python_code
stringlengths 0
229k
|
---|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
@registry.register_task("vqa_reading_comprehension")
class VQARCTask(VQATask):
def __init__(
self,
num_beams,
max_len,
min_len,
evaluate,
num_ans_candidates,
inference_method="rank",
**kwargs,
):
super().__init__(num_beams, max_len, min_len, evaluate, num_ans_candidates, inference_method)
self.config = kwargs.get('config')
@classmethod
def setup_task(cls, cfg):
run_cfg = cfg.run_cfg
num_beams = run_cfg.get("num_beams", 3)
max_len = run_cfg.get("max_len", 10)
min_len = run_cfg.get("min_len", 1)
evaluate = run_cfg.get("evaluate", False)
inference_method = run_cfg.get("inference_method", "rank")
num_ans_candidates = run_cfg.get("num_ans_candidates", 128)
return cls(
num_beams=num_beams,
max_len=max_len,
min_len=min_len,
evaluate=evaluate,
num_ans_candidates=num_ans_candidates,
inference_method=inference_method,
config=run_cfg,
)
def valid_step(self, model, samples):
answers, captions, gradcams = model.predict_answers(
samples=samples,
inference_method=self.inference_method,
num_beams=self.num_beams,
max_len=self.max_len,
min_len=self.min_len,
internal_bsz_fid=self.config['internal_bsz_fid'],
num_captions=self.config['num_captions'],
num_captions_fid=self.config['num_captions_fid'],
cap_max_length=self.config['cap_max_length'],
cap_min_length=self.config['cap_min_length'],
top_k=self.config['top_k'],
top_p=self.config['top_p'],
repetition_penalty=self.config['repetition_penalty'],
num_patches=self.config['num_patches'],
block_num=self.config['block_num'],
)
pred_qa_pairs = []
sample_captions = []
sample_gradcams = []
question_id = samples["question_id"]
for answer, caption, gradcam, ques_id in zip(answers, captions, gradcams, question_id):
ques_id = int(ques_id.item())
pred_qa_pairs.append({"question_id": ques_id, "answer": answer})
sample_captions.append({"question_id": ques_id, "caption": caption})
sample_gradcams.append({"question_id": ques_id, "gradcam": gradcam})
return [sample_gradcams, sample_captions, pred_qa_pairs]
def after_evaluation(self, val_result, split_name, **kwargs):
result_ = list(chain(*val_result[0::3]))
result_file = self.save_gradcam(
result_,
result_dir=registry.get_path("result_dir"),
filename=f"{split_name}_gradcam_result",
remove_duplicate="question_id",
)
result_ = list(chain(*val_result[1::3]))
result_file = self.save_result(
result_,
result_dir=registry.get_path("result_dir"),
filename=f"{split_name}_caption_result",
remove_duplicate="question_id",
)
result_ = list(chain(*val_result[2::3]))
result_file = self.save_result(
result_,
result_dir=registry.get_path("result_dir"),
filename=f"{split_name}_vqa_result",
remove_duplicate="question_id",
)
metrics = self._report_metrics(result_file=result_file, split=split_name)
return metrics
def save_gradcam(self, result, result_dir, filename, remove_duplicate=""):
result_file = os.path.join(result_dir, '%s_rank%d.pth' % (filename, get_rank()))
final_result_file = os.path.join(result_dir, '%s.pth' % filename)
torch.save({'result': result}, result_file)
dist.barrier()
if is_main_process():
logging.warning("rank %d starts merging results." % get_rank())
# combine results from all processes
result = []
for rank in range(get_world_size()):
result_file = os.path.join(result_dir, '%s_rank%d.pth' % (filename, rank))
res_ckpt = torch.load(result_file, map_location='cpu')
res = res_ckpt['result']
result += res
if remove_duplicate:
result_new = []
id_list = []
for res in result:
if res[remove_duplicate] not in id_list:
id_list.append(res[remove_duplicate])
result_new.append(res)
result = result_new
torch.save({'result': result}, final_result_file)
print("result file saved to %s" % final_result_file)
return final_result_file
@registry.register_task("gqa_reading_comprehension")
class GQARCTask(VQARCTask):
def valid_step(self, model, samples):
answers, captions, gradcams = model.predict_answers(
samples=samples,
inference_method=self.inference_method,
num_beams=self.num_beams,
max_len=self.max_len,
min_len=self.min_len,
internal_bsz_fid=self.config['internal_bsz_fid'],
num_captions=self.config['num_captions'],
num_captions_fid=self.config['num_captions_fid'],
cap_max_length=self.config['cap_max_length'],
cap_min_length=self.config['cap_min_length'],
top_k=self.config['top_k'],
top_p=self.config['top_p'],
repetition_penalty=self.config['repetition_penalty'],
num_patches=self.config['num_patches'],
block_num=self.config['block_num'],
)
pred_qa_pairs = []
sample_captions = []
sample_gradcams = []
question_id = samples["question_id"]
gt_answers = samples["answer"]
for pred_answer, caption, gradcam, ques_id, gt_answer in zip(answers, captions, gradcams, question_id, gt_answers):
ques_id = int(ques_id.item())
pred_qa_pairs.append({"question_id": ques_id, "pred_ans": pred_answer, "gt_ans": gt_answer})
sample_captions.append({"question_id": ques_id, "caption": caption})
sample_gradcams.append({"question_id": ques_id, "gradcam": gradcam})
return [sample_gradcams, sample_captions, pred_qa_pairs]
@dist_utils.main_process
def _report_metrics(self, result_file, split):
"""
TODO: add other evaluation metrics for GQA
"""
results = json.load(open(result_file, "r"))
acc = []
vqa_tool = VQATool()
for res in results:
if res["gt_ans"] is None:
# prepare test results for leaderboard evaluation
self._save_result_leaderboard(results)
return
gt_ans = res["gt_ans"]
pred = res["pred_ans"]
if self.inference_method == "generate":
pred = vqa_tool.processPunctuation(pred)
pred = vqa_tool.processDigitArticle(pred)
vqa_acc = 1 if pred == gt_ans else 0
acc.append(vqa_acc)
accuracy = sum(acc) / len(acc) * 100
metrics = {"agg_metrics": accuracy, "acc": accuracy}
with open(
os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a"
) as f:
f.write(json.dumps(metrics) + "\n")
logging.info(metrics)
return metrics
@dist_utils.main_process
def _save_result_leaderboard(self, results):
"""
Saving the results in the format required for leaderboard evaluation.
"""
result_leaderboard = []
for res in results:
result_leaderboard.append({
"questionId": str(res['question_id']),
"prediction": str(res["pred_ans"]),
})
result_file = registry.get_path("result_dir") + "_leaderboard.json"
with open(result_file, "w") as f:
json.dump(result_leaderboard, f)
logging.info(f"Saved results for leaderboard evaluation at {result_file}")
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
@registry.register_task("multimodal_classification")
class MultimodalClassificationTask(BaseTask):
def __init__(self):
super().__init__()
def valid_step(self, model, samples):
results = []
outputs = model.predict(samples)
predictions = outputs["predictions"]
targets = outputs["targets"]
predictions = predictions.max(1)[1].cpu().numpy()
targets = targets.cpu().numpy()
indices = samples[self.inst_id_key]
for pred, tgt, index in zip(predictions, targets, indices):
if isinstance(index, torch.Tensor):
index = index.item()
results.append(
{
self.inst_id_key: index,
"prediction": pred.item(),
"target": tgt.item(),
}
)
return results
def after_evaluation(self, val_result, split_name, epoch, **kwargs):
eval_result_file = self.save_result(
result=val_result,
result_dir=registry.get_path("result_dir"),
filename="{}_epoch{}".format(split_name, epoch),
remove_duplicate=self.inst_id_key,
)
metrics = self._report_metrics(
eval_result_file=eval_result_file, split_name=split_name
)
return metrics
@main_process
def _report_metrics(self, eval_result_file, split_name):
results = json.load(open(eval_result_file))
predictions = np.array([res["prediction"] for res in results])
targets = np.array([res["target"] for res in results])
accuracy = (targets == predictions).sum() / targets.shape[0]
metrics = {"agg_metrics": accuracy, "acc": accuracy}
log_stats = {split_name: {k: v for k, v in metrics.items()}}
with open(
os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a"
) as f:
f.write(json.dumps(log_stats) + "\n")
logging.info(metrics)
return metrics
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
decord.bridge.set_bridge("torch")
MAX_INT = registry.get("MAX_INT")
def load_video(video_path, n_frms=MAX_INT, height=-1, width=-1, sampling="uniform"):
vr = VideoReader(uri=video_path, height=height, width=width)
vlen = len(vr)
start, end = 0, vlen
n_frms = min(n_frms, vlen)
if sampling == "uniform":
indices = np.arange(start, end, vlen / n_frms).astype(int)
elif sampling == "headtail":
indices_h = sorted(rnd.sample(range(vlen // 2), n_frms // 2))
indices_t = sorted(rnd.sample(range(vlen // 2, vlen), n_frms // 2))
indices = indices_h + indices_t
else:
raise NotImplementedError
# get_batch -> T, H, W, C
frms = vr.get_batch(indices).permute(3, 0, 1, 2).float() # (C, T, H, W)
return frms
def apply_to_sample(f, sample):
if len(sample) == 0:
return {}
def _apply(x):
if torch.is_tensor(x):
return f(x)
elif isinstance(x, dict):
return {key: _apply(value) for key, value in x.items()}
elif isinstance(x, list):
return [_apply(x) for x in x]
else:
return x
return _apply(sample)
def move_to_cuda(sample):
def _move_to_cuda(tensor):
return tensor.cuda()
return apply_to_sample(_move_to_cuda, sample)
def prepare_sample(samples, cuda_enabled=True):
if cuda_enabled:
samples = move_to_cuda(samples)
# TODO fp16 support
return samples
def reorg_datasets_by_split(datasets):
"""
Organizes datasets by split.
Args:
datasets: dict of torch.utils.data.Dataset objects by name.
Returns:
Dict of datasets by split {split_name: List[Datasets]}.
"""
# if len(datasets) == 1:
# return datasets[list(datasets.keys())[0]]
# else:
reorg_datasets = dict()
# reorganize by split
for _, dataset in datasets.items():
for split_name, dataset_split in dataset.items():
if split_name not in reorg_datasets:
reorg_datasets[split_name] = [dataset_split]
else:
reorg_datasets[split_name].append(dataset_split)
return reorg_datasets
def concat_datasets(datasets):
"""
Concatenates multiple datasets into a single dataset.
It supports may-style datasets and DataPipeline from WebDataset. Currently, does not support
generic IterableDataset because it requires creating separate samplers.
Now only supports conctenating training datasets and assuming validation and testing
have only a single dataset. This is because metrics should not be computed on the concatenated
datasets.
Args:
datasets: dict of torch.utils.data.Dataset objects by split.
Returns:
Dict of concatenated datasets by split, "train" is the concatenation of multiple datasets,
"val" and "test" remain the same.
If the input training datasets contain both map-style and DataPipeline datasets, returns
a tuple, where the first element is a concatenated map-style dataset and the second
element is a chained DataPipeline dataset.
"""
# concatenate datasets in the same split
for split_name in datasets:
if split_name != "train":
assert (
len(datasets[split_name]) == 1
), "Do not support multiple {} datasets.".format(split_name)
datasets[split_name] = datasets[split_name][0]
else:
iterable_datasets, map_datasets = [], []
for dataset in datasets[split_name]:
if isinstance(dataset, wds.DataPipeline):
logging.info(
"Dataset {} is IterableDataset, can't be concatenated.".format(
dataset
)
)
iterable_datasets.append(dataset)
elif isinstance(dataset, IterableDataset):
raise NotImplementedError(
"Do not support concatenation of generic IterableDataset."
)
else:
map_datasets.append(dataset)
# if len(iterable_datasets) > 0:
# concatenate map-style datasets and iterable-style datasets separately
chained_datasets = (
ChainDataset(iterable_datasets) if len(iterable_datasets) > 0 else None
)
concat_datasets = (
ConcatDataset(map_datasets) if len(map_datasets) > 0 else None
)
train_datasets = concat_datasets, chained_datasets
train_datasets = tuple([x for x in train_datasets if x is not None])
train_datasets = (
train_datasets[0] if len(train_datasets) == 1 else train_datasets
)
datasets[split_name] = train_datasets
return datasets
def extract_archive(from_path, to_path=None, overwrite=False):
"""Extract archive.
Args:
from_path: the path of the archive.
to_path: the root path of the extracted files (directory of from_path)
overwrite: overwrite existing files (False)
Returns:
List of paths to extracted files even if not overwritten.
Examples:
>>> url = 'http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/validation.tar.gz'
>>> from_path = './validation.tar.gz'
>>> to_path = './'
>>> torchtext.utils.download_from_url(url, from_path)
>>> torchtext.utils.extract_archive(from_path, to_path)
>>> ['.data/val.de', '.data/val.en']
>>> torchtext.utils.download_from_url(url, from_path)
>>> torchtext.utils.extract_archive(from_path, to_path)
>>> ['.data/val.de', '.data/val.en']
"""
if to_path is None:
to_path = os.path.dirname(from_path)
if from_path.endswith((".tar.gz", ".tgz")):
logging.info("Opening tar file {} to {}.".format(from_path, to_path))
with tarfile.open(from_path, "r") as tar:
files = []
for file_ in tqdm(tar):
file_path = os.path.join(to_path, file_.name)
if file_.isfile():
files.append(file_path)
if os.path.exists(file_path):
logging.info("{} already extracted.".format(file_path))
if not overwrite:
continue
tar.extract(file_, to_path)
logging.info("Finished extracting tar file {}.".format(from_path))
return files
elif from_path.endswith(".zip"):
assert zipfile.is_zipfile(from_path), from_path
logging.info("Opening zip file {} to {}.".format(from_path, to_path))
with zipfile.ZipFile(from_path, "r") as zfile:
files = []
for file_ in tqdm(zfile.namelist()):
file_path = os.path.join(to_path, file_)
files.append(file_path)
if os.path.exists(file_path):
logging.info("{} already extracted.".format(file_path))
if not overwrite:
continue
zfile.extract(file_, to_path)
files = [f for f in files if os.path.isfile(f)]
logging.info("Finished extracting zip file {}.".format(from_path))
return files
elif from_path.endswith(".gz"):
logging.info("Opening gz file {} to {}.".format(from_path, to_path))
default_block_size = 65536
filename = from_path[:-3]
files = [filename]
with gzip.open(from_path, "rb") as gzfile, open(filename, "wb") as d_file:
while True:
block = gzfile.read(default_block_size)
if not block:
break
else:
d_file.write(block)
d_file.write(block)
logging.info("Finished extracting gz file {}.".format(from_path))
return files
else:
raise NotImplementedError(
"We currently only support tar.gz, .tgz, .gz and zip achives."
)
def save_frames_grid(img_array, out_path):
import torch
from PIL import Image
from torchvision.utils import make_grid
if len(img_array.shape) == 3:
img_array = img_array.unsqueeze(0)
elif len(img_array.shape) == 5:
b, t, c, h, w = img_array.shape
img_array = img_array.view(-1, c, h, w)
elif len(img_array.shape) == 4:
pass
else:
raise NotImplementedError(
"Supports only (b,t,c,h,w)-shaped inputs. First two dimensions can be ignored."
)
assert img_array.shape[1] == 3, "Exepcting input shape of (H, W, 3), i.e. RGB-only."
grid = make_grid(img_array)
ndarr = grid.permute(1, 2, 0).to("cpu", torch.uint8).numpy()
img = Image.fromarray(ndarr)
img.save(out_path)
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
@registry.register_builder("imagenet")
class ImageNetBuilder(BaseDatasetBuilder):
train_dataset_cls = ImageFolderDataset
eval_dataset_cls = ImageFolderDataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/imagenet/defaults.yaml"}
def _download_ann(self):
pass
def build(self):
self.build_processors()
build_info = self.config.build_info
vis_info = build_info.get(self.data_type)
datasets = dict()
for split in build_info.splits:
assert split in [
"train",
"val",
], "Invalid split name {}, must be one of 'train', 'val' and 'test'."
is_train = split == "train"
vis_processor = (
self.vis_processors["train"]
if is_train
else self.vis_processors["eval"]
)
vis_path = os.path.join(vis_info.storage, split)
# create datasets
dataset_cls = self.train_dataset_cls if is_train else self.eval_dataset_cls
datasets[split] = dataset_cls(
vis_processor=vis_processor,
vis_root=vis_path,
classnames=imagenet_classnames,
)
return datasets
imagenet_classnames = [
"tench",
"goldfish",
"great white shark",
"tiger shark",
"hammerhead shark",
"electric ray",
"stingray",
"rooster",
"hen",
"ostrich",
"brambling",
"goldfinch",
"house finch",
"junco",
"indigo bunting",
"American robin",
"bulbul",
"jay",
"magpie",
"chickadee",
"American dipper",
"kite (bird of prey)",
"bald eagle",
"vulture",
"great grey owl",
"fire salamander",
"smooth newt",
"newt",
"spotted salamander",
"axolotl",
"American bullfrog",
"tree frog",
"tailed frog",
"loggerhead sea turtle",
"leatherback sea turtle",
"mud turtle",
"terrapin",
"box turtle",
"banded gecko",
"green iguana",
"Carolina anole",
"desert grassland whiptail lizard",
"agama",
"frilled-necked lizard",
"alligator lizard",
"Gila monster",
"European green lizard",
"chameleon",
"Komodo dragon",
"Nile crocodile",
"American alligator",
"triceratops",
"worm snake",
"ring-necked snake",
"eastern hog-nosed snake",
"smooth green snake",
"kingsnake",
"garter snake",
"water snake",
"vine snake",
"night snake",
"boa constrictor",
"African rock python",
"Indian cobra",
"green mamba",
"sea snake",
"Saharan horned viper",
"eastern diamondback rattlesnake",
"sidewinder rattlesnake",
"trilobite",
"harvestman",
"scorpion",
"yellow garden spider",
"barn spider",
"European garden spider",
"southern black widow",
"tarantula",
"wolf spider",
"tick",
"centipede",
"black grouse",
"ptarmigan",
"ruffed grouse",
"prairie grouse",
"peafowl",
"quail",
"partridge",
"african grey parrot",
"macaw",
"sulphur-crested cockatoo",
"lorikeet",
"coucal",
"bee eater",
"hornbill",
"hummingbird",
"jacamar",
"toucan",
"duck",
"red-breasted merganser",
"goose",
"black swan",
"tusker",
"echidna",
"platypus",
"wallaby",
"koala",
"wombat",
"jellyfish",
"sea anemone",
"brain coral",
"flatworm",
"nematode",
"conch",
"snail",
"slug",
"sea slug",
"chiton",
"chambered nautilus",
"Dungeness crab",
"rock crab",
"fiddler crab",
"red king crab",
"American lobster",
"spiny lobster",
"crayfish",
"hermit crab",
"isopod",
"white stork",
"black stork",
"spoonbill",
"flamingo",
"little blue heron",
"great egret",
"bittern bird",
"crane bird",
"limpkin",
"common gallinule",
"American coot",
"bustard",
"ruddy turnstone",
"dunlin",
"common redshank",
"dowitcher",
"oystercatcher",
"pelican",
"king penguin",
"albatross",
"grey whale",
"killer whale",
"dugong",
"sea lion",
"Chihuahua",
"Japanese Chin",
"Maltese",
"Pekingese",
"Shih Tzu",
"King Charles Spaniel",
"Papillon",
"toy terrier",
"Rhodesian Ridgeback",
"Afghan Hound",
"Basset Hound",
"Beagle",
"Bloodhound",
"Bluetick Coonhound",
"Black and Tan Coonhound",
"Treeing Walker Coonhound",
"English foxhound",
"Redbone Coonhound",
"borzoi",
"Irish Wolfhound",
"Italian Greyhound",
"Whippet",
"Ibizan Hound",
"Norwegian Elkhound",
"Otterhound",
"Saluki",
"Scottish Deerhound",
"Weimaraner",
"Staffordshire Bull Terrier",
"American Staffordshire Terrier",
"Bedlington Terrier",
"Border Terrier",
"Kerry Blue Terrier",
"Irish Terrier",
"Norfolk Terrier",
"Norwich Terrier",
"Yorkshire Terrier",
"Wire Fox Terrier",
"Lakeland Terrier",
"Sealyham Terrier",
"Airedale Terrier",
"Cairn Terrier",
"Australian Terrier",
"Dandie Dinmont Terrier",
"Boston Terrier",
"Miniature Schnauzer",
"Giant Schnauzer",
"Standard Schnauzer",
"Scottish Terrier",
"Tibetan Terrier",
"Australian Silky Terrier",
"Soft-coated Wheaten Terrier",
"West Highland White Terrier",
"Lhasa Apso",
"Flat-Coated Retriever",
"Curly-coated Retriever",
"Golden Retriever",
"Labrador Retriever",
"Chesapeake Bay Retriever",
"German Shorthaired Pointer",
"Vizsla",
"English Setter",
"Irish Setter",
"Gordon Setter",
"Brittany dog",
"Clumber Spaniel",
"English Springer Spaniel",
"Welsh Springer Spaniel",
"Cocker Spaniel",
"Sussex Spaniel",
"Irish Water Spaniel",
"Kuvasz",
"Schipperke",
"Groenendael dog",
"Malinois",
"Briard",
"Australian Kelpie",
"Komondor",
"Old English Sheepdog",
"Shetland Sheepdog",
"collie",
"Border Collie",
"Bouvier des Flandres dog",
"Rottweiler",
"German Shepherd Dog",
"Dobermann",
"Miniature Pinscher",
"Greater Swiss Mountain Dog",
"Bernese Mountain Dog",
"Appenzeller Sennenhund",
"Entlebucher Sennenhund",
"Boxer",
"Bullmastiff",
"Tibetan Mastiff",
"French Bulldog",
"Great Dane",
"St. Bernard",
"husky",
"Alaskan Malamute",
"Siberian Husky",
"Dalmatian",
"Affenpinscher",
"Basenji",
"pug",
"Leonberger",
"Newfoundland dog",
"Great Pyrenees dog",
"Samoyed",
"Pomeranian",
"Chow Chow",
"Keeshond",
"brussels griffon",
"Pembroke Welsh Corgi",
"Cardigan Welsh Corgi",
"Toy Poodle",
"Miniature Poodle",
"Standard Poodle",
"Mexican hairless dog (xoloitzcuintli)",
"grey wolf",
"Alaskan tundra wolf",
"red wolf or maned wolf",
"coyote",
"dingo",
"dhole",
"African wild dog",
"hyena",
"red fox",
"kit fox",
"Arctic fox",
"grey fox",
"tabby cat",
"tiger cat",
"Persian cat",
"Siamese cat",
"Egyptian Mau",
"cougar",
"lynx",
"leopard",
"snow leopard",
"jaguar",
"lion",
"tiger",
"cheetah",
"brown bear",
"American black bear",
"polar bear",
"sloth bear",
"mongoose",
"meerkat",
"tiger beetle",
"ladybug",
"ground beetle",
"longhorn beetle",
"leaf beetle",
"dung beetle",
"rhinoceros beetle",
"weevil",
"fly",
"bee",
"ant",
"grasshopper",
"cricket insect",
"stick insect",
"cockroach",
"praying mantis",
"cicada",
"leafhopper",
"lacewing",
"dragonfly",
"damselfly",
"red admiral butterfly",
"ringlet butterfly",
"monarch butterfly",
"small white butterfly",
"sulphur butterfly",
"gossamer-winged butterfly",
"starfish",
"sea urchin",
"sea cucumber",
"cottontail rabbit",
"hare",
"Angora rabbit",
"hamster",
"porcupine",
"fox squirrel",
"marmot",
"beaver",
"guinea pig",
"common sorrel horse",
"zebra",
"pig",
"wild boar",
"warthog",
"hippopotamus",
"ox",
"water buffalo",
"bison",
"ram (adult male sheep)",
"bighorn sheep",
"Alpine ibex",
"hartebeest",
"impala (antelope)",
"gazelle",
"arabian camel",
"llama",
"weasel",
"mink",
"European polecat",
"black-footed ferret",
"otter",
"skunk",
"badger",
"armadillo",
"three-toed sloth",
"orangutan",
"gorilla",
"chimpanzee",
"gibbon",
"siamang",
"guenon",
"patas monkey",
"baboon",
"macaque",
"langur",
"black-and-white colobus",
"proboscis monkey",
"marmoset",
"white-headed capuchin",
"howler monkey",
"titi monkey",
"Geoffroy's spider monkey",
"common squirrel monkey",
"ring-tailed lemur",
"indri",
"Asian elephant",
"African bush elephant",
"red panda",
"giant panda",
"snoek fish",
"eel",
"silver salmon",
"rock beauty fish",
"clownfish",
"sturgeon",
"gar fish",
"lionfish",
"pufferfish",
"abacus",
"abaya",
"academic gown",
"accordion",
"acoustic guitar",
"aircraft carrier",
"airliner",
"airship",
"altar",
"ambulance",
"amphibious vehicle",
"analog clock",
"apiary",
"apron",
"trash can",
"assault rifle",
"backpack",
"bakery",
"balance beam",
"balloon",
"ballpoint pen",
"Band-Aid",
"banjo",
"baluster / handrail",
"barbell",
"barber chair",
"barbershop",
"barn",
"barometer",
"barrel",
"wheelbarrow",
"baseball",
"basketball",
"bassinet",
"bassoon",
"swimming cap",
"bath towel",
"bathtub",
"station wagon",
"lighthouse",
"beaker",
"military hat (bearskin or shako)",
"beer bottle",
"beer glass",
"bell tower",
"baby bib",
"tandem bicycle",
"bikini",
"ring binder",
"binoculars",
"birdhouse",
"boathouse",
"bobsleigh",
"bolo tie",
"poke bonnet",
"bookcase",
"bookstore",
"bottle cap",
"hunting bow",
"bow tie",
"brass memorial plaque",
"bra",
"breakwater",
"breastplate",
"broom",
"bucket",
"buckle",
"bulletproof vest",
"high-speed train",
"butcher shop",
"taxicab",
"cauldron",
"candle",
"cannon",
"canoe",
"can opener",
"cardigan",
"car mirror",
"carousel",
"tool kit",
"cardboard box / carton",
"car wheel",
"automated teller machine",
"cassette",
"cassette player",
"castle",
"catamaran",
"CD player",
"cello",
"mobile phone",
"chain",
"chain-link fence",
"chain mail",
"chainsaw",
"storage chest",
"chiffonier",
"bell or wind chime",
"china cabinet",
"Christmas stocking",
"church",
"movie theater",
"cleaver",
"cliff dwelling",
"cloak",
"clogs",
"cocktail shaker",
"coffee mug",
"coffeemaker",
"spiral or coil",
"combination lock",
"computer keyboard",
"candy store",
"container ship",
"convertible",
"corkscrew",
"cornet",
"cowboy boot",
"cowboy hat",
"cradle",
"construction crane",
"crash helmet",
"crate",
"infant bed",
"Crock Pot",
"croquet ball",
"crutch",
"cuirass",
"dam",
"desk",
"desktop computer",
"rotary dial telephone",
"diaper",
"digital clock",
"digital watch",
"dining table",
"dishcloth",
"dishwasher",
"disc brake",
"dock",
"dog sled",
"dome",
"doormat",
"drilling rig",
"drum",
"drumstick",
"dumbbell",
"Dutch oven",
"electric fan",
"electric guitar",
"electric locomotive",
"entertainment center",
"envelope",
"espresso machine",
"face powder",
"feather boa",
"filing cabinet",
"fireboat",
"fire truck",
"fire screen",
"flagpole",
"flute",
"folding chair",
"football helmet",
"forklift",
"fountain",
"fountain pen",
"four-poster bed",
"freight car",
"French horn",
"frying pan",
"fur coat",
"garbage truck",
"gas mask or respirator",
"gas pump",
"goblet",
"go-kart",
"golf ball",
"golf cart",
"gondola",
"gong",
"gown",
"grand piano",
"greenhouse",
"radiator grille",
"grocery store",
"guillotine",
"hair clip",
"hair spray",
"half-track",
"hammer",
"hamper",
"hair dryer",
"hand-held computer",
"handkerchief",
"hard disk drive",
"harmonica",
"harp",
"combine harvester",
"hatchet",
"holster",
"home theater",
"honeycomb",
"hook",
"hoop skirt",
"gymnastic horizontal bar",
"horse-drawn vehicle",
"hourglass",
"iPod",
"clothes iron",
"carved pumpkin",
"jeans",
"jeep",
"T-shirt",
"jigsaw puzzle",
"rickshaw",
"joystick",
"kimono",
"knee pad",
"knot",
"lab coat",
"ladle",
"lampshade",
"laptop computer",
"lawn mower",
"lens cap",
"letter opener",
"library",
"lifeboat",
"lighter",
"limousine",
"ocean liner",
"lipstick",
"slip-on shoe",
"lotion",
"music speaker",
"loupe magnifying glass",
"sawmill",
"magnetic compass",
"messenger bag",
"mailbox",
"tights",
"one-piece bathing suit",
"manhole cover",
"maraca",
"marimba",
"mask",
"matchstick",
"maypole",
"maze",
"measuring cup",
"medicine cabinet",
"megalith",
"microphone",
"microwave oven",
"military uniform",
"milk can",
"minibus",
"miniskirt",
"minivan",
"missile",
"mitten",
"mixing bowl",
"mobile home",
"ford model t",
"modem",
"monastery",
"monitor",
"moped",
"mortar and pestle",
"graduation cap",
"mosque",
"mosquito net",
"vespa",
"mountain bike",
"tent",
"computer mouse",
"mousetrap",
"moving van",
"muzzle",
"metal nail",
"neck brace",
"necklace",
"baby pacifier",
"notebook computer",
"obelisk",
"oboe",
"ocarina",
"odometer",
"oil filter",
"pipe organ",
"oscilloscope",
"overskirt",
"bullock cart",
"oxygen mask",
"product packet / packaging",
"paddle",
"paddle wheel",
"padlock",
"paintbrush",
"pajamas",
"palace",
"pan flute",
"paper towel",
"parachute",
"parallel bars",
"park bench",
"parking meter",
"railroad car",
"patio",
"payphone",
"pedestal",
"pencil case",
"pencil sharpener",
"perfume",
"Petri dish",
"photocopier",
"plectrum",
"Pickelhaube",
"picket fence",
"pickup truck",
"pier",
"piggy bank",
"pill bottle",
"pillow",
"ping-pong ball",
"pinwheel",
"pirate ship",
"drink pitcher",
"block plane",
"planetarium",
"plastic bag",
"plate rack",
"farm plow",
"plunger",
"Polaroid camera",
"pole",
"police van",
"poncho",
"pool table",
"soda bottle",
"plant pot",
"potter's wheel",
"power drill",
"prayer rug",
"printer",
"prison",
"missile",
"projector",
"hockey puck",
"punching bag",
"purse",
"quill",
"quilt",
"race car",
"racket",
"radiator",
"radio",
"radio telescope",
"rain barrel",
"recreational vehicle",
"fishing casting reel",
"reflex camera",
"refrigerator",
"remote control",
"restaurant",
"revolver",
"rifle",
"rocking chair",
"rotisserie",
"eraser",
"rugby ball",
"ruler measuring stick",
"sneaker",
"safe",
"safety pin",
"salt shaker",
"sandal",
"sarong",
"saxophone",
"scabbard",
"weighing scale",
"school bus",
"schooner",
"scoreboard",
"CRT monitor",
"screw",
"screwdriver",
"seat belt",
"sewing machine",
"shield",
"shoe store",
"shoji screen / room divider",
"shopping basket",
"shopping cart",
"shovel",
"shower cap",
"shower curtain",
"ski",
"balaclava ski mask",
"sleeping bag",
"slide rule",
"sliding door",
"slot machine",
"snorkel",
"snowmobile",
"snowplow",
"soap dispenser",
"soccer ball",
"sock",
"solar thermal collector",
"sombrero",
"soup bowl",
"keyboard space bar",
"space heater",
"space shuttle",
"spatula",
"motorboat",
"spider web",
"spindle",
"sports car",
"spotlight",
"stage",
"steam locomotive",
"through arch bridge",
"steel drum",
"stethoscope",
"scarf",
"stone wall",
"stopwatch",
"stove",
"strainer",
"tram",
"stretcher",
"couch",
"stupa",
"submarine",
"suit",
"sundial",
"sunglasses",
"sunglasses",
"sunscreen",
"suspension bridge",
"mop",
"sweatshirt",
"swim trunks / shorts",
"swing",
"electrical switch",
"syringe",
"table lamp",
"tank",
"tape player",
"teapot",
"teddy bear",
"television",
"tennis ball",
"thatched roof",
"front curtain",
"thimble",
"threshing machine",
"throne",
"tile roof",
"toaster",
"tobacco shop",
"toilet seat",
"torch",
"totem pole",
"tow truck",
"toy store",
"tractor",
"semi-trailer truck",
"tray",
"trench coat",
"tricycle",
"trimaran",
"tripod",
"triumphal arch",
"trolleybus",
"trombone",
"hot tub",
"turnstile",
"typewriter keyboard",
"umbrella",
"unicycle",
"upright piano",
"vacuum cleaner",
"vase",
"vaulted or arched ceiling",
"velvet fabric",
"vending machine",
"vestment",
"viaduct",
"violin",
"volleyball",
"waffle iron",
"wall clock",
"wallet",
"wardrobe",
"military aircraft",
"sink",
"washing machine",
"water bottle",
"water jug",
"water tower",
"whiskey jug",
"whistle",
"hair wig",
"window screen",
"window shade",
"Windsor tie",
"wine bottle",
"airplane wing",
"wok",
"wooden spoon",
"wool",
"split-rail fence",
"shipwreck",
"sailboat",
"yurt",
"website",
"comic book",
"crossword",
"traffic or street sign",
"traffic light",
"dust jacket",
"menu",
"plate",
"guacamole",
"consomme",
"hot pot",
"trifle",
"ice cream",
"popsicle",
"baguette",
"bagel",
"pretzel",
"cheeseburger",
"hot dog",
"mashed potatoes",
"cabbage",
"broccoli",
"cauliflower",
"zucchini",
"spaghetti squash",
"acorn squash",
"butternut squash",
"cucumber",
"artichoke",
"bell pepper",
"cardoon",
"mushroom",
"Granny Smith apple",
"strawberry",
"orange",
"lemon",
"fig",
"pineapple",
"banana",
"jackfruit",
"cherimoya (custard apple)",
"pomegranate",
"hay",
"carbonara",
"chocolate syrup",
"dough",
"meatloaf",
"pizza",
"pot pie",
"burrito",
"red wine",
"espresso",
"tea cup",
"eggnog",
"mountain",
"bubble",
"cliff",
"coral reef",
"geyser",
"lakeshore",
"promontory",
"sandbar",
"beach",
"valley",
"volcano",
"baseball player",
"bridegroom",
"scuba diver",
"rapeseed",
"daisy",
"yellow lady's slipper",
"corn",
"acorn",
"rose hip",
"horse chestnut seed",
"coral fungus",
"agaric",
"gyromitra",
"stinkhorn mushroom",
"earth star fungus",
"hen of the woods mushroom",
"bolete",
"corn cob",
"toilet paper",
]
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class BaseDatasetBuilder:
train_dataset_cls, eval_dataset_cls = None, None
def __init__(self, cfg=None):
super().__init__()
if cfg is None:
# help to create datasets from default config.
self.config = load_dataset_config(self.default_config_path())
elif isinstance(cfg, str):
self.config = load_dataset_config(cfg)
else:
# when called from task.build_dataset()
self.config = cfg
self.data_type = self.config.data_type
self.vis_processors = {"train": BaseProcessor(), "eval": BaseProcessor()}
self.text_processors = {"train": BaseProcessor(), "eval": BaseProcessor()}
def build_datasets(self):
# download, split, etc...
# only called on 1 GPU/TPU in distributed
if is_main_process():
self._download_data()
if is_dist_avail_and_initialized():
dist.barrier()
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
logging.info("Building datasets...")
datasets = self.build() # dataset['train'/'val'/'test']
return datasets
def build_processors(self):
vis_proc_cfg = self.config.get("vis_processor")
txt_proc_cfg = self.config.get("text_processor")
if vis_proc_cfg is not None:
vis_train_cfg = vis_proc_cfg.get("train")
vis_eval_cfg = vis_proc_cfg.get("eval")
self.vis_processors["train"] = self._build_proc_from_cfg(vis_train_cfg)
self.vis_processors["eval"] = self._build_proc_from_cfg(vis_eval_cfg)
if txt_proc_cfg is not None:
txt_train_cfg = txt_proc_cfg.get("train")
txt_eval_cfg = txt_proc_cfg.get("eval")
self.text_processors["train"] = self._build_proc_from_cfg(txt_train_cfg)
self.text_processors["eval"] = self._build_proc_from_cfg(txt_eval_cfg)
@staticmethod
def _build_proc_from_cfg(cfg):
return (
registry.get_processor_class(cfg.name).from_config(cfg)
if cfg is not None
else None
)
@classmethod
def default_config_path(cls, type="default"):
return utils.get_abs_path(cls.DATASET_CONFIG_DICT[type])
def _download_data(self):
self._download_ann()
self._download_vis()
def _download_ann(self):
"""
Download annotation files if necessary.
All the vision-language datasets should have annotations of unified format.
storage_path can be:
(1) relative/absolute: will be prefixed with env.cache_root to make full path if relative.
(2) basename/dirname: will be suffixed with base name of URL if dirname is provided.
Local annotation paths should be relative.
"""
anns = self.config.build_info.annotations
splits = anns.keys()
cache_root = registry.get_path("cache_root")
for split in splits:
info = anns[split]
urls, storage_paths = info.get("url", None), info.storage
if isinstance(urls, str):
urls = [urls]
if isinstance(storage_paths, str):
storage_paths = [storage_paths]
assert len(urls) == len(storage_paths)
for url_or_filename, storage_path in zip(urls, storage_paths):
# if storage_path is relative, make it full by prefixing with cache_root.
if not os.path.isabs(storage_path):
storage_path = os.path.join(cache_root, storage_path)
dirname = os.path.dirname(storage_path)
if not os.path.exists(dirname):
os.makedirs(dirname)
if os.path.isfile(url_or_filename):
src, dst = url_or_filename, storage_path
if not os.path.exists(dst):
shutil.copyfile(src=src, dst=dst)
else:
logging.info("Using existing file {}.".format(dst))
else:
if os.path.isdir(storage_path):
# if only dirname is provided, suffix with basename of URL.
raise ValueError(
"Expecting storage_path to be a file path, got directory {}".format(
storage_path
)
)
else:
filename = os.path.basename(storage_path)
download_url(url=url_or_filename, root=dirname, filename=filename)
def _download_vis(self):
storage_path = self.config.build_info.get(self.data_type).storage
storage_path = utils.get_cache_path(storage_path)
if not os.path.exists(storage_path):
warnings.warn(
f"""
The specified path {storage_path} for visual inputs does not exist.
Please provide a correct path to the visual inputs or
refer to datasets/download_scripts/README.md for downloading instructions.
"""
)
def build(self):
"""
Create by split datasets inheriting torch.utils.data.Datasets.
# build() can be dataset-specific. Overwrite to customize.
"""
self.build_processors()
build_info = self.config.build_info
ann_info = build_info.annotations
vis_info = build_info.get(self.data_type)
datasets = dict()
for split in ann_info.keys():
if split not in ["train", "val", "test"]:
continue
is_train = split == "train"
# processors
vis_processor = (
self.vis_processors["train"]
if is_train
else self.vis_processors["eval"]
)
text_processor = (
self.text_processors["train"]
if is_train
else self.text_processors["eval"]
)
# annotation path
ann_paths = ann_info.get(split).storage
if isinstance(ann_paths, str):
ann_paths = [ann_paths]
abs_ann_paths = []
for ann_path in ann_paths:
if not os.path.isabs(ann_path):
ann_path = utils.get_cache_path(ann_path)
abs_ann_paths.append(ann_path)
ann_paths = abs_ann_paths
# visual data storage path
vis_path = vis_info.storage
if not os.path.isabs(vis_path):
# vis_path = os.path.join(utils.get_cache_path(), vis_path)
vis_path = utils.get_cache_path(vis_path)
if not os.path.exists(vis_path):
warnings.warn("storage path {} does not exist.".format(vis_path))
# create datasets
dataset_cls = self.train_dataset_cls if is_train else self.eval_dataset_cls
datasets[split] = dataset_cls(
vis_processor=vis_processor,
text_processor=text_processor,
ann_paths=ann_paths,
vis_root=vis_path,
)
return datasets
def load_dataset_config(cfg_path):
cfg = OmegaConf.load(cfg_path).datasets
cfg = cfg[list(cfg.keys())[0]]
return cfg
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class VideoQABuilder(BaseDatasetBuilder):
train_dataset_cls = VideoQADataset
eval_dataset_cls = VideoQADataset
def build(self):
datasets = super().build()
ans2label = self.config.build_info.annotations.get("ans2label")
if ans2label is None:
raise ValueError("ans2label is not specified in build_info.")
ans2label = get_cache_path(ans2label.storage)
for split in datasets:
datasets[split]._build_class_labels(ans2label)
return datasets
@registry.register_builder("msrvtt_qa")
class MSRVTTQABuilder(VideoQABuilder):
DATASET_CONFIG_DICT = {
"default": "configs/datasets/msrvtt/defaults_qa.yaml",
}
@registry.register_builder("msvd_qa")
class MSVDQABuilder(VideoQABuilder):
DATASET_CONFIG_DICT = {
"default": "configs/datasets/msvd/defaults_qa.yaml",
}
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
COCOCapBuilder,
MSRVTTCapBuilder,
MSVDCapBuilder,
VATEXCapBuilder,
)
ConceptualCaption12MBuilder,
ConceptualCaption3MBuilder,
VGCaptionBuilder,
SBUCaptionBuilder,
)
NLVRBuilder,
SNLIVisualEntailmentBuilder,
)
COCOVQABuilder,
OKVQABuilder,
VGVQABuilder,
GQABuilder,
)
MSRVTTRetrievalBuilder,
DiDeMoRetrievalBuilder,
COCORetrievalBuilder,
Flickr30kBuilder,
)
__all__ = [
"COCOCapBuilder",
"COCORetrievalBuilder",
"COCOVQABuilder",
"ConceptualCaption12MBuilder",
"ConceptualCaption3MBuilder",
"DiDeMoRetrievalBuilder",
"Flickr30kBuilder",
"GQABuilder",
"ImageNetBuilder",
"MSRVTTCapBuilder",
"MSRVTTQABuilder",
"MSRVTTRetrievalBuilder",
"MSVDCapBuilder",
"MSVDQABuilder",
"NLVRBuilder",
"OKVQABuilder",
"SBUCaptionBuilder",
"SNLIVisualEntailmentBuilder",
"VATEXCapBuilder",
"VGCaptionBuilder",
"VGVQABuilder",
"AVSDDialBuilder",
]
def load_dataset(name, cfg_path=None, vis_path=None, data_type=None):
"""
Example
>>> dataset = load_dataset("coco_caption", cfg=None)
>>> splits = dataset.keys()
>>> print([len(dataset[split]) for split in splits])
"""
if cfg_path is None:
cfg = None
else:
cfg = load_dataset_config(cfg_path)
try:
builder = registry.get_builder_class(name)(cfg)
except TypeError:
print(
f"Dataset {name} not found. Available datasets:\n"
+ ", ".join([str(k) for k in dataset_zoo.get_names()])
)
exit(1)
if vis_path is not None:
if data_type is None:
# use default data type in the config
data_type = builder.config.data_type
assert (
data_type in builder.config.build_info
), f"Invalid data_type {data_type} for {name}."
builder.config.build_info.get(data_type).storage = vis_path
dataset = builder.build_datasets()
return dataset
class DatasetZoo:
def __init__(self) -> None:
self.dataset_zoo = {
k: list(v.DATASET_CONFIG_DICT.keys())
for k, v in sorted(registry.mapping["builder_name_mapping"].items())
}
def get_names(self):
return list(self.dataset_zoo.keys())
dataset_zoo = DatasetZoo()
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
RetrievalDataset,
RetrievalEvalDataset,
VideoRetrievalDataset,
VideoRetrievalEvalDataset,
)
@registry.register_builder("msrvtt_retrieval")
class MSRVTTRetrievalBuilder(BaseDatasetBuilder):
train_dataset_cls = VideoRetrievalDataset
eval_dataset_cls = VideoRetrievalEvalDataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/msrvtt/defaults_ret.yaml"}
@registry.register_builder("didemo_retrieval")
class DiDeMoRetrievalBuilder(BaseDatasetBuilder):
train_dataset_cls = VideoRetrievalDataset
eval_dataset_cls = VideoRetrievalEvalDataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/didemo/defaults_ret.yaml"}
@registry.register_builder("coco_retrieval")
class COCORetrievalBuilder(BaseDatasetBuilder):
train_dataset_cls = RetrievalDataset
eval_dataset_cls = RetrievalEvalDataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/coco/defaults_ret.yaml"}
@registry.register_builder("flickr30k")
class Flickr30kBuilder(BaseDatasetBuilder):
train_dataset_cls = RetrievalDataset
eval_dataset_cls = RetrievalEvalDataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/flickr30k/defaults.yaml"}
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
@registry.register_builder("coco_vqa")
class COCOVQABuilder(BaseDatasetBuilder):
train_dataset_cls = COCOVQADataset
eval_dataset_cls = COCOVQAEvalDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/coco/defaults_vqa.yaml",
"eval": "configs/datasets/coco/eval_vqa.yaml",
}
@registry.register_builder("vg_vqa")
class VGVQABuilder(BaseDatasetBuilder):
train_dataset_cls = VGVQADataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/vg/defaults_vqa.yaml"}
@registry.register_builder("ok_vqa")
class OKVQABuilder(COCOVQABuilder):
DATASET_CONFIG_DICT = {
"default": "configs/datasets/okvqa/defaults.yaml",
}
@registry.register_builder("aok_vqa")
class AOKVQABuilder(BaseDatasetBuilder):
train_dataset_cls = AOKVQADataset
eval_dataset_cls = AOKVQAEvalDataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/aokvqa/defaults.yaml"}
@registry.register_builder("gqa")
class GQABuilder(BaseDatasetBuilder):
train_dataset_cls = GQADataset
eval_dataset_cls = GQAEvalDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/gqa/defaults.yaml",
"balanced_val": "configs/datasets/gqa/balanced_val.yaml",
"balanced_testdev": "configs/datasets/gqa/balanced_testdev.yaml",
} |
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
AVSDDialDataset,
AVSDDialEvalDataset,
)
@registry.register_builder("avsd_dialogue")
class AVSDDialBuilder(BaseDatasetBuilder):
train_dataset_cls = AVSDDialDataset
eval_dataset_cls = AVSDDialEvalDataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/avsd/defaults_dial.yaml"}
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
@registry.register_builder("conceptual_caption_3m")
class ConceptualCaption3MBuilder(BaseDatasetBuilder):
train_dataset_cls = ImageTextPairDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/conceptual_caption/defaults_3m.yaml"
}
@registry.register_builder("conceptual_caption_12m")
class ConceptualCaption12MBuilder(BaseDatasetBuilder):
train_dataset_cls = ImageTextPairDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/conceptual_caption/defaults_12m.yaml"
}
@registry.register_builder("sbu_caption")
class SBUCaptionBuilder(BaseDatasetBuilder):
train_dataset_cls = ImageTextPairDataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/sbu_caption/defaults.yaml"}
@registry.register_builder("vg_caption")
class VGCaptionBuilder(BaseDatasetBuilder):
train_dataset_cls = ImageTextPairDataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/vg/defaults_caption.yaml"}
@registry.register_builder("laion2B_multi")
class Laion2BMultiBuilder(BaseDatasetBuilder):
train_dataset_cls = LaionDataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/laion/defaults_2B_multi.yaml"}
def _download_ann(self):
pass
def _download_vis(self):
pass
def build(self):
self.build_processors()
build_info = self.config.build_info
datasets = dict()
split = "train" # laion dataset only has train split
# create datasets
# [NOTE] return inner_datasets (wds.DataPipeline)
dataset_cls = self.train_dataset_cls
datasets[split] = dataset_cls(
vis_processor=self.vis_processors[split],
text_processor=self.text_processors[split],
location=build_info.storage,
).inner_dataset
return datasets
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
COCOCapDataset,
COCOCapEvalDataset,
NoCapsEvalDataset,
)
VideoCaptionDataset,
VideoCaptionEvalDataset,
)
@registry.register_builder("coco_caption")
class COCOCapBuilder(BaseDatasetBuilder):
train_dataset_cls = COCOCapDataset
eval_dataset_cls = COCOCapEvalDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/coco/defaults_cap.yaml",
}
@registry.register_builder("nocaps")
class COCOCapBuilder(BaseDatasetBuilder):
eval_dataset_cls = NoCapsEvalDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/nocaps/defaults.yaml",
}
@registry.register_builder("msrvtt_caption")
class MSRVTTCapBuilder(BaseDatasetBuilder):
train_dataset_cls = VideoCaptionDataset
eval_dataset_cls = VideoCaptionEvalDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/msrvtt/defaults_cap.yaml",
}
@registry.register_builder("msvd_caption")
class MSVDCapBuilder(BaseDatasetBuilder):
train_dataset_cls = VideoCaptionDataset
eval_dataset_cls = VideoCaptionEvalDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/msvd/defaults_cap.yaml",
}
@registry.register_builder("vatex_caption")
class VATEXCapBuilder(BaseDatasetBuilder):
train_dataset_cls = VideoCaptionDataset
eval_dataset_cls = VideoCaptionEvalDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/vatex/defaults_cap.yaml",
}
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
@registry.register_builder("nlvr")
class NLVRBuilder(BaseDatasetBuilder):
train_dataset_cls = NLVRDataset
eval_dataset_cls = NLVREvalDataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/nlvr/defaults.yaml"}
@registry.register_builder("snli_ve")
class SNLIVisualEntailmentBuilder(BaseDatasetBuilder):
train_dataset_cls = SNLIVisualEntialmentDataset
eval_dataset_cls = SNLIVisualEntialmentDataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/snli_ve/defaults.yaml"}
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class ImageFolderDataset(BaseDataset):
def __init__(self, vis_processor, vis_root, classnames=[], **kwargs):
super().__init__(vis_processor=vis_processor, vis_root=vis_root)
self.inner_dataset = datasets.ImageFolder(vis_root)
self.annotation = [
{"image": elem[0], "label": elem[1], "image_id": elem[0]}
for elem in self.inner_dataset.imgs
]
self.classnames = classnames
self._add_instance_ids()
def __len__(self):
return len(self.inner_dataset)
def __getitem__(self, index):
ann = self.annotation[index]
img_fn = ann["image"]
image_path = os.path.join(self.vis_root, img_fn)
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
return {
"image": image,
"label": ann["label"],
"image_id": ann["image_id"],
"instance_id": ann["instance_id"],
}
def displ_item(self, index):
sample, ann = self.__getitem__(index), self.annotation[index]
return OrderedDict(
{
"file": ann["image"],
"label": self.classnames[ann["label"]],
"image": sample["image"],
}
)
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class LaionDataset(BaseDataset):
def __init__(self, vis_processor, text_processor, location):
super().__init__(vis_processor=vis_processor, text_processor=text_processor)
self.inner_dataset = wds.DataPipeline(
wds.ResampledShards(location),
wds.tarfile_to_samples(handler=wds.warn_and_continue),
wds.shuffle(1000, handler=wds.warn_and_continue),
wds.decode("pilrgb", handler=wds.warn_and_continue),
wds.to_tuple("jpg", "json", handler=wds.warn_and_continue),
wds.map_tuple(self.vis_processor, handler=wds.warn_and_continue),
wds.map(self.to_dict, handler=wds.warn_and_continue),
)
def to_dict(self, sample):
return {
"image": sample[0],
"text_input": self.text_processor(sample[1]["caption"]),
}
if __name__ == "__main__":
from torchvision import transforms
def to_image_text_pair(sample):
return sample[0], sample[1]["caption"]
normalize = transforms.Normalize(
(0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)
)
transform_train = transforms.Compose(
[
transforms.RandomResizedCrop(256, scale=(0.2, 1.0)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]
)
dataset = LaionDataset(
vis_processor=transform_train,
text_processor=lambda x: x,
location="/export/laion/laion2B-multi/part-00000/{00000..01743}.tar",
)
import torch
loader = torch.utils.data.DataLoader(dataset.inner_dataset, batch_size=2)
print(next(iter(loader))["text_input"])
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class BaseDataset(Dataset):
def __init__(
self, vis_processor=None, text_processor=None, vis_root=None, ann_paths=[]
):
"""
vis_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
"""
self.vis_root = vis_root
self.annotation = []
for ann_path in ann_paths:
self.annotation.extend(json.load(open(ann_path, "r")))
self.vis_processor = vis_processor
self.text_processor = text_processor
self._add_instance_ids()
def __len__(self):
return len(self.annotation)
def collater(self, samples):
return default_collate(samples)
def set_processors(self, vis_processor, text_processor):
self.vis_processor = vis_processor
self.text_processor = text_processor
def _add_instance_ids(self, key="instance_id"):
for idx, ann in enumerate(self.annotation):
ann[key] = str(idx)
class ConcatDataset(ConcatDataset):
def __init__(self, datasets: Iterable[Dataset]) -> None:
super().__init__(datasets)
def collater(self, samples):
# TODO For now only supports datasets with same underlying collater implementations
all_keys = set()
for s in samples:
all_keys.update(s)
shared_keys = all_keys
for s in samples:
shared_keys = shared_keys & set(s.keys())
samples_shared_keys = []
for s in samples:
samples_shared_keys.append({k: s[k] for k in s.keys() if k in shared_keys})
return self.datasets[0].collater(samples_shared_keys)
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
MultimodalClassificationDataset,
)
class __DisplMixin:
def displ_item(self, index):
sample, ann = self.__getitem__(index), self.annotation[index]
return OrderedDict(
{
"file_L": ann["images"][0],
"file_R": ann["images"][1],
"sentence": ann["sentence"],
"label": ann["label"],
"image": [sample["image0"], sample["image1"]],
}
)
class NLVRDataset(MultimodalClassificationDataset, __DisplMixin):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
self.class_labels = self._build_class_labels()
def _build_class_labels(self):
return {"False": 0, "True": 1}
@staticmethod
def _flip(samples):
sentence = samples["text_input"]
image0, image1 = samples["image0"], samples["image1"]
if "left" not in sentence and "right" not in sentence:
if random.random() < 0.5:
image0, image1 = image1, image0
else:
if random.random() < 0.5:
sentence = sentence.replace("left", "[TEMP_TOKEN]")
sentence = sentence.replace("right", "left")
sentence = sentence.replace("[TEMP_TOKEN]", "right")
image0, image1 = image1, image0
samples["text_input"] = sentence
samples["image0"] = image0
samples["image1"] = image1
return samples
def __getitem__(self, index):
ann = self.annotation[index]
image0_path = os.path.join(self.vis_root, ann["images"][0])
image0 = Image.open(image0_path).convert("RGB")
image0 = self.vis_processor(image0)
image1_path = os.path.join(self.vis_root, ann["images"][1])
image1 = Image.open(image1_path).convert("RGB")
image1 = self.vis_processor(image1)
sentence = self.text_processor(ann["sentence"])
label = self.class_labels[ann["label"]]
return self._flip(
{
"image0": image0,
"image1": image1,
"text_input": sentence,
"label": label,
# "image_id": ann["image_id"],
"instance_id": ann["instance_id"],
}
)
class NLVREvalDataset(NLVRDataset):
@staticmethod
def _flip(samples):
return samples
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class MultiIterLoader:
"""
A simple wrapper for iterating over multiple iterators.
Args:
loaders (List[Loader]): List of Iterator loaders.
ratios (List[float]): List of ratios to sample from each loader. If None, all loaders are sampled uniformly.
"""
def __init__(self, loaders, ratios=None):
# assert all loaders has __next__ method
for loader in loaders:
assert hasattr(
loader, "__next__"
), "Loader {} has no __next__ method.".format(loader)
if ratios is None:
ratios = [1.0] * len(loaders)
else:
assert len(ratios) == len(loaders)
ratios = [float(ratio) / sum(ratios) for ratio in ratios]
self.loaders = loaders
self.ratios = ratios
def __next__(self):
# random sample from each loader by ratio
loader_idx = random.choices(range(len(self.loaders)), self.ratios, k=1)[0]
return next(self.loaders[loader_idx])
class PrefetchLoader(object):
"""
Modified from https://github.com/ChenRocks/UNITER.
overlap compute and cuda data transfer
(copied and then modified from nvidia apex)
"""
def __init__(self, loader):
self.loader = loader
self.stream = torch.cuda.Stream()
def __iter__(self):
loader_it = iter(self.loader)
self.preload(loader_it)
batch = self.next(loader_it)
while batch is not None:
is_tuple = isinstance(batch, tuple)
if is_tuple:
task, batch = batch
if is_tuple:
yield task, batch
else:
yield batch
batch = self.next(loader_it)
def __len__(self):
return len(self.loader)
def preload(self, it):
try:
self.batch = next(it)
except StopIteration:
self.batch = None
return
# if record_stream() doesn't work, another option is to make sure
# device inputs are created on the main stream.
# self.next_input_gpu = torch.empty_like(self.next_input,
# device='cuda')
# self.next_target_gpu = torch.empty_like(self.next_target,
# device='cuda')
# Need to make sure the memory allocated for next_* is not still in use
# by the main stream at the time we start copying to next_*:
# self.stream.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(self.stream):
self.batch = move_to_cuda(self.batch)
# more code for the alternative if record_stream() doesn't work:
# copy_ will record the use of the pinned source tensor in this
# side stream.
# self.next_input_gpu.copy_(self.next_input, non_blocking=True)
# self.next_target_gpu.copy_(self.next_target, non_blocking=True)
# self.next_input = self.next_input_gpu
# self.next_target = self.next_target_gpu
def next(self, it):
torch.cuda.current_stream().wait_stream(self.stream)
batch = self.batch
if batch is not None:
record_cuda_stream(batch)
self.preload(it)
return batch
def __getattr__(self, name):
method = self.loader.__getattribute__(name)
return method
def record_cuda_stream(batch):
if isinstance(batch, torch.Tensor):
batch.record_stream(torch.cuda.current_stream())
elif isinstance(batch, list) or isinstance(batch, tuple):
for t in batch:
record_cuda_stream(t)
elif isinstance(batch, dict):
for t in batch.values():
record_cuda_stream(t)
else:
pass
class IterLoader:
"""
A wrapper to convert DataLoader as an infinite iterator.
Modified from:
https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/iter_based_runner.py
"""
def __init__(self, dataloader: DataLoader, use_distributed: bool = False):
self._dataloader = dataloader
self.iter_loader = iter(self._dataloader)
self._use_distributed = use_distributed
self._epoch = 0
@property
def epoch(self) -> int:
return self._epoch
def __next__(self):
try:
data = next(self.iter_loader)
except StopIteration:
self._epoch += 1
if hasattr(self._dataloader.sampler, "set_epoch") and self._use_distributed:
self._dataloader.sampler.set_epoch(self._epoch)
time.sleep(2) # Prevent possible deadlock during epoch transition
self.iter_loader = iter(self._dataloader)
data = next(self.iter_loader)
return data
def __iter__(self):
return self
def __len__(self):
return len(self._dataloader)
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class VGVQADataset(VQADataset):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
def __getitem__(self, index):
ann = self.annotation[index]
image_path = os.path.join(self.vis_root, ann["image"])
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
question = self.text_processor(ann["question"])
answers = [ann["answer"]]
# TODO this should be configured better
weights = [0.2]
return {
"image": image,
"text_input": question,
"answers": answers,
"weights": weights,
}
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class MultimodalClassificationDataset(BaseDataset):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
self.class_labels = None
@abstractmethod
def _build_class_labels(self):
pass
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class __DisplMixin:
def displ_item(self, index):
sample, ann = self.__getitem__(index), self.annotation[index]
return OrderedDict(
{
"file": os.path.basename(ann["image"]),
"caption": ann["caption"],
"image": sample["image"],
}
)
class ImageTextPairDataset(BaseDataset, __DisplMixin):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
"""
vis_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
"""
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
def __getitem__(self, index):
# TODO this assumes image input, not general enough
ann = self.annotation[index]
image_path = os.path.join(self.vis_root, ann["image"])
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
caption = self.text_processor(ann["caption"])
return {"image": image, "text_input": caption}
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class VideoCaptionDataset(CaptionDataset):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
"""
vis_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
split (string): val or test
"""
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
def __getitem__(self, index):
ann = self.annotation[index]
vname = ann["video"]
video_path = os.path.join(self.vis_root, vname)
video = self.vis_processor(video_path)
caption = self.text_processor(ann["caption"])
# "image_id" is kept to stay compatible with the COCO evaluation format
return {
"video": video,
"text_input": caption,
"image_id": self.img_ids[ann["image_id"]],
}
class VideoCaptionEvalDataset(BaseDataset):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
"""
vis_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
split (string): val or test
"""
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
def __getitem__(self, index):
ann = self.annotation[index]
vname = ann["video"]
video_path = os.path.join(self.vis_root, vname)
video = self.vis_processor(video_path)
return {
"video": video,
"image_id": ann["image_id"],
"instance_id": ann["instance_id"],
}
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
MultimodalClassificationDataset,
)
class __DisplMixin:
def displ_item(self, index):
ann = self.annotation[index]
vname = ann["video"]
vpath = os.path.join(self.vis_root, vname)
return OrderedDict(
{"file": vpath, "question": ann["question"], "answer": ann["answer"]}
)
class VideoQADataset(MultimodalClassificationDataset, __DisplMixin):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
def _build_class_labels(self, ans_path):
ans2label = json.load(open(ans_path))
self.class_labels = ans2label
def _get_answer_label(self, answer):
if answer in self.class_labels:
return self.class_labels[answer]
else:
return len(self.class_labels)
def __getitem__(self, index):
assert (
self.class_labels
), f"class_labels of {__class__.__name__} is not built yet."
ann = self.annotation[index]
vname = ann["video"]
vpath = os.path.join(self.vis_root, vname)
frms = self.vis_processor(vpath)
question = self.text_processor(ann["question"])
return {
"video": frms,
"text_input": question,
"answers": self._get_answer_label(ann["answer"]),
"question_id": ann["question_id"],
"instance_id": ann["instance_id"],
}
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class __DisplMixin:
def displ_item(self, index):
sample, ann = self.__getitem__(index), self.annotation[index]
return OrderedDict(
{
"file": ann["image"],
"dialogue": ann["dialogue"],
"image": sample["image"],
}
)
class DialogueDataset(BaseDataset, __DisplMixin):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
"""
vis_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
"""
self.vis_root = vis_root
self.annotation = []
for ann_path in ann_paths:
dialogs = json.load(open(ann_path, "r"))["dialogs"]
for dialog in dialogs:
all_turns = dialog["dialog"]
dialogue_context = []
for turn in all_turns:
dialog_instance = copy.deepcopy(dialog)
question = turn["question"]
answer = turn["answer"]
dialog_instance["dialog"] = copy.deepcopy(dialogue_context)
dialog_instance["question"] = question
dialog_instance["answer"] = answer
self.annotation.append(dialog_instance)
dialogue_context.append(turn)
self.vis_processor = vis_processor
self.text_processor = text_processor
self._add_instance_ids()
self.img_ids = {}
n = 0
for ann in self.annotation:
img_id = ann["image_id"]
if img_id not in self.img_ids.keys():
self.img_ids[img_id] = n
n += 1
def __getitem__(self, index):
ann = self.annotation[index]
image_path = os.path.join(self.vis_root, ann["image"])
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
caption = self.text_processor(ann["caption"])
return {
"image": image,
"text_input": caption,
"image_id": self.img_ids[ann["image_id"]],
}
class DialogueEvalDataset(BaseDataset, __DisplMixin):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
"""
vis_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
split (string): val or test
"""
self.vis_root = vis_root
self.annotation = []
for ann_path in ann_paths:
dialogs = json.load(open(ann_path, "r"))["dialogs"]
for dialog in dialogs:
all_turns = dialog["dialog"]
dialogue_context = all_turns[:-1]
last_turn = all_turns[-1]
question = last_turn["question"]
answer = last_turn["answer"]
dialog["dialog"] = dialogue_context
dialog["question"] = question
dialog["answer"] = answer
self.annotation.append(dialog)
self.vis_processor = vis_processor
self.text_processor = text_processor
self._add_instance_ids()
self.img_ids = {}
n = 0
for ann in self.annotation:
img_id = ann["image_id"]
if img_id not in self.img_ids.keys():
self.img_ids[img_id] = n
n += 1
def __getitem__(self, index):
ann = self.annotation[index]
image_path = os.path.join(self.vis_root, ann["image"])
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
return {
"image": image,
"image_id": ann["image_id"],
"instance_id": ann["instance_id"],
}
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
ImageFile.LOAD_TRUNCATED_IMAGES = True
COCOCapDataset = CaptionDataset
class COCOCapEvalDataset(CaptionEvalDataset):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
"""
vis_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
split (string): val or test
"""
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
def __getitem__(self, index):
ann = self.annotation[index]
image_path = os.path.join(self.vis_root, ann["image"])
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
img_id = ann["image"].split("/")[-1].strip(".jpg").split("_")[-1]
return {
"image": image,
"image_id": img_id,
"instance_id": ann["instance_id"],
}
class NoCapsEvalDataset(CaptionEvalDataset):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
"""
vis_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
split (string): val or test
"""
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
def __getitem__(self, index):
ann = self.annotation[index]
image_path = os.path.join(self.vis_root, ann["image"])
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
img_id = ann["img_id"]
return {
"image": image,
"image_id": img_id,
"instance_id": ann["instance_id"],
}
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class __DisplMixin:
def displ_item(self, index):
sample, ann = self.__getitem__(index), self.annotation[index]
return OrderedDict(
{
"file": ann["image"],
"question": ann["question"],
"question_id": ann["question_id"],
"direct_answers": "; ".join(ann["direct_answers"]),
"choices": "; ".join(ann["choices"]),
"correct_choice": ann["choices"][ann["correct_choice_idx"]],
"image": sample["image"],
}
)
class AOKVQADataset(VQADataset, __DisplMixin):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
def __getitem__(self, index):
ann = self.annotation[index]
image_path = os.path.join(self.vis_root, ann["image"])
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
question = self.text_processor(ann["question"])
answer_key = "direct_answers"
answer_weight = {}
for answer in ann[answer_key]:
if answer in answer_weight.keys():
answer_weight[answer] += 1 / len(ann[answer_key])
else:
answer_weight[answer] = 1 / len(ann[answer_key])
answers = list(answer_weight.keys())
weights = list(answer_weight.values())
return {
"image": image,
"text_input": question,
"answers": answers,
"weights": weights,
}
class AOKVQAEvalDataset(VQAEvalDataset, __DisplMixin):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
"""
vis_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
"""
self.vis_root = vis_root
self.annotation = json.load(open(ann_paths[0]))
answer_list_path = ann_paths[1]
if os.path.exists(answer_list_path):
self.answer_list = json.load(open(answer_list_path))
else:
self.answer_list = None
try:
self.coco_fmt_qust_file = ann_paths[2]
self.coco_fmt_anno_file = ann_paths[3]
except IndexError:
self.coco_fmt_qust_file = None
self.coco_fmt_anno_file = None
self.vis_processor = vis_processor
self.text_processor = text_processor
self._add_instance_ids()
def collater(self, samples):
(
image_list,
question_list,
question_id_list,
instance_id_list,
choices_list,
correct_choice_idx_list,
direct_answers_list,
) = ([], [], [], [], [], [], [])
for sample in samples:
image_list.append(sample["image"])
question_list.append(sample["text_input"])
question_id_list.append(sample["question_id"])
instance_id_list.append(sample["instance_id"])
choices_list.append(sample["choices"])
correct_choice_idx_list.append(sample["correct_choice_idx"])
direct_answers_list.append(sample["direct_answers"])
return {
"image": torch.stack(image_list, dim=0),
"text_input": question_list,
"question_id": question_id_list,
"instance_id": instance_id_list,
"choices": choices_list,
"correct_choice_idx": correct_choice_idx_list,
"direct_answers": direct_answers_list,
}
def __getitem__(self, index):
ann = self.annotation[index]
image_path = os.path.join(self.vis_root, ann["image"])
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
question = self.text_processor(ann["question"])
choices = ann["choices"]
if "correct_choice_idx" in ann:
correct_choice_idx = ann["correct_choice_idx"]
else:
correct_choice_idx = None
if "direct_answers" in ann:
direct_answers = ann["direct_answers"]
else:
direct_answers = None
return {
"image": image,
"text_input": question,
"question_id": ann["question_id"],
"instance_id": ann["instance_id"],
"choices": choices,
"correct_choice_idx": correct_choice_idx,
"direct_answers": direct_answers,
}
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
MultimodalClassificationDataset,
)
class __DisplMixin:
def displ_item(self, index):
sample, ann = self.__getitem__(index), self.annotation[index]
return OrderedDict(
{
"file": os.path.basename(ann["image"]),
"sentence": ann["sentence"],
"label": ann["label"],
"image": sample["image"],
}
)
class SNLIVisualEntialmentDataset(MultimodalClassificationDataset, __DisplMixin):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
self.class_labels = self._build_class_labels()
def _build_class_labels(self):
return {"contradiction": 0, "neutral": 1, "entailment": 2}
def __getitem__(self, index):
ann = self.annotation[index]
image_id = ann["image"]
image_path = os.path.join(self.vis_root, "%s.jpg" % image_id)
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
sentence = self.text_processor(ann["sentence"])
return {
"image": image,
"text_input": sentence,
"label": self.class_labels[ann["label"]],
"image_id": image_id,
"instance_id": ann["instance_id"],
}
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class VQADataset(BaseDataset):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
def collater(self, samples):
image_list, question_list, answer_list, weight_list = [], [], [], []
num_answers = []
for sample in samples:
image_list.append(sample["image"])
question_list.append(sample["text_input"])
weight_list.extend(sample["weights"])
answers = sample["answers"]
answer_list.extend(answers)
num_answers.append(len(answers))
return {
"image": torch.stack(image_list, dim=0),
"text_input": question_list,
"answer": answer_list,
"weight": torch.Tensor(weight_list),
"n_answers": torch.LongTensor(num_answers),
}
class VQAEvalDataset(BaseDataset):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class __DisplMixin:
def displ_item(self, index):
sample, ann = self.__getitem__(index), self.annotation[index]
return OrderedDict(
{
"file": ann["image"],
"question": ann["question"],
"question_id": ann["question_id"],
"answers": "; ".join(ann["answer"]),
"image": sample["image"],
}
)
class COCOVQADataset(VQADataset, __DisplMixin):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
def __getitem__(self, index):
ann = self.annotation[index]
image_path = os.path.join(self.vis_root, ann["image"])
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
question = self.text_processor(ann["question"])
answer_weight = {}
for answer in ann["answer"]:
if answer in answer_weight.keys():
answer_weight[answer] += 1 / len(ann["answer"])
else:
answer_weight[answer] = 1 / len(ann["answer"])
answers = list(answer_weight.keys())
weights = list(answer_weight.values())
return {
"image": image,
"text_input": question,
"answers": answers,
"weights": weights,
}
class COCOVQAEvalDataset(VQAEvalDataset, __DisplMixin):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
"""
vis_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
"""
self.vis_root = vis_root
self.annotation = json.load(open(ann_paths[0]))
answer_list_path = ann_paths[1]
if os.path.exists(answer_list_path):
self.answer_list = json.load(open(answer_list_path))
else:
self.answer_list = None
try:
self.coco_fmt_qust_file = ann_paths[2]
self.coco_fmt_anno_file = ann_paths[3]
except IndexError:
self.coco_fmt_qust_file = None
self.coco_fmt_anno_file = None
self.vis_processor = vis_processor
self.text_processor = text_processor
self._add_instance_ids()
def __getitem__(self, index):
ann = self.annotation[index]
image_path = os.path.join(self.vis_root, ann["image"])
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
question = self.text_processor(ann["question"])
return {
"image": image,
"text_input": question,
"question_id": ann["question_id"],
"instance_id": ann["instance_id"],
}
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class __DisplMixin:
def displ_item(self, index):
sample, ann = self.__getitem__(index), self.annotation[index]
return OrderedDict(
{
"file": ann["image"],
"question": ann["question"],
"question_id": ann["question_id"],
"answers": "; ".join(ann["answer"]),
"image": sample["image"],
}
)
class GQADataset(VQADataset, __DisplMixin):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
def __getitem__(self, index):
ann = self.annotation[index]
image_path = os.path.join(self.vis_root, ann["image"])
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
question = self.text_processor(ann["question"])
answers = [ann["answer"]]
weights = [1]
return {
"image": image,
"text_input": question,
"answers": answers,
"weights": weights,
}
class GQAEvalDataset(VQAEvalDataset, __DisplMixin):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
"""
vis_root (string): Root directory of images (e.g. gqa/images/)
ann_root (string): directory to store the annotation file
"""
self.vis_root = vis_root
self.annotation = json.load(open(ann_paths[0]))
## TODO: support inference method == 'ranking'
answer_list_path = ann_paths[1] if len(ann_paths) > 1 else ''
if os.path.exists(answer_list_path):
self.answer_list = json.load(open(answer_list_path))
else:
self.answer_list = None
self.vis_processor = vis_processor
self.text_processor = text_processor
self._add_instance_ids()
def __getitem__(self, index):
ann = self.annotation[index]
image_path = os.path.join(self.vis_root, ann["image"])
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
question = self.text_processor(ann["question"])
if "answer" in ann:
# answer is a string
answer = ann["answer"]
else:
answer = None
return {
"image": image,
"text_input": question,
"answer": answer,
"question_id": ann["question_id"],
"instance_id": ann["instance_id"],
}
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
DialogueDataset,
DialogueEvalDataset,
)
class AVSDDialDataset(DialogueDataset):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
"""
vis_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
split (string): val or test
"""
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
def __getitem__(self, index):
ann = self.annotation[index]
vname = ann["image_id"]
video = self.vis_processor(self.vis_root, vname)
dialogue = self.text_processor(ann)
# "image_id" is kept to stay compatible with the COCO evaluation format
return {
"video_fts": video["video_fts"],
"video_token_type_ids": video["token_type_ids"],
"input_ids": dialogue["input_ids"],
"token_type_ids": dialogue["token_type_ids"],
"labels": dialogue["labels"],
"image_id": ann["image_id"],
"instance_id": ann["instance_id"],
}
def collater(self, samples):
input_ids, token_type_ids, labels, video_fts, video_token_type_ids = (
[],
[],
[],
[],
[],
)
for i in samples:
input_ids.append(i["input_ids"])
token_type_ids.append(i["token_type_ids"])
labels.append(i["labels"])
video_fts.append(i["video_fts"])
video_token_type_ids.append(i["video_token_type_ids"])
input_ids = self.text_processor.padding(input_ids)
labels = self.text_processor.padding(
labels, -1
) # ignore token indice -1 by default
video_fts = self.vis_processor.padding(video_fts)
token_type_ids = self.text_processor.padding(token_type_ids)
video_token_type_ids = self.text_processor.padding(video_token_type_ids)
token_type_ids = torch.cat([video_token_type_ids, token_type_ids], dim=1)
attn_mask = self.text_processor.get_attention_mask(input_ids)
video_mask = self.vis_processor.get_attention_mask(video_fts)
attn_mask = torch.cat([video_mask, attn_mask], dim=1)
video_labels = (
torch.ones((video_fts.size(0), video_fts.size(1))).long() * -1
) # ignore token indice -1 by default
labels = torch.cat([video_labels, labels], dim=1)
samples = {}
samples["input_ids"] = input_ids
samples["token_type_ids"] = token_type_ids
samples["labels"] = labels
samples["video_fts"] = video_fts
samples["attn_mask"] = attn_mask
return samples
class AVSDDialEvalDataset(DialogueEvalDataset):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
"""
vis_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
split (string): val or test
"""
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
def __getitem__(self, index):
ann = self.annotation[index]
vname = ann["image_id"]
video = self.vis_processor(self.vis_root, vname)
dialogue = self.text_processor(ann)
# "image_id" is kept to stay compatible with the COCO evaluation format
return {
"video_fts": video["video_fts"],
"video_token_type_ids": video["token_type_ids"],
"input_ids": dialogue["input_ids"],
"token_type_ids": dialogue["token_type_ids"],
"labels": dialogue["labels"],
"image_id": ann["image_id"],
"instance_id": ann["instance_id"],
}
def collater(self, samples):
input_ids, token_type_ids, labels, video_fts, video_token_type_ids = (
[],
[],
[],
[],
[],
)
for i in samples:
input_ids.append(i["input_ids"])
token_type_ids.append(i["token_type_ids"])
labels.append(i["labels"])
video_fts.append(i["video_fts"])
video_token_type_ids.append(i["video_token_type_ids"])
input_ids = self.text_processor.padding(input_ids)
labels = self.text_processor.padding(
labels, -1
) # ignore token indice -1 by default
video_fts = self.vis_processor.padding(video_fts)
token_type_ids = self.text_processor.padding(token_type_ids)
video_token_type_ids = self.text_processor.padding(video_token_type_ids)
token_type_ids = torch.cat([video_token_type_ids, token_type_ids], dim=1)
attn_mask = self.text_processor.get_attention_mask(input_ids)
video_mask = self.vis_processor.get_attention_mask(video_fts)
attn_mask = torch.cat([video_mask, attn_mask], dim=1)
video_labels = (
torch.ones((video_fts.size(0), video_fts.size(1))).long() * -1
) # ignore token indice -1 by default
labels = torch.cat([video_labels, labels], dim=1)
samples = {}
samples["input_ids"] = input_ids
samples["token_type_ids"] = token_type_ids
samples["labels"] = labels
samples["video_fts"] = video_fts
samples["attn_mask"] = attn_mask
return samples
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class __DisplMixin:
def displ_item(self, index):
sample, ann = self.__getitem__(index), self.annotation[index]
return OrderedDict(
{
"file": ann["image"],
"caption": ann["caption"],
"image": sample["image"],
}
)
class CaptionDataset(BaseDataset, __DisplMixin):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
"""
vis_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
"""
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
self.img_ids = {}
n = 0
for ann in self.annotation:
img_id = ann["image_id"]
if img_id not in self.img_ids.keys():
self.img_ids[img_id] = n
n += 1
def __getitem__(self, index):
# TODO this assumes image input, not general enough
ann = self.annotation[index]
image_path = os.path.join(self.vis_root, ann["image"])
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
caption = self.text_processor(ann["caption"])
return {
"image": image,
"text_input": caption,
"image_id": self.img_ids[ann["image_id"]],
}
class CaptionEvalDataset(BaseDataset, __DisplMixin):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
"""
vis_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
split (string): val or test
"""
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
def __getitem__(self, index):
ann = self.annotation[index]
image_path = os.path.join(self.vis_root, ann["image"])
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
return {
"image": image,
"image_id": ann["image_id"],
"instance_id": ann["instance_id"],
}
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class __DisplMixin:
def displ_item(self, index):
sample, ann = self.__getitem__(index), self.annotation[index]
visual_key = "image" if "image" in ann else "video"
return OrderedDict(
{
"file": ann[visual_key],
"caption": ann["caption"],
visual_key: sample[visual_key],
}
)
class RetrievalDataset(BaseDataset, __DisplMixin):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
"""
vis_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
"""
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
self.img_ids = {}
n = 0
for ann in self.annotation:
img_id = ann["image_id"]
if img_id not in self.img_ids.keys():
self.img_ids[img_id] = n
n += 1
def __getitem__(self, index):
ann = self.annotation[index]
image_path = os.path.join(self.vis_root, ann["image"])
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
caption = self.text_processor(ann["caption"])
return {
"image": image,
"text_input": caption,
"image_id": self.img_ids[ann["image_id"]],
"instance_id": ann["instance_id"],
}
class RetrievalEvalDataset(BaseDataset, __DisplMixin):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
"""
vis_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
split (string): val or test
"""
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
self.text = []
self.image = []
self.txt2img = {}
self.img2txt = {}
txt_id = 0
for img_id, ann in enumerate(self.annotation):
self.image.append(ann["image"])
self.img2txt[img_id] = []
for i, caption in enumerate(ann["caption"]):
self.text.append(self.text_processor(caption))
self.img2txt[img_id].append(txt_id)
self.txt2img[txt_id] = img_id
txt_id += 1
def __getitem__(self, index):
image_path = os.path.join(self.vis_root, self.annotation[index]["image"])
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
return {"image": image, "index": index}
class VideoRetrievalDataset(BaseDataset, __DisplMixin):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
"""
vis_root (string): Root directory of videos.
ann_root (string): directory to store the annotation file
"""
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
self.img_ids = {}
n = 0
for ann in self.annotation:
img_id = ann["video"]
if img_id not in self.img_ids.keys():
self.img_ids[img_id] = n
n += 1
def __getitem__(self, index):
ann = self.annotation[index]
vpath = os.path.join(self.vis_root, ann["video"])
video = self.vis_processor(vpath)
caption = self.text_processor(ann["caption"])
# return image, caption, self.img_ids[ann['image_id']]
return {
"video": video,
"text_input": caption,
"image_id": self.img_ids[ann["video"]],
}
class VideoRetrievalEvalDataset(BaseDataset, __DisplMixin):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
"""
vis_root (string): Root directory of videos.
ann_root (string): directory to store the annotation file
split (string): val or test
"""
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
self.text = []
self.image = []
self.txt2img = {}
self.img2txt = {}
txt_id = 0
for img_id, ann in enumerate(self.annotation):
self.image.append(ann["video"])
self.img2txt[img_id] = []
for i, caption in enumerate(ann["caption"]):
self.text.append(self.text_processor(caption))
self.img2txt[img_id].append(txt_id)
self.txt2img[txt_id] = img_id
txt_id += 1
def __getitem__(self, index):
ann = self.annotation[index]
vpath = os.path.join(self.vis_root, ann["video"])
video = self.vis_processor(vpath)
return {"video": video, "index": index}
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Based on huggingface code base
https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
"""
ModelOutput,
)
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
NextSentencePredictorOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
PreTrainedModel,
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
prune_linear_layer,
)
logging.set_verbosity_error()
logger = logging.get_logger(__name__)
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word and position embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
)
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size
)
if config.add_type_embeddings:
self.token_type_embeddings = nn.Embedding(
config.type_vocab_size, config.hidden_size
)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))
)
self.position_embedding_type = getattr(
config, "position_embedding_type", "absolute"
)
self.config = config
def forward(
self,
input_ids=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
past_key_values_length=0,
):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[
:, past_key_values_length : seq_length + past_key_values_length
]
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
if token_type_ids is not None:
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
else:
embeddings = inputs_embeds
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BertSelfAttention(nn.Module):
def __init__(self, config, is_cross_attention):
super().__init__()
self.config = config
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
config, "embedding_size"
):
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
if is_cross_attention:
self.key = nn.Linear(config.encoder_width, self.all_head_size)
self.value = nn.Linear(config.encoder_width, self.all_head_size)
else:
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = getattr(
config, "position_embedding_type", "absolute"
)
if (
self.position_embedding_type == "relative_key"
or self.position_embedding_type == "relative_key_query"
):
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(
2 * config.max_position_embeddings - 1, self.attention_head_size
)
self.save_attention = False
def save_attn_gradients(self, attn_gradients):
self.attn_gradients = attn_gradients
def get_attn_gradients(self):
return self.attn_gradients
def save_attention_map(self, attention_map):
self.attention_map = attention_map
def get_attention_map(self):
return self.attention_map
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (
self.num_attention_heads,
self.attention_head_size,
)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if (
self.position_embedding_type == "relative_key"
or self.position_embedding_type == "relative_key_query"
):
seq_length = hidden_states.size()[1]
position_ids_l = torch.arange(
seq_length, dtype=torch.long, device=hidden_states.device
).view(-1, 1)
position_ids_r = torch.arange(
seq_length, dtype=torch.long, device=hidden_states.device
).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(
distance + self.max_position_embeddings - 1
)
positional_embedding = positional_embedding.to(
dtype=query_layer.dtype
) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum(
"bhld,lrd->bhlr", query_layer, positional_embedding
)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum(
"bhld,lrd->bhlr", query_layer, positional_embedding
)
relative_position_scores_key = torch.einsum(
"bhrd,lrd->bhlr", key_layer, positional_embedding
)
attention_scores = (
attention_scores
+ relative_position_scores_query
+ relative_position_scores_key
)
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
if is_cross_attention and self.save_attention:
self.save_attention_map(attention_probs)
attention_probs.register_hook(self.save_attn_gradients)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs_dropped = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs_dropped = attention_probs_dropped * head_mask
context_layer = torch.matmul(attention_probs_dropped, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (
(context_layer, attention_probs) if output_attentions else (context_layer,)
)
outputs = outputs + (past_key_value,)
return outputs
class BertSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertAttention(nn.Module):
def __init__(self, config, is_cross_attention=False):
super().__init__()
self.self = BertSelfAttention(config, is_cross_attention)
self.output = BertSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads,
self.self.num_attention_heads,
self.self.attention_head_size,
self.pruned_heads,
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = (
self.self.attention_head_size * self.self.num_attention_heads
)
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[
1:
] # add attentions if we output them
return outputs
class BertIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BertOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertLayer(nn.Module):
def __init__(self, config, layer_num):
super().__init__()
self.config = config
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = BertAttention(config)
self.layer_num = layer_num
# compatibility for ALBEF and BLIP
try:
# ALBEF & ALPRO
fusion_layer = self.config.fusion_layer
add_cross_attention = (
fusion_layer <= layer_num and self.config.add_cross_attention
)
self.fusion_layer = fusion_layer
except AttributeError:
# BLIP
self.fusion_layer = self.config.num_hidden_layers
add_cross_attention = self.config.add_cross_attention
# if self.config.add_cross_attention:
if add_cross_attention:
self.crossattention = BertAttention(
config, is_cross_attention=self.config.add_cross_attention
)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
mode=None,
):
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = (
past_key_value[:2] if past_key_value is not None else None
)
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
# TODO line 482 in albef/models/xbert.py
# compatibility for ALBEF and BLIP
if mode in ["multimodal", "fusion"] and hasattr(self, "crossattention"):
assert (
encoder_hidden_states is not None
), "encoder_hidden_states must be given for cross-attention layers"
if isinstance(encoder_hidden_states, list):
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states[
(self.layer_num - self.fusion_layer)
% len(encoder_hidden_states)
],
encoder_attention_mask[
(self.layer_num - self.fusion_layer)
% len(encoder_hidden_states)
],
output_attentions=output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1]
else:
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
output_attentions=output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = (
outputs + cross_attention_outputs[1:-1]
) # add cross attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk,
self.chunk_size_feed_forward,
self.seq_len_dim,
attention_output,
)
outputs = (layer_output,) + outputs
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class BertEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList(
[BertLayer(config, i) for i in range(config.num_hidden_layers)]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
mode="multimodal",
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = (
() if output_attentions and self.config.add_cross_attention else None
)
next_decoder_cache = () if use_cache else None
try:
# ALBEF
fusion_layer = self.config.fusion_layer
except AttributeError:
# BLIP
fusion_layer = self.config.num_hidden_layers
if mode == "text":
start_layer = 0
# output_layer = self.config.fusion_layer
output_layer = fusion_layer
elif mode == "fusion":
# start_layer = self.config.fusion_layer
start_layer = fusion_layer
output_layer = self.config.num_hidden_layers
elif mode == "multimodal":
start_layer = 0
output_layer = self.config.num_hidden_layers
# compatibility for ALBEF and BLIP
# for i in range(self.config.num_hidden_layers):
for i in range(start_layer, output_layer):
layer_module = self.layer[i]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
# TODO pay attention to this.
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warn(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, past_key_value, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
mode=mode,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
mode=mode,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
class BertPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class BertLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
class BertOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BertLMPredictionHead(config)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class BertPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BertConfig
base_model_prefix = "bert"
_keys_to_ignore_on_load_missing = [r"position_ids"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
class BertModel(BertPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
input to the forward pass.
"""
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = BertEmbeddings(config)
self.encoder = BertEncoder(config)
self.pooler = BertPooler(config) if add_pooling_layer else None
self.init_weights()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def get_extended_attention_mask(
self,
attention_mask: Tensor,
input_shape: Tuple[int],
device: device,
is_decoder: bool,
) -> Tensor:
"""
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
Arguments:
attention_mask (:obj:`torch.Tensor`):
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
input_shape (:obj:`Tuple[int]`):
The shape of the input to the model.
device: (:obj:`torch.device`):
The device of the input to the model.
Returns:
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
"""
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.dim() == 2:
# Provided a padding mask of dimensions [batch_size, seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
if is_decoder:
batch_size, seq_length = input_shape
seq_ids = torch.arange(seq_length, device=device)
causal_mask = (
seq_ids[None, None, :].repeat(batch_size, seq_length, 1)
<= seq_ids[None, :, None]
)
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
# causal and attention masks must have same type with pytorch version < 1.3
causal_mask = causal_mask.to(attention_mask.dtype)
if causal_mask.shape[1] < attention_mask.shape[1]:
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
causal_mask = torch.cat(
[
torch.ones(
(batch_size, seq_length, prefix_seq_len),
device=device,
dtype=causal_mask.dtype,
),
causal_mask,
],
axis=-1,
)
extended_attention_mask = (
causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
)
else:
extended_attention_mask = attention_mask[:, None, None, :]
else:
raise ValueError(
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
input_shape, attention_mask.shape
)
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(
dtype=self.dtype
) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
return extended_attention_mask
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
is_decoder=False,
mode="multimodal",
):
r"""
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
use_cache (:obj:`bool`, `optional`):
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
decoding (see :obj:`past_key_values`).
"""
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
batch_size, seq_length = input_shape
device = input_ids.device
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size, seq_length = input_shape
device = inputs_embeds.device
elif encoder_embeds is not None:
input_shape = encoder_embeds.size()[:-1]
batch_size, seq_length = input_shape
device = encoder_embeds.device
else:
raise ValueError(
"You have to specify either input_ids or inputs_embeds or encoder_embeds"
)
# past_key_values_length
past_key_values_length = (
past_key_values[0][0].shape[2] if past_key_values is not None else 0
)
if attention_mask is None:
attention_mask = torch.ones(
((batch_size, seq_length + past_key_values_length)), device=device
)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
attention_mask, input_shape, device, is_decoder
)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_hidden_states is not None:
if type(encoder_hidden_states) == list:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[
0
].size()
else:
(
encoder_batch_size,
encoder_sequence_length,
_,
) = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if type(encoder_attention_mask) == list:
encoder_extended_attention_mask = [
self.invert_attention_mask(mask) for mask in encoder_attention_mask
]
elif encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(
encoder_attention_mask
)
else:
encoder_extended_attention_mask = self.invert_attention_mask(
encoder_attention_mask
)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
if encoder_embeds is None:
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
else:
embedding_output = encoder_embeds
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
mode=mode,
)
sequence_output = encoder_outputs[0]
pooled_output = (
self.pooler(sequence_output) if self.pooler is not None else None
)
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
class BertForMaskedLM(BertPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
self.bert = BertModel(config, add_pooling_layer=False)
self.cls = BertOnlyMLMHead(config)
self.init_weights()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
def forward(
self,
input_ids=None,
attention_mask=None,
# token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
is_decoder=False,
mode="multimodal",
soft_labels=None,
alpha=0,
return_logits=False,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
# token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_embeds=encoder_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
is_decoder=is_decoder,
mode=mode,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
if return_logits:
return prediction_scores
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
)
if soft_labels is not None:
loss_distill = -torch.sum(
F.log_softmax(prediction_scores, dim=-1) * soft_labels, dim=-1
)
loss_distill = loss_distill[labels != -100].mean()
masked_lm_loss = (1 - alpha) * masked_lm_loss + alpha * loss_distill
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return (
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
)
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, attention_mask=None, **model_kwargs
):
input_shape = input_ids.shape
effective_batch_size = input_shape[0]
# add a dummy token
assert (
self.config.pad_token_id is not None
), "The PAD token should be defined for generation"
attention_mask = torch.cat(
[attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))],
dim=-1,
)
dummy_token = torch.full(
(effective_batch_size, 1),
self.config.pad_token_id,
dtype=torch.long,
device=input_ids.device,
)
input_ids = torch.cat([input_ids, dummy_token], dim=1)
return {"input_ids": input_ids, "attention_mask": attention_mask}
class BertLMHeadModel(BertPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
self.bert = BertModel(config, add_pooling_layer=False)
self.cls = BertOnlyMLMHead(config)
self.init_weights()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
def forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
labels=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
return_logits=False,
is_decoder=True,
reduction="mean",
mode="multimodal",
soft_labels=None,
alpha=0,
):
r"""
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
use_cache (:obj:`bool`, `optional`):
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
decoding (see :obj:`past_key_values`).
Returns:
Example::
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
>>> import torch
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
>>> config = BertConfig.from_pretrained("bert-base-cased")
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if labels is not None:
use_cache = False
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
is_decoder=is_decoder,
mode=mode,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
if return_logits:
return prediction_scores[:, :-1, :].contiguous()
lm_loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
lm_loss = loss_fct(
shifted_prediction_scores.view(-1, self.config.vocab_size),
labels.view(-1),
)
if reduction == "none":
lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1)
if soft_labels is not None:
loss_distill = -torch.sum(
F.log_softmax(shifted_prediction_scores, dim=-1) * soft_labels, dim=-1
)
loss_distill = (loss_distill * (labels != -100)).sum(1)
lm_loss = (1 - alpha) * lm_loss + alpha * loss_distill
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past=None, attention_mask=None, **model_kwargs
):
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
# cut decoder_input_ids if past is used
if past is not None:
input_ids = input_ids[:, -1:]
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"past_key_values": past,
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
"is_decoder": True,
}
def _reorder_cache(self, past, beam_idx):
reordered_past = ()
for layer_past in past:
reordered_past += (
tuple(
past_state.index_select(0, beam_idx) for past_state in layer_past
),
)
return reordered_past
class XBertLMHeadDecoder(BertLMHeadModel):
"""
This class decouples the decoder forward logic from the VL model.
In this way, different VL models can share this decoder as long as
they feed encoder_embeds as required.
"""
@classmethod
def from_config(cls, cfg, from_pretrained=False):
med_config_path = get_abs_path(cfg.get("med_config_path"))
med_config = BertConfig.from_json_file(med_config_path)
if from_pretrained:
return cls.from_pretrained("bert-base-uncased", config=med_config)
else:
return cls(config=med_config)
def generate_from_encoder(
self,
tokenized_prompt,
visual_embeds,
sep_token_id,
pad_token_id,
use_nucleus_sampling=False,
num_beams=3,
max_length=30,
min_length=10,
top_p=0.9,
repetition_penalty=1.0,
**kwargs
):
if not use_nucleus_sampling:
num_beams = num_beams
visual_embeds = visual_embeds.repeat_interleave(num_beams, dim=0)
image_atts = torch.ones(visual_embeds.size()[:-1], dtype=torch.long).to(
self.device
)
model_kwargs = {
"encoder_hidden_states": visual_embeds,
"encoder_attention_mask": image_atts,
}
if use_nucleus_sampling:
# nucleus sampling
outputs = self.generate(
input_ids=tokenized_prompt.input_ids,
max_length=max_length,
min_length=min_length,
do_sample=True,
top_p=top_p,
num_return_sequences=1,
eos_token_id=sep_token_id,
pad_token_id=pad_token_id,
repetition_penalty=1.1,
**model_kwargs
)
else:
# beam search
outputs = self.generate(
input_ids=tokenized_prompt.input_ids,
max_length=max_length,
min_length=min_length,
num_beams=num_beams,
eos_token_id=sep_token_id,
pad_token_id=pad_token_id,
repetition_penalty=repetition_penalty,
**model_kwargs
)
return outputs
class XBertEncoder(BertModel, BaseEncoder):
@classmethod
def from_config(cls, cfg, from_pretrained=False):
med_config_path = get_abs_path(cfg.get("med_config_path"))
med_config = BertConfig.from_json_file(med_config_path)
if from_pretrained:
return cls.from_pretrained(
"bert-base-uncased", config=med_config, add_pooling_layer=False
)
else:
return cls(config=med_config, add_pooling_layer=False)
def forward_automask(self, tokenized_text, visual_embeds, **kwargs):
image_atts = torch.ones(visual_embeds.size()[:-1], dtype=torch.long).to(
self.device
)
text = tokenized_text
text_output = super().forward(
text.input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=visual_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
return text_output
def forward_text(self, tokenized_text, **kwargs):
text = tokenized_text
token_type_ids = kwargs.get("token_type_ids", None)
text_output = super().forward(
text.input_ids,
attention_mask=text.attention_mask,
token_type_ids=token_type_ids,
return_dict=True,
mode="text",
)
return text_output
|
# Based on EVA, BEIT, timm and DeiT code bases
# https://github.com/baaivision/EVA
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/microsoft/unilm/tree/master/beit
# https://github.com/facebookresearch/deit/
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic',
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
**kwargs
}
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return 'p={}'.format(self.drop_prob)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x.half())
x = self.act(x)
# x = self.drop(x)
# commit this for the orignal BERT implement
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
proj_drop=0., window_size=None, attn_head_dim=None):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.v_bias = None
if window_size:
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = \
torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index)
else:
self.window_size = None
self.relative_position_bias_table = None
self.relative_position_index = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, rel_pos_bias=None):
B, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
# qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
qkv = F.linear(input=x.half(), weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
if self.relative_position_bias_table is not None:
relative_position_bias = \
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if rel_pos_bias is not None:
attn = attn + rel_pos_bias
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
window_size=None, attn_head_dim=None):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
if init_values is not None and init_values > 0:
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
else:
self.gamma_1, self.gamma_2 = None, None
def forward(self, x, rel_pos_bias=None):
if self.gamma_1 is None:
x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
x = x + self.drop_path(self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x, **kwargs):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x.half()).flatten(2).transpose(1, 2)
return x
class RelativePositionBias(nn.Module):
def __init__(self, window_size, num_heads):
super().__init__()
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = \
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index)
# trunc_normal_(self.relative_position_bias_table, std=.02)
def forward(self):
relative_position_bias = \
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
class VisionTransformer(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None,
use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False,
use_mean_pooling=True, init_scale=0.001, use_checkpoint=False):
super().__init__()
self.image_size = img_size
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
if use_abs_pos_emb:
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
else:
self.pos_embed = None
self.pos_drop = nn.Dropout(p=drop_rate)
if use_shared_rel_pos_bias:
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
else:
self.rel_pos_bias = None
self.use_checkpoint = use_checkpoint
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.use_rel_pos_bias = use_rel_pos_bias
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None)
for i in range(depth)])
# self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
# self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
# self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
if self.pos_embed is not None:
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
# trunc_normal_(self.mask_token, std=.02)
# if isinstance(self.head, nn.Linear):
# trunc_normal_(self.head.weight, std=.02)
self.apply(self._init_weights)
self.fix_init_weight()
# if isinstance(self.head, nn.Linear):
# self.head.weight.data.mul_(init_scale)
# self.head.bias.data.mul_(init_scale)
def fix_init_weight(self):
def rescale(param, layer_id):
param.div_(math.sqrt(2.0 * layer_id))
for layer_id, layer in enumerate(self.blocks):
rescale(layer.attn.proj.weight.data, layer_id + 1)
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
x = self.patch_embed(x)
batch_size, seq_len, _ = x.size()
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
if self.pos_embed is not None:
x = x + self.pos_embed
x = self.pos_drop(x)
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x, rel_pos_bias)
else:
x = blk(x, rel_pos_bias)
return x
# x = self.norm(x)
# if self.fc_norm is not None:
# t = x[:, 1:, :]
# return self.fc_norm(t.mean(1))
# else:
# return x[:, 0]
def forward(self, x):
x = self.forward_features(x)
# x = self.head(x)
return x
def get_intermediate_layers(self, x):
x = self.patch_embed(x)
batch_size, seq_len, _ = x.size()
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
if self.pos_embed is not None:
x = x + self.pos_embed
x = self.pos_drop(x)
features = []
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
for blk in self.blocks:
x = blk(x, rel_pos_bias)
features.append(x)
return features
def interpolate_pos_embed(model, checkpoint_model):
if 'pos_embed' in checkpoint_model:
pos_embed_checkpoint = checkpoint_model['pos_embed'].float()
embedding_size = pos_embed_checkpoint.shape[-1]
num_patches = model.patch_embed.num_patches
num_extra_tokens = model.pos_embed.shape[-2] - num_patches
# height (== width) for the checkpoint position embedding
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
# height (== width) for the new position embedding
new_size = int(num_patches ** 0.5)
# class_token and dist_token are kept unchanged
if orig_size != new_size:
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
checkpoint_model['pos_embed'] = new_pos_embed
def convert_weights_to_fp16(model: nn.Module):
"""Convert applicable model parameters to fp16"""
def _convert_weights_to_fp16(l):
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
l.weight.data = l.weight.data.half()
if l.bias is not None:
l.bias.data = l.bias.data.half()
# if isinstance(l, (nn.MultiheadAttention, Attention)):
# for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
# tensor = getattr(l, attr)
# if tensor is not None:
# tensor.data = tensor.data.half()
model.apply(_convert_weights_to_fp16)
def create_eva_vit_g(img_size=224,drop_path_rate=0.4,use_checkpoint=False,precision="fp16"):
model = VisionTransformer(
img_size=img_size,
patch_size=14,
use_mean_pooling=False,
embed_dim=1408,
depth=39,
num_heads=1408//88,
mlp_ratio=4.3637,
qkv_bias=True,
drop_path_rate=drop_path_rate,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
use_checkpoint=use_checkpoint,
)
url = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/eva_vit_g.pth"
cached_file = download_cached_file(
url, check_hash=False, progress=True
)
state_dict = torch.load(cached_file, map_location="cpu")
interpolate_pos_embed(model,state_dict)
incompatible_keys = model.load_state_dict(state_dict, strict=False)
# print(incompatible_keys)
if precision == "fp16":
# model.to("cuda")
convert_weights_to_fp16(model)
return model
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
__all__ = [
"load_model",
"AlbefClassification",
"AlbefFeatureExtractor",
"AlbefNLVR",
"AlbefVQA",
"AlbefPretrain",
"AlbefRetrieval",
"AlproQA",
"AlproRetrieval",
"BaseModel",
"BlipBase",
"BlipFeatureExtractor",
"BlipCaption",
"BlipClassification",
"BlipITM",
"BlipNLVR",
"BlipPretrain",
"BlipRetrieval",
"BlipVQA",
"Blip2Qformer",
"Blip2Base",
"Blip2ITM",
"Blip2OPT",
"Blip2T5",
"PNPVQA",
"Img2PromptVQA",
"PNPUnifiedQAv2FiD",
"CLIP",
"VisionTransformerEncoder",
"XBertLMHeadDecoder",
"GPTDialogue",
]
def load_model(name, model_type, is_eval=False, device="cpu", checkpoint=None):
"""
Load supported models.
To list all available models and types in registry:
>>> from lavis.models import model_zoo
>>> print(model_zoo)
Args:
name (str): name of the model.
model_type (str): type of the model.
is_eval (bool): whether the model is in eval mode. Default: False.
device (str): device to use. Default: "cpu".
checkpoint (str): path or to checkpoint. Default: None.
Note that expecting the checkpoint to have the same keys in state_dict as the model.
Returns:
model (torch.nn.Module): model.
"""
model = registry.get_model_class(name).from_pretrained(model_type=model_type)
if checkpoint is not None:
model.load_checkpoint(checkpoint)
if is_eval:
model.eval()
if device == "cpu":
model = model.float()
return model.to(device)
def load_preprocess(config):
"""
Load preprocessor configs and construct preprocessors.
If no preprocessor is specified, return BaseProcessor, which does not do any preprocessing.
Args:
config (dict): preprocessor configs.
Returns:
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
Key is "train" or "eval" for processors used in training and evaluation respectively.
"""
def _build_proc_from_cfg(cfg):
return (
registry.get_processor_class(cfg.name).from_config(cfg)
if cfg is not None
else BaseProcessor()
)
vis_processors = dict()
txt_processors = dict()
vis_proc_cfg = config.get("vis_processor")
txt_proc_cfg = config.get("text_processor")
if vis_proc_cfg is not None:
vis_train_cfg = vis_proc_cfg.get("train")
vis_eval_cfg = vis_proc_cfg.get("eval")
else:
vis_train_cfg = None
vis_eval_cfg = None
vis_processors["train"] = _build_proc_from_cfg(vis_train_cfg)
vis_processors["eval"] = _build_proc_from_cfg(vis_eval_cfg)
if txt_proc_cfg is not None:
txt_train_cfg = txt_proc_cfg.get("train")
txt_eval_cfg = txt_proc_cfg.get("eval")
else:
txt_train_cfg = None
txt_eval_cfg = None
txt_processors["train"] = _build_proc_from_cfg(txt_train_cfg)
txt_processors["eval"] = _build_proc_from_cfg(txt_eval_cfg)
return vis_processors, txt_processors
def load_model_and_preprocess(name, model_type, is_eval=False, device="cpu"):
"""
Load model and its related preprocessors.
List all available models and types in registry:
>>> from lavis.models import model_zoo
>>> print(model_zoo)
Args:
name (str): name of the model.
model_type (str): type of the model.
is_eval (bool): whether the model is in eval mode. Default: False.
device (str): device to use. Default: "cpu".
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
"""
model_cls = registry.get_model_class(name)
# load model
model = model_cls.from_pretrained(model_type=model_type)
if is_eval:
model.eval()
# load preprocess
cfg = OmegaConf.load(model_cls.default_config_path(model_type))
if cfg is not None:
preprocess_cfg = cfg.preprocess
vis_processors, txt_processors = load_preprocess(preprocess_cfg)
else:
vis_processors, txt_processors = None, None
logging.info(
f"""No default preprocess for model {name} ({model_type}).
This can happen if the model is not finetuned on downstream datasets,
or it is not intended for direct use without finetuning.
"""
)
if device == "cpu":
model = model.float()
return model.to(device), vis_processors, txt_processors
class ModelZoo:
"""
A utility class to create string representation of available model architectures and types.
>>> from lavis.models import model_zoo
>>> # list all available models
>>> print(model_zoo)
>>> # show total number of models
>>> print(len(model_zoo))
"""
def __init__(self) -> None:
self.model_zoo = {
k: list(v.PRETRAINED_MODEL_CONFIG_DICT.keys())
for k, v in registry.mapping["model_name_mapping"].items()
}
def __str__(self) -> str:
return (
"=" * 50
+ "\n"
+ f"{'Architectures':<30} {'Types'}\n"
+ "=" * 50
+ "\n"
+ "\n".join(
[
f"{name:<30} {', '.join(types)}"
for name, types in self.model_zoo.items()
]
)
)
def __iter__(self):
return iter(self.model_zoo.items())
def __len__(self):
return sum([len(v) for v in self.model_zoo.values()])
model_zoo = ModelZoo()
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class BaseModel(nn.Module):
"""Base class for models."""
def __init__(self):
super().__init__()
@property
def device(self):
return list(self.parameters())[0].device
def load_checkpoint(self, url_or_filename):
"""
Load from a finetuned checkpoint.
This should expect no mismatch in the model keys and the checkpoint keys.
"""
if is_url(url_or_filename):
cached_file = download_cached_file(
url_or_filename, check_hash=False, progress=True
)
checkpoint = torch.load(cached_file, map_location="cpu")
elif os.path.isfile(url_or_filename):
checkpoint = torch.load(url_or_filename, map_location="cpu")
else:
raise RuntimeError("checkpoint url or path is invalid")
if "model" in checkpoint.keys():
state_dict = checkpoint["model"]
else:
state_dict = checkpoint
msg = self.load_state_dict(state_dict, strict=False)
logging.info("Missing keys {}".format(msg.missing_keys))
logging.info("load checkpoint from %s" % url_or_filename)
return msg
@classmethod
def from_pretrained(cls, model_type):
"""
Build a pretrained model from default configuration file, specified by model_type.
Args:
- model_type (str): model type, specifying architecture and checkpoints.
Returns:
- model (nn.Module): pretrained or finetuned model, depending on the configuration.
"""
model_cfg = OmegaConf.load(cls.default_config_path(model_type)).model
model = cls.from_config(model_cfg)
return model
@classmethod
def default_config_path(cls, model_type):
assert (
model_type in cls.PRETRAINED_MODEL_CONFIG_DICT
), "Unknown model type {}".format(model_type)
return get_abs_path(cls.PRETRAINED_MODEL_CONFIG_DICT[model_type])
def load_checkpoint_from_config(self, cfg, **kwargs):
"""
Load checkpoint as specified in the config file.
If load_finetuned is True, load the finetuned model; otherwise, load the pretrained model.
When loading the pretrained model, each task-specific architecture may define their
own load_from_pretrained() method.
"""
load_finetuned = cfg.get("load_finetuned", True)
if load_finetuned:
finetune_path = cfg.get("finetuned", None)
assert (
finetune_path is not None
), "Found load_finetuned is True, but finetune_path is None."
self.load_checkpoint(url_or_filename=finetune_path)
else:
# load pre-trained weights
pretrain_path = cfg.get("pretrained", None)
assert "Found load_finetuned is False, but pretrain_path is None."
self.load_from_pretrained(url_or_filename=pretrain_path, **kwargs)
def before_evaluation(self, **kwargs):
pass
def show_n_params(self, return_str=True):
tot = 0
for p in self.parameters():
w = 1
for x in p.shape:
w *= x
tot += w
if return_str:
if tot >= 1e6:
return "{:.1f}M".format(tot / 1e6)
else:
return "{:.1f}K".format(tot / 1e3)
else:
return tot
class BaseEncoder(nn.Module):
"""
Base class for primitive encoders, such as ViT, TimeSformer, etc.
"""
def __init__(self):
super().__init__()
def forward_features(self, samples, **kwargs):
raise NotImplementedError
@property
def device(self):
return list(self.parameters())[0].device
class SharedQueueMixin:
@torch.no_grad()
def _dequeue_and_enqueue(self, image_feat, text_feat, idxs=None):
# gather keys before updating queue
image_feats = concat_all_gather(image_feat)
text_feats = concat_all_gather(text_feat)
batch_size = image_feats.shape[0]
ptr = int(self.queue_ptr)
assert self.queue_size % batch_size == 0 # for simplicity
# replace the keys at ptr (dequeue and enqueue)
self.image_queue[:, ptr : ptr + batch_size] = image_feats.T
self.text_queue[:, ptr : ptr + batch_size] = text_feats.T
if idxs is not None:
idxs = concat_all_gather(idxs)
self.idx_queue[:, ptr : ptr + batch_size] = idxs.T
ptr = (ptr + batch_size) % self.queue_size # move pointer
self.queue_ptr[0] = ptr
class MomentumDistilationMixin:
@torch.no_grad()
def copy_params(self):
for model_pair in self.model_pairs:
for param, param_m in zip(
model_pair[0].parameters(), model_pair[1].parameters()
):
param_m.data.copy_(param.data) # initialize
param_m.requires_grad = False # not update by gradient
@torch.no_grad()
def _momentum_update(self):
for model_pair in self.model_pairs:
for param, param_m in zip(
model_pair[0].parameters(), model_pair[1].parameters()
):
param_m.data = param_m.data * self.momentum + param.data * (
1.0 - self.momentum
)
class GatherLayer(torch.autograd.Function):
"""
Gather tensors from all workers with support for backward propagation:
This implementation does not cut the gradients as torch.distributed.all_gather does.
"""
@staticmethod
def forward(ctx, x):
output = [
torch.zeros_like(x) for _ in range(torch.distributed.get_world_size())
]
torch.distributed.all_gather(output, x)
return tuple(output)
@staticmethod
def backward(ctx, *grads):
all_gradients = torch.stack(grads)
torch.distributed.all_reduce(all_gradients)
return all_gradients[torch.distributed.get_rank()]
def all_gather_with_grad(tensors):
"""
Performs all_gather operation on the provided tensors.
Graph remains connected for backward grad computation.
"""
# Queue the gathered tensors
world_size = torch.distributed.get_world_size()
# There is no need for reduction in the single-proc case
if world_size == 1:
return tensors
# tensor_all = GatherLayer.apply(tensors)
tensor_all = GatherLayer.apply(tensors)
return torch.cat(tensor_all, dim=0)
@torch.no_grad()
def concat_all_gather(tensor):
"""
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient.
"""
# if use distributed training
if not is_dist_avail_and_initialized():
return tensor
tensors_gather = [
torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size())
]
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
output = torch.cat(tensors_gather, dim=0)
return output
def tile(x, dim, n_tile):
init_dim = x.size(dim)
repeat_idx = [1] * x.dim()
repeat_idx[dim] = n_tile
x = x.repeat(*(repeat_idx))
order_index = torch.LongTensor(
np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)])
)
return torch.index_select(x, dim, order_index.to(x.device))
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Based on timm code base
https://github.com/rwightman/pytorch-image-models/tree/master/timm
"""
class Mlp(nn.Module):
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.attn_gradients = None
self.attention_map = None
def save_attn_gradients(self, attn_gradients):
self.attn_gradients = attn_gradients
def get_attn_gradients(self):
return self.attn_gradients
def save_attention_map(self, attention_map):
self.attention_map = attention_map
def get_attention_map(self):
return self.attention_map
def forward(self, x, register_hook=False):
B, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = (
qkv[0],
qkv[1],
qkv[2],
) # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
if register_hook:
self.save_attention_map(attn)
attn.register_hook(self.save_attn_gradients)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
use_grad_checkpointing=False,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
if use_grad_checkpointing:
self.attn = checkpoint_wrapper(self.attn)
self.mlp = checkpoint_wrapper(self.mlp)
def forward(self, x, register_hook=False):
x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class VisionTransformer(nn.Module):
"""Vision Transformer
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
https://arxiv.org/abs/2010.11929
"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
representation_size=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=None,
use_grad_checkpointing=False,
ckpt_layer=0,
):
"""
Args:
img_size (int, tuple): input image size
patch_size (int, tuple): patch size
in_chans (int): number of input channels
num_classes (int): number of classes for classification head
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
drop_rate (float): dropout rate
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
norm_layer: (nn.Module): normalization layer
"""
super().__init__()
self.num_features = (
self.embed_dim
) = embed_dim # num_features for consistency with other models
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, depth)
] # stochastic depth decay rule
self.blocks = nn.ModuleList(
[
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
use_grad_checkpointing=(
use_grad_checkpointing and i >= depth - ckpt_layer
),
)
for i in range(depth)
]
)
self.norm = norm_layer(embed_dim)
trunc_normal_(self.pos_embed, std=0.02)
trunc_normal_(self.cls_token, std=0.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {"pos_embed", "cls_token"}
def forward(self, x, register_blk=-1):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(
B, -1, -1
) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed[:, : x.size(1), :]
x = self.pos_drop(x)
for i, blk in enumerate(self.blocks):
x = blk(x, register_blk == i)
x = self.norm(x)
return x
@torch.jit.ignore()
def load_pretrained(self, checkpoint_path, prefix=""):
_load_weights(self, checkpoint_path, prefix)
@torch.no_grad()
def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ""):
"""Load weights from .npz checkpoints for official Google Brain Flax implementation"""
import numpy as np
def _n2p(w, t=True):
if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
w = w.flatten()
if t:
if w.ndim == 4:
w = w.transpose([3, 2, 0, 1])
elif w.ndim == 3:
w = w.transpose([2, 0, 1])
elif w.ndim == 2:
w = w.transpose([1, 0])
return torch.from_numpy(w)
w = np.load(checkpoint_path)
if not prefix and "opt/target/embedding/kernel" in w:
prefix = "opt/target/"
if hasattr(model.patch_embed, "backbone"):
# hybrid
backbone = model.patch_embed.backbone
stem_only = not hasattr(backbone, "stem")
stem = backbone if stem_only else backbone.stem
stem.conv.weight.copy_(
adapt_input_conv(
stem.conv.weight.shape[1], _n2p(w[f"{prefix}conv_root/kernel"])
)
)
stem.norm.weight.copy_(_n2p(w[f"{prefix}gn_root/scale"]))
stem.norm.bias.copy_(_n2p(w[f"{prefix}gn_root/bias"]))
if not stem_only:
for i, stage in enumerate(backbone.stages):
for j, block in enumerate(stage.blocks):
bp = f"{prefix}block{i + 1}/unit{j + 1}/"
for r in range(3):
getattr(block, f"conv{r + 1}").weight.copy_(
_n2p(w[f"{bp}conv{r + 1}/kernel"])
)
getattr(block, f"norm{r + 1}").weight.copy_(
_n2p(w[f"{bp}gn{r + 1}/scale"])
)
getattr(block, f"norm{r + 1}").bias.copy_(
_n2p(w[f"{bp}gn{r + 1}/bias"])
)
if block.downsample is not None:
block.downsample.conv.weight.copy_(
_n2p(w[f"{bp}conv_proj/kernel"])
)
block.downsample.norm.weight.copy_(
_n2p(w[f"{bp}gn_proj/scale"])
)
block.downsample.norm.bias.copy_(_n2p(w[f"{bp}gn_proj/bias"]))
embed_conv_w = _n2p(w[f"{prefix}embedding/kernel"])
else:
embed_conv_w = adapt_input_conv(
model.patch_embed.proj.weight.shape[1], _n2p(w[f"{prefix}embedding/kernel"])
)
model.patch_embed.proj.weight.copy_(embed_conv_w)
model.patch_embed.proj.bias.copy_(_n2p(w[f"{prefix}embedding/bias"]))
model.cls_token.copy_(_n2p(w[f"{prefix}cls"], t=False))
pos_embed_w = _n2p(w[f"{prefix}Transformer/posembed_input/pos_embedding"], t=False)
if pos_embed_w.shape != model.pos_embed.shape:
pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights
pos_embed_w,
model.pos_embed,
getattr(model, "num_tokens", 1),
model.patch_embed.grid_size,
)
model.pos_embed.copy_(pos_embed_w)
model.norm.weight.copy_(_n2p(w[f"{prefix}Transformer/encoder_norm/scale"]))
model.norm.bias.copy_(_n2p(w[f"{prefix}Transformer/encoder_norm/bias"]))
# if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
# model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
# model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
# if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
# model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
# model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
for i, block in enumerate(model.blocks.children()):
block_prefix = f"{prefix}Transformer/encoderblock_{i}/"
mha_prefix = block_prefix + "MultiHeadDotProductAttention_1/"
block.norm1.weight.copy_(_n2p(w[f"{block_prefix}LayerNorm_0/scale"]))
block.norm1.bias.copy_(_n2p(w[f"{block_prefix}LayerNorm_0/bias"]))
block.attn.qkv.weight.copy_(
torch.cat(
[
_n2p(w[f"{mha_prefix}{n}/kernel"], t=False).flatten(1).T
for n in ("query", "key", "value")
]
)
)
block.attn.qkv.bias.copy_(
torch.cat(
[
_n2p(w[f"{mha_prefix}{n}/bias"], t=False).reshape(-1)
for n in ("query", "key", "value")
]
)
)
block.attn.proj.weight.copy_(_n2p(w[f"{mha_prefix}out/kernel"]).flatten(1))
block.attn.proj.bias.copy_(_n2p(w[f"{mha_prefix}out/bias"]))
for r in range(2):
getattr(block.mlp, f"fc{r + 1}").weight.copy_(
_n2p(w[f"{block_prefix}MlpBlock_3/Dense_{r}/kernel"])
)
getattr(block.mlp, f"fc{r + 1}").bias.copy_(
_n2p(w[f"{block_prefix}MlpBlock_3/Dense_{r}/bias"])
)
block.norm2.weight.copy_(_n2p(w[f"{block_prefix}LayerNorm_2/scale"]))
block.norm2.bias.copy_(_n2p(w[f"{block_prefix}LayerNorm_2/bias"]))
def resize_pos_embed(posemb, posemb_new, num_tokens=1, gs_new=()):
# Rescale the grid of position embeddings when loading from state_dict. Adapted from
# https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
print("Resized position embedding: %s to %s", posemb.shape, posemb_new.shape)
ntok_new = posemb_new.shape[1]
if num_tokens:
posemb_tok, posemb_grid = posemb[:, :num_tokens], posemb[0, num_tokens:]
ntok_new -= num_tokens
else:
posemb_tok, posemb_grid = posemb[:, :0], posemb[0]
gs_old = int(math.sqrt(len(posemb_grid)))
if not len(gs_new): # backwards compatibility
gs_new = [int(math.sqrt(ntok_new))] * 2
assert len(gs_new) >= 2
print("Position embedding grid-size from %s to %s", [gs_old, gs_old], gs_new)
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
posemb_grid = F.interpolate(
posemb_grid, size=gs_new, mode="bicubic", align_corners=False
)
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1)
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
return
def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder):
# interpolate position embedding
embedding_size = pos_embed_checkpoint.shape[-1]
num_patches = visual_encoder.patch_embed.num_patches
num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches
# height (== width) for the checkpoint position embedding
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
# height (== width) for the new position embedding
new_size = int(num_patches**0.5)
if orig_size != new_size:
# class_token and dist_token are kept unchanged
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
pos_tokens = pos_tokens.reshape(
-1, orig_size, orig_size, embedding_size
).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size, new_size), mode="bicubic", align_corners=False
)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
print(
"reshape position embedding from %d to %d" % (orig_size**2, new_size**2)
)
return new_pos_embed
else:
return pos_embed_checkpoint
class VisionTransformerEncoder(VisionTransformer, BaseEncoder):
@classmethod
def from_config(cls, cfg, from_pretrained=False):
vit_type = cfg.get("vit_type", "base")
image_size = cfg.get("image_size", 384)
ckpt_layer = cfg.get("vit_ckpt_layer", 0)
drop_path_rate = cfg.get("vit_drop_path_rate", 0)
norm_layer_eps = cfg.get("vit_layer_norm_epsilon", -1)
use_grad_checkpointing = cfg.get("vit_grad_ckpt", False)
if norm_layer_eps == -1:
norm_layer = None
else:
norm_layer = partial(nn.LayerNorm, eps=norm_layer_eps)
# norm_layer=partial(nn.LayerNorm, eps=1e-6),
assert vit_type in ["base", "large"], "vit parameter must be base or large"
if vit_type == "base":
vision_width = 768
visual_encoder = cls(
img_size=image_size,
patch_size=16,
embed_dim=vision_width,
depth=12,
num_heads=12,
use_grad_checkpointing=use_grad_checkpointing,
ckpt_layer=ckpt_layer,
drop_path_rate=0 or drop_path_rate,
norm_layer=norm_layer,
)
if from_pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
map_location="cpu",
check_hash=True,
)
state_dict = checkpoint["model"]
state_dict["pos_embed"] = interpolate_pos_embed(
state_dict["pos_embed"], visual_encoder
)
msg = visual_encoder.load_state_dict(state_dict, strict=False)
elif vit_type == "large":
vision_width = 1024
visual_encoder = cls(
img_size=image_size,
patch_size=16,
embed_dim=vision_width,
depth=24,
num_heads=16,
use_grad_checkpointing=use_grad_checkpointing,
ckpt_layer=ckpt_layer,
drop_path_rate=0.1 or drop_path_rate,
norm_layer=norm_layer,
)
if from_pretrained:
from timm.models.helpers import load_custom_pretrained
from timm.models.vision_transformer import default_cfgs
load_custom_pretrained(
visual_encoder, default_cfgs["vit_large_patch16_224_in21k"]
)
visual_encoder.vision_width = vision_width
return visual_encoder
def forward_features(self, x, register_blk=-1):
return super().forward(x, register_blk)
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
@registry.register_model("pnp_vqa")
class PNPVQA(BaseModel):
"""
PNPVQA model consists of three submodels for zero-shot VQA:
1. Image-questioning matching model
2. Image captioning model
3. Question answering model
Supported model types:
- base: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-base)
- large: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-large)
- 3b: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-3b)
Usage:
>>> from lavis.models import load_model
>>> model = load_model("pnp_vqa", "base", is_eval=True)
>>> model = load_model("pnp_vqa", "large", is_eval=True)
>>> model = load_model("pnp_vqa", "3b", is_eval=True)
"""
PRETRAINED_MODEL_CONFIG_DICT = {"base": "configs/models/pnp-vqa/pnp_vqa_base.yaml",
"large": "configs/models/pnp-vqa/pnp_vqa_large.yaml",
"3b": "configs/models/pnp-vqa/pnp_vqa_3b.yaml",
}
def __init__(self, image_question_matching_model, image_captioning_model,
question_answering_model, offload_model=False):
super().__init__()
self.image_question_matching_model = image_question_matching_model
self.image_captioning_model = image_captioning_model
self.question_answering_model = question_answering_model
self.offload_model = offload_model
def forward_itm(self, samples, block_num=7):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
- text_input (list): A list of strings of length batch_size
block_num (int): The index of cross-attention block for gradcam computation.
Returns:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
- text_input (list): A list of strings of length batch_size
- gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
"""
image = samples['image']
question = [text.strip('?') for text in samples['text_input']]
tokenized_text = self.image_question_matching_model.tokenizer(question, padding='longest', truncation=True,
return_tensors="pt").to(self.image_question_matching_model.device)
with torch.set_grad_enabled(True):
gradcams, _ = compute_gradcam(model=self.image_question_matching_model,
visual_input=image,
text_input=question,
tokenized_text=tokenized_text,
block_num=block_num)
gradcams = [gradcam_[1] for gradcam_ in gradcams]
samples['gradcams'] = torch.stack(gradcams).reshape(samples['image'].size(0), -1)
return samples
def forward_cap(
self,
samples,
cap_max_length=20,
cap_min_length=0,
top_p=1,
top_k=50,
repetition_penalty=1.0,
num_captions=100,
num_patches=20,
):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
- text_input (list): A list of strings of length batch_size
- gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
cap_max_length (int): The maximum length of the caption to be generated.
cap_min_length (int): The minimum length of the caption to be generated.
top_p (float): The cumulative probability for nucleus sampling.
top_k (float): The number of the highest probability tokens for top-k sampling.
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
num_captions (int): Number of captions generated for each image.
num_patches (int): Number of patches sampled for each image.
Returns:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
- text_input (list): A list of strings of length batch_size
- gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
- captions (nested list): A nested list of strings of total length batch_size * num_captions
"""
encoder_out = self.image_captioning_model.forward_encoder(samples)
captions = [[] for _ in range(encoder_out.size(0))]
min_num_captions = 0
while min_num_captions < num_captions:
encoder_out_samples = []
for i in range(num_captions):
patch_id = torch.multinomial(samples['gradcams'].to(self.image_captioning_model.device),
num_patches).reshape(encoder_out.size(0), -1) + 1
patch_id = patch_id.sort(dim=1).values.unsqueeze(-1).expand(-1, -1, encoder_out.size(2))
encoder_out_sample = torch.gather(encoder_out, 1, patch_id)
encoder_out_samples.append(encoder_out_sample)
stacked = torch.stack(encoder_out_samples, dim=1)
image_embeds = torch.flatten(stacked, start_dim=0, end_dim=1) #(bsz*num_seq, num_patch, dim)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(self.image_captioning_model.device)
model_kwargs = {
"encoder_hidden_states": image_embeds,
"encoder_attention_mask": image_atts,
}
prompt = [self.image_captioning_model.prompt] * image_embeds.size(0)
prompt = self.image_captioning_model.tokenizer(prompt,
return_tensors="pt").to(self.image_captioning_model.device)
prompt.input_ids[:, 0] = self.image_captioning_model.tokenizer.bos_token_id
prompt.input_ids = prompt.input_ids[:, :-1]
decoder_out = self.image_captioning_model.text_decoder.generate(
input_ids=prompt.input_ids,
max_length=cap_max_length,
min_length=cap_min_length,
do_sample=True,
top_p=top_p,
top_k=top_k,
num_return_sequences=1,
eos_token_id=self.image_captioning_model.tokenizer.sep_token_id,
pad_token_id=self.image_captioning_model.tokenizer.pad_token_id,
repetition_penalty=repetition_penalty,
**model_kwargs)
outputs = self.image_captioning_model.tokenizer.batch_decode(decoder_out, skip_special_tokens=True)
for counter, output in enumerate(outputs):
ind = counter//num_captions
if len(captions[ind]) < num_captions:
caption = output[len(self.image_captioning_model.prompt):]
overlap_caption = [1 for caps in captions[ind] if caption in caps]
if len(overlap_caption) == 0:
captions[ind].append(caption)
min_num_captions = min([len(i) for i in captions])
samples['captions'] = captions
return samples
def forward_qa(
self,
samples,
num_beams=1,
max_len=20,
min_len=0,
internal_bsz_fid=1,
num_captions=100,
num_captions_fid=1,
):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
- text_input (list): A list of strings of length batch_size
- gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
- captions (nested list): A nested list of strings of total length batch_size * num_captions
- question_captions (nested list): A nested list of concatenated strings of questions and captions
num_beams (int): Number of beams for beam search. 1 means no beam search.
max_len (int): Maximum length of generated answers.
min_len (int): Minimum length of generated answers.
internal_bsz_fid (int): Internal batch size when using FiD decoding.
num_captions (int): Number of captions generated for each image.
num_captions_fid (int): Number of captions concatenated with a question during FiD decoding.
Returns:
List: A list of strings, each string is an answer.
"""
prepare_qa_input(samples, num_captions=num_captions, num_captions_fid=num_captions_fid)
pred_answers = []
question_captions = samples['question_captions']
question_captions_chunk = [question_captions[i:i + internal_bsz_fid]
for i in range(0, len(question_captions), internal_bsz_fid)]
question_captions_chunk = list(chain(*question_captions_chunk))
for question_caption in question_captions_chunk:
question_caption_input = self.question_answering_model.tokenizer(question_caption, padding='longest',
truncation=True, return_tensors="pt").to(self.question_answering_model.device)
question_caption_input.input_ids = question_caption_input.input_ids.reshape(
internal_bsz_fid, -1, question_caption_input.input_ids.size(1))
question_caption_input.attention_mask = question_caption_input.attention_mask.reshape(
internal_bsz_fid, -1, question_caption_input.attention_mask.size(1))
outputs = self.question_answering_model.generate(input_ids=question_caption_input.input_ids,
attention_mask=question_caption_input.attention_mask,
num_beams=num_beams,
min_length=min_len,
max_length=max_len,
)
for output in outputs:
pred_answer = self.question_answering_model.tokenizer.decode(output, skip_special_tokens=True)
pred_answers.append(pred_answer)
return pred_answers
def predict_answers(
self,
samples,
num_beams=1,
inference_method="generate",
max_len=20,
min_len=0,
internal_bsz_fid=1,
num_captions=50,
num_captions_fid=1,
cap_max_length=20,
cap_min_length=10,
top_k=50,
top_p=1,
repetition_penalty=1,
num_patches=50,
block_num=7,
):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). Default H=480, W=480.
- text_input (str or [str]): String or a list of strings, each string is a question.
The number of questions must be equal to the batch size. If a single string, will be converted to a list of string, with length 1 first.
num_beams (int): Number of beams for beam search. 1 means no beam search.
inference_method (str): Inference method. Must be "generate". The model will generate answers.
max_len (int): Maximum length of generated answers.
min_len (int): Minimum length of generated answers.
internal_bsz_fid (int): Internal batch size when using FiD decoding.
num_captions (int): Number of captions generated for each image.
num_captions_fid (int): Number of captions concatenated with a question during FiD decoding.
cap_max_length (int): The maximum length of the caption to be generated.
cap_min_length (int): The minimum length of the caption to be generated.
top_k (float): The number of the highest probability tokens for top-k sampling.
top_p (float): The cumulative probability for nucleus sampling.
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
num_patches (int): Number of patches sampled for each image.
block_num (int): The index of cross-attention block for gradcam computation.
Returns:
List: A list of strings, each string is an answer.
gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
captions (nested list): A nested list of strings of total length batch_size * num_captions
"""
assert inference_method in [
"generate",
], "Inference method must be 'generate', got {}.".format(
inference_method
)
if isinstance(samples["text_input"], str):
samples["text_input"] = [samples["text_input"]]
assert len(samples["text_input"]) == samples["image"].size(
0
), "The number of questions must be equal to the batch size."
samples = self.forward_itm(samples, block_num=block_num)
samples = self.forward_cap(samples,
cap_max_length=cap_max_length,
cap_min_length=cap_min_length,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
num_captions=num_captions,
num_patches=num_patches)
if self.offload_model:
samples['image'] = samples['image'].to('cpu')
self.image_question_matching_model.to('cpu')
self.image_captioning_model.to('cpu')
torch.cuda.empty_cache()
pred_answers = self.forward_qa(samples,
num_beams=num_beams,
max_len=max_len,
min_len=min_len,
internal_bsz_fid=internal_bsz_fid,
num_captions=num_captions,
num_captions_fid=num_captions_fid)
if self.offload_model:
self.image_question_matching_model.to(self.question_answering_model.device)
self.image_captioning_model.to(self.question_answering_model.device)
return pred_answers, samples['captions'], samples['gradcams']
@classmethod
def from_config(cls, model_config):
itm_config = model_config.image_question_matching_model
cap_config = model_config.image_captioning_model
qa_config = model_config.question_answering_model
itm_cls = registry.get_model_class(itm_config.arch)
cap_cls = registry.get_model_class(cap_config.arch)
qa_cls = registry.get_model_class(qa_config.arch)
image_question_matching_model = itm_cls.from_config(itm_config)
image_captioning_model = cap_cls.from_config(cap_config)
question_answering_model = qa_cls.from_config(qa_config)
model = cls(image_question_matching_model=image_question_matching_model,
image_captioning_model=image_captioning_model,
question_answering_model=question_answering_model,
offload_model= True if model_config.model_type == '3b' else False,
)
return model |
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
def prepare_qa_input(sample, num_captions, num_captions_fid):
sample_question_captions = []
for question, captions in zip(sample['text_input'], sample['captions']):
assert isinstance(captions, list)
question_captions = []
question_caption = ''
for cap_id, cap_ in enumerate(captions[0:num_captions]):
question_caption += (cap_.strip() + '. ')
if (cap_id + 1) != num_captions and ((cap_id + 1) % num_captions_fid == 0):
question_caption = question.lower().strip() + " \\n " + question_caption.lower().strip()
question_captions.append(question_caption)
question_caption = ''
if (cap_id + 1) == num_captions:
question_caption = question.lower().strip() + " \\n " + question_caption.lower().strip()
question_captions.append(question_caption)
sample_question_captions.append(question_captions)
sample['question_captions'] = sample_question_captions
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Based on facebookresearch code base
https://github.com/facebookresearch/FiD
"""
@registry.register_model("pnp_unifiedqav2_fid")
class PNPUnifiedQAv2FiD(T5ForConditionalGeneration, BaseModel):
PRETRAINED_MODEL_CONFIG_DICT = {}
def __init__(self, config, model_path):
super().__init__(config)
self.tokenizer = T5Tokenizer.from_pretrained(model_path)
def forward(self, input_ids=None, attention_mask=None, **kwargs):
if input_ids != None:
if input_ids.dim() == 3:
self.encoder.num_contexts = input_ids.size(1)
input_ids = input_ids.view(input_ids.size(0), -1)
if attention_mask != None:
attention_mask = attention_mask.view(attention_mask.size(0), -1)
return super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
**kwargs
)
def generate(self, input_ids, attention_mask, num_beams=1, min_length=0, max_length=20):
self.encoder.num_contexts = input_ids.size(1)
return super().generate(
input_ids=input_ids.view(input_ids.size(0), -1),
attention_mask=attention_mask.view(attention_mask.size(0), -1),
num_beams=num_beams,
min_length=min_length,
max_length=max_length
)
def load_unifiedqa(self, state_dict):
self.load_state_dict(state_dict)
self.encoder = T5EncoderWrapper(self.encoder)
@classmethod
def from_config(cls, cfg):
model_path = cfg.get('pretrained')
t5_config_path = get_abs_path(cfg.get("t5_config_path"))
t5_config = T5Config.from_json_file(t5_config_path)
model = cls(t5_config, model_path)
model.load_unifiedqa(T5ForConditionalGeneration.from_pretrained(model_path).state_dict())
return model
class T5EncoderWrapper(torch.nn.Module):
def __init__(self, encoder):
super().__init__()
self.encoder = encoder
self.block = self.encoder.block
self.parallelize = self.encoder.parallelize
self.main_input_name = encoder.main_input_name
def forward(self, input_ids=None, attention_mask=None, **kwargs):
bsz, total_length = input_ids.shape
context_length = total_length // self.num_contexts
input_ids = input_ids.view(bsz*self.num_contexts, context_length)
attention_mask = attention_mask.view(bsz*self.num_contexts, context_length)
outputs = self.encoder(input_ids, attention_mask, **kwargs)
outputs = (outputs[0].view(bsz, self.num_contexts*context_length, -1), ) + outputs[1:]
return outputs |
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
AlbefIntermediateOutput,
AlbefOutput,
AlbefSimilarity,
)
@registry.register_model("albef_retrieval")
class AlbefRetrieval(AlbefBase, MomentumDistilationMixin, SharedQueueMixin):
"""
ALBEF retrieval model.
Supported model types:
- coco: fine-tuned ALBEF base model on COCO dataset (Karparthy split).
- flickr: fine-tuned ALBEF base model on Flickr30k dataset.
Usage:
>>> from lavis.models import load_model
>>> model = load_model("albef_retrieval", "coco")
>>> model = load_model("albef_retrieval", "flickr")
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"coco": "configs/models/albef_retrieval_coco.yaml",
"flickr": "configs/models/albef_retrieval_flickr.yaml",
}
def __init__(
self,
image_encoder,
text_encoder,
queue_size,
embed_dim=256,
temp=0.07,
use_distill=True,
momentum=0.995,
alpha=0.4,
max_txt_len=30,
):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.visual_encoder = image_encoder
self.text_encoder = text_encoder
text_width = text_encoder.config.hidden_size
vision_width = image_encoder.vision_width
self.vision_proj = nn.Linear(vision_width, embed_dim)
self.text_proj = nn.Linear(text_width, embed_dim)
self.itm_head = nn.Linear(text_width, 2)
# create the momentum encoder
self.visual_encoder_m = deepcopy(self.visual_encoder)
self.text_encoder_m = deepcopy(self.text_encoder)
self.vision_proj_m = deepcopy(self.vision_proj)
self.text_proj_m = deepcopy(self.text_proj)
self.model_pairs = [
[self.visual_encoder, self.visual_encoder_m],
[self.text_encoder, self.text_encoder_m],
[self.vision_proj, self.vision_proj_m],
[self.text_proj, self.text_proj_m],
]
self.copy_params()
# create the queue
self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
self.register_buffer("idx_queue", torch.full((1, queue_size), -100))
self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))
self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
self.queue_size = queue_size
self.momentum = momentum
self.temp = nn.Parameter(temp * torch.ones([]))
self.alpha = alpha
self.max_txt_len = max_txt_len
self.use_distill = use_distill
def _rampup_factor(self, epoch, iters, num_iters_per_epoch):
return min(1, (epoch * num_iters_per_epoch + iters) / (2 * num_iters_per_epoch))
def forward(self, samples):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). The input images.
- text_input (list): A list of length batch_size, each element is a string of text/caption.
- image_id (torch.Tensor): A tensor of shape (batch_size, ). The image ids, used to identify same images in batch.
- epoch (int): The current epoch.
- iters (int): The current iteration.
- num_iters_per_epoch (int): The number of iterations per epoch.
Returns:
BlipOutput: A BlipOutput object. See ``lavis.models.blip_models.blip_outputs.BlipOutput`` for more details.
Examples:
>>> import torch
>>> from lavis.models import load_model
>>> model = load_model("albef_retrieval", "coco")
>>> images = torch.randn(4, 3, 384, 384)
>>> text_input = ["caption of image 1", "another caption of image 1", "caption of image 2", "caption of image 3"]
>>> image_id = torch.tensor([1, 1, 2, 3])
>>> samples = {"image": images, "text_input": text_input, "image_id": image_id, "epoch": 0, "iters": 0, "num_iters_per_epoch": 100}
>>> output = model(samples)
>>> output.keys()
odict_keys(['sims', 'intermediate_output', 'loss', 'loss_itc', 'loss_itm'])
"""
image = samples["image"]
caption = samples["text_input"]
idx = samples["image_id"]
alpha = self.alpha * self._rampup_factor(
epoch=samples["epoch"],
iters=samples["iters"],
num_iters_per_epoch=samples["num_iters_per_epoch"],
)
with torch.no_grad():
self.temp.clamp_(0.001, 0.5)
image_embeds = self.visual_encoder.forward_features(image)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
self.device
)
image_feat = F.normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1)
text = self.tokenizer(
caption,
padding="max_length",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(self.device)
text_output = self.text_encoder.forward_text(text)
text_embeds = text_output.last_hidden_state
text_feat = F.normalize(self.text_proj(text_embeds[:, 0, :]), dim=-1)
idx = idx.view(-1, 1)
idx_all = torch.cat([idx.t(), self.idx_queue.clone().detach()], dim=1)
pos_idx = torch.eq(idx, idx_all).float()
sim_targets = pos_idx / pos_idx.sum(1, keepdim=True)
with torch.no_grad():
self._momentum_update()
image_embeds_m = self.visual_encoder_m(image)
image_feat_m = F.normalize(
self.vision_proj_m(image_embeds_m[:, 0, :]), dim=-1
)
image_feat_all = torch.cat(
[image_feat_m.t(), self.image_queue.clone().detach()], dim=1
)
text_output_m = self.text_encoder_m.forward_text(text)
text_embeds_m = text_output_m.last_hidden_state
text_feat_m = F.normalize(self.text_proj_m(text_embeds_m[:, 0, :]), dim=-1)
text_feat_all = torch.cat(
[text_feat_m.t(), self.text_queue.clone().detach()], dim=1
)
if self.use_distill:
sim_i2t_m = image_feat_m @ text_feat_all / self.temp
sim_t2i_m = text_feat_m @ image_feat_all / self.temp
sim_i2t_targets = (
alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
)
sim_t2i_targets = (
alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
)
sim_i2t = image_feat @ text_feat_all / self.temp
sim_t2i = text_feat @ image_feat_all / self.temp
if self.use_distill:
loss_i2t = -torch.sum(
F.log_softmax(sim_i2t, dim=1) * sim_i2t_targets, dim=1
).mean()
loss_t2i = -torch.sum(
F.log_softmax(sim_t2i, dim=1) * sim_t2i_targets, dim=1
).mean()
else:
loss_i2t = -torch.sum(
F.log_softmax(sim_i2t, dim=1) * sim_targets, dim=1
).mean()
loss_t2i = -torch.sum(
F.log_softmax(sim_t2i, dim=1) * sim_targets, dim=1
).mean()
loss_itc = (loss_i2t + loss_t2i) / 2
self._dequeue_and_enqueue(image_feat_m, text_feat_m, idx)
encoder_output_pos = self.text_encoder(
encoder_embeds=text_embeds,
attention_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
mode="fusion",
)
with torch.no_grad():
bs = image.size(0)
weights_i2t = F.softmax(sim_i2t[:, :bs] + 1e-4, dim=1)
weights_t2i = F.softmax(sim_t2i[:, :bs] + 1e-4, dim=1)
mask = torch.eq(idx, idx.T)
weights_i2t.masked_fill_(mask, 0)
weights_t2i.masked_fill_(mask, 0)
# select a negative image for each text
image_embeds_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
image_embeds_neg.append(image_embeds[neg_idx])
image_embeds_neg = torch.stack(image_embeds_neg, dim=0)
# select a negative text for each image
text_embeds_neg = []
text_atts_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
text_embeds_neg.append(text_embeds[neg_idx])
text_atts_neg.append(text.attention_mask[neg_idx])
text_embeds_neg = torch.stack(text_embeds_neg, dim=0)
text_atts_neg = torch.stack(text_atts_neg, dim=0)
text_embeds_all = torch.cat([text_embeds, text_embeds_neg], dim=0)
text_atts_all = torch.cat([text.attention_mask, text_atts_neg], dim=0)
image_embeds_all = torch.cat([image_embeds_neg, image_embeds], dim=0)
image_atts_all = torch.cat([image_atts, image_atts], dim=0)
encoder_output_neg = self.text_encoder(
encoder_embeds=text_embeds_all,
attention_mask=text_atts_all,
encoder_hidden_states=image_embeds_all,
encoder_attention_mask=image_atts_all,
return_dict=True,
mode="fusion",
)
vl_embeddings = torch.cat(
[
encoder_output_pos.last_hidden_state[:, 0, :],
encoder_output_neg.last_hidden_state[:, 0, :],
],
dim=0,
)
itm_logits = self.itm_head(vl_embeddings)
itm_labels = torch.cat(
[torch.ones(bs, dtype=torch.long), torch.zeros(2 * bs, dtype=torch.long)],
dim=0,
).to(self.device)
loss_itm = F.cross_entropy(itm_logits, itm_labels)
return AlbefOutput(
loss=loss_itc + loss_itm,
loss_itc=loss_itc,
loss_itm=loss_itm,
sims=AlbefSimilarity(
sim_i2t=sim_i2t,
sim_t2i=sim_t2i,
sim_i2t_m=sim_i2t_m,
sim_t2i_m=sim_t2i_m,
sim_i2t_targets=sim_i2t_targets,
sim_t2i_targets=sim_t2i_targets,
),
intermediate_output=AlbefIntermediateOutput(
image_embeds=image_embeds,
image_embeds_m=image_embeds_m,
text_embeds=text_embeds,
text_embeds_m=text_embeds_m,
encoder_output=encoder_output_pos,
encoder_output_neg=encoder_output_neg,
itm_logits=itm_logits,
itm_labels=itm_labels,
),
)
@classmethod
def from_config(cls, cfg=None):
image_encoder = VisionTransformerEncoder.from_config(cfg, from_pretrained=False)
text_encoder = XBertEncoder.from_config(cfg)
embed_dim = cfg.get("embed_dim", 256)
momentum = cfg.get("momentum", 0.995)
alpha = cfg.get("alpha", 0.4)
temp = cfg.get("temp", 0.07)
max_txt_len = cfg.get("max_txt_len", 30)
queue_size = cfg.get("queue_size", 0)
use_distill = cfg.get("use_distill", True)
model = cls(
image_encoder=image_encoder,
text_encoder=text_encoder,
queue_size=queue_size,
embed_dim=embed_dim,
temp=temp,
momentum=momentum,
alpha=alpha,
max_txt_len=max_txt_len,
use_distill=use_distill,
)
model.load_checkpoint_from_config(cfg)
return model
def compute_sim_matrix(self, data_loader, task_cfg):
"""
Compute similarity i2t, t2i matrix for the given data loader.
"""
k_test = task_cfg.k_test
return compute_sim_matrix(model=self, data_loader=data_loader, k_test=k_test)
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
BaseModelOutputWithPoolingAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
ModelOutput,
)
@dataclass
class AlbefSimilarity(ModelOutput):
sim_i2t: torch.FloatTensor = None
sim_t2i: torch.FloatTensor = None
sim_i2t_m: Optional[torch.FloatTensor] = None
sim_t2i_m: Optional[torch.FloatTensor] = None
sim_i2t_targets: Optional[torch.FloatTensor] = None
sim_t2i_targets: Optional[torch.FloatTensor] = None
@dataclass
class AlbefIntermediateOutput(ModelOutput):
# uni-modal features
image_embeds: torch.FloatTensor = None
text_embeds: Optional[torch.FloatTensor] = None
image_embeds_m: Optional[torch.FloatTensor] = None
text_embeds_m: Optional[torch.FloatTensor] = None
# intermediate outputs of multimodal encoder
encoder_output: Optional[BaseModelOutputWithPoolingAndCrossAttentions] = None
encoder_output_m: Optional[BaseModelOutputWithPoolingAndCrossAttentions] = None
encoder_output_neg: Optional[BaseModelOutputWithPoolingAndCrossAttentions] = None
itm_logits: Optional[torch.FloatTensor] = None
itm_labels: Optional[torch.LongTensor] = None
# intermediate outputs of multimodal decoder
decoder_output: Optional[CausalLMOutputWithCrossAttentions] = None
decoder_labels: Optional[torch.LongTensor] = None
@dataclass
class AlbefOutput(ModelOutput):
# some finetuned models (e.g. BlipVQA) do not compute similarity, thus optional.
sims: Optional[AlbefSimilarity] = None
intermediate_output: AlbefIntermediateOutput = None
loss: Optional[torch.FloatTensor] = None
loss_itc: Optional[torch.FloatTensor] = None
loss_itm: Optional[torch.FloatTensor] = None
loss_mlm: Optional[torch.FloatTensor] = None
@dataclass
class AlbefOutputWithLogits(AlbefOutput):
logits: torch.FloatTensor = None
logits_m: torch.FloatTensor = None
@dataclass
class AlbefOutputFeatures(ModelOutput):
"""
Data class of features from AlbefFeatureExtractor.
Args:
image_embeds: `torch.FloatTensor` of shape `(batch_size, num_patches+1, embed_dim)`, `optional`
image_features: `torch.FloatTensor` of shape `(batch_size, num_patches+1, feature_dim)`, `optional`
text_embeds: `torch.FloatTensor` of shape `(batch_size, sequence_length+1, embed_dim)`, `optional`
text_features: `torch.FloatTensor` of shape `(batch_size, sequence_length+1, feature_dim)`, `optional`
The first embedding or feature is for the [CLS] token.
Features are obtained by projecting the corresponding embedding into a normalized low-dimensional space.
"""
image_embeds: Optional[torch.FloatTensor] = None
image_embeds_proj: Optional[torch.FloatTensor] = None
text_embeds: Optional[torch.FloatTensor] = None
text_embeds_proj: Optional[torch.FloatTensor] = None
multimodal_embeds: Optional[torch.FloatTensor] = None
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class AlbefBase(BaseModel):
@classmethod
def init_tokenizer(cls):
return BertTokenizer.from_pretrained("bert-base-uncased")
def load_from_pretrained(self, url_or_filename, rename_text_keys=True):
if is_url(url_or_filename):
cached_file = download_cached_file(
url_or_filename, check_hash=False, progress=True
)
checkpoint = torch.load(cached_file, map_location="cpu")
elif os.path.isfile(url_or_filename):
checkpoint = torch.load(url_or_filename, map_location="cpu")
else:
raise RuntimeError("checkpoint url or path is invalid")
if "model" in checkpoint:
state_dict = checkpoint["model"]
else:
state_dict = checkpoint
state_dict["visual_encoder.pos_embed"] = interpolate_pos_embed(
state_dict["visual_encoder.pos_embed"], self.visual_encoder
)
if (
"visual_encoder_m.pos_embed" in self.state_dict().keys()
and "visual_encoder_m.pos_embed" in state_dict
):
state_dict["visual_encoder_m.pos_embed"] = interpolate_pos_embed(
state_dict["visual_encoder_m.pos_embed"], self.visual_encoder_m
)
if rename_text_keys:
for key in list(state_dict.keys()):
if "bert" in key:
new_key = key.replace("bert.", "")
state_dict[new_key] = state_dict[key]
del state_dict[key]
for key in self.state_dict().keys():
if key in state_dict.keys():
if state_dict[key].shape != self.state_dict()[key].shape:
del state_dict[key]
msg = self.load_state_dict(state_dict, strict=False)
logging.info("Missing keys {}".format(msg.missing_keys))
logging.info("load checkpoint from %s" % url_or_filename)
return msg
def compute_sim_matrix(model, data_loader, **kwargs):
k_test = kwargs.pop("k_test")
metric_logger = MetricLogger(delimiter=" ")
header = "Evaluation:"
logging.info("Computing features for evaluation...")
start_time = time.time()
texts = data_loader.dataset.text
num_text = len(texts)
text_bs = 256
text_ids = []
text_embeds = []
text_atts = []
for i in range(0, num_text, text_bs):
text = texts[i : min(num_text, i + text_bs)]
text_input = model.tokenizer(
text,
padding="max_length",
truncation=True,
max_length=35,
return_tensors="pt",
).to(model.device)
text_output = model.text_encoder.forward_text(text_input)
text_embed = F.normalize(
model.text_proj(text_output.last_hidden_state[:, 0, :])
)
text_embeds.append(text_embed)
text_ids.append(text_input.input_ids)
text_atts.append(text_input.attention_mask)
text_embeds = torch.cat(text_embeds, dim=0)
text_ids = torch.cat(text_ids, dim=0)
text_atts = torch.cat(text_atts, dim=0)
if hasattr(model.tokenizer, "enc_token_id"):
text_ids[:, 0] = model.tokenizer.enc_token_id
image_feats = []
image_embeds = []
for samples in data_loader:
image = samples["image"]
image = image.to(model.device)
image_feat = model.visual_encoder.forward_features(image)
image_embed = model.vision_proj(image_feat[:, 0, :])
image_embed = F.normalize(image_embed, dim=-1)
image_feats.append(image_feat.cpu())
image_embeds.append(image_embed)
image_feats = torch.cat(image_feats, dim=0)
image_embeds = torch.cat(image_embeds, dim=0)
sims_matrix = image_embeds @ text_embeds.t()
score_matrix_i2t = torch.full(
(len(data_loader.dataset.image), len(texts)), -100.0
).to(model.device)
num_tasks = dist_utils.get_world_size()
rank = dist_utils.get_rank()
step = sims_matrix.size(0) // num_tasks + 1
start = rank * step
end = min(sims_matrix.size(0), start + step)
for i, sims in enumerate(
metric_logger.log_every(sims_matrix[start:end], 50, header)
):
# topk_sim, topk_idx = sims.topk(k=config["k_test"], dim=0)
topk_sim, topk_idx = sims.topk(k=k_test, dim=0)
encoder_output = image_feats[start + i].repeat(k_test, 1, 1).to(model.device)
encoder_att = torch.ones(encoder_output.size()[:-1], dtype=torch.long).to(
model.device
)
output = model.text_encoder(
text_ids[topk_idx],
attention_mask=text_atts[topk_idx],
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
)
score = model.itm_head(output.last_hidden_state[:, 0, :])[:, 1]
score_matrix_i2t[start + i, topk_idx] = score + topk_sim
sims_matrix = sims_matrix.t()
score_matrix_t2i = torch.full(
(len(texts), len(data_loader.dataset.image)), -100.0
).to(model.device)
step = sims_matrix.size(0) // num_tasks + 1
start = rank * step
end = min(sims_matrix.size(0), start + step)
for i, sims in enumerate(
metric_logger.log_every(sims_matrix[start:end], 50, header)
):
topk_sim, topk_idx = sims.topk(k=k_test, dim=0)
encoder_output = image_feats[topk_idx.cpu()].to(model.device)
encoder_att = torch.ones(encoder_output.size()[:-1], dtype=torch.long).to(
model.device
)
output = model.text_encoder(
text_ids[start + i].repeat(k_test, 1),
attention_mask=text_atts[start + i].repeat(k_test, 1),
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
)
score = model.itm_head(output.last_hidden_state[:, 0, :])[:, 1]
score_matrix_t2i[start + i, topk_idx] = score + topk_sim
if dist_utils.is_dist_avail_and_initialized():
dist.barrier()
torch.distributed.all_reduce(
score_matrix_i2t, op=torch.distributed.ReduceOp.SUM
)
torch.distributed.all_reduce(
score_matrix_t2i, op=torch.distributed.ReduceOp.SUM
)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logging.info("Evaluation time {}".format(total_time_str))
return score_matrix_i2t.cpu().numpy(), score_matrix_t2i.cpu().numpy()
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
@registry.register_model("albef_feature_extractor")
class AlbefFeatureExtractor(AlbefBase):
PRETRAINED_MODEL_CONFIG_DICT = {
"base": "configs/models/albef_feature_extractor.yaml",
}
def __init__(self, image_encoder, text_encoder, embed_dim=256, max_txt_len=30):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.visual_encoder = image_encoder
self.text_encoder = text_encoder
text_width = text_encoder.config.hidden_size
vision_width = image_encoder.vision_width
self.embed_dim = embed_dim
self.vision_proj = nn.Linear(vision_width, embed_dim)
self.text_proj = nn.Linear(text_width, embed_dim)
self.max_txt_len = max_txt_len
self.temp = nn.Parameter(0.07 * torch.ones([]))
@torch.no_grad()
def extract_features(self, samples, mode="multimodal"):
"""
Extract features for multimodal or unimodal samples.
Args:
samples (dict): A dictionary of samples, containing the following keys:
- image (torch.Tensor): A tensor of shape (B, C, H, W) containing the image.
Raw images should be preprocessed before being passed to feature extractor.
- text_input (list): A list of strings containing the text, length B.
mode (str): The mode of feature extraction. Can be either "multimodal", "text" or "image".
If "multimodal", return image features and multimodal features;
if "text", return text features;
if "image", return image features.
Default: "multimodal".
Returns:
An AlbefOutputFeatures object, see lavis/models/albef_models/albef_outputs.py for details.
Examples:
```python
>>> from PIL import Image
>>> from lavis.models import load_model_and_preprocess
>>> raw_image = Image.open("docs/data/merlion.png").convert("RGB")
>>> caption = "a large fountain spewing water into the air"
>>> model, vis_processors, txt_processors = load_model_and_preprocess("albef_feature_extractor", is_eval=True)
>>> image = vis_processors["eval"](raw_image).unsqueeze(0)
>>> text_input = txt_processors["eval"](caption)
>>> sample = {"image": image, "text_input": [text_input]}
>>> features_multimodal = model.extract_features(sample)
>>> features_multimodal.keys()
odict_keys(['image_embeds', 'multimodal_embeds'])
>>> features_multimodal.image_embeds.shape
torch.Size([1, 197, 768])
>>> features_multimodal.multimodal_embeds.shape
torch.Size([1, 12, 768])
>>> features_text = model.extract_features(sample, mode="text")
>>> features_text.keys()
odict_keys(['text_embeds', 'text_features'])
>>> features_text.text_embeds.shape
torch.Size([1, 12, 768])
>>> features_text.text_features.shape
torch.Size([1, 12, 256])
>>> features_image = model.extract_features(sample, mode="image")
>>> features_image.keys()
odict_keys(['image_embeds', 'image_features'])
>>> features_image.image_embeds.shape
torch.Size([1, 197, 768])
>>> features_image.image_features.shape
torch.Size([1, 197, 256])
```
"""
image = samples["image"]
caption = samples["text_input"]
if isinstance(mode, str):
mode = [mode]
for m in mode:
assert m in [
"multimodal",
"image",
"text",
], "mode must be one of [multimodal, image, text], but got {}".format(m)
# initalize output
image_embeds, text_embeds, multimodal_embeds = None, None, None
image_features, text_features = None, None
if "image" in mode or "multimodal" in mode:
assert (
image is not None
), "image must be provided if mode is 'image' or 'multimodal'"
image_embeds = self.visual_encoder.forward_features(image)
image_features = F.normalize(self.vision_proj(image_embeds), dim=-1)
if "text" in mode or "multimodal" in mode:
assert (
caption is not None
), "text must be provided if mode is 'text' or 'multimodal'"
text = self.tokenizer(
caption,
padding=True,
return_tensors="pt",
).to(self.device)
text_output = self.text_encoder.bert(
text.input_ids,
attention_mask=text.attention_mask,
return_dict=True,
mode="text",
)
text_embeds = text_output.last_hidden_state
text_features = F.normalize(self.text_proj(text_embeds), dim=-1)
if "multimodal" in mode:
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
self.device
)
# forward the positve image-text pair
output = self.text_encoder.bert(
encoder_embeds=text_embeds,
attention_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
mode="fusion",
)
multimodal_embeds = output.last_hidden_state
return AlbefOutputFeatures(
image_embeds=image_embeds,
image_embeds_proj=image_features,
text_embeds=text_embeds,
text_embeds_proj=text_features,
multimodal_embeds=multimodal_embeds,
)
@classmethod
def from_config(cls, cfg=None):
image_encoder = VisionTransformerEncoder.from_config(cfg, from_pretrained=True)
config_text_encoder = BertConfig.from_json_file(
get_abs_path(cfg["med_config_path"])
)
config_text_encoder.fusion_layer = 6
text_encoder = BertForMaskedLM.from_pretrained(
"bert-base-uncased", config=config_text_encoder
)
embed_dim = cfg.get("embed_dim", 256)
max_txt_len = cfg.get("max_txt_len", 30)
model = cls(
image_encoder=image_encoder,
text_encoder=text_encoder,
embed_dim=embed_dim,
max_txt_len=max_txt_len,
)
# load pre-trained weights
pretrain_path = cfg.get("pretrained", None)
if pretrain_path is not None:
msg = model.load_from_pretrained(
url_or_filename=pretrain_path, rename_text_keys=False
)
else:
warnings.warn("No pretrained weights are loaded.")
return model
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
@registry.register_model("albef_vqa")
class AlbefVQA(AlbefBase, MomentumDistilationMixin):
"""
ALBEF VQA models.
Supported model types:
- base: vqa model initialized with pre-trained ALBEF base model on 115M image-text pairs after CapFilt; not fine-tuned.
- vqav2: fine-tuned ALBEF base model on VQA v2.0 dataset.
Usage:
>>> from lavis.models import load_model
>>> model = load_model("albef_vqa", "vqav2")
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"vqav2": "configs/models/albef_vqav2.yaml",
}
def __init__(
self,
image_encoder,
text_encoder,
text_decoder,
use_distill=True,
momentum=0.995,
alpha=0.4,
max_txt_len=35,
):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.max_txt_len = max_txt_len
self.use_distill = use_distill
self.visual_encoder = image_encoder
self.text_encoder = text_encoder
self.text_decoder = text_decoder
if self.use_distill:
self.visual_encoder_m = deepcopy(self.visual_encoder)
self.text_encoder_m = deepcopy(self.text_encoder)
self.text_decoder_m = deepcopy(self.text_decoder)
self.momentum = momentum
self.alpha = alpha
self.model_pairs = [
[self.visual_encoder, self.visual_encoder_m],
[self.text_encoder, self.text_encoder_m],
[self.text_decoder, self.text_decoder_m],
]
self.copy_params()
def _rampup_factor(self, epoch, iters, num_iters_per_epoch):
return min(1, (epoch * num_iters_per_epoch + iters) / num_iters_per_epoch)
def forward(self, samples):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). Default H=480, W=480.
- text_input (list): A list of strings, each string is a question
- answer (list): A list of strings, each string is an answer
- weight (torch.Tensor): A tensor used to weigh each answer in the loss computation.
The shape of the tensor is (sum(n_answers),)
- n_answers (torch.Tensor): A tensor shape (batch_size,) containing the number of answers
for each question in the batch.
Returns:
An AlbefOutput object containing loss and intermediate outputs;
see lavis/models/albef_models/albef_outputs.py for more details.
Examples:
>>> import torch
>>> from lavis.models import load_model
>>> model = load_model("albef_vqa")
>>> samples = {
... "image": torch.rand(2, 3, 384, 384),
... "text_input": ["What is this?", "What is that?"],
... "answer": ["cat", "cat", "dog"],
... "weight": torch.tensor([1.0, 1.0, 1.0]),
... "n_answers": torch.tensor([2, 1]),
... "epoch": 0, "iters": 0, "num_iters_per_epoch": 1000,
... }
>>> output = model(samples)
>>> output.keys()
odict_keys(['intermediate_output', 'loss'])
"""
(
encoder_output,
encoder_output_m,
image_embeds,
image_embeds_m,
) = self.forward_encoder(samples)
loss, decoder_output, decoder_targets = self.forward_decoder(
samples, encoder_out=(encoder_output, encoder_output_m)
)
return AlbefOutput(
loss=loss,
intermediate_output=AlbefIntermediateOutput(
image_embeds=image_embeds,
image_embeds_m=image_embeds_m,
encoder_output=encoder_output,
encoder_output_m=encoder_output_m,
decoder_output=decoder_output,
decoder_labels=decoder_targets,
),
)
def forward_encoder(self, samples):
questions = samples["text_input"]
questions = self.tokenizer(
questions,
padding="longest",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(self.device)
samples.update({"tokenized_text": questions})
image_embeds = self.visual_encoder.forward_features(samples["image"])
encoder_output = self.text_encoder.forward_automask(
tokenized_text=samples["tokenized_text"], visual_embeds=image_embeds
)
if self.use_distill:
self._momentum_update()
with torch.no_grad():
image_embeds_m = self.visual_encoder_m(samples["image"])
encoder_output_m = self.text_encoder_m.forward_automask(
tokenized_text=samples["tokenized_text"],
visual_embeds=image_embeds_m,
)
else:
encoder_output_m = None
image_embeds_m = None
return encoder_output, encoder_output_m, image_embeds, image_embeds_m
def forward_decoder(self, samples, encoder_out, **kwargs):
answers = self.tokenizer(
samples["answer"], padding="longest", return_tensors="pt"
).to(self.device)
answer_targets = answers.input_ids.masked_fill(
answers.input_ids == self.tokenizer.pad_token_id, -100
)
question_states = []
question_atts = []
question = samples["tokenized_text"]
question_output, question_output_m = encoder_out
for b, n in enumerate(samples["n_answers"]):
question_states += [question_output.last_hidden_state[b]] * n
question_atts += [question.attention_mask[b]] * n
question_states = torch.stack(question_states, dim=0)
question_atts = torch.stack(question_atts, dim=0)
if self.use_distill:
with torch.no_grad():
question_states_m = []
for b, n in enumerate(samples["n_answers"]):
question_states_m += [question_output_m.last_hidden_state[b]] * n
question_states_m = torch.stack(question_states_m, 0)
logits_m = self.text_decoder_m(
answers.input_ids,
attention_mask=answers.attention_mask,
encoder_hidden_states=question_states_m,
encoder_attention_mask=question_atts,
return_logits=True,
)
alpha = self.alpha * self._rampup_factor(
epoch=samples["epoch"],
iters=samples["iters"],
num_iters_per_epoch=samples["num_iters_per_epoch"],
)
answer_output = self.text_decoder(
answers.input_ids,
attention_mask=answers.attention_mask,
encoder_hidden_states=question_states,
encoder_attention_mask=question_atts,
labels=answer_targets,
soft_labels=F.softmax(logits_m, dim=-1),
alpha=alpha,
return_dict=True,
reduction="none",
)
loss = samples["weight"] * answer_output.loss
bsz = samples["image"].size(0)
loss = loss.sum() / bsz
return loss, answer_output, answer_targets
def predict_answers(self, samples, answer_list, num_ans_candidates=128, **kwargs):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). Default H=480, W=480.
- text_input (str or [str]): String or a list of strings, each string is a question.
The number of questions must be equal to the batch size. If a single string, will be converted to a list of string, with length 1 first.
num_ans_candidates (int): Number of answer candidates, used to filter out answers with low probability.
answer_list (list): A list of strings, each string is an answer.
Returns:
List: A list of strings, each string is an answer.
Examples:
>>> from PIL import Image
>>> from lavis.models import load_model_and_preprocess
>>> model, vis_processors, txt_processors = load_model_and_preprocess("albef_vqa", "vqav2")
>>> raw_image = Image.open("docs/data/merlion.png").convert("RGB")
>>> question = "Which city is this photo taken?"
>>> image = vis_processors["eval"](raw_image).unsqueeze(0)
>>> question = txt_processors["eval"](question)
>>> samples = {"image": image, "text_input": [question]}
>>> answer_list = ["Singapore", "London", "Palo Alto", "Tokyo"]
>>> answers = model.predict_answers(samples, answer_list=answer_list)
>>> answers
['Singapore']
"""
if isinstance(samples["text_input"], str):
samples["text_input"] = [samples["text_input"]]
assert len(samples["text_input"]) == samples["image"].size(
0
), "The number of questions must be equal to the batch size."
num_ans_candidates = min(num_ans_candidates, len(answer_list))
return self.rank_answers(
samples, answer_list=answer_list, num_ans_candidates=num_ans_candidates
)
def rank_answers(self, samples, answer_list, num_ans_candidates):
"""
Generate the first token of answers using decoder and select ${num_ans_candidates}
most probable ones. Then select answers from answer list, which start with the probable tokens.
Lastly, use the selected answers as the ground-truth labels for decoding and calculating LM loss.
Return the answers that minimize the losses as result.
"""
answer_candidates = self.tokenizer(
answer_list, padding="longest", return_tensors="pt"
).to(self.device)
# answer_candidates.input_ids[:, 0] = self.tokenizer.bos_token_id
answer_ids = answer_candidates.input_ids
answer_atts = answer_candidates.attention_mask
question_output, _, _, _ = self.forward_encoder(samples)
question_states = question_output.last_hidden_state
tokenized_question = samples["tokenized_text"]
question_atts = tokenized_question.attention_mask
num_ques = question_states.size(0)
start_ids = answer_ids[0, 0].repeat(num_ques, 1) # bos token
start_output = self.text_decoder(
start_ids,
encoder_hidden_states=question_states,
encoder_attention_mask=question_atts,
return_dict=True,
reduction="none",
)
logits = start_output.logits[:, 0, :] # first token's logit
# topk_probs: top-k probability
# topk_ids: [num_question, k]
answer_first_token = answer_ids[:, 1]
prob_first_token = F.softmax(logits, dim=1).index_select(
dim=1, index=answer_first_token
)
topk_probs, topk_ids = prob_first_token.topk(num_ans_candidates, dim=1)
# answer input: [num_question*k, answer_len]
input_ids = []
input_atts = []
for b, topk_id in enumerate(topk_ids):
input_ids.append(answer_ids.index_select(dim=0, index=topk_id))
input_atts.append(answer_atts.index_select(dim=0, index=topk_id))
input_ids = torch.cat(input_ids, dim=0)
input_atts = torch.cat(input_atts, dim=0)
targets_ids = input_ids.masked_fill(
input_ids == self.tokenizer.pad_token_id, -100
)
# repeat encoder's output for top-k answers
question_states = tile(question_states, 0, num_ans_candidates)
question_atts = tile(question_atts, 0, num_ans_candidates)
output = self.text_decoder(
input_ids,
attention_mask=input_atts,
encoder_hidden_states=question_states,
encoder_attention_mask=question_atts,
labels=targets_ids,
return_dict=True,
reduction="none",
)
log_probs_sum = -output.loss
log_probs_sum = log_probs_sum.view(num_ques, num_ans_candidates)
max_topk_ids = log_probs_sum.argmax(dim=1)
max_ids = topk_ids[max_topk_ids >= 0, max_topk_ids]
answers = [answer_list[max_id] for max_id in max_ids]
return answers
@classmethod
def from_config(cls, cfg=None):
image_encoder = VisionTransformerEncoder.from_config(cfg)
text_encoder = XBertEncoder.from_config(cfg)
config_decoder = BertConfig.from_json_file(get_abs_path(cfg["med_config_path"]))
config_decoder.fusion_layer = 0
config_decoder.num_hidden_layers = 6
text_decoder = BertLMHeadModel.from_pretrained(
"bert-base-uncased", config=config_decoder
)
alpha = cfg.get("alpha", 0.4)
momentum = cfg.get("momentum", 0.995)
use_distill = cfg.get("use_distill", True)
max_txt_len = cfg.get("max_txt_len", 25)
model = cls(
image_encoder=image_encoder,
text_encoder=text_encoder,
text_decoder=text_decoder,
use_distill=use_distill,
momentum=momentum,
alpha=alpha,
max_txt_len=max_txt_len,
)
# load pre-trained weights
model.load_checkpoint_from_config(cfg)
return model
def load_from_pretrained(self, url_or_filename):
if is_url(url_or_filename):
cached_file = download_cached_file(
url_or_filename, check_hash=False, progress=True
)
checkpoint = torch.load(cached_file, map_location="cpu")
elif os.path.isfile(url_or_filename):
checkpoint = torch.load(url_or_filename, map_location="cpu")
else:
raise RuntimeError("checkpoint url or path is invalid")
if "model" in checkpoint:
state_dict = checkpoint["model"]
else:
state_dict = checkpoint
# reshape positional embedding to accomodate for image resolution change
pos_embed_reshaped = interpolate_pos_embed(
state_dict["visual_encoder.pos_embed"], self.visual_encoder
)
state_dict["visual_encoder.pos_embed"] = pos_embed_reshaped
m_pos_embed_reshaped = interpolate_pos_embed(
state_dict["visual_encoder_m.pos_embed"], self.visual_encoder_m
)
state_dict["visual_encoder_m.pos_embed"] = m_pos_embed_reshaped
for key in list(state_dict.keys()):
if "bert" in key:
encoder_key = key.replace("bert.", "")
state_dict[encoder_key] = state_dict[key]
# intialize text decoder as multimodal encoder (last 6 layers of model.text_encoder)
if "text_encoder" in key:
if "layer" in key:
encoder_keys = key.split(".")
layer_num = int(encoder_keys[4])
if layer_num < 6:
del state_dict[key]
continue
else:
decoder_layer_num = layer_num - 6
encoder_keys[4] = str(decoder_layer_num)
encoder_key = ".".join(encoder_keys)
else:
encoder_key = key
decoder_key = encoder_key.replace("text_encoder", "text_decoder")
state_dict[decoder_key] = state_dict[key]
del state_dict[key]
for key in self.state_dict().keys():
if key in state_dict.keys():
if state_dict[key].shape != self.state_dict()[key].shape:
del state_dict[key]
msg = self.load_state_dict(state_dict, strict=False)
logging.info("load checkpoint from %s" % url_or_filename)
logging.info(f"missing keys: {msg.missing_keys}")
return msg
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
@registry.register_model("albef_nlvr")
class AlbefNLVR(AlbefBase, MomentumDistilationMixin):
PRETRAINED_MODEL_CONFIG_DICT = {
"nlvr": "configs/models/albef_nlvr.yaml",
}
def __init__(
self,
image_encoder,
text_encoder,
num_classes,
momentum=0.995,
alpha=0.4,
use_distill=True,
max_txt_len=40,
):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.max_txt_len = max_txt_len
self.use_distill = use_distill
self.visual_encoder = image_encoder
self.text_encoder = text_encoder
hidden_size = text_encoder.config.hidden_size
self.cls_head = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, num_classes),
)
self.share_cross_attention(self.text_encoder.encoder)
if self.use_distill:
self.visual_encoder_m = deepcopy(self.visual_encoder)
self.text_encoder_m = deepcopy(self.text_encoder)
self.cls_head_m = deepcopy(self.cls_head)
self.share_cross_attention(self.text_encoder_m.encoder)
self.momentum = momentum
self.alpha = alpha
self.model_pairs = [
[self.visual_encoder, self.visual_encoder_m],
[self.text_encoder, self.text_encoder_m],
[self.cls_head, self.cls_head_m],
]
self.copy_params()
def _rampup_factor(self, epoch, iters, num_iters_per_epoch):
return min(1, (epoch * num_iters_per_epoch + iters) / (2 * num_iters_per_epoch))
def forward(self, samples, is_train=True):
"""
Forward function for training and evaluation.
Args:
samples (dict): a dict of input samples, which contains the following keys:
- image0 (torch.Tensor): input image 0, shape (batch_size, 3, H, W), default H=384, W=384.
- image1 (torch.Tensor): input image 1, shape (batch_size, 3, H, W), default H=384, W=384.
- text_input (list): list of strings, each string is a natural language sentence.
- label (torch.LongTensor): ground truth label with shape (batch_size,).
is_train (bool): whether the model is in training mode.
If True, the model will return the loss;
If False, the model will return the prediction.
Examples:
>>> import torch
>>> from lavis.models import load_model
>>> model = load_model("albef_nlvr")
>>> samples = {
... "image0": torch.randn(2, 3, 384, 384),
... "image1": torch.randn(2, 3, 384, 384),
... "text_input": ["there is a ferret in tall grass", "there are lips in one of the images"],
... "label": torch.tensor([0, 1]),
... }
>>> output = model(samples)
>>> output.keys()
odict_keys(['intermediate_output', 'loss'])
"""
text = samples["text_input"]
text = self.tokenizer(
text,
padding="longest",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(self.device)
targets = samples["label"]
image0 = samples["image0"]
image1 = samples["image1"]
images = torch.cat([image0, image1], dim=0)
image_embeds = self.visual_encoder.forward_features(images)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
self.device
)
image0_embeds, image1_embeds = torch.split(image_embeds, targets.size(0))
encoder_output = self.text_encoder(
text.input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=[image0_embeds, image1_embeds],
encoder_attention_mask=[
image_atts[: image0_embeds.size(0)],
image_atts[image0_embeds.size(0) :],
],
return_dict=True,
)
prediction = self.cls_head(encoder_output.last_hidden_state[:, 0, :])
if is_train:
if self.use_distill:
with torch.no_grad():
self._momentum_update()
image_embeds_m = self.visual_encoder_m(images)
image0_embeds_m, image1_embeds_m = torch.split(
image_embeds_m, targets.size(0)
)
encoder_output_m = self.text_encoder(
text.input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=[image0_embeds_m, image1_embeds_m],
encoder_attention_mask=[
image_atts[: image0_embeds_m.size(0)],
image_atts[image0_embeds_m.size(0) :],
],
return_dict=True,
)
prediction_m = self.cls_head_m(
encoder_output_m.last_hidden_state[:, 0, :]
)
alpha = self.alpha * self._rampup_factor(
epoch=samples["epoch"],
iters=samples["iters"],
num_iters_per_epoch=samples["num_iters_per_epoch"],
)
loss = (1 - alpha) * F.cross_entropy(
prediction, targets
) - alpha * torch.sum(
F.log_softmax(prediction, dim=1) * F.softmax(prediction_m, dim=1),
dim=1,
).mean()
else:
loss = F.cross_entropy(prediction, targets)
encoder_output_m = None
image0_embeds_m, image1_embeds_m = None, None
# return {"loss": loss}
return AlbefOutput(
loss=loss,
intermediate_output=AlbefIntermediateOutput(
image_embeds=torch.stack([image0_embeds, image1_embeds], dim=0),
image_embeds_m=torch.stack(
[image0_embeds_m, image1_embeds_m], dim=0
),
encoder_output=encoder_output,
encoder_output_m=encoder_output_m,
),
)
else:
return {"predictions": prediction, "targets": targets}
def share_cross_attention(self, model):
for i in range(6):
layer_num = 6 + i * 2
modules_0 = model.layer[layer_num].crossattention.self._modules
modules_1 = model.layer[layer_num + 1].crossattention.self._modules
for name in modules_0.keys():
if "key" in name or "value" in name:
module_0 = modules_0[name]
module_1 = modules_1[name]
if hasattr(module_0, "weight"):
module_0.weight = module_1.weight
if hasattr(module_0, "bias"):
module_0.bias = module_1.bias
def predict(self, samples):
output = self.forward(samples, is_train=False)
return output
def load_from_pretrained(self, url_or_filename, use_distill=True):
_, msg = super().load_from_pretrained(url_or_filename)
if use_distill and any(["_m" in k for k in msg.missing_keys]):
# this is required when initializing the model from TA pre-trained weights
self.copy_params()
return msg
@classmethod
def from_config(cls, cfg=None):
image_encoder = VisionTransformerEncoder.from_config(cfg)
# text encoder + multimodal encoder
bert_config = BertConfig.from_json_file(get_abs_path(cfg["med_config_path"]))
bert_config.num_hidden_layers = 18
text_encoder = BertModel.from_pretrained(
"bert-base-uncased", config=bert_config, add_pooling_layer=False
)
alpha = cfg.get("alpha", 0.4)
momentum = cfg.get("momentum", 0.995)
use_distill = cfg.get("use_distill", True)
num_classes = cfg.get("num_classes", -1)
max_txt_len = cfg.get("max_txt_len", 40)
assert num_classes > 1, "Invalid number of classes provided, found {}".format(
num_classes
)
model = cls(
image_encoder=image_encoder,
text_encoder=text_encoder,
use_distill=use_distill,
alpha=alpha,
num_classes=num_classes,
momentum=momentum,
max_txt_len=max_txt_len,
)
model.load_checkpoint_from_config(cfg)
return model
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
AlbefIntermediateOutput,
AlbefOutputWithLogits,
)
@registry.register_model("albef_classification")
class AlbefClassification(AlbefBase, MomentumDistilationMixin):
PRETRAINED_MODEL_CONFIG_DICT = {
"ve": "configs/models/albef_classification_ve.yaml",
}
def __init__(
self,
image_encoder,
text_encoder,
num_classes,
momentum=0.995,
alpha=0.4,
use_distill=True,
max_txt_len=40,
):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.max_txt_len = max_txt_len
self.use_distill = use_distill
self.visual_encoder = image_encoder
self.text_encoder = text_encoder
hidden_size = text_encoder.config.hidden_size
if num_classes > 0:
self.cls_head = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, num_classes),
)
else:
warnings.warn(
f"Found num_classes=0, initializing {type(self)} without classifier."
)
if self.use_distill:
self.visual_encoder_m = deepcopy(self.visual_encoder)
self.text_encoder_m = deepcopy(self.text_encoder)
self.cls_head_m = deepcopy(self.cls_head)
self.momentum = momentum
self.alpha = alpha
self.model_pairs = [
[self.visual_encoder, self.visual_encoder_m],
[self.text_encoder, self.text_encoder_m],
[self.cls_head, self.cls_head_m],
]
self.copy_params()
def _rampup_factor(self, epoch, iters, num_iters_per_epoch):
return min(1, (epoch * num_iters_per_epoch + iters) / num_iters_per_epoch)
def forward(self, samples, is_train=True):
sentences = samples["text_input"]
sentences = self.tokenizer(
sentences,
padding="longest",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(self.device)
samples.update({"tokenized_text": sentences})
targets = samples["label"]
image_embeds = self.visual_encoder.forward_features(samples["image"])
encoder_output = self.text_encoder.forward_automask(
samples["tokenized_text"], image_embeds
)
prediction = self.cls_head(encoder_output.last_hidden_state[:, 0, :])
if is_train:
if self.use_distill:
with torch.no_grad():
self._momentum_update()
image_embeds_m = self.visual_encoder_m(samples["image"])
encoder_output_m = self.text_encoder_m.forward_automask(
samples["tokenized_text"], image_embeds_m
)
prediction_m = self.cls_head_m(
encoder_output_m.last_hidden_state[:, 0, :]
)
alpha = self.alpha * self._rampup_factor(
epoch=samples["epoch"],
iters=samples["iters"],
num_iters_per_epoch=samples["num_iters_per_epoch"],
)
loss = (1 - alpha) * F.cross_entropy(
prediction, targets
) - alpha * torch.sum(
F.log_softmax(prediction, dim=1) * F.softmax(prediction_m, dim=1),
dim=1,
).mean()
else:
loss = F.cross_entropy(prediction, targets)
image_embeds_m, encoder_output_m, prediction_m = None, None, None
# return {"loss": loss}
return AlbefOutputWithLogits(
loss=loss,
intermediate_output=AlbefIntermediateOutput(
image_embeds=image_embeds,
image_embeds_m=image_embeds_m,
encoder_output=encoder_output,
encoder_output_m=encoder_output_m,
),
logits=prediction,
logits_m=prediction_m,
)
else:
return {"predictions": prediction, "targets": targets}
def predict(self, samples):
output = self.forward(samples, is_train=False)
return output
@classmethod
def from_config(cls, cfg=None):
image_encoder = VisionTransformerEncoder.from_config(cfg)
# text encoder + multimodal encoder
text_encoder = XBertEncoder.from_config(cfg)
alpha = cfg.get("alpha", 0.4)
momentum = cfg.get("momentum", 0.995)
use_distill = cfg.get("use_distill", True)
num_classes = cfg.get("num_classes", -1)
max_txt_len = cfg.get("max_txt_len", 40)
assert num_classes > 1, "Invalid number of classes provided, found {}".format(
num_classes
)
model = cls(
image_encoder=image_encoder,
text_encoder=text_encoder,
use_distill=use_distill,
alpha=alpha,
num_classes=num_classes,
momentum=momentum,
max_txt_len=max_txt_len,
)
model.load_checkpoint_from_config(cfg)
return model
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
AlbefIntermediateOutput,
AlbefOutput,
AlbefSimilarity,
)
@registry.register_model("albef_pretrain")
class AlbefPretrain(AlbefBase, MomentumDistilationMixin, SharedQueueMixin):
"""
ALBEF pretrain model.
Supported model types:
- base: ALBEF base model used for pretraining.
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"base": "configs/models/albef_pretrain_base.yaml",
}
def __init__(
self,
image_encoder,
text_encoder,
queue_size,
embed_dim=256,
mlm_mask_prob=0.15,
temp=0.07,
momentum=0.995,
alpha=0.4,
max_txt_len=30,
):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.visual_encoder = image_encoder
self.text_encoder = text_encoder
text_width = text_encoder.config.hidden_size
vision_width = image_encoder.vision_width
self.embed_dim = embed_dim
self.vision_proj = nn.Linear(vision_width, embed_dim)
self.text_proj = nn.Linear(text_width, embed_dim)
self.itm_head = nn.Linear(text_width, 2)
# create the momentum encoder
self.visual_encoder_m = deepcopy(self.visual_encoder)
self.text_encoder_m = deepcopy(self.text_encoder)
self.vision_proj_m = deepcopy(self.vision_proj)
self.text_proj_m = deepcopy(self.text_proj)
self.model_pairs = [
[self.visual_encoder, self.visual_encoder_m],
[self.text_encoder, self.text_encoder_m],
[self.vision_proj, self.vision_proj_m],
[self.text_proj, self.text_proj_m],
]
self.copy_params()
# create the queue
self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))
self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
self.queue_size = queue_size
self.momentum = momentum
self.temp = nn.Parameter(temp * torch.ones([]))
self.alpha = alpha
self.max_txt_len = max_txt_len
self.mlm_probability = mlm_mask_prob
def _rampup_factor(self, epoch, iters, num_iters_per_epoch):
return min(1, (epoch * num_iters_per_epoch + iters) / (2 * num_iters_per_epoch))
def forward(self, samples):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). The input images. Default: H=224, W=224.
- text_input (list): A list of length batch_size, each element is a string of text/caption.
- epoch (int): The current epoch.
- iters (int): The current iteration.
- num_iters_per_epoch (int): The number of iterations per epoch.
Returns:
BlipOutput: A BlipOutput object containing loss and intermediate output. See ``lavis.models.blip_models.blip_outputs.BlipOutput`` for more details.
Examples:
>>> import torch
>>> from lavis.models import load_model
>>> model = load_model("albef_pretrain")
>>> images = torch.randn(4, 3, 224, 224)
>>> text_input = ["caption of image 1", "another caption of image 1", "caption of image 2", "caption of image 3"]
>>> samples = {"image": images, "text_input": text_input, "epoch": 0, "iters": 0, "num_iters_per_epoch": 100}
>>> output = model(samples)
>>> output.keys()
odict_keys(['sims', 'intermediate_output', 'loss', 'loss_itc', 'loss_itm', 'loss_mlm'])
"""
image = samples["image"]
caption = samples["text_input"]
alpha = self.alpha * self._rampup_factor(
epoch=samples["epoch"],
iters=samples["iters"],
num_iters_per_epoch=samples["num_iters_per_epoch"],
)
with torch.no_grad():
self.temp.clamp_(0.001, 0.5)
image_embeds = self.visual_encoder.forward_features(image)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
self.device
)
text = self.tokenizer(
caption,
padding="max_length",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(self.device)
image_feat = F.normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1)
text_output = self.text_encoder.bert(
text.input_ids,
attention_mask=text.attention_mask,
return_dict=True,
mode="text",
)
text_embeds = text_output.last_hidden_state
text_feat = F.normalize(self.text_proj(text_embeds[:, 0, :]), dim=-1)
# get momentum features
with torch.no_grad():
self._momentum_update()
image_embeds_m = self.visual_encoder_m(image)
image_feat_m = F.normalize(
self.vision_proj_m(image_embeds_m[:, 0, :]), dim=-1
)
image_feat_all = torch.cat(
[image_feat_m.t(), self.image_queue.clone().detach()], dim=1
)
text_output_m = self.text_encoder_m.bert(
text.input_ids,
attention_mask=text.attention_mask,
return_dict=True,
mode="text",
)
text_embeds_m = text_output_m.last_hidden_state
text_feat_m = F.normalize(self.text_proj_m(text_embeds_m[:, 0, :]), dim=-1)
text_feat_all = torch.cat(
[text_feat_m.t(), self.text_queue.clone().detach()], dim=1
)
sim_i2t_m = image_feat_m @ text_feat_all / self.temp
sim_t2i_m = text_feat_m @ image_feat_all / self.temp
sim_targets = torch.zeros(sim_i2t_m.size()).to(image.device)
sim_targets.fill_diagonal_(1)
sim_i2t_targets = (
alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
)
sim_t2i_targets = (
alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
)
sim_i2t = image_feat @ text_feat_all / self.temp
sim_t2i = text_feat @ image_feat_all / self.temp
loss_i2t = -torch.sum(
F.log_softmax(sim_i2t, dim=1) * sim_i2t_targets, dim=1
).mean()
loss_t2i = -torch.sum(
F.log_softmax(sim_t2i, dim=1) * sim_t2i_targets, dim=1
).mean()
loss_itc = (loss_i2t + loss_t2i) / 2
self._dequeue_and_enqueue(image_feat_m, text_feat_m)
# forward the positve image-text pair
encoder_output_pos = self.text_encoder.bert(
encoder_embeds=text_embeds,
attention_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
mode="fusion",
)
with torch.no_grad():
bs = image.size(0)
weights_i2t = sim_i2t[:, :bs].clone()
weights_t2i = sim_t2i[:, :bs].clone()
weights_i2t.fill_diagonal_(-np.Inf)
weights_t2i.fill_diagonal_(-np.Inf)
weights_i2t = F.softmax(weights_i2t, dim=1)
weights_t2i = F.softmax(weights_t2i, dim=1)
# select a negative image for each text
image_embeds_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
image_embeds_neg.append(image_embeds[neg_idx])
image_embeds_neg = torch.stack(image_embeds_neg, dim=0)
# select a negative text for each image
text_embeds_neg = []
text_atts_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
text_embeds_neg.append(text_embeds[neg_idx])
text_atts_neg.append(text.attention_mask[neg_idx])
text_embeds_neg = torch.stack(text_embeds_neg, dim=0)
text_atts_neg = torch.stack(text_atts_neg, dim=0)
text_embeds_all = torch.cat([text_embeds, text_embeds_neg], dim=0)
text_atts_all = torch.cat([text.attention_mask, text_atts_neg], dim=0)
image_embeds_all = torch.cat([image_embeds_neg, image_embeds], dim=0)
image_atts_all = torch.cat([image_atts, image_atts], dim=0)
encoder_output_neg = self.text_encoder.bert(
encoder_embeds=text_embeds_all,
attention_mask=text_atts_all,
encoder_hidden_states=image_embeds_all,
encoder_attention_mask=image_atts_all,
return_dict=True,
mode="fusion",
)
vl_embeddings = torch.cat(
[
encoder_output_pos.last_hidden_state[:, 0, :],
encoder_output_neg.last_hidden_state[:, 0, :],
],
dim=0,
)
itm_logits = self.itm_head(vl_embeddings)
itm_labels = torch.cat(
[torch.ones(bs, dtype=torch.long), torch.zeros(2 * bs, dtype=torch.long)],
dim=0,
).to(self.device)
loss_itm = F.cross_entropy(itm_logits, itm_labels)
# MLM
input_ids = text.input_ids.clone()
labels = input_ids.clone()
probability_matrix = torch.full(labels.shape, self.mlm_probability)
input_ids, labels = self.mask(
input_ids,
self.text_encoder.config.vocab_size,
self.device,
targets=labels,
probability_matrix=probability_matrix,
)
with torch.no_grad():
logits_m = self.text_encoder_m(
input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=image_embeds_m,
encoder_attention_mask=image_atts,
return_dict=True,
return_logits=True,
)
mlm_output = self.text_encoder(
input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
labels=labels,
soft_labels=F.softmax(logits_m, dim=-1),
alpha=alpha,
)
loss_mlm = mlm_output.loss
return AlbefOutput(
loss=loss_itc + loss_itm + loss_mlm,
loss_itc=loss_itc,
loss_itm=loss_itm,
loss_mlm=loss_mlm,
sims=AlbefSimilarity(
sim_i2t=sim_i2t,
sim_t2i=sim_t2i,
sim_i2t_m=sim_i2t_m,
sim_t2i_m=sim_t2i_m,
sim_i2t_targets=sim_i2t_targets,
sim_t2i_targets=sim_t2i_targets,
),
intermediate_output=AlbefIntermediateOutput(
image_embeds=image_embeds,
image_embeds_m=image_embeds_m,
text_embeds=text_embeds,
text_embeds_m=text_embeds_m,
encoder_output=encoder_output_pos,
encoder_output_neg=encoder_output_neg,
itm_logits=itm_logits,
itm_labels=itm_labels,
),
)
def mask(
self,
input_ids,
vocab_size,
device,
targets=None,
masked_indices=None,
probability_matrix=None,
):
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
if masked_indices is None:
masked_indices = torch.bernoulli(probability_matrix).bool()
masked_indices[input_ids == self.tokenizer.pad_token_id] = False
masked_indices[input_ids == self.tokenizer.cls_token_id] = False
if targets is not None:
targets[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = (
torch.bernoulli(torch.full(input_ids.shape, 0.8)).bool() & masked_indices
)
input_ids[indices_replaced] = self.tokenizer.mask_token_id
# 10% of the time, we replace masked input tokens with random word
indices_random = (
torch.bernoulli(torch.full(input_ids.shape, 0.5)).bool()
& masked_indices
& ~indices_replaced
)
random_words = torch.randint(vocab_size, input_ids.shape, dtype=torch.long).to(
device
)
input_ids[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
if targets is not None:
return input_ids, targets
else:
return input_ids
@classmethod
def from_config(cls, cfg=None):
image_encoder = VisionTransformerEncoder.from_config(cfg, from_pretrained=True)
config_text_encoder = BertConfig.from_json_file(
get_abs_path(cfg["med_config_path"])
)
config_text_encoder.fusion_layer = 6
text_encoder = BertForMaskedLM.from_pretrained(
"bert-base-uncased", config=config_text_encoder
)
embed_dim = cfg.get("embed_dim", 256)
momentum = cfg.get("momentum", 0.995)
alpha = cfg.get("alpha", 0.4)
mlm_mask_prob = cfg.get("mlm_mask_prob", 0.15)
temp = cfg.get("temp", 0.07)
max_txt_len = cfg.get("max_txt_len", 30)
queue_size = cfg.get("queue_size", 65536)
model = cls(
image_encoder=image_encoder,
text_encoder=text_encoder,
queue_size=queue_size,
embed_dim=embed_dim,
mlm_mask_prob=mlm_mask_prob,
temp=temp,
momentum=momentum,
alpha=alpha,
max_txt_len=max_txt_len,
)
return model
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
@registry.register_model("gpt_dialogue")
class GPTDialogue(BaseModel, GPT2LMHeadModel):
PRETRAINED_MODEL_CONFIG_DICT = {"base": "configs/models/gpt_dialogue_base.yaml"}
def __init__(self, config, len_video_ft=4224):
super().__init__(config)
self.video_ff = nn.Linear(len_video_ft, config.n_embd)
self.video_ff_out = nn.Linear(config.n_embd, len_video_ft)
# Model parallel
self.model_parallel = False
self.device_map = None
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
samples,
past_key_values=None,
position_ids=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_embs = self.transformer.wte(samples["input_ids"])
video_embs = self.video_ff(samples["video_fts"])
input_embs = torch.cat([video_embs, input_embs], dim=1)
transformer_outputs = self.transformer(
attention_mask=samples["attn_mask"],
token_type_ids=samples["token_type_ids"],
inputs_embeds=input_embs,
position_ids=position_ids,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
lm_logits = self.lm_head(hidden_states)
loss = None
if samples["labels"] is not None:
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = samples["labels"][..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(ignore_index=-1)
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
)
if samples["video_fts"] is not None:
len_video_fts = samples["video_fts"].shape[1]
video_logits = self.video_ff_out(hidden_states[:, :len_video_fts, :])
# Shift so that tokens < n predict n
shift_logits = video_logits[..., :-1, :].contiguous()
shift_labels = samples["video_fts"][..., 1:, :].contiguous()
# Flatten the tokens
loss_fct = MSELoss(reduction="mean")
video_loss = loss_fct(shift_logits, shift_labels)
if loss is not None:
loss = loss + video_loss
else:
loss = video_loss
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
)
@classmethod
def from_config(cls, cfg):
model = cls.__bases__[1].from_pretrained("gpt2")
model.resize_token_embeddings(cfg["len_tokenizer"])
return model
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
open_pos = ["NOUN", "VERB", "ADJ", "ADV", "NUM"]
@registry.register_model("img2prompt_vqa")
class Img2PromptVQA(BaseModel):
"""
Img2Prompt_VQA model consists of three submodels for zero-shot VQA:
1. Image-questioning matching model
2. Image captioning model
3. Large Language model
Supported model types:
- base: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-base)
- large: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-large)
- 3b: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-3b)
Usage:
>>> from lavis.models import load_model
>>> model = load_model("img2prompt_vqa", "base", is_eval=True)
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"base": "configs/models/img2prompt-vqa/img2prompt_vqa_base.yaml",
}
def __init__(
self,
image_question_matching_model,
image_captioning_model,
question_generation_model,
question_generation_tokenizer,
offload_model=False,
):
super().__init__()
self.image_question_matching_model = image_question_matching_model
self.image_captioning_model = image_captioning_model
self.question_generation_model = question_generation_model
self.question_generation_tokenizer = question_generation_tokenizer
self.offload_model = offload_model
self.nlp = spacy.load("en_core_web_sm")
def forward_itm(self, samples, block_num=7):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
- text_input (list): A list of strings of length batch_size
block_num (int): The index of cross-attention block for gradcam computation.
Returns:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
- text_input (list): A list of strings of length batch_size
- gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
"""
image = samples["image"]
question = [text.strip("?") for text in samples["text_input"]]
tokenized_text = self.image_question_matching_model.tokenizer(
question, padding="longest", truncation=True, return_tensors="pt"
).to(self.image_question_matching_model.device)
with torch.set_grad_enabled(True):
gradcams, _ = compute_gradcam(
model=self.image_question_matching_model,
visual_input=image,
text_input=question,
tokenized_text=tokenized_text,
block_num=block_num,
)
gradcams = [gradcam_[1] for gradcam_ in gradcams]
samples["gradcams"] = torch.stack(gradcams).reshape(
samples["image"].size(0), -1
)
return samples
def itm_rank(self, image_embeds, image_atts, encoder_input_ids, match_head="itm"):
# breakpoint()
encoder_input_ids = encoder_input_ids.clone()
encoder_input_ids = encoder_input_ids[:, self.prompt_length - 1 :]
text_attention_mask = (encoder_input_ids != self.tokenizer.pad_token_id).long()
if match_head == "itm":
# encoder_input_ids = encoder_input_ids.clone()
encoder_input_ids[:, 0] = self.tokenizer.enc_token_id
output = self.text_encoder(
encoder_input_ids,
attention_mask=text_attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
itm_output = self.itm_head(output.last_hidden_state[:, 0, :])
return itm_output # , mask, token_length
elif match_head == "itc":
encoder_input_ids[:, 0] = self.tokenizer.cls_token_id
text_output = self.text_encoder(
encoder_input_ids,
attention_mask=text_attention_mask,
return_dict=True,
mode="text",
)
image_feat = F.normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1)
text_feat = F.normalize(
self.text_proj(text_output.last_hidden_state[:, 0, :]), dim=-1
)
sim = image_feat @ text_feat.t()
return sim
def forward_cap(
self,
samples,
cap_max_length=20,
cap_min_length=0,
top_p=1,
top_k=50,
repetition_penalty=1.0,
num_captions=100,
num_patches=20,
):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
- text_input (list): A list of strings of length batch_size
- gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
cap_max_length (int): The maximum length of the caption to be generated.
cap_min_length (int): The minimum length of the caption to be generated.
top_p (float): The cumulative probability for nucleus sampling.
top_k (float): The number of the highest probability tokens for top-k sampling.
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
num_captions (int): Number of captions generated for each image.
num_patches (int): Number of patches sampled for each image.
Returns:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
- text_input (list): A list of strings of length batch_size
- gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
- captions (nested list): A nested list of strings of total length batch_size * num_captions
"""
encoder_out = self.image_captioning_model.forward_encoder(samples)
captions = [[] for _ in range(encoder_out.size(0))]
min_num_captions = 0
while min_num_captions < num_captions:
encoder_out_samples = []
for i in range(num_captions):
patch_id = (
torch.multinomial(
samples["gradcams"].to(self.image_captioning_model.device),
num_patches,
).reshape(encoder_out.size(0), -1)
+ 1
)
patch_id = (
patch_id.sort(dim=1)
.values.unsqueeze(-1)
.expand(-1, -1, encoder_out.size(2))
)
encoder_out_sample = torch.gather(encoder_out, 1, patch_id)
encoder_out_samples.append(encoder_out_sample)
stacked = torch.stack(encoder_out_samples, dim=1)
image_embeds = torch.flatten(
stacked, start_dim=0, end_dim=1
) # (bsz*num_seq, num_patch, dim)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
self.image_captioning_model.device
)
model_kwargs = {
"encoder_hidden_states": image_embeds,
"encoder_attention_mask": image_atts,
}
prompt = [self.image_captioning_model.prompt] * image_embeds.size(0)
prompt = self.image_captioning_model.tokenizer(
prompt, return_tensors="pt"
).to(self.image_captioning_model.device)
prompt.input_ids[:, 0] = self.image_captioning_model.tokenizer.bos_token_id
prompt.input_ids = prompt.input_ids[:, :-1]
decoder_out = self.image_captioning_model.text_decoder.generate(
input_ids=prompt.input_ids,
max_length=cap_max_length,
min_length=cap_min_length,
do_sample=True,
top_p=top_p,
top_k=top_k,
num_return_sequences=1,
eos_token_id=self.image_captioning_model.tokenizer.sep_token_id,
pad_token_id=self.image_captioning_model.tokenizer.pad_token_id,
repetition_penalty=repetition_penalty,
**model_kwargs
)
itm_outputs = self.image_question_matching_model.itm_rank(
image_embeds, image_atts, encoder_input_ids=decoder_out
) # caption filter
outputs = self.image_captioning_model.tokenizer.batch_decode(
decoder_out, skip_special_tokens=True
)
for counter, output in enumerate(outputs):
ind = counter // num_captions
if len(captions[ind]) < num_captions:
caption = output[len(self.image_captioning_model.prompt) :]
overlap_caption = [1 for caps in captions[ind] if caption in caps]
# print(itm_outputs)
if (
len(overlap_caption) == 0 and itm_outputs[counter] >= 0.5
): # image filter
captions[ind].append(caption)
min_num_captions = min([len(i) for i in captions])
samples["captions"] = captions
return samples
def answer_extraction(self, caption, num_question_generation=30):
cap_use = ""
# print(caption)
caption = caption
ans_to_cap_dict = {}
answers = []
for cap_idx, cap in enumerate(caption):
# print(cap)
cap_use += cap
cap = cap.strip().strip(".")
# print(cap)
cap = self.nlp(cap)
for token in cap: # Noun /Verb/Adj//NUM
if token.pos_ in open_pos:
if token.text.lower() not in ans_to_cap_dict:
ans_to_cap_dict[token.text.lower()] = [cap_idx]
else:
if cap_idx not in ans_to_cap_dict[token.text.lower()]:
ans_to_cap_dict[token.text.lower()].append(cap_idx)
answers.append(token.text)
for ent in cap.ents:
if ent.text not in answers:
if ent.text.lower() not in ans_to_cap_dict:
ans_to_cap_dict[ent.text.lower()] = [cap_idx]
else:
if cap_idx not in ans_to_cap_dict[ent.text.lower()]:
ans_to_cap_dict[ent.text.lower()].append(cap_idx)
answers.append(ent.text)
for chunk in cap.noun_chunks:
if len(chunk.text.split()) < 4:
if chunk.text.lower() not in ans_to_cap_dict:
ans_to_cap_dict[chunk.text.lower()] = [cap_idx]
else:
if cap_idx not in ans_to_cap_dict[chunk.text.lower()]:
ans_to_cap_dict[chunk.text.lower()].append(cap_idx)
# print(chunk.text)
answers.append(chunk.text)
answers = sorted(answers, key=answers.count, reverse=True)
real_answers = []
for i in answers:
i = i + "."
if i not in real_answers:
real_answers.append(i)
contexts_for_question_generation = []
answers = []
for ans in real_answers[
:num_question_generation
]: # Generate questions for 30 answers with max frequencies.
contexts_for_question_generation.append(
"answer: %s context: %s." % (ans, cap_use)
)
answers.append(ans)
contexts_for_question_generation.append(
"answer: %s context: %s." % ("yes.", cap_use)
)
answers.append("yes.")
return contexts_for_question_generation, answers, ans_to_cap_dict
def forward_qa_generation(self, samples):
caption = samples["captions"][0]
(
contexts_for_question_generation,
answers,
ans_to_cap_dict,
) = self.answer_extraction(caption)
inputs = self.question_generation_tokenizer(
contexts_for_question_generation,
padding="longest",
truncation=True,
max_length=2048,
return_tensors="pt",
).to(self.device)
question_size = inputs.input_ids.shape[0]
cur_b = 0
true_input_size = 10
outputs_list = []
while cur_b < question_size:
outputs = self.question_generation_model.generate(
input_ids=inputs.input_ids[cur_b : cur_b + true_input_size],
attention_mask=inputs.attention_mask[cur_b : cur_b + true_input_size],
num_beams=3,
max_length=30,
)
questions = self.question_generation_tokenizer.batch_decode(
outputs, skip_special_tokens=True
)
outputs_list += questions
cur_b += true_input_size
questions = outputs_list
samples["questions"] = questions
samples["answers"] = answers
samples["ans_to_cap_dict"] = ans_to_cap_dict
# results.append({"question_id": ques_id, "question":questions,"answer":answers})
return samples
def create_context_prompt(self, samples, num_caps_per_img=30):
ans_dict_queid = samples["ans_to_cap_dict"]
# print(ans_dict_queid)
caption = samples["captions"][0]
answers = samples["answers"]
Context_Prompt = ""
mycontexts_id = []
for idx in range(num_caps_per_img):
cap_id_list = ans_dict_queid.get(
answers[(len(answers) - 1 - idx) % len(answers)][:-1].lower(), [0]
)
for cap_id in cap_id_list:
if cap_id not in mycontexts_id:
Context_Prompt += caption[cap_id]
mycontexts_id.append(cap_id)
break # We just take one cap for each answer
samples["Context_Prompt"] = Context_Prompt
return Context_Prompt
def create_task_prompt(
self, samples, question_type="neural", num_question_per_img=30
):
syn_question_queid = samples["questions"]
syn_ans_queid = samples["answers"]
Task_Prompt = ""
for idx in range(num_question_per_img):
# if config['random_question']:
# qa_idx = random.randint(0, len(syn_question_queid) - 1)
# else:
qa_idx = idx
if (
question_type != "rule" and num_question_per_img > 0 and idx < 1
): ## yes and no questions for vqav2
# Task_Prompt += "Question:"
# Task_Prompt += syn_question_queid_next[-1]
# Task_Prompt += '\n'
# Task_Prompt += "Answer:no\n"
Task_Prompt += "Question:"
Task_Prompt += syn_question_queid[-1]
Task_Prompt += "\n"
Task_Prompt += "Answer:"
Task_Prompt += "yes\n"
Task_Prompt += "Question:Is this a toilet?\n"
Task_Prompt += "Answer:no\n"
if "question_type" == "rule": # Rule-Based Question Generation
Noun_Questions = [
"What item is this in this picture?",
"What item is that in this picture?",
]
Verb_Questions = [
"What action is being done in this picture?",
"Why is this item doing in this picture?",
"Which action is being taken in this picture?",
"What action is item doing in this picture?",
"What action is item performing in this picture?",
]
Adj_Questions = [
"How to describe one item in this picture?",
"What is item's ADJ TYPE in this picture?",
"What is the ADJ TYPE in this picture?",
]
Task_Prompt += "Question:"
doc = self.nlp(syn_ans_queid[(qa_idx) % len(syn_ans_queid)][:-1].lower())
if doc[-1].pos_ == "NOUN":
Task_Prompt += Noun_Questions[
random.randint(0, len(Noun_Questions) - 1)
]
elif doc[-1].pos_ == "VERB":
Task_Prompt += Verb_Questions[
random.randint(0, len(Verb_Questions) - 1)
]
elif doc[-1].pos_ == "ADJ":
Task_Prompt += Adj_Questions[
random.randint(0, len(Adj_Questions) - 1)
]
Task_Prompt += "\n"
Task_Prompt += "Answer:"
Task_Prompt += syn_ans_queid[(qa_idx) % len(syn_ans_queid)][:-1].lower()
Task_Prompt += "\n"
samples["Task_Prompt"] = Task_Prompt
# print(Task_Prompt)
return Task_Prompt
def prompts_construction(
self,
samples,
question_type="neural",
num_caps_per_img=30,
num_question_per_img=30,
):
Prompt = "Please reason the answer of the questions according to the given contexts.\n"
Context_Prompt = self.create_context_prompt(samples, num_caps_per_img)
Task_Prompt = self.create_task_prompt(
samples, question_type, num_question_per_img
)
Img2Prompt = (
Prompt
+ "Contexts:"
+ Context_Prompt
+ "\n"
+ Task_Prompt
+ "Question:"
+ samples["text_input"][0]
+ "\nAnswer:"
)
return Img2Prompt
def prepare_LLM_input(
self,
samples,
num_beams=1,
inference_method="generate",
max_len=20,
min_len=0,
internal_bsz_fid=1,
num_captions=50,
num_captions_fid=1,
cap_max_length=20,
cap_min_length=10,
top_k=50,
top_p=1,
repetition_penalty=1,
num_patches=20,
block_num=7,
):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). Default H=480, W=480.
- text_input (str or [str]): String or a list of strings, each string is a question.
The number of questions must be equal to the batch size. If a single string, will be converted to a list of string, with length 1 first.
num_beams (int): Number of beams for beam search. 1 means no beam search.
inference_method (str): Inference method. Must be "generate". The model will generate answers.
max_len (int): Maximum length of generated answers.
min_len (int): Minimum length of generated answers.
internal_bsz_fid (int): Internal batch size when using FiD decoding.
num_captions (int): Number of captions generated for each image.
num_captions_fid (int): Number of captions concatenated with a question during FiD decoding.
cap_max_length (int): The maximum length of the caption to be generated.
cap_min_length (int): The minimum length of the caption to be generated.
top_k (float): The number of the highest probability tokens for top-k sampling.
top_p (float): The cumulative probability for nucleus sampling.
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
num_patches (int): Number of patches sampled for each image.
block_num (int): The index of cross-attention block for gradcam computation.
Returns:
List: A list of strings, each string is an answer.
gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
captions (nested list): A nested list of strings of total length batch_size * num_captions
"""
assert inference_method in [
"generate",
], "Inference method must be 'generate', got {}.".format(inference_method)
if isinstance(samples["text_input"], str):
samples["text_input"] = [samples["text_input"]]
assert len(samples["text_input"]) == samples["image"].size(
0
), "The number of questions must be equal to the batch size."
samples = self.forward_itm(samples, block_num=block_num)
samples = self.forward_cap(
samples,
cap_max_length=cap_max_length,
cap_min_length=cap_min_length,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
num_captions=num_captions,
num_patches=num_patches,
)
if self.offload_model:
samples["image"] = samples["image"].to("cpu")
self.image_question_matching_model.to("cpu")
self.image_captioning_model.to("cpu")
torch.cuda.empty_cache()
pred_answers = self.forward_qa(
samples,
num_beams=num_beams,
max_len=max_len,
min_len=min_len,
internal_bsz_fid=internal_bsz_fid,
num_captions=num_captions,
num_captions_fid=num_captions_fid,
)
if self.offload_model:
self.image_question_matching_model.to(self.question_answering_model.device)
self.image_captioning_model.to(self.question_answering_model.device)
return pred_answers, samples["captions"], samples["gradcams"]
@classmethod
def from_config(cls, model_config):
itm_config = model_config.image_question_matching_model
cap_config = model_config.image_captioning_model
itm_cls = registry.get_model_class(itm_config.arch)
cap_cls = registry.get_model_class(cap_config.arch)
image_question_matching_model = itm_cls.from_config(itm_config)
image_captioning_model = cap_cls.from_config(cap_config)
question_generation_tokenizer = T5Tokenizer.from_pretrained(
"google/t5-large-lm-adapt"
)
question_generation_model = T5ForConditionalGeneration.from_pretrained(
"google/t5-large-lm-adapt"
)
cached_file = download_cached_file(
"https://storage.googleapis.com/sfr-vision-language-research/LAVIS/projects/img2prompt/T5_large_QG.pth",
check_hash=False,
progress=True,
)
checkpoint = torch.load(cached_file, map_location="cpu")
state_dict = checkpoint["model"]
question_generation_model.load_state_dict(state_dict)
model = cls(
image_question_matching_model=image_question_matching_model,
image_captioning_model=image_captioning_model,
question_generation_model=question_generation_model,
question_generation_tokenizer=question_generation_tokenizer,
offload_model=False,
)
return model
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
BlipIntermediateOutput,
BlipOutputWithLogits,
)
@registry.register_model("blip_classification")
class BlipClassification(BlipBase, MomentumDistilationMixin):
PRETRAINED_MODEL_CONFIG_DICT = {
"base": "configs/models/blip_classification_base.yaml",
}
def __init__(
self,
image_encoder,
text_encoder,
num_classes,
momentum=0.995,
alpha=0.4,
max_txt_len=40,
use_distill=True,
):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.use_distill = use_distill
self.visual_encoder = image_encoder
self.text_encoder = text_encoder
hidden_size = text_encoder.config.hidden_size
self.cls_head = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, num_classes),
)
if self.use_distill:
self.visual_encoder_m = deepcopy(self.visual_encoder)
self.text_encoder_m = deepcopy(self.text_encoder)
self.cls_head_m = deepcopy(self.cls_head)
self.momentum = momentum
self.alpha = alpha
self.model_pairs = [
[self.visual_encoder, self.visual_encoder_m],
[self.text_encoder, self.text_encoder_m],
[self.cls_head, self.cls_head_m],
]
self.copy_params()
self.max_txt_len = max_txt_len
def _rampup_factor(self, epoch, iters, num_iters_per_epoch):
return min(1, (epoch * num_iters_per_epoch + iters) / num_iters_per_epoch)
def forward(self, samples, is_train=True):
sentences = samples["text_input"]
sentences = self.tokenizer(
sentences,
padding="longest",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(self.device)
samples.update({"tokenized_text": sentences})
targets = samples["label"]
image_embeds = self.visual_encoder.forward_features(samples["image"])
encoder_output = self.text_encoder.forward_automask(
samples["tokenized_text"], image_embeds
)
prediction = self.cls_head(encoder_output.last_hidden_state[:, 0, :])
if is_train:
if self.use_distill:
with torch.no_grad():
self._momentum_update()
image_embeds_m = self.visual_encoder_m(samples["image"])
encoder_output_m = self.text_encoder_m.forward_automask(
samples["tokenized_text"], image_embeds_m
)
prediction_m = self.cls_head_m(
encoder_output_m.last_hidden_state[:, 0, :]
)
alpha = self.alpha * self._rampup_factor(
epoch=samples["epoch"],
iters=samples["iters"],
num_iters_per_epoch=samples["num_iters_per_epoch"],
)
loss = (1 - alpha) * F.cross_entropy(
prediction, targets
) - alpha * torch.sum(
F.log_softmax(prediction, dim=1) * F.softmax(prediction_m, dim=1),
dim=1,
).mean()
else:
loss = F.cross_entropy(prediction, targets)
# return {"loss": loss}
return BlipOutputWithLogits(
loss=loss,
intermediate_output=BlipIntermediateOutput(
image_embeds=image_embeds,
image_embeds_m=image_embeds_m,
encoder_output=encoder_output,
encoder_output_m=encoder_output_m,
),
logits=prediction,
logits_m=prediction_m,
)
else:
return {"predictions": prediction, "targets": targets}
def predict(self, samples):
output = self.forward(samples, is_train=False)
return output
@classmethod
def from_config(cls, cfg=None):
image_encoder = VisionTransformerEncoder.from_config(cfg)
# text encoder + multimodal encoder
text_encoder = XBertEncoder.from_config(cfg)
use_distill = cfg.get("use_distill", True)
momentum = cfg.get("momentum", 0.995)
num_classes = cfg.get("num_classes", -1)
alpha = cfg.get("alpha", 0.4)
max_txt_len = cfg.get("max_txt_len", 40)
assert num_classes > 1, "Invalid number of classes provided, found {}".format(
num_classes
)
model = cls(
image_encoder=image_encoder,
text_encoder=text_encoder,
use_distill=use_distill,
alpha=alpha,
num_classes=num_classes,
momentum=momentum,
max_txt_len=max_txt_len,
)
# load pre-trained weights
pretrain_path = cfg.get("pretrained", None)
if pretrain_path is not None:
msg = model.load_from_pretrained(url_or_filename=pretrain_path)
return model
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
BlipOutput,
BlipIntermediateOutput,
)
@registry.register_model("blip_vqa")
class BlipVQA(BlipBase):
"""
BLIP VQA models.
Supported model types:
- base: vqa model initialized with pre-trained BLIP base model on 115M image-text pairs after CapFilt; not fine-tuned.
- vqav2: fine-tuned BLIP base model on VQA v2.0 dataset.
Usage:
>>> from lavis.models import load_model
>>> model = load_model("blip_vqa", "vqav2")
>>> model = load_model("blip_vqa", "okvqa")
>>> model = load_model("blip_vqa", "aokvqa")
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"vqav2": "configs/models/blip_vqav2.yaml",
"okvqa": "configs/models/blip_vqa_okvqa.yaml",
"aokvqa": "configs/models/blip_vqa_aokvqa.yaml",
}
def __init__(self, image_encoder, text_encoder, text_decoder, max_txt_len=35):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.visual_encoder = image_encoder
self.text_encoder = text_encoder
self.text_decoder = text_decoder
self.max_txt_len = max_txt_len
def forward(self, samples):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). Default H=480, W=480.
- text_input (list): A list of strings, each string is a question
- answer (list): A list of strings, each string is an answer
- weight (torch.Tensor): A tensor used to weigh each answer in the loss computation.
The shape of the tensor is (sum(n_answers),)
- n_answers (torch.Tensor): A tensor shape (batch_size,) containing the number of answers
for each question in the batch.
Returns:
A BlipOutput object containing loss and intermediate outputs,
see :class:`lavis.models.blip_outputs.BlipOutput` for more details.
Examples:
```python
>>> import torch
>>> from lavis.models import load_model
>>> model = load_model("blip_vqa")
>>> samples = {
... "image": torch.rand(2, 3, 480, 480),
... "text_input": ["What is this?", "What is that?"],
... "answer": ["cat", "cat", "dog"],
... "weight": torch.tensor([1.0, 1.0, 1.0]),
... "n_answers": torch.tensor([2, 1]),
... }
>>> output = model(samples)
>>> output.keys()
odict_keys(['intermediate_output', 'loss'])
>>> output.intermediate_output.keys()
odict_keys(['image_embeds', 'encoder_output', 'decoder_output', 'decoder_labels'])
```
"""
encoder_output, image_embeds = self.forward_encoder(samples)
loss, decoder_output, decoder_targets = self.forward_decoder(
samples=samples, encoder_out=encoder_output
)
return BlipOutput(
loss=loss,
intermediate_output=BlipIntermediateOutput(
image_embeds=image_embeds,
encoder_output=encoder_output,
decoder_output=decoder_output,
decoder_labels=decoder_targets,
),
)
def forward_encoder(self, samples):
questions = samples["text_input"]
questions = self.tokenizer(
questions,
padding="longest",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(self.device)
questions.input_ids[:, 0] = self.tokenizer.enc_token_id
samples.update({"tokenized_text": questions})
image_embeds = self.visual_encoder.forward_features(samples["image"])
encoder_output = self.text_encoder.forward_automask(
tokenized_text=samples["tokenized_text"], visual_embeds=image_embeds
)
return encoder_output, image_embeds
def forward_decoder(self, samples, encoder_out, **kwargs):
answers = self.tokenizer(
samples["answer"], padding="longest", return_tensors="pt"
).to(self.device)
answers.input_ids[:, 0] = self.tokenizer.bos_token_id
answer_targets = answers.input_ids.masked_fill(
answers.input_ids == self.tokenizer.pad_token_id, -100
)
question_states = []
question_atts = []
question = samples["tokenized_text"]
question_output = encoder_out
for b, n in enumerate(samples["n_answers"]):
question_states += [question_output.last_hidden_state[b]] * n
question_atts += [question.attention_mask[b]] * n
question_states = torch.stack(question_states, dim=0)
question_atts = torch.stack(question_atts, dim=0)
answer_output = self.text_decoder(
answers.input_ids,
attention_mask=answers.attention_mask,
encoder_hidden_states=question_states,
encoder_attention_mask=question_atts,
labels=answer_targets,
return_dict=True,
reduction="none",
)
loss = samples["weight"] * answer_output.loss
bsz = samples["image"].size(0)
loss = loss.sum() / bsz
return loss, answer_output, answer_targets
def predict_answers(
self,
samples,
num_beams=3,
inference_method="rank",
max_len=10,
min_len=1,
num_ans_candidates=128,
answer_list=None,
**kwargs
):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). Default H=480, W=480.
- text_input (str or [str]): String or a list of strings, each string is a question.
The number of questions must be equal to the batch size. If a single string, will be converted to a list of string, with length 1 first.
num_beams (int): Number of beams for beam search. 1 means no beam search.
inference_method (str): Inference method. One of "rank", "generate".
- If "rank", the model will return answers with the highest probability from the answer list.
- If "generate", the model will generate answers.
max_len (int): Maximum length of generated answers.
min_len (int): Minimum length of generated answers.
num_ans_candidates (int): Number of answer candidates, used to filter out answers with low probability.
answer_list (list): A list of strings, each string is an answer.
Returns:
List: A list of strings, each string is an answer.
Examples:
```python
>>> from PIL import Image
>>> from lavis.models import load_model_and_preprocess
>>> model, vis_processors, txt_processors = load_model_and_preprocess("blip_vqa", "vqav2")
>>> raw_image = Image.open("docs/data/merlion.png").convert("RGB")
>>> question = "Which city is this photo taken?"
>>> image = vis_processors["eval"](raw_image).unsqueeze(0)
>>> question = txt_processors["eval"](question)
>>> samples = {"image": image, "text_input": [question]}
>>> answers = model.predict_answers(samples)
>>> answers
['singapore']
>>> answer_list = ["Singapore", "London", "Palo Alto", "Tokyo"]
>>> answers = model.predict_answers(samples, answer_list=answer_list)
>>> answers
['Singapore']
```
"""
assert inference_method in [
"rank",
"generate",
], "Inference method must be one of 'rank' or 'generate', got {}.".format(
inference_method
)
if isinstance(samples["text_input"], str):
samples["text_input"] = [samples["text_input"]]
assert len(samples["text_input"]) == samples["image"].size(
0
), "The number of questions must be equal to the batch size."
if inference_method == "generate":
return self._generate_answers(
samples, num_beams=num_beams, max_length=max_len, min_length=min_len
)
elif inference_method == "rank":
assert answer_list is not None, "answer_list must be provided for ranking"
num_ans_candidates = min(num_ans_candidates, len(answer_list))
return self._rank_answers(
samples, answer_list=answer_list, num_ans_candidates=num_ans_candidates
)
def _generate_answers(self, samples, num_beams=3, max_length=10, min_length=1):
encoder_out, _ = self.forward_encoder(samples)
question_output = encoder_out
question_states = question_output.last_hidden_state.repeat_interleave(
num_beams, dim=0
)
question_atts = torch.ones(question_states.size()[:-1], dtype=torch.long).to(
self.device
)
model_kwargs = {
"encoder_hidden_states": question_states,
"encoder_attention_mask": question_atts,
}
bsz = samples["image"].size(0)
bos_ids = torch.full(
(bsz, 1), fill_value=self.tokenizer.bos_token_id, device=self.device
)
outputs = self.text_decoder.generate(
input_ids=bos_ids,
max_length=max_length,
min_length=min_length,
num_beams=num_beams,
eos_token_id=self.tokenizer.sep_token_id,
pad_token_id=self.tokenizer.pad_token_id,
**model_kwargs
)
# collect answers
answers = []
for output in outputs:
answer = self.tokenizer.decode(output, skip_special_tokens=True)
answers.append(answer)
return answers
def _rank_answers(self, samples, answer_list, num_ans_candidates):
"""
Generate the first token of answers using decoder and select ${num_ans_candidates}
most probable ones. Then select answers from answer list, which start with the probable tokens.
Lastly, use the selected answers as the ground-truth labels for decoding and calculating LM loss.
Return the answers that minimize the losses as result.
"""
answer_candidates = self.tokenizer(
answer_list, padding="longest", return_tensors="pt"
).to(self.device)
answer_candidates.input_ids[:, 0] = self.tokenizer.bos_token_id
answer_ids = answer_candidates.input_ids
answer_atts = answer_candidates.attention_mask
question_output, _ = self.forward_encoder(samples)
question_states = question_output.last_hidden_state
tokenized_question = samples["tokenized_text"]
question_atts = tokenized_question.attention_mask
num_ques = question_states.size(0)
start_ids = answer_ids[0, 0].repeat(num_ques, 1) # bos token
start_output = self.text_decoder(
start_ids,
encoder_hidden_states=question_states,
encoder_attention_mask=question_atts,
return_dict=True,
reduction="none",
)
logits = start_output.logits[:, 0, :] # first token's logit
# topk_probs: top-k probability
# topk_ids: [num_question, k]
answer_first_token = answer_ids[:, 1]
prob_first_token = F.softmax(logits, dim=1).index_select(
dim=1, index=answer_first_token
)
topk_probs, topk_ids = prob_first_token.topk(num_ans_candidates, dim=1)
# answer input: [num_question*k, answer_len]
input_ids = []
input_atts = []
for b, topk_id in enumerate(topk_ids):
input_ids.append(answer_ids.index_select(dim=0, index=topk_id))
input_atts.append(answer_atts.index_select(dim=0, index=topk_id))
input_ids = torch.cat(input_ids, dim=0)
input_atts = torch.cat(input_atts, dim=0)
targets_ids = input_ids.masked_fill(
input_ids == self.tokenizer.pad_token_id, -100
)
# repeat encoder's output for top-k answers
question_states = tile(question_states, 0, num_ans_candidates)
question_atts = tile(question_atts, 0, num_ans_candidates)
output = self.text_decoder(
input_ids,
attention_mask=input_atts,
encoder_hidden_states=question_states,
encoder_attention_mask=question_atts,
labels=targets_ids,
return_dict=True,
reduction="none",
)
log_probs_sum = -output.loss
log_probs_sum = log_probs_sum.view(num_ques, num_ans_candidates)
max_topk_ids = log_probs_sum.argmax(dim=1)
max_ids = topk_ids[max_topk_ids >= 0, max_topk_ids]
answers = [answer_list[max_id] for max_id in max_ids]
return answers
@classmethod
def from_config(cls, cfg=None):
image_encoder = VisionTransformerEncoder.from_config(cfg)
# text encoder + multimodal encoder
text_encoder = XBertEncoder.from_config(cfg)
text_decoder = XBertLMHeadDecoder.from_config(cfg)
max_txt_len = cfg.get("max_txt_len", 35)
model = cls(
image_encoder=image_encoder,
text_encoder=text_encoder,
text_decoder=text_decoder,
max_txt_len=max_txt_len,
)
model.load_checkpoint_from_config(cfg)
return model
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
def tie_encoder_decoder_weights(
encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, skip_key: str
):
uninitialized_encoder_weights: List[str] = []
if decoder.__class__ != encoder.__class__:
logging.info(
f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
)
def tie_encoder_to_decoder_recursively(
decoder_pointer: nn.Module,
encoder_pointer: nn.Module,
module_name: str,
uninitialized_encoder_weights: List[str],
skip_key: str,
depth=0,
):
assert isinstance(decoder_pointer, nn.Module) and isinstance(
encoder_pointer, nn.Module
), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
if hasattr(decoder_pointer, "weight") and skip_key not in module_name:
assert hasattr(encoder_pointer, "weight")
encoder_pointer.weight = decoder_pointer.weight
if hasattr(decoder_pointer, "bias"):
assert hasattr(encoder_pointer, "bias")
encoder_pointer.bias = decoder_pointer.bias
print(module_name + " is tied")
return
encoder_modules = encoder_pointer._modules
decoder_modules = decoder_pointer._modules
if len(decoder_modules) > 0:
assert (
len(encoder_modules) > 0
), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
all_encoder_weights = set(
[module_name + "/" + sub_name for sub_name in encoder_modules.keys()]
)
encoder_layer_pos = 0
for name, module in decoder_modules.items():
if name.isdigit():
encoder_name = str(int(name) + encoder_layer_pos)
decoder_name = name
if not isinstance(
decoder_modules[decoder_name],
type(encoder_modules[encoder_name]),
) and len(encoder_modules) != len(decoder_modules):
# this can happen if the name corresponds to the position in a list module list of layers
# in this case the decoder has added a cross-attention that the encoder does not have
# thus skip this step and subtract one layer pos from encoder
encoder_layer_pos -= 1
continue
elif name not in encoder_modules:
continue
elif depth > 500:
raise ValueError(
"Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
)
else:
decoder_name = encoder_name = name
tie_encoder_to_decoder_recursively(
decoder_modules[decoder_name],
encoder_modules[encoder_name],
module_name + "/" + name,
uninitialized_encoder_weights,
skip_key,
depth=depth + 1,
)
all_encoder_weights.remove(module_name + "/" + encoder_name)
uninitialized_encoder_weights += list(all_encoder_weights)
# tie weights recursively
tie_encoder_to_decoder_recursively(
decoder, encoder, base_model_prefix, uninitialized_encoder_weights, skip_key
)
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
@registry.register_model("blip_image_text_matching")
class BlipITM(BlipBase):
"""
BLIP Image-Text Matching (ITM) model.
Supported model types:
- base: fine-tuned BLIP retrieval weights on COCO dataset (Karpathy split).
- large: fine-tuned BLIP retrieval weights on COCO dataset (Karpathy split).
Usage:
>>> from lavis.models import load_model
>>> model = load_model("blip_image_text_matching", "base")
>>> model = load_model("blip_image_text_matching", "large")
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"base": "configs/models/blip_itm_base.yaml",
"large": "configs/models/blip_itm_large.yaml",
}
def __init__(self, image_encoder, text_encoder, embed_dim=256, max_txt_len=35):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.text_encoder = text_encoder
self.visual_encoder = image_encoder
self.max_txt_len = max_txt_len
# creating projection layers for ITC
text_width = text_encoder.config.hidden_size
vision_width = image_encoder.vision_width
self.vision_proj = nn.Linear(vision_width, embed_dim)
self.text_proj = nn.Linear(text_width, embed_dim)
self.itm_head = nn.Linear(text_width, 2)
def forward(self, samples, match_head="itm"):
image = samples["image"]
caption = samples["text_input"]
image_embeds = self.visual_encoder.forward_features(image)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
image.device
)
text = self.tokenizer(
caption,
padding="longest",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(image.device)
if match_head == "itm":
encoder_input_ids = text.input_ids.clone()
encoder_input_ids[:, 0] = self.tokenizer.enc_token_id # extra code
output = self.text_encoder(
encoder_input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
itm_output = self.itm_head(output.last_hidden_state[:, 0, :])
return itm_output
elif match_head == "itc":
text_output = self.text_encoder(
text.input_ids,
attention_mask=text.attention_mask,
return_dict=True,
mode="text",
)
image_feat = F.normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1)
text_feat = F.normalize(
self.text_proj(text_output.last_hidden_state[:, 0, :]), dim=-1
)
sim = image_feat @ text_feat.t()
return sim
def itm_rank(self, image_embeds, image_atts, encoder_input_ids, match_head='itm'):
# breakpoint()
encoder_input_ids = encoder_input_ids.clone()
encoder_input_ids = encoder_input_ids[:, 3:]
text_attention_mask = (encoder_input_ids != self.tokenizer.pad_token_id).long()
if match_head == 'itm':
# encoder_input_ids = encoder_input_ids.clone()
encoder_input_ids[:, 0] = self.tokenizer.enc_token_id
output = self.text_encoder(encoder_input_ids,
attention_mask=text_attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
# print(output.last_hidden_state.shape)
itm_output = self.itm_head(output.last_hidden_state[:, 0, :])
itm_output = F.softmax(itm_output, dim=1)[:,1]
return itm_output #, mask, token_length
elif match_head == 'itc':
encoder_input_ids[:, 0] = self.tokenizer.cls_token_id
text_output = self.text_encoder(encoder_input_ids, attention_mask=text_attention_mask,
return_dict=True, mode='text')
image_feat = F.normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1)
text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:, 0, :]), dim=-1)
sim = image_feat @ text_feat.t()
return sim
@classmethod
def from_config(cls, cfg=None):
image_encoder = VisionTransformerEncoder.from_config(cfg)
text_encoder = XBertEncoder.from_config(cfg)
embed_dim = cfg.get("embed_dim", 256)
max_txt_len = cfg.get("max_txt_len", 35)
model = cls(
image_encoder=image_encoder,
text_encoder=text_encoder,
embed_dim=embed_dim,
max_txt_len=max_txt_len,
)
model.load_checkpoint_from_config(cfg)
return model
def compute_gradcam(model, visual_input, text_input, tokenized_text, block_num=6):
model.text_encoder.base_model.base_model.encoder.layer[
block_num
].crossattention.self.save_attention = True
output = model({"image": visual_input, "text_input": text_input}, match_head="itm")
loss = output[:, 1].sum()
model.zero_grad()
loss.backward()
with torch.no_grad():
mask = tokenized_text.attention_mask.view(
tokenized_text.attention_mask.size(0), 1, -1, 1, 1
) # (bsz,1,token_len, 1,1)
token_length = tokenized_text.attention_mask.sum(dim=-1) - 2
token_length = token_length.cpu()
# grads and cams [bsz, num_head, seq_len, image_patch]
grads = model.text_encoder.base_model.base_model.encoder.layer[
block_num
].crossattention.self.get_attn_gradients()
cams = model.text_encoder.base_model.base_model.encoder.layer[
block_num
].crossattention.self.get_attention_map()
# assume using vit with 576 num image patch
cams = cams[:, :, :, 1:].reshape(visual_input.size(0), 12, -1, 24, 24) * mask
grads = (
grads[:, :, :, 1:].clamp(0).reshape(visual_input.size(0), 12, -1, 24, 24)
* mask
)
gradcams = cams * grads
gradcam_list = []
for ind in range(visual_input.size(0)):
token_length_ = token_length[ind]
gradcam = gradcams[ind].mean(0).cpu().detach()
# [enc token gradcam, average gradcam across token, gradcam for individual token]
gradcam = torch.cat(
(
gradcam[0:1, :],
gradcam[1 : token_length_ + 1, :].sum(dim=0, keepdim=True)
/ token_length_,
gradcam[1:, :],
)
)
gradcam_list.append(gradcam)
return gradcam_list, output
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class BlipBase(BaseModel):
@classmethod
def init_tokenizer(cls):
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
tokenizer.add_special_tokens({"bos_token": "[DEC]"})
tokenizer.add_special_tokens({"additional_special_tokens": ["[ENC]"]})
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
return tokenizer
def load_from_pretrained(self, url_or_filename):
if is_url(url_or_filename):
cached_file = download_cached_file(
url_or_filename, check_hash=False, progress=True
)
checkpoint = torch.load(cached_file, map_location="cpu")
elif os.path.isfile(url_or_filename):
checkpoint = torch.load(url_or_filename, map_location="cpu")
else:
raise RuntimeError("checkpoint url or path is invalid")
state_dict = checkpoint["model"]
state_dict["visual_encoder.pos_embed"] = interpolate_pos_embed(
state_dict["visual_encoder.pos_embed"], self.visual_encoder
)
if "visual_encoder_m.pos_embed" in self.state_dict().keys():
state_dict["visual_encoder_m.pos_embed"] = interpolate_pos_embed(
state_dict["visual_encoder_m.pos_embed"], self.visual_encoder_m
)
for key in self.state_dict().keys():
if key in state_dict.keys():
if state_dict[key].shape != self.state_dict()[key].shape:
del state_dict[key]
msg = self.load_state_dict(state_dict, strict=False)
logging.info("Missing keys {}".format(msg.missing_keys))
logging.info("load checkpoint from %s" % url_or_filename)
return msg
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
)
PreTrainedModel,
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
prune_linear_layer,
)
logger = logging.get_logger(__name__)
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word and position embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
)
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size
)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))
)
self.position_embedding_type = getattr(
config, "position_embedding_type", "absolute"
)
self.config = config
def forward(
self,
input_ids=None,
position_ids=None,
inputs_embeds=None,
past_key_values_length=0,
):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[
:, past_key_values_length : seq_length + past_key_values_length
]
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
embeddings = inputs_embeds
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BertSelfAttention(nn.Module):
def __init__(self, config, is_cross_attention):
super().__init__()
self.config = config
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
config, "embedding_size"
):
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
if is_cross_attention:
self.key = nn.Linear(config.encoder_width, self.all_head_size)
self.value = nn.Linear(config.encoder_width, self.all_head_size)
else:
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = getattr(
config, "position_embedding_type", "absolute"
)
if (
self.position_embedding_type == "relative_key"
or self.position_embedding_type == "relative_key_query"
):
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(
2 * config.max_position_embeddings - 1, self.attention_head_size
)
self.save_attention = False
def save_attn_gradients(self, attn_gradients):
self.attn_gradients = attn_gradients
def get_attn_gradients(self):
return self.attn_gradients
def save_attention_map(self, attention_map):
self.attention_map = attention_map
def get_attention_map(self):
return self.attention_map
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (
self.num_attention_heads,
self.attention_head_size,
)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if (
self.position_embedding_type == "relative_key"
or self.position_embedding_type == "relative_key_query"
):
seq_length = hidden_states.size()[1]
position_ids_l = torch.arange(
seq_length, dtype=torch.long, device=hidden_states.device
).view(-1, 1)
position_ids_r = torch.arange(
seq_length, dtype=torch.long, device=hidden_states.device
).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(
distance + self.max_position_embeddings - 1
)
positional_embedding = positional_embedding.to(
dtype=query_layer.dtype
) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum(
"bhld,lrd->bhlr", query_layer, positional_embedding
)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum(
"bhld,lrd->bhlr", query_layer, positional_embedding
)
relative_position_scores_key = torch.einsum(
"bhrd,lrd->bhlr", key_layer, positional_embedding
)
attention_scores = (
attention_scores
+ relative_position_scores_query
+ relative_position_scores_key
)
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
if is_cross_attention and self.save_attention:
self.save_attention_map(attention_probs)
attention_probs.register_hook(self.save_attn_gradients)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs_dropped = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs_dropped = attention_probs_dropped * head_mask
context_layer = torch.matmul(attention_probs_dropped, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (
(context_layer, attention_probs) if output_attentions else (context_layer,)
)
outputs = outputs + (past_key_value,)
return outputs
class BertSelfOutput(nn.Module):
def __init__(self, config, twin=False, merge=False):
super().__init__()
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
if twin:
self.dense0 = nn.Linear(config.hidden_size, config.hidden_size)
self.dense1 = nn.Linear(config.hidden_size, config.hidden_size)
else:
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if merge:
self.act = ACT2FN[config.hidden_act]
self.merge_layer = nn.Linear(config.hidden_size * 2, config.hidden_size)
self.merge = True
else:
self.merge = False
def forward(self, hidden_states, input_tensor):
if type(hidden_states) == list:
hidden_states0 = self.dense0(hidden_states[0])
hidden_states1 = self.dense1(hidden_states[1])
if self.merge:
# hidden_states = self.merge_layer(self.act(torch.cat([hidden_states0,hidden_states1],dim=-1)))
hidden_states = self.merge_layer(
torch.cat([hidden_states0, hidden_states1], dim=-1)
)
else:
hidden_states = (hidden_states0 + hidden_states1) / 2
else:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertAttention(nn.Module):
def __init__(self, config, is_cross_attention=False, layer_num=-1):
super().__init__()
if is_cross_attention:
self.self0 = BertSelfAttention(config, is_cross_attention)
self.self1 = BertSelfAttention(config, is_cross_attention)
else:
self.self = BertSelfAttention(config, is_cross_attention)
self.output = BertSelfOutput(
config,
twin=is_cross_attention,
merge=(is_cross_attention and layer_num >= 6),
)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads,
self.self.num_attention_heads,
self.self.attention_head_size,
self.pruned_heads,
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = (
self.self.attention_head_size * self.self.num_attention_heads
)
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
if type(encoder_hidden_states) == list:
self_outputs0 = self.self0(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states[0],
encoder_attention_mask[0],
past_key_value,
output_attentions,
)
self_outputs1 = self.self1(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states[1],
encoder_attention_mask[1],
past_key_value,
output_attentions,
)
attention_output = self.output(
[self_outputs0[0], self_outputs1[0]], hidden_states
)
outputs = (attention_output,) + self_outputs0[
1:
] # add attentions if we output them
else:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[
1:
] # add attentions if we output them
return outputs
class BertIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BertOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertLayer(nn.Module):
def __init__(self, config, layer_num):
super().__init__()
self.config = config
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = BertAttention(config)
self.layer_num = layer_num
if self.config.add_cross_attention:
self.crossattention = BertAttention(
config,
is_cross_attention=self.config.add_cross_attention,
layer_num=layer_num,
)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
mode=None,
):
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = (
past_key_value[:2] if past_key_value is not None else None
)
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
if mode == "multimodal":
assert (
encoder_hidden_states is not None
), "encoder_hidden_states must be given for cross-attention layers"
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
output_attentions=output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = (
outputs + cross_attention_outputs[1:-1]
) # add cross attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk,
self.chunk_size_feed_forward,
self.seq_len_dim,
attention_output,
)
outputs = (layer_output,) + outputs
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class BertEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList(
[BertLayer(config, i) for i in range(config.num_hidden_layers)]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
mode="multimodal",
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = (
() if output_attentions and self.config.add_cross_attention else None
)
next_decoder_cache = () if use_cache else None
for i in range(self.config.num_hidden_layers):
layer_module = self.layer[i]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warn(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, past_key_value, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
mode=mode,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
mode=mode,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
class BertPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class BertLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
class BertOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BertLMPredictionHead(config)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class BertPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BertConfig
base_model_prefix = "bert"
_keys_to_ignore_on_load_missing = [r"position_ids"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
class BertModel(BertPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
input to the forward pass.
"""
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = BertEmbeddings(config)
self.encoder = BertEncoder(config)
self.pooler = BertPooler(config) if add_pooling_layer else None
self.init_weights()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def get_extended_attention_mask(
self,
attention_mask: Tensor,
input_shape: Tuple[int],
device: device,
is_decoder: bool,
) -> Tensor:
"""
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
Arguments:
attention_mask (:obj:`torch.Tensor`):
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
input_shape (:obj:`Tuple[int]`):
The shape of the input to the model.
device: (:obj:`torch.device`):
The device of the input to the model.
Returns:
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
"""
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.dim() == 2:
# Provided a padding mask of dimensions [batch_size, seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
if is_decoder:
batch_size, seq_length = input_shape
seq_ids = torch.arange(seq_length, device=device)
causal_mask = (
seq_ids[None, None, :].repeat(batch_size, seq_length, 1)
<= seq_ids[None, :, None]
)
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
# causal and attention masks must have same type with pytorch version < 1.3
causal_mask = causal_mask.to(attention_mask.dtype)
if causal_mask.shape[1] < attention_mask.shape[1]:
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
causal_mask = torch.cat(
[
torch.ones(
(batch_size, seq_length, prefix_seq_len),
device=device,
dtype=causal_mask.dtype,
),
causal_mask,
],
axis=-1,
)
extended_attention_mask = (
causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
)
else:
extended_attention_mask = attention_mask[:, None, None, :]
else:
raise ValueError(
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
input_shape, attention_mask.shape
)
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(
dtype=self.dtype
) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
return extended_attention_mask
def forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
is_decoder=False,
mode="multimodal",
):
r"""
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
use_cache (:obj:`bool`, `optional`):
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
decoding (see :obj:`past_key_values`).
"""
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
batch_size, seq_length = input_shape
device = input_ids.device
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size, seq_length = input_shape
device = inputs_embeds.device
elif encoder_embeds is not None:
input_shape = encoder_embeds.size()[:-1]
batch_size, seq_length = input_shape
device = encoder_embeds.device
else:
raise ValueError(
"You have to specify either input_ids or inputs_embeds or encoder_embeds"
)
# past_key_values_length
past_key_values_length = (
past_key_values[0][0].shape[2] if past_key_values is not None else 0
)
if attention_mask is None:
attention_mask = torch.ones(
((batch_size, seq_length + past_key_values_length)), device=device
)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
attention_mask, input_shape, device, is_decoder
)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_hidden_states is not None:
if type(encoder_hidden_states) == list:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[
0
].size()
else:
(
encoder_batch_size,
encoder_sequence_length,
_,
) = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if type(encoder_attention_mask) == list:
encoder_extended_attention_mask = [
self.invert_attention_mask(mask) for mask in encoder_attention_mask
]
elif encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(
encoder_attention_mask
)
else:
encoder_extended_attention_mask = self.invert_attention_mask(
encoder_attention_mask
)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
if encoder_embeds is None:
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
else:
embedding_output = encoder_embeds
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
mode=mode,
)
sequence_output = encoder_outputs[0]
pooled_output = (
self.pooler(sequence_output) if self.pooler is not None else None
)
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
BlipOutput,
BlipIntermediateOutput,
)
@registry.register_model("blip_caption")
class BlipCaption(BlipBase):
"""
BLIP captioning model.
Supported model types:
- base_coco: fine-tuned BLIP base model on COCO caption dataset (Karparthy split).
- large_coco: fine-tuned BLIP large model on COCO caption dataset (Karparthy split).
Usage:
>>> from lavis.models import load_model
>>> model = load_model("blip_caption", "base_coco")
>>> model = load_model("blip_caption", "large_coco")
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"base_coco": "configs/models/blip_caption_base_coco.yaml",
"large_coco": "configs/models/blip_caption_large_coco.yaml",
}
def __init__(self, image_encoder, text_decoder, prompt=None, max_txt_len=40):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.visual_encoder = image_encoder
self.text_decoder = text_decoder
self.prompt = prompt
self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1
self.max_txt_len = max_txt_len
def forward_encoder(self, samples):
image_embeds = self.visual_encoder.forward_features(samples["image"])
return image_embeds
def forward_decoder(self, samples, image_embeds):
# prepare inputs for forwarding decoder
raw_text = samples["text_input"]
text = self.tokenizer(
raw_text,
padding="longest",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(self.device)
text.input_ids[:, 0] = self.tokenizer.bos_token_id
# prepare targets for forwarding decoder
decoder_targets = text.input_ids.masked_fill(
text.input_ids == self.tokenizer.pad_token_id, -100
)
decoder_targets[:, : self.prompt_length] = -100
# forward decoder
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
self.device
)
decoder_output = self.text_decoder(
input_ids=text.input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
labels=decoder_targets,
return_dict=True,
)
return decoder_output, decoder_targets
def forward(self, samples):
r"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
- text_input (list): A list of strings of length batch_size.
Returns:
output (BlipOutput): A BlipOutput object containing the following
attributes:
- loss (torch.Tensor): A scalar tensor containing the total loss. For BlipCaption, this is the same as the LM loss.
- loss_lm (torch.Tensor): A scalar tensor containing the LM loss.
- intermediate_outputs (BlipIntermediateOutput): A BlipIntermediateOutput object containing intermediate outputs.
see :class:`lavis.models.blip_models.blip_outputs.BlipOutput` for more details.
Example:
```python
>>> from PIL import Image
>>> from lavis.models import load_model_and_preprocess
>>> model, vis_processors, txt_processors = load_model_and_preprocess("blip_caption")
>>> raw_image = Image.open("docs/data/merlion.png").convert("RGB")
>>> image = vis_processors["eval"](raw_image).unsqueeze(0)
>>> text_input = ["a large statue of a person spraying water from a fountain"]
>>> samples = {"image": image, "text_input": text_input}
>>> output = model(samples)
>>> output.keys()
odict_keys(['intermediate_output', 'loss', 'loss_lm'])
>>> output.intermediate_output.image_embeds.shape
torch.Size([1, 577, 768])
>>> output.intermediate_output.decoder_labels.shape
torch.Size([1, 13])
```"""
image_embeds = self.forward_encoder(samples)
decoder_output, decoder_targets = self.forward_decoder(samples, image_embeds)
# return decoder_out
return BlipOutput(
loss=decoder_output.loss,
loss_lm=decoder_output.loss,
intermediate_output=BlipIntermediateOutput(
image_embeds=image_embeds,
decoder_output=decoder_output,
decoder_labels=decoder_targets,
),
)
def generate(
self,
samples,
use_nucleus_sampling=False,
num_beams=3,
max_length=30,
min_length=10,
top_p=0.9,
repetition_penalty=1.0,
num_captions=1,
):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
use_nucleus_sampling (bool): Whether to use nucleus sampling. If False, use top-k sampling.
num_beams (int): Number of beams for beam search. 1 means no beam search.
max_length (int): The maximum length of the sequence to be generated.
min_length (int): The minimum length of the sequence to be generated.
top_p (float): The cumulative probability for nucleus sampling.
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
num_captions (int): Number of captions to be generated for each image.
Returns:
captions (list): A list of strings of length batch_size * num_captions.
Example:
```python
>>> from PIL import Image
>>> from lavis.models import load_model_and_preprocess
>>> model, vis_processors, txt_processors = load_model_and_preprocess("blip_caption")
>>> raw_image = Image.open("docs/data/merlion.png").convert("RGB")
>>> image = vis_processors["eval"](raw_image).unsqueeze(0)
>>> samples = {"image": image}
>>> captions = model.generate(samples)
>>> captions
['a large statue of a person spraying water from a fountain']
>>> captions = model.generate(samples, use_nucleus_sampling=True, num_captions=3)
>>> captions # example output, results may vary due to randomness
['singapore showing the view of some building',
'the singapore harbor in twilight, as the weather is going down',
'the famous singapore fountain at sunset']
"""
# prepare inputs for decoder generation.
encoder_out = self.forward_encoder(samples)
image_embeds = torch.repeat_interleave(encoder_out, num_captions, 0)
prompt = [self.prompt] * image_embeds.size(0)
prompt = self.tokenizer(prompt, return_tensors="pt").to(self.device)
prompt.input_ids[:, 0] = self.tokenizer.bos_token_id
prompt.input_ids = prompt.input_ids[:, :-1]
# get decoded text
decoder_out = self.text_decoder.generate_from_encoder(
tokenized_prompt=prompt,
visual_embeds=image_embeds,
sep_token_id=self.tokenizer.sep_token_id,
pad_token_id=self.tokenizer.pad_token_id,
use_nucleus_sampling=use_nucleus_sampling,
num_beams=num_beams,
max_length=max_length,
min_length=min_length,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
outputs = self.tokenizer.batch_decode(decoder_out, skip_special_tokens=True)
captions = [output[len(self.prompt) :] for output in outputs]
return captions
@classmethod
def from_config(cls, cfg):
# vision encoder
image_encoder = VisionTransformerEncoder.from_config(cfg)
# text encoder + multimodal decoder
text_decoder = XBertLMHeadDecoder.from_config(cfg)
prompt = cfg.get("prompt", None)
max_txt_len = cfg.get("max_txt_len", 40)
model = cls(image_encoder, text_decoder, prompt=prompt, max_txt_len=max_txt_len)
model.load_checkpoint_from_config(cfg)
return model
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
@registry.register_model("blip_feature_extractor")
class BlipFeatureExtractor(BlipBase):
"""
Class for BLIP feature extractor.
Supported model types:
- base: BLIP base model with pre-trained weights from capfilt by BLIP large model.
Usage:
>>> from lavis.models import load_model
>>> model = load_model("blip_feature_extractor", "base")
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"base": "configs/models/blip_feature_extractor_base.yaml",
# "large": "configs/models/blip_feature_extractor_large.yaml",
}
def __init__(self, image_encoder, text_encoder, embed_dim, max_txt_len=40):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.visual_encoder = image_encoder
self.text_encoder = text_encoder
# creating projection layers for ITC
text_width = text_encoder.config.hidden_size
vision_width = image_encoder.vision_width
self.vision_proj = nn.Linear(vision_width, embed_dim)
self.text_proj = nn.Linear(text_width, embed_dim)
self.max_txt_len = max_txt_len
self.temp = nn.Parameter(0.07 * torch.ones([]))
@torch.no_grad()
def extract_features(self, samples, mode="multimodal"):
"""
Extract features for multimodal or unimodal samples.
Args:
samples (dict): A dictionary of samples, containing the following keys:
- image (torch.Tensor): A tensor of shape (B, C, H, W) containing the image.
Raw images should be preprocessed before being passed to feature extractor.
- text_input (list): A list of strings containing the text, length B.
mode (str): The mode of feature extraction. Can be either "multimodal", "text" or "image".
If "multimodal", return image features and multimodal features;
if "text", return text features;
if "image", return image features.
Default: "multimodal".
Returns:
BlipOutputFeatures: A BlipOutputFeatures object containing the features.
See lavis/models/blip_models/blip_outputs.py for more details.
Examples:
```python
>>> from PIL import Image
>>> from lavis.models import load_model_and_preprocess
>>> raw_image = Image.open("docs/data/merlion.png").convert("RGB")
>>> caption = "a large fountain spewing water into the air"
>>> model, vis_processors, txt_processors = load_model_and_preprocess("blip_feature_extractor", is_eval=True)
>>> image = vis_processors["eval"](raw_image).unsqueeze(0)
>>> text_input = txt_processors["eval"](caption)
>>> sample = {"image": image, "text_input": [text_input]}
>>> features_multimodal = model.extract_features(sample)
>>> features_multimodal.keys()
odict_keys(['image_embeds', 'multimodal_embeds'])
>>> features_multimodal.image_embeds.shape
torch.Size([1, 197, 768])
>>> features_multimodal.multimodal_embeds.shape
torch.Size([1, 12, 768])
>>> features_text = model.extract_features(sample, mode="text")
>>> features_text.keys()
odict_keys(['text_embeds', 'text_features'])
>>> features_text.text_embeds.shape
torch.Size([1, 12, 768])
>>> features_text.text_features.shape
torch.Size([1, 12, 256])
>>> features_image = model.extract_features(sample, mode="image")
>>> features_image.keys()
odict_keys(['image_embeds', 'image_features'])
>>> features_image.image_embeds.shape
torch.Size([1, 197, 768])
>>> features_image.image_features.shape
torch.Size([1, 197, 256])
```
"""
image = samples.get("image")
caption = samples.get("text_input")
# assert mode is one of "image", "text", "multimodal"
assert mode in [
"image",
"text",
"multimodal",
], "mode must be one of 'image', 'text', 'multimodal'"
# initalize output
image_embeds, text_embeds, multimodal_embeds = None, None, None
image_features, text_features = None, None
if mode == "image":
assert (
image is not None
), "Image is not provided for mode 'image' or 'multimodal'"
# return image features
image_embeds = self.visual_encoder.forward_features(image)
image_features = self.vision_proj(image_embeds)
image_features = F.normalize(image_features, dim=-1)
elif mode == "text":
assert (
caption is not None
), "text input is None for mode 'text' or 'multimodal'"
text = self.tokenizer(caption, return_tensors="pt", padding=True).to(
self.device
)
# return text features
text_output = self.text_encoder(
text.input_ids,
attention_mask=text.attention_mask,
return_dict=True,
mode="text",
)
text_embeds = text_output.last_hidden_state
text_features = self.text_proj(text_embeds)
text_features = F.normalize(text_features, dim=-1)
elif mode == "multimodal":
# return multimodel features
image_embeds = self.visual_encoder.forward_features(image)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
self.device
)
text = self.tokenizer(caption, return_tensors="pt", padding=True).to(
self.device
)
text.input_ids[:, 0] = self.tokenizer.enc_token_id
output = self.text_encoder(
text.input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
multimodal_embeds = output.last_hidden_state
return BlipOutputFeatures(
image_embeds=image_embeds,
image_embeds_proj=image_features,
text_embeds=text_embeds,
text_embeds_proj=text_features,
multimodal_embeds=multimodal_embeds,
)
@classmethod
def from_config(cls, cfg=None):
# set from_pretrained=True to load weights for 'bert-base-uncased'
image_encoder = VisionTransformerEncoder.from_config(cfg)
text_encoder = XBertEncoder.from_config(cfg)
embed_dim = cfg.get("embed_dim", 256)
max_txt_len = cfg.get("max_txt_len", 30)
model = cls(
image_encoder=image_encoder,
text_encoder=text_encoder,
embed_dim=embed_dim,
max_txt_len=max_txt_len,
)
# load pre-trained weights
pretrain_path = cfg.get("pretrained", None)
if pretrain_path is not None:
msg = model.load_from_pretrained(url_or_filename=pretrain_path)
else:
warnings.warn("No pretrained weights are loaded.")
return model
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
MomentumDistilationMixin,
SharedQueueMixin,
all_gather_with_grad,
concat_all_gather,
)
BlipOutput,
BlipSimilarity,
BlipIntermediateOutput,
)
@registry.register_model("blip_retrieval")
class BlipRetrieval(BlipBase, MomentumDistilationMixin, SharedQueueMixin):
"""
BLIP retrieval model.
Supported model types:
- coco: fine-tuned BLIP base model on COCO dataset (Karpathy split).
- flickr: fine-tuned BLIP base model on Flickr30k dataset.
Usage:
>>> from lavis.models import load_model
>>> model = load_model("blip_retrieval", "coco")
>>> model = load_model("blip_retrieval", "flickr")
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"coco": "configs/models/blip_retrieval_coco.yaml",
"flickr": "configs/models/blip_retrieval_flickr.yaml",
}
def __init__(
self,
image_encoder,
text_encoder,
queue_size,
alpha=0.4,
embed_dim=256,
momentum=0.995,
negative_all_rank=False,
max_txt_len=35,
):
""" """
super().__init__()
self.tokenizer = self.init_tokenizer()
self.visual_encoder = image_encoder
self.text_encoder = text_encoder
# creating projection layers for ITC
text_width = text_encoder.config.hidden_size
vision_width = image_encoder.vision_width
self.vision_proj = nn.Linear(vision_width, embed_dim)
self.text_proj = nn.Linear(text_width, embed_dim)
self.itm_head = nn.Linear(text_width, 2)
# create the momentum encoder
self.visual_encoder_m = deepcopy(self.visual_encoder)
self.text_encoder_m = deepcopy(self.text_encoder)
self.vision_proj_m = deepcopy(self.vision_proj)
self.text_proj_m = deepcopy(self.text_proj)
self.model_pairs = [
[self.visual_encoder, self.visual_encoder_m],
[self.text_encoder, self.text_encoder_m],
[self.vision_proj, self.vision_proj_m],
[self.text_proj, self.text_proj_m],
]
self.copy_params()
# create the queue
self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
self.register_buffer("idx_queue", torch.full((1, queue_size), -100))
self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))
self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
self.queue_size = queue_size
self.momentum = momentum
self.temp = nn.Parameter(0.07 * torch.ones([]))
self.alpha = alpha
self.max_txt_len = max_txt_len
self.negative_all_rank = negative_all_rank
def _rampup_factor(self, epoch, iters, num_iters_per_epoch):
return min(1, (epoch * num_iters_per_epoch + iters) / (2 * num_iters_per_epoch))
def forward(self, samples):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). The input images.
- text_input (list): A list of length batch_size, each element is a string of text/caption.
- image_id (torch.Tensor): A tensor of shape (batch_size, ). The image ids, used to identify same images in batch.
- epoch (int): The current epoch.
- iters (int): The current iteration.
- num_iters_per_epoch (int): The number of iterations per epoch.
Returns:
BlipOutput: A BlipOutput object. See ``lavis.models.blip_models.blip_outputs.BlipOutput`` for more details.
Examples:
>>> import torch
>>> from lavis.models import load_model
>>> model = load_model("blip_retrieval", "coco")
>>> images = torch.randn(4, 3, 384, 384)
>>> text_input = ["caption of image 1", "another caption of image 1", "caption of image 2", "caption of image 3"]
>>> image_id = torch.tensor([1, 1, 2, 3])
>>> samples = {"image": images, "text_input": text_input, "image_id": image_id, "epoch": 0, "iters": 0, "num_iters_per_epoch": 100}
>>> output = model(samples)
>>> output.keys()
odict_keys(['sims', 'intermediate_output', 'loss', 'loss_itc', 'loss_itm'])
"""
image = samples["image"]
caption = samples["text_input"]
idx = samples["image_id"]
alpha = self.alpha * self._rampup_factor(
epoch=samples["epoch"],
iters=samples["iters"],
num_iters_per_epoch=samples["num_iters_per_epoch"],
)
with torch.no_grad():
self.temp.clamp_(0.001, 0.5)
image_embeds = self.visual_encoder.forward_features(image)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
image.device
)
image_feat = F.normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1)
text = self.tokenizer(
caption,
padding="max_length",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(image.device)
text_output = self.text_encoder.forward_text(text)
text_embeds = text_output.last_hidden_state
text_feat = F.normalize(self.text_proj(text_embeds[:, 0, :]), dim=-1)
# Image-text Contrastive Learning
idx = idx.view(-1, 1)
idx_all = torch.cat([idx.t(), self.idx_queue.clone().detach()], dim=1)
pos_idx = torch.eq(idx, idx_all).float()
sim_targets = pos_idx / pos_idx.sum(1, keepdim=True)
# get momentum features
with torch.no_grad():
self._momentum_update()
image_embeds_m = self.visual_encoder_m(image)
image_feat_m = F.normalize(
self.vision_proj_m(image_embeds_m[:, 0, :]), dim=-1
)
image_feat_m_all = torch.cat(
[image_feat_m.t(), self.image_queue.clone().detach()], dim=1
)
text_output_m = self.text_encoder_m.forward_text(text)
text_embeds_m = text_output_m.last_hidden_state
text_feat_m = F.normalize(self.text_proj_m(text_embeds_m[:, 0, :]), dim=-1)
text_feat_m_all = torch.cat(
[text_feat_m.t(), self.text_queue.clone().detach()], dim=1
)
sim_i2t_m = image_feat_m @ text_feat_m_all / self.temp
sim_t2i_m = text_feat_m @ image_feat_m_all / self.temp
sim_i2t_targets = (
alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
)
sim_t2i_targets = (
alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
)
sim_i2t = image_feat @ text_feat_m_all / self.temp
sim_t2i = text_feat @ image_feat_m_all / self.temp
loss_i2t = -torch.sum(
F.log_softmax(sim_i2t, dim=1) * sim_i2t_targets, dim=1
).mean()
loss_t2i = -torch.sum(
F.log_softmax(sim_t2i, dim=1) * sim_t2i_targets, dim=1
).mean()
loss_itc = (loss_i2t + loss_t2i) / 2
self._dequeue_and_enqueue(image_feat_m, text_feat_m, idx)
# Image-text Matching
encoder_input_ids = text.input_ids.clone()
encoder_input_ids[:, 0] = self.tokenizer.enc_token_id
# forward the positve image-text pair
bs = image.size(0)
output_pos = self.text_encoder(
encoder_input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
idxs = concat_all_gather(idx)
if self.negative_all_rank:
# compute sample similarity
with torch.no_grad():
mask = torch.eq(idx, idxs.t())
image_feat_world = concat_all_gather(image_feat)
text_feat_world = concat_all_gather(text_feat)
sim_i2t = image_feat @ text_feat_world.t() / self.temp
sim_t2i = text_feat @ image_feat_world.t() / self.temp
weights_i2t = F.softmax(sim_i2t, dim=1)
weights_i2t.masked_fill_(mask, 0)
weights_t2i = F.softmax(sim_t2i, dim=1)
weights_t2i.masked_fill_(mask, 0)
image_embeds_world = all_gather_with_grad(image_embeds)
# select a negative image (from all ranks) for each text
image_embeds_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
image_embeds_neg.append(image_embeds_world[neg_idx])
image_embeds_neg = torch.stack(image_embeds_neg, dim=0)
# select a negative text (from all ranks) for each image
input_ids_world = concat_all_gather(encoder_input_ids)
att_mask_world = concat_all_gather(text.attention_mask)
text_ids_neg = []
text_atts_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
text_ids_neg.append(input_ids_world[neg_idx])
text_atts_neg.append(att_mask_world[neg_idx])
else:
with torch.no_grad():
mask = torch.eq(idx, idx.t())
sim_i2t = image_feat @ text_feat.t() / self.temp
sim_t2i = text_feat @ image_feat.t() / self.temp
weights_i2t = F.softmax(sim_i2t, dim=1)
weights_i2t.masked_fill_(mask, 0)
weights_t2i = F.softmax(sim_t2i, dim=1)
weights_t2i.masked_fill_(mask, 0)
# select a negative image (from same rank) for each text
image_embeds_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
image_embeds_neg.append(image_embeds[neg_idx])
image_embeds_neg = torch.stack(image_embeds_neg, dim=0)
# select a negative text (from same rank) for each image
text_ids_neg = []
text_atts_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
text_ids_neg.append(encoder_input_ids[neg_idx])
text_atts_neg.append(text.attention_mask[neg_idx])
text_ids_neg = torch.stack(text_ids_neg, dim=0)
text_atts_neg = torch.stack(text_atts_neg, dim=0)
text_ids_all = torch.cat([encoder_input_ids, text_ids_neg], dim=0)
text_atts_all = torch.cat([text.attention_mask, text_atts_neg], dim=0)
image_embeds_all = torch.cat([image_embeds_neg, image_embeds], dim=0)
image_atts_all = torch.cat([image_atts, image_atts], dim=0)
output_neg = self.text_encoder(
text_ids_all,
attention_mask=text_atts_all,
encoder_hidden_states=image_embeds_all,
encoder_attention_mask=image_atts_all,
return_dict=True,
)
vl_embeddings = torch.cat(
[
output_pos.last_hidden_state[:, 0, :],
output_neg.last_hidden_state[:, 0, :],
],
dim=0,
)
itm_logits = self.itm_head(vl_embeddings)
itm_labels = torch.cat(
[torch.ones(bs, dtype=torch.long), torch.zeros(2 * bs, dtype=torch.long)],
dim=0,
).to(self.device)
loss_itm = F.cross_entropy(itm_logits, itm_labels)
return BlipOutput(
loss=loss_itc + loss_itm,
loss_itc=loss_itc,
loss_itm=loss_itm,
sims=BlipSimilarity(
sim_i2t=sim_i2t,
sim_t2i=sim_t2i,
sim_i2t_m=sim_i2t_m,
sim_t2i_m=sim_t2i_m,
sim_i2t_targets=sim_i2t_targets,
sim_t2i_targets=sim_t2i_targets,
),
intermediate_output=BlipIntermediateOutput(
image_embeds=image_embeds,
image_embeds_m=image_embeds_m,
text_embeds=text_embeds,
text_embeds_m=text_embeds_m,
encoder_output=output_pos,
encoder_output_neg=output_neg,
itm_logits=itm_logits,
itm_labels=itm_labels,
),
)
def reset_queue_ptr(self):
self.queue_ptr = torch.zeros(1, dtype=torch.long)
@classmethod
def from_config(cls, cfg=None):
# set from_pretrained=True to load weights for 'bert-base-uncased'
image_encoder = VisionTransformerEncoder.from_config(cfg)
text_encoder = XBertEncoder.from_config(cfg)
embed_dim = cfg.get("embed_dim", 256)
momentum = cfg.get("momentum", 0.995)
alpha = cfg.get("alpha", 0.4)
negative_all_rank = cfg.get("negative_all_rank", False)
queue_size = cfg.get("queue_size", 0)
max_txt_len = cfg.get("max_txt_len", 35)
model = cls(
image_encoder=image_encoder,
text_encoder=text_encoder,
queue_size=queue_size,
alpha=alpha,
embed_dim=embed_dim,
momentum=momentum,
negative_all_rank=negative_all_rank,
max_txt_len=max_txt_len,
)
model.load_checkpoint_from_config(cfg)
model.reset_queue_ptr()
return model
def compute_sim_matrix(self, data_loader, task_cfg):
"""
Compute similarity i2t, t2i matrix for the given data loader.
"""
k_test = task_cfg.k_test
return compute_sim_matrix(model=self, data_loader=data_loader, k_test=k_test)
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
ModelOutput,
BaseModelOutputWithPoolingAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
)
@dataclass
class BlipSimilarity(ModelOutput):
sim_i2t: torch.FloatTensor = None
sim_t2i: torch.FloatTensor = None
sim_i2t_m: Optional[torch.FloatTensor] = None
sim_t2i_m: Optional[torch.FloatTensor] = None
sim_i2t_targets: Optional[torch.FloatTensor] = None
sim_t2i_targets: Optional[torch.FloatTensor] = None
@dataclass
class BlipIntermediateOutput(ModelOutput):
"""
Data class for intermediate outputs of BLIP models.
image_embeds (torch.FloatTensor): Image embeddings, shape (batch_size, num_patches, embed_dim).
text_embeds (torch.FloatTensor): Text embeddings, shape (batch_size, seq_len, embed_dim).
image_embeds_m (torch.FloatTensor): Image embeddings from momentum visual encoder, shape (batch_size, num_patches, embed_dim).
text_embeds_m (torch.FloatTensor): Text embeddings from momentum text encoder, shape (batch_size, seq_len, embed_dim).
encoder_output (BaseModelOutputWithPoolingAndCrossAttentions): output from the image-grounded text encoder.
encoder_output_neg (BaseModelOutputWithPoolingAndCrossAttentions): output from the image-grounded text encoder for negative pairs.
decoder_output (CausalLMOutputWithCrossAttentions): output from the image-grounded text decoder.
decoder_labels (torch.LongTensor): labels for the captioning loss.
itm_logits (torch.FloatTensor): logits for the image-text matching loss, shape (batch_size * 3, 2).
itm_labels (torch.LongTensor): labels for the image-text matching loss, shape (batch_size * 3,)
"""
# uni-modal features
image_embeds: torch.FloatTensor = None
text_embeds: Optional[torch.FloatTensor] = None
image_embeds_m: Optional[torch.FloatTensor] = None
text_embeds_m: Optional[torch.FloatTensor] = None
# intermediate outputs of multimodal encoder
encoder_output: Optional[BaseModelOutputWithPoolingAndCrossAttentions] = None
encoder_output_neg: Optional[BaseModelOutputWithPoolingAndCrossAttentions] = None
itm_logits: Optional[torch.FloatTensor] = None
itm_labels: Optional[torch.LongTensor] = None
# intermediate outputs of multimodal decoder
decoder_output: Optional[CausalLMOutputWithCrossAttentions] = None
decoder_labels: Optional[torch.LongTensor] = None
@dataclass
class BlipOutput(ModelOutput):
# some finetuned models (e.g. BlipVQA) do not compute similarity, thus optional.
sims: Optional[BlipSimilarity] = None
intermediate_output: BlipIntermediateOutput = None
loss: Optional[torch.FloatTensor] = None
loss_itc: Optional[torch.FloatTensor] = None
loss_itm: Optional[torch.FloatTensor] = None
loss_lm: Optional[torch.FloatTensor] = None
@dataclass
class BlipOutputWithLogits(BlipOutput):
logits: torch.FloatTensor = None
logits_m: torch.FloatTensor = None
@dataclass
class BlipOutputFeatures(ModelOutput):
"""
Data class of features from BlipFeatureExtractor.
Args:
image_embeds: (torch.FloatTensor) of shape (batch_size, num_patches+1, embed_dim), optional
image_features: (torch.FloatTensor) of shape (batch_size, num_patches+1, feature_dim), optional
text_embeds: (torch.FloatTensor) of shape (batch_size, sequence_length+1, embed_dim), optional
text_features: (torch.FloatTensor) of shape (batch_size, sequence_length+1, feature_dim), optional
The first embedding or feature is for the [CLS] token.
Features are obtained by projecting the corresponding embedding into a normalized low-dimensional space.
"""
image_embeds: Optional[torch.FloatTensor] = None
image_embeds_proj: Optional[torch.FloatTensor] = None
text_embeds: Optional[torch.FloatTensor] = None
text_embeds_proj: Optional[torch.FloatTensor] = None
multimodal_embeds: Optional[torch.FloatTensor] = None
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
@registry.register_model("blip_nlvr")
class BlipNLVR(BlipBase, MomentumDistilationMixin):
"""
Class for BLIP NLVR model.
Supported model types:
- base: model with pre-trained BLIP weights, used as initialization for fine-tuning.
- nlvr: finetuned model on NLVR2 dataset.
Usage:
>>> from lavis.models import load_model
>>> model = load_model("blip_nlvr", "nlvr")
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"nlvr": "configs/models/blip_nlvr.yaml",
}
def __init__(self, image_encoder, text_encoder, num_classes):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.visual_encoder = image_encoder
self.text_encoder = text_encoder
hidden_size = text_encoder.config.hidden_size
self.cls_head = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, num_classes),
)
def forward(self, samples, is_train=True):
"""
Forward function for training and evaluation.
Args:
samples (dict): a dict of input samples, which contains the following keys:
- image0 (torch.Tensor): input image 0, shape (batch_size, 3, H, W), default H=384, W=384.
- image1 (torch.Tensor): input image 1, shape (batch_size, 3, H, W), default H=384, W=384.
- text_input (list): list of strings, each string is a natural language sentence.
- label (torch.LongTensor): ground truth label with shape (batch_size,).
is_train (bool): whether the model is in training mode.
If True, the model will return the loss;
If False, the model will return the prediction.
Examples:
>>> import torch
>>> from lavis.models import load_model
>>> model = load_model("blip_nlvr", "nlvr")
>>> samples = {
... "image0": torch.randn(2, 3, 384, 384),
... "image1": torch.randn(2, 3, 384, 384),
... "text_input": ["there is a ferret in tall grass", "there are lips in one of the images"],
... "label": torch.tensor([0, 1]),
... }
>>> output = model(samples)
>>> output.keys()
odict_keys(['intermediate_output', 'loss'])
"""
text = samples["text_input"]
text = self.tokenizer(text, padding="longest", return_tensors="pt").to(
self.device
)
text.input_ids[:, 0] = self.tokenizer.enc_token_id
targets = samples["label"]
image0 = samples["image0"]
image1 = samples["image1"]
images = torch.cat([image0, image1], dim=0)
image_embeds = self.visual_encoder.forward_features(images)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
self.device
)
image0_embeds, image1_embeds = torch.split(image_embeds, targets.size(0))
encoder_output = self.text_encoder(
text.input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=[image0_embeds, image1_embeds],
encoder_attention_mask=[
image_atts[: image0_embeds.size(0)],
image_atts[image0_embeds.size(0) :],
],
return_dict=True,
)
prediction = self.cls_head(encoder_output.last_hidden_state[:, 0, :])
if is_train:
loss = F.cross_entropy(prediction, targets)
# return {"loss": loss}
return BlipOutput(
loss=loss,
intermediate_output=BlipIntermediateOutput(
image_embeds=torch.stack([image0_embeds, image1_embeds], dim=0),
encoder_output=encoder_output,
),
)
else:
return {"predictions": prediction, "targets": targets}
def predict(self, samples):
output = self.forward(samples, is_train=False)
return output
@classmethod
def from_config(cls, cfg=None):
image_encoder = VisionTransformerEncoder.from_config(cfg)
# text encoder + multimodal encoder
bert_config = BertConfig.from_json_file(get_abs_path(cfg["med_config_path"]))
text_encoder = BertModel(config=bert_config, add_pooling_layer=False)
num_classes = cfg.get("num_classes", 3)
assert num_classes > 1, "Invalid number of classes provided, found {}".format(
num_classes
)
model = cls(
image_encoder=image_encoder,
text_encoder=text_encoder,
num_classes=num_classes,
)
model.load_checkpoint_from_config(cfg)
return model
def load_from_pretrained(self, url_or_filename):
if is_url(url_or_filename):
cached_file = download_cached_file(
url_or_filename, check_hash=False, progress=True
)
checkpoint = torch.load(cached_file, map_location="cpu")
elif os.path.isfile(url_or_filename):
checkpoint = torch.load(url_or_filename, map_location="cpu")
else:
raise RuntimeError("checkpoint url or path is invalid")
state_dict = checkpoint["model"]
state_dict["visual_encoder.pos_embed"] = interpolate_pos_embed(
state_dict["visual_encoder.pos_embed"], self.visual_encoder
)
for key in list(state_dict.keys()):
if "crossattention.self." in key:
new_key0 = key.replace("self", "self0")
new_key1 = key.replace("self", "self1")
state_dict[new_key0] = state_dict[key]
state_dict[new_key1] = state_dict[key]
elif "crossattention.output.dense." in key:
new_key0 = key.replace("dense", "dense0")
new_key1 = key.replace("dense", "dense1")
state_dict[new_key0] = state_dict[key]
state_dict[new_key1] = state_dict[key]
msg = self.load_state_dict(state_dict, strict=False)
print("load checkpoint from %s" % url_or_filename)
print(f"missing keys {msg.missing_keys}")
return msg
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
BlipOutput,
BlipSimilarity,
BlipIntermediateOutput,
)
@registry.register_model("blip_pretrain")
class BlipPretrain(BlipBase, SharedQueueMixin, MomentumDistilationMixin):
"""
BLIP pretrain model.
Supported model types:
- base: BLIP base model before pretraining.
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"base": "configs/models/blip_pretrain_base.yaml",
# "large": "configs/models/blip_pretrain_large.yaml",
}
def __init__(
self,
image_encoder,
text_encoder,
text_decoder,
queue_size,
alpha=0.4,
embed_dim=256,
momentum=0.995,
tie_enc_dec_weights=True,
max_txt_len=30,
):
super().__init__()
self.tokenizer = self.init_tokenizer()
text_encoder.resize_token_embeddings(len(self.tokenizer))
text_decoder.resize_token_embeddings(len(self.tokenizer))
if tie_enc_dec_weights:
tie_encoder_decoder_weights(
encoder=text_encoder,
decoder=text_decoder.bert,
base_model_prefix="",
skip_key="/attention",
)
self.visual_encoder = image_encoder
self.text_encoder = text_encoder
self.text_decoder = text_decoder
# creating projection layers for ITC
text_width = text_encoder.config.hidden_size
vision_width = image_encoder.vision_width
self.vision_proj = nn.Linear(vision_width, embed_dim)
self.text_proj = nn.Linear(text_width, embed_dim)
self.itm_head = nn.Linear(text_width, 2)
# create the momentum encoder
self.visual_encoder_m = deepcopy(self.visual_encoder)
self.text_encoder_m = deepcopy(self.text_encoder)
self.vision_proj_m = deepcopy(self.vision_proj)
self.text_proj_m = deepcopy(self.text_proj)
self.model_pairs = [
[self.visual_encoder, self.visual_encoder_m],
[self.text_encoder, self.text_encoder_m],
[self.vision_proj, self.vision_proj_m],
[self.text_proj, self.text_proj_m],
]
self.copy_params()
# create the queue
self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))
self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
self.queue_size = queue_size
self.momentum = momentum
self.temp = nn.Parameter(0.07 * torch.ones([]))
self.alpha = alpha
self.max_txt_len = max_txt_len
def _rampup_factor(self, epoch, iters, num_iters_per_epoch):
return min(1, (epoch * num_iters_per_epoch + iters) / (2 * num_iters_per_epoch))
def forward(self, samples):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). The input images. Default: H=224, W=224.
- text_input (list): A list of length batch_size, each element is a string of text/caption.
- epoch (int): The current epoch.
- iters (int): The current iteration.
- num_iters_per_epoch (int): The number of iterations per epoch.
Returns:
BlipOutput: A BlipOutput object containing loss and intermediate output. See ``lavis.models.blip_models.blip_outputs.BlipOutput`` for more details.
Examples:
>>> import torch
>>> from lavis.models import load_model
>>> model = load_model("blip_pretrain", "base")
>>> images = torch.randn(4, 3, 224, 224)
>>> text_input = ["caption of image 1", "another caption of image 1", "caption of image 2", "caption of image 3"]
>>> samples = {"image": images, "text_input": text_input, "epoch": 0, "iters": 0, "num_iters_per_epoch": 100}
>>> output = model(samples)
>>> output.keys()
odict_keys(['sims', 'intermediate_output', 'loss', 'loss_itc', 'loss_itm', 'loss_lm'])
>>> output.intermediate_output.keys()
odict_keys(['image_embeds', 'text_embeds', 'image_embeds_m', 'text_embeds_m', 'encoder_output', 'encoder_output_neg', 'itm_logits', 'itm_labels', 'decoder_output', 'decoder_labels'])
>>> output.intermediate_output.image_embeds.shape
>>> # shape: (batch_size, num_patches, embed_dim)
torch.Size([4, 197, 768])
>>> output.intermediate_output.text_embeds.shape
>>> # shape: (batch_size, max_txt_len, embed_dim)
torch.Size([4, 30, 768])
>>> output.intermediate_output.image_embeds_m.shape
>>> # shape: (batch_size, num_patches, embed_dim)
torch.Size([4, 197, 768])
>>> output.intermediate_output.text_embeds_m.shape
>>> # shape: (batch_size, max_txt_len, embed_dim)
torch.Size([4, 30, 768])
>>> output.intermediate_output.itm_logits.shape
>>> # shape: (batch_size * 3, 2)
torch.Size([12, 2])
>>> output.intermediate_output.itm_labels.shape
>>> # shape: (batch_size * 3,)
torch.Size([12])
>>> output.intermediate_output.encoder_output.last_hidden_state.shape
>>> # shape: (batch_size, max_txt_len, embed_dim)
torch.Size([4, 30, 768])
>>> output.intermediate_output.encoder_output_m.last_hidden_state.shape
>>> # shape: (batch_size, max_txt_len, embed_dim)
torch.Size([4, 30, 768])
>>> output.intermediate_output.decoder_output.logits.shape
>>> # shape: (batch_size, max_txt_len, vocab_size)
torch.Size([4, 30, 30524])
>>> output.intermediate_output.decoder_labels.shape
>>> # shape: (batch_size, max_txt_len)
torch.Size([4, 30])
"""
image = samples["image"]
caption = samples["text_input"]
alpha = self.alpha * self._rampup_factor(
epoch=samples["epoch"],
iters=samples["iters"],
num_iters_per_epoch=samples["num_iters_per_epoch"],
)
with torch.no_grad():
self.temp.clamp_(0.001, 0.5)
# image embeddings and features
image_embeds = self.visual_encoder.forward_features(image)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
image.device
)
image_feat = F.normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1)
text = self.tokenizer(
caption,
padding="max_length",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(image.device)
# text embeddings and features
text_output = self.text_encoder.forward_text(text)
text_embeds = text_output.last_hidden_state
text_feat = F.normalize(self.text_proj(text_embeds[:, 0, :]), dim=-1)
# get momentum features
with torch.no_grad():
self._momentum_update()
image_embeds_m = self.visual_encoder_m(image)
image_feat_m = F.normalize(
self.vision_proj_m(image_embeds_m[:, 0, :]), dim=-1
)
image_feat_all = torch.cat(
[image_feat_m.t(), self.image_queue.clone().detach()], dim=1
)
text_output_m = self.text_encoder_m.forward_text(text)
text_embeds_m = text_output_m.last_hidden_state
text_feat_m = F.normalize(self.text_proj_m(text_embeds_m[:, 0, :]), dim=-1)
text_feat_all = torch.cat(
[text_feat_m.t(), self.text_queue.clone().detach()], dim=1
)
sim_i2t_m = image_feat_m @ text_feat_all / self.temp
sim_t2i_m = text_feat_m @ image_feat_all / self.temp
sim_targets = torch.zeros(sim_i2t_m.size()).to(image.device)
sim_targets.fill_diagonal_(1)
sim_i2t_targets = (
alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
)
sim_t2i_targets = (
alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
)
sim_i2t = image_feat @ text_feat_all / self.temp
sim_t2i = text_feat @ image_feat_all / self.temp
loss_i2t = -torch.sum(
F.log_softmax(sim_i2t, dim=1) * sim_i2t_targets, dim=1
).mean()
loss_t2i = -torch.sum(
F.log_softmax(sim_t2i, dim=1) * sim_t2i_targets, dim=1
).mean()
loss_itc = (loss_i2t + loss_t2i) / 2
self._dequeue_and_enqueue(image_feat_m, text_feat_m)
# Image-text Matching
encoder_input_ids = text.input_ids.clone()
encoder_input_ids[:, 0] = self.tokenizer.enc_token_id
# forward the positve image-text pair
bs = image.size(0)
output_pos = self.text_encoder(
encoder_input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
with torch.no_grad():
weights_t2i = F.softmax(sim_t2i[:, :bs], dim=1) + 1e-4
weights_t2i.fill_diagonal_(0)
weights_i2t = F.softmax(sim_i2t[:, :bs], dim=1) + 1e-4
weights_i2t.fill_diagonal_(0)
# select a negative image for each text
image_embeds_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
image_embeds_neg.append(image_embeds[neg_idx])
image_embeds_neg = torch.stack(image_embeds_neg, dim=0)
# select a negative text for each image
text_ids_neg = []
text_atts_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
text_ids_neg.append(encoder_input_ids[neg_idx])
text_atts_neg.append(text.attention_mask[neg_idx])
text_ids_neg = torch.stack(text_ids_neg, dim=0)
text_atts_neg = torch.stack(text_atts_neg, dim=0)
text_ids_all = torch.cat([encoder_input_ids, text_ids_neg], dim=0)
text_atts_all = torch.cat([text.attention_mask, text_atts_neg], dim=0)
image_embeds_all = torch.cat([image_embeds_neg, image_embeds], dim=0)
image_atts_all = torch.cat([image_atts, image_atts], dim=0)
output_neg = self.text_encoder(
text_ids_all,
attention_mask=text_atts_all,
encoder_hidden_states=image_embeds_all,
encoder_attention_mask=image_atts_all,
return_dict=True,
)
vl_embeddings = torch.cat(
[
output_pos.last_hidden_state[:, 0, :],
output_neg.last_hidden_state[:, 0, :],
],
dim=0,
)
itm_logits = self.itm_head(vl_embeddings)
itm_labels = torch.cat(
[torch.ones(bs, dtype=torch.long), torch.zeros(2 * bs, dtype=torch.long)],
dim=0,
).to(image.device)
loss_itm = F.cross_entropy(itm_logits, itm_labels)
# LM
decoder_input_ids = text.input_ids.clone()
decoder_input_ids[:, 0] = self.tokenizer.bos_token_id
decoder_targets = decoder_input_ids.masked_fill(
decoder_input_ids == self.tokenizer.pad_token_id, -100
)
decoder_output = self.text_decoder(
decoder_input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
labels=decoder_targets,
return_dict=True,
)
loss_lm = decoder_output.loss
return BlipOutput(
loss=loss_itc + loss_itm + loss_lm,
loss_itc=loss_itc,
loss_itm=loss_itm,
loss_lm=loss_lm,
sims=BlipSimilarity(
sim_i2t=sim_i2t,
sim_t2i=sim_t2i,
sim_i2t_m=sim_i2t_m,
sim_t2i_m=sim_t2i_m,
sim_i2t_targets=sim_i2t_targets,
sim_t2i_targets=sim_t2i_targets,
),
intermediate_output=BlipIntermediateOutput(
image_embeds=image_embeds,
text_embeds=text_embeds,
image_embeds_m=image_embeds_m,
text_embeds_m=text_embeds_m,
encoder_output=output_pos,
encoder_output_neg=output_neg,
itm_logits=itm_logits,
itm_labels=itm_labels,
decoder_output=decoder_output,
decoder_labels=decoder_targets,
),
)
def reset_queue_ptr(self):
self.queue_ptr = torch.zeros(1, dtype=torch.long)
@classmethod
def from_config(cls, cfg=None):
# set from_pretrained=True to load weights for 'bert-base-uncased'
image_encoder = VisionTransformerEncoder.from_config(cfg, from_pretrained=True)
text_encoder = XBertEncoder.from_config(cfg, from_pretrained=True)
text_decoder = XBertLMHeadDecoder.from_config(cfg, from_pretrained=True)
embed_dim = cfg.get("embed_dim", 256)
momentum = cfg.get("momentum", 0.995)
alpha = cfg.get("alpha", 0.4)
max_txt_len = cfg.get("max_txt_len", 30)
queue_size = cfg.get("queue_size", 57600)
model = cls(
image_encoder=image_encoder,
text_encoder=text_encoder,
text_decoder=text_decoder,
embed_dim=embed_dim,
queue_size=queue_size,
momentum=momentum,
alpha=alpha,
tie_enc_dec_weights=True,
max_txt_len=max_txt_len,
)
# [IMPORTANT] to reset queue pointer to 0.
# Otherwise when updating last batch in the queue, the batch size and remaining queue length may be un-equal.
model.reset_queue_ptr()
return model
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Based on https://github.com/facebookresearch/TimeSformer
"""
# Copyright 2020 Ross Wightman
# Conv2d w/ Same Padding
# Dynamically pad input x with 'SAME' padding for conv with specified args
def pad_same(x, k: List[int], s: List[int], d: List[int] = (1, 1), value: float = 0):
ih, iw = x.size()[-2:]
pad_h, pad_w = get_same_padding(ih, k[0], s[0], d[0]), get_same_padding(
iw, k[1], s[1], d[1]
)
if pad_h > 0 or pad_w > 0:
x = F.pad(
x,
[pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2],
value=value,
)
return x
# Calculate asymmetric TensorFlow-like 'SAME' padding for a convolution
def get_same_padding(x: int, k: int, s: int, d: int):
return max((math.ceil(x / s) - 1) * s + (k - 1) * d + 1 - x, 0)
def get_padding_value(padding, kernel_size, **kwargs) -> Tuple[Tuple, bool]:
dynamic = False
if isinstance(padding, str):
# for any string padding, the padding will be calculated for you, one of three ways
padding = padding.lower()
if padding == "same":
# TF compatible 'SAME' padding, has a performance and GPU memory allocation impact
if is_static_pad(kernel_size, **kwargs):
# static case, no extra overhead
padding = get_padding(kernel_size, **kwargs)
else:
# dynamic 'SAME' padding, has runtime/GPU memory overhead
padding = 0
dynamic = True
elif padding == "valid":
# 'VALID' padding, same as padding=0
padding = 0
else:
# Default to PyTorch style 'same'-ish symmetric padding
padding = get_padding(kernel_size, **kwargs)
return padding, dynamic
def conv2d_same(
x,
weight: torch.Tensor,
bias: Optional[torch.Tensor] = None,
stride: Tuple[int, int] = (1, 1),
padding: Tuple[int, int] = (0, 0),
dilation: Tuple[int, int] = (1, 1),
groups: int = 1,
):
x = pad_same(x, weight.shape[-2:], stride, dilation)
return F.conv2d(x, weight, bias, stride, (0, 0), dilation, groups)
class Conv2dSame(nn.Conv2d):
"""Tensorflow like 'SAME' convolution wrapper for 2D convolutions"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
):
super(Conv2dSame, self).__init__(
in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias
)
def forward(self, x):
return conv2d_same(
x,
self.weight,
self.bias,
self.stride,
self.padding,
self.dilation,
self.groups,
)
def create_conv2d_pad(in_chs, out_chs, kernel_size, **kwargs):
padding = kwargs.pop("padding", "")
kwargs.setdefault("bias", False)
padding, is_dynamic = get_padding_value(padding, kernel_size, **kwargs)
if is_dynamic:
return Conv2dSame(in_chs, out_chs, kernel_size, **kwargs)
else:
return nn.Conv2d(in_chs, out_chs, kernel_size, padding=padding, **kwargs)
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
""" Linear layer (alternate definition)
"""
class Linear(nn.Linear):
def forward(self, input: torch.Tensor) -> torch.Tensor:
if torch.jit.is_scripting():
bias = self.bias.to(dtype=input.dtype) if self.bias is not None else None
return F.linear(input, self.weight.to(dtype=input.dtype), bias=bias)
else:
return F.linear(input, self.weight, self.bias)
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Based on https://github.com/facebookresearch/TimeSformer
"""
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Based on https://github.com/facebookresearch/TimeSformer
"""
# Copyright 2020 Ross Wightman
class FeatureInfo:
def __init__(self, feature_info: List[Dict], out_indices: Tuple[int]):
prev_reduction = 1
for fi in feature_info:
# sanity check the mandatory fields, there may be additional fields depending on the model
assert "num_chs" in fi and fi["num_chs"] > 0
assert "reduction" in fi and fi["reduction"] >= prev_reduction
prev_reduction = fi["reduction"]
assert "module" in fi
self.out_indices = out_indices
self.info = feature_info
def from_other(self, out_indices: Tuple[int]):
return FeatureInfo(deepcopy(self.info), out_indices)
def get(self, key, idx=None):
"""Get value by key at specified index (indices)
if idx == None, returns value for key at each output index
if idx is an integer, return value for that feature module index (ignoring output indices)
if idx is a list/tupple, return value for each module index (ignoring output indices)
"""
if idx is None:
return [self.info[i][key] for i in self.out_indices]
if isinstance(idx, (tuple, list)):
return [self.info[i][key] for i in idx]
else:
return self.info[idx][key]
def get_dicts(self, keys=None, idx=None):
"""return info dicts for specified keys (or all if None) at specified indices (or out_indices if None)"""
if idx is None:
if keys is None:
return [self.info[i] for i in self.out_indices]
else:
return [{k: self.info[i][k] for k in keys} for i in self.out_indices]
if isinstance(idx, (tuple, list)):
return [
self.info[i] if keys is None else {k: self.info[i][k] for k in keys}
for i in idx
]
else:
return (
self.info[idx] if keys is None else {k: self.info[idx][k] for k in keys}
)
def channels(self, idx=None):
"""feature channels accessor"""
return self.get("num_chs", idx)
def reduction(self, idx=None):
"""feature reduction (output stride) accessor"""
return self.get("reduction", idx)
def module_name(self, idx=None):
"""feature module name accessor"""
return self.get("module", idx)
def __getitem__(self, item):
return self.info[item]
def __len__(self):
return len(self.info)
class FeatureHooks:
"""Feature Hook Helper
This module helps with the setup and extraction of hooks for extracting features from
internal nodes in a model by node name. This works quite well in eager Python but needs
redesign for torcscript.
"""
def __init__(self, hooks, named_modules, out_map=None, default_hook_type="forward"):
# setup feature hooks
modules = {k: v for k, v in named_modules}
for i, h in enumerate(hooks):
hook_name = h["module"]
m = modules[hook_name]
hook_id = out_map[i] if out_map else hook_name
hook_fn = partial(self._collect_output_hook, hook_id)
hook_type = h["hook_type"] if "hook_type" in h else default_hook_type
if hook_type == "forward_pre":
m.register_forward_pre_hook(hook_fn)
elif hook_type == "forward":
m.register_forward_hook(hook_fn)
else:
assert False, "Unsupported hook type"
self._feature_outputs = defaultdict(OrderedDict)
def _collect_output_hook(self, hook_id, *args):
x = args[
-1
] # tensor we want is last argument, output for fwd, input for fwd_pre
if isinstance(x, tuple):
x = x[0] # unwrap input tuple
self._feature_outputs[x.device][hook_id] = x
def get_output(self, device) -> Dict[str, torch.tensor]:
output = self._feature_outputs[device]
self._feature_outputs[device] = OrderedDict() # clear after reading
return output
def _module_list(module, flatten_sequential=False):
# a yield/iter would be better for this but wouldn't be compatible with torchscript
ml = []
for name, module in module.named_children():
if flatten_sequential and isinstance(module, nn.Sequential):
# first level of Sequential containers is flattened into containing model
for child_name, child_module in module.named_children():
combined = [name, child_name]
ml.append(("_".join(combined), ".".join(combined), child_module))
else:
ml.append((name, name, module))
return ml
def _get_feature_info(net, out_indices):
feature_info = getattr(net, "feature_info")
if isinstance(feature_info, FeatureInfo):
return feature_info.from_other(out_indices)
elif isinstance(feature_info, (list, tuple)):
return FeatureInfo(net.feature_info, out_indices)
else:
assert False, "Provided feature_info is not valid"
def _get_return_layers(feature_info, out_map):
module_names = feature_info.module_name()
return_layers = {}
for i, name in enumerate(module_names):
return_layers[name] = (
out_map[i] if out_map is not None else feature_info.out_indices[i]
)
return return_layers
class FeatureDictNet(nn.ModuleDict):
"""Feature extractor with OrderedDict return
Wrap a model and extract features as specified by the out indices, the network is
partially re-built from contained modules.
There is a strong assumption that the modules have been registered into the model in the same
order as they are used. There should be no reuse of the same nn.Module more than once, including
trivial modules like `self.relu = nn.ReLU`.
Only submodules that are directly assigned to the model class (`model.feature1`) or at most
one Sequential container deep (`model.features.1`, with flatten_sequent=True) can be captured.
All Sequential containers that are directly assigned to the original model will have their
modules assigned to this module with the name `model.features.1` being changed to `model.features_1`
Arguments:
model (nn.Module): model from which we will extract the features
out_indices (tuple[int]): model output indices to extract features for
out_map (sequence): list or tuple specifying desired return id for each out index,
otherwise str(index) is used
feature_concat (bool): whether to concatenate intermediate features that are lists or tuples
vs select element [0]
flatten_sequential (bool): whether to flatten sequential modules assigned to model
"""
def __init__(
self,
model,
out_indices=(0, 1, 2, 3, 4),
out_map=None,
feature_concat=False,
flatten_sequential=False,
):
super(FeatureDictNet, self).__init__()
self.feature_info = _get_feature_info(model, out_indices)
self.concat = feature_concat
self.return_layers = {}
return_layers = _get_return_layers(self.feature_info, out_map)
modules = _module_list(model, flatten_sequential=flatten_sequential)
remaining = set(return_layers.keys())
layers = OrderedDict()
for new_name, old_name, module in modules:
layers[new_name] = module
if old_name in remaining:
# return id has to be consistently str type for torchscript
self.return_layers[new_name] = str(return_layers[old_name])
remaining.remove(old_name)
if not remaining:
break
assert not remaining and len(self.return_layers) == len(
return_layers
), f"Return layers ({remaining}) are not present in model"
self.update(layers)
def _collect(self, x) -> (Dict[str, torch.Tensor]):
out = OrderedDict()
for name, module in self.items():
x = module(x)
if name in self.return_layers:
out_id = self.return_layers[name]
if isinstance(x, (tuple, list)):
# If model tap is a tuple or list, concat or select first element
# FIXME this may need to be more generic / flexible for some nets
out[out_id] = torch.cat(x, 1) if self.concat else x[0]
else:
out[out_id] = x
return out
def forward(self, x) -> Dict[str, torch.Tensor]:
return self._collect(x)
class FeatureListNet(FeatureDictNet):
"""Feature extractor with list return
See docstring for FeatureDictNet above, this class exists only to appease Torchscript typing constraints.
In eager Python we could have returned List[Tensor] vs Dict[id, Tensor] based on a member bool.
"""
def __init__(
self,
model,
out_indices=(0, 1, 2, 3, 4),
out_map=None,
feature_concat=False,
flatten_sequential=False,
):
super(FeatureListNet, self).__init__(
model,
out_indices=out_indices,
out_map=out_map,
feature_concat=feature_concat,
flatten_sequential=flatten_sequential,
)
def forward(self, x) -> (List[torch.Tensor]):
return list(self._collect(x).values())
class FeatureHookNet(nn.ModuleDict):
"""FeatureHookNet
Wrap a model and extract features specified by the out indices using forward/forward-pre hooks.
If `no_rewrite` is True, features are extracted via hooks without modifying the underlying
network in any way.
If `no_rewrite` is False, the model will be re-written as in the
FeatureList/FeatureDict case by folding first to second (Sequential only) level modules into this one.
FIXME this does not currently work with Torchscript, see FeatureHooks class
"""
def __init__(
self,
model,
out_indices=(0, 1, 2, 3, 4),
out_map=None,
out_as_dict=False,
no_rewrite=False,
feature_concat=False,
flatten_sequential=False,
default_hook_type="forward",
):
super(FeatureHookNet, self).__init__()
assert not torch.jit.is_scripting()
self.feature_info = _get_feature_info(model, out_indices)
self.out_as_dict = out_as_dict
layers = OrderedDict()
hooks = []
if no_rewrite:
assert not flatten_sequential
if hasattr(model, "reset_classifier"): # make sure classifier is removed?
model.reset_classifier(0)
layers["body"] = model
hooks.extend(self.feature_info.get_dicts())
else:
modules = _module_list(model, flatten_sequential=flatten_sequential)
remaining = {
f["module"]: f["hook_type"] if "hook_type" in f else default_hook_type
for f in self.feature_info.get_dicts()
}
for new_name, old_name, module in modules:
layers[new_name] = module
for fn, fm in module.named_modules(prefix=old_name):
if fn in remaining:
hooks.append(dict(module=fn, hook_type=remaining[fn]))
del remaining[fn]
if not remaining:
break
assert (
not remaining
), f"Return layers ({remaining}) are not present in model"
self.update(layers)
self.hooks = FeatureHooks(hooks, model.named_modules(), out_map=out_map)
def forward(self, x):
for name, module in self.items():
x = module(x)
out = self.hooks.get_output(x.device)
return out if self.out_as_dict else list(out.values())
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Based on https://github.com/facebookresearch/TimeSformer
"""
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Copyright 2020 Ross Wightman
# Modified Model definition
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
DropPath,
to_2tuple,
trunc_normal_,
)
def _cfg(url="", **kwargs):
return {
"url": url,
"num_classes": 1000,
"input_size": (3, 224, 224),
"pool_size": None,
"crop_pct": 0.9,
"interpolation": "bicubic",
"mean": IMAGENET_DEFAULT_MEAN,
"std": IMAGENET_DEFAULT_STD,
"first_conv": "patch_embed.proj",
"classifier": "head",
**kwargs,
}
default_cfgs = {
"vit_base_patch16_224": _cfg(
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth",
mean=(0.5, 0.5, 0.5),
std=(0.5, 0.5, 0.5),
),
}
class Mlp(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
with_qkv=True,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.with_qkv = with_qkv
if self.with_qkv:
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.attn_drop = nn.Dropout(attn_drop)
def forward(self, x):
B, N, C = x.shape
if self.with_qkv:
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv[0], qkv[1], qkv[2]
else:
qkv = x.reshape(B, N, self.num_heads, C // self.num_heads).permute(
0, 2, 1, 3
)
q, k, v = qkv, qkv, qkv
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
if self.with_qkv:
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
layer_num,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.1,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
attention_type="divided_space_time",
use_grad_checkpointing=False,
):
super().__init__()
self.attention_type = attention_type
assert attention_type in [
"divided_space_time",
"space_only",
"joint_space_time",
]
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
# Temporal Attention Parameters
if self.attention_type == "divided_space_time":
self.temporal_norm1 = norm_layer(dim)
self.temporal_attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
self.temporal_fc = nn.Linear(dim, dim)
# drop path
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
# [dxli]
self.layer_num = layer_num
self.use_grad_checkpointing = use_grad_checkpointing
if use_grad_checkpointing:
self.temporal_attn = checkpoint_wrapper(self.temporal_attn)
self.attn = checkpoint_wrapper(self.attn)
self.mlp = checkpoint_wrapper(self.mlp)
def forward(self, x, B, T, W):
num_spatial_tokens = (x.size(1) - 1) // T
H = num_spatial_tokens // W
if self.attention_type in ["space_only", "joint_space_time"]:
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
elif self.attention_type == "divided_space_time":
# Temporal
xt = x[:, 1:, :]
xt = rearrange(xt, "b (h w t) m -> (b h w) t m", b=B, h=H, w=W, t=T)
temporal_attn_out = self.temporal_attn(self.temporal_norm1(xt))
res_temporal = self.drop_path(temporal_attn_out)
res_temporal = rearrange(
res_temporal, "(b h w) t m -> b (h w t) m", b=B, h=H, w=W, t=T
)
res_temporal = self.temporal_fc(res_temporal)
xt = x[:, 1:, :] + res_temporal
# Spatial
init_cls_token = x[:, 0, :].unsqueeze(1)
cls_token = init_cls_token.repeat(1, T, 1)
cls_token = rearrange(cls_token, "b t m -> (b t) m", b=B, t=T).unsqueeze(1)
xs = xt
xs = rearrange(xs, "b (h w t) m -> (b t) (h w) m", b=B, h=H, w=W, t=T)
xs = torch.cat((cls_token, xs), 1)
spatial_attn_out = self.attn(self.norm1(xs))
res_spatial = self.drop_path(spatial_attn_out)
# Taking care of CLS token
cls_token = res_spatial[:, 0, :]
cls_token = rearrange(cls_token, "(b t) m -> b t m", b=B, t=T)
# averaging for every frame
cls_token = torch.mean(cls_token, 1, True)
res_spatial = res_spatial[:, 1:, :]
res_spatial = rearrange(
res_spatial, "(b t) (h w) m -> b (h w t) m", b=B, h=H, w=W, t=T
)
res = res_spatial
x = xt
# Mlp
x = torch.cat((init_cls_token, x), 1) + torch.cat((cls_token, res), 1)
x_res = x
x = self.norm2(x)
# x = x + self.drop_path(self.mlp(self.norm2(x)))
# MLP
mlp_out = self.mlp(x)
x = x_res + self.drop_path(mlp_out)
return x
class PatchEmbed(nn.Module):
"""Image to Patch Embedding"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
)
def forward(self, x):
B, C, T, H, W = x.shape
x = rearrange(x, "b c t h w -> (b t) c h w")
x = self.proj(x)
W = x.size(-1)
x = x.flatten(2).transpose(1, 2)
return x, T, W
class VisionTransformer(nn.Module):
"""Vision Transformere"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.1,
hybrid_backbone=None,
norm_layer=nn.LayerNorm,
num_frames=8,
attention_type="divided_space_time",
dropout=0.0,
use_grad_checkpointing=False,
ckpt_layer=0,
):
super().__init__()
self.attention_type = attention_type
self.depth = depth
self.dropout = nn.Dropout(dropout)
self.num_classes = num_classes
# num_features for consistency with other models
self.num_features = self.embed_dim = embed_dim
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
)
num_patches = self.patch_embed.num_patches
# Positional Embeddings
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
if self.attention_type != "space_only":
self.time_embed = nn.Parameter(torch.zeros(1, num_frames, embed_dim))
self.time_drop = nn.Dropout(p=drop_rate)
# Attention Blocks
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, self.depth)
] # stochastic depth decay rule
self.blocks = nn.ModuleList(
[
Block(
layer_num=i,
use_grad_checkpointing=(
use_grad_checkpointing and i >= self.depth - ckpt_layer
),
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
attention_type=self.attention_type,
)
for i in range(self.depth)
]
)
self.norm = norm_layer(embed_dim)
# Classifier head
self.head = (
nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
)
trunc_normal_(self.pos_embed, std=0.02)
trunc_normal_(self.cls_token, std=0.02)
self.apply(self._init_weights)
# initialization of temporal attention weights
if self.attention_type == "divided_space_time":
i = 0
for m in self.blocks.modules():
m_str = str(m)
if "Block" in m_str:
if i > 0:
nn.init.constant_(m.temporal_fc.weight, 0)
nn.init.constant_(m.temporal_fc.bias, 0)
i += 1
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {"pos_embed", "cls_token", "time_embed"}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=""):
self.num_classes = num_classes
self.head = (
nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
)
def remove_classifier(self):
self.num_classes = 0
self.head = None
def forward_features(self, x):
B = x.shape[0]
x, T, W = self.patch_embed(x)
cls_tokens = self.cls_token.expand(x.size(0), -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# resizing the positional embeddings in case they don't match the input at inference
if x.size(1) != self.pos_embed.size(1):
pos_embed = self.pos_embed
cls_pos_embed = pos_embed[0, 0, :].unsqueeze(0).unsqueeze(1)
other_pos_embed = pos_embed[0, 1:, :].unsqueeze(0).transpose(1, 2)
P = int(other_pos_embed.size(2) ** 0.5)
H = x.size(1) // W
other_pos_embed = other_pos_embed.reshape(1, x.size(2), P, P)
new_pos_embed = F.interpolate(other_pos_embed, size=(H, W), mode="nearest")
new_pos_embed = new_pos_embed.flatten(2)
new_pos_embed = new_pos_embed.transpose(1, 2)
new_pos_embed = torch.cat((cls_pos_embed, new_pos_embed), 1)
x = x + new_pos_embed
else:
x = x + self.pos_embed
x = self.pos_drop(x)
# Time Embeddings
if self.attention_type != "space_only":
cls_tokens = x[:B, 0, :].unsqueeze(1)
x = x[:, 1:]
x = rearrange(x, "(b t) n m -> (b n) t m", b=B, t=T)
# Resizing time embeddings in case they don't match
if T != self.time_embed.size(1):
time_embed = self.time_embed.transpose(1, 2)
new_time_embed = F.interpolate(time_embed, size=(T), mode="nearest")
new_time_embed = new_time_embed.transpose(1, 2)
x = x + new_time_embed
else:
x = x + self.time_embed
x = self.time_drop(x)
x = rearrange(x, "(b n) t m -> b (n t) m", b=B, t=T)
x = torch.cat((cls_tokens, x), dim=1)
# Attention blocks
for blk in self.blocks:
x = blk(x, B, T, W)
# Predictions for space-only baseline
if self.attention_type == "space_only":
x = rearrange(x, "(b t) n m -> b t n m", b=B, t=T)
x = torch.mean(x, 1) # averaging predictions for every frame
x = self.norm(x)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def _conv_filter(state_dict, patch_size=16):
"""convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
for k, v in state_dict.items():
if "patch_embed.proj.weight" in k:
if v.shape[-1] != patch_size:
patch_size = v.shape[-1]
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
out_dict[k] = v
return out_dict
class vit_base_patch16_224(nn.Module):
def __init__(self, cfg, **kwargs):
super(vit_base_patch16_224, self).__init__()
self.pretrained = True
patch_size = 16
self.model = VisionTransformer(
img_size=cfg.DATA.TRAIN_CROP_SIZE,
num_classes=cfg.MODEL.NUM_CLASSES,
patch_size=patch_size,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.1,
num_frames=cfg.DATA.NUM_FRAMES,
attention_type=cfg.TIMESFORMER.ATTENTION_TYPE,
**kwargs,
)
self.attention_type = cfg.TIMESFORMER.ATTENTION_TYPE
self.model.default_cfg = default_cfgs["vit_base_patch16_224"]
self.num_patches = (cfg.DATA.TRAIN_CROP_SIZE // patch_size) * (
cfg.DATA.TRAIN_CROP_SIZE // patch_size
)
pretrained_model = cfg.TIMESFORMER.PRETRAINED_MODEL
if self.pretrained:
load_pretrained(
self.model,
num_classes=self.model.num_classes,
in_chans=kwargs.get("in_chans", 3),
filter_fn=_conv_filter,
img_size=cfg.DATA.TRAIN_CROP_SIZE,
num_patches=self.num_patches,
attention_type=self.attention_type,
pretrained_model=pretrained_model,
)
def forward(self, x):
x = self.model(x)
return x
class TimeSformer(nn.Module):
def __init__(
self,
image_size=224,
patch_size=16,
n_frms=8,
attn_drop_rate=0.0,
drop_path_rate=0.1,
drop_rate=0,
use_grad_ckpt=False,
ckpt_layer=0,
remove_classifier=True,
**kwargs,
):
super(TimeSformer, self).__init__()
self.img_size = image_size
self.patch_size = patch_size
self.num_frames = n_frms
self.attn_drop_rate = attn_drop_rate
self.drop_path_rate = drop_path_rate
self.drop_rate = drop_rate
self.use_grad_ckpt = use_grad_ckpt
self.ckpt_layer = ckpt_layer
self.attention_type = "divided_space_time"
logging.info(
f"Initializing TimeSformer with img_size={self.img_size}, patch_size={self.patch_size}, num_frames={self.num_frames}"
)
# will be ignored when loading official pretrained ckpt
self.num_classes = 400
self.model = VisionTransformer(
img_size=self.img_size,
num_classes=self.num_classes,
patch_size=self.patch_size,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
drop_rate=self.drop_rate,
attn_drop_rate=self.attn_drop_rate,
drop_path_rate=self.drop_path_rate,
num_frames=self.num_frames,
attention_type=self.attention_type,
use_grad_checkpointing=self.use_grad_ckpt,
ckpt_layer=self.ckpt_layer,
**kwargs,
)
if remove_classifier:
self.model.remove_classifier()
self.model.default_cfg = default_cfgs[
"vit_base_patch" + str(self.patch_size) + "_224"
]
self.num_patches = (self.img_size // self.patch_size) * (
self.img_size // self.patch_size
)
def forward(self, x):
x = self.model(x)
return x
def forward_features(self, x):
# b, c, t, h, w = x.shape
x = self.model.forward_features(x)
## apply pooling
W = H = self.img_size // self.patch_size
T = self.num_frames
cls_tokens = x[:, 0, :].unsqueeze(1)
other_tokens = x[:, 1:, :]
x = rearrange(other_tokens, "b (h w t) m -> b t (h w) m", h=H, w=W, t=T)
x = torch.mean(x, dim=1)
x = torch.cat((cls_tokens, x), dim=1)
return x
def load_state_dict(self, pretrained_ckpt_path):
logging.info(
"Loading TimeSformer checkpoints from {}".format(pretrained_ckpt_path)
)
if pretrained_ckpt_path == "vit_base_patch16_224":
load_ckpt_func = load_pretrained_imagenet
else:
load_ckpt_func = load_pretrained_kinetics
load_ckpt_func(
self.model,
num_classes=self.model.num_classes,
in_chans=3,
filter_fn=_conv_filter,
img_size=self.img_size,
num_frames=self.num_frames,
num_patches=self.num_patches,
attention_type=self.attention_type,
pretrained_model=pretrained_ckpt_path,
)
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Based on https://github.com/facebookresearch/TimeSformer
"""
# Copyright 2020 Ross Wightman
# Various utility functions
DEFAULT_CROP_PCT = 0.875
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5)
IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5)
IMAGENET_DPN_MEAN = (124 / 255, 117 / 255, 104 / 255)
IMAGENET_DPN_STD = tuple([1 / (0.0167 * 255)] * 3)
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2,
)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.0))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
# From PyTorch internals
def _ntuple(n):
def parse(x):
if isinstance(x, container_abcs.Iterable):
return x
return tuple(repeat(x, n))
return parse
to_2tuple = _ntuple(2)
# Calculate symmetric padding for a convolution
def get_padding(kernel_size: int, stride: int = 1, dilation: int = 1, **_) -> int:
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
return padding
def get_padding_value(padding, kernel_size, **kwargs):
dynamic = False
if isinstance(padding, str):
# for any string padding, the padding will be calculated for you, one of three ways
padding = padding.lower()
if padding == "same":
# TF compatible 'SAME' padding, has a performance and GPU memory allocation impact
if is_static_pad(kernel_size, **kwargs):
# static case, no extra overhead
padding = get_padding(kernel_size, **kwargs)
else:
# dynamic 'SAME' padding, has runtime/GPU memory overhead
padding = 0
dynamic = True
elif padding == "valid":
# 'VALID' padding, same as padding=0
padding = 0
else:
# Default to PyTorch style 'same'-ish symmetric padding
padding = get_padding(kernel_size, **kwargs)
return padding, dynamic
# Calculate asymmetric TensorFlow-like 'SAME' padding for a convolution
def get_same_padding(x: int, k: int, s: int, d: int):
return max((int(math.ceil(x // s)) - 1) * s + (k - 1) * d + 1 - x, 0)
# Can SAME padding for given args be done statically?
def is_static_pad(kernel_size: int, stride: int = 1, dilation: int = 1, **_):
return stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0
# Dynamically pad input x with 'SAME' padding for conv with specified args
# def pad_same(x, k: List[int], s: List[int], d: List[int] = (1, 1), value: float = 0):
def pad_same(x, k, s, d=(1, 1), value=0):
ih, iw = x.size()[-2:]
pad_h, pad_w = get_same_padding(ih, k[0], s[0], d[0]), get_same_padding(
iw, k[1], s[1], d[1]
)
if pad_h > 0 or pad_w > 0:
x = F.pad(
x,
[pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2],
value=value,
)
return x
def adaptive_pool_feat_mult(pool_type="avg"):
if pool_type == "catavgmax":
return 2
else:
return 1
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (
x.ndim - 1
) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Based on https://github.com/facebookresearch/TimeSformer
"""
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Copyright 2020 Ross Wightman
# Modified model creation / weight loading / state_dict helpers
def load_state_dict(checkpoint_path, use_ema=False):
if checkpoint_path and os.path.isfile(checkpoint_path):
checkpoint = torch.load(checkpoint_path, map_location="cpu")
state_dict_key = "state_dict"
if isinstance(checkpoint, dict):
if use_ema and "state_dict_ema" in checkpoint:
state_dict_key = "state_dict_ema"
if state_dict_key and state_dict_key in checkpoint:
new_state_dict = OrderedDict()
for k, v in checkpoint[state_dict_key].items():
# strip `module.` prefix
name = k[7:] if k.startswith("module") else k
new_state_dict[name] = v
state_dict = new_state_dict
elif "model_state" in checkpoint:
state_dict_key = "model_state"
new_state_dict = OrderedDict()
for k, v in checkpoint[state_dict_key].items():
# strip `model.` prefix
name = k[6:] if k.startswith("model") else k
new_state_dict[name] = v
state_dict = new_state_dict
else:
state_dict = checkpoint
logging.info(
"Loaded {} from checkpoint '{}'".format(state_dict_key, checkpoint_path)
)
return state_dict
else:
logging.error("No checkpoint found at '{}'".format(checkpoint_path))
raise FileNotFoundError()
def load_checkpoint(model, checkpoint_path, use_ema=False, strict=True):
state_dict = load_state_dict(checkpoint_path, use_ema)
model.load_state_dict(state_dict, strict=strict)
# def resume_checkpoint(model, checkpoint_path, optimizer=None, loss_scaler=None, log_info=True):
# resume_epoch = None
# if os.path.isfile(checkpoint_path):
# checkpoint = torch.load(checkpoint_path, map_location='cpu')
# if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
# if log_info:
# _logger.info('Restoring model state from checkpoint...')
# new_state_dict = OrderedDict()
# for k, v in checkpoint['state_dict'].items():
# name = k[7:] if k.startswith('module') else k
# new_state_dict[name] = v
# model.load_state_dict(new_state_dict)
# if optimizer is not None and 'optimizer' in checkpoint:
# if log_info:
# _logger.info('Restoring optimizer state from checkpoint...')
# optimizer.load_state_dict(checkpoint['optimizer'])
# if loss_scaler is not None and loss_scaler.state_dict_key in checkpoint:
# if log_info:
# _logger.info('Restoring AMP loss scaler state from checkpoint...')
# loss_scaler.load_state_dict(checkpoint[loss_scaler.state_dict_key])
# if 'epoch' in checkpoint:
# resume_epoch = checkpoint['epoch']
# if 'version' in checkpoint and checkpoint['version'] > 1:
# resume_epoch += 1 # start at the next epoch, old checkpoints incremented before save
# if log_info:
# _logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, checkpoint['epoch']))
# else:
# model.load_state_dict(checkpoint)
# if log_info:
# _logger.info("Loaded checkpoint '{}'".format(checkpoint_path))
# return resume_epoch
# else:
# _logger.error("No checkpoint found at '{}'".format(checkpoint_path))
# raise FileNotFoundError()
def load_pretrained(
model,
cfg=None,
num_classes=1000,
in_chans=3,
filter_fn=None,
img_size=224,
num_frames=8,
num_patches=196,
attention_type="divided_space_time",
pretrained_model="",
strict=True,
):
if cfg is None:
cfg = getattr(model, "default_cfg")
if cfg is None or "url" not in cfg or not cfg["url"]:
logging.warning("Pretrained model URL is invalid, using random initialization.")
return
if len(pretrained_model) == 0:
if cfg is None:
logging.info(f"loading from default config {model.default_cfg}.")
state_dict = model_zoo.load_url(cfg["url"], progress=False, map_location="cpu")
else:
try:
state_dict = load_state_dict(pretrained_model)["model"]
except:
state_dict = load_state_dict(pretrained_model)
if filter_fn is not None:
state_dict = filter_fn(state_dict)
if in_chans == 1:
conv1_name = cfg["first_conv"]
logging.info(
"Converting first conv (%s) pretrained weights from 3 to 1 channel"
% conv1_name
)
conv1_weight = state_dict[conv1_name + ".weight"]
conv1_type = conv1_weight.dtype
conv1_weight = conv1_weight.float()
O, I, J, K = conv1_weight.shape
if I > 3:
assert conv1_weight.shape[1] % 3 == 0
# For models with space2depth stems
conv1_weight = conv1_weight.reshape(O, I // 3, 3, J, K)
conv1_weight = conv1_weight.sum(dim=2, keepdim=False)
else:
conv1_weight = conv1_weight.sum(dim=1, keepdim=True)
conv1_weight = conv1_weight.to(conv1_type)
state_dict[conv1_name + ".weight"] = conv1_weight
elif in_chans != 3:
conv1_name = cfg["first_conv"]
conv1_weight = state_dict[conv1_name + ".weight"]
conv1_type = conv1_weight.dtype
conv1_weight = conv1_weight.float()
O, I, J, K = conv1_weight.shape
if I != 3:
logging.warning(
"Deleting first conv (%s) from pretrained weights." % conv1_name
)
del state_dict[conv1_name + ".weight"]
strict = False
else:
logging.info(
"Repeating first conv (%s) weights in channel dim." % conv1_name
)
repeat = int(math.ceil(in_chans / 3))
conv1_weight = conv1_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :]
conv1_weight *= 3 / float(in_chans)
conv1_weight = conv1_weight.to(conv1_type)
state_dict[conv1_name + ".weight"] = conv1_weight
classifier_name = cfg["classifier"]
if num_classes == 1000 and cfg["num_classes"] == 1001:
# special case for imagenet trained models with extra background class in pretrained weights
classifier_weight = state_dict[classifier_name + ".weight"]
state_dict[classifier_name + ".weight"] = classifier_weight[1:]
classifier_bias = state_dict[classifier_name + ".bias"]
state_dict[classifier_name + ".bias"] = classifier_bias[1:]
elif num_classes != state_dict[classifier_name + ".weight"].size(0):
# print('Removing the last fully connected layer due to dimensions mismatch ('+str(num_classes)+ ' != '+str(state_dict[classifier_name + '.weight'].size(0))+').', flush=True)
# completely discard fully connected for all other differences between pretrained and created model
del state_dict[classifier_name + ".weight"]
del state_dict[classifier_name + ".bias"]
strict = False
## Resizing the positional embeddings in case they don't match
logging.info(
f"Resizing spatial position embedding from {state_dict['pos_embed'].size(1)} to {num_patches + 1}"
)
if num_patches + 1 != state_dict["pos_embed"].size(1):
pos_embed = state_dict["pos_embed"]
cls_pos_embed = pos_embed[0, 0, :].unsqueeze(0).unsqueeze(1)
other_pos_embed = pos_embed[0, 1:, :].unsqueeze(0).transpose(1, 2)
new_pos_embed = F.interpolate(
other_pos_embed, size=(num_patches), mode="nearest"
)
new_pos_embed = new_pos_embed.transpose(1, 2)
new_pos_embed = torch.cat((cls_pos_embed, new_pos_embed), 1)
state_dict["pos_embed"] = new_pos_embed
## Resizing time embeddings in case they don't match
if "time_embed" in state_dict and num_frames != state_dict["time_embed"].size(1):
logging.info(
f"Resizing temporal position embedding from {state_dict['time_embed'].size(1)} to {num_frames}"
)
time_embed = state_dict["time_embed"].transpose(1, 2)
new_time_embed = F.interpolate(time_embed, size=(num_frames), mode="nearest")
state_dict["time_embed"] = new_time_embed.transpose(1, 2)
## Initializing temporal attention
if attention_type == "divided_space_time":
new_state_dict = state_dict.copy()
for key in state_dict:
if "blocks" in key and "attn" in key:
new_key = key.replace("attn", "temporal_attn")
if not new_key in state_dict:
new_state_dict[new_key] = state_dict[key]
else:
new_state_dict[new_key] = state_dict[new_key]
if "blocks" in key and "norm1" in key:
new_key = key.replace("norm1", "temporal_norm1")
if not new_key in state_dict:
new_state_dict[new_key] = state_dict[key]
else:
new_state_dict[new_key] = state_dict[new_key]
state_dict = new_state_dict
## Loading the weights
model.load_state_dict(state_dict, strict=False)
def load_pretrained_imagenet(
model,
pretrained_model,
cfg=None,
ignore_classifier=True,
num_frames=8,
num_patches=196,
**kwargs,
):
import timm
logging.info(f"Loading vit_base_patch16_224 checkpoints.")
loaded_state_dict = timm.models.vision_transformer.vit_base_patch16_224(
pretrained=True
).state_dict()
del loaded_state_dict["head.weight"]
del loaded_state_dict["head.bias"]
## Initializing temporal attention
new_state_dict = loaded_state_dict.copy()
for key in loaded_state_dict:
if "blocks" in key and "attn" in key:
new_key = key.replace("attn", "temporal_attn")
if not new_key in loaded_state_dict:
new_state_dict[new_key] = loaded_state_dict[key]
else:
new_state_dict[new_key] = loaded_state_dict[new_key]
if "blocks" in key and "norm1" in key:
new_key = key.replace("norm1", "temporal_norm1")
if not new_key in loaded_state_dict:
new_state_dict[new_key] = loaded_state_dict[key]
else:
new_state_dict[new_key] = loaded_state_dict[new_key]
loaded_state_dict = new_state_dict
loaded_keys = loaded_state_dict.keys()
model_keys = model.state_dict().keys()
load_not_in_model = [k for k in loaded_keys if k not in model_keys]
model_not_in_load = [k for k in model_keys if k not in loaded_keys]
toload = dict()
mismatched_shape_keys = []
for k in model_keys:
if k in loaded_keys:
if model.state_dict()[k].shape != loaded_state_dict[k].shape:
mismatched_shape_keys.append(k)
else:
toload[k] = loaded_state_dict[k]
logging.info("Keys in loaded but not in model:")
logging.info(f"In total {len(load_not_in_model)}, {sorted(load_not_in_model)}")
logging.info("Keys in model but not in loaded:")
logging.info(f"In total {len(model_not_in_load)}, {sorted(model_not_in_load)}")
logging.info("Keys in model and loaded, but shape mismatched:")
logging.info(
f"In total {len(mismatched_shape_keys)}, {sorted(mismatched_shape_keys)}"
)
model.load_state_dict(toload, strict=False)
def load_pretrained_kinetics(
model,
pretrained_model,
cfg=None,
ignore_classifier=True,
num_frames=8,
num_patches=196,
**kwargs,
):
if cfg is None:
cfg = getattr(model, "default_cfg")
if cfg is None or "url" not in cfg or not cfg["url"]:
logging.warning("Pretrained model URL is invalid, using random initialization.")
return
assert (
len(pretrained_model) > 0
), "Path to pre-trained Kinetics weights not provided."
state_dict = load_state_dict(pretrained_model)
classifier_name = cfg["classifier"]
if ignore_classifier:
classifier_weight_key = classifier_name + ".weight"
classifier_bias_key = classifier_name + ".bias"
state_dict[classifier_weight_key] = model.state_dict()[classifier_weight_key]
state_dict[classifier_bias_key] = model.state_dict()[classifier_bias_key]
else:
raise NotImplementedError(
"[dxli] Not supporting loading Kinetics-pretrained ckpt with classifier."
)
## Resizing the positional embeddings in case they don't match
if num_patches + 1 != state_dict["pos_embed"].size(1):
new_pos_embed = resize_spatial_embedding(state_dict, "pos_embed", num_patches)
state_dict["pos_embed"] = new_pos_embed
## Resizing time embeddings in case they don't match
if "time_embed" in state_dict and num_frames != state_dict["time_embed"].size(1):
state_dict["time_embed"] = resize_temporal_embedding(
state_dict, "time_embed", num_frames
)
## Loading the weights
try:
model.load_state_dict(state_dict, strict=True)
logging.info("Succeeded in loading Kinetics pre-trained weights.")
except:
logging.error("Error in loading Kinetics pre-trained weights.")
def resize_spatial_embedding(state_dict, key, num_patches):
logging.info(
f"Resizing spatial position embedding from {state_dict[key].size(1)} to {num_patches + 1}"
)
pos_embed = state_dict[key]
cls_pos_embed = pos_embed[0, 0, :].unsqueeze(0).unsqueeze(1)
other_pos_embed = pos_embed[0, 1:, :].unsqueeze(0).transpose(1, 2)
new_pos_embed = F.interpolate(other_pos_embed, size=(num_patches), mode="nearest")
new_pos_embed = new_pos_embed.transpose(1, 2)
new_pos_embed = torch.cat((cls_pos_embed, new_pos_embed), 1)
return new_pos_embed
def resize_temporal_embedding(state_dict, key, num_frames):
logging.info(
f"Resizing temporal position embedding from {state_dict[key].size(1)} to {num_frames}"
)
time_embed = state_dict[key].transpose(1, 2)
new_time_embed = F.interpolate(time_embed, size=(num_frames), mode="nearest")
return new_time_embed.transpose(1, 2)
def detach_variable(inputs):
if isinstance(inputs, tuple):
out = []
for inp in inputs:
x = inp.detach()
x.requires_grad = inp.requires_grad
out.append(x)
return tuple(out)
else:
raise RuntimeError(
"Only tuple of tensors is supported. Got Unsupported input type: ",
type(inputs).__name__,
)
def check_backward_validity(inputs):
if not any(inp.requires_grad for inp in inputs):
warnings.warn(
"None of the inputs have requires_grad=True. Gradients will be None"
)
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
@registry.register_model("blip2_image_text_matching")
class Blip2ITM(Blip2Qformer):
"""
BLIP Image-Text Matching (ITM) model.
Supported model types:
- pretrained: pretrained model
- coco: fintuned model on coco
Usage:
>>> from lavis.models import load_model
>>> model = load_model("blip2_image_text_matching", "pretrained")
>>> model = load_model("blip2_image_text_matching", "coco")
"""
def __init__(
self,
img_size=224,
drop_path_rate=0,
use_grad_checkpoint=False,
vit_precision="fp16",
freeze_vit=True,
num_query_token=32,
embed_dim=256,
max_txt_len=32,
):
super().__init__(
img_size=img_size,
drop_path_rate=drop_path_rate,
use_grad_checkpoint=use_grad_checkpoint,
vit_precision=vit_precision,
freeze_vit=freeze_vit,
num_query_token=num_query_token,
embed_dim=embed_dim,
max_txt_len=max_txt_len,
)
def forward(self, samples, match_head="itm"):
image = samples["image"]
caption = samples["text_input"]
image_embeds = self.ln_vision(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
image.device
)
text = self.tokenizer(
caption,
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(image.device)
if match_head == "itm":
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(
image.device
)
attention_mask = torch.cat([query_atts, text.attention_mask], dim=1)
output_itm = self.Qformer.bert(
text.input_ids,
query_embeds=query_tokens,
attention_mask=attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
itm_embeddings = output_itm.last_hidden_state[:, : query_tokens.size(1), :]
itm_logit = self.itm_head(itm_embeddings)
itm_logit = itm_logit.mean(dim=1)
return itm_logit
elif match_head == "itc":
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
image_feats = F.normalize(
self.vision_proj(query_output.last_hidden_state), dim=-1
)
text_output = self.Qformer.bert(
text.input_ids,
attention_mask=text.attention_mask,
return_dict=True,
)
text_feat = F.normalize(
self.text_proj(text_output.last_hidden_state[:, 0, :]), dim=-1
)
sims = torch.bmm(image_feats, text_feat.unsqueeze(-1))
sim, _ = torch.max(sims, dim=1)
return sim
|
"""
Copyright (c) 2023, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
@registry.register_model("blip2_t5")
class Blip2T5(Blip2Base):
"""
BLIP2 T5 model.
Supported model types:
- pretrain_flant5xl: pretrained model with FlanT5-XL
- pretrain_flant5xxl: pretrained model with FlanT5-XXL
- caption_coco_flant5xl: fintuned image captioning model with FlanT5-XL
Usage:
>>> from lavis.models import load_model
>>> model = load_model("blip2_t5", "pretrain_flant5xl")
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"pretrain_flant5xl": "configs/models/blip2/blip2_pretrain_flant5xl.yaml",
"pretrain_flant5xxl": "configs/models/blip2/blip2_pretrain_flant5xxl.yaml",
"caption_coco_flant5xl": "configs/models/blip2/blip2_caption_flant5xl.yaml",
}
def __init__(
self,
img_size=224,
drop_path_rate=0,
use_grad_checkpoint=False,
vit_precision="fp16",
freeze_vit=True,
num_query_token=32,
t5_model="google/flan-t5-xl",
prompt="",
max_txt_len=32,
):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
img_size, drop_path_rate, use_grad_checkpoint, vit_precision
)
if freeze_vit:
self.visual_encoder = self.visual_encoder.eval()
self.visual_encoder.train = disabled_train
logging.info("freeze vision encoder")
self.Qformer, self.query_tokens = self.init_Qformer(
num_query_token, self.visual_encoder.num_features
)
self.Qformer.cls = None
self.Qformer.bert.embeddings.word_embeddings = None
self.Qformer.bert.embeddings.position_embeddings = None
for layer in self.Qformer.bert.encoder.layer:
layer.output = None
layer.intermediate = None
self.t5_tokenizer = T5TokenizerFast.from_pretrained(t5_model)
t5_config = T5Config.from_pretrained(t5_model)
t5_config.dense_act_fn = "gelu"
self.t5_model = T5ForConditionalGeneration.from_pretrained(
t5_model, config=t5_config
)
for name, param in self.t5_model.named_parameters():
param.requires_grad = False
param.data = param.data.bfloat16()
self.t5_proj = nn.Linear(
self.Qformer.config.hidden_size, self.t5_model.config.hidden_size
)
self.max_txt_len = max_txt_len
self.prompt = prompt
def forward(self, samples):
image = samples["image"]
image_embeds = self.ln_vision(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
image.device
)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
inputs_t5 = self.t5_proj(query_output.last_hidden_state)
atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
input_tokens = self.t5_tokenizer(
samples["text_input"],
padding="longest",
truncation=True,
max_length=self.max_text_length,
return_tensors="pt",
).to(image.device)
output_tokens = self.t5_tokenizer(
samples["text_output"],
padding="longest",
truncation=True,
max_length=self.max_text_length,
return_tensors="pt",
).to(image.device)
encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
targets = output_tokens.input_ids.masked_fill(
output_tokens.input_ids == self.t5_tokenizer.pad_token_id, -100
)
inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
outputs = self.t5_model(
inputs_embeds=inputs_embeds,
attention_mask=encoder_atts,
decoder_attention_mask=output_tokens.attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
return {"loss": loss}
@torch.no_grad()
def generate(
self,
samples,
use_nucleus_sampling=False,
num_beams=5,
max_length=30,
min_length=1,
top_p=0.9,
repetition_penalty=1.0,
length_penalty=1.0,
num_captions=1,
temperature=1,
):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
use_nucleus_sampling (bool): Whether to use nucleus sampling. If False, use top-k sampling.
num_beams (int): Number of beams for beam search. 1 means no beam search.
max_length (int): The maximum length of the sequence to be generated.
min_length (int): The minimum length of the sequence to be generated.
top_p (float): The cumulative probability for nucleus sampling.
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
num_captions (int): Number of captions to be generated for each image.
Returns:
captions (list): A list of strings of length batch_size * num_captions.
"""
image = samples["image"]
with torch.cuda.amp.autocast(enabled=(self.device != torch.device("cpu"))):
image_embeds = self.ln_vision(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
image.device
)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
inputs_t5 = self.t5_proj(query_output.last_hidden_state)
atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
if "prompt" in samples.keys():
prompt = samples["prompt"]
else:
prompt = self.prompt
if isinstance(prompt, str):
prompt = [prompt] * image.size(0)
else:
assert len(prompt) == image.size(
0
), "The number of prompts must be equal to the batch size."
input_tokens = self.t5_tokenizer(
prompt, padding="longest", return_tensors="pt"
).to(image.device)
encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
device_type = "cuda" if "cuda" in str(self.device) else "cpu"
with torch.amp.autocast(device_type=device_type, dtype=torch.bfloat16):
inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
outputs = self.t5_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=encoder_atts,
do_sample=use_nucleus_sampling,
top_p=top_p,
temperature=temperature,
num_beams=num_beams,
max_new_tokens=max_length,
min_length=min_length,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
num_return_sequences=num_captions,
)
output_text = self.t5_tokenizer.batch_decode(
outputs, skip_special_tokens=True
)
return output_text
@classmethod
def from_config(cls, cfg):
img_size = cfg.get("image_size")
num_query_token = cfg.get("num_query_token")
t5_model = cfg.get("t5_model")
drop_path_rate = cfg.get("drop_path_rate", 0)
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False)
vit_precision = cfg.get("vit_precision", "fp16")
freeze_vit = cfg.get("freeze_vit", True)
prompt = cfg.get("prompt", "")
max_txt_len = cfg.get("max_txt_len", 32)
model = cls(
img_size=img_size,
drop_path_rate=drop_path_rate,
use_grad_checkpoint=use_grad_checkpoint,
vit_precision=vit_precision,
freeze_vit=freeze_vit,
num_query_token=num_query_token,
t5_model=t5_model,
prompt=prompt,
max_txt_len=max_txt_len,
)
model.load_checkpoint_from_config(cfg)
return model
|
"""
Copyright (c) 2023, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
Blip2Base,
compute_sim_matrix,
disabled_train,
)
@registry.register_model("blip2")
@registry.register_model("blip2_feature_extractor")
class Blip2Qformer(Blip2Base):
"""
BLIP2 first-stage model with Q-former and ViT.
Supported model types:
- pretrained: pretrained model
- coco: fintuned model on coco
Usage:
>>> from lavis.models import load_model
>>> model = load_model("blip2", "pretrain")
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"pretrain": "configs/models/blip2/blip2_pretrain.yaml",
"coco": "configs/models/blip2/blip2_coco.yaml",
}
def __init__(
self,
img_size=224,
drop_path_rate=0,
use_grad_checkpoint=False,
vit_precision="fp16",
freeze_vit=True,
num_query_token=32,
embed_dim=256,
max_txt_len=32,
):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
img_size, drop_path_rate, use_grad_checkpoint, vit_precision
)
if freeze_vit:
self.visual_encoder = self.visual_encoder.eval()
self.visual_encoder.train = disabled_train
logging.info("freeze vision encoder")
self.Qformer, self.query_tokens = self.init_Qformer(
num_query_token, self.visual_encoder.num_features
)
self.Qformer.resize_token_embeddings(len(self.tokenizer))
state_dict = self.Qformer.state_dict()
for name, param in self.Qformer.named_parameters():
if "_query" in name:
key_orig = name.replace("_query", "")
param.data.copy_(state_dict[key_orig])
self.vision_proj = nn.Linear(self.Qformer.config.hidden_size, embed_dim)
self.text_proj = nn.Linear(self.Qformer.config.hidden_size, embed_dim)
self.itm_head = nn.Linear(self.Qformer.config.hidden_size, 2)
self.temp = nn.Parameter(0.07 * torch.ones([]))
self.max_txt_len = max_txt_len
def forward(self, samples):
image = samples["image"]
text = samples["text_input"]
image_embeds = self.ln_vision(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
image.device
)
print (image_embeds.shape)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
print (query_tokens.shape)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
use_cache=True,
return_dict=True,
)
image_feats = F.normalize(
self.vision_proj(query_output.last_hidden_state), dim=-1
)
print (image_feats.shape)
text_tokens = self.tokenizer(
text,
padding="max_length",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(image.device)
text_output = self.Qformer.bert(
text_tokens.input_ids,
attention_mask=text_tokens.attention_mask,
return_dict=True,
)
text_feat = F.normalize(
self.text_proj(text_output.last_hidden_state[:, 0, :]), dim=-1
)
###============== Image-text Contrastive ===================###
image_feats_all = concat_all_gather(
image_feats
) # [batch_size*num_gpu, num_query_tokens, embed_dim]
text_feat_all = concat_all_gather(text_feat) # [batch_size*num_gpu, embed_dim]
sim_q2t = torch.matmul(
image_feats.unsqueeze(1), text_feat_all.unsqueeze(-1)
).squeeze()
# [batch_size, batch_size*num_gpu, num_query_tokens]
# image-text similarity: aggregate across all query tokens
sim_i2t, _ = sim_q2t.max(-1)
sim_i2t = sim_i2t / self.temp
# text-query similarity: [batch_size, batch_size*num_gpu, num_query_tokens]
sim_t2q = torch.matmul(
text_feat.unsqueeze(1).unsqueeze(1), image_feats_all.permute(0, 2, 1)
).squeeze()
# text-image similarity: aggregate across all query tokens
sim_t2i, _ = sim_t2q.max(-1)
sim_t2i = sim_t2i / self.temp # [batch_size, batch_size*num_gpu]
rank = dist.get_rank()
bs = image.size(0)
targets = torch.linspace(rank * bs, rank * bs + bs - 1, bs, dtype=int).to(
image.device
)
loss_itc = (
F.cross_entropy(sim_i2t, targets, label_smoothing=0.1)
+ F.cross_entropy(sim_t2i, targets, label_smoothing=0.1)
) / 2
###============== Image-text Matching ===================###
text_input_ids_world = concat_all_gather(text_tokens.input_ids)
text_attention_mask_world = concat_all_gather(text_tokens.attention_mask)
image_embeds_world = all_gather_with_grad(image_embeds)
with torch.no_grad():
weights_t2i = F.softmax(sim_t2i, dim=1) + 1e-4
weights_t2i[:, rank * bs : rank * bs + bs].fill_diagonal_(0)
weights_i2t = F.softmax(sim_i2t, dim=1) + 1e-4
weights_i2t[:, rank * bs : rank * bs + bs].fill_diagonal_(0)
# select a negative image for each text
image_embeds_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
image_embeds_neg.append(image_embeds_world[neg_idx])
image_embeds_neg = torch.stack(image_embeds_neg, dim=0)
# select a negative text for each image
text_ids_neg = []
text_atts_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
text_ids_neg.append(text_input_ids_world[neg_idx])
text_atts_neg.append(text_attention_mask_world[neg_idx])
text_ids_neg = torch.stack(text_ids_neg, dim=0)
text_atts_neg = torch.stack(text_atts_neg, dim=0)
text_ids_all = torch.cat(
[text_tokens.input_ids, text_tokens.input_ids, text_ids_neg], dim=0
) # pos, pos, neg
text_atts_all = torch.cat(
[text_tokens.attention_mask, text_tokens.attention_mask, text_atts_neg],
dim=0,
)
query_tokens_itm = self.query_tokens.expand(text_ids_all.shape[0], -1, -1)
query_atts_itm = torch.ones(query_tokens_itm.size()[:-1], dtype=torch.long).to(
image.device
)
attention_mask_all = torch.cat([query_atts_itm, text_atts_all], dim=1)
image_embeds_all = torch.cat(
[image_embeds, image_embeds_neg, image_embeds], dim=0
) # pos, neg, pos
image_atts_all = torch.ones(image_embeds_all.size()[:-1], dtype=torch.long).to(
image.device
)
output_itm = self.Qformer.bert(
text_ids_all,
query_embeds=query_tokens_itm,
attention_mask=attention_mask_all,
encoder_hidden_states=image_embeds_all,
encoder_attention_mask=image_atts_all,
return_dict=True,
)
vl_embeddings = output_itm.last_hidden_state[:, : query_tokens_itm.size(1), :]
vl_output = self.itm_head(vl_embeddings)
logits = vl_output.mean(dim=1)
itm_labels = torch.cat(
[torch.ones(bs, dtype=torch.long), torch.zeros(2 * bs, dtype=torch.long)],
dim=0,
).to(image.device)
loss_itm = F.cross_entropy(logits, itm_labels)
##================= Image Captioning ========================##
decoder_input_ids = text_tokens.input_ids.clone()
decoder_input_ids[:, 0] = self.tokenizer.bos_token_id
labels = decoder_input_ids.masked_fill(
decoder_input_ids == self.tokenizer.pad_token_id, -100
)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(
image.device
)
attention_mask = torch.cat([query_atts, text_tokens.attention_mask], dim=1)
lm_output = self.Qformer(
decoder_input_ids,
attention_mask=attention_mask,
past_key_values=query_output.past_key_values,
return_dict=True,
labels=labels,
)
loss_lm = lm_output.loss
return BlipOutput(
loss=loss_itc + loss_itm + loss_lm,
loss_itc=loss_itc,
loss_itm=loss_itm,
loss_lm=loss_lm,
)
@torch.no_grad()
def generate(
self,
samples,
use_nucleus_sampling=False,
num_beams=3,
max_length=30,
min_length=10,
top_p=0.9,
repetition_penalty=1.0,
):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
use_nucleus_sampling (bool): Whether to use nucleus sampling. If False, use top-k sampling.
num_beams (int): Number of beams for beam search. 1 means no beam search.
max_length (int): The maximum length of the sequence to be generated.
min_length (int): The minimum length of the sequence to be generated.
top_p (float): The cumulative probability for nucleus sampling.
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
num_captions (int): Number of captions to be generated for each image.
Returns:
captions (list): A list of strings of length batch_size * num_captions.
"""
image = samples["image"]
image_embeds = self.ln_vision(self.visual_encoder(image))
if not use_nucleus_sampling:
image_embeds = image_embeds.repeat_interleave(num_beams, dim=0)
else:
num_beams = 1
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
image.device
)
model_kwargs = {
"encoder_hidden_states": image_embeds,
"encoder_attention_mask": image_atts,
}
input_ids = (
torch.LongTensor(image.size(0), 1)
.fill_(self.tokenizer.bos_token_id)
.to(image.device)
)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
outputs = self.Qformer.generate(
input_ids=input_ids,
query_embeds=query_tokens,
max_length=max_length,
min_length=min_length,
num_beams=num_beams,
do_sample=use_nucleus_sampling,
top_p=top_p,
eos_token_id=self.tokenizer.sep_token_id,
pad_token_id=self.tokenizer.pad_token_id,
**model_kwargs
)
captions = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
return captions
def forward_image(self, image):
image_embeds = self.ln_vision(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
image.device
)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
return query_output.last_hidden_state, image_embeds
def forward_text(self, text_tokens):
text_output = self.Qformer.bert(
text_tokens.input_ids,
attention_mask=text_tokens.attention_mask,
return_dict=True,
)
return text_output.last_hidden_state[:, 0, :]
def compute_itm(self, image_inputs, text_ids, text_atts):
image_atts = torch.ones(image_inputs.size()[:-1], dtype=torch.long).to(
image_inputs.device
)
query_tokens = self.query_tokens.expand(image_inputs.shape[0], -1, -1)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(
image_inputs.device
)
attention_mask = torch.cat([query_atts, text_atts], dim=1)
output_itm = self.Qformer.bert(
text_ids,
query_embeds=query_tokens,
attention_mask=attention_mask,
encoder_hidden_states=image_inputs,
encoder_attention_mask=image_atts,
return_dict=True,
)
vl_embeddings = output_itm.last_hidden_state[:, : query_tokens.size(1), :]
itm_logit = self.itm_head(vl_embeddings)
itm_logit = itm_logit[:, :, 1].mean(dim=1)
return itm_logit
@torch.no_grad()
def extract_features(self, samples, mode="multimodal"):
"""
Extract features for multimodal or unimodal samples.
Args:
samples (dict): A dictionary of samples, containing the following keys:
- image (torch.Tensor): A tensor of shape (B, C, H, W) containing the image.
Raw images should be preprocessed before being passed to feature extractor.
- text_input (list): A list of strings containing the text, length B.
mode (str): The mode of feature extraction. Can be either "multimodal", "text" or "image".
If "multimodal", return image features and multimodal features;
if "text", return text features;
if "image", return image features.
Default: "multimodal".
Returns:
BlipOutputFeatures: A BlipOutputFeatures object containing the features.
See lavis/models/blip_models/blip_outputs.py for more details.
"""
image = samples.get("image")
caption = samples.get("text_input")
# assert mode is one of "image", "text", "multimodal"
assert mode in [
"image",
"text",
"multimodal",
], "mode must be one of 'image', 'text', 'multimodal'"
# initalize output
image_embeds, text_embeds, multimodal_embeds = None, None, None
image_features, text_features = None, None
if mode == "image":
assert (
image is not None
), "Image is not provided for mode 'image' or 'multimodal'"
# return query features
image_embeds_frozen = self.ln_vision(self.visual_encoder(image))
image_atts = torch.ones(
image_embeds_frozen.size()[:-1], dtype=torch.long
).to(self.device)
query_tokens = self.query_tokens.expand(
image_embeds_frozen.shape[0], -1, -1
)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds_frozen,
encoder_attention_mask=image_atts,
return_dict=True,
)
image_embeds = query_output.last_hidden_state
image_features = F.normalize(self.vision_proj(image_embeds), dim=-1)
elif mode == "text":
assert (
caption is not None
), "text input is None for mode 'text' or 'multimodal'"
# return text features
text = self.tokenizer(caption, return_tensors="pt", padding=True).to(
self.device
)
text_output = self.Qformer.bert(
text.input_ids,
attention_mask=text.attention_mask,
return_dict=True,
)
text_embeds = text_output.last_hidden_state
text_features = self.text_proj(text_embeds)
text_features = F.normalize(text_features, dim=-1)
elif mode == "multimodal":
# return multimodel query features
image_embeds_frozen = self.ln_vision(self.visual_encoder(image))
image_atts = torch.ones(
image_embeds_frozen.size()[:-1], dtype=torch.long
).to(self.device)
query_tokens = self.query_tokens.expand(
image_embeds_frozen.shape[0], -1, -1
)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(
self.device
)
text = self.tokenizer(caption, return_tensors="pt", padding=True).to(
self.device
)
attention_mask = torch.cat([query_atts, text.attention_mask], dim=1)
output = self.Qformer.bert(
text.input_ids,
query_embeds=query_tokens,
attention_mask=attention_mask,
encoder_hidden_states=image_embeds_frozen,
encoder_attention_mask=image_atts,
return_dict=True,
)
multimodal_embeds = output.last_hidden_state[:, : query_tokens.size(1), :]
return BlipOutputFeatures(
image_embeds=image_embeds,
image_embeds_proj=image_features,
text_embeds=text_embeds,
text_embeds_proj=text_features,
multimodal_embeds=multimodal_embeds,
)
@classmethod
def from_config(cls, cfg):
img_size = cfg.get("image_size")
num_query_token = cfg.get("num_query_token")
drop_path_rate = cfg.get("drop_path_rate", 0)
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False)
vit_precision = cfg.get("vit_precision", "fp16")
freeze_vit = cfg.get("freeze_vit", True)
max_txt_len = cfg.get("max_txt_len", 32)
model = cls(
img_size=img_size,
drop_path_rate=drop_path_rate,
use_grad_checkpoint=use_grad_checkpoint,
vit_precision=vit_precision,
freeze_vit=freeze_vit,
num_query_token=num_query_token,
max_txt_len=max_txt_len,
)
model.load_checkpoint_from_config(cfg)
return model
def compute_sim_matrix(self, data_loader, task_cfg):
"""
Compute similarity i2t, t2i matrix for the given data loader.
"""
k_test = task_cfg.k_test
return compute_sim_matrix(model=self, data_loader=data_loader, k_test=k_test)
|
"""
Copyright (c) 2023, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
@registry.register_model("blip2_opt")
class Blip2OPT(Blip2Base):
"""
BLIP2 OPT model.
Supported model types:
- pretrained_opt2.7b: pretrained model with OPT2.7b
- pretrained_opt6.7b: pretrained model with OPT6.7b
- caption_coco_opt2.7b: fintuned image captioning model with OPT2.7b
- caption_coco_opt6.7b: fintuned image captioning model with OPT6.7b
Usage:
>>> from lavis.models import load_model
>>> model = load_model("blip2_opt", "caption_coco_opt2.7b")
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"pretrain_opt2.7b": "configs/models/blip2/blip2_pretrain_opt2.7b.yaml",
"pretrain_opt6.7b": "configs/models/blip2/blip2_pretrain_opt6.7b.yaml",
"caption_coco_opt2.7b": "configs/models/blip2/blip2_caption_opt2.7b.yaml",
"caption_coco_opt6.7b": "configs/models/blip2/blip2_caption_opt6.7b.yaml",
}
def __init__(
self,
img_size=224,
drop_path_rate=0,
use_grad_checkpoint=False,
vit_precision="fp16",
freeze_vit=True,
num_query_token=32,
opt_model="facebook/opt-2.7b",
prompt="",
max_txt_len=32,
):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
img_size, drop_path_rate, use_grad_checkpoint, vit_precision
)
if freeze_vit:
self.visual_encoder = self.visual_encoder.eval()
self.visual_encoder.train = disabled_train
logging.info("freeze vision encoder")
self.Qformer, self.query_tokens = self.init_Qformer(
num_query_token, self.visual_encoder.num_features
)
self.Qformer.cls = None
self.Qformer.bert.embeddings.word_embeddings = None
self.Qformer.bert.embeddings.position_embeddings = None
for layer in self.Qformer.bert.encoder.layer:
layer.output = None
layer.intermediate = None
self.opt_tokenizer = AutoTokenizer.from_pretrained(opt_model, use_fast=False)
self.opt_model = OPTForCausalLM.from_pretrained(
opt_model, torch_dtype=torch.float16
)
for name, param in self.opt_model.named_parameters():
param.requires_grad = False
self.eos_token_id = self.opt_tokenizer(
"\n", add_special_tokens=False
).input_ids[0]
self.opt_proj = nn.Linear(
self.Qformer.config.hidden_size, self.opt_model.config.hidden_size
)
self.max_txt_len = max_txt_len
self.prompt = prompt
prompt_tokens = self.opt_tokenizer(self.prompt, return_tensors="pt")
self.prompt_length = prompt_tokens.attention_mask.sum(1)
def forward(self, samples):
image = samples["image"]
image_embeds = self.ln_vision(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
image.device
)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
inputs_opt = self.opt_proj(query_output.last_hidden_state)
atts_opt = torch.ones(inputs_opt.size()[:-1], dtype=torch.long).to(image.device)
self.opt_tokenizer.padding_side = "right"
text = [t + "\n" for t in samples["text_input"]]
opt_tokens = self.opt_tokenizer(
text,
return_tensors="pt",
padding="longest",
truncation=True,
max_length=self.max_txt_len,
).to(image.device)
targets = opt_tokens.input_ids.masked_fill(
opt_tokens.input_ids == self.opt_tokenizer.pad_token_id, -100
)
if self.prompt:
targets[:, : self.prompt_length] = -100 # do not apply loss to the prompt
empty_targets = (
torch.ones(atts_opt.size(), dtype=torch.long).to(image.device).fill_(-100)
)
targets = torch.cat([empty_targets, targets], dim=1)
inputs_embeds = self.opt_model.model.decoder.embed_tokens(opt_tokens.input_ids)
inputs_embeds = torch.cat([inputs_opt, inputs_embeds], dim=1)
attention_mask = torch.cat([atts_opt, opt_tokens.attention_mask], dim=1)
outputs = self.opt_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
return {"loss": loss}
@torch.no_grad()
def generate(
self,
samples,
use_nucleus_sampling=False,
num_beams=5,
max_length=30,
min_length=1,
top_p=0.9,
repetition_penalty=1.0,
length_penalty=1.0,
num_captions=1,
temperature=1,
):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
use_nucleus_sampling (bool): Whether to use nucleus sampling. If False, use top-k sampling.
num_beams (int): Number of beams for beam search. 1 means no beam search.
max_length (int): The maximum length of the sequence to be generated.
min_length (int): The minimum length of the sequence to be generated.
top_p (float): The cumulative probability for nucleus sampling.
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
num_captions (int): Number of captions to be generated for each image.
Returns:
captions (list): A list of strings of length batch_size * num_captions.
"""
image = samples["image"]
with torch.cuda.amp.autocast(
enabled=(self.device != torch.device("cpu"))
):
image_embeds = self.ln_vision(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
image.device
)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
print (image_embeds.shape)
print (image_atts.shape)
print (query_tokens.shape)
inputs_opt = self.opt_proj(query_output.last_hidden_state)
atts_opt = torch.ones(inputs_opt.size()[:-1], dtype=torch.long).to(image.device)
print (inputs_opt.shape)
print (atts_opt.shape)
if "prompt" in samples.keys():
prompt = samples["prompt"]
else:
prompt = self.prompt
prompt = [prompt] * image.size(0)
opt_tokens = self.opt_tokenizer(prompt, return_tensors="pt").to(image.device)
input_ids = opt_tokens.input_ids
attention_mask = torch.cat([atts_opt, opt_tokens.attention_mask], dim=1)
if use_nucleus_sampling:
query_embeds = inputs_opt.repeat_interleave(num_captions, dim=0)
num_beams = 1
else:
query_embeds = inputs_opt.repeat_interleave(num_beams, dim=0)
print (query_embeds.shape)
outputs = self.opt_model.generate(
input_ids=input_ids,
query_embeds=query_embeds,
attention_mask=attention_mask,
do_sample=use_nucleus_sampling,
top_p=top_p,
temperature=temperature,
num_beams=num_beams,
max_new_tokens=max_length,
min_length=min_length,
eos_token_id=self.eos_token_id,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
num_return_sequences=num_captions,
)
prompt_length = opt_tokens.input_ids.shape[1]
output_text = self.opt_tokenizer.batch_decode(
outputs[:, prompt_length:], skip_special_tokens=True
)
output_text = [text.strip() for text in output_text]
return output_text
@classmethod
def from_config(cls, cfg):
img_size = cfg.get("image_size")
num_query_token = cfg.get("num_query_token")
opt_model = cfg.get("opt_model")
drop_path_rate = cfg.get("drop_path_rate", 0)
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False)
vit_precision = cfg.get("vit_precision", "fp16")
freeze_vit = cfg.get("freeze_vit", True)
prompt = cfg.get("prompt", "")
max_txt_len = cfg.get("max_txt_len", 32)
model = cls(
img_size=img_size,
drop_path_rate=drop_path_rate,
use_grad_checkpoint=use_grad_checkpoint,
vit_precision=vit_precision,
freeze_vit=freeze_vit,
num_query_token=num_query_token,
opt_model=opt_model,
prompt=prompt,
max_txt_len=max_txt_len,
)
model.load_checkpoint_from_config(cfg)
return model
|
# coding=utf-8
# Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch T5 model."""
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
ALL_LAYERNORM_LAYERS,
find_pruneable_heads_and_indices,
prune_linear_layer,
)
DUMMY_INPUTS,
DUMMY_MASK,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torch_fx_proxy,
logging,
replace_return_docstrings,
)
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "T5Config"
_TOKENIZER_FOR_DOC = "T5Tokenizer"
_CHECKPOINT_FOR_DOC = "t5-small"
####################################################
# This dict contains ids and associated url
# for the pretrained weights provided with the models
####################################################
T5_PRETRAINED_MODEL_ARCHIVE_LIST = [
"t5-small",
"t5-base",
"t5-large",
"t5-3b",
"t5-11b",
# See all T5 models at https://huggingface.co/models?filter=t5
]
####################################################
# This is a conversion method from TF 1.0 to PyTorch
# More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28
####################################################
def load_tf_weights_in_t5(model, config, tf_checkpoint_path):
"""Load tf checkpoints in a pytorch model."""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
tf_weights = {}
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
names.append(name)
tf_weights[name] = array
for txt_name in names:
name = txt_name.split("/")
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(
n
in [
"adam_v",
"adam_m",
"AdamWeightDecayOptimizer",
"AdamWeightDecayOptimizer_1",
"global_step",
]
for n in name
):
logger.info(f"Skipping {'/'.join(name)}")
tf_weights.pop(txt_name, None)
continue
if "_slot_" in name[-1]:
logger.info(f"Skipping {'/'.join(name)}")
tf_weights.pop(txt_name, None)
continue
pointer = model
array = tf_weights[txt_name]
for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
scope_names = re.split(r"_(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] in ["kernel", "scale", "embedding"]:
pointer = getattr(pointer, "weight")
elif scope_names[0] == "self_attention":
pointer = getattr(pointer, "layer")
pointer = pointer[0]
elif scope_names[0] == "enc_dec_attention":
pointer = getattr(pointer, "layer")
pointer = pointer[1]
elif scope_names[0] == "dense_relu_dense":
pointer = getattr(pointer, "layer")
pointer = pointer[2]
elif scope_names[0] == "rms_norm":
if hasattr(pointer, "layer_norm"):
pointer = getattr(pointer, "layer_norm")
elif hasattr(pointer, "final_layer_norm"):
pointer = getattr(pointer, "final_layer_norm")
elif scope_names[0] == "scale":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias")
elif scope_names[0] == "squad":
pointer = getattr(pointer, "classifier")
elif scope_names[0] == "decoder" and name[1] == "logits":
continue
elif scope_names[0] == "logits":
pointer = getattr(pointer, "lm_head")
elif (
scope_names[0] == "wi"
and len(scope_names) > 1
and scope_names[1].isdigit()
):
pointer = getattr(pointer, f"wi_{scope_names[1]}")
continue
else:
try:
pointer = getattr(pointer, scope_names[0])
except AttributeError:
logger.info(f"Skipping {'/'.join(name)}")
continue
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
if scope_names[0] not in ["kernel", "scale", "embedding"]:
pointer = getattr(pointer, "weight")
if scope_names[0] != "embedding":
logger.info(f"Transposing numpy weight of shape {array.shape} for {name}")
array = np.transpose(array)
try:
assert (
pointer.shape == array.shape
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info(f"Initialize PyTorch weight {name}")
pointer.data = torch.from_numpy(array.astype(np.float32))
tf_weights.pop(txt_name, None)
logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.")
return model
####################################################
# PyTorch Models are constructed by sub-classing
# - torch.nn.Module for the layers and
# - PreTrainedModel for the models (it-self a sub-class of nn.Module)
####################################################
PARALLELIZE_DOCSTRING = r"""
This is an experimental feature and is a subject to change at a moment's notice.
Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
it will evenly distribute blocks across all devices.
Args:
device_map (`Dict[int, list]`, optional, defaults to None):
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
automatically mapped to the first device (for esoteric reasons). That means that the first device should
have fewer attention modules mapped to it than other devices. For reference, the t5 models have the
following number of attention modules:
- t5-small: 6
- t5-base: 12
- t5-large: 24
- t5-3b: 24
- t5-11b: 24
Example:
```python
# Here is an example of a device map on a machine with 4 GPUs using t5-3b, which has a total of 24 attention modules:
model = T5ForConditionalGeneration.from_pretrained("t5-3b")
device_map = {
0: [0, 1, 2],
1: [3, 4, 5, 6, 7, 8, 9],
2: [10, 11, 12, 13, 14, 15, 16],
3: [17, 18, 19, 20, 21, 22, 23],
}
model.parallelize(device_map)
```
"""
DEPARALLELIZE_DOCSTRING = r"""
Moves the model to cpu from a model parallel state.
Example:
```python
# On a 4 GPU machine with t5-3b:
model = T5ForConditionalGeneration.from_pretrained("t5-3b")
device_map = {
0: [0, 1, 2],
1: [3, 4, 5, 6, 7, 8, 9],
2: [10, 11, 12, 13, 14, 15, 16],
3: [17, 18, 19, 20, 21, 22, 23],
}
model.parallelize(device_map) # Splits the model across several devices
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
```
"""
class T5LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
try:
from apex.normalization import FusedRMSNorm
T5LayerNorm = FusedRMSNorm # noqa
logger.info(
"Discovered apex.normalization.FusedRMSNorm - will use it instead of T5LayerNorm"
)
except ImportError:
# using the normal T5LayerNorm
pass
except Exception:
logger.warning("discovered apex but it failed to load, falling back to T5LayerNorm")
pass
ALL_LAYERNORM_LAYERS.append(T5LayerNorm)
class T5DenseActDense(nn.Module):
def __init__(self, config: T5Config):
super().__init__()
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_states = self.wi(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.wo(hidden_states)
return hidden_states
class T5DenseGatedActDense(nn.Module):
def __init__(self, config: T5Config):
super().__init__()
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
hidden_states = self.wo(hidden_states)
return hidden_states
class T5LayerFF(nn.Module):
def __init__(self, config: T5Config):
super().__init__()
if config.is_gated_act:
self.DenseReluDense = T5DenseGatedActDense(config)
else:
self.DenseReluDense = T5DenseActDense(config)
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states):
forwarded_states = self.layer_norm(hidden_states)
forwarded_states = self.DenseReluDense(forwarded_states)
hidden_states = hidden_states + self.dropout(forwarded_states)
return hidden_states
class T5Attention(nn.Module):
def __init__(self, config: T5Config, has_relative_attention_bias=False):
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(
self.relative_attention_num_buckets, self.n_heads
)
self.pruned_heads = set()
self.gradient_checkpointing = False
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
)
# Prune linear layers
self.q = prune_linear_layer(self.q, index)
self.k = prune_linear_layer(self.k, index)
self.v = prune_linear_layer(self.v, index)
self.o = prune_linear_layer(self.o, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.inner_dim = self.key_value_proj_dim * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
@staticmethod
def _relative_position_bucket(
relative_position, bidirectional=True, num_buckets=32, max_distance=128
):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(
relative_position, torch.zeros_like(relative_position)
)
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large,
torch.full_like(relative_position_if_large, num_buckets - 1),
)
relative_buckets += torch.where(
is_small, relative_position, relative_position_if_large
)
return relative_buckets
def compute_bias(self, query_length, key_length, device=None):
"""Compute binned relative position bias"""
if device is None:
device = self.relative_attention_bias.weight.device
context_position = torch.arange(query_length, dtype=torch.long, device=device)[
:, None
]
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[
None, :
]
relative_position = (
memory_position - context_position
) # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(
relative_position, # shape (query_length, key_length)
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(
relative_position_bucket
) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(
0
) # shape (1, num_heads, query_length, key_length)
return values
def forward(
self,
hidden_states,
mask=None,
key_value_states=None,
position_bias=None,
past_key_value=None,
layer_head_mask=None,
query_length=None,
use_cache=False,
output_attentions=False,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
# Input is (batch_size, seq_length, dim)
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
batch_size, seq_length = hidden_states.shape[:2]
real_seq_length = seq_length
if past_key_value is not None:
assert (
len(past_key_value) == 2
), f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
real_seq_length += (
past_key_value[0].shape[2] if query_length is None else query_length
)
key_length = (
real_seq_length if key_value_states is None else key_value_states.shape[1]
)
def shape(states):
"""projection"""
return states.view(
batch_size, -1, self.n_heads, self.key_value_proj_dim
).transpose(1, 2)
def unshape(states):
"""reshape"""
return (
states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
)
def project(hidden_states, proj_layer, key_value_states, past_key_value):
"""projects hidden states correctly to key/query states"""
if key_value_states is None:
# self-attn
# (batch_size, n_heads, seq_length, dim_per_head)
hidden_states = shape(proj_layer(hidden_states))
elif past_key_value is None:
# cross-attn
# (batch_size, n_heads, seq_length, dim_per_head)
hidden_states = shape(proj_layer(key_value_states))
if past_key_value is not None:
if key_value_states is None:
# self-attn
# (batch_size, n_heads, key_length, dim_per_head)
hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
else:
# cross-attn
hidden_states = past_key_value
return hidden_states
# get query states
query_states = shape(
self.q(hidden_states)
) # (batch_size, n_heads, seq_length, dim_per_head)
# get key/value states
key_states = project(
hidden_states,
self.k,
key_value_states,
past_key_value[0] if past_key_value is not None else None,
)
value_states = project(
hidden_states,
self.v,
key_value_states,
past_key_value[1] if past_key_value is not None else None,
)
# compute scores
scores = torch.matmul(
query_states, key_states.transpose(3, 2)
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
if position_bias is None:
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, self.n_heads, real_seq_length, key_length),
device=scores.device,
dtype=scores.dtype,
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(
real_seq_length, key_length, device=scores.device
)
# if key and values are already calculated
# we want only the last query position bias
if past_key_value is not None:
position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
if mask is not None:
position_bias = (
position_bias + mask
) # (batch_size, n_heads, seq_length, key_length)
if self.pruned_heads:
mask = torch.ones(position_bias.shape[1])
mask[list(self.pruned_heads)] = 0
position_bias_masked = position_bias[:, mask.bool()]
else:
position_bias_masked = position_bias
scores += position_bias_masked
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(
scores
) # (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.dropout(
attn_weights, p=self.dropout, training=self.training
) # (batch_size, n_heads, seq_length, key_length)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_output = unshape(
torch.matmul(attn_weights, value_states)
) # (batch_size, seq_length, dim)
attn_output = self.o(attn_output)
present_key_value_state = (
(key_states, value_states) if (self.is_decoder and use_cache) else None
)
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
class T5LayerSelfAttention(nn.Module):
def __init__(self, config, has_relative_attention_bias=False):
super().__init__()
self.SelfAttention = T5Attention(
config, has_relative_attention_bias=has_relative_attention_bias
)
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.SelfAttention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[
1:
] # add attentions if we output them
return outputs
class T5LayerCrossAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.EncDecAttention = T5Attention(config, has_relative_attention_bias=False)
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
key_value_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
query_length=None,
output_attentions=False,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.EncDecAttention(
normed_hidden_states,
mask=attention_mask,
key_value_states=key_value_states,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
query_length=query_length,
output_attentions=output_attentions,
)
layer_output = hidden_states + self.dropout(attention_output[0])
outputs = (layer_output,) + attention_output[
1:
] # add attentions if we output them
return outputs
class T5Block(nn.Module):
def __init__(self, config, has_relative_attention_bias=False):
super().__init__()
self.is_decoder = config.is_decoder
self.layer = nn.ModuleList()
self.layer.append(
T5LayerSelfAttention(
config, has_relative_attention_bias=has_relative_attention_bias
)
)
if self.is_decoder:
self.layer.append(T5LayerCrossAttention(config))
self.layer.append(T5LayerFF(config))
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
return_dict=True,
):
if past_key_value is not None:
if not self.is_decoder:
logger.warning(
"`past_key_values` is passed to the encoder. Please make sure this is intended."
)
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
if len(past_key_value) != expected_num_past_key_values:
raise ValueError(
f"There should be {expected_num_past_key_values} past states. "
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
f"Got {len(past_key_value)} past key / value states"
)
self_attn_past_key_value = past_key_value[:2]
cross_attn_past_key_value = past_key_value[2:]
else:
self_attn_past_key_value, cross_attn_past_key_value = None, None
self_attention_outputs = self.layer[0](
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=self_attn_past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states, present_key_value_state = self_attention_outputs[:2]
attention_outputs = self_attention_outputs[
2:
] # Keep self-attention outputs and relative position weights
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(
hidden_states, min=-clamp_value, max=clamp_value
)
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
if do_cross_attention:
# the actual query length is unknown for cross attention
# if using past key value states. Need to inject it here
if present_key_value_state is not None:
query_length = present_key_value_state[0].shape[2]
else:
query_length = None
cross_attention_outputs = self.layer[1](
hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
position_bias=encoder_decoder_position_bias,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
query_length=query_length,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = cross_attention_outputs[0]
# clamp inf values to enable fp16 training
if (
hidden_states.dtype == torch.float16
and torch.isinf(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(
hidden_states, min=-clamp_value, max=clamp_value
)
# Combine self attn and cross attn key value states
if present_key_value_state is not None:
present_key_value_state = (
present_key_value_state + cross_attention_outputs[1]
)
# Keep cross-attention outputs and relative position weights
attention_outputs = attention_outputs + cross_attention_outputs[2:]
# Apply Feed Forward layer
hidden_states = self.layer[-1](hidden_states)
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(
hidden_states, min=-clamp_value, max=clamp_value
)
outputs = (hidden_states,)
if use_cache:
outputs = outputs + (present_key_value_state,) + attention_outputs
else:
outputs = outputs + attention_outputs
return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
class T5PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = T5Config
load_tf_weights = load_tf_weights_in_t5
base_model_prefix = "transformer"
is_parallelizable = True
supports_gradient_checkpointing = True
_no_split_modules = ["T5Block"]
@property
def dummy_inputs(self):
input_ids = torch.tensor(DUMMY_INPUTS)
input_mask = torch.tensor(DUMMY_MASK)
dummy_inputs = {
"decoder_input_ids": input_ids,
"input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
return dummy_inputs
def _init_weights(self, module):
"""Initialize the weights"""
factor = (
self.config.initializer_factor
) # Used for testing weights initialization
if isinstance(module, T5LayerNorm):
module.weight.data.fill_(factor * 1.0)
elif isinstance(module, (T5Model, T5ForConditionalGeneration, T5EncoderModel)):
# Mesh TensorFlow embeddings initialization
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
elif isinstance(module, T5DenseActDense):
# Mesh TensorFlow FF initialization
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
module.wi.weight.data.normal_(
mean=0.0, std=factor * ((self.config.d_model) ** -0.5)
)
if hasattr(module.wi, "bias") and module.wi.bias is not None:
module.wi.bias.data.zero_()
module.wo.weight.data.normal_(
mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)
)
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, T5DenseGatedActDense):
module.wi_0.weight.data.normal_(
mean=0.0, std=factor * ((self.config.d_model) ** -0.5)
)
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
module.wi_0.bias.data.zero_()
module.wi_1.weight.data.normal_(
mean=0.0, std=factor * ((self.config.d_model) ** -0.5)
)
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
module.wi_1.bias.data.zero_()
module.wo.weight.data.normal_(
mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)
)
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, T5Attention):
# Mesh TensorFlow attention initialization to avoid scaling before softmax
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
d_model = self.config.d_model
key_value_proj_dim = self.config.d_kv
n_heads = self.config.num_heads
module.q.weight.data.normal_(
mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)
)
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.o.weight.data.normal_(
mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)
)
if module.has_relative_attention_bias:
module.relative_attention_bias.weight.data.normal_(
mean=0.0, std=factor * ((d_model) ** -0.5)
)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (T5Attention, T5Stack)):
module.gradient_checkpointing = value
def _shift_right(self, input_ids):
decoder_start_token_id = self.config.decoder_start_token_id
pad_token_id = self.config.pad_token_id
assert decoder_start_token_id is not None, (
"self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id."
" See T5 docs for more information"
)
# shift inputs to the right
if is_torch_fx_proxy(input_ids):
# Item assignment is not supported natively for proxies.
shifted_input_ids = torch.full(
input_ids.shape[:-1] + (1,), decoder_start_token_id
)
shifted_input_ids = torch.cat(
[shifted_input_ids, input_ids[..., :-1]], dim=-1
)
else:
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
shifted_input_ids[..., 0] = decoder_start_token_id
assert (
pad_token_id is not None
), "self.model.config.pad_token_id has to be defined."
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
class T5Stack(T5PreTrainedModel):
def __init__(self, config, embed_tokens=None):
super().__init__(config)
self.embed_tokens = embed_tokens
self.is_decoder = config.is_decoder
self.block = nn.ModuleList(
[
T5Block(config, has_relative_attention_bias=bool(i == 0))
for i in range(config.num_layers)
]
)
self.final_layer_norm = T5LayerNorm(
config.d_model, eps=config.layer_norm_epsilon
)
self.dropout = nn.Dropout(config.dropout_rate)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
self.gradient_checkpointing = False
@add_start_docstrings(PARALLELIZE_DOCSTRING)
def parallelize(self, device_map=None):
# Check validity of device_map
self.device_map = (
get_device_map(len(self.block), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.block))
self.model_parallel = True
self.first_device = (
"cpu"
if "cpu" in self.device_map.keys()
else "cuda:" + str(min(self.device_map.keys()))
)
self.last_device = "cuda:" + str(max(self.device_map.keys()))
# Load onto devices
for k, v in self.device_map.items():
for layer in v:
cuda_device = "cuda:" + str(k)
self.block[layer] = self.block[layer].to(cuda_device)
# Set embed_tokens to first layer
self.embed_tokens = self.embed_tokens.to(self.first_device)
# Set final layer norm to last device
self.final_layer_norm = self.final_layer_norm.to(self.last_device)
@add_start_docstrings(PARALLELIZE_DOCSTRING)
def deparallelize(self):
self.model_parallel = False
self.device_map = None
self.first_device = "cpu"
self.last_device = "cpu"
for i in range(len(self.block)):
self.block[i] = self.block[i].to("cpu")
self.embed_tokens = self.embed_tokens.to("cpu")
self.final_layer_norm = self.final_layer_norm.to("cpu")
torch.cuda.empty_cache()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, new_embeddings):
self.embed_tokens = new_embeddings
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
inputs_embeds=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
# Model parallel
if self.model_parallel:
torch.cuda.set_device(self.first_device)
self.embed_tokens = self.embed_tokens.to(self.first_device)
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if input_ids is not None and inputs_embeds is not None:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(
f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds"
)
if inputs_embeds is None:
assert (
self.embed_tokens is not None
), "You have to initialize the model with valid token embeddings"
inputs_embeds = self.embed_tokens(input_ids)
batch_size, seq_length = input_shape
# required mask seq length can be calculated via length of past
mask_seq_length = (
past_key_values[0][0].shape[2] + seq_length
if past_key_values is not None
else seq_length
)
if use_cache is True:
assert (
self.is_decoder
), f"`use_cache` can only be set to `True` if {self} is used as a decoder"
if attention_mask is None:
attention_mask = torch.ones(
batch_size, mask_seq_length, device=inputs_embeds.device
)
if (
self.is_decoder
and encoder_attention_mask is None
and encoder_hidden_states is not None
):
encoder_seq_length = encoder_hidden_states.shape[1]
encoder_attention_mask = torch.ones(
batch_size,
encoder_seq_length,
device=inputs_embeds.device,
dtype=torch.long,
)
# initialize past_key_values with `None` if past does not exist
if past_key_values is None:
past_key_values = [None] * len(self.block)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask = self.get_extended_attention_mask(
attention_mask, input_shape
)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.is_decoder and encoder_hidden_states is not None:
(
encoder_batch_size,
encoder_sequence_length,
_,
) = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(
encoder_hidden_shape, device=inputs_embeds.device
)
encoder_extended_attention_mask = self.invert_attention_mask(
encoder_attention_mask
)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
cross_attn_head_mask = self.get_head_mask(
cross_attn_head_mask, self.config.num_layers
)
present_key_value_states = () if use_cache else None
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
position_bias = None
encoder_decoder_position_bias = None
hidden_states = self.dropout(inputs_embeds)
for i, (layer_module, past_key_value) in enumerate(
zip(self.block, past_key_values)
):
layer_head_mask = head_mask[i]
cross_attn_layer_head_mask = cross_attn_head_mask[i]
# Model parallel
if self.model_parallel:
torch.cuda.set_device(hidden_states.device)
# Ensure that attention_mask is always on the same device as hidden_states
if attention_mask is not None:
attention_mask = attention_mask.to(hidden_states.device)
if position_bias is not None:
position_bias = position_bias.to(hidden_states.device)
if encoder_hidden_states is not None:
encoder_hidden_states = encoder_hidden_states.to(
hidden_states.device
)
if encoder_extended_attention_mask is not None:
encoder_extended_attention_mask = (
encoder_extended_attention_mask.to(hidden_states.device)
)
if encoder_decoder_position_bias is not None:
encoder_decoder_position_bias = encoder_decoder_position_bias.to(
hidden_states.device
)
if layer_head_mask is not None:
layer_head_mask = layer_head_mask.to(hidden_states.device)
if cross_attn_layer_head_mask is not None:
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(
hidden_states.device
)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
return tuple(module(*inputs, use_cache, output_attentions))
return custom_forward
layer_outputs = checkpoint(
create_custom_forward(layer_module),
hidden_states,
extended_attention_mask,
position_bias,
encoder_hidden_states,
encoder_extended_attention_mask,
encoder_decoder_position_bias,
layer_head_mask,
cross_attn_layer_head_mask,
None, # past_key_value is always None with gradient checkpointing
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask=extended_attention_mask,
position_bias=position_bias,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
encoder_decoder_position_bias=encoder_decoder_position_bias,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
# layer_outputs is a tuple with:
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
if use_cache is False:
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
hidden_states, present_key_value_state = layer_outputs[:2]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
position_bias = layer_outputs[2]
if self.is_decoder and encoder_hidden_states is not None:
encoder_decoder_position_bias = layer_outputs[
4 if output_attentions else 3
]
# append next layer key value states
if use_cache:
present_key_value_states = present_key_value_states + (
present_key_value_state,
)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[3],)
if self.is_decoder:
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
# Model Parallel: If it's the last layer for that device, put things on the next device
if self.model_parallel:
for k, v in self.device_map.items():
if i == v[-1] and "cuda:" + str(k) != self.last_device:
hidden_states = hidden_states.to("cuda:" + str(k + 1))
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
present_key_value_states,
all_hidden_states,
all_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_value_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
T5_START_DOCSTRING = r"""
The T5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a
text-to-text denoising generative setting.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`T5Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
T5_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you
should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
[What are input IDs?](../glossary#input-ids)
To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5
Training](./t5#training).
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
`[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
T5_ENCODER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you
should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
__HEAD_MASK_WARNING_MSG = """
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently,
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions.
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers,
num_heads)`.
"""
@add_start_docstrings(
"The bare T5 Model transformer outputting raw hidden-states without any specific head on top.",
T5_START_DOCSTRING,
)
class T5Model(T5PreTrainedModel):
_keys_to_ignore_on_load_missing = [
r"encoder.embed_tokens.weight",
r"decoder.embed_tokens.weight",
]
_keys_to_ignore_on_load_unexpected = [
r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
]
def __init__(self, config: T5Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = T5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = T5Stack(decoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
@add_start_docstrings(PARALLELIZE_DOCSTRING)
def parallelize(self, device_map=None):
self.device_map = (
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.encoder.block))
self.encoder.parallelize(self.device_map)
self.decoder.parallelize(self.device_map)
self.model_parallel = True
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
def deparallelize(self):
self.encoder.deparallelize()
self.decoder.deparallelize()
self.encoder = self.encoder.to("cpu")
self.decoder = self.decoder.to("cpu")
self.model_parallel = False
self.device_map = None
torch.cuda.empty_cache()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
@replace_return_docstrings(
output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import T5Tokenizer, T5Model
>>> tokenizer = T5Tokenizer.from_pretrained("t5-small")
>>> model = T5Model.from_pretrained("t5-small")
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model.
>>> # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg.
>>> decoder_input_ids = model._shift_right(decoder_input_ids)
>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
hidden_states = hidden_states.to(self.decoder.first_device)
if decoder_input_ids is not None:
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
if attention_mask is not None:
attention_mask = attention_mask.to(self.decoder.first_device)
if decoder_attention_mask is not None:
decoder_attention_mask = decoder_attention_mask.to(
self.decoder.first_device
)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""T5 Model with a `language modeling` head on top.""", T5_START_DOCSTRING
)
class T5ForConditionalGeneration(T5PreTrainedModel):
_keys_to_ignore_on_load_missing = [
r"encoder.embed_tokens.weight",
r"decoder.embed_tokens.weight",
r"lm_head.weight",
]
_keys_to_ignore_on_load_unexpected = [
r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
]
def __init__(self, config: T5Config):
super().__init__(config)
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = T5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = T5Stack(decoder_config, self.shared)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
@add_start_docstrings(PARALLELIZE_DOCSTRING)
def parallelize(self, device_map=None):
self.device_map = (
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.encoder.block))
self.encoder.parallelize(self.device_map)
self.decoder.parallelize(self.device_map)
self.lm_head = self.lm_head.to(self.decoder.first_device)
self.model_parallel = True
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
def deparallelize(self):
self.encoder.deparallelize()
self.decoder.deparallelize()
self.encoder = self.encoder.to("cpu")
self.decoder = self.decoder.to("cpu")
self.lm_head = self.lm_head.to("cpu")
self.model_parallel = False
self.device_map = None
torch.cuda.empty_cache()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_output_embeddings(self):
return self.lm_head
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
@replace_return_docstrings(
output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
reduction: Optional[str] = "mean",
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
labels in `[0, ..., config.vocab_size]`
Returns:
Examples:
```python
>>> from transformers import T5Tokenizer, T5ForConditionalGeneration
>>> tokenizer = T5Tokenizer.from_pretrained("t5-small")
>>> model = T5ForConditionalGeneration.from_pretrained("t5-small")
>>> # training
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
>>> outputs = model(input_ids=input_ids, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits
>>> # inference
>>> input_ids = tokenizer(
... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> outputs = model.generate(input_ids)
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
>>> # studies have shown that owning a dog is good for you.
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
# Convert encoder inputs in embeddings if needed
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
if (
labels is not None
and decoder_input_ids is None
and decoder_inputs_embeds is None
):
# get decoder inputs from shifting lm labels to the right
decoder_input_ids = self._shift_right(labels)
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
hidden_states = hidden_states.to(self.decoder.first_device)
if decoder_input_ids is not None:
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
if attention_mask is not None:
attention_mask = attention_mask.to(self.decoder.first_device)
if decoder_attention_mask is not None:
decoder_attention_mask = decoder_attention_mask.to(
self.decoder.first_device
)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = decoder_outputs[0]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.encoder.first_device)
self.lm_head = self.lm_head.to(self.encoder.first_device)
sequence_output = sequence_output.to(self.lm_head.weight.device)
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.model_dim**-0.5)
lm_logits = self.lm_head(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-100, reduction=reduction)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
if reduction == "none":
loss = loss.view(lm_logits.size(0), -1).sum(1)
if not return_dict:
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
loss=loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past is used
if past is not None:
input_ids = input_ids[:, -1:]
return {
"decoder_input_ids": input_ids,
"past_key_values": past,
"encoder_outputs": encoder_outputs,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache,
}
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return self._shift_right(labels)
def _reorder_cache(self, past, beam_idx):
# if decoder past is not included in output
# speedy decoding is disabled and no need to reorder
if past is None:
logger.warning(
"You might want to consider setting `use_cache=True` to speed up decoding"
)
return past
reordered_decoder_past = ()
for layer_past_states in past:
# get the correct batch idx from layer past batch dim
# batch dim of `past` is at 2nd position
reordered_layer_past_states = ()
for layer_past_state in layer_past_states:
# need to set correct `past` for each of the four key / value states
reordered_layer_past_states = reordered_layer_past_states + (
layer_past_state.index_select(
0, beam_idx.to(layer_past_state.device)
),
)
assert reordered_layer_past_states[0].shape == layer_past_states[0].shape
assert len(reordered_layer_past_states) == len(layer_past_states)
reordered_decoder_past = reordered_decoder_past + (
reordered_layer_past_states,
)
return reordered_decoder_past
@add_start_docstrings(
"The bare T5 Model transformer outputting encoder's raw hidden-states without any specific head on top.",
T5_START_DOCSTRING,
)
class T5EncoderModel(T5PreTrainedModel):
authorized_missing_keys = [
r"encoder.embed_tokens.weight",
]
def __init__(self, config: T5Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = T5Stack(encoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
@add_start_docstrings(PARALLELIZE_DOCSTRING)
def parallelize(self, device_map=None):
self.device_map = (
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.encoder.block))
self.encoder.parallelize(self.device_map)
self.model_parallel = True
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
def deparallelize(self):
self.encoder.deparallelize()
self.encoder = self.encoder.to("cpu")
self.model_parallel = False
self.device_map = None
torch.cuda.empty_cache()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
def get_encoder(self):
return self.encoder
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads)
@add_start_docstrings_to_model_forward(T5_ENCODER_INPUTS_DOCSTRING)
@replace_return_docstrings(
output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import T5Tokenizer, T5EncoderModel
>>> tokenizer = T5Tokenizer.from_pretrained("t5-small")
>>> model = T5EncoderModel.from_pretrained("t5-small")
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> outputs = model(input_ids=input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return encoder_outputs
|
# coding=utf-8
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch OPT model."""
BaseModelOutputWithPast,
CausalLMOutputWithPast,
)
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/opt-350m"
_CONFIG_FOR_DOC = "OPTConfig"
_TOKENIZER_FOR_DOC = "GPT2Tokenizer"
# Base model docstring
_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024]
# SequenceClassification docstring
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "ArthurZ/opt-350m-dummy-sc"
_SEQ_CLASS_EXPECTED_LOSS = 1.71
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_0'"
# QuestionAnswering docstring
_QA_EXPECTED_OUTPUT = "'a nice puppet'"
_QA_EXPECTED_LOSS = 7.41
_QA_TARGET_START_INDEX = 14
_QA_TARGET_END_INDEX = 15
OPT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/opt-125m",
"facebook/opt-350m",
"facebook/opt-1.3b",
"facebook/opt-2.7b",
"facebook/opt-6.7b",
"facebook/opt-13b",
"facebook/opt-30b",
# See all OPT models at https://huggingface.co/models?filter=opt
]
def _make_causal_mask(
input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0
):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min))
mask_cond = torch.arange(mask.size(-1))
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat(
[torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1
)
return mask[None, None, :, :].expand(
bsz, 1, tgt_len, tgt_len + past_key_values_length
)
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.finfo(dtype).min
)
class OPTLearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int):
# OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim)
def forward(
self, attention_mask: torch.LongTensor, past_key_values_length: int = 0
):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
attention_mask = attention_mask.long()
# create positions depending on attention_mask
positions = (
torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask
).long() - 1
# cut positions if `past_key_values_length` is > 0
positions = positions[:, past_key_values_length:]
return super().forward(positions + self.offset)
class OPTAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return (
tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
.transpose(1, 2)
.contiguous()
)
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = (
attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
+ attention_mask
)
attn_weights = torch.max(
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
# upcast to fp32 if the weights are in fp16. Please see https://github.com/huggingface/transformers/pull/17437
if attn_weights.dtype == torch.float16:
attn_weights = nn.functional.softmax(
attn_weights, dim=-1, dtype=torch.float32
).to(torch.float16)
else:
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(
bsz, self.num_heads, tgt_len, src_len
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(
bsz, self.num_heads, tgt_len, src_len
)
attn_weights = attn_weights_reshaped.view(
bsz * self.num_heads, tgt_len, src_len
)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(
attn_weights, p=self.dropout, training=self.training
)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned aross GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class OPTDecoderLayer(nn.Module):
def __init__(self, config: OPTConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = OPTAttention(
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.do_layer_norm_before = config.do_layer_norm_before
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim)
self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
) -> Tuple[
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`, *optional*): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(
hidden_states, p=self.dropout, training=self.training
)
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Fully Connected
hidden_states_shape = hidden_states.shape
hidden_states = hidden_states.reshape(-1, hidden_states.size(-1))
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(
hidden_states, p=self.dropout, training=self.training
)
hidden_states = (residual + hidden_states).view(hidden_states_shape)
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
OPT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`OPTConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare OPT Model outputting raw hidden-states without any specific head on top.",
OPT_START_DOCSTRING,
)
class OPTPreTrainedModel(PreTrainedModel):
config_class = OPTConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["OPTDecoderLayer"]
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (OPTDecoder)):
module.gradient_checkpointing = value
OPT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`GPT2Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`OPTTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class OPTDecoder(OPTPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OPTDecoderLayer`]
Args:
config: OPTConfig
"""
def __init__(self, config: OPTConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(
config.vocab_size, config.word_embed_proj_dim, self.padding_idx
)
self.embed_positions = OPTLearnedPositionalEmbedding(
config.max_position_embeddings, config.hidden_size
)
if config.word_embed_proj_dim != config.hidden_size:
self.project_out = nn.Linear(
config.hidden_size, config.word_embed_proj_dim, bias=False
)
else:
self.project_out = None
if config.word_embed_proj_dim != config.hidden_size:
self.project_in = nn.Linear(
config.word_embed_proj_dim, config.hidden_size, bias=False
)
else:
self.project_in = None
# Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
# with checkpoints that have been fine-tuned before transformers v4.20.1
# see https://github.com/facebookresearch/metaseq/pull/164
if config.do_layer_norm_before and not config._remove_final_layer_norm:
self.final_layer_norm = nn.LayerNorm(config.hidden_size)
else:
self.final_layer_norm = None
self.layers = nn.ModuleList(
[OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]
)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
def _prepare_decoder_attention_mask(
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
past_key_values_length=past_key_values_length,
).to(inputs_embeds.device)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
).to(inputs_embeds.device)
combined_attention_mask = (
expanded_attn_mask
if combined_attention_mask is None
else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
query_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`OPTTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError(
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
)
past_key_values_length = (
past_key_values[0][0].shape[2] if past_key_values is not None else 0
)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if query_embeds is not None:
inputs_embeds = torch.cat([query_embeds, inputs_embeds], dim=1)
input_shape = inputs_embeds.size()[:-1]
# embed positions
if attention_mask is None:
attention_mask = torch.ones(
inputs_embeds.shape[:2], dtype=torch.bool, device=inputs_embeds.device
)
pos_embeds = self.embed_positions(attention_mask, past_key_values_length)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
if self.project_in is not None:
inputs_embeds = self.project_in(inputs_embeds)
hidden_states = inputs_embeds + pos_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
# check if head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask], ["head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop):
continue
past_key_value = (
past_key_values[idx] if past_key_values is not None else None
)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, None)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
head_mask[idx] if head_mask is not None else None,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if self.final_layer_norm is not None:
hidden_states = self.final_layer_norm(hidden_states)
if self.project_out is not None:
hidden_states = self.project_out(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
@add_start_docstrings(
"The bare OPT Model outputting raw hidden-states without any specific head on top.",
OPT_START_DOCSTRING,
)
class OPTModel(OPTPreTrainedModel):
def __init__(self, config: OPTConfig):
super().__init__(config)
self.decoder = OPTDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.decoder.embed_tokens
def set_input_embeddings(self, value):
self.decoder.embed_tokens = value
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPast,
config_class=_CONFIG_FOR_DOC,
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
query_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
query_embeds=query_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs
return BaseModelOutputWithPast(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
)
class OPTForCausalLM(OPTPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = OPTModel(config)
# the lm_head weight is automatically tied to the embed tokens weight
self.lm_head = nn.Linear(
config.word_embed_proj_dim, config.vocab_size, bias=False
)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model.decoder = decoder
def get_decoder(self):
return self.model.decoder
@replace_return_docstrings(
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
query_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
reduction: Optional[str] = "mean",
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`OPTTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
Example:
```python
>>> from transformers import GPT2Tokenizer, OPTForCausalLM
>>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m")
>>> tokenizer = GPT2Tokenizer.from_pretrained("facebook/opt-350m")
>>> prompt = "Hey, are you consciours? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
```"""
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
query_embeds=query_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(outputs[0]).contiguous()
loss = None
if labels is not None:
logits = logits[:, -labels.size(1) :, :]
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(reduction=reduction)
loss = loss_fct(
shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1)
)
if reduction == "none":
loss = loss.view(shift_logits.size(0), -1).sum(1)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids=None,
query_embeds=None,
past=None,
attention_mask=None,
use_cache=None,
**kwargs,
):
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
if input_ids is not None:
attention_mask = input_ids.new_ones(input_ids.shape)
if past:
input_ids = input_ids[:, -1:]
query_embeds = None
# first step, decoder_cached_states are empty
return {
"input_ids": input_ids,
"query_embeds": query_embeds,
"attention_mask": attention_mask,
"past_key_values": past,
"use_cache": use_cache,
}
@staticmethod
def _reorder_cache(past, beam_idx):
reordered_past = ()
for layer_past in past:
reordered_past += (
tuple(
past_state.index_select(0, beam_idx) for past_state in layer_past
),
)
return reordered_past
|
"""
* Copyright (c) 2023, salesforce.com, inc.
* All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
* By Junnan Li
* Based on huggingface code base
* https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
"""
ModelOutput,
)
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
NextSentencePredictorOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
PreTrainedModel,
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
prune_linear_layer,
)
logger = logging.get_logger(__name__)
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word and position embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
)
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size
)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))
)
self.position_embedding_type = getattr(
config, "position_embedding_type", "absolute"
)
self.config = config
def forward(
self,
input_ids=None,
position_ids=None,
query_embeds=None,
past_key_values_length=0,
):
if input_ids is not None:
seq_length = input_ids.size()[1]
else:
seq_length = 0
if position_ids is None:
position_ids = self.position_ids[
:, past_key_values_length : seq_length + past_key_values_length
].clone()
if input_ids is not None:
embeddings = self.word_embeddings(input_ids)
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings = embeddings + position_embeddings
if query_embeds is not None:
embeddings = torch.cat((query_embeds, embeddings), dim=1)
else:
embeddings = query_embeds
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BertSelfAttention(nn.Module):
def __init__(self, config, is_cross_attention):
super().__init__()
self.config = config
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
config, "embedding_size"
):
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
if is_cross_attention:
self.key = nn.Linear(config.encoder_width, self.all_head_size)
self.value = nn.Linear(config.encoder_width, self.all_head_size)
else:
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = getattr(
config, "position_embedding_type", "absolute"
)
if (
self.position_embedding_type == "relative_key"
or self.position_embedding_type == "relative_key_query"
):
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(
2 * config.max_position_embeddings - 1, self.attention_head_size
)
self.save_attention = False
def save_attn_gradients(self, attn_gradients):
self.attn_gradients = attn_gradients
def get_attn_gradients(self):
return self.attn_gradients
def save_attention_map(self, attention_map):
self.attention_map = attention_map
def get_attention_map(self):
return self.attention_map
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (
self.num_attention_heads,
self.attention_head_size,
)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
mixed_query_layer = self.query(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if (
self.position_embedding_type == "relative_key"
or self.position_embedding_type == "relative_key_query"
):
seq_length = hidden_states.size()[1]
position_ids_l = torch.arange(
seq_length, dtype=torch.long, device=hidden_states.device
).view(-1, 1)
position_ids_r = torch.arange(
seq_length, dtype=torch.long, device=hidden_states.device
).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(
distance + self.max_position_embeddings - 1
)
positional_embedding = positional_embedding.to(
dtype=query_layer.dtype
) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum(
"bhld,lrd->bhlr", query_layer, positional_embedding
)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum(
"bhld,lrd->bhlr", query_layer, positional_embedding
)
relative_position_scores_key = torch.einsum(
"bhrd,lrd->bhlr", key_layer, positional_embedding
)
attention_scores = (
attention_scores
+ relative_position_scores_query
+ relative_position_scores_key
)
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
if is_cross_attention and self.save_attention:
self.save_attention_map(attention_probs)
attention_probs.register_hook(self.save_attn_gradients)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs_dropped = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs_dropped = attention_probs_dropped * head_mask
context_layer = torch.matmul(attention_probs_dropped, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (
(context_layer, attention_probs) if output_attentions else (context_layer,)
)
outputs = outputs + (past_key_value,)
return outputs
class BertSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertAttention(nn.Module):
def __init__(self, config, is_cross_attention=False):
super().__init__()
self.self = BertSelfAttention(config, is_cross_attention)
self.output = BertSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads,
self.self.num_attention_heads,
self.self.attention_head_size,
self.pruned_heads,
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = (
self.self.attention_head_size * self.self.num_attention_heads
)
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[
1:
] # add attentions if we output them
return outputs
class BertIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BertOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertLayer(nn.Module):
def __init__(self, config, layer_num):
super().__init__()
self.config = config
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = BertAttention(config)
self.layer_num = layer_num
if (
self.config.add_cross_attention
and layer_num % self.config.cross_attention_freq == 0
):
self.crossattention = BertAttention(
config, is_cross_attention=self.config.add_cross_attention
)
self.has_cross_attention = True
else:
self.has_cross_attention = False
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
self.intermediate_query = BertIntermediate(config)
self.output_query = BertOutput(config)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
query_length=0,
):
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = (
past_key_value[:2] if past_key_value is not None else None
)
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
if query_length > 0:
query_attention_output = attention_output[:, :query_length, :]
if self.has_cross_attention:
assert (
encoder_hidden_states is not None
), "encoder_hidden_states must be given for cross-attention layers"
cross_attention_outputs = self.crossattention(
query_attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
output_attentions=output_attentions,
)
query_attention_output = cross_attention_outputs[0]
outputs = (
outputs + cross_attention_outputs[1:-1]
) # add cross attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk_query,
self.chunk_size_feed_forward,
self.seq_len_dim,
query_attention_output,
)
if attention_output.shape[1] > query_length:
layer_output_text = apply_chunking_to_forward(
self.feed_forward_chunk,
self.chunk_size_feed_forward,
self.seq_len_dim,
attention_output[:, query_length:, :],
)
layer_output = torch.cat([layer_output, layer_output_text], dim=1)
else:
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk,
self.chunk_size_feed_forward,
self.seq_len_dim,
attention_output,
)
outputs = (layer_output,) + outputs
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
def feed_forward_chunk_query(self, attention_output):
intermediate_output = self.intermediate_query(attention_output)
layer_output = self.output_query(intermediate_output, attention_output)
return layer_output
class BertEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList(
[BertLayer(config, i) for i in range(config.num_hidden_layers)]
)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
query_length=0,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = (
() if output_attentions and self.config.add_cross_attention else None
)
next_decoder_cache = () if use_cache else None
for i in range(self.config.num_hidden_layers):
layer_module = self.layer[i]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if getattr(self.config, "gradient_checkpointing", False) and self.training:
if use_cache:
logger.warn(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
return module(
*inputs, past_key_value, output_attentions, query_length
)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
query_length,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
class BertPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class BertLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
class BertOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BertLMPredictionHead(config)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class BertPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BertConfig
base_model_prefix = "bert"
_keys_to_ignore_on_load_missing = [r"position_ids"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
class BertModel(BertPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
input to the forward pass.
"""
def __init__(self, config, add_pooling_layer=False):
super().__init__(config)
self.config = config
self.embeddings = BertEmbeddings(config)
self.encoder = BertEncoder(config)
self.pooler = BertPooler(config) if add_pooling_layer else None
self.init_weights()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def get_extended_attention_mask(
self,
attention_mask: Tensor,
input_shape: Tuple[int],
device: device,
is_decoder: bool,
has_query: bool = False,
) -> Tensor:
"""
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
Arguments:
attention_mask (:obj:`torch.Tensor`):
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
input_shape (:obj:`Tuple[int]`):
The shape of the input to the model.
device: (:obj:`torch.device`):
The device of the input to the model.
Returns:
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
"""
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.dim() == 2:
# Provided a padding mask of dimensions [batch_size, seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
if is_decoder:
batch_size, seq_length = input_shape
seq_ids = torch.arange(seq_length, device=device)
causal_mask = (
seq_ids[None, None, :].repeat(batch_size, seq_length, 1)
<= seq_ids[None, :, None]
)
# add a prefix ones mask to the causal mask
# causal and attention masks must have same type with pytorch version < 1.3
causal_mask = causal_mask.to(attention_mask.dtype)
if causal_mask.shape[1] < attention_mask.shape[1]:
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
if has_query: # UniLM style attention mask
causal_mask = torch.cat(
[
torch.zeros(
(batch_size, prefix_seq_len, seq_length),
device=device,
dtype=causal_mask.dtype,
),
causal_mask,
],
axis=1,
)
causal_mask = torch.cat(
[
torch.ones(
(batch_size, causal_mask.shape[1], prefix_seq_len),
device=device,
dtype=causal_mask.dtype,
),
causal_mask,
],
axis=-1,
)
extended_attention_mask = (
causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
)
else:
extended_attention_mask = attention_mask[:, None, None, :]
else:
raise ValueError(
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
input_shape, attention_mask.shape
)
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(
dtype=self.dtype
) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
return extended_attention_mask
def forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
head_mask=None,
query_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
is_decoder=False,
):
r"""
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
use_cache (:obj:`bool`, `optional`):
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
decoding (see :obj:`past_key_values`).
"""
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# use_cache = use_cache if use_cache is not None else self.config.use_cache
if input_ids is None:
assert (
query_embeds is not None
), "You have to specify query_embeds when input_ids is None"
# past_key_values_length
past_key_values_length = (
past_key_values[0][0].shape[2] - self.config.query_length
if past_key_values is not None
else 0
)
query_length = query_embeds.shape[1] if query_embeds is not None else 0
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
query_embeds=query_embeds,
past_key_values_length=past_key_values_length,
)
input_shape = embedding_output.size()[:-1]
batch_size, seq_length = input_shape
device = embedding_output.device
if attention_mask is None:
attention_mask = torch.ones(
((batch_size, seq_length + past_key_values_length)), device=device
)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if is_decoder:
extended_attention_mask = self.get_extended_attention_mask(
attention_mask,
input_ids.shape,
device,
is_decoder,
has_query=(query_embeds is not None),
)
else:
extended_attention_mask = self.get_extended_attention_mask(
attention_mask, input_shape, device, is_decoder
)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_hidden_states is not None:
if type(encoder_hidden_states) == list:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[
0
].size()
else:
(
encoder_batch_size,
encoder_sequence_length,
_,
) = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if type(encoder_attention_mask) == list:
encoder_extended_attention_mask = [
self.invert_attention_mask(mask) for mask in encoder_attention_mask
]
elif encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(
encoder_attention_mask
)
else:
encoder_extended_attention_mask = self.invert_attention_mask(
encoder_attention_mask
)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
query_length=query_length,
)
sequence_output = encoder_outputs[0]
pooled_output = (
self.pooler(sequence_output) if self.pooler is not None else None
)
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
class BertLMHeadModel(BertPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
self.bert = BertModel(config, add_pooling_layer=False)
self.cls = BertOnlyMLMHead(config)
self.init_weights()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
def forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
head_mask=None,
query_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
labels=None,
past_key_values=None,
use_cache=True,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
return_logits=False,
is_decoder=True,
reduction="mean",
):
r"""
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
use_cache (:obj:`bool`, `optional`):
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
decoding (see :obj:`past_key_values`).
Returns:
Example::
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
>>> import torch
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
>>> config = BertConfig.from_pretrained("bert-base-cased")
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if labels is not None:
use_cache = False
if past_key_values is not None:
query_embeds = None
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
query_embeds=query_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
is_decoder=is_decoder,
)
sequence_output = outputs[0]
if query_embeds is not None:
sequence_output = outputs[0][:, query_embeds.shape[1] :, :]
prediction_scores = self.cls(sequence_output)
if return_logits:
return prediction_scores[:, :-1, :].contiguous()
lm_loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
lm_loss = loss_fct(
shifted_prediction_scores.view(-1, self.config.vocab_size),
labels.view(-1),
)
if reduction == "none":
lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(
self, input_ids, query_embeds, past=None, attention_mask=None, **model_kwargs
):
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_ids.shape)
query_mask = input_ids.new_ones(query_embeds.shape[:-1])
attention_mask = torch.cat([query_mask, attention_mask], dim=-1)
# cut decoder_input_ids if past is used
if past is not None:
input_ids = input_ids[:, -1:]
return {
"input_ids": input_ids,
"query_embeds": query_embeds,
"attention_mask": attention_mask,
"past_key_values": past,
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
"is_decoder": True,
}
def _reorder_cache(self, past, beam_idx):
reordered_past = ()
for layer_past in past:
reordered_past += (
tuple(
past_state.index_select(0, beam_idx) for past_state in layer_past
),
)
return reordered_past
class BertForMaskedLM(BertPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
self.bert = BertModel(config, add_pooling_layer=False)
self.cls = BertOnlyMLMHead(config)
self.init_weights()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
def forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
head_mask=None,
query_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
return_logits=False,
is_decoder=False,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
query_embeds=query_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
is_decoder=is_decoder,
)
if query_embeds is not None:
sequence_output = outputs[0][:, query_embeds.shape[1] :, :]
prediction_scores = self.cls(sequence_output)
if return_logits:
return prediction_scores
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return (
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
)
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
"""
Copyright (c) 2023, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class Blip2Base(BaseModel):
@classmethod
def init_tokenizer(cls):
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
tokenizer.add_special_tokens({"bos_token": "[DEC]"})
return tokenizer
@classmethod
def init_Qformer(cls, num_query_token, vision_width):
encoder_config = BertConfig.from_pretrained("bert-base-uncased")
encoder_config.encoder_width = vision_width
# insert cross-attention layer every other block
encoder_config.add_cross_attention = True
encoder_config.cross_attention_freq = 2
encoder_config.query_length = num_query_token
Qformer = BertLMHeadModel.from_pretrained(
"bert-base-uncased", config=encoder_config
)
query_tokens = nn.Parameter(
torch.zeros(1, num_query_token, encoder_config.hidden_size)
)
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
return Qformer, query_tokens
@classmethod
def init_vision_encoder(
cls, img_size, drop_path_rate, use_grad_checkpoint, precision
):
visual_encoder = create_eva_vit_g(
img_size, drop_path_rate, use_grad_checkpoint, precision
)
ln_vision = LayerNorm(visual_encoder.num_features)
return visual_encoder, ln_vision
def load_from_pretrained(self, url_or_filename):
if is_url(url_or_filename):
cached_file = download_cached_file(
url_or_filename, check_hash=False, progress=True
)
checkpoint = torch.load(cached_file, map_location="cpu")
elif os.path.isfile(url_or_filename):
checkpoint = torch.load(url_or_filename, map_location="cpu")
else:
raise RuntimeError("checkpoint url or path is invalid")
state_dict = checkpoint["model"]
msg = self.load_state_dict(state_dict, strict=False)
logging.info("Missing keys {}".format(msg.missing_keys))
logging.info("load checkpoint from %s" % url_or_filename)
return msg
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
def compute_sim_matrix(model, data_loader, **kwargs):
k_test = kwargs.pop("k_test")
metric_logger = MetricLogger(delimiter=" ")
header = "Evaluation:"
logging.info("Computing features for evaluation...")
start_time = time.time()
texts = data_loader.dataset.text
num_text = len(texts)
text_bs = 256
text_ids = []
text_embeds = []
text_atts = []
for i in range(0, num_text, text_bs):
text = texts[i : min(num_text, i + text_bs)]
text_input = model.tokenizer(
text,
padding="max_length",
truncation=True,
max_length=35,
return_tensors="pt",
).to(model.device)
text_feat = model.forward_text(text_input)
text_embed = F.normalize(model.text_proj(text_feat))
text_embeds.append(text_embed)
text_ids.append(text_input.input_ids)
text_atts.append(text_input.attention_mask)
text_embeds = torch.cat(text_embeds, dim=0)
text_ids = torch.cat(text_ids, dim=0)
text_atts = torch.cat(text_atts, dim=0)
vit_feats = []
image_embeds = []
for samples in data_loader:
image = samples["image"]
image = image.to(model.device)
image_feat, vit_feat = model.forward_image(image)
image_embed = model.vision_proj(image_feat)
image_embed = F.normalize(image_embed, dim=-1)
vit_feats.append(vit_feat.cpu())
image_embeds.append(image_embed)
vit_feats = torch.cat(vit_feats, dim=0)
image_embeds = torch.cat(image_embeds, dim=0)
sims_matrix = []
for image_embed in image_embeds:
sim_q2t = image_embed @ text_embeds.t()
sim_i2t, _ = sim_q2t.max(0)
sims_matrix.append(sim_i2t)
sims_matrix = torch.stack(sims_matrix, dim=0)
score_matrix_i2t = torch.full(
(len(data_loader.dataset.image), len(texts)), -100.0
).to(model.device)
num_tasks = dist_utils.get_world_size()
rank = dist_utils.get_rank()
step = sims_matrix.size(0) // num_tasks + 1
start = rank * step
end = min(sims_matrix.size(0), start + step)
for i, sims in enumerate(
metric_logger.log_every(sims_matrix[start:end], 50, header)
):
topk_sim, topk_idx = sims.topk(k=k_test, dim=0)
image_inputs = vit_feats[start + i].repeat(k_test, 1, 1).to(model.device)
score = model.compute_itm(
image_inputs=image_inputs,
text_ids=text_ids[topk_idx],
text_atts=text_atts[topk_idx],
).float()
score_matrix_i2t[start + i, topk_idx] = score + topk_sim
sims_matrix = sims_matrix.t()
score_matrix_t2i = torch.full(
(len(texts), len(data_loader.dataset.image)), -100.0
).to(model.device)
step = sims_matrix.size(0) // num_tasks + 1
start = rank * step
end = min(sims_matrix.size(0), start + step)
for i, sims in enumerate(
metric_logger.log_every(sims_matrix[start:end], 50, header)
):
topk_sim, topk_idx = sims.topk(k=k_test, dim=0)
image_inputs = vit_feats[topk_idx.cpu()].to(model.device)
score = model.compute_itm(
image_inputs=image_inputs,
text_ids=text_ids[start + i].repeat(k_test, 1),
text_atts=text_atts[start + i].repeat(k_test, 1),
).float()
score_matrix_t2i[start + i, topk_idx] = score + topk_sim
if dist_utils.is_dist_avail_and_initialized():
dist.barrier()
torch.distributed.all_reduce(
score_matrix_i2t, op=torch.distributed.ReduceOp.SUM
)
torch.distributed.all_reduce(
score_matrix_t2i, op=torch.distributed.ReduceOp.SUM
)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logging.info("Evaluation time {}".format(total_time_str))
return score_matrix_i2t.cpu().numpy(), score_matrix_t2i.cpu().numpy()
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Based on https://github.com/mlfoundations/open_clip
"""
@dataclass
class ClipOutputFeatures(ModelOutput):
"""
Data class of features from AlbefFeatureExtractor.
Args:
image_embeds: `torch.FloatTensor` of shape `(batch_size, 1, embed_dim)`, `optional`
image_features: `torch.FloatTensor` of shape `(batch_size, 1, feature_dim)`, `optional`
text_embeds: `torch.FloatTensor` of shape `(batch_size, 1, embed_dim)`, `optional`
text_features: `torch.FloatTensor` of shape `(batch_size, 1, feature_dim)`, `optional`
"""
image_embeds: Optional[torch.FloatTensor] = None
image_embeds_proj: Optional[torch.FloatTensor] = None
text_embeds: Optional[torch.FloatTensor] = None
text_embeds_proj: Optional[torch.FloatTensor] = None
@dataclass
class ClipOutput(ModelOutput):
intermediate_output: Optional[ClipOutputFeatures] = None
logit_scale_exp: Optional[torch.FloatTensor] = None
loss: Optional[torch.FloatTensor] = None
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Based on https://github.com/mlfoundations/open_clip
"""
_RN50 = dict(
openai="https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt",
cc12m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt",
)
_RN50_quickgelu = dict(
openai="https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt",
cc12m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt",
)
_RN101 = dict(
openai="https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt",
)
_RN101_quickgelu = dict(
openai="https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt",
)
_RN50x4 = dict(
openai="https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
)
_RN50x16 = dict(
openai="https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
)
_RN50x64 = dict(
openai="https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
)
_VITB32 = dict(
openai="https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
laion400m_e31="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt",
laion400m_e32="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt",
laion400m_avg="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_avg-8a00ab3c.pt",
)
_VITB32_quickgelu = dict(
openai="https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
laion400m_e31="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt",
laion400m_e32="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt",
laion400m_avg="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_avg-8a00ab3c.pt",
)
_VITB16 = dict(
openai="https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
)
_VITL14 = dict(
openai="https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
)
_VITL14_336 = dict(
openai="https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt"
)
_PRETRAINED = {
"RN50": _RN50,
"RN50-quickgelu": _RN50_quickgelu,
"RN101": _RN101,
"RN101-quickgelu": _RN101_quickgelu,
"RN50x4": _RN50x4,
"RN50x16": _RN50x16,
"ViT-B-32": _VITB32,
"ViT-B-32-quickgelu": _VITB32_quickgelu,
"ViT-B-16": _VITB16,
"ViT-L-14": _VITL14,
"ViT-L-14-336": _VITL14_336,
}
def list_pretrained(as_str: bool = False):
"""returns list of pretrained models
Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True
"""
return [
":".join([k, t]) if as_str else (k, t)
for k in _PRETRAINED.keys()
for t in _PRETRAINED[k].keys()
]
def list_pretrained_tag_models(tag: str):
"""return all models having the specified pretrain tag"""
models = []
for k in _PRETRAINED.keys():
if tag in _PRETRAINED[k]:
models.append(k)
return models
def list_pretrained_model_tags(model: str):
"""return all pretrain tags for the specified model architecture"""
tags = []
if model in _PRETRAINED:
tags.extend(_PRETRAINED[model].keys())
return tags
def get_pretrained_url(model: str, tag: str):
if model not in _PRETRAINED:
return ""
model_pretrained = _PRETRAINED[model]
tag = tag.lower()
if tag not in model_pretrained:
return ""
return model_pretrained[tag]
def download_pretrained(url: str, root: str = os.path.expanduser("~/.cache/clip")):
os.makedirs(root, exist_ok=True)
filename = os.path.basename(url)
if "openaipublic" in url:
expected_sha256 = url.split("/")[-2]
else:
expected_sha256 = ""
download_target = os.path.join(root, filename)
if os.path.exists(download_target) and not os.path.isfile(download_target):
raise RuntimeError(f"{download_target} exists and is not a regular file")
if os.path.isfile(download_target):
if expected_sha256:
if (
hashlib.sha256(open(download_target, "rb").read()).hexdigest()
== expected_sha256
):
return download_target
else:
warnings.warn(
f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file"
)
else:
return download_target
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
with tqdm(
total=int(source.info().get("Content-Length")),
ncols=80,
unit="iB",
unit_scale=True,
) as loop:
while True:
buffer = source.read(8192)
if not buffer:
break
output.write(buffer)
loop.update(len(buffer))
if (
expected_sha256
and hashlib.sha256(open(download_target, "rb").read()).hexdigest()
!= expected_sha256
):
raise RuntimeError(
f"Model has been downloaded but the SHA256 checksum does not not match"
)
return download_target
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Based on https://github.com/mlfoundations/open_clip
"""
""" OpenAI pretrained model functions
Adapted from https://github.com/mlfoundations/open_clip and https://github.com/openai/CLIP.
Originally MIT License, Copyright (c) 2021 OpenAI.
"""
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Based on https://github.com/mlfoundations/open_clip
"""
""" CLIP Model
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
"""
download_pretrained,
get_pretrained_url,
list_pretrained_tag_models,
)
_MODEL_CONFIG_PATHS = [Path(__file__).parent.parent.parent / f"configs/models/clip/"]
_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1):
super().__init__()
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = None
self.stride = stride
if stride > 1 or inplanes != planes * Bottleneck.expansion:
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
self.downsample = nn.Sequential(
OrderedDict(
[
("-1", nn.AvgPool2d(stride)),
(
"0",
nn.Conv2d(
inplanes,
planes * self.expansion,
1,
stride=1,
bias=False,
),
),
("1", nn.BatchNorm2d(planes * self.expansion)),
]
)
)
def forward(self, x: torch.Tensor):
identity = x
out = self.relu(self.bn1(self.conv1(x)))
out = self.relu(self.bn2(self.conv2(out)))
out = self.avgpool(out)
out = self.bn3(self.conv3(out))
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class AttentionPool2d(nn.Module):
def __init__(
self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None
):
super().__init__()
self.positional_embedding = nn.Parameter(
torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5
)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
def forward(self, x):
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(
2, 0, 1
) # NCHW -> (HW)NC
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
x, _ = F.multi_head_attention_forward(
query=x,
key=x,
value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat(
[self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]
),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False,
)
return x[0]
class ModifiedResNet(nn.Module):
"""
A ResNet class that is similar to torchvision's but contains the following changes:
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
- The final pooling layer is a QKV attention instead of an average pool
"""
def __init__(self, layers, output_dim, heads, image_size=224, width=64):
super().__init__()
self.output_dim = output_dim
self.image_size = image_size
# the 3-layer stem
self.conv1 = nn.Conv2d(
3, width // 2, kernel_size=3, stride=2, padding=1, bias=False
)
self.bn1 = nn.BatchNorm2d(width // 2)
self.conv2 = nn.Conv2d(
width // 2, width // 2, kernel_size=3, padding=1, bias=False
)
self.bn2 = nn.BatchNorm2d(width // 2)
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(width)
self.avgpool = nn.AvgPool2d(2)
self.relu = nn.ReLU(inplace=True)
# residual layers
self._inplanes = width # this is a *mutable* variable used during construction
self.layer1 = self._make_layer(width, layers[0])
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
embed_dim = width * 32 # the ResNet feature dimension
self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim)
self.init_parameters()
def _make_layer(self, planes, blocks, stride=1):
layers = [Bottleneck(self._inplanes, planes, stride)]
self._inplanes = planes * Bottleneck.expansion
for _ in range(1, blocks):
layers.append(Bottleneck(self._inplanes, planes))
return nn.Sequential(*layers)
def init_parameters(self):
if self.attnpool is not None:
std = self.attnpool.c_proj.in_features**-0.5
nn.init.normal_(self.attnpool.q_proj.weight, std=std)
nn.init.normal_(self.attnpool.k_proj.weight, std=std)
nn.init.normal_(self.attnpool.v_proj.weight, std=std)
nn.init.normal_(self.attnpool.c_proj.weight, std=std)
for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]:
for name, param in resnet_block.named_parameters():
if name.endswith("bn3.weight"):
nn.init.zeros_(param)
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
assert (
unlocked_groups == 0
), "partial locking not currently supported for this model"
for param in self.parameters():
param.requires_grad = False
if freeze_bn_stats:
freeze_batch_norm_2d(self)
def stem(self, x):
for conv, bn in [
(self.conv1, self.bn1),
(self.conv2, self.bn2),
(self.conv3, self.bn3),
]:
x = self.relu(bn(conv(x)))
x = self.avgpool(x)
return x
def forward(self, x):
x = self.stem(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.attnpool(x)
return x
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
return x.to(orig_type)
class QuickGELU(nn.Module):
# NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, act_layer: Callable = nn.GELU):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(
OrderedDict(
[
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", act_layer()),
("c_proj", nn.Linear(d_model * 4, d_model)),
]
)
)
self.ln_2 = LayerNorm(d_model)
def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0]
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
x = x + self.attention(self.ln_1(x), attn_mask=attn_mask)
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(
self, width: int, layers: int, heads: int, act_layer: Callable = nn.GELU
):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.ModuleList(
[
ResidualAttentionBlock(width, heads, act_layer=act_layer)
for _ in range(layers)
]
)
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
for r in self.resblocks:
x = r(x, attn_mask=attn_mask)
return x
class VisualTransformer(nn.Module):
def __init__(
self,
image_size: int,
patch_size: int,
width: int,
layers: int,
heads: int,
output_dim: int,
act_layer: Callable = nn.GELU,
):
super().__init__()
self.image_size = image_size
self.output_dim = output_dim
self.conv1 = nn.Conv2d(
in_channels=3,
out_channels=width,
kernel_size=patch_size,
stride=patch_size,
bias=False,
)
scale = width**-0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(
scale * torch.randn((image_size // patch_size) ** 2 + 1, width)
)
self.ln_pre = LayerNorm(width)
self.transformer = Transformer(width, layers, heads, act_layer=act_layer)
self.ln_post = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
assert (
unlocked_groups == 0
), "partial locking not currently supported for this model"
for param in self.parameters():
param.requires_grad = False
def forward(self, x: torch.Tensor):
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat(
[
self.class_embedding.to(x.dtype)
+ torch.zeros(
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device
),
x,
],
dim=1,
) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_post(x[:, 0, :])
if self.proj is not None:
x = x @ self.proj
return x
@dataclass
class CLIPVisionCfg:
layers: Union[Tuple[int, int, int, int], int] = 12
width: int = 768
patch_size: int = 16
image_size: Union[Tuple[int, int], int] = 224
timm_model_name: str = (
None # a valid model name overrides layers, width, patch_size
)
timm_model_pretrained: bool = (
False # use (imagenet) pretrained weights for named model
)
timm_pool: str = (
"avg" # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
)
timm_proj: str = (
"linear" # linear projection for timm model output ('linear', 'mlp', '')
)
@dataclass
class CLIPTextCfg:
context_length: int
vocab_size: int
width: int
heads: int
layers: int
@registry.register_model("clip")
@registry.register_model("clip_feature_extractor")
class CLIP(BaseModel):
PRETRAINED_MODEL_CONFIG_DICT = {
"ViT-B-32": "configs/models/clip_vit_base32.yaml",
"ViT-B-16": "configs/models/clip_vit_base16.yaml",
"ViT-L-14": "configs/models/clip_vit_large14.yaml",
"ViT-L-14-336": "configs/models/clip_vit_large14_336.yaml",
"RN50": "configs/models/clip_resnet50.yaml",
}
def __init__(
self,
embed_dim: int,
vision_cfg: CLIPVisionCfg,
text_cfg: CLIPTextCfg,
quick_gelu: bool = False,
):
from .tokenizer import tokenize
super().__init__()
self.tokenizer = tokenize
self._loss = None
if isinstance(vision_cfg, dict):
vision_cfg = CLIPVisionCfg(**vision_cfg)
if isinstance(text_cfg, dict):
text_cfg = CLIPTextCfg(**text_cfg)
self.context_length = text_cfg.context_length
# OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
# memory efficient in recent PyTorch releases (>= 1.10).
# NOTE: timm models always use native GELU regardless of quick_gelu flag.
act_layer = QuickGELU if quick_gelu else nn.GELU
if vision_cfg.timm_model_name:
self.visual = TimmModel(
vision_cfg.timm_model_name,
pretrained=vision_cfg.timm_model_pretrained,
pool=vision_cfg.timm_pool,
proj=vision_cfg.timm_proj,
embed_dim=embed_dim,
image_size=vision_cfg.image_size,
)
act_layer = (
nn.GELU
) # so that text transformer doesn't use QuickGELU w/ timm models
elif isinstance(vision_cfg.layers, (tuple, list)):
vision_heads = vision_cfg.width * 32 // 64
self.visual = ModifiedResNet(
layers=vision_cfg.layers,
output_dim=embed_dim,
heads=vision_heads,
image_size=vision_cfg.image_size,
width=vision_cfg.width,
)
else:
vision_heads = vision_cfg.width // 64
self.visual = VisualTransformer(
image_size=vision_cfg.image_size,
patch_size=vision_cfg.patch_size,
width=vision_cfg.width,
layers=vision_cfg.layers,
heads=vision_heads,
output_dim=embed_dim,
act_layer=act_layer,
)
self.transformer = Transformer(
width=text_cfg.width,
layers=text_cfg.layers,
heads=text_cfg.heads,
act_layer=act_layer,
)
self.vocab_size = text_cfg.vocab_size
self.token_embedding = nn.Embedding(text_cfg.vocab_size, text_cfg.width)
self.positional_embedding = nn.Parameter(
torch.empty(self.context_length, text_cfg.width)
)
self.ln_final = LayerNorm(text_cfg.width)
self.text_projection = nn.Parameter(torch.empty(text_cfg.width, embed_dim))
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.register_buffer("attn_mask", self.build_attention_mask(), persistent=False)
self.prompt_templates = openai_imagenet_template
self.classifier = None
self.init_parameters()
@property
def loss(self):
if self._loss is None:
from lavis.models.clip_models.loss import ClipLoss
from torch import distributed as dist
self._loss = ClipLoss(
world_size=dist.get_world_size(),
rank=dist.get_rank(),
local_loss=False,
gather_with_grad=False,
use_horovod=False,
)
return self._loss
def init_parameters(self):
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
nn.init.constant_(self.logit_scale, np.log(1 / 0.07))
if hasattr(self.visual, "init_parameters"):
self.visual.init_parameters()
proj_std = (self.transformer.width**-0.5) * (
(2 * self.transformer.layers) ** -0.5
)
attn_std = self.transformer.width**-0.5
fc_std = (2 * self.transformer.width) ** -0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None:
nn.init.normal_(self.text_projection, std=self.transformer.width**-0.5)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
self.visual.lock(
unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats
)
def encode_image(self, image):
return self.visual(image)
def encode_text(self, text):
x = self.token_embedding(text) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x, attn_mask=self.attn_mask)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
return x
# def forward(self, image, text):
def forward(self, samples):
image = samples.get("image")
text = samples.get("text_input")
if text is not None:
text = self.tokenizer(text).to(self.device)
if image is None:
return self.encode_text(text)
elif text is None:
return self.encode_image(image)
image_embeds = self.encode_image(image)
image_features = F.normalize(image_embeds, dim=-1)
text_embeds = self.encode_text(text)
text_features = F.normalize(text_embeds, dim=-1)
loss = self.loss(image_features, text_features, self.logit_scale.exp())
# return image_features, text_features, self.logit_scale.exp()
# return {"loss": loss}
return ClipOutput(
intermediate_output=ClipOutputFeatures(
image_embeds=image_embeds,
image_embeds_proj=image_features,
text_embeds=text_embeds,
text_embeds_proj=text_features,
),
loss=loss,
logit_scale_exp=self.logit_scale.exp(),
)
def extract_features(self, samples):
"""
Extract features from the model for samples.
Keys allowed are "image" and "text_input" in samples.
If either key is missing, the corresponding features are not extracted.
Args:
samples: dict of samples to extract features from.
Returns:
ClipOutputFeatures object with features for the samples.
"""
image = samples.get("image")
text = samples.get("text_input")
if text is not None:
text = self.tokenizer(text).to(self.device)
if image is None:
return self.encode_text(text)
elif text is None:
return self.encode_image(image)
image_embeds = self.encode_image(image)
image_features = F.normalize(image_embeds, dim=-1)
text_embeds = self.encode_text(text)
text_features = F.normalize(text_embeds, dim=-1)
return ClipOutputFeatures(
image_embeds=image_embeds,
image_embeds_proj=image_features,
text_embeds=text_embeds,
text_embeds_proj=text_features,
)
def predict(self, samples):
image = samples["image"]
targets = samples["label"]
image_features = self.encode_image(image)
image_features = F.normalize(image_features, dim=-1)
logits = 100.0 * image_features @ self.classifier
return {"predictions": logits, "targets": targets}
def before_evaluation(self, dataset, task_type, **kwargs):
if task_type == MultimodalClassificationTask:
self.classifier = self.zero_shot_classifier(
classnames=dataset.classnames,
templates=self.prompt_templates,
)
def zero_shot_classifier(self, classnames, templates):
with torch.no_grad():
zeroshot_weights = []
for classname in classnames:
texts = [
template(classname) for template in templates
] # format with class
texts = self.tokenizer(texts).to(self.device) # tokenize
class_embeddings = self.encode_text(texts)
class_embedding = F.normalize(class_embeddings, dim=-1).mean(dim=0)
class_embedding /= class_embedding.norm()
zeroshot_weights.append(class_embedding)
zeroshot_weights = torch.stack(zeroshot_weights, dim=1).to(self.device)
return zeroshot_weights
@classmethod
def default_config_path(cls, model_type="base"):
model_type = "ViT-B-32" if model_type == "base" else model_type
assert (
model_type in cls.PRETRAINED_MODEL_CONFIG_DICT
), "Unknown model type {}. \n Available types: {}".format(
model_type, cls.PRETRAINED_MODEL_CONFIG_DICT.keys()
)
return get_abs_path(cls.PRETRAINED_MODEL_CONFIG_DICT[model_type])
@classmethod
def from_config(cls, cfg=None):
model_name = cfg.model_type
pretrained = cfg.pretrained
precision = cfg.get("precision", "fp32")
return create_model(
model_name=model_name, pretrained=pretrained, precision=precision
)
def zero_shot_predict(self, image_path, categories):
assert isinstance(
categories, list
), f"categories must be a list, got {type(categories)}."
assert os.path.exists(image_path), f"File {image_path} does not exist."
from lavis.processors.clip_processors import ClipImageEvalProcessor
from PIL import Image
image_preprocess = ClipImageEvalProcessor()
image = image_preprocess(Image.open(image_path)).unsqueeze(0)
text = self.tokenizer(categories)
with torch.no_grad():
image_features = self.encode_image(image)
text_features = self.encode_text(text)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
print("Label probs:", text_probs) # prints: [[1., 0., 0.]]
def compute_sim_matrix(self, data_loader, **kwargs):
logging.info("Computing features for evaluation...")
start_time = time.time()
texts = data_loader.dataset.text
num_text = len(texts)
text_bs = 256
text_features = []
for i in range(0, num_text, text_bs):
text = texts[i : min(num_text, i + text_bs)]
text_input = self.tokenizer(text).to(self.device)
text_feat = self.encode_text(text_input)
text_feat = F.normalize(text_feat, dim=-1)
text_features.append(text_feat)
text_features = torch.cat(text_features, dim=0)
image_features = []
for samples in data_loader:
image = samples["image"]
image = image.to(self.device)
image_feat = self.encode_image(image)
image_feat = F.normalize(image_feat, dim=-1)
image_features.append(image_feat)
image_features = torch.cat(image_features, dim=0)
sims_matrix_i2t = image_features @ text_features.t()
sims_matrix_t2i = sims_matrix_i2t.t()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logging.info("Evaluation time {}".format(total_time_str))
return sims_matrix_i2t.cpu().numpy(), sims_matrix_t2i.cpu().numpy()
def convert_weights_to_fp16(model: nn.Module):
"""Convert applicable model parameters to fp16"""
def _convert_weights_to_fp16(l):
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
l.weight.data = l.weight.data.half()
if l.bias is not None:
l.bias.data = l.bias.data.half()
if isinstance(l, nn.MultiheadAttention):
for attr in [
*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]],
"in_proj_bias",
"bias_k",
"bias_v",
]:
tensor = getattr(l, attr)
if tensor is not None:
tensor.data = tensor.data.half()
for name in ["text_projection", "proj"]:
if hasattr(l, name):
attr = getattr(l, name)
if attr is not None:
attr.data = attr.data.half()
model.apply(_convert_weights_to_fp16)
def build_model_from_openai_state_dict(state_dict: dict):
vit = "visual.proj" in state_dict
if vit:
vision_width = state_dict["visual.conv1.weight"].shape[0]
vision_layers = len(
[
k
for k in state_dict.keys()
if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")
]
)
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
grid_size = round(
(state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5
)
image_size = vision_patch_size * grid_size
else:
counts: list = [
len(
set(
k.split(".")[2]
for k in state_dict
if k.startswith(f"visual.layer{b}")
)
)
for b in [1, 2, 3, 4]
]
vision_layers = tuple(counts)
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
output_width = round(
(state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5
)
vision_patch_size = None
assert (
output_width**2 + 1
== state_dict["visual.attnpool.positional_embedding"].shape[0]
)
image_size = output_width * 32
embed_dim = state_dict["text_projection"].shape[1]
context_length = state_dict["positional_embedding"].shape[0]
vocab_size = state_dict["token_embedding.weight"].shape[0]
transformer_width = state_dict["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(
set(
k.split(".")[2]
for k in state_dict
if k.startswith(f"transformer.resblocks")
)
)
vision_cfg = CLIPVisionCfg(
layers=vision_layers,
width=vision_width,
patch_size=vision_patch_size,
image_size=image_size,
)
text_cfg = CLIPTextCfg(
context_length=context_length,
vocab_size=vocab_size,
width=transformer_width,
heads=transformer_heads,
layers=transformer_layers,
)
model = CLIP(
embed_dim,
vision_cfg=vision_cfg,
text_cfg=text_cfg,
quick_gelu=True, # OpenAI models were trained with QuickGELU
)
for key in ["input_resolution", "context_length", "vocab_size"]:
state_dict.pop(key, None)
convert_weights_to_fp16(model)
model.load_state_dict(state_dict)
return model.eval()
def trace_model(model, batch_size=256, device=torch.device("cpu")):
model.eval()
image_size = model.visual.image_size
example_images = torch.ones((batch_size, 3, image_size, image_size), device=device)
example_text = torch.zeros(
(batch_size, model.context_length), dtype=torch.int, device=device
)
model = torch.jit.trace_module(
model,
inputs=dict(
forward=(example_images, example_text),
encode_text=(example_text,),
encode_image=(example_images,),
),
)
model.visual.image_size = image_size
return
def _natural_key(string_):
return [int(s) if s.isdigit() else s for s in re.split(r"(\d+)", string_.lower())]
def _rescan_model_configs():
global _MODEL_CONFIGS
config_ext = (".json",)
config_files = []
for config_path in _MODEL_CONFIG_PATHS:
if config_path.is_file() and config_path.suffix in config_ext:
config_files.append(config_path)
elif config_path.is_dir():
for ext in config_ext:
config_files.extend(config_path.glob(f"*{ext}"))
for cf in config_files:
with open(cf, "r") as f:
model_cfg = json.load(f)
if all(a in model_cfg for a in ("embed_dim", "vision_cfg", "text_cfg")):
_MODEL_CONFIGS[cf.stem] = model_cfg
_MODEL_CONFIGS = {
k: v
for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))
}
_rescan_model_configs() # initial populate of model config registry
def load_state_dict(checkpoint_path: str, map_location="cpu"):
checkpoint = torch.load(checkpoint_path, map_location=map_location)
if isinstance(checkpoint, dict) and "state_dict" in checkpoint:
state_dict = checkpoint["state_dict"]
else:
state_dict = checkpoint
if next(iter(state_dict.items()))[0].startswith("module"):
state_dict = {k[7:]: v for k, v in state_dict.items()}
return state_dict
def create_model(
model_name: str,
pretrained: str = "",
precision: str = "fp32",
device: torch.device = torch.device("cpu"),
jit: bool = False,
force_quick_gelu: bool = False,
pretrained_image: bool = False,
):
model_name = model_name.replace(
"/", "-"
) # for callers using old naming with / in ViT names
if pretrained.lower() == "openai":
logging.info(f"Loading pretrained {model_name} from OpenAI.")
model = load_openai_model(model_name, device=device, jit=jit)
# See https://discuss.pytorch.org/t/valueerror-attemting-to-unscale-fp16-gradients/81372
if precision == "amp" or precision == "fp32":
model = model.float()
else:
logging.info(f"No pretrained weights loaded for {model_name} model.")
if model_name in _MODEL_CONFIGS:
logging.info(f"Loading {model_name} model config.")
model_cfg = deepcopy(_MODEL_CONFIGS[model_name])
else:
logging.error(
f"Model config for {model_name} not found; available models {list_models()}."
)
raise RuntimeError(f"Model config for {model_name} not found.")
if force_quick_gelu:
# override for use of QuickGELU on non-OpenAI transformer models
model_cfg["quick_gelu"] = True
if pretrained_image:
if "timm_model_name" in model_cfg.get("vision_cfg", {}):
# pretrained weight loading for timm models set via vision_cfg
model_cfg["vision_cfg"]["timm_model_pretrained"] = True
else:
assert (
False
), "pretrained image towers currently only supported for timm models"
model = CLIP(**model_cfg)
if pretrained:
checkpoint_path = ""
url = get_pretrained_url(model_name, pretrained)
if url:
checkpoint_path = download_pretrained(url)
elif os.path.exists(pretrained):
checkpoint_path = pretrained
if checkpoint_path:
logging.info(f"Loading pretrained {model_name} weights ({pretrained}).")
model.load_state_dict(load_state_dict(checkpoint_path))
else:
logging.warning(
f"Pretrained weights ({pretrained}) not found for model {model_name}."
)
raise RuntimeError(
f"Pretrained weights ({pretrained}) not found for model {model_name}."
)
model.to(device=device)
if precision == "fp16":
assert device.type != "cpu"
convert_weights_to_fp16(model)
if jit:
model = torch.jit.script(model)
return model
def create_model_and_transforms(
model_name: str,
pretrained: str = "",
precision: str = "fp32",
device: torch.device = torch.device("cpu"),
jit: bool = False,
force_quick_gelu: bool = False,
pretrained_image: bool = False,
):
model = create_model(
model_name,
pretrained,
precision,
device,
jit,
force_quick_gelu=force_quick_gelu,
pretrained_image=pretrained_image,
)
preprocess_train = image_transform(model.visual.image_size, is_train=True)
preprocess_val = image_transform(model.visual.image_size, is_train=False)
return model, preprocess_train, preprocess_val
def list_models():
"""enumerate available model architectures based on config files"""
return list(_MODEL_CONFIGS.keys())
def add_model_config(path):
"""add model config path or file and update registry"""
if not isinstance(path, Path):
path = Path(path)
_MODEL_CONFIG_PATHS.append(path)
_rescan_model_configs()
def list_openai_models() -> List[str]:
"""Returns the names of available CLIP models"""
return list_pretrained_tag_models("openai")
def load_openai_model(
name: str,
device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu",
jit=True,
):
"""Load a CLIP model
Parameters
----------
name : str
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
device : Union[str, torch.device]
The device to put the loaded model
jit : bool
Whether to load the optimized JIT model (default) or more hackable non-JIT model.
Returns
-------
model : torch.nn.Module
The CLIP model
preprocess : Callable[[PIL.Image], torch.Tensor]
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
"""
if get_pretrained_url(name, "openai"):
model_path = download_pretrained(get_pretrained_url(name, "openai"))
elif os.path.isfile(name):
model_path = name
else:
raise RuntimeError(
f"Model {name} not found; available models = {list_openai_models()}"
)
try:
# loading JIT archive
model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
state_dict = None
except RuntimeError:
# loading saved state dict
if jit:
warnings.warn(
f"File {model_path} is not a JIT archive. Loading as a state dict instead"
)
jit = False
state_dict = torch.load(model_path, map_location="cpu")
if not jit:
try:
model = build_model_from_openai_state_dict(
state_dict or model.state_dict()
).to(device)
except KeyError:
sd = {k[7:]: v for k, v in state_dict["state_dict"].items()}
model = build_model_from_openai_state_dict(sd).to(device)
if str(device) == "cpu":
model.float()
return model
# patch the device names
device_holder = torch.jit.trace(
lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]
)
device_node = [
n
for n in device_holder.graph.findAllNodes("prim::Constant")
if "Device" in repr(n)
][-1]
def patch_device(module):
try:
graphs = [module.graph] if hasattr(module, "graph") else []
except RuntimeError:
graphs = []
if hasattr(module, "forward1"):
graphs.append(module.forward1.graph)
for graph in graphs:
for node in graph.findAllNodes("prim::Constant"):
if "value" in node.attributeNames() and str(node["value"]).startswith(
"cuda"
):
node.copyAttributes(device_node)
model.apply(patch_device)
patch_device(model.encode_image)
patch_device(model.encode_text)
# patch dtype to float32 on CPU
if str(device) == "cpu":
float_holder = torch.jit.trace(
lambda: torch.ones([]).float(), example_inputs=[]
)
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
float_node = float_input.node()
def patch_float(module):
try:
graphs = [module.graph] if hasattr(module, "graph") else []
except RuntimeError:
graphs = []
if hasattr(module, "forward1"):
graphs.append(module.forward1.graph)
for graph in graphs:
for node in graph.findAllNodes("aten::to"):
inputs = list(node.inputs())
for i in [
1,
2,
]: # dtype can be the second or third argument to aten::to()
if inputs[i].node()["value"] == 5:
inputs[i].node().copyAttributes(float_node)
model.apply(patch_float)
patch_float(model.encode_image)
patch_float(model.encode_text)
model.float()
# ensure image_size attr available at consistent location for both jit and non-jit
model.visual.image_size = model.input_resolution.item()
return model
openai_imagenet_template = [
lambda c: f"a bad photo of a {c}.",
lambda c: f"a photo of many {c}.",
lambda c: f"a sculpture of a {c}.",
lambda c: f"a photo of the hard to see {c}.",
lambda c: f"a low resolution photo of the {c}.",
lambda c: f"a rendering of a {c}.",
lambda c: f"graffiti of a {c}.",
lambda c: f"a bad photo of the {c}.",
lambda c: f"a cropped photo of the {c}.",
lambda c: f"a tattoo of a {c}.",
lambda c: f"the embroidered {c}.",
lambda c: f"a photo of a hard to see {c}.",
lambda c: f"a bright photo of a {c}.",
lambda c: f"a photo of a clean {c}.",
lambda c: f"a photo of a dirty {c}.",
lambda c: f"a dark photo of the {c}.",
lambda c: f"a drawing of a {c}.",
lambda c: f"a photo of my {c}.",
lambda c: f"the plastic {c}.",
lambda c: f"a photo of the cool {c}.",
lambda c: f"a close-up photo of a {c}.",
lambda c: f"a black and white photo of the {c}.",
lambda c: f"a painting of the {c}.",
lambda c: f"a painting of a {c}.",
lambda c: f"a pixelated photo of the {c}.",
lambda c: f"a sculpture of the {c}.",
lambda c: f"a bright photo of the {c}.",
lambda c: f"a cropped photo of a {c}.",
lambda c: f"a plastic {c}.",
lambda c: f"a photo of the dirty {c}.",
lambda c: f"a jpeg corrupted photo of a {c}.",
lambda c: f"a blurry photo of the {c}.",
lambda c: f"a photo of the {c}.",
lambda c: f"a good photo of the {c}.",
lambda c: f"a rendering of the {c}.",
lambda c: f"a {c} in a video game.",
lambda c: f"a photo of one {c}.",
lambda c: f"a doodle of a {c}.",
lambda c: f"a close-up photo of the {c}.",
lambda c: f"a photo of a {c}.",
lambda c: f"the origami {c}.",
lambda c: f"the {c} in a video game.",
lambda c: f"a sketch of a {c}.",
lambda c: f"a doodle of the {c}.",
lambda c: f"a origami {c}.",
lambda c: f"a low resolution photo of a {c}.",
lambda c: f"the toy {c}.",
lambda c: f"a rendition of the {c}.",
lambda c: f"a photo of the clean {c}.",
lambda c: f"a photo of a large {c}.",
lambda c: f"a rendition of a {c}.",
lambda c: f"a photo of a nice {c}.",
lambda c: f"a photo of a weird {c}.",
lambda c: f"a blurry photo of a {c}.",
lambda c: f"a cartoon {c}.",
lambda c: f"art of a {c}.",
lambda c: f"a sketch of the {c}.",
lambda c: f"a embroidered {c}.",
lambda c: f"a pixelated photo of a {c}.",
lambda c: f"itap of the {c}.",
lambda c: f"a jpeg corrupted photo of the {c}.",
lambda c: f"a good photo of a {c}.",
lambda c: f"a plushie {c}.",
lambda c: f"a photo of the nice {c}.",
lambda c: f"a photo of the small {c}.",
lambda c: f"a photo of the weird {c}.",
lambda c: f"the cartoon {c}.",
lambda c: f"art of the {c}.",
lambda c: f"a drawing of the {c}.",
lambda c: f"a photo of the large {c}.",
lambda c: f"a black and white photo of a {c}.",
lambda c: f"the plushie {c}.",
lambda c: f"a dark photo of a {c}.",
lambda c: f"itap of a {c}.",
lambda c: f"graffiti of the {c}.",
lambda c: f"a toy {c}.",
lambda c: f"itap of my {c}.",
lambda c: f"a photo of a cool {c}.",
lambda c: f"a photo of a small {c}.",
lambda c: f"a tattoo of the {c}.",
]
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Based on https://github.com/mlfoundations/open_clip
"""
""" CLIP tokenizer
Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
"""
@lru_cache()
def default_bpe():
return os.path.join(
os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz"
)
@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a signficant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = (
list(range(ord("!"), ord("~") + 1))
+ list(range(ord("¡"), ord("¬") + 1))
+ list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
def basic_clean(text):
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
def whitespace_clean(text):
text = re.sub(r"\s+", " ", text)
text = text.strip()
return text
class SimpleTokenizer(object):
def __init__(self, bpe_path: str = default_bpe(), special_tokens=None):
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
merges = gzip.open(bpe_path).read().decode("utf-8").split("\n")
merges = merges[1 : 49152 - 256 - 2 + 1]
merges = [tuple(merge.split()) for merge in merges]
vocab = list(bytes_to_unicode().values())
vocab = vocab + [v + "</w>" for v in vocab]
for merge in merges:
vocab.append("".join(merge))
if not special_tokens:
special_tokens = ["<start_of_text>", "<end_of_text>"]
else:
special_tokens = ["<start_of_text>", "<end_of_text>"] + special_tokens
vocab.extend(special_tokens)
self.encoder = dict(zip(vocab, range(len(vocab))))
self.decoder = {v: k for k, v in self.encoder.items()}
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {t: t for t in special_tokens}
special = "|".join(special_tokens)
self.pat = re.compile(
special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
re.IGNORECASE,
)
self.vocab_size = len(self.encoder)
self.all_special_ids = [self.encoder[t] for t in special_tokens]
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token[:-1]) + (token[-1] + "</w>",)
pairs = get_pairs(word)
if not pairs:
return token + "</w>"
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
self.cache[token] = word
return word
def encode(self, text):
bpe_tokens = []
text = whitespace_clean(basic_clean(text)).lower()
for token in re.findall(self.pat, text):
token = "".join(self.byte_encoder[b] for b in token.encode("utf-8"))
bpe_tokens.extend(
self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" ")
)
return bpe_tokens
def decode(self, tokens):
text = "".join([self.decoder[token] for token in tokens])
text = (
bytearray([self.byte_decoder[c] for c in text])
.decode("utf-8", errors="replace")
.replace("</w>", " ")
)
return text
_tokenizer = SimpleTokenizer()
def tokenize(
texts: Union[str, List[str]], context_length: int = 77
) -> torch.LongTensor:
"""
Returns the tokenized representation of given input string(s)
Parameters
----------
texts : Union[str, List[str]]
An input string or a list of input strings to tokenize
context_length : int
The context length to use; all CLIP models use 77 as the context length
Returns
-------
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
"""
if isinstance(texts, str):
texts = [texts]
sot_token = _tokenizer.encoder["<start_of_text>"]
eot_token = _tokenizer.encoder["<end_of_text>"]
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
for i, tokens in enumerate(all_tokens):
if len(tokens) > context_length:
tokens = tokens[:context_length] # Truncate
result[i, : len(tokens)] = torch.tensor(tokens)
return result
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
try:
import horovod.torch as hvd
except ImportError:
hvd = None
def gather_features(
image_features,
text_features,
local_loss=False,
gather_with_grad=False,
rank=0,
world_size=1,
use_horovod=False,
):
if use_horovod:
assert hvd is not None, "Please install horovod"
if gather_with_grad:
all_image_features = hvd.allgather(image_features)
all_text_features = hvd.allgather(text_features)
else:
with torch.no_grad():
all_image_features = hvd.allgather(image_features)
all_text_features = hvd.allgather(text_features)
if not local_loss:
# ensure grads for local rank when all_* features don't have a gradient
gathered_image_features = list(
all_image_features.chunk(world_size, dim=0)
)
gathered_text_features = list(
all_text_features.chunk(world_size, dim=0)
)
gathered_image_features[rank] = image_features
gathered_text_features[rank] = text_features
all_image_features = torch.cat(gathered_image_features, dim=0)
all_text_features = torch.cat(gathered_text_features, dim=0)
else:
# We gather tensors from all gpus
if gather_with_grad:
all_image_features = torch.cat(
torch.distributed.nn.all_gather(image_features), dim=0
)
all_text_features = torch.cat(
torch.distributed.nn.all_gather(text_features), dim=0
)
else:
gathered_image_features = [
torch.zeros_like(image_features) for _ in range(world_size)
]
gathered_text_features = [
torch.zeros_like(text_features) for _ in range(world_size)
]
dist.all_gather(gathered_image_features, image_features)
dist.all_gather(gathered_text_features, text_features)
if not local_loss:
# ensure grads for local rank when all_* features don't have a gradient
gathered_image_features[rank] = image_features
gathered_text_features[rank] = text_features
all_image_features = torch.cat(gathered_image_features, dim=0)
all_text_features = torch.cat(gathered_text_features, dim=0)
return all_image_features, all_text_features
class ClipLoss(nn.Module):
def __init__(
self,
local_loss=False,
gather_with_grad=False,
cache_labels=False,
rank=0,
world_size=1,
use_horovod=False,
):
super().__init__()
self.local_loss = local_loss
self.gather_with_grad = gather_with_grad
self.cache_labels = cache_labels
self.rank = rank
self.world_size = world_size
self.use_horovod = use_horovod
# cache state
self.prev_num_logits = 0
self.labels = {}
def forward(self, image_features, text_features, logit_scale):
device = image_features.device
if self.world_size > 1:
all_image_features, all_text_features = gather_features(
image_features,
text_features,
self.local_loss,
self.gather_with_grad,
self.rank,
self.world_size,
self.use_horovod,
)
if self.local_loss:
logits_per_image = logit_scale * image_features @ all_text_features.T
logits_per_text = logit_scale * text_features @ all_image_features.T
else:
logits_per_image = (
logit_scale * all_image_features @ all_text_features.T
)
logits_per_text = logits_per_image.T
else:
logits_per_image = logit_scale * image_features @ text_features.T
logits_per_text = logit_scale * text_features @ image_features.T
# calculated ground-truth and cache if enabled
num_logits = logits_per_image.shape[0]
if self.prev_num_logits != num_logits or device not in self.labels:
labels = torch.arange(num_logits, device=device, dtype=torch.long)
if self.world_size > 1 and self.local_loss:
labels = labels + num_logits * self.rank
if self.cache_labels:
self.labels[device] = labels
self.prev_num_logits = num_logits
else:
labels = self.labels[device]
total_loss = (
F.cross_entropy(logits_per_image, labels)
+ F.cross_entropy(logits_per_text, labels)
) / 2
return total_loss
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Based on https://github.com/mlfoundations/open_clip
"""
def freeze_batch_norm_2d(module, module_match={}, name=""):
"""
Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is
itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and
returned. Otherwise, the module is walked recursively and submodules are converted in place.
Args:
module (torch.nn.Module): Any PyTorch module.
module_match (dict): Dictionary of full module names to freeze (all if empty)
name (str): Full module name (prefix)
Returns:
torch.nn.Module: Resulting module
Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762
"""
res = module
is_match = True
if module_match:
is_match = name in module_match
if is_match and isinstance(
module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)
):
res = FrozenBatchNorm2d(module.num_features)
res.num_features = module.num_features
res.affine = module.affine
if module.affine:
res.weight.data = module.weight.data.clone().detach()
res.bias.data = module.bias.data.clone().detach()
res.running_mean.data = module.running_mean.data
res.running_var.data = module.running_var.data
res.eps = module.eps
else:
for child_name, child in module.named_children():
full_child_name = ".".join([name, child_name]) if name else child_name
new_child = freeze_batch_norm_2d(child, module_match, full_child_name)
if new_child is not child:
res.add_module(child_name, new_child)
return res
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Based on https://github.com/mlfoundations/open_clip
"""
Normalize,
Compose,
RandomResizedCrop,
InterpolationMode,
ToTensor,
Resize,
CenterCrop,
)
class ResizeMaxSize(nn.Module):
def __init__(
self, max_size, interpolation=InterpolationMode.BICUBIC, fn="max", fill=0
):
super().__init__()
if not isinstance(max_size, int):
raise TypeError(f"Size should be int. Got {type(max_size)}")
self.max_size = max_size
self.interpolation = interpolation
self.fn = min if fn == "min" else min
self.fill = fill
def forward(self, img):
if isinstance(img, torch.Tensor):
height, width = img.shape[:2]
else:
width, height = img.size
scale = self.max_size / float(max(height, width))
if scale != 1.0:
new_size = tuple(round(dim * scale) for dim in (height, width))
img = F.resize(img, new_size, self.interpolation)
pad_h = self.max_size - new_size[0]
pad_w = self.max_size - new_size[1]
img = F.pad(
img,
padding=[
pad_w // 2,
pad_h // 2,
pad_w - pad_w // 2,
pad_h - pad_h // 2,
],
fill=self.fill,
)
return img
def _convert_to_rgb(image):
return image.convert("RGB")
def image_transform(
image_size: int,
is_train: bool,
mean: Optional[Tuple[float, ...]] = None,
std: Optional[Tuple[float, ...]] = None,
resize_longest_max: bool = False,
fill_color: int = 0,
):
mean = mean or (0.48145466, 0.4578275, 0.40821073) # OpenAI dataset mean
std = std or (0.26862954, 0.26130258, 0.27577711) # OpenAI dataset std
if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]:
# for square size, pass size as int so that Resize() uses aspect preserving shortest edge
image_size = image_size[0]
normalize = Normalize(mean=mean, std=std)
if is_train:
return Compose(
[
RandomResizedCrop(
image_size,
scale=(0.9, 1.0),
interpolation=InterpolationMode.BICUBIC,
),
_convert_to_rgb,
ToTensor(),
normalize,
]
)
else:
if resize_longest_max:
transforms = [ResizeMaxSize(image_size, fill=fill_color)]
else:
transforms = [
Resize(image_size, interpolation=InterpolationMode.BICUBIC),
CenterCrop(image_size),
]
transforms.extend(
[
_convert_to_rgb,
ToTensor(),
normalize,
]
)
return Compose(transforms)
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Based on https://github.com/mlfoundations/open_clip
"""
""" timm model adapter
Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model.
"""
try:
import timm
from timm.models.layers import Mlp, to_2tuple
# from timm.models.layers.attention_pool2d import RotAttentionPool2d
# from timm.models.layers.attention_pool2d import (
# AttentionPool2d as AbsAttentionPool2d,
# )
except ImportError as e:
timm = None
class TimmModel(nn.Module):
"""timm model adapter
# FIXME this adapter is a work in progress, may change in ways that break weight compat
"""
def __init__(
self,
model_name,
embed_dim,
image_size=224,
pool="avg",
proj="linear",
drop=0.0,
pretrained=False,
):
super().__init__()
if timm is None:
raise RuntimeError("Please `pip install timm` to use timm models.")
self.image_size = to_2tuple(image_size)
self.trunk = timm.create_model(model_name, pretrained=pretrained)
feat_size = self.trunk.default_cfg.get("pool_size", None)
feature_ndim = 1 if not feat_size else 2
if pool in ("abs_attn", "rot_attn"):
assert feature_ndim == 2
# if attn pooling used, remove both classifier and default pool
self.trunk.reset_classifier(0, global_pool="")
else:
# reset global pool if pool config set, otherwise leave as network default
reset_kwargs = dict(global_pool=pool) if pool else {}
self.trunk.reset_classifier(0, **reset_kwargs)
prev_chs = self.trunk.num_features
head_layers = OrderedDict()
if pool == "abs_attn":
head_layers["pool"] = AttentionPool2d(
prev_chs, feat_size=feat_size, out_features=embed_dim
)
prev_chs = embed_dim
elif pool == "rot_attn":
head_layers["pool"] = RotAttentionPool2d(prev_chs, out_features=embed_dim)
prev_chs = embed_dim
else:
assert proj, "projection layer needed if non-attention pooling is used."
# NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used
if proj == "linear":
head_layers["drop"] = nn.Dropout(drop)
head_layers["proj"] = nn.Linear(prev_chs, embed_dim)
elif proj == "mlp":
head_layers["mlp"] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=drop)
self.head = nn.Sequential(head_layers)
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
"""lock modules
Args:
unlocked_groups (int): leave last n layer groups unlocked (default: 0)
"""
if not unlocked_groups:
# lock full model
for param in self.trunk.parameters():
param.requires_grad = False
if freeze_bn_stats:
freeze_batch_norm_2d(self.trunk)
else:
# NOTE: partial freeze requires latest timm (master) branch and is subject to change
try:
# FIXME import here until API stable and in an official release
from timm.models.helpers import group_modules, group_parameters
except ImportError:
raise RuntimeError(
"Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`"
)
matcher = self.trunk.group_matcher()
gparams = group_parameters(self.trunk, matcher)
max_layer_id = max(gparams.keys())
max_layer_id = max_layer_id - unlocked_groups
for group_idx in range(max_layer_id + 1):
group = gparams[group_idx]
for param in group:
self.trunk.get_parameter(param).requires_grad = False
if freeze_bn_stats:
gmodules = group_modules(self.trunk, matcher, reverse=True)
gmodules = {k for k, v in gmodules.items() if v <= max_layer_id}
freeze_batch_norm_2d(self.trunk, gmodules)
def forward(self, x):
x = self.trunk(x)
x = self.head(x)
return x
class RotAttentionPool2d(nn.Module):
"""Attention based 2D feature pooling w/ rotary (relative) pos embedding.
This is a multi-head attention based replacement for (spatial) average pooling in NN architectures.
Adapted from the AttentionPool2d in CLIP w/ rotary embedding instead of learned embed.
https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py
NOTE: While this impl does not require a fixed feature size, performance at differeing resolutions from
train varies widely and falls off dramatically. I'm not sure if there is a way around this... -RW
"""
def __init__(
self,
in_features: int,
out_features: int = None,
embed_dim: int = None,
num_heads: int = 4,
qkv_bias: bool = True,
):
super().__init__()
embed_dim = embed_dim or in_features
out_features = out_features or in_features
self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias)
self.proj = nn.Linear(embed_dim, out_features)
self.num_heads = num_heads
assert embed_dim % num_heads == 0
self.head_dim = embed_dim // num_heads
self.scale = self.head_dim**-0.5
self.pos_embed = RotaryEmbedding(self.head_dim)
trunc_normal_(self.qkv.weight, std=in_features**-0.5)
nn.init.zeros_(self.qkv.bias)
def forward(self, x):
B, _, H, W = x.shape
N = H * W
x = x.reshape(B, -1, N).permute(0, 2, 1)
x = torch.cat([x.mean(1, keepdim=True), x], dim=1)
x = (
self.qkv(x)
.reshape(B, N + 1, 3, self.num_heads, self.head_dim)
.permute(2, 0, 3, 1, 4)
)
q, k, v = x[0], x[1], x[2]
qc, q = q[:, :, :1], q[:, :, 1:]
sin_emb, cos_emb = self.pos_embed.get_embed((H, W))
q = apply_rot_embed(q, sin_emb, cos_emb)
q = torch.cat([qc, q], dim=2)
kc, k = k[:, :, :1], k[:, :, 1:]
k = apply_rot_embed(k, sin_emb, cos_emb)
k = torch.cat([kc, k], dim=2)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, N + 1, -1)
x = self.proj(x)
return x[:, 0]
class AttentionPool2d(nn.Module):
"""Attention based 2D feature pooling w/ learned (absolute) pos embedding.
This is a multi-head attention based replacement for (spatial) average pooling in NN architectures.
It was based on impl in CLIP by OpenAI
https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py
NOTE: This requires feature size upon construction and well prevent adaptive sizing of the network.
"""
def __init__(
self,
in_features: int,
feat_size: Union[int, Tuple[int, int]],
out_features: int = None,
embed_dim: int = None,
num_heads: int = 4,
qkv_bias: bool = True,
):
super().__init__()
embed_dim = embed_dim or in_features
out_features = out_features or in_features
assert embed_dim % num_heads == 0
self.feat_size = to_2tuple(feat_size)
self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias)
self.proj = nn.Linear(embed_dim, out_features)
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.scale = self.head_dim**-0.5
spatial_dim = self.feat_size[0] * self.feat_size[1]
self.pos_embed = nn.Parameter(torch.zeros(spatial_dim + 1, in_features))
trunc_normal_(self.pos_embed, std=in_features**-0.5)
trunc_normal_(self.qkv.weight, std=in_features**-0.5)
nn.init.zeros_(self.qkv.bias)
def forward(self, x):
B, _, H, W = x.shape
N = H * W
assert self.feat_size[0] == H
assert self.feat_size[1] == W
x = x.reshape(B, -1, N).permute(0, 2, 1)
x = torch.cat([x.mean(1, keepdim=True), x], dim=1)
x = x + self.pos_embed.unsqueeze(0).to(x.dtype)
x = (
self.qkv(x)
.reshape(B, N + 1, 3, self.num_heads, self.head_dim)
.permute(2, 0, 3, 1, 4)
)
q, k, v = x[0], x[1], x[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, N + 1, -1)
x = self.proj(x)
return x[:, 0]
def pixel_freq_bands(
num_bands: int,
max_freq: float = 224.0,
linear_bands: bool = True,
dtype: torch.dtype = torch.float32,
device: Optional[torch.device] = None,
):
if linear_bands:
bands = torch.linspace(1.0, max_freq / 2, num_bands, dtype=dtype, device=device)
else:
bands = 2 ** torch.linspace(
0, math.log(max_freq, 2) - 1, num_bands, dtype=dtype, device=device
)
return bands * torch.pi
def inv_freq_bands(
num_bands: int,
temperature: float = 100000.0,
step: int = 2,
dtype: torch.dtype = torch.float32,
device: Optional[torch.device] = None,
) -> torch.Tensor:
inv_freq = 1.0 / (
temperature
** (torch.arange(0, num_bands, step, dtype=dtype, device=device) / num_bands)
)
return inv_freq
def build_sincos2d_pos_embed(
feat_shape: List[int],
dim: int = 64,
temperature: float = 10000.0,
reverse_coord: bool = False,
interleave_sin_cos: bool = False,
dtype: torch.dtype = torch.float32,
device: Optional[torch.device] = None,
) -> torch.Tensor:
"""
Args:
feat_shape:
dim:
temperature:
reverse_coord: stack grid order W, H instead of H, W
interleave_sin_cos: sin, cos, sin, cos stack instead of sin, sin, cos, cos
dtype:
device:
Returns:
"""
assert (
dim % 4 == 0
), "Embed dimension must be divisible by 4 for sin-cos 2D position embedding"
pos_dim = dim // 4
bands = inv_freq_bands(
pos_dim, temperature=temperature, step=1, dtype=dtype, device=device
)
if reverse_coord:
feat_shape = feat_shape[::-1] # stack W, H instead of H, W
grid = (
torch.stack(
torch.meshgrid(
[torch.arange(s, device=device, dtype=dtype) for s in feat_shape]
)
)
.flatten(1)
.transpose(0, 1)
)
pos2 = grid.unsqueeze(-1) * bands.unsqueeze(0)
# FIXME add support for unflattened spatial dim?
stack_dim = (
2 if interleave_sin_cos else 1
) # stack sin, cos, sin, cos instead of sin sin cos cos
pos_emb = torch.stack([torch.sin(pos2), torch.cos(pos2)], dim=stack_dim).flatten(1)
return pos_emb
def build_fourier_pos_embed(
feat_shape: List[int],
bands: Optional[torch.Tensor] = None,
num_bands: int = 64,
max_res: int = 224,
linear_bands: bool = False,
include_grid: bool = False,
concat_out: bool = True,
in_pixels: bool = True,
dtype: torch.dtype = torch.float32,
device: Optional[torch.device] = None,
) -> List[torch.Tensor]:
if bands is None:
if in_pixels:
bands = pixel_freq_bands(
num_bands,
float(max_res),
linear_bands=linear_bands,
dtype=dtype,
device=device,
)
else:
bands = inv_freq_bands(num_bands, step=1, dtype=dtype, device=device)
else:
if device is None:
device = bands.device
if dtype is None:
dtype = bands.dtype
if in_pixels:
grid = torch.stack(
torch.meshgrid(
[
torch.linspace(-1.0, 1.0, steps=s, device=device, dtype=dtype)
for s in feat_shape
]
),
dim=-1,
)
else:
grid = torch.stack(
torch.meshgrid(
[torch.arange(s, device=device, dtype=dtype) for s in feat_shape]
),
dim=-1,
)
grid = grid.unsqueeze(-1)
pos = grid * bands
pos_sin, pos_cos = pos.sin(), pos.cos()
out = (grid, pos_sin, pos_cos) if include_grid else (pos_sin, pos_cos)
# FIXME torchscript doesn't like multiple return types, probably need to always cat?
if concat_out:
out = torch.cat(out, dim=-1)
return out
class FourierEmbed(nn.Module):
def __init__(
self,
max_res: int = 224,
num_bands: int = 64,
concat_grid=True,
keep_spatial=False,
):
super().__init__()
self.max_res = max_res
self.num_bands = num_bands
self.concat_grid = concat_grid
self.keep_spatial = keep_spatial
self.register_buffer(
"bands", pixel_freq_bands(max_res, num_bands), persistent=False
)
def forward(self, x):
B, C = x.shape[:2]
feat_shape = x.shape[2:]
emb = build_fourier_pos_embed(
feat_shape,
self.bands,
include_grid=self.concat_grid,
dtype=x.dtype,
device=x.device,
)
emb = emb.transpose(-1, -2).flatten(len(feat_shape))
batch_expand = (B,) + (-1,) * (x.ndim - 1)
# FIXME support nD
if self.keep_spatial:
x = torch.cat(
[x, emb.unsqueeze(0).expand(batch_expand).permute(0, 3, 1, 2)], dim=1
)
else:
x = torch.cat(
[x.permute(0, 2, 3, 1), emb.unsqueeze(0).expand(batch_expand)], dim=-1
)
x = x.reshape(B, feat_shape.numel(), -1)
return x
def rot(x):
return torch.stack([-x[..., 1::2], x[..., ::2]], -1).reshape(x.shape)
def apply_rot_embed(x: torch.Tensor, sin_emb, cos_emb):
return x * cos_emb + rot(x) * sin_emb
def apply_rot_embed_list(x: List[torch.Tensor], sin_emb, cos_emb):
if isinstance(x, torch.Tensor):
x = [x]
return [t * cos_emb + rot(t) * sin_emb for t in x]
def apply_rot_embed_split(x: torch.Tensor, emb):
split = emb.shape[-1] // 2
return x * emb[:, :split] + rot(x) * emb[:, split:]
def build_rotary_pos_embed(
feat_shape: List[int],
bands: Optional[torch.Tensor] = None,
dim: int = 64,
max_freq: float = 224,
linear_bands: bool = False,
dtype: torch.dtype = torch.float32,
device: Optional[torch.device] = None,
):
"""
NOTE: shape arg should include spatial dim only
"""
feat_shape = torch.Size(feat_shape)
sin_emb, cos_emb = build_fourier_pos_embed(
feat_shape,
bands=bands,
num_bands=dim // 4,
max_res=max_freq,
linear_bands=linear_bands,
concat_out=False,
device=device,
dtype=dtype,
)
N = feat_shape.numel()
sin_emb = sin_emb.reshape(N, -1).repeat_interleave(2, -1)
cos_emb = cos_emb.reshape(N, -1).repeat_interleave(2, -1)
return sin_emb, cos_emb
class RotaryEmbedding(nn.Module):
"""Rotary position embedding
NOTE: This is my initial attempt at impl rotary embedding for spatial use, it has not
been well tested, and will likely change. It will be moved to its own file.
The following impl/resources were referenced for this impl:
* https://github.com/lucidrains/vit-pytorch/blob/6f3a5fcf0bca1c5ec33a35ef48d97213709df4ba/vit_pytorch/rvt.py
* https://blog.eleuther.ai/rotary-embeddings/
"""
def __init__(self, dim, max_res=224, linear_bands: bool = False):
super().__init__()
self.dim = dim
self.register_buffer(
"bands",
pixel_freq_bands(dim // 4, max_res, linear_bands=linear_bands),
persistent=False,
)
def get_embed(self, shape: List[int]):
return build_rotary_pos_embed(shape, self.bands)
def forward(self, x):
# assuming channel-first tensor where spatial dim are >= 2
sin_emb, cos_emb = self.get_embed(x.shape[2:])
return apply_rot_embed(x, sin_emb, cos_emb)
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2,
)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.0))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
BaseModelOutputWithPoolingAndCrossAttentions,
ModelOutput,
)
@dataclass
class AlproSimilarity(ModelOutput):
sim_v2t: torch.FloatTensor = None
sim_t2v: torch.FloatTensor = None
sim_v2t_targets: Optional[torch.FloatTensor] = None
sim_t2v_targets: Optional[torch.FloatTensor] = None
@dataclass
class AlproIntermediateOutput(ModelOutput):
# uni-modal features
video_embeds: torch.FloatTensor = None
text_embeds: Optional[torch.FloatTensor] = None
# intermediate outputs of multimodal encoder
encoder_output: Optional[BaseModelOutputWithPoolingAndCrossAttentions] = None
encoder_output_neg: Optional[BaseModelOutputWithPoolingAndCrossAttentions] = None
vtm_logits: Optional[torch.FloatTensor] = None
vtm_labels: Optional[torch.LongTensor] = None
@dataclass
class AlproOutput(ModelOutput):
# some finetuned models (e.g. BlipVQA) do not compute similarity, thus optional.
sims: Optional[AlproSimilarity] = None
intermediate_output: AlproIntermediateOutput = None
loss: Optional[torch.FloatTensor] = None
loss_vtc: Optional[torch.FloatTensor] = None
loss_vtm: Optional[torch.FloatTensor] = None
loss_mlm: Optional[torch.FloatTensor] = None
@dataclass
class AlproOutputWithLogits(AlproOutput):
logits: torch.FloatTensor = None
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class AlproBase(BaseModel):
@classmethod
def init_tokenizer(cls):
return BertTokenizer.from_pretrained("bert-base-uncased")
def load_from_pretrained(self, url_or_filename, num_frames, num_patches):
if is_url(url_or_filename):
cached_file = download_cached_file(
url_or_filename, check_hash=False, progress=True
)
checkpoint = torch.load(cached_file, map_location="cpu")
elif os.path.isfile(url_or_filename):
checkpoint = torch.load(url_or_filename, map_location="cpu")
else:
raise RuntimeError("checkpoint url or path is invalid")
if "model" in checkpoint:
state_dict = checkpoint["model"]
else:
state_dict = checkpoint
for key in list(state_dict.keys()):
if "bert" in key:
new_key = key.replace("bert.", "")
state_dict[new_key] = state_dict[key]
del state_dict[key]
spatial_embed_key = "visual_encoder.model.pos_embed"
temporal_embed_key = "visual_encoder.model.time_embed"
## Resizing spatial embeddings in case they don't match
if num_patches + 1 != state_dict[spatial_embed_key].size(1):
state_dict[spatial_embed_key] = resize_spatial_embedding(
state_dict, spatial_embed_key, num_patches
)
else:
logging.info(
"The length of spatial position embedding matches. No need to resize."
)
## Resizing time embeddings in case they don't match
if temporal_embed_key in state_dict and num_frames != state_dict[
temporal_embed_key
].size(1):
state_dict[temporal_embed_key] = resize_temporal_embedding(
state_dict, temporal_embed_key, num_frames
)
else:
logging.info(
"No temporal encoding found. Or the length of temporal position embedding matches. No need to resize."
)
msg = self.load_state_dict(state_dict, strict=False)
logging.info("Missing keys {}".format(msg.missing_keys))
logging.info("load checkpoint from %s" % url_or_filename)
return msg
def resize_spatial_embedding(state_dict, key, num_patches):
logging.info(
f"Resizing spatial position embedding from {state_dict[key].size(1)} to {num_patches + 1}"
)
pos_embed = state_dict[key]
cls_pos_embed = pos_embed[0, 0, :].unsqueeze(0).unsqueeze(1)
other_pos_embed = pos_embed[0, 1:, :].unsqueeze(0).transpose(1, 2)
new_pos_embed = F.interpolate(other_pos_embed, size=(num_patches), mode="nearest")
new_pos_embed = new_pos_embed.transpose(1, 2)
new_pos_embed = torch.cat((cls_pos_embed, new_pos_embed), 1)
return new_pos_embed
def resize_temporal_embedding(state_dict, key, num_frames):
logging.info(
f"Resizing temporal position embedding from {state_dict[key].size(1)} to {num_frames}"
)
time_embed = state_dict[key].transpose(1, 2)
new_time_embed = F.interpolate(time_embed, size=(num_frames), mode="nearest")
return new_time_embed.transpose(1, 2)
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
@registry.register_model("alpro_retrieval")
class AlproRetrieval(AlproBase):
PRETRAINED_MODEL_CONFIG_DICT = {
"msrvtt": "configs/models/alpro_retrieval_msrvtt.yaml",
"didemo": "configs/models/alpro_retrieval_didemo.yaml",
}
def __init__(
self,
visual_encoder,
text_encoder,
vision_width=768,
text_width=768,
embed_dim=256,
max_txt_len=35,
temp=0.07,
):
super().__init__()
self.temp = nn.Parameter(torch.ones([]) * temp)
self.tokenizer = self.init_tokenizer()
self.visual_encoder = visual_encoder
self.text_encoder = text_encoder
vision_width = vision_width
text_width = text_width
self.vision_proj = nn.Linear(vision_width, embed_dim)
self.text_proj = nn.Linear(text_width, embed_dim)
self.itm_head = nn.Linear(text_width, 2)
self.max_txt_len = max_txt_len
def forward(self, samples):
with torch.no_grad():
self.temp.clamp_(0.001, 0.5)
visual_inputs = samples["video"]
caption = samples["text_input"]
b, t, c, h, w = visual_inputs.shape
# forward text
text = self.tokenizer(
caption,
padding="max_length",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(self.device)
text_output = self.text_encoder.forward_text(
text,
token_type_ids=torch.zeros(
text.input_ids.shape, dtype=torch.long, device=self.device
),
)
text_embeds = text_output.last_hidden_state
text_feat = F.normalize(self.text_proj(text_embeds[:, 0, :]), dim=-1)
# forward visual
# timeSformer asks for (b, c, t, h, w) as input.
video_embeds = self.visual_encoder.forward_features(visual_inputs)
video_feat = F.normalize(self.vision_proj(video_embeds[:, 0, :]), dim=-1)
video_atts = torch.ones(video_embeds.size()[:-1], dtype=torch.long).to(
self.device
)
# ========== (in-batch) ITC loss ==========
gathered_video_feats = all_gather_with_grad(video_feat)
gathered_text_feats = all_gather_with_grad(text_feat)
sim_v2t = video_feat @ gathered_text_feats.t() / self.temp
sim_t2v = text_feat @ gathered_video_feats.t() / self.temp
sim_targets = torch.zeros_like(sim_v2t)
local_rank = get_rank()
b_start, b_end = b * local_rank, b * (local_rank + 1)
sim_targets[:, b_start:b_end] = torch.eye(b)
loss_v2t = -torch.sum(F.log_softmax(sim_v2t, dim=1) * sim_targets, dim=1).mean()
loss_t2v = -torch.sum(F.log_softmax(sim_t2v, dim=1) * sim_targets, dim=1).mean()
vtc_loss = (loss_v2t + loss_t2v) / 2
(
vtm_loss,
vtm_logits,
vtm_labels,
encoder_output,
encoder_output_neg,
) = self.compute_vtm(
text_embeds=text_embeds,
text_atts=text.attention_mask,
image_embeds=video_embeds,
image_atts=video_atts,
sim_i2t=sim_v2t.clone(), # for hard mining
sim_t2i=sim_t2v.clone(), # for hard mining
)
loss = vtc_loss + vtm_loss
# return {"loss": loss}
return AlproOutput(
loss=loss,
loss_vtc=vtc_loss,
loss_vtm=vtm_loss,
intermediate_output=AlproIntermediateOutput(
video_embeds=video_embeds,
text_embeds=text_embeds,
encoder_output=encoder_output,
encoder_output_neg=encoder_output_neg,
vtm_logits=vtm_logits,
vtm_labels=vtm_labels,
),
)
def compute_vtm(
self, text_embeds, text_atts, image_embeds, image_atts, sim_i2t, sim_t2i
):
device = self.device
# ====== positive pairs =======
attention_mask = torch.cat([text_atts, image_atts], dim=1)
embedding_output_pos = torch.cat([text_embeds, image_embeds], dim=1)
encoder_outputs_pos = self.text_encoder(
encoder_embeds=embedding_output_pos,
attention_mask=attention_mask,
return_dict=True,
mode="fusion",
)
# ====== negative pairs =======
bs = text_embeds.shape[0]
local_rank = get_rank()
b_start, b_end = bs * local_rank, bs * (local_rank + 1)
with torch.no_grad():
weights_v2t = sim_i2t[:, b_start:b_end]
weights_t2v = sim_t2i[:, b_start:b_end]
# never select self as negative
weights_v2t.fill_diagonal_(-np.Inf)
weights_t2v.fill_diagonal_(-np.Inf)
weights_v2t = F.softmax(weights_v2t, dim=1)
weights_t2v = F.softmax(weights_t2v, dim=1)
# select a negative image for each text
# FIXME to optimize using indexing operations
image_embeds_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_t2v[b], 1).item()
image_embeds_neg.append(image_embeds[neg_idx])
image_embeds_neg = torch.stack(image_embeds_neg, dim=0)
# select a negative text for each image
text_embeds_neg = []
text_atts_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_v2t[b], 1).item()
text_embeds_neg.append(text_embeds[neg_idx])
text_atts_neg.append(text_atts[neg_idx])
text_embeds_neg = torch.stack(text_embeds_neg, dim=0)
text_atts_neg = torch.stack(text_atts_neg, dim=0)
text_embeds_all = torch.cat([text_embeds, text_embeds_neg], dim=0)
text_atts_all = torch.cat([text_atts, text_atts_neg], dim=0)
video_embeds_all = torch.cat([image_embeds_neg, image_embeds], dim=0)
video_atts_all = torch.cat([image_atts, image_atts], dim=0)
attention_mask_all = torch.cat([text_atts_all, video_atts_all], dim=1)
embedding_output_all = torch.cat([text_embeds_all, video_embeds_all], dim=1)
# forward negative pairs via cross encoder
encoder_outputs_neg = self.text_encoder(
encoder_embeds=embedding_output_all,
attention_mask=attention_mask_all,
return_dict=True,
mode="fusion",
)
vl_embeddings = torch.cat(
[
encoder_outputs_pos.last_hidden_state[:, 0, :],
encoder_outputs_neg.last_hidden_state[:, 0, :],
],
dim=0,
)
vtm_logits = self.itm_head(vl_embeddings)
vtm_labels = torch.cat(
[torch.ones(bs, dtype=torch.long), torch.zeros(2 * bs, dtype=torch.long)],
dim=0,
).to(device)
vtm_loss = F.cross_entropy(vtm_logits, vtm_labels)
return (
vtm_loss,
vtm_logits,
vtm_labels,
encoder_outputs_pos,
encoder_outputs_neg,
)
def compute_sim_matrix(self, data_loader, task_cfg):
k_test = task_cfg.get("k_test")
metric_logger = MetricLogger(delimiter=" ")
header = "Evaluation:"
logging.info("Computing features for evaluation...")
start_time = time.time()
texts = data_loader.dataset.text
num_text = len(texts)
text_bs = 256
text_ids = []
text_embeds = []
text_feats = []
text_atts = []
for i in range(0, num_text, text_bs):
text = texts[i : min(num_text, i + text_bs)]
text_input = self.tokenizer(
text,
padding="max_length",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(self.device)
text_output = self.text_encoder.forward_text(
text_input,
token_type_ids=torch.zeros(
text_input.input_ids.shape, dtype=torch.long, device=self.device
),
)
text_feats.append(text_output.last_hidden_state.cpu())
text_embed = F.normalize(
self.text_proj(text_output.last_hidden_state[:, 0, :])
)
text_embeds.append(text_embed)
text_ids.append(text_input.input_ids)
text_atts.append(text_input.attention_mask)
text_embeds = torch.cat(text_embeds, dim=0)
text_ids = torch.cat(text_ids, dim=0)
text_atts = torch.cat(text_atts, dim=0)
text_feats = torch.cat(text_feats, dim=0)
video_feats = []
video_embeds = []
for samples in data_loader:
video = samples["video"]
video = video.to(self.device)
video_feat = self.visual_encoder.forward_features(video)
video_embed = self.vision_proj(video_feat[:, 0, :])
video_embed = F.normalize(video_embed, dim=-1)
video_feats.append(video_feat.cpu())
video_embeds.append(video_embed)
video_feats = torch.cat(video_feats, dim=0)
video_embeds = torch.cat(video_embeds, dim=0)
sims_matrix = video_embeds @ text_embeds.t()
score_matrix_v2t = torch.full(
(len(data_loader.dataset.image), len(texts)), -100.0
).to(self.device)
num_tasks = dist_utils.get_world_size()
rank = dist_utils.get_rank()
step = sims_matrix.size(0) // num_tasks + 1
start = rank * step
end = min(sims_matrix.size(0), start + step)
# video-to-text
for i, sims in enumerate(
metric_logger.log_every(sims_matrix[start:end], 50, header)
):
topk_sim, topk_idx = sims.topk(k=k_test, dim=0)
video_feats_repeat = (
video_feats[start + i].repeat(k_test, 1, 1).to(self.device)
)
video_atts_repeat = torch.ones(
video_feats_repeat.size()[:-1], dtype=torch.long
).to(self.device)
attention_mask = torch.cat([text_atts[topk_idx], video_atts_repeat], dim=1)
embedding_output = torch.cat(
[text_feats[topk_idx].to(self.device), video_feats_repeat], dim=1
)
output = self.text_encoder(
encoder_embeds=embedding_output,
attention_mask=attention_mask,
return_dict=True,
mode="fusion",
)
score = self.itm_head(output.last_hidden_state[:, 0, :])[:, 1]
score_matrix_v2t[start + i, topk_idx] = score + topk_sim
# text-to-video
sims_matrix = sims_matrix.t()
score_matrix_t2v = torch.full(
(len(texts), len(data_loader.dataset.image)), -100.0
).to(self.device)
step = sims_matrix.size(0) // num_tasks + 1
start = rank * step
end = min(sims_matrix.size(0), start + step)
for i, sims in enumerate(
metric_logger.log_every(sims_matrix[start:end], 50, header)
):
topk_sim, topk_idx = sims.topk(k=k_test, dim=0)
text_feats_repeat = (
text_feats[start + i].repeat(k_test, 1, 1).to(self.device)
)
text_atts_repeat = text_atts[start + i].repeat(k_test, 1).to(self.device)
video_atts = torch.ones(
video_feats[topk_idx].size()[:-1], dtype=torch.long
).to(self.device)
embedding_output = torch.cat(
[text_feats_repeat, video_feats[topk_idx].to(self.device)], dim=1
)
attention_mask = torch.cat([text_atts_repeat, video_atts], dim=1)
output = self.text_encoder(
encoder_embeds=embedding_output,
attention_mask=attention_mask,
return_dict=True,
mode="fusion",
)
score = self.itm_head(output.last_hidden_state[:, 0, :])[:, 1]
score_matrix_t2v[start + i, topk_idx] = score + topk_sim
if dist_utils.is_dist_avail_and_initialized():
dist.barrier()
torch.distributed.all_reduce(
score_matrix_v2t, op=torch.distributed.ReduceOp.SUM
)
torch.distributed.all_reduce(
score_matrix_t2v, op=torch.distributed.ReduceOp.SUM
)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logging.info("Evaluation time {}".format(total_time_str))
return score_matrix_v2t.cpu().numpy(), score_matrix_t2v.cpu().numpy()
@classmethod
def from_config(cls, cfg):
# vision encoder
visual_encoder_config = node_to_dict(cfg.timesformer)
visual_encoder = TimeSformer(**visual_encoder_config)
# text encoder
text_encoder = XBertEncoder.from_config(cfg)
max_txt_len = cfg.get("max_txt_len", 35)
model = cls(
visual_encoder=visual_encoder,
text_encoder=text_encoder,
max_txt_len=max_txt_len,
)
num_patches = (
visual_encoder_config["image_size"] // visual_encoder_config["patch_size"]
) ** 2
num_frames = visual_encoder_config["n_frms"]
model.load_checkpoint_from_config(
cfg, num_frames=num_frames, num_patches=num_patches
)
return model
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
AlproIntermediateOutput,
AlproOutputWithLogits,
)
@registry.register_model("alpro_qa")
class AlproQA(AlproBase):
PRETRAINED_MODEL_CONFIG_DICT = {
"msrvtt": "configs/models/alpro_qa_msrvtt.yaml",
"msvd": "configs/models/alpro_qa_msvd.yaml",
}
def __init__(
self, visual_encoder, text_encoder, hidden_size, num_classes, max_txt_len=40
):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.visual_encoder = visual_encoder
self.text_encoder = text_encoder
if num_classes > 0:
self.classifier = nn.Sequential(
nn.Linear(hidden_size, hidden_size * 2),
nn.ReLU(True),
nn.Linear(hidden_size * 2, num_classes),
)
else:
warn(f"num_classes is 0. Initialized {type(self)} without classifier.")
self.max_txt_len = max_txt_len
def forward(self, samples, is_train=True):
visual_inputs = samples["video"]
question = samples["text_input"]
targets = samples["answers"]
# forward text
text = self.tokenizer(
question,
padding="max_length",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(self.device)
text_output = self.text_encoder.forward_text(
text,
token_type_ids=torch.zeros(
text.input_ids.shape, dtype=torch.long, device=self.device
),
)
text_embeds = text_output.last_hidden_state
# forward visual
# timeSformer asks for (b, c, t, h, w) as input.
video_embeds = self.visual_encoder.forward_features(visual_inputs)
video_atts = torch.ones(video_embeds.size()[:-1], dtype=torch.long).to(
self.device
)
# forward cross-encoder
attention_mask = torch.cat([text.attention_mask, video_atts], dim=1)
embedding_output = torch.cat([text_embeds, video_embeds], dim=1)
encoder_output = self.text_encoder(
encoder_embeds=embedding_output,
attention_mask=attention_mask,
return_dict=True,
mode="fusion",
)
prediction = self.classifier(encoder_output.last_hidden_state[:, 0, :])
if is_train:
loss = F.cross_entropy(prediction, targets)
# return {"loss": loss}
return AlproOutputWithLogits(
loss=loss,
intermediate_output=AlproIntermediateOutput(
video_embeds=video_embeds,
text_embeds=text_embeds,
encoder_output=encoder_output,
),
logits=prediction,
)
else:
return {"predictions": prediction, "targets": targets}
def predict(self, samples):
output = self.forward(samples, is_train=False)
return output
@classmethod
def from_config(cls, cfg):
# vision encoder
visual_encoder_config = node_to_dict(cfg.timesformer)
visual_encoder = TimeSformer(**visual_encoder_config)
# text encoder
text_encoder = XBertEncoder.from_config(cfg)
num_classes = cfg.get("num_classes", -1)
hidden_size = cfg.get("hidden_size", 768)
model = cls(
visual_encoder=visual_encoder,
text_encoder=text_encoder,
hidden_size=hidden_size,
num_classes=num_classes,
)
num_patches = (
visual_encoder_config["image_size"] // visual_encoder_config["patch_size"]
) ** 2
num_frames = visual_encoder_config["n_frms"]
model.load_checkpoint_from_config(
cfg, num_frames=num_frames, num_patches=num_patches
)
return model
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
def _is_tensor_video_clip(clip):
if not torch.is_tensor(clip):
raise TypeError("clip should be Tensor. Got %s" % type(clip))
if not clip.ndimension() == 4:
raise ValueError("clip should be 4D. Got %dD" % clip.dim())
return True
def crop(clip, i, j, h, w):
"""
Args:
clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W)
"""
if len(clip.size()) != 4:
raise ValueError("clip should be a 4D tensor")
return clip[..., i : i + h, j : j + w]
def resize(clip, target_size, interpolation_mode):
if len(target_size) != 2:
raise ValueError(
f"target size should be tuple (height, width), instead got {target_size}"
)
return torch.nn.functional.interpolate(
clip, size=target_size, mode=interpolation_mode, align_corners=False
)
def resized_crop(clip, i, j, h, w, size, interpolation_mode="bilinear"):
"""
Do spatial cropping and resizing to the video clip
Args:
clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W)
i (int): i in (i,j) i.e coordinates of the upper left corner.
j (int): j in (i,j) i.e coordinates of the upper left corner.
h (int): Height of the cropped region.
w (int): Width of the cropped region.
size (tuple(int, int)): height and width of resized clip
Returns:
clip (torch.tensor): Resized and cropped clip. Size is (C, T, H, W)
"""
if not _is_tensor_video_clip(clip):
raise ValueError("clip should be a 4D torch.tensor")
clip = crop(clip, i, j, h, w)
clip = resize(clip, size, interpolation_mode)
return clip
def center_crop(clip, crop_size):
if not _is_tensor_video_clip(clip):
raise ValueError("clip should be a 4D torch.tensor")
h, w = clip.size(-2), clip.size(-1)
th, tw = crop_size
if h < th or w < tw:
raise ValueError("height and width must be no smaller than crop_size")
i = int(round((h - th) / 2.0))
j = int(round((w - tw) / 2.0))
return crop(clip, i, j, th, tw)
def to_tensor(clip):
"""
Convert tensor data type from uint8 to float, divide value by 255.0 and
permute the dimensions of clip tensor
Args:
clip (torch.tensor, dtype=torch.uint8): Size is (T, H, W, C)
Return:
clip (torch.tensor, dtype=torch.float): Size is (C, T, H, W)
"""
_is_tensor_video_clip(clip)
if not clip.dtype == torch.uint8:
raise TypeError(
"clip tensor should have data type uint8. Got %s" % str(clip.dtype)
)
return clip.float().permute(3, 0, 1, 2) / 255.0
def normalize(clip, mean, std, inplace=False):
"""
Args:
clip (torch.tensor): Video clip to be normalized. Size is (C, T, H, W)
mean (tuple): pixel RGB mean. Size is (3)
std (tuple): pixel standard deviation. Size is (3)
Returns:
normalized clip (torch.tensor): Size is (C, T, H, W)
"""
if not _is_tensor_video_clip(clip):
raise ValueError("clip should be a 4D torch.tensor")
if not inplace:
clip = clip.clone()
mean = torch.as_tensor(mean, dtype=clip.dtype, device=clip.device)
std = torch.as_tensor(std, dtype=clip.dtype, device=clip.device)
clip.sub_(mean[:, None, None, None]).div_(std[:, None, None, None])
return clip
def hflip(clip):
"""
Args:
clip (torch.tensor): Video clip to be normalized. Size is (C, T, H, W)
Returns:
flipped clip (torch.tensor): Size is (C, T, H, W)
"""
if not _is_tensor_video_clip(clip):
raise ValueError("clip should be a 4D torch.tensor")
return clip.flip(-1)
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class BlipImageBaseProcessor(BaseProcessor):
def __init__(self, mean=None, std=None):
if mean is None:
mean = (0.48145466, 0.4578275, 0.40821073)
if std is None:
std = (0.26862954, 0.26130258, 0.27577711)
self.normalize = transforms.Normalize(mean, std)
@registry.register_processor("blip_caption")
class BlipCaptionProcessor(BaseProcessor):
def __init__(self, prompt="", max_words=50):
self.prompt = prompt
self.max_words = max_words
def __call__(self, caption):
caption = self.prompt + self.pre_caption(caption)
return caption
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
prompt = cfg.get("prompt", "")
max_words = cfg.get("max_words", 50)
return cls(prompt=prompt, max_words=max_words)
def pre_caption(self, caption):
caption = re.sub(
r"([.!\"()*#:;~])",
" ",
caption.lower(),
)
caption = re.sub(
r"\s{2,}",
" ",
caption,
)
caption = caption.rstrip("\n")
caption = caption.strip(" ")
# truncate caption
caption_words = caption.split(" ")
if len(caption_words) > self.max_words:
caption = " ".join(caption_words[: self.max_words])
return caption
@registry.register_processor("blip_question")
class BlipQuestionProcessor(BaseProcessor):
def __init__(self, max_words=50):
self.max_words = max_words
def __call__(self, question):
return self.pre_question(question)
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
max_words = cfg.get("max_words", 50)
return cls(max_words=max_words)
def pre_question(self, question):
question = re.sub(
r"([.!\"()*#:;~])",
"",
question.lower(),
)
question = question.rstrip(" ")
# truncate question
question_words = question.split(" ")
if len(question_words) > self.max_words:
question = " ".join(question_words[: self.max_words])
return question
@registry.register_processor("blip_image_train")
class BlipImageTrainProcessor(BlipImageBaseProcessor):
def __init__(
self, image_size=384, mean=None, std=None, min_scale=0.5, max_scale=1.0
):
super().__init__(mean=mean, std=std)
self.transform = transforms.Compose(
[
transforms.RandomResizedCrop(
image_size,
scale=(min_scale, max_scale),
interpolation=InterpolationMode.BICUBIC,
),
transforms.RandomHorizontalFlip(),
RandomAugment(
2,
5,
isPIL=True,
augs=[
"Identity",
"AutoContrast",
"Brightness",
"Sharpness",
"Equalize",
"ShearX",
"ShearY",
"TranslateX",
"TranslateY",
"Rotate",
],
),
transforms.ToTensor(),
self.normalize,
]
)
def __call__(self, item):
return self.transform(item)
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
image_size = cfg.get("image_size", 384)
mean = cfg.get("mean", None)
std = cfg.get("std", None)
min_scale = cfg.get("min_scale", 0.5)
max_scale = cfg.get("max_scale", 1.0)
return cls(
image_size=image_size,
mean=mean,
std=std,
min_scale=min_scale,
max_scale=max_scale,
)
@registry.register_processor("blip_image_eval")
class BlipImageEvalProcessor(BlipImageBaseProcessor):
def __init__(self, image_size=384, mean=None, std=None):
super().__init__(mean=mean, std=std)
self.transform = transforms.Compose(
[
transforms.Resize(
(image_size, image_size), interpolation=InterpolationMode.BICUBIC
),
transforms.ToTensor(),
self.normalize,
]
)
def __call__(self, item):
return self.transform(item)
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
image_size = cfg.get("image_size", 384)
mean = cfg.get("mean", None)
std = cfg.get("std", None)
return cls(image_size=image_size, mean=mean, std=std)
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
def _convert_to_rgb(image):
return image.convert("RGB")
@registry.register_processor("clip_image_train")
class ClipImageTrainProcessor(BlipImageBaseProcessor):
def __init__(
self, image_size=224, mean=None, std=None, min_scale=0.9, max_scale=1.0
):
super().__init__(mean=mean, std=std)
self.transform = transforms.Compose(
[
transforms.RandomResizedCrop(
image_size,
scale=(min_scale, max_scale),
interpolation=InterpolationMode.BICUBIC,
),
_convert_to_rgb,
transforms.ToTensor(),
self.normalize,
]
)
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
image_size = cfg.get("image_size", 224)
mean = cfg.get("mean", None)
std = cfg.get("std", None)
min_scale = cfg.get("min_scale", 0.9)
max_scale = cfg.get("max_scale", 1.0)
return cls(
image_size=image_size,
mean=mean,
std=std,
min_scale=min_scale,
max_scale=max_scale,
)
@registry.register_processor("clip_image_eval")
class ClipImageEvalProcessor(BlipImageBaseProcessor):
def __init__(self, image_size=224, mean=None, std=None):
super().__init__(mean=mean, std=std)
self.transform = transforms.Compose(
[
transforms.Resize(image_size, interpolation=InterpolationMode.BICUBIC),
transforms.CenterCrop(image_size),
_convert_to_rgb,
transforms.ToTensor(),
self.normalize,
]
)
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
image_size = cfg.get("image_size", 224)
mean = cfg.get("mean", None)
std = cfg.get("std", None)
return cls(
image_size=image_size,
mean=mean,
std=std,
)
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
MAX_INT = registry.get("MAX_INT")
class AlproVideoBaseProcessor(BaseProcessor):
def __init__(self, mean=None, std=None, n_frms=MAX_INT):
if mean is None:
mean = (0.48145466, 0.4578275, 0.40821073)
if std is None:
std = (0.26862954, 0.26130258, 0.27577711)
self.normalize = transforms_video.NormalizeVideo(mean, std)
self.n_frms = n_frms
class ToUint8(object):
def __init__(self):
pass
def __call__(self, tensor):
return tensor.to(torch.uint8)
def __repr__(self):
return self.__class__.__name__
class ToTHWC(object):
"""
Args:
clip (torch.tensor, dtype=torch.uint8): Size is (C, T, H, W)
Return:
clip (torch.tensor, dtype=torch.float): Size is (T, H, W, C)
"""
def __init__(self):
pass
def __call__(self, tensor):
return tensor.permute(1, 2, 3, 0)
def __repr__(self):
return self.__class__.__name__
class ResizeVideo(object):
def __init__(self, target_size, interpolation_mode="bilinear"):
self.target_size = target_size
self.interpolation_mode = interpolation_mode
def __call__(self, clip):
"""
Args:
clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W)
Returns:
torch.tensor: central cropping of video clip. Size is
(C, T, crop_size, crop_size)
"""
return F.resize(clip, self.target_size, self.interpolation_mode)
def __repr__(self):
return self.__class__.__name__ + "(resize_size={0})".format(self.target_size)
@registry.register_processor("alpro_video_train")
class AlproVideoTrainProcessor(AlproVideoBaseProcessor):
def __init__(
self,
image_size=384,
mean=None,
std=None,
min_scale=0.5,
max_scale=1.0,
n_frms=MAX_INT,
):
super().__init__(mean=mean, std=std, n_frms=n_frms)
self.image_size = image_size
self.transform = transforms.Compose(
[
# Video size is (C, T, H, W)
transforms_video.RandomResizedCropVideo(
image_size,
scale=(min_scale, max_scale),
interpolation_mode="bicubic",
),
transforms_video.RandomHorizontalFlipVideo(),
ToTHWC(), # C, T, H, W -> T, H, W, C
VideoRandomAugment(
2,
5,
augs=[
"Identity",
"AutoContrast",
"Brightness",
"Sharpness",
"Equalize",
"ShearX",
"ShearY",
"TranslateX",
"TranslateY",
"Rotate",
],
),
ToUint8(),
transforms_video.ToTensorVideo(), # T, H, W, C -> C, T, H, W
self.normalize,
]
)
def __call__(self, vpath):
"""
Args:
clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W)
Returns:
torch.tensor: video clip after transforms. Size is (C, T, size, size).
"""
clip = load_video(
video_path=vpath,
n_frms=self.n_frms,
height=self.image_size,
width=self.image_size,
sampling="headtail",
)
return self.transform(clip)
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
image_size = cfg.get("image_size", 256)
mean = cfg.get("mean", None)
std = cfg.get("std", None)
min_scale = cfg.get("min_scale", 0.5)
max_scale = cfg.get("max_scale", 1.0)
n_frms = cfg.get("n_frms", MAX_INT)
return cls(
image_size=image_size,
mean=mean,
std=std,
min_scale=min_scale,
max_scale=max_scale,
n_frms=n_frms,
)
@registry.register_processor("alpro_video_eval")
class AlproVideoEvalProcessor(AlproVideoBaseProcessor):
def __init__(self, image_size=256, mean=None, std=None, n_frms=MAX_INT):
super().__init__(mean=mean, std=std, n_frms=n_frms)
self.image_size = image_size
# Input video size is (C, T, H, W)
self.transform = transforms.Compose(
[
# frames will be resized during decord loading.
ToUint8(), # C, T, H, W
ToTHWC(), # T, H, W, C
transforms_video.ToTensorVideo(), # C, T, H, W
self.normalize, # C, T, H, W
]
)
def __call__(self, vpath):
"""
Args:
clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W)
Returns:
torch.tensor: video clip after transforms. Size is (C, T, size, size).
"""
clip = load_video(
video_path=vpath,
n_frms=self.n_frms,
height=self.image_size,
width=self.image_size,
)
return self.transform(clip)
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
image_size = cfg.get("image_size", 256)
mean = cfg.get("mean", None)
std = cfg.get("std", None)
n_frms = cfg.get("n_frms", MAX_INT)
return cls(image_size=image_size, mean=mean, std=std, n_frms=n_frms)
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
AlproVideoTrainProcessor,
AlproVideoEvalProcessor,
)
BlipImageTrainProcessor,
BlipImageEvalProcessor,
BlipCaptionProcessor,
)
GPTVideoFeatureProcessor,
GPTDialogueProcessor,
)
__all__ = [
"BaseProcessor",
# ALPRO
"AlproVideoTrainProcessor",
"AlproVideoEvalProcessor",
# BLIP
"BlipImageTrainProcessor",
"BlipImageEvalProcessor",
"BlipCaptionProcessor",
"ClipImageTrainProcessor",
# GPT
"GPTVideoFeatureProcessor",
"GPTDialogueProcessor",
]
def load_processor(name, cfg=None):
"""
Example
>>> processor = load_processor("alpro_video_train", cfg=None)
"""
processor = registry.get_processor_class(name).from_config(cfg)
return processor
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
SPECIAL_TOKENS_DICT = {
"bos_token": "<bos>",
"eos_token": "<eos>",
"additional_special_tokens": ["<speaker1>", "<speaker2>", "<video>", "<cap>"],
"pad_token": "<pad>",
}
SPECIAL_TOKENS = [
"<bos>",
"<eos>",
"<speaker1>",
"<speaker2>",
"<cap>",
"<video>",
"<pad>",
]
class GPTVideoFeatureBaseProcessor(BaseProcessor):
def __init__(self, visual_ft=["i3d_rgb"], audio_ft=["vggish"]):
self.visual_ft = visual_ft
self.audio_ft = audio_ft
@registry.register_processor("gpt_dialogue")
class GPTDialogueProcessor(BaseProcessor):
def __init__(self, max_turns=3, use_caption=True):
self.max_turns = max_turns
self.use_caption = use_caption
self.tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
self.tokenizer.add_special_tokens(SPECIAL_TOKENS_DICT)
def sample_sequence(self, caption, history, answer):
bos, eos, speaker1, speaker2, cap = self.tokenizer.convert_tokens_to_ids(
SPECIAL_TOKENS[:-2]
)
instance = {}
sequence = [caption] + history + [answer]
sequence = [s + [eos] for s in sequence]
instance["input_ids"] = list(chain(*sequence))
instance["token_type_ids"] = [cap] * len(sequence[0]) + [
speaker2 if i % 2 else speaker1
for i, s in enumerate(sequence[1:])
for _ in s
]
instance["labels"] = ([-1] * sum(len(s) for s in sequence[:-1])) + sequence[-1]
assert len(instance["input_ids"]) == len(instance["token_type_ids"])
assert len(instance["token_type_ids"]) == len(instance["labels"])
for k, v in instance.items():
instance[k] = torch.Tensor(v).long()
return instance
def padding(self, seq, pad_token=-1):
if pad_token == -1:
pad_token = self.tokenizer.pad_token_id
padded_seq = torch.nn.utils.rnn.pad_sequence(
seq, batch_first=True, padding_value=pad_token
)
return padded_seq
def get_attention_mask(self, seq, pad_token=-1):
if pad_token == -1:
pad_token = self.tokenizer.pad_token_id
return seq != pad_token
def __call__(self, ann):
if self.use_caption:
caption = " ".join([ann["caption"], ann["summary"]])
caption = self.tokenizer.encode(caption)
else:
caption = []
dial_history = []
for turn in ann["dialog"][-self.max_turns :]:
dial_history.append(turn["question"])
dial_history.append(turn["answer"])
dial_history.append(ann["question"])
dial_history = [self.tokenizer.encode(t) for t in dial_history]
answer = self.tokenizer.encode(ann["answer"])
item = self.sample_sequence(caption, dial_history, answer)
return item
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
use_caption = cfg.get("use_caption", True)
max_turns = cfg.get("max_turns", 3)
return cls(max_turns=max_turns, use_caption=use_caption)
@registry.register_processor("gpt_video_ft")
class GPTVideoFeatureProcessor(GPTVideoFeatureBaseProcessor):
def __init__(self, visual_ft, audio_ft):
super().__init__(visual_ft, audio_ft)
self.tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
self.tokenizer.add_special_tokens(SPECIAL_TOKENS_DICT)
def padding(self, seq):
padded_seq = torch.nn.utils.rnn.pad_sequence(
seq, batch_first=True, padding_value=1.0
)
return padded_seq
def get_attention_mask(self, seq):
return torch.sum(seq != 1, dim=2) != 0
def __call__(self, ft_root, vname):
all_ft = []
for ft_name in self.visual_ft:
ft_path = os.path.join(ft_root, ft_name, vname)
all_ft.append(np.load(ft_path + ".npy"))
for ft_name in self.audio_ft:
ft_path = os.path.join(ft_root, ft_name, vname)
all_ft.append(np.load(ft_path + ".npy"))
min_len = min([len(ft) for ft in all_ft])
# TODO: use other sampling method (e.g. uniform sampling)
sampled_ft = [ft[:min_len] for ft in all_ft]
sampled_ft = np.concatenate(sampled_ft, axis=1)
item = {}
item["video_fts"] = torch.Tensor(sampled_ft)
video_type_token = self.tokenizer.convert_tokens_to_ids("<video>")
item["token_type_ids"] = torch.Tensor(
[video_type_token] * len(sampled_ft)
).long()
return item
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
visual_ft = cfg.get("visual_ft", ["i3d_rgb"])
audio_ft = cfg.get("audio_ft", ["vggish"])
return cls(visual_ft=visual_ft, audio_ft=audio_ft)
|
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
class BaseProcessor:
def __init__(self):
self.transform = lambda x: x
return
def __call__(self, item):
return self.transform(item)
@classmethod
def from_config(cls, cfg=None):
return cls()
def build(self, **kwargs):
cfg = OmegaConf.create(kwargs)
return self.from_config(cfg)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.