python_code
stringlengths
0
229k
#!/usr/bin/env python3 # Welcome to the PyTorch Captum setup.py. # # Environment variables for feature toggles: # # BUILD_INSIGHTS # enables Captum Insights build via yarn # import os import re import subprocess import sys from setuptools import find_packages, setup REQUIRED_MAJOR = 3 REQUIRED_MINOR = 6 # Check for python version if sys.version_info < (REQUIRED_MAJOR, REQUIRED_MINOR): error = ( "Your version of python ({major}.{minor}) is too old. You need " "python >= {required_major}.{required_minor}." ).format( major=sys.version_info.major, minor=sys.version_info.minor, required_minor=REQUIRED_MINOR, required_major=REQUIRED_MAJOR, ) sys.exit(error) # Allow for environment variable checks def check_env_flag(name, default=""): return os.getenv(name, default).upper() in ["ON", "1", "YES", "TRUE", "Y"] BUILD_INSIGHTS = check_env_flag("BUILD_INSIGHTS") VERBOSE_SCRIPT = True for arg in sys.argv: if arg == "-q" or arg == "--quiet": VERBOSE_SCRIPT = False def report(*args): if VERBOSE_SCRIPT: print(*args) else: pass INSIGHTS_REQUIRES = ["flask", "ipython", "ipywidgets", "jupyter", "flask-compress"] INSIGHTS_FILE_SUBDIRS = [ "insights/attr_vis/frontend/build", "insights/attr_vis/models", "insights/attr_vis/widget/static", ] TUTORIALS_REQUIRES = INSIGHTS_REQUIRES + ["torchtext", "torchvision"] TEST_REQUIRES = ["pytest", "pytest-cov", "parameterized"] DEV_REQUIRES = ( INSIGHTS_REQUIRES + TEST_REQUIRES + [ "black==22.3.0", "flake8", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-katex", "mypy>=0.760", "usort==1.0.2", "ufmt", "scikit-learn", "annoy", ] ) # get version string from module with open(os.path.join(os.path.dirname(__file__), "captum/__init__.py"), "r") as f: version = re.search(r"__version__ = ['\"]([^'\"]*)['\"]", f.read(), re.M).group(1) report("-- Building version " + version) # read in README.md as the long description with open("README.md", "r") as fh: long_description = fh.read() # optionally build Captum Insights via yarn def build_insights(): report("-- Building Captum Insights") command = "./scripts/build_insights.sh" report("Running: " + command) subprocess.check_call(command) # explore paths under root and subdirs to gather package files def get_package_files(root, subdirs): paths = [] for subroot in subdirs: paths.append(os.path.join(subroot, "*")) for path, dirs, _ in os.walk(os.path.join(root, subroot)): for d in dirs: paths.append(os.path.join(path, d, "*")[len(root) + 1 :]) return paths if __name__ == "__main__": if BUILD_INSIGHTS: build_insights() package_files = get_package_files("captum", INSIGHTS_FILE_SUBDIRS) setup( name="captum", version=version, description="Model interpretability for PyTorch", author="PyTorch Team", license="BSD-3", url="https://captum.ai", project_urls={ "Documentation": "https://captum.ai", "Source": "https://github.com/pytorch/captum", "conda": "https://anaconda.org/pytorch/captum", }, keywords=[ "Model Interpretability", "Model Understanding", "Feature Importance", "Neuron Importance", "PyTorch", ], classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Science/Research", "License :: OSI Approved :: BSD License", "Programming Language :: Python :: 3 :: Only", "Topic :: Scientific/Engineering", ], long_description=long_description, long_description_content_type="text/markdown", python_requires=">=3.6", install_requires=["matplotlib", "numpy", "torch>=1.6"], packages=find_packages(exclude=("tests", "tests.*")), extras_require={ "dev": DEV_REQUIRES, "insights": INSIGHTS_REQUIRES, "test": TEST_REQUIRES, "tutorials": TUTORIALS_REQUIRES, }, package_data={"captum": package_files}, data_files=[ ( "share/jupyter/nbextensions/jupyter-captum-insights", [ "captum/insights/attr_vis/frontend/widget/src/extension.js", "captum/insights/attr_vis/frontend/widget/src/index.js", ], ), ( "etc/jupyter/nbconfig/notebook.d", ["captum/insights/attr_vis/widget/jupyter-captum-insights.json"], ), ], )
#!/usr/bin/env python3 import typing from typing import Any, Callable, cast, List, Tuple, Union import torch from captum._utils.typing import BaselineType, TargetType, TensorOrTupleOfTensorsGeneric from captum.attr import ( DeepLift, GradientShap, GuidedBackprop, IntegratedGradients, Saliency, ) from captum.metrics import sensitivity_max from captum.metrics._core.sensitivity import default_perturb_func from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import ( BasicModel2, BasicModel4_MultiArgs, BasicModel_ConvNet_One_Conv, BasicModel_MultiLayer, ) from torch import Tensor @typing.overload def _perturb_func(inputs: Tensor) -> Tensor: ... @typing.overload def _perturb_func(inputs: Tuple[Tensor, ...]) -> Tuple[Tensor, ...]: ... def _perturb_func( inputs: TensorOrTupleOfTensorsGeneric, ) -> Union[Tensor, Tuple[Tensor, ...]]: def perturb_ratio(input): return ( torch.arange(-torch.numel(input[0]) // 2, torch.numel(input[0]) // 2) .view(input[0].shape) .float() / 100 ) input2 = None if isinstance(inputs, tuple): input1 = inputs[0] input2 = inputs[1] else: input1 = cast(Tensor, inputs) perturbed_input1 = input1 + perturb_ratio(input1) if input2 is None: return perturbed_input1 return perturbed_input1, input2 + perturb_ratio(input2) class Test(BaseTest): def test_basic_sensitivity_max_single(self) -> None: model = BasicModel2() sa = Saliency(model) input1 = torch.tensor([3.0]) input2 = torch.tensor([1.0]) self.sensitivity_max_assert( sa.attribute, (input1, input2), torch.zeros(1), perturb_func=default_perturb_func, ) def test_basic_sensitivity_max_multiple(self) -> None: model = BasicModel2() sa = Saliency(model) input1 = torch.tensor([3.0] * 20) input2 = torch.tensor([1.0] * 20) self.sensitivity_max_assert( sa.attribute, (input1, input2), torch.zeros(20), max_examples_per_batch=21 ) self.sensitivity_max_assert( sa.attribute, (input1, input2), torch.zeros(20), max_examples_per_batch=60 ) def test_basic_sensitivity_max_multiple_gradshap(self) -> None: model = BasicModel2() gs = GradientShap(model) input1 = torch.tensor([0.0] * 5) input2 = torch.tensor([0.0] * 5) baseline1 = torch.arange(0, 2).float() / 1000 baseline2 = torch.arange(0, 2).float() / 1000 self.sensitivity_max_assert( gs.attribute, (input1, input2), torch.zeros(5), baselines=(baseline1, baseline2), max_examples_per_batch=2, ) self.sensitivity_max_assert( gs.attribute, (input1, input2), torch.zeros(5), baselines=(baseline1, baseline2), max_examples_per_batch=20, ) def test_convnet_multi_target(self) -> None: r""" Another test with Saliency, local sensitivity and more complex model with higher dimensional input. """ model = BasicModel_ConvNet_One_Conv() sa = Saliency(model) input = torch.stack([torch.arange(1, 17).float()] * 20, dim=0).view(20, 1, 4, 4) self.sensitivity_max_assert( sa.attribute, input, torch.zeros(20), target=torch.tensor([1] * 20), n_perturb_samples=10, max_examples_per_batch=40, ) def test_convnet_multi_target_and_default_pert_func(self) -> None: r""" Similar to previous example but here we also test default perturbation function. """ model = BasicModel_ConvNet_One_Conv() gbp = GuidedBackprop(model) input = torch.stack([torch.arange(1, 17).float()] * 20, dim=0).view(20, 1, 4, 4) sens1 = self.sensitivity_max_assert( gbp.attribute, input, torch.zeros(20), perturb_func=default_perturb_func, target=torch.tensor([1] * 20), n_perturb_samples=10, max_examples_per_batch=40, ) sens2 = self.sensitivity_max_assert( gbp.attribute, input, torch.zeros(20), perturb_func=default_perturb_func, target=torch.tensor([1] * 20), n_perturb_samples=10, max_examples_per_batch=5, ) assertTensorAlmostEqual(self, sens1, sens2) def test_sensitivity_max_multi_dim(self) -> None: model = BasicModel_MultiLayer() input = torch.arange(1.0, 13.0).view(4, 3) additional_forward_args = (None, True) targets: List = [(0, 1, 1), (0, 1, 1), (1, 1, 1), (0, 1, 1)] ig = IntegratedGradients(model) self.sensitivity_max_assert( ig.attribute, input, torch.tensor([0.006, 0.01, 0.001, 0.008]), n_perturb_samples=1, max_examples_per_batch=4, perturb_func=_perturb_func, target=targets, additional_forward_args=additional_forward_args, ) def test_sensitivity_max_multi_dim_batching(self) -> None: model = BasicModel_MultiLayer() input = torch.arange(1.0, 16.0).view(5, 3) additional_forward_args = (torch.ones(5, 3).float(), False) targets: List = [0, 0, 0, 0, 0] sa = Saliency(model) sensitivity1 = self.sensitivity_max_assert( sa.attribute, input, torch.zeros(5), n_perturb_samples=1, max_examples_per_batch=None, perturb_func=_perturb_func, target=targets, additional_forward_args=additional_forward_args, ) sensitivity2 = self.sensitivity_max_assert( sa.attribute, input, torch.zeros(5), n_perturb_samples=10, max_examples_per_batch=10, perturb_func=_perturb_func, target=targets, additional_forward_args=additional_forward_args, ) assertTensorAlmostEqual(self, sensitivity1, sensitivity2, 0.0) def test_sensitivity_additional_forward_args_multi_args(self) -> None: model = BasicModel4_MultiArgs() input1 = torch.tensor([[1.5, 2.0, 3.3]]) input2 = torch.tensor([[3.0, 3.5, 2.2]]) args = torch.tensor([[1.0, 3.0, 4.0]]) ig = DeepLift(model) sensitivity1 = self.sensitivity_max_assert( ig.attribute, (input1, input2), torch.zeros(1), additional_forward_args=args, n_perturb_samples=1, max_examples_per_batch=1, perturb_func=_perturb_func, ) sensitivity2 = self.sensitivity_max_assert( ig.attribute, (input1, input2), torch.zeros(1), additional_forward_args=args, n_perturb_samples=4, max_examples_per_batch=2, perturb_func=_perturb_func, ) assertTensorAlmostEqual(self, sensitivity1, sensitivity2, 0.0) def test_classification_sensitivity_tpl_target_w_baseline(self) -> None: model = BasicModel_MultiLayer() input = torch.arange(1.0, 13.0).view(4, 3) baseline = torch.ones(4, 3) additional_forward_args = (torch.arange(1, 13).view(4, 3).float(), True) targets: List = [(0, 1, 1), (0, 1, 1), (1, 1, 1), (0, 1, 1)] dl = DeepLift(model) sens1 = self.sensitivity_max_assert( dl.attribute, input, torch.tensor([0.01, 0.003, 0.001, 0.001]), additional_forward_args=additional_forward_args, baselines=baseline, target=targets, n_perturb_samples=10, perturb_func=_perturb_func, ) sens2 = self.sensitivity_max_assert( dl.attribute, input, torch.zeros(4), additional_forward_args=additional_forward_args, baselines=baseline, target=targets, n_perturb_samples=10, perturb_func=_perturb_func, max_examples_per_batch=30, ) assertTensorAlmostEqual(self, sens1, sens2) def sensitivity_max_assert( self, expl_func: Callable, inputs: TensorOrTupleOfTensorsGeneric, expected_sensitivity: Tensor, perturb_func: Callable = _perturb_func, n_perturb_samples: int = 5, max_examples_per_batch: int = None, baselines: BaselineType = None, target: TargetType = None, additional_forward_args: Any = None, ) -> Tensor: if baselines is None: sens = sensitivity_max( expl_func, inputs, perturb_func=perturb_func, target=target, additional_forward_args=additional_forward_args, n_perturb_samples=n_perturb_samples, max_examples_per_batch=max_examples_per_batch, ) else: sens = sensitivity_max( expl_func, inputs, perturb_func=perturb_func, baselines=baselines, target=target, additional_forward_args=additional_forward_args, n_perturb_samples=n_perturb_samples, max_examples_per_batch=max_examples_per_batch, ) assertTensorAlmostEqual(self, sens, expected_sensitivity, 0.05) return sens
#!/usr/bin/env python3 import typing from typing import Any, Callable, cast, List, Tuple, Union import torch from captum._utils.typing import BaselineType, TargetType, TensorOrTupleOfTensorsGeneric from captum.attr import ( Attribution, DeepLift, FeatureAblation, IntegratedGradients, Saliency, ) from captum.metrics import infidelity, infidelity_perturb_func_decorator from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import ( BasicModel2, BasicModel4_MultiArgs, BasicModel_ConvNet_One_Conv, BasicModel_MultiLayer, ) from torch import Tensor from torch.nn import Module @infidelity_perturb_func_decorator(False) def _local_perturb_func_default( inputs: TensorOrTupleOfTensorsGeneric, ) -> TensorOrTupleOfTensorsGeneric: return _local_perturb_func(inputs)[1] @typing.overload def _local_perturb_func(inputs: Tensor) -> Tuple[Tensor, Tensor]: ... @typing.overload def _local_perturb_func( inputs: Tuple[Tensor, ...] ) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]]: ... def _local_perturb_func( inputs: TensorOrTupleOfTensorsGeneric, ) -> Tuple[Union[Tensor, Tuple[Tensor, ...]], Union[Tensor, Tuple[Tensor, ...]]]: input2 = None if isinstance(inputs, tuple): input1 = inputs[0] input2 = inputs[1] else: input1 = cast(Tensor, inputs) perturb1 = 0.0009 * torch.ones_like(input1) if input2 is None: return perturb1, input1 - perturb1 perturb2 = 0.0121 * torch.ones_like(input2) return (perturb1, perturb2), (input1 - perturb1, input2 - perturb2) @infidelity_perturb_func_decorator(True) def _global_perturb_func1_default( inputs: TensorOrTupleOfTensorsGeneric, ) -> TensorOrTupleOfTensorsGeneric: return _global_perturb_func1(inputs)[1] @typing.overload def _global_perturb_func1(inputs: Tensor) -> Tuple[Tensor, Tensor]: ... @typing.overload def _global_perturb_func1( inputs: Tuple[Tensor, ...] ) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]]: ... # sensitivity-N, N = #input features def _global_perturb_func1( inputs: TensorOrTupleOfTensorsGeneric, ) -> Tuple[Union[Tensor, Tuple[Tensor, ...]], Union[Tensor, Tuple[Tensor, ...]]]: input2 = None if isinstance(inputs, tuple): input1 = inputs[0] input2 = inputs[1] else: input1 = cast(Tensor, inputs) pert1 = torch.ones(input1.shape) if input2 is None: return pert1, torch.zeros(input1.shape) pert2 = torch.ones(input2.shape) return (pert1, pert2), (torch.zeros(input1.shape), torch.zeros(input2.shape)) class Test(BaseTest): def test_basic_infidelity_single(self) -> None: input1 = torch.tensor([3.0]) input2 = torch.tensor([1.0]) inputs = (input1, input2) expected = torch.zeros(1) self.basic_model_assert(BasicModel2(), inputs, expected) def test_basic_infidelity_multiple(self) -> None: input1 = torch.tensor([3.0] * 3) input2 = torch.tensor([1.0] * 3) inputs = (input1, input2) expected = torch.zeros(3) infid = self.basic_model_assert(BasicModel2(), inputs, expected) infid_w_common_func = self.basic_model_assert( BasicModel2(), inputs, expected, perturb_func=_local_perturb_func_default, multiply_by_inputs=False, ) assertTensorAlmostEqual(self, infid, infid_w_common_func) def test_basic_infidelity_multiple_with_batching(self) -> None: input1 = torch.tensor([3.0] * 20) input2 = torch.tensor([1.0] * 20) expected = torch.zeros(20) infid1 = self.basic_model_assert( BasicModel2(), (input1, input2), expected, n_perturb_samples=5, max_batch_size=21, ) infid2 = self.basic_model_assert( BasicModel2(), (input1, input2), expected, n_perturb_samples=5, max_batch_size=60, ) assertTensorAlmostEqual(self, infid1, infid2, delta=0.01, mode="max") def test_basic_infidelity_additional_forward_args1(self) -> None: model = BasicModel4_MultiArgs() input1 = torch.tensor([[1.5, 2.0, 3.3]]) input2 = torch.tensor([[3.0, 3.5, 2.2]]) args = torch.tensor([[1.0, 3.0, 4.0]]) ig = IntegratedGradients(model) infidelity1 = self.basic_model_global_assert( ig, model, (input1, input2), torch.zeros(1), additional_args=args, n_perturb_samples=1, max_batch_size=1, perturb_func=_global_perturb_func1, ) infidelity2 = self.basic_model_global_assert( ig, model, (input1, input2), torch.zeros(1), additional_args=args, n_perturb_samples=5, max_batch_size=2, perturb_func=_global_perturb_func1, ) infidelity2_w_custom_pert_func = self.basic_model_global_assert( ig, model, (input1, input2), torch.zeros(1), additional_args=args, n_perturb_samples=5, max_batch_size=2, perturb_func=_global_perturb_func1_default, ) assertTensorAlmostEqual(self, infidelity1, infidelity2, 0.0) assertTensorAlmostEqual(self, infidelity2_w_custom_pert_func, infidelity2, 0.0) def test_classification_infidelity_convnet_multi_targets(self) -> None: model = BasicModel_ConvNet_One_Conv() dl = DeepLift(model) input = torch.stack([torch.arange(1, 17).float()] * 20, dim=0).view(20, 1, 4, 4) self.infidelity_assert( model, dl.attribute(input, target=torch.tensor([1] * 20)) / input, input, torch.zeros(20), target=torch.tensor([1] * 20), multi_input=False, n_perturb_samples=500, max_batch_size=120, ) def test_classification_infidelity_tpl_target(self) -> None: model = BasicModel_MultiLayer() input = torch.arange(1.0, 13.0).view(4, 3) additional_forward_args = (torch.arange(1, 13).view(4, 3).float(), True) targets: List = [(0, 1, 1), (0, 1, 1), (1, 1, 1), (0, 1, 1)] sa = Saliency(model) infid1 = self.infidelity_assert( model, sa.attribute( input, target=targets, additional_forward_args=additional_forward_args ), input, torch.zeros(4), additional_args=additional_forward_args, target=targets, multi_input=False, ) infid2 = self.infidelity_assert( model, sa.attribute( input, target=targets, additional_forward_args=additional_forward_args ), input, torch.zeros(4), additional_args=additional_forward_args, target=targets, max_batch_size=2, multi_input=False, ) assertTensorAlmostEqual(self, infid1, infid2, delta=1e-05, mode="max") def test_classification_infidelity_tpl_target_w_baseline(self) -> None: model = BasicModel_MultiLayer() input = torch.arange(1.0, 13.0).view(4, 3) baseline = torch.ones(4, 3) additional_forward_args = (torch.arange(1, 13).view(4, 3).float(), True) targets: List = [(0, 1, 1), (0, 1, 1), (1, 1, 1), (0, 1, 1)] ig = IntegratedGradients(model) def perturbed_func2(inputs, baselines): return torch.ones(baselines.shape), baselines @infidelity_perturb_func_decorator(True) def perturbed_func3(inputs, baselines): return baselines attr, delta = ig.attribute( input, target=targets, additional_forward_args=additional_forward_args, baselines=baseline, return_convergence_delta=True, ) infid = self.infidelity_assert( model, attr, input, torch.tensor([0.10686, 0.0, 0.0, 0.0]), additional_args=additional_forward_args, baselines=baseline, target=targets, multi_input=False, n_perturb_samples=3, perturb_func=perturbed_func3, ) infid2 = self.infidelity_assert( model, attr, input, torch.tensor([0.10686, 0.0, 0.0, 0.0]), additional_args=additional_forward_args, baselines=baseline, target=targets, multi_input=False, n_perturb_samples=3, perturb_func=perturbed_func2, ) assertTensorAlmostEqual(self, infid, delta * delta) assertTensorAlmostEqual(self, infid, infid2) def test_basic_infidelity_multiple_with_normalize(self) -> None: input1 = torch.tensor([3.0] * 3) input2 = torch.tensor([1.0] * 3) inputs = (input1, input2) expected = torch.zeros(3) model = BasicModel2() ig = IntegratedGradients(model) attrs = ig.attribute(inputs) scaled_attrs = tuple(attr * 100 for attr in attrs) infid = self.infidelity_assert(model, attrs, inputs, expected, normalize=True) scaled_infid = self.infidelity_assert( model, scaled_attrs, inputs, expected, normalize=True, ) # scaling attr should not change normalized infidelity assertTensorAlmostEqual(self, infid, scaled_infid) def test_sensitivity_n_ig(self) -> None: model = BasicModel_MultiLayer() ig = IntegratedGradients(model) self.basic_multilayer_sensitivity_n(ig, model) def test_sensitivity_n_fa(self) -> None: model = BasicModel_MultiLayer() fa = FeatureAblation(model) self.basic_multilayer_sensitivity_n(fa, model) def basic_multilayer_sensitivity_n( self, attr_algo: Attribution, model: Module ) -> None: # sensitivity-2 def _global_perturb_func2(input): pert = torch.tensor([[0, 1, 1], [1, 1, 0], [1, 0, 1]]).float() return pert, (1 - pert) * input # sensitivity-1 def _global_perturb_func3(input): pert = torch.tensor([[0, 0, 1], [1, 0, 0], [0, 1, 0]]).float() return pert, (1 - pert) * input @infidelity_perturb_func_decorator(True) def _global_perturb_func3_custom(input): return _global_perturb_func3(input)[1] input = torch.tensor([[1.0, 2.5, 3.3]]) # infidelity for sensitivity-1 infid = self.basic_model_global_assert( attr_algo, model, input, torch.zeros(1), additional_args=None, target=0, n_perturb_samples=3, max_batch_size=None, perturb_func=_global_perturb_func3, ) infid_w_default = self.basic_model_global_assert( attr_algo, model, input, torch.zeros(1), additional_args=None, target=0, n_perturb_samples=3, max_batch_size=None, perturb_func=_global_perturb_func3_custom, ) assertTensorAlmostEqual(self, infid, infid_w_default) # infidelity for sensitivity-2 self.basic_model_global_assert( attr_algo, model, input, torch.zeros(1), additional_args=None, target=0, n_perturb_samples=3, max_batch_size=None, perturb_func=_global_perturb_func2, ) # infidelity for sensitivity-3 self.basic_model_global_assert( attr_algo, model, input, torch.zeros(1), additional_args=None, target=0, n_perturb_samples=3, max_batch_size=None, perturb_func=_global_perturb_func1, ) def basic_model_assert( self, model: Module, inputs: TensorOrTupleOfTensorsGeneric, expected: Tensor, n_perturb_samples: int = 10, max_batch_size: int = None, perturb_func: Callable = _local_perturb_func, multiply_by_inputs: bool = False, normalize: bool = False, ) -> Tensor: ig = IntegratedGradients(model) if multiply_by_inputs: attrs = cast( TensorOrTupleOfTensorsGeneric, tuple( attr / input for input, attr in zip(inputs, ig.attribute(inputs)) ), ) else: attrs = ig.attribute(inputs) return self.infidelity_assert( model, attrs, inputs, expected, n_perturb_samples=n_perturb_samples, max_batch_size=max_batch_size, perturb_func=perturb_func, normalize=normalize, ) def basic_model_global_assert( self, attr_algo: Attribution, model: Module, inputs: TensorOrTupleOfTensorsGeneric, expected: Tensor, additional_args: Any = None, target: TargetType = None, n_perturb_samples: int = 10, max_batch_size: int = None, perturb_func: Callable = _global_perturb_func1, normalize: bool = False, ) -> Tensor: attrs = attr_algo.attribute( inputs, additional_forward_args=additional_args, target=target ) infid = self.infidelity_assert( model, attrs, inputs, expected, additional_args=additional_args, perturb_func=perturb_func, target=target, n_perturb_samples=n_perturb_samples, max_batch_size=max_batch_size, normalize=normalize, ) return infid def infidelity_assert( self, model: Module, attributions: TensorOrTupleOfTensorsGeneric, inputs: TensorOrTupleOfTensorsGeneric, expected: Tensor, additional_args: Any = None, baselines: BaselineType = None, n_perturb_samples: int = 10, target: TargetType = None, max_batch_size: int = None, multi_input: bool = True, perturb_func: Callable = _local_perturb_func, normalize: bool = False, **kwargs: Any, ) -> Tensor: infid = infidelity( model, perturb_func, inputs, attributions, additional_forward_args=additional_args, target=target, baselines=baselines, n_perturb_samples=n_perturb_samples, max_examples_per_batch=max_batch_size, normalize=normalize, ) assertTensorAlmostEqual(self, infid, expected, 0.05) return infid
from unittest.mock import patch import torch from captum.insights.attr_vis.features import ( _convert_figure_base64, EmptyFeature, FeatureOutput, GeneralFeature, ImageFeature, TextFeature, ) from matplotlib.figure import Figure from tests.helpers.basic import BaseTest class TestTextFeature(BaseTest): FEATURE_NAME = "question" def test_text_feature_returns_text_as_visualization_type(self) -> None: feature = TextFeature(self.FEATURE_NAME, None, None, None) self.assertEqual(feature.visualization_type(), "text") def test_text_feature_uses_visualization_transform_if_provided(self) -> None: input_data = torch.rand(2, 2) transformed_data = torch.rand(1, 1) def mock_transform(data): return transformed_data feature = TextFeature( name=self.FEATURE_NAME, baseline_transforms=None, input_transforms=None, visualization_transform=mock_transform, ) feature_output = feature.visualize( attribution=torch.rand(1, 1), data=input_data, contribution_frac=1.0 ) # has transformed data self.assertEqual(feature_output.base, transformed_data) feature = TextFeature( name=self.FEATURE_NAME, baseline_transforms=None, input_transforms=None, visualization_transform=None, ) feature_output = feature.visualize( attribution=torch.rand(1, 1), data=input_data, contribution_frac=1.0 ) # has original data self.assertIs(feature_output.base, input_data) def test_text_feature_generates_correct_visualization_output(self) -> None: attribution = torch.tensor([0.1, 0.2, 0.3, 0.4]) input_data = torch.rand(1, 2) expected_modified = [100 * x for x in (attribution / attribution.max())] contribution_frac = torch.rand(1).item() feature = TextFeature( name=self.FEATURE_NAME, baseline_transforms=None, input_transforms=None, visualization_transform=None, ) feature_output = feature.visualize(attribution, input_data, contribution_frac) expected_feature_output = FeatureOutput( name=self.FEATURE_NAME, base=input_data, modified=expected_modified, type="text", contribution=contribution_frac, ) self.assertEqual(expected_feature_output, feature_output) class TestEmptyFeature(BaseTest): def test_empty_feature_should_generate_fixed_output(self) -> None: feature = EmptyFeature() contribution = torch.rand(1).item() expected_output = FeatureOutput( name="empty", base=None, modified=None, type="empty", contribution=contribution, ) self.assertEqual(expected_output, feature.visualize(None, None, contribution)) class TestImageFeature(BaseTest): def test_image_feature_generates_correct_ouput(self) -> None: attribution = torch.zeros(1, 3, 4, 4) data = torch.ones(1, 3, 4, 4) contribution = 1.0 name = "photo" orig_fig = Figure(figsize=(4, 4)) attr_fig = Figure(figsize=(4, 4)) def mock_viz_attr(*args, **kwargs): if kwargs["method"] == "original_image": return orig_fig, None else: return attr_fig, None feature = ImageFeature( name=name, baseline_transforms=None, input_transforms=None, visualization_transform=None, ) with patch( "captum.attr._utils.visualization.visualize_image_attr", mock_viz_attr ): feature_output = feature.visualize(attribution, data, contribution) expected_feature_output = FeatureOutput( name=name, base=_convert_figure_base64(orig_fig), modified=_convert_figure_base64(attr_fig), type="image", contribution=contribution, ) self.assertEqual(expected_feature_output, feature_output) class TestGeneralFeature(BaseTest): def test_general_feature_generates_correct_output(self) -> None: name = "general_feature" categories = ["cat1", "cat2", "cat3", "cat4"] attribution = torch.Tensor(1, 4) attribution.fill_(0.5) data = torch.rand(1, 4) contribution = torch.rand(1).item() attr_squeezed = attribution.squeeze(0) expected_modified = [ x * 100 for x in (attr_squeezed / attr_squeezed.norm()).tolist() ] expected_base = [ f"{c}: {d:.2f}" for c, d in zip(categories, data.squeeze().tolist()) ] feature = GeneralFeature(name, categories) feature_output = feature.visualize( attribution=attribution, data=data, contribution_frac=contribution ) expected_feature_output = FeatureOutput( name=name, base=expected_base, modified=expected_modified, type="general", contribution=contribution, ) self.assertEqual(expected_feature_output, feature_output)
#!/usr/bin/env python3 import unittest from typing import Callable, List, Union import torch import torch.nn as nn from captum.insights import AttributionVisualizer, Batch from captum.insights.attr_vis.app import FilterConfig from captum.insights.attr_vis.features import BaseFeature, FeatureOutput, ImageFeature from tests.helpers.basic import BaseTest class RealFeature(BaseFeature): def __init__( self, name: str, baseline_transforms: Union[Callable, List[Callable]], input_transforms: Union[Callable, List[Callable]], visualization_transforms: Union[None, Callable, List[Callable]] = None, ) -> None: super().__init__( name, baseline_transforms=baseline_transforms, input_transforms=input_transforms, visualization_transform=None, ) def visualization_type(self) -> str: return "real" def visualize(self, attribution, data, contribution_frac) -> FeatureOutput: return FeatureOutput( name=self.name, base=data, modified=data, type=self.visualization_type(), contribution=contribution_frac, ) def _get_classes(): classes = [ "Plane", "Car", "Bird", "Cat", "Deer", "Dog", "Frog", "Horse", "Ship", "Truck", ] return classes class TinyCnn(nn.Module): def __init__(self, feature_extraction=False) -> None: super().__init__() self.feature_extraction = feature_extraction self.conv1 = nn.Conv2d(3, 3, 5) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool2d(2, 2) if not self.feature_extraction: self.conv2 = nn.Conv2d(3, 10, 2) def forward(self, x): x = self.pool1(self.relu1(self.conv1(x))) if not self.feature_extraction: x = self.conv2(x) x = x.view(-1, 10) else: x = x.view(-1, 12) return x class TinyMultiModal(nn.Module): def __init__(self, input_size=256, pretrained=False) -> None: super().__init__() if pretrained: self.img_model = _get_cnn(feature_extraction=True) else: self.img_model = TinyCnn(feature_extraction=True) self.misc_model = nn.Sequential(nn.Linear(input_size, 12), nn.ReLU()) self.fc = nn.Linear(12 * 2, 10) def forward(self, img, misc): img = self.img_model(img) misc = self.misc_model(misc) x = torch.cat((img, misc), dim=-1) return self.fc(x) def _labelled_img_data(num_samples=10, width=8, height=8, depth=3, num_labels=10): for _ in range(num_samples): yield torch.empty(depth, height, width).uniform_(0, 1), torch.randint( num_labels, (1,) ) def _multi_modal_data(img_dataset, feature_size=256): def misc_data(length, feature_size=None): for _ in range(length): yield torch.randn(feature_size) misc_dataset = misc_data(length=len(img_dataset), feature_size=feature_size) # re-arrange dataset for (img, label), misc in zip(img_dataset, misc_dataset): yield ((img, misc), label) def _get_cnn(feature_extraction=False): return TinyCnn(feature_extraction=feature_extraction) def _get_multimodal(input_size=256): return TinyMultiModal(input_size=input_size, pretrained=True) def to_iter(data_loader): # TODO: not sure how to make this cleaner for x, y in data_loader: # if it's not multi input # NOTE: torch.utils.data.DataLoader returns a list in this case if not isinstance(x, list): x = (x,) yield Batch(inputs=tuple(x), labels=y) class Test(BaseTest): def test_one_feature(self) -> None: batch_size = 2 classes = _get_classes() dataset = list( _labelled_img_data(num_labels=len(classes), num_samples=batch_size) ) # NOTE: using DataLoader to batch the inputs # since AttributionVisualizer requires the input to be of size `B x ...` data_loader = torch.utils.data.DataLoader( list(dataset), batch_size=batch_size, shuffle=False, num_workers=0 ) visualizer = AttributionVisualizer( models=[_get_cnn()], classes=classes, features=[ ImageFeature( "Photo", input_transforms=[lambda x: x], baseline_transforms=[lambda x: x * 0], ) ], dataset=to_iter(data_loader), score_func=None, ) visualizer._config = FilterConfig(attribution_arguments={"n_steps": 2}) outputs = visualizer.visualize() for output in outputs: total_contrib = sum(abs(f.contribution) for f in output[0].feature_outputs) self.assertAlmostEqual(total_contrib, 1.0, places=6) def test_multi_features(self) -> None: batch_size = 2 classes = _get_classes() img_dataset = list( _labelled_img_data(num_labels=len(classes), num_samples=batch_size) ) misc_feature_size = 2 dataset = _multi_modal_data( img_dataset=img_dataset, feature_size=misc_feature_size ) # NOTE: using DataLoader to batch the inputs since # AttributionVisualizer requires the input to be of size `N x ...` data_loader = torch.utils.data.DataLoader( list(dataset), batch_size=batch_size, shuffle=False, num_workers=0 ) visualizer = AttributionVisualizer( models=[_get_multimodal(input_size=misc_feature_size)], classes=classes, features=[ ImageFeature( "Photo", input_transforms=[lambda x: x], baseline_transforms=[lambda x: x * 0], ), RealFeature( "Random", input_transforms=[lambda x: x], baseline_transforms=[lambda x: x * 0], ), ], dataset=to_iter(data_loader), score_func=None, ) visualizer._config = FilterConfig(attribution_arguments={"n_steps": 2}) outputs = visualizer.visualize() for output in outputs: total_contrib = sum(abs(f.contribution) for f in output[0].feature_outputs) self.assertAlmostEqual(total_contrib, 1.0, places=6) # TODO: add test for multiple models (related to TODO in captum/insights/api.py) # # TODO: add test to make the attribs == 0 -- error occurs # I know (through manual testing) that this breaks some existing code if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 import collections from typing import List import torch from captum.robust import AttackComparator, FGSM from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import BasicModel, BasicModel_MultiLayer from torch import Tensor def float_metric(model_out: Tensor, target: int): return model_out[:, target] ModelResult = collections.namedtuple("ModelResult", "accuracy output") def tuple_metric(model_out: Tensor, target: int, named_tuple=False): _, pred = torch.max(model_out, dim=1) acc = (pred == target).float() output = model_out[:, target] if named_tuple: return ModelResult( accuracy=acc.item() if acc.numel() == 1 else acc, output=output.item() if output.numel() == 1 else output, ) return (acc, output) def drop_column_perturb(inp: Tensor, column: int) -> Tensor: mask = torch.ones_like(inp) mask[:, column] = 0.0 return mask * inp def text_preproc_fn(inp: List[str]) -> Tensor: return torch.tensor([float(ord(elem[0])) for elem in inp]).unsqueeze(0) def batch_text_preproc_fn(inp: List[List[str]]) -> Tensor: return torch.cat([text_preproc_fn(elem) for elem in inp]) def string_perturb(inp: List[str]) -> List[str]: return ["a" + elem for elem in inp] def string_batch_perturb(inp: List[List[str]]) -> List[List[str]]: return [string_perturb(elem) for elem in inp] class SamplePerturb: def __init__(self) -> None: self.count = 0 def perturb(self, inp: Tensor) -> Tensor: mask = torch.ones_like(inp) mask[:, self.count % mask.shape[1]] = 0.0 self.count += 1 return mask * inp class Test(BaseTest): def test_attack_comparator_basic(self) -> None: model = BasicModel() inp = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]]) attack_comp = AttackComparator( forward_func=lambda x: model(x) + torch.tensor([[0.000001, 0.0, 0.0, 0.0, 0.0]]), metric=tuple_metric, ) attack_comp.add_attack( drop_column_perturb, name="first_column_perturb", attack_kwargs={"column": 0}, ) attack_comp.add_attack( drop_column_perturb, name="last_column_perturb", attack_kwargs={"column": -1}, ) attack_comp.add_attack( FGSM(model), attack_kwargs={"epsilon": 0.5}, additional_attack_arg_names=["target"], ) batch_results = attack_comp.evaluate(inp, target=0, named_tuple=True) expected_first_results = { "Original": (1.0, 1.0), "first_column_perturb": {"mean": (0.0, 0.0)}, "last_column_perturb": {"mean": (1.0, 1.0)}, "FGSM": {"mean": (1.0, 1.0)}, } self._compare_results(batch_results, expected_first_results) alt_inp = torch.tensor([[1.0, 2.0, -3.0, 4.0, -5.0]]) second_batch_results = attack_comp.evaluate(alt_inp, target=4, named_tuple=True) expected_second_results = { "Original": (0.0, -5.0), "first_column_perturb": {"mean": (0.0, -5.0)}, "last_column_perturb": {"mean": (0.0, 0.0)}, "FGSM": {"mean": (0.0, -4.5)}, } self._compare_results(second_batch_results, expected_second_results) expected_summary_results = { "Original": {"mean": (0.5, -2.0)}, "first_column_perturb": {"mean": (0.0, -2.5)}, "last_column_perturb": {"mean": (0.5, 0.5)}, "FGSM": {"mean": (0.5, -1.75)}, } self._compare_results(attack_comp.summary(), expected_summary_results) def test_attack_comparator_with_preproc(self) -> None: model = BasicModel_MultiLayer() text_inp = ["abc", "zyd", "ghi"] attack_comp = AttackComparator( forward_func=model, metric=tuple_metric, preproc_fn=text_preproc_fn ) attack_comp.add_attack( SamplePerturb().perturb, name="Sequence Column Perturb", num_attempts=5, apply_before_preproc=False, ) attack_comp.add_attack( string_perturb, name="StringPerturb", apply_before_preproc=True, ) batch_results = attack_comp.evaluate( text_inp, target=0, named_tuple=True, perturbations_per_eval=3 ) expected_first_results = { "Original": (0.0, 1280.0), "Sequence Column Perturb": { "mean": (0.0, 847.2), "max": (0.0, 892.0), "min": (0.0, 792.0), }, "StringPerturb": {"mean": (0.0, 1156.0)}, } self._compare_results(batch_results, expected_first_results) expected_summary_results = { "Original": {"mean": (0.0, 1280.0)}, "Sequence Column Perturb Mean Attempt": {"mean": (0.0, 847.2)}, "Sequence Column Perturb Min Attempt": {"mean": (0.0, 792.0)}, "Sequence Column Perturb Max Attempt": {"mean": (0.0, 892.0)}, "StringPerturb": {"mean": (0.0, 1156.0)}, } self._compare_results(attack_comp.summary(), expected_summary_results) def test_attack_comparator_with_additional_args(self) -> None: model = BasicModel_MultiLayer() text_inp = [["abc", "zyd", "ghi"], ["mnop", "qrs", "Tuv"]] additional_forward_args = torch.ones((2, 3)) * -97 attack_comp = AttackComparator( forward_func=model, metric=tuple_metric, preproc_fn=batch_text_preproc_fn ) attack_comp.add_attack( SamplePerturb().perturb, name="Sequence Column Perturb", num_attempts=5, apply_before_preproc=False, ) attack_comp.add_attack( string_batch_perturb, name="StringPerturb", apply_before_preproc=True, ) batch_results = attack_comp.evaluate( text_inp, additional_forward_args=additional_forward_args, target=0, named_tuple=True, perturbations_per_eval=2, ) expected_first_results = { "Original": ([0.0, 0.0], [116.0, 52.0]), "Sequence Column Perturb": { "mean": ([0.0, 0.0], [-1.0, -1.0]), "max": ([0.0, 0.0], [-1.0, -1.0]), "min": ([0.0, 0.0], [-1.0, -1.0]), }, "StringPerturb": {"mean": ([0.0, 0.0], [2.0, 2.0])}, } self._compare_results(batch_results, expected_first_results) expected_summary_results = { "Original": { "mean": (0.0, 84.0), }, "Sequence Column Perturb Mean Attempt": {"mean": (0.0, -1.0)}, "Sequence Column Perturb Min Attempt": {"mean": (0.0, -1.0)}, "Sequence Column Perturb Max Attempt": {"mean": (0.0, -1.0)}, "StringPerturb": {"mean": (0.0, 2.0)}, } self._compare_results(attack_comp.summary(), expected_summary_results) attack_comp.reset() self.assertEqual(len(attack_comp.summary()), 0) def _compare_results(self, obtained, expected) -> None: if isinstance(expected, dict): self.assertIsInstance(obtained, dict) for key in expected: self._compare_results(obtained[key], expected[key]) elif isinstance(expected, tuple): self.assertIsInstance(obtained, tuple) for i in range(len(expected)): self._compare_results(obtained[i], expected[i]) else: assertTensorAlmostEqual(self, obtained, expected)
#!/usr/bin/env python3 from typing import Any, Callable, List, Optional, Tuple, Union import torch from captum._utils.typing import TensorLikeList, TensorOrTupleOfTensorsGeneric from captum.robust import FGSM from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import BasicModel, BasicModel2, BasicModel_MultiLayer from torch import Tensor from torch.nn import CrossEntropyLoss class Test(BaseTest): def test_attack_nontargeted(self) -> None: model = BasicModel() input = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]]) self._FGSM_assert(model, input, 1, 0.1, [[2.0, -8.9, 9.0, 1.0, -3.0]]) def test_attack_targeted(self) -> None: model = BasicModel() input = torch.tensor([[9.0, 10.0, -6.0, -1.0]]) self._FGSM_assert( model, input, 3, 0.2, [[9.0, 10.0, -6.0, -1.2]], targeted=True ) def test_attack_multiinput(self) -> None: model = BasicModel2() input1 = torch.tensor([[4.0, -1.0], [3.0, 10.0]], requires_grad=True) input2 = torch.tensor([[2.0, -5.0], [-2.0, 1.0]], requires_grad=True) self._FGSM_assert( model, (input1, input2), 0, 0.25, ([[3.75, -1.0], [2.75, 10.0]], [[2.25, -5.0], [-2.0, 1.0]]), ) def test_attack_label_list(self) -> None: model = BasicModel2() input1 = torch.tensor([[4.0, -1.0], [3.0, 10.0]], requires_grad=True) input2 = torch.tensor([[2.0, -5.0], [-2.0, 1.0]], requires_grad=True) self._FGSM_assert( model, (input1, input2), [0, 1], 0.1, ([[3.9, -1.0], [3.0, 9.9]], [[2.1, -5.0], [-2.0, 1.1]]), ) def test_attack_label_tensor(self) -> None: model = BasicModel2() input1 = torch.tensor([[4.0, -1.0], [3.0, 10.0]], requires_grad=True) input2 = torch.tensor([[2.0, -5.0], [-2.0, 1.0]], requires_grad=True) labels = torch.tensor([0, 1]) self._FGSM_assert( model, (input1, input2), labels, 0.1, ([[4.1, -1.0], [3.0, 10.1]], [[1.9, -5.0], [-2.0, 0.9]]), targeted=True, ) def test_attack_label_tuple(self) -> None: model = BasicModel() input = torch.tensor( [[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -4.0], [10.0, 5.0]]], requires_grad=True ) labels = (0, 1) self._FGSM_assert( model, input, labels, 0.1, [[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -3.9], [10.0, 5.0]]], ) def test_attack_label_listtuple(self) -> None: model = BasicModel() input = torch.tensor( [[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -4.0], [10.0, 5.0]]], requires_grad=True ) labels: List[Tuple[int, ...]] = [(1, 1), (0, 1)] self._FGSM_assert( model, input, labels, 0.1, [[[4.0, 2.0], [-1.0, -1.9]], [[3.0, -3.9], [10.0, 5.0]]], ) def test_attack_additional_inputs(self) -> None: model = BasicModel_MultiLayer() add_input = torch.tensor([[-1.0, 2.0, 2.0]], requires_grad=True) input = torch.tensor([[1.0, 6.0, -3.0]], requires_grad=True) self._FGSM_assert( model, input, 0, 0.2, [[0.8, 5.8, -3.2]], additional_inputs=(add_input,) ) self._FGSM_assert( model, input, 0, 0.2, [[0.8, 5.8, -3.2]], additional_inputs=add_input ) def test_attack_loss_defined(self) -> None: model = BasicModel_MultiLayer() add_input = torch.tensor([[-1.0, 2.0, 2.0]]) input = torch.tensor([[1.0, 6.0, -3.0]]) labels = torch.tensor([0]) loss_func = CrossEntropyLoss(reduction="none") adv = FGSM(model, loss_func) perturbed_input = adv.perturb( input, 0.2, labels, additional_forward_args=(add_input,) ) assertTensorAlmostEqual( self, perturbed_input, [[1.0, 6.0, -3.0]], delta=0.01, mode="max" ) def test_attack_bound(self) -> None: model = BasicModel() input = torch.tensor([[9.0, 10.0, -6.0, -1.0]]) self._FGSM_assert( model, input, 3, 0.2, [[5.0, 5.0, -5.0, -1.2]], targeted=True, lower_bound=-5.0, upper_bound=5.0, ) def test_attack_masked_tensor(self) -> None: model = BasicModel() input = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]], requires_grad=True) mask = torch.tensor([[1, 0, 0, 1, 1]]) self._FGSM_assert( model, input, 1, 0.1, [[2.0, -9.0, 9.0, 1.0, -3.0]], mask=mask ) def test_attack_masked_multiinput(self) -> None: model = BasicModel2() input1 = torch.tensor([[4.0, -1.0], [3.0, 10.0]], requires_grad=True) input2 = torch.tensor([[2.0, -5.0], [-2.0, 1.0]], requires_grad=True) mask1 = torch.tensor([[1, 0], [1, 0]]) mask2 = torch.tensor([[0, 0], [0, 0]]) self._FGSM_assert( model, (input1, input2), 0, 0.25, ([[3.75, -1.0], [2.75, 10.0]], [[2.0, -5.0], [-2.0, 1.0]]), mask=(mask1, mask2), ) def test_attack_masked_loss_defined(self) -> None: model = BasicModel_MultiLayer() add_input = torch.tensor([[-1.0, 2.0, 2.0]]) input = torch.tensor([[1.0, 6.0, -3.0]]) labels = torch.tensor([0]) mask = torch.tensor([[0, 0, 1]]) loss_func = CrossEntropyLoss(reduction="none") adv = FGSM(model, loss_func) perturbed_input = adv.perturb( input, 0.2, labels, additional_forward_args=(add_input,), mask=mask ) assertTensorAlmostEqual( self, perturbed_input, [[1.0, 6.0, -3.0]], delta=0.01, mode="max" ) def test_attack_masked_bound(self) -> None: model = BasicModel() input = torch.tensor([[9.0, 10.0, -6.0, -1.0]]) mask = torch.tensor([[1, 0, 1, 0]]) self._FGSM_assert( model, input, 3, 0.2, [[5.0, 5.0, -5.0, -1.0]], targeted=True, lower_bound=-5.0, upper_bound=5.0, mask=mask, ) def _FGSM_assert( self, model: Callable, inputs: TensorOrTupleOfTensorsGeneric, target: Any, epsilon: float, answer: Union[TensorLikeList, Tuple[TensorLikeList, ...]], targeted=False, additional_inputs: Any = None, lower_bound: float = float("-inf"), upper_bound: float = float("inf"), mask: Optional[TensorOrTupleOfTensorsGeneric] = None, ) -> None: adv = FGSM(model, lower_bound=lower_bound, upper_bound=upper_bound) perturbed_input = adv.perturb( inputs, epsilon, target, additional_inputs, targeted, mask ) if isinstance(perturbed_input, Tensor): assertTensorAlmostEqual( self, perturbed_input, answer, delta=0.01, mode="max" ) else: for i in range(len(perturbed_input)): assertTensorAlmostEqual( self, perturbed_input[i], answer[i], delta=0.01, mode="max" )
#!/usr/bin/env python3 from typing import cast, List import torch from captum.robust import MinParamPerturbation from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import BasicModel, BasicModel_MultiLayer from torch import Tensor def inp_subtract(inp: Tensor, ind: int = 0, add_arg: int = 0) -> Tensor: inp_repeat = 1.0 * inp inp_repeat[0][ind] -= add_arg return inp_repeat def add_char(inp: List[str], ind: int = 0, char_val: int = 0) -> List[str]: list_copy = list(inp) list_copy[ind] = chr(122 - char_val) + list_copy[ind] return list_copy def add_char_batch(inp: List[List[str]], ind: int, char_val: int) -> List[List[str]]: return [add_char(elem, ind, char_val) for elem in inp] def text_preproc_fn(inp: List[str]) -> Tensor: return torch.tensor([float(ord(elem[0])) for elem in inp]).unsqueeze(0) def batch_text_preproc_fn(inp: List[List[str]]) -> Tensor: return torch.cat([text_preproc_fn(elem) for elem in inp]) def alt_correct_fn(model_out: Tensor, target: int, threshold: float) -> bool: if all(model_out[:, target] > threshold): return True return False class Test(BaseTest): def test_minimal_pert_basic_linear(self) -> None: model = BasicModel() inp = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]]) minimal_pert = MinParamPerturbation( forward_func=lambda x: model(x) + torch.tensor([[0.000001, 0.0, 0.0, 0.0, 0.0]]), attack=inp_subtract, arg_name="add_arg", arg_min=0.0, arg_max=1000.0, arg_step=1.0, ) target_inp, pert = minimal_pert.evaluate( inp, target=0, attack_kwargs={"ind": 0} ) self.assertAlmostEqual(cast(float, pert), 2.0) assertTensorAlmostEqual( self, target_inp, torch.tensor([[0.0, -9.0, 9.0, 1.0, -3.0]]) ) def test_minimal_pert_basic_binary(self) -> None: model = BasicModel() inp = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]]) minimal_pert = MinParamPerturbation( forward_func=lambda x: model(x) + torch.tensor([[0.000001, 0.0, 0.0, 0.0, 0.0]]), attack=inp_subtract, arg_name="add_arg", arg_min=0.0, arg_max=1000.0, arg_step=1.0, mode="binary", ) target_inp, pert = minimal_pert.evaluate( inp, target=0, attack_kwargs={"ind": 0}, perturbations_per_eval=10, ) self.assertAlmostEqual(cast(float, pert), 2.0) assertTensorAlmostEqual( self, target_inp, torch.tensor([[0.0, -9.0, 9.0, 1.0, -3.0]]) ) def test_minimal_pert_preproc(self) -> None: model = BasicModel_MultiLayer() text_inp = ["abc", "zyd", "ghi"] minimal_pert = MinParamPerturbation( forward_func=model, attack=add_char, arg_name="char_val", arg_min=0, arg_max=26, arg_step=1, preproc_fn=text_preproc_fn, apply_before_preproc=True, ) target_inp, pert = minimal_pert.evaluate( text_inp, target=1, attack_kwargs={"ind": 1} ) self.assertEqual(pert, None) self.assertEqual(target_inp, None) def test_minimal_pert_alt_correct(self) -> None: model = BasicModel_MultiLayer() text_inp = ["abc", "zyd", "ghi"] minimal_pert = MinParamPerturbation( forward_func=model, attack=add_char, arg_name="char_val", arg_min=0, arg_max=26, arg_step=1, preproc_fn=text_preproc_fn, apply_before_preproc=True, correct_fn=alt_correct_fn, num_attempts=5, ) expected_list = ["abc", "ezyd", "ghi"] target_inp, pert = minimal_pert.evaluate( text_inp, target=1, attack_kwargs={"ind": 1}, correct_fn_kwargs={"threshold": 1200}, perturbations_per_eval=5, ) self.assertEqual(pert, 21) self.assertListEqual(target_inp, expected_list) target_inp_single, pert_single = minimal_pert.evaluate( text_inp, target=1, attack_kwargs={"ind": 1}, correct_fn_kwargs={"threshold": 1200}, ) self.assertEqual(pert_single, 21) self.assertListEqual(target_inp_single, expected_list) def test_minimal_pert_additional_forward_args(self) -> None: model = BasicModel_MultiLayer() text_inp = [["abc", "zyd", "ghi"], ["abc", "uyd", "ghi"]] additional_forward_args = torch.ones((2, 3)) * -97 model = BasicModel_MultiLayer() minimal_pert = MinParamPerturbation( forward_func=model, attack=add_char_batch, arg_name="char_val", arg_min=0, arg_max=26, arg_step=1, preproc_fn=batch_text_preproc_fn, apply_before_preproc=True, correct_fn=alt_correct_fn, ) expected_list = [["abc", "uzyd", "ghi"], ["abc", "uuyd", "ghi"]] target_inp, pert = minimal_pert.evaluate( text_inp, target=1, attack_kwargs={"ind": 1}, correct_fn_kwargs={"threshold": 100}, perturbations_per_eval=15, additional_forward_args=(additional_forward_args,), ) self.assertEqual(pert, 5) self.assertListEqual(target_inp, expected_list) target_inp_single, pert_single = minimal_pert.evaluate( text_inp, target=1, attack_kwargs={"ind": 1}, correct_fn_kwargs={"threshold": 100}, additional_forward_args=(additional_forward_args,), ) self.assertEqual(pert_single, 5) self.assertListEqual(target_inp_single, expected_list) def test_minimal_pert_tuple_test(self) -> None: model = BasicModel_MultiLayer() text_inp = ( [["abc", "zyd", "ghi"], ["abc", "uyd", "ghi"]], torch.ones((2, 3)) * -97, ) model = BasicModel_MultiLayer() minimal_pert = MinParamPerturbation( forward_func=lambda x: model(*x), attack=lambda x, ind, char_val: (add_char_batch(x[0], ind, char_val), x[1]), arg_name="char_val", arg_min=0, arg_max=26, arg_step=1, preproc_fn=lambda x: (batch_text_preproc_fn(x[0]), x[1]), apply_before_preproc=True, correct_fn=alt_correct_fn, ) expected_list = [["abc", "uzyd", "ghi"], ["abc", "uuyd", "ghi"]] target_inp, pert = minimal_pert.evaluate( text_inp, target=1, attack_kwargs={"ind": 1}, correct_fn_kwargs={"threshold": 100}, perturbations_per_eval=15, ) self.assertEqual(pert, 5) self.assertListEqual(target_inp[0], expected_list)
#!/usr/bin/env python3 import torch from captum.robust import PGD from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import BasicModel, BasicModel2, BasicModel_MultiLayer from torch.nn import CrossEntropyLoss class Test(BaseTest): def test_attack_nontargeted(self) -> None: model = BasicModel() input = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]]) adv = PGD(model) perturbed_input = adv.perturb(input, 0.25, 0.1, 2, 4) assertTensorAlmostEqual( self, perturbed_input, [[2.0, -9.0, 9.0, 1.0, -2.8]], delta=0.01, mode="max", ) def test_attack_targeted(self) -> None: model = BasicModel() input = torch.tensor([[9.0, 10.0, -6.0, -1.0]], requires_grad=True) adv = PGD(model) perturbed_input = adv.perturb(input, 0.2, 0.1, 3, 3, targeted=True) assertTensorAlmostEqual( self, perturbed_input, [[9.0, 10.0, -6.0, -1.2]], delta=0.01, mode="max", ) def test_attack_l2norm(self) -> None: model = BasicModel() input = torch.tensor([[9.0, 10.0, -6.0, -1.0]], requires_grad=True) adv = PGD(model) perturbed_input = adv.perturb(input, 0.2, 0.1, 3, 2, targeted=True, norm="L2") assertTensorAlmostEqual( self, perturbed_input, [[9.0, 10.0, -6.2, -1.0]], delta=0.01, mode="max", ) def test_attack_multiinput(self) -> None: model = BasicModel2() input1 = torch.tensor([[4.0, -1.0], [3.0, 10.0]], requires_grad=True) input2 = torch.tensor([[2.0, -5.0], [-2.0, 1.0]], requires_grad=True) adv = PGD(model) perturbed_input = adv.perturb((input1, input2), 0.25, 0.1, 3, 0, norm="L2") answer = ([[3.75, -1.0], [2.75, 10.0]], [[2.25, -5.0], [-2.0, 1.0]]) for i in range(len(perturbed_input)): assertTensorAlmostEqual( self, perturbed_input[i], answer[i], delta=0.01, mode="max", ) def test_attack_3dimensional_input(self) -> None: model = BasicModel() input = torch.tensor( [[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -4.0], [10.0, 5.0]]], requires_grad=True ) adv = PGD(model) perturbed_input = adv.perturb(input, 0.25, 0.1, 3, (0, 1)) assertTensorAlmostEqual( self, perturbed_input, [[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -3.75], [10.0, 5.0]]], delta=0.01, mode="max", ) def test_attack_loss_defined(self) -> None: model = BasicModel_MultiLayer() add_input = torch.tensor([[-1.0, 2.0, 2.0]]) input = torch.tensor([[1.0, 6.0, -3.0]]) labels = torch.tensor([0]) loss_func = CrossEntropyLoss(reduction="none") adv = PGD(model, loss_func) perturbed_input = adv.perturb( input, 0.25, 0.1, 3, labels, additional_forward_args=(add_input,) ) assertTensorAlmostEqual( self, perturbed_input, [[1.0, 6.0, -3.0]], delta=0.01, mode="max" ) def test_attack_random_start(self) -> None: model = BasicModel() input = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]]) adv = PGD(model) perturbed_input = adv.perturb(input, 0.25, 0.1, 0, 4, random_start=True) assertTensorAlmostEqual( self, perturbed_input, [[2.0, -9.0, 9.0, 1.0, -3.0]], delta=0.25, mode="max", ) perturbed_input = adv.perturb( input, 0.25, 0.1, 0, 4, norm="L2", random_start=True ) norm = torch.norm((perturbed_input - input).squeeze()).numpy() self.assertLessEqual(norm, 0.25) def test_attack_masked_nontargeted(self) -> None: model = BasicModel() input = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]]) mask = torch.tensor([[1, 1, 0, 0, 0]]) adv = PGD(model) perturbed_input = adv.perturb(input, 0.25, 0.1, 2, 4, mask=mask) assertTensorAlmostEqual( self, perturbed_input, [[2.0, -9.0, 9.0, 1.0, -3.0]], delta=0.01, mode="max", ) def test_attack_masked_targeted(self) -> None: model = BasicModel() input = torch.tensor([[9.0, 10.0, -6.0, -1.0]], requires_grad=True) mask = torch.tensor([[1, 1, 1, 0]]) adv = PGD(model) perturbed_input = adv.perturb(input, 0.2, 0.1, 3, 3, targeted=True, mask=mask) assertTensorAlmostEqual( self, perturbed_input, [[9.0, 10.0, -6.0, -1.0]], delta=0.01, mode="max", ) def test_attack_masked_multiinput(self) -> None: model = BasicModel2() input1 = torch.tensor([[4.0, -1.0], [3.0, 10.0]], requires_grad=True) input2 = torch.tensor([[2.0, -5.0], [-2.0, 1.0]], requires_grad=True) mask1 = torch.tensor([[1, 1], [0, 0]]) mask2 = torch.tensor([[0, 1], [0, 1]]) adv = PGD(model) perturbed_input = adv.perturb( (input1, input2), 0.25, 0.1, 3, 0, norm="L2", mask=(mask1, mask2) ) answer = ([[3.75, -1.0], [3.0, 10.0]], [[2.0, -5.0], [-2.0, 1.0]]) for i in range(len(perturbed_input)): assertTensorAlmostEqual( self, perturbed_input[i], answer[i], delta=0.01, mode="max", ) def test_attack_masked_random_start(self) -> None: model = BasicModel() input = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]]) mask = torch.tensor([[1, 0, 1, 0, 1]]) adv = PGD(model) perturbed_input = adv.perturb( input, 0.25, 0.1, 0, 4, random_start=True, mask=mask ) assertTensorAlmostEqual( self, perturbed_input, [[2.0, -9.0, 9.0, 1.0, -3.0]], delta=0.25, mode="max", ) perturbed_input = adv.perturb( input, 0.25, 0.1, 0, 4, norm="L2", random_start=True, mask=mask ) norm = torch.norm((perturbed_input - input).squeeze()).numpy() self.assertLessEqual(norm, 0.25) def test_attack_masked_3dimensional_input(self) -> None: model = BasicModel() input = torch.tensor( [[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -4.0], [10.0, 5.0]]], requires_grad=True ) mask = torch.tensor([[[1, 0], [0, 1]], [[1, 0], [1, 1]]]) adv = PGD(model) perturbed_input = adv.perturb(input, 0.25, 0.1, 3, (0, 1), mask=mask) assertTensorAlmostEqual( self, perturbed_input, [[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -4.0], [10.0, 5.0]]], delta=0.01, mode="max", ) def test_attack_masked_loss_defined(self) -> None: model = BasicModel_MultiLayer() add_input = torch.tensor([[-1.0, 2.0, 2.0]]) input = torch.tensor([[1.0, 6.0, -3.0]]) mask = torch.tensor([[0, 1, 0]]) labels = torch.tensor([0]) loss_func = CrossEntropyLoss(reduction="none") adv = PGD(model, loss_func) perturbed_input = adv.perturb( input, 0.25, 0.1, 3, labels, additional_forward_args=(add_input,), mask=mask ) assertTensorAlmostEqual( self, perturbed_input, [[1.0, 6.0, -3.0]], delta=0.01, mode="max" )
import inspect import os import unittest from functools import partial from typing import Callable, Iterator, List, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from captum.influence import DataInfluence from captum.influence._core.tracincp_fast_rand_proj import ( TracInCPFast, TracInCPFastRandProj, ) from parameterized import parameterized from parameterized.parameterized import param from torch import Tensor from torch.nn import Module from torch.utils.data import DataLoader, Dataset def _isSorted(x, key=lambda x: x, descending=True): if descending: return all([key(x[i]) >= key(x[i + 1]) for i in range(len(x) - 1)]) else: return all([key(x[i]) <= key(x[i + 1]) for i in range(len(x) - 1)]) def _wrap_model_in_dataparallel(net): alt_device_ids = [0] + [x for x in range(torch.cuda.device_count() - 1, 0, -1)] net = net.cuda() return torch.nn.DataParallel(net, device_ids=alt_device_ids) def _move_sample_to_cuda(samples): return [s.cuda() for s in samples] class ExplicitDataset(Dataset): def __init__(self, samples, labels, use_gpu=False) -> None: self.samples, self.labels = samples, labels if use_gpu: self.samples = ( _move_sample_to_cuda(self.samples) if isinstance(self.samples, list) else self.samples.cuda() ) self.labels = self.labels.cuda() def __len__(self) -> int: return len(self.samples) def __getitem__(self, idx): return (self.samples[idx], self.labels[idx]) class UnpackDataset(Dataset): def __init__(self, samples, labels, use_gpu=False) -> None: self.samples, self.labels = samples, labels if use_gpu: self.samples = ( _move_sample_to_cuda(self.samples) if isinstance(self.samples, list) else self.samples.cuda() ) self.labels = self.labels.cuda() def __len__(self) -> int: return len(self.samples[0]) def __getitem__(self, idx): """ The signature of the returning item is: List[List], where the contents are: [sample_0, sample_1, ...] + [labels] (two lists concacenated). """ return [lst[idx] for lst in self.samples] + [self.labels[idx]] class IdentityDataset(ExplicitDataset): def __init__(self, num_features, use_gpu=False) -> None: self.samples = torch.diag(torch.ones(num_features)) self.labels = torch.zeros(num_features).unsqueeze(1) if use_gpu: self.samples = self.samples.cuda() self.labels = self.labels.cuda() class RangeDataset(ExplicitDataset): def __init__(self, low, high, num_features, use_gpu=False) -> None: self.samples = ( torch.arange(start=low, end=high, dtype=torch.float) .repeat(num_features, 1) .transpose(1, 0) ) self.labels = torch.arange(start=low, end=high, dtype=torch.float).unsqueeze(1) if use_gpu: self.samples = self.samples.cuda() self.labels = self.labels.cuda() class BinaryDataset(ExplicitDataset): def __init__(self, use_gpu=False) -> None: self.samples = F.normalize( torch.stack( ( torch.Tensor([1, 1]), torch.Tensor([2, 1]), torch.Tensor([1, 2]), torch.Tensor([1, 5]), torch.Tensor([0.01, 1]), torch.Tensor([5, 1]), torch.Tensor([1, 0.01]), torch.Tensor([-1, -1]), torch.Tensor([-2, -1]), torch.Tensor([-1, -2]), torch.Tensor([-1, -5]), torch.Tensor([-5, -1]), torch.Tensor([1, -1]), torch.Tensor([2, -1]), torch.Tensor([1, -2]), torch.Tensor([1, -5]), torch.Tensor([0.01, -1]), torch.Tensor([5, -1]), torch.Tensor([-1, 1]), torch.Tensor([-2, 1]), torch.Tensor([-1, 2]), torch.Tensor([-1, 5]), torch.Tensor([-5, 1]), torch.Tensor([-1, 0.01]), ) ) ) self.labels = torch.cat( ( torch.Tensor([1]).repeat(12, 1), torch.Tensor([-1]).repeat(12, 1), ) ) super().__init__(self.samples, self.labels, use_gpu) class CoefficientNet(nn.Module): def __init__(self, in_features=1) -> None: super().__init__() self.fc1 = nn.Linear(in_features, 1, bias=False) self.fc1.weight.data.fill_(0.01) def forward(self, x): x = self.fc1(x) return x class BasicLinearNet(nn.Module): def __init__(self, in_features, hidden_nodes, out_features) -> None: super().__init__() self.linear1 = nn.Linear(in_features, hidden_nodes) self.linear2 = nn.Linear(hidden_nodes, out_features) def forward(self, input): x = torch.tanh(self.linear1(input)) return torch.tanh(self.linear2(x)) class MultLinearNet(nn.Module): def __init__(self, in_features, hidden_nodes, out_features, num_inputs) -> None: super().__init__() self.pre = nn.Linear(in_features * num_inputs, in_features) self.linear1 = nn.Linear(in_features, hidden_nodes) self.linear2 = nn.Linear(hidden_nodes, out_features) def forward(self, *inputs): """ The signature of inputs is List[torch.Tensor], where torch.Tensor has the dimensions [num_inputs x in_features]. It first concacenates the list and a linear layer to reduce the dimension. """ inputs = self.pre(torch.cat(inputs, dim=1)) x = torch.tanh(self.linear1(inputs)) return torch.tanh(self.linear2(x)) def get_random_model_and_data( tmpdir, unpack_inputs, return_test_data=True, use_gpu=False ): in_features, hidden_nodes, out_features = 5, 4, 3 num_inputs = 2 net = ( BasicLinearNet(in_features, hidden_nodes, out_features) if not unpack_inputs else MultLinearNet(in_features, hidden_nodes, out_features, num_inputs) ).double() num_checkpoints = 5 for i in range(num_checkpoints): net.linear1.weight.data = torch.normal( 3, 4, (hidden_nodes, in_features) ).double() net.linear2.weight.data = torch.normal( 5, 6, (out_features, hidden_nodes) ).double() if unpack_inputs: net.pre.weight.data = torch.normal( 3, 4, (in_features, in_features * num_inputs) ) if hasattr(net, "pre"): net.pre.weight.data = net.pre.weight.data.double() checkpoint_name = "-".join(["checkpoint-reg", str(i + 1) + ".pt"]) net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) num_samples = 50 num_train = 32 all_labels = torch.normal(1, 2, (num_samples, out_features)).double() train_labels = all_labels[:num_train] test_labels = all_labels[num_train:] if unpack_inputs: all_samples = [ torch.normal(0, 1, (num_samples, in_features)).double() for _ in range(num_inputs) ] train_samples = [ts[:num_train] for ts in all_samples] test_samples = [ts[num_train:] for ts in all_samples] else: all_samples = torch.normal(0, 1, (num_samples, in_features)).double() train_samples = all_samples[:num_train] test_samples = all_samples[num_train:] dataset = ( ExplicitDataset(train_samples, train_labels, use_gpu) if not unpack_inputs else UnpackDataset(train_samples, train_labels, use_gpu) ) if return_test_data: return ( _wrap_model_in_dataparallel(net) if use_gpu else net, dataset, _move_sample_to_cuda(test_samples) if isinstance(test_samples, list) and use_gpu else test_samples.cuda() if use_gpu else test_samples, test_labels.cuda() if use_gpu else test_labels, ) else: return _wrap_model_in_dataparallel(net) if use_gpu else net, dataset class DataInfluenceConstructor: name: str = "" data_influence_class: type def __init__( self, data_influence_class: type, name: Optional[str] = None, duplicate_loss_fn: bool = False, **kwargs, ) -> None: """ if `duplicate_loss_fn` is True, will explicitly pass the provided `loss_fn` as the `test_loss_fn` when constructing the TracInCPBase instance """ self.data_influence_class = data_influence_class self.name = name if name else data_influence_class.__name__ self.duplicate_loss_fn = duplicate_loss_fn self.kwargs = kwargs def __repr__(self) -> str: return self.name def __call__( self, net: Module, dataset: Union[Dataset, DataLoader], tmpdir: Union[str, List[str], Iterator], batch_size: Union[int, None], loss_fn: Optional[Union[Module, Callable]], **kwargs, ) -> DataInfluence: constructor_kwargs = self.kwargs.copy() constructor_kwargs.update(kwargs) # if `self.duplicate_loss_fn`, explicitly pass in `loss_fn` as `test_loss_fn` # when constructing the instance. Doing so should not affect the behavior of # the returned tracincp instance, since if `test_loss_fn` is not passed in, # the constructor sets `test_loss_fn` to be the same as `loss_fn` if self.duplicate_loss_fn: constructor_kwargs["test_loss_fn"] = loss_fn if self.data_influence_class is TracInCPFastRandProj: self.check_annoy() if self.data_influence_class in [TracInCPFast, TracInCPFastRandProj]: return self.data_influence_class( net, list(net.children())[-1], dataset, tmpdir, loss_fn=loss_fn, batch_size=batch_size, **constructor_kwargs, ) else: return self.data_influence_class( net, dataset, tmpdir, batch_size=batch_size, loss_fn=loss_fn, **constructor_kwargs, ) def check_annoy(self) -> None: try: import annoy # noqa except ImportError: raise unittest.SkipTest( ( f"Skipping tests for {self.data_influence_class.__name__}, " "because it requires the Annoy module." ) ) def generate_test_name( testcase_func: Callable, param_num: str, param: param, args_to_skip: Optional[List[str]] = None, ) -> str: """ Creates human readable names for parameterized tests """ if args_to_skip is None: args_to_skip = [] param_strs = [] func_param_names = list(inspect.signature(testcase_func).parameters) # skip the first 'self' parameter if func_param_names[0] == "self": func_param_names = func_param_names[1:] for i, arg in enumerate(param.args): if func_param_names[i] in args_to_skip: continue if isinstance(arg, bool): if arg: param_strs.append(func_param_names[i]) else: args_str = str(arg) if args_str.isnumeric(): param_strs.append(func_param_names[i]) param_strs.append(args_str) return "%s_%s" % ( testcase_func.__name__, parameterized.to_safe_name("_".join(param_strs)), ) def build_test_name_func(args_to_skip: Optional[List[str]] = None): """ Returns function to generate human readable names for parameterized tests """ return partial(generate_test_name, args_to_skip=args_to_skip) def _format_batch_into_tuple( inputs: Union[Tuple, Tensor], targets: Tensor, unpack_inputs: bool ): if unpack_inputs: return (*inputs, targets) else: return (inputs, targets)
import tempfile from typing import Callable import torch.nn as nn from captum.influence._core.tracincp import TracInCP from captum.influence._core.tracincp_fast_rand_proj import ( TracInCPFast, TracInCPFastRandProj, ) from parameterized import parameterized from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.influence._utils.common import ( _format_batch_into_tuple, build_test_name_func, DataInfluenceConstructor, get_random_model_and_data, ) from torch.utils.data import DataLoader class TestTracInDataLoader(BaseTest): """ This tests that the influence score computed when a Dataset is fed to the `self.tracin_constructor` and when a DataLoader constructed using the same Dataset is fed to `self.tracin_constructor` gives the same results. """ @parameterized.expand( [ ( reduction, constr, unpack_inputs, ) for unpack_inputs in [False, True] for reduction, constr in [ ("none", DataInfluenceConstructor(TracInCP)), ("sum", DataInfluenceConstructor(TracInCPFast)), ("sum", DataInfluenceConstructor(TracInCPFastRandProj)), ( "sum", DataInfluenceConstructor( TracInCPFastRandProj, name="TracInCPFastRandProj_1DProj", projection_dim=1, ), ), ] ], name_func=build_test_name_func(args_to_skip=["reduction"]), ) def test_tracin_dataloader( self, reduction: str, tracin_constructor: Callable, unpack_inputs: bool ) -> None: with tempfile.TemporaryDirectory() as tmpdir: batch_size = 5 ( net, train_dataset, test_samples, test_labels, ) = get_random_model_and_data(tmpdir, unpack_inputs, return_test_data=True) self.assertTrue(isinstance(reduction, str)) criterion = nn.MSELoss(reduction=reduction) self.assertTrue(callable(tracin_constructor)) tracin = tracin_constructor( net, train_dataset, tmpdir, batch_size, criterion, ) train_scores = tracin.influence( _format_batch_into_tuple(test_samples, test_labels, unpack_inputs), k=None, ) tracin_dataloader = tracin_constructor( net, DataLoader(train_dataset, batch_size=batch_size, shuffle=False), tmpdir, None, criterion, ) train_scores_dataloader = tracin_dataloader.influence( _format_batch_into_tuple(test_samples, test_labels, unpack_inputs), k=None, ) assertTensorAlmostEqual( self, train_scores, train_scores_dataloader, delta=0.0, mode="max", )
import tempfile from typing import Callable import torch import torch.nn as nn from captum.influence._core.tracincp import TracInCP from parameterized import parameterized from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.influence._utils.common import ( _format_batch_into_tuple, build_test_name_func, DataInfluenceConstructor, get_random_model_and_data, ) class TestTracInGetKMostInfluential(BaseTest): use_gpu_list = ( [True, False] if torch.cuda.is_available() and torch.cuda.device_count() != 0 else [False] ) param_list = [] for (batch_size, k) in [(4, 7), (7, 4), (40, 5), (5, 40), (40, 45)]: for unpack_inputs in [True, False]: for proponents in [True, False]: for use_gpu in use_gpu_list: for reduction, constr in [ ( "none", DataInfluenceConstructor( TracInCP, name="TracInCP_all_layers" ), ), ( "none", DataInfluenceConstructor( TracInCP, name="linear2", layers=["module.linear2"] if use_gpu else ["linear2"], ), ), ]: if not ( "sample_wise_grads_per_batch" in constr.kwargs and constr.kwargs["sample_wise_grads_per_batch"] and use_gpu ): param_list.append( ( reduction, constr, unpack_inputs, proponents, batch_size, k, use_gpu, ) ) @parameterized.expand( param_list, name_func=build_test_name_func(), ) def test_tracin_k_most_influential( self, reduction: str, tracin_constructor: Callable, unpack_inputs: bool, proponents: bool, batch_size: int, k: int, use_gpu: bool, ) -> None: """ This test constructs a random BasicLinearNet, and checks that the proponents obtained by calling `influence` and sorting are equal to the proponents obtained by calling `_k_most_influential`. Those calls are made through the calls to wrapper method `influence`. """ with tempfile.TemporaryDirectory() as tmpdir: ( net, train_dataset, test_samples, test_labels, ) = get_random_model_and_data( tmpdir, unpack_inputs, True, use_gpu, ) self.assertTrue(isinstance(reduction, str)) self.assertTrue(callable(tracin_constructor)) criterion = nn.MSELoss(reduction=reduction) tracin = tracin_constructor( net, train_dataset, tmpdir, batch_size, criterion, ) train_scores = tracin.influence( _format_batch_into_tuple(test_samples, test_labels, unpack_inputs), k=None, ) sort_idx = torch.argsort(train_scores, dim=1, descending=proponents)[:, 0:k] idx, _train_scores = tracin.influence( _format_batch_into_tuple(test_samples, test_labels, unpack_inputs), k=k, proponents=proponents, ) for i in range(len(idx)): # check that idx[i] is correct assertTensorAlmostEqual( self, train_scores[i, idx[i]], train_scores[i, sort_idx[i]], delta=0.0, mode="max", ) # check that _train_scores[i] is correct assertTensorAlmostEqual( self, _train_scores[i], train_scores[i, sort_idx[i]], delta=0.001, mode="max", )
import tempfile from typing import Callable import torch import torch.nn as nn from captum.influence._core.tracincp import TracInCP from captum.influence._core.tracincp_fast_rand_proj import TracInCPFast from parameterized import parameterized from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.influence._utils.common import ( _format_batch_into_tuple, build_test_name_func, DataInfluenceConstructor, get_random_model_and_data, ) from torch.utils.data import DataLoader class TestTracInSelfInfluence(BaseTest): use_gpu_list = ( [True, False] if torch.cuda.is_available() and torch.cuda.device_count() != 0 else [False] ) param_list = [] for unpack_inputs in [True, False]: for use_gpu in use_gpu_list: for (reduction, constructor) in [ ( "none", DataInfluenceConstructor(TracInCP, name="TracInCP_all_layers"), ), ( "none", DataInfluenceConstructor( TracInCP, name="TracInCP_linear1", layers=["module.linear1"] if use_gpu else ["linear1"], ), ), ( "none", DataInfluenceConstructor( TracInCP, name="TracInCP_linear1_linear2", layers=["module.linear1", "module.linear2"] if use_gpu else ["linear1", "linear2"], ), ), ( "sum", DataInfluenceConstructor( TracInCP, name="TracInCP_sample_wise_grads_per_batch_all_layers", sample_wise_grads_per_batch=True, ), ), ( "sum", DataInfluenceConstructor( TracInCPFast, "TracInCPFast_last_fc_layer" ), ), ( "mean", DataInfluenceConstructor( TracInCPFast, "TracInCPFast_last_fc_layer" ), ), ]: if not ( "sample_wise_grads_per_batch" in constructor.kwargs and constructor.kwargs["sample_wise_grads_per_batch"] and use_gpu ): param_list.append((reduction, constructor, unpack_inputs, use_gpu)) @parameterized.expand( param_list, name_func=build_test_name_func(), ) def test_tracin_self_influence( self, reduction: str, tracin_constructor: Callable, unpack_inputs: bool, use_gpu: bool, ) -> None: with tempfile.TemporaryDirectory() as tmpdir: (net, train_dataset,) = get_random_model_and_data( tmpdir, unpack_inputs, False, use_gpu, ) # compute tracin_scores of training data on training data criterion = nn.MSELoss(reduction=reduction) batch_size = 5 tracin = tracin_constructor( net, train_dataset, tmpdir, batch_size, criterion, ) train_scores = tracin.influence( _format_batch_into_tuple( train_dataset.samples, train_dataset.labels, unpack_inputs ), k=None, ) # calculate self_tracin_scores self_tracin_scores = tracin.self_influence( outer_loop_by_checkpoints=False, ) # check that self_tracin scores equals the diagonal of influence scores assertTensorAlmostEqual( self, torch.diagonal(train_scores), self_tracin_scores, delta=0.01, mode="max", ) # check that setting `outer_loop_by_checkpoints=False` and # `outer_loop_by_checkpoints=True` gives the same self influence scores self_tracin_scores_by_checkpoints = tracin.self_influence( DataLoader(train_dataset, batch_size=batch_size), outer_loop_by_checkpoints=True, ) assertTensorAlmostEqual( self, self_tracin_scores_by_checkpoints, self_tracin_scores, delta=0.01, mode="max", ) @parameterized.expand( [ (reduction, constructor, unpack_inputs) for unpack_inputs in [True, False] for (reduction, constructor) in [ ("none", DataInfluenceConstructor(TracInCP)), ( "sum", DataInfluenceConstructor( TracInCP, sample_wise_grads_per_batch=True, ), ), ("sum", DataInfluenceConstructor(TracInCPFast)), ("mean", DataInfluenceConstructor(TracInCPFast)), ] ], name_func=build_test_name_func(), ) def test_tracin_self_influence_dataloader_vs_single_batch( self, reduction: str, tracin_constructor: Callable, unpack_inputs: bool ) -> None: # tests that the result of calling the public method `self_influence` for a # DataLoader of batches is the same as when the batches are collated into a # single batch with tempfile.TemporaryDirectory() as tmpdir: ( net, train_dataset, ) = get_random_model_and_data(tmpdir, unpack_inputs, return_test_data=False) # create a single batch representing the entire dataset single_batch = next( iter(DataLoader(train_dataset, batch_size=len(train_dataset))) ) # create a dataloader that yields batches from the dataset dataloader = DataLoader(train_dataset, batch_size=5) # create tracin instance criterion = nn.MSELoss(reduction=reduction) batch_size = 5 tracin = tracin_constructor( net, train_dataset, tmpdir, batch_size, criterion, ) # compute self influence using `self_influence` when passing in a single # batch single_batch_self_influence = tracin.self_influence(single_batch) # compute self influence using `self_influence` when passing in a # dataloader with the same examples dataloader_self_influence = tracin.self_influence(dataloader) # the two self influences should be equal assertTensorAlmostEqual( self, single_batch_self_influence, dataloader_self_influence, delta=0.01, # due to numerical issues, we can't set this to 0.0 mode="max", )
import tempfile from typing import Callable import torch.nn as nn from captum.influence._core.tracincp import TracInCP from captum.influence._core.tracincp_fast_rand_proj import TracInCPFast from parameterized import parameterized from tests.helpers.basic import BaseTest from tests.influence._utils.common import ( build_test_name_func, DataInfluenceConstructor, get_random_model_and_data, ) class TestTracinValidator(BaseTest): param_list = [] for reduction, constr in [ ( "none", DataInfluenceConstructor(TracInCP, name="TracInCP"), ), ( "mean", DataInfluenceConstructor( TracInCPFast, name="TracInCpFast", ), ), ]: param_list.append((reduction, constr)) @parameterized.expand( param_list, name_func=build_test_name_func(), ) def test_tracin_require_inputs_dataset( self, reduction, tracin_constructor: Callable, ) -> None: """ This test verifies that tracinCP and tracinCPFast influence methods required `inputs_dataset`. """ with tempfile.TemporaryDirectory() as tmpdir: ( net, train_dataset, test_samples, test_labels, ) = get_random_model_and_data(tmpdir, unpack_inputs=False) criterion = nn.MSELoss(reduction=reduction) tracin = tracin_constructor( net, train_dataset, tmpdir, loss_fn=criterion, batch_size=1, ) with self.assertRaisesRegex(AssertionError, "required."): tracin.influence(None, k=None)
import os import tempfile from collections import OrderedDict from typing import Callable, cast, Optional import torch import torch.nn as nn import torch.nn.functional as F from captum.influence._core.tracincp import TracInCP from parameterized import parameterized from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.influence._utils.common import ( _wrap_model_in_dataparallel, BasicLinearNet, BinaryDataset, build_test_name_func, DataInfluenceConstructor, ) class TestTracInXOR(BaseTest): # TODO: Move test setup to use setUp and tearDown method overrides. def _test_tracin_xor_setup(self, tmpdir: str, use_gpu: bool = False): net = BasicLinearNet(2, 2, 1) state = OrderedDict( [ ( "linear1.weight", torch.Tensor([[-1.2956, -1.4465], [-0.3890, -0.7420]]), ), ("linear1.bias", torch.Tensor([1.2924, 0.0021])), ("linear2.weight", torch.Tensor([[-1.2013, 0.7174]])), ("linear2.bias", torch.Tensor([0.5880])), ] ) net.load_state_dict(state) net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net checkpoint_name = "-".join(["checkpoint", "class", "0" + ".pt"]) torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) state = OrderedDict( [ ( "linear1.weight", torch.Tensor([[-1.3238, -1.4899], [-0.4544, -0.7448]]), ), ("linear1.bias", torch.Tensor([1.3185, -0.0317])), ("linear2.weight", torch.Tensor([[-1.2342, 0.7741]])), ("linear2.bias", torch.Tensor([0.6234])), ] ) net.load_state_dict(state) net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net checkpoint_name = "-".join(["checkpoint", "class", "1" + ".pt"]) torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) state = OrderedDict( [ ( "linear1.weight", torch.Tensor([[-1.3546, -1.5288], [-0.5250, -0.7591]]), ), ("linear1.bias", torch.Tensor([1.3432, -0.0684])), ("linear2.weight", torch.Tensor([[-1.2490, 0.8534]])), ("linear2.bias", torch.Tensor([0.6749])), ] ) net.load_state_dict(state) net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net checkpoint_name = "-".join(["checkpoint", "class", "2" + ".pt"]) torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) state = OrderedDict( [ ( "linear1.weight", torch.Tensor([[-1.4022, -1.5485], [-0.5688, -0.7607]]), ), ("linear1.bias", torch.Tensor([1.3740, -0.1571])), ("linear2.weight", torch.Tensor([[-1.3412, 0.9013]])), ("linear2.bias", torch.Tensor([0.6468])), ] ) net.load_state_dict(state) net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net checkpoint_name = "-".join(["checkpoint", "class", "3" + ".pt"]) torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) state = OrderedDict( [ ( "linear1.weight", torch.Tensor([[-1.4464, -1.5890], [-0.6348, -0.7665]]), ), ("linear1.bias", torch.Tensor([1.3791, -0.2008])), ("linear2.weight", torch.Tensor([[-1.3818, 0.9586]])), ("linear2.bias", torch.Tensor([0.6954])), ] ) net.load_state_dict(state) net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net checkpoint_name = "-".join(["checkpoint", "class", "4" + ".pt"]) torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) state = OrderedDict( [ ( "linear1.weight", torch.Tensor([[-1.5217, -1.6242], [-0.6644, -0.7842]]), ), ("linear1.bias", torch.Tensor([1.3500, -0.2418])), ("linear2.weight", torch.Tensor([[-1.4304, 0.9980]])), ("linear2.bias", torch.Tensor([0.7567])), ] ) net.load_state_dict(state) net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net checkpoint_name = "-".join(["checkpoint", "class", "5" + ".pt"]) torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) state = OrderedDict( [ ( "linear1.weight", torch.Tensor([[-1.5551, -1.6631], [-0.7420, -0.8025]]), ), ("linear1.bias", torch.Tensor([1.3508, -0.2618])), ("linear2.weight", torch.Tensor([[-1.4272, 1.0772]])), ("linear2.bias", torch.Tensor([0.8427])), ] ) net.load_state_dict(state) net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net checkpoint_name = "-".join(["checkpoint", "class", "6" + ".pt"]) torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) state = OrderedDict( [ ( "linear1.weight", torch.Tensor([[-1.5893, -1.6656], [-0.7863, -0.8369]]), ), ("linear1.bias", torch.Tensor([1.3949, -0.3215])), ("linear2.weight", torch.Tensor([[-1.4555, 1.1600]])), ("linear2.bias", torch.Tensor([0.8730])), ] ) net.load_state_dict(state) net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net checkpoint_name = "-".join(["checkpoint", "class", "7" + ".pt"]) torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) dataset = BinaryDataset(use_gpu) return net_adjusted, dataset parametrized_list = [ ( "none", DataInfluenceConstructor( TracInCP, name="TracInCP_linear1", layers=["linear1"] ), "check_idx", False, ), ( "none", DataInfluenceConstructor(TracInCP, name="TracInCP_all_layers"), "check_idx", False, ), ( None, DataInfluenceConstructor(TracInCP, name="TracInCP_all_layers"), "sample_wise_trick", False, ), ( None, DataInfluenceConstructor( TracInCP, name="TracInCP_linear1_linear2", layers=["linear1", "linear2"] ), "sample_wise_trick", False, ), ] if torch.cuda.is_available() and torch.cuda.device_count() != 0: parametrized_list.extend( [ ( "none", DataInfluenceConstructor(TracInCP, name="TracInCP_all_layers"), "check_idx", True, ), ( "none", DataInfluenceConstructor( TracInCP, name="TracInCP_linear1_linear2", layers=["module.linear1", "module.linear2"], ), "check_idx", True, ), ], ) @parameterized.expand( parametrized_list, name_func=build_test_name_func(args_to_skip=["reduction"]), ) def test_tracin_xor( self, reduction: Optional[str], tracin_constructor: Callable, mode: str, use_gpu: bool, ) -> None: with tempfile.TemporaryDirectory() as tmpdir: batch_size = 4 net, dataset = self._test_tracin_xor_setup(tmpdir, use_gpu) testset = F.normalize(torch.empty(100, 2).normal_(mean=0, std=0.5), dim=1) mask = ~torch.logical_xor(testset[:, 0] > 0, testset[:, 1] > 0) testlabels = ( torch.where(mask, torch.tensor(1), torch.tensor(-1)) .unsqueeze(1) .float() ) if use_gpu: testset = testset.cuda() testlabels = testlabels.cuda() self.assertTrue(callable(tracin_constructor)) if mode == "check_idx": self.assertTrue(isinstance(reduction, str)) criterion = nn.MSELoss(reduction=cast(str, reduction)) tracin = tracin_constructor( net, dataset, tmpdir, batch_size, criterion, ) test_scores = tracin.influence((testset, testlabels)) idx = torch.argsort(test_scores, dim=1, descending=True) # check that top 5 influences have matching binary classification for i in range(len(idx)): influence_labels = dataset.labels[idx[i][0:5], 0] self.assertTrue(torch.all(testlabels[i, 0] == influence_labels)) if mode == "sample_wise_trick": criterion = nn.MSELoss(reduction="none") tracin = tracin_constructor( net, dataset, tmpdir, batch_size, criterion, sample_wise_grads_per_batch=False, ) # With sample-wise trick criterion = nn.MSELoss(reduction="sum") tracin_sample_wise_trick = tracin_constructor( net, dataset, tmpdir, batch_size, criterion, sample_wise_grads_per_batch=True, ) test_scores = tracin.influence((testset, testlabels)) test_scores_sample_wise_trick = tracin_sample_wise_trick.influence( (testset, testlabels) ) assertTensorAlmostEqual( self, test_scores, test_scores_sample_wise_trick )
import os import tempfile from typing import Callable, cast, Optional import torch import torch.nn as nn from captum.influence._core.tracincp import TracInCP from captum.influence._core.tracincp_fast_rand_proj import ( TracInCPFast, TracInCPFastRandProj, ) from parameterized import parameterized from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.influence._utils.common import ( _isSorted, _wrap_model_in_dataparallel, build_test_name_func, CoefficientNet, DataInfluenceConstructor, IdentityDataset, RangeDataset, ) class TestTracInRegression(BaseTest): def _test_tracin_regression_setup( self, tmpdir: str, features: int, use_gpu: bool = False ): low = 1 high = 17 dataset = RangeDataset(low, high, features, use_gpu) net = CoefficientNet(in_features=features) checkpoint_name = "-".join(["checkpoint-reg", "0" + ".pt"]) torch.save(net.state_dict(), os.path.join(tmpdir, checkpoint_name)) weights = [0.4379, 0.1653, 0.5132, 0.3651, 0.9992] for i, weight in enumerate(weights): net.fc1.weight.data.fill_(weight) net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net checkpoint_name = "-".join(["checkpoint-reg", str(i + 1) + ".pt"]) torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) return dataset, net_adjusted use_gpu_list = ( [True, False] if torch.cuda.is_available() and torch.cuda.device_count() != 0 else [False] ) param_list = [] for use_gpu in use_gpu_list: for dim in [1, 20]: for (mode, reduction, constructor) in [ ( "check_idx", "none", DataInfluenceConstructor(TracInCP, name="TracInCP_all_layers"), ), ( "check_idx", "none", DataInfluenceConstructor( TracInCP, name="TracInCP_fc1", layers=["module.fc1"] if use_gpu else ["fc1"], ), ), ( "sample_wise_trick", None, DataInfluenceConstructor(TracInCP, name="TracInCP_fc1"), ), ( "check_idx", "sum", DataInfluenceConstructor( TracInCPFast, name="TracInCPFast_last_fc_layer" ), ), ( "check_idx", "sum", DataInfluenceConstructor( TracInCPFastRandProj, name="TracInCPFast_last_fc_layer" ), ), ( "check_idx", "mean", DataInfluenceConstructor( TracInCPFast, name="TracInCPFast_last_fc_layer" ), ), ( "check_idx", "mean", DataInfluenceConstructor( TracInCPFastRandProj, name="TracInCPFastRandProj_last_fc_layer" ), ), ( "check_idx", "sum", DataInfluenceConstructor( TracInCPFastRandProj, name="TracInCPFastRandProj1DimensionalProjection_last_fc_layer", projection_dim=1, ), ), ( "check_idx", "mean", DataInfluenceConstructor( TracInCPFast, name="TracInCPFastDuplicateLossFn", duplicate_loss_fn=True, ), ), # add a test where `duplicate_loss_fn` is True ( "check_idx", "mean", DataInfluenceConstructor( TracInCPFastRandProj, name="TracInCPFastRandProjDuplicateLossFn", duplicate_loss_fn=True, ), # add a test where `duplicate_loss_fn` is True ), ]: if not (mode == "sample_wise_trick" and use_gpu): param_list.append((reduction, constructor, mode, dim, use_gpu)) @parameterized.expand( param_list, name_func=build_test_name_func(args_to_skip=["reduction"]), ) def test_tracin_regression( self, reduction: Optional[str], tracin_constructor: Callable, mode: str, features: int, use_gpu: bool, ) -> None: with tempfile.TemporaryDirectory() as tmpdir: batch_size = 4 dataset, net = self._test_tracin_regression_setup( tmpdir, features, use_gpu, ) # and not mode == 'sample_wise_trick' # check influence scores of training data train_inputs = dataset.samples train_labels = dataset.labels test_inputs = ( torch.arange(17, 33, dtype=torch.float).unsqueeze(1).repeat(1, features) ) if use_gpu: test_inputs = test_inputs.cuda() test_labels = test_inputs self.assertTrue(callable(tracin_constructor)) if mode == "check_idx": self.assertTrue(isinstance(reduction, str)) criterion = nn.MSELoss(reduction=cast(str, reduction)) tracin = tracin_constructor( net, dataset, tmpdir, batch_size, criterion, ) train_scores = tracin.influence((train_inputs, train_labels)) idx, _ = tracin.influence( (train_inputs, train_labels), k=len(dataset), proponents=True ) # check that top influence is one with maximal value # (and hence gradient) for i in range(len(idx)): self.assertEqual(idx[i][0], 15) # check influence scores of test data test_scores = tracin.influence((test_inputs, test_labels)) idx, _ = tracin.influence( (test_inputs, test_labels), k=len(test_inputs), proponents=True ) # check that top influence is one with maximal value # (and hence gradient) for i in range(len(idx)): self.assertTrue(_isSorted(idx[i])) if mode == "sample_wise_trick": criterion = nn.MSELoss(reduction="none") tracin = tracin_constructor( net, dataset, tmpdir, batch_size, criterion, sample_wise_grads_per_batch=False, ) # With sample-wise trick criterion = nn.MSELoss(reduction="sum") tracin_sample_wise_trick = tracin_constructor( net, dataset, tmpdir, batch_size, criterion, sample_wise_grads_per_batch=True, ) train_scores = tracin.influence((train_inputs, train_labels)) train_scores_sample_wise_trick = tracin_sample_wise_trick.influence( (train_inputs, train_labels) ) assertTensorAlmostEqual( self, train_scores, train_scores_sample_wise_trick ) test_scores = tracin.influence((test_inputs, test_labels)) test_scores_sample_wise_trick = tracin_sample_wise_trick.influence( (test_inputs, test_labels) ) assertTensorAlmostEqual( self, test_scores, test_scores_sample_wise_trick ) @parameterized.expand( [ ( "sum", DataInfluenceConstructor(TracInCP, sample_wise_grads_per_batch=True), ), ("sum", DataInfluenceConstructor(TracInCPFast)), ("sum", DataInfluenceConstructor(TracInCPFastRandProj)), ("mean", DataInfluenceConstructor(TracInCPFast)), ("mean", DataInfluenceConstructor(TracInCPFastRandProj)), ], name_func=build_test_name_func(), ) def test_tracin_regression_1D_numerical( self, reduction: str, tracin_constructor: Callable ) -> None: low = 1 high = 17 features = 1 dataset = RangeDataset(low, high, features) net = CoefficientNet() self.assertTrue(isinstance(reduction, str)) criterion = nn.MSELoss(reduction=cast(str, reduction)) batch_size = 4 weights = [0.4379, 0.1653, 0.5132, 0.3651, 0.9992] train_inputs = dataset.samples train_labels = dataset.labels with tempfile.TemporaryDirectory() as tmpdir: for i, weight in enumerate(weights): net.fc1.weight.data.fill_(weight) checkpoint_name = "-".join(["checkpoint-reg", str(i + 1) + ".pt"]) torch.save(net.state_dict(), os.path.join(tmpdir, checkpoint_name)) self.assertTrue(callable(tracin_constructor)) tracin = tracin_constructor( net, dataset, tmpdir, batch_size, criterion, ) train_scores = tracin.influence((train_inputs, train_labels), k=None) r""" Derivation for gradient / resulting TracIn score: For each checkpoint: $y = Wx,$ and $loss = (y - label)^2.$ Recall for this test case, there is no activation on y. For this example, $label = x.$ Fast Rand Proj gives $\nabla_W loss = \nabla_y loss (x^T).$ We have $x$ and y as scalars so we can simply multiply. So then, \[\nabla_y loss * x = 2(y-x)*x = 2(Wx -x)*x = 2x^2 (w - 1).\] And we simply multiply these for x, x'. In this case, $x, x' \in [1..16]$. """ for i in range(train_scores.shape[0]): for j in range(len(train_scores[0])): _weights = torch.Tensor(weights) num = 2 * (i + 1) * (i + 1) * (_weights - 1) num *= 2 * (j + 1) * (j + 1) * (_weights - 1) assertTensorAlmostEqual( self, torch.sum(num), train_scores[i][j], delta=0.1 ) def _test_tracin_identity_regression_setup(self, tmpdir: str): num_features = 7 dataset = IdentityDataset(num_features) net = CoefficientNet() num_checkpoints = 5 for i in range(num_checkpoints): net.fc1.weight.data = torch.rand((1, num_features)) checkpoint_name = "-".join(["checkpoint-reg", str(i) + ".pt"]) torch.save(net.state_dict(), os.path.join(tmpdir, checkpoint_name)) return dataset, net @parameterized.expand( [ ("check_idx", "none", DataInfluenceConstructor(TracInCP)), ("check_idx", "none", DataInfluenceConstructor(TracInCP, layers=["fc1"])), ("sample_wise_trick", None, DataInfluenceConstructor(TracInCP)), ( "sample_wise_trick", None, DataInfluenceConstructor(TracInCP, layers=["fc1"]), ), ("check_idx", "sum", DataInfluenceConstructor(TracInCPFast)), ("check_idx", "sum", DataInfluenceConstructor(TracInCPFastRandProj)), ("check_idx", "mean", DataInfluenceConstructor(TracInCPFast)), ("check_idx", "mean", DataInfluenceConstructor(TracInCPFastRandProj)), ], name_func=build_test_name_func(), ) def test_tracin_identity_regression( self, mode: str, reduction: Optional[str], tracin_constructor: Callable ) -> None: """ This test uses a linear model with positive coefficients, where input feature matrix is the identity matrix. Since the dot product between 2 different training instances is always 0, when calculating influence scores on the training data, only self influence scores will be nonzero. Since the linear model has positive coefficients, self influence scores will be positive. Thus, the training instance with the largest influence on another training instance is itself. """ with tempfile.TemporaryDirectory() as tmpdir: batch_size = 4 dataset, net = self._test_tracin_identity_regression_setup(tmpdir) train_inputs = dataset.samples train_labels = dataset.labels self.assertTrue(callable(tracin_constructor)) if mode == "check_idx": self.assertTrue(isinstance(reduction, str)) criterion = nn.MSELoss(reduction=cast(str, reduction)) tracin = tracin_constructor( net, dataset, tmpdir, batch_size, criterion, ) # check influence scores of training data train_scores = tracin.influence((train_inputs, train_labels)) idx, _ = tracin.influence( (train_inputs, train_labels), k=len(dataset), proponents=True ) # check that top influence for an instance is itself for i in range(len(idx)): self.assertEqual(idx[i][0], i) if mode == "sample_wise_trick": criterion = nn.MSELoss(reduction="none") tracin = tracin_constructor( net, dataset, tmpdir, batch_size, criterion, sample_wise_grads_per_batch=False, ) # With sample-wise trick criterion = nn.MSELoss(reduction="sum") tracin_sample_wise_trick = tracin_constructor( net, dataset, tmpdir, batch_size, criterion, sample_wise_grads_per_batch=True, ) train_scores = tracin.influence((train_inputs, train_labels)) train_scores_tracin_sample_wise_trick = ( tracin_sample_wise_trick.influence((train_inputs, train_labels)) ) assertTensorAlmostEqual( self, train_scores, train_scores_tracin_sample_wise_trick ) @parameterized.expand( [ ("none", "none", DataInfluenceConstructor(TracInCP)), ( "mean", "mean", DataInfluenceConstructor(TracInCP, sample_wise_grads_per_batch=True), ), ("sum", "sum", DataInfluenceConstructor(TracInCPFast)), ("mean", "mean", DataInfluenceConstructor(TracInCPFast)), ("sum", "sum", DataInfluenceConstructor(TracInCPFastRandProj)), ("mean", "mean", DataInfluenceConstructor(TracInCPFastRandProj)), ], name_func=build_test_name_func(), ) def test_tracin_constant_test_loss_fn( self, reduction: Optional[str], test_reduction: Optional[str], tracin_constructor: Callable, ) -> None: """ All implementations of `TracInCPBase` can accept `test_loss_fn` in initialization, which sets the loss function applied to test examples, which can thus be different from the loss function applied to training examples. This test passes `test_loss_fn` to be a constant function. Then, the influence scores should all be 0, because gradients w.r.t. `test_loss_fn` will all be 0. It re-uses the dataset and model from `test_tracin_identity_regression`. The reduction for `loss_fn` and `test_loss_fn` initialization arguments is the same for all parameterized tests, for simplicity, and also because for `TracInCP`, both loss functions must both be reduction loss functions (i.e. reduction is "mean" or "sum"), or both be per-example loss functions (i.e. reduction is "none"). Recall that for `TracInCP`, the `sample_wise_grads_per_batch` initialization argument determines which of those cases holds. """ with tempfile.TemporaryDirectory() as tmpdir: batch_size = 4 dataset, net = self._test_tracin_identity_regression_setup(tmpdir) train_inputs = dataset.samples train_labels = dataset.labels self.assertTrue(callable(tracin_constructor)) self.assertTrue(isinstance(reduction, str)) criterion = nn.MSELoss(reduction=cast(str, reduction)) # the output of `net`, i.e. `input` for the loss functions below, is a # batch_size x 1 2D tensor if test_reduction == "none": # loss function returns 1D tensor of all 0's, so is constant def test_loss_fn(input, target): return input.squeeze() * 0.0 elif test_reduction in ["sum", "mean"]: # loss function returns scalar tensor of all 0's, so is constant def test_loss_fn(input, target): return input.mean() * 0.0 tracin = tracin_constructor( net, dataset, tmpdir, batch_size, criterion, test_loss_fn=test_loss_fn, ) # check influence scores of training data. they should all be 0 train_scores = tracin.influence((train_inputs, train_labels), k=None) assertTensorAlmostEqual(self, train_scores, torch.zeros(train_scores.shape))
import io import tempfile import unittest import unittest.mock from typing import Callable import torch.nn as nn from captum.influence._core.tracincp import TracInCP from captum.influence._core.tracincp_fast_rand_proj import TracInCPFast from parameterized import parameterized from tests.helpers.basic import BaseTest from tests.influence._utils.common import ( build_test_name_func, DataInfluenceConstructor, get_random_model_and_data, ) from torch.utils.data import DataLoader class TestTracInShowProgress(BaseTest): """ This tests that the progress bar correctly shows a "100%" message at some point in the relevant computations. Progress bars are shown for calls to the `influence` method for all 3 modes. This is why 3 different modes are tested, and the mode being tested is a parameter in the test. `TracInCPFastRandProj.influence` is not tested, because none of its modes involve computations over the entire training dataset, so that no progress bar is shown (the computation is instead done in `TracInCPFastRandProj.__init__`. TODO: add progress bar for computations done in `TracInCPFastRandProj.__init__`). """ def _check_error_msg_multiplicity( self, mock_stderr: io.StringIO, msg: str, msg_multiplicity: int, greater_than: bool = True, ): """ Checks that in `mock_stderr`, the error msg `msg` occurs `msg_multiplicity` times. If 'greater_than' is true, it checks that the `msg` occurs at least `msg_multiplicity` times. Otherwise, it checks that `msg` occurs exactly `msg_multiplicity` times. The reason to let `greater_than` as true by default is that tqdm sometimes displays the "100%" more than once for each progress bar because it may want to correct its estimation of it/s. In this case, the tqdm could remove the original "100%" and then re-display "100%" with the updated estimate of it/s. """ output = mock_stderr.getvalue() actual_msg_multiplicity = output.count(msg) assert isinstance(actual_msg_multiplicity, int) error_msg = ( f"Error in progress of batches with output looking for '{msg}'" f" at least {msg_multiplicity} times" f"(found {actual_msg_multiplicity}) in {repr(output)}" ) if greater_than: self.assertGreaterEqual( actual_msg_multiplicity, msg_multiplicity, error_msg ) else: self.assertEqual( actual_msg_multiplicity, msg_multiplicity, error_msg, ) @parameterized.expand( [ ( reduction, constr, mode, ) for reduction, constr in [ ( "none", DataInfluenceConstructor(TracInCP), ), ( "sum", DataInfluenceConstructor(TracInCPFast), ), ] for mode in [ "self influence by checkpoints", "self influence by batches", "influence", "k-most", ] ], name_func=build_test_name_func(args_to_skip=["reduction"]), ) def test_tracin_show_progress( self, reduction: str, tracin_constructor: Callable, mode: str, ) -> None: with unittest.mock.patch("sys.stderr", new_callable=io.StringIO) as mock_stderr: with tempfile.TemporaryDirectory() as tmpdir: batch_size = 5 ( net, train_dataset, test_samples, test_labels, ) = get_random_model_and_data( tmpdir, unpack_inputs=False, return_test_data=True ) self.assertTrue(isinstance(reduction, str)) criterion = nn.MSELoss(reduction=reduction) self.assertTrue(callable(tracin_constructor)) tracin = tracin_constructor( net, train_dataset, tmpdir, batch_size, criterion, ) if mode == "self influence by checkpoints": # this tests progress for computing self influence scores, when # `outer_loop_by_checkpoints` is True. In this case, we should see a # single outer progress bar over checkpoints, and for every # checkpoints, a separate progress bar over batches tracin.self_influence( DataLoader(train_dataset, batch_size=batch_size), show_progress=True, outer_loop_by_checkpoints=True, ) # We are showing nested progress bars for the `self_influence` # method, with the outer progress bar over checkpoints, and # the inner progress bar over batches. First, we check that # the outer progress bar reaches 100% once self._check_error_msg_multiplicity( mock_stderr, ( f"Using {tracin.get_name()} to compute self influence. " "Processing checkpoint: 100%" ), 1, ) # Second, we check that the inner progress bar reaches 100% # once for each checkpoint in `tracin.checkpoints` self._check_error_msg_multiplicity( mock_stderr, ( f"Using {tracin.get_name()} to compute self influence. " "Processing batch: 100%" ), len(tracin.checkpoints), ) elif mode == "self influence by batches": # This tests progress for computing self influence scores, when # `outer_loop_by_checkpoints` is False. In this case, we should see # a single outer progress bar over batches. tracin.self_influence( DataLoader(train_dataset, batch_size=batch_size), show_progress=True, outer_loop_by_checkpoints=False, ) self._check_error_msg_multiplicity( mock_stderr, ( f"Using {tracin.get_name()} to compute self influence. " "Processing batch: 100%" ), 1, ) elif mode == "influence": tracin.influence( (test_samples, test_labels), k=None, show_progress=True, ) # Since the computation iterates once over training batches, we # check that the progress bar over batches reaches 100% once self._check_error_msg_multiplicity( mock_stderr, ( f"Using {tracin.get_name()} to compute influence " "for training batches: 100%" ), 1, ) elif mode == "k-most": tracin.influence( (test_samples, test_labels), k=2, proponents=True, show_progress=True, ) # Since the computation iterates once over training batches, we # check that the progress bar over batches reaches 100% once, and # that the message is specific for finding proponents. self._check_error_msg_multiplicity( mock_stderr, ( f"Using {tracin.get_name()} to perform computation for " "getting proponents. Processing training batches: 100%" ), 1, ) mock_stderr.seek(0) mock_stderr.truncate(0) tracin.influence( (test_samples, test_labels), k=2, proponents=False, show_progress=True, ) # Since the computation iterates once over training batches, we # check that the progress bar over batches reaches 100% once, and # that the message is specific for finding opponents. self._check_error_msg_multiplicity( mock_stderr, ( f"Using {tracin.get_name()} to perform computation for " "getting opponents. Processing training batches: 100%" ), 1, ) else: raise Exception("unknown test mode") mock_stderr.seek(0) mock_stderr.truncate(0)
import tempfile from typing import Callable import torch import torch.nn as nn from captum.influence._core.tracincp import TracInCP from captum.influence._core.tracincp_fast_rand_proj import ( TracInCPFast, TracInCPFastRandProj, ) from parameterized import parameterized from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.influence._utils.common import ( _format_batch_into_tuple, build_test_name_func, DataInfluenceConstructor, get_random_model_and_data, ) from torch.utils.data import DataLoader class TestTracInIntermediateQuantities(BaseTest): @parameterized.expand( [ (reduction, constructor, unpack_inputs) for unpack_inputs in [True, False] for (reduction, constructor) in [ ("none", DataInfluenceConstructor(TracInCP)), ] ], name_func=build_test_name_func(), ) def test_tracin_intermediate_quantities_aggregate( self, reduction: str, tracin_constructor: Callable, unpack_inputs: bool ) -> None: """ tests that calling `compute_intermediate_quantities` with `aggregate=True` does give the same result as calling it with `aggregate=False`, and then summing """ with tempfile.TemporaryDirectory() as tmpdir: (net, train_dataset,) = get_random_model_and_data( tmpdir, unpack_inputs, return_test_data=False, ) # create a dataloader that yields batches from the dataset train_dataset = DataLoader(train_dataset, batch_size=5) # create tracin instance criterion = nn.MSELoss(reduction=reduction) batch_size = 5 tracin = tracin_constructor( net, train_dataset, tmpdir, batch_size, criterion, ) intermediate_quantities = tracin.compute_intermediate_quantities( train_dataset, aggregate=False ) aggregated_intermediate_quantities = tracin.compute_intermediate_quantities( train_dataset, aggregate=True ) assertTensorAlmostEqual( self, torch.sum(intermediate_quantities, dim=0, keepdim=True), aggregated_intermediate_quantities, delta=1e-4, # due to numerical issues, we can't set this to 0.0 mode="max", ) @parameterized.expand( [ (reduction, constructor, unpack_inputs) for unpack_inputs in [True, False] for (reduction, constructor) in [ ("sum", DataInfluenceConstructor(TracInCPFastRandProj)), ("none", DataInfluenceConstructor(TracInCP)), ] ], name_func=build_test_name_func(), ) def test_tracin_intermediate_quantities_api( self, reduction: str, tracin_constructor: Callable, unpack_inputs: bool ) -> None: """ tests that the result of calling the public method `compute_intermediate_quantities` for a DataLoader of batches is the same as when the batches are collated into a single batch """ with tempfile.TemporaryDirectory() as tmpdir: (net, train_dataset,) = get_random_model_and_data( tmpdir, unpack_inputs, return_test_data=False, ) # create a single batch representing the entire dataset single_batch = next( iter(DataLoader(train_dataset, batch_size=len(train_dataset))) ) # create a dataloader that yields batches from the dataset dataloader = DataLoader(train_dataset, batch_size=5) # create tracin instance criterion = nn.MSELoss(reduction=reduction) batch_size = 5 tracin = tracin_constructor( net, train_dataset, tmpdir, batch_size, criterion, ) # compute intermediate quantities using `compute_intermediate_quantities` # when passing in a single batch single_batch_intermediate_quantities = ( tracin.compute_intermediate_quantities(single_batch) ) # compute intermediate quantities using `compute_intermediate_quantities` # when passing in a dataloader with the same examples dataloader_intermediate_quantities = tracin.compute_intermediate_quantities( dataloader, ) # the two self influences should be equal assertTensorAlmostEqual( self, single_batch_intermediate_quantities, dataloader_intermediate_quantities, delta=0.01, # due to numerical issues, we can't set this to 0.0 mode="max", ) @parameterized.expand( [ ( reduction, constructor, intermediate_quantities_tracin_constructor, unpack_inputs, ) for unpack_inputs in [True, False] for ( reduction, constructor, intermediate_quantities_tracin_constructor, ) in [ ( "sum", DataInfluenceConstructor(TracInCPFast), DataInfluenceConstructor(TracInCPFastRandProj), ), ( "none", DataInfluenceConstructor(TracInCP), DataInfluenceConstructor(TracInCP), ), ] ], name_func=build_test_name_func(), ) def test_tracin_intermediate_quantities_consistent( self, reduction: str, tracin_constructor: Callable, intermediate_quantities_tracin_constructor: Callable, unpack_inputs: bool, ) -> None: """ Since the influence score of a test batch on a training data should be the dot product of their intermediate quantities, checks that this is the case, by computing the influence score 2 different ways and checking they give the same results: 1) with the `influence` method, and by using the `compute_intermediate_quantities` method on the test and training data, and taking the dot product. No projection should be done. Otherwise, the projection will cause error. For 1), we use an implementation that does not use intermediate quantities, i.e. `TracInCPFast`. For 2), we use a method that does use intermediate quantities, i.e. `TracInCPFastRandProj`. Since the methods for the 2 cases are different, we need to parametrize the test with 2 different tracin constructors. `tracin_constructor` is the constructor for the tracin implementation for case 1. `intermediate_quantities_tracin_constructor` is the constructor for the tracin implementation for case 2. """ with tempfile.TemporaryDirectory() as tmpdir: ( net, train_dataset, test_features, test_labels, ) = get_random_model_and_data(tmpdir, unpack_inputs, return_test_data=True) # create a dataloader that yields batches from the dataset train_dataset = DataLoader(train_dataset, batch_size=5) # create tracin instance criterion = nn.MSELoss(reduction=reduction) batch_size = 5 tracin = tracin_constructor( net, train_dataset, tmpdir, batch_size, criterion, ) # create tracin instance which exposes `intermediate_quantities` intermediate_quantities_tracin = intermediate_quantities_tracin_constructor( net, train_dataset, tmpdir, batch_size, criterion, ) # compute influence scores without using `compute_intermediate_quantities` test_batch = _format_batch_into_tuple( test_features, test_labels, unpack_inputs ) scores = tracin.influence( test_batch, ) # the influence score is the dot product of intermediate quantities intermediate_quantities_scores = torch.matmul( intermediate_quantities_tracin.compute_intermediate_quantities( test_batch ), intermediate_quantities_tracin.compute_intermediate_quantities( train_dataset ).T, ) # the scores computed using the two methods should be the same assertTensorAlmostEqual( self, scores, intermediate_quantities_scores, delta=0.01, # due to numerical issues, we can't set this to 0.0 mode="max", ) @parameterized.expand( [ (reduction, constructor, projection_dim, unpack_inputs) for unpack_inputs in [False] for (reduction, constructor, projection_dim) in [ ("sum", DataInfluenceConstructor(TracInCPFastRandProj), None), ("sum", DataInfluenceConstructor(TracInCPFastRandProj), 2), ("sum", DataInfluenceConstructor(TracInCPFastRandProj), 4), ("sum", DataInfluenceConstructor(TracInCPFastRandProj), 9), ("sum", DataInfluenceConstructor(TracInCPFastRandProj), 10), ("sum", DataInfluenceConstructor(TracInCPFastRandProj), 12), ] ], name_func=build_test_name_func(), ) def test_tracin_intermediate_quantities_projection_consistency( self, reduction: str, tracin_constructor: Callable, projection_dim: int, unpack_inputs: bool, ) -> None: """ tests that the result of calling the public method "compute_intermediate_quantities" with TracInCPFastRandProj with/without projection_dim gives embedding of correct size. if projection_dim None, size should be dim of input to final layer * num classes * num checkpoints. otherwise it should be "at most" projection_dim * num checkpoints. See inline comments for "at most" caveat """ with tempfile.TemporaryDirectory() as tmpdir: (net, train_dataset,) = get_random_model_and_data( tmpdir, unpack_inputs, return_test_data=False, ) # create a single batch batch_size = 1 single_batch = next(iter(DataLoader(train_dataset, batch_size=batch_size))) # NOW add projection_dim as a parameter passed in kwargs = {"projection_dim": projection_dim} # create tracin instance criterion = nn.MSELoss(reduction=reduction) tracin = tracin_constructor( net, train_dataset, tmpdir, batch_size, criterion, **kwargs ) # compute intermediate quantities using `compute_intermediate_quantities` # when passing in a single batch single_batch_intermediate_quantities = ( tracin.compute_intermediate_quantities(single_batch) ) """ net has in_features = 5, hidden_nodes (layer_input_dim) = 4, out_features (jacobian_dim) = 3 and 5 checkpoints projection only happens (A) if project_dim < layer_input_dim * jacobian_dim ( 4 * 3 = 12 here ) also if jacobian_dim < int(sqrt(projection dim)), then jacobian_dim is not projected down similarly if layer_input_dim < int(sqrt(projection dim)), then it is not projected down in other words, jacobian_dim_post = min(jacobian_dim, int(sqrt(projection dim))) layer_input_dim_post = min(layer_input_dim, int(sqrt(projection dim))) and if not None and projection_dim < layer_input_dim * jacobian_dim (B) final_projection_dim = jacobian_dim_post * layer_input_dim_post * num_checkpoints if project dim = None we expect final dimension size of layer_input * jacobian_dim * num checkpoints = 4 * 3 * 5 = 60 dimension otherwise using (B) if project dim = 2 we expect 1 * 1 * 5 = 5 project dim = 4 we expect 2 * 2 * 5 = 20 project dim = 9 we expect 3 * 3 * 5 = 45 project dim = 10 we expect 3 * 3 * 5 = 45 project dim = 12 we expect 4 * 3 * 5 = 60 ( don't project since not (A)) """ # print(single_batch_intermediate_quantities.shape) expected_dim = {None: 60, 2: 5, 4: 20, 9: 45, 10: 45, 12: 60} self.assertEqual( expected_dim[projection_dim], single_batch_intermediate_quantities.shape[1], )
import tempfile from typing import List import torch import torch.nn as nn from captum.influence._core.similarity_influence import ( cosine_similarity, euclidean_distance, SimilarityInfluence, ) from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from torch.utils.data import Dataset class BasicLinearNet(nn.Module): def __init__(self, num_features) -> None: super().__init__() self.fc1 = nn.Linear(num_features, 5, bias=False) self.fc1.weight.data.fill_(0.02) self.relu1 = nn.ReLU() self.fc2 = nn.Linear(5, 1, bias=False) self.fc2.weight.data.fill_(0.02) def forward(self, x): x = self.fc1(x) x = self.relu1(x) x = self.fc2(x) return x class RangeDataset(Dataset): def __init__(self, low, high, num_features) -> None: self.samples = ( torch.arange(start=low, end=high, dtype=torch.float) .repeat(num_features, 1) .transpose(1, 0) ) def __len__(self) -> int: return len(self.samples) def __getitem__(self, idx): return self.samples[idx] class Test(BaseTest): def test_cosine_with_zeros(self) -> None: a = torch.cat((torch.zeros((1, 3, 16, 16)), torch.rand((1, 3, 16, 16)))) b = torch.rand((2, 3, 16, 16)) similarity = cosine_similarity(a, b) self.assertFalse(torch.any(torch.isnan(similarity))) def test_correct_influences_standard(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: num_features = 4 low, high = 0, 16 batch_size = high // 2 mymodel = BasicLinearNet(num_features) mydata = RangeDataset(low, high, num_features) layers = [] for name, _module in mymodel.named_modules(): layers.append(name) layers: List[str] = list(filter(None, layers)) testlayers = layers[1:] sim = SimilarityInfluence( mymodel, testlayers, mydata, tmpdir, "linear", batch_size=batch_size, similarity_metric=euclidean_distance, similarity_direction="min", ) inputs = torch.stack((mydata[1], mydata[8], mydata[14])) influences = sim.influence(inputs, top_k=3) self.assertEqual(len(influences), len(testlayers)) assertTensorAlmostEqual( self, torch.sum(influences[layers[1]][0], 1), torch.sum(torch.Tensor([[1, 0, 2], [8, 7, 9], [14, 15, 13]]), 1), ) assertTensorAlmostEqual( self, torch.sum(influences[layers[2]][0], 1), torch.sum(torch.Tensor([[1, 0, 2], [8, 7, 9], [14, 15, 13]]), 1), ) def test_correct_influences_batch_single(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: num_features = 4 low, high = 0, 16 batch_size = 1 mymodel = BasicLinearNet(num_features) mydata = RangeDataset(low, high, num_features) layers = [] for name, _module in mymodel.named_modules(): layers.append(name) layers: List[str] = list(filter(None, layers)) testlayers = layers[1:] sim = SimilarityInfluence( mymodel, testlayers, mydata, tmpdir, "linear", batch_size=batch_size, similarity_metric=euclidean_distance, similarity_direction="min", ) inputs = torch.stack((mydata[1], mydata[8], mydata[14])) influences = sim.influence(inputs, top_k=3) self.assertEqual(len(influences), len(testlayers)) assertTensorAlmostEqual( self, torch.sum(influences[layers[1]][0], 1), torch.sum(torch.Tensor([[1, 0, 2], [8, 7, 9], [14, 15, 13]]), 1), ) assertTensorAlmostEqual( self, torch.sum(influences[layers[2]][0], 1), torch.sum(torch.Tensor([[1, 0, 2], [8, 7, 9], [14, 15, 13]]), 1), ) def test_correct_influences_batch_overflow(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: num_features = 4 low, high = 0, 16 batch_size = 12 mymodel = BasicLinearNet(num_features) mydata = RangeDataset(low, high, num_features) layers = [] for name, _module in mymodel.named_modules(): layers.append(name) layers: List[str] = list(filter(None, layers)) testlayers = layers[1:] sim = SimilarityInfluence( mymodel, testlayers, mydata, tmpdir, "linear", batch_size=batch_size, similarity_metric=euclidean_distance, similarity_direction="min", ) inputs = torch.stack((mydata[1], mydata[8], mydata[14])) influences = sim.influence(inputs, top_k=3) self.assertEqual(len(influences), len(testlayers)) assertTensorAlmostEqual( self, torch.sum(influences[layers[1]][0], 1), torch.sum(torch.Tensor([[1, 0, 2], [8, 7, 9], [14, 15, 13]]), 1), ) assertTensorAlmostEqual( self, torch.sum(influences[layers[2]][0], 1), torch.sum(torch.Tensor([[1, 0, 2], [8, 7, 9], [14, 15, 13]]), 1), ) def test_zero_activations(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: num_features = 4 low, high = 0, 16 batch_size = high // 2 mymodel = BasicLinearNet(num_features) mydata = RangeDataset(low, high, num_features) layers = [] for name, _module in mymodel.named_modules(): layers.append(name) layers: List[str] = list(filter(None, layers)) testlayers = layers[1:] sim1 = SimilarityInfluence( mymodel, testlayers, mydata, tmpdir, "linear", batch_size=batch_size ) inputs = torch.stack((mydata[1], mydata[8], mydata[14])) influences = sim1.influence(inputs, top_k=3) self.assertEqual(len(influences), len(layers[1:]) + 1) # zero_acts included self.assertTrue("zero_acts-fc2" in influences)
#!/usr/bin/env fbpython # (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary. import unittest import torch from captum.module.gaussian_stochastic_gates import GaussianStochasticGates from parameterized import parameterized_class from tests.helpers.basic import assertTensorAlmostEqual, BaseTest @parameterized_class( [ {"testing_device": "cpu"}, {"testing_device": "cuda"}, ] ) class TestGaussianStochasticGates(BaseTest): def setUp(self) -> None: super().setUp() if self.testing_device == "cuda" and not torch.cuda.is_available(): raise unittest.SkipTest("Skipping GPU test since CUDA not available.") def test_gstg_1d_input(self) -> None: dim = 3 gstg = GaussianStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) gated_input, reg = gstg(input_tensor) expected_reg = 2.5213 if self.testing_device == "cpu": expected_gated_input = [[0.0000, 0.0198, 0.1483], [0.1848, 0.3402, 0.1782]] elif self.testing_device == "cuda": expected_gated_input = [[0.0000, 0.0788, 0.0470], [0.0134, 0.0000, 0.1884]] assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") assertTensorAlmostEqual(self, reg, expected_reg) def test_gstg_1d_input_with_reg_reduction(self) -> None: dim = 3 mean_gstg = GaussianStochasticGates(dim, reg_reduction="mean").to( self.testing_device ) none_gstg = GaussianStochasticGates(dim, reg_reduction="none").to( self.testing_device ) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) _, mean_reg = mean_gstg(input_tensor) _, none_reg = none_gstg(input_tensor) expected_mean_reg = 0.8404 expected_none_reg = torch.tensor([0.8424, 0.8384, 0.8438]) assertTensorAlmostEqual(self, mean_reg, expected_mean_reg) assertTensorAlmostEqual(self, none_reg, expected_none_reg) def test_gstg_1d_input_with_n_gates_error(self) -> None: dim = 3 gstg = GaussianStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor([0.0, 0.1, 0.2]).to(self.testing_device) with self.assertRaises(AssertionError): gstg(input_tensor) def test_gstg_1d_input_with_mask(self) -> None: dim = 2 mask = torch.tensor([0, 0, 1]).to(self.testing_device) gstg = GaussianStochasticGates(dim, mask=mask).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) gated_input, reg = gstg(input_tensor) expected_reg = 1.6849 if self.testing_device == "cpu": expected_gated_input = [[0.0000, 0.0000, 0.1225], [0.0583, 0.0777, 0.3779]] elif self.testing_device == "cuda": expected_gated_input = [[0.0000, 0.0000, 0.1577], [0.0736, 0.0981, 0.0242]] assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") assertTensorAlmostEqual(self, reg, expected_reg) def test_gates_values_matching_dim_when_eval(self) -> None: dim = 3 gstg = GaussianStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) gstg.train(False) gated_input, reg = gstg(input_tensor) assert gated_input.shape == input_tensor.shape def test_gstg_2d_input(self) -> None: dim = 3 * 2 gstg = GaussianStochasticGates(dim).to(self.testing_device) # shape(2,3,2) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) gated_input, reg = gstg(input_tensor) expected_reg = 5.0458 if self.testing_device == "cpu": expected_gated_input = [ [[0.0000, 0.0851], [0.0713, 0.3000], [0.2180, 0.1878]], [[0.2538, 0.0000], [0.3391, 0.8501], [0.3633, 0.8913]], ] elif self.testing_device == "cuda": expected_gated_input = [ [[0.0000, 0.0788], [0.0470, 0.0139], [0.0000, 0.1960]], [[0.0000, 0.7000], [0.1052, 0.2120], [0.5978, 0.0166]], ] assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") assertTensorAlmostEqual(self, reg, expected_reg) def test_gstg_2d_input_with_n_gates_error(self) -> None: dim = 5 gstg = GaussianStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], ] ).to(self.testing_device) with self.assertRaises(AssertionError): gstg(input_tensor) def test_gstg_2d_input_with_mask(self) -> None: dim = 3 mask = torch.tensor( [ [0, 1], [1, 1], [0, 2], ] ).to(self.testing_device) gstg = GaussianStochasticGates(dim, mask=mask).to(self.testing_device) # shape(2,3,2) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) gated_input, reg = gstg(input_tensor) expected_reg = 2.5213 if self.testing_device == "cpu": expected_gated_input = [ [[0.0000, 0.0198], [0.0396, 0.0594], [0.2435, 0.3708]], [[0.3696, 0.5954], [0.6805, 0.7655], [0.6159, 0.3921]], ] elif self.testing_device == "cuda": expected_gated_input = [ [[0.0000, 0.0788], [0.1577, 0.2365], [0.0000, 0.1174]], [[0.0269, 0.0000], [0.0000, 0.0000], [0.0448, 0.4145]], ] assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") assertTensorAlmostEqual(self, reg, expected_reg) def test_get_gate_values_1d_input(self) -> None: dim = 3 gstg = GaussianStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) gstg(input_tensor) gate_values = gstg.get_gate_values() expected_gate_values = [0.5005, 0.5040, 0.4899] assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") def test_get_gate_values_1d_input_with_mask(self) -> None: dim = 2 mask = torch.tensor([0, 1, 1]) gstg = GaussianStochasticGates(dim, mask=mask).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) gstg(input_tensor) gate_values = gstg.get_gate_values() expected_gate_values = [0.5005, 0.5040] assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") def test_get_gate_values_2d_input(self) -> None: dim = 3 * 2 gstg = GaussianStochasticGates(dim).to(self.testing_device) # shape(2,3,2) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) gstg(input_tensor) gate_values = gstg.get_gate_values() expected_gate_values = [0.5005, 0.5040, 0.4899, 0.5022, 0.4939, 0.5050] assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") def test_get_gate_values_2d_input_with_mask(self) -> None: dim = 3 mask = torch.tensor( [ [0, 1], [1, 1], [0, 2], ] ) gstg = GaussianStochasticGates(dim, mask=mask).to(self.testing_device) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) gstg(input_tensor) gate_values = gstg.get_gate_values() expected_gate_values = [0.5005, 0.5040, 0.4899] assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") def test_get_gate_values_clamp(self) -> None: gstg = GaussianStochasticGates._from_pretrained( torch.tensor([2.0, -2.0, 2.0]) ).to(self.testing_device) clamped_gate_values = gstg.get_gate_values().cpu().tolist() assert clamped_gate_values == [1.0, 0.0, 1.0] unclamped_gate_values = gstg.get_gate_values(clamp=False).cpu().tolist() assert ( unclamped_gate_values[0] > 1 and unclamped_gate_values[1] < 0 and unclamped_gate_values[2] > 1 ) def test_get_gate_active_probs_1d_input(self) -> None: dim = 3 gstg = GaussianStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) gstg(input_tensor) gate_active_probs = gstg.get_gate_active_probs() expected_gate_active_probs = [0.8416, 0.8433, 0.8364] assertTensorAlmostEqual( self, gate_active_probs, expected_gate_active_probs, mode="max" ) def test_get_gate_active_probs_1d_input_with_mask(self) -> None: dim = 2 mask = torch.tensor([0, 1, 1]) gstg = GaussianStochasticGates(dim, mask=mask).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) gstg(input_tensor) gate_active_probs = gstg.get_gate_active_probs() expected_gate_active_probs = [0.8416, 0.8433] assertTensorAlmostEqual( self, gate_active_probs, expected_gate_active_probs, mode="max" ) def test_get_gate_active_probs_2d_input(self) -> None: dim = 3 * 2 gstg = GaussianStochasticGates(dim).to(self.testing_device) # shape(2,3,2) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) gstg(input_tensor) gate_active_probs = gstg.get_gate_active_probs() expected_gate_active_probs = [0.8416, 0.8433, 0.8364, 0.8424, 0.8384, 0.8438] assertTensorAlmostEqual( self, gate_active_probs, expected_gate_active_probs, mode="max" ) def test_get_gate_active_probs_2d_input_with_mask(self) -> None: dim = 3 mask = torch.tensor( [ [0, 1], [1, 1], [0, 2], ] ) gstg = GaussianStochasticGates(dim, mask=mask).to(self.testing_device) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) gstg(input_tensor) gate_active_probs = gstg.get_gate_active_probs() expected_gate_active_probs = [0.8416, 0.8433, 0.8364] assertTensorAlmostEqual( self, gate_active_probs, expected_gate_active_probs, mode="max" ) def test_from_pretrained(self) -> None: mu = torch.tensor([0.1, 0.2, 0.3, 0.4]) kwargs = { "mask": torch.tensor([0, 1, 1, 0, 2, 3]), "reg_weight": 0.1, "std": 0.01, } stg = GaussianStochasticGates._from_pretrained(mu, **kwargs) for key, expected_val in kwargs.items(): val = getattr(stg, key) if isinstance(expected_val, torch.Tensor): assertTensorAlmostEqual(self, val, expected_val, mode="max") else: assert val == expected_val
#!/usr/bin/env python3 import unittest import torch from captum.module.binary_concrete_stochastic_gates import BinaryConcreteStochasticGates from parameterized import parameterized_class from tests.helpers.basic import assertTensorAlmostEqual, BaseTest @parameterized_class( [ {"testing_device": "cpu"}, {"testing_device": "cuda"}, ] ) class TestBinaryConcreteStochasticGates(BaseTest): def setUp(self): super().setUp() if self.testing_device == "cuda" and not torch.cuda.is_available(): raise unittest.SkipTest("Skipping GPU test since CUDA not available.") def test_bcstg_1d_input(self) -> None: dim = 3 bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) gated_input, reg = bcstg(input_tensor) expected_reg = 2.4947 if self.testing_device == "cpu": expected_gated_input = [[0.0000, 0.0212, 0.1892], [0.1839, 0.3753, 0.4937]] elif self.testing_device == "cuda": expected_gated_input = [[0.0000, 0.0985, 0.1149], [0.2329, 0.0497, 0.5000]] assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") assertTensorAlmostEqual(self, reg, expected_reg) def test_bcstg_1d_input_with_reg_reduction(self) -> None: dim = 3 mean_bcstg = BinaryConcreteStochasticGates(dim, reg_reduction="mean").to( self.testing_device ) none_bcstg = BinaryConcreteStochasticGates(dim, reg_reduction="none").to( self.testing_device ) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) mean_gated_input, mean_reg = mean_bcstg(input_tensor) none_gated_input, none_reg = none_bcstg(input_tensor) expected_mean_reg = 0.8316 expected_none_reg = torch.tensor([0.8321, 0.8310, 0.8325]) assertTensorAlmostEqual(self, mean_reg, expected_mean_reg) assertTensorAlmostEqual(self, none_reg, expected_none_reg) def test_bcstg_1d_input_with_n_gates_error(self) -> None: dim = 3 bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor([0.0, 0.1, 0.2]).to(self.testing_device) with self.assertRaises(AssertionError): bcstg(input_tensor) def test_bcstg_num_mask_not_equal_dim_error(self) -> None: dim = 3 mask = torch.tensor([0, 0, 1]) # only two distinct masks, but given dim is 3 with self.assertRaises(AssertionError): BinaryConcreteStochasticGates(dim, mask=mask).to(self.testing_device) def test_gates_values_matching_dim_when_eval(self) -> None: dim = 3 bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) bcstg.train(False) gated_input, reg = bcstg(input_tensor) assert gated_input.shape == input_tensor.shape def test_bcstg_1d_input_with_mask(self) -> None: dim = 2 mask = torch.tensor([0, 0, 1]).to(self.testing_device) bcstg = BinaryConcreteStochasticGates(dim, mask=mask).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) gated_input, reg = bcstg(input_tensor) expected_reg = 1.6643 if self.testing_device == "cpu": expected_gated_input = [[0.0000, 0.0000, 0.1679], [0.0000, 0.0000, 0.2223]] elif self.testing_device == "cuda": expected_gated_input = [[0.0000, 0.0000, 0.1971], [0.1737, 0.2317, 0.3888]] assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") assertTensorAlmostEqual(self, reg, expected_reg) def test_bcstg_2d_input(self) -> None: dim = 3 * 2 bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) # shape(2,3,2) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) gated_input, reg = bcstg(input_tensor) expected_reg = 4.9903 if self.testing_device == "cpu": expected_gated_input = [ [[0.0000, 0.0990], [0.0261, 0.2431], [0.0551, 0.3863]], [[0.0476, 0.6177], [0.5400, 0.1530], [0.0984, 0.8013]], ] elif self.testing_device == "cuda": expected_gated_input = [ [[0.0000, 0.0985], [0.1149, 0.2331], [0.0486, 0.5000]], [[0.1840, 0.1571], [0.4612, 0.7937], [0.2975, 0.7393]], ] assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") assertTensorAlmostEqual(self, reg, expected_reg) def test_bcstg_2d_input_with_n_gates_error(self) -> None: dim = 5 bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], ] ).to(self.testing_device) with self.assertRaises(AssertionError): bcstg(input_tensor) def test_bcstg_2d_input_with_mask(self) -> None: dim = 3 mask = torch.tensor( [ [0, 1], [1, 1], [0, 2], ] ).to(self.testing_device) bcstg = BinaryConcreteStochasticGates(dim, mask=mask).to(self.testing_device) # shape(2,3,2) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) gated_input, reg = bcstg(input_tensor) expected_reg = 2.4947 if self.testing_device == "cpu": expected_gated_input = [ [[0.0000, 0.0212], [0.0424, 0.0636], [0.3191, 0.4730]], [[0.3678, 0.6568], [0.7507, 0.8445], [0.6130, 1.0861]], ] elif self.testing_device == "cuda": expected_gated_input = [ [[0.0000, 0.0985], [0.1971, 0.2956], [0.0000, 0.2872]], [[0.4658, 0.0870], [0.0994, 0.1119], [0.7764, 1.1000]], ] assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") assertTensorAlmostEqual(self, reg, expected_reg) def test_get_gate_values_1d_input(self) -> None: dim = 3 bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) bcstg(input_tensor) gate_values = bcstg.get_gate_values() expected_gate_values = [0.5001, 0.5012, 0.4970] assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") def test_get_gate_values_1d_input_with_mask(self) -> None: dim = 2 mask = torch.tensor([0, 1, 1]) bcstg = BinaryConcreteStochasticGates(dim, mask=mask).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) bcstg(input_tensor) gate_values = bcstg.get_gate_values() expected_gate_values = [0.5001, 0.5012] assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") def test_get_gate_values_2d_input(self) -> None: dim = 3 * 2 bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) # shape(2,3,2) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) bcstg(input_tensor) gate_values = bcstg.get_gate_values() expected_gate_values = [0.5001, 0.5012, 0.4970, 0.5007, 0.4982, 0.5015] assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") def test_get_gate_values_clamp(self) -> None: # enlarge the bounds & extremify log_alpha to mock gate values beyond 0 & 1 bcstg = BinaryConcreteStochasticGates._from_pretrained( torch.tensor([10.0, -10.0, 10.0]), lower_bound=-2, upper_bound=2 ).to(self.testing_device) clamped_gate_values = bcstg.get_gate_values().cpu().tolist() assert clamped_gate_values == [1.0, 0.0, 1.0] unclamped_gate_values = bcstg.get_gate_values(clamp=False).cpu().tolist() assert ( unclamped_gate_values[0] > 1 and unclamped_gate_values[1] < 0 and unclamped_gate_values[2] > 1 ) def test_get_gate_values_2d_input_with_mask(self) -> None: dim = 3 mask = torch.tensor( [ [0, 1], [1, 1], [0, 2], ] ) bcstg = BinaryConcreteStochasticGates(dim, mask=mask).to(self.testing_device) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) bcstg(input_tensor) gate_values = bcstg.get_gate_values() expected_gate_values = [0.5001, 0.5012, 0.4970] assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") def test_get_gate_active_probs_1d_input(self) -> None: dim = 3 bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) bcstg(input_tensor) gate_active_probs = bcstg.get_gate_active_probs() expected_gate_active_probs = [0.8319, 0.8324, 0.8304] assertTensorAlmostEqual( self, gate_active_probs, expected_gate_active_probs, mode="max" ) def test_get_gate_active_probs_1d_input_with_mask(self) -> None: dim = 2 mask = torch.tensor([0, 1, 1]) bcstg = BinaryConcreteStochasticGates(dim, mask=mask).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) bcstg(input_tensor) gate_active_probs = bcstg.get_gate_active_probs() expected_gate_active_probs = [0.8319, 0.8324] assertTensorAlmostEqual( self, gate_active_probs, expected_gate_active_probs, mode="max" ) def test_get_gate_active_probs_2d_input(self) -> None: dim = 3 * 2 bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) # shape(2,3,2) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) bcstg(input_tensor) gate_active_probs = bcstg.get_gate_active_probs() expected_gate_active_probs = [0.8319, 0.8324, 0.8304, 0.8321, 0.8310, 0.8325] assertTensorAlmostEqual( self, gate_active_probs, expected_gate_active_probs, mode="max" ) def test_get_gate_active_probs_2d_input_with_mask(self) -> None: dim = 3 mask = torch.tensor( [ [0, 1], [1, 1], [0, 2], ] ) bcstg = BinaryConcreteStochasticGates(dim, mask=mask).to(self.testing_device) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) bcstg(input_tensor) gate_active_probs = bcstg.get_gate_active_probs() expected_gate_active_probs = [0.8319, 0.8324, 0.8304] assertTensorAlmostEqual( self, gate_active_probs, expected_gate_active_probs, mode="max" ) def test_from_pretrained(self) -> None: log_alpha_param = torch.tensor([0.1, 0.2, 0.3, 0.4]) kwargs = { "mask": torch.tensor([0, 1, 1, 0, 2, 3]), "reg_weight": 0.1, "lower_bound": -0.2, "upper_bound": 1.2, } stg = BinaryConcreteStochasticGates._from_pretrained(log_alpha_param, **kwargs) for key, expected_val in kwargs.items(): val = getattr(stg, key) if isinstance(expected_val, torch.Tensor): assertTensorAlmostEqual(self, val, expected_val, mode="max") else: assert val == expected_val
#!/usr/bin/env python3 from typing import List, Tuple import torch from captum._utils.gradient import ( apply_gradient_requirements, compute_gradients, compute_layer_gradients_and_eval, undo_gradient_requirements, ) from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import ( BasicModel, BasicModel2, BasicModel4_MultiArgs, BasicModel5_MultiArgs, BasicModel6_MultiTensor, BasicModel_MultiLayer, ) class Test(BaseTest): def test_apply_gradient_reqs(self) -> None: initial_grads = [False, True, False] test_tensor = torch.tensor([[6.0]], requires_grad=True) test_tensor.grad = torch.tensor([[7.0]]) test_tensor_tuple = (torch.tensor([[5.0]]), test_tensor, torch.tensor([[7.0]])) out_mask = apply_gradient_requirements(test_tensor_tuple) for i in range(len(test_tensor_tuple)): self.assertTrue(test_tensor_tuple[i].requires_grad) self.assertEqual(out_mask[i], initial_grads[i]) def test_undo_gradient_reqs(self) -> None: initial_grads = [False, True, False] test_tensor = torch.tensor([[6.0]], requires_grad=True) test_tensor.grad = torch.tensor([[7.0]]) test_tensor_tuple = ( torch.tensor([[6.0]], requires_grad=True), test_tensor, torch.tensor([[7.0]], requires_grad=True), ) undo_gradient_requirements(test_tensor_tuple, initial_grads) for i in range(len(test_tensor_tuple)): self.assertEqual(test_tensor_tuple[i].requires_grad, initial_grads[i]) def test_gradient_basic(self) -> None: model = BasicModel() input = torch.tensor([[5.0]], requires_grad=True) input.grad = torch.tensor([[9.0]]) grads = compute_gradients(model, input)[0] assertTensorAlmostEqual(self, grads, [[0.0]], delta=0.01, mode="max") # Verify grad attribute is not altered assertTensorAlmostEqual(self, input.grad, [[9.0]], delta=0.0, mode="max") def test_gradient_basic_2(self) -> None: model = BasicModel() input = torch.tensor([[-3.0]], requires_grad=True) input.grad = torch.tensor([[14.0]]) grads = compute_gradients(model, input)[0] assertTensorAlmostEqual(self, grads, [[1.0]], delta=0.01, mode="max") # Verify grad attribute is not altered assertTensorAlmostEqual(self, input.grad, [[14.0]], delta=0.0, mode="max") def test_gradient_multiinput(self) -> None: model = BasicModel6_MultiTensor() input1 = torch.tensor([[-3.0, -5.0]], requires_grad=True) input2 = torch.tensor([[-5.0, 2.0]], requires_grad=True) grads = compute_gradients(model, (input1, input2)) assertTensorAlmostEqual(self, grads[0], [[0.0, 1.0]], delta=0.01, mode="max") assertTensorAlmostEqual(self, grads[1], [[0.0, 1.0]], delta=0.01, mode="max") def test_gradient_additional_args(self) -> None: model = BasicModel4_MultiArgs() input1 = torch.tensor([[10.0]], requires_grad=True) input2 = torch.tensor([[8.0]], requires_grad=True) grads = compute_gradients(model, (input1, input2), additional_forward_args=(2,)) assertTensorAlmostEqual(self, grads[0], [[1.0]], delta=0.01, mode="max") assertTensorAlmostEqual(self, grads[1], [[-0.5]], delta=0.01, mode="max") def test_gradient_additional_args_2(self) -> None: model = BasicModel5_MultiArgs() input1 = torch.tensor([[-10.0]], requires_grad=True) input2 = torch.tensor([[6.0]], requires_grad=True) grads = compute_gradients( model, (input1, input2), additional_forward_args=([3, -4],) ) assertTensorAlmostEqual(self, grads[0], [[0.0]], delta=0.01, mode="max") assertTensorAlmostEqual(self, grads[1], [[4.0]], delta=0.01, mode="max") def test_gradient_target_int(self) -> None: model = BasicModel2() input1 = torch.tensor([[4.0, -1.0]], requires_grad=True) input2 = torch.tensor([[2.0, 5.0]], requires_grad=True) grads0 = compute_gradients(model, (input1, input2), target_ind=0) grads1 = compute_gradients(model, (input1, input2), target_ind=1) assertTensorAlmostEqual(self, grads0[0], [[1.0, 0.0]], delta=0.01, mode="max") assertTensorAlmostEqual(self, grads0[1], [[-1.0, 0.0]], delta=0.01, mode="max") assertTensorAlmostEqual(self, grads1[0], [[0.0, 0.0]], delta=0.01, mode="max") assertTensorAlmostEqual(self, grads1[1], [[0.0, 0.0]], delta=0.01, mode="max") def test_gradient_target_list(self) -> None: model = BasicModel2() input1 = torch.tensor([[4.0, -1.0], [3.0, 10.0]], requires_grad=True) input2 = torch.tensor([[2.0, -5.0], [-2.0, 1.0]], requires_grad=True) grads = compute_gradients(model, (input1, input2), target_ind=[0, 1]) assertTensorAlmostEqual( self, grads[0], [[1.0, 0.0], [0.0, 1.0]], delta=0.01, mode="max", ) assertTensorAlmostEqual( self, grads[1], [[-1.0, 0.0], [0.0, -1.0]], delta=0.01, mode="max", ) def test_gradient_target_tuple(self) -> None: model = BasicModel() input = torch.tensor( [[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -4.0], [10.0, 5.0]]], requires_grad=True ) grads = compute_gradients(model, input, target_ind=(0, 1))[0] assertTensorAlmostEqual( self, grads, [[[0.0, 0.0], [0.0, 0.0]], [[0.0, 1.0], [0.0, 0.0]]], delta=0.01, mode="max", ) def test_gradient_target_listtuple(self) -> None: model = BasicModel() input = torch.tensor( [[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -4.0], [10.0, 5.0]]], requires_grad=True ) target: List[Tuple[int, ...]] = [(1, 1), (0, 1)] grads = compute_gradients(model, input, target_ind=target)[0] assertTensorAlmostEqual( self, grads, [[[0.0, 0.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 0.0]]], delta=0.01, mode="max", ) def test_gradient_inplace(self) -> None: model = BasicModel_MultiLayer(inplace=True) input = torch.tensor([[1.0, 6.0, -3.0]], requires_grad=True) grads = compute_gradients(model, input, target_ind=0)[0] assertTensorAlmostEqual(self, grads, [[3.0, 3.0, 3.0]], delta=0.01, mode="max") def test_layer_gradient_linear0(self) -> None: model = BasicModel_MultiLayer() input = torch.tensor([[5.0, -11.0, 23.0]], requires_grad=True) grads, eval = compute_layer_gradients_and_eval( model, model.linear0, input, target_ind=0 ) assertTensorAlmostEqual( self, grads[0], [[4.0, 4.0, 4.0]], delta=0.01, mode="max" ) assertTensorAlmostEqual( self, eval[0], [[5.0, -11.0, 23.0]], delta=0.01, mode="max", ) def test_layer_gradient_linear1(self) -> None: model = BasicModel_MultiLayer() input = torch.tensor([[5.0, 2.0, 1.0]], requires_grad=True) grads, eval = compute_layer_gradients_and_eval( model, model.linear1, input, target_ind=1 ) assertTensorAlmostEqual( self, grads[0], [[0.0, 1.0, 1.0, 1.0]], delta=0.01, mode="max", ) assertTensorAlmostEqual( self, eval[0], [[-2.0, 9.0, 9.0, 9.0]], delta=0.01, mode="max", ) def test_layer_gradient_linear1_inplace(self) -> None: model = BasicModel_MultiLayer(inplace=True) input = torch.tensor([[5.0, 2.0, 1.0]], requires_grad=True) grads, eval = compute_layer_gradients_and_eval( model, model.linear1, input, target_ind=1 ) assertTensorAlmostEqual( self, grads[0], [[0.0, 1.0, 1.0, 1.0]], delta=0.01, mode="max", ) assertTensorAlmostEqual( self, eval[0], [[-2.0, 9.0, 9.0, 9.0]], delta=0.01, mode="max", ) def test_layer_gradient_relu_input_inplace(self) -> None: model = BasicModel_MultiLayer(inplace=True) input = torch.tensor([[5.0, 2.0, 1.0]], requires_grad=True) grads, eval = compute_layer_gradients_and_eval( model, model.relu, input, target_ind=1, attribute_to_layer_input=True ) assertTensorAlmostEqual( self, grads[0], [[0.0, 1.0, 1.0, 1.0]], delta=0.01, mode="max", ) assertTensorAlmostEqual( self, eval[0], [[-2.0, 9.0, 9.0, 9.0]], delta=0.01, mode="max", ) def test_layer_gradient_output(self) -> None: model = BasicModel_MultiLayer() input = torch.tensor([[5.0, 2.0, 1.0]], requires_grad=True) grads, eval = compute_layer_gradients_and_eval( model, model.linear2, input, target_ind=1 ) assertTensorAlmostEqual(self, grads[0], [[0.0, 1.0]], delta=0.01, mode="max") assertTensorAlmostEqual(self, eval[0], [[26.0, 28.0]], delta=0.01, mode="max")
#!/usr/bin/env python3 from typing import cast, List, Tuple import torch from captum._utils.common import ( _format_feature_mask, _get_max_feature_index, _parse_version, _reduce_list, _select_targets, _sort_key_list, safe_div, ) from tests.helpers.basic import ( assertTensorAlmostEqual, assertTensorTuplesAlmostEqual, BaseTest, ) class Test(BaseTest): def test_safe_div_number_denom(self) -> None: num = torch.tensor(4.0) assert safe_div(num, 2) == 2.0 assert safe_div(num, 0, 2) == 2.0 assert safe_div(num, 2.0) == 2.0 assert safe_div(num, 0.0, 2.0) == 2.0 def test_safe_div_tensor_denom(self) -> None: num = torch.tensor([4.0, 6.0]) exp = torch.tensor([2.0, 3.0]) assert (safe_div(num, torch.tensor([2.0, 2.0])) == exp).all() # tensor default denom assert (safe_div(num, torch.tensor([0.0, 0.0]), torch.tensor(2.0)) == exp).all() assert ( safe_div( num, torch.tensor([0.0, 0.0]), torch.tensor([2.0, 2.0]), ) == exp ).all() # float default denom assert (safe_div(num, torch.tensor([0.0, 0.0]), 2.0) == exp).all() def test_reduce_list_tensors(self) -> None: tensors = [torch.tensor([[3, 4, 5]]), torch.tensor([[0, 1, 2]])] reduced = _reduce_list(tensors) assertTensorAlmostEqual(self, reduced, [[3, 4, 5], [0, 1, 2]]) def test_reduce_list_tuples(self): tensors = [ (torch.tensor([[3, 4, 5]]), torch.tensor([[0, 1, 2]])), (torch.tensor([[3, 4, 5]]), torch.tensor([[0, 1, 2]])), ] reduced = _reduce_list(tensors) assertTensorAlmostEqual(self, reduced[0], [[3, 4, 5], [3, 4, 5]]) assertTensorAlmostEqual(self, reduced[1], [[0, 1, 2], [0, 1, 2]]) def test_sort_key_list(self) -> None: key_list = [ torch.device("cuda:13"), torch.device("cuda:17"), torch.device("cuda:10"), torch.device("cuda:0"), ] device_index_list = [0, 10, 13, 17] sorted_keys = _sort_key_list(key_list, device_index_list) for i in range(len(key_list)): self.assertEqual(sorted_keys[i].index, device_index_list[i]) def test_sort_key_list_incomplete(self) -> None: key_list = [torch.device("cuda:10"), torch.device("cuda:0")] device_index_list = [0, 10, 13, 17] sorted_keys = _sort_key_list(key_list, device_index_list) for i in range(len(key_list)): self.assertEqual(sorted_keys[i].index, device_index_list[i]) def test_select_target_2d(self) -> None: output_tensor = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assertTensorAlmostEqual(self, _select_targets(output_tensor, 1), [2, 5, 8]) assertTensorAlmostEqual( self, _select_targets(output_tensor, torch.tensor(0)), [1, 4, 7] ) assertTensorAlmostEqual( self, _select_targets(output_tensor, torch.tensor([1, 2, 0])), [[2], [6], [7]], ) assertTensorAlmostEqual( self, _select_targets(output_tensor, [1, 2, 0]), [[2], [6], [7]] ) # Verify error is raised if too many dimensions are provided. with self.assertRaises(AssertionError): _select_targets(output_tensor, (1, 2)) def test_select_target_3d(self) -> None: output_tensor = torch.tensor( [[[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[9, 8, 7], [6, 5, 4], [3, 2, 1]]] ) assertTensorAlmostEqual(self, _select_targets(output_tensor, (0, 1)), [2, 8]) assertTensorAlmostEqual( self, _select_targets( output_tensor, cast(List[Tuple[int, ...]], [(0, 1), (2, 0)]) ), [2, 3], ) # Verify error is raised if list is longer than number of examples. with self.assertRaises(AssertionError): _select_targets( output_tensor, cast(List[Tuple[int, ...]], [(0, 1), (2, 0), (3, 2)]) ) # Verify error is raised if too many dimensions are provided. with self.assertRaises(AssertionError): _select_targets(output_tensor, (1, 2, 3)) def test_format_feature_mask_of_tensor(self) -> None: formatted_inputs = (torch.tensor([[0.0, 0.0], [0.0, 0.0]]),) tensor_mask = torch.tensor([[0, 1]]) formatted_tensor_mask = _format_feature_mask(tensor_mask, formatted_inputs) self.assertEqual(type(formatted_tensor_mask), tuple) assertTensorTuplesAlmostEqual(self, formatted_tensor_mask, (tensor_mask,)) def test_format_feature_mask_of_tuple(self) -> None: formatted_inputs = ( torch.tensor([[0.0, 0.0], [0.0, 0.0]]), torch.tensor([[0.0, 0.0], [0.0, 0.0]]), ) tuple_mask = ( torch.tensor([[0, 1], [2, 3]]), torch.tensor([[4, 5], [6, 6]]), ) formatted_tuple_mask = _format_feature_mask(tuple_mask, formatted_inputs) self.assertEqual(type(formatted_tuple_mask), tuple) assertTensorTuplesAlmostEqual(self, formatted_tuple_mask, tuple_mask) def test_format_feature_mask_of_none(self) -> None: formatted_inputs = ( torch.tensor([[0.0, 0.0], [0.0, 0.0]]), torch.tensor([]), # empty tensor torch.tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]), ) expected_mask = ( torch.tensor([[0, 1]]), torch.tensor([]), torch.tensor([[2, 3, 4]]), ) formatted_none_mask = _format_feature_mask(None, formatted_inputs) self.assertEqual(type(formatted_none_mask), tuple) assertTensorTuplesAlmostEqual(self, formatted_none_mask, expected_mask) def test_get_max_feature_index(self) -> None: mask = ( torch.tensor([[0, 1], [2, 3]]), torch.tensor([]), torch.tensor([[4, 5], [6, 100]]), torch.tensor([[0, 1], [2, 3]]), ) assert _get_max_feature_index(mask) == 100 class TestParseVersion(BaseTest): def test_parse_version_dev(self) -> None: version_str = "1.12.0.dev20201109" output = _parse_version(version_str) self.assertEqual(output, (1, 12, 0)) def test_parse_version_post(self) -> None: version_str = "1.3.0.post2" output = _parse_version(version_str) self.assertEqual(output, (1, 3, 0)) def test_parse_version_1_12_0(self) -> None: version_str = "1.12.0" output = _parse_version(version_str) self.assertEqual(output, (1, 12, 0)) def test_parse_version_1_12_2(self) -> None: version_str = "1.12.2" output = _parse_version(version_str) self.assertEqual(output, (1, 12, 2)) def test_parse_version_1_6_0(self) -> None: version_str = "1.6.0" output = _parse_version(version_str) self.assertEqual(output, (1, 6, 0)) def test_parse_version_1_12(self) -> None: version_str = "1.12" output = _parse_version(version_str) self.assertEqual(output, (1, 12))
#!/usr/bin/env python3 import torch import torch.nn as nn from captum._utils.gradient import ( _compute_jacobian_wrt_params, _compute_jacobian_wrt_params_with_sample_wise_trick, ) from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import BasicLinearModel2, BasicLinearModel_Multilayer class Test(BaseTest): def test_jacobian_scores_single_scalar(self) -> None: model = BasicLinearModel2(5, 1) model.linear.weight = nn.Parameter(torch.arange(0, 5).float().reshape(1, 5)) a = torch.ones(5).unsqueeze(0) grads = _compute_jacobian_wrt_params(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], a) grads = _compute_jacobian_wrt_params_with_sample_wise_trick(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], a) def test_jacobian_scores_single_vector(self) -> None: model = BasicLinearModel2(5, 2) model.linear.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) a = torch.ones(5).unsqueeze(0) grads = _compute_jacobian_wrt_params(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.cat((a, a))) grads = _compute_jacobian_wrt_params_with_sample_wise_trick(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.cat((a, a))) def test_jacobian_scores_single_scalar_multilayer(self) -> None: model = BasicLinearModel_Multilayer(5, 2, 1) model.linear1.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) model.linear2.weight = nn.Parameter(torch.arange(1, 3).view(1, 2).float()) a = torch.ones(5).unsqueeze(0) grads = _compute_jacobian_wrt_params(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.cat((a, 2 * a))) assertTensorAlmostEqual(self, grads[1][0], torch.Tensor([[10, 35]])) grads = _compute_jacobian_wrt_params_with_sample_wise_trick(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.cat((a, 2 * a))) assertTensorAlmostEqual(self, grads[1][0], torch.Tensor([[10, 35]])) def test_jacobian_scores_single_vector_multilayer(self) -> None: model = BasicLinearModel_Multilayer(5, 2, 2) model.linear1.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) model.linear2.weight = nn.Parameter(torch.arange(0, 4).view(2, 2).float()) a = torch.ones(5).unsqueeze(0) grads = _compute_jacobian_wrt_params(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.cat((2 * a, 4 * a))) assertTensorAlmostEqual(self, grads[1][0], torch.Tensor([[10, 35], [10, 35]])) grads = _compute_jacobian_wrt_params_with_sample_wise_trick(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.cat((2 * a, 4 * a))) assertTensorAlmostEqual(self, grads[1][0], torch.Tensor([[10, 35], [10, 35]])) def test_jacobian_scores_batch_scalar(self) -> None: model = BasicLinearModel2(5, 1) model.linear.weight = nn.Parameter(torch.arange(0, 5).float().reshape(1, 5)) a = torch.stack((torch.ones(5), torch.ones(5) * 2)) grads = _compute_jacobian_wrt_params(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], a[0:1]) assertTensorAlmostEqual(self, grads[0][1], a[1:2]) grads = _compute_jacobian_wrt_params_with_sample_wise_trick(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], a[0:1]) assertTensorAlmostEqual(self, grads[0][1], a[1:2]) def test_jacobian_scores_batch_vector(self) -> None: model = BasicLinearModel2(5, 2) model.linear.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) a = torch.stack((torch.ones(5), torch.ones(5) * 2)) grads = _compute_jacobian_wrt_params(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.stack((a[0], a[0]))) assertTensorAlmostEqual(self, grads[0][1], torch.stack((a[1], a[1]))) grads = _compute_jacobian_wrt_params_with_sample_wise_trick(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.stack((a[0], a[0]))) assertTensorAlmostEqual(self, grads[0][1], torch.stack((a[1], a[1]))) def test_jacobian_scores_batch_scalar_multilayer(self) -> None: model = BasicLinearModel_Multilayer(5, 2, 1) model.linear1.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) model.linear2.weight = nn.Parameter(torch.arange(1, 3).view(1, 2).float()) a = torch.stack((torch.ones(5), torch.ones(5) * 2)) grads = _compute_jacobian_wrt_params(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.stack((a[0], 2 * a[0]))) assertTensorAlmostEqual(self, grads[1][0], torch.Tensor([[10, 35]])) assertTensorAlmostEqual(self, grads[0][1], torch.stack((a[1], 2 * a[1]))) assertTensorAlmostEqual(self, grads[1][1], torch.Tensor([[20, 70]])) grads = _compute_jacobian_wrt_params_with_sample_wise_trick(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.stack((a[0], 2 * a[0]))) assertTensorAlmostEqual(self, grads[1][0], torch.Tensor([[10, 35]])) assertTensorAlmostEqual(self, grads[0][1], torch.stack((a[1], 2 * a[1]))) assertTensorAlmostEqual(self, grads[1][1], torch.Tensor([[20, 70]])) def test_jacobian_scores_batch_vector_multilayer(self) -> None: model = BasicLinearModel_Multilayer(5, 2, 2) model.linear1.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) model.linear2.weight = nn.Parameter(torch.arange(0, 4).view(2, 2).float()) a = torch.stack((torch.ones(5), torch.ones(5) * 2)) grads = _compute_jacobian_wrt_params(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.stack((2 * a[0], 4 * a[0]))) assertTensorAlmostEqual(self, grads[1][0], torch.Tensor([[10, 35], [10, 35]])) assertTensorAlmostEqual(self, grads[0][1], torch.stack((2 * a[1], 4 * a[1]))) assertTensorAlmostEqual(self, grads[1][1], torch.Tensor([[20, 70], [20, 70]])) grads = _compute_jacobian_wrt_params_with_sample_wise_trick(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.stack((2 * a[0], 4 * a[0]))) assertTensorAlmostEqual(self, grads[1][0], torch.Tensor([[10, 35], [10, 35]])) assertTensorAlmostEqual(self, grads[0][1], torch.stack((2 * a[1], 4 * a[1]))) assertTensorAlmostEqual(self, grads[1][1], torch.Tensor([[20, 70], [20, 70]])) def test_jacobian_loss_single_scalar(self) -> None: model = BasicLinearModel2(5, 1) model.linear.weight = nn.Parameter(torch.arange(0, 5).view(1, 5).float()) a = torch.ones(5).unsqueeze(0) label = torch.Tensor([9]) loss_fn = nn.MSELoss(reduction="none") grads = _compute_jacobian_wrt_params(model, (a,), label, loss_fn) assertTensorAlmostEqual(self, grads[0][0], 2 * (10 - 9) * a) loss_fn = nn.MSELoss(reduction="sum") grads = _compute_jacobian_wrt_params_with_sample_wise_trick( model, (a,), label, loss_fn ) assertTensorAlmostEqual(self, grads[0][0], 2 * (10 - 9) * a) def test_jacobian_loss_single_vector(self) -> None: model = BasicLinearModel2(5, 2) model.linear.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) a = torch.ones(5).unsqueeze(0) label = torch.Tensor([[9, 38]]) loss_fn = nn.MSELoss(reduction="none") grads = _compute_jacobian_wrt_params(model, (a,), label, loss_fn) assertTensorAlmostEqual( self, grads[0][0], torch.cat((2 * (10 - 9) * a, 2 * (35 - 38) * a)) ) loss_fn = nn.MSELoss(reduction="sum") grads = _compute_jacobian_wrt_params_with_sample_wise_trick( model, (a,), label, loss_fn ) assertTensorAlmostEqual( self, grads[0][0], torch.cat((2 * (10 - 9) * a, 2 * (35 - 38) * a)) ) def test_jacobian_loss_batch_scalar(self) -> None: model = BasicLinearModel2(5, 1) model.linear.weight = nn.Parameter(torch.arange(0, 5).float().reshape(1, 5)) a = torch.stack((torch.ones(5), torch.ones(5) * 2)) label = torch.Tensor([[9], [18]]) loss_fn = nn.MSELoss(reduction="none") grads = _compute_jacobian_wrt_params(model, (a,), label, loss_fn) assertTensorAlmostEqual(self, grads[0][0], 2 * (10 - 9) * a[0:1]) assertTensorAlmostEqual(self, grads[0][1], 2 * (20 - 18) * a[1:2]) loss_fn = nn.MSELoss(reduction="sum") grads = _compute_jacobian_wrt_params_with_sample_wise_trick( model, (a,), label, loss_fn ) assertTensorAlmostEqual(self, grads[0][0], 2 * (10 - 9) * a[0:1]) assertTensorAlmostEqual(self, grads[0][1], 2 * (20 - 18) * a[1:2]) def test_jacobian_loss_batch_vector(self) -> None: model = BasicLinearModel2(5, 2) model.linear.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) a = torch.stack((torch.ones(5), torch.ones(5) * 2)) label = torch.Tensor([[9, 38], [18, 74]]) loss_fn = nn.MSELoss(reduction="none") grads = _compute_jacobian_wrt_params(model, (a,), label, loss_fn) assertTensorAlmostEqual( self, grads[0][0], torch.stack((2 * (10 - 9) * a[0], 2 * (35 - 38) * a[0])) ) assertTensorAlmostEqual( self, grads[0][1], torch.stack((2 * (20 - 18) * a[1], 2 * (70 - 74) * a[1])) ) loss_fn = nn.MSELoss(reduction="sum") grads = _compute_jacobian_wrt_params_with_sample_wise_trick( model, (a,), label, loss_fn ) assertTensorAlmostEqual( self, grads[0][0], torch.stack((2 * (10 - 9) * a[0], 2 * (35 - 38) * a[0])) ) assertTensorAlmostEqual( self, grads[0][1], torch.stack((2 * (20 - 18) * a[1], 2 * (70 - 74) * a[1])) ) def test_jacobian_loss_single_scalar_multilayer(self) -> None: model = BasicLinearModel_Multilayer(5, 2, 1) model.linear1.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) model.linear2.weight = nn.Parameter(torch.arange(1, 3).view(1, 2).float()) a = torch.ones(5).unsqueeze(0) label = torch.Tensor([[78]]) loss_fn = nn.MSELoss(reduction="none") grads = _compute_jacobian_wrt_params(model, (a,), label, loss_fn) assertTensorAlmostEqual( self, grads[0][0], torch.cat((2 * (80 - 78) * a, 2 * 2 * (80 - 78) * a)) ) assertTensorAlmostEqual( self, grads[1][0], 2 * (80 - 78) * torch.Tensor([[10, 35]]) ) loss_fn = nn.MSELoss(reduction="sum") grads = _compute_jacobian_wrt_params_with_sample_wise_trick( model, (a,), label, loss_fn ) assertTensorAlmostEqual( self, grads[0][0], torch.cat((2 * (80 - 78) * a, 2 * 2 * (80 - 78) * a)) ) assertTensorAlmostEqual( self, grads[1][0], 2 * (80 - 78) * torch.Tensor([[10, 35]]) ) def test_jacobian_loss_batch_vector_multilayer(self) -> None: model = BasicLinearModel_Multilayer(5, 2, 2) model.linear1.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) model.linear2.weight = nn.Parameter(torch.arange(0, 4).view(2, 2).float()) a = torch.stack((torch.ones(5), torch.ones(5) * 2)) label = torch.Tensor([[33, 124], [69, 256]]) loss_fn = nn.MSELoss(reduction="none") grads = _compute_jacobian_wrt_params(model, (a,), label, loss_fn) assertTensorAlmostEqual( self, grads[0][0], torch.stack( ( 2 * (0 * (35 - 33) + 2 * (125 - 124)) * a[0], 2 * (1 * (35 - 33) + 3 * (125 - 124)) * a[0], ) ), ) assertTensorAlmostEqual( self, grads[1][0], torch.Tensor( [ [2 * (35 - 33) * 10, 2 * (35 - 33) * 35], [2 * (125 - 124) * 10, 2 * (125 - 124) * 35], ] ), ) assertTensorAlmostEqual( self, grads[0][1], torch.stack( ( 2 * (0 * (70 - 69) + 2 * (250 - 256)) * a[1], 2 * (1 * (70 - 69) + 3 * (250 - 256)) * a[1], ) ), ) assertTensorAlmostEqual( self, grads[1][1], torch.Tensor( [ [2 * (70 - 69) * 10 * 2, 2 * (70 - 69) * 35 * 2], [2 * (250 - 256) * 10 * 2, 2 * (250 - 256) * 35 * 2], ] ), ) loss_fn = nn.MSELoss(reduction="sum") grads_h = _compute_jacobian_wrt_params_with_sample_wise_trick( model, (a,), label, loss_fn ) assertTensorAlmostEqual(self, grads_h[0][0], grads[0][0]) assertTensorAlmostEqual(self, grads_h[1][0], grads[1][0]) assertTensorAlmostEqual(self, grads_h[0][1], grads[0][1]) assertTensorAlmostEqual(self, grads_h[1][1], grads[1][1]) def test_jacobian_loss_custom_correct(self) -> None: model = BasicLinearModel2(5, 2) model.linear.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) def my_loss(out, label): return (out - label).pow(2) a = torch.stack((torch.ones(5), torch.ones(5) * 2)) label = torch.Tensor([[9, 38], [18, 74]]) grads = _compute_jacobian_wrt_params(model, (a,), label, my_loss) assertTensorAlmostEqual( self, grads[0][0], torch.stack((2 * (10 - 9) * a[0], 2 * (35 - 38) * a[0])) ) assertTensorAlmostEqual( self, grads[0][1], torch.stack((2 * (20 - 18) * a[1], 2 * (70 - 74) * a[1])) ) def test_jacobian_loss_custom_wrong(self) -> None: model = BasicLinearModel2(5, 2) model.linear.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) def my_loss(out, label): return torch.sum((out - label).pow(2)) a = torch.stack((torch.ones(5), torch.ones(5) * 2)) label = torch.Tensor([[9, 38], [18, 74]]) with self.assertRaises(AssertionError): _compute_jacobian_wrt_params(model, (a,), label, my_loss) def test_jacobian_loss_custom_correct_sample_wise_trick(self) -> None: model = BasicLinearModel2(5, 2) model.linear.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) def my_loss(out, label): return torch.sum((out - label).pow(2)) a = torch.stack((torch.ones(5), torch.ones(5) * 2)) label = torch.Tensor([[9, 38], [18, 74]]) grads = _compute_jacobian_wrt_params_with_sample_wise_trick( model, (a,), label, my_loss # type: ignore ) assertTensorAlmostEqual( self, grads[0][0], torch.stack((2 * (10 - 9) * a[0], 2 * (35 - 38) * a[0])) ) assertTensorAlmostEqual( self, grads[0][1], torch.stack((2 * (20 - 18) * a[1], 2 * (70 - 74) * a[1])) ) def test_jacobian_loss_custom_wrong_sample_wise_trick(self) -> None: model = BasicLinearModel2(5, 2) model.linear.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) def my_loss(out, label): return (out - label).pow(2) a = torch.stack((torch.ones(5), torch.ones(5) * 2)) label = torch.Tensor([[9, 38], [18, 74]]) with self.assertRaises(AssertionError): _compute_jacobian_wrt_params_with_sample_wise_trick( model, (a,), label, my_loss # type: ignore ) def test_jacobian_loss_wrong_reduction_sample_wise_trick(self) -> None: model = BasicLinearModel2(5, 2) model.linear.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) loss_fn = nn.MSELoss(reduction="none") a = torch.stack((torch.ones(5), torch.ones(5) * 2)) label = torch.Tensor([[9, 38], [18, 74]]) with self.assertRaises(AssertionError): _compute_jacobian_wrt_params_with_sample_wise_trick( model, (a,), label, loss_fn )
#!/usr/bin/env python3 import io import unittest import unittest.mock from captum._utils.progress import NullProgress, progress from tests.helpers.basic import BaseTest class Test(BaseTest): @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_nullprogress(self, mock_stderr) -> None: count = 0 with NullProgress(["x", "y", "z"]) as np: for _ in np: for _ in NullProgress([1, 2, 3]): count += 1 self.assertEqual(count, 9) output = mock_stderr.getvalue() self.assertEqual(output, "") @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_nested_progress_tqdm(self, mock_stderr) -> None: try: import tqdm # noqa: F401 except ImportError: raise unittest.SkipTest("Skipping tqdm test, tqdm not available.") parent_data = ["x", "y", "z"] test_data = [1, 2, 3] with progress(parent_data, desc="parent progress") as parent: for item in parent: for _ in progress(test_data, desc=f"test progress {item}"): pass output = mock_stderr.getvalue() self.assertIn("parent progress:", output) for item in parent_data: self.assertIn(f"test progress {item}:", output) @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_nested_simple_progress(self, mock_stderr) -> None: parent_data = ["x", "y", "z"] test_data = [1, 2, 3] with progress( parent_data, desc="parent progress", use_tqdm=False, mininterval=0.0 ) as parent: for item in parent: for _ in progress( test_data, desc=f"test progress {item}", use_tqdm=False ): pass output = mock_stderr.getvalue() self.assertEqual( output.count("parent progress:"), 5, "5 'parent' progress bar expected" ) for item in parent_data: self.assertIn(f"test progress {item}:", output) @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_progress_tqdm(self, mock_stderr) -> None: try: import tqdm # noqa: F401 except ImportError: raise unittest.SkipTest("Skipping tqdm test, tqdm not available.") test_data = [1, 3, 5] progressed = progress(test_data, desc="test progress") assert list(progressed) == test_data assert "test progress: " in mock_stderr.getvalue() @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_simple_progress(self, mock_stderr) -> None: test_data = [1, 3, 5] desc = "test progress" progressed = progress(test_data, desc=desc, use_tqdm=False) assert list(progressed) == test_data assert mock_stderr.getvalue().startswith(f"\r{desc}: 0% 0/3") assert mock_stderr.getvalue().endswith(f"\r{desc}: 100% 3/3\n") # progress iterable without len but explicitly specify total def gen(): for n in test_data: yield n mock_stderr.seek(0) mock_stderr.truncate(0) progressed = progress(gen(), desc=desc, total=len(test_data), use_tqdm=False) assert list(progressed) == test_data assert mock_stderr.getvalue().startswith(f"\r{desc}: 0% 0/3") assert mock_stderr.getvalue().endswith(f"\r{desc}: 100% 3/3\n") @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_simple_progress_without_total(self, mock_stderr) -> None: test_data = [1, 3, 5] desc = "test progress" def gen(): for n in test_data: yield n progressed = progress(gen(), desc=desc, use_tqdm=False) assert list(progressed) == test_data assert mock_stderr.getvalue().startswith(f"\r{desc}: ") assert mock_stderr.getvalue().endswith(f"\r{desc}: ...\n") @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_simple_progress_update_manually(self, mock_stderr) -> None: desc = "test progress" p = progress(total=5, desc=desc, use_tqdm=False) p.update(0) p.update(2) p.update(2) p.update(1) p.close() assert mock_stderr.getvalue().startswith(f"\r{desc}: 0% 0/5") assert mock_stderr.getvalue().endswith(f"\r{desc}: 100% 5/5\n")
import glob import tempfile from datetime import datetime from typing import cast, List import torch from captum._utils.av import AV from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import BasicLinearReLULinear from torch.utils.data import DataLoader, Dataset DEFAULT_IDENTIFIER = "default_identifier" class RangeDataset(Dataset): def __init__(self, low, high, num_features) -> None: self.samples = ( torch.arange(start=low, end=high, dtype=torch.float) .repeat(num_features, 1) .transpose(1, 0) ) def __len__(self) -> int: return len(self.samples) def __getitem__(self, idx): return self.samples[idx] class Test(BaseTest): def test_exists_without_version(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: av_0 = torch.randn(64, 16) self.assertFalse(AV.exists(tmpdir, "dummy", "layer1.0.conv1")) AV.save(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv1", av_0, "0") self.assertTrue( AV.exists( tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv1", ) ) def test_exists_with_version(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: idf1 = str(int(datetime.now().microsecond)) idf2 = "idf2" av_0 = torch.randn(64, 16) self.assertFalse(AV.exists(tmpdir, "dummy", "layer1.0.conv1", idf1)) self.assertFalse(AV.exists(tmpdir, "dummy", "layer1.0.conv1", idf2)) AV.save(tmpdir, "dummy", idf1, "layer1.0.conv1", av_0, "0") self.assertTrue(AV.exists(tmpdir, "dummy", idf1, "layer1.0.conv1")) self.assertFalse(AV.exists(tmpdir, "dummy", idf2, "layer1.0.conv1")) AV.save(tmpdir, "dummy", idf2, "layer1.0.conv1", av_0, "0") self.assertTrue(AV.exists(tmpdir, "dummy", idf2, "layer1.0.conv1")) def test_av_save_two_layers(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: av_0 = torch.randn(64, 16) AV.save(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv1", av_0, "0") self.assertTrue( AV.exists(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv1") ) self.assertFalse( AV.exists(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv2") ) # experimenting with adding to another layer av_1 = torch.randn(64, 16) AV.save(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv2", av_1, "0") self.assertTrue( AV.exists(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv2") ) def test_av_save_multi_layer(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: av_0 = torch.randn(64, 16) av_1 = torch.randn(64, 16) av_2 = torch.randn(64, 16) model_path = AV._assemble_model_dir(tmpdir, "dummy") # save first layer AV.save(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv1", av_0, "0") self.assertEqual(len(glob.glob(model_path + "*")), 1) # add two new layers at once AV.save( tmpdir, "dummy", DEFAULT_IDENTIFIER, ["layer1.0.conv2", "layer1.1.conv1"], [av_1, av_2], "0", ) self.assertEqual(len(glob.glob(model_path + "/*/*/*")), 3) # overwrite the first saved layer AV.save(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv1", av_0, "0") self.assertEqual(len(glob.glob(model_path + "/*/*/*")), 3) # save a new version of the first layer idf1 = str(int(datetime.now().microsecond)) self.assertFalse(AV.exists(tmpdir, "dummy", idf1, "layer1.0.conv1")) AV.save(tmpdir, "dummy", idf1, "layer1.0.conv1", av_0, "0") self.assertTrue(AV.exists(tmpdir, "dummy", idf1, "layer1.0.conv1")) self.assertEqual(len(glob.glob(model_path + "/*/*/*")), 4) def test_av_save_multiple_batches_per_layer(self) -> None: def save_and_assert_batch(layer_path, total_num_batches, batch, n_batch_name): # save n-th batch and verify the number of saved batches AV.save( tmpdir, model_id, DEFAULT_IDENTIFIER, "layer1.0.conv1", batch, n_batch_name, ) self.assertEqual( len(glob.glob("/".join([layer_path, "*.pt"]))), total_num_batches, ) self.assertTrue( AV.exists( tmpdir, model_id, DEFAULT_IDENTIFIER, "layer1.0.conv1", n_batch_name ) ) with tempfile.TemporaryDirectory() as tmpdir: b0 = torch.randn(64, 16) b1 = torch.randn(64, 16) b2 = torch.randn(64, 16) model_id = "dummy" model_path = AV._assemble_model_dir(tmpdir, model_id) layer_path = AV._assemble_file_path( model_path, DEFAULT_IDENTIFIER, "layer1.0.conv1" ) # save first batch and verify the number of saved batches save_and_assert_batch(layer_path, 1, b0, "0") # save second batch and verify the number of saved batches save_and_assert_batch(layer_path, 2, b1, "1") # save third batch and verify the number of saved batches save_and_assert_batch(layer_path, 3, b2, "2") def test_av_load_multiple_batches_per_layer(self) -> None: def save_load_and_assert_batch( layer_path, total_num_batches, batch, n_batch_name ): # save n-th batch and verify the number of saved batches AV.save( tmpdir, model_id, DEFAULT_IDENTIFIER, "layer1.0.conv1", batch, n_batch_name, ) loaded_dataset = AV.load( tmpdir, model_id, DEFAULT_IDENTIFIER, "layer1.0.conv1", n_batch_name ) assertTensorAlmostEqual(self, next(iter(loaded_dataset)), batch, 0.0) loaded_dataset_for_layer = AV.load( tmpdir, model_id, DEFAULT_IDENTIFIER, "layer1.0.conv1" ) self.assertEqual( loaded_dataset_for_layer.__len__(), total_num_batches, ) with tempfile.TemporaryDirectory() as tmpdir: b0 = torch.randn(64, 16) b1 = torch.randn(64, 16) b2 = torch.randn(64, 16) model_id = "dummy" model_path = AV._assemble_model_dir(tmpdir, model_id) layer_path = AV._assemble_file_path( model_path, DEFAULT_IDENTIFIER, "layer1.0.conv1" ) # save first batch and verify the number of saved batches save_load_and_assert_batch(layer_path, 1, b0, "0") # save second batch and verify the number of saved batches save_load_and_assert_batch(layer_path, 2, b1, "1") # save third batch and verify the number of saved batches save_load_and_assert_batch(layer_path, 3, b2, "2") def test_av_load_non_saved_layer(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: model_id = "dummy" with self.assertRaises(RuntimeError) as context: AV.load(tmpdir, model_id) self.assertTrue( ( f"Activation vectors for model {model_id} " f"was not found at path {tmpdir}" ) == str(context.exception) ) def test_av_load_one_batch(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: av_0 = torch.randn(64, 16) av_1 = torch.randn(36, 16) avs = [av_0, av_1] # add av_0 to the list of activations model_id = "dummy" with self.assertRaises(RuntimeError) as context: AV.load(tmpdir, model_id) self.assertTrue( ( f"Activation vectors for model {model_id} " f"was not found at path {tmpdir}" ) == str(context.exception) ) AV.save(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv1", av_0, "0") model_id = "dummy" dataset = AV.load(tmpdir, model_id, identifier=DEFAULT_IDENTIFIER) for i, av in enumerate(DataLoader(cast(Dataset, dataset))): assertTensorAlmostEqual(self, av, avs[i].unsqueeze(0)) # add av_1 to the list of activations dataloader_2 = DataLoader( cast( Dataset, AV.load(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv2"), ) ) self.assertEqual(len(dataloader_2), 0) AV.save(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv2", av_1, "0") dataset = AV.load(tmpdir, "dummy", identifier=DEFAULT_IDENTIFIER) dataloader = DataLoader(cast(Dataset, dataset)) self.assertEqual(len(dataloader), 2) for i, av in enumerate(dataloader): assertTensorAlmostEqual(self, av, avs[i].unsqueeze(0)) def test_av_load_all_identifiers_one_layer(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: av_0 = torch.randn(64, 16) av_1 = torch.randn(36, 16) av_2 = torch.randn(16, 16) av_3 = torch.randn(4, 16) avs = [av_1, av_2, av_3] idf1, idf2, idf3 = "idf1", "idf2", "idf3" AV.save(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv1", av_0, "0") dataloader = DataLoader( cast(Dataset, AV.load(tmpdir, "dummy", identifier=DEFAULT_IDENTIFIER)) ) self.assertEqual(len(dataloader), 1) # add activations for another layer AV.save(tmpdir, "dummy", idf1, "layer1.0.conv2", av_1, "0") AV.save(tmpdir, "dummy", idf2, "layer1.0.conv2", av_2, "0") AV.save(tmpdir, "dummy", idf3, "layer1.0.conv2", av_3, "0") dataloader_layer = DataLoader( cast( Dataset, AV.load( tmpdir, "dummy", layer="layer1.0.conv2", ), ) ) self.assertEqual(len(dataloader_layer), 3) for i, av in enumerate(dataloader_layer): assertTensorAlmostEqual(self, av, avs[i].unsqueeze(0)) dataloader = DataLoader(cast(Dataset, AV.load(tmpdir, "dummy"))) self.assertEqual(len(dataloader), 4) def test_av_load_all_layers_one_identifier(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: av_01 = torch.randn(36, 16) av_02 = torch.randn(16, 16) av_03 = torch.randn(4, 16) avs_0 = [av_01, av_02, av_03] av_11 = torch.randn(36, 16) av_12 = torch.randn(16, 16) av_13 = torch.randn(4, 16) avs_1 = [av_11, av_12, av_13] idf1, idf2 = "idf1", "idf2" AV.save( tmpdir, "dummy", idf1, ["layer1.0.conv1", "layer1.0.conv2", "layer1.1.conv1"], avs_0, "0", ) dataloader = DataLoader(cast(Dataset, AV.load(tmpdir, "dummy"))) self.assertEqual(len(dataloader), 3) AV.save( tmpdir, "dummy", idf2, ["layer1.0.conv1", "layer1.0.conv2", "layer1.1.conv1"], avs_1, "0", ) dataloader = DataLoader(cast(Dataset, AV.load(tmpdir, "dummy"))) self.assertEqual(len(dataloader), 6) # check activations for idf1 dataloader_layer = DataLoader( cast(Dataset, AV.load(tmpdir, "dummy", identifier=idf1)) ) self.assertEqual(len(dataloader_layer), 3) for i, av in enumerate(dataloader_layer): assertTensorAlmostEqual(self, av, avs_0[i].unsqueeze(0)) # check activations for idf2 dataloader_layer = DataLoader( cast(Dataset, AV.load(tmpdir, "dummy", identifier=idf2)) ) self.assertEqual(len(dataloader_layer), 3) for i, av in enumerate(dataloader_layer): assertTensorAlmostEqual(self, av, avs_1[i].unsqueeze(0)) def test_av_sort_files(self) -> None: files = ["resnet50-cifar-3000", "resnet50-cifar-1000", "resnet50-cifar-2000"] exp_files = [ "resnet50-cifar-1000", "resnet50-cifar-2000", "resnet50-cifar-3000", ] files = AV.sort_files(files) self.assertEqual(files, exp_files) files = ["resnet50-cifar-0900", "resnet50-cifar-0000", "resnet50-cifar-1000"] exp_files = [ "resnet50-cifar-0000", "resnet50-cifar-0900", "resnet50-cifar-1000", ] files = AV.sort_files(files) self.assertEqual(files, exp_files) files = ["resnet50-cifar-100", "resnet50-cifar-90", "resnet50-cifar-3000"] exp_files = [ "resnet50-cifar-90", "resnet50-cifar-100", "resnet50-cifar-3000", ] files = AV.sort_files(files) self.assertEqual(files, exp_files) files = [ "av/pretrained-net-0/fc1-src10-710935.pt", "av/pretrained-net-0/fc1-src11-755317.pt", "av/pretrained-net-0/fc3-src2-655646.pt", "av/pretrained-net-0/fc1-src9-952381.pt", "av/pretrained-net-0/conv2-src7-811286.pt", "av/pretrained-net-0/fc1-src10-176141.pt", "av/pretrained-net-0/conv11-src9-384927.pt", ] exp_files = [ "av/pretrained-net-0/conv2-src7-811286.pt", "av/pretrained-net-0/conv11-src9-384927.pt", "av/pretrained-net-0/fc1-src9-952381.pt", "av/pretrained-net-0/fc1-src10-176141.pt", "av/pretrained-net-0/fc1-src10-710935.pt", "av/pretrained-net-0/fc1-src11-755317.pt", "av/pretrained-net-0/fc3-src2-655646.pt", ] files = AV.sort_files(files) self.assertEqual(files, exp_files) def test_generate_activation(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: num_features = 4 low, high = 0, 16 mymodel = BasicLinearReLULinear(num_features) mydata = RangeDataset(low, high, num_features) layers: List[str] = [ value[0] for value in mymodel.named_modules() if value[0] ] # First AV generation on last 2 layers inputs = torch.stack((mydata[1], mydata[8], mydata[14])) AV._compute_and_save_activations( tmpdir, mymodel, "model_id_1", layers[1:], inputs, "test", "0" ) av_test = AV._construct_file_search(tmpdir, "model_id_1", identifier="test") av_test = glob.glob(av_test) self.assertEqual(len(av_test), len(layers[1:])) # Second AV generation on first 2 layers. # Second layer overlaps with existing activations, should be loaded. inputs = torch.stack((mydata[0], mydata[7], mydata[13])) AV._compute_and_save_activations( tmpdir, mymodel, "model_id_1", layers[:2], inputs, "test", "0" ) av_test = AV._construct_file_search(tmpdir, "model_id_1", identifier="test") av_test = glob.glob(av_test) self.assertEqual(len(av_test), len(layers)) def test_generate_dataset_activations(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: num_features = 4 low, high = 0, 16 batch_size = high // 2 mymodel = BasicLinearReLULinear(num_features) mydata = RangeDataset(low, high, num_features) layers: List[str] = [ value[0] for value in mymodel.named_modules() if value[0] ] # First AV generation on last 2 layers layer_AVDatasets = AV.generate_dataset_activations( tmpdir, mymodel, "model_id1", layers[1:], DataLoader(mydata, batch_size, shuffle=False), "src", return_activations=True, ) av_src = AV._construct_file_search( tmpdir, model_id="model_id1", identifier="src" ) av_src = glob.glob(av_src) self.assertEqual(len(av_src), high / batch_size * len(layers[1:])) self.assertTrue(isinstance(layer_AVDatasets, list)) layer_AVDatasets = cast(list, layer_AVDatasets) self.assertEqual(len(layer_AVDatasets), len(layers[1:])) for layer_AVDataset in layer_AVDatasets: self.assertEqual(len(layer_AVDataset), high / batch_size) # Second AV generation on first 2 layers. # Second layer overlaps with existing activations, should be loaded. layer_AVDatasets = AV.generate_dataset_activations( tmpdir, mymodel, "model_id1", layers[:2], DataLoader(mydata, batch_size, shuffle=False), "src", return_activations=True, ) av_src = AV._construct_file_search( tmpdir, model_id="model_id1", identifier="src" ) av_src = glob.glob(av_src) self.assertEqual(len(av_src), high / batch_size * len(layers)) self.assertTrue(isinstance(layer_AVDatasets, list)) layer_AVDatasets = cast(list, layer_AVDatasets) self.assertEqual(len(layer_AVDatasets), len(layers[:2])) for layer_AVDataset in layer_AVDatasets: self.assertEqual(len(layer_AVDataset), high / batch_size) # check that if return_activations is False, None is returned self.assertIsNone( AV.generate_dataset_activations( tmpdir, mymodel, "model_id1", layers[:2], DataLoader(mydata, batch_size, shuffle=False), "src", return_activations=False, ) ) def test_equal_activation(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: num_features = 4 low, high = 0, 16 mymodel = BasicLinearReLULinear(num_features) mydata = RangeDataset(low, high, num_features) layers: List[str] = [ value[0] for value in mymodel.named_modules() if value[0] ] # First AV generation on last 2 layers test_input = mydata[1].unsqueeze(0) model_id = "id_1" identifier = "test" num_id = "0" AV._compute_and_save_activations( tmpdir, mymodel, model_id, layers[2], test_input, identifier, num_id ) act_dataset = AV.load(tmpdir, model_id, identifier, layers[2], num_id) _layer_act = [act.squeeze(0) for act in DataLoader(act_dataset)] act = torch.cat(_layer_act) out = mymodel(test_input) assertTensorAlmostEqual(self, out, act)
#!/usr/bin/env python3 import torch from captum._utils.models.linear_model.model import ( SGDLasso, SGDLinearRegression, SGDRidge, ) from tests.helpers.basic import assertTensorAlmostEqual, BaseTest def _evaluate(test_data, classifier): classifier.eval() l1_loss = 0.0 l2_loss = 0.0 n = 0 l2_losses = [] with torch.no_grad(): for data in test_data: if len(data) == 2: x, y = data w = None else: x, y, w = data out = classifier(x) y = y.view(x.shape[0], -1) assert y.shape == out.shape if w is None: l1_loss += (out - y).abs().sum(0).to(dtype=torch.float64) l2_loss += ((out - y) ** 2).sum(0).to(dtype=torch.float64) l2_losses.append(((out - y) ** 2).to(dtype=torch.float64)) else: l1_loss += ( (w.view(-1, 1) * (out - y)).abs().sum(0).to(dtype=torch.float64) ) l2_loss += ( (w.view(-1, 1) * ((out - y) ** 2)).sum(0).to(dtype=torch.float64) ) l2_losses.append( (w.view(-1, 1) * ((out - y) ** 2)).to(dtype=torch.float64) ) n += x.shape[0] l2_losses = torch.cat(l2_losses, dim=0) assert n > 0 # just to double check assert ((l2_losses.mean(0) - l2_loss / n).abs() <= 0.1).all() classifier.train() return {"l1": l1_loss / n, "l2": l2_loss / n} class TestLinearModel(BaseTest): MAX_POINTS: int = 3 def train_and_compare( self, model_type, xs, ys, expected_loss, expected_reg=0.0, expected_hyperplane=None, norm_hyperplane=True, weights=None, delta=0.1, init_scheme="zeros", objective="lasso", bias=True, ): assert objective in ["lasso", "ridge", "ols"] if weights is None: train_dataset = torch.utils.data.TensorDataset(xs, ys) else: train_dataset = torch.utils.data.TensorDataset(xs, ys, weights) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=len(train_dataset), num_workers=0 ) model = model_type(bias=bias) model.fit( train_loader, init_scheme=init_scheme, max_epoch=150, initial_lr=0.1, patience=5, ) self.assertTrue(model.bias() is not None if bias else model.bias() is None) l2_loss = _evaluate(train_loader, model)["l2"] if objective == "lasso": reg = model.representation().norm(p=1).view_as(l2_loss) elif objective == "ridge": reg = model.representation().norm(p=2).view_as(l2_loss) else: assert objective == "ols" reg = torch.zeros_like(l2_loss) if not isinstance(expected_loss, torch.Tensor): expected_loss = torch.tensor([expected_loss], dtype=l2_loss.dtype).view(1) if not isinstance(expected_reg, torch.Tensor): expected_reg = torch.tensor([expected_reg], dtype=reg.dtype) assertTensorAlmostEqual(self, l2_loss, expected_loss, delta=delta) assertTensorAlmostEqual(self, reg, expected_reg, delta=delta) if expected_hyperplane is not None: h = model.representation() if norm_hyperplane: h /= h.norm(p=2) assertTensorAlmostEqual(self, h, expected_hyperplane, delta=delta) def test_simple_linear_regression(self) -> None: xs = torch.randn(TestLinearModel.MAX_POINTS, 1) ys = 3 * xs + 1 self.train_and_compare( SGDLinearRegression, xs, ys, expected_loss=0, expected_reg=0, objective="ols", ) self.train_and_compare( SGDLasso, xs, ys, expected_loss=3, expected_reg=0, objective="lasso", delta=0.2, ) self.train_and_compare( SGDRidge, xs, ys, expected_loss=3, expected_reg=0, objective="ridge", delta=0.2, ) def test_simple_multi_output(self) -> None: xs = torch.randn(TestLinearModel.MAX_POINTS, 1) y1 = 3 * xs + 1 y2 = -5 * xs ys = torch.stack((y1, y2), dim=1).squeeze() self.train_and_compare( SGDLinearRegression, xs, ys, expected_loss=torch.DoubleTensor([0, 0]), expected_reg=torch.DoubleTensor([0, 0]), objective="ols", ) def test_simple_linear_classification(self) -> None: xs = torch.tensor([[0.5, 0.5], [-0.5, -0.5], [0.5, -0.5], [-0.5, 0.5]]) ys = torch.tensor([1.0, -1.0, 1.0, -1.0]) self.train_and_compare( SGDLinearRegression, xs, ys, expected_loss=0, expected_reg=0, objective="ols", ) self.train_and_compare( SGDLasso, xs, ys, expected_loss=1, expected_reg=0.0, objective="lasso" ) self.train_and_compare( SGDRidge, xs, ys, expected_loss=1, expected_reg=0.0, objective="ridge" ) ys = torch.tensor([1.0, 0.0, 1.0, 0.0]) self.train_and_compare( SGDLinearRegression, xs, ys, expected_loss=0, expected_reg=0, objective="ols", ) self.train_and_compare( SGDLasso, xs, ys, expected_loss=0.25, expected_reg=0, objective="lasso" ) self.train_and_compare( SGDRidge, xs, ys, expected_loss=0.25, expected_reg=0, objective="ridge" ) def test_simple_xor_problem(self) -> None: r""" ^ o | x ---|---> x | o """ xs = torch.tensor([[0.5, 0.5], [-0.5, -0.5], [0.5, -0.5], [-0.5, 0.5]]) ys = torch.tensor([1.0, 1.0, -1.0, -1.0]) expected_hyperplane = torch.Tensor([[0, 0]]) self.train_and_compare( SGDLinearRegression, xs, ys, expected_loss=1, expected_reg=0, objective="ols", expected_hyperplane=expected_hyperplane, norm_hyperplane=False, bias=False, ) self.train_and_compare( SGDLasso, xs, ys, expected_loss=1, expected_reg=0, objective="lasso", expected_hyperplane=expected_hyperplane, norm_hyperplane=False, bias=False, ) self.train_and_compare( SGDRidge, xs, ys, expected_loss=1, expected_reg=0, objective="ridge", expected_hyperplane=expected_hyperplane, norm_hyperplane=False, bias=False, ) def test_weighted_problem(self) -> None: r""" ^ 0 | x ---|---> 0 | o """ xs = torch.tensor([[0.5, 0.5], [-0.5, -0.5], [0.5, -0.5], [-0.5, 0.5]]) ys = torch.tensor([1.0, 1.0, -1.0, -1.0]) weights = torch.tensor([1.0, 0.0, 1.0, 0.0]) self.train_and_compare( SGDLinearRegression, xs, ys, expected_loss=0, expected_reg=0, expected_hyperplane=torch.Tensor([[0.0, 1.0]]), weights=weights, norm_hyperplane=True, init_scheme="zeros", objective="ols", bias=False, ) self.train_and_compare( SGDLasso, xs, ys, expected_loss=0.5, expected_reg=0, expected_hyperplane=torch.Tensor([[0.0, 0.0]]), weights=weights, norm_hyperplane=False, init_scheme="zeros", objective="lasso", bias=False, ) self.train_and_compare( SGDRidge, xs, ys, expected_loss=0.5, expected_reg=0, expected_hyperplane=torch.Tensor([[0.0, 0.0]]), weights=weights, norm_hyperplane=False, init_scheme="zeros", objective="ridge", bias=False, )
#!/usr/bin/env python3 import torch from tests.helpers.basic import assertTensorAlmostEqual, BaseTest class HelpersTest(BaseTest): def test_assert_tensor_almost_equal(self) -> None: with self.assertRaises(AssertionError) as cm: assertTensorAlmostEqual(self, [[1.0]], [[1.0]]) self.assertEqual( cm.exception.args, ("Actual parameter given for comparison must be a tensor.",), ) with self.assertRaises(AssertionError) as cm: assertTensorAlmostEqual(self, torch.tensor([[]]), torch.tensor([[1.0]])) self.assertEqual( cm.exception.args, ( "Expected tensor with shape: torch.Size([1, 1]). Actual shape torch.Size([1, 0]).", # noqa: E501 ), ) assertTensorAlmostEqual(self, torch.tensor([[1.0]]), [[1.0]]) with self.assertRaises(AssertionError) as cm: assertTensorAlmostEqual(self, torch.tensor([[1.0]]), [1.0]) self.assertEqual( cm.exception.args, ( "Expected tensor with shape: torch.Size([1]). Actual shape torch.Size([1, 1]).", # noqa: E501 ), ) assertTensorAlmostEqual( self, torch.tensor([[1.0, 1.0]]), [[1.0, 0.0]], delta=1.0, mode="max" ) with self.assertRaises(AssertionError) as cm: assertTensorAlmostEqual( self, torch.tensor([[1.0, 1.0]]), [[1.0, 0.0]], mode="max" ) self.assertEqual( cm.exception.args, ( "Values at index 0, tensor([1., 1.]) and tensor([1., 0.]), differ more than by 0.0001", # noqa: E501 ), ) assertTensorAlmostEqual( self, torch.tensor([[1.0, 1.0]]), [[1.0, 0.0]], delta=1.0 ) with self.assertRaises(AssertionError): assertTensorAlmostEqual(self, torch.tensor([[1.0, 1.0]]), [[1.0, 0.0]])
#!/usr/bin/env python3 import unittest from typing import Callable, Tuple import torch from captum._utils.gradient import apply_gradient_requirements from captum._utils.sample_gradient import ( _reset_sample_grads, SampleGradientWrapper, SUPPORTED_MODULES, ) from packaging import version from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import ( BasicModel_ConvNet_One_Conv, BasicModel_ConvNetWithPaddingDilation, BasicModel_MultiLayer, ) from torch import Tensor from torch.nn import Module class Test(BaseTest): def test_sample_grads_linear_sum(self) -> None: model = BasicModel_MultiLayer(multi_input_module=True) inp = (torch.randn(6, 3), torch.randn(6, 3)) self._compare_sample_grads_per_sample(model, inp, lambda x: torch.sum(x), "sum") def test_sample_grads_linear_mean(self) -> None: model = BasicModel_MultiLayer(multi_input_module=True) inp = (20 * torch.randn(6, 3),) self._compare_sample_grads_per_sample(model, inp, lambda x: torch.mean(x)) def test_sample_grads_conv_sum(self) -> None: model = BasicModel_ConvNet_One_Conv() inp = (123 * torch.randn(6, 1, 4, 4),) self._compare_sample_grads_per_sample(model, inp, lambda x: torch.sum(x), "sum") def test_sample_grads_conv_mean_multi_inp(self) -> None: model = BasicModel_ConvNet_One_Conv() inp = (20 * torch.randn(6, 1, 4, 4), 9 * torch.randn(6, 1, 4, 4)) self._compare_sample_grads_per_sample(model, inp, lambda x: torch.mean(x)) def test_sample_grads_modified_conv_mean(self) -> None: if version.parse(torch.__version__) < version.parse("1.8.0"): raise unittest.SkipTest( "Skipping sample gradient test with 3D linear module" "since torch version < 1.8" ) model = BasicModel_ConvNetWithPaddingDilation() inp = (20 * torch.randn(6, 1, 5, 5),) self._compare_sample_grads_per_sample( model, inp, lambda x: torch.mean(x), "mean" ) def test_sample_grads_modified_conv_sum(self) -> None: if version.parse(torch.__version__) < version.parse("1.8.0"): raise unittest.SkipTest( "Skipping sample gradient test with 3D linear module" "since torch version < 1.8" ) model = BasicModel_ConvNetWithPaddingDilation() inp = (20 * torch.randn(6, 1, 5, 5),) self._compare_sample_grads_per_sample(model, inp, lambda x: torch.sum(x), "sum") def _compare_sample_grads_per_sample( self, model: Module, inputs: Tuple[Tensor, ...], loss_fn: Callable, loss_type: str = "mean", ): wrapper = SampleGradientWrapper(model) wrapper.add_hooks() apply_gradient_requirements(inputs) out = model(*inputs) wrapper.compute_param_sample_gradients(loss_fn(out), loss_type) batch_size = inputs[0].shape[0] for i in range(batch_size): model.zero_grad() single_inp = tuple(inp[i : i + 1] for inp in inputs) out = model(*single_inp) loss_fn(out).backward() for layer in model.modules(): if isinstance(layer, tuple(SUPPORTED_MODULES.keys())): assertTensorAlmostEqual( self, layer.weight.grad, layer.weight.sample_grad[i], # type: ignore mode="max", ) assertTensorAlmostEqual( self, layer.bias.grad, layer.bias.sample_grad[i], # type: ignore mode="max", ) def test_sample_grads_layer_modules(self): """ tests that if `layer_modules` argument is specified for `SampleGradientWrapper` that only per-sample gradients for the specified layers are calculated """ model = BasicModel_ConvNet_One_Conv() inp = (20 * torch.randn(6, 1, 4, 4), 9 * torch.randn(6, 1, 4, 4)) # possible candidates for `layer_modules`, which are the modules whose # parameters we want to compute sample grads for layer_moduless = [[model.conv1], [model.fc1], [model.conv1, model.fc1]] # hard coded all modules we want to check all_modules = [model.conv1, model.fc1] for layer_modules in layer_moduless: # we will call the wrapper multiple times, so should reset each time for module in all_modules: _reset_sample_grads(module) # compute sample grads wrapper = SampleGradientWrapper(model, layer_modules) wrapper.add_hooks() apply_gradient_requirements(inp) out = model(*inp) wrapper.compute_param_sample_gradients(torch.sum(out), "sum") for module in all_modules: if module in layer_modules: # If we calculated the sample grads for the layer, none # of its parameters' `sample_grad` attributes` would be an int, # since even though they were all set to 0 in beginning of loop # computing sample grads would override that 0. # So, check that we did calculate sample grads for the desired # layers via the above checking approach. for parameter in module.parameters(): assert not isinstance(parameter.sample_grad, int) else: # For the layers we do not want sample grads for, their # `sample_grad` should still be 0, since they should not have been # over-written. for parameter in module.parameters(): assert parameter.sample_grad == 0
import argparse import random from typing import Optional import captum._utils.models.linear_model.model as pytorch_model_module import numpy as np import sklearn.datasets as datasets import torch from tests.utils.test_linear_model import _evaluate from torch.utils.data import DataLoader, TensorDataset def sklearn_dataset_to_loaders( data, train_prop=0.7, batch_size=64, num_workers=4, shuffle=False, one_hot=False ): xs, ys = data if one_hot and ys.dtype != float: oh = np.zeros((ys.size, ys.max() + 1)) oh[np.arange(ys.size), ys] = 1 ys = oh dataset = TensorDataset(torch.FloatTensor(xs), torch.FloatTensor(ys)) lens = [int(train_prop * len(xs))] lens += [len(xs) - lens[0]] train_dset, val_dset = torch.utils.data.random_split(dataset, lens) train_loader = DataLoader( train_dset, batch_size=min(batch_size, lens[0]), shuffle=shuffle, num_workers=num_workers, ) val_loader = DataLoader( val_dset, batch_size=min(batch_size, lens[1]), num_workers=num_workers, shuffle=False, ) return train_loader, val_loader, xs.shape[1], xs.shape[0] def compare_to_sk_learn( max_epoch: int, train_loader: DataLoader, val_loader: DataLoader, train_prop: float, sklearn_model_type: str, pytorch_model_type: str, norm_type: Optional[str], objective: str, alpha: float, init_scheme: str = "zeros", ): if "LinearRegression" not in sklearn_model_type: sklearn_classifier = getattr(pytorch_model_module, sklearn_model_type)( alpha=alpha ) else: sklearn_classifier = getattr(pytorch_model_module, sklearn_model_type)() pytorch_classifier = getattr(pytorch_model_module, pytorch_model_type)( norm_type=args.norm_type, ) sklearn_stats = sklearn_classifier.fit( train_data=train_loader, norm_input=args.norm_sklearn, ) pytorch_stats = pytorch_classifier.fit( train_data=train_loader, max_epoch=max_epoch, init_scheme=init_scheme, alpha=alpha, ) sklearn_stats.update(_evaluate(val_loader, sklearn_classifier)) pytorch_stats.update(_evaluate(val_loader, pytorch_classifier)) train_stats_pytorch = _evaluate(train_loader, pytorch_classifier) train_stats_sklearn = _evaluate(train_loader, sklearn_classifier) o_pytorch = {"l2": train_stats_pytorch["l2"]} o_sklearn = {"l2": train_stats_sklearn["l2"]} pytorch_h = pytorch_classifier.representation() sklearn_h = sklearn_classifier.representation() if objective == "ridge": o_pytorch["l2_reg"] = alpha * pytorch_h.norm(p=2, dim=-1) o_sklearn["l2_reg"] = alpha * sklearn_h.norm(p=2, dim=-1) elif objective == "lasso": o_pytorch["l1_reg"] = alpha * pytorch_h.norm(p=1, dim=-1) o_sklearn["l1_reg"] = alpha * sklearn_h.norm(p=1, dim=-1) rel_diff = (sum(o_sklearn.values()) - sum(o_pytorch.values())) / abs( sum(o_sklearn.values()) ) return ( { "objective_rel_diff": rel_diff.tolist(), "objective_pytorch": o_pytorch, "objective_sklearn": o_sklearn, }, sklearn_stats, pytorch_stats, ) def main(args): if args.seed: torch.manual_seed(0) random.seed(0) assert args.norm_type in [None, "layer_norm", "batch_norm"] print( "dataset,num_samples,dimensionality,objective_diff,objective_pytorch," + "objective_sklearn,pytorch_time,sklearn_time,pytorch_l2_val,sklearn_l2_val" ) for dataset in args.datasets: dataset_fn = getattr(datasets, dataset) data = dataset_fn(return_X_y=True) ( train_loader, val_loader, in_features, num_samples, ) = sklearn_dataset_to_loaders( data, batch_size=args.batch_size, num_workers=args.workers, shuffle=args.shuffle, one_hot=args.one_hot, ) similarity, sklearn_stats, pytorch_stats = compare_to_sk_learn( alpha=args.alpha, max_epoch=args.max_epoch, train_loader=train_loader, val_loader=val_loader, train_prop=args.training_prop, pytorch_model_type=args.pytorch_model_type, sklearn_model_type=args.sklearn_model_type, norm_type=args.norm_type, init_scheme=args.init_scheme, objective=args.objective, ) print( f"{dataset},{num_samples},{in_features},{similarity['objective_rel_diff']}," + f"{similarity['objective_pytorch']},{similarity['objective_sklearn']}," + f"{pytorch_stats['train_time']},{sklearn_stats['train_time']}," + f"{pytorch_stats['l2']},{sklearn_stats['l2']}" ) if __name__ == "__main__": parser = argparse.ArgumentParser( description="train & test linear model with SGD + compare to sklearn" ) parser.add_argument( "--norm_type", type=str, default=None, ) parser.add_argument( "--datasets", type=str, nargs="+", default=[ "load_boston", "load_breast_cancer", "load_diabetes", "fetch_california_housing", ], ) parser.add_argument("--initial_lr", type=float, default=0.01) parser.add_argument("--alpha", type=float, default=1.0) parser.add_argument("--max_epoch", type=int, default=100) parser.add_argument("--seed", type=int, default=None) parser.add_argument("--shuffle", default=False, action="store_true") parser.add_argument("--one_hot", default=False, action="store_true") parser.add_argument("--batch_size", type=int, default=256) parser.add_argument("--training_prop", type=float, default=0.7) parser.add_argument("--workers", type=int, default=1) parser.add_argument("--sklearn_model_type", type=str, default="Lasso") parser.add_argument("--pytorch_model_type", type=str, default="SGDLasso") parser.add_argument("--init_scheme", type=str, default="xavier") parser.add_argument("--norm_sklearn", default=False, action="store_true") parser.add_argument("--objective", type=str, default="lasso") args = parser.parse_args() main(args)
#!/usr/bin/env python3 from typing import cast, Tuple, Union import numpy as np import torch from captum._utils.typing import Tensor from captum.attr._core.gradient_shap import GradientShap from captum.attr._core.integrated_gradients import IntegratedGradients from numpy import ndarray from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import BasicLinearModel, BasicModel2 from tests.helpers.classification_models import SoftmaxModel class Test(BaseTest): # This test reproduces some of the test cases from the original implementation # https://github.com/slundberg/shap/ # explainers/test_gradient.py def test_basic_multi_input(self) -> None: batch_size = 10 x1 = torch.ones(batch_size, 3) x2 = torch.ones(batch_size, 4) inputs = (x1, x2) batch_size_baselines = 20 baselines = ( torch.zeros(batch_size_baselines, 3), torch.zeros(batch_size_baselines, 4), ) model = BasicLinearModel() model.eval() model.zero_grad() np.random.seed(0) torch.manual_seed(0) gradient_shap = GradientShap(model) n_samples = 50 attributions, delta = cast( Tuple[Tuple[Tensor, ...], Tensor], gradient_shap.attribute( inputs, baselines, n_samples=n_samples, return_convergence_delta=True ), ) attributions_without_delta = gradient_shap.attribute((x1, x2), baselines) _assert_attribution_delta(self, inputs, attributions, n_samples, delta) # Compare with integrated gradients ig = IntegratedGradients(model) baselines = (torch.zeros(batch_size, 3), torch.zeros(batch_size, 4)) attributions_ig = ig.attribute(inputs, baselines=baselines) self._assert_shap_ig_comparision(attributions, attributions_ig) # compare attributions retrieved with and without # `return_convergence_delta` flag for attribution, attribution_without_delta in zip( attributions, attributions_without_delta ): assertTensorAlmostEqual(self, attribution, attribution_without_delta) def test_basic_multi_input_wo_mutliplying_by_inputs(self) -> None: batch_size = 10 x1 = torch.ones(batch_size, 3) x2 = torch.ones(batch_size, 4) inputs = (x1, x2) batch_size_baselines = 20 baselines = ( torch.ones(batch_size_baselines, 3) + 2e-5, torch.ones(batch_size_baselines, 4) + 2e-5, ) model = BasicLinearModel() model.eval() model.zero_grad() np.random.seed(0) torch.manual_seed(0) gradient_shap = GradientShap(model) gradient_shap_wo_mutliplying_by_inputs = GradientShap( model, multiply_by_inputs=False ) n_samples = 50 attributions = cast( Tuple[Tuple[Tensor, ...], Tensor], gradient_shap.attribute( inputs, baselines, n_samples=n_samples, stdevs=0.0, ), ) attributions_wo_mutliplying_by_inputs = cast( Tuple[Tuple[Tensor, ...], Tensor], gradient_shap_wo_mutliplying_by_inputs.attribute( inputs, baselines, n_samples=n_samples, stdevs=0.0, ), ) assertTensorAlmostEqual( self, attributions_wo_mutliplying_by_inputs[0] * (x1 - baselines[0][0:1]), attributions[0], ) assertTensorAlmostEqual( self, attributions_wo_mutliplying_by_inputs[1] * (x2 - baselines[1][0:1]), attributions[1], ) def test_classification_baselines_as_function(self) -> None: num_in = 40 inputs = torch.arange(0.0, num_in * 2.0).reshape(2, num_in) def generate_baselines() -> Tensor: return torch.arange(0.0, num_in * 4.0).reshape(4, num_in) def generate_baselines_with_inputs(inputs: Tensor) -> Tensor: inp_shape = cast(Tuple[int, ...], inputs.shape) return torch.arange(0.0, inp_shape[1] * 2.0).reshape(2, inp_shape[1]) def generate_baselines_returns_array() -> ndarray: return np.arange(0.0, num_in * 4.0).reshape(4, num_in) # 10-class classification model model = SoftmaxModel(num_in, 20, 10) model.eval() model.zero_grad() gradient_shap = GradientShap(model) n_samples = 10 attributions, delta = gradient_shap.attribute( inputs, baselines=generate_baselines, target=torch.tensor(1), n_samples=n_samples, stdevs=0.009, return_convergence_delta=True, ) _assert_attribution_delta(self, (inputs,), (attributions,), n_samples, delta) attributions, delta = gradient_shap.attribute( inputs, baselines=generate_baselines_with_inputs, target=torch.tensor(1), n_samples=n_samples, stdevs=0.00001, return_convergence_delta=True, ) _assert_attribution_delta(self, (inputs,), (attributions,), n_samples, delta) with self.assertRaises(AssertionError): attributions, delta = gradient_shap.attribute( # type: ignore inputs, # Intentionally passing wrong type. baselines=generate_baselines_returns_array, target=torch.tensor(1), n_samples=n_samples, stdevs=0.00001, return_convergence_delta=True, ) def test_classification(self) -> None: num_in = 40 inputs = torch.arange(0.0, num_in * 2.0).reshape(2, num_in) baselines = torch.arange(0.0, num_in * 4.0).reshape(4, num_in) target = torch.tensor(1) # 10-class classification model model = SoftmaxModel(num_in, 20, 10) model.eval() model.zero_grad() gradient_shap = GradientShap(model) n_samples = 10 attributions, delta = gradient_shap.attribute( inputs, baselines=baselines, target=target, n_samples=n_samples, stdevs=0.009, return_convergence_delta=True, ) _assert_attribution_delta(self, (inputs,), (attributions,), n_samples, delta) # try to call `compute_convergence_delta` externally with self.assertRaises(AssertionError): gradient_shap.compute_convergence_delta( attributions, inputs, baselines, target=target ) # now, let's expand target and choose random baselines from `baselines` tensor rand_indices = np.random.choice(baselines.shape[0], inputs.shape[0]).tolist() chosen_baselines = baselines[rand_indices] target_extendes = torch.tensor([1, 1]) external_delta = gradient_shap.compute_convergence_delta( attributions, chosen_baselines, inputs, target=target_extendes ) _assert_delta(self, external_delta) # Compare with integrated gradients ig = IntegratedGradients(model) baselines = torch.arange(0.0, num_in * 2.0).reshape(2, num_in) attributions_ig = ig.attribute(inputs, baselines=baselines, target=target) self._assert_shap_ig_comparision((attributions,), (attributions_ig,)) def test_basic_relu_multi_input(self) -> None: model = BasicModel2() input1 = torch.tensor([[3.0]]) input2 = torch.tensor([[1.0]], requires_grad=True) baseline1 = torch.tensor([[0.0]]) baseline2 = torch.tensor([[0.0]]) inputs = (input1, input2) baselines = (baseline1, baseline2) gs = GradientShap(model) n_samples = 20000 attributions, delta = cast( Tuple[Tuple[Tensor, ...], Tensor], gs.attribute( inputs, baselines=baselines, n_samples=n_samples, return_convergence_delta=True, ), ) _assert_attribution_delta( self, inputs, attributions, n_samples, delta, delta_thresh=0.008 ) ig = IntegratedGradients(model) attributions_ig = ig.attribute(inputs, baselines=baselines) self._assert_shap_ig_comparision(attributions, attributions_ig) def _assert_shap_ig_comparision( self, attributions1: Tuple[Tensor, ...], attributions2: Tuple[Tensor, ...] ) -> None: for attribution1, attribution2 in zip(attributions1, attributions2): for attr_row1, attr_row2 in zip(attribution1, attribution2): assertTensorAlmostEqual(self, attr_row1, attr_row2, 0.05, "max") def _assert_attribution_delta( test: BaseTest, inputs: Union[Tensor, Tuple[Tensor, ...]], attributions: Union[Tensor, Tuple[Tensor, ...]], n_samples: int, delta: Tensor, delta_thresh: Union[float, Tensor] = 0.0006, is_layer: bool = False, ) -> None: if not is_layer: for input, attribution in zip(inputs, attributions): test.assertEqual(attribution.shape, input.shape) if isinstance(inputs, tuple): bsz = inputs[0].shape[0] else: bsz = inputs.shape[0] test.assertEqual([bsz * n_samples], list(delta.shape)) delta = torch.mean(delta.reshape(bsz, -1), dim=1) _assert_delta(test, delta, delta_thresh) def _assert_delta( test: BaseTest, delta: Tensor, delta_thresh: Union[Tensor, float] = 0.0006 ) -> None: delta_condition = (delta.abs() < delta_thresh).all() test.assertTrue( delta_condition, "Sum of SHAP values {} does" " not match the difference of endpoints.".format(delta), )
#!/usr/bin/env python3 from typing import Any, Callable, cast, Dict, Optional, Tuple, Type import torch from captum._utils.common import _format_additional_forward_args from captum.attr._core.feature_permutation import FeaturePermutation from captum.attr._core.integrated_gradients import IntegratedGradients from captum.attr._core.lime import Lime from captum.attr._core.noise_tunnel import NoiseTunnel from captum.attr._utils.attribution import Attribution, InternalAttribution from tests.attr.helpers.gen_test_utils import ( gen_test_name, get_target_layer, parse_test_config, should_create_generated_test, ) from tests.attr.helpers.test_config import config from tests.helpers.basic import assertTensorTuplesAlmostEqual, BaseTest, deep_copy_args from tests.helpers.basic_models import BasicModel_MultiLayer from torch import Tensor from torch.nn import Module """ Tests in this file are dynamically generated based on the config defined in tests/attr/helpers/test_config.py. To add new test cases, read the documentation in test_config.py and add cases based on the schema described there. """ class TargetsMeta(type): """ Target tests created in TargetsMeta apply to any test case with targets being a list or tensor. Attribution of each example is computed independently with the appropriate target and compared to the corresponding result of attributing to a batch with a tensor / list of targets. """ def __new__(cls, name: str, bases: Tuple, attrs: Dict): for test_config in config: ( algorithms, model, args, layer, noise_tunnel, baseline_distr, ) = parse_test_config(test_config) target_delta = ( test_config["target_delta"] if "target_delta" in test_config else 0.0001 ) if "target" not in args or not isinstance(args["target"], (list, Tensor)): continue for algorithm in algorithms: # FeaturePermutation requires a batch of inputs # so skipping tests if issubclass( algorithm, FeaturePermutation ) or not should_create_generated_test(algorithm): continue test_method = cls.make_single_target_test( algorithm, model, layer, args, target_delta, noise_tunnel, baseline_distr, ) test_name = gen_test_name( "test_target", cast(str, test_config["name"]), algorithm, noise_tunnel, ) if test_name in attrs: raise AssertionError( "Trying to overwrite existing test with name: %r" % test_name ) attrs[test_name] = test_method return super(TargetsMeta, cls).__new__(cls, name, bases, attrs) # Arguments are deep copied to ensure tests are independent and are not affected # by any modifications within a previous test. @classmethod @deep_copy_args def make_single_target_test( cls, algorithm: Type[Attribution], model: Module, layer: Optional[str], args: Dict[str, Any], target_delta: float, noise_tunnel: bool, baseline_distr: bool, ) -> Callable: """ This method creates a single target test for the given algorithm and parameters. """ target_layer = get_target_layer(model, layer) if layer is not None else None # Obtains initial arguments to replace with each example # individually. original_inputs = args["inputs"] original_targets = args["target"] original_additional_forward_args = ( _format_additional_forward_args(args["additional_forward_args"]) if "additional_forward_args" in args else None ) num_examples = ( len(original_inputs) if isinstance(original_inputs, Tensor) else len(original_inputs[0]) ) replace_baselines = "baselines" in args and not baseline_distr if replace_baselines: original_baselines = args["baselines"] def target_test_assert(self) -> None: attr_method: Attribution if target_layer: internal_algorithm = cast(Type[InternalAttribution], algorithm) attr_method = internal_algorithm(model, target_layer) else: attr_method = algorithm(model) if noise_tunnel: attr_method = NoiseTunnel(attr_method) attributions_orig = attr_method.attribute(**args) self.setUp() for i in range(num_examples): args["target"] = ( original_targets[i] if len(original_targets) == num_examples else original_targets ) args["inputs"] = ( original_inputs[i : i + 1] if isinstance(original_inputs, Tensor) else tuple( original_inp[i : i + 1] for original_inp in original_inputs ) ) if original_additional_forward_args is not None: args["additional_forward_args"] = tuple( single_add_arg[i : i + 1] if isinstance(single_add_arg, Tensor) else single_add_arg for single_add_arg in original_additional_forward_args ) if replace_baselines: if isinstance(original_inputs, Tensor): args["baselines"] = original_baselines[i : i + 1] elif isinstance(original_baselines, tuple): args["baselines"] = tuple( single_baseline[i : i + 1] if isinstance(single_baseline, Tensor) else single_baseline for single_baseline in original_baselines ) # Since Lime methods compute attributions for a batch # sequentially, random seed should not be reset after # each example after the first. if not issubclass(algorithm, Lime): self.setUp() single_attr = attr_method.attribute(**args) current_orig_attributions = ( attributions_orig[i : i + 1] if isinstance(attributions_orig, Tensor) else tuple( single_attrib[i : i + 1] for single_attrib in attributions_orig ) ) assertTensorTuplesAlmostEqual( self, current_orig_attributions, single_attr, delta=target_delta, mode="max", ) if ( not issubclass(algorithm, Lime) and len(original_targets) == num_examples ): # If original_targets contained multiple elements, then # we also compare with setting targets to a list with # a single element. args["target"] = original_targets[i : i + 1] self.setUp() single_attr_target_list = attr_method.attribute(**args) assertTensorTuplesAlmostEqual( self, current_orig_attributions, single_attr_target_list, delta=target_delta, mode="max", ) return target_test_assert class TestTargets(BaseTest, metaclass=TargetsMeta): def test_simple_target_missing_error(self) -> None: net = BasicModel_MultiLayer() inp = torch.zeros((1, 3)) with self.assertRaises(AssertionError): attr = IntegratedGradients(net) attr.attribute(inp) def test_multi_target_error(self) -> None: net = BasicModel_MultiLayer() inp = torch.zeros((1, 3)) with self.assertRaises(AssertionError): attr = IntegratedGradients(net) attr.attribute(inp, additional_forward_args=(None, True), target=(1, 0))
#!/usr/bin/env python3 from typing import Any, cast import torch from captum._utils.typing import TensorOrTupleOfTensorsGeneric from captum.attr._core.input_x_gradient import InputXGradient from captum.attr._core.noise_tunnel import NoiseTunnel from tests.attr.test_saliency import _get_basic_config, _get_multiargs_basic_config from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.classification_models import SoftmaxModel from torch import Tensor from torch.nn import Module class Test(BaseTest): def test_input_x_gradient_test_basic_vanilla(self) -> None: self._input_x_gradient_base_assert(*_get_basic_config()) def test_input_x_gradient_test_basic_smoothgrad(self) -> None: self._input_x_gradient_base_assert(*_get_basic_config(), nt_type="smoothgrad") def test_input_x_gradient_test_basic_vargrad(self) -> None: self._input_x_gradient_base_assert(*_get_basic_config(), nt_type="vargrad") def test_saliency_test_basic_multi_variable_vanilla(self) -> None: self._input_x_gradient_base_assert(*_get_multiargs_basic_config()) def test_saliency_test_basic_multi_variable_smoothgrad(self) -> None: self._input_x_gradient_base_assert( *_get_multiargs_basic_config(), nt_type="smoothgrad" ) def test_saliency_test_basic_multi_vargrad(self) -> None: self._input_x_gradient_base_assert( *_get_multiargs_basic_config(), nt_type="vargrad" ) def test_input_x_gradient_classification_vanilla(self) -> None: self._input_x_gradient_classification_assert() def test_input_x_gradient_classification_smoothgrad(self) -> None: self._input_x_gradient_classification_assert(nt_type="smoothgrad") def test_input_x_gradient_classification_vargrad(self) -> None: self._input_x_gradient_classification_assert(nt_type="vargrad") def _input_x_gradient_base_assert( self, model: Module, inputs: TensorOrTupleOfTensorsGeneric, expected_grads: TensorOrTupleOfTensorsGeneric, additional_forward_args: Any = None, nt_type: str = "vanilla", ) -> None: input_x_grad = InputXGradient(model) self.assertTrue(input_x_grad.multiplies_by_inputs) attributions: TensorOrTupleOfTensorsGeneric if nt_type == "vanilla": attributions = input_x_grad.attribute( inputs, additional_forward_args=additional_forward_args, ) else: nt = NoiseTunnel(input_x_grad) attributions = nt.attribute( inputs, nt_type=nt_type, nt_samples=10, stdevs=0.0002, additional_forward_args=additional_forward_args, ) if isinstance(attributions, tuple): for input, attribution, expected_grad in zip( inputs, attributions, expected_grads ): if nt_type == "vanilla": self._assert_attribution(expected_grad, input, attribution) self.assertEqual(input.shape, attribution.shape) elif isinstance(attributions, Tensor): if nt_type == "vanilla": self._assert_attribution(expected_grads, inputs, attributions) self.assertEqual( cast(Tensor, inputs).shape, cast(Tensor, attributions).shape ) def _assert_attribution(self, expected_grad, input, attribution): assertTensorAlmostEqual( self, attribution, (expected_grad * input), delta=0.05, mode="max", ) def _input_x_gradient_classification_assert(self, nt_type: str = "vanilla") -> None: num_in = 5 input = torch.tensor([[0.0, 1.0, 2.0, 3.0, 4.0]], requires_grad=True) target = torch.tensor(5) # 10-class classification model model = SoftmaxModel(num_in, 20, 10) input_x_grad = InputXGradient(model.forward) if nt_type == "vanilla": attributions = input_x_grad.attribute(input, target) output = model(input)[:, target] output.backward() expected = input.grad * input assertTensorAlmostEqual(self, attributions, expected, 0.00001, "max") else: nt = NoiseTunnel(input_x_grad) attributions = nt.attribute( input, nt_type=nt_type, nt_samples=10, stdevs=1.0, target=target ) self.assertEqual(attributions.shape, input.shape)
#!/usr/bin/env python3 import torch from captum.attr._core.noise_tunnel import SUPPORTED_NOISE_TUNNEL_TYPES from captum.attr._utils.common import _validate_input, _validate_noise_tunnel_type from tests.helpers.basic import BaseTest class Test(BaseTest): def test_validate_input(self) -> None: with self.assertRaises(AssertionError): _validate_input((torch.tensor([-1.0, 1.0]),), (torch.tensor([-2.0]),)) _validate_input( (torch.tensor([-1.0, 1.0]),), (torch.tensor([-1.0, 1.0]),), n_steps=-1 ) _validate_input( (torch.tensor([-1.0, 1.0]),), (torch.tensor([-1.0, 1.0]),), method="abcde", ) _validate_input((torch.tensor([-1.0]),), (torch.tensor([-2.0]),)) _validate_input( (torch.tensor([-1.0]),), (torch.tensor([-2.0]),), method="gausslegendre" ) def test_validate_nt_type(self) -> None: with self.assertRaises(AssertionError): _validate_noise_tunnel_type("abc", SUPPORTED_NOISE_TUNNEL_TYPES) _validate_noise_tunnel_type("smoothgrad", SUPPORTED_NOISE_TUNNEL_TYPES) _validate_noise_tunnel_type("smoothgrad_sq", SUPPORTED_NOISE_TUNNEL_TYPES) _validate_noise_tunnel_type("vargrad", SUPPORTED_NOISE_TUNNEL_TYPES)
#!/usr/bin/env python3 import unittest from typing import Any import torch from captum._utils.typing import TensorOrTupleOfTensorsGeneric from captum.attr._core.guided_grad_cam import GuidedGradCam from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import BasicModel_ConvNet_One_Conv from torch.nn import Module class Test(BaseTest): def test_simple_input_conv(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = 1.0 * torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) ex = [ [ [ [0.0, 0.0, 4.0, 4.0], [0.0, 0.0, 12.0, 8.0], [28.0, 84.0, 97.5, 65.0], [28.0, 56.0, 65.0, 32.5], ] ] ] self._guided_grad_cam_test_assert(net, net.relu1, inp, ex) def test_simple_multi_input_conv(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) inp2 = torch.ones((1, 1, 4, 4)) ex = [ [ [ [14.5, 29.0, 38.0, 19.0], [29.0, 58.0, 76.0, 38.0], [65.0, 130.0, 148.0, 74.0], [32.5, 65.0, 74.0, 37.0], ] ] ] self._guided_grad_cam_test_assert(net, net.conv1, (inp, inp2), (ex, ex)) def test_simple_multi_input_relu_input(self) -> None: net = BasicModel_ConvNet_One_Conv(inplace=True) inp = torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) inp2 = torch.ones((1, 1, 4, 4)) ex = [ [ [ [14.5, 29.0, 38.0, 19.0], [29.0, 58.0, 76.0, 38.0], [65.0, 130.0, 148.0, 74.0], [32.5, 65.0, 74.0, 37.0], ] ] ] self._guided_grad_cam_test_assert( net, net.relu1, (inp, inp2), (ex, ex), attribute_to_layer_input=True ) def test_simple_multi_input_conv_inplace(self) -> None: net = BasicModel_ConvNet_One_Conv(inplace=True) inp = torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) inp2 = torch.ones((1, 1, 4, 4)) ex = [ [ [ [14.5, 29.0, 38.0, 19.0], [29.0, 58.0, 76.0, 38.0], [65.0, 130.0, 148.0, 74.0], [32.5, 65.0, 74.0, 37.0], ] ] ] self._guided_grad_cam_test_assert(net, net.conv1, (inp, inp2), (ex, ex)) def test_improper_dims_multi_input_conv(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) inp2 = torch.ones(1) ex = [ [ [ [14.5, 29.0, 38.0, 19.0], [29.0, 58.0, 76.0, 38.0], [65.0, 130.0, 148.0, 74.0], [32.5, 65.0, 74.0, 37.0], ] ] ] self._guided_grad_cam_test_assert(net, net.conv1, (inp, inp2), (ex, [])) def test_improper_method_multi_input_conv(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) inp2 = torch.ones(1) self._guided_grad_cam_test_assert( net, net.conv1, (inp, inp2), ([], []), interpolate_mode="made_up_nonlinear" ) def _guided_grad_cam_test_assert( self, model: Module, target_layer: Module, test_input: TensorOrTupleOfTensorsGeneric, expected, additional_input: Any = None, interpolate_mode: str = "nearest", attribute_to_layer_input: bool = False, ) -> None: guided_gc = GuidedGradCam(model, target_layer) self.assertFalse(guided_gc.multiplies_by_inputs) attributions = guided_gc.attribute( test_input, target=0, additional_forward_args=additional_input, interpolate_mode=interpolate_mode, attribute_to_layer_input=attribute_to_layer_input, ) if isinstance(test_input, tuple): for i in range(len(test_input)): assertTensorAlmostEqual( self, attributions[i], expected[i], delta=0.01, ) else: assertTensorAlmostEqual( self, attributions, expected, delta=0.01, ) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 from enum import Enum from typing import Any, Callable, cast, Dict, Optional, Tuple, Type import torch from captum.attr._core.noise_tunnel import NoiseTunnel from captum.attr._models.base import _set_deep_layer_value from captum.attr._utils.attribution import Attribution, InternalAttribution from tests.attr.helpers.gen_test_utils import ( gen_test_name, get_target_layer, parse_test_config, should_create_generated_test, ) from tests.attr.helpers.test_config import config from tests.helpers.basic import BaseTest, deep_copy_args from torch.nn import Module """ Tests in this file are dynamically generated based on the config defined in tests/attr/helpers/test_config.py. To add new test cases, read the documentation in test_config.py and add cases based on the schema described there. """ class HookRemovalMode(Enum): """ Defines modes for hook removal tests: `normal` - Verifies no hooks remain after running an attribution method normally `incorrect_target_or_neuron` - Verifies no hooks remain after an incorrect target and neuron_selector are provided, which causes an assertion error in the algorithm. `invalid_module` - Verifies no hooks remain after an invalid module is executed, which causes an assertion error in model execution. """ normal = 1 incorrect_target_or_neuron = 2 invalid_module = 3 class ErrorModule(Module): def __init__( self, ) -> None: super().__init__() self.relu = torch.nn.ReLU() def forward(*args, **kwargs): raise AssertionError("Raising error on execution") class HookRemovalMeta(type): """ Attribution is computed either normally or with the changes based on the mode, which cause an error. Once attribution is calculated, test verifies that no forward, backward or forward pre hooks remain on any modules. """ def __new__(cls, name: str, bases: Tuple, attrs: Dict): created_tests: Dict[Tuple[Type[Attribution], HookRemovalMode], bool] = {} for test_config in config: ( algorithms, model, args, layer, noise_tunnel, _, ) = parse_test_config(test_config) for algorithm in algorithms: if not should_create_generated_test(algorithm): continue for mode in HookRemovalMode: if mode is HookRemovalMode.invalid_module and layer is None: continue # Only one test per algorithm and mode is necessary if (algorithm, mode) in created_tests: continue test_method = cls.make_single_hook_removal_test( algorithm, model, layer, args, noise_tunnel, mode, ) test_name = gen_test_name( "test_hook_removal_" + mode.name, cast(str, test_config["name"]), algorithm, noise_tunnel, ) if test_name in attrs: raise AssertionError( "Trying to overwrite existing test with name: %r" % test_name ) attrs[test_name] = test_method created_tests[(algorithm, mode)] = True return super(HookRemovalMeta, cls).__new__(cls, name, bases, attrs) # Arguments are deep copied to ensure tests are independent and are not affected # by any modifications within a previous test. @classmethod @deep_copy_args def make_single_hook_removal_test( cls, algorithm: Type[Attribution], model: Module, layer: Optional[str], args: Dict[str, Any], noise_tunnel: bool, mode: HookRemovalMode, ) -> Callable: """ This method creates a single hook removal test for the given algorithm and parameters. """ def hook_removal_test_assert(self) -> None: attr_method: Attribution expect_error = False if layer is not None: if mode is HookRemovalMode.invalid_module: expect_error = True if isinstance(layer, list): _set_deep_layer_value(model, layer[0], ErrorModule()) else: _set_deep_layer_value(model, layer, ErrorModule()) target_layer = get_target_layer(model, layer) internal_algorithm = cast(Type[InternalAttribution], algorithm) attr_method = internal_algorithm(model, target_layer) else: attr_method = algorithm(model) if noise_tunnel: attr_method = NoiseTunnel(attr_method) if mode is HookRemovalMode.incorrect_target_or_neuron: # Overwriting target and neuron index arguments to # incorrect values. if "target" in args: args["target"] = (9999,) * 20 expect_error = True if "neuron_selector" in args: args["neuron_selector"] = (9999,) * 20 expect_error = True if expect_error: with self.assertRaises(AssertionError): attr_method.attribute(**args) else: attr_method.attribute(**args) def check_leftover_hooks(module): self.assertEqual(len(module._forward_hooks), 0) self.assertEqual(len(module._backward_hooks), 0) self.assertEqual(len(module._forward_pre_hooks), 0) model.apply(check_leftover_hooks) return hook_removal_test_assert class TestHookRemoval(BaseTest, metaclass=HookRemovalMeta): pass
#!/usr/bin/env python3 import functools import inspect from typing import Callable, Dict, Tuple import torch from captum._utils.gradient import _forward_layer_eval from captum.attr import ( DeepLift, DeepLiftShap, FeatureAblation, GradientShap, InputXGradient, IntegratedGradients, LayerDeepLift, LayerDeepLiftShap, LayerFeatureAblation, LayerGradientShap, LayerGradientXActivation, LayerIntegratedGradients, ) from captum.attr._utils.input_layer_wrapper import ModelInputWrapper from tests.helpers.basic import assertTensorTuplesAlmostEqual, BaseTest from tests.helpers.basic_models import ( BasicModel, BasicModel_MultiLayer_TrueMultiInput, MixedKwargsAndArgsModule, ) layer_methods_to_test_with_equiv = [ # layer_method, equiv_method, whether or not to use multiple layers (LayerIntegratedGradients, IntegratedGradients, [True, False]), (LayerGradientXActivation, InputXGradient, [True, False]), (LayerFeatureAblation, FeatureAblation, [False]), (LayerDeepLift, DeepLift, [False]), (LayerDeepLiftShap, DeepLiftShap, [False]), (LayerGradientShap, GradientShap, [False]), # TODO: add other algorithms here ] class InputLayerMeta(type): def __new__(cls, name: str, bases: Tuple, attrs: Dict): for ( layer_method, equiv_method, multi_layers, ) in layer_methods_to_test_with_equiv: for multi_layer in multi_layers: test_name = ( f"test_{layer_method.__name__}" + f"_{equiv_method.__name__}_{multi_layer}" ) attrs[ test_name ] = lambda self: self.layer_method_with_input_layer_patches( layer_method, equiv_method, multi_layer ) return super(InputLayerMeta, cls).__new__(cls, name, bases, attrs) class TestInputLayerWrapper(BaseTest, metaclass=InputLayerMeta): def test_forward_layer_eval_on_mixed_args_kwargs_module(self) -> None: x = torch.randn(10, 5) y = torch.randn(10, 5) model = MixedKwargsAndArgsModule() self.forward_eval_layer_with_inputs_helper(model, {"x": x}) self.forward_eval_layer_with_inputs_helper(model, {"x": x, "y": y}) def layer_method_with_input_layer_patches( self, layer_method_class: Callable, equiv_method_class: Callable, multi_layer: bool, ) -> None: model = BasicModel_MultiLayer_TrueMultiInput() if multi_layer else BasicModel() input_names = ["x1", "x2", "x3", "x4"] if multi_layer else ["input"] model = ModelInputWrapper(model) layers = [model.input_maps[inp] for inp in input_names] layer_method = layer_method_class( model, layer=layers if multi_layer else layers[0] ) equivalent_method = equiv_method_class(model) inputs = tuple(torch.rand(5, 3) for _ in input_names) baseline = tuple(torch.zeros(5, 3) for _ in input_names) args = inspect.getfullargspec(equivalent_method.attribute.__wrapped__).args args_to_use = [inputs] if "baselines" in args: args_to_use += [baseline] a1 = layer_method.attribute(*args_to_use, target=0) a2 = layer_method.attribute( *args_to_use, target=0, attribute_to_layer_input=True ) real_attributions = equivalent_method.attribute(*args_to_use, target=0) if not isinstance(a1, tuple): a1 = (a1,) a2 = (a2,) if not isinstance(real_attributions, tuple): real_attributions = (real_attributions,) assertTensorTuplesAlmostEqual(self, a1, a2) assertTensorTuplesAlmostEqual(self, a1, real_attributions) def forward_eval_layer_with_inputs_helper(self, model, inputs_to_test): # hard coding for simplicity # 0 if using args, 1 if using kwargs # => no 0s after first 1 (left to right) # # used to test utilization of args/kwargs use_args_or_kwargs = [ [[0], [1]], [ [0, 0], [0, 1], [1, 1], ], ] model = ModelInputWrapper(model) def forward_func(*args, args_or_kwargs=None): # convert to args or kwargs to test *args and **kwargs wrapping behavior new_args = [] new_kwargs = {} for args_or_kwarg, name, inp in zip( args_or_kwargs, inputs_to_test.keys(), args ): if args_or_kwarg: new_kwargs[name] = inp else: new_args.append(inp) return model(*new_args, **new_kwargs) for args_or_kwargs in use_args_or_kwargs[len(inputs_to_test) - 1]: with self.subTest(args_or_kwargs=args_or_kwargs): inputs = _forward_layer_eval( functools.partial(forward_func, args_or_kwargs=args_or_kwargs), inputs=tuple(inputs_to_test.values()), layer=[model.input_maps[name] for name in inputs_to_test.keys()], ) inputs_with_attrib_to_inp = _forward_layer_eval( functools.partial(forward_func, args_or_kwargs=args_or_kwargs), inputs=tuple(inputs_to_test.values()), layer=[model.input_maps[name] for name in inputs_to_test.keys()], attribute_to_layer_input=True, ) for i1, i2, i3 in zip( inputs, inputs_with_attrib_to_inp, inputs_to_test.values() ): self.assertTrue((i1[0] == i2[0]).all()) self.assertTrue((i1[0] == i3).all())
#!/usr/bin/env python3 from typing import Union import torch from captum._utils.typing import TargetType from captum.attr._core.deep_lift import DeepLift, DeepLiftShap from captum.attr._core.integrated_gradients import IntegratedGradients from tests.helpers.basic import assertAttributionComparision, BaseTest from tests.helpers.basic_models import ( BasicModel_ConvNet, BasicModel_ConvNet_MaxPool1d, BasicModel_ConvNet_MaxPool3d, ) from tests.helpers.classification_models import ( SigmoidDeepLiftModel, SoftmaxDeepLiftModel, ) from torch import Tensor from torch.nn import Module class Test(BaseTest): def test_sigmoid_classification(self) -> None: num_in = 20 input = torch.arange(0.0, num_in * 1.0, requires_grad=True).unsqueeze(0) baseline = 0 * input target = torch.tensor(0) # TODO add test cases for multiple different layers model = SigmoidDeepLiftModel(num_in, 5, 1) dl = DeepLift(model) model.zero_grad() attributions, delta = dl.attribute( input, baseline, target=target, return_convergence_delta=True ) self._assert_attributions(model, attributions, input, baseline, delta, target) # compare with integrated gradients ig = IntegratedGradients(model) attributions_ig = ig.attribute(input, baseline, target=target) assertAttributionComparision(self, (attributions,), (attributions_ig,)) def test_softmax_classification_zero_baseline(self) -> None: num_in = 20 input = torch.arange(0.0, num_in * 1.0, requires_grad=True).unsqueeze(0) baselines = 0.0 model = SoftmaxDeepLiftModel(num_in, 20, 10) dl = DeepLift(model) self.softmax_classification(model, dl, input, baselines, torch.tensor(2)) def test_softmax_classification_batch_zero_baseline(self) -> None: num_in = 40 input = torch.arange(0.0, num_in * 3.0, requires_grad=True).reshape(3, num_in) baselines = 0 model = SoftmaxDeepLiftModel(num_in, 20, 10) dl = DeepLift(model) self.softmax_classification( model, dl, input, baselines, torch.tensor([2, 2, 2]) ) def test_softmax_classification_batch_multi_target(self) -> None: num_in = 40 inputs = torch.arange(0.0, num_in * 3.0, requires_grad=True).reshape(3, num_in) baselines = torch.arange(1.0, num_in + 1).reshape(1, num_in) model = SoftmaxDeepLiftModel(num_in, 20, 10) dl = DeepLift(model) self.softmax_classification( model, dl, inputs, baselines, torch.tensor([2, 2, 2]) ) def test_softmax_classification_multi_baseline(self) -> None: num_in = 40 input = torch.arange(0.0, num_in * 1.0, requires_grad=True).unsqueeze(0) baselines = torch.randn(5, 40) model = SoftmaxDeepLiftModel(num_in, 20, 10) dl = DeepLiftShap(model) self.softmax_classification(model, dl, input, baselines, torch.tensor(2)) def test_softmax_classification_batch_multi_baseline(self) -> None: num_in = 40 input = torch.arange(0.0, num_in * 2.0, requires_grad=True).reshape(2, num_in) baselines = torch.randn(5, 40) model = SoftmaxDeepLiftModel(num_in, 20, 10) dl = DeepLiftShap(model) self.softmax_classification(model, dl, input, baselines, torch.tensor(2)) def test_convnet_with_maxpool3d(self) -> None: input = 100 * torch.randn(2, 1, 10, 10, 10, requires_grad=True) baseline = 20 * torch.randn(2, 1, 10, 10, 10) model = BasicModel_ConvNet_MaxPool3d() dl = DeepLift(model) self.softmax_classification(model, dl, input, baseline, torch.tensor(2)) def test_convnet_with_maxpool3d_large_baselines(self) -> None: input = 100 * torch.randn(2, 1, 10, 10, 10, requires_grad=True) baseline = 600 * torch.randn(2, 1, 10, 10, 10) model = BasicModel_ConvNet_MaxPool3d() dl = DeepLift(model) self.softmax_classification(model, dl, input, baseline, torch.tensor(2)) def test_convnet_with_maxpool2d(self) -> None: input = 100 * torch.randn(2, 1, 10, 10, requires_grad=True) baseline = 20 * torch.randn(2, 1, 10, 10) model = BasicModel_ConvNet() dl = DeepLift(model) self.softmax_classification(model, dl, input, baseline, torch.tensor(2)) def test_convnet_with_maxpool2d_large_baselines(self) -> None: input = 100 * torch.randn(2, 1, 10, 10, requires_grad=True) baseline = 500 * torch.randn(2, 1, 10, 10) model = BasicModel_ConvNet() dl = DeepLift(model) self.softmax_classification(model, dl, input, baseline, torch.tensor(2)) def test_convnet_with_maxpool1d(self) -> None: input = 100 * torch.randn(2, 1, 10, requires_grad=True) baseline = 20 * torch.randn(2, 1, 10) model = BasicModel_ConvNet_MaxPool1d() dl = DeepLift(model) self.softmax_classification(model, dl, input, baseline, torch.tensor(2)) def test_convnet_with_maxpool1d_large_baselines(self) -> None: input = 100 * torch.randn(2, 1, 10, requires_grad=True) baseline = 500 * torch.randn(2, 1, 10) model = BasicModel_ConvNet_MaxPool1d() dl = DeepLift(model) self.softmax_classification(model, dl, input, baseline, torch.tensor(2)) def softmax_classification( self, model: Module, attr_method: Union[DeepLift, DeepLiftShap], input: Tensor, baselines, target: TargetType, ) -> None: # TODO add test cases for multiple different layers model.zero_grad() attributions, delta = attr_method.attribute( input, baselines=baselines, target=target, return_convergence_delta=True ) self._assert_attributions(model, attributions, input, baselines, delta, target) target2 = torch.tensor(1) attributions, delta = attr_method.attribute( input, baselines=baselines, target=target2, return_convergence_delta=True ) self._assert_attributions(model, attributions, input, baselines, delta, target2) def _assert_attributions( self, model: Module, attributions: Tensor, inputs: Tensor, baselines: Union[Tensor, int, float], delta: Tensor, target: TargetType = None, ) -> None: self.assertEqual(inputs.shape, attributions.shape) delta_condition = (delta.abs() < 0.003).all() self.assertTrue( delta_condition, "The sum of attribution values {} is not " "nearly equal to the difference between the endpoint for " "some samples".format(delta), ) # compare with integrated gradients if isinstance(baselines, (int, float)) or inputs.shape == baselines.shape: ig = IntegratedGradients(model) attributions_ig = ig.attribute(inputs, baselines=baselines, target=target) assertAttributionComparision(self, attributions, attributions_ig)
#!/usr/bin/env python3 from typing import List, Tuple import torch from captum.attr._core.feature_permutation import _permute_feature, FeaturePermutation from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import BasicModelWithSparseInputs from torch import Tensor class Test(BaseTest): def _check_features_are_permuted( self, inp: Tensor, perm_inp: Tensor, mask: Tensor ) -> None: permuted_features = mask.expand_as(inp[0]) unpermuted_features = permuted_features.bitwise_not() self.assertTrue(inp.dtype == perm_inp.dtype) self.assertTrue(inp.shape == perm_inp.shape) self.assertTrue( (inp[:, permuted_features] != perm_inp[:, permuted_features]).any() ) self.assertTrue( (inp[:, unpermuted_features] == perm_inp[:, unpermuted_features]).all() ) def _check_perm_fn_with_mask(self, inp: Tensor, mask: Tensor) -> None: perm_inp = _permute_feature(inp, mask) self._check_features_are_permuted(inp, perm_inp, mask) def test_perm_fn_single_feature(self) -> None: batch_size = 2 sizes_to_test: List[Tuple[int, ...]] = [(10,), (4, 5), (3, 4, 5)] for inp_size in sizes_to_test: inp = torch.randn((batch_size,) + inp_size) flat_mask = torch.zeros_like(inp[0]).flatten().bool() num_features = inp.numel() // batch_size for i in range(num_features): flat_mask[i] = 1 self._check_perm_fn_with_mask(inp, flat_mask.view_as(inp[0])) flat_mask[i] = 0 def test_perm_fn_broadcastable_masks(self) -> None: batch_size = 5 inp_size = (3, 20, 30) inp = torch.randn((batch_size,) + inp_size) # To be broadcastable dimensions have # match from end to beginning, by equalling 1 or the dim. # # If a dimension is missing then it must be the # last dim provided (from right to left). The missing # dimensions are implied to be = 1 # # Here I write them explicitly for clarity mask_sizes: List[Tuple[int, ...]] = [ # dims = 1 (1, 20, 30), (3, 1, 30), (3, 20, 1), (1, 1, 30), (1, 20, 1), # missing (1,), # empty set (all features) (30,), (20, 30), (3, 20, 30), ] for mask_size in mask_sizes: mask = torch.randint(0, 2, mask_size).bool() self.assertTrue(mask.shape == mask_size) self._check_perm_fn_with_mask(inp, mask) def test_single_input(self) -> None: batch_size = 2 input_size = (6,) constant_value = 10000 def forward_func(x: Tensor) -> Tensor: return x.sum(dim=-1) feature_importance = FeaturePermutation(forward_func=forward_func) inp = torch.randn((batch_size,) + input_size) inp[:, 0] = constant_value zeros = torch.zeros_like(inp[:, 0]) attribs = feature_importance.attribute(inp) self.assertTrue(attribs.squeeze(0).size() == (batch_size,) + input_size) assertTensorAlmostEqual(self, attribs[:, 0], zeros, delta=0.05, mode="max") self.assertTrue((attribs[:, 1 : input_size[0]].abs() > 0).all()) def test_multi_input(self) -> None: batch_size = 20 inp1_size = (5, 2) inp2_size = (5, 3) labels = torch.randn(batch_size) def forward_func(*x: Tensor) -> Tensor: y = torch.zeros(x[0].shape[0:2]) for xx in x: y += xx[:, :, 0] * xx[:, :, 1] y = y.sum(dim=-1) return torch.mean((y - labels) ** 2) feature_importance = FeaturePermutation(forward_func=forward_func) inp = ( torch.randn((batch_size,) + inp1_size), torch.randn((batch_size,) + inp2_size), ) feature_mask = ( torch.arange(inp[0][0].numel()).view_as(inp[0][0]).unsqueeze(0), torch.arange(inp[1][0].numel()).view_as(inp[1][0]).unsqueeze(0), ) inp[1][:, :, 1] = 4 attribs = feature_importance.attribute(inp, feature_mask=feature_mask) self.assertTrue(isinstance(attribs, tuple)) self.assertTrue(len(attribs) == 2) self.assertTrue(attribs[0].squeeze(0).size() == inp1_size) self.assertTrue(attribs[1].squeeze(0).size() == inp2_size) self.assertTrue((attribs[1][:, :, 1] == 0).all()) self.assertTrue((attribs[1][:, :, 2] == 0).all()) self.assertTrue((attribs[0] != 0).all()) self.assertTrue((attribs[1][:, :, 0] != 0).all()) def test_mulitple_perturbations_per_eval(self) -> None: perturbations_per_eval = 4 batch_size = 2 input_size = (4,) inp = torch.randn((batch_size,) + input_size) def forward_func(x): return 1 - x target = 1 feature_importance = FeaturePermutation(forward_func=forward_func) attribs = feature_importance.attribute( inp, perturbations_per_eval=perturbations_per_eval, target=target ) self.assertTrue(attribs.size() == (batch_size,) + input_size) for i in range(inp.size(1)): if i == target: continue assertTensorAlmostEqual( self, attribs[:, i], torch.zeros_like(attribs[:, i]) ) y = forward_func(inp) actual_diff = torch.stack([(y[0] - y[1])[target], (y[1] - y[0])[target]]) assertTensorAlmostEqual(self, attribs[:, target], actual_diff) def test_broadcastable_masks(self) -> None: # integration test to ensure that # permutation function works with custom masks def forward_func(x: Tensor) -> Tensor: return x.view(x.shape[0], -1).sum(dim=-1) batch_size = 2 inp = torch.randn((batch_size,) + (3, 4, 4)) feature_importance = FeaturePermutation(forward_func=forward_func) masks = [ torch.tensor([0]), torch.tensor([[0, 1, 2, 3]]), torch.tensor([[[0, 1, 2, 3], [3, 3, 4, 5], [6, 6, 4, 6], [7, 8, 9, 10]]]), ] for mask in masks: attribs = feature_importance.attribute(inp, feature_mask=mask) self.assertTrue(attribs is not None) self.assertTrue(attribs.shape == inp.shape) fm = mask.expand_as(inp[0]) features = set(mask.flatten()) for feature in features: m = (fm == feature).bool() attribs_for_feature = attribs[:, m] assertTensorAlmostEqual( self, attribs_for_feature[0], -attribs_for_feature[1], delta=0.05, mode="max", ) def test_empty_sparse_features(self) -> None: model = BasicModelWithSparseInputs() inp1 = torch.tensor([[1.0, -2.0, 3.0], [2.0, -1.0, 3.0]]) inp2 = torch.tensor([]) # test empty sparse tensor feature_importance = FeaturePermutation(model) attr1, attr2 = feature_importance.attribute((inp1, inp2)) self.assertEqual(attr1.shape, (1, 3)) self.assertEqual(attr2.shape, (1,)) def test_sparse_features(self) -> None: model = BasicModelWithSparseInputs() inp1 = torch.tensor([[1.0, -2.0, 3.0], [2.0, -1.0, 3.0]]) # Length of sparse index list may not match # of examples inp2 = torch.tensor([1, 7, 2, 4, 5, 3, 6]) feature_importance = FeaturePermutation(model) total_attr1, total_attr2 = feature_importance.attribute((inp1, inp2)) for _ in range(50): attr1, attr2 = feature_importance.attribute((inp1, inp2)) total_attr1 += attr1 total_attr2 += attr2 total_attr1 /= 50 total_attr2 /= 50 self.assertEqual(total_attr2.shape, (1,)) assertTensorAlmostEqual(self, total_attr1, torch.zeros_like(total_attr1)) assertTensorAlmostEqual(self, total_attr2, [-6.0], delta=0.2)
#!/usr/bin/env python3 import torch from captum.attr import ClassSummarizer, CommonStats from tests.helpers.basic import BaseTest class Test(BaseTest): def class_test(self, data, classes, x_sizes): summarizer = ClassSummarizer(stats=CommonStats()) for x, y in data: summarizer.update(x, y) summ = summarizer.summary self.assertIsNotNone(summ) self.assertIsInstance(summ, list) for s, size in zip(summ, x_sizes): self.assertIsInstance(s, dict) for key in s: self.assertEqual(s[key].size(), size) self.assertIsNotNone(summarizer.class_summaries) all_classes = torch.zeros(len(classes)) class_summaries = summarizer.class_summaries all_keys = set(class_summaries.keys()) for i, clazz in enumerate(classes): self.assertTrue(clazz in class_summaries) all_keys.remove(clazz) all_classes[i] = 1 summ = class_summaries[clazz] self.assertIsNotNone(summ) self.assertIsInstance(summ, list) for s, size in zip(summ, x_sizes): self.assertIsInstance(s, dict) for key in s: self.assertEqual(s[key].size(), size) self.assertEqual(len(all_keys), 0) self.assertEqual(all_classes.sum(), len(classes)) def test_classes(self): sizes_to_test = [ # ((1,),), ((3, 2, 10, 3), (1,)), # ((20,),), ] list_of_classes = [ list(range(100)), ["%d" % i for i in range(100)], list(range(300, 400)), ] for batch_size in [None, 1, 4]: for sizes, classes in zip(sizes_to_test, list_of_classes): def create_batch_labels(batch_idx): if batch_size is None: # batch_size = 1 return classes[batch_idx] return classes[ batch_idx * batch_size : (batch_idx + 1) * batch_size ] bs = 1 if batch_size is None else batch_size num_batches = len(classes) // bs sizes_plus_batch = tuple((bs,) + si for si in sizes) data = [ ( tuple(torch.randn(si) for si in sizes_plus_batch), create_batch_labels(batch_idx), ) for batch_idx in range(num_batches) ] with self.subTest( batch_size=batch_size, sizes=sizes_plus_batch, classes=classes ): self.class_test(data, classes, sizes) def test_no_class(self) -> None: size = (30, 20) summarizer = ClassSummarizer(stats=CommonStats()) for _ in range(10): x = torch.randn(size) summarizer.update(x) summ = summarizer.summary self.assertIsNotNone(summ) self.assertIsInstance(summ, dict) for key in summ: self.assertTrue(summ[key].size() == size) self.assertIsNotNone(summarizer.class_summaries) self.assertIsInstance(summarizer.class_summaries, dict) self.assertEqual(len(summarizer.class_summaries), 0) def test_single_label(self) -> None: size = (4, 3, 2, 1) data = torch.randn((100,) + size) single_labels = [1, "apple"] for label in single_labels: summarizer = ClassSummarizer(stats=CommonStats()) summarizer.update(data, label) summ1 = summarizer.summary summ2 = summarizer.class_summaries self.assertIsNotNone(summ1) self.assertIsNotNone(summ2) self.assertIsInstance(summ1, list) self.assertTrue(len(summ1) == 1) self.assertIsInstance(summ2, dict) self.assertTrue(label in summ2) self.assertTrue(len(summ1) == len(summ2[label])) for key in summ1[0].keys(): self.assertTrue((summ1[0][key] == summ2[label][0][key]).all())
#!/usr/bin/env python3 import torch from captum.attr import CommonStats, Summarizer from tests.helpers.basic import BaseTest class Test(BaseTest): def test_single_input(self) -> None: size = (2, 3) summarizer = Summarizer(stats=CommonStats()) for _ in range(10): attrs = torch.randn(size) summarizer.update(attrs) summ = summarizer.summary self.assertIsNotNone(summ) self.assertTrue(isinstance(summ, dict)) for k in summ: self.assertTrue(summ[k].size() == size) def test_multi_input(self) -> None: size1 = (10, 5, 5) size2 = (3, 5) summarizer = Summarizer(stats=CommonStats()) for _ in range(10): a1 = torch.randn(size1) a2 = torch.randn(size2) summarizer.update((a1, a2)) summ = summarizer.summary self.assertIsNotNone(summ) self.assertTrue(len(summ) == 2) self.assertTrue(isinstance(summ[0], dict)) self.assertTrue(isinstance(summ[1], dict)) for k in summ[0]: self.assertTrue(summ[0][k].size() == size1) self.assertTrue(summ[1][k].size() == size2)
#!/usr/bin/env python3 import copy import os from enum import Enum from typing import Any, Callable, cast, Dict, Optional, Tuple, Type import torch import torch.distributed as dist from captum.attr._core.guided_grad_cam import GuidedGradCam from captum.attr._core.layer.layer_deep_lift import LayerDeepLift, LayerDeepLiftShap from captum.attr._core.layer.layer_lrp import LayerLRP from captum.attr._core.neuron.neuron_deep_lift import NeuronDeepLift, NeuronDeepLiftShap from captum.attr._core.neuron.neuron_guided_backprop_deconvnet import ( NeuronDeconvolution, NeuronGuidedBackprop, ) from captum.attr._core.noise_tunnel import NoiseTunnel from captum.attr._utils.attribution import Attribution, InternalAttribution from tests.attr.helpers.gen_test_utils import ( gen_test_name, get_target_layer, parse_test_config, should_create_generated_test, ) from tests.attr.helpers.test_config import config from tests.helpers.basic import assertTensorTuplesAlmostEqual, BaseTest, deep_copy_args from torch import Tensor from torch.nn import Module """ Tests in this file are dynamically generated based on the config defined in tests/attr/helpers/test_config.py. To add new test cases, read the documentation in test_config.py and add cases based on the schema described there. """ # Distributed Data Parallel env setup os.environ["MASTER_ADDR"] = "127.0.0.1" os.environ["MASTER_PORT"] = "29500" dist.init_process_group(backend="gloo", rank=0, world_size=1) class DataParallelCompareMode(Enum): """ Defines modes for DataParallel tests: `cpu_cuda` - Compares results when running attribution method on CPU vs GPU / CUDA `data_parallel_default` - Compares results when running attribution method on GPU with DataParallel `data_parallel_alt_dev_ids` - Compares results when running attribution method on GPU with DataParallel, but with an alternate device ID ordering (not default) """ cpu_cuda = 1 data_parallel_default = 2 data_parallel_alt_dev_ids = 3 dist_data_parallel = 4 class DataParallelMeta(type): def __new__(cls, name: str, bases: Tuple, attrs: Dict): for test_config in config: ( algorithms, model, args, layer, noise_tunnel, baseline_distr, ) = parse_test_config(test_config) dp_delta = test_config["dp_delta"] if "dp_delta" in test_config else 0.0001 for algorithm in algorithms: if not should_create_generated_test(algorithm): continue for mode in DataParallelCompareMode: # Creates test case corresponding to each algorithm and # DataParallelCompareMode test_method = cls.make_single_dp_test( algorithm, model, layer, args, dp_delta, noise_tunnel, baseline_distr, mode, ) test_name = gen_test_name( "test_dp_" + mode.name, cast(str, test_config["name"]), algorithm, noise_tunnel, ) if test_name in attrs: raise AssertionError( "Trying to overwrite existing test with name: %r" % test_name ) attrs[test_name] = test_method return super(DataParallelMeta, cls).__new__(cls, name, bases, attrs) # Arguments are deep copied to ensure tests are independent and are not affected # by any modifications within a previous test. @classmethod @deep_copy_args def make_single_dp_test( cls, algorithm: Type[Attribution], model: Module, target_layer: Optional[str], args: Dict[str, Any], dp_delta: float, noise_tunnel: bool, baseline_distr: bool, mode: DataParallelCompareMode, ) -> Callable: """ This method creates a single Data Parallel / GPU test for the given algorithm and parameters. """ def data_parallel_test_assert(self) -> None: # Construct cuda_args, moving all tensor inputs in args to CUDA device cuda_args = {} for key in args: if isinstance(args[key], Tensor): cuda_args[key] = args[key].cuda() elif isinstance(args[key], tuple): cuda_args[key] = tuple( elem.cuda() if isinstance(elem, Tensor) else elem for elem in args[key] ) else: cuda_args[key] = args[key] alt_device_ids = None cuda_model = copy.deepcopy(model).cuda() # Initialize models based on DataParallelCompareMode if mode is DataParallelCompareMode.cpu_cuda: model_1, model_2 = model, cuda_model args_1, args_2 = args, cuda_args elif mode is DataParallelCompareMode.data_parallel_default: model_1, model_2 = ( cuda_model, torch.nn.parallel.DataParallel(cuda_model), ) args_1, args_2 = cuda_args, cuda_args elif mode is DataParallelCompareMode.data_parallel_alt_dev_ids: alt_device_ids = [0] + [ x for x in range(torch.cuda.device_count() - 1, 0, -1) ] model_1, model_2 = ( cuda_model, torch.nn.parallel.DataParallel( cuda_model, device_ids=alt_device_ids ), ) args_1, args_2 = cuda_args, cuda_args elif mode is DataParallelCompareMode.dist_data_parallel: model_1, model_2 = ( cuda_model, torch.nn.parallel.DistributedDataParallel( cuda_model, device_ids=[0], output_device=0 ), ) args_1, args_2 = cuda_args, cuda_args else: raise AssertionError("DataParallel compare mode type is not valid.") attr_method_1: Attribution attr_method_2: Attribution if target_layer: internal_algorithm = cast(Type[InternalAttribution], algorithm) attr_method_1 = internal_algorithm( model_1, get_target_layer(model_1, target_layer) ) # cuda_model is used to obtain target_layer since DataParallel # adds additional wrapper. # model_2 is always either the CUDA model itself or DataParallel if alt_device_ids is None: attr_method_2 = internal_algorithm( model_2, get_target_layer(cuda_model, target_layer) ) else: # LayerDeepLift and LayerDeepLiftShap do not take device ids # as a parameter, since they must always have the DataParallel # model object directly. # Some neuron methods and GuidedGradCAM also require the # model and cannot take a forward function. if issubclass( internal_algorithm, ( LayerDeepLift, LayerDeepLiftShap, LayerLRP, NeuronDeepLift, NeuronDeepLiftShap, NeuronDeconvolution, NeuronGuidedBackprop, GuidedGradCam, ), ): attr_method_2 = internal_algorithm( model_2, get_target_layer(cuda_model, target_layer), # type: ignore ) else: attr_method_2 = internal_algorithm( model_2.forward, get_target_layer(cuda_model, target_layer), device_ids=alt_device_ids, ) else: attr_method_1 = algorithm(model_1) attr_method_2 = algorithm(model_2) if noise_tunnel: attr_method_1 = NoiseTunnel(attr_method_1) attr_method_2 = NoiseTunnel(attr_method_2) if attr_method_1.has_convergence_delta(): attributions_1, delta_1 = attr_method_1.attribute( return_convergence_delta=True, **args_1 ) self.setUp() attributions_2, delta_2 = attr_method_2.attribute( return_convergence_delta=True, **args_2 ) if isinstance(attributions_1, list): for i in range(len(attributions_1)): assertTensorTuplesAlmostEqual( self, attributions_1[i], attributions_2[i], mode="max", delta=dp_delta, ) else: assertTensorTuplesAlmostEqual( self, attributions_1, attributions_2, mode="max", delta=dp_delta ) assertTensorTuplesAlmostEqual( self, delta_1, delta_2, mode="max", delta=dp_delta ) else: attributions_1 = attr_method_1.attribute(**args_1) self.setUp() attributions_2 = attr_method_2.attribute(**args_2) if isinstance(attributions_1, list): for i in range(len(attributions_1)): assertTensorTuplesAlmostEqual( self, attributions_1[i], attributions_2[i], mode="max", delta=dp_delta, ) else: assertTensorTuplesAlmostEqual( self, attributions_1, attributions_2, mode="max", delta=dp_delta ) return data_parallel_test_assert if torch.cuda.is_available() and torch.cuda.device_count() != 0: class DataParallelTest(BaseTest, metaclass=DataParallelMeta): @classmethod def tearDownClass(cls): if torch.distributed.is_initialized(): dist.destroy_process_group()
#!/usr/bin/env python3 import io import unittest import unittest.mock from functools import partial from typing import Any, Callable, Generator, List, Optional, Tuple, Union import torch from captum._utils.models.linear_model import SGDLasso, SkLearnLasso from captum._utils.models.model import Model from captum._utils.typing import BaselineType, TensorOrTupleOfTensorsGeneric from captum.attr._core.lime import get_exp_kernel_similarity_function, Lime, LimeBase from captum.attr._utils.batching import _batch_example_iterator from captum.attr._utils.common import ( _construct_default_feature_mask, _format_input_baseline, _format_tensor_into_tuples, ) from tests.helpers.basic import ( assertTensorAlmostEqual, assertTensorTuplesAlmostEqual, BaseTest, ) from tests.helpers.basic_models import ( BasicLinearModel, BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, BasicModelBoolInput, ) from torch import Tensor def alt_perturb_func( original_inp: TensorOrTupleOfTensorsGeneric, **kwargs ) -> TensorOrTupleOfTensorsGeneric: if isinstance(original_inp, Tensor): device = original_inp.device else: device = original_inp[0].device feature_mask = kwargs["feature_mask"] probs = torch.ones(1, kwargs["num_interp_features"]) * 0.5 curr_sample = torch.bernoulli(probs).to(device=device) binary_mask: TensorOrTupleOfTensorsGeneric if isinstance(original_inp, Tensor): binary_mask = curr_sample[0][feature_mask] return binary_mask * original_inp + (1 - binary_mask) * kwargs["baselines"] else: binary_mask = tuple( curr_sample[0][feature_mask[j]] for j in range(len(feature_mask)) ) return tuple( binary_mask[j] * original_inp[j] + (1 - binary_mask[j]) * kwargs["baselines"][j] for j in range(len(feature_mask)) ) def alt_perturb_generator( original_inp: TensorOrTupleOfTensorsGeneric, **kwargs ) -> Generator[TensorOrTupleOfTensorsGeneric, None, None]: while True: yield alt_perturb_func(original_inp, **kwargs) def alt_to_interp_rep( curr_sample: TensorOrTupleOfTensorsGeneric, original_input: TensorOrTupleOfTensorsGeneric, **kwargs: Any, ) -> Tensor: binary_vector = torch.zeros(1, kwargs["num_interp_features"]) feature_mask = kwargs["feature_mask"] for i in range(kwargs["num_interp_features"]): curr_total = 1 if isinstance(curr_sample, Tensor): if ( torch.sum( torch.abs( (feature_mask == i).float() * (curr_sample - original_input) ) ) > 0.001 ): curr_total = 0 else: sum_diff = sum( torch.sum(torch.abs((mask == i).float() * (sample - inp))) for inp, sample, mask in zip(original_input, curr_sample, feature_mask) ) if sum_diff > 0.001: curr_total = 0 binary_vector[0][i] = curr_total return binary_vector class Test(BaseTest): def setUp(self) -> None: super().setUp() try: import sklearn # noqa: F401 assert ( sklearn.__version__ >= "0.23.0" ), "Must have sklearn version 0.23.0 or higher to use " "sample_weight in Lasso regression." except (ImportError, AssertionError): raise unittest.SkipTest("Skipping Lime tests, sklearn not available.") def test_simple_lime(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) self._lime_test_assert( net, inp, [[73.3716, 193.3349, 113.3349]], perturbations_per_eval=(1, 2, 3), n_samples=500, expected_coefs_only=[[73.3716, 193.3349, 113.3349]], test_generator=True, ) def test_simple_lime_sgd_model(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) interpretable_model = SGDLasso() interpretable_model.fit = partial( # type: ignore interpretable_model.fit, initial_lr=0.1, max_epoch=500 ) self._lime_test_assert( net, inp, [[73.3716, 193.3349, 113.3349]], n_samples=1000, expected_coefs_only=[[73.3716, 193.3349, 113.3349]], interpretable_model=interpretable_model, ) def test_simple_lime_with_mask(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) self._lime_test_assert( net, inp, [[271.0, 271.0, 111.0]], feature_mask=torch.tensor([[0, 0, 1]]), perturbations_per_eval=(1, 2, 3), n_samples=500, expected_coefs_only=[[271.0, 111.0]], ) def test_simple_lime_with_baselines(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]]) self._lime_test_assert( net, inp, [[244.0, 244.0, 100.0]], feature_mask=torch.tensor([[0, 0, 1]]), baselines=4, perturbations_per_eval=(1, 2, 3), expected_coefs_only=[[244.0, 100.0]], test_generator=True, ) def test_simple_lime_boolean(self) -> None: net = BasicModelBoolInput() inp = torch.tensor([[True, False, True]]) self._lime_test_assert( net, inp, [[31.42, 31.42, 30.90]], feature_mask=torch.tensor([[0, 0, 1]]), perturbations_per_eval=(1, 2, 3), test_generator=True, ) def test_simple_lime_boolean_with_baselines(self) -> None: net = BasicModelBoolInput() inp = torch.tensor([[True, False, True]]) self._lime_test_assert( net, inp, [[-36.0, -36.0, 0.0]], feature_mask=torch.tensor([[0, 0, 1]]), baselines=True, perturbations_per_eval=(1, 2, 3), test_generator=True, ) @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_simple_lime_with_show_progress(self, mock_stderr) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) # test progress output for each batch size for bsz in (1, 2, 3): self._lime_test_assert( net, inp, [[73.3716, 193.3349, 113.3349]], perturbations_per_eval=(bsz,), n_samples=500, test_generator=True, show_progress=True, ) output = mock_stderr.getvalue() # to test if progress calculation aligns with the actual iteration # all perturbations_per_eval should reach progress of 100% assert ( "Lime attribution: 100%" in output ), f"Error progress output: {repr(output)}" mock_stderr.seek(0) mock_stderr.truncate(0) def test_simple_batch_lime(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0], [10.0, 14.0, 4.0]], requires_grad=True) self._lime_test_assert( net, inp, [[73.4450, 193.5979, 113.4363], [32.11, 48.00, 11.00]], perturbations_per_eval=(1, 2, 3), n_samples=800, expected_coefs_only=[[73.4450, 193.5979, 113.4363], [32.11, 48.00, 11.00]], ) def test_simple_batch_lime_with_mask(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0], [10.0, 14.0, 4.0]], requires_grad=True) self._lime_test_assert( net, inp, [[271.0, 271.0, 111.0], [32.11, 48.00, 11.00]], feature_mask=torch.tensor([[0, 0, 1], [0, 1, 2]]), perturbations_per_eval=(1, 2, 3), n_samples=600, expected_coefs_only=[[271.0, 111.0, 0.0], [32.11, 48.00, 11.00]], test_generator=True, ) def test_multi_input_lime_without_mask(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[23.0, 0.0, 0.0]]) inp2 = torch.tensor([[20.0, 0.0, 50.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0]]) expected = ( [[87, 0, 0]], [[75, 0, 195]], [[0, 395, 35]], ) self._lime_test_assert( net, (inp1, inp2, inp3), expected, additional_input=(1,), n_samples=2000, expected_coefs_only=[[87, 0, 0, 75, 0, 195, 0, 395, 35]], ) def test_multi_input_lime_with_mask(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[20.0, 50.0, 30.0]]) inp2 = torch.tensor([[0.0, 100.0, 0.0]]) inp3 = torch.tensor([[2.0, 10.0, 3.0]]) mask1 = torch.tensor([[0, 1, 0]]) mask2 = torch.tensor([[0, 1, 2]]) mask3 = torch.tensor([[0, 0, 0]]) expected = ( [[251.0, 591.0, 251.0]], [[251.0, 591.0, 0.0]], [[251.0, 251.0, 251.0]], ) self._lime_test_assert( net, (inp1, inp2, inp3), expected, additional_input=(1,), feature_mask=(mask1, mask2, mask3), n_samples=500, expected_coefs_only=[[251.0, 591.0, 0.0]], ) expected_with_baseline = ( [[180, 576.0, 180]], [[180, 576.0, -8.0]], [[180, 180, 180]], ) self._lime_test_assert( net, (inp1, inp2, inp3), expected_with_baseline, additional_input=(1,), feature_mask=(mask1, mask2, mask3), baselines=(2, 3.0, 4), perturbations_per_eval=(1, 2, 3), n_samples=500, expected_coefs_only=[[180, 576.0, -8.0]], test_generator=True, ) def test_multi_input_lime_with_empty_input(self) -> None: net = BasicLinearModel() inp1 = torch.tensor([[23.0, 0.0, 0.0, 23.0, 0.0, 0.0, 23.0]]) inp2 = torch.tensor([[]]) # empty input mask1 = torch.tensor([[0, 1, 2, 3, 4, 5, 6]]) mask2 = torch.tensor([[]], dtype=torch.long) # empty mask expected: Tuple[List[List[float]], ...] = ( [[-4.0, 0, 0, 0, 0, 0, -4.0]], [[]], ) # no mask self._lime_test_assert( net, (inp1, inp2), expected, n_samples=2000, expected_coefs_only=[[-4.0, 0, 0, 0, 0, 0, -4.0]], ) # with mask self._lime_test_assert( net, (inp1, inp2), expected, n_samples=2000, expected_coefs_only=[[-4.0, 0, 0, 0, 0, 0, -4.0]], feature_mask=(mask1, mask2), ) def test_multi_input_batch_lime_without_mask(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[23.0, 0.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 0.0, 50.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [0.0, 10.0, 0.0]]) expected = ( [[87.8777, 0.0000, 0.0000], [75.8461, 195.6842, 115.3390]], [[74.7283, 0.0000, 195.1708], [0.0000, 395.3823, 0.0000]], [[0.0000, 395.5216, 35.5530], [0.0000, 35.1349, 0.0000]], ) self._lime_test_assert( net, (inp1, inp2, inp3), expected, additional_input=(1,), n_samples=1000, expected_coefs_only=[ [87.8777, 0.0, 0.0, 74.7283, 0.0, 195.1708, 0.0, 395.5216, 35.5530], [ 75.8461, 195.6842, 115.3390, 0.0000, 395.3823, 0.0000, 0.0000, 35.1349, 0.0000, ], ], delta=1.2, ) def test_multi_input_batch_lime(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [2.0, 10.0, 3.0]]) mask1 = torch.tensor([[1, 1, 1], [0, 1, 0]]) mask2 = torch.tensor([[0, 1, 2]]) mask3 = torch.tensor([[0, 1, 2], [0, 0, 0]]) expected = ( [[1086.2802, 1086.2802, 1086.2802], [250.8907, 590.9789, 250.8907]], [[73.2166, 1086.2802, 152.6888], [250.8907, 590.9789, 0.0000]], [[73.2166, 1086.2802, 152.6888], [250.8907, 250.8907, 250.8907]], ) self._lime_test_assert( net, (inp1, inp2, inp3), expected, additional_input=(1,), feature_mask=(mask1, mask2, mask3), ) expected_with_baseline = ( [[1036.4233, 1036.4233, 1036.4233], [180.3035, 575.8969, 180.3035]], [[48.2441, 1036.4233, 128.3161], [180.3035, 575.8969, -8.3229]], [[48.2441, 1036.4233, 128.3161], [180.3035, 180.3035, 180.3035]], ) self._lime_test_assert( net, (inp1, inp2, inp3), expected_with_baseline, additional_input=(1,), feature_mask=(mask1, mask2, mask3), baselines=(2, 3.0, 4), perturbations_per_eval=(1, 2, 3), expected_coefs_only=[ [48.2441, 1036.4233, 128.3161], [180.3035, 575.8969, -8.3229], ], n_samples=500, test_generator=True, ) # Remaining tests are for cases where forward function returns a scalar # as either a float, integer, 0d tensor or 1d tensor. def test_single_lime_scalar_float(self) -> None: net = BasicModel_MultiLayer() self._single_input_scalar_lime_assert(lambda inp: torch.sum(net(inp)).item()) def test_single_lime_scalar_tensor_0d(self) -> None: net = BasicModel_MultiLayer() self._single_input_scalar_lime_assert(lambda inp: torch.sum(net(inp))) def test_single_lime_scalar_tensor_1d(self) -> None: net = BasicModel_MultiLayer() self._single_input_scalar_lime_assert( lambda inp: torch.sum(net(inp)).reshape(1) ) def test_single_lime_scalar_int(self) -> None: net = BasicModel_MultiLayer() self._single_input_scalar_lime_assert( lambda inp: int(torch.sum(net(inp)).item()) ) def _single_input_scalar_lime_assert(self, func: Callable) -> None: inp = torch.tensor([[2.0, 10.0, 3.0]], requires_grad=True) mask = torch.tensor([[0, 0, 1]]) self._lime_test_assert( func, inp, [[75.0, 75.0, 17.0]], feature_mask=mask, perturbations_per_eval=(1,), target=None, expected_coefs_only=[[75.0, 17.0]], n_samples=700, ) def test_multi_inp_lime_scalar_tensor_0d(self) -> None: net = BasicModel_MultiLayer_MultiInput() self._multi_input_scalar_lime_assert(lambda *inp: torch.sum(net(*inp))) def test_multi_inp_lime_scalar_tensor_1d(self) -> None: net = BasicModel_MultiLayer_MultiInput() self._multi_input_scalar_lime_assert( lambda *inp: torch.sum(net(*inp)).reshape(1) ) def test_multi_inp_lime_scalar_tensor_int(self) -> None: net = BasicModel_MultiLayer_MultiInput() self._multi_input_scalar_lime_assert( lambda *inp: int(torch.sum(net(*inp)).item()) ) def test_multi_inp_lime_scalar_float(self) -> None: net = BasicModel_MultiLayer_MultiInput() self._multi_input_scalar_lime_assert(lambda *inp: torch.sum(net(*inp)).item()) def _multi_input_scalar_lime_assert(self, func: Callable) -> None: inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [20.0, 10.0, 13.0]]) mask1 = torch.tensor([[1, 1, 1]]) mask2 = torch.tensor([[0, 1, 2]]) mask3 = torch.tensor([[0, 1, 2]]) expected = ( [[3850.6666, 3850.6666, 3850.6666]] * 2, [[305.5, 3850.6666, 410.1]] * 2, [[305.5, 3850.6666, 410.1]] * 2, ) self._lime_test_assert( func, (inp1, inp2, inp3), expected, additional_input=(1,), feature_mask=(mask1, mask2, mask3), perturbations_per_eval=(1,), target=None, n_samples=1500, expected_coefs_only=[[305.5, 3850.6666, 410.1]], delta=1.5, batch_attr=True, test_generator=True, ) def _lime_test_assert( self, model: Callable, test_input: TensorOrTupleOfTensorsGeneric, expected_attr, expected_coefs_only=None, feature_mask: Union[None, TensorOrTupleOfTensorsGeneric] = None, additional_input: Any = None, perturbations_per_eval: Tuple[int, ...] = (1,), baselines: BaselineType = None, target: Union[None, int] = 0, n_samples: int = 100, delta: float = 1.0, batch_attr: bool = False, test_generator: bool = False, show_progress: bool = False, interpretable_model: Optional[Model] = None, ) -> None: for batch_size in perturbations_per_eval: lime = Lime( model, similarity_func=get_exp_kernel_similarity_function("cosine", 10.0), interpretable_model=interpretable_model if interpretable_model else SkLearnLasso(alpha=1.0), ) attributions = lime.attribute( test_input, target=target, feature_mask=feature_mask, additional_forward_args=additional_input, baselines=baselines, perturbations_per_eval=batch_size, n_samples=n_samples, show_progress=show_progress, ) assertTensorTuplesAlmostEqual( self, attributions, expected_attr, delta=delta, mode="max" ) if expected_coefs_only is not None: # Test with return_input_shape = False attributions = lime.attribute( test_input, target=target, feature_mask=feature_mask, additional_forward_args=additional_input, baselines=baselines, perturbations_per_eval=batch_size, n_samples=n_samples, return_input_shape=False, show_progress=show_progress, ) assertTensorAlmostEqual( self, attributions, expected_coefs_only, delta=delta, mode="max" ) lime_alt = LimeBase( model, interpretable_model if interpretable_model else SkLearnLasso(alpha=1.0), get_exp_kernel_similarity_function("euclidean", 1000.0), alt_perturb_generator if test_generator else alt_perturb_func, False, None, alt_to_interp_rep, ) # Test with equivalent sampling in original input space formatted_inputs, baselines = _format_input_baseline( test_input, baselines ) if feature_mask is None: ( formatted_feature_mask, num_interp_features, ) = _construct_default_feature_mask(formatted_inputs) else: formatted_feature_mask = _format_tensor_into_tuples(feature_mask) num_interp_features = int( max( torch.max(single_mask).item() for single_mask in feature_mask if single_mask.numel() ) + 1 ) if batch_attr: attributions = lime_alt.attribute( test_input, target=target, feature_mask=formatted_feature_mask if isinstance(test_input, tuple) else formatted_feature_mask[0], additional_forward_args=additional_input, baselines=baselines, perturbations_per_eval=batch_size, n_samples=n_samples, num_interp_features=num_interp_features, show_progress=show_progress, ) assertTensorAlmostEqual( self, attributions, expected_coefs_only, delta=delta, mode="max" ) return bsz = formatted_inputs[0].shape[0] for ( curr_inps, curr_target, curr_additional_args, curr_baselines, curr_feature_mask, expected_coef_single, ) in _batch_example_iterator( bsz, test_input, target, additional_input, baselines if isinstance(test_input, tuple) else baselines[0], formatted_feature_mask if isinstance(test_input, tuple) else formatted_feature_mask[0], expected_coefs_only, ): attributions = lime_alt.attribute( curr_inps, target=curr_target, feature_mask=curr_feature_mask, additional_forward_args=curr_additional_args, baselines=curr_baselines, perturbations_per_eval=batch_size, n_samples=n_samples, num_interp_features=num_interp_features, show_progress=show_progress, ) assertTensorAlmostEqual( self, attributions, expected_coef_single, delta=delta, mode="max", ) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 import unittest from enum import Enum from typing import Any, Callable, cast, Dict, Tuple, Type import torch from captum._utils.common import ( _format_additional_forward_args, _format_tensor_into_tuples, ) from captum.attr._core.feature_ablation import FeatureAblation from captum.attr._core.feature_permutation import FeaturePermutation from captum.attr._core.gradient_shap import GradientShap from captum.attr._core.input_x_gradient import InputXGradient from captum.attr._core.integrated_gradients import IntegratedGradients from captum.attr._core.kernel_shap import KernelShap from captum.attr._core.lime import Lime from captum.attr._core.noise_tunnel import NoiseTunnel from captum.attr._core.occlusion import Occlusion from captum.attr._core.saliency import Saliency from captum.attr._core.shapley_value import ShapleyValueSampling from captum.attr._utils.attribution import Attribution from tests.attr.helpers.gen_test_utils import ( gen_test_name, parse_test_config, should_create_generated_test, ) from tests.attr.helpers.test_config import config from tests.helpers.basic import assertTensorTuplesAlmostEqual, BaseTest, deep_copy_args from torch import Tensor from torch.nn import Module JIT_SUPPORTED = [ IntegratedGradients, FeatureAblation, FeaturePermutation, GradientShap, InputXGradient, Occlusion, Saliency, ShapleyValueSampling, Lime, KernelShap, ] """ Tests in this file are dynamically generated based on the config defined in tests/attr/helpers/test_config.py. To add new test cases, read the documentation in test_config.py and add cases based on the schema described there. """ class JITCompareMode(Enum): """ Defines modes for JIT tests: `cpu_jit_trace` - Compares results of running the test case with a standard model on CPU with the result of JIT tracing the model and computing attributions `cpu_jit_script` - Compares results of running the test case with a standard model on CPU with the result of JIT scripting the model and computing attributions `data_parallel_jit_trace` - Compares results of running the test case with a standard model on CPU with the result of JIT tracing the model wrapped in DataParallel and computing attributions `data_parallel_jit_script` - Compares results of running the test case with a standard model on CPU with the result of JIT scripting the model wrapped in DataParallel and computing attributions """ cpu_jit_trace = 1 cpu_jit_script = 2 data_parallel_jit_trace = 3 data_parallel_jit_script = 3 class JITMeta(type): def __new__(cls, name: str, bases: Tuple, attrs: Dict): for test_config in config: ( algorithms, model, args, layer, noise_tunnel, baseline_distr, ) = parse_test_config(test_config) for algorithm in algorithms: if not should_create_generated_test(algorithm): continue if algorithm in JIT_SUPPORTED: for mode in JITCompareMode: # Creates test case corresponding to each algorithm and # JITCompareMode test_method = cls.make_single_jit_test( algorithm, model, args, noise_tunnel, baseline_distr, mode ) test_name = gen_test_name( "test_jit_" + mode.name, cast(str, test_config["name"]), algorithm, noise_tunnel, ) if test_name in attrs: raise AssertionError( "Trying to overwrite existing test with name: %r" % test_name ) attrs[test_name] = test_method return super(JITMeta, cls).__new__(cls, name, bases, attrs) # Arguments are deep copied to ensure tests are independent and are not affected # by any modifications within a previous test. @classmethod @deep_copy_args def make_single_jit_test( cls, algorithm: Type[Attribution], model: Module, args: Dict[str, Any], noise_tunnel: bool, baseline_distr: bool, mode: JITCompareMode, ) -> Callable: """ This method creates a single JIT test for the given algorithm and parameters. """ def jit_test_assert(self) -> None: model_1 = model attr_args = args if ( mode is JITCompareMode.data_parallel_jit_trace or JITCompareMode.data_parallel_jit_script ): if not torch.cuda.is_available() or torch.cuda.device_count() == 0: raise unittest.SkipTest( "Skipping GPU test since CUDA not available." ) # Construct cuda_args, moving all tensor inputs in args to CUDA device cuda_args = {} for key in args: if isinstance(args[key], Tensor): cuda_args[key] = args[key].cuda() elif isinstance(args[key], tuple): cuda_args[key] = tuple( elem.cuda() if isinstance(elem, Tensor) else elem for elem in args[key] ) else: cuda_args[key] = args[key] attr_args = cuda_args model_1 = model_1.cuda() # Initialize models based on JITCompareMode if ( mode is JITCompareMode.cpu_jit_script or JITCompareMode.data_parallel_jit_script ): model_2 = torch.jit.script(model_1) # type: ignore elif ( mode is JITCompareMode.cpu_jit_trace or JITCompareMode.data_parallel_jit_trace ): all_inps = _format_tensor_into_tuples(args["inputs"]) + ( _format_additional_forward_args(args["additional_forward_args"]) if "additional_forward_args" in args and args["additional_forward_args"] is not None else () ) model_2 = torch.jit.trace(model_1, all_inps) # type: ignore else: raise AssertionError("JIT compare mode type is not valid.") attr_method_1 = algorithm(model_1) attr_method_2 = algorithm(model_2) if noise_tunnel: attr_method_1 = NoiseTunnel(attr_method_1) attr_method_2 = NoiseTunnel(attr_method_2) if attr_method_1.has_convergence_delta(): attributions_1, delta_1 = attr_method_1.attribute( return_convergence_delta=True, **attr_args ) self.setUp() attributions_2, delta_2 = attr_method_2.attribute( return_convergence_delta=True, **attr_args ) assertTensorTuplesAlmostEqual( self, attributions_1, attributions_2, mode="max" ) assertTensorTuplesAlmostEqual(self, delta_1, delta_2, mode="max") else: attributions_1 = attr_method_1.attribute(**attr_args) self.setUp() attributions_2 = attr_method_2.attribute(**attr_args) assertTensorTuplesAlmostEqual( self, attributions_1, attributions_2, mode="max" ) return jit_test_assert if torch.cuda.is_available() and torch.cuda.device_count() != 0: class JITTest(BaseTest, metaclass=JITMeta): pass
#!/usr/bin/env python3 from inspect import signature from typing import Callable, List, Tuple, Union import torch from captum.attr._core.deep_lift import DeepLift, DeepLiftShap from captum.attr._core.integrated_gradients import IntegratedGradients from tests.helpers.basic import ( assertAttributionComparision, assertTensorAlmostEqual, BaseTest, ) from tests.helpers.basic_models import ( BasicModelWithReusedModules, Conv1dSeqModel, LinearMaxPoolLinearModel, ReLUDeepLiftModel, ReLULinearModel, TanhDeepLiftModel, ) from torch import Tensor from torch.nn import Module class Test(BaseTest): def test_relu_deeplift(self) -> None: x1 = torch.tensor([1.0], requires_grad=True) x2 = torch.tensor([2.0], requires_grad=True) b1 = torch.tensor([0.0], requires_grad=True) b2 = torch.tensor([0.0], requires_grad=True) inputs = (x1, x2) baselines = (b1, b2) model = ReLUDeepLiftModel() self._deeplift_assert(model, DeepLift(model), inputs, baselines) def test_relu_deeplift_exact_match(self) -> None: x1 = torch.tensor([1.0], requires_grad=True) x2 = torch.tensor([2.0], requires_grad=True) b1 = torch.tensor([0.0], requires_grad=True) b2 = torch.tensor([0.0], requires_grad=True) inputs = (x1, x2) baselines = (b1, b2) model = ReLUDeepLiftModel() dl = DeepLift(model) attributions, delta = dl.attribute( inputs, baselines, return_convergence_delta=True ) self.assertEqual(attributions[0][0], 2.0) self.assertEqual(attributions[1][0], 1.0) self.assertEqual(delta[0], 0.0) def test_relu_deeplift_exact_match_wo_mutliplying_by_inputs(self) -> None: x1 = torch.tensor([1.0]) x2 = torch.tensor([2.0]) inputs = (x1, x2) model = ReLUDeepLiftModel() dl = DeepLift(model, multiply_by_inputs=False) attributions = dl.attribute(inputs) self.assertEqual(attributions[0][0], 2.0) self.assertEqual(attributions[1][0], 0.5) def test_tanh_deeplift(self) -> None: x1 = torch.tensor([-1.0], requires_grad=True) x2 = torch.tensor([-2.0], requires_grad=True) b1 = torch.tensor([0.0], requires_grad=True) b2 = torch.tensor([0.0], requires_grad=True) inputs = (x1, x2) baselines = (b1, b2) model = TanhDeepLiftModel() self._deeplift_assert(model, DeepLift(model), inputs, baselines) def test_relu_deeplift_batch(self) -> None: x1 = torch.tensor([[1.0], [1.0], [1.0], [1.0]], requires_grad=True) x2 = torch.tensor([[2.0], [2.0], [2.0], [2.0]], requires_grad=True) b1 = torch.tensor([[0.0], [0.0], [0.0], [0.0]], requires_grad=True) b2 = torch.tensor([[0.0], [0.0], [0.0], [0.0]], requires_grad=True) inputs = (x1, x2) baselines = (b1, b2) model = ReLUDeepLiftModel() self._deeplift_assert(model, DeepLift(model), inputs, baselines) def test_relu_linear_deeplift(self) -> None: model = ReLULinearModel(inplace=False) x1 = torch.tensor([[-10.0, 1.0, -5.0]], requires_grad=True) x2 = torch.tensor([[3.0, 3.0, 1.0]], requires_grad=True) inputs = (x1, x2) baselines = (0, 0.0001) # expected = [[[0.0, 0.0]], [[6.0, 2.0]]] self._deeplift_assert(model, DeepLift(model), inputs, baselines) def test_relu_linear_deeplift_compare_inplace(self) -> None: model1 = ReLULinearModel(inplace=True) x1 = torch.tensor([[-10.0, 1.0, -5.0], [2.0, 3.0, 4.0]], requires_grad=True) x2 = torch.tensor([[3.0, 3.0, 1.0], [2.3, 5.0, 4.0]], requires_grad=True) inputs = (x1, x2) attributions1 = DeepLift(model1).attribute(inputs) model2 = ReLULinearModel() attributions2 = DeepLift(model2).attribute(inputs) assertTensorAlmostEqual(self, attributions1[0], attributions2[0]) assertTensorAlmostEqual(self, attributions1[1], attributions2[1]) def test_relu_linear_deepliftshap_compare_inplace(self) -> None: model1 = ReLULinearModel(inplace=True) x1 = torch.tensor([[-10.0, 1.0, -5.0], [2.0, 3.0, 4.0]], requires_grad=True) x2 = torch.tensor([[3.0, 3.0, 1.0], [2.3, 5.0, 4.0]], requires_grad=True) inputs = (x1, x2) b1 = torch.tensor([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]]) b2 = torch.tensor([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]]) baselines = (b1, b2) attributions1 = DeepLiftShap(model1).attribute(inputs, baselines) model2 = ReLULinearModel() attributions2 = DeepLiftShap(model2).attribute(inputs, baselines) assertTensorAlmostEqual(self, attributions1[0], attributions2[0]) assertTensorAlmostEqual(self, attributions1[1], attributions2[1]) def test_relu_linear_deeplift_batch(self) -> None: model = ReLULinearModel(inplace=True) x1 = torch.tensor([[-10.0, 1.0, -5.0], [2.0, 3.0, 4.0]], requires_grad=True) x2 = torch.tensor([[3.0, 3.0, 1.0], [2.3, 5.0, 4.0]], requires_grad=True) inputs = (x1, x2) baselines = (torch.zeros(1, 3), torch.rand(1, 3) * 0.001) # expected = [[[0.0, 0.0]], [[6.0, 2.0]]] self._deeplift_assert(model, DeepLift(model), inputs, baselines) def test_relu_deeplift_with_hypothetical_contrib_func(self) -> None: model = Conv1dSeqModel() rand_seq_data = torch.abs(torch.randn(2, 4, 1000)) rand_seq_ref = torch.abs(torch.randn(2, 4, 1000)) dls = DeepLift(model) attr = dls.attribute( rand_seq_data, rand_seq_ref, custom_attribution_func=_hypothetical_contrib_func, target=(1, 0), ) self.assertEqual(attr.shape, rand_seq_data.shape) def test_relu_deepliftshap_batch_4D_input(self) -> None: x1 = torch.ones(4, 1, 1, 1) x2 = torch.tensor([[[[2.0]]]] * 4) b1 = torch.zeros(4, 1, 1, 1) b2 = torch.zeros(4, 1, 1, 1) inputs = (x1, x2) baselines = (b1, b2) model = ReLUDeepLiftModel() self._deeplift_assert(model, DeepLiftShap(model), inputs, baselines) def test_relu_deepliftshap_batch_4D_input_wo_mutliplying_by_inputs(self) -> None: x1 = torch.ones(4, 1, 1, 1) x2 = torch.tensor([[[[2.0]]]] * 4) b1 = torch.zeros(4, 1, 1, 1) b2 = torch.zeros(4, 1, 1, 1) inputs = (x1, x2) baselines = (b1, b2) model = ReLUDeepLiftModel() attr = DeepLiftShap(model, multiply_by_inputs=False).attribute( inputs, baselines ) assertTensorAlmostEqual(self, attr[0], 2 * torch.ones(4, 1, 1, 1)) assertTensorAlmostEqual(self, attr[1], 0.5 * torch.ones(4, 1, 1, 1)) def test_relu_deepliftshap_multi_ref(self) -> None: x1 = torch.tensor([[1.0]], requires_grad=True) x2 = torch.tensor([[2.0]], requires_grad=True) b1 = torch.tensor([[0.0], [0.0], [0.0], [0.0]], requires_grad=True) b2 = torch.tensor([[0.0], [0.0], [0.0], [0.0]], requires_grad=True) inputs = (x1, x2) baselines = (b1, b2) model = ReLUDeepLiftModel() self._deeplift_assert(model, DeepLiftShap(model), inputs, baselines) def test_relu_deepliftshap_baselines_as_func(self) -> None: model = ReLULinearModel(inplace=True) x1 = torch.tensor([[-10.0, 1.0, -5.0]]) x2 = torch.tensor([[3.0, 3.0, 1.0]]) def gen_baselines() -> Tuple[Tensor, ...]: b1 = torch.tensor([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]]) b2 = torch.tensor([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]]) return (b1, b2) def gen_baselines_scalar() -> Tuple[float, ...]: return (0.0, 0.0001) def gen_baselines_with_inputs(inputs: Tuple[Tensor, ...]) -> Tuple[Tensor, ...]: b1 = torch.cat([inputs[0], inputs[0] - 10]) b2 = torch.cat([inputs[1], inputs[1] - 10]) return (b1, b2) def gen_baselines_returns_array() -> Tuple[List[List[float]], ...]: b1 = [[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]] b2 = [[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]] return (b1, b2) inputs = (x1, x2) dl_shap = DeepLiftShap(model) self._deeplift_assert(model, dl_shap, inputs, gen_baselines) self._deeplift_assert(model, dl_shap, inputs, gen_baselines_with_inputs) with self.assertRaises(AssertionError): self._deeplift_assert( model, DeepLiftShap(model), inputs, gen_baselines_returns_array ) with self.assertRaises(AssertionError): self._deeplift_assert(model, dl_shap, inputs, gen_baselines_scalar) baselines = gen_baselines() attributions = dl_shap.attribute(inputs, baselines) attributions_with_func = dl_shap.attribute(inputs, gen_baselines) assertTensorAlmostEqual(self, attributions[0], attributions_with_func[0]) assertTensorAlmostEqual(self, attributions[1], attributions_with_func[1]) def test_relu_deepliftshap_with_custom_attr_func(self) -> None: def custom_attr_func( multipliers: Tuple[Tensor, ...], inputs: Tuple[Tensor, ...], baselines: Tuple[Tensor, ...], ) -> Tuple[Tensor, ...]: return tuple(multiplier * 0.0 for multiplier in multipliers) model = ReLULinearModel(inplace=True) x1 = torch.tensor([[-10.0, 1.0, -5.0]]) x2 = torch.tensor([[3.0, 3.0, 1.0]]) b1 = torch.tensor([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]]) b2 = torch.tensor([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]]) inputs = (x1, x2) baselines = (b1, b2) dls = DeepLiftShap(model) attr_w_func = dls.attribute( inputs, baselines, custom_attribution_func=custom_attr_func ) assertTensorAlmostEqual(self, attr_w_func[0], [[0.0, 0.0, 0.0]], 0.0) assertTensorAlmostEqual(self, attr_w_func[1], [[0.0, 0.0, 0.0]], 0.0) def test_relu_deepliftshap_with_hypothetical_contrib_func(self) -> None: model = Conv1dSeqModel() rand_seq_data = torch.abs(torch.randn(2, 4, 1000)) rand_seq_ref = torch.abs(torch.randn(3, 4, 1000)) dls = DeepLiftShap(model) attr = dls.attribute( rand_seq_data, rand_seq_ref, custom_attribution_func=_hypothetical_contrib_func, target=(0, 0), ) self.assertEqual(attr.shape, rand_seq_data.shape) def test_reusable_modules(self) -> None: model = BasicModelWithReusedModules() input = torch.rand(1, 3) dl = DeepLift(model) with self.assertRaises(RuntimeError): dl.attribute(input, target=0) def test_lin_maxpool_lin_classification(self) -> None: inputs = torch.ones(2, 4) baselines = torch.tensor([[1, 2, 3, 9], [4, 8, 6, 7]]).float() model = LinearMaxPoolLinearModel() dl = DeepLift(model) attrs, delta = dl.attribute( inputs, baselines, target=0, return_convergence_delta=True ) expected = torch.Tensor([[0.0, 0.0, 0.0, -8.0], [0.0, -7.0, 0.0, 0.0]]) expected_delta = torch.Tensor([0.0, 0.0]) assertTensorAlmostEqual(self, attrs, expected, 0.0001) assertTensorAlmostEqual(self, delta, expected_delta, 0.0001) def _deeplift_assert( self, model: Module, attr_method: Union[DeepLift, DeepLiftShap], inputs: Tuple[Tensor, ...], baselines, custom_attr_func: Callable[..., Tuple[Tensor, ...]] = None, ) -> None: input_bsz = len(inputs[0]) if callable(baselines): baseline_parameters = signature(baselines).parameters if len(baseline_parameters) > 0: baselines = baselines(inputs) else: baselines = baselines() baseline_bsz = ( len(baselines[0]) if isinstance(baselines[0], torch.Tensor) else 1 ) # Run attribution multiple times to make sure that it is # working as expected for _ in range(5): model.zero_grad() attributions, delta = attr_method.attribute( inputs, baselines, return_convergence_delta=True, custom_attribution_func=custom_attr_func, ) attributions_without_delta = attr_method.attribute( inputs, baselines, custom_attribution_func=custom_attr_func ) for attribution, attribution_without_delta in zip( attributions, attributions_without_delta ): self.assertTrue( torch.all(torch.eq(attribution, attribution_without_delta)) ) if isinstance(attr_method, DeepLiftShap): self.assertEqual([input_bsz * baseline_bsz], list(delta.shape)) else: self.assertEqual([input_bsz], list(delta.shape)) delta_external = attr_method.compute_convergence_delta( attributions, baselines, inputs ) assertTensorAlmostEqual( self, delta, delta_external, delta=0.0, mode="max" ) delta_condition = (delta.abs() < 0.00001).all() self.assertTrue( delta_condition, "The sum of attribution values {} is not " "nearly equal to the difference between the endpoint for " "some samples".format(delta), ) for input, attribution in zip(inputs, attributions): self.assertEqual(input.shape, attribution.shape) if ( isinstance(baselines[0], (int, float)) or inputs[0].shape == baselines[0].shape ): # Compare with Integrated Gradients ig = IntegratedGradients(model) attributions_ig = ig.attribute(inputs, baselines) assertAttributionComparision(self, attributions, attributions_ig) def _hypothetical_contrib_func( multipliers: Tuple[Tensor, ...], inputs: Tuple[Tensor, ...], baselines: Tuple[Tensor, ...], ) -> Tuple[Tensor, ...]: r""" Implements hypothetical input contributions based on the logic described here: https://github.com/kundajelab/deeplift/pull/36/files This is using a dummy model for test purposes """ # we assume that multiplies, inputs and baselines have the following shape: # tuple((bsz x len x channel), ) assert len(multipliers[0].shape) == 3, multipliers[0].shape assert len(inputs[0].shape) == 3, inputs[0].shape assert len(baselines[0].shape) == 3, baselines[0].shape assert len(multipliers) == len(inputs) and len(inputs) == len(baselines), ( "multipliers, inputs and baselines must have the same shape but" "multipliers: {}, inputs: {}, baselines: {}".format( len(multipliers), len(inputs), len(baselines) ) ) attributions = [] for k in range(len(multipliers)): sub_attributions = torch.zeros_like(inputs[k]) for i in range(inputs[k].shape[-1]): hypothetical_input = torch.zeros_like(inputs[k]) hypothetical_input[:, :, i] = 1.0 hypothetical_input_ref_diff = hypothetical_input - baselines[k] sub_attributions[:, :, i] = torch.sum( hypothetical_input_ref_diff * multipliers[k], dim=-1 ) attributions.append(sub_attributions) return tuple(attributions)
#!/usr/bin/env python3 from __future__ import print_function import unittest from typing import Any, Tuple, Union import torch from captum._utils.typing import TensorOrTupleOfTensorsGeneric from captum.attr._core.guided_backprop_deconvnet import Deconvolution from captum.attr._core.neuron.neuron_guided_backprop_deconvnet import ( NeuronDeconvolution, ) from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import BasicModel_ConvNet_One_Conv from torch.nn import Module class Test(BaseTest): def test_simple_input_conv_deconv(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = 1.0 * torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) exp = [ [2.0, 3.0, 3.0, 1.0], [3.0, 5.0, 5.0, 2.0], [3.0, 5.0, 5.0, 2.0], [1.0, 2.0, 2.0, 1.0], ] exp = torch.tensor(exp).view(1, 1, 4, 4) self._deconv_test_assert(net, (inp,), (exp,)) def test_simple_input_conv_neuron_deconv(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = 1.0 * torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) exp = [ [2.0, 3.0, 3.0, 1.0], [3.0, 5.0, 5.0, 2.0], [3.0, 5.0, 5.0, 2.0], [1.0, 2.0, 2.0, 1.0], ] exp = torch.tensor(exp).view(1, 1, 4, 4) self._neuron_deconv_test_assert(net, net.fc1, (0,), (inp,), (exp,)) def test_simple_input_conv_neuron_deconv_agg_neurons(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = 1.0 * torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) exp = [ [2.0, 3.0, 3.0, 1.0], [3.0, 5.0, 5.0, 2.0], [3.0, 5.0, 5.0, 2.0], [1.0, 2.0, 2.0, 1.0], ] exp = torch.tensor(exp).view(1, 1, 4, 4) self._neuron_deconv_test_assert(net, net.fc1, (slice(0, 1, 1),), (inp,), (exp,)) def test_simple_multi_input_conv_deconv(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) inp2 = torch.ones((1, 1, 4, 4)) ex_attr = [ [2.0, 3.0, 3.0, 1.0], [3.0, 5.0, 5.0, 2.0], [3.0, 5.0, 5.0, 2.0], [1.0, 2.0, 2.0, 1.0], ] ex_attr = torch.tensor(ex_attr).view(1, 1, 4, 4) self._deconv_test_assert(net, (inp, inp2), (ex_attr, ex_attr)) def test_simple_multi_input_conv_neuron_deconv(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) inp2 = torch.ones((1, 1, 4, 4)) ex_attr = [ [2.0, 3.0, 3.0, 1.0], [3.0, 5.0, 5.0, 2.0], [3.0, 5.0, 5.0, 2.0], [1.0, 2.0, 2.0, 1.0], ] ex_attr = torch.tensor(ex_attr).view(1, 1, 4, 4) self._neuron_deconv_test_assert( net, net.fc1, (3,), (inp, inp2), (ex_attr, ex_attr) ) def test_deconv_matching(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = 100.0 * torch.randn(1, 1, 4, 4) self._deconv_matching_assert(net, net.relu2, inp) def _deconv_test_assert( self, model: Module, test_input: TensorOrTupleOfTensorsGeneric, expected: Tuple[torch.Tensor, ...], additional_input: Any = None, ) -> None: deconv = Deconvolution(model) attributions = deconv.attribute( test_input, target=0, additional_forward_args=additional_input ) for i in range(len(test_input)): assertTensorAlmostEqual(self, attributions[i], expected[i], delta=0.01) def _neuron_deconv_test_assert( self, model: Module, layer: Module, neuron_selector: Union[int, Tuple[Union[int, slice], ...]], test_input: TensorOrTupleOfTensorsGeneric, expected: Tuple[torch.Tensor, ...], additional_input: Any = None, ) -> None: deconv = NeuronDeconvolution(model, layer) attributions = deconv.attribute( test_input, neuron_selector=neuron_selector, additional_forward_args=additional_input, ) for i in range(len(test_input)): assertTensorAlmostEqual(self, attributions[i], expected[i], delta=0.01) def _deconv_matching_assert( self, model: Module, output_layer: Module, test_input: TensorOrTupleOfTensorsGeneric, ) -> None: out = model(test_input) attrib = Deconvolution(model) self.assertFalse(attrib.multiplies_by_inputs) neuron_attrib = NeuronDeconvolution(model, output_layer) for i in range(out.shape[1]): deconv_vals = attrib.attribute(test_input, target=i) neuron_deconv_vals = neuron_attrib.attribute(test_input, (i,)) assertTensorAlmostEqual(self, deconv_vals, neuron_deconv_vals, delta=0.01) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 import io import unittest import unittest.mock from typing import Any, Callable, Tuple, Union import torch from captum._utils.typing import ( BaselineType, TargetType, TensorLikeList, TensorOrTupleOfTensorsGeneric, ) from captum.attr._core.occlusion import Occlusion from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import ( BasicModel3, BasicModel_ConvNet_One_Conv, BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, ) from torch import Tensor class Test(BaseTest): def test_improper_window_shape(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) occ = Occlusion(net) # Check error when too few sliding window dimensions with self.assertRaises(AssertionError): _ = occ.attribute(inp, sliding_window_shapes=((1, 2),), target=0) # Check error when too many sliding window dimensions with self.assertRaises(AssertionError): _ = occ.attribute( (inp, inp), sliding_window_shapes=((1, 1, 2), (1, 1, 1, 2)), target=0 ) # Check error when too many sliding window tuples with self.assertRaises(AssertionError): _ = occ.attribute( (inp, inp), sliding_window_shapes=((1, 1, 2), (1, 1, 2), (1, 1, 2)), target=0, ) def test_improper_stride(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) occ = Occlusion(net) # Check error when too few stride dimensions with self.assertRaises(AssertionError): _ = occ.attribute( inp, sliding_window_shapes=(1, 2, 2), strides=(1, 2), target=0 ) # Check error when too many stride dimensions with self.assertRaises(AssertionError): _ = occ.attribute( (inp, inp), sliding_window_shapes=((1, 1, 2), (1, 2, 2)), strides=((1, 1, 2), (2, 1, 2, 2)), target=0, ) # Check error when too many stride tuples with self.assertRaises(AssertionError): _ = occ.attribute( (inp, inp), sliding_window_shapes=((1, 1, 2), (1, 2, 2)), strides=((1, 1, 2), (1, 2, 2), (1, 2, 2)), target=0, ) def test_too_large_stride(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) occ = Occlusion(net) with self.assertRaises(AssertionError): _ = occ.attribute( inp, sliding_window_shapes=((1, 1, 2),), strides=2, target=0 ) with self.assertRaises(AssertionError): _ = occ.attribute( (inp, inp), sliding_window_shapes=((1, 1, 2), (1, 4, 2)), strides=(2, (1, 2, 3)), target=0, ) with self.assertRaises(AssertionError): _ = occ.attribute( inp, sliding_window_shapes=((2, 1, 2),), strides=2, target=0 ) def test_simple_input(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) self._occlusion_test_assert( net, inp, [[80.0, 200.0, 120.0]], perturbations_per_eval=(1, 2, 3), sliding_window_shapes=((1,)), ) def test_simple_multi_input_int_to_int(self) -> None: net = BasicModel3() inp1 = torch.tensor([[-10], [3]]) inp2 = torch.tensor([[-5], [1]]) self._occlusion_test_assert( net, (inp1, inp2), ([[0.0], [1.0]], [[0.0], [-1.0]]), sliding_window_shapes=((1,), (1,)), ) def test_simple_multi_input_int_to_float(self) -> None: net = BasicModel3() def wrapper_func(*inp): return net(*inp).float() inp1 = torch.tensor([[-10], [3]]) inp2 = torch.tensor([[-5], [1]]) self._occlusion_test_assert( wrapper_func, (inp1, inp2), ([[0.0], [1.0]], [[0.0], [-1.0]]), sliding_window_shapes=((1,), (1,)), ) def test_simple_multi_input(self) -> None: net = BasicModel3() inp1 = torch.tensor([[-10.0], [3.0]]) inp2 = torch.tensor([[-5.0], [1.0]]) self._occlusion_test_assert( net, (inp1, inp2), ([[0.0], [1.0]], [[0.0], [-1.0]]), sliding_window_shapes=((1,), (1,)), ) def test_simple_multi_input_0d(self) -> None: net = BasicModel3() inp1 = torch.tensor([-10.0, 3.0]) inp2 = torch.tensor([-5.0, 1.0]) self._occlusion_test_assert( net, (inp1, inp2), ([0.0, 1.0], [0.0, -1.0]), sliding_window_shapes=((), ()), target=None, ) def test_simple_input_larger_shape(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) self._occlusion_test_assert( net, inp, [[200.0, 220.0, 240.0]], perturbations_per_eval=(1, 2, 3), sliding_window_shapes=((2,)), baselines=torch.tensor([10.0, 10.0, 10.0]), ) def test_simple_input_shape_with_stride(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) self._occlusion_test_assert( net, inp, [[280.0, 280.0, 120.0]], perturbations_per_eval=(1, 2, 3), sliding_window_shapes=((2,)), strides=2, ) def test_multi_sample_ablation(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[2.0, 10.0, 3.0], [20.0, 50.0, 30.0]], requires_grad=True) self._occlusion_test_assert( net, inp, [[8.0, 35.0, 12.0], [80.0, 200.0, 120.0]], perturbations_per_eval=(1, 2, 3), sliding_window_shapes=((1,),), ) def test_multi_input_ablation_with_mask(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [2.0, 10.0, 3.0]]) expected = ( [[492.0, 492.0, 492.0], [400.0, 400.0, 400.0]], [[80.0, 200.0, 120.0], [0.0, 400.0, 0.0]], [[400.0, 420.0, 440.0], [48.0, 50.0, 52.0]], ) self._occlusion_test_assert( net, (inp1, inp2, inp3), expected, additional_input=(1,), sliding_window_shapes=((3,), (1,), (2,)), ) self._occlusion_test_assert( net, (inp1, inp2), expected[0:1], additional_input=(inp3, 1), perturbations_per_eval=(1, 2, 3), sliding_window_shapes=((3,), (1,)), ) def test_multi_input_ablation_with_baselines(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [2.0, 10.0, 3.0]]) expected = ( [[444.0, 444.0, 444.0], [328.0, 328.0, 328.0]], [[68.0, 188.0, 108.0], [-12.0, 388.0, -12.0]], [[368.0, 368.0, 24.0], [0.0, 0.0, -12.0]], ) self._occlusion_test_assert( net, (inp1, inp2, inp3), expected, baselines=( torch.tensor([[1.0, 4, 7], [3.0, 6, 9]]), 3.0, torch.tensor([[4.0], [6]]), ), additional_input=(1,), sliding_window_shapes=((3,), (1,), (2,)), strides=(2, 1, 2), ) def test_simple_multi_input_conv(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) inp2 = torch.ones((1, 1, 4, 4)) self._occlusion_test_assert( net, (inp, inp2), (67 * torch.ones_like(inp), 13 * torch.ones_like(inp2)), perturbations_per_eval=(1, 2, 4, 8, 12, 16), sliding_window_shapes=((1, 4, 4), (1, 4, 4)), ) self._occlusion_test_assert( net, (inp, inp2), ( [ [ [ [17.0, 17.0, 17.0, 17.0], [17.0, 17.0, 17.0, 17.0], [64.0, 65.5, 65.5, 67.0], [64.0, 65.5, 65.5, 67.0], ] ] ], [ [ [ [3.0, 3.0, 3.0, 3.0], [3.0, 3.0, 3.0, 3.0], [3.0, 3.0, 3.0, 3.0], [0.0, 0.0, 0.0, 0.0], ] ] ], ), perturbations_per_eval=(1, 3, 7, 14), sliding_window_shapes=((1, 2, 3), (1, 1, 2)), strides=((1, 2, 1), (1, 1, 2)), ) @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_simple_input_with_show_progress(self, mock_stderr) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) # test progress output for each batch size for bsz in (1, 2, 3): self._occlusion_test_assert( net, inp, [[80.0, 200.0, 120.0]], perturbations_per_eval=(bsz,), sliding_window_shapes=((1,)), show_progress=True, ) output = mock_stderr.getvalue() # to test if progress calculation aligns with the actual iteration # all perturbations_per_eval should reach progress of 100% assert ( "Occlusion attribution: 100%" in output ), f"Error progress output: {repr(output)}" mock_stderr.seek(0) mock_stderr.truncate(0) def _occlusion_test_assert( self, model: Callable, test_input: TensorOrTupleOfTensorsGeneric, expected_ablation: Union[ float, TensorLikeList, Tuple[TensorLikeList, ...], Tuple[Tensor, ...], ], sliding_window_shapes: Union[Tuple[int, ...], Tuple[Tuple[int, ...], ...]], target: TargetType = 0, additional_input: Any = None, perturbations_per_eval: Tuple[int, ...] = (1,), baselines: BaselineType = None, strides: Union[None, int, Tuple[Union[int, Tuple[int, ...]], ...]] = None, show_progress: bool = False, ) -> None: for batch_size in perturbations_per_eval: ablation = Occlusion(model) attributions = ablation.attribute( test_input, sliding_window_shapes=sliding_window_shapes, target=target, additional_forward_args=additional_input, baselines=baselines, perturbations_per_eval=batch_size, strides=strides, show_progress=show_progress, ) if isinstance(expected_ablation, tuple): for i in range(len(expected_ablation)): assertTensorAlmostEqual( self, attributions[i], expected_ablation[i], ) else: assertTensorAlmostEqual( self, attributions, expected_ablation, ) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 from typing import Any, cast, Tuple, Union import torch from captum._utils.gradient import compute_gradients from captum._utils.typing import TensorOrTupleOfTensorsGeneric from captum.attr._core.noise_tunnel import NoiseTunnel from captum.attr._core.saliency import Saliency from tests.helpers.basic import ( assertTensorAlmostEqual, assertTensorTuplesAlmostEqual, BaseTest, ) from tests.helpers.basic_models import BasicModel, BasicModel5_MultiArgs from tests.helpers.classification_models import SoftmaxModel from torch import Tensor from torch.nn import Module def _get_basic_config() -> Tuple[Module, Tensor, Tensor, Any]: input = torch.tensor([1.0, 2.0, 3.0, 0.0, -1.0, 7.0], requires_grad=True).T # manually percomputed gradients grads = torch.tensor([-0.0, -0.0, -0.0, 1.0, 1.0, -0.0]) return BasicModel(), input, grads, None def _get_multiargs_basic_config() -> Tuple[ Module, Tuple[Tensor, ...], Tuple[Tensor, ...], Any ]: model = BasicModel5_MultiArgs() additional_forward_args = ([2, 3], 1) inputs = ( torch.tensor([[1.5, 2.0, 34.3], [3.4, 1.2, 2.0]], requires_grad=True), torch.tensor([[3.0, 3.5, 23.2], [2.3, 1.2, 0.3]], requires_grad=True), ) grads = compute_gradients( model, inputs, additional_forward_args=additional_forward_args ) return model, inputs, grads, additional_forward_args def _get_multiargs_basic_config_large() -> Tuple[ Module, Tuple[Tensor, ...], Tuple[Tensor, ...], Any ]: model = BasicModel5_MultiArgs() additional_forward_args = ([2, 3], 1) inputs = ( torch.tensor( [[10.5, 12.0, 34.3], [43.4, 51.2, 32.0]], requires_grad=True ).repeat_interleave(3, dim=0), torch.tensor( [[1.0, 3.5, 23.2], [2.3, 1.2, 0.3]], requires_grad=True ).repeat_interleave(3, dim=0), ) grads = compute_gradients( model, inputs, additional_forward_args=additional_forward_args ) return model, inputs, grads, additional_forward_args class Test(BaseTest): def test_saliency_test_basic_vanilla(self) -> None: self._saliency_base_assert(*_get_basic_config()) def test_saliency_test_basic_smoothgrad(self) -> None: self._saliency_base_assert(*_get_basic_config(), nt_type="smoothgrad") def test_saliency_test_basic_vargrad(self) -> None: self._saliency_base_assert(*_get_basic_config(), nt_type="vargrad") def test_saliency_test_basic_multi_variable_vanilla(self) -> None: self._saliency_base_assert(*_get_multiargs_basic_config()) def test_saliency_test_basic_multi_variable_smoothgrad(self) -> None: self._saliency_base_assert(*_get_multiargs_basic_config(), nt_type="smoothgrad") def test_saliency_test_basic_multivar_sg_n_samples_batch_size_2(self) -> None: attributions_batch_size = self._saliency_base_assert( *_get_multiargs_basic_config_large(), nt_type="smoothgrad", n_samples_batch_size=2, ) attributions = self._saliency_base_assert( *_get_multiargs_basic_config_large(), nt_type="smoothgrad", ) assertTensorTuplesAlmostEqual(self, attributions_batch_size, attributions) def test_saliency_test_basic_multivar_sg_n_samples_batch_size_3(self) -> None: attributions_batch_size = self._saliency_base_assert( *_get_multiargs_basic_config_large(), nt_type="smoothgrad_sq", n_samples_batch_size=3, ) attributions = self._saliency_base_assert( *_get_multiargs_basic_config_large(), nt_type="smoothgrad_sq", ) assertTensorTuplesAlmostEqual(self, attributions_batch_size, attributions) def test_saliency_test_basic_multivar_vg_n_samples_batch_size_1(self) -> None: attributions_batch_size = self._saliency_base_assert( *_get_multiargs_basic_config_large(), nt_type="vargrad", n_samples_batch_size=1, ) attributions = self._saliency_base_assert( *_get_multiargs_basic_config_large(), nt_type="vargrad", ) assertTensorTuplesAlmostEqual(self, attributions_batch_size, attributions) def test_saliency_test_basic_multivar_vg_n_samples_batch_size_6(self) -> None: attributions_batch_size = self._saliency_base_assert( *_get_multiargs_basic_config_large(), nt_type="vargrad", n_samples_batch_size=6, ) attributions = self._saliency_base_assert( *_get_multiargs_basic_config_large(), nt_type="vargrad", ) assertTensorTuplesAlmostEqual(self, attributions_batch_size, attributions) def test_saliency_test_basic_multi_vargrad(self) -> None: self._saliency_base_assert(*_get_multiargs_basic_config(), nt_type="vargrad") def test_saliency_classification_vanilla(self) -> None: self._saliency_classification_assert() def test_saliency_classification_smoothgrad(self) -> None: self._saliency_classification_assert(nt_type="smoothgrad") def test_saliency_classification_vargrad(self) -> None: self._saliency_classification_assert(nt_type="vargrad") def test_saliency_grad_unchanged(self) -> None: model, inp, grads, add_args = _get_basic_config() inp.grad = torch.randn_like(inp) grad = inp.grad.detach().clone() self._saliency_base_assert(model, inp, grads, add_args) assertTensorTuplesAlmostEqual(self, inp.grad, grad, delta=0.0) def _saliency_base_assert( self, model: Module, inputs: TensorOrTupleOfTensorsGeneric, expected: TensorOrTupleOfTensorsGeneric, additional_forward_args: Any = None, nt_type: str = "vanilla", n_samples_batch_size=None, ) -> Union[Tensor, Tuple[Tensor, ...]]: saliency = Saliency(model) self.assertFalse(saliency.multiplies_by_inputs) if nt_type == "vanilla": attributions = saliency.attribute( inputs, additional_forward_args=additional_forward_args ) else: nt = NoiseTunnel(saliency) attributions = nt.attribute( inputs, nt_type=nt_type, nt_samples=10, nt_samples_batch_size=n_samples_batch_size, stdevs=0.0000002, additional_forward_args=additional_forward_args, ) for input, attribution, expected_attr in zip(inputs, attributions, expected): if nt_type == "vanilla": self._assert_attribution(attribution, expected_attr) self.assertEqual(input.shape, attribution.shape) return attributions def _assert_attribution(self, attribution: Tensor, expected: Tensor) -> None: expected = torch.abs(expected) if len(attribution.shape) == 0: assert (attribution - expected).abs() < 0.001 else: assertTensorAlmostEqual(self, expected, attribution, delta=0.5, mode="max") def _saliency_classification_assert(self, nt_type: str = "vanilla") -> None: num_in = 5 input = torch.tensor([[0.0, 1.0, 2.0, 3.0, 4.0]], requires_grad=True) target = torch.tensor(5) # 10-class classification model model = SoftmaxModel(num_in, 20, 10) saliency = Saliency(model) if nt_type == "vanilla": attributions = saliency.attribute(input, target) output = model(input)[:, target] output.backward() expected = torch.abs(cast(Tensor, input.grad)) assertTensorAlmostEqual(self, attributions, expected) else: nt = NoiseTunnel(saliency) attributions = nt.attribute( input, nt_type=nt_type, nt_samples=10, stdevs=0.0002, target=target ) self.assertEqual(input.shape, attributions.shape)
#!/usr/bin/env python3 import random import torch from captum.attr import Max, Mean, Min, MSE, StdDev, Sum, Summarizer, Var from tests.helpers.basic import assertTensorAlmostEqual, BaseTest def get_values(n=100, lo=None, hi=None, integers=False): for _ in range(n): if integers: yield random.randint(lo, hi) else: yield random.random() * (hi - lo) + lo class Test(BaseTest): def test_div0(self) -> None: summarizer = Summarizer([Var(), Mean()]) summ = summarizer.summary self.assertIsNone(summ) summarizer.update(torch.tensor(10)) summ = summarizer.summary assertTensorAlmostEqual(self, summ["mean"], 10) assertTensorAlmostEqual(self, summ["variance"], 0) summarizer.update(torch.tensor(10)) summ = summarizer.summary assertTensorAlmostEqual(self, summ["mean"], 10) assertTensorAlmostEqual(self, summ["variance"], 0) def test_var_defin(self) -> None: """ Variance is avg squared distance to mean. Thus it should be positive. This test is to ensure this is the case. To test it, we will we make a skewed distribution leaning to one end (either very large or small values). We will also compare to numpy and ensure it is approximately the same. This is assuming numpy is correct, for which it should be. """ SMALL_VAL = -10000 BIG_VAL = 10000 AMOUNT_OF_SMALLS = [100, 10] AMOUNT_OF_BIGS = [10, 100] for sm, big in zip(AMOUNT_OF_SMALLS, AMOUNT_OF_BIGS): summ = Summarizer([Var()]) values = [] for _ in range(sm): values.append(SMALL_VAL) summ.update(torch.tensor(SMALL_VAL, dtype=torch.float64)) for _ in range(big): values.append(BIG_VAL) summ.update(torch.tensor(BIG_VAL, dtype=torch.float64)) actual_var = torch.var(torch.tensor(values).double(), unbiased=False) var = summ.summary["variance"] assertTensorAlmostEqual(self, var, actual_var) self.assertTrue((var > 0).all()) def test_multi_dim(self) -> None: x1 = torch.tensor([1.0, 2.0, 3.0, 4.0]) x2 = torch.tensor([2.0, 1.0, 2.0, 4.0]) x3 = torch.tensor([3.0, 3.0, 1.0, 4.0]) summarizer = Summarizer([Mean(), Var()]) summarizer.update(x1) assertTensorAlmostEqual( self, summarizer.summary["mean"], x1, delta=0.05, mode="max" ) assertTensorAlmostEqual( self, summarizer.summary["variance"], torch.zeros_like(x1), delta=0.05, mode="max", ) summarizer.update(x2) assertTensorAlmostEqual( self, summarizer.summary["mean"], torch.tensor([1.5, 1.5, 2.5, 4]), delta=0.05, mode="max", ) assertTensorAlmostEqual( self, summarizer.summary["variance"], torch.tensor([0.25, 0.25, 0.25, 0]), delta=0.05, mode="max", ) summarizer.update(x3) assertTensorAlmostEqual( self, summarizer.summary["mean"], torch.tensor([2, 2, 2, 4]), delta=0.05, mode="max", ) assertTensorAlmostEqual( self, summarizer.summary["variance"], torch.tensor([2.0 / 3.0, 2.0 / 3.0, 2.0 / 3.0, 0]), delta=0.05, mode="max", ) def test_stats_random_data(self): N = 1000 BIG_VAL = 100000 _values = list(get_values(lo=-BIG_VAL, hi=BIG_VAL, n=N)) values = torch.tensor(_values, dtype=torch.float64) stats_to_test = [ Mean(), Var(), Var(order=1), StdDev(), StdDev(order=1), Min(), Max(), Sum(), MSE(), ] stat_names = [ "mean", "variance", "sample_variance", "std_dev", "sample_std_dev", "min", "max", "sum", "mse", ] gt_fns = [ torch.mean, lambda x: torch.var(x, unbiased=False), lambda x: torch.var(x, unbiased=True), lambda x: torch.std(x, unbiased=False), lambda x: torch.std(x, unbiased=True), torch.min, torch.max, torch.sum, lambda x: torch.sum((x - torch.mean(x)) ** 2), ] for stat, name, gt in zip(stats_to_test, stat_names, gt_fns): summ = Summarizer([stat]) actual = gt(values) for x in values: summ.update(x) stat_val = summ.summary[name] # rounding errors is a serious issue (moreso for MSE) assertTensorAlmostEqual(self, stat_val, actual, delta=0.005)
#!/usr/bin/env python3 import io import unittest import unittest.mock from typing import Any, Callable, List, Tuple, Union import torch from captum._utils.typing import BaselineType, TensorOrTupleOfTensorsGeneric from captum.attr._core.kernel_shap import KernelShap from tests.helpers.basic import ( assertTensorAlmostEqual, assertTensorTuplesAlmostEqual, BaseTest, set_all_random_seeds, ) from tests.helpers.basic_models import ( BasicLinearModel, BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, ) class Test(BaseTest): def setUp(self) -> None: super().setUp() try: import sklearn # noqa: F401 assert ( sklearn.__version__ >= "0.23.0" ), "Must have sklearn version 0.23.0 or higher" except (ImportError, AssertionError): raise unittest.SkipTest("Skipping KernelShap tests, sklearn not available.") def test_linear_kernel_shap(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) baseline = torch.tensor([[10.0, 20.0, 10.0]], requires_grad=True) self._kernel_shap_test_assert( net, inp, [[40.0, 120.0, 80.0]], n_samples=500, baselines=baseline, expected_coefs=[[40.0, 120.0, 80.0]], ) def test_simple_kernel_shap(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) self._kernel_shap_test_assert( net, inp, [[76.66666, 196.66666, 116.66666]], perturbations_per_eval=(1, 2, 3), n_samples=500, ) def test_simple_kernel_shap_with_mask(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) self._kernel_shap_test_assert( net, inp, [[275.0, 275.0, 115.0]], feature_mask=torch.tensor([[0, 0, 1]]), perturbations_per_eval=(1, 2, 3), expected_coefs=[[275.0, 115.0]], ) @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_simple_kernel_shap_with_show_progress(self, mock_stderr) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) # test progress output for each batch size for bsz in (1, 2, 3): self._kernel_shap_test_assert( net, inp, [[76.66666, 196.66666, 116.66666]], perturbations_per_eval=(bsz,), n_samples=500, show_progress=True, ) output = mock_stderr.getvalue() # to test if progress calculation aligns with the actual iteration # all perturbations_per_eval should reach progress of 100% assert ( "Kernel Shap attribution: 100%" in output ), f"Error progress output: {repr(output)}" mock_stderr.seek(0) mock_stderr.truncate(0) def test_simple_kernel_shap_with_baselines(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]]) self._kernel_shap_test_assert( net, inp, [[248.0, 248.0, 104.0]], feature_mask=torch.tensor([[0, 0, 1]]), baselines=4, perturbations_per_eval=(1, 2, 3), ) def test_simple_batch_kernel_shap(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[2.0, 10.0, 3.0], [20.0, 50.0, 30.0]], requires_grad=True) self._kernel_shap_test_assert( net, inp, [[7.0, 32.5, 10.5], [76.66666, 196.66666, 116.66666]], perturbations_per_eval=(1, 2, 3), n_samples=20000, ) def test_simple_batch_kernel_shap_with_mask(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[2.0, 10.0, 3.0], [20.0, 50.0, 30.0]], requires_grad=True) self._kernel_shap_test_assert( net, inp, [[39.5, 39.5, 10.5], [275.0, 275.0, 115.0]], feature_mask=torch.tensor([[0, 0, 1], [1, 1, 0]]), perturbations_per_eval=(1, 2, 3), n_samples=100, expected_coefs=[[39.5, 10.5], [115.0, 275.0]], ) def test_multi_input_kernel_shap_without_mask(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[23.0, 0.0, 0.0]]) inp2 = torch.tensor([[20.0, 0.0, 50.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0]]) expected = ( [[90, 0, 0]], [[78, 0, 198]], [[0, 398, 38]], ) self._kernel_shap_test_assert( net, (inp1, inp2, inp3), expected, additional_input=(1,), n_samples=2000, ) def test_multi_input_kernel_shap_with_mask(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[20.0, 50.0, 30.0]]) inp2 = torch.tensor([[0.0, 100.0, 0.0]]) inp3 = torch.tensor([[2.0, 10.0, 3.0]]) mask1 = torch.tensor([[0, 1, 0]]) mask2 = torch.tensor([[0, 1, 2]]) mask3 = torch.tensor([[0, 0, 0]]) expected = ( [[255.0, 595.0, 255.0]], [[255.0, 595.0, 0.0]], [[255.0, 255.0, 255.0]], ) self._kernel_shap_test_assert( net, (inp1, inp2, inp3), expected, additional_input=(1,), feature_mask=(mask1, mask2, mask3), ) expected_with_baseline = ( [[184, 580.0, 184]], [[184, 580.0, -12.0]], [[184, 184, 184]], ) self._kernel_shap_test_assert( net, (inp1, inp2, inp3), expected_with_baseline, additional_input=(1,), feature_mask=(mask1, mask2, mask3), baselines=(2, 3.0, 4), perturbations_per_eval=(1, 2, 3), ) def test_multi_input_kernel_shap_with_empty_input(self) -> None: net = BasicLinearModel() inp1 = torch.tensor([[23.0, 0.0, 0.0, 23.0, 0.0, 0.0, 23.0]]) inp2 = torch.tensor([[]]) # empty input mask1 = torch.tensor([[0, 1, 2, 3, 4, 5, 6]]) mask2 = torch.tensor([[]], dtype=torch.long) # empty mask expected: Tuple[List[List[float]], ...] = ( [[-8.0, 0, 0, -2.0, 0, 0, -8.0]], [[]], ) # no mask self._kernel_shap_test_assert( net, (inp1, inp2), expected, n_samples=2000, expected_coefs=[[-8.0, 0, 0, -2.0, 0, 0, -8.0]], ) # with mask self._kernel_shap_test_assert( net, (inp1, inp2), expected, n_samples=2000, expected_coefs=[[-8.0, 0, 0, -2.0, 0, 0, -8.0]], feature_mask=(mask1, mask2), ) def test_multi_input_batch_kernel_shap_without_mask(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[23.0, 0.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 0.0, 50.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [0.0, 10.0, 0.0]]) expected = ( [[90, 0, 0], [78.0, 198.0, 118.0]], [[78, 0, 198], [0.0, 398.0, 0.0]], [[0, 398, 38], [0.0, 38.0, 0.0]], ) self._kernel_shap_test_assert( net, (inp1, inp2, inp3), expected, additional_input=(1,), n_samples=2500, expected_coefs=[ [90.0, 0, 0, 78, 0, 198, 0, 398, 38], [78.0, 198.0, 118.0, 0.0, 398.0, 0.0, 0.0, 38.0, 0.0], ], ) def test_multi_input_batch_kernel_shap(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [2.0, 10.0, 3.0]]) mask1 = torch.tensor([[1, 1, 1], [0, 1, 0]]) mask2 = torch.tensor([[0, 1, 2]]) mask3 = torch.tensor([[0, 1, 2], [0, 0, 0]]) expected = ( [[1088.6666, 1088.6666, 1088.6666], [255.0, 595.0, 255.0]], [[76.6666, 1088.6666, 156.6666], [255.0, 595.0, 0.0]], [[76.6666, 1088.6666, 156.6666], [255.0, 255.0, 255.0]], ) self._kernel_shap_test_assert( net, (inp1, inp2, inp3), expected, additional_input=(1,), feature_mask=(mask1, mask2, mask3), n_samples=300, ) expected_with_baseline = ( [[1040, 1040, 1040], [184, 580.0, 184]], [[52, 1040, 132], [184, 580.0, -12.0]], [[52, 1040, 132], [184, 184, 184]], ) self._kernel_shap_test_assert( net, (inp1, inp2, inp3), expected_with_baseline, additional_input=(1,), feature_mask=(mask1, mask2, mask3), baselines=(2, 3.0, 4), perturbations_per_eval=(1, 2, 3), ) # Remaining tests are for cases where forward function returns a scalar # as either a float, integer, 0d tensor or 1d tensor. def test_single_kernel_shap_scalar_float(self) -> None: net = BasicModel_MultiLayer() self._single_input_scalar_kernel_shap_assert( lambda inp: torch.sum(net(inp)).item() ) def test_single_kernel_shap_scalar_tensor_0d(self) -> None: net = BasicModel_MultiLayer() self._single_input_scalar_kernel_shap_assert(lambda inp: torch.sum(net(inp))) def test_single_kernel_shap_scalar_tensor_1d(self) -> None: net = BasicModel_MultiLayer() self._single_input_scalar_kernel_shap_assert( lambda inp: torch.sum(net(inp)).reshape(1) ) def test_single_kernel_shap_scalar_int(self) -> None: net = BasicModel_MultiLayer() self._single_input_scalar_kernel_shap_assert( lambda inp: int(torch.sum(net(inp)).item()) ) def _single_input_scalar_kernel_shap_assert(self, func: Callable) -> None: inp = torch.tensor([[2.0, 10.0, 3.0]], requires_grad=True) mask = torch.tensor([[0, 0, 1]]) self._kernel_shap_test_assert( func, inp, [[79.0, 79.0, 21.0]], feature_mask=mask, perturbations_per_eval=(1,), target=None, ) def test_multi_inp_kernel_shap_scalar_tensor_0d(self) -> None: net = BasicModel_MultiLayer_MultiInput() self._multi_input_scalar_kernel_shap_assert(lambda *inp: torch.sum(net(*inp))) def test_multi_inp_kernel_shap_scalar_tensor_1d(self) -> None: net = BasicModel_MultiLayer_MultiInput() self._multi_input_scalar_kernel_shap_assert( lambda *inp: torch.sum(net(*inp)).reshape(1) ) def test_multi_inp_kernel_shap_scalar_tensor_int(self) -> None: net = BasicModel_MultiLayer_MultiInput() self._multi_input_scalar_kernel_shap_assert( lambda *inp: int(torch.sum(net(*inp)).item()) ) def test_multi_inp_kernel_shap_scalar_float(self) -> None: net = BasicModel_MultiLayer_MultiInput() self._multi_input_scalar_kernel_shap_assert( lambda *inp: torch.sum(net(*inp)).item() ) def _multi_input_scalar_kernel_shap_assert(self, func: Callable) -> None: inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [20.0, 10.0, 13.0]]) mask1 = torch.tensor([[1, 1, 1]]) mask2 = torch.tensor([[0, 1, 2]]) mask3 = torch.tensor([[0, 1, 2]]) expected = ( [[3850.6666, 3850.6666, 3850.6666]] * 2, [[306.6666, 3850.6666, 410.6666]] * 2, [[306.6666, 3850.6666, 410.6666]] * 2, ) self._kernel_shap_test_assert( func, (inp1, inp2, inp3), expected, additional_input=(1,), feature_mask=(mask1, mask2, mask3), perturbations_per_eval=(1,), target=None, n_samples=1500, ) def _kernel_shap_test_assert( self, model: Callable, test_input: TensorOrTupleOfTensorsGeneric, expected_attr, feature_mask: Union[None, TensorOrTupleOfTensorsGeneric] = None, additional_input: Any = None, perturbations_per_eval: Tuple[int, ...] = (1,), baselines: BaselineType = None, target: Union[None, int] = 0, n_samples: int = 100, delta: float = 1.0, expected_coefs: Union[None, List[float], List[List[float]]] = None, show_progress: bool = False, ) -> None: for batch_size in perturbations_per_eval: kernel_shap = KernelShap(model) attributions = kernel_shap.attribute( test_input, target=target, feature_mask=feature_mask, additional_forward_args=additional_input, baselines=baselines, perturbations_per_eval=batch_size, n_samples=n_samples, show_progress=show_progress, ) assertTensorTuplesAlmostEqual( self, attributions, expected_attr, delta=delta, mode="max" ) if expected_coefs is not None: set_all_random_seeds(1234) # Test with return_input_shape = False attributions = kernel_shap.attribute( test_input, target=target, feature_mask=feature_mask, additional_forward_args=additional_input, baselines=baselines, perturbations_per_eval=batch_size, n_samples=n_samples, return_input_shape=False, show_progress=show_progress, ) assertTensorAlmostEqual( self, attributions, expected_coefs, delta=delta, mode="max" ) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 import unittest from typing import Any, cast, Tuple, Union import torch from captum._utils.common import _zeros from captum._utils.typing import BaselineType, Tensor, TensorOrTupleOfTensorsGeneric from captum.attr._core.integrated_gradients import IntegratedGradients from captum.attr._core.noise_tunnel import NoiseTunnel from captum.attr._utils.common import _tensorize_baseline from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import ( BasicModel, BasicModel2, BasicModel3, BasicModel4_MultiArgs, BasicModel5_MultiArgs, BasicModel6_MultiTensor, BasicModel_MultiLayer, ) from torch.nn import Module class Test(BaseTest): def test_multivariable_vanilla(self) -> None: self._assert_multi_variable("vanilla", "riemann_right") def test_multivariable_vanilla_wo_mutliplying_by_inputs(self) -> None: self._assert_multi_variable( "vanilla", "riemann_right", multiply_by_inputs=False ) def test_multivariable_smoothgrad(self) -> None: self._assert_multi_variable("smoothgrad", "riemann_left") def test_multivariable_smoothgrad_sq(self) -> None: self._assert_multi_variable("smoothgrad_sq", "riemann_middle") def test_multivariable_vargrad(self) -> None: self._assert_multi_variable("vargrad", "riemann_trapezoid") def test_multi_argument_vanilla(self) -> None: self._assert_multi_argument("vanilla", "gausslegendre") def test_multi_argument_smoothgrad(self) -> None: self._assert_multi_argument("smoothgrad", "riemann_right") def test_multi_argument_smoothgrad_sq(self) -> None: self._assert_multi_argument("smoothgrad_sq", "riemann_left") def test_multi_argument_vargrad(self) -> None: self._assert_multi_argument("vargrad", "riemann_middle") def test_univariable_vanilla(self) -> None: self._assert_univariable("vanilla", "riemann_trapezoid") def test_univariable_smoothgrad(self) -> None: self._assert_univariable("smoothgrad", "gausslegendre") def test_univariable_smoothgrad_sq(self) -> None: self._assert_univariable("smoothgrad_sq", "riemann_right") def test_univariable_vargrad(self) -> None: self._assert_univariable("vargrad", "riemann_left") def test_multi_tensor_input_vanilla(self) -> None: self._assert_multi_tensor_input("vanilla", "riemann_middle") def test_multi_tensor_input_smoothgrad(self) -> None: self._assert_multi_tensor_input("smoothgrad", "riemann_trapezoid") def test_multi_tensor_input_smoothgrad_sq(self) -> None: self._assert_multi_tensor_input("smoothgrad_sq", "gausslegendre") def test_multi_tensor_input_vargrad(self) -> None: self._assert_multi_tensor_input("vargrad", "riemann_right") def test_batched_input_vanilla(self) -> None: self._assert_batched_tensor_input("vanilla", "riemann_left") def test_batched_input_smoothgrad(self) -> None: self._assert_batched_tensor_input("smoothgrad", "riemann_middle") def test_batched_input_smoothgrad_with_batch_size_1(self) -> None: self._assert_n_samples_batched_size("smoothgrad", "riemann_middle", 1) def test_batched_input_smoothgrad_with_batch_size_2(self) -> None: self._assert_n_samples_batched_size("vargrad", "riemann_middle", 2) def test_batched_input_smoothgrad_with_batch_size_3(self) -> None: self._assert_n_samples_batched_size("smoothgrad_sq", "riemann_middle", 3) def test_batched_input_smoothgrad_sq(self) -> None: self._assert_batched_tensor_input("smoothgrad_sq", "riemann_trapezoid") def test_batched_input_vargrad(self) -> None: self._assert_batched_tensor_input("vargrad", "gausslegendre") def test_batched_input_smoothgrad_wo_mutliplying_by_inputs(self) -> None: model = BasicModel_MultiLayer() inputs = torch.tensor( [[1.5, 2.0, 1.3], [0.5, 0.1, 2.3], [1.5, 2.0, 1.3]], requires_grad=True ) ig_wo_mutliplying_by_inputs = IntegratedGradients( model, multiply_by_inputs=False ) nt_wo_mutliplying_by_inputs = NoiseTunnel(ig_wo_mutliplying_by_inputs) ig = IntegratedGradients(model) nt = NoiseTunnel(ig) n_samples = 5 target = 0 type = "smoothgrad" attributions_wo_mutliplying_by_inputs = nt_wo_mutliplying_by_inputs.attribute( inputs, nt_type=type, nt_samples=n_samples, stdevs=0.0, target=target, n_steps=500, ) attributions = nt.attribute( inputs, nt_type=type, nt_samples=n_samples, stdevs=0.0, target=target, n_steps=500, ) assertTensorAlmostEqual( self, attributions_wo_mutliplying_by_inputs * inputs, attributions ) def test_batched_multi_input_vanilla(self) -> None: self._assert_batched_tensor_multi_input("vanilla", "riemann_right") def test_batched_multi_input_smoothgrad(self) -> None: self._assert_batched_tensor_multi_input("smoothgrad", "riemann_left") def test_batched_multi_input_smoothgrad_sq(self) -> None: self._assert_batched_tensor_multi_input("smoothgrad_sq", "riemann_middle") def test_batched_multi_input_vargrad(self) -> None: self._assert_batched_tensor_multi_input("vargrad", "riemann_trapezoid") def test_batched_multi_input_vargrad_batch_size_1(self) -> None: self._assert_batched_tensor_multi_input("vargrad", "riemann_trapezoid", 1) def test_batched_multi_input_smooth_batch_size_2(self) -> None: self._assert_batched_tensor_multi_input("vargrad", "riemann_trapezoid", 2) def test_batched_multi_input_smoothgrad_sq_batch_size_3(self) -> None: self._assert_batched_tensor_multi_input("vargrad", "riemann_trapezoid", 3) def _assert_multi_variable( self, type: str, approximation_method: str = "gausslegendre", multiply_by_inputs: bool = True, ) -> None: model = BasicModel2() input1 = torch.tensor([3.0]) input2 = torch.tensor([1.0], requires_grad=True) baseline1 = torch.tensor([0.0]) baseline2 = torch.tensor([0.0]) attributions1 = self._compute_attribution_and_evaluate( model, (input1, input2), (baseline1, baseline2), type=type, approximation_method=approximation_method, multiply_by_inputs=multiply_by_inputs, ) if type == "vanilla": assertTensorAlmostEqual( self, attributions1[0], [1.5] if multiply_by_inputs else [0.5], delta=0.05, mode="max", ) assertTensorAlmostEqual( self, attributions1[1], [-0.5] if multiply_by_inputs else [-0.5], delta=0.05, mode="max", ) model = BasicModel3() attributions2 = self._compute_attribution_and_evaluate( model, (input1, input2), (baseline1, baseline2), type=type, approximation_method=approximation_method, multiply_by_inputs=multiply_by_inputs, ) if type == "vanilla": assertTensorAlmostEqual( self, attributions2[0], [1.5] if multiply_by_inputs else [0.5], delta=0.05, mode="max", ) assertTensorAlmostEqual( self, attributions2[1], [-0.5] if multiply_by_inputs else [-0.5], delta=0.05, mode="max", ) # Verifies implementation invariance self.assertEqual( sum(attribution for attribution in attributions1), sum(attribution for attribution in attributions2), ) def _assert_univariable( self, type: str, approximation_method: str = "gausslegendre" ) -> None: model = BasicModel() self._compute_attribution_and_evaluate( model, torch.tensor([1.0], requires_grad=True), torch.tensor([0.0]), type=type, approximation_method=approximation_method, ) self._compute_attribution_and_evaluate( model, torch.tensor([0.0]), torch.tensor([0.0]), type=type, approximation_method=approximation_method, ) self._compute_attribution_and_evaluate( model, torch.tensor([-1.0], requires_grad=True), 0.00001, type=type, approximation_method=approximation_method, ) def _assert_multi_argument( self, type: str, approximation_method: str = "gausslegendre" ) -> None: model = BasicModel4_MultiArgs() self._compute_attribution_and_evaluate( model, ( torch.tensor([[1.5, 2.0, 34.3]], requires_grad=True), torch.tensor([[3.0, 3.5, 23.2]], requires_grad=True), ), baselines=(0.0, torch.zeros((1, 3))), additional_forward_args=torch.arange(1.0, 4.0).reshape(1, 3), type=type, approximation_method=approximation_method, ) # uses batching with an integer variable and nd-tensors as # additional forward arguments self._compute_attribution_and_evaluate( model, ( torch.tensor([[1.5, 2.0, 34.3], [3.4, 1.2, 2.0]], requires_grad=True), torch.tensor([[3.0, 3.5, 23.2], [2.3, 1.2, 0.3]], requires_grad=True), ), baselines=(torch.zeros((2, 3)), 0.0), additional_forward_args=(torch.arange(1.0, 7.0).reshape(2, 3), 1), type=type, approximation_method=approximation_method, ) # uses batching with an integer variable and python list # as additional forward arguments model = BasicModel5_MultiArgs() self._compute_attribution_and_evaluate( model, ( torch.tensor([[1.5, 2.0, 34.3], [3.4, 1.2, 2.0]], requires_grad=True), torch.tensor([[3.0, 3.5, 23.2], [2.3, 1.2, 0.3]], requires_grad=True), ), baselines=(0.0, 0.00001), additional_forward_args=([2, 3], 1), type=type, approximation_method=approximation_method, ) # similar to previous case plus baseline consists of a tensor and # a single example self._compute_attribution_and_evaluate( model, ( torch.tensor([[1.5, 2.0, 34.3], [3.4, 1.2, 2.0]], requires_grad=True), torch.tensor([[3.0, 3.5, 23.2], [2.3, 1.2, 0.3]], requires_grad=True), ), baselines=(torch.zeros((1, 3)), 0.00001), additional_forward_args=([2, 3], 1), type=type, approximation_method=approximation_method, ) def _assert_multi_tensor_input( self, type: str, approximation_method: str = "gausslegendre" ) -> None: model = BasicModel6_MultiTensor() self._compute_attribution_and_evaluate( model, ( torch.tensor([[1.5, 2.0, 3.3]], requires_grad=True), torch.tensor([[3.0, 3.5, 2.2]], requires_grad=True), ), type=type, approximation_method=approximation_method, ) def _assert_batched_tensor_input( self, type: str, approximation_method: str = "gausslegendre" ) -> None: model = BasicModel_MultiLayer() input = ( torch.tensor( [[1.5, 2.0, 1.3], [0.5, 0.1, 2.3], [1.5, 2.0, 1.3]], requires_grad=True ), ) self._compute_attribution_and_evaluate( model, input, type=type, target=0, approximation_method=approximation_method ) self._compute_attribution_batch_helper_evaluate( model, input, target=0, approximation_method=approximation_method ) def _assert_batched_tensor_multi_input( self, type: str, approximation_method: str = "gausslegendre", nt_samples_batch_size: int = None, ) -> None: model = BasicModel_MultiLayer() input = ( torch.tensor( [[1.5, 2.1, 1.9], [0.5, 0.0, 0.7], [1.5, 2.1, 1.1]], requires_grad=True ), torch.tensor( [[0.3, 1.9, 2.4], [0.5, 0.6, 2.1], [1.2, 2.1, 0.2]], requires_grad=True ), ) self._compute_attribution_and_evaluate( model, input, type=type, target=0, approximation_method=approximation_method, nt_samples_batch_size=nt_samples_batch_size, ) def _assert_n_samples_batched_size( self, type: str, approximation_method: str = "gausslegendre", nt_samples_batch_size: int = None, ) -> None: model = BasicModel_MultiLayer() input = ( torch.tensor( [[1.5, 2.0, 1.3], [0.5, 0.1, 2.3], [1.5, 2.0, 1.3]], requires_grad=True ), ) self._compute_attribution_and_evaluate( model, input, type=type, target=0, nt_samples_batch_size=nt_samples_batch_size, approximation_method=approximation_method, ) def _compute_attribution_and_evaluate( self, model: Module, inputs: TensorOrTupleOfTensorsGeneric, baselines: BaselineType = None, target: Union[None, int] = None, additional_forward_args: Any = None, type: str = "vanilla", approximation_method: str = "gausslegendre", multiply_by_inputs=True, nt_samples_batch_size=None, ) -> Tuple[Tensor, ...]: r""" attrib_type: 'vanilla', 'smoothgrad', 'smoothgrad_sq', 'vargrad' """ ig = IntegratedGradients(model, multiply_by_inputs=multiply_by_inputs) self.assertEqual(ig.multiplies_by_inputs, multiply_by_inputs) if not isinstance(inputs, tuple): inputs = (inputs,) # type: ignore inputs: Tuple[Tensor, ...] if baselines is not None and not isinstance(baselines, tuple): baselines = (baselines,) if baselines is None: baselines = _tensorize_baseline(inputs, _zeros(inputs)) if type == "vanilla": attributions, delta = ig.attribute( inputs, baselines, additional_forward_args=additional_forward_args, method=approximation_method, n_steps=500, target=target, return_convergence_delta=True, ) model.zero_grad() attributions_without_delta, delta = ig.attribute( inputs, baselines, additional_forward_args=additional_forward_args, method=approximation_method, n_steps=500, target=target, return_convergence_delta=True, ) model.zero_grad() self.assertEqual([inputs[0].shape[0]], list(delta.shape)) delta_external = ig.compute_convergence_delta( attributions, baselines, inputs, target=target, additional_forward_args=additional_forward_args, ) assertTensorAlmostEqual(self, delta, delta_external, delta=0.0, mode="max") else: nt = NoiseTunnel(ig) n_samples = 5 attributions, delta = nt.attribute( inputs, nt_type=type, nt_samples=n_samples, stdevs=0.00000002, baselines=baselines, target=target, additional_forward_args=additional_forward_args, method=approximation_method, n_steps=500, return_convergence_delta=True, nt_samples_batch_size=nt_samples_batch_size, ) attributions_without_delta = nt.attribute( inputs, nt_type=type, nt_samples=n_samples, stdevs=0.00000002, baselines=baselines, target=target, additional_forward_args=additional_forward_args, method=approximation_method, n_steps=500, nt_samples_batch_size=3, ) self.assertEqual(nt.multiplies_by_inputs, multiply_by_inputs) self.assertEqual([inputs[0].shape[0] * n_samples], list(delta.shape)) for input, attribution in zip(inputs, attributions): self.assertEqual(attribution.shape, input.shape) if multiply_by_inputs: assertTensorAlmostEqual(self, delta, torch.zeros(delta.shape), 0.07, "max") # compare attributions retrieved with and without # `return_convergence_delta` flag for attribution, attribution_without_delta in zip( attributions, attributions_without_delta ): assertTensorAlmostEqual( self, attribution, attribution_without_delta, delta=0.05 ) return cast(Tuple[Tensor, ...], attributions) def _compute_attribution_batch_helper_evaluate( self, model: Module, inputs: TensorOrTupleOfTensorsGeneric, baselines: Union[None, Tensor, Tuple[Tensor, ...]] = None, target: Union[None, int] = None, additional_forward_args: Any = None, approximation_method: str = "gausslegendre", ) -> None: ig = IntegratedGradients(model) if not isinstance(inputs, tuple): inputs = (inputs,) # type: ignore inputs: Tuple[Tensor, ...] if baselines is not None and not isinstance(baselines, tuple): baselines = (baselines,) if baselines is None: baselines = _tensorize_baseline(inputs, _zeros(inputs)) for internal_batch_size in [None, 10, 20]: attributions, delta = ig.attribute( inputs, baselines, additional_forward_args=additional_forward_args, method=approximation_method, n_steps=100, target=target, internal_batch_size=internal_batch_size, return_convergence_delta=True, ) total_delta = 0.0 for i in range(inputs[0].shape[0]): attributions_indiv, delta_indiv = ig.attribute( tuple(input[i : i + 1] for input in inputs), tuple(baseline[i : i + 1] for baseline in baselines), additional_forward_args=additional_forward_args, method=approximation_method, n_steps=100, target=target, internal_batch_size=internal_batch_size, return_convergence_delta=True, ) total_delta += abs(delta_indiv).sum().item() for j in range(len(attributions)): assertTensorAlmostEqual( self, attributions[j][i : i + 1].squeeze(0), attributions_indiv[j].squeeze(0), delta=0.05, mode="max", ) self.assertAlmostEqual(abs(delta).sum().item(), total_delta, delta=0.005) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 import io import unittest import unittest.mock from typing import Any, Callable, Tuple, Union import torch from captum._utils.typing import BaselineType, TensorOrTupleOfTensorsGeneric from captum.attr._core.shapley_value import ShapleyValues, ShapleyValueSampling from tests.helpers.basic import assertTensorTuplesAlmostEqual, BaseTest from tests.helpers.basic_models import ( BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, BasicModelBoolInput, ) class Test(BaseTest): def test_simple_shapley_sampling(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) self._shapley_test_assert( net, inp, [[76.66666, 196.66666, 116.66666]], perturbations_per_eval=(1, 2, 3), n_samples=250, ) def test_simple_shapley_sampling_with_mask(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) self._shapley_test_assert( net, inp, [[275.0, 275.0, 115.0]], feature_mask=torch.tensor([[0, 0, 1]]), perturbations_per_eval=(1, 2, 3), ) def test_simple_shapley_sampling_boolean(self) -> None: net = BasicModelBoolInput() inp = torch.tensor([[True, False, True]]) self._shapley_test_assert( net, inp, [[35.0, 35.0, 35.0]], feature_mask=torch.tensor([[0, 0, 1]]), perturbations_per_eval=(1, 2, 3), ) def test_simple_shapley_sampling_boolean_with_baseline(self) -> None: net = BasicModelBoolInput() inp = torch.tensor([[True, False, True]]) self._shapley_test_assert( net, inp, [[-40.0, -40.0, 0.0]], feature_mask=torch.tensor([[0, 0, 1]]), baselines=True, perturbations_per_eval=(1, 2, 3), ) def test_simple_shapley_sampling_with_baselines(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]]) self._shapley_test_assert( net, inp, [[248.0, 248.0, 104.0]], feature_mask=torch.tensor([[0, 0, 1]]), baselines=4, perturbations_per_eval=(1, 2, 3), ) def test_multi_sample_shapley_sampling(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[2.0, 10.0, 3.0], [20.0, 50.0, 30.0]]) self._shapley_test_assert( net, inp, [[7.0, 32.5, 10.5], [76.66666, 196.66666, 116.66666]], perturbations_per_eval=(1, 2, 3), n_samples=200, ) def test_multi_sample_shapley_sampling_with_mask(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[2.0, 10.0, 3.0], [20.0, 50.0, 30.0]], requires_grad=True) mask = torch.tensor([[0, 0, 1], [1, 1, 0]]) self._shapley_test_assert( net, inp, [[39.5, 39.5, 10.5], [275.0, 275.0, 115.0]], feature_mask=mask, perturbations_per_eval=(1, 2, 3), ) def test_multi_input_shapley_sampling_without_mask(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[23.0, 0.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 0.0, 50.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [0.0, 10.0, 0.0]]) expected = ( [[90, 0, 0], [78.0, 198.0, 118.0]], [[78, 0, 198], [0.0, 398.0, 0.0]], [[0, 398, 38], [0.0, 38.0, 0.0]], ) self._shapley_test_assert( net, (inp1, inp2, inp3), expected, additional_input=(1,), n_samples=200, test_true_shapley=False, ) def test_multi_input_shapley_sampling_with_mask(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [2.0, 10.0, 3.0]]) mask1 = torch.tensor([[1, 1, 1], [0, 1, 0]]) mask2 = torch.tensor([[0, 1, 2]]) mask3 = torch.tensor([[0, 1, 2], [0, 0, 0]]) expected = ( [[1088.6666, 1088.6666, 1088.6666], [255.0, 595.0, 255.0]], [[76.6666, 1088.6666, 156.6666], [255.0, 595.0, 0.0]], [[76.6666, 1088.6666, 156.6666], [255.0, 255.0, 255.0]], ) self._shapley_test_assert( net, (inp1, inp2, inp3), expected, additional_input=(1,), feature_mask=(mask1, mask2, mask3), ) expected_with_baseline = ( [[1040, 1040, 1040], [184, 580.0, 184]], [[52, 1040, 132], [184, 580.0, -12.0]], [[52, 1040, 132], [184, 184, 184]], ) self._shapley_test_assert( net, (inp1, inp2, inp3), expected_with_baseline, additional_input=(1,), feature_mask=(mask1, mask2, mask3), baselines=(2, 3.0, 4), perturbations_per_eval=(1, 2, 3), ) # Remaining tests are for cases where forward function returns a scalar # per batch, as either a float, integer, 0d tensor or 1d tensor. def test_single_shapley_batch_scalar_float(self) -> None: net = BasicModel_MultiLayer() self._single_input_one_sample_batch_scalar_shapley_assert( lambda inp: torch.sum(net(inp)).item() ) def test_single_shapley_batch_scalar_tensor_0d(self) -> None: net = BasicModel_MultiLayer() self._single_input_one_sample_batch_scalar_shapley_assert( lambda inp: torch.sum(net(inp)) ) def test_single_shapley_batch_scalar_tensor_1d(self) -> None: net = BasicModel_MultiLayer() self._single_input_one_sample_batch_scalar_shapley_assert( lambda inp: torch.sum(net(inp)).reshape(1) ) def test_single_shapley_batch_scalar_tensor_int(self) -> None: net = BasicModel_MultiLayer() self._single_input_one_sample_batch_scalar_shapley_assert( lambda inp: int(torch.sum(net(inp)).item()) ) def test_single_shapley_int_batch_scalar_float(self) -> None: net = BasicModel_MultiLayer() self._single_int_input_multi_sample_batch_scalar_shapley_assert( lambda inp: torch.sum(net(inp.float())).item() ) def test_single_shapley_int_batch_scalar_tensor_0d(self) -> None: net = BasicModel_MultiLayer() self._single_int_input_multi_sample_batch_scalar_shapley_assert( lambda inp: torch.sum(net(inp.float())) ) def test_single_shapley_int_batch_scalar_tensor_1d(self) -> None: net = BasicModel_MultiLayer() self._single_int_input_multi_sample_batch_scalar_shapley_assert( lambda inp: torch.sum(net(inp.float())).reshape(1) ) def test_single_shapley_int_batch_scalar_tensor_int(self) -> None: net = BasicModel_MultiLayer() self._single_int_input_multi_sample_batch_scalar_shapley_assert( lambda inp: int(torch.sum(net(inp.float())).item()) ) def test_multi_sample_shapley_batch_scalar_float(self) -> None: net = BasicModel_MultiLayer() self._single_input_multi_sample_batch_scalar_shapley_assert( lambda inp: torch.sum(net(inp)).item() ) def test_multi_sample_shapley_batch_scalar_tensor_0d(self) -> None: net = BasicModel_MultiLayer() self._single_input_multi_sample_batch_scalar_shapley_assert( lambda inp: torch.sum(net(inp)) ) def test_multi_sample_shapley_batch_scalar_tensor_1d(self) -> None: net = BasicModel_MultiLayer() self._single_input_multi_sample_batch_scalar_shapley_assert( lambda inp: torch.sum(net(inp)).reshape(1) ) def test_multi_sample_shapley_batch_scalar_tensor_int(self) -> None: net = BasicModel_MultiLayer() self._single_input_multi_sample_batch_scalar_shapley_assert( lambda inp: int(torch.sum(net(inp)).item()) ) def test_multi_inp_shapley_batch_scalar_float(self) -> None: net = BasicModel_MultiLayer_MultiInput() self._multi_input_batch_scalar_shapley_assert( lambda *inp: torch.sum(net(*inp)).item() ) def test_multi_inp_shapley_batch_scalar_tensor_0d(self) -> None: net = BasicModel_MultiLayer_MultiInput() self._multi_input_batch_scalar_shapley_assert(lambda *inp: torch.sum(net(*inp))) def test_multi_inp_shapley_batch_scalar_tensor_1d(self) -> None: net = BasicModel_MultiLayer_MultiInput() self._multi_input_batch_scalar_shapley_assert( lambda *inp: torch.sum(net(*inp)).reshape(1) ) def test_mutli_inp_shapley_batch_scalar_tensor_int(self) -> None: net = BasicModel_MultiLayer_MultiInput() self._multi_input_batch_scalar_shapley_assert( lambda *inp: int(torch.sum(net(*inp)).item()) ) @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_shapley_sampling_with_show_progress(self, mock_stderr) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) # test progress output for each batch size for bsz in (1, 2, 3): self._shapley_test_assert( net, inp, [[76.66666, 196.66666, 116.66666]], perturbations_per_eval=(bsz,), n_samples=250, show_progress=True, ) output = mock_stderr.getvalue() # to test if progress calculation aligns with the actual iteration # all perturbations_per_eval should reach progress of 100% assert ( "Shapley Value Sampling attribution: 100%" in output ), f"Error progress output: {repr(output)}" assert ( "Shapley Values attribution: 100%" in output ), f"Error progress output: {repr(output)}" mock_stderr.seek(0) mock_stderr.truncate(0) @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_shapley_sampling_with_mask_and_show_progress(self, mock_stderr) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) # test progress output for each batch size for bsz in (1, 2, 3): self._shapley_test_assert( net, inp, [[275.0, 275.0, 115.0]], feature_mask=torch.tensor([[0, 0, 1]]), perturbations_per_eval=(bsz,), show_progress=True, ) output = mock_stderr.getvalue() # to test if progress calculation aligns with the actual iteration # all perturbations_per_eval should reach progress of 100% assert ( "Shapley Value Sampling attribution: 100%" in output ), f"Error progress output: {repr(output)}" assert ( "Shapley Values attribution: 100%" in output ), f"Error progress output: {repr(output)}" mock_stderr.seek(0) mock_stderr.truncate(0) def _single_input_one_sample_batch_scalar_shapley_assert( self, func: Callable ) -> None: inp = torch.tensor([[2.0, 10.0, 3.0]], requires_grad=True) mask = torch.tensor([[0, 0, 1]]) self._shapley_test_assert( func, inp, [[79.0, 79.0, 21.0]], feature_mask=mask, perturbations_per_eval=(1,), target=None, ) def _single_input_multi_sample_batch_scalar_shapley_assert( self, func: Callable ) -> None: inp = torch.tensor([[2.0, 10.0, 3.0], [20.0, 50.0, 30.0]], requires_grad=True) mask = torch.tensor([[0, 0, 1]]) self._shapley_test_assert( func, inp, [[629.0, 629.0, 251.0]], feature_mask=mask, perturbations_per_eval=(1,), target=None, n_samples=2500, ) def _single_int_input_multi_sample_batch_scalar_shapley_assert( self, func: Callable ) -> None: inp = torch.tensor([[2, 10, 3], [20, 50, 30]]) mask = torch.tensor([[0, 0, 1]]) self._shapley_test_assert( func, inp, [[629.0, 629.0, 251.0]], feature_mask=mask, perturbations_per_eval=(1,), target=None, n_samples=2500, ) def _multi_input_batch_scalar_shapley_assert(self, func: Callable) -> None: inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [20.0, 10.0, 13.0]]) mask1 = torch.tensor([[1, 1, 1]]) mask2 = torch.tensor([[0, 1, 2]]) mask3 = torch.tensor([[0, 1, 2]]) expected = ( [[3850.6666, 3850.6666, 3850.6666]], [[306.6666, 3850.6666, 410.6666]], [[306.6666, 3850.6666, 410.6666]], ) self._shapley_test_assert( func, (inp1, inp2, inp3), expected, additional_input=(1,), feature_mask=(mask1, mask2, mask3), perturbations_per_eval=(1,), target=None, n_samples=3500, delta=1.2, ) def _shapley_test_assert( self, model: Callable, test_input: TensorOrTupleOfTensorsGeneric, expected_attr, feature_mask: Union[None, TensorOrTupleOfTensorsGeneric] = None, additional_input: Any = None, perturbations_per_eval: Tuple[int, ...] = (1,), baselines: BaselineType = None, target: Union[None, int] = 0, n_samples: int = 100, delta: float = 1.0, test_true_shapley: bool = True, show_progress: bool = False, ) -> None: for batch_size in perturbations_per_eval: shapley_samp = ShapleyValueSampling(model) attributions = shapley_samp.attribute( test_input, target=target, feature_mask=feature_mask, additional_forward_args=additional_input, baselines=baselines, perturbations_per_eval=batch_size, n_samples=n_samples, show_progress=show_progress, ) assertTensorTuplesAlmostEqual( self, attributions, expected_attr, delta=delta, mode="max" ) if test_true_shapley: shapley_val = ShapleyValues(model) attributions = shapley_val.attribute( test_input, target=target, feature_mask=feature_mask, additional_forward_args=additional_input, baselines=baselines, perturbations_per_eval=batch_size, show_progress=show_progress, ) assertTensorTuplesAlmostEqual( self, attributions, expected_attr, mode="max", delta=0.001 ) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 import unittest import torch from captum._utils.typing import BaselineType, Tensor from captum.attr._core.integrated_gradients import IntegratedGradients from captum.attr._core.noise_tunnel import NoiseTunnel from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.classification_models import SigmoidModel, SoftmaxModel from torch.nn import Module class Test(BaseTest): def test_sigmoid_classification_vanilla(self) -> None: self._assert_sigmoid_classification("vanilla", "riemann_right") def test_sigmoid_classification_smoothgrad(self) -> None: self._assert_sigmoid_classification("smoothgrad", "riemann_left") def test_sigmoid_classification_smoothgrad_sq(self) -> None: self._assert_sigmoid_classification("smoothgrad_sq", "riemann_middle") def test_sigmoid_classification_vargrad(self) -> None: self._assert_sigmoid_classification("vargrad", "riemann_trapezoid") def test_softmax_classification_vanilla(self) -> None: self._assert_softmax_classification("vanilla", "gausslegendre") def test_softmax_classification_smoothgrad(self) -> None: self._assert_softmax_classification("smoothgrad", "riemann_right") def test_softmax_classification_smoothgrad_sq(self) -> None: self._assert_softmax_classification("smoothgrad_sq", "riemann_left") def test_softmax_classification_vargrad(self) -> None: self._assert_softmax_classification("vargrad", "riemann_middle") def test_softmax_classification_vanilla_batch(self) -> None: self._assert_softmax_classification_batch("vanilla", "riemann_trapezoid") def test_softmax_classification_smoothgrad_batch(self) -> None: self._assert_softmax_classification_batch("smoothgrad", "gausslegendre") def test_softmax_classification_smoothgrad_sq_batch(self) -> None: self._assert_softmax_classification_batch("smoothgrad_sq", "riemann_right") def test_softmax_classification_vargrad_batch(self) -> None: self._assert_softmax_classification_batch("vargrad", "riemann_left") def _assert_sigmoid_classification( self, type: str = "vanilla", approximation_method: str = "gausslegendre" ) -> None: num_in = 20 input = torch.arange(0.0, num_in * 1.0, requires_grad=True).unsqueeze(0) target = torch.tensor(0) # TODO add test cases for multiple different layers model = SigmoidModel(num_in, 5, 1) self._validate_completness(model, input, target, type, approximation_method) def _assert_softmax_classification( self, type: str = "vanilla", approximation_method: str = "gausslegendre" ) -> None: num_in = 40 input = torch.arange(0.0, num_in * 1.0, requires_grad=True).unsqueeze(0) target = torch.tensor(5) # 10-class classification model model = SoftmaxModel(num_in, 20, 10) self._validate_completness(model, input, target, type, approximation_method) def _assert_softmax_classification_batch( self, type: str = "vanilla", approximation_method: str = "gausslegendre" ) -> None: num_in = 40 input = torch.arange(0.0, num_in * 3.0, requires_grad=True).reshape(3, num_in) target = torch.tensor([5, 5, 2]) baseline = torch.zeros(1, num_in) # 10-class classification model model = SoftmaxModel(num_in, 20, 10) self._validate_completness( model, input, target, type, approximation_method, baseline ) def _validate_completness( self, model: Module, input: Tensor, target: Tensor, type: str = "vanilla", approximation_method: str = "gausslegendre", baseline: BaselineType = None, ) -> None: ig = IntegratedGradients(model.forward) model.zero_grad() if type == "vanilla": attributions, delta = ig.attribute( input, baselines=baseline, target=target, method=approximation_method, n_steps=200, return_convergence_delta=True, ) delta_expected = ig.compute_convergence_delta( attributions, baseline, input, target ) assertTensorAlmostEqual(self, delta_expected, delta) delta_condition = (delta.abs() < 0.005).all() self.assertTrue( delta_condition, "The sum of attribution values {} is not " "nearly equal to the difference between the endpoint for " "some samples".format(delta), ) self.assertEqual([input.shape[0]], list(delta.shape)) else: nt = NoiseTunnel(ig) n_samples = 10 attributions, delta = nt.attribute( input, baselines=baseline, nt_type=type, nt_samples=n_samples, stdevs=0.0002, n_steps=100, target=target, method=approximation_method, return_convergence_delta=True, ) self.assertEqual([input.shape[0] * n_samples], list(delta.shape)) self.assertTrue((delta.abs() < 0.05).all()) self.assertEqual(attributions.shape, input.shape) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 import torch from captum.attr._utils.batching import ( _batched_generator, _batched_operator, _tuple_splice_range, ) from tests.helpers.basic import assertTensorAlmostEqual, BaseTest class Test(BaseTest): def test_tuple_splice_range(self) -> None: test_tuple = ( torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]), "test", torch.tensor([[6, 7, 8], [0, 1, 2], [3, 4, 5]]), ) spliced_tuple = _tuple_splice_range(test_tuple, 1, 3) assertTensorAlmostEqual(self, spliced_tuple[0], [[3, 4, 5], [6, 7, 8]]) self.assertEqual(spliced_tuple[1], "test") assertTensorAlmostEqual(self, spliced_tuple[2], [[0, 1, 2], [3, 4, 5]]) def test_tuple_splice_range_3d(self) -> None: test_tuple = ( torch.tensor([[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [6, 7, 8]]]), "test", ) spliced_tuple = _tuple_splice_range(test_tuple, 1, 2) assertTensorAlmostEqual(self, spliced_tuple[0], [[[6, 7, 8], [6, 7, 8]]]) self.assertEqual(spliced_tuple[1], "test") def test_batched_generator(self) -> None: def sample_operator(inputs, additional_forward_args, target_ind, scale): return ( scale * (sum(inputs)), scale * sum(additional_forward_args), target_ind, ) array1 = [[0, 1, 2], [3, 4, 5], [6, 7, 8]] array2 = [[6, 7, 8], [0, 1, 2], [3, 4, 5]] array3 = [[0, 1, 2], [0, 0, 0], [0, 0, 0]] inp1, inp2, inp3 = ( torch.tensor(array1), torch.tensor(array2), torch.tensor(array3), ) for index, (inp, add, targ) in enumerate( _batched_generator((inp1, inp2), (inp3, 5), 7, 1) ): assertTensorAlmostEqual(self, inp[0], [array1[index]]) assertTensorAlmostEqual(self, inp[1], [array2[index]]) assertTensorAlmostEqual(self, add[0], [array3[index]]) self.assertEqual(add[1], 5) self.assertEqual(targ, 7) def test_batched_operator_0_bsz(self) -> None: inp1 = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) with self.assertRaises(AssertionError): _batched_operator(lambda x: x, inputs=inp1, internal_batch_size=0) def test_batched_operator(self) -> None: def _sample_operator(inputs, additional_forward_args, target_ind, scale): return ( scale * (sum(inputs)), scale * sum(additional_forward_args) + target_ind[0], ) inp1 = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) inp2 = torch.tensor([[6, 7, 8], [0, 1, 2], [3, 4, 5]]) inp3 = torch.tensor([[0, 1, 2], [0, 0, 0], [0, 0, 0]]) batched_result = _batched_operator( _sample_operator, inputs=(inp1, inp2), additional_forward_args=(inp3), target_ind=[0, 1, 2], scale=2.0, internal_batch_size=1, ) assertTensorAlmostEqual( self, batched_result[0], [[12, 16, 20], [6, 10, 14], [18, 22, 26]] ) assertTensorAlmostEqual( self, batched_result[1], [[0, 2, 4], [1, 1, 1], [2, 2, 2]] )
#!/usr/bin/env python3 import unittest from typing import Any, List, Tuple, Union import torch from captum._utils.typing import TensorLikeList, TensorOrTupleOfTensorsGeneric from captum.attr._core.guided_backprop_deconvnet import GuidedBackprop from captum.attr._core.neuron.neuron_guided_backprop_deconvnet import ( NeuronGuidedBackprop, ) from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import BasicModel_ConvNet_One_Conv from torch.nn import Module class Test(BaseTest): def test_simple_input_conv_gb(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = 1.0 * torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) exp = [ [ [ [0.0, 1.0, 1.0, 1.0], [1.0, 3.0, 3.0, 2.0], [1.0, 3.0, 3.0, 2.0], [1.0, 2.0, 2.0, 1.0], ] ] ] self._guided_backprop_test_assert(net, (inp,), (exp,)) def test_simple_input_conv_neuron_gb(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = 1.0 * torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) exp = [ [ [ [0.0, 1.0, 1.0, 1.0], [1.0, 3.0, 3.0, 2.0], [1.0, 3.0, 3.0, 2.0], [1.0, 2.0, 2.0, 1.0], ] ] ] self._neuron_guided_backprop_test_assert(net, net.fc1, (0,), (inp,), (exp,)) def test_simple_input_conv_neuron_gb_agg_neurons(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = 1.0 * torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) exp = [ [ [ [0.0, 1.0, 1.0, 1.0], [1.0, 3.0, 3.0, 2.0], [1.0, 3.0, 3.0, 2.0], [1.0, 2.0, 2.0, 1.0], ] ] ] self._neuron_guided_backprop_test_assert( net, net.fc1, (slice(0, 1, 1),), (inp,), (exp,) ) def test_simple_multi_input_conv_gb(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) inp2 = torch.ones((1, 1, 4, 4)) ex_attr = [ [ [ [1.0, 2.0, 2.0, 1.0], [2.0, 4.0, 4.0, 2.0], [2.0, 4.0, 4.0, 2.0], [1.0, 2.0, 2.0, 1.0], ] ] ] self._guided_backprop_test_assert(net, (inp, inp2), (ex_attr, ex_attr)) def test_simple_multi_input_conv_neuron_gb(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) inp2 = torch.ones((1, 1, 4, 4)) ex_attr = [ [ [ [1.0, 2.0, 2.0, 1.0], [2.0, 4.0, 4.0, 2.0], [2.0, 4.0, 4.0, 2.0], [1.0, 2.0, 2.0, 1.0], ] ] ] self._neuron_guided_backprop_test_assert( net, net.fc1, (3,), (inp, inp2), (ex_attr, ex_attr) ) def test_gb_matching(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = 100.0 * torch.randn(1, 1, 4, 4) self._guided_backprop_matching_assert(net, net.relu2, inp) def _guided_backprop_test_assert( self, model: Module, test_input: TensorOrTupleOfTensorsGeneric, expected: Tuple[TensorLikeList, ...], additional_input: Any = None, ) -> None: guided_backprop = GuidedBackprop(model) attributions = guided_backprop.attribute( test_input, target=0, additional_forward_args=additional_input ) for i in range(len(test_input)): assertTensorAlmostEqual( self, attributions[i], expected[i], delta=0.01, ) def _neuron_guided_backprop_test_assert( self, model: Module, layer: Module, neuron_selector: Union[int, Tuple[Union[int, slice], ...]], test_input: TensorOrTupleOfTensorsGeneric, expected: Tuple[List[List[List[List[float]]]], ...], additional_input: Any = None, ) -> None: guided_backprop = NeuronGuidedBackprop(model, layer) attributions = guided_backprop.attribute( test_input, neuron_selector=neuron_selector, additional_forward_args=additional_input, ) for i in range(len(test_input)): assertTensorAlmostEqual( self, attributions[i], expected[i], delta=0.01, ) def _guided_backprop_matching_assert( self, model: Module, output_layer: Module, test_input: TensorOrTupleOfTensorsGeneric, ): out = model(test_input) attrib = GuidedBackprop(model) self.assertFalse(attrib.multiplies_by_inputs) neuron_attrib = NeuronGuidedBackprop(model, output_layer) for i in range(out.shape[1]): gbp_vals = attrib.attribute(test_input, target=i) neuron_gbp_vals = neuron_attrib.attribute(test_input, (i,)) assertTensorAlmostEqual(self, gbp_vals, neuron_gbp_vals, delta=0.01) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 from typing import cast, Tuple import torch import torch.nn as nn from captum.attr import InputXGradient, LRP from captum.attr._utils.lrp_rules import ( Alpha1_Beta0_Rule, EpsilonRule, GammaRule, IdentityRule, ) from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import ( BasicModel_ConvNet_One_Conv, BasicModel_MultiLayer, BasicModelWithReusedLinear, SimpleLRPModel, ) from torch import Tensor from torch.nn import Module def _get_basic_config() -> Tuple[Module, Tensor]: input = torch.arange(16).view(1, 1, 4, 4).float() return BasicModel_ConvNet_One_Conv(), input def _get_rule_config() -> Tuple[Tensor, Module, Tensor, Tensor]: relevance = torch.tensor([[[-0.0, 3.0]]]) layer = nn.modules.Conv1d(1, 1, 2, bias=False) nn.init.constant_(layer.weight.data, 2) activations = torch.tensor([[[1.0, 5.0, 7.0]]]) input = torch.tensor([[2, 0, -2]]) return relevance, layer, activations, input def _get_simple_model(inplace: bool = False) -> Tuple[Module, Tensor]: model = SimpleLRPModel(inplace) inputs = torch.tensor([[1.0, 2.0, 3.0]]) return model, inputs def _get_simple_model2(inplace: bool = False) -> Tuple[Module, Tensor]: class MyModel(nn.Module): def __init__(self, inplace) -> None: super().__init__() self.lin = nn.Linear(2, 2) self.lin.weight = nn.Parameter(torch.ones(2, 2)) self.relu = torch.nn.ReLU(inplace=inplace) def forward(self, input): return self.relu(self.lin(input))[0].unsqueeze(0) input = torch.tensor([[1.0, 2.0], [1.0, 3.0]]) model = MyModel(inplace) return model, input class Test(BaseTest): def test_lrp_creator(self) -> None: model, _ = _get_basic_config() model.conv1.rule = 1 # type: ignore self.assertRaises(TypeError, LRP, model) def test_lrp_creator_activation(self) -> None: model, inputs = _get_basic_config() model.add_module("sigmoid", nn.Sigmoid()) lrp = LRP(model) self.assertRaises(TypeError, lrp.attribute, inputs) def test_lrp_basic_attributions(self) -> None: model, inputs = _get_basic_config() logits = model(inputs) _, classIndex = torch.max(logits, 1) lrp = LRP(model) relevance, delta = lrp.attribute( inputs, cast(int, classIndex.item()), return_convergence_delta=True ) self.assertEqual(delta.item(), 0) # type: ignore self.assertEqual(relevance.shape, inputs.shape) # type: ignore assertTensorAlmostEqual( self, relevance, torch.Tensor( [[[[0, 1, 2, 3], [0, 5, 6, 7], [0, 9, 10, 11], [0, 0, 0, 0]]]] ), ) def test_lrp_simple_attributions(self) -> None: model, inputs = _get_simple_model() model.eval() model.linear.rule = EpsilonRule() # type: ignore model.linear2.rule = EpsilonRule() # type: ignore lrp = LRP(model) relevance = lrp.attribute(inputs) assertTensorAlmostEqual(self, relevance, torch.tensor([[18.0, 36.0, 54.0]])) def test_lrp_simple_attributions_batch(self) -> None: model, inputs = _get_simple_model() model.eval() model.linear.rule = EpsilonRule() # type: ignore model.linear2.rule = EpsilonRule() # type: ignore lrp = LRP(model) inputs = torch.cat((inputs, 3 * inputs)) relevance, delta = lrp.attribute( inputs, target=0, return_convergence_delta=True ) self.assertEqual(relevance.shape, inputs.shape) # type: ignore self.assertEqual(delta.shape[0], inputs.shape[0]) # type: ignore assertTensorAlmostEqual( self, relevance, torch.Tensor([[18.0, 36.0, 54.0], [54.0, 108.0, 162.0]]) ) def test_lrp_simple_repeat_attributions(self) -> None: model, inputs = _get_simple_model() model.eval() model.linear.rule = GammaRule() # type: ignore model.linear2.rule = Alpha1_Beta0_Rule() # type: ignore output = model(inputs) lrp = LRP(model) _ = lrp.attribute(inputs) output_after = model(inputs) assertTensorAlmostEqual(self, output, output_after) def test_lrp_simple_inplaceReLU(self) -> None: model_default, inputs = _get_simple_model() model_inplace, _ = _get_simple_model(inplace=True) for model in [model_default, model_inplace]: model.eval() model.linear.rule = EpsilonRule() # type: ignore model.linear2.rule = EpsilonRule() # type: ignore lrp_default = LRP(model_default) lrp_inplace = LRP(model_inplace) relevance_default = lrp_default.attribute(inputs) relevance_inplace = lrp_inplace.attribute(inputs) assertTensorAlmostEqual(self, relevance_default, relevance_inplace) def test_lrp_simple_tanh(self) -> None: class Model(nn.Module): def __init__(self) -> None: super(Model, self).__init__() self.linear = nn.Linear(3, 3, bias=False) self.linear.weight.data.fill_(0.1) self.tanh = torch.nn.Tanh() self.linear2 = nn.Linear(3, 1, bias=False) self.linear2.weight.data.fill_(0.1) def forward(self, x): return self.linear2(self.tanh(self.linear(x))) model = Model() inputs = torch.tensor([[1.0, 2.0, 3.0]]) _ = model(inputs) lrp = LRP(model) relevance = lrp.attribute(inputs) assertTensorAlmostEqual( self, relevance, torch.Tensor([[0.0269, 0.0537, 0.0806]]) ) # Result if tanh is skipped for propagation def test_lrp_simple_attributions_GammaRule(self) -> None: model, inputs = _get_simple_model() with torch.no_grad(): model.linear.weight.data[0][0] = -2 # type: ignore model.eval() model.linear.rule = GammaRule(gamma=1) # type: ignore model.linear2.rule = GammaRule() # type: ignore lrp = LRP(model) relevance = lrp.attribute(inputs) assertTensorAlmostEqual( self, relevance.data, torch.tensor([[28 / 3, 104 / 3, 52]]) # type: ignore ) def test_lrp_simple_attributions_AlphaBeta(self) -> None: model, inputs = _get_simple_model() with torch.no_grad(): model.linear.weight.data[0][0] = -2 # type: ignore model.eval() model.linear.rule = Alpha1_Beta0_Rule() # type: ignore model.linear2.rule = Alpha1_Beta0_Rule() # type: ignore lrp = LRP(model) relevance = lrp.attribute(inputs) assertTensorAlmostEqual(self, relevance, torch.tensor([[12, 33.6, 50.4]])) def test_lrp_Identity(self) -> None: model, inputs = _get_simple_model() with torch.no_grad(): model.linear.weight.data[0][0] = -2 # type: ignore model.eval() model.linear.rule = IdentityRule() # type: ignore model.linear2.rule = EpsilonRule() # type: ignore lrp = LRP(model) relevance = lrp.attribute(inputs) assertTensorAlmostEqual(self, relevance, torch.tensor([[24.0, 36.0, 36.0]])) def test_lrp_simple2_attributions(self) -> None: model, input = _get_simple_model2() lrp = LRP(model) relevance = lrp.attribute(input, 0) self.assertEqual(relevance.shape, input.shape) # type: ignore def test_lrp_skip_connection(self) -> None: # A custom addition module needs to be used so that relevance is # propagated correctly. class Addition_Module(nn.Module): def __init__(self) -> None: super().__init__() def forward(self, x1: Tensor, x2: Tensor) -> Tensor: return x1 + x2 class SkipConnection(nn.Module): def __init__(self) -> None: super().__init__() self.linear = nn.Linear(2, 2, bias=False) self.linear.weight.data.fill_(5) self.add = Addition_Module() def forward(self, input: Tensor) -> Module: x = self.add(self.linear(input), input) return x model = SkipConnection() input = torch.Tensor([[2, 3]]) model.add.rule = EpsilonRule() # type: ignore lrp = LRP(model) relevance = lrp.attribute(input, target=1) assertTensorAlmostEqual(self, relevance, torch.Tensor([[10, 18]])) def test_lrp_maxpool1D(self) -> None: class MaxPoolModel(nn.Module): def __init__(self) -> None: super().__init__() self.linear = nn.Linear(2, 2, bias=False) self.linear.weight.data.fill_(2.0) self.maxpool = nn.MaxPool1d(2) def forward(self, input: Tensor) -> Module: return self.maxpool(self.linear(input)) model = MaxPoolModel() input = torch.tensor([[[1.0, 2.0], [5.0, 6.0]]]) lrp = LRP(model) relevance = lrp.attribute(input, target=1) assertTensorAlmostEqual(self, relevance, torch.Tensor([[[0.0, 0.0], [10, 12]]])) def test_lrp_maxpool2D(self) -> None: class MaxPoolModel(nn.Module): def __init__(self) -> None: super().__init__() self.maxpool = nn.MaxPool2d(2) def forward(self, input: Tensor) -> Module: return self.maxpool(input) model = MaxPoolModel() input = torch.tensor([[[[1.0, 2.0], [5.0, 6.0]]]]) lrp = LRP(model) relevance = lrp.attribute(input) assertTensorAlmostEqual( self, relevance, torch.Tensor([[[[0.0, 0.0], [0.0, 6.0]]]]) ) def test_lrp_maxpool3D(self) -> None: class MaxPoolModel(nn.Module): def __init__(self) -> None: super().__init__() self.maxpool = nn.MaxPool3d(2) def forward(self, input: Tensor) -> Module: return self.maxpool(input) model = MaxPoolModel() input = torch.tensor([[[[[1.0, 2.0], [5.0, 6.0]], [[3.0, 4.0], [7.0, 8.0]]]]]) lrp = LRP(model) relevance = lrp.attribute(input) assertTensorAlmostEqual( self, relevance, torch.Tensor([[[[[0.0, 0.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, 8.0]]]]]), ) def test_lrp_multi(self) -> None: model = BasicModel_MultiLayer() input = torch.Tensor([[1, 2, 3]]) add_input = 0 output = model(input) output_add = model(input, add_input=add_input) self.assertTrue(torch.equal(output, output_add)) lrp = LRP(model) attributions = lrp.attribute(input, target=0) attributions_add_input = lrp.attribute( input, target=0, additional_forward_args=(add_input,) ) self.assertTrue( torch.equal(attributions, attributions_add_input) # type: ignore ) # type: ignore def test_lrp_multi_inputs(self) -> None: model = BasicModel_MultiLayer() input = torch.Tensor([[1, 2, 3]]) input = (input, 3 * input) lrp = LRP(model) attributions, delta = lrp.attribute( input, target=0, return_convergence_delta=True ) self.assertEqual(len(input), 2) assertTensorAlmostEqual(self, attributions[0], torch.Tensor([[16, 32, 48]])) assertTensorAlmostEqual(self, delta, torch.Tensor([-104.0])) def test_lrp_ixg_equivalency(self) -> None: model, inputs = _get_simple_model() lrp = LRP(model) attributions_lrp = lrp.attribute(inputs) ixg = InputXGradient(model) attributions_ixg = ixg.attribute(inputs) assertTensorAlmostEqual( self, attributions_lrp, attributions_ixg ) # Divide by score because LRP relevance is normalized. def test_lrp_repeated_module(self) -> None: model = BasicModelWithReusedLinear() inp = torch.ones(2, 3) lrp = LRP(model) with self.assertRaisesRegexp(RuntimeError, "more than once"): lrp.attribute(inp, target=0)
#!/usr/bin/env python3 import io import unittest import unittest.mock from typing import Any, cast, List, Tuple, Union import torch from captum._utils.typing import BaselineType, TargetType, TensorOrTupleOfTensorsGeneric from captum.attr._core.feature_ablation import FeatureAblation from captum.attr._core.noise_tunnel import NoiseTunnel from captum.attr._utils.attribution import Attribution from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import ( BasicModel, BasicModel_ConvNet_One_Conv, BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, BasicModelBoolInput, BasicModelWithSparseInputs, ) from torch import Tensor class Test(BaseTest): r""" The following conversion tests are underlying assumptions made by the rest of tests in this file. We are testing them explicitly just in case they break behaviour in the future. As in this case it will be easier to update the tests. """ def test_python_float_conversion(self) -> None: x = torch.tensor(3, dtype=cast(torch.dtype, float)) self.assertEqual(x.dtype, torch.float64) def test_python_int_conversion(self) -> None: x = torch.tensor(5, dtype=cast(torch.dtype, int)) self.assertEqual(x.dtype, torch.int64) def test_float32_tensor_item_conversion(self) -> None: x = torch.tensor(5, dtype=torch.float32) y = torch.tensor(x.item()) # .item() returns a python float # for whatever reason it is only # dtype == torch.float64 if you provide dtype=float self.assertEqual(y.dtype, torch.float32) def test_int32_tensor_item_conversion(self) -> None: x = torch.tensor(5, dtype=torch.int32) y = torch.tensor(x.item()) # .item() returns a python int self.assertEqual(y.dtype, torch.int64) def test_simple_ablation(self) -> None: ablation_algo = FeatureAblation(BasicModel_MultiLayer()) inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) self._ablation_test_assert( ablation_algo, inp, [[80.0, 200.0, 120.0]], perturbations_per_eval=(1, 2, 3) ) def test_simple_ablation_int_to_int(self) -> None: ablation_algo = FeatureAblation(BasicModel()) inp = torch.tensor([[-3, 1, 2]]) self._ablation_test_assert( ablation_algo, inp, [[-3, 0, 0]], perturbations_per_eval=(1, 2, 3) ) def test_simple_ablation_int_to_int_nt(self) -> None: ablation_algo = NoiseTunnel(FeatureAblation(BasicModel())) inp = torch.tensor([[-3, 1, 2]]).float() self._ablation_test_assert( ablation_algo, inp, [[-3.0, 0.0, 0.0]], perturbations_per_eval=(1, 2, 3), stdevs=1e-10, ) def test_simple_ablation_int_to_float(self) -> None: net = BasicModel() def wrapper_func(inp): return net(inp).float() ablation_algo = FeatureAblation(wrapper_func) inp = torch.tensor([[-3, 1, 2]]) self._ablation_test_assert( ablation_algo, inp, [[-3.0, 0.0, 0.0]], perturbations_per_eval=(1, 2, 3) ) def test_simple_ablation_with_mask(self) -> None: ablation_algo = FeatureAblation(BasicModel_MultiLayer()) inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) self._ablation_test_assert( ablation_algo, inp, [[280.0, 280.0, 120.0]], feature_mask=torch.tensor([[0, 0, 1]]), perturbations_per_eval=(1, 2, 3), ) def test_simple_ablation_with_baselines(self) -> None: ablation_algo = FeatureAblation(BasicModel_MultiLayer()) inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) self._ablation_test_assert( ablation_algo, inp, [[248.0, 248.0, 104.0]], feature_mask=torch.tensor([[0, 0, 1]]), baselines=4, perturbations_per_eval=(1, 2, 3), ) def test_simple_ablation_boolean(self) -> None: ablation_algo = FeatureAblation(BasicModelBoolInput()) inp = torch.tensor([[True, False, True]]) self._ablation_test_assert( ablation_algo, inp, [[40.0, 40.0, 40.0]], feature_mask=torch.tensor([[0, 0, 1]]), perturbations_per_eval=(1, 2, 3), ) def test_simple_ablation_boolean_with_baselines(self) -> None: ablation_algo = FeatureAblation(BasicModelBoolInput()) inp = torch.tensor([[True, False, True]]) self._ablation_test_assert( ablation_algo, inp, [[-40.0, -40.0, 0.0]], feature_mask=torch.tensor([[0, 0, 1]]), baselines=True, perturbations_per_eval=(1, 2, 3), ) def test_multi_sample_ablation(self) -> None: ablation_algo = FeatureAblation(BasicModel_MultiLayer()) inp = torch.tensor([[2.0, 10.0, 3.0], [20.0, 50.0, 30.0]], requires_grad=True) self._ablation_test_assert( ablation_algo, inp, [[8.0, 35.0, 12.0], [80.0, 200.0, 120.0]], perturbations_per_eval=(1, 2, 3), ) def test_multi_sample_ablation_with_mask(self) -> None: ablation_algo = FeatureAblation(BasicModel_MultiLayer()) inp = torch.tensor([[2.0, 10.0, 3.0], [20.0, 50.0, 30.0]], requires_grad=True) mask = torch.tensor([[0, 0, 1], [1, 1, 0]]) self._ablation_test_assert( ablation_algo, inp, [[41.0, 41.0, 12.0], [280.0, 280.0, 120.0]], feature_mask=mask, perturbations_per_eval=(1, 2, 3), ) def test_multi_input_ablation_with_mask(self) -> None: ablation_algo = FeatureAblation(BasicModel_MultiLayer_MultiInput()) inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [2.0, 10.0, 3.0]]) mask1 = torch.tensor([[1, 1, 1], [0, 1, 0]]) mask2 = torch.tensor([[0, 1, 2]]) mask3 = torch.tensor([[0, 1, 2], [0, 0, 0]]) expected = ( [[492.0, 492.0, 492.0], [200.0, 200.0, 200.0]], [[80.0, 200.0, 120.0], [0.0, 400.0, 0.0]], [[0.0, 400.0, 40.0], [60.0, 60.0, 60.0]], ) self._ablation_test_assert( ablation_algo, (inp1, inp2, inp3), expected, additional_input=(1,), feature_mask=(mask1, mask2, mask3), ) self._ablation_test_assert( ablation_algo, (inp1, inp2), expected[0:1], additional_input=(inp3, 1), feature_mask=(mask1, mask2), perturbations_per_eval=(1, 2, 3), ) expected_with_baseline = ( [[468.0, 468.0, 468.0], [184.0, 192.0, 184.0]], [[68.0, 188.0, 108.0], [-12.0, 388.0, -12.0]], [[-16.0, 384.0, 24.0], [12.0, 12.0, 12.0]], ) self._ablation_test_assert( ablation_algo, (inp1, inp2, inp3), expected_with_baseline, additional_input=(1,), feature_mask=(mask1, mask2, mask3), baselines=(2, 3.0, 4), perturbations_per_eval=(1, 2, 3), ) def test_multi_input_ablation_with_mask_nt(self) -> None: ablation_algo = NoiseTunnel(FeatureAblation(BasicModel_MultiLayer_MultiInput())) inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [2.0, 10.0, 3.0]]) mask1 = torch.tensor([[1, 1, 1], [0, 1, 0]]) mask2 = torch.tensor([[0, 1, 2]]) mask3 = torch.tensor([[0, 1, 2], [0, 0, 0]]) expected = ( [[492.0, 492.0, 492.0], [200.0, 200.0, 200.0]], [[80.0, 200.0, 120.0], [0.0, 400.0, 0.0]], [[0.0, 400.0, 40.0], [60.0, 60.0, 60.0]], ) self._ablation_test_assert( ablation_algo, (inp1, inp2, inp3), expected, additional_input=(1,), feature_mask=(mask1, mask2, mask3), stdevs=1e-10, ) self._ablation_test_assert( ablation_algo, (inp1, inp2), expected[0:1], additional_input=(inp3, 1), feature_mask=(mask1, mask2), perturbations_per_eval=(1, 2, 3), stdevs=1e-10, ) expected_with_baseline = ( [[468.0, 468.0, 468.0], [184.0, 192.0, 184.0]], [[68.0, 188.0, 108.0], [-12.0, 388.0, -12.0]], [[-16.0, 384.0, 24.0], [12.0, 12.0, 12.0]], ) self._ablation_test_assert( ablation_algo, (inp1, inp2, inp3), expected_with_baseline, additional_input=(1,), feature_mask=(mask1, mask2, mask3), baselines=(2, 3.0, 4), perturbations_per_eval=(1, 2, 3), stdevs=1e-10, ) def test_multi_input_ablation(self) -> None: ablation_algo = FeatureAblation(BasicModel_MultiLayer_MultiInput()) inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [2.0, 10.0, 3.0]]) baseline1 = torch.tensor([[3.0, 0.0, 0.0]]) baseline2 = torch.tensor([[0.0, 1.0, 0.0]]) baseline3 = torch.tensor([[1.0, 2.0, 3.0]]) self._ablation_test_assert( ablation_algo, (inp1, inp2, inp3), ( [[80.0, 400.0, 0.0], [68.0, 200.0, 120.0]], [[80.0, 196.0, 120.0], [0.0, 396.0, 0.0]], [[-4.0, 392.0, 28.0], [4.0, 32.0, 0.0]], ), additional_input=(1,), baselines=(baseline1, baseline2, baseline3), perturbations_per_eval=(1, 2, 3), ) baseline1_exp = torch.tensor([[3.0, 0.0, 0.0], [3.0, 0.0, 2.0]]) baseline2_exp = torch.tensor([[0.0, 1.0, 0.0], [0.0, 1.0, 4.0]]) baseline3_exp = torch.tensor([[3.0, 2.0, 4.0], [1.0, 2.0, 3.0]]) self._ablation_test_assert( ablation_algo, (inp1, inp2, inp3), ( [[80.0, 400.0, 0.0], [68.0, 200.0, 112.0]], [[80.0, 196.0, 120.0], [0.0, 396.0, -16.0]], [[-12.0, 392.0, 24.0], [4.0, 32.0, 0.0]], ), additional_input=(1,), baselines=(baseline1_exp, baseline2_exp, baseline3_exp), perturbations_per_eval=(1, 2, 3), ) def test_simple_multi_input_conv(self) -> None: ablation_algo = FeatureAblation(BasicModel_ConvNet_One_Conv()) inp = torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) inp2 = torch.ones((1, 1, 4, 4)) self._ablation_test_assert( ablation_algo, (inp, inp2), (67 * torch.ones_like(inp), 13 * torch.ones_like(inp2)), feature_mask=(torch.tensor(0), torch.tensor(1)), perturbations_per_eval=(1, 2, 4, 8, 12, 16), ) self._ablation_test_assert( ablation_algo, (inp, inp2), ( [ [ [ [0.0, 2.0, 4.0, 3.0], [4.0, 9.0, 10.0, 7.0], [4.0, 13.0, 14.0, 11.0], [0.0, 0.0, 0.0, 0.0], ] ] ], [ [ [ [1.0, 2.0, 2.0, 1.0], [1.0, 2.0, 2.0, 1.0], [1.0, 2.0, 2.0, 1.0], [0.0, 0.0, 0.0, 0.0], ] ] ], ), perturbations_per_eval=(1, 3, 7, 14), ) # Remaining tests are for cases where forward function returns a scalar # per batch, as either a float, integer, 0d tensor or 1d tensor. def test_error_perturbations_per_eval_limit_batch_scalar(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[2.0, 10.0, 3.0], [20.0, 50.0, 30.0]], requires_grad=True) ablation = FeatureAblation(lambda inp: torch.sum(net(inp)).item()) with self.assertRaises(AssertionError): _ = ablation.attribute(inp, perturbations_per_eval=2) def test_error_agg_mode_arbitrary_output(self) -> None: net = BasicModel_MultiLayer() # output 3 numbers for the entire batch # note that the batch size == 2 def forward_func(inp): pred = net(inp) return torch.stack([pred.sum(), pred.max(), pred.min()]) inp = torch.tensor([[2.0, 10.0, 3.0], [20.0, 50.0, 30.0]], requires_grad=True) ablation = FeatureAblation(forward_func) with self.assertRaises(AssertionError): _ = ablation.attribute(inp, perturbations_per_eval=2) def test_empty_sparse_features(self) -> None: ablation_algo = FeatureAblation(BasicModelWithSparseInputs()) inp1 = torch.tensor([[1.0, -2.0, 3.0], [2.0, -1.0, 3.0]]) inp2 = torch.tensor([]) exp: Tuple[List[List[float]], List[float]] = ([[9.0, -3.0, 12.0]], [0.0]) self._ablation_test_assert(ablation_algo, (inp1, inp2), exp, target=None) def test_sparse_features(self) -> None: ablation_algo = FeatureAblation(BasicModelWithSparseInputs()) inp1 = torch.tensor([[1.0, -2.0, 3.0], [2.0, -1.0, 3.0]]) # Length of sparse index list may not match # of examples inp2 = torch.tensor([1, 7, 2, 4, 5, 3, 6]) self._ablation_test_assert( ablation_algo, (inp1, inp2), ([[9.0, -3.0, 12.0]], [2.0]), target=None ) def test_single_ablation_batch_scalar_float(self) -> None: net = BasicModel_MultiLayer() ablation_algo = FeatureAblation(lambda inp: torch.sum(net(inp)).item()) self._single_input_one_sample_batch_scalar_ablation_assert( ablation_algo, dtype=torch.float64 ) def test_single_ablation_batch_scalar_tensor_0d(self) -> None: net = BasicModel_MultiLayer() ablation_algo = FeatureAblation(lambda inp: torch.sum(net(inp))) self._single_input_one_sample_batch_scalar_ablation_assert(ablation_algo) def test_single_ablation_batch_scalar_tensor_1d(self) -> None: net = BasicModel_MultiLayer() ablation_algo = FeatureAblation(lambda inp: torch.sum(net(inp)).reshape(1)) self._single_input_one_sample_batch_scalar_ablation_assert(ablation_algo) def test_single_ablation_batch_scalar_tensor_int(self) -> None: net = BasicModel_MultiLayer() ablation_algo = FeatureAblation(lambda inp: int(torch.sum(net(inp)).item())) self._single_input_one_sample_batch_scalar_ablation_assert( ablation_algo, dtype=torch.int64 ) def test_multi_sample_ablation_batch_scalar_float(self) -> None: net = BasicModel_MultiLayer() ablation_algo = FeatureAblation(lambda inp: torch.sum(net(inp)).item()) self._single_input_multi_sample_batch_scalar_ablation_assert( ablation_algo, dtype=torch.float64, ) def test_multi_sample_ablation_batch_scalar_tensor_0d(self) -> None: net = BasicModel_MultiLayer() ablation_algo = FeatureAblation(lambda inp: torch.sum(net(inp))) self._single_input_multi_sample_batch_scalar_ablation_assert(ablation_algo) def test_multi_sample_ablation_batch_scalar_tensor_1d(self) -> None: net = BasicModel_MultiLayer() ablation_algo = FeatureAblation(lambda inp: torch.sum(net(inp)).reshape(1)) self._single_input_multi_sample_batch_scalar_ablation_assert(ablation_algo) def test_multi_sample_ablation_batch_scalar_tensor_int(self) -> None: net = BasicModel_MultiLayer() ablation_algo = FeatureAblation(lambda inp: int(torch.sum(net(inp)).item())) self._single_input_multi_sample_batch_scalar_ablation_assert( ablation_algo, dtype=torch.int64 ) def test_multi_inp_ablation_batch_scalar_float(self) -> None: net = BasicModel_MultiLayer_MultiInput() ablation_algo = FeatureAblation(lambda *inp: torch.sum(net(*inp)).item()) self._multi_input_batch_scalar_ablation_assert( ablation_algo, dtype=torch.float64, ) def test_multi_inp_ablation_batch_scalar_tensor_0d(self) -> None: net = BasicModel_MultiLayer_MultiInput() ablation_algo = FeatureAblation(lambda *inp: torch.sum(net(*inp))) self._multi_input_batch_scalar_ablation_assert(ablation_algo) def test_multi_inp_ablation_batch_scalar_tensor_1d(self) -> None: net = BasicModel_MultiLayer_MultiInput() ablation_algo = FeatureAblation(lambda *inp: torch.sum(net(*inp)).reshape(1)) self._multi_input_batch_scalar_ablation_assert(ablation_algo) def test_mutli_inp_ablation_batch_scalar_tensor_int(self) -> None: net = BasicModel_MultiLayer_MultiInput() ablation_algo = FeatureAblation(lambda *inp: int(torch.sum(net(*inp)).item())) self._multi_input_batch_scalar_ablation_assert(ablation_algo, dtype=torch.int64) def test_unassociated_output_3d_tensor(self) -> None: def forward_func(inp): return torch.ones(1, 5, 3, 2) inp = torch.randn(10, 5) mask = torch.arange(5).unsqueeze(0) self._ablation_test_assert( ablation_algo=FeatureAblation(forward_func), test_input=inp, baselines=None, target=None, feature_mask=mask, perturbations_per_eval=(1,), expected_ablation=torch.zeros((5 * 3 * 2,) + inp[0].shape), ) def test_single_inp_ablation_multi_output_aggr(self) -> None: def forward_func(inp): return inp[0].unsqueeze(0) inp = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) mask = torch.tensor([[0, 1, 2]]) self._ablation_test_assert( ablation_algo=FeatureAblation(forward_func), test_input=inp, feature_mask=mask, baselines=None, target=None, perturbations_per_eval=(1,), # should just be the first input spread across each feature expected_ablation=[[1.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 3.0]], ) def test_single_inp_ablation_multi_output_aggr_mask_none(self) -> None: def forward_func(inp): return inp[0].unsqueeze(0) inp = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) self._ablation_test_assert( ablation_algo=FeatureAblation(forward_func), test_input=inp, feature_mask=None, baselines=None, target=None, perturbations_per_eval=(1,), # should just be the first input spread across each feature expected_ablation=[[1.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 3.0]], ) def test_single_inp_ablation_multi_output_aggr_non_standard(self) -> None: def forward_func(inp): return inp[0].unsqueeze(0) inp = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) mask = torch.tensor([[0, 0, 1]]) self._ablation_test_assert( ablation_algo=FeatureAblation(forward_func), test_input=inp, feature_mask=mask, baselines=None, target=None, perturbations_per_eval=(1,), expected_ablation=[[1.0, 1.0, 0.0], [2.0, 2.0, 0.0], [0.0, 0.0, 3.0]], ) @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_simple_ablation_with_show_progress(self, mock_stderr) -> None: ablation_algo = FeatureAblation(BasicModel_MultiLayer()) inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) # test progress output for each batch size for bsz in (1, 2, 3): self._ablation_test_assert( ablation_algo, inp, [[80.0, 200.0, 120.0]], perturbations_per_eval=(bsz,), show_progress=True, ) output = mock_stderr.getvalue() # to test if progress calculation aligns with the actual iteration # all perturbations_per_eval should reach progress of 100% assert ( "Feature Ablation attribution: 100%" in output ), f"Error progress output: {repr(output)}" mock_stderr.seek(0) mock_stderr.truncate(0) @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_simple_ablation_with_mask_and_show_progress(self, mock_stderr) -> None: ablation_algo = FeatureAblation(BasicModel_MultiLayer()) inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) # test progress output for each batch size for bsz in (1, 2, 3): self._ablation_test_assert( ablation_algo, inp, [[280.0, 280.0, 120.0]], feature_mask=torch.tensor([[0, 0, 1]]), perturbations_per_eval=(bsz,), show_progress=True, ) output = mock_stderr.getvalue() # to test if progress calculation aligns with the actual iteration # all perturbations_per_eval should reach progress of 100% assert ( "Feature Ablation attribution: 100%" in output ), f"Error progress output: {repr(output)}" mock_stderr.seek(0) mock_stderr.truncate(0) def _single_input_one_sample_batch_scalar_ablation_assert( self, ablation_algo: Attribution, dtype: torch.dtype = torch.float32 ) -> None: inp = torch.tensor([[2.0, 10.0, 3.0]], requires_grad=True) mask = torch.tensor([[0, 0, 1]]) self._ablation_test_assert( ablation_algo, inp, torch.tensor([[82.0, 82.0, 24.0]], dtype=torch.float32).to(dtype), feature_mask=mask, perturbations_per_eval=(1,), target=None, ) def _single_input_multi_sample_batch_scalar_ablation_assert( self, ablation_algo: Attribution, dtype: torch.dtype = torch.float32, ) -> None: inp = torch.tensor([[2.0, 10.0, 3.0], [20.0, 50.0, 30.0]], requires_grad=True) mask = torch.tensor([[0, 0, 1]]) self._ablation_test_assert( ablation_algo, inp, torch.tensor([[642.0, 642.0, 264.0]], dtype=torch.float32).to(dtype), feature_mask=mask, perturbations_per_eval=(1,), target=None, ) def _multi_input_batch_scalar_ablation_assert( self, ablation_algo: Attribution, dtype: torch.dtype = torch.float32, ) -> None: inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [2.0, 10.0, 3.0]]) mask1 = torch.tensor([[1, 1, 1]]) mask2 = torch.tensor([[0, 1, 2]]) mask3 = torch.tensor([[0, 1, 2]]) expected = ( torch.tensor([[1784, 1784, 1784]], dtype=dtype), torch.tensor([[160, 1200, 240]], dtype=dtype), torch.tensor([[16, 880, 104]], dtype=dtype), ) self._ablation_test_assert( ablation_algo, (inp1, inp2, inp3), expected, additional_input=(1,), feature_mask=(mask1, mask2, mask3), perturbations_per_eval=(1,), target=None, ) def _ablation_test_assert( self, ablation_algo: Attribution, test_input: TensorOrTupleOfTensorsGeneric, expected_ablation: Union[ Tensor, Tuple[Tensor, ...], # NOTE: mypy doesn't support recursive types # would do a List[NestedList[Union[int, float]] # or Tuple[NestedList[Union[int, float]] # but... we can't. # # See https://github.com/python/mypy/issues/731 List[Any], Tuple[List[Any], ...], ], feature_mask: Union[None, TensorOrTupleOfTensorsGeneric] = None, additional_input: Any = None, perturbations_per_eval: Tuple[int, ...] = (1,), baselines: BaselineType = None, target: TargetType = 0, **kwargs: Any, ) -> None: for batch_size in perturbations_per_eval: self.assertTrue(ablation_algo.multiplies_by_inputs) attributions = ablation_algo.attribute( test_input, target=target, feature_mask=feature_mask, additional_forward_args=additional_input, baselines=baselines, perturbations_per_eval=batch_size, **kwargs, ) if isinstance(expected_ablation, tuple): for i in range(len(expected_ablation)): expected = expected_ablation[i] if not isinstance(expected, torch.Tensor): expected = torch.tensor(expected) self.assertEqual(attributions[i].shape, expected.shape) self.assertEqual(attributions[i].dtype, expected.dtype) assertTensorAlmostEqual(self, attributions[i], expected) else: if not isinstance(expected_ablation, torch.Tensor): expected_ablation = torch.tensor(expected_ablation) self.assertEqual(attributions.shape, expected_ablation.shape) self.assertEqual(attributions.dtype, expected_ablation.dtype) assertTensorAlmostEqual(self, attributions, expected_ablation) if __name__ == "__main__": unittest.main()
#!/usr/bin/env fbpython import math from typing import cast from unittest.mock import Mock, patch import torch from captum.attr._core.dataloader_attr import DataLoaderAttribution, InputRole from captum.attr._core.feature_ablation import FeatureAblation from parameterized import parameterized from tests.helpers.basic import ( assertAttributionComparision, assertTensorAlmostEqual, BaseTest, ) from torch import Tensor from torch.utils.data import DataLoader, TensorDataset def sum_forward(*inps): inps = [torch.flatten(inp, start_dim=1) for inp in inps] return torch.cat(inps, dim=1).sum(1) class Linear(torch.nn.Module): def __init__(self, n): super().__init__() self.linear = torch.nn.Linear(n, 1) def forward(self, *inps): inps = [torch.flatten(inp, start_dim=1) for inp in inps] return self.linear(torch.cat(inps, dim=1)) mock_dataset = TensorDataset( # iD feature torch.tensor( [ [0.0, 0.1], [0.3, 0.4], [0.6, 0.7], [0.9, 1.0], [1.2, 1.3], ] ), # 2D feature torch.tensor( [ [[0.1, 0.2], [0.3, 0.2]], [[0.4, 0.5], [0.3, 0.2]], [[0.8, 0.1], [0.2, 0.5]], [[1.1, 0.7], [0.1, 0.7]], [[0.6, 1.4], [1.2, 0.4]], ] ), # scalar feature or label torch.tensor( [ [0], [1], [0], [0], [1], ] ), ) class Test(BaseTest): @parameterized.expand( [ (sum_forward,), (Linear(7),), ] ) def test_dl_attr(self, forward) -> None: fa = FeatureAblation(forward) dl_fa = DataLoaderAttribution(fa) dataloader = DataLoader(mock_dataset, batch_size=2) dl_attributions = dl_fa.attribute(dataloader) # default reduce of DataLoaderAttribution works the same as concat all batches attr_list = [] for batch in dataloader: batch_attr = fa.attribute(tuple(batch)) attr_list.append(batch_attr) expected_attr = tuple( torch.cat(feature_attrs, dim=0) for feature_attrs in zip(*attr_list) ) assertAttributionComparision(self, dl_attributions, expected_attr) @parameterized.expand( [ (sum_forward,), (Linear(7),), ] ) def test_dl_attr_with_mask(self, forward) -> None: # FeatureAblation does not support grouping across tensors for now # add such test cases after support grouping across tensors in FeatureAblation masks = ( torch.tensor([[0, 0]]), torch.tensor([[[1, 2], [3, 2]]]), torch.tensor([[4]]), ) fa = FeatureAblation(forward) dl_fa = DataLoaderAttribution(fa) dataloader = DataLoader(mock_dataset, batch_size=2) dl_attributions = dl_fa.attribute(dataloader, feature_mask=masks) # default reduce of DataLoaderAttribution works the same as concat all batches attr_list = [] for batch in dataloader: batch_attr = fa.attribute(tuple(batch), feature_mask=masks) attr_list.append(batch_attr) expected_attr = tuple( torch.cat(feature_attrs, dim=0) for feature_attrs in zip(*attr_list) ) assertAttributionComparision(self, dl_attributions, expected_attr) @parameterized.expand( [ (sum_forward,), (Linear(7),), ] ) def test_dl_attr_with_baseline(self, forward) -> None: baselines = ( torch.tensor([[0, -1]]), 1, 0.1, ) fa = FeatureAblation(forward) dl_fa = DataLoaderAttribution(fa) dataloader = DataLoader(mock_dataset, batch_size=2) dl_attributions = dl_fa.attribute(dataloader, baselines=baselines) # default reduce of DataLoaderAttribution works the same as concat all batches attr_list = [] for batch in dataloader: batch_attr = fa.attribute(tuple(batch), baselines=baselines) attr_list.append(batch_attr) expected_attr = tuple( torch.cat(feature_attrs, dim=0) for feature_attrs in zip(*attr_list) ) assertAttributionComparision(self, dl_attributions, expected_attr) def test_dl_attr_with_reduce_and_to_metric(self) -> None: forward = sum_forward func_call_counts = { "reduce": 0, "to_metric": 0, } def reduce(accum, cur_output, cur_inputs): func_call_counts["reduce"] += 1 accum = {"sum": 0, "count": 0} if accum is None else accum accum["sum"] += cur_output.sum() accum["count"] += len(cur_output) return accum def to_metric(accum): func_call_counts["to_metric"] += 1 self.assertEqual(isinstance(accum, dict), True) return torch.tensor( [ accum["sum"] / accum["count"], accum["sum"], ] ) fa = FeatureAblation(forward) dl_fa = DataLoaderAttribution(fa) batch_size = 2 dataloader = DataLoader(mock_dataset, batch_size=batch_size) dl_attribution = dl_fa.attribute( dataloader, reduce=reduce, to_metric=to_metric, return_input_shape=False, ) n_iters = len(dataloader) n_features = 7 # after support other attr methods, this can be diff from n_features n_perturbations = 7 n_passes = n_perturbations + 1 # +1 for base forward without perturbation n_outputs = 2 # [mean, sum] self.assertEqual(func_call_counts["reduce"], n_iters * n_passes) self.assertEqual(func_call_counts["to_metric"], n_passes) expected_attr_shape = (n_outputs, n_features) self.assertEqual(type(dl_attribution), Tensor) dl_attribution = cast(Tensor, dl_attribution) self.assertEqual(dl_attribution.shape, expected_attr_shape) @parameterized.expand( [ ([0, 0, 0],), ([0, 1, 0],), ([0, 1, 1],), ([0, 1, 2],), ([0, 2, 2],), ] ) def test_dl_attr_with_input_roles(self, input_roles) -> None: n_inputs = len(input_roles) n_forward_inputs = sum(1 for r in input_roles if r != InputRole.no_forward) n_attr_inputs = sum(1 for r in input_roles if r == InputRole.need_attr) def reduce(accum, cur_output, cur_inputs): # all inputs from dataloader should be given to reduce self.assertEqual(len(cur_inputs), n_inputs) return cur_output if accum is None else torch.cat([accum, cur_output]) def forward(*forward_inputs): # inputs of InputRole.no_forward should not be passed to forward self.assertEqual(len(forward_inputs), n_forward_inputs) return sum_forward(*forward_inputs) fa = FeatureAblation(forward) dl_fa = DataLoaderAttribution(fa) batch_size = 2 dataloader = DataLoader(mock_dataset, batch_size=batch_size) dl_attributions = dl_fa.attribute( dataloader, input_roles=input_roles, reduce=reduce, ) # only inputs needs self.assertEqual(len(dl_attributions), n_attr_inputs) # default reduce of DataLoaderAttribution works the same as concat all batches attr_list = [] for batch in dataloader: attr_inputs = tuple( _ for _, role in zip(batch, input_roles) if role == InputRole.need_attr ) additional_forward_args = tuple( _ for _, role in zip(batch, input_roles) if role == InputRole.need_forward ) batch_attr = fa.attribute( attr_inputs, additional_forward_args=additional_forward_args ) attr_list.append(batch_attr) expected_attr = tuple( torch.cat(feature_attrs, dim=0) for feature_attrs in zip(*attr_list) ) assertAttributionComparision(self, dl_attributions, expected_attr) def test_dl_attr_not_return_input_shape(self) -> None: forward = sum_forward fa = FeatureAblation(forward) dl_fa = DataLoaderAttribution(fa) dataloader = DataLoader(mock_dataset, batch_size=2) dl_attribution = dl_fa.attribute(dataloader, return_input_shape=False) expected_attr_shape = (len(mock_dataset), 7) self.assertEqual(type(dl_attribution), Tensor) dl_attribution = cast(Tensor, dl_attribution) self.assertEqual(dl_attribution.shape, expected_attr_shape) # default reduce of DataLoaderAttribution works the same as concat all batches attr_list = [] for batch in dataloader: batch_attr = fa.attribute(tuple(batch)) attr_list.append(batch_attr) expected_attr = torch.cat( [ # flatten feature dim torch.cat(feature_attrs, dim=0).flatten(start_dim=1) for feature_attrs in zip(*attr_list) ], dim=1, ) assertTensorAlmostEqual(self, dl_attribution, expected_attr) def test_dl_attr_with_mask_not_return_input_shape(self) -> None: forward = sum_forward masks = ( torch.tensor([[0, 0]]), torch.tensor([[[1, 2], [3, 2]]]), torch.tensor([[4]]), ) fa = FeatureAblation(forward) dl_fa = DataLoaderAttribution(fa) dataloader = DataLoader(mock_dataset, batch_size=2) dl_attribution = dl_fa.attribute( dataloader, feature_mask=masks, return_input_shape=False ) expected_attr_shape = (len(mock_dataset), 5) self.assertEqual(type(dl_attribution), Tensor) dl_attribution = cast(Tensor, dl_attribution) self.assertEqual(dl_attribution.shape, expected_attr_shape) @parameterized.expand([(2,), (3,), (4,)]) def test_dl_attr_with_perturb_per_pass(self, perturb_per_pass) -> None: forward = sum_forward fa = FeatureAblation(forward) dl_fa = DataLoaderAttribution(fa) mock_dl_iter = Mock(wraps=DataLoader.__iter__) with patch.object(DataLoader, "__iter__", lambda self: mock_dl_iter(self)): dataloader = DataLoader(mock_dataset, batch_size=2) dl_attributions = dl_fa.attribute( dataloader, perturbations_per_pass=perturb_per_pass ) n_features = 7 # 2 extra iter calls: get one input for format; get unperturbed output n_iter_overhead = 2 self.assertEqual( mock_dl_iter.call_count, math.ceil(n_features / perturb_per_pass) + n_iter_overhead, ) # default reduce of DataLoaderAttribution works the same as concat all batches attr_list = [] for batch in dataloader: batch_attr = fa.attribute(tuple(batch)) attr_list.append(batch_attr) expected_attr = tuple( torch.cat(feature_attrs, dim=0) for feature_attrs in zip(*attr_list) ) assertAttributionComparision(self, dl_attributions, expected_attr)
#!/usr/bin/env python3 import unittest from typing import List import torch from captum.attr._utils.approximation_methods import Riemann, riemann_builders from tests.helpers.basic import assertTensorAlmostEqual class Test(unittest.TestCase): def __init__(self, methodName: str = "runTest") -> None: super().__init__(methodName) def test_riemann_0(self) -> None: with self.assertRaises(AssertionError): step_sizes, alphas = riemann_builders() step_sizes(0) alphas(0) def test_riemann_2(self) -> None: expected_step_sizes_lrm = [0.5, 0.5] expected_step_sizes_trapezoid = [0.25, 0.25] expected_left = [0.0, 0.5] expected_right = [0.5, 1.0] expected_middle = [0.25, 0.75] expected_trapezoid = [0.0, 1.0] self._assert_steps_and_alphas( 2, expected_step_sizes_lrm, expected_step_sizes_trapezoid, expected_left, expected_right, expected_middle, expected_trapezoid, ) def test_riemann_3(self) -> None: expected_step_sizes = [1 / 3] * 3 expected_step_sizes_trapezoid = [1 / 6, 1 / 3, 1 / 6] expected_left = [0.0, 1 / 3, 2 / 3] expected_right = [1 / 3, 2 / 3, 1.0] expected_middle = [1 / 6, 0.5, 1 - 1 / 6] expected_trapezoid = [0.0, 0.5, 1.0] self._assert_steps_and_alphas( 3, expected_step_sizes, expected_step_sizes_trapezoid, expected_left, expected_right, expected_middle, expected_trapezoid, ) def test_riemann_4(self) -> None: expected_step_sizes = [1 / 4] * 4 expected_step_sizes_trapezoid = [1 / 8, 1 / 4, 1 / 4, 1 / 8] expected_left = [0.0, 0.25, 0.5, 0.75] expected_right = [0.25, 0.5, 0.75, 1.0] expected_middle = [0.125, 0.375, 0.625, 0.875] expected_trapezoid = [0.0, 1 / 3, 2 / 3, 1.0] self._assert_steps_and_alphas( 4, expected_step_sizes, expected_step_sizes_trapezoid, expected_left, expected_right, expected_middle, expected_trapezoid, ) def _assert_steps_and_alphas( self, n: int, expected_step_sizes: List[float], expected_step_sizes_trapezoid: List[float], expected_left: List[float], expected_right: List[float], expected_middle: List[float], expected_trapezoid: List[float], ) -> None: step_sizes_left, alphas_left = riemann_builders(Riemann.left) step_sizes_right, alphas_right = riemann_builders(Riemann.right) step_sizes_middle, alphas_middle = riemann_builders(Riemann.middle) step_sizes_trapezoid, alphas_trapezoid = riemann_builders(Riemann.trapezoid) assertTensorAlmostEqual( self, torch.tensor(expected_step_sizes), step_sizes_left(n), delta=0.05, mode="max", ) assertTensorAlmostEqual( self, torch.tensor(expected_step_sizes), step_sizes_right(n), delta=0.05, mode="max", ) assertTensorAlmostEqual( self, torch.tensor(expected_step_sizes), step_sizes_middle(n), delta=0.05, mode="max", ) assertTensorAlmostEqual( self, torch.tensor(expected_step_sizes_trapezoid), step_sizes_trapezoid(n), delta=0.05, mode="max", ) assertTensorAlmostEqual( self, torch.tensor(expected_left), alphas_left(n), delta=0.05, mode="max" ) assertTensorAlmostEqual( self, torch.tensor(expected_right), alphas_right(n), delta=0.05, mode="max" ) assertTensorAlmostEqual( self, torch.tensor(expected_middle), alphas_middle(n), delta=0.05, mode="max", ) assertTensorAlmostEqual( self, torch.tensor(expected_trapezoid), alphas_trapezoid(n), delta=0.05, mode="max", ) # TODO write a test case for gauss-legendre
#!/usr/bin/env python3 import unittest from typing import Any, Callable, cast, List, Tuple, Union import torch from captum._utils.typing import BaselineType, TensorOrTupleOfTensorsGeneric from captum.attr._core.layer.layer_conductance import LayerConductance from captum.attr._core.neuron.neuron_conductance import NeuronConductance from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import ( BasicModel_ConvNet, BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, ) from torch import Tensor from torch.nn import Module class Test(BaseTest): def test_simple_conductance_input_linear2(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]], requires_grad=True) self._conductance_input_test_assert( net, net.linear2, inp, (0,), [0.0, 390.0, 0.0] ) def test_simple_conductance_input_linear2_wo_mult_by_inputs(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[100.0, 100.0, 100.0]], requires_grad=True) self._conductance_input_test_assert( net, net.linear2, inp, (0,), [3.96, 3.96, 3.96], multiply_by_inputs=False, ) def test_simple_conductance_input_linear1(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]]) self._conductance_input_test_assert(net, net.linear1, inp, 0, [0.0, 90.0, 0.0]) def test_simple_conductance_input_linear1_selector_fn(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]]) self._conductance_input_test_assert( net, net.linear1, inp, lambda x: x[:, 0], [0.0, 90.0, 0.0] ) def test_simple_conductance_input_relu(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 70.0, 30.0]], requires_grad=True) self._conductance_input_test_assert(net, net.relu, inp, (3,), [0.0, 70.0, 30.0]) def test_simple_conductance_multi_input_linear2(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[0.0, 10.0, 0.0]]) inp2 = torch.tensor([[0.0, 10.0, 0.0]]) inp3 = torch.tensor([[0.0, 5.0, 0.0]]) self._conductance_input_test_assert( net, net.model.linear2, (inp1, inp2, inp3), (0,), ([[0.0, 156.0, 0.0]], [[0.0, 156.0, 0.0]], [[0.0, 78.0, 0.0]]), (4,), ) def test_simple_conductance_multi_input_relu(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[0.0, 10.0, 1.0]]) inp2 = torch.tensor([[0.0, 4.0, 5.0]]) inp3 = torch.tensor([[0.0, 0.0, 0.0]]) self._conductance_input_test_assert( net, net.model.relu, (inp1, inp2), (3,), ([[0.0, 50.0, 5.0]], [[0.0, 20.0, 25.0]]), (inp3, 5), ) def test_simple_conductance_multi_input_batch_relu(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[0.0, 10.0, 1.0], [0.0, 0.0, 10.0]]) inp2 = torch.tensor([[0.0, 4.0, 5.0], [0.0, 0.0, 10.0]]) inp3 = torch.tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 5.0]]) self._conductance_input_test_assert( net, net.model.relu, (inp1, inp2), (3,), ( [[0.0, 50.0, 5.0], [0.0, 0.0, 50.0]], [[0.0, 20.0, 25.0], [0.0, 0.0, 50.0]], ), (inp3, 5), ) def test_layer_tuple_selector_fn(self) -> None: net = BasicModel_MultiLayer(multi_input_module=True) inp = torch.tensor([[0.0, 6.0, 0.0]]) self._conductance_input_test_assert( net, net.multi_relu, inp, lambda x: x[0][:, 1], [0.0, 6.0, 0.0] ) def test_matching_conv2_multi_input_conductance(self) -> None: net = BasicModel_ConvNet() inp = 100 * torch.randn(2, 1, 10, 10) self._conductance_input_sum_test_assert(net, net.conv2, inp, 0.0) # trying different baseline self._conductance_input_sum_test_assert(net, net.conv2, inp, 0.000001) def test_matching_relu2_multi_input_conductance(self) -> None: net = BasicModel_ConvNet() inp = 100 * torch.randn(3, 1, 10, 10, requires_grad=True) baseline = 20 * torch.randn(3, 1, 10, 10, requires_grad=True) self._conductance_input_sum_test_assert(net, net.relu2, inp, baseline) def test_matching_relu2_with_scalar_base_multi_input_conductance(self) -> None: net = BasicModel_ConvNet() inp = 100 * torch.randn(3, 1, 10, 10, requires_grad=True) self._conductance_input_sum_test_assert(net, net.relu2, inp, 0.0) def test_matching_pool2_multi_input_conductance(self) -> None: net = BasicModel_ConvNet() inp = 100 * torch.randn(1, 1, 10, 10) baseline = 20 * torch.randn(1, 1, 10, 10, requires_grad=True) self._conductance_input_sum_test_assert(net, net.pool2, inp, baseline) def test_matching_layer_tuple_selector_fn(self) -> None: net = BasicModel_MultiLayer(multi_input_module=True) inp = torch.tensor([[0.0, 6.0, 0.0]]) lc = LayerConductance(net, net.multi_relu) layer_attr = lc.attribute(inp, target=0, n_steps=500, method="gausslegendre") nc = NeuronConductance(net, net.multi_relu) for i in range(len(layer_attr)): for j in range(layer_attr[i].shape[1]): neuron_attr = nc.attribute( inp, lambda x: x[i][:, j], target=0, n_steps=500, method="gausslegendre", ) self.assertAlmostEqual( neuron_attr.sum().item(), layer_attr[i][0][j].item(), delta=0.005, ) def _conductance_input_test_assert( self, model: Module, target_layer: Module, test_input: TensorOrTupleOfTensorsGeneric, test_neuron: Union[int, Tuple[int, ...], Callable], expected_input_conductance: Union[List[float], Tuple[List[List[float]], ...]], additional_input: Any = None, multiply_by_inputs: bool = True, ) -> None: for internal_batch_size in (None, 5, 20): cond = NeuronConductance( model, target_layer, multiply_by_inputs=multiply_by_inputs, ) self.assertEqual(cond.multiplies_by_inputs, multiply_by_inputs) attributions = cond.attribute( test_input, test_neuron, target=0, n_steps=500, method="gausslegendre", additional_forward_args=additional_input, internal_batch_size=internal_batch_size, ) if isinstance(expected_input_conductance, tuple): for i in range(len(expected_input_conductance)): for j in range(len(expected_input_conductance[i])): assertTensorAlmostEqual( self, attributions[i][j : j + 1].squeeze(0), expected_input_conductance[i][j], delta=0.1, mode="max", ) else: if isinstance(attributions, Tensor): assertTensorAlmostEqual( self, attributions.squeeze(0), expected_input_conductance, delta=0.1, mode="max", ) else: raise AssertionError( "Attributions not returning a Tensor when expected." ) def _conductance_input_sum_test_assert( self, model: Module, target_layer: Module, test_input: TensorOrTupleOfTensorsGeneric, test_baseline: BaselineType = None, ): layer_cond = LayerConductance(model, target_layer) attributions = cast( Tensor, layer_cond.attribute( test_input, baselines=test_baseline, target=0, n_steps=500, method="gausslegendre", ), ) neuron_cond = NeuronConductance(model, target_layer) attr_shape = cast(Tuple[int, ...], attributions.shape) for i in range(attr_shape[1]): for j in range(attr_shape[2]): for k in range(attr_shape[3]): neuron_vals = neuron_cond.attribute( test_input, (i, j, k), baselines=test_baseline, target=0, n_steps=500, ) for n in range(attributions.shape[0]): self.assertAlmostEqual( torch.sum(neuron_vals[n]).item(), attributions[n, i, j, k].item(), delta=0.005, ) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 from __future__ import print_function from typing import Tuple, Union import torch from captum._utils.typing import TensorOrTupleOfTensorsGeneric from captum.attr._core.neuron.neuron_deep_lift import NeuronDeepLift, NeuronDeepLiftShap from tests.attr.layer.test_layer_deeplift import ( _create_inps_and_base_for_deeplift_neuron_layer_testing, _create_inps_and_base_for_deepliftshap_neuron_layer_testing, ) from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import ( BasicModel_ConvNet, BasicModel_ConvNet_MaxPool3d, LinearMaxPoolLinearModel, ReLULinearModel, ) from torch import Tensor class Test(BaseTest): def test_relu_neuron_deeplift(self) -> None: model = ReLULinearModel(inplace=True) x1 = torch.tensor([[-10.0, 1.0, -5.0]], requires_grad=True) x2 = torch.tensor([[3.0, 3.0, 1.0]], requires_grad=True) inputs = (x1, x2) neuron_dl = NeuronDeepLift(model, model.relu) attributions = neuron_dl.attribute(inputs, 0, attribute_to_neuron_input=False) assertTensorAlmostEqual(self, attributions[0], [[0.0, 0.0, 0.0]]) assertTensorAlmostEqual(self, attributions[1], [[0.0, 0.0, 0.0]]) def test_deeplift_compare_with_and_without_inplace(self) -> None: model1 = ReLULinearModel(inplace=True) model2 = ReLULinearModel() x1 = torch.tensor([[-10.0, 1.0, -5.0]], requires_grad=True) x2 = torch.tensor([[3.0, 3.0, 1.0]], requires_grad=True) inputs = (x1, x2) neuron_dl1 = NeuronDeepLift(model1, model1.relu) attributions1 = neuron_dl1.attribute(inputs, 0, attribute_to_neuron_input=False) neuron_dl2 = NeuronDeepLift(model2, model2.relu) attributions2 = neuron_dl2.attribute(inputs, 0, attribute_to_neuron_input=False) assertTensorAlmostEqual(self, attributions1[0], attributions2[0]) assertTensorAlmostEqual(self, attributions1[1], attributions2[1]) def test_linear_neuron_deeplift(self) -> None: model = ReLULinearModel() inputs, baselines = _create_inps_and_base_for_deeplift_neuron_layer_testing() neuron_dl = NeuronDeepLift(model, model.l3) attributions = neuron_dl.attribute( inputs, 0, baselines, attribute_to_neuron_input=True ) assertTensorAlmostEqual(self, attributions[0], [[-0.0, 0.0, -0.0]]) assertTensorAlmostEqual(self, attributions[1], [[0.0, 0.0, 0.0]]) attributions = neuron_dl.attribute( inputs, 0, baselines, attribute_to_neuron_input=False ) self.assertTrue(neuron_dl.multiplies_by_inputs) assertTensorAlmostEqual(self, attributions[0], [[-0.0, 0.0, -0.0]]) assertTensorAlmostEqual(self, attributions[1], [[6.0, 9.0, 0.0]]) def test_linear_neuron_deeplift_wo_inp_marginal_effects(self) -> None: model = ReLULinearModel() inputs, baselines = _create_inps_and_base_for_deeplift_neuron_layer_testing() neuron_dl = NeuronDeepLift(model, model.l3, multiply_by_inputs=False) attributions = neuron_dl.attribute( inputs, 0, baselines, attribute_to_neuron_input=False ) assertTensorAlmostEqual(self, attributions[0], [[-0.0, 0.0, -0.0]]) assertTensorAlmostEqual(self, attributions[1], [[2.0, 3.0, 0.0]]) def test_relu_deeplift_with_custom_attr_func(self) -> None: model = ReLULinearModel() inputs, baselines = _create_inps_and_base_for_deeplift_neuron_layer_testing() neuron_dl = NeuronDeepLift(model, model.l3) expected = ([[0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0]]) self._relu_custom_attr_func_assert(neuron_dl, inputs, baselines, expected) def test_relu_neuron_deeplift_shap(self) -> None: model = ReLULinearModel() ( inputs, baselines, ) = _create_inps_and_base_for_deepliftshap_neuron_layer_testing() neuron_dl = NeuronDeepLiftShap(model, model.relu) attributions = neuron_dl.attribute( inputs, 0, baselines, attribute_to_neuron_input=False ) assertTensorAlmostEqual(self, attributions[0], [[0.0, 0.0, 0.0]]) assertTensorAlmostEqual(self, attributions[1], [[0.0, 0.0, 0.0]]) def test_linear_neuron_deeplift_shap(self) -> None: model = ReLULinearModel() ( inputs, baselines, ) = _create_inps_and_base_for_deepliftshap_neuron_layer_testing() neuron_dl = NeuronDeepLiftShap(model, model.l3) attributions = neuron_dl.attribute( inputs, 0, baselines, attribute_to_neuron_input=True ) assertTensorAlmostEqual(self, attributions[0], [[-0.0, 0.0, -0.0]]) assertTensorAlmostEqual(self, attributions[1], [[0.0, 0.0, 0.0]]) attributions = neuron_dl.attribute( inputs, 0, baselines, attribute_to_neuron_input=False ) self.assertTrue(neuron_dl.multiplies_by_inputs) assertTensorAlmostEqual(self, attributions[0], [[-0.0, 0.0, -0.0]]) assertTensorAlmostEqual(self, attributions[1], [[6.0, 9.0, 0.0]]) def test_linear_neuron_deeplift_shap_wo_inp_marginal_effects(self) -> None: model = ReLULinearModel() ( inputs, baselines, ) = _create_inps_and_base_for_deepliftshap_neuron_layer_testing() neuron_dl = NeuronDeepLiftShap(model, model.l3, multiply_by_inputs=False) attributions = neuron_dl.attribute( inputs, 0, baselines, attribute_to_neuron_input=False ) assertTensorAlmostEqual(self, attributions[0], [[-0.0, 0.0, -0.0]]) assertTensorAlmostEqual(self, attributions[1], [[2.0, 3.0, 0.0]]) attributions = neuron_dl.attribute( inputs, lambda x: x[:, 0], baselines, attribute_to_neuron_input=False ) assertTensorAlmostEqual(self, attributions[0], [[-0.0, 0.0, -0.0]]) assertTensorAlmostEqual(self, attributions[1], [[2.0, 3.0, 0.0]]) def test_relu_deepliftshap_with_custom_attr_func(self) -> None: model = ReLULinearModel() ( inputs, baselines, ) = _create_inps_and_base_for_deepliftshap_neuron_layer_testing() neuron_dl = NeuronDeepLiftShap(model, model.l3) expected = (torch.zeros(1, 3), torch.zeros(1, 3)) self._relu_custom_attr_func_assert(neuron_dl, inputs, baselines, expected) def _relu_custom_attr_func_assert( self, attr_method: Union[NeuronDeepLift, NeuronDeepLiftShap], inputs: TensorOrTupleOfTensorsGeneric, baselines, expected, ) -> None: def custom_attr_func( multipliers: Tuple[Tensor, ...], inputs: Tuple[Tensor, ...], baselines: Union[None, Tuple[Union[Tensor, int, float], ...]] = None, ) -> Tuple[Tensor, ...]: return tuple(multiplier * 0.0 for multiplier in multipliers) attr = attr_method.attribute( inputs, 0, baselines, custom_attribution_func=custom_attr_func ) assertTensorAlmostEqual(self, attr[0], expected[0], 0.0) assertTensorAlmostEqual(self, attr[1], expected[1], 0.0) def test_lin_maxpool_lin_classification(self) -> None: inputs = torch.ones(2, 4) baselines = torch.tensor([[1, 2, 3, 9], [4, 8, 6, 7]]).float() model = LinearMaxPoolLinearModel() ndl = NeuronDeepLift(model, model.pool1) attr = ndl.attribute(inputs, neuron_selector=(0), baselines=baselines) ndl2 = NeuronDeepLift(model, model.lin2) attr2 = ndl2.attribute( inputs, neuron_selector=(0), baselines=baselines, attribute_to_neuron_input=True, ) assertTensorAlmostEqual(self, attr, attr2) def test_convnet_maxpool2d_classification(self) -> None: inputs = 100 * torch.randn(2, 1, 10, 10) model = BasicModel_ConvNet() ndl = NeuronDeepLift(model, model.pool1) attr = ndl.attribute(inputs, neuron_selector=(0, 0, 0)) ndl2 = NeuronDeepLift(model, model.conv2) attr2 = ndl2.attribute( inputs, neuron_selector=(0, 0, 0), attribute_to_neuron_input=True ) assertTensorAlmostEqual(self, attr.sum(), attr2.sum()) def test_convnet_maxpool3d_classification(self) -> None: inputs = 100 * torch.randn(2, 1, 10, 10, 10) model = BasicModel_ConvNet_MaxPool3d() ndl = NeuronDeepLift(model, model.pool1) attr = ndl.attribute(inputs, neuron_selector=(0, 0, 0, 0)) ndl2 = NeuronDeepLift(model, model.conv2) attr2 = ndl2.attribute( inputs, neuron_selector=(0, 0, 0, 0), attribute_to_neuron_input=True ) assertTensorAlmostEqual(self, attr.sum(), attr2.sum())
#!/usr/bin/env python3 import unittest from typing import Any, Callable, Tuple, Union import torch from captum._utils.typing import TensorLikeList, TensorOrTupleOfTensorsGeneric from captum.attr._core.integrated_gradients import IntegratedGradients from captum.attr._core.neuron.neuron_integrated_gradients import ( NeuronIntegratedGradients, ) from tests.helpers.basic import ( assertTensorAlmostEqual, assertTensorTuplesAlmostEqual, BaseTest, ) from tests.helpers.basic_models import ( BasicModel_ConvNet, BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, ) from torch import Tensor from torch.nn import Module class Test(BaseTest): def test_simple_ig_input_linear2(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]]) self._ig_input_test_assert(net, net.linear2, inp, 0, [[0.0, 390.0, 0.0]]) def test_simple_ig_input_linear2_wo_mult_by_inputs(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[100.0, 100.0, 100.0]]) self._ig_input_test_assert( net, net.linear2, inp, 0, [[3.96, 3.96, 3.96]], multiply_by_inputs=False ) def test_simple_ig_input_linear1(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]], requires_grad=True) self._ig_input_test_assert(net, net.linear1, inp, (0,), [[0.0, 100.0, 0.0]]) def test_simple_ig_input_relu(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 6.0, 14.0]], requires_grad=True) self._ig_input_test_assert(net, net.relu, inp, (0,), [[0.0, 3.0, 7.0]]) def test_simple_ig_input_relu2(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 5.0, 4.0]]) self._ig_input_test_assert(net, net.relu, inp, 1, [[0.0, 5.0, 4.0]]) def test_simple_ig_input_relu_selector_fn(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 5.0, 4.0]]) self._ig_input_test_assert( net, net.relu, inp, lambda x: torch.sum(x[:, 2:]), [[0.0, 10.0, 8.0]] ) def test_simple_ig_input_relu2_agg_neurons(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 5.0, 4.0]]) self._ig_input_test_assert( net, net.relu, inp, (slice(0, 2, 1),), [[0.0, 5.0, 4.0]] ) def test_simple_ig_multi_input_linear2(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[0.0, 10.0, 0.0]]) inp2 = torch.tensor([[0.0, 10.0, 0.0]]) inp3 = torch.tensor([[0.0, 5.0, 0.0]]) self._ig_input_test_assert( net, net.model.linear2, (inp1, inp2, inp3), (0,), ([[0.0, 156.0, 0.0]], [[0.0, 156.0, 0.0]], [[0.0, 78.0, 0.0]]), (4,), ) def test_simple_ig_multi_input_relu(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[0.0, 6.0, 14.0]]) inp2 = torch.tensor([[0.0, 6.0, 14.0]]) inp3 = torch.tensor([[0.0, 0.0, 0.0]]) self._ig_input_test_assert( net, net.model.relu, (inp1, inp2), (0,), ([[0.0, 1.5, 3.5]], [[0.0, 1.5, 3.5]]), (inp3, 0.5), ) def test_simple_ig_multi_input_relu_batch(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[0.0, 6.0, 14.0], [0.0, 80.0, 0.0]]) inp2 = torch.tensor([[0.0, 6.0, 14.0], [0.0, 20.0, 0.0]]) inp3 = torch.tensor([[0.0, 0.0, 0.0], [0.0, 20.0, 0.0]]) self._ig_input_test_assert( net, net.model.relu, (inp1, inp2), (0,), ([[0.0, 1.5, 3.5], [0.0, 40.0, 0.0]], [[0.0, 1.5, 3.5], [0.0, 10.0, 0.0]]), (inp3, 0.5), ) def test_simple_ig_multi_input_relu_batch_selector_fn(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[0.0, 6.0, 14.0], [0.0, 80.0, 0.0]]) inp2 = torch.tensor([[0.0, 6.0, 14.0], [0.0, 20.0, 0.0]]) inp3 = torch.tensor([[0.0, 0.0, 0.0], [0.0, 20.0, 0.0]]) self._ig_input_test_assert( net, net.model.relu, (inp1, inp2), lambda x: torch.sum(x), ( [[0.0, 10.5, 24.5], [0.0, 160.0, 0.0]], [[0.0, 10.5, 24.5], [0.0, 40.0, 0.0]], ), (inp3, 0.5), ) def test_matching_output_gradient(self) -> None: net = BasicModel_ConvNet() inp = 100 * torch.randn(2, 1, 10, 10, requires_grad=True) baseline = 20 * torch.randn(2, 1, 10, 10, requires_grad=True) self._ig_matching_test_assert(net, net.softmax, inp, baseline) def _ig_input_test_assert( self, model: Module, target_layer: Module, test_input: TensorOrTupleOfTensorsGeneric, test_neuron: Union[int, Tuple[Union[int, slice], ...], Callable], expected_input_ig: Union[TensorLikeList, Tuple[TensorLikeList, ...]], additional_input: Any = None, multiply_by_inputs: bool = True, ) -> None: for internal_batch_size in [None, 5, 20]: grad = NeuronIntegratedGradients( model, target_layer, multiply_by_inputs=multiply_by_inputs ) self.assertEquals(grad.multiplies_by_inputs, multiply_by_inputs) attributions = grad.attribute( test_input, test_neuron, n_steps=200, method="gausslegendre", additional_forward_args=additional_input, internal_batch_size=internal_batch_size, ) assertTensorTuplesAlmostEqual( self, attributions, expected_input_ig, delta=0.1 ) def _ig_matching_test_assert( self, model: Module, output_layer: Module, test_input: Tensor, baseline: Union[None, Tensor] = None, ) -> None: out = model(test_input) input_attrib = IntegratedGradients(model) ig_attrib = NeuronIntegratedGradients(model, output_layer) for i in range(out.shape[1]): ig_vals = input_attrib.attribute(test_input, target=i, baselines=baseline) neuron_ig_vals = ig_attrib.attribute(test_input, (i,), baselines=baseline) assertTensorAlmostEqual( self, ig_vals, neuron_ig_vals, delta=0.001, mode="max" ) self.assertEqual(neuron_ig_vals.shape, test_input.shape) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 import unittest from typing import Any, Callable, cast, List, Tuple, Union import torch from captum._utils.gradient import _forward_layer_eval from captum._utils.typing import TensorOrTupleOfTensorsGeneric from captum.attr._core.neuron.neuron_gradient import NeuronGradient from captum.attr._core.saliency import Saliency from tests.helpers.basic import ( assertTensorAlmostEqual, assertTensorTuplesAlmostEqual, BaseTest, ) from tests.helpers.basic_models import ( BasicModel_ConvNet, BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, ) from torch import Tensor from torch.nn import Module class Test(BaseTest): def test_simple_gradient_input_linear2(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]], requires_grad=True) self._gradient_input_test_assert(net, net.linear2, inp, (0,), [[4.0, 4.0, 4.0]]) def test_simple_gradient_input_linear1(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]]) self._gradient_input_test_assert(net, net.linear1, inp, (0,), [[1.0, 1.0, 1.0]]) def test_simple_gradient_input_relu_inplace(self) -> None: net = BasicModel_MultiLayer(inplace=True) inp = torch.tensor([[0.0, 5.0, 4.0]]) self._gradient_input_test_assert( net, net.relu, inp, (0,), [[1.0, 1.0, 1.0]], attribute_to_neuron_input=True ) def test_simple_gradient_input_linear1_inplace(self) -> None: net = BasicModel_MultiLayer(inplace=True) inp = torch.tensor([[0.0, 5.0, 4.0]]) self._gradient_input_test_assert(net, net.linear1, inp, (0,), [[1.0, 1.0, 1.0]]) def test_simple_gradient_input_relu(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 5.0, 4.0]], requires_grad=True) self._gradient_input_test_assert(net, net.relu, inp, 0, [[0.0, 0.0, 0.0]]) def test_simple_gradient_input_relu2(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 5.0, 4.0]]) self._gradient_input_test_assert(net, net.relu, inp, 1, [[1.0, 1.0, 1.0]]) def test_simple_gradient_input_relu_selector_fn(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 5.0, 4.0]]) self._gradient_input_test_assert( net, net.relu, inp, lambda x: torch.sum(x), [[3.0, 3.0, 3.0]] ) def test_simple_gradient_input_relu2_agg_neurons(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 5.0, 4.0]]) self._gradient_input_test_assert( net, net.relu, inp, (slice(0, 2, 1),), [[1.0, 1.0, 1.0]] ) def test_simple_gradient_multi_input_linear2(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[0.0, 100.0, 0.0]]) inp2 = torch.tensor([[0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 0.0]]) self._gradient_input_test_assert( net, net.model.linear2, (inp1, inp2, inp3), (0,), ([[12.0, 12.0, 12.0]], [[12.0, 12.0, 12.0]], [[12.0, 12.0, 12.0]]), (3,), ) def test_simple_gradient_multi_input_linear1(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[0.0, 100.0, 0.0]]) inp2 = torch.tensor([[0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 0.0]]) self._gradient_input_test_assert( net, net.model.linear1, (inp1, inp2), (0,), ([[5.0, 5.0, 5.0]], [[5.0, 5.0, 5.0]]), (inp3, 5), ) def test_matching_output_gradient(self) -> None: net = BasicModel_ConvNet() inp = torch.randn(2, 1, 10, 10, requires_grad=True) self._gradient_matching_test_assert(net, net.softmax, inp) def test_matching_intermediate_gradient(self) -> None: net = BasicModel_ConvNet() inp = torch.randn(3, 1, 10, 10) self._gradient_matching_test_assert(net, net.relu2, inp) def _gradient_input_test_assert( self, model: Module, target_layer: Module, test_input: TensorOrTupleOfTensorsGeneric, test_neuron_selector: Union[int, Tuple[Union[int, slice], ...], Callable], expected_input_gradient: Union[ List[List[float]], Tuple[List[List[float]], ...] ], additional_input: Any = None, attribute_to_neuron_input: bool = False, ) -> None: grad = NeuronGradient(model, target_layer) attributions = grad.attribute( test_input, test_neuron_selector, additional_forward_args=additional_input, attribute_to_neuron_input=attribute_to_neuron_input, ) assertTensorTuplesAlmostEqual(self, attributions, expected_input_gradient) def _gradient_matching_test_assert( self, model: Module, output_layer: Module, test_input: Tensor ) -> None: out = _forward_layer_eval(model, test_input, output_layer) # Select first element of tuple out = out[0] gradient_attrib = NeuronGradient(model, output_layer) self.assertFalse(gradient_attrib.multiplies_by_inputs) for i in range(cast(Tuple[int, ...], out.shape)[1]): neuron: Tuple[int, ...] = (i,) while len(neuron) < len(out.shape) - 1: neuron = neuron + (0,) input_attrib = Saliency( lambda x: _forward_layer_eval( model, x, output_layer, grad_enabled=True )[0][(slice(None), *neuron)] ) sal_vals = input_attrib.attribute(test_input, abs=False) grad_vals = gradient_attrib.attribute(test_input, neuron) # Verify matching sizes self.assertEqual(grad_vals.shape, sal_vals.shape) self.assertEqual(grad_vals.shape, test_input.shape) assertTensorAlmostEqual(self, sal_vals, grad_vals, delta=0.001, mode="max") if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 import unittest from typing import Any, Callable, Tuple, Union import torch from captum._utils.typing import ( BaselineType, TensorLikeList, TensorOrTupleOfTensorsGeneric, ) from captum.attr._core.neuron.neuron_feature_ablation import NeuronFeatureAblation from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import ( BasicModel_ConvNet_One_Conv, BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, ) from torch import Tensor from torch.nn import Module class Test(BaseTest): def test_simple_ablation_with_mask(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) self._ablation_test_assert( net, net.linear2, inp, [[280.0, 280.0, 120.0]], feature_mask=torch.tensor([[0, 0, 1]]), perturbations_per_eval=(1, 2, 3), ) def test_multi_sample_ablation_with_mask(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[2.0, 10.0, 3.0], [20.0, 50.0, 30.0]], requires_grad=True) mask = torch.tensor([[0, 0, 1], [1, 1, 0]]) self._ablation_test_assert( net, net.linear2, inp, [[41.0, 41.0, 12.0], [280.0, 280.0, 120.0]], feature_mask=mask, perturbations_per_eval=(1, 2, 3), ) def test_multi_sample_ablation_with_selector_fn(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[2.0, 10.0, 3.0], [20.0, 50.0, 30.0]], requires_grad=True) mask = torch.tensor([[0, 0, 1], [1, 1, 0]]) self._ablation_test_assert( net, net.linear2, inp, [[82.0, 82.0, 24.0], [560.0, 560.0, 240.0]], feature_mask=mask, perturbations_per_eval=(1, 2, 3), neuron_selector=lambda x: torch.sum(x, dim=1), ) def test_multi_sample_ablation_with_slice(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[2.0, 10.0, 3.0], [20.0, 50.0, 30.0]], requires_grad=True) mask = torch.tensor([[0, 0, 1], [1, 1, 0]]) self._ablation_test_assert( net, net.linear2, inp, [[82.0, 82.0, 24.0], [560.0, 560.0, 240.0]], feature_mask=mask, perturbations_per_eval=(1, 2, 3), neuron_selector=(slice(0, 2, 1),), ) def test_multi_input_ablation_with_mask(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [2.0, 10.0, 3.0]]) mask1 = torch.tensor([[1, 1, 1], [0, 1, 0]]) mask2 = torch.tensor([[0, 1, 2]]) mask3 = torch.tensor([[0, 1, 2], [0, 0, 0]]) expected = ( [[492.0, 492.0, 492.0], [200.0, 200.0, 200.0]], [[80.0, 200.0, 120.0], [0.0, 400.0, 0.0]], [[0.0, 400.0, 40.0], [60.0, 60.0, 60.0]], ) self._ablation_test_assert( net, net.model.linear2, (inp1, inp2, inp3), expected, additional_input=(1,), feature_mask=(mask1, mask2, mask3), ) self._ablation_test_assert( net, net.model.linear2, (inp1, inp2), expected[0:1], additional_input=(inp3, 1), feature_mask=(mask1, mask2), perturbations_per_eval=(1, 2, 3), ) expected_with_baseline = ( [[468.0, 468.0, 468.0], [184.0, 192.0, 184.0]], [[68.0, 188.0, 108.0], [-12.0, 388.0, -12.0]], [[-16.0, 384.0, 24.0], [12.0, 12.0, 12.0]], ) self._ablation_test_assert( net, net.model.linear2, (inp1, inp2, inp3), expected_with_baseline, additional_input=(1,), feature_mask=(mask1, mask2, mask3), baselines=(2, 3.0, 4), perturbations_per_eval=(1, 2, 3), ) def test_multi_input_ablation(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [2.0, 10.0, 3.0]]) baseline1 = torch.tensor([[3.0, 0.0, 0.0]]) baseline2 = torch.tensor([[0.0, 1.0, 0.0]]) baseline3 = torch.tensor([[1.0, 2.0, 3.0]]) self._ablation_test_assert( net, net.model.linear2, (inp1, inp2, inp3), ( [[80.0, 400.0, 0.0], [68.0, 200.0, 120.0]], [[80.0, 196.0, 120.0], [0.0, 396.0, 0.0]], [[-4.0, 392.0, 28.0], [4.0, 32.0, 0.0]], ), additional_input=(1,), baselines=(baseline1, baseline2, baseline3), perturbations_per_eval=(1, 2, 3), ) baseline1_exp = torch.tensor([[3.0, 0.0, 0.0], [3.0, 0.0, 2.0]]) baseline2_exp = torch.tensor([[0.0, 1.0, 0.0], [0.0, 1.0, 4.0]]) baseline3_exp = torch.tensor([[3.0, 2.0, 4.0], [1.0, 2.0, 3.0]]) self._ablation_test_assert( net, net.model.linear2, (inp1, inp2, inp3), ( [[80.0, 400.0, 0.0], [68.0, 200.0, 112.0]], [[80.0, 196.0, 120.0], [0.0, 396.0, -16.0]], [[-12.0, 392.0, 24.0], [4.0, 32.0, 0.0]], ), additional_input=(1,), baselines=(baseline1_exp, baseline2_exp, baseline3_exp), perturbations_per_eval=(1, 2, 3), ) def test_simple_multi_input_conv(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) inp2 = torch.ones((1, 1, 4, 4)) self._ablation_test_assert( net, net.relu2, (inp, inp2), (67 * torch.ones_like(inp), 13 * torch.ones_like(inp2)), feature_mask=(torch.tensor(0), torch.tensor(1)), perturbations_per_eval=(1, 2, 4, 8, 12, 16), ) self._ablation_test_assert( net, net.relu2, (inp, inp2), ( [ [ [ [0.0, 2.0, 4.0, 3.0], [4.0, 9.0, 10.0, 7.0], [4.0, 13.0, 14.0, 11.0], [0.0, 0.0, 0.0, 0.0], ] ] ], [ [ [ [1.0, 2.0, 2.0, 1.0], [1.0, 2.0, 2.0, 1.0], [1.0, 2.0, 2.0, 1.0], [0.0, 0.0, 0.0, 0.0], ] ] ], ), perturbations_per_eval=(1, 3, 7, 14), ) def test_simple_multi_input_conv_intermediate(self) -> None: net = BasicModel_ConvNet_One_Conv(inplace=True) inp = torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) inp2 = torch.ones((1, 1, 4, 4)) self._ablation_test_assert( net, net.relu1, (inp, inp2), (torch.zeros_like(inp), torch.zeros_like(inp2)), feature_mask=(torch.tensor(0), torch.tensor(1)), perturbations_per_eval=(1, 2, 4, 8, 12, 16), neuron_selector=(1, 0, 0), ) self._ablation_test_assert( net, net.relu1, (inp, inp2), (45 * torch.ones_like(inp), 9 * torch.ones_like(inp2)), feature_mask=(torch.tensor(0), torch.tensor(1)), perturbations_per_eval=(1, 2, 4, 8, 12, 16), neuron_selector=(1, 0, 0), attribute_to_neuron_input=True, ) self._ablation_test_assert( net, net.relu1, (inp, inp2), ( [ [ [ [0.0, 1.0, 2.0, 0.0], [4.0, 5.0, 6.0, 0.0], [8.0, 9.0, 10.0, 0.0], [0.0, 0.0, 0.0, 0.0], ] ] ], [ [ [ [1.0, 1.0, 1.0, 0.0], [1.0, 1.0, 1.0, 0.0], [1.0, 1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0], ] ] ], ), perturbations_per_eval=(1, 3, 7, 14), neuron_selector=(1, 0, 0), attribute_to_neuron_input=True, ) def _ablation_test_assert( self, model: Module, layer: Module, test_input: TensorOrTupleOfTensorsGeneric, expected_ablation: Union[ TensorLikeList, Tuple[TensorLikeList, ...], Tuple[Tensor, ...], ], feature_mask: Union[None, TensorOrTupleOfTensorsGeneric] = None, additional_input: Any = None, perturbations_per_eval: Tuple[int, ...] = (1,), baselines: BaselineType = None, neuron_selector: Union[int, Tuple[Union[int, slice], ...], Callable] = 0, attribute_to_neuron_input: bool = False, ) -> None: for batch_size in perturbations_per_eval: ablation = NeuronFeatureAblation(model, layer) self.assertTrue(ablation.multiplies_by_inputs) attributions = ablation.attribute( test_input, neuron_selector=neuron_selector, feature_mask=feature_mask, additional_forward_args=additional_input, baselines=baselines, perturbations_per_eval=batch_size, attribute_to_neuron_input=attribute_to_neuron_input, ) if isinstance(expected_ablation, tuple): for i in range(len(expected_ablation)): assertTensorAlmostEqual(self, attributions[i], expected_ablation[i]) else: assertTensorAlmostEqual(self, attributions, expected_ablation) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 from typing import Callable, Tuple, Union import torch from captum.attr._core.neuron.neuron_gradient_shap import NeuronGradientShap from captum.attr._core.neuron.neuron_integrated_gradients import ( NeuronIntegratedGradients, ) from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import BasicModel_MultiLayer from tests.helpers.classification_models import SoftmaxModel from torch import Tensor from torch.nn import Module class Test(BaseTest): def test_basic_multilayer(self) -> None: model = BasicModel_MultiLayer(inplace=True) model.eval() inputs = torch.tensor([[1.0, 20.0, 10.0]]) baselines = torch.zeros(2, 3) ngs = NeuronGradientShap(model, model.linear1, multiply_by_inputs=False) attr = ngs.attribute(inputs, 0, baselines=baselines, stdevs=0.0) self.assertFalse(ngs.multiplies_by_inputs) assertTensorAlmostEqual(self, attr, [[1.0, 1.0, 1.0]]) def test_basic_multilayer_wo_mult_by_inputs(self) -> None: model = BasicModel_MultiLayer(inplace=True) model.eval() inputs = torch.tensor([[1.0, 20.0, 10.0]]) baselines = torch.randn(2, 3) self._assert_attributions(model, model.linear1, inputs, baselines, 0, 60) def test_basic_multilayer_wo_mult_by_inputs_agg_neurons(self) -> None: model = BasicModel_MultiLayer(inplace=True) model.eval() inputs = torch.tensor([[1.0, 20.0, 10.0]]) baselines = torch.randn(2, 3) self._assert_attributions( model, model.linear1, inputs, baselines, (slice(0, 1, 1),), 60 ) self._assert_attributions( model, model.linear1, inputs, baselines, lambda x: x[:, 0:1], 60 ) def test_classification(self) -> None: def custom_baseline_fn(inputs: Tensor) -> Tensor: num_in = inputs.shape[1] # type: ignore return torch.arange(0.0, num_in * 5.0).reshape(5, num_in) num_in = 40 n_samples = 100 # 10-class classification model model = SoftmaxModel(num_in, 20, 10) model.eval() inputs = torch.arange(0.0, num_in * 2.0).reshape(2, num_in) baselines = custom_baseline_fn self._assert_attributions(model, model.relu1, inputs, baselines, 1, n_samples) def _assert_attributions( self, model: Module, layer: Module, inputs: Tensor, baselines: Union[Tensor, Callable[..., Tensor]], neuron_ind: Union[int, Tuple[Union[int, slice], ...], Callable], n_samples: int = 5, ) -> None: ngs = NeuronGradientShap(model, layer) nig = NeuronIntegratedGradients(model, layer) attrs_gs = ngs.attribute( inputs, neuron_ind, baselines=baselines, n_samples=n_samples, stdevs=0.09 ) if callable(baselines): baselines = baselines(inputs) attrs_ig = [] for baseline in torch.unbind(baselines): attrs_ig.append( nig.attribute(inputs, neuron_ind, baselines=baseline.unsqueeze(0)) ) combined_attrs_ig = torch.stack(attrs_ig, dim=0).mean(dim=0) self.assertTrue(ngs.multiplies_by_inputs) assertTensorAlmostEqual(self, attrs_gs, combined_attrs_ig, 0.5)
#!/usr/bin/env python3 from __future__ import print_function import os import tempfile import unittest from typing import Dict, List import torch HAS_PYTEXT = True try: from captum.attr._models.pytext import ( BaselineGenerator, configure_model_integ_grads_embeddings, ) from pytext.common.constants import DatasetFieldName from pytext.config.component import create_featurizer, create_model from pytext.config.doc_classification import ModelInputConfig, TargetConfig from pytext.config.field_config import FeatureConfig, WordFeatConfig from pytext.data import CommonMetadata from pytext.data.doc_classification_data_handler import DocClassificationDataHandler from pytext.data.featurizer import SimpleFeaturizer from pytext.fields import FieldMeta from pytext.models.decoders.mlp_decoder import MLPDecoder from pytext.models.doc_model import DocModel_Deprecated from pytext.models.embeddings.word_embedding import WordEmbedding from pytext.models.representations.bilstm_doc_attention import BiLSTMDocAttention except ImportError: HAS_PYTEXT = False class VocabStub: def __init__(self) -> None: self.itos: List = [] self.stoi: Dict = {} # TODO add more test cases for dict features class TestWordEmbeddings(unittest.TestCase): def setUp(self): if not HAS_PYTEXT: return self.skipTest("Skip the test since PyText is not installed") self.embedding_file, self.embedding_path = tempfile.mkstemp() self.word_embedding_file, self.word_embedding_path = tempfile.mkstemp() self.decoder_file, self.decoder_path = tempfile.mkstemp() self.representation_file, self.representation_path = tempfile.mkstemp() self.model = self._create_dummy_model() self.data_handler = self._create_dummy_data_handler() def tearDown(self) -> None: for f in ( self.embedding_file, self.word_embedding_file, self.decoder_file, self.representation_file, ): os.close(f) for p in ( self.embedding_path, self.word_embedding_path, self.decoder_path, self.representation_path, ): os.remove(p) def test_word_embeddings(self) -> None: embedding_list = configure_model_integ_grads_embeddings(self.model) integrated_gradients_embedding = embedding_list[0] input = torch.arange(0, 300).unsqueeze(0).unsqueeze(0) self.assertEqual(integrated_gradients_embedding.embedding_dim, 300) self.assertEqual(embedding_list.embedding_dim[0], 300) self.assertEqual(embedding_list(input).shape[2], input.shape[2]) self.assertTrue( torch.allclose( integrated_gradients_embedding.get_attribution_map(input)["word"], input ) ) def test_baseline_generation(self) -> None: baseline_generator = BaselineGenerator(self.model, self.data_handler, "cpu") embedding_list = configure_model_integ_grads_embeddings(self.model) integrated_gradients_embedding = embedding_list[0] self.assertTrue( torch.allclose( baseline_generator.generate_baseline(integrated_gradients_embedding, 5)[ 0 ], torch.tensor([[1, 1, 1, 1, 1]]), ) ) def _create_dummy_data_handler(self): feat = WordFeatConfig( vocab_size=4, vocab_from_all_data=True, vocab_from_train_data=True, vocab_from_pretrained_embeddings=False, pretrained_embeddings_path=None, ) featurizer = create_featurizer( SimpleFeaturizer.Config(), FeatureConfig(word_feat=feat) ) data_handler = DocClassificationDataHandler.from_config( DocClassificationDataHandler.Config(), ModelInputConfig(word_feat=feat), TargetConfig(), featurizer=featurizer, ) train_data = data_handler.gen_dataset( [{"text": "<pad>"}], include_label_fields=False ) eval_data = data_handler.gen_dataset( [{"text": "<pad>"}], include_label_fields=False ) test_data = data_handler.gen_dataset( [{"text": "<pad>"}], include_label_fields=False ) data_handler.init_feature_metadata(train_data, eval_data, test_data) return data_handler def _create_dummy_model(self): return create_model( DocModel_Deprecated.Config( representation=BiLSTMDocAttention.Config( save_path=self.representation_path ), decoder=MLPDecoder.Config(save_path=self.decoder_path), ), FeatureConfig( word_feat=WordEmbedding.Config( embed_dim=300, save_path=self.word_embedding_path ), save_path=self.embedding_path, ), self._create_dummy_meta_data(), ) def _create_dummy_meta_data(self): text_field_meta = FieldMeta() text_field_meta.vocab = VocabStub() text_field_meta.vocab_size = 4 text_field_meta.unk_token_idx = 1 text_field_meta.pad_token_idx = 0 text_field_meta.pretrained_embeds_weight = None label_meta = FieldMeta() label_meta.vocab = VocabStub() label_meta.vocab_size = 3 metadata = CommonMetadata() metadata.features = {DatasetFieldName.TEXT_FIELD: text_field_meta} metadata.target = label_meta return metadata
#!/usr/bin/env python3 from __future__ import print_function import unittest import torch from captum.attr._models.base import ( configure_interpretable_embedding_layer, InterpretableEmbeddingBase, remove_interpretable_embedding_layer, ) from tests.helpers.basic import assertTensorAlmostEqual from tests.helpers.basic_models import BasicEmbeddingModel, TextModule from torch.nn import Embedding class Test(unittest.TestCase): def test_interpretable_embedding_base(self) -> None: input1 = torch.tensor([2, 5, 0, 1]) input2 = torch.tensor([3, 0, 0, 2]) model = BasicEmbeddingModel() output = model(input1, input2) interpretable_embedding1 = configure_interpretable_embedding_layer( model, "embedding1" ) self.assertEqual(model.embedding1, interpretable_embedding1) self._assert_embeddings_equal( input1, output, interpretable_embedding1, model.embedding1.embedding_dim, model.embedding1.num_embeddings, ) interpretable_embedding2 = configure_interpretable_embedding_layer( model, "embedding2.inner_embedding" ) self.assertEqual(model.embedding2.inner_embedding, interpretable_embedding2) self._assert_embeddings_equal( input2, output, interpretable_embedding2, model.embedding2.inner_embedding.embedding_dim, model.embedding2.inner_embedding.num_embeddings, ) # configure another embedding when one is already configured with self.assertRaises(AssertionError): configure_interpretable_embedding_layer(model, "embedding2.inner_embedding") with self.assertRaises(AssertionError): configure_interpretable_embedding_layer(model, "embedding1") # remove interpretable embedding base self.assertTrue( model.embedding2.inner_embedding.__class__ is InterpretableEmbeddingBase ) remove_interpretable_embedding_layer(model, interpretable_embedding2) self.assertTrue(model.embedding2.inner_embedding.__class__ is Embedding) self.assertTrue(model.embedding1.__class__ is InterpretableEmbeddingBase) remove_interpretable_embedding_layer(model, interpretable_embedding1) self.assertTrue(model.embedding1.__class__ is Embedding) def test_custom_module(self) -> None: input1 = torch.tensor([[3, 2, 0], [1, 2, 4]]) input2 = torch.tensor([[0, 1, 0], [1, 2, 3]]) model = BasicEmbeddingModel() output = model(input1, input2) expected = model.embedding2(input=input2) # in this case we make interpretable the custom embedding layer - TextModule interpretable_embedding = configure_interpretable_embedding_layer( model, "embedding2" ) actual = interpretable_embedding.indices_to_embeddings(input=input2) output_interpretable_models = model(input1, actual) assertTensorAlmostEqual( self, output, output_interpretable_models, delta=0.05, mode="max" ) assertTensorAlmostEqual(self, expected, actual, delta=0.0, mode="max") self.assertTrue(model.embedding2.__class__ is InterpretableEmbeddingBase) remove_interpretable_embedding_layer(model, interpretable_embedding) self.assertTrue(model.embedding2.__class__ is TextModule) self._assert_embeddings_equal(input2, output, interpretable_embedding) def test_nested_multi_embeddings(self) -> None: input1 = torch.tensor([[3, 2, 0], [1, 2, 4]]) input2 = torch.tensor([[0, 1, 0], [2, 6, 8]]) input3 = torch.tensor([[4, 1, 0], [2, 2, 8]]) model = BasicEmbeddingModel(nested_second_embedding=True) output = model(input1, input2, input3) expected = model.embedding2(input=input2, another_input=input3) # in this case we make interpretable the custom embedding layer - TextModule interpretable_embedding2 = configure_interpretable_embedding_layer( model, "embedding2" ) actual = interpretable_embedding2.indices_to_embeddings( input=input2, another_input=input3 ) output_interpretable_models = model(input1, actual) assertTensorAlmostEqual( self, output, output_interpretable_models, delta=0.05, mode="max" ) assertTensorAlmostEqual(self, expected, actual, delta=0.0, mode="max") self.assertTrue(model.embedding2.__class__ is InterpretableEmbeddingBase) remove_interpretable_embedding_layer(model, interpretable_embedding2) self.assertTrue(model.embedding2.__class__ is TextModule) self._assert_embeddings_equal(input2, output, interpretable_embedding2) def _assert_embeddings_equal( self, input, output, interpretable_embedding, embedding_dim=None, num_embeddings=None, ): if interpretable_embedding.embedding_dim is not None: self.assertEqual(embedding_dim, interpretable_embedding.embedding_dim) self.assertEqual(num_embeddings, interpretable_embedding.num_embeddings) # dim - [4, 100] emb_shape = interpretable_embedding.indices_to_embeddings(input).shape self.assertEqual(emb_shape[0], input.shape[0]) if interpretable_embedding.embedding_dim is not None: self.assertEqual(emb_shape[1], interpretable_embedding.embedding_dim) self.assertEqual(input.shape[0], output.shape[0])
#!/usr/bin/env python3 from typing import Any, cast, List, Tuple, Union import torch from captum.attr._core.integrated_gradients import IntegratedGradients from captum.attr._core.layer.layer_activation import LayerActivation from captum.attr._core.layer.layer_conductance import LayerConductance from captum.attr._core.layer.layer_integrated_gradients import LayerIntegratedGradients from captum.attr._models.base import ( configure_interpretable_embedding_layer, remove_interpretable_embedding_layer, ) from tests.helpers.basic import ( assertTensorAlmostEqual, assertTensorTuplesAlmostEqual, BaseTest, ) from tests.helpers.basic_models import ( BasicEmbeddingModel, BasicModel_MultiLayer, BasicModel_MultiLayer_TrueMultiInput, ) from torch import Tensor from torch.nn import Module class Test(BaseTest): def test_compare_with_emb_patching(self) -> None: input1 = torch.tensor([[2, 5, 0, 1]]) baseline1 = torch.tensor([[0, 0, 0, 0]]) # these ones will be use as an additional forward args input2 = torch.tensor([[0, 2, 4, 1]]) input3 = torch.tensor([[2, 3, 0, 1]]) self._assert_compare_with_emb_patching( input1, baseline1, additional_args=(input2, input3) ) def test_compare_with_emb_patching_wo_mult_by_inputs(self) -> None: input1 = torch.tensor([[2, 5, 0, 1]]) baseline1 = torch.tensor([[0, 0, 0, 0]]) # these ones will be use as an additional forward args input2 = torch.tensor([[0, 2, 4, 1]]) input3 = torch.tensor([[2, 3, 0, 1]]) self._assert_compare_with_emb_patching( input1, baseline1, additional_args=(input2, input3), multiply_by_inputs=False, ) def test_compare_with_emb_patching_batch(self) -> None: input1 = torch.tensor([[2, 5, 0, 1], [3, 1, 1, 0]]) baseline1 = torch.tensor([[0, 0, 0, 0]]) # these ones will be use as an additional forward args input2 = torch.tensor([[0, 2, 4, 1], [2, 3, 5, 7]]) input3 = torch.tensor([[3, 5, 6, 7], [2, 3, 0, 1]]) self._assert_compare_with_emb_patching( input1, baseline1, additional_args=(input2, input3) ) def test_compare_with_layer_conductance_attr_to_outputs(self) -> None: model = BasicModel_MultiLayer() input = torch.tensor([[50.0, 50.0, 50.0]], requires_grad=True) self._assert_compare_with_layer_conductance(model, input) def test_compare_with_layer_conductance_attr_to_inputs(self) -> None: # Note that Layer Conductance and Layer Integrated Gradients (IG) aren't # exactly the same. Layer IG computes partial derivative of the output # with respect to the layer and sums along the straight line. While Layer # Conductance also computes the same partial derivatives it doesn't use # the straight line but a path defined by F(i) - F(i - 1). # However, in some cases when that path becomes close to a straight line, # Layer IG and Layer Conductance become numerically very close. model = BasicModel_MultiLayer() input = torch.tensor([[50.0, 50.0, 50.0]], requires_grad=True) self._assert_compare_with_layer_conductance(model, input, True) def test_multiple_tensors_compare_with_expected(self) -> None: net = BasicModel_MultiLayer(multi_input_module=True) inp = torch.tensor([[0.0, 100.0, 0.0]]) self._assert_compare_with_expected( net, net.multi_relu, inp, ([[90.0, 100.0, 100.0, 100.0]], [[90.0, 100.0, 100.0, 100.0]]), ) def test_multiple_layers_single_inputs(self) -> None: input1 = torch.tensor([[2, 5, 0, 1], [3, 1, 1, 0]]) input2 = torch.tensor([[0, 2, 4, 1], [2, 3, 5, 7]]) input3 = torch.tensor([[3, 5, 6, 7], [2, 3, 0, 1]]) inputs = (input1, input2, input3) baseline = tuple(torch.zeros_like(inp) for inp in inputs) self._assert_compare_with_emb_patching( inputs, baseline, multiple_emb=True, additional_args=None, ) def test_multiple_layers_multiple_inputs_shared_input(self) -> None: input1 = torch.randn(5, 3) input2 = torch.randn(5, 3) input3 = torch.randn(5, 3) inputs = (input1, input2, input3) baseline = tuple(torch.zeros_like(inp) for inp in inputs) net = BasicModel_MultiLayer_TrueMultiInput() lig = LayerIntegratedGradients(net, layer=[net.m1, net.m234]) ig = IntegratedGradients(net) # test layer inputs attribs_inputs = lig.attribute( inputs, baseline, target=0, attribute_to_layer_input=True ) attribs_inputs_regular_ig = ig.attribute(inputs, baseline, target=0) self.assertIsInstance(attribs_inputs, list) self.assertEqual(len(attribs_inputs), 2) self.assertIsInstance(attribs_inputs[0], Tensor) self.assertIsInstance(attribs_inputs[1], tuple) self.assertEqual(len(attribs_inputs[1]), 3) assertTensorTuplesAlmostEqual( self, # last input for second layer is first input => # add the attributions (attribs_inputs[0] + attribs_inputs[1][-1],) + attribs_inputs[1][0:-1], attribs_inputs_regular_ig, delta=1e-5, ) # test layer outputs attribs = lig.attribute(inputs, baseline, target=0) ig = IntegratedGradients(lambda x, y: x + y) attribs_ig = ig.attribute( (net.m1(input1), net.m234(input2, input3, input1, 1)), (net.m1(baseline[0]), net.m234(baseline[1], baseline[2], baseline[1], 1)), target=0, ) assertTensorTuplesAlmostEqual(self, attribs, attribs_ig, delta=1e-5) def test_multiple_layers_multiple_input_outputs(self) -> None: # test with multiple layers, where one layer accepts multiple inputs input1 = torch.randn(5, 3) input2 = torch.randn(5, 3) input3 = torch.randn(5, 3) input4 = torch.randn(5, 3) inputs = (input1, input2, input3, input4) baseline = tuple(torch.zeros_like(inp) for inp in inputs) net = BasicModel_MultiLayer_TrueMultiInput() lig = LayerIntegratedGradients(net, layer=[net.m1, net.m234]) ig = IntegratedGradients(net) # test layer inputs attribs_inputs = lig.attribute( inputs, baseline, target=0, attribute_to_layer_input=True ) attribs_inputs_regular_ig = ig.attribute(inputs, baseline, target=0) self.assertIsInstance(attribs_inputs, list) self.assertEqual(len(attribs_inputs), 2) self.assertIsInstance(attribs_inputs[0], Tensor) self.assertIsInstance(attribs_inputs[1], tuple) self.assertEqual(len(attribs_inputs[1]), 3) assertTensorTuplesAlmostEqual( self, (attribs_inputs[0],) + attribs_inputs[1], attribs_inputs_regular_ig, delta=1e-7, ) # test layer outputs attribs = lig.attribute(inputs, baseline, target=0) ig = IntegratedGradients(lambda x, y: x + y) attribs_ig = ig.attribute( (net.m1(input1), net.m234(input2, input3, input4, 1)), (net.m1(baseline[0]), net.m234(baseline[1], baseline[2], baseline[3], 1)), target=0, ) assertTensorTuplesAlmostEqual(self, attribs, attribs_ig, delta=1e-7) def test_multiple_tensors_compare_with_exp_wo_mult_by_inputs(self) -> None: net = BasicModel_MultiLayer(multi_input_module=True) inp = torch.tensor([[0.0, 100.0, 0.0]]) base = torch.tensor([[0.0, 0.0, 0.0]]) target_layer = net.multi_relu layer_ig = LayerIntegratedGradients(net, target_layer) layer_ig_wo_mult_by_inputs = LayerIntegratedGradients( net, target_layer, multiply_by_inputs=False ) layer_act = LayerActivation(net, target_layer) attributions = layer_ig.attribute(inp, target=0) attributions_wo_mult_by_inputs = layer_ig_wo_mult_by_inputs.attribute( inp, target=0 ) inp_minus_baseline_activ = tuple( inp_act - base_act for inp_act, base_act in zip( layer_act.attribute(inp), layer_act.attribute(base) ) ) assertTensorTuplesAlmostEqual( self, tuple( attr_wo_mult * inp_min_base for attr_wo_mult, inp_min_base in zip( attributions_wo_mult_by_inputs, inp_minus_baseline_activ ) ), attributions, ) def _assert_compare_with_layer_conductance( self, model: Module, input: Tensor, attribute_to_layer_input: bool = False ): lc = LayerConductance(model, cast(Module, model.linear2)) # For large number of steps layer conductance and layer integrated gradients # become very close attribution, delta = lc.attribute( input, target=0, n_steps=1500, return_convergence_delta=True, attribute_to_layer_input=attribute_to_layer_input, ) lig = LayerIntegratedGradients(model, cast(Module, model.linear2)) attributions2, delta2 = lig.attribute( input, target=0, n_steps=1500, return_convergence_delta=True, attribute_to_layer_input=attribute_to_layer_input, ) assertTensorAlmostEqual( self, attribution, attributions2, delta=0.01, mode="max" ) assertTensorAlmostEqual(self, delta, delta2, delta=0.5, mode="max") def _assert_compare_with_emb_patching( self, input: Union[Tensor, Tuple[Tensor, ...]], baseline: Union[Tensor, Tuple[Tensor, ...]], additional_args: Union[None, Tuple[Tensor, ...]], multiply_by_inputs: bool = True, multiple_emb: bool = False, ): model = BasicEmbeddingModel(nested_second_embedding=True) if multiple_emb: module_list: List[Module] = [model.embedding1, model.embedding2] lig = LayerIntegratedGradients( model, module_list, multiply_by_inputs=multiply_by_inputs, ) else: lig = LayerIntegratedGradients( model, model.embedding1, multiply_by_inputs=multiply_by_inputs ) attributions, delta = lig.attribute( input, baselines=baseline, additional_forward_args=additional_args, return_convergence_delta=True, ) # now let's interpret with standard integrated gradients and # the embeddings for monkey patching e1 = configure_interpretable_embedding_layer(model, "embedding1") e1_input_emb = e1.indices_to_embeddings(input[0] if multiple_emb else input) e1_baseline_emb = e1.indices_to_embeddings( baseline[0] if multiple_emb else baseline ) input_emb = e1_input_emb baseline_emb = e1_baseline_emb e2 = None if multiple_emb: e2 = configure_interpretable_embedding_layer(model, "embedding2") e2_input_emb = e2.indices_to_embeddings(*input[1:]) e2_baseline_emb = e2.indices_to_embeddings(*baseline[1:]) input_emb = (e1_input_emb, e2_input_emb) baseline_emb = (e1_baseline_emb, e2_baseline_emb) ig = IntegratedGradients(model, multiply_by_inputs=multiply_by_inputs) attributions_with_ig, delta_with_ig = ig.attribute( input_emb, baselines=baseline_emb, additional_forward_args=additional_args, target=0, return_convergence_delta=True, ) remove_interpretable_embedding_layer(model, e1) if e2 is not None: remove_interpretable_embedding_layer(model, e2) self.assertEqual( isinstance(attributions_with_ig, tuple), isinstance(attributions, list) ) self.assertTrue( isinstance(attributions_with_ig, tuple) if multiple_emb else not isinstance(attributions_with_ig, tuple) ) # convert to tuple for comparison if not isinstance(attributions_with_ig, tuple): attributions = (attributions,) attributions_with_ig = (attributions_with_ig,) else: # convert list to tuple self.assertIsInstance(attributions, list) attributions = tuple(attributions) for attr_lig, attr_ig in zip(attributions, attributions_with_ig): self.assertEqual(cast(Tensor, attr_lig).shape, cast(Tensor, attr_ig).shape) assertTensorAlmostEqual(self, attr_lig, attr_ig, delta=0.05, mode="max") if multiply_by_inputs: assertTensorAlmostEqual(self, delta, delta_with_ig, delta=0.05, mode="max") def _assert_compare_with_expected( self, model: Module, target_layer: Module, test_input: Union[Tensor, Tuple[Tensor, ...]], expected_ig: Tuple[List[List[float]], ...], additional_input: Any = None, ): layer_ig = LayerIntegratedGradients(model, target_layer) attributions = layer_ig.attribute( test_input, target=0, additional_forward_args=additional_input ) assertTensorTuplesAlmostEqual(self, attributions, expected_ig, delta=0.01)
#!/usr/bin/env python3 import unittest from typing import Any, Tuple, Union import torch from captum._utils.typing import TensorLikeList from captum.attr._core.layer.grad_cam import LayerGradCam from tests.helpers.basic import assertTensorTuplesAlmostEqual, BaseTest from tests.helpers.basic_models import ( BasicModel_ConvNet_One_Conv, BasicModel_MultiLayer, ) from torch import Tensor from torch.nn import Module class Test(BaseTest): def test_simple_input_non_conv(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]], requires_grad=True) self._grad_cam_test_assert(net, net.linear0, inp, [[400.0]]) def test_simple_multi_input_non_conv(self) -> None: net = BasicModel_MultiLayer(multi_input_module=True) inp = torch.tensor([[0.0, 6.0, 0.0]], requires_grad=True) self._grad_cam_test_assert(net, net.multi_relu, inp, ([[21.0]], [[21.0]])) def test_simple_input_conv(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = torch.arange(16).view(1, 1, 4, 4).float() self._grad_cam_test_assert( net, net.conv1, inp, [[[[11.25, 13.5], [20.25, 22.5]]]] ) def test_simple_input_conv_split_channels(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = torch.arange(16).view(1, 1, 4, 4).float() expected_result = [ [ [[-3.7500, 3.0000], [23.2500, 30.0000]], [[15.0000, 10.5000], [-3.0000, -7.5000]], ] ] self._grad_cam_test_assert( net, net.conv1, inp, expected_activation=expected_result, attr_dim_summation=False, ) def test_simple_input_conv_no_grad(self) -> None: net = BasicModel_ConvNet_One_Conv() # this way we deactivate require_grad. Some models explicitly # do that before interpreting the model. for param in net.parameters(): param.requires_grad = False inp = torch.arange(16).view(1, 1, 4, 4).float() self._grad_cam_test_assert( net, net.conv1, inp, [[[[11.25, 13.5], [20.25, 22.5]]]] ) def test_simple_input_conv_relu(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = torch.arange(16).view(1, 1, 4, 4).float() self._grad_cam_test_assert(net, net.relu1, inp, [[[[0.0, 4.0], [28.0, 32.5]]]]) def test_simple_input_conv_without_final_relu(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = torch.arange(16).view(1, 1, 4, 4).float() # Adding negative value to test final relu is not applied by default inp[0, 0, 1, 1] = -4.0 inp.requires_grad_() self._grad_cam_test_assert( net, net.conv1, inp, 0.5625 * inp, attribute_to_layer_input=True ) def test_simple_input_conv_fc_with_final_relu(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = torch.arange(16).view(1, 1, 4, 4).float() # Adding negative value to test final relu is applied inp[0, 0, 1, 1] = -4.0 inp.requires_grad_() exp = 0.5625 * inp exp[0, 0, 1, 1] = 0.0 self._grad_cam_test_assert( net, net.conv1, inp, exp, attribute_to_layer_input=True, relu_attributions=True, ) def test_simple_multi_input_conv(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = torch.arange(16).view(1, 1, 4, 4).float() inp2 = torch.ones((1, 1, 4, 4)) self._grad_cam_test_assert( net, net.conv1, (inp, inp2), [[[[14.5, 19.0], [32.5, 37.0]]]] ) def _grad_cam_test_assert( self, model: Module, target_layer: Module, test_input: Union[Tensor, Tuple[Tensor, ...]], expected_activation: Union[ TensorLikeList, Tuple[TensorLikeList, ...], Tensor, Tuple[Tensor, ...], ], additional_input: Any = None, attribute_to_layer_input: bool = False, relu_attributions: bool = False, attr_dim_summation: bool = True, ): layer_gc = LayerGradCam(model, target_layer) self.assertFalse(layer_gc.multiplies_by_inputs) attributions = layer_gc.attribute( test_input, target=0, additional_forward_args=additional_input, attribute_to_layer_input=attribute_to_layer_input, relu_attributions=relu_attributions, attr_dim_summation=attr_dim_summation, ) assertTensorTuplesAlmostEqual( self, attributions, expected_activation, delta=0.01 ) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 from __future__ import print_function from typing import cast, List, Tuple, Union import torch from captum.attr._core.layer.layer_deep_lift import LayerDeepLift, LayerDeepLiftShap from tests.helpers.basic import ( assert_delta, assertTensorAlmostEqual, assertTensorTuplesAlmostEqual, BaseTest, ) from tests.helpers.basic_models import ( BasicModel_ConvNet, BasicModel_ConvNet_MaxPool3d, BasicModel_MaxPool_ReLU, BasicModel_MultiLayer, LinearMaxPoolLinearModel, ReLULinearModel, ) from torch import Tensor class TestDeepLift(BaseTest): def test_relu_layer_deeplift(self) -> None: model = ReLULinearModel(inplace=True) inputs, baselines = _create_inps_and_base_for_deeplift_neuron_layer_testing() layer_dl = LayerDeepLift(model, model.relu) attributions, delta = layer_dl.attribute( inputs, baselines, attribute_to_layer_input=True, return_convergence_delta=True, ) assertTensorAlmostEqual(self, attributions[0], [0.0, 15.0]) assert_delta(self, delta) def test_relu_layer_deeplift_wo_mutliplying_by_inputs(self) -> None: model = ReLULinearModel(inplace=True) inputs, baselines = _create_inps_and_base_for_deeplift_neuron_layer_testing() layer_dl = LayerDeepLift(model, model.relu, multiply_by_inputs=False) attributions = layer_dl.attribute( inputs, baselines, attribute_to_layer_input=True, ) assertTensorAlmostEqual(self, attributions[0], [0.0, 1.0]) def test_relu_layer_deeplift_multiple_output(self) -> None: model = BasicModel_MultiLayer(multi_input_module=True) inputs, baselines = _create_inps_and_base_for_deeplift_neuron_layer_testing() layer_dl = LayerDeepLift(model, model.multi_relu) attributions, delta = layer_dl.attribute( inputs[0], baselines[0], target=0, attribute_to_layer_input=False, return_convergence_delta=True, ) assertTensorTuplesAlmostEqual( self, attributions, ([[0.0, -1.0, -1.0, -1.0]], [[0.0, -1.0, -1.0, -1.0]]) ) assert_delta(self, delta) def test_relu_layer_deeplift_add_args(self) -> None: model = ReLULinearModel() inputs, baselines = _create_inps_and_base_for_deeplift_neuron_layer_testing() layer_dl = LayerDeepLift(model, model.relu) attributions, delta = layer_dl.attribute( inputs, baselines, additional_forward_args=3.0, attribute_to_layer_input=True, return_convergence_delta=True, ) assertTensorAlmostEqual(self, attributions[0], [0.0, 45.0]) assert_delta(self, delta) def test_linear_layer_deeplift(self) -> None: model = ReLULinearModel(inplace=True) inputs, baselines = _create_inps_and_base_for_deeplift_neuron_layer_testing() layer_dl = LayerDeepLift(model, model.l3) attributions, delta = layer_dl.attribute( inputs, baselines, attribute_to_layer_input=True, return_convergence_delta=True, ) assertTensorAlmostEqual(self, attributions[0], [0.0, 15.0]) assert_delta(self, delta) def test_relu_deeplift_with_custom_attr_func(self) -> None: model = ReLULinearModel() inputs, baselines = _create_inps_and_base_for_deeplift_neuron_layer_testing() attr_method = LayerDeepLift(model, model.l3) self._relu_custom_attr_func_assert(attr_method, inputs, baselines, [[2.0]]) def test_inplace_maxpool_relu_with_custom_attr_func(self) -> None: model = BasicModel_MaxPool_ReLU(inplace=True) inp = torch.tensor([[[1.0, 2.0, -4.0], [-3.0, -2.0, -1.0]]]) dl = LayerDeepLift(model, model.maxpool) def custom_att_func(mult, inp, baseline): assertTensorAlmostEqual(self, mult[0], [[[1.0], [0.0]]]) assertTensorAlmostEqual(self, inp[0], [[[2.0], [-1.0]]]) assertTensorAlmostEqual(self, baseline[0], [[[0.0], [0.0]]]) return mult dl.attribute(inp, custom_attribution_func=custom_att_func) def test_linear_layer_deeplift_batch(self) -> None: model = ReLULinearModel(inplace=True) _, baselines = _create_inps_and_base_for_deeplift_neuron_layer_testing() x1 = torch.tensor( [[-10.0, 1.0, -5.0], [-10.0, 1.0, -5.0], [-10.0, 1.0, -5.0]], requires_grad=True, ) x2 = torch.tensor( [[3.0, 3.0, 1.0], [3.0, 3.0, 1.0], [3.0, 3.0, 1.0]], requires_grad=True ) inputs = (x1, x2) layer_dl = LayerDeepLift(model, model.l3) attributions, delta = layer_dl.attribute( inputs, baselines, attribute_to_layer_input=True, return_convergence_delta=True, ) assertTensorAlmostEqual(self, attributions[0], [0.0, 15.0]) assert_delta(self, delta) attributions, delta = layer_dl.attribute( inputs, baselines, attribute_to_layer_input=False, return_convergence_delta=True, ) assertTensorAlmostEqual(self, attributions, [[15.0], [15.0], [15.0]]) assert_delta(self, delta) def test_relu_layer_deepliftshap(self) -> None: model = ReLULinearModel() ( inputs, baselines, ) = _create_inps_and_base_for_deepliftshap_neuron_layer_testing() layer_dl_shap = LayerDeepLiftShap(model, model.relu) attributions, delta = layer_dl_shap.attribute( inputs, baselines, attribute_to_layer_input=True, return_convergence_delta=True, ) assertTensorAlmostEqual(self, attributions[0], [0.0, 15.0]) assert_delta(self, delta) def test_relu_layer_deepliftshap_wo_mutliplying_by_inputs(self) -> None: model = ReLULinearModel() ( inputs, baselines, ) = _create_inps_and_base_for_deepliftshap_neuron_layer_testing() layer_dl_shap = LayerDeepLiftShap(model, model.relu, multiply_by_inputs=False) attributions = layer_dl_shap.attribute( inputs, baselines, attribute_to_layer_input=True, ) assertTensorAlmostEqual(self, attributions[0], [0.0, 1.0]) def test_relu_layer_deepliftshap_multiple_output(self) -> None: model = BasicModel_MultiLayer(multi_input_module=True) ( inputs, baselines, ) = _create_inps_and_base_for_deepliftshap_neuron_layer_testing() layer_dl = LayerDeepLiftShap(model, model.multi_relu) attributions, delta = layer_dl.attribute( inputs[0], baselines[0], target=0, attribute_to_layer_input=False, return_convergence_delta=True, ) assertTensorTuplesAlmostEqual( self, attributions, ([[0.0, -1.0, -1.0, -1.0]], [[0.0, -1.0, -1.0, -1.0]]) ) assert_delta(self, delta) def test_linear_layer_deepliftshap(self) -> None: model = ReLULinearModel(inplace=True) ( inputs, baselines, ) = _create_inps_and_base_for_deepliftshap_neuron_layer_testing() layer_dl_shap = LayerDeepLiftShap(model, model.l3) attributions, delta = layer_dl_shap.attribute( inputs, baselines, attribute_to_layer_input=True, return_convergence_delta=True, ) assertTensorAlmostEqual(self, attributions[0], [0.0, 15.0]) assert_delta(self, delta) attributions, delta = layer_dl_shap.attribute( inputs, baselines, attribute_to_layer_input=False, return_convergence_delta=True, ) assertTensorAlmostEqual(self, attributions, [[15.0]]) assert_delta(self, delta) def test_relu_deepliftshap_with_custom_attr_func(self) -> None: model = ReLULinearModel() ( inputs, baselines, ) = _create_inps_and_base_for_deepliftshap_neuron_layer_testing() attr_method = LayerDeepLiftShap(model, model.l3) self._relu_custom_attr_func_assert(attr_method, inputs, baselines, [[2.0]]) def test_lin_maxpool_lin_classification(self) -> None: inputs = torch.ones(2, 4) baselines = torch.tensor([[1, 2, 3, 9], [4, 8, 6, 7]]).float() model = LinearMaxPoolLinearModel() dl = LayerDeepLift(model, model.pool1) attrs, delta = dl.attribute( inputs, baselines, target=0, return_convergence_delta=True ) expected = [[[-8.0]], [[-7.0]]] expected_delta = [0.0, 0.0] assertTensorAlmostEqual(self, cast(Tensor, attrs), expected, 0.0001, "max") assertTensorAlmostEqual(self, delta, expected_delta, 0.0001, "max") def test_convnet_maxpool2d_classification(self) -> None: inputs = 100 * torch.randn(2, 1, 10, 10) model = BasicModel_ConvNet() model.eval() dl = LayerDeepLift(model, model.pool1) dl2 = LayerDeepLift(model, model.conv2) attr = dl.attribute(inputs, target=0) attr2 = dl2.attribute(inputs, target=0, attribute_to_layer_input=True) self.assertTrue(cast(Tensor, attr).sum() == cast(Tensor, attr2).sum()) def test_convnet_maxpool3d_classification(self) -> None: inputs = 100 * torch.randn(2, 1, 10, 10, 10) model = BasicModel_ConvNet_MaxPool3d() model.eval() dl = LayerDeepLift(model, model.pool1) dl2 = LayerDeepLift(model, model.conv2) # with self.assertRaises(AssertionError) doesn't run with Cicle CI # the error is being converted into RuntimeError attr = dl.attribute(inputs, target=0, attribute_to_layer_input=False) attr2 = dl2.attribute(inputs, target=0, attribute_to_layer_input=True) self.assertTrue(cast(Tensor, attr).sum() == cast(Tensor, attr2).sum()) def _relu_custom_attr_func_assert( self, attr_method: Union[LayerDeepLift, LayerDeepLiftShap], inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: Union[Tensor, Tuple[Tensor, ...]], expected: List[List[float]], ) -> None: def custom_attr_func(multipliers, inputs, baselines): return tuple(multiplier * 2 for multiplier in multipliers) attr = attr_method.attribute( inputs, baselines, custom_attribution_func=custom_attr_func, return_convergence_delta=True, ) assertTensorAlmostEqual(self, attr[0], expected, 1e-19) def _create_inps_and_base_for_deeplift_neuron_layer_testing() -> Tuple[ Tuple[Tensor, Tensor], Tuple[Tensor, Tensor] ]: x1 = torch.tensor([[-10.0, 1.0, -5.0]], requires_grad=True) x2 = torch.tensor([[3.0, 3.0, 1.0]], requires_grad=True) b1 = torch.tensor([[0.0, 0.0, 0.0]], requires_grad=True) b2 = torch.tensor([[0.0, 0.0, 0.0]], requires_grad=True) inputs = (x1, x2) baselines = (b1, b2) return inputs, baselines def _create_inps_and_base_for_deepliftshap_neuron_layer_testing() -> Tuple[ Tuple[Tensor, Tensor], Tuple[Tensor, Tensor] ]: x1 = torch.tensor([[-10.0, 1.0, -5.0]], requires_grad=True) x2 = torch.tensor([[3.0, 3.0, 1.0]], requires_grad=True) b1 = torch.tensor( [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], requires_grad=True ) b2 = torch.tensor( [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], requires_grad=True ) inputs = (x1, x2) baselines = (b1, b2) return inputs, baselines
#!/usr/bin/env python3 import unittest from typing import Any, List, Tuple, Union import torch from captum._utils.typing import BaselineType from captum.attr._core.layer.layer_feature_ablation import LayerFeatureAblation from tests.helpers.basic import assertTensorTuplesAlmostEqual, BaseTest from tests.helpers.basic_models import ( BasicModel_ConvNet_One_Conv, BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, ) from torch import Tensor from torch.nn import Module class Test(BaseTest): def test_simple_ablation_with_mask(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) self._ablation_test_assert( net, net.linear0, inp, ([280.0, 280.0, 120.0],), layer_mask=torch.tensor([[0, 0, 1]]), perturbations_per_eval=(1, 2, 3), attribute_to_layer_input=True, ) def test_multi_input_ablation(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [2.0, 10.0, 3.0]]) baseline = torch.tensor([[1.0, 2.0, 3.0]]) self._ablation_test_assert( net, net.model.linear1, (inp1, inp2, inp3), [[168.0, 992.0, 148.0], [84.0, 632.0, 120.0]], additional_input=(1,), baselines=baseline, perturbations_per_eval=(1, 2, 3), attribute_to_layer_input=True, ) self._ablation_test_assert( net, net.model.linear0, (inp1, inp2, inp3), [[168.0, 992.0, 148.0], [84.0, 632.0, 120.0]], additional_input=(1,), baselines=baseline, perturbations_per_eval=(1, 2, 3), attribute_to_layer_input=False, ) def test_multi_input_ablation_with_layer_mask(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [2.0, 10.0, 3.0]]) baseline = torch.tensor([[1.0, 2.0, 3.0]]) layer_mask = torch.tensor([[0, 1, 0], [0, 1, 2]]) self._ablation_test_assert( net, net.model.linear1, (inp1, inp2, inp3), [[316.0, 992.0, 316.0], [84.0, 632.0, 120.0]], additional_input=(1,), baselines=baseline, perturbations_per_eval=(1, 2, 3), layer_mask=layer_mask, attribute_to_layer_input=True, ) self._ablation_test_assert( net, net.model.linear0, (inp1, inp2, inp3), [[316.0, 992.0, 316.0], [84.0, 632.0, 120.0]], additional_input=(1,), baselines=baseline, layer_mask=layer_mask, perturbations_per_eval=(1, 2, 3), ) def test_simple_multi_input_conv_intermediate(self) -> None: net = BasicModel_ConvNet_One_Conv(inplace=True) inp = torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) inp2 = torch.ones((1, 1, 4, 4)) self._ablation_test_assert( net, net.relu1, (inp, inp2), [[[[4.0, 13.0], [40.0, 49.0]], [[0, 0], [-15.0, -24.0]]]], perturbations_per_eval=(1, 2, 4, 8, 12, 16), ) self._ablation_test_assert( net, net.relu1, (inp, inp2), ([[[4.0, 13.0], [40.0, 49.0]], [[0, 0], [-15.0, -24.0]]],), baselines=torch.tensor( [[[-4.0, -13.0], [-2.0, -2.0]], [[0, 0], [0.0, 0.0]]] ), perturbations_per_eval=(1, 2, 4, 8, 12, 16), attribute_to_layer_input=True, ) self._ablation_test_assert( net, net.relu1, (inp, inp2), [[[[17.0, 17.0], [67.0, 67.0]], [[0, 0], [-39.0, -39.0]]]], perturbations_per_eval=(1, 2, 4), layer_mask=torch.tensor([[[[0, 0], [1, 1]], [[2, 2], [3, 3]]]]), ) def test_simple_multi_output_ablation(self) -> None: net = BasicModel_MultiLayer(multi_input_module=True) inp = torch.tensor([[0.0, 6.0, 0.0]]) self._ablation_test_assert( net, net.multi_relu, inp, ([[0.0, 7.0, 7.0, 7.0]], [[0.0, 7.0, 7.0, 7.0]]) ) def test_simple_multi_output_input_ablation(self) -> None: net = BasicModel_MultiLayer(multi_input_module=True) inp = torch.tensor([[0.0, 6.0, 0.0]]) self._ablation_test_assert( net, net.multi_relu, inp, ([[0.0, 7.0, 7.0, 7.0]], [[0.0, 7.0, 7.0, 7.0]]), attribute_to_layer_input=True, ) def _ablation_test_assert( self, model: Module, layer: Module, test_input: Union[Tensor, Tuple[Tensor, ...]], expected_ablation: Union[List, Tuple], layer_mask: Union[None, Tensor, Tuple[Tensor, ...]] = None, additional_input: Any = None, perturbations_per_eval: Tuple[int, ...] = (1,), baselines: BaselineType = None, target: Union[None, int] = 0, attribute_to_layer_input: bool = False, ) -> None: for batch_size in perturbations_per_eval: ablation = LayerFeatureAblation(model, layer) attributions = ablation.attribute( test_input, target=target, layer_mask=layer_mask, additional_forward_args=additional_input, layer_baselines=baselines, perturbations_per_eval=batch_size, attribute_to_layer_input=attribute_to_layer_input, ) assertTensorTuplesAlmostEqual(self, attributions, expected_ablation) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 import torch import torch.nn as nn from captum.attr import LayerLRP from captum.attr._utils.lrp_rules import Alpha1_Beta0_Rule, EpsilonRule, GammaRule from ...helpers.basic import assertTensorAlmostEqual, BaseTest from ...helpers.basic_models import BasicModel_ConvNet_One_Conv, SimpleLRPModel def _get_basic_config(): input = torch.arange(16).view(1, 1, 4, 4).float() return BasicModel_ConvNet_One_Conv(), input def _get_simple_model(inplace=False): model = SimpleLRPModel(inplace) inputs = torch.tensor([[1.0, 2.0, 3.0]]) return model, inputs def _get_simple_model2(inplace=False): class MyModel(nn.Module): def __init__(self, inplace) -> None: super().__init__() self.lin = nn.Linear(2, 2) self.lin.weight = nn.Parameter(torch.ones(2, 2)) self.relu = torch.nn.ReLU(inplace=inplace) def forward(self, input): return self.relu(self.lin(input))[0].unsqueeze(0) input = torch.tensor([[1.0, 2.0], [1.0, 3.0]]) model = MyModel(inplace) return model, input class Test(BaseTest): def test_lrp_creator(self) -> None: model, _ = _get_basic_config() model.conv1.rule = 1 self.assertRaises(TypeError, LayerLRP, model, model.conv1) def test_lrp_creator_activation(self) -> None: model, inputs = _get_basic_config() model.add_module("sigmoid", nn.Sigmoid()) lrp = LayerLRP(model, model.conv1) self.assertRaises(TypeError, lrp.attribute, inputs) def test_lrp_basic_attributions(self): model, inputs = _get_basic_config() logits = model(inputs) score, classIndex = torch.max(logits, 1) lrp = LayerLRP(model, model.conv1) relevance, delta = lrp.attribute( inputs, classIndex.item(), return_convergence_delta=True ) assertTensorAlmostEqual( self, relevance[0], torch.Tensor([[[0, 4], [31, 40]], [[0, 0], [-6, -15]]]) ) assertTensorAlmostEqual(self, delta, torch.Tensor([0])) def test_lrp_simple_attributions(self): model, inputs = _get_simple_model(inplace=False) model.eval() model.linear.rule = EpsilonRule() model.linear2.rule = EpsilonRule() lrp_upper = LayerLRP(model, model.linear2) relevance_upper, delta = lrp_upper.attribute( inputs, attribute_to_layer_input=True, return_convergence_delta=True ) lrp_lower = LayerLRP(model, model.linear) relevance_lower = lrp_lower.attribute(inputs) assertTensorAlmostEqual(self, relevance_lower[0], relevance_upper[0]) self.assertEqual(delta.item(), 0) def test_lrp_simple_repeat_attributions(self) -> None: model, inputs = _get_simple_model() model.eval() model.linear.rule = GammaRule() model.linear2.rule = Alpha1_Beta0_Rule() output = model(inputs) lrp = LayerLRP(model, model.linear) _ = lrp.attribute(inputs) output_after = model(inputs) assertTensorAlmostEqual(self, output, output_after) def test_lrp_simple_inplaceReLU(self) -> None: model_default, inputs = _get_simple_model() model_inplace, _ = _get_simple_model(inplace=True) for model in [model_default, model_inplace]: model.eval() model.linear.rule = EpsilonRule() model.linear2.rule = EpsilonRule() lrp_default = LayerLRP(model_default, model_default.linear2) lrp_inplace = LayerLRP(model_inplace, model_inplace.linear2) relevance_default = lrp_default.attribute(inputs, attribute_to_layer_input=True) relevance_inplace = lrp_inplace.attribute(inputs, attribute_to_layer_input=True) assertTensorAlmostEqual(self, relevance_default[0], relevance_inplace[0]) def test_lrp_simple_tanh(self) -> None: class Model(nn.Module): def __init__(self) -> None: super(Model, self).__init__() self.linear = nn.Linear(3, 3, bias=False) self.linear.weight.data.fill_(0.1) self.tanh = torch.nn.Tanh() self.linear2 = nn.Linear(3, 1, bias=False) self.linear2.weight.data.fill_(0.1) def forward(self, x): return self.linear2(self.tanh(self.linear(x))) model = Model() _, inputs = _get_simple_model() lrp = LayerLRP(model, model.linear) relevance = lrp.attribute(inputs) assertTensorAlmostEqual( self, relevance[0], torch.Tensor([0.0537, 0.0537, 0.0537]) ) # Result if tanh is skipped for propagation def test_lrp_simple_attributions_GammaRule(self) -> None: model, inputs = _get_simple_model() with torch.no_grad(): model.linear.weight.data[0][0] = -2 model.eval() model.linear.rule = GammaRule(gamma=1) model.linear2.rule = GammaRule() lrp = LayerLRP(model, model.linear) relevance = lrp.attribute(inputs) assertTensorAlmostEqual(self, relevance[0], torch.tensor([24.0, 36.0, 36.0])) def test_lrp_simple_attributions_AlphaBeta(self) -> None: model, inputs = _get_simple_model() with torch.no_grad(): model.linear.weight.data[0][0] = -2 model.eval() model.linear.rule = Alpha1_Beta0_Rule() model.linear2.rule = Alpha1_Beta0_Rule() lrp = LayerLRP(model, model.linear) relevance = lrp.attribute(inputs) assertTensorAlmostEqual(self, relevance[0], torch.tensor([24.0, 36.0, 36.0])) def test_lrp_simple_attributions_all_layers(self) -> None: model, inputs = _get_simple_model(inplace=False) model.eval() model.linear.rule = EpsilonRule() model.linear2.rule = EpsilonRule() layers = [model.linear, model.linear2] lrp = LayerLRP(model, layers) relevance = lrp.attribute(inputs, attribute_to_layer_input=True) self.assertEqual(len(relevance), 2) assertTensorAlmostEqual(self, relevance[0][0], torch.tensor([18.0, 36.0, 54.0])) def test_lrp_simple_attributions_all_layers_delta(self) -> None: model, inputs = _get_simple_model(inplace=False) model.eval() model.linear.rule = EpsilonRule() model.linear2.rule = EpsilonRule() layers = [model.linear, model.linear2] lrp = LayerLRP(model, layers) inputs = torch.cat((inputs, 2 * inputs)) relevance, delta = lrp.attribute( inputs, attribute_to_layer_input=True, return_convergence_delta=True ) self.assertEqual(len(relevance), len(delta)) assertTensorAlmostEqual( self, relevance[0], torch.tensor([[18.0, 36.0, 54.0], [36.0, 72.0, 108.0]]), )
#!/usr/bin/env python3 import unittest from typing import Any, List, Tuple, Union import torch from captum._utils.typing import ModuleOrModuleList from captum.attr._core.layer.layer_activation import LayerActivation from captum.attr._core.layer.layer_gradient_x_activation import LayerGradientXActivation from tests.helpers.basic import assertTensorTuplesAlmostEqual, BaseTest from tests.helpers.basic_models import ( BasicEmbeddingModel, BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, ) from torch import Tensor from torch.nn import Module class Test(BaseTest): def test_simple_input_gradient_activation(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]], requires_grad=True) self._layer_activation_test_assert(net, net.linear0, inp, [[0.0, 400.0, 0.0]]) def test_simple_input_gradient_activation_no_grad(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]], requires_grad=True) with torch.no_grad(): self._layer_activation_test_assert( net, net.linear0, inp, [[0.0, 400.0, 0.0]] ) def test_simple_linear_gradient_activation(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]]) self._layer_activation_test_assert( net, net.linear1, inp, [[90.0, 101.0, 101.0, 101.0]] ) def test_multi_layer_linear_gradient_activation(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]]) module_list: List[Module] = [net.linear0, net.linear1] self._layer_activation_test_assert( net, module_list, inp, ([[0.0, 400.0, 0.0]], [[90.0, 101.0, 101.0, 101.0]]), ) def test_simple_linear_gradient_activation_no_grad(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]]) # this way we deactivate require_grad. Some models explicitly # do that before interpreting the model. for param in net.parameters(): param.requires_grad = False self._layer_activation_test_assert( net, net.linear1, inp, [[90.0, 101.0, 101.0, 101.0]] ) def test_simple_multi_gradient_activation(self) -> None: net = BasicModel_MultiLayer(multi_input_module=True) inp = torch.tensor([[3.0, 4.0, 0.0]]) self._layer_activation_test_assert( net, net.multi_relu, inp, ([[0.0, 8.0, 8.0, 8.0]], [[0.0, 8.0, 8.0, 8.0]]) ) def test_simple_relu_gradient_activation(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[3.0, 4.0, 0.0]], requires_grad=True) self._layer_activation_test_assert(net, net.relu, inp, [[0.0, 8.0, 8.0, 8.0]]) def test_multi_layer_multi_gradient_activation(self) -> None: net = BasicModel_MultiLayer(multi_input_module=True) inp = torch.tensor([[3.0, 4.0, 0.0]]) module_list: List[Module] = [net.multi_relu, net.linear0] self._layer_activation_test_assert( net, module_list, inp, [([[0.0, 8.0, 8.0, 8.0]], [[0.0, 8.0, 8.0, 8.0]]), [[9.0, 12.0, 0.0]]], ) def test_simple_output_gradient_activation(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]]) self._layer_activation_test_assert(net, net.linear2, inp, [[392.0, 0.0]]) def test_simple_gradient_activation_multi_input_linear2(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[0.0, 10.0, 0.0]]) inp2 = torch.tensor([[0.0, 10.0, 0.0]]) inp3 = torch.tensor([[0.0, 5.0, 0.0]]) self._layer_activation_test_assert( net, net.model.linear2, (inp1, inp2, inp3), [[392.0, 0.0]], (4,) ) def test_simple_gradient_activation_multi_input_relu(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[0.0, 10.0, 1.0]]) inp2 = torch.tensor([[0.0, 4.0, 5.0]]) inp3 = torch.tensor([[0.0, 0.0, 0.0]]) self._layer_activation_test_assert( net, net.model.relu, (inp1, inp2), [[90.0, 101.0, 101.0, 101.0]], (inp3, 5) ) def test_gradient_activation_embedding(self) -> None: input1 = torch.tensor([2, 5, 0, 1]) input2 = torch.tensor([3, 0, 0, 2]) model = BasicEmbeddingModel() layer_act = LayerGradientXActivation(model, model.embedding1) self.assertEqual( list(layer_act.attribute(inputs=(input1, input2)).shape), [4, 100] ) def test_gradient_activation_embedding_no_grad(self) -> None: input1 = torch.tensor([2, 5, 0, 1]) input2 = torch.tensor([3, 0, 0, 2]) model = BasicEmbeddingModel() for param in model.parameters(): param.requires_grad = False with torch.no_grad(): layer_act = LayerGradientXActivation(model, model.embedding1) self.assertEqual( list(layer_act.attribute(inputs=(input1, input2)).shape), [4, 100] ) def _layer_activation_test_assert( self, model: Module, target_layer: ModuleOrModuleList, test_input: Union[Tensor, Tuple[Tensor, ...]], expected_activation: Union[List, Tuple[List[List[float]], ...]], additional_input: Any = None, ) -> None: layer_act = LayerGradientXActivation(model, target_layer) self.assertTrue(layer_act.multiplies_by_inputs) attributions = layer_act.attribute( test_input, target=0, additional_forward_args=additional_input ) if isinstance(target_layer, Module): assertTensorTuplesAlmostEqual( self, attributions, expected_activation, delta=0.01 ) else: for i in range(len(target_layer)): assertTensorTuplesAlmostEqual( self, attributions[i], expected_activation[i], delta=0.01 ) # test Layer Gradient without multiplying with activations layer_grads = LayerGradientXActivation( model, target_layer, multiply_by_inputs=False ) layer_act = LayerActivation(model, target_layer) self.assertFalse(layer_grads.multiplies_by_inputs) grads = layer_grads.attribute( test_input, target=0, additional_forward_args=additional_input ) acts = layer_act.attribute(test_input, additional_forward_args=additional_input) if isinstance(target_layer, Module): assertTensorTuplesAlmostEqual( self, attributions, tuple(act * grad for act, grad in zip(acts, grads)), delta=0.01, ) else: for i in range(len(target_layer)): assertTensorTuplesAlmostEqual( self, attributions[i], tuple(act * grad for act, grad in zip(acts[i], grads[i])), delta=0.01, ) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 import unittest from typing import Any, cast, List, Tuple, Union import torch from captum._utils.typing import BaselineType from captum.attr._core.layer.layer_conductance import LayerConductance from tests.attr.helpers.conductance_reference import ConductanceReference from tests.helpers.basic import ( assertTensorAlmostEqual, assertTensorTuplesAlmostEqual, BaseTest, ) from tests.helpers.basic_models import ( BasicModel_ConvNet, BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, ) from torch import Tensor from torch.nn import Module class Test(BaseTest): def test_simple_input_conductance(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]]) self._conductance_test_assert(net, net.linear0, inp, [[0.0, 390.0, 0.0]]) def test_simple_input_multi_conductance(self) -> None: net = BasicModel_MultiLayer(multi_input_module=True) inp = torch.tensor([[0.0, 100.0, 0.0]]) self._conductance_test_assert( net, net.multi_relu, inp, ([[90.0, 100.0, 100.0, 100.0]], [[90.0, 100.0, 100.0, 100.0]]), ) def test_simple_input_with_scalar_baseline_conductance(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]]) self._conductance_test_assert( net, net.linear0, inp, [[0.0, 390.0, 0.0]], baselines=0.0 ) def test_simple_linear_conductance(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]], requires_grad=True) self._conductance_test_assert( net, net.linear1, inp, [[90.0, 100.0, 100.0, 100.0]] ) def test_simple_relu_conductance(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]]) self._conductance_test_assert(net, net.relu, inp, [[90.0, 100.0, 100.0, 100.0]]) def test_simple_output_conductance(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]], requires_grad=True) self._conductance_test_assert(net, net.linear2, inp, [[390.0, 0.0]]) def test_simple_multi_input_linear2_conductance(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[0.0, 10.0, 0.0]]) inp2 = torch.tensor([[0.0, 10.0, 0.0]]) inp3 = torch.tensor([[0.0, 5.0, 0.0]]) self._conductance_test_assert( net, net.model.linear2, (inp1, inp2, inp3), [[390.0, 0.0]], additional_args=(4,), ) def test_simple_multi_input_relu_conductance(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[0.0, 10.0, 1.0]]) inp2 = torch.tensor([[0.0, 4.0, 5.0]]) inp3 = torch.tensor([[0.0, 0.0, 0.0]]) self._conductance_test_assert( net, net.model.relu, (inp1, inp2), [[90.0, 100.0, 100.0, 100.0]], additional_args=(inp3, 5), ) def test_simple_multi_input_relu_conductance_batch(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[0.0, 10.0, 1.0], [0.0, 0.0, 10.0]]) inp2 = torch.tensor([[0.0, 4.0, 5.0], [0.0, 0.0, 10.0]]) inp3 = torch.tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 5.0]]) self._conductance_test_assert( net, net.model.relu, (inp1, inp2), [[90.0, 100.0, 100.0, 100.0], [100.0, 100.0, 100.0, 100.0]], additional_args=(inp3, 5), ) def test_matching_conv1_conductance(self) -> None: net = BasicModel_ConvNet() inp = 100 * torch.randn(1, 1, 10, 10, requires_grad=True) self._conductance_reference_test_assert(net, net.conv1, inp, n_steps=100) def test_matching_pool1_conductance(self) -> None: net = BasicModel_ConvNet() inp = 100 * torch.randn(1, 1, 10, 10) self._conductance_reference_test_assert(net, net.pool1, inp) def test_matching_conv2_conductance(self) -> None: net = BasicModel_ConvNet() inp = 100 * torch.randn(1, 1, 10, 10, requires_grad=True) self._conductance_reference_test_assert(net, net.conv2, inp) def test_matching_pool2_conductance(self) -> None: net = BasicModel_ConvNet() inp = 100 * torch.randn(1, 1, 10, 10) self._conductance_reference_test_assert(net, net.pool2, inp) def test_matching_conv_multi_input_conductance(self) -> None: net = BasicModel_ConvNet() inp = 100 * torch.randn(4, 1, 10, 10, requires_grad=True) self._conductance_reference_test_assert(net, net.relu3, inp) def test_matching_conv_with_baseline_conductance(self) -> None: net = BasicModel_ConvNet() inp = 100 * torch.randn(3, 1, 10, 10) baseline = 100 * torch.randn(3, 1, 10, 10, requires_grad=True) self._conductance_reference_test_assert(net, net.fc1, inp, baseline) def _conductance_test_assert( self, model: Module, target_layer: Module, test_input: Union[Tensor, Tuple[Tensor, ...]], expected_conductance: Union[List[List[float]], Tuple[List[List[float]], ...]], baselines: BaselineType = None, additional_args: Any = None, ) -> None: cond = LayerConductance(model, target_layer) self.assertTrue(cond.multiplies_by_inputs) for internal_batch_size in (None, 4, 20): attributions, delta = cond.attribute( test_input, baselines=baselines, target=0, n_steps=500, method="gausslegendre", additional_forward_args=additional_args, internal_batch_size=internal_batch_size, return_convergence_delta=True, ) delta_condition = (delta.abs() < 0.01).all() self.assertTrue( delta_condition, "Sum of attributions does {}" " not match the difference of endpoints.".format(delta), ) assertTensorTuplesAlmostEqual( self, attributions, expected_conductance, delta=0.1 ) def _conductance_reference_test_assert( self, model: Module, target_layer: Module, test_input: Tensor, test_baseline: Union[None, Tensor] = None, n_steps=300, ) -> None: layer_output = None def forward_hook(module, inp, out): nonlocal layer_output layer_output = out hook = target_layer.register_forward_hook(forward_hook) final_output = model(test_input) layer_output = cast(Tensor, layer_output) hook.remove() target_index = torch.argmax(torch.sum(final_output, 0)) cond = LayerConductance(model, target_layer) cond_ref = ConductanceReference(model, target_layer) attributions, delta = cast( Tuple[Tensor, Tensor], cond.attribute( test_input, baselines=test_baseline, target=target_index, n_steps=n_steps, method="gausslegendre", return_convergence_delta=True, ), ) delta_condition = (delta.abs() < 0.005).all() self.assertTrue( delta_condition, "Sum of attribution values does {} " " not match the difference of endpoints.".format(delta), ) attributions_reference = cond_ref.attribute( test_input, baselines=test_baseline, target=target_index, n_steps=n_steps, method="gausslegendre", ) # Check that layer output size matches conductance size. self.assertEqual(layer_output.shape, attributions.shape) # Check that reference implementation output matches standard implementation. assertTensorAlmostEqual( self, attributions, attributions_reference, delta=0.07, mode="max", ) # Test if batching is working correctly for inputs with multiple examples if test_input.shape[0] > 1: for i in range(test_input.shape[0]): single_attributions = cast( Tensor, cond.attribute( test_input[i : i + 1], baselines=test_baseline[i : i + 1] if test_baseline is not None else None, target=target_index, n_steps=n_steps, method="gausslegendre", ), ) # Verify that attributions when passing example independently # matches corresponding attribution of batched input. assertTensorAlmostEqual( self, attributions[i : i + 1], single_attributions, delta=0.01, mode="max", ) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 import unittest from typing import Any, List, Tuple, Union import torch from captum._utils.typing import BaselineType from captum.attr._core.layer.internal_influence import InternalInfluence from tests.helpers.basic import assertTensorTuplesAlmostEqual, BaseTest from tests.helpers.basic_models import ( BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, ) from torch import Tensor from torch.nn import Module class Test(BaseTest): def test_simple_input_internal_inf(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]], requires_grad=True) self._internal_influence_test_assert(net, net.linear0, inp, [[3.9, 3.9, 3.9]]) def test_simple_input_multi_internal_inf(self) -> None: net = BasicModel_MultiLayer(multi_input_module=True) inp = torch.tensor([[0.0, 100.0, 0.0]], requires_grad=True) self._internal_influence_test_assert( net, net.multi_relu, inp, ([[0.9, 1.0, 1.0, 1.0]], [[0.9, 1.0, 1.0, 1.0]]), attribute_to_layer_input=True, ) def test_simple_linear_internal_inf(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]]) self._internal_influence_test_assert( net, net.linear1, inp, [[0.9, 1.0, 1.0, 1.0]] ) def test_simple_relu_input_internal_inf_inplace(self) -> None: net = BasicModel_MultiLayer(inplace=True) inp = torch.tensor([[0.0, 100.0, 0.0]]) self._internal_influence_test_assert( net, net.relu, inp, ([0.9, 1.0, 1.0, 1.0],), attribute_to_layer_input=True ) def test_simple_linear_internal_inf_inplace(self) -> None: net = BasicModel_MultiLayer(inplace=True) inp = torch.tensor([[0.0, 100.0, 0.0]]) self._internal_influence_test_assert( net, net.linear1, inp, [[0.9, 1.0, 1.0, 1.0]] ) def test_simple_relu_internal_inf(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[3.0, 4.0, 0.0]], requires_grad=True) self._internal_influence_test_assert(net, net.relu, inp, [[1.0, 1.0, 1.0, 1.0]]) def test_simple_output_internal_inf(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]]) self._internal_influence_test_assert(net, net.linear2, inp, [[1.0, 0.0]]) def test_simple_with_baseline_internal_inf(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 80.0, 0.0]]) base = torch.tensor([[0.0, -20.0, 0.0]]) self._internal_influence_test_assert( net, net.linear1, inp, [[0.7, 0.8, 0.8, 0.8]], base ) def test_simple_multi_input_linear2_internal_inf(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[0.0, 10.0, 0.0]]) inp2 = torch.tensor([[0.0, 10.0, 0.0]]) inp3 = torch.tensor([[0.0, 5.0, 0.0]]) self._internal_influence_test_assert( net, net.model.linear2, (inp1, inp2, inp3), [[1.0, 0.0]], additional_args=(4,), ) def test_simple_multi_input_relu_internal_inf(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[0.0, 10.0, 1.0]]) inp2 = torch.tensor([[0.0, 4.0, 5.0]]) inp3 = torch.tensor([[0.0, 0.0, 0.0]]) self._internal_influence_test_assert( net, net.model.relu, (inp1, inp2), [[1.0, 1.0, 1.0, 1.0]], additional_args=(inp3, 5), ) def test_simple_multi_input_batch_relu_internal_inf(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[0.0, 6.0, 14.0], [0.0, 80.0, 0.0]]) inp2 = torch.tensor([[0.0, 6.0, 14.0], [0.0, 20.0, 0.0]]) inp3 = torch.tensor([[0.0, 0.0, 0.0], [0.0, 20.0, 0.0]]) self._internal_influence_test_assert( net, net.model.linear1, (inp1, inp2), [[0.95, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]], additional_args=(inp3, 5), ) def test_multiple_linear_internal_inf(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor( [ [0.0, 100.0, 0.0], [0.0, 100.0, 0.0], [0.0, 100.0, 0.0], [0.0, 100.0, 0.0], ], requires_grad=True, ) self._internal_influence_test_assert( net, net.linear1, inp, [ [0.9, 1.0, 1.0, 1.0], [0.9, 1.0, 1.0, 1.0], [0.9, 1.0, 1.0, 1.0], [0.9, 1.0, 1.0, 1.0], ], ) def test_multiple_with_baseline_internal_inf(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 80.0, 0.0], [30.0, 30.0, 0.0]], requires_grad=True) base = torch.tensor( [[0.0, -20.0, 0.0], [-20.0, -20.0, 0.0]], requires_grad=True ) self._internal_influence_test_assert( net, net.linear1, inp, [[0.7, 0.8, 0.8, 0.8], [0.5, 0.6, 0.6, 0.6]], base ) def _internal_influence_test_assert( self, model: Module, target_layer: Module, test_input: Union[Tensor, Tuple[Tensor, ...]], expected_activation: Union[ float, List[List[float]], Tuple[List[float], ...], Tuple[List[List[float]], ...], ], baseline: BaselineType = None, additional_args: Any = None, attribute_to_layer_input: bool = False, ): for internal_batch_size in [None, 5, 20]: int_inf = InternalInfluence(model, target_layer) self.assertFalse(int_inf.multiplies_by_inputs) attributions = int_inf.attribute( test_input, baselines=baseline, target=0, n_steps=500, method="riemann_trapezoid", additional_forward_args=additional_args, internal_batch_size=internal_batch_size, attribute_to_layer_input=attribute_to_layer_input, ) assertTensorTuplesAlmostEqual( self, attributions, expected_activation, delta=0.01, mode="max" ) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 import unittest from typing import Any, List, Tuple, Union import torch import torch.nn as nn from captum.attr._core.layer.layer_activation import LayerActivation from tests.helpers.basic import ( assertTensorAlmostEqual, assertTensorTuplesAlmostEqual, BaseTest, ) from tests.helpers.basic_models import ( BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, Conv1dSeqModel, ) from torch import Tensor from torch.nn import Module class Test(BaseTest): def test_simple_input_activation(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]], requires_grad=True) self._layer_activation_test_assert(net, net.linear0, inp, [[0.0, 100.0, 0.0]]) def test_simple_linear_activation(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]]) self._layer_activation_test_assert( net, net.linear1, inp, [[90.0, 101.0, 101.0, 101.0]] ) def test_simple_multi_linear_activation(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]]) self._multiple_layer_activation_test_assert( net, [net.linear1, net.linear0], inp, ([[90.0, 101.0, 101.0, 101.0]], [[0.0, 100.0, 0.0]]), ) def test_simple_relu_activation_input_inplace(self) -> None: net = BasicModel_MultiLayer(inplace=True) inp = torch.tensor([[2.0, -5.0, 4.0]]) self._layer_activation_test_assert( net, net.relu, inp, ([-9.0, 2.0, 2.0, 2.0],), attribute_to_layer_input=True ) def test_simple_linear_activation_inplace(self) -> None: net = BasicModel_MultiLayer(inplace=True) inp = torch.tensor([[2.0, -5.0, 4.0]]) self._layer_activation_test_assert( net, net.linear1, inp, [[-9.0, 2.0, 2.0, 2.0]] ) def test_simple_relu_activation(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[3.0, 4.0, 0.0]], requires_grad=True) self._layer_activation_test_assert(net, net.relu, inp, [[0.0, 8.0, 8.0, 8.0]]) def test_simple_output_activation(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 100.0, 0.0]]) self._layer_activation_test_assert(net, net.linear2, inp, [[392.0, 394.0]]) def test_simple_multi_output_activation(self) -> None: net = BasicModel_MultiLayer(multi_input_module=True) inp = torch.tensor([[0.0, 6.0, 0.0]]) self._layer_activation_test_assert( net, net.multi_relu, inp, ([[0.0, 7.0, 7.0, 7.0]], [[0.0, 7.0, 7.0, 7.0]]) ) def test_simple_multi_layer_multi_output_activation(self) -> None: net = BasicModel_MultiLayer(multi_input_module=True) inp = torch.tensor([[0.0, 6.0, 0.0]]) self._multiple_layer_activation_test_assert( net, [net.multi_relu, net.linear0, net.linear1], inp, [ ([[0.0, 7.0, 7.0, 7.0]], [[0.0, 7.0, 7.0, 7.0]]), [[0.0, 6.0, 0.0]], [[-4.0, 7.0, 7.0, 7.0]], ], ) def test_simple_multi_input_activation(self) -> None: net = BasicModel_MultiLayer(multi_input_module=True) inp = torch.tensor([[0.0, 6.0, 0.0]]) self._layer_activation_test_assert( net, net.multi_relu, inp, ([[-4.0, 7.0, 7.0, 7.0]], [[-4.0, 7.0, 7.0, 7.0]]), attribute_to_layer_input=True, ) def test_simple_multi_input_linear2_activation(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[0.0, 10.0, 0.0]]) inp2 = torch.tensor([[0.0, 10.0, 0.0]]) inp3 = torch.tensor([[0.0, 5.0, 0.0]]) self._layer_activation_test_assert( net, net.model.linear2, (inp1, inp2, inp3), [[392.0, 394.0]], (4,) ) def test_simple_multi_input_relu_activation(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[0.0, 10.0, 1.0]]) inp2 = torch.tensor([[0.0, 4.0, 5.0]]) inp3 = torch.tensor([[0.0, 0.0, 0.0]]) self._layer_activation_test_assert( net, net.model.relu, (inp1, inp2), [[90.0, 101.0, 101.0, 101.0]], (inp3, 5) ) def test_sequential_in_place(self) -> None: model = nn.Sequential(nn.Conv2d(3, 4, 3), nn.ReLU(inplace=True)) layer_act = LayerActivation(model, model[0]) input = torch.randn(1, 3, 5, 5) assertTensorAlmostEqual(self, layer_act.attribute(input), model[0](input)) def test_sequential_module(self) -> None: model = Conv1dSeqModel() layer_act = LayerActivation(model, model.seq) input = torch.randn(2, 4, 1000) out = model(input) assertTensorAlmostEqual(self, layer_act.attribute(input), out) def _layer_activation_test_assert( self, model: Module, target_layer: Module, test_input: Union[Tensor, Tuple[Tensor, ...]], expected_activation: Union[ List[List[float]], Tuple[List[float], ...], Tuple[List[List[float]], ...] ], additional_input: Any = None, attribute_to_layer_input: bool = False, ): layer_act = LayerActivation(model, target_layer) self.assertTrue(layer_act.multiplies_by_inputs) attributions = layer_act.attribute( test_input, additional_forward_args=additional_input, attribute_to_layer_input=attribute_to_layer_input, ) assertTensorTuplesAlmostEqual( self, attributions, expected_activation, delta=0.01 ) def _multiple_layer_activation_test_assert( self, model: Module, target_layers: List[Module], test_input: Union[Tensor, Tuple[Tensor, ...]], expected_activation: Union[ List, Tuple[List[float], ...], Tuple[List[List[float]], ...] ], additional_input: Any = None, attribute_to_layer_input: bool = False, ): layer_act = LayerActivation(model, target_layers) self.assertTrue(layer_act.multiplies_by_inputs) attributions = layer_act.attribute( test_input, additional_forward_args=additional_input, attribute_to_layer_input=attribute_to_layer_input, ) for i in range(len(target_layers)): assertTensorTuplesAlmostEqual( self, attributions[i], expected_activation[i], delta=0.01 ) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 from typing import Any, Callable, List, Tuple, Union import torch from captum._utils.typing import TargetType, TensorOrTupleOfTensorsGeneric from captum.attr._core.gradient_shap import GradientShap from captum.attr._core.layer.layer_gradient_shap import LayerGradientShap from tests.attr.test_gradient_shap import _assert_attribution_delta from tests.helpers.basic import ( assertTensorAlmostEqual, assertTensorTuplesAlmostEqual, BaseTest, ) from tests.helpers.basic_models import ( BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, ) from tests.helpers.classification_models import SoftmaxModel from torch import Tensor from torch.nn import Module class Test(BaseTest): def test_basic_multilayer(self) -> None: model = BasicModel_MultiLayer(inplace=True) model.eval() inputs = torch.tensor([[1.0, -20.0, 10.0]]) baselines = torch.tensor([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]) expected = [[-8.4, 0.0]] self._assert_attributions(model, model.linear2, inputs, baselines, 0, expected) def test_basic_multilayer_wo_multiplying_by_inputs(self) -> None: model = BasicModel_MultiLayer(inplace=True) model.eval() inputs = torch.tensor([[1.0, -20.0, 10.0]]) baselines = torch.zeros(3, 3) lgs = LayerGradientShap(model, model.linear2, multiply_by_inputs=False) attrs = lgs.attribute( inputs, baselines, target=0, stdevs=0.0, ) assertTensorAlmostEqual(self, attrs, torch.tensor([[1.0, 0.0]])) def test_basic_multi_tensor_output(self) -> None: model = BasicModel_MultiLayer(multi_input_module=True) model.eval() inputs = torch.tensor([[0.0, 100.0, 0.0]]) expected = ([[90.0, 100.0, 100.0, 100.0]], [[90.0, 100.0, 100.0, 100.0]]) self._assert_attributions( model, model.multi_relu, inputs, torch.zeros_like(inputs), 0, expected, n_samples=5, ) def test_basic_multilayer_with_add_args(self) -> None: model = BasicModel_MultiLayer(inplace=True) model.eval() inputs = torch.tensor([[1.0, -20.0, 10.0]]) add_args = torch.ones(1, 3) baselines = torch.randn(30, 3) expected = [[-13.9510, 0.0]] self._assert_attributions( model, model.linear2, inputs, baselines, 0, expected, add_args=add_args ) def test_basic_multilayer_compare_w_inp_features(self) -> None: model = BasicModel_MultiLayer() model.eval() inputs = torch.tensor([[10.0, 20.0, 10.0]]) baselines = torch.randn(30, 3) gs = GradientShap(model) expected, delta = gs.attribute( inputs, baselines, target=0, return_convergence_delta=True ) self.setUp() self._assert_attributions( model, model.linear0, inputs, baselines, 0, expected, expected_delta=delta, attribute_to_layer_input=True, ) def test_classification(self) -> None: def custom_baseline_fn(inputs): num_in = inputs.shape[1] return torch.arange(0.0, num_in * 4.0).reshape(4, num_in) num_in = 40 n_samples = 10 # 10-class classification model model = SoftmaxModel(num_in, 20, 10) model.eval() inputs = torch.arange(0.0, num_in * 2.0).reshape(2, num_in) baselines = custom_baseline_fn expected = torch.zeros(2, 20) self._assert_attributions( model, model.relu1, inputs, baselines, 1, expected, n_samples=n_samples ) def test_basic_multi_input(self) -> None: net = BasicModel_MultiLayer_MultiInput() inputs = (torch.tensor([[10.0, 20.0, 10.0]]), torch.tensor([[1.0, 2.0, 1.0]])) add_args = (torch.tensor([[1.0, 2.0, 3.0]]), 1.0) baselines = (torch.randn(30, 3), torch.randn(30, 3)) expected = torch.tensor([[171.6841, 0.0]]) self._assert_attributions( net, net.model.linear2, inputs, baselines, 0, expected, add_args=add_args ) def _assert_attributions( self, model: Module, layer: Module, inputs: TensorOrTupleOfTensorsGeneric, baselines: Union[TensorOrTupleOfTensorsGeneric, Callable], target: TargetType, expected: Union[ Tensor, Tuple[Tensor, ...], List[float], List[List[float]], Tuple[List[float], ...], Tuple[List[List[float]], ...], ], expected_delta: Tensor = None, n_samples: int = 5, attribute_to_layer_input: bool = False, add_args: Any = None, ) -> None: lgs = LayerGradientShap(model, layer) attrs, delta = lgs.attribute( inputs, baselines, target=target, additional_forward_args=add_args, n_samples=n_samples, stdevs=0.0009, return_convergence_delta=True, attribute_to_layer_input=attribute_to_layer_input, ) assertTensorTuplesAlmostEqual(self, attrs, expected, delta=0.005) if expected_delta is None: _assert_attribution_delta( self, inputs, attrs, n_samples, delta, is_layer=True ) else: for delta_i, expected_delta_i in zip(delta, expected_delta): assertTensorAlmostEqual(self, delta_i, expected_delta_i, delta=0.01)
#!/usr/bin/env python3 import torch from captum.attr._core.deep_lift import DeepLift, DeepLiftShap from captum.attr._core.feature_ablation import FeatureAblation from captum.attr._core.feature_permutation import FeaturePermutation from captum.attr._core.gradient_shap import GradientShap from captum.attr._core.guided_backprop_deconvnet import Deconvolution, GuidedBackprop from captum.attr._core.guided_grad_cam import GuidedGradCam from captum.attr._core.input_x_gradient import InputXGradient from captum.attr._core.integrated_gradients import IntegratedGradients from captum.attr._core.kernel_shap import KernelShap from captum.attr._core.layer.grad_cam import LayerGradCam from captum.attr._core.layer.internal_influence import InternalInfluence from captum.attr._core.layer.layer_activation import LayerActivation from captum.attr._core.layer.layer_conductance import LayerConductance from captum.attr._core.layer.layer_deep_lift import LayerDeepLift, LayerDeepLiftShap from captum.attr._core.layer.layer_feature_ablation import LayerFeatureAblation from captum.attr._core.layer.layer_gradient_shap import LayerGradientShap from captum.attr._core.layer.layer_gradient_x_activation import LayerGradientXActivation from captum.attr._core.layer.layer_integrated_gradients import LayerIntegratedGradients from captum.attr._core.layer.layer_lrp import LayerLRP from captum.attr._core.lime import Lime from captum.attr._core.lrp import LRP from captum.attr._core.neuron.neuron_conductance import NeuronConductance from captum.attr._core.neuron.neuron_deep_lift import NeuronDeepLift, NeuronDeepLiftShap from captum.attr._core.neuron.neuron_feature_ablation import NeuronFeatureAblation from captum.attr._core.neuron.neuron_gradient import NeuronGradient from captum.attr._core.neuron.neuron_gradient_shap import NeuronGradientShap from captum.attr._core.neuron.neuron_guided_backprop_deconvnet import ( NeuronDeconvolution, NeuronGuidedBackprop, ) from captum.attr._core.neuron.neuron_integrated_gradients import ( NeuronIntegratedGradients, ) from captum.attr._core.occlusion import Occlusion from captum.attr._core.saliency import Saliency from captum.attr._core.shapley_value import ShapleyValueSampling from captum.attr._utils.input_layer_wrapper import ModelInputWrapper from tests.helpers.basic import set_all_random_seeds from tests.helpers.basic_models import ( BasicModel_ConvNet, BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, BasicModel_MultiLayer_TrueMultiInput, ReLULinearModel, ) """ This file defines a test configuration for attribution methods, particularly defining valid input parameters for attribution methods. These test cases are utilized for DataParallel tests, JIT tests, and target tests. Generally, these tests follow a consistent structure of running the identified algorithm(s) in two different way, e.g. with a DataParallel or JIT wrapped model versus a standard model and verifying that the results match. New tests for additional model variants or features can be built using this config. The current schema for each test cases (each element in the list config) includes the following information: * "name": String defining name for test config * "algorithms": List of algorithms (Attribution classes) which are applicable for the given test case * "model": nn.Module model for given test * "attribute_args": Arguments to be passed to attribute call of algorithm * "layer": nn.Module corresponding to layer for Layer or Neuron attribution * "noise_tunnel": True or False, based on whether to apply NoiseTunnel to the algorithm. If True, "attribute_args" corresponds to arguments for NoiseTunnel.attribute. * "baseline_distr": True or False based on whether baselines in "attribute_args" are provided as a distribution or per-example. * "target_delta": Delta for comparison in test_targets * "dp_delta": Delta for comparison in test_data_parallel To add tests for a new algorithm, simply add the algorithm to any existing test case with applicable parameters by adding the algorithm to the corresponding algorithms list. If the algorithm has particular arguments not covered by existing test cases, add a new test case following the config schema described above. For targets tests, ensure that the new test cases includes cases with tensor or list targets. If the new algorithm works with JIT models, make sure to also add the method to the whitelist in test_jit. To create new tests for all methods, follow the same structure as test_jit, test_targets, or test_data_parallel. Each of these iterates through the test config and creates relevant test cases based on the config. """ # Set random seeds to ensure deterministic behavior set_all_random_seeds(1234) config = [ # Attribution Method Configs # Primary Methods (Generic Configs) { "name": "basic_single_target", "algorithms": [ IntegratedGradients, InputXGradient, FeatureAblation, DeepLift, Saliency, GuidedBackprop, Deconvolution, ShapleyValueSampling, FeaturePermutation, Lime, KernelShap, LRP, ], "model": BasicModel_MultiLayer(), "attribute_args": {"inputs": torch.randn(4, 3), "target": 1}, }, { "name": "basic_multi_input", "algorithms": [ IntegratedGradients, InputXGradient, FeatureAblation, DeepLift, Saliency, GuidedBackprop, Deconvolution, ShapleyValueSampling, FeaturePermutation, Lime, KernelShap, LRP, ], "model": BasicModel_MultiLayer_MultiInput(), "attribute_args": { "inputs": (10 * torch.randn(12, 3), 5 * torch.randn(12, 3)), "additional_forward_args": (2 * torch.randn(12, 3), 5), "target": 0, }, "dp_delta": 0.001, }, { "name": "basic_multi_target", "algorithms": [ IntegratedGradients, InputXGradient, FeatureAblation, DeepLift, Saliency, GuidedBackprop, Deconvolution, ShapleyValueSampling, FeaturePermutation, Lime, KernelShap, LRP, ], "model": BasicModel_MultiLayer(), "attribute_args": {"inputs": torch.randn(4, 3), "target": [0, 1, 1, 0]}, }, { "name": "basic_multi_input_multi_target", "algorithms": [ IntegratedGradients, InputXGradient, FeatureAblation, DeepLift, Saliency, GuidedBackprop, Deconvolution, ShapleyValueSampling, FeaturePermutation, Lime, KernelShap, LRP, ], "model": BasicModel_MultiLayer_MultiInput(), "attribute_args": { "inputs": (10 * torch.randn(6, 3), 5 * torch.randn(6, 3)), "additional_forward_args": (2 * torch.randn(6, 3), 5), "target": [0, 1, 1, 0, 0, 1], }, "dp_delta": 0.0005, }, { "name": "basic_multiple_tuple_target", "algorithms": [ IntegratedGradients, Saliency, InputXGradient, FeatureAblation, DeepLift, GuidedBackprop, Deconvolution, ShapleyValueSampling, FeaturePermutation, Lime, KernelShap, LRP, ], "model": BasicModel_MultiLayer(), "attribute_args": { "inputs": torch.randn(4, 3), "target": [(1, 0, 0), (0, 1, 1), (1, 1, 1), (0, 0, 0)], "additional_forward_args": (None, True), }, }, { "name": "basic_tensor_single_target", "algorithms": [ IntegratedGradients, Saliency, InputXGradient, FeatureAblation, DeepLift, GuidedBackprop, Deconvolution, ShapleyValueSampling, FeaturePermutation, Lime, KernelShap, LRP, ], "model": BasicModel_MultiLayer(), "attribute_args": {"inputs": torch.randn(4, 3), "target": torch.tensor([0])}, }, { "name": "basic_tensor_multi_target", "algorithms": [ IntegratedGradients, Saliency, InputXGradient, FeatureAblation, DeepLift, GuidedBackprop, Deconvolution, ShapleyValueSampling, FeaturePermutation, Lime, KernelShap, LRP, ], "model": BasicModel_MultiLayer(), "attribute_args": { "inputs": torch.randn(4, 3), "target": torch.tensor([1, 1, 0, 0]), }, }, # Primary Configs with Baselines { "name": "basic_multiple_tuple_target_with_baselines", "algorithms": [ IntegratedGradients, FeatureAblation, DeepLift, ShapleyValueSampling, Lime, KernelShap, ], "model": BasicModel_MultiLayer(), "attribute_args": { "inputs": torch.randn(4, 3), "baselines": 0.5 * torch.randn(4, 3), "target": [(1, 0, 0), (0, 1, 1), (1, 1, 1), (0, 0, 0)], "additional_forward_args": (None, True), }, }, { "name": "basic_tensor_single_target_with_baselines", "algorithms": [ IntegratedGradients, FeatureAblation, DeepLift, ShapleyValueSampling, Lime, KernelShap, ], "model": BasicModel_MultiLayer(), "attribute_args": { "inputs": torch.randn(4, 3), "baselines": 0.5 * torch.randn(4, 3), "target": torch.tensor([0]), }, }, # Primary Configs with Internal Batching { "name": "basic_multiple_tuple_target_with_internal_batching", "algorithms": [IntegratedGradients], "model": BasicModel_MultiLayer(), "attribute_args": { "inputs": torch.randn(4, 3), "target": [(1, 0, 0), (0, 1, 1), (1, 1, 1), (0, 0, 0)], "additional_forward_args": (None, True), "internal_batch_size": 2, }, }, # NoiseTunnel { "name": "basic_multi_input_multi_target_nt", "algorithms": [ IntegratedGradients, InputXGradient, FeatureAblation, DeepLift, Saliency, GuidedBackprop, Deconvolution, LRP, ], "model": BasicModel_MultiLayer_MultiInput(), "attribute_args": { "inputs": (10 * torch.randn(6, 3), 5 * torch.randn(6, 3)), "additional_forward_args": (2 * torch.randn(6, 3), 5), "target": [0, 1, 1, 0, 0, 1], "nt_samples": 20, "stdevs": 0.0, }, "noise_tunnel": True, "dp_delta": 0.01, }, { "name": "basic_multiple_target_with_baseline_nt", "algorithms": [ IntegratedGradients, Saliency, InputXGradient, FeatureAblation, DeepLift, GuidedBackprop, Deconvolution, LRP, ], "model": BasicModel_MultiLayer(), "attribute_args": { "inputs": torch.randn(4, 3), "target": [0, 1, 1, 0], "nt_samples": 20, "stdevs": 0.0, }, "noise_tunnel": True, }, { "name": "basic_multiple_tuple_target_nt", "algorithms": [ IntegratedGradients, Saliency, InputXGradient, FeatureAblation, DeepLift, GuidedBackprop, Deconvolution, LRP, ], "model": BasicModel_MultiLayer(), "attribute_args": { "inputs": torch.randn(4, 3), "target": [(1, 0, 0), (0, 1, 1), (1, 1, 1), (0, 0, 0)], "additional_forward_args": (None, True), "nt_samples": 20, "stdevs": 0.0, }, "noise_tunnel": True, }, { "name": "basic_single_tensor_target_nt", "algorithms": [ IntegratedGradients, Saliency, InputXGradient, FeatureAblation, DeepLift, GuidedBackprop, Deconvolution, LRP, ], "model": BasicModel_MultiLayer(), "attribute_args": { "inputs": torch.randn(4, 3), "target": torch.tensor([0]), "nt_samples": 20, "stdevs": 0.0, }, "noise_tunnel": True, }, { "name": "basic_multi_tensor_target_nt", "algorithms": [ IntegratedGradients, Saliency, InputXGradient, FeatureAblation, DeepLift, GuidedBackprop, Deconvolution, LRP, ], "model": BasicModel_MultiLayer(), "attribute_args": { "inputs": torch.randn(4, 3), "target": torch.tensor([0, 1, 1, 0]), "nt_samples": 20, "stdevs": 0.0, }, "noise_tunnel": True, }, { "name": "basic_multi_tensor_target_batched_nt", "algorithms": [ IntegratedGradients, Saliency, InputXGradient, FeatureAblation, DeepLift, GuidedBackprop, Deconvolution, LRP, ], "model": BasicModel_MultiLayer(), "attribute_args": { "inputs": torch.randn(4, 3), "target": torch.tensor([0, 1, 1, 0]), "nt_samples": 20, "nt_samples_batch_size": 2, "stdevs": 0.0, }, "noise_tunnel": True, }, # DeepLift SHAP { "name": "basic_dl_shap", "algorithms": [DeepLiftShap], "model": BasicModel_MultiLayer(), "attribute_args": { "inputs": torch.randn(4, 3), "baselines": 0.5 * torch.randn(6, 3), "target": 0, }, "baseline_distr": True, }, { "name": "basic_multi_input_dl_shap", "algorithms": [DeepLiftShap], "model": BasicModel_MultiLayer_MultiInput(), "attribute_args": { "inputs": (10 * torch.randn(12, 3), 5 * torch.randn(12, 3)), "baselines": (torch.randn(4, 3), torch.randn(4, 3)), "additional_forward_args": (2 * torch.randn(12, 3), 5), "target": 0, }, "baseline_distr": True, }, { "name": "basic_multiple_target_dl_shap", "algorithms": [DeepLiftShap], "model": BasicModel_MultiLayer(), "attribute_args": { "inputs": torch.randn(4, 3), "baselines": 0.5 * torch.randn(4, 3), "target": [0, 1, 1, 0], }, "baseline_distr": True, }, { "name": "basic_multiple_tuple_target_dl_shap", "algorithms": [DeepLiftShap], "model": BasicModel_MultiLayer(), "attribute_args": { "inputs": torch.randn(4, 3), "baselines": 0.5 * torch.randn(4, 3), "target": [(1, 0, 0), (0, 1, 1), (1, 1, 1), (0, 0, 0)], "additional_forward_args": (None, True), }, "baseline_distr": True, }, { "name": "basic_single_tensor_targe_dl_shap", "algorithms": [DeepLiftShap], "model": BasicModel_MultiLayer(), "attribute_args": { "inputs": torch.randn(4, 3), "baselines": 0.5 * torch.randn(4, 3), "target": torch.tensor([0]), }, "baseline_distr": True, }, { "name": "basic_multi_tensor_target_dl_shap", "algorithms": [DeepLiftShap], "model": BasicModel_MultiLayer(), "attribute_args": { "inputs": torch.randn(4, 3), "baselines": 0.5 * torch.randn(4, 3), "target": torch.tensor([0, 1, 1, 0]), }, "baseline_distr": True, }, # Gradient SHAP { "name": "basic_multi_inp_with_single_baseline_grad_shap", "algorithms": [GradientShap], "model": BasicModel_MultiLayer_MultiInput(), "attribute_args": { "inputs": (torch.randn(6, 3), torch.randn(6, 3)), "baselines": (torch.randn(1, 3), torch.randn(1, 3)), "additional_forward_args": (torch.randn(6, 3), 5), "target": [0, 1, 1, 0, 0, 1], "stdevs": 0.0, "n_samples": 2000, }, "target_delta": 1.0, "dp_delta": 0.005, "baseline_distr": True, }, { "name": "basic_multiple_target_with_single_baseline_grad_shap", "algorithms": [GradientShap], "model": BasicModel_MultiLayer(), "attribute_args": { "inputs": torch.randn(4, 3), "baselines": 0.5 * torch.randn(1, 3), "target": [0, 1, 1, 0], "n_samples": 800, "stdevs": 0.0, }, "target_delta": 0.6, "baseline_distr": True, }, { "name": "basic_multiple_tuple_target_with_single_baseline_grad_shap", "algorithms": [GradientShap], "model": BasicModel_MultiLayer(), "attribute_args": { "inputs": torch.randn(4, 3), "baselines": 0.15 * torch.randn(1, 3), "target": [(1, 0, 0), (0, 1, 1), (1, 1, 1), (0, 0, 0)], "additional_forward_args": (None, True), "n_samples": 2000, "stdevs": 0.0, }, "target_delta": 0.6, "dp_delta": 0.003, "baseline_distr": True, }, { "name": "basic_single_tensor_target_with_single_baseline_grad_shap", "algorithms": [GradientShap], "model": BasicModel_MultiLayer(), "attribute_args": { "inputs": torch.randn(4, 3), "baselines": 0.5 * torch.randn(1, 3), "target": torch.tensor([0]), "n_samples": 500, "stdevs": 0.0, }, "target_delta": 0.6, "baseline_distr": True, }, { "name": "basic_multi_tensor_target_with_single_baseline_grad_shap", "algorithms": [GradientShap], "model": BasicModel_MultiLayer(), "attribute_args": { "inputs": torch.randn(4, 3), "baselines": 0.5 * torch.randn(1, 3), "target": torch.tensor([0, 1, 1, 0]), "n_samples": 500, "stdevs": 0.0, }, "target_delta": 0.6, "baseline_distr": True, }, # Perturbation-Specific Configs { "name": "conv_with_perturbations_per_eval", "algorithms": [ FeatureAblation, ShapleyValueSampling, FeaturePermutation, Lime, KernelShap, ], "model": BasicModel_ConvNet(), "attribute_args": { "inputs": torch.arange(400).view(4, 1, 10, 10).float(), "target": 0, "perturbations_per_eval": 20, }, "dp_delta": 0.008, }, { "name": "basic_multiple_tuple_target_with_perturbations_per_eval", "algorithms": [ FeatureAblation, ShapleyValueSampling, FeaturePermutation, Lime, KernelShap, ], "model": BasicModel_MultiLayer(), "attribute_args": { "inputs": torch.randn(4, 3), "target": [(1, 0, 0), (0, 1, 1), (1, 1, 1), (0, 0, 0)], "additional_forward_args": (None, True), "perturbations_per_eval": 2, }, }, { "name": "conv_occlusion_with_perturbations_per_eval", "algorithms": [Occlusion], "model": BasicModel_ConvNet(), "attribute_args": { "inputs": torch.arange(400).view(4, 1, 10, 10).float(), "perturbations_per_eval": 8, "sliding_window_shapes": (1, 4, 2), "target": 0, }, }, { "name": "basic_multi_input_with_perturbations_per_eval_occlusion", "algorithms": [Occlusion], "model": ReLULinearModel(), "attribute_args": { "inputs": (torch.randn(4, 3), torch.randn(4, 3)), "perturbations_per_eval": 2, "sliding_window_shapes": ((2,), (1,)), }, }, { "name": "basic_multiple_tuple_target_occlusion", "algorithms": [Occlusion], "model": BasicModel_MultiLayer(), "attribute_args": { "inputs": torch.randn(4, 3), "target": [(1, 0, 0), (0, 1, 1), (1, 1, 1), (0, 0, 0)], "additional_forward_args": (None, True), "sliding_window_shapes": (2,), }, }, # Layer Attribution Method Configs { "name": "conv_layer_single_target", "algorithms": [ LayerConductance, LayerIntegratedGradients, LayerDeepLift, InternalInfluence, LayerFeatureAblation, LayerGradientXActivation, LayerGradCam, GuidedGradCam, ], "model": BasicModel_ConvNet(), "layer": "conv2", "attribute_args": {"inputs": 100 * torch.randn(4, 1, 10, 10), "target": 1}, }, { "name": "basic_layer_in_place", "algorithms": [ LayerConductance, LayerIntegratedGradients, LayerDeepLift, InternalInfluence, LayerFeatureAblation, LayerGradientXActivation, LayerGradCam, ], "model": BasicModel_MultiLayer(inplace=True), "layer": "relu", "attribute_args": {"inputs": torch.randn(4, 3), "target": 0}, }, { "name": "basic_layer_multi_output", "algorithms": [ LayerConductance, LayerIntegratedGradients, LayerDeepLift, InternalInfluence, LayerFeatureAblation, LayerGradientXActivation, LayerGradCam, ], "model": BasicModel_MultiLayer(multi_input_module=True), "layer": "multi_relu", "attribute_args": {"inputs": torch.randn(4, 3), "target": 0}, }, { "name": "basic_layer_multi_input", "algorithms": [ LayerConductance, LayerIntegratedGradients, LayerDeepLift, InternalInfluence, LayerFeatureAblation, LayerGradientXActivation, LayerGradCam, ], "model": BasicModel_MultiLayer_MultiInput(), "layer": "model.relu", "attribute_args": { "inputs": (10 * torch.randn(12, 3), 5 * torch.randn(12, 3)), "additional_forward_args": (2 * torch.randn(12, 3), 5), "target": 0, }, }, { "name": "basic_layer_multiple_target", "algorithms": [ LayerConductance, LayerIntegratedGradients, LayerDeepLift, InternalInfluence, LayerFeatureAblation, LayerGradientXActivation, LayerGradCam, ], "model": BasicModel_MultiLayer(), "layer": "relu", "attribute_args": {"inputs": torch.randn(4, 3), "target": [0, 1, 1, 0]}, }, { "name": "basic_layer_tensor_multiple_target", "algorithms": [ LayerConductance, LayerIntegratedGradients, LayerDeepLift, InternalInfluence, LayerFeatureAblation, LayerGradientXActivation, LayerGradCam, ], "model": BasicModel_MultiLayer(), "layer": "relu", "attribute_args": { "inputs": torch.randn(4, 3), "target": torch.tensor([0, 1, 1, 0]), }, }, { "name": "basic_layer_multiple_tuple_target", "algorithms": [ LayerConductance, LayerIntegratedGradients, LayerDeepLift, InternalInfluence, LayerFeatureAblation, LayerGradientXActivation, LayerGradCam, ], "model": BasicModel_MultiLayer(), "layer": "relu", "attribute_args": { "inputs": torch.randn(4, 3), "target": [(1, 0, 0), (0, 1, 1), (1, 1, 1), (0, 0, 0)], "additional_forward_args": (None, True), }, }, { "name": "basic_layer_multiple_tuple_target_with_internal_batching", "algorithms": [LayerConductance, InternalInfluence, LayerIntegratedGradients], "model": BasicModel_MultiLayer(), "layer": "relu", "attribute_args": { "inputs": torch.randn(4, 3), "target": [(1, 0, 0), (0, 1, 1), (1, 1, 1), (0, 0, 0)], "additional_forward_args": (None, True), "internal_batch_size": 2, }, }, { "name": "basic_layer_multi_input_with_internal_batching", "algorithms": [LayerConductance, InternalInfluence, LayerIntegratedGradients], "model": BasicModel_MultiLayer_MultiInput(), "layer": "model.relu", "attribute_args": { "inputs": (10 * torch.randn(12, 3), 5 * torch.randn(12, 3)), "additional_forward_args": (2 * torch.randn(12, 3), 5), "target": 0, "internal_batch_size": 2, }, }, { "name": "basic_layer_multi_output_with_internal_batching", "algorithms": [LayerConductance, InternalInfluence, LayerIntegratedGradients], "model": BasicModel_MultiLayer(multi_input_module=True), "layer": "multi_relu", "attribute_args": { "inputs": torch.randn(4, 3), "target": 0, "internal_batch_size": 2, }, }, # Layer Perturbation { "name": "basic_layer_multi_input_with_perturbations_per_eval", "algorithms": [LayerFeatureAblation], "model": BasicModel_MultiLayer_MultiInput(), "layer": "model.relu", "attribute_args": { "inputs": (10 * torch.randn(12, 3), 5 * torch.randn(12, 3)), "additional_forward_args": (2 * torch.randn(12, 3), 5), "target": 0, "perturbations_per_eval": 2, }, }, { "name": "basic_layer_multi_output_perturbations_per_eval", "algorithms": [LayerFeatureAblation], "model": BasicModel_MultiLayer(multi_input_module=True), "layer": "multi_relu", "attribute_args": { "inputs": torch.randn(4, 3), "target": 0, "perturbations_per_eval": 2, }, }, { "name": "conv_layer_with_perturbations_per_eval", "algorithms": [LayerFeatureAblation], "model": BasicModel_ConvNet(), "layer": "conv2", "attribute_args": { "inputs": 100 * torch.randn(4, 1, 10, 10), "target": 1, "perturbations_per_eval": 20, }, }, # Layer DeepLiftSHAP { "name": "relu_layer_multi_inp_dl_shap", "algorithms": [LayerDeepLiftShap], "model": ReLULinearModel(), "layer": "l3", "attribute_args": { "inputs": (10 * torch.randn(6, 3), 5 * torch.randn(6, 3)), "baselines": (2 * torch.randn(2, 3), 6 * torch.randn(2, 3)), }, "baseline_distr": True, }, { "name": "basic_layer_multi_output_dl_shap", "algorithms": [LayerDeepLiftShap], "model": BasicModel_MultiLayer(multi_input_module=True), "layer": "multi_relu", "attribute_args": { "inputs": torch.randn(4, 3), "baselines": torch.randn(2, 3), "target": 0, }, "baseline_distr": True, }, { "name": "basic_layer_multi_inp_multi_target_dl_shap", "algorithms": [LayerDeepLiftShap], "model": BasicModel_MultiLayer_MultiInput(), "layer": "model.relu", "attribute_args": { "inputs": (10 * torch.randn(6, 3), 5 * torch.randn(6, 3)), "baselines": (2 * torch.randn(11, 3), 6 * torch.randn(11, 3)), "additional_forward_args": (2 * torch.randn(6, 3), 5), "target": [0, 1, 1, 0, 0, 1], }, "baseline_distr": True, }, { "name": "basic_layer_multiple_target_dl_shap", "algorithms": [LayerDeepLiftShap], "model": BasicModel_MultiLayer(), "layer": "relu", "attribute_args": { "inputs": torch.randn(4, 3), "baselines": 0.5 * torch.randn(6, 3), "target": [0, 1, 1, 0], }, "baseline_distr": True, }, # Layer Gradient SHAP { "name": "relu_layer_multi_inp_grad_shap", "algorithms": [LayerGradientShap], "model": ReLULinearModel(), "layer": "l3", "attribute_args": { "inputs": (10 * torch.randn(6, 3), 5 * torch.randn(6, 3)), "baselines": (2 * torch.randn(2, 3), 6 * torch.randn(2, 3)), }, "baseline_distr": True, }, { "name": "basic_layer_multi_output_grad_shap", "algorithms": [LayerGradientShap], "model": BasicModel_MultiLayer(multi_input_module=True), "layer": "multi_relu", "attribute_args": { "inputs": torch.randn(4, 3), "baselines": torch.randn(2, 3), "target": 0, }, "baseline_distr": True, }, { "name": "basic_layer_multi_inp_multi_target_grad_shap", "algorithms": [LayerGradientShap], "model": BasicModel_MultiLayer_MultiInput(), "layer": "model.relu", "attribute_args": { "inputs": (torch.randn(6, 3), torch.randn(6, 3)), "baselines": (torch.randn(2, 3), torch.randn(2, 3)), "additional_forward_args": (2 * torch.randn(6, 3), 5), "target": [0, 1, 1, 0, 0, 1], "n_samples": 1000, }, "baseline_distr": True, "target_delta": 0.6, }, # Neuron Attribution Method Configs { "name": "basic_neuron", "algorithms": [ NeuronGradient, NeuronIntegratedGradients, NeuronGuidedBackprop, NeuronDeconvolution, NeuronDeepLift, NeuronFeatureAblation, ], "model": BasicModel_MultiLayer(), "layer": "relu", "attribute_args": {"inputs": torch.randn(4, 3), "neuron_selector": 3}, }, { "name": "conv_neuron", "algorithms": [ NeuronGradient, NeuronIntegratedGradients, NeuronGuidedBackprop, NeuronDeconvolution, NeuronDeepLift, NeuronFeatureAblation, ], "model": BasicModel_ConvNet(), "layer": "conv2", "attribute_args": { "inputs": 100 * torch.randn(4, 1, 10, 10), "neuron_selector": (0, 1, 0), }, }, { "name": "basic_neuron_multi_input", "algorithms": [ NeuronGradient, NeuronIntegratedGradients, NeuronGuidedBackprop, NeuronDeconvolution, NeuronDeepLift, NeuronFeatureAblation, ], "model": BasicModel_MultiLayer_MultiInput(), "layer": "model.relu", "attribute_args": { "inputs": (10 * torch.randn(12, 3), 5 * torch.randn(12, 3)), "additional_forward_args": (2 * torch.randn(12, 3), 5), "neuron_selector": (3,), }, }, # Neuron Conductance (with target) { "name": "basic_neuron_single_target", "algorithms": [NeuronConductance], "model": BasicModel_MultiLayer(), "layer": "relu", "attribute_args": { "inputs": torch.randn(4, 3), "target": 1, "neuron_selector": 3, }, }, { "name": "basic_neuron_multiple_target", "algorithms": [NeuronConductance], "model": BasicModel_MultiLayer(), "layer": "relu", "attribute_args": { "inputs": torch.randn(4, 3), "target": [0, 1, 1, 0], "neuron_selector": 3, }, }, { "name": "conv_neuron_single_target", "algorithms": [NeuronConductance], "model": BasicModel_ConvNet(), "layer": "conv2", "attribute_args": { "inputs": 100 * torch.randn(4, 1, 10, 10), "target": 1, "neuron_selector": (0, 1, 0), }, }, { "name": "basic_neuron_multi_input_multi_target", "algorithms": [NeuronConductance], "model": BasicModel_MultiLayer_MultiInput(), "layer": "model.relu", "attribute_args": { "inputs": (10 * torch.randn(6, 3), 5 * torch.randn(6, 3)), "additional_forward_args": (2 * torch.randn(6, 3), 5), "target": [0, 1, 1, 0, 0, 1], "neuron_selector": 3, }, }, { "name": "basic_neuron_tensor_multiple_target", "algorithms": [NeuronConductance], "model": BasicModel_MultiLayer(), "layer": "relu", "attribute_args": { "inputs": torch.randn(4, 3), "target": torch.tensor([0, 1, 1, 0]), "neuron_selector": 3, }, }, { "name": "basic_neuron_multiple_tuple_target", "algorithms": [NeuronConductance], "model": BasicModel_MultiLayer(), "layer": "relu", "attribute_args": { "inputs": torch.randn(4, 3), "target": [(1, 0, 0), (0, 1, 1), (1, 1, 1), (0, 0, 0)], "additional_forward_args": (None, True), "neuron_selector": 3, }, }, # Neuron Conductance with Internal Batching { "name": "basic_neuron_multiple_tuple_target_with_internal_batching", "algorithms": [NeuronConductance], "model": BasicModel_MultiLayer(), "layer": "relu", "attribute_args": { "inputs": torch.randn(4, 3), "target": [(1, 0, 0), (0, 1, 1), (1, 1, 1), (0, 0, 0)], "additional_forward_args": (None, True), "internal_batch_size": 2, "neuron_selector": 3, }, }, { "name": "basic_neuron_multi_input_multi_target_with_internal_batching", "algorithms": [NeuronConductance], "model": BasicModel_MultiLayer_MultiInput(), "layer": "model.relu", "attribute_args": { "inputs": (10 * torch.randn(6, 3), 5 * torch.randn(6, 3)), "additional_forward_args": (2 * torch.randn(6, 3), 5), "target": [0, 1, 1, 0, 0, 1], "internal_batch_size": 2, "neuron_selector": 3, }, }, # Neuron Gradient SHAP { "name": "basic_neuron_grad_shap", "algorithms": [NeuronGradientShap], "model": BasicModel_MultiLayer(), "layer": "relu", "attribute_args": { "inputs": torch.randn(4, 3), "baselines": torch.randn(1, 3), "neuron_selector": 3, }, "target_delta": 0.6, "baseline_distr": True, }, { "name": "basic_neuron_multi_inp_grad_shap", "algorithms": [NeuronGradientShap], "model": BasicModel_MultiLayer_MultiInput(), "layer": "model.relu", "attribute_args": { "inputs": (10 * torch.randn(6, 3), 5 * torch.randn(6, 3)), "baselines": (10 * torch.randn(1, 3), 5 * torch.randn(1, 3)), "additional_forward_args": (2 * torch.randn(6, 3), 5), "neuron_selector": 3, }, "target_delta": 0.6, "baseline_distr": True, }, # Neuron DeepLift SHAP { "name": "basic_neuron_dl_shap", "algorithms": [NeuronDeepLiftShap], "model": BasicModel_MultiLayer(), "layer": "relu", "attribute_args": { "inputs": torch.randn(4, 3), "baselines": 0.5 * torch.randn(6, 3), "neuron_selector": (3,), }, "baseline_distr": True, }, { "name": "basic_neuron_multi_input_dl_shap", "algorithms": [NeuronDeepLiftShap], "model": BasicModel_MultiLayer_MultiInput(), "layer": "model.relu", "attribute_args": { "inputs": (10 * torch.randn(12, 3), 5 * torch.randn(12, 3)), "baselines": (torch.randn(4, 3), torch.randn(4, 3)), "additional_forward_args": (2 * torch.randn(12, 3), 5), "neuron_selector": 3, }, "baseline_distr": True, }, # Neuron Feature Ablation { "name": "conv_neuron_with_perturbations_per_eval", "algorithms": [NeuronFeatureAblation], "model": BasicModel_ConvNet(), "layer": "conv2", "attribute_args": { "inputs": torch.arange(400).view(4, 1, 10, 10).float(), "perturbations_per_eval": 20, "neuron_selector": (0, 1, 0), }, }, { "name": "basic_neuron_multiple_input_with_baselines_and_perturbations_per_eval", "algorithms": [NeuronFeatureAblation], "model": BasicModel_MultiLayer_MultiInput(), "layer": "model.relu", "attribute_args": { "inputs": (10 * torch.randn(12, 3), 5 * torch.randn(12, 3)), "baselines": (10 * torch.randn(12, 3), 5 * torch.randn(12, 3)), "additional_forward_args": (2 * torch.randn(12, 3), 5), "neuron_selector": (3,), "perturbations_per_eval": 2, }, }, # Neuron Attribution with Functional Selector { "name": "basic_neuron_multi_input_function_selector", "algorithms": [ NeuronGradient, NeuronIntegratedGradients, NeuronGuidedBackprop, NeuronDeconvolution, NeuronDeepLift, NeuronFeatureAblation, ], "model": BasicModel_MultiLayer_MultiInput(), "layer": "model.relu", "attribute_args": { "inputs": (10 * torch.randn(12, 3), 5 * torch.randn(12, 3)), "additional_forward_args": (2 * torch.randn(12, 3), 5), "neuron_selector": lambda x: torch.sum(x, 1), }, }, # Neuron Attribution with slice Selector { "name": "conv_neuron_slice_selector", "algorithms": [ NeuronGradient, NeuronIntegratedGradients, NeuronGuidedBackprop, NeuronDeconvolution, NeuronDeepLift, NeuronFeatureAblation, ], "model": BasicModel_ConvNet(), "layer": "conv2", "attribute_args": { "inputs": 100 * torch.randn(4, 1, 10, 10), "neuron_selector": (slice(0, 2, 1), 1, slice(0, 2, 1)), }, }, # Layer Attribution with Multiple Layers { "name": "basic_activation_multi_layer_multi_output", "algorithms": [LayerActivation], "model": BasicModel_MultiLayer(multi_input_module=True), "layer": ["multi_relu", "linear1", "linear0"], "attribute_args": {"inputs": torch.randn(4, 3)}, }, { "name": "basic_gradient_multi_layer_multi_output", "algorithms": [LayerGradientXActivation], "model": BasicModel_MultiLayer(multi_input_module=True), "layer": ["multi_relu", "linear1", "linear0"], "attribute_args": {"inputs": torch.randn(4, 3), "target": 0}, }, { "name": "basic_layer_ig_multi_layer_multi_output", "algorithms": [LayerIntegratedGradients], "model": BasicModel_MultiLayer_TrueMultiInput(), "layer": ["m1", "m234"], "attribute_args": { "inputs": ( torch.randn(5, 3), torch.randn(5, 3), torch.randn(5, 3), torch.randn(5, 3), ), "target": 0, }, }, { "name": "basic_layer_ig_multi_layer_multi_output_with_input_wrapper", "algorithms": [LayerIntegratedGradients], "model": ModelInputWrapper(BasicModel_MultiLayer_TrueMultiInput()), "layer": ["module.m1", "module.m234"], "attribute_args": { "inputs": ( torch.randn(5, 3), torch.randn(5, 3), torch.randn(5, 3), torch.randn(5, 3), ), "target": 0, }, }, # Layer LRP { "name": "basic_layer_lrp", "algorithms": [ LayerLRP, ], "model": BasicModel_MultiLayer(), "layer": "linear2", "attribute_args": {"inputs": torch.randn(4, 3), "target": 0}, }, { "name": "basic_layer_lrp_multi_input", "algorithms": [ LayerLRP, ], "model": BasicModel_MultiLayer_MultiInput(), "layer": "model.linear1", "attribute_args": { "inputs": (10 * torch.randn(12, 3), 5 * torch.randn(12, 3)), "additional_forward_args": (2 * torch.randn(12, 3), 5), "target": 0, }, "dp_delta": 0.0002, }, ]
#!/usr/bin/env python3 import typing from typing import Any, cast, Dict, List, Tuple, Type, Union from captum.attr._core.lime import Lime from captum.attr._models.base import _get_deep_layer_name from captum.attr._utils.attribution import Attribution from torch.nn import Module def gen_test_name( prefix: str, test_name: str, algorithm: Type[Attribution], noise_tunnel: bool ) -> str: # Generates test name for dynamically generated tests return ( prefix + "_" + test_name + "_" + algorithm.__name__ + ("NoiseTunnel" if noise_tunnel else "") ) def parse_test_config( test_config: Dict, ) -> Tuple[List[Type[Attribution]], Module, Dict[str, Any], Module, bool, bool]: algorithms = cast(List[Type[Attribution]], test_config["algorithms"]) model = test_config["model"] args = cast(Dict[str, Any], test_config["attribute_args"]) layer = test_config["layer"] if "layer" in test_config else None noise_tunnel = ( test_config["noise_tunnel"] if "noise_tunnel" in test_config else False ) baseline_distr = ( test_config["baseline_distr"] if "baseline_distr" in test_config else False ) return algorithms, model, args, layer, noise_tunnel, baseline_distr def should_create_generated_test(algorithm: Type[Attribution]) -> bool: if issubclass(algorithm, Lime): try: import sklearn # noqa: F401 assert ( sklearn.__version__ >= "0.23.0" ), "Must have sklearn version 0.23.0 or higher to use " "sample_weight in Lasso regression." return True except (ImportError, AssertionError): return False return True @typing.overload def get_target_layer(model: Module, layer_name: str) -> Module: ... @typing.overload def get_target_layer(model: Module, layer_name: List[str]) -> List[Module]: ... def get_target_layer( model: Module, layer_name: Union[str, List[str]] ) -> Union[Module, List[Module]]: if isinstance(layer_name, str): return _get_deep_layer_name(model, layer_name) else: return [ _get_deep_layer_name(model, single_layer_name) for single_layer_name in layer_name ]
#!/usr/bin/env python3 import numpy as np import torch from captum._utils.gradient import ( apply_gradient_requirements, undo_gradient_requirements, ) from captum.attr._utils.approximation_methods import approximation_parameters from captum.attr._utils.attribution import LayerAttribution from captum.attr._utils.common import _reshape_and_sum """ Note: This implementation of conductance follows the procedure described in the original paper exactly (https://arxiv.org/abs/1805.12233), computing gradients of output with respect to hidden neurons and each hidden neuron with respect to the input and summing appropriately. Computing the gradient of each neuron with respect to the input is not necessary to just compute the conductance of a given layer, so the main implementationof conductance does not use this approach in order to compute layer conductance more efficiently (https://arxiv.org/pdf/1807.09946.pdf). This implementation is used only for testing to verify that the output matches that of the main implementation. """ class ConductanceReference(LayerAttribution): def __init__(self, forward_func, layer) -> None: r""" Args forward_func: The forward function of the model or any modification of it layer: Layer for which output attributions are computed. Output size of attribute matches that of layer output. """ super().__init__(forward_func, layer) def _conductance_grads(self, forward_fn, input, target_ind=None): with torch.autograd.set_grad_enabled(True): # Set a forward hook on specified module and run forward pass to # get output tensor size. saved_tensor = None def forward_hook(module, inp, out): nonlocal saved_tensor saved_tensor = out hook = self.layer.register_forward_hook(forward_hook) output = forward_fn(input) # Compute layer output tensor dimensions and total number of units. # The hidden layer tensor is assumed to have dimension (num_hidden, ...) # where the product of the dimensions >= 1 correspond to the total # number of hidden neurons in the layer. layer_size = tuple(saved_tensor.size())[1:] layer_units = int(np.prod(layer_size)) # Remove unnecessary forward hook. hook.remove() # Backward hook function to override gradients in order to obtain # just the gradient of each hidden unit with respect to input. saved_grads = None def backward_hook(grads): nonlocal saved_grads saved_grads = grads zero_mat = torch.zeros((1,) + layer_size) scatter_indices = torch.arange(0, layer_units).view_as(zero_mat) # Creates matrix with each layer containing a single unit with # value 1 and remaining zeros, which will provide gradients # with respect to each unit independently. to_return = torch.zeros((layer_units,) + layer_size).scatter( 0, scatter_indices, 1 ) to_repeat = [1] * len(to_return.shape) to_repeat[0] = grads.shape[0] // to_return.shape[0] expanded = to_return.repeat(to_repeat) return expanded # Create a forward hook in order to attach backward hook to appropriate # tensor. Save backward hook in order to remove hook appropriately. back_hook = None def forward_hook_register_back(module, inp, out): nonlocal back_hook back_hook = out.register_hook(backward_hook) hook = self.layer.register_forward_hook(forward_hook_register_back) # Expand input to include layer_units copies of each input. # This allows obtaining gradient with respect to each hidden unit # in one pass. expanded_input = torch.repeat_interleave(input, layer_units, dim=0) output = forward_fn(expanded_input) hook.remove() output = output[:, target_ind] if target_ind is not None else output input_grads = torch.autograd.grad(torch.unbind(output), expanded_input) # Remove backwards hook back_hook.remove() # Remove duplicates in gradient with respect to hidden layer, # choose one for each layer_units indices. output_mid_grads = torch.index_select( saved_grads, 0, torch.tensor(range(0, input_grads[0].shape[0], layer_units)), ) return input_grads[0], output_mid_grads, layer_units def attribute( self, inputs, baselines=None, target=None, n_steps=500, method="riemann_trapezoid", ): r""" Computes conductance using gradients along the path, applying riemann's method or gauss-legendre. The details of the approach can be found here: https://arxiv.org/abs/1805.12233 Args inputs: A single high dimensional input tensor, in which dimension 0 corresponds to number of examples. baselines: A single high dimensional baseline tensor, which has the same shape as the input target: Predicted class index. This is necessary only for classification use cases n_steps: The number of steps used by the approximation method method: Method for integral approximation, one of `riemann_right`, `riemann_middle`, `riemann_trapezoid` or `gausslegendre` Return attributions: Total conductance with respect to each neuron in output of given layer """ if baselines is None: baselines = 0 gradient_mask = apply_gradient_requirements((inputs,)) # retrieve step size and scaling factor for specified approximation method step_sizes_func, alphas_func = approximation_parameters(method) step_sizes, alphas = step_sizes_func(n_steps), alphas_func(n_steps) # compute scaled inputs from baseline to final input. scaled_features = torch.cat( [baselines + alpha * (inputs - baselines) for alpha in alphas], dim=0 ) # Conductance Gradients - Returns gradient of output with respect to # hidden layer, gradient of hidden layer with respect to input, # and number of hidden units. input_gradients, mid_layer_gradients, hidden_units = self._conductance_grads( self.forward_func, scaled_features, target ) # Multiply gradient of hidden layer with respect to input by input - baseline scaled_input_gradients = torch.repeat_interleave( inputs - baselines, hidden_units, dim=0 ) scaled_input_gradients = input_gradients * scaled_input_gradients.repeat( *([len(alphas)] + [1] * (len(scaled_input_gradients.shape) - 1)) ) # Sum gradients for each input neuron in order to have total # for each hidden unit and reshape to match hidden layer shape summed_input_grads = torch.sum( scaled_input_gradients, tuple(range(1, len(scaled_input_gradients.shape))) ).view_as(mid_layer_gradients) # Rescale gradients of hidden layer by by step size. scaled_grads = mid_layer_gradients.contiguous().view( n_steps, -1 ) * torch.tensor(step_sizes).view(n_steps, 1).to(mid_layer_gradients.device) undo_gradient_requirements((inputs,), gradient_mask) # Element-wise mutliply gradient of output with respect to hidden layer # and summed gradients with respect to input (chain rule) and sum across # stepped inputs. return _reshape_and_sum( scaled_grads.view(mid_layer_gradients.shape) * summed_input_grads, n_steps, inputs.shape[0], mid_layer_gradients.shape[1:], )
#!/usr/bin/env python3import from typing import cast, Iterable import torch from captum.concept._core.concept import Concept from captum.concept._utils.data_iterator import dataset_to_dataloader from tests.helpers.basic import BaseTest from torch.utils.data import IterableDataset class CustomIterableDataset(IterableDataset): r""" An auxiliary class for iterating through an image dataset. """ def __init__(self, get_tensor_from_filename_func, path) -> None: r""" Args: path (str): Path to dataset files """ self.path = path self.file_itr = ["x"] * 2 self.get_tensor_from_filename_func = get_tensor_from_filename_func def get_tensor_from_filename(self, filename): return self.get_tensor_from_filename_func(filename) def __iter__(self): mapped_itr = map(self.get_tensor_from_filename, self.file_itr) return mapped_itr class Test(BaseTest): def test_create_concepts_from_images(self) -> None: def get_tensor_from_filename(filename): return torch.rand(3, 224, 224) # Striped concepts_path = "./dummy/concepts/striped/" dataset = CustomIterableDataset(get_tensor_from_filename, concepts_path) striped_iter = dataset_to_dataloader(dataset) self.assertEqual( len(cast(CustomIterableDataset, striped_iter.dataset).file_itr), 2 ) concept = Concept(id=0, name="striped", data_iter=striped_iter) for data in cast(Iterable, concept.data_iter): self.assertEqual(data.shape[1:], torch.Size([3, 224, 224])) # Random concepts_path = "./dummy/concepts/random/" dataset = CustomIterableDataset(get_tensor_from_filename, concepts_path) random_iter = dataset_to_dataloader(dataset) self.assertEqual( len(cast(CustomIterableDataset, random_iter.dataset).file_itr), 2 ) concept = Concept(id=1, name="random", data_iter=random_iter) for data in cast(Iterable, concept.data_iter): self.assertEqual(data.shape[1:], torch.Size([3, 224, 224]))
#!/usr/bin/env python3import import glob import os import tempfile import unittest from collections import defaultdict, OrderedDict from typing import ( Any, Callable, cast, Dict, Iterable, Iterator, List, Set, Tuple, Union, ) import torch from captum._utils.av import AV from captum._utils.common import _get_module_from_name from captum.concept._core.concept import Concept from captum.concept._core.tcav import TCAV from captum.concept._utils.classifier import Classifier from captum.concept._utils.common import concepts_to_str from captum.concept._utils.data_iterator import dataset_to_dataloader from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import BasicModel_ConvNet from torch import Tensor from torch.utils.data import DataLoader, IterableDataset class CustomClassifier(Classifier): r""" Wrapps a custom linear Classifier that is necessary for the impementation of Concept Activation Vectors (TCAVs), as described in the paper: https://arxiv.org/pdf/1711.11279.pdf This class simulates the output of a Linear Classifier such as sklearn without actually using it. """ def __init__(self) -> None: Classifier.__init__(self) def train_and_eval( self, dataloader: DataLoader, **kwargs: Any ) -> Union[Dict, None]: inputs = [] labels = [] for input, label in dataloader: inputs.append(input) labels.append(label) inputs = torch.cat(inputs) labels = torch.cat(labels) # update concept ids aka classes self._classes = list(OrderedDict.fromkeys([label.item() for label in labels])) # Training is skipped for performance and indepenence of sklearn reasons _, x_test, _, y_test = train_test_split(inputs, labels) # A tensor with dimensions n_inputs x (1 - test_split) x n_concepts # should be returned here. # Assemble a list with size inputs.shape[0], divided in 4 quarters # [0, 0, 0, ... | 1, 1, 1, ... | 0, 0, 0, ... | 1, 1, 1, ... ] pred = [0] * x_test.shape[0] # Store the shape of 1/4 of inputs.shape[0] (sh_4) and use it sh_4 = x_test.shape[0] / 4 for i in range(1, 4, 2): from_ = round(i * sh_4) to_ = round((i + 1) * sh_4) pred[from_:to_] = [1] * (round((i + 1) * sh_4) - round(i * sh_4)) y_pred = torch.tensor(pred) score = y_pred == y_test accs = score.float().mean() # A hack to mock weights for two different layer self.num_features = input.shape[1] return {"accs": accs} def weights(self) -> Tensor: if self.num_features != 16: return torch.randn(2, self.num_features) return torch.tensor( [ [ -0.2167, -0.0809, -0.1235, -0.2450, 0.2954, 0.5409, -0.2587, -0.3428, 0.2486, -0.0123, 0.2737, 0.4876, -0.1133, 0.1616, -0.2016, -0.0413, ], [ -0.2167, -0.0809, -0.1235, -0.2450, 0.2954, 0.5409, -0.2587, -0.3428, 0.2486, -0.0123, 0.2737, 0.4876, -0.1133, 0.2616, -0.2016, -0.0413, ], ], dtype=torch.float64, ) def classes(self) -> List[int]: return self._classes class CustomClassifier_WO_Returning_Metrics(CustomClassifier): def __init__(self) -> None: CustomClassifier.__init__(self) def train_and_eval( self, dataloader: DataLoader, **kwargs: Any ) -> Union[Dict, None]: CustomClassifier.train_and_eval(self, dataloader) return None class CustomClassifier_W_Flipped_Class_Id(CustomClassifier): def __init__(self) -> None: CustomClassifier.__init__(self) def weights(self) -> Tensor: _weights = CustomClassifier.weights(self) _weights[0], _weights[1] = _weights[1], _weights[0].clone() return _weights def classes(self) -> List[int]: _classes = CustomClassifier.classes(self) _classes[0], _classes[1] = _classes[1], _classes[0] return _classes class CustomIterableDataset(IterableDataset): r""" Auxiliary class for iterating through an image dataset. """ def __init__( self, get_tensor_from_filename_func: Callable, path: str, num_samples=100 ) -> None: r""" Args: path (str): Path to dataset files """ self.path = path self.file_itr = ["x"] * num_samples self.get_tensor_from_filename_func = get_tensor_from_filename_func def get_tensor_from_filename(self, filename: str) -> Tensor: return self.get_tensor_from_filename_func(filename) def __iter__(self) -> Iterator: mapped_itr = map(self.get_tensor_from_filename, self.file_itr) return mapped_itr def train_test_split( x_list: Tensor, y_list: Union[Tensor, List[int]], test_split: float = 0.33 ) -> Tuple[Tensor, Tensor, Tensor, Tensor]: z_list = list(zip(x_list, y_list)) # Split test_size = int(test_split * len(z_list)) z_test, z_train = z_list[:test_size], z_list[test_size:] x_test, y_test = zip(*z_test) x_train, y_train = zip(*z_train) x_train = torch.stack(x_train) x_test = torch.stack(x_test) y_train = torch.stack(y_train) y_test = torch.stack(y_test) y_train[: len(y_train) // 2] = 0 y_train[len(y_train) // 2 :] = 1 y_test[: len(y_test) // 2] = 0 y_test[len(y_test) // 2 :] = 1 return x_train, x_test, y_train, y_test def get_tensor_from_filename(filename: str) -> Tensor: file_tensor = ( torch.tensor( [ [ [ 0.4963, 0.7682, 0.0885, 0.1320, 0.3074, 0.6341, 0.4901, 0.8964, 0.4556, 0.6323, ], [ 0.3489, 0.4017, 0.0223, 0.1689, 0.2939, 0.5185, 0.6977, 0.8000, 0.1610, 0.2823, ], [ 0.6816, 0.9152, 0.3971, 0.8742, 0.4194, 0.5529, 0.9527, 0.0362, 0.1852, 0.3734, ], [ 0.3051, 0.9320, 0.1759, 0.2698, 0.1507, 0.0317, 0.2081, 0.9298, 0.7231, 0.7423, ], [ 0.5263, 0.2437, 0.5846, 0.0332, 0.1387, 0.2422, 0.8155, 0.7932, 0.2783, 0.4820, ], [ 0.8198, 0.9971, 0.6984, 0.5675, 0.8352, 0.2056, 0.5932, 0.1123, 0.1535, 0.2417, ], [ 0.7262, 0.7011, 0.2038, 0.6511, 0.7745, 0.4369, 0.5191, 0.6159, 0.8102, 0.9801, ], [ 0.1147, 0.3168, 0.6965, 0.9143, 0.9351, 0.9412, 0.5995, 0.0652, 0.5460, 0.1872, ], [ 0.0340, 0.9442, 0.8802, 0.0012, 0.5936, 0.4158, 0.4177, 0.2711, 0.6923, 0.2038, ], [ 0.6833, 0.7529, 0.8579, 0.6870, 0.0051, 0.1757, 0.7497, 0.6047, 0.1100, 0.2121, ], ] ] ) * 100 ) return file_tensor def get_inputs_tensor() -> Tensor: input_tensor = torch.tensor( [ [ [ [ -1.1258e00, -1.1524e00, -2.5058e-01, -4.3388e-01, 8.4871e-01, 6.9201e-01, -3.1601e-01, -2.1152e00, 3.2227e-01, -1.2633e00, ], [ 3.4998e-01, 3.0813e-01, 1.1984e-01, 1.2377e00, 1.1168e00, -2.4728e-01, -1.3527e00, -1.6959e00, 5.6665e-01, 7.9351e-01, ], [ 5.9884e-01, -1.5551e00, -3.4136e-01, 1.8530e00, 7.5019e-01, -5.8550e-01, -1.7340e-01, 1.8348e-01, 1.3894e00, 1.5863e00, ], [ 9.4630e-01, -8.4368e-01, -6.1358e-01, 3.1593e-02, -4.9268e-01, 2.4841e-01, 4.3970e-01, 1.1241e-01, 6.4079e-01, 4.4116e-01, ], [ -1.0231e-01, 7.9244e-01, -2.8967e-01, 5.2507e-02, 5.2286e-01, 2.3022e00, -1.4689e00, -1.5867e00, -6.7309e-01, 8.7283e-01, ], [ 1.0554e00, 1.7784e-01, -2.3034e-01, -3.9175e-01, 5.4329e-01, -3.9516e-01, -4.4622e-01, 7.4402e-01, 1.5210e00, 3.4105e00, ], [ -1.5312e00, -1.2341e00, 1.8197e00, -5.5153e-01, -5.6925e-01, 9.1997e-01, 1.1108e00, 1.2899e00, -1.4782e00, 2.5672e00, ], [ -4.7312e-01, 3.3555e-01, -1.6293e00, -5.4974e-01, -4.7983e-01, -4.9968e-01, -1.0670e00, 1.1149e00, -1.4067e-01, 8.0575e-01, ], [ -9.3348e-02, 6.8705e-01, -8.3832e-01, 8.9182e-04, 8.4189e-01, -4.0003e-01, 1.0395e00, 3.5815e-01, -2.4600e-01, 2.3025e00, ], [ -1.8817e00, -4.9727e-02, -1.0450e00, -9.5650e-01, 3.3532e-02, 7.1009e-01, 1.6459e00, -1.3602e00, 3.4457e-01, 5.1987e-01, ], ] ], [ [ [ -2.6133e00, -1.6965e00, -2.2824e-01, 2.7995e-01, 2.4693e-01, 7.6887e-02, 3.3801e-01, 4.5440e-01, 4.5694e-01, -8.6537e-01, ], [ 7.8131e-01, -9.2679e-01, -2.1883e-01, -2.4351e00, -7.2915e-02, -3.3986e-02, 9.6252e-01, 3.4917e-01, -9.2146e-01, -5.6195e-02, ], [ -6.2270e-01, -4.6372e-01, 1.9218e00, -4.0255e-01, 1.2390e-01, 1.1648e00, 9.2337e-01, 1.3873e00, -8.8338e-01, -4.1891e-01, ], [ -8.0483e-01, 5.6561e-01, 6.1036e-01, 4.6688e-01, 1.9507e00, -1.0631e00, -7.7326e-02, 1.1640e-01, -5.9399e-01, -1.2439e00, ], [ -1.0209e-01, -1.0335e00, -3.1264e-01, 2.4579e-01, -2.5964e-01, 1.1834e-01, 2.4396e-01, 1.1646e00, 2.8858e-01, 3.8660e-01, ], [ -2.0106e-01, -1.1793e-01, 1.9220e-01, -7.7216e-01, -1.9003e00, 1.3068e-01, -7.0429e-01, 3.1472e-01, 1.5739e-01, 3.8536e-01, ], [ 9.6715e-01, -9.9108e-01, 3.0161e-01, -1.0732e-01, 9.9846e-01, -4.9871e-01, 7.6111e-01, 6.1830e-01, 3.1405e-01, 2.1333e-01, ], [ -1.2005e-01, 3.6046e-01, -3.1403e-01, -1.0787e00, 2.4081e-01, -1.3962e00, -6.6144e-02, -3.5836e-01, -1.5616e00, -3.5464e-01, ], [ 1.0811e00, 1.3148e-01, 1.5735e00, 7.8143e-01, -5.1107e-01, -1.7137e00, -5.1006e-01, -4.7489e-01, -6.3340e-01, -1.4677e00, ], [ -8.7848e-01, -2.0784e00, -1.1005e00, -7.2013e-01, 1.1931e-02, 3.3977e-01, -2.6345e-01, 1.2805e00, 1.9395e-02, -8.8080e-01, ], ] ], ], requires_grad=True, ) return input_tensor def create_concept(concept_name: str, concept_id: int) -> Concept: concepts_path = "./dummy/concepts/" + concept_name + "/" dataset = CustomIterableDataset(get_tensor_from_filename, concepts_path) concept_iter = dataset_to_dataloader(dataset) concept = Concept(id=concept_id, name=concept_name, data_iter=concept_iter) return concept def create_concepts() -> Dict[str, Concept]: # Function to create concept objects from a pre-set concept name list. concept_names = ["striped", "ceo", "random", "dotted"] concept_dict: Dict[str, Concept] = defaultdict() for c, concept_name in enumerate(concept_names): concept = create_concept(concept_name, c) concept_dict[concept_name] = concept return concept_dict def find_concept_by_id(concepts: Set[Concept], id: int) -> Union[Concept, None]: for concept in concepts: if concept.id == id: return concept return None def create_TCAV( save_path: str, classifier: Classifier, layers: Union[str, List[str]], attribute_to_layer_input: bool = False, ) -> TCAV: model = BasicModel_ConvNet() tcav = TCAV( model, layers, classifier=classifier, save_path=save_path, attribute_to_layer_input=attribute_to_layer_input, ) return tcav def init_TCAV( save_path: str, classifier: Classifier, layers: Union[str, List[str]], attribute_to_layer_input: bool = False, ) -> Tuple[TCAV, Dict[str, Concept]]: # Create Concepts concepts_dict = create_concepts() tcav = create_TCAV( save_path, classifier, layers, attribute_to_layer_input=attribute_to_layer_input ) return tcav, concepts_dict def remove_pkls(path: str) -> None: pkl_files = glob.glob(os.path.join(path, "*.pkl")) for pkl_file in pkl_files: os.remove(pkl_file) class Test(BaseTest): r""" Class for testing the TCAV class through a sequence of operations: - Create the Concepts (random tensor generation simulation) - Create the TCAV class - Generate Activations - Compute the CAVs - Interpret (the images - simulated with random tensors) """ def test_compute_cav_repeating_concept_ids(self) -> None: with tempfile.TemporaryDirectory() as tmpdirname: tcav = create_TCAV(tmpdirname, CustomClassifier(), "conv1") experimental_sets = [ [create_concept("striped", 0), create_concept("random", 1)], [create_concept("ceo", 2), create_concept("striped2", 0)], ] with self.assertRaises(AssertionError): tcav.compute_cavs(experimental_sets) def test_compute_cav_repeating_concept_names(self) -> None: with tempfile.TemporaryDirectory() as tmpdirname: tcav = create_TCAV(tmpdirname, CustomClassifier(), "conv1") experimental_sets = [ [create_concept("striped", 0), create_concept("random", 1)], [create_concept("ceo", 2), create_concept("striped", 3)], ] cavs = tcav.compute_cavs(experimental_sets) self.assertTrue("0-1" in cavs.keys()) self.assertTrue("2-3" in cavs.keys()) self.assertEqual(cavs["0-1"]["conv1"].layer, "conv1") self.assertEqual(cavs["2-3"]["conv1"].layer, "conv1") self.assertEqual(cavs["0-1"]["conv1"].concepts[0].id, 0) self.assertEqual(cavs["0-1"]["conv1"].concepts[0].name, "striped") self.assertEqual(cavs["0-1"]["conv1"].concepts[1].id, 1) self.assertEqual(cavs["0-1"]["conv1"].concepts[1].name, "random") self.assertEqual(cavs["0-1"]["conv1"].stats["classes"], [0, 1]) self.assertAlmostEqual( cavs["0-1"]["conv1"].stats["accs"].item(), 0.4848, delta=0.001 ) self.assertEqual( list(cavs["0-1"]["conv1"].stats["weights"].shape), [2, 128] ) self.assertEqual(cavs["2-3"]["conv1"].concepts[0].id, 2) self.assertEqual(cavs["2-3"]["conv1"].concepts[0].name, "ceo") self.assertEqual(cavs["2-3"]["conv1"].concepts[1].id, 3) self.assertEqual(cavs["2-3"]["conv1"].concepts[1].name, "striped") self.assertEqual(cavs["2-3"]["conv1"].stats["classes"], [2, 3]) self.assertAlmostEqual( cavs["2-3"]["conv1"].stats["accs"].item(), 0.4848, delta=0.001 ) self.assertEqual( list(cavs["2-3"]["conv1"].stats["weights"].shape), [2, 128] ) def compute_cavs_interpret( self, experimental_sets: List[List[str]], force_train: bool, accs: float, sign_count: float, magnitude: float, processes: int = 1, remove_activation: bool = False, layers: Union[str, List[str]] = "conv2", attribute_to_layer_input: bool = False, ) -> None: classifier = CustomClassifier() self._compute_cavs_interpret( experimental_sets, force_train, accs, sign_count, magnitude, classifier, processes=processes, remove_activation=remove_activation, layers=layers, attribute_to_layer_input=attribute_to_layer_input, ) def _compute_cavs_interpret( self, experimental_set_list: List[List[str]], force_train: bool, accs: Union[float, List[float]], sign_count: Union[float, List[float]], magnitude: Union[float, List[float]], classifier: Classifier, processes: int = 1, remove_activation: bool = False, layers: Union[str, List[str]] = "conv2", attribute_to_layer_input: bool = False, ) -> None: def wrap_in_list_if_not_already(input): return ( input if isinstance(input, list) else [ input, ] ) with tempfile.TemporaryDirectory() as tmpdirname: tcav, concept_dict = init_TCAV( tmpdirname, classifier, layers, attribute_to_layer_input=attribute_to_layer_input, ) experimental_sets = self._create_experimental_sets( experimental_set_list, concept_dict ) # Compute CAVs tcav.compute_cavs( experimental_sets, force_train=force_train, processes=processes, ) concepts_key = concepts_to_str(experimental_sets[0]) _layers: List[str] = wrap_in_list_if_not_already(layers) _accs: List[float] = wrap_in_list_if_not_already(accs) _sign_counts: List[float] = wrap_in_list_if_not_already(sign_count) _magnitudes: List[float] = wrap_in_list_if_not_already(magnitude) for layer, acc, sign_count, magnitude in zip( _layers, _accs, _sign_counts, _magnitudes ): stats = cast(Dict[str, Tensor], tcav.cavs[concepts_key][layer].stats) self.assertEqual( stats["weights"].shape, torch.Size([2, 16]), ) if not isinstance(classifier, CustomClassifier_WO_Returning_Metrics): self.assertAlmostEqual( stats["accs"].item(), acc, delta=0.0001, ) # Provoking a CAV absence by deleting the .pkl files and one # activation if remove_activation: remove_pkls(tmpdirname) for fl in glob.glob(tmpdirname + "/av/" + layer + "/random-*-*"): os.remove(fl) # Interpret inputs = 100 * get_inputs_tensor() scores = tcav.interpret( inputs=inputs, experimental_sets=experimental_sets, target=0, processes=processes, ) self.assertAlmostEqual( cast(float, scores[concepts_key][layer]["sign_count"][0].item()), sign_count, delta=0.0001, ) self.assertAlmostEqual( cast(float, scores[concepts_key][layer]["magnitude"][0].item()), magnitude, delta=0.0001, ) def _create_experimental_sets( self, experimental_set_list: List[List[str]], concept_dict: Dict[str, Concept] ) -> List[List[Concept]]: experimental_sets = [] for concept_set in experimental_set_list: concepts = [] for concept in concept_set: self.assertTrue(concept in concept_dict) concepts.append(concept_dict[concept]) experimental_sets.append(concepts) return experimental_sets # Init - Generate Activations def test_TCAV_1(self) -> None: # Create Concepts concepts_dict = create_concepts() for concept in concepts_dict.values(): self.assertTrue(concept.data_iter is not None) data_iter = cast(DataLoader, concept.data_iter) self.assertEqual( len(cast(CustomIterableDataset, data_iter.dataset).file_itr), 100 ) self.assertTrue(concept.data_iter is not None) total_batches = 0 for data in cast(Iterable, concept.data_iter): total_batches += data.shape[0] self.assertEqual(data.shape[1:], torch.Size([1, 10, 10])) self.assertEqual(total_batches, 100) def test_TCAV_generate_all_activations(self) -> None: def forward_hook_wrapper(expected_act: Tensor): def forward_hook(module, inp, out=None): out = torch.reshape(out, (out.shape[0], -1)) self.assertEqual(out.detach().shape[1:], expected_act.shape[1:]) return forward_hook with tempfile.TemporaryDirectory() as tmpdirname: layers = ["conv1", "conv2", "fc1", "fc2"] tcav, concept_dict = init_TCAV( tmpdirname, CustomClassifier(), layers=layers ) tcav.concepts = set(concept_dict.values()) # generating all activations for given layers and concepts tcav.generate_all_activations() # verify that all activations exist and have correct shapes for layer in layers: for _, concept in concept_dict.items(): self.assertTrue( AV.exists( tmpdirname, "default_model_id", concept.identifier, layer ) ) concept_meta: Dict[int, int] = defaultdict(int) for _, concept in concept_dict.items(): activations = AV.load( tmpdirname, "default_model_id", concept.identifier, layer ) def batch_collate(batch): return torch.cat(batch) self.assertTrue(concept.data_iter is not None) assert not (activations is None) for activation in cast( Iterable, DataLoader(activations, collate_fn=batch_collate) ): concept_meta[concept.id] += activation.shape[0] layer_module = _get_module_from_name(tcav.model, layer) for data in cast(Iterable, concept.data_iter): hook = layer_module.register_forward_hook( forward_hook_wrapper(activation) ) tcav.model(data) hook.remove() # asserting the length of entire dataset for each concept for concept_meta_i in concept_meta.values(): self.assertEqual(concept_meta_i, 100) def test_TCAV_multi_layer(self) -> None: concepts = [["striped", "random"], ["ceo", "random"]] layers = ["conv1", "conv2"] classifier = CustomClassifier() with tempfile.TemporaryDirectory() as tmpdirname: tcav, concept_dict = init_TCAV(tmpdirname, classifier, layers) experimental_sets = self._create_experimental_sets(concepts, concept_dict) # Interpret inputs = 100 * get_inputs_tensor() scores = tcav.interpret( inputs=inputs, experimental_sets=experimental_sets, target=0, processes=3, ) self.assertEqual(len(scores.keys()), len(experimental_sets)) for _, tcavs in scores.items(): for _, tcav_i in tcavs.items(): self.assertEqual(tcav_i["sign_count"].shape[0], 2) self.assertEqual(tcav_i["magnitude"].shape[0], 2) # Force Train def test_TCAV_1_1_a(self) -> None: self.compute_cavs_interpret( [["striped", "random"], ["ceo", "random"]], True, 0.4848, 0.5000, 8.185208066890937e-09, processes=5, ) def test_TCAV_1_1_a_wo_acc_metric(self) -> None: self._compute_cavs_interpret( [["striped", "random"], ["ceo", "random"]], True, -1.0, # acc is not defined, this field will not be asserted 0.5000, 8.185208066890937e-09, CustomClassifier_WO_Returning_Metrics(), processes=2, ) def test_TCAV_1_1_b(self) -> None: self.compute_cavs_interpret( [["striped", "random"]], True, 0.4848, 0.5000, 8.185208066890937e-09 ) def test_TCAV_1_1_c(self) -> None: self.compute_cavs_interpret( [["striped", "random"], ["ceo", "random"], ["striped", "ceo"]], True, 0.4848, 0.5000, 8.185208066890937e-09, processes=6, ) # Non-existing concept in the experimental set ("dotted") def test_TCAV_1_1_d(self) -> None: self.compute_cavs_interpret( [["striped", "random"], ["dotted", "random"]], True, 0.4848, 0.5000, 8.185208066890937e-09, processes=4, ) # Force Train def test_TCAV_0_1(self) -> None: self.compute_cavs_interpret( [["striped", "random"], ["ceo", "random"]], True, 0.4848, 0.5000, 8.185208066890937e-09, processes=2, ) def test_TCAV_0_1_attr_to_inputs(self) -> None: self.compute_cavs_interpret( [["striped", "random"], ["ceo", "random"]], True, 0.4848, 0.5000, 8.185208066890937e-09, processes=2, layers="relu2", attribute_to_layer_input=True, ) # Do not Force Train def test_TCAV_0_0(self) -> None: self.compute_cavs_interpret( [["striped", "random"], ["ceo", "random"]], False, 0.4848, 0.5000, 8.185208066890937e-09, processes=2, ) # Non-existing concept in the experimental set ("dotted"), do Not Force Train def test_TCAV_1_0_b(self) -> None: self.compute_cavs_interpret( [["striped", "random"], ["dotted", "random"]], False, 0.4848, 0.5000, 8.185208066890937e-09, processes=5, ) # Do not Force Train, Missing Activation def test_TCAV_1_0_1(self) -> None: self.compute_cavs_interpret( [["striped", "random"], ["ceo", "random"]], False, 0.4848, 0.5000, 8.185208066890937e-09, processes=5, remove_activation=True, ) # Do not run parallel: # Force Train def test_TCAV_x_1_1_a(self) -> None: self.compute_cavs_interpret( [["striped", "random"], ["ceo", "random"]], True, 0.4848, 0.5000, 8.185208066890937e-09, processes=1, ) def test_TCAV_x_1_1_b(self) -> None: self.compute_cavs_interpret( [["striped", "random"]], True, 0.4848, 0.5000, 8.185208066890937e-09, processes=1, ) def test_TCAV_x_1_1_c(self) -> None: self.compute_cavs_interpret( [["striped", "random"], ["ceo", "random"], ["striped", "ceo"]], True, 0.4848, 0.5000, 8.185208066890937e-09, processes=1, ) def test_TCAV_x_1_1_c_concept_order_changed(self) -> None: self.compute_cavs_interpret( [["random", "striped"], ["random", "ceo"], ["ceo", "striped"]], True, 0.4848, 0.5000, 8.185208066890937e-09, processes=1, ) # Non-existing concept in the experimental set ("dotted") def test_TCAV_x_1_1_d(self) -> None: self.compute_cavs_interpret( [["striped", "random"], ["dotted", "random"]], True, 0.4848, 0.5000, 8.185208066890937e-09, processes=1, ) # Do not Force Train def test_TCAV_x_1_0_a(self) -> None: self.compute_cavs_interpret( [["striped", "random"], ["ceo", "random"]], False, 0.4848, 0.5000, 8.185208066890937e-09, processes=1, ) def test_TCAV_x_1_0_1_attr_to_inputs(self) -> None: self.compute_cavs_interpret( [["striped", "random"], ["ceo", "random"]], False, 0.4848, 0.5000, 8.185208066890937e-09, processes=1, remove_activation=True, layers="relu2", attribute_to_layer_input=True, ) # Non-existing concept in the experimental set ("dotted"), do Not Force Train def test_TCAV_x_1_0_b(self) -> None: self.compute_cavs_interpret( [["striped", "random"], ["dotted", "random"]], False, 0.4848, 0.5000, 8.185208066890937e-09, processes=1, ) # Do not Force Train, Missing Activation def test_TCAV_x_1_0_1(self) -> None: self.compute_cavs_interpret( [["striped", "random"], ["ceo", "random"]], False, 0.4848, 0.5000, 8.185208066890937e-09, processes=1, remove_activation=True, ) def test_TCAV_x_1_0_1_w_flipped_class_id(self) -> None: self._compute_cavs_interpret( [["striped", "random"], ["ceo", "random"]], False, 0.4848, 0.5000, 8.185208066890937e-09, CustomClassifier_W_Flipped_Class_Id(), processes=1, ) # Testing TCAV with default classifier and experimental sets of varying lengths def test_exp_sets_with_diffent_lengths(self) -> None: try: import sklearn import sklearn.linear_model import sklearn.svm # noqa: F401 except ImportError: raise unittest.SkipTest("sklearn is not available.") # Create Concepts concepts_dict = create_concepts() # defining experimental sets of different length experimental_set_list = [["striped", "random"], ["ceo", "striped", "random"]] experimental_sets_diff_length = self._create_experimental_sets( experimental_set_list, concepts_dict ) exp_sets_striped_random = self._create_experimental_sets( [["striped", "random"]], concepts_dict ) exp_sets_ceo_striped_random = self._create_experimental_sets( [["ceo", "striped", "random"]], concepts_dict ) striped_random_str = concepts_to_str(exp_sets_striped_random[0]) ceo_striped_random_str = concepts_to_str(exp_sets_ceo_striped_random[0]) model = BasicModel_ConvNet() model.eval() layers = ["conv1", "conv2", "fc1", "fc2"] inputs = torch.randn(5, 1, 10, 10) with tempfile.TemporaryDirectory() as tmpdirname: tcav_diff_length = TCAV( model, layers, save_path=tmpdirname, ) # computing tcav scores for `striped and random` set and # `ceo, striped and random` set at once using one `interpret` # call. interpret_diff_lengths = tcav_diff_length.interpret( inputs, experimental_sets=experimental_sets_diff_length, target=0 ) # computing tcav scores for striped and random interpret_striped_random = tcav_diff_length.interpret( inputs, experimental_sets=exp_sets_striped_random, target=0 ) # computing tcav scores for ceo, striped and random interpret_ceo_striped_random = tcav_diff_length.interpret( inputs, experimental_sets=exp_sets_ceo_striped_random, target=0 ) for combined, separate in zip( interpret_diff_lengths[striped_random_str].items(), interpret_striped_random[striped_random_str].items(), ): self.assertEqual(combined[0], separate[0]) for c_tcav, s_tcav in zip(combined[1].items(), separate[1].items()): self.assertEqual(c_tcav[0], s_tcav[0]) assertTensorAlmostEqual(self, c_tcav[1], s_tcav[1]) for combined, separate in zip( interpret_diff_lengths[ceo_striped_random_str].items(), interpret_ceo_striped_random[ceo_striped_random_str].items(), ): self.assertEqual(combined[0], separate[0]) for c_tcav, s_tcav in zip(combined[1].items(), separate[1].items()): self.assertEqual(c_tcav[0], s_tcav[0]) assertTensorAlmostEqual(self, c_tcav[1], s_tcav[1]) def test_model_ids_in_tcav( self, ) -> None: # creating concepts and mapping between concepts and their names concepts_dict = create_concepts() # defining experimental sets of different length experimental_set_list = [["striped", "random"], ["dotted", "random"]] experimental_sets = self._create_experimental_sets( experimental_set_list, concepts_dict ) model = BasicModel_ConvNet() model.eval() layer = "conv2" inputs = 100 * get_inputs_tensor() with tempfile.TemporaryDirectory() as tmpdirname: tcav1 = TCAV( model, layer, model_id="my_basic_model1", classifier=CustomClassifier(), save_path=tmpdirname, ) interpret1 = tcav1.interpret( inputs, experimental_sets=experimental_sets, target=0 ) tcav2 = TCAV( model, layer, model_id="my_basic_model2", classifier=CustomClassifier(), save_path=tmpdirname, ) interpret2 = tcav2.interpret( inputs, experimental_sets=experimental_sets, target=0 ) # testing that different folders were created for two different # ids of the model self.assertTrue( AV.exists( tmpdirname, "my_basic_model1", concepts_dict["striped"].identifier, layer, ) ) self.assertTrue( AV.exists( tmpdirname, "my_basic_model2", concepts_dict["striped"].identifier, layer, ) ) for interpret1_elem, interpret2_elem in zip(interpret1, interpret2): for interpret1_sub_elem, interpret2_sub_elem in zip( interpret1[interpret1_elem], interpret2[interpret2_elem] ): assertTensorAlmostEqual( self, interpret1[interpret1_elem][interpret1_sub_elem]["sign_count"], interpret2[interpret2_elem][interpret2_sub_elem]["sign_count"], 0.0, ) assertTensorAlmostEqual( self, interpret1[interpret1_elem][interpret1_sub_elem]["magnitude"], interpret2[interpret2_elem][interpret2_sub_elem]["magnitude"], 0.0, ) self.assertEqual(interpret1_sub_elem, interpret2_sub_elem) self.assertEqual(interpret1_elem, interpret2_elem)
#!/usr/bin/env python3 import torch import torch.nn as nn class SigmoidModel(nn.Module): """ Model architecture from: https://medium.com/coinmonks/create-a-neural-network-in -pytorch-and-make-your-life-simpler-ec5367895199 """ def __init__(self, num_in, num_hidden, num_out) -> None: super().__init__() self.num_in = num_in self.num_hidden = num_hidden self.num_out = num_out self.lin1 = nn.Linear(num_in, num_hidden) self.lin2 = nn.Linear(num_hidden, num_out) self.relu1 = nn.ReLU() self.sigmoid = nn.Sigmoid() def forward(self, input): lin1 = self.lin1(input) lin2 = self.lin2(self.relu1(lin1)) return self.sigmoid(lin2) class SoftmaxModel(nn.Module): """ Model architecture from: https://adventuresinmachinelearning.com/pytorch-tutorial-deep-learning/ """ def __init__(self, num_in, num_hidden, num_out, inplace=False) -> None: super().__init__() self.num_in = num_in self.num_hidden = num_hidden self.num_out = num_out self.lin1 = nn.Linear(num_in, num_hidden) self.lin2 = nn.Linear(num_hidden, num_hidden) self.lin3 = nn.Linear(num_hidden, num_out) self.relu1 = nn.ReLU(inplace=inplace) self.relu2 = nn.ReLU(inplace=inplace) self.softmax = nn.Softmax(dim=1) def forward(self, input): lin1 = self.relu1(self.lin1(input)) lin2 = self.relu2(self.lin2(lin1)) lin3 = self.lin3(lin2) return self.softmax(lin3) class SigmoidDeepLiftModel(nn.Module): """ Model architecture from: https://medium.com/coinmonks/create-a-neural-network-in -pytorch-and-make-your-life-simpler-ec5367895199 """ def __init__(self, num_in, num_hidden, num_out) -> None: super().__init__() self.num_in = num_in self.num_hidden = num_hidden self.num_out = num_out self.lin1 = nn.Linear(num_in, num_hidden, bias=False) self.lin2 = nn.Linear(num_hidden, num_out, bias=False) self.lin1.weight = nn.Parameter(torch.ones(num_hidden, num_in)) self.lin2.weight = nn.Parameter(torch.ones(num_out, num_hidden)) self.relu1 = nn.ReLU() self.sigmoid = nn.Sigmoid() def forward(self, input): lin1 = self.lin1(input) lin2 = self.lin2(self.relu1(lin1)) return self.sigmoid(lin2) class SoftmaxDeepLiftModel(nn.Module): """ Model architecture from: https://adventuresinmachinelearning.com/pytorch-tutorial-deep-learning/ """ def __init__(self, num_in, num_hidden, num_out) -> None: super().__init__() self.num_in = num_in self.num_hidden = num_hidden self.num_out = num_out self.lin1 = nn.Linear(num_in, num_hidden) self.lin2 = nn.Linear(num_hidden, num_hidden) self.lin3 = nn.Linear(num_hidden, num_out) self.lin1.weight = nn.Parameter(torch.ones(num_hidden, num_in)) self.lin2.weight = nn.Parameter(torch.ones(num_hidden, num_hidden)) self.lin3.weight = nn.Parameter(torch.ones(num_out, num_hidden)) self.relu1 = nn.ReLU() self.relu2 = nn.ReLU() self.softmax = nn.Softmax(dim=1) def forward(self, input): lin1 = self.relu1(self.lin1(input)) lin2 = self.relu2(self.lin2(lin1)) lin3 = self.lin3(lin2) return self.softmax(lin3)
#!/usr/bin/env python3 from typing import no_type_check, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor """ @no_type_check annotation is applied to type-hinted models to avoid errors related to mismatch with parent (nn.Module) signature. # type_ignore is not possible here, since it causes errors in JIT scripting code which parses the relevant type hints. """ class BasicLinearReLULinear(nn.Module): def __init__(self, in_features, out_features=5, bias=False) -> None: super().__init__() self.fc1 = nn.Linear(in_features, out_features, bias=bias) self.relu1 = nn.ReLU() self.fc2 = nn.Linear(out_features, 1, bias=bias) def forward(self, x): x = self.fc1(x) x = self.relu1(x) x = self.fc2(x) return x class MixedKwargsAndArgsModule(nn.Module): def __init__(self) -> None: super().__init__() def forward(self, x, y=None): if y is not None: return x + y return x class BasicModel(nn.Module): def __init__(self) -> None: super().__init__() def forward(self, input): input = 1 - F.relu(1 - input) return input class BasicModel2(nn.Module): """ Example model one from the paper https://arxiv.org/pdf/1703.01365.pdf f(x1, x2) = RELU(ReLU(x1) - 1 - ReLU(x2)) """ def __init__(self) -> None: super().__init__() def forward(self, input1, input2): relu_out1 = F.relu(input1) relu_out2 = F.relu(input2) return F.relu(relu_out1 - 1 - relu_out2) class BasicModel3(nn.Module): """ Example model two from the paper https://arxiv.org/pdf/1703.01365.pdf f(x1, x2) = RELU(ReLU(x1 - 1) - ReLU(x2)) """ def __init__(self) -> None: super().__init__() def forward(self, input1, input2): relu_out1 = F.relu(input1 - 1) relu_out2 = F.relu(input2) return F.relu(relu_out1 - relu_out2) class BasicModel4_MultiArgs(nn.Module): """ Slightly modified example model from the paper https://arxiv.org/pdf/1703.01365.pdf f(x1, x2) = RELU(ReLU(x1 - 1) - ReLU(x2) / x3) """ def __init__(self) -> None: super().__init__() def forward(self, input1, input2, additional_input1, additional_input2=0): relu_out1 = F.relu(input1 - 1) relu_out2 = F.relu(input2) relu_out2 = relu_out2.div(additional_input1) return F.relu(relu_out1 - relu_out2)[:, additional_input2] class BasicModel5_MultiArgs(nn.Module): """ Slightly modified example model from the paper https://arxiv.org/pdf/1703.01365.pdf f(x1, x2) = RELU(ReLU(x1 - 1) * x3[0] - ReLU(x2) * x3[1]) """ def __init__(self) -> None: super().__init__() def forward(self, input1, input2, additional_input1, additional_input2=0): relu_out1 = F.relu(input1 - 1) * additional_input1[0] relu_out2 = F.relu(input2) relu_out2 = relu_out2 * additional_input1[1] return F.relu(relu_out1 - relu_out2)[:, additional_input2] class BasicModel6_MultiTensor(nn.Module): def __init__(self) -> None: super().__init__() def forward(self, input1, input2): input = input1 + input2 return 1 - F.relu(1 - input)[:, 1] class BasicLinearModel(nn.Module): def __init__(self) -> None: super().__init__() self.linear = nn.Linear(7, 1) def forward(self, x1, x2): return self.linear(torch.cat((x1, x2), dim=-1)) class BasicLinearModel2(nn.Module): def __init__(self, in_features, out_features) -> None: super().__init__() self.linear = nn.Linear(in_features, out_features, bias=False) def forward(self, input): return self.linear(input) class BasicLinearModel_Multilayer(nn.Module): def __init__(self, in_features, hidden_nodes, out_features) -> None: super().__init__() self.linear1 = nn.Linear(in_features, hidden_nodes, bias=False) self.linear2 = nn.Linear(hidden_nodes, out_features, bias=False) def forward(self, input): x = self.linear1(input) return self.linear2(x) class ReLUDeepLiftModel(nn.Module): r""" https://www.youtube.com/watch?v=f_iAM0NPwnM """ def __init__(self) -> None: super().__init__() self.relu1 = nn.ReLU() self.relu2 = nn.ReLU() def forward(self, x1, x2, x3=2): return 2 * self.relu1(x1) + x3 * self.relu2(x2 - 1.5) class LinearMaxPoolLinearModel(nn.Module): def __init__(self) -> None: super().__init__() # kernel size -> 4 self.lin1 = nn.Linear(4, 4, bias=False) self.lin1.weight = nn.Parameter(torch.eye(4, 4)) self.pool1 = nn.MaxPool1d(4) self.lin2 = nn.Linear(1, 1, bias=False) self.lin2.weight = nn.Parameter(torch.ones(1, 1)) def forward(self, x): x = x.unsqueeze(1) return self.lin2(self.pool1(self.lin1(x))[:, 0, :]) class BasicModelWithReusedModules(nn.Module): def __init__(self) -> None: super().__init__() self.lin1 = nn.Linear(3, 2) self.relu = nn.ReLU() self.lin2 = nn.Linear(2, 2) def forward(self, inputs): return self.relu(self.lin2(self.relu(self.lin1(inputs)))) class BasicModelWithReusedLinear(nn.Module): def __init__(self) -> None: super().__init__() self.lin1 = nn.Linear(3, 3) self.relu = nn.ReLU() def forward(self, inputs): return self.relu(self.lin1(self.relu(self.lin1(inputs)))) class BasicModelWithSparseInputs(nn.Module): def __init__(self) -> None: super().__init__() self.lin1 = nn.Linear(3, 1) self.lin1.weight = nn.Parameter(torch.tensor([[3.0, 1.0, 2.0]])) self.lin1.bias = nn.Parameter(torch.zeros(1)) def forward(self, inputs, sparse_list): return ( self.lin1(inputs) + (sparse_list[0] if torch.numel(sparse_list) > 0 else 0) ).sum() class BasicModel_MaxPool_ReLU(nn.Module): def __init__(self, inplace=False) -> None: super().__init__() self.maxpool = nn.MaxPool1d(3) self.relu = nn.ReLU(inplace=inplace) def forward(self, x): return self.relu(self.maxpool(x)).sum(dim=1) class TanhDeepLiftModel(nn.Module): r""" Same as the ReLUDeepLiftModel, but with activations that can have negative outputs """ def __init__(self) -> None: super().__init__() self.tanh1 = nn.Tanh() self.tanh2 = nn.Tanh() def forward(self, x1, x2): return 2 * self.tanh1(x1) + 2 * self.tanh2(x2 - 1.5) class ReLULinearModel(nn.Module): r""" Simple architecture similar to: https://github.com/marcoancona/DeepExplain/blob/master/deepexplain/tests/test_tensorflow.py#L65 """ def __init__(self, inplace: bool = False) -> None: super().__init__() self.l1 = nn.Linear(3, 1, bias=False) self.l2 = nn.Linear(3, 1, bias=False) self.l1.weight = nn.Parameter(torch.tensor([[3.0, 1.0, 0.0]])) # type: ignore self.l2.weight = nn.Parameter(torch.tensor([[2.0, 3.0, 0.0]])) # type: ignore self.relu = nn.ReLU(inplace=inplace) self.l3 = nn.Linear(2, 1, bias=False) self.l3.weight = nn.Parameter(torch.tensor([[1.0, 1.0]])) # type: ignore @no_type_check def forward(self, x1: Tensor, x2: Tensor, x3: int = 1) -> Tensor: return self.l3(self.relu(torch.cat([self.l1(x1), x3 * self.l2(x2)], dim=1))) class SimpleLRPModel(nn.Module): def __init__(self, inplace) -> None: super().__init__() self.linear = nn.Linear(3, 3, bias=False) self.linear.weight.data.fill_(2.0) self.relu = torch.nn.ReLU(inplace=inplace) self.linear2 = nn.Linear(3, 1, bias=False) self.linear2.weight.data.fill_(3.0) self.dropout = torch.nn.Dropout(p=0.01) def forward(self, x): return self.dropout(self.linear2(self.relu(self.linear(x)))) class Conv1dSeqModel(nn.Module): def __init__(self) -> None: super().__init__() self.seq = nn.Sequential(nn.Conv1d(4, 2, 1), nn.ReLU(), nn.Linear(1000, 1)) def forward(self, inputs): return self.seq(inputs) class TextModule(nn.Module): r"""Basic model that has inner embedding layer. This layer can be pluged into a larger network such as `BasicEmbeddingModel` and help us to test nested embedding layers """ def __init__(self, num_embeddings, embedding_dim, second_embedding=False) -> None: super().__init__() self.inner_embedding = nn.Embedding(num_embeddings, embedding_dim) self.second_embedding = second_embedding if self.second_embedding: self.inner_embedding2 = nn.Embedding(num_embeddings, embedding_dim) def forward(self, input=None, another_input=None): assert input is not None, "The inputs to embedding module must be specified" embedding = self.inner_embedding(input) if self.second_embedding: another_embedding = self.inner_embedding2( input if another_input is None else another_input ) return embedding if another_input is None else embedding + another_embedding class BasicEmbeddingModel(nn.Module): r""" Implements basic model with nn.Embedding layer. This simple model will help us to test nested InterpretableEmbedding layers The model has the following structure: BasicEmbeddingModel( (embedding1): Embedding(30, 100) (embedding2): TextModule( (inner_embedding): Embedding(30, 100) ) (linear1): Linear(in_features=100, out_features=256, bias=True) (relu): ReLU() (linear2): Linear(in_features=256, out_features=1, bias=True) ) """ def __init__( self, num_embeddings=30, embedding_dim=100, hidden_dim=256, output_dim=1, nested_second_embedding=False, ) -> None: super().__init__() self.embedding1 = nn.Embedding(num_embeddings, embedding_dim) self.embedding2 = TextModule( num_embeddings, embedding_dim, nested_second_embedding ) self.linear1 = nn.Linear(embedding_dim, hidden_dim, bias=False) self.linear1.weight = nn.Parameter(torch.ones(hidden_dim, embedding_dim)) self.relu = nn.ReLU() self.linear2 = nn.Linear(hidden_dim, output_dim) self.linear2.weight = nn.Parameter(torch.ones(output_dim, hidden_dim)) def forward(self, input1, input2, input3=None): embedding1 = self.embedding1(input1) embedding2 = self.embedding2(input2, input3) embeddings = embedding1 + embedding2 return self.linear2(self.relu(self.linear1(embeddings))).sum(1) class MultiRelu(nn.Module): def __init__(self, inplace: bool = False) -> None: super().__init__() self.relu1 = nn.ReLU(inplace=inplace) self.relu2 = nn.ReLU(inplace=inplace) @no_type_check def forward(self, arg1: Tensor, arg2: Tensor) -> Tuple[Tensor, Tensor]: return (self.relu1(arg1), self.relu2(arg2)) class BasicModel_MultiLayer(nn.Module): def __init__(self, inplace=False, multi_input_module=False) -> None: super().__init__() # Linear 0 is simply identity transform self.multi_input_module = multi_input_module self.linear0 = nn.Linear(3, 3) self.linear0.weight = nn.Parameter(torch.eye(3)) self.linear0.bias = nn.Parameter(torch.zeros(3)) self.linear1 = nn.Linear(3, 4) self.linear1.weight = nn.Parameter(torch.ones(4, 3)) self.linear1.bias = nn.Parameter(torch.tensor([-10.0, 1.0, 1.0, 1.0])) self.linear1_alt = nn.Linear(3, 4) self.linear1_alt.weight = nn.Parameter(torch.ones(4, 3)) self.linear1_alt.bias = nn.Parameter(torch.tensor([-10.0, 1.0, 1.0, 1.0])) self.multi_relu = MultiRelu(inplace=inplace) self.relu = nn.ReLU(inplace=inplace) self.linear2 = nn.Linear(4, 2) self.linear2.weight = nn.Parameter(torch.ones(2, 4)) self.linear2.bias = nn.Parameter(torch.tensor([-1.0, 1.0])) @no_type_check def forward( self, x: Tensor, add_input: Optional[Tensor] = None, multidim_output: bool = False, ): input = x if add_input is None else x + add_input lin0_out = self.linear0(input) lin1_out = self.linear1(lin0_out) if self.multi_input_module: relu_out1, relu_out2 = self.multi_relu(lin1_out, self.linear1_alt(input)) relu_out = relu_out1 + relu_out2 else: relu_out = self.relu(lin1_out) lin2_out = self.linear2(relu_out) if multidim_output: stack_mid = torch.stack((lin2_out, 2 * lin2_out), dim=2) return torch.stack((stack_mid, 4 * stack_mid), dim=3) else: return lin2_out class BasicModelBoolInput(nn.Module): def __init__(self) -> None: super().__init__() self.mod = BasicModel_MultiLayer() def forward( self, x: Tensor, add_input: Optional[Tensor] = None, mult: float = 10.0, ): assert x.dtype is torch.bool, "Input must be boolean" return self.mod(x.float() * mult, add_input) class BasicModel_MultiLayer_MultiInput(nn.Module): def __init__(self) -> None: super().__init__() self.model = BasicModel_MultiLayer() @no_type_check def forward(self, x1: Tensor, x2: Tensor, x3: Tensor, scale: int): return self.model(scale * (x1 + x2 + x3)) class BasicModel_MultiLayer_TrueMultiInput(nn.Module): def __init__(self) -> None: super().__init__() self.m1 = BasicModel_MultiLayer() self.m234 = BasicModel_MultiLayer_MultiInput() @no_type_check def forward( self, x1: Tensor, x2: Tensor, x3: Tensor, x4: Optional[Tensor] = None ) -> Tensor: a = self.m1(x1) if x4 is None: b = self.m234(x2, x3, x1, scale=1) else: b = self.m234(x2, x3, x4, scale=1) return a + b class BasicModel_ConvNet_One_Conv(nn.Module): def __init__(self, inplace: bool = False) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 2, 3, 1) self.relu1 = nn.ReLU(inplace=inplace) self.fc1 = nn.Linear(8, 4) self.conv1.weight = nn.Parameter(torch.ones(2, 1, 3, 3)) # type: ignore self.conv1.bias = nn.Parameter(torch.tensor([-50.0, -75.0])) # type: ignore self.fc1.weight = nn.Parameter( # type: ignore torch.cat([torch.ones(4, 5), -1 * torch.ones(4, 3)], dim=1) ) self.fc1.bias = nn.Parameter(torch.zeros(4)) # type: ignore self.relu2 = nn.ReLU(inplace=inplace) @no_type_check def forward(self, x: Tensor, x2: Optional[Tensor] = None): if x2 is not None: x = x + x2 x = self.relu1(self.conv1(x)) x = x.view(-1, 8) return self.relu2(self.fc1(x)) class BasicModel_ConvNetWithPaddingDilation(nn.Module): def __init__(self, inplace: bool = False) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 2, 3, padding=3, stride=2, dilation=2) self.relu1 = nn.ReLU(inplace=inplace) self.fc1 = nn.Linear(16, 4) @no_type_check def forward(self, x: Tensor): bsz = x.shape[0] x = self.relu1(self.conv1(x)) x = x.reshape(bsz, 2, -1) return self.fc1(x).reshape(bsz, -1) class BasicModel_ConvNet(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 2, 3, 1) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(2, 4, 3, 1) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool2d(2) self.fc1 = nn.Linear(4, 8) self.relu3 = nn.ReLU() self.fc2 = nn.Linear(8, 10) self.softmax = nn.Softmax(dim=1) self.fc1.weight = nn.Parameter(torch.ones(8, 4)) self.fc2.weight = nn.Parameter(torch.ones(10, 8)) @no_type_check def forward(self, x: Tensor) -> Tensor: x = self.relu1(self.conv1(x)) x = self.pool1(x) x = self.relu2(self.conv2(x)) x = self.pool2(x) x = x.view(-1, 4) x = self.relu3(self.fc1(x)) x = self.fc2(x) return self.softmax(x) class BasicModel_ConvNet_MaxPool1d(nn.Module): """Same as above, but with the MaxPool2d replaced with a MaxPool1d. This is useful because the MaxPool modules behave differently to other modules from the perspective of the DeepLift Attributions """ def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv1d(1, 2, 3) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool1d(2) self.conv2 = nn.Conv1d(2, 4, 3) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool1d(2) self.fc1 = nn.Linear(4, 8) self.relu3 = nn.ReLU() self.fc2 = nn.Linear(8, 10) self.softmax = nn.Softmax(dim=1) self.fc1.weight = nn.Parameter(torch.ones(8, 4)) self.fc2.weight = nn.Parameter(torch.ones(10, 8)) @no_type_check def forward(self, x: Tensor) -> Tensor: x = self.relu1(self.conv1(x)) x = self.pool1(x) x = self.relu2(self.conv2(x)) x = self.pool2(x) x = x.view(-1, 4) x = self.relu3(self.fc1(x)) x = self.fc2(x) return self.softmax(x) class BasicModel_ConvNet_MaxPool3d(nn.Module): """Same as above, but with the MaxPool1d replaced with a MaxPool3d. This is useful because the MaxPool modules behave differently to other modules from the perspective of the DeepLift Attributions """ def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv3d(1, 2, 3) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool3d(2) self.conv2 = nn.Conv3d(2, 4, 3) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool3d(2) self.fc1 = nn.Linear(4, 8) self.relu3 = nn.ReLU() self.fc2 = nn.Linear(8, 10) self.softmax = nn.Softmax(dim=1) self.fc1.weight = nn.Parameter(torch.ones(8, 4)) self.fc2.weight = nn.Parameter(torch.ones(10, 8)) def forward(self, x): x = self.relu1(self.conv1(x)) x = self.pool1(x) x = self.relu2(self.conv2(x)) x = self.pool2(x) x = x.view(-1, 4) x = self.relu3(self.fc1(x)) x = self.fc2(x) return self.softmax(x)