python_code
stringlengths 0
229k
|
---|
import fire
import torch
from torch.nn import CrossEntropyLoss
from torch.optim import SGD
from torchvision.models import wide_resnet50_2
from utils import get_train_eval_loaders
from ignite.contrib.handlers import ProgressBar
from ignite.engine import convert_tensor, create_supervised_evaluator, Engine, Events
from ignite.handlers import Timer
from ignite.metrics import Accuracy, Loss
def main(dataset_path, batch_size=256, max_epochs=10):
assert torch.cuda.is_available()
assert torch.backends.cudnn.enabled, "NVIDIA/Apex:Amp requires cudnn backend to be enabled."
torch.backends.cudnn.benchmark = True
device = "cuda"
train_loader, test_loader, eval_train_loader = get_train_eval_loaders(dataset_path, batch_size=batch_size)
model = wide_resnet50_2(num_classes=100).to(device)
optimizer = SGD(model.parameters(), lr=0.01)
criterion = CrossEntropyLoss().to(device)
def train_step(engine, batch):
x = convert_tensor(batch[0], device, non_blocking=True)
y = convert_tensor(batch[1], device, non_blocking=True)
optimizer.zero_grad()
y_pred = model(x)
loss = criterion(y_pred, y)
loss.backward()
optimizer.step()
return loss.item()
trainer = Engine(train_step)
timer = Timer(average=True)
timer.attach(trainer, step=Events.EPOCH_COMPLETED)
ProgressBar(persist=True).attach(trainer, output_transform=lambda out: {"batch loss": out})
metrics = {"Accuracy": Accuracy(), "Loss": Loss(criterion)}
evaluator = create_supervised_evaluator(model, metrics=metrics, device=device, non_blocking=True)
def log_metrics(engine, title):
for name in metrics:
print(f"\t{title} {name}: {engine.state.metrics[name]:.2f}")
@trainer.on(Events.COMPLETED)
def run_validation(_):
print(f"- Mean elapsed time for 1 epoch: {timer.value()}")
print("- Metrics:")
with evaluator.add_event_handler(Events.COMPLETED, log_metrics, "Train"):
evaluator.run(eval_train_loader)
with evaluator.add_event_handler(Events.COMPLETED, log_metrics, "Test"):
evaluator.run(test_loader)
trainer.run(train_loader, max_epochs=max_epochs)
if __name__ == "__main__":
fire.Fire(main)
|
import os
from pathlib import Path
import brevitas.nn as qnn
import torch
import torch.nn as nn
from pact import PACTReLU
from torchvision import datasets, models
from torchvision.transforms import Compose, Normalize, Pad, RandomCrop, RandomHorizontalFlip, ToTensor
train_transform = Compose(
[
Pad(4),
RandomCrop(32, fill=128),
RandomHorizontalFlip(),
ToTensor(),
Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
]
)
test_transform = Compose([ToTensor(), Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])
def get_train_test_datasets(path):
path = Path(path)
if not path.exists():
path.mkdir(parents=True)
download = True
else:
download = True if len(os.listdir(path)) < 1 else False
train_ds = datasets.CIFAR10(root=path, train=True, download=download, transform=train_transform)
test_ds = datasets.CIFAR10(root=path, train=False, download=False, transform=test_transform)
return train_ds, test_ds
def get_model(name):
__dict__ = globals()
if name in models.__dict__:
fn = models.__dict__[name]
elif name in ["resnet18_QAT_8b", "resnet18_QAT_6b", "resnet18_QAT_5b", "resnet18_QAT_4b"]:
fn = __dict__[name]
else:
raise RuntimeError("Unknown model name {}".format(name))
return fn(num_classes=10)
# Below code is taken from https://discuss.pytorch.org/t/evaluator-returns-nan/107972/3
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1, weight_bit_width=8):
"""3x3 convolution with padding"""
return qnn.QuantConv2d(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=dilation,
groups=groups,
bias=False,
dilation=dilation,
weight_bit_width=weight_bit_width,
)
def conv1x1(in_planes, out_planes, stride=1, weight_bit_width=8):
"""1x1 convolution"""
return qnn.QuantConv2d(
in_planes, out_planes, kernel_size=1, stride=stride, bias=False, weight_bit_width=weight_bit_width
)
def make_PACT_relu(bit_width=8):
relu = qnn.QuantReLU(bit_width=bit_width)
relu.act_impl = PACTReLU()
return relu
class BasicBlock(nn.Module):
expansion = 1
def __init__(
self,
inplanes,
planes,
stride=1,
downsample=None,
groups=1,
base_width=64,
dilation=1,
norm_layer=None,
bit_width=8,
):
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError("BasicBlock only supports groups=1 and base_width=64")
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride, weight_bit_width=bit_width)
self.bn1 = norm_layer(planes)
self.relu = make_PACT_relu(bit_width=bit_width)
self.conv2 = conv3x3(planes, planes, weight_bit_width=bit_width)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
# This variant is also known as ResNet V1.5 and improves accuracy according to
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
expansion = 4
def __init__(
self,
inplanes,
planes,
stride=1,
downsample=None,
groups=1,
base_width=64,
dilation=1,
norm_layer=None,
bit_width=8,
):
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.0)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width, weight_bit_width=bit_width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation, weight_bit_width=bit_width)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion, weight_bit_width=bit_width)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = make_PACT_relu(bit_width=bit_width)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet_QAT_Xb(nn.Module):
def __init__(
self,
block,
layers,
num_classes=1000,
zero_init_residual=False,
groups=1,
width_per_group=64,
replace_stride_with_dilation=None,
norm_layer=None,
bit_width=8,
):
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError(
"replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation)
)
self.groups = groups
self.base_width = width_per_group
self.conv1 = qnn.QuantConv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = make_PACT_relu()
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0], bit_width=bit_width)
self.layer2 = self._make_layer(
block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0], bit_width=bit_width
)
self.layer3 = self._make_layer(
block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1], bit_width=bit_width
)
self.layer4 = self._make_layer(
block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2], bit_width=bit_width
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d): # qnn.QuantConv2d includes nn.Conv2d inside.
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False, bit_width=8):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride, weight_bit_width=bit_width),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(
block(
self.inplanes,
planes,
stride,
downsample,
self.groups,
self.base_width,
previous_dilation,
norm_layer,
bit_width=bit_width,
)
)
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(
block(
self.inplanes,
planes,
groups=self.groups,
base_width=self.base_width,
dilation=self.dilation,
norm_layer=norm_layer,
bit_width=bit_width,
)
)
return nn.Sequential(*layers)
def _forward_impl(self, x):
# See note [TorchScript super()]
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
def forward(self, x):
return self._forward_impl(x)
def _resnet_QAT_Xb(block, layers, **kwargs):
model = ResNet_QAT_Xb(block, layers, **kwargs)
return model
def resnet18_QAT_8b(*args, **kwargs):
return _resnet_QAT_Xb(BasicBlock, [2, 2, 2, 2], **kwargs)
def resnet18_QAT_6b(*args, **kwargs):
return _resnet_QAT_Xb(BasicBlock, [2, 2, 2, 2], bit_width=6, **kwargs)
def resnet18_QAT_5b(*args, **kwargs):
return _resnet_QAT_Xb(BasicBlock, [2, 2, 2, 2], bit_width=5, **kwargs)
def resnet18_QAT_4b(*args, **kwargs):
return _resnet_QAT_Xb(BasicBlock, [2, 2, 2, 2], bit_width=4, **kwargs)
|
from datetime import datetime
from pathlib import Path
import fire
import torch
import torch.nn as nn
import torch.optim as optim
import utils
from torch.cuda.amp import autocast, GradScaler
import ignite
import ignite.distributed as idist
from ignite.contrib.engines import common
from ignite.contrib.handlers import PiecewiseLinear
from ignite.engine import create_supervised_evaluator, Engine, Events
from ignite.handlers import Checkpoint, DiskSaver, global_step_from_engine
from ignite.metrics import Accuracy, Loss
from ignite.utils import manual_seed, setup_logger
def training(local_rank, config):
rank = idist.get_rank()
manual_seed(config["seed"] + rank)
device = idist.device()
logger = setup_logger(name="CIFAR10-QAT-Training", distributed_rank=local_rank)
log_basic_info(logger, config)
output_path = config["output_path"]
if rank == 0:
now = datetime.now().strftime("%Y%m%d-%H%M%S")
folder_name = f"{config['model']}_backend-{idist.backend()}-{idist.get_world_size()}_{now}"
output_path = Path(output_path) / folder_name
if not output_path.exists():
output_path.mkdir(parents=True)
config["output_path"] = output_path.as_posix()
logger.info(f"Output path: {config['output_path']}")
if "cuda" in device.type:
config["cuda device name"] = torch.cuda.get_device_name(local_rank)
if config["with_clearml"]:
from clearml import Task
task = Task.init("CIFAR10-Training", task_name=output_path.stem)
task.connect_configuration(config)
# Log hyper parameters
hyper_params = [
"model",
"batch_size",
"momentum",
"weight_decay",
"num_epochs",
"learning_rate",
"num_warmup_epochs",
]
task.connect({k: config[k] for k in hyper_params})
# Setup dataflow, model, optimizer, criterion
train_loader, test_loader = get_dataflow(config)
config["num_iters_per_epoch"] = len(train_loader)
model, optimizer, criterion, lr_scheduler = initialize(config)
# Create trainer for current task
trainer = create_trainer(model, optimizer, criterion, lr_scheduler, train_loader.sampler, config, logger)
# Let's now setup evaluator engine to perform model's validation and compute metrics
metrics = {
"Accuracy": Accuracy(),
"Loss": Loss(criterion),
}
# We define two evaluators as they wont have exactly similar roles:
# - `evaluator` will save the best model based on validation score
evaluator = create_supervised_evaluator(model, metrics=metrics, device=device, non_blocking=True)
train_evaluator = create_supervised_evaluator(model, metrics=metrics, device=device, non_blocking=True)
def run_validation(engine):
epoch = trainer.state.epoch
state = train_evaluator.run(train_loader)
log_metrics(logger, epoch, state.times["COMPLETED"], "Train", state.metrics)
state = evaluator.run(test_loader)
log_metrics(logger, epoch, state.times["COMPLETED"], "Test", state.metrics)
trainer.add_event_handler(Events.EPOCH_COMPLETED(every=config["validate_every"]) | Events.COMPLETED, run_validation)
if rank == 0:
# Setup TensorBoard logging on trainer and evaluators. Logged values are:
# - Training metrics, e.g. running average loss values
# - Learning rate
# - Evaluation train/test metrics
evaluators = {"training": train_evaluator, "test": evaluator}
tb_logger = common.setup_tb_logging(output_path, trainer, optimizer, evaluators=evaluators)
# Store 2 best models by validation accuracy starting from num_epochs / 2:
best_model_handler = Checkpoint(
{"model": model},
get_save_handler(config),
filename_prefix="best",
n_saved=2,
global_step_transform=global_step_from_engine(trainer),
score_name="test_accuracy",
score_function=Checkpoint.get_default_score_fn("Accuracy"),
)
evaluator.add_event_handler(
Events.COMPLETED(lambda *_: trainer.state.epoch > config["num_epochs"] // 2), best_model_handler
)
try:
trainer.run(train_loader, max_epochs=config["num_epochs"])
except Exception as e:
logger.exception("")
raise e
if rank == 0:
tb_logger.close()
def run(
seed=543,
data_path="/tmp/cifar10",
output_path="/tmp/output-cifar10/",
model="resnet18_QAT_8b",
batch_size=512,
momentum=0.9,
weight_decay=1e-4,
num_workers=12,
num_epochs=24,
learning_rate=0.4,
num_warmup_epochs=4,
validate_every=3,
checkpoint_every=1000,
backend=None,
resume_from=None,
log_every_iters=15,
nproc_per_node=None,
with_clearml=False,
with_amp=False,
**spawn_kwargs,
):
"""Main entry to train an model on CIFAR10 dataset.
Args:
seed (int): random state seed to set. Default, 543.
data_path (str): input dataset path. Default, "/tmp/cifar10".
output_path (str): output path. Default, "/tmp/output-cifar10".
model (str): model name (from torchvision) to setup model to train. Default, "resnet18".
batch_size (int): total batch size. Default, 512.
momentum (float): optimizer's momentum. Default, 0.9.
weight_decay (float): weight decay. Default, 1e-4.
num_workers (int): number of workers in the data loader. Default, 12.
num_epochs (int): number of epochs to train the model. Default, 24.
learning_rate (float): peak of piecewise linear learning rate scheduler. Default, 0.4.
num_warmup_epochs (int): number of warm-up epochs before learning rate decay. Default, 4.
validate_every (int): run model's validation every ``validate_every`` epochs. Default, 3.
checkpoint_every (int): store training checkpoint every ``checkpoint_every`` iterations. Default, 200.
backend (str, optional): backend to use for distributed configuration. Possible values: None, "nccl", "xla-tpu",
"gloo" etc. Default, None.
nproc_per_node (int, optional): optional argument to setup number of processes per node. It is useful,
when main python process is spawning training as child processes.
resume_from (str, optional): path to checkpoint to use to resume the training from. Default, None.
log_every_iters (int): argument to log batch loss every ``log_every_iters`` iterations.
It can be 0 to disable it. Default, 15.
with_clearml (bool): if True, experiment ClearML logger is setup. Default, False.
with_amp (bool): if True, enables native automatic mixed precision. Default, False.
**spawn_kwargs: Other kwargs to spawn run in child processes: master_addr, master_port, node_rank, nnodes
"""
# check to see if the num_epochs is greater than or equal to num_warmup_epochs
if num_warmup_epochs >= num_epochs:
raise ValueError(
"num_epochs cannot be less than or equal to num_warmup_epochs, please increase num_epochs or decrease "
"num_warmup_epochs"
)
# catch all local parameters
config = locals()
config.update(config["spawn_kwargs"])
del config["spawn_kwargs"]
spawn_kwargs["nproc_per_node"] = nproc_per_node
with idist.Parallel(backend=backend, **spawn_kwargs) as parallel:
parallel.run(training, config)
def get_dataflow(config):
# - Get train/test datasets
with idist.one_rank_first(local=True):
train_dataset, test_dataset = utils.get_train_test_datasets(config["data_path"])
# Setup data loader also adapted to distributed config: nccl, gloo, xla-tpu
train_loader = idist.auto_dataloader(
train_dataset, batch_size=config["batch_size"], num_workers=config["num_workers"], shuffle=True, drop_last=True
)
test_loader = idist.auto_dataloader(
test_dataset, batch_size=2 * config["batch_size"], num_workers=config["num_workers"], shuffle=False
)
return train_loader, test_loader
def initialize(config):
model = utils.get_model(config["model"])
# Adapt model for distributed settings if configured
model = idist.auto_model(model, find_unused_parameters=True)
optimizer = optim.SGD(
model.parameters(),
lr=config["learning_rate"],
momentum=config["momentum"],
weight_decay=config["weight_decay"],
nesterov=True,
)
optimizer = idist.auto_optim(optimizer)
criterion = nn.CrossEntropyLoss().to(idist.device())
le = config["num_iters_per_epoch"]
milestones_values = [
(0, 0.0),
(le * config["num_warmup_epochs"], config["learning_rate"]),
(le * config["num_epochs"], 0.0),
]
lr_scheduler = PiecewiseLinear(optimizer, param_name="lr", milestones_values=milestones_values)
return model, optimizer, criterion, lr_scheduler
def log_metrics(logger, epoch, elapsed, tag, metrics):
metrics_output = "\n".join([f"\t{k}: {v}" for k, v in metrics.items()])
logger.info(f"\nEpoch {epoch} - Evaluation time (seconds): {elapsed:.2f} - {tag} metrics:\n {metrics_output}")
def log_basic_info(logger, config):
logger.info(f"Quantization Aware Training {config['model']} on CIFAR10")
logger.info(f"- PyTorch version: {torch.__version__}")
logger.info(f"- Ignite version: {ignite.__version__}")
if torch.cuda.is_available():
# explicitly import cudnn as
# torch.backends.cudnn can not be pickled with hvd spawning procs
from torch.backends import cudnn
logger.info(f"- GPU Device: {torch.cuda.get_device_name(idist.get_local_rank())}")
logger.info(f"- CUDA version: {torch.version.cuda}")
logger.info(f"- CUDNN version: {cudnn.version()}")
logger.info("\n")
logger.info("Configuration:")
for key, value in config.items():
logger.info(f"\t{key}: {value}")
logger.info("\n")
if idist.get_world_size() > 1:
logger.info("\nDistributed setting:")
logger.info(f"\tbackend: {idist.backend()}")
logger.info(f"\tworld size: {idist.get_world_size()}")
logger.info("\n")
def create_trainer(model, optimizer, criterion, lr_scheduler, train_sampler, config, logger):
device = idist.device()
# Setup Ignite trainer:
# - let's define training step
# - add other common handlers:
# - TerminateOnNan,
# - handler to setup learning rate scheduling,
# - ModelCheckpoint
# - RunningAverage` on `train_step` output
# - Two progress bars on epochs and optionally on iterations
with_amp = config["with_amp"]
scaler = GradScaler(enabled=with_amp)
def train_step(engine, batch):
x, y = batch[0], batch[1]
if x.device != device:
x = x.to(device, non_blocking=True)
y = y.to(device, non_blocking=True)
model.train()
with autocast(enabled=with_amp):
y_pred = model(x)
loss = criterion(y_pred, y)
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
return {
"batch loss": loss.item(),
}
trainer = Engine(train_step)
trainer.logger = logger
to_save = {"trainer": trainer, "model": model, "optimizer": optimizer, "lr_scheduler": lr_scheduler}
metric_names = [
"batch loss",
]
common.setup_common_training_handlers(
trainer=trainer,
train_sampler=train_sampler,
to_save=to_save,
save_every_iters=config["checkpoint_every"],
save_handler=get_save_handler(config),
lr_scheduler=lr_scheduler,
output_names=metric_names if config["log_every_iters"] > 0 else None,
with_pbars=False,
clear_cuda_cache=False,
)
resume_from = config["resume_from"]
if resume_from is not None:
checkpoint_fp = Path(resume_from)
assert checkpoint_fp.exists(), f"Checkpoint '{checkpoint_fp.as_posix()}' is not found"
logger.info(f"Resume from a checkpoint: {checkpoint_fp.as_posix()}")
checkpoint = torch.load(checkpoint_fp.as_posix(), map_location="cpu")
Checkpoint.load_objects(to_load=to_save, checkpoint=checkpoint)
return trainer
def get_save_handler(config):
if config["with_clearml"]:
from ignite.contrib.handlers.clearml_logger import ClearMLSaver
return ClearMLSaver(dirname=config["output_path"])
return DiskSaver(config["output_path"], require_empty=False)
if __name__ == "__main__":
fire.Fire({"run": run})
|
# Implementation taken from https://discuss.pytorch.org/t/evaluator-returns-nan/107972/3
# Ref: https://arxiv.org/abs/1805.06085
import torch
import torch.nn as nn
class PACTClip(torch.autograd.Function):
@staticmethod
def forward(ctx, x, alpha):
ctx.save_for_backward(x, alpha)
return torch.clamp(x, 0, alpha.data)
@staticmethod
def backward(ctx, dy):
x, alpha = ctx.saved_tensors
dx = dy.clone()
dx[x < 0] = 0
dx[x > alpha] = 0
dalpha = dy.clone()
dalpha[x <= alpha] = 0
return dx, torch.sum(dalpha)
class PACTReLU(nn.Module):
def __init__(self, alpha=6.0):
super().__init__()
self.alpha = nn.Parameter(torch.tensor(alpha))
def forward(self, x):
return PACTClip.apply(x, self.alpha)
|
import torch.nn as nn
import torch.nn.init as init
class Net(nn.Module):
def __init__(self, upscale_factor):
super(Net, self).__init__()
self.relu = nn.ReLU()
self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
self.conv4 = nn.Conv2d(32, upscale_factor**2, (3, 3), (1, 1), (1, 1))
self.pixel_shuffle = nn.PixelShuffle(upscale_factor)
self._initialize_weights()
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.relu(self.conv2(x))
x = self.relu(self.conv3(x))
x = self.pixel_shuffle(self.conv4(x))
return x
def _initialize_weights(self):
init.orthogonal_(self.conv1.weight, init.calculate_gain("relu"))
init.orthogonal_(self.conv2.weight, init.calculate_gain("relu"))
init.orthogonal_(self.conv3.weight, init.calculate_gain("relu"))
init.orthogonal_(self.conv4.weight)
|
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
from model import Net
from torch.utils.data import DataLoader
from torchvision.transforms.functional import center_crop, resize, to_tensor
from ignite.contrib.handlers import ProgressBar
from ignite.engine import Engine, Events
from ignite.handlers import BasicTimeProfiler
from ignite.metrics import PSNR
# Training settings
parser = argparse.ArgumentParser(description="PyTorch Super Res Example")
parser.add_argument("--crop_size", type=int, default=256, help="cropped size of the images for training")
parser.add_argument("--upscale_factor", type=int, required=True, help="super resolution upscale factor")
parser.add_argument("--batch_size", type=int, default=64, help="training batch size")
parser.add_argument("--test_batch_size", type=int, default=10, help="testing batch size")
parser.add_argument("--n_epochs", type=int, default=2, help="number of epochs to train for")
parser.add_argument("--lr", type=float, default=0.01, help="Learning Rate. Default=0.01")
parser.add_argument("--cuda", action="store_true", help="use cuda?")
parser.add_argument("--mps", action="store_true", default=False, help="enables macOS GPU training")
parser.add_argument("--threads", type=int, default=4, help="number of threads for data loader to use")
parser.add_argument("--seed", type=int, default=123, help="random seed to use. Default=123")
parser.add_argument("--debug", action="store_true", help="use debug")
opt = parser.parse_args()
print(opt)
if opt.cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
if not opt.mps and torch.backends.mps.is_available():
raise Exception("Found mps device, please run with --mps to enable macOS GPU")
torch.manual_seed(opt.seed)
use_mps = opt.mps and torch.backends.mps.is_available()
if opt.cuda:
device = torch.device("cuda")
elif use_mps:
device = torch.device("mps")
else:
device = torch.device("cpu")
print("===> Loading datasets")
class SRDataset(torch.utils.data.Dataset):
def __init__(self, dataset, scale_factor, crop_size=256):
self.dataset = dataset
self.scale_factor = scale_factor
self.crop_size = crop_size
def __getitem__(self, index):
image, _ = self.dataset[index]
img = image.convert("YCbCr")
hr_image, _, _ = img.split()
hr_image = center_crop(hr_image, self.crop_size)
lr_image = hr_image.copy()
if self.scale_factor != 1:
size = self.crop_size // self.scale_factor
lr_image = resize(lr_image, [size, size])
hr_image = to_tensor(hr_image)
lr_image = to_tensor(lr_image)
return lr_image, hr_image
def __len__(self):
return len(self.dataset)
trainset = torchvision.datasets.Caltech101(root="./data", download=True)
testset = torchvision.datasets.Caltech101(root="./data", download=False)
trainset_sr = SRDataset(trainset, scale_factor=opt.upscale_factor, crop_size=opt.crop_size)
testset_sr = SRDataset(testset, scale_factor=opt.upscale_factor, crop_size=opt.crop_size)
training_data_loader = DataLoader(dataset=trainset_sr, num_workers=opt.threads, batch_size=opt.batch_size, shuffle=True)
testing_data_loader = DataLoader(dataset=testset_sr, num_workers=opt.threads, batch_size=opt.test_batch_size)
print("===> Building model")
model = Net(upscale_factor=opt.upscale_factor).to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=opt.lr)
def train_step(engine, batch):
model.train()
input, target = batch[0].to(device), batch[1].to(device)
optimizer.zero_grad()
loss = criterion(model(input), target)
loss.backward()
optimizer.step()
return loss.item()
def validation_step(engine, batch):
model.eval()
with torch.no_grad():
x, y = batch[0].to(device), batch[1].to(device)
y_pred = model(x)
return y_pred, y
trainer = Engine(train_step)
evaluator = Engine(validation_step)
psnr = PSNR(data_range=1)
psnr.attach(evaluator, "psnr")
validate_every = 1
if opt.debug:
epoch_length = 10
validate_epoch_length = 1
else:
epoch_length = len(training_data_loader)
validate_epoch_length = len(testing_data_loader)
@trainer.on(Events.EPOCH_COMPLETED(every=validate_every))
def log_validation():
evaluator.run(testing_data_loader, epoch_length=validate_epoch_length)
metrics = evaluator.state.metrics
print(f"Epoch: {trainer.state.epoch}, Avg. PSNR: {metrics['psnr']} dB")
@trainer.on(Events.EPOCH_COMPLETED)
def checkpoint():
model_out_path = "model_epoch_{}.pth".format(trainer.state.epoch)
torch.save(model, model_out_path)
print("Checkpoint saved to {}".format(model_out_path))
# Attach basic profiler
basic_profiler = BasicTimeProfiler()
basic_profiler.attach(trainer)
ProgressBar().attach(trainer, output_transform=lambda x: {"loss": x})
trainer.run(training_data_loader, opt.n_epochs, epoch_length=epoch_length)
results = basic_profiler.get_results()
basic_profiler.print_results(results)
|
import argparse
import numpy as np
import torch
from PIL import Image
from torchvision.transforms.functional import to_tensor
# Training settings
parser = argparse.ArgumentParser(description="PyTorch Super Res Example")
parser.add_argument("--input_image", type=str, required=True, help="input image to use")
parser.add_argument("--model", type=str, required=True, help="model file to use")
parser.add_argument("--output_filename", type=str, help="where to save the output image")
parser.add_argument("--cuda", action="store_true", help="use cuda")
opt = parser.parse_args()
print(opt)
img = Image.open(opt.input_image).convert("YCbCr")
y, cb, cr = img.split()
model = torch.load(opt.model)
input = to_tensor(y).view(1, -1, y.size[1], y.size[0])
if opt.cuda:
model = model.cuda()
input = input.cuda()
model.eval()
with torch.no_grad():
out = model(input)
out = out.cpu()
out_img_y = out[0].detach().numpy()
out_img_y *= 255.0
out_img_y = out_img_y.clip(0, 255)
out_img_y = Image.fromarray(np.uint8(out_img_y[0]), mode="L")
out_img_cb = cb.resize(out_img_y.size, Image.BICUBIC)
out_img_cr = cr.resize(out_img_y.size, Image.BICUBIC)
out_img = Image.merge("YCbCr", [out_img_y, out_img_cb, out_img_cr]).convert("RGB")
out_img.save(opt.output_filename)
print("output image saved to ", opt.output_filename)
|
from typing import Callable, Optional
import numpy as np
import torch
try:
from image_dataset_viz import render_datapoint
except ImportError:
raise ModuleNotFoundError(
"Please install image-dataset-viz via pip install --upgrade git+https://github.com/vfdev-5/ImageDatasetViz.git"
)
def tensor_to_numpy(t: torch.Tensor) -> np.ndarray:
img = t.cpu().numpy().transpose((1, 2, 0))
return img.astype(np.uint8)
def make_grid(
batch_img: torch.Tensor,
batch_preds: torch.Tensor,
img_denormalize_fn: Callable,
batch_gt: Optional[torch.Tensor] = None,
):
"""Create a grid from batch image and mask as
i+l1+gt1 | i+l2+gt2 | i+l3+gt3 | i+l4+gt4 | ...
where i+l+gt = image + predicted label + ground truth
Args:
batch_img (torch.Tensor) batch of images of any type
batch_preds (torch.Tensor) batch of masks
img_denormalize_fn (Callable): function to denormalize batch of images
batch_gt (torch.Tensor, optional): batch of ground truth masks.
"""
assert isinstance(batch_img, torch.Tensor) and isinstance(batch_preds, torch.Tensor)
assert len(batch_img) == len(batch_preds), f"{len(batch_img)} vs {len(batch_preds)}"
assert batch_preds.ndim == 1, f"{batch_preds.ndim}"
if batch_gt is not None:
assert isinstance(batch_gt, torch.Tensor)
assert len(batch_preds) == len(batch_gt)
assert batch_gt.ndim == 1, f"{batch_gt.ndim}"
b = batch_img.shape[0]
h, w = batch_img.shape[2:]
le = 1
out_image = np.zeros((h * le, w * b, 3), dtype="uint8")
for i in range(b):
img = batch_img[i]
y_preds = batch_preds[i]
img = img_denormalize_fn(img)
img = tensor_to_numpy(img)
pred_label = y_preds.cpu().item()
target = f"p={pred_label}"
if batch_gt is not None:
gt_label = batch_gt[i]
gt_label = gt_label.cpu().item()
target += f" | gt={gt_label}"
out_image[0:h, i * w : (i + 1) * w, :] = render_datapoint(img, target, text_size=12)
return out_image
def predictions_gt_images_handler(img_denormalize_fn, n_images=None, another_engine=None, prefix_tag=None):
def wrapper(engine, logger, event_name):
batch = engine.state.batch
output = engine.state.output
x, y = batch
y_pred = output[0]
if y.shape == y_pred.shape and y.ndim == 4:
# Case of y of shape (B, C, H, W)
y = torch.argmax(y, dim=1)
y_pred = torch.argmax(y_pred, dim=1).byte()
if n_images is not None:
x = x[:n_images, ...]
y = y[:n_images, ...]
y_pred = y_pred[:n_images, ...]
grid_pred_gt = make_grid(x, y_pred, img_denormalize_fn, batch_gt=y)
state = engine.state if another_engine is None else another_engine.state
global_step = state.get_event_attrib_value(event_name)
tag = "predictions_with_gt"
if prefix_tag is not None:
tag = f"{prefix_tag}: {tag}"
logger.writer.add_image(tag=tag, img_tensor=grid_pred_gt, global_step=global_step, dataformats="HWC")
return wrapper
|
import torch
import ignite
import ignite.distributed as idist
from ignite.handlers import DiskSaver
def initialize(config):
device = idist.device()
model = config.model.to(device)
optimizer = config.optimizer
# Adapt model to dist config
model = idist.auto_model(model)
optimizer = idist.auto_optim(optimizer)
criterion = config.criterion.to(device)
return model, optimizer, criterion
def log_basic_info(logger, config):
logger.info(f"- PyTorch version: {torch.__version__}")
logger.info(f"- Ignite version: {ignite.__version__}")
if torch.cuda.is_available():
# explicitly import cudnn as
# torch.backends.cudnn can not be pickled with hvd spawning procs
from torch.backends import cudnn
logger.info(f"- GPU Device: {torch.cuda.get_device_name(idist.get_local_rank())}")
logger.info(f"- CUDA version: {torch.version.cuda}")
logger.info(f"- CUDNN version: {cudnn.version()}")
logger.info("\n")
logger.info("Configuration:")
for key, value in config.items():
logger.info(f"\t{key}: {value}")
logger.info("\n")
if idist.get_world_size() > 1:
logger.info("\nDistributed setting:")
logger.info(f"\tbackend: {idist.backend()}")
logger.info(f"\tworld size: {idist.get_world_size()}")
logger.info("\n")
def log_metrics(logger, epoch, elapsed, tag, metrics):
metrics_output = "\n".join([f"\t{k}: {v}" for k, v in metrics.items()])
logger.info(f"\nEpoch {epoch} - Evaluation time (seconds): {elapsed:.2f} - {tag} metrics:\n {metrics_output}")
def get_save_handler(output_path, with_clearml):
if with_clearml:
from ignite.contrib.handlers.clearml_logger import ClearMLSaver
return ClearMLSaver(dirname=output_path)
return DiskSaver(output_path)
|
from pathlib import Path
from typing import Callable, Optional, Tuple
import cv2
import torch
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Subset
from torchvision.datasets import ImageFolder
import ignite.distributed as idist
from ignite.utils import convert_tensor
def opencv_loader(path):
img = cv2.imread(path)
assert img is not None, f"Image at '{path}' has a problem"
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
def get_dataloader(dataset, sampler=None, shuffle=False, limit_num_samples=None, **kwargs):
if limit_num_samples is not None:
g = torch.Generator().manual_seed(limit_num_samples)
indices = torch.randperm(len(dataset), generator=g)[:limit_num_samples]
dataset = Subset(dataset, indices)
return idist.auto_dataloader(dataset, sampler=sampler, shuffle=(sampler is None) and shuffle, **kwargs)
def get_train_val_loaders(
root_path: str,
train_transforms: Callable,
val_transforms: Callable,
batch_size: int = 16,
num_workers: int = 8,
val_batch_size: Optional[int] = None,
limit_train_num_samples: Optional[int] = None,
limit_val_num_samples: Optional[int] = None,
) -> Tuple[DataLoader, DataLoader, DataLoader]:
train_ds = ImageFolder(
Path(root_path) / "train",
transform=lambda sample: train_transforms(image=sample)["image"],
loader=opencv_loader,
)
val_ds = ImageFolder(
Path(root_path) / "val", transform=lambda sample: val_transforms(image=sample)["image"], loader=opencv_loader
)
if len(val_ds) < len(train_ds):
g = torch.Generator().manual_seed(len(train_ds))
train_eval_indices = torch.randperm(len(train_ds), generator=g)[: len(val_ds)]
train_eval_ds = Subset(train_ds, train_eval_indices)
else:
train_eval_ds = train_ds
val_batch_size = batch_size * 4 if val_batch_size is None else val_batch_size
train_loader = get_dataloader(
train_ds,
shuffle=True,
batch_size=batch_size,
num_workers=num_workers,
drop_last=True,
limit_num_samples=limit_train_num_samples,
)
val_loader = get_dataloader(
val_ds,
shuffle=False,
batch_size=val_batch_size,
num_workers=num_workers,
drop_last=False,
limit_num_samples=limit_val_num_samples,
)
train_eval_loader = get_dataloader(
train_eval_ds,
shuffle=False,
batch_size=val_batch_size,
num_workers=num_workers,
drop_last=False,
limit_num_samples=limit_val_num_samples,
)
return train_loader, val_loader, train_eval_loader
def denormalize(t, mean, std, max_pixel_value=255):
assert isinstance(t, torch.Tensor), f"{type(t)}"
assert t.ndim == 3
d = t.device
mean = torch.tensor(mean, device=d).unsqueeze(-1).unsqueeze(-1)
std = torch.tensor(std, device=d).unsqueeze(-1).unsqueeze(-1)
tensor = std * t + mean
tensor *= max_pixel_value
return tensor
def prepare_batch(batch, device, non_blocking):
x, y = batch[0], batch[1]
x = convert_tensor(x, device, non_blocking=non_blocking)
y = convert_tensor(y, device, non_blocking=non_blocking)
return x, y
|
import os
from functools import partial
from pathlib import Path
import fire
import torch
try:
from torch.cuda.amp import autocast, GradScaler
except ImportError:
raise RuntimeError("Please, use recent PyTorch version, e.g. >=1.6.0")
import dataflow as data
import utils
import vis
from py_config_runner import ConfigObject, get_params, InferenceConfigSchema, TrainvalConfigSchema
import ignite.distributed as idist
from ignite.contrib.engines import common
from ignite.engine import Engine, Events
from ignite.handlers import Checkpoint, Timer
from ignite.metrics import Accuracy, Frequency, TopKCategoricalAccuracy
from ignite.utils import manual_seed, setup_logger
def training(local_rank, config, logger, with_clearml):
rank = idist.get_rank()
manual_seed(config.seed + local_rank)
train_loader = config.train_loader
val_loader = config.val_loader
train_eval_loader = config.train_eval_loader
model, optimizer, criterion = utils.initialize(config)
# Setup trainer for this specific task
trainer = create_trainer(model, optimizer, criterion, train_loader.sampler, config, logger, with_clearml)
# Setup evaluators
accuracy = Accuracy()
val_metrics = {
"Accuracy": accuracy,
"Top-5 Accuracy": TopKCategoricalAccuracy(k=5),
"Error": (1.0 - accuracy) * 100,
}
if ("val_metrics" in config) and isinstance(config.val_metrics, dict):
val_metrics.update(config.val_metrics)
evaluator = create_evaluator(model, val_metrics, config, with_clearml, tag="val")
train_evaluator = create_evaluator(model, val_metrics, config, with_clearml, tag="train")
val_interval = config.get("val_interval", 1)
# Run validation on every val_interval epoch, in the end of the training
# and in the begining if config.start_by_validation is True
event = Events.EPOCH_COMPLETED(every=val_interval)
if config.num_epochs % val_interval != 0:
event |= Events.COMPLETED
if config.get("start_by_validation", False):
event |= Events.STARTED
@trainer.on(event)
def run_validation():
epoch = trainer.state.epoch
state = train_evaluator.run(train_eval_loader)
utils.log_metrics(logger, epoch, state.times["COMPLETED"], "Train", state.metrics)
state = evaluator.run(val_loader)
utils.log_metrics(logger, epoch, state.times["COMPLETED"], "Test", state.metrics)
score_metric_name = "Accuracy"
if "es_patience" in config:
common.add_early_stopping_by_val_score(config.es_patience, evaluator, trainer, metric_name=score_metric_name)
# Store 2 best models by validation accuracy:
common.gen_save_best_models_by_val_score(
save_handler=utils.get_save_handler(config.output_path.as_posix(), with_clearml),
evaluator=evaluator,
models=model,
metric_name=score_metric_name,
n_saved=2,
trainer=trainer,
tag="val",
)
# Setup Tensorboard logger
if rank == 0:
tb_logger = common.setup_tb_logging(
config.output_path.as_posix(),
trainer,
optimizer,
evaluators={"training": train_evaluator, "validation": evaluator},
)
# Log validation predictions as images
# We define a custom event filter to log less frequently the images (to reduce storage size)
# - we plot images with masks of the middle validation batch
# - once every 3 validations and
# - at the end of the training
def custom_event_filter(_, val_iteration):
c1 = val_iteration == 1
c2 = trainer.state.epoch % (config.get("val_interval", 1) * 3) == 0
c2 |= trainer.state.epoch == config.num_epochs
return c1 and c2
# Image denormalization function to plot predictions with images
mean = config.get("mean", (0.485, 0.456, 0.406))
std = config.get("std", (0.229, 0.224, 0.225))
img_denormalize = partial(data.denormalize, mean=mean, std=std)
tb_logger.attach(
evaluator,
log_handler=vis.predictions_gt_images_handler(
img_denormalize_fn=img_denormalize, n_images=12, another_engine=trainer, prefix_tag="validation"
),
event_name=Events.ITERATION_COMPLETED(event_filter=custom_event_filter),
)
tb_logger.attach(
train_evaluator,
log_handler=vis.predictions_gt_images_handler(
img_denormalize_fn=img_denormalize, n_images=12, another_engine=trainer, prefix_tag="training"
),
event_name=Events.ITERATION_COMPLETED(event_filter=custom_event_filter),
)
trainer.run(train_loader, max_epochs=config.num_epochs)
if idist.get_rank() == 0:
tb_logger.close()
def create_trainer(model, optimizer, criterion, train_sampler, config, logger, with_clearml):
device = config.device
prepare_batch = data.prepare_batch
# Setup trainer
accumulation_steps = config.get("accumulation_steps", 1)
model_output_transform = config.get("model_output_transform", lambda x: x)
with_amp = config.get("with_amp", True)
scaler = GradScaler(enabled=with_amp)
def training_step(engine, batch):
model.train()
x, y = prepare_batch(batch, device=device, non_blocking=True)
with autocast(enabled=with_amp):
y_pred = model(x)
y_pred = model_output_transform(y_pred)
loss = criterion(y_pred, y) / accumulation_steps
output = {"supervised batch loss": loss.item(), "num_samples": len(x)}
scaler.scale(loss).backward()
if engine.state.iteration % accumulation_steps == 0:
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
return output
trainer = Engine(training_step)
trainer.logger = logger
throughput_metric = Frequency(output_transform=lambda x: x["num_samples"])
throughput_metric.attach(trainer, name="Throughput")
timer = Timer(average=True)
timer.attach(
trainer,
resume=Events.ITERATION_STARTED,
pause=Events.ITERATION_COMPLETED,
step=Events.ITERATION_COMPLETED,
)
@trainer.on(Events.ITERATION_COMPLETED(every=20))
def log_progress():
metrics = dict(trainer.state.metrics)
epoch_length = trainer.state.epoch_length
metrics["ETA (seconds)"] = int((epoch_length - (trainer.state.iteration % epoch_length)) * timer.value())
metrics_str = ", ".join([f"{k}: {v}" for k, v in metrics.items()])
metrics_format = (
f"[{trainer.state.epoch}/{trainer.state.max_epochs}] "
+ f"Iter={trainer.state.iteration % epoch_length}/{epoch_length}: "
+ f"{metrics_str}"
)
trainer.logger.info(metrics_format)
output_names = [
"supervised batch loss",
]
lr_scheduler = config.lr_scheduler
to_save = {
"model": model,
"optimizer": optimizer,
"lr_scheduler": lr_scheduler,
"trainer": trainer,
"amp": scaler,
}
save_every_iters = config.get("save_every_iters", 1000)
common.setup_common_training_handlers(
trainer,
train_sampler,
to_save=to_save,
save_every_iters=save_every_iters,
save_handler=utils.get_save_handler(config.output_path.as_posix(), with_clearml),
lr_scheduler=lr_scheduler,
output_names=output_names,
# with_pbars=not with_clearml,
with_pbars=False,
log_every_iters=1,
)
resume_from = config.get("resume_from", None)
if resume_from is not None:
checkpoint_fp = Path(resume_from)
assert checkpoint_fp.exists(), f"Checkpoint '{checkpoint_fp.as_posix()}' is not found"
logger.info(f"Resume from a checkpoint: {checkpoint_fp.as_posix()}")
checkpoint = torch.load(checkpoint_fp.as_posix(), map_location="cpu")
Checkpoint.load_objects(to_load=to_save, checkpoint=checkpoint)
return trainer
def create_evaluator(model, metrics, config, with_clearml, tag="val"):
model_output_transform = config.get("model_output_transform", lambda x: x)
with_amp = config.get("with_amp", True)
prepare_batch = data.prepare_batch
@torch.no_grad()
def evaluate_step(engine, batch):
model.eval()
with autocast(enabled=with_amp):
x, y = prepare_batch(batch, device=config.device, non_blocking=True)
y_pred = model(x)
y_pred = model_output_transform(y_pred)
return y_pred, y
evaluator = Engine(evaluate_step)
for name, metric in metrics.items():
metric.attach(evaluator, name)
if idist.get_rank() == 0 and (not with_clearml):
common.ProgressBar(desc=f"Evaluation ({tag})", persist=False).attach(evaluator)
return evaluator
def setup_experiment_tracking(config, with_clearml, task_type="training"):
from datetime import datetime
assert task_type in ("training", "testing"), task_type
output_path = ""
if idist.get_rank() == 0:
if with_clearml:
from clearml import Task
schema = TrainvalConfigSchema if task_type == "training" else InferenceConfigSchema
task = Task.init("ImageNet Training", config.config_filepath.stem, task_type=task_type)
task.connect_configuration(config.config_filepath.as_posix())
task.upload_artifact(config.script_filepath.name, config.script_filepath.as_posix())
task.upload_artifact(config.config_filepath.name, config.config_filepath.as_posix())
task.connect(get_params(config, schema))
output_path = Path(os.environ.get("CLEARML_OUTPUT_PATH", "/tmp"))
output_path = output_path / "clearml" / datetime.now().strftime("%Y%m%d-%H%M%S")
else:
import shutil
output_path = Path(os.environ.get("OUTPUT_PATH", "/tmp/output-imagenet"))
output_path = output_path / task_type / config.config_filepath.stem
output_path = output_path / datetime.now().strftime("%Y%m%d-%H%M%S")
output_path.mkdir(parents=True, exist_ok=True)
shutil.copyfile(config.script_filepath.as_posix(), output_path / config.script_filepath.name)
shutil.copyfile(config.config_filepath.as_posix(), output_path / config.config_filepath.name)
output_path = output_path.as_posix()
return Path(idist.broadcast(output_path, src=0))
def run_training(config_filepath, backend="nccl", with_clearml=True):
"""Main entry to run training experiment
Args:
config_filepath (str): training configuration .py file
backend (str): distributed backend: nccl, gloo or None to run without distributed config
with_clearml (bool): if True, uses ClearML as experiment tracking system
"""
assert torch.cuda.is_available(), torch.cuda.is_available()
assert torch.backends.cudnn.enabled
torch.backends.cudnn.benchmark = True
config_filepath = Path(config_filepath)
assert config_filepath.exists(), f"File '{config_filepath.as_posix()}' is not found"
with idist.Parallel(backend=backend) as parallel:
logger = setup_logger(name="ImageNet Training", distributed_rank=idist.get_rank())
config = ConfigObject(config_filepath)
TrainvalConfigSchema.validate(config)
config.script_filepath = Path(__file__)
output_path = setup_experiment_tracking(config, with_clearml=with_clearml)
config.output_path = output_path
utils.log_basic_info(logger, get_params(config, TrainvalConfigSchema))
try:
parallel.run(training, config, logger=logger, with_clearml=with_clearml)
except KeyboardInterrupt:
logger.info("Catched KeyboardInterrupt -> exit")
except Exception as e: # noqa
logger.exception("")
raise e
def get_model_weights(config, logger, with_clearml):
path = ""
if with_clearml:
from clearml import Model
if idist.get_rank() > 0:
idist.barrier()
else:
model_id = config.weights_path
logger.info(f"Loading trained model: {model_id}")
model = Model(model_id)
assert model is not None, f"{model_id}"
path = model.get_local_copy()
idist.barrier()
path = idist.broadcast(path, src=0)
else:
path = config.weights_path
logger.info(f"Loading {path}")
assert Path(path).exists(), f"{path} is not found"
return torch.load(path)
def evaluation(local_rank, config, logger, with_clearml):
rank = idist.get_rank()
device = idist.device()
manual_seed(config.seed + local_rank)
data_loader = config.data_loader
model = config.model.to(device)
# Load weights:
state_dict = get_model_weights(config, logger, with_clearml)
model.load_state_dict(state_dict)
# Adapt model to dist config
model = idist.auto_model(model)
# Setup evaluators
val_metrics = {
"Accuracy": Accuracy(),
"Top-5 Accuracy": TopKCategoricalAccuracy(k=5),
}
if ("val_metrics" in config) and isinstance(config.val_metrics, dict):
val_metrics.update(config.val_metrics)
evaluator = create_evaluator(model, val_metrics, config, with_clearml, tag="val")
# Setup Tensorboard logger
if rank == 0:
tb_logger = common.TensorboardLogger(log_dir=config.output_path.as_posix())
tb_logger.attach_output_handler(evaluator, event_name=Events.COMPLETED, tag="validation", metric_names="all")
state = evaluator.run(data_loader)
utils.log_metrics(logger, 0, state.times["COMPLETED"], "Validation", state.metrics)
if idist.get_rank() == 0:
tb_logger.close()
def run_evaluation(config_filepath, backend="nccl", with_clearml=True):
"""Main entry to run model's evaluation:
- compute validation metrics
Args:
config_filepath (str): evaluation configuration .py file
backend (str): distributed backend: nccl, gloo, horovod or None to run without distributed config
with_clearml (bool): if True, uses ClearML as experiment tracking system
"""
assert torch.cuda.is_available(), torch.cuda.is_available()
assert torch.backends.cudnn.enabled
torch.backends.cudnn.benchmark = True
config_filepath = Path(config_filepath)
assert config_filepath.exists(), f"File '{config_filepath.as_posix()}' is not found"
with idist.Parallel(backend=backend) as parallel:
logger = setup_logger(name="ImageNet Evaluation", distributed_rank=idist.get_rank())
config = ConfigObject(config_filepath)
InferenceConfigSchema.validate(config)
config.script_filepath = Path(__file__)
output_path = setup_experiment_tracking(config, with_clearml=with_clearml, task_type="testing")
config.output_path = output_path
utils.log_basic_info(logger, get_params(config, InferenceConfigSchema))
try:
parallel.run(evaluation, config, logger=logger, with_clearml=with_clearml)
except KeyboardInterrupt:
logger.info("Catched KeyboardInterrupt -> exit")
except Exception as e: # noqa
logger.exception("")
raise e
if __name__ == "__main__":
fire.Fire({"training": run_training, "eval": run_evaluation})
|
# Basic training configuration
import os
from functools import partial
import albumentations as A
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lrs
from albumentations.pytorch import ToTensorV2 as ToTensor
from dataflow import denormalize, get_train_val_loaders
from torchvision.models.resnet import resnet50
import ignite.distributed as idist
# ##############################
# Global configs
# ##############################
seed = 19
device = "cuda"
debug = True
# config to measure time passed to prepare batches and report measured time before the training
benchmark_dataflow = True
benchmark_dataflow_num_iters = 100
train_crop_size = 224
val_crop_size = 320
batch_size = 64 * idist.get_world_size() # total batch size
num_workers = 8
val_interval = 2
start_by_validation = True
# ##############################
# Setup Dataflow
# ##############################
assert "DATASET_PATH" in os.environ
data_path = os.environ["DATASET_PATH"]
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
train_transforms = A.Compose(
[
A.RandomResizedCrop(train_crop_size, train_crop_size, scale=(0.08, 1.0)),
A.HorizontalFlip(),
A.CoarseDropout(max_height=32, max_width=32),
A.HueSaturationValue(),
A.Normalize(mean=mean, std=std),
ToTensor(),
]
)
val_transforms = A.Compose(
[
# https://github.com/facebookresearch/FixRes/blob/b27575208a7c48a3a6e0fa9efb57baa4021d1305/imnet_resnet50_scratch/transforms.py#L76
A.Resize(int((256 / 224) * val_crop_size), int((256 / 224) * val_crop_size)),
A.CenterCrop(val_crop_size, val_crop_size),
A.Normalize(mean=mean, std=std),
ToTensor(),
]
)
train_loader, val_loader, train_eval_loader = get_train_val_loaders(
data_path,
train_transforms=train_transforms,
val_transforms=val_transforms,
batch_size=batch_size,
num_workers=num_workers,
val_batch_size=batch_size,
limit_train_num_samples=batch_size * 6 if debug else None,
limit_val_num_samples=batch_size * 6 if debug else None,
)
# Image denormalization function to plot predictions with images
img_denormalize = partial(denormalize, mean=mean, std=std)
# ##############################
# Setup Model
# ##############################
model = resnet50(weights=None)
# ##############################
# Setup Solver
# ##############################
num_epochs = 2
criterion = nn.CrossEntropyLoss()
le = len(train_loader)
base_lr = 0.1 * (batch_size / 256.0)
optimizer = optim.SGD(model.parameters(), lr=base_lr, momentum=0.9, weight_decay=1e-4)
lr_scheduler = lrs.MultiStepLR(optimizer, milestones=[30 * le, 60 * le, 90 * le, 100 * le], gamma=0.1)
|
# Basic training configuration
import os
from functools import partial
import albumentations as A
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lrs
from albumentations.pytorch import ToTensorV2 as ToTensor
from dataflow import denormalize, get_train_val_loaders
from torchvision.models.resnet import resnet50
import ignite.distributed as idist
# ##############################
# Global configs
# ##############################
seed = 19
device = "cuda"
debug = False
# config to measure time passed to prepare batches and report measured time before the training
benchmark_dataflow = True
benchmark_dataflow_num_iters = 100
train_crop_size = 224
val_crop_size = 320
batch_size = 64 * idist.get_world_size() # total batch size
num_workers = 8
val_interval = 2
# ##############################
# Setup Dataflow
# ##############################
assert "DATASET_PATH" in os.environ
data_path = os.environ["DATASET_PATH"]
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
train_transforms = A.Compose(
[
A.RandomResizedCrop(train_crop_size, train_crop_size, scale=(0.08, 1.0)),
A.HorizontalFlip(),
A.CoarseDropout(max_height=32, max_width=32),
A.HueSaturationValue(),
A.Normalize(mean=mean, std=std),
ToTensor(),
]
)
val_transforms = A.Compose(
[
# https://github.com/facebookresearch/FixRes/blob/b27575208a7c48a3a6e0fa9efb57baa4021d1305/imnet_resnet50_scratch/transforms.py#L76
A.Resize(int((256 / 224) * val_crop_size), int((256 / 224) * val_crop_size)),
A.CenterCrop(val_crop_size, val_crop_size),
A.Normalize(mean=mean, std=std),
ToTensor(),
]
)
train_loader, val_loader, train_eval_loader = get_train_val_loaders(
data_path,
train_transforms=train_transforms,
val_transforms=val_transforms,
batch_size=batch_size,
num_workers=num_workers,
val_batch_size=batch_size,
limit_train_num_samples=batch_size * 6 if debug else None,
limit_val_num_samples=batch_size * 6 if debug else None,
)
# Image denormalization function to plot predictions with images
img_denormalize = partial(denormalize, mean=mean, std=std)
# ##############################
# Setup Model
# ##############################
model = resnet50(weights=None)
# ##############################
# Setup Solver
# ##############################
num_epochs = 105
criterion = nn.CrossEntropyLoss()
le = len(train_loader)
base_lr = 0.1 * (batch_size / 256.0)
optimizer = optim.SGD(model.parameters(), lr=base_lr, momentum=0.9, weight_decay=1e-4)
lr_scheduler = lrs.MultiStepLR(optimizer, milestones=[30 * le, 60 * le, 90 * le, 100 * le], gamma=0.1)
|
import numpy as np
import torch
from PIL import Image
try:
from image_dataset_viz import render_datapoint
except ImportError:
raise ModuleNotFoundError(
"Please install image-dataset-viz via pip install --upgrade git+https://github.com/vfdev-5/ImageDatasetViz.git"
)
def _getvocpallete(num_cls):
n = num_cls
pallete = [0] * (n * 3)
for j in range(0, n):
lab = j
pallete[j * 3 + 0] = 0
pallete[j * 3 + 1] = 0
pallete[j * 3 + 2] = 0
i = 0
while lab > 0:
pallete[j * 3 + 0] |= ((lab >> 0) & 1) << (7 - i)
pallete[j * 3 + 1] |= ((lab >> 1) & 1) << (7 - i)
pallete[j * 3 + 2] |= ((lab >> 2) & 1) << (7 - i)
i = i + 1
lab >>= 3
return pallete
vocpallete = _getvocpallete(256)
def render_mask(mask):
if isinstance(mask, np.ndarray):
mask = Image.fromarray(mask)
mask.putpalette(vocpallete)
mask = mask.convert(mode="RGB")
return mask
def tensor_to_rgb(t):
img = t.cpu().numpy().transpose((1, 2, 0))
return img.astype(np.uint8)
def make_grid(batch_img, batch_mask, img_denormalize_fn, batch_gt_mask=None):
"""Create a grid from batch image and mask as
img1 | img2 | img3 | img4 | ...
i+m1 | i+m2 | i+m3 | i+m4 | ...
mask1 | mask2 | mask3 | mask4 | ...
i+M1 | i+M2 | i+M3 | i+M4 | ...
Mask1 | Mask2 | Mask3 | Mask4 | ...
i+m = image + mask blended with alpha=0.4
- maskN is predicted mask
- MaskN is ground-truth mask if given
Args:
batch_img (torch.Tensor) batch of images of any type
batch_mask (torch.Tensor) batch of masks
img_denormalize_fn (Callable): function to denormalize batch of images
batch_gt_mask (torch.Tensor, optional): batch of ground truth masks.
"""
assert isinstance(batch_img, torch.Tensor) and isinstance(batch_mask, torch.Tensor)
assert len(batch_img) == len(batch_mask)
if batch_gt_mask is not None:
assert isinstance(batch_gt_mask, torch.Tensor)
assert len(batch_mask) == len(batch_gt_mask)
b = batch_img.shape[0]
h, w = batch_img.shape[2:]
le = 3 if batch_gt_mask is None else 3 + 2
out_image = np.zeros((h * le, w * b, 3), dtype="uint8")
for i in range(b):
img = batch_img[i]
mask = batch_mask[i]
img = img_denormalize_fn(img)
img = tensor_to_rgb(img)
mask = mask.cpu().numpy()
mask = render_mask(mask)
out_image[0:h, i * w : (i + 1) * w, :] = img
out_image[1 * h : 2 * h, i * w : (i + 1) * w, :] = render_datapoint(img, mask, blend_alpha=0.4)
out_image[2 * h : 3 * h, i * w : (i + 1) * w, :] = mask
if batch_gt_mask is not None:
gt_mask = batch_gt_mask[i]
gt_mask = gt_mask.cpu().numpy()
gt_mask = render_mask(gt_mask)
out_image[3 * h : 4 * h, i * w : (i + 1) * w, :] = render_datapoint(img, gt_mask, blend_alpha=0.4)
out_image[4 * h : 5 * h, i * w : (i + 1) * w, :] = gt_mask
return out_image
def predictions_gt_images_handler(img_denormalize_fn, n_images=None, another_engine=None, prefix_tag=None):
def wrapper(engine, logger, event_name):
batch = engine.state.batch
output = engine.state.output
x = batch["image"]
y = batch["mask"]
y_pred = output[0]
if y.shape == y_pred.shape and y.ndim == 4:
# Case of y of shape (B, C, H, W)
y = torch.argmax(y, dim=1)
y_pred = torch.argmax(y_pred, dim=1).byte()
if n_images is not None:
x = x[:n_images, ...]
y = y[:n_images, ...]
y_pred = y_pred[:n_images, ...]
grid_pred_gt = make_grid(x, y_pred, img_denormalize_fn, batch_gt_mask=y)
state = engine.state if another_engine is None else another_engine.state
global_step = state.epoch
tag = "predictions_with_gt"
if prefix_tag is not None:
tag = f"{prefix_tag}: {tag} - epoch={global_step}"
logger.writer.add_image(tag=tag, img_tensor=grid_pred_gt, global_step=global_step, dataformats="HWC")
return wrapper
|
import torch
import ignite
import ignite.distributed as idist
from ignite.handlers import DiskSaver
def initialize(config):
device = idist.device()
model = config.model.to(device)
optimizer = config.optimizer
# Adapt model to dist config
model = idist.auto_model(model)
optimizer = idist.auto_optim(optimizer)
criterion = config.criterion.to(device)
return model, optimizer, criterion
def log_basic_info(logger, config):
logger.info(f"- PyTorch version: {torch.__version__}")
logger.info(f"- Ignite version: {ignite.__version__}")
if torch.cuda.is_available():
# explicitly import cudnn as
# torch.backends.cudnn can not be pickled with hvd spawning procs
from torch.backends import cudnn
logger.info(f"- GPU Device: {torch.cuda.get_device_name(idist.get_local_rank())}")
logger.info(f"- CUDA version: {torch.version.cuda}")
logger.info(f"- CUDNN version: {cudnn.version()}")
logger.info("\n")
logger.info("Configuration:")
for key, value in config.items():
logger.info(f"\t{key}: {value}")
logger.info("\n")
if idist.get_world_size() > 1:
logger.info("\nDistributed setting:")
logger.info(f"\tbackend: {idist.backend()}")
logger.info(f"\tworld size: {idist.get_world_size()}")
logger.info("\n")
def log_metrics(logger, epoch, elapsed, tag, metrics):
metrics_output = "\n".join([f"\t{k}: {v}" for k, v in metrics.items()])
logger.info(f"\nEpoch {epoch} - Evaluation time (seconds): {elapsed:.2f} - {tag} metrics:\n {metrics_output}")
def get_save_handler(output_path, with_clearml):
if with_clearml:
from ignite.contrib.handlers.clearml_logger import ClearMLSaver
return ClearMLSaver(dirname=output_path)
return DiskSaver(output_path)
|
import cv2
import numpy as np
import torch
from PIL import Image
from torch.utils.data import Dataset
from torch.utils.data.dataset import Subset
from torchvision.datasets.sbd import SBDataset
from torchvision.datasets.voc import VOCSegmentation
import ignite.distributed as idist
from ignite.utils import convert_tensor
class TransformedDataset(Dataset):
def __init__(self, ds, transform_fn):
assert isinstance(ds, Dataset)
assert callable(transform_fn)
self.ds = ds
self.transform_fn = transform_fn
def __len__(self):
return len(self.ds)
def __getitem__(self, index):
dp = self.ds[index]
return self.transform_fn(**dp)
class VOCSegmentationOpencv(VOCSegmentation):
target_names = [
"background",
"aeroplane",
"bicycle",
"bird",
"boat",
"bottle",
"bus",
"car",
"cat",
"chair",
"cow",
"diningtable",
"dog",
"horse",
"motorbike",
"person",
"plant",
"sheep",
"sofa",
"train",
"tv/monitor",
]
def __init__(self, *args, return_meta=False, **kwargs):
super(VOCSegmentationOpencv, self).__init__(*args, **kwargs)
self.return_meta = return_meta
def __getitem__(self, index):
img = cv2.imread(self.images[index])
assert img is not None, f"Image at '{self.images[index]}' has a problem"
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
mask = np.asarray(Image.open(self.masks[index]))
if self.return_meta:
return {
"image": img,
"mask": mask,
"meta": {"index": index, "image_path": self.images[index], "mask_path": self.masks[index]},
}
return {"image": img, "mask": mask}
class SBDatasetOpencv(SBDataset):
def __init__(self, *args, return_meta=False, **kwargs):
super(SBDatasetOpencv, self).__init__(*args, **kwargs)
assert self.mode == "segmentation", "SBDatasetOpencv should be in segmentation mode only"
self.return_meta = return_meta
def _get_segmentation_target(self, filepath):
mat = self._loadmat(filepath)
return mat["GTcls"][0]["Segmentation"][0]
def __getitem__(self, index):
img = cv2.imread(self.images[index])
assert img is not None, f"Image at '{self.images[index]}' has a problem"
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
mask = self._get_target(self.masks[index])
if self.return_meta:
return {
"image": img,
"mask": mask,
"meta": {"index": index, "image_path": self.images[index], "mask_path": self.masks[index]},
}
return {"image": img, "mask": mask}
def get_train_dataset(root_path, return_meta=False):
return VOCSegmentationOpencv(
root=root_path, year="2012", image_set="train", download=False, return_meta=return_meta
)
def get_val_dataset(root_path, return_meta=False):
return VOCSegmentationOpencv(root=root_path, year="2012", image_set="val", download=False, return_meta=return_meta)
def get_train_noval_sbdataset(root_path, return_meta=False):
return SBDatasetOpencv(root_path, image_set="train_noval", mode="segmentation", return_meta=return_meta)
def get_dataloader(dataset, sampler=None, shuffle=False, limit_num_samples=None, **kwargs):
if limit_num_samples is not None:
g = torch.Generator().manual_seed(limit_num_samples)
indices = torch.randperm(len(dataset), generator=g)[:limit_num_samples]
dataset = Subset(dataset, indices)
return idist.auto_dataloader(dataset, sampler=sampler, shuffle=(sampler is None) and shuffle, **kwargs)
def get_train_val_loaders(
root_path,
train_transforms,
val_transforms,
batch_size=16,
num_workers=8,
train_sampler=None,
val_batch_size=None,
sbd_path=None,
limit_train_num_samples=None,
limit_val_num_samples=None,
):
train_ds = get_train_dataset(root_path)
val_ds = get_val_dataset(root_path)
if sbd_path is not None:
sbd_train_ds = get_train_noval_sbdataset(sbd_path)
train_ds = train_ds + sbd_train_ds
if len(val_ds) < len(train_ds):
g = torch.Generator().manual_seed(len(train_ds))
train_eval_indices = torch.randperm(len(train_ds), generator=g)[: len(val_ds)]
train_eval_ds = Subset(train_ds, train_eval_indices)
else:
train_eval_ds = train_ds
train_ds = TransformedDataset(train_ds, transform_fn=train_transforms)
val_ds = TransformedDataset(val_ds, transform_fn=val_transforms)
train_eval_ds = TransformedDataset(train_eval_ds, transform_fn=val_transforms)
val_batch_size = batch_size * 4 if val_batch_size is None else val_batch_size
train_loader = get_dataloader(
train_ds,
shuffle=True,
sampler=train_sampler,
batch_size=batch_size,
num_workers=num_workers,
drop_last=True,
limit_num_samples=limit_train_num_samples,
)
val_loader = get_dataloader(
val_ds,
shuffle=False,
batch_size=val_batch_size,
num_workers=num_workers,
drop_last=False,
limit_num_samples=limit_val_num_samples,
)
train_eval_loader = get_dataloader(
train_eval_ds,
shuffle=False,
batch_size=val_batch_size,
num_workers=num_workers,
drop_last=False,
limit_num_samples=limit_val_num_samples,
)
return train_loader, val_loader, train_eval_loader
def get_inference_dataloader(
root_path, mode, transforms, batch_size=16, num_workers=8, pin_memory=True, limit_num_samples=None
):
assert mode in ("train", "test"), "Mode should be 'train' or 'test'"
get_dataset_fn = get_train_dataset if mode == "train" else get_val_dataset
dataset = get_dataset_fn(root_path, return_meta=True)
dataset = TransformedDataset(dataset, transform_fn=transforms)
return get_dataloader(
dataset,
limit_num_samples=limit_num_samples,
shuffle=False,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin_memory,
drop_last=False,
)
def ignore_mask_boundaries(**kwargs):
assert "mask" in kwargs, "Input should contain 'mask'"
mask = kwargs["mask"]
mask[mask == 255] = 0
kwargs["mask"] = mask
return kwargs
def denormalize(t, mean, std, max_pixel_value=255):
assert isinstance(t, torch.Tensor), f"{type(t)}"
assert t.ndim == 3
d = t.device
mean = torch.tensor(mean, device=d).unsqueeze(-1).unsqueeze(-1)
std = torch.tensor(std, device=d).unsqueeze(-1).unsqueeze(-1)
tensor = std * t + mean
tensor *= max_pixel_value
return tensor
def prepare_image_mask(batch, device, non_blocking):
x, y = batch["image"], batch["mask"]
x = convert_tensor(x, device, non_blocking=non_blocking)
y = convert_tensor(y, device, non_blocking=non_blocking).long()
return x, y
|
import os
from functools import partial
from pathlib import Path
import fire
import torch
try:
from torch.cuda.amp import autocast, GradScaler
except ImportError:
raise RuntimeError("Please, use recent PyTorch version, e.g. >=1.6.0")
import dataflow as data
import utils
import vis
from py_config_runner import ConfigObject, get_params, InferenceConfigSchema, TrainvalConfigSchema
import ignite.distributed as idist
from ignite.contrib.engines import common
from ignite.engine import Engine, Events
from ignite.handlers import Checkpoint
from ignite.metrics import ConfusionMatrix, IoU, mIoU
from ignite.utils import manual_seed, setup_logger
def download_datasets(output_path):
"""Helper tool to download datasets
Args:
output_path (str): path where to download and unzip the dataset
"""
from torchvision.datasets.sbd import SBDataset
from torchvision.datasets.voc import VOCSegmentation
output_path = Path(output_path)
output_path.mkdir(parents=True, exist_ok=True)
print("Download Pascal VOC 2012 - Training")
VOCSegmentation(output_path.as_posix(), image_set="train", download=True)
print("Download Pascal VOC 2012 - Validation")
VOCSegmentation(output_path.as_posix(), image_set="val", download=True)
print("Download SBD - Training without Pascal VOC validation part")
sbd_path = output_path / "SBD"
sbd_path.mkdir(exist_ok=True)
SBDataset(sbd_path.as_posix(), image_set="train_noval", mode="segmentation", download=True)
print("Done")
print(f"Pascal VOC 2012 is at : {(output_path / 'VOCdevkit').as_posix()}")
print(f"SBD is at : {sbd_path.as_posix()}")
def training(local_rank, config, logger, with_clearml):
rank = idist.get_rank()
manual_seed(config.seed + local_rank)
train_loader = config.train_loader
val_loader = config.val_loader
train_eval_loader = config.train_eval_loader
model, optimizer, criterion = utils.initialize(config)
# Setup trainer for this specific task
trainer = create_trainer(model, optimizer, criterion, train_loader.sampler, config, logger, with_clearml)
# Setup evaluators
num_classes = config.num_classes
cm_metric = ConfusionMatrix(num_classes=num_classes)
val_metrics = {
"IoU": IoU(cm_metric),
"mIoU_bg": mIoU(cm_metric),
}
if ("val_metrics" in config) and isinstance(config.val_metrics, dict):
val_metrics.update(config.val_metrics)
evaluator = create_evaluator(model, val_metrics, config, with_clearml, tag="val")
train_evaluator = create_evaluator(model, val_metrics, config, with_clearml, tag="train")
val_interval = config.get("val_interval", 1)
# Run validation on every val_interval epoch, in the end of the training
# and in the begining if config.start_by_validation is True
event = Events.EPOCH_COMPLETED(every=val_interval)
if config.num_epochs % val_interval != 0:
event |= Events.COMPLETED
if config.get("start_by_validation", False):
event |= Events.STARTED
@trainer.on(event)
def run_validation():
epoch = trainer.state.epoch
state = train_evaluator.run(train_eval_loader)
utils.log_metrics(logger, epoch, state.times["COMPLETED"], "Train", state.metrics)
state = evaluator.run(val_loader)
utils.log_metrics(logger, epoch, state.times["COMPLETED"], "Test", state.metrics)
score_metric_name = "mIoU_bg"
if "es_patience" in config:
common.add_early_stopping_by_val_score(config.es_patience, evaluator, trainer, metric_name=score_metric_name)
# Store 2 best models by validation accuracy:
common.gen_save_best_models_by_val_score(
save_handler=utils.get_save_handler(config.output_path.as_posix(), with_clearml),
evaluator=evaluator,
models=model,
metric_name=score_metric_name,
n_saved=2,
trainer=trainer,
tag="val",
)
# Setup Tensorboard logger
if rank == 0:
tb_logger = common.setup_tb_logging(
config.output_path.as_posix(),
trainer,
optimizer,
evaluators={"training": train_evaluator, "validation": evaluator},
)
# Log validation predictions as images
# We define a custom event filter to log less frequently the images (to reduce storage size)
# - we plot images with masks of the middle validation batch
# - once every 3 validations and
# - at the end of the training
def custom_event_filter(_, val_iteration):
c1 = val_iteration == len(val_loader) // 2
c2 = trainer.state.epoch % (config.get("val_interval", 1) * 3) == 0
c2 |= trainer.state.epoch == config.num_epochs
return c1 and c2
# Image denormalization function to plot predictions with images
mean = config.get("mean", (0.485, 0.456, 0.406))
std = config.get("std", (0.229, 0.224, 0.225))
img_denormalize = partial(data.denormalize, mean=mean, std=std)
tb_logger.attach(
evaluator,
log_handler=vis.predictions_gt_images_handler(
img_denormalize_fn=img_denormalize, n_images=8, another_engine=trainer, prefix_tag="validation"
),
event_name=Events.ITERATION_COMPLETED(event_filter=custom_event_filter),
)
# Log confusion matrix to ClearML:
if with_clearml:
trainer.add_event_handler(Events.COMPLETED, compute_and_log_cm, cm_metric, trainer.state.iteration)
trainer.run(train_loader, max_epochs=config.num_epochs)
if idist.get_rank() == 0:
tb_logger.close()
def compute_and_log_cm(cm_metric, iteration):
cm = cm_metric.compute()
# CM: values are normalized such that diagonal values represent class recalls
cm = ConfusionMatrix.normalize(cm, "recall").cpu().numpy()
if idist.get_rank() == 0:
from clearml import Task
clearml_logger = Task.current_task().get_logger()
try:
clearml_logger.report_confusion_matrix(
title="Final Confusion Matrix",
matrix=cm,
iteration=iteration,
xlabels=data.VOCSegmentationOpencv.target_names,
ylabels=data.VOCSegmentationOpencv.target_names,
extra_layout=None,
)
except NameError:
# Temporary clearml bug work-around:
# https://github.com/allegroai/clearml/pull/936
pass
def create_trainer(model, optimizer, criterion, train_sampler, config, logger, with_clearml):
device = config.device
prepare_batch = data.prepare_image_mask
# Setup trainer
accumulation_steps = config.get("accumulation_steps", 1)
model_output_transform = config.get("model_output_transform", lambda x: x)
with_amp = config.get("with_amp", True)
scaler = GradScaler(enabled=with_amp)
def forward_pass(batch):
model.train()
x, y = prepare_batch(batch, device=device, non_blocking=True)
with autocast(enabled=with_amp):
y_pred = model(x)
y_pred = model_output_transform(y_pred)
loss = criterion(y_pred, y) / accumulation_steps
return loss
def amp_backward_pass(engine, loss):
scaler.scale(loss).backward()
if engine.state.iteration % accumulation_steps == 0:
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
def hvd_amp_backward_pass(engine, loss):
scaler.scale(loss).backward()
optimizer.synchronize()
with optimizer.skip_synchronize():
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
if idist.backend() == "horovod" and with_amp:
backward_pass = hvd_amp_backward_pass
else:
backward_pass = amp_backward_pass
def training_step(engine, batch):
loss = forward_pass(batch)
output = {"supervised batch loss": loss.item()}
backward_pass(engine, loss)
return output
trainer = Engine(training_step)
trainer.logger = logger
output_names = [
"supervised batch loss",
]
lr_scheduler = config.lr_scheduler
to_save = {
"model": model,
"optimizer": optimizer,
"lr_scheduler": lr_scheduler,
"trainer": trainer,
"amp": scaler,
}
save_every_iters = config.get("save_every_iters", 1000)
common.setup_common_training_handlers(
trainer,
train_sampler,
to_save=to_save,
save_every_iters=save_every_iters,
save_handler=utils.get_save_handler(config.output_path.as_posix(), with_clearml),
lr_scheduler=lr_scheduler,
output_names=output_names,
with_pbars=not with_clearml,
log_every_iters=1,
)
resume_from = config.get("resume_from", None)
if resume_from is not None:
checkpoint_fp = Path(resume_from)
assert checkpoint_fp.exists(), f"Checkpoint '{checkpoint_fp.as_posix()}' is not found"
logger.info(f"Resume from a checkpoint: {checkpoint_fp.as_posix()}")
checkpoint = torch.load(checkpoint_fp.as_posix(), map_location="cpu")
Checkpoint.load_objects(to_load=to_save, checkpoint=checkpoint)
return trainer
def create_evaluator(model, metrics, config, with_clearml, tag="val"):
model_output_transform = config.get("model_output_transform", lambda x: x)
with_amp = config.get("with_amp", True)
prepare_batch = data.prepare_image_mask
@torch.no_grad()
def evaluate_step(engine, batch):
model.eval()
with autocast(enabled=with_amp):
x, y = prepare_batch(batch, device=config.device, non_blocking=True)
y_pred = model(x)
y_pred = model_output_transform(y_pred)
return y_pred, y
evaluator = Engine(evaluate_step)
for name, metric in metrics.items():
metric.attach(evaluator, name)
if idist.get_rank() == 0 and (not with_clearml):
common.ProgressBar(desc=f"Evaluation ({tag})", persist=False).attach(evaluator)
return evaluator
def setup_experiment_tracking(config, with_clearml, task_type="training"):
from datetime import datetime
assert task_type in ("training", "testing"), task_type
output_path = ""
if idist.get_rank() == 0:
if with_clearml:
from clearml import Task
schema = TrainvalConfigSchema if task_type == "training" else InferenceConfigSchema
task = Task.init("Pascal-VOC12 Training", config.config_filepath.stem, task_type=task_type)
task.connect_configuration(config.config_filepath.as_posix())
task.upload_artifact(config.script_filepath.name, config.script_filepath.as_posix())
task.upload_artifact(config.config_filepath.name, config.config_filepath.as_posix())
task.connect(get_params(config, schema))
output_path = Path(os.environ.get("CLEARML_OUTPUT_PATH", "/tmp"))
output_path = output_path / "clearml" / datetime.now().strftime("%Y%m%d-%H%M%S")
else:
import shutil
output_path = Path(os.environ.get("OUTPUT_PATH", "/tmp/output-pascal-voc12"))
output_path = output_path / task_type / config.config_filepath.stem
output_path = output_path / datetime.now().strftime("%Y%m%d-%H%M%S")
output_path.mkdir(parents=True, exist_ok=True)
shutil.copyfile(config.script_filepath.as_posix(), output_path / config.script_filepath.name)
shutil.copyfile(config.config_filepath.as_posix(), output_path / config.config_filepath.name)
output_path = output_path.as_posix()
return Path(idist.broadcast(output_path, src=0))
def run_training(config_filepath, backend="nccl", with_clearml=True):
"""Main entry to run training experiment
Args:
config_filepath (str): training configuration .py file
backend (str): distributed backend: nccl, gloo, horovod or None to run without distributed config
with_clearml (bool): if True, uses ClearML as experiment tracking system
"""
assert torch.cuda.is_available(), torch.cuda.is_available()
assert torch.backends.cudnn.enabled
torch.backends.cudnn.benchmark = True
config_filepath = Path(config_filepath)
assert config_filepath.exists(), f"File '{config_filepath.as_posix()}' is not found"
with idist.Parallel(backend=backend) as parallel:
logger = setup_logger(name="Pascal-VOC12 Training", distributed_rank=idist.get_rank())
config = ConfigObject(config_filepath)
TrainvalConfigSchema.validate(config)
config.script_filepath = Path(__file__)
output_path = setup_experiment_tracking(config, with_clearml=with_clearml)
config.output_path = output_path
utils.log_basic_info(logger, get_params(config, TrainvalConfigSchema))
try:
parallel.run(training, config, logger=logger, with_clearml=with_clearml)
except KeyboardInterrupt:
logger.info("Catched KeyboardInterrupt -> exit")
except Exception as e: # noqa
logger.exception("")
raise e
def get_model_weights(config, logger, with_clearml):
path = ""
if with_clearml:
from clearml import Model
if idist.get_rank() > 0:
idist.barrier()
else:
model_id = config.weights_path
logger.info(f"Loading trained model: {model_id}")
model = Model(model_id)
assert model is not None, f"{model_id}"
path = model.get_local_copy()
idist.barrier()
path = idist.broadcast(path, src=0)
else:
path = config.weights_path
logger.info(f"Loading {path}")
assert Path(path).exists(), f"{path} is not found"
return torch.load(path)
def evaluation(local_rank, config, logger, with_clearml):
rank = idist.get_rank()
device = idist.device()
manual_seed(config.seed + local_rank)
data_loader = config.data_loader
model = config.model.to(device)
# Load weights:
state_dict = get_model_weights(config, logger, with_clearml)
model.load_state_dict(state_dict)
# Adapt model to dist config
model = idist.auto_model(model)
# Setup evaluators
num_classes = config.num_classes
cm_metric = ConfusionMatrix(num_classes=num_classes)
val_metrics = {
"IoU": IoU(cm_metric),
"mIoU_bg": mIoU(cm_metric),
}
if ("val_metrics" in config) and isinstance(config.val_metrics, dict):
val_metrics.update(config.val_metrics)
evaluator = create_evaluator(model, val_metrics, config, with_clearml, tag="val")
# Setup Tensorboard logger
if rank == 0:
tb_logger = common.TensorboardLogger(log_dir=config.output_path.as_posix())
tb_logger.attach_output_handler(evaluator, event_name=Events.COMPLETED, tag="validation", metric_names="all")
# Log confusion matrix to ClearML:
if with_clearml:
evaluator.add_event_handler(Events.COMPLETED, compute_and_log_cm, cm_metric, evaluator.state.iteration)
state = evaluator.run(data_loader)
utils.log_metrics(logger, 0, state.times["COMPLETED"], "Validation", state.metrics)
if idist.get_rank() == 0:
tb_logger.close()
def run_evaluation(config_filepath, backend="nccl", with_clearml=True):
"""Main entry to run model's evaluation:
- compute validation metrics
Args:
config_filepath (str): evaluation configuration .py file
backend (str): distributed backend: nccl, gloo, horovod or None to run without distributed config
with_clearml (bool): if True, uses ClearML as experiment tracking system
"""
assert torch.cuda.is_available(), torch.cuda.is_available()
assert torch.backends.cudnn.enabled
torch.backends.cudnn.benchmark = True
config_filepath = Path(config_filepath)
assert config_filepath.exists(), f"File '{config_filepath.as_posix()}' is not found"
with idist.Parallel(backend=backend) as parallel:
logger = setup_logger(name="Pascal-VOC12 Evaluation", distributed_rank=idist.get_rank())
config = ConfigObject(config_filepath)
InferenceConfigSchema.validate(config)
config.script_filepath = Path(__file__)
output_path = setup_experiment_tracking(config, with_clearml=with_clearml, task_type="testing")
config.output_path = output_path
utils.log_basic_info(logger, get_params(config, InferenceConfigSchema))
try:
parallel.run(evaluation, config, logger=logger, with_clearml=with_clearml)
except KeyboardInterrupt:
logger.info("Catched KeyboardInterrupt -> exit")
except Exception as e: # noqa
logger.exception("")
raise e
if __name__ == "__main__":
fire.Fire({"download": download_datasets, "training": run_training, "eval": run_evaluation})
|
# Basic training configuration
import os
from functools import partial
import albumentations as A
import cv2
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lrs
from albumentations.pytorch import ToTensorV2 as ToTensor
from dataflow import get_train_val_loaders, ignore_mask_boundaries
from torchvision.models.segmentation import deeplabv3_resnet101
# ##############################
# Global configs
# ##############################
seed = 21
device = "cuda"
debug = False
# Use AMP with torch native
with_amp = True
num_classes = 21
batch_size = 18 # total batch size
val_batch_size = batch_size * 2
num_workers = 12 # total num workers per node
val_interval = 3
# grads accumulation:
accumulation_steps = 4
val_img_size = 513
train_img_size = 480
# ##############################
# Setup Dataflow
# ##############################
assert "DATASET_PATH" in os.environ
data_path = os.environ["DATASET_PATH"]
assert "SBD_DATASET_PATH" in os.environ
sbd_data_path = os.environ["SBD_DATASET_PATH"]
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
train_transforms = A.Compose(
[
A.RandomScale(scale_limit=(0.0, 1.5), interpolation=cv2.INTER_LINEAR, p=1.0),
A.PadIfNeeded(val_img_size, val_img_size, border_mode=cv2.BORDER_CONSTANT),
A.RandomCrop(train_img_size, train_img_size),
A.HorizontalFlip(),
A.Blur(blur_limit=3),
A.Normalize(mean=mean, std=std),
ignore_mask_boundaries,
ToTensor(),
]
)
val_transforms = A.Compose(
[
A.PadIfNeeded(val_img_size, val_img_size, border_mode=cv2.BORDER_CONSTANT),
A.Normalize(mean=mean, std=std),
ignore_mask_boundaries,
ToTensor(),
]
)
train_loader, val_loader, train_eval_loader = get_train_val_loaders(
root_path=data_path,
train_transforms=train_transforms,
val_transforms=val_transforms,
batch_size=batch_size,
num_workers=num_workers,
val_batch_size=val_batch_size,
sbd_path=sbd_data_path,
limit_train_num_samples=100 if debug else None,
limit_val_num_samples=100 if debug else None,
)
# ##############################
# Setup model
# ##############################
num_classes = 21
model = deeplabv3_resnet101(num_classes=num_classes)
def model_output_transform(output):
return output["out"]
# ##############################
# Setup solver
# ##############################
save_every_iters = len(train_loader)
num_epochs = 100
criterion = nn.CrossEntropyLoss()
lr = 0.007
weight_decay = 5e-4
momentum = 0.9
nesterov = False
optimizer = optim.SGD(
[{"params": model.backbone.parameters()}, {"params": model.classifier.parameters()}],
lr=1.0,
momentum=momentum,
weight_decay=weight_decay,
nesterov=nesterov,
)
le = len(train_loader)
def lambda_lr_scheduler(iteration, lr0, n, a):
return lr0 * pow((1.0 - 1.0 * iteration / n), a)
lr_scheduler = lrs.LambdaLR(
optimizer,
lr_lambda=[
partial(lambda_lr_scheduler, lr0=lr, n=num_epochs * le, a=0.9),
partial(lambda_lr_scheduler, lr0=lr * 10.0, n=num_epochs * le, a=0.9),
],
)
|
# Basic training configuration
import os
from functools import partial
import albumentations as A
import cv2
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lrs
from albumentations.pytorch import ToTensorV2 as ToTensor
from dataflow import get_train_val_loaders, ignore_mask_boundaries
from torchvision.models.segmentation import deeplabv3_resnet101
# ##############################
# Global configs
# ##############################
seed = 21
device = "cuda"
debug = False
# Use AMP with torch native
with_amp = True
num_classes = 21
batch_size = 18 # total batch size
val_batch_size = batch_size * 2
num_workers = 12 # total num workers per node
val_interval = 3
# grads accumulation:
accumulation_steps = 4
val_img_size = 513
train_img_size = 480
# ##############################
# Setup Dataflow
# ##############################
assert "DATASET_PATH" in os.environ
data_path = os.environ["DATASET_PATH"]
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
train_transforms = A.Compose(
[
A.RandomScale(scale_limit=(0.0, 1.5), interpolation=cv2.INTER_LINEAR, p=1.0),
A.PadIfNeeded(val_img_size, val_img_size, border_mode=cv2.BORDER_CONSTANT),
A.RandomCrop(train_img_size, train_img_size),
A.HorizontalFlip(),
A.Blur(blur_limit=3),
A.Normalize(mean=mean, std=std),
ignore_mask_boundaries,
ToTensor(),
]
)
val_transforms = A.Compose(
[
A.PadIfNeeded(val_img_size, val_img_size, border_mode=cv2.BORDER_CONSTANT),
A.Normalize(mean=mean, std=std),
ignore_mask_boundaries,
ToTensor(),
]
)
train_loader, val_loader, train_eval_loader = get_train_val_loaders(
root_path=data_path,
train_transforms=train_transforms,
val_transforms=val_transforms,
batch_size=batch_size,
num_workers=num_workers,
val_batch_size=val_batch_size,
limit_train_num_samples=100 if debug else None,
limit_val_num_samples=100 if debug else None,
)
# ##############################
# Setup model
# ##############################
num_classes = 21
model = deeplabv3_resnet101(num_classes=num_classes)
def model_output_transform(output):
return output["out"]
# ##############################
# Setup solver
# ##############################
save_every_iters = len(train_loader)
num_epochs = 100
criterion = nn.CrossEntropyLoss()
lr = 0.007
weight_decay = 5e-4
momentum = 0.9
nesterov = False
optimizer = optim.SGD(
[{"params": model.backbone.parameters()}, {"params": model.classifier.parameters()}],
lr=1.0,
momentum=momentum,
weight_decay=weight_decay,
nesterov=nesterov,
)
le = len(train_loader)
def lambda_lr_scheduler(iteration, lr0, n, a):
return lr0 * pow((1.0 - 1.0 * iteration / n), a)
lr_scheduler = lrs.LambdaLR(
optimizer,
lr_lambda=[
partial(lambda_lr_scheduler, lr0=lr, n=num_epochs * le, a=0.9),
partial(lambda_lr_scheduler, lr0=lr * 10.0, n=num_epochs * le, a=0.9),
],
)
|
# Basic training configuration
import os
import albumentations as A
import cv2
from albumentations.pytorch import ToTensorV2 as ToTensor
from dataflow import get_inference_dataloader, ignore_mask_boundaries
from torchvision.models.segmentation import deeplabv3_resnet101
# ##############################
# Global configs
# ##############################
seed = 21
device = "cuda"
debug = False
# Use AMP with torch native
with_amp = True
num_classes = 21
batch_size = 9 # total batch size
num_workers = 8 # total num workers per node
val_img_size = 513
# ##############################
# Setup Dataflow
# ##############################
assert "DATASET_PATH" in os.environ
data_path = os.environ["DATASET_PATH"]
assert "SBD_DATASET_PATH" in os.environ
sbd_data_path = os.environ["SBD_DATASET_PATH"]
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
val_transforms = A.Compose(
[
A.PadIfNeeded(val_img_size, val_img_size, border_mode=cv2.BORDER_CONSTANT),
A.Normalize(mean=mean, std=std),
ignore_mask_boundaries,
ToTensor(),
]
)
data_loader = get_inference_dataloader(
root_path=data_path,
mode="test",
transforms=val_transforms,
batch_size=batch_size,
num_workers=num_workers,
limit_num_samples=batch_size * 5 if debug else None,
)
# ##############################
# Setup model
# ##############################
num_classes = 21
model = deeplabv3_resnet101(num_classes=num_classes)
def model_output_transform(output):
return output["out"]
# baseline_dplv3_resnet101_sbd: best_model_78_val_miou_bg=0.6871.pt
weights_path = "d8b4687d86cf445a944853fdd6a6b999"
# or can specify a path
# weights_path = "/path/to/best_model.pt"
|
import argparse
from collections import deque, namedtuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
from ignite.engine import Engine, Events
try:
import gymnasium as gym
except ImportError:
raise ModuleNotFoundError("Please install opengym: pip install gymnasium")
SavedAction = namedtuple("SavedAction", ["log_prob", "value"])
eps = np.finfo(np.float32).eps.item()
class Policy(nn.Module):
"""
implements both actor and critic in one model
"""
def __init__(self):
super(Policy, self).__init__()
self.affine1 = nn.Linear(4, 128)
# actor's layer
self.action_head = nn.Linear(128, 2)
# critic's layer
self.value_head = nn.Linear(128, 1)
# action & reward buffer
self.saved_actions = []
self.rewards = []
def forward(self, x):
"""
forward of both actor and critic
"""
x = F.relu(self.affine1(x))
# actor: choses action to take from state s_t
# by returning probability of each action
action_prob = F.softmax(self.action_head(x), dim=-1)
# critic: evaluates being in the state s_t
state_values = self.value_head(x)
# return values for both actor and critic as a tuple of 2 values:
# 1. a list with the probability of each action over the action space
# 2. the value from state s_t
return action_prob, state_values
def select_action(policy, observation):
observation = torch.from_numpy(observation).float()
probs, observation_value = policy(observation)
# create a categorical distribution over the list of probabilities of actions
m = Categorical(probs)
# and sample an action using the distribution
action = m.sample()
# save to action buffer
policy.saved_actions.append(SavedAction(m.log_prob(action), observation_value))
# the action to take (left or right)
return action.item()
def finish_episode(policy, optimizer, gamma):
"""
Training code. Calculates actor and critic loss and performs backprop.
"""
R = 0
saved_actions = policy.saved_actions
policy_losses = [] # list to save actor (policy) loss
value_losses = [] # list to save critic (value) loss
returns = deque() # list to save the true values
# calculate the true value using rewards returned from the environment
for r in policy.rewards[::-1]:
# calculate the discounted value
R = r + gamma * R
returns.appendleft(R)
returns = torch.tensor(returns)
returns = (returns - returns.mean()) / (returns.std() + eps)
for (log_prob, value), R in zip(saved_actions, returns):
advantage = R - value.item()
# calculate actor (policy) loss
policy_losses.append(-log_prob * advantage)
# calculate critic (value) loss using L1 smooth loss
value_losses.append(F.smooth_l1_loss(value, torch.tensor([R])))
# reset gradients
optimizer.zero_grad()
# sum up all the values of policy_losses and value_losses
loss = torch.stack(policy_losses).sum() + torch.stack(value_losses).sum()
# perform backprop
loss.backward()
optimizer.step()
# reset rewards and action buffer
del policy.rewards[:]
del policy.saved_actions[:]
EPISODE_STARTED = Events.EPOCH_STARTED
EPISODE_COMPLETED = Events.EPOCH_COMPLETED
def main(env, args):
policy = Policy()
optimizer = optim.Adam(policy.parameters(), lr=3e-2)
timesteps = range(10000)
def run_single_timestep(engine, timestep):
observation = engine.state.observation
# select action from policy
action = select_action(policy, observation)
# take the action
engine.state.observation, reward, done, _, _ = env.step(action)
if args.render:
env.render()
policy.rewards.append(reward)
engine.state.ep_reward += reward
if done:
engine.terminate_epoch()
engine.state.timestep = timestep
trainer = Engine(run_single_timestep)
trainer.state.running_reward = 10
@trainer.on(EPISODE_STARTED)
def reset_environment_state():
# reset environment and episode reward
torch.manual_seed(args.seed + trainer.state.epoch)
trainer.state.observation, _ = env.reset(seed=args.seed + trainer.state.epoch)
trainer.state.ep_reward = 0
@trainer.on(EPISODE_COMPLETED)
def update_model():
# update cumulative reward
t = trainer.state.timestep
trainer.state.running_reward = 0.05 * trainer.state.ep_reward + (1 - 0.05) * trainer.state.running_reward
# perform backprop
finish_episode(policy, optimizer, args.gamma)
@trainer.on(EPISODE_COMPLETED(every=args.log_interval))
def log_episode():
i_episode = trainer.state.epoch
print(
f"Episode {i_episode}\tLast reward: {trainer.state.ep_reward:.2f}"
f"\tAverage reward: {trainer.state.running_reward:.2f}"
)
@trainer.on(EPISODE_COMPLETED)
def should_finish_training():
# check if we have "solved" the cart pole problem
running_reward = trainer.state.running_reward
if running_reward > env.spec.reward_threshold:
print(
f"Solved! Running reward is now {running_reward} and "
f"the last episode runs to {trainer.state.timestep} time steps!"
)
trainer.should_terminate = True
trainer.run(timesteps, max_epochs=args.max_episodes)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Ignite actor-critic example")
parser.add_argument("--gamma", type=float, default=0.99, metavar="G", help="discount factor (default: 0.99)")
parser.add_argument("--seed", type=int, default=543, metavar="N", help="random seed (default: 1)")
parser.add_argument("--render", action="store_true", help="render the environment")
parser.add_argument(
"--log-interval", type=int, default=10, metavar="N", help="interval between training status logs (default: 10)"
)
parser.add_argument(
"--max-episodes",
type=int,
default=1000000,
metavar="N",
help="Number of episodes for the training (default: 1000000)",
)
args = parser.parse_args()
env = gym.make("CartPole-v1")
main(env, args)
|
import argparse
from collections import deque
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
from ignite.engine import Engine, Events
try:
import gymnasium as gym
except ImportError:
raise ModuleNotFoundError("Please install opengym: pip install gymnasium")
eps = np.finfo(np.float32).eps.item()
class Policy(nn.Module):
def __init__(self):
super(Policy, self).__init__()
self.affine1 = nn.Linear(4, 128)
self.dropout = nn.Dropout(p=0.6)
self.affine2 = nn.Linear(128, 2)
self.saved_log_probs = []
self.rewards = []
def forward(self, x):
x = self.affine1(x)
x = self.dropout(x)
x = F.relu(x)
action_scores = self.affine2(x)
return F.softmax(action_scores, dim=1)
def select_action(policy, observation):
state = torch.from_numpy(observation).float().unsqueeze(0)
probs = policy(state)
m = Categorical(probs)
action = m.sample()
policy.saved_log_probs.append(m.log_prob(action))
return action.item()
def finish_episode(policy, optimizer, gamma):
R = 0
policy_loss = []
returns = deque()
for r in policy.rewards[::-1]:
R = r + gamma * R
returns.appendleft(R)
returns = torch.tensor(returns)
returns = (returns - returns.mean()) / (returns.std() + eps)
for log_prob, R in zip(policy.saved_log_probs, returns):
policy_loss.append(-log_prob * R)
optimizer.zero_grad()
policy_loss = torch.cat(policy_loss).sum()
policy_loss.backward()
optimizer.step()
del policy.rewards[:]
del policy.saved_log_probs[:]
EPISODE_STARTED = Events.EPOCH_STARTED
EPISODE_COMPLETED = Events.EPOCH_COMPLETED
def main(env, args):
policy = Policy()
optimizer = optim.Adam(policy.parameters(), lr=1e-2)
timesteps = range(10000)
def run_single_timestep(engine, timestep):
observation = engine.state.observation
action = select_action(policy, observation)
engine.state.observation, reward, done, _, _ = env.step(action)
if args.render:
env.render()
policy.rewards.append(reward)
engine.state.ep_reward += reward
if done:
engine.terminate_epoch()
engine.state.timestep = timestep
trainer = Engine(run_single_timestep)
trainer.state.running_reward = 10
@trainer.on(EPISODE_STARTED)
def reset_environment_state():
torch.manual_seed(args.seed + trainer.state.epoch)
trainer.state.observation, _ = env.reset(seed=args.seed + trainer.state.epoch)
trainer.state.ep_reward = 0
@trainer.on(EPISODE_COMPLETED)
def update_model():
trainer.state.running_reward = 0.05 * trainer.state.ep_reward + (1 - 0.05) * trainer.state.running_reward
finish_episode(policy, optimizer, args.gamma)
@trainer.on(EPISODE_COMPLETED(every=args.log_interval))
def log_episode():
i_episode = trainer.state.epoch
print(
f"Episode {i_episode}\tLast reward: {trainer.state.ep_reward:.2f}"
f"\tAverage length: {trainer.state.running_reward:.2f}"
)
@trainer.on(EPISODE_COMPLETED)
def should_finish_training():
running_reward = trainer.state.running_reward
if running_reward > env.spec.reward_threshold:
print(
f"Solved! Running reward is now {running_reward} and "
f"the last episode runs to {trainer.state.timestep} time steps!"
)
trainer.should_terminate = True
trainer.run(timesteps, max_epochs=args.max_episodes)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="PyTorch REINFORCE example")
parser.add_argument("--gamma", type=float, default=0.99, metavar="G", help="discount factor (default: 0.99)")
parser.add_argument("--seed", type=int, default=543, metavar="N", help="random seed (default: 543)")
parser.add_argument("--render", action="store_true", help="render the environment")
parser.add_argument(
"--log-interval", type=int, default=10, metavar="N", help="interval between training status logs (default: 10)"
)
parser.add_argument(
"--max-episodes",
type=int,
default=1000000,
metavar="N",
help="Number of episodes for the training (default: 1000000)",
)
args = parser.parse_args()
env = gym.make("CartPole-v1")
main(env, args)
|
import torch
class TransformerNet(torch.nn.Module):
def __init__(self):
super(TransformerNet, self).__init__()
# Initial convolution layers
self.conv1 = ConvLayer(3, 32, kernel_size=9, stride=1)
self.in1 = torch.nn.InstanceNorm2d(32, affine=True)
self.conv2 = ConvLayer(32, 64, kernel_size=3, stride=2)
self.in2 = torch.nn.InstanceNorm2d(64, affine=True)
self.conv3 = ConvLayer(64, 128, kernel_size=3, stride=2)
self.in3 = torch.nn.InstanceNorm2d(128, affine=True)
# Residual layers
self.res1 = ResidualBlock(128)
self.res2 = ResidualBlock(128)
self.res3 = ResidualBlock(128)
self.res4 = ResidualBlock(128)
self.res5 = ResidualBlock(128)
# Upsampling Layers
self.deconv1 = UpsampleConvLayer(128, 64, kernel_size=3, stride=1, upsample=2)
self.in4 = torch.nn.InstanceNorm2d(64, affine=True)
self.deconv2 = UpsampleConvLayer(64, 32, kernel_size=3, stride=1, upsample=2)
self.in5 = torch.nn.InstanceNorm2d(32, affine=True)
self.deconv3 = ConvLayer(32, 3, kernel_size=9, stride=1)
# Non-linearities
self.relu = torch.nn.ReLU()
def forward(self, X):
y = self.relu(self.in1(self.conv1(X)))
y = self.relu(self.in2(self.conv2(y)))
y = self.relu(self.in3(self.conv3(y)))
y = self.res1(y)
y = self.res2(y)
y = self.res3(y)
y = self.res4(y)
y = self.res5(y)
y = self.relu(self.in4(self.deconv1(y)))
y = self.relu(self.in5(self.deconv2(y)))
y = self.deconv3(y)
return y
class ConvLayer(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super(ConvLayer, self).__init__()
reflection_padding = kernel_size // 2
self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride)
def forward(self, x):
out = self.reflection_pad(x)
out = self.conv2d(out)
return out
class ResidualBlock(torch.nn.Module):
"""ResidualBlock
introduced in: https://arxiv.org/abs/1512.03385
recommended architecture: http://torch.ch/blog/2016/02/04/resnets.html
"""
def __init__(self, channels):
super(ResidualBlock, self).__init__()
self.conv1 = ConvLayer(channels, channels, kernel_size=3, stride=1)
self.in1 = torch.nn.InstanceNorm2d(channels, affine=True)
self.conv2 = ConvLayer(channels, channels, kernel_size=3, stride=1)
self.in2 = torch.nn.InstanceNorm2d(channels, affine=True)
self.relu = torch.nn.ReLU()
def forward(self, x):
residual = x
out = self.relu(self.in1(self.conv1(x)))
out = self.in2(self.conv2(out))
out = out + residual
return out
class UpsampleConvLayer(torch.nn.Module):
"""UpsampleConvLayer
Upsamples the input and then does a convolution. This method gives better results
compared to ConvTranspose2d.
ref: http://distill.pub/2016/deconv-checkerboard/
"""
def __init__(self, in_channels, out_channels, kernel_size, stride, upsample=None):
super(UpsampleConvLayer, self).__init__()
self.upsample = upsample
reflection_padding = kernel_size // 2
self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride)
def forward(self, x):
x_in = x
if self.upsample:
x_in = torch.nn.functional.interpolate(x_in, mode="nearest", scale_factor=self.upsample)
out = self.reflection_pad(x_in)
out = self.conv2d(out)
return out
|
from collections import namedtuple
import torch
from torchvision import models
from torchvision.models.vgg import VGG16_Weights
class Vgg16(torch.nn.Module):
def __init__(self, requires_grad=False):
super(Vgg16, self).__init__()
vgg_pretrained_features = models.vgg16(weights=VGG16_Weights.IMAGENET1K_V1).features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
for x in range(4):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(4, 9):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(9, 16):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(16, 23):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
h = self.slice1(X)
h_relu1_2 = h
h = self.slice2(h)
h_relu2_2 = h
h = self.slice3(h)
h_relu3_3 = h
h = self.slice4(h)
h_relu4_3 = h
vgg_outputs = namedtuple("VggOutputs", ["relu1_2", "relu2_2", "relu3_3", "relu4_3"])
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3)
return out
|
import sys
class Progbar(object):
def __init__(self, loader, metrics):
self.num_iterations = len(loader)
self.output_stream = sys.stdout
self.metrics = metrics
self.alpha = 0.98
def _calc_running_avg(self, engine):
for k, v in engine.state.output.items():
old_v = self.metrics.get(k, v)
new_v = self.alpha * old_v + (1 - self.alpha) * v
self.metrics[k] = new_v
def __call__(self, engine):
self._calc_running_avg(engine)
num_seen = engine.state.iteration - self.num_iterations * (engine.state.epoch - 1)
percent_seen = 100 * float(num_seen) / self.num_iterations
equal_to = int(percent_seen / 10)
done = int(percent_seen) == 100
bar = "[" + "=" * equal_to + ">" * (not done) + " " * (10 - equal_to) + "]"
message = f"Epoch {engine.state.epoch} | {percent_seen:.2f}% | {bar}"
for key, value in self.metrics.items():
message += f" | {key}: {value:.2e}"
message += "\r"
self.output_stream.write(message)
self.output_stream.flush()
if done:
self.output_stream.write("\n")
|
# coding: utf-8
import argparse
import random
from collections import OrderedDict
from pathlib import Path
import numpy as np
import torch
import utils
from handlers import Progbar
from torch.optim import Adam
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from transformer_net import TransformerNet
from vgg import Vgg16
from ignite.engine import Engine, Events
from ignite.handlers import ModelCheckpoint
def check_paths(args):
try:
if args.checkpoint_model_dir is not None and not (Path(args.checkpoint_model_dir).exists()):
Path(args.checkpoint_model_dir).mkdir(parents=True)
except OSError as e:
raise OSError(e)
def check_manual_seed(args):
seed = args.seed or random.randint(1, 10000)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def check_dataset(args):
transform = transforms.Compose(
[
transforms.Resize(args.image_size),
transforms.CenterCrop(args.image_size),
transforms.ToTensor(),
transforms.Lambda(lambda x: x.mul(255)),
]
)
if args.dataset in {"folder", "mscoco"}:
train_dataset = datasets.ImageFolder(args.dataroot, transform)
elif args.dataset == "test":
train_dataset = datasets.FakeData(
size=args.batch_size, image_size=(3, 32, 32), num_classes=1, transform=transform
)
else:
raise RuntimeError(f"Invalid dataset name: {args.dataset}")
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=0)
return train_loader
def train(args):
device = torch.device("cuda" if args.cuda else "cpu")
train_loader = check_dataset(args)
transformer = TransformerNet().to(device)
optimizer = Adam(transformer.parameters(), args.lr)
mse_loss = torch.nn.MSELoss()
vgg = Vgg16(requires_grad=False).to(device)
style_transform = transforms.Compose([transforms.ToTensor(), transforms.Lambda(lambda x: x.mul(255))])
style = utils.load_image(args.style_image, size=args.style_size)
style = style_transform(style)
style = style.repeat(args.batch_size, 1, 1, 1).to(device)
features_style = vgg(utils.normalize_batch(style))
gram_style = [utils.gram_matrix(y) for y in features_style]
running_avgs = OrderedDict()
def step(engine, batch):
x, _ = batch
x = x.to(device)
n_batch = len(x)
optimizer.zero_grad()
y = transformer(x)
x = utils.normalize_batch(x)
y = utils.normalize_batch(y)
features_x = vgg(x)
features_y = vgg(y)
content_loss = args.content_weight * mse_loss(features_y.relu2_2, features_x.relu2_2)
style_loss = 0.0
for ft_y, gm_s in zip(features_y, gram_style):
gm_y = utils.gram_matrix(ft_y)
style_loss += mse_loss(gm_y, gm_s[:n_batch, :, :])
style_loss *= args.style_weight
total_loss = content_loss + style_loss
total_loss.backward()
optimizer.step()
return {"content_loss": content_loss.item(), "style_loss": style_loss.item(), "total_loss": total_loss.item()}
trainer = Engine(step)
checkpoint_handler = ModelCheckpoint(
args.checkpoint_model_dir, "checkpoint", n_saved=10, require_empty=False, create_dir=True
)
progress_bar = Progbar(loader=train_loader, metrics=running_avgs)
trainer.add_event_handler(
event_name=Events.EPOCH_COMPLETED(every=args.checkpoint_interval),
handler=checkpoint_handler,
to_save={"net": transformer},
)
trainer.add_event_handler(event_name=Events.ITERATION_COMPLETED, handler=progress_bar)
trainer.run(train_loader, max_epochs=args.epochs)
def stylize(args):
device = torch.device("cuda" if args.cuda else "cpu")
content_transform = transforms.Compose([transforms.ToTensor(), transforms.Lambda(lambda x: x.mul(255))])
content_image = utils.load_image(args.content_image, scale=args.content_scale)
content_image = content_transform(content_image)
content_image = content_image.unsqueeze(0).to(device)
with torch.no_grad():
style_model = torch.load(args.model)
style_model.to(device)
output = style_model(content_image).cpu()
utils.save_image(args.output_image, output[0])
def main():
main_arg_parser = argparse.ArgumentParser(description="parser for fast-neural-style")
subparsers = main_arg_parser.add_subparsers(title="subcommands", dest="subcommand")
train_arg_parser = subparsers.add_parser("train", help="parser for training arguments")
train_arg_parser.add_argument("--epochs", type=int, default=2, help="number of training epochs, default is 2")
train_arg_parser.add_argument("--batch_size", type=int, default=8, help="batch size for training, default is 8")
train_arg_parser.add_argument(
"--dataset", type=str, required=True, choices={"test", "folder", "mscoco"}, help="type of dataset to be used."
)
train_arg_parser.add_argument(
"--dataroot",
type=str,
required=True,
help="path to training dataset, the path should point to a folder "
"containing another folder with all the training images",
)
train_arg_parser.add_argument("--style_image", type=str, default="test", help="path to style-image")
train_arg_parser.add_argument("--test_image", type=str, default="test", help="path to test-image")
train_arg_parser.add_argument(
"--checkpoint_model_dir",
type=str,
default="/tmp/checkpoints",
help="path to folder where checkpoints of trained models will be saved",
)
train_arg_parser.add_argument(
"--checkpoint_interval",
type=int,
default=1,
help="number of batches after which a checkpoint of trained model will be created",
)
train_arg_parser.add_argument(
"--image_size", type=int, default=256, help="size of training images, default is 256 X 256"
)
train_arg_parser.add_argument(
"--style_size", type=int, default=None, help="size of style-image, default is the original size of style image"
)
train_arg_parser.add_argument("--cuda", type=int, default=1, help="set it to 1 for running on GPU, 0 for CPU")
train_arg_parser.add_argument("--seed", type=int, default=42, help="random seed for training")
train_arg_parser.add_argument(
"--content_weight", type=float, default=1e5, help="weight for content-loss, default is 1e5"
)
train_arg_parser.add_argument(
"--style_weight", type=float, default=1e10, help="weight for style-loss, default is 1e10"
)
train_arg_parser.add_argument("--lr", type=float, default=1e-3, help="learning rate, default is 1e-3")
eval_arg_parser = subparsers.add_parser("eval", help="parser for evaluation/stylizing arguments")
eval_arg_parser.add_argument(
"--content_image", type=str, required=True, help="path to content image you want to stylize"
)
eval_arg_parser.add_argument(
"--content_scale", type=float, default=None, help="factor for scaling down the content image"
)
eval_arg_parser.add_argument("--output_image", type=str, required=True, help="path for saving the output image")
eval_arg_parser.add_argument(
"--model", type=str, required=True, help="saved model to be used for stylizing the image."
)
eval_arg_parser.add_argument("--cuda", type=int, required=True, help="set it to 1 for running on GPU, 0 for CPU")
args = main_arg_parser.parse_args()
if args.subcommand is None:
raise ValueError("ERROR: specify either train or eval")
if args.cuda and not torch.cuda.is_available():
raise ValueError("ERROR: cuda is not available, try running on CPU")
if args.subcommand == "train":
check_manual_seed(args)
check_paths(args)
train(args)
else:
stylize(args)
if __name__ == "__main__":
main()
|
from PIL import Image
def load_image(filename, size=None, scale=None):
img = Image.open(filename)
if size is not None:
img = img.resize((size, size), Image.LANCZOS)
elif scale is not None:
img = img.resize((int(img.size[0] / scale), int(img.size[1] / scale)), Image.LANCZOS)
return img
def save_image(filename, data):
img = data.clone().clamp(0, 255).numpy()
img = img.transpose(1, 2, 0).astype("uint8")
img = Image.fromarray(img)
img.save(filename)
def gram_matrix(y):
(b, ch, h, w) = y.size()
features = y.view(b, ch, w * h)
features_t = features.transpose(1, 2)
gram = features.bmm(features_t) / (ch * h * w)
return gram
def normalize_batch(batch):
# normalize using imagenet mean and std
mean = batch.new_tensor([0.485, 0.456, 0.406]).view(-1, 1, 1)
std = batch.new_tensor([0.229, 0.224, 0.225]).view(-1, 1, 1)
batch = batch.div_(255.0)
return (batch - mean) / std
|
import torch.nn as nn
from transformers import AutoConfig, AutoModelForSequenceClassification
class TransformerModel(nn.Module):
def __init__(self, model_name, model_dir, dropout, n_fc, n_classes):
super(TransformerModel, self).__init__()
self.config = AutoConfig.from_pretrained(
model_name,
num_labels=n_classes,
output_hidden_states=n_fc,
classifier_dropout=dropout,
output_attentions=True,
)
self.transformer = AutoModelForSequenceClassification.from_pretrained(
model_name, cache_dir=model_dir, config=self.config
)
def forward(self, inputs):
output = self.transformer(**inputs)["logits"]
return output
|
import torch
class TransformerDataset(torch.utils.data.Dataset):
def __init__(self, texts, labels, tokenizer, max_length):
self.texts = texts
self.labels = labels
self.tokenizer = tokenizer
self.max_length = max_length
def __getitem__(self, idx):
text = str(self.texts[idx])
text = " ".join(text.split())
inputs = self.tokenizer(
text,
None,
add_special_tokens=True,
max_length=self.max_length,
truncation=True,
padding="max_length",
return_tensors="pt",
)
inputs = {k: v.type(torch.long).squeeze(0) for k, v in inputs.items()}
labels_pt = torch.tensor(self.labels[idx], dtype=torch.float)
return inputs, labels_pt
def __len__(self):
return len(self.labels)
|
import torch
from dataset import TransformerDataset
from datasets import load_dataset
from model import TransformerModel
from transformers import AutoTokenizer
from ignite.handlers import DiskSaver
def get_tokenizer(tokenizer_name, tokenizer_dir):
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, cache_dir=tokenizer_dir, do_lower_case=True)
return tokenizer
def get_model(model_name, model_dir, drop_out, n_fc, num_classes):
model = TransformerModel(model_name, model_dir, drop_out, n_fc, num_classes)
return model
def get_dataset(cache_dir, tokenizer_name, tokenizer_dir, max_length):
train_dataset, test_dataset = load_dataset("imdb", split=["train", "test"], cache_dir=cache_dir)
tokenizer = get_tokenizer(tokenizer_name, tokenizer_dir)
train_texts, train_labels = train_dataset["text"], train_dataset["label"]
test_texts, test_labels = test_dataset["text"], test_dataset["label"]
train_dataset = TransformerDataset(train_texts, train_labels, tokenizer, max_length)
test_dataset = TransformerDataset(test_texts, test_labels, tokenizer, max_length)
return train_dataset, test_dataset
def thresholded_output_transform(output):
y_pred, y = output
return torch.round(torch.sigmoid(y_pred)), y
def get_save_handler(config):
if config["with_clearml"]:
from ignite.contrib.handlers.clearml_logger import ClearMLSaver
return ClearMLSaver(dirname=config["output_dir"])
return DiskSaver(config["output_dir"], require_empty=False)
|
import os
from datetime import datetime
from pathlib import Path
import fire
import torch
import torch.nn as nn
import torch.optim as optim
import utils
from torch.cuda.amp import autocast, GradScaler
import ignite
import ignite.distributed as idist
from ignite.contrib.engines import common
from ignite.contrib.handlers import PiecewiseLinear
from ignite.engine import Engine, Events
from ignite.handlers import Checkpoint, global_step_from_engine
from ignite.metrics import Accuracy, Loss
from ignite.utils import manual_seed, setup_logger
os.environ["TOKENIZERS_PARALLELISM"] = "false" # remove tokenizer paralleism warning
def training(local_rank, config):
rank = idist.get_rank()
manual_seed(config["seed"] + rank)
device = idist.device()
logger = setup_logger(name="IMDB-Training", distributed_rank=local_rank)
log_basic_info(logger, config)
output_path = config["output_dir"]
if rank == 0:
now = datetime.now().strftime("%Y%m%d-%H%M%S")
folder_name = f"{config['model']}_backend-{idist.backend()}-{idist.get_world_size()}_{now}"
output_path = Path(output_path) / folder_name
if not output_path.exists():
output_path.mkdir(parents=True)
config["output_dir"] = output_path.as_posix()
logger.info(f"Output path: {config['output_dir']}")
if "cuda" in device.type:
config["cuda device name"] = torch.cuda.get_device_name(local_rank)
if config["with_clearml"]:
from clearml import Task
task = Task.init("IMDB-Training", task_name=output_path.stem)
task.connect_configuration(config)
# Log hyper parameters
hyper_params = [
"model",
"dropout",
"n_fc",
"batch_size",
"max_length",
"weight_decay",
"num_epochs",
"learning_rate",
"num_warmup_epochs",
]
task.connect({k: config[k] for k in hyper_params})
# Setup dataflow, model, optimizer, criterion
train_loader, test_loader = get_dataflow(config)
config["num_iters_per_epoch"] = len(train_loader)
model, optimizer, criterion, lr_scheduler = initialize(config)
# Create trainer for current task
trainer = create_trainer(model, optimizer, criterion, lr_scheduler, train_loader.sampler, config, logger)
# Let's now setup evaluator engine to perform model's validation and compute metrics
metrics = {
"Accuracy": Accuracy(output_transform=utils.thresholded_output_transform),
"Loss": Loss(criterion),
}
# We define two evaluators as they wont have exactly similar roles:
# - `evaluator` will save the best model based on validation score
evaluator = create_evaluator(model, metrics, config, tag="val")
train_evaluator = create_evaluator(model, metrics, config, tag="train")
def run_validation(engine):
epoch = trainer.state.epoch
state = train_evaluator.run(train_loader)
log_metrics(logger, epoch, state.times["COMPLETED"], "Train", state.metrics)
state = evaluator.run(test_loader)
log_metrics(logger, epoch, state.times["COMPLETED"], "Test", state.metrics)
trainer.add_event_handler(
Events.EPOCH_COMPLETED(every=config["validate_every"]) | Events.COMPLETED | Events.STARTED, run_validation
)
if rank == 0:
# Setup TensorBoard logging on trainer and evaluators. Logged values are:
# - Training metrics, e.g. running average loss values
# - Learning rate
# - Evaluation train/test metrics
evaluators = {"training": train_evaluator, "test": evaluator}
tb_logger = common.setup_tb_logging(
output_path, trainer, optimizer, evaluators=evaluators, log_every_iters=config["log_every_iters"]
)
# Store 2 best models by validation accuracy starting from num_epochs / 2:
best_model_handler = Checkpoint(
{"model": model},
utils.get_save_handler(config),
filename_prefix="best",
n_saved=2,
global_step_transform=global_step_from_engine(trainer),
score_name="test_accuracy",
score_function=Checkpoint.get_default_score_fn("Accuracy"),
)
evaluator.add_event_handler(
Events.COMPLETED(lambda *_: trainer.state.epoch > config["num_epochs"] // 2), best_model_handler
)
try:
trainer.run(train_loader, max_epochs=config["num_epochs"])
except Exception as e:
logger.exception("")
raise e
if rank == 0:
tb_logger.close()
def run(
seed=543,
data_dir="/tmp/data",
output_dir="/tmp/output-imdb/",
model="bert-base-uncased",
model_dir="/tmp/model",
tokenizer_dir="/tmp/tokenizer",
num_classes=1,
dropout=0.3,
n_fc=768,
max_length=256,
batch_size=32,
weight_decay=0.01,
num_workers=4,
num_epochs=3,
learning_rate=5e-5,
num_warmup_epochs=0,
validate_every=1,
checkpoint_every=1000,
backend=None,
resume_from=None,
log_every_iters=15,
nproc_per_node=None,
with_clearml=False,
with_amp=False,
**spawn_kwargs,
):
"""Main entry to fintune a transformer model on the IMDB dataset for sentiment classification.
Args:
seed (int): random state seed to set. Default, 543.
data_dir (str): dataset cache directory. Default, "/tmp/data".
output_path (str): output path. Default, "/tmp/output-IMDB".
model (str): model name (from transformers) to setup model,tokenize and config to train. Default,
"bert-base-uncased".
model_dir (str): cache directory to download the pretrained model. Default, "/tmp/model".
tokenizer_dir (str) : tokenizer cache directory. Default, "/tmp/tokenizer".
num_classes (int) : number of target classes. Default, 1 (binary classification).
dropout (float) : dropout probability. Default, 0.3.
n_fc (int) : number of neurons in the last fully connected layer. Default, 768.
max_length (int) : maximum number of tokens for the inputs to the transformer model. Default,256
batch_size (int): total batch size. Default, 128 .
weight_decay (float): weight decay. Default, 0.01 .
num_workers (int): number of workers in the data loader. Default, 12.
num_epochs (int): number of epochs to train the model. Default, 5.
learning_rate (float): peak of piecewise linear learning rate scheduler. Default, 5e-5.
num_warmup_epochs (int): number of warm-up epochs before learning rate decay. Default, 3.
validate_every (int): run model's validation every ``validate_every`` epochs. Default, 3.
checkpoint_every (int): store training checkpoint every ``checkpoint_every`` iterations. Default, 1000.
backend (str, optional): backend to use for distributed configuration. Possible values: None, "nccl", "xla-tpu",
"gloo" etc. Default, None.
nproc_per_node (int, optional): optional argument to setup number of processes per node. It is useful,
when main python process is spawning training as child processes.
resume_from (str, optional): path to checkpoint to use to resume the training from. Default, None.
log_every_iters (int): argument to log batch loss every ``log_every_iters`` iterations.
It can be 0 to disable it. Default, 15.
with_clearml (bool): if True, experiment ClearML logger is setup. Default, False.
with_amp (bool): if True, enables native automatic mixed precision. Default, False.
**spawn_kwargs: Other kwargs to spawn run in child processes: master_addr, master_port, node_rank, nnodes
"""
# check to see if the num_epochs is greater than or equal to num_warmup_epochs
if num_warmup_epochs >= num_epochs:
raise ValueError(
"num_epochs cannot be less than or equal to num_warmup_epochs, please increase num_epochs or decrease "
"num_warmup_epochs"
)
# catch all local parameters
config = locals()
config.update(config["spawn_kwargs"])
del config["spawn_kwargs"]
spawn_kwargs["nproc_per_node"] = nproc_per_node
with idist.Parallel(backend=backend, **spawn_kwargs) as parallel:
parallel.run(training, config)
def get_dataflow(config):
# - Get train/test datasets
if idist.get_local_rank() > 0:
# Ensure that only local rank 0 download the dataset
# Thus each node will download a copy of the dataset
idist.barrier()
train_dataset, test_dataset = utils.get_dataset(
config["data_dir"], config["model"], config["tokenizer_dir"], config["max_length"]
)
if idist.get_local_rank() == 0:
# Ensure that only local rank 0 download the dataset
idist.barrier()
# Setup data loader also adapted to distributed config: nccl, gloo, xla-tpu
train_loader = idist.auto_dataloader(
train_dataset, batch_size=config["batch_size"], num_workers=config["num_workers"], shuffle=True, drop_last=True
)
test_loader = idist.auto_dataloader(
test_dataset, batch_size=2 * config["batch_size"], num_workers=config["num_workers"], shuffle=False
)
return train_loader, test_loader
def initialize(config):
model = utils.get_model(
config["model"], config["model_dir"], config["dropout"], config["n_fc"], config["num_classes"]
)
config["learning_rate"] *= idist.get_world_size()
# Adapt model for distributed settings if configured
model = idist.auto_model(model)
optimizer = optim.AdamW(model.parameters(), lr=config["learning_rate"], weight_decay=config["weight_decay"])
optimizer = idist.auto_optim(optimizer)
criterion = nn.BCEWithLogitsLoss()
le = config["num_iters_per_epoch"]
milestones_values = [
(0, 0.0),
(le * config["num_warmup_epochs"], config["learning_rate"]),
(le * config["num_epochs"], 0.0),
]
lr_scheduler = PiecewiseLinear(optimizer, param_name="lr", milestones_values=milestones_values)
return model, optimizer, criterion, lr_scheduler
def log_metrics(logger, epoch, elapsed, tag, metrics):
metrics_output = "\n".join([f"\t{k}: {v}" for k, v in metrics.items()])
logger.info(f"\nEpoch {epoch} - Evaluation time (seconds): {elapsed:.2f} - {tag} metrics:\n {metrics_output}")
def log_basic_info(logger, config):
logger.info(f"Train {config['model']} on IMDB")
logger.info(f"- PyTorch version: {torch.__version__}")
logger.info(f"- Ignite version: {ignite.__version__}")
if torch.cuda.is_available():
# explicitly import cudnn as
# torch.backends.cudnn can not be pickled with hvd spawning procs
from torch.backends import cudnn
logger.info(f"- GPU Device: {torch.cuda.get_device_name(idist.get_local_rank())}")
logger.info(f"- CUDA version: {torch.version.cuda}")
logger.info(f"- CUDNN version: {cudnn.version()}")
logger.info("\n")
logger.info("Configuration:")
for key, value in config.items():
logger.info(f"\t{key}: {value}")
logger.info("\n")
if idist.get_world_size() > 1:
logger.info("\nDistributed setting:")
logger.info(f"\tbackend: {idist.backend()}")
logger.info(f"\tworld size: {idist.get_world_size()}")
logger.info("\n")
def create_trainer(model, optimizer, criterion, lr_scheduler, train_sampler, config, logger):
device = idist.device()
# Setup Ignite trainer:
# - let's define training step
# - add other common handlers:
# - TerminateOnNan,
# - handler to setup learning rate scheduling,
# - ModelCheckpoint
# - RunningAverage` on `train_step` output
# - Two progress bars on epochs and optionally on iterations
with_amp = config["with_amp"]
scaler = GradScaler(enabled=with_amp)
def train_step(engine, batch):
input_batch = batch[0]
labels = batch[1].view(-1, 1)
if labels.device != device:
input_batch = {k: v.to(device, non_blocking=True, dtype=torch.long) for k, v in batch[0].items()}
labels = labels.to(device, non_blocking=True, dtype=torch.float)
model.train()
with autocast(enabled=with_amp):
y_pred = model(input_batch)
loss = criterion(y_pred, labels)
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
return {
"batch loss": loss.item(),
}
trainer = Engine(train_step)
trainer.logger = logger
to_save = {"trainer": trainer, "model": model, "optimizer": optimizer, "lr_scheduler": lr_scheduler}
metric_names = [
"batch loss",
]
if config["log_every_iters"] == 0:
# Disable logging training metrics:
metric_names = None
config["log_every_iters"] = 15
common.setup_common_training_handlers(
trainer=trainer,
train_sampler=train_sampler,
to_save=to_save,
save_every_iters=config["checkpoint_every"],
save_handler=utils.get_save_handler(config),
lr_scheduler=lr_scheduler,
output_names=metric_names,
log_every_iters=config["log_every_iters"],
with_pbars=not config["with_clearml"],
clear_cuda_cache=False,
)
resume_from = config["resume_from"]
if resume_from is not None:
checkpoint_fp = Path(resume_from)
assert checkpoint_fp.exists(), f"Checkpoint '{checkpoint_fp.as_posix()}' is not found"
logger.info(f"Resume from a checkpoint: {checkpoint_fp.as_posix()}")
checkpoint = torch.load(checkpoint_fp.as_posix(), map_location="cpu")
Checkpoint.load_objects(to_load=to_save, checkpoint=checkpoint)
return trainer
def create_evaluator(model, metrics, config, tag="val"):
with_amp = config["with_amp"]
device = idist.device()
@torch.no_grad()
def evaluate_step(engine, batch):
model.eval()
input_batch = batch[0]
labels = batch[1].view(-1, 1)
if labels.device != device:
input_batch = {k: v.to(device, non_blocking=True, dtype=torch.long) for k, v in batch[0].items()}
labels = labels.to(device, non_blocking=True, dtype=torch.float)
with autocast(enabled=with_amp):
output = model(input_batch)
return output, labels
evaluator = Engine(evaluate_step)
for name, metric in metrics.items():
metric.attach(evaluator, name)
if idist.get_rank() == 0 and (not config["with_clearml"]):
common.ProgressBar(desc=f"Evaluation ({tag})", persist=False).attach(evaluator)
return evaluator
if __name__ == "__main__":
fire.Fire({"run": run})
|
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import DataLoader, Dataset
from torchvision import datasets
from ignite.contrib.handlers import ProgressBar
from ignite.engine import Engine, Events
from ignite.handlers.param_scheduler import LRScheduler
from ignite.metrics import Accuracy, RunningAverage
from ignite.utils import manual_seed
class SiameseNetwork(nn.Module):
# update Siamese Network implementation in accordance with the dataset
"""
Siamese network for image similarity estimation.
The network is composed of two identical networks, one for each input.
The output of each network is concatenated and passed to a linear layer.
The output of the linear layer passed through a sigmoid function.
`"FaceNet" <https://arxiv.org/pdf/1503.03832.pdf>`_ is a variant of the Siamese network.
This implementation varies from FaceNet as we use the `ResNet-18` model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`
as our feature extractor.
In addition we use CIFAR10 dataset along with TripletMarginLoss
"""
def __init__(self):
super(SiameseNetwork, self).__init__()
# get resnet model
self.resnet = torchvision.models.resnet34(weights=None)
fc_in_features = self.resnet.fc.in_features
# changing the FC layer of resnet model to a linear layer
self.resnet.fc = nn.Identity()
# add linear layers to compare between the features of the two images
self.fc = nn.Sequential(
nn.Linear(fc_in_features, 256),
nn.ReLU(inplace=True),
nn.Linear(256, 10),
nn.ReLU(inplace=True),
)
# initialise relu activation
self.relu = nn.ReLU()
# initialize the weights
self.resnet.apply(self.init_weights)
self.fc.apply(self.init_weights)
def init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
m.bias.data.fill_(0.01)
def forward_once(self, x):
output = self.resnet(x)
output = output.view(output.size()[0], -1)
return output
def forward(self, input1, input2, input3):
# pass the input through resnet
output1 = self.forward_once(input1)
output2 = self.forward_once(input2)
output3 = self.forward_once(input3)
# pass the output of resnet to sigmoid layer
output1 = self.fc(output1)
output2 = self.fc(output2)
output3 = self.fc(output3)
return output1, output2, output3
class MatcherDataset(Dataset):
# following class implements data downloading and handles preprocessing
def __init__(self, root, train, download=False):
super(MatcherDataset, self).__init__()
# get CIFAR10 dataset
self.dataset = datasets.CIFAR10(root, train=train, download=download)
# convert data from numpy array to Tensor
self.data = torch.from_numpy(self.dataset.data)
# shift the dimensions of dataset to match the initial input layer dimensions
self.data = torch.movedim(self.data, (0, 1, 2, 3), (0, 2, 3, 1))
# convert targets list to torch Tensor
self.dataset.targets = torch.tensor(self.dataset.targets)
self.group_examples()
def group_examples(self):
"""
To ease the accessibility of data based on the class, we will use `group_examples` to group
examples based on class. The data classes have already been mapped to numeric values and
so are the target outputs for each training input
Every key in `grouped_examples` corresponds to a class in CIFAR10 dataset. For every key in
`grouped_examples`, every value will conform to all of the indices for the CIFAR10
dataset examples that correspond to that key.
"""
# get the targets from CIFAR10 dataset
np_arr = np.array(self.dataset.targets)
# group examples based on class
self.grouped_examples = {}
for i in range(0, 10):
self.grouped_examples[i] = np.where((np_arr == i))[0]
def __len__(self):
return self.data.shape[0]
def __getitem__(self, index):
"""
For every sample in the batch we select 3 images. First one is the anchor image
which is the image obtained from the current index. We also obtain the label of
anchor image.
Now we select two random images, one belonging to the same class as that of the
anchor image (named as positive_image) and the other belonging to a different class
than that of the anchor image (named as negative_image). We return the anchor image,
positive image, negative image and anchor label.
"""
# obtain the anchor image
anchor_image = self.data[index].float()
# obtain the class label of the anchor image
anchor_label = self.dataset.targets[index]
anchor_label = int(anchor_label.item())
# find a label which is different from anchor_label
labels = list(range(0, 10))
labels.remove(anchor_label)
neg_index = torch.randint(0, 9, (1,)).item()
neg_label = labels[neg_index]
# get a random index from the range range of indices
random_index = torch.randint(0, len(self.grouped_examples[anchor_label]), (1,)).item()
# get the index of image in actual data using the anchor label and random index
positive_index = self.grouped_examples[anchor_label][random_index]
# choosing a random image using positive_index
positive_image = self.data[positive_index].float()
# get a random index from the range range of indices
random_index = torch.randint(0, len(self.grouped_examples[neg_label]), (1,)).item()
# get the index of image in actual data using the negative label and random index
negative_index = self.grouped_examples[neg_label][random_index]
# choosing a random image using negative_index
negative_image = self.data[negative_index].float()
return anchor_image, positive_image, negative_image, anchor_label
def pairwise_distance(input1, input2):
dist = input1 - input2
dist = torch.pow(dist, 2)
return dist
def calculate_loss(input1, input2):
output = pairwise_distance(input1, input2)
loss = torch.sum(output, 1)
loss = torch.sqrt(loss)
return loss
def run(args, model, device, optimizer, train_loader, test_loader, lr_scheduler):
# using Triplet Margin Loss
criterion = nn.TripletMarginLoss(p=2, margin=2.8)
# define model training step
def train_step(engine, batch):
model.train()
anchor_image, positive_image, negative_image, anchor_label = batch
anchor_image = anchor_image.to(device)
positive_image, negative_image = positive_image.to(device), negative_image.to(device)
anchor_label = anchor_label.to(device)
optimizer.zero_grad()
anchor_out, positive_out, negative_out = model(anchor_image, positive_image, negative_image)
loss = criterion(anchor_out, positive_out, negative_out)
loss.backward()
optimizer.step()
return loss
# define model testing step
def test_step(engine, batch):
model.eval()
with torch.no_grad():
anchor_image, _, _, anchor_label = batch
anchor_image = anchor_image.to(device)
anchor_label = anchor_label.to(device)
other_image = []
other_label = []
y_true = []
for i in range(anchor_image.shape[0]):
index = torch.randint(0, anchor_image.shape[0], (1,)).item()
img = anchor_image[index]
label = anchor_label[index]
other_image.append(img)
other_label.append(label)
if anchor_label[i] == other_label[i]:
y_true.append(1)
else:
y_true.append(0)
other = torch.stack(other_image)
other_label = torch.tensor(other_label)
other, other_label = other.to(device), other_label.to(device)
anchor_out, other_out, _ = model(anchor_image, other, other)
test_loss = calculate_loss(anchor_out, other_out)
y_pred = torch.where(test_loss < 3, 1, 0)
y_true = torch.tensor(y_true)
return [y_pred, y_true]
# create engines for trainer and evaluator
trainer = Engine(train_step)
evaluator = Engine(test_step)
# attach Running Average Loss metric to trainer and evaluator engines
RunningAverage(output_transform=lambda x: x).attach(trainer, "loss")
Accuracy(output_transform=lambda x: x).attach(evaluator, "accuracy")
# attach progress bar to trainer with loss
pbar1 = ProgressBar()
pbar1.attach(trainer, metric_names=["loss"])
# attach progress bar to evaluator
pbar2 = ProgressBar()
pbar2.attach(evaluator)
# attach LR Scheduler to trainer engine
trainer.add_event_handler(Events.ITERATION_STARTED, lr_scheduler)
# event handler triggers evauator at end of every epoch
@trainer.on(Events.EPOCH_COMPLETED(every=args.log_interval))
def test(engine):
state = evaluator.run(test_loader)
print(f'Test Accuracy: {state.metrics["accuracy"]}')
# run the trainer
trainer.run(train_loader, max_epochs=args.epochs)
def main():
# adds training defaults and support for terminal arguments
parser = argparse.ArgumentParser(description="PyTorch Siamese network Example")
parser.add_argument(
"--batch-size", type=int, default=256, metavar="N", help="input batch size for training (default: 64)"
)
parser.add_argument(
"--test-batch-size", type=int, default=256, metavar="N", help="input batch size for testing (default: 1000)"
)
parser.add_argument("--epochs", type=int, default=10, metavar="N", help="number of epochs to train (default: 14)")
parser.add_argument("--lr", type=float, default=1.0, metavar="LR", help="learning rate (default: 1.0)")
parser.add_argument(
"--gamma", type=float, default=0.95, metavar="M", help="Learning rate step gamma (default: 0.7)"
)
parser.add_argument("--no-cuda", action="store_true", default=False, help="disables CUDA training")
parser.add_argument("--no-mps", action="store_true", default=False, help="disables macOS GPU training")
parser.add_argument("--dry-run", action="store_true", default=False, help="quickly check a single pass")
parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)")
parser.add_argument(
"--log-interval",
type=int,
default=1,
metavar="N",
help="how many batches to wait before logging training status",
)
parser.add_argument("--save-model", action="store_true", default=False, help="For Saving the current Model")
parser.add_argument("--num-workers", default=4, help="number of processes generating parallel batches")
args = parser.parse_args()
# set manual seed
manual_seed(args.seed)
# set device
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# data loading
train_dataset = MatcherDataset("../data", train=True, download=True)
test_dataset = MatcherDataset("../data", train=False)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size, num_workers=args.num_workers)
test_loader = DataLoader(test_dataset, batch_size=args.test_batch_size, num_workers=args.num_workers)
# set model parameters
model = SiameseNetwork().to(device)
optimizer = optim.Adadelta(model.parameters(), lr=args.lr)
scheduler = StepLR(optimizer, step_size=15, gamma=args.gamma)
lr_scheduler = LRScheduler(scheduler)
# call run function
run(args, model, device, optimizer, train_loader, test_loader, lr_scheduler)
if __name__ == "__main__":
main()
|
import os
from pathlib import Path
from torchvision import datasets, models
from torchvision.transforms import Compose, Normalize, Pad, RandomCrop, RandomHorizontalFlip, ToTensor
train_transform = Compose(
[
Pad(4),
RandomCrop(32, fill=128),
RandomHorizontalFlip(),
ToTensor(),
Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
]
)
test_transform = Compose([ToTensor(), Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])
def get_train_test_datasets(path):
path = Path(path)
if not path.exists():
path.mkdir(parents=True)
download = True
else:
download = True if len(os.listdir(path)) < 1 else False
train_ds = datasets.CIFAR10(root=path, train=True, download=download, transform=train_transform)
test_ds = datasets.CIFAR10(root=path, train=False, download=False, transform=test_transform)
return train_ds, test_ds
def get_model(name):
if name in models.__dict__:
fn = models.__dict__[name]
else:
raise RuntimeError(f"Unknown model name {name}")
return fn(num_classes=10)
|
from datetime import datetime
from pathlib import Path
from typing import Any, Optional
import fire
import torch
import torch.nn as nn
import torch.optim as optim
import utils
from torch.cuda.amp import autocast, GradScaler
import ignite
import ignite.distributed as idist
from ignite.contrib.engines import common
from ignite.contrib.handlers import PiecewiseLinear
from ignite.engine import Engine, Events
from ignite.handlers import Checkpoint, DiskSaver, global_step_from_engine
from ignite.metrics import Accuracy, Loss
from ignite.utils import manual_seed, setup_logger
def training(local_rank, config):
rank = idist.get_rank()
manual_seed(config["seed"] + rank)
device = idist.device()
logger = setup_logger(name="CIFAR10-Training")
log_basic_info(logger, config)
output_path = config["output_path"]
if rank == 0:
if config["stop_iteration"] is None:
now = datetime.now().strftime("%Y%m%d-%H%M%S")
else:
now = f"stop-on-{config['stop_iteration']}"
folder_name = f"{config['model']}_backend-{idist.backend()}-{idist.get_world_size()}_{now}"
output_path = Path(output_path) / folder_name
if not output_path.exists():
output_path.mkdir(parents=True)
config["output_path"] = output_path.as_posix()
logger.info(f"Output path: {config['output_path']}")
if "cuda" in device.type:
config["cuda device name"] = torch.cuda.get_device_name(local_rank)
if config["with_clearml"]:
from clearml import Task
task = Task.init("CIFAR10-Training", task_name=output_path.stem)
task.connect_configuration(config)
# Log hyper parameters
hyper_params = [
"model",
"batch_size",
"momentum",
"weight_decay",
"num_epochs",
"learning_rate",
"num_warmup_epochs",
]
task.connect({k: config[k] for k in hyper_params})
# Setup dataflow, model, optimizer, criterion
train_loader, test_loader = get_dataflow(config)
config["num_iters_per_epoch"] = len(train_loader)
model, optimizer, criterion, lr_scheduler = initialize(config)
# Create trainer for current task
trainer = create_trainer(model, optimizer, criterion, lr_scheduler, train_loader.sampler, config, logger)
# Let's now setup evaluator engine to perform model's validation and compute metrics
metrics = {
"Accuracy": Accuracy(),
"Loss": Loss(criterion),
}
# We define two evaluators as they wont have exactly similar roles:
# - `evaluator` will save the best model based on validation score
evaluator = create_evaluator(model, metrics=metrics, config=config)
train_evaluator = create_evaluator(model, metrics=metrics, config=config)
def run_validation(engine):
epoch = trainer.state.epoch
state = train_evaluator.run(train_loader)
log_metrics(logger, epoch, state.times["COMPLETED"], "Train", state.metrics)
state = evaluator.run(test_loader)
log_metrics(logger, epoch, state.times["COMPLETED"], "Test", state.metrics)
trainer.add_event_handler(Events.EPOCH_COMPLETED(every=config["validate_every"]) | Events.COMPLETED, run_validation)
if rank == 0:
# Setup TensorBoard logging on trainer and evaluators. Logged values are:
# - Training metrics, e.g. running average loss values
# - Learning rate
# - Evaluation train/test metrics
evaluators = {"training": train_evaluator, "test": evaluator}
tb_logger = common.setup_tb_logging(output_path, trainer, optimizer, evaluators=evaluators)
# Store 2 best models by validation accuracy starting from num_epochs / 2:
best_model_handler = Checkpoint(
{"model": model},
get_save_handler(config),
filename_prefix="best",
n_saved=2,
global_step_transform=global_step_from_engine(trainer),
score_name="test_accuracy",
score_function=Checkpoint.get_default_score_fn("Accuracy"),
)
evaluator.add_event_handler(
Events.COMPLETED(lambda *_: trainer.state.epoch > config["num_epochs"] // 2), best_model_handler
)
# In order to check training resuming we can stop training on a given iteration
if config["stop_iteration"] is not None:
@trainer.on(Events.ITERATION_STARTED(once=config["stop_iteration"]))
def _():
logger.info(f"Stop training on {trainer.state.iteration} iteration")
trainer.terminate()
try:
trainer.run(train_loader, max_epochs=config["num_epochs"])
except Exception as e:
logger.exception("")
raise e
if rank == 0:
tb_logger.close()
def run(
seed: int = 543,
data_path: str = "/tmp/cifar10",
output_path: str = "/tmp/output-cifar10/",
model: str = "resnet18",
batch_size: int = 512,
momentum: float = 0.9,
weight_decay: float = 1e-4,
num_workers: int = 12,
num_epochs: int = 24,
learning_rate: float = 0.4,
num_warmup_epochs: int = 4,
validate_every: int = 3,
checkpoint_every: int = 1000,
backend: Optional[str] = None,
resume_from: Optional[str] = None,
log_every_iters: int = 15,
nproc_per_node: Optional[int] = None,
stop_iteration: Optional[int] = None,
with_clearml: bool = False,
with_amp: bool = False,
**spawn_kwargs: Any,
):
"""Main entry to train an model on CIFAR10 dataset.
Args:
seed (int): random state seed to set. Default, 543.
data_path (str): input dataset path. Default, "/tmp/cifar10".
output_path (str): output path. Default, "/tmp/output-cifar10".
model (str): model name (from torchvision) to setup model to train. Default, "resnet18".
batch_size (int): total batch size. Default, 512.
momentum (float): optimizer's momentum. Default, 0.9.
weight_decay (float): weight decay. Default, 1e-4.
num_workers (int): number of workers in the data loader. Default, 12.
num_epochs (int): number of epochs to train the model. Default, 24.
learning_rate (float): peak of piecewise linear learning rate scheduler. Default, 0.4.
num_warmup_epochs (int): number of warm-up epochs before learning rate decay. Default, 4.
validate_every (int): run model's validation every ``validate_every`` epochs. Default, 3.
checkpoint_every (int): store training checkpoint every ``checkpoint_every`` iterations. Default, 1000.
backend (str, optional): backend to use for distributed configuration. Possible values: None, "nccl", "xla-tpu",
"gloo" etc. Default, None.
nproc_per_node (int, optional): optional argument to setup number of processes per node. It is useful,
when main python process is spawning training as child processes.
resume_from (str, optional): path to checkpoint to use to resume the training from. Default, None.
log_every_iters (int): argument to log batch loss every ``log_every_iters`` iterations.
It can be 0 to disable it. Default, 15.
stop_iteration (int, optional): iteration to stop the training. Can be used to check resume from checkpoint.
with_clearml (bool): if True, experiment ClearML logger is setup. Default, False.
with_amp (bool): if True, enables native automatic mixed precision. Default, False.
**spawn_kwargs: Other kwargs to spawn run in child processes: master_addr, master_port, node_rank, nnodes
"""
# check to see if the num_epochs is greater than or equal to num_warmup_epochs
if num_warmup_epochs >= num_epochs:
raise ValueError(
"num_epochs cannot be less than or equal to num_warmup_epochs, please increase num_epochs or decrease "
"num_warmup_epochs"
)
# catch all local parameters
config = locals()
config.update(config["spawn_kwargs"])
del config["spawn_kwargs"]
spawn_kwargs["nproc_per_node"] = nproc_per_node
if backend == "xla-tpu" and with_amp:
raise RuntimeError("The value of with_amp should be False if backend is xla")
with idist.Parallel(backend=backend, **spawn_kwargs) as parallel:
parallel.run(training, config)
def get_dataflow(config):
# - Get train/test datasets
with idist.one_rank_first(local=True):
train_dataset, test_dataset = utils.get_train_test_datasets(config["data_path"])
# Setup data loader also adapted to distributed config: nccl, gloo, xla-tpu
train_loader = idist.auto_dataloader(
train_dataset, batch_size=config["batch_size"], num_workers=config["num_workers"], shuffle=True, drop_last=True
)
test_loader = idist.auto_dataloader(
test_dataset, batch_size=2 * config["batch_size"], num_workers=config["num_workers"], shuffle=False
)
return train_loader, test_loader
def initialize(config):
model = utils.get_model(config["model"])
# Adapt model for distributed settings if configured
model = idist.auto_model(model)
optimizer = optim.SGD(
model.parameters(),
lr=config["learning_rate"],
momentum=config["momentum"],
weight_decay=config["weight_decay"],
nesterov=True,
)
optimizer = idist.auto_optim(optimizer)
criterion = nn.CrossEntropyLoss().to(idist.device())
le = config["num_iters_per_epoch"]
milestones_values = [
(0, 0.0),
(le * config["num_warmup_epochs"], config["learning_rate"]),
(le * config["num_epochs"], 0.0),
]
lr_scheduler = PiecewiseLinear(optimizer, param_name="lr", milestones_values=milestones_values)
return model, optimizer, criterion, lr_scheduler
def log_metrics(logger, epoch, elapsed, tag, metrics):
metrics_output = "\n".join([f"\t{k}: {v}" for k, v in metrics.items()])
logger.info(f"Epoch[{epoch}] - Evaluation time (seconds): {elapsed:.3f}\n - {tag} metrics:\n {metrics_output}")
def log_basic_info(logger, config):
logger.info(f"Train {config['model']} on CIFAR10")
logger.info(f"- PyTorch version: {torch.__version__}")
logger.info(f"- Ignite version: {ignite.__version__}")
if torch.cuda.is_available():
# explicitly import cudnn as
# torch.backends.cudnn can not be pickled with hvd spawning procs
from torch.backends import cudnn
logger.info(f"- GPU Device: {torch.cuda.get_device_name(idist.get_local_rank())}")
logger.info(f"- CUDA version: {torch.version.cuda}")
logger.info(f"- CUDNN version: {cudnn.version()}")
logger.info("\n")
logger.info("Configuration:")
for key, value in config.items():
logger.info(f"\t{key}: {value}")
logger.info("\n")
if idist.get_world_size() > 1:
logger.info("\nDistributed setting:")
logger.info(f"\tbackend: {idist.backend()}")
logger.info(f"\tworld size: {idist.get_world_size()}")
logger.info("\n")
def create_trainer(model, optimizer, criterion, lr_scheduler, train_sampler, config, logger):
device = idist.device()
# Setup Ignite trainer:
# - let's define training step
# - add other common handlers:
# - TerminateOnNan,
# - handler to setup learning rate scheduling,
# - ModelCheckpoint
# - RunningAverage` on `train_step` output
# - Two progress bars on epochs and optionally on iterations
with_amp = config["with_amp"]
scaler = GradScaler(enabled=with_amp)
def train_step(engine, batch):
x, y = batch[0], batch[1]
if x.device != device:
x = x.to(device, non_blocking=True)
y = y.to(device, non_blocking=True)
model.train()
with autocast(enabled=with_amp):
y_pred = model(x)
loss = criterion(y_pred, y)
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
return {
"batch loss": loss.item(),
}
trainer = Engine(train_step)
trainer.logger = logger
to_save = {"trainer": trainer, "model": model, "optimizer": optimizer, "lr_scheduler": lr_scheduler}
metric_names = [
"batch loss",
]
common.setup_common_training_handlers(
trainer=trainer,
train_sampler=train_sampler,
to_save=to_save,
save_every_iters=config["checkpoint_every"],
save_handler=get_save_handler(config),
lr_scheduler=lr_scheduler,
output_names=metric_names if config["log_every_iters"] > 0 else None,
with_pbars=False,
clear_cuda_cache=False,
)
resume_from = config["resume_from"]
if resume_from is not None:
checkpoint_fp = Path(resume_from)
assert checkpoint_fp.exists(), f"Checkpoint '{checkpoint_fp.as_posix()}' is not found"
logger.info(f"Resume from a checkpoint: {checkpoint_fp.as_posix()}")
checkpoint = torch.load(checkpoint_fp.as_posix(), map_location="cpu")
Checkpoint.load_objects(to_load=to_save, checkpoint=checkpoint)
return trainer
def create_evaluator(model, metrics, config, tag="val"):
with_amp = config["with_amp"]
device = idist.device()
@torch.no_grad()
def evaluate_step(engine: Engine, batch):
model.eval()
x, y = batch[0], batch[1]
if x.device != device:
x = x.to(device, non_blocking=True)
y = y.to(device, non_blocking=True)
with autocast(enabled=with_amp):
output = model(x)
return output, y
evaluator = Engine(evaluate_step)
for name, metric in metrics.items():
metric.attach(evaluator, name)
return evaluator
def get_save_handler(config):
if config["with_clearml"]:
from ignite.contrib.handlers.clearml_logger import ClearMLSaver
return ClearMLSaver(dirname=config["output_path"])
return DiskSaver(config["output_path"], require_empty=False)
if __name__ == "__main__":
fire.Fire({"run": run})
|
import os
from pathlib import Path
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
from torchvision import datasets, models
from torchvision.transforms import Compose, Normalize, Pad, RandomCrop, RandomHorizontalFlip, ToTensor
import ignite.distributed as idist
from ignite.contrib.engines import common
from ignite.contrib.handlers import ProgressBar
from ignite.engine import Engine, Events, create_supervised_evaluator
from ignite.metrics import Accuracy
in_colab = "COLAB_TPU_ADDR" in os.environ
with_torchrun = "WORLD_SIZE" in os.environ
train_transform = Compose(
[
Pad(4),
RandomCrop(32, fill=128),
RandomHorizontalFlip(),
ToTensor(),
Normalize((0.485, 0.456, 0.406), (0.229, 0.23, 0.225)),
]
)
test_transform = Compose([ToTensor(), Normalize((0.485, 0.456, 0.406), (0.229, 0.23, 0.225)),])
def get_train_test_datasets(path):
# - Get train/test datasets
if idist.get_rank() > 0:
# Ensure that only rank 0 download the dataset
idist.barrier()
train_ds = datasets.CIFAR10(root=path, train=True, download=True, transform=train_transform)
test_ds = datasets.CIFAR10(root=path, train=False, download=False, transform=test_transform)
if idist.get_rank() == 0:
# Ensure that only rank 0 download the dataset
idist.barrier()
return train_ds, test_ds
def get_model(name):
if name in models.__dict__:
fn = models.__dict__[name]
else:
raise RuntimeError(f"Unknown model name {name}")
return fn(num_classes=10)
def get_dataflow(config):
train_dataset, test_dataset = get_train_test_datasets(config.get("data_path", "."))
# Setup data loader also adapted to distributed config: nccl, gloo, xla-tpu
train_loader = idist.auto_dataloader(
train_dataset,
batch_size=config.get("batch_size", 512),
num_workers=config.get("num_workers", 8),
shuffle=True,
drop_last=True,
)
config["num_iters_per_epoch"] = len(train_loader)
test_loader = idist.auto_dataloader(
test_dataset,
batch_size=2 * config.get("batch_size", 512),
num_workers=config.get("num_workers", 8),
shuffle=False,
)
return train_loader, test_loader
def initialize(config):
model = get_model(config["model"])
# Adapt model for distributed settings if configured
model = idist.auto_model(model)
optimizer = optim.SGD(
model.parameters(),
lr=config.get("learning_rate", 0.1),
momentum=config.get("momentum", 0.9),
weight_decay=config.get("weight_decay", 1e-5),
nesterov=True,
)
optimizer = idist.auto_optim(optimizer)
criterion = nn.CrossEntropyLoss().to(idist.device())
le = config["num_iters_per_epoch"]
lr_scheduler = StepLR(optimizer, step_size=le, gamma=0.9)
return model, optimizer, criterion, lr_scheduler
# slide 1 ####################################################################
def create_trainer(model, optimizer, criterion, lr_scheduler, config):
# Define any training logic for iteration update
def train_step(engine, batch):
x, y = batch[0].to(idist.device()), batch[1].to(idist.device())
model.train()
y_pred = model(x)
loss = criterion(y_pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
return loss.item()
# Define trainer engine
trainer = Engine(train_step)
if idist.get_rank() == 0:
# Add any custom handlers
@trainer.on(Events.ITERATION_COMPLETED(every=200))
def save_checkpoint():
fp = Path(config.get("output_path", "output")) / "checkpoint.pt"
torch.save(model.state_dict(), fp)
# Add progress bar showing batch loss value
ProgressBar().attach(trainer, output_transform=lambda x: {"batch loss": x})
return trainer
# slide 2 ####################################################################
def training(local_rank, config):
# Setup dataflow and
train_loader, val_loader = get_dataflow(config)
model, optimizer, criterion, lr_scheduler = initialize(config)
# Setup model trainer and evaluator
trainer = create_trainer(model, optimizer, criterion, lr_scheduler, config)
evaluator = create_supervised_evaluator(model, metrics={"accuracy": Accuracy()}, device=idist.device())
# Run model evaluation every 3 epochs and show results
@trainer.on(Events.EPOCH_COMPLETED(every=3))
def evaluate_model():
state = evaluator.run(val_loader)
if idist.get_rank() == 0:
print(state.metrics)
# Setup tensorboard experiment tracking
if idist.get_rank() == 0:
tb_logger = common.setup_tb_logging(
config.get("output_path", "output"), trainer, optimizer, evaluators={"validation": evaluator},
)
trainer.run(train_loader, max_epochs=config.get("max_epochs", 3))
if idist.get_rank() == 0:
tb_logger.close()
# slide 3 ####################################################################
# Simply run everything on your infrastructure
# --- Single computation device ---
# $ python main.py
#
if __name__ == "__main__" and not (in_colab or with_torchrun):
backend = None
nproc_per_node = None
config = {
"model": "resnet18",
"dataset": "cifar10",
}
with idist.Parallel(backend=backend, nproc_per_node=nproc_per_node) as parallel:
parallel.run(training, config)
# --- Multiple GPUs ---
# $ torchrun --nproc_per_node=2 main.py
#
if __name__ == "__main__" and with_torchrun:
backend = "nccl" # or "nccl", "gloo", ...
nproc_per_node = None
config = {
"model": "resnet18",
"dataset": "cifar10",
}
with idist.Parallel(backend=backend, nproc_per_node=nproc_per_node) as parallel:
parallel.run(training, config)
# --- Multiple TPUs ---
# In Colab
#
if in_colab:
backend = "xla-tpu"
nproc_per_node = 8
config = {
"model": "resnet18",
"dataset": "cifar10",
}
with idist.Parallel(backend=backend, nproc_per_node=nproc_per_node) as parallel:
parallel.run(training, config)
# Full featured CIFAR10 example:
# https://github.com/pytorch/ignite/tree/master/examples/cifar10
|
import torch
import torchvision
from torch.utils.mobile_optimizer import optimize_for_mobile
model = torchvision.models.mobilenet_v2(pretrained=True)
model.eval()
example = torch.rand(1, 3, 224, 224)
traced_script_module = torch.jit.trace(model, example)
torchscript_model_optimized = optimize_for_mobile(traced_script_module)
torchscript_model_optimized._save_for_lite_interpreter("HelloWorld/HelloWorld/model/model.pt")
|
from typing import Dict, List, Optional, Tuple
import json
import math
from fairseq.data import Dictionary
import torch
import torchaudio
from torchaudio.pipelines import EMFORMER_RNNT_BASE_LIBRISPEECH
from torchaudio.models import Hypothesis
def get_hypo_tokens(hypo: Hypothesis) -> List[int]:
return hypo[0]
def get_hypo_score(hypo: Hypothesis) -> float:
return hypo[3]
def to_string(input: List[int], tgt_dict: List[str], bos_idx: int = 0, eos_idx: int = 2, separator: str = "",) -> str:
# torchscript dislikes sets
extra_symbols_to_ignore: Dict[int, int] = {}
extra_symbols_to_ignore[eos_idx] = 1
extra_symbols_to_ignore[bos_idx] = 1
# it also dislikes comprehensions with conditionals
filtered_idx: List[int] = []
for idx in input:
if idx not in extra_symbols_to_ignore:
filtered_idx.append(idx)
return separator.join([tgt_dict[idx] for idx in filtered_idx]).replace("\u2581", " ")
def post_process_hypos(
hypos: List[Hypothesis], tgt_dict: List[str],
) -> List[Tuple[str, List[float], List[int]]]:
post_process_remove_list = [
3, # unk
2, # eos
1, # pad
]
hypos_str: List[str] = []
for h in hypos:
filtered_tokens: List[int] = []
for token_index in get_hypo_tokens(h)[1:]:
if token_index not in post_process_remove_list:
filtered_tokens.append(token_index)
string = to_string(filtered_tokens, tgt_dict)
hypos_str.append(string)
hypos_ids = [get_hypo_tokens(h)[1:] for h in hypos]
hypos_score = [[math.exp(get_hypo_score(h))] for h in hypos]
nbest_batch = list(zip(hypos_str, hypos_score, hypos_ids))
return nbest_batch
def _piecewise_linear_log(x):
x[x > math.e] = torch.log(x[x > math.e])
x[x <= math.e] = x[x <= math.e] / math.e
return x
class ModelWrapper(torch.nn.Module):
def __init__(self, tgt_dict: List[str]):
super().__init__()
self.transform = torchaudio.transforms.MelSpectrogram(sample_rate=16000, n_fft=400, n_mels=80, hop_length=160)
self.decoder = EMFORMER_RNNT_BASE_LIBRISPEECH.get_decoder()
self.tgt_dict = tgt_dict
with open("global_stats.json") as f:
blob = json.loads(f.read())
self.mean = torch.tensor(blob["mean"])
self.invstddev = torch.tensor(blob["invstddev"])
self.decibel = 2 * 20 * math.log10(32767)
self.gain = pow(10, 0.05 * self.decibel)
def forward(
self, input: torch.Tensor, prev_hypo: Optional[Hypothesis], prev_state: Optional[List[List[torch.Tensor]]]
) -> Tuple[str, Hypothesis, Optional[List[List[torch.Tensor]]]]:
spectrogram = self.transform(input).transpose(1, 0)
features = _piecewise_linear_log(spectrogram * self.gain).unsqueeze(0)[:, :-1]
features = (features - self.mean) * self.invstddev
length = torch.tensor([features.shape[1]])
hypotheses, state = self.decoder.infer(features, length, 10, state=prev_state, hypothesis=prev_hypo)
transcript = post_process_hypos(hypotheses[:1], self.tgt_dict)[0][0]
return transcript, hypotheses[0], state
tgt_dict = Dictionary.load("spm_bpe_4096_fairseq.dict")
wrapper = ModelWrapper(tgt_dict.symbols)
wrapper = torch.jit.script(wrapper)
wrapper.save("scripted_wrapper_tuple.pt")
|
import torch
import torchaudio
from torch.utils.mobile_optimizer import optimize_for_mobile
def get_demo_wrapper():
wrapper = torch.jit.load("scripted_wrapper_tuple.pt")
return wrapper
wrapper = get_demo_wrapper()
scripted_model = torch.jit.script(wrapper)
optimized_model = optimize_for_mobile(scripted_model)
optimized_model._save_for_lite_interpreter("streaming_asrv2.ptl")
print("Done _save_for_lite_interpreter")
|
import pyaudio
import queue
import numpy as np
import torch
import torchaudio
def get_demo_wrapper():
wrapper = torch.jit.load("scripted_wrapper_tuple.pt")
return wrapper
wrapper = get_demo_wrapper()
################################################################
data_queue = queue.Queue()
def callback(in_data, frame_count, time_info, status):
global data_queue
data_queue.put(in_data)
return in_data, pyaudio.paContinue
state = None
hypo = None
def transcribe(np_array, should_print=True):
global state, hypo
tensor = torch.tensor(np_array)
transcript, hypo, state = wrapper(tensor, hypo, state)
if should_print and transcript:
print(transcript, end="", flush=True)
previous_right_context = None
def process(should_print=True):
global previous_right_context
if previous_right_context is None:
previous_right_context = [
np.frombuffer(data_queue.get(), dtype=np.float32) for _ in range(1)
]
# Get 4 segments.
segments = [
np.frombuffer(data_queue.get(), dtype=np.float32) for _ in range(4)
]
current_input = previous_right_context + segments
with torch.no_grad():
transcribe(np.concatenate(current_input), should_print=should_print)
# Save right context.
previous_right_context = current_input[-1:]
# Emformer is configured with input segment size of 4 and right context size of 1.
# Pre- time reduction with factor 4, then, we have an input segment size of 16 and
# right context size of 4 going into RNN-T.
# With a hop length of 160 samples, we then have 16 * 160 = 2560 samples in the input segment
# and 4 * 160 = 640 samples in the right context.
# Then, since the lowest common factor between 640 and 3600 is 640, we'll
# read from the stream in 640-sample increments.
p = pyaudio.PyAudio()
CHANNELS = 1
RATE = 16000
stream = p.open(
format=pyaudio.paFloat32,
channels=CHANNELS,
rate=RATE,
input=True,
output=False,
frames_per_buffer=640,
stream_callback=callback,
)
stream.start_stream()
# We need to initialize the model by evaluating
# a few samples.
# If we skip this, evaluation latency will become
# prohibitively large.
print("Initializing model...")
for _ in range(10):
process(should_print=False)
print("Initialization complete.")
data_queue = queue.Queue()
previous_right_context = None
state = None
prev_hypo = None
while stream.is_active():
process(should_print=True)
stream.stop_stream()
stream.close()
|
import torch
import torchvision
from torch.backends._coreml.preprocess import (
CompileSpec,
TensorSpec,
CoreMLComputeUnit,
)
def mobilenetv2_spec():
return {
"forward": CompileSpec(
inputs=(
TensorSpec(
shape=[1, 3, 224, 224],
),
),
outputs=(
TensorSpec(
shape=[1, 1000],
),
),
backend=CoreMLComputeUnit.ALL,
allow_low_precision=True,
),
}
def main():
model = torchvision.models.mobilenet_v2(pretrained=True)
model.eval()
example = torch.rand(1, 3, 224, 224)
model = torch.jit.trace(model, example)
compile_spec = mobilenetv2_spec()
mlmodel = torch._C._jit_to_backend("coreml", model, compile_spec)
mlmodel._save_for_lite_interpreter("./mobilenetv2_coreml.ptl")
if __name__ == "__main__":
main() |
import torch
from torch.utils.mobile_optimizer import optimize_for_mobile
model = torch.hub.load('pytorch/vision:v0.11.0', 'deeplabv3_resnet50', pretrained=True)
model.eval()
scripted_module = torch.jit.script(model)
optimized_model = optimize_for_mobile(scripted_module)
optimized_model.save("ImageSegmentation/deeplabv3_scripted.pt")
optimized_model._save_for_lite_interpreter("ImageSegmentation/deeplabv3_scripted.ptl")
|
import torch
from torch import Tensor
from torch.utils.mobile_optimizer import optimize_for_mobile
import torchaudio
from torchaudio.models.wav2vec2.utils.import_huggingface import import_huggingface_model
from transformers import Wav2Vec2ForCTC
# Wav2vec2 model emits sequences of probability (logits) distributions over the characters
# The following class adds steps to decode the transcript (best path)
class SpeechRecognizer(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
self.labels = [
"<s>", "<pad>", "</s>", "<unk>", "|", "E", "T", "A", "O", "N", "I", "H", "S",
"R", "D", "L", "U", "M", "W", "C", "F", "G", "Y", "P", "B", "V", "K", "'", "X",
"J", "Q", "Z"]
def forward(self, waveforms: Tensor) -> str:
"""Given a single channel speech data, return transcription.
Args:
waveforms (Tensor): Speech tensor. Shape `[1, num_frames]`.
Returns:
str: The resulting transcript
"""
logits, _ = self.model(waveforms) # [batch, num_seq, num_label]
best_path = torch.argmax(logits[0], dim=-1) # [num_seq,]
prev = ''
hypothesis = ''
for i in best_path:
char = self.labels[i]
if char == prev:
continue
if char == '<s>':
prev = ''
continue
hypothesis += char
prev = char
return hypothesis.replace('|', ' ')
# Load Wav2Vec2 pretrained model from Hugging Face Hub
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
# Convert the model to torchaudio format, which supports TorchScript.
model = import_huggingface_model(model)
# Remove weight normalization which is not supported by quantization.
model.encoder.transformer.pos_conv_embed.__prepare_scriptable__()
model = model.eval()
# Attach decoder
model = SpeechRecognizer(model)
# Apply quantization / script / optimize for motbile
quantized_model = torch.quantization.quantize_dynamic(
model, qconfig_spec={torch.nn.Linear}, dtype=torch.qint8)
scripted_model = torch.jit.script(quantized_model)
optimized_model = optimize_for_mobile(scripted_model)
# Sanity check
waveform , _ = torchaudio.load('scent_of_a_woman_future.wav')
print(waveform.size())
print('Result:', optimized_model(waveform))
optimized_model._save_for_lite_interpreter("SpeechRecognition/wav2vec2.ptl")
|
import torch
from pytorchvideo.accelerator.deployment.mobile_cpu.utils.model_conversion import (
convert_to_deployable_form,
)
from pytorchvideo.models.accelerator.mobile_cpu.efficient_x3d import EfficientX3d
from torch.hub import load_state_dict_from_url
from torch.utils.mobile_optimizer import (
optimize_for_mobile,
)
model_efficient_x3d_xs = EfficientX3d(expansion='XS', head_act='identity')
checkpoint_path = 'https://dl.fbaipublicfiles.com/pytorchvideo/model_zoo/kinetics/efficient_x3d_xs_original_form.pyth'
checkpoint = load_state_dict_from_url(checkpoint_path)
model_efficient_x3d_xs.load_state_dict(checkpoint)
input_blob_size = (1, 3, 4, 160, 160)
input_tensor = torch.randn(input_blob_size)
model_efficient_x3d_xs_deploy = convert_to_deployable_form(model_efficient_x3d_xs, input_tensor)
traced_model = torch.jit.trace(model_efficient_x3d_xs_deploy, input_tensor, strict=False)
optimized_traced__model = optimize_for_mobile(traced_model)
optimized_traced__model._save_for_lite_interpreter("TorchVideo/video_classification.ptl")
|
import torch
from transformers import DistilBertTokenizer, DistilBertForQuestionAnswering
from torch.utils.mobile_optimizer import optimize_for_mobile
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased-distilled-squad')
model = DistilBertForQuestionAnswering.from_pretrained('distilbert-base-uncased-distilled-squad')
model.eval()
question, text = "When will support for GPU be available?!", "There is a growing need to execute ML models on edge devices to reduce latency, preserve privacy and enable new interactive use cases. In the past, engineers used to train models separately. They would then go through a multi-step, error prone and often complex process to transform the models for execution on a mobile device. The mobile runtime was often significantly different from the operations available during training leading to inconsistent developer and eventually user experience. PyTorch Mobile removes these friction surfaces by allowing a seamless process to go from training to deployment by staying entirely within the PyTorch ecosystem. It provides an end-to-end workflow that simplifies the research to production environment for mobile devices. In addition, it paves the way for privacy-preserving features via Federated Learning techniques. PyTorch Mobile is in beta stage right now and in wide scale production use. It will soon be available as a stable release once the APIs are locked down. Key features of PyTorch Mobile: Available for iOS, Android and Linux; Provides APIs that cover common preprocessing and integration tasks needed for incorporating ML in mobile applications; Support for tracing and scripting via TorchScript IR; Support for XNNPACK floating point kernel libraries for Arm CPUs; Integration of QNNPACK for 8-bit quantized kernels. Includes support for per-channel quantization, dynamic quantization and more; Build level optimization and selective compilation depending on the operators needed for user applications, i.e., the final binary size of the app is determined by the actual operators the app needs; Support for hardware backends like GPU, DSP, NPU will be available soon."
inputs = tokenizer(question, text, return_tensors='pt')
# inputs['input_ids'].size() is 360, the maximum size of the input tokens generated from the user question and text
# on mobile apps, if the size of the input tokens of the text and question is less than 360, padding will be needed to make the model work correctly.
model_dynamic_quantized = torch.quantization.quantize_dynamic(model, qconfig_spec={torch.nn.Linear}, dtype=torch.qint8)
traced_model = torch.jit.trace(model_dynamic_quantized, inputs['input_ids'], strict=False)
optimized_traced_model = optimize_for_mobile(traced_model)
optimized_traced_model._save_for_lite_interpreter("QuestionAnswering/qa360_quantized.ptl")
# 360 is the length of model input, i.e. the length of the tokenized ids of question+text
|
# based on https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html
from __future__ import unicode_literals, print_function, division
from io import open
import unicodedata
import string
import re
import random
import torch
import torch.nn as nn
from torch import optim
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
SOS_token = 0
EOS_token = 1
class Lang:
def __init__(self, name):
self.name = name
self.word2index = {}
self.word2count = {}
self.index2word = {0: "SOS", 1: "EOS"}
self.n_words = 2 # Count SOS and EOS
def addSentence(self, sentence):
for word in sentence.split(' '):
self.addWord(word)
def addWord(self, word):
if word not in self.word2index:
self.word2index[word] = self.n_words
self.word2count[word] = 1
self.index2word[self.n_words] = word
self.n_words += 1
else:
self.word2count[word] += 1
# Turn a Unicode string to plain ASCII, thanks to
# https://stackoverflow.com/a/518232/2809427
def unicodeToAscii(s):
return ''.join(
c for c in unicodedata.normalize('NFD', s)
if unicodedata.category(c) != 'Mn'
)
def normalizeString(s):
s = unicodeToAscii(s.lower().strip())
s = re.sub(r"([.!?])", r" \1", s)
s = re.sub(r"[^a-zA-Z.!?]+", r" ", s)
return s
def readLangs(lang1, lang2, reverse=False):
print("Reading lines...")
# Read the file and split into lines
lines = open('data/%s-%s.txt' % (lang1, lang2), encoding='utf-8').\
read().strip().split('\n')
# Split every line into pairs and normalize
pairs = [[normalizeString(s) for s in l.split('\t')] for l in lines]
# Reverse pairs, make Lang instances
if reverse:
pairs = [list(reversed(p)) for p in pairs]
input_lang = Lang(lang2)
output_lang = Lang(lang1)
else:
input_lang = Lang(lang1)
output_lang = Lang(lang2)
return input_lang, output_lang, pairs
MAX_LENGTH = 50
def filterPair(p):
return len(p[0].split(' ')) < MAX_LENGTH and \
len(p[1].split(' ')) < MAX_LENGTH
def filterPairs(pairs):
return [pair for pair in pairs if filterPair(pair)]
def prepareData(lang1, lang2, reverse=False):
input_lang, output_lang, pairs = readLangs(lang1, lang2, reverse)
print("Read %s sentence pairs" % len(pairs))
pairs = filterPairs(pairs)
print("Trimmed to %s sentence pairs" % len(pairs))
print("Counting words...")
for pair in pairs:
input_lang.addSentence(pair[0])
output_lang.addSentence(pair[1])
print("Counted words:")
print(input_lang.name, input_lang.n_words)
print(output_lang.name, output_lang.n_words)
return input_lang, output_lang, pairs
input_lang, output_lang, pairs = prepareData('eng', 'fra', True)
print(random.choice(pairs))
class EncoderRNN(nn.Module):
def __init__(self, input_size, hidden_size):
super(EncoderRNN, self).__init__()
self.hidden_size = hidden_size
self.embedding = nn.Embedding(input_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size)
def forward(self, input, hidden):
embedded = self.embedding(input).view(1, 1, -1)
output = embedded
output, hidden = self.gru(output, hidden)
return output, hidden
def initHidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)
class AttnDecoderRNN(nn.Module):
def __init__(self, hidden_size, output_size, dropout_p=0.1, max_length=MAX_LENGTH):
super(AttnDecoderRNN, self).__init__()
self.hidden_size = hidden_size
self.output_size = output_size
self.dropout_p = dropout_p
self.max_length = max_length
self.embedding = nn.Embedding(self.output_size, self.hidden_size)
self.attn = nn.Linear(self.hidden_size * 2, self.max_length)
self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size)
self.dropout = nn.Dropout(self.dropout_p)
self.gru = nn.GRU(self.hidden_size, self.hidden_size)
self.out = nn.Linear(self.hidden_size, self.output_size)
def forward(self, input, hidden, encoder_outputs):
embedded = self.embedding(input).view(1, 1, -1)
embedded = self.dropout(embedded)
attn_weights = F.softmax(
self.attn(torch.cat((embedded[0], hidden[0]), 1)), dim=1)
attn_applied = torch.bmm(attn_weights.unsqueeze(0),
encoder_outputs.unsqueeze(0))
output = torch.cat((embedded[0], attn_applied[0]), 1)
output = self.attn_combine(output).unsqueeze(0)
output = F.relu(output)
output, hidden = self.gru(output, hidden)
output = F.log_softmax(self.out(output[0]), dim=1)
return output, hidden, attn_weights
def initHidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)
def indexesFromSentence(lang, sentence):
return [lang.word2index[word] for word in sentence.split(' ')]
def tensorFromSentence(lang, sentence):
indexes = indexesFromSentence(lang, sentence)
indexes.append(EOS_token)
return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1)
def tensorsFromPair(pair):
input_tensor = tensorFromSentence(input_lang, pair[0])
target_tensor = tensorFromSentence(output_lang, pair[1])
return (input_tensor, target_tensor)
teacher_forcing_ratio = 0.5
def train(input_tensor, target_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion, max_length=MAX_LENGTH):
encoder_hidden = encoder.initHidden()
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()
input_length = input_tensor.size(0)
target_length = target_tensor.size(0)
encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)
loss = 0
for ei in range(input_length):
encoder_output, encoder_hidden = encoder(
input_tensor[ei], encoder_hidden)
encoder_outputs[ei] = encoder_output[0, 0]
decoder_input = torch.tensor([[SOS_token]], device=device)
decoder_hidden = encoder_hidden
use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False
if use_teacher_forcing:
# Teacher forcing: Feed the target as the next input
for di in range(target_length):
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
loss += criterion(decoder_output, target_tensor[di])
decoder_input = target_tensor[di] # Teacher forcing
else:
# Without teacher forcing: use its own predictions as the next input
for di in range(target_length):
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
topv, topi = decoder_output.topk(1)
decoder_input = topi.squeeze().detach() # detach from history as input
loss += criterion(decoder_output, target_tensor[di])
if decoder_input.item() == EOS_token:
break
loss.backward()
encoder_optimizer.step()
decoder_optimizer.step()
return loss.item() / target_length
import time
import math
def asMinutes(s):
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
def timeSince(since, percent):
now = time.time()
s = now - since
es = s / (percent)
rs = es - s
return '%s (- %s)' % (asMinutes(s), asMinutes(rs))
def trainIters(encoder, decoder, n_iters, print_every=1000, plot_every=100, learning_rate=0.01):
start = time.time()
plot_losses = []
print_loss_total = 0 # Reset every print_every
plot_loss_total = 0 # Reset every plot_every
encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)
decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)
training_pairs = [tensorsFromPair(random.choice(pairs))
for i in range(n_iters)]
criterion = nn.NLLLoss()
for iter in range(1, n_iters + 1):
training_pair = training_pairs[iter - 1]
input_tensor = training_pair[0]
target_tensor = training_pair[1]
loss = train(input_tensor, target_tensor, encoder,
decoder, encoder_optimizer, decoder_optimizer, criterion)
print_loss_total += loss
plot_loss_total += loss
if iter % print_every == 0:
print_loss_avg = print_loss_total / print_every
print_loss_total = 0
print('%s (%d %d%%) %.4f' % (timeSince(start, iter / n_iters),
iter, iter / n_iters * 100, print_loss_avg))
if iter % 150000 == 0:
torch.save({
'encoder_state_dict': encoder.state_dict(),
'decoder_state_dict': decoder.state_dict(),
'encoder_optimizer_state_dict': encoder_optimizer.state_dict(),
'decoder_optimizer_state_dict': decoder_optimizer.state_dict(),
}, "seq2seq_mt_{}.pt".format(iter))
hidden_size = 256
encoder = EncoderRNN(input_lang.n_words, hidden_size).to(device)
decoder = AttnDecoderRNN(hidden_size, output_lang.n_words, dropout_p=0.1).to(device)
#trainIters(encoder, decoder, 450100, print_every=5000)
encoder = EncoderRNN(input_lang.n_words, hidden_size)
decoder = AttnDecoderRNN(hidden_size, output_lang.n_words)
encoder_optimizer = optim.SGD(encoder.parameters(), lr=0.01)
decoder_optimizer = optim.SGD(decoder.parameters(), lr=0.01)
checkpoint = torch.load("seq2seq_mt_150000.pt", map_location=torch.device('cpu'))
encoder.load_state_dict(checkpoint['encoder_state_dict'])
decoder.load_state_dict(checkpoint['decoder_state_dict'])
encoder_optimizer.load_state_dict(checkpoint['encoder_optimizer_state_dict'])
decoder_optimizer.load_state_dict(checkpoint['decoder_optimizer_state_dict'])
encoder.eval()
decoder.eval()
encoder_input=torch.tensor([429])
encoder_hidden=torch.zeros(1,1,256)
decoder_input1=torch.tensor([[0]])
decoder_input2=torch.zeros(1,1,256)
decoder_input3=torch.zeros(50,256)
# dynamic quantization can be applied to the decoder for its nn.Linear parameters
quantized_decoder = torch.quantization.quantize_dynamic(decoder, qconfig_spec={torch.nn.Linear}, dtype=torch.qint8)
traced_encoder = torch.jit.trace(encoder, (encoder_input, encoder_hidden))
traced_decoder = torch.jit.trace(quantized_decoder, (decoder_input1, decoder_input2, decoder_input3))
from torch.utils.mobile_optimizer import optimize_for_mobile
traced_encoder_optimized = optimize_for_mobile(traced_encoder)
traced_encoder_optimized._save_for_lite_interpreter("optimized_encoder_150k.ptl")
traced_decoder_optimized = optimize_for_mobile(traced_decoder)
traced_decoder_optimized._save_for_lite_interpreter("optimized_decoder_150k.ptl")
|
import torch
from torch.utils.mobile_optimizer import optimize_for_mobile
model = torch.hub.load('facebookresearch/deit:main', 'deit_base_patch16_224', pretrained=True)
quantized_model = torch.quantization.quantize_dynamic(model, qconfig_spec={torch.nn.Linear}, dtype=torch.qint8)
ts_model = torch.jit.script(quantized_model)
optimized_torchscript_model = optimize_for_mobile(ts_model)
optimized_torchscript_model.save("fbdeit.pt")
optimized_torchscript_model._save_for_lite_interpreter("fbdeit.ptl")
|
import torch
import torch.nn.functional as F
from torch import nn
from einops import rearrange
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) + x
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads=8):
super().__init__()
self.heads = heads
self.scale = dim ** -0.5
self.to_qkv = nn.Linear(dim, dim * 3, bias=False)
self.to_out = nn.Linear(dim, dim)
def forward(self, x, mask = None):
b, n, _, h = *x.shape, self.heads
qkv = self.to_qkv(x)
q, k, v = rearrange(qkv, 'b n (qkv h d) -> qkv b h n d', qkv=3, h=h)
dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale
if mask is not None:
mask = F.pad(mask.flatten(1), (1, 0), value = True)
assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions'
mask = mask[:, None, :] * mask[:, :, None]
dots.masked_fill_(~mask, float('-inf'))
del mask
attn = dots.softmax(dim=-1)
out = torch.einsum('bhij,bhjd->bhid', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
out = self.to_out(out)
return out
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, mlp_dim):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Residual(PreNorm(dim, Attention(dim, heads = heads))),
Residual(PreNorm(dim, FeedForward(dim, mlp_dim)))
]))
def forward(self, x, mask=None):
for attn, ff in self.layers:
x = attn(x, mask=mask)
x = ff(x)
return x
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels=3):
super().__init__()
assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size'
num_patches = (image_size // patch_size) ** 2
patch_dim = channels * patch_size ** 2
self.patch_size = patch_size
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.patch_to_embedding = nn.Linear(patch_dim, dim)
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.transformer = Transformer(dim, depth, heads, mlp_dim)
self.to_cls_token = nn.Identity()
self.mlp_head = nn.Sequential(
nn.Linear(dim, mlp_dim),
nn.GELU(),
nn.Linear(mlp_dim, num_classes)
)
def forward(self, img, mask=None):
p = self.patch_size
x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)
x = self.patch_to_embedding(x)
cls_tokens = self.cls_token.expand(img.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding
x = self.transformer(x, mask)
x = self.to_cls_token(x[:, 0])
return self.mlp_head(x)
|
import torch
import torchvision
import time
from vit_pytorch import *
from torch.utils.mobile_optimizer import optimize_for_mobile
torch.manual_seed(42)
DOWNLOAD_PATH = 'data/mnist'
BATCH_SIZE_TRAIN = 100
BATCH_SIZE_TEST = 1000
# 0.1307 and 0.3081 are the mean and std computed on the MNIST training set
transform_mnist = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.1307,), (0.3081,))])
train_set = torchvision.datasets.MNIST(DOWNLOAD_PATH, train=True, download=True,
transform=transform_mnist)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=BATCH_SIZE_TRAIN, shuffle=True)
test_set = torchvision.datasets.MNIST(DOWNLOAD_PATH, train=False, download=True,
transform=transform_mnist)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=BATCH_SIZE_TEST, shuffle=True)
def train_epoch(model, optimizer, data_loader, loss_history):
total_samples = len(data_loader.dataset)
model.train()
for i, (data, target) in enumerate(data_loader):
optimizer.zero_grad()
output = F.log_softmax(model(data), dim=1)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if i % 100 == 0:
print('[' + '{:5}'.format(i * len(data)) + '/' + '{:5}'.format(total_samples) +
' (' + '{:3.0f}'.format(100 * i / len(data_loader)) + '%)] Loss: ' +
'{:6.4f}'.format(loss.item()))
loss_history.append(loss.item())
def evaluate(model, data_loader, loss_history):
model.eval()
total_samples = len(data_loader.dataset)
correct_samples = 0
total_loss = 0
with torch.no_grad():
for data, target in data_loader:
output = F.log_softmax(model(data), dim=1)
loss = F.nll_loss(output, target, reduction='sum')
_, pred = torch.max(output, dim=1)
total_loss += loss.item()
correct_samples += pred.eq(target).sum()
avg_loss = total_loss / total_samples
loss_history.append(avg_loss)
print('\nAverage test loss: ' + '{:.4f}'.format(avg_loss) +
' Accuracy:' + '{:5}'.format(correct_samples) + '/' +
'{:5}'.format(total_samples) + ' (' +
'{:4.2f}'.format(100.0 * correct_samples / total_samples) + '%)\n')
N_EPOCHS = 10
start_time = time.time()
model = ViT(image_size=28, patch_size=7, num_classes=10, channels=1,
dim=64, depth=6, heads=8, mlp_dim=128)
optimizer = torch.optim.Adam(model.parameters(), lr=0.003)
train_loss_history, test_loss_history = [], []
for epoch in range(1, N_EPOCHS + 1):
print('Epoch:', epoch)
train_epoch(model, optimizer, train_loader, train_loss_history)
evaluate(model, test_loader, test_loss_history)
print('Execution time:', '{:5.2f}'.format(time.time() - start_time), 'seconds')
with torch.no_grad():
for data, target in test_loader:
output = F.log_softmax(model(data), dim=1)
loss = F.nll_loss(output, target, reduction='sum')
_, pred = torch.max(output, dim=1)
# the original trained model
torch.save(model, "vit4mnist.pt")
model = torch.load("vit4mnist.pt")
model.eval()
quantized_model = torch.quantization.quantize_dynamic(model, qconfig_spec={torch.nn.Linear}, dtype=torch.qint8)
dummy_input = torch.zeros(1, 1, 28, 28)
ts_model = torch.jit.trace(quantized_model, dummy_input)
optimized_torchscript_model = optimize_for_mobile(ts_model)
# the quantized, scripted, and optimized model
optimized_torchscript_model._save_for_lite_interpreter("ViT4MNIST/vit4mnist.ptl")
|
#!/usr/bin/env python3
import contextlib
import copy
import os
import unittest
from PIL import Image
import torch
from torch.utils.mobile_optimizer import optimize_for_mobile
from d2go.export.api import convert_and_export_predictor
from d2go.export.d2_meta_arch import patch_d2_meta_arch
from d2go.runner import create_runner, GeneralizedRCNNRunner
from d2go.model_zoo import model_zoo
from mobile_cv.common.misc.file_utils import make_temp_directory
patch_d2_meta_arch()
def test_export_torchvision_format():
cfg_name = 'faster_rcnn_fbnetv3a_dsmask_C4.yaml'
pytorch_model = model_zoo.get(cfg_name, trained=True)
from typing import List, Dict
class Wrapper(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
coco_idx_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77,
78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91]
self.coco_idx = torch.tensor(coco_idx_list)
def forward(self, inputs: List[torch.Tensor]):
x = inputs[0].unsqueeze(0) * 255
scale = 320.0 / min(x.shape[-2], x.shape[-1])
x = torch.nn.functional.interpolate(x, scale_factor=scale, mode="bilinear", align_corners=True, recompute_scale_factor=True)
out = self.model(x[0])
res : Dict[str, torch.Tensor] = {}
res["boxes"] = out[0] / scale
res["labels"] = torch.index_select(self.coco_idx, 0, out[1])
res["scores"] = out[2]
return inputs, [res]
size_divisibility = max(pytorch_model.backbone.size_divisibility, 10)
h, w = size_divisibility, size_divisibility * 2
runner = create_runner("d2go.runner.GeneralizedRCNNRunner")
cfg = model_zoo.get_config(cfg_name)
datasets = list(cfg.DATASETS.TRAIN)
data_loader = runner.build_detection_test_loader(cfg, datasets)
predictor_path = convert_and_export_predictor(
cfg,
copy.deepcopy(pytorch_model),
"torchscript_int8@tracing",
'./',
data_loader,
)
orig_model = torch.jit.load(os.path.join(predictor_path, "model.jit"))
wrapped_model = Wrapper(orig_model)
# optionally do a forward
wrapped_model([torch.rand(3, 600, 600)])
scripted_model = torch.jit.script(wrapped_model)
optimized_model = optimize_for_mobile(scripted_model)
optimized_model.save("D2Go/d2go_optimized.pt")
optimized_model._save_for_lite_interpreter("D2Go/d2go_optimized.ptl")
if __name__ == '__main__':
test_export_torchvision_format()
|
import torch
import torchvision
from torch.utils.mobile_optimizer import optimize_for_mobile
model = torchvision.models.quantization.mobilenet_v2(pretrained=True, quantize=True)
model.eval()
example = torch.rand(1, 3, 224, 224)
traced_script_module = torch.jit.trace(model, example)
torchscript_model_optimized = optimize_for_mobile(traced_script_module)
torchscript_model_optimized.save("mobilenet_quantized.pt")
|
#!/usr/bin/env python
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import distutils.command.clean
import os
import shutil
import subprocess
import sys
from pathlib import Path
from setuptools import find_packages, setup
from tools.setup_helpers.extension import CMakeBuild, get_ext_modules
ROOT_DIR = Path(__file__).parent.resolve()
################################################################################
# Parameters parsed from environment
################################################################################
RUN_BUILD_DEP = True
for _, arg in enumerate(sys.argv):
if arg in ["clean", "egg_info", "sdist"]:
RUN_BUILD_DEP = False
def _get_submodule_folders():
git_modules_path = ROOT_DIR / ".gitmodules"
if not os.path.exists(git_modules_path):
return []
with open(git_modules_path) as f:
return [
os.path.join(ROOT_DIR, line.split("=", 1)[1].strip())
for line in f.readlines()
if line.strip().startswith("path")
]
def _check_submodules():
def check_for_files(folder, files):
if not any(os.path.exists(os.path.join(folder, f)) for f in files):
print("Could not find any of {} in {}".format(", ".join(files), folder))
print("Did you run 'git submodule update --init --recursive --jobs 0'?")
sys.exit(1)
def not_exists_or_empty(folder):
return not os.path.exists(folder) or (os.path.isdir(folder) and len(os.listdir(folder)) == 0)
if bool(os.getenv("USE_SYSTEM_LIBS", False)):
return
folders = _get_submodule_folders()
# If none of the submodule folders exists, try to initialize them
if all(not_exists_or_empty(folder) for folder in folders):
try:
import time
print(" --- Trying to initialize submodules")
start = time.time()
subprocess.check_call(["git", "submodule", "update", "--init", "--recursive"], cwd=ROOT_DIR)
end = time.time()
print(f" --- Submodule initialization took {end - start:.2f} sec")
except Exception:
print(" --- Submodule initalization failed")
print("Please run:\n\tgit submodule update --init --recursive --jobs 0")
sys.exit(1)
for folder in folders:
check_for_files(folder, ["CMakeLists.txt", "Makefile", "setup.py", "LICENSE", "LICENSE.md", "LICENSE.txt"])
def _get_version():
with open(os.path.join(ROOT_DIR, "version.txt")) as f:
version = f.readline().strip()
sha = "Unknown"
try:
sha = subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=str(ROOT_DIR)).decode("ascii").strip()
except Exception:
pass
os_build_version = os.getenv("BUILD_VERSION")
if os_build_version:
version = os_build_version
elif sha != "Unknown":
version += "+" + sha[:7]
return version, sha
def _export_version(version, sha):
version_path = ROOT_DIR / "torchdata" / "version.py"
with open(version_path, "w") as f:
f.write(f"__version__ = '{version}'\n")
f.write(f"git_version = {repr(sha)}\n")
def _get_requirements():
req_list = []
with Path("requirements.txt").open("r") as f:
for line in f:
req = line.strip()
if len(req) == 0 or req.startswith("#"):
continue
req_list.append(req)
return req_list
# Use new version of torch on main branch
pytorch_package_dep = "torch>2.0"
if os.getenv("PYTORCH_VERSION"):
pytorch_package_dep = pytorch_package_dep.split(">")[0]
pytorch_package_dep += "==" + os.getenv("PYTORCH_VERSION")
requirements = _get_requirements()
requirements.append(pytorch_package_dep)
class clean(distutils.command.clean.clean):
def run(self):
# Run default behavior first
distutils.command.clean.clean.run(self)
# Remove torchdata extension
def remove_extension(pattern):
for path in (ROOT_DIR / "torchdata").glob(pattern):
print(f"removing extension '{path}'")
path.unlink()
for ext in ["so", "dylib", "pyd"]:
remove_extension("**/*." + ext)
# Remove build directory
build_dirs = [
ROOT_DIR / "build",
]
for path in build_dirs:
if path.exists():
print(f"removing '{path}' (and everything under it)")
shutil.rmtree(str(path), ignore_errors=True)
if __name__ == "__main__":
VERSION, SHA = _get_version()
_export_version(VERSION, SHA)
print("-- Building version " + VERSION)
if RUN_BUILD_DEP:
from tools.gen_pyi import gen_pyi
_check_submodules()
gen_pyi()
setup(
# Metadata
name="torchdata",
version=VERSION,
description="Composable data loading modules for PyTorch",
long_description=Path("README.md").read_text(encoding="utf-8"),
long_description_content_type="text/markdown",
url="https://github.com/pytorch/data",
author="PyTorch Team",
author_email="[email protected]",
license="BSD",
install_requires=requirements,
python_requires=">=3.8",
classifiers=[
"Intended Audience :: Developers",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: BSD License",
"Operating System :: MacOS :: MacOS X",
"Operating System :: Microsoft :: Windows",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: Implementation :: CPython",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
package_data={
"torchdata": [
"datapipes/iter/*.pyi",
"datapipes/map/*.pyi",
],
},
# Package Info
packages=find_packages(exclude=["test*", "examples*", "tools*", "torchdata.csrc*", "build*"]),
zip_safe=False,
# C++ Extension Modules
ext_modules=get_ext_modules(),
cmdclass={
"build_ext": CMakeBuild,
"clean": clean,
},
)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
from pathlib import Path
from typing import Dict, List, Optional, Set
import torch.utils.data.datapipes.gen_pyi as core_gen_pyi
from torch.utils.data.datapipes.gen_pyi import gen_from_template, get_method_definitions
def get_lines_base_file(base_file_path: str, to_skip: Optional[Set[str]] = None):
with open(base_file_path) as f:
lines = f.readlines()
res = []
if to_skip is None:
return lines
for line in lines:
skip_flag = False
for skip_line in to_skip:
if skip_line in line:
skip_flag = True
if not skip_flag:
line = line.replace("\n", "")
res.append(line)
return res
def gen_pyi() -> None:
DATAPIPE_DIR = Path(__file__).parent.parent.resolve() / "torchdata" / "datapipes"
print(f"Generating DataPipe Python interface file in {DATAPIPE_DIR}")
# Base __init__ file
iter_init_base = get_lines_base_file(
os.path.join(DATAPIPE_DIR, "iter/__init__.py"),
{"from torch.utils.data import IterDataPipe", "# Copyright (c) Facebook, Inc. and its affiliates."},
)
map_init_base = get_lines_base_file(
os.path.join(DATAPIPE_DIR, "map/__init__.py"),
{"from torch.utils.data import MapDataPipe", "# Copyright (c) Facebook, Inc. and its affiliates."},
)
# Core Definitions
core_iter_method_definitions = get_method_definitions(
core_gen_pyi.iterDP_file_path,
core_gen_pyi.iterDP_files_to_exclude,
core_gen_pyi.iterDP_deprecated_files,
"IterDataPipe",
core_gen_pyi.iterDP_method_to_special_output_type,
)
core_map_method_definitions = get_method_definitions(
core_gen_pyi.mapDP_file_path,
core_gen_pyi.mapDP_files_to_exclude,
core_gen_pyi.mapDP_deprecated_files,
"MapDataPipe",
core_gen_pyi.mapDP_method_to_special_output_type,
)
# TorchData Definitions
# IterDataPipes
iterDP_file_paths: List[str] = ["iter/load", "iter/transform", "iter/util"]
iterDP_files_to_exclude: Set[str] = {"__init__.py"}
iterDP_deprecated_files: Set[str] = set()
iterDP_method_to_special_output_type: Dict[str, str] = {
"async_map_batches": "IterDataPipe",
"bucketbatch": "IterDataPipe",
"dataframe": "torcharrow.DataFrame",
"end_caching": "IterDataPipe",
"extract": "IterDataPipe",
"random_split": "Union[IterDataPipe, List[IterDataPipe]]",
"read_from_tar": "IterDataPipe",
"read_from_xz": "IterDataPipe",
"read_from_zip": "IterDataPipe",
"round_robin_demux": "List[IterDataPipe]",
"to_map_datapipe": "MapDataPipe",
"unzip": "List[IterDataPipe]",
}
iter_method_name_exclusion: Set[str] = {"def extract", "read_from_tar", "read_from_xz", "read_from_zip"}
td_iter_method_definitions = get_method_definitions(
iterDP_file_paths,
iterDP_files_to_exclude,
iterDP_deprecated_files,
"IterDataPipe",
iterDP_method_to_special_output_type,
root=str(DATAPIPE_DIR),
)
td_iter_method_definitions = [
s for s in td_iter_method_definitions if all(ex not in s for ex in iter_method_name_exclusion)
]
iter_method_definitions = core_iter_method_definitions + td_iter_method_definitions
iter_replacements = [("${init_base}", iter_init_base, 0), ("${IterDataPipeMethods}", iter_method_definitions, 4)]
gen_from_template(
dir=str(DATAPIPE_DIR),
template_name="iter/__init__.pyi.in",
output_name="iter/__init__.pyi",
replacements=iter_replacements,
)
# MapDataPipes
mapDP_file_paths: List[str] = ["map/load", "map/transform", "map/util"]
mapDP_files_to_exclude: Set[str] = {"__init__.py"}
mapDP_deprecated_files: Set[str] = set()
mapDP_method_to_special_output_type: Dict[str, str] = {
"unzip": "List[MapDataPipe]",
"to_iter_datapipe": "IterDataPipe",
}
map_method_name_exclusion: Set[str] = set()
td_map_method_definitions = get_method_definitions(
mapDP_file_paths,
mapDP_files_to_exclude,
mapDP_deprecated_files,
"MapDataPipe",
mapDP_method_to_special_output_type,
root=str(DATAPIPE_DIR),
)
td_map_method_definitions = [
s for s in td_map_method_definitions if all(ex not in s for ex in map_method_name_exclusion)
]
map_method_definitions = core_map_method_definitions + td_map_method_definitions
map_replacements = [("${init_base}", map_init_base, 0), ("${MapDataPipeMethods}", map_method_definitions, 4)]
gen_from_template(
dir=str(DATAPIPE_DIR),
template_name="map/__init__.pyi.in",
output_name="map/__init__.pyi",
replacements=map_replacements,
)
if __name__ == "__main__":
gen_pyi()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# Scrip can be used with
# find -name '*.py' | grep -v third_party | perl -ne'print "python tools/todo.py $_"' | head -n 5 | bash
import configparser
import os
import re
import shutil
import sys
import tempfile
from github import Github # pip install PyGithub
file_name = sys.argv[1]
config = configparser.ConfigParser(allow_no_value=True)
with open(os.path.join(os.path.expanduser("~"), ".ghstackrc")) as stream:
config.read_string(stream.read())
GITHUB_KEY = config["ghstack"]["github_oauth"]
def get_git_branch_hash():
stream = os.popen("git rev-parse origin/main")
return stream.read().rstrip()
def generate_issue_id(id_or_name, title, file_name, line_number):
git_branch_hash = get_git_branch_hash()
# print(file_name, line_number, title, id_or_name)
match = re.match(r"\((\d+)\)", id_or_name)
if match:
return int(match.group(1))
match = re.match(r"\((.*)\)", id_or_name)
name = None
if match:
name = match.group(1)
if name is not None:
owner = f"cc @{name}"
else:
owner = ""
g = Github(GITHUB_KEY)
repo = g.get_repo("pytorch/data")
# label_be = repo.get_label("better-engineering" )
# labels = [label_be]
line_reference = f"https://github.com/pytorch/data/blob/{git_branch_hash}/{file_name}#L{line_number}"
line_reference = line_reference.replace("/./", "/")
body = """
This issue is generated from the TODO line
{line_reference}
{owner}
""".format(
owner=owner,
line_reference=line_reference,
)
title = f"[TODO] {title}"
issue = repo.create_issue(title=title, body=body, labels=[])
print(f"Created issue https://github.com/pytorch/data/issues/{issue.number}")
return issue.number
def update_file(file_name):
try:
f = tempfile.NamedTemporaryFile(delete=False)
shutil.copyfile(file_name, f.name)
with open(f.name) as f_inp:
with open(file_name, "w") as f_out:
for line_number, line in enumerate(f_inp.readlines()):
if not re.search(r"ignore-todo", line, re.IGNORECASE):
match = re.search(r"(.*?)#\s*todo\s*(\([^)]+\)){0,1}:{0,1}(.*)", line, re.IGNORECASE)
if match:
# print(line)
prefix = match.group(1)
text = match.group(3)
issue_id = generate_issue_id(str(match.group(2)), text, file_name, line_number + 1)
line = f"{prefix}# TODO({issue_id}):{text}\n" # ignore-todo
f_out.write(line)
except Exception as e:
shutil.copyfile(f.name, file_name)
raise e
finally:
os.unlink(f.name)
update_file(file_name)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import distutils.sysconfig
import os
import platform
import subprocess
import sys
from pathlib import Path
from setuptools.command.build_ext import build_ext
__all__ = [
"get_ext_modules",
"CMakeBuild",
]
_THIS_DIR = Path(__file__).parent.resolve()
_ROOT_DIR = _THIS_DIR.parent.parent.resolve()
def _get_build(var, default=False):
if var not in os.environ:
return default
val = os.environ.get(var, "0")
trues = ["1", "true", "TRUE", "on", "ON", "yes", "YES"]
falses = ["0", "false", "FALSE", "off", "OFF", "no", "NO"]
if val in trues:
return True
if val not in falses:
print(f"WARNING: Unexpected environment variable value `{var}={val}`. " f"Expected one of {trues + falses}")
return False
_BUILD_S3 = _get_build("BUILD_S3", False)
_USE_SYSTEM_AWS_SDK_CPP = _get_build("USE_SYSTEM_AWS_SDK_CPP", False)
_USE_SYSTEM_PYBIND11 = _get_build("USE_SYSTEM_PYBIND11", False)
_USE_SYSTEM_LIBS = _get_build("USE_SYSTEM_LIBS", False)
try:
# Use the pybind11 from third_party
if not (_USE_SYSTEM_PYBIND11 or _USE_SYSTEM_LIBS):
sys.path.insert(0, str(_ROOT_DIR / "third_party/pybind11/"))
from pybind11.setup_helpers import Pybind11Extension
except ImportError:
from setuptools import Extension as Pybind11Extension
def get_ext_modules():
if _BUILD_S3:
return [Pybind11Extension(name="torchdata._torchdata", sources=[])]
else:
return []
class CMakeBuild(build_ext):
def run(self):
try:
subprocess.check_output(["cmake", "--version"])
except OSError:
raise RuntimeError("CMake is not available.") from None
super().run()
def build_extension(self, ext):
# Because the following `cmake` command will build all of `ext_modules`` at the same time,
# we would like to prevent multiple calls to `cmake`.
# Therefore, we call `cmake` only for `torchdata._torchdata`,
# in case `ext_modules` contains more than one module.
if ext.name != "torchdata._torchdata":
return
extdir = os.path.abspath(os.path.dirname(self.get_ext_fullpath(ext.name)))
# required for auto-detection of auxiliary "native" libs
if not extdir.endswith(os.path.sep):
extdir += os.path.sep
debug = int(os.environ.get("DEBUG", 0)) if self.debug is None else self.debug
cfg = "Debug" if debug else "Release"
cmake_args = [
f"-DCMAKE_BUILD_TYPE={cfg}",
f"-DCMAKE_INSTALL_PREFIX={extdir}",
f"-DCMAKE_LIBRARY_OUTPUT_DIRECTORY={extdir}",
f"-DCMAKE_RUNTIME_OUTPUT_DIRECTORY={extdir}", # For Windows
f"-DPython_INCLUDE_DIR={distutils.sysconfig.get_python_inc()}",
f"-DBUILD_S3:BOOL={'ON' if _BUILD_S3 else 'OFF'}",
f"-DUSE_SYSTEM_AWS_SDK_CPP:BOOL={'ON' if _USE_SYSTEM_AWS_SDK_CPP else 'OFF'}",
f"-DUSE_SYSTEM_PYBIND11:BOOL={'ON' if _USE_SYSTEM_PYBIND11 else 'OFF'}",
f"-DUSE_SYSTEM_LIBS:BOOL={'ON' if _USE_SYSTEM_LIBS else 'OFF'}",
]
build_args = ["--config", cfg]
# Default to Ninja
if "CMAKE_GENERATOR" not in os.environ or platform.system() == "Windows":
cmake_args += ["-GNinja"]
if platform.system() == "Windows":
python_version = sys.version_info
cmake_args += [
"-DCMAKE_C_COMPILER=cl",
"-DCMAKE_CXX_COMPILER=cl",
f"-DPYTHON_VERSION={python_version.major}.{python_version.minor}",
]
# Set CMAKE_BUILD_PARALLEL_LEVEL to control the parallel build level
# across all generators.
if "CMAKE_BUILD_PARALLEL_LEVEL" not in os.environ:
# self.parallel is a Python 3 only way to set parallel jobs by hand
# using -j in the build_ext call, not supported by pip or PyPA-build.
if hasattr(self, "parallel") and self.parallel:
# CMake 3.12+ only.
build_args += [f"-j{self.parallel}"]
if not os.path.exists(self.build_temp):
os.makedirs(self.build_temp)
subprocess.check_call(["cmake", str(_ROOT_DIR)] + cmake_args, cwd=self.build_temp)
subprocess.check_call(["cmake", "--build", "."] + build_args, cwd=self.build_temp)
def get_ext_filename(self, fullname):
ext_filename = super().get_ext_filename(fullname)
ext_filename_parts = ext_filename.split(".")
without_abi = ext_filename_parts[:-2] + ext_filename_parts[-1:]
ext_filename = ".".join(without_abi)
return ext_filename
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import io
import os
import unittest
import expecttest
from torchdata.datapipes.iter import GDriveReader, IterableWrapper, OnlineReader
# This TestCase is created due to the limited quota to access google drive
class TestDataPipePeriod(expecttest.TestCase):
def test_gdrive_iterdatapipe(self):
amazon_review_url = "https://drive.google.com/uc?export=download&id=0Bz8a_Dbh9QhbaW12WVVZS2drcnM"
expected_file_name = "amazon_review_polarity_csv.tar.gz"
expected_MD5_hash = "fe39f8b653cada45afd5792e0f0e8f9b"
query_params = {"auth": ("fake_username", "fake_password"), "allow_redirects": True}
timeout = 120
gdrive_reader_dp = GDriveReader(IterableWrapper([amazon_review_url]), timeout=timeout, **query_params)
# Functional Test: test if the GDrive Reader can download and read properly
reader_dp = gdrive_reader_dp.readlines()
it = iter(reader_dp)
path, line = next(it)
self.assertEqual(expected_file_name, os.path.basename(path))
self.assertTrue(line != b"")
# Reset Test: gdrive_reader_dp has been read, but we reset when calling check_hash()
check_cache_dp = gdrive_reader_dp.check_hash({expected_file_name: expected_MD5_hash}, "md5", rewind=False)
it = iter(check_cache_dp)
path, stream = next(it)
self.assertEqual(expected_file_name, os.path.basename(path))
self.assertTrue(io.BufferedReader, type(stream))
# __len__ Test: returns the length of source DataPipe
source_dp = IterableWrapper([amazon_review_url])
gdrive_dp = GDriveReader(source_dp)
self.assertEqual(1, len(gdrive_dp))
# Error Test: test if the GDrive Reader raises an error when the url is invalid
error_url = "https://drive.google.com/uc?export=download&id=filedoesnotexist"
http_error_dp = GDriveReader(IterableWrapper([error_url]), timeout=timeout)
with self.assertRaisesRegex(
Exception, r"404.+https://drive.google.com/uc\?export=download&id=filedoesnotexist"
):
next(iter(http_error_dp.readlines()))
# Feature skip-error Test: test if the GDrive Reader skips urls causing problems
gdrive_skip_error_dp = GDriveReader(
IterableWrapper([error_url, amazon_review_url]), timeout=timeout, skip_on_error=True
)
reader_dp = gdrive_skip_error_dp.readlines()
with self.assertWarnsRegex(
Warning, r"404.+https://drive.google.com/uc\?export=download&id=filedoesnotexist.+skipping"
):
it = iter(reader_dp)
path, line = next(it)
self.assertEqual(expected_file_name, os.path.basename(path))
self.assertTrue(line != b"")
def test_online_iterdatapipe(self):
license_file_url = "https://raw.githubusercontent.com/pytorch/data/main/LICENSE"
amazon_review_url = "https://drive.google.com/uc?export=download&id=0Bz8a_Dbh9QhbaW12WVVZS2drcnM"
expected_license_file_name = "LICENSE"
expected_amazon_file_name = "amazon_review_polarity_csv.tar.gz"
expected_license_MD5_hash = "bb9675028dd39d2dd2bf71002b93e66c"
expected_amazon_MD5_hash = "fe39f8b653cada45afd5792e0f0e8f9b"
query_params = {"auth": ("fake_username", "fake_password"), "allow_redirects": True}
timeout = 120
file_hash_dict = {
license_file_url: expected_license_MD5_hash,
expected_amazon_file_name: expected_amazon_MD5_hash,
}
# Functional Test: can read from GDrive links
online_reader_dp = OnlineReader(IterableWrapper([amazon_review_url]), timeout=timeout, **query_params)
reader_dp = online_reader_dp.readlines()
it = iter(reader_dp)
path, line = next(it)
self.assertEqual(expected_amazon_file_name, os.path.basename(path))
self.assertTrue(line != b"")
# Functional Test: can read from other links
online_reader_dp = OnlineReader(IterableWrapper([license_file_url]))
reader_dp = online_reader_dp.readlines()
it = iter(reader_dp)
path, line = next(it)
self.assertEqual(expected_license_file_name, os.path.basename(path))
self.assertTrue(line != b"")
# Reset Test: reset online_reader_dp by calling check_hash
check_cache_dp = online_reader_dp.check_hash(file_hash_dict, "md5", rewind=False)
it = iter(check_cache_dp)
path, stream = next(it)
self.assertEqual(expected_license_file_name, os.path.basename(path))
self.assertTrue(io.BufferedReader, type(stream))
# Functional Test: works with multiple URLs of different sources
online_reader_dp = OnlineReader(IterableWrapper([license_file_url, amazon_review_url]))
check_cache_dp = online_reader_dp.check_hash(file_hash_dict, "md5", rewind=False)
it = iter(check_cache_dp)
for expected_file_name, (path, stream) in zip([expected_license_file_name, expected_amazon_file_name], it):
self.assertEqual(expected_file_name, os.path.basename(path))
self.assertTrue(io.BufferedReader, type(stream))
# __len__ Test: returns the length of source DataPipe
self.assertEqual(2, len(online_reader_dp))
# Error Test: test if the Online Reader raises an error when the url is invalid
error_url_http = "https://github.com/pytorch/data/this/url/dont/exist"
online_error_dp = OnlineReader(IterableWrapper([error_url_http]), timeout=timeout)
with self.assertRaisesRegex(Exception, f"404.+{error_url_http}"):
next(iter(online_error_dp.readlines()))
error_url_gdrive = "https://drive.google.com/uc?export=download&id=filedoesnotexist"
online_error_dp = OnlineReader(IterableWrapper([error_url_gdrive]), timeout=timeout)
with self.assertRaisesRegex(
Exception, r"404.+https://drive.google.com/uc\?export=download&id=filedoesnotexist"
):
next(iter(online_error_dp.readlines()))
# Feature skip-error Test: test if the Online Reader skips urls causing problems
online_skip_error_dp = OnlineReader(
IterableWrapper([error_url_http, error_url_gdrive, license_file_url]), timeout=timeout, skip_on_error=True
)
reader_dp = online_skip_error_dp.readlines()
with self.assertWarnsRegex(Warning, f"404.+{error_url_http}.+skipping"):
it = iter(reader_dp)
path, line = next(it)
self.assertEqual(expected_license_file_name, os.path.basename(path))
self.assertTrue(b"BSD" in line)
if __name__ == "__main__":
unittest.main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
from unittest.mock import MagicMock, patch
import expecttest
from torch.testing._internal.common_utils import IS_SANDCASTLE
from torchdata.datapipes.iter import IterableWrapper, S3FileLister
skipIfSandcastle = unittest.skipIf(IS_SANDCASTLE, "Skip for internal testing")
@skipIfSandcastle
@patch("torchdata._torchdata")
class TestS3FileListerIterDataPipe(expecttest.TestCase):
def test_list_files(self, mock_torchdata):
s3handler_mock = MagicMock()
mock_torchdata.S3Handler.return_value = s3handler_mock
s3handler_mock.list_files = MagicMock(
side_effect=[["s3://bucket-name/folder/a.txt", "s3://bucket-name/folder/b.csv"], []]
)
s3_prefixes = IterableWrapper(["s3://bucket-name/folder/"])
dp_s3_urls = S3FileLister(s3_prefixes)
assert list(dp_s3_urls) == ["s3://bucket-name/folder/a.txt", "s3://bucket-name/folder/b.csv"]
def test_list_files_with_filter_mask(self, mock_torchdata):
s3handler_mock = MagicMock()
mock_torchdata.S3Handler.return_value = s3handler_mock
s3handler_mock.list_files = MagicMock(
side_effect=[["s3://bucket-name/folder/a.txt", "s3://bucket-name/folder/b.csv"], []]
)
s3_prefixes = IterableWrapper(["s3://bucket-name/folder/"])
dp_s3_urls = S3FileLister(s3_prefixes, masks="*.csv")
assert list(dp_s3_urls) == ["s3://bucket-name/folder/b.csv"]
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
import unittest
import warnings
import expecttest
from _utils._common_utils_for_test import create_temp_dir, create_temp_files, reset_after_n_next_calls
from torchdata.datapipes.iter import (
FileLister,
FSSpecFileLister,
FSSpecFileOpener,
FSSpecSaver,
IterableWrapper,
IterDataPipe,
)
try:
import fsspec
HAS_FSSPEC = True
except ImportError:
HAS_FSSPEC = False
skipIfNoFSSpec = unittest.skipIf(not HAS_FSSPEC, "no fsspec")
class TestDataPipeFSSpec(expecttest.TestCase):
def setUp(self):
self.temp_dir = create_temp_dir()
self.temp_files = create_temp_files(self.temp_dir)
self.temp_sub_dir = create_temp_dir(self.temp_dir.name)
self.temp_sub_files = create_temp_files(self.temp_sub_dir, 4, False)
self.temp_dir_2 = create_temp_dir()
self.temp_files_2 = create_temp_files(self.temp_dir_2)
self.temp_sub_dir_2 = create_temp_dir(self.temp_dir_2.name)
self.temp_sub_files_2 = create_temp_files(self.temp_sub_dir_2, 4, False)
def tearDown(self):
try:
self.temp_sub_dir.cleanup()
self.temp_dir.cleanup()
self.temp_sub_dir_2.cleanup()
self.temp_dir_2.cleanup()
except Exception as e:
warnings.warn(f"TestDataPipeFSSpec was not able to cleanup temp dir due to {e}")
def _write_text_files(self):
def filepath_fn(name: str) -> str:
return os.path.join(self.temp_dir.name, os.path.basename(name))
name_to_data = {"1.text": b"DATA", "2.text": b"DATA", "3.text": b"DATA"}
source_dp = IterableWrapper(sorted(name_to_data.items()))
saver_dp = source_dp.save_to_disk(filepath_fn=filepath_fn, mode="wb")
list(saver_dp)
@skipIfNoFSSpec
def test_fsspec_file_lister_iterdatapipe(self):
datapipe: IterDataPipe = FSSpecFileLister(root="file://" + self.temp_sub_dir.name)
# check all file paths within sub_folder are listed
for path in datapipe:
self.assertIn(
path.split("://")[1],
{fsspec.implementations.local.make_path_posix(file) for file in self.temp_sub_files},
)
# checks for functional API
datapipe = IterableWrapper(["file://" + self.temp_sub_dir.name])
datapipe = datapipe.list_files_by_fsspec()
for path in datapipe:
self.assertIn(
path.split("://")[1],
{fsspec.implementations.local.make_path_posix(file) for file in self.temp_sub_files},
)
@skipIfNoFSSpec
def test_fsspec_file_lister_iterdatapipe_with_list(self):
datapipe: IterDataPipe = FSSpecFileLister(
root=["file://" + self.temp_sub_dir.name, "file://" + self.temp_sub_dir_2.name]
)
# check all file paths within sub_folder are listed
file_lister = list(map(lambda path: path.split("://")[1], datapipe))
file_lister.sort()
temp_files = list(
map(
lambda file: fsspec.implementations.local.make_path_posix(file),
self.temp_sub_files + self.temp_sub_files_2,
)
)
temp_files.sort()
# check all file paths within sub_folder are listed
self.assertEqual(file_lister, temp_files)
# checks for functional API
datapipe = IterableWrapper(["file://" + self.temp_sub_dir.name, "file://" + self.temp_sub_dir_2.name])
datapipe = datapipe.list_files_by_fsspec()
res = list(map(lambda path: path.split("://")[1], datapipe))
res.sort()
temp_files = list(
map(
lambda file: fsspec.implementations.local.make_path_posix(file),
self.temp_sub_files + self.temp_sub_files_2,
)
)
temp_files.sort()
self.assertEqual(res, temp_files)
@skipIfNoFSSpec
def test_fsspec_file_loader_iterdatapipe(self):
datapipe1 = FSSpecFileLister(root="file://" + self.temp_sub_dir.name)
datapipe2 = FSSpecFileOpener(datapipe1)
datapipe3 = FSSpecFileOpener(datapipe1, kwargs_for_open={"encoding": "cp037"})
# check contents of file match
for _, f in datapipe2:
self.assertEqual(f.read(), "0123456789abcdef")
# Opened with a different encoding, hence NotEqual
for _, f in datapipe3:
self.assertNotEqual(f.read(), "0123456789abcdef")
# Reset Test: Ensure the resulting streams are still readable after the DataPipe is reset/exhausted
self._write_text_files()
lister_dp = FileLister(self.temp_dir.name, "*.text")
fsspec_file_opener_dp = lister_dp.open_files_by_fsspec(mode="rb")
n_elements_before_reset = 2
res_before_reset, res_after_reset = reset_after_n_next_calls(fsspec_file_opener_dp, n_elements_before_reset)
self.assertEqual(2, len(res_before_reset))
self.assertEqual(3, len(res_after_reset))
for _name, stream in res_before_reset:
self.assertEqual(b"DATA", stream.read())
for _name, stream in res_after_reset:
self.assertEqual(b"DATA", stream.read())
@skipIfNoFSSpec
def test_fsspec_saver_iterdatapipe(self):
def filepath_fn(name: str) -> str:
return "file://" + os.path.join(self.temp_dir.name, os.path.basename(name))
# Functional Test: Saving some data
name_to_data = {"1.txt": b"DATA1", "2.txt": b"DATA2", "3.txt": b"DATA3"}
source_dp = IterableWrapper(sorted(name_to_data.items()))
saver_dp = source_dp.save_by_fsspec(filepath_fn=filepath_fn, mode="wb")
res_file_paths = list(saver_dp)
expected_paths = [filepath_fn(name) for name in name_to_data.keys()]
self.assertEqual(expected_paths, res_file_paths)
for name in name_to_data.keys():
p = filepath_fn(name).split("://")[1]
with open(p) as f:
self.assertEqual(name_to_data[name], f.read().encode())
# Reset Test:
saver_dp = FSSpecSaver(source_dp, filepath_fn=filepath_fn, mode="wb")
n_elements_before_reset = 2
res_before_reset, res_after_reset = reset_after_n_next_calls(saver_dp, n_elements_before_reset)
self.assertEqual([filepath_fn("1.txt"), filepath_fn("2.txt")], res_before_reset)
self.assertEqual(expected_paths, res_after_reset)
for name in name_to_data.keys():
p = filepath_fn(name).split("://")[1]
with open(p) as f:
self.assertEqual(name_to_data[name], f.read().encode())
# __len__ Test: returns the length of source DataPipe
self.assertEqual(3, len(saver_dp))
@skipIfNoFSSpec
def test_fsspec_memory_list(self):
fs = fsspec.filesystem("memory")
fs.mkdir("foo")
fs.touch("foo/bar1")
fs.touch("foo/bar2")
datapipe = FSSpecFileLister(root="memory://foo")
self.assertEqual(set(datapipe), {"memory:///foo/bar1", "memory:///foo/bar2"})
datapipe = FSSpecFileLister(root="memory://foo/bar1")
self.assertEqual(set(datapipe), {"memory://foo/bar1"})
@skipIfNoFSSpec
def test_fsspec_memory_load(self):
fs = fsspec.filesystem("memory")
with fs.open("file", "w") as f:
f.write("hello")
with fs.open("file2", "w") as f:
f.write("hello2")
files = ["memory://file", "memory://file2"]
datapipe = FSSpecFileOpener(files)
self.assertEqual([f.read() for _, f in datapipe], ["hello", "hello2"])
@skipIfNoFSSpec
def test_fsspec_memory_save(self):
def filepath_fn(name: str) -> str:
return "memory://" + name
name_to_data = {"1.txt": b"DATA1", "2.txt": b"DATA2"}
source_dp = IterableWrapper(sorted(name_to_data.items()))
saver_dp = FSSpecSaver(source_dp, filepath_fn=filepath_fn, mode="wb")
self.assertEqual(set(saver_dp), {"memory://1.txt", "memory://2.txt"})
if __name__ == "__main__":
unittest.main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
from unittest.mock import patch
import expecttest
from torchdata.datapipes.iter import HuggingFaceHubReader
try:
import datasets
HAS_DATASETS = True
except ImportError:
HAS_DATASETS = False
skipIfNoDatasets = unittest.skipIf(not HAS_DATASETS, "no datasets")
class TestHuggingFaceHubReader(expecttest.TestCase):
@skipIfNoDatasets
@patch("datasets.load_dataset")
def test_huggingface_hubreader(self, mock_load_dataset):
mock_load_dataset.return_value = datasets.Dataset.from_dict(
{
"id": ["7bd227d9-afc9-11e6-aba1-c4b301cdf627", "7bd22905-afc9-11e6-a5dc-c4b301cdf627"],
"package_name": ["com.mantz_it.rfanalyzer"] * 2,
}
)
datapipe = HuggingFaceHubReader("lhoestq/demo1", revision="branch", streaming=False, use_auth_token=True)
iterator = iter(datapipe)
elem = next(iterator)
assert type(elem) is dict
assert elem["id"] == "7bd227d9-afc9-11e6-aba1-c4b301cdf627"
assert elem["package_name"] == "com.mantz_it.rfanalyzer"
mock_load_dataset.assert_called_with(
path="lhoestq/demo1", streaming=False, revision="branch", use_auth_token=True
)
with self.assertRaises(StopIteration):
next(iterator)
next(iterator)
with self.assertRaises(TypeError):
len(datapipe)
if __name__ == "__main__":
unittest.main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import random
import string
import tempfile
import unittest
from torchdata.datapipes.iter import AISFileLister, AISFileLoader
try:
from aistore.client.api import Client
from aistore.client.errors import AISError, ErrBckNotFound
AIS_CLUSTER_ENDPT = "http://localhost:8080"
HAS_AIS = Client(AIS_CLUSTER_ENDPT).cluster().is_aistore_running()
except (ImportError, ConnectionError):
HAS_AIS = False
skipIfNoAIS = unittest.skipIf(not HAS_AIS, "AIS not running or library not installed")
@skipIfNoAIS
class TestAIStoreIODataPipe(unittest.TestCase):
def setUp(self):
# initialize client and create new bucket
self.client = Client(AIS_CLUSTER_ENDPT)
letters = string.ascii_lowercase
self.bck_name = "".join(random.choice(letters) for _ in range(10))
self.client.bucket(self.bck_name).create()
# create temp files
num_objs = 10
# create 10 objects in the `/temp` dir
for i in range(num_objs):
object_body = "test string" * random.randrange(1, 10)
content = object_body.encode("utf-8")
obj_name = f"temp/obj{ i }"
with tempfile.NamedTemporaryFile() as file:
file.write(content)
file.flush()
self.client.bucket(self.bck_name).object(obj_name).put(file.name)
# create 10 objects in the `/`dir
for i in range(num_objs):
object_body = "test string" * random.randrange(1, 10)
content = object_body.encode("utf-8")
obj_name = f"obj{ i }"
with tempfile.NamedTemporaryFile() as file:
file.write(content)
file.flush()
self.client.bucket(self.bck_name).object(obj_name).put(file.name)
def tearDown(self):
# Try to destroy bucket and its items
try:
self.client.bucket(self.bck_name).delete()
except ErrBckNotFound:
pass
def test_ais_io_iterdatapipe(self):
prefixes = [
["ais://" + self.bck_name],
["ais://" + self.bck_name + "/"],
["ais://" + self.bck_name + "/temp/", "ais://" + self.bck_name + "/obj"],
]
# check if the created files exist
for prefix in prefixes:
urls = AISFileLister(url=AIS_CLUSTER_ENDPT, source_datapipe=prefix)
ais_loader = AISFileLoader(url=AIS_CLUSTER_ENDPT, source_datapipe=urls)
with self.assertRaises(TypeError):
len(urls)
self.assertEqual(len(list(urls)), 20)
self.assertEqual(sum(1 for _ in ais_loader), 20)
# check for incorrect prefixes
prefixes = ["ais://asdasd"]
# AISFileLister: Bucket not found
try:
list(AISFileLister(url=AIS_CLUSTER_ENDPT, source_datapipe=prefixes))
except ErrBckNotFound as err:
self.assertEqual(err.status_code, 404)
# AISFileLoader: incorrect inputs
url_list = [[""], ["ais:"], ["ais://"], ["s3:///unkown-bucket"]]
for url in url_list:
with self.assertRaises(AISError):
file_loader = AISFileLoader(url=AIS_CLUSTER_ENDPT, source_datapipe=url)
for _ in file_loader:
pass
if __name__ == "__main__":
unittest.main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
from torchdata.dataloader2.linter import _check_shuffle_before_sharding
from torchdata.datapipes.iter import IterableWrapper, ShardingFilter, Shuffler
def dummy_fn(x):
return x
class LinterTest(unittest.TestCase):
def test_sharding_shuffle(self):
source_dp = IterableWrapper(list(range(20)))
# Single path
dp = source_dp.map(dummy_fn).shuffle()
self.assertTrue(_check_shuffle_before_sharding(dp))
dp = source_dp.map(dummy_fn)
self.assertTrue(_check_shuffle_before_sharding(dp))
dp = source_dp.map(dummy_fn).shuffle().sharding_filter()
self.assertTrue(_check_shuffle_before_sharding(dp))
dp = source_dp.map(dummy_fn).sharding_filter()
self.assertFalse(_check_shuffle_before_sharding(dp))
dp = source_dp.map(dummy_fn).sharding_filter().shuffle()
self.assertFalse(_check_shuffle_before_sharding(dp))
# Multi pathes
def _multi_path_dp_1(shuffle):
s_dp = source_dp.shuffle() if shuffle else source_dp
dp1, dp2 = s_dp.unzip(2)
dp1 = dp1.sharding_filter()
dp2 = dp2.map(dummy_fn).sharding_filter()
dp = dp1.zip(dp2)
return dp
self.assertTrue(_check_shuffle_before_sharding(_multi_path_dp_1(True)))
self.assertFalse(_check_shuffle_before_sharding(_multi_path_dp_1(False)))
def _multi_path_dp_2(shuffle):
s_dp = source_dp.shuffle() if shuffle else source_dp
dp1, dp2 = s_dp.unzip(2)
dp1 = dp1.map(dummy_fn)
dp = dp1.zip(dp2).sharding_filter()
return dp
self.assertTrue(_check_shuffle_before_sharding(_multi_path_dp_2(True)))
self.assertFalse(_check_shuffle_before_sharding(_multi_path_dp_2(False)))
def _multi_path_dp_3(shuffle):
dp1, dp2 = source_dp.unzip(2)
dp1 = dp1.shuffle() if shuffle else dp1
dp1 = dp1.map(dummy_fn).sharding_filter()
dp2 = dp2.shuffle() if shuffle else dp1
dp2 = dp2.sharding_filter()
dp = dp1.zip(dp2).map(dummy_fn)
return dp
self.assertTrue(_check_shuffle_before_sharding(_multi_path_dp_3(True)))
self.assertFalse(_check_shuffle_before_sharding(_multi_path_dp_3(False)))
# Partial paths
dp1, dp2 = source_dp.unzip(2)
dp1 = dp1.shuffle().map(dummy_fn)
dp = dp1.zip(dp2).sharding_filter()
self.assertFalse(_check_shuffle_before_sharding(dp))
if __name__ == "__main__":
unittest.main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
from torchdata.dataloader2.random import SeedGenerator
from torchdata.dataloader2.random._philox import PhiloxEngine
class TestPhilox(unittest.TestCase):
def test_philox_engine_generate(self):
prng = PhiloxEngine()
with self.assertRaisesRegex(AssertionError, "Please provide seed"):
prng.generate()
prng.seed(123)
s0 = [prng.generate() for _ in range(10)]
# Same seed
prng = PhiloxEngine(seed=123)
s1 = [prng.generate() for _ in range(10)]
self.assertEqual(s0, s1)
# Reset
prng.seed(123)
s2 = [prng.generate() for _ in range(10)]
self.assertEqual(s1, s2)
# Different seeds
prng = PhiloxEngine(seed=321)
s3 = [prng.generate() for _ in range(10)]
self.assertNotEqual(s0, s3)
def test_philox_engine_spawn(self):
prng = PhiloxEngine()
with self.assertRaisesRegex(AssertionError, "Expected a non-negative value"):
prng.spawn(-1)
with self.assertRaisesRegex(AssertionError, "Please provide seed"):
prng.spawn(0)
prng.seed(123)
s0 = [prng.spawn(i)._seed for i in range(10)]
# Same seed
prng = PhiloxEngine(seed=123)
s1 = [prng.spawn(i)._seed for i in range(10)]
self.assertEqual(s0, s1)
# Generate after spawn
sprng1 = prng.spawn(1)
sprng2 = prng.spawn(1)
ss1 = [sprng1.generate() for _ in range(10)]
ss2 = [sprng2.generate() for _ in range(10)]
self.assertEqual(ss1, ss2)
sprng3 = prng.spawn(2)
ss3 = [sprng3.generate() for _ in range(10)]
self.assertNotEqual(ss1, ss3)
# Reset
prng.seed(123)
s2 = [prng.spawn(i)._seed for i in range(10)]
self.assertEqual(s1, s2)
# Different seeds
prng = PhiloxEngine(seed=321)
s3 = [prng.spawn(i)._seed for i in range(10)]
self.assertNotEqual(s0, s3)
class TestSeedGenerator(unittest.TestCase):
def test_seed_generator_generate(self):
# Generate seeds
sg = SeedGenerator(123)
s0 = [sg.generate_seed() for _ in range(10)]
# Reset
sg.seed(123)
s1 = [sg.generate_seed() for _ in range(10)]
self.assertEqual(s0, s1)
# Different Seeds
sg.seed(321)
s2 = [sg.generate_seed() for _ in range(10)]
self.assertNotEqual(s0, s2)
def test_seed_generator_spawn(self):
sg = SeedGenerator(123)
# Spawn new Seed Generators
sg1 = sg.spawn(1)
sg2 = sg.spawn(2)
for _ in range(10):
self.assertNotEqual(sg1.generate_seed(), sg2.generate_seed())
# Generate shared seeds
self.assertEqual(sg1.generate_shared_seed(), sg2.generate_shared_seed())
sg1_1 = sg.spawn(1)
sg1_2 = sg.spawn(1)
for _ in range(10):
self.assertEqual(sg1_1.generate_seed(), sg1_2.generate_seed())
if __name__ == "__main__":
unittest.main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import asyncio
import io
import itertools
import pickle
import unittest
import warnings
from collections import defaultdict
from functools import partial
from typing import Dict, NamedTuple
import expecttest
import torch
import torchdata
from _utils._common_utils_for_test import IDP_NoLen, reset_after_n_next_calls
from torch.testing._internal.common_utils import suppress_warnings
from torch.utils.data.datapipes.utils.snapshot import _simple_graph_snapshot_restoration
from torchdata.datapipes.iter import (
BucketBatcher,
Cycler,
Header,
IndexAdder,
InMemoryCacheHolder,
IterableWrapper,
IterDataPipe,
IterKeyZipper,
LineReader,
MapKeyZipper,
MaxTokenBucketizer,
ParagraphAggregator,
Repeater,
Rows2Columnar,
SampleMultiplexer,
ShardExpander,
UnZipper,
)
from torchdata.datapipes.map import MapDataPipe, SequenceWrapper
skipIfNoCUDA = unittest.skipIf(not torch.cuda.is_available(), "CUDA is not available")
def test_torchdata_pytorch_consistency() -> None:
def extract_datapipe_names(module):
return {
name
for name, dp_type in module.__dict__.items()
if not name.startswith("_") and isinstance(dp_type, type) and issubclass(dp_type, IterDataPipe)
}
pytorch_datapipes = extract_datapipe_names(torch.utils.data.datapipes.iter)
torchdata_datapipes = extract_datapipe_names(torchdata.datapipes.iter)
missing_datapipes = pytorch_datapipes - torchdata_datapipes
deprecated_datapipes = {"FileLoader"}
for dp in deprecated_datapipes:
if dp in missing_datapipes:
missing_datapipes.remove("FileLoader")
if any(missing_datapipes):
msg = (
"The following datapipes are exposed under `torch.utils.data.datapipes.iter`, "
"but not under `torchdata.datapipes.iter`:\n"
)
raise AssertionError(msg + "\n".join(sorted(missing_datapipes)))
def _convert_to_tensor(data):
if isinstance(data, dict):
return {k: _convert_to_tensor(v) for k, v in data.items()}
elif isinstance(data, list):
return [_convert_to_tensor(v) for v in data]
return torch.tensor(data)
async def _async_mul_ten(x):
await asyncio.sleep(0.1)
return x * 10
async def _async_x_mul_y(x, y):
await asyncio.sleep(0.1)
return x * y
class NamedTensors(NamedTuple):
x: torch.Tensor
y: torch.Tensor
class TestIterDataPipe(expecttest.TestCase):
def test_in_memory_cache_holder_iterdatapipe(self) -> None:
source_dp = IterableWrapper(range(10))
cache_dp = source_dp.in_memory_cache(size=5)
# Functional Test: Cache DP should just return the data without changing the values
res1 = list(cache_dp)
self.assertEqual(list(range(10)), res1)
# Functional Test: Ensure the objects are the same ones from source DataPipe
res1 = list(cache_dp)
res2 = list(cache_dp)
self.assertTrue(id(source) == id(cache) for source, cache in zip(source_dp, res1))
self.assertTrue(id(source) == id(cache) for source, cache in zip(source_dp, res2))
# TODO(122): Figure out a way to consistently test caching when size is in megabytes
# Reset Test: reset the DataPipe after reading part of it
cache_dp = InMemoryCacheHolder(source_dp, size=5)
n_elements_before_reset = 5
res_before_reset, res_after_reset = reset_after_n_next_calls(cache_dp, n_elements_before_reset)
self.assertEqual(list(range(5)), res_before_reset)
self.assertEqual(list(range(10)), res_after_reset)
# __len__ Test: inherits length from source_dp
self.assertEqual(10, len(cache_dp))
# __len__ Test: source_dp has no len and cache is not yet loaded
source_dp_no_len = IDP_NoLen(range(10))
cache_dp = InMemoryCacheHolder(source_dp_no_len, size=5)
with self.assertRaisesRegex(TypeError, "doesn't have valid length until the cache is loaded"):
len(cache_dp)
# __len__ Test: source_dp has no len but we still can calculate after cache is loaded
list(cache_dp)
self.assertEqual(10, len(cache_dp))
def test_iter_key_zipper_iterdatapipe(self) -> None:
source_dp = IterableWrapper(range(10))
ref_dp = IterableWrapper(range(20))
ref_dp2 = IterableWrapper(range(20))
# Functional Test: Output should be a zip list of tuple
zip_dp = source_dp.zip_with_iter(
ref_datapipe=ref_dp, key_fn=lambda x: x, ref_key_fn=lambda x: x, keep_key=False, buffer_size=100
)
self.assertEqual([(i, i) for i in range(10)], list(zip_dp))
# Functional Test: keep_key=True, and key should show up as the first element
zip_dp_w_key = source_dp.zip_with_iter(
ref_datapipe=ref_dp2, key_fn=lambda x: x, ref_key_fn=lambda x: x, keep_key=True, buffer_size=10
)
self.assertEqual([(i, (i, i)) for i in range(10)], list(zip_dp_w_key))
# Functional Test: using a different merge function
def merge_to_string(item1, item2):
return f"{item1},{item2}"
zip_dp_w_str_merge = source_dp.zip_with_iter(
ref_datapipe=ref_dp, key_fn=lambda x: x, ref_key_fn=lambda x: x, buffer_size=10, merge_fn=merge_to_string
)
self.assertEqual([f"{i},{i}" for i in range(10)], list(zip_dp_w_str_merge))
# Functional Test: using a different merge function and keep_key=True
zip_dp_w_key_str_merge = source_dp.zip_with_iter(
ref_datapipe=ref_dp,
key_fn=lambda x: x,
ref_key_fn=lambda x: x,
keep_key=True,
buffer_size=10,
merge_fn=merge_to_string,
)
self.assertEqual([(i, f"{i},{i}") for i in range(10)], list(zip_dp_w_key_str_merge))
# Functional Test: testing nested zipping
zip_dp = source_dp.zip_with_iter(
ref_datapipe=ref_dp, key_fn=lambda x: x, ref_key_fn=lambda x: x, keep_key=False, buffer_size=100
)
# Without a custom merge function, there will be nested tuples
zip_dp2 = zip_dp.zip_with_iter(
ref_datapipe=ref_dp2, key_fn=lambda x: x[0], ref_key_fn=lambda x: x, keep_key=False, buffer_size=100
)
self.assertEqual([((i, i), i) for i in range(10)], list(zip_dp2))
# With a custom merge function, nesting can be prevented
zip_dp2_w_merge = zip_dp.zip_with_iter(
ref_datapipe=ref_dp2,
key_fn=lambda x: x[0],
ref_key_fn=lambda x: x,
keep_key=False,
buffer_size=100,
merge_fn=lambda x, y: list(x) + [y],
)
self.assertEqual([[i, i, i] for i in range(10)], list(zip_dp2_w_merge))
# Functional Test: element is in source but missing in reference
ref_dp_missing = IterableWrapper(range(1, 10))
zip_dp = source_dp.zip_with_iter(
ref_datapipe=ref_dp_missing, key_fn=lambda x: x, ref_key_fn=lambda x: x, keep_key=False, buffer_size=100
)
with self.assertRaisesRegex(BufferError, r"No matching key can be found"):
list(zip_dp)
# Functional Test: Buffer is not large enough, hence, element can't be found and raises error
ref_dp_end = IterableWrapper(list(range(1, 10)) + [0])
zip_dp = source_dp.zip_with_iter(
ref_datapipe=ref_dp_end, key_fn=lambda x: x, ref_key_fn=lambda x: x, keep_key=False, buffer_size=5
)
it = iter(zip_dp)
with warnings.catch_warnings(record=True) as wa:
# In order to find '0' at the end, the buffer is filled, hence the warning
# and ref_dp is fully traversed
self.assertEqual(
(
0,
0,
),
next(it),
)
self.assertEqual(len(wa), 1)
self.assertRegex(str(wa[0].message), r"Buffer reaches the upper limit")
with self.assertRaisesRegex(BufferError, r"No matching key can be found"):
# '1' cannot be find because the value was thrown out when buffer was filled
next(it)
# Functional Test: Buffer is just big enough
zip_dp = source_dp.zip_with_iter(
ref_datapipe=ref_dp_end, key_fn=lambda x: x, ref_key_fn=lambda x: x, keep_key=False, buffer_size=10
)
self.assertEqual([(i, i) for i in range(10)], list(zip_dp))
# Reset Test: reset the DataPipe after reading part of it
zip_dp = IterKeyZipper(
source_datapipe=source_dp,
ref_datapipe=ref_dp,
key_fn=lambda x: x,
ref_key_fn=lambda x: x,
keep_key=False,
buffer_size=10,
)
n_elements_before_reset = 5
res_before_reset, res_after_reset = reset_after_n_next_calls(zip_dp, n_elements_before_reset)
self.assertEqual([(i, i) for i in range(5)], res_before_reset)
self.assertEqual([(i, i) for i in range(10)], res_after_reset)
# __len__ Test: inherits length from source_dp
self.assertEqual(10, len(zip_dp))
def test_map_key_zipper_datapipe(self) -> None:
source_dp = IterableWrapper(range(10))
map_dp = SequenceWrapper(["even", "odd"])
# Functional Test: ensure the hash join is working and return tuple by default
def odd_even(i: int) -> int:
return i % 2
result_dp = source_dp.zip_with_map(map_dp, odd_even)
def odd_even_string(i: int) -> str:
return "odd" if i % 2 else "even"
expected_res = [(i, odd_even_string(i)) for i in range(10)]
self.assertEqual(expected_res, list(result_dp))
# Functional Test: ensure that a custom merge function works
def custom_merge(a, b):
return f"{a} is a {b} number."
result_dp = source_dp.zip_with_map(map_dp, odd_even, custom_merge)
expected_res2 = [f"{i} is a {odd_even_string(i)} number." for i in range(10)]
self.assertEqual(expected_res2, list(result_dp))
# Functional Test: raises error when key is invalid
def odd_even_bug(i: int) -> int:
return 2 if i == 0 else i % 2
result_dp = MapKeyZipper(source_dp, map_dp, odd_even_bug)
it = iter(result_dp)
with self.assertRaisesRegex(KeyError, "is not a valid key in the given MapDataPipe"):
next(it)
# Functional test: ensure that keep_key option works
result_dp = source_dp.zip_with_map(map_dp, odd_even, keep_key=True)
expected_res_keep_key = [(key, (i, odd_even_string(i))) for i, key in zip(range(10), [0, 1] * 5)]
self.assertEqual(expected_res_keep_key, list(result_dp))
# Reset Test:
n_elements_before_reset = 4
result_dp = source_dp.zip_with_map(map_dp, odd_even)
res_before_reset, res_after_reset = reset_after_n_next_calls(result_dp, n_elements_before_reset)
self.assertEqual(expected_res[:n_elements_before_reset], res_before_reset)
self.assertEqual(expected_res, res_after_reset)
# __len__ Test: returns the length of source DataPipe
result_dp = source_dp.zip_with_map(map_dp, odd_even)
self.assertEqual(len(source_dp), len(result_dp))
def test_prefetcher_iterdatapipe(self) -> None:
source_dp = IterableWrapper(range(5000))
prefetched_dp = source_dp.prefetch(10)
# check if early termination resets child thread properly
for _, _ in zip(range(100), prefetched_dp):
pass
expected = list(source_dp)
actual = list(prefetched_dp)
self.assertEqual(expected, actual)
# __len__ Test: returns the same length as source
self.assertEqual(len(source_dp), len(prefetched_dp))
def test_repeater_iterdatapipe(self) -> None:
import itertools
source_dp = IterableWrapper(range(5))
# Functional Test: repeat for correct number of times
repeater_dp = source_dp.repeat(3)
self.assertEqual(
list(itertools.chain.from_iterable(itertools.repeat(x, 3) for x in range(5))), list(repeater_dp)
)
# Functional Test: `times` must be > 1
with self.assertRaisesRegex(ValueError, "The number of repetition must be > 1"):
source_dp.repeat(1)
# Reset Test:
repeater_dp = Repeater(source_dp, times=2)
n_elements_before_reset = 4
res_before_reset, res_after_reset = reset_after_n_next_calls(repeater_dp, n_elements_before_reset)
self.assertEqual([0, 0, 1, 1], res_before_reset)
self.assertEqual(list(itertools.chain.from_iterable(itertools.repeat(x, 2) for x in range(5))), res_after_reset)
# __len__ Test: returns correct length
self.assertEqual(10, len(repeater_dp))
def test_cycler_iterdatapipe(self) -> None:
source_dp = IterableWrapper(range(5))
# Functional Test: cycle for finite number of times and ends
cycler_dp = source_dp.cycle(3)
self.assertEqual(list(range(5)) * 3, list(cycler_dp))
# Functional Test: cycle for indefinitely
cycler_dp = source_dp.cycle()
it = iter(cycler_dp)
for expected_val in list(range(5)) * 10:
self.assertEqual(expected_val, next(it))
# Functional Test: zero is allowed but immediately triggers StopIteration
cycler_dp = source_dp.cycle(0)
self.assertEqual([], list(cycler_dp))
# Functional Test: negative value is not allowed
with self.assertRaisesRegex(ValueError, "Expected non-negative count"):
source_dp.cycle(-1)
# Reset Test:
cycler_dp = Cycler(source_dp, count=2)
n_elements_before_reset = 4
res_before_reset, res_after_reset = reset_after_n_next_calls(cycler_dp, n_elements_before_reset)
self.assertEqual(list(range(4)), res_before_reset)
self.assertEqual(list(range(5)) * 2, res_after_reset)
# __len__ Test: returns length when count is not None
self.assertEqual(10, len(cycler_dp))
# __len__ Test: inherits length from source_dp
cycler_dp = Cycler(source_dp)
with self.assertRaisesRegex(TypeError, "instance cycles forever, and therefore doesn't have valid length"):
len(cycler_dp)
def test_header_iterdatapipe(self) -> None:
# Functional Test: ensure the limit is enforced
source_dp = IterableWrapper(range(20))
header_dp = source_dp.header(5)
self.assertEqual(list(range(5)), list(header_dp))
# Functional Test: ensure it works when the source has less elements than the limit
source_dp = IterableWrapper(range(5))
header_dp = source_dp.header(100)
self.assertEqual(list(range(5)), list(header_dp))
# Functional Test: ensure the source is not modified if limit is set to None
source_dp = IterableWrapper(range(5))
header_dp = source_dp.header(None)
self.assertEqual(list(range(5)), list(header_dp))
# Reset Test:
source_dp = IterableWrapper(range(20))
header_dp = Header(source_dp, 5)
n_elements_before_reset = 2
res_before_reset, res_after_reset = reset_after_n_next_calls(header_dp, n_elements_before_reset)
self.assertEqual(list(range(2)), res_before_reset)
self.assertEqual(list(range(5)), res_after_reset)
self.assertEqual(list(range(5)), list(header_dp))
# __len__ Test: returns the limit when it is less than the length of source
self.assertEqual(5, len(header_dp))
# __len__ Test: returns the length of source when it is less than the limit
header_dp = source_dp.header(30)
self.assertEqual(20, len(header_dp))
# __len__ Test: returns the length of source when limit is set to None
header_dp = source_dp.header(None)
self.assertEqual(20, len(header_dp))
# __len__ Test: returns limit if source doesn't have length
source_dp_NoLen = IDP_NoLen(list(range(20)))
header_dp = source_dp_NoLen.header(30)
with warnings.catch_warnings(record=True) as wa:
self.assertEqual(30, len(header_dp))
self.assertEqual(len(wa), 1)
self.assertRegex(
str(wa[0].message), r"length of this HeaderIterDataPipe is inferred to be equal to its limit"
)
# __len__ Test: raises TypeError if source doesn't have length and limit is set to None
header_dp = source_dp_NoLen.header(None)
with self.assertRaisesRegex(TypeError, "The length of this HeaderIterDataPipe cannot be determined."):
len(header_dp)
# __len__ Test: returns limit if source doesn't have length, even when it has been iterated through once
header_dp = source_dp_NoLen.header(30)
for _ in header_dp:
pass
self.assertEqual(30, len(header_dp))
def test_enumerator_iterdatapipe(self) -> None:
letters = "abcde"
source_dp = IterableWrapper(letters)
enum_dp = source_dp.enumerate()
# Functional Test: ensure that the correct index value is added to each element (tuple)
self.assertEqual([(0, "a"), (1, "b"), (2, "c"), (3, "d"), (4, "e")], list(enum_dp))
# Functional Test: start index from non-zero
enum_dp = source_dp.enumerate(starting_index=10)
self.assertEqual([(10, "a"), (11, "b"), (12, "c"), (13, "d"), (14, "e")], list(enum_dp))
# Reset Test:
n_elements_before_reset = 2
res_before_reset, res_after_reset = reset_after_n_next_calls(enum_dp, n_elements_before_reset)
self.assertEqual([(10, "a"), (11, "b")], res_before_reset)
self.assertEqual([(10, "a"), (11, "b"), (12, "c"), (13, "d"), (14, "e")], res_after_reset)
# __len__ Test: returns length of source DataPipe
self.assertEqual(5, len(enum_dp))
def test_index_adder_iterdatapipe(self) -> None:
letters = "abcdefg"
source_dp = IterableWrapper([{i: i} for i in letters])
index_adder_dp = source_dp.add_index()
it = iter(index_adder_dp)
def dict_content_test_helper(iterator):
for i, curr_dict in enumerate(iterator):
self.assertEqual(i, curr_dict["index"])
self.assertTrue(letters[i] in curr_dict)
# Functional Test: ensure that the correct index value is added to each element (dict)
dict_content_test_helper(it)
# Functional Test: raises error when the elements of source_dp is not of type Dict
source_dp = IterableWrapper(range(10))
index_adder_dp = source_dp.add_index()
it = iter(index_adder_dp)
with self.assertRaisesRegex(NotImplementedError, "We only support adding index to row or batch in dict type"):
next(it)
# Reset Test
source_dp = IterableWrapper([{i: i} for i in "abcdefg"])
index_adder_dp = IndexAdder(source_dp)
n_elements_before_reset = 2
res_before_reset, res_after_reset = reset_after_n_next_calls(index_adder_dp, n_elements_before_reset)
dict_content_test_helper(iter(res_before_reset))
dict_content_test_helper(iter(res_after_reset))
# __len__ Test: returns length of source DataPipe
self.assertEqual(7, len(index_adder_dp))
def test_line_reader_iterdatapipe(self) -> None:
text1 = "Line1\nLine2"
text2 = "Line2,1\r\nLine2,2\r\nLine2,3"
# Functional Test: read lines correctly
source_dp = IterableWrapper([("file1", io.StringIO(text1)), ("file2", io.StringIO(text2))])
line_reader_dp = source_dp.readlines()
expected_result = [("file1", line) for line in text1.splitlines()] + [
("file2", line) for line in text2.splitlines()
]
self.assertEqual(expected_result, list(line_reader_dp))
# Functional Test: strip new lines for bytes
source_dp = IterableWrapper(
[("file1", io.BytesIO(text1.encode("utf-8"))), ("file2", io.BytesIO(text2.encode("utf-8")))]
)
line_reader_dp = source_dp.readlines()
expected_result_bytes = [("file1", line.encode("utf-8")) for line in text1.splitlines()] + [
("file2", line.encode("utf-8")) for line in text2.splitlines()
]
self.assertEqual(expected_result_bytes, list(line_reader_dp))
# Functional Test: do not strip new lines
source_dp = IterableWrapper([("file1", io.StringIO(text1)), ("file2", io.StringIO(text2))])
line_reader_dp = source_dp.readlines(strip_newline=False)
expected_result = [
("file1", "Line1\n"),
("file1", "Line2"),
("file2", "Line2,1\r\n"),
("file2", "Line2,2\r\n"),
("file2", "Line2,3"),
]
self.assertEqual(expected_result, list(line_reader_dp))
# Reset Test:
source_dp = IterableWrapper([("file1", io.StringIO(text1)), ("file2", io.StringIO(text2))])
line_reader_dp = LineReader(source_dp, strip_newline=False)
n_elements_before_reset = 2
res_before_reset, res_after_reset = reset_after_n_next_calls(line_reader_dp, n_elements_before_reset)
self.assertEqual(expected_result[:n_elements_before_reset], res_before_reset)
self.assertEqual(expected_result, res_after_reset)
# __len__ Test: length isn't implemented since it cannot be known ahead of time
with self.assertRaisesRegex(TypeError, "has no len"):
len(line_reader_dp)
def test_paragraph_aggregator_iterdatapipe(self) -> None:
# Functional Test: aggregate lines correctly
source_dp = IterableWrapper(
[("file1", "Line1"), ("file1", "Line2"), ("file2", "Line2,1"), ("file2", "Line2,2"), ("file2", "Line2,3")]
)
para_agg_dp = source_dp.lines_to_paragraphs()
self.assertEqual([("file1", "Line1\nLine2"), ("file2", "Line2,1\nLine2,2\nLine2,3")], list(para_agg_dp))
# Functional Test: aggregate lines correctly with different joiner
para_agg_dp = source_dp.lines_to_paragraphs(joiner=lambda ls: " ".join(ls))
self.assertEqual([("file1", "Line1 Line2"), ("file2", "Line2,1 Line2,2 Line2,3")], list(para_agg_dp))
# Reset Test: each yield is for a single file
para_agg_dp = ParagraphAggregator(source_dp)
n_elements_before_reset = 1
res_before_reset, res_after_reset = reset_after_n_next_calls(para_agg_dp, n_elements_before_reset)
self.assertEqual([("file1", "Line1\nLine2")], res_before_reset)
self.assertEqual([("file1", "Line1\nLine2"), ("file2", "Line2,1\nLine2,2\nLine2,3")], res_after_reset)
# __len__ Test: length isn't implemented since it cannot be known ahead of time
with self.assertRaisesRegex(TypeError, "has no len"):
len(para_agg_dp)
def test_rows_to_columnar_iterdatapipe(self) -> None:
# Functional Test: working with DataPipe with dict
column_names_dict = {"a", "b", "c"}
source_dp = IterableWrapper(
[
[{l: i for i, l in enumerate("abc")}, {l: i * 10 for i, l in enumerate("abc")}],
[{l: i + 100 for i, l in enumerate("abc")}, {l: (i + 100) * 10 for i, l in enumerate("abc")}],
]
)
result_dp = source_dp.rows2columnar(column_names_dict)
batch1 = defaultdict(list, {"a": [0, 0], "b": [1, 10], "c": [2, 20]})
batch2 = defaultdict(list, {"a": [100, 1000], "b": [101, 1010], "c": [102, 1020]})
expected_output = [batch1, batch2]
self.assertEqual(expected_output, list(result_dp))
# Functional Test: working with DataPipe with list
column_names_list = ["a", "b", "c"]
source_dp = IterableWrapper(
[
[[i for i, _ in enumerate("abc")], [i * 10 for i, _ in enumerate("abc")]],
[[i + 100 for i, _ in enumerate("abc")], [(i + 100) * 10 for i, _ in enumerate("abc")]],
]
)
result_dp = source_dp.rows2columnar(column_names_list)
self.assertEqual(expected_output, list(result_dp))
# Reset Test:
result_dp = Rows2Columnar(source_dp, column_names_list)
n_elements_before_reset = 1
res_before_reset, res_after_reset = reset_after_n_next_calls(result_dp, n_elements_before_reset)
self.assertEqual([expected_output[0]], res_before_reset)
self.assertEqual(expected_output, res_after_reset)
# __len__ Test: returns length of source DataPipe
self.assertEqual(2, len(result_dp))
def test_sample_multiplexer_iterdatapipe(self) -> None:
# Functional Test: yields all values from the sources
source_dp1 = IterableWrapper([0] * 10)
source_dp2 = IterableWrapper([1] * 10)
d: Dict[IterDataPipe, float] = {source_dp1: 99999999, source_dp2: 0.0000001}
sample_mul_dp = SampleMultiplexer(pipes_to_weights_dict=d, seed=0)
result = list(sample_mul_dp)
self.assertEqual([0] * 10 + [1] * 10, result)
# Functional Test: raises error for empty dict
with self.assertRaisesRegex(ValueError, "Empty dictionary"):
SampleMultiplexer(pipes_to_weights_dict={}, seed=0) # type: ignore[arg-type]
# Functional Test: raises error for negative or zero weight
d = {source_dp1: 99999999, source_dp2: 0}
with self.assertRaisesRegex(ValueError, "Expecting a positive and non-zero weight"):
SampleMultiplexer(pipes_to_weights_dict=d, seed=0)
# Reset Test
d = {source_dp1: 99999999, source_dp2: 0.0000001}
sample_mul_dp = SampleMultiplexer(pipes_to_weights_dict=d, seed=0)
n_elements_before_reset = 5
res_before_reset, res_after_reset = reset_after_n_next_calls(sample_mul_dp, n_elements_before_reset)
self.assertEqual([0] * n_elements_before_reset, res_before_reset)
self.assertEqual([0] * 10 + [1] * 10, res_after_reset)
# __len__ Test: returns the sum of the lengths of the sources
self.assertEqual(20, len(sample_mul_dp))
def test_in_batch_shuffler_iterdatapipe(self):
input_dp = IterableWrapper(list(range(23))).batch(3)
expected = list(input_dp)
# Functional Test: No seed
shuffler_dp = input_dp.in_batch_shuffle()
for exp, res in zip(expected, shuffler_dp):
self.assertEqual(sorted(res), exp)
# Functional Test: With global seed
torch.manual_seed(123)
res = list(shuffler_dp)
torch.manual_seed(123)
self.assertEqual(list(shuffler_dp), res)
# Functional Test: Set seed
shuffler_dp = input_dp.in_batch_shuffle().set_seed(123)
res = list(shuffler_dp)
shuffler_dp.set_seed(123)
self.assertEqual(list(shuffler_dp), res)
# Functional Test: deactivate shuffling via set_shuffle
unshuffled_dp = shuffler_dp.set_shuffle(False)
self.assertEqual(list(unshuffled_dp), expected)
# Reset Test:
shuffler_dp = input_dp.in_batch_shuffle()
n_elements_before_reset = 5
res_before_reset, res_after_reset = reset_after_n_next_calls(shuffler_dp, n_elements_before_reset)
self.assertEqual(5, len(res_before_reset))
for exp, res in zip(expected, res_before_reset):
self.assertEqual(sorted(res), exp)
for exp, res in zip(expected, res_after_reset):
self.assertEqual(sorted(res), exp)
# __len__ Test: returns the length of the input DataPipe
shuffler_dp = input_dp.in_batch_shuffle()
self.assertEqual(8, len(shuffler_dp))
# Serialization Test
from torch.utils.data.datapipes._hook_iterator import _SnapshotState
shuffler_dp = input_dp.in_batch_shuffle()
it = iter(shuffler_dp)
for _ in range(2):
next(it)
shuffler_dp_copy = pickle.loads(pickle.dumps(shuffler_dp))
_simple_graph_snapshot_restoration(shuffler_dp_copy.datapipe, shuffler_dp.datapipe._number_of_samples_yielded)
exp = list(it)
shuffler_dp_copy._snapshot_state = _SnapshotState.Restored
self.assertEqual(exp, list(shuffler_dp_copy))
def test_bucket_batcher_iterdatapipe(self) -> None:
source_dp = IterableWrapper(range(10))
# Functional Test: drop last reduces length
batch_dp = source_dp.bucketbatch(
batch_size=3, drop_last=True, batch_num=100, bucket_num=1, use_in_batch_shuffle=True
)
self.assertEqual(9, len(list(batch_dp.unbatch())))
# Functional Test: drop last is False preserves length
batch_dp = source_dp.bucketbatch(
batch_size=3, drop_last=False, batch_num=100, bucket_num=1, use_in_batch_shuffle=False
)
self.assertEqual(10, len(list(batch_dp.unbatch())))
def _return_self(x):
return x
# Functional Test: using sort_key, with in_batch_shuffle
batch_dp = source_dp.bucketbatch(
batch_size=3, drop_last=True, batch_num=100, bucket_num=1, use_in_batch_shuffle=True, sort_key=_return_self
)
# bucket_num = 1 means there will be no shuffling if a sort key is given
self.assertEqual([[0, 1, 2], [3, 4, 5], [6, 7, 8]], list(batch_dp))
self.assertEqual(9, len(list(batch_dp.unbatch())))
# Functional Test: using sort_key, without use_in_batch_shuffle
batch_dp = source_dp.bucketbatch(
batch_size=3, drop_last=True, batch_num=100, bucket_num=2, use_in_batch_shuffle=False, sort_key=_return_self
)
self.assertEqual(9, len(list(batch_dp.unbatch())))
# Reset Test:
batch_dp = BucketBatcher(
source_dp,
batch_size=3,
drop_last=True,
batch_num=100,
bucket_num=2,
use_in_batch_shuffle=False,
sort_key=_return_self,
)
n_elements_before_reset = 2
res_before_reset, res_after_reset = reset_after_n_next_calls(batch_dp, n_elements_before_reset)
self.assertEqual(n_elements_before_reset, len(res_before_reset))
self.assertEqual(6, len([item for batch in res_before_reset for item in batch]))
self.assertEqual(3, len(res_after_reset))
self.assertEqual(9, len([item for batch in res_after_reset for item in batch]))
# __len__ Test: returns the number of batches
with self.assertRaises(TypeError):
len(batch_dp)
def test_max_token_bucketizer_iterdatapipe(self) -> None:
source_data = ["1" * d for d in range(1, 6)] + ["2" * d for d in range(1, 6)]
source_dp = IterableWrapper(source_data)
# Functional Test: Invalid arguments
with self.assertRaisesRegex(ValueError, "``min_len`` should be larger than 0"):
source_dp.max_token_bucketize(max_token_count=2, min_len=-1)
with self.assertRaisesRegex(ValueError, "``min_len`` should be larger than 0"):
source_dp.max_token_bucketize(max_token_count=2, min_len=3, max_len=2)
with self.assertRaises(ValueError, msg="``max_token_count`` must be equal to or greater than ``max_len``."):
source_dp.max_token_bucketize(max_token_count=2, max_len=3)
def _validate_batch_size(res, exp_batch_len, len_fn=lambda d: len(d)):
self.assertEqual(len(res), len(exp_batch_len))
for batch, exp_token_lens in zip(res, exp_batch_len):
self.assertEqual(len(batch), len(exp_token_lens))
for token, exp_token_len in zip(batch, exp_token_lens):
self.assertEqual(len_fn(token), exp_token_len)
# Functional Test: Filter out min_len
batch_dp = source_dp.max_token_bucketize(max_token_count=5, min_len=2, buffer_size=10)
exp_batch_len = [(2, 2), (3,), (3,), (4,), (4,), (5,), (5,)]
_validate_batch_size(list(batch_dp), exp_batch_len)
# Functional Test: Filter out max_len
batch_dp = source_dp.max_token_bucketize(max_token_count=5, max_len=4, buffer_size=10)
exp_batch_len = [(1, 1, 2), (2, 3), (3,), (4,), (4,)]
_validate_batch_size(list(batch_dp), exp_batch_len)
def _custom_len_fn(token):
return len(token) + 1
# Functional Test: Custom length function
batch_dp = source_dp.max_token_bucketize(max_token_count=7, len_fn=_custom_len_fn, buffer_size=10)
exp_batch_len = [(1, 1, 2), (2, 3), (3,), (4,), (4,), (5,), (5,)]
_validate_batch_size(list(batch_dp), exp_batch_len)
# Functional Test: Small buffer
batch_dp = source_dp.max_token_bucketize(max_token_count=10, buffer_size=4)
exp_batch_len = [(1, 2, 1, 2, 3), (3, 4), (4, 5), (5,)]
_validate_batch_size(list(batch_dp), exp_batch_len)
# Reset Test:
batch_dp = MaxTokenBucketizer(source_dp, max_token_count=5, buffer_size=10)
n_elements_before_reset = 2
res_before_reset, res_after_reset = reset_after_n_next_calls(batch_dp, n_elements_before_reset)
exp_batch_len_before_reset = [(1, 1, 2), (2, 3)]
exp_batch_len_after_reset = [(1, 1, 2), (2, 3), (3,), (4,), (4,), (5,), (5,)]
_validate_batch_size(res_before_reset, exp_batch_len_before_reset)
_validate_batch_size(res_after_reset, exp_batch_len_after_reset)
# Functional test: Padded tokens exceeding max_token_count
source_data = ["111", "1111", "11111"] # 3, 4, 5
source_dp = IterableWrapper(source_data)
batch_dp = source_dp.max_token_bucketize(max_token_count=7)
exp_batch_len = [(3, 4), (5,)]
_validate_batch_size(list(batch_dp), exp_batch_len)
# Functional test: Padded tokens not exceeding max_token_count
source_data = ["111", "111", "111", "1111"] # 3, 3, 3, 4
source_dp = IterableWrapper(source_data)
batch_dp = source_dp.max_token_bucketize(max_token_count=7, include_padding=True)
exp_batch_len = [(3, 3), (3,), (4,)]
_validate_batch_size(list(batch_dp), exp_batch_len)
# Functional test: sample length exceeding max_token_count
source_data = ["111"]
source_dp = IterableWrapper(source_data)
batch_dp = source_dp.max_token_bucketize(max_token_count=2)
exp_batch = []
self.assertEqual(list(batch_dp), exp_batch)
# Functional test: incomparable data for heapq
def _custom_len_fn(data):
return data["len"]
source_data = [{"len": 1}, {"len": 2}, {"len": 1}, {"len": 3}, {"len": 1}]
source_dp = IterableWrapper(source_data)
batch_dp = source_dp.max_token_bucketize(max_token_count=3, len_fn=_custom_len_fn)
exp_batch_len = [(1, 1, 1), (2,), (3,)]
_validate_batch_size(list(batch_dp), exp_batch_len, len_fn=_custom_len_fn)
# __len__ Test: returns the number of batches
with self.assertRaises(TypeError):
len(batch_dp)
def test_map_batches_iterdatapipe(self):
source_dp = IterableWrapper(list(range(20)))
def fn(batch):
return [d + 1 for d in batch]
batch_mapped_dp = source_dp.map_batches(fn, batch_size=9)
expected_list = list(range(1, 21))
self.assertEqual(expected_list, list(batch_mapped_dp))
# Reset Test: reset the DataPipe after reading part of it
n_elements_before_reset = 5
res_before_reset, res_after_reset = reset_after_n_next_calls(batch_mapped_dp, n_elements_before_reset)
self.assertEqual(expected_list[:n_elements_before_reset], res_before_reset)
self.assertEqual(expected_list, res_after_reset)
# Functional Test: Different sizes between input and output
def fn_less(batch):
return [batch[idx] // 2 for idx in range(0, len(batch), 2)]
less_batch_mapped_dp = source_dp.map_batches(fn_less, batch_size=8)
self.assertEqual(list(range(10)), list(less_batch_mapped_dp))
# Functional Test: Specify input_col
source_dp = IterableWrapper([(d - 1, d, d + 1) for d in range(20)])
batch_mapped_input_1_dp = source_dp.map_batches(fn, batch_size=9, input_col=0)
self.assertEqual(list(range(20)), list(batch_mapped_input_1_dp))
def fn_2_cols(batch):
return [(d1, d2 - 1) for d1, d2 in batch]
batch_mapped_input_2_dp = source_dp.map_batches(fn_2_cols, batch_size=9, input_col=[1, 2])
self.assertEqual([(d, d) for d in range(20)], list(batch_mapped_input_2_dp))
# __len__ Test: length should be determined by ``fn`` which we can't know
with self.assertRaisesRegex(TypeError, "length relies on the output of its function."):
len(batch_mapped_dp)
def test_flatmap_iterdatapipe(self):
source_dp = IterableWrapper(list(range(20)))
def fn(e):
return [e, e * 10]
flatmapped_dp = source_dp.flatmap(fn)
expected_list = list(itertools.chain(*[(e, e * 10) for e in source_dp]))
self.assertEqual(expected_list, list(flatmapped_dp))
# Funtional Test: Specify input_col
tuple_source_dp = IterableWrapper([(d - 1, d, d + 1) for d in range(20)])
# Single input_col
input_col_1_dp = tuple_source_dp.flatmap(fn, input_col=1)
self.assertEqual(expected_list, list(input_col_1_dp))
# Multiple input_col
def mul_fn(a, b):
return [a - b, b - a]
input_col_2_dp = tuple_source_dp.flatmap(mul_fn, input_col=(0, 2))
self.assertEqual(list(itertools.chain(*[(-2, 2) for _ in range(20)])), list(input_col_2_dp))
# flatmap with no fn specified
default_dp = tuple_source_dp.flatmap()
self.assertEqual(list(itertools.chain(*[(n - 1, n, n + 1) for n in range(20)])), list(default_dp))
# flatmap with no fn specified, multiple input_col
default_dp = tuple_source_dp.flatmap(input_col=(0, 2))
self.assertEqual(list(itertools.chain(*[(n - 1, n + 1) for n in range(20)])), list(default_dp))
# flatmap with no fn specified, some special input
tuple_source_dp = IterableWrapper([[1, 2, [3, 4]], [5, 6, [7, 8]]])
default_dp = tuple_source_dp.flatmap(input_col=(0, 2))
self.assertEqual([1, [3, 4], 5, [7, 8]], list(default_dp))
# Reset Test: reset the DataPipe after reading part of it
n_elements_before_reset = 5
res_before_reset, res_after_reset = reset_after_n_next_calls(flatmapped_dp, n_elements_before_reset)
self.assertEqual(expected_list[:n_elements_before_reset], res_before_reset)
self.assertEqual(expected_list, res_after_reset)
# __len__ Test: length should be len(source_dp)*len(fn->out_shape) which we can't know
with self.assertRaisesRegex(TypeError, "length relies on the output of its function."):
len(flatmapped_dp)
def test_shuffled_flatmap_iterdatapipe(self):
source_dp = IterableWrapper(list(range(20)))
def fn(e):
return [e, e * 10]
# Tests with buffer_size=1
# In this case, the expected behavior is similar to flatmap
shuffled_flatmapped_dp = source_dp.shuffled_flatmap(fn, buffer_size=1)
expected_list = list(itertools.chain(*[(e, e * 10) for e in source_dp]))
self.assertEqual(expected_list, list(shuffled_flatmapped_dp))
# Funtional Test: Specify input_col
tuple_source_dp = IterableWrapper([(d - 1, d, d + 1) for d in range(20)])
# Single input_col
input_col_1_dp = tuple_source_dp.shuffled_flatmap(fn, input_col=1, buffer_size=1)
self.assertEqual(expected_list, list(input_col_1_dp))
# With generator as fn
def gen_fn(e):
yield e
yield e * 10
shuffled_flatmapped_dp = source_dp.shuffled_flatmap(gen_fn, buffer_size=1)
expected_list = list(itertools.chain(*[(e, e * 10) for e in source_dp]))
self.assertEqual(expected_list, list(shuffled_flatmapped_dp))
# Multiple input_col
def mul_fn(a, b):
return [a - b, b - a]
input_col_2_dp = tuple_source_dp.shuffled_flatmap(mul_fn, input_col=(0, 2), buffer_size=1)
self.assertEqual(list(itertools.chain(*[(-2, 2) for _ in range(20)])), list(input_col_2_dp))
# shuffled_flatmap with no fn specified
default_dp = tuple_source_dp.shuffled_flatmap(buffer_size=1)
self.assertEqual(list(itertools.chain(*[(n - 1, n, n + 1) for n in range(20)])), list(default_dp))
# shuffled_flatmap with no fn specified, multiple input_col
default_dp = tuple_source_dp.shuffled_flatmap(input_col=(0, 2), buffer_size=1)
self.assertEqual(list(itertools.chain(*[(n - 1, n + 1) for n in range(20)])), list(default_dp))
# shuffled_flatmap with no fn specified, some special input
tuple_source_dp = IterableWrapper([[1, 2, [3, 4]], [5, 6, [7, 8]]])
default_dp = tuple_source_dp.shuffled_flatmap(input_col=(0, 2), buffer_size=1)
self.assertEqual([1, [3, 4], 5, [7, 8]], list(default_dp))
# Reset Test: reset the DataPipe after reading part of it
n_elements_before_reset = 5
res_before_reset, res_after_reset = reset_after_n_next_calls(shuffled_flatmapped_dp, n_elements_before_reset)
self.assertEqual(expected_list[:n_elements_before_reset], res_before_reset)
self.assertEqual(expected_list, res_after_reset)
# __len__ Test: length should be len(source_dp)*len(fn->out_shape) which we can't know
with self.assertRaisesRegex(TypeError, "length relies on the output of its function."):
len(shuffled_flatmapped_dp)
# __len__ when no fn specified:
dp = IterableWrapper([[1, 2], [], [3], [4, 5, 6, [7, 8]]])
dp = dp.shuffled_flatmap()
self.assertEqual(len(dp), 7)
# Tests with .set_shuffle(False)
# In this case, the expected behavior is similar to flatmap
shuffled_flatmapped_dp = source_dp.shuffled_flatmap(fn).set_shuffle(False)
expected_list = list(itertools.chain(*[(e, e * 10) for e in source_dp]))
self.assertEqual(expected_list, list(shuffled_flatmapped_dp))
# Funtional Test: Specify input_col
tuple_source_dp = IterableWrapper([(d - 1, d, d + 1) for d in range(20)])
# Single input_col
input_col_1_dp = tuple_source_dp.shuffled_flatmap(fn, input_col=1, buffer_size=1)
self.assertEqual(expected_list, list(input_col_1_dp))
# Multiple input_col
input_col_2_dp = tuple_source_dp.shuffled_flatmap(mul_fn, input_col=(0, 2)).set_shuffle(False)
self.assertEqual(list(itertools.chain(*[(-2, 2) for _ in range(20)])), list(input_col_2_dp))
# shuffled_flatmap with no fn specified
default_dp = tuple_source_dp.shuffled_flatmap().set_shuffle(False)
self.assertEqual(list(itertools.chain(*[(n - 1, n, n + 1) for n in range(20)])), list(default_dp))
# shuffled_flatmap with no fn specified, multiple input_col
default_dp = tuple_source_dp.shuffled_flatmap(input_col=(0, 2)).set_shuffle(False)
self.assertEqual(list(itertools.chain(*[(n - 1, n + 1) for n in range(20)])), list(default_dp))
# shuffled_flatmap with no fn specified, some special input
tuple_source_dp = IterableWrapper([[1, 2, [3, 4]], [5, 6, [7, 8]]])
default_dp = tuple_source_dp.shuffled_flatmap(input_col=(0, 2)).set_shuffle(False)
self.assertEqual([1, [3, 4], 5, [7, 8]], list(default_dp))
# Reset Test: reset the DataPipe after reading part of it
n_elements_before_reset = 5
res_before_reset, res_after_reset = reset_after_n_next_calls(shuffled_flatmapped_dp, n_elements_before_reset)
self.assertEqual(expected_list[:n_elements_before_reset], res_before_reset)
self.assertEqual(expected_list, res_after_reset)
# Other tests
# Test no empty buffers:
with self.assertRaises(AssertionError):
_ = source_dp.shuffled_flatmap(buffer_size=0)
# Functional Test: No seed
consecutive_tuple_source_dp = IterableWrapper([(d, d + 1, d + 2) for d in range(0, 21, 3)])
shuffled_flatmapped_dp = consecutive_tuple_source_dp.shuffled_flatmap()
self.assertEqual(set(range(21)), set(shuffled_flatmapped_dp))
# Functional Test: With global seed
torch.manual_seed(123)
shuffled_flatmapped_dp = tuple_source_dp.shuffled_flatmap()
res = list(shuffled_flatmapped_dp)
torch.manual_seed(123)
self.assertEqual(list(shuffled_flatmapped_dp), res)
# Functional Test: Set seed
shuffled_flatmapped_dp = tuple_source_dp.shuffled_flatmap().set_seed(123)
res = list(shuffled_flatmapped_dp)
shuffled_flatmapped_dp.set_seed(123)
self.assertEqual(list(shuffled_flatmapped_dp), res)
# Reset Test:
shuffled_flatmapped_dp = tuple_source_dp.shuffled_flatmap()
n_elements_before_reset = 5
res_before_reset, res_after_reset = reset_after_n_next_calls(shuffled_flatmapped_dp, n_elements_before_reset)
self.assertEqual(5, len(res_before_reset))
def test_round_robin_demux_iterdatapipe(self):
source_dp = IterableWrapper(list(range(23)))
with self.assertRaisesRegex(ValueError, "Expected `num_instaces`"):
_ = source_dp.round_robin_demux(0)
# Funtional Test
dp1, dp2, dp3 = source_dp.round_robin_demux(3)
self.assertEqual(list(range(0, 23, 3)), list(dp1))
self.assertEqual(list(range(1, 23, 3)), list(dp2))
self.assertEqual(list(range(2, 23, 3)), list(dp3))
# __len__ Test
self.assertEqual(len(dp1), 8)
self.assertEqual(len(dp2), 8)
self.assertEqual(len(dp3), 7)
def test_unzipper_iterdatapipe(self):
source_dp = IterableWrapper([(i, i + 10, i + 20) for i in range(10)])
# Functional Test: unzips each sequence, no `sequence_length` specified
dp1, dp2, dp3 = UnZipper(source_dp, sequence_length=3)
self.assertEqual(list(range(10)), list(dp1))
self.assertEqual(list(range(10, 20)), list(dp2))
self.assertEqual(list(range(20, 30)), list(dp3))
# Functional Test: unzips each sequence, with `sequence_length` specified
dp1, dp2, dp3 = source_dp.unzip(sequence_length=3)
self.assertEqual(list(range(10)), list(dp1))
self.assertEqual(list(range(10, 20)), list(dp2))
self.assertEqual(list(range(20, 30)), list(dp3))
# Functional Test: skipping over specified values
dp2, dp3 = source_dp.unzip(sequence_length=3, columns_to_skip=[0])
self.assertEqual(list(range(10, 20)), list(dp2))
self.assertEqual(list(range(20, 30)), list(dp3))
(dp2,) = source_dp.unzip(sequence_length=3, columns_to_skip=[0, 2], buffer_size=0)
self.assertEqual(list(range(10, 20)), list(dp2))
source_dp = IterableWrapper([(i, i + 10, i + 20, i + 30) for i in range(10)])
dp2, dp3 = source_dp.unzip(sequence_length=4, columns_to_skip=[0, 3])
self.assertEqual(list(range(10, 20)), list(dp2))
self.assertEqual(list(range(20, 30)), list(dp3))
# Functional Test: one child DataPipe yields all value first, but buffer_size = 5 being too small, raises error
source_dp = IterableWrapper([(i, i + 10) for i in range(10)])
dp1, dp2 = source_dp.unzip(sequence_length=2, buffer_size=4)
it1 = iter(dp1)
for _ in range(4):
next(it1)
with self.assertRaises(BufferError):
next(it1)
with self.assertRaises(BufferError):
list(dp2)
dp1, dp2 = source_dp.unzip(sequence_length=2, buffer_size=4)
with self.assertRaises(BufferError):
list(dp2)
# Reset Test: DataPipe resets when a new iterator is created, even if this datapipe hasn't been read
dp1, dp2 = source_dp.unzip(sequence_length=2)
_ = iter(dp1)
output2 = []
with self.assertRaisesRegex(RuntimeError, r"iterator has been invalidated"):
for i, n2 in enumerate(dp2):
output2.append(n2)
if i == 4:
_ = iter(dp1) # This will reset all child DataPipes
self.assertEqual(list(range(10, 15)), output2)
# Reset Test: DataPipe reset when some of it have been read
dp1, dp2 = source_dp.unzip(sequence_length=2)
output1, output2 = [], []
for i, (n1, n2) in enumerate(zip(dp1, dp2)):
output1.append(n1)
output2.append(n2)
if i == 4:
with warnings.catch_warnings(record=True) as wa:
_ = iter(dp1) # Reset both all child DataPipe
self.assertEqual(len(wa), 1)
self.assertRegex(str(wa[0].message), r"Some child DataPipes are not exhausted")
break
for n1, n2 in zip(dp1, dp2):
output1.append(n1)
output2.append(n2)
self.assertEqual(list(range(5)) + list(range(10)), output1)
self.assertEqual(list(range(10, 15)) + list(range(10, 20)), output2)
# Reset Test: DataPipe reset, even when some other child DataPipes are not read
source_dp = IterableWrapper([(i, i + 10, i + 20) for i in range(10)])
dp1, dp2, dp3 = source_dp.unzip(sequence_length=3)
output1, output2 = list(dp1), list(dp2)
self.assertEqual(list(range(10)), output1)
self.assertEqual(list(range(10, 20)), output2)
with warnings.catch_warnings(record=True) as wa:
self.assertEqual(list(range(10)), list(dp1)) # Resets even though dp3 has not been read
self.assertEqual(len(wa), 1)
self.assertRegex(str(wa[0].message), r"Some child DataPipes are not exhausted")
output3 = []
for i, n3 in enumerate(dp3):
output3.append(n3)
if i == 4:
with warnings.catch_warnings(record=True) as wa:
output1 = list(dp1) # Resets even though dp3 is only partially read
self.assertEqual(len(wa), 1)
self.assertRegex(str(wa[0].message), r"Some child DataPipes are not exhausted")
self.assertEqual(list(range(20, 25)), output3)
self.assertEqual(list(range(10)), output1)
break
self.assertEqual(list(range(20, 30)), list(dp3)) # dp3 has to read from the start again
# __len__ Test: Each DataPipe inherits the source datapipe's length
dp1, dp2, dp3 = source_dp.unzip(sequence_length=3)
self.assertEqual(len(source_dp), len(dp1))
self.assertEqual(len(source_dp), len(dp2))
self.assertEqual(len(source_dp), len(dp3))
def test_itertomap_mapdatapipe(self):
# Functional Test with None key_value_fn
values = list(range(10))
keys = ["k" + str(i) for i in range(10)]
source_dp = IterableWrapper(list(zip(keys, values)))
map_dp = source_dp.to_map_datapipe()
self.assertTrue(isinstance(map_dp, MapDataPipe))
# Lazy loading
self.assertTrue(map_dp._map is None)
# __len__ Test: Each DataPipe inherits the source datapipe's length
self.assertEqual(len(map_dp), 10)
# Functional Test
self.assertEqual(list(range(10)), [map_dp["k" + str(idx)] for idx in range(10)])
self.assertFalse(map_dp._map is None)
source_dp = IterableWrapper(range(10))
# TypeError test for invalid data type
map_dp = source_dp.to_map_datapipe()
with self.assertRaisesRegex(TypeError, "Cannot convert dictionary update element"):
_ = list(map_dp)
# ValueError test for wrong length
map_dp = source_dp.to_map_datapipe(lambda d: (d,))
with self.assertRaisesRegex(ValueError, "dictionary update sequence element has length"):
_ = list(map_dp)
# Functional Test with key_value_fn
map_dp = source_dp.to_map_datapipe(lambda d: ("k" + str(d), d + 1))
self.assertEqual(list(range(1, 11)), [map_dp["k" + str(idx)] for idx in range(10)])
self.assertFalse(map_dp._map is None)
# No __len__ from prior DataPipe
no_len_dp = source_dp.filter(lambda x: x % 2 == 0)
map_dp = no_len_dp.to_map_datapipe(lambda x: (x, x + 2))
with warnings.catch_warnings(record=True) as wa:
length = len(map_dp)
self.assertEqual(length, 5)
self.assertEqual(len(wa), 1)
self.assertRegex(str(wa[0].message), r"Data from prior DataPipe")
# Duplicate Key Test
dup_map_dp = source_dp.to_map_datapipe(lambda x: (x % 1, x))
with warnings.catch_warnings(record=True) as wa:
dup_map_dp._load_map()
self.assertEqual(len(wa), 1)
self.assertRegex(str(wa[0].message), r"Found duplicate key")
def test_mux_longest_iterdatapipe(self):
# Functional Test: Elements are yielded one at a time from each DataPipe, until they are all exhausted
input_dp1 = IterableWrapper(range(4))
input_dp2 = IterableWrapper(range(4, 8))
input_dp3 = IterableWrapper(range(8, 12))
output_dp = input_dp1.mux_longest(input_dp2, input_dp3)
expected_output = [0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11]
self.assertEqual(len(expected_output), len(output_dp))
self.assertEqual(expected_output, list(output_dp))
# Functional Test: Uneven input Data Pipes
input_dp1 = IterableWrapper([1, 2, 3, 4])
input_dp2 = IterableWrapper([10])
input_dp3 = IterableWrapper([100, 200, 300])
output_dp = input_dp1.mux_longest(input_dp2, input_dp3)
expected_output = [1, 10, 100, 2, 200, 3, 300, 4]
self.assertEqual(len(expected_output), len(output_dp))
self.assertEqual(expected_output, list(output_dp))
# Functional Test: Empty Data Pipe
input_dp1 = IterableWrapper([0, 1, 2, 3])
input_dp2 = IterableWrapper([])
output_dp = input_dp1.mux_longest(input_dp2)
self.assertEqual(len(input_dp1), len(output_dp))
self.assertEqual(list(input_dp1), list(output_dp))
# __len__ Test: raises TypeError when __len__ is called and an input doesn't have __len__
input_dp1 = IterableWrapper(range(10))
input_dp_no_len = IDP_NoLen(range(10))
output_dp = input_dp1.mux_longest(input_dp_no_len)
with self.assertRaises(TypeError):
len(output_dp)
def test_shard_expand(self):
# Functional Test: ensure expansion generates the right outputs
def testexpand(s):
stage1 = IterableWrapper([s])
stage2 = ShardExpander(stage1)
return list(iter(stage2))
def myexpand(lo, hi, fmt):
return [fmt.format(i) for i in range(lo, hi)]
self.assertEqual(testexpand("ds-{000000..000009}.tar"), myexpand(0, 10, "ds-{:06d}.tar"))
self.assertEqual(testexpand("{0..9}"), myexpand(0, 10, "{}"))
self.assertEqual(testexpand("{0..999}"), myexpand(0, 1000, "{}"))
self.assertEqual(testexpand("{123..999}"), myexpand(123, 1000, "{}"))
self.assertEqual(testexpand("{000..999}"), myexpand(0, 1000, "{:03d}"))
with self.assertRaisesRegex(ValueError, r"must not start with 0"):
testexpand("{01..999}")
with self.assertRaisesRegex(ValueError, r"must be shorter"):
testexpand("{0000..999}")
with self.assertRaisesRegex(ValueError, r"bad range"):
testexpand("{999..123}")
self.assertEqual(testexpand("{0..1}{0..1}"), "00 01 10 11".split())
def test_combining_infinite_iterdatapipe(self):
r"""
Test combining DataPipe can properly exit at the end of iteration
with an infinite DataPipe as the input.
"""
def _get_dp(length=10):
source_dp = IterableWrapper(list(range(length)))
inf_dp = IterableWrapper(list(range(length))).cycle()
return source_dp, inf_dp
# zip
noinf_dp, inf_dp = _get_dp(10)
dp = inf_dp.zip(noinf_dp)
res = list(dp)
self.assertEqual(res, [(i, i) for i in range(10)])
# mux
noinf_dp, inf_dp = _get_dp(10)
dp = inf_dp.mux(noinf_dp)
res = list(dp)
self.assertEqual(res, [i for i in range(10) for _ in range(2)])
# zip_with_iter
noinf_dp, inf_dp = _get_dp(10)
dp = noinf_dp.zip_with_iter(inf_dp, key_fn=lambda x: x)
res = list(dp)
self.assertEqual(res, [(i, i) for i in range(10)])
def test_zip_longest_iterdatapipe(self):
# Functional Test: raises TypeError when an input is not of type `IterDataPipe`
with self.assertRaises(TypeError):
input_dp1 = IterableWrapper(range(10))
input_no_dp = list(range(10))
output_dp = input_dp1.zip_longest(input_no_dp) # type: ignore[arg-type]
# Functional Test: raises TypeError when an input does not have valid length
input_dp1 = IterableWrapper(range(10))
input_dp_no_len = IDP_NoLen(range(5))
output_dp = input_dp1.zip_longest(input_dp_no_len)
with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"):
len(output_dp)
# Functional Test: zips the results properly even when lengths are different
# (zips to the longest, filling missing values with default value None.)
input_dp1 = IterableWrapper(range(10))
input_dp2 = IterableWrapper(range(5))
output_dp = input_dp1.zip_longest(input_dp2)
exp = [(i, i) for i in range(5)] + [(i, None) for i in range(5, 10)]
self.assertEqual(list(output_dp), exp)
# Functional Test: zips the results properly even when lengths are different
# (zips to the longest, filling missing values with user input)
input_dp1 = IterableWrapper(range(10))
input_dp2 = IterableWrapper(range(5))
output_dp = input_dp1.zip_longest(input_dp2, fill_value=-1)
exp = [(i, i) for i in range(5)] + [(i, -1) for i in range(5, 10)]
self.assertEqual(list(output_dp), exp)
# __len__ Test: length matches the length of the shortest input
self.assertEqual(len(output_dp), 10)
def test_drop_iterdatapipe(self):
# tuple tests
input_dp = IterableWrapper([(0, 1, 2), (3, 4, 5), (6, 7, 8)])
# Functional Test: single index drop for tuple elements
drop_dp = input_dp.drop(1)
self.assertEqual([(0, 2), (3, 5), (6, 8)], list(drop_dp))
# Functional Test: multiple indices drop for tuple elements
drop_dp = input_dp.drop([0, 2])
self.assertEqual([(1,), (4,), (7,)], list(drop_dp))
# dict tests
input_dp = IterableWrapper([{"a": 1, "b": 2, "c": 3}, {"a": 3, "b": 4, "c": 5}, {"a": 5, "b": 6, "c": 7}])
# Functional Test: single key drop for dict elements
drop_dp = input_dp.drop("a")
self.assertEqual([{"b": 2, "c": 3}, {"b": 4, "c": 5}, {"b": 6, "c": 7}], list(drop_dp))
# Functional Test: multiple key drop for dict elements
drop_dp = input_dp.drop(["a", "b"])
self.assertEqual([{"c": 3}, {"c": 5}, {"c": 7}], list(drop_dp))
# list tests
input_dp = IterableWrapper([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
# Functional Test: single key drop for list elements
drop_dp = input_dp.drop(2)
self.assertEqual([[0, 1], [3, 4], [6, 7]], list(drop_dp))
# Functional Test: multiple key drop for list elements
drop_dp = input_dp.drop([0, 1])
self.assertEqual([[2], [5], [8]], list(drop_dp))
# Reset Test:
n_elements_before_reset = 2
input_dp = IterableWrapper([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
drop_dp = input_dp.drop([0, 1])
expected_res = [[2], [5], [8]]
res_before_reset, res_after_reset = reset_after_n_next_calls(drop_dp, n_elements_before_reset)
self.assertEqual(expected_res[:n_elements_before_reset], res_before_reset)
self.assertEqual(expected_res, res_after_reset)
# __len__ Test:
input_dp = IterableWrapper([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
drop_dp = input_dp.drop([0, 1])
self.assertEqual(3, len(drop_dp))
def test_slice_iterdatapipe(self):
# tuple tests
input_dp = IterableWrapper([(0, 1, 2), (3, 4, 5), (6, 7, 8)])
# Functional Test: slice with no stop and no step for tuple
slice_dp = input_dp.slice(1)
self.assertEqual([(1, 2), (4, 5), (7, 8)], list(slice_dp))
# Functional Test: slice with no step for tuple
slice_dp = input_dp.slice(0, 2)
self.assertEqual([(0, 1), (3, 4), (6, 7)], list(slice_dp))
# Functional Test: slice with step for tuple
slice_dp = input_dp.slice(0, 2, 2)
self.assertEqual([(0,), (3,), (6,)], list(slice_dp))
# Functional Test: slice with list of indices for tuple
slice_dp = input_dp.slice([0, 1])
self.assertEqual([(0, 1), (3, 4), (6, 7)], list(slice_dp))
# list tests
input_dp = IterableWrapper([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
# Functional Test: slice with no stop and no step for list
slice_dp = input_dp.slice(1)
self.assertEqual([[1, 2], [4, 5], [7, 8]], list(slice_dp))
# Functional Test: slice with no step for list
slice_dp = input_dp.slice(0, 2)
self.assertEqual([[0, 1], [3, 4], [6, 7]], list(slice_dp))
# Functional Test: slice with list of indices for list
slice_dp = input_dp.slice(0, 2)
self.assertEqual([[0, 1], [3, 4], [6, 7]], list(slice_dp))
# dict tests
input_dp = IterableWrapper([{"a": 1, "b": 2, "c": 3}, {"a": 3, "b": 4, "c": 5}, {"a": 5, "b": 6, "c": 7}])
# Functional Test: slice with key for dict
slice_dp = input_dp.slice("a")
self.assertEqual([{"a": 1}, {"a": 3}, {"a": 5}], list(slice_dp))
# Functional Test: slice with list of keys for dict
slice_dp = input_dp.slice(["a", "b"])
self.assertEqual([{"a": 1, "b": 2}, {"a": 3, "b": 4}, {"a": 5, "b": 6}], list(slice_dp))
# __len__ Test:
input_dp = IterableWrapper([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
slice_dp = input_dp.slice(0, 2)
self.assertEqual(3, len(slice_dp))
# Reset Test:
n_elements_before_reset = 2
input_dp = IterableWrapper([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
slice_dp = input_dp.slice([2])
expected_res = [[2], [5], [8]]
res_before_reset, res_after_reset = reset_after_n_next_calls(slice_dp, n_elements_before_reset)
self.assertEqual(expected_res[:n_elements_before_reset], res_before_reset)
self.assertEqual(expected_res, res_after_reset)
def test_flatten_iterdatapipe(self):
# tuple tests
# Functional Test: flatten for an index
input_dp = IterableWrapper([(0, 1, (2, 3)), (4, 5, (6, 7)), (8, 9, (10, 11))])
flatten_dp = input_dp.flatten(2)
self.assertEqual([(0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11)], list(flatten_dp))
# Functional Test: flatten for list of indices
input_dp = IterableWrapper([((0, 10), 1, (2, 3)), ((4, 14), 5, (6, 7)), ((8, 18), 9, (10, 11))])
flatten_dp = input_dp.flatten([0, 2])
self.assertEqual([(0, 10, 1, 2, 3), (4, 14, 5, 6, 7), (8, 18, 9, 10, 11)], list(flatten_dp))
# Functional Test: flatten all iters in the datapipe one level (no argument)
input_dp = IterableWrapper([(0, (1, 2)), (3, (4, 5)), (6, (7, 8))])
flatten_dp = input_dp.flatten()
self.assertEqual([(0, 1, 2), (3, 4, 5), (6, 7, 8)], list(flatten_dp))
# list tests
# Functional Test: flatten for an index
input_dp = IterableWrapper([[0, 1, [2, 3]], [4, 5, [6, 7]], [8, 9, [10, 11]]])
flatten_dp = input_dp.flatten(2)
self.assertEqual([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], list(flatten_dp))
# Functional Test: flatten for list of indices
input_dp = IterableWrapper([[[0, 10], 1, [2, 3]], [[4, 14], 5, [6, 7]], [[8, 18], 9, [10, 11]]])
flatten_dp = input_dp.flatten([0, 2])
self.assertEqual([[0, 10, 1, 2, 3], [4, 14, 5, 6, 7], [8, 18, 9, 10, 11]], list(flatten_dp))
# Functional Test: flatten all iters in the datapipe one level (no argument)
input_dp = IterableWrapper([[0, [1, 2]], [3, [4, 5]], [6, [7, 8]]])
flatten_dp = input_dp.flatten()
self.assertEqual([[0, 1, 2], [3, 4, 5], [6, 7, 8]], list(flatten_dp))
# Functional Test: string test, flatten all iters in the datapipe one level (no argument)
input_dp = IterableWrapper([["zero", ["one", "2"]], ["3", ["4", "5"]], ["6", ["7", "8"]]])
flatten_dp = input_dp.flatten()
self.assertEqual([["zero", "one", "2"], ["3", "4", "5"], ["6", "7", "8"]], list(flatten_dp))
# dict tests
# Functional Test: flatten for an index
input_dp = IterableWrapper([{"a": 1, "b": 2, "c": {"d": 3, "e": 4}}, {"a": 5, "b": 6, "c": {"d": 7, "e": 8}}])
flatten_dp = input_dp.flatten("c")
self.assertEqual([{"a": 1, "b": 2, "d": 3, "e": 4}, {"a": 5, "b": 6, "d": 7, "e": 8}], list(flatten_dp))
# Functional Test: flatten for an index already flat
input_dp = IterableWrapper([{"a": 1, "b": 2, "c": {"d": 9, "e": 10}}, {"a": 5, "b": 6, "c": {"d": 7, "e": 8}}])
flatten_dp = input_dp.flatten("a")
self.assertEqual(
[{"a": 1, "b": 2, "c": {"d": 9, "e": 10}}, {"a": 5, "b": 6, "c": {"d": 7, "e": 8}}], list(flatten_dp)
)
# Functional Test: flatten for list of indices
input_dp = IterableWrapper(
[
{"a": {"f": 10, "g": 11}, "b": 2, "c": {"d": 3, "e": 4}},
{"a": {"f": 10, "g": 11}, "b": 6, "c": {"d": 7, "e": 8}},
]
)
flatten_dp = input_dp.flatten(["a", "c"])
self.assertEqual(
[{"f": 10, "g": 11, "b": 2, "d": 3, "e": 4}, {"f": 10, "g": 11, "b": 6, "d": 7, "e": 8}], list(flatten_dp)
)
# Functional Test: flatten all iters in the datapipe one level (no argument)
input_dp = IterableWrapper([{"a": 1, "b": 2, "c": {"d": 3, "e": 4}}, {"a": 5, "b": 6, "c": {"d": 7, "e": 8}}])
flatten_dp = input_dp.flatten()
self.assertEqual([{"a": 1, "b": 2, "d": 3, "e": 4}, {"a": 5, "b": 6, "d": 7, "e": 8}], list(flatten_dp))
# Functional Test: flatten all iters one level, multiple iters
input_dp = IterableWrapper(
[
{"a": {"f": 10, "g": 11}, "b": 2, "c": {"d": 3, "e": 4}},
{"a": {"f": 10, "g": 11}, "b": 6, "c": {"d": 7, "e": 8}},
]
)
flatten_dp = input_dp.flatten()
self.assertEqual(
[{"f": 10, "g": 11, "b": 2, "d": 3, "e": 4}, {"f": 10, "g": 11, "b": 6, "d": 7, "e": 8}], list(flatten_dp)
)
# __len__ Test:
input_dp = IterableWrapper([(0, 1, (2, 3)), (4, 5, (6, 7)), (8, 9, (10, 11))])
flatten_dp = input_dp.flatten(2)
self.assertEqual(3, len(flatten_dp))
# Reset Test:
n_elements_before_reset = 2
input_dp = IterableWrapper([(0, 1, (2, 3)), (4, 5, (6, 7)), (8, 9, (10, 11))])
flatten_dp = input_dp.flatten(2)
expected_res = [(0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11)]
res_before_reset, res_after_reset = reset_after_n_next_calls(flatten_dp, n_elements_before_reset)
self.assertEqual(expected_res[:n_elements_before_reset], res_before_reset)
self.assertEqual(expected_res, res_after_reset)
def test_length_setter_iterdatapipe(self):
input_dp = IterableWrapper(range(10))
# Functional Test: Setting length doesn't change the content of the DataPipe
dp: IterDataPipe = input_dp.set_length(3)
self.assertEqual(list(range(10)), list(dp))
with self.assertRaises(AssertionError):
input_dp.set_length(-1)
# __len__ Test: Length is as specified and propagates through
dp = input_dp.set_length(3).map(lambda x: x + 1)
self.assertEqual(3, len(dp))
# Reset Test:
n_elements_before_reset = 2
dp = input_dp.set_length(3)
expected_res = list(range(10))
res_before_reset, res_after_reset = reset_after_n_next_calls(dp, n_elements_before_reset)
self.assertEqual(expected_res[:n_elements_before_reset], res_before_reset)
self.assertEqual(expected_res, res_after_reset)
def test_random_splitter_iterdatapipe(self):
n_epoch = 2
# Functional Test: Split results are the same across epochs
dp = IterableWrapper(range(10))
train, valid = dp.random_split(total_length=10, weights={"train": 0.5, "valid": 0.5}, seed=0)
results = []
for _ in range(n_epoch):
res = list(train)
self.assertEqual(5, len(res))
results.append(res)
self.assertEqual(results[0], results[1])
valid_res = list(valid)
self.assertEqual(5, len(valid_res))
self.assertEqual(list(range(10)), sorted(results[0] + valid_res))
# Functional Test: lengths can be known in advance because it splits evenly into integers.
self.assertEqual(5, len(train))
self.assertEqual(5, len(valid))
# Functional Test: DataPipe can split into 3 DataPipes, and infer `total_length` when not given
dp = IterableWrapper(range(10))
train, valid, test = dp.random_split(weights={"train": 0.6, "valid": 0.2, "test": 0.2}, seed=0)
results = []
for _ in range(n_epoch):
res = list(train)
self.assertEqual(6, len(res))
results.append(res)
self.assertEqual(results[0], results[1])
valid_res = list(valid)
self.assertEqual(2, len(valid_res))
test_res = list(test)
self.assertEqual(2, len(test_res))
self.assertEqual(list(range(10)), sorted(results[0] + valid_res + test_res))
# Functional Test: lengths can be known in advance because it splits evenly into integers.
self.assertEqual(6, len(train))
self.assertEqual(2, len(valid))
self.assertEqual(2, len(test))
# Functional Test: Split can work even when weights do not split evenly into integers.
dp = IterableWrapper(range(13))
train, valid, test = dp.random_split(weights={"train": 0.6, "valid": 0.2, "test": 0.2}, seed=0)
res = list(train) + list(valid) + list(test)
self.assertEqual(list(range(13)), sorted(res))
# Functional Test: lengths can be known in advance because it splits evenly into integers.
with self.assertRaisesRegex(TypeError, "Lengths of the split cannot be known in advance"):
len(train)
# Functional Test: Error when `total_length` cannot be inferred
nolen_dp = IDP_NoLen(range(10))
with self.assertRaisesRegex(TypeError, "needs `total_length`"):
_, __ = nolen_dp.random_split(weights={"train": 0.5, "valid": 0.5}, seed=0) # type: ignore[call-arg]
# Functional Test: `target` must match a key in the `weights` dict
dp = IterableWrapper(range(10))
with self.assertRaisesRegex(KeyError, "does not match any key"):
_ = dp.random_split(
total_length=10, weights={"train": 0.5, "valid": 0.2, "test": 0.2}, seed=0, target="NOTINDICT"
)
# Functional Test: `target` is specified, and match the results from before
dp = IterableWrapper(range(10))
train = dp.random_split(
total_length=10, weights={"train": 0.6, "valid": 0.2, "test": 0.2}, seed=0, target="train"
)
results2 = []
for _ in range(n_epoch):
res = list(train)
self.assertEqual(6, len(res))
results2.append(res)
self.assertEqual(results2[0], results2[1])
self.assertEqual(results, results2)
# Functional Test: `override_seed` works and change split result
train.override_seed(1)
seed_1_res = list(train)
self.assertNotEqual(results2[0], seed_1_res)
# Functional Test: `override_seed` doesn't impact the current iteration, only the next one
temp_res = []
for i, x in enumerate(train):
temp_res.append(x)
if i == 3:
train.override_seed(0)
self.assertEqual(seed_1_res, temp_res) # The current iteration should equal seed 1 result
self.assertEqual(results2[0], list(train)) # The next iteration should equal seed 0 result
# Functional Test: Raise exception if both children are used at the same time
dp = IterableWrapper(range(10))
train, valid = dp.random_split(total_length=10, weights={"train": 0.5, "valid": 0.5}, seed=0)
it_train = iter(train)
next(it_train)
it_valid = iter(valid) # This resets the DataPipe and invalidates the other iterator
next(it_valid)
with self.assertRaisesRegex(RuntimeError, "iterator has been invalidated"):
next(it_train)
next(it_valid) # No error, can keep going
@skipIfNoCUDA
def test_pin_memory(self):
# Tensor
dp = IterableWrapper([(i, i + 1) for i in range(10)]).map(_convert_to_tensor).pin_memory()
self.assertTrue(all(d.is_pinned() for d in dp))
# List of Tensors
dp = IterableWrapper([[(i - 1, i), (i, i + 1)] for i in range(10)]).map(_convert_to_tensor).pin_memory()
self.assertTrue(all(d0.is_pinned() and d1.is_pinned() for d0, d1 in dp))
# Dict of Tensors
dp = IterableWrapper([{str(i): (i, i + 1)} for i in range(10)]).map(_convert_to_tensor).pin_memory()
self.assertTrue(all(v.is_pinned() for d in dp for v in d.values()))
# NamedTuple
dp = IterableWrapper([NamedTensors(torch.tensor(i), torch.tensor(i + 1)) for i in range(10)]).pin_memory()
self.assertTrue(all(v.is_pinned() for d in dp for v in d))
# Dict of List of Tensors
dp = (
IterableWrapper([{str(i): [(i - 1, i), (i, i + 1)]} for i in range(10)])
.map(_convert_to_tensor)
.pin_memory()
)
self.assertTrue(all(v.is_pinned() for d in dp for batch in d.values() for v in batch))
# List of Dict of Tensors
dp = IterableWrapper([{str(i): (i, i + 1)} for i in range(10)]).map(_convert_to_tensor).batch(2).pin_memory()
self.assertTrue(all(v.is_pinned() for batch in dp for d in batch for v in d.values()))
# List of List of Tensors
dp = (
IterableWrapper([[(i - 1, i), (i, i + 1)] for i in range(10)]).map(_convert_to_tensor).batch(2).pin_memory()
)
self.assertTrue(all(d0.is_pinned() and d1.is_pinned() for batch in dp for d0, d1 in batch))
# Single str
dp = IterableWrapper(["hello", "world"]).batch(1).collate().pin_memory()
self.assertEqual(list(dp), [["hello"], ["world"]])
def test_async_map_batches(self):
batch_size = 16
def _helper(input_data, exp_res, async_fn, input_col=None, output_col=None, max_concurrency=32, flatten=True):
dp = IterableWrapper(input_data)
dp = dp.async_map_batches(async_fn, batch_size, input_col, output_col, max_concurrency, flatten)
self.assertEqual(
exp_res,
list(dp),
msg=f"Async map test with {async_fn=}, {input_col=}, {output_col=}, {max_concurrency=}",
)
if flatten:
self.assertEqual(len(input_data), len(dp))
_helper(range(50), [i * 10 for i in range(50)], _async_mul_ten)
# Smaller max_concurrency
_helper(range(50), [i * 10 for i in range(50)], _async_mul_ten, max_concurrency=6)
# Tuple with input_col
_helper([(i, i) for i in range(50)], [(i * 10, i) for i in range(50)], _async_mul_ten, input_col=0)
_helper([(i, i) for i in range(50)], [(i, i * 10) for i in range(50)], _async_mul_ten, input_col=1)
# Tuple with input_col and output_col
_helper(
[(i, i) for i in range(50)], [(i, i * 10) for i in range(50)], _async_mul_ten, input_col=0, output_col=1
)
_helper(
[(i, i) for i in range(50)], [(i, i, i * 10) for i in range(50)], _async_mul_ten, input_col=0, output_col=-1
)
# Dict with input_col
_helper(
[{"a": i, "b": i} for i in range(50)],
[{"a": i, "b": i * 10} for i in range(50)],
_async_mul_ten,
input_col="b",
)
# Dict with input_col and output_col
_helper(
[{"a": i, "b": i} for i in range(50)],
[{"a": i * 10, "b": i} for i in range(50)],
_async_mul_ten,
input_col="b",
output_col="a",
)
_helper(
[{"a": i, "b": i} for i in range(50)],
[{"a": i, "b": i, "c": i * 10} for i in range(50)],
_async_mul_ten,
input_col="b",
output_col="c",
)
# Multiple input_col
_helper(
[(i - 1, i, i + 1) for i in range(50)],
[((i - 1) * (i + 1), i) for i in range(50)],
_async_x_mul_y,
input_col=(0, 2),
)
_helper(
[(i - 1, i, i + 1) for i in range(50)],
[(i, (i - 1) * (i + 1)) for i in range(50)],
_async_x_mul_y,
input_col=(2, 0),
)
# Multiple input_col with output_col
_helper(
[(i - 1, i, i + 1) for i in range(50)],
[(i - 1, (i - 1) * (i + 1), i + 1) for i in range(50)],
_async_x_mul_y,
input_col=(0, 2),
output_col=1,
)
# Skip over `flatten` operation
_helper(
range(32),
[[i * 10 for i in range(16)], [i * 10 for i in range(16, 32)]],
_async_mul_ten,
flatten=False,
)
# Test multiple asyncio eventloops
dp1 = IterableWrapper(range(50))
dp1 = dp1.async_map_batches(_async_mul_ten, 16)
dp2 = IterableWrapper(range(50))
dp2 = dp2.async_map_batches(_async_mul_ten, 16)
for v1, v2, exp in zip(dp1, dp2, [i * 10 for i in range(50)]):
self.assertEqual(v1, exp)
self.assertEqual(v2, exp)
def test_threadpool_map(self):
target_length = 30
input_dp = IterableWrapper(range(target_length))
input_dp_parallel = IterableWrapper(range(target_length))
def fn(item, dtype=torch.float, *, sum=False):
data = torch.tensor(item, dtype=dtype)
return data if not sum else data.sum()
# Functional Test: apply to each element correctly
map_dp = input_dp.threadpool_map(fn)
self.assertEqual(target_length, len(map_dp))
for x, y in zip(map_dp, range(target_length)):
self.assertEqual(x, torch.tensor(y, dtype=torch.float))
# Functional Test: works with partial function
map_dp = input_dp.threadpool_map(partial(fn, dtype=torch.int, sum=True))
for x, y in zip(map_dp, range(target_length)):
self.assertEqual(x, torch.tensor(y, dtype=torch.int).sum())
# __len__ Test: inherits length from source DataPipe
self.assertEqual(target_length, len(map_dp))
input_dp_nl = IDP_NoLen(range(target_length))
map_dp_nl = input_dp_nl.threadpool_map(lambda x: x)
for x, y in zip(map_dp_nl, range(target_length)):
self.assertEqual(x, torch.tensor(y, dtype=torch.float))
# __len__ Test: inherits length from source DataPipe - raises error when invalid
with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"):
len(map_dp_nl)
# Test: two independent ThreadPoolExecutors running at the same time
map_dp_parallel = input_dp_parallel.threadpool_map(fn)
for x, y, z in zip(map_dp, map_dp_parallel, range(target_length)):
self.assertEqual(x, torch.tensor(z, dtype=torch.float))
self.assertEqual(y, torch.tensor(z, dtype=torch.float))
# Reset Test: DataPipe resets properly
n_elements_before_reset = 5
res_before_reset, res_after_reset = reset_after_n_next_calls(map_dp, n_elements_before_reset)
self.assertEqual(list(range(n_elements_before_reset)), res_before_reset)
self.assertEqual(list(range(target_length)), res_after_reset)
@suppress_warnings # Suppress warning for lambda fn
def test_threadpool_map_tuple_list_with_col_iterdatapipe(self):
def fn_11(d):
return -d
def fn_1n(d):
return -d, d
def fn_n1(d0, d1):
return d0 + d1
def fn_nn(d0, d1):
return -d0, -d1, d0 + d1
def fn_n1_def(d0, d1=1):
return d0 + d1
def fn_n1_kwargs(d0, d1, **kwargs):
return d0 + d1
def fn_n1_pos(d0, d1, *args):
return d0 + d1
def fn_n1_sep_pos(d0, *args, d1):
return d0 + d1
def fn_cmplx(d0, d1=1, *args, d2, **kwargs):
return d0 + d1
p_fn_n1 = partial(fn_n1, d1=1)
p_fn_cmplx = partial(fn_cmplx, d2=2)
def _helper(ref_fn, fn, input_col=None, output_col=None, error=None):
for constr in (list, tuple):
datapipe = IterableWrapper([constr((0, 1, 2)), constr((3, 4, 5)), constr((6, 7, 8))])
if ref_fn is None:
with self.assertRaises(error):
res_dp = datapipe.threadpool_map(fn, input_col, output_col)
list(res_dp)
else:
res_dp = datapipe.threadpool_map(fn, input_col, output_col)
ref_dp = datapipe.map(ref_fn)
if constr is list:
ref_dp = ref_dp.map(list)
self.assertEqual(list(res_dp), list(ref_dp), "First test failed")
# Reset
self.assertEqual(list(res_dp), list(ref_dp), "Test after reset failed")
_helper(lambda data: data, fn_n1_def, 0, 1)
_helper(lambda data: (data[0], data[1], data[0] + data[1]), fn_n1_def, [0, 1], 2)
_helper(lambda data: data, p_fn_n1, 0, 1)
_helper(lambda data: data, p_fn_cmplx, 0, 1)
_helper(lambda data: (data[0], data[1], data[0] + data[1]), p_fn_cmplx, [0, 1], 2)
_helper(lambda data: (data[0] + data[1],), fn_n1_pos, [0, 1, 2])
# Replacing with one input column and default output column
_helper(lambda data: (data[0], -data[1], data[2]), fn_11, 1)
_helper(lambda data: (data[0], (-data[1], data[1]), data[2]), fn_1n, 1)
# The index of input column is out of range
_helper(None, fn_1n, 3, error=IndexError)
# Unmatched input columns with fn arguments
_helper(None, fn_n1, 1, error=ValueError)
_helper(None, fn_n1, [0, 1, 2], error=ValueError)
_helper(None, lambda d0, d1: d0 + d1, 0, error=ValueError)
_helper(None, lambda d0, d1: d0 + d1, [0, 1, 2], error=ValueError)
_helper(None, fn_cmplx, 0, 1, ValueError)
_helper(None, fn_n1_pos, 1, error=ValueError)
_helper(None, fn_n1_def, [0, 1, 2], 1, error=ValueError)
_helper(None, p_fn_n1, [0, 1], error=ValueError)
_helper(None, fn_1n, [1, 2], error=ValueError)
# _helper(None, p_fn_cmplx, [0, 1, 2], error=ValueError)
_helper(None, fn_n1_sep_pos, [0, 1, 2], error=ValueError)
# Fn has keyword-only arguments
_helper(None, fn_n1_kwargs, 1, error=ValueError)
_helper(None, fn_cmplx, [0, 1], 2, ValueError)
# Replacing with multiple input columns and default output column (the left-most input column)
_helper(lambda data: (data[1], data[2] + data[0]), fn_n1, [2, 0])
_helper(lambda data: (data[0], (-data[2], -data[1], data[2] + data[1])), fn_nn, [2, 1])
# output_col can only be specified when input_col is not None
_helper(None, fn_n1, None, 1, error=ValueError)
# output_col can only be single-element list or tuple
_helper(None, fn_n1, None, [0, 1], error=ValueError)
# Single-element list as output_col
_helper(lambda data: (-data[1], data[1], data[2]), fn_11, 1, [0])
# Replacing with one input column and single specified output column
_helper(lambda data: (-data[1], data[1], data[2]), fn_11, 1, 0)
_helper(lambda data: (data[0], data[1], (-data[1], data[1])), fn_1n, 1, 2)
# The index of output column is out of range
_helper(None, fn_1n, 1, 3, error=IndexError)
_helper(lambda data: (data[0], data[0] + data[2], data[2]), fn_n1, [0, 2], 1)
_helper(lambda data: ((-data[1], -data[2], data[1] + data[2]), data[1], data[2]), fn_nn, [1, 2], 0)
# Appending the output at the end
_helper(lambda data: (*data, -data[1]), fn_11, 1, -1)
_helper(lambda data: (*data, (-data[1], data[1])), fn_1n, 1, -1)
_helper(lambda data: (*data, data[0] + data[2]), fn_n1, [0, 2], -1)
_helper(lambda data: (*data, (-data[1], -data[2], data[1] + data[2])), fn_nn, [1, 2], -1)
# Handling built-in functions (e.g. `dict`, `iter`, `int`, `str`) whose signatures cannot be inspected
_helper(lambda data: (str(data[0]), data[1], data[2]), str, 0)
_helper(lambda data: (data[0], data[1], int(data[2])), int, 2)
@suppress_warnings # Suppress warning for lambda fn
def test_threadpool_map_dict_with_col_iterdatapipe(self):
def fn_11(d):
return -d
def fn_1n(d):
return -d, d
def fn_n1(d0, d1):
return d0 + d1
def fn_nn(d0, d1):
return -d0, -d1, d0 + d1
def fn_n1_def(d0, d1=1):
return d0 + d1
p_fn_n1 = partial(fn_n1, d1=1)
def fn_n1_pos(d0, d1, *args):
return d0 + d1
def fn_n1_kwargs(d0, d1, **kwargs):
return d0 + d1
def fn_kwonly(*, d0, d1):
return d0 + d1
def fn_has_nondefault_kwonly(d0, *, d1):
return d0 + d1
def fn_cmplx(d0, d1=1, *args, d2, **kwargs):
return d0 + d1
p_fn_cmplx = partial(fn_cmplx, d2=2)
# Prevent modification in-place to support resetting
def _dict_update(data, newdata, remove_idx=None):
_data = dict(data)
_data.update(newdata)
if remove_idx:
for idx in remove_idx:
del _data[idx]
return _data
def _helper(ref_fn, fn, input_col=None, output_col=None, error=None):
datapipe = IterableWrapper([{"x": 0, "y": 1, "z": 2}, {"x": 3, "y": 4, "z": 5}, {"x": 6, "y": 7, "z": 8}])
if ref_fn is None:
with self.assertRaises(error):
res_dp = datapipe.threadpool_map(fn, input_col, output_col)
list(res_dp)
else:
res_dp = datapipe.threadpool_map(fn, input_col, output_col)
ref_dp = datapipe.map(ref_fn)
self.assertEqual(list(res_dp), list(ref_dp), "First test failed")
# Reset
self.assertEqual(list(res_dp), list(ref_dp), "Test after reset failed")
_helper(lambda data: data, fn_n1_def, "x", "y")
_helper(lambda data: data, p_fn_n1, "x", "y")
_helper(lambda data: data, p_fn_cmplx, "x", "y")
_helper(lambda data: _dict_update(data, {"z": data["x"] + data["y"]}), p_fn_cmplx, ["x", "y", "z"], "z")
_helper(lambda data: _dict_update(data, {"z": data["x"] + data["y"]}), fn_n1_def, ["x", "y"], "z")
_helper(None, fn_n1_pos, "x", error=ValueError)
_helper(None, fn_n1_kwargs, "x", error=ValueError)
# non-default kw-only args
_helper(None, fn_kwonly, ["x", "y"], error=ValueError)
_helper(None, fn_has_nondefault_kwonly, ["x", "y"], error=ValueError)
_helper(None, fn_cmplx, ["x", "y"], error=ValueError)
# Replacing with one input column and default output column
_helper(lambda data: _dict_update(data, {"y": -data["y"]}), fn_11, "y")
_helper(lambda data: _dict_update(data, {"y": (-data["y"], data["y"])}), fn_1n, "y")
# The key of input column is not in dict
_helper(None, fn_1n, "a", error=KeyError)
# Unmatched input columns with fn arguments
_helper(None, fn_n1, "y", error=ValueError)
_helper(None, fn_1n, ["x", "y"], error=ValueError)
_helper(None, fn_n1_def, ["x", "y", "z"], error=ValueError)
_helper(None, p_fn_n1, ["x", "y"], error=ValueError)
_helper(None, fn_n1_kwargs, ["x", "y", "z"], error=ValueError)
# Replacing with multiple input columns and default output column (the left-most input column)
_helper(lambda data: _dict_update(data, {"z": data["x"] + data["z"]}, ["x"]), fn_n1, ["z", "x"])
_helper(
lambda data: _dict_update(data, {"z": (-data["z"], -data["y"], data["y"] + data["z"])}, ["y"]),
fn_nn,
["z", "y"],
)
# output_col can only be specified when input_col is not None
_helper(None, fn_n1, None, "x", error=ValueError)
# output_col can only be single-element list or tuple
_helper(None, fn_n1, None, ["x", "y"], error=ValueError)
# Single-element list as output_col
_helper(lambda data: _dict_update(data, {"x": -data["y"]}), fn_11, "y", ["x"])
# Replacing with one input column and single specified output column
_helper(lambda data: _dict_update(data, {"x": -data["y"]}), fn_11, "y", "x")
_helper(lambda data: _dict_update(data, {"z": (-data["y"], data["y"])}), fn_1n, "y", "z")
_helper(lambda data: _dict_update(data, {"y": data["x"] + data["z"]}), fn_n1, ["x", "z"], "y")
_helper(
lambda data: _dict_update(data, {"x": (-data["y"], -data["z"], data["y"] + data["z"])}),
fn_nn,
["y", "z"],
"x",
)
# Adding new key to dict for the output
_helper(lambda data: _dict_update(data, {"a": -data["y"]}), fn_11, "y", "a")
_helper(lambda data: _dict_update(data, {"a": (-data["y"], data["y"])}), fn_1n, "y", "a")
_helper(lambda data: _dict_update(data, {"a": data["x"] + data["z"]}), fn_n1, ["x", "z"], "a")
_helper(
lambda data: _dict_update(data, {"a": (-data["y"], -data["z"], data["y"] + data["z"])}),
fn_nn,
["y", "z"],
"a",
)
if __name__ == "__main__":
unittest.main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from unittest import TestCase
from torchdata.dataloader2 import DataLoader2
from torchdata.dataloader2.adapter import Shuffle
from torchdata.datapipes.iter import IterableWrapper
class AdapterTest(TestCase):
def test_shuffle(self) -> None:
size = 500
dp = IterableWrapper(range(size))
dl = DataLoader2(datapipe=dp)
self.assertEqual(list(range(size)), list(dl))
with self.assertWarns(Warning, msg="`shuffle=True` was set, but the datapipe does not contain a `Shuffler`."):
dl = DataLoader2(datapipe=dp, datapipe_adapter_fn=Shuffle(True))
self.assertNotEqual(list(range(size)), list(dl))
dp = IterableWrapper(range(size)).shuffle()
dl = DataLoader2(datapipe=dp)
self.assertNotEqual(list(range(size)), list(dl))
dl = DataLoader2(dp, Shuffle(True))
self.assertNotEqual(list(range(size)), list(dl))
dl = DataLoader2(dp, [Shuffle(None)])
self.assertNotEqual(list(range(size)), list(dl))
dl = DataLoader2(dp, [Shuffle(False)])
self.assertEqual(list(range(size)), list(dl))
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch.multiprocessing as mp
from torch.testing._internal.common_utils import slowTest
from torch.utils.data import DataLoader
from torchtext.datasets import AG_NEWS, AmazonReviewPolarity, IMDB, SQuAD1, SQuAD2, SST2
# TODO(124): Replace the following tests with the corresponding tests in TorchText
class TestTextExamples(unittest.TestCase):
def _test_helper(self, fn):
dp = fn()
for stage_dp in dp:
_ = list(stage_dp)
@staticmethod
def _collate_fn(batch):
return batch
def _test_DL_helper(self, fn):
mp.set_sharing_strategy("file_system")
dp = fn()
for stage_dp in dp:
dl = DataLoader(
stage_dp,
batch_size=8,
num_workers=4,
collate_fn=TestTextExamples._collate_fn,
multiprocessing_context="spawn",
)
_ = list(dl)
def test_SST(self) -> None:
self._test_helper(SST2)
self._test_DL_helper(SST2)
def test_AG_NEWS(self) -> None:
self._test_helper(AG_NEWS)
self._test_DL_helper(AG_NEWS)
@slowTest
def test_AmazonReviewPolarity(self) -> None:
self._test_helper(AmazonReviewPolarity)
self._test_DL_helper(AmazonReviewPolarity)
@slowTest
def test_IMDB(self) -> None:
self._test_helper(IMDB)
self._test_DL_helper(IMDB)
def test_SQuAD1(self) -> None:
self._test_helper(SQuAD1)
self._test_DL_helper(SQuAD1)
def test_SQuAD2(self) -> None:
self._test_helper(SQuAD2)
self._test_DL_helper(SQuAD2)
if __name__ == "__main__":
unittest.main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import bz2
import functools
import hashlib
import io
import itertools
import lzma
import os
import subprocess
import tarfile
import tempfile
import time
import unittest
import warnings
import zipfile
from functools import partial
from json.decoder import JSONDecodeError
import expecttest
from _utils._common_utils_for_test import create_temp_dir, create_temp_files, get_name, reset_after_n_next_calls
from torch.utils.data import DataLoader
from torchdata.dataloader2.adapter import CacheTimeout
from torchdata.datapipes.iter import (
Bz2FileLoader,
CSVDictParser,
CSVParser,
Decompressor,
FileLister,
FileOpener,
HashChecker,
IoPathFileLister,
IoPathFileOpener,
IoPathSaver,
IterableWrapper,
IterDataPipe,
JsonParser,
RarArchiveLoader,
Saver,
StreamReader,
TarArchiveLoader,
WebDataset,
XzFileLoader,
ZipArchiveLoader,
)
try:
import iopath
import torch
HAS_IOPATH = True
except ImportError:
HAS_IOPATH = False
skipIfNoIoPath = unittest.skipIf(not HAS_IOPATH, "no iopath")
try:
import rarfile
HAS_RAR_TOOLS = True
try:
rarfile.tool_setup()
subprocess.run(("rar", "-?"), check=True)
except (rarfile.RarCannotExec, subprocess.CalledProcessError):
HAS_RAR_TOOLS = False
except (ModuleNotFoundError, FileNotFoundError):
HAS_RAR_TOOLS = False
skipIfNoRarTools = unittest.skipIf(not HAS_RAR_TOOLS, "no rar tools")
try:
import portalocker
HAS_PORTALOCKER = True
except ImportError:
HAS_PORTALOCKER = False
skipIfNoPortalocker = unittest.skipIf(not HAS_PORTALOCKER, "No portalocker installed")
def filepath_fn(temp_dir_name, name: str) -> str:
return os.path.join(temp_dir_name, os.path.basename(name))
def _unbatch(x):
return x[0]
def _noop(x):
return x
class TestDataPipeLocalIO(expecttest.TestCase):
def setUp(self):
self.temp_dir = create_temp_dir()
self.temp_files = create_temp_files(self.temp_dir)
self.temp_sub_dir = create_temp_dir(self.temp_dir.name)
self.temp_sub_files = create_temp_files(self.temp_sub_dir, 4, False)
self.temp_dir_2 = create_temp_dir()
self.temp_files_2 = create_temp_files(self.temp_dir_2)
self.temp_sub_dir_2 = create_temp_dir(self.temp_dir_2.name)
self.temp_sub_files_2 = create_temp_files(self.temp_sub_dir_2, 4, False)
def tearDown(self):
try:
self.temp_sub_dir.cleanup()
self.temp_dir.cleanup()
self.temp_sub_dir_2.cleanup()
self.temp_dir_2.cleanup()
except Exception as e:
warnings.warn(f"TestDataPipeLocalIO was not able to cleanup temp dir due to {e}")
def _custom_files_set_up(self, files):
for fname, content in files.items():
temp_file_path = os.path.join(self.temp_dir.name, fname)
with open(temp_file_path, "w") as f:
f.write(content)
def _compressed_files_comparison_helper(self, expected_files, result, check_length: bool = True):
if check_length:
self.assertEqual(len(expected_files), len(result))
for res, expected_file in itertools.zip_longest(result, expected_files):
self.assertTrue(res is not None and expected_file is not None)
self.assertEqual(os.path.basename(res[0]), os.path.basename(expected_file))
with open(expected_file, "rb") as f:
self.assertEqual(res[1].read(), f.read())
res[1].close()
def _unordered_compressed_files_comparison_helper(self, expected_files, result, check_length: bool = True):
expected_names_to_files = {os.path.basename(f): f for f in expected_files}
if check_length:
self.assertEqual(len(expected_files), len(result))
for res in result:
fname = os.path.basename(res[0])
self.assertTrue(fname is not None)
self.assertTrue(fname in expected_names_to_files)
with open(expected_names_to_files[fname], "rb") as f:
self.assertEqual(res[1].read(), f.read())
res[1].close()
def test_csv_parser_iterdatapipe(self):
def make_path(fname):
return f"{self.temp_dir.name}/{fname}"
csv_files = {"1.csv": "key,item\na,1\nb,2", "empty.csv": "", "empty2.csv": "\n"}
self._custom_files_set_up(csv_files)
datapipe1 = IterableWrapper([make_path(fname) for fname in ["1.csv", "empty.csv", "empty2.csv"]])
datapipe2 = FileOpener(datapipe1, mode="b")
datapipe3 = datapipe2.map(get_name)
# Functional Test: yield one row at time from each file, skipping over empty content
csv_parser_dp = datapipe3.parse_csv()
expected_res = [["key", "item"], ["a", "1"], ["b", "2"], []]
self.assertEqual(expected_res, list(csv_parser_dp))
# Functional Test: yield one row at time from each file, skipping over empty content and header
csv_parser_dp = datapipe3.parse_csv(skip_lines=1)
expected_res = [["a", "1"], ["b", "2"]]
self.assertEqual(expected_res, list(csv_parser_dp))
# Functional Test: yield one row at time from each file with file name, skipping over empty content
csv_parser_dp = datapipe3.parse_csv(return_path=True)
expected_res = [("1.csv", ["key", "item"]), ("1.csv", ["a", "1"]), ("1.csv", ["b", "2"]), ("empty2.csv", [])]
self.assertEqual(expected_res, list(csv_parser_dp))
# Functional Test: yield one row at time from each file as tuple instead of list, skipping over empty content
csv_parser_dp = datapipe3.parse_csv(as_tuple=True)
expected_res = [("key", "item"), ("a", "1"), ("b", "2"), ()]
self.assertEqual(expected_res, list(csv_parser_dp))
# Reset Test:
csv_parser_dp = CSVParser(datapipe3, return_path=True)
n_elements_before_reset = 2
expected_res = [("1.csv", ["key", "item"]), ("1.csv", ["a", "1"]), ("1.csv", ["b", "2"]), ("empty2.csv", [])]
res_before_reset, res_after_reset = reset_after_n_next_calls(csv_parser_dp, n_elements_before_reset)
self.assertEqual(expected_res[:n_elements_before_reset], res_before_reset)
self.assertEqual(expected_res, res_after_reset)
# __len__ Test: length isn't implemented since it cannot be known ahead of time
with self.assertRaisesRegex(TypeError, "has no len"):
len(csv_parser_dp)
def test_csv_dict_parser_iterdatapipe(self):
def get_name(path_and_stream):
return os.path.basename(path_and_stream[0]), path_and_stream[1]
csv_files = {"1.csv": "key,item\na,1\nb,2", "empty.csv": "", "empty2.csv": "\n"}
self._custom_files_set_up(csv_files)
datapipe1 = FileLister(self.temp_dir.name, "*.csv")
datapipe2 = FileOpener(datapipe1, mode="b")
datapipe3 = datapipe2.map(get_name)
# Functional Test: yield one row at a time as dict, with the first row being the header (key)
csv_dict_parser_dp = datapipe3.parse_csv_as_dict()
expected_res1 = [{"key": "a", "item": "1"}, {"key": "b", "item": "2"}]
self.assertEqual(expected_res1, list(csv_dict_parser_dp))
# Functional Test: yield one row at a time as dict, skip over first row, with the second row being the header
csv_dict_parser_dp = datapipe3.parse_csv_as_dict(skip_lines=1)
expected_res2 = [{"a": "b", "1": "2"}]
self.assertEqual(expected_res2, list(csv_dict_parser_dp))
# Functional Test: yield one row at a time as dict with file name, and the first row being the header (key)
csv_dict_parser_dp = datapipe3.parse_csv_as_dict(return_path=True)
expected_res3 = [("1.csv", {"key": "a", "item": "1"}), ("1.csv", {"key": "b", "item": "2"})]
self.assertEqual(expected_res3, list(csv_dict_parser_dp))
# Reset Test
csv_dict_parser_dp = CSVDictParser(datapipe3)
expected_res4 = [{"key": "a", "item": "1"}, {"key": "b", "item": "2"}]
n_elements_before_reset = 1
res_before_reset, res_after_reset = reset_after_n_next_calls(csv_dict_parser_dp, n_elements_before_reset)
self.assertEqual(expected_res4[:n_elements_before_reset], res_before_reset)
self.assertEqual(expected_res4, res_after_reset)
# __len__ Test: length isn't implemented since it cannot be known ahead of time
with self.assertRaisesRegex(TypeError, "has no len"):
len(csv_dict_parser_dp)
def test_hash_checker_iterdatapipe(self):
hash_dict = {}
def fill_hash_dict():
for path in self.temp_files:
with open(path) as f:
hash_func = hashlib.sha256()
content = f.read().encode("utf-8")
hash_func.update(content)
hash_dict[path] = hash_func.hexdigest()
fill_hash_dict()
datapipe1 = FileLister(self.temp_dir.name, "*")
datapipe2 = FileOpener(datapipe1, mode="b")
hash_check_dp = HashChecker(datapipe2, hash_dict)
expected_res = list(datapipe2)
# Functional Test: Ensure the DataPipe values are unchanged if the hashes are the same
for (expected_path, expected_stream), (actual_path, actual_stream) in zip(expected_res, hash_check_dp):
self.assertEqual(expected_path, actual_path)
self.assertEqual(expected_stream.read(), actual_stream.read())
# Functional Test: Ensure the rewind option works, and the stream is empty when there is no rewind
hash_check_dp_no_reset = HashChecker(datapipe2, hash_dict, rewind=False)
for (expected_path, _), (actual_path, actual_stream) in zip(expected_res, hash_check_dp_no_reset):
self.assertEqual(expected_path, actual_path)
self.assertEqual(b"", actual_stream.read())
# Functional Test: Error when file/path is not in hash_dict
hash_check_dp = HashChecker(datapipe2, {})
it = iter(hash_check_dp)
with self.assertRaisesRegex(RuntimeError, "Unspecified hash for file"):
next(it)
# Functional Test: Error when the hash is different
hash_dict[self.temp_files[0]] = "WRONG HASH"
hash_check_dp = HashChecker(datapipe2, hash_dict)
with self.assertRaisesRegex(RuntimeError, "does not match"):
list(hash_check_dp)
# Reset Test:
fill_hash_dict() # Reset the dict with correct values because we changed it in the last test case
hash_check_dp = datapipe2.check_hash(hash_dict)
n_elements_before_reset = 2
res_before_reset, res_after_reset = reset_after_n_next_calls(hash_check_dp, n_elements_before_reset)
for (expected_path, expected_stream), (actual_path, actual_stream) in zip(datapipe2, res_before_reset):
self.assertEqual(expected_path, actual_path)
self.assertEqual(expected_stream.read(), actual_stream.read())
for (expected_path, expected_stream), (actual_path, actual_stream) in zip(datapipe2, res_after_reset):
self.assertEqual(expected_path, actual_path)
self.assertEqual(expected_stream.read(), actual_stream.read())
# __len__ Test: returns the length of source DataPipe
with self.assertRaisesRegex(TypeError, "FileOpenerIterDataPipe instance doesn't have valid length"):
len(hash_check_dp)
def test_json_parser_iterdatapipe(self):
def is_empty_json(path_and_stream):
return path_and_stream[0] == "empty.json"
def is_nonempty_json(path_and_stream):
return path_and_stream[0] != "empty.json"
json_files = {
"1.json": '["foo", {"bar":["baz", null, 1.0, 2]}]',
"empty.json": "",
"2.json": '{"__complex__": true, "real": 1, "imag": 2}',
}
self._custom_files_set_up(json_files)
datapipe1 = IterableWrapper([f"{self.temp_dir.name}/{fname}" for fname in ["empty.json", "1.json", "2.json"]])
datapipe2 = FileOpener(datapipe1, mode="b")
datapipe3 = datapipe2.map(get_name)
datapipe_empty = datapipe3.filter(is_empty_json)
datapipe_nonempty = datapipe3.filter(is_nonempty_json)
empty_json_dp = datapipe_empty.parse_json_files()
it = iter(empty_json_dp)
# Functional Test: dp fails when empty JSON file is given
with self.assertRaisesRegex(JSONDecodeError, "Expecting value"):
next(it)
# Functional Test: dp yields one json file at a time
json_dp = datapipe_nonempty.parse_json_files()
expected_res = [
("1.json", ["foo", {"bar": ["baz", None, 1.0, 2]}]),
("2.json", {"__complex__": True, "real": 1, "imag": 2}),
]
self.assertEqual(expected_res, list(json_dp))
# Reset Test:
json_dp = JsonParser(datapipe_nonempty)
n_elements_before_reset = 1
res_before_reset, res_after_reset = reset_after_n_next_calls(json_dp, n_elements_before_reset)
self.assertEqual(expected_res[:n_elements_before_reset], res_before_reset)
self.assertEqual(expected_res, res_after_reset)
# __len__ Test: length isn't implemented since it cannot be known ahead of time
with self.assertRaisesRegex(TypeError, "len"):
len(json_dp)
# kwargs Test:
json_dp = JsonParser(datapipe_nonempty, parse_int=str)
expected_res = [
("1.json", ["foo", {"bar": ["baz", None, 1.0, "2"]}]),
("2.json", {"__complex__": True, "real": "1", "imag": "2"}),
]
self.assertEqual(expected_res, list(json_dp))
def test_saver_iterdatapipe(self):
# Functional Test: Saving some data
name_to_data = {"1.txt": b"DATA1", "2.txt": b"DATA2", "3.txt": b"DATA3"}
source_dp = IterableWrapper(sorted(name_to_data.items()))
saver_dp = source_dp.save_to_disk(filepath_fn=partial(filepath_fn, self.temp_dir.name), mode="wb")
res_file_paths = list(saver_dp)
expected_paths = [filepath_fn(self.temp_dir.name, name) for name in name_to_data.keys()]
self.assertEqual(expected_paths, res_file_paths)
for name in name_to_data.keys():
p = filepath_fn(self.temp_dir.name, name)
with open(p) as f:
self.assertEqual(name_to_data[name], f.read().encode())
# Reset Test:
saver_dp = Saver(source_dp, filepath_fn=partial(filepath_fn, self.temp_dir.name), mode="wb")
n_elements_before_reset = 2
res_before_reset, res_after_reset = reset_after_n_next_calls(saver_dp, n_elements_before_reset)
self.assertEqual(
[filepath_fn(self.temp_dir.name, "1.txt"), filepath_fn(self.temp_dir.name, "2.txt")], res_before_reset
)
self.assertEqual(expected_paths, res_after_reset)
for name in name_to_data.keys():
p = filepath_fn(self.temp_dir.name, name)
with open(p) as f:
self.assertEqual(name_to_data[name], f.read().encode())
# __len__ Test: returns the length of source DataPipe
self.assertEqual(3, len(saver_dp))
def _write_test_tar_files(self):
path = os.path.join(self.temp_dir.name, "test_tar.tar")
with tarfile.open(path, "w:tar") as tar:
tar.add(self.temp_files[0])
tar.add(self.temp_files[1])
tar.add(self.temp_files[2])
def _write_test_tar_gz_files(self):
path = os.path.join(self.temp_dir.name, "test_gz.tar.gz")
with tarfile.open(path, "w:gz") as tar:
tar.add(self.temp_files[0])
tar.add(self.temp_files[1])
tar.add(self.temp_files[2])
def test_tar_archive_reader_iterdatapipe(self):
self._write_test_tar_files()
datapipe1 = FileLister(self.temp_dir.name, "*.tar")
datapipe2 = FileOpener(datapipe1, mode="b")
tar_loader_dp = TarArchiveLoader(datapipe2)
self._write_test_tar_gz_files()
datapipe_gz_1 = FileLister(self.temp_dir.name, "*.tar.gz")
datapipe_gz_2 = FileOpener(datapipe_gz_1, mode="b")
gz_reader_dp = TarArchiveLoader(datapipe_gz_2)
# Functional Test: Read extracted files before reaching the end of the tarfile
self._compressed_files_comparison_helper(self.temp_files, tar_loader_dp, check_length=False)
self._compressed_files_comparison_helper(self.temp_files, gz_reader_dp, check_length=False)
# Load from decompressed file stream
decomp_dp = datapipe_gz_2.decompress()
decomp_reader_dp = TarArchiveLoader(decomp_dp)
self._compressed_files_comparison_helper(self.temp_files, decomp_reader_dp, check_length=False)
# Functional Test: Read extracted files after reaching the end of the tarfile
data_refs = list(tar_loader_dp)
self._compressed_files_comparison_helper(self.temp_files, data_refs)
data_refs_gz = list(gz_reader_dp)
self._compressed_files_comparison_helper(self.temp_files, data_refs_gz)
# Reset Test: reset the DataPipe after reading part of it
tar_loader_dp = datapipe2.load_from_tar()
n_elements_before_reset = 1
res_before_reset, res_after_reset = reset_after_n_next_calls(tar_loader_dp, n_elements_before_reset)
# Check result accumulated before reset
self._compressed_files_comparison_helper(self.temp_files[:n_elements_before_reset], res_before_reset)
# Check result accumulated after reset
self._compressed_files_comparison_helper(self.temp_files, res_after_reset)
# __len__ Test: doesn't have valid length
with self.assertRaisesRegex(TypeError, "instance doesn't have valid length"):
len(tar_loader_dp)
def _write_test_zip_files(self):
path = os.path.join(self.temp_dir.name, "test_zip.zip")
with zipfile.ZipFile(path, "w") as myzip:
myzip.write(self.temp_files[0], arcname=os.path.basename(self.temp_files[0]))
myzip.write(self.temp_files[1], arcname=os.path.basename(self.temp_files[1]))
myzip.write(self.temp_files[2], arcname=os.path.basename(self.temp_files[2]))
def test_zip_archive_reader_iterdatapipe(self):
self._write_test_zip_files()
datapipe1 = FileLister(self.temp_dir.name, "*.zip")
datapipe2 = FileOpener(datapipe1, mode="b")
zip_loader_dp = ZipArchiveLoader(datapipe2)
# Functional Test: read extracted files before reaching the end of the zipfile
self._compressed_files_comparison_helper(self.temp_files, zip_loader_dp, check_length=False)
# Functional Test: read extracted files after reaching the end of the zipile
data_refs = list(zip_loader_dp)
self._compressed_files_comparison_helper(self.temp_files, data_refs)
# Reset Test: reset the DataPipe after reading part of it
zip_loader_dp = datapipe2.load_from_zip()
n_elements_before_reset = 1
res_before_reset, res_after_reset = reset_after_n_next_calls(zip_loader_dp, n_elements_before_reset)
# Check the results accumulated before reset
self._compressed_files_comparison_helper(self.temp_files[:n_elements_before_reset], res_before_reset)
# Check the results accumulated after reset
self._compressed_files_comparison_helper(self.temp_files, res_after_reset)
# __len__ Test: doesn't have valid length
with self.assertRaisesRegex(TypeError, "instance doesn't have valid length"):
len(zip_loader_dp)
def _write_test_xz_files(self):
for path in self.temp_files:
fname = os.path.basename(path)
temp_xzfile_pathname = os.path.join(self.temp_dir.name, f"{fname}.xz")
with open(path) as f:
with lzma.open(temp_xzfile_pathname, "w") as xz:
xz.write(f.read().encode("utf-8"))
def test_xz_archive_reader_iterdatapipe(self):
# Worth noting that the .tar and .zip tests write multiple files into the same compressed file
# Whereas we create multiple .xz files in the same directories below.
self._write_test_xz_files()
datapipe1 = FileLister(self.temp_dir.name, "*.xz")
datapipe2 = FileOpener(datapipe1, mode="b")
xz_loader_dp = XzFileLoader(datapipe2)
# Functional Test: Read extracted files before reaching the end of the xzfile
self._unordered_compressed_files_comparison_helper(self.temp_files, xz_loader_dp, check_length=False)
# Functional Test: Read extracted files after reaching the end of the xzfile
data_refs = list(xz_loader_dp)
self._unordered_compressed_files_comparison_helper(self.temp_files, data_refs)
# Reset Test: reset the DataPipe after reading part of it
xz_loader_dp = datapipe2.load_from_xz()
n_elements_before_reset = 1
res_before_reset, res_after_reset = reset_after_n_next_calls(xz_loader_dp, n_elements_before_reset)
# Check result accumulated before reset
self.assertEqual(n_elements_before_reset, len(res_before_reset))
self._unordered_compressed_files_comparison_helper(self.temp_files, res_before_reset, check_length=False)
# Check result accumulated after reset
self._unordered_compressed_files_comparison_helper(self.temp_files, res_after_reset)
# Reset Test: Ensure the order is consistent between iterations
for r1, r2 in zip(list(xz_loader_dp), list(xz_loader_dp)):
self.assertEqual(r1[0], r2[0])
# __len__ Test: doesn't have valid length
with self.assertRaisesRegex(TypeError, "instance doesn't have valid length"):
len(xz_loader_dp)
def _write_test_bz2_files(self):
for path in self.temp_files:
fname = os.path.basename(path)
temp_bz2file_pathname = os.path.join(self.temp_dir.name, f"{fname}.bz2")
with open(path) as f:
with bz2.open(temp_bz2file_pathname, "w") as f_bz2:
f_bz2.write(f.read().encode("utf-8"))
def test_bz2_archive_reader_iterdatapipe(self):
self._write_test_bz2_files()
filelist_dp = FileLister(self.temp_dir.name, "*.bz2")
fileopen_dp = FileOpener(filelist_dp, mode="b")
bz2_loader_dp = Bz2FileLoader(fileopen_dp)
# Functional Test: Read extracted files before reaching the end of the bz2file
self._unordered_compressed_files_comparison_helper(self.temp_files, bz2_loader_dp, check_length=False)
# Functional Test: Read extracted files after reaching the end of the bz2file
data_refs = list(bz2_loader_dp)
self._unordered_compressed_files_comparison_helper(self.temp_files, data_refs)
# Reset Test: reset the DataPipe after reading part of it
bz2_loader_dp = fileopen_dp.load_from_bz2()
n_elements_before_reset = 1
res_before_reset, res_after_reset = reset_after_n_next_calls(bz2_loader_dp, n_elements_before_reset)
# Check result accumulated before reset
self.assertEqual(n_elements_before_reset, len(res_before_reset))
self._unordered_compressed_files_comparison_helper(self.temp_files, res_before_reset, check_length=False)
# Check result accumulated after reset
self._unordered_compressed_files_comparison_helper(self.temp_files, res_after_reset)
# Reset Test: Ensure the order is consistent between iterations
for r1, r2 in zip(list(bz2_loader_dp), list(bz2_loader_dp)):
self.assertEqual(r1[0], r2[0])
# __len__ Test: doesn't have valid length
with self.assertRaisesRegex(TypeError, "instance doesn't have valid length"):
len(bz2_loader_dp)
def _decompressor_tar_test_helper(self, expected_files, tar_decompress_dp):
for _file, child_obj in tar_decompress_dp:
for expected_file, tarinfo in zip(expected_files, child_obj):
if not tarinfo.isfile():
continue
extracted_fobj = child_obj.extractfile(tarinfo)
with open(expected_file, "rb") as f:
self.assertEqual(f.read(), extracted_fobj.read())
def _decompressor_xz_test_helper(self, xz_decompress_dp):
for xz_file_name, xz_stream in xz_decompress_dp:
expected_file = xz_file_name[:-3]
with open(expected_file, "rb") as f:
self.assertEqual(f.read(), xz_stream.read())
def _decompressor_bz2_test_helper(self, bz2_decompress_dp):
for bz2_file_name, bz2_stream in bz2_decompress_dp:
expected_file = bz2_file_name.rsplit(".", 1)[0]
with open(expected_file, "rb") as f:
self.assertEqual(f.read(), bz2_stream.read())
def _write_single_gz_file(self):
import gzip
with gzip.open(f"{self.temp_dir.name}/temp.gz", "wb") as k:
with open(self.temp_files[0], "rb") as f:
k.write(f.read())
def test_decompressor_iterdatapipe(self):
self._write_test_tar_files()
self._write_test_tar_gz_files()
self._write_single_gz_file()
self._write_test_zip_files()
self._write_test_xz_files()
self._write_test_bz2_files()
# Functional Test: work with .tar files
tar_file_dp = FileLister(self.temp_dir.name, "*.tar")
tar_load_dp = FileOpener(tar_file_dp, mode="b")
tar_decompress_dp = Decompressor(tar_load_dp, file_type="tar")
self._decompressor_tar_test_helper(self.temp_files, tar_decompress_dp)
# Functional test: work with .tar.gz files
tar_gz_file_dp = FileLister(self.temp_dir.name, "*.tar.gz")
tar_gz_load_dp = FileOpener(tar_gz_file_dp, mode="b")
tar_gz_decompress_dp = Decompressor(tar_gz_load_dp, file_type="tar")
self._decompressor_tar_test_helper(self.temp_files, tar_gz_decompress_dp)
# Functional Test: work with .gz files
gz_file_dp = IterableWrapper([f"{self.temp_dir.name}/temp.gz"])
gz_load_dp = FileOpener(gz_file_dp, mode="b")
gz_decompress_dp = Decompressor(gz_load_dp, file_type="gzip")
for _, gz_stream in gz_decompress_dp:
with open(self.temp_files[0], "rb") as f:
self.assertEqual(f.read(), gz_stream.read())
# Functional Test: work with .zip files
zip_file_dp = FileLister(self.temp_dir.name, "*.zip")
zip_load_dp = FileOpener(zip_file_dp, mode="b")
zip_decompress_dp = zip_load_dp.decompress(file_type="zip")
for _, zip_stream in zip_decompress_dp:
for fname in self.temp_files:
with open(fname, "rb") as f:
self.assertEqual(f.read(), zip_stream.read(name=os.path.basename(fname)))
# Functional Test: work with .xz files
xz_file_dp = FileLister(self.temp_dir.name, "*.xz")
xz_load_dp = FileOpener(xz_file_dp, mode="b")
xz_decompress_dp = Decompressor(xz_load_dp, file_type="lzma")
self._decompressor_xz_test_helper(xz_decompress_dp)
# Functional Test: work with .bz2 files
bz2_file_dp = FileLister(self.temp_dir.name, "*.bz2")
bz2_load_dp = FileOpener(bz2_file_dp, mode="b")
bz2_decompress_dp = Decompressor(bz2_load_dp, file_type="bz2")
self._decompressor_bz2_test_helper(bz2_decompress_dp)
# Functional Test: work without file type as input for .tar files
tar_decompress_dp = Decompressor(tar_load_dp, file_type=None)
self._decompressor_tar_test_helper(self.temp_files, tar_decompress_dp)
# Functional Test: work without file type as input for .xz files
xz_decompress_dp = Decompressor(xz_load_dp)
self._decompressor_xz_test_helper(xz_decompress_dp)
# Functional Test: work without file type as input for .tar.gz files
tar_gz_decompress_dp = Decompressor(tar_gz_load_dp, file_type=None)
self._decompressor_tar_test_helper(self.temp_files, tar_gz_decompress_dp)
# Functional Test: work without file type as input for .bz2 files
bz2_decompress_dp = Decompressor(bz2_load_dp, file_type=None)
self._decompressor_bz2_test_helper(bz2_decompress_dp)
# Functional Test: Compression Type is works for both upper and lower case strings
tar_decompress_dp = Decompressor(tar_load_dp, file_type="TAr")
self._decompressor_tar_test_helper(self.temp_files, tar_decompress_dp)
# Functional Test: Compression Type throws error for invalid file type
with self.assertRaisesRegex(ValueError, "not a valid CompressionType"):
Decompressor(tar_load_dp, file_type="ABC")
# Reset Test: Ensure the order is consistent between iterations
n_elements_before_reset = 2
res_before_reset, res_after_reset = reset_after_n_next_calls(xz_decompress_dp, n_elements_before_reset)
self._decompressor_xz_test_helper(res_before_reset)
self._decompressor_xz_test_helper(res_after_reset)
# __len__ Test: doesn't have valid length
with self.assertRaisesRegex(TypeError, "has no len"):
len(tar_decompress_dp)
def _write_text_files(self):
name_to_data = {"1.text": b"DATA", "2.text": b"DATA", "3.text": b"DATA"}
source_dp = IterableWrapper(sorted(name_to_data.items()))
saver_dp = source_dp.save_to_disk(filepath_fn=partial(filepath_fn, self.temp_dir.name), mode="wb")
list(saver_dp)
@staticmethod
def _slow_fn(tmpdirname, x):
with open(os.path.join(tmpdirname, str(os.getpid())), "w") as pid_fh:
pid_fh.write("anything")
time.sleep(10)
return (x, "str")
@skipIfNoPortalocker
def test_disk_cache_locks(self):
with tempfile.TemporaryDirectory() as tmpdirname:
file_name = os.path.join(tmpdirname, "test.bin")
dp = IterableWrapper([file_name])
dp = dp.on_disk_cache(filepath_fn=_noop)
dp = dp.map(functools.partial(self._slow_fn, tmpdirname))
dp = dp.end_caching(mode="t", filepath_fn=_noop, timeout=120)
dp = FileOpener(dp)
dp = StreamReader(dp)
dl = DataLoader(dp, num_workers=10, multiprocessing_context="spawn", batch_size=1, collate_fn=_unbatch)
result = list(dl)
all_files = []
for (_, _, filenames) in os.walk(tmpdirname):
all_files += filenames
# We expect only two files, one with pid and 'downloaded' one
self.assertEqual(2, len(all_files))
self.assertEqual("str", result[0][1])
# cleanup cached files
for f in os.listdir(tmpdirname):
os.remove(os.path.join(tmpdirname, f))
dp = CacheTimeout(2)(dp) # Calling adapter manually to work with classic DataLoader
dl = DataLoader(dp, num_workers=10, multiprocessing_context="spawn", batch_size=1, collate_fn=_unbatch)
with self.assertRaisesRegex(Exception, "OnDiskCache Exception"):
result = list(dl)
# TODO(120): this test currently only covers reading from local
# filesystem. It needs to be modified once test data can be stored on
# gdrive/onedrive
@skipIfNoIoPath
def test_io_path_file_lister_iterdatapipe(self):
datapipe = IoPathFileLister(root=self.temp_sub_dir.name)
# check all file paths within sub_folder are listed
for path in datapipe:
self.assertTrue(path in self.temp_sub_files)
datapipe = IterableWrapper([self.temp_sub_dir.name])
datapipe = datapipe.list_files_by_iopath()
for path in datapipe:
self.assertTrue(path in self.temp_sub_files)
@skipIfNoIoPath
def test_io_path_file_lister_iterdatapipe_with_list(self):
datapipe = IoPathFileLister(root=[self.temp_sub_dir.name, self.temp_sub_dir_2.name])
file_lister = list(datapipe)
file_lister.sort()
all_temp_files = list(self.temp_sub_files + self.temp_sub_files_2)
all_temp_files.sort()
# check all file paths within sub_folder are listed
self.assertEqual(file_lister, all_temp_files)
datapipe = IterableWrapper([self.temp_sub_dir.name, self.temp_sub_dir_2.name])
datapipe = datapipe.list_files_by_iopath()
results = list(datapipe)
results.sort()
self.assertEqual(results, all_temp_files)
@skipIfNoIoPath
def test_io_path_file_loader_iterdatapipe(self):
datapipe1 = IoPathFileLister(root=self.temp_sub_dir.name)
datapipe2 = IoPathFileOpener(datapipe1)
# check contents of file match
for _, f in datapipe2:
self.assertEqual(f.read(), "0123456789abcdef")
# Reset Test: Ensure the resulting streams are still readable after the DataPipe is reset/exhausted
self._write_text_files()
lister_dp = FileLister(self.temp_dir.name, "*.text")
iopath_file_opener_dp = lister_dp.open_files_by_iopath(mode="rb")
n_elements_before_reset = 2
res_before_reset, res_after_reset = reset_after_n_next_calls(iopath_file_opener_dp, n_elements_before_reset)
self.assertEqual(2, len(res_before_reset))
self.assertEqual(3, len(res_after_reset))
for _name, stream in res_before_reset:
self.assertEqual(b"DATA", stream.read())
for _name, stream in res_after_reset:
self.assertEqual(b"DATA", stream.read())
@skipIfNoIoPath
def test_io_path_saver_iterdatapipe(self):
# Functional Test: Saving some data
name_to_data = {"1.txt": b"DATA1", "2.txt": b"DATA2", "3.txt": b"DATA3"}
source_dp = IterableWrapper(sorted(name_to_data.items()))
saver_dp = source_dp.save_by_iopath(filepath_fn=partial(filepath_fn, self.temp_dir.name), mode="wb")
res_file_paths = list(saver_dp)
expected_paths = [filepath_fn(self.temp_dir.name, name) for name in name_to_data.keys()]
self.assertEqual(expected_paths, res_file_paths)
for name in name_to_data.keys():
p = filepath_fn(self.temp_dir.name, name)
with open(p) as f:
self.assertEqual(name_to_data[name], f.read().encode())
# Reset Test:
saver_dp = IoPathSaver(source_dp, filepath_fn=partial(filepath_fn, self.temp_dir.name), mode="wb")
n_elements_before_reset = 2
res_before_reset, res_after_reset = reset_after_n_next_calls(saver_dp, n_elements_before_reset)
self.assertEqual(
[filepath_fn(self.temp_dir.name, "1.txt"), filepath_fn(self.temp_dir.name, "2.txt")], res_before_reset
)
self.assertEqual(expected_paths, res_after_reset)
for name in name_to_data.keys():
p = filepath_fn(self.temp_dir.name, name)
with open(p) as f:
self.assertEqual(name_to_data[name], f.read().encode())
# __len__ Test: returns the length of source DataPipe
self.assertEqual(3, len(saver_dp))
@skipIfNoIoPath
def test_io_path_saver_file_lock(self):
# Same filename with different name
name_to_data = {"1.txt": b"DATA1", "1.txt": b"DATA2", "2.txt": b"DATA3", "2.txt": b"DATA4"} # noqa: F601
# Add sharding_filter to shard data into 2
source_dp = IterableWrapper(list(name_to_data.items())).sharding_filter()
# Use appending as the mode
saver_dp = source_dp.save_by_iopath(filepath_fn=partial(filepath_fn, self.temp_dir.name), mode="ab")
import torch.utils.data.graph_settings
from torch.utils.data import DataLoader
num_workers = 2
line_lengths = []
dl = DataLoader(saver_dp, num_workers=num_workers, multiprocessing_context="spawn")
for filename in dl:
with open(filename[0]) as f:
lines = f.readlines()
x = len(lines)
line_lengths.append(x)
self.assertEqual(x, 1)
self.assertEqual(num_workers, len(line_lengths))
def _write_test_rar_files(self):
# `rarfile` can only read but not write .rar archives so we use to system utilities
rar_archive_name = os.path.join(self.temp_dir.name, "test_rar")
subprocess.run(("rar", "a", rar_archive_name + ".rar", *self.temp_files), check=True)
# Nested RAR
subprocess.run(("rar", "a", rar_archive_name + "1.rar", self.temp_files[0]), check=True)
subprocess.run(("rar", "a", rar_archive_name + "2.rar", *self.temp_files[1:]), check=True)
subprocess.run(
("rar", "a", rar_archive_name + "_nested.rar", rar_archive_name + "1.rar", rar_archive_name + "2.rar"),
check=True,
)
# Nested RAR in TAR
with tarfile.open(rar_archive_name + "_nested.tar", "w:tar") as tar:
tar.add(rar_archive_name + "1.rar")
tar.add(rar_archive_name + "2.rar")
@skipIfNoRarTools
def test_rar_archive_loader(self):
self._write_test_rar_files()
datapipe1 = IterableWrapper([os.path.join(self.temp_dir.name, "test_rar.rar")])
datapipe2 = FileOpener(datapipe1, mode="b")
rar_loader_dp = RarArchiveLoader(datapipe2)
# Functional Test: read extracted files before reaching the end of the rarfile
self._unordered_compressed_files_comparison_helper(self.temp_files, rar_loader_dp, check_length=False)
# Functional Test: read extracted files after reaching the end of the rarfile
data_refs = list(rar_loader_dp)
self._unordered_compressed_files_comparison_helper(self.temp_files, data_refs)
# Reset Test: reset the DataPipe after reading part of it
rar_loader_dp = datapipe2.load_from_rar()
n_elements_before_reset = 2
res_before_reset, res_after_reset = reset_after_n_next_calls(rar_loader_dp, n_elements_before_reset)
# Check the results accumulated before reset
self._unordered_compressed_files_comparison_helper(self.temp_files[:n_elements_before_reset], res_before_reset)
# Check the results accumulated after reset
self._unordered_compressed_files_comparison_helper(self.temp_files, res_after_reset)
# __len__ Test: doesn't have valid length
with self.assertRaisesRegex(TypeError, "instance doesn't have valid length"):
len(rar_loader_dp)
# Nested RAR
datapipe1 = IterableWrapper([os.path.join(self.temp_dir.name, "test_rar_nested.rar")])
datapipe2 = FileOpener(datapipe1, mode="b")
rar_loader_dp_1 = RarArchiveLoader(datapipe2)
rar_loader_dp_2 = RarArchiveLoader(rar_loader_dp_1)
with self.assertRaisesRegex(ValueError, "Nested RAR archive is not supported"):
list(rar_loader_dp_2)
# Nested RAR in TAR
datapipe1 = IterableWrapper([os.path.join(self.temp_dir.name, "test_rar_nested.tar")])
datapipe2 = FileOpener(datapipe1, mode="b")
tar_loader_dp = TarArchiveLoader(datapipe2)
rar_loader_dp = RarArchiveLoader(tar_loader_dp)
# Functional Test: read extracted files before reaching the end of the rarfile
self._unordered_compressed_files_comparison_helper(self.temp_files, rar_loader_dp, check_length=False)
# Functional Test: read extracted files after reaching the end of the rarfile
data_refs = list(rar_loader_dp)
self._unordered_compressed_files_comparison_helper(self.temp_files, data_refs)
def _add_data_to_wds_tar(self, archive, name, value):
if isinstance(value, str):
value = value.encode()
info = tarfile.TarInfo(name)
info.size = len(value)
archive.addfile(info, io.BytesIO(value))
def _create_wds_tar(self, dest, nsamples):
with tarfile.open(dest, mode="w") as archive:
for i in range(nsamples):
self._add_data_to_wds_tar(archive, f"data/{i}.txt", f"text{i}")
self._add_data_to_wds_tar(archive, f"data/{i}.bin", f"bin{i}")
def test_webdataset(self) -> None:
# Functional Test: groups samples correctly
source_dp = IterableWrapper(
# simulated tar file content
[
("/path/to/file1.jpg", b"1"),
("/path/to/_something_", b"nothing"),
("/path/to/file1.cls", b"2"),
("/path/to/file2.jpg", b"3"),
("/path/to/file2.cls", b"4"),
]
)
web_dataset = WebDataset(source_dp)
self.assertEqual(
# expected grouped output
[
{".jpg": b"1", ".cls": b"2", "__key__": "/path/to/file1"},
{".jpg": b"3", ".cls": b"4", "__key__": "/path/to/file2"},
],
list(web_dataset),
)
def test_webdataset2(self) -> None:
# Setup
nsamples = 10
self._create_wds_tar(os.path.join(self.temp_dir.name, "wds.tar"), nsamples)
def decode(item):
key, value = item
if key.endswith(".txt"):
return key, value.read().decode("utf-8")
if key.endswith(".bin"):
return key, value.read().decode("utf-8")
datapipe1 = FileLister(self.temp_dir.name, "wds*.tar")
datapipe2 = FileOpener(datapipe1, mode="b")
dataset = datapipe2.load_from_tar().map(decode).webdataset()
items = list(dataset)
assert len(items) == nsamples
assert items[0][".txt"] == "text0"
assert items[9][".bin"] == "bin9"
if __name__ == "__main__":
unittest.main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
import sys
import tempfile
import unittest
import torch.multiprocessing as mp
from torch.testing._internal.common_utils import slowTest
from torch.utils.data import DataLoader
current = os.path.dirname(os.path.abspath(__file__))
ROOT = os.path.dirname(current)
sys.path.insert(0, ROOT)
from examples.audio.librispeech import LibriSpeech
class TestAudioExamples(unittest.TestCase):
def setUp(self):
self.temp_dir = tempfile.TemporaryDirectory()
def tearDown(self):
self.temp_dir.cleanup()
def _test_helper(self, fn, *args, **kwargs):
dp = fn(*args, **kwargs)
_ = list(dp)
@staticmethod
def _collate_fn(batch):
return batch
def _test_DL_helper(self, fn, *args, **kwargs):
dp = fn(*args, **kwargs)
mp.set_sharing_strategy("file_system")
dl = DataLoader(
dp,
batch_size=8,
num_workers=4,
collate_fn=TestAudioExamples._collate_fn,
multiprocessing_context="fork", # Using Fork her because `torchaudio.load` doesn't work well with spawn
)
for _ in dl:
pass
@slowTest
def test_LibriSpeech_dev(self) -> None:
root = self.temp_dir.name
self._test_helper(LibriSpeech, root, "dev-other")
# With cache and DataLoader
self._test_DL_helper(LibriSpeech, root, "dev-other")
@unittest.skipIf(True, "Dataset is too large to run on CI")
def test_LibriSpeech_train(self) -> None:
root = self.temp_dir.name
self._test_helper(LibriSpeech, root, "train-clean-100")
# With cache and DataLoader
self._test_DL_helper(LibriSpeech, root, "train-clean-100")
if __name__ == "__main__":
unittest.main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import expecttest
from torchdata.datapipes.iter import MapToIterConverter
from torchdata.datapipes.map import InMemoryCacheHolder, MapDataPipe, SequenceWrapper, UnZipper
class TestMapDataPipe(expecttest.TestCase):
def test_unzipper_mapdatapipe(self) -> None:
source_dp = SequenceWrapper([(i, i + 10, i + 20) for i in range(10)])
# Functional Test: unzips each sequence, with `sequence_length` specified
dp1: MapDataPipe
dp2: MapDataPipe
dp3: MapDataPipe
dp1, dp2, dp3 = UnZipper(source_dp, sequence_length=3) # type: ignore[misc]
self.assertEqual(list(range(10)), list(dp1))
self.assertEqual(list(range(10, 20)), list(dp2))
self.assertEqual(list(range(20, 30)), list(dp3))
# Functional Test: skipping over specified values
dp2, dp3 = source_dp.unzip(sequence_length=3, columns_to_skip=[0])
self.assertEqual(list(range(10, 20)), list(dp2))
self.assertEqual(list(range(20, 30)), list(dp3))
(dp2,) = source_dp.unzip(sequence_length=3, columns_to_skip=[0, 2])
self.assertEqual(list(range(10, 20)), list(dp2))
source_dp = SequenceWrapper([(i, i + 10, i + 20, i + 30) for i in range(10)])
dp2, dp3 = source_dp.unzip(sequence_length=4, columns_to_skip=[0, 3])
self.assertEqual(list(range(10, 20)), list(dp2))
self.assertEqual(list(range(20, 30)), list(dp3))
# __len__ Test: the lengths of child DataPipes are correct
self.assertEqual((10, 10), (len(dp2), len(dp3)))
def test_map_to_iter_converter_datapipe(self) -> None:
# Functional Test: ensure the conversion without indices input is correct
source_dp = SequenceWrapper(range(10))
iter_dp = source_dp.to_iter_datapipe()
self.assertEqual(list(range(10)), list(iter_dp))
# Functional Test: ensure conversion with custom indices is correct
source_dp2 = SequenceWrapper({"a": 0, "b": 1, "c": 2})
iter_dp2 = MapToIterConverter(source_dp2, indices=["a", "b", "c"])
self.assertEqual([0, 1, 2], list(iter_dp2))
# __len__ Test: the lengths of the output is correct
self.assertEqual(10, len(iter_dp))
self.assertEqual(3, len(iter_dp2))
def test_in_memory_cache_holder_mapdatapipe(self) -> None:
source_dp = SequenceWrapper(range(10))
cache_dp = source_dp.in_memory_cache()
# Functional Test: Cache DP should just return the data without changing the values
self.assertEqual(list(range(10)), list(cache_dp))
# Functional Test: Ensure the objects are the same ones from source DataPipe
cache_dp = InMemoryCacheHolder(source_dp) # type: ignore[arg-type]
res1 = list(cache_dp)
res2 = list(cache_dp)
self.assertTrue(id(source) == id(cache) for source, cache in zip(source_dp, res1))
self.assertTrue(id(source) == id(cache) for source, cache in zip(source_dp, res2))
# __len__ Test: inherits length from source_dp
self.assertEqual(10, len(cache_dp))
if __name__ == "__main__":
unittest.main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
import queue
import random
import socket
import sys
import unittest
from functools import partial
from unittest import TestCase
import numpy as np
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.testing._internal.common_utils import instantiate_parametrized_tests, parametrize
from torch.utils.data import DataLoader
from torchdata.dataloader2 import DataLoader2, DistributedReadingService
from torchdata.datapipes.iter import IterableWrapper
from torchdata.datapipes.iter.util.distributed import PrefetchTimeoutError
TEST_MASTER_ADDR = "127.0.0.1"
DEFAULT_WORLD_SIZE = 2
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
_backends = ["gloo"]
if dist.is_mpi_available():
_backends.append("mpi")
if dist.is_nccl_available() and torch.cuda.device_count() > 0:
_backends.append("nccl")
world_size_parametrize = parametrize("world_size", [1, DEFAULT_WORLD_SIZE])
backend_parametrize = parametrize("backend", _backends)
def abs_path(path):
return os.path.join(os.path.dirname(__file__), os.path.normpath(path))
def _get_open_port():
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind(("", 0))
port = s.getsockname()[1]
s.close()
return str(port)
class TerminateSignal:
pass
# TODO(ejguan): Use queue for all distributed tests
def launch_distributed_training(backend, world_size, *args, fn):
os.environ["MASTER_ADDR"] = TEST_MASTER_ADDR
os.environ["MASTER_PORT"] = _get_open_port()
ctx = mp.get_context("spawn")
q = ctx.Queue()
ps = []
for rank in range(world_size):
p = ctx.Process(
target=fn,
args=(
rank,
world_size,
backend,
q,
*args,
),
)
p.start()
ps.append(p)
res = []
while True:
try:
d = q.get()
if isinstance(d, TerminateSignal):
break
res.append(d)
except queue.Empty:
continue
for p in ps:
p.join()
return res
def _dist_iterate_one_epoch(dl, seed=None):
r"""
Iterate a full epoch of DataLoader and set seeds for global RNGs if provided.
"""
if seed is not None:
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
res = []
for d in dl:
res.append(d)
# Simulate training synchronization
dist.barrier()
return res
def _finalize_distributed_queue(rank, q):
r"""
Synchronize all distributed processes to guarantee all data have been put into
the Multiprocessing Queue.
"""
pg = dist.new_group(backend="gloo")
end_tensor = torch.tensor([rank], dtype=torch.int64)
dist.all_reduce(end_tensor, group=pg)
if rank == 0:
q.put(TerminateSignal())
dist.destroy_process_group(pg)
class DistributedTest(TestCase):
@staticmethod
def _test_fullsync(rank, world_size, backend, q):
dist.init_process_group(backend, rank=rank, world_size=world_size)
# Use a prime number to make sure uneven data sharding
data_length = 23
dp = IterableWrapper(list(range(data_length))).sharding_filter()
torch.utils.data.graph_settings.apply_sharding(dp, world_size, rank)
dp1 = dp.fullsync()
for _ in range(2):
res = _dist_iterate_one_epoch(dp1)
assert res == list(range(rank, data_length // world_size * world_size, world_size))
# Timeout Test
dp2 = dp.fullsync(timeout=0.01)
try:
for _ in range(2):
_ = list(dp2)
except Exception as e:
assert isinstance(e, PrefetchTimeoutError)
# Test that reset/shutdown does not hang while paused
dp3 = dp.fullsync()
it = iter(dp3)
next(it)
dp3.pause()
it2 = iter(dp3) # Reset
next(it2)
dp4 = dp.prefetch(2)
it = iter(dp4)
next(it)
dp4.pause()
it2 = iter(dp4) # Reset
next(it2)
_finalize_distributed_queue(rank, q)
@world_size_parametrize
@backend_parametrize
def test_fullsync(self, world_size, backend) -> None:
world_size = world_size if backend != "nccl" else torch.cuda.device_count()
launch_distributed_training(backend, world_size, fn=DistributedTest._test_fullsync)
@staticmethod
def _get_dataloader(data_length: int, dl2: bool, shuffle: bool, rs=None):
data_source = IterableWrapper(list(range(data_length)))
dp = data_source.sharding_filter()
if shuffle:
dp = dp.shuffle()
if dl2:
if rs is None:
rs = DistributedReadingService()
dl = DataLoader2(dp, reading_service=rs)
else:
dp = dp.fullsync()
dl = DataLoader(dp)
return dl
@staticmethod
def _test_distributed_training(dl2, rank, world_size, backend, q):
dist.init_process_group(backend, rank=rank, world_size=world_size)
# Use a prime number to make sure uneven data sharding
data_length = 23
# No shuffle
dl = DistributedTest._get_dataloader(data_length, dl2=dl2, shuffle=False)
res = _dist_iterate_one_epoch(dl)
assert sorted(res) == list(range(rank, data_length // world_size * world_size, world_size))
# Shuffle
dl = DistributedTest._get_dataloader(data_length, dl2=dl2, shuffle=True)
results = []
for _ in range(2):
res = _dist_iterate_one_epoch(dl, seed=123)
results.append(res)
assert results[0] == results[1]
# Different seed
res = _dist_iterate_one_epoch(dl, seed=321)
results.append(res)
assert len(results[0]) == len(results[2])
assert results[0] != results[2]
_finalize_distributed_queue(rank, q)
if dl2:
dl.shutdown()
@backend_parametrize
def test_distributed_dl2(self, backend) -> None:
world_size = DEFAULT_WORLD_SIZE if backend != "nccl" else torch.cuda.device_count()
launch_distributed_training(backend, world_size, fn=partial(DistributedTest._test_distributed_training, True))
@backend_parametrize
def test_elastic_training_dl2(self, backend) -> None:
world_size = DEFAULT_WORLD_SIZE if backend != "nccl" else torch.cuda.device_count()
nnodes = 1
from torch.distributed import run
run.main(
[
"--run_path",
f"--nnodes={nnodes}",
f"--nproc_per_node={world_size}",
abs_path("bin/elastic_training.py"),
"--" + backend,
"--dl2",
],
)
@backend_parametrize
def test_distributed_dl1(self, backend) -> None:
world_size = DEFAULT_WORLD_SIZE if backend != "nccl" else torch.cuda.device_count()
launch_distributed_training(backend, world_size, fn=partial(DistributedTest._test_distributed_training, False))
@unittest.skipIf(sys.version_info < (3, 8), "Torch Elastic requires Python >= 3.8")
@backend_parametrize
def test_elastic_training_dl1(self, backend) -> None:
world_size = DEFAULT_WORLD_SIZE if backend != "nccl" else torch.cuda.device_count()
nnodes = 1
from torch.distributed import run
run.main(
[
"--run_path",
f"--nnodes={nnodes}",
f"--nproc_per_node={world_size}",
abs_path("bin/elastic_training.py"),
"--" + backend,
"--dl1",
],
)
instantiate_parametrized_tests(DistributedTest)
if __name__ == "__main__":
unittest.main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
import pickle
import unittest
import warnings
from functools import partial
from io import StringIO
from operator import itemgetter
from typing import List
import expecttest
import torchdata.datapipes.iter as iterdp
import torchdata.datapipes.map as mapdp
from _utils._common_utils_for_test import create_temp_dir, create_temp_files
from torch.utils.data.datapipes.utils.common import DILL_AVAILABLE
from torchdata.datapipes.iter import IterableWrapper
from torchdata.datapipes.map import SequenceWrapper
if DILL_AVAILABLE:
import dill
dill.extend(use_dill=False)
try:
import datasets
except ImportError:
datasets = None
try:
import fsspec
except ImportError:
fsspec = None
try:
import iopath
except ImportError:
iopath = None
try:
import subprocess
import rarfile
try:
rarfile.tool_setup()
subprocess.run(("rar", "-?"), check=True)
except (rarfile.RarCannotExec, subprocess.CalledProcessError):
rarfile = None
except (ModuleNotFoundError, FileNotFoundError):
rarfile = None
try:
import torcharrow
import torcharrow.dtypes as dt
DTYPE = dt.Struct([dt.Field("Values", dt.int32)])
except ImportError:
torcharrow = None
dt = None
DTYPE = None
def _fake_batch_fn(batch):
return [d + 1 for d in batch]
def _fake_fn_ls(x):
return [x, x]
def _filepath_fn(name: str, dir) -> str:
return os.path.join(dir, os.path.basename(name))
def _filter_by_module_availability(datapipes):
filter_set = set()
if datasets is None:
filter_set.update([iterdp.HuggingFaceHubReader])
if fsspec is None:
filter_set.update([iterdp.FSSpecFileLister, iterdp.FSSpecFileOpener, iterdp.FSSpecSaver])
if iopath is None:
filter_set.update([iterdp.IoPathFileLister, iterdp.IoPathFileOpener, iterdp.IoPathSaver])
if rarfile is None:
filter_set.update([iterdp.RarArchiveLoader])
if torcharrow is None or not DILL_AVAILABLE:
filter_set.update([iterdp.DataFrameMaker, iterdp.ParquetDataFrameLoader])
return [dp for dp in datapipes if dp[0] not in filter_set]
def _convert_to_tensor(data):
return torch.tensor(data)
class TestIterDataPipeSerialization(expecttest.TestCase):
def setUp(self):
self.temp_dir = create_temp_dir()
self.temp_files = create_temp_files(self.temp_dir)
self.temp_sub_dir = create_temp_dir(self.temp_dir.name)
self.temp_sub_files = create_temp_files(self.temp_sub_dir, 4, False)
def tearDown(self):
try:
self.temp_sub_dir.cleanup()
self.temp_dir.cleanup()
except Exception as e:
warnings.warn(f"TestIterDataPipeSerialization was not able to cleanup temp dir due to {e}")
def _serialization_test_helper(self, datapipe, use_dill):
if use_dill:
serialized_dp = dill.dumps(datapipe)
deserialized_dp = dill.loads(serialized_dp)
else:
serialized_dp = pickle.dumps(datapipe)
deserialized_dp = pickle.loads(serialized_dp)
try:
self.assertEqual(list(datapipe), list(deserialized_dp))
except AssertionError as e:
print(f"{datapipe} is failing.")
raise e
def _serialization_dataframe_test_helper(self, datapipe, use_dill):
if use_dill:
serialized_dp = dill.dumps(datapipe)
deserialized_dp = dill.loads(serialized_dp)
else:
serialized_dp = pickle.dumps(datapipe)
deserialized_dp = pickle.loads(serialized_dp)
for df1, df2 in zip(datapipe, deserialized_dp):
for exp, act in zip(df1, df2):
self.assertEqual(exp, act)
def _serialization_test_for_single_dp(self, dp, use_dill, is_dataframe=False):
test_helper_fn = self._serialization_dataframe_test_helper if is_dataframe else self._serialization_test_helper
# 1. Testing for serialization before any iteration starts
test_helper_fn(dp, use_dill)
# 2. Testing for serialization afterDataPipe is partially read
it = iter(dp)
_ = next(it)
test_helper_fn(dp, use_dill)
# 3. Testing for serialization after DataPipe is fully read
it = iter(dp)
_ = list(it)
test_helper_fn(dp, use_dill)
def _serialization_test_for_dp_with_children(self, dp1, dp2, use_dill):
# 1. Testing for serialization before any iteration starts
self._serialization_test_helper(dp1, use_dill=use_dill)
self._serialization_test_helper(dp2, use_dill=use_dill)
# 2. Testing for serialization after DataPipe is partially read
it1, it2 = iter(dp1), iter(dp2)
_, _ = next(it1), next(it2)
self._serialization_test_helper(dp1, use_dill=use_dill)
self._serialization_test_helper(dp2, use_dill=use_dill)
# 2.5. Testing for serialization after one child DataPipe is fully read
# (Only for DataPipes with children DataPipes)
it1 = iter(dp1)
_ = list(it1) # fully read one child
self._serialization_test_helper(dp1, use_dill=use_dill)
self._serialization_test_helper(dp2, use_dill=use_dill)
# 3. Testing for serialization after DataPipe is fully read
it2 = iter(dp2)
_ = list(it2) # fully read the other child
self._serialization_test_helper(dp1, use_dill=use_dill)
self._serialization_test_helper(dp2, use_dill=use_dill)
def test_serializable(self):
# A tuple of 4 objects
# (DataPipeConstructor, custom_input_datapipe=None, dp_args=(), dp_kwargs={})
picklable_datapipes: List = [
(iterdp.BatchMapper, IterableWrapper([(0, 0), (0, 0), (0, 0), (0, 0)]), (_fake_batch_fn, 2, 1), {}),
(iterdp.BucketBatcher, IterableWrapper([0, 0, 0, 0, 0, 0, 0]), (5,), {}),
(iterdp.Bz2FileLoader, None, (), {}),
(
iterdp.CSVDictParser,
IterableWrapper(
[("f1", StringIO("Label,1,1\nLabel,2,2\nLabel,3,3")), ("f2", StringIO("L,1,1\r\nL,2,2\r\nL,3,3"))]
),
(),
{},
),
(
iterdp.CSVParser,
IterableWrapper(
[("f1", StringIO("Label,1,1\nLabel,2,2\nLabel,3,3")), ("f2", StringIO("L,1,1\r\nL,2,2\r\nL,3,3"))]
),
(),
{},
),
(iterdp.Cycler, None, (2,), {}),
(iterdp.DataFrameMaker, IterableWrapper([(i,) for i in range(3)]), (), {"dtype": DTYPE}),
(iterdp.Decompressor, None, (), {}),
(iterdp.Dropper, IterableWrapper([(0, 0), (0, 0), (0, 0), (0, 0)]), ([1]), {}),
(iterdp.Enumerator, None, (2,), {}),
(iterdp.FlatMapper, None, (_fake_fn_ls,), {}),
(iterdp.ShuffledFlatMapper, None, (_fake_fn_ls,), {"buffer_size": 1}),
(iterdp.Flattener, IterableWrapper([(0, (0, 1)), (0, (0, 1)), (0, (0, 1)), (0, (0, 1))]), ([1]), {}),
(iterdp.FSSpecFileLister, ".", (), {}),
(iterdp.FSSpecFileOpener, None, (), {}),
(
iterdp.FSSpecSaver,
IterableWrapper([("1.txt", b"DATA1"), ("2.txt", b"DATA2"), ("3.txt", b"DATA3")]),
(),
{"mode": "wb", "filepath_fn": partial(_filepath_fn, dir=self.temp_dir.name)},
),
(iterdp.GDriveReader, None, (), {}),
(iterdp.HashChecker, None, ({},), {}),
(iterdp.Header, None, (3,), {}),
(iterdp.HttpReader, None, (), {}),
(iterdp.HuggingFaceHubReader, None, (), {}),
# TODO(593): (ejguan): Deterministic serialization is required
# (iterdp.InBatchShuffler, IterableWrapper(range(10)).batch(3), (), {}),
(iterdp.InMemoryCacheHolder, None, (), {}),
(iterdp.IndexAdder, IterableWrapper([{"a": 1, "b": 2}, {"c": 3, "a": 1}]), ("label",), {}),
(iterdp.IoPathFileLister, ".", (), {}),
(iterdp.IoPathFileOpener, None, (), {}),
(
iterdp.IoPathSaver,
IterableWrapper([("1.txt", b"DATA1"), ("2.txt", b"DATA2"), ("3.txt", b"DATA3")]),
(),
{"mode": "wb", "filepath_fn": partial(_filepath_fn, dir=self.temp_dir.name)},
),
(
iterdp.IterKeyZipper,
IterableWrapper([("a", 100), ("b", 200), ("c", 300)]),
(IterableWrapper([("a", 1), ("b", 2), ("c", 3)]), itemgetter(0), itemgetter(0)),
{},
),
(
iterdp.JsonParser,
IterableWrapper(
[
("1.json", StringIO('["fo", {"ba":["baz", null, 1.0, 2]}]')),
("2.json", StringIO('{"__cx__": true, "r": 1, "i": 2}')),
]
),
(),
{},
),
(iterdp.LengthSetter, None, (3,), {}),
(
iterdp.LineReader,
IterableWrapper(
[("file1", StringIO("Line1\nLine2")), ("file2", StringIO("Line2,1\r\nLine2,2\r\nLine2,3"))]
),
(),
{},
),
(iterdp.MapToIterConverter, SequenceWrapper(range(10)), (), {}),
(
iterdp.MaxTokenBucketizer,
IterableWrapper(["1", "22", "1", "4444", "333", "1", "22", "22", "333"]),
(4,),
{},
),
(
iterdp.MapKeyZipper,
IterableWrapper([("a", 1), ("b", 2), ("c", 3)]),
(SequenceWrapper({"a": 100, "b": 200, "c": 300}), itemgetter(0)),
{},
),
(
iterdp.MultiplexerLongest,
IterableWrapper(range(10)),
(),
{},
),
(iterdp.OnDiskCacheHolder, None, (), {}),
(iterdp.OnlineReader, None, (), {}),
(
iterdp.ParagraphAggregator,
IterableWrapper([("f1", "L1"), ("f1", "L2"), ("f2", "21"), ("f2", "22")]),
(),
{},
),
(iterdp.Prefetcher, None, (), {}),
(iterdp.ParquetDataFrameLoader, None, (), {"dtype": DTYPE}),
(iterdp.RarArchiveLoader, None, (), {}),
(
iterdp.Rows2Columnar,
IterableWrapper([[{"a": 1}, {"b": 2, "a": 1}], [{"a": 1, "b": 200}, {"c": 3}]]),
(),
{},
),
(iterdp.Repeater, None, (2,), {}),
(iterdp.SampleMultiplexer, {IterableWrapper([0] * 10): 0.5, IterableWrapper([1] * 10): 0.5}, (), {}),
(
iterdp.Saver,
IterableWrapper([("1.txt", b"DATA1"), ("2.txt", b"DATA2"), ("3.txt", b"DATA3")]),
(),
{"mode": "wb", "filepath_fn": partial(_filepath_fn, dir=self.temp_dir.name)},
),
(iterdp.Slicer, IterableWrapper([(0, 0), (0, 0), (0, 0), (0, 0)]), ([1]), {}),
(iterdp.TarArchiveLoader, None, (), {}),
# TODO(594): Add serialization tests for optional DataPipe
# (iterdp.TFRecordLoader, None, (), {}),
(iterdp.ThreadPoolMapper, None, (_fake_fn_ls,), {}),
(iterdp.UnZipper, IterableWrapper([(i, i + 10) for i in range(10)]), (), {"sequence_length": 2}),
(iterdp.WebDataset, IterableWrapper([("foo.txt", b"1"), ("bar.txt", b"2")]), (), {}),
(iterdp.XzFileLoader, None, (), {}),
(iterdp.ZipArchiveLoader, None, (), {}),
(iterdp.ZipperLongest, IterableWrapper(range(10)), (), {}),
]
picklable_datapipes = _filter_by_module_availability(picklable_datapipes)
# Skipping value comparison for these DataPipes
# Most of them return streams not comparable by `self.assertEqual`
# Others are similar to caching where the outputs depend on other DataPipes
dp_skip_comparison = {
iterdp.Bz2FileLoader,
iterdp.Decompressor,
iterdp.FileOpener,
iterdp.FSSpecFileOpener,
iterdp.GDriveReader,
iterdp.IoPathFileOpener,
iterdp.HashChecker,
iterdp.HttpReader,
iterdp.HuggingFaceHubReader,
iterdp.OnDiskCacheHolder,
iterdp.OnlineReader,
iterdp.ParquetDataFrameLoader,
iterdp.SampleMultiplexer,
iterdp.RarArchiveLoader,
iterdp.TarArchiveLoader,
iterdp.TFRecordLoader,
iterdp.XzFileLoader,
iterdp.ZipArchiveLoader,
}
# These DataPipes produce multiple DataPipes as outputs and those should be compared
dp_compare_children = {iterdp.UnZipper}
for dpipe, custom_input, dp_args, dp_kwargs in picklable_datapipes:
try:
# Creating input (usually a DataPipe) for the specific dpipe being tested
if custom_input is None:
custom_input = IterableWrapper(range(10))
if dpipe in dp_skip_comparison: # Mke sure they are picklable and loadable (no value comparison)
datapipe = dpipe(custom_input, *dp_args, **dp_kwargs) # type: ignore[call-arg]
serialized_dp = pickle.dumps(datapipe)
_ = pickle.loads(serialized_dp)
elif dpipe in dp_compare_children: # DataPipes that have children
dp1, dp2 = dpipe(custom_input, *dp_args, **dp_kwargs) # type: ignore[call-arg]
self._serialization_test_for_dp_with_children(dp1, dp2, use_dill=False)
else: # Single DataPipe that requires comparison
datapipe = dpipe(custom_input, *dp_args, **dp_kwargs) # type: ignore[call-arg]
is_dataframe = issubclass(dpipe, (iterdp.DataFrameMaker, iterdp.ParquetDataFrameLoader))
self._serialization_test_for_single_dp(datapipe, use_dill=False, is_dataframe=is_dataframe)
except Exception as e:
print(f"{dpipe} is failing.")
raise e
def test_serializable_with_dill(self):
"""Only for DataPipes that take in a function as argument"""
input_dp = IterableWrapper(range(10))
ref_idp = IterableWrapper(range(10))
ref_mdp = SequenceWrapper(range(10))
unpicklable_datapipes: List = [
(iterdp.BatchMapper, (lambda batch: [d + 1 for d in batch], 2), {}),
(iterdp.FlatMapper, (lambda x: [x, x],), {}),
(iterdp.ShuffledFlatMapper, (lambda x: [x, x],), {"buffer_size": 1}),
(iterdp.IterKeyZipper, (ref_idp, lambda x: x, None, True, 100), {}),
(iterdp.MapKeyZipper, (ref_mdp, lambda x: x), {}),
(iterdp.OnDiskCacheHolder, (lambda x: x,), {}),
(iterdp.ParagraphAggregator, (lambda x: x,), {}),
(iterdp.ThreadPoolMapper, (lambda x: x,), {}),
]
# Skipping value comparison for these DataPipes
dp_skip_comparison = {iterdp.OnDiskCacheHolder, iterdp.ParagraphAggregator}
for dpipe, dp_args, dp_kwargs in unpicklable_datapipes:
if DILL_AVAILABLE:
try:
if dpipe in dp_skip_comparison: # Make sure they are picklable/loadable (no value comparison)
datapipe = dpipe(input_dp, *dp_args, **dp_kwargs) # type: ignore[call-arg]
serialized_dp = dill.dumps(datapipe)
_ = dill.loads(serialized_dp)
else:
datapipe = dpipe(input_dp, *dp_args, **dp_kwargs) # type: ignore[call-arg]
self._serialization_test_for_single_dp(datapipe, use_dill=True)
except Exception as e:
print(f"{dpipe} is failing.")
raise e
else:
dp_no_attribute_error = (iterdp.OnDiskCacheHolder,)
try:
with self.assertWarnsRegex(UserWarning, r"^Local function is not supported by pickle"):
datapipe = dpipe(input_dp, *dp_args, **dp_kwargs) # type: ignore[call-arg]
if isinstance(datapipe, dp_no_attribute_error):
_ = pickle.dumps(datapipe)
else:
with self.assertRaises(AttributeError):
_ = pickle.dumps(datapipe)
except Exception as e:
print(f"{dpipe} is failing.")
raise e
class TestMapDataPipeSerialization(expecttest.TestCase):
def _serialization_test_helper(self, datapipe):
serialized_dp = pickle.dumps(datapipe)
deserialized_dp = pickle.loads(serialized_dp)
try:
self.assertEqual(list(datapipe), list(deserialized_dp))
except AssertionError as e:
print(f"{datapipe} is failing.")
raise e
def _serialization_test_for_dp_with_children(self, dp1, dp2):
self._serialization_test_helper(dp1)
self._serialization_test_helper(dp2)
def test_serializable(self):
picklable_datapipes: List = [
(mapdp.InMemoryCacheHolder, None, (), {}),
(mapdp.IterToMapConverter, IterableWrapper([(i, i) for i in range(10)]), (), {}),
(mapdp.UnZipper, SequenceWrapper([(i, i + 10) for i in range(10)]), (), {"sequence_length": 2}),
]
dp_skip_comparison = set()
# These DataPipes produce multiple DataPipes as outputs and those should be compared
dp_compare_children = {mapdp.UnZipper}
for dpipe, custom_input, dp_args, dp_kwargs in picklable_datapipes:
try:
# Creating input (usually a DataPipe) for the specific dpipe being tested
if custom_input is None:
custom_input = SequenceWrapper(range(10))
if dpipe in dp_skip_comparison: # Mke sure they are picklable and loadable (no value comparison)
datapipe = dpipe(custom_input, *dp_args, **dp_kwargs) # type: ignore[call-arg]
serialized_dp = pickle.dumps(datapipe)
_ = pickle.loads(serialized_dp)
elif dpipe in dp_compare_children: # DataPipes that have children
dp1, dp2 = dpipe(custom_input, *dp_args, **dp_kwargs) # type: ignore[call-arg]
self._serialization_test_for_dp_with_children(dp1, dp2)
else: # Single DataPipe that requires comparison
datapipe = dpipe(custom_input, *dp_args, **dp_kwargs) # type: ignore[call-arg]
self._serialization_test_helper(datapipe)
except Exception as e:
print(f"{dpipe} is failing.")
raise e
def test_serializable_with_dill(self):
"""Only for DataPipes that take in a function as argument"""
pass
if __name__ == "__main__":
unittest.main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import types
import unittest
from typing import Dict, Iterator, List, Tuple, TypeVar
import expecttest
from _utils._common_utils_for_test import IS_WINDOWS
from torch.utils.data import IterDataPipe
from torch.utils.data.datapipes.iter.sharding import SHARDING_PRIORITIES
from torchdata.dataloader2 import DataLoader2, ReadingServiceInterface
from torchdata.dataloader2.graph import find_dps, list_dps, remove_dp, replace_dp, traverse_dps
from torchdata.dataloader2.graph.utils import _find_replicable_branches
from torchdata.dataloader2.random import SeedGenerator
from torchdata.dataloader2.utils.dispatch import (
_DummyIterDataPipe,
find_lca_round_robin_sharding_dp,
find_non_dispatching_branches,
)
from torchdata.datapipes.iter import IterableWrapper, Mapper, ShardingRoundRobinDispatcher
from torchdata.datapipes.utils import to_graph
T_co = TypeVar("T_co", covariant=True)
try:
import graphviz
HAS_GRAPHVIZ = True
except ImportError:
HAS_GRAPHVIZ = False
class Adaptor(IterDataPipe[T_co]):
def __init__(self, datapipe: IterDataPipe) -> None:
self.datapipe = datapipe
self.started = False
def __iter__(self) -> Iterator[T_co]:
yield from self.datapipe
class DummyIterDataPipe(IterDataPipe[T_co]):
def __iter__(self) -> Iterator[T_co]:
yield from range(10)
class TempReadingService(ReadingServiceInterface):
adaptors: List[IterDataPipe] = []
def initialize(self, datapipe: IterDataPipe) -> IterDataPipe:
graph = traverse_dps(datapipe)
dps = find_dps(graph, Mapper)
for dp in reversed(dps):
new_dp = Adaptor(dp)
self.adaptors.append(new_dp)
graph = replace_dp(graph, dp, new_dp)
return list(graph.values())[0][0]
def initialize_iteration(self, seed_generator: SeedGenerator) -> None:
seed_generator.seed(123)
for dp in self.adaptors:
dp.started = True
def finalize_iteration(self) -> None:
for dp in self.adaptors:
dp.started = False
def _x_and_x_plus_5(x):
return [x, x + 5]
def _x_mod_2(x):
return x % 2
def _x_mult_2(x):
return x * 2
class TestGraph(expecttest.TestCase):
def _get_datapipes(self) -> Tuple[IterDataPipe, IterDataPipe, IterDataPipe]:
src_dp = IterableWrapper(range(20))
m1 = src_dp.map(_x_and_x_plus_5)
ub = m1.unbatch()
c1, c2 = ub.demux(2, _x_mod_2)
dm = c1.main_datapipe
m2 = c1.map(_x_mult_2)
dp = m2.zip(c2)
return traverse_dps(dp), (src_dp, m1, ub, dm, c1, c2, m2, dp)
def test_find_dps(self) -> None:
graph, (_, m1, *_, m2, _) = self._get_datapipes() # pyre-ignore
dps = find_dps(graph, Mapper)
expected_dps = {m1, m2}
for dp in dps:
self.assertTrue(dp in expected_dps)
def test_list_dps(self) -> None:
def _validate_fn(dps, exp_dps):
self.assertEqual(len(dps), len(exp_dps))
# Validate BFS Order
for dp, exp_dp in zip(dps, exp_dps):
self.assertEqual(dp, exp_dp)
graph, (
src_dp,
m1,
ub,
dm,
c1,
c2,
m2,
dp,
) = self._get_datapipes()
exp_all_dps = [dp, m2, c2, c1, dm, ub, m1, src_dp]
# List all DataPipes
dps = list_dps(graph)
_validate_fn(dps, exp_all_dps)
# List all DataPipes excluding a single DataPipe
dps = list_dps(graph, exclude_dps=m1)
*exp_dps, _, _ = exp_all_dps
_validate_fn(dps, exp_dps)
# Exclude a DataPipe on one branch
dps = list_dps(graph, exclude_dps=m2)
exp_dps = [dp, c2]
_validate_fn(dps, exp_dps)
# List all DataPipes excluding multiple DataPipes
dps = list_dps(graph, exclude_dps=[m1, m2])
exp_dps = [dp, c2]
_validate_fn(dps, exp_dps)
def _validate_graph(self, graph, nested_dp):
self.assertEqual(len(graph), len(nested_dp))
for dp_id, sub_nested_dp in zip(graph, nested_dp):
self.assertEqual(graph[dp_id][0], sub_nested_dp[0])
if len(graph[dp_id][1]) > 0:
self._validate_graph(graph[dp_id][1], sub_nested_dp[1])
def test_replace_dps(self) -> None:
# pyre-fixme[23]: Unable to unpack 3 values, 2 were expected.
graph, (
src_dp,
m1,
ub,
dm,
c1,
c2,
m2,
dp,
) = self._get_datapipes()
new_dp1 = Adaptor(m1)
new_dp2 = Adaptor(m2)
new_dp3 = DummyIterDataPipe()
graph = replace_dp(graph, m1, new_dp1)
exp_g1 = [
[
dp,
[
[m2, [[c1, [[dm, [[ub, [[new_dp1, [[m1, [[src_dp, []]]]]]]]]]]]]],
[c2, [[dm, [[ub, [[new_dp1, [[m1, [[src_dp, []]]]]]]]]]]],
],
]
]
self._validate_graph(traverse_dps(dp), exp_g1)
graph = replace_dp(graph, m2, new_dp2)
exp_g2 = [
[
dp,
[
[new_dp2, [[m2, [[c1, [[dm, [[ub, [[new_dp1, [[m1, [[src_dp, []]]]]]]]]]]]]]]],
[c2, [[dm, [[ub, [[new_dp1, [[m1, [[src_dp, []]]]]]]]]]]],
],
]
]
self._validate_graph(traverse_dps(dp), exp_g2)
graph = replace_dp(graph, m1, new_dp3)
exp_g3 = [
[
dp,
[
[new_dp2, [[m2, [[c1, [[dm, [[ub, [[new_dp1, [[new_dp3, []]]]]]]]]]]]]],
[c2, [[dm, [[ub, [[new_dp1, [[new_dp3, []]]]]]]]]],
],
]
]
self._validate_graph(traverse_dps(dp), exp_g3)
def test_remove_dps(self) -> None:
# pyre-fixme[23]: Unable to unpack 3 values, 2 were expected.
graph, (
src_dp,
m1,
ub,
dm,
c1,
c2,
m2,
dp,
) = self._get_datapipes()
graph = remove_dp(graph, m1)
exp_g1 = [[dp, [[m2, [[c1, [[dm, [[ub, [[src_dp, []]]]]]]]]], [c2, [[dm, [[ub, [[src_dp, []]]]]]]]]]]
self._validate_graph(traverse_dps(dp), exp_g1)
graph = remove_dp(graph, m2)
exp_g2 = [[dp, [[c1, [[dm, [[ub, [[src_dp, []]]]]]]], [c2, [[dm, [[ub, [[src_dp, []]]]]]]]]]]
self._validate_graph(traverse_dps(dp), exp_g2)
with self.assertRaisesRegex(RuntimeError, "Cannot remove the source DataPipe"):
remove_dp(graph, src_dp)
with self.assertRaisesRegex(RuntimeError, "Cannot remove the receiving DataPipe"):
remove_dp(graph, dp)
def test_reading_service(self) -> None:
_, (*_, dp) = self._get_datapipes() # pyre-ignore
rs = TempReadingService()
dl = DataLoader2(dp, reading_service=rs)
self.assertTrue(len(rs.adaptors) == 0)
it = iter(dl)
for new_dp in rs.adaptors:
self.assertTrue(new_dp.started)
res = list(it)
self.assertEqual(len(res), 20)
for new_dp in rs.adaptors:
self.assertFalse(new_dp.started)
self.assertEqual(res, list(dl))
def insert_round_robin_sharding(graph, datapipe):
dispatch_dp = ShardingRoundRobinDispatcher(datapipe, SHARDING_PRIORITIES.MULTIPROCESSING)
return replace_dp(graph, datapipe, dispatch_dp), dispatch_dp
def replace_by_dummy(graph, datapipe):
return replace_dp(graph, datapipe, _DummyIterDataPipe())
def make_non_replicable_dp(datapipe):
datapipe.is_replicable = types.MethodType(lambda self: False, datapipe)
return datapipe
class TestNonReplicableDataPipe(expecttest.TestCase):
def _make_dp(self):
r"""
Create a DataPipe that contains the most of cases including:
- single-branch pipeline
- multi-branch pipeline
- pipeline that has circurlar references
single_br_dp -------------------------------------
ch1 \
/ \ \
multi_br_dp -->forker_dp--> -> fork_zip_dp -> end_dp ->
\ / /
<------- ch2 /
/ \ /
cir_br_dp -> cir_map_dp --------------------------
"""
# Single-branch
single_br_dp = IterableWrapper(list(range(10)))
# Multi-branch
multi_br_dp = IterableWrapper(list(range(10)))
ch1, ch2 = multi_br_dp.fork(2)
forker_dp = ch1.main_datapipe
fork_zip_dp = ch1.zip(ch2)
# Circular-branch
cir_br_dp = IterableWrapper(list(range(10)))
cir_map_dp = cir_br_dp.map(_x_mult_2)
# Force to circular reference
cir_br_dp.cir_dep = cir_map_dp
end_dp = single_br_dp.zip(fork_zip_dp, cir_map_dp)
graph = traverse_dps(end_dp)
return single_br_dp, multi_br_dp, forker_dp, ch1, ch2, fork_zip_dp, cir_br_dp, cir_map_dp, end_dp, graph
def test_single_round_robin_sharding_dp(self):
single_br_dp, *_, graph = self._make_dp()
graph, single_br_dp = insert_round_robin_sharding(graph, single_br_dp)
self.assertEqual(find_lca_round_robin_sharding_dp(graph), single_br_dp)
# The same non-shardable DataPipe on both branches
_, multi_br_dp, *_, graph = self._make_dp()
graph, multi_br_dp = insert_round_robin_sharding(graph, multi_br_dp)
self.assertEqual(find_lca_round_robin_sharding_dp(graph), multi_br_dp)
_, _, _, ch1, _, fork_zip_dp, *_, graph = self._make_dp()
graph, ch1 = insert_round_robin_sharding(graph, ch1)
self.assertEqual(find_lca_round_robin_sharding_dp(graph), fork_zip_dp)
# Circular reference
*_, cir_br_dp, cir_map_dp, _, graph = self._make_dp()
graph, cir_br_dp = insert_round_robin_sharding(graph, cir_br_dp)
self.assertEqual(find_lca_round_robin_sharding_dp(graph), cir_map_dp)
*_, cir_map_dp, _, graph = self._make_dp()
graph, cir_map_dp = insert_round_robin_sharding(graph, cir_map_dp)
self.assertEqual(find_lca_round_robin_sharding_dp(graph), cir_map_dp)
def test_multi_round_robin_sharding_dps(self):
single_br_dp, multi_br_dp, *_, end_dp, graph = self._make_dp()
graph, single_br_dp = insert_round_robin_sharding(graph, single_br_dp)
graph, multi_br_dp = insert_round_robin_sharding(graph, multi_br_dp)
self.assertEqual(find_lca_round_robin_sharding_dp(graph), end_dp)
single_br_dp, _, _, ch1, *_, end_dp, graph = self._make_dp()
graph, single_br_dp = insert_round_robin_sharding(graph, single_br_dp)
graph, ch1 = insert_round_robin_sharding(graph, ch1)
self.assertEqual(find_lca_round_robin_sharding_dp(graph), end_dp)
_, multi_br_dp, _, ch1, _, fork_zip_dp, *_, graph = self._make_dp()
graph, multi_br_dp = insert_round_robin_sharding(graph, multi_br_dp)
graph, ch1 = insert_round_robin_sharding(graph, ch1)
self.assertEqual(find_lca_round_robin_sharding_dp(graph), fork_zip_dp)
single_br_dp, *_, cir_br_dp, _, end_dp, graph = self._make_dp()
graph, single_br_dp = insert_round_robin_sharding(graph, single_br_dp)
graph, cir_br_dp = insert_round_robin_sharding(graph, cir_br_dp)
self.assertEqual(find_lca_round_robin_sharding_dp(graph), end_dp)
def test_non_dispatching_branches(self):
r"""
There should be a single DataPipe as the lowest common ancestor of all
non-dispatching DataPipes that is replaced by ``DummyIterDataPipe``.
"""
single_br_dp, *_, fork_zip_dp, _, cir_map_dp, _, graph = self._make_dp()
graph = replace_by_dummy(graph, single_br_dp)
dps = find_non_dispatching_branches(graph)
self.assertEqual(len(dps), 2)
self.assertTrue(all(dp in (fork_zip_dp, cir_map_dp) for dp in dps))
single_br_dp, multi_br_dp, *_, cir_map_dp, _, graph = self._make_dp()
graph = replace_by_dummy(graph, multi_br_dp)
dps = find_non_dispatching_branches(graph)
self.assertEqual(len(dps), 2)
self.assertTrue(all(dp in (single_br_dp, cir_map_dp) for dp in dps))
# In theory, this case should never happen because LCA (fork_zip_dp) should be
# replaced by _DummpyIterDataPipe if any of child is non-replicable
single_br_dp, _, _, ch1, ch2, *_, cir_map_dp, _, graph = self._make_dp()
graph = replace_by_dummy(graph, ch1)
dps = find_non_dispatching_branches(graph)
self.assertEqual(len(dps), 3)
self.assertTrue(all(dp in (single_br_dp, ch2, cir_map_dp) for dp in dps))
single_br_dp, *_, fork_zip_dp, _, cir_map_dp, _, graph = self._make_dp()
graph = replace_by_dummy(graph, cir_map_dp)
dps = find_non_dispatching_branches(graph)
self.assertTrue(all(dp in (single_br_dp, fork_zip_dp) for dp in dps))
*_, end_dp, graph = self._make_dp()
graph = replace_by_dummy(graph, end_dp)
dps = find_non_dispatching_branches(graph)
self.assertEqual(len(dps), 0)
single_br_dp, *_, fork_zip_dp, _, cir_map_dp, _, graph = self._make_dp()
graph = replace_by_dummy(graph, fork_zip_dp)
dps = find_non_dispatching_branches(graph)
self.assertEqual(len(dps), 2)
self.assertTrue(all(dp in (single_br_dp, cir_map_dp) for dp in dps))
def test_single_non_replicable_dp(self):
# All replicable
*_, end_dp, graph = self._make_dp()
dps = _find_replicable_branches(graph)
self.assertEqual(len(dps), 1)
self.assertEqual(dps[0], end_dp)
# Test the production use case where the last DataPipe is fullsync
*_, end_dp, _ = self._make_dp()
dp = end_dp.fullsync()
graph = traverse_dps(dp)
dps = _find_replicable_branches(graph)
self.assertEqual(len(dps), 1)
self.assertEqual(dps[0], end_dp)
single_br_dp, *_, fork_zip_dp, _, cir_map_dp, _, graph = self._make_dp()
make_non_replicable_dp(single_br_dp)
dps = _find_replicable_branches(graph)
self.assertEqual(len(dps), 2)
self.assertTrue(all(dp in (fork_zip_dp, cir_map_dp) for dp in dps))
single_br_dp, *_, ch1, ch2, fork_zip_dp, _, cir_map_dp, _, graph = self._make_dp()
make_non_replicable_dp(fork_zip_dp)
dps = _find_replicable_branches(graph)
self.assertEqual(len(dps), 4)
self.assertTrue(all(dp in (single_br_dp, ch1, ch2, cir_map_dp) for dp in dps))
single_br_dp, _, forker_dp, ch1, *_, cir_map_dp, _, graph = self._make_dp()
make_non_replicable_dp(ch1)
dps = _find_replicable_branches(graph)
self.assertEqual(len(dps), 3)
self.assertTrue(all(dp in (single_br_dp, forker_dp, cir_map_dp) for dp in dps))
single_br_dp, *_, fork_zip_dp, cir_br_dp, cir_map_dp, _, graph = self._make_dp()
make_non_replicable_dp(cir_map_dp)
dps = _find_replicable_branches(graph)
self.assertEqual(len(dps), 3)
self.assertTrue(all(dp in (single_br_dp, fork_zip_dp, cir_br_dp) for dp in dps))
single_br_dp, *_, fork_zip_dp, _, cir_map_dp, end_dp, graph = self._make_dp()
make_non_replicable_dp(end_dp)
dps = _find_replicable_branches(graph)
self.assertEqual(len(dps), 3)
self.assertTrue(all(dp in (single_br_dp, fork_zip_dp, cir_map_dp) for dp in dps))
def test_multi_non_replicable_dps(self):
single_br_dp, multi_br_dp, *_, cir_map_dp, _, graph = self._make_dp()
make_non_replicable_dp(single_br_dp)
make_non_replicable_dp(multi_br_dp)
dps = _find_replicable_branches(graph)
self.assertEqual(len(dps), 1)
self.assertEqual(dps[0], cir_map_dp)
single_br_dp, _, forker_dp, ch1, *_, cir_map_dp, _, graph = self._make_dp()
make_non_replicable_dp(single_br_dp)
make_non_replicable_dp(ch1)
dps = _find_replicable_branches(graph)
self.assertEqual(len(dps), 2)
self.assertTrue(all(dp in (forker_dp, cir_map_dp) for dp in dps))
single_br_dp, *_, ch1, ch2, fork_zip_dp, _, cir_map_dp, _, graph = self._make_dp()
make_non_replicable_dp(single_br_dp)
make_non_replicable_dp(fork_zip_dp)
dps = _find_replicable_branches(graph)
self.assertEqual(len(dps), 3)
self.assertTrue(all(dp in (ch1, ch2, cir_map_dp) for dp in dps))
single_br_dp, *_, fork_zip_dp, cir_br_dp, cir_map_dp, _, graph = self._make_dp()
make_non_replicable_dp(single_br_dp)
make_non_replicable_dp(cir_map_dp)
dps = _find_replicable_branches(graph)
self.assertEqual(len(dps), 2)
self.assertTrue(all(dp in (fork_zip_dp, cir_br_dp) for dp in dps))
single_br_dp, multi_br_dp, forker_dp, ch1, *_, cir_map_dp, _, graph = self._make_dp()
make_non_replicable_dp(forker_dp)
make_non_replicable_dp(ch1)
dps = _find_replicable_branches(graph)
self.assertEqual(len(dps), 3)
self.assertTrue(all(dp in (single_br_dp, multi_br_dp, cir_map_dp) for dp in dps))
single_br_dp, multi_br_dp, forker_dp, *_, cir_br_dp, cir_map_dp, _, graph = self._make_dp()
make_non_replicable_dp(forker_dp)
make_non_replicable_dp(cir_map_dp)
dps = _find_replicable_branches(graph)
self.assertEqual(len(dps), 3)
self.assertTrue(all(dp in (single_br_dp, multi_br_dp, cir_br_dp) for dp in dps))
single_br_dp, *_, ch1, ch2, fork_zip_dp, cir_br_dp, cir_map_dp, _, graph = self._make_dp()
make_non_replicable_dp(fork_zip_dp)
make_non_replicable_dp(cir_map_dp)
dps = _find_replicable_branches(graph)
self.assertEqual(len(dps), 4)
self.assertTrue(all(dp in (single_br_dp, ch1, ch2, cir_br_dp) for dp in dps))
class TestGraphVisualization(expecttest.TestCase):
@unittest.skipIf(not HAS_GRAPHVIZ, "Package `graphviz` is required to test graph visualization functionalities.")
def test_to_graph(self):
dp1 = IterableWrapper(range(10))
dp2 = dp1.map(lambda x: x + 1)
dp3 = dp2.filter(lambda x: x > 5)
cdp1, cdp2 = dp3.fork(num_instances=2)
dp4 = cdp1.zip(cdp2)
cdp3, cdp4 = dp4.demux(num_instances=2, classifier_fn=lambda x: x % 2)
dp5 = cdp3.concat(cdp4)
# Test to ensure that we can create these graphs with runtime errors
kwargs_list: List[Dict] = [
{"dp": dp1},
{"dp": dp2},
{"dp": dp3},
{"dp": cdp1, "debug": True},
{"dp": dp4},
{"dp": dp4, "debug": True},
{"dp": cdp3, "debug": True},
{"dp": dp5},
{"dp": dp5, "debug": True},
]
for kwargs in kwargs_list:
g = to_graph(**kwargs)
self.assertTrue(isinstance(g, graphviz.Digraph))
if __name__ == "__main__":
unittest.main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
import unittest
import warnings
from functools import partial
import expecttest
import torch
from _utils._common_utils_for_test import IS_M1, reset_after_n_next_calls
from torchdata.datapipes.iter import (
FileLister,
FileOpener,
FSSpecFileLister,
FSSpecFileOpener,
FSSpecSaver,
IterableWrapper,
TFRecordLoader,
)
try:
import google.protobuf as _protobuf
del _protobuf
HAS_PROTOBUF = True
except ImportError:
HAS_PROTOBUF = False
skipIfNoPROTOBUF = unittest.skipIf(not HAS_PROTOBUF, "no google protobuf")
class TestDataPipeTFRecord(expecttest.TestCase):
def setUp(self):
self.temp_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "_fakedata", "tfrecord")
def assertArrayEqual(self, arr1, arr2):
if isinstance(arr1, list):
arr1 = torch.stack(arr1)
if isinstance(arr2, list):
arr2 = torch.stack(arr2)
torch.testing.assert_close(arr1, arr2, check_dtype=False)
def _ground_truth_data(self):
for i in range(4):
x = torch.arange(i * 10, (i + 1) * 10)
yield {
"x_float": x,
"x_int": (x * 10).long(),
"x_byte": [b"test str"],
}
def _ground_truth_seq_data(self):
for i in range(4):
x = torch.arange(i * 10, (i + 1) * 10)
rep = 2 * i + 3
yield {"x_float": x, "x_int": (x * 10).long(), "x_byte": [b"test str"]}, {
"x_float_seq": [x] * rep,
"x_int_seq": [(x * 10).long()] * rep,
"x_byte_seq": [[b"test str"]] * rep,
}
@skipIfNoPROTOBUF
@unittest.skipIf(
IS_M1, "Protobuf 3.19.* is not supported on MacOS M1, but Tensorflow is incompatible with Protobuf 4"
)
@torch.no_grad()
def test_tfrecord_loader_example_iterdatapipe(self):
filename = f"{self.temp_dir}/example.tfrecord"
datapipe1 = IterableWrapper([filename])
datapipe2 = FileOpener(datapipe1, mode="b")
# Functional Test: test if the returned data is correct
tfrecord_parser = datapipe2.load_from_tfrecord()
result = list(tfrecord_parser)
self.assertEqual(len(result), 4)
expected_res = final_expected_res = list(self._ground_truth_data())
for true_data, loaded_data in zip(expected_res, result):
self.assertSetEqual(set(true_data.keys()), set(loaded_data.keys()))
for key in ["x_float", "x_int"]:
self.assertArrayEqual(true_data[key], loaded_data[key])
self.assertEqual(len(loaded_data["x_byte"]), 1)
self.assertEqual(true_data["x_byte"][0], loaded_data["x_byte"][0])
# Functional Test: test if the shape of the returned data is correct when using spec
tfrecord_parser = datapipe2.load_from_tfrecord(
{
"x_float": ((5, 2), torch.float64),
"x_int": ((5, 2), torch.int32),
"x_byte": (tuple(), None),
}
)
result = list(tfrecord_parser)
self.assertEqual(len(result), 4)
expected_res = [
{
"x_float": x["x_float"].reshape(5, 2),
"x_int": x["x_int"].reshape(5, 2),
"x_byte": x["x_byte"][0],
}
for x in self._ground_truth_data()
]
for true_data, loaded_data in zip(expected_res, result):
self.assertSetEqual(set(true_data.keys()), set(loaded_data.keys()))
self.assertArrayEqual(true_data["x_float"], loaded_data["x_float"].float())
self.assertArrayEqual(true_data["x_int"], loaded_data["x_int"].long())
self.assertEqual(loaded_data["x_float"].dtype, torch.float64)
self.assertEqual(loaded_data["x_int"].dtype, torch.int32)
self.assertEqual(true_data["x_byte"], loaded_data["x_byte"])
# Functional Test: ignore features missing from spec
tfrecord_parser = datapipe2.load_from_tfrecord(
{
"x_float": ((10,), torch.float32),
}
)
result = list(tfrecord_parser)
self.assertEqual(len(result), 4)
expected_res = [
{
"x_float": x["x_float"],
}
for x in self._ground_truth_data()
]
for true_data, loaded_data in zip(expected_res, result):
self.assertSetEqual(set(true_data.keys()), set(loaded_data.keys()))
self.assertArrayEqual(true_data["x_float"], loaded_data["x_float"].float())
# Functional Test: raises error if missing spec feature
with self.assertRaises(RuntimeError):
tfrecord_parser = datapipe2.load_from_tfrecord(
{
"x_float_unknown": ((5, 2), torch.float64),
"x_int": ((5, 2), torch.int32),
"x_byte": (tuple(), None),
}
)
result = list(tfrecord_parser)
# Reset Test:
tfrecord_parser = TFRecordLoader(datapipe2)
expected_res = final_expected_res
n_elements_before_reset = 2
res_before_reset, res_after_reset = reset_after_n_next_calls(tfrecord_parser, n_elements_before_reset)
self.assertEqual(len(expected_res[:n_elements_before_reset]), len(res_before_reset))
for true_data, loaded_data in zip(expected_res[:n_elements_before_reset], res_before_reset):
self.assertSetEqual(set(true_data.keys()), set(loaded_data.keys()))
for key in ["x_float", "x_int"]:
self.assertArrayEqual(true_data[key], loaded_data[key])
self.assertEqual(true_data["x_byte"][0], loaded_data["x_byte"][0])
self.assertEqual(len(expected_res), len(res_after_reset))
for true_data, loaded_data in zip(expected_res, res_after_reset):
self.assertSetEqual(set(true_data.keys()), set(loaded_data.keys()))
for key in ["x_float", "x_int"]:
self.assertArrayEqual(true_data[key], loaded_data[key])
self.assertEqual(true_data["x_byte"][0], loaded_data["x_byte"][0])
# __len__ Test: length isn't implemented since it cannot be known ahead of time
with self.assertRaisesRegex(TypeError, "doesn't have valid length"):
len(tfrecord_parser)
@skipIfNoPROTOBUF
@unittest.skipIf(
IS_M1, "Protobuf 3.19.* is not supported on MacOS M1, but Tensorflow is incompatible with Protobuf 4"
)
@torch.no_grad()
def test_tfrecord_loader_sequence_example_iterdatapipe(self):
filename = f"{self.temp_dir}/sequence_example.tfrecord"
datapipe1 = IterableWrapper([filename])
datapipe2 = FileOpener(datapipe1, mode="b")
# Functional Test: test if the returned data is correct
tfrecord_parser = datapipe2.load_from_tfrecord()
result = list(tfrecord_parser)
self.assertEqual(len(result), 4)
expected_res = final_expected_res = list(self._ground_truth_seq_data())
for (true_data_ctx, true_data_seq), loaded_data in zip(expected_res, result):
self.assertSetEqual(set(true_data_ctx.keys()).union(true_data_seq.keys()), set(loaded_data.keys()))
for key in ["x_float", "x_int"]:
self.assertArrayEqual(true_data_ctx[key], loaded_data[key])
self.assertEqual(len(true_data_seq[key + "_seq"]), len(loaded_data[key + "_seq"]))
self.assertIsInstance(loaded_data[key + "_seq"], list)
for a1, a2 in zip(true_data_seq[key + "_seq"], loaded_data[key + "_seq"]):
self.assertArrayEqual(a1, a2)
self.assertEqual(true_data_ctx["x_byte"], loaded_data["x_byte"])
self.assertListEqual(true_data_seq["x_byte_seq"], loaded_data["x_byte_seq"])
# Functional Test: test if the shape of the returned data is correct when using spec
tfrecord_parser = datapipe2.load_from_tfrecord(
{
"x_float": ((5, 2), torch.float64),
"x_int": ((5, 2), torch.int32),
"x_byte": (tuple(), None),
"x_float_seq": ((-1, 5, 2), torch.float64),
"x_int_seq": ((-1, 5, 2), torch.int32),
"x_byte_seq": ((-1,), None),
}
)
result = list(tfrecord_parser)
self.assertEqual(len(result), 4)
expected_res = [
(
{
"x_float": x["x_float"].reshape(5, 2),
"x_int": x["x_int"].reshape(5, 2),
"x_byte": x["x_byte"][0],
},
{
"x_float_seq": [y.reshape(5, 2) for y in z["x_float_seq"]],
"x_int_seq": [y.reshape(5, 2) for y in z["x_int_seq"]],
"x_byte_seq": [y[0] for y in z["x_byte_seq"]],
},
)
for x, z in self._ground_truth_seq_data()
]
for (true_data_ctx, true_data_seq), loaded_data in zip(expected_res, result):
self.assertSetEqual(set(true_data_ctx.keys()).union(true_data_seq.keys()), set(loaded_data.keys()))
for key in ["x_float", "x_int"]:
l_loaded_data = loaded_data[key]
if key == "x_float":
l_loaded_data = l_loaded_data.float()
else:
l_loaded_data = l_loaded_data.int()
self.assertArrayEqual(true_data_ctx[key], l_loaded_data)
self.assertArrayEqual(true_data_seq[key + "_seq"], loaded_data[key + "_seq"])
self.assertEqual(true_data_ctx["x_byte"], loaded_data["x_byte"])
self.assertListEqual(true_data_seq["x_byte_seq"], loaded_data["x_byte_seq"])
# Functional Test: ignore features missing from spec
tfrecord_parser = datapipe2.load_from_tfrecord(
{
"x_float": ((10,), torch.float32),
}
)
result = list(tfrecord_parser)
self.assertEqual(len(result), 4)
expected_res = [
{
"x_float": x["x_float"],
}
for x, z in self._ground_truth_seq_data()
]
for true_data, loaded_data in zip(expected_res, result):
self.assertSetEqual(set(true_data.keys()), set(loaded_data.keys()))
self.assertArrayEqual(true_data["x_float"], loaded_data["x_float"].float())
# Functional Test: raises error if missing spec feature
with self.assertRaises(RuntimeError):
tfrecord_parser = datapipe2.load_from_tfrecord(
{"x_float_unknown": ((5, 2), torch.float64), "x_int": ((5, 2), torch.int32), "x_byte": None}
)
result = list(tfrecord_parser)
# Reset Test:
tfrecord_parser = TFRecordLoader(datapipe2)
expected_res = final_expected_res
n_elements_before_reset = 2
res_before_reset, res_after_reset = reset_after_n_next_calls(tfrecord_parser, n_elements_before_reset)
self.assertEqual(len(expected_res[:n_elements_before_reset]), len(res_before_reset))
for (true_data_ctx, true_data_seq), loaded_data in zip(
expected_res[:n_elements_before_reset], res_before_reset
):
self.assertSetEqual(set(true_data_ctx.keys()).union(true_data_seq.keys()), set(loaded_data.keys()))
for key in ["x_float", "x_int"]:
self.assertArrayEqual(true_data_ctx[key], loaded_data[key])
self.assertEqual(len(true_data_seq[key + "_seq"]), len(loaded_data[key + "_seq"]))
self.assertIsInstance(loaded_data[key + "_seq"], list)
for a1, a2 in zip(true_data_seq[key + "_seq"], loaded_data[key + "_seq"]):
self.assertArrayEqual(a1, a2)
self.assertEqual(true_data_ctx["x_byte"], loaded_data["x_byte"])
self.assertListEqual(true_data_seq["x_byte_seq"], loaded_data["x_byte_seq"])
self.assertEqual(len(expected_res), len(res_after_reset))
for (true_data_ctx, true_data_seq), loaded_data in zip(expected_res, res_after_reset):
self.assertSetEqual(set(true_data_ctx.keys()).union(true_data_seq.keys()), set(loaded_data.keys()))
for key in ["x_float", "x_int"]:
self.assertArrayEqual(true_data_ctx[key], loaded_data[key])
self.assertEqual(len(true_data_seq[key + "_seq"]), len(loaded_data[key + "_seq"]))
self.assertIsInstance(loaded_data[key + "_seq"], list)
for a1, a2 in zip(true_data_seq[key + "_seq"], loaded_data[key + "_seq"]):
self.assertArrayEqual(a1, a2)
self.assertEqual(true_data_ctx["x_byte"], loaded_data["x_byte"])
self.assertListEqual(true_data_seq["x_byte_seq"], loaded_data["x_byte_seq"])
# __len__ Test: length isn't implemented since it cannot be known ahead of time
with self.assertRaisesRegex(TypeError, "doesn't have valid length"):
len(tfrecord_parser)
if __name__ == "__main__":
unittest.main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import io
import json
import os
import subprocess
import unittest
import warnings
from unittest.mock import patch
import expecttest
from _utils._common_utils_for_test import check_hash_fn, create_temp_dir, IS_M1, IS_WINDOWS
from torch.utils.data import DataLoader
from torchdata.datapipes.iter import (
FileOpener,
FSSpecFileLister,
FSSpecFileOpener,
HttpReader,
IterableWrapper,
OnDiskCacheHolder,
S3FileLister,
S3FileLoader,
)
from torchdata.datapipes.iter.load.online import _get_proxies
try:
import fsspec
HAS_FSSPEC = True
except ImportError:
HAS_FSSPEC = False
try:
import s3fs
HAS_FSSPEC_S3 = True
except ImportError:
HAS_FSSPEC_S3 = False
skipIfNoFSSpecS3 = unittest.skipIf(not (HAS_FSSPEC and HAS_FSSPEC_S3), "no FSSpec with S3fs")
try:
import adlfs
HAS_FSSPEC_AZ = True
except ImportError:
HAS_FSSPEC_AZ = False
skipIfNoFSSpecAZ = unittest.skipIf(not (HAS_FSSPEC and HAS_FSSPEC_AZ), "no FSSpec with adlfs")
try:
from torchdata._torchdata import S3Handler
HAS_AWS = True
except ImportError:
HAS_AWS = False
skipIfAWS = unittest.skipIf(HAS_AWS, "AWSSDK Enabled")
skipIfNoAWS = unittest.skipIf(not HAS_AWS, "No AWSSDK Enabled")
try:
import portalocker
HAS_PORTALOCKER = True
except ImportError:
HAS_PORTALOCKER = False
skipIfNoPortalocker = unittest.skipIf(not HAS_PORTALOCKER, "No portalocker installed")
class TestDataPipeRemoteIO(expecttest.TestCase):
def setUp(self):
self.temp_dir = create_temp_dir()
def tearDown(self):
try:
self.temp_dir.cleanup()
except Exception as e:
warnings.warn(f"TestDataPipeRemoteIO was not able to cleanup temp dir due to {e}")
def test_http_reader_iterdatapipe(self):
file_url = "https://raw.githubusercontent.com/pytorch/data/main/LICENSE"
expected_file_name = "LICENSE"
expected_MD5_hash = "bb9675028dd39d2dd2bf71002b93e66c"
query_params = {"auth": ("fake_username", "fake_password"), "allow_redirects": True}
timeout = 120
http_reader_dp = HttpReader(IterableWrapper([file_url]), timeout=timeout, **query_params)
# Functional Test: test if the Http Reader can download and read properly
reader_dp = http_reader_dp.readlines()
it = iter(reader_dp)
path, line = next(it)
self.assertEqual(expected_file_name, os.path.basename(path))
self.assertTrue(b"BSD" in line)
# Reset Test: http_reader_dp has been read, but we reset when calling check_hash()
check_cache_dp = http_reader_dp.check_hash({file_url: expected_MD5_hash}, "md5", rewind=False)
it = iter(check_cache_dp)
path, stream = next(it)
self.assertEqual(expected_file_name, os.path.basename(path))
self.assertTrue(io.BufferedReader, type(stream))
# __len__ Test: returns the length of source DataPipe
self.assertEqual(1, len(http_reader_dp))
# Error Test: test if the Http Reader raises an error when the url is invalid
error_url = "https://github.com/pytorch/data/this/url/dont/exist"
http_error_dp = HttpReader(IterableWrapper([error_url]), timeout=timeout)
with self.assertRaisesRegex(Exception, f"404.+{error_url}"):
next(iter(http_error_dp.readlines()))
# Feature skip-error Test: test if the Http Reader skips urls causing problems
http_skip_error_dp = HttpReader(IterableWrapper([error_url, file_url]), timeout=timeout, skip_on_error=True)
reader_dp = http_skip_error_dp.readlines()
with self.assertWarnsRegex(Warning, f"404.+{error_url}.+skipping"):
it = iter(reader_dp)
path, line = next(it)
self.assertEqual(expected_file_name, os.path.basename(path))
self.assertTrue(b"BSD" in line)
# test if GET-request is done with correct arguments
with patch("requests.Session.get") as mock_get:
http_reader_dp = HttpReader(IterableWrapper([file_url]), timeout=timeout, **query_params)
_ = next(iter(http_reader_dp))
mock_get.assert_called_with(
file_url,
timeout=timeout,
proxies=_get_proxies(),
stream=True,
auth=query_params["auth"],
allow_redirects=query_params["allow_redirects"],
)
@skipIfNoPortalocker
def test_on_disk_cache_holder_iterdatapipe(self):
tar_file_url = "https://raw.githubusercontent.com/pytorch/data/main/test/_fakedata/csv.tar.gz"
expected_file_name = os.path.join(self.temp_dir.name, "csv.tar.gz")
expected_MD5_hash = "42cd45e588dbcf64c65751fbf0228af9"
tar_hash_dict = {expected_file_name: expected_MD5_hash}
tar_file_dp = IterableWrapper([tar_file_url])
with self.assertRaisesRegex(RuntimeError, "Expected `OnDiskCacheHolder` existing"):
_ = tar_file_dp.end_caching()
def _filepath_fn(url):
filename = os.path.basename(url)
return os.path.join(self.temp_dir.name, filename)
tar_cache_dp = tar_file_dp.on_disk_cache(
filepath_fn=_filepath_fn,
hash_dict=tar_hash_dict,
hash_type="md5",
)
# DataPipe Constructor
tar_cache_dp = HttpReader(tar_cache_dp)
# Start iteration without `end_caching`
with self.assertRaisesRegex(RuntimeError, "Please call"):
_ = list(tar_cache_dp)
# Both filepath_fn and same_filepath_fn are set
with self.assertRaisesRegex(ValueError, "`filepath_fn` is mutually"):
_ = tar_cache_dp.end_caching(mode="wb", filepath_fn=_filepath_fn, same_filepath_fn=True)
tar_cache_dp = tar_cache_dp.end_caching(mode="wb", same_filepath_fn=True)
# File doesn't exist on disk
self.assertFalse(os.path.exists(expected_file_name))
path = list(tar_cache_dp)[0]
# File is cached to disk
self.assertTrue(os.path.exists(expected_file_name))
self.assertEqual(expected_file_name, path)
self.assertTrue(check_hash_fn(expected_file_name, expected_MD5_hash))
# Modify the downloaded file to trigger downloading again
with open(expected_file_name, "w") as f:
f.write("0123456789abcdef")
self.assertFalse(check_hash_fn(expected_file_name, expected_MD5_hash))
path = list(tar_cache_dp)[0]
self.assertTrue(check_hash_fn(expected_file_name, expected_MD5_hash))
# Call `end_caching` again
with self.assertRaisesRegex(RuntimeError, "`end_caching` can only be invoked once"):
_ = tar_cache_dp.end_caching()
# Cache decompressed archive but only check root directory
root_dir = "temp"
file_cache_dp = OnDiskCacheHolder(
tar_cache_dp, filepath_fn=lambda tar_path: os.path.join(os.path.dirname(tar_path), root_dir)
)
remember_cache_dp_object = file_cache_dp
file_cache_dp = FileOpener(file_cache_dp, mode="rb").load_from_tar()
file_cache_dp = file_cache_dp.end_caching(
mode="wb",
filepath_fn=lambda file_path: os.path.join(self.temp_dir.name, root_dir, os.path.basename(file_path)),
)
cached_it = iter(file_cache_dp)
for i in range(3):
expected_csv_path = os.path.join(self.temp_dir.name, root_dir, f"{i}.csv")
# File doesn't exist on disk
# Check disabled due to some elements of prefetching inside of on_disck_cache
# self.assertFalse(os.path.exists(expected_csv_path))
csv_path = next(cached_it)
# File is cached to disk
self.assertTrue(os.path.exists(expected_csv_path))
self.assertEqual(expected_csv_path, csv_path)
# This is the situation when previous process had no canche to release promise file on the file lists,
# as we are in same pid, we need to force iterators to finish by deleting or exhausing them
del cached_it
if not IS_WINDOWS:
dl = DataLoader(file_cache_dp, num_workers=3, multiprocessing_context="fork", batch_size=1)
expected = [[os.path.join(self.temp_dir.name, root_dir, f"{i}.csv")] for i in range(3)] * 3
res = list(dl)
self.assertEqual(sorted(expected), sorted(res))
remember_cache_dp_object._download_everything = True
workers = 100
dl = DataLoader(file_cache_dp, num_workers=workers, multiprocessing_context="fork", batch_size=1)
expected = [[os.path.join(self.temp_dir.name, root_dir, f"{i}.csv")] for i in range(3)] * workers
res = list(dl)
self.assertEqual(sorted(expected), sorted(res))
def __get_s3_cnt(self, s3_pths: list, recursive=True):
"""Return the count of the total objects collected from a list s3 paths"""
tot_objs = set()
for p in s3_pths:
pth_parts = p.split("s3://")[1].split("/", 1)
if len(pth_parts) == 1:
bkt_name, prefix = pth_parts[0], ""
else:
bkt_name, prefix = pth_parts
aws_cmd = f"aws --output json s3api list-objects --bucket {bkt_name} --no-sign-request"
if prefix.strip():
aws_cmd += f" --prefix {prefix}"
if not recursive:
aws_cmd += " --delimiter /"
res = subprocess.run(aws_cmd, shell=True, check=True, capture_output=True)
json_res = json.loads(res.stdout)
if "Contents" in json_res:
objs = [v["Key"] for v in json_res["Contents"]]
else:
objs = [v["Prefix"] for v in json_res["CommonPrefixes"]]
tot_objs |= set(objs)
return len(tot_objs)
@skipIfNoFSSpecS3
def test_fsspec_io_iterdatapipe(self):
input_list = [
["s3://ai2-public-datasets"], # bucket without '/'
["s3://ai2-public-datasets/charades/"], # bucket with '/'
[
"s3://ai2-public-datasets/charades/Charades_v1.zip",
"s3://ai2-public-datasets/charades/Charades_v1_flow.tar",
"s3://ai2-public-datasets/charades/Charades_v1_rgb.tar",
"s3://ai2-public-datasets/charades/Charades_v1_480.zip",
], # multiple files
]
for urls in input_list:
fsspec_lister_dp = FSSpecFileLister(IterableWrapper(urls), anon=True)
self.assertEqual(
sum(1 for _ in fsspec_lister_dp), self.__get_s3_cnt(urls, recursive=False), f"{urls} failed"
)
url = "s3://ai2-public-datasets/charades/"
fsspec_loader_dp = FSSpecFileOpener(FSSpecFileLister(IterableWrapper([url]), anon=True), anon=True)
res = list(fsspec_loader_dp)
self.assertEqual(len(res), 18, f"{input} failed")
@unittest.skipIf(True, "Needs authentications. See: https://github.com/pytorch/data/issues/904")
@skipIfNoFSSpecAZ
def test_fsspec_azure_blob(self):
url = "public/curated/covid-19/ecdc_cases/latest/ecdc_cases.csv"
account_name = "pandemicdatalake"
azure_prefixes = ["abfs", "az"]
fsspec_loader_dp = {}
for prefix in azure_prefixes:
fsspec_lister_dp = FSSpecFileLister(f"{prefix}://{url}", account_name=account_name)
fsspec_loader_dp[prefix] = FSSpecFileOpener(fsspec_lister_dp, account_name=account_name).parse_csv()
res_abfs = list(fsspec_loader_dp["abfs"])[0]
res_az = list(fsspec_loader_dp["az"])[0]
self.assertEqual(res_abfs, res_az, f"{input} failed")
@skipIfAWS
def test_disabled_s3_io_iterdatapipe(self):
file_urls = ["s3://ai2-public-datasets"]
with self.assertRaisesRegex(ModuleNotFoundError, "TorchData must be built with"):
_ = S3FileLister(IterableWrapper(file_urls))
with self.assertRaisesRegex(ModuleNotFoundError, "TorchData must be built with"):
_ = S3FileLoader(IterableWrapper(file_urls))
@skipIfNoAWS
@unittest.skipIf(IS_M1, "PyTorch M1 CI Machine doesn't allow accessing")
def test_s3_io_iterdatapipe(self):
# S3FileLister: different inputs
input_list = [
["s3://ai2-public-datasets"], # bucket without '/'
["s3://ai2-public-datasets/"], # bucket with '/'
["s3://ai2-public-datasets/charades"], # folder without '/'
["s3://ai2-public-datasets/charades/"], # folder without '/'
["s3://ai2-public-datasets/charad"], # prefix
[
"s3://ai2-public-datasets/charades/Charades_v1",
"s3://ai2-public-datasets/charades/Charades_vu17",
], # prefixes
["s3://ai2-public-datasets/charades/Charades_v1.zip"], # single file
[
"s3://ai2-public-datasets/charades/Charades_v1.zip",
"s3://ai2-public-datasets/charades/Charades_v1_flow.tar",
"s3://ai2-public-datasets/charades/Charades_v1_rgb.tar",
"s3://ai2-public-datasets/charades/Charades_v1_480.zip",
], # multiple files
[
"s3://ai2-public-datasets/charades/Charades_v1.zip",
"s3://ai2-public-datasets/charades/Charades_v1_flow.tar",
"s3://ai2-public-datasets/charades/Charades_v1_rgb.tar",
"s3://ai2-public-datasets/charades/Charades_v1_480.zip",
"s3://ai2-public-datasets/charades/Charades_vu17",
], # files + prefixes
]
for input in input_list:
s3_lister_dp = S3FileLister(IterableWrapper(input), region="us-west-2")
self.assertEqual(sum(1 for _ in s3_lister_dp), self.__get_s3_cnt(input), f"{input} failed")
# S3FileLister: prefixes + different region
file_urls = [
"s3://aft-vbi-pds/bin-images/111",
"s3://aft-vbi-pds/bin-images/222",
]
s3_lister_dp = S3FileLister(IterableWrapper(file_urls), request_timeout_ms=10000, region="us-east-1")
self.assertEqual(sum(1 for _ in s3_lister_dp), 2212, f"{input} failed")
# S3FileLister: incorrect inputs
input_list = [
[""],
["ai2-public-datasets"],
["s3://"],
["s3:///bin-images"],
]
for input in input_list:
with self.assertRaises(ValueError, msg=f"{input} should raise ValueError."):
s3_lister_dp = S3FileLister(IterableWrapper(input), region="us-east-1")
for _ in s3_lister_dp:
pass
input = [["s3://aft-vbi-pds/bin-images/100730.jpg"], 1]
s3_loader_dp = S3FileLoader(input[0], region="us-east-1")
self.assertEqual(sum(1 for _ in s3_loader_dp), input[1], f"{input[0]} failed")
# S3FileLoader: incorrect inputs
input_list = [
[""],
["ai2-public-datasets"],
["s3://"],
["s3:///bin-images"],
["s3://ai2-public-datasets/bin-image"],
]
for input in input_list:
with self.assertRaises(ValueError, msg=f"{input} should raise ValueError."):
s3_loader_dp = S3FileLoader(input, region="us-east-1")
for _ in s3_loader_dp:
pass
# integration test
input = [["s3://charades-tar-shards/"], 10]
s3_lister_dp = S3FileLister(IterableWrapper(input[0]), region="us-west-2")
s3_loader_dp = S3FileLoader(s3_lister_dp, region="us-west-2")
self.assertEqual(sum(1 for _ in s3_loader_dp), input[1], f"{input[0]} failed")
if __name__ == "__main__":
unittest.main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
import unittest
import warnings
from itertools import chain
import expecttest
from _utils._common_utils_for_test import create_temp_dir, reset_after_n_next_calls
from torchdata.datapipes.iter import DataFrameMaker, FileLister, FileOpener, IterableWrapper, ParquetDataFrameLoader
try:
import torcharrow
import torcharrow.dtypes as dt
HAS_TORCHARROW = True
except ImportError:
HAS_TORCHARROW = False
try:
import pyarrow
import pyarrow.parquet as parquet
HAS_PYARROW = True
except ImportError:
HAS_PYARROW = False
skipIfNoPyArrow = unittest.skipIf(not HAS_PYARROW, "no PyArrow.")
skipIfNoTorchArrow = unittest.skipIf(not HAS_TORCHARROW, "no TorchArrow.")
@skipIfNoTorchArrow
class TestDataFrame(expecttest.TestCase):
def setUp(self) -> None:
self.temp_dir = create_temp_dir()
if HAS_PYARROW:
self._write_parquet_files()
def tearDown(self) -> None:
try:
self.temp_dir.cleanup()
except Exception as e:
warnings.warn(f"TestDataFrame was not able to cleanup temp dir due to {e}")
def _write_parquet_files(self):
# Create TorchArrow DataFrames
DTYPE = dt.Struct([dt.Field("Values", dt.int32)])
df1 = torcharrow.dataframe([(i,) for i in range(10)], dtype=DTYPE)
df2 = torcharrow.dataframe([(i,) for i in range(100)], dtype=DTYPE)
# Write them as parquet files
for i, df in enumerate([df1, df2]):
fname = f"df{i}.parquet"
self._write_df_as_parquet(df, fname)
self._write_multiple_dfs_as_parquest([df1, df2], fname="merged.parquet")
def _custom_files_set_up(self, files):
for fname, content in files.items():
temp_file_path = os.path.join(self.temp_dir.name, fname)
with open(temp_file_path, "w") as f:
f.write(content)
def _compare_dataframes(self, expected_df, actual_df):
self.assertEqual(len(expected_df), len(actual_df))
for exp, act in zip(expected_df, actual_df):
self.assertEqual(exp, act)
def _write_df_as_parquet(self, df, fname: str) -> None:
table = df.to_arrow()
parquet.write_table(table, os.path.join(self.temp_dir.name, fname))
def _write_multiple_dfs_as_parquest(self, dfs, fname: str) -> None:
tables = [df.to_arrow() for df in dfs]
merged_table = pyarrow.concat_tables(tables)
parquet.write_table(merged_table, os.path.join(self.temp_dir.name, fname))
def test_dataframe_maker_iterdatapipe(self):
source_data = [(i,) for i in range(10)]
source_dp = IterableWrapper(source_data)
DTYPE = dt.Struct([dt.Field("Values", dt.int32)])
# Functional Test: DataPipe correctly converts into a single TorchArrow DataFrame
df_dp = source_dp.dataframe(dtype=DTYPE)
df = list(df_dp)[0]
expected_df = torcharrow.dataframe([(i,) for i in range(10)], dtype=DTYPE)
self._compare_dataframes(expected_df, df)
# Functional Test: DataPipe correctly converts into multiple TorchArrow DataFrames, based on size argument
df_dp = DataFrameMaker(source_dp, dataframe_size=5, dtype=DTYPE)
dfs = list(df_dp)
expected_dfs = [
torcharrow.dataframe([(i,) for i in range(5)], dtype=DTYPE),
torcharrow.dataframe([(i,) for i in range(5, 10)], dtype=DTYPE),
]
for exp_df, act_df in zip(expected_dfs, dfs):
self._compare_dataframes(exp_df, act_df)
# __len__ Test:
df_dp = source_dp.dataframe(dtype=DTYPE)
self.assertEqual(1, len(df_dp))
self.assertEqual(10, len(list(df_dp)[0]))
df_dp = source_dp.dataframe(dataframe_size=5, dtype=DTYPE)
self.assertEqual(2, len(df_dp))
self.assertEqual(5, len(list(df_dp)[0]))
# Reset Test:
n_elements_before_reset = 1
res_before_reset, res_after_reset = reset_after_n_next_calls(df_dp, n_elements_before_reset)
for exp_df, act_df in zip(expected_dfs[:1], res_before_reset):
self._compare_dataframes(exp_df, act_df)
for exp_df, act_df in zip(expected_dfs, res_after_reset):
self._compare_dataframes(exp_df, act_df)
def test_dataframe_maker_with_csv(self):
def get_name(path_and_stream):
return os.path.basename(path_and_stream[0]), path_and_stream[1]
csv_files = {"1.csv": "key,item\na,1\nb,2"}
self._custom_files_set_up(csv_files)
datapipe1 = FileLister(self.temp_dir.name, "*.csv")
datapipe2 = FileOpener(datapipe1, mode="b")
datapipe3 = datapipe2.map(get_name)
csv_dict_parser_dp = datapipe3.parse_csv_as_dict()
# Functional Test: Correctly generate TorchArrow DataFrame from CSV
DTYPE = dt.Struct([dt.Field("key", dt.string), dt.Field("item", dt.string)])
df_dp = csv_dict_parser_dp.dataframe(dtype=DTYPE, columns=["key", "item"])
expected_dfs = [torcharrow.dataframe([{"key": "a", "item": "1"}, {"key": "b", "item": "2"}], dtype=DTYPE)]
for exp_df, act_df in zip(expected_dfs, list(df_dp)):
self._compare_dataframes(exp_df, act_df)
# Functional: making sure DataPipe works even without `columns` input
df_dp = csv_dict_parser_dp.dataframe(dtype=DTYPE)
for exp_df, act_df in zip(expected_dfs, list(df_dp)):
self._compare_dataframes(exp_df, act_df)
@skipIfNoPyArrow
def test_parquet_dataframe_reader_iterdatapipe(self):
DTYPE = dt.Struct([dt.Field("Values", dt.int32)])
# Functional Test: read from Parquet files and output TorchArrow DataFrames
source_dp = FileLister(self.temp_dir.name, masks="df*.parquet")
parquet_df_dp = ParquetDataFrameLoader(source_dp, dtype=DTYPE)
expected_dfs = [
torcharrow.dataframe([(i,) for i in range(10)], dtype=DTYPE),
torcharrow.dataframe([(i,) for i in range(100)], dtype=DTYPE),
]
for exp_df, act_df in zip(expected_dfs, list(parquet_df_dp)):
self._compare_dataframes(exp_df, act_df)
# Functional Test: correctly read from a Parquet file that was a merged DataFrame
merged_source_dp = FileLister(self.temp_dir.name, masks="merged.parquet")
merged_parquet_df_dp = ParquetDataFrameLoader(merged_source_dp, dtype=DTYPE)
expected_merged_dfs = [torcharrow.dataframe([(i,) for i in chain(range(10), range(100))], dtype=DTYPE)]
for exp_df, act_df in zip(expected_merged_dfs, list(merged_parquet_df_dp)):
self._compare_dataframes(exp_df, act_df)
# __len__ Test: no valid length because we do not know the number of row groups in advance
with self.assertRaisesRegex(TypeError, "has no len"):
len(parquet_df_dp)
# Reset Test:
n_elements_before_reset = 1
res_before_reset, res_after_reset = reset_after_n_next_calls(parquet_df_dp, n_elements_before_reset)
for exp_df, act_df in zip(expected_dfs[:1], res_before_reset):
self._compare_dataframes(exp_df, act_df)
for exp_df, act_df in zip(expected_dfs, res_after_reset):
self._compare_dataframes(exp_df, act_df)
if __name__ == "__main__":
unittest.main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import hashlib
import os
import platform
import sys
import tempfile
from typing import List, Tuple, TypeVar
from torchdata.datapipes.iter import IterDataPipe
T_co = TypeVar("T_co", covariant=True)
IS_LINUX = sys.platform == "linux"
IS_WINDOWS = sys.platform == "win32"
IS_MACOS = sys.platform == "darwin"
IS_M1 = IS_MACOS and "arm" in platform.platform()
class IDP_NoLen(IterDataPipe):
def __init__(self, input_dp) -> None:
super().__init__()
self.input_dp = input_dp
def __iter__(self):
yield from self.input_dp
def get_name(path_and_stream):
return os.path.basename(path_and_stream[0]), path_and_stream[1]
# Given a DataPipe and integer n, iterate the DataPipe for n elements and store the elements into a list
# Then, reset the DataPipe and return a tuple of two lists
# 1. A list of elements yielded before the reset
# 2. A list of all elements of the DataPipe after the reset
def reset_after_n_next_calls(datapipe: IterDataPipe[T_co], n: int) -> Tuple[List[T_co], List[T_co]]:
it = iter(datapipe)
res_before_reset = []
for _ in range(n):
res_before_reset.append(next(it))
return res_before_reset, list(datapipe)
def create_temp_dir(dir=None):
# The temp dir and files within it will be released and deleted in tearDown().
# Adding `noqa: P201` to avoid mypy's warning on not releasing the dir handle within this function.
temp_dir = tempfile.TemporaryDirectory(dir=dir) # noqa: P201
return temp_dir
def create_temp_files(temp_dir, prefix=1, empty=True):
temp_dir_path = temp_dir.name
with tempfile.NamedTemporaryFile(dir=temp_dir_path, delete=False, prefix=str(prefix), suffix=".txt") as f:
temp_file1_name = f.name
with open(temp_file1_name, "w") as f1:
f1.write("0123456789abcdef")
with tempfile.NamedTemporaryFile(dir=temp_dir_path, delete=False, prefix=str(prefix + 1), suffix=".byte") as f:
temp_file2_name = f.name
with open(temp_file2_name, "wb") as f2:
f2.write(b"0123456789abcdef")
if empty:
with tempfile.NamedTemporaryFile(dir=temp_dir_path, delete=False, prefix=str(prefix + 2), suffix=".empty") as f:
temp_file3_name = f.name
return temp_file1_name, temp_file2_name, temp_file3_name
return temp_file1_name, temp_file2_name
def check_hash_fn(filepath, expected_hash, hash_type="md5"):
if hash_type == "sha256":
hash_fn = hashlib.sha256()
elif hash_type == "md5":
hash_fn = hashlib.md5()
else:
raise ValueError("Invalid hash_type requested, should be one of {}".format(["sha256", "md5"]))
with open(filepath, "rb") as f:
chunk = f.read(1024 ** 2)
while chunk:
hash_fn.update(chunk)
chunk = f.read(1024 ** 2)
return hash_fn.hexdigest() == expected_hash
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
import tarfile
NUMBER_OF_FILES = 3
FILES = [
("bytes", "bt", "{fn}_0123456789abcdef\n", True),
("csv", "csv", "key,item\n0,{fn}_0\n1,{fn}_1\n"),
("json", "json", '{{"{fn}_0": [{{"{fn}_01": 1}}, {{"{fn}_02": 2}}], "{fn}_1": 1}}\n'),
("txt", "txt", "{fn}_0123456789abcdef\n"),
]
def create_files(folder, suffix, data, encoding=False):
os.makedirs(folder, exist_ok=True)
for i in range(NUMBER_OF_FILES):
fn = str(i)
d = data.format(fn=fn)
mode = "wb" if encoding else "wt"
if encoding:
d = d.encode()
with open(folder + "/" + fn + "." + suffix, mode) as f:
f.write(d)
with tarfile.open(folder + ".tar", mode="w") as archive:
archive.add(folder)
with tarfile.open(folder + ".tar.gz", mode="w:gz") as archive:
archive.add(folder)
def create_tfrecord_files(path: str):
try:
import tensorflow as tf
except ImportError:
print("TensorFlow not found!")
print("We will not generate tfrecord files.")
return
os.makedirs(path, exist_ok=True)
with tf.io.TFRecordWriter(os.path.join(path, "example.tfrecord")) as writer:
for i in range(4):
x = tf.range(i * 10, (i + 1) * 10)
record_bytes = tf.train.Example(
features=tf.train.Features(
feature={
"x_float": tf.train.Feature(float_list=tf.train.FloatList(value=x)),
"x_int": tf.train.Feature(int64_list=tf.train.Int64List(value=tf.cast(x * 10, "int64"))),
"x_byte": tf.train.Feature(bytes_list=tf.train.BytesList(value=[b"test str"])),
}
)
).SerializeToString()
writer.write(record_bytes)
with tf.io.TFRecordWriter(os.path.join(path, "sequence_example.tfrecord")) as writer:
for i in range(4):
x = tf.range(i * 10, (i + 1) * 10)
rep = 2 * i + 3
record_bytes = tf.train.SequenceExample(
context=tf.train.Features(
feature={
"x_float": tf.train.Feature(float_list=tf.train.FloatList(value=x)),
"x_int": tf.train.Feature(int64_list=tf.train.Int64List(value=tf.cast(x * 10, "int64"))),
"x_byte": tf.train.Feature(bytes_list=tf.train.BytesList(value=[b"test str"])),
}
),
feature_lists=tf.train.FeatureLists(
feature_list={
"x_float_seq": tf.train.FeatureList(
feature=[tf.train.Feature(float_list=tf.train.FloatList(value=x))] * rep
),
"x_int_seq": tf.train.FeatureList(
feature=[tf.train.Feature(int64_list=tf.train.Int64List(value=tf.cast(x * 10, "int64")))]
* rep
),
"x_byte_seq": tf.train.FeatureList(
feature=[tf.train.Feature(bytes_list=tf.train.BytesList(value=[b"test str"]))] * rep
),
}
),
).SerializeToString()
writer.write(record_bytes)
if __name__ == "__main__":
for args in FILES:
create_files(*args)
create_tfrecord_files("tfrecord")
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import torchdata
import torchdata.dataloader2
import torchdata.datapipes
def s3_test():
from torchdata._torchdata import S3Handler
if __name__ == "__main__":
r"""
TorchData Smoke Test
"""
parser = argparse.ArgumentParser()
parser.add_argument("--no-s3", dest="s3", action="store_false")
options = parser.parse_args()
if options.s3:
s3_test()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import torch
import torch.distributed as dist
from torch.distributed.elastic.multiprocessing.errors import record
from torch.utils.data import DataLoader
from torchdata.dataloader2 import DataLoader2, DistributedReadingService
from torchdata.datapipes.iter import IterableWrapper
def _get_dataloader(data_length: int, dl2: bool, shuffle: bool, rs=None):
data_source = IterableWrapper(list(range(data_length)))
dp = data_source.sharding_filter()
if shuffle:
dp = dp.shuffle()
if dl2:
if rs is None:
rs = DistributedReadingService()
dl = DataLoader2(dp, reading_service=rs)
else:
dp = dp.fullsync()
dl = DataLoader(dp)
return dl
@record
def main(backend, dl2):
dist.init_process_group(backend)
rank = dist.get_rank()
world_size = dist.get_world_size()
# Use a prime number to make sure uneven data sharding
data_length = 23
# No Shuffle
dl = _get_dataloader(data_length, dl2=dl2, shuffle=False)
res = []
for d in dl:
res.append(d)
# Simulate training synchronization
dist.barrier()
assert sorted(res) == list(range(rank, data_length // world_size * world_size, world_size))
# Shuffle
dl = _get_dataloader(data_length, dl2=dl2, shuffle=True)
results = []
for _ in range(2):
res = []
torch.manual_seed(123)
for d in dl:
res.append(d)
# Simulate training synchronization
dist.barrier()
results.append(res)
assert results[0] == results[1]
# Different seed
res = []
torch.manual_seed(321)
for d in dl:
res.append(d)
# Simulate training synchronization
dist.barrier()
results.append(res)
assert len(results[0]) == len(results[2])
assert results[0] != results[2]
# Properly shutdown the process group
if isinstance(dl, DataLoader2):
dl.shutdown()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Elastic Training")
backend_group = parser.add_mutually_exclusive_group(required=True)
backend_group.add_argument("--gloo", action="store_true", help="GLOO backend")
backend_group.add_argument("--nccl", action="store_true", help="NCCL backend")
backend_group.add_argument("--mpi", action="store_true", help="MPI backend")
dl_group = parser.add_mutually_exclusive_group(required=True)
dl_group.add_argument("--dl1", action="store_true", help="DataLoader")
dl_group.add_argument("--dl2", action="store_true", help="DataLoader2")
args = parser.parse_args()
backend = "gloo"
if args.nccl:
backend = "nccl"
elif args.mpi:
backend = "mpi"
dl2 = True
if args.dl1:
dl2 = False
main(backend, dl2)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import multiprocessing as mp
import os
import pickle
import queue
import random
import socket
import unittest
from unittest import TestCase
import numpy as np
import torch
import torch.distributed as dist
from torch.testing._internal.common_utils import instantiate_parametrized_tests, IS_WINDOWS, parametrize
from torch.utils.data.datapipes.iter.sharding import SHARDING_PRIORITIES
from torchdata.dataloader2 import (
DataLoader2,
DistributedReadingService,
InProcessReadingService,
MultiProcessingReadingService,
ReadingServiceInterface,
SequentialReadingService,
)
from torchdata.dataloader2.dataloader2 import READING_SERVICE_STATE_KEY_NAME, SERIALIZED_DATAPIPE_KEY_NAME
from torchdata.dataloader2.graph import DataPipe, list_dps, replace_dp, set_datapipes_seed, traverse_dps
from torchdata.dataloader2.random import SeedGenerator
from torchdata.datapipes.iter import IterableWrapper, IterDataPipe, ShardingRoundRobinDispatcher
try:
import dill
# XXX: By default, dill writes the Pickler dispatch table to inject its
# own logic there. This globally affects the behavior of the standard library
# pickler for any user who transitively depends on this module!
# Undo this extension to avoid altering the behavior of the pickler globally.
dill.extend(use_dill=False)
HAS_DILL = True
except ImportError:
HAS_DILL = False
skipIfNoDill = unittest.skipIf(not HAS_DILL, "no dill")
if dist.is_available():
HAS_DIST = True
else:
HAS_DIST = False
skipIfNoDistributed = unittest.skipIf(not HAS_DIST, "no torch.distributed")
TEST_WITH_TSAN = os.getenv("PYTORCH_TEST_WITH_TSAN", "0") == "1"
mp_ctx_parametrize = parametrize("ctx", mp.get_all_start_methods())
EXCEPTION_ITERATION_NUM = 7
class _ReadingServiceWrapper:
def __init__(self, dp):
self.dp = dp
def __iter__(self):
self.it = iter(self.dp)
return self
def __next__(self):
return next(self.it)
@staticmethod
def return_one():
return 1
class TestReadingService(ReadingServiceInterface):
def initialize(self, dp: DataPipe) -> DataPipe:
return _ReadingServiceWrapper(dp) # type: ignore[return-value]
class DataLoader2Test(TestCase):
def test_dataloader2(self) -> None:
test_data_pipe = IterableWrapper(range(3))
data_loader: DataLoader2 = DataLoader2(datapipe=test_data_pipe)
expected_batch = 0
for batch in iter(data_loader):
self.assertEqual(batch, expected_batch)
expected_batch += 1
def test_dataloader2_shutdown(self) -> None:
test_data_pipe = IterableWrapper(range(3))
data_loader: DataLoader2 = DataLoader2(datapipe=test_data_pipe)
data_loader.shutdown()
def test_dataloader2_state_dict(self) -> None:
test_data_pipe = IterableWrapper(range(3))
data_loader: DataLoader2 = DataLoader2(datapipe=test_data_pipe)
state = data_loader.state_dict()
self.assertIsNotNone(state)
self.assertIsNotNone(state[SERIALIZED_DATAPIPE_KEY_NAME])
self.assertIsNone(state[READING_SERVICE_STATE_KEY_NAME])
data_loader.shutdown()
def test_dataloader2_reading_service(self) -> None:
test_data_pipe = IterableWrapper(range(3))
reading_service = TestReadingService()
data_loader: DataLoader2 = DataLoader2(datapipe=test_data_pipe, reading_service=reading_service)
expected_batch = 0
for batch in iter(data_loader):
self.assertEqual(batch, expected_batch)
expected_batch += 1
def test_dataloader2_load_state_dict(self) -> None:
test_data_pipe = IterableWrapper(range(3))
reading_service = TestReadingService()
data_loader: DataLoader2 = DataLoader2(datapipe=test_data_pipe, reading_service=reading_service)
batch = next(iter(data_loader))
self.assertEqual(batch, 0)
state = data_loader.state_dict()
self.assertIsNotNone(state)
self.assertIsNotNone(state[SERIALIZED_DATAPIPE_KEY_NAME])
self.assertIsNone(state[READING_SERVICE_STATE_KEY_NAME])
data_loader.shutdown()
restored_data_loader: DataLoader2 = DataLoader2(datapipe=None, reading_service=reading_service)
restored_data_loader.load_state_dict(state)
restored_data_loader_datapipe = restored_data_loader.datapipe
deserialized_datapipe = pickle.loads(state[SERIALIZED_DATAPIPE_KEY_NAME])
for batch_1, batch_2 in zip(restored_data_loader_datapipe, deserialized_datapipe):
self.assertEqual(batch_1, batch_2)
self.assertEqual(
restored_data_loader.reading_service_state,
state[READING_SERVICE_STATE_KEY_NAME],
)
restored_data_loader.shutdown()
def test_dataloader2_iterates_correctly(self) -> None:
test_data_pipe = IterableWrapper(range(10)).sharding_filter()
reading_services = [
None,
TestReadingService(),
MultiProcessingReadingService(num_workers=4),
MultiProcessingReadingService(num_workers=4, worker_prefetch_cnt=0),
]
for reading_service in reading_services:
data_loader: DataLoader2 = DataLoader2(datapipe=test_data_pipe, reading_service=reading_service)
self.assertEqual(list(range(10)), list(data_loader))
self.assertEqual(list(range(10)), list(data_loader))
self.assertEqual(list(range(10)), list(data_loader))
actual = []
for i in data_loader:
actual.append(i)
self.assertEqual(list(range(10)), actual)
actual = []
for i in data_loader:
actual.append(i)
self.assertEqual(list(range(10)), actual)
def test_dataloader2_reset(self) -> None:
test_data_pipe = IterableWrapper(range(10))
reading_services = [None, TestReadingService(), MultiProcessingReadingService(num_workers=1)]
for reading_service in reading_services:
data_loader: DataLoader2 = DataLoader2(datapipe=test_data_pipe, reading_service=reading_service)
# Functional Test: Ensure multiple sequential reads of DL2 is possible
self.assertEqual(list(range(10)), list(data_loader))
self.assertEqual(list(range(10)), list(data_loader))
self.assertEqual(list(range(10)), list(data_loader))
# Functional Test: Ensure that the creation of a new iterator invalidates the old one
it1 = iter(data_loader)
self.assertEqual(0, next(it1))
self.assertEqual(1, next(it1))
it2 = iter(data_loader)
self.assertEqual(0, next(it2))
self.assertEqual(1, next(it2))
with self.assertRaisesRegex(RuntimeError, "iterator has been invalidated"):
next(it1)
self.assertEqual(list(range(2, 10)), list(it2))
def test_dataloader2_delegate_attribute(self) -> None:
test_data_pipe = IterableWrapper(range(10))
data_loader: DataLoader2 = DataLoader2(datapipe=test_data_pipe, reading_service=TestReadingService())
# Functional Test: Ensure multiple sequential reads of DL2 is possible
self.assertEqual(list(range(10)), list(data_loader))
self.assertEqual(list(range(10)), list(data_loader))
# Functional Test: Ensure that attribute/method of `dataloader._datapipe_iter` can be used
it = iter(data_loader)
self.assertEqual(1, it.return_one()) # type: ignore[attr-defined]
class DataLoader2ConsistencyTest(TestCase):
r"""
These tests ensure that the behaviors of `DataLoader2` are consistent across `ReadingServices` and potentially
with `DataLoaderV1`.
"""
@staticmethod
def _get_no_reading_service():
return None
@staticmethod
def _get_mp_reading_service():
return MultiProcessingReadingService(num_workers=2)
@staticmethod
def _get_in_process_reading_service():
return InProcessReadingService()
def _collect_data(self, datapipe, reading_service_gen):
dl: DataLoader2 = DataLoader2(datapipe, reading_service=reading_service_gen())
result = []
# Testing how RS handles partial reading and reiterations
for row, _ in zip(dl, range(10)):
result.append(row)
for row in dl:
result.append(row)
dl.shutdown()
return result
@staticmethod
def _no_op(x):
return x
def test_dataloader2_batch_collate(self) -> None:
dp: IterDataPipe = IterableWrapper(range(100)).batch(2).sharding_filter().collate(self._no_op) # type: ignore[assignment]
expected = self._collect_data(dp, reading_service_gen=self._get_no_reading_service)
reading_service_generators = (
self._get_mp_reading_service,
self._get_in_process_reading_service,
)
for reading_service_gen in reading_service_generators:
actual = self._collect_data(dp, reading_service_gen=reading_service_gen)
# TODO(588): This comparison only indicates that somethings is broken and not helping with debug
self.assertEqual(expected, actual, reading_service_gen)
def test_dataloader2_shuffle(self) -> None:
# TODO(589): Add shuffle test
pass
def _x_mult_2(d):
return d * 2
class NonReplicableDataPipe(IterDataPipe):
def __init__(self, datapipe):
self.datapipe = datapipe
def __iter__(self):
yield from self.datapipe
def is_replicable(self):
return False
class _CustomException(Exception):
pass
class MakeMistakeDataPipe(IterDataPipe):
def __init__(self, source_datapipe, exc_iteration=EXCEPTION_ITERATION_NUM):
self.source_datapipe = source_datapipe
self.exc_iteration = exc_iteration
def __iter__(self):
for i, x in enumerate(self.source_datapipe):
if i == self.exc_iteration:
raise _CustomException("oops")
yield x
class MultiProcessingReadingServiceTest(TestCase):
@staticmethod
def _worker_init_fn(datapipe, worker_info):
datapipe = datapipe.sharding_filter()
torch.utils.data.graph_settings.apply_sharding(
datapipe, worker_info.num_workers, worker_info.worker_id, SHARDING_PRIORITIES.MULTIPROCESSING
)
return datapipe
@staticmethod
def _worker_reset_fn(datapipe, worker_info, worker_seed_generator: SeedGenerator):
graph = traverse_dps(datapipe)
dps = list_dps(graph)
worker_seed_generator.seed(123)
set_datapipes_seed(dps, seed_generator=worker_seed_generator, distributed_shared=True)
return datapipe
@mp_ctx_parametrize
def test_worker_fns(self, ctx):
dp: IterDataPipe = IterableWrapper(range(100)).batch(2).shuffle()
rs = MultiProcessingReadingService(
num_workers=2,
multiprocessing_context=ctx,
worker_init_fn=self._worker_init_fn,
worker_reset_fn=self._worker_reset_fn,
)
dl = DataLoader2(dp, reading_service=rs)
res1 = list(dl)
res2 = list(dl)
# Test worker_init_fn to set sharding
def _expand_fn(res):
result = []
for batch in res:
result.extend(batch)
return result
exp = list(range(100))
self.assertEqual(sorted(_expand_fn(res1)), exp)
self.assertEqual(sorted(_expand_fn(res2)), exp)
# Test worker_reset_fn to set the same random seed across epoches
self.assertEqual(res1, res2)
@mp_ctx_parametrize
def test_single_branch_non_replicable(self, ctx):
r"""
For single branch pipeline with a non-replicable DataPipe, all ``sharding_filters``
in the pipeline become non-replicable.
"""
def _make_dp():
single_br_dp = IterableWrapper(list(range(10))).shuffle()
map_dp = single_br_dp.map(_x_mult_2)
end_dp = map_dp.map(_x_mult_2).shuffle()
return single_br_dp, map_dp, end_dp
def _assert_deterministic_dl_res(dl, exp):
torch.manual_seed(123)
res = list(dl)
self.assertEqual(sorted(res), exp)
# Second epoch
torch.manual_seed(123)
self.assertEqual(list(dl), res)
# Different seed
torch.manual_seed(321)
self.assertNotEqual(list(dl), res)
# Properly shutdown
dl.shutdown()
# By-default, all replicable
single_br_dp, _, end_dp = _make_dp()
graph = traverse_dps(end_dp)
sf_dp = single_br_dp.sharding_filter()
replace_dp(graph, single_br_dp, sf_dp)
dl = DataLoader2(
end_dp, reading_service=MultiProcessingReadingService(num_workers=2, multiprocessing_context=ctx)
)
# Determinism and dynamic sharding
# _assert_deterministic_dl_res(dl, [i * 4 for i in range(10)])
# Non-replicable before sharding_filter
# shuffle in dispatch process
single_br_dp, map_dp, end_dp = _make_dp()
graph = traverse_dps(end_dp)
round_robin_dispatcher = ShardingRoundRobinDispatcher(single_br_dp, SHARDING_PRIORITIES.MULTIPROCESSING)
replace_dp(graph, single_br_dp, round_robin_dispatcher)
sf_dp = map_dp.sharding_filter()
replace_dp(graph, map_dp, sf_dp)
dl = DataLoader2(
end_dp, reading_service=MultiProcessingReadingService(num_workers=2, multiprocessing_context=ctx)
)
# Determinism for non-replicable pipeline
_assert_deterministic_dl_res(dl, [i * 4 for i in range(10)])
# Non-replicable after sharding_filter
# shuffle in dispatch process
single_br_dp, map_dp, end_dp = _make_dp()
graph = traverse_dps(end_dp)
sf_dp = single_br_dp.sharding_filter()
replace_dp(graph, single_br_dp, sf_dp)
round_robin_dispatcher = ShardingRoundRobinDispatcher(map_dp, SHARDING_PRIORITIES.MULTIPROCESSING)
replace_dp(graph, map_dp, round_robin_dispatcher)
dl = DataLoader2(
end_dp, reading_service=MultiProcessingReadingService(num_workers=2, multiprocessing_context=ctx)
)
# Determinism for non-replicable pipeline
_assert_deterministic_dl_res(dl, [i * 4 for i in range(10)])
@mp_ctx_parametrize
def test_multi_branch_non_replicable(self, ctx) -> None:
r"""
For multi-branch pipeline with a non-replicable DataPipe on one branch,
all ``sharding_filter`` on the other branches should remain replicable.
"""
def _make_dp():
branch1_dp = IterableWrapper(list(range(10))).shuffle()
branch2_dp = IterableWrapper(list(range(10))).shuffle()
map_dp = branch1_dp.map(_x_mult_2)
end_dp = map_dp.zip(branch2_dp)
return branch1_dp, map_dp, branch2_dp, end_dp
def _assert_deterministic_dl_res(dl, exp1, exp2):
torch.manual_seed(123)
res = list(dl)
res1, res2 = list(zip(*res))
self.assertEqual(sorted(res1), exp1)
self.assertEqual(sorted(res2), exp2)
# Second epoch
torch.manual_seed(123)
self.assertEqual(list(dl), res)
# Different seed
torch.manual_seed(321)
self.assertNotEqual(list(dl), res)
# Properly shutdown
dl.shutdown()
# By-default, all replicable
branch1_dp, _, branch2_dp, end_dp = _make_dp()
graph = traverse_dps(end_dp)
sf1_dp = branch1_dp.sharding_filter()
sf2_dp = branch2_dp.sharding_filter()
replace_dp(graph, branch1_dp, sf1_dp)
replace_dp(graph, branch2_dp, sf2_dp)
dl = DataLoader2(
end_dp, reading_service=MultiProcessingReadingService(num_workers=2, multiprocessing_context=ctx)
)
# Determinism and dynamic sharding
_assert_deterministic_dl_res(dl, [i * 2 for i in range(10)], list(range(10)))
# Non-replicable on one branch
# shuffle in dispatch process
branch1_dp, _, branch2_dp, end_dp = _make_dp()
graph = traverse_dps(end_dp)
non_replicable_dp = ShardingRoundRobinDispatcher(branch1_dp, SHARDING_PRIORITIES.MULTIPROCESSING)
replace_dp(graph, branch1_dp, non_replicable_dp)
# The other branch should has a sharding_filter to make data even
sf_dp = branch2_dp.sharding_filter()
replace_dp(graph, branch2_dp, sf_dp)
dl = DataLoader2(
end_dp, reading_service=MultiProcessingReadingService(num_workers=2, multiprocessing_context=ctx)
)
# Determinism for non-replicable pipeline
_assert_deterministic_dl_res(dl, [i * 2 for i in range(10)], list(range(10)))
# Non-replicable on both branches
# shuffle in dispatch process
branch1_dp, _, branch2_dp, end_dp = _make_dp()
graph = traverse_dps(end_dp)
non_replicable_dp1 = ShardingRoundRobinDispatcher(branch1_dp, SHARDING_PRIORITIES.MULTIPROCESSING)
replace_dp(graph, branch1_dp, non_replicable_dp1)
non_replicable_dp2 = ShardingRoundRobinDispatcher(branch2_dp, SHARDING_PRIORITIES.MULTIPROCESSING)
replace_dp(graph, branch2_dp, non_replicable_dp2)
dl = DataLoader2(
end_dp, reading_service=MultiProcessingReadingService(num_workers=2, multiprocessing_context=ctx)
)
# Determinism for non-replicable pipeline
_assert_deterministic_dl_res(dl, [i * 2 for i in range(10)], list(range(10)))
@mp_ctx_parametrize
def test_multi_worker_determinism(self, ctx):
dp: IterDataPipe = IterableWrapper(range(100))
dp = dp.shuffle().sharding_filter()
dp = dp.batch(2)
rs = MultiProcessingReadingService(
num_workers=2,
multiprocessing_context=ctx,
)
dl = DataLoader2(dp, reading_service=rs)
torch.manual_seed(123)
res = list(dl) + list(dl)
torch.manual_seed(123)
self.assertEqual(res, list(dl) + list(dl))
torch.manual_seed(321)
self.assertNotEqual(res, list(dl) + list(dl))
# Using seed API for DataLoader2
dl.seed(123)
res = list(dl) + list(dl)
dl.seed(123)
self.assertEqual(res, list(dl) + list(dl))
dl.seed(321)
self.assertNotEqual(res, list(dl) + list(dl))
@mp_ctx_parametrize
def test_dispatching_worker_determinism(self, ctx):
dp: IterDataPipe = IterableWrapper(range(101))
dp = dp.shuffle().sharding_round_robin_dispatch(SHARDING_PRIORITIES.MULTIPROCESSING)
dp = dp.batch(2)
rs = MultiProcessingReadingService(
num_workers=2,
multiprocessing_context=ctx,
)
dl = DataLoader2(dp, reading_service=rs)
torch.manual_seed(123)
res = list(dl) + list(dl)
torch.manual_seed(123)
self.assertEqual(res, list(dl) + list(dl))
torch.manual_seed(321)
self.assertNotEqual(res, list(dl) + list(dl))
# Using seed API for DataLoader2
dl.seed(123)
res = list(dl) + list(dl)
dl.seed(123)
self.assertEqual(res, list(dl) + list(dl))
dl.seed(321)
self.assertNotEqual(res, list(dl) + list(dl))
@mp_ctx_parametrize
def test_non_replicable_datapipe(self, ctx) -> None:
r"""
For the pipeline with non-replicable DataPipe, make sure
the DataPipe remains in the main process.
"""
dp: IterDataPipe = IterableWrapper(range(100))
dp = dp.shuffle().sharding_filter()
dp = dp.batch(2)
non_rep_dp = NonReplicableDataPipe(dp)
rs = MultiProcessingReadingService(
num_workers=2,
multiprocessing_context=ctx,
)
dl = DataLoader2(non_rep_dp, reading_service=rs)
torch.manual_seed(123)
it = iter(dl)
# Validate NonReplicableDataPipe still in the main process
non_rep_dp = dl.reading_service._end_datapipe
self.assertEqual(type(non_rep_dp), NonReplicableDataPipe)
res = list(it) + list(dl)
torch.manual_seed(123)
self.assertEqual(res, list(dl) + list(dl))
torch.manual_seed(321)
self.assertNotEqual(res, list(dl) + list(dl))
@parametrize("num_workers", [1, 3])
@parametrize("worker_prefetch_cnt", [0, 5, 10])
def test_worker_exception_raised(self, num_workers, worker_prefetch_cnt):
dp = IterableWrapper(range(100)).sharding_filter()
dp = MakeMistakeDataPipe(dp)
rs = MultiProcessingReadingService(num_workers=num_workers, worker_prefetch_cnt=worker_prefetch_cnt)
dl = DataLoader2(dp, reading_service=rs)
it = iter(dl)
for _ in range(EXCEPTION_ITERATION_NUM * num_workers):
next(it)
with self.assertRaises(_CustomException) as cm:
next(it)
exc_msg = str(cm.exception)
self.assertTrue("Caught _CustomException in worker process 0" in exc_msg)
self.assertTrue("Original Traceback" in exc_msg)
self.assertTrue("_CustomException: oops" in exc_msg)
@parametrize("num_workers", [1, 3])
@parametrize("worker_prefetch_cnt", [0, 5, 10])
def test_dispatching_exception_raised(self, num_workers, worker_prefetch_cnt):
dp = IterableWrapper(range(100))
dp = MakeMistakeDataPipe(dp)
dp = dp.sharding_round_robin_dispatch(SHARDING_PRIORITIES.MULTIPROCESSING)
dp = dp.map(_x_mult_2)
rs = MultiProcessingReadingService(num_workers=num_workers, worker_prefetch_cnt=worker_prefetch_cnt)
dl = DataLoader2(dp, reading_service=rs)
it = iter(dl)
for _ in range(EXCEPTION_ITERATION_NUM):
next(it)
with self.assertRaises(_CustomException) as cm:
next(it)
exc_msg = str(cm.exception)
self.assertTrue("Caught _CustomException in dispatching process" in exc_msg)
self.assertTrue("Original Traceback" in exc_msg)
self.assertTrue("_CustomException: oops" in exc_msg)
TEST_MASTER_ADDR = "127.0.0.1"
DEFAULT_WORLD_SIZE = 2
def _get_open_port():
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind(("", 0))
port = s.getsockname()[1]
s.close()
return str(port)
class TerminateSignal:
pass
def _launch_distributed_training(world_size, *args, fn):
os.environ["MASTER_ADDR"] = TEST_MASTER_ADDR
os.environ["MASTER_PORT"] = _get_open_port()
ctx = mp.get_context("spawn")
q = ctx.Queue()
ps = []
for rank in range(world_size):
p = ctx.Process(
target=fn,
args=(
rank,
world_size,
q,
*args,
),
)
p.start()
ps.append(p)
res = []
while True:
try:
d = q.get()
if isinstance(d, TerminateSignal):
break
res.append(d)
except queue.Empty:
continue
for p in ps:
p.join()
return res
def _dist_one_epoch(dl):
res = []
for d in dl:
res.append(d)
# Simulate training synchronization
dist.barrier()
return res
def _finalize_distributed_queue(rank, q):
r"""
Synchronize all distributed processes to guarantee all data have been put into
the Multiprocessing Queue.
"""
pg = dist.new_group(backend="gloo")
end_tensor = torch.tensor([rank], dtype=torch.int64)
dist.all_reduce(end_tensor, group=pg)
if rank == 0:
q.put(TerminateSignal())
dist.destroy_process_group(pg)
def _random_fn(data):
r"""
Used to validate the randomness of subprocess-local RNGs are set deterministically.
"""
py_random_num = random.randint(0, 2 ** 32)
np_random_num = np.random.randint(0, 2 ** 32)
torch_random_num = torch.randint(0, 2 ** 32, size=[]).item()
return (data, py_random_num, np_random_num, torch_random_num)
def _dist_training_fn(rank, world_size, q, dp_fn, rs_fn, num_workers, ctx):
# Use gloo
dist.init_process_group("gloo", rank=rank, world_size=world_size)
# Uneven shards
data_length = world_size * num_workers * 10 + 1
dp = dp_fn(data_length)
rs = rs_fn(num_workers, ctx)
dl = DataLoader2(dp, reading_service=rs)
# No seed
res = _dist_one_epoch(dl)
q.put((0, rank, res))
# Shuffle with seed
for epoch in range(2):
dl.seed(123)
res = _dist_one_epoch(dl)
q.put((epoch + 1, rank, res))
# Different seed
dl.seed(321)
res = _dist_one_epoch(dl)
q.put((3, rank, res))
_finalize_distributed_queue(rank, q)
dl.shutdown()
@skipIfNoDistributed
@unittest.skipIf(IS_WINDOWS, "Remove when https://github.com/pytorch/data/issues/857 is fixed")
class SequentialReadingServiceTest(TestCase):
@staticmethod
def _make_dp(data_length):
data_source = IterableWrapper(list(range(data_length)))
dp = data_source.shuffle().sharding_filter().map(_random_fn)
return dp
@staticmethod
def _make_dispatching_dp(data_length):
data_source = IterableWrapper(list(range(data_length)))
dp = data_source.shuffle().sharding_filter()
dp = dp.sharding_round_robin_dispatch(SHARDING_PRIORITIES.MULTIPROCESSING).map(_random_fn)
return dp
@staticmethod
def _make_rs(num_workers, ctx):
mp_rs = MultiProcessingReadingService(
num_workers=num_workers,
multiprocessing_context=ctx,
)
dist_rs = DistributedReadingService()
rs = SequentialReadingService(dist_rs, mp_rs)
return rs
@mp_ctx_parametrize
def test_sequential_reading_service_normal_dp(self, ctx):
world_size = DEFAULT_WORLD_SIZE
num_workers = 2
res = _launch_distributed_training(
world_size,
SequentialReadingServiceTest._make_dp,
SequentialReadingServiceTest._make_rs,
num_workers,
ctx,
fn=_dist_training_fn,
)
result = ({}, {}, {}, {})
for epoch, rank, r in res:
d, *ran_nums = list(zip(*r))
result[epoch][rank] = (d, ran_nums)
# Guarantee the same length per rank
for rr in result:
exp_len = num_workers * 10
for _, (d, _) in rr.items():
self.assertEqual(len(d), exp_len)
# Same seed generate the same order of data and the same random state
self.assertEqual(result[1], result[2])
# Different seeds
for rank in range(world_size):
# Different shuffle order
self.assertNotEqual(result[1][rank][0], result[3][rank][0])
# Different subprocess-local random state
self.assertNotEqual(result[1][rank][1], result[3][rank][1])
@mp_ctx_parametrize
def test_sequential_reading_service_dispatching_dp(self, ctx):
world_size = DEFAULT_WORLD_SIZE
num_workers = 2
res = _launch_distributed_training(
world_size,
SequentialReadingServiceTest._make_dispatching_dp,
SequentialReadingServiceTest._make_rs,
num_workers,
ctx,
fn=_dist_training_fn,
)
result = ({}, {}, {}, {})
for epoch, rank, r in res:
d, *ran_nums = list(zip(*r))
result[epoch][rank] = (d, ran_nums)
# Guarantee the same length per rank
for rr in result:
exp_len = num_workers * 10
for _, (d, _) in rr.items():
self.assertEqual(len(d), exp_len)
# Same seed generate the same order of data and the same random state
self.assertEqual(result[1], result[2])
# Different seeds
for rank in range(world_size):
# Different shuffle order
self.assertNotEqual(result[1][rank][0], result[3][rank][0])
# Different subprocess-local random state
self.assertNotEqual(result[1][rank][1], result[3][rank][1])
instantiate_parametrized_tests(MultiProcessingReadingServiceTest)
instantiate_parametrized_tests(SequentialReadingServiceTest)
if __name__ == "__main__":
unittest.main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import multiprocessing as mp
import unittest
from unittest import TestCase
from torch.testing._internal.common_utils import instantiate_parametrized_tests, parametrize, subtest
from torch.utils.data.datapipes.iter.sharding import SHARDING_PRIORITIES
from torchdata.dataloader2 import (
DataLoader2,
DataLoader2Iterator,
InProcessReadingService,
MultiProcessingReadingService,
)
from torchdata.datapipes.iter import IterableWrapper, IterDataPipe
def _add_one(x: int) -> int:
return x + 1
# Test DataPipes
n_elements = 10
dp1 = IterableWrapper(range(n_elements)).shuffle().sharding_filter()
double_pause_dp = dp1.prefetch().prefetch()
test_dps = [dp1, double_pause_dp]
mp_ctx_parametrize = parametrize("ctx", mp.get_all_start_methods())
dp_parametrize = parametrize("dp", test_dps)
class TestInProcessReadingService(TestCase):
r"""
This tests specific functionalities of InProcessReadingService, notably
`pause`, `resume`, `snapshot`.
"""
@dp_parametrize
def test_reading_service_pause_resume(self, dp) -> None:
# Functional Test: Testing various configuration of DataPipe/ReadingService to ensure the pipeline
# properly pauses and resumes
rs1 = InProcessReadingService()
dl1: DataLoader2 = DataLoader2(dp, reading_service=rs1)
res = []
for i, x in enumerate(dl1):
res.append(x)
if i in {2, n_elements - 2}:
dl1._pause()
dl1._resume()
self.assertEqual(list(range(n_elements)), sorted(res))
dl1.shutdown()
rs2 = InProcessReadingService(5)
dl2: DataLoader2 = DataLoader2(dp, reading_service=rs2)
res = []
for i, x in enumerate(dl2):
res.append(x)
if i in {2, n_elements - 2}:
dl2._pause()
dl2._resume()
self.assertEqual(list(range(n_elements)), sorted(res))
dl2.shutdown()
@dp_parametrize
def test_reading_service_pause_stop_yield(self, dp) -> None:
# Functional Test: Confirms that `dl` will stop yielding elements after `_pause` is called
rs = InProcessReadingService(5)
dl: DataLoader2 = DataLoader2(dp, reading_service=rs)
res = []
for i, x in enumerate(dl):
res.append(x)
if i in {2}:
dl._pause()
self.assertEqual(3, len(res))
dl.shutdown()
@dp_parametrize
def test_reading_service_limit(self, dp) -> None:
rs = InProcessReadingService(5)
dl: DataLoader2 = DataLoader2(dp, reading_service=rs)
res = []
cumulative_res = []
n_limit = 3
it: DataLoader2Iterator = iter(dl)
it.limit(n_limit)
for x in it:
res.append(x)
# Functional Test: Verify that the number of elements yielded equals to the specified limit
self.assertEqual(n_limit, len(res)) # 3
cumulative_res.extend(res)
# Functional Test: Calling `next` after `limit` will trigger `StopIteration`
with self.assertRaises(StopIteration):
next(it)
# Functional Test: Verify that `limit` persists without the need to set it again
it.resume()
res = []
for x in it:
res.append(x)
self.assertEqual(n_limit, len(res)) # 3
cumulative_res.extend(res)
# Functional Test: Clear the `limit` and yield the rest of the elements
it.limit(None)
it.resume()
res = []
for x in it:
res.append(x)
self.assertEqual(n_elements - 2 * n_limit, len(res)) # 4
cumulative_res.extend(res)
self.assertEqual(list(range(n_elements)), sorted(cumulative_res))
# Functional Test: Setting `limit` to a different value during after each mini-epoch
dl2: DataLoader2 = DataLoader2(double_pause_dp, reading_service=rs)
res = []
it2: DataLoader2Iterator = iter(dl2)
it2.limit(3)
for x in it2:
res.append(x)
# Limit can be set before `resume`
it2.limit(4)
it2.resume()
for x in it2:
res.append(x)
self.assertEqual(7, len(res))
# Limit can also be set after `resume`, but before the next `for` loop
it2.resume()
it2.limit(2)
for x in it2:
res.append(x)
self.assertEqual(9, len(res))
def test_initial_epoch_checkpointing(self):
dp = IterableWrapper(range(20)).shuffle()
rs = InProcessReadingService(5)
# Functional Test: Saving state before iterator is created
dl: DataLoader2 = DataLoader2(datapipe=dp, reading_service=rs)
dl.seed(1)
initial_state = dl.state_dict()
it1 = iter(dl)
restored_dl: DataLoader2 = DataLoader2.from_state(initial_state, rs) # type: ignore[arg-type]
restored_dl._restore_checkpoint_beginning_of_epoch()
self.assertEqual(list(it1), list(restored_dl))
dl.shutdown()
restored_dl.shutdown()
# Functional Test: Saving state after iterator is created
dl = DataLoader2(datapipe=dp, reading_service=rs)
dl.seed(1)
it1 = iter(dl)
initial_state = dl.state_dict()
restored_dl = DataLoader2.from_state(initial_state, rs) # type: ignore[arg-type]
restored_dl._restore_checkpoint_beginning_of_epoch()
self.assertEqual(list(it1), list(restored_dl))
dl.shutdown()
restored_dl.shutdown()
# Functional Test: Saving state after iterator is created and began iterating
dl = DataLoader2(datapipe=dp, reading_service=rs)
dl.seed(1)
it1 = iter(dl)
temp = next(it1) # Starts iterating
initial_state = dl.state_dict()
restored_dl = DataLoader2.from_state(initial_state, rs) # type: ignore[arg-type]
restored_dl._restore_checkpoint_beginning_of_epoch()
self.assertEqual([temp] + list(it1), list(restored_dl)) # Note skipping over 1st element from actual result
dl.shutdown()
restored_dl.shutdown()
def _non_dispatching_dp(n_elements=1000):
dp = IterableWrapper(list(range(n_elements))).shuffle()
dp = dp.sharding_filter()
dp = dp.map(_add_one).batch(8)
return dp
def _dispatching_dp(n_elements=1000):
dp = IterableWrapper(list(range(n_elements))).shuffle()
dp = dp.prefetch(20)
dp = dp.sharding_round_robin_dispatch(SHARDING_PRIORITIES.MULTIPROCESSING)
dp = dp.map(_add_one).batch(16)
return dp
class NonShardableDataPipe(IterDataPipe):
def __init__(self, dp: IterDataPipe):
self.dp = dp
def is_replicable(self):
return False
def __iter__(self):
yield from self.dp
class TestMultiProcessingReadingService(TestCase):
r"""
This tests specific functionalities of MultiProcessingReadingService, notably
`pause`, `resume`, `snapshot`.
"""
@mp_ctx_parametrize
@parametrize("dp_fn", [subtest(_non_dispatching_dp, "non_dispatch"), subtest(_dispatching_dp, "dispatch")])
@parametrize("main_prefetch", [0, 10])
@parametrize("worker_prefetch", [0, 10])
def test_early_exit(self, ctx, dp_fn, main_prefetch, worker_prefetch) -> None:
dp = dp_fn(1000)
rs = MultiProcessingReadingService(
num_workers=2,
main_prefetch_cnt=main_prefetch,
worker_prefetch_cnt=worker_prefetch,
multiprocessing_context=ctx,
)
dl: DataLoader2 = DataLoader2(dp, reading_service=rs)
it = iter(dl)
for _ in range(10):
_ = next(it)
dl.shutdown()
@mp_ctx_parametrize
@parametrize("dp_fn", [subtest(_non_dispatching_dp, "non_dispatch"), subtest(_dispatching_dp, "dispatch")])
@parametrize("main_prefetch", [0, 10])
@parametrize("worker_prefetch", [0, 10])
def test_exit(self, ctx, dp_fn, main_prefetch, worker_prefetch) -> None:
dp = dp_fn(1000)
rs = MultiProcessingReadingService(
num_workers=2,
main_prefetch_cnt=main_prefetch,
worker_prefetch_cnt=worker_prefetch,
multiprocessing_context=ctx,
)
dl: DataLoader2 = DataLoader2(dp, reading_service=rs)
_ = list(dl)
dl.shutdown()
@mp_ctx_parametrize
@dp_parametrize
@parametrize(
"n_workers,worker_prefetch_cnt,main_prefetch_cnt",
[(1, 0, 0), (1, 0, 2), (2, 0, 0), (2, 2, 0), (2, 0, 2), (2, 2, 2)],
)
def test_reading_service_pause_resume(self, ctx, dp, n_workers, worker_prefetch_cnt, main_prefetch_cnt) -> None:
# Functional Test: Testing various configuration of DataPipe/ReadingService to ensure the pipeline
# properly pauses and resumes
rs = MultiProcessingReadingService(
num_workers=n_workers,
worker_prefetch_cnt=worker_prefetch_cnt,
main_prefetch_cnt=main_prefetch_cnt,
multiprocessing_context=ctx,
)
dl: DataLoader2 = DataLoader2(dp, reading_service=rs)
res = []
for i, x in enumerate(dl):
res.append(x)
if i in {2, n_elements - 2}:
dl._pause()
dl._resume()
self.assertEqual(
list(range(n_elements)),
sorted(res),
msg=f"The test is failing with '{ctx}', num_workers = {rs.num_workers}, "
f"worker_prefetch_cnt = {rs.worker_prefetch_cnt}, "
f"main_prefetch_cnt = {rs.main_prefetch_cnt}",
)
dl.shutdown()
@mp_ctx_parametrize
@dp_parametrize
@parametrize("n_workers,worker_prefetch_cnt,main_prefetch_cnt", [(2, 0, 1), (2, 1, 0), (2, 0, 0)])
def test_reading_service_pause_stop_yield(self, ctx, dp, n_workers, worker_prefetch_cnt, main_prefetch_cnt) -> None:
# Functional Test: Confirms that `dl` will stop yielding elements after `_pause` is called
rs = MultiProcessingReadingService(
num_workers=n_workers,
worker_prefetch_cnt=worker_prefetch_cnt,
main_prefetch_cnt=main_prefetch_cnt,
multiprocessing_context=ctx,
)
dl: DataLoader2 = DataLoader2(dp, reading_service=rs)
res = []
for i, x in enumerate(dl):
res.append(x)
if i in {2}:
dl._pause()
self.assertEqual(
3,
len(res),
msg=f"The test is failing with '{ctx}', num_workers = {rs.num_workers}, "
f"worker_prefetch_cnt = {rs.worker_prefetch_cnt}, main_prefetch_cnt = {rs.main_prefetch_cnt}",
)
dl.shutdown()
@dp_parametrize
@parametrize("n_workers,worker_prefetch_cnt,main_prefetch_cnt", [(1, 0, 0), (1, 0, 2), (2, 0, 0), (2, 2, 2)])
def test_reading_service_limit(self, dp, n_workers, worker_prefetch_cnt, main_prefetch_cnt) -> None:
rs = MultiProcessingReadingService(
num_workers=n_workers, worker_prefetch_cnt=worker_prefetch_cnt, main_prefetch_cnt=main_prefetch_cnt
)
dl: DataLoader2 = DataLoader2(dp, reading_service=rs)
res = []
cumulative_res = []
n_limit = 3
it: DataLoader2Iterator = iter(dl)
it.limit(n_limit)
for x in it:
res.append(x)
# Functional Test: Verify that the number of elements yielded equals to the specified limit
self.assertEqual(
n_limit,
len(res), # 3
msg=f"The test is failing with default multiprocessing method, "
f"num_workers = {rs.num_workers}, "
f"worker_prefetch_cnt = {rs.worker_prefetch_cnt}, main_prefetch_cnt = {rs.main_prefetch_cnt}",
)
cumulative_res.extend(res)
# Functional Test: Calling `next` after `limit` will trigger `StopIteration`
with self.assertRaises(StopIteration):
next(it)
# Functional Test: Verify that `limit` persists without the need to set it again
it.resume()
res = []
for x in it:
res.append(x)
self.assertEqual(
n_limit,
len(res), # 3
msg=f"The test is failing with default multiprocessing method, "
f"num_workers = {rs.num_workers}, "
f"worker_prefetch_cnt = {rs.worker_prefetch_cnt}, main_prefetch_cnt = {rs.main_prefetch_cnt}",
)
cumulative_res.extend(res)
# Functional Test: Clear the `limit` and yield the rest of the elements
it.limit(None)
it.resume()
res = []
for x in it:
res.append(x)
self.assertEqual(
n_elements - 2 * n_limit,
len(res), # 4
msg=f"The test is failing with default multiprocessing method, "
f"num_workers = {rs.num_workers}, "
f"worker_prefetch_cnt = {rs.worker_prefetch_cnt}, main_prefetch_cnt = {rs.main_prefetch_cnt}",
)
cumulative_res.extend(res)
self.assertEqual(list(range(n_elements)), sorted(cumulative_res))
# Functional Test: Setting `limit` to a different value during after each mini-epoch
dl2: DataLoader2 = DataLoader2(double_pause_dp, reading_service=rs)
res = []
it2: DataLoader2Iterator = iter(dl2)
it2.limit(3)
for x in it2:
res.append(x)
# Limit can be set before `resume`
it2.limit(4)
it2.resume()
for x in it2:
res.append(x)
self.assertEqual(7, len(res))
# Limit can also be set after `resume`, but before the next `for` loop
it2.resume()
it2.limit(2)
for x in it2:
res.append(x)
self.assertEqual(9, len(res))
def test_initial_epoch_checkpointing(self):
dp = IterableWrapper(range(20)).shuffle().sharding_filter()
# Note that the second `shuffle` occurs in the main process, which uses a different RNG from
# the `shuffle` done in the worker processes
dp = NonShardableDataPipe(dp).shuffle() # type: ignore[assignment, arg-type]
rs = MultiProcessingReadingService(num_workers=2)
# Functional Test: Saving state before iterator is created
dl: DataLoader2 = DataLoader2(datapipe=dp, reading_service=rs)
dl.seed(1)
initial_state = dl.state_dict()
it1 = iter(dl)
restored_dl: DataLoader2 = DataLoader2.from_state(initial_state, rs) # type: ignore[arg-type]
restored_dl._restore_checkpoint_beginning_of_epoch()
self.assertEqual(list(it1), list(restored_dl))
dl.shutdown()
restored_dl.shutdown()
# Functional Test: Saving state after iterator is created
dl = DataLoader2(datapipe=dp, reading_service=rs)
dl.seed(1)
it1 = iter(dl)
initial_state = dl.state_dict()
restored_dl = DataLoader2.from_state(initial_state, rs) # type: ignore[arg-type]
restored_dl._restore_checkpoint_beginning_of_epoch()
self.assertEqual(list(it1), list(restored_dl))
dl.shutdown()
restored_dl.shutdown()
# Functional Test: Saving state after iterator is created and began iterating
dl = DataLoader2(datapipe=dp, reading_service=rs)
dl.seed(1)
it1 = iter(dl)
temp = next(it1) # Starts iterating
initial_state = dl.state_dict()
restored_dl = DataLoader2.from_state(initial_state, rs) # type: ignore[arg-type]
restored_dl._restore_checkpoint_beginning_of_epoch()
self.assertEqual([temp] + list(it1), list(restored_dl)) # Note skipping over 1st element from actual result
dl.shutdown()
restored_dl.shutdown()
# TODO: Test cases when there is official support of `pause` and `resume` with round-robin sharding
# Currently, using sharding_round_robin raises a warning
# def test_round_robin_dispatching_pause_limit(self):
# source_dp = IterableWrapper(range(20))
# dp = source_dp.shuffle().sharding_round_robin_dispatch(SHARDING_PRIORITIES.MULTIPROCESSING)
# dp = dp.map(_add_one)
# TODO: This doesn't work with `num_workers > 1`
# TODO: Try checking if `dp_list`'s elements are _IterateQueueDP or QueueWrapper, we can safely assume
# those DPs belong to a dispatching process and only do pause if worker_id == 0
# There might still be a race condition, need to look into the messages
# rs1 = MultiProcessingReadingService(num_workers=2, worker_prefetch_cnt=0, main_prefetch_cnt=0)
# rs2 = MultiProcessingReadingService(num_workers=2, worker_prefetch_cnt=0, main_prefetch_cnt=2)
# rs3 = MultiProcessingReadingService(num_workers=2, worker_prefetch_cnt=2, main_prefetch_cnt=0)
# rs4 = MultiProcessingReadingService(num_workers=2, worker_prefetch_cnt=2, main_prefetch_cnt=2)
# rss = [rs1, rs2, rs3, rs4]
# for n, rs in enumerate(rss):
# dl = DataLoader2(dp, reading_service=rs)
# res = []
# # cumulative_res = []
# n_limit = 3
#
# it: DataLoader2Iterator = iter(dl)
# it.limit(n_limit) # The `pause` call here doesn't stop
# for x in it:
# res.append(x)
#
# print()
# print(res)
#
# dl.shutdown()
# # Functional Test: Verify that the number of elements yielded equals to the specified limit
# # self.assertEqual(
# # n_limit,
# # len(res), # 3
# # msg=f"The test is failing for rs{n + 1} with default multiprocessing method, "
# # f"num_workers = {rs.num_workers}, "
# # f"worker_prefetch_cnt = {rs.worker_prefetch_cnt}, main_prefetch_cnt = {rs.main_prefetch_cnt}",
# # )
# cumulative_res.extend(res)
#
# # Functional Test: Calling `next` after `limit` will trigger `StopIteration`
# with self.assertRaisesRegex(StopIteration, "pause"):
# next(it)
#
# # Functional Test: Verify that `limit` persists without the need to set it again
# it.resume()
# res = []
# for x in it:
# res.append(x)
# # self.assertEqual(
# # n_limit,
# # len(res), # 3
# # msg=f"The test is failing for rs{n + 1} with default multiprocessing method, "
# # f"num_workers = {rs.num_workers}, "
# # f"worker_prefetch_cnt = {rs.worker_prefetch_cnt}, main_prefetch_cnt = {rs.main_prefetch_cnt}",
# # )
# cumulative_res.extend(res)
#
# # Functional Test: Clear the `limit` and yield the rest of the elements
# it.limit(None)
# it.resume()
# res = []
# for x in it:
# res.append(x)
# # self.assertEqual(
# # n_elements - 2 * n_limit,
# # len(res), # 4
# # msg=f"The test is failing for rs{n + 1} with default multiprocessing method, "
# # f"num_workers = {rs.num_workers}, "
# # f"worker_prefetch_cnt = {rs.worker_prefetch_cnt}, main_prefetch_cnt = {rs.main_prefetch_cnt}",
# # )
#
# cumulative_res.extend(res)
# self.assertEqual(list(range(n_elements)), sorted(cumulative_res))
# TODO: Implemented in an upcoming PR
# def test_reading_service_snapshot(self) -> None:
# pass
#
# def test_dataloader2_snapshot(self) -> None:
# pass
instantiate_parametrized_tests(TestInProcessReadingService)
instantiate_parametrized_tests(TestMultiProcessingReadingService)
if __name__ == "__main__":
unittest.main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import random
import unittest
from unittest import TestCase
import numpy as np
import torch
from torch.testing._internal.common_utils import instantiate_parametrized_tests, IS_WINDOWS, parametrize
from torchdata.dataloader2 import DataLoader2, InProcessReadingService, MultiProcessingReadingService
from torchdata.dataloader2.graph.settings import set_graph_random_seed
from torchdata.dataloader2.random import SeedGenerator
from torchdata.datapipes.iter import IterableWrapper
def _random_fn(data):
r"""
Used to validate the randomness of subprocess-local RNGs are set deterministically.
"""
py_random_num = random.randint(0, 2 ** 32)
np_random_num = np.random.randint(0, 2 ** 32, dtype=np.uint32)
torch_random_num = torch.randint(0, 2 ** 32, size=[]).item()
return (data, py_random_num, np_random_num, torch_random_num)
class DeterminismTest(TestCase):
@unittest.skipIf(IS_WINDOWS, "Remove when https://github.com/pytorch/data/issues/857 is fixed")
@parametrize("num_workers", [1, 8])
def test_mprs_determinism(self, num_workers):
data_length = 64
exp = list(range(data_length))
data_source = IterableWrapper(exp)
dp = data_source.shuffle().sharding_filter().map(_random_fn)
rs = MultiProcessingReadingService(num_workers=num_workers)
dl = DataLoader2(dp, reading_service=rs)
# No seed
res = []
for d, *_ in dl:
res.append(d)
self.assertEqual(sorted(res), exp)
# Shuffle with seed
results = []
for _ in range(2):
res = []
ran_res = []
torch.manual_seed(123)
random.seed(123)
np.random.seed(123)
for d, *ran_nums in dl:
res.append(d)
ran_res.append(ran_nums)
self.assertEqual(sorted(res), exp)
results.append((res, ran_res))
# Same seed generate the same order of data and the same random state
self.assertEqual(results[0], results[1])
# Different seed
res = []
ran_res = []
torch.manual_seed(321)
random.seed(321)
np.random.seed(321)
for d, *ran_nums in dl:
res.append(d)
ran_res.append(ran_nums)
self.assertEqual(sorted(res), exp)
# Different shuffle order
self.assertNotEqual(results[0][0], res)
# Different subprocess-local random state
self.assertNotEqual(results[0][1], ran_res)
def test_graph_random_settings(self):
def _get_dp_seeds_after_setting(worker_id, seed=123):
data_source = IterableWrapper(list(range(100)))
dp0 = data_source.shuffle()
dp1, dp2, dp3 = dp0.fork(3)
dp1 = dp1.sharding_filter()
dp2 = dp2.shuffle()
dp3 = dp3.shuffle()
dp3_ = dp3.sharding_filter()
dp4 = dp1.zip(dp2, dp3_).shuffle()
sg = SeedGenerator(seed).spawn(worker_id)
set_graph_random_seed(dp4, sg)
# same seeds, different seeds
return (dp0._seed, dp3._seed), (dp2._seed, dp4._seed)
ss_0_123, ds_0_123 = _get_dp_seeds_after_setting(worker_id=0, seed=123)
ss_1_123, ds_1_123 = _get_dp_seeds_after_setting(worker_id=1, seed=123)
self.assertEqual(ss_0_123, ss_1_123)
self.assertNotEqual(ds_0_123, ds_1_123)
ss_0_123_, ds_0_123_ = _get_dp_seeds_after_setting(worker_id=0, seed=123)
self.assertEqual(ss_0_123, ss_0_123_)
self.assertEqual(ds_0_123, ds_0_123_)
ss_0_321, ds_0_321 = _get_dp_seeds_after_setting(worker_id=0, seed=321)
self.assertNotEqual(ss_0_123, ss_0_321)
self.assertNotEqual(ds_0_123, ds_0_321)
def test_sprs_determinism(self):
data_length = 64
exp = list(range(data_length))
data_source = IterableWrapper(exp)
dp = data_source.shuffle().sharding_filter().map(_random_fn)
rs = InProcessReadingService()
dl = DataLoader2(dp, reading_service=rs)
# No seed
res = []
for d, *_ in dl:
res.append(d)
self.assertEqual(sorted(res), exp)
# Shuffle with seed
results = []
for _ in range(2):
res = []
ran_res = []
torch.manual_seed(123)
random.seed(123)
np.random.seed(123)
for d, *ran_nums in dl:
res.append(d)
ran_res.append(ran_nums)
self.assertEqual(sorted(res), exp)
results.append((res, ran_res))
# Same seed generate the same order of data and the same random state
self.assertEqual(results[0], results[1])
# Different seed
res = []
ran_res = []
torch.manual_seed(321)
random.seed(321)
np.random.seed(321)
for d, *ran_nums in dl:
res.append(d)
ran_res.append(ran_nums)
self.assertEqual(sorted(res), exp)
# Different shuffle order
self.assertNotEqual(results[0][0], res)
# Different subprocess-local random state
self.assertNotEqual(results[0][1], ran_res)
instantiate_parametrized_tests(DeterminismTest)
if __name__ == "__main__":
unittest.main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# Configuration file for the Sphinx documentation builder.
#
# This file only contains a selection of the most common options. For a full
# list see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
# -- Path setup --------------------------------------------------------------
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
import os
import sys
import pytorch_sphinx_theme
import torchdata
# sys.path.insert(0, os.path.abspath('.'))
current_dir = os.path.dirname(__file__)
target_dir = os.path.abspath(os.path.join(current_dir, "../.."))
sys.path.insert(0, target_dir)
print(target_dir)
# -- Project information -----------------------------------------------------
project = "TorchData"
copyright = "2021 - Present, Torch Contributors"
author = "Torch Contributors"
# The short X.Y version
version = "main (" + torchdata.__version__ + " )"
# The full version, including alpha/beta/rc tags
release = "main"
# -- General configuration ---------------------------------------------------
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [
"sphinx.ext.napoleon",
"sphinx.ext.autodoc",
"sphinx.ext.autosummary",
"sphinx.ext.intersphinx",
"sphinx.ext.doctest",
"sphinx.ext.graphviz",
]
# Do not execute standard reST doctest blocks so that documentation can
# be successively migrated to sphinx's doctest directive.
doctest_test_doctest_blocks = ""
# Add any paths that contain templates here, relative to this directory.
templates_path = ["_templates"]
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = [
"generated/torchdata.datapipes.iter.Extractor.rst",
"generated/torchdata.datapipes.iter.TarArchiveReader.rst",
"generated/torchdata.datapipes.iter.XzFileReader.rst",
"generated/torchdata.datapipes.iter.ZipArchiveReader.rst",
]
# -- Options for HTML output -------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
# html_theme = 'alabaster'
html_theme = "pytorch_sphinx_theme"
html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()]
html_theme_options = {
"collapse_navigation": False,
"display_version": True,
"logo_only": True,
"pytorch_project": "docs",
"navigation_with_keys": True,
"analytics_id": "UA-117752657-2",
}
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ["_static"]
html_css_files = [
"css/custom.css",
]
# TODO(598): use regex to replace all "T" and "T_co" related signature
signature_replacements = {
"torch.utils.data.datapipes.datapipe.IterDataPipe": "IterDataPipe",
"abc.IterDataPipe": "IterDataPipe",
"torch.utils.data.datapipes.datapipe.MapDataPipe": "MapDataPipe",
"abc.MapDataPipe": "MapDataPipe",
"typing.Type[torch.utils.data.sampler.Sampler]": "torch.utils.data.sampler.Sampler",
"<class 'torch.utils.data.sampler.SequentialSampler'>": "SequentialSampler",
"torch.utils.data.datapipes.iter.combining.T_co": "T_co",
"torch.utils.data.datapipes.iter.combinatorics.T_co": "T_co",
"torchdata.datapipes.iter.transform.bucketbatcher.T_co": "T_co",
"torch.utils.data.datapipes.map.grouping.T": "T",
"torch.utils.data.datapipes.map.combining.T_co": "T_co",
"torch.utils.data.datapipes.map.combinatorics.T_co": "T_co",
"torchdata.datapipes.iter.util.cycler.T_co": "T_co",
"torchdata.datapipes.iter.util.paragraphaggregator.T_co": "T_co",
"torchdata.datapipes.map.util.cacheholder.T_co": "T_co",
"Sequence[torchdata.datapipes.map.util.unzipper.T]": "Sequence[T]",
"torchdata.datapipes.iter.util.samplemultiplexer.T_co": "T_co",
"torchdata.datapipes.iter.util.indexadder.K": "K",
"torchdata.datapipes.iter.util.unzipper.T": "T",
"torch.utils.data.datapipes.iter.grouping.T_co": "T_co",
"torchdata.datapipes.iter.util.dataframemaker.T_co": "T_co",
"torchdata.datapipes.iter.util.cacheholder.T_co": "T_co",
"torchdata.datapipes.iter.util.header.T_co": "T_co",
"<class 'torch.utils.data.datapipes.datapipe.DataChunk'>": "List",
"typing.": "",
"Union[IterDataPipe, MapDataPipe]": "DataPipe",
"Dict[int, Tuple[DataPipe, DataPipeGraph]": "DataPipeGraph",
}
def process_signature(app, what, name, obj, options, signature, return_annotation):
"""Replacing long type annotations in signature with more succinct ones."""
if isinstance(signature, str):
for old, new in signature_replacements.items():
if old in signature:
signature = signature.replace(old, new)
return signature, return_annotation
def setup(app):
# Overwrite class name to allow aliasing in documentation generation
import torchdata.datapipes.iter as iter
import torchdata.datapipes.map as map
for mod in (iter, map):
for name, obj in mod.__dict__.items():
if isinstance(obj, type):
obj.__name__ = name
app.connect("autodoc-process-signature", process_signature)
intersphinx_mapping = {
"graphviz": ("https://graphviz.readthedocs.io/en/stable/", None),
}
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
"""
This file contains the data pipeline to read from a TSV file and output a DataFrame.
"""
from typing import Any, Callable, Dict, Iterable, Iterator, List, Optional, Tuple, TypeVar, Union
import numpy as np
import torcharrow as ta
import torcharrow.dtypes as dt
import torcharrow.pytorch as tap
import torcharrow_wrapper # noqa: F401
from common import (
CAT_FEATURE_COUNT,
DEFAULT_CAT_NAMES,
DEFAULT_COLUMN_NAMES,
DEFAULT_INT_NAMES,
INT_FEATURE_COUNT,
safe_cast,
)
from iopath.common.file_io import PathManagerFactory
from torch.utils.data import get_worker_info
from torch.utils.data.datapipes.dataframe.dataframes import CaptureLikeMock
from torcharrow import functional
from torchdata.dataloader2 import DataLoader2, MultiProcessingReadingService
from torchdata.datapipes.iter import Batcher, CSVParser, IoPathFileOpener, IterableWrapper, IterDataPipe, Mapper
PATH_MANAGER_KEY = "torchrec"
T = TypeVar("T")
COLUMN_TYPE_CASTERS: List[Callable[[Union[int, str]], Union[int, str]]] = [
lambda val: safe_cast(val, int, 0),
*(lambda val: safe_cast(val, int, 0) for _ in range(INT_FEATURE_COUNT)),
*(lambda val: safe_cast(val, str, "") for _ in range(CAT_FEATURE_COUNT)),
]
DTYPE = dt.Struct(
[
dt.Field("labels", dt.int8),
dt.Field(
"dense_features",
dt.Struct([dt.Field(int_name, dt.Int32(nullable=True)) for int_name in DEFAULT_INT_NAMES]),
),
dt.Field(
"sparse_features",
dt.Struct([dt.Field(cat_name, dt.Int32(nullable=True)) for cat_name in DEFAULT_CAT_NAMES]),
),
]
)
def _torcharrow_row_mapper(row: List[str]) -> Tuple[int, Tuple[int, ...], Tuple[int, ...]]:
label = int(safe_cast(row[0], int, 0))
dense = tuple(int(safe_cast(row[i], int, 0)) for i in range(1, 1 + INT_FEATURE_COUNT))
sparse = tuple(
int(safe_cast(row[i], str, "0") or "0", 16)
for i in range(1 + INT_FEATURE_COUNT, 1 + INT_FEATURE_COUNT + CAT_FEATURE_COUNT)
)
# TorchArrow doesn't support uint32, but we can save memory
# by not using int64. Numpy will automatically handle sparse values >= 2 ** 31.
sparse = tuple(np.array(sparse, dtype=np.int32).tolist())
return label, dense, sparse
def criteo_dataframes_from_tsv(
paths: Union[str, Iterable[str]],
*,
batch_size: int = 128,
) -> IterDataPipe:
"""
Load Criteo dataset (Kaggle or Terabyte) as TorchArrow DataFrame streams from TSV file(s)
This implementaiton is inefficient and is used for prototype and test only.
Args:
paths (str or Iterable[str]): local paths to TSV files that constitute
the Kaggle or Criteo 1TB dataset.
batch_size (int): number of rows within each DataFrame
Example:
>>> datapipe = criteo_dataframes_from_tsv(
>>> ["/home/datasets/criteo/day_0.tsv", "/home/datasets/criteo/day_1.tsv"]
>>> )
>>> for df in datapipe:
>>> print(df)
"""
if isinstance(paths, str):
paths = [paths]
datapipe = CriteoIterDataPipe(paths, row_mapper=_torcharrow_row_mapper)
datapipe = Batcher(datapipe, batch_size)
datapipe = Mapper(datapipe, lambda batch: ta.dataframe(batch, dtype=DTYPE))
return datapipe.trace_as_dataframe()
def _default_row_mapper(example: List[str]) -> Dict[str, Union[int, str]]:
column_names = reversed(DEFAULT_COLUMN_NAMES)
column_type_casters = reversed(COLUMN_TYPE_CASTERS)
return {next(column_names): next(column_type_casters)(val) for val in reversed(example)}
class CriteoIterDataPipe(IterDataPipe):
"""
IterDataPipe that can be used to stream either the Criteo 1TB Click Logs Dataset
(https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/) or the
Kaggle/Criteo Display Advertising Dataset
(https://www.kaggle.com/c/criteo-display-ad-challenge/) from the source TSV
files.
Args:
paths (Iterable[str]): local paths to TSV files that constitute the Criteo
dataset.
row_mapper (Optional[Callable[[List[str]], Any]]): function to apply to each
split TSV line.
open_kw: options to pass to underlying invocation of
iopath.common.file_io.PathManager.open.
Example:
>>> datapipe = CriteoIterDataPipe(
>>> ("/home/datasets/criteo/day_0.tsv", "/home/datasets/criteo/day_1.tsv")
>>> )
>>> datapipe = dp.iter.Batcher(datapipe, 100)
>>> datapipe = dp.iter.Collator(datapipe)
>>> batch = next(iter(datapipe))
"""
def __init__(
self,
paths: Iterable[str],
*,
# pyre-ignore[2]
row_mapper: Optional[Callable[[List[str]], Any]] = _default_row_mapper,
) -> None:
self.paths = paths
self.row_mapper = row_mapper
# pyre-ignore[3]
def __iter__(self) -> Iterator[Any]:
worker_info = get_worker_info()
paths = self.paths
if worker_info is not None:
paths = (path for (idx, path) in enumerate(paths) if idx % worker_info.num_workers == worker_info.id)
paths = IterableWrapper(paths)
datapipe = IoPathFileOpener(paths, mode="r", pathmgr=PathManagerFactory().get(PATH_MANAGER_KEY))
datapipe = CSVParser(datapipe, delimiter="\t")
if self.row_mapper:
datapipe = Mapper(datapipe, self.row_mapper)
yield from datapipe
# Creating DataFrame from TSV File
df = criteo_dataframes_from_tsv("day_11_first_3k_rows_original.tsv")
df = df.shuffle()
df["dense_features"] = df["dense_features"].fill_null(0)
df["sparse_features"] = df["sparse_features"].fill_null(0)
# Remove CaptureLikeMock hen torcharrow.functional will accept StreamDataFrame
with CaptureLikeMock("torcharrow.functional.array_constructor"):
for field in df["sparse_features"].columns:
df["sparse_features"][field] = functional.array_constructor(df["sparse_features"][field])
df["dense_features"] = (df["dense_features"] + 3).log()
df["labels"] = df["labels"].cast(dt.int32)
df = df.batch(10)
conversion = {
"dense_features": tap.rec.Dense(),
"sparse_features": tap.rec.Dense(), # Sparse not implemented yet in torcharrow
# Because labels are unlisted it works like "labels": tap.rec.Default(),
}
df = df.collate(conversion=conversion)
reading_service = MultiProcessingReadingService(num_workers=0)
dl = DataLoader2(df, reading_service=reading_service)
print("Iterating DataLoader now")
for item in dl:
labels, dense_features, sparse_features = item
print(labels)
print(dense_features)
print(sparse_features)
break
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# TODO(597): This file can be moved to the dataframe parent directory once Torcharrow
# is open sourced
from typing import Iterable, List, Optional, Union
import torcharrow as ta
from torch.utils.data.datapipes.dataframe import dataframe_wrapper as df_wrapper
class TorcharrowWrapper:
@classmethod
def create_dataframe(cls, data: Iterable, columns: Optional[List[str]] = None):
columnar_data = list(zip(*data))
# set default column values if `columns` arg is not provided
column_names = columns
if not columns or len(columns) == 0:
column_names = [f"col{i}" for i in range(len(columnar_data))]
return ta.dataframe({column_name: ta.Column(value) for column_name, value in zip(column_names, columnar_data)})
@classmethod
def is_dataframe(cls, data: Union[ta.DataFrame, ta.Column]):
return isinstance(data, ta.DataFrame)
@classmethod
def is_column(cls, data: Union[ta.DataFrame, ta.Column]):
return isinstance(data, ta.Column)
@classmethod
def iterate(cls, df):
yield from df
@classmethod
def concat(cls, buffer: List[ta.DataFrame]):
concat_buffer = []
for b in buffer:
concat_buffer += list(b)
return ta.dataframe(concat_buffer, dtype=buffer[0].dtype)
@classmethod
def get_item(cls, df: ta.DataFrame, idx):
return df[idx : idx + 1]
@classmethod
def get_len(cls, df: ta.DataFrame):
return len(df)
@classmethod
def get_columns(cls, df):
return list(df.columns)
df_wrapper.set_df_wrapper(TorcharrowWrapper)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
"""
This file contains the data pipeline to read from a Paruet and output a DataFrame.
"""
import torcharrow.dtypes as dt
from common import DEFAULT_CAT_NAMES, DEFAULT_INT_NAMES
from torchdata.datapipes.iter import FileLister, ParquetDataFrameLoader
DTYPE = dt.Struct(
[dt.Field("label", dt.int64)]
+ [dt.Field(int_name, dt.Float64(nullable=True)) for int_name in DEFAULT_INT_NAMES]
+ [dt.Field(cat_name, dt.Float64(nullable=True)) for cat_name in DEFAULT_CAT_NAMES]
)
source_dp = FileLister(".", masks="*.parquet")
parquet_df_dp = ParquetDataFrameLoader(source_dp, dtype=DTYPE)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import Callable, List, TypeVar
T = TypeVar("T")
# Criteo Data Set Parameters
INT_FEATURE_COUNT = 13
CAT_FEATURE_COUNT = 26
DEFAULT_LABEL_NAME = "label"
DEFAULT_INT_NAMES: List[str] = [f"int_{idx}" for idx in range(INT_FEATURE_COUNT)]
DEFAULT_CAT_NAMES: List[str] = [f"cat_{idx}" for idx in range(CAT_FEATURE_COUNT)]
DEFAULT_COLUMN_NAMES: List[str] = [
DEFAULT_LABEL_NAME,
*DEFAULT_INT_NAMES,
*DEFAULT_CAT_NAMES,
]
def safe_cast(val: T, dest_type: Callable[[T], T], default: T) -> T:
"""
Helper function to safely cast data with default as fallback.
"""
try:
return dest_type(val)
except ValueError:
return default
def safe_hex_to_int(num):
try:
return int(safe_cast(num, str, "0") or "0", 16)
except Exception:
return float("NaN")
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
"""
This file pre-process the source file and save it as a TSV file and a Parquet file.
You do not need to re-run this file if "day_11_first_3k_rows.parquet" and "day_11_first_3k_rows.tsv" exist locally
"""
import pandas
import pyarrow
import pyarrow.parquet as parquet
from common import DEFAULT_CAT_NAMES, DEFAULT_COLUMN_NAMES, safe_hex_to_int
# Read TSV File with Pandas
tsv_fname = "day_11_first_3k_rows_original.tsv"
df = pandas.read_csv(tsv_fname, sep="\t")
df.columns = DEFAULT_COLUMN_NAMES
# Convert hex strings to interger
for i, row in df.iterrows():
for cat_col in DEFAULT_CAT_NAMES:
df.at[i, cat_col] = safe_hex_to_int(row[cat_col])
# Convert to PyArrow table and write to disk as parquet file
table = pyarrow.Table.from_pandas(df=df)
parquet_fname = "day_11_first_3k_rows.parquet"
parquet.write_table(table, parquet_fname)
# Write to a new .tsv file
df.to_csv("day_11_first_3k_rows.tsv", sep="\t")
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import http.server
import os
import re
import threading
import torchvision.datasets as datasets
import torchvision.datasets.folder
import torchvision.transforms as transforms
from PIL import Image
from torch.utils.data import DataLoader
from torchdata.datapipes.iter import FileLister, HttpReader, IterDataPipe
IMAGES_ROOT = os.path.join("fakedata", "imagefolder")
USE_FORK_DATAPIPE = False
NUM_WORKERS = 5
BATCH_SIZE = None
data_transform = transforms.Compose(
[
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
# DataPipes implementation of ImageFolder constructs and executes graph of DataPipes (aka DataPipeline)
# FileLister -> ObtainCategories
# |
# V
# FileLister -> AttributeCategories -> LoadAndDecodeImages (using `map`) -> ApplyTorchVisionTransforms (using `map`)
def get_category_name(path):
rel_path = os.path.relpath(path, start=IMAGES_ROOT)
elements = rel_path.split(os.sep)
return elements[0]
class ObtainCategories(IterDataPipe):
def __init__(self, source_dp, parse_category_fn=get_category_name) -> None:
self.source_dp = source_dp
self.parse_category_fn = parse_category_fn
def __iter__(self):
categories = set()
for path in self.source_dp:
categories.add(self.parse_category_fn(path))
cat_to_id = {name: i for i, name in enumerate(sorted(categories))}
yield cat_to_id
class AttributeCategories(IterDataPipe):
def __init__(self, listfiles_dp, categories_dp, parse_category_fn=get_category_name) -> None:
self.listfiles_dp = listfiles_dp
self.categories_dp = categories_dp
self.parse_category_fn = parse_category_fn
def __iter__(self):
for categories in self.categories_dp:
cat_to_dp = categories
for data in self.listfiles_dp:
if isinstance(data, tuple):
category = cat_to_dp[self.parse_category_fn(data[0])]
yield data + (category,)
else:
category = cat_to_dp[self.parse_category_fn(data)]
yield (data, category)
def MyImageFolder(root=IMAGES_ROOT, transform=None):
if not USE_FORK_DATAPIPE:
# Yes, we had to scan files twice. Alternativelly it is possible to use
# `fork` DataPipe, but it will require buffer equal to the size of all
# full file names
# TODO(125): Make sure that `fork` complains when buffer becomes
# too large
list_files_0 = FileLister(root=IMAGES_ROOT, recursive=True)
list_files_1 = FileLister(root=IMAGES_ROOT, recursive=True).sharding_filter()
else:
list_files_0, list_files_1 = FileLister(root=IMAGES_ROOT, recursive=True).fork(2)
list_files_1 = list_files_1.sharding_filter()
categories = ObtainCategories(list_files_0)
with_categories = AttributeCategories(list_files_1, categories)
using_default_loader = with_categories.map(lambda x: (torchvision.datasets.folder.default_loader(x[0]), x[1]))
transformed = using_default_loader.map(lambda x: (transform(x[0]), x[1]))
return transformed
class ExpandURLPatternDataPipe(IterDataPipe):
def __init__(self, pattern) -> None:
result = re.match(r"(.*?)\{(.*?)}(.*)", pattern)
if result:
self.prefix = result.group(1)
self.pattern = result.group(2)
self.postfix = result.group(3)
result = re.match(r"(\d+)\.\.(\d+)", self.pattern)
if result:
self.start_str = result.group(1)
self.end_str = result.group(2)
else:
raise Exception("Invalid pattern")
else:
raise Exception("Invalid pattern")
def __iter__(self):
current_int = int(self.start_str)
end_int = int(self.end_str)
for i in range(current_int, end_int + 1):
str_i = str(i)
while len(str_i) < len(self.start_str):
str_i = "0" + str_i
yield self.prefix + str_i + self.postfix
HTTP_PATH_ROOT = "http://localhost:8000/"
HTTP_PATH_CAT = "http://localhost:8000/cat/{1..3}.jpg"
HTTP_PATH_DOG = "http://localhost:8000/dog/{1..3}.jpg"
def get_category_name_url(url):
rel_path = os.path.relpath(url, start=HTTP_PATH_ROOT)
elements = rel_path.split(os.sep)
return elements[0]
def stream_to_pil(stream):
img = Image.open(stream)
return img.convert("RGB")
def MyHTTPImageFolder(transform=None):
# HTTP Protocol doesn't support listing files, so we had to provide it explicitly
list_files = ExpandURLPatternDataPipe(HTTP_PATH_CAT) + ExpandURLPatternDataPipe(HTTP_PATH_DOG)
list_files_0, list_files_1 = list_files.fork(2)
list_files_1 = list_files_1.sharding_filter().shuffle()
categories = ObtainCategories(list_files_0, parse_category_fn=get_category_name_url)
loaded_files = HttpReader(list_files_1)
with_categories = AttributeCategories(loaded_files, categories, parse_category_fn=get_category_name_url)
pil_images = with_categories.map(lambda x: (x[0], stream_to_pil(x[1]), x[2]))
transformed = pil_images.map(lambda x: (transform(x[1]), x[2]))
return transformed
if __name__ == "__main__":
dataset = datasets.ImageFolder(root=IMAGES_ROOT, transform=data_transform)
dl = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=NUM_WORKERS)
items = list(dl)
assert len(items) == 6
dataset = MyImageFolder(root=IMAGES_ROOT, transform=data_transform)
dl = DataLoader(
dataset,
batch_size=BATCH_SIZE,
shuffle=False,
num_workers=NUM_WORKERS,
)
items = list(dl)
assert len(items) == 6
http_handler = http.server.SimpleHTTPRequestHandler
http_handler.log_message = lambda a, b, c, d, e: None
httpd = http.server.HTTPServer(("", 8000), http_handler)
os.chdir(IMAGES_ROOT)
thread = threading.Thread(target=httpd.serve_forever)
thread.start()
dataset = MyHTTPImageFolder(transform=data_transform)
dl = DataLoader(
dataset,
batch_size=BATCH_SIZE,
shuffle=False,
num_workers=NUM_WORKERS,
)
try:
items = list(dl)
assert len(items) == 6
finally:
httpd.shutdown()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from io import BytesIO
import requests
from torchdata.dataloader2 import DataLoader2, MultiProcessingReadingService
from torchdata.datapipes.iter import HuggingFaceHubReader
try:
import PIL
from PIL import Image
except ImportError:
PIL = None
Image = None
def has_no_watermark(x):
return x["pwatermark"] is not None and x["pwatermark"] < 0.8
def is_sfw(x):
return x["punsafe"] is not None and x["punsafe"] < 0.5
def load_image(url):
try:
r = requests.get(url, timeout=5)
return Image.open(BytesIO(r.content))
except Exception:
return None
def image_was_loaded(x):
return x is not None
# For more information about the dataset see: https://laion.ai/blog/laion-5b/
# name of the dataset to be used
NAME = "laion/laion2B-en-joined"
# As the dataset is too large to store locally we use a streaming approach
def laion2b_en(name=NAME):
dp = HuggingFaceHubReader(name)
dp = dp.filter(has_no_watermark)
dp = dp.filter(is_sfw)
dp = dp.shuffle().sharding_filter()
dp = dp.slice(index=["TEXT", "URL"])
dp = dp.map(fn=load_image, input_col="URL", output_col="IMAGE") # this needs multithreading
dp = dp.filter(filter_fn=image_was_loaded, input_col="IMAGE")
dp = dp.drop("URL")
dp = dp.batch(20)
return dp
def print_label_and_copyright(label, image):
try:
try:
exif = image.getexif()
# 0x8298 is the EXIF-tag for copyright
copyright_info = exif.get(0x8298, "no info")
except Exception:
copyright_info = "EXIF data is corrupted"
if copyright_info != "no info" and copyright_info != "EXIF data is corrupted":
print(f"image {i}: {label=}, {copyright_info=} ")
else:
print(f"image {i}: {label=}")
except PIL.UnidentifiedImageError:
print(f"image {i}: corrupted")
if __name__ == "__main__":
i = 0
dp = laion2b_en()
rs = MultiProcessingReadingService(num_workers=4)
dl = DataLoader2(dp, reading_service=rs)
for batch in dl:
for entry in batch:
print_label_and_copyright(entry["TEXT"], entry["IMAGE"])
i += 1
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os.path
import re
import torch
from torch.utils.data.datapipes.utils.decoder import imagehandler, mathandler
from torchdata.datapipes.iter import (
FileOpener,
Filter,
IterableWrapper,
IterKeyZipper,
Mapper,
RoutedDecoder,
TarArchiveLoader,
)
# Download size is ~150 MB so fake data is provided
URL = {
"images": "http://www.vision.caltech.edu/Image_Datasets/Caltech101/101_ObjectCategories.tar.gz",
"annotations": "http://www.vision.caltech.edu/Image_Datasets/Caltech101/Annotations.tar",
}
# We really shouldn't use MD5 anymore and switch to a more secure hash like SHA256 or
# SHA512
MD5 = {
"images": "b224c7392d521a49829488ab0f1120d9",
"annotations": "f83eeb1f24d99cab4eb377263132c91",
}
ROOT = os.path.join("fakedata", "caltech101")
IMAGES_NAME_PATTERN = re.compile(r"image_(?P<id>\d+)[.]jpg")
ANNS_NAME_PATTERN = re.compile(r"annotation_(?P<id>\d+)[.]mat")
ANNS_CLASS_MAP = {
"Faces_2": "Faces",
"Faces_3": "Faces_easy",
"Motorbikes_16": "Motorbikes",
"Airplanes_Side_2": "airplanes",
}
def is_ann(data):
path, _ = data
return bool(ANNS_NAME_PATTERN.match(os.path.basename(path)))
def collate_ann(data):
path, ann = data
cls = os.path.split(os.path.dirname(path))[1]
if cls in ANNS_CLASS_MAP:
cls = ANNS_CLASS_MAP[cls]
return path, {"cls": cls, "contour": torch.as_tensor(ann["obj_contour"])}
def is_not_background_image(data):
path, _ = data
return os.path.split(os.path.dirname(path))[1] != "BACKGROUND_Google"
def is_not_rogue_image(data) -> bool:
path, _ = data
return os.path.basename(path) != "RENAME2"
def extract_file_id(path, *, pattern):
match = pattern.match(os.path.basename(path))
return int(match.group("id"))
def images_key_fn(data):
path, _ = data
cls = os.path.split(os.path.dirname(path))[1]
id = extract_file_id(path, pattern=IMAGES_NAME_PATTERN)
return cls, id
def anns_key_fn(data):
path, ann = data
id = extract_file_id(path, pattern=ANNS_NAME_PATTERN)
return ann["cls"], id
def collate_sample(data):
(image_path, image), (ann_path, ann) = data
return dict(ann, image_path=image_path, image=image, ann_path=ann_path)
def Caltech101(root=ROOT):
anns_dp = IterableWrapper([os.path.join(root, "Annotations.tar")])
anns_dp = FileOpener(anns_dp, mode="b")
anns_dp = TarArchiveLoader(anns_dp)
anns_dp = Filter(anns_dp, is_ann)
anns_dp = RoutedDecoder(anns_dp, mathandler())
anns_dp = Mapper(anns_dp, collate_ann)
images_dp = IterableWrapper([os.path.join(root, "101_ObjectCategories.tar.gz")])
images_dp = FileOpener(images_dp, mode="b")
images_dp = TarArchiveLoader(images_dp)
images_dp = Filter(images_dp, is_not_background_image)
images_dp = Filter(images_dp, is_not_rogue_image)
images_dp = RoutedDecoder(images_dp, imagehandler("pil"))
dp = IterKeyZipper(images_dp, anns_dp, images_key_fn, ref_key_fn=anns_key_fn, buffer_size=None)
return Mapper(dp, collate_sample)
if __name__ == "__main__":
for _sample in Caltech101():
pass
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os.path
from torch.utils.data.datapipes.utils.decoder import imagehandler
from torchdata.datapipes.iter import FileOpener, IterableWrapper, Mapper, RoutedDecoder, TarArchiveLoader
# Download size is ~1.2 GB so fake data is provided
URL = "http://www.vision.caltech.edu/Image_Datasets/Caltech256/256_ObjectCategories.tar"
ROOT = os.path.join("datasets", "caltech256")
# We really shouldn't use MD5 anymore and switch to a more secure hash like SHA256 or
# SHA512
MD5 = "67b4f42ca05d46448c6bb8ecd2220f6d"
def collate_sample(data):
path, image = data
dir = os.path.split(os.path.dirname(path))[1]
label_str, cls = dir.split(".")
return {"path": path, "image": image, "label": int(label_str), "cls": cls}
def Caltech256(root=ROOT):
dp = IterableWrapper([os.path.join(root, "256_ObjectCategories.tar")])
dp = FileOpener(dp, mode="b")
dp = TarArchiveLoader(dp)
dp = RoutedDecoder(dp, imagehandler("pil"))
return Mapper(dp, collate_sample)
if __name__ == "__main__":
for _sample in Caltech256():
pass
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import functools
import os
from pathlib import Path
from typing import Union
import torchaudio
from torchdata.datapipes.iter import FileOpener, HttpReader, IterableWrapper
URL = "train-clean-100"
FOLDER_IN_ARCHIVE = "LibriSpeech"
BASE_URL = "http://www.openslr.org/resources/12/"
_CHECKSUMS = {
"dev-clean.tar.gz": "76f87d090650617fca0cac8f88b9416e0ebf80350acb97b343a85fa903728ab3",
"dev-other.tar.gz": "12661c48e8c3fe1de2c1caa4c3e135193bfb1811584f11f569dd12645aa84365",
"test-clean.tar.gz": "39fde525e59672dc6d1551919b1478f724438a95aa55f874b576be21967e6c23",
"test-other.tar.gz": "d09c181bba5cf717b3dee7d4d592af11a3ee3a09e08ae025c5506f6ebe961c29",
"train-clean-100.tar.gz": "d4ddd1d5a6ab303066f14971d768ee43278a5f2a0aa43dc716b0e64ecbbbf6e2",
"train-clean-360.tar.gz": "146a56496217e96c14334a160df97fffedd6e0a04e66b9c5af0d40be3c792ecf",
"train-other-500.tar.gz": "ddb22f27f96ec163645d53215559df6aa36515f26e01dd70798188350adcb6d2",
}
AUDIO_EXT = ".flac"
TXT_EXT = ".trans.txt"
def decompress_filepath_fn(file_path, root_path):
file_path = os.path.normpath(file_path)
if file_path.endswith((AUDIO_EXT, TXT_EXT)):
return os.path.join(root_path, *file_path.split(os.sep)[-4:])
else:
return os.path.join(root_path, os.path.basename(file_path))
def classify_file_fn(filepath):
if filepath.endswith(AUDIO_EXT):
return 0
if filepath.endswith(TXT_EXT):
return 1
return None
def text_split_fn(line):
fileid_text, transcript = line.strip().split(" ", 1)
return (fileid_text, transcript)
def audio_key_fn(audio_file):
audio_filename = os.path.splitext(os.path.basename(audio_file))[0]
return audio_filename
def load_librispeech_item(data):
audio_file, transcript = data
audio_filename = os.path.splitext(os.path.basename(audio_file))[0]
speaker_id, chapter_id, utterance_id = audio_filename.split("-")
# Load audio
waveform, sample_rate = torchaudio.load(audio_file)
return (
waveform,
sample_rate,
transcript,
int(speaker_id),
int(chapter_id),
int(utterance_id),
)
def LibriSpeech(root: Union[str, Path], url: str = URL, folder_in_archive: str = FOLDER_IN_ARCHIVE):
if url in [
"dev-clean",
"dev-other",
"test-clean",
"test-other",
"train-clean-100",
"train-clean-360",
"train-other-500",
]:
url = BASE_URL + url + ".tar.gz"
# Get string representation of 'root' in case Path object is passed
root = os.fspath(root)
checksum_dict = {os.path.join(root, key): value for key, value in _CHECKSUMS.items()}
url_dp = IterableWrapper([url])
# Cache tar.gz archive
cache_compressed_dp = url_dp.on_disk_cache(
filepath_fn=lambda url: os.path.join(root, os.path.basename(url)),
hash_dict=checksum_dict,
hash_type="sha256",
)
cache_compressed_dp = HttpReader(cache_compressed_dp).end_caching(same_filepath_fn=True)
# Cache decompressed archive into folder_in_archive
cache_decompressed_dp = cache_compressed_dp.on_disk_cache(
filepath_fn=lambda tar_path: os.path.join(root, folder_in_archive, tar_path.split(".")[0])
)
cache_decompressed_dp = FileOpener(cache_decompressed_dp, mode="b").load_from_tar()
cache_decompressed_dp = cache_decompressed_dp.end_caching(
filepath_fn=functools.partial(decompress_filepath_fn, root_path=os.path.join(root, folder_in_archive)),
)
audio_dp, txt_dp = cache_decompressed_dp.demux(2, classify_file_fn, drop_none=True, buffer_size=-1)
txt_dp = FileOpener(txt_dp, mode="t").readlines(return_path=False).map(text_split_fn)
transcript_map_dp = txt_dp.to_map_datapipe()
audio_transcript_dp = audio_dp.zip_with_map(transcript_map_dp, key_fn=audio_key_fn)
return audio_transcript_dp.map(load_librispeech_item)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
from functools import partial
from torchdata.datapipes.iter import FileOpener, HttpReader, IterableWrapper, IterDataPipe
from .utils import _add_docstring_header, _create_dataset_directory, _wrap_split_argument
URL = {
"train": "https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json",
"dev": "https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json",
}
MD5 = {
"train": "981b29407e0affa3b1b156f72073b945",
"dev": "3e85deb501d4e538b6bc56f786231552",
}
NUM_LINES = {
"train": 87599,
"dev": 10570,
}
DATASET_NAME = "SQuAD1"
def _path_fn(root, path):
return os.path.join(root, os.path.basename(path))
class _ParseSQuADQAData(IterDataPipe):
def __init__(self, source_datapipe) -> None:
self.source_datapipe = source_datapipe
def __iter__(self):
for _, stream in self.source_datapipe:
raw_json_data = stream["data"]
for layer1 in raw_json_data:
for layer2 in layer1["paragraphs"]:
for layer3 in layer2["qas"]:
_context, _question = layer2["context"], layer3["question"]
_answers = [item["text"] for item in layer3["answers"]]
_answer_start = [item["answer_start"] for item in layer3["answers"]]
if len(_answers) == 0:
_answers = [""]
_answer_start = [-1]
yield (_context, _question, _answers, _answer_start)
@_add_docstring_header(num_lines=NUM_LINES)
@_create_dataset_directory(dataset_name=DATASET_NAME)
@_wrap_split_argument(("train", "dev"))
def SQuAD1(root, split):
"""Demonstrates use case when more complex processing is needed on data-stream
Here we process dictionary returned by standard JSON reader and write custom
datapipe to orchestrates data samples for Q&A use-case
"""
url_dp = IterableWrapper([URL[split]])
# cache data on-disk with sanity check
cache_dp = url_dp.on_disk_cache(
filepath_fn=partial(_path_fn, root),
hash_dict={_path_fn(root, URL[split]): MD5[split]},
hash_type="md5",
)
cache_dp = HttpReader(cache_dp).end_caching(mode="wb", same_filepath_fn=True)
cache_dp = FileOpener(cache_dp, mode="b")
# stack custom data pipe on top of JSON reader to orchestrate data samples for Q&A dataset
return _ParseSQuADQAData(cache_dp.parse_json_files())
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
from functools import partial
from pathlib import Path
from torchdata.datapipes.iter import FileOpener, HttpReader, IterableWrapper
from .utils import _add_docstring_header, _create_dataset_directory, _wrap_split_argument
URL = "http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz"
MD5 = "7c2ac02c03563afcf9b574c7e56c153a"
NUM_LINES = {
"train": 25000,
"test": 25000,
}
_PATH = "aclImdb_v1.tar.gz"
DATASET_NAME = "IMDB"
def _path_fn(root, path):
return os.path.join(root, os.path.basename(path))
def _filter_fn(split, t):
return Path(t[0]).parts[-3] == split and Path(t[0]).parts[-2] in ["pos", "neg"]
def _file_to_sample(t):
return Path(t[0]).parts[-2], t[1].read().decode("utf-8")
@_add_docstring_header(num_lines=NUM_LINES, num_classes=2)
@_create_dataset_directory(dataset_name=DATASET_NAME)
@_wrap_split_argument(("train", "test"))
def IMDB(root, split):
"""Demonstrates complex use case where each sample is stored in separate file and compressed in tar file
Here we show some fancy filtering and mapping operations.
Filtering is needed to know which files belong to train/test and neg/pos label
Mapping is needed to yield proper data samples by extracting label from file name
and reading data from file
"""
url_dp = IterableWrapper([URL])
# cache data on-disk
cache_dp = url_dp.on_disk_cache(
filepath_fn=partial(_path_fn, root),
hash_dict={_path_fn(root, URL): MD5},
hash_type="md5",
)
cache_dp = HttpReader(cache_dp).end_caching(mode="wb", same_filepath_fn=True)
cache_dp = FileOpener(cache_dp, mode="b")
# stack TAR extractor on top of load files data pipe
extracted_files = cache_dp.load_from_tar()
# filter the files as applicable to create dataset for given split (train or test)
filter_files = extracted_files.filter(partial(_filter_fn, split))
# map the file to yield proper data samples
return filter_files.map(_file_to_sample)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# The following utility functions are copied from torchtext
# https://github.com/pytorch/text/blob/main/torchtext/data/datasets_utils.py
import functools
import inspect
import os
def _check_default_set(split, target_select, dataset_name):
# Check whether given object split is either a tuple of strings or string
# and represents a valid selection of options given by the tuple of strings
# target_select.
if isinstance(split, str):
split = (split,)
if isinstance(target_select, str):
target_select = (target_select,)
if not isinstance(split, tuple):
raise ValueError("Internal error: Expected split to be of type tuple.")
if not set(split).issubset(set(target_select)):
raise TypeError(
"Given selection {} of splits is not supported for dataset {}. Please choose from {}.".format(
split, dataset_name, target_select
)
)
return split
def _wrap_datasets(datasets, split):
# Wrap return value for _setup_datasets functions to support singular values instead
# of tuples when split is a string.
if isinstance(split, str):
if len(datasets) != 1:
raise ValueError("Internal error: Expected number of datasets is not 1.")
return datasets[0]
return datasets
def _dataset_docstring_header(fn, num_lines=None, num_classes=None):
"""
Returns docstring for a dataset based on function arguments.
Assumes function signature of form (root='.data', split=<some tuple of strings>, **kwargs)
"""
argspec = inspect.getfullargspec(fn)
if not (argspec.args[0] == "root" and argspec.args[1] == "split"):
raise ValueError(f"Internal Error: Given function {fn} did not adhere to standard signature.")
default_split = argspec.defaults[1]
if not (isinstance(default_split, tuple) or isinstance(default_split, str)):
raise ValueError(f"default_split type expected to be of string or tuple but got {type(default_split)}")
header_s = fn.__name__ + " dataset\n"
if isinstance(default_split, tuple):
header_s += "\nSeparately returns the {} split".format("/".join(default_split))
if isinstance(default_split, str):
header_s += f"\nOnly returns the {default_split} split"
if num_lines is not None:
header_s += "\n\nNumber of lines per split:"
for k, v in num_lines.items():
header_s += f"\n {k}: {v}\n"
if num_classes is not None:
header_s += "\n\nNumber of classes"
header_s += f"\n {num_classes}\n"
args_s = "\nArgs:"
args_s += "\n root: Directory where the datasets are saved."
args_s += "\n Default: .data"
if isinstance(default_split, tuple):
args_s += "\n split: split or splits to be returned. Can be a string or tuple of strings."
args_s += "\n Default: {}" "".format(str(default_split))
if isinstance(default_split, str):
args_s += "\n split: Only {default_split} is available."
args_s += "\n Default: {default_split}.format(default_split=default_split)"
return "\n".join([header_s, args_s]) + "\n"
def _add_docstring_header(docstring=None, num_lines=None, num_classes=None):
def docstring_decorator(fn):
old_doc = fn.__doc__
fn.__doc__ = _dataset_docstring_header(fn, num_lines, num_classes)
if docstring is not None:
fn.__doc__ += docstring
if old_doc is not None:
fn.__doc__ += old_doc
return fn
return docstring_decorator
def _wrap_split_argument_with_fn(fn, splits):
"""
Wraps given function of specific signature to extend behavior of split
to support individual strings. The given function is expected to have a split
kwarg that accepts tuples of strings, e.g. ('train', 'valid') and the returned
function will have a split argument that also accepts strings, e.g. 'train', which
are then turned single entry tuples. Furthermore, the return value of the wrapped
function is unpacked if split is only a single string to enable behavior such as
train = AG_NEWS(split='train')
train, valid = AG_NEWS(split=('train', 'valid'))
"""
argspec = inspect.getfullargspec(fn)
if not (
argspec.args[0] == "root"
and argspec.args[1] == "split"
and argspec.varargs is None
and argspec.varkw is None
and len(argspec.kwonlyargs) == 0
and len(argspec.annotations) == 0
):
raise ValueError(f"Internal Error: Given function {fn} did not adhere to standard signature.")
@functools.wraps(fn)
def new_fn(root=os.path.expanduser("~/.torchtext/cache"), split=splits, **kwargs):
result = []
for item in _check_default_set(split, splits, fn.__name__):
result.append(fn(root, item, **kwargs))
return _wrap_datasets(tuple(result), split)
new_sig = inspect.signature(new_fn)
new_sig_params = new_sig.parameters
new_params = []
new_params.append(new_sig_params["root"].replace(default=".data"))
new_params.append(new_sig_params["split"].replace(default=splits))
new_params += [entry[1] for entry in list(new_sig_params.items())[2:]]
new_sig = new_sig.replace(parameters=tuple(new_params))
new_fn.__signature__ = new_sig
return new_fn
def _wrap_split_argument(splits):
def new_fn(fn):
return _wrap_split_argument_with_fn(fn, splits)
return new_fn
def _create_dataset_directory(dataset_name):
def decorator(func):
argspec = inspect.getfullargspec(func)
if not (
argspec.args[0] == "root"
and argspec.args[1] == "split"
and argspec.varargs is None
and argspec.varkw is None
and len(argspec.kwonlyargs) == 0
and len(argspec.annotations) == 0
):
raise ValueError(f"Internal Error: Given function {func} did not adhere to standard signature.")
@functools.wraps(func)
def wrapper(root=os.path.expanduser("~/.torchtext/cache"), *args, **kwargs):
new_root = os.path.join(root, dataset_name)
if not os.path.exists(new_root):
os.makedirs(new_root)
return func(root=new_root, *args, **kwargs)
return wrapper
return decorator
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
from functools import partial
from torchdata.datapipes.iter import FileOpener, GDriveReader, IterableWrapper
from utils import _add_docstring_header, _create_dataset_directory, _wrap_split_argument
# URL to the target file that we will be downloading
URL = "https://drive.google.com/uc?export=download&id=0Bz8a_Dbh9QhbaW12WVVZS2drcnM"
# Expected MD5 Hash of the target file, which will be later used to verify that the file we downloaded is authentic
MD5 = "fe39f8b653cada45afd5792e0f0e8f9b"
NUM_LINES = {
"train": 3600000,
"test": 400000,
}
# Path/name where we will be caching the downloaded file
_PATH = "amazon_review_polarity_csv.tar.gz"
# Mapping dataset type (train/test) to the corresponding expected file names.
_EXTRACTED_FILES = {
"train": os.path.join("amazon_review_polarity_csv", "train.csv"),
"test": os.path.join("amazon_review_polarity_csv", "test.csv"),
}
DATASET_NAME = "AmazonReviewPolarity"
def _path_fn(root, _=None):
return os.path.join(root, _PATH)
def _cache_path_fn(root, split, _=None):
return os.path.join(root, _EXTRACTED_FILES[split])
def _filter_fn(split, fname_and_stream):
return _EXTRACTED_FILES[split] in fname_and_stream[0]
def _process_tuple(t):
return int(t[0]), " ".join(t[1:])
@_add_docstring_header(num_lines=NUM_LINES, num_classes=2)
@_create_dataset_directory(dataset_name=DATASET_NAME)
@_wrap_split_argument(("train", "test"))
def AmazonReviewPolarity(root, split):
"""Demonstrating caching, extraction and sanity check pipelines."""
# Wrapping the URL into a IterDataPipe
url_dp = IterableWrapper([URL])
# `.on_disk_cache` is the functional form of `OnDiskCacheHolder`, which caches the results from the
# subsequent DataPipe operations (until `.end_caching`) onto the disk to the path as specified by `filepath_fn`.
# In addition, since the optional argument `hash_dict` is given, the DataPipe will also check the hashes of
# the files before saving them. `.on_disk_cache` merely indicates that caching will take place, but the
# content of the previous DataPipe is unchanged. Therefore, `cache_compressed_dp` still contains URL(s).
cache_compressed_dp = url_dp.on_disk_cache(
filepath_fn=partial(_path_fn, root), hash_dict={_path_fn(root): MD5}, hash_type="md5"
)
# `GDriveReader` takes in URLs to GDrives files, and yields a tuple of file name and IO stream.
cache_compressed_dp = GDriveReader(cache_compressed_dp)
# `.end_caching` saves the previous DataPipe's outputs onto the disk. In this case,
# the results from GDriveReader (i.e. the downloaded compressed archive) will be saved onto the disk.
# Upon saving the results, the DataPipe returns the paths to the cached files.
cache_compressed_dp = cache_compressed_dp.end_caching(mode="wb", same_filepath_fn=True)
# Again, `.on_disk_cache` is invoked again here and the subsequent DataPipe operations (until `.end_caching`)
# will be saved onto the disk. At this point, `cache_decompressed_dp` contains paths to the cached files.
cache_decompressed_dp = cache_compressed_dp.on_disk_cache(filepath_fn=partial(_cache_path_fn, root, split))
# Opens the cache files using `FileOpener`
cache_decompressed_dp = FileOpener(cache_decompressed_dp, mode="b")
# Loads the content of the TAR archive file, yielding a tuple of file names and streams of the content.
cache_decompressed_dp = cache_decompressed_dp.load_from_tar()
# Filters for specific file based on the file name from the previous DataPipe (either "train.csv" or "test.csv").
cache_decompressed_dp = cache_decompressed_dp.filter(partial(_filter_fn, split))
# ".end_caching" saves the decompressed file onto disks and yields the path to the file.
cache_decompressed_dp = cache_decompressed_dp.end_caching(mode="wb", same_filepath_fn=True)
# Opens the decompressed file.
data_dp = FileOpener(cache_decompressed_dp, mode="b")
# Finally, this parses content of the decompressed CSV file and returns the result line by line.
return data_dp.parse_csv().map(_process_tuple)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.