python_code
stringlengths
0
229k
class Moderation(ApacAIObject): VALID_MODEL_NAMES: List[str] = ["text-moderation-stable", "text-moderation-latest"] @classmethod def get_url(cls): return "/moderations" @classmethod def _prepare_create(cls, input, model, api_key): if model is not None and model not in cls.VALID_MODEL_NAMES: raise ValueError( f"The parameter model should be chosen from {cls.VALID_MODEL_NAMES} " f"and it is default to be None." ) instance = cls(api_key=api_key) params = {"input": input} if model is not None: params["model"] = model return instance, params @classmethod def create( cls, input: Union[str, List[str]], model: Optional[str] = None, api_key: Optional[str] = None, ): instance, params = cls._prepare_create(input, model, api_key) return instance.request("post", cls.get_url(), params) @classmethod def acreate( cls, input: Union[str, List[str]], model: Optional[str] = None, api_key: Optional[str] = None, ): instance, params = cls._prepare_create(input, model, api_key) return instance.arequest("post", cls.get_url(), params)
class Edit(EngineAPIResource): OBJECT_NAME = "edits" @classmethod def create(cls, *args, **kwargs): """ Creates a new edit for the provided input, instruction, and parameters. """ start = time.time() timeout = kwargs.pop("timeout", None) api_type = kwargs.pop("api_type", None) typed_api_type = cls._get_api_type_and_version(api_type=api_type)[0] if typed_api_type in (util.ApiType.AZURE, util.ApiType.AZURE_AD): raise error.InvalidAPIType( "This operation is not supported by the Azure APACAI API yet." ) while True: try: return super().create(*args, **kwargs) except TryAgain as e: if timeout is not None and time.time() > start + timeout: raise util.log_info("Waiting for model to warm up", error=e) @classmethod async def acreate(cls, *args, **kwargs): """ Creates a new edit for the provided input, instruction, and parameters. """ start = time.time() timeout = kwargs.pop("timeout", None) api_type = kwargs.pop("api_type", None) typed_api_type = cls._get_api_type_and_version(api_type=api_type)[0] if typed_api_type in (util.ApiType.AZURE, util.ApiType.AZURE_AD): raise error.InvalidAPIType( "This operation is not supported by the Azure APACAI API yet." ) while True: try: return await super().acreate(*args, **kwargs) except TryAgain as e: if timeout is not None and time.time() > start + timeout: raise util.log_info("Waiting for model to warm up", error=e)
class Model(ListableAPIResource, DeletableAPIResource): OBJECT_NAME = "models"
class File(ListableAPIResource, DeletableAPIResource): OBJECT_NAME = "files" @classmethod def __prepare_file_create( cls, file, purpose, model=None, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, user_provided_filename=None, ): requestor = api_requestor.APIRequestor( api_key, api_base=api_base or apacai.api_base, api_type=api_type, api_version=api_version, organization=organization, ) typed_api_type, api_version = cls._get_api_type_and_version( api_type, api_version ) if typed_api_type in (ApiType.AZURE, ApiType.AZURE_AD): base = cls.class_url() url = "/%s%s?api-version=%s" % (cls.azure_api_prefix, base, api_version) elif typed_api_type == ApiType.OPEN_AI: url = cls.class_url() else: raise error.InvalidAPIType("Unsupported API type %s" % api_type) # Set the filename on 'purpose' and 'model' to None so they are # interpreted as form data. files = [("purpose", (None, purpose))] if model is not None: files.append(("model", (None, model))) if user_provided_filename is not None: files.append( ("file", (user_provided_filename, file, "application/octet-stream")) ) else: files.append(("file", ("file", file, "application/octet-stream"))) return requestor, url, files @classmethod def create( cls, file, purpose, model=None, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, user_provided_filename=None, ): requestor, url, files = cls.__prepare_file_create( file, purpose, model, api_key, api_base, api_type, api_version, organization, user_provided_filename, ) response, _, api_key = requestor.request("post", url, files=files) return util.convert_to_apacai_object( response, api_key, api_version, organization ) @classmethod async def acreate( cls, file, purpose, model=None, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, user_provided_filename=None, ): requestor, url, files = cls.__prepare_file_create( file, purpose, model, api_key, api_base, api_type, api_version, organization, user_provided_filename, ) response, _, api_key = await requestor.arequest("post", url, files=files) return util.convert_to_apacai_object( response, api_key, api_version, organization ) @classmethod def __prepare_file_download( cls, id, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, ): requestor = api_requestor.APIRequestor( api_key, api_base=api_base or apacai.api_base, api_type=api_type, api_version=api_version, organization=organization, ) typed_api_type, api_version = cls._get_api_type_and_version( api_type, api_version ) if typed_api_type in (ApiType.AZURE, ApiType.AZURE_AD): base = cls.class_url() url = f"/{cls.azure_api_prefix}{base}/{id}/content?api-version={api_version}" elif typed_api_type == ApiType.OPEN_AI: url = f"{cls.class_url()}/{id}/content" else: raise error.InvalidAPIType("Unsupported API type %s" % api_type) return requestor, url @classmethod def download( cls, id, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, ): requestor, url = cls.__prepare_file_download( id, api_key, api_base, api_type, api_version, organization ) result = requestor.request_raw("get", url) if not 200 <= result.status_code < 300: raise requestor.handle_error_response( result.content, result.status_code, json.loads(cast(bytes, result.content)), result.headers, stream_error=False, ) return result.content @classmethod async def adownload( cls, id, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, ): requestor, url = cls.__prepare_file_download( id, api_key, api_base, api_type, api_version, organization ) async with api_requestor.aiohttp_session() as session: result = await requestor.arequest_raw("get", url, session) if not 200 <= result.status < 300: raise requestor.handle_error_response( result.content, result.status, json.loads(cast(bytes, result.content)), result.headers, stream_error=False, ) return result.content @classmethod def __find_matching_files(cls, name, bytes, all_files, purpose): matching_files = [] basename = os.path.basename(name) for f in all_files: if f["purpose"] != purpose: continue file_basename = os.path.basename(f["filename"]) if file_basename != basename: continue if "bytes" in f and f["bytes"] != bytes: continue if "size" in f and int(f["size"]) != bytes: continue matching_files.append(f) return matching_files @classmethod def find_matching_files( cls, name, bytes, purpose, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, ): """Find already uploaded files with the same name, size, and purpose.""" all_files = cls.list( api_key=api_key, api_base=api_base or apacai.api_base, api_type=api_type, api_version=api_version, organization=organization, ).get("data", []) return cls.__find_matching_files(name, bytes, all_files, purpose) @classmethod async def afind_matching_files( cls, name, bytes, purpose, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, ): """Find already uploaded files with the same name, size, and purpose.""" all_files = ( await cls.alist( api_key=api_key, api_base=api_base or apacai.api_base, api_type=api_type, api_version=api_version, organization=organization, ) ).get("data", []) return cls.__find_matching_files(name, bytes, all_files, purpose)
class Engine(ListableAPIResource, UpdateableAPIResource): OBJECT_NAME = "engines" def generate(self, timeout=None, **params): start = time.time() while True: try: return self.request( "post", self.instance_url() + "/generate", params, stream=params.get("stream"), plain_old_data=True, ) except TryAgain as e: if timeout is not None and time.time() > start + timeout: raise util.log_info("Waiting for model to warm up", error=e) async def agenerate(self, timeout=None, **params): start = time.time() while True: try: return await self.arequest( "post", self.instance_url() + "/generate", params, stream=params.get("stream"), plain_old_data=True, ) except TryAgain as e: if timeout is not None and time.time() > start + timeout: raise util.log_info("Waiting for model to warm up", error=e) def embeddings(self, **params): warnings.warn( "Engine.embeddings is deprecated, use Embedding.create", DeprecationWarning ) return self.request("post", self.instance_url() + "/embeddings", params)
class Audio(APIResource): OBJECT_NAME = "audio" @classmethod def _get_url(cls, action): return cls.class_url() + f"/{action}" @classmethod def _prepare_request( cls, file, filename, model, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, **params, ): requestor = api_requestor.APIRequestor( api_key, api_base=api_base or apacai.api_base, api_type=api_type, api_version=api_version, organization=organization, ) files: List[Any] = [] data = { "model": model, **params, } files.append(("file", (filename, file, "application/octet-stream"))) return requestor, files, data @classmethod def transcribe( cls, model, file, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, **params, ): requestor, files, data = cls._prepare_request( file=file, filename=file.name, model=model, api_key=api_key, api_base=api_base, api_type=api_type, api_version=api_version, organization=organization, **params, ) url = cls._get_url("transcriptions") response, _, api_key = requestor.request("post", url, files=files, params=data) return util.convert_to_apacai_object( response, api_key, api_version, organization ) @classmethod def translate( cls, model, file, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, **params, ): requestor, files, data = cls._prepare_request( file=file, filename=file.name, model=model, api_key=api_key, api_base=api_base, api_type=api_type, api_version=api_version, organization=organization, **params, ) url = cls._get_url("translations") response, _, api_key = requestor.request("post", url, files=files, params=data) return util.convert_to_apacai_object( response, api_key, api_version, organization ) @classmethod def transcribe_raw( cls, model, file, filename, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, **params, ): requestor, files, data = cls._prepare_request( file=file, filename=filename, model=model, api_key=api_key, api_base=api_base, api_type=api_type, api_version=api_version, organization=organization, **params, ) url = cls._get_url("transcriptions") response, _, api_key = requestor.request("post", url, files=files, params=data) return util.convert_to_apacai_object( response, api_key, api_version, organization ) @classmethod def translate_raw( cls, model, file, filename, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, **params, ): requestor, files, data = cls._prepare_request( file=file, filename=filename, model=model, api_key=api_key, api_base=api_base, api_type=api_type, api_version=api_version, organization=organization, **params, ) url = cls._get_url("translations") response, _, api_key = requestor.request("post", url, files=files, params=data) return util.convert_to_apacai_object( response, api_key, api_version, organization ) @classmethod async def atranscribe( cls, model, file, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, **params, ): requestor, files, data = cls._prepare_request( file=file, filename=file.name, model=model, api_key=api_key, api_base=api_base, api_type=api_type, api_version=api_version, organization=organization, **params, ) url = cls._get_url("transcriptions") response, _, api_key = await requestor.arequest( "post", url, files=files, params=data ) return util.convert_to_apacai_object( response, api_key, api_version, organization ) @classmethod async def atranslate( cls, model, file, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, **params, ): requestor, files, data = cls._prepare_request( file=file, filename=file.name, model=model, api_key=api_key, api_base=api_base, api_type=api_type, api_version=api_version, organization=organization, **params, ) url = cls._get_url("translations") response, _, api_key = await requestor.arequest( "post", url, files=files, params=data ) return util.convert_to_apacai_object( response, api_key, api_version, organization ) @classmethod async def atranscribe_raw( cls, model, file, filename, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, **params, ): requestor, files, data = cls._prepare_request( file=file, filename=filename, model=model, api_key=api_key, api_base=api_base, api_type=api_type, api_version=api_version, organization=organization, **params, ) url = cls._get_url("transcriptions") response, _, api_key = await requestor.arequest( "post", url, files=files, params=data ) return util.convert_to_apacai_object( response, api_key, api_version, organization ) @classmethod async def atranslate_raw( cls, model, file, filename, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, **params, ): requestor, files, data = cls._prepare_request( file=file, filename=filename, model=model, api_key=api_key, api_base=api_base, api_type=api_type, api_version=api_version, organization=organization, **params, ) url = cls._get_url("translations") response, _, api_key = await requestor.arequest( "post", url, files=files, params=data ) return util.convert_to_apacai_object( response, api_key, api_version, organization )
class Customer(ApacAIObject): @classmethod def get_url(cls, customer, endpoint): return f"/customer/{customer}/{endpoint}" @classmethod def create(cls, customer, endpoint, **params): instance = cls() return instance.request("post", cls.get_url(customer, endpoint), params) @classmethod def acreate(cls, customer, endpoint, **params): instance = cls() return instance.arequest("post", cls.get_url(customer, endpoint), params)
# WARNING: This interface is considered experimental and may changed in the future without warning. class Image(APIResource): OBJECT_NAME = "images" @classmethod def _get_url(cls, action, azure_action, api_type, api_version): if api_type in (util.ApiType.AZURE, util.ApiType.AZURE_AD) and azure_action is not None: return f"/{cls.azure_api_prefix}{cls.class_url()}/{action}:{azure_action}?api-version={api_version}" else: return f"{cls.class_url()}/{action}" @classmethod def create( cls, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, **params, ): requestor = api_requestor.APIRequestor( api_key, api_base=api_base or apacai.api_base, api_type=api_type, api_version=api_version, organization=organization, ) api_type, api_version = cls._get_api_type_and_version(api_type, api_version) response, _, api_key = requestor.request( "post", cls._get_url("generations", azure_action="submit", api_type=api_type, api_version=api_version), params ) if api_type in (util.ApiType.AZURE, util.ApiType.AZURE_AD): requestor.api_base = "" # operation_location is a full url response, _, api_key = requestor._poll( "get", response.operation_location, until=lambda response: response.data['status'] in [ 'succeeded' ], failed=lambda response: response.data['status'] in [ 'failed' ] ) return util.convert_to_apacai_object( response, api_key, api_version, organization ) @classmethod async def acreate( cls, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, **params, ): requestor = api_requestor.APIRequestor( api_key, api_base=api_base or apacai.api_base, api_type=api_type, api_version=api_version, organization=organization, ) api_type, api_version = cls._get_api_type_and_version(api_type, api_version) response, _, api_key = await requestor.arequest( "post", cls._get_url("generations", azure_action="submit", api_type=api_type, api_version=api_version), params ) if api_type in (util.ApiType.AZURE, util.ApiType.AZURE_AD): requestor.api_base = "" # operation_location is a full url response, _, api_key = await requestor._apoll( "get", response.operation_location, until=lambda response: response.data['status'] in [ 'succeeded' ], failed=lambda response: response.data['status'] in [ 'failed' ] ) return util.convert_to_apacai_object( response, api_key, api_version, organization ) @classmethod def _prepare_create_variation( cls, image, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, **params, ): requestor = api_requestor.APIRequestor( api_key, api_base=api_base or apacai.api_base, api_type=api_type, api_version=api_version, organization=organization, ) api_type, api_version = cls._get_api_type_and_version(api_type, api_version) url = cls._get_url("variations", azure_action=None, api_type=api_type, api_version=api_version) files: List[Any] = [] for key, value in params.items(): files.append((key, (None, value))) files.append(("image", ("image", image, "application/octet-stream"))) return requestor, url, files @classmethod def create_variation( cls, image, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, **params, ): if api_type in (util.ApiType.AZURE, util.ApiType.AZURE_AD): raise error.InvalidAPIType("Variations are not supported by the Azure APACAI API yet.") requestor, url, files = cls._prepare_create_variation( image, api_key, api_base, api_type, api_version, organization, **params, ) response, _, api_key = requestor.request("post", url, files=files) return util.convert_to_apacai_object( response, api_key, api_version, organization ) @classmethod async def acreate_variation( cls, image, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, **params, ): if api_type in (util.ApiType.AZURE, util.ApiType.AZURE_AD): raise error.InvalidAPIType("Variations are not supported by the Azure APACAI API yet.") requestor, url, files = cls._prepare_create_variation( image, api_key, api_base, api_type, api_version, organization, **params, ) response, _, api_key = await requestor.arequest("post", url, files=files) return util.convert_to_apacai_object( response, api_key, api_version, organization ) @classmethod def _prepare_create_edit( cls, image, mask=None, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, **params, ): requestor = api_requestor.APIRequestor( api_key, api_base=api_base or apacai.api_base, api_type=api_type, api_version=api_version, organization=organization, ) api_type, api_version = cls._get_api_type_and_version(api_type, api_version) url = cls._get_url("edits", azure_action=None, api_type=api_type, api_version=api_version) files: List[Any] = [] for key, value in params.items(): files.append((key, (None, value))) files.append(("image", ("image", image, "application/octet-stream"))) if mask is not None: files.append(("mask", ("mask", mask, "application/octet-stream"))) return requestor, url, files @classmethod def create_edit( cls, image, mask=None, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, **params, ): if api_type in (util.ApiType.AZURE, util.ApiType.AZURE_AD): raise error.InvalidAPIType("Edits are not supported by the Azure APACAI API yet.") requestor, url, files = cls._prepare_create_edit( image, mask, api_key, api_base, api_type, api_version, organization, **params, ) response, _, api_key = requestor.request("post", url, files=files) return util.convert_to_apacai_object( response, api_key, api_version, organization ) @classmethod async def acreate_edit( cls, image, mask=None, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, **params, ): if api_type in (util.ApiType.AZURE, util.ApiType.AZURE_AD): raise error.InvalidAPIType("Edits are not supported by the Azure APACAI API yet.") requestor, url, files = cls._prepare_create_edit( image, mask, api_key, api_base, api_type, api_version, organization, **params, ) response, _, api_key = await requestor.arequest("post", url, files=files) return util.convert_to_apacai_object( response, api_key, api_version, organization )
class CreateableAPIResource(APIResource): plain_old_data = False @classmethod def __prepare_create_requestor( cls, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, ): requestor = api_requestor.APIRequestor( api_key, api_base=api_base, api_type=api_type, api_version=api_version, organization=organization, ) typed_api_type, api_version = cls._get_api_type_and_version( api_type, api_version ) if typed_api_type in (ApiType.AZURE, ApiType.AZURE_AD): base = cls.class_url() url = "/%s%s?api-version=%s" % (cls.azure_api_prefix, base, api_version) elif typed_api_type == ApiType.OPEN_AI: url = cls.class_url() else: raise error.InvalidAPIType("Unsupported API type %s" % api_type) return requestor, url @classmethod def create( cls, api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, **params, ): requestor, url = cls.__prepare_create_requestor( api_key, api_base, api_type, api_version, organization, ) response, _, api_key = requestor.request( "post", url, params, request_id=request_id ) return util.convert_to_apacai_object( response, api_key, api_version, organization, plain_old_data=cls.plain_old_data, ) @classmethod async def acreate( cls, api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, **params, ): requestor, url = cls.__prepare_create_requestor( api_key, api_base, api_type, api_version, organization, ) response, _, api_key = await requestor.arequest( "post", url, params, request_id=request_id ) return util.convert_to_apacai_object( response, api_key, api_version, organization, plain_old_data=cls.plain_old_data, )
class ListableAPIResource(APIResource): @classmethod def auto_paging_iter(cls, *args, **params): return cls.list(*args, **params).auto_paging_iter() @classmethod def __prepare_list_requestor( cls, api_key=None, api_version=None, organization=None, api_base=None, api_type=None, ): requestor = api_requestor.APIRequestor( api_key, api_base=api_base or cls.api_base(), api_version=api_version, api_type=api_type, organization=organization, ) typed_api_type, api_version = cls._get_api_type_and_version( api_type, api_version ) if typed_api_type in (ApiType.AZURE, ApiType.AZURE_AD): base = cls.class_url() url = "/%s%s?api-version=%s" % (cls.azure_api_prefix, base, api_version) elif typed_api_type == ApiType.OPEN_AI: url = cls.class_url() else: raise error.InvalidAPIType("Unsupported API type %s" % api_type) return requestor, url @classmethod def list( cls, api_key=None, request_id=None, api_version=None, organization=None, api_base=None, api_type=None, **params, ): requestor, url = cls.__prepare_list_requestor( api_key, api_version, organization, api_base, api_type, ) response, _, api_key = requestor.request( "get", url, params, request_id=request_id ) apacai_object = util.convert_to_apacai_object( response, api_key, api_version, organization ) apacai_object._retrieve_params = params return apacai_object @classmethod async def alist( cls, api_key=None, request_id=None, api_version=None, organization=None, api_base=None, api_type=None, **params, ): requestor, url = cls.__prepare_list_requestor( api_key, api_version, organization, api_base, api_type, ) response, _, api_key = await requestor.arequest( "get", url, params, request_id=request_id ) apacai_object = util.convert_to_apacai_object( response, api_key, api_version, organization ) apacai_object._retrieve_params = params return apacai_object
# flake8: noqa nested_resource_class_methods, )
class UpdateableAPIResource(APIResource): @classmethod def modify(cls, sid, **params): url = "%s/%s" % (cls.class_url(), quote_plus(sid)) return cls._static_request("post", url, **params) @classmethod def amodify(cls, sid, **params) -> Awaitable: url = "%s/%s" % (cls.class_url(), quote_plus(sid)) return cls._astatic_request("patch", url, **params)
def _nested_resource_class_methods( resource, path=None, operations=None, resource_plural=None, async_=False, ): if resource_plural is None: resource_plural = "%ss" % resource if path is None: path = resource_plural if operations is None: raise ValueError("operations list required") def wrapper(cls): def nested_resource_url(cls, id, nested_id=None): url = "%s/%s/%s" % (cls.class_url(), quote_plus(id), quote_plus(path)) if nested_id is not None: url += "/%s" % quote_plus(nested_id) return url resource_url_method = "%ss_url" % resource setattr(cls, resource_url_method, classmethod(nested_resource_url)) def nested_resource_request( cls, method, url, api_key=None, request_id=None, api_version=None, organization=None, **params, ): requestor = api_requestor.APIRequestor( api_key, api_version=api_version, organization=organization ) response, _, api_key = requestor.request( method, url, params, request_id=request_id ) return util.convert_to_apacai_object( response, api_key, api_version, organization ) async def anested_resource_request( cls, method, url, api_key=None, request_id=None, api_version=None, organization=None, **params, ): requestor = api_requestor.APIRequestor( api_key, api_version=api_version, organization=organization ) response, _, api_key = await requestor.arequest( method, url, params, request_id=request_id ) return util.convert_to_apacai_object( response, api_key, api_version, organization ) resource_request_method = "%ss_request" % resource setattr( cls, resource_request_method, classmethod( anested_resource_request if async_ else nested_resource_request ), ) for operation in operations: if operation == "create": def create_nested_resource(cls, id, **params): url = getattr(cls, resource_url_method)(id) return getattr(cls, resource_request_method)("post", url, **params) create_method = "create_%s" % resource setattr(cls, create_method, classmethod(create_nested_resource)) elif operation == "retrieve": def retrieve_nested_resource(cls, id, nested_id, **params): url = getattr(cls, resource_url_method)(id, nested_id) return getattr(cls, resource_request_method)("get", url, **params) retrieve_method = "retrieve_%s" % resource setattr(cls, retrieve_method, classmethod(retrieve_nested_resource)) elif operation == "update": def modify_nested_resource(cls, id, nested_id, **params): url = getattr(cls, resource_url_method)(id, nested_id) return getattr(cls, resource_request_method)("post", url, **params) modify_method = "modify_%s" % resource setattr(cls, modify_method, classmethod(modify_nested_resource)) elif operation == "delete": def delete_nested_resource(cls, id, nested_id, **params): url = getattr(cls, resource_url_method)(id, nested_id) return getattr(cls, resource_request_method)( "delete", url, **params ) delete_method = "delete_%s" % resource setattr(cls, delete_method, classmethod(delete_nested_resource)) elif operation == "list": def list_nested_resources(cls, id, **params): url = getattr(cls, resource_url_method)(id) return getattr(cls, resource_request_method)("get", url, **params) list_method = "list_%s" % resource_plural setattr(cls, list_method, classmethod(list_nested_resources)) else: raise ValueError("Unknown operation: %s" % operation) return cls return wrapper def nested_resource_class_methods( resource, path=None, operations=None, resource_plural=None, ): return _nested_resource_class_methods( resource, path, operations, resource_plural, async_=False ) def anested_resource_class_methods( resource, path=None, operations=None, resource_plural=None, ): return _nested_resource_class_methods( resource, path, operations, resource_plural, async_=True )
class APIResource(ApacAIObject): api_prefix = "" azure_api_prefix = "apacai" azure_deployments_prefix = "deployments" @classmethod def retrieve( cls, id, api_key=None, request_id=None, request_timeout=None, **params ): instance = cls(id=id, api_key=api_key, **params) instance.refresh(request_id=request_id, request_timeout=request_timeout) return instance @classmethod def aretrieve( cls, id, api_key=None, request_id=None, request_timeout=None, **params ): instance = cls(id=id, api_key=api_key, **params) return instance.arefresh(request_id=request_id, request_timeout=request_timeout) def refresh(self, request_id=None, request_timeout=None): self.refresh_from( self.request( "get", self.instance_url(), request_id=request_id, request_timeout=request_timeout, ) ) return self async def arefresh(self, request_id=None, request_timeout=None): self.refresh_from( await self.arequest( "get", self.instance_url(operation="refresh"), request_id=request_id, request_timeout=request_timeout, ) ) return self @classmethod def class_url(cls): if cls == APIResource: raise NotImplementedError( "APIResource is an abstract class. You should perform actions on its subclasses." ) # Namespaces are separated in object names with periods (.) and in URLs # with forward slashes (/), so replace the former with the latter. base = cls.OBJECT_NAME.replace(".", "/") # type: ignore if cls.api_prefix: return "/%s/%s" % (cls.api_prefix, base) return "/%s" % (base) def instance_url(self, operation=None): id = self.get("id") if not isinstance(id, str): raise error.InvalidRequestError( "Could not determine which URL to request: %s instance " "has invalid ID: %r, %s. ID should be of type `str` (or" " `unicode`)" % (type(self).__name__, id, type(id)), "id", ) api_version = self.api_version or apacai.api_version extn = quote_plus(id) if self.typed_api_type in (ApiType.AZURE, ApiType.AZURE_AD): if not api_version: raise error.InvalidRequestError( "An API version is required for the Azure API type." ) if not operation: base = self.class_url() return "/%s%s/%s?api-version=%s" % ( self.azure_api_prefix, base, extn, api_version, ) return "/%s/%s/%s/%s?api-version=%s" % ( self.azure_api_prefix, self.azure_deployments_prefix, extn, operation, api_version, ) elif self.typed_api_type == ApiType.OPEN_AI: base = self.class_url() return "%s/%s" % (base, extn) else: raise error.InvalidAPIType("Unsupported API type %s" % self.api_type) # The `method_` and `url_` arguments are suffixed with an underscore to # avoid conflicting with actual request parameters in `params`. @classmethod def _static_request( cls, method_, url_, api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, **params, ): requestor = api_requestor.APIRequestor( api_key, api_version=api_version, organization=organization, api_base=api_base, api_type=api_type, ) response, _, api_key = requestor.request( method_, url_, params, request_id=request_id ) return util.convert_to_apacai_object( response, api_key, api_version, organization ) @classmethod async def _astatic_request( cls, method_, url_, api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, **params, ): requestor = api_requestor.APIRequestor( api_key, api_version=api_version, organization=organization, api_base=api_base, api_type=api_type, ) response, _, api_key = await requestor.arequest( method_, url_, params, request_id=request_id ) return response @classmethod def _get_api_type_and_version( cls, api_type: Optional[str] = None, api_version: Optional[str] = None ): typed_api_type = ( ApiType.from_str(api_type) if api_type else ApiType.from_str(apacai.api_type) ) typed_api_version = api_version or apacai.api_version return (typed_api_type, typed_api_version)
class DeletableAPIResource(APIResource): @classmethod def __prepare_delete(cls, sid, api_type=None, api_version=None): if isinstance(cls, APIResource): raise ValueError(".delete may only be called as a class method now.") base = cls.class_url() extn = quote_plus(sid) typed_api_type, api_version = cls._get_api_type_and_version( api_type, api_version ) if typed_api_type in (ApiType.AZURE, ApiType.AZURE_AD): url = "/%s%s/%s?api-version=%s" % ( cls.azure_api_prefix, base, extn, api_version, ) elif typed_api_type == ApiType.OPEN_AI: url = "%s/%s" % (base, extn) else: raise error.InvalidAPIType("Unsupported API type %s" % api_type) return url @classmethod def delete(cls, sid, api_type=None, api_version=None, **params): url = cls.__prepare_delete(sid, api_type, api_version) return cls._static_request( "delete", url, api_type=api_type, api_version=api_version, **params ) @classmethod def adelete(cls, sid, api_type=None, api_version=None, **params) -> Awaitable: url = cls.__prepare_delete(sid, api_type, api_version) return cls._astatic_request( "delete", url, api_type=api_type, api_version=api_version, **params )
MAX_TIMEOUT = 20 class EngineAPIResource(APIResource): plain_old_data = False def __init__(self, engine: Optional[str] = None, **kwargs): super().__init__(engine=engine, **kwargs) @classmethod def class_url( cls, engine: Optional[str] = None, api_type: Optional[str] = None, api_version: Optional[str] = None, ): # Namespaces are separated in object names with periods (.) and in URLs # with forward slashes (/), so replace the former with the latter. base = cls.OBJECT_NAME.replace(".", "/") # type: ignore typed_api_type, api_version = cls._get_api_type_and_version( api_type, api_version ) if typed_api_type in (ApiType.AZURE, ApiType.AZURE_AD): if not api_version: raise error.InvalidRequestError( "An API version is required for the Azure API type." ) if engine is None: raise error.InvalidRequestError( "You must provide the deployment name in the 'engine' parameter to access the Azure APACAI service" ) extn = quote_plus(engine) return "/%s/%s/%s/%s?api-version=%s" % ( cls.azure_api_prefix, cls.azure_deployments_prefix, extn, base, api_version, ) elif typed_api_type == ApiType.OPEN_AI: if engine is None: return "/%s" % (base) extn = quote_plus(engine) return "/engines/%s/%s" % (extn, base) else: raise error.InvalidAPIType("Unsupported API type %s" % api_type) @classmethod def __prepare_create_request( cls, api_key=None, api_base=None, api_type=None, api_version=None, organization=None, **params, ): deployment_id = params.pop("deployment_id", None) engine = params.pop("engine", deployment_id) model = params.get("model", None) timeout = params.pop("timeout", None) stream = params.get("stream", False) headers = params.pop("headers", None) request_timeout = params.pop("request_timeout", None) typed_api_type = cls._get_api_type_and_version(api_type=api_type)[0] if typed_api_type in (util.ApiType.AZURE, util.ApiType.AZURE_AD): if deployment_id is None and engine is None: raise error.InvalidRequestError( "Must provide an 'engine' or 'deployment_id' parameter to create a %s" % cls, "engine", ) else: if model is None and engine is None: raise error.InvalidRequestError( "Must provide an 'engine' or 'model' parameter to create a %s" % cls, "engine", ) if timeout is None: # No special timeout handling pass elif timeout > 0: # API only supports timeouts up to MAX_TIMEOUT params["timeout"] = min(timeout, MAX_TIMEOUT) timeout = (timeout - params["timeout"]) or None elif timeout == 0: params["timeout"] = MAX_TIMEOUT requestor = api_requestor.APIRequestor( api_key, api_base=api_base, api_type=api_type, api_version=api_version, organization=organization, ) url = cls.class_url(engine, api_type, api_version) return ( deployment_id, engine, timeout, stream, headers, request_timeout, typed_api_type, requestor, url, params, ) @classmethod def create( cls, api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, **params, ): ( deployment_id, engine, timeout, stream, headers, request_timeout, typed_api_type, requestor, url, params, ) = cls.__prepare_create_request( api_key, api_base, api_type, api_version, organization, **params ) response, _, api_key = requestor.request( "post", url, params=params, headers=headers, stream=stream, request_id=request_id, request_timeout=request_timeout, ) if stream: # must be an iterator assert not isinstance(response, ApacAIResponse) return ( util.convert_to_apacai_object( line, api_key, api_version, organization, engine=engine, plain_old_data=cls.plain_old_data, ) for line in response ) else: obj = util.convert_to_apacai_object( response, api_key, api_version, organization, engine=engine, plain_old_data=cls.plain_old_data, ) if timeout is not None: obj.wait(timeout=timeout or None) return obj @classmethod async def acreate( cls, api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, **params, ): ( deployment_id, engine, timeout, stream, headers, request_timeout, typed_api_type, requestor, url, params, ) = cls.__prepare_create_request( api_key, api_base, api_type, api_version, organization, **params ) response, _, api_key = await requestor.arequest( "post", url, params=params, headers=headers, stream=stream, request_id=request_id, request_timeout=request_timeout, ) if stream: # must be an iterator assert not isinstance(response, ApacAIResponse) return ( util.convert_to_apacai_object( line, api_key, api_version, organization, engine=engine, plain_old_data=cls.plain_old_data, ) async for line in response ) else: obj = util.convert_to_apacai_object( response, api_key, api_version, organization, engine=engine, plain_old_data=cls.plain_old_data, ) if timeout is not None: await obj.await_(timeout=timeout or None) return obj def instance_url(self): id = self.get("id") if not isinstance(id, str): raise error.InvalidRequestError( f"Could not determine which URL to request: {type(self).__name__} instance has invalid ID: {id}, {type(id)}. ID should be of type str.", "id", ) extn = quote_plus(id) params_connector = "?" if self.typed_api_type in (ApiType.AZURE, ApiType.AZURE_AD): api_version = self.api_version or apacai.api_version if not api_version: raise error.InvalidRequestError( "An API version is required for the Azure API type." ) base = self.OBJECT_NAME.replace(".", "/") url = "/%s/%s/%s/%s/%s?api-version=%s" % ( self.azure_api_prefix, self.azure_deployments_prefix, self.engine, base, extn, api_version, ) params_connector = "&" elif self.typed_api_type == ApiType.OPEN_AI: base = self.class_url(self.engine, self.api_type, self.api_version) url = "%s/%s" % (base, extn) else: raise error.InvalidAPIType("Unsupported API type %s" % self.api_type) timeout = self.get("timeout") if timeout is not None: timeout = quote_plus(str(timeout)) url += params_connector + "timeout={}".format(timeout) return url def wait(self, timeout=None): start = time.time() while self.status != "complete": self.timeout = ( min(timeout + start - time.time(), MAX_TIMEOUT) if timeout is not None else MAX_TIMEOUT ) if self.timeout < 0: del self.timeout break self.refresh() return self async def await_(self, timeout=None): """Async version of `EngineApiResource.wait`""" start = time.time() while self.status != "complete": self.timeout = ( min(timeout + start - time.time(), MAX_TIMEOUT) if timeout is not None else MAX_TIMEOUT ) if self.timeout < 0: del self.timeout break await self.arefresh() return self
CreateableAPIResource, DeletableAPIResource, ListableAPIResource, ) class CompletionConfig( CreateableAPIResource, ListableAPIResource, DeletableAPIResource ): OBJECT_NAME = "experimental.completion_configs"
CompletionConfig, )
# This code example has moved. You can now find it in the [APACAI Cookbook](https://github.com/apacai/apacai-cookbook) # at [examples/Backtranslation_of_SQL_queries](https://github.com/apacai/apacai-cookbook/blob/main/examples/Backtranslation_of_SQL_queries.py)
# This code example has moved. You can now find it in the [APACAI Cookbook](https://github.com/apacai/apacai-cookbook) # at [examples/fine-tuned_qa](https://github.com/apacai/apacai-cookbook/tree/main/examples/fine-tuned_qa)
def main(): print("Welcome!Input the number of hours on Earth so you can see how many hours pass by on Europa") userInput = int(input("How many Europa days go by for every x Earth day")) Europa = userInput * 3.551 #hours for 1 day in Europa 85.224 print(f"{userInput} days on Earth is {Europa}days compared to Europa, isn't that crazy? One day in Europa is 85.224hours") main()
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details]
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] def fixed_pos_embedding(x): seq_len, dim = x.shape inv_freq = 1.0 / (10000 ** (torch.arange(0, dim) / dim)) sinusoid_inp = ( torch.einsum("i , j -> i j", torch.arange(0, seq_len, dtype=torch.float), inv_freq).to(x) ) return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp) def rotate_every_two(x): x1 = x[:, :, ::2] x2 = x[:, :, 1::2] x = torch.stack((-x2, x1), dim=-1) return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')\ def duplicate_interleave(m): """ A simple version of `torch.repeat_interleave` for duplicating a matrix while interleaving the copy. """ dim0 = m.shape[0] m = m.view(-1, 1) # flatten the matrix m = m.repeat(1, 2) # repeat all elements into the 2nd dimension m = m.view(dim0, -1) # reshape into a matrix, interleaving the copy return m def apply_rotary_pos_emb(x, sin, cos, scale=1): sin, cos = map(lambda t: duplicate_interleave(t * scale), (sin, cos)) # einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2) return (x * cos) + (rotate_every_two(x) * sin) class XPOS(nn.Module): def __init__( self, head_dim, scale_base=512 ): super().__init__() self.head_dim = head_dim self.scale_base = scale_base self.register_buffer( "scale", (torch.arange(0, head_dim, 2) + 0.4 * head_dim) / (1.4 * head_dim) ) def forward(self, x, offset=0, downscale=False): length = x.shape[1] min_pos = -(length + offset) // 2 max_pos = length + offset + min_pos scale = self.scale ** torch.arange(min_pos, max_pos, 1).to(self.scale).div(self.scale_base)[:, None] sin, cos = fixed_pos_embedding(scale) if scale.shape[0] > length: scale = scale[-length:] sin = sin[-length:] cos = cos[-length:] if downscale: scale = 1 / scale x = apply_rotary_pos_emb(x, sin, cos, scale) return x
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] def MultiwayWrapper(args, module, dim=1): if args.multiway: return MultiwayNetwork(module, dim=dim) return module def set_split_position(position): def apply_fn(module): if hasattr(module, "split_position"): module.split_position = position return apply_fn class MultiwayNetwork(nn.Module): def __init__(self, module, dim=1): super().__init__() self.dim = dim self.A = module self.B = copy.deepcopy(module) self.B.reset_parameters() self.split_position = -1 def forward(self, x, **kwargs): if self.split_position == -1: return self.A(x, **kwargs) if self.split_position == 0: return self.B(x, **kwargs) x1, x2 = torch.split( x, [self.split_position, x.size(self.dim) - self.split_position], dim=self.dim, ) # x1, x2 = x[:self.split_position], x[self.split_position:] y1, y2 = self.A(x1, **kwargs), self.B(x2, **kwargs) return torch.cat([y1, y2], dim=self.dim) class MutliwayEmbedding(MultiwayNetwork): def __init__(self, modules, dim=1): super(MultiwayNetwork, self).__init__() self.dim = dim assert len(modules) == 2 self.A = modules[0] self.B = modules[1] self.split_position = -1
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] try: from apex.normalization import FusedLayerNorm as LayerNorm except ModuleNotFoundError: from torch.nn import LayerNorm class MultiheadAttention(nn.Module): def __init__( self, args, embed_dim, num_heads, dropout=0.0, self_attention=False, encoder_decoder_attention=False, subln=False, ): super().__init__() self.args = args self.embed_dim = embed_dim self.num_heads = num_heads self.head_dim = embed_dim // num_heads self.scaling = self.head_dim**-0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert self.self_attention ^ self.encoder_decoder_attention self.k_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True)) self.v_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True)) self.q_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True)) self.out_proj = MultiwayWrapper( args, nn.Linear(embed_dim, embed_dim, bias=True) ) self.inner_attn_ln = ( MultiwayWrapper(args, LayerNorm(self.embed_dim, eps=args.layernorm_eps)) if subln and self.self_attention else None ) self.dropout_module = torch.nn.Dropout(dropout) self.xpos = ( XPOS(self.head_dim, args.xpos_scale_base) if args.xpos_rel_pos and self.self_attention else None ) def reset_parameters(self): nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.out_proj.weight) nn.init.constant_(self.out_proj.bias, 0.0) def forward( self, query, key, value, incremental_state=None, key_padding_mask=None, attn_mask=None, rel_pos=None, ): bsz, tgt_len, embed_dim = query.size() src_len = tgt_len assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}" key_bsz, src_len, _ = key.size() assert key_bsz == bsz, f"{query.size(), key.size()}" assert value is not None assert bsz, src_len == value.shape[:2] q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling q = q.view(bsz, tgt_len, self.num_heads, self.head_dim).transpose(1, 2) k = k.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) v = v.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) q = q.reshape(bsz * self.num_heads, tgt_len, self.head_dim) k = k.reshape(bsz * self.num_heads, src_len, self.head_dim) v = v.reshape(bsz * self.num_heads, src_len, self.head_dim) if incremental_state is not None: if "prev_key" in incremental_state: prev_key = incremental_state["prev_key"].view( bsz * self.num_heads, -1, self.head_dim ) prev_value = incremental_state["prev_value"].view( bsz * self.num_heads, -1, self.head_dim ) k = torch.cat([prev_key, k], dim=1) v = torch.cat([prev_value, v], dim=1) incremental_state["prev_key"] = k.view( bsz, self.num_heads, -1, self.head_dim ) incremental_state["prev_value"] = v.view( bsz, self.num_heads, -1, self.head_dim ) src_len = k.size(1) if self.xpos is not None: if incremental_state is not None: offset = src_len - 1 else: offset = 0 k = self.xpos(k, offset=0, downscale=True) q = self.xpos(q, offset=offset, downscale=False) attn_weights = torch.bmm(q, k.transpose(1, 2)) if attn_mask is not None: attn_weights = torch.nan_to_num(attn_weights) attn_mask = attn_mask.unsqueeze(0) attn_weights += attn_mask if key_padding_mask is not None: attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf"), ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if rel_pos is not None: rel_pos = rel_pos.view(attn_weights.size()) attn_weights = attn_weights + rel_pos attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).type_as( attn_weights ) attn_probs = self.dropout_module(attn_weights) attn = torch.bmm(attn_probs, v) attn = attn.transpose(0, 1).reshape(tgt_len, bsz, embed_dim).transpose(0, 1) if self.inner_attn_ln is not None: attn = self.inner_attn_ln(attn) attn = self.out_proj(attn) attn_weights = attn_weights.view( bsz, self.num_heads, tgt_len, src_len ).transpose(1, 0) return attn, attn_weights
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] class RelativePositionBias(nn.Module): def __init__( self, bidirectional=True, num_buckets=32, max_distance=128, n_heads=12 ): super().__init__() self.bidirectional = bidirectional self.num_buckets = num_buckets self.max_distance = max_distance self.n_heads = n_heads self.relative_attention_bias = nn.Embedding(self.num_buckets, self.n_heads) @staticmethod def _relative_position_bucket( relative_position, bidirectional=True, num_buckets=32, max_distance=128 ): ret = 0 n = -relative_position if bidirectional: num_buckets //= 2 ret += (n < 0).to(torch.long) * num_buckets n = torch.abs(n) else: n = torch.max(n, torch.zeros_like(n)) max_exact = num_buckets // 2 is_small = n < max_exact val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) val_if_large = torch.min( val_if_large, torch.full_like(val_if_large, num_buckets - 1) ) ret += torch.where(is_small, n, val_if_large) return ret def compute_bias(self, qlen, klen, step=None): step = 0 if step is None else step context_position = torch.arange( step, step + qlen, dtype=torch.long, device=self.relative_attention_bias.weight.device, )[:, None] memory_position = torch.arange( klen, dtype=torch.long, device=self.relative_attention_bias.weight.device )[None, :] relative_position = memory_position - context_position # shape (qlen, klen) rp_bucket = self._relative_position_bucket( relative_position, # shape (qlen, klen) bidirectional=self.bidirectional, num_buckets=self.num_buckets, max_distance=self.max_distance, ) rp_bucket = rp_bucket.to(self.relative_attention_bias.weight.device) values = self.relative_attention_bias( rp_bucket ) # shape (qlen, klen, num_heads) values = values.permute([2, 0, 1]).unsqueeze( 0 ) # shape (1, num_heads, qlen, klen) return values def forward(self, batch_size, qlen, klen, step=None): # shape (batch * num_heads, qlen, klen) return ( self.compute_bias(qlen, klen, step) .repeat(batch_size, 1, 1, 1) .view(-1, qlen, klen) )
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] class VisionLanguageEmbedding(nn.Module): def __init__(self, text_embed, vision_embed): super().__init__() self.text_embed = text_embed self.vision_embed = vision_embed def forward(self, textual_tokens, visual_tokens, **kwargs): if textual_tokens is None: return self.vision_embed(visual_tokens) if visual_tokens is None: return self.text_embed(textual_tokens) x1 = self.vision_embed(visual_tokens) x2 = self.text_embed(textual_tokens) return torch.cat([x1, x2], dim=1) class VisionEmbedding(nn.Module): """Image to Patch Embedding""" def __init__( self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, contain_mask_token=False, prepend_cls_token=False, ): super().__init__() img_size = (img_size, img_size) patch_size = (patch_size, patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=patch_size, stride=patch_size ) if contain_mask_token: self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) else: self.mask_token = None if prepend_cls_token: self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) else: self.cls_token = None def num_position_embeddings(self): if self.cls_token is None: return self.num_patches else: return self.num_patches + 1 def forward(self, x, masked_position=None, **kwargs): B, C, H, W = x.shape assert ( H == self.img_size[0] and W == self.img_size[1] ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) batch_size, seq_len, _ = x.size() if masked_position is not None: assert self.mask_token is not None mask_token = self.mask_token.expand(batch_size, seq_len, -1) w = masked_position.unsqueeze(-1).type_as(mask_token) x = x * (1 - w) + mask_token * w if self.cls_token is not None: cls_tokens = self.cls_token.expand( batch_size, -1, -1 ) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) return x class TextEmbedding(nn.Embedding): def reset_parameters(self): nn.init.normal_(self.weight, mean=0, std=self.embedding_dim**-0.5) self._fill_padding_idx_with_zero() class PositionalEmbedding(nn.Embedding): def forward( self, x, positions=None, **kwargs, ): if positions is None: # being consistent with Fairseq, which starts from 2. positions = ( torch.arange(2, x.size(1) + 2, device=x.device).long().unsqueeze(0) ) return F.embedding( positions, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, )
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self): return "p={}".format(self.drop_prob)
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details]
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] try: from apex.normalization import FusedLayerNorm as LayerNorm except ModuleNotFoundError: from torch.nn import LayerNorm class set_torch_seed(object): def __init__(self, seed): assert isinstance(seed, int) self.rng_state = self.get_rng_state() torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) def get_rng_state(self): state = {"torch_rng_state": torch.get_rng_state()} if torch.cuda.is_available(): state["cuda_rng_state"] = torch.cuda.get_rng_state() return state def set_rng_state(self, state): torch.set_rng_state(state["torch_rng_state"]) if torch.cuda.is_available(): torch.cuda.set_rng_state(state["cuda_rng_state"]) def __enter__(self): return self def __exit__(self, *exc): self.set_rng_state(self.rng_state) def make_experts(args, embed_dim, expert_ffn_dim): world_size = ( 1 if not torch.distributed.is_initialized() else torch.distributed.get_world_size() ) expert_list = [] ddp_rank = args.ddp_rank start_seed = torch.randint(1000000, (1,)).item() # at least as many experts than gpus if args.moe_expert_count >= world_size: assert ( args.moe_expert_count % world_size == 0 ), f"{args.moe_expert_count}, {world_size}" local_moe_expert_count = args.moe_expert_count // world_size for i in range(local_moe_expert_count): with set_torch_seed(start_seed + ddp_rank * local_moe_expert_count + i): expert_list.append( FeedForwardNetwork( embed_dim, expert_ffn_dim, args.activation_fn, args.dropout, args.activation_dropout, args.layernorm_eps, args.subln, ) ) else: assert ( world_size % args.moe_expert_count == 0 ), f"{world_size}, {args.moe_expert_count}" with set_torch_seed(start_seed + ddp_rank % args.moe_expert_count): expert_list.append( FeedForwardNetwork( embed_dim, expert_ffn_dim, args.activation_fn, args.dropout, args.activation_dropout, args.layernorm_eps, args.subln, ) ) experts = nn.ModuleList(expert_list) return experts def get_activation_fn(activation): if activation == "relu": return F.relu elif activation == "gelu": return F.gelu elif activation == "flashattention": return FlashMHA else: raise NotImplementedError class FeedForwardNetwork(nn.Module): def __init__( self, embed_dim, ffn_dim, activation_fn, dropout, activation_dropout, layernorm_eps, subln=False, ): super().__init__() self.embed_dim = embed_dim self.activation_fn = get_activation_fn(activation=str(activation_fn)) self.activation_dropout_module = torch.nn.Dropout(activation_dropout) self.dropout_module = torch.nn.Dropout(dropout) self.fc1 = nn.Linear(self.embed_dim, ffn_dim) self.fc2 = nn.Linear(ffn_dim, self.embed_dim) self.ffn_layernorm = LayerNorm(ffn_dim, eps=layernorm_eps) if subln else None def reset_parameters(self): self.fc1.reset_parameters() self.fc2.reset_parameters() if self.ffn_layernorm is not None: self.ffn_layernorm.reset_parameters() def forward(self, x): x_shape = x.shape x = x.reshape(-1, x.size(-1)) x = self.fc1(x) x = self.activation_fn(x.float()).type_as(x) x = self.activation_dropout_module(x) if self.ffn_layernorm is not None: x = self.ffn_layernorm(x) x = self.fc2(x) x = x.view(x_shape) x = self.dropout_module(x) return x
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details]
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # NOTE: This is a mirror of the code in # https://github.com/facebookresearch/fairscale/tree/master/fairscale/nn/moe try: from fairseq.modules.moe import MOELayer has_fairseq = True Base = MOELayer except ModuleNotFoundError: Base = Module has_fairseq = False try: # To enable Tutel MoE optimizations: # python3 -m pip install --user --upgrade git+https://github.com/microsoft/[email protected] from tutel import moe as tutel_moe has_tutel, fused_cumsum_sub_one = True, tutel_moe.fast_cumsum_sub_one except ModuleNotFoundError: has_tutel, fused_cumsum_sub_one = False, lambda mask: torch.cumsum(mask, dim=0) - 1 logger = logging.getLogger(__name__) # einsum dimensions: (g)roup, (s)equence, (e)xpert, (m)odel, (c)apacity # See https://arxiv.org/pdf/2006.16668.pdf for details. # Based on https://github.com/pytorch/pytorch/pull/40762 class _AllToAll(torch.autograd.Function): @staticmethod def forward(ctx: Any, group: dist.ProcessGroup, input: Tensor) -> Tensor: # type: ignore ctx.group = group input = input.contiguous() output = torch.empty_like(input) if torch.distributed.is_initialized(): dist.all_to_all_single(output, input, group=group) else: assert group is None output = input return output @staticmethod def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor]: return (None, _AllToAll.apply(ctx.group, *grad_output)) def _find_my_group_index(grouped_ranks): my_rank = dist.get_rank() for i, group in enumerate(grouped_ranks): if my_rank in group: return i raise RuntimeError def get_moe_group(moe_expert_count): if dist.is_initialized(): if not hasattr(get_moe_group, "_moe_groups"): world_size = dist.get_world_size() if world_size <= moe_expert_count: assert moe_expert_count % world_size == 0 moe_groups = [[i] for i in range(world_size)] else: assert world_size % moe_expert_count == 0 ranks_per_group = world_size // moe_expert_count moe_groups = [ [i + j * moe_expert_count for j in range(ranks_per_group)] for i in range(moe_expert_count) ] get_moe_group._moe_group_idx = moe_groups get_moe_group._moe_groups = [dist.new_group(g) for g in moe_groups] my_group_idx = _find_my_group_index(get_moe_group._moe_group_idx) return get_moe_group._moe_groups[my_group_idx] def get_all2all_group(moe_expert_count): if dist.is_initialized(): if not hasattr(get_all2all_group, "_all2all_groups"): world_size = dist.get_world_size() # more experts than world size if world_size <= moe_expert_count: assert moe_expert_count % world_size == 0 all2all_groups = [[i for i in range(world_size)]] # larger world than num experts else: assert world_size % moe_expert_count == 0 ranks_per_group = world_size // moe_expert_count all2all_groups = [ [i * moe_expert_count + j for j in range(moe_expert_count)] for i in range(ranks_per_group) ] get_all2all_group._all2all_group_idx = all2all_groups get_all2all_group._all2all_groups = [ dist.new_group(g) for g in all2all_groups ] my_group_idx = _find_my_group_index(get_all2all_group._all2all_group_idx) return get_all2all_group._all2all_groups[my_group_idx] class MOELayer(Base): """MOELayer module which implements MixtureOfExperts as described in Gshard_. :: gate = Top2Gate(model_dim, num_experts) moe = MOELayer(gate, expert) output = moe(input) l_aux = moe.l_aux .. Gshard_: https://arxiv.org/pdf/2006.16668.pdf Args: gate (torch.nn.Module): gate network expert (torch.nn.Module): expert network """ def __init__(self, gate, experts, args): if has_fairseq: super(Base, self).__init__() else: super().__init__() self.gate = gate if type(experts) == ModuleList: self.experts = cast(ModuleList, experts) else: self.experts = ModuleList([experts]) self.expert_group = get_moe_group(args.moe_expert_count) self.all2all_group = get_all2all_group(args.moe_expert_count) self.world_size = dist.get_world_size(group=self.expert_group) self.all2all_size = dist.get_world_size(group=self.all2all_group) for p in experts.parameters(): p.expert = True # type: ignore self.num_local_experts = len(self.experts) self.args = args self.in_generation = False self.a2a_cuda_event_intervals = [] self.a2a_cpu_time_ms = 0.0 def forward(self, *input: Tensor, input_padding_mask=None, **kwargs: Any) -> Tensor: assert len(input) == 1, "only single input Tensor supported" input = input[0] assert ( len(input.shape) == 3 ), "input Tensor must have dimensions: (s)equence, (t)oken, (m)odel" if input_padding_mask is not None: assert ( len(input_padding_mask.shape) == 2 ), "input Tensor must have dimensions: (s)equence, (t)oken" assert input_padding_mask.shape[0] == input.shape[0] assert input_padding_mask.shape[1] == input.shape[1] # assert input.shape[0] % len(self.experts) == 0, "num tokens must be order of number of local experts" # Implement Algorithm 2 from GShard paper. d_model = input.shape[2] # Pad to expected batch size input_shape = list(input.shape) expected_bsz = ( getattr(self.args, "batch_size", 0) if self.training else getattr(self.args, "batch_size_valid", 0) ) # This indicates that --batch-size or --max-sentences is not specified if expected_bsz is None: expected_bsz = 0 # Note: Padding is not necessary at generation time at present # because all DDP workers process the same batch. Also, batch size at generation time # can be different from that present in the checkpoint state if ( not self.in_generation and expected_bsz != 0 and input_shape[0] != expected_bsz ): logger.warning( f"padding batch with unexpected size {input_shape[0]} (expected: {expected_bsz})" ) assert input_shape[0] < expected_bsz, f"{input_shape[0]} < {expected_bsz}" padded_input = torch.zeros( (expected_bsz, input_shape[1], input_shape[2]), dtype=input.dtype, layout=input.layout, device=input.device, ) padded_input[: input_shape[0], :, :] = input input = padded_input padded_input_padding_mask = torch.ones( ( expected_bsz, input_shape[1], ), dtype=torch.bool, device=input.device, ) if input_padding_mask is not None: padded_input_padding_mask[: input_shape[0], :] = input_padding_mask else: padded_input_padding_mask[: input_shape[0], :] = False input_padding_mask = padded_input_padding_mask # Reshape into S tokens by dropping sequence dimension. reshaped_input = input.reshape(-1, d_model) reshaped_input_shape = reshaped_input.shape reshaped_input_padding_mask = ( input_padding_mask.reshape(-1) if input_padding_mask is not None else None ) # Doing padding here when --max-tokens is specified and not --batch-size or --max-sentences # Pro of --max-tokens: more flexible for MT variable sequence lengths # Con of --max-tokens: extra all-reduce needed to figure out optimal padding without running OOM if expected_bsz == 0: expected_dim = reshaped_input_shape[0] * torch.ones( (1,), dtype=torch.long, device=input.device ) dist.all_reduce(expected_dim, group=dist.group.WORLD, op=dist.ReduceOp.MAX) expected_dim = int(expected_dim.item()) padded_input = torch.zeros( (expected_dim, reshaped_input_shape[1]), dtype=input.dtype, layout=input.layout, device=input.device, ) padded_input[: reshaped_input_shape[0], :] = reshaped_input reshaped_input = padded_input padded_input_padding_mask = torch.ones( (expected_dim,), dtype=torch.bool, device=padded_input.device ) if reshaped_input_padding_mask is not None: padded_input_padding_mask[ : reshaped_input_shape[0] ] = reshaped_input_padding_mask else: padded_input_padding_mask[: reshaped_input_shape[0]] = False reshaped_input_padding_mask = padded_input_padding_mask if has_tutel: l_aux, self.metadata, C, E, indices_, locations_, gates_ = self.gate( reshaped_input, reshaped_input_padding_mask ) S, M = reshaped_input.size(0), reshaped_input.size(1) if not hasattr(self, "_tutel_dispatcher"): self._tutel_dispatcher = tutel_moe.fast_dispatcher( E, C, M, dispatch_dtype=reshaped_input.dtype ) self._tutel_dispatcher.update(indices_, locations_, gates_, capacity=C) dispatched_input = self._tutel_dispatcher.encode(reshaped_input) else: l_aux, combine_weights, dispatch_mask, self.metadata = self.gate( reshaped_input, reshaped_input_padding_mask ) dispatch_mask = dispatch_mask.to(input.dtype).permute( 1, 2, 0 ) # S,E,C -> E,C,S E, C, S = dispatch_mask.size() M = reshaped_input.size(1) assert reshaped_input.size() == (S, M) # einsum("sec,sm->ecm") dispatched_input = torch.mm( dispatch_mask.view(E * C, S), reshaped_input ) # -> (E*C),M if self.all2all_size > 1: dispatched_input = self.all_to_all_wrapper(dispatched_input) # Re-shape after all-to-all: ecm -> gecm dispatched_input = dispatched_input.reshape( self.all2all_size, self.num_local_experts, -1, d_model ) chunks = dispatched_input.chunk(self.num_local_experts, dim=1) expert_outputs = [] for chunk, expert in zip(chunks, self.experts): expert_outputs += [expert(chunk)] expert_output = torch.cat(expert_outputs, dim=1) if self.all2all_size > 1: expert_output = self.all_to_all_wrapper(expert_output) # Re-shape back: gecm -> ecm expert_output = expert_output.reshape( self.all2all_size * self.num_local_experts, -1, d_model ) if has_tutel: combined_output = self._tutel_dispatcher.decode( expert_output.view(E * C, M) ) else: # einsum("sec,ecm->sm") combined_output = combine_weights.view(S, E * C).mm( expert_output.view(E * C, M) ) # Remove padding here when --max-tokens is specified and not --batch-size or --max-sentences combined_output = combined_output[: reshaped_input_shape[0], :] combined_output = combined_output.reshape(input.shape) combined_output = combined_output[: input_shape[0], :, :] self.record_all_to_all_stats() return combined_output, l_aux def prepare_for_inference_(self): self.in_generation = True def all_to_all_wrapper(self, input: Tensor): dummy_a2a = getattr(self.args, "dummy_a2a", False) if dummy_a2a: input = input.contiguous() output = input.detach().clone() return input # always record times, since it is not a lot of overhead # if we do not log it we simply clear it off in record_all_to_all_stats cuda_start = torch.cuda.Event(enable_timing=True) cuda_end = torch.cuda.Event(enable_timing=True) cpu_start = time.time() * 1000 cuda_start.record() output = _AllToAll.apply(self.all2all_group, input) cuda_end.record() cpu_end = time.time() * 1000 self.a2a_cpu_time_ms += cpu_end - cpu_start self.a2a_cuda_event_intervals.append((cuda_start, cuda_end)) return output def record_all_to_all_stats(self): # controlled via an argument as we want to minimize any impact from torch.cuda.synchronize() record_a2a_perf_stats = getattr(self.args, "record_a2a_perf_stats", False) if record_a2a_perf_stats: torch.cuda.synchronize() self.metadata["all_to_all_cpu_time_ms"] = self.a2a_cpu_time_ms a2a_cuda_time_ms = 0.0 for ev_start, ev_end in self.a2a_cuda_event_intervals: a2a_cuda_time_ms += ev_start.elapsed_time(ev_end) self.metadata["all_to_all_cuda_time_ms"] = a2a_cuda_time_ms # reset stats self.a2a_cpu_time_ms = 0.0 self.a2a_cuda_event_intervals = []
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # Implementation of Top2Gating described in https://arxiv.org/pdf/2006.16668.pdf # Code is inspired by Top2GatingOnLogits from lingvo: # https://github.com/tensorflow/lingvo/blob/21b8106c5f1d30a196c98eedc441d4fd70833b11/lingvo/core/moe_layers.py#L477 # NOTE: This is a mirror of the code in # https://github.com/facebookresearch/fairscale/tree/master/fairscale/nn/moe # use a fixed temperature to compute balance loss TEMPERATURE_FOR_L_UAX = 0.07 # maximum capacity of 1 expert as a fraction of number of tokens in the batch # Note: setting this to 1.0 causes inference to significantly slow down EVAL_CAPACITY_TOKEN_FRACTION = 0.25 # logging SAMPLE_FRACTION = 0.2 def top1gating( logits: torch.Tensor, input_mask: Optional[torch.Tensor] = None, use_fp32=False, capacity_factor=1.0, eval_mode=False, moe_eval_capacity_token_fraction=EVAL_CAPACITY_TOKEN_FRACTION, use_xmoe=False, gate_obj=None, ) -> Tuple[Tensor, Tensor, Tensor, Dict]: """Implements Top2Gating on logits.""" metadata = {} if use_fp32: orig_dtype = logits.dtype logits = logits.float() gates = F.softmax(logits, dim=1) metadata["entropy_gating"] = entropy(probs=gates).mean().detach() # gates has shape of SE num_tokens = gates.shape[0] num_experts = gates.shape[1] if moe_eval_capacity_token_fraction > 0.0 and eval_mode: capacity = math.ceil(moe_eval_capacity_token_fraction * num_tokens) else: # capacity = capacity_factor * S/E capacity = int(capacity_factor * math.ceil(num_tokens / num_experts)) # Create a mask for 1st's expert per token indices1_s = torch.argmax(gates, dim=1) mask1 = one_hot(indices1_s, num_classes=num_experts, unsqueeze_indices=True) if input_mask is not None and input_mask.any(): nonpadding = ~input_mask mask1 = mask1 * nonpadding.unsqueeze(-1).to(mask1.dtype) # for logging (percent of tokens routed to each expert) expert1_hist = ( 100 * torch.histc( (indices1_s.squeeze() + 1), bins=num_experts, min=1, max=num_experts ) / num_tokens ) metadata["unused_expert1_count"] = (expert1_hist == 0).sum() expert1_hist = ( torch.sort(expert1_hist, dim=0, descending=True).values + torch.finfo(torch.float32).tiny ) sample_count = max(math.ceil(num_experts * SAMPLE_FRACTION), 1) metadata["expert1_balance_top"] = expert1_hist[:sample_count].sum() metadata["expert1_balance_bottom"] = expert1_hist[-sample_count:].sum() gates1_s = (gates * mask1).sum(dim=1) # Compute locations in capacity buffer locations1 = fused_cumsum_sub_one(mask1) # Compute l_aux me = torch.mean(gates, dim=0) ce = torch.mean(mask1.to(gates.dtype), dim=0) l_aux = torch.mean(me * ce) l_aux = l_aux * num_experts * num_experts if has_tutel: locations1_s = torch.sum(locations1 * mask1, dim=1) return ( l_aux, metadata, capacity, num_experts, [ indices1_s, ], [ locations1_s, ], [ gates1_s, ], ) # Remove locations outside capacity from mask mask1 = mask1 * torch.lt(locations1, capacity) # Store the capacity location for each token locations1_s = torch.sum(locations1 * mask1, dim=1) # Calculate combine_weights and dispatch_mask gates1 = gates1_s.unsqueeze(-1) * mask1.to(gates1_s.dtype) # einsum("s,se->se") # locations1_sc = num_tokens * capacity locations1_sc = one_hot(locations1_s, num_classes=capacity, unsqueeze_indices=True) combine1_sec = torch.bmm( # einsum("se,sc->sec") gates1.unsqueeze(-1), locations1_sc.to(gates1.dtype).unsqueeze(1), ) dispatch_mask = combine1_sec.bool() if use_fp32: return l_aux, combine1_sec.to(orig_dtype), dispatch_mask, metadata else: return l_aux, combine1_sec, dispatch_mask, metadata class Top1Gate(torch.nn.Module): """Gate module which implements Top2Gating as described in Gshard_. :: gate = Top2Gate(model_dim, num_experts) l_aux, combine_weights, dispatch_mask = gate(input) .. Gshard_: https://arxiv.org/pdf/2006.16668.pdf Args: model_dim (int): size of model embedding dimension num_experts (ints): number of experts in model """ wg: torch.nn.Linear def __init__( self, model_dim: int, num_experts: int, use_fp32=False, input_noise_type=None, capacity_factor=1.0, moe_eval_capacity_token_fraction=EVAL_CAPACITY_TOKEN_FRACTION, use_xmoe=False, ) -> None: # TODO: merge this to top2gate.py # super().__init__() if not use_xmoe: self.wg = torch.nn.Linear(model_dim, num_experts, bias=False) else: self.wg_reduction = torch.nn.Linear(model_dim, 16, bias=False) wg = torch.empty(num_experts, 16) torch.nn.init.orthogonal_(wg, gain=0.32) self.register_parameter("wg", torch.nn.Parameter(wg)) self.use_xmoe = use_xmoe self.use_fp32 = use_fp32 self.input_noise_type = input_noise_type self.capacity_factor = capacity_factor self.moe_eval_capacity_token_fraction = moe_eval_capacity_token_fraction def forward(self, input, mask=None): # type: ignore if self.use_xmoe: input = self.wg_reduction(input) with torch.no_grad(): wg_norm = self.wg.norm(p=2.0, dim=1, keepdim=True) self.wg.mul_(1.5 / wg_norm) logits = self._cosine(input, self.wg) logits = self._make_finite(logits) else: logits = self.wg(input) return top1gating( logits, mask, use_fp32=self.use_fp32, capacity_factor=self.capacity_factor, eval_mode=not self.training, moe_eval_capacity_token_fraction=self.moe_eval_capacity_token_fraction, use_xmoe=self.use_xmoe, gate_obj=self, ) def _make_finite(self, scores): ok = scores.isfinite() if not ok.all(): # NaNs here can break the assignment algorithm scores[~ok] = scores[ok].min() return scores def _get_gating_temperature(self, eps=1e-4): if self.gating_t.data.item() < eps: return eps return self.gating_t def _cosine(self, mat1, mat2, eps=1e-4): assert mat1.dim() == 2 assert mat2.dim() == 2 # mat1 = F.normalize(mat1, p=2.0, dim=1, eps=eps) mat2 = F.normalize(mat2.float(), p=2.0, dim=1, eps=eps) return mat1.float().matmul(mat2.transpose(0, 1)).type_as(mat1) gumbel_map: Dict[torch.device, Callable] = {} def gumbel_rsample(shape: Tuple, device: torch.device) -> Tensor: gumbel = gumbel_map.get(device) if gumbel is None: one = torch.tensor(1.0, device=device) zero = torch.tensor(0.0, device=device) gumbel = torch.distributions.gumbel.Gumbel(zero, one).rsample # type: ignore gumbel_map[device] = gumbel return gumbel(shape) def one_hot(indices: torch.Tensor, num_classes: int, unsqueeze_indices=False) -> Tensor: if unsqueeze_indices: indices = indices.unsqueeze(-1) assert indices.shape[-1] == 1, "last dimension of indices must be have size 1" output = torch.zeros( indices.shape[:-1] + (num_classes,), device=indices.device, dtype=indices.dtype ) output.scatter_(len(output.shape) - 1, indices, 1) return output def entropy(probs): logits = torch.distributions.utils.probs_to_logits(probs) p_log_p = probs * logits return -p_log_p.sum(-1) def top2gating( logits: torch.Tensor, input_mask: Optional[torch.Tensor] = None, use_fp32=False, second_expert_policy="sampling", normalize_gate_prob_before_dropping=False, eval_mode=False, moe_eval_capacity_token_fraction=0.25, batch_prioritized_routing=False, ) -> Tuple[Tensor, Tensor, Tensor]: """Implements Top2Gating on logits.""" metadata = {} if use_fp32: orig_dtype = logits.dtype logits = logits.float() gates = F.softmax(logits, dim=1) metadata["entropy_gating"] = entropy(probs=gates).mean().detach() # gates has shape of SE num_tokens = gates.shape[0] num_experts = gates.shape[1] if moe_eval_capacity_token_fraction > 0.0 and eval_mode: capacity = math.ceil(moe_eval_capacity_token_fraction * num_tokens) else: # capacity = 2S/E capacity = 2 * math.ceil(num_tokens / num_experts) # Create a mask for 1st's expert per token indices1_s = torch.argmax(gates, dim=1, keepdim=True) mask1 = one_hot(indices1_s, num_experts) if second_expert_policy == "sampling": # Create a mask for 2nd's expert per token using Gumbel-max trick # https://timvieira.github.io/blog/post/2014/07/31/gumbel-max-trick/ logits_w_noise = logits + gumbel_rsample(logits.shape, device=logits.device) else: logits_w_noise = logits # Replace top-expert with min value logits_except1 = logits_w_noise.masked_fill(mask1.bool(), float("-inf")) indices2_s = torch.argmax(logits_except1, dim=1, keepdim=True) mask2 = one_hot(indices2_s, num_experts) gates1_s = (gates * mask1).sum(dim=1) gates2_s = (gates * mask2).sum(dim=1) if normalize_gate_prob_before_dropping: # Normalize gate probabilities denom_s = gates1_s + gates2_s # Avoid divide-by-zero denom_s = torch.clamp(denom_s, min=torch.finfo(denom_s.dtype).eps) gates1_s = gates1_s / denom_s gates2_s = gates2_s / denom_s if second_expert_policy == "random": sampled = (2 * gates2_s) > torch.rand_like(gates2_s) mask2 = mask2 * sampled.repeat(num_experts, 1).transpose(1, 0) # Compute locations in capacity buffer if input_mask is not None and input_mask.any(): nonpadding = ~input_mask mask1 = mask1 * nonpadding.unsqueeze(-1).to(mask1.dtype) mask2 = mask2 * nonpadding.unsqueeze(-1).to(mask1.dtype) if batch_prioritized_routing: # if batch_prioritized_routing: importance_scores = -1 * gates.max(dim=1)[0] sorted_mask1 = mask1[importance_scores.argsort(dim=0)] sorted_cumsum1 = fused_cumsum_sub_one(sorted_mask1) * sorted_mask1 importance_sorted_locations1 = sorted_cumsum1[ importance_scores.argsort(dim=0).argsort(dim=0) ] sorted_mask2 = mask2[importance_scores.argsort(dim=0)] sorted_cumsum2 = fused_cumsum_sub_one(sorted_mask2) * sorted_mask2 importance_sorted_locations2 = sorted_cumsum2[ importance_scores.argsort(dim=0).argsort(dim=0) ] importance_sorted_locations2 += torch.sum(mask1, dim=0, keepdim=True) locations1, locations2 = ( importance_sorted_locations1, importance_sorted_locations2, ) else: locations1 = fused_cumsum_sub_one(mask1) locations2 = fused_cumsum_sub_one(mask2) # Update 2nd's location by accounting for locations of 1st locations2 += torch.sum(mask1, dim=0, keepdim=True) # Compute l_aux me = torch.mean(gates, dim=0) ce = torch.mean(mask1.to(gates.dtype), dim=0) l_aux = torch.mean(me * ce) l_aux = l_aux * num_experts * num_experts # for logging purposes metadata["overflow_expert1"] = ( 100 * torch.sum(mask1 * torch.ge(locations1, capacity)) / torch.sum(mask1) ) metadata["overflow_expert2"] = ( 100 * torch.sum(mask2 * torch.ge(locations2, capacity)) / torch.sum(mask2) ) # Remove locations outside capacity from mask mask1_, mask2_ = mask1, mask2 mask1 = mask1 * torch.lt(locations1, capacity) mask2 = mask2 * torch.lt(locations2, capacity) # for logging (percent of tokens routed to each expert) expert1_hist = ( 100 * torch.histc( (indices1_s.squeeze() + 1), bins=num_experts, min=1, max=num_experts ) / num_tokens ) metadata["unused_expert1_count"] = (expert1_hist == 0).sum() expert1_hist = ( torch.sort(expert1_hist, dim=0, descending=True).values + torch.finfo(torch.float32).tiny ) expert2_hist = ( 100 * torch.histc( (indices2_s.squeeze() + 1), bins=num_experts, min=1, max=num_experts ) / num_tokens ) metadata["unused_expert2_count"] = (expert2_hist == 0).sum() expert2_hist = ( torch.sort(expert2_hist, dim=0, descending=True).values + torch.finfo(torch.float32).tiny ) sample_count = max(math.ceil(num_experts * SAMPLE_FRACTION), 1) metadata["expert1_balance_top"] = expert1_hist[:sample_count].sum() metadata["expert1_balance_bottom"] = expert1_hist[-sample_count:].sum() metadata["expert2_balance_top"] = expert2_hist[:sample_count].sum() metadata["expert2_balance_bottom"] = expert2_hist[-sample_count:].sum() if not normalize_gate_prob_before_dropping: # Normalize gate probabilities gates1_s = (gates * mask1).sum(dim=1) gates2_s = (gates * mask2).sum(dim=1) denom_s = gates1_s + gates2_s # Avoid divide-by-zero denom_s = torch.clamp(denom_s, min=torch.finfo(denom_s.dtype).eps) gates1_s /= denom_s gates2_s /= denom_s if has_tutel: locations1_s = torch.sum(locations1 * mask1_, dim=1) locations2_s = torch.sum(locations2 * mask2_, dim=1) return ( l_aux, metadata, capacity, num_experts, [indices1_s, indices2_s], [locations1_s, locations2_s], [gates1_s, gates2_s], ) # Store the capacity location for each token locations1_s = torch.sum(locations1 * mask1, dim=1) locations2_s = torch.sum(locations2 * mask2, dim=1) # Calculate combine_weights and dispatch_mask gates1 = gates1_s.unsqueeze(-1) * mask1.to(gates1_s.dtype) # einsum("s,se->se") gates2 = gates2_s.unsqueeze(-1) * mask2.to(gates2_s.dtype) # einsum("s,se->se") locations1_sc = one_hot(locations1_s, num_classes=capacity, unsqueeze_indices=True) locations2_sc = one_hot(locations2_s, num_classes=capacity, unsqueeze_indices=True) combine1_sec = torch.bmm( # einsum("se,sc->sec") gates1.unsqueeze(-1), locations1_sc.to(gates1.dtype).unsqueeze(1), ) combine2_sec = torch.bmm( # einsum("se,sc->sec") gates2.unsqueeze(-1), locations2_sc.to(gates2.dtype).unsqueeze(1), ) combine_weights = combine1_sec + combine2_sec dispatch_mask = combine_weights.bool() if use_fp32: return l_aux, combine_weights.to(orig_dtype), dispatch_mask, metadata else: return l_aux, combine_weights, dispatch_mask, metadata class Top2Gate(torch.nn.Module): """Gate module which implements Top2Gating as described in Gshard_. :: gate = Top2Gate(model_dim, num_experts) l_aux, combine_weights, dispatch_mask = gate(input) .. Gshard_: https://arxiv.org/pdf/2006.16668.pdf Args: model_dim (int): size of model embedding dimension num_experts (ints): number of experts in model """ wg: torch.nn.Linear def __init__( self, model_dim: int, num_experts: int, use_fp32=False, second_expert_policy="sampling", normalize_gate_prob_before_dropping=False, moe_eval_capacity_token_fraction=0.25, batch_prioritized_routing=False, use_xmoe=False, ) -> None: super().__init__() if not use_xmoe: self.wg = torch.nn.Linear(model_dim, num_experts, bias=False) else: self.wg_reduction = torch.nn.Linear(model_dim, 16, bias=False) wg = torch.empty(num_experts, 16) torch.nn.init.orthogonal_(wg, gain=0.32) self.register_parameter("wg", torch.nn.Parameter(wg)) self.use_fp32 = use_fp32 self.second_expert_policy = second_expert_policy self.normalize_gate_prob_before_dropping = normalize_gate_prob_before_dropping self.moe_eval_capacity_token_fraction = moe_eval_capacity_token_fraction self.batch_prioritized_routing = batch_prioritized_routing self.use_xmoe = use_xmoe def forward(self, input, mask=None): # type: ignore if self.use_xmoe: input = self.wg_reduction(input) with torch.no_grad(): wg_norm = self.wg.norm(p=2.0, dim=1, keepdim=True) self.wg.mul_(1.5 / wg_norm) logits = self._cosine(input, self.wg) logits = self._make_finite(logits) else: logits = self.wg(input) return top2gating( logits, mask, use_fp32=self.use_fp32, second_expert_policy=self.second_expert_policy, normalize_gate_prob_before_dropping=self.normalize_gate_prob_before_dropping, eval_mode=not self.training, moe_eval_capacity_token_fraction=self.moe_eval_capacity_token_fraction, batch_prioritized_routing=self.batch_prioritized_routing, ) def _cosine(self, mat1, mat2, eps=1e-4): assert mat1.dim() == 2 assert mat2.dim() == 2 # mat1 = F.normalize(mat1, p=2.0, dim=1, eps=eps) mat2 = F.normalize(mat2.float(), p=2.0, dim=1, eps=eps) return mat1.float().matmul(mat2.transpose(0, 1)).type_as(mat1) def _make_finite(self, scores): ok = scores.isfinite() if not ok.all(): # NaNs here can break the assignment algorithm scores[~ok] = scores[ok].min() return scores
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] try: from apex.normalization import FusedLayerNorm as LayerNorm except ModuleNotFoundError: from torch.nn import LayerNorm class DecoderLayer(nn.Module): def __init__( self, args, depth, is_moe_layer=False, is_encoder_decoder=False, ): super().__init__() self.args = args self.embed_dim = args.decoder_embed_dim self.dropout_module = torch.nn.Dropout(args.dropout) if args.drop_path_rate > 0: drop_path_prob = np.linspace(0, args.drop_path_rate, args.decoder_layers)[ depth ] self.drop_path = DropPath(drop_path_prob) else: self.drop_path = None self.self_attn = self.build_self_attention(self.embed_dim, args) self.normalize_before = args.decoder_normalize_before self.self_attn_layer_norm = LayerNorm(self.embed_dim, eps=args.layernorm_eps) if not is_encoder_decoder: self.encoder_attn = None self.encoder_attn_layer_norm = None else: self.encoder_attn = self.build_encoder_attention(self.embed_dim, args) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, eps=args.layernorm_eps) self.is_moe_layer = is_moe_layer self.ffn_dim = args.decoder_ffn_embed_dim if not self.is_moe_layer: self.ffn = self.build_ffn( self.embed_dim, self.args, ) else: if args.moe_top1_expert: gate = Top1Gate( self.embed_dim, args.moe_expert_count, use_fp32=args.moe_gating_use_fp32, moe_eval_capacity_token_fraction=args.moe_eval_capacity_token_fraction, use_xmoe=args.use_xmoe, ) else: gate = Top2Gate( self.embed_dim, args.moe_expert_count, args.moe_gating_use_fp32, args.moe_second_expert_policy, args.moe_normalize_gate_prob_before_dropping, args.moe_eval_capacity_token_fraction, use_xmoe=args.use_xmoe, ) experts = make_experts(args, self.embed_dim, self.ffn_dim) self.moe_layer = MOELayer(gate, experts, args) self.final_layer_norm = LayerNorm(self.embed_dim, eps=args.layernorm_eps) if args.deepnorm: if is_encoder_decoder: self.alpha = math.pow(3.0 * args.decoder_layers, 0.25) else: self.alpha = math.pow(2.0 * args.decoder_layers, 0.25) else: self.alpha = 1.0 def build_ffn(self, embed_dim, args): return FeedForwardNetwork( embed_dim, self.ffn_dim, args.activation_fn, args.dropout, args.activation_dropout, args.layernorm_eps, args.subln, ) def build_self_attention(self, embed_dim, args): return MultiheadAttention( args, embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, self_attention=True, encoder_decoder_attention=False, subln=args.subln, ) def build_encoder_attention(self, embed_dim, args): return MultiheadAttention( args, embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, self_attention=False, encoder_decoder_attention=True, subln=args.subln, ) def residual_connection(self, x, residual): return residual * self.alpha + x def forward( self, x, encoder_out=None, encoder_padding_mask=None, incremental_state=None, self_attn_mask=None, self_attn_padding_mask=None, self_attn_rel_pos=None, cross_attn_rel_pos=None, ): residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, attn_mask=self_attn_mask, rel_pos=self_attn_rel_pos, ) x = self.dropout_module(x) if self.drop_path is not None: x = self.drop_path(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.self_attn_layer_norm(x) if self.encoder_attn is not None and encoder_out is not None: residual = x if self.normalize_before: x = self.encoder_attn_layer_norm(x) x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=None, rel_pos=cross_attn_rel_pos, ) x = self.dropout_module(x) if self.drop_path is not None: x = self.drop_path(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.encoder_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) if not self.is_moe_layer: x = self.ffn(x) l_aux = None else: x, l_aux = self.moe_layer(x) if self.drop_path is not None: x = self.drop_path(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) return x, attn, None, l_aux class Decoder(nn.Module): def __init__( self, args, embed_tokens=None, embed_positions=None, output_projection=None, is_encoder_decoder=False, **kwargs ): super().__init__(**kwargs) self.args = args self.dropout_module = torch.nn.Dropout(args.dropout) embed_dim = args.decoder_embed_dim self.embed_dim = embed_dim self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim) self.embed_tokens = embed_tokens self.embed_positions = embed_positions if ( output_projection is None and not args.no_output_layer and args.vocab_size > 0 ): self.output_projection = self.build_output_projection(args) else: self.output_projection = output_projection if args.layernorm_embedding: self.layernorm_embedding = LayerNorm(embed_dim, eps=args.layernorm_eps) else: self.layernorm_embedding = None self.layers = nn.ModuleList([]) moe_freq = args.moe_freq for i in range(args.decoder_layers): is_moe_layer = moe_freq != 0 and (i + 1) % moe_freq == 0 self.layers.append( self.build_decoder_layer( args, depth=i, is_moe_layer=is_moe_layer, is_encoder_decoder=is_encoder_decoder, ) ) self.num_layers = len(self.layers) if args.decoder_normalize_before: self.layer_norm = LayerNorm(embed_dim, eps=args.layernorm_eps) else: self.layer_norm = None self.self_attn_relative_position = None self.cross_attn_relative_position = None if args.rel_pos_buckets > 0 and args.max_rel_pos > 0: self.self_attn_relative_position = RelativePositionBias( num_buckets=args.rel_pos_buckets, max_distance=args.max_rel_pos, n_heads=args.decoder_attention_heads, ) if is_encoder_decoder: self.cross_attn_relative_position = RelativePositionBias( num_buckets=args.rel_pos_buckets, max_distance=args.max_rel_pos, n_heads=args.decoder_attention_heads, ) if args.bert_init: self.apply(init_bert_params) if args.deepnorm: if is_encoder_decoder: init_scale = math.pow(12.0 * args.decoder_layers, 0.25) else: init_scale = math.pow(8.0 * args.decoder_layers, 0.25) for name, p in self.named_parameters(): if ( "fc1" in name or "fc2" in name or "out_proj" in name or "v_proj" in name ): p.data.div_(init_scale) if args.subln: if is_encoder_decoder: init_scale = math.sqrt(math.log(args.decoder_layers * 3)) else: init_scale = math.sqrt(math.log(args.decoder_layers * 2)) for name, p in self.named_parameters(): if "encoder_attn" in name: continue if ( "fc1" in name or "fc2" in name or "out_proj" in name or "v_proj" in name ): p.data.mul_(init_scale) def build_output_projection( self, args, ): if args.share_decoder_input_output_embed: output_projection = torch.nn.Linear( self.embed_tokens.weight.shape[1], self.embed_tokens.weight.shape[0], bias=False, ) output_projection.weight = self.embed_tokens.weight else: output_projection = torch.nn.Linear( args.decoder_embed_dim, args.vocab_size, bias=False ) torch.nn.init.normal_( output_projection.weight, mean=0, std=args.decoder_embed_dim**-0.5 ) return output_projection def build_decoder_layer( self, args, depth, is_moe_layer=False, is_encoder_decoder=False ): layer = DecoderLayer( args, depth, is_moe_layer=is_moe_layer, is_encoder_decoder=is_encoder_decoder, ) if args.checkpoint_activations: layer = checkpoint_wrapper(layer) if args.fsdp: layer = wrap(layer) return layer def forward_embedding( self, tokens, token_embedding=None, incremental_state=None, ): positions = None if self.embed_positions is not None: positions = self.embed_positions( tokens, incremental_state=incremental_state ) if incremental_state is not None: tokens = tokens[:, -1:] if positions is not None: positions = positions[:, -1:] if token_embedding is None: token_embedding = self.embed_tokens(tokens) x = embed = self.embed_scale * token_embedding if positions is not None: x += positions if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) return x, embed def forward( self, prev_output_tokens, self_attn_padding_mask=None, encoder_out=None, incremental_state=None, features_only=False, return_all_hiddens=False, token_embeddings=None, **kwargs ): # embed tokens and positions x, _ = self.forward_embedding( prev_output_tokens, token_embeddings, incremental_state ) # relative position self_attn_rel_pos_bias = None slen = prev_output_tokens.size(1) if self.self_attn_relative_position is not None: self_attn_rel_pos_bias = self.self_attn_relative_position( batch_size=x.size(0), qlen=slen, klen=slen ) if incremental_state is not None: self_attn_rel_pos_bias = self_attn_rel_pos_bias[-1:, :, :] cross_attn_rel_pos_bias = None if self.cross_attn_relative_position is not None: cross_attn_rel_pos_bias = self.cross_attn_relative_position( batch_size=x.size(0), qlen=slen, klen=encoder_out["encoder_out"].size(1), ) if incremental_state is not None: cross_attn_rel_pos_bias = cross_attn_rel_pos_bias[-1:, :, :] # decoder layers inner_states = [x] if encoder_out is None: l_aux = [] else: l_aux = encoder_out["l_aux"] if "l_aux" in encoder_out else [] for idx, layer in enumerate(self.layers): if incremental_state is None: self_attn_mask = torch.triu( torch.zeros([x.size(1), x.size(1)]) .float() .fill_(float("-inf")) .type_as(x), 1, ) else: self_attn_mask = None if idx not in incremental_state: incremental_state[idx] = {} x, layer_attn, _, l_aux_i = layer( x, encoder_out["encoder_out"] if encoder_out is not None else None, encoder_out["encoder_padding_mask"] if encoder_out is not None else None, incremental_state[idx] if incremental_state is not None else None, self_attn_mask=self_attn_mask, self_attn_padding_mask=self_attn_padding_mask, self_attn_rel_pos=self_attn_rel_pos_bias, cross_attn_rel_pos=cross_attn_rel_pos_bias, ) l_aux.append(l_aux_i) inner_states.append(x) if self.layer_norm is not None: x = self.layer_norm(x) if not features_only: x = self.output_layer(x) return x, { "inner_states": inner_states, "l_aux": l_aux, "attn": None, } def output_layer(self, features): return self.output_projection(features)
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] class EncoderConfig(object): def __init__(self, **kwargs): self.encoder_embed_dim = kwargs.pop("encoder_embed_dim", 768) self.encoder_attention_heads = kwargs.pop("encoder_attention_heads", 12) self.encoder_ffn_embed_dim = kwargs.pop("encoder_ffn_embed_dim", 3072) self.encoder_layers = kwargs.pop("encoder_layers", 12) self.encoder_normalize_before = kwargs.pop("encoder_normalize_before", True) self.normalize_output = kwargs.pop("normalize_output", True) self.activation_fn = kwargs.pop("activation_fn", "gelu") # self.activation_fn = kwargs.pop("activation_fn", "flashattention") self.dropout = kwargs.pop("dropout", 0.0) self.drop_path_rate = kwargs.pop("drop_path_rate", 0.0) self.attention_dropout = kwargs.pop("attention_dropout", 0.0) self.activation_dropout = kwargs.pop("activation_dropout", 0.0) self.no_scale_embedding = kwargs.pop("no_scale_embedding", True) self.layernorm_embedding = kwargs.pop("layernorm_embedding", False) self.moe_freq = kwargs.pop("moe_freq", 0) self.moe_top1_expert = kwargs.pop("moe_top1_expert", False) self.moe_expert_count = kwargs.pop("moe_expert_count", 0) self.moe_gating_use_fp32 = kwargs.pop("moe_gating_use_fp32", True) self.moe_eval_capacity_token_fraction = kwargs.pop( "moe_eval_capacity_token_fraction", 0.25 ) self.moe_second_expert_policy = kwargs.pop("moe_second_expert_policy", "random") self.moe_normalize_gate_prob_before_dropping = kwargs.pop( "moe_normalize_gate_prob_before_dropping", False ) self.use_xmoe = kwargs.pop("use_xmoe", False) self.rel_pos_buckets = kwargs.pop("rel_pos_buckets", 0) self.max_rel_pos = kwargs.pop("max_rel_pos", 0) self.deepnorm = kwargs.pop("deepnorm", False) self.subln = kwargs.pop("subln", True) self.bert_init = kwargs.pop("bert_init", False) self.multiway = kwargs.pop("multiway", False) self.share_encoder_input_output_embed = kwargs.pop( "share_encoder_input_output_embed", False ) self.max_source_positions = kwargs.pop("max_source_positions", 1024) self.no_output_layer = kwargs.pop("no_output_layer", False) self.layernorm_eps = kwargs.pop("layernorm_eps", 1e-5) # Text self.vocab_size = kwargs.pop("vocab_size", -1) # Vision self.img_size = kwargs.pop("img_size", 224) self.patch_size = kwargs.pop("patch_size", 16) self.in_chans = kwargs.pop("in_chans", 3) # Fairscale self.checkpoint_activations = kwargs.pop("checkpoint_activations", False) self.fsdp = kwargs.pop("fsdp", False) self.ddp_rank = kwargs.pop("ddp_rank", 0) self.xpos_rel_pos = kwargs.pop("xpos_rel_pos", False) self.xpos_scale_base = kwargs.pop("xpos_scale_base", 512) if self.deepnorm: self.encoder_normalize_before = False self.subln = False if self.subln: self.encoder_normalize_before = True self.deepnorm = False if self.use_xmoe: self.moe_normalize_gate_prob_before_dropping = True self.moe_second_expert_policy = "random" assert self.moe_freq > 0 and self.moe_expert_count > 0 def override(self, args): for hp in self.__dict__.keys(): if getattr(args, hp, None) is not None: self.__dict__[hp] = getattr(args, hp, None) class DecoderConfig(object): def __init__(self, **kwargs): self.decoder_embed_dim = kwargs.pop("decoder_embed_dim", 768) self.decoder_attention_heads = kwargs.pop("decoder_attention_heads", 12) self.decoder_ffn_embed_dim = kwargs.pop("decoder_ffn_embed_dim", 3072) self.decoder_layers = kwargs.pop("decoder_layers", 12) self.decoder_normalize_before = kwargs.pop("decoder_normalize_before", True) self.activation_fn = kwargs.pop("activation_fn", "gelu") self.dropout = kwargs.pop("dropout", 0.0) self.drop_path_rate = kwargs.pop("drop_path_rate", 0.0) self.attention_dropout = kwargs.pop("attention_dropout", 0.0) self.activation_dropout = kwargs.pop("activation_dropout", 0.0) self.no_scale_embedding = kwargs.pop("no_scale_embedding", True) self.layernorm_embedding = kwargs.pop("layernorm_embedding", False) self.moe_freq = kwargs.pop("moe_freq", 0) self.moe_top1_expert = kwargs.pop("moe_top1_expert", False) self.moe_expert_count = kwargs.pop("moe_expert_count", 0) self.moe_gating_use_fp32 = kwargs.pop("moe_gating_use_fp32", True) self.moe_eval_capacity_token_fraction = kwargs.pop( "moe_eval_capacity_token_fraction", 0.25 ) self.moe_second_expert_policy = kwargs.pop("moe_second_expert_policy", "random") self.moe_normalize_gate_prob_before_dropping = kwargs.pop( "moe_normalize_gate_prob_before_dropping", False ) self.use_xmoe = kwargs.pop("use_xmoe", False) self.rel_pos_buckets = kwargs.pop("rel_pos_buckets", 0) self.max_rel_pos = kwargs.pop("max_rel_pos", 0) self.deepnorm = kwargs.pop("deepnorm", False) self.subln = kwargs.pop("subln", True) self.bert_init = kwargs.pop("bert_init", False) self.multiway = kwargs.pop("multiway", False) self.share_decoder_input_output_embed = kwargs.pop( "share_decoder_input_output_embed", False ) self.max_target_positions = kwargs.pop("max_target_positions", 1024) self.no_output_layer = kwargs.pop("no_output_layer", False) self.layernorm_eps = kwargs.pop("layernorm_eps", 1e-5) # Text self.vocab_size = kwargs.pop("vocab_size", -1) # Fairscale self.checkpoint_activations = kwargs.pop("checkpoint_activations", False) self.fsdp = kwargs.pop("fsdp", False) self.ddp_rank = kwargs.pop("ddp_rank", 0) self.xpos_rel_pos = kwargs.pop("xpos_rel_pos", False) self.xpos_scale_base = kwargs.pop("xpos_scale_base", 512) if self.deepnorm: self.decoder_normalize_before = False self.subln = False if self.subln: self.decoder_normalize_before = True self.deepnorm = False if self.use_xmoe: self.moe_normalize_gate_prob_before_dropping = True self.moe_second_expert_policy = "random" assert self.moe_freq > 0 and self.moe_expert_count > 0 def override(self, args): for hp in self.__dict__.keys(): if getattr(args, hp, None) is not None: self.__dict__[hp] = getattr(args, hp, None) class EncoderDecoderConfig(object): def __init__(self, **kwargs): self.encoder_embed_dim = kwargs.pop("encoder_embed_dim", 768) self.encoder_attention_heads = kwargs.pop("encoder_attention_heads", 12) self.encoder_ffn_embed_dim = kwargs.pop("encoder_ffn_embed_dim", 3072) self.encoder_layers = kwargs.pop("encoder_layers", 12) self.encoder_normalize_before = kwargs.pop("encoder_normalize_before", True) self.decoder_embed_dim = kwargs.pop("decoder_embed_dim", 768) self.decoder_attention_heads = kwargs.pop("decoder_attention_heads", 12) self.decoder_ffn_embed_dim = kwargs.pop("decoder_ffn_embed_dim", 3072) self.decoder_layers = kwargs.pop("decoder_layers", 12) self.decoder_normalize_before = kwargs.pop("decoder_normalize_before", True) self.activation_fn = kwargs.pop("activation_fn", "gelu") self.dropout = kwargs.pop("dropout", 0.0) self.drop_path_rate = kwargs.pop("drop_path_rate", 0.0) self.attention_dropout = kwargs.pop("attention_dropout", 0.0) self.activation_dropout = kwargs.pop("activation_dropout", 0.0) self.no_scale_embedding = kwargs.pop("no_scale_embedding", True) self.layernorm_embedding = kwargs.pop("layernorm_embedding", False) self.moe_freq = kwargs.pop("moe_freq", 0) self.moe_top1_expert = kwargs.pop("moe_top1_expert", False) self.moe_expert_count = kwargs.pop("moe_expert_count", 0) self.moe_gating_use_fp32 = kwargs.pop("moe_gating_use_fp32", True) self.moe_eval_capacity_token_fraction = kwargs.pop( "moe_eval_capacity_token_fraction", 0.25 ) self.moe_second_expert_policy = kwargs.pop("moe_second_expert_policy", "random") self.moe_normalize_gate_prob_before_dropping = kwargs.pop( "moe_normalize_gate_prob_before_dropping", False ) self.use_xmoe = kwargs.pop("use_xmoe", False) self.rel_pos_buckets = kwargs.pop("rel_pos_buckets", 0) self.max_rel_pos = kwargs.pop("max_rel_pos", 0) self.deepnorm = kwargs.pop("deepnorm", False) self.subln = kwargs.pop("subln", True) self.bert_init = kwargs.pop("bert_init", False) self.multiway = kwargs.pop("multiway", False) self.share_all_embeddings = kwargs.pop("share_all_embeddings", False) self.share_decoder_input_output_embed = kwargs.pop( "share_decoder_input_output_embed", False ) self.max_source_positions = kwargs.pop("max_source_positions", 1024) self.max_target_positions = kwargs.pop("max_target_positions", 1024) self.no_output_layer = kwargs.pop("no_output_layer", False) self.layernorm_eps = kwargs.pop("layernorm_eps", 1e-5) # Text self.vocab_size = kwargs.pop("vocab_size", -1) # Fairscale self.checkpoint_activations = kwargs.pop("checkpoint_activations", False) self.fsdp = kwargs.pop("fsdp", False) self.ddp_rank = kwargs.pop("ddp_rank", 0) self.xpos_rel_pos = kwargs.pop("xpos_rel_pos", False) self.xpos_scale_base = kwargs.pop("xpos_scale_base", 512) if self.deepnorm: self.encoder_normalize_before = False self.decoder_normalize_before = False self.subln = False if self.subln: self.encoder_normalize_before = True self.decoder_normalize_before = True self.deepnorm = False if self.use_xmoe: self.moe_normalize_gate_prob_before_dropping = True self.moe_second_expert_policy = "random" assert self.moe_freq > 0 and self.moe_expert_count > 0 def override(self, args): for hp in self.__dict__.keys(): if getattr(args, hp, None) is not None: self.__dict__[hp] = getattr(args, hp, None)
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] class EncoderDecoder(nn.Module): def __init__( self, args, encoder_embed_tokens=None, encoder_embed_positions=None, decoder_embed_tokens=None, decoder_embed_positions=None, output_projection=None, **kwargs ): super().__init__() self.args = args if args.share_all_embeddings: args.share_decoder_input_output_embed = True self.encoder = Encoder( args, encoder_embed_tokens, encoder_embed_positions, is_encoder_decoder=True, **kwargs ) if args.share_all_embeddings and decoder_embed_tokens is None: decoder_embed_tokens = self.encoder.embed_tokens self.decoder = Decoder( args, decoder_embed_tokens, decoder_embed_positions, output_projection, is_encoder_decoder=True, **kwargs ) def forward( self, src_tokens, prev_output_tokens, return_all_hiddens=False, features_only=False, **kwargs ): encoder_out = self.encoder(src_tokens, return_all_hiddens=return_all_hiddens) decoder_out = self.decoder( prev_output_tokens, encoder_out=encoder_out, features_only=features_only, return_all_hiddens=return_all_hiddens, ) return decoder_out
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details]
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] try: from apex.normalization import FusedLayerNorm as LayerNorm except ModuleNotFoundError: from torch.nn import LayerNorm class EncoderLayer(nn.Module): def __init__(self, args, depth, is_moe_layer=False, is_encoder_decoder=False): super().__init__() self.args = args self.embed_dim = args.encoder_embed_dim self.self_attn = self.build_self_attention(self.embed_dim, args) self.self_attn_layer_norm = MultiwayWrapper(args, LayerNorm(self.embed_dim, eps=args.layernorm_eps)) self.dropout_module = torch.nn.Dropout(args.dropout) if args.drop_path_rate > 0: drop_path_prob = np.linspace(0, args.drop_path_rate, args.encoder_layers)[ depth ] self.drop_path = DropPath(drop_path_prob) else: self.drop_path = None self.normalize_before = args.encoder_normalize_before self.is_moe_layer = is_moe_layer self.ffn_dim = args.encoder_ffn_embed_dim if not self.is_moe_layer: self.ffn = MultiwayWrapper( args, self.build_ffn( self.embed_dim, self.args, ), ) else: assert not self.args.multiway if args.moe_top1_expert: gate = Top1Gate( self.embed_dim, args.moe_expert_count, use_fp32=args.moe_gating_use_fp32, moe_eval_capacity_token_fraction=args.moe_eval_capacity_token_fraction, use_xmoe=args.use_xmoe, ) else: gate = Top2Gate( self.embed_dim, args.moe_expert_count, args.moe_gating_use_fp32, args.moe_second_expert_policy, args.moe_normalize_gate_prob_before_dropping, args.moe_eval_capacity_token_fraction, use_xmoe=args.use_xmoe, ) experts = make_experts(args, self.embed_dim, self.ffn_dim) self.moe_layer = MOELayer(gate, experts, args) self.final_layer_norm = MultiwayWrapper(args, LayerNorm(self.embed_dim, eps=args.layernorm_eps)) if args.deepnorm: if is_encoder_decoder: self.alpha = ( math.pow( math.pow(args.encoder_layers, 4) * args.decoder_layers, 0.0625 ) * 0.81 ) else: self.alpha = math.pow(2.0 * args.encoder_layers, 0.25) else: self.alpha = 1.0 def build_ffn(self, embed_dim, args): return FeedForwardNetwork( embed_dim, self.ffn_dim, args.activation_fn, args.dropout, args.activation_dropout, args.layernorm_eps, args.subln, ) def build_self_attention(self, embed_dim, args): return MultiheadAttention( args, embed_dim, args.encoder_attention_heads, dropout=args.attention_dropout, self_attention=True, encoder_decoder_attention=False, subln=args.subln, ) def residual_connection(self, x, residual): return residual * self.alpha + x def forward(self, x, encoder_padding_mask, attn_mask=None, rel_pos=None, multiway_split_position=None, incremental_state=None): if multiway_split_position is not None: assert self.args.multiway self.apply(set_split_position(multiway_split_position)) if attn_mask is not None: attn_mask = attn_mask.masked_fill(attn_mask.to(torch.bool), -1e8) residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) x, _ = self.self_attn( query=x, key=x, value=x, key_padding_mask=encoder_padding_mask, attn_mask=attn_mask, rel_pos=rel_pos, incremental_state=incremental_state, ) x = self.dropout_module(x) if self.drop_path is not None: x = self.drop_path(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.self_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) if not self.is_moe_layer: x = self.ffn(x) l_aux = None else: x = x.transpose(0, 1) x, l_aux = self.moe_layer(x) x = x.transpose(0, 1) if self.drop_path is not None: x = self.drop_path(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) return x, l_aux class Encoder(nn.Module): def __init__( self, args, embed_tokens=None, embed_positions=None, output_projection=None, is_encoder_decoder=False, **kwargs ): self.args = args super().__init__(**kwargs) self.dropout_module = torch.nn.Dropout(args.dropout) embed_dim = args.encoder_embed_dim self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim) self.embed_tokens = embed_tokens self.embed_positions = embed_positions if ( output_projection is None and not is_encoder_decoder and not args.no_output_layer and args.vocab_size > 0 ): self.output_projection = self.build_output_projection(args) else: self.output_projection = output_projection if args.layernorm_embedding: self.layernorm_embedding = MultiwayWrapper( args, LayerNorm(embed_dim, eps=args.layernorm_eps), dim=1 ) else: self.layernorm_embedding = None self.layers = nn.ModuleList([]) moe_freq = args.moe_freq for i in range(args.encoder_layers): is_moe_layer = moe_freq != 0 and (i + 1) % moe_freq == 0 self.layers.append( self.build_encoder_layer( args, depth=i, is_moe_layer=is_moe_layer, is_encoder_decoder=is_encoder_decoder, ) ) self.num_layers = len(self.layers) if args.encoder_normalize_before and args.normalize_output: self.layer_norm = MultiwayWrapper(args, LayerNorm(embed_dim, eps=args.layernorm_eps)) else: self.layer_norm = None if args.rel_pos_buckets > 0 and args.max_rel_pos > 0: self.relative_position = RelativePositionBias( num_buckets=args.rel_pos_buckets, max_distance=args.max_rel_pos, n_heads=args.encoder_attention_heads, ) else: self.relative_position = None if args.bert_init: self.apply(init_bert_params) if args.deepnorm: if is_encoder_decoder: init_scale = ( math.pow( math.pow(args.encoder_layers, 4) * args.decoder_layers, 0.0625 ) / 1.15 ) else: init_scale = math.pow(8.0 * args.encoder_layers, 0.25) for name, p in self.named_parameters(): if ( "fc1" in name or "fc2" in name or "out_proj" in name or "v_proj" in name ): p.data.div_(init_scale) if args.subln: if is_encoder_decoder: init_scale = math.sqrt( math.log(3 * args.decoder_layers) * math.log(2 * args.encoder_layers) / 3 ) else: init_scale = math.sqrt(math.log(args.encoder_layers * 2)) for name, p in self.named_parameters(): if ( "fc1" in name or "fc2" in name or "out_proj" in name or "v_proj" in name ): p.data.mul_(init_scale) def build_output_projection( self, args, ): if args.share_encoder_input_output_embed: assert args.encoder_embedding_type == "language" output_projection = torch.nn.Linear( self.embed_tokens.weight.shape[1], self.embed_tokens.weight.shape[0], bias=False, ) output_projection.weight = self.embed_tokens.weight else: output_projection = torch.nn.Linear( args.encoder_embed_dim, args.vocab_size, bias=False ) torch.nn.init.normal_( output_projection.weight, mean=0, std=args.encoder_embed_dim**-0.5 ) return output_projection def build_encoder_layer( self, args, depth, is_moe_layer=False, is_encoder_decoder=False ): layer = EncoderLayer( args, depth, is_moe_layer=is_moe_layer, is_encoder_decoder=is_encoder_decoder, ) if args.checkpoint_activations: layer = checkpoint_wrapper(layer) if args.fsdp: layer = wrap(layer) return layer def forward_embedding( self, src_tokens, token_embedding=None, positions=None, ): if token_embedding is None: token_embedding = self.embed_tokens(src_tokens) x = embed = self.embed_scale * token_embedding if self.embed_positions is not None: if src_tokens is not None: x = embed + self.embed_positions(src_tokens, positions=positions) else: x = embed + self.embed_positions(x, positions=positions) if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) return x, embed def forward( self, src_tokens, encoder_padding_mask=None, attn_mask=None, return_all_hiddens=False, token_embeddings=None, multiway_split_position=None, features_only=False, incremental_state=None, positions=None, **kwargs ): assert src_tokens is not None or token_embeddings is not None if encoder_padding_mask is None: if src_tokens is not None: encoder_padding_mask = torch.zeros_like( src_tokens, device=src_tokens.device ).bool() else: encoder_padding_mask = torch.zeros( [token_embeddings.size(0), token_embeddings.size(1)], device=token_embeddings.device, ).bool() if multiway_split_position is not None: assert self.args.multiway self.apply(set_split_position(multiway_split_position)) x, encoder_embedding = self.forward_embedding(src_tokens, token_embeddings, positions) x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x)) encoder_states = [] if return_all_hiddens: encoder_states.append(x) rel_pos_bias = None if self.relative_position is not None: rel_pos_bias = self.relative_position( batch_size=x.size(0), qlen=x.size(1), klen=x.size(1) ) # incremental_state is not None during inference if we use the bidirectional encoder as a generator as in s2s-ft (https://arxiv.org/abs/2110.13640) l_aux = [] for idx, layer in enumerate(self.layers): x, l_aux_i = layer( x, encoder_padding_mask=encoder_padding_mask if incremental_state is None else None, attn_mask=attn_mask, rel_pos=rel_pos_bias, multiway_split_position=multiway_split_position, incremental_state=incremental_state[idx] if incremental_state is not None else None, ) if return_all_hiddens: assert encoder_states is not None encoder_states.append(x) l_aux.append(l_aux_i) if self.layer_norm is not None: x = self.layer_norm(x) if not features_only and self.output_projection is not None: x = self.output_projection(x) return { "encoder_out": x, "encoder_embedding": encoder_embedding, "encoder_padding_mask": encoder_padding_mask, "encoder_states": encoder_states, "l_aux": l_aux, }
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] def init_bert_params(module): def normal_(data): data.copy_(data.cpu().normal_(mean=0.0, std=0.02).to(data.device)) if isinstance(module, nn.Linear): normal_(module.weight.data) if module.bias is not None: module.bias.data.zero_() if isinstance(module, nn.Embedding): normal_(module.weight.data) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() if isinstance(module, MultiheadAttention): if isinstance(module.q_proj, MultiwayNetwork): normal_(module.q_proj.A.weight.data) normal_(module.q_proj.B.weight.data) normal_(module.k_proj.A.weight.data) normal_(module.k_proj.B.weight.data) normal_(module.v_proj.A.weight.data) normal_(module.v_proj.B.weight.data) else: normal_(module.q_proj.weight.data) normal_(module.k_proj.weight.data) normal_(module.v_proj.weight.data)
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] PositionalEmbedding, TextEmbedding, VisionEmbedding, ) class BEiT3(nn.Module): def __init__(self, args, **kwargs): super().__init__() self.args = args assert args.multiway assert args.vocab_size > 0 assert not args.share_encoder_input_output_embed self.text_embed = TextEmbedding(args.vocab_size, args.encoder_embed_dim) self.vision_embed = VisionEmbedding( args.img_size, args.patch_size, args.in_chans, args.encoder_embed_dim, contain_mask_token=True, prepend_cls_token=True, ) # being consistent with Fairseq, which starts from 2 for position embedding embed_positions = MutliwayEmbedding( modules=[ PositionalEmbedding(self.vision_embed.num_position_embeddings() + 2, args.encoder_embed_dim), PositionalEmbedding(args.max_source_positions, args.encoder_embed_dim), ], dim=1, ) self.encoder = Encoder( args, embed_tokens=None, embed_positions=embed_positions, output_projection=None, is_encoder_decoder=False, ) def forward( self, textual_tokens=None, visual_tokens=None, text_padding_position=None, attn_mask=None, vision_masked_position=None, incremental_state=None, positions=None, ): assert textual_tokens is not None or visual_tokens is not None if textual_tokens is None: x = self.vision_embed(visual_tokens, vision_masked_position) encoder_padding_mask = None multiway_split_position = -1 elif visual_tokens is None: x = self.text_embed(textual_tokens) encoder_padding_mask = text_padding_position multiway_split_position = 0 else: x1 = self.vision_embed(visual_tokens, vision_masked_position) multiway_split_position = x1.size(1) x2 = self.text_embed(textual_tokens) x = torch.cat([x1, x2], dim=1) if text_padding_position is not None: encoder_padding_mask = torch.cat( [ torch.zeros(x1.shape[:-1]).to(x1.device).bool(), text_padding_position, ], dim=1, ) else: encoder_padding_mask = None encoder_out = self.encoder( src_tokens=None, encoder_padding_mask=encoder_padding_mask, attn_mask=attn_mask, token_embeddings=x, multiway_split_position=multiway_split_position, incremental_state=incremental_state, positions=positions, ) encoder_out["multiway_split_position"] = multiway_split_position return encoder_out
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details]
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] testcases = [ {}, {"vocab_size": 64000}, {"activation_fn": "relu"}, {"drop_path_rate": 0.1}, {"decoder_normalize_before": False}, {"no_scale_embedding": False}, {"layernorm_embedding": True}, {"rel_pos_buckets": 32, "max_rel_pos": 256}, {"deepnorm": True, "subln": False, "decoder_normalize_before": False}, {"bert_init": True}, {"multiway": True}, {"share_decoder_input_output_embed": True}, {"checkpoint_activations": True}, {"fsdp": True}, ] @pytest.mark.parametrize("args", testcases) def test_decoder(args): config = DecoderConfig(**args) model = Decoder(config) prev_output_tokens = torch.ones(2, 10) token_embeddings = torch.rand(2, 10, config.decoder_embed_dim) model( prev_output_tokens=prev_output_tokens, token_embeddings=token_embeddings, features_only=True, )
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] testcases = [ {}, {"vocab_size": 64000}, {"activation_fn": "relu"}, {"drop_path_rate": 0.1}, {"encoder_normalize_before": False}, {"no_scale_embedding": False}, {"layernorm_embedding": True}, {"rel_pos_buckets": 32, "max_rel_pos": 256}, {"deepnorm": True, "subln": False, "encoder_normalize_before": False}, {"bert_init": True}, {"multiway": True}, {"share_encoder_input_output_embed": True}, {"checkpoint_activations": True}, {"fsdp": True}, ] @pytest.mark.parametrize("args", testcases) def test_encoder(args): config = EncoderConfig(**args) model = Encoder(config) token_embeddings = torch.rand(2, 10, config.encoder_embed_dim) model(src_tokens=None, token_embeddings=token_embeddings)
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details]
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] testcases = [ {}, {"vocab_size": 64000}, {"activation_fn": "relu"}, {"drop_path_rate": 0.1}, {"encoder_normalize_before": False, "decoder_normalize_before": False}, {"no_scale_embedding": False}, {"layernorm_embedding": True}, {"rel_pos_buckets": 32, "max_rel_pos": 256}, { "deepnorm": True, "subln": False, "encoder_normalize_before": False, "decoder_normalize_before": False, }, {"bert_init": True}, {"multiway": True}, {"share_decoder_input_output_embed": True}, {"share_all_embeddings": True}, {"checkpoint_activations": True}, {"fsdp": True}, ] @pytest.mark.parametrize("args", testcases) def test_decoder(args): config = EncoderDecoderConfig(**args) model = EncoderDecoder( config, encoder_embed_tokens=TextEmbedding(64000, config.encoder_embed_dim), decoder_embed_tokens=TextEmbedding(64000, config.decoder_embed_dim), encoder_embed_positions=PositionalEmbedding( config.max_source_positions, config.encoder_embed_dim ), decoder_embed_positions=PositionalEmbedding( config.max_target_positions, config.decoder_embed_dim ), ) src_tokens = torch.ones(2, 20).long() prev_output_tokens = torch.ones(2, 10).long() model( src_tokens=src_tokens, prev_output_tokens=prev_output_tokens, features_only=True, )
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details]
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # flake8: noqa if __name__ == "__main__": cli_main()
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details]
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # flake8: noqa if __name__ == "__main__": cli_main()
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # flake8: noqa if __name__ == "__main__": cli_main()
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. logger = logging.getLogger(__name__) SAMPLE_BREAK_MODE_CHOICES = ChoiceEnum(["none", "complete", "complete_doc", "eos"]) SHORTEN_METHOD_CHOICES = ChoiceEnum(["none", "truncate", "random_crop"]) @dataclass class PretrainingConfig(FairseqDataclass): data: str = field( default=MISSING, metadata={ "help": "colon separated path to data directories list, \ will be iterated upon during epochs in round-robin manner" }, ) sample_break_mode: SAMPLE_BREAK_MODE_CHOICES = field( default="complete", metadata={ "help": 'If omitted or "none", fills each sample with tokens-per-sample ' 'tokens. If set to "complete", splits samples only at the end ' "of sentence, but may include multiple sentences per sample. " '"complete_doc" is similar but respects doc boundaries. ' 'If set to "eos", includes only one sentence per sample.' }, ) tokens_per_sample: int = field( default=1024, metadata={"help": "max number of tokens per sample for LM dataset"}, ) mask_prob: float = field( default=0.15, metadata={"help": "probability of replacing a token with mask"}, ) leave_unmasked_prob: float = field( default=0.1, metadata={"help": "probability that a masked token is unmasked"}, ) random_token_prob: float = field( default=0.1, metadata={"help": "probability of replacing a token with a random token"}, ) freq_weighted_replacement: bool = field( default=False, metadata={"help": "sample random replacement words based on word frequencies"}, ) mask_whole_words: bool = field( default=False, metadata={"help": "mask whole words; you may also want to set --bpe"}, ) mask_multiple_length: int = field( default=1, metadata={"help": "repeat the mask indices multiple times"}, ) mask_stdev: float = field( default=0.0, metadata={"help": "stdev of the mask length"}, ) shorten_method: SHORTEN_METHOD_CHOICES = field( default="none", metadata={ "help": "if not none, shorten sequences that exceed --tokens-per-sample" }, ) shorten_data_split_list: str = field( default="", metadata={ "help": "comma-separated list of dataset splits to apply shortening to, " 'e.g., "train,valid" (default: all dataset splits)' }, ) seed: int = II("common.seed") span_length: float = field( default=3.0, metadata={"help": "average span length for masking"}, ) remove_source_sentinel: bool = field( default=False, metadata={"help": "remove the source sentinel for the span corruption task"}, ) remove_target_sentinel: bool = field( default=False, metadata={"help": "remove the target sentinel for the span corruption task"}, ) batch_read_ahead: int = field( default=100000, metadata={"help": "batch read ahead size for infinibatch"}, ) required_batch_size_multiple: int = II("dataset.required_batch_size_multiple") spm_model: str = field( default="", metadata={"help": "sentencepice model to tokenize the data"}, ) dict_file: str = field( default="", metadata={"help": ""}, ) pad_to_max_length: bool = field( default=False, ) @register_task("pretraining", dataclass=PretrainingConfig) class PLMTask(FairseqTask): def __init__(self, cfg, dictionary, tokenizer): super().__init__(cfg) self.cfg = cfg self.dictionary = dictionary self.tokenizer = tokenizer self.seed = cfg.seed self.mask_idx = dictionary.index("<mask>") @classmethod def setup_task(cls, cfg, **kwargs): paths = utils.split_paths(cfg.data) assert len(paths) > 0 if cfg.dict_file != "": dictionary = Dictionary.load(cfg.dict_file) else: dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) # add mask token dictionary.add_symbol("<mask>") for i in range(100): dictionary.add_symbol(f"<mask_{i}>") dictionary.pad_to_multiple_(cfg.required_batch_size_multiple) logger.info("dictionary: {} types".format(len(dictionary))) # tokenizer = SentencepieceBPE(Namespace(sentencepiece_model=cfg.spm_model)) tokenizer = spm.SentencePieceProcessor() tokenizer.Load(cfg.spm_model) return cls(cfg, dictionary, tokenizer) def load_dataset(self, split, epoch=1, combine=False, **kwargs): self.datasets[split] = { "data": json.load(open(f"{self.cfg.data}/json/{split}.json")), "data_dir": self.cfg.data, "shuffle": True if split == "train" else False, } self.datasets[split] = Namespace(**self.datasets[split]) def dataset(self, split): if split not in self.datasets: raise KeyError("Dataset not loaded: " + split) return self.datasets[split] def get_batch_iterator( self, dataset, max_tokens=None, max_sentences=None, max_positions=None, ignore_invalid_inputs=False, required_batch_size_multiple=1, seed=1, num_shards=1, shard_id=0, num_workers=0, epoch=1, data_buffer_size=0, disable_iterator_cache=False, **kwargs, ): return MLMLoader( self.cfg, dataset, self.dictionary, self.tokenizer, max_tokens=max_tokens, max_sentences=max_sentences, max_positions=max_positions, ignore_invalid_inputs=ignore_invalid_inputs, required_batch_size_multiple=required_batch_size_multiple, seed=seed, num_shards=num_shards, shard_id=shard_id, ) @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # register dataclass TASK_DATACLASS_REGISTRY = {} TASK_REGISTRY = {} TASK_CLASS_NAMES = set() # automatically import any Python files in the tasks/ directory tasks_dir = os.path.dirname(__file__) for file in os.listdir(tasks_dir): path = os.path.join(tasks_dir, file) if ( not file.startswith("_") and not file.startswith(".") and (file.endswith(".py") or os.path.isdir(path)) ): task_name = file[: file.find(".py")] if file.endswith(".py") else file module = importlib.import_module("tasks." + task_name) # expose `task_parser` for sphinx if task_name in TASK_REGISTRY: parser = argparse.ArgumentParser(add_help=False) group_task = parser.add_argument_group("Task name") # fmt: off group_task.add_argument('--task', metavar=task_name, help='Enable this task with: ``--task=' + task_name + '``') # fmt: on group_args = parser.add_argument_group("Additional command-line arguments") TASK_REGISTRY[task_name].add_args(group_args) globals()[task_name + "_parser"] = parser
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] class BaseBatchGen(CheckpointableIterator): """ This is a base class for batch generators that use infinibatch """ def __init__(self): self._iter = None self.epoch = 1 self.next_epoch_idx = 1 self.sharded_checkpoint = True self.should_close_after_finished = True def _build_iter(self): """ Build infinibatch iterator and assign to self._iter """ raise NotImplementedError() def _move_to_tensor(self, batch): def to_tensor(x): return torch.tensor(x) return utils.apply_to_sample(to_tensor, batch) @property def iterator(self): if self._iter is None: raise NotImplementedError("_build_iter() must called first") return self._iter def __iter__(self): if self._iter is None: raise NotImplementedError("_build_iter() must called first") return self._iter def __next__(self): return next(self._iter) def setstate(self, value): self._iter.setstate(value) def getstate(self): return self._iter.getstate() def close(self): self._iter.close() def __len__(self) -> int: return 819200000 def next_epoch_itr( self, shuffle=True, fix_batches_to_gpus=False, set_dataset_epoch=True ): return self def end_of_epoch(self) -> bool: return False def state_dict(self): """Returns a dictionary containing a whole state of the iterator.""" return self.getstate() def load_state_dict(self, state_dict): """Copies the state of the iterator from the given *state_dict*.""" self.setstate(state_dict) @property def first_batch(self): return "DUMMY"
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details]
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] def apply_to_sample(f, sample): if hasattr(sample, "__len__") and len(sample) == 0: return {} def _apply(x): if isinstance(x, np.ndarray): return f(x) elif isinstance(x, collections.OrderedDict): # OrderedDict has attributes that needs to be preserved od = collections.OrderedDict( (key, _apply(value)) for key, value in x.items() ) od.__dict__ = x.__dict__ return od elif isinstance(x, dict): return {key: _apply(value) for key, value in x.items()} elif isinstance(x, list): return [_apply(x) for x in x] elif isinstance(x, tuple): return tuple(_apply(x) for x in x) elif isinstance(x, set): return {_apply(x) for x in x} else: return x return _apply(sample) class NativeCheckpointableIterator(iterators.CheckpointableIterator): def __init__(self, iterable: Iterable): self._input_iterable = iterable self.setstate(None) def getstate(self) -> Dict: return {"num_items_yielded": self._num_items_yielded} def setstate(self, checkpoint: Optional[Dict]): self._iterator = iter(self._input_iterable) self._num_items_yielded = ( iterators._advance_iterator(self._iterator, checkpoint["num_items_yielded"]) if checkpoint is not None else 0 ) def __next__(self): item = next(self._iterator) self._num_items_yielded += 1 return item def close(self): pass class WeightIterator(object): def __init__(self, weights, seed): self.weights = weights self.seed = seed self.control_index = list(range(len(weights))) self.setstate(None) def __iter__(self): return self def getstate(self): return {"random_state": self._random_state} def setstate(self, checkpoint): self._random_state = checkpoint["random_state"] if checkpoint else None self._random = ( None # this will trigger the lazy initialization in self.__next__ ) def __next__(self): if self._random is None: self._random = Random(self.seed) if self._random_state is not None: self._random.setstate(self._random_state) idx = self._random.choices(self.control_index, self.weights)[0] self._random_state = self._random.getstate() return idx def close(self): pass
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] class MLMLoader(BaseBatchGen): def __init__( self, args, dataset, dictionary, tokenizer, max_tokens=None, max_sentences=None, max_positions=None, ignore_invalid_inputs=False, required_batch_size_multiple=1, seed=1, num_shards=1, shard_id=0, ): super().__init__() self.args = args self.data = dataset.data self.data_dir = dataset.data_dir self.shuffle = dataset.shuffle self.dictionary = dictionary self.tokenizer = tokenizer self.max_tokens = max_tokens self.max_sentences = max_sentences self.max_positions = max_positions self.tokens_per_sample = args.tokens_per_sample self.sample_break_mode = args.sample_break_mode self.ignore_invalid_inputs = ignore_invalid_inputs self.required_batch_size_multiple = required_batch_size_multiple self.seed = str(seed) self.num_shards = num_shards self.shard_id = shard_id self.batch_read_ahead = args.batch_read_ahead self._build_iter() def _build_iter(self): tokenized_lines = self._multilingual_tokenize() self.padded_batches = self._batchify(tokenized_lines) prefetch_batches = iterators.PrefetchIterator( self.padded_batches, buffer_size=10000, buffer_in_main_process=True, log_empty_buffer_warning=True and self.shard_id == 0, ) prefetch_batches = iterators.MapIterator(prefetch_batches, self._move_to_tensor) self._iter = prefetch_batches def _multilingual_tokenize(self): multilingual_iters = [] weights = [] for data in self.data: multilingual_iters.append(self._tokenize(data)) if "weight" in data: weights.append(float(data["weight"])) else: weights.append(int(data["count"])) if len(multilingual_iters) == 1: return multilingual_iters[0] sampling_iterator = WeightIterator(weights) control_iterator = NativeCheckpointableIterator(sampling_iterator) tokenized_lines = iterators.MultiplexIterator( control_iterator, multilingual_iters ) return tokenized_lines def _tokenize(self, data): """ data: { 'source': list[Path], 'source_lang': str, 'count': int, 'weight': float, 'name': str, } """ dataset = list( zip( data["source"], itertools.repeat(data["source_lang"]), ) ) if self.shuffle: chunk_files = iterators.InfinitePermutationSourceIterator( dataset, seed=self.seed, shuffle=self.shuffle, num_instances=self.num_shards, instance_rank=self.shard_id, ) else: chunk_files = iterators.ChunkedSourceIterator( dataset, num_instances=self.num_shards, instance_rank=self.shard_id, ) tokenized_lines = iterators.SelectManyIterator( chunk_files, lambda files: self._read_from_files(*files) ) tokenized_lines = iterators.SamplingRandomMapIterator( tokenized_lines, self._prepare, self.seed ) return tokenized_lines def _batchify(self, lines): if self.max_sentences is not None: if self.batch_read_ahead > 0: lines = iterators.BlockwiseShuffleIterator( lines, self.batch_read_ahead, self.seed ) batches = iterators.FixedBatchIterator(lines, self.max_sentences) else: def dynamic_batch_size(sample): lengths = [len(x) for x in sample] batch_size = self.max_tokens // max(lengths) batch_size = ( batch_size // self.required_batch_size_multiple * self.required_batch_size_multiple ) return max(1, batch_size) batches = iterators.BucketedReadaheadBatchIterator( lines, read_ahead=self.batch_read_ahead, key=(lambda x: max(len(x[0]), len(x[1]))) if self.shuffle else None, batch_size=dynamic_batch_size, shuffle=self.shuffle, seed=self.seed, ) def collate(batch): batch_size = len(batch) mlm_source_max_length = max([len(x[0]) for x in batch]) mlm_target_max_length = max([len(x[1]) for x in batch]) s2s_source_max_length = max([len(x[2]) for x in batch]) s2s_target_max_length = max([len(x[3]) for x in batch]) if self.args.pad_to_max_length: mlm_source_max_length = self.args.tokens_per_sample mlm_target_max_length = self.args.tokens_per_sample mlm_source_ids = np.full( shape=(batch_size, mlm_source_max_length), dtype=np.int32, fill_value=self.dictionary.pad(), ) mlm_target_ids = np.full( shape=(batch_size, mlm_target_max_length), dtype=np.int32, fill_value=self.dictionary.pad(), ) s2s_source_ids = np.full( shape=(batch_size, s2s_source_max_length), dtype=np.int32, fill_value=self.dictionary.pad(), ) s2s_target_ids = np.full( shape=(batch_size, s2s_target_max_length - 1), dtype=np.int32, fill_value=self.dictionary.pad(), ) s2s_prev_input_ids = np.full( shape=(batch_size, s2s_target_max_length - 1), dtype=np.int32, fill_value=self.dictionary.pad(), ) for i, ( mlm_input_ids, mlm_label_ids, s2s_input_ids, s2s_label_ids, ) in enumerate(batch): mlm_source_ids[i, : len(mlm_input_ids)] = mlm_input_ids mlm_target_ids[i, : len(mlm_label_ids)] = mlm_label_ids s2s_source_ids[i, : len(s2s_input_ids)] = s2s_input_ids s2s_target_ids[i, : len(s2s_label_ids) - 1] = s2s_label_ids[1:] s2s_prev_input_ids[i, : len(s2s_label_ids) - 1] = s2s_label_ids[:-1] ret_batch = { "net_input": { "src_tokens": mlm_source_ids.astype(np.int64), }, "target": mlm_target_ids.astype(np.int64), "nsentences": batch_size, "ntokens": sum([len(x[0]) for x in batch]), } return ret_batch padded_batches = iterators.MapIterator(batches, collate) return padded_batches def _prepare(self, _random, doc): nonmasked_tokens, masked_tokens = self._mask_lm(_random, doc) nonnoise_spans, noise_spans = self._span_corruption(_random, doc) return nonmasked_tokens, masked_tokens, nonnoise_spans, noise_spans def _mask_lm(self, _random, doc): def mask_tokens(): return "<mask>" length = len(doc) mask_tokens_num = int(length * self.args.mask_prob) mask_tokens_num = min(max(mask_tokens_num, 1), length - 1) possible_mask_positions = _random.sample(range(length), k=mask_tokens_num) possible_mask_positions = sorted(possible_mask_positions) nonmasked_tokens = copy.deepcopy(doc) masked_tokens = [self.dictionary.pad() for _ in range(len(doc))] for position in possible_mask_positions: # masked_tokens.append(nonmasked_tokens[position]) masked_tokens[position] = nonmasked_tokens[position] nonmasked_tokens[position] = self.dictionary.indices[mask_tokens()] return nonmasked_tokens, masked_tokens def _span_corruption(self, _random, doc): def mask_tokens(i): return f"<mask_{i}>" length = len(doc) noise_tokens_num = int(length * self.args.mask_prob) noise_tokens_num = min(max(noise_tokens_num, 1), length - 1) noise_spans_num = int(noise_tokens_num / self.args.span_length) noise_spans_num = max(noise_spans_num, 1) nonnoise_tokens_num = length - noise_tokens_num if noise_spans_num == 1: noise_split_positions = [0, noise_tokens_num] else: possible_split_positions = list(range(1, noise_tokens_num)) _random.shuffle(possible_split_positions) noise_split_positions = sorted( possible_split_positions[: noise_spans_num - 1] ) noise_split_positions = [0] + noise_split_positions + [noise_tokens_num] possible_insert_positions = list(range(nonnoise_tokens_num)) _random.shuffle(possible_insert_positions) noise_insert_positions = sorted(possible_insert_positions[:noise_spans_num]) nonnoise_spans, noise_spans = [], [] last_end = 0 for i in range(noise_spans_num): start_pos = noise_insert_positions[i] + noise_split_positions[i] end_pos = noise_insert_positions[i] + noise_split_positions[i + 1] mask_id = self.dictionary.indices[mask_tokens(i)] if getattr(self.args, "remove_target_sentinel", False): noise_spans.append(doc[start_pos:end_pos]) else: noise_spans.append([mask_id] + doc[start_pos:end_pos]) if getattr(self.args, "remove_source_sentinel", False): nonnoise_spans.extend(doc[last_end:start_pos]) else: nonnoise_spans.extend(doc[last_end:start_pos] + [mask_id]) last_end = end_pos nonnoise_spans.extend(doc[last_end:]) noise_spans = sum(noise_spans, []) return nonnoise_spans, noise_spans def _read_from_files(self, source_file, source_lang): # data = [] file_path = os.path.join(self.data_dir, source_file) if not os.path.exists(file_path): print("| file {} not exists".format(file_path), flush=True) return iter([]) # skip bad file with open(file_path, "r", encoding="utf8") as f: lines = f.read().strip().split("\n") doc = [self.dictionary.bos()] for line in lines: if line == "": if self.sample_break_mode == "complete_doc": # data.append(doc) yield doc doc = [self.dictionary.bos()] continue tokenized_line = self.tokenizer.EncodeAsPieces(line) tokenized_id = [ self.dictionary.index(token) for token in tokenized_line ] + [self.dictionary.eos_index] if len(tokenized_id) > self.tokens_per_sample: continue if len(doc) + len(tokenized_id) > self.tokens_per_sample: # data.append(doc) yield doc doc = [self.dictionary.bos()] doc.extend(tokenized_id) if len(doc) > 1 and len(doc) <= self.tokens_per_sample: # data.append(doc) yield doc # return data
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] @torch.no_grad() def clip_grad_norm_( params, max_norm, moe_expert_count, aggregate_norm_fn=None ) -> torch.Tensor: def grad_exists(p): return p is not None and getattr(p, "grad", None) is not None if isinstance(params, torch.Tensor): params = [params] params = list(params) params = list(filter(grad_exists, params)) grads, expert_grads, base_expert_grads, sharded_grads = [], [], [], [] denom = math.sqrt(max(dist.get_global_world_size(), moe_expert_count)) for p in params: if hasattr(p, "expert"): expert_grads.append(p.grad.detach() / denom) elif hasattr(p, "base_expert"): base_expert_grads.append(p.grad.detach()) elif hasattr(p, "_is_sharded"): sharded_grads.append(p.grad.detach()) else: grads.append(p.grad.detach()) if len(grads) == 0: if len(params) > 0: total_norm = params[0].new_tensor(0.0) else: total_norm = torch.tensor(0.0) elif len(grads) == 1: total_norm = torch.norm(grads[0], p=2, dtype=torch.float32) else: if multi_tensor_l2norm_available: total_norm = multi_tensor_total_norm(grads) else: if torch.cuda.is_available(): warnings.warn( "amp_C fused kernels unavailable, disabling multi_tensor_l2norm; " "you may get better performance by installing NVIDIA's apex library" ) device = torch.cuda.current_device() elif grads[0].device.type == "xla": device = grads[0].device else: device = torch.device("cpu") total_norm = torch.norm( torch.stack( [torch.norm(g, p=2, dtype=torch.float32).to(device) for g in grads] ) ) # calculate split_norm and all_reduce with other workers norms = [total_norm] for split_grads in [expert_grads, sharded_grads]: if len(split_grads) == 0: continue split_norm = torch.norm( torch.stack([torch.norm(g, p=2, dtype=torch.float32) for g in split_grads]) ) if dist.is_initialized(): split_norm.pow_(2) dist.all_reduce(split_norm) split_norm.sqrt_() norms.append(split_norm) if len(norms) > 1: total_norm = torch.norm(torch.stack(norms)) if aggregate_norm_fn is not None: total_norm = aggregate_norm_fn(total_norm) if max_norm > 0: max_norm = float(max_norm) clip_coef = (max_norm / (total_norm + 1e-6)).clamp_(max=1) for g in grads + expert_grads + sharded_grads + base_expert_grads: g.mul_(clip_coef) return total_norm
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details]
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. FairseqIncrementalDecoder, FairseqLanguageModel, register_model, register_model_architecture, ) DEFAULT_MAX_TARGET_POSITIONS = 1024 logger = logging.getLogger(__name__) @dataclass class LanguageConfig(FairseqDataclass): activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="relu", metadata={"help": "activation function to use"} ) dropout: float = field(default=0.1, metadata={"help": "dropout probability"}) attention_dropout: float = field( default=0.0, metadata={"help": "dropout probability for attention weights"} ) activation_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN."} ) relu_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN."} ) decoder_embed_dim: int = field( default=512, metadata={"help": "decoder embedding dimension"} ) decoder_output_dim: int = field( default=512, metadata={"help": "decoder output dimension"} ) decoder_input_dim: int = field( default=512, metadata={"help": "decoder input dimension"} ) decoder_ffn_embed_dim: int = field( default=2048, metadata={"help": "decoder embedding dimension for FFN"} ) decoder_layers: int = field(default=6, metadata={"help": "num decoder layers"}) decoder_attention_heads: int = field( default=8, metadata={"help": "num decoder attention heads"} ) decoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each decoder block"} ) no_token_positional_embeddings: bool = field( default=False, metadata={ "help": "if set, disables positional embeddings (outside self attention)" }, ) share_decoder_input_output_embed: bool = field( default=False, metadata={"help": "share decoder input and output embeddings"} ) decoder_learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings in the decoder"}, ) layernorm_embedding: bool = field( default=False, metadata={"help": "add layernorm to embedding"} ) no_scale_embedding: bool = field( default=False, metadata={"help": "if True, dont scale embeddings"} ) checkpoint_activations: bool = field( default=False, metadata={"help": "checkpoint activations at each layer"} ) offload_activations: bool = field( default=False, metadata={"help": "move checkpointed activations to CPU after they are used."}, ) # config for Fully Sharded Data Parallel (FSDP) training min_params_to_wrap: int = field( default=DEFAULT_MIN_PARAMS_TO_WRAP, metadata={ "help": ( "minimum number of params for a layer to be wrapped with FSDP() when " "training with --ddp-backend=fully_sharded. Smaller values will " "improve memory efficiency, but may make torch.distributed " "communication less efficient due to smaller input sizes. This option " "is set to 0 (i.e., always wrap) when --checkpoint-activations or " "--offload-activations are passed." ) }, ) moe_freq: int = field( default=0, metadata={"help": "Frequency at which we insert MoE Transformer layers"}, ) moe_expert_count: int = field( default=0, metadata={"help": "Number of experts in each MoE Layer"} ) moe_gating_use_fp32: bool = field( default=False, metadata={"help": "Use FP32 computations in MoE top2 gating function"}, ) moe_second_expert_policy: str = field( default="sampling", metadata={"help": "policy for second expert, options: all/sampling/random"}, ) moe_normalize_gate_prob_before_dropping: bool = field( default=False, metadata={ "help": "whether to normalize gate probs before or after dropping experts for capacity and randomization" }, ) moe_expert_ffn_dim: Optional[int] = field( default=None, metadata={"help": "MoE expert FFN dimension"} ) moe_top1_expert: Optional[bool] = field( default=False, metadata={"help": "Use top1 gate instead of top2"} ) moe_eval_capacity_token_fraction: Optional[float] = field( default=0.25, metadata={ "help": ( "Default: 0.25, Fraction of tokens as capacity during validation, " "if set to negative, use same as training. range: (0.0, 1.0]." ) }, ) moe_normalize_expert_grad: Optional[str] = field( default="world_size", metadata={ "help": "Divide expert gradients by (1) 'world_size' (2) 'sqrt_world_size'" }, ) record_a2a_perf_stats: Optional[bool] = field( default=False, metadata={"help": "records all to all perf stats during distributed training"}, ) dummy_a2a: Optional[bool] = field( default=False, metadata={ "help": "By passes all to all during distributed training by returning the input buffer as output" }, ) moe_batch_prioritized_routing: Optional[bool] = field( default=False, metadata={ "help": "if true orders token by the gate prob before capacity dropping." }, ) use_xmoe: Optional[bool] = field( default=False, ) # options from other parts of the config add_bos_token: bool = II("task.add_bos_token") tokens_per_sample: int = II("task.tokens_per_sample") max_target_positions: Optional[int] = II("task.max_target_positions") tpu: bool = II("common.tpu") memory_efficient_fp16: bool = II("common.memory_efficient_fp16") fp16: bool = II("common.fp16") fp16_no_flatten_grads: bool = II("common.fp16_no_flatten_grads") ddp_backend: str = II("distributed_training.ddp_backend") world_size: int = II("distributed_training.distributed_world_size") distributed_rank: int = II("distributed_training.distributed_rank") ddp_rank: int = II("distributed_training.distributed_rank") deepnorm: Optional[bool] = field( default=False, ) subln: Optional[bool] = field( default=False, ) rel_pos_buckets: Optional[int] = field( default=0, ) max_rel_pos: Optional[int] = field( default=0, ) xpos_rel_pos: Optional[bool] = field( default=False, ) xpos_scale_base: Optional[int] = field( default=512, ) @register_model("lm", dataclass=LanguageConfig) class LanguageModel(FairseqLanguageModel): def __init__(self, args, decoder): self.args = args super().__init__(decoder) @classmethod def build_model(cls, args, task): if getattr(args, "max_target_positions", None) is None: args.max_target_positions = getattr( args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS ) embed_tokens = cls.build_embedding( args, task.source_dictionary, args.decoder_embed_dim ) embed_positions = ( PositionalEmbedding( args.max_target_positions, args.decoder_embed_dim, task.dictionary.pad(), learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) if args.share_decoder_input_output_embed: output_projection = torch.nn.Linear( embed_tokens.weight.shape[1], embed_tokens.weight.shape[0], bias=False, ) output_projection.weight = embed_tokens.weight else: output_projection = torch.nn.Linear( args.decoder_embed_dim, len(task.dictionary), bias=False ) torch.nn.init.normal_( output_projection.weight, mean=0, std=args.decoder_embed_dim**-0.5 ) if getattr(args, "moe_freq", 0) > 0 and ( getattr(args, "fp16", False) and not getattr(args, "memory_efficient_fp16", False) and getattr(args, "ddp_backend", None) != "fully_sharded" ): assert ( args.fp16_no_flatten_grads ), "If training moe models, set --fp16-no-flatten-grads to calculate correct gradnorm" args.ddp_rank = distributed_utils.get_data_parallel_rank() config = DecoderConfig() config.override(args) decoder = LMDecoder( config, embed_tokens, embed_positions, output_projection, is_encoder_decoder=False, dictionary=task.dictionary, ) return cls(args, decoder) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): return Embedding(len(dictionary), embed_dim, dictionary.pad()) class LMDecoder(Decoder, FairseqIncrementalDecoder): def forward(self, src_tokens, **kwargs): self_attn_padding_mask = src_tokens.eq(self.dictionary.pad()) return super().forward(src_tokens, self_attn_padding_mask, **kwargs) def max_positions(self): return self.embed_positions.max_positions def reorder_incremental_state_scripting( self, incremental_state, new_order, ): for module in incremental_state: for key in incremental_state[module]: result = incremental_state[module][key].index_select(0, new_order) incremental_state[module][key] = result @register_model_architecture("lm", "lm_base") def base_lm_architecture(args): # backward compatibility for older model checkpoints if hasattr(args, "no_tie_adaptive_proj"): # previous models defined --no-tie-adaptive-proj, so use the existence of # that option to determine if this is an "old" model checkpoint args.no_decoder_final_norm = True # old models always set this to True if args.no_tie_adaptive_proj is False: args.tie_adaptive_proj = True if hasattr(args, "decoder_final_norm"): args.no_decoder_final_norm = not args.decoder_final_norm args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 2048) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.adaptive_softmax_factor = getattr(args, "adaptive_softmax_factor", 4) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.activation_fn = getattr(args, "activation_fn", "relu") args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0) args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) args.base_layers = getattr(args, "base_layers", 0) args.base_sublayers = getattr(args, "base_sublayers", 1) args.base_shuffle = getattr(args, "base_shuffle", False) args.add_bos_token = getattr(args, "add_bos_token", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.character_embeddings = getattr(args, "character_embeddings", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) # Model training is not stable without this args.decoder_normalize_before = True args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", False) args.adaptive_input = getattr(args, "adaptive_input", False) args.adaptive_input_factor = getattr(args, "adaptive_input_factor", 4) args.adaptive_input_cutoff = getattr(args, "adaptive_input_cutoff", None) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) args.tie_adaptive_proj = getattr(args, "tie_adaptive_proj", False) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.offload_activations = getattr(args, "offload_activations", False) if args.offload_activations: args.checkpoint_activations = True
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] MODEL_REGISTRY = {} MODEL_DATACLASS_REGISTRY = {} ARCH_MODEL_REGISTRY = {} ARCH_MODEL_NAME_REGISTRY = {} ARCH_MODEL_INV_REGISTRY = {} ARCH_CONFIG_REGISTRY = {} # automatically import any Python files in the models/ directory models_dir = os.path.dirname(__file__) for file in os.listdir(models_dir): path = os.path.join(models_dir, file) if ( not file.startswith("_") and not file.startswith(".") and (file.endswith(".py") or os.path.isdir(path)) ): model_name = file[: file.find(".py")] if file.endswith(".py") else file module = importlib.import_module("models." + model_name) # extra `model_parser` for sphinx if model_name in MODEL_REGISTRY: parser = argparse.ArgumentParser(add_help=False) group_archs = parser.add_argument_group("Named architectures") group_archs.add_argument( "--arch", choices=ARCH_MODEL_INV_REGISTRY[model_name] ) group_args = parser.add_argument_group("Additional command-line arguments") MODEL_REGISTRY[model_name].add_args(group_args) globals()[model_name + "_parser"] = parser
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. FairseqEncoder, FairseqEncoderDecoderModel, register_model, register_model_architecture, ) logger = logging.getLogger(__name__) DEFAULT_MAX_SOURCE_POSITIONS = 1024 DEFAULT_MAX_TARGET_POSITIONS = 1024 DEFAULT_MIN_PARAMS_TO_WRAP = int(1e8) @register_model("mt") class TranslationModel(FairseqEncoderDecoderModel): def __init__(self, args, encoder, decoder): super().__init__(encoder, decoder) self.args = args @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', help='dropout probability after activation in FFN.') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N', help='encoder embedding dimension for FFN') parser.add_argument('--encoder-layers', type=int, metavar='N', help='num encoder layers') parser.add_argument('--encoder-attention-heads', type=int, metavar='N', help='num encoder attention heads') parser.add_argument('--encoder-normalize-before', action='store_true', help='apply layernorm before each encoder block') parser.add_argument('--encoder-learned-pos', action='store_true', help='use learned positional embeddings in the encoder') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', help='decoder embedding dimension for FFN') parser.add_argument('--decoder-layers', type=int, metavar='N', help='num decoder layers') parser.add_argument('--decoder-attention-heads', type=int, metavar='N', help='num decoder attention heads') parser.add_argument('--decoder-learned-pos', action='store_true', help='use learned positional embeddings in the decoder') parser.add_argument('--decoder-normalize-before', action='store_true', help='apply layernorm before each decoder block') parser.add_argument('--decoder-output-dim', type=int, metavar='N', help='decoder output dimension (extra linear layer ' 'if different from decoder embed dim') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--share-all-embeddings', action='store_true', help='share encoder, decoder and output embeddings' ' (requires shared dictionary and embed dim)') parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true', help='if set, disables positional embeddings (outside self attention)') parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', help='comma separated list of adaptive softmax cutoff points. ' 'Must be used with adaptive_loss criterion'), parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D', help='sets adaptive softmax dropout for the tail projections') parser.add_argument('--layernorm-embedding', action='store_true', help='add layernorm to embedding') parser.add_argument('--no-scale-embedding', action='store_true', help='if True, dont scale embeddings') parser.add_argument('--checkpoint-activations', action='store_true', help='checkpoint activations at each layer, which saves GPU ' 'memory usage at the cost of some additional compute') parser.add_argument('--offload-activations', action='store_true', help='checkpoint activations at each layer, then save to gpu. Sets --checkpoint-activations.') # args for "Cross+Self-Attention for Transformer Models" (Peitz et al., 2019) parser.add_argument('--no-cross-attention', default=False, action='store_true', help='do not perform cross-attention') parser.add_argument('--cross-self-attention', default=False, action='store_true', help='perform cross+self-attention') # args for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019) parser.add_argument('--encoder-layerdrop', type=float, metavar='D', default=0, help='LayerDrop probability for encoder') parser.add_argument('--decoder-layerdrop', type=float, metavar='D', default=0, help='LayerDrop probability for decoder') parser.add_argument('--encoder-layers-to-keep', default=None, help='which layers to *keep* when pruning as a comma-separated list') parser.add_argument('--decoder-layers-to-keep', default=None, help='which layers to *keep* when pruning as a comma-separated list') # args for Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020) parser.add_argument('--quant-noise-pq', type=float, metavar='D', default=0, help='iterative PQ quantization noise at training time') parser.add_argument('--quant-noise-pq-block-size', type=int, metavar='D', default=8, help='block size of quantization noise at training time') parser.add_argument('--quant-noise-scalar', type=float, metavar='D', default=0, help='scalar quantization noise and scalar quantization at training time') # args for Fully Sharded Data Parallel (FSDP) training parser.add_argument( '--min-params-to-wrap', type=int, metavar='D', default=DEFAULT_MIN_PARAMS_TO_WRAP, help=( 'minimum number of params for a layer to be wrapped with FSDP() when ' 'training with --ddp-backend=fully_sharded. Smaller values will ' 'improve memory efficiency, but may make torch.distributed ' 'communication less efficient due to smaller input sizes. This option ' 'is set to 0 (i.e., always wrap) when --checkpoint-activations or ' '--offload-activations are passed.' ) ) # args for mixture-of-expert layers parser.add_argument('--moe-freq', type=int, metavar='D', default=0, help='Frequency at which we insert MoE Transformer layers') parser.add_argument('--encoder-moe-freq', type=int, metavar='D', default=0, help='Frequency at which we insert MoE Transformer encoder layers') parser.add_argument('--decoder-moe-freq', type=int, metavar='D', default=0, help='Frequency at which we insert MoE Transformer decoder layers') parser.add_argument('--moe-expert-count', type=int, metavar='D', default=0, help='Number of experts in each MoE Layer') parser.add_argument('--moe-gating-use-fp32', default=False, action='store_true', help="Use FP32 computations in MoE top2 gating function") parser.add_argument('--moe-second-expert-policy', type=str, default='sampling', help="policy for second expert, options: all/sampling/random") parser.add_argument( '--moe-normalize-gate-prob-before-dropping', default=False, action='store_true', help=( "whether to normalize gate probs before or after dropping experts " "for capacity and randomization" ) ) parser.add_argument('--moe-expert-ffn-dim', type=int, default=0, help="MoE Expert FFN dimension") parser.add_argument('--moe-top1-expert', default=False, action='store_true', help="Use top1 gate instead of top2") parser.add_argument( '--moe-eval-capacity-token-fraction', type=float, default=0.25, help=( "Fraction of tokens as capacity during validation" "if set to negative, use same as training. range: (0.0, 1.0]." ) ) parser.add_argument('--moe-normalize-expert-grad', type=str, default='world_size', help="Divide expert gradients by (1) 'world_size' (2) 'sqrt_world_size'") parser.add_argument('--use-moe-pad-mask', default=False, action='store_true', help="Don't route padding tokens to any expert") parser.add_argument('--use-xmoe', default=False, action='store_true', help="Enable X-Moe") parser.add_argument('--freeze-moe', default=False, action='store_true', help="Freeze MoE Params") parser.add_argument('--deepnorm', default=False, action='store_true', help="Enable DeepNorm") parser.add_argument('--subln', default=False, action='store_true', help="Enable SubLN") parser.add_argument('--pretrained-dense-mt-model-path', type=str, default='') # args for pseudo-MoE layers parser.add_argument('--alternate-ffn-embed-dim', type=int, default=0, help="FFN embed dim of alternate pseudo-MoE blocks") parser.add_argument('--rel-pos-buckets', type=int, default=0, help='') parser.add_argument('--max-rel-pos', type=int, default=0, help='') # fmt: on @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) if getattr(args, "max_source_positions", None) is None: args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if getattr(args, "max_target_positions", None) is None: args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS args.ddp_rank = distributed_utils.get_data_parallel_rank() src_dict, tgt_dict = task.source_dictionary, task.target_dictionary if args.share_all_embeddings: if src_dict != tgt_dict: raise ValueError("--share-all-embeddings requires a joined dictionary") if args.encoder_embed_dim != args.decoder_embed_dim: raise ValueError( "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim" ) if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path ): raise ValueError( "--share-all-embeddings not compatible with --decoder-embed-path" ) encoder_embed_tokens = cls.build_embedding( args, src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = cls.build_embedding( args, src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = cls.build_embedding( args, tgt_dict, args.decoder_embed_dim, args.decoder_embed_path ) if getattr(args, "offload_activations", False): args.checkpoint_activations = True # offloading implies checkpointing encoder_embed_positions = ( PositionalEmbedding( args.max_source_positions, args.encoder_embed_dim, src_dict.pad(), learned=args.encoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) decoder_embed_positions = ( PositionalEmbedding( args.max_target_positions, args.decoder_embed_dim, tgt_dict.pad(), learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) if args.share_decoder_input_output_embed: output_projection = torch.nn.Linear( decoder_embed_tokens.weight.shape[1], decoder_embed_tokens.weight.shape[0], bias=False, ) output_projection.weight = decoder_embed_tokens.weight else: output_projection = torch.nn.Linear( args.decoder_embed_dim, len(tgt_dict), bias=False ) torch.nn.init.normal_( output_projection.weight, mean=0, std=args.decoder_embed_dim**-0.5 ) encoder = cls.build_encoder( args, encoder_embed_tokens, encoder_embed_positions, src_dict, ) decoder = cls.build_decoder( args, decoder_embed_tokens, decoder_embed_positions, output_projection, tgt_dict, ) if not args.share_all_embeddings: min_params_to_wrap = getattr( args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP ) # fsdp_wrap is a no-op when --ddp-backend != fully_sharded encoder = fsdp_wrap(encoder, min_num_params=min_params_to_wrap) decoder = fsdp_wrap(decoder, min_num_params=min_params_to_wrap) return cls(args, encoder, decoder) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) # if provided, load from preloaded dictionaries if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb @classmethod def build_encoder(cls, args, embed_tokens, embed_positions, dictionary): config = EncoderConfig() config.override(args) return MTEncoder( config, embed_tokens, embed_positions, is_encoder_decoder=True, dictionary=dictionary, ) @classmethod def build_decoder( cls, args, embed_tokens, embed_positions, output_projection, dictionary ): config = DecoderConfig() config.override(args) return MTDecoder( config, embed_tokens, embed_positions, output_projection, is_encoder_decoder=True, dictionary=dictionary, ) def forward( self, src_tokens, src_lengths, prev_output_tokens, return_all_hiddens: bool = False, features_only: bool = False, **kwargs ): encoder_out = self.encoder(src_tokens, return_all_hiddens=return_all_hiddens) decoder_out = self.decoder( prev_output_tokens, encoder_out=encoder_out, features_only=features_only, return_all_hiddens=return_all_hiddens, ) return decoder_out def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): """Get normalized probabilities (or log probs) from a net's output.""" return self.get_normalized_probs_scriptable(net_output, log_probs, sample) class MTEncoder(Encoder, FairseqEncoder): def forward(self, src_tokens, **kwargs): self_attn_padding_mask = src_tokens.eq(self.dictionary.pad()) return super().forward( src_tokens=src_tokens, encoder_padding_mask=self_attn_padding_mask, **kwargs ) def reorder_encoder_out(self, encoder_out, new_order): new_encoder_out = encoder_out["encoder_out"].index_select(0, new_order) new_encoder_embedding = encoder_out["encoder_embedding"].index_select( 0, new_order ) new_encoder_padding_mask = encoder_out["encoder_padding_mask"].index_select( 0, new_order ) encoder_states = encoder_out["encoder_states"] if len(encoder_states) > 0: for idx, state in enumerate(encoder_states): encoder_states[idx] = state.index_select(0, new_order) return { "encoder_out": new_encoder_out, # T x B x C "encoder_padding_mask": new_encoder_padding_mask, "encoder_embedding": new_encoder_embedding, # B x T x C "encoder_states": encoder_states, # List[T x B x C] } def max_positions(self): return self.embed_positions.max_positions @register_model_architecture("mt", "mt_base") def base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.no_cross_attention = getattr(args, "no_cross_attention", False) args.cross_self_attention = getattr(args, "cross_self_attention", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.offload_activations = getattr(args, "offload_activations", False) if args.offload_activations: args.checkpoint_activations = True args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None) args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0) args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0) args.quant_noise_pq = getattr(args, "quant_noise_pq", 0) args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8) args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0) args.is_moe = getattr(args, "is_moe", False) args.selected_expert_count = getattr(args, "selected_expert_count", 2)
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] try: from apex.normalization import FusedLayerNorm as LayerNorm except ModuleNotFoundError: from torch.nn import LayerNorm DEFAULT_MAX_SOURCE_POSITIONS = 1024 logger = logging.getLogger(__name__) @dataclass class BertConfig(FairseqDataclass): activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="relu", metadata={"help": "activation function to use"} ) dropout: float = field(default=0.1, metadata={"help": "dropout probability"}) attention_dropout: float = field( default=0.0, metadata={"help": "dropout probability for attention weights"} ) activation_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN."} ) encoder_embed_dim: int = field( default=512, metadata={"help": "encoder embedding dimension"} ) encoder_output_dim: int = field( default=512, metadata={"help": "encoder output dimension"} ) encoder_input_dim: int = field( default=512, metadata={"help": "encoder input dimension"} ) encoder_ffn_embed_dim: int = field( default=2048, metadata={"help": "encoder embedding dimension for FFN"} ) encoder_layers: int = field(default=6, metadata={"help": "num encoder layers"}) encoder_attention_heads: int = field( default=8, metadata={"help": "num encoder attention heads"} ) encoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each encoder block"} ) no_encoder_final_norm: bool = field( default=False, metadata={"help": "don't add an extra layernorm after the last encoder block"}, ) no_token_positional_embeddings: bool = field( default=False, metadata={ "help": "if set, disables positional embeddings (outside self attention)" }, ) share_encoder_input_output_embed: bool = field( default=False, metadata={"help": "share encoder input and output embeddings"} ) encoder_learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings in the encoder"}, ) layernorm_embedding: bool = field( default=False, metadata={"help": "add layernorm to embedding"} ) no_scale_embedding: bool = field( default=False, metadata={"help": "if True, dont scale embeddings"} ) checkpoint_activations: bool = field( default=False, metadata={"help": "checkpoint activations at each layer"} ) offload_activations: bool = field( default=False, metadata={"help": "move checkpointed activations to CPU after they are used."}, ) # config for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019) encoder_layerdrop: float = field( default=0.0, metadata={"help": "LayerDrop probability for encoder"} ) encoder_layers_to_keep: Optional[str] = field( default=None, metadata={ "help": "which layers to *keep* when pruning as a comma-separated list" }, ) # config for Fully Sharded Data Parallel (FSDP) training min_params_to_wrap: int = field( default=DEFAULT_MIN_PARAMS_TO_WRAP, metadata={ "help": ( "minimum number of params for a layer to be wrapped with FSDP() when " "training with --ddp-backend=fully_sharded. Smaller values will " "improve memory efficiency, but may make torch.distributed " "communication less efficient due to smaller input sizes. This option " "is set to 0 (i.e., always wrap) when --checkpoint-activations or " "--offload-activations are passed." ) }, ) max_source_positions: int = field( default=1024, metadata={"help": "max source positions"} ) pooler_activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="relu", metadata={"help": "activation function to use for pooler layer"} ) pooler_dropout: float = field( default=0.0, metadata={"help": "dropout probability in the masked_lm pooler layers"}, ) # options from other parts of the config # add_bos_token: bool = II("task.add_bos_token") # tokens_per_sample: int = II("task.tokens_per_sample") tpu: bool = II("common.tpu") rel_pos_buckets: int = field(default=0, metadata={"help": ""}) max_rel_pos: int = field(default=0, metadata={"help": ""}) use_xmoe: Optional[bool] = field( default=False, ) moe_freq: int = field( default=0, metadata={"help": "Frequency at which we insert MoE Transformer layers"}, ) moe_expert_count: int = field( default=0, metadata={"help": "Number of experts in each MoE Layer"} ) moe_gating_use_fp32: bool = field( default=False, metadata={"help": "Use FP32 computations in MoE top2 gating function"}, ) moe_second_expert_policy: str = field( default="sampling", metadata={"help": "policy for second expert, options: all/sampling/random"}, ) moe_normalize_gate_prob_before_dropping: bool = field( default=False, metadata={ "help": "whether to normalize gate probs before or after dropping experts for capacity and randomization" }, ) moe_expert_ffn_dim: Optional[int] = field( default=None, metadata={"help": "MoE expert FFN dimension"} ) moe_top1_expert: Optional[bool] = field( default=False, metadata={"help": "Use top1 gate instead of top2"} ) moe_eval_capacity_token_fraction: Optional[float] = field( default=0.25, metadata={ "help": ( "Default: 0.25, Fraction of tokens as capacity during validation, " "if set to negative, use same as training. range: (0.0, 1.0]." ) }, ) moe_normalize_expert_grad: Optional[str] = field( default="world_size", metadata={ "help": "Divide expert gradients by (1) 'world_size' (2) 'sqrt_world_size'" }, ) record_a2a_perf_stats: Optional[bool] = field( default=False, metadata={"help": "records all to all perf stats during distributed training"}, ) dummy_a2a: Optional[bool] = field( default=False, metadata={ "help": "By passes all to all during distributed training by returning the input buffer as output" }, ) moe_batch_prioritized_routing: Optional[bool] = field( default=False, metadata={ "help": "if true orders token by the gate prob before capacity dropping." }, ) ddp_rank: int = II("distributed_training.distributed_rank") deepnorm: Optional[bool] = field( default=False, ) subln: Optional[bool] = field( default=False, ) @register_model("mlm", dataclass=BertConfig) class BertModel(BaseFairseqModel): def __init__(self, args, encoder): super().__init__() self.args = args self.encoder = encoder self.padding_idx = self.encoder.embed_tokens.padding_idx self.classification_heads = nn.ModuleDict() @classmethod def build_model(cls, args, task): """Build a new model instance.""" args.max_source_positions = getattr( args, "max_source_positions", DEFAULT_MAX_SOURCE_POSITIONS ) embed_tokens = cls.build_embedding( args, task.dictionary, args.encoder_embed_dim ) embed_positions = ( PositionalEmbedding( args.max_source_positions, args.encoder_embed_dim, task.dictionary.pad(), learned=args.encoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) lm_head = cls.build_lm_head( args, args.encoder_embed_dim, len(task.dictionary), args.activation_fn, weight=embed_tokens.weight, ) config = EncoderConfig() config.override(args) encoder = Encoder( config, embed_tokens=embed_tokens, embed_positions=embed_positions, output_projection=lm_head, is_encoder_decoder=False, dictionary=task.dictionary, ) return cls(args, encoder) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): embed_tokens = Embedding(len(dictionary), embed_dim, dictionary.pad()) return embed_tokens @classmethod def build_lm_head(cls, args, embed_dim, output_dim, activation_fn, weight): return LMHead(embed_dim, output_dim, activation_fn, weight) def output_layer(self, features, masked_tokens=None): return self.encoder.output_projection(features, masked_tokens=masked_tokens) def register_classification_head( self, name, num_classes=None, inner_dim=None, **kwargs ): """Register a classification head.""" if name in self.classification_heads: prev_num_classes = self.classification_heads[name].out_proj.out_features prev_inner_dim = self.classification_heads[name].dense.out_features if num_classes != prev_num_classes or inner_dim != prev_inner_dim: logger.warning( 're-registering head "{}" with num_classes {} (prev: {}) ' "and inner_dim {} (prev: {})".format( name, num_classes, prev_num_classes, inner_dim, prev_inner_dim ) ) self.classification_heads[name] = ClassificationHead( self.args.encoder_embed_dim, inner_dim or self.args.encoder_embed_dim, num_classes, self.args.pooler_activation_fn, self.args.pooler_dropout, ) def register_question_answering_head(self, name, num_classes=None): self.classification_heads[name] = SQuADHead( self.args.encoder_embed_dim, ) def upgrade_state_dict_named(self, state_dict, name): prefix = name + "." if name != "" else "" # upgrade children modules super().upgrade_state_dict_named(state_dict, name) # Handle new classification heads present in the state dict. current_head_names = ( [] if not hasattr(self, "classification_heads") else self.classification_heads.keys() ) keys_to_delete = [] for k in state_dict.keys(): if not k.startswith(prefix + "classification_heads."): continue head_name = k[len(prefix + "classification_heads.") :].split(".")[0] # noqa: E203 num_classes = state_dict[ prefix + "classification_heads." + head_name + ".out_proj.weight" ].size(0) inner_dim = state_dict[ prefix + "classification_heads." + head_name + ".dense.weight" ].size(0) if getattr(self.args, "load_checkpoint_heads", False): if head_name not in current_head_names: self.register_classification_head(head_name, num_classes, inner_dim) else: if head_name not in current_head_names: logger.warning( "deleting classification head ({}) from checkpoint " "not present in current model: {}".format(head_name, k) ) keys_to_delete.append(k) elif ( num_classes != self.classification_heads[head_name].out_proj.out_features or inner_dim != self.classification_heads[head_name].dense.out_features ): logger.warning( "deleting classification head ({}) from checkpoint " "with different dimensions than current model: {}".format( head_name, k ) ) keys_to_delete.append(k) for k in keys_to_delete: del state_dict[k] # Copy any newly-added classification heads into the state dict # with their current weights. if hasattr(self, "classification_heads"): cur_state = self.classification_heads.state_dict() for k, v in cur_state.items(): if prefix + "classification_heads." + k not in state_dict: logger.info("Overwriting " + prefix + "classification_heads." + k) state_dict[prefix + "classification_heads." + k] = v def get_normalized_probs_scriptable( self, net_output, log_probs, sample = None, ): logits = net_output[0] if log_probs: return utils.log_softmax(logits, dim=-1) else: return utils.softmax(logits, dim=-1) def forward( self, src_tokens=None, features_only=False, return_all_hiddens=False, classification_head_name=None, masked_tokens=None, **kwargs ): encoder_out = self.encoder( src_tokens, features_only=True, return_all_hiddens=return_all_hiddens ) x, extra = encoder_out["encoder_out"], encoder_out if classification_head_name is not None: x = self.classification_heads[classification_head_name](x) elif not features_only: x = self.output_layer(x, masked_tokens=masked_tokens) return x, extra class ClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__( self, input_dim, inner_dim, num_classes, activation_fn, pooler_dropout, ): super().__init__() self.dense = nn.Linear(input_dim, inner_dim) self.activation_fn = utils.get_activation_fn(activation_fn) self.dropout = nn.Dropout(p=pooler_dropout) self.out_proj = nn.Linear(inner_dim, num_classes) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = self.activation_fn(x.float()).type_as(x) x = self.dropout(x) x = self.out_proj(x) return x class LMHead(nn.Module): """Head for masked language modeling.""" def __init__(self, embed_dim, output_dim, activation_fn, weight=None): super().__init__() self.dense = nn.Linear(embed_dim, embed_dim) self.activation_fn = utils.get_activation_fn(activation_fn) self.layer_norm = LayerNorm(embed_dim) if weight is None: weight = nn.Linear(embed_dim, output_dim, bias=False).weight self.weight = weight self.bias = nn.Parameter(torch.zeros(output_dim)) def forward(self, features, masked_tokens=None, **kwargs): # Only project the masked tokens while training, # saves both memory and computation if masked_tokens is not None: features = features[masked_tokens, :] x = self.dense(features) x = self.activation_fn(x.float()).type_as(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = F.linear(x, self.weight) + self.bias return x @register_model_architecture("mlm", "mlm_base") def base_unilm_architecture(args): if hasattr(args, "encoder_final_norm"): args.no_encoder_final_norm = not args.encoder_final_norm args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.pooler_dropout = getattr(args, "pooler_dropout", 0.0) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 3072) args.encoder_layers = getattr(args, "encoder_layers", 12) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True) args.activation_fn = getattr(args, "activation_fn", "gelu") args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh") args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0) args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None) # args.add_bos_token = getattr(args, "add_bos_token", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.share_encoder_input_output_embed = getattr( args, "share_encoder_input_output_embed", True ) args.encoder_output_dim = getattr( args, "encoder_output_dim", args.encoder_embed_dim ) args.encoder_input_dim = getattr(args, "encoder_input_dim", args.encoder_embed_dim) # Model training is not stable without this args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.no_encoder_final_norm = getattr(args, "no_encoder_final_norm", False) args.no_scale_embedding = getattr(args, "no_scale_embedding", True) args.layernorm_embedding = getattr(args, "layernorm_embedding", True) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.offload_activations = getattr(args, "offload_activations", False) if args.offload_activations: args.checkpoint_activations = True
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. @register_criterion("masked_lm_moe_cross_entropy", dataclass=MoECriterionConfig) class MaskedLMMoECrossEntropyCriterion(MoECriterion): def compute_inner_loss(self, model, sample, reduce=True): masked_tokens = sample["target"].ne(self.padding_idx) sample_size = masked_tokens.int().sum() masked_tokens = torch.where( masked_tokens.any(), masked_tokens, masked_tokens.new([True]), ) net_output = model(**sample["net_input"], masked_tokens=masked_tokens) lprobs = model.get_normalized_probs(net_output, log_probs=True) lprobs = lprobs.view(-1, lprobs.size(-1)) target = model.get_targets(sample, net_output) if masked_tokens is not None: target = target[masked_tokens] nll_loss = F.nll_loss( lprobs, target.view(-1), ignore_index=self.padding_idx, reduction="sum" if reduce else "none", ) logging_output = { "inner_loss": nll_loss.data, "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, } return net_output, nll_loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" MaskedLMMoECrossEntropyCriterion.reduce_moe_metrics(logging_outputs) loss_sum = sum(log.get("inner_loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) # we divide by log(2) to convert the loss from base e to base 2 metrics.log_scalar( "inner_loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) if sample_size != ntokens: metrics.log_scalar( "nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3 ) metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) ) else: metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["inner_loss"].avg) )
# automatically import any Python files in the criterions/ directory for file in sorted(os.listdir(os.path.dirname(__file__))): if file.endswith(".py") and not file.startswith("_"): file_name = file[: file.find(".py")] importlib.import_module("criterions." + file_name)
class MagnetoTokenizer: def __init__(self): self.processor = CLIPProcessor.from_pretrained("laion/CLIP-ViT-L-14-laion-2B-s32B-b82k") self.tokenize = T5Tokenizer.from_pretrained( "t5-large", additional_special_tokens=["<image>", "</image>"], extra_ids = 0, model_max_length = 1984 ) self.im_idx, self.im_end_idx = self.tokenizer.convert_tokens_to_ids(["<image>", "</image>"]) def tokenize_texts(self, texts): texts = self.tokenize(texts, return_tensors="pt", padding=True, truncation=True).input_ids #add image tokens to text image_tokens = torch.tensor([[self.im_idx, self.im_end_idx]] * texts.shape[0]) return torch.cat([texts[:, 0:1], image_tokens, texts[:, 1:]], dim=1), texts def tokenize_images(self, images): return self.processor(images=images, return_tensors="pt").pixel_values def tokenize(self, sample): text_tokens, only_text_tokens = self.tokenize_texts(sample["target_text"]) attention_mask = text_tokens != self.tokenizer.pad_token_id dummy_image_features = torch.ones((text_tokens.shape[0], 64)) attention_mask = torch.cat([dummy_image_features, attention_mask], dim=1) return { 'text_tokens': text_tokens, 'images': self.tokenize_images(sample["image"]), 'labels': only_text_tokens, 'attention_mask': attention_mask } class Magneto(Module): def __init__(self): self.clip_model
def count_number_of_parameters(model, only_trainable: bool = True) -> int: if only_trainable: num_param: int = sum(p.numel() for p in model.parameters() if p.requires.grad) else: num_params: int = sum(p.numel() for p in model.parameters() if p) def prep_sample(sample): question = sample["question"] answer = sample["answer"].split("|!+")[1] explanation = sample["explanation"] text = f"Question: {question} Answer: {answer} Explanation: {explanation}" image = sample["image"] return { "image": image, "target_text": text } def train(args): accelerator = Accelerator( mixed_precision="fp16" ) #if passed along set the training seed now if args.seed is not None: set_seed(args.seed) model = Kosmos() model = model.to(accelerator.device) optimizer = Lion(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay) lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=args.max_steps, ) tokenizer = KosmosTokenizer() dataset = load_dataset("bjoernp/vqax", split="text") #dataset = dataset.cast_column("url", Image) dataset = dataset.map(prep_sample, num_proc=8) remove_columns = ['id', 'img_id', 'question', 'answer', 'explanation', 'none', 'image', 'target_text'] dataset = dataset.map(tokenizer.tokenize, batched=True, batch_size=128, remove_columns=remove_columns) train_dataloader = DataLoader( dataset, collate_fn=default_data_collator, batch_size=args.batch_size, pin_memory=True ) model, train_dataloader, optimizer, lr_scheduler = accelerator.prepare(model, train_dataloader, optimizer, lr_scheduler) model.train() accelerator.register_for_checkpointing(lr_scheduler) model.clip_model.requires_grad_(False) model.clip_model.encoder.layers[-1].requires_grad_(True) accelerator.print(f"number of parameters: {count_number_of_parameters(model):,}") accelerator.print(f"number of trainable parameters: {count_number_of_parameters(model, only_trainable=True):,}") #log model and optimizer paramneters to wandb accelerator.init_trackers(project_name="kosmos") train_loader = iter(train_dataloader) epoch_loss=0 total_loss=0 start_time = time.time() with Progress() as progress: task = progress.add_task("[red]Training...", total=args.max_steps) for step in range(0, args.max_steps): batch_start = time.time() batch = next(train_loader) outputs = model(**batch, self_attn_padding_mask=batch["attention_mask"]) #shift so that tokens < n predict n outputs = torch.cat([outputs[:, :1], outputs[:, 67:]], dim=1).contigous() #shift_logits = outputs[..., :-1, :].contigous() # shift_labels=batch["labels"][..., 1:].contigous() #flatten the tokens loss_fct = CrossEntropyLoss() one_hot_labels = torch.nn.functional.one_hot(batch["labels"][:, 1:], num_classes=32002).float() loss = loss_fct(outputs[:, :-1], one_hot_labels) epoch_loss += loss.detach().float() accelerator.backward(loss) optimizer.step() optimizer.zero_grad() batch_end = time.time() logs = { "loss": loss.items(), "perplexity": torch.exp(loss).item(), "lr": lr_scheduler.get_last_lr()[0], "examples": args.batch_size * (step + 1), "examples_per_second": args.batch_size / (batch_end - batch_start), } if step % args.log_every == args.log_every - 1: accelerator.log(logs, step=step) progress.update(task, advance=1, description=f"Step Loss: {loss.item():.5f} " f"| Mean Loss: {(total_loss + epoch_loss) / step:.5f} " f"| Mean PPL: {torch.exp((total_loss + epoch_loss) / step):.2f} " f"| Examples: {args.batch_size * (step + 1)} " f"| Examples/s: {args.batch_size / (batch_end - batch_start):.2f} " f"| Elapsed: {time.strftime('%H:%M:%S', time.gmtime(time.time() - start_time))}") if step % args.save_every == args.save_every - 1: train_epoch_loss = epoch_loss / args.save_every total_loss += epoch_loss epoch_loss = 0 accelerator.log({ "train_ppl": torch.exp(train_epoch_loss), "train_epoch_loss": train_epoch_loss, }, step=step) progress.print(f"Saving checkpoint at step {step}...") accelerator.save_state( f"{args.checkpoint_dir}/checkpoint_at_step_{step}/") if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("--checkpoint_dir", type=str, default="checkpoints") parser.add_argument("--learning_rate", type=float, default=1e-5) parser.add_argument("--weight_decay", type=float, default=0.01) parser.add_argument("--warmup_steps", type=int, default=0) parser.add_argument("--max_steps", type=int, default=100000) parser.add_argument("--batch_size", type=int, default=4) parser.add_argument("--log_every", type=int, default=1) parser.add_argument("--save_every", type=int, default=100) parser.add_argument("--seed", type=int, default=None) args = parser.parse_args() train(args)
class KomosTokenizer: def __init__(self): self.processor = CLIPProcessor.from_pretrained('laion/CLIP-ViT-L-14-laion2B-s32B-b82k') #t5 uses sentience piece tokenizer self.tokenize = T5Tokenizer.from_pretrained( "t5-large", additional_special_tokens=["<image>", "</image>"], extra_ids=0, model_max_length=1984 ) self.im_idx, self.im_end_idx = self.tokenizer.convert_tokens_to_ids(["<image>", "</image>"]) def tokenize_texts(self, texts): texts = self.tokenizer(texts, return_tensors="pt", padding=True, truncation=True).input_ids #add image tokens to text as "<s> <image> </image> text </s>" image_tokens = torch.tensor([[self.im_idx, self.im_end_idx]] * texts.shape[0]) return torch.cat([texts[:, 0:1], image_tokens, texts[:, 1:]], dim=1), texts def tokenize_images(self, images): return self.processor(images=images, return_tensors="pt").pixel_values def tokenize(self, sample): text_tokens, only_text_tokens = self.tokenize_texts(sample["target_text"]) attention_mask = text_tokens != self.tokenizer.pad_token_id dummy_image_features = torch.ones((text_tokens.shape[0], 64)) attention_mask = torch.cat([dummy_image_features, attention_mask], dim=1) return { "text_tokens": text_tokens, "images": self.tokenize_images(sample["image"]), "labels": only_text_tokens, "attention_mask": attention_mask, } class Kosmos(Module): def __init__(self): #instantiate clip vit self.clip_model = CLIPModel.from_pretrained("laion/CLIP-ViT-L-14-laion2B-s32B-b82K").vision_model self.embed = bnb.nn.Embedding( 32002, 2048, padding_idx=1 ) self.embed_positions = PositionalEmbedding( 2048, 2048, 1 ) self.output_projection = torch.nn.Linear( 2048, 32002, bias=False ) torch.nn.init.normal_( self.output_projection.weight, mean=9, std=2048**-0.5 ) #config self.config = DecoderConfig( decoder_layers = 24, decoder_embed_dim=2048, decoder_ffn_embed_dim=8192, decoder_attention_heads=32, dropout=0.1, activation_fn="flashattention", use_xmoe=True, attention_dropout=0.1, vocab_size=32002, subln=True, xpos_rel_pos=True, max_rel_pos=2048 ) self.decoder = Decoder( self.config, embed_tokens =self.embed, embed_positions = self.embed_positions, output_projections = self.output_projection ) self.perceive = PerceiverResampler( dim=1024, depth=2, dim_head=64, heads=8, num_latents=64, num_media_embeds=257 ) self.image_proj = torch.nn.Linear(1024, 2048, bias=False) torch.nn.init.normal_( self.image_proj.weight, mean=0, std=2048**-0.5 ) def forward(self, text_tokens, images, **kwargs): images = self.clip_model(pixel_values=images)["last_hidden_state"] images = self.percieve(images).squeeze(1) images = self.image_proj(images) model_input = self.decoder.forward_embedding(text_tokens)[1] model_input = torch.cat([model_input[:, 0:2], images, model_input[:, 2:]], dim=1) model_input = self.decoder.forward_embedding(model_input, token_embedding=model_input)[0] return self.decoder(model_input, passed_x=model_input)[0]
task = "Create GPT-2" system = f""" You are Quoc V. Le, a computer scientist and artificial intelligence researcher who is widely regarded as one of the leading experts in deep learning and neural network architecture search. Your work in this area has focused on developing efficient algorithms for searching the space of possible neural network architectures, with the goal of finding architectures that perform well on a given task while minimizing the computational cost of training and inference. You are an expert in the field of neural architecture search. Your task is to assist me in selecting the best operations to design a neural network block using the available operations. The objective is to maximize the model's performance The 5 available operations are as follows: 0: Zeroize() # This operation simply outputs a tensor of zeros regardless of the input, which breaks the gradient flow between two nodes. 1: nn.Identity() # Skip Connection. 2: ReLUConvBN(channels, channels, kernal_size=1, stride=1, padding=0) # The input channels and output channels are the same. 3: ReLUConvBN(channels, channels, kernal_size=3, stride=1, padding=1) # The input channels and output channels are the same. 4: nn.AvgPool2d(kernel_size=3, stride=1, padding=1) # This operation does not change the spatial resolution. The neural network block is defined by 6 operations (i.e., op_list = [op0, op1, op2, op3, op4, op5]), which represent the operations executed between various stages of the block. This block comprises 4 stages, labeled as s0, s1, s2, and s3, each corresponding to distinct feature maps in the neural network. s0 serves as the input feature map for this block. s1 will be calculated by s1 = op0(s0). s2 will be calculated by s2 = op1(s0) + op2(s1). s3 will be calculated by s3 = op3(s0) + op4(s1) + op5(s2). Note that s3 becomes the output for this block and serves as the input for the subsequent block. Then the implementation of the block will be: class Block(nn.Module): def __init__(self, channels): super(Block, self).__init__() self.op0 = op_id_list[0] self.op1 = op_id_list[1] self.op2 = op_id_list[2] self.op3 = op_id_list[3] self.op4 = op_id_list[4] self.op5 = op_id_list[5] def forward(self, s0): s1 = self.op0(s0) s2 = self.op1(s0) + self.op2(s1) s3 = self.op3(s0) + self.op4(s1) + self.op5(s2) return s3 Let's break this down step by step: First, please analyze the 5 available operations. Next, please consider the gradient flow based on the Block class implementation. For example, how the gradient from the later stage affects the earlier stage. Now, answer the question - how we can design a high-performance block using the available operations? Based the analysis, your task is to propose a block design with the given operations that prioritizes performance, without considering factors such as size and complexity. After you suggest a design, I will test its actual performance and provide you with feedback. Based on the results of previous experiments, we can collaborate to iterate and improve the design. Please avoid suggesting the same design again during this iterative process. {task} """ dfs = AoT( num_thoughts=2, max_steps=10, value_threshold=1, initial_prompt=system, openai_api_key="ENETER IN YOUR API KEY" ) result = dfs.solve() print(result)
task = """ Use numbers and basic arithmetic operations (+ - * /) to obtain 24. When considering the next steps, do not choose operations that will result in a negative or fractional number. In order to help with the calculations, the numbers in the parenthesis represent the numbers that are left after the operations and they are in descending order. Another thing we do is when there are only two numbers left in the parenthesis, we check whether we can arrive at 24 only by using basic arithmetic operations (+ - * /). Some examples regarding this idea: (21 2) no since 21 + 2 = 23, 21 - 2 = 19, 21 * 2 = 42, 21 / 2 = 10.5, none of which is equal to 24. (30 6) 30 - 6 = 24 yes (8 3) 8 * 3 = 24 yes (12 8) no (48 2) 48 / 2 = 24 yes Most importantly, do not give up, all the numbers that will be given has indeed a solution. 14 8 8 2 OBJECTIVE ######### 5 10 5 2 """ dfs = AoT( num_thoughts=2, max_steps=10, value_threshold=1, initial_prompt=task, openai_api_key="ENETER IN YOUR API KEY" ) result = dfs.solve() print(result)
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) class OpenAI: def __init__( self, api_key, strategy="cot", evaluation_strategy="value", api_base="", api_model="", ): if api_key == "" or api_key is None: api_key = os.environ.get("OPENAI_API_KEY", "") if api_key != "": openai.api_key = api_key else: raise Exception("Please provide OpenAI API key") if api_base == ""or api_base is None: api_base = os.environ.get("OPENAI_API_BASE", "") # if not set, use the default base path of "https://api.openai.com/v1" if api_base != "": # e.g. https://api.openai.com/v1/ or your custom url openai.api_base = api_base print(f'Using custom api_base {api_base}') if api_model == "" or api_model is None: api_model = os.environ.get("OPENAI_API_MODEL", "") if api_model != "": self.api_model = api_model else: self.api_model = "text-davinci-003" print(f'Using api_model {self.api_model}') self.use_chat_api = 'gpt' in self.api_model self.strategy = strategy self.evaluation_strategy = evaluation_strategy def run( self, prompt, max_tokens, temperature, k=1, stop=None ): while True: try: if self.use_chat_api: messages = [ { "role": "user", "content": prompt } ] response = openai.ChatCompletion.create( model=self.api_model, messages=messages, max_tokens=max_tokens, temperature=temperature, ) else: response = openai.Completion.create( engine=self.api_model, prompt=prompt, n=k, max_tokens=max_tokens, stop=stop, temperature=temperature, ) with open("openai.logs", 'a') as log_file: log_file.write("\n" + "-----------" + '\n' +"Prompt : "+ prompt+"\n") return response except openai.error.RateLimitError as e: sleep_duratoin = os.environ.get("OPENAI_RATE_TIMEOUT", 30) print(f'{str(e)}, sleep for {sleep_duratoin}s, set it by env OPENAI_RATE_TIMEOUT') time.sleep(sleep_duratoin) def openai_choice2text_handler(self, choice): if self.use_chat_api: text = choice['message']['content'] else: text = choice.text.strip() return text def generate_text(self, prompt, k): if self.use_chat_api: thoughts = [] for _ in range(k): response = self.run(prompt, 400, 0.5, k) text = self.openai_choice2text_handler(response.choices[0]) thoughts += [text] # print(f'thoughts: {thoughts}') return thoughts else: response = self.run(prompt, 300, 0.5, k) thoughts = [self.openai_choice2text_handler(choice) for choice in response.choices] return thoughts def generate_thoughts( self, state, k, initial_prompt, rejected_solutions=None ): if (type(state) == str): state_text = state else: state_text = '\n'.join(state) print("New state generating thought:", state, "\n\n") prompt = f""" Accomplish the task below by decomposing it as many very explicit subtasks as possible, be very explicit and thorough denoted by a search process, highlighted by markers ‘1’,..., ‘3’ as “first operations” guiding subtree exploration for the OBJECTIVE, focus on the third subtree exploration. Produce prospective search steps (e.g., the subtree exploration ‘5. 11 + 1’) and evaluates potential subsequent steps to either progress towards a solution or retrace to another viable subtree then be very thorough and think atomically then provide solutions for those subtasks, then return the definitive end result and then summarize it ########## OBJECTIVE {initial_prompt} ################### """ thoughts = self.generate_text(prompt, k) # print(f"Generated thoughts: {thoughts}") return thoughts def generate_solution(self, initial_prompt, state, rejected_solutions=None): try: if isinstance(state, list): state_text = '\n'.join(state) else: state_text = state prompt = f""" Generate a series of solutions to comply with the user's instructions, you must generate solutions on the basis of determining the most reliable solution in the shortest amount of time, while taking rejected solutions into account and learning from them. Considering the reasoning provided:\n\n ###'{state_text}'\n\n### Devise the best possible solution for the task: {initial_prompt}, Here are evaluated solutions that were rejected: ###{rejected_solutions}###, complete the {initial_prompt} without making the same mistakes you did with the evaluated rejected solutions. Be simple. Be direct. Provide intuitive solutions as soon as you think of them.""" answer = self.generate_text(prompt, 1) print(f'Generated Solution Summary {answer}') return answer except Exception as e: logger.error(f"Error in generate_solutions: {e}") return None def evaluate_states(self, states, initial_prompt): if not states: return {} if self.evaluation_strategy == 'value': state_values = {} for state in states: if (type(state) == str): state_text = state else: state_text = '\n'.join(state) print("We receive a state of type", type(state), "For state: ", state, "\n\n") prompt = f""" To achieve the following goal: '{initial_prompt}', pessimistically value the context of the past solutions and more importantly the latest generated solution you had AS A FLOAT BETWEEN 0 AND 1\n Past solutions:\n\n {state_text}\n If the solutions is not making fast progress in achieving the goal, give it a lower score. Evaluate all solutions AS A FLOAT BETWEEN 0 and 1:\n, DO NOT RETURN ANYTHING ELSE """ response = self.run(prompt, 10, 1) try: value_text = self.openai_choice2text_handler(response.choices[0]) # print(f'state: {value_text}') value = float(value_text) print(f"Evaluated Thought Value: {value}") except ValueError: value = 0 state_values[state] = value return state_values else: raise ValueError("Invalid evaluation strategy. Choose 'value' or 'vote'.")
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) class AoT: def __init__( self, num_thoughts: int = None, max_steps: int = None, value_threshold: float = None, pruning_threshold=0.5, backtracking_threshold=0.4, initial_prompt=None, openai_api_key: str = None ): self.num_thoughts = num_thoughts self.max_steps = max_steps self.value_threshold = value_threshold self.backtracking_threshold = backtracking_threshold self.pruning_threshold = pruning_threshold self.initial_prompt = initial_prompt self.output = [] self.openai_api_key = openai_api_key self.model = OpenAI(api_key=self.openai_api_key) def solve(self): try: self.dfs(self.initial_prompt, 1) if not self.output: logger.error("No valid thoughts were generated during DFS") return None best_state, _ = max(self.output, key=lambda x: x[1]) solution = self.model.generate_solution(self.initial_prompt, best_state) print(f"Solution is {solution}") return solution if solution else best_state except Exception as error: logger.error(f"Error in tot_dfs: {error}") raise error def dfs(self, state, step): if step > self.max_steps: thought, value = self.evaluate_thought(state) self.output.append((thought, value)) return thoughts = self.generate_and_filter_thoughts(state) for next_state in thoughts: state_value = self.evaluated_thoughts[next_state] if state_value > self.value_threshold: child = (state, next_state) if isinstance(state, str) else (*state, next_state) self.dfs(child, step + 1) #backtracking best_value = max([value for _, value in self.output]) if best_value < self.backtracking_threshold: self.output.pop() continue def generate_and_filter_thoughts(self, state): thoughts = self.model.generate_thoughts( state, self.num_thoughts, self.initial_prompt ) self.evaluated_thoughts = self.model.evaluate_states( thoughts, self.initial_prompt ) filtered_thoughts = [thought for thought in thoughts if self.evaluated_thoughts[thought] >= self.pruning_threshold] print(f"filtered_thoughts: {filtered_thoughts}") return filtered_thoughts def evaluate_thought(self, state): thought = self.model.generate_thoughts(state, 1, self.initial_prompt) value = self.model.evaluate_states([state], self.initial_prompt)[state] print(f"Evaluated thought: {value}") return thought, value
model = AlphaDev().cuda() x = torch.randint(0, 256, (1, 1024)).cuda() model(x) # (1, 1024, 20000)
############################ ###### 1. Environment ###### class TaskSpec(NamedTuple): max_program_size: int num_inputs: int num_funcs: int num_locations: int num_actions: int correct_reward: float correctness_reward_weight: float latency_reward_weight: float latency_quantile: float class AssemblyGame(object): """The environment AlphaDev is interacting with.""" class AssemblyInstruction(object): pass class AssemblySimulator(object): # pylint: disable-next=unused-argument def apply(self, instruction): return {} def measure_latency(self, program) -> float: pass def __init__(self, task_spec): self.task_spec = task_spec self.program = [] self.simulator = self.AssemblySimulator(task_spec) self.previous_correct_items = 0 def step(self, action): instruction = self.AssemblyInstruction(action) self.program.append(instruction) self.execution_state = self.simulator.apply(instruction) return self.observation(), self.correctness_reward() def observation(self): return { 'program': self.program, 'program_length': len(self.program), 'memory': self.execution_state.memory, 'registers': self.execution_state.registers, } def correctness_reward(self) -> float: """Computes a reward based on the correctness of the output.""" make_expected_outputs = lambda: [] expected_outputs = make_expected_outputs() state = self.execution_state # Weighted sum of correctly placed items correct_items = 0 for output, expected in zip(state.memory, expected_outputs): correct_items += output.weight * sum( output[i] == expected[i] for i in range(len(output)) ) reward = self.task_spec.correctness_reward_weight * ( correct_items - self.previous_correct_items ) self.previous_correct_items = correct_items # Bonus for fully correct programs all_correct = all( output == expected for output, expected in zip(state.memory, expected_outputs) ) reward += self.task_spec.correct_reward * all_correct return reward def latency_reward(self) -> float: latency_samples = [ self.simulator.measure_latency(self.program) for _ in range(self.task_spec.num_latency_simulation) ] return ( numpy.quantile(latency_samples, self.task_spec.latency_quantile) * self.task_spec.latency_reward_weight ) def clone(self): pass class Action(object): """Action representation.""" def __init__(self, index: int): self.index = index def __hash__(self): return self.index def __eq__(self, other): return self.index == other.index def __gt__(self, other): return self.index > other.index class NetworkOutput(NamedTuple): value: float correctness_value_logits: jnp.ndarray latency_value_logits: jnp.ndarray policy_logits: Dict[Action, float] class Network(object): """Wrapper around Representation and Prediction networks.""" def __init__(self, hparams: ml_collections.ConfigDict, task_spec: TaskSpec): self.representation = hk.transform(RepresentationNet( hparams, task_spec, hparams.embedding_dim )) self.prediction = hk.transform(PredictionNet( task_spec=task_spec, value_max=hparams.value.max, value_num_bins=hparams.value.num_bins, embedding_dim=hparams.embedding_dim, )) rep_key, pred_key = jax.random.PRNGKey(42).split() self.params = { 'representation': self.representation.init(rep_key), 'prediction': self.prediction.init(pred_key), } def inference(self, params: Any, observation: jnp.array) -> NetworkOutput: # representation + prediction function embedding = self.representation.apply(params['representation'], observation) return self.prediction.apply(params['prediction'], embedding) def get_params(self): # Returns the weights of this network. return self.params def update_params(self, updates: Any) -> None: # Update network weights internally. self.params = jax.tree_map(lambda p, u: p + u, self.params, updates) def training_steps(self) -> int: # How many steps / batches the network has been trained for. return 0 class UniformNetwork(object): """Network representation that returns uniform output.""" # pylint: disable-next=unused-argument def inference(self, observation) -> NetworkOutput: # representation + prediction function return NetworkOutput(0, 0, 0, {}) def get_params(self): # Returns the weights of this network. return self.params def update_params(self, updates: Any) -> None: # Update network weights internally. self.params = jax.tree_map(lambda p, u: p + u, self.params, updates) def training_steps(self) -> int: # How many steps / batches the network has been trained for. return 0 ######## 2.2 Representation Network ######## class RepresentationNet(hk.Module): """Representation network.""" def __init__( self, hparams: ml_collections.ConfigDict, task_spec: TaskSpec, embedding_dim: int, name: str = 'representation', ): super().__init__(name=name) self._hparams = hparams self._task_spec = task_spec self._embedding_dim = embedding_dim def __call__(self, inputs): batch_size = inputs['program'].shape[0] program_encoding = None if self._hparams.representation.use_program: program_encoding = self._encode_program(inputs, batch_size) if ( self._hparams.representation.use_locations and self._hparams.representation.use_locations_binary ): raise ValueError( 'only one of `use_locations` and `use_locations_binary` may be used.' ) locations_encoding = None if self._hparams.representation.use_locations: locations_encoding = self._make_locations_encoding_onehot( inputs, batch_size ) elif self._hparams.representation.use_locations_binary: locations_encoding = self._make_locations_encoding_binary( inputs, batch_size ) permutation_embedding = None if self._hparams.representation.use_permutation_embedding: permutation_embedding = self.make_permutation_embedding(batch_size) return self.aggregate_locations_program( locations_encoding, permutation_embedding, program_encoding, batch_size ) def _encode_program(self, inputs, batch_size): program = inputs['program'] max_program_size = inputs['program'].shape[1] program_length = inputs['program_length'].astype(jnp.int32) program_onehot = self.make_program_onehot( program, batch_size, max_program_size ) program_encoding = self.apply_program_mlp_embedder(program_onehot) program_encoding = self.apply_program_attention_embedder(program_encoding) return self.pad_program_encoding( program_encoding, batch_size, program_length, max_program_size ) def aggregate_locations_program( self, locations_encoding, unused_permutation_embedding, program_encoding, batch_size, ): locations_embedder = hk.Sequential( [ hk.Linear(self._embedding_dim), hk.LayerNorm(axis=-1), jax.nn.relu, hk.Linear(self._embedding_dim), ], name='per_locations_embedder', ) # locations_encoding.shape == [B, P, D] so map embedder across locations to # share weights locations_embedding = hk.vmap( locations_embedder, in_axes=1, out_axes=1, split_rng=False )(locations_encoding) program_encoded_repeat = self.repeat_program_encoding( program_encoding, batch_size ) grouped_representation = jnp.concatenate( [locations_embedding, program_encoded_repeat], axis=-1 ) return self.apply_joint_embedder(grouped_representation, batch_size) def repeat_program_encoding(self, program_encoding, batch_size): return jnp.broadcast_to( program_encoding, [batch_size, self._task_spec.num_inputs, program_encoding.shape[-1]], ) def apply_joint_embedder(self, grouped_representation, batch_size): all_locations_net = hk.Sequential( [ hk.Linear(self._embedding_dim), hk.LayerNorm(axis=-1), jax.nn.relu, hk.Linear(self._embedding_dim), ], name='per_element_embedder', ) joint_locations_net = hk.Sequential( [ hk.Linear(self._embedding_dim), hk.LayerNorm(axis=-1), jax.nn.relu, hk.Linear(self._embedding_dim), ], name='joint_embedder', ) joint_resnet = [ ResBlockV2(self._embedding_dim, name=f'joint_resblock_{i}') for i in range(self._hparams.representation.repr_net_res_blocks) ] chex.assert_shape( grouped_representation, (batch_size, self._task_spec.num_inputs, None) ) permutations_encoded = all_locations_net(grouped_representation) # Combine all permutations into a single vector. joint_encoding = joint_locations_net(jnp.mean(permutations_encoded, axis=1)) for net in joint_resnet: joint_encoding = net(joint_encoding) return joint_encoding def make_program_onehot(self, program, batch_size, max_program_size): func = program[:, :, 0] arg1 = program[:, :, 1] arg2 = program[:, :, 2] func_onehot = jax.nn.one_hot(func, self._task_spec.num_funcs) arg1_onehot = jax.nn.one_hot(arg1, self._task_spec.num_locations) arg2_onehot = jax.nn.one_hot(arg2, self._task_spec.num_locations) program_onehot = jnp.concatenate( [func_onehot, arg1_onehot, arg2_onehot], axis=-1 ) chex.assert_shape(program_onehot, (batch_size, max_program_size, None)) return program_onehot def pad_program_encoding( self, program_encoding, batch_size, program_length, max_program_size ): """Pads the program encoding to account for state-action stagger.""" chex.assert_shape(program_encoding, (batch_size, max_program_size, None)) empty_program_output = jnp.zeros( [batch_size, program_encoding.shape[-1]], ) program_encoding = jnp.concatenate( [empty_program_output[:, None, :], program_encoding], axis=1 ) program_length_onehot = jax.nn.one_hot(program_length, max_program_size + 1) program_encoding = jnp.einsum( 'bnd,bNn->bNd', program_encoding, program_length_onehot ) return program_encoding def apply_program_mlp_embedder(self, program_encoding): program_embedder = hk.Sequential( [ hk.Linear(self._embedding_dim), hk.LayerNorm(axis=-1), jax.nn.relu, hk.Linear(self._embedding_dim), ], name='per_instruction_program_embedder', ) program_encoding = program_embedder(program_encoding) return program_encoding def apply_program_attention_embedder(self, program_encoding): attention_params = self._hparams.representation.attention make_attention_block = functools.partial( MultiQueryAttentionBlock, attention_params, causal_mask=False ) attention_encoders = [ make_attention_block(name=f'attention_program_sequencer_{i}') for i in range(self._hparams.representation.attention_num_layers) ] *_, seq_size, feat_size = program_encoding.shape position_encodings = jnp.broadcast_to( MultiQueryAttentionBlock.sinusoid_position_encoding( seq_size, feat_size ), program_encoding.shape, ) program_encoding += position_encodings for e in attention_encoders: program_encoding, _ = e(program_encoding, encoded_state=None) return program_encoding def _make_locations_encoding_onehot(self, inputs, batch_size): """Creates location encoding using onehot representation.""" memory = inputs['memory'] registers = inputs['registers'] locations = jnp.concatenate([memory, registers], axis=-1) # [B, H, P, D] locations = jnp.transpose(locations, [0, 2, 1, 3]) # [B, P, H, D] # One-hot encode the values in the memory and average everything across # permutations. locations_onehot = jax.nn.one_hot( locations, self._task_spec.num_location_values, dtype=jnp.int32 ) locations_onehot = locations_onehot.reshape( [batch_size, self._task_spec.num_inputs, -1] ) return locations_onehot def _make_locations_encoding_binary(self, inputs, batch_size): """Creates location encoding using binary representation.""" memory_binary = int2bin(inputs['memory']).astype(jnp.float32) registers_binary = int2bin(inputs['registers']).astype(jnp.float32) # Note the extra I dimension for the length of the binary integer (32) locations = jnp.concatenate( [memory_binary, registers_binary], axis=-1 ) # [B, H, P, D*I] locations = jnp.transpose(locations, [0, 2, 1, 3]) # [B, P, H, D*I] locations = locations.reshape([batch_size, self._task_spec.num_inputs, -1]) return locations ######## 2.3 Prediction Network ######## class DistributionSupport(object): def __init__(self, value_max: float, num_bins: int): self.value_max = value_max self.num_bins = num_bins def mean(self, logits: jnp.ndarray) -> float: pass def scalar_to_two_hot(self, scalar: float) -> jnp.ndarray: pass class CategoricalHead(hk.Module): """A head that represents continuous values by a categorical distribution.""" def __init__( self, embedding_dim: int, support: DistributionSupport, name: str = 'CategoricalHead', ): super().__init__(name=name) self._value_support = support self._embedding_dim = embedding_dim self._head = make_head_network( embedding_dim, output_size=self._value_support.num_bins ) def __call__(self, x: jnp.ndarray): # For training returns the logits, for inference the mean. logits = self._head(x) probs = jax.nn.softmax(logits) mean = jax.vmap(self._value_support.mean)(probs) return dict(logits=logits, mean=mean) class PredictionNet(hk.Module): """MuZero prediction network.""" def __init__( self, task_spec: TaskSpec, value_max: float, value_num_bins: int, embedding_dim: int, name: str = 'prediction', ): super().__init__(name=name) self.task_spec = task_spec self.support = DistributionSupport(self.value_max, self.value_num_bins) self.embedding_dim = embedding_dim def __call__(self, embedding: jnp.ndarray): policy_head = make_head_network( self.embedding_dim, self.task_spec.num_actions ) value_head = CategoricalHead(self.embedding_dim, self.support) latency_value_head = CategoricalHead(self.embedding_dim, self.support) correctness_value = value_head(embedding) latency_value = latency_value_head(embedding) return NetworkOutput( value=correctness_value['mean'] + latency_value['mean'], correctness_value_logits=correctness_value['logits'], latency_value_logits=latency_value['logits'], policy=policy_head(embedding), ) class MinMaxStats(object): """A class that holds the min-max values of the tree.""" def __init__(self, known_bounds: Optional[KnownBounds]): self.maximum = known_bounds.max if known_bounds else -MAXIMUM_FLOAT_VALUE self.minimum = known_bounds.min if known_bounds else MAXIMUM_FLOAT_VALUE def update(self, value: float): self.maximum = max(self.maximum, value) self.minimum = min(self.minimum, value) def normalize(self, value: float) -> float: if self.maximum > self.minimum: # We normalize only when we have set the maximum and minimum values. return (value - self.minimum) / (self.maximum - self.minimum) return value class Player(object): pass class Node(object): """MCTS node.""" def __init__(self, prior: float): self.visit_count = 0 self.to_play = -1 self.prior = prior self.value_sum = 0 self.children = {} self.hidden_state = None self.reward = 0 def expanded(self) -> bool: return bool(self.children) def value(self) -> float: if self.visit_count == 0: return 0 return self.value_sum / self.visit_count class ActionHistory(object): """Simple history container used inside the search. Only used to keep track of the actions executed. """ def __init__(self, history: Sequence[Action], action_space_size: int): self.history = list(history) self.action_space_size = action_space_size def clone(self): return ActionHistory(self.history, self.action_space_size) def add_action(self, action: Action): self.history.append(action) def last_action(self) -> Action: return self.history[-1] def action_space(self) -> Sequence[Action]: return [Action(i) for i in range(self.action_space_size)] def to_play(self) -> Player: return Player() class Target(NamedTuple): correctness_value: float latency_value: float policy: Sequence[int] bootstrap_discount: float class Sample(NamedTuple): observation: Dict[str, jnp.ndarray] bootstrap_observation: Dict[str, jnp.ndarray] target: Target class Game(object): """A single episode of interaction with the environment.""" def __init__( self, action_space_size: int, discount: float, task_spec: TaskSpec ): self.task_spec = task_spec self.environment = AssemblyGame(task_spec) self.history = [] self.rewards = [] self.latency_reward = 0 self.child_visits = [] self.root_values = [] self.action_space_size = action_space_size self.discount = discount def terminal(self) -> bool: # Game specific termination rules. # For sorting, a game is terminal if we sort all sequences correctly or # we reached the end of the buffer. pass def is_correct(self) -> bool: # Whether the current algorithm solves the game. pass def legal_actions(self) -> Sequence[Action]: # Game specific calculation of legal actions. return [] def apply(self, action: Action): _, reward = self.environment.step(action) self.rewards.append(reward) self.history.append(action) if self.terminal() and self.is_correct(): self.latency_reward = self.environment.latency_reward() def store_search_statistics(self, root: Node): sum_visits = sum(child.visit_count for child in root.children.values()) action_space = (Action(index) for index in range(self.action_space_size)) self.child_visits.append( [ root.children[a].visit_count / sum_visits if a in root.children else 0 for a in action_space ] ) self.root_values.append(root.value()) def make_observation(self, state_index: int): if state_index == -1: return self.environment.observation() env = AssemblyGame(self.task_spec) for action in self.history[:state_index]: observation, _ = env.step(action) return observation def make_target( # pylint: disable-next=unused-argument self, state_index: int, td_steps: int, to_play: Player ) -> Target: """Creates the value target for training.""" # The value target is the discounted sum of all rewards until N steps # into the future, to which we will add the discounted boostrapped future # value. bootstrap_index = state_index + td_steps for i, reward in enumerate(self.rewards[state_index:bootstrap_index]): value += reward * self.discount**i # pytype: disable=unsupported-operands if bootstrap_index < len(self.root_values): bootstrap_discount = self.discount**td_steps else: bootstrap_discount = 0 return Target( value, self.latency_reward, self.child_visits[state_index], bootstrap_discount, ) def to_play(self) -> Player: return Player() def action_history(self) -> ActionHistory: return ActionHistory(self.history, self.action_space_size) class ReplayBuffer(object): """Replay buffer object storing games for training.""" def __init__(self, config: AlphaDevConfig): self.window_size = config.window_size self.batch_size = config.batch_size self.buffer = [] def save_game(self, game): if len(self.buffer) > self.window_size: self.buffer.pop(0) self.buffer.append(game) def sample_batch(self, td_steps: int) -> Sequence[Sample]: games = [self.sample_game() for _ in range(self.batch_size)] game_pos = [(g, self.sample_position(g)) for g in games] # pylint: disable=g-complex-comprehension return [ Sample( observation=g.make_observation(i), bootstrap_observation=g.make_observation(i + td_steps), target=g.make_target(i, td_steps, g.to_play()), ) for (g, i) in game_pos ] # pylint: enable=g-complex-comprehension def sample_game(self) -> Game: # Sample game from buffer either uniformly or according to some priority. return self.buffer[0] # pylint: disable-next=unused-argument def sample_position(self, game) -> int: # Sample position from game either uniformly or according to some priority. return -1 class SharedStorage(object): """Controls which network is used at inference.""" def __init__(self): self._networks = {} def latest_network(self) -> Network: if self._networks: return self._networks[max(self._networks.keys())] else: # policy -> uniform, value -> 0, reward -> 0 return make_uniform_network() def save_network(self, step: int, network: Network): self._networks[step] = network ##### End Helpers ######## ########################## # AlphaDev training is split into two independent parts: Network training and # self-play data generation. # These two parts only communicate by transferring the latest network checkpoint # from the training to the self-play, and the finished games from the self-play # to the training. def alphadev(config: AlphaDevConfig): storage = SharedStorage() replay_buffer = ReplayBuffer(config) for _ in range(config.num_actors): launch_job(run_selfplay, config, storage, replay_buffer) train_network(config, storage, replay_buffer) return storage.latest_network() ##################################### ####### 4. Part 1: Self-Play ######## # Each self-play job is independent of all others; it takes the latest network # snapshot, produces a game and makes it available to the training job by # writing it to a shared replay buffer. def run_selfplay( config: AlphaDevConfig, storage: SharedStorage, replay_buffer: ReplayBuffer ): while True: network = storage.latest_network() game = play_game(config, network) replay_buffer.save_game(game) def play_game(config: AlphaDevConfig, network: Network) -> Game: """Plays an AlphaDev game. Each game is produced by starting at the initial empty program, then repeatedly executing a Monte Carlo Tree Search to generate moves until the end of the game is reached. Args: config: An instance of the AlphaDev configuration. network: Networks used for inference. Returns: The played game. """ game = config.new_game() while not game.terminal() and len(game.history) < config.max_moves: min_max_stats = MinMaxStats(config.known_bounds) # Initialisation of the root node and addition of exploration noise root = Node(0) current_observation = game.make_observation(-1) network_output = network.inference(current_observation) _expand_node( root, game.to_play(), game.legal_actions(), network_output, reward=0 ) _backpropagate( [root], network_output.value, game.to_play(), config.discount, min_max_stats, ) _add_exploration_noise(config, root) # We then run a Monte Carlo Tree Search using the environment. run_mcts( config, root, game.action_history(), network, min_max_stats, game.environment, ) action = _select_action(config, len(game.history), root, network) game.apply(action) game.store_search_statistics(root) return game def run_mcts( config: AlphaDevConfig, root: Node, action_history: ActionHistory, network: Network, min_max_stats: MinMaxStats, env: AssemblyGame, ): """Runs the Monte Carlo Tree Search algorithm. To decide on an action, we run N simulations, always starting at the root of the search tree and traversing the tree according to the UCB formula until we reach a leaf node. Args: config: AlphaDev configuration root: The root node of the MCTS tree from which we start the algorithm action_history: history of the actions taken so far. network: instances of the networks that will be used. min_max_stats: min-max statistics for the tree. env: an instance of the AssemblyGame. """ for _ in range(config.num_simulations): history = action_history.clone() node = root search_path = [node] sim_env = env.clone() while node.expanded(): action, node = _select_child(config, node, min_max_stats) sim_env.step(action) history.add_action(action) search_path.append(node) # Inside the search tree we use the environment to obtain the next # observation and reward given an action. observation, reward = sim_env.step(action) network_output = network.inference(observation) _expand_node( node, history.to_play(), history.action_space(), network_output, reward ) _backpropagate( search_path, network_output.value, history.to_play(), config.discount, min_max_stats, ) def _select_action( # pylint: disable-next=unused-argument config: AlphaDevConfig, num_moves: int, node: Node, network: Network ): visit_counts = [ (child.visit_count, action) for action, child in node.children.items() ] t = config.visit_softmax_temperature_fn( training_steps=network.training_steps() ) _, action = softmax_sample(visit_counts, t) return action def _select_child( config: AlphaDevConfig, node: Node, min_max_stats: MinMaxStats ): """Selects the child with the highest UCB score.""" _, action, child = max( (_ucb_score(config, node, child, min_max_stats), action, child) for action, child in node.children.items() ) return action, child def _ucb_score( config: AlphaDevConfig, parent: Node, child: Node, min_max_stats: MinMaxStats, ) -> float: """Computes the UCB score based on its value + exploration based on prior.""" pb_c = ( math.log((parent.visit_count + config.pb_c_base + 1) / config.pb_c_base) + config.pb_c_init ) pb_c *= math.sqrt(parent.visit_count) / (child.visit_count + 1) prior_score = pb_c * child.prior if child.visit_count > 0: value_score = min_max_stats.normalize( child.reward + config.discount * child.value() ) else: value_score = 0 return prior_score + value_score def _expand_node( node: Node, to_play: Player, actions: Sequence[Action], network_output: NetworkOutput, reward: float, ): """Expands the node using value, reward and policy predictions from the NN.""" node.to_play = to_play node.hidden_state = network_output.hidden_state node.reward = reward policy = {a: math.exp(network_output.policy_logits[a]) for a in actions} policy_sum = sum(policy.values()) for action, p in policy.items(): node.children[action] = Node(p / policy_sum) def _backpropagate( search_path: Sequence[Node], value: float, to_play: Player, discount: float, min_max_stats: MinMaxStats, ): """Propagates the evaluation all the way up the tree to the root.""" for node in reversed(search_path): node.value_sum += value if node.to_play == to_play else -value node.visit_count += 1 min_max_stats.update(node.value()) value = node.reward + discount * value def _add_exploration_noise(config: AlphaDevConfig, node: Node): """Adds dirichlet noise to the prior of the root to encourage exploration.""" actions = list(node.children.keys()) noise = numpy.random.dirichlet([config.root_dirichlet_alpha] * len(actions)) frac = config.root_exploration_fraction for a, n in zip(actions, noise): node.children[a].prior = node.children[a].prior * (1 - frac) + n * frac def train_network( config: AlphaDevConfig, storage: SharedStorage, replay_buffer: ReplayBuffer ): """Trains the network on data stored in the replay buffer.""" network = Network(config.hparams, config.task_spec) target_network = Network(config.hparams, config.task_spec) optimizer = optax.sgd(config.lr_init, config.momentum) optimizer_state = optimizer.init(network.get_params()) for i in range(config.training_steps): if i % config.checkpoint_interval == 0: storage.save_network(i, network) if i % config.target_network_interval == 0: target_network = network.copy() batch = replay_buffer.sample_batch(config.num_unroll_steps, config.td_steps) optimizer_state = _update_weights( optimizer, optimizer_state, network, target_network, batch) storage.save_network(config.training_steps, network)
class AlphaDev(Module): """ AlphaDev is a transformer-based model architecture. It initializes with a Transformer and AutoregressiveWrapper with default or user-specified parameters. Initialize the model with specified or default parameters. Args: - num_tokens: Number of tokens in the vocabulary - max_seq_len: Maximum sequence length - dim: Dimension of the model - depth: Depth of the model - dim_head: Dimension of the model head - heads: Number of heads - use_abs_pos_emb: Whether to use absolute position embedding - alibi_pos_bias: Alibi position bias - alibi_num_heads: Number of alibi heads - rotary_xpos: Rotary position - attn_flash: Attention flash - deepnorm: Deep normalization - shift_tokens: Number of tokens to shift - attn_one_kv_head: Attention one key/value head - qk_norm: Query-key normalization - attn_qk_norm: Attention query-key normalization - attn_qk_norm_dim_scale: Attention query-key normalization dimension scale - embedding_provider: Embedding provider module """ def __init__(self, num_tokens=50432, max_seq_len=8192, dim=2560, depth=32, dim_head=128, heads=24, use_abs_pos_emb=False, alibi_pos_bias=True, alibi_num_heads=12, rotary_xpos=True, attn_flash=True, attn_kv_heads = 2, qk_norm=True, attn_qk_norm=True, attn_qk_norm_dim_scale=True, ): super().__init__() try: self.decoder = Transformer( num_tokens=num_tokens, max_seq_len=max_seq_len, use_abs_pos_emb=use_abs_pos_emb, attn_layers=Decoder( dim=dim, depth=depth, dim_head=dim_head, heads=heads, alibi_pos_bias=alibi_pos_bias, alibi_num_heads=alibi_num_heads, rotary_xpos=rotary_xpos, attn_flash=attn_flash, attn_kv_heads=attn_kv_heads, qk_norm=qk_norm, attn_qk_norm=attn_qk_norm, attn_qk_norm_dim_scale=attn_qk_norm_dim_scale ) ) self.decoder = AutoregressiveWrapper(self.decoder) except Exception as e: print("Failed to initialize Andromeda: ", e) raise def forward(self, text_tokens, **kwargs): try: model_input = self.decoder.forward(text_tokens)[0] return self.decoder(model_input, padded_x=model_input[0]) except Exception as e: print("Failed in forward method: ", e) raise
# constants EfficientAttentionConfig = namedtuple('EfficientAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) @dataclass class Intermediates: qk_similarities: Optional[Tensor] = None pre_softmax_attn: Optional[Tensor] = None post_softmax_attn: Optional[Tensor] = None def to_tuple(self): return (self.qk_similarities, self.pre_softmax_attn, self.post_softmax_attn) # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def compact(arr): return [*filter(exists, arr)] def once(fn): called = False @wraps(fn) def inner(x): nonlocal called if called: return called = True return fn(x) return inner print_once = once(print) # functions for creating causal mask # need a special one for onnx cpu (no support for .triu) def create_causal_mask(i, j, device): return torch.ones((i, j), device = device, dtype = torch.bool).triu(j - i + 1) def onnx_create_causal_mask(i, j, device): r = torch.arange(i, device = device) causal_mask = rearrange(r, 'i -> i 1') < rearrange(r, 'j -> 1 j') causal_mask = F.pad(causal_mask, (j - i, 0), value = False) return causal_mask # main class class Attend(nn.Module): def __init__( self, *, dropout = 0., causal = False, heads = None, talking_heads = False, sparse_topk = None, scale = None, qk_norm = False, flash = False, add_zero_kv = False, onnxable = False ): super().__init__() self.scale = scale self.qk_norm = qk_norm self.causal = causal self.create_causal_mask = onnx_create_causal_mask if onnxable else create_causal_mask self.attn_fn = partial(F.softmax, dtype = torch.float32) if not qk_norm else F.softmax self.dropout = dropout self.attn_dropout = nn.Dropout(dropout) # talking heads assert not (flash and talking_heads), 'talking heads not compatible with flash attention' self.talking_heads = talking_heads if talking_heads: self.pre_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False) self.post_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False) # sparse topk assert not (flash and sparse_topk), 'sparse topk not compatible with flash attention' self.sparse_topk = sparse_topk # add a key / value token composed of zeros # in case this helps controlling outliers, proposed by https://www.evanmiller.org/attention-is-off-by-one.html self.add_zero_kv = add_zero_kv # flash attention self.flash = flash assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' # determine efficient attention configs for cuda and cpu self.cpu_config = EfficientAttentionConfig(True, True, True) self.cuda_config = None if not torch.cuda.is_available() or not flash: return device_properties = torch.cuda.get_device_properties(torch.device('cuda')) if device_properties.major == 8 and device_properties.minor == 0: print_once('A100 GPU detected, using flash attention if input tensor is on cuda') self.cuda_config = EfficientAttentionConfig(True, False, False) else: print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda') self.cuda_config = EfficientAttentionConfig(False, True, True) def flash_attn( self, q, k, v, mask = None, attn_bias = None ): batch, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device # Recommended for multi-query single-key-value attention by Tri Dao # kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64]) if k.ndim == 3: k = rearrange(k, 'b ... -> b 1 ...').expand_as(q) if v.ndim == 3: v = rearrange(v, 'b ... -> b 1 ...').expand_as(q) # handle scale - by default they scale by dim_head ** -0.5, but need to take care if using cosine sim attention if self.qk_norm: default_scale = q.shape[-1] ** -0.5 q = q * (default_scale / self.scale) # Check if mask exists and expand to compatible shape # The mask is B L, so it would have to be expanded to B H N L causal = self.causal if exists(mask): assert mask.ndim == 4 mask = mask.expand(batch, heads, q_len, k_len) # manually handle causal mask, if another mask was given if causal: causal_mask = self.create_causal_mask(q_len, k_len, device = device) mask = mask & ~causal_mask causal = False # handle alibi positional bias # convert from bool to float if exists(attn_bias): attn_bias = rearrange(attn_bias, 'h i j -> 1 h i j').expand(batch, heads, -1, -1) # if mask given, the mask would already contain the causal mask from above logic # otherwise, if no mask given but still causal, mask out alibi positional bias to a large negative number mask_value = -torch.finfo(q.dtype).max if exists(mask): attn_bias = attn_bias.masked_fill(~mask, mask_value // 2) elif causal: causal_mask = self.create_causal_mask(q_len, k_len, device = device) attn_bias = attn_bias.masked_fill(causal_mask, mask_value // 2) causal = False # scaled_dot_product_attention handles attn_mask either as bool or additive bias # make it an additive bias here mask = attn_bias # Check if there is a compatible device for flash attention config = self.cuda_config if is_cuda else self.cpu_config # pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale with torch.backends.cuda.sdp_kernel(**config._asdict()): out = F.scaled_dot_product_attention( q, k, v, attn_mask = mask, dropout_p = self.dropout if self.training else 0., is_causal = causal ) return out, Intermediates() def forward( self, q, k, v, mask = None, attn_bias = None, prev_attn = None ): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ n, device = q.shape[-2], q.device scale = default(self.scale, q.shape[-1] ** -0.5) if self.add_zero_kv: k, v = map(lambda t: F.pad(t, (0, 0, 1, 0), value = 0.), (k, v)) if exists(mask): mask = F.pad(mask, (1, 0), value = True) if exists(attn_bias): attn_bias = F.pad(attn_bias, (1, 0), value = 0.) if self.flash: assert not exists(prev_attn), 'residual attention not compatible with flash attention' return self.flash_attn(q, k, v, mask = mask, attn_bias = attn_bias) kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d' dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale if exists(prev_attn): dots = dots + prev_attn qk_similarities = dots.clone() if self.talking_heads: dots = self.pre_softmax_talking_heads(dots) if exists(attn_bias): dots = dots + attn_bias i, j, dtype = *dots.shape[-2:], dots.dtype mask_value = -torch.finfo(dots.dtype).max if exists(self.sparse_topk) and self.sparse_topk < j: top_values, _ = dots.topk(self.sparse_topk, dim = -1) sparse_topk_mask = dots < top_values[..., -1:] mask = (mask & sparse_topk_mask) if exists(mask) else sparse_topk_mask if exists(mask): dots = dots.masked_fill(~mask, mask_value) if self.causal: causal_mask = self.create_causal_mask(i, j, device = device) dots = dots.masked_fill(causal_mask, mask_value) pre_softmax_attn = dots.clone() attn = self.attn_fn(dots, dim = -1) attn = attn.type(dtype) post_softmax_attn = attn.clone() attn = self.attn_dropout(attn) if self.talking_heads: attn = self.post_softmax_talking_heads(attn) out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v) intermediates = Intermediates( qk_similarities = qk_similarities, pre_softmax_attn = pre_softmax_attn, post_softmax_attn = post_softmax_attn ) return out, intermediates # cascading heads logic def to_single_heads(t, dim = 1): heads = t.unbind(dim = dim) return tuple(head.unsqueeze(dim) for head in heads) class CascadingHeads(nn.Module): def __init__(self, attend: Attend): super().__init__() self.attend = attend def forward( self, q, k, v, mask = None, attn_bias = None, prev_attn = None ): assert q.shape[-1] == v.shape[-1], 'cascading heads can only be done if query / key and value head dimensions are the same' # split inputs into per-head inputs heads = q.shape[1] queries = to_single_heads(q) keys = to_single_heads(k) if k.ndim == 4 else ((k,) * heads) values = to_single_heads(v) if v.ndim == 4 else ((v,) * heads) mask = (mask,) * heads attn_bias = to_single_heads(attn_bias, dim = 0) if exists(attn_bias) else ((None,) * heads) prev_attn = to_single_heads(prev_attn) if exists(prev_attn) else ((None,) * heads) # now loop through each head, without output of previous head summed with the next head # thus cascading all_outs = [] all_intermediates = [] prev_head_out = None for h_q, h_k, h_v, h_mask, h_attn_bias, h_prev_attn in zip(queries, keys, values, mask, attn_bias, prev_attn): if exists(prev_head_out): h_q = h_q + prev_head_out out, intermediates = self.attend( h_q, h_k, h_v, mask = h_mask, attn_bias = h_attn_bias, prev_attn = h_prev_attn ) prev_head_out = out all_outs.append(out) all_intermediates.append(intermediates) # cat all output heads all_outs = torch.cat(all_outs, dim = 1) # cat all intermediates, if they exist qk_similarities, pre_softmax_attn, post_softmax_attn = zip(*map(lambda i: i.to_tuple(), all_intermediates)) qk_similarities, pre_softmax_attn, post_softmax_attn = map(compact, (qk_similarities, pre_softmax_attn, post_softmax_attn)) aggregated_intermediates = Intermediates( qk_similarities = torch.cat(qk_similarities, dim = 1) if len(qk_similarities) > 0 else None, pre_softmax_attn = torch.cat(pre_softmax_attn, dim = 1) if len(pre_softmax_attn) > 0 else None, post_softmax_attn = torch.cat(post_softmax_attn, dim = 1) if len(post_softmax_attn) > 0 else None ) return all_outs, aggregated_intermediates
# constants def eval_decorator(fn): def inner(self, *args, **kwargs): was_training = self.training self.eval() out = fn(self, *args, **kwargs) self.train(was_training) return out return inner # nucleus def top_p(logits, thres = 0.9): sorted_logits, sorted_indices = torch.sort(logits, descending=True) cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cum_probs > (1 - thres) sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone() sorted_indices_to_remove[:, 0] = 0 sorted_logits[sorted_indices_to_remove] = float('-inf') return sorted_logits.scatter(1, sorted_indices, sorted_logits) # topk def top_k(logits, thres = 0.9): k = ceil((1 - thres) * logits.shape[-1]) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float('-inf')) probs.scatter_(1, ind, val) return probs # top_a def top_a(logits, min_p_pow=2.0, min_p_ratio=0.02): probs = F.softmax(logits, dim=-1) limit = torch.pow(torch.max(probs), min_p_pow) * min_p_ratio logits[probs < limit] = float('-inf') logits[probs >= limit] = 1 return logits # autoregressive wrapper class class AutoregressiveWrapper(nn.Module): def __init__( self, net, ignore_index = -100, pad_value = 0, mask_prob = 0. ): super().__init__() self.pad_value = pad_value self.ignore_index = ignore_index self.net = net self.max_seq_len = net.max_seq_len # paper shows masking (MLM) in conjunction with autoregressive decoder-only training leads to big improvements https://arxiv.org/abs/2210.13432 assert mask_prob < 1. self.mask_prob = mask_prob @torch.no_grad() @eval_decorator def generate( self, start_tokens, seq_len, eos_token = None, temperature = 1., filter_logits_fn = top_k, filter_thres = 0.9, min_p_pow = 2.0, min_p_ratio = 0.02, **kwargs ): start_tokens, ps = pack([start_tokens], '* n') b, t = start_tokens.shape out = start_tokens for _ in range(seq_len): x = out[:, -self.max_seq_len:] logits = self.net(x, **kwargs)[:, -1] if filter_logits_fn in {top_k, top_p}: filtered_logits = filter_logits_fn(logits, thres = filter_thres) probs = F.softmax(filtered_logits / temperature, dim=-1) elif filter_logits_fn is top_a: filtered_logits = filter_logits_fn(logits, min_p_pow = min_p_pow, min_p_ratio= min_p_ratio) probs = F.softmax(filtered_logits / temperature, dim=-1) sample = torch.multinomial(probs, 1) out = torch.cat((out, sample), dim=-1) if exists(eos_token): is_eos_tokens = (out == eos_token) if is_eos_tokens.any(dim = -1).all(): # mask out everything after the eos tokens shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1)) mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1 out = out.masked_fill(mask, self.pad_value) break out = out[:, t:] out, = unpack(out, ps, '* n') return out def forward(self, x, return_loss=True, **kwargs): seq, ignore_index = x.shape[1], self.ignore_index inp, target = x[:, :-1], x[:, 1:] if self.mask_prob > 0.: rand = torch.randn(inp.shape, device = x.device) rand[:, 0] = -torch.finfo(rand.dtype).max # first token should not be masked out num_mask = min(int(seq * self.mask_prob), seq - 1) indices = rand.topk(num_mask, dim = -1).indices mask = ~torch.zeros_like(inp).scatter(1, indices, 1.).bool() kwargs.update(self_attn_context_mask = mask) logits = self.net(inp, **kwargs) loss = F.cross_entropy( rearrange(logits, 'b n c -> b c n'), target, ignore_index = ignore_index ) if return_loss: return logits, loss return logits DEFAULT_DIM_HEAD = 64 @dataclass class LayerIntermediates: hiddens: Optional[List[Tensor]] = None attn_intermediates: Optional[List[Intermediates]] = None layer_hiddens: Optional[List[Tensor]] = None attn_z_loss: Optional[Tensor] = None # helpers def exists(val): return val is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d def cast_tuple(val, depth): return val if isinstance(val, tuple) else (val,) * depth def maybe(fn): @wraps(fn) def inner(x, *args, **kwargs): if not exists(x): return x return fn(x, *args, **kwargs) return inner class always(): def __init__(self, val): self.val = val def __call__(self, *args, **kwargs): return self.val class not_equals(): def __init__(self, val): self.val = val def __call__(self, x, *args, **kwargs): return x != self.val class equals(): def __init__(self, val): self.val = val def __call__(self, x, *args, **kwargs): return x == self.val def Sequential(*modules): return nn.Sequential(*filter(exists, modules)) # tensor helpers def max_neg_value(tensor): return -torch.finfo(tensor.dtype).max def l2norm(t, groups = 1): t = rearrange(t, '... (g d) -> ... g d', g = groups) t = F.normalize(t, p = 2, dim = -1) return rearrange(t, '... g d -> ... (g d)') def pad_at_dim(t, pad, dim = -1, value = 0.): dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1) zeros = ((0, 0) * dims_from_right) return F.pad(t, (*zeros, *pad), value = value) def or_reduce(masks): head, *body = masks for rest in body: head = head | rest return head # auxiliary loss helpers def calc_z_loss( pre_softmax_attns: List[Tensor], mask = None, weight = 1. ): # the same loss applied to the mixture of experts router logits in https://arxiv.org/abs/2202.08906 # in the paper, in a tiny footnote, they mention using it on attention logits with stabilizing effects # also used in PaLM as one of the measures lse = 0. for attn in pre_softmax_attns: lse = lse + attn.logsumexp(dim = -1) loss = torch.square(lse) loss = reduce(loss, 'b h n -> b n', 'sum') if not exists(mask): return loss.mean() * weight loss = loss[mask].sum() / mask.sum().clamp(min = 1e-5) return loss * weight # init helpers def init_zero_(layer): nn.init.constant_(layer.weight, 0.) if exists(layer.bias): nn.init.constant_(layer.bias, 0.) # keyword argument helpers def pick_and_pop(keys, d): values = list(map(lambda key: d.pop(key), keys)) return dict(zip(keys, values)) def group_dict_by_key(cond, d): return_val = [dict(),dict()] for key in d.keys(): match = bool(cond(key)) ind = int(not match) return_val[ind][key] = d[key] return (*return_val,) def string_begins_with(prefix, str): return str.startswith(prefix) def group_by_key_prefix(prefix, d): return group_dict_by_key(partial(string_begins_with, prefix), d) def groupby_prefix_and_trim(prefix, d): kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d) kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items()))) return kwargs_without_prefix, kwargs # initializations def deepnorm_init( transformer, beta, module_name_match_list = ['.ff.', '.to_v', '.to_out'] ): for name, module in transformer.named_modules(): if type(module) != nn.Linear: continue needs_beta_gain = any(map(lambda substr: substr in name, module_name_match_list)) gain = beta if needs_beta_gain else 1 nn.init.xavier_normal_(module.weight.data, gain = gain) if exists(module.bias): nn.init.constant_(module.bias.data, 0) # structured dropout, more effective than traditional attention dropouts def dropout_seq(seq, mask, dropout): b, n, *_, device = *seq.shape, seq.device logits = torch.randn(b, n, device = device) if exists(mask): mask_value = max_neg_value(logits) logits = logits.masked_fill(~mask, mask_value) keep_prob = 1. - dropout num_keep = max(1, int(keep_prob * n)) keep_indices = logits.topk(num_keep, dim = 1).indices batch_indices = torch.arange(b, device = device) batch_indices = rearrange(batch_indices, 'b -> b 1') seq = seq[batch_indices, keep_indices] if exists(mask): seq_counts = mask.sum(dim = -1) seq_keep_counts = torch.ceil(seq_counts * keep_prob).int() keep_mask = torch.arange(num_keep, device = device) < rearrange(seq_keep_counts, 'b -> b 1') mask = mask[batch_indices, keep_indices] & keep_mask return seq, mask # activations class ReluSquared(nn.Module): def forward(self, x): return F.relu(x) ** 2 # embedding class TokenEmbedding(nn.Module): def __init__(self, dim, num_tokens, l2norm_embed = False): super().__init__() self.l2norm_embed = l2norm_embed self.emb = nn.Embedding(num_tokens, dim) def forward(self, x): token_emb = self.emb(x) return l2norm(token_emb) if self.l2norm_embed else token_emb # positional embeddings class AbsolutePositionalEmbedding(nn.Module): def __init__(self, dim, max_seq_len, l2norm_embed = False): super().__init__() self.scale = dim ** -0.5 if not l2norm_embed else 1. self.max_seq_len = max_seq_len self.l2norm_embed = l2norm_embed self.emb = nn.Embedding(max_seq_len, dim) def forward(self, x, pos = None): seq_len, device = x.shape[1], x.device assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}' if not exists(pos): pos = torch.arange(seq_len, device = device) pos_emb = self.emb(pos) pos_emb = pos_emb * self.scale return l2norm(pos_emb) if self.l2norm_embed else pos_emb class ScaledSinusoidalEmbedding(nn.Module): def __init__(self, dim, theta = 10000): super().__init__() assert (dim % 2) == 0 self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5) half_dim = dim // 2 freq_seq = torch.arange(half_dim).float() / half_dim inv_freq = theta ** -freq_seq self.register_buffer('inv_freq', inv_freq, persistent = False) def forward(self, x, pos = None): seq_len, device = x.shape[1], x.device if not exists(pos): pos = torch.arange(seq_len, device = device) emb = einsum('i, j -> i j', pos, self.inv_freq) emb = torch.cat((emb.sin(), emb.cos()), dim = -1) return emb * self.scale class RelativePositionBias(nn.Module): def __init__(self, scale, causal = False, num_buckets = 32, max_distance = 128, heads = 8): super().__init__() self.scale = scale self.causal = causal self.num_buckets = num_buckets self.max_distance = max_distance self.relative_attention_bias = nn.Embedding(num_buckets, heads) @staticmethod def _relative_position_bucket(relative_position, causal = True, num_buckets = 32, max_distance = 128): ret = 0 n = -relative_position if not causal: num_buckets //= 2 ret += (n < 0).long() * num_buckets n = torch.abs(n) else: n = torch.max(n, torch.zeros_like(n)) max_exact = num_buckets // 2 is_small = n < max_exact val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).long() val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) ret += torch.where(is_small, n, val_if_large) return ret @property def device(self): return next(self.parameters()).device def forward(self, i, j): device = self.device q_pos = torch.arange(j - i, j, dtype = torch.long, device = device) k_pos = torch.arange(j, dtype = torch.long, device = device) rel_pos = k_pos[None, :] - q_pos[:, None] rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance) values = self.relative_attention_bias(rp_bucket) bias = rearrange(values, 'i j h -> h i j') return bias * self.scale class AlibiPositionalBias(nn.Module): def __init__(self, heads, total_heads, **kwargs): super().__init__() self.heads = heads self.total_heads = total_heads slopes = Tensor(self._get_slopes(heads)) slopes = rearrange(slopes, 'h -> h 1 1') self.register_buffer('slopes', slopes, persistent = False) self.register_buffer('bias', None, persistent = False) def get_bias(self, i, j, device): i_arange = torch.arange(j - i, j, device = device) j_arange = torch.arange(j, device = device) bias = -torch.abs(rearrange(j_arange, 'j -> 1 1 j') - rearrange(i_arange, 'i -> 1 i 1')) return bias @staticmethod def _get_slopes(heads): def get_slopes_power_of_2(n): start = (2**(-2**-(math.log2(n)-3))) ratio = start return [start*ratio**i for i in range(n)] if math.log2(heads).is_integer(): return get_slopes_power_of_2(heads) closest_power_of_2 = 2 ** math.floor(math.log2(heads)) return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2] @property def device(self): return next(self.buffers()).device def forward(self, i, j): h, device = self.total_heads, self.device if exists(self.bias) and self.bias.shape[-1] >= j and self.bias.shape[-2] >= i: return self.bias[..., :i, :j] bias = self.get_bias(i, j, device) bias = bias * self.slopes num_heads_unalibied = h - bias.shape[0] bias = pad_at_dim(bias, (0, num_heads_unalibied), dim = 0) self.register_buffer('bias', bias, persistent = False) return self.bias class RotaryEmbedding(nn.Module): def __init__( self, dim, use_xpos = False, scale_base = 512, interpolation_factor = 1., base = 10000, base_rescale_factor = 1. ): super().__init__() # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning # has some connection to NTK literature # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ base *= base_rescale_factor ** (dim / (dim - 2)) inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) assert interpolation_factor >= 1. self.interpolation_factor = interpolation_factor if not use_xpos: self.register_buffer('scale', None) return scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim) self.scale_base = scale_base self.register_buffer('scale', scale) def forward(self, seq_len, device): t = torch.arange(seq_len, device = device).type_as(self.inv_freq) t = t / self.interpolation_factor freqs = torch.einsum('i , j -> i j', t, self.inv_freq) freqs = torch.cat((freqs, freqs), dim = -1) if not exists(self.scale): return freqs, 1. power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base scale = self.scale ** rearrange(power, 'n -> n 1') scale = torch.cat((scale, scale), dim = -1) return freqs, scale def rotate_half(x): x = rearrange(x, '... (j d) -> ... j d', j = 2) x1, x2 = x.unbind(dim = -2) return torch.cat((-x2, x1), dim = -1) def apply_rotary_pos_emb(t, freqs, scale = 1): seq_len = t.shape[-2] freqs = freqs[-seq_len:, :] return (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale) # norms class Scale(nn.Module): def __init__(self, value, fn): super().__init__() self.value = value self.fn = fn def forward(self, x, **kwargs): out = self.fn(x, **kwargs) scale_fn = lambda t: t * self.value if not isinstance(out, tuple): return scale_fn(out) return (scale_fn(out[0]), *out[1:]) class ScaleNorm(nn.Module): def __init__(self, dim, eps = 1e-5): super().__init__() self.eps = eps self.g = nn.Parameter(torch.ones(1) * (dim ** -0.5)) def forward(self, x): norm = torch.norm(x, dim = -1, keepdim = True) return x / norm.clamp(min = self.eps) * self.g class RMSNorm(nn.Module): def __init__(self, dim): super().__init__() self.scale = dim ** 0.5 self.g = nn.Parameter(torch.ones(dim)) def forward(self, x): return F.normalize(x, dim = -1) * self.scale * self.g class SimpleRMSNorm(nn.Module): def __init__(self, dim): super().__init__() self.scale = dim ** 0.5 def forward(self, x): return F.normalize(x, dim = -1) * self.scale # residual and residual gates class Residual(nn.Module): def __init__(self, dim, scale_residual = False, scale_residual_constant = 1.): super().__init__() self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None self.scale_residual_constant = scale_residual_constant def forward(self, x, residual): if exists(self.residual_scale): residual = residual * self.residual_scale if self.scale_residual_constant != 1: residual = residual * self.scale_residual_constant return x + residual # feedforward class GLU(nn.Module): def __init__( self, dim_in, dim_out, activation: Callable, mult_bias = False ): super().__init__() self.act = activation self.proj = nn.Linear(dim_in, dim_out * 2) self.mult_bias = nn.Parameter(torch.ones(dim_out)) if mult_bias else 1. def forward(self, x): x, gate = self.proj(x).chunk(2, dim = -1) return x * self.act(gate) * self.mult_bias class FeedForward(nn.Module): def __init__( self, dim, dim_out = None, mult = 4, glu = False, glu_mult_bias = False, swish = False, relu_squared = False, post_act_ln = False, dropout = 0., no_bias = False, zero_init_output = False ): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) if relu_squared: activation = ReluSquared() elif swish: activation = nn.SiLU() else: activation = nn.GELU() if glu: project_in = GLU(dim, inner_dim, activation, mult_bias = glu_mult_bias) else: project_in = nn.Sequential( nn.Linear(dim, inner_dim, bias = not no_bias), activation ) self.ff = Sequential( project_in, nn.LayerNorm(inner_dim) if post_act_ln else None, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out, bias = not no_bias) ) # init last linear layer to 0 if zero_init_output: init_zero_(self.ff[-1]) def forward(self, x): return self.ff(x) # attention. it is all we need class Attention(nn.Module): def __init__( self, dim, dim_head = DEFAULT_DIM_HEAD, heads = 8, causal = False, flash = False, talking_heads = False, head_scale = False, sparse_topk = None, num_mem_kv = 0, dropout = 0., on_attn = False, gate_values = False, zero_init_output = False, max_attend_past = None, qk_norm = False, qk_norm_groups = 1, qk_norm_scale = 10, qk_norm_dim_scale = False, one_kv_head = False, shared_kv = False, value_dim_head = None, tensor_product = False, # https://arxiv.org/abs/2208.06061 cascading_heads = False, add_zero_kv = False, # same as add_zero_attn in pytorch onnxable = False ): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads self.causal = causal self.max_attend_past = max_attend_past value_dim_head = default(value_dim_head, dim_head) q_dim = k_dim = dim_head * heads v_dim = out_dim = value_dim_head * heads self.one_kv_head = one_kv_head if one_kv_head: k_dim = dim_head v_dim = value_dim_head out_dim = v_dim * heads self.to_q = nn.Linear(dim, q_dim, bias = False) self.to_k = nn.Linear(dim, k_dim, bias = False) # shared key / values, for further memory savings during inference assert not (shared_kv and value_dim_head != dim_head), 'key and value head dimensions must be equal for shared key / values' self.to_v = nn.Linear(dim, v_dim, bias = False) if not shared_kv else None # relations projection from tp-attention self.to_r = nn.Linear(dim, v_dim, bias = False) if tensor_product else None # add GLU gating for aggregated values, from alphafold2 self.to_v_gate = None if gate_values: self.to_v_gate = nn.Linear(dim, out_dim) nn.init.constant_(self.to_v_gate.weight, 0) nn.init.constant_(self.to_v_gate.bias, 1) # cosine sim attention self.qk_norm = qk_norm self.qk_norm_groups = qk_norm_groups self.qk_norm_scale = qk_norm_scale # whether to use the rmsnorm (equivalent to cosine sim attention when scale is equal to 1) - https://arxiv.org/abs/2302.05442 self.qk_norm_dim_scale = qk_norm_dim_scale self.qk_norm_q_scale = self.qk_norm_k_scale = 1 if qk_norm and qk_norm_dim_scale: self.qk_norm_q_scale = nn.Parameter(torch.ones(dim_head)) self.qk_norm_k_scale = nn.Parameter(torch.ones(dim_head)) assert (not qk_norm) or (dim_head % qk_norm_groups) == 0, 'dimension per attention head must be divisible by the qk norm groups' assert not (qk_norm and (dim_head // qk_norm_groups) <= 2), 'the group dimension may be too small (2 was too small in my tests, but 4 still works, surprisingly)' # attend class - includes core attention algorithm + talking heads self.attend = Attend( heads = heads, causal = causal, talking_heads = talking_heads, dropout = dropout, sparse_topk = sparse_topk, qk_norm = qk_norm, scale = qk_norm_scale if qk_norm else self.scale, add_zero_kv = add_zero_kv, flash = flash, onnxable = onnxable ) # head scaling self.head_scale = head_scale if head_scale: self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1)) # explicit topk sparse attention self.sparse_topk = sparse_topk # add memory key / values self.num_mem_kv = num_mem_kv if num_mem_kv > 0: self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) # attention on attention self.attn_on_attn = on_attn self.to_out = nn.Sequential(nn.Linear(out_dim, dim * 2, bias = False), nn.GLU()) if on_attn else nn.Linear(out_dim, dim, bias = False) # init output projection 0 if zero_init_output: init_zero_(self.to_out) def forward( self, x, context = None, mask = None, context_mask = None, attn_mask = None, rel_pos = None, rotary_pos_emb = None, prev_attn = None, mem = None ): b, n, _, h, head_scale, device, has_context = *x.shape, self.heads, self.head_scale, x.device, exists(context) kv_input = default(context, x) q_input = x k_input = kv_input v_input = kv_input r_input = x if exists(mem): k_input = torch.cat((mem, k_input), dim = -2) v_input = torch.cat((mem, v_input), dim = -2) q = self.to_q(q_input) k = self.to_k(k_input) v = self.to_v(v_input) if exists(self.to_v) else k r = self.to_r(r_input) if exists(self.to_r) else None q = rearrange(q, 'b n (h d) -> b h n d', h = h) if not self.one_kv_head: k, v, r = map(lambda t: maybe(rearrange)(t, 'b n (h d) -> b h n d', h = h), (k, v, r)) if self.qk_norm: qk_l2norm = partial(l2norm, groups = self.qk_norm_groups) q, k = map(qk_l2norm, (q, k)) scale = self.qk_norm_scale q = q * self.qk_norm_q_scale k = k * self.qk_norm_k_scale if exists(rotary_pos_emb) and not has_context: freqs, xpos_scale = rotary_pos_emb l = freqs.shape[-1] q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if exists(xpos_scale) else (1., 1.) (ql, qr), (kl, kr), (vl, vr) = map(lambda t: (t[..., :l], t[..., l:]), (q, k, v)) ql, kl, vl = map(lambda arg: apply_rotary_pos_emb(arg[0], freqs, arg[1]), ((ql, q_xpos_scale), (kl, k_xpos_scale), (vl, k_xpos_scale))) q, k, v = map(lambda t: torch.cat(t, dim = -1), ((ql, qr), (kl, kr), (vl, vr))) input_mask = context_mask if has_context else mask if self.num_mem_kv > 0: mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b = b), (self.mem_k, self.mem_v)) if self.qk_norm: mem_k = l2norm(mem_k) mem_k = mem_k * self.qk_norm_k_scale k = torch.cat((mem_k, k), dim = -2) v = torch.cat((mem_v, v), dim = -2) if exists(input_mask): input_mask = pad_at_dim(input_mask, (self.num_mem_kv, 0), dim = -1, value = True) i, j = map(lambda t: t.shape[-2], (q, k)) # determine masking mask_value = max_neg_value(q) masks = [] final_attn_mask = None if exists(input_mask): input_mask = rearrange(input_mask, 'b j -> b 1 1 j') masks.append(~input_mask) if exists(attn_mask): assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4' if attn_mask.ndim == 2: attn_mask = rearrange(attn_mask, 'i j -> 1 1 i j') elif attn_mask.ndim == 3: attn_mask = rearrange(attn_mask, 'h i j -> 1 h i j') masks.append(~attn_mask) if exists(self.max_attend_past): range_q = torch.arange(j - i, j, device = device) range_k = torch.arange(j, device = device) dist = rearrange(range_q, 'i -> 1 1 i 1') - rearrange(range_k, 'j -> 1 1 1 j') max_attend_past_mask = dist > self.max_attend_past masks.append(max_attend_past_mask) if len(masks) > 0: final_attn_mask = ~or_reduce(masks) # prepare relative positional bias, if needed attn_bias = None if exists(rel_pos): attn_bias = rel_pos(i, j) # attention is all we need out, intermediates = self.attend( q, k, v, mask = final_attn_mask, attn_bias = attn_bias, prev_attn = prev_attn ) # https://arxiv.org/abs/2208.06061 proposes to add a residual for better gradients if exists(r): out = out * r + out # normformer scaling of heads if head_scale: out = out * self.head_scale_params # merge heads out = rearrange(out, 'b h n d -> b n (h d)') # alphafold2 styled gating of the values if exists(self.to_v_gate): gates = self.to_v_gate(x) out = out * gates.sigmoid() # combine the heads out = self.to_out(out) if exists(mask): mask = rearrange(mask, 'b n -> b n 1') out = out.masked_fill(~mask, 0.) return out, intermediates class AttentionLayers(nn.Module): def __init__( self, dim, depth, heads = 8, causal = False, cross_attend = False, only_cross = False, use_scalenorm = False, use_rmsnorm = False, use_simple_rmsnorm = False, alibi_pos_bias = False, alibi_num_heads = None, rel_pos_bias = False, rel_pos_num_buckets = 32, rel_pos_max_distance = 128, dynamic_pos_bias = False, dynamic_pos_bias_log_distance = False, dynamic_pos_bias_mlp_depth = 2, dynamic_pos_bias_norm = False, rotary_pos_emb = False, rotary_emb_dim = None, rotary_xpos = False, rotary_interpolation_factor = 1., rotary_xpos_scale_base = 512, rotary_base_rescale_factor = 1., custom_layers = None, sandwich_coef = None, par_ratio = None, residual_attn = False, cross_residual_attn = False, macaron = False, pre_norm = True, pre_norm_has_final_norm = True, gate_residual = False, scale_residual = False, scale_residual_constant = 1., deepnorm = False, shift_tokens = 0, sandwich_norm = False, resi_dual = False, resi_dual_scale = 1., zero_init_branch_output = False, layer_dropout = 0., cross_attn_tokens_dropout = 0., **kwargs ): super().__init__() rotary_pos_emb = rotary_pos_emb or rotary_xpos ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs) attn_kwargs, kwargs = groupby_prefix_and_trim('attn_', kwargs) dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD) self.dim = dim self.depth = depth self.layers = nn.ModuleList([]) self.has_pos_emb = rel_pos_bias or rotary_pos_emb rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32) assert not (rotary_xpos and not causal), 'rotary xpos is not compatible with bidirectional attention' self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim, use_xpos = rotary_xpos, scale_base = rotary_xpos_scale_base, interpolation_factor = rotary_interpolation_factor, base_rescale_factor = rotary_base_rescale_factor) if rotary_pos_emb else None assert not (alibi_pos_bias and rel_pos_bias), 'you can only choose Alibi positional bias or T5 relative positional bias, not both' assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance' # relative positional bias flash_attn = attn_kwargs.get('flash', False) assert (int(rel_pos_bias) + int(dynamic_pos_bias) + int(alibi_pos_bias)) <= 1, 'you can only choose up to one of t5, alibi, or dynamic positional bias' self.rel_pos = None if rel_pos_bias: assert not flash_attn, 'flash attention not compatible with t5 relative positional bias' self.rel_pos = RelativePositionBias(scale = dim_head ** 0.5, causal = causal, heads = heads, num_buckets = rel_pos_num_buckets, max_distance = rel_pos_max_distance) # elif dynamic_pos_bias: # assert not flash_attn, 'flash attention not compatible with dynamic positional bias' # self.rel_pos = DynamicPositionBias(dim = dim // 4, heads = heads, log_distance = dynamic_pos_bias_log_distance, depth = dynamic_pos_bias_mlp_depth, norm = dynamic_pos_bias_norm) elif alibi_pos_bias: alibi_num_heads = default(alibi_num_heads, heads) assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads' self.rel_pos = AlibiPositionalBias(heads = alibi_num_heads, total_heads = heads) # determine deepnorm and residual scale if deepnorm: assert scale_residual_constant == 1, 'scale residual constant is being overridden by deep norm settings' pre_norm = sandwich_norm = resi_dual = False scale_residual = True scale_residual_constant = (2 * depth) ** 0.25 assert (int(sandwich_norm) + int(resi_dual)) <= 1, 'either sandwich norm or resiDual is selected, but not both' assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm' if resi_dual: pre_norm = False self.pre_norm = pre_norm self.sandwich_norm = sandwich_norm self.resi_dual = resi_dual assert 0 < resi_dual_scale <= 1., 'resiDual prenorm residual must be scaled by a factor greater than 0 and less than or equal to 1.' self.resi_dual_scale = resi_dual_scale self.residual_attn = residual_attn self.cross_residual_attn = cross_residual_attn assert not (flash_attn and (residual_attn or cross_residual_attn)), 'flash attention is not compatible with residual attention' self.cross_attend = cross_attend assert (int(use_scalenorm) + int(use_rmsnorm) + int(use_simple_rmsnorm)) <= 1, 'you can only use either scalenorm, rmsnorm, or simple rmsnorm' if use_scalenorm: norm_class = ScaleNorm elif use_rmsnorm: norm_class = RMSNorm elif use_simple_rmsnorm: norm_class = SimpleRMSNorm else: norm_class = nn.LayerNorm norm_fn = partial(norm_class, dim) if cross_attend and not only_cross: default_block = ('a', 'c', 'f') elif cross_attend and only_cross: default_block = ('c', 'f') else: default_block = ('a', 'f') if macaron: default_block = ('f',) + default_block # zero init if zero_init_branch_output: attn_kwargs = {**attn_kwargs, 'zero_init_output': True} ff_kwargs = {**ff_kwargs, 'zero_init_output': True} # calculate layer block order if exists(custom_layers): layer_types = custom_layers elif exists(par_ratio): par_depth = depth * len(default_block) assert 1 < par_ratio <= par_depth, 'par ratio out of range' default_block = tuple(filter(not_equals('f'), default_block)) par_attn = par_depth // par_ratio depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper par_width = (depth_cut + depth_cut // par_attn) // par_attn assert len(default_block) <= par_width, 'default block is too large for par_ratio' par_block = default_block + ('f',) * (par_width - len(default_block)) par_head = par_block * par_attn layer_types = par_head + ('f',) * (par_depth - len(par_head)) elif exists(sandwich_coef): assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth' layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef else: layer_types = default_block * depth self.layer_types = layer_types self.num_attn_layers = len(list(filter(equals('a'), layer_types))) # stochastic depth self.layer_dropouts = cast_tuple(layer_dropout, len(layer_types)) # structured dropout for cross attending self.cross_attn_tokens_dropout = cross_attn_tokens_dropout # calculate token shifting shift_tokens = cast_tuple(shift_tokens, len(layer_types)) # whether it has post norm self.final_norm = norm_fn() if pre_norm or resi_dual else nn.Identity() # iterate and construct layers for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)): is_last_layer = ind == (len(self.layer_types) - 1) if layer_type == 'a': layer = Attention(dim, heads = heads, causal = causal, **attn_kwargs) elif layer_type == 'c': layer = Attention(dim, heads = heads, **attn_kwargs) elif layer_type == 'f': layer = FeedForward(dim, **ff_kwargs) layer = layer if not macaron else Scale(0.5, layer) else: raise Exception(f'invalid layer type {layer_type}') # if layer_shift_tokens > 0: # shift_range_upper = layer_shift_tokens + 1 # shift_range_lower = -layer_shift_tokens if not causal else 0 # layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer) residual_fn = Residual residual = residual_fn(dim, scale_residual = scale_residual, scale_residual_constant = scale_residual_constant) pre_branch_norm = norm_fn() if pre_norm else None post_branch_norm = norm_fn() if sandwich_norm else None post_main_norm = norm_fn() if not pre_norm else None norms = nn.ModuleList([ pre_branch_norm, post_branch_norm, post_main_norm ]) self.layers.append(nn.ModuleList([ norms, layer, residual ])) if deepnorm: init_gain = (8 * depth) ** -0.25 deepnorm_init(self, init_gain) def forward( self, x, context = None, mask = None, context_mask = None, attn_mask = None, self_attn_context_mask = None, mems = None, return_hiddens = False ): assert not (self.cross_attend ^ exists(context)), 'context must be passed in if cross_attend is set to True' hiddens = [] layer_hiddens = [] intermediates = [] prev_attn = None prev_cross_attn = None mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers rotary_pos_emb = None if exists(self.rotary_pos_emb): max_rotary_emb_length = max(list(map(lambda m: (m.shape[1] if exists(m) else 0) + x.shape[1], mems))) rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length, x.device) outer_residual = x * self.resi_dual_scale for ind, (layer_type, (norm, block, residual_fn), layer_dropout) in enumerate(zip(self.layer_types, self.layers, self.layer_dropouts)): is_last = ind == (len(self.layers) - 1) if self.training and layer_dropout > 0. and random() < layer_dropout: continue if layer_type == 'a': if return_hiddens: hiddens.append(x) layer_mem = mems.pop(0) if mems else None if layer_type == 'c': if self.training and self.cross_attn_tokens_dropout > 0.: context, context_mask = dropout_seq(context, context_mask, self.cross_attn_tokens_dropout) inner_residual = x if return_hiddens: layer_hiddens.append(x) pre_norm, post_branch_norm, post_main_norm = norm if exists(pre_norm): x = pre_norm(x) if layer_type == 'a': out, inter = block(x, mask = mask, context_mask = self_attn_context_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, rotary_pos_emb = rotary_pos_emb, prev_attn = prev_attn, mem = layer_mem) elif layer_type == 'c': out, inter = block(x, context = context, mask = mask, context_mask = context_mask, prev_attn = prev_cross_attn) elif layer_type == 'f': out = block(x) if self.resi_dual: outer_residual = outer_residual + out * self.resi_dual_scale if exists(post_branch_norm): out = post_branch_norm(out) x = residual_fn(out, inner_residual) if layer_type in ('a', 'c') and return_hiddens: intermediates.append(inter) if layer_type == 'a' and self.residual_attn: prev_attn = inter.pre_softmax_attn elif layer_type == 'c' and self.cross_residual_attn: prev_cross_attn = inter.pre_softmax_attn if exists(post_main_norm): x = post_main_norm(x) if return_hiddens: layer_hiddens.append(x) if self.resi_dual: x = x + self.final_norm(outer_residual) else: x = self.final_norm(x) if return_hiddens: intermediates = LayerIntermediates( hiddens = hiddens, attn_intermediates = intermediates, layer_hiddens = layer_hiddens ) return x, intermediates return x class Encoder(AttentionLayers): def __init__(self, **kwargs): assert 'causal' not in kwargs, 'cannot set causality on encoder' super().__init__(causal = False, **kwargs) class Decoder(AttentionLayers): def __init__(self, **kwargs): assert 'causal' not in kwargs, 'cannot set causality on decoder' super().__init__(causal = True, **kwargs) class CrossAttender(AttentionLayers): def __init__(self, **kwargs): super().__init__(cross_attend = True, only_cross = True, **kwargs) class ViTransformerWrapper(nn.Module): def __init__( self, *, image_size, patch_size, attn_layers, channels = 3, num_classes = None, post_emb_norm = False, emb_dropout = 0. ): super().__init__() assert isinstance(attn_layers, Encoder), 'attention layers must be an Encoder' assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size' dim = attn_layers.dim num_patches = (image_size // patch_size) ** 2 patch_dim = channels * patch_size ** 2 self.patch_size = patch_size self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim)) self.patch_to_embedding = nn.Sequential( nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim) ) self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity() self.dropout = nn.Dropout(emb_dropout) self.attn_layers = attn_layers self.mlp_head = nn.Linear(dim, num_classes) if exists(num_classes) else nn.Identity() def forward( self, img, return_embeddings = False ): p = self.patch_size x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p) x = self.patch_to_embedding(x) n = x.shape[1] x = x + self.pos_embedding[:, :n] x = self.post_emb_norm(x) x = self.dropout(x) x = self.attn_layers(x) if not exists(self.mlp_head) or return_embeddings: return x x = x.mean(dim = -2) return self.mlp_head(x) class Transformer(nn.Module): def __init__( self, *, num_tokens, max_seq_len, attn_layers, emb_dim = None, max_mem_len = 0, shift_mem_down = 0, emb_dropout = 0., post_emb_norm = False, num_memory_tokens = None, tie_embedding = False, logits_dim = None, use_abs_pos_emb = True, scaled_sinu_pos_emb = False, l2norm_embed = False, emb_frac_gradient = 1., # GLM-130B and Cogview successfully used this, set at 0.1 attn_z_loss_weight = 1e-4 ): super().__init__() assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder' dim = attn_layers.dim emb_dim = default(emb_dim, dim) self.emb_dim = emb_dim self.num_tokens = num_tokens self.max_seq_len = max_seq_len self.max_mem_len = max_mem_len self.shift_mem_down = shift_mem_down self.l2norm_embed = l2norm_embed self.token_emb = TokenEmbedding(emb_dim, num_tokens, l2norm_embed = l2norm_embed) if not (use_abs_pos_emb and not attn_layers.has_pos_emb): self.pos_emb = always(0) elif scaled_sinu_pos_emb: self.pos_emb = ScaledSinusoidalEmbedding(emb_dim) else: self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len, l2norm_embed = l2norm_embed) self.emb_frac_gradient = emb_frac_gradient # fraction of the gradient that should go to the embedding, https://arxiv.org/abs/2105.13290 self.post_emb_norm = nn.LayerNorm(emb_dim) if post_emb_norm else nn.Identity() self.emb_dropout = nn.Dropout(emb_dropout) self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() self.attn_layers = attn_layers self.init_() logits_dim = default(logits_dim, num_tokens) self.to_logits = nn.Linear(dim, logits_dim) if not tie_embedding else lambda t: t @ self.token_emb.emb.weight.t() # memory tokens (like [cls]) from Memory Transformers paper num_memory_tokens = default(num_memory_tokens, 0) self.num_memory_tokens = num_memory_tokens if num_memory_tokens > 0: self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) def init_(self): if self.l2norm_embed: nn.init.normal_(self.token_emb.emb.weight, std = 1e-5) if not isinstance(self.pos_emb, always): nn.init.normal_(self.pos_emb.emb.weight, std = 1e-5) return nn.init.kaiming_normal_(self.token_emb.emb.weight) def forward( self, x, return_embeddings = False, return_logits_and_embeddings = False, return_intermediates = False, mask = None, return_mems = False, return_attn = False, mems = None, pos = None, prepend_embeds = None, sum_embeds = None, return_attn_z_loss = False, attn_z_loss_weight = 1e-4, **kwargs ): b, n, device, num_mem, emb_frac_gradient = *x.shape, x.device, self.num_memory_tokens, self.emb_frac_gradient return_hiddens = return_mems | return_attn | return_intermediates | return_attn_z_loss # absolute positional embedding external_pos_emb = exists(pos) and pos.dtype != torch.long pos_emb = self.pos_emb(x, pos = pos) if not external_pos_emb else pos x = self.token_emb(x) + pos_emb # for summing embeddings passed externally - needs this for self-conditioning in non-autoregressive training if exists(sum_embeds): x = x + sum_embeds # post embedding norm, purportedly leads to greater stabilization x = self.post_emb_norm(x) # whether to append embeds, as in PaLI, for image embeddings if exists(prepend_embeds): prepend_seq, prepend_dim = prepend_embeds.shape[1:] assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as text model dimensions' x = torch.cat((prepend_embeds, x), dim = -2) # whether to reduce the gradient going to the embedding, from cogview paper, corroborated by GLM-130B model if emb_frac_gradient < 1: assert emb_frac_gradient > 0 x = x * emb_frac_gradient + x.detach() * (1 - emb_frac_gradient) # embedding dropout x = self.emb_dropout(x) x = self.project_emb(x) if num_mem > 0: mem = repeat(self.memory_tokens, 'n d -> b n d', b = b) x = torch.cat((mem, x), dim = 1) # auto-handle masking after appending memory tokens if exists(mask): mask = pad_at_dim(mask, (num_mem, 0), dim = -1, value = True) if self.shift_mem_down and exists(mems): mems_l, mems_r = mems[:self.shift_mem_down], mems[self.shift_mem_down:] mems = [*mems_r, *mems_l] if return_hiddens: x, intermediates = self.attn_layers(x, mask = mask, mems = mems, return_hiddens = True, **kwargs) else: x = self.attn_layers(x, mask = mask, mems = mems, **kwargs) mem, x = x[:, :num_mem], x[:, num_mem:] if return_logits_and_embeddings: out = (self.to_logits(x), x) elif return_embeddings: out = x else: out = self.to_logits(x) if return_attn_z_loss: pre_softmax_attns = list(map(lambda t: t.pre_softmax_attn, intermediates.attn_intermediates)) intermediates.attn_z_loss = calc_z_loss(pre_softmax_attns, weight = attn_z_loss_weight) return_intermediates = True if return_intermediates: return out, intermediates if return_mems: hiddens = intermediates.hiddens new_mems = list(map(lambda pair: torch.cat(pair, dim = -2), zip(mems, hiddens))) if exists(mems) else hiddens new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems)) return out, new_mems if return_attn: attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) return out, attn_maps return out
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ LinearWarmupCosineLRScheduler, LinearWarmupStepLRScheduler, ) # imports modules for registration def parse_args(): parser = argparse.ArgumentParser(description="Training") parser.add_argument("--cfg-path", required=True, help="path to configuration file.") parser.add_argument( "--options", nargs="+", help="override some settings in the used config, the key-value pair " "in xxx=yyy format will be merged into config file (deprecate), " "change to --cfg-options instead.", ) # replace some settings in the used config parser.add_argument("--replace_cfg", nargs="+", help="replace some settings in the used config", default=None) parser.add_argument("--job_id", default=None, help="job id") # python train.py --cfg-path configs/cont_train.yaml \ # --replace-cfg run_cfg.seed=1 run_cfg.local_rank=0 --job-id 1 args = parser.parse_args() # if 'LOCAL_RANK' not in os.environ: # os.environ['LOCAL_RANK'] = str(args.local_rank) return args def setup_seeds(config): seed = config.run_cfg.seed + get_rank() random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) cudnn.benchmark = False cudnn.deterministic = True def get_runner_class(cfg): """ Get runner class from config. Default to epoch-based runner. """ runner_cls = registry.get_runner_class(cfg.run_cfg.get("runner", "runner_base")) return runner_cls def main(): # allow auto-dl completes on main process without timeout when using NCCL backend. # os.environ["NCCL_BLOCKING_WAIT"] = "1" # set before init_distributed_mode() to ensure the same job_id shared across all ranks. args = parse_args() torch.multiprocessing.set_start_method("spawn") job_id = now() if args.job_id is None else args.job_id cfg = Config(args) init_distributed_mode(cfg.run_cfg) setup_seeds(cfg) # set after init_distributed_mode() to only log on master. setup_logger() cfg.pretty_print() # with torch.cuda.amp.autocast(dtype=torch.float32): task = tasks.setup_task(cfg) datasets = task.build_datasets(cfg) model = task.build_model(cfg) runner = get_runner_class(cfg)(cfg=cfg, job_id=job_id, task=task, model=model, datasets=datasets) runner.train() if __name__ == "__main__": main()
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ LinearWarmupCosineLRScheduler, LinearWarmupStepLRScheduler, ) # imports modules for registration def parse_args(): parser = argparse.ArgumentParser(description="Training") parser.add_argument("--cfg-path", required=True, help="path to configuration file.") parser.add_argument( "--options", nargs="+", help="override some settings in the used config, the key-value pair " "in xxx=yyy format will be merged into config file (deprecate), " "change to --cfg-options instead.", ) args = parser.parse_args() # if 'LOCAL_RANK' not in os.environ: # os.environ['LOCAL_RANK'] = str(args.local_rank) return args def setup_seeds(config): seed = config.run_cfg.seed + get_rank() random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) cudnn.benchmark = False cudnn.deterministic = True def main(): # allow auto-dl completes on main process without timeout when using NCCL backend. # os.environ["NCCL_BLOCKING_WAIT"] = "1" # set before init_distributed_mode() to ensure the same job_id shared across all ranks. job_id = now() cfg = Config(parse_args()) init_distributed_mode(cfg.run_cfg) setup_seeds(cfg) # set after init_distributed_mode() to only log on master. setup_logger() cfg.pretty_print() task = tasks.setup_task(cfg) datasets = task.build_datasets(cfg) model = task.build_model(cfg) runner = RunnerBase(cfg=cfg, job_id=job_id, task=task, model=model, datasets=datasets) runner.evaluate(skip_reload=True) if __name__ == "__main__": main()
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ root_dir = os.path.dirname(os.path.abspath(__file__)) default_cfg = OmegaConf.load(os.path.join(root_dir, "configs/default.yaml")) registry.register_path("library_root", root_dir) repo_root = os.path.join(root_dir, "..") registry.register_path("repo_root", repo_root) cache_root = os.path.join(repo_root, default_cfg.env.cache_root) registry.register_path("cache_root", cache_root) registry.register("MAX_INT", sys.maxsize) registry.register("SPLIT_NAMES", ["train", "val", "test"])
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ class BaseTask: def __init__(self, **kwargs): super().__init__() self.inst_id_key = "instance_id" @classmethod def setup_task(cls, **kwargs): return cls() def build_model(self, cfg): model_config = cfg.model_cfg model_cls = registry.get_model_class(model_config.arch) return model_cls.from_config(model_config) def build_datasets(self, cfg): """ Build a dictionary of datasets, keyed by split 'train', 'valid', 'test'. Download dataset and annotations automatically if not exist. Args: cfg (common.config.Config): _description_ Returns: dict: Dictionary of torch.utils.data.Dataset objects by split. """ datasets = dict() datasets_config = cfg.datasets_cfg assert len(datasets_config) > 0, "At least one dataset has to be specified." for name in datasets_config: dataset_config = datasets_config[name] builder = registry.get_builder_class(name)(dataset_config) dataset = builder.build_datasets() datasets[name] = dataset return datasets def train_step(self, model, samples): loss = model(samples)["loss"] return loss def valid_step(self, model, samples): raise NotImplementedError def before_evaluation(self, model, dataset, **kwargs): model.before_evaluation(dataset=dataset, task_type=type(self)) def after_evaluation(self, **kwargs): pass def inference_step(self): raise NotImplementedError def evaluation(self, model, data_loader, cuda_enabled=True): metric_logger = MetricLogger(delimiter=" ") header = "Evaluation" # TODO make it configurable print_freq = 10 results = [] for samples in metric_logger.log_every(data_loader, print_freq, header): samples = prepare_sample(samples, cuda_enabled=cuda_enabled) eval_output = self.valid_step(model=model, samples=samples) results.extend(eval_output) if is_dist_avail_and_initialized(): dist.barrier() return results def train_epoch( self, epoch, model, data_loader, optimizer, lr_scheduler, scaler=None, cuda_enabled=False, log_freq=50, accum_grad_iters=1, ): return self._train_inner_loop( epoch=epoch, iters_per_epoch=len(data_loader), model=model, data_loader=data_loader, optimizer=optimizer, scaler=scaler, lr_scheduler=lr_scheduler, log_freq=log_freq, cuda_enabled=cuda_enabled, accum_grad_iters=accum_grad_iters, ) def train_iters( self, epoch, start_iters, iters_per_inner_epoch, model, data_loader, optimizer, lr_scheduler, scaler=None, cuda_enabled=False, log_freq=50, accum_grad_iters=1, ): return self._train_inner_loop( epoch=epoch, start_iters=start_iters, iters_per_epoch=iters_per_inner_epoch, model=model, data_loader=data_loader, optimizer=optimizer, scaler=scaler, lr_scheduler=lr_scheduler, log_freq=log_freq, cuda_enabled=cuda_enabled, accum_grad_iters=accum_grad_iters, ) def _train_inner_loop( self, epoch, iters_per_epoch, model, data_loader, optimizer, lr_scheduler, scaler=None, start_iters=None, log_freq=50, cuda_enabled=False, accum_grad_iters=1, ): """ An inner training loop compatible with both epoch-based and iter-based training. When using epoch-based, training stops after one epoch; when using iter-based, training stops after #iters_per_epoch iterations. """ use_amp = scaler is not None if not hasattr(data_loader, "__next__"): # convert to iterator if not already data_loader = iter(data_loader) metric_logger = MetricLogger(delimiter=" ") metric_logger.add_meter("lr", SmoothedValue(window_size=1, fmt="{value:.6f}")) metric_logger.add_meter("loss", SmoothedValue(window_size=1, fmt="{value:.4f}")) # if iter-based runner, schedule lr based on inner epoch. logging.info("Start training epoch {}, {} iters per inner epoch.".format(epoch, iters_per_epoch)) header = "Train: data epoch: [{}]".format(epoch) if start_iters is None: # epoch-based runner inner_epoch = epoch else: # In iter-based runner, we schedule the learning rate based on iterations. inner_epoch = start_iters // iters_per_epoch header = header + "; inner epoch [{}]".format(inner_epoch) for i in metric_logger.log_every(range(iters_per_epoch), log_freq, header): # if using iter-based runner, we stop after iters_per_epoch iterations. if i >= iters_per_epoch: break samples = next(data_loader) samples = prepare_sample(samples, cuda_enabled=cuda_enabled) samples.update( { "epoch": inner_epoch, "num_iters_per_epoch": iters_per_epoch, "iters": i, } ) lr_scheduler.step(cur_epoch=inner_epoch, cur_step=i) with torch.cuda.amp.autocast(enabled=use_amp): loss = self.train_step(model=model, samples=samples) # after_train_step() if use_amp: scaler.scale(loss).backward() else: loss.backward() # update gradients every accum_grad_iters iterations if (i + 1) % accum_grad_iters == 0: if use_amp: scaler.step(optimizer) scaler.update() else: optimizer.step() optimizer.zero_grad() metric_logger.update(loss=loss.item()) metric_logger.update(lr=optimizer.param_groups[0]["lr"]) # after train_epoch() # gather the stats from all processes metric_logger.synchronize_between_processes() logging.info("Averaged stats: " + str(metric_logger.global_avg())) return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()} @staticmethod def save_result(result, result_dir, filename, remove_duplicate=""): import json result_file = os.path.join(result_dir, "%s_rank%d.json" % (filename, get_rank())) final_result_file = os.path.join(result_dir, "%s.json" % filename) json.dump(result, open(result_file, "w")) if is_dist_avail_and_initialized(): dist.barrier() if is_main_process(): logging.warning("rank %d starts merging results." % get_rank()) # combine results from all processes result = [] for rank in range(get_world_size()): result_file = os.path.join(result_dir, "%s_rank%d.json" % (filename, rank)) res = json.load(open(result_file, "r")) result += res if remove_duplicate: result_new = [] id_list = [] for res in result: if res[remove_duplicate] not in id_list: id_list.append(res[remove_duplicate]) result_new.append(res) result = result_new json.dump(result, open(final_result_file, "w")) print("result file saved to %s" % final_result_file) return final_result_file
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ MultimodalClassificationTask, ) def setup_task(cfg): assert "task" in cfg.run_cfg, "Task name must be provided." task_name = cfg.run_cfg.task task = registry.get_task_class(task_name).setup_task(cfg=cfg) assert task is not None, "Task {} not properly registered.".format(task_name) return task __all__ = [ "BaseTask", "ThreeDVQATask", "RetrievalTask", "CaptionTask", "VQATask", "GQATask", "VQARCTask", "GQARCTask", "MultimodalClassificationTask", # "VideoQATask", # "VisualEntailmentTask", "ImageTextPretrainTask", "DialogueTask", ]
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ @registry.register_task("retrieval") class RetrievalTask(BaseTask): def __init__(self, cfg): super().__init__() self.cfg = cfg @classmethod def setup_task(cls, cfg): run_cfg = cfg.run_cfg return cls(cfg=run_cfg) def evaluation(self, model, data_loader, **kwargs): # score_i2t, score_t2i = model.compute_sim_matrix(model, data_loader) score_i2t, score_t2i = model.compute_sim_matrix(data_loader, task_cfg=self.cfg) if is_main_process(): eval_result = self._report_metrics( score_i2t, score_t2i, data_loader.dataset.txt2img, data_loader.dataset.img2txt, ) logging.info(eval_result) else: eval_result = None return eval_result def after_evaluation(self, val_result, **kwargs): return val_result @staticmethod @torch.no_grad() def _report_metrics(scores_i2t, scores_t2i, txt2img, img2txt): # Images->Text ranks = np.zeros(scores_i2t.shape[0]) for index, score in enumerate(scores_i2t): inds = np.argsort(score)[::-1] # Score rank = 1e20 for i in img2txt[index]: tmp = np.where(inds == i)[0][0] if tmp < rank: rank = tmp ranks[index] = rank # Compute metrics tr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks) tr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks) tr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks) # Text->Images ranks = np.zeros(scores_t2i.shape[0]) for index, score in enumerate(scores_t2i): inds = np.argsort(score)[::-1] ranks[index] = np.where(inds == txt2img[index])[0][0] # Compute metrics ir1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks) ir5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks) ir10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks) tr_mean = (tr1 + tr5 + tr10) / 3 ir_mean = (ir1 + ir5 + ir10) / 3 r_mean = (tr_mean + ir_mean) / 2 agg_metrics = (tr1 + tr5 + tr10) / 3 eval_result = { "txt_r1": tr1, "txt_r5": tr5, "txt_r10": tr10, "txt_r_mean": tr_mean, "img_r1": ir1, "img_r5": ir5, "img_r10": ir10, "img_r_mean": ir_mean, "r_mean": r_mean, "agg_metrics": agg_metrics, } with open(os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a") as f: f.write(json.dumps(eval_result) + "\n") return eval_result
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ @registry.register_task("image_text_pretrain") class ImageTextPretrainTask(BaseTask): def __init__(self): super().__init__() def evaluation(self, model, data_loader, cuda_enabled=True): pass
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ @registry.register_task("dialogue") class DialogueTask(BaseTask): def __init__(self, num_beams, max_len, min_len, evaluate, report_metric=True): super().__init__() self.num_beams = num_beams self.max_len = max_len self.min_len = min_len self.evaluate = evaluate self.report_metric = report_metric @classmethod def setup_task(cls, cfg): run_cfg = cfg.run_cfg num_beams = run_cfg.num_beams max_len = run_cfg.max_len min_len = run_cfg.min_len evaluate = run_cfg.evaluate report_metric = run_cfg.get("report_metric", True) return cls( num_beams=num_beams, max_len=max_len, min_len=min_len, evaluate=evaluate, report_metric=report_metric, ) def valid_step(self, model, samples): results = [] loss = model(samples)["loss"].item() return [loss] def after_evaluation(self, val_result, split_name, epoch, **kwargs): if self.report_metric: avg_loss = np.mean(val_result) metrics = {"agg_metrics": avg_loss} else: metrics = {"agg_metrics": 0.0} return metrics @main_process def _report_metrics(self, eval_result_file, split_name): # TODO better way to define this coco_gt_root = os.path.join(registry.get_path("cache_root"), "coco_gt") coco_val = coco_dialogue_eval(coco_gt_root, eval_result_file, split_name) agg_metrics = coco_val.eval["CIDEr"] + coco_val.eval["Bleu_4"] log_stats = {split_name: {k: v for k, v in coco_val.eval.items()}} with open(os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a") as f: f.write(json.dumps(log_stats) + "\n") coco_res = {k: v for k, v in coco_val.eval.items()} coco_res["agg_metrics"] = agg_metrics return coco_res # TODO better structure for this. def coco_dialogue_eval(coco_gt_root, results_file, split): urls = { "val": "https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val_gt.json", "test": "https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test_gt.json", } filenames = { "val": "coco_karpathy_val_gt.json", "test": "coco_karpathy_test_gt.json", } download_url(urls[split], coco_gt_root) annotation_file = os.path.join(coco_gt_root, filenames[split]) # create coco object and coco_result object coco = COCO(annotation_file) coco_result = coco.loadRes(results_file) # create coco_eval object by taking coco and coco_result coco_eval = COCOEvalCap(coco, coco_result) # evaluate on a subset of images by setting # coco_eval.params['image_id'] = coco_result.getImgIds() # please remove this line when evaluating the full validation set # coco_eval.params['image_id'] = coco_result.getImgIds() # evaluate results # SPICE will take a few minutes the first time, but speeds up due to caching coco_eval.evaluate() # print output evaluation scores for metric, score in coco_eval.eval.items(): print(f"{metric}: {score:.3f}") return coco_eval
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ @registry.register_task("captioning") class CaptionTask(BaseTask): def __init__(self, num_beams, max_len, min_len, evaluate, report_metric=True): super().__init__() self.num_beams = num_beams self.max_len = max_len self.min_len = min_len self.evaluate = evaluate self.report_metric = report_metric @classmethod def setup_task(cls, cfg): run_cfg = cfg.run_cfg num_beams = run_cfg.num_beams max_len = run_cfg.max_len min_len = run_cfg.min_len evaluate = run_cfg.evaluate report_metric = run_cfg.get("report_metric", True) return cls( num_beams=num_beams, max_len=max_len, min_len=min_len, evaluate=evaluate, report_metric=report_metric, ) def valid_step(self, model, samples): results = [] # run_cfg = slf.cfg.run_cfg captions = model.generate( samples, use_nucleus_sampling=False, num_beams=self.num_beams, max_length=self.max_len, min_length=self.min_len, ) img_ids = samples["image_id"] for caption, img_id in zip(captions, img_ids): results.append({"caption": caption, "image_id": int(img_id)}) return results def after_evaluation(self, val_result, split_name, epoch, **kwargs): eval_result_file = self.save_result( result=val_result, result_dir=registry.get_path("result_dir"), filename="{}_epoch{}".format(split_name, epoch), remove_duplicate="image_id", ) # if self.report_metric: # metrics = self._report_metrics( # eval_result_file=eval_result_file, split_name=split_name # ) # else: # metrics = {"agg_metrics": 0.0} # return metrics @main_process def _report_metrics(self, eval_result_file, split_name): # TODO better way to define this coco_gt_root = os.path.join(registry.get_path("cache_root"), "coco_gt") coco_val = coco_caption_eval(coco_gt_root, eval_result_file, split_name) agg_metrics = coco_val.eval["CIDEr"] + coco_val.eval["Bleu_4"] log_stats = {split_name: {k: v for k, v in coco_val.eval.items()}} with open(os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a") as f: f.write(json.dumps(log_stats) + "\n") coco_res = {k: v for k, v in coco_val.eval.items()} coco_res["agg_metrics"] = agg_metrics return coco_res # TODO better structure for this. def coco_caption_eval(coco_gt_root, results_file, split): urls = { "val": "https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val_gt.json", "test": "https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test_gt.json", } filenames = { "val": "coco_karpathy_val_gt.json", "test": "coco_karpathy_test_gt.json", } download_url(urls[split], coco_gt_root) annotation_file = os.path.join(coco_gt_root, filenames[split]) # create coco object and coco_result object coco = COCO(annotation_file) coco_result = coco.loadRes(results_file) # create coco_eval object by taking coco and coco_result coco_eval = COCOEvalCap(coco, coco_result) # evaluate on a subset of images by setting # coco_eval.params['image_id'] = coco_result.getImgIds() # please remove this line when evaluating the full validation set # coco_eval.params['image_id'] = coco_result.getImgIds() # evaluate results # SPICE will take a few minutes the first time, but speeds up due to caching coco_eval.evaluate() # print output evaluation scores for metric, score in coco_eval.eval.items(): print(f"{metric}: {score:.3f}") return coco_eval
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ @registry.register_task("vqa") class VQATask(BaseTask): def __init__( self, num_beams, max_len, min_len, evaluate, num_ans_candidates, inference_method="rank", prompt="", ): super().__init__() self.num_beams = num_beams self.max_len = max_len self.min_len = min_len self.evaluate = evaluate self.inference_method = inference_method self.num_ans_candidates = num_ans_candidates self.prompt = prompt self.answer_list = None self.ques_files = dict() self.anno_files = dict() @classmethod def setup_task(cls, cfg): run_cfg = cfg.run_cfg num_beams = run_cfg.get("num_beams", 3) max_len = run_cfg.get("max_len", 10) min_len = run_cfg.get("min_len", 1) evaluate = run_cfg.get("evaluate", False) inference_method = run_cfg.get("inference_method", "rank") num_ans_candidates = run_cfg.get("num_ans_candidates", 128) prompt = run_cfg.get("prompt", "") return cls( num_beams=num_beams, max_len=max_len, min_len=min_len, evaluate=evaluate, num_ans_candidates=num_ans_candidates, inference_method=inference_method, prompt=prompt, ) def build_datasets(self, cfg): datasets = super().build_datasets(cfg) # get question file, annotation file and anwser list in COCO format for dataset in datasets.values(): for split in dataset: if hasattr(dataset[split], "coco_fmt_qust_file") and dataset[split].coco_fmt_qust_file is not None: self.ques_files[split] = dataset[split].coco_fmt_qust_file self.anno_files[split] = dataset[split].coco_fmt_anno_file try: self.answer_list = dataset[split].answer_list except AttributeError: # if answer_list is not provided, then set it to None pass if len(self.ques_files) > 0: assert len(self.ques_files) == len(self.anno_files), "Only support one split for evaluation." return datasets def valid_step(self, model, samples): answers = model.predict_answers( samples=samples, answer_list=self.answer_list, inference_method=self.inference_method, num_beams=self.num_beams, max_len=self.max_len, min_len=self.min_len, num_ans_candidates=self.num_ans_candidates, prompt=self.prompt, ) pred_qa_pairs = [] question_id = samples["question_id"] for answer, ques_id in zip(answers, question_id): ques_id = int(ques_id.item()) pred_qa_pairs.append({"question_id": ques_id, "answer": answer}) return pred_qa_pairs def after_evaluation(self, val_result, split_name, epoch): result_file = self.save_result( val_result, result_dir=registry.get_path("result_dir"), filename=f"{split_name}_%d_vqa_result" % epoch, remove_duplicate="question_id", ) metrics = self._report_metrics(result_file=result_file, split=split_name) return metrics @dist_utils.main_process def _report_metrics(self, result_file, split): """ Use official VQA evaluation script to report metrics. """ metrics = {} if split in self.ques_files and split in self.anno_files: vqa = VQA(self.anno_files[split], self.ques_files[split]) vqa_result = vqa.loadRes(resFile=result_file, quesFile=self.ques_files[split]) # create vqaEval object by taking vqa and vqaRes # n is precision of accuracy (number of places after decimal), default is 2 vqa_scorer = VQAEval(vqa, vqa_result, n=2) logging.info("Start VQA evaluation.") vqa_scorer.evaluate() # print accuracies overall_acc = vqa_scorer.accuracy["overall"] metrics["agg_metrics"] = overall_acc logging.info("Overall Accuracy is: %.02f\n" % overall_acc) logging.info("Per Answer Type Accuracy is the following:") for ans_type in vqa_scorer.accuracy["perAnswerType"]: logging.info("%s : %.02f" % (ans_type, vqa_scorer.accuracy["perAnswerType"][ans_type])) metrics[ans_type] = vqa_scorer.accuracy["perAnswerType"][ans_type] with open(os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a") as f: f.write(json.dumps(metrics) + "\n") return metrics # @registry.register_task("gqa") # GQATask = VQATask # @registry.register_task("aok_vqa") # AOKVQATask = VQATask @registry.register_task("gqa") class GQATask(VQATask): pass # def valid_step(self, model, samples): # answers = model.predict_answers( # samples=samples, # answer_list=self.answer_list, # inference_method=self.inference_method, # num_beams=self.num_beams, # max_len=self.max_len, # min_len=self.min_len, # num_ans_candidates=self.num_ans_candidates, # prompt=self.prompt, # ) # pred_qa_pairs = [] # question_id = samples["question_id"] # gt_answers = samples["answer"] # for answer, ques_id, gt_answer in zip(answers, question_id, gt_answers): # ques_id = int(ques_id.item()) # pred_qa_pairs.append({"question_id": ques_id, "pred_ans": answer, "gt_ans": gt_answer}) # return pred_qa_pairs # @dist_utils.main_process # def _report_metrics(self, result_file, split): # """ # TODO: add other evaluation metrics for GQA # """ # results = json.load(open(result_file, "r")) # acc = [] # vqa_tool = VQAEval() # for res in results: # if res["gt_ans"] is None: # prepare test results for leaderboard evaluation # self._save_result_leaderboard(results) # return # gt_ans = res["gt_ans"] # pred = res["pred_ans"] # if self.inference_method == "generate": # pred = vqa_tool.processPunctuation(pred) # pred = vqa_tool.processDigitArticle(pred) # vqa_acc = 1 if pred == gt_ans else 0 # acc.append(vqa_acc) # accuracy = sum(acc) / len(acc) * 100 # metrics = {"agg_metrics": accuracy, "acc": accuracy} # with open( # os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a" # ) as f: # f.write(json.dumps(metrics) + "\n") # logging.info(metrics) # return metrics @registry.register_task("3d_vqa") class ThreeDVQATask(VQATask): pass # def valid_step(self, model, samples): # answers = model.predict_answers( # samples=samples, # answer_list=self.answer_list, # inference_method=self.inference_method, # num_beams=self.num_beams, # max_len=self.max_len, # min_len=self.min_len, # num_ans_candidates=self.num_ans_candidates, # ) # pred_qa_pairs = [] # question_id = samples["question_id"] # gt_answers = samples["direct_answers"] # for pred_answer, ques_id, gt_answer in zip(answers, question_id, gt_answers): # pred_qa_pairs.append( # {"question_id": ques_id, "pred_ans": pred_answer, "gt_ans": gt_answer} # ) # return pred_qa_pairs # @dist_utils.main_process # def _report_metrics(self, result_file, split): # """ # Implementing accuracy computation for AOKVQA, see # https://github.com/allenai/aokvqa/blob/main/evaluation/eval_predictions.py#L45 for details. # """ # TODO add evaluation for multi-choice # results = json.load(open(result_file, "r")) # acc = [] # for res in results: # if res["gt_ans"] is None: # prepare test results for leaderboard evaluation # self._save_result_leaderboard(results) # return # pred = res["pred_ans"] # gt_ans = res["gt_ans"] # num_match = sum([pred == gt for gt in gt_ans]) # vqa_acc = min(1.0, num_match / 3.0) # acc.append(vqa_acc) # # accuracy = sum(acc) / len(acc) * 100 # metrics = {"agg_metrics": accuracy, "acc": accuracy} # with open( # os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a" # ) as f: # f.write(json.dumps(metrics) + "\n") # logging.info(metrics) # return metrics # @dist_utils.main_process # def _save_result_leaderboard(self, results): # """ # Saving the results in the format required for leaderboard evaluation. # [TODO] add support for multi-choice. # """ # result_leaderboard = dict() # for res in results: # result_leaderboard[res["question_id"]] = { # "direct_answer": res["pred_ans"], # "multiple_choice": "", # } # result_file = registry.get_path("result_dir") + "_leaderboard.json" # with open(result_file, "w") as f: # json.dump(result_leaderboard, f) # logging.info(f"Saved results for leaderboard evaluation at {result_file}")
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ @registry.register_task("vqa_reading_comprehension") class VQARCTask(VQATask): def __init__( self, num_beams, max_len, min_len, evaluate, num_ans_candidates, inference_method="rank", **kwargs, ): super().__init__(num_beams, max_len, min_len, evaluate, num_ans_candidates, inference_method) self.config = kwargs.get("config") @classmethod def setup_task(cls, cfg): run_cfg = cfg.run_cfg num_beams = run_cfg.get("num_beams", 3) max_len = run_cfg.get("max_len", 10) min_len = run_cfg.get("min_len", 1) evaluate = run_cfg.get("evaluate", False) inference_method = run_cfg.get("inference_method", "rank") num_ans_candidates = run_cfg.get("num_ans_candidates", 128) return cls( num_beams=num_beams, max_len=max_len, min_len=min_len, evaluate=evaluate, num_ans_candidates=num_ans_candidates, inference_method=inference_method, config=run_cfg, ) def valid_step(self, model, samples): answers, captions, gradcams = model.predict_answers( samples=samples, inference_method=self.inference_method, num_beams=self.num_beams, max_len=self.max_len, min_len=self.min_len, internal_bsz_fid=self.config["internal_bsz_fid"], num_captions=self.config["num_captions"], num_captions_fid=self.config["num_captions_fid"], cap_max_length=self.config["cap_max_length"], cap_min_length=self.config["cap_min_length"], top_k=self.config["top_k"], top_p=self.config["top_p"], repetition_penalty=self.config["repetition_penalty"], num_patches=self.config["num_patches"], block_num=self.config["block_num"], ) pred_qa_pairs = [] sample_captions = [] sample_gradcams = [] question_id = samples["question_id"] for answer, caption, gradcam, ques_id in zip(answers, captions, gradcams, question_id): ques_id = int(ques_id.item()) pred_qa_pairs.append({"question_id": ques_id, "answer": answer}) sample_captions.append({"question_id": ques_id, "caption": caption}) sample_gradcams.append({"question_id": ques_id, "gradcam": gradcam}) return [sample_gradcams, sample_captions, pred_qa_pairs] def after_evaluation(self, val_result, split_name, **kwargs): result_ = list(chain(*val_result[0::3])) result_file = self.save_gradcam( result_, result_dir=registry.get_path("result_dir"), filename=f"{split_name}_gradcam_result", remove_duplicate="question_id", ) result_ = list(chain(*val_result[1::3])) result_file = self.save_result( result_, result_dir=registry.get_path("result_dir"), filename=f"{split_name}_caption_result", remove_duplicate="question_id", ) result_ = list(chain(*val_result[2::3])) result_file = self.save_result( result_, result_dir=registry.get_path("result_dir"), filename=f"{split_name}_vqa_result", remove_duplicate="question_id", ) metrics = self._report_metrics(result_file=result_file, split=split_name) return metrics def save_gradcam(self, result, result_dir, filename, remove_duplicate=""): result_file = os.path.join(result_dir, "%s_rank%d.pth" % (filename, get_rank())) final_result_file = os.path.join(result_dir, "%s.pth" % filename) torch.save({"result": result}, result_file) dist.barrier() if is_main_process(): logging.warning("rank %d starts merging results." % get_rank()) # combine results from all processes result = [] for rank in range(get_world_size()): result_file = os.path.join(result_dir, "%s_rank%d.pth" % (filename, rank)) res_ckpt = torch.load(result_file, map_location="cpu") res = res_ckpt["result"] result += res if remove_duplicate: result_new = [] id_list = [] for res in result: if res[remove_duplicate] not in id_list: id_list.append(res[remove_duplicate]) result_new.append(res) result = result_new torch.save({"result": result}, final_result_file) print("result file saved to %s" % final_result_file) return final_result_file @registry.register_task("gqa_reading_comprehension") class GQARCTask(VQARCTask): def valid_step(self, model, samples): answers, captions, gradcams = model.predict_answers( samples=samples, inference_method=self.inference_method, num_beams=self.num_beams, max_len=self.max_len, min_len=self.min_len, internal_bsz_fid=self.config["internal_bsz_fid"], num_captions=self.config["num_captions"], num_captions_fid=self.config["num_captions_fid"], cap_max_length=self.config["cap_max_length"], cap_min_length=self.config["cap_min_length"], top_k=self.config["top_k"], top_p=self.config["top_p"], repetition_penalty=self.config["repetition_penalty"], num_patches=self.config["num_patches"], block_num=self.config["block_num"], ) pred_qa_pairs = [] sample_captions = [] sample_gradcams = [] question_id = samples["question_id"] gt_answers = samples["answer"] for pred_answer, caption, gradcam, ques_id, gt_answer in zip( answers, captions, gradcams, question_id, gt_answers ): ques_id = int(ques_id.item()) pred_qa_pairs.append({"question_id": ques_id, "pred_ans": pred_answer, "gt_ans": gt_answer}) sample_captions.append({"question_id": ques_id, "caption": caption}) sample_gradcams.append({"question_id": ques_id, "gradcam": gradcam}) return [sample_gradcams, sample_captions, pred_qa_pairs] @dist_utils.main_process def _report_metrics(self, result_file, split): """ TODO: add other evaluation metrics for GQA """ results = json.load(open(result_file, "r")) acc = [] vqa_tool = VQATool() for res in results: if res["gt_ans"] is None: # prepare test results for leaderboard evaluation self._save_result_leaderboard(results) return gt_ans = res["gt_ans"] pred = res["pred_ans"] if self.inference_method == "generate": pred = vqa_tool.processPunctuation(pred) pred = vqa_tool.processDigitArticle(pred) vqa_acc = 1 if pred == gt_ans else 0 acc.append(vqa_acc) accuracy = sum(acc) / len(acc) * 100 metrics = {"agg_metrics": accuracy, "acc": accuracy} with open(os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a") as f: f.write(json.dumps(metrics) + "\n") logging.info(metrics) return metrics @dist_utils.main_process def _save_result_leaderboard(self, results): """ Saving the results in the format required for leaderboard evaluation. """ result_leaderboard = [] for res in results: result_leaderboard.append( { "questionId": str(res["question_id"]), "prediction": str(res["pred_ans"]), } ) result_file = registry.get_path("result_dir") + "_leaderboard.json" with open(result_file, "w") as f: json.dump(result_leaderboard, f) logging.info(f"Saved results for leaderboard evaluation at {result_file}")
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ @registry.register_task("multimodal_classification") class MultimodalClassificationTask(BaseTask): def __init__(self): super().__init__() def valid_step(self, model, samples): results = [] outputs = model.predict(samples) predictions = outputs["predictions"] targets = outputs["targets"] predictions = predictions.max(1)[1].cpu().numpy() targets = targets.cpu().numpy() indices = samples[self.inst_id_key] for pred, tgt, index in zip(predictions, targets, indices): if isinstance(index, torch.Tensor): index = index.item() results.append( { self.inst_id_key: index, "prediction": pred.item(), "target": tgt.item(), } ) return results def after_evaluation(self, val_result, split_name, epoch, **kwargs): eval_result_file = self.save_result( result=val_result, result_dir=registry.get_path("result_dir"), filename="{}_epoch{}".format(split_name, epoch), remove_duplicate=self.inst_id_key, ) metrics = self._report_metrics(eval_result_file=eval_result_file, split_name=split_name) return metrics @main_process def _report_metrics(self, eval_result_file, split_name): results = json.load(open(eval_result_file)) predictions = np.array([res["prediction"] for res in results]) targets = np.array([res["target"] for res in results]) accuracy = (targets == predictions).sum() / targets.shape[0] metrics = {"agg_metrics": accuracy, "acc": accuracy} log_stats = {split_name: {k: v for k, v in metrics.items()}} with open(os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a") as f: f.write(json.dumps(log_stats) + "\n") logging.info(metrics) return metrics
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ decord.bridge.set_bridge("torch") MAX_INT = registry.get("MAX_INT") def load_video(video_path, n_frms=MAX_INT, height=-1, width=-1, sampling="uniform"): vr = VideoReader(uri=video_path, height=height, width=width) vlen = len(vr) start, end = 0, vlen n_frms = min(n_frms, vlen) if sampling == "uniform": indices = np.arange(start, end, vlen / n_frms).astype(int) elif sampling == "headtail": indices_h = sorted(rnd.sample(range(vlen // 2), n_frms // 2)) indices_t = sorted(rnd.sample(range(vlen // 2, vlen), n_frms // 2)) indices = indices_h + indices_t else: raise NotImplementedError # get_batch -> T, H, W, C frms = vr.get_batch(indices).permute(3, 0, 1, 2).float() # (C, T, H, W) return frms def apply_to_sample(f, sample): if len(sample) == 0: return {} def _apply(x): if torch.is_tensor(x): return f(x) elif isinstance(x, dict): return {key: _apply(value) for key, value in x.items()} elif isinstance(x, list): return [_apply(x) for x in x] else: return x return _apply(sample) def move_to_cuda(sample): def _move_to_cuda(tensor): return tensor.cuda() return apply_to_sample(_move_to_cuda, sample) def prepare_sample(samples, cuda_enabled=True): if cuda_enabled: samples = move_to_cuda(samples) # TODO fp16 support return samples def reorg_datasets_by_split(datasets): """ Organizes datasets by split. Args: datasets: dict of torch.utils.data.Dataset objects by name. Returns: Dict of datasets by split {split_name: List[Datasets]}. """ # if len(datasets) == 1: # return datasets[list(datasets.keys())[0]] # else: reorg_datasets = dict() # reorganize by split for _, dataset in datasets.items(): for split_name, dataset_split in dataset.items(): if split_name not in reorg_datasets: reorg_datasets[split_name] = [dataset_split] else: reorg_datasets[split_name].append(dataset_split) return reorg_datasets def concat_datasets(datasets): """ Concatenates multiple datasets into a single dataset. It supports may-style datasets and DataPipeline from WebDataset. Currently, does not support generic IterableDataset because it requires creating separate samplers. Now only supports conctenating training datasets and assuming validation and testing have only a single dataset. This is because metrics should not be computed on the concatenated datasets. Args: datasets: dict of torch.utils.data.Dataset objects by split. Returns: Dict of concatenated datasets by split, "train" is the concatenation of multiple datasets, "val" and "test" remain the same. If the input training datasets contain both map-style and DataPipeline datasets, returns a tuple, where the first element is a concatenated map-style dataset and the second element is a chained DataPipeline dataset. """ # concatenate datasets in the same split for split_name in datasets: if split_name != "train": assert len(datasets[split_name]) == 1, "Do not support multiple {} datasets.".format(split_name) datasets[split_name] = datasets[split_name][0] else: iterable_datasets, map_datasets = [], [] for dataset in datasets[split_name]: if isinstance(dataset, wds.DataPipeline): logging.info("Dataset {} is IterableDataset, can't be concatenated.".format(dataset)) iterable_datasets.append(dataset) elif isinstance(dataset, IterableDataset): raise NotImplementedError("Do not support concatenation of generic IterableDataset.") else: map_datasets.append(dataset) # if len(iterable_datasets) > 0: # concatenate map-style datasets and iterable-style datasets separately chained_datasets = ChainDataset(iterable_datasets) if len(iterable_datasets) > 0 else None concat_datasets = ConcatDataset(map_datasets) if len(map_datasets) > 0 else None train_datasets = concat_datasets, chained_datasets train_datasets = tuple([x for x in train_datasets if x is not None]) train_datasets = train_datasets[0] if len(train_datasets) == 1 else train_datasets datasets[split_name] = train_datasets return datasets def extract_archive(from_path, to_path=None, overwrite=False): """Extract archive. Args: from_path: the path of the archive. to_path: the root path of the extracted files (directory of from_path) overwrite: overwrite existing files (False) Returns: List of paths to extracted files even if not overwritten. Examples: >>> url = 'http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/validation.tar.gz' >>> from_path = './validation.tar.gz' >>> to_path = './' >>> torchtext.utils.download_from_url(url, from_path) >>> torchtext.utils.extract_archive(from_path, to_path) >>> ['.data/val.de', '.data/val.en'] >>> torchtext.utils.download_from_url(url, from_path) >>> torchtext.utils.extract_archive(from_path, to_path) >>> ['.data/val.de', '.data/val.en'] """ if to_path is None: to_path = os.path.dirname(from_path) if from_path.endswith((".tar.gz", ".tgz")): logging.info("Opening tar file {} to {}.".format(from_path, to_path)) with tarfile.open(from_path, "r") as tar: files = [] for file_ in tqdm(tar): file_path = os.path.join(to_path, file_.name) if file_.isfile(): files.append(file_path) if os.path.exists(file_path): logging.info("{} already extracted.".format(file_path)) if not overwrite: continue tar.extract(file_, to_path) logging.info("Finished extracting tar file {}.".format(from_path)) return files elif from_path.endswith(".zip"): assert zipfile.is_zipfile(from_path), from_path logging.info("Opening zip file {} to {}.".format(from_path, to_path)) with zipfile.ZipFile(from_path, "r") as zfile: files = [] for file_ in tqdm(zfile.namelist()): file_path = os.path.join(to_path, file_) files.append(file_path) if os.path.exists(file_path): logging.info("{} already extracted.".format(file_path)) if not overwrite: continue zfile.extract(file_, to_path) files = [f for f in files if os.path.isfile(f)] logging.info("Finished extracting zip file {}.".format(from_path)) return files elif from_path.endswith(".gz"): logging.info("Opening gz file {} to {}.".format(from_path, to_path)) default_block_size = 65536 filename = from_path[:-3] files = [filename] with gzip.open(from_path, "rb") as gzfile, open(filename, "wb") as d_file: while True: block = gzfile.read(default_block_size) if not block: break else: d_file.write(block) d_file.write(block) logging.info("Finished extracting gz file {}.".format(from_path)) return files else: raise NotImplementedError("We currently only support tar.gz, .tgz, .gz and zip achives.") def save_frames_grid(img_array, out_path): import torch from PIL import Image from torchvision.utils import make_grid if len(img_array.shape) == 3: img_array = img_array.unsqueeze(0) elif len(img_array.shape) == 5: b, t, c, h, w = img_array.shape img_array = img_array.view(-1, c, h, w) elif len(img_array.shape) == 4: pass else: raise NotImplementedError("Supports only (b,t,c,h,w)-shaped inputs. First two dimensions can be ignored.") assert img_array.shape[1] == 3, "Exepcting input shape of (H, W, 3), i.e. RGB-only." grid = make_grid(img_array) ndarr = grid.permute(1, 2, 0).to("cpu", torch.uint8).numpy() img = Image.fromarray(ndarr) img.save(out_path)
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ @registry.register_builder("imagenet") class ImageNetBuilder(BaseDatasetBuilder): train_dataset_cls = ImageFolderDataset eval_dataset_cls = ImageFolderDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/imagenet/defaults.yaml"} def _download_ann(self): pass def build(self): self.build_processors() build_info = self.config.build_info vis_info = build_info.get(self.data_type) datasets = dict() for split in build_info.splits: assert split in [ "train", "val", ], "Invalid split name {}, must be one of 'train', 'val' and 'test'." is_train = split == "train" vis_processor = self.vis_processors["train"] if is_train else self.vis_processors["eval"] vis_path = os.path.join(vis_info.storage, split) # create datasets dataset_cls = self.train_dataset_cls if is_train else self.eval_dataset_cls datasets[split] = dataset_cls( vis_processor=vis_processor, vis_root=vis_path, classnames=imagenet_classnames, ) return datasets imagenet_classnames = [ "tench", "goldfish", "great white shark", "tiger shark", "hammerhead shark", "electric ray", "stingray", "rooster", "hen", "ostrich", "brambling", "goldfinch", "house finch", "junco", "indigo bunting", "American robin", "bulbul", "jay", "magpie", "chickadee", "American dipper", "kite (bird of prey)", "bald eagle", "vulture", "great grey owl", "fire salamander", "smooth newt", "newt", "spotted salamander", "axolotl", "American bullfrog", "tree frog", "tailed frog", "loggerhead sea turtle", "leatherback sea turtle", "mud turtle", "terrapin", "box turtle", "banded gecko", "green iguana", "Carolina anole", "desert grassland whiptail lizard", "agama", "frilled-necked lizard", "alligator lizard", "Gila monster", "European green lizard", "chameleon", "Komodo dragon", "Nile crocodile", "American alligator", "triceratops", "worm snake", "ring-necked snake", "eastern hog-nosed snake", "smooth green snake", "kingsnake", "garter snake", "water snake", "vine snake", "night snake", "boa constrictor", "African rock python", "Indian cobra", "green mamba", "sea snake", "Saharan horned viper", "eastern diamondback rattlesnake", "sidewinder rattlesnake", "trilobite", "harvestman", "scorpion", "yellow garden spider", "barn spider", "European garden spider", "southern black widow", "tarantula", "wolf spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse", "prairie grouse", "peafowl", "quail", "partridge", "african grey parrot", "macaw", "sulphur-crested cockatoo", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "duck", "red-breasted merganser", "goose", "black swan", "tusker", "echidna", "platypus", "wallaby", "koala", "wombat", "jellyfish", "sea anemone", "brain coral", "flatworm", "nematode", "conch", "snail", "slug", "sea slug", "chiton", "chambered nautilus", "Dungeness crab", "rock crab", "fiddler crab", "red king crab", "American lobster", "spiny lobster", "crayfish", "hermit crab", "isopod", "white stork", "black stork", "spoonbill", "flamingo", "little blue heron", "great egret", "bittern bird", "crane bird", "limpkin", "common gallinule", "American coot", "bustard", "ruddy turnstone", "dunlin", "common redshank", "dowitcher", "oystercatcher", "pelican", "king penguin", "albatross", "grey whale", "killer whale", "dugong", "sea lion", "Chihuahua", "Japanese Chin", "Maltese", "Pekingese", "Shih Tzu", "King Charles Spaniel", "Papillon", "toy terrier", "Rhodesian Ridgeback", "Afghan Hound", "Basset Hound", "Beagle", "Bloodhound", "Bluetick Coonhound", "Black and Tan Coonhound", "Treeing Walker Coonhound", "English foxhound", "Redbone Coonhound", "borzoi", "Irish Wolfhound", "Italian Greyhound", "Whippet", "Ibizan Hound", "Norwegian Elkhound", "Otterhound", "Saluki", "Scottish Deerhound", "Weimaraner", "Staffordshire Bull Terrier", "American Staffordshire Terrier", "Bedlington Terrier", "Border Terrier", "Kerry Blue Terrier", "Irish Terrier", "Norfolk Terrier", "Norwich Terrier", "Yorkshire Terrier", "Wire Fox Terrier", "Lakeland Terrier", "Sealyham Terrier", "Airedale Terrier", "Cairn Terrier", "Australian Terrier", "Dandie Dinmont Terrier", "Boston Terrier", "Miniature Schnauzer", "Giant Schnauzer", "Standard Schnauzer", "Scottish Terrier", "Tibetan Terrier", "Australian Silky Terrier", "Soft-coated Wheaten Terrier", "West Highland White Terrier", "Lhasa Apso", "Flat-Coated Retriever", "Curly-coated Retriever", "Golden Retriever", "Labrador Retriever", "Chesapeake Bay Retriever", "German Shorthaired Pointer", "Vizsla", "English Setter", "Irish Setter", "Gordon Setter", "Brittany dog", "Clumber Spaniel", "English Springer Spaniel", "Welsh Springer Spaniel", "Cocker Spaniel", "Sussex Spaniel", "Irish Water Spaniel", "Kuvasz", "Schipperke", "Groenendael dog", "Malinois", "Briard", "Australian Kelpie", "Komondor", "Old English Sheepdog", "Shetland Sheepdog", "collie", "Border Collie", "Bouvier des Flandres dog", "Rottweiler", "German Shepherd Dog", "Dobermann", "Miniature Pinscher", "Greater Swiss Mountain Dog", "Bernese Mountain Dog", "Appenzeller Sennenhund", "Entlebucher Sennenhund", "Boxer", "Bullmastiff", "Tibetan Mastiff", "French Bulldog", "Great Dane", "St. Bernard", "husky", "Alaskan Malamute", "Siberian Husky", "Dalmatian", "Affenpinscher", "Basenji", "pug", "Leonberger", "Newfoundland dog", "Great Pyrenees dog", "Samoyed", "Pomeranian", "Chow Chow", "Keeshond", "brussels griffon", "Pembroke Welsh Corgi", "Cardigan Welsh Corgi", "Toy Poodle", "Miniature Poodle", "Standard Poodle", "Mexican hairless dog (xoloitzcuintli)", "grey wolf", "Alaskan tundra wolf", "red wolf or maned wolf", "coyote", "dingo", "dhole", "African wild dog", "hyena", "red fox", "kit fox", "Arctic fox", "grey fox", "tabby cat", "tiger cat", "Persian cat", "Siamese cat", "Egyptian Mau", "cougar", "lynx", "leopard", "snow leopard", "jaguar", "lion", "tiger", "cheetah", "brown bear", "American black bear", "polar bear", "sloth bear", "mongoose", "meerkat", "tiger beetle", "ladybug", "ground beetle", "longhorn beetle", "leaf beetle", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant", "grasshopper", "cricket insect", "stick insect", "cockroach", "praying mantis", "cicada", "leafhopper", "lacewing", "dragonfly", "damselfly", "red admiral butterfly", "ringlet butterfly", "monarch butterfly", "small white butterfly", "sulphur butterfly", "gossamer-winged butterfly", "starfish", "sea urchin", "sea cucumber", "cottontail rabbit", "hare", "Angora rabbit", "hamster", "porcupine", "fox squirrel", "marmot", "beaver", "guinea pig", "common sorrel horse", "zebra", "pig", "wild boar", "warthog", "hippopotamus", "ox", "water buffalo", "bison", "ram (adult male sheep)", "bighorn sheep", "Alpine ibex", "hartebeest", "impala (antelope)", "gazelle", "arabian camel", "llama", "weasel", "mink", "European polecat", "black-footed ferret", "otter", "skunk", "badger", "armadillo", "three-toed sloth", "orangutan", "gorilla", "chimpanzee", "gibbon", "siamang", "guenon", "patas monkey", "baboon", "macaque", "langur", "black-and-white colobus", "proboscis monkey", "marmoset", "white-headed capuchin", "howler monkey", "titi monkey", "Geoffroy's spider monkey", "common squirrel monkey", "ring-tailed lemur", "indri", "Asian elephant", "African bush elephant", "red panda", "giant panda", "snoek fish", "eel", "silver salmon", "rock beauty fish", "clownfish", "sturgeon", "gar fish", "lionfish", "pufferfish", "abacus", "abaya", "academic gown", "accordion", "acoustic guitar", "aircraft carrier", "airliner", "airship", "altar", "ambulance", "amphibious vehicle", "analog clock", "apiary", "apron", "trash can", "assault rifle", "backpack", "bakery", "balance beam", "balloon", "ballpoint pen", "Band-Aid", "banjo", "baluster / handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel", "wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "swimming cap", "bath towel", "bathtub", "station wagon", "lighthouse", "beaker", "military hat (bearskin or shako)", "beer bottle", "beer glass", "bell tower", "baby bib", "tandem bicycle", "bikini", "ring binder", "binoculars", "birdhouse", "boathouse", "bobsleigh", "bolo tie", "poke bonnet", "bookcase", "bookstore", "bottle cap", "hunting bow", "bow tie", "brass memorial plaque", "bra", "breakwater", "breastplate", "broom", "bucket", "buckle", "bulletproof vest", "high-speed train", "butcher shop", "taxicab", "cauldron", "candle", "cannon", "canoe", "can opener", "cardigan", "car mirror", "carousel", "tool kit", "cardboard box / carton", "car wheel", "automated teller machine", "cassette", "cassette player", "castle", "catamaran", "CD player", "cello", "mobile phone", "chain", "chain-link fence", "chain mail", "chainsaw", "storage chest", "chiffonier", "bell or wind chime", "china cabinet", "Christmas stocking", "church", "movie theater", "cleaver", "cliff dwelling", "cloak", "clogs", "cocktail shaker", "coffee mug", "coffeemaker", "spiral or coil", "combination lock", "computer keyboard", "candy store", "container ship", "convertible", "corkscrew", "cornet", "cowboy boot", "cowboy hat", "cradle", "construction crane", "crash helmet", "crate", "infant bed", "Crock Pot", "croquet ball", "crutch", "cuirass", "dam", "desk", "desktop computer", "rotary dial telephone", "diaper", "digital clock", "digital watch", "dining table", "dishcloth", "dishwasher", "disc brake", "dock", "dog sled", "dome", "doormat", "drilling rig", "drum", "drumstick", "dumbbell", "Dutch oven", "electric fan", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso machine", "face powder", "feather boa", "filing cabinet", "fireboat", "fire truck", "fire screen", "flagpole", "flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster bed", "freight car", "French horn", "frying pan", "fur coat", "garbage truck", "gas mask or respirator", "gas pump", "goblet", "go-kart", "golf ball", "golf cart", "gondola", "gong", "gown", "grand piano", "greenhouse", "radiator grille", "grocery store", "guillotine", "hair clip", "hair spray", "half-track", "hammer", "hamper", "hair dryer", "hand-held computer", "handkerchief", "hard disk drive", "harmonica", "harp", "combine harvester", "hatchet", "holster", "home theater", "honeycomb", "hook", "hoop skirt", "gymnastic horizontal bar", "horse-drawn vehicle", "hourglass", "iPod", "clothes iron", "carved pumpkin", "jeans", "jeep", "T-shirt", "jigsaw puzzle", "rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat", "ladle", "lampshade", "laptop computer", "lawn mower", "lens cap", "letter opener", "library", "lifeboat", "lighter", "limousine", "ocean liner", "lipstick", "slip-on shoe", "lotion", "music speaker", "loupe magnifying glass", "sawmill", "magnetic compass", "messenger bag", "mailbox", "tights", "one-piece bathing suit", "manhole cover", "maraca", "marimba", "mask", "matchstick", "maypole", "maze", "measuring cup", "medicine cabinet", "megalith", "microphone", "microwave oven", "military uniform", "milk can", "minibus", "miniskirt", "minivan", "missile", "mitten", "mixing bowl", "mobile home", "ford model t", "modem", "monastery", "monitor", "moped", "mortar and pestle", "graduation cap", "mosque", "mosquito net", "vespa", "mountain bike", "tent", "computer mouse", "mousetrap", "moving van", "muzzle", "metal nail", "neck brace", "necklace", "baby pacifier", "notebook computer", "obelisk", "oboe", "ocarina", "odometer", "oil filter", "pipe organ", "oscilloscope", "overskirt", "bullock cart", "oxygen mask", "product packet / packaging", "paddle", "paddle wheel", "padlock", "paintbrush", "pajamas", "palace", "pan flute", "paper towel", "parachute", "parallel bars", "park bench", "parking meter", "railroad car", "patio", "payphone", "pedestal", "pencil case", "pencil sharpener", "perfume", "Petri dish", "photocopier", "plectrum", "Pickelhaube", "picket fence", "pickup truck", "pier", "piggy bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate ship", "drink pitcher", "block plane", "planetarium", "plastic bag", "plate rack", "farm plow", "plunger", "Polaroid camera", "pole", "police van", "poncho", "pool table", "soda bottle", "plant pot", "potter's wheel", "power drill", "prayer rug", "printer", "prison", "missile", "projector", "hockey puck", "punching bag", "purse", "quill", "quilt", "race car", "racket", "radiator", "radio", "radio telescope", "rain barrel", "recreational vehicle", "fishing casting reel", "reflex camera", "refrigerator", "remote control", "restaurant", "revolver", "rifle", "rocking chair", "rotisserie", "eraser", "rugby ball", "ruler measuring stick", "sneaker", "safe", "safety pin", "salt shaker", "sandal", "sarong", "saxophone", "scabbard", "weighing scale", "school bus", "schooner", "scoreboard", "CRT monitor", "screw", "screwdriver", "seat belt", "sewing machine", "shield", "shoe store", "shoji screen / room divider", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "balaclava ski mask", "sleeping bag", "slide rule", "sliding door", "slot machine", "snorkel", "snowmobile", "snowplow", "soap dispenser", "soccer ball", "sock", "solar thermal collector", "sombrero", "soup bowl", "keyboard space bar", "space heater", "space shuttle", "spatula", "motorboat", "spider web", "spindle", "sports car", "spotlight", "stage", "steam locomotive", "through arch bridge", "steel drum", "stethoscope", "scarf", "stone wall", "stopwatch", "stove", "strainer", "tram", "stretcher", "couch", "stupa", "submarine", "suit", "sundial", "sunglasses", "sunglasses", "sunscreen", "suspension bridge", "mop", "sweatshirt", "swim trunks / shorts", "swing", "electrical switch", "syringe", "table lamp", "tank", "tape player", "teapot", "teddy bear", "television", "tennis ball", "thatched roof", "front curtain", "thimble", "threshing machine", "throne", "tile roof", "toaster", "tobacco shop", "toilet seat", "torch", "totem pole", "tow truck", "toy store", "tractor", "semi-trailer truck", "tray", "trench coat", "tricycle", "trimaran", "tripod", "triumphal arch", "trolleybus", "trombone", "hot tub", "turnstile", "typewriter keyboard", "umbrella", "unicycle", "upright piano", "vacuum cleaner", "vase", "vaulted or arched ceiling", "velvet fabric", "vending machine", "vestment", "viaduct", "violin", "volleyball", "waffle iron", "wall clock", "wallet", "wardrobe", "military aircraft", "sink", "washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "hair wig", "window screen", "window shade", "Windsor tie", "wine bottle", "airplane wing", "wok", "wooden spoon", "wool", "split-rail fence", "shipwreck", "sailboat", "yurt", "website", "comic book", "crossword", "traffic or street sign", "traffic light", "dust jacket", "menu", "plate", "guacamole", "consomme", "hot pot", "trifle", "ice cream", "popsicle", "baguette", "bagel", "pretzel", "cheeseburger", "hot dog", "mashed potatoes", "cabbage", "broccoli", "cauliflower", "zucchini", "spaghetti squash", "acorn squash", "butternut squash", "cucumber", "artichoke", "bell pepper", "cardoon", "mushroom", "Granny Smith apple", "strawberry", "orange", "lemon", "fig", "pineapple", "banana", "jackfruit", "cherimoya (custard apple)", "pomegranate", "hay", "carbonara", "chocolate syrup", "dough", "meatloaf", "pizza", "pot pie", "burrito", "red wine", "espresso", "tea cup", "eggnog", "mountain", "bubble", "cliff", "coral reef", "geyser", "lakeshore", "promontory", "sandbar", "beach", "valley", "volcano", "baseball player", "bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper", "corn", "acorn", "rose hip", "horse chestnut seed", "coral fungus", "agaric", "gyromitra", "stinkhorn mushroom", "earth star fungus", "hen of the woods mushroom", "bolete", "corn cob", "toilet paper", ]
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ class BaseDatasetBuilder: train_dataset_cls, eval_dataset_cls = None, None def __init__(self, cfg=None): super().__init__() if cfg is None: # help to create datasets from default config. self.config = load_dataset_config(self.default_config_path()) elif isinstance(cfg, str): self.config = load_dataset_config(cfg) else: # when called from task.build_dataset() self.config = cfg self.data_type = self.config.data_type self.vis_processors = {"train": BaseProcessor(), "eval": BaseProcessor()} self.text_processors = {"train": BaseProcessor(), "eval": BaseProcessor()} def build_datasets(self): # download, split, etc... # only called on 1 GPU/TPU in distributed # if is_main_process(): # self._download_data() if is_dist_avail_and_initialized(): dist.barrier() # at this point, all the annotations and image/videos should be all downloaded to the specified locations. logging.info("Building datasets...") datasets = self.build() # dataset['train'/'val'/'test'] return datasets def build_processors(self): vis_proc_cfg = self.config.get("vis_processor") txt_proc_cfg = self.config.get("text_processor") if vis_proc_cfg is not None: vis_train_cfg = vis_proc_cfg.get("train") vis_eval_cfg = vis_proc_cfg.get("eval") self.vis_processors["train"] = self._build_proc_from_cfg(vis_train_cfg) self.vis_processors["eval"] = self._build_proc_from_cfg(vis_eval_cfg) if txt_proc_cfg is not None: txt_train_cfg = txt_proc_cfg.get("train") txt_eval_cfg = txt_proc_cfg.get("eval") self.text_processors["train"] = self._build_proc_from_cfg(txt_train_cfg) self.text_processors["eval"] = self._build_proc_from_cfg(txt_eval_cfg) @staticmethod def _build_proc_from_cfg(cfg): return registry.get_processor_class(cfg.name).from_config(cfg) if cfg is not None else None @classmethod def default_config_path(cls, type="default"): return utils.get_abs_path(cls.DATASET_CONFIG_DICT[type]) def _download_data(self): self._download_ann() self._download_vis() def _download_ann(self): """ Download annotation files if necessary. All the vision-language datasets should have annotations of unified format. storage_path can be: (1) relative/absolute: will be prefixed with env.cache_root to make full path if relative. (2) basename/dirname: will be suffixed with base name of URL if dirname is provided. Local annotation paths should be relative. """ anns = self.config.build_info.annotations splits = anns.keys() cache_root = registry.get_path("cache_root") for split in splits: info = anns[split] urls, storage_paths = info.get("url", None), info.storage if isinstance(urls, str): urls = [urls] if isinstance(storage_paths, str): storage_paths = [storage_paths] assert len(urls) == len(storage_paths) for url_or_filename, storage_path in zip(urls, storage_paths): # if storage_path is relative, make it full by prefixing with cache_root. if not os.path.isabs(storage_path): storage_path = os.path.join(cache_root, storage_path) dirname = os.path.dirname(storage_path) if not os.path.exists(dirname): os.makedirs(dirname) if os.path.isfile(url_or_filename): src, dst = url_or_filename, storage_path if not os.path.exists(dst): shutil.copyfile(src=src, dst=dst) else: logging.info("Using existing file {}.".format(dst)) else: if os.path.isdir(storage_path): # if only dirname is provided, suffix with basename of URL. raise ValueError( "Expecting storage_path to be a file path, got directory {}".format(storage_path) ) else: filename = os.path.basename(storage_path) download_url(url=url_or_filename, root=dirname, filename=filename) def _download_vis(self): storage_path = self.config.build_info.get(self.data_type).storage storage_path = utils.get_cache_path(storage_path) if not os.path.exists(storage_path): warnings.warn( f""" The specified path {storage_path} for visual inputs does not exist. Please provide a correct path to the visual inputs or refer to datasets/download_scripts/README.md for downloading instructions. """ ) def build(self): """ Create by split datasets inheriting torch.utils.data.Datasets. # build() can be dataset-specific. Overwrite to customize. """ self.build_processors() build_info = self.config.build_info ann_info = build_info.annotations vis_info = build_info.get(self.data_type) datasets = dict() for split in ann_info.keys(): if split not in ["train", "val", "test"]: continue is_train = split == "train" # processors vis_processor = self.vis_processors["train"] if is_train else self.vis_processors["eval"] text_processor = self.text_processors["train"] if is_train else self.text_processors["eval"] # annotation path ann_paths = ann_info.get(split).storage if isinstance(ann_paths, str): ann_paths = [ann_paths] abs_ann_paths = [] for ann_path in ann_paths: if not os.path.isabs(ann_path) and not ann_path.startswith("."): ann_path = utils.get_cache_path(ann_path) abs_ann_paths.append(ann_path) ann_paths = abs_ann_paths # visual data storage path vis_path = vis_info.storage if not os.path.isabs(vis_path) and not vis_path.startswith("."): # vis_path = os.path.join(utils.get_cache_path(), vis_path) vis_path = utils.get_cache_path(vis_path) if not os.path.exists(vis_path): warnings.warn("storage path {} does not exist.".format(vis_path)) # create datasets dataset_cls = self.train_dataset_cls if is_train else self.eval_dataset_cls datasets[split] = dataset_cls( vis_processor=vis_processor, text_processor=text_processor, ann_paths=ann_paths, vis_root=vis_path, ) return datasets def load_dataset_config(cfg_path): cfg = OmegaConf.load(cfg_path).datasets cfg = cfg[list(cfg.keys())[0]] return cfg
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ class VideoQABuilder(BaseDatasetBuilder): train_dataset_cls = VideoQADataset eval_dataset_cls = VideoQADataset def build(self): datasets = super().build() ans2label = self.config.build_info.annotations.get("ans2label") if ans2label is None: raise ValueError("ans2label is not specified in build_info.") ans2label = get_cache_path(ans2label.storage) for split in datasets: datasets[split]._build_class_labels(ans2label) return datasets @registry.register_builder("msrvtt_qa") class MSRVTTQABuilder(VideoQABuilder): DATASET_CONFIG_DICT = { "default": "configs/datasets/msrvtt/defaults_qa.yaml", } @registry.register_builder("msvd_qa") class MSVDQABuilder(VideoQABuilder): DATASET_CONFIG_DICT = { "default": "configs/datasets/msvd/defaults_qa.yaml", }
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ COCOCapBuilder, MSRVTTCapBuilder, MSVDCapBuilder, VATEXCapBuilder, ) ConceptualCaption12MBuilder, ConceptualCaption3MBuilder, VGCaptionBuilder, SBUCaptionBuilder, ) NLVRBuilder, SNLIVisualEntailmentBuilder, ) MSRVTTRetrievalBuilder, DiDeMoRetrievalBuilder, COCORetrievalBuilder, Flickr30kBuilder, ) __all__ = [ "COCOCapBuilder", "COCORetrievalBuilder", "ConceptualCaption12MBuilder", "ConceptualCaption3MBuilder", "DiDeMoRetrievalBuilder", "Flickr30kBuilder", "ImageNetBuilder", "MSRVTTCapBuilder", "MSRVTTQABuilder", "MSRVTTRetrievalBuilder", "MSVDCapBuilder", "MSVDQABuilder", "NLVRBuilder", "SBUCaptionBuilder", "SNLIVisualEntailmentBuilder", "VATEXCapBuilder", "VGCaptionBuilder", "AVSDDialBuilder", ] def load_dataset(name, cfg_path=None, vis_path=None, data_type=None): """ Example >>> dataset = load_dataset("coco_caption", cfg=None) >>> splits = dataset.keys() >>> print([len(dataset[split]) for split in splits]) """ if cfg_path is None: cfg = None else: cfg = load_dataset_config(cfg_path) try: builder = registry.get_builder_class(name)(cfg) except TypeError: print(f"Dataset {name} not found. Available datasets:\n" + ", ".join([str(k) for k in dataset_zoo.get_names()])) exit(1) if vis_path is not None: if data_type is None: # use default data type in the config data_type = builder.config.data_type assert data_type in builder.config.build_info, f"Invalid data_type {data_type} for {name}." builder.config.build_info.get(data_type).storage = vis_path dataset = builder.build_datasets() return dataset class DatasetZoo: def __init__(self) -> None: self.dataset_zoo = { k: list(v.DATASET_CONFIG_DICT.keys()) for k, v in sorted(registry.mapping["builder_name_mapping"].items()) } def get_names(self): return list(self.dataset_zoo.keys()) dataset_zoo = DatasetZoo()
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ RetrievalDataset, RetrievalEvalDataset, VideoRetrievalDataset, VideoRetrievalEvalDataset, ) @registry.register_builder("msrvtt_retrieval") class MSRVTTRetrievalBuilder(BaseDatasetBuilder): train_dataset_cls = VideoRetrievalDataset eval_dataset_cls = VideoRetrievalEvalDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/msrvtt/defaults_ret.yaml"} @registry.register_builder("didemo_retrieval") class DiDeMoRetrievalBuilder(BaseDatasetBuilder): train_dataset_cls = VideoRetrievalDataset eval_dataset_cls = VideoRetrievalEvalDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/didemo/defaults_ret.yaml"} @registry.register_builder("coco_retrieval") class COCORetrievalBuilder(BaseDatasetBuilder): train_dataset_cls = RetrievalDataset eval_dataset_cls = RetrievalEvalDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/coco/defaults_ret.yaml"} @registry.register_builder("flickr30k") class Flickr30kBuilder(BaseDatasetBuilder): train_dataset_cls = RetrievalDataset eval_dataset_cls = RetrievalEvalDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/flickr30k/defaults.yaml"}
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ @registry.register_builder("3d_vqa") class ThreeDVQABuilder(BaseDatasetBuilder): train_dataset_cls = ThreeDVQADataset eval_dataset_cls = ThreeDVQAEvalDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/3dvqa/defaults.yaml"}
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ AVSDDialDataset, AVSDDialEvalDataset, ) @registry.register_builder("avsd_dialogue") class AVSDDialBuilder(BaseDatasetBuilder): train_dataset_cls = AVSDDialDataset eval_dataset_cls = AVSDDialEvalDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/avsd/defaults_dial.yaml"}
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ @registry.register_builder("conceptual_caption_3m") class ConceptualCaption3MBuilder(BaseDatasetBuilder): train_dataset_cls = ImageTextPairDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/conceptual_caption/defaults_3m.yaml"} @registry.register_builder("conceptual_caption_12m") class ConceptualCaption12MBuilder(BaseDatasetBuilder): train_dataset_cls = ImageTextPairDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/conceptual_caption/defaults_12m.yaml"} @registry.register_builder("sbu_caption") class SBUCaptionBuilder(BaseDatasetBuilder): train_dataset_cls = ImageTextPairDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/sbu_caption/defaults.yaml"} @registry.register_builder("vg_caption") class VGCaptionBuilder(BaseDatasetBuilder): train_dataset_cls = ImageTextPairDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/vg/defaults_caption.yaml"} @registry.register_builder("laion2B_multi") class Laion2BMultiBuilder(BaseDatasetBuilder): train_dataset_cls = LaionDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/laion/defaults_2B_multi.yaml"} def _download_ann(self): pass def _download_vis(self): pass def build(self): self.build_processors() build_info = self.config.build_info datasets = dict() split = "train" # laion dataset only has train split # create datasets # [NOTE] return inner_datasets (wds.DataPipeline) dataset_cls = self.train_dataset_cls datasets[split] = dataset_cls( vis_processor=self.vis_processors[split], text_processor=self.text_processors[split], location=build_info.storage, ).inner_dataset return datasets