConfig | None = None nfft: int | None = None @nn.compact def __call__(self, inputs: jnp.ndarray, train: bool = True) -> jnp.ndarray: flat_inputs = jnp.reshape(inputs, (-1,) + inputs.shape[-1:] + (1,)) # Note that Scipy uses VALID padding, with additional padding logic. # As a result, the outputs are numerically inequivalent. framed = jax.lax.conv_general_dilated_patches( flat_inputs, (self.kernel_size,), (self.stride,), "SAME", dimension_numbers=("NTC", "OIT", "NTC"), ) window = jnp.hanning(self.kernel_size) # The scipy stft default scaling resolves down to this... # For the stft, the scalar is squared then sqrt'ed. window *= 1.0 / window.sum() windowed = window[jnp.newaxis, jnp.newaxis, :] * framed stfts = jnp.fft.rfft(windowed, n=self.nfft, axis=-1) mags = stfts.real**2 + stfts.imag**2 if self.power == 1.0: mags = jnp.sqrt(mags) elif self.power == 2.0: pass else: mags = mags ** (self.power / 2.0) n_bins = mags.shape[-1] mel_matrix = signal.linear_to_mel_weight_matrix( num_mel_bins=self.features, num_spectrogram_bins=n_bins, sample_rate=self.sample_rate, lower_edge_hertz=self.freq_range[0], upper_edge_hertz=self.freq_range[1], ) output = mags @ mel_matrix output = jnp.reshape(output, inputs.shape[:-1] + output.shape[-2:]) return self._magnitude_scale(output) class MFCC(Frontend): """MFC coefficients frontend. This frontend begins by calculating the mel-spectrogram of the audio, then computes its discrete cosine transform. Attributes: mel_spectrogram_frontend: Frontend used for computing mel-spectrograms out of audio sequences. num_coefficients: Number of MFC coefficients to keep. aggregate_over_time: If True, aggregate the MFCs (of shape [..., num_frames, num_coefficients]) over the time axis using mean, standard deviation, min, and max operations. The result is four tensors of shape [..., num_coefficients] that are then concatenated into a single output of shape [..., 4 * num_coefficients]. This mirrors the processing done in the BEANS benchmark (Hagiwara et al., 2022). """ mel_spectrogram_frontend: MelSpectrogram num_coefficients: int | None = None aggregate_over_time: bool = True @nn.compact def __call__(self, inputs: jnp.ndarray, train: bool = True) -> jnp.ndarray: mel_spectrograms = self.mel_spectrogram_frontend(inputs, train) outputs = jsp.fft.dct( mel_spectrograms, type=2, n=self.num_coefficients, axis=-1, norm="ortho" ) if self.aggregate_over_time: outputs = jnp.concatenate( [ outputs.mean(axis=-2), outputs.std(axis=-2), outputs.min(axis=-2), outputs.max(axis=-2), ], axis=-1, ) return outputs class LearnedFrontend(Frontend): """Learned filters. This frontend is a small wrapper around `nn.Conv`. It learns a filter bank where the filters are the convolutional kernels. Note that if magnitude scaling is used, this frontend is no longer invertible. Attributes: kernel_size: The size of the convolutional filters. scaling_config: The magnitude scaling configuration to use. """ kernel_size: int scaling_config: ScalingConfig | None = None @nn.compact def __call__(self, inputs: jnp.ndarray, train: bool = True) -> jnp.ndarray: output = nn.Conv( features=self.features, kernel_size=(self.kernel_size,), strides=(self.stride,), )( # Collapse batch dimensions and add a single channel jnp.reshape(inputs, (-1,) + inputs.shape[-1:] + (1,)) ) output = jnp.reshape(output, inputs.shape[:-1] + output.shape[-2:]) return self._magnitude_scale(output) class InverseLearnedFrontend(InverseFrontend): """Thin wrapper around a Conv1DTranspose. A small wrapper around `nn.ConvTranspose`. It learns the inverse of a filter bank where the filters are convolutional kernels. Attributes: kernel_size: The size of the convolutional filters. """ kernel_size: int @nn.compact def __call__(self, inputs: jnp.ndarray, train: bool = True) -> jnp.ndarray: output = nn.ConvTranspose( features=1, kernel_size=(self.kernel_size,), strides=(self.stride,) )(jnp.reshape(inputs, (-1,) + inputs.shape[-2:])) output = jnp.reshape(output, inputs.shape[:-2] + output.shape[-2:]) return jnp.squeeze(output, -1) class MorletWaveletTransform(Frontend): """Morlet wavelet transform. The Morlet wavelet transform is a wavelet transformation using Morlet wavelets. This is like a short-term Fourier transform with Gaussian windows, but where the window size is different for each frequency. This allows for arbitrary trade-offs of the time- and frequency resolution. Note that technically speaking this module uses Gabor filters instead of Morlet wavelets. Gabor filters don't have the constant shift required to make them invertible for low frequencies, but in practice this barely matters. The LEAF frontend uses this transformation with stride 1 as the first step. Like LEAF, we initialize the Gabor filters to resemble a mel-spectrogram with the given frequency range. Attributes: kernel_size: The kernel size to use for the filters. sample_rate: The sample rate of the input. Used to interpret the frequency range for initilizing the filters. freq_range: The filters are initialized to resemble a mel-spectrogram. These values determine the minimum and maximum frequencies of those filters. """ kernel_size: int sample_rate: int freq_range: tuple[int, int] power: float = 2.0 scaling_config: ScalingConfig | None = None @nn.compact def __call__(self, inputs: jnp.ndarray, train: bool = True) -> jnp.ndarray: input_signal = jnp.reshape(inputs, (-1,) + inputs.shape[-1:] + (1,)) params = cwt.melspec_params( self.features, self.sample_rate, *self.freq_range ) gabor_mean = self.param("gabor_mean", lambda rng: params[0]) gabor_std = self.param("gabor_std", lambda rng: params[1]) sigma = gabor_mean * gabor_std gabor_filter = cwt.gabor_filter( sigma, cwt.Domain.TIME, cwt.Normalization.L1 ) filtered_signal = cwt.convolve_filter( gabor_filter, input_signal, gabor_std, cwt.Normalization.L1, self.kernel_size, stride=(self.stride,), ) power_signal = jnp.abs(filtered_signal) ** self.power scaled_signal = self._magnitude_scale(power_signal) output = jnp.reshape( scaled_signal, inputs.shape[:-1] + scaled_signal.shape[-2:] ) return output
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """EfficientNet. Implementation of the EfficientNet model in Flax. """ import enum import math from typing import NamedTuple from chirp.models import layers from flax import linen as nn from jax import numpy as jnp class EfficientNetModel(enum.Enum): """Different variants of EfficientNet.""" B0 = "b0" B1 = "b1" B2 = "b2" B3 = "b3" B4 = "b4" B5 = "b5" B6 = "b6" B7 = "b7" B8 = "b8" L2 = "l2" class EfficientNetStage(NamedTuple): """Definition of a single stage in EfficientNet.""" num_blocks: int features: int kernel_size: tuple[int, int] strides: int expand_ratio: int # The values for EfficientNet-B0. The other variants are scalings of these. # See table 1 in the paper or # https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_builder.py STEM_FEATURES = 32 STAGES = [ EfficientNetStage(1, 16, (3, 3), 1, 1), EfficientNetStage(2, 24, (3, 3), 2, 6), EfficientNetStage(2, 40, (5, 5), 2, 6), EfficientNetStage(3, 80, (3, 3), 2, 6), EfficientNetStage(3, 112, (5, 5), 1, 6), EfficientNetStage(4, 192, (5, 5), 2, 6), EfficientNetStage(1, 320, (3, 3), 1, 6), ] HEAD_FEATURES = 1280 REDUCTION_RATIO = 4 class EfficientNetScaling(NamedTuple): """Scaling for different model variants.""" width_coefficient: float depth_coefficient: float dropout_rate: float SCALINGS = { EfficientNetModel.B0: EfficientNetScaling(1.0, 1.0, 0.2), EfficientNetModel.B1: EfficientNetScaling(1.0, 1.1, 0.2), EfficientNetModel.B2: EfficientNetScaling(1.1, 1.2, 0.3), EfficientNetModel.B3: EfficientNetScaling(1.2, 1.4, 0.3), EfficientNetModel.B4: EfficientNetScaling(1.4, 1.8, 0.4), EfficientNetModel.B5: EfficientNetScaling(1.6, 2.2, 0.4), EfficientNetModel.B6: EfficientNetScaling(1.8, 2.6, 0.5), EfficientNetModel.B7: EfficientNetScaling(2.0, 3.1, 0.5), EfficientNetModel.B8: EfficientNetScaling(2.2, 3.6, 0.5), EfficientNetModel.L2: EfficientNetScaling(4.3, 5.3, 0.5), } def round_features( features: int, width_coefficient: float, depth_divisor: int = 8 ) -> int: """Round number of filters based on width multiplier.""" features *= width_coefficient new_features = max( depth_divisor, int(features + depth_divisor / 2) // depth_divisor * depth_divisor, ) if new_features < 0.9 * features: new_features += depth_divisor return int(new_features) def round_num_blocks(num_blocks: int, depth_coefficient: float) -> int: """Round number of blocks based on depth multiplier.""" return int(math.ceil(depth_coefficient * num_blocks)) class Stem(nn.Module): """The stem of an EfficientNet model. The stem is the first layer, which is equivalent for all variations of EfficientNet. Attributes: features: The number of filters. """ features: int @nn.compact def __call__( self, inputs: jnp.ndarray, use_running_average: bool ) -> jnp.ndarray: """Applies the first step of EfficientNet to the inputs. Args: inputs: Inputs should be of shape `(batch size, height, width, channels)`. use_running_average: Used to decide whether to use running statistics in BatchNorm (test mode), or the current batch's statistics (train mode). Returns: A JAX array of `(batch size, height, width, features)`. """ x = nn.Conv( features=self.features, kernel_size=(3, 3), strides=2, use_bias=False, padding="VALID", )(inputs) x = nn.BatchNorm(use_running_average=use_running_average)(x) x = nn.swish(x) return x class Head(nn.Module): """The head of an EfficientNet model. The head is the last layer, which is equivalent for all variations of EfficientNet. Attributes: features: The number of filters. """ features: int @nn.compact def __call__( self, inputs: jnp.ndarray, use_running_average: bool ) -> jnp.ndarray: """Applies the last step of EfficientNet to the inputs. Args: inputs: Inputs should be of shape `(batch size, height, width, channels)`. use_running_average: Used to decide whether to use running statistics in BatchNorm (test mode), or the current batch's statistics (train mode). Returns: A JAX array of `(batch size, height, width, features)`. """ x = nn.Conv( features=self.features, kernel_size=(1, 1), strides=1, use_bias=False )(inputs) x = nn.BatchNorm(use_running_average=use_running_average)(x) x = nn.swish(x) return x class EfficientNet(nn.Module): """EfficientNet model. Attributes: model: The variant of EfficientNet model to use. include_top: If true, the model applies average pooling, flattens the output, and applies dropout. Note that this is different from Keras's `include_top` argument, which applies an additional linear transformation. survival_probability: The survival probability to use for stochastic depth. head: Optional Flax module to use as custom head. stem: Optional Flax module to use as custom stem. """ model: EfficientNetModel include_top: bool = True survival_probability: float = 0.8 head: nn.Module | None = None stem: nn.Module | None = None @nn.compact def __call__( self, inputs: jnp.ndarray, train: bool, use_running_average: bool | None = None, ) -> jnp.ndarray: """Applies EfficientNet to the inputs. Note that this model does not include the final pooling and fully connected layers. Args: inputs: Inputs should be of shape `(batch size, height, width, channels)`. train: Whether this is training. This affects Dropout behavior, and also affects BatchNorm behavior if 'use_running_average' is set to None. use_running_average: Optional, used to decide whether to use running statistics in BatchNorm (test mode), or the current batch's statistics (train mode). If not specified (or specified to None), default to 'not train'. Returns: A JAX array of `(batch size, height, width, features)` if `include_top` is false. If `include_top` is true the output is `(batch_size, features)`. """ if use_running_average is None: use_running_average = not train scaling = SCALINGS[self.model] if self.stem is None: features = round_features(STEM_FEATURES, scaling.width_coefficient) stem = Stem(features) else: stem = self.stem x = stem(inputs, use_running_average=use_running_average) for stage in STAGES: num_blocks = round_num_blocks(stage.num_blocks, scaling.depth_coefficient) for block in range(num_blocks): # MBConv block with squeeze-and-excitation strides = stage.strides if block == 0 else 1 features = round_features(stage.features, scaling.width_coefficient) mbconv = layers.MBConv( features=features, strides=strides, expand_ratio=stage.expand_ratio, kernel_size=stage.kernel_size, activation=nn.swish, batch_norm=True, reduction_ratio=REDUCTION_RATIO, ) y = mbconv(x, use_running_average=use_running_average) # Stochastic depth if block > 0 and self.survival_probability: y = nn.Dropout( 1 - self.survival_probability, broadcast_dims=(1, 2, 3), deterministic=not train, )(y) # Skip connections x = y if block == 0 else y + x if self.head is None: features = round_features(HEAD_FEATURES, scaling.width_coefficient) head = Head(features) else: head = self.head x = head(x, use_running_average=use_running_average) if self.include_top: x = jnp.mean(x, axis=(1, 2)) x = nn.Dropout(rate=scaling.dropout_rate, deterministic=not train)(x) return x
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Quantizers.""" import enum from typing import Sequence import flax from flax import linen as nn import jax from jax import numpy as jnp @flax.struct.dataclass class QuantizerOutputs: quantized: jnp.ndarray quantization_loss: jnp.ndarray nn_idx: jnp.ndarray codebook: jnp.ndarray cluster_counts: list[jnp.ndarray] class QuantizationStrategy(enum.Enum): """The Quantization strategy.""" PRODUCT_QUANTIZATION = 'product_quantization' RESIDUAL_QUANTIZATION = 'residual_quantization' def refresh_codebooks( model_params: flax.core.FrozenDict, model_state: flax.core.FrozenDict, rng: jnp.ndarray, utilization_thresh: float, init_scalar: float = 0.1, ) -> tuple[flax.core.FrozenDict, flax.core.FrozenDict]: """Restart dead codebook vectors. When usage falls below the target utilization_thresh, codebook entries are re-initialized by adding noise to the most-used codebook entry. Args: model_params: Params tree containing codebooks. model_state: State tree containing codebook usage counts. rng: RNG used to generate re-initialization noise. utilization_thresh: Threshold for restarting a codebook entry. Note that this is expressed as a proportion of the uniform probability. (ie, the actual threshold is utilization_thresh/num_centroids.) init_scalar: Scalar for generated initialization noise. Returns: Updated model_params and model_state. """ flat_params = flax.traverse_util.flatten_dict(model_params) flat_model_state = flax.traverse_util.flatten_dict(model_state) for k, codebook in flat_params.items(): # Check that the lowest variable name is codebook; ignore all other params. if k[-1] != 'codebook': continue # Get the corresponding codebook assignment counts. # These counts are generated under the 'quantizer' collection. count_key = ('quantizer',) + k[:-1] + ('cluster_counts',) counts = flat_model_state[count_key] num_centroids = counts.shape[0] cl_probs = flat_model_state[count_key] / num_centroids thresh = utilization_thresh / num_centroids replace = (cl_probs < thresh)[:, jnp.newaxis] # To get replacement entries, take existing codebook entries according to # their popularity and add a bit of noise. noise_key, rng = jax.random.split(rng) init_fn = jax.nn.initializers.variance_scaling( init_scalar, 'fan_avg', 'normal', dtype=codebook.dtype ) init_noise = init_fn(noise_key, codebook.shape) categorical_key, rng = jax.random.split(rng) idxs = jax.random.categorical( categorical_key, counts, shape=[num_centroids] ) replacement_entries = codebook[idxs, :] init_values = replacement_entries + init_noise updated_codebook = replace * init_values + (1.0 - replace) * codebook updated_counts = ( replace[:, 0] * jnp.ones_like(counts) + (1.0 - replace[:, 0]) * counts ) flat_params[k] = updated_codebook flat_model_state[count_key] = updated_counts unflat_params = flax.traverse_util.unflatten_dict(flat_params) unflat_params = flax.core.frozen_dict.freeze(unflat_params) unflat_model_state = flax.traverse_util.unflatten_dict(flat_model_state) unflat_model_state = flax.core.frozen_dict.freeze(unflat_model_state) return unflat_params, unflat_model_state class BaseQuantizer(nn.Module): """Quantizer that can be used as a building block for ProductQuantizer. Attributes: num_centroids: The number of centroids. stop_gradient_codes: Whether to apply a stop gradient on the quantizer's codes, to protect them from being modified by downstream losses. Should always be True, and a future CL with remove this from being an option (keeping only for comparisons purposes with previous code). cross_replica_axis: Name of the cross-replica axis for applying ops requiring cross-replica reductions. ema_decay: Decay rate for EMA operations. init_scale: Scale for codebook initialization. """ num_centroids: int stop_gradient_codes: bool = True cross_replica_axis: str | None = None ema_decay: float = 0.99 init_scale: float = 0.1 def get_num_centroids(self): return self.num_centroids def get_num_sections(self): return 1 def create_codebook(self, flat_inputs): """Default codebook variable.""" embedding_dim = flat_inputs.shape[-1] init_fn = jax.nn.initializers.variance_scaling( self.init_scale, 'fan_avg', 'normal' ) codebook = self.param( 'codebook', init_fn, (self.num_centroids, embedding_dim) ) return codebook def update_cluster_counts(self, encodings, train): """Track cluster utilization with an EMA counter.""" counts = jnp.sum(encodings, axis=range(len(encodings.shape) - 1)) cluster_counts = self.variable( 'quantizer', 'cluster_counts', jnp.ones, [self.num_centroids] ) if not train: # TODO(tomdenton): Define some better behavior for eval? # Would be nice to re-init during eval to get eval-specific metrics. return cluster_counts.value self._ema_update(cluster_counts, counts) return cluster_counts.value def update_mean_estimate(self, flat_inputs, train): """Update an EMA estimate of the feature means.""" embedding_dim = flat_inputs.shape[-1] feature_means = self.variable( 'quantizer', 'feature_means', jnp.zeros, [embedding_dim] ) new_observation = jnp.mean(flat_inputs, axis=0) if train: self._ema_update(feature_means, new_observation) return feature_means.value def update_stdev_estimate(self, flat_inputs, train): """Update an EMA estimate of the feature standard deviation.""" feature_stdev = self.variable( 'quantizer', 'feature_stdev', jnp.std, flat_inputs ) new_observation = jnp.std(flat_inputs) if train: self._ema_update(feature_stdev, new_observation) return feature_stdev.value def _ema_update(self, variable, new_value): """Apply an EMA variable update, possibly in cross-device context.""" if self.cross_replica_axis: new_value = jax.lax.psum(new_value, axis_name=self.cross_replica_axis) variable.value = ( self.ema_decay * variable.value + (1.0 - self.ema_decay) * new_value ) class VectorQuantizer(BaseQuantizer): """Vector Quantizer using L2-loss. Attributes: commitment_loss: Loss weight for propagating quantization loss to inputs. """ commitment_loss: float = 0.0 demean: bool = False rescale: bool = False def loss(self, inputs, quantized): quant_loss = jnp.square(quantized - jax.lax.stop_gradient(inputs)) if self.commitment_loss > 0: encoder_loss = jnp.square(jax.lax.stop_gradient(quantized) - inputs) quant_loss += self.commitment_loss * encoder_loss return quant_loss @nn.compact def __call__(self, inputs, train): embedding_dim = inputs.shape[-1] flat_inputs = jnp.reshape(inputs, [-1, embedding_dim]) if self.demean: feature_means = self.update_mean_estimate(flat_inputs, train) flat_inputs -= feature_means if self.rescale: stdev = self.update_stdev_estimate(flat_inputs, train) flat_inputs /= stdev + 1e-8 codebook = self.create_codebook(flat_inputs) # Find nearest neighbor indices. distances = ( jnp.sum(jnp.square(flat_inputs), 1, keepdims=True) - 2 * jnp.matmul(flat_inputs, codebook.T) + jnp.sum(jnp.square(codebook.T), 0, keepdims=True) ) nn_idx = jnp.argmin(distances, axis=1) encodings = jax.nn.one_hot(nn_idx, self.num_centroids) counts = self.update_cluster_counts(encodings, train) quantized = jnp.matmul(encodings, codebook) quantization_loss = self.loss(flat_inputs, quantized) quantization_loss = jnp.reshape(quantization_loss, inputs.shape) if self.rescale: quantized *= stdev + 1e-8 if self.demean: quantized += feature_means quantized = jnp.reshape(quantized, inputs.shape) nn_idx = jnp.reshape(nn_idx, inputs.shape[:-1]) # Apply stop gradient to protect the encodings from downstream losses. quantized = inputs + jax.lax.stop_gradient(quantized - inputs) # Expand the dimensions to match those of product quantizer, for interface # consistency. This can be seen as a product quantizer with just 1 section. nn_idx = jnp.expand_dims(nn_idx, 0) codebook_values = jnp.expand_dims(codebook, 0) if self.stop_gradient_codes: codebook_values = jax.lax.stop_gradient(codebook_values) return QuantizerOutputs( quantized, quantization_loss, nn_idx, codebook_values, [counts] ) class VectorQuantizerEnt(BaseQuantizer): """Vector Quantizer using entropy loss.""" gamma: float = 1.0 def loss(self, scores): scores = jnp.reshape(scores, [-1, scores.shape[-1]]) h_clust = jnp.sum(scores * jnp.log2(scores + 1e-8), axis=-1) h_clust = -jnp.mean(h_clust) diversity = jnp.mean(scores, axis=0) h_diversity = -jnp.sum(diversity * jnp.log2(diversity + 1e-8)) loss = h_clust - self.gamma * h_diversity return loss @nn.compact def __call__(self, inputs, train): embedding_dim = inputs.shape[-1] flat_inputs = jnp.reshape(inputs, [-1, embedding_dim]) codebook = self.create_codebook(flat_inputs) # Expand codebook and feature dimensions for broadcasting. codes = jnp.expand_dims(codebook, range(flat_inputs.ndim - 1)) features = jax.lax.stop_gradient(flat_inputs) features = jnp.expand_dims(features, -2) similarity = jnp.sum(features * codes, axis=-1) scores = jax.nn.softmax(similarity, axis=-1) # Find nearest neighbor indices. nn_idx = jnp.argmax(scores, axis=-1) encodings = jax.nn.one_hot(nn_idx, self.num_centroids) counts = self.update_cluster_counts(encodings, train) quantized = jnp.matmul(encodings, codes) quantized -= jnp.mean(quantized, axis=-1, keepdims=True) quantized /= jnp.linalg.norm(quantized, axis=-1, keepdims=True) quantized = jnp.reshape(quantized, inputs.shape) nn_idx = jnp.reshape(nn_idx, inputs.shape[:-1]) quantization_loss = self.loss(scores) quantization_loss = jnp.full(inputs.shape[:-1] + (1,), quantization_loss) # Apply stop gradient to protect the encodings from downstream losses. quantized = inputs + jax.lax.stop_gradient(quantized - inputs) # Expand the dimensions to match those of product quantizer, for interface # consistency. This can be seen as a product quantizer with just 1 section. nn_idx = jnp.expand_dims(nn_idx, 0) codebook_values = jnp.expand_dims(codebook, 0) if self.stop_gradient_codes: codebook_values = jax.lax.stop_gradient(codebook_values) return QuantizerOutputs( quantized, quantization_loss, nn_idx, codebook_values, [counts] ) class ProductQuantizer(nn.Module): """Product Quantizer. Attributes: num_sections: The number of sections to quantize. base_quantizers: A list of `num_sections` BaseQuantizer modules. stop_gradient_codes: Whether to apply a stop gradient on the quantizer's codes, to protect them from being modified by downstream losses. Should always be True, and a future CL with remove this from being an option (keeping only for comparisons purposes with previous code). pca_dim: Dimension for learned PCA projection. Set <= 0 to disable. """ base_quantizers: Sequence[BaseQuantizer] stop_gradient_codes: bool = True pca_dim: int = 0 def get_pca_layer(self, embedding_dim): """Create PCA params for projection and pre-bias.""" if self.pca_dim <= 0: return jnp.ones([1]), jnp.zeros([1]) projection = self.param( 'pca_proj', jax.nn.initializers.variance_scaling( 1.0, 'fan_avg', 'normal', dtype=jnp.float32 ), [embedding_dim, self.pca_dim], ) pre_bias = self.param( 'pre_bias', jax.nn.initializers.zeros, [1, embedding_dim] ) return projection, pre_bias def pca_project(self, flat_inputs): """Map to a low-dim'l space and minimize reconstruction error.""" if self.pca_dim <= 0: return flat_inputs, 0, jnp.ones([1]), jnp.zeros([1]) embedding_dim = flat_inputs.shape[-1] projection, pre_bias = self.get_pca_layer(embedding_dim) projected = jnp.matmul(flat_inputs + pre_bias, projection) unprojected = jnp.matmul(projected, projection.T) - pre_bias l2_loss = jnp.sqrt(jnp.sum(jnp.square(flat_inputs - unprojected), axis=-1)) l2_loss = jnp.mean(l2_loss) # Ensure that (P@X)@(P@X).T is orthonormal. cov = jnp.matmul(projected.T, projected) / flat_inputs.shape[0] cov_loss = jnp.mean(jnp.square(cov - jnp.eye(self.pca_dim))) return projected, l2_loss + cov_loss, projection, pre_bias def pca_unproject(self, quantized, projection, pre_bias): if self.pca_dim <= 0: return quantized return jnp.matmul(quantized, projection.T) - pre_bias def get_num_centroids(self): nc = [q.num_centroids for q in self.base_quantizers] assert ( len(list(set(nc))) == 1 ), 'Expected all quantizers to have the same number of centroids.' return nc[0] def get_num_sections(self): return len(self.base_quantizers) @nn.compact def __call__(self, inputs, train): ns = self.get_num_sections() embedding_dim = inputs.shape[-1] flat_inputs = jnp.reshape(inputs, [-1, embedding_dim]) flat_inputs, pca_loss, projection, pre_bias = self.pca_project(flat_inputs) # Divide the input into `num_sections` parts and quantize each separately. input_sections = jnp.split(flat_inputs, ns, axis=-1) loss, quantized, nn_idx, codebook_list, counts = [], [], [], [], [] for quantizer, sec in zip(self.base_quantizers, input_sections): # Let `csz` denote the number of channels of `inputs` and `...` denotes # irrelevant dimensions like batch size and / or number of frames. Then: # outputs.quantized: [..., csz / ns]. # outputs.nn_idx: [1, ...]. # outputs.codebook: [1, nc, csz / ns]. outputs = quantizer(sec, train) quantized.append(outputs.quantized) nn_idx.append(outputs.nn_idx) codebook_list.append(outputs.codebook) loss.append( jnp.reshape(outputs.quantization_loss, inputs.shape[:-1] + (-1,)) ) counts += outputs.cluster_counts # Aggregate across 'sections' to get the following shapes: # quantized: [..., csz]. # nn_idx: [ns, ...]. # codebook: [ns, nc, csz / ns]. quantized = jnp.concatenate(quantized, axis=-1) quantized = self.pca_unproject(quantized, projection, pre_bias) quantized = jnp.reshape(quantized, inputs.shape) nn_idx = jnp.concatenate(nn_idx, axis=0) nn_idx = jnp.reshape(nn_idx, (ns,) + inputs.shape[:-1]) codebook = jnp.concatenate(codebook_list, axis=0) quantization_loss = jnp.mean(jnp.stack(loss, axis=0), axis=0) + pca_loss if self.stop_gradient_codes: codebook = jax.lax.stop_gradient(codebook) return QuantizerOutputs( quantized, quantization_loss, nn_idx, codebook, counts ) class ResidualQuantizer(nn.Module): """A residual quantizer with explicitly passed sub-quantizers. Accepting a list allows using arbitrary quantizers (e.g., product quantizers) in sequence. """ quantizers: Sequence[nn.Module] = () stop_gradient_codes: bool = True def get_num_centroids(self): nc = [q.num_centroids for q in self.quantizers] assert ( len(list(set(nc))) == 1 ), 'Expected all quantizers to have the same number of centroids.' return nc[0] def get_num_sections(self): return len(self.quantizers) @nn.compact def __call__(self, inputs, train=True): quantized = 0.0 quantization_loss = 0.0 nn_idx, codebooks, counts = [], [], [] embedding_dim = inputs.shape[-1] flat_inputs = jnp.reshape(inputs, [-1, embedding_dim]) residual = flat_inputs for quantizer in self.quantizers: quant_outputs = quantizer(residual, train) quantized += quant_outputs.quantized residual -= quant_outputs.quantized nn_idx.append(quant_outputs.nn_idx) codebooks.append(quant_outputs.codebook) quantization_loss += jnp.mean(quant_outputs.quantization_loss) counts += quant_outputs.cluster_counts # Aggregate across 'sections' to get the following shapes: # quantized: [...]. # nn_idx: [ns, ...]. # codebook: [ns, nc, csz / ns]. # Using non-homogenous quantizers means we can't concat the outputs. nn_idx = jnp.concatenate(nn_idx, axis=0) nn_idx = jnp.reshape(nn_idx, (len(self.quantizers),) + inputs.shape[:-1]) codebooks = jnp.concatenate(codebooks, axis=0) if self.stop_gradient_codes: codebooks = jax.lax.stop_gradient(codebooks) quantized = jnp.reshape(quantized, inputs.shape) quantization_loss = jnp.full(inputs.shape[:-1] + (1,), quantization_loss) return QuantizerOutputs( quantized, quantization_loss, nn_idx, codebooks, counts )
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Model layers. Building blocks and layers to construct networks, implemented as Flax modules. """ from typing import Callable from flax import linen as nn import jax from jax import nn as jnn from jax import numpy as jnp import optax JTensor = jnp.ndarray class SqueezeAndExcitation(nn.Module): """Squeeze-and-Excitation layer. See "Squeeze-and-Excitation Networks" (Hu et al., 2018), particularly equations 2 and 3. Attributes: reduction_ratio: The reduction factor in the squeeze operation. Referred to as `r` in the paper. activation: The activation to apply after squeezing. """ reduction_ratio: int = 4 activation: Callable[[jnp.ndarray], jnp.ndarray] = nn.relu @nn.compact def __call__(self, inputs: jnp.ndarray) -> jnp.ndarray: """Applies SqueezeAndExcite on the 2D inputs. Args: inputs: Input data in shape of `(batch size, height, width, channels)`. Returns: JAX array with same shape as the input. """ if inputs.ndim != 4: raise ValueError( "Inputs should in shape of `[batch size, height, width, features]`" ) # Squeeze x = jnp.mean(inputs, axis=(1, 2)) x = nn.Dense(features=x.shape[-1] // self.reduction_ratio, name="Reduce")(x) x = self.activation(x) # Excite x = nn.Dense(features=inputs.shape[-1], name="Expand")(x) x = nn.sigmoid(x) return inputs * x[:, None, None, :] class MBConv(nn.Module): """Mobile inverted bottleneck block. As introduced in "Mobilenetv2: Inverted residuals and linear bottlenecks" (Sandler et al., 2018). See figure 4d for an illustration and https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet for a reference implementation. The defaults are those from the MobileNetV2 paper. There is added support for batch normalization and squeeze-and-excitation blocks as used by EfficientNet. Note that the skip connection is not part of this module. Attributes: features: The number of filters. strides: The strides to use in the depthwise separable convolution. expand_ratio: The expansion factor to use. A block with expansion factor `N` is commonly referred to as MBConvN. kernel_size: The kernel size used by the depthwise separable convolution. activation: The activation function to use after the expanding 1x1 convolution. Also used by the optional squeeze-and-excitation block. batch_norm: Whether to use batch normalization after the expanding and reducing convolutions. reduction_ratio: If given, a squeeze-and-excitation block is inserted after the depthwise separable convolution with the given reduction factor. Note that this reduction ratio is relative to the number of input channels, i.e., it scales with `expand_ratio`. """ features: int strides: int expand_ratio: int kernel_size: tuple[int, int] = (3, 3) activation: Callable[[jnp.ndarray], jnp.ndarray] = jnn.relu6 batch_norm: bool = False reduction_ratio: int | None = None @nn.compact def __call__( self, inputs: jnp.ndarray, use_running_average: bool = None ) -> jnp.ndarray: """Applies an inverted bottleneck block to the inputs. Args: inputs: Inputs should be of shape `(batch size, height, width, channels)`. use_running_average: Used to decide whether to use running statistics in BatchNorm (test mode), or the current batch's statistics (train mode). Returns: A JAX array of `(batch size, height, width, features)`. """ features = self.expand_ratio * inputs.shape[-1] x = inputs if self.expand_ratio != 1: x = nn.Conv( features=features, kernel_size=(1, 1), strides=(1, 1), use_bias=False, name="ExpandConv", )(x) if self.batch_norm: x = nn.BatchNorm( use_running_average=use_running_average, name="ExpandBatchNorm" )(x) x = self.activation(x) if self.strides == 2: def _pad_width(input_size: int, kernel_size: int) -> tuple[int, int]: """Calculate padding required to halve input with stride 2.""" return (kernel_size // 2) - (1 - input_size % 2), kernel_size // 2 padding = ( _pad_width(x.shape[1], self.kernel_size[0]), _pad_width(x.shape[2], self.kernel_size[1]), ) else: padding = "SAME" x = nn.Conv( features=features, kernel_size=self.kernel_size, strides=self.strides, padding=padding, feature_group_count=features, use_bias=False, name="DepthwiseConv", )(x) if self.batch_norm: x = nn.BatchNorm( use_running_average=use_running_average, name="DepthwiseBatchNorm" )(x) x = self.activation(x) if self.reduction_ratio is not None: x = SqueezeAndExcitation( reduction_ratio=self.reduction_ratio * self.expand_ratio, activation=self.activation, )(x) x = nn.Conv( features=self.features, kernel_size=(1, 1), strides=1, use_bias=False, name="ProjectConv", )(x) if self.batch_norm: x = nn.BatchNorm( use_running_average=use_running_average, name="ProjectBatchNorm" )(x) return x class Identity(nn.Module): """Identity layer.""" @nn.compact def __call__(self, inputs: jnp.ndarray, *args, **kwargs) -> jnp.ndarray: """Identity function. Args: inputs: Input array. *args: Any other arguments are ignored. **kwargs: Any keyword arguments are ignored. Returns: The input, unchanged. """ return inputs class FeedForward(nn.Module): """Linear layer. Attributes: output_dims: Depth of the output. activation: The activation to apply after the linear layer. """ output_dims: int = 0 activation: Callable[[jnp.ndarray], jnp.ndarray] = nn.relu @nn.compact def __call__(self, inputs: jnp.ndarray) -> jnp.ndarray: """Applies a feed forward layer to inputs. Args: inputs: The inputs jnp.ndarray. Shaped [..., input_dims]. Returns: Outputs. Shaped [..., output_dims]. """ x = nn.Dense(features=self.output_dims, name="FeedForward")(inputs) x = self.activation(x) return x # Transformer layers. class TransformerFeedForward(nn.Module): """Transformer feedforward layer with residual connection and dropout. Attributes: input_dims: Depth of the input. hidden_dims: Hidden dimension of FFN. activation: Activation function to use. Options are RELU, RELU6, RELU^2, RELU^3, SIGMOID, TANH, GELU, GATED_GELU, GATED_SILU, NONE. residual_dropout_prob: Residual dropout. relu_dropout_prob: FFN dropout. add_skip_connection: Whether to add residual connection. residual_weight: Weight of the residual connection. Output = fn(x) * residual_weight + x. """ input_dims: int = 0 hidden_dims: int = 0 activation: Callable[[jnp.ndarray], jnp.ndarray] = nn.relu residual_dropout_prob: float = 0.0 relu_dropout_prob: float = 0.0 add_skip_connection: bool = True residual_weight: float = 1.0 @nn.compact def __call__(self, inputs: jnp.ndarray, train: bool) -> jnp.ndarray: output_dims = self.input_dims inputs_normalized = nn.LayerNorm(name="layer_norm")(inputs) # Apply first FFN layer projected_inputs = FeedForward( output_dims=self.hidden_dims, activation=self.activation )(inputs_normalized) # Apply RELU dropout projected_inputs = nn.Dropout(self.relu_dropout_prob)( projected_inputs, deterministic=not train ) # Apply second FFN layer projected_inputs = FeedForward( output_dims=output_dims, activation=Identity() )(projected_inputs) # Apply residual dropout projected_inputs = nn.Dropout(self.residual_dropout_prob)( projected_inputs, deterministic=not train ) # Apply skip connection if self.add_skip_connection: projected_inputs = inputs + projected_inputs * self.residual_weight return projected_inputs # Convolution layers. class LightConv1D(nn.Module): """Lightweight conv layer. architecture:: input-ln()-ff()-glu()-depthwise_conv1d()-norm()-act()-ff()-dropout()-+-output |__________________________________________________________________| Attributes: input_dims: Input and (in fact,) output dimension. kernel_size: Kernel size of 1d deptwise conv. conv_activation: Activation after normalization. dropout_prob: Dropout probability. """ input_dims: int | None = None kernel_size: int | None = None conv_activation: Callable[[jnp.ndarray], jnp.ndarray] = nn.swish dropout_prob: float = 0.0 downsample: bool = True @nn.compact def __call__( self, inputs: jnp.ndarray, train: bool, use_running_average: bool | None = None, ) -> jnp.ndarray: """Lightweight conv layer. Args: inputs: Input sequence jnp.ndarray of shape [B, T, H]. train: Whether this is training. This affects Dropout behavior, and also affects BatchNorm behavior if 'use_running_average' is set to None. use_running_average: Optional, used to decide whether to use running statistics in BatchNorm (test mode), or the current batch's statistics (train mode). If not specified (or specified to None), default to 'not train'. Returns: The lconv output with shape [B, T, H]. """ if use_running_average is None: use_running_average = not train unnormalized_inputs = inputs inputs = nn.LayerNorm(name="ln")(inputs) act_inputs = FeedForward( output_dims=self.input_dims, activation=Identity() )(inputs) gated_inputs = FeedForward( output_dims=self.input_dims, activation=Identity() )(inputs) inputs = act_inputs * jax.nn.sigmoid(gated_inputs) inputs = nn.Conv( features=self.input_dims, kernel_size=(self.kernel_size,), strides=2 if self.downsample else 1, padding="SAME", input_dilation=1, kernel_dilation=1, feature_group_count=self.input_dims, use_bias=False, )(inputs) inputs = nn.BatchNorm()(inputs, use_running_average=use_running_average) inputs = self.conv_activation(inputs) inputs = FeedForward(output_dims=self.input_dims, activation=Identity())( inputs ) inputs = nn.Dropout(self.dropout_prob)(inputs, deterministic=not train) if self.downsample: unnormalized_inputs = nn.avg_pool( unnormalized_inputs, (2,), (2,), padding="SAME" ) # If downsampling happened, the dimensions might also have changed, which # means we need to project the inputs for the residual connection if unnormalized_inputs.shape[-1] != self.input_dims: unnormalized_inputs = nn.Dense(features=self.input_dims)( unnormalized_inputs ) output = inputs + unnormalized_inputs return output # Conformer layers. class SelfAttentionWithNormAndResidual(nn.Module): """Self attention sub-layer used in the Conformer layer. Input is first normalized using layer norm. Output is processed using multi-headed attention. And finally, the output of the attention layer is combined with the input by residual connection. For the normalization, we can specify pre norm or post norm. For the residual connection, we can specify the residual weight. Attributes: residual_weight: Weight of the residual connection. Output = fn(x) * residual_weight + x * input_weight. input_weight: Weight of the input connection. Output = fn(x) * residual_weight + x * input_weight. pre_layer_norm: Whether to apply norm before or after the layer. residual_dropout_prob: Probability at which we apply dropout to the residual layers, such that, residual(x, y) = (x + dropout(y)). """ residual_weight: float = 1.0 input_weight: float = 1.0 pre_layer_norm: bool = True residual_dropout_prob: float = 0.0 atten_dropout_prob: float = 0.0 num_heads: int = 1 @nn.compact def __call__( self, inputs: jnp.ndarray, train: bool, atten_mask: JTensor | None = None, ) -> jnp.ndarray: unnormalized_inputs = inputs if self.pre_layer_norm: inputs = nn.LayerNorm()(inputs) self_atten = nn.MultiHeadDotProductAttention( num_heads=self.num_heads, dropout_rate=self.atten_dropout_prob ) result = self_atten( inputs_q=inputs, inputs_kv=inputs, mask=atten_mask, deterministic=not train, ) if not self.pre_layer_norm: result = nn.LayerNorm()(result) dropout = nn.Dropout(self.residual_dropout_prob, name="residual_dropout") result = ( dropout(result, deterministic=not train) * self.residual_weight + unnormalized_inputs * self.input_weight ) return result class Conformer(nn.Module): """Conformer layer as in https://arxiv.org/abs/2005.08100. Canonical version (with default params.) x = x + 1/2 * FFN(x) x = x + MHSA(x) x = x + Lconv(x) x = x + 1/2 * FFN(x) y = ln(x) Residual connections are implemented inside each individual block: FFN, MHSA, LConv. Optionally one can change the order of MHSA and conv. Attributes: model_dims: Encoder model dimension. kernel_size: Conv kernel size. ff_activation: Activation function used in the feedforward network. ff_residual_weight: Residual weight used in the fflayer. ffn_dim_multiplier: Feed forward hidden dimension will be ffn_dim_multiplier * model_dims. atten_num_heads: Number of attention heads. layer_order: Only mhsa, conv, mhsa_before_conv or conv_before_mhsa are supported dropout_prob: Dropout prob of inner components. conv_residual_dropout: Conv block residual dropout. Will be overwritten by p.dropout if it is not None. atten_residual_dropout: Attention block residual dropout. Will be overwritten by p.dropout if it is not None. ffn_residual_dropout: Feed forward block residual dropout. Will be overwritten by p.dropout if it is not None. atten_dropout: Dropout in Attention layer. Will be overwritten by p.dropout if it is not None. ffn_relu_dropout: Post activation dropout in Feed-forward layer. Will be overwritten by p.dropout if it is not None. fflayer_weight_sharing: If True, will ignore `fflayer_end_tpl`, and will make the fflayer_end layer as a weight-shared copy of the fflayer_start layer. """ model_dims: int = 512 kernel_size: int = 32 ff_activation: Callable[[jnp.ndarray], jnp.ndarray] = nn.swish ff_residual_weight: float = 0.5 ffn_dim_multiplier: int = 4 atten_num_heads: int = 8 layer_order: str = "mhsa_before_conv" dropout_prob: float | None = None conv_residual_dropout: float | None = None atten_residual_dropout: float | None = None ffn_residual_dropout: float | None = None atten_dropout: float | None = None ffn_relu_dropout: float | None = None fflayer_weight_sharing: bool = False downsample: bool = False skip_layer_norm: bool = True @nn.compact def __call__( self, inputs: jnp.ndarray, train: bool, use_running_average: bool | None = None, atten_mask: jnp.ndarray | None = None, ) -> jnp.ndarray: """Conformer layer. Args: inputs: Input sequence jnp.ndarray of shape [B, T, H]. train: Whether this is training. This affects Dropout behavior, and also affects BatchNorm behavior if 'use_running_average' is set to None. use_running_average: Optional, used to decide whether to use running statistics in BatchNorm (test mode), or the current batch's statistics (train mode). If not specified (or specified to None), default to 'not train'. atten_mask: Input jnp.ndarray attention mask. Raises: RuntimeError: if an attention mask is given but there's no attention layer Returns: The conformer output with shape [B, T, D]. """ if use_running_average is None: use_running_average = not train layer_order_set = ["mhsa", "conv", "mhsa_before_conv", "conv_before_mhsa"] if self.layer_order not in layer_order_set: raise ValueError( f"`self.layer_order` must be within `{layer_order_set}`." ) input_dims = inputs.shape[-1] # Set up the first ff layer. fflayer_start = TransformerFeedForward( name="fflayer_start", activation=self.ff_activation, input_dims=input_dims, hidden_dims=input_dims * self.ffn_dim_multiplier, residual_weight=self.ff_residual_weight, residual_dropout_prob=self.ffn_residual_dropout, relu_dropout_prob=self.ffn_relu_dropout, ) # Set up the last ff layer. fflayer_end = TransformerFeedForward( name="fflayer_end", activation=self.ff_activation, input_dims=self.model_dims, hidden_dims=self.model_dims * self.ffn_dim_multiplier, residual_weight=self.ff_residual_weight, residual_dropout_prob=self.ffn_residual_dropout, relu_dropout_prob=self.ffn_relu_dropout, ) # Setup attention layer. if "mhsa" in self.layer_order: trans_atten = SelfAttentionWithNormAndResidual( residual_dropout_prob=self.atten_residual_dropout, atten_dropout_prob=self.atten_dropout, num_heads=self.atten_num_heads, ) # Setup convolution layer. lconv = LightConv1D( input_dims=self.model_dims, kernel_size=self.kernel_size, dropout_prob=self.conv_residual_dropout, downsample=self.downsample, ) if not self.skip_layer_norm: final_ln = nn.LayerNorm(name="final_ln") if atten_mask is not None and "mhsa" not in self.layer_order: raise RuntimeError("Attention mask is provided but no attention layer.") inputs = fflayer_start(inputs, train) if self.layer_order == "mhsa": inputs = trans_atten(inputs=inputs, train=train, atten_mask=atten_mask) elif self.layer_order == "conv": inputs = lconv( inputs, train=train, use_running_average=use_running_average ) elif self.layer_order == "mhsa_before_conv": inputs = trans_atten(inputs=inputs, train=train, atten_mask=atten_mask) inputs = lconv(inputs, train) else: inputs = lconv(inputs, train) inputs = trans_atten(inputs=inputs, train=train, atten_mask=atten_mask) if self.fflayer_weight_sharing: # With the weight sharing, we apply fflayer_start again inputs = fflayer_start(inputs, train) else: inputs = fflayer_end(inputs, train) if not self.skip_layer_norm: inputs = final_ln(inputs) return inputs class StridedAutopool(nn.Module): """Strided 1D Autopool over an array of shape [B, T, D]. See https://arxiv.org/abs/1804.10070 for basic Autopool derivation. This implementation applies autopool to strided time windows. """ alpha_0: float pool_width: int pool_stride: int padding: str @nn.compact def __call__(self, inputs): alpha_shape = [1] * (len(inputs.shape) - 1) + [inputs.shape[-1]] alpha = self.param( "alpha", nn.initializers.constant(self.alpha_0), alpha_shape ) pool_fn = lambda x: nn.pooling.avg_pool( # pylint: disable=g-long-lambda x, window_shape=(self.pool_width,), strides=(self.pool_stride,), padding=self.padding, ) exp_inputs = jnp.exp(alpha * inputs) auto_pooled = pool_fn(exp_inputs * inputs) / pool_fn(exp_inputs) return auto_pooled class EarlyFeatureExtractor(nn.Module): """Network used as the "early feature extractor" for HuBERT. This module is comprised of a number of convolutional layers. It also uses group normalization after the first layer only. It is based on the architecture used for wav2vec 2.0 / HuBERT, and using the defaults of the implementation from https://github.com/facebookresearch/fairseq/blob/5307a0e078d7460003a86f4e2246d459d4706a1d/fairseq/models/wav2vec/wav2vec2.py Attributes: conv_layer_tuples: A List of (dim, kernel size, stride) tuples, one for each of the convolutional layers. dropout_prob: A float. The dropout probability. activation: The activation to apply after each convolutional "block". deprecated_group_conv: Whether to use the older version of this layer (which used grouped convolutions), for compatibility with old experiments. This option will be removed in the future. """ conv_layer_tuples: tuple[tuple[int, int, int], ...] dropout_prob: float = 0.0 activation: Callable[[jnp.ndarray], jnp.ndarray] = nn.gelu deprecated_group_conv: bool = False @nn.compact def __call__(self, inputs: jnp.ndarray, train: bool) -> jnp.ndarray: """Convolutional feature extractor used for "early" feature extraction. Args: inputs: Input sequence jnp.ndarray of shape [B, T, H]. train: Whether we are in training mode. Affects dropout. Returns: A jnp.ndarray with shape [B, T, D]. """ if self.deprecated_group_conv: if inputs.ndim != 3: raise ValueError("Expected the input to have 3 dimensions.") model_dims = self.conv_layer_tuples[0][0] if inputs.shape[-1] != model_dims: inputs = FeedForward(output_dims=model_dims)(inputs) # TODO(etriantafillou): Experiment with adding residual connections. for i, (dim, k, stride) in enumerate(self.conv_layer_tuples): inputs = nn.Conv( features=dim, kernel_size=(k,), strides=(stride,), feature_group_count=dim if self.deprecated_group_conv else 1, use_bias=False, name="conv_layer_{}".format(i), )(inputs) inputs = nn.Dropout(self.dropout_prob)(inputs, deterministic=not train) if i == 0: if self.deprecated_group_conv: inputs = nn.GroupNorm(num_groups=None, group_size=dim)(inputs) else: inputs = nn.GroupNorm(num_groups=dim)(inputs) inputs = self.activation(inputs) return inputs def hinge_loss(predictor_outputs, targets): """Computes the hinge loss while accommodating targets in {0, 1}.""" targets = 2 * targets - 1 return optax.hinge_loss(predictor_outputs, targets)
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Conformer layers.""" import dataclasses import math from typing import Callable from chirp.models import layers from flax import linen as nn from jax import numpy as jnp import numpy as np class Conformer(nn.Module): """Projection layer followed by a conformer layer.""" model_dims: int = 512 kernel_size: int = 32 ff_activation: Callable[[jnp.ndarray], jnp.ndarray] = nn.swish ff_residual_weight: float = 0.5 ffn_dim_multiplier: int = 4 atten_num_heads: int = 8 layer_order: str = 'mhsa_before_conv' dropout_prob: float | None = None conv_residual_dropout: float | None = None atten_residual_dropout: float | None = None ffn_residual_dropout: float | None = None atten_dropout: float | None = None ffn_relu_dropout: float | None = None fflayer_weight_sharing: bool = False num_blocks: int = 1 # tuples of layer index and corresponding scaling of number of channels downsample: list[tuple[int, float]] = dataclasses.field(default_factory=list) skip_layer_norm: bool = True @nn.compact def __call__( self, inputs: jnp.ndarray, train: bool, return_intermediate_list: bool, use_running_average: bool | None = None, ) -> jnp.ndarray: """Projection followed by a conformer layer. Args: inputs: Input sequence JTensor of shape [B, T, H]. train: Whether this is training. This affects Dropout behavior, and also affects BatchNorm behavior if 'use_running_average' is set to None. return_intermediate_list: Whether to return a list of the activations after each conformer block, instead of only the final ones. use_running_average: Optional, used to decide whether to use running statistics in BatchNorm (test mode), or the current batch's statistics (train mode). If not specified (or specified to None), default to 'not train'. Returns: The conformer output with shape [B, T, D]. """ if use_running_average is None: use_running_average = not train if inputs.shape[-1] != self.model_dims: # Conformer requires the input dims to be `model_dims` so use a projection # layer that maps `input_dims` to `model_dims` before the conformer layer. inputs = layers.FeedForward(output_dims=self.model_dims)(inputs) if self.dropout_prob is not None: all_dropouts = [ self.atten_dropout, self.atten_residual_dropout, self.conv_residual_dropout, self.ffn_residual_dropout, self.ffn_relu_dropout, ] for prob in all_dropouts: assert prob is None or prob == self.dropout_prob atten_dropout = self.dropout_prob atten_residual_dropout = self.dropout_prob conv_residual_dropout = self.dropout_prob ffn_residual_dropout = self.dropout_prob ffn_relu_dropout = self.dropout_prob else: atten_dropout = self.atten_dropout atten_residual_dropout = self.atten_residual_dropout conv_residual_dropout = self.conv_residual_dropout ffn_residual_dropout = self.ffn_residual_dropout ffn_relu_dropout = self.ffn_relu_dropout intermediate = [] model_dims = self.model_dims downsample = list(self.downsample).copy() for i in range(self.num_blocks): if downsample and downsample[0][0] == i: should_downsample = True model_dims = int(model_dims * self.downsample[0][1]) model_dims = (model_dims // self.atten_num_heads) * self.atten_num_heads downsample = downsample[1:] else: should_downsample = False inputs = layers.Conformer( model_dims=model_dims, kernel_size=self.kernel_size, ff_activation=self.ff_activation, ff_residual_weight=self.ff_residual_weight, ffn_dim_multiplier=self.ffn_dim_multiplier, atten_num_heads=self.atten_num_heads, layer_order=self.layer_order, dropout_prob=self.dropout_prob, conv_residual_dropout=conv_residual_dropout, atten_residual_dropout=atten_residual_dropout, ffn_residual_dropout=ffn_residual_dropout, atten_dropout=atten_dropout, ffn_relu_dropout=ffn_relu_dropout, fflayer_weight_sharing=self.fflayer_weight_sharing, name='conformer_block_{}'.format(i), downsample=should_downsample, skip_layer_norm=self.skip_layer_norm, )(inputs, train, use_running_average=use_running_average) intermediate.append(inputs) if return_intermediate_list: return intermediate # pytype: disable=bad-return-type # jax-ndarray else: return inputs class PositionalEmbedding(nn.Module): """Generates position embedding for a given 1-d sequence. Attributes: min_timescale: Start of the geometric index. Determines the periodicity of the added signal. max_timescale: End of the geometric index. Determines the frequency of the added signal. embedding_dims: Dimension of the embedding to be generated. """ embedding_dims: int = 0 min_timescale: int = 1 max_timescale: int = 10_000 @nn.compact def __call__(self, seq_length: int) -> jnp.ndarray: """Generates an array of sinusoids with different frequencies. Args: seq_length: Sequence length of the embeddings to be generated. Returns: An array of shape (1, seq_length, embedding_dim) containing positional embeddings. """ position = jnp.arange(seq_length, dtype=jnp.float32)[jnp.newaxis, :] num_timescales = self.embedding_dims // 2 log_timescale_increment = math.log( self.max_timescale / self.min_timescale ) / jnp.maximum(num_timescales - 1, 1.0) inv_timescales = self.min_timescale * jnp.exp( jnp.arange(num_timescales) * -log_timescale_increment ) scaled_time = ( position[:, :, jnp.newaxis] * inv_timescales[jnp.newaxis, jnp.newaxis, :] ) signal = jnp.concatenate( [jnp.sin(scaled_time), jnp.cos(scaled_time)], axis=2 ) # Force usage of `np` rather than `jnp` to compute static values at trace # time. if self.embedding_dims != 0: signal = jnp.pad( signal, [(0, 0), (0, 0), (0, np.mod(self.embedding_dims, 2))] ) return signal class ConvolutionalSubsampling(nn.Module): """Convolutional subsampling module. This is the convolutional subsampling module as used in the conformer paper[^1]. It consists of two 2D convolutional layers with a stride of 2. The frequencies and output channels get combined to produce a 1D output. Relative positional embeddings are added for the conformer blocks. [1]: Gulati, Anmol, et al. "Conformer: Convolution-augmented transformer for speech recognition." arXiv preprint arXiv:2005.08100 (2020). """ features: int kernel_size: tuple[int, int] = (3, 3) strides: tuple[int, int] = (2, 2) num_layers: int = 2 dropout_prob: float = 0.1 @nn.compact def __call__(self, inputs: jnp.ndarray, train: bool) -> jnp.ndarray: """Apply convolutional subsampling. Args: inputs: A batch of spectrograms of size (batch, time, channels). train: Whether or not this is training (used for dropout). Returns: A subsampled array that is 4 times small in the time and channels dims. """ x = inputs # Subsample x = nn.Conv(self.features, self.kernel_size, strides=self.strides)(x) x = nn.relu(x) x = nn.Conv(self.features, self.kernel_size, strides=self.strides)(x) x = nn.relu(x) # Merge channels and frequency dimension x = jnp.reshape(x, x.shape[:-2] + (-1,)) x = nn.Dense(self.features)(x) # Add positional embeddings x = x + PositionalEmbedding(embedding_dims=self.features)(x.shape[-2]) x = nn.Dropout(self.dropout_prob, deterministic=not train)(x) return x
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Separation model.""" from typing import Callable from chirp.models import layers import flax from flax import linen as nn import jax from jax import numpy as jnp SOUNDSTREAM_UNET = 'soundstream_unet' @flax.struct.dataclass class SeparatorOutput: """Separation model outputs.""" separated_audio: jnp.ndarray bottleneck: jnp.ndarray | None = None embedding: jnp.ndarray | None = None label: jnp.ndarray | None = None genus: jnp.ndarray | None = None family: jnp.ndarray | None = None order: jnp.ndarray | None = None def time_reduce_logits(self, reduction: str = 'AVG') -> 'SeparatorOutput': """Returns a new ModelOutput with scores reduced over the time axis. Args: reduction: Type of reduction to use. One of AVG (promotes precision), MAX (promotes recall), or MIDPOINT (unbiased, but probably useless for very long sequences). """ if reduction == 'AVG': reduce_fn = lambda x: jnp.mean(x, axis=1) elif reduction == 'MAX': reduce_fn = lambda x: jnp.max(x, axis=1) elif reduction == 'MIDPOINT': midpt = self.label.shape[1] // 2 reduce_fn = lambda x: x[:, midpt, :] else: raise ValueError(f'Reduction {reduction} not recognized.') return SeparatorOutput( self.separated_audio, self.bottleneck, self.embedding, reduce_fn(self.label) if self.label is not None else None, reduce_fn(self.genus) if self.genus is not None else None, reduce_fn(self.family) if self.family is not None else None, reduce_fn(self.order) if self.order is not None else None, ) def enforce_mixture_consistency_time_domain( mixture_waveforms, separated_waveforms, use_mag_weighting=False ): """Projection implementing mixture consistency in time domain. This projection makes the sum across sources of separated_waveforms equal to mixture_waveforms and minimizes the unweighted mean-squared error between the sum across sources of separated_waveforms and mixture_waveforms. See https://arxiv.org/abs/1811.08521 for the derivation. Args: mixture_waveforms: Array of mixture waveforms with shape [B, T]. separated_waveforms: Array of separated waveforms with shape [B, C, T]. use_mag_weighting: If True, mix weights are magnitude-squared of the separated signal. Returns: Projected separated_waveforms as an array in source image format. """ # Modify the source estimates such that they sum up to the mixture, where # the mixture is defined as the sum across sources of the true source # targets. Uses the least-squares solution under the constraint that the # resulting source estimates add up to the mixture. num_sources = separated_waveforms.shape[1] mix = jnp.expand_dims(mixture_waveforms, 1) mix_estimate = jnp.sum(separated_waveforms, 1, keepdims=True) if use_mag_weighting: mix_weights = 1e-8 + jnp.mean( separated_waveforms**2, axis=2, keepdims=True ) mix_weights /= jnp.sum(mix_weights, axis=1, keepdims=True) else: mix_weights = 1.0 / num_sources correction = mix_weights * (mix - mix_estimate) separated_waveforms = separated_waveforms + correction return separated_waveforms class SeparationModel(nn.Module): """Audio separation model. We use a general masked separation approach, similar to ConvTasNet. Input audio with shape [[B]atch, [T]ime] is run through an invertible 'bank' transform (usually STFT or a learned filterbank), obtaining shape [B, T, [F]ilters]. A mask-generator network consumes the banked audio and produces a set of (usually sigmoid) masks with shape [B, T, [C]hannels, F]. These masks are broadcast multiplied by the banked audio to create C separated audio channels. Then an 'unbank' (ie, synthesis filterbank) tranformation returns the masked audio channels to the time domain. Finally, a mixture consistency projection is applied. [^1]: ConvTasNet: https://arxiv.org/pdf/1809.07454.pdf Attributes: bank_transform: A transform consuming a batch of audio with shape [B, T] and returning an array of shape [B, T, F]. unbank_transform: A transform returning an array of shape [B, T, F] to time-domain audio with shape [B, T]. mask_generator: A network transforming an array banked audio of shape [B, T, F] to an output with the same batch and time dimensions as the input banked audio. This module handles the transformation of the mask_generator outputs to actual mask values. num_mask_channels: Number of separated channels. mask_kernel_size: Kernel size for transpose convolution to mask logits. bank_is_real: Indicates if the banked audio is complex valued. If so, we take the magnitude of the bank values before feeding them to the mask_generator network. """ bank_transform: Callable[[jnp.ndarray], jnp.ndarray] unbank_transform: Callable[[jnp.ndarray], jnp.ndarray] mask_generator: nn.Module num_mask_channels: int = 4 mask_kernel_size: int = 3 bank_is_real: bool = False num_classes: dict[str, int] | None = None classify_bottleneck: bool = False classify_pool_width: int = 250 classify_stride: int = 50 classify_features: int = 512 def check_shapes(self, banked_inputs, mask_hiddens): if mask_hiddens.shape[-3] != banked_inputs.shape[-3]: raise ValueError( 'Output mask_hiddens must have the same time dimensionality as the ' 'banked_inputs. Got shapes: %s vs %s' % (mask_hiddens.shape, banked_inputs.shape) ) def bottleneck_classifier(self, bottleneck, train: bool): """Create classification layer over the bottleneck.""" # TODO(tomdenton): Experiment with removing this layernorm. bottleneck = nn.normalization.LayerNorm(reduction_axes=(-2, -1))(bottleneck) classify_hiddens = layers.StridedAutopool( 0.5, self.classify_pool_width, self.classify_stride, padding='SAME' )(bottleneck) classify_hiddens = nn.Conv( features=self.classify_features, kernel_size=(1,), strides=(1,), padding='SAME', )(classify_hiddens) classify_hiddens = nn.swish(classify_hiddens) classify_outputs = {} for k, n in self.num_classes.items(): classify_outputs[k] = nn.Conv(n, (1,), (1,), 'SAME')(classify_hiddens) classify_outputs['embedding'] = classify_hiddens return classify_outputs @nn.compact def __call__(self, inputs: jnp.ndarray, train: bool) -> SeparatorOutput: """Apply the separation model.""" banked_inputs = self.bank_transform(inputs) num_banked_filters = banked_inputs.shape[-1] if self.bank_is_real: mask_inputs = banked_inputs else: mask_inputs = jnp.abs(banked_inputs) mask_hiddens, bottleneck = self.mask_generator(mask_inputs, train=train) self.check_shapes(banked_inputs, mask_hiddens) # Convert mask_hiddens to actual mask values. # TODO(tomdenton): Check whether non-trivial mask_kernel_size really helps. masks = nn.ConvTranspose( features=self.num_mask_channels * num_banked_filters, kernel_size=(self.mask_kernel_size,), )(mask_hiddens) masks = jax.nn.sigmoid(masks) # Reshape the masks for broadcasting to [B, T, C, F]. masks = jnp.reshape( masks, [ masks.shape[0], masks.shape[1], self.num_mask_channels, num_banked_filters, ], ) # Apply the masks to the banked input. masked_banked_inputs = masks * jnp.expand_dims(banked_inputs, -2) # To undo the bank transform, swap axes to get shape [B, C, T, F] masked_banked_inputs = jnp.swapaxes(masked_banked_inputs, -2, -3) unbanked = self.unbank_transform(masked_banked_inputs) unbanked = enforce_mixture_consistency_time_domain(inputs, unbanked) model_outputs = { 'separated_audio': unbanked, 'bottleneck': bottleneck, } if self.classify_bottleneck: model_outputs.update(self.bottleneck_classifier(bottleneck, train=train)) return SeparatorOutput(**model_outputs)
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """HuBERT model.""" import enum from typing import Any, Sequence from chirp.models import conformer from chirp.models import layers import flax from flax import linen as nn import jax from jax import numpy as jnp @flax.struct.dataclass class HubertOutput: embedding: list[jnp.ndarray] logits: list[jnp.ndarray] targets: list[jnp.ndarray] mask_idc: jnp.ndarray quantization_loss: list[jnp.ndarray] label: list[jnp.ndarray] genus: list[jnp.ndarray] | None = None family: list[jnp.ndarray] | None = None order: list[jnp.ndarray] | None = None class QuantizerPoints(enum.Enum): """A point in the architecture to add a quantizer.""" FRONTEND = -2 EARLY_FS = -1 def compute_mask_indices( key: jnp.ndarray, shape: tuple[int, int], mask_prob: float, mask_length: int, min_masks: int = 0, ) -> jnp.ndarray: """Computes random mask spans for a given shape. Args: key: The key for random operations. shape: The shape of the mask that will be computed. A tuple of two elements, corresponding to the batch size and the number of frames. mask_prob: The probability for each token to be chosen as the starting index of a 'masked span'. mask_length: The length of each 'masked span'. min_masks: The minimum number of masked spans. Returns: mask: A boolean jnp.array that has the same shape as `shape`. """ bsz, sz = shape key, subkey = jax.random.split(key) # `num_mask` is the number of 'masked spans' for each sample in the batch. # A random number is added for probabilistic rounding. We use the 'static' # strategy where each sample in the batch has the same number of masked spans. rounding_offset = jax.random.uniform(subkey, shape=(bsz,)) key, subkey = jax.random.split(key) num_mask = mask_prob * sz / jnp.array(mask_length, float) + rounding_offset num_mask = jnp.full(bsz, num_mask).astype(int) max_masks = sz - mask_length + 1 num_mask = jnp.clip(num_mask, a_min=min_masks, a_max=max_masks) # First, sample a set of start indices for the max possible number of masks. # Do this sampling separately for each batch sample, to allow `replace`=False. max_start_index = sz - mask_length mask_idc = [] for _ in range(bsz): mask_idc.append( jax.random.choice( subkey, max_start_index + 1, shape=(max_masks,), replace=False ) ) key, subkey = jax.random.split(key) mask_idc = jnp.stack(mask_idc, axis=0) # Now filter these starting indices to `num_mask` 'active' ones. This is done # by replacing the 'inactive' ones to start at some index that is beyond the # length of the sequence. The scatter operation later will disregard these. mask_idc = jnp.reshape(mask_idc, [-1]) inactive_start_idx = sz a = jnp.array([a % max_masks for a in jnp.arange(max_masks * bsz)]) num_mask = jnp.reshape( jnp.repeat(jnp.expand_dims(num_mask, 1), axis=1, repeats=max_masks), [-1] ) mask_idc = jnp.where(a < num_mask, mask_idc, inactive_start_idx) # Add the offsets, to get all masked indices of each span. mask_idc = jnp.concatenate( [mask_idc + offset for offset in range(mask_length)] ) # Prepare the `scatter_indices`, i.e. the positions of a (bsz, sz) array that # will be set to 1s in the binary mask that will be returned. batch_inds = jnp.reshape( jnp.repeat( jnp.expand_dims(jnp.arange(bsz), 1), axis=1, repeats=max_masks ), [-1], ) batch_inds = jnp.reshape( jnp.repeat(jnp.expand_dims(batch_inds, 0), axis=0, repeats=mask_length), [-1], ) scatter_indices = jnp.stack((batch_inds, mask_idc), axis=1) mask = jax.lax.scatter( jnp.zeros((bsz, sz)).astype(int), scatter_indices, jnp.ones_like((mask_idc)).astype(int), jax.lax.ScatterDimensionNumbers( update_window_dims=(), inserted_window_dims=(0, 1), scatter_dims_to_operand_dims=(0, 1), ), ) return mask @flax.struct.dataclass class QuantizerBundle: quantization_loss: jnp.ndarray targets: jnp.ndarray codebook: jnp.ndarray projected_feature_codes: jnp.ndarray class HuBERTEval(nn.Module): """HuBERT model for evaluation. Attributes: early_feature_extractor: A network (e.g., a 2D convolutional network) that takes spectrograms and returns feature vectors. Quantization is performed on the features produced by this feature extractor. late_feature_extractor: A network (e.g., a stack of Conformer blocks) that takes "early" features and returns a sequence of Jax ndarrays that contain increasingly higher-level features. frontend: The frontend to use to generate features. use_raw_audio: Whether to feed raw audio into the feature extractor to get HuBERT's predictions (as opposed to audio processed with a frontend). The current best configuration sets this option to True but performs quantization after the frontend to obtain targets for HuBERT. add_positional_embeddings: Whether to add positional embeddings to the late feature extractor. """ early_feature_extractor: nn.Module | None late_feature_extractor: nn.Module frontend: nn.Module | None = None use_raw_audio: bool = True add_positional_embeddings: bool = False @nn.compact def __call__(self, inputs: jnp.ndarray, block_to_readout=6): """Forward pass through the HuBERT model for evaluation. bsz: batch size. sz: number of frames (timesteps). csz: number of channels. Args: inputs: Audio of shape `(bsz, sz)`. block_to_readout: The integer representing the block of the late feature extractor from which to return embeddings. Returns: The late feature extractor embeddings of after block `block_to_readout`. """ if self.use_raw_audio: # Raw audio (no frontend) is fed through the early feature extractor. early_fs_inputs = jnp.expand_dims(inputs, -1) # (bsz, sz, 1) x_earlyfs = self.early_feature_extractor(early_fs_inputs, train=False) x = x_earlyfs else: # Process audio with a frontend before the early feature extractor. x_frontend = self.frontend(inputs) # (bsz, sz, csz) if self.early_feature_extractor is not None: x_earlyfs = self.early_feature_extractor(x_frontend, train=False) x = x_earlyfs _, sz, csz = x.shape if self.add_positional_embeddings: x = x + conformer.PositionalEmbedding(embedding_dims=csz)(seq_length=sz) # Pass x through the "late" feature extractor. Returns a list of x's for the # different "readout points". x_list = self.late_feature_extractor( x, train=False, return_intermediate_list=True ) if block_to_readout < 0 or block_to_readout >= len(x_list): raise ValueError( "The `block_to_readout` should be in the range " "[0, len(x_list)) where x_list is the list that the " "late feature extractor returns. But got {} and " "len(x_list) is {}".format(block_to_readout, len(x_list)) ) # Stop gradient so that a classifier is trained on frozen features for # evaluation purposes. return jax.lax.stop_gradient(x_list[block_to_readout]) class HuBERTModel(nn.Module): """HuBERT model. Attributes: num_classes: Number of classes for each output head. These are used to train supervised readout layer for evaluation only. The representation is learned in a purely self-supervised manner. early_feature_extractor: A network (e.g., a 2D convolutional network) that takes spectrograms and returns feature vectors. Quantization is performed on the features produced by this feature extractor. late_feature_extractor: A network (e.g., a stack of Conformer blocks) that takes "early" features and returns a sequence of Jax ndarrays that contain increasingly higher-level features. quantizer: A list of quantizer networks, each of which returns a codebook, assignments of inputs to codes, and a loss for training it. This list may contain only a single element, or several in the case of quantizing in different feature spaces. frontend: The frontend to use to generate features. use_raw_audio: Whether to feed raw audio into the feature extractor to get HuBERT's predictions (as opposed to audio processed with a frontend). The current best configuration sets this option to True but performs quantization after the frontend to obtain targets for HuBERT. mask_config: The config for generating masks. classifier_config: The config for the classifier. taxonomy_loss_weight: Weight for taxonomic label losses. These are used to train supervised readout layer for evaluation only. The representation is learned in a purely self-supervised manner. readout_points: A List of indices of late feature extractor blocks after which to add a readout layer (for classification). The allowed values are in the range [0, len(x_list)) where x_list is the list of Jax ndarrays returned by the late feature extractor. quantizer_points: A list of integers indicating where to quantize. The allowed values are ints in the range [0, len(x_list)) where x_list is the list of ndarrays returned by the late feature extractor and values of the QuantizerPoints class. Specifically, any non-negative integer represents quantizing after the late feature extractor block with that integer index, whereas QuantizerPoints values also allow to quantize right after the frontend (QuantizerPoints.FRONTEND) and right after the early feature extractor (QuantizerPoints.EARLY_FS). final_dim: The dimensionality after the final projection layer. logit_temp: The temperature to use for the logits of which cluster each timestep belongs to. alpha: The weight of the masked loss in the combination of the masked and unmasked losses for HuBERT. By default it's 1, considering only masked. stop_gradient_earlyfs: Whether to stop gradient after the early feature extractor. omit_classifier_stop_grads: Optionally, a list of integers indicating which of the readout points to omit the stop-gradient for. Specifically, a classifier is added to each readout point, and typically a stop-gradient is used to prevent the classifier from modifying the representations (this happens by default, if this argument isn't provided, or if it's None). If provided, specifies the index (or indices) of readout locations where that stop-gradient operation will be omitted. This allows, for instance, supervised finetuning of HuBERT representations, and semi-supervised learning. add_positional_embeddings: Whether to add positional embeddings to the late feature extractor. """ num_classes: dict[str, int] early_feature_extractor: nn.Module | None late_feature_extractor: nn.Module quantizer: list[nn.Module] frontend: nn.Module use_raw_audio: bool mask_config: dict[str, Any] classifier_config: dict[str, Any] taxonomy_loss_weight: float readout_points: list[int] quantizer_points: Sequence[int] final_dim: int = 512 logit_temp: float = 0.1 alpha: float = 1.0 stop_gradient_earlyfs: bool = True omit_classifier_stop_grads: Sequence[int] | None = None add_positional_embeddings: bool = False def classify( self, x_list, mask_idc, per_frame_predictions, classify_pool_width, classify_stride, classify_features, reduction_type, classify_from_all, ): # The gradients of this loss will not propagate to train the representation # (the representation is trained purely self-supervised), unless it is # requested to omit placing a stop-gradient on the classifier. for i in range(len(x_list)): if ( self.omit_classifier_stop_grads is None or i not in self.omit_classifier_stop_grads ): x_list[i] = jax.lax.stop_gradient(x_list[i]) outputs = {} midpt = x_list[-1].shape[-2] // 2 # The middle frame. for k, n in self.num_classes.items(): outputs[k] = [] # We use separate readout heads on different "levels" of representation. for i, x_interm in enumerate(x_list): if i not in self.readout_points: continue csz_ = x_interm.shape[-1] if per_frame_predictions: # Borrow the classifier from `separation_model.py`. x_interm = nn.normalization.LayerNorm(reduction_axes=(-2, -1))( x_interm ) x_interm = layers.StridedAutopool( 0.5, classify_pool_width, classify_stride, padding="SAME", name="readout_autopool_{}_{}".format(k, i), )(x_interm) x_interm = nn.Conv( features=classify_features, kernel_size=(1,), strides=(1,), padding="SAME", name="readout_conv1_{}_{}".format(k, i), )(x_interm) x_interm = nn.swish(x_interm) per_frame_preds = nn.Conv( n, (1,), (1,), "SAME", name="readout_conv2_{}_{}".format(k, i) )(x_interm) # Now reduce over the time axis to get 1 prediction per *sample*. if reduction_type == "AVG": reduce_fn = lambda x: jnp.mean(x, axis=-2) elif reduction_type == "MAX": reduce_fn = lambda x: jnp.max(x, axis=-2) elif reduction_type == "MIDPOINT": reduce_fn = lambda x: x[..., midpt, :] else: raise ValueError(f"Reduction {reduction_type} not recognized.") outputs[k].append(reduce_fn(per_frame_preds)) else: # Akin to the implementation of conformers in the supervised model, # we average over the time dimension before the readout layer, to # collapse x from [bsz, sz, csz] to [bsz, csz]. But in this case # we only average the *unmasked* frames if `classify_from_all` is off. if classify_from_all: mean = jnp.mean(x_interm, axis=1) else: # x_filtered_zeros has 0s in place of masked embeddings, while # keeping only the unmasked embeddings intact. [bsz, sz, csz_]. mask_idc_exp = jnp.repeat( jnp.expand_dims(mask_idc, 2), repeats=csz_, axis=2 ) x_filtered = jnp.where(mask_idc_exp, 0, x_interm) mean = jnp.sum(x_filtered, axis=1) / jnp.sum( mask_idc_exp == 0, axis=1 ) outputs[k].append( nn.Dense(n, name="readout_{}_{}".format(k, i))(mean) ) return outputs def add_projected_quantizer(self, x, quantizers, train): """Adds a quantizer on top of features x.""" # Get the next quantizer module. quant_index = len(quantizers) quantizer = self.quantizer[quant_index] nc = quantizer.get_num_centroids() ns = quantizer.get_num_sections() # Get the codes, quantization targets and quantizer loss. quant_outputs = quantizer(x, train) # codes: [ns, nc, csz / ns], where ns = 1 if not using PQ. codes = quant_outputs.codebook # quant_outputs.nn_idx: [ns, bsz, sz]. # targets: [ns, bsz, sz, nc]. nn_idx = quant_outputs.nn_idx targets = jax.nn.one_hot(nn_idx, nc) # Project the centroids. # A list of ns many elements that have shape [nc, final_dim]. codes_pj = [ nn.Dense( self.final_dim, name="codes_proj_{}_{}".format(quant_index, i) )(codes[i]) for i in range(ns) ] # [ns, nc, final_dim]. codes_pj = jnp.stack(codes_pj, axis=0) quantizers.append( QuantizerBundle( quant_outputs.quantization_loss, targets, codes, codes_pj ) ) return quantizers def apply_final_projection(self, x, quantizers): """Apply projection layer(s) on the features. A separate projection layer is used for each "section" (if using product quantization) of each quantizer. Args: x: Embeddings from late feature extractor of shape [bsz, sz, csz]. quantizers: A list of QuantizerBundle's, one per quantizer. Returns: projected_x: A list whose length is the same as that of quantizers. Each element is the projected features of shape [ns, bsz, sz, final_dim]. """ projected_x = [] # Create a separate (set of) projection(s) for each quantizer. for j in range(len(quantizers)): # A list of ns many elements that have shape [bsz, sz, csz/ns]. x_sections = jnp.split(x, self.quantizer[j].get_num_sections(), axis=-1) # A list of ns many elements that have shape [bsz, sz, final_dim]. x_proj = [ nn.Dense( self.final_dim, name="final_proj_section_{}_quant_{}".format(i, j) )(x_sec) for (i, x_sec) in enumerate(x_sections) ] # [ns, bsz, sz, final_dim]. projected_x.append(jnp.stack(x_proj, axis=0)) return projected_x def get_logits(self, x_list, quantizers): """Compute the logits i.e. similarity between projected features and codes. Args: x_list: A list whose length is the number of quantizers. Each element of that list is an array of shape [ns, bsz, sz, final_dim], storing the features that were projected with a layer specific to that quantizer. quantizers: A list of the same length as x_list, storing the QuantizerBundle for each quantizers. Returns: The logits, as a list of [ns, bsz, sz, nc]-shaped jnp.arrays. The length of this list is the number of quantizers. """ # Predict the code of each timestep using cosine similarity between the # projected embeddings and the projected codes. all_logits = [] for x, q_bundle, q_module in zip(x_list, quantizers, self.quantizer): # First, l2-normalize the (projected) features and codes. x /= jnp.linalg.norm(x, axis=-1, keepdims=True) + 1e-5 codes_pj = q_bundle.projected_feature_codes codes_pj /= jnp.linalg.norm(codes_pj, axis=-1, keepdims=True) + 1e-5 # Then, compute the dot product between them. ns = q_module.get_num_sections() codes_pj = jnp.transpose(codes_pj, (0, 2, 1)) # [ns, final_dim, nc] logits = jnp.dot(x, codes_pj) # [ns, bsz, sz, ns, nc] # For each "section" of features, grab only the cluster assignments # corresponding to that section. logits = jnp.transpose(logits, (0, 3, 1, 2, 4)) # [ns, ns, bsz, sz, nc] # Out of the first 2 dims want to keep the inds [(0,0), (1,1), (2,2)...] inds = jnp.stack((jnp.arange(ns), jnp.arange(ns)), axis=1) logits = logits[tuple(jnp.moveaxis(inds, -1, 0))] # [ns, bsz, sz, nc] # TODO(etriantafillou): experiment with learnable temperature. logits /= self.logit_temp all_logits.append(logits) return all_logits @nn.compact def __call__( self, inputs: jnp.ndarray, train: bool, train_mode_quantizer: bool, mask_key: jnp.ndarray | None, ) -> HubertOutput: """Apply the HuBERT model. The quantizer used may either be Product Quantizer (PQ) or a base quantizer. In the former case, instead of making a single centroid prediction per frame, a prediction is made for each "section" of the product quantizer. There is also a corresponding target for each section if using PQ, and the HuBERT loss becomes the average of the per-section losses. bsz: batch size. sz: number of frames (timesteps). csz: number of channels. nc: number of centroids. ns: number of sections of the product quantizer (if applicable). Args: inputs: Audio of shape `(bsz, sz)`. train: Whether we're in training mode (affects batch norm and dropout). train_mode_quantizer: Whether the quantizer is in train mode (affects EMA counter for cluster utilization). mask_key: A jnp.array that serves as the key for sampling masks. It can be None if `train` is False since no mask is applied in that case. Returns: Logits for which cluster each timestep belongs to (per section of the product quantizer, if applicable). """ if len(self.quantizer) != len(self.quantizer_points): raise ValueError( "The lengths of `quantizer` and `quantizer_points` " "should match, but are {} and {}.".format( len(self.quantizer), len(self.quantizer_points) ) ) if self.omit_classifier_stop_grads is not None: for i in self.omit_classifier_stop_grads: if i < 0 or i >= len(self.readout_points): raise ValueError( "Requested to omit the stop-grad from classifier " f"with index {i} but there are only {len(self.readout_points)} " "readout points / classifiers." ) model_outputs = {} quantizers = [] if self.use_raw_audio: # Raw audio (no frontend) is fed through the early feature extractor. early_fs_inputs = jnp.expand_dims(inputs, -1) # (bsz, sz, 1) x_earlyfs = self.early_feature_extractor(early_fs_inputs, train=train) if QuantizerPoints.FRONTEND.value in self.quantizer_points: x_frontend = self.frontend(inputs) # (bsz, sz, csz) if x_earlyfs.shape[-2] != x_frontend.shape[-2]: raise ValueError( f"Expected the number of frontend frames ({x_frontend.shape[-2]})" " to match the number of frames from the early feature extractor " f"({x_earlyfs.shape[-2]}) in order to have as many HuBERT " "predictions as there are targets, since `quantizer_points` " "includes quantizing on top of the frontend." ) x = x_earlyfs else: # Process audio with a frontend before the early feature extractor. x_frontend = self.frontend(inputs) # (bsz, sz, csz) if self.early_feature_extractor is not None: x_earlyfs = self.early_feature_extractor(x_frontend, train=train) x = x_earlyfs # Add quantizers on frontend and/or early fs, if requested. if QuantizerPoints.FRONTEND.value in self.quantizer_points: quantizers = self.add_projected_quantizer( x_frontend, quantizers, train_mode_quantizer ) if QuantizerPoints.EARLY_FS.value in self.quantizer_points: # Add the first quantizer, directly on top of the "early features". quantizers = self.add_projected_quantizer( x_earlyfs, quantizers, train_mode_quantizer ) bsz, sz, csz = x.shape if self.add_positional_embeddings: x = x + conformer.PositionalEmbedding(embedding_dims=csz)(seq_length=sz) if self.stop_gradient_earlyfs: # If no early feature extractor is used, this should have no effect. # Otherwise, doing this will disallow HuBERT to train the early fs. # Note that this leads to not training the early fs at all (the quantizer # loss won't train it either, due to stopping gradients in quantizer.py). # Quantizing on top of random early features is maybe an interesting # baseline, if *consistency* of targets is what matters most. x = jax.lax.stop_gradient(x) # The learnable mask token. mask_emb = self.param("mask_emb", nn.initializers.uniform(), (csz,)) # Get the corrupted x, where the features are replaced with the learnable # masked embedding for the positions that are chosen to be masked, if we are # in training mode. mask_idc = jnp.zeros((bsz, sz)) if mask_key is not None: mask_idc = compute_mask_indices( mask_key, shape=(bsz, sz), **self.mask_config ) model_outputs["mask_idc"] = mask_idc mask_idc_exp = jnp.repeat(jnp.expand_dims(mask_idc, 2), repeats=csz, axis=2) x = jnp.where(mask_idc_exp > 0, mask_emb, x) # Pass the corrupted x through the "late" feature extractor. Returns a list # of x's for the different "readout points". x_list = self.late_feature_extractor( x, train=train, return_intermediate_list=True ) for block_ind in self.readout_points: if block_ind < 0 or block_ind >= len(x_list): raise ValueError( "Each element of `readout_points` should be in the " "range [0, len(x_list)) where x_list is the list that " "the late feature extractor returns. Found element " "{} and len(x_list) is {}".format(block_ind, len(x_list)) ) x = x_list[-1] # the final-layer "embeddings" _, _, csz = x.shape model_outputs["embedding"] = x_list # Add additional quantizers on blocks of the late feature extractor. for point in list(self.quantizer_points): if ( point == QuantizerPoints.FRONTEND.value or point == QuantizerPoints.EARLY_FS.value ): # Quantizers on the frontend and the early feature extractor will have # already been added, if requested. Nothing more to do here. continue elif point < 0: raise ValueError( "An element of `quantizer_points` can only be " f"negative if it's -1 or -2, but found {point}." ) elif point >= len(x_list): raise ValueError( "Each element of `quantizer_points` should be in the " "range [0, len(x_list)) where x_list is the list that " "the late feature extractor returns. Found element " "{} and len(x_list) is {}".format(point, len(x_list)) ) quantizers = self.add_projected_quantizer( x_list[point], quantizers, train_mode_quantizer ) # Linear readouts for supervised classification on top of HuBERT embeddings. classification_outputs = self.classify( x_list, mask_idc=mask_idc, **self.classifier_config ) model_outputs.update(classification_outputs) # Final projection layer that projects embeddings to `final_dim`. # A list with as many elements as the number of quantizers used, where each # element has shape [ns, bsz, sz, final_dim]. x_proj_list = self.apply_final_projection(x, quantizers) # Compute the logits via cosine similarity between the projected embeddings # and the projected codes. # A list of [ns, bsz, sz, nc]-shaped jnp.arrays with one item per quantizer. logits = self.get_logits(x_proj_list, quantizers) model_outputs["logits"] = logits # The targets for each quantizer. model_outputs["targets"] = [ quantizers[i].targets for i in range(len(quantizers)) ] # The quantization loss: the mean over the individual quantizer losses. # [bsz, sz, nc]. quant_losses = [ quantizers[i].quantization_loss for i in range(len(quantizers)) ] model_outputs["quantization_loss"] = jnp.mean( jnp.stack(quant_losses, axis=0), axis=0 ) return HubertOutput(**model_outputs)
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Taxonomy model.""" import dataclasses from chirp.models import conformer from chirp.models import frontend from chirp.models import layers from chirp.models import output from flax import linen as nn from jax import numpy as jnp class TaxonomyModel(nn.Module): """Taxonomy model for bird song classification. This model classifies the species of bird songs. It predicts multiple labels: whether a bird is detected, the species, genus, family, and order of the bird, and the nature of the background noise. Attributes: num_classes: Number of classes for each output head. encoder: A network (e.g., a 2D convolutional network) that takes spectrograms and returns feature vectors. taxonomy_loss_weight: Weight for taxonomic label losses. frontend: The frontend to use to generate features. hubert_feature_extractor: Optionally, a pre-trained frozen feature extractor trained in a self-supervised way. This option is mutually exclusive with frontend and is used for evaluation of self-supervised representations. """ num_classes: dict[str, int] encoder: nn.Module taxonomy_loss_weight: float frontend: nn.Module | None = None hubert_feature_extractor: nn.Module | None = None @nn.compact def __call__( self, inputs: jnp.ndarray, train: bool, use_running_average: bool | None = None, mask: jnp.ndarray | None = None, ) -> output.ClassifierOutput | output.TaxonomyOutput: """Apply the taxonomy model. Args: inputs: Audio of shape `(batch size, time)`. train: Whether this is training. This affects Dropout behavior, and also affects BatchNorm behavior if 'use_running_average' is set to None. use_running_average: Optional, used to decide whether to use running statistics in BatchNorm (test mode), or the current batch's statistics (train mode). If not specified (or specified to None), default to 'not train'. mask: An optional mask of the inputs. Raises: ValueError if both `frontend` and `hubert_feature_extractor` are not None. Returns: Logits for each output head. """ if self.frontend is not None and self.hubert_feature_extractor is not None: raise ValueError( "`frontend` and `hubert_feature_extractor` are mutually exclusive." ) if use_running_average is None: use_running_average = not train kwargs = {} if mask is None else {"mask": mask} # Apply the frontend. if isinstance(self.frontend, layers.EarlyFeatureExtractor): # EarlyFeatureExtractor expects [B, T, C] inputs. x = self.frontend(inputs[:, :, jnp.newaxis], train=train) # pylint: disable=not-callable elif self.frontend is not None: x = self.frontend(inputs, train=train) # pylint: disable=not-callable if mask is not None: # Go from time steps to frames mask = frontend.frames_mask(mask, self.frontend.stride) # Add axes for broadcasting over frequencies and channels kwargs = {"mask": mask[..., jnp.newaxis, jnp.newaxis]} elif self.hubert_feature_extractor is not None: x = self.hubert_feature_extractor(inputs) # pylint: disable=not-callable else: x = inputs # Apply the encoder. while len(x.shape) < 4: # We may have shape (B, T), (B, T, D), or (B, W, H, D) x = x[..., jnp.newaxis] # Treat the spectrogram as a gray-scale image x = self.encoder( x, train=train, use_running_average=use_running_average, **kwargs ) # Classify the encoder outputs and assemble outputs. model_outputs = {} model_outputs["embedding"] = x model_outputs["label"] = nn.Dense(self.num_classes["label"])(x) if not self.taxonomy_loss_weight or set(self.num_classes) == set(["label"]): return output.ClassifierOutput(**model_outputs) for k, n in self.num_classes.items(): if k != "label": model_outputs[k] = nn.Dense(n)(x) return output.TaxonomyOutput(**model_outputs) class ConformerModel(nn.Module): """Conformer model.""" num_conformer_blocks: int = 16 features: int = 144 num_heads: int = 4 kernel_size: int = 15 downsample: list[tuple[int, float]] = dataclasses.field(default_factory=list) @nn.compact def __call__( self, inputs: jnp.ndarray, train: bool, use_running_average: bool | None = None, mask: jnp.ndarray | None = None, ) -> jnp.ndarray: # Subsample from (x, 160) to (x // 4, 40) x = conformer.ConvolutionalSubsampling(features=self.features)( inputs, train=train ) # Apply conformer blocks x = conformer.Conformer( model_dims=self.features, atten_num_heads=self.num_heads, num_blocks=self.num_conformer_blocks, kernel_size=self.kernel_size, downsample=self.downsample, dropout_prob=0.1, )( x, train=train, use_running_average=use_running_average, return_intermediate_list=False, ) # To get a global embedding we now just pool return jnp.mean(x, axis=-2)
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Flax layers for audio processing.""" import functools from chirp import audio_utils from flax import linen as nn from jax import lax from jax import numpy as jnp from jax import random class RandomLowPassFilter(nn.Module): """A random low-pass filter in the frequency-domain. Attributes: rate: The rate at which random low-pass filters are applied. deterministic: If true, no low-pass filters are applied. """ rate: float deterministic: bool | None = None @nn.compact def __call__( self, inputs: jnp.ndarray, deterministic: bool | None = None ) -> jnp.ndarray: """Applies a random low-pass filter to a mel-spectrogram. Args: inputs: A (batch) of mel-spectrograms, assumed to have frequencies on the last axis. deterministic: If true, passes the input as is. Returns: Aspectrogram with the same size as the input, possibly with a random low-pass filter applied. """ deterministic = nn.merge_param( 'deterministic', self.deterministic, deterministic ) if self.rate == 0.0 or deterministic: return inputs rng = self.make_rng('low_pass') rate_key, low_pass_key = random.split(rng) x = lax.cond( random.uniform(rate_key) < self.rate, functools.partial(audio_utils.random_low_pass_filter, low_pass_key), lambda x: x, inputs, ) return x
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Model outputs.""" import dataclasses from typing import Protocol, runtime_checkable import flax from jax import numpy as jnp @flax.struct.dataclass class EmbeddingOutput: embedding: jnp.ndarray @flax.struct.dataclass class ClassifierOutput(EmbeddingOutput): label: jnp.ndarray @flax.struct.dataclass class TaxonomyOutput(ClassifierOutput): genus: jnp.ndarray family: jnp.ndarray order: jnp.ndarray @runtime_checkable class AnyOutput(Protocol): """Any output must be a dataclass.""" __dataclass_fields__: dict[str, dataclasses.Field] # pylint: disable=g-bare-generic @runtime_checkable @dataclasses.dataclass class TaxonomicOutput(Protocol): label: jnp.ndarray genus: jnp.ndarray family: jnp.ndarray order: jnp.ndarray def logits(output) -> dict[str, jnp.ndarray]: return { f'{key}_logits': getattr(output, key) for key in ('label', 'genus', 'family', 'order') if hasattr(output, key) }
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Adaptation of the Soundstream architecture for sound separation.""" from typing import Sequence from flax import linen as nn from jax import numpy as jnp PADDING = "SAME" class SeparableResnetBlock(nn.Module): """Resnet Block using a separable convolution. Attributes: num_hidden_filters: Number of hidden filters. If <0, uses the number of input filters. kernel_width: Width of depthwise convolutions. dilation: Convolution dilation. groups: Number of feature groups. residual_scalar: Scalar multiplier for residual connection. padding: Padding style. """ num_hidden_filters: int kernel_width: int = 3 dilation: int = 1 groups: int = 1 residual_scalar: float = 1.0 padding: str = "SAME" @nn.compact def __call__(self, inputs: jnp.ndarray, train: bool) -> jnp.ndarray: # First convolution is separable. input_dim = inputs.shape[-1] if self.num_hidden_filters < 0: num_hiddens = input_dim else: num_hiddens = self.num_hidden_filters x = nn.swish(inputs) x = nn.Conv( features=num_hiddens, kernel_size=(self.kernel_width,), strides=1, kernel_dilation=self.dilation, use_bias=True, feature_group_count=input_dim, padding=self.padding, )(x) x = nn.swish(x) x = nn.Conv( features=input_dim, kernel_size=(1,), strides=1, use_bias=True, feature_group_count=self.groups, padding=self.padding, )(x) return x + self.residual_scalar * inputs class SeparatorBlock(nn.Module): """Block of residual layers and down/up-sampling layer. Attributes: is_encoder: Whether this is an encoder (downsampling) or decoder (upsampling) block. stride: Down/Up sample rate for this block. feature_mult: Multiplier/divisor for number of feature channels. groups: Number of feature groups. num_residual_layers: Number of dilated residual layers. num_residual_filters: Number of hidden residual filters. residual_kernel_width: Kernel width for residual layers. residual_scalar: Scaling constant for residual connections. padding: Padding style. """ is_encoder: bool stride: int feature_mult: int groups: int = 1 num_residual_layers: int = 3 num_residual_filters: int = -1 residual_kernel_width: int = 3 residual_scalar: float = 1.0 padding: str = "SAME" @nn.compact def __call__(self, inputs: jnp.ndarray, train: bool) -> jnp.ndarray: input_dim = inputs.shape[-1] x = inputs if not self.is_encoder: # Decoder blocks start with up-sampling, for overall model symmetry. # Note that Linen's ConvTranspose doesn't support grouping, but it should # be easy to add support by exposing the feature_group_count argument # in lax's conv_general_dilated. x = nn.ConvTranspose( features=input_dim // self.feature_mult, kernel_size=(self.stride * 2,), strides=(self.stride,), use_bias=True, padding=self.padding, )(x) for idx in range(self.num_residual_layers): x = SeparableResnetBlock( num_hidden_filters=self.num_residual_filters, kernel_width=self.residual_kernel_width, dilation=self.residual_kernel_width**idx, groups=self.groups, residual_scalar=self.residual_scalar, padding=self.padding, )(x, train) x = nn.normalization.LayerNorm(reduction_axes=(-2, -1))(x) x = nn.swish(x) if self.is_encoder: x = nn.Conv( features=input_dim * self.feature_mult, kernel_size=(self.stride * 2,), strides=(self.stride,), use_bias=True, feature_group_count=self.groups, padding=self.padding, )(x) return x class SoundstreamUNet(nn.Module): """Audio U-Net based on the Soundstream architecture. Assumes 1D inputs with shape [B, T, D]. Attributes: base_filters: Number of filters for the input / output layer. bottleneck_filters: Number of filters in the inner bottleneck conv. output_filters: Number of filters in final model output. strides: Number of strides for each SeparatorBlock. feature_mults: Multiplier for number of features for each SeparatorBlock. groups: Number of feature groups for each SeparatorBlock. input_kernel_width: Width of the input convolution. bottleneck_kernel_width: Width of the bottleneck kernel. output_kernel_width: Width of the output kernel. num_residual_layers: Number of dilated residual layers per SeparatorBlock. residual_scalar: Scalar multiplier for residual connections. residual_hidden_filters: Number of hidden filters in residual blocks. unet_scalar: Scalar multiplier for UNet skip connections. padding: Padding style. """ base_filters: int bottleneck_filters: int output_filters: int strides: Sequence[int] feature_mults: Sequence[int] groups: Sequence[int] input_kernel_width: int = 3 bottleneck_kernel_width: int = 3 output_kernel_width: int = 3 num_residual_layers: int = 3 residual_kernel_width: int = 3 residual_scalar: float = 1.0 residual_hidden_filters: int = -1 # TODO(tomdenton): Experiment with a learnable scalar. See TDCN++. unet_scalar: float = 1.0 padding: str = "SAME" @nn.compact def __call__(self, inputs: jnp.ndarray, train: bool) -> jnp.ndarray: """Generate separation masks.""" # Stem! x = nn.Conv( features=self.base_filters, kernel_size=(self.input_kernel_width,), strides=1, use_bias=True, padding=self.padding, )(inputs) x = nn.normalization.LayerNorm(reduction_axes=(-2, -1))(x) x = nn.swish(x) # Encoder! encoder_outputs = [] for stride, mult, num_groups in zip( self.strides, self.feature_mults, self.groups ): x = SeparatorBlock( is_encoder=True, stride=stride, feature_mult=mult, groups=num_groups, num_residual_layers=self.num_residual_layers, num_residual_filters=self.residual_hidden_filters, residual_kernel_width=self.residual_kernel_width, residual_scalar=self.residual_scalar, padding=self.padding, )(x, train) encoder_outputs.append(x) # Bottleneck! prebottleneck_filters = x.shape[-1] x = nn.Conv( features=self.bottleneck_filters, kernel_size=(self.bottleneck_kernel_width,), strides=1, use_bias=True, padding=self.padding, )(x) # Normally this is where one would apply quantization for a codec. bottleneck_features = x # Unbottleneck! x = nn.Conv( features=prebottleneck_filters, kernel_size=(self.bottleneck_kernel_width,), strides=1, use_bias=True, padding=self.padding, )(x) # Decode! for stride, mult, num_groups, unet_features in zip( self.strides[::-1], self.feature_mults[::-1], self.groups[::-1], encoder_outputs[::-1], ): x = self.unet_scalar * unet_features + x x = SeparatorBlock( is_encoder=False, stride=stride, feature_mult=mult, groups=num_groups, num_residual_layers=self.num_residual_layers, num_residual_filters=self.residual_hidden_filters, residual_kernel_width=self.residual_kernel_width, residual_scalar=self.residual_scalar, padding=self.padding, )(x, train) # Head! x = nn.Conv( features=self.output_filters, kernel_size=(self.output_kernel_width,), strides=1, use_bias=True, padding=self.padding, )(x) return x, bottleneck_features # pytype: disable=bad-return-type # jax-ndarray
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Scrapes the Xeno-Canto website for taxonomy and audio data.""" import concurrent.futures import enum import functools import itertools import json import os.path from typing import Any, Sequence from absl import app from absl import flags from chirp.data import utils import pandas as pd import ratelimiter import requests import tensorflow as tf import tqdm _XC_API_RATE_LIMIT = 8 _XC_API_URL = 'http://www.xeno-canto.org/api/2/recordings' _XC_SPECIES_URL = 'https://xeno-canto.org/collection/species/all' class _Modes(enum.Enum): COLLECT_INFO = 'collect_info' _MODE = flags.DEFINE_enum( 'mode', 'collect_info', [mode.value for mode in _Modes], 'Operation mode.' ) _OUTPUT_DIR = flags.DEFINE_string( 'output_dir', '/tmp/xeno-canto', 'Where to output the taxonomy info DataFrame.', ) _INFO_FILENAME = flags.DEFINE_string( 'info_filename', 'xeno_canto.jsonl', 'Xeno-Canto info filename.' ) def collect_info( output_dir: str, recordings_filename: str ) -> list[dict[str, Any]]: """Scrapes the Xeno-Canto website for audio file IDs. Args: output_dir: Directory in which to store the list of recordings. recordings_filename: Filename to which to store recordings. Returns: The list of recordings. """ # Collect all species (species,) = pd.read_html(io=_XC_SPECIES_URL, match='Scientific name') # Query Xeno-Canto for all recordings for each species session = requests.Session() session.mount( 'http://', requests.adapters.HTTPAdapter( max_retries=requests.adapters.Retry(total=5, backoff_factor=0.1) ), ) @ratelimiter.RateLimiter(max_calls=_XC_API_RATE_LIMIT, period=1) def get_recordings(scientific_name: str, page: int = 1): response = session.get( url=_XC_API_URL, params={ 'query': f"{scientific_name} gen:{scientific_name.split(' ')[0]}", 'page': page, }, ) response.raise_for_status() results = response.json()['recordings'] # Get next page if there are more if response.json()['numPages'] > page: results.extend(get_recordings(scientific_name, page + 1)) return results with concurrent.futures.ThreadPoolExecutor( max_workers=_XC_API_RATE_LIMIT ) as executor: species_recordings = executor.map( get_recordings, species['Scientific name'] ) species_recordings = tqdm.tqdm( species_recordings, total=len(species), desc='Collecting recordings' ) recordings = list(itertools.chain.from_iterable(species_recordings)) # Store recordings as JSONL file with tf.io.gfile.GFile( os.path.join(output_dir, recordings_filename), 'w' ) as f: for recording in recordings: f.write(json.dumps(recording)) f.write('\n') return recordings def main(argv: Sequence[str]) -> None: if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') modes = { 'collect_info': collect_info, } modes[_MODE.value](_OUTPUT_DIR.value, _INFO_FILENAME.value) if __name__ == '__main__': app.run(main)
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convenience utilities for handling class lists.""" from chirp.taxonomy import namespace_db def get_class_lists(species_class_list_name: str, add_taxonomic_labels: bool): """Get the number of classes for the target class outputs.""" db = namespace_db.load_db() species_classes = db.class_lists[species_class_list_name] class_lists = { "label": species_classes, } if add_taxonomic_labels: for name in ["genus", "family", "order"]: mapping_name = f"{species_classes.namespace}_to_{name}" mapping = db.mappings[mapping_name] taxa_class_list = species_classes.apply_namespace_mapping(mapping) class_lists[name] = taxa_class_list return class_lists
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Database of bioacoustic label domains.""" import dataclasses import functools import json import os import typing from chirp import path_utils from chirp.taxonomy import namespace from etils import epath TAXONOMY_DATABASE_FILENAME = "taxonomy/taxonomy_database.json" @dataclasses.dataclass class TaxonomyDatabase: namespaces: dict[str, namespace.Namespace] class_lists: dict[str, namespace.ClassList] mappings: dict[str, namespace.Mapping] def validate_taxonomy_database(taxonomy_database: TaxonomyDatabase) -> None: """Validate the taxonomy database. This ensures that all class lists, namespaces, and mappings are consistent. Args: taxonomy_database: A taxonomy database structure to validate. Raises: ValueError or KeyError when the database is invalid. """ namespaces = taxonomy_database.namespaces for mapping_name, mapping in taxonomy_database.mappings.items(): if ( set(mapping.mapped_pairs.keys()) - namespaces[mapping.source_namespace].classes ): raise ValueError( f"Mapping {mapping_name} contains a source class not in " f"the namespace ({mapping.source_namespace})." ) if ( set(mapping.mapped_pairs.values()) - namespaces[mapping.target_namespace].classes ): raise ValueError( f"Mapping {mapping_name} contains a target class not in " f"the namespace ({mapping.source_namespace})." ) for class_name, class_list in taxonomy_database.class_lists.items(): classes = class_list.classes if set(classes) - namespaces[class_list.namespace].classes > { namespace.UNKNOWN_LABEL }: raise ValueError( f"ClassList {class_name} contains a class not in " f"the namespace ({class_list.namespace})." ) def load_taxonomy_database( taxonomy_database: dict[str, typing.Any] ) -> TaxonomyDatabase: """Construct a taxonomy database from a dictionary. Args: taxonomy_database: The database as loaded from a JSON file. Returns: A taxonomy database. Raises: TypeError when the database contains unknown keys. """ namespaces = { name: namespace.Namespace( classes=frozenset(namespace_.pop("classes")), **namespace_ ) for name, namespace_ in taxonomy_database.pop("namespaces").items() } class_lists = { name: namespace.ClassList( classes=tuple(class_list.pop("classes")), **class_list ) for name, class_list in taxonomy_database.pop("class_lists").items() } mappings = { name: namespace.Mapping(**mapping) for name, mapping in taxonomy_database.pop("mappings").items() } return TaxonomyDatabase( namespaces=namespaces, class_lists=class_lists, mappings=mappings, **taxonomy_database ) class TaxonomyDatabaseEncoder(json.JSONEncoder): def default(self, o): if isinstance(o, frozenset): return sorted(o) return super().default(o) def dump_db(taxonomy_database: TaxonomyDatabase, validate: bool = True) -> str: if validate: validate_taxonomy_database(taxonomy_database) return json.dumps( dataclasses.asdict(taxonomy_database), cls=TaxonomyDatabaseEncoder, indent=2, sort_keys=True, ) @functools.cache def load_db( path: os.PathLike[str] | str = TAXONOMY_DATABASE_FILENAME, validate: bool = True, ) -> TaxonomyDatabase: """Load the taxonomy database. This loads the taxonomy database from the given JSON file. It converts the database into Python data structures and optionally validates that the database is consistent. Args: path: The JSON file to load. validate: If true, it validates the database. Returns: The taxonomy database. """ with path_utils.open_file(path, "r") as f: data = json.load(f) taxonomy_database = load_taxonomy_database(data) if validate: validate_taxonomy_database(taxonomy_database) return taxonomy_database
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tools for handling namespaces of classes.""" from __future__ import annotations import csv import dataclasses import io from typing import Iterable from jax import numpy as jnp import tensorflow as tf UNKNOWN_LABEL = "unknown" @dataclasses.dataclass class Namespace: """A namespace is simply a set of labels. Note that unknown labels cannot be in a namespace. Attributes: classes: A frozenset of labels. """ classes: frozenset[str] def __post_init__(self): if UNKNOWN_LABEL in self.classes: raise ValueError("unknown class") @dataclasses.dataclass class Mapping: """A mapping maps labels from one namespace to labels in another. Note that this is a n:1 mapping, i.e., multiple labels in the source namespace can map to the same label in the target namespace. The source and target namespace are referred to by their name. This name must be resolved using the taxonomy database. Note that labels (other than unknown) cannot be mapped to unknown. Instead, these labels should be simply excluded from the mapping. The end-user is responsible for deciding whether to map missing keys to unknown or whether to raise an error, e.g., by using: mapping.mapped_pairs.get(source_label, namespace.UNKNOWN_LABEL) Attributes: source_namespace: The name of the source namespace. target_namespace: The name of the target namespace. mapped_pairs: The mapping from labels in the source namespace to labels in the target namespace. """ source_namespace: str target_namespace: str mapped_pairs: dict[str, str] def __post_init__(self): if UNKNOWN_LABEL in self.mapped_pairs.values(): raise ValueError("unknown target class") @dataclasses.dataclass class ClassList: """A list of labels. A class list is a list of labels in a particular order, e.g., to reflect the output of a model. Class lists can contain the unknown label. All other labels must belong to a namespace. Class lists cannot contain duplicate entries. Attributes: namespace: The name of the namespace these class labels belong to. classes: The list of classes. """ namespace: str classes: tuple[str, ...] def __post_init__(self): if len(set(self.classes)) != len(self.classes): raise ValueError("duplicate entries in class list") @classmethod def from_csv(cls, csv_data: Iterable[str]) -> "ClassList": """Parse a class list from a CSV file. The file must contain the namespace in the first column of the first row. The first column of the remaining rows are assumed to contain the classes. Args: csv_data: Any iterable which can be passed on to `csv.reader`. Returns: The parsed class list. """ reader = csv.reader(csv_data) namespace = next(reader)[0] classes = tuple(row[0].strip() for row in reader if row) return ClassList(namespace, classes) def to_csv(self) -> str: """Write a class list to a CSV file. See `from_csv` for a description of the file format. It can be useful to write the class lists to disk so that the model can be loaded correctly, even if class lists change. However, note that in this case none of the mappings are guaranteed to still work. Returns: A string containing the namespace and the class labels as rows. """ buffer = io.StringIO(newline="") writer = csv.writer(buffer) writer.writerow([self.namespace]) for class_ in self.classes: writer.writerow([class_]) return buffer.getvalue() def get_class_map_tf_lookup( self, target_class_list: ClassList ) -> tuple[tf.lookup.StaticHashTable, tf.Tensor]: """Create a static hash map for class indices. Create a lookup table for use in TF Datasets, for, eg, converting between ClassList defined for a dataset to a ClassList used as model outputs. Classes in the source ClassList which do not appear in the target_class_list will be mapped to -1. It is recommended to drop these labels subsequently with: tf.gather(x, tf.where(x >= 0)[:, 0]) Args: target_class_list: Class list to target. Returns: A tensorflow StaticHashTable and an indicator vector for the image of the classlist mapping. """ if self.namespace != target_class_list.namespace: raise ValueError("namespaces must match when creating a class map.") intersection = set(self.classes) & set(target_class_list.classes) intersection = sorted(tuple(intersection)) keys = tuple(self.classes.index(c) for c in intersection) values = tuple(target_class_list.classes.index(c) for c in intersection) table = tf.lookup.StaticHashTable( tf.lookup.KeyValueTensorInitializer(keys, values, tf.int64, tf.int64), default_value=-1, ) image_mask = tf.constant( [k in self.classes for k in target_class_list.classes], tf.int64, ) return table, image_mask def get_namespace_map_tf_lookup( self, mapping: Mapping, keep_unknown: bool | None = None ) -> tf.lookup.StaticHashTable: """Create a tf.lookup.StaticHasTable for namespace mappings. Args: mapping: Mapping to apply. keep_unknown: How to handle unknowns. If true, then unknown labels in the class list are maintained as unknown in the mapped values. If false then the unknown value is discarded. The default (`None`) will raise an error if an unknown value is in the source classt list. Returns: A Tensorflow StaticHashTable and the image ClassList in the mapping's target namespace. Raises: KeyError: If a class in not the mapping, or if the class list contains an unknown token and `keep_unknown` was not specified. """ target_class_list = self.apply_namespace_mapping( mapping, keep_unknown=keep_unknown ) target_class_indices = { k: i for i, k in enumerate(target_class_list.classes) } mapped_pairs = mapping.mapped_pairs if keep_unknown: mapped_pairs = mapped_pairs | {UNKNOWN_LABEL: UNKNOWN_LABEL} keys = list(range(len(self.classes))) values = [ target_class_indices[mapped_pairs[k]] for k in self.classes if k != UNKNOWN_LABEL or keep_unknown in (True, None) ] table = tf.lookup.StaticHashTable( tf.lookup.KeyValueTensorInitializer(keys, values, tf.int64, tf.int64), default_value=-1, ) return table def apply_namespace_mapping( self, mapping: Mapping, keep_unknown: bool | None = None ) -> ClassList: """Apply a namespace mapping to this class list. Args: mapping: The mapping to apply. keep_unknown: How to handle unknowns. If true, then unknown labels in the class list are maintained as unknown in the mapped values. If false then the unknown value is discarded. The default (`None`) will raise an error if an unknown value is in the source classt list. Returns: A class list which is the result of applying the given mapping to this class list. Raises: KeyError: If a class in not the mapping, or if the class list contains an unknown token and `keep_unknown` was not specified. """ if mapping.source_namespace != self.namespace: raise ValueError("mapping source namespace does not match class list's") mapped_pairs = mapping.mapped_pairs if keep_unknown: mapped_pairs = mapped_pairs | {UNKNOWN_LABEL: UNKNOWN_LABEL} return ClassList( mapping.target_namespace, tuple( dict.fromkeys( mapped_pairs[class_] for class_ in self.classes if class_ != UNKNOWN_LABEL or keep_unknown in (True, None) ) ), ) def get_class_map_matrix( self, target_class_list: ClassList, mapping: Mapping | None = None, ) -> tuple[jnp.ndarray, jnp.ndarray]: """Construct a binary matrix for mapping to another class list. Args: target_class_list: Class list to map into. mapping: Namespace mapping, required if the source and target are in different namespaces. Returns: A binary matrix mapping self to target_class_list and an indicator vector for the image of the mapping. """ if self.namespace != target_class_list.namespace and mapping is None: raise ValueError( "If source and target classes are from different namespaces, a" " namespace mapping must be provided." ) elif self.namespace == target_class_list.namespace and mapping is not None: raise ValueError( "If source and target classes are the same, no mapping should be" " provided." ) matrix = jnp.zeros([len(self.classes), len(target_class_list.classes)]) target_idxs = {k: i for i, k in enumerate(target_class_list.classes)} for i, class_ in enumerate(self.classes): if mapping is not None: class_ = mapping.mapped_pairs[class_] if class_ in target_idxs: j = target_idxs[class_] matrix = matrix.at[i, j].set(1) return matrix, jnp.any(matrix, axis=0)
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for manipulating annotations.""" import csv import dataclasses from typing import Callable, Sequence from etils import epath import pandas as pd @dataclasses.dataclass class TimeWindowAnnotation: """An annotation for a particular time window. Attributes: filename: Filename for the source audio. start_time_s: Float representing the start of this annotation window. end_time_s: Float representing the end of this annotation window. namespace: The namespace of the classes in this annotation. label: List of classes present in the audio segment. """ filename: str start_time_s: float end_time_s: float namespace: str label: Sequence[str] def annotations_to_dataframe( annotations: Sequence[TimeWindowAnnotation], ) -> pd.DataFrame: return pd.DataFrame.from_records( [dataclasses.asdict(anno) for anno in annotations] ) def write_annotations_csv(filepath, annotations): fieldnames = [f.name for f in dataclasses.fields(TimeWindowAnnotation)] fieldnames.remove('namespace') with epath.Path(filepath).open('w') as f: dr = csv.DictWriter(f, fieldnames) dr.writeheader() for anno in annotations: anno_dict = {f: getattr(anno, f) for f in fieldnames} anno_dict['label'] = ' '.join(anno_dict['label']) dr.writerow(anno_dict) def read_dataset_annotations_csvs( filepaths: Sequence[epath.Path], filename_fn: Callable[[epath.Path, dict[str, str]], str], namespace: str, class_fn: Callable[[dict[str, str]], Sequence[str]], start_time_fn: Callable[[dict[str, str]], float], end_time_fn: Callable[[dict[str, str]], float], filter_fn: Callable[[dict[str, str]], bool] | None = None, delimiter: str = ',', ) -> Sequence[TimeWindowAnnotation]: """Create annotations from a random CSV. Args: filepaths: Path to the CSV files. filename_fn: Function for extracting the audio filename. Maps (annotations_filename, row) to the filename of the audio. namespace: Namespace for the annotated classes. class_fn: Function for extracting classname. start_time_fn: Field for starting timestamps. Currently assumes values are floats measured in seconds. end_time_fn: Field for ending timestamps. filter_fn: A function for selecting rows of the annotation file to ignore. Will keep rows where filter_fn is False, and ignore rows where True. delimiter: Field separating character in the target file. Returns: List of TimeWindowAnnotations. """ annotations = [] for filepath in filepaths: with filepath.open('r') as f: reader = csv.DictReader(f, delimiter=delimiter) for row in reader: if filter_fn and filter_fn(row): continue filename = filename_fn(filepath, row) start = start_time_fn(row) end = end_time_fn(row) classes = class_fn(row) annotations.append( TimeWindowAnnotation(filename, start, end, namespace, classes) ) return annotations
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Load eBird/Clements labels from source data.""" import typing from absl import app from absl import flags from chirp.taxonomy import namespace from chirp.taxonomy import namespace_db import numpy as np import pandas as pd _SOURCE_FILE = flags.DEFINE_string( 'source_file', 'source_data/ebird_taxonomy_v2022.csv', 'CSV file to load.' ) _PREFIX = flags.DEFINE_string( 'prefix', 'ebird2022', 'The prefix to attach to the generated namespaces, class lists, and' ' mappings.', ) _OUTPUT_FILE = flags.DEFINE_string( 'output_file', 'taxonomy_database.json', 'Output file.' ) SEABIRD_FAMILIES = { 'sulidae', 'fregatidae', 'stercorariidae', 'laridae', 'alcidae', 'scolopacidae', } SEABIRD_ORDERS = { 'sphenisciformes', 'procellariiformes', } def parse_ebird( source_file: str | typing.TextIO, prefix: str ) -> namespace_db.TaxonomyDatabase: """Parse an eBird CSV source file. This parses the CSV file and generates a taxonomy database containing namespaces for all eBird codes and for all species codes. It also contains namespaces for the scientific names of the species, genera, families, and orders. A separate namespace is created containing all the identifiable subspecific groups (ISSFs). Mappings are created to map eBird codes to their species, genus, family, and order. Lastly, a class list is created that contains all seabird species. Args: source_file: The path or file-like object containing the source file. prefix: The prefix to use for all the generated data (e.g., `ebird2021` or `ebird2022`, to distinguish between versions). Returns: A `TaxonomyDatabase` containing all the generated data. """ # Load the CSV data df = pd.read_csv(source_file) # Lower-case the data df = df.applymap(lambda x: x.lower() if isinstance(x, str) else x) # Extract the genus from the scientific name df['genus'] = df['SCI_NAME'].str.split(' ').str[0] # Only keep the scientific family name (ignore the common name) df['family'] = df['FAMILY'].str.split(' ').str[0] # Correction to spuhs df.loc[ (df['CATEGORY'] == 'spuh') & ((df['genus'] == df['ORDER1']) | (df['genus'] == df['family'])), 'genus', ] = np.nan # Report species as themselves df.loc[df['CATEGORY'] == 'species', 'REPORT_AS'] = df.loc[ df['CATEGORY'] == 'species', 'SPECIES_CODE' ] # Namespaces (dictionary key is the name of the namespace) namespaces = { '': df['SPECIES_CODE'], 'species': df.loc[df['CATEGORY'] == 'species', 'SPECIES_CODE'], 'issf': df.loc[df['CATEGORY'] == 'issf', 'SPECIES_CODE'], 'genera': df['genus'].drop_duplicates().dropna(), 'families': df['family'].drop_duplicates().dropna(), 'orders': df['ORDER1'].drop_duplicates().dropna(), 'clements': df.loc[df['CATEGORY'] == 'species', 'SCI_NAME'], } # The keys are (mapping name, source namespace, target namespace) mappings = { ('to_species', '', 'species'): df[ # Only select rows which should be reported as a species df.merge( df, left_on='REPORT_AS', right_on='SPECIES_CODE', how='left' )['CATEGORY_y'] == 'species' ][['SPECIES_CODE', 'REPORT_AS']], } for mask, suffix in ( (df['CATEGORY'] == 'species', 'species'), (slice(None), ''), ): prefix_ = suffix + '_' if suffix else '' mappings |= { (prefix_ + 'to_genus', suffix, 'genera'): df[mask][ ['SPECIES_CODE', 'genus'] ], (prefix_ + 'to_family', suffix, 'families'): df[mask][ ['SPECIES_CODE', 'family'] ], (prefix_ + 'to_order', suffix, 'orders'): df[mask][ ['SPECIES_CODE', 'ORDER1'] ], } if SEABIRD_FAMILIES - set(df['family']): raise ValueError('seabird families not found in eBird data') if SEABIRD_ORDERS - set(df['ORDER1']): raise ValueError('seabird orders not found in eBird data') seabirds = df[ df['family'].isin(SEABIRD_FAMILIES) | df['ORDER1'].isin(SEABIRD_ORDERS) ] # The keys are class list name, namespace class_lists = { ('global_seabirds', 'species'): seabirds.loc[ seabirds['CATEGORY'] == 'species', 'SPECIES_CODE' ], } # Add the prefixes and create the database add_prefix = lambda name: (prefix + '_' + name).strip('_') namespaces_ = {} for name, classes in namespaces.items(): namespaces_[add_prefix(name)] = namespace.Namespace(frozenset(classes)) class_lists_ = {} for (name, ns), classes in class_lists.items(): class_lists_[add_prefix(name)] = namespace.ClassList( add_prefix(ns), tuple(sorted(classes)) ) mappings_ = {} for (name, source_ns, target_ns), mapping in mappings.items(): # Some spuhs don't have a genus, and this was set to nan. Drop these from # the mappings. mapping = mapping.dropna() mappings_[add_prefix(name)] = namespace.Mapping( add_prefix(source_ns), add_prefix(target_ns), dict(zip(mapping.iloc[:, 0], mapping.iloc[:, 1])), ) return namespace_db.TaxonomyDatabase(namespaces_, class_lists_, mappings_) def main(argv: list[str]) -> None: if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') ebird_db = parse_ebird(_SOURCE_FILE.value, _PREFIX.value) # Merge into existing database and write db = namespace_db.load_db() db.namespaces |= ebird_db.namespaces db.mappings |= ebird_db.mappings db.class_lists |= ebird_db.class_lists with open(_OUTPUT_FILE.value, 'w') as f: f.write(namespace_db.dump_db(db)) if __name__ == '__main__': app.run(main)
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration to run baseline separation model.""" from chirp import config_utils from chirp.configs import presets from ml_collections import config_dict _c = config_utils.callable_config def get_config() -> config_dict.ConfigDict: """Create configuration dictionary for training.""" config = presets.get_base_config(batch_size=8, num_train_steps=5_000_000) config.train_dataset_config = presets.get_supervised_train_pipeline( config, mixin_prob=1.0, train_dataset_dir='bird_taxonomy/slice_peaked:1.4.0', ) config.train_dataset_config.split = 'train[:99%]' eval_dataset_config = config_dict.ConfigDict() eval_dataset_config.pipeline = _c( 'pipeline.Pipeline', ops=[ _c('pipeline.OnlyJaxTypes'), _c( 'pipeline.ConvertBirdTaxonomyLabels', source_namespace='ebird2021', target_class_list=config.get_ref('target_class_list'), add_taxonomic_labels=True, ), _c('pipeline.MixAudio', mixin_prob=1.0), _c( 'pipeline.Batch', batch_size=config.batch_size, split_across_devices=True, ), _c( 'pipeline.Slice', window_size=config.get_ref('eval_window_size_s'), start=0.0, ), _c('pipeline.NormalizeAudio', target_gain=0.45), ], ) eval_dataset_config.split = 'train[99%:]' eval_dataset_config.tfds_data_dir = config.tfds_data_dir eval_dataset_config.dataset_directory = 'bird_taxonomy/slice_peaked:1.4.0' config.eval_dataset_config = eval_dataset_config # Experiment configuration config.init_config = presets.get_base_init_config(config) # Model Configuration model_config = config_dict.ConfigDict() model_config.num_mask_channels = 4 model_config.mask_kernel_size = 3 model_config.classify_bottleneck = True model_config.classify_pool_width = 50 model_config.classify_stride = 50 model_config.classify_features = 512 config.init_config.model_config = model_config # Mask generator model configuration soundstream_config = config_dict.ConfigDict() soundstream_config.base_filters = 128 # Bottleneck filters has minimal impact on quality. soundstream_config.bottleneck_filters = 128 soundstream_config.output_filters = 1024 soundstream_config.num_residual_layers = 5 soundstream_config.strides = (5, 2, 2) soundstream_config.feature_mults = (2, 2, 2) soundstream_config.groups = (1, 1, 1) soundstream_config.unet_scalar = 1.0 model_config.mask_generator = config_utils.callable_config( 'soundstream_unet.SoundstreamUNet', soundstream_config ) # Frontend configuration stride = config_dict.FieldReference(32) frontend_config = config_dict.ConfigDict() frontend_config.features = 128 frontend_config.stride = stride inverse_frontend_config = config_dict.ConfigDict() inverse_frontend_config.stride = stride kernel_size = config_dict.FieldReference(128) frontend_config.kernel_size = kernel_size inverse_frontend_config.kernel_size = kernel_size model_config.bank_transform = config_utils.callable_config( 'frontend.LearnedFrontend', frontend_config ) model_config.unbank_transform = config_utils.callable_config( 'frontend.InverseLearnedFrontend', inverse_frontend_config ) model_config.bank_is_real = True # Training loop configuration config.train_config = presets.get_base_train_config(config) config.train_config.loss_max_snr = 30.0 config.train_config.classify_bottleneck_weight = 100.0 config.train_config.taxonomy_labels_weight = 1.0 config.eval_config = presets.get_base_eval_config(config) config.eval_config.eval_steps_per_checkpoint = 100 config.eval_config.loss_max_snr = config.train_config.get_ref('loss_max_snr') config.eval_config.taxonomy_labels_weight = config.train_config.get_ref( 'taxonomy_labels_weight' ) # Note: frame_size should be divisible by the product of all downsampling # strides in the model architecture (eg, 32 * 5 * 2 * 2 * 50, for # frontend_config.stride=32, and soundstream_config.strides=[5, 2, 2]), # and classify_stride=50. config.export_config = config_dict.ConfigDict() config.export_config.frame_size = 32000 config.export_config.num_train_steps = config.get_ref('num_train_steps') return config def get_hyper(hyper): return hyper.sweep( 'config.init_config.model_config.num_mask_channels', hyper.discrete([6]), )
# coding=utf-8 # Copyright 2023 The Chirp Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration to run HuBERT with Product Quantizers.""" from chirp import config_utils from chirp.configs import hubert_base_pq from ml_collections import config_dict _c = config_utils.callable_config def get_config() -> config_dict.ConfigDict: """Create configuration dictionary for training.""" config = hubert_base_pq.get_config() # Add an intermediate quantizer (here at layer 6) in addition to the # usual mel-spec quantizer (-2) config.init_config.model_config.quantizer_points = (-2, 6) return config