python_code
stringlengths 0
229k
|
---|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
from functools import partial
from torchdata.datapipes.iter import FileOpener, HttpReader, IterableWrapper, IterDataPipe
from .utils import _add_docstring_header, _create_dataset_directory, _wrap_split_argument
URL = {
"train": "https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json",
"dev": "https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json",
}
MD5 = {
"train": "62108c273c268d70893182d5cf8df740",
"dev": "246adae8b7002f8679c027697b0b7cf8",
}
NUM_LINES = {
"train": 130319,
"dev": 11873,
}
DATASET_NAME = "SQuAD2"
def _path_fn(root, path):
return os.path.join(root, os.path.basename(path))
class _ParseSQuADQAData(IterDataPipe):
def __init__(self, source_datapipe) -> None:
self.source_datapipe = source_datapipe
def __iter__(self):
for _, stream in self.source_datapipe:
raw_json_data = stream["data"]
for layer1 in raw_json_data:
for layer2 in layer1["paragraphs"]:
for layer3 in layer2["qas"]:
_context, _question = layer2["context"], layer3["question"]
_answers = [item["text"] for item in layer3["answers"]]
_answer_start = [item["answer_start"] for item in layer3["answers"]]
if len(_answers) == 0:
_answers = [""]
_answer_start = [-1]
yield (_context, _question, _answers, _answer_start)
@_add_docstring_header(num_lines=NUM_LINES)
@_create_dataset_directory(dataset_name=DATASET_NAME)
@_wrap_split_argument(("train", "dev"))
def SQuAD2(root, split):
"""Demonstrates use case when more complex processing is needed on data-stream
Here we process dictionary returned by standard JSON reader and write custom
datapipe to orchestrates data samples for Q&A use-case
"""
url_dp = IterableWrapper([URL[split]])
# cache data on-disk with sanity check
cache_dp = url_dp.on_disk_cache(
filepath_fn=partial(_path_fn, root),
hash_dict={_path_fn(root, URL[split]): MD5[split]},
hash_type="md5",
)
cache_dp = HttpReader(cache_dp).end_caching(mode="wb", same_filepath_fn=True)
cache_dp = FileOpener(cache_dp, mode="b")
# stack custom data pipe on top of JSON reader to orchestrate data samples for Q&A dataset
return _ParseSQuADQAData(cache_dp.parse_json_files())
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from torchdata.datapipes.iter import HttpReader
from .utils import _add_docstring_header, _create_dataset_directory, _wrap_split_argument
URL = {
"train": "https://raw.githubusercontent.com/mhjabreel/CharCnn_Keras/master/data/ag_news_csv/train.csv",
"test": "https://raw.githubusercontent.com/mhjabreel/CharCnn_Keras/master/data/ag_news_csv/test.csv",
}
MD5 = {
"train": "b1a00f826fdfbd249f79597b59e1dc12",
"test": "d52ea96a97a2d943681189a97654912d",
}
NUM_LINES = {
"train": 120000,
"test": 7600,
}
DATASET_NAME = "AG_NEWS"
def _process_tuple(t):
return int(t[0]), " ".join(t[1:])
@_add_docstring_header(num_lines=NUM_LINES, num_classes=4)
@_create_dataset_directory(dataset_name=DATASET_NAME)
@_wrap_split_argument(("train", "test"))
def AG_NEWS(root, split):
"""Demonstrating streaming use case
This might be useful when we do not want to cache or download the data.
The limitation is that we do not have any checking mechanism or data sanity check.
"""
# Stack CSV Parser directly on top of web-stream
return HttpReader([URL[split]]).parse_csv().map(_process_tuple)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
import torchtext
import torchtext.functional as F
import torchtext.transforms as T
from torch.hub import load_state_dict_from_url
from torch.optim import AdamW
from torchdata.dataloader2 import DataLoader2
from torchtext.datasets import SST2
LEARNING_RATE = 1e-5
PADDING_IDX = 1
BOS_IDX = 0
EOS_IDX = 2
MAX_SEQ_LEN = 256
XLMR_VOCAB_PATH = r"https://download.pytorch.org/models/text/xlmr.vocab.pt"
XLMR_SPM_MODEL_PATH = r"https://download.pytorch.org/models/text/xlmr.sentencepiece.bpe.model"
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
text_transform = T.Sequential(
T.SentencePieceTokenizer(XLMR_SPM_MODEL_PATH),
T.VocabTransform(load_state_dict_from_url(XLMR_VOCAB_PATH)),
T.Truncate(MAX_SEQ_LEN - 2),
T.AddToken(token=BOS_IDX, begin=True),
T.AddToken(token=EOS_IDX, begin=False),
)
NUM_EPOCHS = 1
BATCH_SIZE = 8
NUM_CLASSES = 2
INPUT_DIM = 768
def apply_transform(x):
return text_transform(x[0]), x[1]
def train_step(input: torch.Tensor, target: torch.Tensor) -> None:
output = model(input)
loss = criteria(output, target)
optim.zero_grad()
loss.backward()
optim.step()
def eval_step(input: torch.Tensor, target: torch.Tensor) -> None:
output = model(input)
loss = criteria(output, target).item()
return float(loss), (output.argmax(1) == target).type(torch.float).sum().item()
def evaluate() -> None:
model.eval()
total_loss = 0
correct_predictions = 0
total_predictions = 0
counter = 0
with torch.no_grad():
for batch in eval_dataloader:
input = F.to_tensor(batch["token_ids"], padding_value=PADDING_IDX).to(DEVICE)
target = torch.tensor(batch["target"]).to(DEVICE)
loss, predictions = eval_step(input, target)
total_loss += loss
correct_predictions += predictions
total_predictions += len(target)
counter += 1
return total_loss / counter, correct_predictions / total_predictions
if __name__ == "__main__":
train_datapipe = SST2(split="train")
eval_datapipe = SST2(split="dev")
train_datapipe = train_datapipe.map(apply_transform)
train_datapipe = train_datapipe.batch(BATCH_SIZE)
train_datapipe = train_datapipe.rows2columnar(["token_ids", "target"])
train_dataloader = DataLoader2(datapipe=train_datapipe)
print("Created train dataloader")
eval_datapipe = eval_datapipe.map(apply_transform)
eval_datapipe = eval_datapipe.batch(BATCH_SIZE)
eval_datapipe = eval_datapipe.rows2columnar(["token_ids", "target"])
eval_dataloader = DataLoader2(datapipe=eval_datapipe)
print("Created eval dataloader")
classifier_head = torchtext.models.RobertaClassificationHead(num_classes=NUM_CLASSES, input_dim=INPUT_DIM)
model = torchtext.models.XLMR_BASE_ENCODER.get_model(head=classifier_head)
model.to(DEVICE)
optim = AdamW(model.parameters(), lr=LEARNING_RATE)
criteria = nn.CrossEntropyLoss()
for epoch in range(NUM_EPOCHS):
for step, batch in enumerate(train_dataloader):
input = F.to_tensor(batch["token_ids"], padding_value=PADDING_IDX).to(DEVICE)
target = torch.tensor(batch["target"]).to(DEVICE)
train_step(input, target)
# stop early for example purpose
if step == 10:
break
loss, accuracy = evaluate()
print(f"Epoch: {epoch}, loss: {loss}, accuracy: {accuracy}")
print("Finished Training")
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torchdata.dataloader2 import DataLoader2
from torchdata.datapipes.iter import IterableWrapper
class ToyModel(torch.nn.Module):
def __init__(self) -> None:
"""
In the model constructor, we instantiate four parameters and use them
as member parameters.
"""
super().__init__()
self.a = torch.nn.Parameter(torch.randn(()))
self.b = torch.nn.Parameter(torch.randn(()))
self.c = torch.nn.Parameter(torch.randn(()))
self.d = torch.nn.Parameter(torch.randn(()))
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Simple model forward function
"""
return self.a + self.b * x + self.c * x ** 2 + self.d * x ** 3
if __name__ == "__main__":
model = ToyModel()
train_features = IterableWrapper([torch.rand(3) for _ in range(20000)])
train_labels = IterableWrapper([torch.rand(3) for _ in range(20000)])
train_data_pipe = train_features.zip(train_labels).shuffle()
# DataLoader2 wraps an iterable around the Datapipe to enable easy access to
# the features and labels.
data_loader = DataLoader2(datapipe=train_data_pipe)
# Construct the loss function and the optimizer.
criterion = torch.nn.MSELoss(reduction="sum")
optimizer = torch.optim.SGD(model.parameters(), lr=1e-6)
# Loop over the dataset multiple times. Here we are doing only 3 training
# epochs - that is, three passes over the training datapipes.
for epoch in range(3):
# Set manual seed per epoch to control the randomness for shuffle.
torch.manual_seed(epoch)
running_loss = 0.0
for step, data in enumerate(data_loader):
# Obtain the inputs and labels from data.
train_feature, train_label = data
# Zero the parameter gradients.
optimizer.zero_grad()
# Train step: forward + backward + optimize.
predicted_outputs = model(train_feature)
loss = criterion(predicted_outputs, train_label)
loss.backward()
optimizer.step()
# Calculate the statistics.
running_loss += loss.item()
# Print the loss every 2000 mini-batches.
if step % 2000 == 1999:
print("[epoch: %d, %5d] loss: %.3f" % (epoch + 1, step + 1, running_loss / 2000))
running_loss = 0.0
print("Finished Training")
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
import torch
import torch.distributed as dist
from torch import nn
from torchdata.dataloader2 import DataLoader2, DistributedReadingService
from torchdata.datapipes.iter import IterableWrapper
class ToyModel(nn.Module):
def __init__(self) -> None:
"""
In the model constructor, we instantiate four parameters and use them
as member parameters.
"""
super().__init__()
self.a = nn.Parameter(torch.randn(()))
self.b = nn.Parameter(torch.randn(()))
self.c = nn.Parameter(torch.randn(()))
self.d = nn.Parameter(torch.randn(()))
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Simple model forward function
"""
return self.a + self.b * x + self.c * x ** 2 + self.d * x ** 3
if __name__ == "__main__":
model = ToyModel()
os.environ["RANK"] = str(0)
os.environ["WORLD_SIZE"] = str(2)
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "0"
dist.init_process_group("gloo")
# Use a prime number to make sure uneven data sharding and let
# DistributedReadingService prevent hanging with the unbalanced data shard
data_length = 19997
train_features = IterableWrapper([torch.rand(3) for _ in range(data_length)])
train_labels = IterableWrapper([torch.rand(3) for _ in range(data_length)])
# sharding_filter will automatically shard the data based on the
# distributed ranks
train_data_pipe = train_features.zip(train_labels).shuffle().sharding_filter()
# Torch Distributed is required to use DistributedReadingService
reading_service = DistributedReadingService()
# Create DataLoader2 with DistributedReadingService
data_loader2 = DataLoader2(
datapipe=train_data_pipe,
reading_service=reading_service,
)
criterion = torch.nn.MSELoss(reduction="sum")
optimizer = torch.optim.SGD(model.parameters(), lr=1e-6)
for epoch in range(5):
# Set manual seed per epoch to control the randomness for shuffle.
torch.manual_seed(epoch)
running_loss = 0.0
for step, data in enumerate(data_loader2):
train_feature, train_label = data
optimizer.zero_grad()
predicted_outputs = model(train_feature)
loss = criterion(predicted_outputs, train_label)
loss.backward()
optimizer.step()
running_loss += loss.item()
if step % 2000 == 1999:
print("[epoch: %d, %5d] loss: %.3f" % (epoch + 1, step + 1, running_loss / 2000))
running_loss = 0.0
print("Finished Training")
"""
Training Output:
[epoch: 1, 2000] loss: 0.860
[epoch: 1, 4000] loss: 0.823
[epoch: 1, 6000] loss: 0.809
[epoch: 1, 8000] loss: 0.778
[epoch: 1, 10000] loss: 0.753
[epoch: 1, 12000] loss: 0.756
[epoch: 1, 14000] loss: 0.730
[epoch: 1, 16000] loss: 0.727
[epoch: 1, 18000] loss: 0.704
[epoch: 1, 20000] loss: 0.703
[epoch: 2, 2000] loss: 0.677
[epoch: 2, 4000] loss: 0.649
[epoch: 2, 6000] loss: 0.648
[epoch: 2, 8000] loss: 0.629
[epoch: 2, 10000] loss: 0.623
[epoch: 2, 12000] loss: 0.593
[epoch: 2, 14000] loss: 0.586
[epoch: 2, 16000] loss: 0.584
[epoch: 2, 18000] loss: 0.571
[epoch: 2, 20000] loss: 0.558
[epoch: 3, 2000] loss: 0.537
[epoch: 3, 4000] loss: 0.540
[epoch: 3, 6000] loss: 0.544
[epoch: 3, 8000] loss: 0.512
[epoch: 3, 10000] loss: 0.496
[epoch: 3, 12000] loss: 0.506
[epoch: 3, 14000] loss: 0.486
[epoch: 3, 16000] loss: 0.489
[epoch: 3, 18000] loss: 0.489
[epoch: 3, 20000] loss: 0.456
[epoch: 4, 2000] loss: 0.474
[epoch: 4, 4000] loss: 0.445
[epoch: 4, 6000] loss: 0.442
[epoch: 4, 8000] loss: 0.440
[epoch: 4, 10000] loss: 0.434
[epoch: 4, 12000] loss: 0.421
[epoch: 4, 14000] loss: 0.415
[epoch: 4, 16000] loss: 0.404
[epoch: 4, 18000] loss: 0.427
[epoch: 4, 20000] loss: 0.410
[epoch: 5, 2000] loss: 0.395
[epoch: 5, 4000] loss: 0.393
[epoch: 5, 6000] loss: 0.389
[epoch: 5, 8000] loss: 0.397
[epoch: 5, 10000] loss: 0.375
[epoch: 5, 12000] loss: 0.375
[epoch: 5, 14000] loss: 0.372
[epoch: 5, 16000] loss: 0.365
[epoch: 5, 18000] loss: 0.371
[epoch: 5, 20000] loss: 0.359
Finished Training
"""
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torchdata.dataloader2 import DataLoader2, MultiProcessingReadingService
from torchdata.datapipes.iter import IterableWrapper
class ToyModel(torch.nn.Module):
def __init__(self) -> None:
"""
In the model constructor, we instantiate four parameters and use them
as member parameters.
"""
super().__init__()
self.a = torch.nn.Parameter(torch.randn(()))
self.b = torch.nn.Parameter(torch.randn(()))
self.c = torch.nn.Parameter(torch.randn(()))
self.d = torch.nn.Parameter(torch.randn(()))
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Simple model forward function
"""
return self.a + self.b * x + self.c * x ** 2 + self.d * x ** 3
if __name__ == "__main__":
model = ToyModel()
train_features = IterableWrapper([torch.rand(3) for _ in range(20000)])
train_labels = IterableWrapper([torch.rand(3) for _ in range(20000)])
train_data_pipe = train_features.zip(train_labels).shuffle().sharding_filter()
# Create DataLoader2 with MultiProcessingReadingService
data_loader = DataLoader2(
datapipe=train_data_pipe,
reading_service=MultiProcessingReadingService(num_workers=2),
)
criterion = torch.nn.MSELoss(reduction="sum")
optimizer = torch.optim.SGD(model.parameters(), lr=1e-6)
for epoch in range(3):
# Set manual seed per epoch to control the randomness for shuffle.
torch.manual_seed(epoch)
running_loss = 0.0
for step, data in enumerate(data_loader):
train_feature, train_label = data
optimizer.zero_grad()
predicted_outputs = model(train_feature)
loss = criterion(predicted_outputs, train_label)
loss.backward()
optimizer.step()
running_loss += loss.item()
if step % 2000 == 1999:
print("[epoch: %d, %5d] loss: %.3f" % (epoch + 1, step + 1, running_loss / 2000))
running_loss = 0.0
print("Finished Training")
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import hashlib
import os
import time
from functools import partial
from typing import Callable
import pandas as pd
import psutil
from torchdata.dataloader2 import DataLoader2, MultiProcessingReadingService
from torchdata.datapipes.iter import IterableWrapper
def map_read(t):
"""
Read stream and close. Used for tar files.
Args:
t: (path, data_stream) tuple
"""
data = t[1].read()
t[1].close()
return t[0], data
def map_calculate_md5(t, n_md5):
"""
Calculate MD5 hash of data for `n_md5` number of times. Increasing the number of md5 calculation will determine
CPU usage (this is an approximate for the complexity of data transforms).
Args:
t: (path, data) tuple
n_md5: number of times to compute hash of the data
"""
path, data = t
long_str = ""
for _ in range(n_md5):
long_str += str(hashlib.md5(data).hexdigest())
result = hashlib.md5(long_str.encode()).hexdigest()
size = len(data)
return path, str(result), size
def check_and_output_speed(prefix: str, create_dp_fn: Callable, n_prefetch: int, n_md5: int, n_workers: int):
"""
Benchmark the speed of the prefetching setup and prints the results.
Args:
prefix: String indicating what is being executed
create_dp_fn: function that returns a DataPipe
n_prefetch: number of batches to prefetch
n_md5: number of times to compute hash of the data
"""
initial_memory_usage = psutil.virtual_memory().used
max_memory_usage = initial_memory_usage
dp = create_dp_fn()
rs_type = "DataLoader2 w/ tar archives"
new_rs = MultiProcessingReadingService(
num_workers=n_workers, worker_prefetch_cnt=n_prefetch, main_prefetch_cnt=n_prefetch
)
dl: DataLoader2 = DataLoader2(dp, reading_service=new_rs)
start = time.time()
items_len = 0 # Number of items processed
total_size = 0 # Number of bytes processed
time_to_first = None
for _name, _md5, size in dl:
if items_len > 10 and time_to_first is None:
time_to_first = time.time() - start
total_size += size
items_len += 1
if psutil.virtual_memory().used > max_memory_usage:
max_memory_usage = psutil.virtual_memory().used
total = time.time() - start
speed = int(items_len / total) # item per sec
function_name = create_dp_fn.__name__
io_speed = int(total_size / total / 1024 / 1024) # size MiBs per sec
total_size = int(total_size / 1024 / 1024) # total size in MiBs
total = int(total)
print(
f"{prefix} {function_name} and {rs_type} with n_prefetch {n_prefetch} | "
f"n_md5 {n_md5} results are: total time {total} sec, with {items_len} items at {speed} files per/sec. "
f"{total_size} MiB with io speed at {io_speed} MiBps"
)
change_in_memory_usage = (max_memory_usage - initial_memory_usage) / 1024 / 1024
print(f"initial_memory_usage: {initial_memory_usage / 1024 / 1024:0.1f} MiBs")
print(f"change_in_memory_usage: {change_in_memory_usage:0.1f} MiBs\n")
return (
function_name,
rs_type,
n_prefetch,
total,
items_len,
speed,
total_size,
io_speed,
int(change_in_memory_usage),
)
def append_result(
df,
workers,
n_tar_files,
n_md5,
fs,
iteration,
columns,
fn_name,
rs_type,
prefetch,
total,
items_len,
speed,
total_size,
io_speed,
change_in_memory_usage,
):
return pd.concat(
[
df,
pd.DataFrame(
data=[
[
workers,
fn_name,
rs_type,
prefetch,
n_md5,
total,
n_tar_files,
items_len,
total_size,
speed,
io_speed,
fs,
iteration,
change_in_memory_usage,
]
],
columns=columns,
),
]
)
def save_result(df, csv_name: str, directory: str = ""):
file_path = os.path.join(directory, f"{csv_name}.csv")
df.to_csv(file_path, mode="a") # Append result
def main(args):
def get_datapipe(path, n_items, n_md5, use_source_prefetch, use_s3=False):
if use_s3:
dp = IterableWrapper([path] * n_items).shuffle().sharding_filter()
dp = dp.open_files_by_fsspec(mode="rb", anon=True)
if use_source_prefetch:
dp = dp.prefetch(5)
dp = dp.load_from_tar(mode="r|")
else:
tar_files = [f"{path}/images{i}.tar" for i in range(n_items)]
dp = IterableWrapper(tar_files).shuffle().sharding_filter().open_files(mode="b")
if use_source_prefetch:
dp = dp.prefetch(5)
dp = dp.load_from_tar(mode="r:")
dp = dp.map(map_read)
dp = dp.map(partial(map_calculate_md5, n_md5=n_md5))
return dp
columns = [
"n_workers",
"file_type",
"RS Type",
"n_prefetch",
"n_md5",
"total_time",
"n_tar_files",
"n_items",
"total_size (MB)",
"speed (file/s)",
"io_speed (MB/s)",
"fs",
"iteration",
"change_in_memory_usage",
]
df = pd.DataFrame(columns=columns)
if args.use_s3:
print("Loading data from S3...")
fs_str = "s3"
path = "s3://torchdatabenchmarkdatasets/images0.tar"
dp_fn = partial(get_datapipe, path, args.n_tar_files, args.n_md5, args.use_source_prefetch, args.use_s3)
dp_fn.__name__ = "S3_Tar" # type: ignore[attr-defined]
else:
print("Loading data from disk...")
fs_str = "Local"
path = "/home/ubuntu/source_data/large_images_tars"
dp_fn = partial(get_datapipe, path, args.n_tar_files, args.n_md5, args.use_source_prefetch, args.use_s3)
dp_fn.__name__ = "Tar" # type: ignore[attr-defined]
# print(f"{path = }")
for n_workers in [4, 8, 12]:
for i in range(1 + args.n_epochs): # 1 warm-up + n runs
params = check_and_output_speed(
f"[prefetch is True, {n_workers} workers]",
dp_fn,
n_prefetch=args.n_prefetch,
n_md5=args.n_md5,
n_workers=n_workers,
)
df = append_result(df, n_workers, args.n_tar_files, args.n_md5, fs_str, i, columns, *params)
# Save CSV
print(df)
save_result(df, csv_name=args.output_file)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--n-epochs", default=3, type=int, help="Number of times to benchmark per setup excluding warm up"
)
parser.add_argument("--n-tar-files", default=200, type=int, help="Number of tar files (~100MB each)")
parser.add_argument("--n-prefetch", default=20, type=int, help="Number of batches to prefetch")
parser.add_argument(
"--n-md5",
default=22,
type=int,
help="Number of times to compute MD5 hash per file, "
"a proxy for transformation complexity "
"(Low ~3ms: 22, Med ~7ms: 54, High ~10ms: 77)",
)
parser.add_argument("--output-file", default="benchmark_result", type=str, help="output csv file name")
parser.add_argument("--use-s3", default=False, action="store_true", help="Load file from S3 instead of local")
parser.add_argument("--use-source-prefetch", default=False, action="store_true", help="Use source prefetch")
args = parser.parse_args()
main(args)
# python ~/data/benchmarks/cloud/aws_s3.py --n-tar-files 500 --n-epoch 1 --n-md5 22 &&
# python ~/data/benchmarks/cloud/aws_s3.py --n-tar-files 500 --n-epoch 1 --n-md5 22 --use-s3 &&
# python ~/data/benchmarks/cloud/aws_s3.py --n-tar-files 500 --n-epoch 1 --n-md5 54 &&
# python ~/data/benchmarks/cloud/aws_s3.py --n-tar-files 500 --n-epoch 1 --n-md5 54 --use-s3 &&
# python ~/data/benchmarks/cloud/aws_s3.py --n-tar-files 500 --n-epoch 1 --n-md5 77 &&
# python ~/data/benchmarks/cloud/aws_s3.py --n-tar-files 500 --n-epoch 1 --n-md5 77 --use-s3
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torchvision.transforms import transforms
class ClassificationPresetTrain:
def __init__(
self,
*,
crop_size,
mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225),
hflip_prob=0.5,
):
trans = [transforms.RandomResizedCrop(crop_size)]
if hflip_prob > 0:
trans.append(transforms.RandomHorizontalFlip(hflip_prob))
trans.extend(
[
transforms.PILToTensor(),
transforms.ConvertImageDtype(torch.float),
transforms.Normalize(mean=mean, std=std),
]
)
self.transforms = transforms.Compose(trans)
def __call__(self, img):
return self.transforms(img)
class ClassificationPresetEval:
def __init__(
self,
*,
crop_size,
resize_size=256,
mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225),
):
self.transforms = transforms.Compose(
[
transforms.Resize(resize_size),
transforms.CenterCrop(crop_size),
transforms.PILToTensor(),
transforms.ConvertImageDtype(torch.float),
transforms.Normalize(mean=mean, std=std),
]
)
def __call__(self, img):
return self.transforms(img)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import datetime
import errno
import os
import time
from collections import defaultdict, deque
import torch
import torch.distributed as dist
class SmoothedValue:
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
t = reduce_across_processes([self.count, self.total])
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
if not self.deque:
return 0
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
if not self.deque:
return 0
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
try:
return self.total / self.count
except ZeroDivisionError:
return 0
@property
def max(self):
if not self.deque:
return 0
return max(self.deque)
@property
def value(self):
if not self.deque:
return 0
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
)
class MetricLogger:
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{attr}'")
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(f"{name}: {str(meter)}")
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ""
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt="{avg:.4f}")
data_time = SmoothedValue(fmt="{avg:.4f}")
model_time = SmoothedValue(fmt="{avg:.4f}")
space_fmt = ":" + str(len(str(len(iterable)))) + "d"
if torch.cuda.is_available():
log_msg = self.delimiter.join(
[
header,
"[{0" + space_fmt + "}/{1}]",
"eta: {eta}",
"{meters}",
"time: {time}",
"data: {data}",
"model: {model}",
"max mem: {memory:.0f}",
]
)
else:
log_msg = self.delimiter.join(
[header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}"]
)
MB = 1024.0 * 1024.0
for obj in iterable:
dtime = time.time() - end
data_time.update(dtime)
yield obj
ttime = time.time() - end
iter_time.update(ttime)
model_time.update(ttime - dtime)
if i % print_freq == 0:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(
log_msg.format(
i,
len(iterable),
eta=eta_string,
meters=str(self),
time=str(iter_time),
data=str(data_time),
model=str(model_time),
memory=torch.cuda.max_memory_allocated() / MB,
)
)
else:
print(
log_msg.format(
i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time)
)
)
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print(f"{header} Total time: {total_time_str}")
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.inference_mode():
maxk = max(topk)
batch_size = target.size(0)
if target.ndim == 2:
target = target.max(dim=1)[1]
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target[None])
res = []
for k in topk:
correct_k = correct[:k].flatten().sum(dtype=torch.float32)
res.append(correct_k * (100.0 / batch_size))
return res
def mkdir(path):
try:
os.makedirs(path)
except OSError as e:
if e.errno != errno.EEXIST:
raise
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop("force", False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def init_distributed_mode(args):
if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ["WORLD_SIZE"])
args.gpu = int(os.environ["LOCAL_RANK"])
elif "SLURM_PROCID" in os.environ:
args.rank = int(os.environ["SLURM_PROCID"])
args.gpu = args.rank % torch.cuda.device_count()
elif hasattr(args, "rank"):
pass
else:
print("Not using distributed mode")
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = "nccl"
print(f"| distributed init (rank {args.rank}): {args.dist_url}", flush=True)
torch.distributed.init_process_group(
backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
)
torch.distributed.barrier()
if args.data_loader.lower() != "ffcv":
setup_for_distributed(args.rank == 0)
def reduce_across_processes(val):
if not is_dist_avail_and_initialized():
# nothing to sync, but we still convert to tensor for consistency with the distributed case.
return torch.tensor(val)
t = torch.tensor(val, device="cuda")
dist.barrier()
dist.all_reduce(t)
return t
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import datetime
import os
import time
import warnings
import helpers
import presets
import torch
import torch.utils.data
import torchvision
import utils
from torch import nn
from torchdata.dataloader2 import adapter, DataLoader2, MultiProcessingReadingService
def train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, args):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value}"))
metric_logger.add_meter("img/s", utils.SmoothedValue(window_size=10, fmt="{value}"))
header = f"Epoch: [{epoch}]"
for i, (image, target) in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)):
if args.data_loading_only:
continue
start_time = time.time()
image, target = image.to(device), target.to(device)
output = model(image)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
batch_size = image.shape[0]
metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
metric_logger.meters["acc1"].update(acc1.item(), n=batch_size)
metric_logger.meters["acc5"].update(acc5.item(), n=batch_size)
metric_logger.meters["img/s"].update(batch_size / (time.time() - start_time))
def evaluate(model, criterion, data_loader, device, args, print_freq=100, log_suffix=""):
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = f"Test: {log_suffix}"
metric_logger.add_meter("acc1", utils.SmoothedValue())
metric_logger.add_meter("acc5", utils.SmoothedValue())
num_processed_samples = 0
with torch.inference_mode():
for image, target in metric_logger.log_every(data_loader, print_freq, header):
if args.data_loading_only:
continue
image, target = image.to(device), target.to(device)
output = model(image)
loss = criterion(output, target)
acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
batch_size = image.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters["acc1"].update(acc1.item(), n=batch_size)
metric_logger.meters["acc5"].update(acc5.item(), n=batch_size)
num_processed_samples += batch_size
# gather the stats from all processes
num_processed_samples = utils.reduce_across_processes(num_processed_samples)
if (
hasattr(data_loader, "dataset")
and hasattr(data_loader.dataset, "__len__")
and len(data_loader.dataset) != num_processed_samples
and torch.distributed.get_rank() == 0
):
warnings.warn(
f"It looks like the dataset has {len(data_loader.dataset)} samples, but {num_processed_samples} "
"samples were used for the validation, which might bias the results. "
"Try adjusting the batch size and / or the world size. "
"Setting the world size to 1 is always a safe bet."
)
metric_logger.synchronize_between_processes()
print(f"{header} Acc@1 {metric_logger.acc1.global_avg:.3f} Acc@5 {metric_logger.acc5.global_avg:.3f}")
return metric_logger.acc1.global_avg
def create_data_loaders(args):
print(f"file-system = {args.fs}")
if args.fs == "fsx":
dataset_dir = "/datasets01"
elif args.fs == "fsx_isolated":
dataset_dir = "/fsx_isolated"
elif args.fs == "ontap":
dataset_dir = "/datasets01_ontap"
elif args.fs == "ontap_isolated":
dataset_dir = "/ontap_isolated"
else:
raise ValueError(f"bad args.fs, got {args.fs}")
dataset_dir += "/imagenet_full_size/061417/"
train_dir = os.path.join(dataset_dir, "train")
val_dir = os.path.join(dataset_dir, "val")
val_resize_size, val_crop_size, train_crop_size = args.val_resize_size, args.val_crop_size, args.train_crop_size
if args.no_transforms:
train_preset = val_preset = helpers.no_transforms
else:
train_preset = presets.ClassificationPresetTrain(crop_size=train_crop_size)
val_preset = presets.ClassificationPresetEval(crop_size=val_crop_size, resize_size=val_resize_size)
if args.ds_type == "dp":
builder = helpers.make_pre_loaded_dp if args.preload_ds else helpers.make_dp
train_dataset = builder(train_dir, transforms=train_preset)
val_dataset = builder(val_dir, transforms=val_preset)
train_sampler = val_sampler = None
train_shuffle = True
elif args.ds_type == "iterable":
train_dataset = torchvision.datasets.ImageFolder(train_dir, transform=train_preset)
train_dataset = helpers.MapStyleToIterable(train_dataset, shuffle=True)
val_dataset = torchvision.datasets.ImageFolder(val_dir, transform=val_preset)
val_dataset = helpers.MapStyleToIterable(val_dataset, shuffle=False)
train_sampler = val_sampler = None
train_shuffle = None # but actually True
elif args.ds_type == "mapstyle":
builder = helpers.PreLoadedMapStyle if args.preload_ds else torchvision.datasets.ImageFolder
train_dataset = builder(train_dir, transform=train_preset)
val_dataset = builder(val_dir, transform=val_preset)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, shuffle=True)
val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False)
train_shuffle = None # but actually True
else:
raise ValueError(f"Invalid value for args.ds_type ({args.ds_type})")
data_loader_arg = args.data_loader.lower()
if data_loader_arg == "v1":
train_data_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=train_shuffle,
sampler=train_sampler,
num_workers=args.workers,
pin_memory=True,
drop_last=True,
)
val_data_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=args.batch_size,
sampler=val_sampler,
num_workers=args.workers,
pin_memory=True,
)
elif data_loader_arg == "v2":
if args.ds_type != "dp":
raise ValueError("DataLoader2 only works with datapipes.")
# Note: we are batching and collating here *after the transforms*, which is consistent with DLV1.
# But maybe it would be more efficient to do that before, so that the transforms can work on batches??
train_dataset = train_dataset.batch(args.batch_size, drop_last=True).collate()
train_data_loader = DataLoader2(
train_dataset,
datapipe_adapter_fn=adapter.Shuffle(),
reading_service=MultiProcessingReadingService(num_workers=args.workers),
)
val_dataset = val_dataset.batch(args.batch_size, drop_last=True).collate() # TODO: Do we need drop_last here?
val_data_loader = DataLoader2(
val_dataset,
reading_service=MultiProcessingReadingService(num_workers=args.workers),
)
else:
raise ValueError(f"invalid data-loader param. Got {args.data_loader}")
return train_data_loader, val_data_loader, train_sampler
def main(args):
if args.output_dir:
utils.mkdir(args.output_dir)
utils.init_distributed_mode(args)
print("\n".join(f"{k}: {str(v)}" for k, v in sorted(dict(vars(args)).items())))
device = torch.device(args.device)
if args.use_deterministic_algorithms:
torch.backends.cudnn.benchmark = False
torch.use_deterministic_algorithms(True)
else:
torch.backends.cudnn.benchmark = True
train_data_loader, val_data_loader, train_sampler = create_data_loaders(args)
num_classes = 1000 # I'm lazy. TODO change this
print("Creating model")
model = torchvision.models.__dict__[args.model](weights=args.weights, num_classes=num_classes)
model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
if args.test_only:
# We disable the cudnn benchmarking because it can noticeably affect the accuracy
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
evaluate(model, criterion, val_data_loader, device=device, args=args)
return
print("Start training")
start_time = time.time()
for epoch in range(args.epochs):
if args.distributed and train_sampler is not None:
train_sampler.set_epoch(epoch)
train_one_epoch(model, criterion, optimizer, train_data_loader, device, epoch, args)
lr_scheduler.step()
evaluate(model, criterion, val_data_loader, device=device, args=args)
if args.output_dir:
checkpoint = {
"model": model_without_ddp.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch,
"args": args,
}
utils.save_on_master(checkpoint, os.path.join(args.output_dir, f"model_{epoch}.pth"))
utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))
if epoch == 0:
first_epoch_time = time.time() - start_time
total_time = time.time() - start_time
print(f"Training time: {datetime.timedelta(seconds=int(total_time))}")
print(f"Training time (w/o 1st epoch): {datetime.timedelta(seconds=int(total_time - first_epoch_time))}")
def get_args_parser(add_help=True):
import argparse
parser = argparse.ArgumentParser(description="PyTorch Classification Training", add_help=add_help)
parser.add_argument("--fs", default="fsx", type=str)
parser.add_argument("--model", default="resnet18", type=str, help="model name")
parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
parser.add_argument(
"-b", "--batch-size", default=32, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
)
parser.add_argument("--epochs", default=90, type=int, metavar="N", help="number of total epochs to run")
parser.add_argument(
"-j", "--workers", default=12, type=int, metavar="N", help="number of data loading workers (default: 16)"
)
parser.add_argument("--lr", default=0.1, type=float, help="initial learning rate")
parser.add_argument("--lr-step-size", default=30, type=int, help="decrease lr every step-size epochs")
parser.add_argument("--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma")
parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
parser.add_argument("--print-freq", default=10, type=int, help="print frequency")
parser.add_argument("--output-dir", default=".", type=str, help="path to save outputs")
parser.add_argument(
"--test-only",
dest="test_only",
help="Only test the model",
action="store_true",
)
# distributed training parameters
parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
parser.add_argument("--dist-url", default="env://", type=str, help="url used to set up distributed training")
parser.add_argument(
"--use-deterministic-algorithms", action="store_true", help="Forces the use of deterministic algorithms only."
)
parser.add_argument(
"--val-resize-size", default=256, type=int, help="the resize size used for validation (default: 256)"
)
parser.add_argument(
"--val-crop-size", default=224, type=int, help="the central crop size used for validation (default: 224)"
)
parser.add_argument(
"--train-crop-size", default=224, type=int, help="the random crop size used for training (default: 224)"
)
parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load")
parser.add_argument(
"--ds-type",
default="mapstyle",
type=str,
help="'dp' or 'iterable' or 'mapstyle' (for regular indexable datasets)",
)
parser.add_argument(
"--preload-ds",
action="store_true",
help="whether to use a fake dataset where all images are pre-loaded in RAM and already transformed. "
"Mostly useful to benchmark how fast a model training would be without data-loading bottlenecks."
"Acc results are irrevant because we don't cache the entire dataset, only a very small fraction of it.",
)
parser.add_argument(
"--data-loading-only",
action="store_true",
help="When on, we bypass the model's forward and backward passes. So mostly only the dataloading happens",
)
parser.add_argument(
"--no-transforms",
action="store_true",
help="Whether to apply transforms to the images. No transforms means we "
"load and decode PIL images as usual, but we don't transform them. Instead we discard them "
"and the dataset will produce random tensors instead. We "
"need to create random tensors because without transforms, the images would still be PIL images "
"and they wouldn't be of the required size."
"Obviously, Acc resuts will not be relevant.",
)
parser.add_argument(
"--data-loader",
default="V1",
type=str,
help="'V1' or 'V2'. V2 only works for datapipes",
)
return parser
if __name__ == "__main__":
args = get_args_parser().parse_args()
main(args)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import itertools
import os
import random
from functools import partial
from pathlib import Path
import torch
import torch.distributed as dist
import torchvision
from PIL import Image
from torchdata.datapipes.iter import FileLister, IterDataPipe
# TODO: maybe infinite buffer can / is already natively supported by torchdata?
INFINITE_BUFFER_SIZE = 1_000_000_000
IMAGENET_TRAIN_LEN = 1_281_167
IMAGENET_TEST_LEN = 50_000
class _LenSetter(IterDataPipe):
# TODO: Ideally, we woudn't need this extra class
def __init__(self, dp, root):
self.dp = dp
if "train" in str(root):
self.size = IMAGENET_TRAIN_LEN
elif "val" in str(root):
self.size = IMAGENET_TEST_LEN
else:
raise ValueError("oops?")
def __iter__(self):
yield from self.dp
def __len__(self):
# TODO The // world_size part shouldn't be needed. See https://github.com/pytorch/data/issues/533
return self.size // dist.get_world_size()
def _decode(path, root, category_to_int):
category = Path(path).relative_to(root).parts[0]
image = Image.open(path).convert("RGB")
label = category_to_int(category)
return image, label
def _apply_tranforms(img_and_label, transforms):
img, label = img_and_label
return transforms(img), label
def make_dp(root, transforms):
root = Path(root).expanduser().resolve()
categories = sorted(entry.name for entry in os.scandir(root) if entry.is_dir())
category_to_int = {category: i for (i, category) in enumerate(categories)}
dp = FileLister(str(root), recursive=True, masks=["*.JPEG"])
dp = dp.shuffle(buffer_size=INFINITE_BUFFER_SIZE).set_shuffle(False).sharding_filter()
dp = dp.map(partial(_decode, root=root, category_to_int=category_to_int))
dp = dp.map(partial(_apply_tranforms, transforms=transforms))
dp = _LenSetter(dp, root=root)
return dp
class PreLoadedMapStyle:
# All the data is pre-loaded and transformed in __init__, so the DataLoader should be crazy fast.
# This is just to assess how fast a model could theoretically be trained if there was no data bottleneck at all.
def __init__(self, dir, transform, buffer_size=100):
dataset = torchvision.datasets.ImageFolder(dir, transform=transform)
self.size = len(dataset)
self.samples = [dataset[torch.randint(0, len(dataset), size=(1,)).item()] for i in range(buffer_size)]
def __len__(self):
return self.size
def __getitem__(self, idx):
return self.samples[idx % len(self.samples)]
class _PreLoadedDP(IterDataPipe):
# Same as above, but this is a DataPipe
def __init__(self, root, transforms, buffer_size=100):
dataset = torchvision.datasets.ImageFolder(root, transform=transforms)
self.size = len(dataset)
self.samples = [dataset[torch.randint(0, len(dataset), size=(1,)).item()] for i in range(buffer_size)]
# Note: the rng might be different across DDP workers so they'll all have different samples.
# But we don't care about accuracy here so whatever.
def __iter__(self):
for idx in range(self.size):
yield self.samples[idx % len(self.samples)]
def make_pre_loaded_dp(root, transforms):
dp = _PreLoadedDP(root=root, transforms=transforms)
dp = dp.shuffle(buffer_size=INFINITE_BUFFER_SIZE).set_shuffle(False).sharding_filter()
dp = _LenSetter(dp, root=root)
return dp
class MapStyleToIterable(torch.utils.data.IterableDataset):
# This converts a MapStyle dataset into an iterable one.
# Not sure this kind of Iterable dataset is actually useful to benchmark. It
# was necessary when benchmarking async-io stuff, but not anymore.
# If anything, it shows how tricky Iterable datasets are to implement.
def __init__(self, dataset, shuffle):
self.dataset = dataset
self.shuffle = shuffle
self.size = len(self.dataset)
self.seed = 0 # has to be hard-coded for all DDP workers to have the same shuffling
def __len__(self):
return self.size // dist.get_world_size()
def __iter__(self):
worker_info = torch.utils.data.get_worker_info()
num_dl_workers = worker_info.num_workers
dl_worker_id = worker_info.id
num_ddp_workers = dist.get_world_size()
ddp_worker_id = dist.get_rank()
num_total_workers = num_ddp_workers * num_dl_workers
current_worker_id = ddp_worker_id + (num_ddp_workers * dl_worker_id)
indices = range(self.size)
if self.shuffle:
rng = random.Random(self.seed)
indices = rng.sample(indices, k=self.size)
indices = itertools.islice(indices, current_worker_id, None, num_total_workers)
samples = (self.dataset[i] for i in indices)
yield from samples
# TODO: maybe only generate these when --no-transforms is passed?
_RANDOM_IMAGE_TENSORS = [torch.randn(3, 224, 224) for _ in range(300)]
def no_transforms(_):
# see --no-transforms doc
return random.choice(_RANDOM_IMAGE_TENSORS)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# This file is adpated from PyTorch Core
# https://github.com/pytorch/pytorch/blob/master/scripts/release_notes/common.py
import json
import locale
import os
import re
import subprocess
from collections import namedtuple
import requests
topics = [
"bc_breaking",
"deprecations",
"new_features",
"improvements",
"bug_fixes",
"performance",
"docs",
"devs",
"Untopiced",
]
Features = namedtuple(
"Features",
[
"title",
"body",
"pr_number",
"files_changed",
"labels",
],
)
def dict_to_features(dct):
return Features(
title=dct["title"],
body=dct["body"],
pr_number=dct["pr_number"],
files_changed=dct["files_changed"],
labels=dct["labels"],
)
def features_to_dict(features):
return dict(features._asdict())
def run(command):
"""Returns (return-code, stdout, stderr)"""
p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
output, err = p.communicate()
rc = p.returncode
enc = locale.getpreferredencoding()
output = output.decode(enc)
err = err.decode(enc)
return rc, output.strip(), err.strip()
def commit_body(commit_hash):
cmd = f"git log -n 1 --pretty=format:%b {commit_hash}"
ret, out, err = run(cmd)
return out if ret == 0 else None
def commit_title(commit_hash):
cmd = f"git log -n 1 --pretty=format:%s {commit_hash}"
ret, out, err = run(cmd)
return out if ret == 0 else None
def commit_files_changed(commit_hash):
cmd = f"git diff-tree --no-commit-id --name-only -r {commit_hash}"
ret, out, err = run(cmd)
return out.split("\n") if ret == 0 else None
def parse_pr_number(body, commit_hash, title):
regex = r"Pull Request resolved: https://github.com/pytorch/data/pull/([0-9]+)"
matches = re.findall(regex, body)
if len(matches) == 0:
if "revert" not in title.lower() and "updating submodules" not in title.lower():
print(f"[{commit_hash}: {title}] Could not parse PR number, ignoring PR")
return None
if len(matches) > 1:
print(f"[{commit_hash}: {title}] Got two PR numbers, using the first one")
return matches[0]
return matches[0]
def get_ghstack_token():
pattern = "github_oauth = (.*)"
with open(os.path.expanduser("~/.ghstackrc"), "r+") as f:
config = f.read()
matches = re.findall(pattern, config)
if len(matches) == 0:
raise RuntimeError("Can't find a github oauth token")
return matches[0]
token = get_ghstack_token()
headers = {"Authorization": f"token {token}"}
def run_query(query):
request = requests.post("https://api.github.com/graphql", json={"query": query}, headers=headers)
if request.status_code == 200:
return request.json()
else:
raise Exception(f"Query failed to run by returning code of {request.status_code}. {query}")
def gh_labels(pr_number):
query = f"""
{{
repository(owner: "pytorch", name: "data") {{
pullRequest(number: {pr_number}) {{
labels(first: 10) {{
edges {{
node {{
name
}}
}}
}}
}}
}}
}}
"""
query = run_query(query)
edges = query["data"]["repository"]["pullRequest"]["labels"]["edges"]
return [edge["node"]["name"] for edge in edges]
def get_features(commit_hash, return_dict=False):
title, body, files_changed = (
commit_title(commit_hash),
commit_body(commit_hash),
commit_files_changed(commit_hash),
)
pr_number = parse_pr_number(body, commit_hash, title)
labels = []
if pr_number is not None:
labels = gh_labels(pr_number)
result = Features(title, body, pr_number, files_changed, labels)
if return_dict:
return features_to_dict(result)
return result
class CommitDataCache:
def __init__(self, path="results/data.json"):
self.path = path
self.data = {}
if os.path.exists(path):
self.data = self.read_from_disk()
def get(self, commit):
if commit not in self.data.keys():
# Fetch and cache the data
self.data[commit] = get_features(commit)
self.write_to_disk()
return self.data[commit]
def read_from_disk(self):
with open(self.path) as f:
data = json.load(f)
data = {commit: dict_to_features(dct) for commit, dct in data.items()}
return data
def write_to_disk(self):
data = {commit: features._asdict() for commit, features in self.data.items()}
with open(self.path, "w") as f:
json.dump(data, f)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# This file is adpated from PyTorch Core
# https://github.com/pytorch/pytorch/blob/master/scripts/release_notes/commitlist.py
import argparse
import csv
import os
import pprint
import re
from collections import defaultdict
from common import CommitDataCache, get_features, run, topics
class Commit:
def __init__(self, commit_hash, category, topic, title):
self.commit_hash = commit_hash
self.category = category
self.topic = topic
self.title = title
def __eq__(self, other):
if not isinstance(other, self.__class__):
return False
return (
self.commit_hash == other.commit_hash
and self.category == other.category
and self.topic == other.topic
and self.title == other.title
)
def __repr__(self):
return f"Commit({self.commit_hash}, {self.category}, {self.topic}, {self.title})"
class CommitList:
# NB: Private ctor. Use `from_existing` or `create_new`.
def __init__(self, path, commits):
self.path = path
self.commits = commits
@staticmethod
def from_existing(path):
commits = CommitList.read_from_disk(path)
return CommitList(path, commits)
@staticmethod
def create_new(path, base_version, new_version):
if os.path.exists(path):
raise ValueError("Attempted to create a new commitlist but one exists already!")
commits = CommitList.get_commits_between(base_version, new_version)
return CommitList(path, commits)
@staticmethod
def read_from_disk(path):
with open(path) as csvfile:
reader = csv.reader(csvfile)
rows = list(reader)
assert all(len(row) >= 4 for row in rows)
return [Commit(*row[:4]) for row in rows]
def write_to_disk(self):
path = self.path
rows = self.commits
directory = os.path.dirname(path)
os.makedirs(directory, exist_ok=True)
with open(path, "w") as csvfile:
writer = csv.writer(csvfile)
for commit in rows:
writer.writerow([commit.commit_hash, commit.category, commit.topic, commit.title])
def keywordInFile(file, keywords):
for key in keywords:
if key in file:
return True
return False
@staticmethod
def categorize(commit_hash, title):
features = get_features(commit_hash, return_dict=True)
title = features["title"]
labels = features["labels"]
category = "Uncategorized"
topic = "Untopiced"
# We ask contributors to label their PR's appropriately
# when they're first landed.
# Check if the labels are there first.
already_categorized = already_topiced = False
for label in labels:
if label.startswith("release notes: "):
category = label.split("release notes: ", 1)[1]
already_categorized = True
if label.startswith("topic: "):
topic = label.split("topic: ", 1)[1]
already_topiced = True
if already_categorized and already_topiced:
return Commit(commit_hash, category, topic, title)
if "deprecation" in title.lower():
topic = "deprecations"
files_changed = features["files_changed"]
for file in files_changed:
if CommitList.keywordInFile(file, ["docker/", ".github", "packaging/"]):
category = "releng"
break
if CommitList.keywordInFile(
file,
[
"torchdata/dataloader2",
],
):
category = "dataloader2"
break
if CommitList.keywordInFile(
file,
[
"torchdata/datapipes",
],
):
category = "datapipe"
break
return Commit(commit_hash, category, topic, title)
@staticmethod
def get_commits_between(base_version, new_version):
cmd = f"git merge-base {base_version} {new_version}"
rc, merge_base, _ = run(cmd)
assert rc == 0
# Returns a list of something like
# b33e38ec47 Allow a higher-precision step type for Vec256::arange (#34555)
cmd = f"git log --reverse --oneline {merge_base}..{new_version}"
rc, commits, _ = run(cmd)
assert rc == 0
log_lines = commits.split("\n")
hashes, titles = zip(*[log_line.split(" ", 1) for log_line in log_lines])
return [CommitList.categorize(commit_hash, title) for commit_hash, title in zip(hashes, titles)]
def filter(self, *, category=None, topic=None):
commits = self.commits
if category is not None:
commits = [commit for commit in commits if commit.category == category]
if topic is not None:
commits = [commit for commit in commits if commit.topic == topic]
return commits
def update_to(self, new_version):
last_hash = self.commits[-1].commit_hash
new_commits = CommitList.get_commits_between(last_hash, new_version)
self.commits += new_commits
def stat(self):
counts = defaultdict(lambda: defaultdict(int))
for commit in self.commits:
counts[commit.category][commit.topic] += 1
return counts
def create_new(path, base_version, new_version):
commits = CommitList.create_new(path, base_version, new_version)
commits.write_to_disk()
def update_existing(path, new_version):
commits = CommitList.from_existing(path)
commits.update_to(new_version)
commits.write_to_disk()
def to_markdown(commit_list, category):
def cleanup_title(commit):
match = re.match(r"(.*) \(#\d+\)", commit.title)
if match is None:
return commit.title
return match.group(1)
cdc = CommitDataCache()
lines = [f"\n## {category}\n"]
for topic in topics:
lines.append(f"### {topic}\n")
commits = commit_list.filter(category=category, topic=topic)
for commit in commits:
result = cleanup_title(commit)
maybe_pr_number = cdc.get(commit.commit_hash).pr_number
if maybe_pr_number is None:
result = f"- {result} ({commit.commit_hash})\n"
else:
result = f"- {result} ([#{maybe_pr_number}](https://github.com/pytorch/data/pull/{maybe_pr_number}))\n"
lines.append(result)
return lines
def get_markdown_header(category):
header = f"""
# Release Notes worksheet {category}
The main goal of this process is to rephrase all the commit messages below to make them clear and easy to read by the end user. You should follow the following instructions to do so:
* **Please cleanup, and format commit titles to be readable by the general pytorch user.** [Detailed intructions here](https://fb.quip.com/OCRoAbEvrRD9#HdaACARZZvo)
* Please sort commits into the following categories (you should not rename the categories!), I tried to pre-sort these to ease your work, feel free to move commits around if the current categorization is not good.
* Please drop any commits that are not user-facing.
* If anything is from another domain, leave it in the UNTOPICED section at the end and I'll come and take care of it.
The categories below are as follows:
* BC breaking: All commits that are BC-breaking. These are the most important commits. If any pre-sorted commit is actually BC-breaking, do move it to this section. Each commit should contain a paragraph explaining the rational behind the change as well as an example for how to update user code (guidelines here: https://quip.com/OCRoAbEvrRD9)
* Deprecations: All commits introducing deprecation. Each commit should include a small example explaining what should be done to update user code.
* new_features: All commits introducing a new feature (new functions, new submodule, new supported platform etc)
* improvements: All commits providing improvements to existing feature should be here (new backend for a function, new argument, better numerical stability)
* bug fixes: All commits that fix bugs and behaviors that do not match the documentation
* performance: All commits that are added mainly for performance (we separate this from improvements above to make it easier for users to look for it)
* documentation: All commits that add/update documentation
* Developers: All commits that are not end-user facing but still impact people that compile from source, develop into pytorch, extend pytorch, etc
"""
return [
header,
]
def main():
"""
Example Usages
Create a new commitlist.
Said commitlist contains commits between v1.5.0 and f5bc91f851.
python commitlist.py --create_new tags/v1.5.0 f5bc91f851
Update the existing commitlist to commit bfcb687b9c.
python commitlist.py --update_to bfcb687b9c
"""
parser = argparse.ArgumentParser(description="Tool to create a commit list")
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument("--create_new", nargs=2)
group.add_argument("--update_to")
group.add_argument("--stat", action="store_true")
group.add_argument("--export_markdown", action="store_true")
parser.add_argument("--path", default="results/commitlist.csv")
args = parser.parse_args()
if args.create_new:
create_new(args.path, args.create_new[0], args.create_new[1])
return
if args.update_to:
update_existing(args.path, args.update_to)
return
if args.stat:
commits = CommitList.from_existing(args.path)
stats = commits.stat()
pprint.pprint(stats)
return
if args.export_markdown:
commits = CommitList.from_existing(args.path)
categories = list(commits.stat().keys())
for category in categories:
print(f"Exporting {category}...")
lines = get_markdown_header(category)
lines += to_markdown(commits, category)
filename = f"results/export/result_{category}.md"
os.makedirs(os.path.dirname(filename), exist_ok=True)
with open(filename, "w") as f:
f.writelines(lines)
return
if __name__ == "__main__":
main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
import sys
def collect_init_dps(init_file_location):
init_dps = set()
with open(init_file_location) as init_file:
while (line := init_file.readline()) != "":
if line.startswith("__all__ "):
while (line := init_file.readline()) != "" and (stripped_line := line.strip()).startswith('"'):
init_dps.add(stripped_line.replace(",", "").replace('"', ""))
break
return init_dps
def collect_rst_dps(rst_file_location):
rst_dps = set()
with open(rst_file_location) as rst_file:
while (line := rst_file.readline()) != "":
if line.count("class_template.rst") > 0 or line.count("function.rst") > 0:
rst_file.readline()
while (line := rst_file.readline()) != "" and len(stripped_line := line.strip()) > 1:
rst_dps.add(stripped_line)
return rst_dps
def compare_sets(set_a, set_b, ignore_set=None):
res = set_a.difference(set_b)
if ignore_set is not None:
res.difference_update(ignore_set)
return res
def main():
datapipes_folder = os.path.join("torchdata", "datapipes")
init_file = "__init__.py"
docs_source_folder = os.path.join("docs", "source")
exit_code = 0
for target, ignore_set in zip(["iter", "map", "utils"], [{"IterDataPipe", "Extractor"}, {"MapDataPipe"}, {}]):
init_path = os.path.join(datapipes_folder, target, init_file)
rst_path = os.path.join(docs_source_folder, "torchdata.datapipes." + target + ".rst")
init_set = collect_init_dps(init_path)
rst_set = collect_rst_dps(rst_path)
dif_init = compare_sets(init_set, rst_set, ignore_set)
dif_rst = compare_sets(rst_set, init_set)
for elem in dif_init:
print(f"Please add {elem} to {rst_path}")
exit_code = 1
for elem in dif_rst:
print(f"{elem} is present in {rst_path} but not in {init_path}")
exit_code = 1
sys.exit(exit_code)
if __name__ == "__main__":
main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# Use the same timeout as PyTorch Distributed
default_timeout_in_s = 30 * 60
default_dl2_worker_join_timeout_in_s = 20
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from torchdata import _extension # noqa: F401
from . import datapipes
janitor = datapipes.utils.janitor
try:
from .version import __version__ # noqa: F401
except ImportError:
pass
__all__ = [
"datapipes",
"janitor",
]
# Please keep this list sorted
assert __all__ == sorted(__all__)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import importlib.machinery
import os
from pathlib import Path
_LIB_DIR = Path(__file__).parent
def _init_extension():
lib_dir = os.path.dirname(__file__)
# TODO(631): If any extension had dependency of shared library,
# in order to support load these shred libraries dynamically,
# we need to add logic to load dll path on Windows
# See: https://github.com/pytorch/pytorch/blob/master/torch/__init__.py#L56-L140
loader_details = (importlib.machinery.ExtensionFileLoader, importlib.machinery.EXTENSION_SUFFIXES)
extfinder = importlib.machinery.FileFinder(lib_dir, loader_details) # type: ignore[arg-type]
ext_specs = extfinder.find_spec("_torchdata")
if ext_specs is None:
return
from torchdata import _torchdata as _torchdata
_init_extension()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import sys
import traceback
class KeyErrorMessage(str):
r"""str subclass that returns itself in repr"""
def __repr__(self):
return self
class ExceptionWrapper:
r"""
Wraps an exception with traceback to communicate across threads/processes
"""
def __init__(self, exc_info=None, where: str = "in background"):
if exc_info is None:
exc_info = sys.exc_info()
self.exc_type = exc_info[0]
self.exc_msg = "".join(traceback.format_exception(*exc_info))
self.where = where
def reraise(self):
r"""
Reraises the wrapped exception in the current thread/process
"""
# Format a message such as: "Caught ValueError in DataLoader worker
# process 2. Original Traceback:", followed by the traceback.
msg = f"Caught {self.exc_type.__name__} {self.where}.\nOriginal {self.exc_msg}"
if self.exc_type == KeyError:
# KeyError calls repr() on its argument (usually a dict key). This
# makes stack traces unreadable. It will not be changed in Python
# (https://bugs.python.org/issue2651), so we work around it.
msg = KeyErrorMessage(msg)
elif getattr(self.exc_type, "message", None):
# Some exceptions have first argument as non-str but explicitly
# have message field
raise self.exc_type(message=msg)
try:
exception = self.exc_type(msg)
except TypeError:
# If the exception takes multiple arguments, don't try to
# instantiate since we don't know how to
raise RuntimeError(msg) from None
raise exception
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import pickle
import warnings
from typing import Any, Dict, Generic, Iterable, Iterator, Optional, TypeVar, Union
from torchdata.dataloader2.adapter import Adapter
from torchdata.dataloader2.error import PauseIteration
from torchdata.dataloader2.graph._serialization import (
clone,
DataPipe,
deserialize_datapipe,
MapDataPipe,
serialize_datapipe,
)
from torchdata.dataloader2.random import SeedGenerator
from torchdata.dataloader2.random.seed_generator import _UINT64_UPPER_BOUND
from torchdata.dataloader2.reading_service import CheckpointableReadingServiceInterface, ReadingServiceInterface
T_co = TypeVar("T_co", covariant=True)
SERIALIZED_DATAPIPE_KEY_NAME = "serialized_datapipe"
READING_SERVICE_STATE_KEY_NAME = "reading_service_state"
RANDOMNESS_STATE_KEY_NAME = "randomness_state"
class DataLoader2Iterator(Iterator[T_co]):
r"""
An iterator wrapper returned by ``DataLoader2``'s ``__iter__` method. It delegates method/attribute calls
to the DataPipe iterator object.
The purpose of this wrapper object is to track the validity of an iterator to enforce the single iterator per
``DataLoader2`` constraint, and to finalize iteration/shutdown when necessary.
"""
def __init__(self, dataloader: "DataLoader2", iterator_id: int):
self.dataloader = dataloader
self.iterator_id = iterator_id
self.limit_counter: Optional[int] = None
self.limit_threshold: Optional[int] = None
def __next__(self) -> T_co:
if self.iterator_id == self.dataloader.valid_iterator_id:
self.dataloader._reset_iter = True
try:
if self.dataloader._is_paused:
raise PauseIteration("DataLoader2 has been paused. `resume` must be called before continuing.")
else:
next_val = next(self.dataloader._datapipe_iter) # type: ignore[arg-type]
if self.limit_threshold is not None:
self.limit_counter = self.limit_counter + 1 # type: ignore[operator]
return next_val
except PauseIteration: # This can be used for raising `StopIteration` without `finalize_iteration`
raise StopIteration
except StopIteration:
if self.dataloader.reading_service is not None:
self.dataloader.reading_service.finalize_iteration()
raise
except Exception:
if self.dataloader:
self.dataloader.shutdown()
raise
finally:
# Call `pause` if threshold is reached
if (
not self.dataloader._is_paused
and self.limit_threshold is not None
and self.limit_counter >= self.limit_threshold # type: ignore[operator]
):
self._pause()
else: # `iterator_id` is not valid
if self.dataloader.reading_service is not None:
self.dataloader.reading_service.finalize_iteration()
raise RuntimeError(
"This iterator has been invalidated because another iterator has been created "
"from the same DataLoader2.\n"
"This may be caused multiple references to the same DataLoader2. "
"For feedback regarding this single iterator per DataLoader2 constraint, feel free "
"to comment on this issue: https://github.com/pytorch/data/issues/45."
)
def _pause(self) -> None:
r"""
Pauses ``DataLoader2`` by halting its threads and ensure that its state remains unchanged,
allowing ``DataLoader2`` to safely perform snapshotting and similar operations afterwards.
The ``limit_counter`` is also reset to ``0``.
"""
self.dataloader._pause()
self.limit_counter = 0
def resume(self) -> None:
r"""
Restarts the threads within ``DataLoader2`` and allows it to yield additional batches.
"""
self.dataloader._resume()
def limit(self, num_batches: Optional[int]) -> None:
"""
Pauses ``DataLoader2`` from yielding additional batches after ``num_batches`` has been yielded. The count
begins after this method is invoked (i.e. previously yielded batches do not count towards the threshold).
While paused, ``DataLoader2``'s threads are halted and its state remains unchanged,
allowing ``DataLoader2`` to safely perform snapshotting and similar operations.
After ``DataLoader2`` is paused, ``resume()`` must be called before it can start yielding again.
Note:
- ``limit_threshold`` persists after ``pause`` and ``resume``. Use ``.limit(None)`` to remove it.
- If dispatching process is present, in order to make sure limit is in sync across processes,
please place 1-to-N ``DataPipes`` in the dispatching process (before ``sharding_round_robin_dispatch``)
Args:
num_batches: Number of batches after which the DataLoader2 will pause, use ``None`` to remove the limit
"""
self.limit_counter = 0
self.limit_threshold = num_batches
self.dataloader._limit(num_batches)
def __getattr__(self, name):
"""
To delegate operations to ``dataloader._datapipe_iter``.
"""
if "dataloader" not in self.__dict__ or self.dataloader._datapipe_iter is None:
raise AttributeError
return getattr(self.dataloader._datapipe_iter, name)
class DataLoader2(Generic[T_co]):
r"""
``DataLoader2`` is used to optimize and execute the given ``DataPipe`` graph
based on ``ReadingService`` and ``Adapter`` functions, with support for
- Dynamic sharding for multiprocess and distributed data loading
- Multiple backend ``ReadingServices``
- ``DataPipe`` graph in-place modification like shuffle control, memory pinning, etc.
- Snapshot the state of data-preprocessing pipeline (WIP)
Args:
datapipe (``IterDataPipe`` or ``MapDataPipe``): ``DataPipe`` from which to load the data. A deepcopy of this
datapipe will be made during initialization, allowing the input to be re-used in a different ``DataLoader2``
without sharing states. Input ``None`` can only be used if ``load_state_dict`` is called
right after the creation of the DataLoader.
datapipe_adapter_fn (``Iterable[Adapter]`` or ``Adapter``, optional): ``Adapter`` function(s) that
will be applied to the DataPipe (default: ``None``).
reading_service (ReadingServiceInterface, optional): defines how ``DataLoader2`` should execute operations over
the ``DataPipe``, e.g. multiprocessing/distributed (default: ``None``). A deepcopy of this will be
created during initialization, allowing the ReadingService to be re-used in a different
``DataLoader2`` without sharing states.
Note:
When a ``MapDataPipe`` is passed into ``DataLoader2``, in order to iterate through
the data, ``DataLoader2`` will attempt to create an iterator via ``iter(datapipe)``.
If the object has a non-zero-indexed indices, this may fail.
Consider using ``.shuffle()`` (which converts ``MapDataPipe`` to ``IterDataPipe``)
or ``datapipe.to_iter_datapipe(custom_indices)``.
"""
def __init__(
self,
datapipe: Optional[DataPipe],
datapipe_adapter_fn: Optional[Union[Iterable[Adapter], Adapter]] = None,
reading_service: Optional[ReadingServiceInterface] = None,
) -> None:
if isinstance(datapipe, MapDataPipe):
datapipe = datapipe.to_iter_datapipe()
self.datapipe = clone(datapipe) if datapipe is not None else None
self._adapted: bool = False
self._datapipe_iter: Optional[Iterator[T_co]] = None
self._reset_iter: bool = True # Sets to `False` when `__iter__` runs, and `True` when `__next__` is called
# TODO(630): Some ReadingServices might want to validate adapters, we can add this feature
if datapipe_adapter_fn is None:
self.datapipe_adapter_fns = None
elif isinstance(datapipe_adapter_fn, Iterable):
self.datapipe_adapter_fns = datapipe_adapter_fn
else:
self.datapipe_adapter_fns = [datapipe_adapter_fn]
self.reading_service = clone(reading_service)
self.reading_service_state: Optional[bytes] = None # is not `None` when `load_state_dict` is called
self._terminated: bool = False
self.valid_iterator_id: Optional[int] = None
self._is_paused = False
if self.datapipe is not None and self.datapipe_adapter_fns is not None:
for adapter_fn in self.datapipe_adapter_fns:
self.datapipe = adapter_fn(self.datapipe)
self._datapipe_before_reading_service_adapt: DataPipe = clone(self.datapipe)
self._seed_generator: SeedGenerator = SeedGenerator()
self._seed: Optional[int] = None
self._reset_seed: bool = True
# Seed generator as of beginning of each epoch
self._initial_seed_generator: SeedGenerator = clone(self._seed_generator)
def __iter__(self) -> DataLoader2Iterator[T_co]:
r"""
Return a singleton iterator from the ``DataPipe`` graph adapted by ``ReadingService``.
``DataPipe`` will be restored if the serialized state is provided to construct
``DataLoader2``. And, ``initialize_iteration`` and ``finalize_iterator`` will be
invoked at the beginning and end of the iteration correspondingly.
"""
if self.datapipe is None:
raise RuntimeError("Please provide datapipe or use load_state_dict to load datapipe from state")
if self._terminated:
raise RuntimeError("Cannot iterate over the DataLoader as it has already been shut down")
if self._reset_iter:
if self._seed is not None:
if self._reset_seed:
self._seed_generator.seed(self._seed)
self._reset_seed = False
else:
self._seed_generator.seed()
# Saving initial seed generator state
self._initial_seed_generator = clone(self._seed_generator)
if not self._adapted and self.reading_service is not None:
if self.reading_service_state is None:
self.datapipe = self.reading_service.initialize(self.datapipe)
else:
if not isinstance(self.reading_service, CheckpointableReadingServiceInterface):
raise TypeError("Cannot restore from non-checkpointable reading service")
self.datapipe = self.reading_service.restore(self.datapipe, self.reading_service_state)
self._adapted = True
if self.reading_service is not None:
iter_reset_fn = self.reading_service.initialize_iteration(self._seed_generator)
if iter_reset_fn:
self.datapipe = iter_reset_fn(self.datapipe)
self._datapipe_iter = iter(self.datapipe)
self._reset_iter = False
self.valid_iterator_id = 0 if self.valid_iterator_id is None else self.valid_iterator_id + 1
return DataLoader2Iterator(self, self.valid_iterator_id)
def seed(self, seed: int) -> None:
r"""
Set random seed for DataLoader2 to control determinism.
Args:
seed: Random uint64 seed
"""
if seed >= _UINT64_UPPER_BOUND:
raise ValueError(f"Expected an uint64 seed, but got {seed}.")
self._seed = seed
self._reset_seed = True
def __del__(self) -> None:
self.shutdown()
def shutdown(self) -> None:
r"""
Shuts down ``ReadingService`` and clean up iterator.
"""
try:
if not self._terminated:
self._terminated = True
if self.reading_service is not None:
self.reading_service.finalize_iteration()
self.reading_service.finalize()
if not self._reset_iter:
self._reset_iter = True
self._datapipe_iter = None
# Ignore AttributeError in case any attribute has been removed before `__del__`
except AttributeError:
pass
def __enter__(self) -> "DataLoader2[T_co]":
return self
def __exit__(self, exc_type, exc_value, traceback) -> None:
self.shutdown()
def state_dict(self) -> Dict[str, Any]:
r"""
Return a dictionary to represent the state of data-processing pipeline with keys:
- ``serialized_datapipe``:Serialized ``DataPipe`` before ``ReadingService`` adaption.
- ``reading_service_state``: The state of ``ReadingService`` and adapted ``DataPipe``.
"""
reading_service_state = None
if self.reading_service is not None and isinstance(self.reading_service, CheckpointableReadingServiceInterface):
reading_service_state = self.reading_service.checkpoint()
# Serialize datapipe after applying adapters and before reading service adaption
serialized_datapipe = serialize_datapipe(self._datapipe_before_reading_service_adapt)
serialized_randomness_state = (
self._seed,
self._reset_seed,
pickle.dumps(self._seed_generator),
pickle.dumps(self._initial_seed_generator),
)
return {
SERIALIZED_DATAPIPE_KEY_NAME: serialized_datapipe,
READING_SERVICE_STATE_KEY_NAME: reading_service_state,
RANDOMNESS_STATE_KEY_NAME: serialized_randomness_state,
}
@classmethod
def from_state(
cls,
state: Dict[str, Any],
reading_service: CheckpointableReadingServiceInterface,
) -> "DataLoader2[T_co]":
"""
Create new ``DataLoader2`` with ``DataPipe`` graph and ``ReadingService`` restored
from the serialized state.
"""
serialized_datapipe = state[SERIALIZED_DATAPIPE_KEY_NAME]
reading_service_state = state[READING_SERVICE_STATE_KEY_NAME]
data_loader: "DataLoader2[T_co]" = DataLoader2(
datapipe=deserialize_datapipe(serialized_datapipe),
datapipe_adapter_fn=None,
reading_service=reading_service,
)
data_loader.reading_service_state = reading_service_state
# This check is needed for backward compatibility of `state_dict` for users loading from older version
if RANDOMNESS_STATE_KEY_NAME in state:
randomness_state = state[RANDOMNESS_STATE_KEY_NAME]
data_loader._seed, data_loader._reset_seed = randomness_state[0], randomness_state[1]
data_loader._seed_generator = pickle.loads(randomness_state[2])
data_loader._initial_seed_generator = pickle.loads(randomness_state[3])
return data_loader
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
"""
For the existing ``DataLoader2``, load serialized state to restore ``DataPipe`` graph
and reset the internal state of ``ReadingService``.
"""
# edge case checking
# iterator has already been created: 1) iterator is just created 2) iterator is created and iter is exhausted
if self._datapipe_iter is not None:
raise RuntimeError(
"DataLoaderV2 iterator has already been created, `load_state_dict()` can’t be called. "
"Please create a new dataloader in order to use load state dict."
)
serialized_datapipe = state_dict[SERIALIZED_DATAPIPE_KEY_NAME]
reading_service_state = state_dict[READING_SERVICE_STATE_KEY_NAME]
# deserialize datapipe
deserialized_datapipe = deserialize_datapipe(serialized_datapipe)
assert deserialized_datapipe is not None
# override existing datapipe and reading service state
self.datapipe = deserialized_datapipe
self.reading_service_state = reading_service_state
# This check is needed for backward compatibility of `state_dict` for users loading from older version
if RANDOMNESS_STATE_KEY_NAME in state_dict:
randomness_state = state_dict[RANDOMNESS_STATE_KEY_NAME]
self._seed, self._reset_seed = randomness_state[0], randomness_state[1]
self._seed_generator = pickle.loads(randomness_state[2])
self._initial_seed_generator = pickle.loads(randomness_state[3])
# re-initialize datapipe_adapter_fn and _datapipe_before_reading_service_adapt
if self.datapipe_adapter_fns is not None:
for adapter_fn in self.datapipe_adapter_fns:
self.datapipe = adapter_fn(self.datapipe)
self._datapipe_before_reading_service_adapt = clone(self.datapipe)
def _restore_checkpoint_beginning_of_epoch(self) -> None:
r"""
At the beginning of each iteration (epoch), the initial state of randomness is automatically saved.
That state is also saved as part of ``state_dict``. This method restores the current DataLoader2 RNG state
to that initial state.
The common use case is to invoke this method after ``DataLoader2``'s state is restored (through
``.from_state(...)`` or ``load_state_dict(...)``) in order to resume from the beginning of the last-ran epoch.
"""
self._seed_generator = self._initial_seed_generator
def _pause(self) -> None:
if hasattr(self.reading_service, "_pause"):
self._is_paused = True
pause_fn = self.reading_service._pause()
if pause_fn is not None:
self.datapipe = pause_fn(self.datapipe)
else:
warnings.warn("ReadingService doesn't support `pause`.")
def _resume(self) -> None:
if hasattr(self.reading_service, "_resume"):
if not self._is_paused:
warnings.warn("Resume is called when `DataLoader2` is not paused. No operation is performed.")
else:
resume_fn = self.reading_service._resume()
if resume_fn is not None:
self.datapipe = resume_fn(self.datapipe)
self._is_paused = False
else:
warnings.warn("ReadingService doesn't support `resume`.")
def _limit(self, num_batches: Optional[int]) -> None:
if hasattr(self.reading_service, "_limit"):
limit_fn = self.reading_service._limit(num_batches)
if limit_fn is not None:
self.datapipe = limit_fn(self.datapipe, num_batches)
else:
warnings.warn("ReadingService doesn't support `limit`.")
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
class PauseIteration(StopIteration):
pass
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from abc import abstractmethod
import torch
from torchdata.dataloader2.graph import DataPipe, traverse_dps
from torchdata.datapipes.iter.util.cacheholder import _WaitPendingCacheItemIterDataPipe
__all__ = [
"Adapter",
"CacheTimeout",
"Shuffle",
]
assert __all__ == sorted(__all__)
class Adapter:
r"""
Adapter Base Class that follows python Callable protocol.
"""
@abstractmethod
def __call__(self, datapipe: DataPipe) -> DataPipe:
r"""
Callable function that either runs in-place modification of
the ``DataPipe`` graph, or returns a new ``DataPipe`` graph.
Args:
datapipe: ``DataPipe`` that needs to be adapted.
Returns:
Adapted ``DataPipe`` or new ``DataPipe``.
"""
pass
class Shuffle(Adapter):
r"""
Shuffle DataPipes adapter allows control over all existing Shuffler (``shuffle``) DataPipes in the graph.
Args:
enable: Optional boolean argument to enable/disable shuffling in the ``DataPipe`` graph. True by default.
- True: Enables all previously disabled ``ShufflerDataPipes``. If none exists, it will add a new ``shuffle`` at the end of the graph.
- False: Disables all ``ShufflerDataPipes`` in the graph.
- None: No-op. Introduced for backward compatibility.
Example:
.. testsetup::
from torchdata.datapipes.iter import IterableWrapper
from torchdata.dataloader2 import DataLoader2
from torchdata.dataloader2.adapter import Shuffle
size = 12
.. testcode::
dp = IterableWrapper(range(size)).shuffle()
dl = DataLoader2(dp, [Shuffle(False)])
assert list(range(size)) == list(dl)
"""
def __init__(self, enable=True):
self.enable = enable
def __call__(self, datapipe: DataPipe) -> DataPipe:
return torch.utils.data.graph_settings.apply_shuffle_settings(datapipe, shuffle=self.enable)
class CacheTimeout(Adapter):
r"""
CacheTimeout DataPipes adapter allows control over timeouts of all existing EndOnDiskCacheHolder (``end_caching``)
in the graph. Useful when cached pipeline takes too long to execute (ex. slow file downloading).
Args:
timeout: int - amount of seconds parallel processes will wait for cached files to appear.
Example:
.. testsetup::
from torchdata.datapipes.iter import IterableWrapper
from torchdata.dataloader2 import DataLoader2
from torchdata.dataloader2.adapter import CacheTimeout
size = 12
.. testcode::
dp = IterableWrapper(range(size)).shuffle()
dl = DataLoader2(dp, [CacheTimeout(600)])
"""
def __init__(self, timeout=None):
if timeout is None:
raise ValueError("timeout should be integer")
self.timeout = timeout
def __call__(self, datapipe: DataPipe) -> DataPipe:
graph = traverse_dps(datapipe)
all_pipes = torch.utils.data.graph_settings.get_all_graph_pipes(graph)
cache_locks = {pipe for pipe in all_pipes if isinstance(pipe, _WaitPendingCacheItemIterDataPipe)}
for cache_lock in cache_locks:
cache_lock.set_timeout(self.timeout)
return datapipe
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import abc
class ShuffleSpec(abc.ABC):
"""Defines a shuffle specification."""
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from torchdata.dataloader2.dataloader2 import DataLoader2, DataLoader2Iterator
from torchdata.dataloader2.error import PauseIteration
from torchdata.dataloader2.reading_service import (
CheckpointableReadingServiceInterface,
DistributedReadingService,
InProcessReadingService,
MultiProcessingReadingService,
PrototypeMultiProcessingReadingService,
ReadingServiceInterface,
SequentialReadingService,
)
from torchdata.dataloader2.shuffle_spec import ShuffleSpec
__all__ = [
"CheckpointableReadingServiceInterface",
"DataLoader2",
"DataLoader2Iterator",
"DistributedReadingService",
"InProcessReadingService",
"MultiProcessingReadingService",
"PauseIteration",
"PrototypeMultiProcessingReadingService",
"ReadingServiceInterface",
"SequentialReadingService",
"ShuffleSpec",
]
assert __all__ == sorted(__all__)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from torchdata.dataloader2.graph import DataPipe, DataPipeGraph, traverse_dps
from torchdata.datapipes.iter import ShardingFilter, Shuffler
def _check_shuffle_before_sharding(datapipe: DataPipe) -> bool:
"""
This function will check if a ``shuffle`` operation is presented before each
``sharding_filter`` operation for every single path in the ``DataPipe`` graph.
"""
graph: DataPipeGraph = traverse_dps(datapipe) # type: ignore[arg-type]
return _check_shuffler_before_sharding_helper(graph)
def _check_shuffler_before_sharding_helper(graph: DataPipeGraph) -> bool:
if not graph:
return True
if len(graph) > 1:
for dp, sub_graph in graph.values():
if isinstance(dp, ShardingFilter):
if not _has_shuffler(sub_graph):
return False
else:
if not _check_shuffler_before_sharding_helper(sub_graph):
return False
return True
dp, dp_graph = list(graph.values())[0]
if isinstance(dp, ShardingFilter):
return _has_shuffler(dp_graph)
return _check_shuffler_before_sharding_helper(dp_graph)
def _has_shuffler(graph: DataPipeGraph) -> bool:
if not graph:
return False
if len(graph) > 1:
for dp, sub_graph in graph.values():
if not (isinstance(dp, Shuffler) or _has_shuffler(sub_graph)):
return False
return True
dp, dp_graph = list(graph.values())[0]
if isinstance(dp, Shuffler):
return True
return _has_shuffler(dp_graph)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import multiprocessing as py_mp
import pickle
import warnings
from abc import ABC, abstractmethod
from datetime import timedelta
from functools import partial
from multiprocessing.queues import Queue
from typing import Callable, List, Optional, Tuple
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.utils.data.datapipes.iter.sharding import SHARDING_PRIORITIES
from torchdata._constants import default_dl2_worker_join_timeout_in_s, default_timeout_in_s
from torchdata.dataloader2 import communication
from torchdata.dataloader2.graph import DataPipe, list_dps, replace_dp, set_graph_random_seed, traverse_dps
from torchdata.dataloader2.graph._serialization import attach_wrapper
from torchdata.dataloader2.graph.utils import _find_replicable_branches
from torchdata.dataloader2.random import dist_share_seed, SeedGenerator
from torchdata.dataloader2.utils import process_init_fn, WorkerInfo
from torchdata.dataloader2.utils.dispatch import _DummyIterDataPipe, find_lca_round_robin_sharding_dp
from torchdata.datapipes.iter import FullSync
class ReadingServiceInterface(ABC):
r"""
Interface for ``ReadingService``. Please extend custom ``ReadingService`` based on this interface class.
ReadingService must be picklable prior to ``initialize`` being called. This is because a copy of it will be
created by ``DataLoader2`` to avoid the situation where the same ReadingService object is used by
multiple ``DataLoader2``, and its internal state will be modifiable by each of them.
As a result of this constraint, certain initialization steps may need to take place within the
``initialize`` method rather than ``__init__`` of the ReadingService class.
"""
@abstractmethod
def initialize(self, datapipe: DataPipe) -> DataPipe:
r"""
``ReadingService`` takes a ``DataPipe`` graph, adapts it into a new ``DataPipe`` graph based on the custom need.
Called once in creating ``DataLoader2`` iterator at first time. Prior to calling this method,
the ``ReadingService`` object must be picklable.
Args:
datapipe: Original ``DataPipe`` graph.
Return:
An adapted or a new ``DataPipe`` graph.
"""
pass
def finalize(self) -> None:
r"""
``ReadingService`` cleans up internal states and fully shuts down the service.
Called in ``DataLoader2``'s ``shutdown`` and ``__del__``.
"""
pass
def initialize_iteration(
self, seed_generator: SeedGenerator, iter_reset_fn: Optional[Callable[[DataPipe], DataPipe]] = None
) -> Optional[Callable[[DataPipe], DataPipe]]:
r"""
``ReadingService`` spins up service for an epoch. Called at the beginning
of every time getting ``DataLoader2`` iterator.
Args:
seed_generator: SeedGenerator object created and managed by DataLoader2. As the single
source of randomness, it will govern the determinism for all of random operations
with the graph of DataPipes.
iter_reset_fn: Optional reset function from the prior ``ReadingServcie``
when ``SequentialReadingService`` chains multiple ``ReadingServices``
Returns:
A new ``iter_reset_fn`` to be used by subseqeuent ``ReadingService``
Example:
MultiProcessingReadingService starts setting worker seeds per process and prefetching
items from the graph.
"""
pass
def finalize_iteration(self) -> None:
r"""
``ReadingService`` ends service after an epoch is finished. Called when
the iterator of ``DataLoader2`` is depleted.
"""
pass
def __del__(self):
# Due to non-deterministic order of destruction, by the time `finalize` is called,
# some objects may already be `None`.
try:
self.finalize()
except AttributeError:
pass
class CheckpointableReadingServiceInterface(ReadingServiceInterface):
r"""
Extend ``ReadingServiceInterface`` with two additional methods to save/restore the state of the data-processing graph.
"""
@abstractmethod
def checkpoint(self) -> bytes:
"""
``ReadingService`` serializes the internal states. Called in ``DataLoader2.state_dict``.
"""
pass
@abstractmethod
def restore(self, datapipe: DataPipe, serialized_state: bytes) -> DataPipe:
"""
``ReadingService`` adapts ``DataPipe`` graph based on the serialized state.
Called once in creating ``DataLoader2`` iterator at first time.
Counterpart of ``initialize``, which adapt ``DataPipe`` graph from scratch.
Args:
datapipe: original ``DataPipe`` graph before adapted by ``ReadingService``
serialized_state: The serialized state of internal state used to restore the state
of the adapted ``DataPipe`` graph.
Returns:
Adapted ``DataPipe`` generated from the serialized state.
"""
pass
def _collate_no_op(batch):
return batch[0]
class PrototypeMultiProcessingReadingService(ReadingServiceInterface):
def __new__(cls, *args, **kwargs):
warnings.warn(
"`PrototypeMultiProcessingReadingService` is deprecated and will be removed in TorchData 0.8. "
"Please use `MultiProcessingReadingService`."
)
return MultiProcessingReadingService(*args, **kwargs)
class InProcessReadingService(ReadingServiceInterface):
r"""
Default ReadingService to serve the ``DataPipe` graph in the main process,
and apply graph settings like determinism control to the graph.
Args:
prefetch_cnt: (int, 0 by default): Number of data will be prefetched in the main process.
init_fn: (Callable, optional): Custom function to be called when the main
process starts to iterate over ``DataPipe`` graph.
reset_fn: (Callable, optional): Custom function to be called at the beginning
of each epoch with ``DataPipe``, ``WorkerInfo`` and ``SeedGenerator``
as the expected arguments.
"""
_prefetch_cnt: int
_init_fn: Optional[Callable[[DataPipe, WorkerInfo], DataPipe]]
_reset_fn: Optional[Callable[[DataPipe, WorkerInfo, SeedGenerator], DataPipe]]
_end_datapipe: Optional[DataPipe]
def __init__(
self,
prefetch_cnt: int = 0,
init_fn: Optional[Callable[[DataPipe, WorkerInfo], DataPipe]] = None,
reset_fn: Optional[Callable[[DataPipe, WorkerInfo, SeedGenerator], DataPipe]] = None,
) -> None:
self._prefetch_cnt = prefetch_cnt
self._init_fn = init_fn
self._reset_fn = reset_fn
self._end_datapipe = None
def initialize(self, datapipe: DataPipe) -> DataPipe:
worker_info = WorkerInfo(1, 0)
datapipe = process_init_fn(datapipe, worker_info, self._init_fn)
self._end_datapipe = datapipe
return datapipe
def initialize_iteration(
self, seed_generator: SeedGenerator, iter_reset_fn: Optional[Callable[[DataPipe], DataPipe]] = None
) -> Optional[Callable[[DataPipe], DataPipe]]:
assert self._end_datapipe is not None
# Set random seeds for DataPipe that are in the main process (NOT those in worker processes)
# Worker seeds are set in `process_reset_fn`
set_graph_random_seed(self._end_datapipe, seed_generator)
return None
def _pause(
self, pause_fn: Optional[Callable[[DataPipe], DataPipe]] = None
) -> Optional[Callable[[DataPipe], DataPipe]]:
"""
Pauses DataPipes' activities in the main process in order to collect state.
"""
assert self._end_datapipe is not None
dp_list = list_dps(traverse_dps(self._end_datapipe))
for dp in dp_list:
if hasattr(dp, "pause") and callable(dp.pause):
dp.pause()
return None
def _resume(
self, resume_fn: Optional[Callable[[DataPipe], DataPipe]] = None
) -> Optional[Callable[[DataPipe], DataPipe]]:
"""
Resumes DataPipes' activities. This is required to be called after `_pause` before
the DataLoader can keep yielding elements.
"""
assert self._end_datapipe is not None
dp_list = list_dps(traverse_dps(self._end_datapipe))
# Reversed order
for dp in dp_list[::-1]:
if hasattr(dp, "resume") and callable(dp.resume):
dp.resume()
return None
def _limit(
self, num_batches: Optional[int], limit_fn: Optional[Callable[[DataPipe, Optional[int]], DataPipe]] = None
) -> Optional[Callable[[DataPipe, Optional[int]], DataPipe]]:
r"""
Apply limit_fn to the DataPipe graph.
"""
if limit_fn is not None:
# TODO: Remove when flexible checkpoint is supported
limit_fn(self._end_datapipe, num_batches) # type: ignore[arg-type]
return None
class MultiProcessingReadingService(ReadingServiceInterface):
r"""
Spawns multiple worker processes to load data from the ``DataPipe`` graph.
If any non-replicable ``DataPipe`` (``sharding_round_robin_dispatch``) is presented in the graph,
a separate dispatching process will be created to load data from the lowest common ancestor
of all non-replicable ``DataPipes`` and distributes data to each worker process in the round-robin manner
Then, the subsequent ``DataPipe`` graph in each worker process will process the data from the dispatching
process and eventually return the result to the main process.
Args:
num_workers (int): How many subprocesses to use for data loading.
multiprocessing_context (str, optional): Multiprocessing starting method.
If method is None then the default context is returned.
Otherwise, method should be 'fork', 'spawn'.
worker_prefetch_cnt: (int, 10 by default): Number of data will be prefetched at
the end of each worker process.
main_prefetch_cnt: (int, 10 by default): Number of data will be prefetched
at the end of the whole pipeline in the main process.
worker_init_fn: (Callable, optional): Function to be called when each worker
process launches with ``DataPipe`` and ``WorkerInfo`` as the expected arguments.
worker_reset_fn: (Callable, optional): Function to be called at the beginning
of each epoch in each worker process with ``DataPipe``, ``WorkerInfo``
and ``SeedGenerator`` as the expected arguments.
"""
num_workers: int
multiprocessing_context: Optional[str]
worker_prefetch_cnt: int
main_prefetch_cnt: int
worker_init_fn: Optional[Callable[[DataPipe, WorkerInfo], DataPipe]]
worker_reset_fn: Optional[Callable[[DataPipe, WorkerInfo, SeedGenerator], DataPipe]]
_worker_processes: List[Tuple[py_mp.process.BaseProcess, Queue, Queue]]
_dispatch_process: Optional[Tuple[py_mp.process.BaseProcess, List[Queue], List[Queue]]]
_worker_datapipes: List[DataPipe]
_worker_consumer_datapipe: Optional[DataPipe]
_main_prefetch_datapipe: Optional[DataPipe]
_end_datapipe: Optional[DataPipe]
_mp: bool
_finalized: bool = False
def __init__(
self,
num_workers: int = 0,
multiprocessing_context: Optional[str] = None,
worker_prefetch_cnt: int = 10,
main_prefetch_cnt: int = 10,
worker_init_fn: Optional[Callable[[DataPipe, WorkerInfo], DataPipe]] = None,
worker_reset_fn: Optional[Callable[[DataPipe, WorkerInfo, SeedGenerator], DataPipe]] = None,
) -> None:
if num_workers == 0:
warnings.warn("Please use `InProcessReadingService` for num_workers=0")
self.num_workers = num_workers
if multiprocessing_context is not None:
_all_start_methods = mp.get_all_start_methods()
assert (
multiprocessing_context in _all_start_methods
), f"Please choose one available multiprocessing context from {_all_start_methods}"
self.multiprocessing_context = multiprocessing_context
self.worker_prefetch_cnt = worker_prefetch_cnt
self.main_prefetch_cnt = main_prefetch_cnt
self.worker_init_fn = worker_init_fn
self.worker_reset_fn = worker_reset_fn
self._worker_processes = []
self._dispatch_process = None
self._worker_datapipes = []
self._worker_consumer_datapipe = None
self._main_prefetch_datapipe = None
self._end_datapipe = None
self._mp = num_workers > 0
def initialize(self, datapipe: DataPipe) -> DataPipe:
r"""
``MultiProcessingReadingService`` finds information about sharding,
separates graph by multiple pieces and reconnects it using queues.
creates subprocesses.
"""
if not self._mp:
# TODO(616): Warn and recommend usage of InProcessReadingService
worker_info = WorkerInfo(1, 0)
datapipe = process_init_fn(datapipe, worker_info, self.worker_init_fn)
self._end_datapipe = datapipe
return datapipe
ctx = mp.get_context(self.multiprocessing_context)
# Launch dispatching process for the lowest common ancestor of non-replicable DataPipes
graph = traverse_dps(datapipe)
dispatching_dp = find_lca_round_robin_sharding_dp(graph)
# TODO(ejguan): When the last DataPipe is round_robin_sharding, use InPrcoessReadingService
if dispatching_dp is not None:
dummy_dp = _DummyIterDataPipe()
graph = replace_dp(graph, dispatching_dp, dummy_dp) # type: ignore[arg-type]
datapipe = list(graph.values())[0][0]
# TODO(ejguan): Determine buffer_size at runtime or use unlimited buffer
round_robin_dps = dispatching_dp.round_robin_demux(num_instances=self.num_workers)
# TODO(ejguan): Benchmark if we need to prefetch in dispatching process
worker_info = WorkerInfo(self.num_workers, 0)
process, req_queues, res_queues = communication.eventloop.CreateProcessForMultipleDataPipelines(
ctx,
round_robin_dps,
process_name="dispatching process",
worker_info=worker_info,
custom_reset_fn=self.worker_reset_fn,
)
assert len(req_queues) == self.num_workers and len(res_queues) == self.num_workers
for req_queue in req_queues:
req_queue.cancel_join_thread()
for res_queue in res_queues:
res_queue.cancel_join_thread()
process.daemon = True
process.start()
self._dispatch_process = (process, req_queues, res_queues)
# Find replicable branches for worker processes
# The rest of non-replicable DataPipes will remain in the main process
replicable_dps = _find_replicable_branches(graph)
assert (
len(replicable_dps) == 1
), "MultiProcessingReadingService only supports single replicable branch currently"
replicable_dp = replicable_dps[0]
replicable_dp = attach_wrapper(replicable_dp)
for worker_id in range(self.num_workers):
worker_info = WorkerInfo(self.num_workers, worker_id)
# Dispatching process for non-replicable DataPipes exists
dispatching_req_queue = None if self._dispatch_process is None else self._dispatch_process[1][worker_id]
dispatching_res_queue = None if self._dispatch_process is None else self._dispatch_process[2][worker_id]
call_on_process_init = partial(
process_init_fn,
worker_info=worker_info,
custom_init_fn=self.worker_init_fn,
worker_prefetch_cnt=self.worker_prefetch_cnt,
dispatching_req_queue=dispatching_req_queue,
dispatching_res_queue=dispatching_res_queue,
)
(process, req_queue, res_queue) = communication.eventloop.CreateProcessForDataPipeline(
ctx,
replicable_dp,
process_name="worker process",
worker_info=worker_info,
call_on_process_init=call_on_process_init,
custom_reset_fn=self.worker_reset_fn,
)
req_queue.cancel_join_thread()
process.daemon = True
process.start()
self._worker_processes.append((process, req_queue, res_queue)) # These queues are independent
local_datapipe = communication.iter.QueueWrapper(
communication.protocol.IterDataPipeQueueProtocolClient(req_queue, res_queue)
)
self._worker_datapipes.append(local_datapipe)
end_datapipe = communication.iter._IterateQueueDataPipes(self._worker_datapipes) # type: ignore[assignment]
self._worker_consumer_datapipe = end_datapipe
if self.main_prefetch_cnt > 0:
end_datapipe = self._worker_consumer_datapipe.prefetch(self.main_prefetch_cnt) # type: ignore[union-attr]
self._main_prefetch_datapipe = end_datapipe
# Attach non-replicable DataPipes
if replicable_dps[0] is not datapipe:
graph = replace_dp(graph, replicable_dps[0], end_datapipe)
end_datapipe = datapipe # type: ignore[assignment]
self._end_datapipe = end_datapipe
assert self._end_datapipe is not None
return self._end_datapipe # type: ignore[return-value]
def initialize_iteration(
self, seed_generator: SeedGenerator, iter_reset_fn: Optional[Callable[[DataPipe], DataPipe]] = None
) -> Optional[Callable[[DataPipe], DataPipe]]:
assert self._end_datapipe is not None
# Set random seeds for DataPipe that are in the main process (NOT those in worker processes)
# Worker seeds are set in `process_reset_fn`
set_graph_random_seed(self._end_datapipe, seed_generator)
if self._mp:
if self.main_prefetch_cnt > 0:
# Stop prefetching first
self._main_prefetch_datapipe.reset() # type: ignore[union-attr]
# Send the shared seed to subprocesses
assert self._worker_consumer_datapipe is not None
self._worker_consumer_datapipe.reset_epoch(seed_generator, iter_reset_fn)
# In-process (num_workers == 0)
else:
# Technically speaking, we should call `_process_reset_fn` to reset global RNGs
# for data-related operations. However, it would pollute the state of global RNGs
# (random, torch and numpy), if users have already seeded them in the main process
# TODO(ejguan): This should be fixed by adding a method to isolate global RNGs
pass
return None
def finalize(self) -> None:
r"""
``MultiProcessingReadingService`` invalidate states & properly exits all subprocesses.
"""
if self._finalized:
return
self._finalized = True
# TODO(618): Check if anyone stuck with messages
# Clean up worker processes
if self.num_workers > 0:
self._worker_consumer_datapipe.request_terminate() # type: ignore[union-attr]
for process, req_queue, _ in self._worker_processes:
try:
process.join(default_dl2_worker_join_timeout_in_s)
except TimeoutError:
pass
req_queue.close()
# Clean up dispatching process
if self._dispatch_process is not None:
try:
self._dispatch_process[0].join(default_dl2_worker_join_timeout_in_s)
except TimeoutError:
pass
for req_queue in self._dispatch_process[1]:
req_queue.close()
self._worker_processes = []
self._dispatch_process = None
def _pause(
self, pause_fn: Optional[Callable[[DataPipe], DataPipe]] = None
) -> Optional[Callable[[DataPipe], DataPipe]]:
r"""
Pauses DataPipes' activities such as prefetching within main/worker/dispatching processes,
in order to collect state. The provided ``pause_fn`` will be executed in
worker/dispatching processes.
"""
if self.num_workers == 0:
raise RuntimeError(
"If you would like to use `pause` with `MultiProcessingReadingService`, "
"please use more than 0 worker."
)
assert self._end_datapipe is not None
# Call pause for DataPipes in the main process (e.g. prefetch, fullsync)
dp_list = list_dps(traverse_dps(self._end_datapipe))
for dp in dp_list:
if hasattr(dp, "pause") and callable(dp.pause):
dp.pause()
self._worker_consumer_datapipe.request_pause(pause_fn) # type: ignore[union-attr]
return None
def _resume(
self, resume_fn: Optional[Callable[[DataPipe], DataPipe]] = None
) -> Optional[Callable[[DataPipe], DataPipe]]:
r"""
Resumes DataPipes' activities. This is required to be called after `_pause` before
the DataLoader can keep yielding elements.
"""
if self.num_workers > 0:
self._worker_consumer_datapipe.request_resume(resume_fn) # type: ignore[union-attr]
else:
raise RuntimeError(
"If you would like to use `resume` with `MultiProcessingReadingService`, "
"please use more than 0 worker."
)
assert self._end_datapipe is not None
# Call resume for DataPipes in the main process (e.g. prefetch, fullsync)
dp_list = list_dps(traverse_dps(self._end_datapipe))
for dp in dp_list[::-1]:
if hasattr(dp, "resume") and callable(dp.resume):
dp.resume()
return None
def _limit(
self, num_batches: Optional[int], limit_fn: Optional[Callable[[DataPipe, Optional[int]], DataPipe]] = None
) -> Optional[Callable[[DataPipe, Optional[int]], DataPipe]]:
r"""
Send limit_fn to worker/dispatching process to set the limit number to the specified DataPipes.
"""
if limit_fn is not None:
# Only propogate limit when dispatching process exists
num_batches = None if self._dispatch_process is None else num_batches
self._worker_consumer_datapipe.request_limit(num_batches, limit_fn) # type: ignore[union-attr]
# TODO: Remove when flexible checkpoint is supported
limit_fn(self._end_datapipe, num_batches) # type: ignore[arg-type]
return None
class DistributedReadingService(ReadingServiceInterface):
r"""
``DistributedReadingSerivce`` handles distributed sharding on the graph of ``DataPipe`` and
guarantee the randomness by sharing the same seed across the distributed processes.
Args:
timeout: Timeout for operations executed against the process group in seconds.
Default value equals 30 minutes.
"""
def __init__(self, timeout: int = default_timeout_in_s):
if not dist.is_available():
raise RuntimeError("Torch Distributed is required to be available")
self._world_size: int = 1
self._rank: int = 0
self._datapipe: Optional[DataPipe] = None
self._timeout: int = timeout
self._pg: Optional[dist.ProcessGroup] = None
def initialize(self, datapipe: DataPipe) -> DataPipe:
r"""
Launches the ``gloo``-backend distributed process group. Carries out distributed sharding
on the graph of ``DataPipe`` and returns the graph attached with a ``FullSyncIterDataPipe``
at the end.
"""
if not (dist.is_available() and dist.is_initialized()):
raise RuntimeError("Torch Distributed is required to be initialized")
self._world_size = dist.get_world_size()
self._rank = dist.get_rank()
self._pg = dist.new_group(backend="gloo", timeout=timedelta(seconds=self._timeout))
torch.utils.data.graph_settings.apply_sharding(
datapipe, self._world_size, self._rank, SHARDING_PRIORITIES.DISTRIBUTED
)
# Only append FullSyncIterDataPipe if it's not presented at the end of the pipeline
if not isinstance(datapipe, FullSync):
datapipe = datapipe.fullsync(self._timeout)
self._datapipe = datapipe
return datapipe
def initialize_iteration(
self, seed_generator: SeedGenerator, iter_reset_fn: Optional[Callable[[DataPipe], DataPipe]] = None
) -> Optional[Callable[[DataPipe], DataPipe]]:
r"""
Shares the same seed from rank 0 to other ranks across the distributed processes
and apply the random seed to the ``DataPipe`` graph.
"""
assert self._datapipe is not None
shared_seed = dist_share_seed(seed_generator.generate_shared_seed(), self._pg)
seed_generator.seed(shared_seed)
seed_generator = seed_generator.spawn(self._rank, inplace=True)
set_graph_random_seed(self._datapipe, seed_generator)
return None
def finalize(self) -> None:
r"""
Clean up the distributed process group.
"""
if self._pg is not None:
dist.destroy_process_group(self._pg)
self._pg = None
class SequentialReadingService(CheckpointableReadingServiceInterface):
def __init__(self, *reading_services):
self.reading_services = reading_services
# Sequential Order
def initialize(self, datapipe: DataPipe) -> DataPipe:
for rs in self.reading_services:
datapipe = rs.initialize(datapipe)
return datapipe
# Reversed Order
def finalize(self) -> None:
for rs in reversed(self.reading_services):
rs.finalize()
# Sequential Order
def initialize_iteration(
self, seed_generator: SeedGenerator, iter_reset_fn: Optional[Callable[[DataPipe], DataPipe]] = None
) -> Optional[Callable[[DataPipe], DataPipe]]:
chained_iter_reset_fn = iter_reset_fn
for rs in self.reading_services:
chained_iter_reset_fn = rs.initialize_iteration(
seed_generator=seed_generator, iter_reset_fn=chained_iter_reset_fn
)
return chained_iter_reset_fn
# Reversed Order
def finalize_iteration(self) -> None:
for rs in reversed(self.reading_services):
rs.finalize_iteration()
# Sequential Order
def checkpoint(self) -> bytes:
states = []
for rs in self.reading_services:
if hasattr(rs, "checkpoint") and callable(rs.checkpoint):
states.append(rs.checkpoint())
else:
warnings.warn(f"{rs} doesn't support `checkpoint`, skipping...")
states.append(b"")
return pickle.dumps(states)
# Sequential Order, to align with initialize
def restore(self, datapipe, serialized_state: bytes) -> DataPipe:
states = pickle.loads(serialized_state)
assert len(states) == len(self.reading_services)
for rs, state in zip(self.reading_services, states):
if hasattr(rs, "restore") and callable(rs.restore):
datapipe = rs.restore(datapipe, state)
else:
warnings.warn(f"{rs} doesn't support `restore` from state, initialize from scratch")
datapipe = rs.initialize(datapipe)
return datapipe
def _pause(
self, pause_fn: Optional[Callable[[DataPipe], DataPipe]] = None
) -> Optional[Callable[[DataPipe], DataPipe]]:
r"""
Pause the ``DataPipe`` graph defined in all ``ReadingServices``. For example of
``MultiProcessingReadingService`` would accept a ``pause_fn`` from a prior ``ReadingService``
to execute custom pause logic within worker/dispatching processes.
"""
for rs in self.reading_services:
if hasattr(rs, "_pause"):
pause_fn = rs._pause(pause_fn)
return pause_fn
def _resume(
self, resume_fn: Optional[Callable[[DataPipe], DataPipe]] = None
) -> Optional[Callable[[DataPipe], DataPipe]]:
r"""
Resume the ``DataPipe`` graph defined in all ``ReadingServices``. For example of
``MultiProcessingReadingService`` would accept a ``resume_fn`` from a prior ``ReadingService``
to execute custom resume logic within worker/dispatching processes.
"""
for rs in self.reading_services:
if hasattr(rs, "_resume"):
resume_fn = rs._resume(resume_fn)
return resume_fn
def _limit(
self, num_batches: Optional[int], limit_fn: Optional[Callable[[DataPipe, Optional[int]], DataPipe]] = None
) -> Optional[Callable[[DataPipe, Optional[int]], DataPipe]]:
r"""
Limit the ``DataPipe`` graph defined in all ``ReadingServices``. For example of
``MultiProcessingReadingService`` would accept a ``limit_fn`` from a prior ``ReadingService``
to set limit to ``DataPipes` within worker/dispatching processes.
"""
for rs in self.reading_services:
if hasattr(rs, "_limit"):
limit_fn = rs._limit(num_batches, limit_fn)
return limit_fn
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import pickle
from torch.utils.data.datapipes.datapipe import (
_DataPipeSerializationWrapper,
_IterDataPipeSerializationWrapper,
_MapDataPipeSerializationWrapper,
)
from torchdata.dataloader2.graph import DataPipe
from torchdata.datapipes.iter import IterDataPipe
from torchdata.datapipes.map import MapDataPipe
try:
import dill
# XXX: By default, dill writes the Pickler dispatch table to inject its
# own logic there. This globally affects the behavior of the standard library
# pickler for any user who transitively depends on this module!
# Undo this extension to avoid altering the behavior of the pickler globally.
dill.extend(use_dill=False)
HAS_DILL = True
except ImportError:
HAS_DILL = False
__all__ = [
"attach_wrapper",
"clone",
"deserialize_datapipe",
"extract_wrapper",
"serialize_datapipe",
]
def serialize_datapipe(datapipe: DataPipe) -> bytes:
datapipe = attach_wrapper(datapipe)
try:
return pickle.dumps(datapipe)
except pickle.PickleError as e:
raise NotImplementedError(f"Prototype only support pickle-able datapipes for checkpoint: {e}")
def deserialize_datapipe(serialized_state: bytes) -> DataPipe:
try:
datapipe = pickle.loads(serialized_state)
except pickle.PickleError as e:
raise NotImplementedError(f"Prototype only support pickle-able datapipes for checkpoint: {e}")
return extract_wrapper(datapipe)
def attach_wrapper(datapipe: DataPipe) -> DataPipe:
r"""
Wraps the ``DataPipe`` with the corresponding serialization wrapper.
"""
wrapped_dp: DataPipe = datapipe
if not isinstance(datapipe, _DataPipeSerializationWrapper):
if isinstance(datapipe, IterDataPipe):
wrapped_dp = _IterDataPipeSerializationWrapper(datapipe)
elif isinstance(datapipe, MapDataPipe):
wrapped_dp = _MapDataPipeSerializationWrapper(datapipe)
return wrapped_dp
def extract_wrapper(datapipe: DataPipe) -> DataPipe:
r"""
Extracts the ``DataPipe`` from the serialization wrapper.
"""
if isinstance(datapipe, _DataPipeSerializationWrapper):
datapipe = datapipe._datapipe
return datapipe
def clone(obj):
r"""
Standardized way to copy an object when needed, such as for DataPipe/ReadingService.
This uses `pickle` to serialize/deserialize to create the copy.
"""
use_dill = False
try:
states = pickle.dumps(obj)
except Exception:
if HAS_DILL:
states = dill.dumps(obj)
use_dill = True
else:
raise
if use_dill:
return dill.loads(states)
else:
return pickle.loads(states)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from torch.utils.data.graph import DataPipe, DataPipeGraph, traverse_dps
from torchdata.dataloader2.graph.settings import set_datapipes_seed, set_graph_random_seed
from torchdata.dataloader2.graph.utils import find_dps, list_dps, remove_dp, replace_dp
__all__ = [
"DataPipe",
"DataPipeGraph",
"find_dps",
"list_dps",
"remove_dp",
"replace_dp",
"set_datapipes_seed",
"set_graph_random_seed",
"traverse_dps",
]
assert __all__ == sorted(__all__)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from collections import deque
from typing import Deque, Dict, List, Optional, Set, Type, Union
from torchdata.dataloader2.graph import DataPipe, DataPipeGraph, traverse_dps
from torchdata.datapipes.iter import IterDataPipe
from torchdata.datapipes.map import MapDataPipe
def find_dps(graph: DataPipeGraph, dp_type: Type[DataPipe]) -> List[DataPipe]:
r"""
Given the graph of DataPipe generated by ``traverse_dps`` function, return DataPipe
instances with the provided DataPipe type.
"""
dps: List[DataPipe] = []
cache: Set[int] = set()
def helper(g) -> None: # pyre-ignore
for dp_id, (dp, src_graph) in g.items():
if dp_id in cache:
continue
cache.add(dp_id)
if type(dp) is dp_type: # Please not use `isinstance`, there is a bug.
dps.append(dp)
helper(src_graph)
helper(graph)
return dps
def list_dps(graph: DataPipeGraph, exclude_dps: Optional[Union[DataPipe, List[DataPipe]]] = None) -> List[DataPipe]:
r"""
Given the graph of DataPipe generated by ``traverse_dps`` function, return a list
of all DataPipe instances without duplication. If ``exclude_dps`` is provided,
the provided ``DataPipes`` and their predecessors will be ignored.
Note:
- The returned list is in the order of breadth first search of the graph
"""
dps: List[DataPipe] = []
cache: Set[int] = set()
if exclude_dps is not None:
if isinstance(exclude_dps, (IterDataPipe, MapDataPipe)):
exclude_dps = [
exclude_dps,
]
for exclude_dp in exclude_dps: # type: ignore[union-attr]
assert isinstance(exclude_dp, (IterDataPipe, MapDataPipe))
# Skip DataPipe that has already been excluded
if id(exclude_dp) in cache:
continue
for dp in list_dps(traverse_dps(exclude_dp)): # type: ignore[arg-type]
cache.add(id(dp))
q: Deque = deque()
# Initialization
for dp_id, (dp, subgraph) in graph.items():
if dp_id not in cache:
q.append((dp_id, dp, subgraph))
cache.add(dp_id)
while len(q) > 0:
dp_id, dp, subgraph = q.popleft()
dps.append(dp)
for parent_dp_id, (parent_dp, parent_subgraph) in subgraph.items():
if parent_dp_id not in cache:
q.append((parent_dp_id, parent_dp, parent_subgraph))
cache.add(parent_dp_id)
return dps
# Given the DataPipe needs to be replaced and the expected DataPipe, return a new graph
def replace_dp(graph: DataPipeGraph, old_datapipe: DataPipe, new_datapipe: DataPipe) -> DataPipeGraph:
r"""
Given the graph of DataPipe generated by ``traverse_dps`` function and the DataPipe to be replaced and
the new DataPipe, return the new graph of DataPipe.
"""
assert len(graph) == 1
if id(old_datapipe) in graph:
graph = traverse_dps(new_datapipe)
final_datapipe = list(graph.values())[0][0]
for recv_dp, send_graph in graph.values():
_replace_dp(recv_dp, send_graph, old_datapipe, new_datapipe)
return traverse_dps(final_datapipe)
def remove_dp(graph: DataPipeGraph, datapipe: DataPipe) -> DataPipeGraph:
r"""
Given the graph of DataPipe generated by ``traverse_dps`` function and the DataPipe to be removed,
return the new graph of DataPipe.
Note:
- This function can not remove DataPipe that takes multiple DataPipes as the input.
"""
assert len(graph) == 1
dp_graph = traverse_dps(datapipe)
dp_id = id(datapipe)
if len(dp_graph[dp_id][1]) == 0:
raise RuntimeError("Cannot remove the source DataPipe from the graph of DataPipe")
if len(dp_graph[dp_id][1]) > 1:
raise RuntimeError("Cannot remove the receiving DataPipe having multiple sending DataPipes")
if dp_id in graph:
graph = graph[dp_id][1]
for recv_dp, send_graph in graph.values():
_remove_dp(recv_dp, send_graph, datapipe)
# Get the last DataPipe in graph
assert len(graph) == 1
datapipe = list(graph.values())[0][0]
return traverse_dps(datapipe)
def _find_replicable_branches(graph: DataPipeGraph) -> List[DataPipe]:
r"""
Given the graph of DataPipe generated by ``traverse_dps`` function, return DataPipe
instances of which all of prior DataPipes are replicable (``dp.is_replicable() == True``).
"""
assert len(graph) == 1, "DataPipeGraph should only contain a single output DataPipe"
dps: List[DataPipe] = []
dp_ids: Set[int] = set()
branch_is_replicable: Dict[int, bool] = {}
root_dp_id = list(graph.keys())[0]
root_dp, root_graph = graph[root_dp_id]
def _is_replicable(root_dp_id, root_dp, root_graph) -> bool: # pyre-ignore
if root_dp_id in branch_is_replicable:
return branch_is_replicable[root_dp_id]
# Temporarily set to True
branch_is_replicable[root_dp_id] = True
if hasattr(root_dp, "is_replicable") and not root_dp.is_replicable():
branch_is_replicable[root_dp_id] = False
for dp_id, (dp, src_graph) in root_graph.items():
if not _is_replicable(dp_id, dp, src_graph):
branch_is_replicable[root_dp_id] = False
# Do not break to go through all children
if not branch_is_replicable[root_dp_id]:
# All children should have been added to branch_is_replicable already
for dp_id, (dp, _) in root_graph.items():
if dp_id in dp_ids:
continue
if branch_is_replicable[dp_id]:
# Guarantee returning the frontmost replicable DataPipe
prior_dps = list_dps(traverse_dps(dp))
if all(id(p_dp) not in dp_ids for p_dp in prior_dps):
dps.append(dp)
dp_ids.add(dp_id)
return branch_is_replicable[root_dp_id]
if _is_replicable(root_dp_id, root_dp, root_graph):
if root_dp_id not in dp_ids:
# Guarantee returning the frontmost replicable DataPipe
prior_dps = list_dps(traverse_dps(root_dp))
if all(id(p_dp) not in dp_ids for p_dp in prior_dps):
dps.append(root_dp)
dp_ids.add(root_dp_id)
return dps
# For each `recv_dp`, find if the source_datapipe needs to be replaced by the new one.
# If found, find where the `old_dp` is located in `recv_dp` and switch it to the `new_dp`
def _replace_dp(recv_dp, send_graph: DataPipeGraph, old_dp: DataPipe, new_dp: DataPipe) -> None:
old_dp_id = id(old_dp)
for send_id in send_graph:
if send_id == old_dp_id:
_assign_attr(recv_dp, old_dp, new_dp, inner_dp=True)
else:
send_dp, sub_send_graph = send_graph[send_id]
_replace_dp(send_dp, sub_send_graph, old_dp, new_dp)
# For each `recv_dp`, find if the source_datapipe needs to be replaced by the new one.
# If found, find where the `old_dp` is located in `dp` and switch it to the `new_dp`
def _remove_dp(recv_dp, send_graph: DataPipeGraph, datapipe: DataPipe) -> None:
dp_id = id(datapipe)
for send_dp_id in send_graph:
if send_dp_id == dp_id:
send_dp, sub_send_graph = send_graph[send_dp_id]
# if len(sub_send_graph) == 0:
# raise RuntimeError("Cannot remove the source DataPipe from the graph of DataPipe")
# if len(sub_send_graph) > 1:
# raise RuntimeError("Cannot remove the receiving DataPipe having multiple sending DataPipes")
src_dp = list(sub_send_graph.values())[0][0]
_assign_attr(recv_dp, send_dp, src_dp, inner_dp=True)
else:
send_dp, sub_send_graph = send_graph[send_dp_id]
_remove_dp(send_dp, sub_send_graph, datapipe)
# Recursively re-assign datapipe for the sake of nested data structure
# `inner_dp` is used to prevent recursive call if we have already met a `DataPipe`
def _assign_attr(obj, old_dp, new_dp, inner_dp: bool = False):
if obj is old_dp:
return new_dp
elif isinstance(obj, (IterDataPipe, MapDataPipe)):
# Prevent recursive call for DataPipe
if not inner_dp:
return None
for k in list(obj.__dict__.keys()):
new_obj = _assign_attr(obj.__dict__[k], old_dp, new_dp)
if new_obj is not None:
obj.__dict__[k] = new_obj
break
return None
elif isinstance(obj, dict):
for k in list(obj.keys()):
new_obj = _assign_attr(obj[k], old_dp, new_dp)
if new_obj is not None:
obj[k] = new_obj
break
return None
# Tuple is immutable, has to re-create a tuple
elif isinstance(obj, tuple):
temp_list = []
flag = False
for o in obj:
new_obj = _assign_attr(o, old_dp, new_dp, inner_dp)
if new_obj is not None:
flag = True
temp_list.append(new_dp)
else:
temp_list.append(o)
if flag:
return tuple(temp_list) # Special case
else:
return None
elif isinstance(obj, list):
for i in range(len(obj)):
new_obj = _assign_attr(obj[i], old_dp, new_dp, inner_dp)
if new_obj is not None:
obj[i] = new_obj
break
return None
elif isinstance(obj, set):
new_obj = None
for o in obj:
if _assign_attr(o, old_dp, new_dp, inner_dp) is not None:
new_obj = new_dp
break
if new_obj is not None:
obj.remove(old_dp)
obj.add(new_dp)
return None
else:
return None
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import inspect
from typing import List
from torchdata.dataloader2.graph.utils import DataPipe, find_dps, list_dps, traverse_dps
from torchdata.dataloader2.random import SeedGenerator
from torchdata.datapipes.iter import ShardingFilter
def _is_random_datapipe(datapipe: DataPipe) -> bool:
if hasattr(datapipe, "set_seed") and inspect.ismethod(datapipe.set_seed):
return True
return False
def set_datapipes_seed(datapipes: List[DataPipe], seed_generator: SeedGenerator, distributed_shared: bool) -> None:
for dp in datapipes:
if _is_random_datapipe(dp):
if distributed_shared:
dp.set_seed(seed_generator.generate_shared_seed())
else:
dp.set_seed(seed_generator.generate_seed())
def set_graph_random_seed(datapipe: DataPipe, seed_generator: SeedGenerator) -> DataPipe:
r"""
Set seeds to the graph of ``DataPipes`` based on a Seed Generator. All random ``DataPipes`` prior to
``ShardingFilter`` will be set seeds by the same Seed Generator to preserve the same random state
across distributed/non-distributed workers. And, the random ``DataPipes`` after ``ShardingFilter``
will be set seeds by the worker-local Seed Generator deterministically created based on ``worker_id``.
Args:
datapipe:
seed_generator:
"""
graph = traverse_dps(datapipe)
sharding_filter_dps = find_dps(graph, ShardingFilter)
# Set the same seed before sharding_filter
# Using cache to exclude potential duplciate DataPipe
cache = set()
dps_before_sharding = []
for sf_dp in sharding_filter_dps:
dps = list_dps(traverse_dps(sf_dp))
for dp in dps:
if id(dp) not in cache:
cache.add(id(dp))
dps_before_sharding.append(dp)
set_datapipes_seed(dps_before_sharding, seed_generator, distributed_shared=True)
# Set different seeds after sharding_filter
dps_after_sharding = list_dps(graph, exclude_dps=sharding_filter_dps)
set_datapipes_seed(dps_after_sharding, seed_generator, distributed_shared=False)
return datapipe
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import random
from dataclasses import dataclass
from multiprocessing.queues import Queue
from typing import Callable, Optional
import torch
from torch.utils.data.datapipes.iter.sharding import SHARDING_PRIORITIES
from torchdata.dataloader2 import communication
from torchdata.dataloader2.graph import (
DataPipe,
find_dps,
list_dps,
replace_dp,
set_datapipes_seed,
set_graph_random_seed,
traverse_dps,
)
from torchdata.dataloader2.random import SeedGenerator
from torchdata.dataloader2.utils.dispatch import _DummyIterDataPipe, find_non_dispatching_branches
from torchdata.datapipes.iter import IterDataPipe
from torchdata.datapipes.map import MapDataPipe
try:
import numpy
HAS_NUMPY = True
except ModuleNotFoundError:
HAS_NUMPY = False
@dataclass(frozen=True)
class WorkerInfo:
r"""
Message class for keeping track of worker information.
Args:
num_workers (int): Total number of worker processes
worker_id (int): Worker ID for the current worker process
"""
num_workers: int
worker_id: int
def process_init_fn(
datapipe: DataPipe,
worker_info: WorkerInfo,
custom_init_fn: Optional[Callable[[DataPipe, WorkerInfo], DataPipe]] = None,
worker_prefetch_cnt: int = 0,
dispatching_req_queue: Optional[Queue] = None,
dispatching_res_queue: Optional[Queue] = None,
) -> DataPipe:
r"""
Based on the worker information, shard the ``DataPipe`` graph dynamically.
"""
# Find if there is non-replicable DataPipe
graph = traverse_dps(datapipe)
non_replicable_dp = find_dps(graph, _DummyIterDataPipe) # type: ignore
# There are two cases for DataPipe graph in terms of mp sharding:
# 1) All DataPipes are replicable, apply mp sharding to the whole graph
if len(non_replicable_dp) == 0:
torch.utils.data.graph_settings.apply_sharding(
datapipe, worker_info.num_workers, worker_info.worker_id, SHARDING_PRIORITIES.MULTIPROCESSING
)
assert dispatching_req_queue is None and dispatching_res_queue is None
# 2) There is non-replicable DataPipe. Since we have replaced the lowest common
# ancestor by a `_DummyIterDataPipe`, we would only apply mp sharding
# to replicable branches that don't have `_DummyIterDataPipe`.
else:
assert len(non_replicable_dp) == 1
assert not (dispatching_req_queue is None and dispatching_res_queue is None)
dispatching_req_queue.cancel_join_thread() # type: ignore[union-attr]
non_dispatching_branches = find_non_dispatching_branches(graph)
for dp in non_dispatching_branches:
torch.utils.data.graph_settings.apply_sharding(
dp, worker_info.num_workers, worker_info.worker_id, SHARDING_PRIORITIES.MULTIPROCESSING
)
queue_wrapper = communication.iter.QueueWrapper(
communication.protocol.IterDataPipeQueueProtocolClient(dispatching_req_queue, dispatching_res_queue)
)
dispatch_process_dp = communication.iter._IterateQueueDataPipes([queue_wrapper])
graph = replace_dp(graph, non_replicable_dp[0], dispatch_process_dp)
datapipe = list(graph.values())[0][0]
if custom_init_fn is not None:
datapipe = custom_init_fn(datapipe, worker_info)
assert isinstance(datapipe, (IterDataPipe, MapDataPipe))
if worker_prefetch_cnt > 0:
datapipe = datapipe.prefetch(worker_prefetch_cnt)
return datapipe
def _set_global_random_state(seed_generator: SeedGenerator, distributed_shared: bool = False) -> None:
py_seed = seed_generator.generate_shared_seed() if distributed_shared else seed_generator.generate_seed()
random.seed(py_seed)
torch_seed = seed_generator.generate_shared_seed() if distributed_shared else seed_generator.generate_seed()
torch.manual_seed(torch_seed)
if HAS_NUMPY:
# Convert uint64 to uint32 for Numpy
np_seed = seed_generator.generate_shared_seed() if distributed_shared else seed_generator.generate_seed()
np_seed = np_seed >> 32
numpy.random.seed(np_seed)
def process_reset_fn(
datapipe: DataPipe,
worker_info: WorkerInfo,
seed_generator: SeedGenerator,
distributed_shared_seed: bool = False,
iter_reset_fn: Optional[Callable[[DataPipe], DataPipe]] = None,
custom_reset_fn: Optional[Callable[[DataPipe, WorkerInfo, SeedGenerator], DataPipe]] = None,
) -> DataPipe:
r"""
Based on the distributed shared random seed and worker id, this function is used to
reset the random state of the ``DataPipe`` graph and the global random states for ``torch``,
``random`` and ``numpy``.
"""
# Set global random states
_set_global_random_state(seed_generator, distributed_shared=distributed_shared_seed)
if distributed_shared_seed:
graph = traverse_dps(datapipe)
dps = list_dps(graph)
set_datapipes_seed(dps, seed_generator=seed_generator, distributed_shared=distributed_shared_seed)
else:
set_graph_random_seed(datapipe, seed_generator)
if iter_reset_fn is not None:
datapipe = iter_reset_fn(datapipe)
assert isinstance(datapipe, (IterDataPipe, MapDataPipe))
if custom_reset_fn is not None:
datapipe = custom_reset_fn(datapipe, worker_info, seed_generator)
assert isinstance(datapipe, (IterDataPipe, MapDataPipe))
return datapipe
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# from multiprocessing.queues import Queue
from typing import Dict, List, Optional, Set
from torchdata.dataloader2.graph import DataPipe, DataPipeGraph, list_dps, traverse_dps
from torchdata.datapipes.iter import IterDataPipe, ShardingRoundRobinDispatcher
__all__ = ["_DummyIterDataPipe", "find_lca_round_robin_sharding_dp", "find_non_dispatching_branches"]
class _DummyIterDataPipe(IterDataPipe):
r"""
This DataPipe is a placeholder to be replaced by the ``QueueWrapper``
that connects the worker process for non-replicable DataPipe.
"""
# TODO: Revert `_DummyIterDataPipe` as the placeholder when `_SerializationWrapper`
# can handle mp.Queue. See: https://github.com/pytorch/data/issues/934
# req_queue: Queue
# res_queue: Queue
def find_lca_round_robin_sharding_dp(graph: DataPipeGraph) -> Optional[DataPipe]:
r"""
Given the graph of DataPipe generated by ``traverse_dps`` function, return the
DataPipe instance that is the lowest common ancestor of all ``sharding_round_robin_dispatch`` DataPipes
Note:
- If multiple branches share the same source DataPipe and any branch contains a
non-replicable DataPipe, the lowest common ancestor of all branches is returned.
- If there is any non-replicable DataPipe in a circular-referenced (sub)graph, the
whole (sub)graph is treated as non-replicable and the last DataPipe is returned.
"""
assert len(graph) == 1, "DataPipeGraph should only contain a single output DataPipe"
def _is_round_robin_sharding(dp: DataPipe) -> bool:
return type(dp) == ShardingRoundRobinDispatcher
dps = list_dps(graph)
non_replicable_dps: Set[int] = set()
for dp in dps:
# Skip when it has been visited
if id(dp) in non_replicable_dps:
continue
if _is_round_robin_sharding(dp):
parent_dps = list_dps(traverse_dps(dp))
for par_dp in parent_dps:
non_replicable_dps.add(id(par_dp))
root_dp_id = list(graph.keys())[0]
root_dp, root_graph = graph[root_dp_id]
lca_for_subgraph: Dict[int, Optional[DataPipe]] = {}
def _get_lca_from_graph(root_dp_id, root_dp, root_graph) -> Optional[DataPipe]: # pyre-ignore
if root_dp_id in lca_for_subgraph:
return lca_for_subgraph[root_dp_id]
if root_dp_id in non_replicable_dps:
lca_for_subgraph[root_dp_id] = root_dp
return root_dp
lca_for_subgraph[root_dp_id] = None
non_replicable_parents = []
for dp_id, (dp, src_graph) in root_graph.items():
res = _get_lca_from_graph(dp_id, dp, src_graph)
if res is not None:
non_replicable_parents.append(res)
# `root_dp` becomes the lowest common ancestor of this branch,
# if there are more than one unique non-replicable DataPipe prior to it.
if len(non_replicable_parents) > 0:
# One unique non-replicable DataPipe
if len(non_replicable_parents) == 1 or all(
dp == non_replicable_parents[0] for dp in non_replicable_parents
):
lca_for_subgraph[root_dp_id] = non_replicable_parents[0]
# Multiple non-replicable DataPipes
else:
lca_for_subgraph[root_dp_id] = root_dp
return lca_for_subgraph[root_dp_id]
return _get_lca_from_graph(root_dp_id, root_dp, root_graph)
def find_non_dispatching_branches(graph: DataPipeGraph) -> List[DataPipe]:
r"""
Given the graph of DataPipe generated by ``traverse_dps`` function, return the DataPipe
instances that don't have ``_DummyIterDataPipe`` (dipatching process) in the prior graph.
"""
assert len(graph) == 1, "DataPipeGraph should only contain a single output DataPipe"
dps: List[DataPipe] = []
non_dispatching_branches: Dict[int, bool] = {}
root_dp_id = list(graph.keys())[0]
root_dp, root_graph = graph[root_dp_id]
def _is_non_dispatching(root_dp_id, root_dp, root_graph) -> bool: # pyre-ignore
if root_dp_id in non_dispatching_branches:
return non_dispatching_branches[root_dp_id]
if type(root_dp) == _DummyIterDataPipe:
non_dispatching_branches[root_dp_id] = False
return False
non_dispatching_branches[root_dp_id] = True
for dp_id, (dp, src_graph) in root_graph.items():
if not _is_non_dispatching(dp_id, dp, src_graph):
non_dispatching_branches[root_dp_id] = False
# Do not break to go through all children
if not non_dispatching_branches[root_dp_id]:
# All children should have been added to non_dispatching_branches already
for dp_id, (dp, _) in root_graph.items():
if non_dispatching_branches[dp_id]:
dps.append(dp)
return non_dispatching_branches[root_dp_id]
if _is_non_dispatching(root_dp_id, root_dp, root_graph):
dps.append(root_dp)
return dps
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from torchdata.dataloader2.utils.worker import process_init_fn, process_reset_fn, WorkerInfo
__all__ = [
"WorkerInfo",
"process_init_fn",
"process_reset_fn",
]
assert __all__ == sorted(__all__)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import threading
import time
class LocalQueue:
ops = 0
stored = 0
uid = 0
empty = 0
def __init__(self, name="unnamed"):
self.items = []
self.name = name
self.uid = LocalQueue.uid
LocalQueue.uid += 1
def put(self, item, block=True):
LocalQueue.ops += 1
LocalQueue.stored += 1
self.items.append(item)
def get(self, block=True, timeout=0):
# TODO(622): Add support of block and timeout arguments
LocalQueue.ops += 1
if not len(self.items):
LocalQueue.empty += 1
raise Exception("LocalQueue is empty")
LocalQueue.stored -= 1
return self.items.pop()
class ThreadingQueue:
def __init__(self, name="unnamed"):
self.lock = threading.Lock()
self.items = []
self.name = name
def put(self, item, block=True):
with self.lock:
self.items.append(item)
def get(self, block=True, timeout=0):
# TODO(623): Add support of block and timeout arguments
while True:
with self.lock:
if len(self.items) > 0:
return self.items.pop()
if not block:
raise Exception("Not available")
# TODO(624): Figure out what to do if nothing in the queue
time.sleep(0.000001)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import time
import types
import warnings
from collections import deque
from itertools import cycle
from typing import Callable, Deque, List, Optional
from torch.utils.data import IterDataPipe
from torchdata._utils import ExceptionWrapper
from torchdata.dataloader2 import communication
from torchdata.dataloader2.graph import DataPipe, find_dps, list_dps, traverse_dps
from torchdata.dataloader2.random import SeedGenerator
from torchdata.dataloader2.utils import process_reset_fn
DEFAULT_NON_BLOCKING_SLEEP = 0.001
__all__ = [
"DataPipeBehindQueues",
"EnsureNonBlockingDataPipe",
"InvalidStateResetRequired",
"NonBlocking",
"NotAvailable",
"QueueWrapper",
"default_not_available_hook",
]
def default_not_available_hook():
time.sleep(DEFAULT_NON_BLOCKING_SLEEP)
class NotAvailable(Exception):
pass
class InvalidStateResetRequired(Exception):
"""
Returned by DataPipe when it is expecting to get reset request,
for example RouterDataPipe expecting all workers to request reset.
"""
pass
class TerminateRequired(Exception):
"""
Returned by DataPipe when it is expecting to get terminate request,
for example it got terminate request from other source and at the process
of stopping.
"""
pass
class NonBlocking(IterDataPipe):
not_available_hook = default_not_available_hook
def __iter__(self):
self.reset_iterator()
return self
def __next__(self):
while True:
try:
return self.nonblocking_next()
except NotAvailable:
if NonBlocking.not_available_hook is not None:
NonBlocking.not_available_hook()
def nonblocking_next(self):
raise NotImplementedError("nonblocking_next is not implemented for %s" % self.__class__)
def reset_iterator(self):
raise NotImplementedError("reset_iterator is not implemented for %s" % self.__class__)
@staticmethod
def register_not_available_hook(hook_function):
NonBlocking.not_available_hook = hook_function
def EnsureNonBlockingDataPipe(validated_datapipe):
if not isinstance(validated_datapipe, IterDataPipe):
raise Exception("Not Iterable DataPipe " + str(validated_datapipe.__class__))
if isinstance(validated_datapipe, NonBlocking):
return validated_datapipe
if not hasattr(validated_datapipe, "_as_iterator"):
validated_datapipe._as_iterator = None # type: ignore[attr-defined]
if not hasattr(validated_datapipe, "nonblocking_next"):
def nonblocking_next(self):
if self._as_iterator is None:
self._as_iterator = iter(self)
return next(self._as_iterator)
validated_datapipe.nonblocking_next = types.MethodType( # type: ignore[attr-defined]
nonblocking_next, validated_datapipe
)
if not hasattr(validated_datapipe, "reset_iterator"):
def reset_iterator(self):
self._as_iterator = None
validated_datapipe.reset_iterator = types.MethodType( # type: ignore[attr-defined]
reset_iterator, validated_datapipe
)
return validated_datapipe
def _sync_recv(request_counter, msg):
if request_counter is not None:
request_counter.increment(msg)
# Make sure all loops have reached
while not request_counter.is_reached(msg):
yield True
def _sync_resp(request_counter, msg):
if request_counter is not None:
request_counter.reset(msg)
while request_counter.is_reached(msg):
yield True
def DataPipeBehindQueues(
source_datapipe,
protocol,
process_name,
loop_id,
worker_info,
custom_reset_fn,
blocking_request_get=False,
request_counter=None,
):
"""
Indefinitely iterates over ``req_queue`` and passing values from source_datapipe to ``res_queue``.
Request Types:
`ResetEpoch` - Call the `reset_epoch_fn` on the protocol's DataPipe and reset DataPipe iterator
`Terminate` - exits the infinite while loop
`GetNext` - returns the value from the DataPipe, and handles exceptions such as `StopIteration` as appropriate
`Limit` - Set limit to the DataPipe graph
`Pause` - Pause
the DataPipe graph
`Resume` - Resume the DataPipe graph
Args:
source_datapipe: DataPipe
protocol: ``IterDataPipeQueueProtocolServer`` that contains ``req_queue`` and ``res_queue``
process_name: Process name
loop_id: Loop ID
worker_info: Worker info include worker id and number of workers
custom_reset_fn: function to call after each request is received
blocking_request_get: determines if ``protocol.get_new_request`` will block
request_counter: Optional counter to synchronize all loops that have received requests for
reset/limit/pause/resume within the dispatching process. It would guarantee that
all loops starts to reset iterator and get next element at the same time.
"""
if not isinstance(protocol, communication.protocol.IterDataPipeQueueProtocolServer):
raise Exception("Expecting IterDataPipeQueueProtocolServer, got", protocol)
source_datapipe = EnsureNonBlockingDataPipe(source_datapipe)
forever = True
while forever:
try:
# TODO: Non-blocking call is extremely slow here for python.mp, need to figure out a good workaround
request = protocol.get_new_request(block=blocking_request_get)
except communication.protocol.EmptyQueue:
yield True
continue
# TODO: Handle Error caused by requests other than GetNext and send it to main process
if isinstance(request, communication.messages.ResetEpochRequest):
yield from _sync_recv(request_counter, "reset_epoch")
distributed_shared_seed = request_counter is not None
if request_counter is None or loop_id == 0:
seed_generator = request.seed_generator
iter_reset_fn = request.iter_reset_fn
dispatching_dps = find_dps(traverse_dps(source_datapipe), _IterateQueueDataPipes)
for dp in dispatching_dps:
dp.reset_epoch(seed_generator, iter_reset_fn)
source_datapipe = process_reset_fn(
source_datapipe,
worker_info,
seed_generator,
distributed_shared_seed,
iter_reset_fn,
custom_reset_fn,
)
source_datapipe.reset_iterator()
yield from _sync_resp(request_counter, "reset_epoch")
protocol.response_reset_epoch()
yield True # Returns control
elif isinstance(request, communication.messages.LimitRequest):
yield from _sync_recv(request_counter, "limit")
if request_counter is None or loop_id == 0:
num_batches = request.num_batches
limit_fn = request.limit_fn
worker_num_batches = num_batches if request.worker_num_batches is None else request.worker_num_batches
# Send limit to the worker/dispatching process
dispatching_dps = find_dps(traverse_dps(source_datapipe), _IterateQueueDataPipes)
for dp in dispatching_dps:
dp.request_limit(num_batches, limit_fn, worker_num_batches)
if limit_fn is not None:
# Set limit to the DataPipe graph in worker/dispatching process
source_datapipe = limit_fn(source_datapipe, worker_num_batches)
yield from _sync_resp(request_counter, "limit")
protocol.response_limit()
yield True # Returns control
elif isinstance(request, communication.messages.PauseRequest):
yield from _sync_recv(request_counter, "pause")
if request_counter is None or loop_id == 0:
graph = traverse_dps(source_datapipe)
dp_list = list_dps(graph)
for dp in dp_list:
if hasattr(dp, "pause") and callable(dp.pause):
dp.pause()
dispatching_dps = find_dps(graph, _IterateQueueDataPipes)
for dp in dispatching_dps:
dp.request_pause(request.pause_fn)
if request.pause_fn is not None:
source_datapipe = request.pause_fn(source_datapipe)
yield from _sync_resp(request_counter, "pause")
protocol.response_pause()
yield True # Returns control
elif isinstance(request, communication.messages.ResumeRequest):
yield from _sync_recv(request_counter, "resume")
if request_counter is None or loop_id == 0:
if request.resume_fn is not None:
source_datapipe = request.resume_fn(source_datapipe)
graph = traverse_dps(source_datapipe)
# Send resume to the dispatching process
dispatching_dps = find_dps(graph, _IterateQueueDataPipes)
for dp in dispatching_dps:
dp.request_resume(request.resume_fn)
for dp in reversed(list_dps(graph)):
if hasattr(dp, "resume") and callable(dp.resume):
dp.resume()
yield from _sync_resp(request_counter, "resume")
protocol.response_resume()
yield True # Returns control
elif isinstance(request, communication.messages.TerminateRequest):
forever = False
dispatch_dps = find_dps(traverse_dps(source_datapipe), _IterateQueueDataPipes)
for dispatch_dp in dispatch_dps:
dispatch_dp.request_terminate()
protocol.response_terminate()
yield True # Returns control
elif isinstance(request, communication.messages.GetNextRequest):
while forever:
if protocol.is_paused():
protocol.response_stop_iteration()
warnings.warn(
"Cannot `GetNext` after `Pause` has been called. "
"`Resume` must be called first before additional elements can be yielded."
)
yield True
break
try:
value = source_datapipe.nonblocking_next()
except NotAvailable:
yield True
continue
except StopIteration:
protocol.response_stop_iteration()
yield True
break
except InvalidStateResetRequired:
protocol.response_invalid_state()
yield True
break
except Exception:
exc = ExceptionWrapper(where=f"in {process_name} {loop_id}")
protocol.response_worker_exception(exc)
return
protocol.response_next(value)
yield True # Returns control
break
else:
raise Exception("Unrecognized type of request received", request)
class QueueWrapper(NonBlocking):
"""
Creates an IterDataPipe which sends requests and reads the response from the DataLoader.Queue.
The input is a ProtocolClient that contains request queue and response queue.
"""
def __init__(self, protocol, response_wait_time=0.00001):
if not isinstance(protocol, communication.protocol.IterDataPipeQueueProtocolClient):
raise Exception("Got", protocol)
self.protocol = protocol
self.counter = 0
self._stop_iteration = False
self._response_wait_time = response_wait_time
def request_reset_epoch(self, seed_generator, iter_reset_fn):
self._stop_iteration = False
self.counter = 0
self.protocol.request_reset_epoch(seed_generator, iter_reset_fn)
def _get_response(self, fn_name) -> None:
assert hasattr(self.protocol, fn_name) and callable(getattr(self.protocol, fn_name))
get_response_fn = getattr(self.protocol, fn_name)
while True:
try:
get_response_fn()
break
except communication.protocol.EmptyQueue:
if NonBlocking.not_available_hook is not None:
NonBlocking.not_available_hook()
def get_reset_epoch_response(self) -> None:
self._get_response("get_response_reset_epoch")
def request_limit(
self,
num_batches: Optional[int],
limit_fn: Optional[Callable[[DataPipe, Optional[int]], DataPipe]] = None,
worker_num_batches: Optional[int] = None,
) -> None:
self.protocol.request_limit(num_batches, limit_fn, worker_num_batches)
def get_limit_response(self) -> None:
self._get_response("get_response_limit")
def request_pause(self, pause_fn: Optional[Callable[[DataPipe], DataPipe]] = None) -> None:
self.protocol.request_pause(pause_fn)
def get_pause_response(self) -> None:
self._get_response("get_response_pause")
def request_resume(self, resume_fn: Optional[Callable[[DataPipe], DataPipe]] = None) -> None:
self.protocol.request_resume(resume_fn)
def get_resume_response(self) -> None:
self._get_response("get_response_resume")
def nonblocking_next(self):
if self._stop_iteration:
raise Exception("`next` or `nonblocking_next` called after receiving StopIteration")
if self.protocol.can_take_request():
self.protocol.request_next()
try:
response = self.protocol.get_response_next(block=True, timeout=self._response_wait_time)
except communication.protocol.EmptyQueue:
raise NotAvailable
if isinstance(response, communication.messages.StopIterationResponse):
self._stop_iteration = True
raise StopIteration
if isinstance(response, communication.messages.InvalidStateResponse):
raise NotAvailable
return response.value
class _IterateQueueDataPipes(IterDataPipe):
r"""
Takes in ``QueueWrapper``s and iterates through them in a round-robin manner to get batches one-by-one.
Typically, each worker has one ``QueueWrapper``.
"""
def __init__(self, datapipes):
# TODO(VitalyFedyunin): Consider combining _IterateQueueDataPipes and QueueWrapper
# into one class, which supports any number of queues.
for dp in datapipes:
if not isinstance(dp, communication.iter.QueueWrapper):
raise Exception("Source datapipes should be an instance of iter.QueueWrapper")
self.datapipes = datapipes
self._num_processes = len(datapipes)
self.res_buffers: List[Deque] = [deque() for _ in range(len(datapipes))]
self._terminated: bool = False
self._limit: Optional[int] = None
self._request_cnt: int = 0
def __iter__(self):
disabled_pipe = [False] * len(self.datapipes)
cnt_disabled_pipes = 0
total_req_cnt = 0
req_idx_cycle = cycle(range(self._num_processes))
req_idx = next(req_idx_cycle)
total_res_cnt = 0
res_idx_cycle = cycle(range(self._num_processes))
res_idx = next(res_idx_cycle)
while cnt_disabled_pipes < self._num_processes and not self._terminated:
# Send a round of requests until limit is reached (limit is smaller than total pipes)
for _ in range(self._num_processes):
if not disabled_pipe[req_idx]:
self.datapipes[req_idx].protocol.request_next()
self._request_cnt += 1
total_req_cnt += 1
req_idx = next(req_idx_cycle)
if self._limit is not None and self._request_cnt == self._limit:
break
# Receive responses from each of the workers with pending requests
while total_res_cnt < total_req_cnt and cnt_disabled_pipes < self._num_processes:
disabled = disabled_pipe[res_idx]
if not disabled:
if len(self.res_buffers[res_idx]):
response = self.res_buffers[res_idx].popleft()
else:
while not self._terminated:
try:
# Using non-blocking next to make sure termination reached
response = self.datapipes[res_idx].protocol.get_response_next(block=False)
break
except communication.protocol.EmptyQueue:
time.sleep(DEFAULT_NON_BLOCKING_SLEEP)
if isinstance(response, communication.messages.InvalidStateResponse):
raise communication.iter.InvalidStateResetRequired
if isinstance(response, communication.messages.TerminateResponse):
raise communication.iter.TerminateRequired
if isinstance(response, communication.messages.WorkerExceptionResponse):
response.exc.reraise()
if self._terminated:
break
if isinstance(response, communication.messages.StopIterationResponse):
disabled_pipe[res_idx] = True
cnt_disabled_pipes += 1
disabled = True
req_idx = next(req_idx_cycle)
else:
# Only request if buffer is empty and has not reached the limit
if len(self.res_buffers[res_idx]) == 0 and (
self._limit is None or self._request_cnt < self._limit
):
self.datapipes[req_idx].protocol.request_next()
req_idx = next(req_idx_cycle)
self._request_cnt += 1
total_req_cnt += 1
total_res_cnt += 1
res_idx = next(res_idx_cycle)
if not disabled:
yield response.value
def reset_epoch(
self,
seed_generator: SeedGenerator,
iter_reset_fn: Optional[Callable[[DataPipe], DataPipe]],
):
self._request_cnt = 0
for dp in self.datapipes:
dp.protocol.discard_existing_request()
for worker_id, dp in enumerate(self.datapipes):
worker_seed_generator = seed_generator.spawn(worker_id)
dp.request_reset_epoch(worker_seed_generator, iter_reset_fn)
for dp in self.datapipes:
dp.get_reset_epoch_response()
def request_pause(self, pause_fn: Optional[Callable[[DataPipe], DataPipe]] = None) -> None:
# Store results of pending requests
for idx, dp in enumerate(self.datapipes):
if dp.protocol.waiting_for_response():
res = dp.protocol.get_response_next(block=True)
self.res_buffers[idx].append(res)
for dp in self.datapipes:
dp.request_pause(pause_fn)
for dp in self.datapipes:
dp.get_pause_response()
def request_resume(self, resume_fn: Optional[Callable[[DataPipe], DataPipe]] = None) -> None:
for dp in self.datapipes:
dp.request_resume(resume_fn)
for dp in self.datapipes:
dp.get_resume_response()
self._request_cnt = 0
def request_limit(
self,
num_batches: Optional[int],
limit_fn: Optional[Callable[[DataPipe, Optional[int]], DataPipe]] = None,
worker_num_batches: Optional[int] = None,
) -> None:
self._limit = num_batches if worker_num_batches is None else worker_num_batches
avg_num_batches = num_batches if num_batches is None else num_batches // self._num_processes
batch_remainder = 0 if num_batches is None else num_batches % self._num_processes
for idx, dp in enumerate(self.datapipes):
ext_batch = 1 if batch_remainder > idx else 0
wnb = None if avg_num_batches is None or worker_num_batches is not None else avg_num_batches + ext_batch
dp.request_limit(num_batches, limit_fn, wnb)
for dp in self.datapipes:
dp.get_limit_response()
def request_terminate(self):
self._terminated = True
for dp in self.datapipes:
dp.protocol.discard_existing_request()
for dp in self.datapipes:
dp.protocol.request_terminate()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from queue import Empty as EmptyException
from torchdata.dataloader2 import communication
class Protocol:
__slots__ = ("request_queue", "response_queue")
def __init__(self, request_queue, response_queue):
self.request_queue = request_queue
self.response_queue = response_queue
class ProtocolClient(Protocol):
"""
ProtocolClient takes charge of putting requests into req_queue and returning results from res_queue.
"""
_req_sent = None
def __init__(self, request_queue, response_queue):
self.request_queue = request_queue
self.response_queue = response_queue
self._req_sent = None
def can_take_request(self):
return self._req_sent is None
def waiting_for_response(self):
return self._req_sent is not None
def request_sent(self, request=True):
if not self.can_take_request():
raise Exception("Protocol only supports one request in the Queue")
self._req_sent = request
def request_served(self, result=None):
if not self.waiting_for_response():
raise Exception("Expected no pending requests, but something got served", result)
self._req_sent = None
def discard_existing_request(self):
if self.waiting_for_response():
response = self.response_queue.get(block=True)
self.request_served(response)
def request_limit(self, num_batches, limit_fn=None, worker_num_batches=None):
if not self.can_take_request():
raise Exception("Can not `limit` while we are still waiting response for previous request")
request = communication.messages.LimitRequest(num_batches, limit_fn, worker_num_batches)
self.request_queue.put(request)
self.request_sent(request)
def request_pause(self, pause_fn=None):
if not self.can_take_request():
raise Exception("Can not `pause` while we are still waiting response for previous request")
request = communication.messages.PauseRequest(pause_fn)
self.request_queue.put(request)
self.request_sent(request)
def request_resume(self, resume_fn=None):
if not self.can_take_request():
raise Exception("Can not `resume` while we are still waiting response for previous request")
request = communication.messages.ResumeRequest(resume_fn)
self.request_queue.put(request)
self.request_sent(request)
def request_terminate(self):
r"""
Drop the existing request and send TerminateRequest directly
"""
if not self.can_take_request():
self._req_sent = None
request = communication.messages.TerminateRequest()
self.request_queue.put(request)
self.request_sent(request)
class ProtocolServer(Protocol):
"""
ProtocolServer takes charge of getting requests from req_queue and fetching data from source datapipe.
"""
# TODO(966): Update the exceptions raised in this class to be more specific
_req_received = None
_paused = False # When `True`, prevents `GetNext` in `DataPipeBehindQueues`.
def __init__(self, request_queue, response_queue):
self.request_queue = request_queue
self.response_queue = response_queue
self._req_received = None
self._paused = False
def is_paused(self):
return self._paused
def have_pending_request(self):
return self._req_received is not None
def get_new_request(self, block=False):
if self.have_pending_request():
raise Exception("Trying to get next request, while having one un-served")
try:
response = self.request_queue.get(block=block)
except EmptyException:
raise EmptyQueue("queue is empty")
self._req_received = response
return response
# TODO(626): Validate supported requests
def response_terminate(self):
if not self.have_pending_request():
raise Exception("Attempting to reply with pending request")
if not isinstance(self._req_received, communication.messages.TerminateRequest):
raise Exception("Replaying with `terminate` status to other type of message")
self.response_queue.put(communication.messages.TerminateResponse())
self._req_received = None
def response_reset_epoch(self):
if not self.have_pending_request():
raise Exception("Attempting to reply with pending request")
if not isinstance(self._req_received, communication.messages.ResetEpochRequest):
raise Exception("Replaying with `reset_epoch` status to other type of message")
self.response_queue.put(communication.messages.ResetEpochResponse())
self._req_received = None
def response_limit(self):
if not self.have_pending_request():
raise Exception("Attempting to reply with pending request")
if not isinstance(self._req_received, communication.messages.LimitRequest):
raise Exception("Replaying with `limit` status to other type of message")
self.response_queue.put(communication.messages.LimitResponse())
self._req_received = None
def response_pause(self):
if not self.have_pending_request():
raise Exception("Attempting to reply with pending request")
if not isinstance(self._req_received, communication.messages.PauseRequest):
raise Exception("Replaying with `pause` status to other type of message")
self._paused = True
self.response_queue.put(communication.messages.PauseResponse())
self._req_received = None
def response_resume(self):
if not self.have_pending_request():
raise Exception("Attempting to reply with pending request")
if not isinstance(self._req_received, communication.messages.ResumeRequest):
raise Exception("Replaying with `resume` status to other type of message")
self._paused = False
self.response_queue.put(communication.messages.ResumeResponse())
self._req_received = None
def response_worker_exception(self, exception):
if not self.have_pending_request():
raise Exception("Attempting to reply with pending request")
self.response_queue.put(communication.messages.WorkerExceptionResponse(exception))
self._req_received = None
class MapDataPipeQueueProtocolServer(ProtocolServer):
def response_item(self, key, value):
if not self.have_pending_request():
raise Exception("Attempting to reply with pending request")
self.response_queue.put(communication.messages.GetItemResponse(key, value))
self._req_received = None
def response_len(self, size):
if not self.have_pending_request():
raise Exception("Attempting to reply with pending request")
self.response_queue.put(communication.messages.LenResponse(size))
self._req_received = None
def response_index_out_of_bound(self):
if not self.have_pending_request():
raise Exception("Attempting to reply with pending request")
self.response_queue.put(communication.messages.StopIterationResponse())
self._req_received = None
class MapDataPipeQueueProtocolClient(ProtocolClient):
def request_len(self):
if not self.can_take_request():
raise Exception("Can not request len while we are still waiting response for previous request")
request = communication.messages.LenRequest()
self.request_queue.put(request)
self.request_sent(request)
def request_reset_epoch(self, seed_generator, iter_reset_fn):
if not self.can_take_request():
raise Exception("Can not reset while we are still waiting response for previous request")
request = communication.messages.ResetEpochRequest(seed_generator, iter_reset_fn)
self.request_queue.put(request)
self.request_sent(request)
def request_item(self, index):
if not self.can_take_request():
raise Exception("Can not request item while we are still waiting response for previous request")
request = communication.messages.GetItemRequest(index)
self.request_queue.put(request)
self.request_sent(request)
def get_response_len(self, block=False, timeout=None):
if not self.waiting_for_response():
raise Exception("Can not expect any response without submitted request")
try:
response = self.response_queue.get(block=block, timeout=timeout)
except TimeoutError:
raise EmptyQueue("queue is empty")
self.request_served(response)
if not isinstance(response, communication.messages.LenResponse):
raise Exception("Invalid response received")
return response
def get_response_item(self, block=False, timeout=None):
if not self.waiting_for_response():
raise Exception("Can not expect any response without submitted request")
try:
response = self.response_queue.get(block=block, timeout=timeout)
except TimeoutError:
raise EmptyQueue("queue is empty")
self.request_served(response)
# if not isinstance(response, communication.messages.GetItemResponse):
# raise Exception('Invalid response received')
return response
class EmptyQueue(Exception):
pass
class IterDataPipeQueueProtocolServer(ProtocolServer):
def response_next(self, value):
if not self.have_pending_request():
raise Exception("Attempting to reply with pending request")
self.response_queue.put(communication.messages.GetNextResponse(value))
self._req_received = None
def response_stop_iteration(self):
if not self.have_pending_request():
raise Exception("Attempting to reply with pending request")
self.response_queue.put(communication.messages.StopIterationResponse())
self._req_received = None
def response_invalid_state(self):
if not self.have_pending_request():
raise Exception("Attempting to reply with pending request")
self.response_queue.put(communication.messages.InvalidStateResponse())
self._req_received = None
class IterDataPipeQueueProtocolClient(ProtocolClient):
def request_reset_epoch(self, seed_generator, iter_reset_fn):
if not self.can_take_request():
raise Exception("Can not reset while we are still waiting response for previous request")
request = communication.messages.ResetEpochRequest(seed_generator, iter_reset_fn)
self.request_queue.put(request)
self.request_sent(request)
def request_next(self):
if not self.can_take_request():
raise Exception("Can not request next item while we are still waiting response for previous request")
request = communication.messages.GetNextRequest()
self.request_queue.put(request)
self.request_sent(request)
def get_response_reset_epoch(self, block=False):
try:
response = self.response_queue.get(block=block)
except EmptyException:
raise EmptyQueue("queue is empty")
self.request_served(response)
if not isinstance(response, communication.messages.ResetEpochResponse):
raise Exception("Invalid response received")
def get_response_limit(self, block=False):
try:
response = self.response_queue.get(block=block)
except EmptyException:
raise EmptyQueue("queue is empty")
self.request_served(response)
if not isinstance(response, communication.messages.LimitResponse):
raise Exception("Invalid response received when expecting `LimitResponse`")
def get_response_pause(self, block=False):
try:
response = self.response_queue.get(block=block)
except EmptyException:
raise EmptyQueue("queue is empty")
self.request_served(response)
if not isinstance(response, communication.messages.PauseResponse):
raise Exception("Invalid response received when expecting `PauseResponse`")
def get_response_resume(self, block=False):
try:
response = self.response_queue.get(block=block)
except EmptyException:
raise EmptyQueue("queue is empty")
self.request_served(response)
if not isinstance(response, communication.messages.ResumeResponse):
raise Exception("Invalid response received when expecting `ResumeResponse`")
def get_response_next(self, block=False, timeout=None):
if not self.waiting_for_response():
raise Exception("Can not expect any response without submitted request")
try:
response = self.response_queue.get(block=block, timeout=timeout)
except EmptyException:
raise EmptyQueue("queue is empty")
self.request_served(response)
# TODO(629): Add possible response types validation here
return response
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from . import eventloop, iter, map, messages, protocol, queue
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import time
from itertools import zip_longest
from typing import Dict, List
import torch
from torch.utils.data import IterDataPipe, MapDataPipe
from torchdata.dataloader2 import communication
from torchdata.dataloader2.graph._serialization import extract_wrapper
try:
import dill
# XXX: By default, dill writes the Pickler dispatch table to inject its
# own logic there. This globally affects the behavior of the standard library
# pickler for any user who transitively depends on this module!
# Undo this extension to avoid altering the behavior of the pickler globally.
dill.extend(use_dill=False)
HAS_DILL = True
except ImportError:
HAS_DILL = False
__all__ = [
"DataPipeToQueuesLoop",
"CreateProcessForDataPipeline",
"CreateProcessForMultipleDataPipelines",
]
class _RequestCounter:
r"""
_RequestCounter is used to synchronize between eventloops within the dispatching
process. It guarantees to only handle the limit/pause/reset_epoch/resume request
util all loops have received the same message.
"""
exp_cnt: int
_keys: List[str] = ["limit", "pause", "reset_epoch", "resume"]
_cnt: Dict[str, int]
_reached: Dict[str, bool]
def __init__(self, exp_cnt: int):
self.exp_cnt = exp_cnt
self._cnt = {k: 0 for k in self._keys}
self._reached = {k: False for k in self._keys}
def increment(self, key: str) -> None:
assert key in self._reached
self._cnt[key] += 1
assert self._cnt[key] <= self.exp_cnt
if self._cnt[key] == self.exp_cnt:
self._reached[key] = True
def is_reached(self, key: str) -> bool:
assert key in self._reached
return self._reached[key]
def reset(self, key: str) -> None:
assert key in self._reached and self._reached[key]
assert self._cnt[key] >= 1
self._cnt[key] -= 1
if self._cnt[key] == 0:
self._reached[key] = False
def MultipleDataPipesToQueuesLoop(
source_datapipes, req_queues, res_queues, process_name, worker_info, call_on_process_init=None, custom_reset_fn=None
):
r"""
Set the appropriate pipes and protocol server type, and create a loop over multiple datapipes
with the protocol server in a non-blocking manner.
Args:
source_datapipe: DataPipe being iterated in the dispatching process
req_queue: Multiprocessing queue providing requests from the worker process
res_queue: Multiprocessing queue sending results to the worker process
process_name: The name of process (used for logging and exception handling)
worker_info: Worker information (worker id and number of workers)
call_on_process_init: Not allowed by dispatching process for now.
custom_reset_fn: Optional callable function to reset the DataPipe.
"""
assert call_on_process_init is None, "``MultipleDataPipesToQueuesLoop`` does not support call_on_process_init"
num_loops = len(source_datapipes)
assert num_loops == len(req_queues) and num_loops == len(
res_queues
), "``MultipleDataPipesToQueuesLoop`` requires the same number of datapipes, request queues and response queues"
torch.set_num_threads(1)
loops = []
request_counter = _RequestCounter(num_loops)
loop_id = 0
for source_datapipe, req_queue, res_queue in zip(source_datapipes, req_queues, res_queues):
loops.append(
_create_datapipe_queue_loop(
source_datapipe,
req_queue,
res_queue,
process_name,
loop_id,
worker_info,
custom_reset_fn,
blocking_request_get=False,
request_counter=request_counter,
)
) # Non-blocking request with reset counters
loop_id += 1
# Using `zip_longest` to guarantee the process is terminated only when
# all loops have received `TerminateRequest`
for _ in zip_longest(*loops):
# time.sleep to make Python switch context to get/send message in mp.Queue
# TODO(ejguan): Microbenchmarked a synthetic non-replicable case that sleep perform similar to pass.
# A more comprehensive benchmarking in real-world scneario is needed.
time.sleep(0)
def DataPipeToQueuesLoop(
source_datapipe, req_queue, res_queue, process_name, worker_info, call_on_process_init=None, custom_reset_fn=None
):
r"""
Initialize with the given init function, set the appropriate pipe and protocol server type, and
create a loop with the protocol server.
Args:
source_datapipe: DataPipe being iterated in the worker process
req_queue: Multiprocessing queue providing requests from the main process
res_queue: Multiprocessing queue sending results to the main process
process_name: The name of process (used for logging and exception handling)
worker_info: Worker information (worker id and number of workers)
call_on_process_init: Callable function will be called at the time of worker process initialization.
Users can provide it to modify the DataPipe grpah in the worker process.
custom_reset_fn: Optional callable function to reset the DataPipe.
"""
# Extract Serialization Wrapper
source_datapipe = extract_wrapper(source_datapipe)
if call_on_process_init is not None:
source_datapipe = call_on_process_init(source_datapipe)
torch.set_num_threads(1)
loop = _create_datapipe_queue_loop(
source_datapipe,
req_queue,
res_queue,
process_name,
worker_info.worker_id,
worker_info,
custom_reset_fn,
blocking_request_get=True,
)
for _ in loop:
pass
def _create_datapipe_queue_loop(
source_datapipe,
req_queue,
res_queue,
process_name,
loop_id,
worker_info,
custom_reset_fn=None,
blocking_request_get=True,
request_counter=None,
):
if isinstance(source_datapipe, IterDataPipe):
pipe_type = communication.iter
protocol_type = communication.protocol.IterDataPipeQueueProtocolServer
elif isinstance(source_datapipe, MapDataPipe):
pipe_type = communication.map # type: ignore[misc]
protocol_type = communication.protocol.MapDataPipeQueueProtocolServer # type: ignore[assignment]
else:
raise Exception("Only supports IterDataPipe or MapDataPipe, got", source_datapipe)
return pipe_type.DataPipeBehindQueues(
source_datapipe,
protocol_type(req_queue, res_queue),
process_name=process_name,
loop_id=loop_id,
worker_info=worker_info,
custom_reset_fn=custom_reset_fn,
blocking_request_get=blocking_request_get,
request_counter=request_counter,
)
def CreateProcessForDataPipeline(
multiprocessing_ctx, datapipe, process_name, worker_info, call_on_process_init=None, custom_reset_fn=None
):
r"""
Given a DataPipe, creates a new process with ``DataPipeToQueuesLoop`` as target,
and returns ``(process, req_queue, res_queue)``.
"""
req_queue = multiprocessing_ctx.Queue()
res_queue = multiprocessing_ctx.Queue()
process = multiprocessing_ctx.Process(
target=DataPipeToQueuesLoop,
args=(datapipe, req_queue, res_queue, process_name, worker_info, call_on_process_init, custom_reset_fn),
)
return process, req_queue, res_queue
def CreateProcessForMultipleDataPipelines(
multiprocessing_ctx, datapipes, process_name, worker_info, custom_reset_fn=None
):
r"""
Given a DataPipe, creates a new process with ``MultipleDataPipesToQueuesLoop`` as target,
and returns ``(process, [req_queue_0, ...], [res_queue_0, ...])``.
"""
req_queues = []
res_queues = []
for _ in datapipes:
req_queues.append(multiprocessing_ctx.Queue())
res_queues.append(multiprocessing_ctx.Queue())
process = multiprocessing_ctx.Process(
target=MultipleDataPipesToQueuesLoop,
args=(datapipes, req_queues, res_queues, process_name, worker_info, custom_reset_fn),
)
return process, req_queues, res_queues
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import time
import types
from torch.utils.data import MapDataPipe
from torchdata._utils import ExceptionWrapper
from torchdata.dataloader2 import communication
from torchdata.dataloader2.utils import process_reset_fn
DEFAULT_NON_BLOCKING_SLEEP = 0.001
__all__ = [
"DataPipeBehindQueues",
"EnsureNonBlockingMapDataPipe",
"NonBlockingMap",
"NotAvailable",
"QueueWrapperForMap",
"default_not_available_hook",
]
def default_not_available_hook():
time.sleep(DEFAULT_NON_BLOCKING_SLEEP)
class NotAvailable(Exception):
pass
class NonBlockingMap(MapDataPipe):
not_available_hook = default_not_available_hook
def __getitem__(self, index):
while True:
try:
return self.nonblocking_getitem(index)
except NotAvailable:
if NonBlockingMap.not_available_hook is not None:
NonBlockingMap.not_available_hook()
def __len__(self):
try:
return self.nonblocking_len()
except NotAvailable:
if NonBlockingMap.not_available_hook is not None:
NonBlockingMap.not_available_hook()
def nonblocking_len(self):
raise NotImplementedError("nonblocking_len is not implemented for %s" % self.__class__)
def nonblocking_getitem(self, index):
raise NotImplementedError("nonblocking_getitem is not implemented for %s" % self.__class__)
@staticmethod
def register_not_available_hook(hook_function):
NonBlockingMap.not_available_hook = hook_function
def EnsureNonBlockingMapDataPipe(validated_datapipe):
if not isinstance(validated_datapipe, MapDataPipe):
raise Exception(f"Not Map DataPipe - got {validated_datapipe.__class__}")
if isinstance(validated_datapipe, NonBlockingMap):
return validated_datapipe
if not hasattr(validated_datapipe, "nonblocking_len"):
def nonblocking_len(self):
return self.__len__()
validated_datapipe.nonblocking_len = types.MethodType( # type: ignore[attr-defined]
nonblocking_len, validated_datapipe
)
if not hasattr(validated_datapipe, "nonblocking_getitem"):
def nonblocking_getitem(self, index):
return self.__getitem__(index)
validated_datapipe.nonblocking_getitem = types.MethodType( # type: ignore[attr-defined]
nonblocking_getitem, validated_datapipe
)
return validated_datapipe
def DataPipeBehindQueues(
source_datapipe,
protocol,
process_name,
loop_id,
worker_info,
custom_reset_fn,
blocking_request_get=False,
request_counter=None,
):
"""
Indefinitely iterates over req_queue and passing values from source_datapipe to res_queue.
Args:
source_datapipe: DataPipe
protocol: ``MapDataPipeQueueProtocolServer`` that contains ``req_queue`` and ``res_queue``
process_name: Process name
loop_id: Loop ID
worker_info: Worker info include worker id and number of workers
custom_reset_fn: function to call after each request is received
blocking_request_get: determines if ``protocol.get_new_request`` will block
"""
if not isinstance(protocol, communication.protocol.MapDataPipeQueueProtocolServer):
raise Exception("Expecting MapDataPipeQueueProtocolServer, got", protocol)
source_datapipe = EnsureNonBlockingMapDataPipe(source_datapipe)
forever = True
while forever:
try:
# TODO: non-blocking call is extremely slow here for python.mp, need to figure out a good workaround
request = protocol.get_new_request(block=blocking_request_get)
except communication.protocol.EmptyQueue:
yield True
continue
if isinstance(request, communication.messages.ResetEpochRequest):
distributed_shared_seed = request_counter is not None
source_datapipe = process_reset_fn(
source_datapipe,
worker_info,
request.seed_generator,
distributed_shared_seed,
request.iter_reset_fn,
custom_reset_fn,
)
protocol.response_reset_epoch()
elif isinstance(request, communication.messages.TerminateRequest):
forever = False
protocol.response_terminate()
elif isinstance(request, communication.messages.LenRequest):
size = source_datapipe.nonblocking_len()
protocol.response_len(size)
elif isinstance(request, communication.messages.GetItemRequest):
while forever:
try:
value = source_datapipe.nonblocking_getitem(request.key)
except NotAvailable:
yield True
continue
except IndexError:
# Alternatively, we can just allow the underlying DataPipe to throw an exception?
protocol.response_index_out_of_bound()
yield True
break
except Exception:
exc = ExceptionWrapper(where=f"in {process_name} {loop_id}")
protocol.response_worker_exception(exc)
break
protocol.response_item(request.key, value)
yield True # Returns control
break
else:
raise Exception("Unrecognized type of request received", request)
class QueueWrapperForMap(NonBlockingMap):
"""
Creates map.DataPipe which reads data from the DataLoader.Queue
"""
def __init__(self, protocol, response_wait_time=0.00001):
if not isinstance(protocol, communication.protocol.MapDataPipeQueueProtocolClient):
raise Exception("Got", protocol)
self.protocol = protocol
self.counter = 0
self._stop_iteration = False
self._response_wait_time = response_wait_time
def nonblocking_getitem(self, index):
if self._stop_iteration:
raise Exception("`getitem` or `nonblocking_getitem` called after receiving StopIteration")
if self.protocol.can_take_request():
self.protocol.request_item(index)
try:
response = self.protocol.get_response_item(block=True, timeout=self._response_wait_time)
except communication.protocol.EmptyQueue:
raise NotAvailable
if isinstance(response, communication.messages.StopIterationResponse):
self._stop_iteration = True
raise IndexError(f"Index {index} is out of bound.")
if isinstance(response, communication.messages.WorkerExceptionResponse):
self._stop_iteration = True
response.exc.reraise()
return response.key, response.value
def nonblocking_len(self):
if self._stop_iteration:
raise Exception("`len` or `nonblocking_len` called after receiving StopIteration")
if self.protocol.can_take_request():
self.protocol.request_len()
try:
response = self.protocol.get_response_len(block=True, timeout=self._response_wait_time)
except communication.protocol.EmptyQueue:
raise NotAvailable
return response.len
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from torchdata._utils import ExceptionWrapper
class DataLoaderQueueMessage:
pass
class Request(DataLoaderQueueMessage):
pass
class Response(DataLoaderQueueMessage):
pass
class ResetEpochRequest(Request):
__slots__ = ("seed_generator", "iter_reset_fn")
def __init__(self, seed_generator, iter_reset_fn):
self.seed_generator = seed_generator
self.iter_reset_fn = iter_reset_fn
class ResetEpochResponse(Response):
pass
class LimitRequest(Request):
__slots__ = ("num_batches", "limit_fn", "worker_num_batches")
def __init__(self, num_batches, limit_fn, worker_num_batches=None):
self.num_batches = num_batches
self.limit_fn = limit_fn
self.worker_num_batches = worker_num_batches
class LimitResponse(Response):
pass
class PauseRequest(Request):
__slots__ = "pause_fn"
def __init__(self, pause_fn):
self.pause_fn = pause_fn
class PauseResponse(Response):
pass
class ResumeRequest(Request):
__slots__ = "resume_fn"
def __init__(self, resume_fn):
self.resume_fn = resume_fn
class ResumeResponse(Response):
pass
class TerminateRequest(Request):
pass
class TerminateResponse(Response):
pass
class LenRequest(Request):
pass
class LenResponse(Response):
__slots__ = "len"
def __init__(self, len):
self.len = len
class GetItemRequest(Request):
__slots__ = "key"
def __init__(self, key):
self.key = key
class GetItemResponse(Response):
__slots__ = ("key", "value")
def __init__(self, key, value):
self.key = key
self.value = value
class GetNextRequest(Request):
pass
class GetNextResponse(Response):
__slots__ = "value"
def __init__(self, value):
self.value = value
class StopIterationResponse(Response):
pass
class InvalidStateResponse(Response):
"""
Returned by DataPipe when it is expecting to get reset request,
for example RouterDataPipe expecting all workers to request reset'
"""
pass
class WorkerExceptionResponse(Response):
__slots__ = "exc"
def __init__(self, exc: ExceptionWrapper):
self.exc: ExceptionWrapper = exc
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import List, Optional, Tuple
# Note [Philox Engine implementation]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Refer to: http://www.thesalmons.org/john/random123/papers/random123sc11.pdf for details regarding the engine.
# Using Philox4×32-10 for the sake of performance, randomness and crush-resistance.
# The following code could be optimized into C++ bindings
# Philox Constants
kPhilox10A = 0x9E3779B9
kPhilox10B = 0xBB67AE85
kPhiloxSA = 0xD2511F53
kPhiloxSB = 0xCD9E8D57
MASK_32b = 0xFFFFFFFF
MASK_64b = 0xFFFFFFFFFFFFFFFF
HALF_UINT64 = 0x8000000000000000
def mulhilo32(a: int, b: int) -> Tuple[int, int]:
product = a * b
return product & MASK_32b, (product >> 32) & MASK_32b
def single_round(key: List[int], ctr: List[int]) -> List[int]:
lo0, hi0 = mulhilo32(kPhiloxSA, ctr[0])
lo1, hi1 = mulhilo32(kPhiloxSB, ctr[2])
res = [0] * 4
res[0] = hi1 ^ ctr[1] ^ key[0]
res[1] = lo1
res[2] = hi0 ^ ctr[3] ^ key[1]
res[3] = lo0
return res
def philox_10_round(key: Tuple[int, int], ctr: List[int]) -> List[int]:
_key = list(key)
_ctr = list(ctr)
for _ in range(9):
_ctr = single_round(_key, _ctr)
_key[0] = (_key[0] + kPhilox10A) & MASK_32b
_key[1] = (_key[1] + kPhilox10B) & MASK_32b
return single_round(_key, _ctr)
class PhiloxEngine:
r"""
Philox is a counter-based RNG with a certain properties:
- High performance
- Statistiacl random
- Crush-resistance Bijection
Generate new seeds or spawn parallel seeds for worker processes.
"""
def __init__(self, seed: Optional[int] = None) -> None:
self._seed: Tuple[int, int] = (-1, -1)
self._ctr: List[int] = [0] * 4
self._generated_seeds: Optional[List[int]] = None
self._spawn_seed: Tuple[int, int] = (-1, -1)
if seed is not None:
self.seed(seed)
def _incr_ctr(self) -> None:
for i in range(3):
self._ctr[i] += 1
if self._ctr[i] <= MASK_32b:
return
self._ctr[i] = 0
self._ctr[3] += 1
# if overflow (2^128) has occurred during addition, back to the initial counter
if self._ctr[3] > MASK_32b:
self._ctr[3] = 0
self._incr_ctr()
def seed(self, seed: int) -> "PhiloxEngine":
seed = seed & MASK_64b
# Convert seed from int64 to uint64
if seed < 0:
seed = seed + HALF_UINT64
lo = seed & MASK_32b
hi = (seed >> 32) & MASK_32b
self._seed = (lo, hi)
# Reset counter and cached seed
self._ctr = [0] * 4
self._generated_seeds = None
# Generate the spawn seed
self._spawn_seed = tuple(philox_10_round(self._seed, self._ctr)[:2]) # type: ignore[assignment]
self._incr_ctr()
return self
def generate(self) -> int:
assert self._seed != (-1, -1), "Please provide seed to PhiloxEngine"
if self._generated_seeds is None:
self._generated_seeds = philox_10_round(self._seed, self._ctr)
self._incr_ctr()
res = self._generated_seeds[:2]
else:
res = self._generated_seeds[2:]
self._generated_seeds = None
return (res[1] << 32) + res[0]
def clone(self) -> "PhiloxEngine":
new_engine = PhiloxEngine(None)
new_engine._seed = self._seed # immutable tuple
new_engine._ctr = self._ctr.copy()
new_engine._generated_seeds = None if self._generated_seeds is None else self._generated_seeds.copy()
new_engine._spawn_seed = self._spawn_seed # immutable tuple
return new_engine
def spawn(self, index: int) -> "PhiloxEngine":
assert index >= 0, f"Expected a non-negative value for spawn, but found {index}"
assert self._spawn_seed != (-1, -1), "Please provide seed to PhiloxEngine"
offset = index % 2
val = index if offset == 0 else index - 1
ctr = []
for _ in range(4):
ctr.append(val & MASK_32b)
val = val >> 32
res = philox_10_round(self._spawn_seed, ctr)[offset * 2 : offset * 2 + 2]
sub_seed = (res[1] << 32) + res[0]
return PhiloxEngine(sub_seed)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from torchdata.dataloader2.random.distributed import dist_share_seed
from torchdata.dataloader2.random.seed_generator import SeedGenerator
__all__ = ["SeedGenerator", "dist_share_seed"]
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import Optional
import torch
import torch.distributed as dist
_HALF_UINT64 = 0x8000000000000000
def dist_share_seed(seed: int, process_group: Optional[dist.ProcessGroup] = None) -> int:
# Convert uint64 to int64 to prevent overflow for integer Tensor
seed -= _HALF_UINT64
shared_seed = torch.tensor(seed, dtype=torch.int64)
dist.broadcast(shared_seed, src=0, group=process_group)
# Revert int64 back to uint64
return int(shared_seed.item()) + _HALF_UINT64
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import Optional, Tuple
import torch
from torchdata.dataloader2.random._philox import PhiloxEngine
_UINT64_UPPER_BOUND = 2 ** 64
def _get_torch_random_seed():
iinfo = torch.iinfo(torch.int64)
seed = torch.randint(iinfo.min, iinfo.max, ()).item()
# Convert int64 to uint64
seed += 2 ** 63
return seed
class SeedGenerator:
r"""
``SeedGenerator`` is used to generate seeds in a deterministic and randomized manner
based on a user-provided initial seed. Internally, it utilizes a counter-based PRNG
called Philox to generate random seeds.
Args:
seed: The base seed to generate random seeds
"""
_shared_rng: PhiloxEngine
_worker_rng: PhiloxEngine
def __init__(self, seed: Optional[int] = None, _rngs: Optional[Tuple[PhiloxEngine, PhiloxEngine]] = None) -> None:
if seed is not None and _rngs is not None:
raise ValueError("SeedGenerator doesn't allow both seed and _rng specified at the same time")
if _rngs is None:
self._shared_rng = PhiloxEngine()
self._worker_rng = PhiloxEngine()
self.seed(seed)
else:
assert len(_rngs) == 2
self._shared_rng, self._worker_rng = _rngs
def seed(self, seed: Optional[int] = None) -> None:
r"""
Re-seed the ``SeedGenerator``. When ``None`` is provided, a random seed generated
by the default PyTorch RNG.
"""
if seed is None:
seed = _get_torch_random_seed()
if seed >= _UINT64_UPPER_BOUND:
raise ValueError(f"Expected an uint64 seed, but got {seed}.")
self._shared_rng.seed(seed)
self._worker_rng.seed(seed)
def generate_shared_seed(self) -> int:
r"""
Generate one uint64 random seed that is supposed to be the same across
distributed processes.
"""
return self._shared_rng.generate()
def generate_seed(self) -> int:
r"""
Generate one unique uint64 random seed based on distributed and multiprocessing
information.
"""
return self._worker_rng.generate()
def spawn(self, worker_id: int, inplace: bool = False) -> "SeedGenerator":
r"""
Spawn a sub-SeedGenerator based on the provided worker_id. If inplace is turn on, the SeedGenerator
will evolve itself rather than spawning a new
"""
if worker_id < 0:
raise ValueError(f"Expected `rank` equal or larger than 0, but got {worker_id}.")
if inplace:
self._worker_rng = self._worker_rng.spawn(worker_id)
return self
return SeedGenerator(seed=None, _rngs=(self._shared_rng.clone(), self._worker_rng.spawn(worker_id)))
def __getstate__(self):
state = (
self._shared_rng,
self._worker_rng,
)
return state
def __setstate__(self, state):
self._shared_rng, self._worker_rng = state
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from torch.utils.data import DataChunk, functional_datapipe
from . import iter, map, utils
__all__ = ["DataChunk", "functional_datapipe", "iter", "map", "utils"]
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
###############################################################################
# Reference From PyTorch Core
###############################################################################
from torch.utils.data import IterDataPipe
from torch.utils.data.datapipes.iter import (
Batcher,
Collator,
Concater,
Demultiplexer,
FileLister,
FileOpener,
Filter,
Forker,
Grouper,
IterableWrapper,
Mapper,
Multiplexer,
RoutedDecoder,
Sampler,
ShardingFilter,
Shuffler,
StreamReader,
UnBatcher,
Zipper,
)
from torchdata.datapipes.iter.load.aisio import (
AISFileListerIterDataPipe as AISFileLister,
AISFileLoaderIterDataPipe as AISFileLoader,
)
###############################################################################
# TorchData
###############################################################################
from torchdata.datapipes.iter.load.fsspec import (
FSSpecFileListerIterDataPipe as FSSpecFileLister,
FSSpecFileOpenerIterDataPipe as FSSpecFileOpener,
FSSpecSaverIterDataPipe as FSSpecSaver,
)
from torchdata.datapipes.iter.load.huggingface import HuggingFaceHubReaderIterDataPipe as HuggingFaceHubReader
from torchdata.datapipes.iter.load.iopath import (
IoPathFileListerIterDataPipe as IoPathFileLister,
IoPathFileOpenerIterDataPipe as IoPathFileOpener,
IoPathSaverIterDataPipe as IoPathSaver,
)
from torchdata.datapipes.iter.load.online import (
GDriveReaderDataPipe as GDriveReader,
HTTPReaderIterDataPipe as HttpReader,
OnlineReaderIterDataPipe as OnlineReader,
)
from torchdata.datapipes.iter.load.s3io import (
S3FileListerIterDataPipe as S3FileLister,
S3FileLoaderIterDataPipe as S3FileLoader,
)
from torchdata.datapipes.iter.transform.bucketbatcher import (
BucketBatcherIterDataPipe as BucketBatcher,
InBatchShufflerIterDataPipe as InBatchShuffler,
MaxTokenBucketizerIterDataPipe as MaxTokenBucketizer,
)
from torchdata.datapipes.iter.transform.callable import (
BatchAsyncMapperIterDataPipe as BatchAsyncMapper,
BatchMapperIterDataPipe as BatchMapper,
DropperIterDataPipe as Dropper,
FlatMapperIterDataPipe as FlatMapper,
FlattenIterDataPipe as Flattener,
ShuffledFlatMapperIterDataPipe as ShuffledFlatMapper,
SliceIterDataPipe as Slicer,
ThreadPoolMapperIterDataPipe as ThreadPoolMapper,
)
from torchdata.datapipes.iter.util.bz2fileloader import Bz2FileLoaderIterDataPipe as Bz2FileLoader
from torchdata.datapipes.iter.util.cacheholder import (
EndOnDiskCacheHolderIterDataPipe as EndOnDiskCacheHolder,
InMemoryCacheHolderIterDataPipe as InMemoryCacheHolder,
OnDiskCacheHolderIterDataPipe as OnDiskCacheHolder,
)
from torchdata.datapipes.iter.util.combining import (
IterKeyZipperIterDataPipe as IterKeyZipper,
MapKeyZipperIterDataPipe as MapKeyZipper,
RoundRobinDemultiplexerIterDataPipe as RoundRobinDemultiplexer,
UnZipperIterDataPipe as UnZipper,
)
from torchdata.datapipes.iter.util.cycler import CyclerIterDataPipe as Cycler, RepeaterIterDataPipe as Repeater
from torchdata.datapipes.iter.util.dataframemaker import (
DataFrameMakerIterDataPipe as DataFrameMaker,
ParquetDFLoaderIterDataPipe as ParquetDataFrameLoader,
)
from torchdata.datapipes.iter.util.decompressor import (
DecompressorIterDataPipe as Decompressor,
ExtractorIterDataPipe as Extractor,
)
from torchdata.datapipes.iter.util.distributed import FullSyncIterDataPipe as FullSync
from torchdata.datapipes.iter.util.hashchecker import HashCheckerIterDataPipe as HashChecker
from torchdata.datapipes.iter.util.header import HeaderIterDataPipe as Header, LengthSetterIterDataPipe as LengthSetter
from torchdata.datapipes.iter.util.indexadder import (
EnumeratorIterDataPipe as Enumerator,
IndexAdderIterDataPipe as IndexAdder,
)
from torchdata.datapipes.iter.util.jsonparser import JsonParserIterDataPipe as JsonParser
from torchdata.datapipes.iter.util.mux_longest import MultiplexerLongestIterDataPipe as MultiplexerLongest
from torchdata.datapipes.iter.util.paragraphaggregator import ParagraphAggregatorIterDataPipe as ParagraphAggregator
from torchdata.datapipes.iter.util.plain_text_reader import (
CSVDictParserIterDataPipe as CSVDictParser,
CSVParserIterDataPipe as CSVParser,
LineReaderIterDataPipe as LineReader,
)
from torchdata.datapipes.iter.util.prefetcher import (
PinMemoryIterDataPipe as PinMemory,
PrefetcherIterDataPipe as Prefetcher,
)
from torchdata.datapipes.iter.util.randomsplitter import RandomSplitterIterDataPipe as RandomSplitter
from torchdata.datapipes.iter.util.rararchiveloader import RarArchiveLoaderIterDataPipe as RarArchiveLoader
from torchdata.datapipes.iter.util.rows2columnar import Rows2ColumnarIterDataPipe as Rows2Columnar
from torchdata.datapipes.iter.util.samplemultiplexer import SampleMultiplexerDataPipe as SampleMultiplexer
from torchdata.datapipes.iter.util.saver import SaverIterDataPipe as Saver
from torchdata.datapipes.iter.util.shardexpander import ShardExpanderIterDataPipe as ShardExpander
from torchdata.datapipes.iter.util.sharding import (
ShardingRoundRobinDispatcherIterDataPipe as ShardingRoundRobinDispatcher,
)
from torchdata.datapipes.iter.util.tararchiveloader import TarArchiveLoaderIterDataPipe as TarArchiveLoader
from torchdata.datapipes.iter.util.tfrecordloader import (
TFRecordExample,
TFRecordExampleSpec,
TFRecordLoaderIterDataPipe as TFRecordLoader,
)
from torchdata.datapipes.iter.util.webdataset import WebDatasetIterDataPipe as WebDataset
from torchdata.datapipes.iter.util.xzfileloader import XzFileLoaderIterDataPipe as XzFileLoader
from torchdata.datapipes.iter.util.zip_longest import ZipperLongestIterDataPipe as ZipperLongest
from torchdata.datapipes.iter.util.ziparchiveloader import ZipArchiveLoaderIterDataPipe as ZipArchiveLoader
from torchdata.datapipes.map.util.converter import MapToIterConverterIterDataPipe as MapToIterConverter
__all__ = [
"AISFileLister",
"AISFileLoader",
"BatchAsyncMapper",
"BatchMapper",
"Batcher",
"BucketBatcher",
"Bz2FileLoader",
"CSVDictParser",
"CSVParser",
"Collator",
"Concater",
"Cycler",
"DataFrameMaker",
"Decompressor",
"Demultiplexer",
"Dropper",
"EndOnDiskCacheHolder",
"Enumerator",
"Extractor",
"FSSpecFileLister",
"FSSpecFileOpener",
"FSSpecSaver",
"FileLister",
"FileOpener",
"Filter",
"FlatMapper",
"Flattener",
"Forker",
"FullSync",
"GDriveReader",
"Grouper",
"HashChecker",
"Header",
"HttpReader",
"HuggingFaceHubReader",
"InBatchShuffler",
"InMemoryCacheHolder",
"IndexAdder",
"IoPathFileLister",
"IoPathFileOpener",
"IoPathSaver",
"IterDataPipe",
"IterKeyZipper",
"IterableWrapper",
"JsonParser",
"LengthSetter",
"LineReader",
"MapKeyZipper",
"MapToIterConverter",
"Mapper",
"MaxTokenBucketizer",
"Multiplexer",
"MultiplexerLongest",
"OnDiskCacheHolder",
"OnlineReader",
"ParagraphAggregator",
"ParquetDataFrameLoader",
"PinMemory",
"Prefetcher",
"RandomSplitter",
"RarArchiveLoader",
"Repeater",
"RoundRobinDemultiplexer",
"RoutedDecoder",
"Rows2Columnar",
"S3FileLister",
"S3FileLoader",
"SampleMultiplexer",
"Sampler",
"Saver",
"ShardExpander",
"ShardingFilter",
"ShardingRoundRobinDispatcher",
"ShuffledFlatMapper",
"Shuffler",
"Slicer",
"StreamReader",
"TFRecordLoader",
"TarArchiveLoader",
"ThreadPoolMapper",
"UnBatcher",
"UnZipper",
"WebDataset",
"XzFileLoader",
"ZipArchiveLoader",
"Zipper",
"ZipperLongest",
]
# Please keep this list sorted
assert __all__ == sorted(__all__)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import Iterator, Optional, TypeVar
from torch.utils.data.datapipes.iter.sharding import SHARDING_PRIORITIES
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
T_co = TypeVar("T_co", covariant=True)
@functional_datapipe("sharding_round_robin_dispatch")
class ShardingRoundRobinDispatcherIterDataPipe(IterDataPipe):
r"""
Wrapper that indicates the prior section of ``DataPipe`` graph is non-replicable and will be
iterated in a separate, single dispatching process to distribute data to worker processes
in a round-robin manner when multiprocessing is being used.
(functional name: ``sharding_round_robin_dispatch``).
Args:
source_datapipe: Iterable DataPipe that will be sharded
sharding_group_filter: Optional ``SHARDING_PRIORITIES`` value
Note:
- ``sharding_group_filter`` only accepts ``SHARDING_PRIORITIES.MULTIPROCESSING`` for now
- When using distributed training, you can add a ``sharding_filter()`` prior to this DataPipe
to distribute samples among worker nodes.
Examples:
>>> # xdoctest: +SKIP
>>> from torchdata.datapipes.iter import IterableWrapper
>>> from torch.utils.data.datapipes.iter.sharding import SHARDING_PRIORITIES
>>> dp = IterableWrapper(range(10))
>>> # `.shuffle()` will be executed in a single dispatching processing, then the samples are distributed
>>> # to worker processes
>>> dp = dp.shuffle().sharding_round_robin_dispatch(SHARDING_PRIORITIES.MULTIPROCESSING)
>>> # `.map()` will be executed within each worker process
>>> dp = dp.map(lambda x: x + 1)
>>> # Distributed case: the 10 samples will be distributed among the nodes
>>> dp = IterableWrapper(range(10)).sharding_filter()
>>> # `.map()` will be executed in a single dispatching processing in each node
>>> # You may apply further transformation after within each worker process
>>> dp = dp.map(lambda x: x + 1).sharding_round_robin_dispatch(SHARDING_PRIORITIES.MULTIPROCESSING)
"""
def __init__(self, source_datapipe: IterDataPipe, sharding_group_filter: Optional[SHARDING_PRIORITIES] = None):
self.source_datapipe = source_datapipe
if sharding_group_filter != SHARDING_PRIORITIES.MULTIPROCESSING:
raise NotImplementedError(
"`sharding_round_robin_dispatch` currently only supports `SHARDING_PRIORITIES.MULTIPROCESSING`."
"Please open issue on github for your feature request."
)
self.sharding_group_filter = sharding_group_filter
def __iter__(self) -> Iterator[T_co]:
yield from self.source_datapipe
def __len__(self) -> int:
return len(self.source_datapipe)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import re
from typing import Any, Dict, Iterator, List, Union
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
def pathsplit(p):
"""Split a path into a WebDataset prefix and suffix.
The prefix is used for grouping files into samples,
the suffix is used as key in the output dictionary.
The suffix consists of all components after the first
"." in the filename.
In torchdata, the prefix consists of the .tar file
path followed by the file name inside the archive.
Any backslash in the prefix is replaced by a forward
slash to make Windows prefixes consistent with POSIX
paths.
"""
# convert Windows pathnames to UNIX pathnames, otherwise
# we get an inconsistent mix of the Windows path to the tar
# file followed by the POSIX path inside that tar file
p = p.replace("\\", "/")
if "." not in p:
return p, ""
# we need to use a regular expression because os.path is
# platform specific, but tar files always contain POSIX paths
match = re.search(r"^(.*?)(\.[^/]*)$", p)
if not match:
return p, ""
prefix, suffix = match.groups()
return prefix, suffix
@functional_datapipe("webdataset")
class WebDatasetIterDataPipe(IterDataPipe[Dict]):
r"""
Iterable DataPipe that accepts stream of (path, data) tuples, usually,
representing the pathnames and files of a tar archive (functional name:
``webdataset``). This aggregates consecutive items with the same basename
into a single dictionary, using the extensions as keys (WebDataset file
convention). Any text after the first "." in the filename is used as
a key/extension.
File names that do not have an extension are ignored.
Args:
source_datapipe: a DataPipe yielding a stream of (path, data) pairs
Returns:
a DataPipe yielding a stream of dictionaries
Examples:
>>> from torchdata.datapipes.iter import FileLister, FileOpener
>>>
>>> def decode(item):
>>> key, value = item
>>> if key.endswith(".txt"):
>>> return key, value.read().decode("utf-8")
>>> if key.endswith(".bin"):
>>> return key, value.read().decode("utf-8")
>>>
>>> datapipe1 = FileLister("test/_fakedata", "wds*.tar")
>>> datapipe2 = FileOpener(datapipe1, mode="b")
>>> dataset = datapipe2.load_from_tar().map(decode).webdataset()
>>> for obj in dataset:
>>> print(obj)
"""
def __init__(self, source_datapipe: IterDataPipe[List[Union[Dict, List]]]) -> None:
self.source_datapipe: IterDataPipe[List[Union[Dict, List]]] = source_datapipe
def __iter__(self) -> Iterator[Dict]:
sample: Dict[str, Any] = {}
current = ""
for path, data in self.source_datapipe:
assert isinstance(path, str), path
prefix, suffix = pathsplit(path)
if suffix == "":
# files with empty suffixes can be used for metadata
# they cannot be used for data since they wouldn't have a key
continue
if prefix != current:
if current != "":
yield sample
sample = {}
current = prefix
sample["__key__"] = current
sample[suffix] = data
if sample != {}:
yield sample
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import lzma
import warnings
from io import BufferedIOBase
from typing import Iterable, Iterator, Tuple
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
from torchdata.datapipes.utils import StreamWrapper
from torchdata.datapipes.utils.common import validate_pathname_binary_tuple
@functional_datapipe("load_from_xz")
class XzFileLoaderIterDataPipe(IterDataPipe[Tuple[str, BufferedIOBase]]):
r"""
Decompresses xz (lzma) binary streams from an Iterable DataPipe which contains tuples of
path name and xy binary streams, and yields a tuple of path name and extracted binary
stream (functional name: ``load_from_xz``).
Args:
datapipe: Iterable DataPipe that provides tuples of path name and xy binary stream
length: Nominal length of the DataPipe
Note:
The opened file handles will be closed automatically if the default ``DecoderDataPipe``
is attached. Otherwise, user should be responsible to close file handles explicitly
or let Python's GC close them periodically.
Example:
>>> from torchdata.datapipes.iter import FileLister, FileOpener
>>> datapipe1 = FileLister(".", "*.xz")
>>> datapipe2 = FileOpener(datapipe1, mode="b")
>>> xz_loader_dp = datapipe2.load_from_xz()
>>> for _, stream in xz_loader_dp:
>>> print(stream.read())
b'0123456789abcdef'
"""
def __init__(self, datapipe: Iterable[Tuple[str, BufferedIOBase]], length: int = -1) -> None:
super().__init__()
self.datapipe: Iterable[Tuple[str, BufferedIOBase]] = datapipe
self.length: int = length
def __iter__(self) -> Iterator[Tuple[str, BufferedIOBase]]:
for data in self.datapipe:
validate_pathname_binary_tuple(data)
pathname, data_stream = data
try:
extracted_fobj = lzma.open(data_stream, mode="rb") # type: ignore[call-overload]
new_pathname = pathname.rstrip(".xz")
yield new_pathname, StreamWrapper(extracted_fobj, data_stream, name=pathname) # type: ignore[misc]
except Exception as e:
warnings.warn(f"Unable to extract files from corrupted xz/lzma stream {pathname} due to: {e}, abort!")
raise e
finally:
if isinstance(data_stream, StreamWrapper):
data_stream.autoclose()
def __len__(self) -> int:
if self.length == -1:
raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
return self.length
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import csv
from typing import IO, Iterator, Tuple, TypeVar, Union
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
D = TypeVar("D")
Str_Or_Bytes = Union[str, bytes]
class PlainTextReaderHelper:
def __init__(
self,
*,
skip_lines: int = 0,
strip_newline: bool = True,
decode: bool = True,
encoding="utf-8",
errors: str = "ignore",
return_path: bool = False,
as_tuple: bool = False,
) -> None:
if skip_lines < 0:
raise ValueError("'skip_lines' is required to be a positive integer.")
self._skip_lines = skip_lines
self._strip_newline = strip_newline
self._decode = decode
self._encoding = encoding
self._errors = errors
self._return_path = return_path
self._as_tuple = as_tuple
def skip_lines(self, file: IO) -> Union[Iterator[bytes], Iterator[str]]:
with contextlib.suppress(StopIteration):
for _ in range(self._skip_lines):
next(file)
try:
yield from file
finally:
file.close()
def strip_newline(self, stream: Union[Iterator[bytes], Iterator[str]]) -> Union[Iterator[bytes], Iterator[str]]:
if not self._strip_newline:
yield from stream
return
for line in stream:
if isinstance(line, str):
yield line.strip("\r\n")
else:
yield line.strip(b"\r\n")
def decode(self, stream: Union[Iterator[bytes], Iterator[str]]) -> Union[Iterator[bytes], Iterator[str]]:
if not self._decode:
yield from stream
else:
for line in stream:
yield line.decode(self._encoding, self._errors) if isinstance(line, bytes) else line
def return_path(self, stream: Iterator[D], *, path: str) -> Iterator[Union[D, Tuple[str, D]]]:
if not self._return_path:
yield from stream
return
for data in stream:
yield path, data
def as_tuple(self, stream: Iterator[D]) -> Iterator[Union[D, Tuple]]:
if not self._as_tuple:
yield from stream
return
for data in stream:
if isinstance(data, list):
yield tuple(data)
else:
yield data
@functional_datapipe("readlines")
class LineReaderIterDataPipe(IterDataPipe[Union[Str_Or_Bytes, Tuple[str, Str_Or_Bytes]]]):
r"""
Accepts a DataPipe consisting of tuples of file name and string data stream, and for each line in the
stream, yields a tuple of file name and the line (functional name: ``readlines``).
Args:
source_datapipe: a DataPipe with tuples of file name and string data stream
skip_lines: number of lines to skip at the beginning of each file
strip_newline: if ``True``, the new line character will be stripped
decode: if ``True``, this will decode the contents of the file based on the specified ``encoding``
encoding: the character encoding of the files (`default='utf-8'`)
errors: the error handling scheme used while decoding
return_path: if ``True``, each line will return a tuple of path and contents, rather
than just the contents
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> import io
>>> text1 = "Line1\nLine2"
>>> text2 = "Line2,1\r\nLine2,2\r\nLine2,3"
>>> source_dp = IterableWrapper([("file1", io.StringIO(text1)), ("file2", io.StringIO(text2))])
>>> line_reader_dp = source_dp.readlines()
>>> list(line_reader_dp)
[('file1', 'Line1'), ('file1', 'Line2'), ('file2', 'Line2,1'), ('file2', 'Line2,2'), ('file2', 'Line2,3')]
"""
def __init__(
self,
source_datapipe: IterDataPipe[Tuple[str, IO]],
*,
skip_lines: int = 0,
strip_newline: bool = True,
decode: bool = False,
encoding="utf-8",
errors: str = "ignore",
return_path: bool = True,
) -> None:
self.source_datapipe = source_datapipe
self._helper = PlainTextReaderHelper(
skip_lines=skip_lines,
strip_newline=strip_newline,
decode=decode,
encoding=encoding,
errors=errors,
return_path=return_path,
)
def __iter__(self) -> Iterator[Union[Str_Or_Bytes, Tuple[str, Str_Or_Bytes]]]:
for path, file in self.source_datapipe:
stream = self._helper.skip_lines(file)
stream = self._helper.strip_newline(stream)
stream = self._helper.decode(stream)
yield from self._helper.return_path(stream, path=path) # type: ignore[misc]
class _CSVBaseParserIterDataPipe(IterDataPipe):
def __init__(
self,
source_datapipe,
csv_reader,
*,
skip_lines: int = 0,
decode: bool = False,
encoding="utf-8",
errors: str = "ignore",
return_path: bool = True,
as_tuple: bool = False,
**fmtparams,
) -> None:
self.source_datapipe = source_datapipe
self._csv_reader = csv_reader
self._helper = PlainTextReaderHelper(
skip_lines=skip_lines,
decode=decode,
encoding=encoding,
errors=errors,
return_path=return_path,
as_tuple=as_tuple,
)
self.fmtparams = fmtparams
def __iter__(self) -> Iterator[Union[D, Tuple[str, D]]]:
for path, file in self.source_datapipe:
stream = self._helper.skip_lines(file)
stream = self._helper.decode(stream)
stream = self._csv_reader(stream, **self.fmtparams)
stream = self._helper.as_tuple(stream) # type: ignore[assignment]
yield from self._helper.return_path(stream, path=path) # type: ignore[misc]
@functional_datapipe("parse_csv")
class CSVParserIterDataPipe(_CSVBaseParserIterDataPipe):
r"""
Accepts a DataPipe consists of tuples of file name and CSV data stream,
reads and returns the contents within the CSV files one row at a time (functional name: ``parse_csv``).
Each output is a `List` by default, but it depends on ``fmtparams``.
Args:
source_datapipe: source DataPipe with tuples of file name and CSV data stream
skip_lines: number of lines to skip at the beginning of each file
strip_newline: if ``True``, the new line character will be stripped
decode: if ``True``, this will decode the contents of the file based on the specified ``encoding``
encoding: the character encoding of the files (`default='utf-8'`)
errors: the error handling scheme used while decoding
return_path: if ``True``, each line will return a tuple of path and contents, rather
than just the contents
as_tuple: if ``True``, each line will return a tuple instead of a list
Example:
>>> from torchdata.datapipes.iter import IterableWrapper, FileOpener
>>> import os
>>> def get_name(path_and_stream):
>>> return os.path.basename(path_and_stream[0]), path_and_stream[1]
>>> datapipe1 = IterableWrapper(["1.csv", "empty.csv", "empty2.csv"])
>>> datapipe2 = FileOpener(datapipe1, mode="b")
>>> datapipe3 = datapipe2.map(get_name)
>>> csv_parser_dp = datapipe3.parse_csv()
>>> list(csv_parser_dp)
[['key', 'item'], ['a', '1'], ['b', '2'], []]
"""
def __init__(
self,
source_datapipe: IterDataPipe[Tuple[str, IO]],
*,
skip_lines: int = 0,
decode: bool = True,
encoding: str = "utf-8",
errors: str = "ignore",
return_path: bool = False,
as_tuple: bool = False,
**fmtparams,
) -> None:
super().__init__(
source_datapipe,
csv.reader,
skip_lines=skip_lines,
decode=decode,
encoding=encoding,
errors=errors,
return_path=return_path,
as_tuple=as_tuple,
**fmtparams,
)
@functional_datapipe("parse_csv_as_dict")
class CSVDictParserIterDataPipe(_CSVBaseParserIterDataPipe):
r"""
Accepts a DataPipe consists of tuples of file name and CSV data stream, reads and returns the contents
within the CSV files one row at a time (functional name: ``parse_csv_as_dict``).
Each output is a `Dict` by default, but it depends on ``fmtparams``. The first row of each file, unless skipped,
will be used as the header; the contents of the header row will be used as keys for the `Dict`\s
generated from the remaining rows.
Args:
source_datapipe: source DataPipe with tuples of file name and CSV data stream
skip_lines: number of lines to skip at the beginning of each file
strip_newline: if ``True``, the new line character will be stripped
decode: if ``True``, this will decode the contents of the file based on the specified ``encoding``
encoding: the character encoding of the files (`default='utf-8'`)
errors: the error handling scheme used while decoding
return_path: if ``True``, each line will return a tuple of path and contents, rather
than just the contents
Example:
>>> from torchdata.datapipes.iter import FileLister, FileOpener
>>> import os
>>> def get_name(path_and_stream):
>>> return os.path.basename(path_and_stream[0]), path_and_stream[1]
>>> datapipe1 = FileLister(".", "*.csv")
>>> datapipe2 = FileOpener(datapipe1, mode="b")
>>> datapipe3 = datapipe2.map(get_name)
>>> csv_dict_parser_dp = datapipe3.parse_csv_as_dict()
>>> list(csv_dict_parser_dp)
[{'key': 'a', 'item': '1'}, {'key': 'b', 'item': '2'}]
"""
def __init__(
self,
source_datapipe: IterDataPipe[Tuple[str, IO]],
*,
skip_lines: int = 0,
decode: bool = True,
encoding: str = "utf-8",
errors: str = "ignore",
return_path: bool = False,
**fmtparams,
) -> None:
super().__init__(
source_datapipe,
csv.DictReader,
skip_lines=skip_lines,
decode=decode,
encoding=encoding,
errors=errors,
return_path=return_path,
**fmtparams,
)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import Iterator, Optional, TypeVar
from warnings import warn
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
T_co = TypeVar("T_co", covariant=True)
@functional_datapipe("header")
class HeaderIterDataPipe(IterDataPipe[T_co]):
r"""
Yields elements from the source DataPipe from the start, up to the specfied limit (functional name: ``header``).
If you would like to manually set the length of a DataPipe to a certain value; we recommend you to
use :class:`.LengthSetter`.
Args:
source_datapipe: the DataPipe from which elements will be yielded
limit: the number of elements to yield before stopping
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> dp = IterableWrapper(range(10))
>>> header_dp = dp.header(3)
>>> list(header_dp)
[0, 1, 2]
"""
def __init__(self, source_datapipe: IterDataPipe[T_co], limit: Optional[int] = 10) -> None:
self.source_datapipe: IterDataPipe[T_co] = source_datapipe
self.limit: Optional[int] = limit
def __iter__(self) -> Iterator[T_co]:
i: int = 0
for value in self.source_datapipe:
i += 1
if self.limit is None or i <= self.limit:
yield value
else:
break
def __len__(self) -> int:
try:
source_len = len(self.source_datapipe)
return source_len if self.limit is None else min(source_len, self.limit)
except TypeError as error:
if self.limit is None:
raise TypeError("The length of this HeaderIterDataPipe cannot be determined.") from error
warn(
"The length of this HeaderIterDataPipe is inferred to be equal to its limit."
"The actual value may be smaller if the actual length of source_datapipe is smaller than the limit."
)
return self.limit
@functional_datapipe("set_length")
class LengthSetterIterDataPipe(IterDataPipe[T_co]):
r"""
Set the length attribute of the DataPipe, which is returned by ``__len__`` (functional name: ``set_length``).
This can be used after DataPipes whose final length cannot be known in advance (e.g. ``filter``). If you
know the final length with certainty, you can manually set it, which can then be used by
DataLoader or other DataPipes.
Note:
This DataPipe differs from :class:`.Header` in that this doesn't restrict the number of elements that
can be yielded from the DataPipe; this is strictly used for setting an attribute so that it can be used later.
Args:
source_datapipe: a DataPipe
length: the integer value that will be set as the length
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> dp = IterableWrapper(range(10)).filter(lambda x: x < 5).set_length(3)
>>> list(dp) # Notice that the number of elements yielded is unchanged
[0, 1, 2, 3, 4]
>>> len(dp)
3
>>> header_dp = IterableWrapper(range(10)).filter(lambda x: x < 5).header(3)
>>> list(header_dp) # Use `.header()` if you want to limit the number of elements yielded
[0, 1, 2]
>>> len(header_dp)
3
"""
def __init__(self, source_datapipe: IterDataPipe[T_co], length: int) -> None:
self.source_datapipe: IterDataPipe[T_co] = source_datapipe
assert length >= 0
self.length: int = length
def __iter__(self) -> Iterator[T_co]:
yield from self.source_datapipe
def __len__(self) -> int:
return self.length
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from collections import defaultdict
from typing import Dict, Iterator, List, Union
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
@functional_datapipe("rows2columnar")
class Rows2ColumnarIterDataPipe(IterDataPipe[Dict]):
r"""
Accepts an input DataPipe with batches of data, and processes one batch
at a time and yields a Dict for each batch, with ``column_names`` as keys and lists of
corresponding values from each row as values (functional name: ``rows2columnar``).
Within the input DataPipe, each row within a batch must either be a `Dict` or a `List`
Note:
If ``column_names`` are not given and each row is a `Dict`, the keys of that Dict will be used as column names.
Args:
source_datapipe: a DataPipe where each item is a batch. Within each batch,
there are rows and each row is a `List` or `Dict`
column_names: if each element in a batch contains `Dict`, ``column_names`` act as a filter for matching keys;
otherwise, these are used as keys to for the generated `Dict` of each batch
Example:
>>> # Each element in a batch is a `Dict`
>>> from torchdata.datapipes.iter import IterableWrapper
>>> dp = IterableWrapper([[{'a': 1}, {'b': 2, 'a': 1}], [{'a': 1, 'b': 200}, {'b': 2, 'c': 3, 'a': 100}]])
>>> row2col_dp = dp.rows2columnar()
>>> list(row2col_dp)
[defaultdict(<class 'list'>, {'a': [1, 1], 'b': [2]}),
defaultdict(<class 'list'>, {'a': [1, 100], 'b': [200, 2], 'c': [3]})]
>>> row2col_dp = dp.rows2columnar(column_names=['a'])
>>> list(row2col_dp)
[defaultdict(<class 'list'>, {'a': [1, 1]}),
defaultdict(<class 'list'>, {'a': [1, 100]})]
>>> # Each element in a batch is a `List`
>>> dp = IterableWrapper([[[0, 1, 2, 3], [4, 5, 6, 7]]])
>>> row2col_dp = dp.rows2columnar(column_names=["1st_in_batch", "2nd_in_batch", "3rd_in_batch", "4th_in_batch"])
>>> list(row2col_dp)
[defaultdict(<class 'list'>, {'1st_in_batch': [0, 4], '2nd_in_batch': [1, 5],
'3rd_in_batch': [2, 6], '4th_in_batch': [3, 7]})]
"""
column_names: List[str]
def __init__(self, source_datapipe: IterDataPipe[List[Union[Dict, List]]], column_names: List[str] = None) -> None:
self.source_datapipe: IterDataPipe[List[Union[Dict, List]]] = source_datapipe
self.column_names: List[str] = [] if column_names is None else column_names
def __iter__(self) -> Iterator[Dict]:
for batch in self.source_datapipe:
columnar = defaultdict(list)
for list_or_dict_row in batch:
if isinstance(list_or_dict_row, dict):
# if column_names provided, we use it as a filter
if len(self.column_names) > 0:
for column_name in self.column_names:
# this line will raise a KeyError if column_name
# is not within list_or_dict_row which is the
# expected behavior
columnar[column_name].append(list_or_dict_row[column_name])
else:
for k, v in list_or_dict_row.items():
columnar[k].append(v)
else:
for i, v in enumerate(list_or_dict_row):
columnar[self.column_names[i]].append(v)
yield columnar
def __len__(self) -> int:
return len(self.source_datapipe)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
import sys
import warnings
import zipfile
from io import BufferedIOBase
from typing import cast, IO, Iterable, Iterator, Tuple
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
from torchdata.datapipes.utils import StreamWrapper
from torchdata.datapipes.utils.common import validate_pathname_binary_tuple
@functional_datapipe("load_from_zip")
class ZipArchiveLoaderIterDataPipe(IterDataPipe[Tuple[str, BufferedIOBase]]):
r"""
Opens/decompresses zip binary streams from an Iterable DataPipe which contains a tuple of path name and
zip binary stream, and yields a tuple of path name and extracted binary stream (functional name: ``load_from_zip``).
Args:
datapipe: Iterable DataPipe that provides tuples of path name and zip binary stream
length: Nominal length of the DataPipe
Note:
The opened file handles will be closed automatically if the default ``DecoderDataPipe``
is attached. Otherwise, user should be responsible to close file handles explicitly
or let Python's GC close them periodically. Due to how `zipfiles` implements its ``open()`` method,
the data_stream variable below cannot be closed within the scope of this function.
Example:
>>> from torchdata.datapipes.iter import FileLister, FileOpener
>>> datapipe1 = FileLister(".", "*.zip")
>>> datapipe2 = FileOpener(datapipe1, mode="b")
>>> zip_loader_dp = datapipe2.load_from_zip()
>>> for _, stream in zip_loader_dp:
>>> print(stream.read())
b'0123456789abcdef'
"""
def __init__(self, datapipe: Iterable[Tuple[str, BufferedIOBase]], length: int = -1) -> None:
super().__init__()
self.datapipe: Iterable[Tuple[str, BufferedIOBase]] = datapipe
self.length: int = length
def __iter__(self) -> Iterator[Tuple[str, BufferedIOBase]]:
for data in self.datapipe:
validate_pathname_binary_tuple(data)
pathname, data_stream = data
try:
# typing.cast is used here to silence mypy's type checker
zips = zipfile.ZipFile(cast(IO[bytes], data_stream))
for zipinfo in zips.infolist():
# major version should always be 3 here.
if sys.version_info[1] >= 6:
if zipinfo.is_dir():
continue
elif zipinfo.filename.endswith("/"):
continue
extracted_fobj = zips.open(zipinfo)
inner_pathname = os.path.normpath(os.path.join(pathname, zipinfo.filename))
yield inner_pathname, StreamWrapper(extracted_fobj, data_stream, name=inner_pathname) # type: ignore[misc]
except Exception as e:
warnings.warn(f"Unable to extract files from corrupted zipfile stream {pathname} due to: {e}, abort!")
raise e
finally:
if isinstance(data_stream, StreamWrapper):
data_stream.autoclose()
# We are unable to close 'data_stream' here, because it needs to be available to use later
def __len__(self) -> int:
if self.length == -1:
raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
return self.length
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import Dict, Iterator, Tuple, TypeVar
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
K = TypeVar("K")
@functional_datapipe("enumerate")
class EnumeratorIterDataPipe(IterDataPipe[Tuple[int, K]]):
r"""
Adds an index to an existing DataPipe through enumeration, with
the index starting from 0 by default (functional name: ``enumerate``).
Args:
source_datapipe: Iterable DataPipe being indexed
starting_index: Index from which enumeration will start
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> dp = IterableWrapper(['a', 'b', 'c'])
>>> enum_dp = dp.enumerate()
>>> list(enum_dp)
[(0, 'a'), (1, 'b'), (2, 'c')]
"""
def __init__(self, source_datapipe: IterDataPipe[K], starting_index: int = 0) -> None:
self.source_datapipe: IterDataPipe[K] = source_datapipe
self.starting_index = starting_index
def __iter__(self):
yield from enumerate(self.source_datapipe, self.starting_index)
def __len__(self):
return len(self.source_datapipe)
@functional_datapipe("add_index")
class IndexAdderIterDataPipe(IterDataPipe[Dict]):
r"""
Adds an index to an existing Iterable DataPipe with (functional name: ``add_index``). The row or batch
within the DataPipe must have the type `Dict`; otherwise, a `NotImplementedError` will be thrown. The index
of the data is set to the provided ``index_name``.
Args:
source_datapipe: Iterable DataPipe being indexed, its row/batch must be of type `Dict`
index_name: Name of the key to store data index
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> dp = IterableWrapper([{'a': 1, 'b': 2}, {'c': 3, 'a': 1}])
>>> index_dp = dp.add_index("order")
>>> list(index_dp)
[{'a': 1, 'b': 2, 'order': 0}, {'c': 3, 'a': 1, 'order': 1}]
"""
def __init__(self, source_datapipe: IterDataPipe[Dict], index_name: str = "index") -> None:
self.source_datapipe = source_datapipe
self.index_name = index_name
def __iter__(self) -> Iterator[Dict]:
for i, row_or_batch in enumerate(self.source_datapipe):
if isinstance(row_or_batch, dict):
row_or_batch[self.index_name] = i
yield row_or_batch
else:
raise NotImplementedError("We only support adding index to row or batch in dict type")
def __len__(self) -> int:
return len(self.source_datapipe)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import random
from typing import Dict, Iterator, Optional, Sized, TypeVar
from torchdata.datapipes.iter import IterDataPipe
T_co = TypeVar("T_co", covariant=True)
class SampleMultiplexerDataPipe(IterDataPipe[T_co]):
"""
Takes a `Dict` of (IterDataPipe, Weight), and yields items by sampling from these
DataPipes with respect to their weights. When individual DataPipes are exhausted, continues to sample from
the remaining DataPipes according to their relative weights.
If you wish to maintain the same ratio of weights indefinitely, you need to ensure that the
inputs are never exhausted, by, for instance, applying ``cycle`` to them.
Sampling is controlled by the provided random ``seed``. If you don't provide it, the sampling
will not be deterministic.
Args:
pipes_to_weights_dict: a `Dict` of IterDataPipes and Weights. The total weight of
unexhausted DataPipes will be normalized to 1 for the purpose of sampling.
seed: random seed to initialize the random number generator
Example:
>>> from torchdata.datapipes.iter import IterableWrapper, SampleMultiplexer
>>> source_dp1 = IterableWrapper([0] * 10)
>>> source_dp2 = IterableWrapper([1] * 10)
>>> d = {source_dp1: 99999999, source_dp2: 0.0000001}
>>> sample_mul_dp = SampleMultiplexer(pipes_to_weights_dict=d, seed=0)
>>> list(sample_mul_dp)
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
"""
def __init__(
self,
pipes_to_weights_dict: Dict[IterDataPipe[T_co], float],
seed: Optional[int] = None,
):
if not pipes_to_weights_dict:
raise ValueError("Empty dictionary passed to SampleMultiplexerDataPipe")
total_weight: float = 0
for v in pipes_to_weights_dict.values():
if v <= 0:
raise ValueError(f"Expecting a positive and non-zero weight, got {v}")
total_weight += v
self.pipes_and_weights = [(k, v / total_weight) for k, v in pipes_to_weights_dict.items()]
if seed is None:
self.random = random.Random()
else:
self.random = random.Random(seed)
def __iter__(self) -> Iterator[T_co]:
pipes_and_weights = [(iter(k), v) for k, v in self.pipes_and_weights]
while len(pipes_and_weights) > 1:
r = self.random.random()
s: float = 0
for it, weight in pipes_and_weights:
s += weight
if r < s:
try:
item = next(it)
yield item
except StopIteration:
# remove the current stream
new_total = 1 - weight
assert new_total > 0
pipes_and_weights = [(k, v / new_total) for k, v in pipes_and_weights if k != it]
break
# only one stream left
for item in pipes_and_weights[0][0]:
yield item
def __len__(self) -> int:
if all(isinstance(dp, Sized) for dp, _ in self.pipes_and_weights):
return sum(len(dp) for dp, _ in self.pipes_and_weights)
else:
raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import hashlib
from io import IOBase
from typing import Dict, Iterator, Tuple, Union
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
from torchdata.datapipes.utils import StreamWrapper
D_type = Union[str, bytes, bytearray]
U = Union[D_type, StreamWrapper]
@functional_datapipe("check_hash")
class HashCheckerIterDataPipe(IterDataPipe[Tuple[str, U]]):
r"""
Computes and checks the hash of each file, from an input DataPipe of tuples of file name and
data/stream (functional name: ``check_hash``). If the hashes match the given hash
in the dictionary, it yields a tuple of file name and data/stream. Otherwise, it will raise an error.
Args:
source_datapipe: IterDataPipe with tuples of file name and data/stream
hash_dict: Dictionary that maps file names to their corresponding hashes
hash_type: The type of hash function to apply
rewind: Rewind the stream after using the stream to compute the hash (this
does not work with non-seekable stream, e.g. HTTP)
Example:
>>> from torchdata.datapipes.iter import IterableWrapper, FileOpener
>>> expected_MD5_hash = "bb9675028dd39d2dd2bf71002b93e66c"
File is from "https://raw.githubusercontent.com/pytorch/data/main/LICENSE"
>>> file_dp = FileOpener(IterableWrapper(["LICENSE.txt"]), mode='rb')
>>> # An exception is only raised when the hash doesn't match, otherwise (path, stream) is returned
>>> check_hash_dp = file_dp.check_hash({"LICENSE.txt": expected_MD5_hash}, "md5", rewind=True)
>>> reader_dp = check_hash_dp.readlines()
>>> it = iter(reader_dp)
>>> path, line = next(it)
>>> path
LICENSE.txt
>>> line
b'BSD 3-Clause License'
"""
def __init__(
self,
source_datapipe: IterDataPipe[Tuple[str, IOBase]],
hash_dict: Dict[str, str],
hash_type: str = "sha256",
rewind: bool = True,
) -> None:
self.source_datapipe: IterDataPipe[Tuple[str, IOBase]] = source_datapipe
self.hash_dict: Dict[str, str] = hash_dict
self.hash_type: str = hash_type
self.rewind: bool = rewind
if self.hash_type not in ["sha256", "md5"]:
raise ValueError("Invalid hash_type requested, should be one of {}".format(["sha256", "md5"]))
def __iter__(self) -> Iterator[Tuple[str, StreamWrapper]]:
for file_name, data in self.source_datapipe:
if self.hash_type == "sha256":
hash_func = hashlib.sha256()
else:
hash_func = hashlib.md5()
if isinstance(data, (str, bytes, bytearray)):
if isinstance(data, str):
data = data.decode()
hash_func.update(data)
# File Stream
else:
# Not all streams have `read(bytes)` method.
# `__iter__` method is chosen because it is a common interface for IOBase.
for d in data:
hash_func.update(d)
# TODO(133): this will not work (or work crappy for non-seekable steams like http)
if self.rewind:
data.seek(0)
if file_name not in self.hash_dict:
raise RuntimeError(f"Unspecified hash for file {file_name}")
if hash_func.hexdigest() != self.hash_dict[file_name]:
raise RuntimeError(
f"The computed hash {hash_func.hexdigest()} of {file_name} does not match the expected"
f"hash {self.hash_dict[file_name]}. Delete the file manually and retry."
)
if isinstance(data, (str, bytes, bytearray)):
yield file_name, data
else:
yield file_name, StreamWrapper(data)
def __len__(self) -> int:
return len(self.source_datapipe)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import warnings
from typing import Callable, Dict, Optional
from torch.utils.data import IterDataPipe, MapDataPipe
from torch.utils.data.datapipes.utils.common import _check_unpickable_fn, DILL_AVAILABLE
if DILL_AVAILABLE:
import dill
dill.extend(use_dill=False)
# @functional_datapipe("to_map_datapipe") # This line must be kept for .pyi signature parser
class IterToMapConverterMapDataPipe(MapDataPipe):
r"""
Lazily load data from ``IterDataPipe`` to construct a ``MapDataPipe`` with
the key-value pair generated by ``key_value_fn`` (functional name: ``to_map_datapipe``).
If ``key_value_fn`` is not given, each data from the source IterDataPipe must itself be an iterable
with exactly two objects. The first object of each item becomes a key in
the new dictionary, and the second object the corresponding value.
For the opposite converter, use :class:`.MapToIterConverter`.
Args:
datapipe: Source IterDataPipe
key_value_fn: Function being applied over each data to generate key-value pair
Note:
If a key being added is already present, the corresponding value
will be replaced by the new value.
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> source_dp = IterableWrapper([(i, i) for i in range(10)])
>>> map_dp = source_dp.to_map_datapipe()
>>> list(map_dp)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> source_dp2 = IterableWrapper([('a', 1), ('b', 2), ('c', 1)])
>>> map_dp2 = source_dp2.to_map_datapipe()
>>> map_dp2['a']
1
>>> def row_to_tuple(row):
>>> label = row[0]
>>> data = row[1:]
>>> return label, data
>>> source_dp3 = IterableWrapper([('a', 1, 1, 1, 1, 1, 1), ('b', 2, 2, 2, 2, 2, 2), ('c', 3, 3, 3, 3, 3, 3)])
>>> map_dp3 = source_dp3.to_map_datapipe(key_value_fn=row_to_tuple)
>>> map_dp3['a']
(1, 1, 1, 1, 1, 1)
"""
datapipe: IterDataPipe
key_value_fn: Optional[Callable]
_map: Optional[Dict]
_length: int
def __init__(self, datapipe: IterDataPipe, key_value_fn: Optional[Callable] = None):
if not isinstance(datapipe, IterDataPipe):
raise TypeError(f"IterToMapConverter can only apply on IterDataPipe, but found {type(datapipe)}")
self.datapipe = datapipe
if key_value_fn is not None:
_check_unpickable_fn(key_value_fn)
self.key_value_fn = key_value_fn # type: ignore[assignment]
self._map = None
def _load_map(self):
self._map = {}
for d in self.datapipe:
inp = d if self.key_value_fn is None else self.key_value_fn(d)
try:
length = len(inp)
except TypeError:
raise TypeError(f"Cannot convert dictionary update element {type(inp)} ({inp}) to a sequence")
if length != 2:
raise ValueError(f"dictionary update sequence element has length {length}, 2 is required")
key, value = inp
if key in self._map:
warnings.warn(f"Found duplicate key {key}. Please check your `key_value_fn`")
self._map[key] = value
def __getitem__(self, index):
try:
if self._map is None:
self._load_map()
return self._map[index] # type: ignore[index]
except KeyError:
raise IndexError(f"Index {index} is invalid for IterToMapConverter.")
def __len__(self):
if self._map is not None:
return len(self._map) # type: ignore[arg-type]
try:
return len(self.datapipe)
except (TypeError, NotImplementedError):
pass
warnings.warn(
"Data from prior DataPipe are loaded to get length of"
"IterToMapConverter before execution of the pipeline."
"Please consider removing len()."
)
self._load_map()
return len(self._map) # type: ignore[arg-type]
def __getstate__(self):
if DILL_AVAILABLE:
dill_key_value_fn = dill.dumps(self.key_value_fn)
else:
dill_key_value_fn = self.key_value_fn
return (
self.datapipe,
dill_key_value_fn,
self._map,
)
def __setstate__(self, state):
(self.datapipe, dill_key_value_fn, self._map) = state
if DILL_AVAILABLE:
self.key_value_fn = dill.loads(dill_key_value_fn) # type: ignore[assignment]
else:
self.key_value_fn = dill_key_value_fn # type: ignore[assignment]
# Register for functional API
# See https://github.com/pytorch/data/issues/200
IterDataPipe.register_datapipe_as_function("to_map_datapipe", IterToMapConverterMapDataPipe)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import warnings
from collections import OrderedDict
from typing import Callable, final, Iterator, List, Optional, Sequence, TypeVar
from torch.utils.data import functional_datapipe, IterDataPipe, MapDataPipe
from torch.utils.data.datapipes.iter.combining import _ChildDataPipe, _DemultiplexerIterDataPipe, _ForkerIterDataPipe
from torch.utils.data.datapipes.utils.common import _check_unpickable_fn
from torchdata.datapipes.utils.janitor import janitor
T_co = TypeVar("T_co", covariant=True)
T = TypeVar("T")
@functional_datapipe("zip_with_iter")
class IterKeyZipperIterDataPipe(IterDataPipe[T_co]):
r"""
Zips two IterDataPipes together based on the matching key (functional name: ``zip_with_iter``). The keys
are computed by ``key_fn`` and ``ref_key_fn`` for the two IterDataPipes, respectively. When there isn't a match
between the elements of the two IterDataPipes, the element from ``ref_datapipe`` is stored in a buffer. Then, the
next element from ``ref_datapipe`` is tried. After a match is found, the ``merge_fn`` determines how they will
be combined and returned (a tuple is generated by default).
Args:
source_datapipe: IterKeyZipper will yield data based on the order of this IterDataPipe
ref_datapipe: Reference IterDataPipe from which IterKeyZipper will find items
with matching key for ``source_datapipe``
key_fn: Callable function that will compute keys using elements from ``source_datapipe``
ref_key_fn: Callable function that will compute keys using elements from ``ref_datapipe``
If it's not specified, the ``key_fn`` will also be applied to elements from ``ref_datapipe``
keep_key: Option to yield the matching key along with the items in a tuple,
resulting in `(key, merge_fn(item1, item2))`.
buffer_size: The size of buffer used to hold key-data pairs from reference DataPipe until a match is found.
If it's specified as ``None``, the buffer size is set as infinite.
merge_fn: Function that combines the item from ``source_datapipe`` and the item from ``ref_datapipe``,
by default a tuple is created
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> from operator import itemgetter
>>> def merge_fn(t1, t2):
>>> return t1[1] + t2[1]
>>> dp1 = IterableWrapper([('a', 100), ('b', 200), ('c', 300)])
>>> dp2 = IterableWrapper([('a', 1), ('b', 2), ('c', 3), ('d', 4)])
>>> res_dp = dp1.zip_with_iter(dp2, key_fn=itemgetter(0),
>>> ref_key_fn=itemgetter(0), keep_key=True, merge_fn=merge_fn)
>>> list(res_dp)
[('a', 101), ('b', 202), ('c', 303)]
"""
def __init__(
self,
source_datapipe: IterDataPipe,
ref_datapipe: IterDataPipe,
key_fn: Callable,
ref_key_fn: Optional[Callable] = None,
keep_key: bool = False,
buffer_size: int = 10000,
merge_fn: Optional[Callable] = None,
) -> None:
if not isinstance(ref_datapipe, IterDataPipe):
raise TypeError(f"ref_datapipe must be a IterDataPipe, but its type is {type(ref_datapipe)} instead.")
self.source_datapipe = source_datapipe
self.ref_datapipe = ref_datapipe
_check_unpickable_fn(key_fn)
self.key_fn = key_fn
if ref_key_fn is not None:
_check_unpickable_fn(ref_key_fn)
self.ref_key_fn = key_fn if ref_key_fn is None else ref_key_fn
self.keep_key = keep_key
if merge_fn is not None:
_check_unpickable_fn(merge_fn)
self.merge_fn = merge_fn
if buffer_size is not None and buffer_size <= 0:
raise ValueError("'buffer_size' is required to be either None or a positive integer.")
self.buffer_size: int = buffer_size
self.buffer: OrderedDict = OrderedDict()
def __iter__(self) -> Iterator:
ref_it = iter(self.ref_datapipe)
warn_once_flag = True
try:
for data in self.source_datapipe:
key = self.key_fn(data)
while key not in self.buffer:
try:
ref_data = next(ref_it)
except StopIteration:
raise BufferError(
f"No matching key can be found from reference DataPipe for the data {data}. "
"Please consider increasing the buffer size."
)
ref_key = self.ref_key_fn(ref_data)
if ref_key in self.buffer:
raise ValueError("Duplicate key is found in reference DataPipe")
if self.buffer_size is not None and len(self.buffer) > self.buffer_size:
if warn_once_flag:
warn_once_flag = False
warnings.warn(
"Buffer reaches the upper limit, so reference key-data pair begins to "
"be removed from buffer in FIFO order. Please consider increase buffer size."
)
self.buffer.popitem(last=False)
self.buffer[ref_key] = ref_data
res = self.merge_fn(data, self.buffer.pop(key)) if self.merge_fn else (data, self.buffer.pop(key))
if self.keep_key:
yield key, res
else:
yield res
finally:
del ref_it
# TODO(633): This should be Exception or warn when debug mode is enabled
if self.buffer:
for _, v in self.buffer.items():
janitor(v)
self.buffer.clear()
def __len__(self) -> int:
return len(self.source_datapipe)
@final
def reset(self) -> None:
self.buffer = OrderedDict()
def __getstate__(self):
state = (
self.source_datapipe,
self.ref_datapipe,
self.key_fn,
self.ref_key_fn,
self.keep_key,
self.merge_fn,
self.buffer_size,
)
if IterDataPipe.getstate_hook is not None:
return IterDataPipe.getstate_hook(state)
return state
def __setstate__(self, state):
(
self.source_datapipe,
self.ref_datapipe,
self.key_fn,
self.ref_key_fn,
self.keep_key,
self.merge_fn,
self.buffer_size,
) = state
self.buffer = OrderedDict()
def __del__(self):
if self.buffer:
for _, v in self.buffer.items():
janitor(v)
self.buffer.clear()
@functional_datapipe("zip_with_map")
class MapKeyZipperIterDataPipe(IterDataPipe[T_co]):
r"""
Joins the items from the source IterDataPipe with items from a MapDataPipe (functional name: ``zip_with_map``).
The matching is done by the provided ``key_fn``, which maps an item from ``source_iterdatapipe`` to
a key that should exist in the ``map_datapipe``. The return value is created by the ``merge_fn``, which returns
a tuple of the two items by default.
Args:
source_iterdatapipe: IterDataPipe from which items are yield and will be combined with an item
from ``map_datapipe``
map_datapipe: MapDataPipe that takes a key from ``key_fn``, and returns an item
key_fn: Function that maps each item from ``source_iterdatapipe`` to a key that exists in ``map_datapipe``
keep_key: Option to yield the matching key along with the items in a tuple,
resulting in ``(key, merge_fn(item1, item2))``.
merge_fn: Function that combines the item from ``source_iterdatapipe`` and the matching item
from ``map_datapipe``, by default a tuple is created
Example:
.. testsetup::
from operator import itemgetter
.. testcode::
from torchdata.datapipes.iter import IterableWrapper
from torchdata.datapipes.map import SequenceWrapper
def merge_fn(tuple_from_iter, value_from_map):
return tuple_from_iter[0], tuple_from_iter[1] + value_from_map
dp1 = IterableWrapper([('a', 1), ('b', 2), ('c', 3)])
mapdp = SequenceWrapper({'a': 100, 'b': 200, 'c': 300, 'd': 400})
res_dp = dp1.zip_with_map(map_datapipe=mapdp, key_fn=itemgetter(0), merge_fn=merge_fn)
print(list(res_dp))
Output:
.. testoutput::
[('a', 101), ('b', 202), ('c', 303)]
"""
def __init__(
self,
source_iterdatapipe: IterDataPipe,
map_datapipe: MapDataPipe,
key_fn: Callable,
merge_fn: Optional[Callable] = None,
keep_key: bool = False,
):
if not isinstance(map_datapipe, MapDataPipe):
raise TypeError(f"map_datapipe must be a MapDataPipe, but its type is {type(map_datapipe)} instead.")
self.source_iterdatapipe: IterDataPipe = source_iterdatapipe
self.map_datapipe: MapDataPipe = map_datapipe
_check_unpickable_fn(key_fn)
self.key_fn: Callable = key_fn
if merge_fn is not None:
_check_unpickable_fn(merge_fn)
self.merge_fn: Optional[Callable] = merge_fn
self.keep_key = keep_key
def __iter__(self) -> Iterator:
for item in self.source_iterdatapipe:
key = self.key_fn(item)
try:
map_item = self.map_datapipe[key]
except (KeyError, IndexError):
raise KeyError(f"key_fn maps {item} to {key}, which is not a valid key in the given MapDataPipe.")
res = self.merge_fn(item, map_item) if self.merge_fn else (item, map_item)
if self.keep_key:
yield key, res
else:
yield res
def __len__(self) -> int:
return len(self.source_iterdatapipe)
def _drop_index(idx_data):
_, data = idx_data
return data
@functional_datapipe("round_robin_demux")
class RoundRobinDemultiplexerIterDataPipe(IterDataPipe):
r"""
Splits the input DataPipe into multiple child DataPipes in the round-robin order (functional name: ``round_robin_demux``).
A list of the child DataPipes is returned from this operation.
Args:
datapipe: Iterable DataPipe being filtered
num_instances: number of instances of the DataPipe to create
buffer_size: this defines the maximum number of inputs that the buffer can hold across all child
DataPipes while waiting for their values to be yielded.
Defaults to ``1000``. Use ``-1`` for the unlimited buffer.
Examples:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> source_dp = IterableWrapper(range(5))
>>> dp1, dp2 = source_dp.round_robin_demux(2)
>>> list(dp1)
[0, 2, 4]
>>> len(dp1)
3
>>> list(dp2)
[1, 3]
>>> len(dp2)
2
"""
def __new__(cls, datapipe: IterDataPipe, num_instances: int, buffer_size: int = 1000):
if num_instances < 1:
raise ValueError(f"Expected `num_instaces` larger than 0, but {num_instances} is found")
if num_instances == 1:
warnings.warn(
"The operation of `round_robin_demux` with `num_instances=1` is an no-op and returns the provided `datapipe` in a list directly"
)
return [datapipe]
datapipe = datapipe.enumerate()
container = _RoundRobinDemultiplexerIterDataPipe(datapipe, num_instances, buffer_size=buffer_size)
return [_ChildDataPipe(container, i).map(_drop_index) for i in range(num_instances)]
class _RoundRobinDemultiplexerIterDataPipe(_DemultiplexerIterDataPipe):
def __init__(self, datapipe: IterDataPipe[T_co], num_instances: int, buffer_size: int):
super().__init__(datapipe, num_instances, self._round_robin_fn, drop_none=False, buffer_size=buffer_size)
def _round_robin_fn(self, idx_data) -> int:
idx, _ = idx_data
return idx % self.num_instances
def get_length_by_instance(self, instance_id: int) -> int:
n = len(self.main_datapipe)
avg_length = n // self.num_instances
return avg_length + 1 if n - avg_length * self.num_instances > instance_id else avg_length
@functional_datapipe("unzip")
class UnZipperIterDataPipe(IterDataPipe[T]):
r"""
Takes in a DataPipe of Sequences, unpacks each Sequence, and return the elements in separate DataPipes
based on their position in the Sequence (functional name: ``unzip``). The number of instances produced equals to
the sequence length minus the number of columns to skip.
Note:
Each sequence within the DataPipe should have the same length, specified by
the input argument `sequence_length`.
Args:
source_datapipe: Iterable DataPipe with sequences of data
sequence_length: Length of the sequence within the source_datapipe. All elements should have the same length.
buffer_size: this restricts how far ahead the leading child DataPipe can read relative
to the slowest child DataPipe. Use -1 for the unlimited buffer.
columns_to_skip: optional indices of columns that the DataPipe should skip (each index should be
an integer from 0 to sequence_length - 1)
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> source_dp = IterableWrapper([(i, i + 10, i + 20) for i in range(3)])
>>> dp1, dp2, dp3 = source_dp.unzip(sequence_length=3)
>>> list(dp1)
[0, 1, 2]
>>> list(dp2)
[10, 11, 12]
>>> list(dp3)
[20, 21, 22]
"""
def __new__(
cls,
source_datapipe: IterDataPipe[Sequence[T]],
sequence_length: int,
buffer_size: int = 1000,
columns_to_skip: Optional[Sequence[int]] = None,
):
if columns_to_skip is None:
instance_ids = list(range(sequence_length))
else:
skips = set(columns_to_skip)
instance_ids = [i for i in range(sequence_length) if i not in skips]
if len(instance_ids) == 0:
raise RuntimeError(
"All instances are being filtered out in UnZipperIterDataPipe. Please check"
"the input `sequence_length` and `columns_to_skip`."
)
# The implementation basically uses Forker but only yields a specific element within the sequence
container = _UnZipperIterDataPipe(source_datapipe, instance_ids, buffer_size) # type: ignore[arg-type]
return [_ChildDataPipe(container, i) for i in range(len(instance_ids))]
class _UnZipperIterDataPipe(_ForkerIterDataPipe):
def __init__(self, datapipe: IterDataPipe, instance_ids: List[int], buffer_size: int = 1000):
super().__init__(datapipe, len(instance_ids), buffer_size) # type: ignore[arg-type]
self.instance_ids = instance_ids
def get_next_element_by_instance(self, instance_id: int):
r"""
Note:
Each element returned from the source datapipe is required to be a sequnce that can
be subscribed with a column index
"""
for return_val in super().get_next_element_by_instance(instance_id):
yield return_val[self.instance_ids[instance_id]]
def __getstate__(self):
state = super().__getstate__()
return (*state, self.instance_ids)
def __setstate__(self, state):
super().__setstate__(state[:-1])
self.instance_ids = state[-1]
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import bz2
import gzip
import lzma
import os
import pathlib
import tarfile
import zipfile
from enum import Enum
from io import IOBase
from typing import Iterator, Optional, Tuple, Union
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
from torchdata.datapipes.utils import StreamWrapper
class CompressionType(Enum):
GZIP = "gzip"
LZMA = "lzma"
TAR = "tar"
ZIP = "zip"
BZIP2 = "bz2"
@functional_datapipe("decompress")
class DecompressorIterDataPipe(IterDataPipe[Tuple[str, StreamWrapper]]):
r"""
Takes tuples of path and compressed stream of data, and returns tuples of
path and decompressed stream of data (functional name: ``decompress``). The input compression format can be specified
or automatically detected based on the files' file extensions.
Args:
source_datapipe: IterDataPipe containing tuples of path and compressed stream of data
file_type: Optional `string` or ``CompressionType`` that represents what compression format of the inputs
Example:
>>> from torchdata.datapipes.iter import FileLister, FileOpener
>>> tar_file_dp = FileLister(self.temp_dir.name, "*.tar")
>>> tar_load_dp = FileOpener(tar_file_dp, mode="b")
>>> tar_decompress_dp = Decompressor(tar_load_dp, file_type="tar")
>>> for _, stream in tar_decompress_dp:
>>> print(stream.read())
b'0123456789abcdef'
"""
types = CompressionType
_DECOMPRESSORS = {
types.GZIP: lambda file: gzip.GzipFile(fileobj=file),
types.LZMA: lambda file: lzma.LZMAFile(file),
types.TAR: lambda file: tarfile.open(fileobj=file, mode="r:*"),
types.ZIP: lambda file: zipfile.ZipFile(file=file),
types.BZIP2: lambda file: bz2.BZ2File(filename=file),
}
def __init__(
self, source_datapipe: IterDataPipe[Tuple[str, IOBase]], file_type: Optional[Union[str, CompressionType]] = None
) -> None:
self.source_datapipe: IterDataPipe[Tuple[str, IOBase]] = source_datapipe
if isinstance(file_type, str):
file_type = self.types(file_type.lower())
self.file_type: Optional[CompressionType] = file_type
def _detect_compression_type(self, path: str) -> CompressionType:
if self.file_type:
return self.file_type
ext = "".join(pathlib.Path(path).suffixes)
if ext in {".tar.gz", ".tar.xz"}:
return self.types.TAR
else:
ext = os.path.splitext(path)[1]
if ext == ".tar":
return self.types.TAR
elif ext == ".xz":
return self.types.LZMA
elif ext == ".gz":
return self.types.GZIP
elif ext == ".zip":
return self.types.ZIP
elif ext == ".bz2":
return self.types.BZIP2
else:
raise RuntimeError(
f"File at {path} has file extension {ext}, which does not match what are supported by"
f"ExtractorIterDataPipe."
)
def __iter__(self) -> Iterator[Tuple[str, StreamWrapper]]:
for path, file in self.source_datapipe:
try:
file_type = self._detect_compression_type(path)
decompressor = self._DECOMPRESSORS[file_type]
yield path, StreamWrapper(decompressor(file), file, name=path)
finally:
if isinstance(file, StreamWrapper):
file.autoclose()
@functional_datapipe("extract")
class ExtractorIterDataPipe(IterDataPipe[Tuple[str, StreamWrapper]]):
r"""
Please use ``Decompressor`` or ``.decompress`` instead.
"""
def __new__(
cls, source_datapipe: IterDataPipe[Tuple[str, IOBase]], file_type: Optional[Union[str, CompressionType]] = None
):
return DecompressorIterDataPipe(source_datapipe, file_type)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import threading
import time
from collections import deque
from typing import Deque, final, Optional, Sized
import torch
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
from torchdata.datapipes.utils import pin_memory_fn
PRODUCER_SLEEP_INTERVAL = 0.0001 # Interval between buffer fulfillment checks
CONSUMER_SLEEP_INTERVAL = 0.0001 # Interval between checking items availability in buffer
class _PrefetchData:
def __init__(self, source_datapipe, buffer_size: int):
self.run_prefetcher: bool = True
self.prefetch_buffer: Deque = deque()
self.buffer_size: int = buffer_size
self.source_datapipe = source_datapipe
self.stop_iteration: bool = False
self.paused: bool = False
@functional_datapipe("prefetch")
class PrefetcherIterDataPipe(IterDataPipe):
r"""
Prefetches elements from the source DataPipe and puts them into a buffer (functional name: ``prefetch``).
Prefetching performs the operations (e.g. I/O, computations) of the DataPipes up to this one ahead of time
and stores the result in the buffer, ready to be consumed by the subsequent DataPipe. It has no effect aside
from getting the sample ready ahead of time.
This is used by ``MultiProcessingReadingService`` when the arguments
``worker_prefetch_cnt`` (for prefetching at each worker process) or
``main_prefetch_cnt`` (for prefetching at the main loop) are greater than 0.
Beyond the built-in use cases, this can be useful to put after I/O DataPipes that have
expensive I/O operations (e.g. takes a long time to request a file from a remote server).
Args:
source_datapipe: IterDataPipe from which samples are prefetched
buffer_size: the size of the buffer which stores the prefetched samples
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> dp = IterableWrapper(file_paths).open_files().prefetch(5)
"""
def __init__(self, source_datapipe, buffer_size: int = 10):
self.source_datapipe = source_datapipe
if buffer_size <= 0:
raise ValueError("'buffer_size' is required to be a positive integer.")
self.buffer_size = buffer_size
self.thread: Optional[threading.Thread] = None
self.prefetch_data: Optional[_PrefetchData] = None
@staticmethod
def thread_worker(prefetch_data: _PrefetchData):
itr = iter(prefetch_data.source_datapipe)
while not prefetch_data.stop_iteration:
# Run if not paused
while prefetch_data.run_prefetcher:
if len(prefetch_data.prefetch_buffer) < prefetch_data.buffer_size:
try:
item = next(itr)
prefetch_data.prefetch_buffer.append(item)
except Exception as e:
prefetch_data.run_prefetcher = False
prefetch_data.stop_iteration = True
prefetch_data.prefetch_buffer.append(e)
else: # Buffer is full, waiting for main thread to consume items
# TODO: Calculate sleep interval based on previous consumption speed
time.sleep(PRODUCER_SLEEP_INTERVAL)
prefetch_data.paused = True
# Sleep longer when this prefetcher thread is paused
time.sleep(PRODUCER_SLEEP_INTERVAL * 10)
def __iter__(self):
try:
prefetch_data = _PrefetchData(self.source_datapipe, self.buffer_size)
self.prefetch_data = prefetch_data
thread = threading.Thread(target=PrefetcherIterDataPipe.thread_worker, args=(prefetch_data,), daemon=True)
thread.start()
self.thread = thread
# Lazily import to prevent circular import
from torchdata.dataloader2 import communication
while not prefetch_data.stop_iteration or len(prefetch_data.prefetch_buffer) > 0:
if len(prefetch_data.prefetch_buffer) > 0:
data = prefetch_data.prefetch_buffer.popleft()
if isinstance(data, Exception):
if isinstance(data, (StopIteration, communication.iter.TerminateRequired)):
break
raise data
yield data
else:
time.sleep(CONSUMER_SLEEP_INTERVAL)
finally:
if "prefetch_data" in locals():
prefetch_data.run_prefetcher = False
prefetch_data.stop_iteration = True
prefetch_data.paused = False
if "thread" in locals():
thread.join()
def __getstate__(self):
"""
Getting state in threading environment requires next operations:
1) Stopping of the producer thread.
2) Saving buffer.
3) Adding lazy restart of producer thread when __next__ is called again
(this will guarantee that you only change state of the source_datapipe
after entire state of the graph is saved).
"""
# TODO: Update __getstate__ and __setstate__ to support snapshotting and restoration
return {"source_datapipe": self.source_datapipe, "buffer_size": self.buffer_size}
def __setstate__(self, state):
self.source_datapipe = state["source_datapipe"]
self.buffer_size = state["buffer_size"]
self.thread = None
@final
def reset(self):
self.shutdown()
def pause(self):
if self.thread is not None:
assert self.prefetch_data is not None
self.prefetch_data.run_prefetcher = False
if self.thread.is_alive():
# Blocking until the thread is paused
while not self.prefetch_data.paused:
time.sleep(PRODUCER_SLEEP_INTERVAL * 10)
@final
def resume(self):
if (
self.thread is not None
and self.prefetch_data is not None
and (not self.prefetch_data.stop_iteration or len(self.prefetch_data.prefetch_buffer) > 0)
):
self.prefetch_data.run_prefetcher = True
self.prefetch_data.paused = False
@final
def shutdown(self):
if hasattr(self, "prefetch_data") and self.prefetch_data is not None:
self.prefetch_data.run_prefetcher = False
self.prefetch_data.stop_iteration = True
self.prefetch_data.paused = False
self.prefetch_data = None
if hasattr(self, "thread") and self.thread is not None:
self.thread.join()
self.thread = None
def __del__(self):
self.shutdown()
def __len__(self) -> int:
if isinstance(self.source_datapipe, Sized):
return len(self.source_datapipe)
raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
@functional_datapipe("pin_memory")
class PinMemoryIterDataPipe(PrefetcherIterDataPipe):
r"""
Prefetches one element from the source DataPipe and moves it to pinned memory (functional name: ``pin_memory``).
When used with ``MultiProcessingReadingService``, this DataPipe would be kept in the main process to prevent
duplicated CUDA context creation.
Args:
source_datapipe: IterDataPipe from which samples are moved to pinned memory.
device: The device to pin samples.
pin_memory_fn: Optional callable function to move data to pinned memory.
A ``pin_memory_fn`` to handle general objects is provided by default.
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> dp = IterableWrapper(file_paths).open_files().readlines().map(tokenize_fn).pin_memory()
"""
def __init__(self, source_datapipe, device=None, pin_memory_fn=pin_memory_fn):
if not torch.cuda.is_available():
raise RuntimeError("``pin_memory`` can only be used when CUDA is available.")
# TODO: Add support for dynamic buffer based on the available size of pinned memory
super().__init__(source_datapipe, buffer_size=2)
if device is None:
device = torch.cuda.current_device()
self.device = device
self.pin_memory_fn = pin_memory_fn
def is_replicable(self) -> bool:
return False
@staticmethod
def thread_worker(prefetch_data: _PrefetchData, pin_memory_fn, device): # type: ignore[override]
itr = iter(prefetch_data.source_datapipe)
while not prefetch_data.stop_iteration:
# Run if not paused
while prefetch_data.run_prefetcher:
if len(prefetch_data.prefetch_buffer) < prefetch_data.buffer_size:
try:
item = pin_memory_fn(next(itr), device)
prefetch_data.prefetch_buffer.append(item)
except Exception as e:
prefetch_data.run_prefetcher = False
prefetch_data.stop_iteration = True
prefetch_data.prefetch_buffer.append(e)
else: # Buffer is full, waiting for main thread to consume items
# TODO: Calculate sleep interval based on previous consumption speed
time.sleep(PRODUCER_SLEEP_INTERVAL)
# Sleep longer when this prefetcher thread is paused
time.sleep(PRODUCER_SLEEP_INTERVAL * 10)
def __iter__(self):
try:
prefetch_data = _PrefetchData(self.source_datapipe, self.buffer_size)
self.prefetch_data = prefetch_data
thread = threading.Thread(
target=PinMemoryIterDataPipe.thread_worker,
args=(prefetch_data, self.pin_memory_fn, self.device),
daemon=True,
)
thread.start()
self.thread = thread
# Lazily import to prevent circular import
from torchdata.dataloader2 import communication
while not prefetch_data.stop_iteration or len(prefetch_data.prefetch_buffer) > 0:
if len(prefetch_data.prefetch_buffer) > 0:
data = prefetch_data.prefetch_buffer.popleft()
if isinstance(data, Exception):
if isinstance(data, (StopIteration, communication.iter.TerminateRequired)):
break
raise data
yield data
else:
time.sleep(CONSUMER_SLEEP_INTERVAL)
finally:
if "prefetch_data" in locals():
prefetch_data.run_prefetcher = False
prefetch_data.stop_iteration = True
prefetch_data.paused = False
if "thread" in locals():
thread.join()
def __getstate__(self):
state = super().__getstate__()
state["pin_memory_fn"] = self.pin_memory_fn
state["device"] = self.device
return state
def __setstate__(self, state):
super().__setstate__(state)
self.pin_memory_fn = state["pin_memory_fn"]
self.device = state["device"]
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import Set, Sized
from torch.utils.data.datapipes._decorator import functional_datapipe
from torch.utils.data.datapipes.datapipe import IterDataPipe
@functional_datapipe("mux_longest")
class MultiplexerLongestIterDataPipe(IterDataPipe):
r"""
Yields one element at a time from each of the input Iterable DataPipes (functional name: ``mux_longest``). As in,
one element from the 1st input DataPipe, then one element from the 2nd DataPipe in the next iteration,
and so on. It skips over DataPipes that are exhausted, and ends when all input DataPipes are exhausted.
Args:
datapipes: Iterable DataPipes that will take turn to yield their elements, until they are all exhausted
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> dp1, dp2, dp3 = IterableWrapper(range(5)), IterableWrapper(range(10, 15)), IterableWrapper(range(20, 25))
>>> list(dp1.mux_longest(dp2, dp3))
[0, 10, 20, 1, 11, 21, 2, 12, 22, 3, 13, 23, 4, 14, 24]
"""
def __init__(self, *datapipes):
self.datapipes = datapipes
def __iter__(self):
iterators = [iter(x) for x in self.datapipes]
finished: Set[int] = set()
while len(finished) < len(iterators):
for i in range(len(iterators)):
if i not in finished:
try:
value = next(iterators[i])
yield value
except StopIteration:
finished.add(i)
def __len__(self):
if all(isinstance(dp, Sized) for dp in self.datapipes):
return sum(len(dp) for dp in self.datapipes)
else:
raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import bz2
import warnings
from io import BufferedIOBase
from typing import Iterable, Iterator, Tuple
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
from torchdata.datapipes.utils import StreamWrapper
from torchdata.datapipes.utils.common import validate_pathname_binary_tuple
@functional_datapipe("load_from_bz2")
class Bz2FileLoaderIterDataPipe(IterDataPipe[Tuple[str, BufferedIOBase]]):
r"""
Decompresses bz2 binary streams from an Iterable DataPipe which contains tuples of
path name and bz2 binary streams, and yields a tuple of path name and extracted binary
stream (functional name: ``load_from_bz2``).
Args:
datapipe: Iterable DataPipe that provides tuples of path name and bz2 binary stream
length: Nominal length of the DataPipe
Note:
The opened file handles will be closed automatically if the default ``DecoderDataPipe``
is attached. Otherwise, user should be responsible to close file handles explicitly
or let Python's GC close them periodically.
Example:
>>> from torchdata.datapipes.iter import FileLister, FileOpener
>>> datapipe1 = FileLister(".", "*.bz2")
>>> datapipe2 = FileOpener(datapipe1, mode="b")
>>> bz2_loader_dp = datapipe2.load_from_bz2()
>>> for _, stream in bz2_loader_dp:
>>> print(stream.read())
b'0123456789abcdef'
"""
def __init__(self, datapipe: Iterable[Tuple[str, BufferedIOBase]], length: int = -1) -> None:
super().__init__()
self.datapipe: Iterable[Tuple[str, BufferedIOBase]] = datapipe
self.length: int = length
def __iter__(self) -> Iterator[Tuple[str, BufferedIOBase]]:
for data in self.datapipe:
validate_pathname_binary_tuple(data)
pathname, data_stream = data
try:
extracted_fobj = bz2.open(data_stream, mode="rb") # type: ignore[call-overload]
new_pathname = pathname.rstrip(".bz2")
yield new_pathname, StreamWrapper(extracted_fobj, data_stream, name=new_pathname) # type: ignore[misc]
except Exception as e:
warnings.warn(f"Unable to extract files from corrupted bzip2 stream {pathname} due to: {e}, abort!")
raise e
finally:
if isinstance(data_stream, StreamWrapper):
data_stream.autoclose()
def __len__(self) -> int:
if self.length == -1:
raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
return self.length
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import Callable, final, Iterator, List, Tuple, TypeVar
from torch.utils.data.datapipes.utils.common import _check_unpickable_fn
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
T_co = TypeVar("T_co", covariant=True)
def _default_line_join(lines: List[str]) -> str:
return "\n".join(lines)
@functional_datapipe("lines_to_paragraphs")
class ParagraphAggregatorIterDataPipe(IterDataPipe[Tuple[str, str]]):
r"""
Aggregates lines of text from the same file into a single paragraph (functional name: ``lines_to_paragraphs``).
Specifically, this accepts a DataPipe consisting of tuples of a file name and a line. For each tuple,
it checks if the file name matches the file name from the previous tuple. If yes, it joins the current line
with existing paragraph. If the file names do not match, the existing paragraph is yielded and a new
paragraph starts.
Args:
source_datapipe: a DataPipe with tuples of a file name and a line
joiner: a function that joins a list of lines together
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> source_dp = IterableWrapper(
>>> [("file1", "Line1"), ("file1", "Line2"), ("file2", "Line2,1"), ("file2", "Line2,2"), ("file2", "Line2,3")]
>>> )
>>> para_agg_dp = source_dp.lines_to_paragraphs(joiner=lambda ls: " ".join(ls))
>>> list(para_agg_dp)
[('file1', 'Line1 Line2'), ('file2', 'Line2,1 Line2,2 Line2,3')]
"""
def __init__(self, source_datapipe: IterDataPipe[Tuple[str, T_co]], joiner: Callable = _default_line_join) -> None:
self.source_datapipe: IterDataPipe[Tuple[str, T_co]] = source_datapipe
_check_unpickable_fn(joiner)
self.joiner: Callable = joiner
self.buffer: List = []
def __iter__(self) -> Iterator[Tuple[str, str]]:
prev_filename = None
for filename, line in self.source_datapipe:
if prev_filename is None:
prev_filename = filename
if line and prev_filename == filename:
self.buffer.append(line)
else:
if self.buffer:
yield prev_filename, self.joiner(self.buffer) # type: ignore[misc]
if line:
self.buffer = [line]
else:
self.buffer = []
prev_filename = filename
if self.buffer:
yield prev_filename, self.joiner(self.buffer) # type: ignore[misc]
@final
def reset(self) -> None:
self.buffer = []
def __getstate__(self):
state = (self.source_datapipe, self.joiner)
if IterDataPipe.getstate_hook is not None:
return IterDataPipe.getstate_hook(state)
return state
def __setstate__(self, state):
(self.source_datapipe, self.joiner) = state
self.buffer = []
def __del__(self):
self.buffer.clear()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import threading
import time
from collections import deque
from concurrent.futures import Future, ThreadPoolExecutor, TimeoutError
from dataclasses import dataclass
from functools import partial
from typing import Callable, Deque, final, Iterator, Optional, TypeVar
import torch
import torch.distributed as dist
from torchdata._constants import default_timeout_in_s
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
from torchdata.datapipes.iter.util.prefetcher import PRODUCER_SLEEP_INTERVAL
T_co = TypeVar("T_co", covariant=True)
__all__ = ["Expected", "FullSyncIterDataPipe", "PrefetchTimeoutError"]
class PrefetchTimeoutError(RuntimeError):
def __init__(self, timeout: int) -> None:
super().__init__(f"Fail to fetch data within {timeout} seconds")
self.timeout = timeout
class _EndOfPrefetch:
...
@dataclass
class Expected:
r"""
Expected data provided to callback function in ``_PrefetchExecutor``.
"""
index: int
error: Optional[BaseException] = None
def has_error(self) -> bool:
return self.error is not None
class _PrefetchExecutor:
# TODO: Improvement - merge with the `_PrefetchData` class of prefetcher.py
# May not be possible right now due to circular import
def __init__(
self,
datapipe_iterator: Iterator,
prefetch_size: int = 1,
callback_fn: Optional[Callable[[Expected], None]] = None,
timeout: int = default_timeout_in_s,
) -> None:
self.datapipe_iterator = datapipe_iterator
self.prefetch_size = prefetch_size
self.callback_fn = callback_fn
self.timeout = timeout
# Use max_workers as 1 to guarantee the order of data fetched from iterator
self._executor = ThreadPoolExecutor(max_workers=1)
self._futures: Deque[Future] = deque()
self._lock = threading.RLock()
# `_end_flag` indicates the end of epoch or an exception has been raised,
# with the exception being handled by `callback_fn`
self._end_flag: bool = False
self._paused: bool = False
self._is_shutdown: bool = False # indicates if `_executor` has been shutdown by `shutdown` method
self._idx = 0
for _ in range(prefetch_size):
with self._lock:
if self._end_flag:
break
fetch_future: Future = self._executor.submit(self.fetch_next)
fetch_future.add_done_callback(partial(self._done_callback_fn, self._idx))
self._futures.append(fetch_future)
with self._lock:
self._idx += 1
def fetch_next(self):
while self._paused:
time.sleep(PRODUCER_SLEEP_INTERVAL * 10)
return next(self.datapipe_iterator)
def _done_callback_fn(self, index: int, f: Future):
if f.exception():
with self._lock:
self._end_flag = True
if self.callback_fn is not None:
# Invoke `callback_fn` in order to set `FullSyncDP._done_callback` to `True`
self.callback_fn(Expected(index, f.exception()))
def return_next(self):
if self._futures:
fetch_future = self._futures.popleft()
try:
data = fetch_future.result(timeout=self.timeout)
except TimeoutError:
raise PrefetchTimeoutError(self.timeout)
with self._lock:
if not self._end_flag and not self._is_shutdown:
next_future = self._executor.submit(self.fetch_next)
next_future.add_done_callback(partial(self._done_callback_fn, self._idx))
self._futures.append(next_future)
self._idx += 1
else:
data = _EndOfPrefetch()
return data
def shutdown(self):
self._paused = False
self._is_shutdown = True
while self._futures:
self._futures.popleft().cancel()
self._executor.shutdown(wait=True)
def pause(self):
self._paused = True
def resume(self):
self._paused = False
@functional_datapipe("fullsync")
class FullSyncIterDataPipe(IterDataPipe[T_co]):
r"""
Synchronizes data across distributed processes to prevent hanging during training,
which is caused by uneven sharded data (functional name: ``fullsync``). It stops
when the shortest distributed shard is exhausted. It would be appended at the end
of the graph of ``DataPipe`` by ``DistributedReadingService`` automatically.
Args:
datapipe: IterDataPipe that needs to be synchronized
timeout: Timeout for prefetching data in seconds. Default value equals to 30 minutes
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> # Distributed training with world size 2
>>> world_size = 2
>>> dp = IterableWrapper(list(range(23))).sharding_filter()
>>> torch.utils.data.graph_settings.apply_sharding(dp, world_size, rank)
>>> # Rank 0 has 12 elements; Rank 1 has 11 elements
>>> for d in dp:
... model(d) # Hanging at the end of epoch due to uneven sharding
>>> dp = dp.fullsync()
>>> # Both ranks have 11 elements
>>> for d in dp:
... model(d) # Not hanging anymore
"""
def __init__(self, datapipe: IterDataPipe, timeout=default_timeout_in_s):
if not dist.is_available():
raise RuntimeError("Torch Distributed is required to be available")
self.datapipe = datapipe
self.timeout: int = timeout
self._process_group: Optional[dist.ProcessGroup] = None
self._world_size: int = 1
self._lock = threading.RLock()
self._cv = threading.Condition(lock=self._lock)
self._executor: Optional[_PrefetchExecutor] = None
# Use single values rather than deques for the following variables
# because fullsync only prefetches 1 element
self._error = None
self._sync_counter = torch.tensor([0], dtype=torch.int32)
self._done_callback = False
def _callback_fn(self, exp: Expected) -> None:
with self._cv:
if exp.has_error():
if not isinstance(exp.error, StopIteration):
self._error = exp.error # type: ignore[assignment]
self._sync_counter = torch.tensor([0], dtype=torch.int32)
else:
self._sync_counter = torch.tensor([1], dtype=torch.int32)
dist.all_reduce(
tensor=self._sync_counter,
op=dist.ReduceOp.SUM,
group=self._process_group,
)
self._done_callback = True
self._cv.notify()
def __iter__(self) -> Iterator[T_co]:
assert self._executor is None
if not (dist.is_available() and dist.is_initialized()):
raise RuntimeError("Torch Distributed is required to be initialized to use `FullSync`.")
if self._process_group is None:
self._process_group = dist.new_group(backend="gloo")
self._world_size = dist.get_world_size()
if self._world_size == 1: # The below functionalities are not needed if `_world_size == 1`
yield from self.datapipe
return
self._executor = _PrefetchExecutor(iter(self.datapipe), 1, self._callback_fn, self.timeout)
while True:
with self._cv:
is_success = self._cv.wait_for(
lambda: self._done_callback is True,
self.timeout,
)
if not is_success:
raise PrefetchTimeoutError(self.timeout)
if self._error is not None:
raise self._error
if bool(self._sync_counter < self._world_size):
break
self._done_callback = False
data = self._executor.return_next() # type: ignore[attr-defined]
if isinstance(data, _EndOfPrefetch):
break
yield data
@final
def reset(self):
if self._executor is not None:
self._executor.shutdown()
self._executor = None
self._world_size = 1
with self._cv:
self._error = None
self._sync_counter = torch.tensor([0], dtype=torch.int32)
self._done_callback = False
def is_replicable(self):
return False
def __getstate__(self):
state = (
self.datapipe,
self.timeout,
)
if IterDataPipe.getstate_hook is not None:
return IterDataPipe.getstate_hook(state)
return state
def __setstate__(self, state):
self.datapipe, self.timeout = state
self._process_group = None
self._world_size = 1
self._lock = threading.RLock()
self._cv = threading.Condition(lock=self._lock)
self._executor = None
self._error = None
self._sync_counter = torch.tensor([0], dtype=torch.int32)
self._done_callback = False
@final
def pause(self):
if self._executor is not None:
self._executor.pause()
@final
def resume(self):
if self._executor is not None:
self._executor.resume()
@final
def shutdown(self):
if self._executor is not None:
self._executor.shutdown()
self._executor = None
def __del__(self):
self.shutdown()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
from typing import Any, Callable, Iterator, Optional, Tuple, Union
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
U = Union[bytes, bytearray, str]
@functional_datapipe("save_to_disk")
class SaverIterDataPipe(IterDataPipe[str]):
r"""
Takes in a DataPipe of tuples of metadata and data, saves the data
to the target path generated by the ``filepath_fn`` and metadata, and yields file path on local file
system (functional name: ``save_to_disk``).
Args:
source_datapipe: Iterable DataPipe with tuples of metadata and data
mode: Node in which the file will be opened for write the data (``"w"`` by default)
filepath_fn: Function that takes in metadata and returns the target path of the new file
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> import os
>>> def filepath_fn(name: str) -> str:
>>> return os.path.join(".", os.path.basename(name))
>>> name_to_data = {"1.txt": b"DATA1", "2.txt": b"DATA2", "3.txt": b"DATA3"}
>>> source_dp = IterableWrapper(sorted(name_to_data.items()))
>>> saver_dp = source_dp.save_to_disk(filepath_fn=filepath_fn, mode="wb")
>>> res_file_paths = list(saver_dp)
>>> res_file_paths
['./1.txt', './2.txt', './3.txt']
"""
def __init__(
self,
source_datapipe: IterDataPipe[Tuple[Any, U]],
mode: str = "w",
filepath_fn: Optional[Callable] = None,
):
self.source_datapipe: IterDataPipe[Tuple[Any, U]] = source_datapipe
self.mode: str = mode if "w" in mode else "w" + mode
self.fn: Optional[Callable] = filepath_fn
def __iter__(self) -> Iterator[str]:
for filepath, data in self.source_datapipe:
if self.fn is not None:
filepath = self.fn(filepath)
dirname = os.path.dirname(filepath)
if not os.path.exists(dirname):
os.makedirs(dirname)
# with portalocker.Lock(filepath, self.mode, flags=portalocker.LockFlags.EXCLUSIVE) as f:
# TODO(639): Enabling line above will require all read sites to be updated (Win).
with open(filepath, self.mode) as f:
f.write(data)
yield filepath
def __len__(self) -> int:
return len(self.source_datapipe)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import io
import os.path
from typing import Iterator, Tuple
from unittest.mock import patch
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
from torchdata.datapipes.utils import StreamWrapper
from torchdata.datapipes.utils.common import validate_pathname_binary_tuple
class RarfilePatcher:
def __init__(self):
from rarfile import DirectReader
unpatched_read = DirectReader._read
def patched_read(self, cnt=-1):
self._fd.seek(self._inf.header_offset, 0)
self._cur = self._parser._parse_header(self._fd)
self._cur_avail = self._cur.add_size
return unpatched_read(self, cnt)
self._patch = patch("rarfile.DirectReader._read", new=patched_read)
def start(self):
self._patch.start()
def stop(self):
self._patch.stop()
_PATCHED = False
@functional_datapipe("load_from_rar")
class RarArchiveLoaderIterDataPipe(IterDataPipe[Tuple[str, io.BufferedIOBase]]):
r"""
Decompresses rar binary streams from input Iterable Datapipes which contains tuples of path name and rar
binary stream, and yields a tuple of path name and extracted binary stream (functional name: ``load_from_rar``).
Note:
The nested RAR archive is not supported by this DataPipe
due to the limitation of the archive type. Please extract
outer RAR archive before reading the inner archive.
Args:
datapipe: Iterable DataPipe that provides tuples of path name and rar binary stream
length: Nominal length of the DataPipe
Example:
>>> from torchdata.datapipes.iter import FileLister, FileOpener
>>> datapipe1 = FileLister(".", "*.rar")
>>> datapipe2 = FileOpener(datapipe1, mode="b")
>>> rar_loader_dp = datapipe2.load_from_rar()
>>> for _, stream in rar_loader_dp:
>>> print(stream.read())
b'0123456789abcdef'
"""
def __init__(self, datapipe: IterDataPipe[Tuple[str, io.BufferedIOBase]], *, length: int = -1):
try:
import rarfile
except ImportError as error:
raise ModuleNotFoundError(
"Package `rarfile` is required to be installed to use this datapipe. "
"Please use `pip install rarfile` or `conda -c conda-forge install rarfile` to install it."
) from error
# check if at least one system library for reading rar archives is available to be used by rarfile
rarfile.tool_setup()
self.datapipe = datapipe
self.length = length
def __iter__(self) -> Iterator[Tuple[str, io.BufferedIOBase]]:
import rarfile
global _PATCHED
if not _PATCHED:
patcher = RarfilePatcher()
patcher.start()
_PATCHED = True
for data in self.datapipe:
try:
validate_pathname_binary_tuple(data)
path, stream = data
if isinstance(stream, rarfile.RarExtFile) or (
isinstance(stream, StreamWrapper) and isinstance(stream.file_obj, rarfile.RarExtFile)
):
raise ValueError(
f"Nested RAR archive is not supported by {type(self).__name__}. Please extract outer archive first."
)
rar = rarfile.RarFile(stream)
for info in rar.infolist():
if info.is_dir():
continue
inner_path = os.path.join(path, info.filename)
file_obj = rar.open(info)
yield inner_path, StreamWrapper(file_obj, stream, name=path) # type: ignore[misc]
finally:
if isinstance(stream, StreamWrapper):
stream.autoclose()
def __len__(self) -> int:
if self.length == -1:
raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
return self.length
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import Any, Iterator, List, Optional, Set, Sized, Tuple
from torch.utils.data.datapipes._decorator import functional_datapipe
from torch.utils.data.datapipes.datapipe import IterDataPipe
@functional_datapipe("zip_longest")
class ZipperLongestIterDataPipe(IterDataPipe):
r"""
Aggregates elements into a tuple from each of the input DataPipes (functional name: ``zip_longest``).
The output is stopped until all input DataPipes are exhausted. If any input DataPipe is exhausted,
missing values are filled-in with `fill_value` (default value is None).
Args:
*datapipes: Iterable DataPipes being aggregated
*fill_value: Value that user input to fill in the missing values from DataPipe. Default value is None.
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> dp1, dp2, dp3 = IterableWrapper(range(3)), IterableWrapper(range(10, 15)), IterableWrapper(range(20, 25))
>>> list(dp1.zip_longest(dp2, dp3))
[(0, 10, 20), (1, 11, 21), (2, 12, 22), (None, 13, 23), (None, 14, 24)]
>>> list(dp1.zip_longest(dp2, dp3, -1))
[(0, 10, 20), (1, 11, 21), (2, 12, 22), (-1, 13, 23), (-1, 14, 24)]
"""
datapipes: Tuple[IterDataPipe]
length: Optional[int]
fill_value: Any
def __init__(
self,
*datapipes: IterDataPipe,
fill_value: Any = None,
):
if not all(isinstance(dp, IterDataPipe) for dp in datapipes):
raise TypeError("All inputs are required to be `IterDataPipe` " "for `ZipperLongestIterDataPipe`.")
super().__init__()
self.datapipes = datapipes # type: ignore[assignment]
self.fill_value = fill_value
def __iter__(self) -> Iterator[Tuple]:
iterators = [iter(x) for x in self.datapipes]
finished: Set[int] = set()
while len(finished) < len(iterators):
values: List[Any] = []
for i in range(len(iterators)):
value = self.fill_value
if i not in finished:
try:
value = next(iterators[i])
except StopIteration:
finished.add(i)
if len(finished) == len(iterators):
return
values.append(value)
yield tuple(values)
def __len__(self) -> int:
if all(isinstance(dp, Sized) for dp in self.datapipes):
return max(len(dp) for dp in self.datapipes)
else:
raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import json
from typing import Dict, IO, Iterator, Tuple
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
@functional_datapipe("parse_json_files")
class JsonParserIterDataPipe(IterDataPipe[Tuple[str, Dict]]):
r"""
Reads from JSON data streams and yields a tuple of file name and JSON data (functional name: ``parse_json_files``).
Args:
source_datapipe: a DataPipe with tuples of file name and JSON data stream
kwargs: keyword arguments that will be passed through to ``json.loads``
Example:
>>> from torchdata.datapipes.iter import IterableWrapper, FileOpener
>>> import os
>>> def get_name(path_and_stream):
>>> return os.path.basename(path_and_stream[0]), path_and_stream[1]
>>> datapipe1 = IterableWrapper(["empty.json", "1.json", "2.json"])
>>> datapipe2 = FileOpener(datapipe1, mode="b")
>>> datapipe3 = datapipe2.map(get_name)
>>> json_dp = datapipe3.parse_json_files()
>>> list(json_dp)
[('1.json', ['foo', {'bar': ['baz', None, 1.0, 2]}]), ('2.json', {'__complex__': True, 'real': 1, 'imag': 2})]
"""
def __init__(self, source_datapipe: IterDataPipe[Tuple[str, IO]], **kwargs) -> None:
self.source_datapipe: IterDataPipe[Tuple[str, IO]] = source_datapipe
self.kwargs = kwargs
def __iter__(self) -> Iterator[Tuple[str, Dict]]:
for file_name, stream in self.source_datapipe:
data = stream.read()
stream.close()
yield file_name, json.loads(data, **self.kwargs)
def __len__(self) -> int:
return len(self.source_datapipe)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import hashlib
import inspect
import os.path
import sys
import time
import uuid
import warnings
from collections import deque
from functools import partial
from typing import Any, Callable, Deque, Dict, Iterator, List, Optional, Tuple, TypeVar
try:
import portalocker
except ImportError:
portalocker = None
from torch.utils.data.datapipes.utils.common import _check_unpickable_fn, DILL_AVAILABLE
from torch.utils.data.graph import traverse_dps
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterableWrapper, IterDataPipe
if DILL_AVAILABLE:
import dill
dill.extend(use_dill=False)
def _assert_portalocker() -> None:
try:
import portalocker # noqa: F401
except ImportError as e:
if os.name == "nt" and str(e).startswith("DLL load failed while importing"):
print(
"Please take a look at FAQ in https://github.com/pytorch/data#frequently-asked-questions-faq"
"for the solution of this Error."
)
raise
else:
raise ModuleNotFoundError(
"Package `portalocker` is required to be installed to use this datapipe."
"Please use `pip install 'portalocker>=2.0.0'` or"
"`conda install -c conda-forge 'portalocker>=2/0.0'`"
"to install the package"
)
T_co = TypeVar("T_co", covariant=True)
PROMISE_FILE_DELETE_TIMEOUT = 30
PROMISE_FILE_DELETE_RETRY_INTERVAL = 0.005
from enum import IntEnum
class CacheState(IntEnum):
UNCACHED = 0
CACHED_SINGLE_ENTITY = 1
CACHED_MULTIPLE_ENTITIES = 2
@functional_datapipe("in_memory_cache")
class InMemoryCacheHolderIterDataPipe(IterDataPipe[T_co]):
r"""
Stores elements from the source DataPipe in memory, up to a size limit
if specified (functional name: ``in_memory_cache``). This cache is FIFO - once the cache is full,
further elements will not be added to the cache until the previous ones are yielded and popped off from the cache.
Args:
source_dp: source DataPipe from which elements are read and stored in memory
size: The maximum size (in megabytes) that this DataPipe can hold in memory. This defaults to unlimited.
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> source_dp = IterableWrapper(range(10))
>>> cache_dp = source_dp.in_memory_cache(size=5)
>>> list(cache_dp)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
"""
size: Optional[int] = None
idx: int
def __init__(self, source_dp: IterDataPipe[T_co], size: Optional[int] = None) -> None:
self.source_dp: IterDataPipe[T_co] = source_dp
# cache size in MB
if size is not None:
self.size = size * 1024 * 1024
self.cache: Optional[Deque] = None
self.idx: int = 0
def __iter__(self) -> Iterator[T_co]:
if self.cache:
if self.idx > 0:
for idx, data in enumerate(self.source_dp):
if idx < self.idx:
yield data
else:
break
yield from self.cache
else:
# Local cache
cache: Deque = deque()
idx = 0
for data in self.source_dp:
cache.append(data)
# Cache reaches limit
if self.size is not None and sys.getsizeof(cache) > self.size:
cache.popleft()
idx += 1
yield data
self.cache = cache
self.idx = idx
def __len__(self) -> int:
try:
return len(self.source_dp)
except TypeError:
if self.cache:
return self.idx + len(self.cache)
else:
raise TypeError(f"{type(self).__name__} instance doesn't have valid length until the cache is loaded.")
def _generator_to_list(gen_fn):
def list_fn(*args, **kwargs):
gen = gen_fn(*args, **kwargs)
return list(gen)
return list_fn
def _hash_check(filepath, hash_dict, hash_type):
if filepath not in hash_dict:
return False
if hash_type == "sha256":
hash_func = hashlib.sha256()
else:
hash_func = hashlib.md5()
# with portalocker.Lock(filepath, "rb", flags=portalocker.LockFlags.SHARED) as f:
# TODO(634): Line above will require all readers (Win) to obtain proper locks,
# I'm putting it on hold as we need to modify PyTorch core codebase heavily.
with open(filepath, "rb") as f:
chunk = f.read(1024 ** 2)
while chunk:
hash_func.update(chunk)
chunk = f.read(1024 ** 2)
return hash_func.hexdigest() == hash_dict[filepath]
def _promise_filename(filename, cache_uuid):
return filename + ".promise." + str(cache_uuid)
@functional_datapipe("on_disk_cache")
class OnDiskCacheHolderIterDataPipe(IterDataPipe):
"""
Caches the outputs of multiple DataPipe operations to local files, which are
typically performance bottleneck such download, decompress, and etc (functional name: ``on_disk_cache``).
Must use ``.end_caching()`` to stop tracing the sequence of DataPipe operations and save the results to local files.
Args:
source_datapipe: IterDataPipe
filepath_fn: Given data from ``source_datapipe``, returns file path(s) on local file system.
Single file path is only allowed as output of the function.
If resulted file name is different from the filename generated by the filename function of the end_cache
original file name used to store list of yield files (and as cached items availability check)
hash_dict: A Dictionary mapping file names to their corresponding hashes. If ``hash_dict`` is specified,
the extra hash check will be attached before saving data to local file system. If the data
doesn't meet the hash, the pipeline will raise an Error.
hash_type: The type of hash function to apply
extra_check_fn: Optional function to carry out extra validation on
the given file path from ``filepath_fn``.
Example:
>>> from torchdata.datapipes.iter import IterableWrapper, HttpReader
>>> url = IterableWrapper(["https://path/to/filename", ])
>>> def _filepath_fn(url):
>>> temp_dir = tempfile.gettempdir()
>>> return os.path.join(temp_dir, os.path.basename(url))
>>> hash_dict = {"expected_filepath": expected_MD5_hash}
>>> cache_dp = url.on_disk_cache(filepath_fn=_filepath_fn, hash_dict=_hash_dict, hash_type="md5")
>>> # You must call ``.end_caching`` at a later point to stop tracing and save the results to local files.
>>> cache_dp = HttpReader(cache_dp).end_caching(mode="wb", filepath_fn=_filepath_fn)
"""
_temp_dict: Dict = {}
def __init__(
self,
source_datapipe: IterDataPipe,
filepath_fn: Optional[Callable] = None,
hash_dict: Dict[str, str] = None,
hash_type: str = "sha256",
extra_check_fn: Optional[Callable[[str], bool]] = None,
):
_assert_portalocker()
self.source_datapipe = source_datapipe
if filepath_fn is not None:
_check_unpickable_fn(filepath_fn)
assert not inspect.isgeneratorfunction(filepath_fn) # BC breaking, now only str is accepted as return
if hash_dict is not None and hash_type not in ("sha256", "md5"):
raise ValueError("Invalid hash_type requested, should be one of {}".format(("sha256", "md5")))
# TODO(VitalyFedyunin): We need some way to generate pipe uuids which will have similar result for
# same graph but different nodes of distributed system
self._uuid = uuid.uuid4()
OnDiskCacheHolderIterDataPipe._temp_dict[self] = (filepath_fn, hash_dict, hash_type, extra_check_fn, self._uuid)
self._end_caching_flag: bool = False
self._download_everything = False # This is internal field used for load testing only
def __iter__(self):
if self._end_caching_flag:
yield from self.source_datapipe
else:
# In case of BC breaking, use RuntimeError for now. Warning is another option
raise RuntimeError("Please call `end_caching()` before iteration.")
def __add__(self, other_datapipe):
raise RuntimeError("`OnDiskCacheHolder` doesn't support add operation")
# Since Demux is using this function, we should not attach it to OnDiskCacheHolder instance.
# Otherwise, it would cause infinite recursion in graph traversal
@staticmethod
def _cache_check_fn(data, filepath_fn, hash_dict, hash_type, extra_check_fn, cache_uuid):
filepath = data if filepath_fn is None else filepath_fn(data)
assert not isinstance(filepath, (list, tuple)) # BC breaking, now only str is accepted as return
result = CacheState.CACHED_SINGLE_ENTITY
cached_file_exists = True
if os.path.exists(_get_list_filename(filepath)):
return int(CacheState.CACHED_MULTIPLE_ENTITIES)
if not os.path.exists(filepath):
cached_file_exists = False
elif hash_dict is not None and not _hash_check(filepath, hash_dict, hash_type):
# TODO: It is safer to assume that entire cache is compromised and require user to wipe it
cached_file_exists = False
elif extra_check_fn is not None and not extra_check_fn(filepath):
# TODO: It is safer to assume that entire cache is compromised and require user to wipe it
cached_file_exists = False
if not cached_file_exists:
promise_filepath = _promise_filename(filepath, cache_uuid)
dirname = os.path.dirname(promise_filepath)
if not os.path.exists(dirname):
os.makedirs(dirname)
with portalocker.Lock(promise_filepath, "a+", flags=portalocker.LockFlags.EXCLUSIVE) as promise_fh:
promise_fh.seek(0)
data = promise_fh.read()
# TODO(VitalyFedyunin): Potentially there is old .promise file from previous failed run, we
# need to somehow propagate uniq session id for dataloader, save and compare it here,
# raising error
file_exists = len(data) > 0
if not file_exists:
result = CacheState.UNCACHED
promise_fh.seek(0)
data = promise_fh.read()
# TODO(635): Potentially there is old .promise file from previous failed run, we
# need to somehow propagate uniq session id for dataloader, save and compare it here,
# raising error
file_exists = len(data) > 0
if not file_exists:
promise_fh.seek(0)
promise_fh.write("[dataloader session uid]")
promise_fh.truncate()
promise_fh.flush()
return int(result)
def _end_caching(self):
filepath_fn, hash_dict, hash_type, extra_check_fn, cache_uuid = OnDiskCacheHolderIterDataPipe._temp_dict.pop(
self
)
todo_dp: Any
cached_dp: Any
one_many_cached_dp: Any
if self._download_everything:
todo_dp = self.source_datapipe
cached_dp = IterableWrapper([])
one_many_cached_dp = IterableWrapper([])
else:
todo_dp, cached_dp, one_many_cached_dp = self.source_datapipe.demux(
3,
partial(
OnDiskCacheHolderIterDataPipe._cache_check_fn,
filepath_fn=filepath_fn,
hash_dict=hash_dict,
hash_type=hash_type,
extra_check_fn=extra_check_fn,
cache_uuid=cache_uuid,
),
)
# Cached: keep filepath(s)
cached_dp = cached_dp.map(fn=filepath_fn)
one_many_cached_dp = one_many_cached_dp.map(fn=filepath_fn)
one_many_cached_dp = _ExtractFilesFromList(one_many_cached_dp)
self.source_datapipe = todo_dp.memory_cell()
self._end_caching_flag = True
return cached_dp, one_many_cached_dp
def _read_bytes(fd):
return b"".join(fd)
def _read_str(fd):
return "".join(fd)
def _is_promise_pending(promise_filename):
return os.path.exists(promise_filename)
class _WaitPendingCacheItemIterDataPipe(IterDataPipe):
def __init__(self, source_datapipe, timeout=300, input_col=None, cache_uuid=None):
self.source_datapipe = source_datapipe
self.timeout = timeout
self.input_col = input_col
self._cache_uuid = cache_uuid
def set_timeout(self, timeout):
self.timeout = timeout
def __iter__(self):
for data in self.source_datapipe:
if self.input_col is not None:
filename = data[self.input_col]
else:
filename = data
promise_filename = _promise_filename(filename, self._cache_uuid)
start = time.time()
while _is_promise_pending(promise_filename):
time.sleep(0.01)
if time.time() - start > self.timeout:
raise Exception(
f"OnDiskCache Exception: {filename} expected to be written by different process, "
+ f"but file is not ready in {self.timeout} seconds."
)
yield data
@functional_datapipe("memory_cell")
class _MemoryCellIterDataPipe(IterDataPipe):
def __init__(self, source_datapipe, remember_elements=1000):
self.source_datapipe = source_datapipe
self.buffer: List[Optional[Tuple[Any, Any]]] = [None for i in range(remember_elements)]
self.remember_elements = remember_elements
self.buffer_pos = -1
# TODO(VitalyFedyunin): Make it friendly to save/restore state
def __iter__(self):
for item in self.source_datapipe:
item_id = uuid.uuid4()
self.buffer_pos = (self.buffer_pos + 1) % self.remember_elements
self.buffer[self.buffer_pos] = (item_id, item)
yield item
def get_last(self):
# Returns tuple of elements, autogenerated id of the last returned row and its value
return self.buffer[self.buffer_pos]
def get_buffer(self):
# Returns last returned id+element and others in the order from latest to oldest.
result = []
for i in range(self.remember_elements):
idx = (self.buffer_pos - i) % self.remember_elements
if self.buffer[idx] is not None:
result.append(self.buffer[idx])
return result
def _get_list_filename(file_name):
return file_name + ".torchdata_list"
class _ExtractFilesFromList(IterDataPipe):
def __init__(self, source_datapipe):
self.source_datapipe = source_datapipe
def __iter__(self):
for filename in self.source_datapipe:
with open(_get_list_filename(filename)) as fh:
for line in fh:
inner_file_name = line.rstrip()
yield filename, inner_file_name
class _FulfilledPromisesIterDataPipe(IterDataPipe):
def __init__(self, source_datapipe, memory_cell_dp, first_filepath_fn, cache_uuid):
self.source_datapipe = source_datapipe
self.memory_cell_dp = memory_cell_dp
self.first_filepath_fn = first_filepath_fn
self._cache_uuid = cache_uuid
@staticmethod
def _del_promise_file(promise_filename, filename):
if os.path.exists(promise_filename):
retry = True
start = time.time()
while retry:
retry = False
try:
os.unlink(promise_filename)
except Exception as e:
# Workaround about Windows not letting to delete file, while it is open by another process
retry = True
if time.time() - start > PROMISE_FILE_DELETE_TIMEOUT:
raise Exception("Timeout while trying to recover from the ", type(e), e)
time.sleep(PROMISE_FILE_DELETE_RETRY_INTERVAL)
else:
warnings.warn(
f"Attempt to mark {promise_filename} promise (base of file {filename}) as fulfilled failed. Potentially missmatching filename functions of on_disk_cache and end_cache."
)
def __iter__(self):
last_record_uuid = None
one_to_many_detected = False
one_to_one_detected = False
def fulfill_old_promises(buffer, last_record_uuid, first_filepath_fn, cache_uuid):
for old_rec_uuid, old_rec in buffer:
original_file_name = first_filepath_fn(old_rec)
old_promise_filename = _promise_filename(original_file_name, cache_uuid)
self._del_promise_file(old_promise_filename, original_file_name)
if old_rec_uuid == last_record_uuid:
break
# TODO(VitalyFedyunin): If no match found, that means we exceeded length of memory_cell
# and there is aggressive amount 1-to-zero cases, raise error and explain how to fix
try:
for filename in self.source_datapipe:
rec_uuid, record = self.memory_cell_dp.get_last()
original_file_name = self.first_filepath_fn(record)
# TODO(VitalyFedyunin): For debug mode we can detect duplicate keys situations here and warn user
if original_file_name != filename:
# Situations when every archive unpacks to single file only are also considered as 1-M
one_to_many_detected = True
if one_to_one_detected:
raise Exception("Disovered different keys when one-to-one mode previously assumed")
# We are dealing with one-to-many situation now
with open(_get_list_filename(original_file_name), "a") as fh:
fh.write(f"{filename}\n")
else:
one_to_one_detected = True
if one_to_many_detected:
# Keys should be always the same (1-1 situation) or always different (1-many) sutuation
raise Exception("first key somehow equal to secondary key")
if rec_uuid != last_record_uuid:
fulfill_old_promises(
self.memory_cell_dp.get_buffer()[1:], last_record_uuid, self.first_filepath_fn, self._cache_uuid
)
last_record_uuid = rec_uuid
yield filename
finally:
if last_record_uuid is not None:
fulfill_old_promises(
self.memory_cell_dp.get_buffer(), last_record_uuid, self.first_filepath_fn, self._cache_uuid
)
def _leave_second(x):
return x[1]
@functional_datapipe("end_caching")
class EndOnDiskCacheHolderIterDataPipe(IterDataPipe):
"""
Indicates when the result of prior DataPipe will be saved local files specified
by ``filepath_fn`` (functional name: ``end_caching``). Moreover, the result of source DataPipe
is required to be a tuple of metadata and data, or a tuple of metadata and file handle.
Args:
datapipe: IterDataPipe with at least one ``OnDiskCacheHolder`` in the graph.
mode: Mode in which the cached files are opened to write the data on disk. This is needed
to be aligned with the type of data or file handle from ``datapipe``. ``"wb"`` is used by default.
filepath_fn: Optional function to extract filepath from the metadata from ``datapipe``.
By default, it would directly use the ?metadata? as file path.
same_filepath_fn: Set to ``True`` to use same ``filepath_fn`` from the ``OnDiskCacheHolder``.
skip_read: Boolean value to skip reading the file handle from ``datapipe``.
By default, reading is enabled and reading function is created based on the ``mode``.
timeout: Integer value of seconds to wait for uncached item to be written to disk
Example:
>>> from torchdata.datapipes.iter import IterableWrapper, HttpReader
>>> url = IterableWrapper(["https://path/to/filename", ])
>>> def _filepath_fn(url):
>>> temp_dir = tempfile.gettempdir()
>>> return os.path.join(temp_dir, os.path.basename(url))
>>> hash_dict = {"expected_filepath": expected_MD5_hash}
>>> # You must call ``.on_disk_cache`` at some point before ``.end_caching``
>>> cache_dp = url.on_disk_cache(filepath_fn=_filepath_fn, hash_dict=_hash_dict, hash_type="md5")
>>> # You must call ``.end_caching`` at a later point to stop tracing and save the results to local files.
>>> cache_dp = HttpReader(cache_dp).end_caching(mode="wb", filepath_fn=_filepath_fn)
"""
def __new__(cls, datapipe, mode="wb", filepath_fn=None, *, same_filepath_fn=False, skip_read=False, timeout=300):
if filepath_fn is not None and same_filepath_fn:
raise ValueError("`filepath_fn` is mutually exclusive with `same_filepath_fn`")
graph = traverse_dps(datapipe)
# Get the last CacheHolder
cache_holder = EndOnDiskCacheHolderIterDataPipe._recursive_search(graph)
if cache_holder is None:
raise RuntimeError("Expected `OnDiskCacheHolder` existing in pipeline when `end_caching` is invoked")
if cache_holder._end_caching_flag:
raise RuntimeError("`end_caching` can only be invoked once per `OnDiskCacheHolder`")
first_filepath_fn, _hash_dict, _hash_type, _, cache_uuid = OnDiskCacheHolderIterDataPipe._temp_dict[
cache_holder
]
cached_dp, one_many_cached_dp = cache_holder._end_caching()
cached_dp = _WaitPendingCacheItemIterDataPipe(cached_dp, timeout=timeout, cache_uuid=cache_uuid)
one_many_cached_dp = _WaitPendingCacheItemIterDataPipe(
one_many_cached_dp, timeout=timeout, cache_uuid=cache_uuid, input_col=0
)
one_many_cached_dp = one_many_cached_dp.map(_leave_second)
memory_cell_dp = cache_holder.source_datapipe
if same_filepath_fn:
filepath_fn = first_filepath_fn
todo_dp = datapipe
if not skip_read:
if "t" in mode:
todo_dp = todo_dp.map(fn=_read_str, input_col=1)
else:
todo_dp = todo_dp.map(fn=_read_bytes, input_col=1)
if filepath_fn is not None:
todo_dp = todo_dp.map(fn=filepath_fn, input_col=0)
# Extra hash check here when hash is provided.
# And, raise Error if data returned from prior operations doesn't meet hash
if _hash_dict is not None:
todo_dp = todo_dp.check_hash(_hash_dict, _hash_type)
todo_dp = todo_dp.save_to_disk(mode=mode)
todo_dp = _FulfilledPromisesIterDataPipe(todo_dp, memory_cell_dp, first_filepath_fn, cache_uuid=cache_uuid)
# TODO(VitalyFedyunin): This impacts determinism for partial cache situations
return todo_dp.concat(cached_dp).concat(one_many_cached_dp)
@staticmethod
def _recursive_search(graph):
for dp, _ in graph.values():
# Find the closest CacheHolder
if isinstance(dp, OnDiskCacheHolderIterDataPipe):
return dp
for _, sub_graph in graph.values():
res = EndOnDiskCacheHolderIterDataPipe._recursive_search(sub_graph)
if res is not None:
return res
return None
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import Iterator, Optional, TypeVar
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
T_co = TypeVar("T_co", covariant=True)
@functional_datapipe("cycle")
class CyclerIterDataPipe(IterDataPipe[T_co]):
"""
Cycles the specified input in perpetuity by default, or for the specified number
of times (functional name: ``cycle``).
If the ordering does not matter (e.g. because you plan to ``shuffle`` later) or if you would like to
repeat an element multiple times before moving onto the next element, use :class:`.Repeater`.
Args:
source_datapipe: source DataPipe that will be cycled through
count: the number of times to read through ``source_datapipe` (if ``None``, it will cycle in perpetuity)
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> dp = IterableWrapper(range(3))
>>> dp = dp.cycle(2)
>>> list(dp)
[0, 1, 2, 0, 1, 2]
"""
def __init__(self, source_datapipe: IterDataPipe[T_co], count: Optional[int] = None) -> None:
self.source_datapipe: IterDataPipe[T_co] = source_datapipe
self.count: Optional[int] = count
if count is not None and count < 0:
raise ValueError(f"Expected non-negative count, got {count}")
def __iter__(self) -> Iterator[T_co]:
i = 0
while self.count is None or i < self.count:
yield from self.source_datapipe
i += 1
def __len__(self) -> int:
if self.count is None:
raise TypeError(
f"This {type(self).__name__} instance cycles forever, and therefore doesn't have valid length"
)
else:
return self.count * len(self.source_datapipe)
@functional_datapipe("repeat")
class RepeaterIterDataPipe(IterDataPipe[T_co]):
"""
Repeatedly yield each element of source DataPipe for the specified number of times before
moving onto the next element (functional name: ``repeat``). Note that no copy is made in this DataPipe,
the same element is yielded repeatedly.
If you would like to yield the whole DataPipe in order multiple times, use :class:`.Cycler`.
Args:
source_datapipe: source DataPipe that will be iterated through
times: the number of times an element of ``source_datapipe`` will be yielded before moving onto the next element
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> dp = IterableWrapper(range(3))
>>> dp = dp.repeat(2)
>>> list(dp)
[0, 0, 1, 1, 2, 2]
"""
def __init__(self, source_datapipe: IterDataPipe[T_co], times: int) -> None:
self.source_datapipe: IterDataPipe[T_co] = source_datapipe
self.times: int = times
if times <= 1:
raise ValueError(f"The number of repetition must be > 1, got {times}")
def __iter__(self) -> Iterator[T_co]:
for element in self.source_datapipe:
for _ in range(self.times):
yield element
def __len__(self) -> int:
return self.times * len(self.source_datapipe)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from functools import partial
from typing import List, Optional, TypeVar
from torch.utils.data.datapipes.utils.common import DILL_AVAILABLE
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
try: # TODO(637): Create dependency on TorchArrow?
import pyarrow.parquet as parquet
import torcharrow
except ImportError:
torcharrow = None
parquet = None
if DILL_AVAILABLE:
import dill
dill.extend(use_dill=False)
T_co = TypeVar("T_co")
def _construct_dataframe(data, dtype=None, dtype_generator=None, columns=None, device=None):
if dtype is None:
dtype = dtype_generator()
return torcharrow.dataframe(data, dtype=dtype, columns=columns, device=device)
@functional_datapipe("dataframe")
class DataFrameMakerIterDataPipe(IterDataPipe): # IterDataPipe[torcharrow.IDataFrame[T_co]]
r"""
Takes rows of data, batches a number of them together and creates `TorchArrow`
DataFrames (functional name: ``dataframe``).
Note:
There is a trade-off between having a large number of rows within a DataFrame and usage of memory. Please
choose a value carefully.
Args:
source_dp: IterDataPipe containing rows of data
dataframe_size: number of rows of data within each DataFrame, page size can be option
dtype: specify the `TorchArrow` dtype for the DataFrame, use ``torcharrow.dtypes.DType``
dtype_generator: function with no input argument that generates a torcharrow.dtypes.DType,
which overrides dtype if both are given. This is useful for when the desired dtype is
not serializable.
columns: List of str that specifies the column names of the DataFrame
device: specify the device on which the DataFrame will be stored
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> import torcharrow.dtypes as dt
>>> source_data = [(i,) for i in range(3)]
>>> source_dp = IterableWrapper(source_data)
>>> DTYPE = dt.Struct([dt.Field("Values", dt.int32)])
>>> df_dp = source_dp.dataframe(dtype=DTYPE)
>>> list(df_dp)[0]
index Values
------- --------
0 0
1 1
2 2
dtype: Struct([Field('Values', int32)]), count: 3, null_count: 0
"""
def __new__(
cls,
source_dp: IterDataPipe[T_co],
dataframe_size: int = 1000,
dtype=None,
dtype_generator=None,
columns: Optional[List[str]] = None,
device: str = "",
):
if torcharrow is None:
raise ImportError(
"The library 'torcharrow' is necessary for this DataPipe but it is not available."
"Please visit https://github.com/facebookresearch/torcharrow/ to install it."
)
# In this version, DF tracing is not available, which would allow DataPipe to run DataFrame operations
batch_dp = source_dp.batch(dataframe_size)
df_dp = batch_dp.map(
partial(_construct_dataframe, dtype=dtype, dtype_generator=dtype_generator, columns=columns, device=device)
)
return df_dp
@functional_datapipe("load_parquet_as_df")
class ParquetDFLoaderIterDataPipe(IterDataPipe): # IterDataPipe[torcharrow.IDataFrame[T_co]]
r"""
Takes in paths to Parquet files and return a `TorchArrow` DataFrame for each row group
within a Parquet file (functional name: ``load_parquet_as_df``).
Args:
source_dp: source DataPipe containing paths to the Parquet files
columns: List of `str` that specifies the column names of the DataFrame
use_threads: if ``True``, Parquet reader will perform multi-threaded column reads
dtype: specify the `TorchArrow` dtype for the DataFrame, use ``torcharrow.dtypes.DType``
device: specify the device on which the DataFrame will be stored
Example:
>>> from torchdata.datapipes.iter import FileLister
>>> import torcharrow.dtypes as dt
>>> DTYPE = dt.Struct([dt.Field("Values", dt.int32)])
>>> source_dp = FileLister(".", masks="df*.parquet")
>>> parquet_df_dp = source_dp.load_parquet_as_df(dtype=DTYPE)
>>> list(parquet_df_dp)[0]
index Values
------- --------
0 0
1 1
2 2
dtype: Struct([Field('Values', int32)]), count: 3, null_count: 0
"""
def __init__(
self,
source_dp: IterDataPipe[str],
dtype=None,
columns: Optional[List[str]] = None,
device: str = "",
use_threads: bool = False,
):
if torcharrow is None:
raise ImportError(
"The library 'torcharrow' is necessary for this DataPipe but it is not available."
"Please visit https://github.com/facebookresearch/torcharrow/ to install it."
)
if parquet is None:
raise ImportError("The library 'parquet' is necessary for this DataPipe but it is not available.")
self.source_dp = source_dp
self.columns = columns
self.use_threads = use_threads
self.dtype = dtype
self.device = device
def __iter__(self):
for path in self.source_dp:
parquet_file = parquet.ParquetFile(path)
num_row_groups = parquet_file.num_row_groups
for i in range(num_row_groups):
# TODO(638): More fine-grain control over the number of rows or row group per DataFrame
row_group = parquet_file.read_row_group(i, columns=self.columns, use_threads=self.use_threads)
yield torcharrow.from_arrow(row_group, dtype=self.dtype)
def __getstate__(self):
if DILL_AVAILABLE:
dill_dtype = dill.dumps(self.dtype)
else:
dill_dtype = self.dtype
state = (self.source_dp, dill_dtype, self.columns, self.device, self.use_threads)
if IterDataPipe.getstate_hook is not None:
return IterDataPipe.getstate_hook(state)
return state
def __setstate__(self, state):
(self.source_dp, dill_dtype, self.columns, self.device, self.use_threads) = state
if DILL_AVAILABLE:
self.dtype = dill.loads(dill_dtype) # type: ignore[assignment]
else:
self.dtype = dill_dtype # type: ignore[assignment]
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import struct
import warnings
from functools import partial
from io import BufferedIOBase
from typing import Any, cast, Dict, Iterable, Iterator, List, NamedTuple, Optional, Tuple, Union
import torch
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
from torchdata.datapipes.utils.common import validate_pathname_binary_tuple
try:
from math import prod # type: ignore
except ImportError:
# Implementation for older Python
# NOTE: this is not supported by mypy yet
# https://github.com/python/mypy/issues/1393
import operator
from functools import reduce
def prod(xs): # type: ignore[no-redef]
return reduce(operator.mul, xs, 1)
try:
import google.protobuf as _protobuf
del _protobuf
HAS_PROTOBUF = True
except ImportError:
HAS_PROTOBUF = False
U = Union[bytes, bytearray, str]
TFRecordFeatureSpec = Tuple[Tuple[int, ...], torch.dtype]
TFRecordExampleSpec = Dict[str, TFRecordFeatureSpec]
# Note, reccursive types not supported by mypy at the moment
# TODO(640): uncomment as soon as it becomes supported
# https://github.com/python/mypy/issues/731
# BinaryData = Union[str, List['BinaryData']]
TFRecordBinaryData = Union[str, List[str], List[List[str]], List[List[List[Any]]]]
TFRecordExampleFeature = Union[torch.Tensor, List[torch.Tensor], TFRecordBinaryData]
TFRecordExample = Dict[str, TFRecordExampleFeature]
class SequenceExampleSpec(NamedTuple):
context: TFRecordExampleSpec
feature_lists: TFRecordExampleSpec
def _assert_protobuf() -> None:
if not HAS_PROTOBUF:
raise ModuleNotFoundError(
"Package `protobuf` is required to be installed to use this datapipe."
"Please use `pip install protobuf` or `conda install -c conda-forge protobuf`"
"to install the package"
)
def iterate_tfrecord_file(data: BufferedIOBase) -> Iterator[memoryview]:
length_bytes = bytearray(8)
crc_bytes = bytearray(4)
data_bytes = bytearray(1024)
while True:
bytes_read = data.readinto(length_bytes)
if bytes_read == 0:
break
elif bytes_read != 8:
raise RuntimeError("Invalid tfrecord file: failed to read the record size.")
if data.readinto(crc_bytes) != 4:
raise RuntimeError("Invalid tfrecord file: failed to read the start token.")
(length,) = struct.unpack("<Q", length_bytes)
if length > len(data_bytes):
data_bytes = data_bytes.zfill(int(length * 1.5))
data_bytes_view = memoryview(data_bytes)[:length]
if data.readinto(data_bytes_view) != length:
raise RuntimeError("Invalid tfrecord file: failed to read the record.")
if data.readinto(crc_bytes) != 4:
raise RuntimeError("Invalid tfrecord file: failed to read the end token.")
# TODO(641): check CRC
yield data_bytes_view
def process_feature(feature) -> torch.Tensor:
# NOTE: We assume that each key in the example has only one field
# (either "bytes_list", "float_list", or "int64_list")!
field = feature.ListFields()[0]
inferred_typename, value = field[0].name, field[1].value
if inferred_typename == "bytes_list":
pass
elif inferred_typename == "float_list":
value = torch.tensor(value, dtype=torch.float32)
elif inferred_typename == "int64_list":
value = torch.tensor(value, dtype=torch.int64)
return value
def _reshape_list(value, shape):
# Flatten list
flat_list = []
def flatten(value):
if isinstance(value, (str, bytes)):
flat_list.append(value)
else:
for x in value:
flatten(x)
flatten(value)
# Compute correct shape
common_divisor = prod(x for x in shape if x != -1)
if sum(1 for x in shape if x == -1) > 1:
raise RuntimeError("Shape can contain at most one dynamic dimension (-1).")
if len(flat_list) % max(common_divisor, 1) != 0:
raise RuntimeError(f"Cannot reshape {len(flat_list)} values into shape {shape}")
shape = [x if x != -1 else (len(flat_list) // common_divisor) for x in shape]
# Reshape list into the correct shape
def _reshape(value, shape):
if len(shape) == 0:
assert len(value) == 1
return value[0]
elif len(shape) == 1: # To make the reccursion faster
assert len(value) == shape[0]
return value
dim_size = len(value) // shape[0]
return [_reshape(value[i * dim_size : (i + 1) * dim_size], shape[1:]) for i in range(dim_size)]
return _reshape(flat_list, shape)
def _apply_feature_spec(value, feature_spec):
if feature_spec is not None:
shape, dtype = feature_spec
if isinstance(dtype, torch.dtype):
if shape is not None:
value = value.reshape(shape)
value = value.to(dtype)
elif shape is not None:
# Manual list reshape
value = _reshape_list(value, shape)
return value
def _parse_tfrecord_features(features, spec: Optional[TFRecordExampleSpec]) -> Dict[str, torch.Tensor]:
result = dict()
features = features.feature
for key in features.keys():
if spec is not None and key not in spec:
continue
feature_spec = None if spec is None else spec[key]
feature = features[key]
result[key] = _apply_feature_spec(process_feature(feature), feature_spec)
return result
def parse_tfrecord_sequence_example(example, spec: Optional[TFRecordExampleSpec]) -> TFRecordExample:
# Parse context features
result = cast(TFRecordExample, _parse_tfrecord_features(example.context, spec))
# Parse feature lists
feature_lists_keys = None if spec is None else set(spec.keys()) - set(result.keys())
features = example.feature_lists.feature_list
for key in features.keys():
if feature_lists_keys is not None and key not in feature_lists_keys:
continue
feature_spec = None if spec is None else spec[key]
feature = features[key].feature
if key in result:
raise RuntimeError(
"TFRecord example's key {key} is contained in both the context and feature lists. This is not supported."
)
value: Union[torch.Tensor, List[Any]] = list(map(partial(process_feature), feature))
# For known torch dtypes, we stack the list features
if feature_spec is not None and isinstance(feature_spec[1], torch.dtype):
value = torch.stack(cast(List[torch.Tensor], value), 0)
value = _apply_feature_spec(value, feature_spec)
result[key] = value
if spec is not None and len(result.keys()) != len(spec.keys()):
raise RuntimeError(f"Example is missing some required keys: {sorted(result.keys())} != {sorted(spec.keys())}")
return result
@functional_datapipe("load_from_tfrecord")
class TFRecordLoaderIterDataPipe(IterDataPipe[TFRecordExample]):
r"""
Opens/decompresses tfrecord binary streams from an Iterable DataPipe which contains tuples of path name and
tfrecord binary stream, and yields the stored records (functional name: ``load_from_tfrecord``).
Args:
datapipe: Iterable DataPipe that provides tuples of path name and tfrecord binary stream
length: a nominal length of the DataPipe
Note:
The opened file handles will be closed automatically if the default ``DecoderDataPipe``
is attached. Otherwise, user should be responsible to close file handles explicitly
or let Python's GC close them periodically.
Example:
>>> from torchdata.datapipes.iter import FileLister, FileOpener
>>> datapipe1 = FileLister(".", "*.tfrecord")
>>> datapipe2 = FileOpener(datapipe1, mode="b")
>>> tfrecord_loader_dp = datapipe2.load_from_tfrecord()
>>> for example in tfrecord_loader_dp:
>>> print(example)
"""
def __init__(
self,
datapipe: Iterable[Tuple[str, BufferedIOBase]],
spec: Optional[TFRecordExampleSpec] = None,
length: int = -1,
) -> None:
super().__init__()
_assert_protobuf()
self.datapipe: Iterable[Tuple[str, BufferedIOBase]] = datapipe
self.length: int = length
self.spec = spec
def __iter__(self) -> Iterator[TFRecordExample]:
# We assume that the "example.proto" and "feature.proto"
# stays the same for future TensorFlow versions.
# If it changed, newer TensorFlow versions would
# not be able to load older tfrecord datasets.
from .protobuf_template import _tfrecord_example_pb2 as example_pb2
for data in self.datapipe:
validate_pathname_binary_tuple(data)
pathname, data_stream = data
try:
for example_bytes in iterate_tfrecord_file(data_stream):
example = example_pb2.SequenceExample() # type: ignore
example.ParseFromString(example_bytes) # type: ignore
yield parse_tfrecord_sequence_example(example, self.spec)
except RuntimeError as e:
warnings.warn(f"Unable to read from corrupted tfrecord stream {pathname} due to: {e}, abort!")
raise e
def __len__(self) -> int:
if self.length == -1:
raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
return self.length
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import re
from typing import Iterator, List
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
def _shard_expand(s: str) -> List[str]:
expansion = r"[{][0-9]+[.][.][0-9]+[}]"
m = re.search(expansion, s)
if not m:
return [s]
prefix = s[: m.start()]
rest = _shard_expand(s[m.end() :])
rng = s[m.start() + 1 : m.end() - 1]
lohi = rng.split("..")
if len(lohi[0]) == len(lohi[1]) and lohi[0].startswith("0"):
fmt = "{prefix}{i:0>{l}d}{r}"
elif len(lohi[0]) <= len(lohi[1]):
if lohi[0].startswith("0") and lohi[0] != "0":
raise ValueError("shard_expand: low bound must not start with 0 if low bound is shorter")
fmt = "{prefix}{i}{r}"
else:
raise ValueError("shard_expand: low bound must be shorter than high bound")
lo, hi = (int(x) for x in lohi)
if lo >= hi:
raise ValueError(f"shard_expand: bad range in in shard spec {s}.")
result = []
for i in range(lo, hi + 1):
for r in rest:
expanded: str = fmt.format(prefix=prefix, i=i, r=r, l=len(lohi[1]))
result.append(expanded)
return result
@functional_datapipe("shard_expand")
class ShardExpanderIterDataPipe(IterDataPipe[str]):
r"""
Expands incoming shard strings into shards.
Sharded data files are named using shell-like brace notation. For example,
an ImageNet dataset sharded into 1200 shards and stored on a web server
might be named `imagenet-{000000..001199}.tar`.
Note that shard names can be expanded without any server transactions;
this makes `shard_expand` reproducible and storage system independent
(unlike :class `.FileLister` etc.).
Args:
source_datapipe: a DataPipe yielding a stream of pairs
Returns:
a DataPipe yielding a stream of expanded pathnames.
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> source_dp = IterableWrapper(["ds-{00..05}.tar"])
>>> expand_dp = source_dp.shard_expand()
>>> list(expand_dp)
['ds-00.tar', 'ds-01.tar', 'ds-02.tar', 'ds-03.tar', 'ds-04.tar', 'ds-05.tar']
>>> source_dp = IterableWrapper(["imgs_{00..05}.tar", "labels_{00..05}.tar"])
>>> expand_dp = source_dp.shard_expand()
>>> list(expand_dp)
['imgs_00.tar', 'imgs_01.tar', 'imgs_02.tar', 'labels_00.tar', 'labels_01.tar', 'labels_02.tar']
"""
def __init__(self, source_datapipe: IterDataPipe[str]) -> None:
super().__init__()
self.source_datapipe: IterDataPipe[str] = source_datapipe
def __iter__(self) -> Iterator[str]:
for path in self.source_datapipe:
yield from _shard_expand(path)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
import tarfile
import warnings
from io import BufferedIOBase
from typing import cast, IO, Iterable, Iterator, Optional, Tuple
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
from torchdata.datapipes.utils import StreamWrapper
from torchdata.datapipes.utils.common import validate_pathname_binary_tuple
@functional_datapipe("load_from_tar")
class TarArchiveLoaderIterDataPipe(IterDataPipe[Tuple[str, BufferedIOBase]]):
r"""
Opens/decompresses tar binary streams from an Iterable DataPipe which contains tuples of path name and
tar binary stream, and yields a tuple of path name and extracted binary stream (functional name: ``load_from_tar``).
Args:
datapipe: Iterable DataPipe that provides tuples of path name and tar binary stream
mode: File mode used by `tarfile.open` to read file object.
Mode has to be a string of the form `'filemode[:compression]'`
length: a nominal length of the DataPipe
Note:
The opened file handles will be closed automatically if the default ``DecoderDataPipe``
is attached. Otherwise, user should be responsible to close file handles explicitly
or let Python's GC close them periodically.
Example:
>>> from torchdata.datapipes.iter import FileLister, FileOpener
>>> datapipe1 = FileLister(".", "*.tar")
>>> datapipe2 = FileOpener(datapipe1, mode="b")
>>> tar_loader_dp = datapipe2.load_from_tar()
>>> for _, stream in tar_loader_dp:
>>> print(stream.read())
b'0123456789abcdef'
"""
def __init__(self, datapipe: Iterable[Tuple[str, BufferedIOBase]], mode: str = "r:*", length: int = -1) -> None:
super().__init__()
self.datapipe: Iterable[Tuple[str, BufferedIOBase]] = datapipe
self.mode: str = mode
self.length: int = length
def __iter__(self) -> Iterator[Tuple[str, BufferedIOBase]]:
for data in self.datapipe:
validate_pathname_binary_tuple(data)
pathname, data_stream = data
try:
if isinstance(data_stream, StreamWrapper) and isinstance(data_stream.file_obj, tarfile.TarFile):
tar = data_stream.file_obj
else:
reading_mode = (
self.mode
if hasattr(data_stream, "seekable") and data_stream.seekable()
else self.mode.replace(":", "|")
)
# typing.cast is used here to silence mypy's type checker
tar = tarfile.open(fileobj=cast(Optional[IO[bytes]], data_stream), mode=reading_mode)
for tarinfo in tar:
if not tarinfo.isfile():
continue
extracted_fobj = tar.extractfile(tarinfo)
if extracted_fobj is None:
warnings.warn(f"failed to extract file {tarinfo.name} from source tarfile {pathname}")
raise tarfile.ExtractError
inner_pathname = os.path.normpath(os.path.join(pathname, tarinfo.name))
yield inner_pathname, StreamWrapper(extracted_fobj, data_stream, name=inner_pathname) # type: ignore[misc]
except Exception as e:
warnings.warn(f"Unable to extract files from corrupted tarfile stream {pathname} due to: {e}, abort!")
raise e
finally:
if isinstance(data_stream, StreamWrapper):
data_stream.autoclose()
def __len__(self) -> int:
if self.length == -1:
raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
return self.length
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import random
from typing import Dict, final, List, Optional, TypeVar, Union
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
T = TypeVar("T")
@functional_datapipe("random_split")
class RandomSplitterIterDataPipe(IterDataPipe):
r"""
Randomly split samples from a source DataPipe into groups (functional name: ``random_split``).
Since there is no buffer, only ONE group of samples (i.e. one child DataPipe) can be iterated through
at any time. Attempts to iterate through multiple of them simultaneously will fail.
Note that by default, multiple iterations of this DataPipe will yield the same split for consistency across epochs.
You can invoke ``override_seed`` on the output(s) to update the seed whenever needed (such as per epoch to
get a different split per epoch).
Args:
source_datapipe: Iterable DataPipe being split
weights: Dict of weights; the length of this list determines how many output DataPipes there will be.
It is recommended to provide integer weights that sum up to ``total_length``, which allows
resulting DataPipes' length values to be known in advance.
seed: random _seed used to determine the randomness of the split
total_length: Length of the ``source_datapipe``, optional but providing an integer is highly encouraged,
because not all ``IterDataPipe`` has ``len``, espeically ones that can be easily known in advance.
target: Optional key (that must exist in ``weights``) to indicate the specific group to return.
If set to the default ``None``, returns ``List[IterDataPipe]``.
If target is specified, returns ``IterDataPipe``.
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> dp = IterableWrapper(range(10))
>>> train, valid = dp.random_split(total_length=10, weights={"train": 0.5, "valid": 0.5}, seed=0)
>>> list(train)
[2, 3, 5, 7, 8]
>>> list(valid)
[0, 1, 4, 6, 9]
>>> # You can also specify a target key if you only need a specific group of samples
>>> train = dp.random_split(total_length=10, weights={"train": 0.5, "valid": 0.5}, seed=0, target='train')
>>> list(train)
[2, 3, 5, 7, 8]
>>> # Be careful to use the same seed as before when specifying `target` to get the correct split.
>>> valid = dp.random_split(total_length=10, weights={"train": 0.5, "valid": 0.5}, seed=0, target='valid')
>>> list(valid)
[0, 1, 4, 6, 9]
"""
def __new__(
cls,
source_datapipe: IterDataPipe,
weights: Dict[T, Union[int, float]],
seed,
total_length: Optional[int] = None,
target: Optional[T] = None,
):
if total_length is None:
try:
# TODO: This is an issue for DataPipes which only have runtime lengths. Revisit to see if this
# is problematic.
total_length = len(source_datapipe)
except TypeError:
raise TypeError(
"RandomSplitter needs `total_length`, but it is unable to infer it from "
f"the `source_datapipe`: {source_datapipe}."
)
container = _RandomSplitterIterDataPipe(source_datapipe, total_length, weights, seed)
if target is None:
return [SplitterIterator(container, k) for k in list(weights.keys())]
else:
if target in weights.keys():
return SplitterIterator(container, target)
else:
raise KeyError(f"`target={target}` does not match any key in `weights`.")
class _RandomSplitterIterDataPipe(IterDataPipe):
def __init__(
self,
source_datapipe: IterDataPipe,
total_length: int,
weights: Dict[T, Union[int, float]],
seed,
):
self.source_datapipe: IterDataPipe = source_datapipe
self.total_length: int = total_length
self.remaining_length: int = total_length
self._seed = seed
self.keys: List[T] = list(weights.keys())
self.key_to_index: Dict[T, int] = {k: i for i, k in enumerate(self.keys)}
self.norm_weights: List[float] = self.normalize_weights([weights[k] for k in self.keys], total_length)
self.weights: List[float] = self.norm_weights.copy()
self._rng = random.Random(self._seed)
self._lengths: List[int] = []
def draw(self) -> T:
selected_key = self._rng.choices(self.keys, self.weights)[0]
index = self.key_to_index[selected_key]
self.weights[index] -= 1
self.remaining_length -= 1
if self.weights[index] < 0:
self.weights[index] = 0
self.weights = self.normalize_weights(self.weights, self.remaining_length)
return selected_key
@staticmethod
def normalize_weights(weights: List[float], total_length: int) -> List[float]:
"""
Given a ``List`` of weights, normalize them according to ``total_length``.
"""
total_weight = sum(weights)
return [float(w) * total_length / total_weight for w in weights]
@final
def reset(self) -> None:
self._rng = random.Random(self._seed)
self.weights = self.norm_weights.copy()
self.remaining_length = self.total_length
def override_seed(self, seed):
"""
Update the `seed`. The new `seed` will be used in the next iteration.
"""
self._seed = seed
return self
def __getstate__(self):
state = (
self.source_datapipe,
self.total_length,
self._seed,
self.norm_weights,
self.keys,
self.key_to_index,
self.weights,
self._rng.getstate(),
)
if IterDataPipe.getstate_hook is not None:
return IterDataPipe.getstate_hook(state)
return state
def __setstate__(self, state):
(
self.source_datapipe,
self.total_length,
self._seed,
self.norm_weights,
self.keys,
self.key_to_index,
self.weights,
rng_state,
) = state
self._rng = random.Random()
self._rng.setstate(rng_state)
def get_length(self, target: T) -> int:
if not self._lengths:
if all(w.is_integer() for w in self.norm_weights) and sum(self.norm_weights) == self.total_length:
self._lengths = [int(w) for w in self.norm_weights]
else:
raise TypeError(
"Lengths of the split cannot be known in advance. Please supply "
"integer `weights` that sum up to `total_length`.\nAlternatively, "
"use `datapipe.set_length(LENGTH)` to manually set the desired length."
)
index = self.key_to_index[target]
return self._lengths[index]
class SplitterIterator(IterDataPipe):
def __init__(self, main_datapipe: _RandomSplitterIterDataPipe, target: T):
self.main_datapipe = main_datapipe
self.target = target
def __iter__(self):
self.main_datapipe.reset()
for sample in self.main_datapipe.source_datapipe:
if self.main_datapipe.draw() == self.target:
yield sample
def override_seed(self, seed):
"""
Update the `seed`. The new `seed` will be used in the next iteration. For use cases that require a different
split for each epoch, you call this method before or after the epoch as necessary.
"""
self.main_datapipe.override_seed(seed)
return self
def __len__(self):
return self.main_datapipe.get_length(self.target)
|
# type: ignore
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: example.proto
import sys
_b = sys.version_info[0] < 3 and (lambda x: x) or (lambda x: x.encode("latin1"))
from google.protobuf import (
descriptor as _descriptor,
descriptor_pb2,
message as _message,
reflection as _reflection,
symbol_database as _symbol_database,
)
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
DESCRIPTOR = _descriptor.FileDescriptor(
name="example.proto",
package="tfrecord",
syntax="proto3",
serialized_pb=_b(
'\n\rexample.proto\x12\x08tfrecord"\x1a\n\tBytesList\x12\r\n\x05value\x18\x01 \x03(\x0c"\x1e\n\tFloatList\x12\x11\n\x05value\x18\x01 \x03(\x02\x42\x02\x10\x01"\x1e\n\tInt64List\x12\x11\n\x05value\x18\x01 \x03(\x03\x42\x02\x10\x01"\x92\x01\n\x07\x46\x65\x61ture\x12)\n\nbytes_list\x18\x01 \x01(\x0b\x32\x13.tfrecord.BytesListH\x00\x12)\n\nfloat_list\x18\x02 \x01(\x0b\x32\x13.tfrecord.FloatListH\x00\x12)\n\nint64_list\x18\x03 \x01(\x0b\x32\x13.tfrecord.Int64ListH\x00\x42\x06\n\x04kind"\x7f\n\x08\x46\x65\x61tures\x12\x30\n\x07\x66\x65\x61ture\x18\x01 \x03(\x0b\x32\x1f.tfrecord.Features.FeatureEntry\x1a\x41\n\x0c\x46\x65\x61tureEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12 \n\x05value\x18\x02 \x01(\x0b\x32\x11.tfrecord.Feature:\x02\x38\x01"1\n\x0b\x46\x65\x61tureList\x12"\n\x07\x66\x65\x61ture\x18\x01 \x03(\x0b\x32\x11.tfrecord.Feature"\x98\x01\n\x0c\x46\x65\x61tureLists\x12=\n\x0c\x66\x65\x61ture_list\x18\x01 \x03(\x0b\x32\'.tfrecord.FeatureLists.FeatureListEntry\x1aI\n\x10\x46\x65\x61tureListEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12$\n\x05value\x18\x02 \x01(\x0b\x32\x15.tfrecord.FeatureList:\x02\x38\x01"/\n\x07\x45xample\x12$\n\x08\x66\x65\x61tures\x18\x01 \x01(\x0b\x32\x12.tfrecord.Features"e\n\x0fSequenceExample\x12#\n\x07\x63ontext\x18\x01 \x01(\x0b\x32\x12.tfrecord.Features\x12-\n\rfeature_lists\x18\x02 \x01(\x0b\x32\x16.tfrecord.FeatureListsB\x03\xf8\x01\x01\x62\x06proto3'
),
)
_sym_db.RegisterFileDescriptor(DESCRIPTOR)
_BYTESLIST = _descriptor.Descriptor(
name="BytesList",
full_name="tfrecord.BytesList",
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name="value",
full_name="tfrecord.BytesList.value",
index=0,
number=1,
type=12,
cpp_type=9,
label=3,
has_default_value=False,
default_value=[],
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
options=None,
),
],
extensions=[],
nested_types=[],
enum_types=[],
options=None,
is_extendable=False,
syntax="proto3",
extension_ranges=[],
oneofs=[],
serialized_start=27,
serialized_end=53,
)
_FLOATLIST = _descriptor.Descriptor(
name="FloatList",
full_name="tfrecord.FloatList",
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name="value",
full_name="tfrecord.FloatList.value",
index=0,
number=1,
type=2,
cpp_type=6,
label=3,
has_default_value=False,
default_value=[],
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b("\020\001")),
),
],
extensions=[],
nested_types=[],
enum_types=[],
options=None,
is_extendable=False,
syntax="proto3",
extension_ranges=[],
oneofs=[],
serialized_start=55,
serialized_end=85,
)
_INT64LIST = _descriptor.Descriptor(
name="Int64List",
full_name="tfrecord.Int64List",
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name="value",
full_name="tfrecord.Int64List.value",
index=0,
number=1,
type=3,
cpp_type=2,
label=3,
has_default_value=False,
default_value=[],
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b("\020\001")),
),
],
extensions=[],
nested_types=[],
enum_types=[],
options=None,
is_extendable=False,
syntax="proto3",
extension_ranges=[],
oneofs=[],
serialized_start=87,
serialized_end=117,
)
_FEATURE = _descriptor.Descriptor(
name="Feature",
full_name="tfrecord.Feature",
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name="bytes_list",
full_name="tfrecord.Feature.bytes_list",
index=0,
number=1,
type=11,
cpp_type=10,
label=1,
has_default_value=False,
default_value=None,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
options=None,
),
_descriptor.FieldDescriptor(
name="float_list",
full_name="tfrecord.Feature.float_list",
index=1,
number=2,
type=11,
cpp_type=10,
label=1,
has_default_value=False,
default_value=None,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
options=None,
),
_descriptor.FieldDescriptor(
name="int64_list",
full_name="tfrecord.Feature.int64_list",
index=2,
number=3,
type=11,
cpp_type=10,
label=1,
has_default_value=False,
default_value=None,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
options=None,
),
],
extensions=[],
nested_types=[],
enum_types=[],
options=None,
is_extendable=False,
syntax="proto3",
extension_ranges=[],
oneofs=[
_descriptor.OneofDescriptor(
name="kind", full_name="tfrecord.Feature.kind", index=0, containing_type=None, fields=[]
),
],
serialized_start=120,
serialized_end=266,
)
_FEATURES_FEATUREENTRY = _descriptor.Descriptor(
name="FeatureEntry",
full_name="tfrecord.Features.FeatureEntry",
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name="key",
full_name="tfrecord.Features.FeatureEntry.key",
index=0,
number=1,
type=9,
cpp_type=9,
label=1,
has_default_value=False,
default_value=_b("").decode("utf-8"),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
options=None,
),
_descriptor.FieldDescriptor(
name="value",
full_name="tfrecord.Features.FeatureEntry.value",
index=1,
number=2,
type=11,
cpp_type=10,
label=1,
has_default_value=False,
default_value=None,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
options=None,
),
],
extensions=[],
nested_types=[],
enum_types=[],
options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b("8\001")),
is_extendable=False,
syntax="proto3",
extension_ranges=[],
oneofs=[],
serialized_start=330,
serialized_end=395,
)
_FEATURES = _descriptor.Descriptor(
name="Features",
full_name="tfrecord.Features",
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name="feature",
full_name="tfrecord.Features.feature",
index=0,
number=1,
type=11,
cpp_type=10,
label=3,
has_default_value=False,
default_value=[],
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
options=None,
),
],
extensions=[],
nested_types=[
_FEATURES_FEATUREENTRY,
],
enum_types=[],
options=None,
is_extendable=False,
syntax="proto3",
extension_ranges=[],
oneofs=[],
serialized_start=268,
serialized_end=395,
)
_FEATURELIST = _descriptor.Descriptor(
name="FeatureList",
full_name="tfrecord.FeatureList",
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name="feature",
full_name="tfrecord.FeatureList.feature",
index=0,
number=1,
type=11,
cpp_type=10,
label=3,
has_default_value=False,
default_value=[],
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
options=None,
),
],
extensions=[],
nested_types=[],
enum_types=[],
options=None,
is_extendable=False,
syntax="proto3",
extension_ranges=[],
oneofs=[],
serialized_start=397,
serialized_end=446,
)
_FEATURELISTS_FEATURELISTENTRY = _descriptor.Descriptor(
name="FeatureListEntry",
full_name="tfrecord.FeatureLists.FeatureListEntry",
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name="key",
full_name="tfrecord.FeatureLists.FeatureListEntry.key",
index=0,
number=1,
type=9,
cpp_type=9,
label=1,
has_default_value=False,
default_value=_b("").decode("utf-8"),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
options=None,
),
_descriptor.FieldDescriptor(
name="value",
full_name="tfrecord.FeatureLists.FeatureListEntry.value",
index=1,
number=2,
type=11,
cpp_type=10,
label=1,
has_default_value=False,
default_value=None,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
options=None,
),
],
extensions=[],
nested_types=[],
enum_types=[],
options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b("8\001")),
is_extendable=False,
syntax="proto3",
extension_ranges=[],
oneofs=[],
serialized_start=528,
serialized_end=601,
)
_FEATURELISTS = _descriptor.Descriptor(
name="FeatureLists",
full_name="tfrecord.FeatureLists",
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name="feature_list",
full_name="tfrecord.FeatureLists.feature_list",
index=0,
number=1,
type=11,
cpp_type=10,
label=3,
has_default_value=False,
default_value=[],
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
options=None,
),
],
extensions=[],
nested_types=[
_FEATURELISTS_FEATURELISTENTRY,
],
enum_types=[],
options=None,
is_extendable=False,
syntax="proto3",
extension_ranges=[],
oneofs=[],
serialized_start=449,
serialized_end=601,
)
_EXAMPLE = _descriptor.Descriptor(
name="Example",
full_name="tfrecord.Example",
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name="features",
full_name="tfrecord.Example.features",
index=0,
number=1,
type=11,
cpp_type=10,
label=1,
has_default_value=False,
default_value=None,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
options=None,
),
],
extensions=[],
nested_types=[],
enum_types=[],
options=None,
is_extendable=False,
syntax="proto3",
extension_ranges=[],
oneofs=[],
serialized_start=603,
serialized_end=650,
)
_SEQUENCEEXAMPLE = _descriptor.Descriptor(
name="SequenceExample",
full_name="tfrecord.SequenceExample",
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name="context",
full_name="tfrecord.SequenceExample.context",
index=0,
number=1,
type=11,
cpp_type=10,
label=1,
has_default_value=False,
default_value=None,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
options=None,
),
_descriptor.FieldDescriptor(
name="feature_lists",
full_name="tfrecord.SequenceExample.feature_lists",
index=1,
number=2,
type=11,
cpp_type=10,
label=1,
has_default_value=False,
default_value=None,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
options=None,
),
],
extensions=[],
nested_types=[],
enum_types=[],
options=None,
is_extendable=False,
syntax="proto3",
extension_ranges=[],
oneofs=[],
serialized_start=652,
serialized_end=753,
)
_FEATURE.fields_by_name["bytes_list"].message_type = _BYTESLIST
_FEATURE.fields_by_name["float_list"].message_type = _FLOATLIST
_FEATURE.fields_by_name["int64_list"].message_type = _INT64LIST
_FEATURE.oneofs_by_name["kind"].fields.append(_FEATURE.fields_by_name["bytes_list"])
_FEATURE.fields_by_name["bytes_list"].containing_oneof = _FEATURE.oneofs_by_name["kind"]
_FEATURE.oneofs_by_name["kind"].fields.append(_FEATURE.fields_by_name["float_list"])
_FEATURE.fields_by_name["float_list"].containing_oneof = _FEATURE.oneofs_by_name["kind"]
_FEATURE.oneofs_by_name["kind"].fields.append(_FEATURE.fields_by_name["int64_list"])
_FEATURE.fields_by_name["int64_list"].containing_oneof = _FEATURE.oneofs_by_name["kind"]
_FEATURES_FEATUREENTRY.fields_by_name["value"].message_type = _FEATURE
_FEATURES_FEATUREENTRY.containing_type = _FEATURES
_FEATURES.fields_by_name["feature"].message_type = _FEATURES_FEATUREENTRY
_FEATURELIST.fields_by_name["feature"].message_type = _FEATURE
_FEATURELISTS_FEATURELISTENTRY.fields_by_name["value"].message_type = _FEATURELIST
_FEATURELISTS_FEATURELISTENTRY.containing_type = _FEATURELISTS
_FEATURELISTS.fields_by_name["feature_list"].message_type = _FEATURELISTS_FEATURELISTENTRY
_EXAMPLE.fields_by_name["features"].message_type = _FEATURES
_SEQUENCEEXAMPLE.fields_by_name["context"].message_type = _FEATURES
_SEQUENCEEXAMPLE.fields_by_name["feature_lists"].message_type = _FEATURELISTS
DESCRIPTOR.message_types_by_name["BytesList"] = _BYTESLIST
DESCRIPTOR.message_types_by_name["FloatList"] = _FLOATLIST
DESCRIPTOR.message_types_by_name["Int64List"] = _INT64LIST
DESCRIPTOR.message_types_by_name["Feature"] = _FEATURE
DESCRIPTOR.message_types_by_name["Features"] = _FEATURES
DESCRIPTOR.message_types_by_name["FeatureList"] = _FEATURELIST
DESCRIPTOR.message_types_by_name["FeatureLists"] = _FEATURELISTS
DESCRIPTOR.message_types_by_name["Example"] = _EXAMPLE
DESCRIPTOR.message_types_by_name["SequenceExample"] = _SEQUENCEEXAMPLE
BytesList = _reflection.GeneratedProtocolMessageType(
"BytesList",
(_message.Message,),
dict(
DESCRIPTOR=_BYTESLIST,
__module__="example_pb2"
# @@protoc_insertion_point(class_scope:tfrecord.BytesList)
),
)
_sym_db.RegisterMessage(BytesList)
FloatList = _reflection.GeneratedProtocolMessageType(
"FloatList",
(_message.Message,),
dict(
DESCRIPTOR=_FLOATLIST,
__module__="example_pb2"
# @@protoc_insertion_point(class_scope:tfrecord.FloatList)
),
)
_sym_db.RegisterMessage(FloatList)
Int64List = _reflection.GeneratedProtocolMessageType(
"Int64List",
(_message.Message,),
dict(
DESCRIPTOR=_INT64LIST,
__module__="example_pb2"
# @@protoc_insertion_point(class_scope:tfrecord.Int64List)
),
)
_sym_db.RegisterMessage(Int64List)
Feature = _reflection.GeneratedProtocolMessageType(
"Feature",
(_message.Message,),
dict(
DESCRIPTOR=_FEATURE,
__module__="example_pb2"
# @@protoc_insertion_point(class_scope:tfrecord.Feature)
),
)
_sym_db.RegisterMessage(Feature)
Features = _reflection.GeneratedProtocolMessageType(
"Features",
(_message.Message,),
dict(
FeatureEntry=_reflection.GeneratedProtocolMessageType(
"FeatureEntry",
(_message.Message,),
dict(
DESCRIPTOR=_FEATURES_FEATUREENTRY,
__module__="example_pb2"
# @@protoc_insertion_point(class_scope:tfrecord.Features.FeatureEntry)
),
),
DESCRIPTOR=_FEATURES,
__module__="example_pb2"
# @@protoc_insertion_point(class_scope:tfrecord.Features)
),
)
_sym_db.RegisterMessage(Features)
_sym_db.RegisterMessage(Features.FeatureEntry)
FeatureList = _reflection.GeneratedProtocolMessageType(
"FeatureList",
(_message.Message,),
dict(
DESCRIPTOR=_FEATURELIST,
__module__="example_pb2"
# @@protoc_insertion_point(class_scope:tfrecord.FeatureList)
),
)
_sym_db.RegisterMessage(FeatureList)
FeatureLists = _reflection.GeneratedProtocolMessageType(
"FeatureLists",
(_message.Message,),
dict(
FeatureListEntry=_reflection.GeneratedProtocolMessageType(
"FeatureListEntry",
(_message.Message,),
dict(
DESCRIPTOR=_FEATURELISTS_FEATURELISTENTRY,
__module__="example_pb2"
# @@protoc_insertion_point(class_scope:tfrecord.FeatureLists.FeatureListEntry)
),
),
DESCRIPTOR=_FEATURELISTS,
__module__="example_pb2"
# @@protoc_insertion_point(class_scope:tfrecord.FeatureLists)
),
)
_sym_db.RegisterMessage(FeatureLists)
_sym_db.RegisterMessage(FeatureLists.FeatureListEntry)
Example = _reflection.GeneratedProtocolMessageType(
"Example",
(_message.Message,),
dict(
DESCRIPTOR=_EXAMPLE,
__module__="example_pb2"
# @@protoc_insertion_point(class_scope:tfrecord.Example)
),
)
_sym_db.RegisterMessage(Example)
SequenceExample = _reflection.GeneratedProtocolMessageType(
"SequenceExample",
(_message.Message,),
dict(
DESCRIPTOR=_SEQUENCEEXAMPLE,
__module__="example_pb2"
# @@protoc_insertion_point(class_scope:tfrecord.SequenceExample)
),
)
_sym_db.RegisterMessage(SequenceExample)
DESCRIPTOR.has_options = True
DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b("\370\001\001"))
_FLOATLIST.fields_by_name["value"].has_options = True
_FLOATLIST.fields_by_name["value"]._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b("\020\001"))
_INT64LIST.fields_by_name["value"].has_options = True
_INT64LIST.fields_by_name["value"]._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b("\020\001"))
_FEATURES_FEATUREENTRY.has_options = True
_FEATURES_FEATUREENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b("8\001"))
_FEATURELISTS_FEATURELISTENTRY.has_options = True
_FEATURELISTS_FEATURELISTENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b("8\001"))
# @@protoc_insertion_point(module_scope)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from io import BytesIO
from typing import Iterator, List, Tuple, Union
import torchdata
from torch.utils.data.datapipes.utils.common import match_masks
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
from torchdata.datapipes.utils import StreamWrapper
@functional_datapipe("list_files_by_s3")
class S3FileListerIterDataPipe(IterDataPipe[str]):
r"""
Iterable DataPipe that lists Amazon S3 file URLs with the given prefixes (functional name: ``list_files_by_s3``).
Acceptable prefixes include ``s3://bucket-name``, ``s3://bucket-name/``, ``s3://bucket-name/folder``.
Note:
1. ``source_datapipe`` **must** contain a list of valid S3 URLs
2. ``length`` is `-1` by default, and any call to ``__len__()`` is invalid, because the length is unknown
until all files are iterated.
3. ``request_timeout_ms`` and ``region`` will overwrite settings in the configuration file or
environment variables.
4. The lack of AWS proper configuration can lead empty response. For more details related to S3 IO DataPipe
setup and AWS config, please see the `README file`_.
.. _README file:
https://github.com/pytorch/data/tree/main/torchdata/datapipes/iter/load#s3-io-datapipe-documentation
Args:
source_datapipe: a DataPipe that contains URLs/URL prefixes to s3 files
length: Nominal length of the datapipe
request_timeout_ms: timeout setting for each reqeust (3,000ms by default)
region: region for access files (inferred from credentials by default)
Example:
.. testsetup::
from unittest import mock
from torchdata.datapipes.iter import IterableWrapper, S3FileLister
file_lister_patch = mock.patch.object(S3FileLister, "__iter__", return_value=iter([]))
file_lister_patch.start()
.. testcode::
from torchdata.datapipes.iter import IterableWrapper, S3FileLister
s3_prefixes = IterableWrapper(['s3://bucket-name/folder/', ...])
dp_s3_urls = S3FileLister(s3_prefixes)
for d in dp_s3_urls:
pass
# Functional API
dp_s3_urls = s3_prefixes.list_files_by_s3(request_timeout_ms=100)
for d in dp_s3_urls:
pass
.. testcleanup::
file_lister_patch.stop()
"""
def __init__(
self,
source_datapipe: IterDataPipe[str],
length: int = -1,
request_timeout_ms=-1,
region="",
masks: Union[str, List[str]] = "",
) -> None:
if not hasattr(torchdata, "_torchdata") or not hasattr(torchdata._torchdata, "S3Handler"):
raise ModuleNotFoundError("TorchData must be built with BUILD_S3=1 to use this datapipe.")
self.source_datapipe: IterDataPipe[str] = source_datapipe
self.length: int = length
self.handler = torchdata._torchdata.S3Handler(request_timeout_ms, region)
self.masks = masks
def __iter__(self) -> Iterator[str]:
for prefix in self.source_datapipe:
while True:
urls = self.handler.list_files(prefix)
for url in urls:
if match_masks(url, self.masks):
yield url
if not urls:
break
self.handler.clear_marker()
def __len__(self) -> int:
if self.length == -1:
raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
return self.length
@functional_datapipe("load_files_by_s3")
class S3FileLoaderIterDataPipe(IterDataPipe[Tuple[str, StreamWrapper]]):
r"""
Iterable DataPipe that loads Amazon S3 files from the given S3 URLs (functional name: ``load_files_by_s3``).
``S3FileLoader`` iterates all given S3 URLs in ``BytesIO`` format with ``(url, BytesIO)`` tuples.
Note:
1. ``source_datapipe`` **must** contain a list of valid S3 URLs.
2. ``request_timeout_ms`` and ``region`` will overwrite settings in the
configuration file or environment variables.
3. The lack of AWS proper configuration can lead empty response. For more details related to S3 IO DataPipe
setup and AWS config, please see the `README file`_.
.. _README file:
https://github.com/pytorch/data/tree/main/torchdata/datapipes/iter/load#s3-io-datapipe-documentation
Args:
source_datapipe: a DataPipe that contains URLs to s3 files
request_timeout_ms: timeout setting for each reqeust (3,000ms by default)
region: region for access files (inferred from credentials by default)
buffer_size: buffer size of each chunk to download large files progressively (128Mb by default)
multi_part_download: flag to split each chunk into small packets and download those packets in parallel (enabled by default)
Example:
.. testsetup::
from unittest import mock
from torchdata.datapipes.iter import S3FileLister
file_lister_patch = mock.patch.object(S3FileLister, "__iter__", return_value=iter([]))
file_lister_patch.start()
.. testcode::
from torchdata.datapipes.iter import IterableWrapper, S3FileLoader
dp_s3_urls = IterableWrapper(['s3://bucket-name/folder/', ...]).list_files_by_s3()
# In order to make sure data are shuffled and sharded in the
# distributed environment, `shuffle` and `sharding_filter`
# are required. For detail, please check our tutorial in:
# https://pytorch.org/data/main/tutorial.html#working-with-dataloader
sharded_s3_urls = dp_s3_urls.shuffle().sharding_filter()
dp_s3_files = S3FileLoader(sharded_s3_urls)
for url, fd in dp_s3_files: # Start loading data
data = fd.read()
# Functional API
dp_s3_files = sharded_s3_urls.load_files_by_s3(buffer_size=256)
for url, fd in dp_s3_files:
data = fd.read()
.. testcleanup::
file_lister_patch.stop()
"""
def __init__(
self,
source_datapipe: IterDataPipe[str],
request_timeout_ms=-1,
region="",
buffer_size=None,
multi_part_download=None,
) -> None:
if not hasattr(torchdata, "_torchdata") or not hasattr(torchdata._torchdata, "S3Handler"):
raise ModuleNotFoundError("TorchData must be built with BUILD_S3=1 to use this datapipe.")
self.source_datapipe: IterDataPipe[str] = source_datapipe
self.handler = torchdata._torchdata.S3Handler(request_timeout_ms, region)
if buffer_size:
self.handler.set_buffer_size(buffer_size)
if multi_part_download:
self.handler.set_multi_part_download(multi_part_download)
def __iter__(self) -> Iterator[Tuple[str, StreamWrapper]]:
for url in self.source_datapipe:
yield url, StreamWrapper(BytesIO(self.handler.s3_read(url)))
def __len__(self) -> int:
return len(self.source_datapipe)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import re
import urllib
import warnings
from typing import Any, Dict, Iterator, Optional, Tuple
import requests
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
from torchdata.datapipes.utils import StreamWrapper
# TODO(642): Remove this helper function when https://bugs.python.org/issue42627 is resolved
def _get_proxies() -> Optional[Dict[str, str]]:
import os
if os.name == "nt":
proxies = urllib.request.getproxies()
address = proxies.get("https")
# The default proxy type of Windows is HTTP
if address and address.startswith("https"):
address = "http" + address[5:]
proxies["https"] = address
return proxies
return None
def _get_response_from_http(
url: str, *, timeout: Optional[float], **query_params: Optional[Dict[str, Any]]
) -> Tuple[str, StreamWrapper]:
with requests.Session() as session:
proxies = _get_proxies()
r = session.get(url, timeout=timeout, proxies=proxies, stream=True, **query_params) # type: ignore[attr-defined]
r.raise_for_status()
return url, StreamWrapper(r.raw)
@functional_datapipe("read_from_http")
class HTTPReaderIterDataPipe(IterDataPipe[Tuple[str, StreamWrapper]]):
r"""
Takes file URLs (HTTP URLs pointing to files), and yields tuples of file URL and
IO stream (functional name: ``read_from_http``).
Args:
source_datapipe: a DataPipe that contains URLs
timeout: timeout in seconds for HTTP request
skip_on_error: whether to skip over urls causing problems, otherwise an exception is raised
**kwargs: a Dictionary to pass optional arguments that requests takes. For the full list check out https://docs.python-requests.org/en/master/api/
Example:
.. testcode::
from torchdata.datapipes.iter import IterableWrapper, HttpReader
file_url = "https://raw.githubusercontent.com/pytorch/data/main/LICENSE"
query_params = {"auth" : ("fake_username", "fake_password"), "allow_redirects" : True}
timeout = 120
http_reader_dp = HttpReader(IterableWrapper([file_url]), timeout=timeout, **query_params)
reader_dp = http_reader_dp.readlines()
it = iter(reader_dp)
path, line = next(it)
print((path, line))
Output:
.. testoutput::
('https://raw.githubusercontent.com/pytorch/data/main/LICENSE', b'BSD 3-Clause License')
"""
def __init__(
self,
source_datapipe: IterDataPipe[str],
timeout: Optional[float] = None,
skip_on_error: bool = False,
**kwargs: Optional[Dict[str, Any]],
) -> None:
self.source_datapipe: IterDataPipe[str] = source_datapipe
self.timeout = timeout
self.skip_on_error = skip_on_error
self.query_params = kwargs
def __iter__(self) -> Iterator[Tuple[str, StreamWrapper]]:
for url in self.source_datapipe:
try:
yield _get_response_from_http(url, timeout=self.timeout, **self.query_params)
except Exception as e:
if self.skip_on_error:
warnings.warn(f"{e}, skipping...")
else:
raise
def __len__(self) -> int:
return len(self.source_datapipe)
def _extract_gdrive_api_response(content: str) -> Optional[str]:
match = re.search("<title>Google Drive - (?P<api_response>.+?)</title>", content)
return match["api_response"] if match is not None else None
def _get_response_from_google_drive(
url: str, *, timeout: Optional[float], **query_params: Optional[Dict[str, Any]]
) -> Tuple[str, StreamWrapper]:
confirm_token = None
with requests.Session() as session:
response = session.get(url, timeout=timeout, stream=True, **query_params) # type: ignore[attr-defined]
response.raise_for_status()
for k, v in response.cookies.items():
if k.startswith("download_warning"):
confirm_token = v
break
else:
api_response = _extract_gdrive_api_response(response.text)
if api_response == "Virus scan warning":
confirm_token = "t"
elif api_response == "Quota exceeded":
raise RuntimeError(f"Google drive link {url} is currently unavailable, because the quota was exceeded.")
if confirm_token:
url = url + "&confirm=" + confirm_token
response = session.get(url, timeout=timeout, stream=True, **query_params) # type: ignore[attr-defined]
response.raise_for_status()
if "content-disposition" not in response.headers:
raise RuntimeError(
f"Google drive link {url} internal error: "
"headers don't contain content-disposition. This is usually caused by "
"using a sharing/viewing link instead of a download link. Click 'Download' on the "
"Google Drive page, which should redirect you to a download page, and use the link "
"of that page."
)
filename = re.findall('filename="(.+)"', response.headers["content-disposition"])
if filename is None:
raise RuntimeError(f"Google drive link {url}: filename could not be autodetected")
return filename[0], StreamWrapper(response.raw)
@functional_datapipe("read_from_gdrive")
class GDriveReaderDataPipe(IterDataPipe[Tuple[str, StreamWrapper]]):
r"""
Takes URLs pointing at GDrive files, and yields tuples of file name and
IO stream (functional name: ``read_from_gdrive``).
Args:
source_datapipe: a DataPipe that contains URLs to GDrive files
timeout: timeout in seconds for HTTP request
skip_on_error: whether to skip over urls causing problems, otherwise an exception is raised
**kwargs: a Dictionary to pass optional arguments that requests takes. For the full list check out https://docs.python-requests.org/en/master/api/
Example:
.. testsetup::
from torchdata.datapipes.iter import GDriveReader
GDriveReader.readlines = lambda self: [
("https://drive.google.com/uc?export=download&id=SomeIDToAGDriveFile", b"<First line from the GDrive File>")
]
.. testcode::
from torchdata.datapipes.iter import IterableWrapper, GDriveReader
gdrive_file_url = "https://drive.google.com/uc?export=download&id=SomeIDToAGDriveFile"
gdrive_reader_dp = GDriveReader(IterableWrapper([gdrive_file_url]))
reader_dp = gdrive_reader_dp.readlines()
it = iter(reader_dp)
path, line = next(it)
print((path, line))
Output:
.. testoutput::
('https://drive.google.com/uc?export=download&id=SomeIDToAGDriveFile', b'<First line from the GDrive File>')
"""
source_datapipe: IterDataPipe[str]
def __init__(
self,
source_datapipe: IterDataPipe[str],
*,
timeout: Optional[float] = None,
skip_on_error: bool = False,
**kwargs: Optional[Dict[str, Any]],
) -> None:
self.source_datapipe = source_datapipe
self.timeout = timeout
self.skip_on_error = skip_on_error
self.query_params = kwargs
def __iter__(self) -> Iterator[Tuple[str, StreamWrapper]]:
for url in self.source_datapipe:
try:
yield _get_response_from_google_drive(url, timeout=self.timeout, **self.query_params)
except Exception as e:
if self.skip_on_error:
warnings.warn(f"{e}, skipping...")
else:
raise
def __len__(self) -> int:
return len(self.source_datapipe)
@functional_datapipe("read_from_remote")
class OnlineReaderIterDataPipe(IterDataPipe[Tuple[str, StreamWrapper]]):
r"""
Takes file URLs (can be HTTP URLs pointing to files or URLs to GDrive files), and
yields tuples of file URL and IO stream (functional name: ``read_from_remote``).
Args:
source_datapipe: a DataPipe that contains URLs
timeout: timeout in seconds for HTTP request
skip_on_error: whether to skip over urls causing problems, otherwise an exception is raised
**kwargs: a Dictionary to pass optional arguments that requests takes. For the full list check out https://docs.python-requests.org/en/master/api/
Example:
.. testcode::
from torchdata.datapipes.iter import IterableWrapper, OnlineReader
file_url = "https://raw.githubusercontent.com/pytorch/data/main/LICENSE"
online_reader_dp = OnlineReader(IterableWrapper([file_url]))
reader_dp = online_reader_dp.readlines()
it = iter(reader_dp)
path, line = next(it)
print((path, line))
Output:
.. testoutput::
('https://raw.githubusercontent.com/pytorch/data/main/LICENSE', b'BSD 3-Clause License')
"""
source_datapipe: IterDataPipe[str]
def __init__(
self,
source_datapipe: IterDataPipe[str],
*,
timeout: Optional[float] = None,
skip_on_error: bool = False,
**kwargs: Optional[Dict[str, Any]],
) -> None:
self.source_datapipe = source_datapipe
self.timeout = timeout
self.skip_on_error = skip_on_error
self.query_params = kwargs
def __iter__(self) -> Iterator[Tuple[str, StreamWrapper]]:
for url in self.source_datapipe:
parts = urllib.parse.urlparse(url)
if re.match(r"(drive|docs)[.]google[.]com", parts.netloc):
try:
yield _get_response_from_google_drive(url, timeout=self.timeout, **self.query_params)
except Exception as e:
if self.skip_on_error:
warnings.warn(f"{e}, skipping...")
else:
raise
else:
try:
yield _get_response_from_http(url, timeout=self.timeout, **self.query_params)
except Exception as e:
if self.skip_on_error:
warnings.warn(f"{e}, skipping...")
else:
raise
def __len__(self) -> int:
return len(self.source_datapipe)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import Iterator, Tuple
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
from torchdata.datapipes.utils import StreamWrapper
try:
from aistore.client import Client
from aistore.pytorch.utils import parse_url, unparse_url
HAS_AIS = True
except ImportError:
HAS_AIS = False
try:
import aistore
from packaging.version import parse as parse_version
AIS_VERSION_CHECK = parse_version(aistore.__version__) >= parse_version("1.0.2")
except (ImportError, AttributeError):
AIS_VERSION_CHECK = False
def _assert_aistore() -> None:
if not HAS_AIS:
raise ModuleNotFoundError(
"Package `aistore` (>=1.0.2) is required to be installed to use this datapipe."
"Please run `pip install --upgrade aistore` or `conda install aistore` to install the package"
"For more info visit: https://github.com/NVIDIA/aistore/blob/master/sdk/python/"
)
def _assert_aistore_version() -> None:
if not AIS_VERSION_CHECK:
raise ImportError(
"AIStore version >= 1.0.2 required"
"Please run `pip install --upgrade aistore` or `conda update aistore` to install the latest version"
)
@functional_datapipe("list_files_by_ais")
class AISFileListerIterDataPipe(IterDataPipe[str]):
"""
Iterable Datapipe that lists files from the AIStore backends with the given URL prefixes
(functional name: ``list_files_by_ais``).
Acceptable prefixes include but not limited to - `ais://bucket-name`, `ais://bucket-name/`
Note:
- This function also supports files from multiple backends (`aws://..`, `gcp://..`, `azure://..`, etc)
- Input must be a list and direct URLs are not supported.
- length is -1 by default, all calls to len() are invalid as
not all items are iterated at the start.
- This internally uses AIStore Python SDK.
Args:
source_datapipe(IterDataPipe[str]): a DataPipe that contains URLs/URL
prefixes to objects on AIS
url(str): AIStore endpoint
length(int): length of the datapipe
Example:
>>> from torchdata.datapipes.iter import IterableWrapper, AISFileLister
>>> ais_prefixes = IterableWrapper(['gcp://bucket-name/folder/', 'aws:bucket-name/folder/', 'ais://bucket-name/folder/', ...])
>>> dp_ais_urls = AISFileLister(url='localhost:8080', source_datapipe=ais_prefixes)
>>> for url in dp_ais_urls:
... pass
>>> # Functional API
>>> dp_ais_urls = ais_prefixes.list_files_by_ais(url='localhost:8080')
>>> for url in dp_ais_urls:
... pass
"""
def __init__(self, source_datapipe: IterDataPipe[str], url: str, length: int = -1) -> None:
_assert_aistore()
_assert_aistore_version()
self.source_datapipe: IterDataPipe[str] = source_datapipe
self.length: int = length
self.client = Client(url)
def __iter__(self) -> Iterator[str]:
for prefix in self.source_datapipe:
provider, bck_name, prefix = parse_url(prefix)
obj_iter = self.client.bucket(bck_name, provider).list_objects_iter(prefix=prefix)
for entry in obj_iter:
yield unparse_url(provider=provider, bck_name=bck_name, obj_name=entry.name)
def __len__(self) -> int:
if self.length == -1:
raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
return self.length
@functional_datapipe("load_files_by_ais")
class AISFileLoaderIterDataPipe(IterDataPipe[Tuple[str, StreamWrapper]]):
"""
Iterable DataPipe that loads files from AIStore with the given URLs (functional name: ``load_files_by_ais``).
Iterates all files in BytesIO format and returns a tuple (url, BytesIO).
Note:
- This function also supports files from multiple backends (`aws://..`, `gcp://..`, `azure://..`, etc)
- Input must be a list and direct URLs are not supported.
- This internally uses AIStore Python SDK.
Args:
source_datapipe(IterDataPipe[str]): a DataPipe that contains URLs/URL prefixes to objects
url(str): AIStore endpoint
length(int): length of the datapipe
Example:
>>> from torchdata.datapipes.iter import IterableWrapper, AISFileLister,AISFileLoader
>>> ais_prefixes = IterableWrapper(['gcp://bucket-name/folder/', 'aws:bucket-name/folder/', 'ais://bucket-name/folder/', ...])
>>> dp_ais_urls = AISFileLister(url='localhost:8080', source_datapipe=ais_prefixes)
>>> dp_cloud_files = AISFileLoader(url='localhost:8080', source_datapipe=dp_ais_urls)
>>> for url, file in dp_cloud_files:
... pass
>>> # Functional API
>>> dp_cloud_files = dp_ais_urls.load_files_by_ais(url='localhost:8080')
>>> for url, file in dp_cloud_files:
... pass
"""
def __init__(self, source_datapipe: IterDataPipe[str], url: str, length: int = -1) -> None:
_assert_aistore()
_assert_aistore_version()
self.source_datapipe: IterDataPipe[str] = source_datapipe
self.length = length
self.client = Client(url)
def __iter__(self) -> Iterator[Tuple[str, StreamWrapper]]:
for url in self.source_datapipe:
provider, bck_name, obj_name = parse_url(url)
yield url, StreamWrapper(
self.client.bucket(bck_name=bck_name, provider=provider).object(obj_name=obj_name).get().raw()
)
def __len__(self) -> int:
return len(self.source_datapipe)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
import posixpath
from typing import Any, Callable, Dict, Iterator, List, Optional, Sequence, Tuple, Union
from torch.utils.data.datapipes.utils.common import match_masks
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterableWrapper, IterDataPipe
from torchdata.datapipes.utils import StreamWrapper
try:
import fsspec
except ImportError:
fsspec = None
U = Union[bytes, bytearray, str]
def _assert_fsspec() -> None:
if fsspec is None:
raise ModuleNotFoundError(
"Package `fsspec` is required to be installed to use this datapipe."
"Please use `pip install fsspec` or `conda install -c conda-forge fsspec`"
"to install the package"
)
@functional_datapipe("list_files_by_fsspec")
class FSSpecFileListerIterDataPipe(IterDataPipe[str]):
r"""
Lists the contents of the directory at the provided ``root`` pathname or URL,
and yields the full pathname or URL for each file within the
directory (functional name: ``list_files_by_fsspec``).
Args:
root: The root `fsspec` path directory or list of path directories to list files from
masks: Unix style filter string or string list for filtering file name(s)
kwargs: Extra options that make sense to a particular storage connection,
e.g. host, port, username, password, etc.
Example:
.. testsetup::
dir_path = "path"
.. testcode::
from torchdata.datapipes.iter import FSSpecFileLister
datapipe = FSSpecFileLister(root=dir_path)
"""
def __init__(
self,
root: Union[str, Sequence[str], IterDataPipe],
masks: Union[str, List[str]] = "",
**kwargs,
) -> None:
_assert_fsspec()
if isinstance(root, str):
root = [
root,
]
if not isinstance(root, IterDataPipe):
self.datapipe: IterDataPipe = IterableWrapper(root) # type: ignore[assignment]
else:
self.datapipe = root
self.masks = masks
self.kwargs_for_connection = kwargs
def __iter__(self) -> Iterator[str]:
for root in self.datapipe:
fs, path = fsspec.core.url_to_fs(root, **self.kwargs_for_connection)
if isinstance(fs.protocol, str):
protocol_list = [fs.protocol]
else:
protocol_list = fs.protocol
# fspec.core.url_to_fs will return "abfs" for both, "az://" and "abfs://" urls
if "abfs" in protocol_list:
protocol_list.append("az")
is_local = fs.protocol == "file" or not any(root.startswith(protocol) for protocol in protocol_list)
if fs.isfile(path):
yield root
else:
for file_name in fs.ls(path, detail=False): # Ensure it returns List[str], not List[Dict]
if not match_masks(file_name, self.masks):
continue
# ensure the file name has the full fsspec protocol path
if any(file_name.startswith(protocol) for protocol in protocol_list):
yield file_name
else:
if is_local:
abs_path = os.path.join(path, file_name)
elif not file_name.startswith(path):
abs_path = posixpath.join(path, file_name)
else:
abs_path = file_name
starts_with = False
for protocol in protocol_list:
if root.startswith(protocol):
starts_with = True
yield protocol + "://" + abs_path
break
if not starts_with:
yield abs_path
@functional_datapipe("open_files_by_fsspec")
class FSSpecFileOpenerIterDataPipe(IterDataPipe[Tuple[str, StreamWrapper]]):
r"""
Opens files from input datapipe which contains `fsspec` paths and yields a tuple of
pathname and opened file stream (functional name: ``open_files_by_fsspec``).
Args:
source_datapipe: Iterable DataPipe that provides the pathnames or URLs
mode: An optional string that specifies the mode in which the file is opened (``"r"`` by default)
kwargs_for_open: Optional Dict to specify kwargs for opening files (``fs.open()``)
kwargs: Extra options that are used to establish a particular storage connection,
e.g. host, port, username, password, etc.
Example:
.. testsetup::
dir_path = "path"
.. testcode::
from torchdata.datapipes.iter import FSSpecFileLister
datapipe = FSSpecFileLister(root=dir_path)
file_dp = datapipe.open_files_by_fsspec()
"""
def __init__(
self, source_datapipe: IterDataPipe[str], mode: str = "r", *, kwargs_for_open: Optional[Dict] = None, **kwargs
) -> None:
_assert_fsspec()
self.source_datapipe: IterDataPipe[str] = source_datapipe
self.mode: str = mode
self.kwargs_for_open = kwargs_for_open if kwargs_for_open is not None else {}
self.kwargs_for_connection = kwargs
def __iter__(self) -> Iterator[Tuple[str, StreamWrapper]]:
for file_uri in self.source_datapipe:
fs, path = fsspec.core.url_to_fs(file_uri, **self.kwargs_for_connection)
file = fs.open(path, self.mode, **self.kwargs_for_open)
yield file_uri, StreamWrapper(file)
def __len__(self) -> int:
return len(self.source_datapipe)
@functional_datapipe("save_by_fsspec")
class FSSpecSaverIterDataPipe(IterDataPipe[str]):
r"""
Takes in a DataPipe of tuples of metadata and data, saves the data to the target
path (generated by the filepath_fn and metadata), and yields the resulting `fsspec`
path (functional name: ``save_by_fsspec``).
Args:
source_datapipe: Iterable DataPipe with tuples of metadata and data
mode: Mode in which the file will be opened for write the data (``"w"`` by default)
filepath_fn: Function that takes in metadata and returns the target path of the new file
kwargs_for_open: Optional Dict to specify kwargs for opening files (``fs.open()``)
kwargs: Extra options that are used to establish a particular storage connection,
e.g. host, port, username, password, etc.
Example:
.. testsetup::
file_prefix = "file"
.. testcode::
from torchdata.datapipes.iter import IterableWrapper
def filepath_fn(name: str) -> str:
return file_prefix + name
name_to_data = {"1.txt": b"DATA1", "2.txt": b"DATA2", "3.txt": b"DATA3"}
source_dp = IterableWrapper(sorted(name_to_data.items()))
fsspec_saver_dp = source_dp.save_by_fsspec(filepath_fn=filepath_fn, mode="wb")
res_file_paths = list(fsspec_saver_dp)
.. testcleanup::
import os
for name in name_to_data.keys():
os.remove(file_prefix + name)
"""
def __init__(
self,
source_datapipe: IterDataPipe[Tuple[Any, U]],
mode: str = "w",
filepath_fn: Optional[Callable] = None,
*,
kwargs_for_open: Optional[Dict] = None,
**kwargs,
):
_assert_fsspec()
self.source_datapipe: IterDataPipe[Tuple[Any, U]] = source_datapipe
self.mode: str = mode
self.filepath_fn: Optional[Callable] = filepath_fn
self.kwargs_for_open = kwargs_for_open if kwargs_for_open is not None else {}
self.kwargs_for_connection = kwargs
def __iter__(self) -> Iterator[str]:
for meta, data in self.source_datapipe:
filepath = meta if self.filepath_fn is None else self.filepath_fn(meta)
fs, path = fsspec.core.url_to_fs(filepath, **self.kwargs_for_connection)
with fs.open(path, self.mode, **self.kwargs_for_open) as f:
f.write(data)
yield filepath
def __len__(self) -> int:
return len(self.source_datapipe)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import Any, Iterator, Tuple
from torchdata.datapipes.iter import IterDataPipe
from torchdata.datapipes.utils import StreamWrapper
try:
import datasets
except ImportError:
datasets = None
def _get_response_from_huggingface_hub(
dataset: str,
streaming: bool = True,
**config_kwargs,
) -> Iterator[Any]:
hf_dataset = datasets.load_dataset(path=dataset, streaming=streaming, **config_kwargs)
return iter(hf_dataset)
class HuggingFaceHubReaderIterDataPipe(IterDataPipe[Tuple[str, StreamWrapper]]):
r"""
Takes in dataset names and returns an Iterable HuggingFace dataset.
Please refer to https://huggingface.co/docs/datasets/loading for the meaning and type of each argument.
Contrary to their implementation, default behavior differs in the following:
* ``streaming`` is set to ``True``
Args:
dataset: path or name of the dataset
**config_kwargs: additional arguments for ``datasets.load_dataset()``
Example:
.. testsetup::
import datasets
from torchdata.datapipes.iter import IterableWrapper, HuggingFaceHubReader
from unittest.mock import MagicMock
datasets.load_dataset = MagicMock(return_value=datasets.Dataset.from_dict(
{"id": ["7bd227d9-afc9-11e6-aba1-c4b301cdf627", "7bd22905-afc9-11e6-a5dc-c4b301cdf627" ], "package_name": ["com.mantz_it.rfanalyzer"] * 2}
))
.. testcode::
huggingface_reader_dp = HuggingFaceHubReader("lhoestq/demo1", revision="main")
elem = next(iter(huggingface_reader_dp))
assert elem["package_name"] == "com.mantz_it.rfanalyzer"
"""
def __init__(
self,
dataset: str,
**config_kwargs,
) -> None:
if datasets is None:
raise ModuleNotFoundError(
"Package `datasets` is required to be installed to use this datapipe."
"Please use `pip install datasets` or `conda install -c conda-forge datasets`"
"to install the package"
)
self.dataset = dataset
self.config_kwargs = config_kwargs
def __iter__(self) -> Iterator[Any]:
return _get_response_from_huggingface_hub(dataset=self.dataset, **self.config_kwargs)
def __len__(self) -> int:
raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
from typing import Any, Callable, Iterator, List, Optional, Sequence, Tuple, Union
from torch.utils.data.datapipes.utils.common import match_masks
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterableWrapper, IterDataPipe
from torchdata.datapipes.utils import StreamWrapper
try:
import iopath
except ImportError:
iopath = None
U = Union[bytes, bytearray, str]
def _create_default_pathmanager():
from iopath.common.file_io import HTTPURLHandler, OneDrivePathHandler, PathManager
pathmgr = PathManager()
pathmgr.register_handler(HTTPURLHandler(), allow_override=True)
pathmgr.register_handler(OneDrivePathHandler(), allow_override=True)
# S3PathHandler is not included in 0.1.8
try:
from iopath.common.s3 import S3PathHandler
pathmgr.register_handler(S3PathHandler(), allow_override=True)
except ImportError:
pass
return pathmgr
@functional_datapipe("list_files_by_iopath")
class IoPathFileListerIterDataPipe(IterDataPipe[str]):
r"""
Lists the contents of the directory at the provided ``root`` pathname or URL,
and yields the full pathname or URL for each file within the directory (functional name: ``list_files_by_iopath``).
Args:
root: The root local filepath or URL directory or list of roots to list files from
masks: Unix style filter string or string list for filtering file name(s)
pathmgr: Custom ``iopath.PathManager``. If not specified, a default ``PathManager`` is created.
Note:
Default ``PathManager`` currently supports local file path, normal HTTP URL and OneDrive URL.
S3 URL is supported only with ``iopath``>=0.1.9.
Example:
.. testsetup::
s3_url = "path"
.. testcode::
from torchdata.datapipes.iter import IoPathFileLister
datapipe = IoPathFileLister(root=s3_url)
"""
def __init__(
self,
root: Union[str, Sequence[str], IterDataPipe],
masks: Union[str, List[str]] = "",
*,
pathmgr=None,
handler=None,
) -> None:
if iopath is None:
raise ModuleNotFoundError(
"Package `iopath` is required to be installed to use this datapipe."
"Please use `pip install iopath` or `conda install -c conda-forge iopath`"
"to install the package"
)
if isinstance(root, str):
root = [
root,
]
if not isinstance(root, IterDataPipe):
self.datapipe: IterDataPipe = IterableWrapper(root) # type: ignore[assignment]
else:
self.datapipe = root
self.pathmgr = _create_default_pathmanager() if pathmgr is None else pathmgr
self.masks = masks
if handler is not None:
self.register_handler(handler, allow_override=True)
def register_handler(self, handler, allow_override=False):
self.pathmgr.register_handler(handler, allow_override=allow_override)
def __iter__(self) -> Iterator[str]:
for path in self.datapipe:
if self.pathmgr.isfile(path):
yield path
else:
for file_name in self.pathmgr.ls(path):
if match_masks(file_name, self.masks):
yield os.path.join(path, file_name)
@functional_datapipe("open_files_by_iopath")
class IoPathFileOpenerIterDataPipe(IterDataPipe[Tuple[str, StreamWrapper]]):
r"""
Opens files from input datapipe which contains pathnames or URLs,
and yields a tuple of pathname and opened file stream (functional name: ``open_files_by_iopath``).
Args:
source_datapipe: Iterable DataPipe that provides the pathnames or URLs
mode: An optional string that specifies the mode in which the file is opened (``"r"`` by default)
pathmgr: Custom ``iopath.PathManager``. If not specified, a default ``PathManager`` is created.
Note:
Default ``PathManager`` currently supports local file path, normal HTTP URL and OneDrive URL.
S3 URL is supported only with `iopath`>=0.1.9.
Example:
.. testsetup::
s3_url = "path"
.. testcode::
from torchdata.datapipes.iter import IoPathFileLister
datapipe = IoPathFileLister(root=s3_url)
file_dp = datapipe.open_files_by_iopath()
"""
def __init__(self, source_datapipe: IterDataPipe[str], mode: str = "r", pathmgr=None, handler=None) -> None:
if iopath is None:
raise ModuleNotFoundError(
"Package `iopath` is required to be installed to use this datapipe."
"Please use `pip install iopath` or `conda install -c conda-forge iopath`"
"to install the package"
)
self.source_datapipe: IterDataPipe[str] = source_datapipe
self.pathmgr = _create_default_pathmanager() if pathmgr is None else pathmgr
self.mode: str = mode
if handler is not None:
self.register_handler(handler, allow_override=True)
def register_handler(self, handler, allow_override=False):
self.pathmgr.register_handler(handler, allow_override=allow_override)
def __iter__(self) -> Iterator[Tuple[str, StreamWrapper]]:
for file_uri in self.source_datapipe:
file = self.pathmgr.open(file_uri, self.mode)
yield file_uri, StreamWrapper(file)
def __len__(self) -> int:
return len(self.source_datapipe)
@functional_datapipe("save_by_iopath")
class IoPathSaverIterDataPipe(IterDataPipe[str]):
r"""
Takes in a DataPipe of tuples of metadata and data, saves the data
to the target path which is generated by the ``filepath_fn`` and metadata, and yields the resulting path
in `iopath` format (functional name: ``save_by_iopath``).
Args:
source_datapipe: Iterable DataPipe with tuples of metadata and data
mode: Mode in which the file will be opened for write the data (``"w"`` by default)
filepath_fn: Function that takes in metadata and returns the target path of the new file
pathmgr: Custom ``iopath.PathManager``. If not specified, a default ``PathManager`` is created.
Note:
Default ``PathManager`` currently supports local file path, normal HTTP URL and OneDrive URL.
S3 URL is supported only with `iopath`>=0.1.9.
Example:
.. testsetup::
s3_url = "url"
.. testcode::
from torchdata.datapipes.iter import IterableWrapper
def filepath_fn(name: str) -> str:
return s3_url + name
name_to_data = {"1.txt": b"DATA1", "2.txt": b"DATA2", "3.txt": b"DATA3"}
source_dp = IterableWrapper(sorted(name_to_data.items()))
iopath_saver_dp = source_dp.save_by_iopath(filepath_fn=filepath_fn, mode="wb")
res_file_paths = list(iopath_saver_dp)
.. testcleanup::
import os
for file in ["1.txt", "1.txt.lock", "2.txt", "2.txt.lock", "3.txt", "3.txt.lock"]:
os.remove(s3_url + file)
"""
def __init__(
self,
source_datapipe: IterDataPipe[Tuple[Any, U]],
mode: str = "w",
filepath_fn: Optional[Callable] = None,
*,
pathmgr=None,
handler=None,
):
if iopath is None:
raise ModuleNotFoundError(
"Package `iopath` is required to be installed to use this datapipe."
"Please use `pip install iopath` or `conda install -c conda-forge iopath`"
"to install the package"
)
self.source_datapipe: IterDataPipe[Tuple[Any, U]] = source_datapipe
self.mode: str = mode
self.filepath_fn: Optional[Callable] = filepath_fn
self.pathmgr = _create_default_pathmanager() if pathmgr is None else pathmgr
if handler is not None:
self.register_handler(handler, allow_override=True)
def __iter__(self) -> Iterator[str]:
for meta, data in self.source_datapipe:
filepath = meta if self.filepath_fn is None else self.filepath_fn(meta)
with iopath.file_lock(filepath):
if not os.path.exists(filepath):
with self.pathmgr.open(filepath, self.mode) as f:
f.write(data)
yield filepath
def register_handler(self, handler, allow_override=False):
self.pathmgr.register_handler(handler, allow_override=allow_override)
def __len__(self) -> int:
return len(self.source_datapipe)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import asyncio
import inspect
import random
import warnings
from collections import deque
from concurrent import futures
from typing import Callable, Hashable, Iterator, List, Optional, Set, Sized, TypeVar, Union
import torch
from torch.utils.data.datapipes.utils.common import _check_unpickable_fn, validate_input_col
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
T_co = TypeVar("T_co", covariant=True)
def _no_op_fn(*args):
"""
No-operation function, returns passed arguments.
"""
if len(args) == 1:
return args[0]
return args
@functional_datapipe("map_batches")
class BatchMapperIterDataPipe(IterDataPipe[T_co]):
r"""
Combines elements from the source DataPipe to batches and applies a function
over each batch, then flattens the outputs to a single, unnested IterDataPipe
(functional name: ``map_batches``).
Args:
datapipe: Source IterDataPipe
fn: The function to be applied to each batch of data
batch_size: The size of batch to be aggregated from ``datapipe``
input_col: Index or indices of data which ``fn`` is applied, such as:
- ``None`` as default to apply ``fn`` to the data directly.
- Integer(s) is used for list/tuple.
- Key(s) is used for dict.
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> def fn(batch):
>>> return [d + 1 for d in batch]
>>> source_dp = IterableWrapper(list(range(5)))
>>> mapped_dp = source_dp.map_batches(fn, batch_size=3)
>>> list(mapped_dp)
[1, 2, 3, 4, 5]
Notes:
Compared with ``map``, the reason that ``map_batches`` doesn't take
``output_col`` argument is the size of ``fn`` output is not guaranteed
to be the same as input batch. With different size, this operation cannot
assign data back to original data structure.
And, this operation is introduced based on the use case from `TorchText`.
A pybinded C++ vectorized function can be applied for efficiency.
"""
datapipe: IterDataPipe
fn: Callable
batch_size: int
def __init__(
self,
datapipe: IterDataPipe,
fn: Callable,
batch_size: int,
input_col=None,
) -> None:
self.datapipe = datapipe
_check_unpickable_fn(fn)
self.fn = fn # type: ignore[assignment]
assert batch_size > 0, "Batch size is required to be larger than 0!"
self.batch_size = batch_size
self.input_col = input_col
def _apply_fn(self, batch):
if self.input_col is None:
return self.fn(batch)
if isinstance(self.input_col, (list, tuple)):
args = [[data[idx] for idx in self.input_col] for data in batch]
else:
args = [data[self.input_col] for data in batch]
return self.fn(args)
def __iter__(self) -> Iterator[T_co]:
batch: List = []
for d in self.datapipe:
batch.append(d)
if len(batch) == self.batch_size:
yield from self._apply_fn(batch)
batch = []
if batch:
yield from self._apply_fn(batch)
def __len__(self) -> int:
raise TypeError(f"{type(self).__name__}'s length relies on the output of its function.")
@functional_datapipe("flatmap")
class FlatMapperIterDataPipe(IterDataPipe[T_co]):
r"""
Applies a function over each item from the source DataPipe, then
flattens the outputs to a single, unnested IterDataPipe (functional name: ``flatmap``).
Note:
The output from ``fn`` must be a Sequence. Otherwise, an error will be raised.
If ``fn`` is ``None``, source DataPipe will be just flattened vertically, provided that items can be unpacked.
Args:
datapipe: Source IterDataPipe
fn: the function to be applied to each element in the DataPipe, the output must be a Sequence
input_col: Index or indices of data which ``fn`` is applied, such as:
- ``None`` as default to apply ``fn`` to the data directly.
- Integer(s) is/are used for list/tuple.
- Key(s) is/are used for dict.
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> def fn(e):
>>> return [e, e * 10]
>>> source_dp = IterableWrapper(list(range(5)))
>>> flatmapped_dp = source_dp.flatmap(fn)
>>> list(flatmapped_dp)
[0, 0, 1, 10, 2, 20, 3, 30, 4, 40]
>>>
>>> source_dp = IterableWrapper([[1, 2, 3], [4, 5, 6]])
>>> flatmapped_dp = source_dp.flatmap()
>>> list(flatmapped_dp)
[1, 2, 3, 4, 5, 6]
"""
datapipe: IterDataPipe
fn: Optional[Callable]
def __init__(self, datapipe: IterDataPipe, fn: Optional[Callable] = None, input_col=None) -> None:
self.datapipe = datapipe
if fn is None:
fn = _no_op_fn
_check_unpickable_fn(fn)
self.fn = fn # type: ignore[assignment]
self.input_col = input_col
validate_input_col(fn, input_col)
def _apply_fn(self, data):
if self.input_col is None:
return self.fn(data) # type: ignore[misc]
elif isinstance(self.input_col, (list, tuple)):
args = tuple(data[col] for col in self.input_col)
return self.fn(*args) # type: ignore[misc]
else:
return self.fn(data[self.input_col]) # type: ignore[misc]
def __iter__(self) -> Iterator[T_co]:
for d in self.datapipe:
yield from self._apply_fn(d)
def __len__(self) -> int:
raise TypeError(f"{type(self).__name__}'s length relies on the output of its function.")
@functional_datapipe("shuffled_flatmap")
class ShuffledFlatMapperIterDataPipe(IterDataPipe):
r"""
Applies a function over each item from the source DataPipe,
then collects the iterables returned in a buffer,
then, at every iteration, chooses at random one of the iterables in the buffer
and yields one item from this iterable (functional name: ``shuffled_flatmap``).
When the buffer is full, the DataPipe will begin to yield elements from iterables within the buffer.
New iterables will be added to the buffer once the existing ones run out of elements.
Note:
The output from ``fn`` must be an Iterable. Otherwise, an error will be raised.
If ``fn`` is ``None``, source DataPipe will be just flattened vertically, provided that items can be unpacked.
Args:
datapipe: Source IterDataPipe
fn: the function to be applied to each element in the DataPipe, the output must be a Sequence
input_col: Index or indices of data which ``fn`` is applied, such as:
- ``None`` as default to apply ``fn`` to the data directly.
- Integer(s) is/are used for list/tuple.
- Key(s) is/are used for dict.
buffer_size: the max number of iterables this DataPipe can hold at a time (default to ``100``)
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> source_dp = IterableWrapper([[1, 2, 3, 4], 'abcd', 'ABCD'])
>>> shuffled_flatmapped_dp = source_dp.shuffled_flatmap(buffer_size=2)
>>> list(shuffled_flatmapped_dp)
['a', 'b', 'c', 1, 'd', 'A', 'B', 'C', 2, 'D', 3, 4]
>>>
>>> # To shuffle all the elements, you can combine `shuffled_flatmap` with `in_batch_shuffle` like this:
>>> fully_shuffled_flatmapped_dp = source_dp.in_batch_shuffle()
>>> fully_shuffled_flatmapped_dp = fully_shuffled_flatmapped_dp.shuffled_flatmap()
>>> list(fully_shuffled_flatmapped_dp)
['b', 3, 'c', 'd', 'C', 'A', 'a', 2, 'B', 'D', 4, 1]
"""
datapipe: IterDataPipe
fn: Optional[Callable]
buffer_size: int
_buffer: List[Iterator]
_enabled: bool
_seed: Optional[int]
_rng: random.Random
_no_op_fn: bool = False
def __init__(
self, datapipe: IterDataPipe, fn: Optional[Callable] = None, input_col=None, buffer_size: int = 100
) -> None:
super().__init__()
self._buffer = []
self.datapipe = datapipe
if fn is None:
fn = _no_op_fn
self._no_op_fn = True
_check_unpickable_fn(fn)
self.fn = fn # type: ignore[assignment]
self.input_col = input_col
validate_input_col(fn, input_col)
assert buffer_size > 0, "buffer_size should be larger than 0"
self.buffer_size = buffer_size
self._enabled = True
self._seed = None
self._rng = random.Random()
def set_shuffle(self, shuffle=True):
self._enabled = shuffle
return self
def set_seed(self, seed: int):
self._seed = seed
return self
def reset(self) -> None:
self._buffer = []
if self._enabled:
if self._seed is None:
self._seed = int(torch.empty((), dtype=torch.int64).random_().item())
self._rng.seed(self._seed)
self._seed = None
def _apply_fn(self, data):
if self.input_col is None:
return self.fn(data) # type: ignore[misc]
elif isinstance(self.input_col, (list, tuple)):
args = tuple(data[col] for col in self.input_col)
return self.fn(*args) # type: ignore[misc]
else:
return self.fn(data[self.input_col]) # type: ignore[misc]
def __iter__(self) -> Iterator[T_co]:
if not self._enabled: # equivalent to flatmap
for x in self.datapipe:
yield from self._apply_fn(x)
else:
idx = self._rng.randint(0, self.buffer_size - 1)
for x in self.datapipe:
while len(self._buffer) == self.buffer_size:
try:
yield next(self._buffer[idx])
idx = self._rng.randint(0, self.buffer_size - 1)
except StopIteration:
self._buffer.pop(idx)
self._buffer.append(iter(self._apply_fn(x)))
while self._buffer:
try:
idx = self._rng.randint(0, len(self._buffer) - 1)
yield next(self._buffer[idx])
except StopIteration:
self._buffer.pop(idx)
def __len__(self) -> int:
if self._no_op_fn:
return sum(map(len, self.datapipe))
raise TypeError(f"{type(self).__name__}'s length relies on the output of its function.")
def __getstate__(self):
state = (
self.datapipe,
self.fn,
self.input_col,
self.buffer_size,
self._buffer,
self._enabled,
self._seed,
self._rng.getstate(),
self._valid_iterator_id,
self._number_of_samples_yielded,
)
if IterDataPipe.getstate_hook is not None:
return IterDataPipe.getstate_hook(state)
return state
def __setstate__(self, state):
(
self.datapipe,
self.fn,
self.input_col,
self.buffer_size,
self._buffer,
self._enabled,
self._seed,
rng_state,
self._valid_iterator_id,
self._number_of_samples_yielded,
) = state
self._rng = random.Random()
self._rng.setstate(rng_state)
def __del__(self):
self._buffer.clear()
@functional_datapipe("drop")
class DropperIterDataPipe(IterDataPipe[T_co]):
r"""
Drop columns/elements in input DataPipe via its indices (functional name: ``drop``).
Args:
datapipe: IterDataPipe with columns to be dropped
indices: a single column index to be dropped or a list of indices
- Integer(s) is/are used for list/tuple.
- Key(s) is/are used for dict.
Example:
>>> from torchdata.datapipes.iter import IterableWrapper, ZipperMapDataPipe
>>> dp1 = IterableWrapper(range(5))
>>> dp2 = IterableWrapper(range(10, 15))
>>> dp = dp1.zip(dp2)
>>> list(dp)
[(0, 10), (1, 11), (2, 12), (3, 13), (4, 14)]
>>> drop_dp = dp.drop(1)
>>> list(drop_dp)
[(0), (1), (2), (3), (4)]
"""
datapipe: IterDataPipe
def __init__(
self,
datapipe: IterDataPipe,
indices: Union[Hashable, List[Hashable]],
) -> None:
super().__init__()
self.datapipe = datapipe
if isinstance(indices, list):
self.indices = set(indices)
else:
self.indices = {indices}
def __iter__(self) -> Iterator[T_co]:
for old_item in self.datapipe:
if isinstance(old_item, tuple):
new_item = tuple(x for i, x in enumerate(old_item) if i not in self.indices) # type: ignore[assignment]
elif isinstance(old_item, list):
new_item = [x for i, x in enumerate(old_item) if i not in self.indices] # type: ignore[assignment]
elif isinstance(old_item, dict):
new_item = {k: v for (k, v) in old_item.items() if k not in self.indices} # type: ignore[assignment]
else:
new_item = old_item
warnings.warn(
"The next item was not an iterable and cannot be filtered, "
"please be aware that no filter was done or new item created."
)
# check to make sure all indices requested were in the item. warn if not
try:
for i in self.indices:
old_item[i]
except (IndexError, KeyError):
warnings.warn(
"At least one index in the filter is not present in the item being returned,"
" please be aware that expected columns/keys may be missing."
)
yield new_item # type: ignore[misc]
def __len__(self) -> int:
if isinstance(self.datapipe, Sized):
return len(self.datapipe)
raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
@functional_datapipe("slice")
class SliceIterDataPipe(IterDataPipe[T_co]):
r"""
returns a slice of elements in input DataPipe via start/stop/step or indices (functional name: ``slice``).
Args:
datapipe: IterDataPipe with iterable elements
index: a single start index for the slice or a list of indices to be returned instead of a start/stop slice
- Integer(s) is/are used for list/tuple.
- Key(s) is/are used for dict.
stop: the slice stop. ignored if index is a list or if element is a dict
step: step to be taken from start to stop. ignored if index is a list or if element is a dict
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> dp = IterableWrapper([(0, 10, 100), (1, 11, 111), (2, 12, 122), (3, 13, 133), (4, 14, 144)])
>>> slice_dp = dp.slice(0, 2)
>>> list(slice_dp)
[(0, 10), (1, 11), (2, 12), (3, 13), (4, 14)]
"""
datapipe: IterDataPipe
def __init__(
self,
datapipe: IterDataPipe,
index: Union[int, List[Hashable]],
stop: Optional[int] = None,
step: Optional[int] = None,
) -> None:
super().__init__()
self.datapipe = datapipe
self.index = index
self.stop = stop
self.step = step
if isinstance(index, list):
if stop or step:
warnings.warn(
"A list of indices was passed as well as a stop or step for the slice, "
"these arguments can't be used together so only the indices list will be used."
)
def __iter__(self) -> Iterator[T_co]:
for old_item in self.datapipe:
if isinstance(old_item, tuple):
if isinstance(self.index, list):
new_item = tuple(x for i, x in enumerate(old_item) if i in self.index) # type: ignore[assignment]
else:
new_item = old_item[self.index : self.stop : self.step] # type: ignore[assignment]
elif isinstance(old_item, list):
if isinstance(self.index, list):
new_item = [x for i, x in enumerate(old_item) if i in self.index] # type: ignore[assignment]
else:
new_item = old_item[self.index : self.stop : self.step] # type: ignore[assignment]
elif isinstance(old_item, dict):
if isinstance(self.index, list):
new_item = {k: v for (k, v) in old_item.items() if k in self.index} # type: ignore[assignment]
elif self.index in old_item.keys():
new_item = {self.index: old_item.get(self.index)} # type: ignore[assignment]
else:
new_item = old_item # type: ignore[assignment]
warnings.warn(
"Dictionaries are not sliced by steps, only direct index. "
"Please be aware that no filter was done or new item created."
)
else:
new_item = old_item # type: ignore[assignment]
warnings.warn(
"The next item was not an iterable and cannot be filtered, "
"please be aware that no filter was done or new item created."
)
if isinstance(self.index, list):
# check to make sure all indices requested were in the item. warn if not
try:
for i in self.index:
old_item[i]
except (IndexError, KeyError):
warnings.warn(
"At least one index in the filter is not present in the item being returned,"
" please be aware that expected columns/keys may be missing."
)
yield new_item # type: ignore[misc]
def __len__(self) -> int:
if isinstance(self.datapipe, Sized):
return len(self.datapipe)
raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
@functional_datapipe("flatten")
class FlattenIterDataPipe(IterDataPipe[T_co]):
r"""
returns a flattened copy of the input DataPipe at the per sample/element level based on provided indices (functional name: ``flatten``).
Note:
no args will flatten each item in the datapipe 1 level
Args:
datapipe: IterDataPipe with iterable elements
indices: a single index/key for the item to flatten from an iterator item or a list of indices/keys to be flattened
- Integer(s) is/are used for list/tuple.
- Key(s) is/are used for dict.
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> dp = IterableWrapper([(0, 10, (100, 1000)), (1, 11, (111, 1001)), (2, 12, (122, 1002)), (3, 13, (133, 1003)), (4, 14, (144, 1004))])
>>> flatten_dp = dp.flatten(2)
>>> list(flatten_dp)
[(0, 10, 100, 1000), (1, 11, 111, 1001), (2, 12, 122, 1002), (3, 13, 133, 1003), (4, 14, 144, 1004)]
>>>
>>> dp = IterableWrapper([(0, (1, 2)), (3, (4, 5)), (6, (7, 8))])
>>> flatten_dp = dp.flatten()
>>> list(flatten_dp)
[(0, 1, 2), (3, 4, 5), (6, 7, 8)]
"""
datapipe: IterDataPipe
indices: Set[Hashable] = set()
def __init__(
self,
datapipe: IterDataPipe,
indices: Optional[Union[Hashable, List[Hashable]]] = None,
) -> None:
super().__init__()
self.datapipe = datapipe
if indices:
if isinstance(indices, list):
self.indices = set(indices)
else:
self.indices = {indices}
def __iter__(self) -> Iterator[T_co]:
flatten_all = False
if not self.indices:
flatten_all = True
for old_item in self.datapipe:
if isinstance(old_item, dict):
new_item = {} # type: ignore[assignment]
for k, v in old_item.items():
if k in self.indices:
pass
if (flatten_all or (k in self.indices)) and isinstance(v, dict):
for k_sub, v_sub in v.items():
if k_sub not in old_item:
new_item[k_sub] = v_sub
else:
warnings.warn(
"Flattener tried to insert the same key twice into the dict item,"
"the second key,value pair has been dropped."
)
else:
if k not in new_item:
new_item[k] = v
else:
warnings.warn(
"Flattener tried to insert the same key twice into the dict item,"
"the second key,value pair has been dropped."
)
else:
is_tuple = False
new_item = [] # type: ignore[assignment]
if isinstance(old_item, tuple):
is_tuple = True
old_item = list(old_item)
for i, item in enumerate(old_item):
if (flatten_all or (i in self.indices)) and isinstance(item, (list, tuple)):
new_item.extend(list(item)) # type: ignore[attr-defined]
else:
new_item.append(item) # type: ignore[attr-defined]
if is_tuple:
new_item = tuple(new_item) # type: ignore[assignment]
# check to make sure all indices requested were in the item. warn if not
try:
if self.indices:
for index in self.indices:
old_item[index]
except (IndexError, KeyError):
warnings.warn(
"At least one index in the filter is not present in the item being returned,"
" please be aware that expected columns/keys may be missing."
)
yield new_item # type: ignore[misc]
def __len__(self) -> int:
if isinstance(self.datapipe, Sized):
return len(self.datapipe)
raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
class _BatchAsyncMapperIterDataPipe(IterDataPipe):
datapipe: IterDataPipe
async_fn: Callable
def __init__(
self,
source_datapipe: IterDataPipe,
async_fn: Callable,
input_col=None,
output_col=None,
max_concurrency: int = 32,
):
self.source_datapipe = source_datapipe
if not inspect.iscoroutinefunction(async_fn):
raise ValueError(f"Expected a corotine function with an async def syntax, but got a {type(async_fn)}")
self.async_fn = async_fn # type: ignore[assignment]
if input_col is None and output_col is not None:
raise ValueError("`output_col` must be None when `input_col` is None.")
self.input_col = input_col
if isinstance(output_col, (list, tuple)):
if len(output_col) > 1:
raise ValueError("`output_col` must be a single-element list or tuple")
output_col = output_col[0]
self.output_col = output_col
self.max_concurrency = max_concurrency
def __iter__(self):
policy = asyncio.get_event_loop_policy()
loop = policy.new_event_loop()
try:
for batch in self.source_datapipe:
policy.set_event_loop(loop)
new_batch = loop.run_until_complete(self.processbatch(batch))
yield new_batch
finally:
loop.run_until_complete(loop.shutdown_asyncgens())
loop.close()
async def processbatch(self, batch):
sem = asyncio.Semaphore(self.max_concurrency)
async def controlled_async_fn(async_fn, *data):
async with sem:
return await async_fn(*data)
coroutines = []
if self.input_col is None:
for data in batch:
coroutines.append(controlled_async_fn(self.async_fn, data))
results = await asyncio.gather(*coroutines)
return results
for data in batch:
if isinstance(self.input_col, (list, tuple)):
args = tuple(data[col] for col in self.input_col)
coroutines.append(controlled_async_fn(self.async_fn, *args))
else:
coroutines.append(controlled_async_fn(self.async_fn, data[self.input_col]))
results = await asyncio.gather(*coroutines)
new_batch = []
for data, res in zip(batch, results):
t_flag = isinstance(data, tuple)
if t_flag:
data = list(data)
if self.output_col is None:
if isinstance(self.input_col, (list, tuple)):
data[self.input_col[0]] = res
for idx in sorted(self.input_col[1:], reverse=True):
del data[idx]
else:
data[self.input_col] = res
elif self.output_col == -1:
data.append(res)
else:
data[self.output_col] = res
if t_flag:
data = tuple(data)
new_batch.append(data)
return new_batch
def __len__(self):
return len(self.source_datapipe)
@functional_datapipe("async_map_batches")
class BatchAsyncMapperIterDataPipe(IterDataPipe):
r"""
Combines elements from the source DataPipe to batches and applies a coroutine function
over each element within the batch concurrently, then flattens the outpus to a
single, unnested IterDataPipe (functional name: ``async_map_batches``).
Args:
source_datapipe: Source IterDataPipe
async_fn: The coroutine function to be applied to each batch of data
batch_size: The size of batch to be aggregated from ``source_datapipe``
input_col: Index or indices of data which ``fn`` is applied, such as:
- ``None`` as default to apply ``fn`` to the data directly.
- Integer(s) is used for list/tuple.
- Key(s) is used for dict.
output_col: Index of data where result of ``fn`` is placed. ``output_col`` can be specified
only when ``input_col`` is not ``None``
- ``None`` as default to replace the index that ``input_col`` specified; For ``input_col`` with
multiple indices, the left-most one is used, and other indices will be removed.
- Integer is used for list/tuple. ``-1`` represents to append result at the end.
- Key is used for dict. New key is acceptable.
max_concurrency: Maximum concurrency to call async functions. (Default: ``32``)
flatten: Determine if the batches get flatten in the end (Default: ``True``)
If ``False``, outputs will be in batches of size ``batch_size``
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> async def mul_ten(x):
... await asyncio.sleep(1)
... return x * 10
>>> dp = IterableWrapper(range(50))
>>> dp = dp.async_map_batches(mul_ten, 16)
>>> list(dp)
[0, 10, 20, 30, ...]
>>> dp = IterableWrapper([(i, i) for i in range(50)])
>>> dp = dp.async_map_batches(mul_ten, 16, input_col=1)
>>> list(dp)
[(0, 0), (1, 10), (2, 20), (3, 30), ...]
>>> dp = IterableWrapper([(i, i) for i in range(50)])
>>> dp = dp.async_map_batches(mul_ten, 16, input_col=1, output_col=-1)
>>> list(dp)
[(0, 0, 0), (1, 1, 10), (2, 2, 20), (3, 3, 30), ...]
# Async fetching html from remote
>>> from aiohttp import ClientSession
>>> async def fetch_html(url: str, **kwargs):
... async with ClientSession() as session:
... resp = await session.request(method="GET", url=url, **kwargs)
... resp.raise_for_status()
... html = await resp.text()
... return html
>>> dp = IterableWrapper(urls)
>>> dp = dp.async_map_batches(fetch_html, 16)
"""
def __new__(
self,
source_datapipe,
async_fn: Callable,
batch_size: int,
input_col=None,
output_col=None,
max_concurrency: int = 32,
flatten: bool = True,
):
dp = source_datapipe.batch(batch_size)
dp = _BatchAsyncMapperIterDataPipe(dp, async_fn, input_col, output_col, max_concurrency)
if flatten:
dp = dp.flatmap()
try:
source_length = len(source_datapipe)
if isinstance(source_length, int) and source_length >= 0:
dp = dp.set_length(source_length)
except (TypeError, NotImplementedError):
pass
return dp
@functional_datapipe("threadpool_map")
class ThreadPoolMapperIterDataPipe(IterDataPipe[T_co]):
r"""
Applies a function over each item from the source DataPipe concurrently
using ``ThreadPoolExecutor`` (functional name: ``threadpool_map``).
The function can be any regular Python function or partial object. Lambda
function is not recommended as it is not supported by pickle.
Args:
source_datapipe: Source IterDataPipe
fn: Function being applied over each item
input_col: Index or indices of data which ``fn`` is applied, such as:
- ``None`` as default to apply ``fn`` to the data directly.
- Integer(s) is used for list/tuple.
- Key(s) is used for dict.
output_col: Index of data where result of ``fn`` is placed. ``output_col`` can be specified
only when ``input_col`` is not ``None``
- ``None`` as default to replace the index that ``input_col`` specified; For ``input_col`` with
multiple indices, the left-most one is used, and other indices will be removed.
- Integer is used for list/tuple. ``-1`` represents to append result at the end.
- Key is used for dict. New key is acceptable.
scheduled_tasks: How many tasks will be scheduled at any given time (Default value: 128)
max_workers: Maximum number of threads to execute function calls
**threadpool_kwargs: additional arguments to be given to the ``ThreadPoolExecutor``
Note:
For more information about ``max_workers`` and additional arguments for the ``ThreadPoolExecutor``
please refer to: https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor
Note:
For optimal use of all threads, ``scheduled_tasks`` > ``max_workers`` is strongly recommended. The higher the
variance of the time needed to finish execution of the given ``fn`` is, the higher the value
of ``scheduled_tasks`` needs to be to avoid threads sitting idle while waiting
for the next result (as results are returned in correct order).
However, too high value of ``scheduled_tasks`` might lead to long waiting period until the first element is yielded
as ``next`` is called ``scheduled_tasks`` many times on ``source_datapipe`` before yielding.
We encourage you to try out different values of ``max_workers`` and ``scheduled_tasks``
in search for optimal values for your use-case.
Example:
.. testsetup::
from torchdata.datapipes.iter import IterableWrapper
import requests
import time
from unittest.mock import MagicMock
requests.get = MagicMock()
urls = []
.. testcode::
# fetching html from remote
def fetch_html(url: str, **kwargs):
r = requests.get(url, **kwargs)
r.raise_for_status()
return r.content
dp = IterableWrapper(urls)
dp = dp.threadpool_map(fetch_html,max_workers=16)
.. testcode::
def mul_ten(x):
time.sleep(0.1)
return x * 10
dp = IterableWrapper([(i, i) for i in range(50)])
dp = dp.threadpool_map(mul_ten, input_col=1)
print(list(dp))
.. testoutput::
[(0, 0), (1, 10), (2, 20), (3, 30), ...]
.. testcode::
dp = IterableWrapper([(i, i) for i in range(50)])
dp = dp.threadpool_map(mul_ten, input_col=1, output_col=-1)
print(list(dp))
.. testoutput::
[(0, 0, 0), (1, 1, 10), (2, 2, 20), (3, 3, 30), ...]
"""
datapipe: IterDataPipe
fn: Callable
def __init__(
self,
source_datapipe: IterDataPipe,
fn: Callable,
input_col=None,
output_col=None,
scheduled_tasks: int = 128,
max_workers: Optional[int] = None,
**threadpool_kwargs,
) -> None:
super().__init__()
self.datapipe = source_datapipe
_check_unpickable_fn(fn)
self.fn = fn # type: ignore[assignment]
if scheduled_tasks <= 0:
raise ValueError("'scheduled_tasks' is required to be a positive integer.")
self.scheduled_tasks = scheduled_tasks
if max_workers is not None and max_workers <= 0:
raise ValueError("'max_workers' is required to be a positive integer.")
self.max_workers = max_workers
self.threadpool_kwargs = threadpool_kwargs
self.input_col = input_col
if input_col is None and output_col is not None:
raise ValueError("`output_col` must be None when `input_col` is None.")
if isinstance(output_col, (list, tuple)):
if len(output_col) > 1:
raise ValueError("`output_col` must be a single-element list or tuple")
output_col = output_col[0]
self.output_col = output_col
validate_input_col(fn, input_col)
def _apply_fn(self, data):
if self.input_col is None and self.output_col is None:
return self.fn(data)
if self.input_col is None:
res = self.fn(data)
elif isinstance(self.input_col, (list, tuple)):
args = tuple(data[col] for col in self.input_col)
res = self.fn(*args)
else:
res = self.fn(data[self.input_col])
# Copy tuple to list and run in-place modification because tuple is immutable.
if isinstance(data, tuple):
t_flag = True
data = list(data)
else:
t_flag = False
if self.output_col is None:
if isinstance(self.input_col, (list, tuple)):
data[self.input_col[0]] = res
for idx in sorted(self.input_col[1:], reverse=True):
del data[idx]
else:
data[self.input_col] = res
else:
if self.output_col == -1:
data.append(res)
else:
data[self.output_col] = res
# Convert list back to tuple
return tuple(data) if t_flag else data
def __iter__(self) -> Iterator[T_co]:
with futures.ThreadPoolExecutor(max_workers=self.max_workers, **self.threadpool_kwargs) as executor:
futures_deque: deque = deque()
has_next = True
itr = iter(self.datapipe)
for _ in range(self.scheduled_tasks):
try:
futures_deque.append(executor.submit(self._apply_fn, next(itr)))
except StopIteration:
has_next = False
break
while len(futures_deque) > 0:
if has_next:
try:
futures_deque.append(executor.submit(self._apply_fn, next(itr)))
except StopIteration:
has_next = False
yield futures_deque.popleft().result()
def __len__(self) -> int:
if isinstance(self.datapipe, Sized):
return len(self.datapipe)
raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import heapq
import random
from dataclasses import dataclass, field
from functools import partial
from typing import Callable, final, Generic, Iterator, List, Optional, TypeVar
import torch
from torchdata.datapipes import DataChunk, functional_datapipe
from torchdata.datapipes.iter import IterDataPipe
T = TypeVar("T")
T_co = TypeVar("T_co", covariant=True)
@functional_datapipe("in_batch_shuffle")
class InBatchShufflerIterDataPipe(IterDataPipe[DataChunk[T_co]]):
r"""
Shuffles each mini-batch from the prior DataPipe (functional name: ``in_batch_shuffle``).
Args:
datapipe: Iterable DataPipe with batched data
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> source_dp = IterableWrapper(range(10))
>>> batch_dp = source_dp.batch(batch_size=3, drop_last=True)
>>> list(batch_dp)
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]
>>> in_batch_shuffle_dp = batch_dp.in_batch_shuffle()
>>> list(in_batch_shuffle_dp)
[[2, 0, 1], [3, 5, 4], [7, 8, 6]]
"""
def __init__(self, datapipe: IterDataPipe[DataChunk[T_co]]):
self.datapipe = datapipe
self._enabled = True
self._seed: Optional[int] = None
self._rng = random.Random()
def set_shuffle(self, shuffle=True):
self._enabled = shuffle
return self
def set_seed(self, seed: int):
self._seed = seed
return self
def __iter__(self) -> Iterator[DataChunk[T_co]]:
if not self._enabled:
for batch in self.datapipe:
yield batch
else:
for batch in self.datapipe:
new_batch = self._rng.sample(batch, len(batch))
yield DataChunk(new_batch)
@final
def reset(self) -> None:
if self._enabled:
if self._seed is None:
self._seed = int(torch.empty((), dtype=torch.int64).random_().item())
self._rng.seed(self._seed)
self._seed = None
def __len__(self) -> int:
return len(self.datapipe)
def __getstate__(self):
state = (
self.datapipe,
self._enabled,
self._seed,
self._rng.getstate(),
self._valid_iterator_id,
self._number_of_samples_yielded,
)
if IterDataPipe.getstate_hook is not None:
return IterDataPipe.getstate_hook(state)
return state
def __setstate__(self, state):
(
self.datapipe,
self._enabled,
self._seed,
rng_state,
self._valid_iterator_id,
self._number_of_samples_yielded,
) = state
self._rng = random.Random()
self._rng.setstate(rng_state)
@functional_datapipe("bucketbatch")
class BucketBatcherIterDataPipe(IterDataPipe[DataChunk[T_co]]):
r"""
Creates mini-batches of data from sorted bucket (functional name: ``bucketbatch``). An outer
dimension will be added as ``batch_size`` if ``drop_last`` is set to ``True``,
or ``length % batch_size`` for the last batch if ``drop_last`` is set to ``False``.
The purpose of this DataPipe is to batch samples with some similarity according to the sorting function
being passed. For an example in the text domain, it may be batching examples with similar number of tokens
to minimize padding and to increase throughput.
Args:
datapipe: Iterable DataPipe being batched
batch_size: The size of each batch
drop_last: Option to drop the last batch if it's not full
batch_num: Number of batches within a bucket (i.e. `bucket_size = batch_size * batch_num`)
bucket_num: Number of buckets to consist a pool for shuffling (i.e. `pool_size = bucket_size * bucket_num`)
sort_key: Callable to sort a bucket (list)
use_in_batch_shuffle: if True, do in-batch shuffle; if False, buffer shuffle
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> source_dp = IterableWrapper(range(10))
>>> batch_dp = source_dp.bucketbatch(batch_size=3, drop_last=True)
>>> list(batch_dp)
[[5, 6, 7], [9, 0, 1], [4, 3, 2]]
>>> def sort_bucket(bucket):
>>> return sorted(bucket)
>>> batch_dp = source_dp.bucketbatch(
>>> batch_size=3, drop_last=True, batch_num=100,
>>> bucket_num=1, use_in_batch_shuffle=False, sort_key=sort_bucket
>>> )
>>> list(batch_dp)
[[3, 4, 5], [6, 7, 8], [0, 1, 2]]
"""
datapipe: IterDataPipe[T_co]
batch_size: int
drop_last: bool
batch_num: int
bucket_num: int
sort_key: Optional[Callable]
use_in_batch_shuffle: bool
def __new__(
cls,
datapipe: IterDataPipe[T_co],
batch_size: int,
drop_last: bool = False,
batch_num: int = 100,
bucket_num: int = 1,
sort_key: Optional[Callable] = None,
use_in_batch_shuffle: bool = True,
):
assert batch_size > 0, "Batch size is required to be larger than 0!"
assert batch_num > 0, "Number of batches is required to be larger than 0!"
assert bucket_num > 0, "Number of buckets is required to be larger than 0!"
bucket_size = batch_size * batch_num
pool_size = bucket_size * bucket_num
# Shuffle by pool_size
if bucket_num > 1 or sort_key is None:
if use_in_batch_shuffle:
datapipe = datapipe.batch(batch_size=pool_size, drop_last=False).in_batch_shuffle().unbatch()
else:
datapipe = datapipe.shuffle(buffer_size=pool_size)
# Sort by bucket_size if sort_key is given
if sort_key is not None:
datapipe = datapipe.batch(bucket_size).map(fn=sort_key).unbatch()
# Batch and drop last (if needed)
datapipe = datapipe.batch(batch_size, drop_last=drop_last)
# Shuffle the batched data
if sort_key is not None:
# In-batch shuffle each bucket seems not that useful, it seems misleading since .batch is called prior.
if use_in_batch_shuffle:
datapipe = datapipe.batch(batch_size=bucket_num, drop_last=False).in_batch_shuffle().unbatch()
else:
datapipe = datapipe.shuffle(buffer_size=bucket_size)
return datapipe
def _default_len_fn(token):
return len(token)
@dataclass(order=True, frozen=True)
class PrioritizedItem(Generic[T_co]):
length: int
data: T_co = field(compare=False)
def _token_len_fn(token: T, len_fn: Callable) -> PrioritizedItem[T]:
return PrioritizedItem(length=len_fn(token), data=token)
def _token_filter_fn(data, *, min_len, max_len):
return data.length >= min_len and data.length <= max_len
@functional_datapipe("max_token_bucketize")
class MaxTokenBucketizerIterDataPipe(IterDataPipe[DataChunk[T_co]]):
r"""
Creates mini-batches of data from a min-heap with limited size, and the total length of samples
returned by ``len_fn`` within each batch will be limited by ``max_token_count``
(functional name: ``max_token_bucketize``). If ``min_len`` or ``max_len`` is set, the samples with
length that is out of ``[min_len, max_len]`` will be filtered out.
The purpose of this DataPipe is to batch samples with similar length according to ``len_fn``.
Min-heap is used here to make sure the samples are sorted incrementally based on the length. And,
the total length of samples in each batch is guaranteed to be smaller than ``max_token_count``.
For an example in the audio domain, it may be batching samples with similar length. Then, given the
``max_token_count``, each batch may be concatenated to a Tensor with the same size and minimum padding.
If ``include_padding`` is set to ``True``, the token count of each batch includes the padding a succeeding
DataPipe could add. This guarentees that even after the batch is padded, ``max_token_count`` will not be exceeded.
This can prevent out-of-memory issues for data with large variations in length.
Note that batches are bucketized starting from the smallest size in a buffer.
This can limit the variablity of batches if ``buffer_size`` is large.
To increase variablity, apply ``torchdata.datapipes.iter.Shuffler`` before and after this DataPipe,
and keep ``buffer_size`` small.
Args:
datapipe: Iterable DataPipe being batched
max_token_count: Maximum length of total length of data in each batch
len_fn: Function to be applied to each element to get lengths. ``len(data)`` is used by default.
min_len: Optional minimum length to be included into each batch
max_len: Optional maximum length to be included into each batch.
buffer_size: This restricts how many samples are taken from prior DataPipe to bucketize
include_padding: If True, the size of each batch includes the extra padding to the largest length in the batch.
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> source_dp = IterableWrapper(['1', '11', '1', '1111', '111', '1', '11', '11', '111'])
>>> # Using default len_fn to sort samples based on length (string length in this case)
>>> batch_dp = source_dp.max_token_bucketize(max_token_count=5)
>>> list(batch_dp)
[['1', '1', '1', '11'], ['11', '11'], ['111'], ['111'], ['1111']]
>>> batch_dp = source_dp.max_token_bucketize(max_token_count=4, buffer_size=4)
>>> list(batch_dp)
[['1', '1', '1'], ['11', '11'], ['11'], ['111'], ['111'], ['1111']]
"""
datapipe: IterDataPipe[PrioritizedItem[T_co]]
max_token_count: int
len_fn: Callable
min_len: int
max_len: Optional[int]
buffer_size: int
def __init__(
self,
datapipe: IterDataPipe[T_co],
max_token_count: int,
len_fn: Callable = _default_len_fn,
min_len: int = 0,
max_len: Optional[int] = None,
buffer_size: int = 1000,
include_padding: bool = False,
) -> None:
if max_len is None:
max_len = max_token_count
if min_len < 0 or min_len > max_len:
raise ValueError("``min_len`` should be larger than 0 and equal to or smaller than ``max_len``.")
if max_len > max_token_count:
raise ValueError("``max_token_count`` must be equal to or greater than ``max_len``.")
if buffer_size <= 0:
raise ValueError("'buffer_size' is required to be a positive integer.")
self.datapipe = datapipe.map(partial(_token_len_fn, len_fn=len_fn))
self.datapipe = self.datapipe.filter(partial(_token_filter_fn, min_len=min_len, max_len=max_len))
self.max_token_count = max_token_count
self.buffer_size = buffer_size
self.include_padding = include_padding
def __iter__(self) -> Iterator[DataChunk[T_co]]:
buffer: List[PrioritizedItem[T_co]] = []
batch: List[T_co] = []
batch_size: int = 0
max_length: int = 0
for d in self.datapipe:
heapq.heappush(buffer, d)
if len(buffer) == self.buffer_size:
buffer, batch, batch_size, max_length, data_chunk = self._pop_buffer(
buffer, batch, batch_size, max_length
)
if data_chunk is not None:
yield data_chunk
while buffer:
buffer, batch, batch_size, max_length, data_chunk = self._pop_buffer(buffer, batch, batch_size, max_length)
if data_chunk is not None:
yield data_chunk
if batch:
yield DataChunk(batch)
def _pop_buffer(self, buffer: List[PrioritizedItem[T_co]], batch: List[T_co], batch_size: int, max_length: int):
data_chunk_to_yield = None
d: PrioritizedItem[T_co] = heapq.heappop(buffer)
length = d.length
token = d.data
if self.include_padding:
max_length = max(length, max_length)
new_batch_size = (len(batch) + 1) * max_length
else:
new_batch_size = batch_size + length
if new_batch_size > self.max_token_count:
data_chunk_to_yield = DataChunk(batch)
batch = [token]
batch_size = length
max_length = length
else:
batch.append(token)
batch_size = new_batch_size
return buffer, batch, batch_size, max_length, data_chunk_to_yield
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import collections
def pin_memory_fn(data, device=None):
r"""
Utility function to move data to pinned memory. If special treatment is needed to move
the input data to pinned memory, please attach a ``pin_memory`` method to the expected
data class.
"""
if hasattr(data, "pin_memory"): # Including torch.Tensor
return data.pin_memory(device)
elif isinstance(data, (str, bytes)):
return data
elif isinstance(data, collections.abc.Mapping):
pinned_data = {k: pin_memory_fn(sample, device) for k, sample in data.items()}
try:
return type(data)(pinned_data) # type: ignore[call-arg]
except TypeError:
# The mapping type may not support `__init__(iterable)`.
return pinned_data
elif isinstance(data, collections.abc.Sequence):
pinned_data = [pin_memory_fn(sample, device) for sample in data] # type: ignore[assignment]
try:
return type(data)(pinned_data) # type: ignore[call-arg]
except TypeError:
# The sequence type may not support `__init__(iterable)` (e.g., `range`).
return pinned_data
else:
return data
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from torch.utils.data.datapipes.utils.common import StreamWrapper
from torchdata.datapipes.utils._visualization import to_graph
from torchdata.datapipes.utils.janitor import janitor
from torchdata.datapipes.utils.pin_memory import pin_memory_fn
__all__ = [
"StreamWrapper",
"janitor",
"pin_memory_fn",
"to_graph",
]
# Please keep this list sorted
assert __all__ == sorted(__all__)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from io import IOBase
from typing import Tuple
from torchdata.datapipes.utils import StreamWrapper
def validate_pathname_binary_tuple(data: Tuple[str, IOBase]):
if not isinstance(data, tuple):
raise TypeError(f"pathname binary data should be tuple type, but it is type {type(data)}")
if len(data) != 2:
raise TypeError(f"pathname binary stream tuple length should be 2, but got {len(data)}")
if not isinstance(data[0], str):
raise TypeError(f"pathname within the tuple should have string type pathname, but it is type {type(data[0])}")
if not isinstance(data[1], IOBase) and not isinstance(data[1], StreamWrapper):
raise TypeError(
f"binary stream within the tuple should have IOBase or"
f"its subclasses as type, but it is type {type(data[1])}"
)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import itertools
from collections import defaultdict
from typing import Optional, Set, TYPE_CHECKING
from torch.utils.data.datapipes.iter.combining import _ChildDataPipe, IterDataPipe
from torch.utils.data.graph import traverse_dps
if TYPE_CHECKING:
import graphviz
class Node:
def __init__(self, dp, *, name=None):
self.dp = dp
self.name = name or type(dp).__name__.replace("IterDataPipe", "")
self.childs = set()
self.parents = set()
def add_child(self, child):
self.childs.add(child)
child.parents.add(self)
def remove_child(self, child):
self.childs.remove(child)
child.parents.remove(self)
def add_parent(self, parent):
self.parents.add(parent)
parent.childs.add(self)
def remove_parent(self, parent):
self.parents.remove(parent)
parent.childs.remove(self)
def __eq__(self, other):
if not isinstance(other, Node):
return NotImplemented
return hash(self) == hash(other)
def __hash__(self):
return hash(self.dp)
def __str__(self):
return self.name
def __repr__(self):
return f"{self}-{hash(self)}"
def to_nodes(dp, *, debug: bool) -> Set[Node]:
def recurse(dp_graph, child=None):
for _dp_id, (dp_node, dp_parents) in dp_graph.items():
node = Node(dp_node)
if child is not None:
node.add_child(child)
yield node
yield from recurse(dp_parents, child=node)
def aggregate(nodes):
groups = defaultdict(list)
for node in nodes:
groups[node].append(node)
nodes = set()
for node, group in groups.items():
if len(group) == 1:
nodes.add(node)
continue
aggregated_node = Node(node.dp)
for duplicate_node in group:
for child in duplicate_node.childs.copy():
duplicate_node.remove_child(child)
aggregated_node.add_child(child)
for parent in duplicate_node.parents.copy():
duplicate_node.remove_parent(parent)
aggregated_node.add_parent(parent)
nodes.add(aggregated_node)
if debug:
return nodes
child_dp_nodes = set(
itertools.chain.from_iterable(node.parents for node in nodes if isinstance(node.dp, _ChildDataPipe))
)
if not child_dp_nodes:
return nodes
for node in child_dp_nodes:
fixed_parent_node = Node(
type(str(node).lstrip("_"), (IterDataPipe,), dict(dp=node.dp, childs=node.childs))()
)
nodes.remove(node)
nodes.add(fixed_parent_node)
for parent in node.parents.copy():
node.remove_parent(parent)
fixed_parent_node.add_parent(parent)
for child in node.childs:
nodes.remove(child)
for actual_child in child.childs.copy():
actual_child.remove_parent(child)
actual_child.add_parent(fixed_parent_node)
return nodes
return aggregate(recurse(traverse_dps(dp)))
def to_graph(dp, *, debug: bool = False) -> "graphviz.Digraph":
"""Visualizes a DataPipe by returning a :class:`graphviz.Digraph`, which is a graph of the data pipeline.
This allows you to visually inspect all the transformation that takes place in your DataPipes.
.. note::
The package :mod:`graphviz` is required to use this function.
.. note::
The most common interfaces for the returned graph object are:
- :meth:`~graphviz.Digraph.render`: Save the graph to a file.
- :meth:`~graphviz.Digraph.view`: Open the graph in a viewer.
Args:
dp: DataPipe that you would like to visualize (generally the last one in a chain of DataPipes).
debug (bool): If ``True``, renders internal datapipes that are usually hidden from the user
(such as ``ChildDataPipe`` of `demux` and `fork`). Defaults to ``False``.
Example:
>>> from torchdata.datapipes.iter import IterableWrapper
>>> from torchdata.datapipes.utils import to_graph
>>> dp = IterableWrapper(range(10))
>>> dp1, dp2 = dp.demux(num_instances=2, classifier_fn=lambda x: x % 2)
>>> dp1 = dp1.map(lambda x: x + 1)
>>> dp2 = dp2.filter(lambda _: True)
>>> dp3 = dp1.zip(dp2).map(lambda t: t[0] + t[1])
>>> g = to_graph(dp3)
>>> g.view() # This will open the graph in a viewer
"""
try:
import graphviz
except ModuleNotFoundError:
raise ModuleNotFoundError(
"The package `graphviz` is required to be installed to use this function. "
"Please `pip install graphviz` or `conda install -c conda-forge graphviz`."
) from None
# The graph style as well as the color scheme below was copied from https://github.com/szagoruyko/pytorchviz/
# https://github.com/szagoruyko/pytorchviz/blob/0adcd83af8aa7ab36d6afd139cabbd9df598edb7/torchviz/dot.py#L78-L85
node_attr = dict(
style="filled",
shape="box",
align="left",
fontsize="10",
ranksep="0.1",
height="0.2",
fontname="monospace",
)
graph = graphviz.Digraph(node_attr=node_attr, graph_attr=dict(size="12,12"))
for node in to_nodes(dp, debug=debug):
fillcolor: Optional[str]
if not node.parents:
fillcolor = "lightblue"
elif not node.childs:
fillcolor = "darkolivegreen1"
else:
fillcolor = None
graph.node(name=repr(node), label=str(node), fillcolor=fillcolor)
for child in node.childs:
graph.edge(repr(node), repr(child))
return graph
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from torchdata.datapipes.utils import StreamWrapper
def janitor(obj):
"""
Invokes various `obj` cleanup procedures such as:
- Closing streams
"""
# TODO(632): We can also release caching locks here to allow filtering
StreamWrapper.close_streams(obj)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from torch.utils.data import MapDataPipe
from torch.utils.data.datapipes.map import Batcher, Concater, Mapper, SequenceWrapper, Shuffler, Zipper
from torchdata.datapipes.iter.util.converter import IterToMapConverterMapDataPipe as IterToMapConverter
from torchdata.datapipes.map.util.cacheholder import InMemoryCacheHolderMapDataPipe as InMemoryCacheHolder
from torchdata.datapipes.map.util.unzipper import UnZipperMapDataPipe as UnZipper
__all__ = [
"Batcher",
"Concater",
"InMemoryCacheHolder",
"IterToMapConverter",
"MapDataPipe",
"Mapper",
"SequenceWrapper",
"Shuffler",
"UnZipper",
"Zipper",
]
# Please keep this list sorted
assert __all__ == sorted(__all__)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import List, Optional
from torch.utils.data import IterDataPipe, MapDataPipe
# @functional_datapipe("to_iter_datapipe") # This line must be kept for .pyi signature parser
class MapToIterConverterIterDataPipe(IterDataPipe):
"""
Convert a ``MapDataPipe`` to an ``IterDataPipe`` (functional name: ``to_iter_datapipe``). It uses ``indices`` to
iterate through the ``MapDataPipe``, defaults to ``range(len(mapdatapipe))`` if not given.
For the opposite converter, use :class:`.IterToMapConverter`.
Args:
datapipe: source MapDataPipe with data
indices: optional list of indices that will dictate how the datapipe will be iterated over
Example:
>>> from torchdata.datapipes.map import SequenceWrapper
>>> source_dp = SequenceWrapper(range(10))
>>> iter_dp = source_dp.to_iter_datapipe()
>>> list(iter_dp)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> source_dp2 = SequenceWrapper({'a': 1, 'b': 2, 'c': 3})
>>> iter_dp2 = source_dp2.to_iter_datapipe(indices=['a', 'b', 'c'])
>>> list(iter_dp2)
[1, 2, 3]
"""
# Note that ``indices`` has ``Optional[List]`` instead of ``Optional[Iterable]`` as type because a generator
# can be passed in as an iterable, which will complicate the serialization process as we will have
# to materialize ``indices`` and store it.
def __init__(self, datapipe: MapDataPipe, indices: Optional[List] = None):
if not isinstance(datapipe, MapDataPipe):
raise TypeError(f"MapToIterConverter can only apply on MapDataPipe, but found {type(datapipe)}")
self.datapipe: MapDataPipe = datapipe
self.indices = indices if indices else range(len(datapipe))
def __iter__(self):
for idx in self.indices:
yield self.datapipe[idx]
def __len__(self):
return len(self.indices)
MapDataPipe.register_datapipe_as_function("to_iter_datapipe", MapToIterConverterIterDataPipe)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import Any, Dict, TypeVar
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.map import MapDataPipe
T_co = TypeVar("T_co", covariant=True)
@functional_datapipe("in_memory_cache")
class InMemoryCacheHolderMapDataPipe(MapDataPipe[T_co]):
r"""
Stores elements from the source DataPipe in memory (functional name: ``in_memory_cache``). Once an item is
stored, it will remain unchanged and subsequent retrivals will return the same element. Since items from
``MapDataPipe`` are lazily computed, this can be used to store the results from previous ``MapDataPipe`` and
reduce the number of duplicate computations.
Note:
The default ``cache`` is a ``Dict``. If another data structure is more suitable as cache for your use
Args:
source_dp: source DataPipe from which elements are read and stored in memory
Example:
>>> from torchdata.datapipes.map import SequenceWrapper
>>> source_dp = SequenceWrapper(range(10))
>>> cache_dp = source_dp.in_memory_cache()
>>> list(cache_dp)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
"""
def __init__(self, source_dp: MapDataPipe[T_co]) -> None:
self.source_dp: MapDataPipe[T_co] = source_dp
self.cache: Dict[Any, T_co] = {}
def __getitem__(self, index) -> T_co:
if index not in self.cache:
self.cache[index] = self.source_dp[index] # type: ignore[index]
return self.cache[index] # type: ignore[index]
# We can potentially remove `self.source_dp` to save memory once `len(self.cache) == len(self.source_dp)`
# Be careful about how that may interact with and graph traversal and other features
def __len__(self) -> int:
return len(self.source_dp)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import Optional, Sequence, TypeVar
from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.map import MapDataPipe
T = TypeVar("T")
@functional_datapipe("unzip")
class UnZipperMapDataPipe(MapDataPipe):
"""
Takes in a DataPipe of Sequences, unpacks each Sequence, and return the elements in separate DataPipes
based on their position in the Sequence (functional name: ``unzip``). The number of instances produced
equals to the ``sequence_legnth`` minus the number of columns to skip.
Note:
Each sequence within the DataPipe should have the same length, specified by
the input argument `sequence_length`.
Args:
source_datapipe: Iterable DataPipe with sequences of data
sequence_length: Length of the sequence within the source_datapipe. All elements should have the same length.
columns_to_skip: optional indices of columns that the DataPipe should skip (each index should be
an integer from 0 to sequence_length - 1)
Example:
>>> from torchdata.datapipes.map import SequenceWrapper
>>> source_dp = SequenceWrapper([(i, i + 10, i + 20) for i in range(3)])
>>> dp1, dp2, dp3 = source_dp.unzip(sequence_length=3)
>>> list(dp1)
[0, 1, 2]
>>> list(dp2)
[10, 11, 12]
>>> list(dp3)
[20, 21, 22]
"""
def __new__(
cls,
source_datapipe: MapDataPipe[Sequence[T]],
sequence_length: int,
columns_to_skip: Optional[Sequence[int]] = None,
):
if sequence_length < 1:
raise ValueError(f"Expected `sequence_length` larger than 0, but {sequence_length} is found")
if columns_to_skip is None:
instance_ids = list(range(sequence_length))
else:
skips = set(columns_to_skip)
instance_ids = [i for i in range(sequence_length) if i not in skips]
if len(instance_ids) == 0:
raise RuntimeError(
f"All instances are being filtered out in {cls.__name__}. Please check"
"the input `sequence_length` and `columns_to_skip`."
)
return [_UnZipperMapDataPipe(source_datapipe, i) for i in instance_ids]
class _UnZipperMapDataPipe(MapDataPipe[T]):
def __init__(self, main_datapipe: MapDataPipe[Sequence[T]], instance_id: int):
self.main_datapipe = main_datapipe
self.instance_id = instance_id
def __getitem__(self, index) -> T:
return self.main_datapipe[index][self.instance_id]
def __len__(self) -> int:
return len(self.main_datapipe)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.