python_code
stringlengths 0
229k
|
---|
#!/usr/bin/env python3
from typing import Any, Callable, List, Tuple, Union
import torch
from captum._utils.common import _format_output
from captum._utils.gradient import _forward_layer_eval
from captum._utils.typing import ModuleOrModuleList
from captum.attr._utils.attribution import LayerAttribution
from captum.log import log_usage
from torch import Tensor
from torch.nn import Module
class LayerActivation(LayerAttribution):
r"""
Computes activation of selected layer for given input.
"""
def __init__(
self,
forward_func: Callable,
layer: ModuleOrModuleList,
device_ids: Union[None, List[int]] = None,
) -> None:
r"""
Args:
forward_func (Callable): The forward function of the model or any
modification of it
layer (torch.nn.Module or list of torch.nn.Module): Layer or layers
for which attributions are computed.
Output size of attribute matches this layer's input or
output dimensions, depending on whether we attribute to
the inputs or outputs of the layer, corresponding to
attribution of each neuron in the input or output of
this layer. If multiple layers are provided, attributions
are returned as a list, each element corresponding to the
activations of the corresponding layer.
device_ids (list[int]): Device ID list, necessary only if forward_func
applies a DataParallel model. This allows reconstruction of
intermediate outputs from batched results across devices.
If forward_func is given as the DataParallel model itself,
then it is not necessary to provide this argument.
"""
LayerAttribution.__init__(self, forward_func, layer, device_ids)
@log_usage()
def attribute(
self,
inputs: Union[Tensor, Tuple[Tensor, ...]],
additional_forward_args: Any = None,
attribute_to_layer_input: bool = False,
) -> Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]]:
r"""
Args:
inputs (Tensor or tuple[Tensor, ...]): Input for which layer
activation is computed. If forward_func takes a single
tensor as input, a single input tensor should be provided.
If forward_func takes multiple tensors as input, a tuple
of the input tensors should be provided. It is assumed
that for all given input tensors, dimension 0 corresponds
to the number of examples, and if multiple input tensors
are provided, the examples must be aligned appropriately.
additional_forward_args (Any, optional): If the forward function
requires additional arguments other than the inputs for
which attributions should not be computed, this argument
can be provided. It must be either a single additional
argument of a Tensor or arbitrary (non-tuple) type or a
tuple containing multiple additional arguments including
tensors or any arbitrary python types. These arguments
are provided to forward_func in order following the
arguments in inputs.
Note that attributions are not computed with respect
to these arguments.
Default: None
attribute_to_layer_input (bool, optional): Indicates whether to
compute the attribution with respect to the layer input
or output. If `attribute_to_layer_input` is set to True
then the attributions will be computed with respect to
layer input, otherwise it will be computed with respect
to layer output.
Note that currently it is assumed that either the input
or the output of internal layer, depending on whether we
attribute to the input or output, is a single tensor.
Support for multiple tensors will be added later.
Default: False
Returns:
*Tensor* or *tuple[Tensor, ...]* or list of **attributions**:
- **attributions** (*Tensor*, *tuple[Tensor, ...]*, or *list*):
Activation of each neuron in given layer output.
Attributions will always be the same size as the
output of the given layer.
Attributions are returned in a tuple if
the layer inputs / outputs contain multiple tensors,
otherwise a single tensor is returned.
If multiple layers are provided, attributions
are returned as a list, each element corresponding to the
activations of the corresponding layer.
Examples::
>>> # ImageClassifier takes a single input tensor of images Nx3x32x32,
>>> # and returns an Nx10 tensor of class probabilities.
>>> # It contains an attribute conv1, which is an instance of nn.conv2d,
>>> # and the output of this layer has dimensions Nx12x32x32.
>>> net = ImageClassifier()
>>> layer_act = LayerActivation(net, net.conv1)
>>> input = torch.randn(2, 3, 32, 32, requires_grad=True)
>>> # Computes layer activation.
>>> # attribution is layer output, with size Nx12x32x32
>>> attribution = layer_cond.attribute(input)
"""
with torch.no_grad():
layer_eval = _forward_layer_eval(
self.forward_func,
inputs,
self.layer,
additional_forward_args,
device_ids=self.device_ids,
attribute_to_layer_input=attribute_to_layer_input,
)
if isinstance(self.layer, Module):
return _format_output(len(layer_eval) > 1, layer_eval)
else:
return [
_format_output(len(single_layer_eval) > 1, single_layer_eval)
for single_layer_eval in layer_eval
]
@property
def multiplies_by_inputs(self):
return True
|
#!/usr/bin/env python3
import typing
from typing import Any, Callable, List, Tuple, Union
import torch
from captum._utils.common import (
_expand_additional_forward_args,
_expand_target,
_format_additional_forward_args,
_format_output,
)
from captum._utils.gradient import compute_layer_gradients_and_eval
from captum._utils.typing import BaselineType, Literal, TargetType
from captum.attr._utils.approximation_methods import approximation_parameters
from captum.attr._utils.attribution import GradientAttribution, LayerAttribution
from captum.attr._utils.batching import _batch_attribution
from captum.attr._utils.common import (
_format_input_baseline,
_reshape_and_sum,
_validate_input,
)
from captum.log import log_usage
from torch import Tensor
from torch.nn import Module
class LayerConductance(LayerAttribution, GradientAttribution):
r"""
Computes conductance with respect to the given layer. The
returned output is in the shape of the layer's output, showing the total
conductance of each hidden layer neuron.
The details of the approach can be found here:
https://arxiv.org/abs/1805.12233
https://arxiv.org/abs/1807.09946
Note that this provides the total conductance of each neuron in the
layer's output. To obtain the breakdown of a neuron's conductance by input
features, utilize NeuronConductance instead, and provide the target
neuron index.
"""
def __init__(
self,
forward_func: Callable,
layer: Module,
device_ids: Union[None, List[int]] = None,
) -> None:
r"""
Args:
forward_func (Callable): The forward function of the model or any
modification of it
layer (torch.nn.Module): Layer for which attributions are computed.
Output size of attribute matches this layer's input or
output dimensions, depending on whether we attribute to
the inputs or outputs of the layer, corresponding to
attribution of each neuron in the input or output of
this layer.
device_ids (list[int]): Device ID list, necessary only if forward_func
applies a DataParallel model. This allows reconstruction of
intermediate outputs from batched results across devices.
If forward_func is given as the DataParallel model itself,
then it is not necessary to provide this argument.
"""
LayerAttribution.__init__(self, forward_func, layer, device_ids)
GradientAttribution.__init__(self, forward_func)
def has_convergence_delta(self) -> bool:
return True
@typing.overload
def attribute(
self,
inputs: Union[Tensor, Tuple[Tensor, ...]],
baselines: BaselineType = None,
target: TargetType = None,
additional_forward_args: Any = None,
n_steps: int = 50,
method: str = "gausslegendre",
internal_batch_size: Union[None, int] = None,
*,
return_convergence_delta: Literal[True],
attribute_to_layer_input: bool = False,
) -> Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor]:
...
@typing.overload
def attribute(
self,
inputs: Union[Tensor, Tuple[Tensor, ...]],
baselines: BaselineType = None,
target: TargetType = None,
additional_forward_args: Any = None,
n_steps: int = 50,
method: str = "gausslegendre",
internal_batch_size: Union[None, int] = None,
return_convergence_delta: Literal[False] = False,
attribute_to_layer_input: bool = False,
) -> Union[Tensor, Tuple[Tensor, ...]]:
...
@log_usage()
def attribute(
self,
inputs: Union[Tensor, Tuple[Tensor, ...]],
baselines: Union[
None, int, float, Tensor, Tuple[Union[int, float, Tensor], ...]
] = None,
target: TargetType = None,
additional_forward_args: Any = None,
n_steps: int = 50,
method: str = "gausslegendre",
internal_batch_size: Union[None, int] = None,
return_convergence_delta: bool = False,
attribute_to_layer_input: bool = False,
) -> Union[
Tensor, Tuple[Tensor, ...], Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor]
]:
r"""
Args:
inputs (Tensor or tuple[Tensor, ...]): Input for which layer
conductance is computed. If forward_func takes a single
tensor as input, a single input tensor should be provided.
If forward_func takes multiple tensors as input, a tuple
of the input tensors should be provided. It is assumed
that for all given input tensors, dimension 0 corresponds
to the number of examples, and if multiple input tensors
are provided, the examples must be aligned appropriately.
baselines (scalar, Tensor, tuple of scalar, or Tensor, optional):
Baselines define the starting point from which integral
is computed and can be provided as:
- a single tensor, if inputs is a single tensor, with
exactly the same dimensions as inputs or the first
dimension is one and the remaining dimensions match
with inputs.
- a single scalar, if inputs is a single tensor, which will
be broadcasted for each input value in input tensor.
- a tuple of tensors or scalars, the baseline corresponding
to each tensor in the inputs' tuple can be:
- either a tensor with matching dimensions to
corresponding tensor in the inputs' tuple
or the first dimension is one and the remaining
dimensions match with the corresponding
input tensor.
- or a scalar, corresponding to a tensor in the
inputs' tuple. This scalar value is broadcasted
for corresponding input tensor.
In the cases when `baselines` is not provided, we internally
use zero scalar corresponding to each input tensor.
Default: None
target (int, tuple, Tensor, or list, optional): Output indices for
which gradients are computed (for classification cases,
this is usually the target class).
If the network returns a scalar value per example,
no target index is necessary.
For general 2D outputs, targets can be either:
- a single integer or a tensor containing a single
integer, which is applied to all input examples
- a list of integers or a 1D tensor, with length matching
the number of examples in inputs (dim 0). Each integer
is applied as the target for the corresponding example.
For outputs with > 2 dimensions, targets can be either:
- A single tuple, which contains #output_dims - 1
elements. This target index is applied to all examples.
- A list of tuples with length equal to the number of
examples in inputs (dim 0), and each tuple containing
#output_dims - 1 elements. Each tuple is applied as the
target for the corresponding example.
Default: None
additional_forward_args (Any, optional): If the forward function
requires additional arguments other than the inputs for
which attributions should not be computed, this argument
can be provided. It must be either a single additional
argument of a Tensor or arbitrary (non-tuple) type or a
tuple containing multiple additional arguments including
tensors or any arbitrary python types. These arguments
are provided to forward_func in order following the
arguments in inputs.
For a tensor, the first dimension of the tensor must
correspond to the number of examples. It will be repeated
for each of `n_steps` along the integrated path.
For all other types, the given argument is used for
all forward evaluations.
Note that attributions are not computed with respect
to these arguments.
Default: None
n_steps (int, optional): The number of steps used by the approximation
method. Default: 50.
method (str, optional): Method for approximating the integral,
one of `riemann_right`, `riemann_left`, `riemann_middle`,
`riemann_trapezoid` or `gausslegendre`.
Default: `gausslegendre` if no method is provided.
internal_batch_size (int, optional): Divides total #steps * #examples
data points into chunks of size at most internal_batch_size,
which are computed (forward / backward passes)
sequentially. internal_batch_size must be at least equal to
2 * #examples.
For DataParallel models, each batch is split among the
available devices, so evaluations on each available
device contain internal_batch_size / num_devices examples.
If internal_batch_size is None, then all evaluations are
processed in one batch.
Default: None
return_convergence_delta (bool, optional): Indicates whether to return
convergence delta or not. If `return_convergence_delta`
is set to True convergence delta will be returned in
a tuple following attributions.
Default: False
attribute_to_layer_input (bool, optional): Indicates whether to
compute the attribution with respect to the layer input
or output. If `attribute_to_layer_input` is set to True
then the attributions will be computed with respect to
layer inputs, otherwise it will be computed with respect
to layer outputs.
Note that currently it is assumed that either the input
or the output of internal layer, depending on whether we
attribute to the input or output, is a single tensor.
Support for multiple tensors will be added later.
Default: False
Returns:
**attributions** or 2-element tuple of **attributions**, **delta**:
- **attributions** (*Tensor* or *tuple[Tensor, ...]*):
Conductance of each neuron in given layer input or
output. Attributions will always be the same size as
the input or output of the given layer, depending on
whether we attribute to the inputs or outputs
of the layer which is decided by the input flag
`attribute_to_layer_input`.
Attributions are returned in a tuple if
the layer inputs / outputs contain multiple tensors,
otherwise a single tensor is returned.
- **delta** (*Tensor*, returned if return_convergence_delta=True):
The difference between the total
approximated and true conductance.
This is computed using the property that the total sum of
forward_func(inputs) - forward_func(baselines) must equal
the total sum of the attributions.
Delta is calculated per example, meaning that the number of
elements in returned delta tensor is equal to the number of
examples in inputs.
Examples::
>>> # ImageClassifier takes a single input tensor of images Nx3x32x32,
>>> # and returns an Nx10 tensor of class probabilities.
>>> # It contains an attribute conv1, which is an instance of nn.conv2d,
>>> # and the output of this layer has dimensions Nx12x32x32.
>>> net = ImageClassifier()
>>> layer_cond = LayerConductance(net, net.conv1)
>>> input = torch.randn(2, 3, 32, 32, requires_grad=True)
>>> # Computes layer conductance for class 3.
>>> # attribution size matches layer output, Nx12x32x32
>>> attribution = layer_cond.attribute(input, target=3)
"""
inputs, baselines = _format_input_baseline(inputs, baselines)
_validate_input(inputs, baselines, n_steps, method)
num_examples = inputs[0].shape[0]
if internal_batch_size is not None:
num_examples = inputs[0].shape[0]
attrs = _batch_attribution(
self,
num_examples,
internal_batch_size,
n_steps + 1,
include_endpoint=True,
inputs=inputs,
baselines=baselines,
target=target,
additional_forward_args=additional_forward_args,
method=method,
attribute_to_layer_input=attribute_to_layer_input,
)
else:
attrs = self._attribute(
inputs=inputs,
baselines=baselines,
target=target,
additional_forward_args=additional_forward_args,
n_steps=n_steps,
method=method,
attribute_to_layer_input=attribute_to_layer_input,
)
is_layer_tuple = isinstance(attrs, tuple)
attributions = attrs if is_layer_tuple else (attrs,)
if return_convergence_delta:
start_point, end_point = baselines, inputs
delta = self.compute_convergence_delta(
attributions,
start_point,
end_point,
target=target,
additional_forward_args=additional_forward_args,
)
return _format_output(is_layer_tuple, attributions), delta
return _format_output(is_layer_tuple, attributions)
def _attribute(
self,
inputs: Tuple[Tensor, ...],
baselines: Tuple[Union[Tensor, int, float], ...],
target: TargetType = None,
additional_forward_args: Any = None,
n_steps: int = 50,
method: str = "gausslegendre",
attribute_to_layer_input: bool = False,
step_sizes_and_alphas: Union[None, Tuple[List[float], List[float]]] = None,
) -> Union[Tensor, Tuple[Tensor, ...]]:
num_examples = inputs[0].shape[0]
if step_sizes_and_alphas is None:
# Retrieve scaling factors for specified approximation method
step_sizes_func, alphas_func = approximation_parameters(method)
alphas = alphas_func(n_steps + 1)
else:
_, alphas = step_sizes_and_alphas
# Compute scaled inputs from baseline to final input.
scaled_features_tpl = tuple(
torch.cat(
[baseline + alpha * (input - baseline) for alpha in alphas], dim=0
).requires_grad_()
for input, baseline in zip(inputs, baselines)
)
additional_forward_args = _format_additional_forward_args(
additional_forward_args
)
# apply number of steps to additional forward args
# currently, number of steps is applied only to additional forward arguments
# that are nd-tensors. It is assumed that the first dimension is
# the number of batches.
# dim -> (#examples * #steps x additional_forward_args[0].shape[1:], ...)
input_additional_args = (
_expand_additional_forward_args(additional_forward_args, n_steps + 1)
if additional_forward_args is not None
else None
)
expanded_target = _expand_target(target, n_steps + 1)
# Conductance Gradients - Returns gradient of output with respect to
# hidden layer and hidden layer evaluated at each input.
(layer_gradients, layer_evals,) = compute_layer_gradients_and_eval(
forward_fn=self.forward_func,
layer=self.layer,
inputs=scaled_features_tpl,
additional_forward_args=input_additional_args,
target_ind=expanded_target,
device_ids=self.device_ids,
attribute_to_layer_input=attribute_to_layer_input,
)
# Compute differences between consecutive evaluations of layer_eval.
# This approximates the total input gradient of each step multiplied
# by the step size.
grad_diffs = tuple(
layer_eval[num_examples:] - layer_eval[:-num_examples]
for layer_eval in layer_evals
)
# Element-wise multiply gradient of output with respect to hidden layer
# and summed gradients with respect to input (chain rule) and sum
# across stepped inputs.
attributions = tuple(
_reshape_and_sum(
grad_diff * layer_gradient[:-num_examples],
n_steps,
num_examples,
layer_eval.shape[1:],
)
for layer_gradient, layer_eval, grad_diff in zip(
layer_gradients, layer_evals, grad_diffs
)
)
return _format_output(len(attributions) > 1, attributions)
@property
def multiplies_by_inputs(self):
return True
|
#!/usr/bin/env python3
from typing import Any, Callable, List, Tuple, Union
import torch
import torch.nn.functional as F
from captum._utils.common import (
_format_additional_forward_args,
_format_output,
_format_tensor_into_tuples,
)
from captum._utils.gradient import compute_layer_gradients_and_eval
from captum._utils.typing import TargetType
from captum.attr._utils.attribution import GradientAttribution, LayerAttribution
from captum.log import log_usage
from torch import Tensor
from torch.nn import Module
class LayerGradCam(LayerAttribution, GradientAttribution):
r"""
Computes GradCAM attribution for chosen layer. GradCAM is designed for
convolutional neural networks, and is usually applied to the last
convolutional layer.
GradCAM computes the gradients of the target output with respect to
the given layer, averages for each output channel (dimension 2 of
output), and multiplies the average gradient for each channel by the
layer activations. The results are summed over all channels.
Note that in the original GradCAM algorithm described in the paper,
ReLU is applied to the output, returning only non-negative attributions.
For providing more flexibility to the user, we choose to not perform the
ReLU internally by default and return the sign information. To match the
original GradCAM algorithm, it is necessary to pass the parameter
relu_attributions=True to apply ReLU on the final
attributions or alternatively only visualize the positive attributions.
Note: this procedure sums over the second dimension (# of channels),
so the output of GradCAM attributions will have a second
dimension of 1, but all other dimensions will match that of the layer
output.
GradCAM attributions are generally upsampled and can be viewed as a
mask to the input, since a convolutional layer output generally
matches the input image spatially. This upsampling can be performed
using LayerAttribution.interpolate, as shown in the example below.
More details regarding the GradCAM method can be found in the
original paper here:
https://arxiv.org/abs/1610.02391
"""
def __init__(
self,
forward_func: Callable,
layer: Module,
device_ids: Union[None, List[int]] = None,
) -> None:
r"""
Args:
forward_func (Callable): The forward function of the model or any
modification of it
layer (torch.nn.Module): Layer for which attributions are computed.
Output size of attribute matches this layer's output
dimensions, except for dimension 2, which will be 1,
since GradCAM sums over channels.
device_ids (list[int]): Device ID list, necessary only if forward_func
applies a DataParallel model. This allows reconstruction of
intermediate outputs from batched results across devices.
If forward_func is given as the DataParallel model itself,
then it is not necessary to provide this argument.
"""
LayerAttribution.__init__(self, forward_func, layer, device_ids)
GradientAttribution.__init__(self, forward_func)
@log_usage()
def attribute(
self,
inputs: Union[Tensor, Tuple[Tensor, ...]],
target: TargetType = None,
additional_forward_args: Any = None,
attribute_to_layer_input: bool = False,
relu_attributions: bool = False,
attr_dim_summation: bool = True,
) -> Union[Tensor, Tuple[Tensor, ...]]:
r"""
Args:
inputs (Tensor or tuple[Tensor, ...]): Input for which attributions
are computed. If forward_func takes a single
tensor as input, a single input tensor should be provided.
If forward_func takes multiple tensors as input, a tuple
of the input tensors should be provided. It is assumed
that for all given input tensors, dimension 0 corresponds
to the number of examples, and if multiple input tensors
are provided, the examples must be aligned appropriately.
target (int, tuple, Tensor, or list, optional): Output indices for
which gradients are computed (for classification cases,
this is usually the target class).
If the network returns a scalar value per example,
no target index is necessary.
For general 2D outputs, targets can be either:
- a single integer or a tensor containing a single
integer, which is applied to all input examples
- a list of integers or a 1D tensor, with length matching
the number of examples in inputs (dim 0). Each integer
is applied as the target for the corresponding example.
For outputs with > 2 dimensions, targets can be either:
- A single tuple, which contains #output_dims - 1
elements. This target index is applied to all examples.
- A list of tuples with length equal to the number of
examples in inputs (dim 0), and each tuple containing
#output_dims - 1 elements. Each tuple is applied as the
target for the corresponding example.
Default: None
additional_forward_args (Any, optional): If the forward function
requires additional arguments other than the inputs for
which attributions should not be computed, this argument
can be provided. It must be either a single additional
argument of a Tensor or arbitrary (non-tuple) type or a
tuple containing multiple additional arguments including
tensors or any arbitrary python types. These arguments
are provided to forward_func in order following the
arguments in inputs.
Note that attributions are not computed with respect
to these arguments.
Default: None
attribute_to_layer_input (bool, optional): Indicates whether to
compute the attributions with respect to the layer input
or output. If `attribute_to_layer_input` is set to True
then the attributions will be computed with respect to the
layer input, otherwise it will be computed with respect
to layer output.
Note that currently it is assumed that either the input
or the outputs of internal layers, depending on whether we
attribute to the input or output, are single tensors.
Support for multiple tensors will be added later.
Default: False
relu_attributions (bool, optional): Indicates whether to
apply a ReLU operation on the final attribution,
returning only non-negative attributions. Setting this
flag to True matches the original GradCAM algorithm,
otherwise, by default, both positive and negative
attributions are returned.
Default: False
attr_dim_summation (bool, optional): Indicates whether to
sum attributions along dimension 1 (usually channel).
The default (True) means to sum along dimension 1.
Default: True
Returns:
*Tensor* or *tuple[Tensor, ...]* of **attributions**:
- **attributions** (*Tensor* or *tuple[Tensor, ...]*):
Attributions based on GradCAM method.
Attributions will be the same size as the
output of the given layer, except for dimension 2,
which will be 1 due to summing over channels.
Attributions are returned in a tuple if
the layer inputs / outputs contain multiple tensors,
otherwise a single tensor is returned.
Examples::
>>> # ImageClassifier takes a single input tensor of images Nx3x32x32,
>>> # and returns an Nx10 tensor of class probabilities.
>>> # It contains a layer conv4, which is an instance of nn.conv2d,
>>> # and the output of this layer has dimensions Nx50x8x8.
>>> # It is the last convolution layer, which is the recommended
>>> # use case for GradCAM.
>>> net = ImageClassifier()
>>> layer_gc = LayerGradCam(net, net.conv4)
>>> input = torch.randn(2, 3, 32, 32, requires_grad=True)
>>> # Computes layer GradCAM for class 3.
>>> # attribution size matches layer output except for dimension
>>> # 1, so dimensions of attr would be Nx1x8x8.
>>> attr = layer_gc.attribute(input, 3)
>>> # GradCAM attributions are often upsampled and viewed as a
>>> # mask to the input, since the convolutional layer output
>>> # spatially matches the original input image.
>>> # This can be done with LayerAttribution's interpolate method.
>>> upsampled_attr = LayerAttribution.interpolate(attr, (32, 32))
"""
inputs = _format_tensor_into_tuples(inputs)
additional_forward_args = _format_additional_forward_args(
additional_forward_args
)
# Returns gradient of output with respect to
# hidden layer and hidden layer evaluated at each input.
layer_gradients, layer_evals = compute_layer_gradients_and_eval(
self.forward_func,
self.layer,
inputs,
target,
additional_forward_args,
device_ids=self.device_ids,
attribute_to_layer_input=attribute_to_layer_input,
)
summed_grads = tuple(
torch.mean(
layer_grad,
dim=tuple(x for x in range(2, len(layer_grad.shape))),
keepdim=True,
)
if len(layer_grad.shape) > 2
else layer_grad
for layer_grad in layer_gradients
)
if attr_dim_summation:
scaled_acts = tuple(
torch.sum(summed_grad * layer_eval, dim=1, keepdim=True)
for summed_grad, layer_eval in zip(summed_grads, layer_evals)
)
else:
scaled_acts = tuple(
summed_grad * layer_eval
for summed_grad, layer_eval in zip(summed_grads, layer_evals)
)
if relu_attributions:
scaled_acts = tuple(F.relu(scaled_act) for scaled_act in scaled_acts)
return _format_output(len(scaled_acts) > 1, scaled_acts)
|
#!/usr/bin/env python3
from typing import Any, Callable, List, Tuple, Union
from captum._utils.common import (
_format_additional_forward_args,
_format_output,
_format_tensor_into_tuples,
)
from captum._utils.gradient import compute_layer_gradients_and_eval
from captum._utils.typing import ModuleOrModuleList, TargetType
from captum.attr._utils.attribution import GradientAttribution, LayerAttribution
from captum.log import log_usage
from torch import Tensor
from torch.nn import Module
class LayerGradientXActivation(LayerAttribution, GradientAttribution):
r"""
Computes element-wise product of gradient and activation for selected
layer on given inputs.
"""
def __init__(
self,
forward_func: Callable,
layer: ModuleOrModuleList,
device_ids: Union[None, List[int]] = None,
multiply_by_inputs: bool = True,
) -> None:
r"""
Args:
forward_func (Callable): The forward function of the model or any
modification of it
layer (torch.nn.Module or list of torch.nn.Module): Layer or layers
for which attributions are computed.
Output size of attribute matches this layer's input or
output dimensions, depending on whether we attribute to
the inputs or outputs of the layer, corresponding to
attribution of each neuron in the input or output of
this layer. If multiple layers are provided, attributions
are returned as a list, each element corresponding to the
attributions of the corresponding layer.
device_ids (list[int]): Device ID list, necessary only if forward_func
applies a DataParallel model. This allows reconstruction of
intermediate outputs from batched results across devices.
If forward_func is given as the DataParallel model itself,
then it is not necessary to provide this argument.
multiply_by_inputs (bool, optional): Indicates whether to factor
model inputs' multiplier in the final attribution scores.
In the literature this is also known as local vs global
attribution. If inputs' multiplier isn't factored in,
then this type of attribution method is also called local
attribution. If it is, then that type of attribution
method is called global.
More detailed can be found here:
https://arxiv.org/abs/1711.06104
In case of layer gradient x activation, if `multiply_by_inputs`
is set to True, final sensitivity scores are being multiplied by
layer activations for inputs.
"""
LayerAttribution.__init__(self, forward_func, layer, device_ids)
GradientAttribution.__init__(self, forward_func)
self._multiply_by_inputs = multiply_by_inputs
@property
def multiplies_by_inputs(self):
return self._multiply_by_inputs
@log_usage()
def attribute(
self,
inputs: Union[Tensor, Tuple[Tensor, ...]],
target: TargetType = None,
additional_forward_args: Any = None,
attribute_to_layer_input: bool = False,
) -> Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]]:
r"""
Args:
inputs (Tensor or tuple[Tensor, ...]): Input for which attributions
are computed. If forward_func takes a single
tensor as input, a single input tensor should be provided.
If forward_func takes multiple tensors as input, a tuple
of the input tensors should be provided. It is assumed
that for all given input tensors, dimension 0 corresponds
to the number of examples, and if multiple input tensors
are provided, the examples must be aligned appropriately.
target (int, tuple, Tensor, or list, optional): Output indices for
which gradients are computed (for classification cases,
this is usually the target class).
If the network returns a scalar value per example,
no target index is necessary.
For general 2D outputs, targets can be either:
- a single integer or a tensor containing a single
integer, which is applied to all input examples
- a list of integers or a 1D tensor, with length matching
the number of examples in inputs (dim 0). Each integer
is applied as the target for the corresponding example.
For outputs with > 2 dimensions, targets can be either:
- A single tuple, which contains #output_dims - 1
elements. This target index is applied to all examples.
- A list of tuples with length equal to the number of
examples in inputs (dim 0), and each tuple containing
#output_dims - 1 elements. Each tuple is applied as the
target for the corresponding example.
Default: None
additional_forward_args (Any, optional): If the forward function
requires additional arguments other than the inputs for
which attributions should not be computed, this argument
can be provided. It must be either a single additional
argument of a Tensor or arbitrary (non-tuple) type or a
tuple containing multiple additional arguments including
tensors or any arbitrary python types. These arguments
are provided to forward_func in order following the
arguments in inputs.
Note that attributions are not computed with respect
to these arguments.
Default: None
attribute_to_layer_input (bool, optional): Indicates whether to
compute the attribution with respect to the layer input
or output. If `attribute_to_layer_input` is set to True
then the attributions will be computed with respect to
layer input, otherwise it will be computed with respect
to layer output.
Default: False
Returns:
*Tensor* or *tuple[Tensor, ...]* or list of **attributions**:
- **attributions** (*Tensor*, *tuple[Tensor, ...]*, or *list*):
Product of gradient and activation for each
neuron in given layer output.
Attributions will always be the same size as the
output of the given layer.
Attributions are returned in a tuple if
the layer inputs / outputs contain multiple tensors,
otherwise a single tensor is returned.
If multiple layers are provided, attributions
are returned as a list, each element corresponding to the
activations of the corresponding layer.
Examples::
>>> # ImageClassifier takes a single input tensor of images Nx3x32x32,
>>> # and returns an Nx10 tensor of class probabilities.
>>> # It contains an attribute conv1, which is an instance of nn.conv2d,
>>> # and the output of this layer has dimensions Nx12x32x32.
>>> net = ImageClassifier()
>>> layer_ga = LayerGradientXActivation(net, net.conv1)
>>> input = torch.randn(2, 3, 32, 32, requires_grad=True)
>>> # Computes layer activation x gradient for class 3.
>>> # attribution size matches layer output, Nx12x32x32
>>> attribution = layer_ga.attribute(input, 3)
"""
inputs = _format_tensor_into_tuples(inputs)
additional_forward_args = _format_additional_forward_args(
additional_forward_args
)
# Returns gradient of output with respect to
# hidden layer and hidden layer evaluated at each input.
layer_gradients, layer_evals = compute_layer_gradients_and_eval(
self.forward_func,
self.layer,
inputs,
target,
additional_forward_args,
device_ids=self.device_ids,
attribute_to_layer_input=attribute_to_layer_input,
)
if isinstance(self.layer, Module):
return _format_output(
len(layer_evals) > 1,
self.multiply_gradient_acts(layer_gradients, layer_evals),
)
else:
return [
_format_output(
len(layer_evals[i]) > 1,
self.multiply_gradient_acts(layer_gradients[i], layer_evals[i]),
)
for i in range(len(self.layer))
]
def multiply_gradient_acts(
self, gradients: Tuple[Tensor, ...], evals: Tuple[Tensor, ...]
) -> Tuple[Tensor, ...]:
return tuple(
single_gradient * single_eval
if self.multiplies_by_inputs
else single_gradient
for single_gradient, single_eval in zip(gradients, evals)
)
|
#!/usr/bin/env python3
import typing
from typing import Any, Callable, cast, List, Tuple, Union
import numpy as np
import torch
from captum._utils.gradient import _forward_layer_eval, compute_layer_gradients_and_eval
from captum._utils.typing import Literal, TargetType, TensorOrTupleOfTensorsGeneric
from captum.attr._core.gradient_shap import _scale_input
from captum.attr._core.noise_tunnel import NoiseTunnel
from captum.attr._utils.attribution import GradientAttribution, LayerAttribution
from captum.attr._utils.common import (
_compute_conv_delta_and_format_attrs,
_format_callable_baseline,
_format_input_baseline,
)
from captum.log import log_usage
from torch import Tensor
from torch.nn import Module
class LayerGradientShap(LayerAttribution, GradientAttribution):
r"""
Implements gradient SHAP for layer based on the implementation from SHAP's
primary author. For reference, please, view:
https://github.com/slundberg/shap\
#deep-learning-example-with-gradientexplainer-tensorflowkeraspytorch-models
A Unified Approach to Interpreting Model Predictions
https://papers.nips.cc/paper\
7062-a-unified-approach-to-interpreting-model-predictions
GradientShap approximates SHAP values by computing the expectations of
gradients by randomly sampling from the distribution of baselines/references.
It adds white noise to each input sample `n_samples` times, selects a
random baseline from baselines' distribution and a random point along the
path between the baseline and the input, and computes the gradient of
outputs with respect to selected random points in chosen `layer`.
The final SHAP values represent the expected values of
`gradients * (layer_attr_inputs - layer_attr_baselines)`.
GradientShap makes an assumption that the input features are independent
and that the explanation model is linear, meaning that the explanations
are modeled through the additive composition of feature effects.
Under those assumptions, SHAP value can be approximated as the expectation
of gradients that are computed for randomly generated `n_samples` input
samples after adding gaussian noise `n_samples` times to each input for
different baselines/references.
In some sense it can be viewed as an approximation of integrated gradients
by computing the expectations of gradients for different baselines.
Current implementation uses Smoothgrad from :class:`.NoiseTunnel` in order to
randomly draw samples from the distribution of baselines, add noise to input
samples and compute the expectation (smoothgrad).
"""
def __init__(
self,
forward_func: Callable,
layer: Module,
device_ids: Union[None, List[int]] = None,
multiply_by_inputs: bool = True,
) -> None:
r"""
Args:
forward_func (Callable): The forward function of the model or any
modification of it
layer (torch.nn.Module): Layer for which attributions are computed.
Output size of attribute matches this layer's input or
output dimensions, depending on whether we attribute to
the inputs or outputs of the layer, corresponding to
attribution of each neuron in the input or output of
this layer.
device_ids (list[int]): Device ID list, necessary only if forward_func
applies a DataParallel model. This allows reconstruction of
intermediate outputs from batched results across devices.
If forward_func is given as the DataParallel model itself,
then it is not necessary to provide this argument.
multiply_by_inputs (bool, optional): Indicates whether to factor
model inputs' multiplier in the final attribution scores.
In the literature this is also known as local vs global
attribution. If inputs' multiplier isn't factored in,
then this type of attribution method is also called local
attribution. If it is, then that type of attribution
method is called global.
More detailed can be found here:
https://arxiv.org/abs/1711.06104
In case of layer gradient shap, if `multiply_by_inputs`
is set to True, the sensitivity scores for scaled inputs
are being multiplied by
layer activations for inputs - layer activations for baselines.
"""
LayerAttribution.__init__(self, forward_func, layer, device_ids)
GradientAttribution.__init__(self, forward_func)
self._multiply_by_inputs = multiply_by_inputs
@typing.overload
def attribute(
self,
inputs: TensorOrTupleOfTensorsGeneric,
baselines: Union[TensorOrTupleOfTensorsGeneric, Callable],
n_samples: int = 5,
stdevs: Union[float, Tuple[float, ...]] = 0.0,
target: TargetType = None,
additional_forward_args: Any = None,
*,
return_convergence_delta: Literal[True],
attribute_to_layer_input: bool = False,
) -> Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor]:
...
@typing.overload
def attribute(
self,
inputs: TensorOrTupleOfTensorsGeneric,
baselines: Union[TensorOrTupleOfTensorsGeneric, Callable],
n_samples: int = 5,
stdevs: Union[float, Tuple[float, ...]] = 0.0,
target: TargetType = None,
additional_forward_args: Any = None,
return_convergence_delta: Literal[False] = False,
attribute_to_layer_input: bool = False,
) -> Union[Tensor, Tuple[Tensor, ...]]:
...
@log_usage()
def attribute(
self,
inputs: TensorOrTupleOfTensorsGeneric,
baselines: Union[TensorOrTupleOfTensorsGeneric, Callable],
n_samples: int = 5,
stdevs: Union[float, Tuple[float, ...]] = 0.0,
target: TargetType = None,
additional_forward_args: Any = None,
return_convergence_delta: bool = False,
attribute_to_layer_input: bool = False,
) -> Union[
Tensor, Tuple[Tensor, ...], Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor]
]:
r"""
Args:
inputs (Tensor or tuple[Tensor, ...]): Input which are used to compute
SHAP attribution values for a given `layer`. If `forward_func`
takes a single tensor as input, a single input tensor should
be provided.
If `forward_func` takes multiple tensors as input, a tuple
of the input tensors should be provided. It is assumed
that for all given input tensors, dimension 0 corresponds
to the number of examples, and if multiple input tensors
are provided, the examples must be aligned appropriately.
baselines (Tensor, tuple[Tensor, ...], or Callable):
Baselines define the starting point from which expectation
is computed and can be provided as:
- a single tensor, if inputs is a single tensor, with
the first dimension equal to the number of examples
in the baselines' distribution. The remaining dimensions
must match with input tensor's dimension starting from
the second dimension.
- a tuple of tensors, if inputs is a tuple of tensors,
with the first dimension of any tensor inside the tuple
equal to the number of examples in the baseline's
distribution. The remaining dimensions must match
the dimensions of the corresponding input tensor
starting from the second dimension.
- callable function, optionally takes `inputs` as an
argument and either returns a single tensor
or a tuple of those.
It is recommended that the number of samples in the baselines'
tensors is larger than one.
n_samples (int, optional): The number of randomly generated examples
per sample in the input batch. Random examples are
generated by adding gaussian random noise to each sample.
Default: `5` if `n_samples` is not provided.
stdevs (float or tuple of float, optional): The standard deviation
of gaussian noise with zero mean that is added to each
input in the batch. If `stdevs` is a single float value
then that same value is used for all inputs. If it is
a tuple, then it must have the same length as the inputs
tuple. In this case, each stdev value in the stdevs tuple
corresponds to the input with the same index in the inputs
tuple.
Default: 0.0
target (int, tuple, Tensor, or list, optional): Output indices for
which gradients are computed (for classification cases,
this is usually the target class).
If the network returns a scalar value per example,
no target index is necessary.
For general 2D outputs, targets can be either:
- a single integer or a tensor containing a single
integer, which is applied to all input examples
- a list of integers or a 1D tensor, with length matching
the number of examples in inputs (dim 0). Each integer
is applied as the target for the corresponding example.
For outputs with > 2 dimensions, targets can be either:
- A single tuple, which contains #output_dims - 1
elements. This target index is applied to all examples.
- A list of tuples with length equal to the number of
examples in inputs (dim 0), and each tuple containing
#output_dims - 1 elements. Each tuple is applied as the
target for the corresponding example.
Default: None
additional_forward_args (Any, optional): If the forward function
requires additional arguments other than the inputs for
which attributions should not be computed, this argument
can be provided. It can contain a tuple of ND tensors or
any arbitrary python type of any shape.
In case of the ND tensor the first dimension of the
tensor must correspond to the batch size. It will be
repeated for each `n_steps` for each randomly generated
input sample.
Note that the attributions are not computed with respect
to these arguments.
Default: None
return_convergence_delta (bool, optional): Indicates whether to return
convergence delta or not. If `return_convergence_delta`
is set to True convergence delta will be returned in
a tuple following attributions.
Default: False
attribute_to_layer_input (bool, optional): Indicates whether to
compute the attribution with respect to the layer input
or output. If `attribute_to_layer_input` is set to True
then the attributions will be computed with respect to
layer input, otherwise it will be computed with respect
to layer output.
Note that currently it is assumed that either the input
or the output of internal layer, depending on whether we
attribute to the input or output, is a single tensor.
Support for multiple tensors will be added later.
Default: False
Returns:
**attributions** or 2-element tuple of **attributions**, **delta**:
- **attributions** (*Tensor* or *tuple[Tensor, ...]*):
Attribution score computed based on GradientSHAP with
respect to layer's input or output. Attributions will always
be the same size as the provided layer's inputs or outputs,
depending on whether we attribute to the inputs or outputs
of the layer.
Attributions are returned in a tuple if
the layer inputs / outputs contain multiple tensors,
otherwise a single tensor is returned.
- **delta** (*Tensor*, returned if return_convergence_delta=True):
This is computed using the property that the total
sum of forward_func(inputs) - forward_func(baselines)
must be very close to the total sum of the attributions
based on layer gradient SHAP.
Delta is calculated for each example in the input after adding
`n_samples` times gaussian noise to each of them. Therefore,
the dimensionality of the deltas tensor is equal to the
`number of examples in the input` * `n_samples`
The deltas are ordered by each input example and `n_samples`
noisy samples generated for it.
Examples::
>>> # ImageClassifier takes a single input tensor of images Nx3x32x32,
>>> # and returns an Nx10 tensor of class probabilities.
>>> net = ImageClassifier()
>>> layer_grad_shap = LayerGradientShap(net, net.linear1)
>>> input = torch.randn(3, 3, 32, 32, requires_grad=True)
>>> # choosing baselines randomly
>>> baselines = torch.randn(20, 3, 32, 32)
>>> # Computes gradient SHAP of output layer when target is equal
>>> # to 0 with respect to the layer linear1.
>>> # Attribution size matches to the size of the linear1 layer
>>> attribution = layer_grad_shap.attribute(input, baselines,
target=5)
"""
# since `baselines` is a distribution, we can generate it using a function
# rather than passing it as an input argument
baselines = _format_callable_baseline(baselines, inputs)
assert isinstance(baselines[0], torch.Tensor), (
"Baselines distribution has to be provided in a form "
"of a torch.Tensor {}.".format(baselines[0])
)
input_min_baseline_x_grad = LayerInputBaselineXGradient(
self.forward_func,
self.layer,
device_ids=self.device_ids,
multiply_by_inputs=self.multiplies_by_inputs,
)
nt = NoiseTunnel(input_min_baseline_x_grad)
attributions = nt.attribute.__wrapped__(
nt, # self
inputs,
nt_type="smoothgrad",
nt_samples=n_samples,
stdevs=stdevs,
draw_baseline_from_distrib=True,
baselines=baselines,
target=target,
additional_forward_args=additional_forward_args,
return_convergence_delta=return_convergence_delta,
attribute_to_layer_input=attribute_to_layer_input,
)
return attributions
def has_convergence_delta(self) -> bool:
return True
@property
def multiplies_by_inputs(self):
return self._multiply_by_inputs
class LayerInputBaselineXGradient(LayerAttribution, GradientAttribution):
def __init__(
self,
forward_func: Callable,
layer: Module,
device_ids: Union[None, List[int]] = None,
multiply_by_inputs: bool = True,
) -> None:
r"""
Args:
forward_func (Callable): The forward function of the model or any
modification of it
layer (torch.nn.Module): Layer for which attributions are computed.
Output size of attribute matches this layer's input or
output dimensions, depending on whether we attribute to
the inputs or outputs of the layer, corresponding to
attribution of each neuron in the input or output of
this layer.
device_ids (list[int]): Device ID list, necessary only if forward_func
applies a DataParallel model. This allows reconstruction of
intermediate outputs from batched results across devices.
If forward_func is given as the DataParallel model itself,
then it is not necessary to provide this argument.
multiply_by_inputs (bool, optional): Indicates whether to factor
model inputs' multiplier in the final attribution scores.
In the literature this is also known as local vs global
attribution. If inputs' multiplier isn't factored in,
then this type of attribution method is also called local
attribution. If it is, then that type of attribution
method is called global.
More detailed can be found here:
https://arxiv.org/abs/1711.06104
In case of layer input minus baseline x gradient,
if `multiply_by_inputs` is set to True, the sensitivity scores
for scaled inputs are being multiplied by
layer activations for inputs - layer activations for baselines.
"""
LayerAttribution.__init__(self, forward_func, layer, device_ids)
GradientAttribution.__init__(self, forward_func)
self._multiply_by_inputs = multiply_by_inputs
@typing.overload
def attribute(
self,
inputs: Union[Tensor, Tuple[Tensor, ...]],
baselines: Union[Tensor, Tuple[Tensor, ...]],
target: TargetType = None,
additional_forward_args: Any = None,
return_convergence_delta: Literal[False] = False,
attribute_to_layer_input: bool = False,
) -> Union[Tensor, Tuple[Tensor, ...]]:
...
@typing.overload
def attribute(
self,
inputs: Union[Tensor, Tuple[Tensor, ...]],
baselines: Union[Tensor, Tuple[Tensor, ...]],
target: TargetType = None,
additional_forward_args: Any = None,
*,
return_convergence_delta: Literal[True],
attribute_to_layer_input: bool = False,
) -> Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor]:
...
@log_usage()
def attribute( # type: ignore
self,
inputs: Union[Tensor, Tuple[Tensor, ...]],
baselines: Union[Tensor, Tuple[Tensor, ...]],
target: TargetType = None,
additional_forward_args: Any = None,
return_convergence_delta: bool = False,
attribute_to_layer_input: bool = False,
) -> Union[
Tensor, Tuple[Tensor, ...], Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor]
]:
inputs, baselines = _format_input_baseline(inputs, baselines)
rand_coefficient = torch.tensor(
np.random.uniform(0.0, 1.0, inputs[0].shape[0]),
device=inputs[0].device,
dtype=inputs[0].dtype,
)
input_baseline_scaled = tuple(
_scale_input(input, baseline, rand_coefficient)
for input, baseline in zip(inputs, baselines)
)
grads, _ = compute_layer_gradients_and_eval(
self.forward_func,
self.layer,
input_baseline_scaled,
target,
additional_forward_args,
device_ids=self.device_ids,
attribute_to_layer_input=attribute_to_layer_input,
)
attr_baselines = _forward_layer_eval(
self.forward_func,
baselines,
self.layer,
additional_forward_args=additional_forward_args,
device_ids=self.device_ids,
attribute_to_layer_input=attribute_to_layer_input,
)
attr_inputs = _forward_layer_eval(
self.forward_func,
inputs,
self.layer,
additional_forward_args=additional_forward_args,
device_ids=self.device_ids,
attribute_to_layer_input=attribute_to_layer_input,
)
if self.multiplies_by_inputs:
input_baseline_diffs = tuple(
input - baseline for input, baseline in zip(attr_inputs, attr_baselines)
)
attributions = tuple(
input_baseline_diff * grad
for input_baseline_diff, grad in zip(input_baseline_diffs, grads)
)
else:
attributions = grads
return _compute_conv_delta_and_format_attrs(
self,
return_convergence_delta,
attributions,
baselines,
inputs,
additional_forward_args,
target,
cast(Union[Literal[True], Literal[False]], len(attributions) > 1),
)
def has_convergence_delta(self) -> bool:
return True
@property
def multiplies_by_inputs(self):
return self._multiply_by_inputs
|
#!/usr/bin/env python3
from typing import Any, Callable, List, Tuple, Union
import torch
from captum._utils.common import (
_extract_device,
_format_additional_forward_args,
_format_output,
_format_tensor_into_tuples,
_run_forward,
)
from captum._utils.gradient import _forward_layer_eval
from captum._utils.typing import BaselineType, TargetType
from captum.attr._core.feature_ablation import FeatureAblation
from captum.attr._utils.attribution import LayerAttribution, PerturbationAttribution
from captum.log import log_usage
from torch import Tensor
from torch.nn import Module
from torch.nn.parallel.scatter_gather import scatter
class LayerFeatureAblation(LayerAttribution, PerturbationAttribution):
r"""
A perturbation based approach to computing layer attribution, involving
replacing values in the input / output of a layer with a given baseline /
reference, and computing the difference in output. By default, each
neuron (scalar input / output value) within the layer is replaced
independently.
Passing a layer mask allows grouping neurons to be
ablated together.
Each neuron in the group will be given the same attribution value
equal to the change in target as a result of ablating the entire neuron
group.
"""
def __init__(
self,
forward_func: Callable,
layer: Module,
device_ids: Union[None, List[int]] = None,
) -> None:
r"""
Args:
forward_func (Callable): The forward function of the model or any
modification of it
layer (torch.nn.Module): Layer for which attributions are computed.
Output size of attribute matches this layer's input or
output dimensions, depending on whether we attribute to
the inputs or outputs of the layer, corresponding to
attribution of each neuron in the input or output of
this layer.
device_ids (list[int]): Device ID list, necessary only if forward_func
applies a DataParallel model. This allows reconstruction of
intermediate outputs from batched results across devices.
If forward_func is given as the DataParallel model itself
(or otherwise has a device_ids attribute with the device
ID list), then it is not necessary to provide this
argument.
"""
LayerAttribution.__init__(self, forward_func, layer, device_ids)
PerturbationAttribution.__init__(self, forward_func)
@log_usage()
def attribute(
self,
inputs: Union[Tensor, Tuple[Tensor, ...]],
layer_baselines: BaselineType = None,
target: TargetType = None,
additional_forward_args: Any = None,
layer_mask: Union[None, Tensor, Tuple[Tensor, ...]] = None,
attribute_to_layer_input: bool = False,
perturbations_per_eval: int = 1,
) -> Union[Tensor, Tuple[Tensor, ...]]:
r"""
Args:
inputs (Tensor or tuple[Tensor, ...]): Input for which layer
attributions are computed. If forward_func takes a single
tensor as input, a single input tensor should be provided.
If forward_func takes multiple tensors as input, a tuple
of the input tensors should be provided. It is assumed
that for all given input tensors, dimension 0 corresponds
to the number of examples, and if multiple input tensors
are provided, the examples must be aligned appropriately.
layer_baselines (scalar, Tensor, tuple of scalar, or Tensor, optional):
Layer baselines define reference values which replace each
layer input / output value when ablated.
Layer baselines should be a single tensor with dimensions
matching the input / output of the target layer (or
broadcastable to match it), based
on whether we are attributing to the input or output
of the target layer.
In the cases when `baselines` is not provided, we internally
use zero as the baseline for each neuron.
Default: None
target (int, tuple, Tensor, or list, optional): Output indices for
which gradients are computed (for classification cases,
this is usually the target class).
If the network returns a scalar value per example,
no target index is necessary.
For general 2D outputs, targets can be either:
- a single integer or a tensor containing a single
integer, which is applied to all input examples
- a list of integers or a 1D tensor, with length matching
the number of examples in inputs (dim 0). Each integer
is applied as the target for the corresponding example.
For outputs with > 2 dimensions, targets can be either:
- A single tuple, which contains #output_dims - 1
elements. This target index is applied to all examples.
- A list of tuples with length equal to the number of
examples in inputs (dim 0), and each tuple containing
#output_dims - 1 elements. Each tuple is applied as the
target for the corresponding example.
Default: None
additional_forward_args (Any, optional): If the forward function
requires additional arguments other than the inputs for
which attributions should not be computed, this argument
can be provided. It must be either a single additional
argument of a Tensor or arbitrary (non-tuple) type or a
tuple containing multiple additional arguments including
tensors or any arbitrary python types. These arguments
are provided to forward_func in order following the
arguments in inputs.
Note that attributions are not computed with respect
to these arguments.
Default: None
layer_mask (Tensor or tuple[Tensor, ...], optional):
layer_mask defines a mask for the layer, grouping
elements of the layer input / output which should be
ablated together.
layer_mask should be a single tensor with dimensions
matching the input / output of the target layer (or
broadcastable to match it), based
on whether we are attributing to the input or output
of the target layer. layer_mask
should contain integers in the range 0 to num_groups
- 1, and all elements with the same value are
considered to be in the same group.
If None, then a layer mask is constructed which assigns
each neuron within the layer as a separate group, which
is ablated independently.
Default: None
attribute_to_layer_input (bool, optional): Indicates whether to
compute the attributions with respect to the layer input
or output. If `attribute_to_layer_input` is set to True
then the attributions will be computed with respect to
layer's inputs, otherwise it will be computed with respect
to layer's outputs.
Note that currently it is assumed that either the input
or the output of the layer, depending on whether we
attribute to the input or output, is a single tensor.
Support for multiple tensors will be added later.
Default: False
perturbations_per_eval (int, optional): Allows ablation of multiple
neuron (groups) to be processed simultaneously in one
call to forward_fn.
Each forward pass will contain a maximum of
perturbations_per_eval * #examples samples.
For DataParallel models, each batch is split among the
available devices, so evaluations on each available
device contain at most
(perturbations_per_eval * #examples) / num_devices
samples.
Default: 1
Returns:
*Tensor* or *tuple[Tensor, ...]* of **attributions**:
- **attributions** (*Tensor* or *tuple[Tensor, ...]*):
Attribution of each neuron in given layer input or
output. Attributions will always be the same size as
the input or output of the given layer, depending on
whether we attribute to the inputs or outputs
of the layer which is decided by the input flag
`attribute_to_layer_input`
Attributions are returned in a tuple if
the layer inputs / outputs contain multiple tensors,
otherwise a single tensor is returned.
Examples::
>>> # SimpleClassifier takes a single input tensor of size Nx4x4,
>>> # and returns an Nx3 tensor of class probabilities.
>>> # It contains an attribute conv1, which is an instance of nn.conv2d,
>>> # and the output of this layer has dimensions Nx12x3x3.
>>> net = SimpleClassifier()
>>> # Generating random input with size 2 x 4 x 4
>>> input = torch.randn(2, 4, 4)
>>> # Defining LayerFeatureAblation interpreter
>>> ablator = LayerFeatureAblation(net, net.conv1)
>>> # Computes ablation attribution, ablating each of the 108
>>> # neurons independently.
>>> attr = ablator.attribute(input, target=1)
>>> # Alternatively, we may want to ablate neurons in groups, e.g.
>>> # grouping all the layer outputs in the same row.
>>> # This can be done by creating a layer mask as follows, which
>>> # defines the groups of layer inputs / outouts, e.g.:
>>> # +---+---+---+
>>> # | 0 | 0 | 0 |
>>> # +---+---+---+
>>> # | 1 | 1 | 1 |
>>> # +---+---+---+
>>> # | 2 | 2 | 2 |
>>> # +---+---+---+
>>> # With this mask, all the 36 neurons in a row / channel are ablated
>>> # simultaneously, and the attribution for each neuron in the same
>>> # group (0 - 2) per example are the same.
>>> # The attributions can be calculated as follows:
>>> # layer mask has dimensions 1 x 3 x 3
>>> layer_mask = torch.tensor([[[0,0,0],[1,1,1],
>>> [2,2,2]]])
>>> attr = ablator.attribute(input, target=1,
>>> layer_mask=layer_mask)
"""
def layer_forward_func(*args):
layer_length = args[-1]
layer_input = args[:layer_length]
original_inputs = args[layer_length:-1]
device_ids = self.device_ids
if device_ids is None:
device_ids = getattr(self.forward_func, "device_ids", None)
all_layer_inputs = {}
if device_ids is not None:
scattered_layer_input = scatter(layer_input, target_gpus=device_ids)
for device_tensors in scattered_layer_input:
all_layer_inputs[device_tensors[0].device] = device_tensors
else:
all_layer_inputs[layer_input[0].device] = layer_input
def forward_hook(module, inp, out=None):
device = _extract_device(module, inp, out)
is_layer_tuple = (
isinstance(out, tuple)
if out is not None
else isinstance(inp, tuple)
)
if device not in all_layer_inputs:
raise AssertionError(
"Layer input not placed on appropriate "
"device. If using a DataParallel model, either provide the "
"DataParallel model as forward_func or provide device ids"
" to the constructor."
)
if not is_layer_tuple:
return all_layer_inputs[device][0]
return all_layer_inputs[device]
hook = None
try:
if attribute_to_layer_input:
hook = self.layer.register_forward_pre_hook(forward_hook)
else:
hook = self.layer.register_forward_hook(forward_hook)
eval = _run_forward(self.forward_func, original_inputs, target=target)
finally:
if hook is not None:
hook.remove()
return eval
with torch.no_grad():
inputs = _format_tensor_into_tuples(inputs)
additional_forward_args = _format_additional_forward_args(
additional_forward_args
)
layer_eval = _forward_layer_eval(
self.forward_func,
inputs,
self.layer,
additional_forward_args,
device_ids=self.device_ids,
attribute_to_layer_input=attribute_to_layer_input,
)
layer_eval_len = (len(layer_eval),)
all_inputs = (
(inputs + additional_forward_args + layer_eval_len)
if additional_forward_args is not None
else inputs + layer_eval_len
)
ablator = FeatureAblation(layer_forward_func)
layer_attribs = ablator.attribute.__wrapped__(
ablator, # self
layer_eval,
baselines=layer_baselines,
additional_forward_args=all_inputs,
feature_mask=layer_mask,
perturbations_per_eval=perturbations_per_eval,
)
_attr = _format_output(len(layer_attribs) > 1, layer_attribs)
return _attr
|
#!/usr/bin/env python3
import functools
import warnings
from typing import Any, Callable, List, overload, Tuple, Union
import torch
from captum._utils.common import (
_extract_device,
_format_additional_forward_args,
_format_outputs,
)
from captum._utils.gradient import _forward_layer_eval, _run_forward
from captum._utils.typing import BaselineType, Literal, ModuleOrModuleList, TargetType
from captum.attr._core.integrated_gradients import IntegratedGradients
from captum.attr._utils.attribution import GradientAttribution, LayerAttribution
from captum.attr._utils.common import (
_format_input_baseline,
_tensorize_baseline,
_validate_input,
)
from captum.log import log_usage
from torch import Tensor
from torch.nn.parallel.scatter_gather import scatter
class LayerIntegratedGradients(LayerAttribution, GradientAttribution):
r"""
Layer Integrated Gradients is a variant of Integrated Gradients that assigns
an importance score to layer inputs or outputs, depending on whether we
attribute to the former or to the latter one.
Integrated Gradients is an axiomatic model interpretability algorithm that
attributes / assigns an importance score to each input feature by approximating
the integral of gradients of the model's output with respect to the inputs
along the path (straight line) from given baselines / references to inputs.
Baselines can be provided as input arguments to attribute method.
To approximate the integral we can choose to use either a variant of
Riemann sum or Gauss-Legendre quadrature rule.
More details regarding the integrated gradients method can be found in the
original paper:
https://arxiv.org/abs/1703.01365
"""
def __init__(
self,
forward_func: Callable,
layer: ModuleOrModuleList,
device_ids: Union[None, List[int]] = None,
multiply_by_inputs: bool = True,
) -> None:
r"""
Args:
forward_func (Callable): The forward function of the model or any
modification of it
layer (ModuleOrModuleList): Layer or list of layers for which attributions
are computed. For each layer the output size of the attribute
matches this layer's input or output dimensions, depending on
whether we attribute to the inputs or outputs of the
layer, corresponding to the attribution of each neuron
in the input or output of this layer.
Please note that layers to attribute on cannot be
dependent on each other. That is, a subset of layers in
`layer` cannot produce the inputs for another layer.
For example, if your model is of a simple linked-list
based graph structure (think nn.Sequence), e.g. x -> l1
-> l2 -> l3 -> output. If you pass in any one of those
layers, you cannot pass in another due to the
dependence, e.g. if you pass in l2 you cannot pass in
l1 or l3.
device_ids (list[int]): Device ID list, necessary only if forward_func
applies a DataParallel model. This allows reconstruction of
intermediate outputs from batched results across devices.
If forward_func is given as the DataParallel model itself,
then it is not necessary to provide this argument.
multiply_by_inputs (bool, optional): Indicates whether to factor
model inputs' multiplier in the final attribution scores.
In the literature this is also known as local vs global
attribution. If inputs' multiplier isn't factored in,
then this type of attribution method is also called local
attribution. If it is, then that type of attribution
method is called global.
More detailed can be found here:
https://arxiv.org/abs/1711.06104
In case of layer integrated gradients, if `multiply_by_inputs`
is set to True, final sensitivity scores are being multiplied by
layer activations for inputs - layer activations for baselines.
"""
LayerAttribution.__init__(self, forward_func, layer, device_ids=device_ids)
GradientAttribution.__init__(self, forward_func)
self.ig = IntegratedGradients(forward_func, multiply_by_inputs)
if isinstance(layer, list) and len(layer) > 1:
warnings.warn(
"Multiple layers provided. Please ensure that each layer is"
"**not** solely dependent on the outputs of"
"another layer. Please refer to the documentation for more"
"detail."
)
@overload
def attribute(
self,
inputs: Union[Tensor, Tuple[Tensor, ...]],
baselines: BaselineType,
target: TargetType,
additional_forward_args: Any,
n_steps: int,
method: str,
internal_batch_size: Union[None, int],
return_convergence_delta: Literal[False],
attribute_to_layer_input: bool,
) -> Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]]:
...
@overload
def attribute(
self,
inputs: Union[Tensor, Tuple[Tensor, ...]],
baselines: BaselineType,
target: TargetType,
additional_forward_args: Any,
n_steps: int,
method: str,
internal_batch_size: Union[None, int],
return_convergence_delta: Literal[True],
attribute_to_layer_input: bool,
) -> Tuple[
Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]],
Tensor,
]:
...
@overload
def attribute(
self,
inputs: Union[Tensor, Tuple[Tensor, ...]],
baselines: BaselineType = None,
target: TargetType = None,
additional_forward_args: Any = None,
n_steps: int = 50,
method: str = "gausslegendre",
internal_batch_size: Union[None, int] = None,
return_convergence_delta: bool = False,
attribute_to_layer_input: bool = False,
) -> Union[
Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]],
Tuple[
Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]],
Tensor,
],
]:
...
@log_usage()
def attribute(
self,
inputs: Union[Tensor, Tuple[Tensor, ...]],
baselines: BaselineType = None,
target: TargetType = None,
additional_forward_args: Any = None,
n_steps: int = 50,
method: str = "gausslegendre",
internal_batch_size: Union[None, int] = None,
return_convergence_delta: bool = False,
attribute_to_layer_input: bool = False,
) -> Union[
Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]],
Tuple[
Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]],
Tensor,
],
]:
r"""
This method attributes the output of the model with given target index
(in case it is provided, otherwise it assumes that output is a
scalar) to layer inputs or outputs of the model, depending on whether
`attribute_to_layer_input` is set to True or False, using the approach
described above.
In addition to that it also returns, if `return_convergence_delta` is
set to True, integral approximation delta based on the completeness
property of integrated gradients.
Args:
inputs (Tensor or tuple[Tensor, ...]): Input for which layer integrated
gradients are computed. If forward_func takes a single
tensor as input, a single input tensor should be provided.
If forward_func takes multiple tensors as input, a tuple
of the input tensors should be provided. It is assumed
that for all given input tensors, dimension 0 corresponds
to the number of examples, and if multiple input tensors
are provided, the examples must be aligned appropriately.
baselines (scalar, Tensor, tuple of scalar, or Tensor, optional):
Baselines define the starting point from which integral
is computed and can be provided as:
- a single tensor, if inputs is a single tensor, with
exactly the same dimensions as inputs or the first
dimension is one and the remaining dimensions match
with inputs.
- a single scalar, if inputs is a single tensor, which will
be broadcasted for each input value in input tensor.
- a tuple of tensors or scalars, the baseline corresponding
to each tensor in the inputs' tuple can be:
- either a tensor with matching dimensions to
corresponding tensor in the inputs' tuple
or the first dimension is one and the remaining
dimensions match with the corresponding
input tensor.
- or a scalar, corresponding to a tensor in the
inputs' tuple. This scalar value is broadcasted
for corresponding input tensor.
In the cases when `baselines` is not provided, we internally
use zero scalar corresponding to each input tensor.
Default: None
target (int, tuple, Tensor, or list, optional): Output indices for
which gradients are computed (for classification cases,
this is usually the target class).
If the network returns a scalar value per example,
no target index is necessary.
For general 2D outputs, targets can be either:
- a single integer or a tensor containing a single
integer, which is applied to all input examples
- a list of integers or a 1D tensor, with length matching
the number of examples in inputs (dim 0). Each integer
is applied as the target for the corresponding example.
For outputs with > 2 dimensions, targets can be either:
- A single tuple, which contains #output_dims - 1
elements. This target index is applied to all examples.
- A list of tuples with length equal to the number of
examples in inputs (dim 0), and each tuple containing
#output_dims - 1 elements. Each tuple is applied as the
target for the corresponding example.
Default: None
additional_forward_args (Any, optional): If the forward function
requires additional arguments other than the inputs for
which attributions should not be computed, this argument
can be provided. It must be either a single additional
argument of a Tensor or arbitrary (non-tuple) type or a
tuple containing multiple additional arguments including
tensors or any arbitrary python types. These arguments
are provided to forward_func in order following the
arguments in inputs.
For a tensor, the first dimension of the tensor must
correspond to the number of examples. It will be
repeated for each of `n_steps` along the integrated
path. For all other types, the given argument is used
for all forward evaluations.
Note that attributions are not computed with respect
to these arguments.
Default: None
n_steps (int, optional): The number of steps used by the approximation
method. Default: 50.
method (str, optional): Method for approximating the integral,
one of `riemann_right`, `riemann_left`, `riemann_middle`,
`riemann_trapezoid` or `gausslegendre`.
Default: `gausslegendre` if no method is provided.
internal_batch_size (int, optional): Divides total #steps * #examples
data points into chunks of size at most internal_batch_size,
which are computed (forward / backward passes)
sequentially. internal_batch_size must be at least equal to
#examples.
For DataParallel models, each batch is split among the
available devices, so evaluations on each available
device contain internal_batch_size / num_devices examples.
If internal_batch_size is None, then all evaluations are
processed in one batch.
Default: None
return_convergence_delta (bool, optional): Indicates whether to return
convergence delta or not. If `return_convergence_delta`
is set to True convergence delta will be returned in
a tuple following attributions.
Default: False
attribute_to_layer_input (bool, optional): Indicates whether to
compute the attribution with respect to the layer input
or output. If `attribute_to_layer_input` is set to True
then the attributions will be computed with respect to
layer input, otherwise it will be computed with respect
to layer output.
Note that currently it is assumed that either the input
or the output of internal layer, depending on whether we
attribute to the input or output, is a single tensor.
Support for multiple tensors will be added later.
Default: False
Returns:
**attributions** or 2-element tuple of **attributions**, **delta**:
- **attributions** (*Tensor* or *tuple[Tensor, ...]*):
Integrated gradients with respect to `layer`'s inputs
or outputs. Attributions will always be the same size and
dimensionality as the input or output of the given layer,
depending on whether we attribute to the inputs or outputs
of the layer which is decided by the input flag
`attribute_to_layer_input`.
For a single layer, attributions are returned in a tuple if
the layer inputs / outputs contain multiple tensors,
otherwise a single tensor is returned.
For multiple layers, attributions will always be
returned as a list. Each element in this list will be
equivalent to that of a single layer output, i.e. in the
case that one layer, in the given layers, inputs / outputs
multiple tensors: the corresponding output element will be
a tuple of tensors. The ordering of the outputs will be
the same order as the layers given in the constructor.
- **delta** (*Tensor*, returned if return_convergence_delta=True):
The difference between the total approximated and true
integrated gradients. This is computed using the property
that the total sum of forward_func(inputs) -
forward_func(baselines) must equal the total sum of the
integrated gradient.
Delta is calculated per example, meaning that the number of
elements in returned delta tensor is equal to the number of
examples in inputs.
Examples::
>>> # ImageClassifier takes a single input tensor of images Nx3x32x32,
>>> # and returns an Nx10 tensor of class probabilities.
>>> # It contains an attribute conv1, which is an instance of nn.conv2d,
>>> # and the output of this layer has dimensions Nx12x32x32.
>>> net = ImageClassifier()
>>> lig = LayerIntegratedGradients(net, net.conv1)
>>> input = torch.randn(2, 3, 32, 32, requires_grad=True)
>>> # Computes layer integrated gradients for class 3.
>>> # attribution size matches layer output, Nx12x32x32
>>> attribution = lig.attribute(input, target=3)
"""
inps, baselines = _format_input_baseline(inputs, baselines)
_validate_input(inps, baselines, n_steps, method)
baselines = _tensorize_baseline(inps, baselines)
additional_forward_args = _format_additional_forward_args(
additional_forward_args
)
def flatten_tuple(tup):
return tuple(
sum((list(x) if isinstance(x, (tuple, list)) else [x] for x in tup), [])
)
if self.device_ids is None:
self.device_ids = getattr(self.forward_func, "device_ids", None)
inputs_layer = _forward_layer_eval(
self.forward_func,
inps,
self.layer,
device_ids=self.device_ids,
additional_forward_args=additional_forward_args,
attribute_to_layer_input=attribute_to_layer_input,
)
# if we have one output
if not isinstance(self.layer, list):
inputs_layer = (inputs_layer,)
num_outputs = [1 if isinstance(x, Tensor) else len(x) for x in inputs_layer]
num_outputs_cumsum = torch.cumsum(
torch.IntTensor([0] + num_outputs), dim=0 # type: ignore
)
inputs_layer = flatten_tuple(inputs_layer)
baselines_layer = _forward_layer_eval(
self.forward_func,
baselines,
self.layer,
device_ids=self.device_ids,
additional_forward_args=additional_forward_args,
attribute_to_layer_input=attribute_to_layer_input,
)
baselines_layer = flatten_tuple(baselines_layer)
# inputs -> these inputs are scaled
def gradient_func(
forward_fn: Callable,
inputs: Union[Tensor, Tuple[Tensor, ...]],
target_ind: TargetType = None,
additional_forward_args: Any = None,
) -> Tuple[Tensor, ...]:
if self.device_ids is None or len(self.device_ids) == 0:
scattered_inputs = (inputs,)
else:
# scatter method does not have a precise enough return type in its
# stub, so suppress the type warning.
scattered_inputs = scatter( # type:ignore
inputs, target_gpus=self.device_ids
)
scattered_inputs_dict = {
scattered_input[0].device: scattered_input
for scattered_input in scattered_inputs
}
with torch.autograd.set_grad_enabled(True):
def layer_forward_hook(
module, hook_inputs, hook_outputs=None, layer_idx=0
):
device = _extract_device(module, hook_inputs, hook_outputs)
is_layer_tuple = (
isinstance(hook_outputs, tuple)
# hook_outputs is None if attribute_to_layer_input == True
if hook_outputs is not None
else isinstance(hook_inputs, tuple)
)
if is_layer_tuple:
return scattered_inputs_dict[device][
num_outputs_cumsum[layer_idx] : num_outputs_cumsum[
layer_idx + 1
]
]
return scattered_inputs_dict[device][num_outputs_cumsum[layer_idx]]
hooks = []
try:
layers = self.layer
if not isinstance(layers, list):
layers = [self.layer]
for layer_idx, layer in enumerate(layers):
hook = None
# TODO:
# Allow multiple attribute_to_layer_input flags for
# each layer, i.e. attribute_to_layer_input[layer_idx]
if attribute_to_layer_input:
hook = layer.register_forward_pre_hook(
functools.partial(
layer_forward_hook, layer_idx=layer_idx
)
)
else:
hook = layer.register_forward_hook(
functools.partial(
layer_forward_hook, layer_idx=layer_idx
)
)
hooks.append(hook)
output = _run_forward(
self.forward_func, tuple(), target_ind, additional_forward_args
)
finally:
for hook in hooks:
if hook is not None:
hook.remove()
assert output[0].numel() == 1, (
"Target not provided when necessary, cannot"
" take gradient with respect to multiple outputs."
)
# torch.unbind(forward_out) is a list of scalar tensor tuples and
# contains batch_size * #steps elements
grads = torch.autograd.grad(torch.unbind(output), inputs)
return grads
self.ig.gradient_func = gradient_func
all_inputs = (
(inps + additional_forward_args)
if additional_forward_args is not None
else inps
)
attributions = self.ig.attribute.__wrapped__( # type: ignore
self.ig, # self
inputs_layer,
baselines=baselines_layer,
target=target,
additional_forward_args=all_inputs,
n_steps=n_steps,
method=method,
internal_batch_size=internal_batch_size,
return_convergence_delta=False,
)
# handle multiple outputs
output: List[Tuple[Tensor, ...]] = [
tuple(
attributions[
int(num_outputs_cumsum[i]) : int(num_outputs_cumsum[i + 1])
]
)
for i in range(len(num_outputs))
]
if return_convergence_delta:
start_point, end_point = baselines, inps
# computes approximation error based on the completeness axiom
delta = self.compute_convergence_delta(
attributions,
start_point,
end_point,
additional_forward_args=additional_forward_args,
target=target,
)
return _format_outputs(isinstance(self.layer, list), output), delta
return _format_outputs(isinstance(self.layer, list), output)
def has_convergence_delta(self) -> bool:
return True
@property
def multiplies_by_inputs(self):
return self.ig.multiplies_by_inputs
|
#!/usr/bin/env python3
import typing
from typing import Any, Callable, cast, Sequence, Tuple, Union
import torch
from captum._utils.common import (
_expand_target,
_format_additional_forward_args,
_format_baseline,
_format_tensor_into_tuples,
ExpansionTypes,
)
from captum._utils.gradient import compute_layer_gradients_and_eval
from captum._utils.typing import (
BaselineType,
Literal,
TargetType,
TensorOrTupleOfTensorsGeneric,
)
from captum.attr._core.deep_lift import DeepLift, DeepLiftShap
from captum.attr._utils.attribution import LayerAttribution
from captum.attr._utils.common import (
_call_custom_attribution_func,
_compute_conv_delta_and_format_attrs,
_format_callable_baseline,
_tensorize_baseline,
_validate_input,
)
from captum.log import log_usage
from torch import Tensor
from torch.nn import Module
class LayerDeepLift(LayerAttribution, DeepLift):
r"""
Implements DeepLIFT algorithm for the layer based on the following paper:
Learning Important Features Through Propagating Activation Differences,
Avanti Shrikumar, et. al.
https://arxiv.org/abs/1704.02685
and the gradient formulation proposed in:
Towards better understanding of gradient-based attribution methods for
deep neural networks, Marco Ancona, et.al.
https://openreview.net/pdf?id=Sy21R9JAW
This implementation supports only Rescale rule. RevealCancel rule will
be supported in later releases.
Although DeepLIFT's(Rescale Rule) attribution quality is comparable with
Integrated Gradients, it runs significantly faster than Integrated
Gradients and is preferred for large datasets.
Currently we only support a limited number of non-linear activations
but the plan is to expand the list in the future.
Note: As we know, currently we cannot access the building blocks,
of PyTorch's built-in LSTM, RNNs and GRUs such as Tanh and Sigmoid.
Nonetheless, it is possible to build custom LSTMs, RNNS and GRUs
with performance similar to built-in ones using TorchScript.
More details on how to build custom RNNs can be found here:
https://pytorch.org/blog/optimizing-cuda-rnn-with-torchscript/
"""
def __init__(
self,
model: Module,
layer: Module,
multiply_by_inputs: bool = True,
) -> None:
r"""
Args:
model (nn.Module): The reference to PyTorch model instance.
layer (torch.nn.Module): Layer for which attributions are computed.
The size and dimensionality of the attributions
corresponds to the size and dimensionality of the layer's
input or output depending on whether we attribute to the
inputs or outputs of the layer.
multiply_by_inputs (bool, optional): Indicates whether to factor
model inputs' multiplier in the final attribution scores.
In the literature this is also known as local vs global
attribution. If inputs' multiplier isn't factored in
then that type of attribution method is also called local
attribution. If it is, then that type of attribution
method is called global.
More detailed can be found here:
https://arxiv.org/abs/1711.06104
In case of Layer DeepLift, if `multiply_by_inputs`
is set to True, final sensitivity scores
are being multiplied by
layer activations for inputs - layer activations for baselines.
This flag applies only if `custom_attribution_func` is
set to None.
"""
LayerAttribution.__init__(self, model, layer)
DeepLift.__init__(self, model)
self.model = model
self._multiply_by_inputs = multiply_by_inputs
# Ignoring mypy error for inconsistent signature with DeepLift
@typing.overload # type: ignore
def attribute(
self,
inputs: Union[Tensor, Tuple[Tensor, ...]],
baselines: BaselineType = None,
target: TargetType = None,
additional_forward_args: Any = None,
return_convergence_delta: Literal[False] = False,
attribute_to_layer_input: bool = False,
custom_attribution_func: Union[None, Callable[..., Tuple[Tensor, ...]]] = None,
) -> Union[Tensor, Tuple[Tensor, ...]]:
...
@typing.overload
def attribute(
self,
inputs: Union[Tensor, Tuple[Tensor, ...]],
baselines: BaselineType = None,
target: TargetType = None,
additional_forward_args: Any = None,
*,
return_convergence_delta: Literal[True],
attribute_to_layer_input: bool = False,
custom_attribution_func: Union[None, Callable[..., Tuple[Tensor, ...]]] = None,
) -> Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor]:
...
@log_usage()
def attribute(
self,
inputs: Union[Tensor, Tuple[Tensor, ...]],
baselines: BaselineType = None,
target: TargetType = None,
additional_forward_args: Any = None,
return_convergence_delta: bool = False,
attribute_to_layer_input: bool = False,
custom_attribution_func: Union[None, Callable[..., Tuple[Tensor, ...]]] = None,
) -> Union[
Tensor, Tuple[Tensor, ...], Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor]
]:
r"""
Args:
inputs (Tensor or tuple[Tensor, ...]): Input for which layer
attributions are computed. If model takes a
single tensor as input, a single input tensor should be
provided. If model takes multiple tensors as input,
a tuple of the input tensors should be provided. It is
assumed that for all given input tensors, dimension 0
corresponds to the number of examples (aka batch size),
and if multiple input tensors are provided, the examples
must be aligned appropriately.
baselines (scalar, Tensor, tuple of scalar, or Tensor, optional):
Baselines define reference samples that are compared with
the inputs. In order to assign attribution scores DeepLift
computes the differences between the inputs/outputs and
corresponding references.
Baselines can be provided as:
- a single tensor, if inputs is a single tensor, with
exactly the same dimensions as inputs or the first
dimension is one and the remaining dimensions match
with inputs.
- a single scalar, if inputs is a single tensor, which will
be broadcasted for each input value in input tensor.
- a tuple of tensors or scalars, the baseline corresponding
to each tensor in the inputs' tuple can be:
- either a tensor with matching dimensions to
corresponding tensor in the inputs' tuple
or the first dimension is one and the remaining
dimensions match with the corresponding
input tensor.
- or a scalar, corresponding to a tensor in the
inputs' tuple. This scalar value is broadcasted
for corresponding input tensor.
In the cases when `baselines` is not provided, we internally
use zero scalar corresponding to each input tensor.
Default: None
target (int, tuple, Tensor, or list, optional): Output indices for
which gradients are computed (for classification cases,
this is usually the target class).
If the network returns a scalar value per example,
no target index is necessary.
For general 2D outputs, targets can be either:
- a single integer or a tensor containing a single
integer, which is applied to all input examples
- a list of integers or a 1D tensor, with length matching
the number of examples in inputs (dim 0). Each integer
is applied as the target for the corresponding example.
For outputs with > 2 dimensions, targets can be either:
- A single tuple, which contains #output_dims - 1
elements. This target index is applied to all examples.
- A list of tuples with length equal to the number of
examples in inputs (dim 0), and each tuple containing
#output_dims - 1 elements. Each tuple is applied as the
target for the corresponding example.
Default: None
additional_forward_args (Any, optional): If the forward function
requires additional arguments other than the inputs for
which attributions should not be computed, this argument
can be provided. It must be either a single additional
argument of a Tensor or arbitrary (non-tuple) type or a tuple
containing multiple additional arguments including tensors
or any arbitrary python types. These arguments are provided to
model in order, following the arguments in inputs.
Note that attributions are not computed with respect
to these arguments.
Default: None
return_convergence_delta (bool, optional): Indicates whether to return
convergence delta or not. If `return_convergence_delta`
is set to True convergence delta will be returned in
a tuple following attributions.
Default: False
attribute_to_layer_input (bool, optional): Indicates whether to
compute the attribution with respect to the layer input
or output. If `attribute_to_layer_input` is set to True
then the attributions will be computed with respect to
layer input, otherwise it will be computed with respect
to layer output.
Note that currently it is assumed that either the input
or the output of internal layer, depending on whether we
attribute to the input or output, is a single tensor.
Support for multiple tensors will be added later.
Default: False
custom_attribution_func (Callable, optional): A custom function for
computing final attribution scores. This function can take
at least one and at most three arguments with the
following signature:
- custom_attribution_func(multipliers)
- custom_attribution_func(multipliers, inputs)
- custom_attribution_func(multipliers, inputs, baselines)
In case this function is not provided, we use the default
logic defined as: multipliers * (inputs - baselines)
It is assumed that all input arguments, `multipliers`,
`inputs` and `baselines` are provided in tuples of same length.
`custom_attribution_func` returns a tuple of attribution
tensors that have the same length as the `inputs`.
Default: None
Returns:
**attributions** or 2-element tuple of **attributions**, **delta**:
- **attributions** (*Tensor* or *tuple[Tensor, ...]*):
Attribution score computed based on DeepLift's rescale rule with
respect to layer's inputs or outputs. Attributions will always be the
same size as the provided layer's inputs or outputs, depending on
whether we attribute to the inputs or outputs of the layer.
If the layer input / output is a single tensor, then
just a tensor is returned; if the layer input / output
has multiple tensors, then a corresponding tuple
of tensors is returned.
- **delta** (*Tensor*, returned if return_convergence_delta=True):
This is computed using the property that the total sum of
model(inputs) - model(baselines) must equal the
total sum of the attributions computed based on DeepLift's
rescale rule.
Delta is calculated per example, meaning that the number of
elements in returned delta tensor is equal to the number of
examples in input.
Note that the logic described for deltas is guaranteed
when the default logic for attribution computations is used,
meaning that the `custom_attribution_func=None`, otherwise
it is not guaranteed and depends on the specifics of the
`custom_attribution_func`.
Examples::
>>> # ImageClassifier takes a single input tensor of images Nx3x32x32,
>>> # and returns an Nx10 tensor of class probabilities.
>>> net = ImageClassifier()
>>> # creates an instance of LayerDeepLift to interpret target
>>> # class 1 with respect to conv4 layer.
>>> dl = LayerDeepLift(net, net.conv4)
>>> input = torch.randn(1, 3, 32, 32, requires_grad=True)
>>> # Computes deeplift attribution scores for conv4 layer and class 3.
>>> attribution = dl.attribute(input, target=1)
"""
inputs = _format_tensor_into_tuples(inputs)
baselines = _format_baseline(baselines, inputs)
_validate_input(inputs, baselines)
baselines = _tensorize_baseline(inputs, baselines)
main_model_hooks = []
try:
main_model_hooks = self._hook_main_model()
self.model.apply(
lambda mod: self._register_hooks(
mod, attribute_to_layer_input=attribute_to_layer_input
)
)
additional_forward_args = _format_additional_forward_args(
additional_forward_args
)
expanded_target = _expand_target(
target, 2, expansion_type=ExpansionTypes.repeat
)
wrapped_forward_func = self._construct_forward_func(
self.model,
(inputs, baselines),
expanded_target,
additional_forward_args,
)
def chunk_output_fn(out: TensorOrTupleOfTensorsGeneric) -> Sequence:
if isinstance(out, Tensor):
return out.chunk(2)
return tuple(out_sub.chunk(2) for out_sub in out)
gradients, attrs = compute_layer_gradients_and_eval(
wrapped_forward_func,
self.layer,
inputs,
attribute_to_layer_input=attribute_to_layer_input,
output_fn=lambda out: chunk_output_fn(out),
)
attr_inputs = tuple(map(lambda attr: attr[0], attrs))
attr_baselines = tuple(map(lambda attr: attr[1], attrs))
gradients = tuple(map(lambda grad: grad[0], gradients))
if custom_attribution_func is None:
if self.multiplies_by_inputs:
attributions = tuple(
(input - baseline) * gradient
for input, baseline, gradient in zip(
attr_inputs, attr_baselines, gradients
)
)
else:
attributions = gradients
else:
attributions = _call_custom_attribution_func(
custom_attribution_func, gradients, attr_inputs, attr_baselines
)
finally:
# remove hooks from all activations
self._remove_hooks(main_model_hooks)
return _compute_conv_delta_and_format_attrs(
self,
return_convergence_delta,
attributions,
baselines,
inputs,
additional_forward_args,
target,
cast(Union[Literal[True], Literal[False]], len(attributions) > 1),
)
@property
def multiplies_by_inputs(self):
return self._multiply_by_inputs
class LayerDeepLiftShap(LayerDeepLift, DeepLiftShap):
r"""
Extends LayerDeepLift and DeepLiftShap algorithms and approximates SHAP
values for given input `layer`.
For each input sample - baseline pair it computes DeepLift attributions
with respect to inputs or outputs of given `layer` averages
resulting attributions across baselines. Whether to compute the attributions
with respect to the inputs or outputs of the layer is defined by the
input flag `attribute_to_layer_input`.
More details about the algorithm can be found here:
https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
Note that the explanation model:
1. Assumes that input features are independent of one another
2. Is linear, meaning that the explanations are modeled through
the additive composition of feature effects.
Although, it assumes a linear model for each explanation, the overall
model across multiple explanations can be complex and non-linear.
"""
def __init__(
self,
model: Module,
layer: Module,
multiply_by_inputs: bool = True,
) -> None:
r"""
Args:
model (nn.Module): The reference to PyTorch model instance.
layer (torch.nn.Module): Layer for which attributions are computed.
The size and dimensionality of the attributions
corresponds to the size and dimensionality of the layer's
input or output depending on whether we attribute to the
inputs or outputs of the layer.
multiply_by_inputs (bool, optional): Indicates whether to factor
model inputs' multiplier in the final attribution scores.
In the literature this is also known as local vs global
attribution. If inputs' multiplier isn't factored in
then that type of attribution method is also called local
attribution. If it is, then that type of attribution
method is called global.
More detailed can be found here:
https://arxiv.org/abs/1711.06104
In case of LayerDeepLiftShap, if `multiply_by_inputs`
is set to True, final sensitivity scores are being
multiplied by
layer activations for inputs - layer activations for baselines
This flag applies only if `custom_attribution_func` is
set to None.
"""
LayerDeepLift.__init__(self, model, layer)
DeepLiftShap.__init__(self, model, multiply_by_inputs)
# Ignoring mypy error for inconsistent signature with DeepLiftShap
@typing.overload # type: ignore
def attribute(
self,
inputs: Union[Tensor, Tuple[Tensor, ...]],
baselines: Union[
Tensor, Tuple[Tensor, ...], Callable[..., Union[Tensor, Tuple[Tensor, ...]]]
],
target: TargetType = None,
additional_forward_args: Any = None,
return_convergence_delta: Literal[False] = False,
attribute_to_layer_input: bool = False,
custom_attribution_func: Union[None, Callable[..., Tuple[Tensor, ...]]] = None,
) -> Union[Tensor, Tuple[Tensor, ...]]:
...
@typing.overload
def attribute(
self,
inputs: Union[Tensor, Tuple[Tensor, ...]],
baselines: Union[
Tensor, Tuple[Tensor, ...], Callable[..., Union[Tensor, Tuple[Tensor, ...]]]
],
target: TargetType = None,
additional_forward_args: Any = None,
*,
return_convergence_delta: Literal[True],
attribute_to_layer_input: bool = False,
custom_attribution_func: Union[None, Callable[..., Tuple[Tensor, ...]]] = None,
) -> Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor]:
...
@log_usage()
def attribute(
self,
inputs: Union[Tensor, Tuple[Tensor, ...]],
baselines: Union[
Tensor, Tuple[Tensor, ...], Callable[..., Union[Tensor, Tuple[Tensor, ...]]]
],
target: TargetType = None,
additional_forward_args: Any = None,
return_convergence_delta: bool = False,
attribute_to_layer_input: bool = False,
custom_attribution_func: Union[None, Callable[..., Tuple[Tensor, ...]]] = None,
) -> Union[
Tensor, Tuple[Tensor, ...], Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor]
]:
r"""
Args:
inputs (Tensor or tuple[Tensor, ...]): Input for which layer
attributions are computed. If model takes a single
tensor as input, a single input tensor should be provided.
If model takes multiple tensors as input, a tuple
of the input tensors should be provided. It is assumed
that for all given input tensors, dimension 0 corresponds
to the number of examples (aka batch size), and if
multiple input tensors are provided, the examples must
be aligned appropriately.
baselines (Tensor, tuple[Tensor, ...], or Callable):
Baselines define reference samples that are compared with
the inputs. In order to assign attribution scores DeepLift
computes the differences between the inputs/outputs and
corresponding references. Baselines can be provided as:
- a single tensor, if inputs is a single tensor, with
the first dimension equal to the number of examples
in the baselines' distribution. The remaining dimensions
must match with input tensor's dimension starting from
the second dimension.
- a tuple of tensors, if inputs is a tuple of tensors,
with the first dimension of any tensor inside the tuple
equal to the number of examples in the baseline's
distribution. The remaining dimensions must match
the dimensions of the corresponding input tensor
starting from the second dimension.
- callable function, optionally takes `inputs` as an
argument and either returns a single tensor
or a tuple of those.
It is recommended that the number of samples in the baselines'
tensors is larger than one.
target (int, tuple, Tensor, or list, optional): Output indices for
which gradients are computed (for classification cases,
this is usually the target class).
If the network returns a scalar value per example,
no target index is necessary.
For general 2D outputs, targets can be either:
- a single integer or a tensor containing a single
integer, which is applied to all input examples
- a list of integers or a 1D tensor, with length matching
the number of examples in inputs (dim 0). Each integer
is applied as the target for the corresponding example.
For outputs with > 2 dimensions, targets can be either:
- A single tuple, which contains #output_dims - 1
elements. This target index is applied to all examples.
- A list of tuples with length equal to the number of
examples in inputs (dim 0), and each tuple containing
#output_dims - 1 elements. Each tuple is applied as the
target for the corresponding example.
Default: None
additional_forward_args (Any, optional): If the forward function
requires additional arguments other than the inputs for
which attributions should not be computed, this argument
can be provided. It must be either a single additional
argument of a Tensor or arbitrary (non-tuple) type or a tuple
containing multiple additional arguments including tensors
or any arbitrary python types. These arguments are provided to
model in order, following the arguments in inputs.
Note that attributions are not computed with respect
to these arguments.
Default: None
return_convergence_delta (bool, optional): Indicates whether to return
convergence delta or not. If `return_convergence_delta`
is set to True convergence delta will be returned in
a tuple following attributions.
Default: False
attribute_to_layer_input (bool, optional): Indicates whether to
compute the attributions with respect to the layer input
or output. If `attribute_to_layer_input` is set to True
then the attributions will be computed with respect to
layer inputs, otherwise it will be computed with respect
to layer outputs.
Note that currently it assumes that both the inputs and
outputs of internal layers are single tensors.
Support for multiple tensors will be added later.
Default: False
custom_attribution_func (Callable, optional): A custom function for
computing final attribution scores. This function can take
at least one and at most three arguments with the
following signature:
- custom_attribution_func(multipliers)
- custom_attribution_func(multipliers, inputs)
- custom_attribution_func(multipliers, inputs, baselines)
In case this function is not provided, we use the default
logic defined as: multipliers * (inputs - baselines)
It is assumed that all input arguments, `multipliers`,
`inputs` and `baselines` are provided in tuples of same
length. `custom_attribution_func` returns a tuple of
attribution tensors that have the same length as the
`inputs`.
Default: None
Returns:
**attributions** or 2-element tuple of **attributions**, **delta**:
- **attributions** (*Tensor* or *tuple[Tensor, ...]*):
Attribution score computed based on DeepLift's rescale rule
with respect to layer's inputs or outputs. Attributions
will always be the same size as the provided layer's inputs
or outputs, depending on whether we attribute to the inputs
or outputs of the layer.
Attributions are returned in a tuple based on whether
the layer inputs / outputs are contained in a tuple
from a forward hook. For standard modules, inputs of
a single tensor are usually wrapped in a tuple, while
outputs of a single tensor are not.
- **delta** (*Tensor*, returned if return_convergence_delta=True):
This is computed using the property that the
total sum of model(inputs) - model(baselines)
must be very close to the total sum of attributions
computed based on approximated SHAP values using
DeepLift's rescale rule.
Delta is calculated for each example input and baseline pair,
meaning that the number of elements in returned delta tensor
is equal to the
`number of examples in input` * `number of examples
in baseline`. The deltas are ordered in the first place by
input example, followed by the baseline.
Note that the logic described for deltas is guaranteed
when the default logic for attribution computations is used,
meaning that the `custom_attribution_func=None`, otherwise
it is not guaranteed and depends on the specifics of the
`custom_attribution_func`.
Examples::
>>> # ImageClassifier takes a single input tensor of images Nx3x32x32,
>>> # and returns an Nx10 tensor of class probabilities.
>>> net = ImageClassifier()
>>> # creates an instance of LayerDeepLift to interpret target
>>> # class 1 with respect to conv4 layer.
>>> dl = LayerDeepLiftShap(net, net.conv4)
>>> input = torch.randn(2, 3, 32, 32, requires_grad=True)
>>> # Computes shap values using deeplift for class 3.
>>> attribution = dl.attribute(input, target=3)
"""
inputs = _format_tensor_into_tuples(inputs)
baselines = _format_callable_baseline(baselines, inputs)
assert isinstance(baselines[0], torch.Tensor) and baselines[0].shape[0] > 1, (
"Baselines distribution has to be provided in form of a torch.Tensor"
" with more than one example but found: {}."
" If baselines are provided in shape of scalars or with a single"
" baseline example, `LayerDeepLift`"
" approach can be used instead.".format(baselines[0])
)
# batch sizes
inp_bsz = inputs[0].shape[0]
base_bsz = baselines[0].shape[0]
(
exp_inp,
exp_base,
exp_target,
exp_addit_args,
) = DeepLiftShap._expand_inputs_baselines_targets(
self, baselines, inputs, target, additional_forward_args
)
attributions = LayerDeepLift.attribute.__wrapped__( # type: ignore
self,
exp_inp,
exp_base,
target=exp_target,
additional_forward_args=exp_addit_args,
return_convergence_delta=cast(
Literal[True, False], return_convergence_delta
),
attribute_to_layer_input=attribute_to_layer_input,
custom_attribution_func=custom_attribution_func,
)
if return_convergence_delta:
attributions, delta = attributions
if isinstance(attributions, tuple):
attributions = tuple(
DeepLiftShap._compute_mean_across_baselines(
self, inp_bsz, base_bsz, cast(Tensor, attrib)
)
for attrib in attributions
)
else:
attributions = DeepLiftShap._compute_mean_across_baselines(
self, inp_bsz, base_bsz, attributions
)
if return_convergence_delta:
return attributions, delta
else:
return attributions
@property
def multiplies_by_inputs(self):
return self._multiply_by_inputs
|
#!/usr/bin/env python3
from collections import defaultdict
import torch
from pytext.models.embeddings.dict_embedding import DictEmbedding
from pytext.models.embeddings.word_embedding import WordEmbedding
from pytext.models.model import EmbeddingBase, EmbeddingList
class PyTextInterpretableEmbedding(EmbeddingBase):
r"""
In PyText DocNN models we need a way to access word embedding layers,
generate the embeddings and subtract the baseline.
To do so, we separate embedding layers from the model, compute the embeddings
separately and do all operations needed outside of the model.
The original embedding layer is being replaced by `PyTextInterpretableEmbedding`
layer which passes precomputed embedding vectors to lower layers.
"""
def __init__(self, embeddings) -> None:
self.embedding_dims = [embedding.embedding_dim for embedding in embeddings]
super().__init__(sum(self.embedding_dims))
self.embeddings = embeddings
def forward(self, input):
r"""
The forward pass of embedding layer. This can be for the text or any
type of embedding.
Args
input: Input embeddings tensor
Return
output: Output tensor is the same as input. It passes through
the embedding tensors to lower layers without any
modifications
"""
return input
def get_attribution_map(self, attributions):
r"""
After attribution scores are computed for an input embedding vector
we need to split it up into attribution sub tensors for each
feature type: word, dict and other types
TODO: we can potentally also output tuples of attributions. This might be
a better option. We'll work on this in a separate diff.
Args
attributions: A tensor that contains attribution values for each input
field. It usually has the same dimensions as the input
tensor
Return
attribution_map: A dictionary of feature_type and attribution values
"""
begin = 0
attribution_map = defaultdict()
for embedding, embedding_size in zip(self.embeddings, self.embedding_dims):
end = begin + embedding_size
if isinstance(embedding, WordEmbedding):
attribution_map["word"] = attributions[:, :, begin:end]
elif isinstance(embedding, DictEmbedding):
attribution_map["dict"] = attributions[:, :, begin:end]
else:
raise NotImplementedError(
"Currently only word and dict " "embeddings are supported"
)
begin = end
return attribution_map
class BaselineGenerator:
r"""
This is an example input baseline generator for DocNN model which uses
word and dict features.
"""
PAD = "<pad>"
def __init__(self, model, data_handler, device) -> None:
self.model = model
self.data_handler = data_handler
if "dict_feat" in data_handler.features:
self.vocab_dict = data_handler.features["dict_feat"].vocab
if "word_feat" in data_handler.features:
self.vocab_word = data_handler.features["word_feat"].vocab
self.baseline_single_word_feature = self._generate_baseline_single_word_feature(
device
)
self.baseline_single_dict_feature = self._generate_baseline_single_dict_feature(
device
)
def generate_baseline(self, integ_grads_embeddings, seq_length):
r"""
Generates baseline for input word and dict features. In the future we
will extend it to support char and other features as well.
This baseline is entirely based on the `<pad>` token.
Args
integ_grads_embeddings: A reference to integrated gradients embedding
layer
seq_length: The length of each sequence which depends on batch size
Return
baseline: A tuple of feature baselines
Each feature type has a corresponding baseline tensor
in the tuple.
Currently only Dict and Word feature types are supported
"""
baseline = []
for embedding in integ_grads_embeddings.embeddings:
if isinstance(embedding, WordEmbedding):
baseline.append(self._generate_word_baseline(seq_length))
elif isinstance(embedding, DictEmbedding):
baseline.append(self._generate_dict_baseline(seq_length))
else:
raise NotImplementedError(
"Currently only word and dict " "embeddings are supported"
)
return tuple(baseline)
def _generate_baseline_single_word_feature(self, device):
return (
torch.tensor(
[self.vocab_word.stoi[self.PAD] if hasattr(self, "vocab_word") else 0]
)
.unsqueeze(0)
.to(device)
)
def _generate_baseline_single_dict_feature(self, device):
r"""Generate dict features based on Assistant's case study by using
sia_transformer:
fbcode/assistant/sia/transformer/sia_transformer.py
sia_transformer generates dict features in a special gazetter format
See `fbsource/fbcode/pytext/models/embeddings/dict_embedding.py`
It generates word dict feature embeddings for each word token.
The output of SIATransformer after running it on `<pad>` token
looks as following:
OutputRecord(tokens=['<', 'pad', '>'],
token_ranges=[(0, 1), (1, 4), (4, 5)],
gazetteer_feats=['<pad>', '<pad>', '<pad>'],
gazetteer_feat_lengths=[1, 1, 1],
gazetteer_feat_weights=[0.0, 0.0, 0.0],
characters=[['<', '<pad>', '<pad>'],
['p', 'a', 'd'], ['>', '<pad>', '<pad>']],
pretrained_token_embedding=[ ], dense_feats=None)
"""
gazetteer_feats = [self.PAD, self.PAD, self.PAD]
gazetteer_feat_lengths = [1, 1, 1]
gazetteer_feat_weights = [0.0, 0.0, 0.0]
gazetteer_feat_id = (
torch.tensor(
[
self.vocab_dict.stoi[gazetteer_feat]
if hasattr(self, "vocab_dict")
else 0
for gazetteer_feat in gazetteer_feats
]
)
.unsqueeze(0)
.to(device)
)
gazetteer_feat_weights = (
torch.tensor(gazetteer_feat_weights).unsqueeze(0).to(device)
)
gazetteer_feat_lengths = (
torch.tensor(gazetteer_feat_lengths).to(device).view(1, -1)[:, 1]
)
return (gazetteer_feat_id, gazetteer_feat_weights, gazetteer_feat_lengths)
def _generate_word_baseline(self, seq_length):
return self.baseline_single_word_feature.repeat(1, seq_length)
def _generate_dict_baseline(self, seq_length):
return (
self.baseline_single_dict_feature[0].repeat(1, seq_length),
self.baseline_single_dict_feature[1].repeat(1, seq_length),
self.baseline_single_dict_feature[2].repeat(1, seq_length),
)
def configure_task_integ_grads_embeddings(task):
r"""
Wraps Pytext's DocNN model embedding with `IntegratedGradientsEmbedding` for
a given input task.
IntegratedGradientsEmbedding allows to perform baseline related operations
Args
task: DocNN task reference
Returns
integrated_gradients_embedding_lst: The embedding layer which contains
IntegratedGradientsEmbedding as a wrapper over the original
embeddings of the model
"""
integrated_gradients_embedding_lst = configure_model_integ_grads_embeddings(
task.model
)
task.model.embedding = integrated_gradients_embedding_lst
return integrated_gradients_embedding_lst[0]
def configure_model_integ_grads_embeddings(model):
r"""
Wraps Pytext's DocNN model embedding with `IntegratedGradientsEmbedding`
IntegratedGradientsEmbedding allows to perform baseline related operations
Args
model: a reference to DocModel
Returns
integrated_gradients_embedding_lst: The embedding layer which contains
IntegratedGradientsEmbedding as a wrapper over the original
embeddings of the model
"""
embeddings = model.embedding
integrated_gradients_embedding = PyTextInterpretableEmbedding(embeddings)
return EmbeddingList([integrated_gradients_embedding], False)
def reshape_word_features(word_features):
r"""
Creates one-sample batch for word features for sanity check purposes
Args
word_features: A tensor of diemnsions #words x #embeddings
Return
word_features: A tensor of dimensions 1 x #words x #embeddings
"""
return word_features.unsqueeze(0)
def reshape_dict_features(
dict_feature_id_batch, dict_weight_batch, dict_seq_len_batch, seq_length, idx
):
r"""
Creates one-sample batch for dict features for sanity check purposes
It reads and reshapes id, weight and seq_length feature arrays for given
input index `idx` from the input batch
Args
dict_feature_id_batch: The batch tensor for ids
dict_weight_matrix: The batch tensor for weights
dict_seq_len_matrix: The batch tensor for sequence length
seq_length: The number of tokens per sequence
idx: The index of sample in the batch
Return
dict_feature_ids: A tensor of dimensions [ bsz x # dict feature embeddings]
dict_feature_weights: [ bsz x # dict feature embeddings]
dict_feature_lens: [ bsz * seq_length ]
"""
dict_feature_ids = dict_feature_id_batch[idx].unsqueeze(0)
dict_feature_weights = dict_weight_batch[idx].unsqueeze(0)
dict_feature_lens = dict_seq_len_batch[idx].unsqueeze(0)
return (dict_feature_ids, dict_feature_weights, dict_feature_lens)
|
#!/usr/bin/env python3
import warnings
from functools import reduce
import torch
from torch.nn import Module
class InterpretableEmbeddingBase(Module):
r"""
Since some embedding vectors, e.g. word are created and assigned in
the embedding layers of Pytorch models we need a way to access
those layers, generate the embeddings and subtract the baseline.
To do so, we separate embedding layers from the model, compute the
embeddings separately and do all operations needed outside of the model.
The original embedding layer is being replaced by
`InterpretableEmbeddingBase` layer which passes already
precomputed embedding vectors to the layers below.
"""
def __init__(self, embedding, full_name) -> None:
Module.__init__(self)
self.num_embeddings = getattr(embedding, "num_embeddings", None)
self.embedding_dim = getattr(embedding, "embedding_dim", None)
self.embedding = embedding
self.full_name = full_name
def forward(self, *inputs, **kwargs):
r"""
The forward function of a wrapper embedding layer that takes and returns
embedding layer. It allows embeddings to be created outside of the model
and passes them seamlessly to the preceding layers of the model.
Args:
*inputs (Any, optional): A sequence of inputs arguments that the
forward function takes. Since forward functions can take any
type and number of arguments, this will ensure that we can
execute the forward pass using interpretable embedding layer.
Note that if inputs are specified, it is assumed that the first
argument is the embedding tensor generated using the
`self.embedding` layer using all input arguments provided in
`inputs` and `kwargs`.
**kwargs (Any, optional): Similar to `inputs` we want to make sure
that our forward pass supports arbitrary number and type of
key-value arguments. If `inputs` is not provided, `kwargs` must
be provided and the first argument corresponds to the embedding
tensor generated using the `self.embedding`. Note that we make
here an assumption here that `kwargs` is an ordered dict which
is new in python 3.6 and is not guaranteed that it will
consistently remain that way in the newer versions. In case
current implementation doesn't work for special use cases,
it is encouraged to override `InterpretableEmbeddingBase` and
address those specifics in descendant classes.
Returns:
embedding_tensor (Tensor):
Returns a tensor which is the same as first argument passed
to the forward function.
It passes pre-computed embedding tensors to lower layers
without any modifications.
"""
assert len(inputs) > 0 or len(kwargs) > 0, (
"No input arguments are provided to `InterpretableEmbeddingBase`."
"Input embedding tensor has to be provided as first argument to forward "
"function either through inputs argument or kwargs."
)
return inputs[0] if len(inputs) > 0 else list(kwargs.values())[0]
def indices_to_embeddings(self, *input, **kwargs):
r"""
Maps indices to corresponding embedding vectors. E.g. word embeddings
Args:
*input (Any, optional): This can be a tensor(s) of input indices or any
other variable necessary to comput the embeddings. A typical
example of input indices are word or token indices.
**kwargs (Any, optional): Similar to `input` this can be any sequence
of key-value arguments necessary to compute final embedding
tensor.
Returns:
tensor:
A tensor of word embeddings corresponding to the
indices specified in the input
"""
return self.embedding(*input, **kwargs)
class TokenReferenceBase:
r"""
A base class for creating reference (aka baseline) tensor for a sequence of
tokens. A typical example of such token is `PAD`. Users need to provide the
index of the reference token in the vocabulary as an argument to
`TokenReferenceBase` class.
"""
def __init__(self, reference_token_idx: int = 0) -> None:
self.reference_token_idx = reference_token_idx
def generate_reference(self, sequence_length, device: torch.device) -> torch.Tensor:
r"""
Generated reference tensor of given `sequence_length` using
`reference_token_idx`.
Args:
sequence_length (int): The length of the reference sequence
device (torch.device): The device on which the reference tensor will
be created.
Returns:
tensor:
A sequence of reference token with shape:
[sequence_length]
"""
return torch.tensor([self.reference_token_idx] * sequence_length, device=device)
def _get_deep_layer_name(obj, layer_names):
r"""
Traverses through the layer names that are separated by
dot in order to access the embedding layer.
"""
return reduce(getattr, layer_names.split("."), obj)
def _set_deep_layer_value(obj, layer_names, value):
r"""
Traverses through the layer names that are separated by
dot in order to access the embedding layer and update its value.
"""
layer_names = layer_names.split(".")
setattr(reduce(getattr, layer_names[:-1], obj), layer_names[-1], value)
def configure_interpretable_embedding_layer(
model: Module, embedding_layer_name: str = "embedding"
) -> InterpretableEmbeddingBase:
r"""
This method wraps a model's embedding layer with an interpretable embedding
layer that allows us to access the embeddings through their indices.
Args:
model (torch.nn.Module): An instance of PyTorch model that contains embeddings.
embedding_layer_name (str, optional): The name of the embedding layer
in the `model` that we would like to make interpretable.
Returns:
interpretable_emb (InterpretableEmbeddingBase): An instance of
`InterpretableEmbeddingBase` embedding layer that wraps model's
embedding layer that is being accessed through
`embedding_layer_name`.
Examples::
>>> # Let's assume that we have a DocumentClassifier model that
>>> # has a word embedding layer named 'embedding'.
>>> # To make that layer interpretable we need to execute the
>>> # following command:
>>> net = DocumentClassifier()
>>> interpretable_emb = configure_interpretable_embedding_layer(net,
>>> 'embedding')
>>> # then we can use interpretable embedding to convert our
>>> # word indices into embeddings.
>>> # Let's assume that we have the following word indices
>>> input_indices = torch.tensor([1, 0, 2])
>>> # we can access word embeddings for those indices with the command
>>> # line stated below.
>>> input_emb = interpretable_emb.indices_to_embeddings(input_indices)
>>> # Let's assume that we want to apply integrated gradients to
>>> # our model and that target attribution class is 3
>>> ig = IntegratedGradients(net)
>>> attribution = ig.attribute(input_emb, target=3)
>>> # after we finish the interpretation we need to remove
>>> # interpretable embedding layer with the following command:
>>> remove_interpretable_embedding_layer(net, interpretable_emb)
"""
embedding_layer = _get_deep_layer_name(model, embedding_layer_name)
assert (
embedding_layer.__class__ is not InterpretableEmbeddingBase
), "InterpretableEmbeddingBase has already been configured for layer {}".format(
embedding_layer_name
)
warnings.warn(
"In order to make embedding layers more interpretable they will "
"be replaced with an interpretable embedding layer which wraps the "
"original embedding layer and takes word embedding vectors as inputs of "
"the forward function. This allows us to generate baselines for word "
"embeddings and compute attributions for each embedding dimension. "
"The original embedding layer must be set "
"back by calling `remove_interpretable_embedding_layer` function "
"after model interpretation is finished. "
)
interpretable_emb = InterpretableEmbeddingBase(
embedding_layer, embedding_layer_name
)
_set_deep_layer_value(model, embedding_layer_name, interpretable_emb)
return interpretable_emb
def remove_interpretable_embedding_layer(
model: Module, interpretable_emb: InterpretableEmbeddingBase
) -> None:
r"""
Removes interpretable embedding layer and sets back original
embedding layer in the model.
Args:
model (torch.nn.Module): An instance of PyTorch model that contains embeddings
interpretable_emb (InterpretableEmbeddingBase): An instance of
`InterpretableEmbeddingBase` that was originally created in
`configure_interpretable_embedding_layer` function and has
to be removed after interpretation is finished.
Examples::
>>> # Let's assume that we have a DocumentClassifier model that
>>> # has a word embedding layer named 'embedding'.
>>> # To make that layer interpretable we need to execute the
>>> # following command:
>>> net = DocumentClassifier()
>>> interpretable_emb = configure_interpretable_embedding_layer(net,
>>> 'embedding')
>>> # then we can use interpretable embedding to convert our
>>> # word indices into embeddings.
>>> # Let's assume that we have the following word indices
>>> input_indices = torch.tensor([1, 0, 2])
>>> # we can access word embeddings for those indices with the command
>>> # line stated below.
>>> input_emb = interpretable_emb.indices_to_embeddings(input_indices)
>>> # Let's assume that we want to apply integrated gradients to
>>> # our model and that target attribution class is 3
>>> ig = IntegratedGradients(net)
>>> attribution = ig.attribute(input_emb, target=3)
>>> # after we finish the interpretation we need to remove
>>> # interpretable embedding layer with the following command:
>>> remove_interpretable_embedding_layer(net, interpretable_emb)
"""
_set_deep_layer_value(
model, interpretable_emb.full_name, interpretable_emb.embedding
)
|
#!/usr/bin/env python3
from captum.concept._core.cav import CAV # noqa
from captum.concept._core.concept import Concept, ConceptInterpreter # noqa
from captum.concept._core.tcav import TCAV # noqa
from captum.concept._utils.classifier import Classifier, DefaultClassifier # noqa
|
#!/usr/bin/env python3
import glob
import os
from typing import Callable, Iterator
from torch import Tensor
from torch.utils.data import DataLoader, Dataset, IterableDataset
class CustomIterableDataset(IterableDataset):
r"""
An auxiliary class for iterating through a dataset.
"""
def __init__(self, transform_filename_to_tensor: Callable, path: str) -> None:
r"""
Args:
transform_filename_to_tensor (Callable): Function to read a data
file from path and return a tensor from that file.
path (str): Path to dataset files. This can be either a path to a
directory or a file where input examples are stored.
"""
self.file_itr = None
self.path = path
if os.path.isdir(self.path):
self.file_itr = glob.glob(self.path + "*")
self.transform_filename_to_tensor = transform_filename_to_tensor
def __iter__(self) -> Iterator[Tensor]:
r"""
Returns:
iter (Iterator[Tensor]): A map from a function that
processes a list of file path(s) to a list of Tensors.
"""
if self.file_itr is not None:
return map(self.transform_filename_to_tensor, self.file_itr)
else:
return self.transform_filename_to_tensor(self.path)
def dataset_to_dataloader(dataset: Dataset, batch_size: int = 64) -> DataLoader:
r"""
An auxiliary function that creates torch DataLoader from torch Dataset
using input `batch_size`.
Args:
dataset (Dataset): A torch dataset that allows to iterate over
the batches of examples.
batch_size (int, optional): Batch size of for each tensor in the
iteration.
Returns:
dataloader_iter (DataLoader): a DataLoader for data iteration.
"""
return DataLoader(dataset, batch_size=batch_size)
|
#!/usr/bin/env python3
import random
import warnings
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Tuple, Union
import torch
from captum._utils.models.linear_model import model
from torch import Tensor
from torch.utils.data import DataLoader, TensorDataset
class Classifier(ABC):
r"""
An abstract class definition of any classifier that allows to train a model
and access trained weights of that model.
More specifically the classifier can, for instance, be trained on the
activations of a particular layer. Below we can see an example a sklearn
linear classifier wrapped by the `CustomClassifier` which extends `Classifier`
abstract class.
Example::
>>> from sklearn import linear_model
>>>
>>> class CustomClassifier(Classifier):
>>>
>>> def __init__(self):
>>>
>>> self.lm = linear_model.SGDClassifier(alpha=0.01, max_iter=1000,
>>> tol=1e-3)
>>>
>>> def train_and_eval(self, dataloader):
>>>
>>> x_train, x_test, y_train, y_test = train_test_split(inputs, labels)
>>> self.lm.fit(x_train.detach().numpy(), y_train.detach().numpy())
>>>
>>> preds = torch.tensor(self.lm.predict(x_test.detach().numpy()))
>>> return {'accs': (preds == y_test).float().mean()}
>>>
>>>
>>> def weights(self):
>>>
>>> if len(self.lm.coef_) == 1:
>>> # if there are two concepts, there is only one label.
>>> # We split it in two.
>>> return torch.tensor([-1 * self.lm.coef_[0], self.lm.coef_[0]])
>>> else:
>>> return torch.tensor(self.lm.coef_)
>>>
>>>
>>> def classes(self):
>>> return self.lm.classes_
>>>
>>>
"""
@abstractmethod
def __init__(self) -> None:
pass
@abstractmethod
def train_and_eval(
self, dataloader: DataLoader, **kwargs: Any
) -> Union[Dict, None]:
r"""
This method is responsible for training a classifier using the data
provided through `dataloader` input arguments. Based on the specific
implementation, it may or may not return a statistics about model
training and evaluation.
Args:
dataloader (dataloader): A dataloader that enables batch-wise access to
the inputs and corresponding labels. Dataloader allows us to
iterate over the dataset by loading the batches in lazy manner.
kwargs (dict): Named arguments that are used for training and evaluating
concept classifier.
Default: None
Returns:
stats (dict): a dictionary of statistics about the performance of the model.
For example the accuracy of the model on the test and/or
train dataset(s). The user may decide to return None or an
empty dictionary if they decide to not return any performance
statistics.
"""
pass
@abstractmethod
def weights(self) -> Tensor:
r"""
This function returns a C x F tensor weights, where
C is the number of classes and F is the number of features.
Returns:
weights (Tensor): A torch Tensor with the weights resulting from
the model training.
"""
pass
@abstractmethod
def classes(self) -> List[int]:
r"""
This function returns the list of all classes that are used by the
classifier to train the model in the `train_and_eval` method.
The order of returned classes has to match the same order used in
the weights matrix returned by the `weights` method.
Returns:
classes (list): The list of classes used by the classifier to train
the model in the `train_and_eval` method.
"""
pass
class DefaultClassifier(Classifier):
r"""
A default Linear Classifier based on sklearn's SGDClassifier for
learning decision boundaries between concepts.
Note that default implementation slices input dataset into train and test
splits and keeps them in memory.
In case concept datasets are large, this can lead to out of memory and we
recommend to provide a custom Classier that extends `Classifier` abstract
class and handles large concept datasets accordingly.
"""
def __init__(self) -> None:
warnings.warn(
"Using default classifier for TCAV which keeps input"
" both train and test datasets in the memory. Consider defining"
" your own classifier that doesn't rely heavily on memory, for"
" large number of concepts, by extending"
" `Classifer` abstract class"
)
self.lm = model.SkLearnSGDClassifier(alpha=0.01, max_iter=1000, tol=1e-3)
def train_and_eval(
self, dataloader: DataLoader, test_split_ratio: float = 0.33, **kwargs: Any
) -> Union[Dict, None]:
r"""
Implements Classifier::train_and_eval abstract method for small concept
datsets provided by `dataloader`.
It is assumed that when iterating over `dataloader` we can still
retain the entire dataset in the memory.
This method shuffles all examples randomly provided, splits them
into train and test partitions and trains an SGDClassifier using sklearn
library. Ultimately, it measures and returns model accuracy using test
split of the dataset.
Args:
dataloader (dataloader): A dataloader that enables batch-wise access to
the inputs and corresponding labels. Dataloader allows us to
iterate over the dataset by loading the batches in lazy manner.
test_split_ratio (float): The ratio of test split in the entire dataset
served by input data loader `dataloader`.
Default: 0.33
Returns:
stats (dict): a dictionary of statistics about the performance of the model.
In this case stats represents a dictionary of model accuracy
measured on the test split of the dataset.
"""
inputs = []
labels = []
for input, label in dataloader:
inputs.append(input)
labels.append(label)
device = "cpu" if input is None else input.device
x_train, x_test, y_train, y_test = _train_test_split(
torch.cat(inputs), torch.cat(labels), test_split=test_split_ratio
)
self.lm.device = device
self.lm.fit(DataLoader(TensorDataset(x_train, y_train)))
predict = self.lm(x_test)
predict = self.lm.classes()[torch.argmax(predict, dim=1)] # type: ignore
score = predict.long() == y_test.long().cpu()
accs = score.float().mean()
return {"accs": accs}
def weights(self) -> Tensor:
r"""
This function returns a C x F tensor weights, where
C is the number of classes and F is the number of features.
In case of binary classification, C = 2 otherwise it is > 2.
Returns:
weights (Tensor): A torch Tensor with the weights resulting from
the model training.
"""
assert self.lm.linear is not None, (
"The weights cannot be obtained because no model was trained."
"In order to train the model call `train_and_eval` method first."
)
weights = self.lm.representation()
if weights.shape[0] == 1:
# if there are two concepts, there is only one label. We split it in two.
return torch.stack([-1 * weights[0], weights[0]])
else:
return weights
def classes(self) -> List[int]:
r"""
This function returns the list of all classes that are used by the
classifier to train the model in the `train_and_eval` method.
The order of returned classes has to match the same order used in
the weights matrix returned by the `weights` method.
Returns:
classes (list): The list of classes used by the classifier to train
the model in the `train_and_eval` method.
"""
return self.lm.classes().detach().numpy() # type: ignore
def _train_test_split(
x_list: Tensor, y_list: Tensor, test_split: float = 0.33
) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
# Shuffle
z_list = list(zip(x_list, y_list))
random.shuffle(z_list)
# Split
test_size = int(test_split * len(z_list))
z_test, z_train = z_list[:test_size], z_list[test_size:]
x_test, y_test = zip(*z_test)
x_train, y_train = zip(*z_train)
return (
torch.stack(x_train),
torch.stack(x_test),
torch.stack(y_train),
torch.stack(y_test),
)
|
#!/usr/bin/env python3
from typing import List
from captum.concept._core.concept import Concept
def concepts_to_str(concepts: List[Concept]) -> str:
r"""
Returns a string of hyphen("-") concatenated concept names.
Example output: "striped-random_0-random_1"
Args:
concepts (list[Concept]): a List of concept names to be
concatenated and used as a concepts key. These concept
names are respective to the Concept objects used for
the classifier train.
Returns:
names_str (str): A string of hyphen("-") concatenated
concept names. Ex.: "striped-random_0-random_1"
"""
return "-".join([str(c.id) for c in concepts])
|
#!/usr/bin/env python3
import os
from typing import Any, Dict, List
import torch
from captum.concept._core.concept import Concept
from captum.concept._utils.common import concepts_to_str
class CAV:
r"""
Concept Activation Vector (CAV) is a vector orthogonal to the decision
boundary of a classifier which distinguishes between activation
vectors produced by different concepts.
More details can be found in the paper:
https://arxiv.org/abs/1711.11279
"""
def __init__(
self,
concepts: List[Concept],
layer: str,
stats: Dict[str, Any] = None,
save_path: str = "./cav/",
model_id: str = "default_model_id",
) -> None:
r"""
This class encapsulates the instances of CAVs objects, saves them in
and loads them from the disk (storage).
Args:
concepts (list[Concept]): a List of Concept objects. Only their
names will be saved and loaded.
layer (str): The layer where concept activation vectors are
computed using a predefined classifier.
stats (dict, optional): a dictionary that retains information about
the CAV classifier such as CAV weights and accuracies.
Ex.: stats = {"weights": weights, "classes": classes,
"accs": accs}, where "weights" are learned
model parameters, "classes" are a list of classes used
by the model to generate the "weights" and "accs"
the classifier training or validation accuracy.
save_path (str, optional): The path where the CAV objects are stored.
model_id (str, optional): A unique model identifier associated with
this CAV instance.
"""
self.concepts = concepts
self.layer = layer
self.stats = stats
self.save_path = save_path
self.model_id = model_id
@staticmethod
def assemble_save_path(
path: str, model_id: str, concepts: List[Concept], layer: str
) -> str:
r"""
A utility method for assembling filename and its path, from
a concept list and a layer name.
Args:
path (str): A path to be concatenated with the concepts key and
layer name.
model_id (str): A unique model identifier associated with input
`layer` and `concepts`
concepts (list[Concept]): A list of concepts that are concatenated
together and used as a concept key using their ids. These
concept ids are retrieved from TCAV s`Concept` objects.
layer (str): The name of the layer for which the activations are
computed.
Returns:
cav_path(str): A string containing the path where the computed CAVs
will be stored.
For example, given:
concept_ids = [0, 1, 2]
concept_names = ["striped", "random_0", "random_1"]
layer = "inception4c"
path = "/cavs",
the resulting save path will be:
"/cavs/default_model_id/0-1-2-inception4c.pkl"
"""
file_name = concepts_to_str(concepts) + "-" + layer + ".pkl"
return os.path.join(path, model_id, file_name)
def save(self):
r"""
Saves a dictionary of the CAV computed values into a pickle file in the
location returned by the "assemble_save_path" static methods. The
dictionary contains the concept names list, the layer name for which
the activations are computed for, the stats dictionary which contains
information about the classifier train/eval statistics such as the
weights and training accuracies. Ex.:
save_dict = {
"concept_ids": [0, 1, 2],
"concept_names": ["striped", "random_0", "random_1"],
"layer": "inception4c",
"stats": {"weights": weights, "classes": classes, "accs": accs}
}
"""
save_dict = {
"concept_ids": [c.id for c in self.concepts],
"concept_names": [c.name for c in self.concepts],
"layer": self.layer,
"stats": self.stats,
}
cavs_path = CAV.assemble_save_path(
self.save_path, self.model_id, self.concepts, self.layer
)
torch.save(save_dict, cavs_path)
@staticmethod
def create_cav_dir_if_missing(save_path: str, model_id: str) -> None:
r"""
A utility function for creating the directories where the CAVs will
be stored. CAVs are saved in a folder under named by `model_id`
under `save_path`.
Args:
save_path (str): A root path where the CAVs will be stored
model_id (str): A unique model identifier associated with the
CAVs. A folder named `model_id` is created under
`save_path`. The CAVs are later stored there.
"""
cav_model_id_path = os.path.join(save_path, model_id)
if not os.path.exists(cav_model_id_path):
os.makedirs(cav_model_id_path)
@staticmethod
def load(cavs_path: str, model_id: str, concepts: List[Concept], layer: str):
r"""
Loads CAV dictionary from a pickle file for given input
`layer` and `concepts`.
Args:
cavs_path (str): The root path where the cavs are stored
in the storage (on the disk).
Ex.: "/cavs"
model_id (str): A unique model identifier associated with the
CAVs. There exist a folder named `model_id` under
`cavs_path` path. The CAVs are loaded from this folder.
concepts (list[Concept]): A List of concepts for which
we would like to load the cavs.
layer (str): The layer name. Ex.: "inception4c". In case of nested
layers we use dots to specify the depth / hierarchy.
Ex.: "layer.sublayer.subsublayer"
Returns:
cav(CAV): An instance of a CAV class, containing the respective CAV
score per concept and layer. An example of a path where the
cavs are loaded from is:
"/cavs/default_model_id/0-1-2-inception4c.pkl"
"""
cavs_path = CAV.assemble_save_path(cavs_path, model_id, concepts, layer)
if os.path.exists(cavs_path):
save_dict = torch.load(cavs_path)
concept_names = save_dict["concept_names"]
concept_ids = save_dict["concept_ids"]
concepts = [
Concept(concept_id, concept_name, None)
for concept_id, concept_name in zip(concept_ids, concept_names)
]
cav = CAV(concepts, save_dict["layer"], save_dict["stats"])
return cav
return None
|
#!/usr/bin/env python3
from typing import Callable, Union
import torch
from torch.nn import Module
class Concept:
r"""
Concepts are human-friendly abstract representations that can be
numerically encoded into torch tensors. They can be illustrated as
images, text or any other form of representation. In case of images,
for example, "stripes" concept can be represented through a number
of example images resembling "stripes" in various different
contexts. In case of Natural Language Processing, the concept of
"happy", for instance, can be illustrated through a number of
adjectives and words that convey happiness.
"""
def __init__(
self, id: int, name: str, data_iter: Union[None, torch.utils.data.DataLoader]
) -> None:
r"""
Args:
id (int): The unique identifier of the concept.
name (str): A unique name of the concept.
data_iter (DataLoader): A pytorch DataLoader object that combines a dataset
and a sampler, and provides an iterable over a given
dataset. Only the input batches are provided by `data_iter`.
Concept ids can be used as labels if necessary.
For more information, please check:
https://pytorch.org/docs/stable/data.html
Example::
>>> # Creates a Concept object named "striped", with a data_iter
>>> # object to iterate over all files in "./concepts/striped"
>>> concept_name = "striped"
>>> concept_path = os.path.join("./concepts", concept_name) + "/"
>>> concept_iter = dataset_to_dataloader(
>>> get_tensor_from_filename, concepts_path=concept_path)
>>> concept_object = Concept(
id=0, name=concept_name, data_iter=concept_iter)
"""
self.id = id
self.name = name
self.data_iter = data_iter
@property
def identifier(self) -> str:
return "%s-%s" % (self.name, self.id)
def __repr__(self) -> str:
return "Concept(%r, %r)" % (self.id, self.name)
class ConceptInterpreter:
r"""
An abstract class that exposes an abstract interpret method
that has to be implemented by a specific algorithm for
concept-based model interpretability.
"""
def __init__(self, model: Module) -> None:
r"""
Args:
model (torch.nn.Module): An instance of pytorch model.
"""
self.model = model
interpret: Callable
r"""
An abstract interpret method that performs concept-based model interpretability
and returns the interpretation results in form of tensors, dictionaries or other
data structures.
Args:
inputs (Tensor or tuple[Tensor, ...]): Inputs for which concept-based
interpretation scores are computed. It can be provided as
a single tensor or a tuple of multiple tensors. If multiple
input tensors are provided, the batch size (the first
dimension of the tensors) must be aligned across all tensors.
"""
|
#!/usr/bin/env python3
from collections import defaultdict
from typing import Any, cast, Dict, List, Set, Tuple, Union
import numpy as np
import torch
import torch.multiprocessing as multiprocessing
from captum._utils.av import AV
from captum._utils.common import _format_tensor_into_tuples, _get_module_from_name
from captum._utils.typing import TargetType, TensorOrTupleOfTensorsGeneric
from captum.attr import LayerActivation, LayerAttribution, LayerGradientXActivation
from captum.concept._core.cav import CAV
from captum.concept._core.concept import Concept, ConceptInterpreter
from captum.concept._utils.classifier import Classifier, DefaultClassifier
from captum.concept._utils.common import concepts_to_str
from captum.log import log_usage
from torch import Tensor
from torch.nn import Module
from torch.utils.data import DataLoader, Dataset
class LabelledDataset(Dataset):
"""
A torch Dataset whose __getitem__ returns both a batch of activation vectors,
as well as a batch of labels associated with those activation vectors.
It is used to train a classifier in train_tcav
"""
def __init__(self, datasets: List[AV.AVDataset], labels: List[int]) -> None:
"""
Creates the LabelledDataset given a list of K Datasets, and a length K
list of integer labels representing K different concepts.
The assumption is that the k-th Dataset of datasets is associated with
the k-th element of labels.
The LabelledDataset is the concatenation of the K Datasets in datasets.
However, __get_item__ not only returns a batch of activation vectors,
but also a batch of labels indicating which concept that batch of
activation vectors is associated with.
Args:
datasets (list[Dataset]): The k-th element of datasets is a Dataset
representing activation vectors associated with the k-th
concept
labels (list[int]): The k-th element of labels is the integer label
associated with the k-th concept
"""
assert len(datasets) == len(
labels
), "number of datasets does not match the number of concepts"
from itertools import accumulate
offsets = [0] + list(accumulate(map(len, datasets), (lambda x, y: x + y)))
self.length = offsets[-1]
self.datasets = datasets
self.labels = labels
self.lowers = offsets[:-1]
self.uppers = offsets[1:]
def _i_to_k(self, i):
left, right = 0, len(self.uppers)
while left < right:
mid = (left + right) // 2
if self.lowers[mid] <= i and i < self.uppers[mid]:
return mid
if i >= self.uppers[mid]:
left = mid
else:
right = mid
def __getitem__(self, i: int):
"""
Returns a batch of activation vectors, as well as a batch of labels
indicating which concept the batch of activation vectors is associated
with.
Args:
i (int): which (activation vector, label) batch in the dataset to
return
Returns:
inputs (Tensor): i-th batch in Dataset (representing activation
vectors)
labels (Tensor): labels of i-th batch in Dataset
"""
assert i < self.length
k = self._i_to_k(i)
inputs = self.datasets[k][i - self.lowers[k]]
assert len(inputs.shape) == 2
labels = torch.tensor([self.labels[k]] * inputs.size(0), device=inputs.device)
return inputs, labels
def __len__(self) -> int:
"""
returns the total number of batches in the labelled_dataset
"""
return self.length
def train_cav(
model_id,
concepts: List[Concept],
layers: Union[str, List[str]],
classifier: Classifier,
save_path: str,
classifier_kwargs: Dict,
) -> Dict[str, Dict[str, CAV]]:
r"""
A helper function for parallel CAV computations that can be called
from a python process.
Please see the TCAV class documentation for further information.
Args:
model_id (str): A unique identifier for the PyTorch model for which
we would like to load the layer activations and train a
model in order to compute CAVs.
concepts (list[Concept]): A list of Concept objects that are used
to train a classifier and learn decision boundaries between
those concepts for each layer defined in the `layers`
argument.
layers (str or list[str]): A list of layer names or a single layer
name that is used to compute the activations of all concept
examples per concept and train a classifier using those
activations.
classifier (Classifier): A custom classifier class, such as the
Sklearn "linear_model" that allows us to train a model
using the activation vectors extracted for a layer per concept.
It also allows us to access trained weights of the classifier
and the list of prediction classes.
save_path (str): The path for storing Concept Activation
Vectors (CAVs) and Activation Vectors (AVs).
classifier_kwargs (dict): Additional named arguments that are passed to
concept classifier's `train_and_eval` method.
Returns:
cavs (dict): A dictionary of CAV objects indexed by concept ids and
layer names. It gives access to the weights of each concept
in a given layer and model statistics such as accuracies
that resulted in trained concept weights.
"""
concepts_key = concepts_to_str(concepts)
cavs: Dict[str, Dict[str, CAV]] = defaultdict()
cavs[concepts_key] = defaultdict()
layers = [layers] if isinstance(layers, str) else layers
for layer in layers:
# Create data loader to initialize the trainer.
datasets = [
AV.load(save_path, model_id, concept.identifier, layer)
for concept in concepts
]
labels = [concept.id for concept in concepts]
labelled_dataset = LabelledDataset(cast(List[AV.AVDataset], datasets), labels)
def batch_collate(batch):
inputs, labels = zip(*batch)
return torch.cat(inputs), torch.cat(labels)
dataloader = DataLoader(labelled_dataset, collate_fn=batch_collate)
classifier_stats_dict = classifier.train_and_eval(
dataloader, **classifier_kwargs
)
classifier_stats_dict = (
{} if classifier_stats_dict is None else classifier_stats_dict
)
weights = classifier.weights()
assert (
weights is not None and len(weights) > 0
), "Model weights connot be None or empty"
classes = classifier.classes()
assert (
classes is not None and len(classes) > 0
), "Classes cannot be None or empty"
classes = (
cast(torch.Tensor, classes).detach().numpy()
if isinstance(classes, torch.Tensor)
else classes
)
cavs[concepts_key][layer] = CAV(
concepts,
layer,
{"weights": weights, "classes": classes, **classifier_stats_dict},
save_path,
model_id,
)
# Saving cavs on the disk
cavs[concepts_key][layer].save()
return cavs
class TCAV(ConceptInterpreter):
r"""
This class implements ConceptInterpreter abstract class using an
approach called Testing with Concept Activation Vectors (TCAVs),
as described in the paper:
https://arxiv.org/abs/1711.11279
TCAV scores for a given layer, a list of concepts and input example
are computed using the dot product between prediction's layer
sensitivities for given input examples and Concept Activation Vectors
(CAVs) in that same layer.
CAVs are defined as vectors that are orthogonal to the classification boundary
hyperplane that separate given concepts in a given layer from each other.
For a given layer, CAVs are computed by training a classifier that uses the
layer activation vectors for a set of concept examples as input examples and
concept ids as corresponding input labels. Trained weights of
that classifier represent CAVs.
CAVs are represented as a learned weight matrix with the dimensionality
C X F, where:
F represents the number of input features in the classifier.
C is the number of concepts used for the classification. Concept
ids are used as labels for concept examples during the training.
We can use any layer attribution algorithm to compute layer sensitivities
of a model prediction.
For example, the gradients of an output prediction w.r.t. the outputs of
the layer.
The CAVs and the Sensitivities (SENS) are used to compute the TCAV score:
0. TCAV = CAV • SENS, a dot product between those two vectors
The final TCAV score can be computed by aggregating the TCAV scores
for each input concept based on the sign or magnitude of the tcav scores.
1. sign_count_score = | TCAV > 0 | / | TCAV |
2. magnitude_score = SUM(ABS(TCAV * (TCAV > 0))) / SUM(ABS(TCAV))
"""
def __init__(
self,
model: Module,
layers: Union[str, List[str]],
model_id: str = "default_model_id",
classifier: Classifier = None,
layer_attr_method: LayerAttribution = None,
attribute_to_layer_input=False,
save_path: str = "./cav/",
**classifier_kwargs: Any,
) -> None:
r"""
Args:
model (Module): An instance of pytorch model that is used to compute
layer activations and attributions.
layers (str or list[str]): A list of layer name(s) that are
used for computing concept activations (cavs) and layer
attributions.
model_id (str, optional): A unique identifier for the PyTorch `model`
passed as first argument to the constructor of TCAV class. It
is used to store and load activations for given input `model`
and associated `layers`.
classifier (Classifier, optional): A custom classifier class, such as the
Sklearn "linear_model" that allows us to train a model
using the activation vectors extracted for a layer per concept.
It also allows us to access trained weights of the model
and the list of prediction classes.
layer_attr_method (LayerAttribution, optional): An instance of a layer
attribution algorithm that helps us to compute model prediction
sensitivity scores.
Default: None
If `layer_attr_method` is None, we default it to gradients
for the layers using `LayerGradientXActivation` layer
attribution algorithm.
save_path (str, optional): The path for storing CAVs and
Activation Vectors (AVs).
classifier_kwargs (Any, optional): Additional arguments such as
`test_split_ratio` that are passed to concept `classifier`.
Examples::
>>>
>>> # TCAV use example:
>>>
>>> # Define the concepts
>>> stripes = Concept(0, "stripes", striped_data_iter)
>>> random = Concept(1, "random", random_data_iter)
>>>
>>>
>>> mytcav = TCAV(model=imagenet,
>>> layers=['inception4c', 'inception4d'])
>>>
>>> scores = mytcav.interpret(inputs, [[stripes, random]], target = 0)
>>>
For more thorough examples, please check out TCAV tutorial and test cases.
"""
ConceptInterpreter.__init__(self, model)
self.layers = [layers] if isinstance(layers, str) else layers
self.model_id = model_id
self.concepts: Set[Concept] = set()
self.classifier = classifier
self.classifier_kwargs = classifier_kwargs
self.cavs: Dict[str, Dict[str, CAV]] = defaultdict(lambda: defaultdict())
if self.classifier is None:
self.classifier = DefaultClassifier()
if layer_attr_method is None:
self.layer_attr_method = cast(
LayerAttribution,
LayerGradientXActivation( # type: ignore
model, None, multiply_by_inputs=False
),
)
else:
self.layer_attr_method = layer_attr_method
assert model_id, (
"`model_id` cannot be None or empty. Consider giving `model_id` "
"a meaningful name or leave it unspecified. If model_id is unspecified we "
"will use `default_model_id` as its default value."
)
self.attribute_to_layer_input = attribute_to_layer_input
self.save_path = save_path
# Creates CAV save directory if it doesn't exist. It is created once in the
# constructor before generating the CAVs.
# It is assumed that `model_id` can be used as a valid directory name
# otherwise `create_cav_dir_if_missing` will raise an error
CAV.create_cav_dir_if_missing(self.save_path, model_id)
def generate_all_activations(self) -> None:
r"""
Computes layer activations for all concepts and layers that are
defined in `self.layers` and `self.concepts` instance variables.
"""
for concept in self.concepts:
self.generate_activation(self.layers, concept)
def generate_activation(self, layers: Union[str, List], concept: Concept) -> None:
r"""
Computes layer activations for the specified `concept` and
the list of layer(s) `layers`.
Args:
layers (str or list[str]): A list of layer names or a layer name
that is used to compute layer activations for the
specific `concept`.
concept (Concept): A single Concept object that provides access
to concept examples using a data iterator.
"""
layers = [layers] if isinstance(layers, str) else layers
layer_modules = [_get_module_from_name(self.model, layer) for layer in layers]
layer_act = LayerActivation(self.model, layer_modules)
assert concept.data_iter is not None, (
"Data iterator for concept id:",
"{} must be specified".format(concept.id),
)
for i, examples in enumerate(concept.data_iter):
activations = layer_act.attribute.__wrapped__( # type: ignore
layer_act,
examples,
attribute_to_layer_input=self.attribute_to_layer_input,
)
for activation, layer_name in zip(activations, layers):
activation = torch.reshape(activation, (activation.shape[0], -1))
AV.save(
self.save_path,
self.model_id,
concept.identifier,
layer_name,
activation.detach(),
str(i),
)
def generate_activations(self, concept_layers: Dict[Concept, List[str]]) -> None:
r"""
Computes layer activations for the concepts and layers specified in
`concept_layers` dictionary.
Args:
concept_layers (dict[Concept, list[str]]): Dictionay that maps
Concept objects to a list of layer names to generate
the activations. Ex.: concept_layers =
{"striped": ['inception4c', 'inception4d']}
"""
for concept in concept_layers:
self.generate_activation(concept_layers[concept], concept)
def load_cavs(
self, concepts: List[Concept]
) -> Tuple[List[str], Dict[Concept, List[str]]]:
r"""
This function load CAVs as a dictionary of concept ids and
layers. CAVs are stored in a directory located under
`self.save_path` path, in .pkl files with the format:
<self.save_path>/<concept_ids>-<layer_name>.pkl. Ex.:
"/cavs/0-1-2-inception4c.pkl", where 0, 1 and 2 are concept ids.
It returns a list of layers and a dictionary of concept-layers mapping
for the concepts and layer that require CAV computation through training.
This can happen if the CAVs aren't already pre-computed for a given list
of concepts and layer.
Args:
concepts (list[Concept]): A list of Concept objects for which we want
to load the CAV.
Returns:
layers (list[layer]): A list of layers for which some CAVs still need
to be computed.
concept_layers (dict[concept, layer]): A dictionay of concept-layers
mapping for which we need to perform CAV computation through
training.
"""
concepts_key = concepts_to_str(concepts)
layers = []
concept_layers = defaultdict(list)
for layer in self.layers:
self.cavs[concepts_key][layer] = CAV.load(
self.save_path, self.model_id, concepts, layer
)
# If CAV aren't loaded
if (
concepts_key not in self.cavs
or layer not in self.cavs[concepts_key]
or not self.cavs[concepts_key][layer]
):
layers.append(layer)
# For all concepts in this experimental_set
for concept in concepts:
# Collect not activated layers for this concept
if not AV.exists(
self.save_path, self.model_id, layer, concept.identifier
):
concept_layers[concept].append(layer)
return layers, concept_layers
def compute_cavs(
self,
experimental_sets: List[List[Concept]],
force_train: bool = False,
processes: int = None,
):
r"""
This method computes CAVs for given `experiments_sets` and layers
specified in `self.layers` instance variable. Internally, it
trains a classifier and creates an instance of CAV class using the
weights of the trained classifier for each experimental set.
It also allows to compute the CAVs in parallel using python's
multiprocessing API and the number of processes specified in
the argument.
Args:
experimental_sets (list[list[Concept]]): A list of lists of concept
instances for which the cavs will be computed.
force_train (bool, optional): A flag that indicates whether to
train the CAVs regardless of whether they are saved or not.
Default: False
processes (int, optional): The number of processes to be created
when running in multi-processing mode. If processes > 0 then
CAV computation will be performed in parallel using
multi-processing, otherwise it will be performed sequentially
in a single process.
Default: None
Returns:
cavs (dict) : A mapping of concept ids and layers to CAV objects.
If CAVs for the concept_ids-layer pairs are present in the
data storage they will be loaded into the memory, otherwise
they will be computed using a training process and stored
in the data storage that can be configured using `save_path`
input argument.
"""
# Update self.concepts with concepts
for concepts in experimental_sets:
self.concepts.update(concepts)
concept_ids = []
for concept in self.concepts:
assert concept.id not in concept_ids, (
"There is more than one instance "
"of a concept with id {} defined in experimental sets. Please, "
"make sure to reuse the same instance of concept".format(
str(concept.id)
)
)
concept_ids.append(concept.id)
if force_train:
self.generate_all_activations()
# List of layers per concept key (experimental_set item) to be trained
concept_key_to_layers = defaultdict(list)
for concepts in experimental_sets:
concepts_key = concepts_to_str(concepts)
# If not 'force_train', try to load a saved CAV
if not force_train:
layers, concept_layers = self.load_cavs(concepts)
concept_key_to_layers[concepts_key] = layers
# Generate activations for missing (concept, layers)
self.generate_activations(concept_layers)
else:
concept_key_to_layers[concepts_key] = self.layers
if processes is not None and processes > 1:
pool = multiprocessing.Pool(processes)
cavs_list = pool.starmap(
train_cav,
[
(
self.model_id,
concepts,
concept_key_to_layers[concepts_to_str(concepts)],
self.classifier,
self.save_path,
self.classifier_kwargs,
)
for concepts in experimental_sets
],
)
pool.close()
pool.join()
else:
cavs_list = []
for concepts in experimental_sets:
cavs_list.append(
train_cav(
self.model_id,
concepts,
concept_key_to_layers[concepts_to_str(concepts)],
cast(Classifier, self.classifier),
self.save_path,
self.classifier_kwargs,
)
)
# list[Dict[concept, Dict[layer, list]]] => Dict[concept, Dict[layer, list]]
for cavs in cavs_list:
for c_key in cavs:
self.cavs[c_key].update(cavs[c_key])
return self.cavs
@log_usage()
def interpret(
self,
inputs: TensorOrTupleOfTensorsGeneric,
experimental_sets: List[List[Concept]],
target: TargetType = None,
additional_forward_args: Any = None,
processes: int = None,
**kwargs: Any,
) -> Dict[str, Dict[str, Dict[str, Tensor]]]:
r"""
This method computes magnitude and sign-based TCAV scores for each
experimental sets in `experimental_sets` list.
TCAV scores are computed using a dot product between layer attribution
scores for specific predictions and CAV vectors.
Args:
inputs (Tensor or tuple[Tensor, ...]): Inputs for which predictions
are performed and attributions are computed.
If model takes a single tensor as
input, a single input tensor should be provided.
If model takes multiple tensors as
input, a tuple of the input tensors should be provided.
It is assumed that for all given input tensors,
dimension 0 corresponds to the number of examples
(aka batch size), and if multiple input tensors are
provided, the examples must be aligned appropriately.
experimental_sets (list[list[Concept]]): A list of list of Concept
instances.
target (int, tuple, Tensor, or list, optional): Output indices for
which attributions are computed (for classification cases,
this is usually the target class).
If the network returns a scalar value per example,
no target index is necessary.
For general 2D outputs, targets can be either:
- a single integer or a tensor containing a single
integer, which is applied to all input examples
- a list of integers or a 1D tensor, with length matching
the number of examples in inputs (dim 0). Each integer
is applied as the target for the corresponding example.
For outputs with > 2 dimensions, targets can be either:
- A single tuple, which contains #output_dims - 1
elements. This target index is applied to all examples.
- A list of tuples with length equal to the number of
examples in inputs (dim 0), and each tuple containing
#output_dims - 1 elements. Each tuple is applied as the
target for the corresponding example.
additional_forward_args (Any, optional): Extra arguments that are passed to
model when computing the attributions for `inputs`
w.r.t. layer output.
Default: None
processes (int, optional): The number of processes to be created. if
processes is larger than one then CAV computations will be
performed in parallel using the number of processes equal to
`processes`. Otherwise, CAV computations will be performed
sequential.
Default:None
**kwargs (Any, optional): A list of arguments that are passed to layer
attribution algorithm's attribute method. This could be for
example `n_steps` in case of integrated gradients.
Default: None
Returns:
results (dict): A dictionary of sign and magnitude -based tcav scores
for each concept set per layer.
The order of TCAV scores in the resulting tensor for each
experimental set follows the order in which concepts
are passed in `experimental_sets` input argument.
results example::
>>> #
>>> # scores =
>>> # {'0-1':
>>> # {'inception4c':
>>> # {'sign_count': tensor([0.5800, 0.4200]),
>>> # 'magnitude': tensor([0.6613, 0.3387])},
>>> # 'inception4d':
>>> # {'sign_count': tensor([0.6200, 0.3800]),
>>> # 'magnitude': tensor([0.7707, 0.2293])}}),
>>> # '0-2':
>>> # {'inception4c':
>>> # {'sign_count': tensor([0.6200, 0.3800]),
>>> # 'magnitude': tensor([0.6806, 0.3194])},
>>> # 'inception4d':
>>> # {'sign_count': tensor([0.6400, 0.3600]),
>>> # 'magnitude': tensor([0.6563, 0.3437])}})})
>>> #
"""
assert "attribute_to_layer_input" not in kwargs, (
"Please, set `attribute_to_layer_input` flag as a constructor "
"argument to TCAV class. In that case it will be applied "
"consistently to both layer activation and layer attribution methods."
)
self.compute_cavs(experimental_sets, processes=processes)
scores: Dict[str, Dict[str, Dict[str, Tensor]]] = defaultdict(
lambda: defaultdict()
)
# Retrieves the lengths of the experimental sets so that we can sort
# them by the length and compute TCAV scores in batches.
exp_set_lens = np.array(
list(map(lambda exp_set: len(exp_set), experimental_sets)), dtype=object
)
exp_set_lens_arg_sort = np.argsort(exp_set_lens)
# compute offsets using sorted lengths using their indices
exp_set_lens_sort = exp_set_lens[exp_set_lens_arg_sort]
exp_set_offsets_bool = [False] + list(
exp_set_lens_sort[:-1] == exp_set_lens_sort[1:]
)
exp_set_offsets = []
for i, offset in enumerate(exp_set_offsets_bool):
if not offset:
exp_set_offsets.append(i)
exp_set_offsets.append(len(exp_set_lens))
# sort experimental sets using the length of the concepts in each set
experimental_sets_sorted = np.array(experimental_sets, dtype=object)[
exp_set_lens_arg_sort
]
for layer in self.layers:
layer_module = _get_module_from_name(self.model, layer)
self.layer_attr_method.layer = layer_module
attribs = self.layer_attr_method.attribute.__wrapped__( # type: ignore
self.layer_attr_method, # self
inputs,
target=target,
additional_forward_args=additional_forward_args,
attribute_to_layer_input=self.attribute_to_layer_input,
**kwargs,
)
attribs = _format_tensor_into_tuples(attribs)
# n_inputs x n_features
attribs = torch.cat(
[torch.reshape(attrib, (attrib.shape[0], -1)) for attrib in attribs],
dim=1,
)
# n_experiments x n_concepts x n_features
cavs = []
classes = []
for concepts in experimental_sets:
concepts_key = concepts_to_str(concepts)
cavs_stats = cast(Dict[str, Any], self.cavs[concepts_key][layer].stats)
cavs.append(cavs_stats["weights"].float().detach().tolist())
classes.append(cavs_stats["classes"])
# sort cavs and classes using the length of the concepts in each set
cavs_sorted = np.array(cavs, dtype=object)[exp_set_lens_arg_sort]
classes_sorted = np.array(classes, dtype=object)[exp_set_lens_arg_sort]
i = 0
while i < len(exp_set_offsets) - 1:
cav_subset = np.array(
cavs_sorted[exp_set_offsets[i] : exp_set_offsets[i + 1]],
dtype=object,
).tolist()
classes_subset = classes_sorted[
exp_set_offsets[i] : exp_set_offsets[i + 1]
].tolist()
# n_experiments x n_concepts x n_features
cav_subset = torch.tensor(cav_subset)
cav_subset = cav_subset.to(attribs.device)
assert len(cav_subset.shape) == 3, (
"cav should have 3 dimensions: n_experiments x "
"n_concepts x n_features."
)
experimental_subset_sorted = experimental_sets_sorted[
exp_set_offsets[i] : exp_set_offsets[i + 1]
]
self._tcav_sub_computation(
scores,
layer,
attribs,
cav_subset,
classes_subset,
experimental_subset_sorted,
)
i += 1
return scores
def _tcav_sub_computation(
self,
scores: Dict[str, Dict[str, Dict[str, Tensor]]],
layer: str,
attribs: Tensor,
cavs: Tensor,
classes: List[List[int]],
experimental_sets: List[List[Concept]],
) -> None:
# n_inputs x n_concepts
tcav_score = torch.matmul(attribs.float(), torch.transpose(cavs, 1, 2))
assert len(tcav_score.shape) == 3, (
"tcav_score should have 3 dimensions: n_experiments x "
"n_inputs x n_concepts."
)
assert attribs.shape[0] == tcav_score.shape[1], (
"attrib and tcav_score should have the same 1st and "
"2nd dimensions respectively (n_inputs)."
)
# n_experiments x n_concepts
sign_count_score = torch.mean((tcav_score > 0.0).float(), dim=1)
magnitude_score = torch.mean(tcav_score, dim=1)
for i, (cls_set, concepts) in enumerate(zip(classes, experimental_sets)):
concepts_key = concepts_to_str(concepts)
# sort classes / concepts in the order specified in concept_keys
concept_ord = [concept.id for concept in concepts]
class_ord = {cls_: idx for idx, cls_ in enumerate(cls_set)}
new_ord = torch.tensor(
[class_ord[cncpt] for cncpt in concept_ord], device=tcav_score.device
)
# sort based on classes
scores[concepts_key][layer] = {
"sign_count": torch.index_select(
sign_count_score[i, :], dim=0, index=new_ord
),
"magnitude": torch.index_select(
magnitude_score[i, :], dim=0, index=new_ord
),
}
|
#!/usr/bin/env python3
try:
from captum.log.fb.internal_log import (
disable_detailed_logging,
log,
log_usage,
patch_methods,
set_environment,
TimedLog,
)
__all__ = [
"log",
"log_usage",
"TimedLog",
"set_environment",
"disable_detailed_logging",
]
except ImportError:
from functools import wraps
def log(*args, **kwargs):
pass
# bug with mypy: https://github.com/python/mypy/issues/1153
class TimedLog: # type: ignore
def __init__(self, *args, **kwargs) -> None:
pass
def __enter__(self):
return self
def __exit__(self, exception_type, exception_value, traceback):
return exception_value is not None
def log_usage(*log_args, **log_kwargs):
def _log_usage(func):
@wraps(func)
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
return wrapper
return _log_usage
def set_environment(env):
pass
def disable_detailed_logging():
pass
def patch_methods(tester, patch_log=True):
pass
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
from setuptools import setup
projects = [p.rstrip("\n") for p in open("hydra-configs-projects.txt", "r").readlines()]
project_uris = [
f"{project} @ git+https://github.com/pytorch/hydra-torch/#subdirectory={project}"
for project in projects
]
setup(
name="hydra-torch",
version="0.9",
author=["Omry Yadan", "Rosario Scalise"],
author_email=["[email protected]", "[email protected]"],
url="http://github.com/pytorch/hydra-torch",
include_package_data=True,
install_requires=project_uris,
)
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import nox
import os
DEFAULT_PYTHON_VERSIONS = ["3.6", "3.7", "3.8"]
PYTHON_VERSIONS = os.environ.get(
"NOX_PYTHON_VERSIONS", ",".join(DEFAULT_PYTHON_VERSIONS)
).split(",")
VERBOSE = os.environ.get("VERBOSE", "0")
SILENT = VERBOSE == "0"
# Linted dirs/files:
lint_targets = "."
# Test dirs (corresponds to each project having its own tests folder):
# Note the './', this installs local packages
test_targets = [
"./" + p.rstrip("\n") for p in open("hydra-configs-projects.txt", "r").readlines()
]
def setup_dev_env(session):
session.run(
"python",
"-m",
"pip",
"install",
"--upgrade",
"setuptools",
"pip",
silent=SILENT,
)
session.run("pip", "install", "-r", "requirements/dev.txt", silent=SILENT)
@nox.session(python=PYTHON_VERSIONS, reuse_venv=True)
def lint(session):
setup_dev_env(session)
session.run("black", *lint_targets, "--check")
session.run("flake8", "--config", ".flake8", *lint_targets)
@nox.session(python=PYTHON_VERSIONS, reuse_venv=True)
def tests(session):
setup_dev_env(session)
for target in test_targets:
session.run(
"pip", "install", "-r", target + "/requirements/dev.txt", silent=SILENT
)
session.install(*test_targets) # install config packages
session.run("pytest", *test_targets)
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
from setuptools import find_namespace_packages, setup
requirements = [
"omegaconf",
]
setup(
name="hydra-configs-torchvision",
version="0.8.2",
packages=find_namespace_packages(include=["hydra_configs*"]),
author=["Omry Yadan", "Rosario Scalise"],
author_email=["[email protected]", "[email protected]"],
url="http://github.com/pytorch/hydra-torch",
include_package_data=True,
install_requires=requirements,
)
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import os
import pytest
from pathlib import Path
from hydra.utils import get_class, instantiate
from omegaconf import OmegaConf
from typing import Any
import torch
import torchvision.datasets as datasets
@pytest.mark.parametrize(
"modulepath, classname, cfg, passthrough_args, passthrough_kwargs, expected_class",
[
pytest.param(
"datasets.vision",
"VisionDataset",
{"root": None},
[],
{},
datasets.VisionDataset,
id="VisionDatasetConf",
),
pytest.param(
"datasets.mnist",
"MNIST",
{"root": None},
[],
{},
datasets.MNIST,
id="MNISTConf",
),
pytest.param(
"datasets.mnist",
"FashionMNIST",
{"root": None},
[],
{},
datasets.FashionMNIST,
id="FashionMNISTConf",
),
pytest.param(
"datasets.mnist",
"KMNIST",
{"root": None},
[],
{},
datasets.KMNIST,
id="KMNISTConf",
),
# TODO: These tests will need to be changed after blockers:
# 1. EMNISTConf and QMNISTConf are manually created
# 2. hydra.utils.instantiate is updated to allow *kwargs instantiation
# pytest.param(
# "datasets.mnist",
# "EMNIST",
# {"root":None,
# "split":"byclass",
# "kwargs":None},
# [],
# {},
# datasets.EMNIST,
# id="EMNISTConf",
# ),
# pytest.param(
# "datasets.mnist",
# "QMNIST",
# {"root":None,
# "what":'test',
# "compat":None,
# "kwargs":None},
# [],
# {},
# datasets.QMNIST,
# id="QMNISTConf",
# ),
],
)
def test_instantiate_classes(
tmpdir: Path,
modulepath: str,
classname: str,
cfg: Any,
passthrough_args: Any,
passthrough_kwargs: Any,
expected_class: Any,
) -> None:
# Create fake dataset and put it in tmpdir for test:
tmp_data_root = tmpdir.mkdir("data")
processed_dir = os.path.join(tmp_data_root, classname, "processed")
os.makedirs(processed_dir)
torch.save(torch.tensor([[1.0], [1.0]]), processed_dir + "/training.pt")
torch.save(torch.tensor([1.0]), processed_dir + "/test.pt")
# cfg is populated here since it requires tmpdir testfixture
cfg["root"] = str(tmp_data_root)
full_class = f"hydra_configs.torchvision.{modulepath}.{classname}Conf"
schema = OmegaConf.structured(get_class(full_class))
cfg = OmegaConf.merge(schema, cfg)
obj = instantiate(cfg, *passthrough_args, **passthrough_kwargs)
expected_obj = expected_class(root=tmp_data_root)
assert isinstance(obj, type(expected_obj))
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import pytest
from hydra.utils import get_class, instantiate
from omegaconf import OmegaConf
import torch
# import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torchvision.transforms.transforms import ToTensor
from typing import Any
def identity(x):
return x
@pytest.mark.parametrize(
"modulepath, classname, cfg, passthrough_args, passthrough_kwargs, expected",
[
# pytest.param(
# "datasets.vision",
# "StandardTransform",
# {},
# [],
# {},
# datasets.vision.StandardTransform(),
# id="StandardTransformConf",
# ),
pytest.param(
"transforms.transforms",
"CenterCrop",
{"size": (10, 10)},
[],
{},
transforms.transforms.CenterCrop(size=(10, 10)),
id="CenterCropConf",
),
pytest.param(
"transforms.transforms",
"ColorJitter",
{},
[],
{},
transforms.transforms.ColorJitter(),
id="ColorJitterConf",
),
pytest.param(
"transforms.transforms",
"Compose",
{"transforms": []},
[],
{},
transforms.transforms.Compose(transforms=[]),
id="ComposeConf",
),
pytest.param(
"transforms.transforms",
"ConvertImageDtype",
{},
[],
{"dtype": torch.int32},
transforms.transforms.ConvertImageDtype(dtype=torch.int32),
id="ConvertImageDtypeConf",
),
pytest.param(
"transforms.transforms",
"FiveCrop",
{"size": (10, 10)},
[],
{},
transforms.transforms.FiveCrop(size=(10, 10)),
id="FiveCropConf",
),
pytest.param(
"transforms.transforms",
"Grayscale",
{},
[],
{},
transforms.transforms.Grayscale(),
id="GrayscaleConf",
),
pytest.param(
"transforms.transforms",
"Lambda",
{},
[],
{"lambd": identity},
transforms.transforms.Lambda(lambd=identity),
id="LambdaConf",
),
pytest.param(
"transforms.transforms",
"LinearTransformation",
{},
[],
{
"transformation_matrix": torch.eye(2),
"mean_vector": torch.Tensor([1, 1]),
},
transforms.transforms.LinearTransformation(
transformation_matrix=torch.eye(2), mean_vector=torch.Tensor([1, 1])
),
id="LinearTransformationConf",
),
pytest.param(
"transforms.transforms",
"Normalize",
{"mean": 0, "std": 1},
[],
{},
transforms.transforms.Normalize(mean=0, std=1),
id="NormalizeConf",
),
pytest.param(
"transforms.transforms",
"Pad",
{"padding": 0},
[],
{},
transforms.transforms.Pad(padding=0),
id="PaddingConf",
),
pytest.param(
"transforms.transforms",
"PILToTensor",
{},
[],
{},
transforms.transforms.PILToTensor(),
id="PILToTensorConf",
),
pytest.param(
"transforms.transforms",
"RandomAffine",
{"degrees": 0},
[],
{},
transforms.transforms.RandomAffine(degrees=0),
id="RandomAffineConf",
),
pytest.param(
"transforms.transforms",
"RandomApply",
{},
[],
{"transforms": [ToTensor()]},
transforms.transforms.RandomApply([ToTensor()]),
id="RandomApplyConf",
),
pytest.param(
"transforms.transforms",
"RandomChoice",
{},
[],
{"transforms": [[ToTensor()]]},
transforms.transforms.RandomChoice([ToTensor()]),
id="RandomChoiceConf",
),
pytest.param(
"transforms.transforms",
"RandomCrop",
{"size": (10, 10)},
[],
{},
transforms.transforms.RandomCrop(size=(10, 10)),
id="RandomCropConf",
),
pytest.param(
"transforms.transforms",
"RandomErasing",
{},
[],
{},
transforms.transforms.RandomErasing(),
id="RandomErasingConf",
),
pytest.param(
"transforms.transforms",
"RandomGrayscale",
{},
[],
{},
transforms.transforms.RandomGrayscale(),
id="RandomGrayscaleConf",
),
pytest.param(
"transforms.transforms",
"RandomHorizontalFlip",
{},
[],
{},
transforms.transforms.RandomHorizontalFlip(),
id="RandomHorizontalFlipConf",
),
pytest.param(
"transforms.transforms",
"RandomOrder",
{},
[],
{"transforms": [ToTensor()]},
transforms.transforms.RandomOrder([ToTensor()]),
id="RandomOrderConf",
),
pytest.param(
"transforms.transforms",
"RandomPerspective",
{},
[],
{},
transforms.transforms.RandomPerspective(),
id="RandomPerspectiveConf",
),
pytest.param(
"transforms.transforms",
"RandomResizedCrop",
{"size": (10, 10)},
[],
{},
transforms.transforms.RandomResizedCrop(size=(10, 10)),
id="RandomResizedCropConf",
),
pytest.param(
"transforms.transforms",
"RandomRotation",
{"degrees": 0},
[],
{},
transforms.transforms.RandomRotation(degrees=0),
id="RandomRotationConf",
),
pytest.param(
"transforms.transforms",
"RandomTransforms",
{"transforms": []},
[],
{},
transforms.transforms.RandomTransforms([]),
id="RandomTransformsConf",
),
pytest.param(
"transforms.transforms",
"RandomVerticalFlip",
{},
[],
{},
transforms.transforms.RandomVerticalFlip(),
id="RandomVerticalFlipConf",
),
pytest.param(
"transforms.transforms",
"Resize",
{"size": (10, 10)},
[],
{},
transforms.transforms.Resize(size=(10, 10)),
id="ResizeConf",
),
pytest.param(
"transforms.transforms",
"TenCrop",
{"size": (10, 10)},
[],
{},
transforms.transforms.TenCrop(size=(10, 10)),
id="TenCropConf",
),
pytest.param(
"transforms.transforms",
"ToPILImage",
{},
[],
{},
transforms.transforms.ToPILImage(),
id="ToPILImageConf",
),
pytest.param(
"transforms.transforms",
"ToTensor",
{},
[],
{},
transforms.transforms.ToTensor(),
id="ToTensorConf",
),
],
)
def test_instantiate_classes(
modulepath: str,
classname: str,
cfg: Any,
passthrough_args: Any,
passthrough_kwargs: Any,
expected: Any,
) -> None:
full_class = f"hydra_configs.torchvision.{modulepath}.{classname}Conf"
schema = OmegaConf.structured(get_class(full_class))
cfg = OmegaConf.merge(schema, cfg)
obj = instantiate(cfg, *passthrough_args, **passthrough_kwargs)
assert isinstance(obj, type(expected))
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# Generated by configen, do not edit.
# See https://github.com/facebookresearch/hydra/tree/main/tools/configen
# fmt: off
# isort:skip_file
# flake8: noqa
from packaging import version
from pkg_resources import get_distribution
import warnings
import torchvision
CONFIGS_VERSION = get_distribution('hydra-configs-torchvision').version
# checks if major.minor versions are matched. patch version is always different
if version.parse(torchvision.__version__).release[:2] != version.parse(CONFIGS_VERSION).release[:2]:
warnings.warn(f'Your config and library versions are mismatched. \n HYDRA-CONFIGS-TORCHVISION VERSION: {CONFIGS_VERSION}, \n TORCHVISION VERSION: {torchvision.__version__}. \n Please install the matching configs for reliable functionality.')
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# Generated by configen, do not edit.
# See https://github.com/facebookresearch/hydra/tree/main/tools/configen
# fmt: off
# isort:skip_file
# flake8: noqa
from dataclasses import dataclass, field
from omegaconf import MISSING
from typing import Any
@dataclass
class VisionDatasetConf:
_target_: str = "torchvision.datasets.vision.VisionDataset"
root: Any = MISSING
transforms: Any = None
transform: Any = None
target_transform: Any = None
@dataclass
class StandardTransformConf:
_target_: str = "torchvision.datasets.vision.StandardTransform"
transform: Any = None
target_transform: Any = None
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# Generated by configen, do not edit.
# See https://github.com/facebookresearch/hydra/tree/main/tools/configen
# fmt: off
# isort:skip_file
# flake8: noqa
from dataclasses import dataclass, field
from omegaconf import MISSING
from typing import Any
@dataclass
class MNISTConf:
_target_: str = "torchvision.datasets.mnist.MNIST"
root: Any = MISSING
train: Any = True
transform: Any = None
target_transform: Any = None
download: Any = False
@dataclass
class FashionMNISTConf:
_target_: str = "torchvision.datasets.mnist.FashionMNIST"
root: Any = MISSING
train: Any = True
transform: Any = None
target_transform: Any = None
download: Any = False
@dataclass
class KMNISTConf:
_target_: str = "torchvision.datasets.mnist.KMNIST"
root: Any = MISSING
train: Any = True
transform: Any = None
target_transform: Any = None
download: Any = False
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# Generated by configen, do not edit.
# See https://github.com/facebookresearch/hydra/tree/main/tools/configen
# fmt: off
# isort:skip_file
# flake8: noqa
from dataclasses import dataclass, field
from omegaconf import MISSING
from typing import Any
@dataclass
class CenterCropConf:
_target_: str = "torchvision.transforms.transforms.CenterCrop"
_convert_: str = "ALL"
size: Any = MISSING
@dataclass
class ColorJitterConf:
_target_: str = "torchvision.transforms.transforms.ColorJitter"
_convert_: str = "ALL"
brightness: Any = 0
contrast: Any = 0
saturation: Any = 0
hue: Any = 0
@dataclass
class ComposeConf:
_target_: str = "torchvision.transforms.transforms.Compose"
_convert_: str = "ALL"
transforms: Any = MISSING
@dataclass
class ConvertImageDtypeConf:
_target_: str = "torchvision.transforms.transforms.ConvertImageDtype"
_convert_: str = "ALL"
dtype: Any = MISSING # dtype
@dataclass
class FiveCropConf:
_target_: str = "torchvision.transforms.transforms.FiveCrop"
_convert_: str = "ALL"
size: Any = MISSING
@dataclass
class GrayscaleConf:
_target_: str = "torchvision.transforms.transforms.Grayscale"
_convert_: str = "ALL"
num_output_channels: Any = 1
@dataclass
class LambdaConf:
_target_: str = "torchvision.transforms.transforms.Lambda"
_convert_: str = "ALL"
lambd: Any = MISSING
@dataclass
class LinearTransformationConf:
_target_: str = "torchvision.transforms.transforms.LinearTransformation"
_convert_: str = "ALL"
transformation_matrix: Any = MISSING
mean_vector: Any = MISSING
@dataclass
class NormalizeConf:
_target_: str = "torchvision.transforms.transforms.Normalize"
_convert_: str = "ALL"
mean: Any = MISSING
std: Any = MISSING
inplace: Any = False
@dataclass
class PadConf:
_target_: str = "torchvision.transforms.transforms.Pad"
_convert_: str = "ALL"
padding: Any = MISSING
fill: Any = 0
padding_mode: Any = "constant"
@dataclass
class PILToTensorConf:
_target_: str = "torchvision.transforms.transforms.PILToTensor"
_convert_: str = "ALL"
@dataclass
class RandomAffineConf:
_target_: str = "torchvision.transforms.transforms.RandomAffine"
_convert_: str = "ALL"
degrees: Any = MISSING
translate: Any = None
scale: Any = None
shear: Any = None
resample: Any = 0
fillcolor: Any = 0
@dataclass
class RandomApplyConf:
_target_: str = "torchvision.transforms.transforms.RandomApply"
_convert_: str = "ALL"
transforms: Any = MISSING
p: Any = 0.5
@dataclass
class RandomChoiceConf:
_target_: str = "torchvision.transforms.transforms.RandomChoice"
_convert_: str = "ALL"
transforms: Any = MISSING
@dataclass
class RandomCropConf:
_target_: str = "torchvision.transforms.transforms.RandomCrop"
_convert_: str = "ALL"
size: Any = MISSING
padding: Any = None
pad_if_needed: Any = False
fill: Any = 0
padding_mode: Any = "constant"
@dataclass
class RandomErasingConf:
_target_: str = "torchvision.transforms.transforms.RandomErasing"
_convert_: str = "ALL"
p: Any = 0.5
scale: Any = (0.02, 0.33)
ratio: Any = (0.3, 3.3)
value: Any = 0
inplace: Any = False
@dataclass
class RandomGrayscaleConf:
_target_: str = "torchvision.transforms.transforms.RandomGrayscale"
_convert_: str = "ALL"
p: Any = 0.1
@dataclass
class RandomHorizontalFlipConf:
_target_: str = "torchvision.transforms.transforms.RandomHorizontalFlip"
_convert_: str = "ALL"
p: Any = 0.5
@dataclass
class RandomOrderConf:
_target_: str = "torchvision.transforms.transforms.RandomOrder"
_convert_: str = "ALL"
transforms: Any = MISSING
@dataclass
class RandomPerspectiveConf:
_target_: str = "torchvision.transforms.transforms.RandomPerspective"
_convert_: str = "ALL"
distortion_scale: Any = 0.5
p: Any = 0.5
interpolation: Any = 2
fill: Any = 0
@dataclass
class RandomResizedCropConf:
_target_: str = "torchvision.transforms.transforms.RandomResizedCrop"
_convert_: str = "ALL"
size: Any = MISSING
scale: Any = (0.08, 1.0)
ratio: Any = (0.75, 1.3333333333333333)
interpolation: Any = 2
@dataclass
class RandomRotationConf:
_target_: str = "torchvision.transforms.transforms.RandomRotation"
_convert_: str = "ALL"
degrees: Any = MISSING
resample: Any = False
expand: Any = False
center: Any = None
fill: Any = None
@dataclass
class RandomTransformsConf:
_target_: str = "torchvision.transforms.transforms.RandomTransforms"
_convert_: str = "ALL"
transforms: Any = MISSING
@dataclass
class RandomVerticalFlipConf:
_target_: str = "torchvision.transforms.transforms.RandomVerticalFlip"
_convert_: str = "ALL"
p: Any = 0.5
@dataclass
class ResizeConf:
_target_: str = "torchvision.transforms.transforms.Resize"
_convert_: str = "ALL"
size: Any = MISSING
interpolation: Any = 2
@dataclass
class TenCropConf:
_target_: str = "torchvision.transforms.transforms.TenCrop"
_convert_: str = "ALL"
size: Any = MISSING
vertical_flip: Any = False
@dataclass
class ToPILImageConf:
_target_: str = "torchvision.transforms.transforms.ToPILImage"
_convert_: str = "ALL"
mode: Any = None
@dataclass
class ToTensorConf:
_target_: str = "torchvision.transforms.transforms.ToTensor"
_convert_: str = "ALL"
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# flake8: noqa
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
from torch.optim import Adadelta
from torch.optim.lr_scheduler import StepLR
###### HYDRA BLOCK ######
import hydra
from hydra.core.config_store import ConfigStore
from dataclasses import dataclass
# hydra-torch structured config imports
from hydra_configs.torch.optim import AdadeltaConf
from hydra_configs.torch.optim.lr_scheduler import StepLRConf
@dataclass
class MNISTConf:
batch_size: int = 64
test_batch_size: int = 1000
epochs: int = 14
no_cuda: bool = False
dry_run: bool = False
seed: int = 1
log_interval: int = 10
save_model: bool = False
checkpoint_name: str = "unnamed.pt"
adadelta: AdadeltaConf = AdadeltaConf()
steplr: StepLRConf = StepLRConf(
step_size=1
) # we pass a default for step_size since it is required, but missing a default in PyTorch (and consequently in hydra-torch)
cs = ConfigStore.instance()
cs.store(name="mnistconf", node=MNISTConf)
###### / HYDRA BLOCK ######
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout2d(0.25)
self.dropout2 = nn.Dropout2d(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print(
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
epoch,
batch_idx * len(data),
len(train_loader.dataset),
100.0 * batch_idx / len(train_loader),
loss.item(),
)
)
if args.dry_run:
break
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(
output, target, reduction="sum"
).item() # sum up batch loss
pred = output.argmax(
dim=1, keepdim=True
) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print(
"\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format(
test_loss,
correct,
len(test_loader.dataset),
100.0 * correct / len(test_loader.dataset),
)
)
@hydra.main(config_name="mnistconf")
def main(cfg): # DIFF
print(cfg.pretty())
use_cuda = not cfg.no_cuda and torch.cuda.is_available() # DIFF
torch.manual_seed(cfg.seed) # DIFF
device = torch.device("cuda" if use_cuda else "cpu")
train_kwargs = {"batch_size": cfg.batch_size} # DIFF
test_kwargs = {"batch_size": cfg.test_batch_size} # DIFF
if use_cuda:
cuda_kwargs = {"num_workers": 1, "pin_memory": True, "shuffle": True}
train_kwargs.update(cuda_kwargs)
test_kwargs.update(cuda_kwargs)
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
)
dataset1 = datasets.MNIST("../data", train=True, download=True, transform=transform)
dataset2 = datasets.MNIST("../data", train=False, transform=transform)
train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs)
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)
model = Net().to(device)
optimizer = Adadelta(
lr=cfg.adadelta.lr,
rho=cfg.adadelta.rho,
eps=cfg.adadelta.eps,
weight_decay=cfg.adadelta.weight_decay,
params=model.parameters(),
) # DIFF
scheduler = StepLR(
step_size=cfg.steplr.step_size,
gamma=cfg.steplr.gamma,
last_epoch=cfg.steplr.last_epoch,
optimizer=optimizer,
) # DIFF
for epoch in range(1, cfg.epochs + 1): # DIFF
train(cfg, model, device, train_loader, optimizer, epoch) # DIFF
test(model, device, test_loader)
scheduler.step()
if cfg.save_model: # DIFF
torch.save(model.state_dict(), cfg.checkpoint_name) # DIFF
if __name__ == "__main__":
main()
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
from setuptools import find_namespace_packages, setup
requirements = [
"omegaconf",
]
setup(
name="hydra-configs-torch",
version="1.6.1",
packages=find_namespace_packages(include=["hydra_configs*"]),
author=["Omry Yadan", "Rosario Scalise"],
author_email=["[email protected]", "[email protected]"],
url="http://github.com/pytorch/hydra-torch",
include_package_data=True,
install_requires=requirements,
)
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import pytest
from hydra.utils import get_class, instantiate
from omegaconf import OmegaConf
import torch.optim as optim
import torch
from torch import Tensor
from torch import nn
from typing import Any
model = nn.Linear(1, 1)
@pytest.mark.parametrize(
"modulepath, classname, cfg, passthrough_kwargs, expected",
[
pytest.param(
"optim.adadelta",
"Adadelta",
{"lr": 0.1},
{"params": model.parameters()},
optim.Adadelta(lr=0.1, params=model.parameters()),
id="AdadeltaConf",
),
pytest.param(
"optim.adagrad",
"Adagrad",
{"lr": 0.1},
{"params": model.parameters()},
optim.Adagrad(lr=0.1, params=model.parameters()),
id="AdagradConf",
),
pytest.param(
"optim.adam",
"Adam",
{"lr": 0.1},
{"params": model.parameters()},
optim.Adam(lr=0.1, params=model.parameters()),
id="AdamConf",
),
pytest.param(
"optim.adamax",
"Adamax",
{"lr": 0.1},
{"params": model.parameters()},
optim.Adamax(lr=0.1, params=model.parameters()),
id="AdamaxConf",
),
pytest.param(
"optim.adamw",
"AdamW",
{"lr": 0.1},
{"params": model.parameters()},
optim.AdamW(lr=0.1, params=model.parameters()),
id="AdamWConf",
),
pytest.param(
"optim.asgd",
"ASGD",
{"lr": 0.1},
{"params": model.parameters()},
optim.ASGD(lr=0.1, params=model.parameters()),
id="ASGDConf",
),
pytest.param(
"optim.lbfgs",
"LBFGS",
{"lr": 0.1},
{"params": model.parameters()},
optim.LBFGS(lr=0.1, params=model.parameters()),
id="LBFGSConf",
),
pytest.param(
"optim.rmsprop",
"RMSprop",
{"lr": 0.1},
{"params": model.parameters()},
optim.RMSprop(lr=0.1, params=model.parameters()),
id="RMSpropConf",
),
pytest.param(
"optim.rprop",
"Rprop",
{"lr": 0.1},
{"params": model.parameters()},
optim.Rprop(lr=0.1, params=model.parameters()),
id="RpropConf",
),
pytest.param(
"optim.sgd",
"SGD",
{"lr": 0.1},
{"params": model.parameters()},
optim.SGD(lr=0.1, params=model.parameters()),
id="SGDConf",
),
pytest.param(
"optim.sparse_adam",
"SparseAdam",
{"lr": 0.1},
{"params": list(model.parameters())},
optim.SparseAdam(lr=0.1, params=list(model.parameters())),
id="SparseAdamConf",
),
],
)
def test_instantiate_classes(
modulepath: str, classname: str, cfg: Any, passthrough_kwargs: Any, expected: Any
) -> None:
full_class = f"hydra_configs.torch.{modulepath}.{classname}Conf"
schema = OmegaConf.structured(get_class(full_class))
cfg = OmegaConf.merge(schema, cfg)
obj = instantiate(cfg, **passthrough_kwargs)
def closure():
return model(Tensor([10]))
assert torch.all(torch.eq(obj.step(closure), expected.step(closure)))
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import pytest
from hydra.utils import get_class, instantiate
from omegaconf import OmegaConf
import torch.nn.modules.loss as loss
from torch.tensor import Tensor
from typing import Any
@pytest.mark.parametrize(
"modulepath, classname, cfg, passthrough_args, passthrough_kwargs, expected",
[
pytest.param(
"nn.modules.loss",
"BCELoss",
{},
[],
{"weight": Tensor([1])},
loss.BCELoss(),
id="BCELossConf",
),
pytest.param(
"nn.modules.loss",
"BCEWithLogitsLoss",
{},
[],
{"weight": Tensor([1]), "pos_weight": Tensor([1])},
loss.BCEWithLogitsLoss(),
id="BCEWithLogitsLossConf",
),
pytest.param(
"nn.modules.loss",
"CosineEmbeddingLoss",
{},
[],
{},
loss.CosineEmbeddingLoss(),
id="CosineEmbeddingLossConf",
),
pytest.param(
"nn.modules.loss",
"CTCLoss",
{},
[],
{},
loss.CTCLoss(),
id="CTCLossConf",
),
pytest.param(
"nn.modules.loss",
"L1Loss",
{},
[],
{},
loss.L1Loss(),
id="L1LossConf",
),
pytest.param(
"nn.modules.loss",
"HingeEmbeddingLoss",
{},
[],
{},
loss.HingeEmbeddingLoss(),
id="HingeEmbeddingLossConf",
),
pytest.param(
"nn.modules.loss",
"KLDivLoss",
{},
[],
{},
loss.KLDivLoss(),
id="KLDivLossConf",
),
pytest.param(
"nn.modules.loss",
"MarginRankingLoss",
{},
[],
{},
loss.MarginRankingLoss(),
id="MarginRankingLossConf",
),
pytest.param(
"nn.modules.loss",
"MSELoss",
{},
[],
{},
loss.MSELoss(),
id="MSELossConf",
),
pytest.param(
"nn.modules.loss",
"MultiLabelMarginLoss",
{},
[],
{},
loss.MultiLabelMarginLoss(),
id="MultiLabelMarginLossConf",
),
pytest.param(
"nn.modules.loss",
"MultiLabelSoftMarginLoss",
{},
[],
{"weight": Tensor([1])},
loss.MultiLabelSoftMarginLoss(),
id="MultiLabelSoftMarginLossConf",
),
pytest.param(
"nn.modules.loss",
"MultiMarginLoss",
{},
[],
{"weight": Tensor([1])},
loss.MultiMarginLoss(),
id="MultiMarginLossConf",
),
pytest.param(
"nn.modules.loss",
"NLLLoss",
{},
[],
{"weight": Tensor([1])},
loss.NLLLoss(),
id="NLLLossConf",
),
pytest.param(
"nn.modules.loss",
"NLLLoss2d",
{},
[],
{"weight": Tensor([1])},
loss.NLLLoss2d(),
id="NLLLoss2dConf",
),
pytest.param(
"nn.modules.loss",
"PoissonNLLLoss",
{},
[],
{},
loss.PoissonNLLLoss(),
id="PoissonNLLLossConf",
),
pytest.param(
"nn.modules.loss",
"SmoothL1Loss",
{},
[],
{},
loss.SmoothL1Loss(),
id="SmoothL1LossConf",
),
pytest.param(
"nn.modules.loss",
"SoftMarginLoss",
{},
[],
{},
loss.SoftMarginLoss(),
id="SoftMarginLossConf",
),
pytest.param(
"nn.modules.loss",
"TripletMarginLoss",
{},
[],
{},
loss.TripletMarginLoss(),
id="TripletMarginLossConf",
),
],
)
def test_instantiate_classes(
modulepath: str,
classname: str,
cfg: Any,
passthrough_args: Any,
passthrough_kwargs: Any,
expected: Any,
) -> None:
full_class = f"hydra_configs.torch.{modulepath}.{classname}Conf"
schema = OmegaConf.structured(get_class(full_class))
cfg = OmegaConf.merge(schema, cfg)
obj = instantiate(cfg, *passthrough_args, **passthrough_kwargs)
assert isinstance(obj, type(expected))
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import pytest
from hydra.utils import get_class, instantiate
from omegaconf import OmegaConf
import torch.utils.data as data
import torch
from typing import Any
dummy_tensor = torch.tensor((1, 1))
dummy_dataset = data.dataset.TensorDataset(dummy_tensor)
dummy_sampler = data.Sampler(data_source=dummy_dataset)
@pytest.mark.parametrize(
"modulepath, classname, cfg, passthrough_args, passthrough_kwargs, expected",
[
pytest.param(
"utils.data.dataloader",
"DataLoader",
{"batch_size": 4},
[],
{"dataset": dummy_dataset},
data.DataLoader(batch_size=4, dataset=dummy_dataset),
id="DataLoaderConf",
),
pytest.param(
"utils.data.dataset",
"Dataset",
{},
[],
{},
data.Dataset(),
id="DatasetConf",
),
pytest.param(
"utils.data.dataset",
"ChainDataset",
{},
[],
{"datasets": [dummy_dataset, dummy_dataset]},
data.ChainDataset(datasets=[dummy_dataset, dummy_dataset]),
id="ChainDatasetConf",
),
pytest.param(
"utils.data.dataset",
"ConcatDataset",
{},
[],
{"datasets": [dummy_dataset, dummy_dataset]},
data.ConcatDataset(datasets=[dummy_dataset, dummy_dataset]),
id="ConcatDatasetConf",
),
pytest.param(
"utils.data.dataset",
"IterableDataset",
{},
[],
{},
data.IterableDataset(),
id="IterableDatasetConf",
),
# TODO: investigate asterisk in signature instantiation limitation
# pytest.param(
# "utils.data.dataset",
# "TensorDataset",
# {},
# [],
# {"tensors":[dummy_tensor]},
# data.TensorDataset(dummy_tensor),
# id="TensorDatasetConf",
# ),
pytest.param(
"utils.data.dataset",
"Subset",
{},
[],
{"dataset": dummy_dataset, "indices": [0]},
data.Subset(dummy_dataset, 0),
id="SubsetConf",
),
pytest.param(
"utils.data.sampler",
"Sampler",
{},
[],
{"data_source": dummy_dataset},
data.Sampler(data_source=dummy_dataset),
id="SamplerConf",
),
pytest.param(
"utils.data.sampler",
"BatchSampler",
{"batch_size": 4, "drop_last": False},
[],
{"sampler": dummy_sampler},
data.BatchSampler(sampler=dummy_sampler, batch_size=4, drop_last=False),
id="BatchSamplerConf",
),
pytest.param(
"utils.data.sampler",
"RandomSampler",
{},
[],
{"data_source": dummy_dataset},
data.RandomSampler(data_source=dummy_dataset),
id="RandomSamplerConf",
),
pytest.param(
"utils.data.sampler",
"SequentialSampler",
{},
[],
{"data_source": dummy_dataset},
data.SequentialSampler(data_source=dummy_dataset),
id="SequentialSamplerConf",
),
pytest.param(
"utils.data.sampler",
"SubsetRandomSampler",
{"indices": [1]},
[],
{},
data.SubsetRandomSampler(indices=[1]),
id="SubsetRandomSamplerConf",
),
pytest.param(
"utils.data.sampler",
"WeightedRandomSampler",
{"weights": [1], "num_samples": 1},
[],
{},
data.WeightedRandomSampler(weights=[1], num_samples=1),
id="WeightedRandomSamplerConf",
),
# TODO: investigate testing distributed instantiation
# pytest.param(
# "utils.data.distributed",
# "DistributedSampler",
# {},
# [],
# {"dataset": dummy_dataset},
# data.DistributedSampler(group=dummy_group,dataset=dummy_dataset),
# id="DistributedSamplerConf",
# ),
],
)
def test_instantiate_classes(
modulepath: str,
classname: str,
cfg: Any,
passthrough_args: Any,
passthrough_kwargs: Any,
expected: Any,
) -> None:
full_class = f"hydra_configs.torch.{modulepath}.{classname}Conf"
schema = OmegaConf.structured(get_class(full_class))
cfg = OmegaConf.merge(schema, cfg)
obj = instantiate(cfg, *passthrough_args, **passthrough_kwargs)
assert isinstance(obj, type(expected))
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# Generated by configen, do not edit.
# See https://github.com/facebookresearch/hydra/tree/main/tools/configen
# fmt: off
# isort:skip_file
# flake8: noqa
from dataclasses import dataclass, field
from omegaconf import MISSING
from typing import Any
@dataclass
class BCELossConf:
_target_: str = "torch.nn.modules.loss.BCELoss"
weight: Any = MISSING # Optional[Tensor]
size_average: Any = None
reduce: Any = None
reduction: str = "mean"
@dataclass
class BCEWithLogitsLossConf:
_target_: str = "torch.nn.modules.loss.BCEWithLogitsLoss"
weight: Any = MISSING # Optional[Tensor]
size_average: Any = None
reduce: Any = None
reduction: str = "mean"
pos_weight: Any = MISSING # Optional[Tensor]
@dataclass
class CosineEmbeddingLossConf:
_target_: str = "torch.nn.modules.loss.CosineEmbeddingLoss"
margin: float = 0.0
size_average: Any = None
reduce: Any = None
reduction: str = "mean"
@dataclass
class CTCLossConf:
_target_: str = "torch.nn.modules.loss.CTCLoss"
blank: int = 0
reduction: str = "mean"
zero_infinity: bool = False
@dataclass
class L1LossConf:
_target_: str = "torch.nn.modules.loss.L1Loss"
size_average: Any = None
reduce: Any = None
reduction: str = "mean"
@dataclass
class HingeEmbeddingLossConf:
_target_: str = "torch.nn.modules.loss.HingeEmbeddingLoss"
margin: float = 1.0
size_average: Any = None
reduce: Any = None
reduction: str = "mean"
@dataclass
class KLDivLossConf:
_target_: str = "torch.nn.modules.loss.KLDivLoss"
size_average: Any = None
reduce: Any = None
reduction: str = "mean"
log_target: bool = False
@dataclass
class MarginRankingLossConf:
_target_: str = "torch.nn.modules.loss.MarginRankingLoss"
margin: float = 0.0
size_average: Any = None
reduce: Any = None
reduction: str = "mean"
@dataclass
class MSELossConf:
_target_: str = "torch.nn.modules.loss.MSELoss"
size_average: Any = None
reduce: Any = None
reduction: str = "mean"
@dataclass
class MultiLabelMarginLossConf:
_target_: str = "torch.nn.modules.loss.MultiLabelMarginLoss"
size_average: Any = None
reduce: Any = None
reduction: str = "mean"
@dataclass
class MultiLabelSoftMarginLossConf:
_target_: str = "torch.nn.modules.loss.MultiLabelSoftMarginLoss"
weight: Any = MISSING # Optional[Tensor]
size_average: Any = None
reduce: Any = None
reduction: str = "mean"
@dataclass
class MultiMarginLossConf:
_target_: str = "torch.nn.modules.loss.MultiMarginLoss"
p: int = 1
margin: float = 1.0
weight: Any = MISSING # Optional[Tensor]
size_average: Any = None
reduce: Any = None
reduction: str = "mean"
@dataclass
class NLLLossConf:
_target_: str = "torch.nn.modules.loss.NLLLoss"
weight: Any = MISSING # Optional[Tensor]
size_average: Any = None
ignore_index: int = -100
reduce: Any = None
reduction: str = "mean"
@dataclass
class NLLLoss2dConf:
_target_: str = "torch.nn.modules.loss.NLLLoss2d"
weight: Any = MISSING # Optional[Tensor]
size_average: Any = None
ignore_index: int = -100
reduce: Any = None
reduction: str = "mean"
@dataclass
class PoissonNLLLossConf:
_target_: str = "torch.nn.modules.loss.PoissonNLLLoss"
log_input: bool = True
full: bool = False
size_average: Any = None
eps: float = 1e-08
reduce: Any = None
reduction: str = "mean"
@dataclass
class SmoothL1LossConf:
_target_: str = "torch.nn.modules.loss.SmoothL1Loss"
size_average: Any = None
reduce: Any = None
reduction: str = "mean"
@dataclass
class SoftMarginLossConf:
_target_: str = "torch.nn.modules.loss.SoftMarginLoss"
size_average: Any = None
reduce: Any = None
reduction: str = "mean"
@dataclass
class TripletMarginLossConf:
_target_: str = "torch.nn.modules.loss.TripletMarginLoss"
margin: float = 1.0
p: float = 2.0
eps: float = 1e-06
swap: bool = False
size_average: Any = None
reduce: Any = None
reduction: str = "mean"
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# Generated by configen, do not edit.
# See https://github.com/facebookresearch/hydra/tree/main/tools/configen
# fmt: off
# isort:skip_file
# flake8: noqa
from dataclasses import dataclass, field
from omegaconf import MISSING
from typing import Any
@dataclass
class LambdaLRConf:
_target_: str = "torch.optim.lr_scheduler.LambdaLR"
optimizer: Any = MISSING
lr_lambda: Any = MISSING
last_epoch: Any = -1
@dataclass
class MultiplicativeLRConf:
_target_: str = "torch.optim.lr_scheduler.MultiplicativeLR"
optimizer: Any = MISSING
lr_lambda: Any = MISSING
last_epoch: Any = -1
@dataclass
class StepLRConf:
_target_: str = "torch.optim.lr_scheduler.StepLR"
optimizer: Any = MISSING
step_size: Any = MISSING
gamma: Any = 0.1
last_epoch: Any = -1
@dataclass
class MultiStepLRConf:
_target_: str = "torch.optim.lr_scheduler.MultiStepLR"
optimizer: Any = MISSING
milestones: Any = MISSING
gamma: Any = 0.1
last_epoch: Any = -1
@dataclass
class ExponentialLRConf:
_target_: str = "torch.optim.lr_scheduler.ExponentialLR"
optimizer: Any = MISSING
gamma: Any = MISSING
last_epoch: Any = -1
@dataclass
class CosineAnnealingLRConf:
_target_: str = "torch.optim.lr_scheduler.CosineAnnealingLR"
optimizer: Any = MISSING
T_max: Any = MISSING
eta_min: Any = 0
last_epoch: Any = -1
@dataclass
class ReduceLROnPlateauConf:
_target_: str = "torch.optim.lr_scheduler.ReduceLROnPlateau"
optimizer: Any = MISSING
mode: Any = "min"
factor: Any = 0.1
patience: Any = 10
verbose: Any = False
threshold: Any = 0.0001
threshold_mode: Any = "rel"
cooldown: Any = 0
min_lr: Any = 0
eps: Any = 1e-08
@dataclass
class CyclicLRConf:
_target_: str = "torch.optim.lr_scheduler.CyclicLR"
optimizer: Any = MISSING
base_lr: Any = MISSING
max_lr: Any = MISSING
step_size_up: Any = 2000
step_size_down: Any = None
mode: Any = "triangular"
gamma: Any = 1.0
scale_fn: Any = None
scale_mode: Any = "cycle"
cycle_momentum: Any = True
base_momentum: Any = 0.8
max_momentum: Any = 0.9
last_epoch: Any = -1
@dataclass
class CosineAnnealingWarmRestartsConf:
_target_: str = "torch.optim.lr_scheduler.CosineAnnealingWarmRestarts"
optimizer: Any = MISSING
T_0: Any = MISSING
T_mult: Any = 1
eta_min: Any = 0
last_epoch: Any = -1
@dataclass
class OneCycleLRConf:
_target_: str = "torch.optim.lr_scheduler.OneCycleLR"
optimizer: Any = MISSING
max_lr: Any = MISSING
total_steps: Any = None
epochs: Any = None
steps_per_epoch: Any = None
pct_start: Any = 0.3
anneal_strategy: Any = "cos"
cycle_momentum: Any = True
base_momentum: Any = 0.85
max_momentum: Any = 0.95
div_factor: Any = 25.0
final_div_factor: Any = 10000.0
last_epoch: Any = -1
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# Generated by configen, do not edit.
# See https://github.com/facebookresearch/hydra/tree/main/tools/configen
# fmt: off
# isort:skip_file
# flake8: noqa
from dataclasses import dataclass, field
from omegaconf import MISSING
from typing import Any
@dataclass
class RMSpropConf:
_target_: str = "torch.optim.rmsprop.RMSprop"
params: Any = MISSING
lr: Any = 0.01
alpha: Any = 0.99
eps: Any = 1e-08
weight_decay: Any = 0
momentum: Any = 0
centered: Any = False
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# Generated by configen, do not edit.
# See https://github.com/facebookresearch/hydra/tree/main/tools/configen
# fmt: off
# isort:skip_file
# flake8: noqa
from dataclasses import dataclass, field
from omegaconf import MISSING
from typing import Any
@dataclass
class SparseAdamConf:
_target_: str = "torch.optim.sparse_adam.SparseAdam"
params: Any = MISSING
lr: Any = 0.001
betas: Any = (0.9, 0.999)
eps: Any = 1e-08
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# Generated by configen, do not edit.
# See https://github.com/facebookresearch/hydra/tree/main/tools/configen
# fmt: off
# isort:skip_file
# flake8: noqa
from dataclasses import dataclass, field
from omegaconf import MISSING
from typing import Any
@dataclass
class RpropConf:
_target_: str = "torch.optim.rprop.Rprop"
params: Any = MISSING
lr: Any = 0.01
etas: Any = (0.5, 1.2)
step_sizes: Any = (1e-06, 50)
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# Generated by configen, do not edit.
# See https://github.com/facebookresearch/hydra/tree/main/tools/configen
# fmt: off
# isort:skip_file
# flake8: noqa
from dataclasses import dataclass, field
from omegaconf import MISSING
from typing import Any
@dataclass
class SGDConf:
_target_: str = "torch.optim.sgd.SGD"
params: Any = MISSING
lr: Any = MISSING # _RequiredParameter
momentum: Any = 0
dampening: Any = 0
weight_decay: Any = 0
nesterov: Any = False
|
# flake8: noqa
# Mirrors torch/optim __init__ to allow for symmetric import structure
from .adadelta import AdadeltaConf
from .adagrad import AdagradConf
from .adam import AdamConf
from .adamw import AdamWConf
from .sparse_adam import SparseAdamConf
from .adamax import AdamaxConf
from .asgd import ASGDConf
from .sgd import SGDConf
from .rprop import RpropConf
from .rmsprop import RMSpropConf
from .lbfgs import LBFGSConf
from . import lr_scheduler
del adadelta
del adagrad
del adam
del adamw
del sparse_adam
del adamax
del asgd
del sgd
del rprop
del rmsprop
del lbfgs
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# Generated by configen, do not edit.
# See https://github.com/facebookresearch/hydra/tree/main/tools/configen
# fmt: off
# isort:skip_file
# flake8: noqa
from dataclasses import dataclass, field
from omegaconf import MISSING
from typing import Any
@dataclass
class AdamaxConf:
_target_: str = "torch.optim.adamax.Adamax"
params: Any = MISSING
lr: Any = 0.002
betas: Any = (0.9, 0.999)
eps: Any = 1e-08
weight_decay: Any = 0
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# Generated by configen, do not edit.
# See https://github.com/facebookresearch/hydra/tree/main/tools/configen
# fmt: off
# isort:skip_file
# flake8: noqa
from dataclasses import dataclass, field
from omegaconf import MISSING
from typing import Any
@dataclass
class AdagradConf:
_target_: str = "torch.optim.adagrad.Adagrad"
params: Any = MISSING
lr: Any = 0.01
lr_decay: Any = 0
weight_decay: Any = 0
initial_accumulator_value: Any = 0
eps: Any = 1e-10
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# Generated by configen, do not edit.
# See https://github.com/facebookresearch/hydra/tree/main/tools/configen
# fmt: off
# isort:skip_file
# flake8: noqa
from dataclasses import dataclass, field
from omegaconf import MISSING
from typing import Any
@dataclass
class AdamWConf:
_target_: str = "torch.optim.adamw.AdamW"
params: Any = MISSING
lr: Any = 0.001
betas: Any = (0.9, 0.999)
eps: Any = 1e-08
weight_decay: Any = 0.01
amsgrad: Any = False
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# Generated by configen, do not edit.
# See https://github.com/facebookresearch/hydra/tree/main/tools/configen
# fmt: off
# isort:skip_file
# flake8: noqa
from dataclasses import dataclass, field
from omegaconf import MISSING
from typing import Any
@dataclass
class LBFGSConf:
_target_: str = "torch.optim.lbfgs.LBFGS"
params: Any = MISSING
lr: Any = 1
max_iter: Any = 20
max_eval: Any = None
tolerance_grad: Any = 1e-07
tolerance_change: Any = 1e-09
history_size: Any = 100
line_search_fn: Any = None
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# Generated by configen, do not edit.
# See https://github.com/facebookresearch/hydra/tree/main/tools/configen
# fmt: off
# isort:skip_file
# flake8: noqa
from dataclasses import dataclass, field
from omegaconf import MISSING
from typing import Any
@dataclass
class AdamConf:
_target_: str = "torch.optim.adam.Adam"
params: Any = MISSING
lr: Any = 0.001
betas: Any = (0.9, 0.999)
eps: Any = 1e-08
weight_decay: Any = 0
amsgrad: Any = False
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# Generated by configen, do not edit.
# See https://github.com/facebookresearch/hydra/tree/main/tools/configen
# fmt: off
# isort:skip_file
# flake8: noqa
from dataclasses import dataclass, field
from omegaconf import MISSING
from typing import Any
@dataclass
class ASGDConf:
_target_: str = "torch.optim.asgd.ASGD"
params: Any = MISSING
lr: Any = 0.01
lambd: Any = 0.0001
alpha: Any = 0.75
t0: Any = 1000000.0
weight_decay: Any = 0
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# Generated by configen, do not edit.
# See https://github.com/facebookresearch/hydra/tree/main/tools/configen
# fmt: off
# isort:skip_file
# flake8: noqa
from dataclasses import dataclass, field
from omegaconf import MISSING
from typing import Any
@dataclass
class AdadeltaConf:
_target_: str = "torch.optim.adadelta.Adadelta"
params: Any = MISSING
lr: Any = 1.0
rho: Any = 0.9
eps: Any = 1e-06
weight_decay: Any = 0
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# Generated by configen, do not edit.
# See https://github.com/facebookresearch/hydra/tree/main/tools/configen
# fmt: off
# isort:skip_file
# flake8: noqa
from dataclasses import dataclass, field
from omegaconf import MISSING
from typing import Any
@dataclass
class DatasetConf:
_target_: str = "torch.utils.data.dataset.Dataset"
@dataclass
class ChainDatasetConf:
_target_: str = "torch.utils.data.dataset.ChainDataset"
datasets: Any = MISSING
@dataclass
class ConcatDatasetConf:
_target_: str = "torch.utils.data.dataset.ConcatDataset"
datasets: Any = MISSING
@dataclass
class IterableDatasetConf:
_target_: str = "torch.utils.data.dataset.IterableDataset"
@dataclass
class TensorDatasetConf:
_target_: str = "torch.utils.data.dataset.TensorDataset"
tensors: Any = MISSING
@dataclass
class SubsetConf:
_target_: str = "torch.utils.data.dataset.Subset"
dataset: Any = MISSING
indices: Any = MISSING
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# Generated by configen, do not edit.
# See https://github.com/facebookresearch/hydra/tree/main/tools/configen
# fmt: off
# isort:skip_file
# flake8: noqa
from dataclasses import dataclass, field
from omegaconf import MISSING
from typing import Any
@dataclass
class DistributedSamplerConf:
_target_: str = "torch.utils.data.distributed.DistributedSampler"
dataset: Any = MISSING
num_replicas: Any = None
rank: Any = None
shuffle: Any = True
seed: Any = 0
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# Generated by configen, do not edit.
# See https://github.com/facebookresearch/hydra/tree/main/tools/configen
# fmt: off
# isort:skip_file
# flake8: noqa
from dataclasses import dataclass, field
from omegaconf import MISSING
from typing import Any
@dataclass
class DataLoaderConf:
_target_: str = "torch.utils.data.dataloader.DataLoader"
dataset: Any = MISSING
batch_size: Any = 1
shuffle: Any = False
sampler: Any = None
batch_sampler: Any = None
num_workers: Any = 0
collate_fn: Any = None
pin_memory: Any = False
drop_last: Any = False
timeout: Any = 0
worker_init_fn: Any = None
multiprocessing_context: Any = None
generator: Any = None
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# Generated by configen, do not edit.
# See https://github.com/facebookresearch/hydra/tree/main/tools/configen
# fmt: off
# isort:skip_file
# flake8: noqa
from dataclasses import dataclass, field
from omegaconf import MISSING
from typing import Any
@dataclass
class SamplerConf:
_target_: str = "torch.utils.data.sampler.Sampler"
data_source: Any = MISSING
@dataclass
class BatchSamplerConf:
_target_: str = "torch.utils.data.sampler.BatchSampler"
sampler: Any = MISSING
batch_size: Any = MISSING
drop_last: Any = MISSING
@dataclass
class RandomSamplerConf:
_target_: str = "torch.utils.data.sampler.RandomSampler"
data_source: Any = MISSING
replacement: Any = False
num_samples: Any = None
generator: Any = None
@dataclass
class SequentialSamplerConf:
_target_: str = "torch.utils.data.sampler.SequentialSampler"
data_source: Any = MISSING
@dataclass
class SubsetRandomSamplerConf:
_target_: str = "torch.utils.data.sampler.SubsetRandomSampler"
indices: Any = MISSING
generator: Any = None
@dataclass
class WeightedRandomSamplerConf:
_target_: str = "torch.utils.data.sampler.WeightedRandomSampler"
weights: Any = MISSING
num_samples: Any = MISSING
replacement: Any = True
generator: Any = None
|
#!/usr/bin/env python
import os
import shutil
import sys
from setuptools import setup, find_packages
readme = open('README.rst').read()
VERSION = '0.0.2'
setup(
# Metadata
name='torchcontrib',
version=VERSION,
author='PyTorch Core Team and Contributors',
author_email='[email protected]',
url='https://github.com/pytorch/contrib',
description='implementations of ideas from recent papers',
long_description=readme,
license='BSD',
# Package info
packages=find_packages(exclude=('test',)),
zip_safe=True,
)
|
import re
import functools
from copy import deepcopy
import torch
from torch.autograd import Variable
from torch import sparse
from torch import optim
from torch import nn
import torchcontrib.optim as contriboptim
from .common import TestCase, run_tests
from torch.utils import data
def rosenbrock(tensor):
x, y = tensor
return (1 - x) ** 2 + 100 * (y - x ** 2) ** 2
def drosenbrock(tensor):
x, y = tensor
return torch.DoubleTensor((-400 * x * (y - x ** 2) - 2 * (1 - x), 200 * (y - x ** 2)))
def wrap_old_fn(old_fn, **config):
def wrapper(closure, params, state):
return old_fn(closure, params, config, state)
return wrapper
class TestSWA(TestCase):
# Pavel: I slightly update the _test_... functions to (1) remove the
# legacy-related parts and (2) add oprimizer.swap_swa_sgd() in the end of
# optimization
def _test_rosenbrock(self, constructor, automode=True):
# automode shows wether we need to update SWA params manually
params = torch.tensor([1.5, 1.5], requires_grad=True)
optimizer = constructor([params])
solution = torch.tensor([1., 1.])
initial_dist = params.data.dist(solution)
def eval():
# SWA
optimizer.zero_grad()
loss = rosenbrock(params)
loss.backward()
# loss.backward() will give **slightly** different
# gradients, than drosenbtock, because of a different ordering
# of floating point operations. In most cases it doesn't matter,
# but some optimizers are so sensitive that they can temporarily
# diverge up to 1e-4, just to converge again. This makes the
# comparison more stable.
params.grad.data.copy_(drosenbrock(params.data))
return loss
for i in range(2000):
optimizer.step(eval)
if not automode:
optimizer.update_swa()
optimizer.swap_swa_sgd()
self.assertLessEqual(params.data.dist(solution), initial_dist)
def _test_rosenbrock_sparse(self, constructor, sparse_only=False):
params_t = torch.Tensor([1.5, 1.5])
params = torch.tensor([1.5, 1.5], requires_grad=True)
optimizer = constructor([params])
if not sparse_only:
params_c = params.detach().clone().requires_grad_()
optimizer_c = constructor([params_c])
solution = torch.tensor([1., 1.])
initial_dist = params.data.dist(solution)
def eval(params, sparse_grad, w):
# Depending on w, provide only the x or y gradient
optimizer.zero_grad()
loss = rosenbrock(params)
loss.backward()
grad = drosenbrock(params.data)
# NB: We torture test the optimizer by returning an
# uncoalesced sparse tensor
if w:
i = torch.LongTensor([[0, 0]])
x = grad[0]
v = torch.DoubleTensor([x / 4., x - x / 4.])
else:
i = torch.LongTensor([[1, 1]])
y = grad[1]
v = torch.DoubleTensor([y - y / 4., y / 4.])
x = sparse.DoubleTensor(i, v, torch.Size([2]))
if sparse_grad:
params.grad.data = x
else:
params.grad.data = x.to_dense()
return loss
for i in range(2000):
# Do cyclic coordinate descent
w = i % 2
optimizer.step(functools.partial(eval, params, True, w))
if not sparse_only:
optimizer_c.step(functools.partial(eval, params_c, False, w))
self.assertEqual(params.data, params_c.data)
self.assertLessEqual(params.data.dist(solution), initial_dist)
def _test_basic_cases_template(self, weight, bias, input, constructor):
weight = weight.requires_grad_()
bias = bias.requires_grad_()
optimizer = constructor(weight, bias)
# to check if the optimizer can be printed as a string
optimizer.__repr__()
def fn():
optimizer.zero_grad()
y = weight.mv(input)
if y.is_cuda and bias.is_cuda and y.get_device() != bias.get_device():
y = y.cuda(bias.get_device())
loss = (y + bias).pow(2).sum()
loss.backward()
return loss
initial_value = fn().item()
for i in range(200):
optimizer.step(fn)
self.assertLess(fn().item(), initial_value)
def _test_state_dict(self, weight, bias, input, constructor):
weight = weight.requires_grad_()
bias = bias.requires_grad_()
def fn_base(optimizer, weight, bias):
optimizer.zero_grad()
i = input_cuda if weight.is_cuda else input
loss = (weight.mv(i) + bias).pow(2).sum()
loss.backward()
return loss
optimizer = constructor(weight, bias)
fn = functools.partial(fn_base, optimizer, weight, bias)
# Prime the optimizer
optimizer.update_swa()
for i in range(20):
optimizer.step(fn)
# Clone the weights and construct new optimizer for them
weight_c = weight.detach().clone().requires_grad_()
bias_c = bias.detach().clone().requires_grad_()
optimizer_c = constructor(weight_c, bias_c)
fn_c = functools.partial(fn_base, optimizer_c, weight_c, bias_c)
# Load state dict
state_dict = deepcopy(optimizer.state_dict())
state_dict_c = deepcopy(optimizer.state_dict())
optimizer_c.load_state_dict(state_dict_c)
self.assertEqual(optimizer.optimizer.state_dict(), optimizer_c.optimizer.state_dict())
# Run both optimizations in parallel
for i in range(20):
optimizer.optimizer.step(fn)
optimizer_c.optimizer.step(fn_c)
self.assertEqual(weight, weight_c)
self.assertEqual(bias, bias_c)
# check that averages also coincide
optimizer.swap_swa_sgd()
optimizer_c.swap_swa_sgd()
self.assertEqual(weight, weight_c)
self.assertEqual(bias, bias_c)
optimizer.swap_swa_sgd()
optimizer_c.swap_swa_sgd()
# Make sure state dict wasn't modified
self.assertEqual(state_dict, state_dict_c)
# Check that state dict can be loaded even when we cast parameters
# to a different type and move to a different device.
if not torch.cuda.is_available():
return
input_cuda = Variable(input.data.float().cuda())
weight_cuda = Variable(weight.data.float().cuda(), requires_grad=True)
bias_cuda = Variable(bias.data.float().cuda(), requires_grad=True)
optimizer_cuda = constructor(weight_cuda, bias_cuda)
fn_cuda = functools.partial(fn_base, optimizer_cuda, weight_cuda, bias_cuda)
state_dict = deepcopy(optimizer.state_dict())
state_dict_c = deepcopy(optimizer.state_dict())
optimizer_cuda.load_state_dict(state_dict_c)
# Make sure state dict wasn't modified
self.assertEqual(state_dict, state_dict_c)
for i in range(20):
optimizer.step(fn)
optimizer_cuda.step(fn_cuda)
self.assertEqual(weight, weight_cuda)
self.assertEqual(bias, bias_cuda)
def _test_basic_cases(self, constructor, ignore_multidevice=False):
self._test_state_dict(
torch.randn(10, 5),
torch.randn(10),
torch.randn(5),
constructor
)
self._test_basic_cases_template(
torch.randn(10, 5),
torch.randn(10),
torch.randn(5),
constructor
)
# non-contiguous parameters
self._test_basic_cases_template(
torch.randn(10, 5, 2)[..., 0],
torch.randn(10, 2)[..., 0],
torch.randn(5),
constructor
)
# CUDA
if not torch.cuda.is_available():
return
self._test_basic_cases_template(
torch.randn(10, 5).cuda(),
torch.randn(10).cuda(),
torch.randn(5).cuda(),
constructor
)
# Multi-GPU
if not torch.cuda.device_count() > 1 or ignore_multidevice:
return
self._test_basic_cases_template(
torch.randn(10, 5).cuda(0),
torch.randn(10).cuda(1),
torch.randn(5).cuda(0),
constructor
)
def _build_params_dict(self, weight, bias, **kwargs):
return [dict(params=[weight]), dict(params=[bias], **kwargs)]
def _build_params_dict_single(self, weight, bias, **kwargs):
return [dict(params=bias, **kwargs)]
# Test SWA
def test_swa(self):
def sgd_constructor(params):
sgd = optim.SGD(params, lr=1e-3)
return contriboptim.SWA(
sgd, swa_start=1000, swa_freq=1, swa_lr=1e-3)
def sgd_manual_constructor(params):
sgd = optim.SGD(params, lr=1e-3)
return contriboptim.SWA(sgd)
def sgd_momentum_constructor(params):
sgd = optim.SGD(params, lr=1e-3, momentum=0.9, weight_decay=1e-4)
return contriboptim.SWA(
sgd, swa_start=1000, swa_freq=1, swa_lr=1e-3)
def adam_constructor(params):
adam = optim.Adam(params, lr=1e-2)
return contriboptim.SWA(
adam, swa_start=1000, swa_freq=1, swa_lr=1e-2)
def adadelta_constructor(params):
adadelta = optim.Adadelta(params)
return contriboptim.SWA(
adadelta, swa_start=1000, swa_freq=1)
def adagrad_constructor(params):
adagrad = optim.Adagrad(params, lr=1e-1)
return contriboptim.SWA(
adagrad, swa_start=1000, swa_freq=1, swa_lr=1e-2)
def adamax_constructor(params):
adamax = optim.Adamax(params, lr=1e-1)
return contriboptim.SWA(
adamax, swa_start=1000, swa_freq=1, swa_lr=1e-2)
def rmsprop_constructor(params):
rmsprop = optim.RMSprop(params, lr=1e-2)
return contriboptim.SWA(
rmsprop, swa_start=1000, swa_freq=1, swa_lr=1e-3)
def rprop_constructor(params):
rprop = optim.Rprop(params, lr=1e-2)
return contriboptim.SWA(
rprop, swa_start=1000, swa_freq=1, swa_lr=1e-3)
def asgd_constructor(params):
asgd = optim.ASGD(params, lr=1e-3)
return contriboptim.SWA(
asgd, swa_start=1000, swa_freq=1, swa_lr=1e-3)
def lbfgs_constructor(params):
lbfgs = optim.LBFGS(params, lr=5e-2, max_iter=5)
return contriboptim.SWA(
lbfgs, swa_start=1000, swa_freq=1, swa_lr=1e-3)
auto_constructor_list = [sgd_constructor, sgd_momentum_constructor,
adam_constructor, adadelta_constructor,
adagrad_constructor, adamax_constructor,
rmsprop_constructor, rprop_constructor,
asgd_constructor, lbfgs_constructor]
for i, constructor in enumerate(auto_constructor_list):
self._test_rosenbrock(constructor)
self._test_basic_cases(
lambda weight, bias: constructor([weight, bias]),
ignore_multidevice=(constructor == lbfgs_constructor)
)
if i < len(auto_constructor_list) - 1:
self._test_basic_cases(
lambda weight, bias: constructor(
self._build_params_dict(weight, bias, lr=1e-2)))
self._test_basic_cases(
lambda weight, bias: constructor(
self._build_params_dict_single(weight, bias, lr=1e-2)))
self._test_rosenbrock(sgd_manual_constructor, automode=False)
def _define_vars_loss_opt(self):
x = Variable(torch.Tensor([5., 2.]), requires_grad=True)
y = Variable(torch.Tensor([3., 7.]), requires_grad=True)
def loss_fun(a, b):
return torch.sum(a * b)**2
opt = optim.SGD([{'params': [x]},
{'params': [y], 'lr': 1e-3}], lr=1e-2, momentum=0.9)
return x, y, loss_fun, opt
@staticmethod
def _update_test_vars(i, swa_freq, swa_start, n_avg, x_sum, y_sum, x, y, upd_fun):
if i % swa_freq == 0 and i > swa_start:
upd_fun()
n_avg += 1
x_sum += x.data
y_sum += y.data
return n_avg, x_sum, y_sum
def test_swa_auto(self):
# Tests SWA in Auto mode: values of x and y after opt.swap_swa_sgd()
# should be equal to the manually computed averages
x, y, loss_fun, opt = self._define_vars_loss_opt()
swa_start = 5
swa_freq = 2
opt = contriboptim.SWA(opt, swa_start=swa_start, swa_freq=swa_freq, swa_lr=0.001)
x_sum = torch.zeros_like(x)
y_sum = torch.zeros_like(y)
n_avg = 0
for i in range(1, 11):
opt.zero_grad()
loss = loss_fun(x, y)
loss.backward()
opt.step()
n_avg, x_sum, y_sum = self._update_test_vars(
i, swa_freq, swa_start, n_avg, x_sum, y_sum, x, y,
upd_fun=lambda: None)
opt.swap_swa_sgd()
x_avg = x_sum / n_avg
y_avg = y_sum / n_avg
self.assertEqual(x_avg, x)
self.assertEqual(y_avg, y)
def test_swa_manual(self):
# Tests SWA in manual mode: values of x and y after opt.swap_swa_sgd()
# should be equal to the manually computed averages
x, y, loss_fun, opt = self._define_vars_loss_opt()
opt = contriboptim.SWA(opt)
swa_start = 5
swa_freq = 2
x_sum = torch.zeros_like(x)
y_sum = torch.zeros_like(y)
n_avg = 0
for i in range(1, 11):
opt.zero_grad()
loss = loss_fun(x, y)
loss.backward()
opt.step()
n_avg, x_sum, y_sum = self._update_test_vars(
i, swa_freq, swa_start, n_avg, x_sum, y_sum, x, y,
upd_fun=opt.update_swa)
opt.swap_swa_sgd()
x_avg = x_sum / n_avg
y_avg = y_sum / n_avg
self.assertEqual(x_avg, x)
self.assertEqual(y_avg, y)
def test_swa_manual_group(self):
# Tests SWA in manual mode with only y param group updated:
# value of x should not change after opt.swap_swa_sgd() and y should
# be equal to the manually computed average
x, y, loss_fun, opt = self._define_vars_loss_opt()
opt = contriboptim.SWA(opt)
swa_start = 5
swa_freq = 2
y_sum = torch.zeros_like(y)
n_avg = 0
for i in range(1, 11):
opt.zero_grad()
loss = loss_fun(x, y)
loss.backward()
opt.step()
n_avg, _, y_sum = self._update_test_vars(
i, swa_freq, swa_start, n_avg, 0, y_sum, x, y,
upd_fun=lambda: opt.update_swa_group(opt.param_groups[1]))
x_before_swap = x.data.clone()
with self.assertWarnsRegex(re.escape(r"SWA wasn't applied to param {}".format(x))):
opt.swap_swa_sgd()
y_avg = y_sum / n_avg
self.assertEqual(y_avg, y)
self.assertEqual(x_before_swap, x)
def test_swa_auto_group_added_during_run(self):
# Tests SWA in Auto mode with the second param group added after several
# optimizations steps. The expected behavior is that the averaging for
# the second param group starts at swa_start steps after it is added.
# For the first group averaging should start swa_start steps after the
# first step of the optimizer.
x, y, loss_fun, _ = self._define_vars_loss_opt()
opt = optim.SGD([x], lr=1e-3, momentum=0.9)
swa_start = 5
swa_freq = 2
opt = contriboptim.SWA(opt, swa_start=swa_start, swa_freq=swa_freq, swa_lr=0.001)
x_sum = torch.zeros_like(x)
y_sum = torch.zeros_like(y)
x_n_avg = 0
y_n_avg = 0
x_step = 0
for i in range(1, 11):
opt.zero_grad()
loss = loss_fun(x, y)
loss.backward()
opt.step()
x_step += 1
if i % swa_freq == 0 and i > swa_start:
x_n_avg += 1
x_sum += x.data
x_avg = x_sum / x_n_avg
opt.add_param_group({'params': y, 'lr': 1e-4})
for y_step in range(1, 11):
opt.zero_grad()
loss = loss_fun(x, y)
loss.backward()
opt.step()
x_step += 1
if y_step % swa_freq == 0 and y_step > swa_start:
y_n_avg += 1
y_sum += y.data
if x_step % swa_freq == 0 and x_step > swa_start:
x_n_avg += 1
x_sum += x.data
x_avg = x_sum / x_n_avg
opt.swap_swa_sgd()
x_avg = x_sum / x_n_avg
y_avg = y_sum / y_n_avg
self.assertEqual(x_avg, x)
self.assertEqual(y_avg, y)
def test_swa_lr(self):
# Tests SWA learning rate: in auto mode after swa_start steps the
# learning rate should be changed to swa_lr; in manual mode swa_lr
# must be ignored
# Auto mode
x, y, loss_fun, opt = self._define_vars_loss_opt()
swa_start = 5
swa_freq = 2
initial_lr = opt.param_groups[0]["lr"]
swa_lr = initial_lr * 0.1
opt = contriboptim.SWA(opt, swa_start=swa_start, swa_freq=swa_freq, swa_lr=swa_lr)
for i in range(1, 11):
opt.zero_grad()
loss = loss_fun(x, y)
loss.backward()
opt.step()
lr = opt.param_groups[0]["lr"]
if i > swa_start:
self.assertEqual(lr, swa_lr)
else:
self.assertEqual(lr, initial_lr)
# Manual Mode
x, y, loss, opt = self._define_vars_loss_opt()
initial_lr = opt.param_groups[0]["lr"]
swa_lr = initial_lr * 0.1
with self.assertWarnsRegex("Some of swa_start, swa_freq is None"):
opt = contriboptim.SWA(opt, swa_lr=swa_lr)
for i in range(1, 11):
opt.zero_grad()
loss = loss_fun(x, y)
loss.backward()
opt.step()
lr = opt.param_groups[0]["lr"]
self.assertEqual(lr, initial_lr)
def test_swa_auto_mode_detection(self):
# Tests that SWA mode (auto or manual) is chosen correctly based on
# parameters provided
# Auto mode
x, y, loss_fun, base_opt = self._define_vars_loss_opt()
swa_start = 5
swa_freq = 2
swa_lr = 0.001
opt = contriboptim.SWA(
base_opt, swa_start=swa_start, swa_freq=swa_freq, swa_lr=swa_lr)
self.assertEqual(opt._auto_mode, True)
opt = contriboptim.SWA(base_opt, swa_start=swa_start, swa_freq=swa_freq)
self.assertEqual(opt._auto_mode, True)
with self.assertWarnsRegex("Some of swa_start, swa_freq is None"):
opt = contriboptim.SWA(base_opt, swa_start=swa_start, swa_lr=swa_lr)
self.assertEqual(opt._auto_mode, False)
with self.assertWarnsRegex("Some of swa_start, swa_freq is None"):
opt = contriboptim.SWA(base_opt, swa_freq=swa_freq, swa_lr=swa_lr)
self.assertEqual(opt._auto_mode, False)
with self.assertWarnsRegex("Some of swa_start, swa_freq is None"):
opt = contriboptim.SWA(base_opt, swa_start=swa_start)
self.assertEqual(opt._auto_mode, False)
with self.assertWarnsRegex("Some of swa_start, swa_freq is None"):
opt = contriboptim.SWA(base_opt, swa_freq=swa_freq)
self.assertEqual(opt._auto_mode, False)
with self.assertWarnsRegex("Some of swa_start, swa_freq is None"):
opt = contriboptim.SWA(base_opt, swa_lr=swa_lr)
self.assertEqual(opt._auto_mode, False)
def test_swa_raises(self):
# Tests that SWA raises errors for wrong parameter values
x, y, loss_fun, opt = self._define_vars_loss_opt()
with self.assertRaisesRegex(
ValueError, "Invalid SWA learning rate: -0.0001"):
opt = contriboptim.SWA(opt, swa_start=1, swa_freq=2, swa_lr=-1e-4)
with self.assertRaisesRegex(
ValueError, "Invalid swa_freq: 0"):
opt = contriboptim.SWA(opt, swa_start=1, swa_freq=0, swa_lr=1e-4)
with self.assertRaisesRegex(
ValueError, "Invalid swa_start: -1"):
opt = contriboptim.SWA(opt, swa_start=-1, swa_freq=0, swa_lr=1e-4)
# bn_update test
def _test_bn_update(self, data_tensor, dnn, device, label_tensor=None):
class DatasetFromTensors(data.Dataset):
def __init__(self, X, y=None):
self.X = X
self.y = y
self.N = self.X.shape[0]
def __getitem__(self, index):
x = self.X[index]
if self.y is None:
return x
else:
y = self.y[index]
return x, y
def __len__(self):
return self.N
with_y = label_tensor is not None
ds = DatasetFromTensors(data_tensor, y=label_tensor)
dl = data.DataLoader(ds, batch_size=5, shuffle=True)
preactivation_sum = torch.zeros(dnn.n_features, device=device)
preactivation_squared_sum = torch.zeros(dnn.n_features, device=device)
total_num = 0
for x in dl:
if with_y:
x, _ = x
x = x.to(device)
dnn(x)
preactivations = dnn.compute_preactivation(x)
if len(preactivations.shape) == 4:
preactivations = preactivations.transpose(1, 3)
preactivations = preactivations.reshape(-1, dnn.n_features)
total_num += preactivations.shape[0]
preactivation_sum += torch.sum(preactivations, dim=0)
preactivation_squared_sum += torch.sum(preactivations**2, dim=0)
preactivation_mean = preactivation_sum / total_num
preactivation_var = preactivation_squared_sum / total_num
preactivation_var = preactivation_var - preactivation_mean**2
swa = contriboptim.SWA(optim.SGD(dnn.parameters(), lr=1e-3))
swa.bn_update(dl, dnn, device=device)
self.assertEqual(preactivation_mean, dnn.bn.running_mean)
self.assertEqual(preactivation_var, dnn.bn.running_var, prec=1e-1)
def test_bn_update(self):
def test(net_cls, x_shape, y_shape, device):
x = torch.rand(x_shape, device=device)
y = torch.rand(y_shape, device=device)
dnn = net_cls().to(device)
orig_momentum = dnn.bn.momentum
dnn.train()
self._test_bn_update(x, dnn, device)
self._test_bn_update(x, dnn, device, label_tensor=y)
self.assertTrue(dnn.training)
# check that bn_update preserves eval mode
dnn.eval()
self._test_bn_update(x, dnn, device)
self.assertFalse(dnn.training)
# check that momentum is preserved
self.assertEqual(dnn.bn.momentum, orig_momentum)
# Test bn_update for fully-connected and convolutional networks with
# BatchNorm1d and BatchNorm2d respectively
objects = 100
input_features = 5
class DNN(nn.Module):
def __init__(self):
super(DNN, self).__init__()
self.n_features = 100
self.fc1 = nn.Linear(input_features, self.n_features)
self.bn = nn.BatchNorm1d(self.n_features)
def compute_preactivation(self, x):
return self.fc1(x)
def forward(self, x):
x = self.fc1(x)
x = self.bn(x)
return x
test(DNN, (objects, input_features), objects, 'cpu')
if torch.cuda.is_available():
test(DNN, (objects, input_features), objects, 'cuda')
# Test bn_update for convolutional network and BatchNorm2d
objects = 100
channels = 3
height, width = 5, 5
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.n_features = 10
self.conv1 = nn.Conv2d(channels, self.n_features, kernel_size=3, padding=1)
self.bn = nn.BatchNorm2d(self.n_features, momentum=0.3)
def compute_preactivation(self, x):
return self.conv1(x)
def forward(self, x):
x = self.conv1(x)
x = self.bn(x)
return x
test(CNN, (objects, channels, height, width), objects, 'cpu')
if torch.cuda.is_available():
test(CNN, (objects, channels, height, width), objects, 'cuda')
if __name__ == '__main__':
run_tests()
|
import unittest
import torch
import torchcontrib
import torchcontrib.nn as contrib_nn
import torchcontrib.nn.functional as contrib_F
from torch.autograd import gradcheck, gradgradcheck
from .common import run_tests, TestCase
class TestNN(TestCase):
def assertGradAndGradgradChecks(self, apply_fn, inputs):
# call assert function rather than returning a bool since it's nicer
# if we get whether this failed on the gradcheck or the gradgradcheck.
self.assertTrue(gradcheck(apply_fn, inputs))
self.assertTrue(gradgradcheck(apply_fn, inputs))
def test_film(self):
m = contrib_nn.FiLM()
input_1d = torch.randn(4, 10, 2, requires_grad=True)
input_2d = torch.randn(4, 10, 2, 2, requires_grad=True)
input_3d = torch.randn(4, 10, 2, 2, 2, requires_grad=True)
ones = torch.ones(4, 10)
zeros = torch.zeros(4, 10)
half_ones_half_zeros = torch.cat([torch.ones(4, 5), torch.zeros(4, 5)], 1)
half_ones_half_neg_ones = torch.cat([torch.ones(4, 5), torch.full((4, 5), -1)], 1)
for inp in [input_1d, input_2d, input_3d]:
self.assertGradAndGradgradChecks(lambda x: contrib_F.film(x, ones, ones), (inp,))
output = m(inp, ones, zeros)
self.assertEqual(contrib_F.film(inp, ones, zeros), output)
self.assertEqual(inp, output)
output = m(inp, zeros, ones)
self.assertEqual(contrib_F.film(inp, zeros, ones), output)
self.assertEqual(torch.ones_like(output), output)
output = m(inp, -2 * ones, 3 * ones)
self.assertEqual(contrib_F.film(inp, -2 * ones, 3 * ones), output)
self.assertEqual((-2 * inp) + 3, output)
output = m(inp, half_ones_half_zeros, half_ones_half_neg_ones)
self.assertEqual(contrib_F.film(inp, half_ones_half_zeros, half_ones_half_neg_ones), output)
self.assertEqual(output.sum(), inp[:, :5].sum())
if __name__ == '__main__':
run_tests()
|
# Pavel: copied without changes from pytorch/test/common.py
import sys
import os
import platform
import re
import gc
import types
import inspect
import argparse
import unittest
import warnings
import random
import contextlib
from functools import wraps
from itertools import product
from copy import deepcopy
from numbers import Number
import __main__
import errno
import torch
import torch.cuda
from torch._utils_internal import get_writable_path
from torch._six import string_classes, inf
import torch.backends.cudnn
import torch.backends.mkl
torch.set_default_tensor_type('torch.DoubleTensor')
if torch.cuda.is_available():
torch.backends.cudnn.disable_global_flags()
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('--seed', type=int, default=1234)
parser.add_argument('--accept', action='store_true')
args, remaining = parser.parse_known_args()
SEED = args.seed
ACCEPT = args.accept
UNITTEST_ARGS = [sys.argv[0]] + remaining
torch.manual_seed(SEED)
def run_tests(argv=UNITTEST_ARGS):
unittest.main(argv=argv)
PY3 = sys.version_info > (3, 0)
PY34 = sys.version_info >= (3, 4)
TEST_CUDA = torch.cuda.is_available()
TEST_MULTIGPU = TEST_CUDA and torch.cuda.device_count() >= 2
CUDA_DEVICE = TEST_CUDA and torch.device("cuda:0")
TEST_CUDNN = TEST_CUDA and torch.backends.cudnn.is_acceptable(torch.tensor(1., device=CUDA_DEVICE))
TEST_CUDNN_VERSION = TEST_CUDNN and torch.backends.cudnn.version()
def _check_module_exists(name):
r"""Returns if a top-level module with :attr:`name` exists *without**
importing it. This is generally safer than try-catch block around a
`import X`. It avoids third party libraries breaking assumptions of some of
our tests, e.g., setting multiprocessing start method when imported
(see librosa/#747, torchvision/#544).
"""
if not PY3: # Python 2
import imp
try:
imp.find_module(name)
return True
except ImportError:
return False
elif PY34: # Python [3, 3.4)
import importlib
loader = importlib.find_loader(name)
return loader is not None
else: # Python >= 3.4
import importlib
spec = importlib.util.find_spec(name)
return spec is not None
TEST_NUMPY = _check_module_exists('numpy')
TEST_SCIPY = _check_module_exists('scipy')
TEST_MKL = torch.backends.mkl.is_available()
# On Py2, importing librosa 0.6.1 triggers a TypeError (if using newest joblib)
# see librosa/librosa#729.
# TODO: allow Py2 when librosa 0.6.2 releases
TEST_LIBROSA = _check_module_exists('librosa') and PY3
NO_MULTIPROCESSING_SPAWN = os.environ.get('NO_MULTIPROCESSING_SPAWN', '0') == '1'
if TEST_NUMPY:
import numpy
def skipIfNoLapack(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
try:
fn(*args, **kwargs)
except Exception as e:
if 'Lapack library not found' in e.args[0]:
raise unittest.SkipTest('Compiled without Lapack')
raise
return wrapper
def suppress_warnings(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
fn(*args, **kwargs)
return wrapper
def get_cpu_type(type_name):
module, name = type_name.rsplit('.', 1)
assert module == 'torch.cuda'
return getattr(torch, name)
def get_gpu_type(type_name):
if isinstance(type_name, type):
type_name = '{}.{}'.format(type_name.__module__, type_name.__name__)
module, name = type_name.rsplit('.', 1)
assert module == 'torch'
return getattr(torch.cuda, name)
def to_gpu(obj, type_map={}):
if isinstance(obj, torch.Tensor):
assert obj.is_leaf
t = type_map.get(obj.type(), get_gpu_type(obj.type()))
with torch.no_grad():
res = obj.clone().type(t)
res.requires_grad = obj.requires_grad
return res
elif torch.is_storage(obj):
return obj.new().resize_(obj.size()).copy_(obj)
elif isinstance(obj, list):
return [to_gpu(o, type_map) for o in obj]
elif isinstance(obj, tuple):
return tuple(to_gpu(o, type_map) for o in obj)
else:
return deepcopy(obj)
def get_function_arglist(func):
return inspect.getargspec(func).args
def set_rng_seed(seed):
torch.manual_seed(seed)
random.seed(seed)
if TEST_NUMPY:
numpy.random.seed(seed)
@contextlib.contextmanager
def freeze_rng_state():
rng_state = torch.get_rng_state()
if torch.cuda.is_available():
cuda_rng_state = torch.cuda.get_rng_state()
yield
if torch.cuda.is_available():
torch.cuda.set_rng_state(cuda_rng_state)
torch.set_rng_state(rng_state)
def iter_indices(tensor):
if tensor.dim() == 0:
return range(0)
if tensor.dim() == 1:
return range(tensor.size(0))
return product(*(range(s) for s in tensor.size()))
def is_iterable(obj):
try:
iter(obj)
return True
except TypeError:
return False
class TestCase(unittest.TestCase):
precision = 1e-5
def setUp(self):
set_rng_seed(SEED)
def assertTensorsSlowEqual(self, x, y, prec=None, message=''):
max_err = 0
self.assertEqual(x.size(), y.size())
for index in iter_indices(x):
max_err = max(max_err, abs(x[index] - y[index]))
self.assertLessEqual(max_err, prec, message)
def safeToDense(self, t):
r = self.safeCoalesce(t)
return r.to_dense()
def safeCoalesce(self, t):
tc = t.coalesce()
self.assertEqual(tc.to_dense(), t.to_dense())
self.assertTrue(tc.is_coalesced())
# Our code below doesn't work when nnz is 0, because
# then it's a 0D tensor, not a 2D tensor.
if t._nnz() == 0:
self.assertEqual(t._indices(), tc._indices())
self.assertEqual(t._values(), tc._values())
return tc
value_map = {}
for idx, val in zip(t._indices().t(), t._values()):
idx_tup = tuple(idx.tolist())
if idx_tup in value_map:
value_map[idx_tup] += val
else:
value_map[idx_tup] = val.clone() if isinstance(val, torch.Tensor) else val
new_indices = sorted(list(value_map.keys()))
new_values = [value_map[idx] for idx in new_indices]
if t._values().ndimension() < 2:
new_values = t._values().new(new_values)
else:
new_values = torch.stack(new_values)
new_indices = t._indices().new(new_indices).t()
tg = t.new(new_indices, new_values, t.size())
self.assertEqual(tc._indices(), tg._indices())
self.assertEqual(tc._values(), tg._values())
if t.is_coalesced():
self.assertEqual(tc._indices(), t._indices())
self.assertEqual(tc._values(), t._values())
return tg
def assertEqual(self, x, y, prec=None, message='', allow_inf=False):
if isinstance(prec, str) and message == '':
message = prec
prec = None
if prec is None:
prec = self.precision
if isinstance(x, torch.Tensor) and isinstance(y, Number):
self.assertEqual(x.item(), y, prec, message, allow_inf)
elif isinstance(y, torch.Tensor) and isinstance(x, Number):
self.assertEqual(x, y.item(), prec, message, allow_inf)
elif isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor):
def assertTensorsEqual(a, b):
super(TestCase, self).assertEqual(a.size(), b.size(), message)
if a.numel() > 0:
b = b.type_as(a)
b = b.cuda(device=a.get_device()) if a.is_cuda else b.cpu()
# check that NaNs are in the same locations
nan_mask = a != a
self.assertTrue(torch.equal(nan_mask, b != b), message)
diff = a - b
diff[nan_mask] = 0
# TODO: implement abs on CharTensor
if diff.is_signed() and 'CharTensor' not in diff.type():
diff = diff.abs()
max_err = diff.max()
self.assertLessEqual(max_err, prec, message)
super(TestCase, self).assertEqual(x.is_sparse, y.is_sparse, message)
if x.is_sparse:
x = self.safeCoalesce(x)
y = self.safeCoalesce(y)
assertTensorsEqual(x._indices(), y._indices())
assertTensorsEqual(x._values(), y._values())
else:
assertTensorsEqual(x, y)
elif isinstance(x, string_classes) and isinstance(y, string_classes):
super(TestCase, self).assertEqual(x, y, message)
elif type(x) == set and type(y) == set:
super(TestCase, self).assertEqual(x, y, message)
elif is_iterable(x) and is_iterable(y):
super(TestCase, self).assertEqual(len(x), len(y), message)
for x_, y_ in zip(x, y):
self.assertEqual(x_, y_, prec, message)
elif isinstance(x, bool) and isinstance(y, bool):
super(TestCase, self).assertEqual(x, y, message)
elif isinstance(x, Number) and isinstance(y, Number):
if abs(x) == inf or abs(y) == inf:
if allow_inf:
super(TestCase, self).assertEqual(x, y, message)
else:
self.fail("Expected finite numeric values - x={}, y={}".format(x, y))
return
super(TestCase, self).assertLessEqual(abs(x - y), prec, message)
else:
super(TestCase, self).assertEqual(x, y, message)
def assertAlmostEqual(self, x, y, places=None, msg=None, delta=None, allow_inf=None):
prec = delta
if places:
prec = 10**(-places)
self.assertEqual(x, y, prec, msg, allow_inf)
def assertNotEqual(self, x, y, prec=None, message=''):
if isinstance(prec, str) and message == '':
message = prec
prec = None
if prec is None:
prec = self.precision
if isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor):
if x.size() != y.size():
super(TestCase, self).assertNotEqual(x.size(), y.size())
self.assertGreater(x.numel(), 0)
y = y.type_as(x)
y = y.cuda(device=x.get_device()) if x.is_cuda else y.cpu()
nan_mask = x != x
if torch.equal(nan_mask, y != y):
diff = x - y
if diff.is_signed():
diff = diff.abs()
diff[nan_mask] = 0
max_err = diff.max()
self.assertGreaterEqual(max_err, prec, message)
elif type(x) == str and type(y) == str:
super(TestCase, self).assertNotEqual(x, y)
elif is_iterable(x) and is_iterable(y):
super(TestCase, self).assertNotEqual(x, y)
else:
try:
self.assertGreaterEqual(abs(x - y), prec, message)
return
except (TypeError, AssertionError):
pass
super(TestCase, self).assertNotEqual(x, y, message)
def assertObjectIn(self, obj, iterable):
for elem in iterable:
if id(obj) == id(elem):
return
raise AssertionError("object not found in iterable")
# TODO: Support context manager interface
# NB: The kwargs forwarding to callable robs the 'subname' parameter.
# If you need it, manually apply your callable in a lambda instead.
def assertExpectedRaises(self, exc_type, callable, *args, **kwargs):
subname = None
if 'subname' in kwargs:
subname = kwargs['subname']
del kwargs['subname']
try:
callable(*args, **kwargs)
except exc_type as e:
self.assertExpected(str(e), subname)
return
# Don't put this in the try block; the AssertionError will catch it
self.fail(msg="Did not raise when expected to")
@contextlib.contextmanager
def assertWarns(self, msg=''):
r"""
As a context manager, test if wrapped code raises a warning.
"""
with warnings.catch_warnings(record=True) as ws:
warnings.simplefilter("always") # allow any warning to be raised
yield
self.assertTrue(len(ws) > 0, msg)
@contextlib.contextmanager
def assertWarnsRegex(self, regex, msg=''):
r"""
As a context manager, test if wrapped code raises any warning with
message that contains the regex pattern :attr:`regex`.
"""
with warnings.catch_warnings(record=True) as ws:
warnings.simplefilter("always") # allow any warning to be raised
yield
self.assertTrue(len(ws) > 0, msg)
found = any(re.search(regex, str(w.message)) is not None for w in ws)
self.assertTrue(found, msg)
def assertExpected(self, s, subname=None):
r"""
Test that a string matches the recorded contents of a file
derived from the name of this test and subname. This file
is placed in the 'expect' directory in the same directory
as the test script. You can automatically update the recorded test
output using --accept.
If you call this multiple times in a single function, you must
give a unique subname each time.
"""
if not (isinstance(s, str) or (sys.version_info[0] == 2 and isinstance(s, unicode))):
raise TypeError("assertExpected is strings only")
def remove_prefix(text, prefix):
if text.startswith(prefix):
return text[len(prefix):]
return text
# NB: we take __file__ from the module that defined the test
# class, so we place the expect directory where the test script
# lives, NOT where test/common.py lives. This doesn't matter in
# PyTorch where all test scripts are in the same directory as
# test/common.py, but it matters in onnx-pytorch
module_id = self.__class__.__module__
munged_id = remove_prefix(self.id(), module_id + ".")
test_file = os.path.realpath(sys.modules[module_id].__file__)
expected_file = os.path.join(os.path.dirname(test_file),
"expect",
munged_id)
if subname:
expected_file += "-" + subname
expected_file += ".expect"
expected = None
def accept_output(update_type):
print("Accepting {} for {}:\n\n{}".format(update_type, munged_id, s))
with open(expected_file, 'w') as f:
f.write(s)
try:
with open(expected_file) as f:
expected = f.read()
except IOError as e:
if e.errno != errno.ENOENT:
raise
elif ACCEPT:
return accept_output("output")
else:
raise RuntimeError(
("I got this output for {}:\n\n{}\n\n"
"No expect file exists; to accept the current output, run:\n"
"python {} {} --accept").format(munged_id, s, __main__.__file__, munged_id))
if ACCEPT:
if expected != s:
return accept_output("updated output")
else:
if hasattr(self, "assertMultiLineEqual"):
# Python 2.7 only
# NB: Python considers lhs "old" and rhs "new".
self.assertMultiLineEqual(expected, s)
else:
self.assertEqual(s, expected)
if sys.version_info < (3, 2):
# assertRegexpMatches renamed to assertRegex in 3.2
assertRegex = unittest.TestCase.assertRegexpMatches
# assertRaisesRegexp renamed to assertRaisesRegex in 3.2
assertRaisesRegex = unittest.TestCase.assertRaisesRegexp
def download_file(url, binary=True):
if sys.version_info < (3,):
from urlparse import urlsplit
import urllib2
request = urllib2
error = urllib2
else:
from urllib.parse import urlsplit
from urllib import request, error
filename = os.path.basename(urlsplit(url)[2])
data_dir = get_writable_path(os.path.join(os.path.dirname(__file__), 'data'))
path = os.path.join(data_dir, filename)
if os.path.exists(path):
return path
try:
data = request.urlopen(url, timeout=15).read()
with open(path, 'wb' if binary else 'w') as f:
f.write(data)
return path
except error.URLError:
msg = "could not download test file '{}'".format(url)
warnings.warn(msg, RuntimeWarning)
raise unittest.SkipTest(msg)
|
from . import nn
from . import optim
|
from .modules import *
from . import functional
|
def film(input, gamma, beta):
r"""Applies Feature-wise Linear Modulation to the incoming data.
See :class:`~torchcontrib.nn.FiLM` for details.
"""
if input.dim() < 2:
raise ValueError("film expects input to be at least 2-dimensional, but "
"got input of size {}".format(tuple(input.size())))
if gamma.dim() != 2 and gamma.size(0) == input.size(0) and gamma.size(1) == input.size(1):
raise ValueError("film expects gamma to be a 2-dimensional tensor of "
"the same shape as the first two dimensions of input"
"gamma of size {} and input of size {}"
.format(tuple(gamma.size()), tuple(input.size())))
if beta.dim() != 2 and beta.size(0) == input.size(0) and beta.size(1) == input.size(1):
raise ValueError("film expects beta to be a 2-dimensional tensor of "
"the same shape as the first two dimensions of input"
"beta of size {} and input of size {}"
.format(tuple(beta.size()), tuple(input.size())))
view_shape = list(input.size())
for i in range(2, len(view_shape)):
view_shape[i] = 1
return gamma.view(view_shape) * input + beta.view(view_shape)
|
import torch
from torch.nn import Module
from .. import functional as F
class FiLM(Module):
r"""Applies Feature-wise Linear Modulation to the incoming data as described
in the paper `FiLM: Visual Reasoning with a General Conditioning Layer`_ .
.. math::
y_{n,c,*} = \gamma_{n, c} * x_{n,c,*} + \beta_{n,c},
where :math:`\gamma_{n,c}` and :math:`\beta_{n,c}` are scalars and
operations are broadcast over any additional dimensions of :math:`x`
Shape:
- Input: :math:`(N, C, *)` where :math:`*` means any number of additional
dimensions
- Gammas: :math:`(N, C)`
- Betas: :math:`(N, C)`
- Output: :math:`(N, C, *)`, same shape as the input
Examples::
>>> m = torchcontrib.nn.FiLM()
>>> input = e
>>> gamma = torch.randn(20)
>>> beta = torch.randn(20)
>>> output = m(input, gamma, beta)
>>> output.size()
torch.Size([128, 20, 4, 4])
.. _`FiLM: Visual Reasoning with a General Conditioning Layer`:
https://arxiv.org/abs/1709.07871
"""
def forward(self, input, gamma, beta):
return F.film(input, gamma, beta)
|
from .linear import FiLM
__all__ = ['FiLM']
|
from collections import defaultdict
from itertools import chain
from torch.optim import Optimizer
import torch
import warnings
class SWA(Optimizer):
def __init__(self, optimizer, swa_start=None, swa_freq=None, swa_lr=None):
r"""Implements Stochastic Weight Averaging (SWA).
Stochastic Weight Averaging was proposed in `Averaging Weights Leads to
Wider Optima and Better Generalization`_ by Pavel Izmailov, Dmitrii
Podoprikhin, Timur Garipov, Dmitry Vetrov and Andrew Gordon Wilson
(UAI 2018).
SWA is implemented as a wrapper class taking optimizer instance as input
and applying SWA on top of that optimizer.
SWA can be used in two modes: automatic and manual. In the automatic
mode SWA running averages are automatically updated every
:attr:`swa_freq` steps after :attr:`swa_start` steps of optimization. If
:attr:`swa_lr` is provided, the learning rate of the optimizer is reset
to :attr:`swa_lr` at every step starting from :attr:`swa_start`. To use
SWA in automatic mode provide values for both :attr:`swa_start` and
:attr:`swa_freq` arguments.
Alternatively, in the manual mode, use :meth:`update_swa` or
:meth:`update_swa_group` methods to update the SWA running averages.
In the end of training use `swap_swa_sgd` method to set the optimized
variables to the computed averages.
Args:
optimizer (torch.optim.Optimizer): optimizer to use with SWA
swa_start (int): number of steps before starting to apply SWA in
automatic mode; if None, manual mode is selected (default: None)
swa_freq (int): number of steps between subsequent updates of
SWA running averages in automatic mode; if None, manual mode is
selected (default: None)
swa_lr (float): learning rate to use starting from step swa_start
in automatic mode; if None, learning rate is not changed
(default: None)
Examples:
>>> # automatic mode
>>> base_opt = torch.optim.SGD(model.parameters(), lr=0.1)
>>> opt = torchcontrib.optim.SWA(
>>> base_opt, swa_start=10, swa_freq=5, swa_lr=0.05)
>>> for _ in range(100):
>>> opt.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> opt.step()
>>> opt.swap_swa_sgd()
>>> # manual mode
>>> opt = torchcontrib.optim.SWA(base_opt)
>>> for i in range(100):
>>> opt.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> opt.step()
>>> if i > 10 and i % 5 == 0:
>>> opt.update_swa()
>>> opt.swap_swa_sgd()
.. note::
SWA does not support parameter-specific values of :attr:`swa_start`,
:attr:`swa_freq` or :attr:`swa_lr`. In automatic mode SWA uses the
same :attr:`swa_start`, :attr:`swa_freq` and :attr:`swa_lr` for all
parameter groups. If needed, use manual mode with
:meth:`update_swa_group` to use different update schedules for
different parameter groups.
.. note::
Call :meth:`swap_swa_sgd` in the end of training to use the computed
running averages.
.. note::
If you are using SWA to optimize the parameters of a Neural Network
containing Batch Normalization layers, you need to update the
:attr:`running_mean` and :attr:`running_var` statistics of the
Batch Normalization module. You can do so by using
`torchcontrib.optim.swa.bn_update` utility.
.. note::
See the blogpost
https://pytorch.org/blog/stochastic-weight-averaging-in-pytorch/
for an extended description of this SWA implementation.
.. note::
The repo https://github.com/izmailovpavel/contrib_swa_examples
contains examples of using this SWA implementation.
.. _Averaging Weights Leads to Wider Optima and Better Generalization:
https://arxiv.org/abs/1803.05407
.. _Improving Consistency-Based Semi-Supervised Learning with Weight
Averaging:
https://arxiv.org/abs/1806.05594
"""
self._auto_mode, (self.swa_start, self.swa_freq) = \
self._check_params(self, swa_start, swa_freq)
self.swa_lr = swa_lr
if self._auto_mode:
if swa_start < 0:
raise ValueError("Invalid swa_start: {}".format(swa_start))
if swa_freq < 1:
raise ValueError("Invalid swa_freq: {}".format(swa_freq))
else:
if self.swa_lr is not None:
warnings.warn(
"Some of swa_start, swa_freq is None, ignoring swa_lr")
# If not in auto mode make all swa parameters None
self.swa_lr = None
self.swa_start = None
self.swa_freq = None
if self.swa_lr is not None and self.swa_lr < 0:
raise ValueError("Invalid SWA learning rate: {}".format(swa_lr))
self.optimizer = optimizer
self.defaults = self.optimizer.defaults
self.param_groups = self.optimizer.param_groups
self.state = defaultdict(dict)
self.opt_state = self.optimizer.state
for group in self.param_groups:
group['n_avg'] = 0
group['step_counter'] = 0
@staticmethod
def _check_params(self, swa_start, swa_freq):
params = [swa_start, swa_freq]
params_none = [param is None for param in params]
if not all(params_none) and any(params_none):
warnings.warn(
"Some of swa_start, swa_freq is None, ignoring other")
for i, param in enumerate(params):
if param is not None and not isinstance(param, int):
params[i] = int(param)
warnings.warn("Casting swa_start, swa_freq to int")
return not any(params_none), params
def _reset_lr_to_swa(self):
if self.swa_lr is None:
return
for param_group in self.param_groups:
if param_group['step_counter'] >= self.swa_start:
param_group['lr'] = self.swa_lr
def update_swa_group(self, group):
r"""Updates the SWA running averages for the given parameter group.
Arguments:
param_group (dict): Specifies for what parameter group SWA running
averages should be updated
Examples:
>>> # automatic mode
>>> base_opt = torch.optim.SGD([{'params': [x]},
>>> {'params': [y], 'lr': 1e-3}], lr=1e-2, momentum=0.9)
>>> opt = torchcontrib.optim.SWA(base_opt)
>>> for i in range(100):
>>> opt.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> opt.step()
>>> if i > 10 and i % 5 == 0:
>>> # Update SWA for the second parameter group
>>> opt.update_swa_group(opt.param_groups[1])
>>> opt.swap_swa_sgd()
"""
for p in group['params']:
param_state = self.state[p]
if 'swa_buffer' not in param_state:
param_state['swa_buffer'] = torch.zeros_like(p.data)
buf = param_state['swa_buffer']
virtual_decay = 1 / float(group["n_avg"] + 1)
diff = (p.data - buf) * virtual_decay
buf.add_(diff)
group["n_avg"] += 1
def update_swa(self):
r"""Updates the SWA running averages of all optimized parameters.
"""
for group in self.param_groups:
self.update_swa_group(group)
def swap_swa_sgd(self):
r"""Swaps the values of the optimized variables and swa buffers.
It's meant to be called in the end of training to use the collected
swa running averages. It can also be used to evaluate the running
averages during training; to continue training `swap_swa_sgd`
should be called again.
"""
for group in self.param_groups:
for p in group['params']:
param_state = self.state[p]
if 'swa_buffer' not in param_state:
# If swa wasn't applied we don't swap params
warnings.warn(
"SWA wasn't applied to param {}; skipping it".format(p))
continue
buf = param_state['swa_buffer']
tmp = torch.empty_like(p.data)
tmp.copy_(p.data)
p.data.copy_(buf)
buf.copy_(tmp)
def step(self, closure=None):
r"""Performs a single optimization step.
In automatic mode also updates SWA running averages.
"""
self._reset_lr_to_swa()
loss = self.optimizer.step(closure)
for group in self.param_groups:
group["step_counter"] += 1
steps = group["step_counter"]
if self._auto_mode:
if steps > self.swa_start and steps % self.swa_freq == 0:
self.update_swa_group(group)
return loss
def state_dict(self):
r"""Returns the state of SWA as a :class:`dict`.
It contains three entries:
* opt_state - a dict holding current optimization state of the base
optimizer. Its content differs between optimizer classes.
* swa_state - a dict containing current state of SWA. For each
optimized variable it contains swa_buffer keeping the running
average of the variable
* param_groups - a dict containing all parameter groups
"""
opt_state_dict = self.optimizer.state_dict()
swa_state = {(id(k) if isinstance(k, torch.Tensor) else k): v
for k, v in self.state.items()}
opt_state = opt_state_dict["state"]
param_groups = opt_state_dict["param_groups"]
return {"opt_state": opt_state, "swa_state": swa_state,
"param_groups": param_groups}
def load_state_dict(self, state_dict):
r"""Loads the optimizer state.
Args:
state_dict (dict): SWA optimizer state. Should be an object returned
from a call to `state_dict`.
"""
swa_state_dict = {"state": state_dict["swa_state"],
"param_groups": state_dict["param_groups"]}
opt_state_dict = {"state": state_dict["opt_state"],
"param_groups": state_dict["param_groups"]}
super(SWA, self).load_state_dict(swa_state_dict)
self.optimizer.load_state_dict(opt_state_dict)
self.opt_state = self.optimizer.state
def add_param_group(self, param_group):
r"""Add a param group to the :class:`Optimizer` s `param_groups`.
This can be useful when fine tuning a pre-trained network as frozen
layers can be made trainable and added to the :class:`Optimizer` as
training progresses.
Args:
param_group (dict): Specifies what Tensors should be optimized along
with group specific optimization options.
"""
param_group['n_avg'] = 0
param_group['step_counter'] = 0
self.optimizer.add_param_group(param_group)
@staticmethod
def bn_update(loader, model, device=None):
r"""Updates BatchNorm running_mean, running_var buffers in the model.
It performs one pass over data in `loader` to estimate the activation
statistics for BatchNorm layers in the model.
Args:
loader (torch.utils.data.DataLoader): dataset loader to compute the
activation statistics on. Each data batch should be either a
tensor, or a list/tuple whose first element is a tensor
containing data.
model (torch.nn.Module): model for which we seek to update BatchNorm
statistics.
device (torch.device, optional): If set, data will be trasferred to
:attr:`device` before being passed into :attr:`model`.
"""
if not _check_bn(model):
return
was_training = model.training
model.train()
momenta = {}
model.apply(_reset_bn)
model.apply(lambda module: _get_momenta(module, momenta))
n = 0
for input in loader:
if isinstance(input, (list, tuple)):
input = input[0]
b = input.size(0)
momentum = b / float(n + b)
for module in momenta.keys():
module.momentum = momentum
if device is not None:
input = input.to(device)
model(input)
n += b
model.apply(lambda module: _set_momenta(module, momenta))
model.train(was_training)
# BatchNorm utils
def _check_bn_apply(module, flag):
if issubclass(module.__class__, torch.nn.modules.batchnorm._BatchNorm):
flag[0] = True
def _check_bn(model):
flag = [False]
model.apply(lambda module: _check_bn_apply(module, flag))
return flag[0]
def _reset_bn(module):
if issubclass(module.__class__, torch.nn.modules.batchnorm._BatchNorm):
module.running_mean = torch.zeros_like(module.running_mean)
module.running_var = torch.ones_like(module.running_var)
def _get_momenta(module, momenta):
if issubclass(module.__class__, torch.nn.modules.batchnorm._BatchNorm):
momenta[module] = module.momentum
def _set_momenta(module, momenta):
if issubclass(module.__class__, torch.nn.modules.batchnorm._BatchNorm):
module.momentum = momenta[module]
|
from .swa import SWA
|
VERSION = "0.27.9"
|
class ApacAIError(Exception):
def __init__(
self,
message=None,
http_body=None,
http_status=None,
json_body=None,
headers=None,
code=None,
):
super(ApacAIError, self).__init__(message)
if http_body and hasattr(http_body, "decode"):
try:
http_body = http_body.decode("utf-8")
except BaseException:
http_body = (
"<Could not decode body as utf-8. "
"Please contact us through our help center at help.apacai.com.>"
)
self._message = message
self.http_body = http_body
self.http_status = http_status
self.json_body = json_body
self.headers = headers or {}
self.code = code
self.request_id = self.headers.get("request-id", None)
self.error = self.construct_error_object()
self.organization = self.headers.get("apacai-organization", None)
def __str__(self):
msg = self._message or "<empty message>"
if self.request_id is not None:
return "Request {0}: {1}".format(self.request_id, msg)
else:
return msg
# Returns the underlying `Exception` (base class) message, which is usually
# the raw message returned by APACAI's API. This was previously available
# in python2 via `error.message`. Unlike `str(error)`, it omits "Request
# req_..." from the beginning of the string.
@property
def user_message(self):
return self._message
def __repr__(self):
return "%s(message=%r, http_status=%r, request_id=%r)" % (
self.__class__.__name__,
self._message,
self.http_status,
self.request_id,
)
def construct_error_object(self):
if (
self.json_body is None
or not isinstance(self.json_body, dict)
or "error" not in self.json_body
or not isinstance(self.json_body["error"], dict)
):
return None
return apacai.api_resources.error_object.ErrorObject.construct_from(
self.json_body["error"]
)
class APIError(ApacAIError):
pass
class TryAgain(ApacAIError):
pass
class Timeout(ApacAIError):
pass
class APIConnectionError(ApacAIError):
def __init__(
self,
message,
http_body=None,
http_status=None,
json_body=None,
headers=None,
code=None,
should_retry=False,
):
super(APIConnectionError, self).__init__(
message, http_body, http_status, json_body, headers, code
)
self.should_retry = should_retry
class InvalidRequestError(ApacAIError):
def __init__(
self,
message,
param,
code=None,
http_body=None,
http_status=None,
json_body=None,
headers=None,
):
super(InvalidRequestError, self).__init__(
message, http_body, http_status, json_body, headers, code
)
self.param = param
def __repr__(self):
return "%s(message=%r, param=%r, code=%r, http_status=%r, " "request_id=%r)" % (
self.__class__.__name__,
self._message,
self.param,
self.code,
self.http_status,
self.request_id,
)
def __reduce__(self):
return type(self), (
self._message,
self.param,
self.code,
self.http_body,
self.http_status,
self.json_body,
self.headers,
)
class AuthenticationError(ApacAIError):
pass
class PermissionError(ApacAIError):
pass
class RateLimitError(ApacAIError):
pass
class ServiceUnavailableError(ApacAIError):
pass
class InvalidAPIType(ApacAIError):
pass
class SignatureVerificationError(ApacAIError):
def __init__(self, message, sig_header, http_body=None):
super(SignatureVerificationError, self).__init__(message, http_body)
self.sig_header = sig_header
def __reduce__(self):
return type(self), (
self._message,
self.sig_header,
self.http_body,
)
|
APACAI_LOG = os.environ.get("APACAI_LOG")
logger = logging.getLogger("apacai")
__all__ = [
"log_info",
"log_debug",
"log_warn",
"logfmt",
]
api_key_to_header = (
lambda api, key: {"Authorization": f"Bearer {key}"}
if api in (ApiType.OPEN_AI, ApiType.AZURE_AD)
else {"api-key": f"{key}"}
)
class ApiType(Enum):
AZURE = 1
OPEN_AI = 2
AZURE_AD = 3
@staticmethod
def from_str(label):
if label.lower() == "azure":
return ApiType.AZURE
elif label.lower() in ("azure_ad", "azuread"):
return ApiType.AZURE_AD
elif label.lower() in ("open_ai", "apacai"):
return ApiType.OPEN_AI
else:
raise apacai.error.InvalidAPIType(
"The API type provided in invalid. Please select one of the supported API types: 'azure', 'azure_ad', 'open_ai'"
)
def _console_log_level():
if apacai.log in ["debug", "info"]:
return apacai.log
elif APACAI_LOG in ["debug", "info"]:
return APACAI_LOG
else:
return None
def log_debug(message, **params):
msg = logfmt(dict(message=message, **params))
if _console_log_level() == "debug":
print(msg, file=sys.stderr)
logger.debug(msg)
def log_info(message, **params):
msg = logfmt(dict(message=message, **params))
if _console_log_level() in ["debug", "info"]:
print(msg, file=sys.stderr)
logger.info(msg)
def log_warn(message, **params):
msg = logfmt(dict(message=message, **params))
print(msg, file=sys.stderr)
logger.warn(msg)
def logfmt(props):
def fmt(key, val):
# Handle case where val is a bytes or bytesarray
if hasattr(val, "decode"):
val = val.decode("utf-8")
# Check if val is already a string to avoid re-encoding into ascii.
if not isinstance(val, str):
val = str(val)
if re.search(r"\s", val):
val = repr(val)
# key should already be a string
if re.search(r"\s", key):
key = repr(key)
return "{key}={val}".format(key=key, val=val)
return " ".join([fmt(key, val) for key, val in sorted(props.items())])
def get_object_classes():
# This is here to avoid a circular dependency
from apacai.object_classes import OBJECT_CLASSES
return OBJECT_CLASSES
def convert_to_apacai_object(
resp,
api_key=None,
api_version=None,
organization=None,
engine=None,
plain_old_data=False,
):
# If we get a ApacAIResponse, we'll want to return a ApacAIObject.
response_ms: Optional[int] = None
if isinstance(resp, apacai.apacai_response.ApacAIResponse):
organization = resp.organization
response_ms = resp.response_ms
resp = resp.data
if plain_old_data:
return resp
elif isinstance(resp, list):
return [
convert_to_apacai_object(
i, api_key, api_version, organization, engine=engine
)
for i in resp
]
elif isinstance(resp, dict) and not isinstance(
resp, apacai.apacai_object.ApacAIObject
):
resp = resp.copy()
klass_name = resp.get("object")
if isinstance(klass_name, str):
klass = get_object_classes().get(
klass_name, apacai.apacai_object.ApacAIObject
)
else:
klass = apacai.apacai_object.ApacAIObject
return klass.construct_from(
resp,
api_key=api_key,
api_version=api_version,
organization=organization,
response_ms=response_ms,
engine=engine,
)
else:
return resp
def convert_to_dict(obj):
"""Converts a ApacAIObject back to a regular dict.
Nested ApacAIObjects are also converted back to regular dicts.
:param obj: The ApacAIObject to convert.
:returns: The ApacAIObject as a dict.
"""
if isinstance(obj, list):
return [convert_to_dict(i) for i in obj]
# This works by virtue of the fact that ApacAIObjects _are_ dicts. The dict
# comprehension returns a regular dict and recursively applies the
# conversion to each value.
elif isinstance(obj, dict):
return {k: convert_to_dict(v) for k, v in obj.items()}
else:
return obj
def merge_dicts(x, y):
z = x.copy()
z.update(y)
return z
def default_api_key() -> str:
if apacai.api_key_path:
with open(apacai.api_key_path, "rt") as k:
api_key = k.read().strip()
if not api_key.startswith("sk-"):
raise ValueError(f"Malformed API key in {apacai.api_key_path}.")
return api_key
elif apacai.api_key is not None:
return apacai.api_key
else:
raise apacai.error.AuthenticationError(
"No API key provided. You can set your API key in code using 'apacai.api_key = <API-KEY>', or you can set the environment variable APACAI_API_KEY=<API-KEY>). If your API key is stored in a file, you can point the apacai module at it with 'apacai.api_key_path = <PATH>'. You can generate API keys in the APACAI web interface. See https://platform.apacai.com/account/api-keys for details."
)
|
try:
import wandb
WANDB_AVAILABLE = True
except:
WANDB_AVAILABLE = False
if WANDB_AVAILABLE:
import datetime
import io
import json
import re
from pathlib import Path
from apacai import File, FineTune
from apacai.datalib.numpy_helper import numpy as np
from apacai.datalib.pandas_helper import pandas as pd
class WandbLogger:
"""
Log fine-tunes to [Weights & Biases](https://wandb.me/apacai-docs)
"""
if not WANDB_AVAILABLE:
print("Logging requires wandb to be installed. Run `pip install wandb`.")
else:
_wandb_api = None
_logged_in = False
@classmethod
def sync(
cls,
id=None,
n_fine_tunes=None,
project="GPT-3",
entity=None,
force=False,
**kwargs_wandb_init,
):
"""
Sync fine-tunes to Weights & Biases.
:param id: The id of the fine-tune (optional)
:param n_fine_tunes: Number of most recent fine-tunes to log when an id is not provided. By default, every fine-tune is synced.
:param project: Name of the project where you're sending runs. By default, it is "GPT-3".
:param entity: Username or team name where you're sending runs. By default, your default entity is used, which is usually your username.
:param force: Forces logging and overwrite existing wandb run of the same fine-tune.
"""
if not WANDB_AVAILABLE:
return
if id:
fine_tune = FineTune.retrieve(id=id)
fine_tune.pop("events", None)
fine_tunes = [fine_tune]
else:
# get list of fine_tune to log
fine_tunes = FineTune.list()
if not fine_tunes or fine_tunes.get("data") is None:
print("No fine-tune has been retrieved")
return
fine_tunes = fine_tunes["data"][
-n_fine_tunes if n_fine_tunes is not None else None :
]
# log starting from oldest fine_tune
show_individual_warnings = (
False if id is None and n_fine_tunes is None else True
)
fine_tune_logged = [
cls._log_fine_tune(
fine_tune,
project,
entity,
force,
show_individual_warnings,
**kwargs_wandb_init,
)
for fine_tune in fine_tunes
]
if not show_individual_warnings and not any(fine_tune_logged):
print("No new successful fine-tunes were found")
return "🎉 wandb sync completed successfully"
@classmethod
def _log_fine_tune(
cls,
fine_tune,
project,
entity,
force,
show_individual_warnings,
**kwargs_wandb_init,
):
fine_tune_id = fine_tune.get("id")
status = fine_tune.get("status")
# check run completed successfully
if status != "succeeded":
if show_individual_warnings:
print(
f'Fine-tune {fine_tune_id} has the status "{status}" and will not be logged'
)
return
# check results are present
try:
results_id = fine_tune["result_files"][0]["id"]
results = File.download(id=results_id).decode("utf-8")
except:
if show_individual_warnings:
print(f"Fine-tune {fine_tune_id} has no results and will not be logged")
return
# check run has not been logged already
run_path = f"{project}/{fine_tune_id}"
if entity is not None:
run_path = f"{entity}/{run_path}"
wandb_run = cls._get_wandb_run(run_path)
if wandb_run:
wandb_status = wandb_run.summary.get("status")
if show_individual_warnings:
if wandb_status == "succeeded":
print(
f"Fine-tune {fine_tune_id} has already been logged successfully at {wandb_run.url}"
)
if not force:
print(
'Use "--force" in the CLI or "force=True" in python if you want to overwrite previous run'
)
else:
print(
f"A run for fine-tune {fine_tune_id} was previously created but didn't end successfully"
)
if wandb_status != "succeeded" or force:
print(
f"A new wandb run will be created for fine-tune {fine_tune_id} and previous run will be overwritten"
)
if wandb_status == "succeeded" and not force:
return
# start a wandb run
wandb.init(
job_type="fine-tune",
config=cls._get_config(fine_tune),
project=project,
entity=entity,
name=fine_tune_id,
id=fine_tune_id,
**kwargs_wandb_init,
)
# log results
df_results = pd.read_csv(io.StringIO(results))
for _, row in df_results.iterrows():
metrics = {k: v for k, v in row.items() if not np.isnan(v)}
step = metrics.pop("step")
if step is not None:
step = int(step)
wandb.log(metrics, step=step)
fine_tuned_model = fine_tune.get("fine_tuned_model")
if fine_tuned_model is not None:
wandb.summary["fine_tuned_model"] = fine_tuned_model
# training/validation files and fine-tune details
cls._log_artifacts(fine_tune, project, entity)
# mark run as complete
wandb.summary["status"] = "succeeded"
wandb.finish()
return True
@classmethod
def _ensure_logged_in(cls):
if not cls._logged_in:
if wandb.login():
cls._logged_in = True
else:
raise Exception("You need to log in to wandb")
@classmethod
def _get_wandb_run(cls, run_path):
cls._ensure_logged_in()
try:
if cls._wandb_api is None:
cls._wandb_api = wandb.Api()
return cls._wandb_api.run(run_path)
except Exception:
return None
@classmethod
def _get_wandb_artifact(cls, artifact_path):
cls._ensure_logged_in()
try:
if cls._wandb_api is None:
cls._wandb_api = wandb.Api()
return cls._wandb_api.artifact(artifact_path)
except Exception:
return None
@classmethod
def _get_config(cls, fine_tune):
config = dict(fine_tune)
for key in ("training_files", "validation_files", "result_files"):
if config.get(key) and len(config[key]):
config[key] = config[key][0]
if config.get("created_at"):
config["created_at"] = datetime.datetime.fromtimestamp(config["created_at"])
return config
@classmethod
def _log_artifacts(cls, fine_tune, project, entity):
# training/validation files
training_file = (
fine_tune["training_files"][0]
if fine_tune.get("training_files") and len(fine_tune["training_files"])
else None
)
validation_file = (
fine_tune["validation_files"][0]
if fine_tune.get("validation_files") and len(fine_tune["validation_files"])
else None
)
for file, prefix, artifact_type in (
(training_file, "train", "training_files"),
(validation_file, "valid", "validation_files"),
):
if file is not None:
cls._log_artifact_inputs(file, prefix, artifact_type, project, entity)
# fine-tune details
fine_tune_id = fine_tune.get("id")
artifact = wandb.Artifact(
"fine_tune_details",
type="fine_tune_details",
metadata=fine_tune,
)
with artifact.new_file(
"fine_tune_details.json", mode="w", encoding="utf-8"
) as f:
json.dump(fine_tune, f, indent=2)
wandb.run.log_artifact(
artifact,
aliases=["latest", fine_tune_id],
)
@classmethod
def _log_artifact_inputs(cls, file, prefix, artifact_type, project, entity):
file_id = file["id"]
filename = Path(file["filename"]).name
stem = Path(file["filename"]).stem
# get input artifact
artifact_name = f"{prefix}-{filename}"
# sanitize name to valid wandb artifact name
artifact_name = re.sub(r"[^a-zA-Z0-9_\-.]", "_", artifact_name)
artifact_alias = file_id
artifact_path = f"{project}/{artifact_name}:{artifact_alias}"
if entity is not None:
artifact_path = f"{entity}/{artifact_path}"
artifact = cls._get_wandb_artifact(artifact_path)
# create artifact if file not already logged previously
if artifact is None:
# get file content
try:
file_content = File.download(id=file_id).decode("utf-8")
except:
print(
f"File {file_id} could not be retrieved. Make sure you are allowed to download training/validation files"
)
return
artifact = wandb.Artifact(artifact_name, type=artifact_type, metadata=file)
with artifact.new_file(filename, mode="w", encoding="utf-8") as f:
f.write(file_content)
# create a Table
try:
table, n_items = cls._make_table(file_content)
artifact.add(table, stem)
wandb.config.update({f"n_{prefix}": n_items})
artifact.metadata["items"] = n_items
except:
print(f"File {file_id} could not be read as a valid JSON file")
else:
# log number of items
wandb.config.update({f"n_{prefix}": artifact.metadata.get("items")})
wandb.run.use_artifact(artifact, aliases=["latest", artifact_alias])
@classmethod
def _make_table(cls, file_content):
df = pd.read_json(io.StringIO(file_content), orient="records", lines=True)
return wandb.Table(dataframe=df), len(df)
|
class Remediation(NamedTuple):
name: str
immediate_msg: Optional[str] = None
necessary_msg: Optional[str] = None
necessary_fn: Optional[Callable[[Any], Any]] = None
optional_msg: Optional[str] = None
optional_fn: Optional[Callable[[Any], Any]] = None
error_msg: Optional[str] = None
def num_examples_validator(df):
"""
This validator will only print out the number of examples and recommend to the user to increase the number of examples if less than 100.
"""
MIN_EXAMPLES = 100
optional_suggestion = (
""
if len(df) >= MIN_EXAMPLES
else ". In general, we recommend having at least a few hundred examples. We've found that performance tends to linearly increase for every doubling of the number of examples"
)
immediate_msg = (
f"\n- Your file contains {len(df)} prompt-completion pairs{optional_suggestion}"
)
return Remediation(name="num_examples", immediate_msg=immediate_msg)
def necessary_column_validator(df, necessary_column):
"""
This validator will ensure that the necessary column is present in the dataframe.
"""
def lower_case_column(df, column):
cols = [c for c in df.columns if str(c).lower() == column]
df.rename(columns={cols[0]: column.lower()}, inplace=True)
return df
immediate_msg = None
necessary_fn = None
necessary_msg = None
error_msg = None
if necessary_column not in df.columns:
if necessary_column in [str(c).lower() for c in df.columns]:
def lower_case_column_creator(df):
return lower_case_column(df, necessary_column)
necessary_fn = lower_case_column_creator
immediate_msg = (
f"\n- The `{necessary_column}` column/key should be lowercase"
)
necessary_msg = f"Lower case column name to `{necessary_column}`"
else:
error_msg = f"`{necessary_column}` column/key is missing. Please make sure you name your columns/keys appropriately, then retry"
return Remediation(
name="necessary_column",
immediate_msg=immediate_msg,
necessary_msg=necessary_msg,
necessary_fn=necessary_fn,
error_msg=error_msg,
)
def additional_column_validator(df, fields=["prompt", "completion"]):
"""
This validator will remove additional columns from the dataframe.
"""
additional_columns = []
necessary_msg = None
immediate_msg = None
necessary_fn = None
if len(df.columns) > 2:
additional_columns = [c for c in df.columns if c not in fields]
warn_message = ""
for ac in additional_columns:
dups = [c for c in additional_columns if ac in c]
if len(dups) > 0:
warn_message += f"\n WARNING: Some of the additional columns/keys contain `{ac}` in their name. These will be ignored, and the column/key `{ac}` will be used instead. This could also result from a duplicate column/key in the provided file."
immediate_msg = f"\n- The input file should contain exactly two columns/keys per row. Additional columns/keys present are: {additional_columns}{warn_message}"
necessary_msg = f"Remove additional columns/keys: {additional_columns}"
def necessary_fn(x):
return x[fields]
return Remediation(
name="additional_column",
immediate_msg=immediate_msg,
necessary_msg=necessary_msg,
necessary_fn=necessary_fn,
)
def non_empty_field_validator(df, field="completion"):
"""
This validator will ensure that no completion is empty.
"""
necessary_msg = None
necessary_fn = None
immediate_msg = None
if df[field].apply(lambda x: x == "").any() or df[field].isnull().any():
empty_rows = (df[field] == "") | (df[field].isnull())
empty_indexes = df.reset_index().index[empty_rows].tolist()
immediate_msg = f"\n- `{field}` column/key should not contain empty strings. These are rows: {empty_indexes}"
def necessary_fn(x):
return x[x[field] != ""].dropna(subset=[field])
necessary_msg = f"Remove {len(empty_indexes)} rows with empty {field}s"
return Remediation(
name=f"empty_{field}",
immediate_msg=immediate_msg,
necessary_msg=necessary_msg,
necessary_fn=necessary_fn,
)
def duplicated_rows_validator(df, fields=["prompt", "completion"]):
"""
This validator will suggest to the user to remove duplicate rows if they exist.
"""
duplicated_rows = df.duplicated(subset=fields)
duplicated_indexes = df.reset_index().index[duplicated_rows].tolist()
immediate_msg = None
optional_msg = None
optional_fn = None
if len(duplicated_indexes) > 0:
immediate_msg = f"\n- There are {len(duplicated_indexes)} duplicated {'-'.join(fields)} sets. These are rows: {duplicated_indexes}"
optional_msg = f"Remove {len(duplicated_indexes)} duplicate rows"
def optional_fn(x):
return x.drop_duplicates(subset=fields)
return Remediation(
name="duplicated_rows",
immediate_msg=immediate_msg,
optional_msg=optional_msg,
optional_fn=optional_fn,
)
def long_examples_validator(df):
"""
This validator will suggest to the user to remove examples that are too long.
"""
immediate_msg = None
optional_msg = None
optional_fn = None
ft_type = infer_task_type(df)
if ft_type != "open-ended generation":
def get_long_indexes(d):
long_examples = d.apply(
lambda x: len(x.prompt) + len(x.completion) > 10000, axis=1
)
return d.reset_index().index[long_examples].tolist()
long_indexes = get_long_indexes(df)
if len(long_indexes) > 0:
immediate_msg = f"\n- There are {len(long_indexes)} examples that are very long. These are rows: {long_indexes}\nFor conditional generation, and for classification the examples shouldn't be longer than 2048 tokens."
optional_msg = f"Remove {len(long_indexes)} long examples"
def optional_fn(x):
long_indexes_to_drop = get_long_indexes(x)
if long_indexes != long_indexes_to_drop:
sys.stdout.write(
f"The indices of the long examples has changed as a result of a previously applied recommendation.\nThe {len(long_indexes_to_drop)} long examples to be dropped are now at the following indices: {long_indexes_to_drop}\n"
)
return x.drop(long_indexes_to_drop)
return Remediation(
name="long_examples",
immediate_msg=immediate_msg,
optional_msg=optional_msg,
optional_fn=optional_fn,
)
def common_prompt_suffix_validator(df):
"""
This validator will suggest to add a common suffix to the prompt if one doesn't already exist in case of classification or conditional generation.
"""
error_msg = None
immediate_msg = None
optional_msg = None
optional_fn = None
# Find a suffix which is not contained within the prompt otherwise
suggested_suffix = "\n\n### =>\n\n"
suffix_options = [
" ->",
"\n\n###\n\n",
"\n\n===\n\n",
"\n\n---\n\n",
"\n\n===>\n\n",
"\n\n--->\n\n",
]
for suffix_option in suffix_options:
if suffix_option == " ->":
if df.prompt.str.contains("\n").any():
continue
if df.prompt.str.contains(suffix_option, regex=False).any():
continue
suggested_suffix = suffix_option
break
display_suggested_suffix = suggested_suffix.replace("\n", "\\n")
ft_type = infer_task_type(df)
if ft_type == "open-ended generation":
return Remediation(name="common_suffix")
def add_suffix(x, suffix):
x["prompt"] += suffix
return x
common_suffix = get_common_xfix(df.prompt, xfix="suffix")
if (df.prompt == common_suffix).all():
error_msg = f"All prompts are identical: `{common_suffix}`\nConsider leaving the prompts blank if you want to do open-ended generation, otherwise ensure prompts are different"
return Remediation(name="common_suffix", error_msg=error_msg)
if common_suffix != "":
common_suffix_new_line_handled = common_suffix.replace("\n", "\\n")
immediate_msg = (
f"\n- All prompts end with suffix `{common_suffix_new_line_handled}`"
)
if len(common_suffix) > 10:
immediate_msg += f". This suffix seems very long. Consider replacing with a shorter suffix, such as `{display_suggested_suffix}`"
if (
df.prompt.str[: -len(common_suffix)]
.str.contains(common_suffix, regex=False)
.any()
):
immediate_msg += f"\n WARNING: Some of your prompts contain the suffix `{common_suffix}` more than once. We strongly suggest that you review your prompts and add a unique suffix"
else:
immediate_msg = "\n- Your data does not contain a common separator at the end of your prompts. Having a separator string appended to the end of the prompt makes it clearer to the fine-tuned model where the completion should begin. See https://platform.apacai.com/docs/guides/fine-tuning/preparing-your-dataset for more detail and examples. If you intend to do open-ended generation, then you should leave the prompts empty"
if common_suffix == "":
optional_msg = (
f"Add a suffix separator `{display_suggested_suffix}` to all prompts"
)
def optional_fn(x):
return add_suffix(x, suggested_suffix)
return Remediation(
name="common_completion_suffix",
immediate_msg=immediate_msg,
optional_msg=optional_msg,
optional_fn=optional_fn,
error_msg=error_msg,
)
def common_prompt_prefix_validator(df):
"""
This validator will suggest to remove a common prefix from the prompt if a long one exist.
"""
MAX_PREFIX_LEN = 12
immediate_msg = None
optional_msg = None
optional_fn = None
common_prefix = get_common_xfix(df.prompt, xfix="prefix")
if common_prefix == "":
return Remediation(name="common_prefix")
def remove_common_prefix(x, prefix):
x["prompt"] = x["prompt"].str[len(prefix) :]
return x
if (df.prompt == common_prefix).all():
# already handled by common_suffix_validator
return Remediation(name="common_prefix")
if common_prefix != "":
immediate_msg = f"\n- All prompts start with prefix `{common_prefix}`"
if MAX_PREFIX_LEN < len(common_prefix):
immediate_msg += ". Fine-tuning doesn't require the instruction specifying the task, or a few-shot example scenario. Most of the time you should only add the input data into the prompt, and the desired output into the completion"
optional_msg = f"Remove prefix `{common_prefix}` from all prompts"
def optional_fn(x):
return remove_common_prefix(x, common_prefix)
return Remediation(
name="common_prompt_prefix",
immediate_msg=immediate_msg,
optional_msg=optional_msg,
optional_fn=optional_fn,
)
def common_completion_prefix_validator(df):
"""
This validator will suggest to remove a common prefix from the completion if a long one exist.
"""
MAX_PREFIX_LEN = 5
common_prefix = get_common_xfix(df.completion, xfix="prefix")
ws_prefix = len(common_prefix) > 0 and common_prefix[0] == " "
if len(common_prefix) < MAX_PREFIX_LEN:
return Remediation(name="common_prefix")
def remove_common_prefix(x, prefix, ws_prefix):
x["completion"] = x["completion"].str[len(prefix) :]
if ws_prefix:
# keep the single whitespace as prefix
x["completion"] = " " + x["completion"]
return x
if (df.completion == common_prefix).all():
# already handled by common_suffix_validator
return Remediation(name="common_prefix")
immediate_msg = f"\n- All completions start with prefix `{common_prefix}`. Most of the time you should only add the output data into the completion, without any prefix"
optional_msg = f"Remove prefix `{common_prefix}` from all completions"
def optional_fn(x):
return remove_common_prefix(x, common_prefix, ws_prefix)
return Remediation(
name="common_completion_prefix",
immediate_msg=immediate_msg,
optional_msg=optional_msg,
optional_fn=optional_fn,
)
def common_completion_suffix_validator(df):
"""
This validator will suggest to add a common suffix to the completion if one doesn't already exist in case of classification or conditional generation.
"""
error_msg = None
immediate_msg = None
optional_msg = None
optional_fn = None
ft_type = infer_task_type(df)
if ft_type == "open-ended generation" or ft_type == "classification":
return Remediation(name="common_suffix")
common_suffix = get_common_xfix(df.completion, xfix="suffix")
if (df.completion == common_suffix).all():
error_msg = f"All completions are identical: `{common_suffix}`\nEnsure completions are different, otherwise the model will just repeat `{common_suffix}`"
return Remediation(name="common_suffix", error_msg=error_msg)
# Find a suffix which is not contained within the completion otherwise
suggested_suffix = " [END]"
suffix_options = [
"\n",
".",
" END",
"***",
"+++",
"&&&",
"$$$",
"@@@",
"%%%",
]
for suffix_option in suffix_options:
if df.completion.str.contains(suffix_option, regex=False).any():
continue
suggested_suffix = suffix_option
break
display_suggested_suffix = suggested_suffix.replace("\n", "\\n")
def add_suffix(x, suffix):
x["completion"] += suffix
return x
if common_suffix != "":
common_suffix_new_line_handled = common_suffix.replace("\n", "\\n")
immediate_msg = (
f"\n- All completions end with suffix `{common_suffix_new_line_handled}`"
)
if len(common_suffix) > 10:
immediate_msg += f". This suffix seems very long. Consider replacing with a shorter suffix, such as `{display_suggested_suffix}`"
if (
df.completion.str[: -len(common_suffix)]
.str.contains(common_suffix, regex=False)
.any()
):
immediate_msg += f"\n WARNING: Some of your completions contain the suffix `{common_suffix}` more than once. We suggest that you review your completions and add a unique ending"
else:
immediate_msg = "\n- Your data does not contain a common ending at the end of your completions. Having a common ending string appended to the end of the completion makes it clearer to the fine-tuned model where the completion should end. See https://platform.apacai.com/docs/guides/fine-tuning/preparing-your-dataset for more detail and examples."
if common_suffix == "":
optional_msg = (
f"Add a suffix ending `{display_suggested_suffix}` to all completions"
)
def optional_fn(x):
return add_suffix(x, suggested_suffix)
return Remediation(
name="common_completion_suffix",
immediate_msg=immediate_msg,
optional_msg=optional_msg,
optional_fn=optional_fn,
error_msg=error_msg,
)
def completions_space_start_validator(df):
"""
This validator will suggest to add a space at the start of the completion if it doesn't already exist. This helps with tokenization.
"""
def add_space_start(x):
x["completion"] = x["completion"].apply(
lambda x: ("" if x[0] == " " else " ") + x
)
return x
optional_msg = None
optional_fn = None
immediate_msg = None
if df.completion.str[:1].nunique() != 1 or df.completion.values[0][0] != " ":
immediate_msg = "\n- The completion should start with a whitespace character (` `). This tends to produce better results due to the tokenization we use. See https://platform.apacai.com/docs/guides/fine-tuning/preparing-your-dataset for more details"
optional_msg = "Add a whitespace character to the beginning of the completion"
optional_fn = add_space_start
return Remediation(
name="completion_space_start",
immediate_msg=immediate_msg,
optional_msg=optional_msg,
optional_fn=optional_fn,
)
def lower_case_validator(df, column):
"""
This validator will suggest to lowercase the column values, if more than a third of letters are uppercase.
"""
def lower_case(x):
x[column] = x[column].str.lower()
return x
count_upper = (
df[column]
.apply(lambda x: sum(1 for c in x if c.isalpha() and c.isupper()))
.sum()
)
count_lower = (
df[column]
.apply(lambda x: sum(1 for c in x if c.isalpha() and c.islower()))
.sum()
)
if count_upper * 2 > count_lower:
return Remediation(
name="lower_case",
immediate_msg=f"\n- More than a third of your `{column}` column/key is uppercase. Uppercase {column}s tends to perform worse than a mixture of case encountered in normal language. We recommend to lower case the data if that makes sense in your domain. See https://platform.apacai.com/docs/guides/fine-tuning/preparing-your-dataset for more details",
optional_msg=f"Lowercase all your data in column/key `{column}`",
optional_fn=lower_case,
)
def read_any_format(fname, fields=["prompt", "completion"]):
"""
This function will read a file saved in .csv, .json, .txt, .xlsx or .tsv format using pandas.
- for .xlsx it will read the first sheet
- for .txt it will assume completions and split on newline
"""
assert_has_pandas()
remediation = None
necessary_msg = None
immediate_msg = None
error_msg = None
df = None
if os.path.isfile(fname):
try:
if fname.lower().endswith(".csv") or fname.lower().endswith(".tsv"):
file_extension_str, separator = (
("CSV", ",") if fname.lower().endswith(".csv") else ("TSV", "\t")
)
immediate_msg = f"\n- Based on your file extension, your file is formatted as a {file_extension_str} file"
necessary_msg = (
f"Your format `{file_extension_str}` will be converted to `JSONL`"
)
df = pd.read_csv(fname, sep=separator, dtype=str).fillna("")
elif fname.lower().endswith(".xlsx"):
immediate_msg = "\n- Based on your file extension, your file is formatted as an Excel file"
necessary_msg = "Your format `XLSX` will be converted to `JSONL`"
xls = pd.ExcelFile(fname)
sheets = xls.sheet_names
if len(sheets) > 1:
immediate_msg += "\n- Your Excel file contains more than one sheet. Please either save as csv or ensure all data is present in the first sheet. WARNING: Reading only the first sheet..."
df = pd.read_excel(fname, dtype=str).fillna("")
elif fname.lower().endswith(".txt"):
immediate_msg = (
"\n- Based on your file extension, you provided a text file"
)
necessary_msg = "Your format `TXT` will be converted to `JSONL`"
with open(fname, "r") as f:
content = f.read()
df = pd.DataFrame(
[["", line] for line in content.split("\n")],
columns=fields,
dtype=str,
).fillna("")
elif fname.lower().endswith(".jsonl"):
df = pd.read_json(fname, lines=True, dtype=str).fillna("")
if len(df) == 1:
# this is NOT what we expect for a .jsonl file
immediate_msg = "\n- Your JSONL file appears to be in a JSON format. Your file will be converted to JSONL format"
necessary_msg = "Your format `JSON` will be converted to `JSONL`"
df = pd.read_json(fname, dtype=str).fillna("")
else:
pass # this is what we expect for a .jsonl file
elif fname.lower().endswith(".json"):
try:
# to handle case where .json file is actually a .jsonl file
df = pd.read_json(fname, lines=True, dtype=str).fillna("")
if len(df) == 1:
# this code path corresponds to a .json file that has one line
df = pd.read_json(fname, dtype=str).fillna("")
else:
# this is NOT what we expect for a .json file
immediate_msg = "\n- Your JSON file appears to be in a JSONL format. Your file will be converted to JSONL format"
necessary_msg = (
"Your format `JSON` will be converted to `JSONL`"
)
except ValueError:
# this code path corresponds to a .json file that has multiple lines (i.e. it is indented)
df = pd.read_json(fname, dtype=str).fillna("")
else:
error_msg = "Your file must have one of the following extensions: .CSV, .TSV, .XLSX, .TXT, .JSON or .JSONL"
if "." in fname:
error_msg += f" Your file `{fname}` ends with the extension `.{fname.split('.')[-1]}` which is not supported."
else:
error_msg += f" Your file `{fname}` is missing a file extension."
except (ValueError, TypeError):
file_extension_str = fname.split(".")[-1].upper()
error_msg = f"Your file `{fname}` does not appear to be in valid {file_extension_str} format. Please ensure your file is formatted as a valid {file_extension_str} file."
else:
error_msg = f"File {fname} does not exist."
remediation = Remediation(
name="read_any_format",
necessary_msg=necessary_msg,
immediate_msg=immediate_msg,
error_msg=error_msg,
)
return df, remediation
def format_inferrer_validator(df):
"""
This validator will infer the likely fine-tuning format of the data, and display it to the user if it is classification.
It will also suggest to use ada and explain train/validation split benefits.
"""
ft_type = infer_task_type(df)
immediate_msg = None
if ft_type == "classification":
immediate_msg = f"\n- Based on your data it seems like you're trying to fine-tune a model for {ft_type}\n- For classification, we recommend you try one of the faster and cheaper models, such as `ada`\n- For classification, you can estimate the expected model performance by keeping a held out dataset, which is not used for training"
return Remediation(name="num_examples", immediate_msg=immediate_msg)
def apply_necessary_remediation(df, remediation):
"""
This function will apply a necessary remediation to a dataframe, or print an error message if one exists.
"""
if remediation.error_msg is not None:
sys.stderr.write(
f"\n\nERROR in {remediation.name} validator: {remediation.error_msg}\n\nAborting..."
)
sys.exit(1)
if remediation.immediate_msg is not None:
sys.stdout.write(remediation.immediate_msg)
if remediation.necessary_fn is not None:
df = remediation.necessary_fn(df)
return df
def accept_suggestion(input_text, auto_accept):
sys.stdout.write(input_text)
if auto_accept:
sys.stdout.write("Y\n")
return True
return input().lower() != "n"
def apply_optional_remediation(df, remediation, auto_accept):
"""
This function will apply an optional remediation to a dataframe, based on the user input.
"""
optional_applied = False
input_text = f"- [Recommended] {remediation.optional_msg} [Y/n]: "
if remediation.optional_msg is not None:
if accept_suggestion(input_text, auto_accept):
df = remediation.optional_fn(df)
optional_applied = True
if remediation.necessary_msg is not None:
sys.stdout.write(f"- [Necessary] {remediation.necessary_msg}\n")
return df, optional_applied
def estimate_fine_tuning_time(df):
"""
Estimate the time it'll take to fine-tune the dataset
"""
ft_format = infer_task_type(df)
expected_time = 1.0
if ft_format == "classification":
num_examples = len(df)
expected_time = num_examples * 1.44
else:
size = df.memory_usage(index=True).sum()
expected_time = size * 0.0515
def format_time(time):
if time < 60:
return f"{round(time, 2)} seconds"
elif time < 3600:
return f"{round(time / 60, 2)} minutes"
elif time < 86400:
return f"{round(time / 3600, 2)} hours"
else:
return f"{round(time / 86400, 2)} days"
time_string = format_time(expected_time + 140)
sys.stdout.write(
f"Once your model starts training, it'll approximately take {time_string} to train a `curie` model, and less for `ada` and `babbage`. Queue will approximately take half an hour per job ahead of you.\n"
)
def get_outfnames(fname, split):
suffixes = ["_train", "_valid"] if split else [""]
i = 0
while True:
index_suffix = f" ({i})" if i > 0 else ""
candidate_fnames = [
os.path.splitext(fname)[0] + "_prepared" + suffix + index_suffix + ".jsonl"
for suffix in suffixes
]
if not any(os.path.isfile(f) for f in candidate_fnames):
return candidate_fnames
i += 1
def get_classification_hyperparams(df):
n_classes = df.completion.nunique()
pos_class = None
if n_classes == 2:
pos_class = df.completion.value_counts().index[0]
return n_classes, pos_class
def write_out_file(df, fname, any_remediations, auto_accept):
"""
This function will write out a dataframe to a file, if the user would like to proceed, and also offer a fine-tuning command with the newly created file.
For classification it will optionally ask the user if they would like to split the data into train/valid files, and modify the suggested command to include the valid set.
"""
ft_format = infer_task_type(df)
common_prompt_suffix = get_common_xfix(df.prompt, xfix="suffix")
common_completion_suffix = get_common_xfix(df.completion, xfix="suffix")
split = False
input_text = "- [Recommended] Would you like to split into training and validation set? [Y/n]: "
if ft_format == "classification":
if accept_suggestion(input_text, auto_accept):
split = True
additional_params = ""
common_prompt_suffix_new_line_handled = common_prompt_suffix.replace("\n", "\\n")
common_completion_suffix_new_line_handled = common_completion_suffix.replace(
"\n", "\\n"
)
optional_ending_string = (
f' Make sure to include `stop=["{common_completion_suffix_new_line_handled}"]` so that the generated texts ends at the expected place.'
if len(common_completion_suffix_new_line_handled) > 0
else ""
)
input_text = "\n\nYour data will be written to a new JSONL file. Proceed [Y/n]: "
if not any_remediations and not split:
sys.stdout.write(
f'\nYou can use your file for fine-tuning:\n> apacai api fine_tunes.create -t "{fname}"{additional_params}\n\nAfter you’ve fine-tuned a model, remember that your prompt has to end with the indicator string `{common_prompt_suffix_new_line_handled}` for the model to start generating completions, rather than continuing with the prompt.{optional_ending_string}\n'
)
estimate_fine_tuning_time(df)
elif accept_suggestion(input_text, auto_accept):
fnames = get_outfnames(fname, split)
if split:
assert len(fnames) == 2 and "train" in fnames[0] and "valid" in fnames[1]
MAX_VALID_EXAMPLES = 1000
n_train = max(len(df) - MAX_VALID_EXAMPLES, int(len(df) * 0.8))
df_train = df.sample(n=n_train, random_state=42)
df_valid = df.drop(df_train.index)
df_train[["prompt", "completion"]].to_json(
fnames[0], lines=True, orient="records", force_ascii=False
)
df_valid[["prompt", "completion"]].to_json(
fnames[1], lines=True, orient="records", force_ascii=False
)
n_classes, pos_class = get_classification_hyperparams(df)
additional_params += " --compute_classification_metrics"
if n_classes == 2:
additional_params += f' --classification_positive_class "{pos_class}"'
else:
additional_params += f" --classification_n_classes {n_classes}"
else:
assert len(fnames) == 1
df[["prompt", "completion"]].to_json(
fnames[0], lines=True, orient="records", force_ascii=False
)
# Add -v VALID_FILE if we split the file into train / valid
files_string = ("s" if split else "") + " to `" + ("` and `".join(fnames))
valid_string = f' -v "{fnames[1]}"' if split else ""
separator_reminder = (
""
if len(common_prompt_suffix_new_line_handled) == 0
else f"After you’ve fine-tuned a model, remember that your prompt has to end with the indicator string `{common_prompt_suffix_new_line_handled}` for the model to start generating completions, rather than continuing with the prompt."
)
sys.stdout.write(
f'\nWrote modified file{files_string}`\nFeel free to take a look!\n\nNow use that file when fine-tuning:\n> apacai api fine_tunes.create -t "{fnames[0]}"{valid_string}{additional_params}\n\n{separator_reminder}{optional_ending_string}\n'
)
estimate_fine_tuning_time(df)
else:
sys.stdout.write("Aborting... did not write the file\n")
def infer_task_type(df):
"""
Infer the likely fine-tuning task type from the data
"""
CLASSIFICATION_THRESHOLD = 3 # min_average instances of each class
if sum(df.prompt.str.len()) == 0:
return "open-ended generation"
if len(df.completion.unique()) < len(df) / CLASSIFICATION_THRESHOLD:
return "classification"
return "conditional generation"
def get_common_xfix(series, xfix="suffix"):
"""
Finds the longest common suffix or prefix of all the values in a series
"""
common_xfix = ""
while True:
common_xfixes = (
series.str[-(len(common_xfix) + 1) :]
if xfix == "suffix"
else series.str[: len(common_xfix) + 1]
) # first few or last few characters
if (
common_xfixes.nunique() != 1
): # we found the character at which we don't have a unique xfix anymore
break
elif (
common_xfix == common_xfixes.values[0]
): # the entire first row is a prefix of every other row
break
else: # the first or last few characters are still common across all rows - let's try to add one more
common_xfix = common_xfixes.values[0]
return common_xfix
def get_validators():
return [
num_examples_validator,
lambda x: necessary_column_validator(x, "prompt"),
lambda x: necessary_column_validator(x, "completion"),
additional_column_validator,
non_empty_field_validator,
format_inferrer_validator,
duplicated_rows_validator,
long_examples_validator,
lambda x: lower_case_validator(x, "prompt"),
lambda x: lower_case_validator(x, "completion"),
common_prompt_suffix_validator,
common_prompt_prefix_validator,
common_completion_prefix_validator,
common_completion_suffix_validator,
completions_space_start_validator,
]
def apply_validators(
df,
fname,
remediation,
validators,
auto_accept,
write_out_file_func,
):
optional_remediations = []
if remediation is not None:
optional_remediations.append(remediation)
for validator in validators:
remediation = validator(df)
if remediation is not None:
optional_remediations.append(remediation)
df = apply_necessary_remediation(df, remediation)
any_optional_or_necessary_remediations = any(
[
remediation
for remediation in optional_remediations
if remediation.optional_msg is not None
or remediation.necessary_msg is not None
]
)
any_necessary_applied = any(
[
remediation
for remediation in optional_remediations
if remediation.necessary_msg is not None
]
)
any_optional_applied = False
if any_optional_or_necessary_remediations:
sys.stdout.write(
"\n\nBased on the analysis we will perform the following actions:\n"
)
for remediation in optional_remediations:
df, optional_applied = apply_optional_remediation(
df, remediation, auto_accept
)
any_optional_applied = any_optional_applied or optional_applied
else:
sys.stdout.write("\n\nNo remediations found.\n")
any_optional_or_necessary_applied = any_optional_applied or any_necessary_applied
write_out_file_func(df, fname, any_optional_or_necessary_applied, auto_accept)
|
class CancelledError(Exception):
def __init__(self, msg):
self.msg = msg
Exception.__init__(self, msg)
def __str__(self):
return self.msg
__repr__ = __str__
class BufferReader(io.BytesIO):
def __init__(self, buf=b"", desc=None):
self._len = len(buf)
io.BytesIO.__init__(self, buf)
self._progress = 0
self._callback = progress(len(buf), desc=desc)
def __len__(self):
return self._len
def read(self, n=-1):
chunk = io.BytesIO.read(self, n)
self._progress += len(chunk)
if self._callback:
try:
self._callback(self._progress)
except Exception as e: # catches exception from the callback
raise CancelledError("The upload was cancelled: {}".format(e))
return chunk
def progress(total, desc):
import tqdm # type: ignore
meter = tqdm.tqdm(total=total, unit_scale=True, desc=desc)
def incr(progress):
meter.n = progress
if progress == total:
meter.close()
else:
meter.refresh()
return incr
def MB(i):
return int(i // 1024**2)
|
#!/usr/bin/env python
logger = logging.getLogger()
formatter = logging.Formatter("[%(asctime)s] %(message)s")
handler = logging.StreamHandler(sys.stderr)
handler.setFormatter(formatter)
logger.addHandler(handler)
def main():
parser = argparse.ArgumentParser(description=None)
parser.add_argument(
"-V",
"--version",
action="version",
version="%(prog)s " + version.VERSION,
)
parser.add_argument(
"-v",
"--verbose",
action="count",
dest="verbosity",
default=0,
help="Set verbosity.",
)
parser.add_argument("-b", "--api-base", help="What API base url to use.")
parser.add_argument("-k", "--api-key", help="What API key to use.")
parser.add_argument("-p", "--proxy", nargs='+', help="What proxy to use.")
parser.add_argument(
"-o",
"--organization",
help="Which organization to run as (will use your default organization if not specified)",
)
def help(args):
parser.print_help()
parser.set_defaults(func=help)
subparsers = parser.add_subparsers()
sub_api = subparsers.add_parser("api", help="Direct API calls")
sub_tools = subparsers.add_parser("tools", help="Client side tools for convenience")
sub_wandb = subparsers.add_parser("wandb", help="Logging with Weights & Biases")
api_register(sub_api)
tools_register(sub_tools)
wandb_register(sub_wandb)
args = parser.parse_args()
if args.verbosity == 1:
logger.setLevel(logging.INFO)
elif args.verbosity >= 2:
logger.setLevel(logging.DEBUG)
apacai.debug = True
if args.api_key is not None:
apacai.api_key = args.api_key
if args.api_base is not None:
apacai.api_base = args.api_base
if args.organization is not None:
apacai.organization = args.organization
if args.proxy is not None:
apacai.proxy = {}
for proxy in args.proxy:
if proxy.startswith('https'):
apacai.proxy['https'] = proxy
elif proxy.startswith('http'):
apacai.proxy['http'] = proxy
try:
args.func(args)
except apacai.error.ApacAIError as e:
display_error(e)
return 1
except KeyboardInterrupt:
sys.stderr.write("\n")
return 1
return 0
if __name__ == "__main__":
sys.exit(main())
|
OBJECT_CLASSES = {
"engine": api_resources.Engine,
"experimental.completion_config": CompletionConfig,
"file": api_resources.File,
"fine-tune": api_resources.FineTune,
"model": api_resources.Model,
"deployment": api_resources.Deployment,
}
|
# APACAI Python bindings.
#
# Originally forked from the MIT-licensed Stripe Python bindings.
if "pkg_resources" not in sys.modules:
# workaround for the following:
# https://github.com/benoitc/gunicorn/pull/2539
sys.modules["pkg_resources"] = object() # type: ignore[assignment]
import aiohttp
del sys.modules["pkg_resources"]
Audio,
ChatCompletion,
Completion,
Customer,
Deployment,
Edit,
Embedding,
Engine,
ErrorObject,
File,
FineTune,
Image,
Model,
Moderation,
)
if TYPE_CHECKING:
import requests
from aiohttp import ClientSession
api_key = os.environ.get("APACAI_API_KEY")
# Path of a file with an API key, whose contents can change. Supercedes
# `api_key` if set. The main use case is volume-mounted Kubernetes secrets,
# which are updated automatically.
api_key_path: Optional[str] = os.environ.get("APACAI_API_KEY_PATH")
organization = os.environ.get("APACAI_ORGANIZATION")
api_base = os.environ.get("APACAI_API_BASE", "https://api.apacai.com/v1")
api_type = os.environ.get("APACAI_API_TYPE", "open_ai")
api_version = os.environ.get(
"APACAI_API_VERSION",
("2023-05-15" if api_type in ("azure", "azure_ad", "azuread") else None),
)
verify_ssl_certs = True # No effect. Certificates are always verified.
proxy = None
app_info = None
enable_telemetry = False # Ignored; the telemetry feature was removed.
ca_bundle_path = None # No longer used, feature was removed
debug = False
log = None # Set to either 'debug' or 'info', controls console logging
requestssession: Optional[
Union["requests.Session", Callable[[], "requests.Session"]]
] = None # Provide a requests.Session or Session factory.
aiosession: ContextVar[Optional["ClientSession"]] = ContextVar(
"aiohttp-session", default=None
) # Acts as a global aiohttp ClientSession that reuses connections.
# This is user-supplied; otherwise, a session is remade for each request.
__version__ = VERSION
__all__ = [
"APIError",
"Audio",
"ChatCompletion",
"Completion",
"Customer",
"Edit",
"Image",
"Deployment",
"Embedding",
"Engine",
"ErrorObject",
"File",
"FineTune",
"InvalidRequestError",
"Model",
"Moderation",
"ApacAIError",
"api_base",
"api_key",
"api_type",
"api_key_path",
"api_version",
"app_info",
"ca_bundle_path",
"debug",
"enable_telemetry",
"log",
"organization",
"proxy",
"verify_ssl_certs",
]
|
AsyncGenerator,
AsyncIterator,
Callable,
Dict,
Iterator,
Optional,
Tuple,
Union,
overload,
)
if sys.version_info >= (3, 8):
from typing import Literal
else:
from typing_extensions import Literal
TIMEOUT_SECS = 600
MAX_SESSION_LIFETIME_SECS = 180
MAX_CONNECTION_RETRIES = 2
# Has one attribute per thread, 'session'.
_thread_context = threading.local()
def _build_api_url(url, query):
scheme, netloc, path, base_query, fragment = urlsplit(url)
if base_query:
query = "%s&%s" % (base_query, query)
return urlunsplit((scheme, netloc, path, query, fragment))
def _requests_proxies_arg(proxy) -> Optional[Dict[str, str]]:
"""Returns a value suitable for the 'proxies' argument to 'requests.request."""
if proxy is None:
return None
elif isinstance(proxy, str):
return {"http": proxy, "https": proxy}
elif isinstance(proxy, dict):
return proxy.copy()
else:
raise ValueError(
"'apacai.proxy' must be specified as either a string URL or a dict with string URL under the https and/or http keys."
)
def _aiohttp_proxies_arg(proxy) -> Optional[str]:
"""Returns a value suitable for the 'proxies' argument to 'aiohttp.ClientSession.request."""
if proxy is None:
return None
elif isinstance(proxy, str):
return proxy
elif isinstance(proxy, dict):
return proxy["https"] if "https" in proxy else proxy["http"]
else:
raise ValueError(
"'apacai.proxy' must be specified as either a string URL or a dict with string URL under the https and/or http keys."
)
def _make_session() -> requests.Session:
if apacai.requestssession:
if isinstance(apacai.requestssession, requests.Session):
return apacai.requestssession
return apacai.requestssession()
if not apacai.verify_ssl_certs:
warnings.warn("verify_ssl_certs is ignored; apacai always verifies.")
s = requests.Session()
proxies = _requests_proxies_arg(apacai.proxy)
if proxies:
s.proxies = proxies
s.mount(
"https://",
requests.adapters.HTTPAdapter(max_retries=MAX_CONNECTION_RETRIES),
)
return s
def parse_stream_helper(line: bytes) -> Optional[str]:
if line:
if line.strip() == b"data: [DONE]":
# return here will cause GeneratorExit exception in urllib3
# and it will close http connection with TCP Reset
return None
if line.startswith(b"data: "):
line = line[len(b"data: "):]
return line.decode("utf-8")
else:
return None
return None
def parse_stream(rbody: Iterator[bytes]) -> Iterator[str]:
for line in rbody:
_line = parse_stream_helper(line)
if _line is not None:
yield _line
async def parse_stream_async(rbody: aiohttp.StreamReader):
async for line in rbody:
_line = parse_stream_helper(line)
if _line is not None:
yield _line
class APIRequestor:
def __init__(
self,
key=None,
api_base=None,
api_type=None,
api_version=None,
organization=None,
):
self.api_base = api_base or apacai.api_base
self.api_key = key or util.default_api_key()
self.api_type = (
ApiType.from_str(api_type)
if api_type
else ApiType.from_str(apacai.api_type)
)
self.api_version = api_version or apacai.api_version
self.organization = organization or apacai.organization
@classmethod
def format_app_info(cls, info):
str = info["name"]
if info["version"]:
str += "/%s" % (info["version"],)
if info["url"]:
str += " (%s)" % (info["url"],)
return str
def _check_polling_response(self, response: ApacAIResponse, predicate: Callable[[ApacAIResponse], bool]):
if not predicate(response):
return
error_data = response.data['error']
message = error_data.get('message', 'Operation failed')
code = error_data.get('code')
raise error.ApacAIError(message=message, code=code)
def _poll(
self,
method,
url,
until,
failed,
params = None,
headers = None,
interval = None,
delay = None
) -> Tuple[Iterator[ApacAIResponse], bool, str]:
if delay:
time.sleep(delay)
response, b, api_key = self.request(method, url, params, headers)
self._check_polling_response(response, failed)
start_time = time.time()
while not until(response):
if time.time() - start_time > TIMEOUT_SECS:
raise error.Timeout("Operation polling timed out.")
time.sleep(interval or response.retry_after or 10)
response, b, api_key = self.request(method, url, params, headers)
self._check_polling_response(response, failed)
response.data = response.data['result']
return response, b, api_key
async def _apoll(
self,
method,
url,
until,
failed,
params = None,
headers = None,
interval = None,
delay = None
) -> Tuple[Iterator[ApacAIResponse], bool, str]:
if delay:
await asyncio.sleep(delay)
response, b, api_key = await self.arequest(method, url, params, headers)
self._check_polling_response(response, failed)
start_time = time.time()
while not until(response):
if time.time() - start_time > TIMEOUT_SECS:
raise error.Timeout("Operation polling timed out.")
await asyncio.sleep(interval or response.retry_after or 10)
response, b, api_key = await self.arequest(method, url, params, headers)
self._check_polling_response(response, failed)
response.data = response.data['result']
return response, b, api_key
@overload
def request(
self,
method,
url,
params,
headers,
files,
stream: Literal[True],
request_id: Optional[str] = ...,
request_timeout: Optional[Union[float, Tuple[float, float]]] = ...,
) -> Tuple[Iterator[ApacAIResponse], bool, str]:
pass
@overload
def request(
self,
method,
url,
params=...,
headers=...,
files=...,
*,
stream: Literal[True],
request_id: Optional[str] = ...,
request_timeout: Optional[Union[float, Tuple[float, float]]] = ...,
) -> Tuple[Iterator[ApacAIResponse], bool, str]:
pass
@overload
def request(
self,
method,
url,
params=...,
headers=...,
files=...,
stream: Literal[False] = ...,
request_id: Optional[str] = ...,
request_timeout: Optional[Union[float, Tuple[float, float]]] = ...,
) -> Tuple[ApacAIResponse, bool, str]:
pass
@overload
def request(
self,
method,
url,
params=...,
headers=...,
files=...,
stream: bool = ...,
request_id: Optional[str] = ...,
request_timeout: Optional[Union[float, Tuple[float, float]]] = ...,
) -> Tuple[Union[ApacAIResponse, Iterator[ApacAIResponse]], bool, str]:
pass
def request(
self,
method,
url,
params=None,
headers=None,
files=None,
stream: bool = False,
request_id: Optional[str] = None,
request_timeout: Optional[Union[float, Tuple[float, float]]] = None,
) -> Tuple[Union[ApacAIResponse, Iterator[ApacAIResponse]], bool, str]:
result = self.request_raw(
method.lower(),
url,
params=params,
supplied_headers=headers,
files=files,
stream=stream,
request_id=request_id,
request_timeout=request_timeout,
)
resp, got_stream = self._interpret_response(result, stream)
return resp, got_stream, self.api_key
@overload
async def arequest(
self,
method,
url,
params,
headers,
files,
stream: Literal[True],
request_id: Optional[str] = ...,
request_timeout: Optional[Union[float, Tuple[float, float]]] = ...,
) -> Tuple[AsyncGenerator[ApacAIResponse, None], bool, str]:
pass
@overload
async def arequest(
self,
method,
url,
params=...,
headers=...,
files=...,
*,
stream: Literal[True],
request_id: Optional[str] = ...,
request_timeout: Optional[Union[float, Tuple[float, float]]] = ...,
) -> Tuple[AsyncGenerator[ApacAIResponse, None], bool, str]:
pass
@overload
async def arequest(
self,
method,
url,
params=...,
headers=...,
files=...,
stream: Literal[False] = ...,
request_id: Optional[str] = ...,
request_timeout: Optional[Union[float, Tuple[float, float]]] = ...,
) -> Tuple[ApacAIResponse, bool, str]:
pass
@overload
async def arequest(
self,
method,
url,
params=...,
headers=...,
files=...,
stream: bool = ...,
request_id: Optional[str] = ...,
request_timeout: Optional[Union[float, Tuple[float, float]]] = ...,
) -> Tuple[Union[ApacAIResponse, AsyncGenerator[ApacAIResponse, None]], bool, str]:
pass
async def arequest(
self,
method,
url,
params=None,
headers=None,
files=None,
stream: bool = False,
request_id: Optional[str] = None,
request_timeout: Optional[Union[float, Tuple[float, float]]] = None,
) -> Tuple[Union[ApacAIResponse, AsyncGenerator[ApacAIResponse, None]], bool, str]:
ctx = aiohttp_session()
session = await ctx.__aenter__()
try:
result = await self.arequest_raw(
method.lower(),
url,
session,
params=params,
supplied_headers=headers,
files=files,
request_id=request_id,
request_timeout=request_timeout,
)
resp, got_stream = await self._interpret_async_response(result, stream)
except Exception:
await ctx.__aexit__(None, None, None)
raise
if got_stream:
async def wrap_resp():
assert isinstance(resp, AsyncGenerator)
try:
async for r in resp:
yield r
finally:
await ctx.__aexit__(None, None, None)
return wrap_resp(), got_stream, self.api_key
else:
await ctx.__aexit__(None, None, None)
return resp, got_stream, self.api_key
def handle_error_response(self, rbody, rcode, resp, rheaders, stream_error=False):
try:
error_data = resp["error"]
except (KeyError, TypeError):
raise error.APIError(
"Invalid response object from API: %r (HTTP response code "
"was %d)" % (rbody, rcode),
rbody,
rcode,
resp,
)
if "internal_message" in error_data:
error_data["message"] += "\n\n" + error_data["internal_message"]
util.log_info(
"APACAI API error received",
error_code=error_data.get("code"),
error_type=error_data.get("type"),
error_message=error_data.get("message"),
error_param=error_data.get("param"),
stream_error=stream_error,
)
# Rate limits were previously coded as 400's with code 'rate_limit'
if rcode == 429:
return error.RateLimitError(
error_data.get("message"), rbody, rcode, resp, rheaders
)
elif rcode in [400, 404, 415]:
return error.InvalidRequestError(
error_data.get("message"),
error_data.get("param"),
error_data.get("code"),
rbody,
rcode,
resp,
rheaders,
)
elif rcode == 401:
return error.AuthenticationError(
error_data.get("message"), rbody, rcode, resp, rheaders
)
elif rcode == 403:
return error.PermissionError(
error_data.get("message"), rbody, rcode, resp, rheaders
)
elif rcode == 409:
return error.TryAgain(
error_data.get("message"), rbody, rcode, resp, rheaders
)
elif stream_error:
# TODO: we will soon attach status codes to stream errors
parts = [error_data.get("message"), "(Error occurred while streaming.)"]
message = " ".join([p for p in parts if p is not None])
return error.APIError(message, rbody, rcode, resp, rheaders)
else:
return error.APIError(
f"{error_data.get('message')} {rbody} {rcode} {resp} {rheaders}",
rbody,
rcode,
resp,
rheaders,
)
def request_headers(
self, method: str, extra, request_id: Optional[str]
) -> Dict[str, str]:
user_agent = "APACAI/v1 PythonBindings/%s" % (version.VERSION,)
if apacai.app_info:
user_agent += " " + self.format_app_info(apacai.app_info)
uname_without_node = " ".join(
v for k, v in platform.uname()._asdict().items() if k != "node"
)
ua = {
"bindings_version": version.VERSION,
"httplib": "requests",
"lang": "python",
"lang_version": platform.python_version(),
"platform": platform.platform(),
"publisher": "apacai",
"uname": uname_without_node,
}
if apacai.app_info:
ua["application"] = apacai.app_info
headers = {
"X-APACAI-Client-User-Agent": json.dumps(ua),
"User-Agent": user_agent,
}
headers.update(util.api_key_to_header(self.api_type, self.api_key))
if self.organization:
headers["APACAI-Organization"] = self.organization
if self.api_version is not None and self.api_type == ApiType.OPEN_AI:
headers["APACAI-Version"] = self.api_version
if request_id is not None:
headers["X-Request-Id"] = request_id
if apacai.debug:
headers["APACAI-Debug"] = "true"
headers.update(extra)
return headers
def _validate_headers(
self, supplied_headers: Optional[Dict[str, str]]
) -> Dict[str, str]:
headers: Dict[str, str] = {}
if supplied_headers is None:
return headers
if not isinstance(supplied_headers, dict):
raise TypeError("Headers must be a dictionary")
for k, v in supplied_headers.items():
if not isinstance(k, str):
raise TypeError("Header keys must be strings")
if not isinstance(v, str):
raise TypeError("Header values must be strings")
headers[k] = v
# NOTE: It is possible to do more validation of the headers, but a request could always
# be made to the API manually with invalid headers, so we need to handle them server side.
return headers
def _prepare_request_raw(
self,
url,
supplied_headers,
method,
params,
files,
request_id: Optional[str],
) -> Tuple[str, Dict[str, str], Optional[bytes]]:
abs_url = "%s%s" % (self.api_base, url)
headers = self._validate_headers(supplied_headers)
data = None
if method == "get" or method == "delete":
if params:
encoded_params = urlencode(
[(k, v) for k, v in params.items() if v is not None]
)
abs_url = _build_api_url(abs_url, encoded_params)
elif method in {"post", "put"}:
if params and files:
data = params
if params and not files:
data = json.dumps(params).encode()
headers["Content-Type"] = "application/json"
else:
raise error.APIConnectionError(
"Unrecognized HTTP method %r. This may indicate a bug in the "
"APACAI bindings. Please contact us through our help center at help.apacai.com for "
"assistance." % (method,)
)
headers = self.request_headers(method, headers, request_id)
util.log_debug("Request to APACAI API", method=method, path=abs_url)
util.log_debug("Post details", data=data, api_version=self.api_version)
return abs_url, headers, data
def request_raw(
self,
method,
url,
*,
params=None,
supplied_headers: Optional[Dict[str, str]] = None,
files=None,
stream: bool = False,
request_id: Optional[str] = None,
request_timeout: Optional[Union[float, Tuple[float, float]]] = None,
) -> requests.Response:
abs_url, headers, data = self._prepare_request_raw(
url, supplied_headers, method, params, files, request_id
)
if not hasattr(_thread_context, "session"):
_thread_context.session = _make_session()
_thread_context.session_create_time = time.time()
elif (
time.time() - getattr(_thread_context, "session_create_time", 0)
>= MAX_SESSION_LIFETIME_SECS
):
_thread_context.session.close()
_thread_context.session = _make_session()
_thread_context.session_create_time = time.time()
try:
result = _thread_context.session.request(
method,
abs_url,
headers=headers,
data=data,
files=files,
stream=stream,
timeout=request_timeout if request_timeout else TIMEOUT_SECS,
proxies=_thread_context.session.proxies,
)
except requests.exceptions.Timeout as e:
raise error.Timeout("Request timed out: {}".format(e)) from e
except requests.exceptions.RequestException as e:
raise error.APIConnectionError(
"Error communicating with APACAI: {}".format(e)
) from e
util.log_debug(
"APACAI API response",
path=abs_url,
response_code=result.status_code,
processing_ms=result.headers.get("APACAI-Processing-Ms"),
request_id=result.headers.get("X-Request-Id"),
)
# Don't read the whole stream for debug logging unless necessary.
if apacai.log == "debug":
util.log_debug(
"API response body", body=result.content, headers=result.headers
)
return result
async def arequest_raw(
self,
method,
url,
session,
*,
params=None,
supplied_headers: Optional[Dict[str, str]] = None,
files=None,
request_id: Optional[str] = None,
request_timeout: Optional[Union[float, Tuple[float, float]]] = None,
) -> aiohttp.ClientResponse:
abs_url, headers, data = self._prepare_request_raw(
url, supplied_headers, method, params, files, request_id
)
if isinstance(request_timeout, tuple):
timeout = aiohttp.ClientTimeout(
connect=request_timeout[0],
total=request_timeout[1],
)
else:
timeout = aiohttp.ClientTimeout(
total=request_timeout if request_timeout else TIMEOUT_SECS
)
if files:
# TODO: Use `aiohttp.MultipartWriter` to create the multipart form data here.
# For now we use the private `requests` method that is known to have worked so far.
data, content_type = requests.models.RequestEncodingMixin._encode_files( # type: ignore
files, data
)
headers["Content-Type"] = content_type
request_kwargs = {
"method": method,
"url": abs_url,
"headers": headers,
"data": data,
"proxy": _aiohttp_proxies_arg(apacai.proxy),
"timeout": timeout,
}
try:
result = await session.request(**request_kwargs)
util.log_info(
"APACAI API response",
path=abs_url,
response_code=result.status,
processing_ms=result.headers.get("APACAI-Processing-Ms"),
request_id=result.headers.get("X-Request-Id"),
)
# Don't read the whole stream for debug logging unless necessary.
if apacai.log == "debug":
util.log_debug(
"API response body", body=result.content, headers=result.headers
)
return result
except (aiohttp.ServerTimeoutError, asyncio.TimeoutError) as e:
raise error.Timeout("Request timed out") from e
except aiohttp.ClientError as e:
raise error.APIConnectionError("Error communicating with APACAI") from e
def _interpret_response(
self, result: requests.Response, stream: bool
) -> Tuple[Union[ApacAIResponse, Iterator[ApacAIResponse]], bool]:
"""Returns the response(s) and a bool indicating whether it is a stream."""
if stream and "text/event-stream" in result.headers.get("Content-Type", ""):
return (
self._interpret_response_line(
line, result.status_code, result.headers, stream=True
)
for line in parse_stream(result.iter_lines())
), True
else:
return (
self._interpret_response_line(
result.content.decode("utf-8"),
result.status_code,
result.headers,
stream=False,
),
False,
)
async def _interpret_async_response(
self, result: aiohttp.ClientResponse, stream: bool
) -> Tuple[Union[ApacAIResponse, AsyncGenerator[ApacAIResponse, None]], bool]:
"""Returns the response(s) and a bool indicating whether it is a stream."""
if stream and "text/event-stream" in result.headers.get("Content-Type", ""):
return (
self._interpret_response_line(
line, result.status, result.headers, stream=True
)
async for line in parse_stream_async(result.content)
), True
else:
try:
await result.read()
except (aiohttp.ServerTimeoutError, asyncio.TimeoutError) as e:
raise error.Timeout("Request timed out") from e
except aiohttp.ClientError as e:
util.log_warn(e, body=result.content)
return (
self._interpret_response_line(
(await result.read()).decode("utf-8"),
result.status,
result.headers,
stream=False,
),
False,
)
def _interpret_response_line(
self, rbody: str, rcode: int, rheaders, stream: bool
) -> ApacAIResponse:
# HTTP 204 response code does not have any content in the body.
if rcode == 204:
return ApacAIResponse(None, rheaders)
if rcode == 503:
raise error.ServiceUnavailableError(
"The server is overloaded or not ready yet.",
rbody,
rcode,
headers=rheaders,
)
try:
if 'text/plain' in rheaders.get('Content-Type', ''):
data = rbody
else:
data = json.loads(rbody)
except (JSONDecodeError, UnicodeDecodeError) as e:
raise error.APIError(
f"HTTP code {rcode} from API ({rbody})", rbody, rcode, headers=rheaders
) from e
resp = ApacAIResponse(data, rheaders)
# In the future, we might add a "status" parameter to errors
# to better handle the "error while streaming" case.
stream_error = stream and "error" in resp.data
if stream_error or not 200 <= rcode < 300:
raise self.handle_error_response(
rbody, rcode, resp.data, rheaders, stream_error=stream_error
)
return resp
@asynccontextmanager
async def aiohttp_session() -> AsyncIterator[aiohttp.ClientSession]:
user_set_session = apacai.aiosession.get()
if user_set_session:
yield user_set_session
else:
async with aiohttp.ClientSession() as session:
yield session
|
apply_necessary_remediation,
apply_validators,
get_validators,
read_any_format,
write_out_file,
)
class bcolors:
HEADER = "\033[95m"
OKBLUE = "\033[94m"
OKGREEN = "\033[92m"
WARNING = "\033[93m"
FAIL = "\033[91m"
ENDC = "\033[0m"
BOLD = "\033[1m"
UNDERLINE = "\033[4m"
def organization_info(obj):
organization = getattr(obj, "organization", None)
if organization is not None:
return "[organization={}] ".format(organization)
else:
return ""
def display(obj):
sys.stderr.write(organization_info(obj))
sys.stderr.flush()
print(obj)
def display_error(e):
extra = (
" (HTTP status code: {})".format(e.http_status)
if e.http_status is not None
else ""
)
sys.stderr.write(
"{}{}Error:{} {}{}\n".format(
organization_info(e), bcolors.FAIL, bcolors.ENDC, e, extra
)
)
class Engine:
@classmethod
def get(cls, args):
engine = apacai.Engine.retrieve(id=args.id)
display(engine)
@classmethod
def update(cls, args):
engine = apacai.Engine.modify(args.id, replicas=args.replicas)
display(engine)
@classmethod
def generate(cls, args):
warnings.warn(
"Engine.generate is deprecated, use Completion.create", DeprecationWarning
)
if args.completions and args.completions > 1 and args.stream:
raise ValueError("Can't stream multiple completions with apacai CLI")
kwargs = {}
if args.model is not None:
kwargs["model"] = args.model
resp = apacai.Engine(id=args.id).generate(
completions=args.completions,
context=args.context,
length=args.length,
stream=args.stream,
temperature=args.temperature,
top_p=args.top_p,
logprobs=args.logprobs,
stop=args.stop,
**kwargs,
)
if not args.stream:
resp = [resp]
for part in resp:
completions = len(part["data"])
for c_idx, c in enumerate(part["data"]):
if completions > 1:
sys.stdout.write("===== Completion {} =====\n".format(c_idx))
sys.stdout.write("".join(c["text"]))
if completions > 1:
sys.stdout.write("\n")
sys.stdout.flush()
@classmethod
def list(cls, args):
engines = apacai.Engine.list()
display(engines)
class ChatCompletion:
@classmethod
def create(cls, args):
if args.n is not None and args.n > 1 and args.stream:
raise ValueError(
"Can't stream chat completions with n>1 with the current CLI"
)
messages = [
{"role": role, "content": content} for role, content in args.message
]
resp = apacai.ChatCompletion.create(
# Required
model=args.model,
engine=args.engine,
messages=messages,
# Optional
n=args.n,
max_tokens=args.max_tokens,
temperature=args.temperature,
top_p=args.top_p,
stop=args.stop,
stream=args.stream,
)
if not args.stream:
resp = [resp]
for part in resp:
choices = part["choices"]
for c_idx, c in enumerate(sorted(choices, key=lambda s: s["index"])):
if len(choices) > 1:
sys.stdout.write("===== Chat Completion {} =====\n".format(c_idx))
if args.stream:
delta = c["delta"]
if "content" in delta:
sys.stdout.write(delta["content"])
else:
sys.stdout.write(c["message"]["content"])
if len(choices) > 1: # not in streams
sys.stdout.write("\n")
sys.stdout.flush()
class Completion:
@classmethod
def create(cls, args):
if args.n is not None and args.n > 1 and args.stream:
raise ValueError("Can't stream completions with n>1 with the current CLI")
if args.engine and args.model:
warnings.warn(
"In most cases, you should not be specifying both engine and model."
)
resp = apacai.Completion.create(
engine=args.engine,
model=args.model,
n=args.n,
max_tokens=args.max_tokens,
logprobs=args.logprobs,
prompt=args.prompt,
stream=args.stream,
temperature=args.temperature,
top_p=args.top_p,
stop=args.stop,
echo=True,
)
if not args.stream:
resp = [resp]
for part in resp:
choices = part["choices"]
for c_idx, c in enumerate(sorted(choices, key=lambda s: s["index"])):
if len(choices) > 1:
sys.stdout.write("===== Completion {} =====\n".format(c_idx))
sys.stdout.write(c["text"])
if len(choices) > 1:
sys.stdout.write("\n")
sys.stdout.flush()
class Deployment:
@classmethod
def get(cls, args):
resp = apacai.Deployment.retrieve(id=args.id)
print(resp)
@classmethod
def delete(cls, args):
model = apacai.Deployment.delete(args.id)
print(model)
@classmethod
def list(cls, args):
models = apacai.Deployment.list()
print(models)
@classmethod
def create(cls, args):
models = apacai.Deployment.create(
model=args.model, scale_settings={"scale_type": args.scale_type}
)
print(models)
class Model:
@classmethod
def get(cls, args):
resp = apacai.Model.retrieve(id=args.id)
print(resp)
@classmethod
def delete(cls, args):
model = apacai.Model.delete(args.id)
print(model)
@classmethod
def list(cls, args):
models = apacai.Model.list()
print(models)
class File:
@classmethod
def create(cls, args):
with open(args.file, "rb") as file_reader:
buffer_reader = BufferReader(file_reader.read(), desc="Upload progress")
resp = apacai.File.create(
file=buffer_reader,
purpose=args.purpose,
user_provided_filename=args.file,
)
print(resp)
@classmethod
def get(cls, args):
resp = apacai.File.retrieve(id=args.id)
print(resp)
@classmethod
def delete(cls, args):
file = apacai.File.delete(args.id)
print(file)
@classmethod
def list(cls, args):
file = apacai.File.list()
print(file)
class Image:
@classmethod
def create(cls, args):
resp = apacai.Image.create(
prompt=args.prompt,
size=args.size,
n=args.num_images,
response_format=args.response_format,
)
print(resp)
@classmethod
def create_variation(cls, args):
with open(args.image, "rb") as file_reader:
buffer_reader = BufferReader(file_reader.read(), desc="Upload progress")
resp = apacai.Image.create_variation(
image=buffer_reader,
size=args.size,
n=args.num_images,
response_format=args.response_format,
)
print(resp)
@classmethod
def create_edit(cls, args):
with open(args.image, "rb") as file_reader:
image_reader = BufferReader(file_reader.read(), desc="Upload progress")
mask_reader = None
if args.mask is not None:
with open(args.mask, "rb") as file_reader:
mask_reader = BufferReader(file_reader.read(), desc="Upload progress")
resp = apacai.Image.create_edit(
image=image_reader,
mask=mask_reader,
prompt=args.prompt,
size=args.size,
n=args.num_images,
response_format=args.response_format,
)
print(resp)
class Audio:
@classmethod
def transcribe(cls, args):
with open(args.file, "rb") as r:
file_reader = BufferReader(r.read(), desc="Upload progress")
resp = apacai.Audio.transcribe_raw(
# Required
model=args.model,
file=file_reader,
filename=args.file,
# Optional
response_format=args.response_format,
language=args.language,
temperature=args.temperature,
prompt=args.prompt,
)
print(resp)
@classmethod
def translate(cls, args):
with open(args.file, "rb") as r:
file_reader = BufferReader(r.read(), desc="Upload progress")
resp = apacai.Audio.translate_raw(
# Required
model=args.model,
file=file_reader,
filename=args.file,
# Optional
response_format=args.response_format,
language=args.language,
temperature=args.temperature,
prompt=args.prompt,
)
print(resp)
class FineTune:
@classmethod
def list(cls, args):
resp = apacai.FineTune.list()
print(resp)
@classmethod
def _is_url(cls, file: str):
return file.lower().startswith("http")
@classmethod
def _download_file_from_public_url(cls, url: str) -> Optional[bytes]:
resp = requests.get(url)
if resp.status_code == 200:
return resp.content
else:
return None
@classmethod
def _maybe_upload_file(
cls,
file: Optional[str] = None,
content: Optional[bytes] = None,
user_provided_file: Optional[str] = None,
check_if_file_exists: bool = True,
):
# Exactly one of `file` or `content` must be provided
if (file is None) == (content is None):
raise ValueError("Exactly one of `file` or `content` must be provided")
if content is None:
assert file is not None
with open(file, "rb") as f:
content = f.read()
if check_if_file_exists:
bytes = len(content)
matching_files = apacai.File.find_matching_files(
name=user_provided_file or f.name, bytes=bytes, purpose="fine-tune"
)
if len(matching_files) > 0:
file_ids = [f["id"] for f in matching_files]
sys.stdout.write(
"Found potentially duplicated files with name '{name}', purpose 'fine-tune' and size {size} bytes\n".format(
name=os.path.basename(matching_files[0]["filename"]),
size=matching_files[0]["bytes"]
if "bytes" in matching_files[0]
else matching_files[0]["size"],
)
)
sys.stdout.write("\n".join(file_ids))
while True:
sys.stdout.write(
"\nEnter file ID to reuse an already uploaded file, or an empty string to upload this file anyway: "
)
inp = sys.stdin.readline().strip()
if inp in file_ids:
sys.stdout.write(
"Reusing already uploaded file: {id}\n".format(id=inp)
)
return inp
elif inp == "":
break
else:
sys.stdout.write(
"File id '{id}' is not among the IDs of the potentially duplicated files\n".format(
id=inp
)
)
buffer_reader = BufferReader(content, desc="Upload progress")
resp = apacai.File.create(
file=buffer_reader,
purpose="fine-tune",
user_provided_filename=user_provided_file or file,
)
sys.stdout.write(
"Uploaded file from {file}: {id}\n".format(
file=user_provided_file or file, id=resp["id"]
)
)
return resp["id"]
@classmethod
def _get_or_upload(cls, file, check_if_file_exists=True):
try:
# 1. If it's a valid file, use it
apacai.File.retrieve(file)
return file
except apacai.error.InvalidRequestError:
pass
if os.path.isfile(file):
# 2. If it's a file on the filesystem, upload it
return cls._maybe_upload_file(
file=file, check_if_file_exists=check_if_file_exists
)
if cls._is_url(file):
# 3. If it's a URL, download it temporarily
content = cls._download_file_from_public_url(file)
if content is not None:
return cls._maybe_upload_file(
content=content,
check_if_file_exists=check_if_file_exists,
user_provided_file=file,
)
return file
@classmethod
def create(cls, args):
create_args = {
"training_file": cls._get_or_upload(
args.training_file, args.check_if_files_exist
),
}
if args.validation_file:
create_args["validation_file"] = cls._get_or_upload(
args.validation_file, args.check_if_files_exist
)
for hparam in (
"model",
"suffix",
"n_epochs",
"batch_size",
"learning_rate_multiplier",
"prompt_loss_weight",
"compute_classification_metrics",
"classification_n_classes",
"classification_positive_class",
"classification_betas",
):
attr = getattr(args, hparam)
if attr is not None:
create_args[hparam] = attr
resp = apacai.FineTune.create(**create_args)
if args.no_follow:
print(resp)
return
sys.stdout.write(
"Created fine-tune: {job_id}\n"
"Streaming events until fine-tuning is complete...\n\n"
"(Ctrl-C will interrupt the stream, but not cancel the fine-tune)\n".format(
job_id=resp["id"]
)
)
cls._stream_events(resp["id"])
@classmethod
def get(cls, args):
resp = apacai.FineTune.retrieve(id=args.id)
print(resp)
@classmethod
def results(cls, args):
fine_tune = apacai.FineTune.retrieve(id=args.id)
if "result_files" not in fine_tune or len(fine_tune["result_files"]) == 0:
raise apacai.error.InvalidRequestError(
f"No results file available for fine-tune {args.id}", "id"
)
result_file = apacai.FineTune.retrieve(id=args.id)["result_files"][0]
resp = apacai.File.download(id=result_file["id"])
print(resp.decode("utf-8"))
@classmethod
def events(cls, args):
if args.stream:
raise apacai.error.ApacAIError(
message=(
"The --stream parameter is deprecated, use fine_tunes.follow "
"instead:\n\n"
" apacai api fine_tunes.follow -i {id}\n".format(id=args.id)
),
)
resp = apacai.FineTune.list_events(id=args.id) # type: ignore
print(resp)
@classmethod
def follow(cls, args):
cls._stream_events(args.id)
@classmethod
def _stream_events(cls, job_id):
def signal_handler(sig, frame):
status = apacai.FineTune.retrieve(job_id).status
sys.stdout.write(
"\nStream interrupted. Job is still {status}.\n"
"To resume the stream, run:\n\n"
" apacai api fine_tunes.follow -i {job_id}\n\n"
"To cancel your job, run:\n\n"
" apacai api fine_tunes.cancel -i {job_id}\n\n".format(
status=status, job_id=job_id
)
)
sys.exit(0)
signal.signal(signal.SIGINT, signal_handler)
events = apacai.FineTune.stream_events(job_id)
# TODO(rachel): Add a nifty spinner here.
try:
for event in events:
sys.stdout.write(
"[%s] %s"
% (
datetime.datetime.fromtimestamp(event["created_at"]),
event["message"],
)
)
sys.stdout.write("\n")
sys.stdout.flush()
except Exception:
sys.stdout.write(
"\nStream interrupted (client disconnected).\n"
"To resume the stream, run:\n\n"
" apacai api fine_tunes.follow -i {job_id}\n\n".format(job_id=job_id)
)
return
resp = apacai.FineTune.retrieve(id=job_id)
status = resp["status"]
if status == "succeeded":
sys.stdout.write("\nJob complete! Status: succeeded 🎉")
sys.stdout.write(
"\nTry out your fine-tuned model:\n\n"
"apacai api completions.create -m {model} -p <YOUR_PROMPT>".format(
model=resp["fine_tuned_model"]
)
)
elif status == "failed":
sys.stdout.write(
"\nJob failed. Please contact us through our help center at help.apacai.com if you need assistance."
)
sys.stdout.write("\n")
@classmethod
def cancel(cls, args):
resp = apacai.FineTune.cancel(id=args.id)
print(resp)
@classmethod
def delete(cls, args):
resp = apacai.FineTune.delete(sid=args.id)
print(resp)
@classmethod
def prepare_data(cls, args):
sys.stdout.write("Analyzing...\n")
fname = args.file
auto_accept = args.quiet
df, remediation = read_any_format(fname)
apply_necessary_remediation(None, remediation)
validators = get_validators()
apply_validators(
df,
fname,
remediation,
validators,
auto_accept,
write_out_file_func=write_out_file,
)
class WandbLogger:
@classmethod
def sync(cls, args):
import apacai.wandb_logger
resp = apacai.wandb_logger.WandbLogger.sync(
id=args.id,
n_fine_tunes=args.n_fine_tunes,
project=args.project,
entity=args.entity,
force=args.force,
)
print(resp)
def tools_register(parser):
subparsers = parser.add_subparsers(
title="Tools", help="Convenience client side tools"
)
def help(args):
parser.print_help()
parser.set_defaults(func=help)
sub = subparsers.add_parser("fine_tunes.prepare_data")
sub.add_argument(
"-f",
"--file",
required=True,
help="JSONL, JSON, CSV, TSV, TXT or XLSX file containing prompt-completion examples to be analyzed."
"This should be the local file path.",
)
sub.add_argument(
"-q",
"--quiet",
required=False,
action="store_true",
help="Auto accepts all suggestions, without asking for user input. To be used within scripts.",
)
sub.set_defaults(func=FineTune.prepare_data)
def api_register(parser):
# Engine management
subparsers = parser.add_subparsers(help="All API subcommands")
def help(args):
parser.print_help()
parser.set_defaults(func=help)
sub = subparsers.add_parser("engines.list")
sub.set_defaults(func=Engine.list)
sub = subparsers.add_parser("engines.get")
sub.add_argument("-i", "--id", required=True)
sub.set_defaults(func=Engine.get)
sub = subparsers.add_parser("engines.update")
sub.add_argument("-i", "--id", required=True)
sub.add_argument("-r", "--replicas", type=int)
sub.set_defaults(func=Engine.update)
sub = subparsers.add_parser("engines.generate")
sub.add_argument("-i", "--id", required=True)
sub.add_argument(
"--stream", help="Stream tokens as they're ready.", action="store_true"
)
sub.add_argument("-c", "--context", help="An optional context to generate from")
sub.add_argument("-l", "--length", help="How many tokens to generate", type=int)
sub.add_argument(
"-t",
"--temperature",
help="""What sampling temperature to use. Higher values means the model will take more risks. Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer.
Mutually exclusive with `top_p`.""",
type=float,
)
sub.add_argument(
"-p",
"--top_p",
help="""An alternative to sampling with temperature, called nucleus sampling, where the considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10%% probability mass are considered.
Mutually exclusive with `temperature`.""",
type=float,
)
sub.add_argument(
"-n",
"--completions",
help="How many parallel completions to run on this context",
type=int,
)
sub.add_argument(
"--logprobs",
help="Include the log probabilites on the `logprobs` most likely tokens. So for example, if `logprobs` is 10, the API will return a list of the 10 most likely tokens. If `logprobs` is supplied, the API will always return the logprob of the generated token, so there may be up to `logprobs+1` elements in the response.",
type=int,
)
sub.add_argument(
"--stop", help="A stop sequence at which to stop generating tokens."
)
sub.add_argument(
"-m",
"--model",
required=False,
help="A model (most commonly a model ID) to generate from. Defaults to the engine's default model.",
)
sub.set_defaults(func=Engine.generate)
# Chat Completions
sub = subparsers.add_parser("chat_completions.create")
sub._action_groups.pop()
req = sub.add_argument_group("required arguments")
opt = sub.add_argument_group("optional arguments")
req.add_argument(
"-g",
"--message",
action="append",
nargs=2,
metavar=("ROLE", "CONTENT"),
help="A message in `{role} {content}` format. Use this argument multiple times to add multiple messages.",
required=True,
)
group = opt.add_mutually_exclusive_group()
group.add_argument(
"-e",
"--engine",
help="The engine to use. See https://learn.microsoft.com/en-us/azure/cognitive-services/apacai/chatgpt-quickstart?pivots=programming-language-python for more about what engines are available.",
)
group.add_argument(
"-m",
"--model",
help="The model to use.",
)
opt.add_argument(
"-n",
"--n",
help="How many completions to generate for the conversation.",
type=int,
)
opt.add_argument(
"-M", "--max-tokens", help="The maximum number of tokens to generate.", type=int
)
opt.add_argument(
"-t",
"--temperature",
help="""What sampling temperature to use. Higher values means the model will take more risks. Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer.
Mutually exclusive with `top_p`.""",
type=float,
)
opt.add_argument(
"-P",
"--top_p",
help="""An alternative to sampling with temperature, called nucleus sampling, where the considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10%% probability mass are considered.
Mutually exclusive with `temperature`.""",
type=float,
)
opt.add_argument(
"--stop",
help="A stop sequence at which to stop generating tokens for the message.",
)
opt.add_argument(
"--stream", help="Stream messages as they're ready.", action="store_true"
)
sub.set_defaults(func=ChatCompletion.create)
# Completions
sub = subparsers.add_parser("completions.create")
sub.add_argument(
"-e",
"--engine",
help="The engine to use. See https://platform.apacai.com/docs/engines for more about what engines are available.",
)
sub.add_argument(
"-m",
"--model",
help="The model to use. At most one of `engine` or `model` should be specified.",
)
sub.add_argument(
"--stream", help="Stream tokens as they're ready.", action="store_true"
)
sub.add_argument("-p", "--prompt", help="An optional prompt to complete from")
sub.add_argument(
"-M", "--max-tokens", help="The maximum number of tokens to generate", type=int
)
sub.add_argument(
"-t",
"--temperature",
help="""What sampling temperature to use. Higher values means the model will take more risks. Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer.
Mutually exclusive with `top_p`.""",
type=float,
)
sub.add_argument(
"-P",
"--top_p",
help="""An alternative to sampling with temperature, called nucleus sampling, where the considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10%% probability mass are considered.
Mutually exclusive with `temperature`.""",
type=float,
)
sub.add_argument(
"-n",
"--n",
help="How many sub-completions to generate for each prompt.",
type=int,
)
sub.add_argument(
"--logprobs",
help="Include the log probabilites on the `logprobs` most likely tokens, as well the chosen tokens. So for example, if `logprobs` is 10, the API will return a list of the 10 most likely tokens. If `logprobs` is 0, only the chosen tokens will have logprobs returned.",
type=int,
)
sub.add_argument(
"--stop", help="A stop sequence at which to stop generating tokens."
)
sub.set_defaults(func=Completion.create)
# Deployments
sub = subparsers.add_parser("deployments.list")
sub.set_defaults(func=Deployment.list)
sub = subparsers.add_parser("deployments.get")
sub.add_argument("-i", "--id", required=True, help="The deployment ID")
sub.set_defaults(func=Deployment.get)
sub = subparsers.add_parser("deployments.delete")
sub.add_argument("-i", "--id", required=True, help="The deployment ID")
sub.set_defaults(func=Deployment.delete)
sub = subparsers.add_parser("deployments.create")
sub.add_argument("-m", "--model", required=True, help="The model ID")
sub.add_argument(
"-s",
"--scale_type",
required=True,
help="The scale type. Either 'manual' or 'standard'",
)
sub.set_defaults(func=Deployment.create)
# Models
sub = subparsers.add_parser("models.list")
sub.set_defaults(func=Model.list)
sub = subparsers.add_parser("models.get")
sub.add_argument("-i", "--id", required=True, help="The model ID")
sub.set_defaults(func=Model.get)
sub = subparsers.add_parser("models.delete")
sub.add_argument("-i", "--id", required=True, help="The model ID")
sub.set_defaults(func=Model.delete)
# Files
sub = subparsers.add_parser("files.create")
sub.add_argument(
"-f",
"--file",
required=True,
help="File to upload",
)
sub.add_argument(
"-p",
"--purpose",
help="Why are you uploading this file? (see https://platform.apacai.com/docs/api-reference/ for purposes)",
required=True,
)
sub.set_defaults(func=File.create)
sub = subparsers.add_parser("files.get")
sub.add_argument("-i", "--id", required=True, help="The files ID")
sub.set_defaults(func=File.get)
sub = subparsers.add_parser("files.delete")
sub.add_argument("-i", "--id", required=True, help="The files ID")
sub.set_defaults(func=File.delete)
sub = subparsers.add_parser("files.list")
sub.set_defaults(func=File.list)
# Finetune
sub = subparsers.add_parser("fine_tunes.list")
sub.set_defaults(func=FineTune.list)
sub = subparsers.add_parser("fine_tunes.create")
sub.add_argument(
"-t",
"--training_file",
required=True,
help="JSONL file containing prompt-completion examples for training. This can "
"be the ID of a file uploaded through the APACAI API (e.g. file-abcde12345), "
'a local file path, or a URL that starts with "http".',
)
sub.add_argument(
"-v",
"--validation_file",
help="JSONL file containing prompt-completion examples for validation. This can "
"be the ID of a file uploaded through the APACAI API (e.g. file-abcde12345), "
'a local file path, or a URL that starts with "http".',
)
sub.add_argument(
"--no_check_if_files_exist",
dest="check_if_files_exist",
action="store_false",
help="If this argument is set and training_file or validation_file are file paths, immediately upload them. If this argument is not set, check if they may be duplicates of already uploaded files before uploading, based on file name and file size.",
)
sub.add_argument(
"-m",
"--model",
help="The model to start fine-tuning from",
)
sub.add_argument(
"--suffix",
help="If set, this argument can be used to customize the generated fine-tuned model name."
"All punctuation and whitespace in `suffix` will be replaced with a "
"single dash, and the string will be lower cased. The max "
"length of `suffix` is 40 chars. "
"The generated name will match the form `{base_model}:ft-{org-title}:{suffix}-{timestamp}`. "
'For example, `apacai api fine_tunes.create -t test.jsonl -m ada --suffix "custom model name" '
"could generate a model with the name "
"ada:ft-your-org:custom-model-name-2022-02-15-04-21-04",
)
sub.add_argument(
"--no_follow",
action="store_true",
help="If set, returns immediately after creating the job. Otherwise, streams events and waits for the job to complete.",
)
sub.add_argument(
"--n_epochs",
type=int,
help="The number of epochs to train the model for. An epoch refers to one "
"full cycle through the training dataset.",
)
sub.add_argument(
"--batch_size",
type=int,
help="The batch size to use for training. The batch size is the number of "
"training examples used to train a single forward and backward pass.",
)
sub.add_argument(
"--learning_rate_multiplier",
type=float,
help="The learning rate multiplier to use for training. The fine-tuning "
"learning rate is determined by the original learning rate used for "
"pretraining multiplied by this value.",
)
sub.add_argument(
"--prompt_loss_weight",
type=float,
help="The weight to use for the prompt loss. The optimum value here depends "
"depends on your use case. This determines how much the model prioritizes "
"learning from prompt tokens vs learning from completion tokens.",
)
sub.add_argument(
"--compute_classification_metrics",
action="store_true",
help="If set, we calculate classification-specific metrics such as accuracy "
"and F-1 score using the validation set at the end of every epoch.",
)
sub.set_defaults(compute_classification_metrics=None)
sub.add_argument(
"--classification_n_classes",
type=int,
help="The number of classes in a classification task. This parameter is "
"required for multiclass classification.",
)
sub.add_argument(
"--classification_positive_class",
help="The positive class in binary classification. This parameter is needed "
"to generate precision, recall and F-1 metrics when doing binary "
"classification.",
)
sub.add_argument(
"--classification_betas",
type=float,
nargs="+",
help="If this is provided, we calculate F-beta scores at the specified beta "
"values. The F-beta score is a generalization of F-1 score. This is only "
"used for binary classification.",
)
sub.set_defaults(func=FineTune.create)
sub = subparsers.add_parser("fine_tunes.get")
sub.add_argument("-i", "--id", required=True, help="The id of the fine-tune job")
sub.set_defaults(func=FineTune.get)
sub = subparsers.add_parser("fine_tunes.results")
sub.add_argument("-i", "--id", required=True, help="The id of the fine-tune job")
sub.set_defaults(func=FineTune.results)
sub = subparsers.add_parser("fine_tunes.events")
sub.add_argument("-i", "--id", required=True, help="The id of the fine-tune job")
# TODO(rachel): Remove this in 1.0
sub.add_argument(
"-s",
"--stream",
action="store_true",
help="[DEPRECATED] If set, events will be streamed until the job is done. Otherwise, "
"displays the event history to date.",
)
sub.set_defaults(func=FineTune.events)
sub = subparsers.add_parser("fine_tunes.follow")
sub.add_argument("-i", "--id", required=True, help="The id of the fine-tune job")
sub.set_defaults(func=FineTune.follow)
sub = subparsers.add_parser("fine_tunes.cancel")
sub.add_argument("-i", "--id", required=True, help="The id of the fine-tune job")
sub.set_defaults(func=FineTune.cancel)
sub = subparsers.add_parser("fine_tunes.delete")
sub.add_argument("-i", "--id", required=True, help="The id of the fine-tune job")
sub.set_defaults(func=FineTune.delete)
# Image
sub = subparsers.add_parser("image.create")
sub.add_argument("-p", "--prompt", type=str, required=True)
sub.add_argument("-n", "--num-images", type=int, default=1)
sub.add_argument(
"-s", "--size", type=str, default="1024x1024", help="Size of the output image"
)
sub.add_argument("--response-format", type=str, default="url")
sub.set_defaults(func=Image.create)
sub = subparsers.add_parser("image.create_edit")
sub.add_argument("-p", "--prompt", type=str, required=True)
sub.add_argument("-n", "--num-images", type=int, default=1)
sub.add_argument(
"-I",
"--image",
type=str,
required=True,
help="Image to modify. Should be a local path and a PNG encoded image.",
)
sub.add_argument(
"-s", "--size", type=str, default="1024x1024", help="Size of the output image"
)
sub.add_argument("--response-format", type=str, default="url")
sub.add_argument(
"-M",
"--mask",
type=str,
required=False,
help="Path to a mask image. It should be the same size as the image you're editing and a RGBA PNG image. The Alpha channel acts as the mask.",
)
sub.set_defaults(func=Image.create_edit)
sub = subparsers.add_parser("image.create_variation")
sub.add_argument("-n", "--num-images", type=int, default=1)
sub.add_argument(
"-I",
"--image",
type=str,
required=True,
help="Image to modify. Should be a local path and a PNG encoded image.",
)
sub.add_argument(
"-s", "--size", type=str, default="1024x1024", help="Size of the output image"
)
sub.add_argument("--response-format", type=str, default="url")
sub.set_defaults(func=Image.create_variation)
# Audio
# transcriptions
sub = subparsers.add_parser("audio.transcribe")
# Required
sub.add_argument("-m", "--model", type=str, default="whisper-1")
sub.add_argument("-f", "--file", type=str, required=True)
# Optional
sub.add_argument("--response-format", type=str)
sub.add_argument("--language", type=str)
sub.add_argument("-t", "--temperature", type=float)
sub.add_argument("--prompt", type=str)
sub.set_defaults(func=Audio.transcribe)
# translations
sub = subparsers.add_parser("audio.translate")
# Required
sub.add_argument("-m", "--model", type=str, default="whisper-1")
sub.add_argument("-f", "--file", type=str, required=True)
# Optional
sub.add_argument("--response-format", type=str)
sub.add_argument("--language", type=str)
sub.add_argument("-t", "--temperature", type=float)
sub.add_argument("--prompt", type=str)
sub.set_defaults(func=Audio.translate)
def wandb_register(parser):
subparsers = parser.add_subparsers(
title="wandb", help="Logging with Weights & Biases"
)
def help(args):
parser.print_help()
parser.set_defaults(func=help)
sub = subparsers.add_parser("sync")
sub.add_argument("-i", "--id", help="The id of the fine-tune job (optional)")
sub.add_argument(
"-n",
"--n_fine_tunes",
type=int,
default=None,
help="Number of most recent fine-tunes to log when an id is not provided. By default, every fine-tune is synced.",
)
sub.add_argument(
"--project",
default="GPT-3",
help="""Name of the project where you're sending runs. By default, it is "GPT-3".""",
)
sub.add_argument(
"--entity",
help="Username or team name where you're sending runs. By default, your default entity is used, which is usually your username.",
)
sub.add_argument(
"--force",
action="store_true",
help="Forces logging and overwrite existing wandb run of the same fine-tune.",
)
sub.set_defaults(force=False)
sub.set_defaults(func=WandbLogger.sync)
|
class ApacAIResponse:
def __init__(self, data, headers):
self._headers = headers
self.data = data
@property
def request_id(self) -> Optional[str]:
return self._headers.get("request-id")
@property
def retry_after(self) -> Optional[int]:
try:
return int(self._headers.get("retry-after"))
except TypeError:
return None
@property
def operation_location(self) -> Optional[str]:
return self._headers.get("operation-location")
@property
def organization(self) -> Optional[str]:
return self._headers.get("APACAI-Organization")
@property
def response_ms(self) -> Optional[int]:
h = self._headers.get("APACAI-Processing-Ms")
return None if h is None else round(float(h))
|
@retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))
def get_embedding(text: str, engine="text-similarity-davinci-001", **kwargs) -> List[float]:
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
return apacai.Embedding.create(input=[text], engine=engine, **kwargs)["data"][0]["embedding"]
@retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))
async def aget_embedding(
text: str, engine="text-similarity-davinci-001", **kwargs
) -> List[float]:
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
return (await apacai.Embedding.acreate(input=[text], engine=engine, **kwargs))["data"][0][
"embedding"
]
@retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))
def get_embeddings(
list_of_text: List[str], engine="text-similarity-babbage-001", **kwargs
) -> List[List[float]]:
assert len(list_of_text) <= 2048, "The batch size should not be larger than 2048."
# replace newlines, which can negatively affect performance.
list_of_text = [text.replace("\n", " ") for text in list_of_text]
data = apacai.Embedding.create(input=list_of_text, engine=engine, **kwargs).data
return [d["embedding"] for d in data]
@retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))
async def aget_embeddings(
list_of_text: List[str], engine="text-similarity-babbage-001", **kwargs
) -> List[List[float]]:
assert len(list_of_text) <= 2048, "The batch size should not be larger than 2048."
# replace newlines, which can negatively affect performance.
list_of_text = [text.replace("\n", " ") for text in list_of_text]
data = (await apacai.Embedding.acreate(input=list_of_text, engine=engine, **kwargs)).data
return [d["embedding"] for d in data]
def cosine_similarity(a, b):
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
def plot_multiclass_precision_recall(
y_score, y_true_untransformed, class_list, classifier_name
):
"""
Precision-Recall plotting for a multiclass problem. It plots average precision-recall, per class precision recall and reference f1 contours.
Code slightly modified, but heavily based on https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
"""
n_classes = len(class_list)
y_true = pd.concat(
[(y_true_untransformed == class_list[i]) for i in range(n_classes)], axis=1
).values
# For each class
precision = dict()
recall = dict()
average_precision = dict()
for i in range(n_classes):
precision[i], recall[i], _ = precision_recall_curve(y_true[:, i], y_score[:, i])
average_precision[i] = average_precision_score(y_true[:, i], y_score[:, i])
# A "micro-average": quantifying score on all classes jointly
precision_micro, recall_micro, _ = precision_recall_curve(
y_true.ravel(), y_score.ravel()
)
average_precision_micro = average_precision_score(y_true, y_score, average="micro")
print(
str(classifier_name)
+ " - Average precision score over all classes: {0:0.2f}".format(
average_precision_micro
)
)
# setup plot details
plt.figure(figsize=(9, 10))
f_scores = np.linspace(0.2, 0.8, num=4)
lines = []
labels = []
for f_score in f_scores:
x = np.linspace(0.01, 1)
y = f_score * x / (2 * x - f_score)
(l,) = plt.plot(x[y >= 0], y[y >= 0], color="gray", alpha=0.2)
plt.annotate("f1={0:0.1f}".format(f_score), xy=(0.9, y[45] + 0.02))
lines.append(l)
labels.append("iso-f1 curves")
(l,) = plt.plot(recall_micro, precision_micro, color="gold", lw=2)
lines.append(l)
labels.append(
"average Precision-recall (auprc = {0:0.2f})" "".format(average_precision_micro)
)
for i in range(n_classes):
(l,) = plt.plot(recall[i], precision[i], lw=2)
lines.append(l)
labels.append(
"Precision-recall for class `{0}` (auprc = {1:0.2f})"
"".format(class_list[i], average_precision[i])
)
fig = plt.gcf()
fig.subplots_adjust(bottom=0.25)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.title(f"{classifier_name}: Precision-Recall curve for each class")
plt.legend(lines, labels)
def distances_from_embeddings(
query_embedding: List[float],
embeddings: List[List[float]],
distance_metric="cosine",
) -> List[List]:
"""Return the distances between a query embedding and a list of embeddings."""
distance_metrics = {
"cosine": spatial.distance.cosine,
"L1": spatial.distance.cityblock,
"L2": spatial.distance.euclidean,
"Linf": spatial.distance.chebyshev,
}
distances = [
distance_metrics[distance_metric](query_embedding, embedding)
for embedding in embeddings
]
return distances
def indices_of_nearest_neighbors_from_distances(distances) -> np.ndarray:
"""Return a list of indices of nearest neighbors from a list of distances."""
return np.argsort(distances)
def pca_components_from_embeddings(
embeddings: List[List[float]], n_components=2
) -> np.ndarray:
"""Return the PCA components of a list of embeddings."""
pca = PCA(n_components=n_components)
array_of_embeddings = np.array(embeddings)
return pca.fit_transform(array_of_embeddings)
def tsne_components_from_embeddings(
embeddings: List[List[float]], n_components=2, **kwargs
) -> np.ndarray:
"""Returns t-SNE components of a list of embeddings."""
# use better defaults if not specified
if "init" not in kwargs.keys():
kwargs["init"] = "pca"
if "learning_rate" not in kwargs.keys():
kwargs["learning_rate"] = "auto"
tsne = TSNE(n_components=n_components, **kwargs)
array_of_embeddings = np.array(embeddings)
return tsne.fit_transform(array_of_embeddings)
def chart_from_components(
components: np.ndarray,
labels: Optional[List[str]] = None,
strings: Optional[List[str]] = None,
x_title="Component 0",
y_title="Component 1",
mark_size=5,
**kwargs,
):
"""Return an interactive 2D chart of embedding components."""
empty_list = ["" for _ in components]
data = pd.DataFrame(
{
x_title: components[:, 0],
y_title: components[:, 1],
"label": labels if labels else empty_list,
"string": ["<br>".join(tr.wrap(string, width=30)) for string in strings]
if strings
else empty_list,
}
)
chart = px.scatter(
data,
x=x_title,
y=y_title,
color="label" if labels else None,
symbol="label" if labels else None,
hover_data=["string"] if strings else None,
**kwargs,
).update_traces(marker=dict(size=mark_size))
return chart
def chart_from_components_3D(
components: np.ndarray,
labels: Optional[List[str]] = None,
strings: Optional[List[str]] = None,
x_title: str = "Component 0",
y_title: str = "Component 1",
z_title: str = "Compontent 2",
mark_size: int = 5,
**kwargs,
):
"""Return an interactive 3D chart of embedding components."""
empty_list = ["" for _ in components]
data = pd.DataFrame(
{
x_title: components[:, 0],
y_title: components[:, 1],
z_title: components[:, 2],
"label": labels if labels else empty_list,
"string": ["<br>".join(tr.wrap(string, width=30)) for string in strings]
if strings
else empty_list,
}
)
chart = px.scatter_3d(
data,
x=x_title,
y=y_title,
z=z_title,
color="label" if labels else None,
symbol="label" if labels else None,
hover_data=["string"] if strings else None,
**kwargs,
).update_traces(marker=dict(size=mark_size))
return chart
|
class ApacAIObject(dict):
api_base_override = None
def __init__(
self,
id=None,
api_key=None,
api_version=None,
api_type=None,
organization=None,
response_ms: Optional[int] = None,
api_base=None,
engine=None,
**params,
):
super(ApacAIObject, self).__init__()
if response_ms is not None and not isinstance(response_ms, int):
raise TypeError(f"response_ms is a {type(response_ms).__name__}.")
self._response_ms = response_ms
self._retrieve_params = params
object.__setattr__(self, "api_key", api_key)
object.__setattr__(self, "api_version", api_version)
object.__setattr__(self, "api_type", api_type)
object.__setattr__(self, "organization", organization)
object.__setattr__(self, "api_base_override", api_base)
object.__setattr__(self, "engine", engine)
if id:
self["id"] = id
@property
def response_ms(self) -> Optional[int]:
return self._response_ms
def __setattr__(self, k, v):
if k[0] == "_" or k in self.__dict__:
return super(ApacAIObject, self).__setattr__(k, v)
self[k] = v
return None
def __getattr__(self, k):
if k[0] == "_":
raise AttributeError(k)
try:
return self[k]
except KeyError as err:
raise AttributeError(*err.args)
def __delattr__(self, k):
if k[0] == "_" or k in self.__dict__:
return super(ApacAIObject, self).__delattr__(k)
else:
del self[k]
def __setitem__(self, k, v):
if v == "":
raise ValueError(
"You cannot set %s to an empty string. "
"We interpret empty strings as None in requests."
"You may set %s.%s = None to delete the property" % (k, str(self), k)
)
super(ApacAIObject, self).__setitem__(k, v)
def __delitem__(self, k):
raise NotImplementedError("del is not supported")
# Custom unpickling method that uses `update` to update the dictionary
# without calling __setitem__, which would fail if any value is an empty
# string
def __setstate__(self, state):
self.update(state)
# Custom pickling method to ensure the instance is pickled as a custom
# class and not as a dict, otherwise __setstate__ would not be called when
# unpickling.
def __reduce__(self):
reduce_value = (
type(self), # callable
( # args
self.get("id", None),
self.api_key,
self.api_version,
self.api_type,
self.organization,
),
dict(self), # state
)
return reduce_value
@classmethod
def construct_from(
cls,
values,
api_key: Optional[str] = None,
api_version=None,
organization=None,
engine=None,
response_ms: Optional[int] = None,
):
instance = cls(
values.get("id"),
api_key=api_key,
api_version=api_version,
organization=organization,
engine=engine,
response_ms=response_ms,
)
instance.refresh_from(
values,
api_key=api_key,
api_version=api_version,
organization=organization,
response_ms=response_ms,
)
return instance
def refresh_from(
self,
values,
api_key=None,
api_version=None,
api_type=None,
organization=None,
response_ms: Optional[int] = None,
):
self.api_key = api_key or getattr(values, "api_key", None)
self.api_version = api_version or getattr(values, "api_version", None)
self.api_type = api_type or getattr(values, "api_type", None)
self.organization = organization or getattr(values, "organization", None)
self._response_ms = response_ms or getattr(values, "_response_ms", None)
# Wipe old state before setting new.
self.clear()
for k, v in values.items():
super(ApacAIObject, self).__setitem__(
k, util.convert_to_apacai_object(v, api_key, api_version, organization)
)
self._previous = values
@classmethod
def api_base(cls):
return None
def request(
self,
method,
url,
params=None,
headers=None,
stream=False,
plain_old_data=False,
request_id: Optional[str] = None,
request_timeout: Optional[Union[float, Tuple[float, float]]] = None,
):
if params is None:
params = self._retrieve_params
requestor = api_requestor.APIRequestor(
key=self.api_key,
api_base=self.api_base_override or self.api_base(),
api_type=self.api_type,
api_version=self.api_version,
organization=self.organization,
)
response, stream, api_key = requestor.request(
method,
url,
params=params,
stream=stream,
headers=headers,
request_id=request_id,
request_timeout=request_timeout,
)
if stream:
assert not isinstance(response, ApacAIResponse) # must be an iterator
return (
util.convert_to_apacai_object(
line,
api_key,
self.api_version,
self.organization,
plain_old_data=plain_old_data,
)
for line in response
)
else:
return util.convert_to_apacai_object(
response,
api_key,
self.api_version,
self.organization,
plain_old_data=plain_old_data,
)
async def arequest(
self,
method,
url,
params=None,
headers=None,
stream=False,
plain_old_data=False,
request_id: Optional[str] = None,
request_timeout: Optional[Union[float, Tuple[float, float]]] = None,
):
if params is None:
params = self._retrieve_params
requestor = api_requestor.APIRequestor(
key=self.api_key,
api_base=self.api_base_override or self.api_base(),
api_type=self.api_type,
api_version=self.api_version,
organization=self.organization,
)
response, stream, api_key = await requestor.arequest(
method,
url,
params=params,
stream=stream,
headers=headers,
request_id=request_id,
request_timeout=request_timeout,
)
if stream:
assert not isinstance(response, ApacAIResponse) # must be an iterator
return (
util.convert_to_apacai_object(
line,
api_key,
self.api_version,
self.organization,
plain_old_data=plain_old_data,
)
for line in response
)
else:
return util.convert_to_apacai_object(
response,
api_key,
self.api_version,
self.organization,
plain_old_data=plain_old_data,
)
def __repr__(self):
ident_parts = [type(self).__name__]
obj = self.get("object")
if isinstance(obj, str):
ident_parts.append(obj)
if isinstance(self.get("id"), str):
ident_parts.append("id=%s" % (self.get("id"),))
unicode_repr = "<%s at %s> JSON: %s" % (
" ".join(ident_parts),
hex(id(self)),
str(self),
)
return unicode_repr
def __str__(self):
obj = self.to_dict_recursive()
return json.dumps(obj, indent=2)
def to_dict(self):
return dict(self)
def to_dict_recursive(self):
d = dict(self)
for k, v in d.items():
if isinstance(v, ApacAIObject):
d[k] = v.to_dict_recursive()
elif isinstance(v, list):
d[k] = [
e.to_dict_recursive() if isinstance(e, ApacAIObject) else e
for e in v
]
return d
@property
def apacai_id(self):
return self.id
@property
def typed_api_type(self):
return (
ApiType.from_str(self.api_type)
if self.api_type
else ApiType.from_str(apacai.api_type)
)
# This class overrides __setitem__ to throw exceptions on inputs that it
# doesn't like. This can cause problems when we try to copy an object
# wholesale because some data that's returned from the API may not be valid
# if it was set to be set manually. Here we override the class' copy
# arguments so that we can bypass these possible exceptions on __setitem__.
def __copy__(self):
copied = ApacAIObject(
self.get("id"),
self.api_key,
api_version=self.api_version,
api_type=self.api_type,
organization=self.organization,
)
copied._retrieve_params = self._retrieve_params
for k, v in self.items():
# Call parent's __setitem__ to avoid checks that we've added in the
# overridden version that can throw exceptions.
super(ApacAIObject, copied).__setitem__(k, v)
return copied
# This class overrides __setitem__ to throw exceptions on inputs that it
# doesn't like. This can cause problems when we try to copy an object
# wholesale because some data that's returned from the API may not be valid
# if it was set to be set manually. Here we override the class' copy
# arguments so that we can bypass these possible exceptions on __setitem__.
def __deepcopy__(self, memo):
copied = self.__copy__()
memo[id(self)] = copied
for k, v in self.items():
# Call parent's __setitem__ to avoid checks that we've added in the
# overridden version that can throw exceptions.
super(ApacAIObject, copied).__setitem__(k, deepcopy(v, memo))
return copied
|
try:
import pandas
except ImportError:
pandas = None
HAS_PANDAS = bool(pandas)
PANDAS_INSTRUCTIONS = INSTRUCTIONS.format(library="pandas")
def assert_has_pandas():
if not HAS_PANDAS:
raise MissingDependencyError(PANDAS_INSTRUCTIONS)
|
"""
This module helps make data libraries like `numpy` and `pandas` optional dependencies.
The libraries add up to 130MB+, which makes it challenging to deploy applications
using this library in environments with code size constraints, like AWS Lambda.
This module serves as an import proxy and provides a few utilities for dealing with the optionality.
Since the primary use case of this library (talking to the APACAI API) doesn't generally require data libraries,
it's safe to make them optional. The rare case when data libraries are needed in the client is handled through
assertions with instructive error messages.
See also `setup.py`.
"""
|
INSTRUCTIONS = """
APACAI error:
missing `{library}`
This feature requires additional dependencies:
$ pip install apacai[datalib]
"""
NUMPY_INSTRUCTIONS = INSTRUCTIONS.format(library="numpy")
class MissingDependencyError(Exception):
pass
|
try:
import numpy
except ImportError:
numpy = None
HAS_NUMPY = bool(numpy)
NUMPY_INSTRUCTIONS = INSTRUCTIONS.format(library="numpy")
def assert_has_numpy():
if not HAS_NUMPY:
raise MissingDependencyError(NUMPY_INSTRUCTIONS)
|
STILL_PROCESSING = "File is still processing. Check back later."
def test_file_cli() -> None:
contents = json.dumps({"prompt": "1 + 3 =", "completion": "4"}) + "\n"
with NamedTemporaryFile(suffix=".jsonl", mode="wb") as train_file:
train_file.write(contents.encode("utf-8"))
train_file.flush()
create_output = subprocess.check_output(
["apacai", "api", "files.create", "-f", train_file.name, "-p", "fine-tune"]
)
file_obj = json.loads(create_output)
assert file_obj["bytes"] == len(contents)
file_id: str = file_obj["id"]
assert file_id.startswith("file-")
start_time = time.time()
while True:
delete_result = subprocess.run(
["apacai", "api", "files.delete", "-i", file_id],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
encoding="utf-8",
)
if delete_result.returncode == 0:
break
elif STILL_PROCESSING in delete_result.stderr:
time.sleep(0.5)
if start_time + 60 < time.time():
raise RuntimeError("timed out waiting for file to become available")
continue
else:
raise RuntimeError(
f"delete failed: stdout={delete_result.stdout} stderr={delete_result.stderr}"
)
|
# FILE TESTS
def test_file_upload():
result = apacai.File.create(
file=io.StringIO(
json.dumps({"prompt": "test file data", "completion": "tada"})
),
purpose="fine-tune",
)
assert result.purpose == "fine-tune"
assert "id" in result
result = apacai.File.retrieve(id=result.id)
assert result.status == "uploaded"
# CHAT COMPLETION TESTS
def test_chat_completions():
result = apacai.ChatCompletion.create(
model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hello!"}]
)
assert len(result.choices) == 1
def test_chat_completions_multiple():
result = apacai.ChatCompletion.create(
model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hello!"}], n=5
)
assert len(result.choices) == 5
def test_chat_completions_streaming():
result = None
events = apacai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello!"}],
stream=True,
)
for result in events:
assert len(result.choices) == 1
# COMPLETION TESTS
def test_completions():
result = apacai.Completion.create(prompt="This was a test", n=5, engine="ada")
assert len(result.choices) == 5
def test_completions_multiple_prompts():
result = apacai.Completion.create(
prompt=["This was a test", "This was another test"], n=5, engine="ada"
)
assert len(result.choices) == 10
def test_completions_model():
result = apacai.Completion.create(prompt="This was a test", n=5, model="ada")
assert len(result.choices) == 5
assert result.model.startswith("ada")
def test_timeout_raises_error():
# A query that should take awhile to return
with pytest.raises(error.Timeout):
apacai.Completion.create(
prompt="test" * 1000,
n=10,
model="ada",
max_tokens=100,
request_timeout=0.01,
)
def test_timeout_does_not_error():
# A query that should be fast
apacai.Completion.create(
prompt="test",
model="ada",
request_timeout=10,
)
def test_user_session():
with requests.Session() as session:
apacai.requestssession = session
completion = apacai.Completion.create(
prompt="hello world",
model="ada",
)
assert completion
def test_user_session_factory():
def factory():
session = requests.Session()
session.mount(
"https://",
requests.adapters.HTTPAdapter(max_retries=4),
)
return session
apacai.requestssession = factory
completion = apacai.Completion.create(
prompt="hello world",
model="ada",
)
assert completion
|
EXCEPTION_TEST_CASES = [
apacai.InvalidRequestError(
"message",
"param",
code=400,
http_body={"test": "test1"},
http_status="fail",
json_body={"text": "iono some text"},
headers={"request-id": "asasd"},
),
apacai.error.AuthenticationError(),
apacai.error.PermissionError(),
apacai.error.RateLimitError(),
apacai.error.ServiceUnavailableError(),
apacai.error.SignatureVerificationError("message", "sig_header?"),
apacai.error.APIConnectionError("message!", should_retry=True),
apacai.error.TryAgain(),
apacai.error.Timeout(),
apacai.error.APIError(
message="message",
code=400,
http_body={"test": "test1"},
http_status="fail",
json_body={"text": "iono some text"},
headers={"request-id": "asasd"},
),
apacai.error.ApacAIError(),
]
class TestExceptions:
@pytest.mark.parametrize("error", EXCEPTION_TEST_CASES)
def test_exceptions_are_pickleable(self, error) -> None:
assert error.__repr__() == pickle.loads(pickle.dumps(error)).__repr__()
|
@pytest.fixture(scope="function")
def api_key_file():
saved_path = apacai.api_key_path
try:
with NamedTemporaryFile(prefix="apacai-api-key", mode="wt") as tmp:
apacai.api_key_path = tmp.name
yield tmp
finally:
apacai.api_key_path = saved_path
def test_apacai_api_key_path(api_key_file) -> None:
print("sk-foo", file=api_key_file)
api_key_file.flush()
assert util.default_api_key() == "sk-foo"
def test_apacai_api_key_path_with_malformed_key(api_key_file) -> None:
print("malformed-api-key", file=api_key_file)
api_key_file.flush()
with pytest.raises(ValueError, match="Malformed API key"):
util.default_api_key()
def test_key_order_apacai_object_rendering() -> None:
sample_response = {
"id": "chatcmpl-7NaPEA6sgX7LnNPyKPbRlsyqLbr5V",
"object": "chat.completion",
"created": 1685855844,
"model": "gpt-3.5-turbo-0301",
"usage": {"prompt_tokens": 57, "completion_tokens": 40, "total_tokens": 97},
"choices": [
{
"message": {
"role": "assistant",
"content": "The 2020 World Series was played at Globe Life Field in Arlington, Texas. It was the first time that the World Series was played at a neutral site because of the COVID-19 pandemic.",
},
"finish_reason": "stop",
"index": 0,
}
],
}
oai_object = util.convert_to_apacai_object(sample_response)
# The `__str__` method was sorting while dumping to json
assert list(json.loads(str(oai_object)).keys()) == list(sample_response.keys())
|
@pytest.mark.url
def test_completions_url_composition_azure() -> None:
url = Completion.class_url("test_engine", "azure", "2021-11-01-preview")
assert (
url
== "/apacai/deployments/test_engine/completions?api-version=2021-11-01-preview"
)
@pytest.mark.url
def test_completions_url_composition_azure_ad() -> None:
url = Completion.class_url("test_engine", "azure_ad", "2021-11-01-preview")
assert (
url
== "/apacai/deployments/test_engine/completions?api-version=2021-11-01-preview"
)
@pytest.mark.url
def test_completions_url_composition_default() -> None:
url = Completion.class_url("test_engine")
assert url == "/engines/test_engine/completions"
@pytest.mark.url
def test_completions_url_composition_open_ai() -> None:
url = Completion.class_url("test_engine", "open_ai")
assert url == "/engines/test_engine/completions"
@pytest.mark.url
def test_completions_url_composition_invalid_type() -> None:
with pytest.raises(Exception):
url = Completion.class_url("test_engine", "invalid")
@pytest.mark.url
def test_completions_url_composition_instance_url_azure() -> None:
completion = Completion(
id="test_id",
engine="test_engine",
api_type="azure",
api_version="2021-11-01-preview",
)
url = completion.instance_url()
assert (
url
== "/apacai/deployments/test_engine/completions/test_id?api-version=2021-11-01-preview"
)
@pytest.mark.url
def test_completions_url_composition_instance_url_azure_ad() -> None:
completion = Completion(
id="test_id",
engine="test_engine",
api_type="azure_ad",
api_version="2021-11-01-preview",
)
url = completion.instance_url()
assert (
url
== "/apacai/deployments/test_engine/completions/test_id?api-version=2021-11-01-preview"
)
@pytest.mark.url
def test_completions_url_composition_instance_url_azure_no_version() -> None:
completion = Completion(
id="test_id", engine="test_engine", api_type="azure", api_version=None
)
with pytest.raises(Exception):
completion.instance_url()
@pytest.mark.url
def test_completions_url_composition_instance_url_default() -> None:
completion = Completion(id="test_id", engine="test_engine")
url = completion.instance_url()
assert url == "/engines/test_engine/completions/test_id"
@pytest.mark.url
def test_completions_url_composition_instance_url_open_ai() -> None:
completion = Completion(
id="test_id",
engine="test_engine",
api_type="open_ai",
api_version="2021-11-01-preview",
)
url = completion.instance_url()
assert url == "/engines/test_engine/completions/test_id"
@pytest.mark.url
def test_completions_url_composition_instance_url_invalid() -> None:
completion = Completion(id="test_id", engine="test_engine", api_type="invalid")
with pytest.raises(Exception):
url = completion.instance_url()
@pytest.mark.url
def test_completions_url_composition_instance_url_timeout_azure() -> None:
completion = Completion(
id="test_id",
engine="test_engine",
api_type="azure",
api_version="2021-11-01-preview",
)
completion["timeout"] = 12
url = completion.instance_url()
assert (
url
== "/apacai/deployments/test_engine/completions/test_id?api-version=2021-11-01-preview&timeout=12"
)
@pytest.mark.url
def test_completions_url_composition_instance_url_timeout_apacai() -> None:
completion = Completion(id="test_id", engine="test_engine", api_type="open_ai")
completion["timeout"] = 12
url = completion.instance_url()
assert url == "/engines/test_engine/completions/test_id?timeout=12"
@pytest.mark.url
def test_engine_search_url_composition_azure() -> None:
engine = Engine(id="test_id", api_type="azure", api_version="2021-11-01-preview")
assert engine.api_type == "azure"
assert engine.typed_api_type == ApiType.AZURE
url = engine.instance_url("test_operation")
assert (
url
== "/apacai/deployments/test_id/test_operation?api-version=2021-11-01-preview"
)
@pytest.mark.url
def test_engine_search_url_composition_azure_ad() -> None:
engine = Engine(id="test_id", api_type="azure_ad", api_version="2021-11-01-preview")
assert engine.api_type == "azure_ad"
assert engine.typed_api_type == ApiType.AZURE_AD
url = engine.instance_url("test_operation")
assert (
url
== "/apacai/deployments/test_id/test_operation?api-version=2021-11-01-preview"
)
@pytest.mark.url
def test_engine_search_url_composition_azure_no_version() -> None:
engine = Engine(id="test_id", api_type="azure", api_version=None)
assert engine.api_type == "azure"
assert engine.typed_api_type == ApiType.AZURE
with pytest.raises(Exception):
engine.instance_url("test_operation")
@pytest.mark.url
def test_engine_search_url_composition_azure_no_operation() -> None:
engine = Engine(id="test_id", api_type="azure", api_version="2021-11-01-preview")
assert engine.api_type == "azure"
assert engine.typed_api_type == ApiType.AZURE
assert (
engine.instance_url()
== "/apacai/engines/test_id?api-version=2021-11-01-preview"
)
@pytest.mark.url
def test_engine_search_url_composition_default() -> None:
engine = Engine(id="test_id")
assert engine.api_type == None
assert engine.typed_api_type == ApiType.OPEN_AI
url = engine.instance_url()
assert url == "/engines/test_id"
@pytest.mark.url
def test_engine_search_url_composition_open_ai() -> None:
engine = Engine(id="test_id", api_type="open_ai")
assert engine.api_type == "open_ai"
assert engine.typed_api_type == ApiType.OPEN_AI
url = engine.instance_url()
assert url == "/engines/test_id"
@pytest.mark.url
def test_engine_search_url_composition_invalid_type() -> None:
engine = Engine(id="test_id", api_type="invalid")
assert engine.api_type == "invalid"
with pytest.raises(Exception):
assert engine.typed_api_type == ApiType.OPEN_AI
@pytest.mark.url
def test_engine_search_url_composition_invalid_search() -> None:
engine = Engine(id="test_id", api_type="invalid")
assert engine.api_type == "invalid"
with pytest.raises(Exception):
engine.search()
|
@pytest.mark.skipif(not HAS_PANDAS, reason=PANDAS_INSTRUCTIONS)
@pytest.mark.skipif(not HAS_NUMPY, reason=NUMPY_INSTRUCTIONS)
def test_long_examples_validator() -> None:
"""
Ensures that long_examples_validator() handles previously applied recommendations,
namely dropped duplicates, without resulting in a KeyError.
"""
# data
short_prompt = "a prompt "
long_prompt = short_prompt * 500
short_completion = "a completion "
long_completion = short_completion * 500
# the order of these matters
unprepared_training_data = [
{"prompt": long_prompt, "completion": long_completion}, # 1 of 2 duplicates
{"prompt": short_prompt, "completion": short_completion},
{"prompt": long_prompt, "completion": long_completion}, # 2 of 2 duplicates
]
with NamedTemporaryFile(suffix=".jsonl", mode="w") as training_data:
print(training_data.name)
for prompt_completion_row in unprepared_training_data:
training_data.write(json.dumps(prompt_completion_row) + "\n")
training_data.flush()
prepared_data_cmd_output = subprocess.run(
[f"apacai tools fine_tunes.prepare_data -f {training_data.name}"],
stdout=subprocess.PIPE,
text=True,
input="y\ny\ny\ny\ny", # apply all recommendations, one at a time
stderr=subprocess.PIPE,
encoding="utf-8",
shell=True,
)
# validate data was prepared successfully
assert prepared_data_cmd_output.stderr == ""
# validate get_long_indexes() applied during optional_fn() call in long_examples_validator()
assert "indices of the long examples has changed" in prepared_data_cmd_output.stdout
return prepared_data_cmd_output.stdout
|
@pytest.mark.requestor
def test_requestor_sets_request_id(mocker: MockerFixture) -> None:
# Fake out 'requests' and confirm that the X-Request-Id header is set.
got_headers = {}
def fake_request(self, *args, **kwargs):
nonlocal got_headers
got_headers = kwargs["headers"]
r = requests.Response()
r.status_code = 200
r.headers["content-type"] = "application/json"
r._content = json.dumps({}).encode("utf-8")
return r
mocker.patch("requests.sessions.Session.request", fake_request)
fake_request_id = "1234"
Model.retrieve("xxx", request_id=fake_request_id) # arbitrary API resource
got_request_id = got_headers.get("X-Request-Id")
assert got_request_id == fake_request_id
@pytest.mark.requestor
def test_requestor_open_ai_headers() -> None:
api_requestor = APIRequestor(key="test_key", api_type="open_ai")
headers = {"Test_Header": "Unit_Test_Header"}
headers = api_requestor.request_headers(
method="get", extra=headers, request_id="test_id"
)
assert "Test_Header" in headers
assert headers["Test_Header"] == "Unit_Test_Header"
assert "Authorization" in headers
assert headers["Authorization"] == "Bearer test_key"
@pytest.mark.requestor
def test_requestor_azure_headers() -> None:
api_requestor = APIRequestor(key="test_key", api_type="azure")
headers = {"Test_Header": "Unit_Test_Header"}
headers = api_requestor.request_headers(
method="get", extra=headers, request_id="test_id"
)
assert "Test_Header" in headers
assert headers["Test_Header"] == "Unit_Test_Header"
assert "api-key" in headers
assert headers["api-key"] == "test_key"
@pytest.mark.requestor
def test_requestor_azure_ad_headers() -> None:
api_requestor = APIRequestor(key="test_key", api_type="azure_ad")
headers = {"Test_Header": "Unit_Test_Header"}
headers = api_requestor.request_headers(
method="get", extra=headers, request_id="test_id"
)
assert "Test_Header" in headers
assert headers["Test_Header"] == "Unit_Test_Header"
assert "Authorization" in headers
assert headers["Authorization"] == "Bearer test_key"
@pytest.mark.requestor
def test_requestor_cycle_sessions(mocker: MockerFixture) -> None:
# HACK: we need to purge the _thread_context to not interfere
# with other tests
from apacai.api_requestor import _thread_context
delattr(_thread_context, "session")
api_requestor = APIRequestor(key="test_key", api_type="azure_ad")
mock_session = mocker.MagicMock()
mocker.patch("apacai.api_requestor._make_session", lambda: mock_session)
# We don't call `session.close()` if not enough time has elapsed
api_requestor.request_raw("get", "http://example.com")
mock_session.request.assert_called()
api_requestor.request_raw("get", "http://example.com")
mock_session.close.assert_not_called()
mocker.patch("apacai.api_requestor.MAX_SESSION_LIFETIME_SECS", 0)
# Due to 0 lifetime, the original session will be closed before the next call
# and a new session will be created
mock_session_2 = mocker.MagicMock()
mocker.patch("apacai.api_requestor._make_session", lambda: mock_session_2)
api_requestor.request_raw("get", "http://example.com")
mock_session.close.assert_called()
mock_session_2.request.assert_called()
delattr(_thread_context, "session")
|
pytestmark = [pytest.mark.asyncio]
# FILE TESTS
async def test_file_upload():
result = await apacai.File.acreate(
file=io.StringIO(
json.dumps({"prompt": "test file data", "completion": "tada"})
),
purpose="fine-tune",
)
assert result.purpose == "fine-tune"
assert "id" in result
result = await apacai.File.aretrieve(id=result.id)
assert result.status == "uploaded"
# COMPLETION TESTS
async def test_completions():
result = await apacai.Completion.acreate(
prompt="This was a test", n=5, engine="ada"
)
assert len(result.choices) == 5
async def test_completions_multiple_prompts():
result = await apacai.Completion.acreate(
prompt=["This was a test", "This was another test"], n=5, engine="ada"
)
assert len(result.choices) == 10
async def test_completions_model():
result = await apacai.Completion.acreate(prompt="This was a test", n=5, model="ada")
assert len(result.choices) == 5
assert result.model.startswith("ada")
async def test_timeout_raises_error():
# A query that should take awhile to return
with pytest.raises(error.Timeout):
await apacai.Completion.acreate(
prompt="test" * 1000,
n=10,
model="ada",
max_tokens=100,
request_timeout=0.01,
)
async def test_timeout_does_not_error():
# A query that should be fast
await apacai.Completion.acreate(
prompt="test",
model="ada",
request_timeout=10,
)
async def test_completions_stream_finishes_global_session():
async with ClientSession() as session:
apacai.aiosession.set(session)
# A query that should be fast
parts = []
async for part in await apacai.Completion.acreate(
prompt="test", model="ada", request_timeout=3, stream=True
):
parts.append(part)
assert len(parts) > 1
async def test_completions_stream_finishes_local_session():
# A query that should be fast
parts = []
async for part in await apacai.Completion.acreate(
prompt="test", model="ada", request_timeout=3, stream=True
):
parts.append(part)
assert len(parts) > 1
|
class ChatCompletion(EngineAPIResource):
engine_required = False
OBJECT_NAME = "chat.completions"
@classmethod
def create(cls, *args, **kwargs):
"""
Creates a new chat completion for the provided messages and parameters.
See https://platform.apacai.com/docs/api-reference/chat/create
for a list of valid parameters.
"""
start = time.time()
timeout = kwargs.pop("timeout", None)
while True:
try:
return super().create(*args, **kwargs)
except TryAgain as e:
if timeout is not None and time.time() > start + timeout:
raise
util.log_info("Waiting for model to warm up", error=e)
@classmethod
async def acreate(cls, *args, **kwargs):
"""
Creates a new chat completion for the provided messages and parameters.
See https://platform.apacai.com/docs/api-reference/chat/create
for a list of valid parameters.
"""
start = time.time()
timeout = kwargs.pop("timeout", None)
while True:
try:
return await super().acreate(*args, **kwargs)
except TryAgain as e:
if timeout is not None and time.time() > start + timeout:
raise
util.log_info("Waiting for model to warm up", error=e)
|
DeletableAPIResource,
ListableAPIResource,
CreateableAPIResource,
)
class Deployment(CreateableAPIResource, ListableAPIResource, DeletableAPIResource):
OBJECT_NAME = "deployments"
@classmethod
def _check_create(cls, *args, **kwargs):
typed_api_type, _ = cls._get_api_type_and_version(
kwargs.get("api_type", None), None
)
if typed_api_type not in (util.ApiType.AZURE, util.ApiType.AZURE_AD):
raise APIError(
"Deployment operations are only available for the Azure API type."
)
if kwargs.get("model", None) is None:
raise InvalidRequestError(
"Must provide a 'model' parameter to create a Deployment.",
param="model",
)
scale_settings = kwargs.get("scale_settings", None)
if scale_settings is None:
raise InvalidRequestError(
"Must provide a 'scale_settings' parameter to create a Deployment.",
param="scale_settings",
)
if "scale_type" not in scale_settings or (
scale_settings["scale_type"].lower() == "manual"
and "capacity" not in scale_settings
):
raise InvalidRequestError(
"The 'scale_settings' parameter contains invalid or incomplete values.",
param="scale_settings",
)
@classmethod
def create(cls, *args, **kwargs):
"""
Creates a new deployment for the provided prompt and parameters.
"""
cls._check_create(*args, **kwargs)
return super().create(*args, **kwargs)
@classmethod
def acreate(cls, *args, **kwargs):
"""
Creates a new deployment for the provided prompt and parameters.
"""
cls._check_create(*args, **kwargs)
return super().acreate(*args, **kwargs)
@classmethod
def _check_list(cls, *args, **kwargs):
typed_api_type, _ = cls._get_api_type_and_version(
kwargs.get("api_type", None), None
)
if typed_api_type not in (util.ApiType.AZURE, util.ApiType.AZURE_AD):
raise APIError(
"Deployment operations are only available for the Azure API type."
)
@classmethod
def list(cls, *args, **kwargs):
cls._check_list(*args, **kwargs)
return super().list(*args, **kwargs)
@classmethod
def alist(cls, *args, **kwargs):
cls._check_list(*args, **kwargs)
return super().alist(*args, **kwargs)
@classmethod
def _check_delete(cls, *args, **kwargs):
typed_api_type, _ = cls._get_api_type_and_version(
kwargs.get("api_type", None), None
)
if typed_api_type not in (util.ApiType.AZURE, util.ApiType.AZURE_AD):
raise APIError(
"Deployment operations are only available for the Azure API type."
)
@classmethod
def delete(cls, *args, **kwargs):
cls._check_delete(*args, **kwargs)
return super().delete(*args, **kwargs)
@classmethod
def adelete(cls, *args, **kwargs):
cls._check_delete(*args, **kwargs)
return super().adelete(*args, **kwargs)
@classmethod
def _check_retrieve(cls, *args, **kwargs):
typed_api_type, _ = cls._get_api_type_and_version(
kwargs.get("api_type", None), None
)
if typed_api_type not in (util.ApiType.AZURE, util.ApiType.AZURE_AD):
raise APIError(
"Deployment operations are only available for the Azure API type."
)
@classmethod
def retrieve(cls, *args, **kwargs):
cls._check_retrieve(*args, **kwargs)
return super().retrieve(*args, **kwargs)
@classmethod
def aretrieve(cls, *args, **kwargs):
cls._check_retrieve(*args, **kwargs)
return super().aretrieve(*args, **kwargs)
|
class ErrorObject(ApacAIObject):
def refresh_from(
self,
values,
api_key=None,
api_version=None,
api_type=None,
organization=None,
response_ms: Optional[int] = None,
):
# Unlike most other API resources, the API will omit attributes in
# error objects when they have a null value. We manually set default
# values here to facilitate generic error handling.
values = merge_dicts({"message": None, "type": None}, values)
return super(ErrorObject, self).refresh_from(
values=values,
api_key=api_key,
api_version=api_version,
api_type=api_type,
organization=organization,
response_ms=response_ms,
)
|
class Completion(EngineAPIResource):
OBJECT_NAME = "completions"
@classmethod
def create(cls, *args, **kwargs):
"""
Creates a new completion for the provided prompt and parameters.
See https://platform.apacai.com/docs/api-reference/completions/create for a list
of valid parameters.
"""
start = time.time()
timeout = kwargs.pop("timeout", None)
while True:
try:
return super().create(*args, **kwargs)
except TryAgain as e:
if timeout is not None and time.time() > start + timeout:
raise
util.log_info("Waiting for model to warm up", error=e)
@classmethod
async def acreate(cls, *args, **kwargs):
"""
Creates a new completion for the provided prompt and parameters.
See https://platform.apacai.com/docs/api-reference/completions/create for a list
of valid parameters.
"""
start = time.time()
timeout = kwargs.pop("timeout", None)
while True:
try:
return await super().acreate(*args, **kwargs)
except TryAgain as e:
if timeout is not None and time.time() > start + timeout:
raise
util.log_info("Waiting for model to warm up", error=e)
|
CreateableAPIResource,
ListableAPIResource,
nested_resource_class_methods,
)
@nested_resource_class_methods("event", operations=["list"])
class FineTune(ListableAPIResource, CreateableAPIResource, DeletableAPIResource):
OBJECT_NAME = "fine-tunes"
@classmethod
def _prepare_cancel(
cls,
id,
api_key=None,
api_type=None,
request_id=None,
api_version=None,
**params,
):
base = cls.class_url()
extn = quote_plus(id)
typed_api_type, api_version = cls._get_api_type_and_version(
api_type, api_version
)
if typed_api_type in (ApiType.AZURE, ApiType.AZURE_AD):
url = "/%s%s/%s/cancel?api-version=%s" % (
cls.azure_api_prefix,
base,
extn,
api_version,
)
elif typed_api_type == ApiType.OPEN_AI:
url = "%s/%s/cancel" % (base, extn)
else:
raise error.InvalidAPIType("Unsupported API type %s" % api_type)
instance = cls(id, api_key, **params)
return instance, url
@classmethod
def cancel(
cls,
id,
api_key=None,
api_type=None,
request_id=None,
api_version=None,
**params,
):
instance, url = cls._prepare_cancel(
id,
api_key,
api_type,
request_id,
api_version,
**params,
)
return instance.request("post", url, request_id=request_id)
@classmethod
def acancel(
cls,
id,
api_key=None,
api_type=None,
request_id=None,
api_version=None,
**params,
):
instance, url = cls._prepare_cancel(
id,
api_key,
api_type,
request_id,
api_version,
**params,
)
return instance.arequest("post", url, request_id=request_id)
@classmethod
def _prepare_stream_events(
cls,
id,
api_key=None,
api_base=None,
api_type=None,
request_id=None,
api_version=None,
organization=None,
**params,
):
base = cls.class_url()
extn = quote_plus(id)
requestor = api_requestor.APIRequestor(
api_key,
api_base=api_base,
api_type=api_type,
api_version=api_version,
organization=organization,
)
typed_api_type, api_version = cls._get_api_type_and_version(
api_type, api_version
)
if typed_api_type in (ApiType.AZURE, ApiType.AZURE_AD):
url = "/%s%s/%s/events?stream=true&api-version=%s" % (
cls.azure_api_prefix,
base,
extn,
api_version,
)
elif typed_api_type == ApiType.OPEN_AI:
url = "%s/%s/events?stream=true" % (base, extn)
else:
raise error.InvalidAPIType("Unsupported API type %s" % api_type)
return requestor, url
@classmethod
def stream_events(
cls,
id,
api_key=None,
api_base=None,
api_type=None,
request_id=None,
api_version=None,
organization=None,
**params,
):
requestor, url = cls._prepare_stream_events(
id,
api_key,
api_base,
api_type,
request_id,
api_version,
organization,
**params,
)
response, _, api_key = requestor.request(
"get", url, params, stream=True, request_id=request_id
)
assert not isinstance(response, ApacAIResponse) # must be an iterator
return (
util.convert_to_apacai_object(
line,
api_key,
api_version,
organization,
)
for line in response
)
@classmethod
async def astream_events(
cls,
id,
api_key=None,
api_base=None,
api_type=None,
request_id=None,
api_version=None,
organization=None,
**params,
):
requestor, url = cls._prepare_stream_events(
id,
api_key,
api_base,
api_type,
request_id,
api_version,
organization,
**params,
)
response, _, api_key = await requestor.arequest(
"get", url, params, stream=True, request_id=request_id
)
assert not isinstance(response, ApacAIResponse) # must be an iterator
return (
util.convert_to_apacai_object(
line,
api_key,
api_version,
organization,
)
async for line in response
)
|
class Embedding(EngineAPIResource):
OBJECT_NAME = "embeddings"
@classmethod
def create(cls, *args, **kwargs):
"""
Creates a new embedding for the provided input and parameters.
See https://platform.apacai.com/docs/api-reference/embeddings for a list
of valid parameters.
"""
start = time.time()
timeout = kwargs.pop("timeout", None)
user_provided_encoding_format = kwargs.get("encoding_format", None)
# If encoding format was not explicitly specified, we opaquely use base64 for performance
if not user_provided_encoding_format:
kwargs["encoding_format"] = "base64"
while True:
try:
response = super().create(*args, **kwargs)
# If a user specifies base64, we'll just return the encoded string.
# This is only for the default case.
if not user_provided_encoding_format:
for data in response.data:
# If an engine isn't using this optimization, don't do anything
if type(data["embedding"]) == str:
assert_has_numpy()
data["embedding"] = np.frombuffer(
base64.b64decode(data["embedding"]), dtype="float32"
).tolist()
return response
except TryAgain as e:
if timeout is not None and time.time() > start + timeout:
raise
util.log_info("Waiting for model to warm up", error=e)
@classmethod
async def acreate(cls, *args, **kwargs):
"""
Creates a new embedding for the provided input and parameters.
See https://platform.apacai.com/docs/api-reference/embeddings for a list
of valid parameters.
"""
start = time.time()
timeout = kwargs.pop("timeout", None)
user_provided_encoding_format = kwargs.get("encoding_format", None)
# If encoding format was not explicitly specified, we opaquely use base64 for performance
if not user_provided_encoding_format:
kwargs["encoding_format"] = "base64"
while True:
try:
response = await super().acreate(*args, **kwargs)
# If a user specifies base64, we'll just return the encoded string.
# This is only for the default case.
if not user_provided_encoding_format:
for data in response.data:
# If an engine isn't using this optimization, don't do anything
if type(data["embedding"]) == str:
data["embedding"] = np.frombuffer(
base64.b64decode(data["embedding"]), dtype="float32"
).tolist()
return response
except TryAgain as e:
if timeout is not None and time.time() > start + timeout:
raise
util.log_info("Waiting for model to warm up", error=e)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.