seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
20445647795
import os import importlib.util import time print("Checking Dependencies") if importlib.util.find_spec("tkinter") is None: print("tkinter NOT INSTALLED,RUN pip install tkinter") os.system("pause") exit() print("Dependencies OK") time.sleep(5.5) from os import path from tkinter import filedialog from tkinter import * root = Tk() root.withdraw() print("Select Source Folder") Source_Path = filedialog.askdirectory() print("Source Path : ",Source_Path) print("Select Destination Path") Destination = filedialog.askdirectory() print("Destination Path : ",Destination) fileprfx = input("File Prefix :") filetype = input("File Type (ex .doc .exe .png) :") def main(): for count, filename in enumerate(os.listdir(Source_Path)): dst = fileprfx + " " + str(count) + filetype # rename all the files os.rename(os.path.join(Source_Path, filename), os.path.join(Destination, dst)) # Driver Code if __name__ == '__main__': main()
JohnavonVincentius/FileRename
filerename.py
filerename.py
py
1,010
python
en
code
0
github-code
6
43219185037
#!/usr/bin/env python from storytext import applicationEvent import time, signal, sys def handleSignal(signum, *args): sys.stderr.write("Got signal " + repr(signum) + "\n") signal.signal(signal.SIGQUIT, handleSignal) signal.signal(signal.SIGINT, handleSignal) time.sleep(0.5) applicationEvent("nothing to happen") applicationEvent("first sleep to complete", "first", delayLevel=1) time.sleep(5) time.sleep(0.5) applicationEvent("second sleep to complete", "second") time.sleep(5)
texttest/storytext-selftest
console/appevent_delayed/target_ui.py
target_ui.py
py
488
python
en
code
0
github-code
6
8400225965
# Importamos tkinter from tkinter import * # Cargamos el modulo de Imagenes Pillow Python from PIL import Image, ImageTk # Creamos la ventana raiz ventana = Tk() ventana.title("Imagenes | Curso de master en Python") ventana.geometry("700x500") Label(ventana, text="Hola!!, Soy Lcdo. José Fernando Frugone Jaramillo").pack(anchor=CENTER) dibujo = Image.open("./21-tkinter/imagenes/leon.jpg") render = ImageTk.PhotoImage(dibujo) Label(ventana, image=render).pack(anchor=CENTER) ventana.mainloop()
jfrugone1970/tkinter_python2020
21-tkinter/03-imagenes.py
03-imagenes.py
py
500
python
es
code
1
github-code
6
11783428086
# coding: utf-8 # In[1]: #get_ipython().system(u'jupyter nbconvert --to script lstm_model.ipynb') import os import sys import time import pandas as pd import datetime #import pandas.io.data as web from pandas_datareader import data import matplotlib.pyplot as plt from matplotlib import style import glob import numpy as np from keras.models import Sequential, load_model from keras.layers import Dense, Dropout from keras.layers import Activation, LSTM from keras.utils import plot_model from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error from math import sqrt from keras.callbacks import EarlyStopping #import load_data # fix random seed for reproducibility np.random.seed(7) # In[2]: days_for_prediction = 30 source_dir='../data/samples' models_dir = '../models/lstm/' supervised_data_dir = '../data/samples2' prediction_data_dir = '../data/prediction/samples' rmse_csv = '../data/rsme_ltsm.csv' # # Build train and test datasets # In[3]: # frame a sequence as a supervised learning problem def to_supervised(df, lag, org_col_name='Adj Close', new_col_name='Adj Close+'): # new_col_name's data is created by shifting values from org_col_name df[new_col_name] = df.shift(-lag)[org_col_name] # Remove the last lag rows df = df.head(len(df) - lag) df.fillna(0, inplace=True) return df def create_supervised_filename(directory, ticker): return os.path.join(directory, ticker + "_supervised.csv") def create_supervised_data(source_dir, dest_dir, days_for_prediction=30, new_col_name = 'Adj Close+'): ''' Input: - source_dir: directory where the stock price CSVs are located - days_for_prediction: number of days for the prediction prices. Must be at least 30 days Description: Read csv files in source_dir, load into dataframes and split into X_train, Y_train, X_test, Y_test ''' #assert (days_for_prediction >= 30), "days_for_prediction must be >= 30" csv_file_pattern = os.path.join(source_dir, "*.csv") csv_files = glob.glob(csv_file_pattern) dfs = {} for filename in csv_files: arr = filename.split('/') ticker = arr[-1].split('.')[0] new_file = create_supervised_filename(dest_dir, ticker) #print(ticker, df.head()) # Date, Open, High , Low , Close, Adj Close, Volume #df = pd.read_csv(filename, parse_dates=[0]) #index_col='Date') # Open, High , Low , Close, Adj Close, Volume df = pd.read_csv(filename, index_col='Date') #print('Before\n', df[30:40]) #print(df.shift(2)['Adj Close'].head()) df = to_supervised(df, days_for_prediction, new_col_name=new_col_name) df.to_csv(new_file) #print('Adding new column...\n', df[['Adj Close', new_col_name]].head(days_for_prediction+1)) #print('After\n', df.tail()) dfs[ticker] = df print(ticker, filename, new_file) return dfs # # Use LSTM model for each stock # In[4]: dfs = create_supervised_data(source_dir=source_dir, dest_dir=supervised_data_dir, days_for_prediction=days_for_prediction) # In[5]: def create_lstm_model(max_features, lstm_units): model = Sequential() #model.add(LSTM(neurons, input_shape=(None, X_train.shape[1]), return_sequences=True)) #, dropout=0.2)) #model.add(LSTM(max_features, batch_input_shape=(batch_size, None, train_X[i].shape[1]), dropout=0.2, stateful=True)) #model.add(LSTM(1, input_shape=(max_features,1), return_sequences=True, dropout=0.2)) #model.add(LSTM(max_features, return_sequences=False, dropout=0.2)) #model.add(LSTM(input_dim=max_features, output_dim=300, return_sequences=True)) model.add(LSTM(units=lstm_units[0], input_shape=(None, max_features), return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM(lstm_units[1], return_sequences=False)) model.add(Dropout(0.2)) #model.add(Dense(1)) #, activation='sigmoid')) model.add(Dense(1, activation='linear')) #model.compile(loss='mse', optimizer='rmsprop') #model.compile(loss='binary_crossentropy',optimizer='rmsprop', metrics=['accuracy']) #model.compile(loss='mean_squared_error', optimizer='adam') model.compile(loss='mse', optimizer='rmsprop', metrics=['accuracy']) return model # In[6]: ''' def create_train_test(data): X,y = data[:,0:-1], data[:, -1] # Transform scale X_scaler = MinMaxScaler(feature_range=(-1, 1)) y_scaler = MinMaxScaler(feature_range=(-1, 1)) scaled_X = X_scaler.fit_transform(X) scaled_y = y_scaler.fit_transform(y) print(scaled_y) # Now split 80/20 for train and test data #train_count = int(.8*len(data)) # last test_days is for test; the rest is for train test_days = 90 train_count = len(data) - test_days X_train, X_test = scaled_X[:train_count], scaled_X[train_count:] y_train, y_test = scaled_y[:train_count], scaled_y[train_count:] return y_scaler, X_train, y_train, X_test, y_test ''' def create_train_test2(data): #X,y = data[:,0:-1], data[:, -1] # Transform scale scaler = MinMaxScaler(feature_range=(-1, 1)) scaled_data = scaler.fit_transform(data) # Now split 80/20 for train and test data #train_count = int(.8*len(data)) # last test_days is for test; the rest is for train test_days = 90 train_count = len(data) - test_days train, test = scaled_data[:train_count], scaled_data[train_count:] X_train, y_train = train[:,0:-1], train[:, -1] X_test, y_test = test[:,0:-1], test[:, -1] return scaler, X_train, y_train, X_test, y_test def build_models(models_dir, supervised_data_dir, lstm_units): # Define early stopping early_stopping = EarlyStopping(monitor='val_loss', patience=2) #value=0.00001 rmse_list = list() models = {} predicted_dfs = {} ''' load supervised data create and save models ''' csv_file_pattern = os.path.join(supervised_data_dir, "*.csv") csv_files = glob.glob(csv_file_pattern) dfs = {} print_first_model=True for filename in csv_files: data = pd.read_csv(filename, index_col='Date') #print(data.head()) arr = filename.split('/') ticker = arr[-1].split('.')[0].split('_')[0] print('Processing', ticker) max_features = len(data.columns) -1 #y_scaler, X_train, y_train, X_test, y_test = create_train_test(data.values) scaler, X_train, y_train, X_test, y_test = create_train_test2(data.values) model = create_lstm_model(max_features, lstm_units) #plot_model(model, to_file=ticker + '.png', show_shapes=True, show_layer_names=True) if print_first_model: print(model.summary()) print_first_model = False # Train data x1 = np.reshape(X_train, (X_train.shape[0], 1, X_train.shape[1])) y1 = np.reshape(y_train, (y_train.shape[0], 1)) print(x1.shape, y1.shape) # Test data x2 = np.reshape(X_test, (X_test.shape[0], 1, X_test.shape[1])) y2 = np.reshape(y_test, (y_test.shape[0], 1)) #model.fit(x, y, batch_size=100, epochs=5, shuffle=True) print('Training...') #model.fit(x1, y1, batch_size=50, epochs=20, verbose=1, validation_split=0.2, callbacks=[early_stopping]) # Note: Early stopping seems to give worse prediction?!! We want overfitting here? model.fit(x1, y1, batch_size=5, epochs=20, verbose=1, validation_data=(x2, y2)) #, callbacks=[early_stopping]) model_fname = os.path.join(models_dir, ticker + ".h5") print('Saving model to', model_fname) model.save(model_fname) # In[ ]: # inverse scaling for a forecasted value def invert_scale(scaler, X, value): new_row = np.column_stack((X,value)) #[x for x in X] + [value] inverted = scaler.inverse_transform(new_row) return inverted[:, -1] ''' Predict and evaluate test data ''' def predict_evaluate(models_dir, supervised_data_dir, predicted_dir, rsme_csv): model_file_pattern = os.path.join(models_dir, "*.h5") model_files = glob.glob(model_file_pattern) predicted_dfs = {} rmse_list = list() print(model_file_pattern) for model_file in model_files: print('loading', model_file) arr = model_file.split('/') ticker = arr[-1].split('.')[0] ''' Read supervised data and set up test data for prediction ''' supervised_filename = create_supervised_filename(supervised_data_dir, ticker) data = pd.read_csv(supervised_filename, index_col='Date') scaler, X_train, y_train, X_test, y_test = create_train_test2(data.values) # Test data x2 = np.reshape(X_test, (X_test.shape[0], 1, X_test.shape[1])) y2 = np.reshape(y_test, (y_test.shape[0], 1)) print('Predicting...') model = load_model(model_file) predicted = model.predict(x2) predict_inversed = invert_scale(scaler, X_test, predicted) actual_inversed = invert_scale(scaler, X_test, y_test) rmse = sqrt(mean_squared_error(actual_inversed, predict_inversed)) print('Test RMSE: %.3f' % rmse) rmse_list += [[ticker,rmse]] predicted_dfs[ticker] = pd.DataFrame({'predicted': predict_inversed.reshape(len(predict_inversed)), 'actual': actual_inversed.reshape(len(actual_inversed))}) predicted_file = os.path.join(predicted_dir, ticker + "_predicted.csv") print("Writing to", predicted_file) predicted_dfs[ticker].to_csv(predicted_file, index=False) rmse_df = pd.DataFrame(rmse_list, columns=['Stock Model', 'rsme']) rmse_df = rmse_df.sort_values(by='rsme') rmse_df.to_csv(rsme_csv, index=False) return predicted_dfs, rmse_df # In[ ]: build_models(models_dir, supervised_data_dir, lstm_units=[40,10]) # In[ ]: predicted_dfs, rmse_df = predict_evaluate(models_dir, supervised_data_dir, prediction_data_dir, rmse_csv) # In[ ]: rmse_df # In[ ]: # Plot stocks based on rmse order (best -> worst) #cnt = 0 #for index, row in rmse_df.iterrows(): # key = row['Stock Model'] # predicted_dfs[key].plot(title=key + ': predicted vs actual') # plt.show() # In[ ]: ''' cnt = 1 for index, row in rmse_df.iterrows(): key = row['Stock Model'] if (cnt % 2 != 0): fig, axes = plt.subplots(nrows=1, ncols=2) ax=axes[0] else: ax=axes[1] predicted_dfs[key].plot(title=key + ': price vs days', figsize=(15,4), ax=ax) cnt += 1 plt.show() ''' # In[ ]:
thongnbui/MIDS_capstone
code/lstm_model.py
lstm_model.py
py
10,757
python
en
code
0
github-code
6
14019383059
# Standard Library Imports import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt import seaborn as sns def mae(actual, preds): #INPUT: #actual - numpy array or pd series of actual y values #preds - numpy array or pd series of predicted y values #OUTPUT: #returns the mean absolute error as a float return np.sum(np.abs(actual-preds))/len(actual) def mse(actual, preds): #INPUT: #actual - numpy array or pd series of actual y values #preds - numpy array or pd series of predicted y values #OUTPUT: #returns the mean squared error as a float return np.sum((actual-preds)**2)/len(actual) def print_metrics(y_true, preds, model_name=None): #INPUT: #y_true - the y values that are actually true in the dataset (numpy array or pandas series) #preds - the predictions for those values from some model (numpy array or pandas series) #model_name - (str - optional) a name associated with the model if you would like to add it to the print statements #OUTPUT: #None - prints the mse, mae, r2 if model_name == None: print(mse(y_true, preds)) print(mae(y_true, preds)) print(r2(y_true, preds)) print('\n\n') else: print(mse(y_true, preds)) print(mae(y_true, preds)) print(r2(y_true, preds)) print('\n\n') def r2(actual, preds): ''' INPUT: actual - numpy array or pd series of actual y values preds - numpy array or pd series of predicted y values OUTPUT: returns the r-squared score as a float ''' sse = np.sum((actual-preds)**2) sst = np.sum((actual-np.mean(actual))**2) return 1 - sse/sst
tomgoral/Udacity_ML_Engineer_Nanodegree
3_capstone/utilities/print_metrics.py
print_metrics.py
py
1,738
python
en
code
0
github-code
6
29827950852
import featureEngineering import progress def get_classifier_score(classifier, settings={}) -> (float, float): tbl = featureEngineering.get_featured_data_frame(settings) train_data, test_data, train_survived_data, test_survived_data = featureEngineering.split_data_frame(tbl) classifier.fit(train_data, train_survived_data.values.ravel()) score_train = classifier.score(train_data, train_survived_data) score_test = classifier.score(test_data, test_survived_data) return score_train, score_test def find_best_classifier_score(classifier, base_settings={}) -> (float, dict): variations_count = featureEngineering.get_settings_variations_count() attempt_count = 10 progress_log = progress.Progress(variations_count * attempt_count) results = list() for settings_seed in range(0, variations_count): settings = base_settings | featureEngineering.get_settings_variation(settings_seed) avg_test_score = get_avg_test_score(classifier, settings, attempt_count, progress_log) results.append((avg_test_score, settings)) best_settings = get_best_settings(results) return results[0][0], best_settings def get_avg_test_score(classifier, settings, attempt_count, progress_log) -> float: tbl = featureEngineering.get_featured_data_frame(settings) sum_test_score = 0 for attempt in range(0, attempt_count): train_data, test_data, train_survived_data, test_survived_data = featureEngineering.split_data_frame(tbl) classifier.fit(train_data, train_survived_data.values.ravel()) score_test = classifier.score(test_data, test_survived_data) sum_test_score += score_test progress_log.log() avg_test_score = sum_test_score / attempt_count return avg_test_score def get_best_settings(results) -> object: results.sort(key=lambda x: x[0], reverse=True) low_test_score = results[0][0] * 0.95 results = list(filter(lambda x: x[0] >= low_test_score, results)) settings = featureEngineering.get_settings_variation(0) for setting_key in settings: true_count = 0 false_count = 0 for result in results: if result[1][setting_key]: true_count += 1 else: false_count += 1 settings[setting_key] = true_count >= false_count return settings
AliakseiDudko/PythonMachineLearning
solution.py
solution.py
py
2,370
python
en
code
0
github-code
6
8954419715
import requests,urllib import os,sys,re,zipfile,shutil,io from bs4 import BeautifulSoup cwd = os.getcwd() # taking the movie input movie_name = [s for s in re.split("[^0-9a-zA-Z]",input("enter the movie name : \n"))] movie_name = list(filter(lambda a: a != '', movie_name)) m1 = ' '.join(map(str,movie_name)) encodings = [] while len(encodings) == 0: encodings = [s.lower() for s in re.split("[^0-9a-zA-Z]",input("enter the storage format (eg.720p,bluray,brrip,xvid,hdtv etc) (must) \n"))] if len(encodings) == 0 : print("You must enter some encoding format") encodings = list(filter(lambda a: a != '', encodings)) m2 = ' '.join(map(str,encodings)) m1 = m1 + ' ' + m2 print("you have searched for \n",m1) search_string = m1.split() #search_string ''' Preparing the query ''' search_url = "https://subscene.com/subtitles/title?q=" search_url += search_string[0] for words in search_string[1:]: search_url += ("+" + words) search_url += "&l=" print(search_url) r = requests.get(search_url) soup = BeautifulSoup(r.content,"lxml") #print(soup) subs = soup.find_all("td", class_ = "a1") #print(subs) for elements in range(len(subs)) : res = subs[elements].find_all("span", class_="l r positive-icon") s = str(res) m = re.search('English',s) if m : target = subs[elements] t = target.find("a") download_link = t['href'] break # download that link r1 = requests.get("https://subscene.com" + download_link) soup = BeautifulSoup(r1.content,"lxml") download = soup.find_all('a',attrs={'id':'downloadButton'})[0].get("href") #print(download) r2 = requests.get("http://subscene.com" + download) download_link = r2.url #print(r2.encoding) #print(file_path) f = requests.get(download_link) zipped = zipfile.ZipFile(io.BytesIO(f.content)) zipped.extractall() print("subtitles downloaded succesfully")
styx97/movie_subs
movie_subs.py
movie_subs.py
py
1,880
python
en
code
4
github-code
6
14524764116
import random from itertools import combinations from ltga.Mutation import Mutation class LTGA(object): def buildTree(self, distance): clusters = [(i,) for i in range(len(self.individuals[0].genes))] subtrees = [(i,) for i in range(len(self.individuals[0].genes))] random.shuffle(clusters) random.shuffle(subtrees) lookup = {} def allLowest(): minVal = 3 results = [] for c1, c2 in combinations(clusters, 2): result = distance(self.individuals, c1, c2, lookup) if result < minVal: minVal = result results = [(c1, c2)] if result == minVal: results.append((c1, c2)) return results while len(clusters) > 1: c1, c2 = random.choice(allLowest()) clusters.remove(c1) clusters.remove(c2) combined = c1 + c2 clusters.append(combined) if len(clusters) != 1: subtrees.append(combined) return subtrees def smallestFirst(self, subtrees): return sorted(subtrees, key=len) def generate(self, initialPopulation, evaluator, distanceFcn, crossoverFcn): self.individuals = initialPopulation distance = distanceFcn ordering = self.smallestFirst crossover = crossoverFcn beforeGenerationSet = set(self.individuals) while True: subtrees = self.buildTree(distance) masks = ordering(subtrees) generator = crossover(self.individuals, masks) individual = next(generator) while True: fitness = yield individual try: individual = generator.send(fitness) except StopIteration: break self.individuals = Mutation(evaluator).mutate(self.individuals) #If all individuals are identical currentSet = set(self.individuals) if (len(currentSet) == 1 or currentSet == beforeGenerationSet): break beforeGenerationSet = currentSet
Duzhinsky/scheduling
ltga/LTGA.py
LTGA.py
py
2,220
python
en
code
0
github-code
6
38199809243
import sys from PyQt5.QtWidgets import QMainWindow, QApplication, QDesktopWidget, QFileDialog from PyQt5.QtGui import QPalette, QColor import numpy as np from typing import * import json import qtmodern.styles import qtmodern.windows from MyModules.MyWindow import Ui_MainWindow from MyModules.Orbits import Satellite from MyModules.MPL3Dwidget import * class MainWindow(QMainWindow, Ui_MainWindow): def __init__(self, parent=None): super(MainWindow, self).__init__(parent) self.setupUi(self) self.center() # Create the matplotlib 3D plot self.plotCanvas = MplCanvas(self.plotWidget, width=5, height=5, dpi=100) self.toolbar = NavigationToolbar(self.plotCanvas, self.plotWidget) self.plotLayout.addWidget(self.plotCanvas) self.plotLayout.addWidget(self.toolbar) self.plotWidget.setLayout(self.plotLayout) # connect every slider to the function that handles the ploting sliders = [self.slider_MA, self.slider_AOP, self.slider_ECC, self.slider_INC, self.slider_LAN, self.slider_SMA] for slider in sliders: slider.sliderReleased.connect(self.slider_released) self.slider_released() # Initialize the plot self.actionExport_to_json.triggered.connect(lambda: self.export_to_json()) self.actionImport_from_json.triggered.connect(lambda: self.import_from_json()) self.planet_actions = [self.actionMercury, self.actionVenus, self.actionEarth, self.actionMars, self.actionJupiter, self.actionSaturn, self.actionUranus, self.actionNeptune, self.actionPluto] for act in self.planet_actions: act.triggered.connect(lambda: self.display_planets()) def center(self): """ This function centers the window at launch""" qr = self.frameGeometry() cp = QDesktopWidget().availableGeometry().center() qr.moveCenter(cp) self.move(qr.topLeft()) def slider_released(self): """ Triggered when a slider is released. Computes the new positions and plots the new graph""" pos = self.calculate_position(self.getSliderValues()) self.plot(pos) def plot(self, pos): """ Handles the ploting""" self.plotCanvas.axes.cla() self.plotCanvas.axes.plot(pos[:, 0], pos[:, 1], pos[:, 2], 'o', markersize=1) self.plotCanvas.axes.plot([0], [0], [0], 'o', color='yellow', markersize='10') self.plotCanvas.axes.mouse_init(rotate_btn=1, zoom_btn=3) set_axes_equal(self.plotCanvas.axes) self.plotCanvas.fig.set_facecolor(plot_background_color) self.plotCanvas.axes.patch.set_facecolor(plot_face_color) self.plotCanvas.draw() def getSliderValues(self) -> List[float]: """ Returns the current values displayed by the sliders""" return [float(self.slider_SMA.value()), float(self.slider_INC.value()), float(self.slider_ECC.value()) / 1e3, float(self.slider_LAN.value()), float(self.slider_AOP.value()), float(self.slider_MA.value())] def setSliderValues(self, values: Dict[str, float]): self.slider_SMA.setValue(int(values['SMA'])) self.slider_INC.setValue(int(values['INC'])) self.slider_ECC.setValue(int(values['ECC'] * 1e3)) self.slider_LAN.setValue(int(values['LAN'])) self.slider_AOP.setValue(int(values['AOP'])) self.slider_MA.setValue(int(values['MA'])) self.slider_released() def calculate_position(self, values: List[float]): obj = Satellite(*values) time = np.linspace(0, obj.T, 200) pos = obj.orbitalparam2vectorList(time) return pos def export_to_json(self): """Writes the current values of the sliders to a new JSON file""" file_name = self.FileDialog() with open(file_name, 'w') as f: keys = ["SMA", "INC", "ECC", "LAN", "AOP", "MA"] values = self.getSliderValues() json.dump(dict(zip(keys, values)), f) def import_from_json(self): file_name = self.FileDialog(save=False) with open(file_name, 'r') as f: content = json.load(f) self.setSliderValues(content) def FileDialog(self, save=True): options = QFileDialog.Options() options |= QFileDialog.DontUseNativeDialog if save: file_name, _ = QFileDialog.getSaveFileName( self, "Save as", "", "JSON Files (*.json)", options=options) else: file_name, _ = QFileDialog.getOpenFileName( self, "Open", "", "JSON Files (*.json)", options=options) if file_name != '': if not file_name.endswith('.json'): file_name += '.json' return file_name def display_planets(self): for planet in self.planet_actions: if planet.isChecked(): print('hello') if __name__ == "__main__": app = QApplication(sys.argv) app.setStyle("Fusion") dark_palette = QPalette() dark_palette.setColor(QPalette.Window, QColor(51, 54, 63)) dark_palette.setColor(QPalette.WindowText, QColor(250, 250, 250)) dark_palette.setColor(QPalette.Base, QColor(39, 42, 49)) dark_palette.setColor(QPalette.AlternateBase, QColor(51, 54, 63)) dark_palette.setColor(QPalette.ToolTipBase, QColor(250, 250, 250)) dark_palette.setColor(QPalette.ToolTipText, QColor(250, 250, 250)) dark_palette.setColor(QPalette.Text, QColor(250, 250, 250)) dark_palette.setColor(QPalette.Button, QColor(51, 54, 63)) dark_palette.setColor(QPalette.ButtonText, QColor(250, 250, 250)) dark_palette.setColor(QPalette.BrightText, QColor(255, 0, 0)) dark_palette.setColor(QPalette.Link, QColor(42, 130, 218)) dark_palette.setColor(QPalette.Highlight, QColor(42, 130, 218)) dark_palette.setColor(QPalette.HighlightedText, QColor(0, 0, 0)) app.setPalette(dark_palette) plot_background_color = (51/255, 54/255, 63/255) plot_face_color = (39/255, 42/255, 49/255) win = MainWindow() mw = qtmodern.windows.ModernWindow(win) mw.show() sys.exit(app.exec_())
Keith-Maxwell/OrbitViewer
OrbitViewer.py
OrbitViewer.py
py
6,219
python
en
code
0
github-code
6
13498241289
import numpy as np from edges import * def allVertexOneRings(V,F): E = edges(F) keys = np.array([]) values = np.array([]) keys = np.append(keys, E[:,0]) keys = np.append(keys, E[:,1]) values = np.append(values, E[:,1]) values = np.append(values, E[:,0]) faceDict = {} keys = keys.astype(int) values = values.astype(int) for ii in xrange(keys.shape[0]): faceDict.setdefault(keys[ii],[]).append(values[ii]) return faceDict.values() # return type is a list of list
oarriaga/PyGPToolbox
src/allVertexOneRings.py
allVertexOneRings.py
py
479
python
en
code
2
github-code
6
5229315790
from django.http import HttpResponsePermanentRedirect, HttpResponseGone def redirect_to(request, url, convert_funcs=None, **kwargs): """ A version of django.views.generic.simple.redirect_to which can handle argument conversion. The 'convert_funcs' parameter is a dictionary mapping 'kwargs' keys to a function. The 'kwargs' value is run through the function before the redirect is applied. Mostly, this is useful for converting a parameter to an int before passing it back to the redirect for formatting via %02d, for example. """ if not url: return HttpResponseGone() if convert_funcs: for name, fn in convert_funcs.items(): if name in kwargs: kwargs[name] = fn(kwargs[name]) return HttpResponsePermanentRedirect(url % kwargs)
gboue/django-util
django_util/view_utils.py
view_utils.py
py
819
python
en
code
2
github-code
6
2089542339
import IMP import IMP.pmi import IMP.pmi.macros import IMP.test import glob class Tests(IMP.test.TestCase): def test_analysis_replica_exchange(self): try: import matplotlib except ImportError: self.skipTest("no matplotlib package") if IMP.get_check_level() >= IMP.USAGE_AND_INTERNAL: self.skipTest("test too slow to run in debug mode") model=IMP.Model() sts=sorted(glob.glob(self.get_input_file_name("output_test/stat.0.out").replace(".0.",".*."))) are=IMP.pmi.macros.AnalysisReplicaExchange(model,sts,10) ch=IMP.pmi.tools.ColorHierarchy(are.stath1) are.set_alignment_selection(molecule="Rpb4") are.save_data() are.cluster(20) self.assertEqual(len(are),4) print(are) are.refine(40) print(are) self.assertEqual(len(are),2) dcr={"Rpb4":["Rpb4"],"Rpb7":["Rpb7"],"All":["Rpb4","Rpb7"]} for cluster in are: are.save_coordinates(cluster) ch.color_by_resid() #are.save_coordinates(cluster,rmf_name="resid."+str(cluster.cluster_id)+".rmf3") are.save_densities(cluster,dcr,prefix="densities_out/") are.compute_cluster_center(cluster) are.precision(cluster) for mol in ["Rpb4","Rpb7"]: rmsf=are.rmsf(cluster,mol) rs=[] rmsfs=[] for r in rmsf: rs.append(r) rmsfs.append(rmsf[r]) IMP.pmi.output.plot_xy_data(rs,rmsfs,out_fn=mol+"."+str(cluster.cluster_id)+".rmsf.pdf") ch.color_by_uncertainty() #are.save_coordinates(cluster,rmf_name="beta."+str(cluster.cluster_id)+".rmf3") ch.get_color_bar("colorbar.pdf") print(cluster) #for member in cluster: # print(member) are.contact_map(cluster) for c1 in are: for c2 in are: print(c1.cluster_id,c2.cluster_id,are.bipartite_precision(c1,c2)) are.apply_molecular_assignments(1) are.save_clusters() # read from data are=IMP.pmi.macros.AnalysisReplicaExchange(model,"data.pkl") # read clusters are.load_clusters("clusters.pkl") if __name__ == '__main__': IMP.test.main()
salilab/pmi
test/medium_test_analysis3.py
medium_test_analysis3.py
py
2,367
python
en
code
12
github-code
6
74575078906
from __future__ import print_function, unicode_literals from django.core.urlresolvers import reverse from cba import components from cba.base import CBAView class LinksRoot(components.Group): def init_components(self): self.initial_components = [ components.Group( css_class="ui form container mt", tag="div", initial_components=[ components.HTML(tag="h1", content="Links", css_class="mb"), components.HTML(tag="p", content="A normal, a disabled and hidden link.", css_class="mb"), components.Link(text="Link 1", href="."), components.Link(text="Link 2", href=".", disabled=True), components.Link(text="Link 3", href=".", displayed=False), ] ) ] class LinksView(CBAView): root = LinksRoot
diefenbach/cba-examples
cba_examples/views/links.py
links.py
py
907
python
en
code
0
github-code
6
19400757649
import os import sys import unittest import logging from datetime import datetime import json from flask import Flask, request from flask_restful import Resource import settings as CONST curpath = os.path.dirname(__file__) sys.path.append(os.path.abspath(os.path.join (curpath, "../"))) from app_models import Customer from app_utils import MongoRepository, DbEntity class CustomerAPI(Resource): def __init__(self): #Create and configure logger logfile= os.path.abspath("{0}/{1}".format(CONST.log_settings["log_folder"], CONST.log_settings["log_file"])) os.makedirs( os.path.dirname(logfile), exist_ok=True) logging.basicConfig( filename=logfile, format='%(asctime)s %(message)s', filemode='a' ) #Creating an object self.logger=logging.getLogger() #Setting the threshold of logger to DEBUG self.logger.setLevel(CONST.log_settings["log_level"]) self.entity = "customers" self.repo = MongoRepository(logger=self.logger, server=CONST.db_customer["url"], port=CONST.db_customer["port"], database=CONST.db_customer["db"], collection=self.entity, session_id=1) ########################################################################### # GET /customers # GET /customers/1 def get(self,id=None): ''' Used to read one records ''' if id: msg = 'Processing request to get {0} with id:{1}'.format(self.entity, id) self.logger.debug(msg) else: msg = 'Processing request to get all {0}'.format(self.entity) self.logger.debug(msg) try: if id: records = self.repo.find_by_id(id) else: records = [c for c in self.repo.fetchall()] return json.dumps(records), 200 except Exception as e: msg = 'Error in processing GET request.', str(e) self.logger.error(msg) return { 'status' : 'error' }, 500 ########################################################################### # POST /customers def post(self): ''' Used to create entity ''' self.logger.debug('Processing POST request') if not request.data: msg = "Request to create entity needs to come with form 'data' " self.logger.error(msg) return { 'status' : 'error', 'msg' : msg }, 400 try: entity = Customer( json=json.loads(request.data) ) wellformed, msg = entity.isValid() if not wellformed: self.logger.error(msg) return { 'status' : 'error', 'msg' : msg }, 400 result = self.repo.create(entity) return { 'status' : 'success' }, 200 except Exception as e: msg = 'Error in processing POST request.', str(e) self.logger.error(msg) return { 'status' : 'error' }, 500 ########################################################################### # PUT /customers/id def put(self, id=None): ''' Used for update ''' if (not id) or (not request.data): msg = "Request to update entity needs to come for a specific entity id and 'data' " self.logger.error(msg) return { 'status' : 'error', 'msg' : msg }, 400 msg = 'Processing request to update entity:{0} with id:{1}'.format(self.entity, id) try: entity = Customer( json=json.loads(request.data) ) wellformed, msg = entity.isValid() if not wellformed: self.logger.error(msg) return { 'status' : 'error', 'msg' : msg }, 400 result = self.repo.update_by_id(id,entity) return { 'status' : 'success' }, 200 except Exception as e: msg = 'Error in processing PUT request.', str(e) self.logger.error(msg) return { 'status' : 'error' }, 500 ########################################################################### # DELETE /customers/id def delete(self, id): ''' Used for update ''' msg = 'Processing request to delete entity:{0} with id:{1}'.format(self.entity, id) self.logger.debug(msg) try: result = self.repo.delete_by_id(id) return { 'status' : 'success' }, 200 except Exception as e: msg = 'Error in processing DELETE request.', str(e) self.logger.error(msg) return { 'status' : 'error' }, 500 ########################################################################### ###############################################################################
bbcCorp/py_microservices
src/flask_api_customers/customers.py
customers.py
py
5,316
python
en
code
1
github-code
6
37131397687
#!/usr/bin/env python #_*_coding:utf-8_*_ import re def checkFasta(fastas): status = True lenList = set() for i in fastas: lenList.add(len(i[1])) if len(lenList) == 1: return True else: return False def minSequenceLength(fastas): minLen = 10000 for i in fastas: if minLen > len(i[1]): minLen = len(i[1]) return minLen def minSequenceLengthWithNormalAA(fastas): minLen = 10000 for i in fastas: if minLen > len(re.sub('-', '', i[1])): minLen = len(re.sub('-', '', i[1])) return minLen
Superzchen/iFeature
codes/checkFasta.py
checkFasta.py
py
513
python
en
code
152
github-code
6
28493654402
from cProfile import label from tkinter import * import tkinter as tk import Calculos as Cal import numpy as np def fila_vacia(donde,cuantas,frame,tamaño): #Crear Filas Vacias for n in range (0,cuantas): fila = Label(frame,width=tamaño) fila.grid(column=0, row=donde+n) def columna_vacia(donde,cuantas,frame,tamano): #Crear Columnas Vacias for n in range (0,cuantas): blanco = Label(frame, width=tamano) blanco.grid(column=donde+n, row=0) def creacion(): #Creacion De Variables En Masa for n in range(1,16): for i in range(0,4): for j in range(0,4): globals()["arr"+str(n)+"_" + str(i) + str(j)]=StringVar() for n in range(2,5): for i in range(0,6): for j in range(0,int(12/n)): globals()["jaco" + str(n-1) + "_" + str(i) + str(j)]=StringVar() def matrices(m,f,k,frame): #Creación Matrices Cinemática Directa for r in range(0, 4): for c in range(0, 4): cell = tk.Label(frame, width=11, textvariable=globals()["arr" + str(m) + "_" + str(r) + str(c)], bg='white') cell.grid(row=r+f, column=c+k,ipady=3) def matrices_J(m,grados,frame,f,k): #Creación Matrices Jacobianos for r in range(0, 6): for c in range(0, grados): cell = Entry(frame, width=12, textvariable=globals()["jaco" + str(m) +"_" + str(r) + str(c)], state= DISABLED) cell.grid(row=r+f, column=c+k, ipady=4) def llenado (matri,M,K): #Llenado Matrices for n in range(M,K): for i in range(0,4): for j in range(0,4): globals()["arr"+ str(n) +"_" + str(i) + str(j)].set(matri[1][n-M][i][j]) globals()["arr"+ str(K) +"_"+ str(i) + str(j)].set(matri[0][i][j]) def llenado_JACO (JA,JS,JR): #Llenado Matrices JACO for n in range (3,5): s=n-1 if (s==1): J=JR elif (s==2): J=JS elif (s==3): J=JA for i in range(0,2): i=i*3 for j in range(0,int(12/n)): for k in range(0,3): globals()["jaco" + str(n-1) +"_" + str(i+k) + str(j)].set(J[i-2][j][k]) def Perfil(tipo,mani,codo,tf,xi,yi,zi,xf,yf,zf,resol,var): #Determinar el tipo de Perfil A Utilizar if tipo==1: #Perfil Cuadratico Qs=Manipulador(mani,codo,xi,yi,zi,xf,yf,zf) perfiles=Cal.Perf_Cuadra(tf,resol,Qs[0],Qs[1]) elif tipo==2: #Perfil Trapezoidal Tipo I Qs=Manipulador(mani,codo,xi,yi,zi,xf,yf,zf) perfiles=Cal.Perf_Trape(tf,resol,Qs[0],Qs[1],var,1) else: #Perfil Trapezoidal Tipo II Qs=Manipulador(mani,codo,xi,yi,zi,xf,yf,zf) perfiles=Cal.Perf_Trape(tf,resol,Qs[0],Qs[1],var,2) return perfiles def Manipulador(manipu,cod,Pxi,Pyi,Pzi,Pxf,Pyf,Pzf): #Determina el Manipulador a Utilizar if manipu==1: Inversai=Cal.IK_Scara_P3R(Pxi,Pyi,Pzi) #Cinematica Inversa para Punto Inicial Inversaf=Cal.IK_Scara_P3R(Pxf,Pyf,Pzf) #Cinematica Inversa para Punto Final Junturas=Solucion(cod,Inversai,Inversaf) else: Inversai=Cal.IK_Antropo_3R(Pxi,Pyi,Pzi) #Cinematica Inversa para Punto Inicial Inversaf=Cal.IK_Antropo_3R(Pxf,Pyf,Pzf) #Cinematica Inversa para Punto Final Junturas=Solucion(cod,Inversai,Inversaf) return Junturas def Solucion(sol,Ini,Fin): #Determina la Solución a utilizar (Codo Arriba o Codo Abajo) if sol==1: #Codo Abajo Qi=[Ini[0],Ini[1],Ini[2]] #Toma los valores de las junturas iniciales para Codo Abajo Qf=[Fin[0],Fin[1],Fin[2]] #Toma los valores de las junturas finales para Codo Abajo else: #Codo Arriba Qi=[Ini[0],Ini[3],Ini[4]] #Toma los valores de las junturas iniciales para Codo Arriba Qf=[Fin[0],Fin[3],Fin[4]] #Toma los valores de las junturas finales para Codo Arriba return Qi,Qf def Signo(x): #Determina El signo del numero if x>=0: sgn=1 else: sgn=-1 return sgn def prueba(): exec(open("sera.py").read()) #prueba()
daridel99/UMNG-robotica
Funciones.py
Funciones.py
py
4,155
python
es
code
0
github-code
6
71091610109
root_path = '/mnt/d/KLTN/CNN-Based-Image-Inpainting/' train_glob = root_path + 'dataset/places2/train/*/*/*.jpg' test_glob = root_path + 'dataset/places2/test/*.jpg' mask_glob = root_path + 'dataset/irregular_mask1/*.png' #2 for partialconv log_dir = root_path + 'training_logs' save_dir = root_path + 'models' checkpoint_path = root_path + "models/gatedconv.pth" learning_rate = 1e-4 #5e-4 for gated conv epoch = 50 train_batch_size = 4 test_batch_size = 4 log_interval = -1 #no log import os import torch from dataloader.dataset import * from gatedconvworker.gatedconvworker import GatedConvWorker print("Creating output directories") if not os.path.exists(save_dir): os.makedirs(save_dir) if not os.path.exists(log_dir): os.makedirs(log_dir) print("Initiating training sequence") torch.cuda.empty_cache() print("Initializing dataset with globs:", train_glob, test_glob, mask_glob) data_train = Dataset(train_glob, mask_glob, False) data_test = Dataset(test_glob, mask_glob, False) worker = GatedConvWorker(checkpoint_path, learning_rate) worker.Train(epoch, train_batch_size, test_batch_size, data_train, data_test, log_interval)
realphamanhtuan/CNN-Based-Image-Inpainting
traingatedconv.py
traingatedconv.py
py
1,142
python
en
code
0
github-code
6
26238944709
# coding=utf-8 from __future__ import unicode_literals, absolute_import, print_function, division import errno import json import os.path import sys from sopel.tools import Identifier from sqlalchemy import create_engine, Column, ForeignKey, Integer, String from sqlalchemy.engine.url import URL from sqlalchemy.exc import OperationalError, SQLAlchemyError from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import scoped_session, sessionmaker if sys.version_info.major >= 3: unicode = str basestring = str def _deserialize(value): if value is None: return None # sqlite likes to return ints for strings that look like ints, even though # the column type is string. That's how you do dynamic typing wrong. value = unicode(value) # Just in case someone's mucking with the DB in a way we can't account for, # ignore json parsing errors try: value = json.loads(value) except ValueError: pass return value BASE = declarative_base() MYSQL_TABLE_ARGS = {'mysql_engine': 'InnoDB', 'mysql_charset': 'utf8mb4', 'mysql_collate': 'utf8mb4_unicode_ci'} class NickIDs(BASE): """ NickIDs SQLAlchemy Class """ __tablename__ = 'nick_ids' nick_id = Column(Integer, primary_key=True) class Nicknames(BASE): """ Nicknames SQLAlchemy Class """ __tablename__ = 'nicknames' __table_args__ = MYSQL_TABLE_ARGS nick_id = Column(Integer, ForeignKey('nick_ids.nick_id'), primary_key=True) slug = Column(String(255), primary_key=True) canonical = Column(String(255)) class NickValues(BASE): """ NickValues SQLAlchemy Class """ __tablename__ = 'nick_values' __table_args__ = MYSQL_TABLE_ARGS nick_id = Column(Integer, ForeignKey('nick_ids.nick_id'), primary_key=True) key = Column(String(255), primary_key=True) value = Column(String(255)) class ChannelValues(BASE): """ ChannelValues SQLAlchemy Class """ __tablename__ = 'channel_values' __table_args__ = MYSQL_TABLE_ARGS channel = Column(String(255), primary_key=True) key = Column(String(255), primary_key=True) value = Column(String(255)) class PluginValues(BASE): """ PluginValues SQLAlchemy Class """ __tablename__ = 'plugin_values' __table_args__ = MYSQL_TABLE_ARGS plugin = Column(String(255), primary_key=True) key = Column(String(255), primary_key=True) value = Column(String(255)) class SopelDB(object): """*Availability: 5.0+* This defines an interface for basic, common operations on a sqlite database. It simplifies those common operations, and allows direct access to the database, wherever the user has configured it to be. When configured with a relative filename, it is assumed to be in the directory set (or defaulted to) in the core setting ``homedir``. """ def __init__(self, config): # MySQL - mysql://username:password@localhost/db # SQLite - sqlite:////home/sopel/.sopel/default.db db_type = config.core.db_type # Handle SQLite explicitly as a default if db_type == 'sqlite': path = config.core.db_filename if path is None: path = os.path.join(config.core.homedir, config.basename + '.db') path = os.path.expanduser(path) if not os.path.isabs(path): path = os.path.normpath(os.path.join(config.core.homedir, path)) if not os.path.isdir(os.path.dirname(path)): raise OSError( errno.ENOENT, 'Cannot create database file. ' 'No such directory: "{}". Check that configuration setting ' 'core.db_filename is valid'.format(os.path.dirname(path)), path ) self.filename = path self.url = 'sqlite:///%s' % path # Otherwise, handle all other database engines else: query = {} if db_type == 'mysql': drivername = config.core.db_driver or 'mysql' query = {'charset': 'utf8mb4'} elif db_type == 'postgres': drivername = config.core.db_driver or 'postgresql' elif db_type == 'oracle': drivername = config.core.db_driver or 'oracle' elif db_type == 'mssql': drivername = config.core.db_driver or 'mssql+pymssql' elif db_type == 'firebird': drivername = config.core.db_driver or 'firebird+fdb' elif db_type == 'sybase': drivername = config.core.db_driver or 'sybase+pysybase' else: raise Exception('Unknown db_type') db_user = config.core.db_user db_pass = config.core.db_pass db_host = config.core.db_host db_port = config.core.db_port # Optional db_name = config.core.db_name # Optional, depending on DB # Ensure we have all our variables defined if db_user is None or db_pass is None or db_host is None: raise Exception('Please make sure the following core ' 'configuration values are defined: ' 'db_user, db_pass, db_host') self.url = URL(drivername=drivername, username=db_user, password=db_pass, host=db_host, port=db_port, database=db_name, query=query) self.engine = create_engine(self.url) # Catch any errors connecting to database try: self.engine.connect() except OperationalError: print("OperationalError: Unable to connect to database.") raise # Create our tables BASE.metadata.create_all(self.engine) self.ssession = scoped_session(sessionmaker(bind=self.engine)) def connect(self): """Return a raw database connection object.""" return self.engine.connect() def execute(self, *args, **kwargs): """Execute an arbitrary SQL query against the database. Returns a cursor object, on which things like `.fetchall()` can be called per PEP 249.""" with self.connect() as conn: return conn.execute(*args, **kwargs) def get_uri(self): """Returns a URL for the database, usable to connect with SQLAlchemy.""" return 'sqlite:///{}'.format(self.filename) # NICK FUNCTIONS def get_nick_id(self, nick, create=True): """Return the internal identifier for a given nick. This identifier is unique to a user, and shared across all of that user's aliases. If create is True, a new ID will be created if one does not already exist""" session = self.ssession() slug = nick.lower() try: nickname = session.query(Nicknames) \ .filter(Nicknames.slug == slug) \ .one_or_none() if nickname is None: if not create: raise ValueError('No ID exists for the given nick') # Generate a new ID nick_id = NickIDs() session.add(nick_id) session.commit() # Create a new Nickname nickname = Nicknames(nick_id=nick_id.nick_id, slug=slug, canonical=nick) session.add(nickname) session.commit() return nickname.nick_id except SQLAlchemyError: session.rollback() raise finally: session.close() def alias_nick(self, nick, alias): """Create an alias for a nick. Raises ValueError if the alias already exists. If nick does not already exist, it will be added along with the alias.""" nick = Identifier(nick) alias = Identifier(alias) nick_id = self.get_nick_id(nick) session = self.ssession() try: result = session.query(Nicknames) \ .filter(Nicknames.slug == alias.lower()) \ .filter(Nicknames.canonical == alias) \ .one_or_none() if result: raise ValueError('Given alias is the only entry in its group.') nickname = Nicknames(nick_id=nick_id, slug=alias.lower(), canonical=alias) session.add(nickname) session.commit() except SQLAlchemyError: session.rollback() raise finally: session.close() def set_nick_value(self, nick, key, value): """Sets the value for a given key to be associated with the nick.""" nick = Identifier(nick) value = json.dumps(value, ensure_ascii=False) nick_id = self.get_nick_id(nick) session = self.ssession() try: result = session.query(NickValues) \ .filter(NickValues.nick_id == nick_id) \ .filter(NickValues.key == key) \ .one_or_none() # NickValue exists, update if result: result.value = value session.commit() # DNE - Insert else: new_nickvalue = NickValues(nick_id=nick_id, key=key, value=value) session.add(new_nickvalue) session.commit() except SQLAlchemyError: session.rollback() raise finally: session.close() def delete_nick_value(self, nick, key): """Deletes the value for a given key associated with a nick.""" nick = Identifier(nick) nick_id = self.get_nick_id(nick) session = self.ssession() try: result = session.query(NickValues) \ .filter(NickValues.nick_id == nick_id) \ .filter(NickValues.key == key) \ .one_or_none() # NickValue exists, delete if result: session.delete(result) session.commit() except SQLAlchemyError: session.rollback() raise finally: session.close() def get_nick_value(self, nick, key): """Retrieves the value for a given key associated with a nick.""" nick = Identifier(nick) session = self.ssession() try: result = session.query(NickValues) \ .filter(Nicknames.nick_id == NickValues.nick_id) \ .filter(Nicknames.slug == nick.lower()) \ .filter(NickValues.key == key) \ .one_or_none() if result is not None: result = result.value return _deserialize(result) except SQLAlchemyError: session.rollback() raise finally: session.close() def unalias_nick(self, alias): """Removes an alias. Raises ValueError if there is not at least one other nick in the group. To delete an entire group, use `delete_group`. """ alias = Identifier(alias) nick_id = self.get_nick_id(alias, False) session = self.ssession() try: count = session.query(Nicknames) \ .filter(Nicknames.nick_id == nick_id) \ .count() if count <= 1: raise ValueError('Given alias is the only entry in its group.') session.query(Nicknames).filter(Nicknames.slug == alias.lower()).delete() session.commit() except SQLAlchemyError: session.rollback() raise finally: session.close() def delete_nick_group(self, nick): """Removes a nickname, and all associated aliases and settings.""" nick = Identifier(nick) nick_id = self.get_nick_id(nick, False) session = self.ssession() try: session.query(Nicknames).filter(Nicknames.nick_id == nick_id).delete() session.query(NickValues).filter(NickValues.nick_id == nick_id).delete() session.commit() except SQLAlchemyError: session.rollback() raise finally: session.close() def merge_nick_groups(self, first_nick, second_nick): """Merges the nick groups for the specified nicks. Takes two nicks, which may or may not be registered. Unregistered nicks will be registered. Keys which are set for only one of the given nicks will be preserved. Where multiple nicks have values for a given key, the value set for the first nick will be used. Note that merging of data only applies to the native key-value store. If modules define their own tables which rely on the nick table, they will need to have their merging done separately.""" first_id = self.get_nick_id(Identifier(first_nick)) second_id = self.get_nick_id(Identifier(second_nick)) session = self.ssession() try: # Get second_id's values res = session.query(NickValues).filter(NickValues.nick_id == second_id).all() # Update first_id with second_id values if first_id doesn't have that key for row in res: first_res = session.query(NickValues) \ .filter(NickValues.nick_id == first_id) \ .filter(NickValues.key == row.key) \ .one_or_none() if not first_res: self.set_nick_value(first_nick, row.key, _deserialize(row.value)) session.query(NickValues).filter(NickValues.nick_id == second_id).delete() session.query(Nicknames) \ .filter(Nicknames.nick_id == second_id) \ .update({'nick_id': first_id}) session.commit() except SQLAlchemyError: session.rollback() raise finally: session.close() # CHANNEL FUNCTIONS def set_channel_value(self, channel, key, value): """Sets the value for a given key to be associated with the channel.""" channel = Identifier(channel).lower() value = json.dumps(value, ensure_ascii=False) session = self.ssession() try: result = session.query(ChannelValues) \ .filter(ChannelValues.channel == channel)\ .filter(ChannelValues.key == key) \ .one_or_none() # ChannelValue exists, update if result: result.value = value session.commit() # DNE - Insert else: new_channelvalue = ChannelValues(channel=channel, key=key, value=value) session.add(new_channelvalue) session.commit() except SQLAlchemyError: session.rollback() raise finally: session.close() def delete_channel_value(self, channel, key): """Deletes the value for a given key associated with a channel.""" channel = Identifier(channel).lower() session = self.ssession() try: result = session.query(ChannelValues) \ .filter(ChannelValues.channel == channel)\ .filter(ChannelValues.key == key) \ .one_or_none() # ChannelValue exists, delete if result: session.delete(result) session.commit() except SQLAlchemyError: session.rollback() raise finally: session.close() def get_channel_value(self, channel, key): """Retrieves the value for a given key associated with a channel.""" channel = Identifier(channel).lower() session = self.ssession() try: result = session.query(ChannelValues) \ .filter(ChannelValues.channel == channel)\ .filter(ChannelValues.key == key) \ .one_or_none() if result is not None: result = result.value return _deserialize(result) except SQLAlchemyError: session.rollback() raise finally: session.close() # PLUGIN FUNCTIONS def set_plugin_value(self, plugin, key, value): """Sets the value for a given key to be associated with a plugin.""" plugin = plugin.lower() value = json.dumps(value, ensure_ascii=False) session = self.ssession() try: result = session.query(PluginValues) \ .filter(PluginValues.plugin == plugin)\ .filter(PluginValues.key == key) \ .one_or_none() # PluginValue exists, update if result: result.value = value session.commit() # DNE - Insert else: new_pluginvalue = PluginValues(plugin=plugin, key=key, value=value) session.add(new_pluginvalue) session.commit() except SQLAlchemyError: session.rollback() raise finally: session.close() def delete_plugin_value(self, plugin, key): """Deletes the value for a given key associated with a plugin.""" plugin = plugin.lower() session = self.ssession() try: result = session.query(PluginValues) \ .filter(PluginValues.plugin == plugin)\ .filter(PluginValues.key == key) \ .one_or_none() # PluginValue exists, update if result: session.delete(result) session.commit() except SQLAlchemyError: session.rollback() raise finally: session.close() def get_plugin_value(self, plugin, key): """Retrieves the value for a given key associated with a plugin.""" plugin = plugin.lower() session = self.ssession() try: result = session.query(PluginValues) \ .filter(PluginValues.plugin == plugin)\ .filter(PluginValues.key == key) \ .one_or_none() if result is not None: result = result.value return _deserialize(result) except SQLAlchemyError: session.rollback() raise finally: session.close() # NICK AND CHANNEL FUNCTIONS def get_nick_or_channel_value(self, name, key): """Gets the value `key` associated to the nick or channel `name`.""" name = Identifier(name) if name.is_nick(): return self.get_nick_value(name, key) else: return self.get_channel_value(name, key) def get_preferred_value(self, names, key): """Gets the value for the first name which has it set. `names` is a list of channel and/or user names. Returns None if none of the names have the key set.""" for name in names: value = self.get_nick_or_channel_value(name, key) if value is not None: return value
examknow/Exambot-Source
sopel/db.py
db.py
py
19,385
python
en
code
2
github-code
6
22997884829
_base_ = [ '../../_base_/models/faster_rcnn_r50_fpn.py', '../../_base_/datasets/waymo_detection_1280x1920.py', '../../_base_/schedules/schedule_1x.py', '../../_base_/default_runtime.py' ] # model model = dict( rpn_head=dict( anchor_generator=dict( type='AnchorGenerator', scales=[3], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]),), roi_head=dict( bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32], finest_scale=19), bbox_head=dict(num_classes=3)) ) # data data = dict(samples_per_gpu=4) # lr is set for a batch size of 8 optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[8, 11]) runner = dict(type='EpochBasedRunner', max_epochs=12) # load_from = 'https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_2x_coco/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth' # noqa resume_from = 'saved_models/study/faster_rcnn_r50_fpn_fp16_4x2_1x_1280x1920_improved/epoch_10.pth' # fp16 settings fp16 = dict(loss_scale=512.)
carranza96/waymo-detection-fusion
configs/waymo_open/study/faster_rcnn_r50_fpn_fp16_4x2_1x_1280x1920_redanchors.py
faster_rcnn_r50_fpn_fp16_4x2_1x_1280x1920_redanchors.py
py
1,460
python
en
code
0
github-code
6
25040767672
# 인하은행에는 ATM이 1대밖에 없다. 지금 이 ATM앞에 N명의 사람들이 줄을 서있다. # 사람은 1번부터 N번까지 번호가 매겨져 있으며, i번 사람이 돈을 인출하는데 걸리는 시간은 Pi분이다. # 사람들이 줄을 서는 순서에 따라서, 돈을 인출하는데 필요한 시간의 합이 달라지게 된다. # 예를 들어, 총 5명이 있고, P1 = 3, P2 = 1, P3 = 4, P4 = 3, P5 = 2 인 경우를 생각해보자. [1, 2, 3, 4, 5] 순서로 줄을 선다면, # 1번 사람은 3분만에 돈을 뽑을 수 있다. 2번 사람은 1번 사람이 돈을 뽑을 때 까지 기다려야 하기 때문에, 3+1 = 4분이 걸리게 된다. # 3번 사람은 1번, 2번 사람이 돈을 뽑을 때까지 기다려야 하기 때문에, 총 3+1+4 = 8분이 필요하게 된다. 4번 사람은 3+1+4+3 = 11분, 5번 사람은 3+1+4+3+2 = 13분이 걸리게 된다. # 이 경우에 각 사람이 돈을 인출하는데 필요한 시간의 합은 3+4+8+11+13 = 39분이 된다. # 줄을 [2, 5, 1, 4, 3] 순서로 줄을 서면, 2번 사람은 1분만에, 5번 사람은 1+2 = 3분, 1번 사람은 1+2+3 = 6분, 4번 사람은 1+2+3+3 = 9분, 3번 사람은 1+2+3+3+4 = 13분이 걸리게 된다. # 각 사람이 돈을 인출하는데 필요한 시간의 합은 1+3+6+9+13 = 32분이다. # 이 방법보다 더 필요한 시간의 합을 최소로 만들 수는 없다. # 줄을 서 있는 사람의 수 N과 각 사람이 돈을 인출하는데 걸리는 시간 Pi가 주어졌을 때, 각 사람이 돈을 인출하는데 필요한 시간의 합의 최솟값을 구하는 프로그램을 작성하시오. import sys n = int(input()) a = list(map(int, sys.stdin.readline().split())) # 가장 시간이 덜 드는 사람부터 오도록 정렬하고, 각 사람별로 걸리는 시간들을 합에 넣어주면 된다. answer = 0 each_time = 0 person_list = sorted(a) for i in range(len(person_list)): # n번째 사람은 1번째 사람의 시간에서 n번째 사람의 시간들을 모두 더한 시간이 걸린다. each_time += person_list[i] # 걸린 시간을 추가해 준다. answer += each_time print(answer)
pnu-k-digital-2/pnu-k-digital-training-2023-2-coding-test-study
sangwook/Week1_그리디알고리즘/ATM.py
ATM.py
py
2,183
python
ko
code
0
github-code
6
4869208113
import socket import select import sys client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) if len(sys.argv) != 3: print ("Print in the following order : script, IP address, port number") exit() IP_address = str(sys.argv[1]) Port = int(sys.argv[2]) client_socket.connect((IP_address, Port)) while True: sockets_list = [sys.stdin, client_socket] read_sockets,write_socket, error_socket = select.select(sockets_list,[],[]) for socks in read_sockets: if socks == client_socket: message = socks.recv(1024) print (message) else: message = sys.stdin.readline() client_socket.send(message.encode('utf-8')) sys.stdout.flush() client_socket.close() sys.exit()
asyranasyran/GROUP-PROJECT
client.py
client.py
py
764
python
en
code
0
github-code
6
71839381629
# coding=utf-8 from __future__ import print_function from ActionSpace import settings from om.util import update_from_salt, syn_data_outside, fmt_salt_out, check_computer from om.models import CallLog from django.contrib.auth.models import User, AnonymousUser from om.proxy import Salt from channels.generic.websockets import JsonWebsocketConsumer from om.models import SaltMinion from utils.util import CheckFireWall import traceback import re class OmConsumer(JsonWebsocketConsumer): http_user = True def raw_connect(self, message, **kwargs): user = 'unknown' # noinspection PyBroadException try: not_login_user = User.objects.get_or_create(username='not_login_yet', is_active=False)[0] user = not_login_user if isinstance(message.user, AnonymousUser) else message.user except Exception as e: settings.logger.error(repr(e)) CallLog.objects.create( user=user, type='message', action=message['path'], detail=message.content ) settings.logger.info('recv_data:{data}'.format(data=message.content, path=message['path'])) super(OmConsumer, self).raw_connect(message, **kwargs) def receive(self, content, **kwargs): try: CallLog.objects.create( user=User.objects.get(username=self.message.user.username), type='message', action=self.message['path'], detail=self.message.content ) except Exception as e: settings.logger.error(repr(e)) try: settings.logger.error(self.message.user.username) except Exception as e: settings.logger.error(repr(e)) settings.logger.info('recv_data:{data}'.format(data=content, path=self.message['path'])) super(OmConsumer, self).receive(content, **kwargs) class SaltConsumer(OmConsumer): def receive(self, content, **kwargs): super(SaltConsumer, self).receive(content, **kwargs) if not self.message.user.is_authenticated: self.send({'result': '未授权,请联系管理员!'}) return if not self.message.user.is_superuser: self.send({'result': '仅管理员有权限执行该操作!'}) return info = content.get('info', '') if info == 'refresh-server': update_from_salt(None if settings.OM_ENV == 'PRD' else 'UAT') self.send({'result': 'Y', 'info': 'refresh-server'}) elif info == 'check_computer': self.send({'return': check_computer(), 'info': 'check_computer'}) else: self.send({'result': '未知操作!'}) class ServerConsumer(OmConsumer): def receive(self, content, **kwargs): super(ServerConsumer, self).receive(content, **kwargs) if not self.message.user.is_authenticated: self.send({'result': '未授权,请联系管理员!'}) return if not self.message.user.is_superuser: self.send({'result': '仅管理员有权限执行该操作!'}) return if content.get('info', None) != 'syn_data_outside': self.send({'result': '未知操作!'}) return syn_data_outside() self.send({'result': 'Y'}) class ActionDetailConsumer(OmConsumer): group_prefix = 'action_detail-' yes = {"result": 'Y'} no = {"result": 'N'} def label(self): reg = r'^/om/action_detail/(?P<task_id>[0-9]+)/$' task_id = re.search(reg, self.message['path']).group('task_id') return f'{self.group_prefix}{task_id}' def connection_groups(self, **kwargs): return self.groups or [self.label()] def receive(self, content, **kwargs): super(ActionDetailConsumer, self).receive(content, **kwargs) if not self.message.user.is_authenticated: self.send({'result': '未授权,请联系管理员!'}) return self.group_send(self.label(), self.yes) @classmethod def task_change(cls, task_id): settings.logger.info(f'{cls.group_prefix}{task_id}') ActionDetailConsumer.group_send(f'{cls.group_prefix}{task_id}', cls.yes) class UnlockWinConsumer(OmConsumer): def receive(self, content, **kwargs): super(UnlockWinConsumer, self).receive(content, **kwargs) if not self.message.user.is_authenticated: self.send({'result': '未授权,请联系管理员!'}) return user = content.get('user', None) server_info = content.get('server_info', None) if not all([user, server_info]) or not all([user.strip(), server_info]): self.send({'result': '参数选择错误,请检查!'}) agents = [x['name'] for x in server_info] if settings.OM_ENV == 'PRD': # 只有生产环境可以双通 prd_agents = list(SaltMinion.objects.filter(name__in=agents, env='PRD', os='Windows').values_list('name', flat=True)) settings.logger.info('prd_agents:{ag}'.format(ag=repr(prd_agents))) uat_agents = list(SaltMinion.objects.exclude(env='PRD').filter(name__in=agents, os='Windows').values_list('name', flat=True)) settings.logger.info('uat_agents:{ag}'.format(ag=repr(uat_agents))) if len(prd_agents) > 0: prd_result, prd_output = Salt('PRD').shell(prd_agents, f'net user {user} /active:yes') else: prd_result, prd_output = True, '' if len(uat_agents) > 0: uat_result, uat_output = Salt('UAT').shell(uat_agents, f'net user {user} /active:yes') else: uat_result, uat_output = True, '' salt_result = prd_result and uat_result salt_output = fmt_salt_out('{prd}\n{uat}'.format(prd=fmt_salt_out(prd_output), uat=fmt_salt_out(uat_output))) else: agents = list(SaltMinion.objects.exclude(env='PRD').filter(name__in=agents, os='Windows').values_list('name', flat=True)) settings.logger.info('agents:{ag}'.format(ag=repr(agents))) if len(agents) > 0: salt_result, salt_output = Salt('UAT').shell(agents, 'net user {user} /active:yes'.format(user=user)) else: salt_result, salt_output = True, '' salt_output = fmt_salt_out(salt_output) if salt_result: settings.logger.info('unlock success!') result = salt_output.replace('The command completed successfully', '解锁成功') result = result.replace('[{}]', '选中的机器不支持解锁,请联系基础架构同事解锁!') self.send({"result": result}) else: settings.logger.info('unlock false for salt return false') self.send({"result": '解锁失败!'}) class CmdConsumer(OmConsumer): # noinspection PyBroadException def receive(self, content, **kwargs): super(CmdConsumer, self).receive(content, **kwargs) if not self.message.user.is_authenticated: self.send({'result': '未授权,请联系管理员!'}) return name = content.get('name', '').strip() cmd = content.get('cmd', '').strip() user = content.get('user', '').strip() if not all([name, cmd, user]): self.send({'result': '参数错误!'}) return try: pc = SaltMinion.objects.get(name=name, status='up') if not any( [self.message.user.has_perm('om.can_exec_cmd'), self.message.user.has_perm('om.can_exec_cmd', pc)] ): self.send({'result': '没有执行命令权限,请联系管理员!'}) return if not any([self.message.user.has_perm('om.can_root'), self.message.user.has_perm('om.can_root', pc)]): if user == 'root': self.send({'result': '没有root权限,请联系管理员!'}) return _, back = Salt(pc.env).shell(pc.name, cmd, None if user == 'NA' else user) self.send({'result': back['return'][0].get(name, '未知结果!')}) except Exception as e: self.send({'result': f"{e}\n{content}"}) class MakeFireWallConsumer(OmConsumer): # noinspection PyBroadException def receive(self, content, **kwargs): super(MakeFireWallConsumer, self).receive(content, **kwargs) if not self.message.user.is_authenticated: self.send({'result': '未授权,请联系管理员!'}) return s_ip = content.get('s_ip', '').strip() t_ip = content.get('t_ip', '').strip() port = content.get('port', '').strip() if not all([s_ip, t_ip, port]): self.send({'result': '参数错误!'}) return s_ip = s_ip.replace('<pre>', '').replace('</pre>', '').split('<br>') t_ip = t_ip.replace('<pre>', '').replace('</pre>', '').split('<br>') port = port.replace('<pre>', '').replace('</pre>', '').split('<br>') try: src_ag = [SaltMinion.objects.get(name__endswith='-'+x) for x in s_ip] dst_ag = [SaltMinion.objects.get(name__endswith='-'+x) for x in t_ip] result = [] for p in port: cf = CheckFireWall(src_ag, dst_ag, int(p)) result.append(cf.check()) # self.message.reply_channel.send({'text': json.dumps(result)}, immediately=True) self.send(result) except Exception as e: if self.message.user.is_superuser: self.send({'result': f"{e}\n{traceback.format_exc()}\n{content}"}) else: self.send({'result': 'error'}) class CheckFireWallConsumer(OmConsumer): def check_port(self, src_list, dst_list, port): result = [] for p in port: cf = CheckFireWall(src_list, dst_list, int(p)) result.append(cf.check()) self.send(result) def check_policy(self, src_list, dst_list, port): from utils.util import FireWallPolicy src = ';'.join([x.ip() for x in src_list]) dst = ';'.join([x.ip() for x in dst_list]) srv = ','.join([f'tcp/{x}' for x in port]) self.send({ 'src': [x.ip() for x in src_list], 'dst': [x.ip() for x in dst_list], 'port': port, 'protocol': 'TCP', 'result': FireWallPolicy(src, dst, srv).check() }) def receive(self, content, **kwargs): super(CheckFireWallConsumer, self).receive(content, **kwargs) if not self.message.user.is_authenticated: self.send({'result': '未授权,请联系管理员!'}) return check_type = content.get('check_type', '') src = content.get('src', []) dst = content.get('dst', []) port = [int(x) for x in re.split(r'\W+', content.get('port', [''])[0]) if x.strip() != ''] try: if all([src, dst, port]): src_list = [x for x in SaltMinion.objects.filter(pk__in=src)] dst_list = [x for x in SaltMinion.objects.filter(pk__in=dst)] if all([src_list, dst_list]): if check_type == 'port': self.check_port(src_list, dst_list, port) elif check_type == 'policy': self.check_policy(src_list, dst_list, port) else: self.send({'result': '类型错误'}) except Exception as e: settings.logger.error(repr(e)) if self.message.user.is_superuser: self.send({'result': f"{e}\n{traceback.format_exc()}\n{content}"}) else: self.send({'result': '执行报错,请联系管理员检查!'}) om_routing = [ SaltConsumer.as_route(path=r"^/om/salt_status/"), ActionDetailConsumer.as_route(path=r"^/om/action_detail/", attrs={'group_prefix': 'action_detail-'}), UnlockWinConsumer.as_route(path=r"^/om/unlock_win/"), CmdConsumer.as_route(path=r'^/om/admin_action/'), MakeFireWallConsumer.as_route(path=r'^/utils/make_firewall_table/'), CheckFireWallConsumer.as_route(path=r'^/utils/check_firewall/'), ServerConsumer.as_route(path=r'^/om/show_server/') ]
cash2one/ActionSpace
om/worker.py
worker.py
py
12,465
python
en
code
0
github-code
6
41996577461
import socket TCP_IP = '0.0.0.0' TCP_PORT = 5 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind((TCP_IP, TCP_PORT)) s.listen(1) conn, addr = s.accept() print("connection addr: {}".format(addr)) while True: data = conn.recv(1) print("recieved data: {}".format(data)) conn.send(data) conn.close()
Pgovalle/Proyecto_lab_control
Proyecto_redes/Photon/Codigo_Ejemplo/sockets/sockkk/server.py
server.py
py
311
python
en
code
0
github-code
6
23500788401
from alipy.index import IndexCollection from alipy.experiment import State from alipy.data_manipulate import split from sklearn.preprocessing import StandardScaler def cancel_step(select_ind, lab, unlab): lab = IndexCollection(lab) unlab = IndexCollection(unlab) unlab.update(select_ind) lab.difference_update(select_ind) lab_list, unlab_list = [], [] for i in lab: lab_list.append(i) for i in unlab: unlab_list.append(i) return lab_list, unlab_list def update(select_ind, lab, unlab): lab = IndexCollection(lab) unlab = IndexCollection(unlab) lab.update(select_ind) unlab.difference_update(select_ind) lab_list, unlab_list = [],[] for i in lab: lab_list.append(i) for i in unlab: unlab_list.append(i) return lab_list, unlab_list def save_state(data, select_ind, current_ac): quried_label = data.loc[select_ind,['target']] st = State(select_ind,current_ac,queried_label=quried_label) return st def separate(data): if 'start' or 'end' in data.columns: data = data.drop(columns=['start', 'end']) if 'video' in data.columns: data = data.drop(columns=['video']) if 'color' in data.columns: data = data.drop(columns=['color']) y = labels = data['target'] features = data.drop(columns=['target']) X = features = StandardScaler().fit_transform(features) train, test, lab, unlab = split(X, y, test_ratio=0.3, initial_label_rate=0.2, split_count=1, all_class=True, saving_path='.') train_list, test_list, lab_list, unlab_list = [] , [] ,[] ,[] for i in train[0]: train_list.append(i) for i in test[0]: test_list.append(i) for i in lab[0]: lab_list.append(i) for i in unlab[0]: unlab_list.append(i) return X[lab_list], y[lab_list]
weiweian1996/VERSION2.0
GUI/Function/index_handle.py
index_handle.py
py
1,941
python
en
code
0
github-code
6
1121085852
''' https://programmers.co.kr/learn/courses/30/lessons/42577?language=python3# 전화번호 목록 - 해시 ''' def solution(phoneBook): phoneBook = list(map(str,sorted(map(int,phoneBook)))) #phoneBook = sorted(list(set(phoneBook)), key=lambda x :len(x)and int(x)) #길이로 정렬 + 숫자로 정렬 -> 순서 바뀌면 안됨 for j in range(len(phoneBook)): for i in range(1+j,len(phoneBook)): if phoneBook[j] in phoneBook[i][:len(phoneBook[j])]: return False return True
thdwlsgus0/algorithm_study
python/전화번호 목록.py
전화번호 목록.py
py
528
python
en
code
0
github-code
6
30515350804
import typing as _ from pathlib import Path from jinja2 import Environment, FileSystemLoader from pypugjs.ext.jinja import PyPugJSExtension asset_folder = '' def _get_asset(fname: str) -> Path: return Path(asset_folder, fname) def _data_with_namespace(data: 'Data', namespace: _.Dict) -> 'DataWithNS': return DataWithNS(data.data, namespace) class Data: def __init__(self, data: _.Dict | _.List | str): self.data = data def __repr__(self) -> str: return f'Data({self.data!r})' def __eq__(self, other: 'Data') -> bool: return self.data == getattr(other, 'data', None) def __getattr__(self, item: _.Any) -> 'Data': data = self.data if isinstance(data, dict): if item in data: return Data(data[item]) children = data.get('children', []) return Data([c[item] for c in children if item in c]) elif isinstance(data, list) and len(data) == 1: data = data[0] if item in data: return Data(data[item]) children = data.get('children', []) return Data([c[item] for c in children if item in c]) return Data('') def __getitem__(self, item: str) -> str | list['Data']: data = self.data if item == '$': if isinstance(data, str): return data elif isinstance(data, dict): return '\n'.join(data.get('children', [])) elif isinstance(data, list): if len(data) == 1 and isinstance(data[0], dict): return '\n'.join(data[0].get('children', [])) return '\n'.join(data) elif item.startswith('@'): att_name = item[1:] if isinstance(data, list): if len(data) == 1 and isinstance(data[0], dict): return data[0].get('attributes', {}).get(att_name, '') return '' elif isinstance(data, str): return '' return data.get('attributes', {}).get(att_name, '') elif item == '*': return [Data(d) for d in data] if isinstance(data, list) else [] class DataWithNS(Data): def __init__(self, data: dict | list | str, ns: _.Dict): super(DataWithNS, self).__init__(data) self.ns = ns def __getattr__(self, item: str) -> 'Data': name = item if '__' in item: ns, name = item.split('__') name = '{' + self.ns.get(ns, '') + '}' + name ret = super(DataWithNS, self).__getattr__(name) return DataWithNS(ret.data, self.ns) def __getitem__(self, item: str) -> str | list['Data']: ret = super(DataWithNS, self).__getitem__(item) if isinstance(ret, list): return [DataWithNS(i.data, self.ns) for i in ret] return ret def build_environment(*, template_dir: Path, asset_dir: Path) -> Environment: global asset_folder asset_folder = asset_dir return Environment( extensions=[PyPugJSExtension], loader=FileSystemLoader(template_dir), variable_start_string="{%#.-.**", variable_end_string="**.-.#%}", ) def build_renderer(jinja_env: Environment) -> _.Callable: def render(template, **kwargs): return jinja_env\ .get_template(f'{template}.pug')\ .render(enumerate=enumerate, asset=_get_asset, dataNS=_data_with_namespace, **kwargs) return render def build_data(data: _.Dict | _.List | str) -> 'Data': return Data(data)
OnoArnaldo/py-report-generator
src/reportgen/utils/pug_to_xml.py
pug_to_xml.py
py
3,635
python
en
code
0
github-code
6
28838106101
import numpy as np try: from math import prod except: from functools import reduce def prod(iterable): return reduce(operator.mul, iterable, 1) import zipfile import pickle import sys import ast import re from fickling.pickle import Pickled if sys.version_info >= (3, 9): from ast import unparse else: from astunparse import unparse NO_PICKLE_DEBUG = False ### Unpickling import: def my_unpickle(fb0): key_prelookup = {} class HackTensor: def __new__(cls, *args): #print(args) ident, storage_type, obj_key, location, obj_size = args[0][0:5] assert ident == 'storage' assert prod(args[2]) == obj_size ret = np.zeros(args[2], dtype=storage_type) if obj_key not in key_prelookup: key_prelookup[obj_key] = [] key_prelookup[obj_key].append((storage_type, obj_size, ret, args[2], args[3])) #print(f"File: {obj_key}, references: {len(key_prelookup[obj_key])}, size: {args[2]}, storage_type: {storage_type}") return ret class HackParameter: def __new__(cls, *args): #print(args) pass class Dummy: pass class MyPickle(pickle.Unpickler): def find_class(self, module, name): #print(module, name) if name == 'FloatStorage': return np.float32 if name == 'LongStorage': return np.int64 if name == 'HalfStorage': return np.float16 if module == "torch._utils": if name == "_rebuild_tensor_v2": return HackTensor elif name == "_rebuild_parameter": return HackParameter else: try: return pickle.Unpickler.find_class(self, module, name) except Exception: return Dummy def persistent_load(self, pid): return pid return MyPickle(fb0).load(), key_prelookup def fake_torch_load_zipped(fb0, load_weights=True): with zipfile.ZipFile(fb0, 'r') as myzip: folder_name = [a for a in myzip.namelist() if a.endswith("/data.pkl")] if len(folder_name)== 0: raise ValueError("Looke like the checkpoints file is in the wrong format") folder_name = folder_name[0].replace("/data.pkl" , "").replace("\\data.pkl" , "") with myzip.open(folder_name+'/data.pkl') as myfile: ret = my_unpickle(myfile) if load_weights: for k, v_arr in ret[1].items(): with myzip.open(folder_name + f'/data/{k}') as myfile: #print(f"Eating data file {k} now") file_data = myfile.read() for v in v_arr: if v[2].dtype == "object": print(f"issue assigning object on {k}") continue #weight = np.frombuffer(file_data, v[2].dtype).reshape(v[3]) #np.copyto(v[2], weight) np.copyto(v[2], np.frombuffer(file_data, v[2].dtype).reshape(v[3])) return ret[0] ### No-unpickling import: def extract_weights_from_checkpoint(fb0): torch_weights = {} torch_weights['state_dict'] = {} with zipfile.ZipFile(fb0, 'r') as myzip: folder_name = [a for a in myzip.namelist() if a.endswith("/data.pkl")] if len(folder_name)== 0: raise ValueError("Looks like the checkpoints file is in the wrong format") folder_name = folder_name[0].replace("/data.pkl" , "").replace("\\data.pkl" , "") with myzip.open(folder_name+'/data.pkl') as myfile: load_instructions = examine_pickle(myfile) for sd_key,load_instruction in load_instructions.items(): with myzip.open(folder_name + f'/data/{load_instruction.obj_key}') as myfile: if (load_instruction.load_from_file_buffer(myfile)): torch_weights['state_dict'][sd_key] = load_instruction.get_data() #if len(special_instructions) > 0: # torch_weights['state_dict']['_metadata'] = {} # for sd_key,special in special_instructions.items(): # torch_weights['state_dict']['_metadata'][sd_key] = special return torch_weights def examine_pickle(fb0, return_special=False): ## return_special: ## A rabbit hole I chased trying to debug a model that wouldn't import that had 1300 metadata statements ## If for some reason it's needed in the future turn it on. It is passed into the class AssignInstructions and ## if turned on collect_special will be True ## ## If, by 2023, this hasn't been required, I would strip it out. #turn the pickle file into text we can parse decompiled = unparse(Pickled.load(fb0).ast).splitlines() ## Parsing the decompiled pickle: ## LINES WE CARE ABOUT: ## 1: this defines a data file and what kind of data is in it ## _var1 = _rebuild_tensor_v2(UNPICKLER.persistent_load(('storage', HalfStorage, '0', 'cpu', 11520)), 0, (320, 4, 3, 3), (36, 9, 3, 1), False, _var0) ## ## 2: this massive line assigns the previous data to dictionary entries ## _var2262 = {'model.diffusion_model.input_blocks.0.0.weight': _var1, [..... continue for ever]} ## ## 3: this massive line also assigns values to keys, but does so differently ## _var2262.update({ 'cond_stage_model.transformer.text_model.encoder.layers.3.layer_norm2.bias': _var2001, [ .... and on and on ]}) ## ## 4: in some pruned models, the last line is instead a combination of 2/3 into the final variable: ## result = {'model.diffusion_model.input_blocks.0.0.weight': _var1, 'model.diffusion_model.input_blocks.0.0.bias': _var3, } ## ## that's it # make some REs to match the above. re_rebuild = re.compile('^_var\d+ = _rebuild_tensor_v2\(UNPICKLER\.persistent_load\(\(.*\)$') re_assign = re.compile('^_var\d+ = \{.*\}$') re_update = re.compile('^_var\d+\.update\(\{.*\}\)$') re_ordered_dict = re.compile('^_var\d+ = OrderedDict\(\)$') re_result = re.compile('^result = \{.*\}$') load_instructions = {} assign_instructions = AssignInstructions() for line in decompiled: ## see if line matches patterns of lines we care about: line = line.strip() if re_rebuild.match(line): variable_name, load_instruction = line.split(' = ', 1) load_instructions[variable_name] = LoadInstruction(line, variable_name) elif re_assign.match(line) or re_result.match(line): assign_instructions.parse_assign_line(line) elif re_update.match(line): assign_instructions.parse_update_line(line) elif re_ordered_dict.match(line): #do nothing continue elif NO_PICKLE_DEBUG: print(f'unmatched line: {line}') if NO_PICKLE_DEBUG: print(f"Found {len(load_instructions)} load instructions") assign_instructions.integrate(load_instructions) if return_special: return assign_instructions.integrated_instructions, assign_instructions.special_instructions return assign_instructions.integrated_instructions class AssignInstructions: def __init__(self, collect_special=False): self.instructions = {} self.special_instructions = {} self.integrated_instructions = {} self.collect_special = collect_special; def parse_result_line(self, line): garbage, huge_mess = line.split(' = {', 1) assignments = huge_mess.split(', ') del huge_mess assignments[-1] = assignments[-1].strip('}') #compile RE here to avoid doing it every loop iteration: re_var = re.compile('^_var\d+$') assignment_count = 0 for a in assignments: if self._add_assignment(a, re_var): assignment_count = assignment_count + 1 if NO_PICKLE_DEBUG: print(f"Added/merged {assignment_count} assignments. Total of {len(self.instructions)} assignment instructions") def parse_assign_line(self, line): # input looks like this: # _var2262 = {'model.diffusion_model.input_blocks.0.0.weight': _var1, 'model.diffusion_model.input_blocks.0.0.bias': _var3,\ # ...\ # 'cond_stage_model.transformer.text_model.encoder.layers.3.layer_norm2.weight': _var1999} # input looks like the above, but with 'result' in place of _var2262: # result = {'model.diffusion_model.input_blocks.0.0.weight': _var1, ... } # # or also look like: # result = {'state_dict': _var2314} # ... which will be ignored later garbage, huge_mess = line.split(' = {', 1) assignments = huge_mess.split(', ') del huge_mess assignments[-1] = assignments[-1].strip('}') #compile RE here to avoid doing it every loop iteration: re_var = re.compile('^_var\d+$') assignment_count = 0 for a in assignments: if self._add_assignment(a, re_var): assignment_count = assignment_count + 1 if NO_PICKLE_DEBUG: print(f"Added/merged {assignment_count} assignments. Total of {len(self.instructions)} assignment instructions") def _add_assignment(self, assignment, re_var): # assignment can look like this: # 'cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.out_proj.weight': _var2009 # or assignment can look like this: # 'embedding_manager.embedder.transformer.text_model.encoder.layers.6.mlp.fc1': {'version': 1} sd_key, fickling_var = assignment.split(': ', 1) sd_key = sd_key.strip("'") if sd_key != 'state_dict' and re_var.match(fickling_var): self.instructions[sd_key] = fickling_var return True elif self.collect_special: # now convert the string "{'version': 1}" into a dictionary {'version': 1} entries = fickling_var.split(',') special_dict = {} for e in entries: e = e.strip("{}") k, v = e.split(': ') k = k.strip("'") v = v.strip("'") special_dict[k] = v self.special_instructions[sd_key] = special_dict return False def integrate(self, load_instructions): unfound_keys = {} for sd_key, fickling_var in self.instructions.items(): if fickling_var in load_instructions: self.integrated_instructions[sd_key] = load_instructions[fickling_var] else: if NO_PICKLE_DEBUG: print(f"no load instruction found for {sd_key}") if NO_PICKLE_DEBUG: print(f"Have {len(self.integrated_instructions)} integrated load/assignment instructions") def parse_update_line(self, line): # input looks like: # _var2262.update({'cond_stage_model.transformer.text_model.encoder.layers.3.layer_norm2.bias': _var2001,\ # 'cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.k_proj.weight': _var2003,\ # ...\ #'cond_stage_model.transformer.text_model.final_layer_norm.bias': _var2261}) garbage, huge_mess = line.split('({', 1) updates = huge_mess.split(', ') del huge_mess updates[-1] = updates[-1].strip('})') re_var = re.compile('^_var\d+$') update_count = 0 for u in updates: if self._add_assignment(u, re_var): update_count = update_count + 1 if NO_PICKLE_DEBUG: print(f"Added/merged {update_count} updates. Total of {len(self.instructions)} assignment instructions") class LoadInstruction: def __init__(self, instruction_string, variable_name, extra_debugging = False): self.ident = False self.storage_type = False self.obj_key = False self.location = False #unused self.obj_size = False self.stride = False #unused self.data = False self.variable_name = variable_name self.extra_debugging = extra_debugging self.parse_instruction(instruction_string) def parse_instruction(self, instruction_string): ## this function could probably be cleaned up/shortened. ## this is the API def for _rebuild_tensor_v2: ## _rebuild_tensor_v2(storage, storage_offset, size, stride, requires_grad, backward_hooks): # ## sample instruction from decompiled pickle: # _rebuild_tensor_v2(UNPICKLER.persistent_load(('storage', HalfStorage, '0', 'cpu', 11520)), 0, (320, 4, 3, 3), (36, 9, 3, 1), False, _var0) # # the following comments will show the output of each string manipulation as if it started with the above. if self.extra_debugging: print(f"input: '{instruction_string}'") garbage, storage_etc = instruction_string.split('((', 1) # storage_etc = 'storage', HalfStorage, '0', 'cpu', 11520)), 0, (320, 4, 3, 3), (36, 9, 3, 1), False, _var0) if self.extra_debugging: print("storage_etc, reference: ''storage', HalfStorage, '0', 'cpu', 11520)), 0, (320, 4, 3, 3), (36, 9, 3, 1), False, _var0)'") print(f"storage_etc, actual: '{storage_etc}'\n") storage, etc = storage_etc.split('))', 1) # storage = 'storage', HalfStorage, '0', 'cpu', 11520 # etc = , 0, (320, 4, 3, 3), (36, 9, 3, 1), False, _var0) if self.extra_debugging: print("storage, reference: ''storage', HalfStorage, '0', 'cpu', 11520'") print(f"storage, actual: '{storage}'\n") print("etc, reference: ', 0, (320, 4, 3, 3), (36, 9, 3, 1), False, _var0)'") print(f"etc, actual: '{etc}'\n") ## call below maps to: ('storage', HalfStorage, '0', 'cpu', 11520) self.ident, self.storage_type, self.obj_key, self.location, self.obj_size = storage.split(', ', 4) self.ident = self.ident.strip("'") self.obj_key = self.obj_key.strip("'") self.location = self.location.strip("'") self.obj_size = int(self.obj_size) self.storage_type = self._torch_to_numpy(self.storage_type) if self.extra_debugging: print(f"{self.ident}, {self.obj_key}, {self.location}, {self.obj_size}, {self.storage_type}") assert (self.ident == 'storage') garbage, etc = etc.split(', (', 1) # etc = 320, 4, 3, 3), (36, 9, 3, 1), False, _var0) if self.extra_debugging: print("etc, reference: '320, 4, 3, 3), (36, 9, 3, 1), False, _var0)'") print(f"etc, actual: '{etc}'\n") size, stride, garbage = etc.split('), ', 2) # size = 320, 4, 3, 3 # stride = (36, 9, 3, 1 stride = stride.strip('(,') size = size.strip(',') if (size == ''): # rare case where there is an empty tuple. SDv1.4 has two of these. self.size_tuple = () else: self.size_tuple = tuple(map(int, size.split(', '))) if (stride == ''): self.stride = () else: self.stride = tuple(map(int, stride.split(', '))) if self.extra_debugging: print(f"size: {self.size_tuple}, stride: {self.stride}") prod_size = prod(self.size_tuple) assert prod(self.size_tuple) == self.obj_size # does the size in the storage call match the size tuple # zero out the data self.data = np.zeros(self.size_tuple, dtype=self.storage_type) @staticmethod def _torch_to_numpy(storage_type): if storage_type == 'FloatStorage': return np.float32 if storage_type == 'HalfStorage': return np.float16 if storage_type == 'LongStorage': return np.int64 if storage_type == 'IntStorage': return np.int32 raise Exception("Storage type not defined!") def load_from_file_buffer(self, fb): if self.data.dtype == "object": print(f"issue assigning object on {self.obj_key}") return False else: np.copyto(self.data, np.frombuffer(fb.read(), self.data.dtype).reshape(self.size_tuple)) return True def get_data(self): return self.data
divamgupta/diffusionbee-stable-diffusion-ui
backends/model_converter/fake_torch.py
fake_torch.py
py
15,028
python
en
code
11,138
github-code
6
73919945469
import unittest from bs4 import BeautifulSoup from src import get_html_script as ghs from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from sqlalchemy.ext.declarative import declarative_base from models.models import JobDataModel from models import domain_db_mappings as dbm from models.database_models import JobDataDbModel import models.database_methods as db_ops from src.email_generator import TextEmailContent, HtmlEmailContent, generate_full_email_content from src.email_sender import send_email_to_user, get_data_and_send_email from datetime import date Base = declarative_base() class TestScrapeMethods(unittest.TestCase): def test_successfully_scrapes_site(self): # Phil comes by, he wants to use this web scraper tool. # He plans to see if it can find data on mechanics jobs, # and he wants to move to tampa, so he checks monster. query = 'mechanic' location = 'Tampa' site = 'https://www.monster.com' #url = 'https://www.monster.com/jobs/search/?q=mechanic&where=Tampa' results = ghs.scrape_site(site, query, location) # Phil sees that he was able to get a successful response self.assertEqual(results.status_code, 200) # Phil sees that it did in fact search the site he wanted. self.assertTrue(site in results.url) # Phil sees that it definitely searched for the type of job he wanted.results self.assertTrue(query in results.url) # He also sees that it certainly searched the location he wanted. self.assertTrue(location in results.url) def test_successfully_parses_data(self): # Mary is a bit more discerning than Phil. # She wants to make sure her data makes sense. query = 'developer' location = 'New York' site = 'monster.com' location_names = ['New York', 'NY'] results = ghs.scrape_full_page(site, query, location) # Results are not empty. Mary managed to scrape data from a site! self.assertTrue(results) # Mary does not see any html. results_names = [result.title for result in results] results_locations = [result.location for result in results] results_sites = [result.link for result in results] self.assertFalse(any( [ bool(BeautifulSoup(results_name, "html.parser").find()) for results_name in results_names ] )) self.assertFalse(any( bool(BeautifulSoup(results_location, "html.parser").find()) for results_location in results_locations )) # Mary sees that she did get radiologist jobs in her results. self.assertTrue(any([(query in results_name) for results_name in results_names])) # Mary also sees that she got results in New York. self.assertTrue(any( [ [loc in results_location for loc in location_names] for results_location in results_locations ] )) # Mary lastly sees that all of the job links are, in fact from monster. self.assertTrue(all([site in result_site for result_site in results_sites])) # Amazed at how far technology has come, a satisfied Mary goes to bed. class EndToEndHtmlScrapeSaveToDbTest(unittest.TestCase): def setUp(self): self.engine = create_engine('sqlite:///:memory:') Session = sessionmaker(bind=self.engine) self.session = Session() Base.metadata.create_all(self.engine, tables=[JobDataDbModel.__table__]) def tearDown(self): Base.metadata.drop_all(self.engine) def test_scrapes_and_saves_job_data(self): job_sites = ['monster.com'] location = 'utah' query = 'hairdresser' before_data = self.session.query(JobDataDbModel).all() self.assertFalse(before_data) ghs.scrape_sites_and_save_jobs(job_sites, query, location, self.session) after_data = self.session.query(JobDataDbModel).all() self.assertTrue(after_data) class StoresDataAndSendsEmailTest(unittest.TestCase): def setUp(self): self.engine = create_engine('sqlite:///:memory:') Session = sessionmaker(bind=self.engine) self.session = Session() Base.metadata.create_all(self.engine, tables=[JobDataDbModel.__table__]) def tearDown(self): Base.metadata.drop_all(self.engine) def test_emails_saved_job_data(self): # Larry is lazy. He doesn't want to have to keep checking everything himself, so # He wants the app to email him only results that haven't already been emailed to him yet. query = 'hairdresser' location = 'utah' site = 'monster.com' class_data = ghs.scrape_full_page(site, query, location) # His data is saved to the database. It is the exact same data that he had before. mapped_data = dbm.map_job_data_models_to_db_models(class_data) for data_point in mapped_data: self.session.add(data_point) self.session.commit() saved_data = self.session.query(JobDataDbModel).all() response = get_data_and_send_email(self.session) # Larry has received the email after a short amount of time has passed. self.assertDictEqual(response, {}) # All of the items that were sent are now marked as having been sent. # Because of this, none of them should show if we filter out sent items in the DB. updated_data = self.session.query(JobDataDbModel).filter(JobDataDbModel.has_been_emailed == False).all() self.assertTrue(len(updated_data) == 0) # Satisfied that it works as expected, Larry goes to bed. if __name__ == '__main__': unittest.main()
ctiller15/Board-scrape-tool
tests/functional_tests.py
functional_tests.py
py
5,831
python
en
code
0
github-code
6
31065262082
from tensorflow.keras.backend import clear_session from tensorflow.keras.models import load_model from tensorflow.keras.callbacks import ModelCheckpoint, Callback as keras_callback from tensorflow.keras.preprocessing.image import ImageDataGenerator import numpy as np from static.models.unet_model import unet from scipy.io import loadmat import json import random import logging # This script uses a set of training data assembled into a .mat file consisting of a stack of images # and a corresponding set of binary masks that label the pixels in the image stacks into two classes. # The script then initializes a randomized U-NET (using the topology defined in the file model.py). # It then initiates training using a given batch size and # of epochs, saving the best net at each # step to the given .hdf5 file path. # # Written by Teja Bollu, documented and modified by Brian Kardon def createDataAugmentationParameters(rotation_range=None, width_shift_range=0.1, height_shift_range=0.3, zoom_range=0.4, horizontal_flip=True, vertical_flip=True): # Create dictionary of data augmentation parameter return { "rotation_range":rotation_range, "width_shift_range":width_shift_range, "height_shift_range":height_shift_range, "zoom_range":zoom_range, "horizontal_flip":horizontal_flip, "vertical_flip":vertical_flip } class PrintLogger: def __init__(self): pass def log(lvl, msg): print(msg) def trainNetwork(trained_network_path, training_data_path, start_network_path=None, augment=True, batch_size=10, epochs=512, image_field_name='imageStack', mask_field_name='maskStack', data_augmentation_parameters={}, epoch_progress_callback=None, logger=None): # Actually train the network, saving the best network to a file after each epoch. # augment = boolean flag indicating whether to randomly augment training data # batch_size = Size of training batches (size of batches that dataset is divided into for each epoch): # epochs = Number of training epochs (training runs through whole dataset): # training_data_path = .mat file containing the training data (image data and corresponding manually created mask target output): # image_field_name = Field within .mat file that contains the relevant images: # mask_field_name = Field within .mat file that contains the relevant masks: # trained_network_path = File path to save trained network to: # data_augmentation_parameters = to use for data augmentation: # epoch_progress_callback = a function to call at the end of each epoch, # which takes a progress argument which will be a dictionary of progress # indicators if logger is None: logger = PrintLogger() # Reset whatever buffers or saved state exists...not sure exactly what that consists of. # This may not actually work? Word is you have to restart whole jupyter server to get this to work. clear_session() # Convert inter-epoch progress callback to a tf.keras.Callback object epoch_progress_callback = TrainingProgressCallback(epoch_progress_callback) # Load training data print('Loading images and masks...') data = loadmat(training_data_path) img = data[image_field_name] mask = data[mask_field_name] # Process image and mask data into the proper format img_shape = img.shape; num_samples = img_shape[0] img_size_x = img_shape[1] img_size_y = img_shape[2] img = img.reshape(num_samples, img_size_x, img_size_y, 1) mask = mask.reshape(num_samples, img_size_x, img_size_y, 1) print("...image and mask data loaded.") print("Image stack dimensions:", img.shape) print(" Mask stack dimensions:", mask.shape) print('start path:', start_network_path) print('train path:', trained_network_path) if augment: imgGen = ImageDataGenerator(**data_augmentation_parameters) maskGen = ImageDataGenerator(**data_augmentation_parameters) if start_network_path is None: # Randomize new network structure using architecture in model.py file lickbot_net = unet(net_scale = 1) else: # Load previously trained network from a file lickbot_net = load_model(start_network_path) # Instruct training algorithm to save best network to disk whenever an improved network is found. model_checkpoint = ModelCheckpoint(str(trained_network_path), monitor='loss', verbose=1, save_best_only=True) callback_list = [model_checkpoint] if epoch_progress_callback is not None: callback_list.append(epoch_progress_callback) if augment: print("Using automatically augmented training data.") # Train network using augmented dataset seed = random.randint(0, 1000000000) imgIterator = imgGen.flow(img, seed=seed, shuffle=False, batch_size=batch_size) maskIterator = maskGen.flow(mask, seed=seed, shuffle=False, batch_size=batch_size) steps_per_epoch = int(num_samples / batch_size) lickbot_net.fit( ((imgBatch, maskBatch) for imgBatch, maskBatch in zip(imgIterator, maskIterator)), steps_per_epoch=steps_per_epoch, # # of batches of generated data per epoch epochs=epochs, verbose=1, callbacks=callback_list ) else: lickbot_net.fit( img, mask, epochs=epochs, verbose=1, callbacks=callback_list ) class TrainingProgressCallback(keras_callback): def __init__(self, progressFunction): super(TrainingProgressCallback, self).__init__() self.logs = [] self.progressFunction = progressFunction def on_epoch_end(self, epoch, logs=None): # self.logs.append(logs) # keys = list(logs.keys()) if 'loss' in logs: loss = logs['loss'] else: loss = None if 'acc' in logs: accuracy = logs['acc'] else: accuracy = None exitFlag = self.progressFunction(epoch=epoch, loss=loss, accuracy=accuracy) if exitFlag: self.model.stop_training = True # print("End epoch {} of training; got log keys: {}".format(epoch, keys)) def validateNetwork(trained_network_path, img=None, imgIterator=None, maskIterator=None): # Load trained network lickbot_net = load_model(trained_network_path) if augment: img_validate = imgIterator.next() mask_validate = maskIterator.next() else: print('Using original dataset for visualization') img_validate = img mask_validate = mask mask_pred = lickbot_net.predict(img_validate) mask_pred.shape # %matplotlib inline from matplotlib import pyplot as plt from matplotlib import gridspec numValidation = img_validate.shape[0] img_shape = img.shape; num_samples = img_shape[0] img_size_x = img_shape[1] img_size_y = img_shape[2] img_disp = img_validate.reshape(numValidation,img_size_x,img_size_y) mask_disp = mask_validate.reshape(numValidation,img_size_x,img_size_y) mask_pred = lickbot_net.predict(img_validate).reshape(numValidation,img_size_x,img_size_y) scaleFactor = 3 plt.figure(figsize=(scaleFactor*3,scaleFactor*numValidation)) plt.subplots_adjust(wspace=0, hspace=0) gs = gridspec.GridSpec(nrows=numValidation, ncols=3, width_ratios=[1, 1, 1], wspace=0.0, hspace=0.0, bottom=0, top=1, left=0, right=1) for k in range(numValidation): plt.subplot(gs[k, 0]) plt.imshow(mask_disp[k]) plt.subplot(gs[k, 1]) plt.imshow(mask_pred[k]) plt.subplot(gs[k, 2]) plt.imshow(img_disp[k])
GoldbergLab/tongueSegmentationServer
NetworkTraining.py
NetworkTraining.py
py
7,819
python
en
code
1
github-code
6
29537697201
# -*- coding: utf-8 -*- from openerp import models, fields, api class purchase_order(models.Model): _inherit = 'purchase.order' @api.multi def action_picking_create(self): res = super(purchase_order, self).action_picking_create() if self.picking_ids: picking_ids = [x.id for x in self.picking_ids] self.env['sftp.more'].sftp_send(picking_ids) return res
odoopruebasmp/productions_stage_venv
document_sftp_more/models/purchase_order.py
purchase_order.py
py
418
python
en
code
0
github-code
6
14493907058
# -*- coding: utf-8 -*- # ''' -------------------------------------------------------------------------- # File Name: PATH_ROOT/utils/signal_vis.py # Author: JunJie Ren # Version: v1.1 # Created: 2021/06/15 # Description: — — — — — — — — — — — — — — — — — — — — — — — — — — — --> DD信号识别(可解释)系列代码 <-- -- 可视化信号输入 — — — — — — — — — — — — — — — — — — — — — — — — — — — # Module called: <0> PATH_ROOT/config.py <1> PATH_TOOT/dataset/RML2016.py — — — — — — — — — — — — — — — — — — — — — — — — — — — # Function List: <0> drawAllOriSignal(): 绘制所有信号输入样本的图像,并保存至相应标签的文件夹下 <1> showOriSignal(): 绘制并展示一个样本信号的图像 <2> showImgSignal(): 绘制并展示一个信号样本的二维可视化图像 <3> showCamSignal(): 叠加信号与CAM图,可视化CAM解释结果,并按类型保存 <4> mask_image(): 软阈值擦除CAM对应的判别性特征区域 — — — — — — — — — — — — — — — — — — — — — — — — — — — # Class List: None - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # History: | <author> | <version> | <time> | <desc> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <0> | JunJie Ren | v1.0 | 2020/06/15 | creat # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <1> | JunJie Ren | v1.1 | 2020/07/09 | 优化无name的数据集调用问题 # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <2> | JunJie Ren | v1.2 | 2020/07/13 | 增加CAM阈值擦除函数 -------------------------------------------------------------------------- ''' import sys import os import cv2 import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt import matplotlib; matplotlib.use('TkAgg') from sklearn.metrics import confusion_matrix sys.path.append("../") from app.configs import cfgs from app.dataset.RML2016 import loadNpy # from app.dataset.RML2016_04c.classes import modName def t2n(t): return t.detach().cpu().numpy().astype(np.int) def fig2data(fig): """ fig = plt.figure() image = fig2data(fig) @brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it @param fig a matplotlib figure @return a numpy 3D array of RGBA values """ import PIL.Image as Image # draw the renderer fig.canvas.draw() # Get the RGBA buffer from the figure w, h = fig.canvas.get_width_height() buf = np.fromstring(fig.canvas.tostring_argb(), dtype=np.uint8) buf.shape = (w, h, 4) # canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode buf = np.roll(buf, 3, axis=2) image = Image.frombytes("RGBA", (w, h), buf.tostring()) image = np.asarray(image) return image def showOriSignal(sample, mod_name, idx): ''' 绘制并展示一个样本信号的图像 ''' signal_data = sample[0] figure = plt.figure(figsize=(9, 6)) plt.title(str(idx)+" "+str(mod_name), fontsize=30) plt.xlabel('N', fontsize=20) plt.ylabel("Value", fontsize=20) plt.plot(signal_data[:, 0], label = 'I', linewidth=2.0) plt.plot(signal_data[:, 1], color = 'red', label = 'Q', linewidth=2.0) plt.legend(loc="upper right", fontsize=30) plt.close() image = fig2data(figure) image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) return image def showCamSignal(signal, CAM, mod): """ Args: signal: numpy.ndarray(size=(1, 128, 2), dtype=np.float) CAM: numpy.ndarray(size=(128, 2), dtype=np.float) Funcs: 叠加信号与CAM图,可视化CAM解释结果,并按类型保存 """ # 绘制信号 signal_data = signal[0] sig_len, channel = signal_data.shape figure = plt.figure(figsize=(18, 12)) plt.title(mod, fontsize=26) plt.xlabel('N', fontsize=20) plt.ylabel("Value", fontsize=20) plt.plot(signal_data[:, 0]*(sig_len//10), label = 'I' ,linewidth=4.0) plt.plot(signal_data[:, 1]*(sig_len//10), color = 'red', label = 'Q', linewidth=4.0) plt.legend(loc="upper right", fontsize=26) # 绘制CAM sig_min, sig_max = np.min(signal_data), np.max(signal_data) CAM = CAM.T # (2, 128) CAM = CAM - np.min(CAM) CAM = CAM / np.max(CAM) # CAM取值归一化 plt.imshow(CAM, cmap='jet', extent=[0., sig_len, (sig_min-0.5)*(sig_len//10), (sig_max+0.5)*(sig_len//10)]) # jet, rainbow # plt.colorbar() ''' save_path = "figs_CAM_ACARS/{}".format(mod_name) if not os.path.exists(save_path): os.makedirs(save_path) plt.savefig(save_path + '/' + str(idx+1)+"_CAM") plt.close() ''' # plt.savefig("figs/CAM_cur") # plt.show() image = fig2data(figure) image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) plt.close() return image def plot_confusion_matrix(y_true, y_pred, labels, title='Normalized confusion matrix', intFlag = 0): ''' 绘制混淆矩阵 ''' cmap = plt.cm.Blues ''' 颜色参考http://blog.csdn.net/haoji007/article/details/52063168''' cm = confusion_matrix(y_true, y_pred) tick_marks = np.array(range(len(labels))) + 0.5 np.set_printoptions(precision=2) if cm.sum(axis=1)[:, np.newaxis].all() != 0: cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] else: intFlag = 1 figure = plt.figure(figsize=(10, 9), dpi=360) ind_array = np.arange(len(labels)) x, y = np.meshgrid(ind_array, ind_array) # intFlag = 0 # 标记在图片中对文字是整数型还是浮点型 for x_val, y_val in zip(x.flatten(), y.flatten()): if (intFlag): c = cm[y_val][x_val] plt.text(x_val, y_val, "%d" % (c,), color='red', fontsize=12, va='center', ha='center') else: c = cm_normalized[y_val][x_val] if (c > 0.0001): #这里是绘制数字,可以对数字大小和颜色进行修改 plt.text(x_val, y_val, "%0.2f" % (c*100,) + "%", color='red', fontsize=10, va='center', ha='center') else: plt.text(x_val, y_val, "%d" % (0,), color='red', fontsize=10, va='center', ha='center') if(intFlag): plt.imshow(cm, interpolation='nearest', cmap=cmap) else: plt.imshow(cm_normalized, interpolation='nearest', cmap=cmap) plt.gca().set_xticks(tick_marks, minor=True) plt.gca().set_yticks(tick_marks, minor=True) plt.gca().xaxis.set_ticks_position('none') plt.gca().yaxis.set_ticks_position('none') plt.grid(True, which='minor', linestyle='-') plt.gcf().subplots_adjust(bottom=0.15) plt.title('Confusion Matrix', fontsize=18) plt.colorbar() xlocations = np.array(range(len(labels))) plt.xticks(xlocations, labels, rotation=90) plt.yticks(xlocations, labels) plt.ylabel('Index of True Classes') plt.xlabel('Index of Predict Classes') plt.savefig('./app/figs/confusion_matrix.jpg', dpi=300) image = fig2data(figure) image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) return image # plt.title(title) # plt.show() def drawAllOriSignal(X, Y): """ Args: X: numpy.ndarray(size = (bz, 1, 128, 2)), 可视化信号原始数据 Y: numpy.ndarray(size = (bz,)), 可视化信号标签 Returns: None Funcs: 绘制所有信号输入样本的图像,并保存至相应标签的文件夹下 """ for idx in range(len(X)): if (idx+1)%50 == 0: print("{} complete!".format(idx+1)) signal_data = X[idx][0] mod_name = str(modName[Y[idx]], "utf-8") \ if cfgs.dataset_name == "RML2016.04c" else "label-"+str(t2n(Y[idx])) plt.figure(figsize=(6, 4)) plt.title(mod_name) plt.xlabel('N') plt.ylabel("Value") plt.plot(signal_data[:, 0], label = 'I') plt.plot(signal_data[:, 1], color = 'red', label = 'Q') plt.legend(loc="upper right") save_path = "../figs/original_signal/{}".format(mod_name) if not os.path.exists(save_path): os.makedirs(save_path) plt.savefig(save_path + '/' + str(idx+1)) plt.close() print(X.shape) print(Y.shape) print("Complete the drawing of all original signals !!!") def showImgSignal(sample, label): ''' 绘制并展示一个信号样本的二维可视化图像 ''' data = sample[0].T # 2*128 data = data - np.min(data) data = data / np.max(data) mod_name = str(modName[label], "utf-8")\ if cfgs.dataset_name == "RML2016.04c" else "label-"+str(t2n(label)) # print(data.shape) h, sig_len = data.shape # 叠加信号,以便显示 img_sig = np.empty([sig_len, sig_len], dtype = float) # for row in range(int(sig_len/h)): # img_sig[row*h:row*h+h, :] = data for row in range(sig_len): if row<sig_len/2: img_sig[row:row+1, :] = data[0] else: img_sig[row:row+1, :] = data[1] img_sig = cv2.resize(img_sig, (sig_len*2,sig_len*2)) cv2.imshow(mod_name, img_sig) cv2.waitKey(0) return img_sig def mask_image(cam, image, reserveORerase): """ Args: cam: numpy.ndarray(size=(4096, 2), dtype=np.float), 0-1 image: torch.Tensor, torch.Size([1, 4096, 2]) reserveORerase: bool 保留(0)或擦除(1)判别性区域 Funcs: 软阈值擦除/保留CAM对应的判别性特征区域 """ cam = torch.from_numpy(cam).cuda() mask = torch.sigmoid(cfgs.CAM_omega * (cam - cfgs.Erase_thr)).squeeze() masked_image = image - (image * mask) if reserveORerase else image * mask return masked_image.float() def mask_image_hard(cam, image, reserveORerase, thr): ''' 阈值硬擦除 ''' mask = np.zeros_like(cam) mask[cam >= thr] = 1 mask[cam < thr] = 0 mask = torch.from_numpy(mask).cuda() # print(mask.shape, image.shape) masked_image = image - (image * mask) if reserveORerase else image * mask return masked_image.float() if __name__ == "__main__": x_train, y_train, x_test, y_test = loadNpy(cfgs.train_path, cfgs.test_path) print(x_train.shape, y_train.shape) # drawAllOriSignal(X=x_train, Y=y_train) for idx in range(len(x_train)): showImgSignal(x_train[idx], y_train[idx]) showOriSignal(x_train[idx], y_train[idx])
jjRen-xd/PyOneDark_Qt_GUI
app/utils/signal_vis.py
signal_vis.py
py
11,107
python
en
code
2
github-code
6
31267028151
## Archived on the 22/09/2021 ## Original terrain.py lived at io_ogre/terrain.py import bpy def _get_proxy_decimate_mod( ob ): proxy = None for child in ob.children: if child.subcollision and child.name.startswith('DECIMATED'): for mod in child.modifiers: if mod.type == 'DECIMATE': return mod def bake_terrain( ob, normalize=True ): assert ob.collision_mode == 'TERRAIN' terrain = None for child in ob.children: if child.subcollision and child.name.startswith('TERRAIN'): terrain = child break assert terrain data = terrain.to_mesh(bpy.context.scene, True, "PREVIEW") raw = [ v.co.z for v in data.vertices ] Zmin = min( raw ) Zmax = max( raw ) depth = Zmax-Zmin m = 1.0 / depth rows = [] i = 0 for x in range( ob.collision_terrain_x_steps ): row = [] for y in range( ob.collision_terrain_y_steps ): v = data.vertices[ i ] if normalize: z = (v.co.z - Zmin) * m else: z = v.co.z row.append( z ) i += 1 if x%2: row.reverse() # blender grid prim zig-zags rows.append( row ) return {'data':rows, 'min':Zmin, 'max':Zmax, 'depth':depth} def save_terrain_as_NTF( path, ob ): # Tundra format - hardcoded 16x16 patch format info = bake_terrain( ob ) url = os.path.join( path, '%s.ntf' % clean_object_name(ob.data.name) ) f = open(url, "wb") # Header buf = array.array("I") xs = ob.collision_terrain_x_steps ys = ob.collision_terrain_y_steps xpatches = int(xs/16) ypatches = int(ys/16) header = [ xpatches, ypatches ] buf.fromlist( header ) buf.tofile(f) # Body rows = info['data'] for x in range( xpatches ): for y in range( ypatches ): patch = [] for i in range(16): for j in range(16): v = rows[ (x*16)+i ][ (y*16)+j ] patch.append( v ) buf = array.array("f") buf.fromlist( patch ) buf.tofile(f) f.close() path,name = os.path.split(url) R = { 'url':url, 'min':info['min'], 'max':info['max'], 'path':path, 'name':name, 'xpatches': xpatches, 'ypatches': ypatches, 'depth':info['depth'], } return R class OgreCollisionOp(bpy.types.Operator): '''Ogre Collision''' bl_idname = "ogre.set_collision" bl_label = "modify collision" bl_options = {'REGISTER'} MODE = StringProperty(name="toggle mode", maxlen=32, default="disable") @classmethod def poll(cls, context): if context.active_object and context.active_object.type == 'MESH': return True def get_subcollisions( self, ob, create=True ): r = get_subcollisions( ob ) if not r and create: method = getattr(self, 'create_%s'%ob.collision_mode) p = method(ob) p.name = '%s.%s' %(ob.collision_mode, ob.name) p.subcollision = True r.append( p ) return r def create_DECIMATED(self, ob): child = ob.copy() bpy.context.scene.collection.objects.link( child ) child.matrix_local = mathutils.Matrix() child.parent = ob child.hide_select = True child.draw_type = 'WIRE' #child.select = False child.lock_location = [True]*3 child.lock_rotation = [True]*3 child.lock_scale = [True]*3 decmod = child.modifiers.new('proxy', type='DECIMATE') decmod.ratio = 0.5 return child def create_TERRAIN(self, ob): x = ob.collision_terrain_x_steps y = ob.collision_terrain_y_steps ################################# #pos = ob.matrix_world.to_translation() bpy.ops.mesh.primitive_grid_add( x_subdivisions=x, y_subdivisions=y, size=1.0 ) #, location=pos ) grid = bpy.context.active_object assert grid.name.startswith('Grid') grid.collision_terrain_x_steps = x grid.collision_terrain_y_steps = y ############################# x,y,z = ob.dimensions sx,sy,sz = ob.scale x *= 1.0/sx y *= 1.0/sy z *= 1.0/sz grid.scale.x = x/2 grid.scale.y = y/2 grid.location.z -= z/2 grid.data.show_all_edges = True grid.draw_type = 'WIRE' grid.hide_select = True #grid.select = False grid.lock_location = [True]*3 grid.lock_rotation = [True]*3 grid.lock_scale = [True]*3 grid.parent = ob bpy.context.scene.objects.active = ob mod = grid.modifiers.new(name='temp', type='SHRINKWRAP') mod.wrap_method = 'PROJECT' mod.use_project_z = True mod.target = ob mod.cull_face = 'FRONT' return grid def invoke(self, context, event): ob = context.active_object game = ob.game subtype = None if ':' in self.MODE: mode, subtype = self.MODE.split(':') ##BLENDERBUG##ob.game.collision_bounds_type = subtype # BUG this can not come before if subtype in 'BOX SPHERE CYLINDER CONE CAPSULE'.split(): ob.draw_bounds_type = subtype else: ob.draw_bounds_type = 'POLYHEDRON' ob.game.collision_bounds_type = subtype # BLENDERBUG - this must come after draw_bounds_type assignment else: mode = self.MODE ob.collision_mode = mode if ob.data.show_all_edges: ob.data.show_all_edges = False if ob.show_texture_space: ob.show_texture_space = False if ob.show_bounds: ob.show_bounds = False if ob.show_wire: ob.show_wire = False for child in ob.children: if child.subcollision and not child.hide_viewport: child.hide_viewport = True if mode == 'NONE': game.use_ghost = True game.use_collision_bounds = False elif mode == 'PRIMITIVE': game.use_ghost = False game.use_collision_bounds = True ob.show_bounds = True elif mode == 'MESH': game.use_ghost = False game.use_collision_bounds = True ob.show_wire = True if game.collision_bounds_type == 'CONVEX_HULL': ob.show_texture_space = True else: ob.data.show_all_edges = True elif mode == 'DECIMATED': game.use_ghost = True game.use_collision_bounds = False game.use_collision_compound = True proxy = self.get_subcollisions(ob)[0] if proxy.hide_viewport: proxy.hide_viewport = False ob.game.use_collision_compound = True # proxy mod = _get_proxy_decimate_mod( ob ) mod.show_viewport = True if not proxy.select: # ugly (but works) proxy.hide_select = False proxy.select = True proxy.hide_select = True if game.collision_bounds_type == 'CONVEX_HULL': ob.show_texture_space = True elif mode == 'TERRAIN': game.use_ghost = True game.use_collision_bounds = False game.use_collision_compound = True proxy = self.get_subcollisions(ob)[0] if proxy.hide_viewport: proxy.hide_viewport = False elif mode == 'COMPOUND': game.use_ghost = True game.use_collision_bounds = False game.use_collision_compound = True else: assert 0 # unknown mode return {'FINISHED'}
OGRECave/blender2ogre
archived_code/terrain.py
terrain.py
py
7,840
python
en
code
187
github-code
6
30197691279
from sense_hat import SenseHat import time import socket import gyrodata import sys host = '10.44.15.35' port = 5802 gyrodata.initGetGyroAngle() gyro_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) gyro_socket.bind((host, port)) print('Socket created') print('Listening...') gyro_socket.listen(1) conn, addr = gyro_socket.accept() print ("Connected with " + addr[0] + ":" + str(addr[1])) while 1: data = conn.recv(1024) print (str(data)) if data == (b'Requesting Gyro\r\n'): gyrodata.sendGyroData(conn) conn.close #while 1: # data = conn.recv(1024) # # robotAngle = bytes(gyroAngle, 'utf-8') # conn.send(robotAngle) # print('data sent: ' + gyroAngle) # if not data: # break #conn.close
VCHSRobots/2017NavSys
gyroreader.py
gyroreader.py
py
714
python
en
code
0
github-code
6
844258019
# coding: utf-8 """Train an ESN with a recursive least squares filter.""" from __future__ import ( absolute_import, division, print_function, unicode_literals, ) import logging import hyperopt import hyperopt.mongoexp import numpy as np from esn import RlsEsn from esn.activation_functions import lecun from esn.preprocessing import add_noise from . import SuperposedSinusoidExample logger = logging.getLogger(__name__) class RlsExample(SuperposedSinusoidExample): def __init__(self): super(RlsExample, self).__init__() self.num_training_samples = 10000 self.num_test_samples = 500 self.title = 'Superposed sine; RLS; {} samples'.format( self.num_training_samples ) self.hyper_parameters = { 'spectral_radius': 1.11, 'leaking_rate': 0.75, 'forgetting_factor': 0.99998, 'autocorrelation_init': 0.1, 'bias_scale': -0.4, 'signal_scale': 1.2, 'state_noise': 0.004, 'input_noise': 0.007, } self.search_space = ( hyperopt.hp.quniform('spectral_radius', 0, 1.5, 0.01), hyperopt.hp.quniform('leaking_rate', 0, 1, 0.01), hyperopt.hp.quniform('forgetting_factor', 0.98, 1, 0.0001), hyperopt.hp.qloguniform('autocorrelation_init', np.log(0.1), np.log(1), 0.0001), hyperopt.hp.qnormal('bias_scale', 1, 1, 0.1), hyperopt.hp.qnormal('signal_scale', 1, 1, 0.1), hyperopt.hp.quniform('state_noise', 1e-10, 1e-2, 1e-10), hyperopt.hp.quniform('input_noise', 1e-10, 1e-2, 1e-10), ) def _load_data(self, offset=False): super(RlsExample, self)._load_data(offset) # remove every other label self.training_outputs[1::2] = np.nan def _train( self, spectral_radius, leaking_rate, forgetting_factor, autocorrelation_init, bias_scale, signal_scale, state_noise, input_noise, ): self.esn = RlsEsn( in_size=1, reservoir_size=1000, out_size=1, spectral_radius=spectral_radius, leaking_rate=leaking_rate, forgetting_factor=forgetting_factor, autocorrelation_init=autocorrelation_init, state_noise=state_noise, sparsity=0.95, initial_transients=300, squared_network_state=True, activation_function=lecun, ) self.esn.W_in *= [bias_scale, signal_scale] # train self.esn.fit( np.array([self.training_inputs[0]]), np.array([self.training_outputs[0]]) ) for input_date, output_date in zip( add_noise(self.training_inputs[1:], input_noise), self.training_outputs[1:] ): if not np.isnan(output_date.item()): self.esn.partial_fit( np.array([input_date]), np.array([output_date]) ) else: # drive reservoir self.esn.predict(input_date) # test predicted_outputs = [self.esn.predict(self.test_inputs[0])] for i in range(len(self.test_inputs)-1): predicted_outputs.append(self.esn.predict(predicted_outputs[i])) return np.array(predicted_outputs)
0x64746b/python-esn
examples/superposed_sinusoid/rls.py
rls.py
py
3,499
python
en
code
0
github-code
6
73817307386
# # test_ab.py - generic tests for analysis programs # repagh <[email protected], May 2020 import pytest from slycot import analysis from slycot.exceptions import SlycotArithmeticError, SlycotResultWarning from .test_exceptions import assert_docstring_parse @pytest.mark.parametrize( 'fun, exception_class, erange, checkvars', ((analysis.ab05nd, SlycotArithmeticError, 1, {'p1': 1}), (analysis.ab07nd, SlycotResultWarning, 2, {'m': 1}), (analysis.ab09ad, SlycotArithmeticError, 3, {'dico': 'C'}), (analysis.ab09ad, SlycotArithmeticError, (2,), {'dico': 'D'}), (analysis.ab09ad, SlycotResultWarning, ((1, 0), ), {'nr': 3, 'Nr': 2}), (analysis.ab09ax, SlycotArithmeticError, 2, {'dico': 'C'}), (analysis.ab09ax, SlycotResultWarning, ((1, 0), ), {'nr': 3, 'Nr': 2}), (analysis.ab09ad, SlycotArithmeticError, 3, {'dico': 'C'}), (analysis.ab09ad, SlycotResultWarning, ((1, 0), ), {'nr': 3, 'Nr': 2}), (analysis.ab09md, SlycotArithmeticError, 3, {'alpha': -0.1}), (analysis.ab09md, SlycotResultWarning, ((1, 0), (2, 0)), {'nr': 3, 'Nr': 2, 'alpha': -0.1}), (analysis.ab09nd, SlycotArithmeticError, 3, {'alpha': -0.1}), (analysis.ab09nd, SlycotResultWarning, ((1, 0), (2, 0)), {'nr': 3, 'Nr': 2, 'alpha': -0.1}), (analysis.ab13bd, SlycotArithmeticError, 6, {'dico': 'C'}), (analysis.ab13bd, SlycotResultWarning, ((1, 0),), {}), (analysis.ab13dd, SlycotArithmeticError, 4, {}), (analysis.ab13ed, SlycotArithmeticError, 1, {}), (analysis.ab13fd, SlycotArithmeticError, (2,), {}), (analysis.ab13fd, SlycotResultWarning, (1,), {}))) def test_ab_docparse(fun, exception_class, erange, checkvars): assert_docstring_parse(fun.__doc__, exception_class, erange, checkvars)
python-control/Slycot
slycot/tests/test_analysis.py
test_analysis.py
py
2,436
python
en
code
115
github-code
6
71888974267
# Fn = F[n-1]+ F[n-2](n=>2) def fib(n): if n==0 : return [0] elif n==1 : return [0,1] else: fibs=[0,1,1] for i in range(3,n): fibs.append(fibs[-1]+fibs[-2]) return fibs # 输出了第10个斐波那契数列 print(fib(8)) # a,b=0,1 # while a<1000: # print(a,end=",") # a,b=b,a+b
fivespeedasher/Pieces
pra6.py
pra6.py
py
353
python
en
code
0
github-code
6
16151353249
from tqdm import tqdm import time import argparse N = int(1e9) T = 1e-2 MAX_LEN = 100 def parse_args(): parser = argparse.ArgumentParser(description='i really wanna have a rest.') parser.add_argument('-n', '--iters', type=int, default=N, help='rest iters.') parser.add_argument('-f', '--frequency', type=float, default=1/T, help='rest frequency per iter.') args = parser.parse_args() return args def have_a_rest(): args = parse_args() str_ = '' for idx in tqdm(range(args.iters)): str_ = str_ + ' ' if len(str_) > MAX_LEN: str_ = str_[MAX_LEN:] str_to_print = str_ + 'kaizhong faker' if idx % 10 < 5: print(str_to_print) else: print(str_to_print + str_to_print) time.sleep(1.0 / args.frequency) if __name__ == '__main__': have_a_rest()
I-Doctor/have-a-rest
have-a-rest.py
have-a-rest.py
py
871
python
en
code
0
github-code
6
7918280184
import os import sys import argparse import netaddr from netaddr import EUI def _parse_args( args_str): parser = argparse.ArgumentParser() args, remaining_argv = parser.parse_known_args(args_str.split()) parser.add_argument( "--username", nargs='?', default="admin",help="User name") parser.add_argument( "--password", nargs='?', default="contrail123",help="password") parser.add_argument( "--tenant_id", nargs='?', help="trnant id",required=True) parser.add_argument( "--config_node_port", help="config node port") parser.add_argument( "--config_node_ip", help="config node ip",required=True) parser.add_argument( "--physical_router_id", help="Physical router id") parser.add_argument( "--start_mac", help="Mac address of vcenter vm ",required=True) parser.add_argument( "--start_vn_name", help="Vn name to launch vmi",required=True) parser.add_argument( "--start_vlan", help="Initial vlan",required=True) parser.add_argument( "--number_of_vlan", help="number of vlans to be created",required=True) parser.add_argument( "--auth_url", nargs='?', default="check_string_for_empty",help="Auth Url",required=True) args = parser.parse_args(remaining_argv) return args def get_mac_address_iter_obj(mac,start_range,end_range): return iter(["{:012X}".format(int(mac, 16) + x) for x in range(int(start_range),int(end_range)+1)]) def get_subnet_iter_obj(subnet='1.1.1.0/24'): addr,prefix = subnet.split('/') ad1,ad2,ad3,ad4 = addr.split('.') return iter([ad1+'.'+str(int(ad2)+x)+'.'+str(int(ad3)+y)+'.'+ad4+'/'+prefix for x in range(1,250) for y in range(1,250)]) def get_subnet_iter_obj_for_static_route(subnet='1.1.1.0/24'): addr,prefix = subnet.split('/') ad1,ad2,ad3,ad4 = addr.split('.') return iter([str(int(ad1)+x)+'.'+ad2+'.'+ad3+'.'+ad4+'/'+prefix for x in range(1,250)]) def get_vn_name(base_vn_name,counter): return base_vn_name + str(counter) def get_vlan_range(start_vlan,numbers): vlan_range=[] end_vlan= int(start_vlan) + int(numbers) for x in range(int(start_vlan),int(end_vlan)+1): vlan_range.append(str(x)) return vlan_range def main(args_str = None): if not args_str: script_args = ' '.join(sys.argv[1:]) script_args = _parse_args(script_args) start_vlan = script_args.start_vlan number_of_vlan = script_args.number_of_vlan vlans = get_vlan_range(start_vlan,number_of_vlan) mac = get_mac_address_iter_obj(script_args.start_mac,'0',number_of_vlan) subnet = get_subnet_iter_obj() static_route_subnet = get_subnet_iter_obj_for_static_route(subnet='2.0.1.0/24') for vlan in vlans: try: m_addr = mac.next() sub = subnet.next() static_route_sub = static_route_subnet.next() except StopIteration: return vn_name = get_vn_name(script_args.start_vn_name,vlan) os.system("python vmi.py --static_route_subnet %s\ --tenant_id %s\ --config_node_ip %s\ --vcenter_vm_mac %s\ --vn_name %s\ --subnet %s\ --auth_url %s" %(static_route_sub, script_args.tenant_id, script_args.config_node_ip, m_addr,vn_name,sub, script_args.auth_url ) ) #python vmi_scale.py --tenant_id 74ebcac4-21da-4fe3-8c7f-e84c9e0424ca --config_node_ip 192.168.192.60 --start_mac 000029572113 --start_vn_name tor_vn_ --start_vlan 6 --number_of_vlan 7 --auth_url http://10.204.217.144:5000/v2.0 if __name__ == "__main__": main()
sandip-d/scripts
vmi_scale.py
vmi_scale.py
py
3,983
python
en
code
0
github-code
6
73813195389
# physic_tank.py ''' ----------------------------------------------------- function for calculating physics formula 1) Calculate Parameter : Charging Time, Discharging Time 2) Reverse Compute Tank Outlet Temperature ----------------------------------------------------- ''' '===============================================================================================================================' import numpy as np def __init__(self, SWIT, SWOT, LWIT, LWOT, SWF, LWF, SWOT_1min, LOWT_1min, Node10_Heat_Discharg, Node1_Heat_Charg, Tank_ChargStorage, Tank_DischargStorage): self.SWIT = SWIT self.SWOT = SWOT self.LWIT = LWIT self.LWOT = LWOT self.SWF = SWF self.LWF = LWF self.Node10_Heat_Discharg = Node10_Heat_Discharg self.Tank_ChargStorage = Tank_ChargStorage self.Node1_Heat_Charg = Node1_Heat_Charg self.Tank_DischargStorage = Tank_DischargStorage self.SWOT_1min = SWOT_1min self.LOWT_1min = LOWT_1min '------------------------' # Parameter Calculate '------------------------' # 10 layer's Parmeter (kW - m^3/h) # charging time def Charging_para(SWIT, SWOT, SWF): charge_para = ((SWOT - SWIT) * 2 * SWF * 1.162) / 10 return charge_para # discharging time def layer10_para(LWIT, SWOT, LFW, Node10_Heat_Discharg): layer10parameter = [] for i, (a, b, c, d) in enumerate(zip(LWIT, SWOT, LFW, Node10_Heat_Discharg)): if i == 0: layer10para = d - (c * 1.162 * (a - b)) if layer10para < 0: layer10para = 0 else: layer10para = layer10para else: layer10para = d - (c * 1.162 * (a - b)) if layer10para < 0: layer10para = 0 else: layer10para = layer10para layer10parameter.append(layer10para) # 1 layer's Parmeter # discharging time def Discharging_para(LWIT, LWOT, LWF): discharge_para = ((LWOT - LWIT) * 2 * LWF * 1.162) / -10 return discharge_para # charging time def layer01_para(SWIT, LOWT, SWF, Node1_Heat_Charg): layer01parameter = [] for i, (a, b, c, d) in enumerate(zip(SWIT, LOWT, SWF, Node1_Heat_Charg)): if i == 0: layer01para = d - (c * 1.162 * (a - b)) if layer01para < 0: layer01para = 0 else: layer01para = layer01para else: layer01para = d - (c * 1.162 * (a - b)) if layer01para < 0: layer01para = 0 else: layer01para = layer01para layer01parameter.append(layer01para) '------------------------' # Reverse Calculate '------------------------' # 10 layer def Tank_SWOT(SWIT, LWIT, SWOT_1min, Node10_Heat_Discharg, SWF, LWF, Charging_para, layer10para): # charging time if SWF != 0 and LWF == 0: TankSWOT = SWIT + ((1 / (2 * SWF * 1.162)) * Charging_para * 10) # discharging time elif LWF != 0 and SWF == 0: if layer10para == 0: TankSWOT = SWOT_1min else: TankSWOT = LWIT - (Node10_Heat_Discharg / (LWF * 1.162)) + (layer10para / (LWF * 1.162)) # 100% off else: TankSWOT = SWOT_1min return TankSWOT # Tank Total Charging Heat Sotrage def Tank_Charging(SWIT, TankSWOT, SWF, LWF): if SWF != 0 and LWF == 0: TankCharging = ((SWIT-TankSWOT)*SWF*1000*4.184) else: TankCharging = 0 return TankCharging # 10layer Heat Sotrage def Tank_10layer_charging(LWIT, TankSWOT, SWF, LWF, layer10para): if LWF != 0 and SWF == 0: Tank_10layer_charging = ((LWIT - TankSWOT) * LWF * 1.162) + layer10para else: Tank_10layer_charging = 0 return Tank_10layer_charging # 01 layer outlet temperature def Tank_LWOT(LWIT, SWIT, LOWT_1min, Node1_Heat_Charg, LWF, SWF, Discharging_para, layer01para): # discharging time if LWF != 0 and SWF == 0: TankLWOT = LWIT + ((1 / (2 * LWF * 1.162)) * Discharging_para * -10) # charging time elif SWF != 0 and LWF == 0: if layer01para == 0: TankLWOT = LOWT_1min else: TankLWOT = SWIT - (Node1_Heat_Charg / (SWF * 1.162)) + (layer01para / (SWF * 1.162)) # 100% off else: TankLWOT = LOWT_1min return TankLWOT # Tank Total Discharging Heat Sotrage def Tank_Discharging(LWIT, TankLWOT, SWF, LWF): if LWF != 0 and SWF == 0: TankDischarging = ((LWIT-TankLWOT)*LWF*1000*4.184) else: TankDischarging = 0 return TankDischarging # 01layer Heat Sotrage def Tank_01layer_charging(SWIT, TankLWOT, SWF, LWF, layer01para): if SWF != 0 and LWF == 0: Tank_01layer_charging = ((SWIT - TankLWOT) * SWF * 1.162) + layer01para else: Tank_01layer_charging = 0 return Tank_01layer_charging '==============================================================================================================================='
hyemi2022/hyemi2022
TotalModel_System_Calcuation/physic_tank.py
physic_tank.py
py
5,119
python
en
code
1
github-code
6
36703905624
import soundfile as sf import numpy as np import time import matplotlib.pyplot as plt from parameterization import STFT, iSTFT, optimal_synth_window, first_larger_square DEF_PARAMS = { "win_len": 25, "win_ovlap": 0.75, "blocks": 800, "max_h_type": "lin-lin", "min_gain_dry": 0, "bias": 1.01, "alpha": 0.1, "gamma": 0.7, } TITLES = ["aula1_12", "kitchen_12", "stairway1_1", "test"] SAMPLES = ["sploty/aula1/aula1_12.wav", "sploty/kitchen/kitchen_12.wav", "sploty/stairway1/stairway1_1.wav", "deverb_test_samples/test_raw.wav"] TEST_SCOPE = False def get_max_h_matrix(type, freqs, blocks): if type == "log-log": return (np.logspace(np.ones(freqs), np.ones(freqs) * np.finfo(np.float32).eps, blocks) * np.logspace(np.ones(blocks), np.ones(blocks) * np.finfo(np.float32).eps, freqs).T - 1) / 99 elif type == "log-lin": return (np.logspace(np.ones(freqs), np.ones(freqs) * np.finfo(np.float32).eps, blocks) * np.linspace(np.ones(blocks), np.zeros(blocks), freqs).T) / 9 elif type == "log-full": return (np.logspace(np.ones(freqs), np.ones(freqs) * np.finfo(np.float32).eps, blocks) - 1) / 9 elif type == "lin-log": return (np.logspace(np.ones(freqs), np.ones(freqs) * np.finfo(np.float32).eps, blocks) * np.logspace(np.ones(blocks), np.ones(blocks) * np.finfo(np.float32).eps, freqs).T - 1) / 9 elif type == "lin-lin": return np.linspace(np.ones(freqs), np.zeros(freqs), blocks) * \ np.linspace(np.ones(blocks), np.zeros(blocks), freqs).T elif type == "lin-full": return np.linspace(np.ones(freqs), np.zeros(freqs), blocks) else: return np.ones((freqs, blocks)).T def reconstruct(stft, window, overlap): frame_count, frequency_count = stft.shape sym_stft = np.hstack((stft, np.flipud(np.conj(stft[:, 0:frequency_count - 2])))) signal = np.real(iSTFT(sym_stft, window, overlap)) return signal def read_impulse_response(path, target_fs, target_bins, win_len, win_ovlap): h, h_fs = sf.read(path) h /= np.max(np.abs(h)) nfft = int(target_bins * h_fs / target_fs) win_len = int(win_len / 1000 * h_fs) win_ovlap = int(win_len * win_ovlap) window = np.hanning(win_len) H = STFT(h, window, win_ovlap, nfft, power=True) return H[:, 0:target_bins // 2 + 1], H.shape[0] def printProgressBar (iteration, total, prefix='', suffix='', decimals=1, length=100, fill='█', printEnd="\r"): """ Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) length - Optional : character length of bar (Int) fill - Optional : bar fill character (Str) printEnd - Optional : end character (e.g. "\r", "\r\n") (Str) """ percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '-' * (length - filledLength) print(f'\r{prefix} |{bar}| {percent}% {suffix}', end = printEnd) # Print New Line on Complete if iteration == total: print() def dereverberate(wave, fs, params=None, estimate_execution_time=True, show_progress_bar=True): """ Estimates the impulse response in a room the recording took place :param wave: 1-D ndarray of wave samples :param fs: int - sampling frequency :param params: dict containing the algorithm parameters - keys: :param estimate_execution_time: should we print estimated execution time for each next frame :param show_progress_bar: should we print progress bar of estimation :returns: (h_stft_pow) 2-D ndarray power STFT of h_rir, (wave_dry) 1-D ndarray of the dry signal, (wave_wet) 1-D ndarray of the wet signal """ # estimating execution time loop_times = np.zeros(10) # =================== Parameters =================== if params is None: params = DEF_PARAMS # ==================== Windowing =================== win_len_ms = params["win_len"] win_ovlap_p = params["win_ovlap"] # ================ Times to samples ================ win_len = int(win_len_ms / 1000 * fs) win_ovlap = int(win_len * win_ovlap_p) window = np.hanning(win_len) # =================== Signal stft ================== nfft = first_larger_square(win_len) sig_stft = STFT(wave, window, win_ovlap, nfft) sig_stft = sig_stft[:, 0:nfft // 2 + 1] frame_count, frequency_count = sig_stft.shape # ==================== Constants =================== # length of the impulse response blocks = params["blocks"] # minimum gain of dry signal per frequency min_gain_dry = params["min_gain_dry"] # maximum impulse response estimate # max_h, blocks = read_impulse_response("deverb_test_samples/stalbans_a_mono.wav", fs, nfft, win_len_ms, win_ovlap_p) max_h = get_max_h_matrix('const', frequency_count, blocks) # bias used to keep magnitudes from getting stuck on a wrong minimum bias = params["bias"] # alpha and gamma - smoothing factors for impulse response magnitude and gain alpha = params["alpha"] gamma = params["gamma"] # ==================== Algorithm =================== # dry_stft and wet_stft are the estimated dry and reverberant signals in frequency-time domain dry_stft = np.zeros((frame_count, frequency_count), dtype=np.csingle) wet_stft = np.zeros((frame_count, frequency_count), dtype=np.csingle) # h_stft_pow is the estimated impulse response in frequency-time domain h_stft_pow = max_h / 2 # matrices with the information of currently estimated raw and dry signal (power spectra) raw_frames = np.ones((blocks, frequency_count)) dry_frames = np.zeros((blocks, frequency_count)) # c is a matrix to keep the raw estimated powers of the impulse response c = np.zeros((blocks, frequency_count)) # gain_dry and gain_wet are the frequency gains of the dry and wet signals gain_dry = np.ones(frequency_count) gain_wet = np.zeros(frequency_count) for i in range(frame_count): if estimate_execution_time: remaining = round(np.mean(loop_times) * (frame_count - i)) loop_times[1:] = loop_times[0:-1] loop_times[0] = time.time() print("Processing frame {} of {}, estimated time left: {} ms".format(i + 1, frame_count, remaining)) frame = sig_stft[i, :] frame_power = np.power(np.abs(frame), 2) # estimate signals based on i-th frame for b in range(blocks): estimate = frame_power / raw_frames[b, :] np.place(estimate, estimate >= h_stft_pow[b, :], h_stft_pow[b, :] * bias + np.finfo(np.float32).eps) np.fmin(estimate, max_h[b, :], out=c[b, :]) h_stft_pow[b, :] = alpha * h_stft_pow[b, :] + (1 - alpha) * c[b, :] # calculating gains new_gain_dry = 1 - np.sum(dry_frames * h_stft_pow, axis=0) / frame_power np.place(new_gain_dry, new_gain_dry < min_gain_dry, min_gain_dry) gain_dry = gamma * gain_dry + (1 - gamma) * new_gain_dry new_gain_wet = 1 - gain_dry gain_wet = gamma * gain_wet + (1 - gamma) * new_gain_wet # calculatnig signals dry_stft[i, :] = gain_dry * frame wet_stft[i, :] = gain_wet * frame # shifting previous frames dry_frames[1:blocks, :] = dry_frames[0:blocks - 1, :] dry_frames[0, :] = np.power(np.abs(dry_stft[i, :]), 2) raw_frames[1:blocks, :] = raw_frames[0:blocks - 1, :] raw_frames[0, :] = frame_power if estimate_execution_time: loop_times[0] = round(1000 * (time.time() - loop_times[0])) if show_progress_bar: printProgressBar(i, frame_count, prefix='Progress', suffix='Complete', length=30) window = optimal_synth_window(window, win_ovlap) if TEST_SCOPE: t = (np.arange(frame_count) * (win_len_ms * (1 - win_ovlap_p))).astype(int) f = np.linspace(0, fs / 2, frequency_count).astype(int) txx, fxx = np.meshgrid(t, f) fig, axes = plt.subplots(3, 1, figsize=(10, 10)) axes[0].pcolormesh(txx, fxx, np.log10(np.power(np.abs(sig_stft.T), 2)), cmap=plt.get_cmap('plasma')) axes[0].set_title("Original signal") axes[1].pcolormesh(txx, fxx, np.log10(np.power(np.abs(dry_stft.T), 2)), cmap=plt.get_cmap('plasma')) axes[1].set_title("Dry signal") axes[2].pcolormesh(txx, fxx, np.log10(np.power(np.abs(wet_stft.T), 2)), cmap=plt.get_cmap('plasma')) axes[2].set_title("Reverberant signal") fig.show() wave_dry = reconstruct(dry_stft, window, win_ovlap) wave_wet = reconstruct(wet_stft, window, win_ovlap) return h_stft_pow, wave_dry, wave_wet def test_deverb(): for i, item in enumerate(SAMPLES): # i = 3 # item = SAMPLES[3] print("Estimating " + item) wave, fs = sf.read(item) wave = wave / np.max(np.abs(wave)) H_rir, dry_wav, wet_wav = dereverberate(wave, fs, estimate_execution_time=False) min_size = np.min([wave.size, dry_wav.size, wet_wav.size]) t = np.linspace(0, min_size / fs, min_size) fig, axes = plt.subplots(3, 1, figsize=(10, 10)) fig.suptitle("estimated signals - {} reverb".format(TITLES[i])) axes[0].plot(t, wave[0:min_size]) axes[0].set_title("original") axes[1].plot(t, dry_wav[0:min_size]) axes[1].set_title("dry") axes[2].plot(t, wet_wav[0:min_size]) axes[2].set_title("reverberant") axes[2].set_xlabel(r"time $[s]$") fig.tight_layout() fig.show() frames, freqs = H_rir.shape hop = DEF_PARAMS["win_len"] * (1 - DEF_PARAMS["win_ovlap"]) / 1000 f = np.linspace(0, fs / 2000, freqs) t = np.linspace(0, hop * frames, frames) fxx, txx = np.meshgrid(f, t) fig, ax = plt.subplots(figsize=(6, 5)) ax.pcolormesh(txx, fxx, np.log10(H_rir), cmap=plt.get_cmap('plasma')) ax.set_title(r"estimated $H_{rir}$: " + TITLES[i]) ax.set_xlabel(r"time $[s]$") ax.set_ylabel(r"frequency $[kHz]$") fig.show() with open("tmp/dry_{}.wav".format(TITLES[i]), "wb") as f: sf.write(f, dry_wav, fs) with open("tmp/wet_{}.wav".format(TITLES[i]), "wb") as f: sf.write(f, wet_wav, fs) if __name__ == "__main__": TEST_SCOPE = True test_deverb()
Revzik/AGH-ZTPS_Acoustical-Environment-Classification
deverb.py
deverb.py
py
10,820
python
en
code
0
github-code
6
31865827642
import tensorflow as tf import numpy as np import sys class conv3: def __init__(self,numfilter): self.numfilter=numfilter self.filmat=np.random.randn(3,3,numfilter)/9 #to decrease def forward(self,input): l,b=input.shape self.chache_input=input #paddedinput=zeros(input.shape[0]+2,input.shape[1]+2) #paddedinput[1:input.shape[0]+1,1:input.shape[1]+1]+=input out=np.zeros((l-2,b-2,8)) for i in range(l-2): for j in range(b-2): for f in range(self.numfilter): #dl_dfilter[:,:,f]+=dl_dout[i,j,f]*self.chache_input[i:i+3,j:j+3] out[i,j,f]=np.sum(input[i:i+3,j:j+3]*self.filmat[:,:,f],axis=(0,1)) return out def backward(self,dl_dout,learning): l,b,h=self.filmat.shape dl_dfilter=np.zeros((l,b,h)) for i in range(l-2): for j in range(b-2): for f in range(h): dl_dfilter[:,:,f]+=dl_dout[i,j,f]*self.chache_input[i:i+3,j:j+3] self.filmat-=learning*dl_dfilter return None class maxpool2: def forward(self,input): l,b,h=input.shape self.chache_input=input out=np.zeros((l//2,b//2,h)) for i in range(l//2): for j in range(b//2): out[i,j,:]=np.amax(input[2*i:2*i+2,2*j:2*j+2,:],axis=(0,1)) return out def backward(self,gradient): l,b,h=self.chache_input.shape dl_dinput=np.zeros((l,b,h)) for i in range(l//2): for j in range(b//2): for k in range(h): amaxi=np.amax(self.chache_input[2*i:2*i+2,2*j:2*j+2,k],axis=(0,1)) if self.chache_input[2*i,2*j,k]==amaxi : dl_dinput[2*i,2*j,k]=gradient[i,j,k] elif self.chache_input[2*i+1,2*j,k]==amaxi : dl_dinput[2*i+1,2*j,k]=gradient[i,j,k] elif self.chache_input[2*i,2*j+1,k]==amaxi : dl_dinput[2*i,2*j+1,k]=gradient[i,j,k] elif self.chache_input[2*i+1,2*j+1,k]==amaxi : dl_dinput[2*i+1,2*j+1,k]=gradient[i,j,k] return dl_dinput class Softmax: def __init__(self,input_length,nodes): self.weights=np.random.randn(input_length,nodes)/input_length #1 self.biases = np.zeros(nodes) def forward(self,input): self.chache_shape=input.shape input=input.flatten() self.chache_input=input input_len, nodes = self.weights.shape total=np.dot(input,self.weights)+self.biases total=total.astype(np.float128) # self.chache_total=tot #total=tota/np.amax(tota) ex=np.exp(total) self.chache_prob=ex/np.sum(ex,axis=0) #2 return self.chache_prob def backward(self , dl_dout,learning,label): #gradient is dl_dout dout_dt=-(self.chache_prob)*self.chache_prob[label] dout_dt[label]+=self.chache_prob[label] dl_dt= dl_dout * dout_dt #dl/dt=dl/dout * dout/dt #totals=input*weight+bias dt_db=1 dt_dinput=self.weights dt_dw=self.chache_input #dl/dinput=dl/dt*dt/dinput dl_dinput= dt_dinput @ dl_dt #dl/dw=dl/dt*dt/dw dl_dw=dt_dw[np.newaxis].T @ dl_dt[np.newaxis] #dl/db=dl/dt*dt/db (dt/db=1) dl_db=dl_dt #print(learning) self.weights-=learning * dl_dw self.biases-=learning * dl_db return dl_dinput.reshape(self.chache_shape) # Data initialisation (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() print([i.shape for i in (x_train, y_train, x_test, y_test)]) #taking only 2000 examples x_train=x_train[0:1000] y_train=y_train[0:1000] x_test, y_test=x_test[0:1000], y_test[:1000] numfilter=8 conv = conv3(8) #8 layer filters pool = maxpool2() # 26x26x8 -> 13x13x8 ,pool size=2 softmax = Softmax(13 * 13 * 8, 10) # 13x13x8 -> 10 ,10nodes def forward(image, label): out = conv.forward((image / 255) - 0.5) out = pool.forward(out) out = softmax.forward(out) # Calculate cross-entropy loss and accuracy. np.log() is the natural log. loss = -np.log(out[label]) acc = 1 if np.argmax(out) == label else 0 return out, loss, acc def train(image,label,learning): lr=learning out, loss, acc=forward(image,label) #array with probability , 10*1 gradient=np.zeros(10) if out[label]!=0: gradient[label]=-1/out[label] #3 gradient=softmax.backward( gradient,learning,label ) gradient=pool.backward(gradient) gradient=conv.backward(gradient,lr) return loss,acc print('MNIST CNN initialized!') loss = 0 num_correct = 0 for j in range(1,4): print("training round %d"%(j)) permut=np.random.permutation(len(x_train)) x_train=x_train[permut] y_train=y_train[permut] for i, (im, label) in enumerate(zip(x_train, y_train)): # Do a forward pass. # Print stats every 100 steps. if i % 100 == 99: print( '[Step %d] Past 100 steps: Average Loss %.3f | Accuracy: %d%%' % (i + 1, loss / 100, num_correct) ) loss = 0 num_correct = 0 l, acc = train(im, label,0.005) loss += l num_correct += acc loss = 0 num_correct = 0 for i, (im, label) in enumerate(zip(x_test, y_test)): # Do a forward pass. _, l, acc = forward(im, label) loss += l num_correct += acc #num_tests = len(x_test) print('Test Loss:', loss / 1000) print('Test Accuracy:', num_correct / 1000)
Jitendra29-78/Sudoku-Digit-Recognition
cnn.py
cnn.py
py
5,170
python
en
code
0
github-code
6
27593505084
import logging from logging.handlers import TimedRotatingFileHandler import os server_logger = logging.getLogger('server') PATH = os.path.dirname(os.path.abspath(__file__)) PATH = os.path.join(PATH, 'server.log') formatter = logging.Formatter( '%(asctime)s %(levelname)-8s %(funcName)s %(message)s', datefmt='%Y %b %d %H:%M:%S', ) file_hand = logging.handlers.TimedRotatingFileHandler( filename=PATH, when='D', interval=1, encoding='utf-8', delay=True, backupCount=31, atTime=None ) file_hand.setFormatter(formatter) file_hand.setLevel(logging.DEBUG) server_logger.addHandler(file_hand) server_logger.setLevel(logging.DEBUG) if __name__ == '__main__': console = logging.StreamHandler() console.setLevel(logging.DEBUG) console.setFormatter(formatter) server_logger.addHandler(console) server_logger.info('Тестовый запуск логирования')
ide007/DB_and_PyQT
Lesson_1/logs/server_log_config.py
server_log_config.py
py
902
python
en
code
0
github-code
6
71409709627
############################### ####### SETUP (OVERALL) ####### ############################### ## Import statements # Import statements import os from flask import Flask, render_template, session, redirect, url_for, flash, request from flask_wtf import FlaskForm from wtforms import StringField, SubmitField, RadioField, ValidationError # Note that you may need to import more here! Check out examples that do what you want to figure out what. from wtforms.validators import Required, Length # Here, too from flask_sqlalchemy import SQLAlchemy import json import requests ## App setup code app = Flask(__name__) app.debug = True app.use_reloader = True app.config['SECRET_KEY'] = 'pokemonpokemon' ## All app.config values app.config["SQLALCHEMY_DATABASE_URI"] = "postgresql://localhost/Midterm-katmazan" ## Provided: app.config['SQLALCHEMY_COMMIT_ON_TEARDOWN'] = True app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False ## Statements for db setup (and manager setup if using Manager) db = SQLAlchemy(app) ###################################### ######## HELPER FXNS (If any) ######## ###################################### ################## ##### MODELS ##### ################## class Name(db.Model): __tablename__ = "names" id = db.Column(db.Integer,primary_key=True) name = db.Column(db.String) height_value = db.Column(db.Integer, db.ForeignKey('heights.id')) weight_value = db.Column(db.Integer, db.ForeignKey('weights.id')) def __repr__(self): return ('{' + str(self.name) + '} | ID: {' + str(self.id) + '}') class Height(db.Model): __tablename__ = 'heights' id = db.Column(db.Integer, primary_key=True) poke_height = db.Column(db.Integer) poke_name = db.Column(db.String) names = db.relationship('Name',backref='Height') class Weight(db.Model): __tablename__ = 'weights' id = db.Column(db.Integer,primary_key=True) poke_name = db.Column(db.String) poke_weight = db.Column(db.Integer) names = db.relationship('Name',backref='Weight') ################### ###### FORMS ###### ################### class NameForm(FlaskForm): name = StringField("Pokemon_name",validators=[Required()]) submit = SubmitField() def validate_name(self, field): if len(field.data) <= 1: raise ValidationError('Pokemon does not exist') class FavoriteForm(FlaskForm): fav_name = StringField("Add one of your favorite Pokemon:") nick_name = StringField("Give your favorite a nickname:") submit = SubmitField() def validate_nick_name(self,field): if field.data[-1] != 'y': raise ValidationError("Your nickname must end in y!") class RankForm(FlaskForm): name = StringField('Enter a Pokemon name:', validators = [Required()]) rate = RadioField('Rate this pokemon in terms of how powerful you think it is', choices = [('1', '1 (low)'), ('2', '2'), ('3', '3 (high)')]) submit = SubmitField('Submit') ####################### ###### VIEW FXNS ###### ####################### @app.errorhandler(404) def page_not_found(e): return render_template('404_error.html'), 404 @app.route('/', methods = ['GET', 'POST']) def home(): form = NameForm() # User should be able to enter name after name and each one will be saved, even if it's a duplicate! Sends data with GET if form.validate_on_submit(): poke_name = form.name.data pokemon = Name.query.filter_by(name=poke_name).first() ##only adds pokemon if it is not in database if not pokemon: params = {} params['name'] = str(poke_name) print(params) response = requests.get('http://pokeapi.co/api/v2/pokemon/' + params['name'] + '/') ##if response.status_code != '200': ##return("The data you entered was not available in the data, check spelling") poke_height = int(json.loads(response.text)['height']) new_height = Height(poke_height = poke_height, poke_name = poke_name) db.session.add(new_height) db.session.commit() poke_weight = int(json.loads(response.text)['weight']) new_weight = Weight(poke_weight = poke_weight, poke_name = poke_name) db.session.add(new_weight) db.session.commit() print('hello') newname = Name(name = poke_name, height_value = new_height.id, weight_value = new_weight.id) db.session.add(newname) db.session.commit() return redirect(url_for('all_names')) errors = [v for v in form.errors.values()] if len(errors) > 0: flash("!!!! ERRORS IN FORM SUBMISSION - " + str(errors)) return render_template('base.html',form=form) @app.route('/names') def all_names(): names = Name.query.all() return render_template('name_example.html',names=names) @app.route('/tallest') def tallest_pokemon(): all_heights = Height.query.all() tallest_pokemon = 0 for h in all_heights: height = h.poke_height if height > tallest_pokemon: tallest_pokemon = height tp = h tallest = tp.poke_name height = tp.poke_height return render_template('tallest_pokemon.html', tallest = tallest, height = height, names = all_heights) @app.route('/heaviest') def heaviest_pokemon(): all_weights = Weight.query.all() heaviest_pokemon = 0 for w in all_weights: weight = w.poke_weight if weight > heaviest_pokemon: heaviest_pokemon = weight hp = w heaviest = hp.poke_name weight = hp.poke_weight return render_template('heaviest.html', heaviest = heaviest, weight = weight, names = all_weights) @app.route('/favorite_pokemon') def favorite_form(): form = FavoriteForm() return render_template('favorite_form.html', form = form) @app.route('/fav_answers',methods=["GET","POST"]) def show_favs(): form = FavoriteForm() if request.args: fav_name = form.fav_name.data nickname = form.nick_name.data return render_template('fav_results.html',fav_name=fav_name, nick_name=nickname) flash(form.errors) return redirect(url_for('favorite_form')) ## Code to run the application... # Put the code to do so here! # NOTE: Make sure you include the code you need to initialize the database structure when you run the application! if __name__ == '__main__': db.create_all() # Will create any defined models when you run the application app.run(use_reloader=True,debug=True) # The usual
katmazan/SI364midtermKatmazan
SI364midterm.py
SI364midterm.py
py
6,662
python
en
code
0
github-code
6
40056102923
#Link: https://leetcode.com/problems/kth-largest-element-in-an-array/ # Name: Kth Largest Element in an Array # Difficulty: Medium # Topic: Min Heap #Time: O(n log k) since we update the root a maximum of n times, each update is a log k operation #Space: O(k) for size of heap used import heapq class Solution: def findKthLargest(self, nums: List[int], k: int) -> int: if(k > len(nums)): return #Initialize Heap minHeap = [] heapq.heapify(minHeap) for i in range(k): heapq.heappush(minHeap, nums[i]) #Update heap for i in range(k, len(nums)): root = minHeap[0] if(nums[i] >= root): removed = heapq.heappop(minHeap) heapq.heappush(minHeap, nums[i]) #return lowest number in heap return heapq.heappop(minHeap)
Shivaansh/AlgoExpert-LeetCode-Solutions
LeetCode Problems/Python/KthLargestElementInAnArray.py
KthLargestElementInAnArray.py
py
879
python
en
code
2
github-code
6
29433457016
#! /usr/bin/env python # # Implementation of elliptic curves, for cryptographic applications. # # This module doesn't provide any way to choose a random elliptic # curve, nor to verify that an elliptic curve was chosen randomly, # because one can simply use NIST's standard curves. # # Notes from X9.62-1998 (draft): # Nomenclature: # - Q is a public key. # The "Elliptic Curve Domain Parameters" include: # - q is the "field size", which in our case equals p. # - p is a big prime. # - G is a point of prime order (5.1.1.1). # - n is the order of G (5.1.1.1). # Public-key validation (5.2.2): # - Verify that Q is not the point at infinity. # - Verify that X_Q and Y_Q are in [0,p-1]. # - Verify that Q is on the curve. # - Verify that nQ is the point at infinity. # Signature generation (5.3): # - Pick random k from [1,n-1]. # Signature checking (5.4.2): # - Verify that r and s are in [1,n-1]. # # Version of 2008.11.25. # # Revision history: # 2005.12.31 - Initial version. # 2008.11.25 - Change CurveFp.is_on to contains_point. # # Written in 2005 by Peter Pearson and placed in the public domain. from __future__ import division from .six import print_ from . import numbertheory class CurveFp( object ): """Elliptic Curve over the field of integers modulo a prime.""" def __init__( self, p, a, b ): """The curve of points satisfying y^2 = x^3 + a*x + b (mod p).""" self.__p = p self.__a = a self.__b = b def p( self ): return self.__p def a( self ): return self.__a def b( self ): return self.__b def contains_point( self, x, y ): """Is the point (x,y) on this curve?""" return ( y * y - ( x * x * x + self.__a * x + self.__b ) ) % self.__p == 0 class Point( object ): """A point on an elliptic curve. Altering x and y is forbidding, but they can be read by the x() and y() methods.""" def __init__( self, curve, x, y, order = None ): """curve, x, y, order; order (optional) is the order of this point.""" self.__curve = curve self.__x = x self.__y = y self.__order = order # self.curve is allowed to be None only for INFINITY: if self.__curve: assert self.__curve.contains_point( x, y ) if order: assert self * order == INFINITY def __eq__( self, other ): """Return True if the points are identical, False otherwise.""" if self.__curve == other.__curve \ and self.__x == other.__x \ and self.__y == other.__y: return True else: return False def __add__( self, other ): """Add one point to another point.""" # X9.62 B.3: if other == INFINITY: return self if self == INFINITY: return other assert self.__curve == other.__curve if self.__x == other.__x: if ( self.__y + other.__y ) % self.__curve.p() == 0: return INFINITY else: return self.double() p = self.__curve.p() l = ( ( other.__y - self.__y ) * \ numbertheory.inverse_mod( other.__x - self.__x, p ) ) % p x3 = ( l * l - self.__x - other.__x ) % p y3 = ( l * ( self.__x - x3 ) - self.__y ) % p return Point( self.__curve, x3, y3 ) def __mul__( self, other ): """Multiply a point by an integer.""" def leftmost_bit( x ): assert x > 0 result = 1 while result <= x: result = 2 * result return result // 2 e = other if self.__order: e = e % self.__order if e == 0: return INFINITY if self == INFINITY: return INFINITY assert e > 0 # From X9.62 D.3.2: e3 = 3 * e negative_self = Point( self.__curve, self.__x, -self.__y, self.__order ) i = leftmost_bit( e3 ) // 2 result = self # print_("Multiplying %s by %d (e3 = %d):" % ( self, other, e3 )) while i > 1: result = result.double() if ( e3 & i ) != 0 and ( e & i ) == 0: result = result + self if ( e3 & i ) == 0 and ( e & i ) != 0: result = result + negative_self # print_(". . . i = %d, result = %s" % ( i, result )) i = i // 2 return result def __rmul__( self, other ): """Multiply a point by an integer.""" return self * other def __str__( self ): if self == INFINITY: return "infinity" return "(%d,%d)" % ( self.__x, self.__y ) def double( self ): """Return a new point that is twice the old.""" if self == INFINITY: return INFINITY # X9.62 B.3: p = self.__curve.p() a = self.__curve.a() l = ( ( 3 * self.__x * self.__x + a ) * \ numbertheory.inverse_mod( 2 * self.__y, p ) ) % p x3 = ( l * l - 2 * self.__x ) % p y3 = ( l * ( self.__x - x3 ) - self.__y ) % p return Point( self.__curve, x3, y3 ) def x( self ): return self.__x def y( self ): return self.__y def curve( self ): return self.__curve def order( self ): return self.__order # This one point is the Point At Infinity for all purposes: INFINITY = Point( None, None, None ) def __main__(): class FailedTest(Exception): pass def test_add( c, x1, y1, x2, y2, x3, y3 ): """We expect that on curve c, (x1,y1) + (x2, y2 ) = (x3, y3).""" p1 = Point( c, x1, y1 ) p2 = Point( c, x2, y2 ) p3 = p1 + p2 print_("%s + %s = %s" % ( p1, p2, p3 ), end=' ') if p3.x() != x3 or p3.y() != y3: raise FailedTest("Failure: should give (%d,%d)." % ( x3, y3 )) else: print_(" Good.") def test_double( c, x1, y1, x3, y3 ): """We expect that on curve c, 2*(x1,y1) = (x3, y3).""" p1 = Point( c, x1, y1 ) p3 = p1.double() print_("%s doubled = %s" % ( p1, p3 ), end=' ') if p3.x() != x3 or p3.y() != y3: raise FailedTest("Failure: should give (%d,%d)." % ( x3, y3 )) else: print_(" Good.") def test_double_infinity( c ): """We expect that on curve c, 2*INFINITY = INFINITY.""" p1 = INFINITY p3 = p1.double() print_("%s doubled = %s" % ( p1, p3 ), end=' ') if p3.x() != INFINITY.x() or p3.y() != INFINITY.y(): raise FailedTest("Failure: should give (%d,%d)." % ( INFINITY.x(), INFINITY.y() )) else: print_(" Good.") def test_multiply( c, x1, y1, m, x3, y3 ): """We expect that on curve c, m*(x1,y1) = (x3,y3).""" p1 = Point( c, x1, y1 ) p3 = p1 * m print_("%s * %d = %s" % ( p1, m, p3 ), end=' ') if p3.x() != x3 or p3.y() != y3: raise FailedTest("Failure: should give (%d,%d)." % ( x3, y3 )) else: print_(" Good.") # A few tests from X9.62 B.3: c = CurveFp( 23, 1, 1 ) test_add( c, 3, 10, 9, 7, 17, 20 ) test_double( c, 3, 10, 7, 12 ) test_add( c, 3, 10, 3, 10, 7, 12 ) # (Should just invoke double.) test_multiply( c, 3, 10, 2, 7, 12 ) test_double_infinity(c) # From X9.62 I.1 (p. 96): g = Point( c, 13, 7, 7 ) check = INFINITY for i in range( 7 + 1 ): p = ( i % 7 ) * g print_("%s * %d = %s, expected %s . . ." % ( g, i, p, check ), end=' ') if p == check: print_(" Good.") else: raise FailedTest("Bad.") check = check + g # NIST Curve P-192: p = 6277101735386680763835789423207666416083908700390324961279 r = 6277101735386680763835789423176059013767194773182842284081 #s = 0x3045ae6fc8422f64ed579528d38120eae12196d5L c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65 b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1 Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012 Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811 c192 = CurveFp( p, -3, b ) p192 = Point( c192, Gx, Gy, r ) # Checking against some sample computations presented # in X9.62: d = 651056770906015076056810763456358567190100156695615665659 Q = d * p192 if Q.x() != 0x62B12D60690CDCF330BABAB6E69763B471F994DD702D16A5: raise FailedTest("p192 * d came out wrong.") else: print_("p192 * d came out right.") k = 6140507067065001063065065565667405560006161556565665656654 R = k * p192 if R.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD \ or R.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835: raise FailedTest("k * p192 came out wrong.") else: print_("k * p192 came out right.") u1 = 2563697409189434185194736134579731015366492496392189760599 u2 = 6266643813348617967186477710235785849136406323338782220568 temp = u1 * p192 + u2 * Q if temp.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD \ or temp.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835: raise FailedTest("u1 * p192 + u2 * Q came out wrong.") else: print_("u1 * p192 + u2 * Q came out right.") if __name__ == "__main__": __main__()
espressif/ESP8266_RTOS_SDK
components/esptool_py/esptool/ecdsa/ellipticcurve.py
ellipticcurve.py
py
8,609
python
en
code
3,148
github-code
6
16053211401
import os import sys import glob import argparse from lsdo_viz.problem import Problem from lsdo_viz.utils import clean, get_viz, get_args, exec_python_file def main_viz(args=None): if args is None: args = sys.argv[1:] parser = argparse.ArgumentParser() parser.add_argument('args_file_name', nargs='?', default='viz_args.py') parser.add_argument('--clean_data', '-cd', nargs='?', default=None, const=True) parser.add_argument('--clean_frames', '-cf', nargs='?', default=None, const=True) parser.add_argument('--viz_initial', '-vi', nargs='?', default=None, const=True) parser.add_argument('--viz_final', '-vf', nargs='?', default=None, const=True) parser.add_argument('--viz_initial_show', '-vis', nargs='?', default=None, const=True) parser.add_argument('--viz_final_show', '-vfs', nargs='?', default=None, const=True) parser.add_argument('--viz_all', '-va', nargs='?', default=None, const=True) parser.add_argument('--movie', '-m', nargs='?', default=None, const=True) parsed_args = parser.parse_args(args) args = get_args(parsed_args.args_file_name) show = parsed_args.viz_initial_show or parsed_args.viz_final_show if not show: import matplotlib matplotlib.use('Agg') if parsed_args.clean_data: clean(args.data_dir) if parsed_args.clean_frames: clean(args.frames_dir) modes = [] if parsed_args.viz_initial or parsed_args.viz_initial_show: modes.append('viz_initial') if parsed_args.viz_final or parsed_args.viz_final_show: modes.append('viz_final') if parsed_args.viz_all: modes.append('viz_all') if parsed_args.movie: modes.append('movie') Problem.args = args Problem.viz = get_viz(args.viz_file_name) Problem.viz.args = args Problem.viz.show = show for mode in modes: Problem.mode = mode exec_python_file(args.run_file_name)
MAE155B-Group-3-SP20/Group3Repo
lsdo_viz/lsdo_viz/main_viz.py
main_viz.py
py
1,938
python
en
code
0
github-code
6
22916095420
#Create a gspread class and extract the data from the sheets #requires: # 1. Google API credentials json_key file path # 2. scope e.g. ['https://spreadsheets.google.com/feeds','https://www.googleapis.com/auth/drive'] # 3. gspread_url e.g. 'https://docs.google.com/spreadsheets/d/1itaohdPiAeniCXNlntNztZ_oRvjh0HsGuJXUJWET008/edit?usp=sharing' import gspread from oauth2client.service_account import ServiceAccountCredentials import pandas as pd class gspread_obj(object): """ Create a google spreadsheet instance to download sheet(s) and merge them Requires spreadsheet url and Google API json key file Examples: >>>> gc = gspread_obj() >>>> gc.login('home/user/google_api_key.json') >>>> gc.get_sheets('https://docs.google.com/spreadsheets/d/1itaohdPiAeniCXNlntNztZ_oRvjh0HsGuJXUJWET008/edit?usp=sharing') >>>> df = gc.merge_sheets() """ def __init__(self): self.scope = ['https://spreadsheets.google.com/feeds','https://www.googleapis.com/auth/drive'] self.client = None # gspread.Client object self.sheets = None def login(self, credentials_google: str): #set Google spreadsheet credentials credentials = ServiceAccountCredentials.from_json_keyfile_name(credentials_google, self.scope) self.client = gspread.authorize(credentials) def get_sheets(self, gspread_url: str): #Get Google sheet instance wks = self.client.open_by_url(gspread_url) self.sheets = wks.worksheets() def merge_sheets(self): if self.sheets is None: print('No sheets are found!') df = None elif len(self.sheets)==1: data = self.sheets[0].get_all_values() header = data.pop(0) df = pd.DataFrame(data, columns=header) elif len(self.sheets)>1: #read all the sheets df_list = [] for s in self.sheets: data = s.get_all_values() header = data.pop(0) df = pd.DataFrame(data, columns=header) df_list.append(df) df = pd.concat(df_list, axis=0, join='outer', sort=False) else: print("self.sheets must be a list of sheet(s)!") df = None if df is not None: print("Columns: ", df.columns) print("{} Rows x {} Columns".format(df.shape[0],df.shape[1])) return df
yenlow/utils
apis/google.py
google.py
py
2,442
python
en
code
1
github-code
6
3084393112
import numpy as np import pandas as pd import math import json import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore') import optuna def create_data(f1, f2, A1, A2, sigma=0.02): outs = [] ts = 1000 theta1 = 1.4 theta2 = 1.0 for t in range(ts): # if t == 500: # theta1 = 1.4 # theta2 = -0.5 # elif t == 1500: # theta1 = 0.7 # theta2 = 0.0 n_f1 = np.random.normal(0.0, 0.05) n_f2 = np.random.normal(0.0, 0.05) val = A1*math.sin(f1*t+theta1+n_f1) + A2*math.sin(f2*t+theta2+n_f2) + np.random.normal(0.0, sigma) outs.append(val) return np.array(outs) def sigmoid(x): return 1.0 / (1.0 + np.exp(-x)) def relu(x): if x > 0: return x else: return 0. ### EKF def predict_phase(x_vec, P_mat, J_s=np.eye(2), dw=np.array([0.01, 0.1]), Q_t=np.ones((2,2))): # J_s: Jacobian x_hat = x_vec + dw P_hat = np.matmul(np.matmul(J_s,P_mat),J_s.T) + Q_t return x_hat, P_hat def update_phase(obs, x_hat, P_hat, x_vec, P_mat, w_vec, R_t=np.eye(2)): y_error = obs - (np.sin(x_hat[0])+0.3*np.sin(x_hat[1])) w_err = np.array([np.tanh(y_error*w_vec[0]), np.tanh(y_error*w_vec[1]), np.tanh(y_error*w_vec[2]), np.tanh(y_error*w_vec[3])]) alpha = sigmoid(np.dot(w_err, w_vec[4:])) J_o = np.array([np.cos(x_hat[0]), 0.3*np.cos(x_hat[1])]) # Jacobian S_t = np.matmul(np.matmul(J_o, P_hat), J_o.T) + R_t K_t = np.matmul(np.matmul(P_hat, J_o.T), np.linalg.inv(S_t)) # Kalman Gain K_t = K_t*np.array([alpha, 1.-alpha]) new_x_vec = x_vec + K_t*y_error new_P_mat = np.matmul((np.eye(2) - np.matmul(K_t, J_o)), P_hat) return new_x_vec, new_P_mat, y_error, alpha, K_t ys = create_data(f1=0.01, f2=0.1, A1=1.0, A2=0.3, sigma=0.05) # w_dict = {'w1': 0.8654948627671226, 'w2': -1.7444762795695032, 'w3': -1.256158244213108, 'w4': 2.9877172040880846, 'w5': 0.7674940690302532, 'w6': -0.5751565428986629, 'w7': -2.1525316155059886, 'w8': -1.593668210140296} w_dict = {'w1': 0.8868339845276003, 'w2': -2.4239527390853723, 'w3': 2.5663446991064536, 'w4': -1.835679959314501, 'w5': 2.668697875044799, 'w6': -0.578802425496894, 'w7': -2.3135794565999737, 'w8': -0.9460572459969298} w1 = w_dict['w1'] w2 = w_dict['w2'] w3 = w_dict['w3'] w4 = w_dict['w4'] w5 = w_dict['w5'] w6 = w_dict['w6'] w7 = w_dict['w7'] w8 = w_dict['w8'] W_1 = np.array([w1, w2, w3, w4, w5, w6, w7, w8]) x_vec = np.array([0.0, 0.0]) P_mat = np.eye(2) total_err = 0.0 alphas = [] y_errors = [] preds = [] k_gains = [] ttt = 1 for _y in ys[1:]: x_hat, P_hat = predict_phase(x_vec, P_mat) new_x_vec, new_P_mat, y_error, _alpha, K_t = update_phase(_y, x_hat, P_hat, x_vec, P_mat, W_1) x_vec = new_x_vec P_mat = new_P_mat total_err = total_err + np.sqrt(y_error*y_error) alphas.append(_alpha) y_errors.append(np.abs(y_error)) preds.append(np.sin(x_vec[0])+0.3*np.sin(x_vec[1])) k_gains.append(K_t.tolist()) # print(ttt, y_error, _alpha) ttt = ttt + 1 total_err = total_err/float(len(ys[1:])) with open("./data/json/test_ekf_no_alpha5.json", "w") as f: out_dict = { "k_gain": k_gains, # "alphas": alphas, "y_errors": y_errors, "ys": ys[1:].tolist(), "preds": preds } json.dump(out_dict, f) # print(alphas) # print(y_errors) # print(ys[1:].tolist()) # print(preds)
ksk-S/DynamicChangeBlindness
workspace_models/mcmc_model/test_ekf.py
test_ekf.py
py
3,468
python
en
code
0
github-code
6
5104206621
import os import cv2 import numpy as np import faceRecognition as fr import HumanDetection as hd import time from playsound import playsound #variabel status ruangan. 0 = empty, 1 = uknown, 2 = known status = 0 #variabel timestamp tsk = [0,0,0,False] #untuk durasi status known, mendeteksi ruang kosong (isempty) tsu = [0,0,0,False] #untuk durasi status unkown #Merupakan bagian untuk load data training dan capture video dari sumber face_recognizer = cv2.face.LBPHFaceRecognizer_create() face_recognizer.read('trainingData.yml')#Load data training yang sudah tersimpan sebelumnya name = {0 : "TestImages", 1 : "Ronalod", 2 : "Faruq", 3 : "Fadhil", 4 : "Unknown"} #Nama Video untuk presentasi final # known1 -> known, isempty # coba14 -> unknown alarm # coba 16 -> unknown alarm # CekFadhilFaruqNaila1 -> deteksi beberapa orang sekaligus filename = '\coba16' hog = hd.initiate() cap=cv2.VideoCapture('D:\Bahan Kuliah\PyCharm Projects\FaceRecog\Video'+ filename +'.mp4') fps_read = cap.get(cv2.CAP_PROP_FPS) print("Input Video FPS :",fps_read) height = int( cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) print("Input Video Frame Size : ",width," x ",height) out = cv2.VideoWriter( 'output '+ 'coba16' +'.avi', cv2.VideoWriter_fourcc(*'MJPG'), fps_read, (640,480)) while (cap.isOpened()): ret,test_img=cap.read()#capture frame dari video dan mengembalikan 2 nilai yaitu gambar dan nilai boolean dari gambar if ret : # Resizing Image for faster detection resized_img = cv2.resize(test_img, (640, 480)) #resized_img = test_img timer = cv2.getTickCount() if status == 0 or status == 1: #apabila status sebelumnya empty atau unknown faces_detected,gray_img=fr.faceDetection(resized_img) #print("faces_detected:",faces_detected) for (x,y,w,h) in faces_detected: cv2.rectangle(resized_img,(x,y),(x+w,y+h),(0,0,255),thickness=2) #menggambar kotak untuk wajah #cv2.imshow('face detection Tutorial ',resized_img) for face in faces_detected: (x,y,w,h)=face roi_gray=gray_img[y:y+w, x:x+h] label,confidence=face_recognizer.predict(roi_gray)#Memprediksi identitas wajah print("confidence:",confidence) print("label:",label) fr.draw_rect(resized_img,face) predicted_name=name[label] if confidence < 80: #Jika confidence kecil dari 80 maka print identitas wajah fr.put_text(resized_img,predicted_name,x,y) status = 2 #ubah status jadi known else: predicted_name=name[4] fr.put_text(resized_img,predicted_name,x,y) status = 1 #ubah status jadi uknown if status == 0 or status == 1 : regions = hd.detect(hog, resized_img, (4,4), (4, 4), 1.2) hd.boxes(resized_img, regions) if len(regions) !=0 : #terdeteksi manusia if status == 0 : status = 1 print('Human Detected') #update durasi if tsu[3] == False: tsu[0] = time.time() tsu[3] = True elif tsu[3] == True: tsu[1] = time.time() tsu[2] = tsu[1] - tsu[0] tsk = [0, 0, 0, False] if status == 2 : tsu =[0,0,0,False] #reset regions = hd.detect(hog, resized_img, (4,4), (4, 4), 1.2) hd.boxes(resized_img, regions) if len(regions) == 0: print('Human Not Detected') if tsk[3] == False: tsk[0] = time.time() tsk[3] = True elif tsk[3] == True: tsk[1] = time.time() tsk[2] = tsk[1] - tsk[0] else : tsk = [0,0,0,False] #reset bila terdeteksi manusia # showing fps cv2.putText(resized_img, "Fps:", (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 255), 2); fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer); cv2.putText(resized_img, str(int(fps)), (75, 40), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2); # ubah durasi tsu[2] = tsu[2]*(fps/fps_read) tsk[2] = tsk[2]*(fps/fps_read) if status == 1: # status unknown print("Waktu terdeteksi : ") print(tsu, '\n') if tsu[2] >= 10: # durasi terdeteksi melebihi 10 detik print("alarm triggered!") playsound("Industrial Alarm.wav") break # keluar program if status == 2: print("Waktu tidak terdeteksi : ") print(tsk, '\n') if tsk[2] >= 2: # misal tidak terdeteksi (kosong) selama 5 detik print("Reset Status menjadi 0") status = 0 # ubah status jadi empty cv2.imshow('face recognition tutorial ',resized_img) print("Status : ",status) out.write(resized_img.astype('uint8')) if cv2.waitKey(1) & 0xFF == ord('q'): # Tekan q untuk menghentikan atau tunggu hingga akhir video break else : break cap.release() out.release() cv2.destroyAllWindows() print('Waktu awal terdeteksi : ', tsu[0], '\n') print('Waktu akhir terdeteksi : ', tsu[1], '\n') print('Durasi terdeteksi : ', tsu[2],' detik','\n') print('Waktu awal tidak terdeteksi : ', tsk[0], '\n') print('Waktu akhir tidak terdeteksi : ', tsk[1], '\n') print('Durasi tidak terdeteksi : ', tsk[2],' detik','\n') if tsu[2] >=10: print ("Alarm Triggered!") playsound("Industrial Alarm.wav") print("Alarm Triggered!") playsound("Industrial Alarm.wav")
AfifHM/Smart-CCTV-Using-Face-and-Human-Detection
FullProgram/Source Code/forVideo.py
forVideo.py
py
5,897
python
en
code
5
github-code
6
71221562748
''' /********************************************************************************** * Purpose: Write a Util Static Function to calculate monthlyPayment that reads in three * command­line arguments P, Y, and R and calculates the monthly payments you * would have to make over Y years to pay off a P principal loan amount at R per cent * interest compounded monthly. * logic : * * @author : Janhavi Mhatre * @python version 3.7 * @platform : PyCharm * @since 26-12-2018 * ***********************************************************************************/ ''' from utilities import utility p = int(input("enter principal loan amount p: ")) y = int(input("enter years y: ")) r = int(input("enter rate r: ")) utility.monthly_pay(p, y, r)
JanhaviMhatre01/pythonprojects
monthlypayment.py
monthlypayment.py
py
741
python
en
code
1
github-code
6
32145991026
# # @lc app=leetcode id=1 lang=python3 # # [1] Two Sum # # @lc code=start class Solution: def twoSum(self, nums: List[int], target: int) -> List[int]: d = {} for i, val in enumerate(nums): rev = target - val if rev in d: return [d[rev], i] else: d[val] = i # @lc code=end
rsvarma95/Leetcode
1.two-sum.py
1.two-sum.py
py
362
python
en
code
0
github-code
6
26159783505
# Bootstrap dropdown doesn't have select tag # inspect the dropdown, find all the li under ui tag # Loop through it and click the right li from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.chrome.service import Service # Launch the browser service_obj = Service("C:\Drivers\chromedriver_win32\chromedriver.exe") driver = webdriver.Chrome(service=service_obj) driver.implicitly_wait(10) # Open the web application driver.get("https://www.dummyticket.com/dummy-ticket-for-visa-application/") driver.maximize_window() driver.find_element(By.XPATH, "//span[@id='select2-billing_country-container']").click() countries_list = driver.find_elements(By.XPATH, "//ul[@id='select2-billing_country-results']/li") print(len(countries_list)) for country in countries_list: if country.text == "India": country.click() break
skk99/Selenium
day13/BootstrapDropdown.py
BootstrapDropdown.py
py
915
python
en
code
0
github-code
6
36273427497
from collections import namedtuple import itertools import torch import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer import torch.nn.functional as F import data_utils import train_utils from models import BinaryClassifier, LSTM, CNN import part2_train_utils import helpers ############################################################################## # Settings ############################################################################## CUDA = False ############################################################################## # Load the dataset ############################################################################## Data = namedtuple("Data", "corpus train dev test embeddings word_to_index") data_utils.download_ask_ubuntu_dataset() EMBEDDINGS, WORD_TO_INDEX = data_utils.load_part2_embeddings() ASK_UBUNTU_CORPUS = data_utils.load_corpus(WORD_TO_INDEX) ASK_UBUNTU_TRAIN_DATA = data_utils.load_train_data() ASK_UBUNTU_DEV_DATA, ASK_UBUNTU_TEST_DATA = data_utils.load_eval_data() ASK_UBUNTU_DATA = Data(ASK_UBUNTU_CORPUS, ASK_UBUNTU_TRAIN_DATA,\ ASK_UBUNTU_DEV_DATA, ASK_UBUNTU_TEST_DATA,\ EMBEDDINGS, WORD_TO_INDEX) data_utils.download_android_dataset() ANDROID_CORPUS = data_utils.load_android_corpus(WORD_TO_INDEX) ANDROID_DEV_DATA, ANDROID_TEST_DATA = data_utils.load_android_eval_data() ANDROID_DATA = Data(ANDROID_CORPUS, None,\ ANDROID_DEV_DATA, ANDROID_TEST_DATA,\ EMBEDDINGS, WORD_TO_INDEX) ############################################################################## # Train and evaluate a baseline TFIDF model ############################################################################## TOKENIZED_ANDROID_CORPUS = data_utils.load_tokenized_android_corpus() TOKENIZED_ANDROID_CORPUS = [ entry.title + entry.body for entry in TOKENIZED_ANDROID_CORPUS.values() ] TFIDF_VECTORIZER = TfidfVectorizer() TFIDF_VECTORS = TFIDF_VECTORIZER.fit_transform(TOKENIZED_ANDROID_CORPUS) QUERY_TO_INDEX = dict(zip(ANDROID_DATA.corpus.keys(), range(len(ANDROID_DATA.corpus)))) AUC = helpers.evaluate_tfidf_auc(ANDROID_DATA.dev, TFIDF_VECTORS, QUERY_TO_INDEX) print("AUC", AUC) AUC = helpers.evaluate_tfidf_auc(ANDROID_DATA.test, TFIDF_VECTORS, QUERY_TO_INDEX) print("AUC", AUC) ############################################################################## # Train models by direct transfer and evaluate ############################################################################## RESULTS = [] MARGINS = [0.2] MAX_EPOCHS = 50 BATCH_SIZE = 32 FILTER_WIDTHS = [3] POOL_METHOD = "average" FEATURE_DIMS = [667] DROPOUT_PS = [0.1] NUM_HIDDEN_UNITS = [240] LEARNING_RATES = [1E-3] MODELS = [] LSTM_HYPERPARAMETERS = itertools.product(MARGINS, NUM_HIDDEN_UNITS, LEARNING_RATES) for margin, num_hidden_units, learning_rate in LSTM_HYPERPARAMETERS: model = LSTM(EMBEDDINGS, num_hidden_units, POOL_METHOD, CUDA) criterion = helpers.MaxMarginLoss(margin) parameters = filter(lambda p: p.requires_grad, model.parameters()) optimizer = torch.optim.Adam(parameters, lr=learning_rate) model, mrr = train_utils.train_model(model, optimizer, criterion, ASK_UBUNTU_DATA, \ MAX_EPOCHS, BATCH_SIZE, CUDA, eval_data=ANDROID_DATA) torch.save(model.state_dict(), "./lstm_" + str(margin) + "_" + str(num_hidden_units) + "_" + str(learning_rate) + "_" + "auc=" + str(mrr)) MODELS.append((mrr, margin, num_hidden_units, learning_rate)) ############################################################################## # Train models by adverserial domain adaptation and evaluate ############################################################################## MAX_EPOCHS = 50 BATCH_SIZE = 32 MARGINS = [0.2] FILTER_WIDTH = 2 POOL_METHOD = "average" FEATURE_DIM = 240 DIS_NUM_HIDDEN_UNITS = [150, 200] DIS_LEARNING_RATES = [-1E-3] ENC_LEARNING_RATE = 1E-3 DIS_TRADE_OFF_RATES = [1E-7, 1E-8, 1E-9] DIS_HYPERPARAMETERS = itertools.product(DIS_LEARNING_RATES, DIS_NUM_HIDDEN_UNITS, DIS_TRADE_OFF_RATES, MARGINS) for dis_lr, dis_hidden_units, trade_off, margin in DIS_HYPERPARAMETERS: enc_model = LSTM(EMBEDDINGS, FEATURE_DIM, POOL_METHOD, CUDA) dis_model = BinaryClassifier(FEATURE_DIM, dis_hidden_units) model, auc = part2_train_utils.train_model( enc_model, dis_model, trade_off, ASK_UBUNTU_DATA, ANDROID_DATA, MAX_EPOCHS, BATCH_SIZE, ENC_LEARNING_RATE, dis_lr, margin, CUDA, ) print("max auc", auc) torch.save(model.state_dict(), "./lstm_" +\ str(margin) + "_" +\ str(dis_hidden_units) + "_" +\ str(trade_off) + "_" +\ "auc=" + str(auc))
timt51/question_retrieval
part2.py
part2.py
py
5,017
python
en
code
0
github-code
6
15147278540
from django.urls import path from . import views app_name = 'cis' urlpatterns = [ path('cis/<status>/', views.CIListView.as_view(), name='ci_list'), path('ci/create/', views.CICreateView.as_view(), name='ci_create'), path('ci/upload/', views.ci_upload, name='ci_upload'), path('ci/<int:pk>', views.CIDetailView.as_view(), name='ci_detail'), path('ci/pack/send/', views.send_ci_pack, name='ci_pack_send'), path('places/', views.manage_client_places, name='manage_client_places'), path('place/create/', views.PlaceCreateView.as_view(), name='place_create'), path('place/<int:pk>', views.PlaceUpdateView.as_view(), name='place_update'), path('manufacturer/<int:pk>', views.ManufacturerDetailView.as_view(), name='manufacturer_detail'), path('appliances/', views.ApplianceListView.as_view(), name='appliance_list'), path('appliance/create/', views.ApplianceCreateView.as_view(), name='appliance_create'), path('appliance/<int:pk>', views.ApplianceUpdateView.as_view(), name='appliance_update'), ]
DiegoVilela/internalize
cis/urls.py
urls.py
py
1,043
python
en
code
0
github-code
6
73652428349
# 给你一个下标从 0 开始的整数数组 nums 。 # 现定义两个数字的 串联 是由这两个数值串联起来形成的新数字。 # 例如,15 和 49 的串联是 1549 。 # nums 的 串联值 最初等于 0 。执行下述操作直到 nums 变为空: # 如果 nums 中存在不止一个数字,分别选中 nums 中的第一个元素和最后一个元素,将二者串联得到的值加到 nums 的 串联值 上,然后从 nums 中删除第一个和最后一个元素。 # 如果仅存在一个元素,则将该元素的值加到 nums 的串联值上,然后删除这个元素。 # 返回执行完所有操作后 nums 的串联值。 from typing import List class Solution: def findTheArrayConcVal(self, nums: List[int]) -> int: ans = 0 while(len(nums) > 0): if len(nums) == 1: ans += nums.pop() else: l = nums.pop(0) r = nums.pop() ans += int(str(l) + str(r)) return ans nums = [7,52,2,4] a = Solution() print(a.findTheArrayConcVal(nums))
xxxxlc/leetcode
competition/单周赛/332/findTheArrayConcVal.py
findTheArrayConcVal.py
py
1,115
python
zh
code
0
github-code
6
35970918283
from __future__ import annotations __all__: list[str] = [] import argparse import subprocess import sys import cmn class _LintReturnCodes(cmn.ReturnCodes): """Return codes that can be received from pylint.""" SUCCESS = 0 # Error code 1 means a fatal error was hit ERROR = 2 WARNING = 4 ERROR_WARNING = 6 REFACTOR = 8 ERROR_REFACTOR = 10 WARNING_REFACTOR = 12 ERROR_WARNING_REFACTOR = 14 CONVENTION = 16 ERROR_CONVENTION = 18 WARNING_CONVENTION = 20 ERROR_WARNING_CONVENTION = 22 REFACTOR_CONVENTION = 24 ERROR_REFACTOR_CONVENTION = 26 WARNING_REFACTOR_CONVENTION = 28 ERROR_WARNING_REFACTOR_CONVENTION = 30 USAGE_ERROR = 32 COMMAND_NOT_FOUND = 200 def _run_lint(args: argparse.Namespace) -> int: """Runs pylint on python files in workspace. :param args: namespace object with args to run lint with. :return: return code from CLI. """ rc = _LintReturnCodes.SUCCESS include_files = cmn.get_python_files(args.untracked_files) cmd = [cmn.which_python(), "-m", "pylint"] + list(include_files) try: subprocess.run(cmd, check=True) except FileNotFoundError as exc: if exc.errno is cmn.WinErrorCodes.FILE_NOT_FOUND.value: cmn.handle_missing_package_error(exc.filename) rc = _LintReturnCodes.COMMAND_NOT_FOUND else: raise except subprocess.CalledProcessError as exc: cmn.handle_cli_error(_LintReturnCodes, exc.returncode, exc.cmd, exc) rc = _LintReturnCodes.USAGE_ERROR return rc def main() -> None: """Main function for pylint CLI. Parses and handles CLI input.""" parser = argparse.ArgumentParser(description="Run pylint on given files.") parser.add_argument( "-u", "--untracked-files", action="store_true", default=False, help="run on files untracked by git", ) args = parser.parse_args() rc = _run_lint(args) sys.exit(rc) if __name__ == "__main__": main()
kiransingh99/gurbani_analysis
tools/lint.py
lint.py
py
2,043
python
en
code
0
github-code
6
4789054179
# -*-coding:utf-8-*- from __future__ import absolute_import, unicode_literals import tensorflow as tf import numpy as np import os import matplotlib.pyplot as plt from Utils.ReadAndDecode_Continous import read_and_decode_continous val_path = '/home/dmrf/GestureNuaaTeam/tensorflow_gesture_data/Gesture_data/continous_data/test_continous.tfrecords' # val_path = '/home/dmrf/GestureNuaaTeam/tensorflow_gesture_data/Gesture_data/continous_data/train_continous.tfrecords' # val_path = '/home/dmrf/GestureNuaaTeam/tensorflow_gesture_data/Gesture_data/abij_test.tfrecords' # val_path = '/home/dmrf/GestureNuaaTeam/tensorflow_gesture_data/Gesture_data/abij_train.tfrecords' x_val, y_val = read_and_decode_continous(val_path) test_batch = 1 min_after_dequeue_test = test_batch * 2 num_threads = 3 test_capacity = min_after_dequeue_test + num_threads * test_batch # 使用shuffle_batch可以随机打乱输入 test_x_batch, test_y_batch = tf.train.shuffle_batch([x_val, y_val], batch_size=test_batch, capacity=test_capacity, min_after_dequeue=min_after_dequeue_test) labels_type = 6 test_count = labels_type * 100 Test_iterations = test_count / test_batch output_graph_def = tf.GraphDef() pb_file_path = "../Model/gesture_cnn_lstm6.pb" pb_lstm_file_path = "../Model/gesture_lstm.pb" with open(pb_file_path, "rb") as f: output_graph_def.ParseFromString(f.read()) _ = tf.import_graph_def(output_graph_def, name="") # with open(pb_lstm_file_path, "rb") as f: # output_graph_def.ParseFromString(f.read()) # _ = tf.import_graph_def(output_graph_def, name="") # LABELS = ['A', 'B', 'C', 'F', 'G', 'H', 'I', 'J'] # LABELS = ['A', 'B', 'I', 'J'] label = [0, 1, 2, 3, 4, 5] def batchtest(): re_label = np.zeros(603, dtype=np.int64) pr_label = np.zeros(603, dtype=np.int64) ind = 0 with tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) threads = tf.train.start_queue_runners(sess=sess) input_x = sess.graph.get_tensor_by_name("input:0") print(input_x) fc = sess.graph.get_tensor_by_name("fullconnection1:0") print(fc) output_cnn = sess.graph.get_tensor_by_name("output:0") print(output_cnn) input_x_lstm = sess.graph.get_tensor_by_name("input_lstm:0") print(input_x_lstm) softmax_lstm = sess.graph.get_tensor_by_name("softmax_lstm:0") print(softmax_lstm) output_lstm = sess.graph.get_tensor_by_name("output_lstm:0") print(output_lstm) for step_test in range(Test_iterations + 1): test_x, test_y = sess.run([test_x_batch, test_y_batch]) if test_y == 6: continue if test_y == 7: continue x_ndarry_lstm = np.zeros(shape=(test_batch, 1024), dtype=np.float32) # 定义一个长度为1024的array # if test_y==1: # x_ndarry_lstm[:, 0:256] = sess.run(fc, feed_dict={input_x: test_x[:, :, 0:550]}) # out= sess.run(output_cnn, feed_dict={input_x: test_x[:, :, 0:550]}) # out_lstm=sess.run(output_lstm, feed_dict={input_x_lstm: x_ndarry_lstm}) # print out,out_lstm # tfrecords-->tensor(8,2200,2)-->4*tensor(8,550,2)-->cnn-->4*256-->lstm # train_x[0][1][1100][0] is the flag when write tfrecord if test_x[0][1][1100][0] == 1 * 6: # 0.5s-->need train_x[:][1][0:550][0] x_ndarry_lstm[:, 0:256] = sess.run(fc, feed_dict={input_x: test_x[:, :, 0:550]}) elif test_x[0][1][1100][0] == 2 * 6: # 1s-->need train_x[:][1][0:1100][0] x_ndarry_lstm[:, 0:256] = sess.run(fc, feed_dict={input_x: test_x[:, :, 0:550]}) x_ndarry_lstm[:, 256:512] = sess.run(fc, feed_dict={input_x: test_x[:, :, 550:1100]}) # x_narray_cnn[0][:] = train_x[:][:][0:550] # x_narray_cnn[1][:] = train_x[:][:][550:1100] else: # 2s-->need train_x[:][1][0:2200][0] x_ndarry_lstm[:, 0:256] = sess.run(fc, feed_dict={input_x: test_x[:, :, 0:550]}) x_ndarry_lstm[:, 256:512] = sess.run(fc, feed_dict={input_x: test_x[:, :, 550:1100]}) x_ndarry_lstm[:, 512:768] = sess.run(fc, feed_dict={input_x: test_x[:, :, 1100:1650]}) x_ndarry_lstm[:, 768:1024] = sess.run(fc, feed_dict={input_x: test_x[:, :, 1650:2200]}) # x_narray_cnn[0][:] = train_x[:][:][0:550] # x_narray_cnn[1][:] = train_x[:][:][550:1100] # x_narray_cnn[2][:] = train_x[:][:][1100:1650] # x_narray_cnn[3][:] = train_x[:][:][1650:2200] # print 0 prediction_labels = sess.run(output_lstm, feed_dict={input_x_lstm: x_ndarry_lstm}) print(str(step_test)) print("real_label:", test_y) re_label[ind] = test_y # prediction_labels = np.argmax(out_softmax, axis=1) pr_label[ind] = prediction_labels ind += 1 print("predict_label:", prediction_labels) print('') np.savetxt('../Data/re_label_lstmtrain_addlstm6.txt', re_label) np.savetxt('../Data/pr_label_lstmtrain_addlstm6.txt', pr_label) if __name__ == '__main__': # singletest_data_pc("/home/dmrf/test_gesture/JS") # ReadDataFromTxt("/home/dmrf/下载/demodata/0_push left_1524492872166_1") batchtest()
DmrfCoder/Tensorflow_gesture
Predict/gesture_lstm_pb_predict.py
gesture_lstm_pb_predict.py
py
5,528
python
en
code
0
github-code
6
32908608834
numbers = [1, 2, 5, 7, 89, 90, 10, 20] evens = [] for n in numbers: if n % 2 == 0: evens.append(n * n) # list comprehension evens = [ n * n # add value for n in numbers # set to draw from if n % 2 == 0 # test for inclusion ] print(evens) results = [ (1, 2, 70.1), (2, 2, 80.0), (4, 2, 20.0), (-4, 5, 100.0), ] make_square = lambda n : n * n # m = max(make_square(r[2]) for r in results) m = max(r[2] for r in results) print(m) # Generator expression evens = ( n * n # add value for n in numbers # set to draw from if n % 2 == 0 # test for inclusion ) for n in evens: print(n)
mikeckennedy/python_workshop_demos_april_2018
demos/ch5_pythonic/inline.py
inline.py
py
650
python
en
code
1
github-code
6
14884570447
# ['基金编号', '购买成本', '基金名'] fundList = [ ['160212', '3.6730', ' 国泰估值优势混合(LOF)'], ['001230', '1.2350', ' 鹏华医药科技股票'] ] # 发送基金日报的邮箱smtp服务器地址 senderIMAP = 'smtp.126.com' # 发送基金日报的邮箱地址 senderEmailAddress = '[email protected]' # 发送基金日报的邮箱的smtp授权码 senderAuthCode = 'SNRRQHKFKEUNNSFT' # 邮件主题 subject = '基金日报' # 接收基金日报的邮箱地址 receiverEmailAddress = "[email protected]"
VinciJoy/FundMonitor
config.py
config.py
py
533
python
en
code
4
github-code
6
43247812084
import subprocess import os import shutil import pytest TEMP_DIRECTORY = os.path.join(os.path.dirname(__file__), '..', 'tmp') TEMP_HEADER = os.path.join(TEMP_DIRECTORY, 'header.h') TEMP_SOURCE = os.path.join(TEMP_DIRECTORY, 'source.c') def set_up(): os.mkdir(TEMP_DIRECTORY) def tear_down(): shutil.rmtree(TEMP_DIRECTORY) @pytest.fixture(autouse=True) def run_around_tests(): set_up() yield tear_down() def read_file_content(filepath: str) -> str: with open(filepath, 'r') as file: return file.read() def test_integration(): # given: resource_dir = os.path.join(os.path.dirname(__file__), 'resource') input_path = os.path.join(resource_dir, 'example_header.h') expected_header = os.path.join(resource_dir, 'example_mock.h') expected_source = os.path.join(resource_dir, 'example_mock.c') # when: subprocess.run([ 'python', '-m', 'c_mock_generator.generate_mock', '-i', input_path, '-oh', TEMP_HEADER, '-oc', TEMP_SOURCE], check=True) # then: assert os.path.isfile(TEMP_HEADER) assert os.path.isfile(TEMP_SOURCE) assert read_file_content(TEMP_HEADER) == read_file_content(expected_header) assert read_file_content(TEMP_SOURCE) == read_file_content(expected_source)
BjoernLange/C-Mock-Generator
tests/generate_mock_integration_test.py
generate_mock_integration_test.py
py
1,290
python
en
code
0
github-code
6
11315559084
#coding:utf-8 import sys sys.path.insert(0, "./") import os os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" from flask import Flask from flask import render_template, redirect, url_for from flask import request, session, json from flask import jsonify from keywords.keywordExtract import getKeywords from parser.analysis_doc import parser_doc, basicInfoExtract from conflict.conflict_detect import Conflict from retrieval.infoRetrieval import find_policy from association.asso_analyze import Association app = Flask(__name__) app.config["SECRET_KEY"] = "123456" conflict = Conflict() asso = Association() @app.route('/') def hello_world(): return '欢迎来到政策关联分析系统算法后台!!!' @app.route('/dataProcess', methods=["POST", "GET"]) def dataProcess(): ''' 对输入到数据库中的政策进行数据处理,进行信息提取操作。 :return: ''' if request.method == 'POST': datax = request.form.get('text',"") name = request.form.get("name", "") if datax: ''' 添加数据处理操作 ''' try: results = basicInfoExtract(datax, source_name=name) return jsonify({"error_code":0, "reason":"", "data":results}) except: return jsonify({"error_code":3, "reason":"输入数据错误,无法进行解析", "data":""}) else: return jsonify({"error_code": 1, "reason": "没有输入政策数据", "data": ""}) else: return jsonify({"error_code":2, "reason":"请求方式错误,应使用post请求", "data":""}) @app.route("/keywords", methods=["POST","GET"]) def keywords(): ''' 关键词提取 :return: ''' if request.method == 'POST': datax = request.form.get('text',"") number = int(request.form.get('number', 3)) if datax: ''' 添加数据处理操作 ''' keyword = getKeywords(datax, num= number, use_value=False) results = { "keywords":keyword,#关键词 } return jsonify({"error_code":0, "reason":"", "data":results}) else: return jsonify({"error_code": 1, "reason": "没有输入政策数据", "data": ""}) else: return jsonify({"error_code":2, "reason":"请求方式错误,应使用post请求", "data":""}) @app.route("/dataAnalyze", methods=["POST","GET"]) def dataAnalyze(): ''' 政策文本结构化解析 :return: ''' if request.method == 'POST': datax = request.form.get('text',"") name = request.form.get('name', "") if datax: ''' 添加数据处理操作 ''' try: results = parser_doc(datax) return jsonify({"error_code":0, "reason":"", "data":results}) except: return jsonify({"error_code": 3, "reason": "输入数据错误,无法进行解析", "data": ""}) else: return jsonify({"error_code": 1, "reason": "没有输入政策数据", "data": ""}) else: return jsonify({"error_code":2, "reason":"请求方式错误,应使用post请求", "data":""}) @app.route("/conflictDetection", methods=["POST", "GET"]) def conflictDetection(): ''' 政策文本冲突检测 :return: ''' if request.method == 'POST': # datax = request.get_data() datax = request.form.get('policy',"") test_policy = request.form.get('test_policy', "") if datax and test_policy: ''' 添加数据处理操作 ''' try: datax = json.loads(datax) print("conflict input: %s"%(datax)) results = conflict.conflict(datax, target_sent=test_policy) # results = { # "result":"存在时间类型的冲突", # "sentence":"到2020年,实现全面建设中国物联网体系平台。" # } return jsonify({"error_code":0, "reason":"", "data":results}) except: return jsonify({"error_code": 3, "reason": "输入数据错误,无法进行解析", "data": ""}) else: return jsonify({"error_code": 1, "reason": "没有输入政策数据或者是待检测文本", "data": ""}) else: return jsonify({"error_code":2, "reason":"请求方式错误,应使用post请求", "data":""}) @app.route("/assoAnalyze", methods=["POST", "GET"]) def assoAnalyze(): ''' 两个政策关联分析 :return: ''' if request.method == 'POST': policy1 = request.form.get('policy1', "") policy2 = request.form.get('policy2', "") if policy1 and policy2: ''' 添加数据处理操作 ''' try: policy1 = json.loads(policy1) policy2 = json.loads(policy2) results = asso.analyzeAll(policy1, policy2) # results = { # "result":"对于政策A来说,政策B是起到理论指导作用", # "policy1":{ # "1":["句子", "理论指导"], # "2":["句子", "理论指导"], # # },#第一个政策每句话的分析 # "policy2":{ # "1":["句子", "理论指导"], # "2":["句子", "理论指导"], # }#第二个政策每句话的分析 # } return jsonify({"error_code":0, "reason":"", "data": results}) except: return jsonify({"error_code": 3, "reason": "输入数据错误,无法进行解析", "data": ""}) else: return jsonify({"error_code": 1, "reason": "没有输入政策数据", "data": ""}) else: return jsonify({"error_code":2, "reason":"请求方式错误,应使用post请求", "data":""}) @app.route("/assoSingleAnalyze", methods=["POST", "GET"]) def assoSingleAnalyze(): ''' 两个政策关联分析 :return: ''' if request.method == 'POST': policy1 = request.form.get('policy1',"") policy2 = request.form.get('policy2', "") sentence = request.form.get('sentence', "") id = request.form.get('id', None) if policy1 and policy2 and sentence and id is not None: try: id = int(id) ''' 添加数据处理操作 ''' policy1 = json.loads(policy1) policy2 = json.loads(policy2) results = asso.assoSingleAnalyze(policy1, policy2, sentence, id) # results = { # "policy":{ # "1":["句子", "相似"], # "2":["句子", "不相似"], # } # } return jsonify({"error_code":0, "reason":"", "data":results}) except: return jsonify({"error_code": 3, "reason": "输入数据错误,无法进行解析", "data": ""}) else: return jsonify({"error_code": 1, "reason": "没有输入政策数据或者输入信息不完整", "data": ""}) else: return jsonify({"error_code":2, "reason":"请求方式错误,应使用post请求", "data":""}) @app.route("/policyFind", methods=["POST", "GET"]) def policyFind(): ''' 政策查找 :return: ''' if request.method == 'POST': policy1 = request.form.get('policy',"") policy_lis = request.form.get('policy_lis', "") number = int(request.form.get('number', 10)) if policy1 and policy_lis and number : ''' 添加数据处理操作 ''' try: print(policy_lis) if not isinstance(policy_lis, list): policy_lis = policy_lis.split("#") res = find_policy(policy1, policy_lis, int(number)) print(res) results = { "result":"#".join(res)#"大数据#互联网#人工智能#物联网" } return jsonify({"error_code":0, "reason":"", "data":results}) except: return jsonify({"error_code": 3, "reason": "输入数据错误,无法进行解析", "data": ""}) else: return jsonify({"error_code": 1, "reason": "没有输入政策数据或者输入信息不完整", "data": ""}) else: return jsonify({"error_code":2, "reason":"请求方式错误,应使用post请求", "data":""}) if __name__ == '__main__': app.debug = True app.run(host="0.0.0.0", port = 5005, debug=True)
nlp520/policy_web
app.py
app.py
py
8,806
python
en
code
0
github-code
6
26252618051
import pandas as pd import os import sys file = sys.argv[1] names = pd.read_csv("classroom.csv").Name for name in names: os.system("git -C repositories/{} pull".format(name)) os.system("cp ../quizzes/{}.py repositories/{}".format(file, name)) os.system("git -C repositories/{} add {}.py".format(name, file)) os.system('git -C repositories/{} commit {}.py -m "Quiz"'.format(name, file)) os.system("git -C repositories/{} push".format(name))
wllsena/Quizzes_FGV_PL
broker/copy_quiz.py
copy_quiz.py
py
463
python
en
code
1
github-code
6
10786193976
class User: def __init__(self, name, email): self.name = name self.email = email self.account_balance = 0 def make_deposit(self, amount): # takes an argument that is the amount of the deposit self.account_balance += amount # the specific user's account increases by the amount of the value received def make_withdrawal(self, amount): self.account_balance -= amount def display_user_balance(self): print(f"User: {self.name}, Balance: ${self.account_balance}") def transfer_money(self, other_user, amount): self.account_balance -= amount other_user.account_balance += amount justin = User("Justin","thisjustin.com") chris = User("Christian","notsochristian.com") brayan = User("Brayan","wtfudoin.com") justin.make_deposit(100) justin.make_deposit(100) justin.make_deposit(100) justin.make_withdrawal(130) justin.display_user_balance() chris.make_deposit(150) chris.make_deposit(150) chris.make_withdrawal(50) chris.make_withdrawal(50) chris.display_user_balance() brayan.make_deposit(300) brayan.make_withdrawal(75) brayan.make_withdrawal(75) brayan.make_withdrawal(75) brayan.display_user_balance() justin.transfer_money(brayan,200) justin.display_user_balance() brayan.display_user_balance()
imjustinluck/fundamentals
oop/user.py
user.py
py
1,280
python
en
code
0
github-code
6
40696675203
import re from typing import NamedTuple, Optional from magma.magmad.check import subprocess_workflow class LscpuCommandParams(NamedTuple): pass class LscpuCommandResult(NamedTuple): error: Optional[str] core_count: Optional[int] threads_per_core: Optional[int] architecture: Optional[str] model_name: Optional[str] def get_cpu_info() -> LscpuCommandResult: """ Execute lscpu command via subprocess. Blocks while waiting for output. """ return list( subprocess_workflow.exec_and_parse_subprocesses( [LscpuCommandParams()], _get_lscpu_command_args_list, parse_lscpu_output, ), )[0] def _get_lscpu_command_args_list(_): return ['lscpu'] def parse_lscpu_output(stdout, stderr, _): """ Parse stdout output from a lscpu command. """ def _create_error_result(err_msg): return LscpuCommandResult( error=err_msg, core_count=None, threads_per_core=None, architecture=None, model_name=None, ) if stderr: return _create_error_result(stderr) stdout_decoded = stdout.decode() try: cores_per_socket = int( re.search( r'Core\(s\) per socket:\s*(.*)\n', str(stdout_decoded), ).group(1), ) num_sockets = int( re.search( r'Socket\(s\):\s*(.*)\n', str(stdout_decoded), ).group(1), ) threads_per_core = int( re.search( r'Thread\(s\) per core:\s*(.*)\n', str(stdout_decoded), ).group(1), ) architecture = re.search( r'Architecture:\s*(.*)\n', str(stdout_decoded), ).group(1) model_name = re.search( r'Model name:\s*(.*)\n', str(stdout_decoded), ).group(1) return LscpuCommandResult( error=None, core_count=cores_per_socket * num_sockets, threads_per_core=threads_per_core, architecture=architecture, model_name=model_name, ) except (AttributeError, IndexError, ValueError) as e: return _create_error_result( 'Parsing failed: %s\n%s' % (e, stdout_decoded), )
magma/magma
orc8r/gateway/python/magma/magmad/check/machine_check/cpu_info.py
cpu_info.py
py
2,341
python
en
code
1,605
github-code
6
43597353426
# Sets: unordered, mutable, no duplicates # initialize 01 movies = {"50 shades of grey", "365", "The dictator", "Borat"} # print(movies) # initialize 02 web_series = set(["Suits", "Lucifer", "Dark", "Friends"]) # print(web_series) # empty # web_series = set() # print(type(web_series)) # string initialize hello_set = set("Hello") # print(hello_set) # insert value web_series.add("The 100") # web_series.add("Friend") # print(web_series) # delete value # web_series.remove("Darkk") # web_series.discard("Dark") # clear all values # web_series.clear() # print(web_series) web_series = movies.copy() movies.add("Ready player one") # print(web_series) # union gangs_of_wasseypur = {"Pankaj T", "Rajkumar R", "Nawazuddin S", "Huma Q"} mirzapur = {"Pankaj T", "Ali Fazal", "Divyenndu", "Huma Q"} # anurag_cast = gangs_of_wasseypur.union(mirzapur) # print(anurag_cast) # # intersection # anurag_cast = gangs_of_wasseypur.intersection(mirzapur) # print(anurag_cast) # difference anurag_cast = gangs_of_wasseypur.difference(mirzapur) # print(anurag_cast) # gangs_of_wasseypur = ["Pankaj T", "Rajkumar R", "Nawazuddin S", "Huma Q"] # mirzapur = ["Pankaj T", "Ali Fazal", "Divyenndu", "Huma Q"] # # anurag_cast = list() # output = ["Rajkumar R", "Nawazuddin S", "Ali Fazal", "Divyenndu"] # for cast in gangs_of_wasseypur: # if cast not in mirzapur: # anurag_cast.append(cast) # anurag_cast = [cast for cast in gangs_of_wasseypur if cast not in mirzapur] # print(anurag_cast) # symmetric difference anurag_cast = gangs_of_wasseypur.symmetric_difference(mirzapur) # print(anurag_cast) # update web_series.update(gangs_of_wasseypur) # print(web_series) # intersection update # mirzapur.intersection_update(gangs_of_wasseypur) # print(mirzapur) # difference update # mirzapur.difference_update(gangs_of_wasseypur) # print(mirzapur) # symmetric difference update # mirzapur.symmetric_difference_update(gangs_of_wasseypur) # print(mirzapur) # is subset animated_movies = {"Big Hero 6", "Kung Fu Panda", "Tangled", "Coco", "The Good Dinosaur"} disney_movies = {"Tangled", "Coco"} print(disney_movies.issubset(animated_movies)) # is superset print(animated_movies.issuperset(disney_movies)) # is disjoint print(animated_movies.isdisjoint(disney_movies)) # frozenset numbers = frozenset({"a", "b"}) print(numbers)
akshitone/fy-mca-class-work
DivA/set.py
set.py
py
2,359
python
en
code
1
github-code
6
73510642747
class Solution: def topKFrequent(self, words: List[str], k: int) -> List[str]: mapp = defaultdict(int) heap = [] ans = [] for word in words: mapp[word] -= 1 for key,val in mapp.items(): heappush(heap,(val,key)) for _ in range(k): temp = heappop(heap) ans.append(temp[1]) return ans
yonaSisay/a2sv-competitive-programming
top-k-frequent-words.py
top-k-frequent-words.py
py
408
python
en
code
0
github-code
6
74197689149
import workAssyncFile from sora.prediction import prediction from sora.prediction.occmap import plot_occ_map as occmap import json import datetime import restApi import os def __clearName(name): name = "".join(x for x in name if x.isalnum() or x==' ' or x=='-' or x=='_') name = name.replace(' ', '_') return name def processRequest(data, output): outputFile = generateMap(data,output, False) f = open (outputFile, "rb") content = f.read() return content def processFile(input, output, fileName): f = open (os.path.join(input,fileName), "r") data = json.loads(f.read()) generateMap(data, output, True) def generateMap(data, output, forced=False): if 'body' in data: return generateMapWithIternet(data, output, forced) else: return generateMapWithoutIternet(data, output, forced) def generateMapWithIternet(data, output, forced=False): body = data['body'] strDate = data['date'] strTime = data['time'] fileName = __clearName(body+" "+strDate.replace("-","")+" "+strTime.replace(":","")) outputFile = os.path.join(output,fileName+".jpg") if forced or not os.path.exists(outputFile): v = (strDate+'-'+strTime).replace(":","-").split('-') dtRef = datetime.datetime(int(v[0]), int(v[1]), int(v[2]), int(v[3]), int(v[4]), int(v[5])) time0 = dtRef-datetime.timedelta(hours=4, minutes=0) #fuso 3 time1 = time0+datetime.timedelta(hours=2, minutes=0) dtRef = dtRef - datetime.timedelta(hours=3, minutes=0) pred = prediction(body=body, time_beg=time0, time_end=time1, step=10, divs=1, verbose=False) for p in pred: p.plot_occ_map(nameimg=fileName, path=output, fmt='jpg') return outputFile def generateMapWithoutIternet(data, output, forced=False): name = data["name"] radius = data["radius"] coord = data["coord"] time = data["time"] ca = data["ca"] pa = data["pa"] vel = data["vel"] dist = data["dist"] mag = data["mag"] longi = data["longi"] v = time.split("T") strDate = v[0] if '.' in v[1]: v[1] = v[1].split('.')[0] strTime = v[1] fileName = __clearName(name+" "+strDate.replace("-","")+" "+strTime.replace(":","")) outputFile = os.path.join(output,fileName+".jpg") if forced or not os.path.exists(outputFile): occmap(name, radius, coord, time, ca, pa, vel, dist, mag=mag, longi=longi, dpi=50, nameimg=fileName, path=output, fmt='jpg') return outputFile if __name__ == '__main__': waf = workAssyncFile.WorkAssyncFile(os.getenv('INPUT_PATH', '~/media/input'),os.getenv('OUTPUT_PATH', '~/media/output')) waf.setProcessFile(processFile) waf.start() api = restApi.RespApi(port=os.getenv('PORT', 8000), cachePath=os.getenv('CACHE_PATH', '~/media/output')) api.setProcessReponse(processRequest) api.start()
linea-it/tno
container-SORA/src/main.py
main.py
py
2,969
python
en
code
1
github-code
6
72614657467
import time h = input('Enter hex: ').lstrip('#') RGB = tuple(int(h[i:i+2], 16) for i in (0, 2, 4)) r, g, b = RGB Ri = (r / 255) Gi = (g / 255) Bi = (b / 255) print("{:0.2f}, {:0.2f}, {:0.2f}".format(Ri, Gi, Bi)) time.sleep(10) exit()
maikirakiwi/pyscripts
hex2imgui.py
hex2imgui.py
py
246
python
en
code
0
github-code
6
7263711725
# -*- coding: utf-8 -*- from PyQt5.QtWidgets import QMainWindow, QVBoxLayout, QWidget, QTabWidget from .movies_view import MoviesTab from .games_view import GamesTab from .music_view import MusicTab class Window(QMainWindow): """Main Window.""" def __init__(self, parent=None): """Initializer.""" super().__init__(parent) self.setWindowTitle("Media Library") self.resize(720, 360) self.table_widget = MyTableWidget(self) self.setCentralWidget(self.table_widget) class MyTableWidget(QWidget): """Container for all the tabs.""" def __init__(self, parent): super(QWidget, self).__init__(parent) self.layout = QVBoxLayout(self) # Initialize tabs self.tabs = QTabWidget() self.moviesTab = MoviesTab(self) self.gamesTab = GamesTab(self) self.musicTab = MusicTab(self) # Add tabs for each media type self.tabs.addTab(self.moviesTab, "Movies") self.tabs.addTab(self.gamesTab, "Games") self.tabs.addTab(self.musicTab, "Music") # Add tabs to widget self.layout.addWidget(self.tabs) self.setLayout(self.layout)
aisandovalm/media-library
media_library/views/main_view.py
main_view.py
py
1,186
python
en
code
0
github-code
6
11849550981
""" Created on Thu Dec 10 22:51:52 2020 @author: yzaghir Image Arthmeric Opeations Add - We can add two images with the OpenCV function , cv.add() -Resize the two images and make sur they are exactly the same size before adding """ # import cv library import cv2 as cv #import numpy as np # read image from computer img1 = cv.imread("images/abhi2.jpg") img2 = cv.imread("images/flower1.jpg") #macke sur both images are same size before adding # pickup matrix of number from image cropped_image1 = img1[60:200 , 50:200] cropped_image2 = img2[60:200 , 50:200] cv.imshow("cropped 1" , cropped_image1) cv.imshow("cropped 2" , cropped_image2) # adding the images added_image = cv.add(cropped_image1 , cropped_image2) cv.imshow("Added Image" , added_image) # adding the images subtracted_image = cv.subtract(cropped_image1 , cropped_image2) cv.imshow("Subtracted Image" , subtracted_image)
zaghir/python
python-opencv/arithmetic_operations_addition_and_subtraction.py
arithmetic_operations_addition_and_subtraction.py
py
906
python
en
code
0
github-code
6
36559608646
import scipy as sci import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import animation import scipy.integrate #Definitionen G=6.67408e-11 m_nd=1.989e+30 #Masse der Sonne r_nd=5.326e+12 v_nd=30000 t_nd=79.91*365*24*3600*0.51 K1=G*t_nd*m_nd/(r_nd**2*v_nd) K2=v_nd*t_nd/r_nd #Definition der Massen m1=1.1 #Alpha Centauri A m2=0.907 #Alpha Centauri B m3=1.0 #Dritter Stern #Definition der Anfangs-Positionen r1=np.array([-0.5,0,0], dtype="float64") r2=np.array([0.5,0,0], dtype="float64") r3=np.array([0,1,0], dtype="float64") #Definition der Anfangs-Geschwindigkeiten v1=np.array([0.01,0.01,0], dtype="float") v2=np.array([-0.05,0,-0.1], dtype="float64") v3=np.array([0,-0.01,0], dtype="float64") #Updaten der COM Formeln r_com=(m1*r1+m2*r2+m3*r3)/(m1+m2+m3) v_com=(m1*v1+m2*v2+m3*v3)/(m1+m2+m3) #Bewegungsgleichungen def ThreeBodyEquations(w,t,G,m1,m2,m3): r1=w[:3] r2=w[3:6] r3=w[6:9] v1=w[9:12] v2=w[12:15] v3=w[15:18] r12=sci.linalg.norm(r2-r1) r13=sci.linalg.norm(r3-r1) r23=sci.linalg.norm(r3-r2) dv1bydt=K1*m2*(r2-r1)/r12**3+K1*m3*(r3-r1)/r13**3 dv2bydt=K1*m1*(r1-r2)/r12**3+K1*m3*(r3-r2)/r23**3 dv3bydt=K1*m1*(r1-r3)/r13**3+K1*m2*(r2-r3)/r23**3 dr1bydt=K2*v1 dr2bydt=K2*v2 dr3bydt=K2*v3 r12_derivs=np.concatenate((dr1bydt,dr2bydt)) r_derivs=np.concatenate((r12_derivs,dr3bydt)) v12_derivs=np.concatenate((dv1bydt,dv2bydt)) v_derivs=np.concatenate((v12_derivs,dv3bydt)) derivs=np.concatenate((r_derivs,v_derivs)) return derivs init_params=np.array([r1,r2,r3,v1,v2,v3]) init_params=init_params.flatten() #Erstellen eines 1D Array time_span=np.linspace(0,20,500) #20 Perioden und 500 Punkte #Integrieren der Funktion three_body_sol=sci.integrate.odeint(ThreeBodyEquations,init_params,time_span,args=(G,m1,m2,m3)) r1_sol=three_body_sol[:,:3] r2_sol=three_body_sol[:,3:6] r3_sol=three_body_sol[:,6:9] #Erstellen der Figur fig=plt.figure(figsize=(15,15)) #Erstellen der Achsen ax=fig.add_subplot(111,projection="3d") #Ploten der Orbits ax.plot(r1_sol[:,0],r1_sol[:,1],r1_sol[:,2],color="darkblue") ax.plot(r2_sol[:,0],r2_sol[:,1],r2_sol[:,2],color="tab:red") ax.plot(r3_sol[:,0],r3_sol[:,1],r3_sol[:,2],color="tab:green") #Plotten der finalen Position der Körper ax.scatter(r1_sol[-1,0],r1_sol[-1,1],r1_sol[-1,2],color="darkblue",marker="o",s=100,label="Alpha Centauri A") ax.scatter(r2_sol[-1,0],r2_sol[-1,1],r2_sol[-1,2],color="tab:red",marker="o",s=100,label="Alpha Centauri B") ax.scatter(r3_sol[-1,0],r3_sol[-1,1],r3_sol[-1,2],color="tab:green",marker="o",s=100,label="Third Star") #Hinzufügen der Beschriftungen ax.set_xlabel("x-Koordinate",fontsize=14) ax.set_ylabel("y-Koordinate",fontsize=14) ax.set_zlabel("z-Kordinate",fontsize=14) ax.set_title("Visualisierung der Orbits von Objekten im Raum\n",fontsize=14) ax.legend(loc="upper left",fontsize=14) ani = animation.FuncAnimation(fig, ThreeBodyEquations, frames=1000, interval=50) plt.show()
Gauner3000/Facharbeit
Euler_Planetenbewegung_3D.py
Euler_Planetenbewegung_3D.py
py
3,103
python
en
code
0
github-code
6
6606964316
import sys from collections import deque MOVES = [(-1, 0), (0, 1), (1, 0), (0, -1)] input = sys.stdin.readline def isrange(x: int, y: int) -> bool: return 0 <= x < n and 0 <= y < n def get_lands(x: int, y: int, island: int) -> set[tuple[int, int]]: lands: set[tuple[int, int]] = set() que: deque[tuple[int, int]] = deque() que.append((x, y)) lands.add((x, y)) board[x][y] = island while que: x, y = que.popleft() for movex, movey in MOVES: nextx: int = x + movex nexty: int = y + movey if not isrange(nextx, nexty): continue if board[nextx][nexty] == 0: continue if (nextx, nexty) in lands: continue que.append((nextx, nexty)) lands.add((nextx, nexty)) board[nextx][nexty] = island return lands def get_bridge_length(lands: set[tuple[int, int]], island: int) -> int: length: int = 0 que: deque[tuple[int, int]] = deque() visited: list[list[bool]] = [[False for _ in range(n)] for _ in range(n)] for x, y in lands: que.append((x, y)) visited[x][y] = True while que: for _ in range(len(que)): x, y = que.popleft() for movex, movey in MOVES: nextx: int = x + movex nexty: int = y + movey if not isrange(nextx, nexty): continue if board[nextx][nexty] == island: continue if visited[nextx][nexty]: continue if board[nextx][nexty] > 0: return length que.append((nextx, nexty)) visited[nextx][nexty] = True length += 1 return -1 def solve() -> int: island: int = 2 length: int = sys.maxsize for x, row in enumerate(board): for y, elem in enumerate(row): if elem == 1: lands = get_lands(x, y, island) length = min(length, get_bridge_length(lands, island)) island += 1 return length if __name__ == "__main__": n = int(input()) board = [list(map(int, input().split())) for _ in range(n)] print(solve())
JeongGod/Algo-study
seonghoon/week06(22.02.01~22.02.07)/b2146.py
b2146.py
py
2,298
python
en
code
7
github-code
6
25926762211
from random import randint import numpy def fill_unassigned(row): ''' >>> a = numpy.array([1, 0, 5, 5, 0, 2]) >>> fill_unassigned(a) >>> a array([1, 3, 5, 5, 4, 2]) ''' usednums, c = set(row), 1 for i, x in enumerate(row): if x != 0: continue while c in usednums: c += 1 row[i] = c usednums.add(c) def join_sets(row, a, b): ''' >>> a = numpy.array([1, 1, 2, 2, 3, 2]) >>> join_sets(a, 1, 2) >>> a array([1, 1, 1, 1, 3, 1]) ''' row[numpy.where(row == b)[0]] = a def make_bottom_walls(row): sets = {} for x in row: sets[x] = sets.get(x, 0) + 1 guarded = {k: randint(0, v - 1) for k, v in sets.items()} bwalls = numpy.zeros(row.shape, dtype='bool') for i, x in enumerate(row): sets[x] -= 1 if guarded[x] == sets[x]: continue if randint(0, 1): bwalls[i] = True return bwalls def genmaze_eller(cellcount, heightcount): # 0 1 # +xxx+xxx+xxx+ # x | | x # +---+---+---+ 0 # x | | x # +xxx+xxx+xxx+ all_right_walls = numpy.zeros((cellcount - 1, heightcount), dtype=numpy.bool_) all_bottom_walls = numpy.zeros((cellcount, heightcount - 1), dtype=numpy.bool_) row = numpy.arange(1, cellcount + 1, dtype=numpy.int16) rwalls = numpy.zeros((cellcount - 1,), dtype=numpy.bool_) rwalls_req = numpy.zeros(rwalls.shape, dtype=numpy.bool_) for y in range(heightcount): fill_unassigned(row) rwalls[:] = False rwalls_req[:] = False for x in range(cellcount - 1): if row[x] == row[x + 1]: rwalls_req[x] = True continue if randint(0, 1): rwalls[x] = True else: join_sets(row, row[x], row[x + 1]) if y == heightcount - 1: # last row condition break all_right_walls[:, y] = rwalls_req | rwalls bwalls = make_bottom_walls(row) all_bottom_walls[:, y] = bwalls row[bwalls] = 0 # walls in last row for x in range(cellcount - 1): if row[x + 1] != row[x]: rwalls[x] = False join_sets(row, row[x], row[x + 1]) all_right_walls[:, heightcount - 1] = rwalls | rwalls_req return { 'width': cellcount, 'height': heightcount, 'rwalls': all_right_walls, 'bwalls': all_bottom_walls, } def debug_draw_maze(maze): from PIL import Image, ImageDraw WorldSize.cell = 20 w, h = maze['width'], maze['height'] img = Image.new('RGB', (w * WorldSize.cell, h * WorldSize.cell)) draw = ImageDraw.Draw(img) draw.rectangle((0, 0, w * WorldSize.cell - 1, h * WorldSize.cell - 1), fill=(0, 0, 0)) for y in range(h): for x in range(w - 1): if maze['rwalls'][x, y]: draw.line(( x * WorldSize.cell + WorldSize.cell, y * WorldSize.cell, x * WorldSize.cell + WorldSize.cell, y * WorldSize.cell + WorldSize.cell ), fill=(255, 255, 255)) for y in range(h - 1): for x in range(w): if maze['bwalls'][x, y]: draw.line(( x * WorldSize.cell, y * WorldSize.cell + WorldSize.cell, x * WorldSize.cell + WorldSize.cell, y * WorldSize.cell + WorldSize.cell ), fill=(255, 255, 255)) img.show() if __name__ == '__main__': maze = genmaze_eller(30, 30) debug_draw_maze(maze)
gitter-badger/tierbots
tierbots/worldgen/maze.py
maze.py
py
3,577
python
en
code
0
github-code
6
6635020953
# -*- coding:utf-8 -*- # 请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。 # 路径可以从矩阵中的任意一个格子开始, # 每一步可以在矩阵中向左,向右,向上,向下移动一个格子。 # 如果一条路径经过了矩阵中的某一个格子,则该路径不能再进入该格子。 # # 例如 # a b c e # s f c s # a d e e # 矩阵中包含一条字符串"bcced"的路径, # 但是矩阵中不包含"abcb"路径, # 因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后, # 路径不能再次进入该格子。 # -*- coding:utf-8 -*- class Solution: def hasPath(self, matrix, rows, cols, path): # write code here flag = [False for _ in range(len(matrix))] for i in range(rows): for j in range(cols): # 遍历 if self.judge(matrix, rows, cols, flag, i, j, path, 0): return True return False def judge(self, matrix, rows, cols, flag, i, j, path, level): index = i * cols + j # 判断越界条件,递归终止条件 if i >= rows or j >= cols or i < 0 or j < 0 or \ matrix[index] != path[level] or \ flag[index] == True: return False if level == len(path) - 1: return True flag[index] = True if (self.judge(matrix, rows, cols, flag, i + 1, j, path, level + 1) or \ self.judge(matrix, rows, cols, flag, i, j + 1, path, level + 1) or \ self.judge(matrix, rows, cols, flag, i - 1, j, path, level + 1) or \ self.judge(matrix, rows, cols, flag, i, j - 1, path, level + 1)): return True flag[index] = False return False
rh01/gofiles
offer/ex25/hasPath.py
hasPath.py
py
1,862
python
zh
code
0
github-code
6
7920943241
""" Neural Networks - Deep Learning Heart Disease Predictor ( Binary Classification ) Author: Dimitrios Spanos Email: [email protected] """ import numpy as np from cvxopt import matrix, solvers # ------------ # Kernels # ------------ def poly(x, z, d=3, coef=1, g=1): return (g * np.dot(x, z.T) + coef) ** d def rbf(x, z, sigma): return np.exp(-np.linalg.norm(x-z,axis=1)**2 / (2*(sigma**2))) def linear(x, z): return np.matmul(x, z.T) def sigmoid(x, z, g=1, coef=0): return np.tanh(g * np.dot(x, z.T) + coef) # ------------ # SVM # ------------ class my_SVM: def __init__(self, C, kernel='linear', sigma=1): self.C = C self.kernel = kernel self.sigma = sigma self.sv = 0 self.sv_y = 0 self.alphas = 0 self.w = 0 self.b = 0 def fit(self, X, y): # Calculate the Kernel(xi,xj) m, n = X.shape K = np.zeros((m,m)) if self.kernel == 'rbf': for i in range(m): K[i,:] = rbf(X[i,np.newaxis], X, sigma=self.sigma) elif self.kernel == 'poly': for i in range(m): K[i,:] = poly(X[i,np.newaxis], X) elif self.kernel == 'sigmoid': for i in range(m): K[i,:] = sigmoid(X[i,np.newaxis], X) elif self.kernel == 'linear': for i in range(m): K[i,:] = linear(X[i,np.newaxis], X) # Solve the QP Problem P = matrix(np.outer(y, y) * K) q = matrix(-np.ones((m, 1))) A = matrix(matrix(y.T), (1, m), 'd') b = matrix(np.zeros(1)) G = matrix(np.vstack((np.eye(m)*-1, np.eye(m)))) h = matrix(np.hstack((np.zeros(m),np.ones(m)*self.C))) solvers.options['show_progress'] = False solution = solvers.qp(P, q, G, h, A, b) # Get the solution's results alphas = np.array(solution['x']) S = (alphas > 1e-4).flatten() self.sv = X[S] self.sv_y = y[S] self.w = np.dot((y.reshape(-1,1) * alphas).T, X)[0] self.alphas = alphas[S] # get rid of alphas ~= 0 self.b = np.mean(self.sv_y - np.dot(self.sv, self.w.T)) #print("w:", self.w) #print("b:", self.b) def predict(self, X): K_xi_x = 0 if self.kernel == 'rbf': K_xi_x = rbf(self.sv, X, self.sigma) elif self.kernel == 'poly': K_xi_x = poly(self.sv, X) elif self.kernel == 'sigmoid': K_xi_x = sigmoid(self.sv, X) elif self.kernel == 'linear': K_xi_x = linear(self.sv, X) sum = 0 for i in range(len(K_xi_x)): sum +=self.alphas[i] * self.sv_y[i]* K_xi_x[i] prod = sum + self.b prediction = np.sign(prod) return prediction
DimitriosSpanos/SVM-from-Scratch
SVM.py
SVM.py
py
2,908
python
en
code
0
github-code
6
25354426984
class Solution: def majorityElement(self, nums: List[int]) -> int: d={} for i in nums: if i in d: d[i]+=1 else: d[i]=1 d=sorted(d, key=d.get, reverse=True) return(d[0])
nikjohn7/Coding-Challenges
LeetCode/May challenge/day6.py
day6.py
py
260
python
en
code
4
github-code
6
16413423811
from datetime import datetime, date, time import time from collections import OrderedDict def parametrized_decor(parameter): def decor(foo): def new_foo(*args, **kwargs): print(datetime.now()) print(f'Имя функции - {foo.__name__}') if args is not None: print(f'Позиционные аргументы args - {args}') if kwargs is not None: print(f'Именованные аргументы kwargs - {kwargs}') result = foo(*args, **kwargs) print('result: ', result) print('result type: ', type(result)) return result return new_foo return decor if __name__ == '__main__': # foo(1, 2) documents_list = [{ "type": "passport", "number": "2207 876234", "name": "Василий Гупкин" }, { "type": "invoice", "number": "11-2", "name": "Геннадий Покемонов" }] @parametrized_decor(parameter=None) def give_name(doc_list, num): for doc_dict in doc_list: if num == doc_dict['number']: print( f"Документ под номером {num} соответствует имени {doc_dict['name']}" ) give_name(documents_list, '11-2') print("____" * 15) @parametrized_decor(parameter=None) def summator(x, y): return x + y three = summator(1, 2) five = summator(2, 3) result = summator(three, five)
Smelkovaalla/4.5-Decorator
main.py
main.py
py
1,414
python
en
code
0
github-code
6
5654287369
from django.shortcuts import render from django.http import Http404, HttpResponse, JsonResponse from django.template import loader from catalog.models import * from django.forms.models import model_to_dict import random from django.views.decorators.csrf import csrf_exempt from django.middleware.csrf import get_token import json # Create your views here. def index(request): template = loader.get_template('template.html') context = {} questions_id = [] related_choices = [] ID = "" name = "" # get all available modules and randomly pick one module = list(modules.objects.all().values('module_name')) randomed = [i for i in range(len(module))] random.shuffle(randomed) context['module'] = module[randomed[0]] #print(context) # # get related questions and pass to html template module_id = list(modules.objects.filter(module_name=context['module']['module_name']).values("id"))[0]['id'] question = list(questions.objects.all().filter(questions_under_id=module_id)) random.shuffle(question) context['question'] = question #print(context) # #get related answers and pass to html template #print(question) for i in question: questions_id.append(i.id) #print(questions_id) for id in questions_id: related_choices.append(list(answers.objects.filter(answers_under_id=id))) context['answer'] = related_choices #print(context['answer']) # # get Id & scores and pass to html template name = module[randomed[0]]["module_name"] print(name) Id = modules.objects.filter(module_name=name).values('id') for each in Id: ID = each['id'] print(ID) Scores = scores.objects.filter(score_under_id=ID).order_by('scores').reverse() print(Scores) context['scores'] = Scores return HttpResponse(template.render(context,request)) def newScore(request): print("SUCCESS : AJAX ENTERED!") template = loader.get_template('template.html') context = {} under_ID = "" if request.method == "POST" : # handle save logic if request.body: jsonLoad = json.loads(request.body) Scores = jsonLoad['scores'] username = jsonLoad['username'] module = jsonLoad['module'] else : return JsonResponse({"errors": ["POST object has insufficient parameters!"]}) ID = modules.objects.filter(module_name=module).values('id') for each in ID: under_ID = each['id'] errors = scores(scores=Scores, gameId=username, score_under_id=under_ID) errors.save() return HttpResponse(template.render(context,request))
jng27/Agile
psb_project/locallibrary/catalog/views.py
views.py
py
2,686
python
en
code
0
github-code
6
36606021901
import os import csv import queue import logging import argparse import traceback import itertools import numpy as np import tensorflow.compat.v1 as tf from fedlearner.trainer.bridge import Bridge from fedlearner.model.tree.tree import BoostingTreeEnsamble from fedlearner.trainer.trainer_master_client import LocalTrainerMasterClient from fedlearner.trainer.trainer_master_client import DataBlockInfo ''' 目前不太理解的地方:worker、verbosity、max-bins、ignore-fields ''' def create_argument_parser(): parser = argparse.ArgumentParser( description='FedLearner Tree Model Trainer.') #训练角色,leader还是follower parser.add_argument('role', type=str, help="Role of this trainer in {'local', " "'leader', 'follower'}") #监听本地地址,ip+port parser.add_argument('--local-addr', type=str, help='Listen address of the local bridge, ' \ 'in [IP]:[PORT] format') #同伴地址,ip+port parser.add_argument('--peer-addr', type=str, help='Address of peer\'s bridge, ' \ 'in [IP]:[PORT] format') #分布式训练时,应用程序的id,默认空 parser.add_argument('--application-id', type=str, default=None, help='application id on distributed ' \ 'training.') #current worker的排名,等级,默认0 parser.add_argument('--worker-rank', type=int, default=0, help='rank of the current worker') #总的worker数量,默认1 parser.add_argument('--num-workers', type=int, default=1, help='total number of workers') #mode,可以为 train,test,eval,默认为train parser.add_argument('--mode', type=str, default='train', help='Running mode in train, test or eval.') #数据文件的路径 parser.add_argument('--data-path', type=str, default=None, help='Path to data file.') #验证数据文件的路径,仅用于test模式 parser.add_argument('--validation-data-path', type=str, default=None, help='Path to validation data file. ' \ 'Only used in train mode.') #bool变量,默认为false,预测不需要数据 parser.add_argument('--no-data', type=bool, default=False, help='Run prediction without data.') #使用的文件扩展 parser.add_argument('--file-ext', type=str, default='.csv', help='File extension to use') #输入文件类型 parser.add_argument('--file-type', type=str, default='csv', help='input file type: csv or tfrecord') #加载已存储模型的路径 parser.add_argument('--load-model-path', type=str, default=None, help='Path load saved models.') #存储输出模型的位置 parser.add_argument('--export-path', type=str, default=None, help='Path to save exported models.') #保存模型的检查点 parser.add_argument('--checkpoint-path', type=str, default=None, help='Path to save model checkpoints.') #存储预测输出的路径 parser.add_argument('--output-path', type=str, default=None, help='Path to save prediction output.') #控制打印日志的数量,默认为1 parser.add_argument('--verbosity', type=int, default=1, help='Controls the amount of logs to print.') #损失函数的选择,默认为logistic parser.add_argument('--loss-type', default='logistic', choices=['logistic', 'mse'], help='What loss to use for training.') #学习率,梯度下降中的步长,默认为0.3 parser.add_argument('--learning-rate', type=float, default=0.3, help='Learning rate (shrinkage).') #boost 迭代次数,默认为5 parser.add_argument('--max-iters', type=int, default=5, help='Number of boosting iterations.') #决策树的最大深度,默认为3 parser.add_argument('--max-depth', type=int, default=3, help='Max depth of decision trees.') #L2正则化参数,默认为1.0 parser.add_argument('--l2-regularization', type=float, default=1.0, help='L2 regularization parameter.') #最大的直方图维度 parser.add_argument('--max-bins', type=int, default=33, help='Max number of histogram bins.') #并行线程的数量,默认1 parser.add_argument('--num-parallel', type=int, default=1, help='Number of parallel threads.') #bool类型,如果被设置为true,数据第一列被认为是双方都匹配的example id parser.add_argument('--verify-example-ids', type=bool, default=False, help='If set to true, the first column of the ' 'data will be treated as example ids that ' 'must match between leader and follower') #通过名字来忽略数据域,默认空字符串 parser.add_argument('--ignore-fields', type=str, default='', help='Ignore data fields by name') #分类特征的字段名称,特征的值应该为非负整数 parser.add_argument('--cat-fields', type=str, default='', help='Field names of categorical features. Feature' ' values should be non-negtive integers') #是否使用流传输,默认为否 parser.add_argument('--use-streaming', type=bool, default=False, help='Whether to use streaming transmit.') #是否发送预测评分给follower,默认为false parser.add_argument('--send-scores-to-follower', type=bool, default=False, help='Whether to send prediction scores to follower.') #是否发送指标(metrics)给follower,默认为follower parser.add_argument('--send-metrics-to-follower', type=bool, default=False, help='Whether to send metrics to follower.') return parser def parse_tfrecord(record): example = tf.train.Example() example.ParseFromString(record) parsed = {} for key, value in example.features.feature.items(): kind = value.WhichOneof('kind') if kind == 'float_list': assert len(value.float_list.value) == 1, "Invalid tfrecord format" parsed[key] = value.float_list.value[0] elif kind == 'int64_list': assert len(value.int64_list.value) == 1, "Invalid tfrecord format" parsed[key] = value.int64_list.value[0] elif kind == 'bytes_list': assert len(value.bytes_list.value) == 1, "Invalid tfrecord format" parsed[key] = value.bytes_list.value[0] else: raise ValueError("Invalid tfrecord format") return parsed def extract_field(field_names, field_name, required): if field_name in field_names: return [] assert not required, \ "Field %s is required but missing in data"%field_name return None def read_data(file_type, filename, require_example_ids, require_labels, ignore_fields, cat_fields): logging.debug('Reading data file from %s', filename) if file_type == 'tfrecord': reader = tf.io.tf_record_iterator(filename) reader, tmp_reader = itertools.tee(reader) first_line = parse_tfrecord(next(tmp_reader)) field_names = first_line.keys() else: fin = tf.io.gfile.GFile(filename, 'r') reader = csv.DictReader(fin) field_names = reader.fieldnames example_ids = extract_field( field_names, 'example_id', require_example_ids) raw_ids = extract_field( field_names, 'raw_id', False) labels = extract_field( field_names, 'label', require_labels) ignore_fields = set(filter(bool, ignore_fields.strip().split(','))) ignore_fields.update(['example_id', 'raw_id', 'label']) cat_fields = set(filter(bool, cat_fields.strip().split(','))) for name in cat_fields: assert name in field_names, "cat_field %s missing"%name cont_columns = list(filter( lambda x: x not in ignore_fields and x not in cat_fields, field_names)) cont_columns.sort(key=lambda x: x[1]) cat_columns = list(filter( lambda x: x in cat_fields and x not in cat_fields, field_names)) cat_columns.sort(key=lambda x: x[1]) features = [] cat_features = [] for line in reader: if file_type == 'tfrecord': line = parse_tfrecord(line) if example_ids is not None: example_ids.append(str(line['example_id'])) if raw_ids is not None: raw_ids.append(str(line['raw_id'])) if labels is not None: labels.append(float(line['label'])) features.append([float(line[i]) for i in cont_columns]) cat_features.append([int(line[i]) for i in cat_columns]) features = np.array(features, dtype=np.float) cat_features = np.array(cat_features, dtype=np.int32) if labels is not None: labels = np.asarray(labels, dtype=np.float) return features, cat_features, cont_columns, cat_columns, \ labels, example_ids, raw_ids def read_data_dir(file_ext, file_type, path, require_example_ids, require_labels, ignore_fields, cat_fields): if not tf.io.gfile.isdir(path): return read_data( file_type, path, require_example_ids, require_labels, ignore_fields, cat_fields) files = [] for dirname, _, filenames in tf.io.gfile.walk(path): for filename in filenames: _, ext = os.path.splitext(filename) if file_ext and ext != file_ext: continue subdirname = os.path.join(path, os.path.relpath(dirname, path)) files.append(os.path.join(subdirname, filename)) features = None for fullname in files: ifeatures, icat_features, icont_columns, icat_columns, \ ilabels, iexample_ids, iraw_ids = read_data( file_type, fullname, require_example_ids, require_labels, ignore_fields, cat_fields ) if features is None: features = ifeatures cat_features = icat_features cont_columns = icont_columns cat_columns = icat_columns labels = ilabels example_ids = iexample_ids raw_ids = iraw_ids else: assert cont_columns == icont_columns, \ "columns mismatch between files %s vs %s"%( cont_columns, icont_columns) assert cat_columns == icat_columns, \ "columns mismatch between files %s vs %s"%( cat_columns, icat_columns) features = np.concatenate((features, ifeatures), axis=0) cat_features = np.concatenate( (cat_features, icat_features), axis=0) if labels is not None: labels = np.concatenate((labels, ilabels), axis=0) if example_ids is not None: example_ids.extend(iexample_ids) if raw_ids is not None: raw_ids.extend(iraw_ids) assert features is not None, "No data found in %s"%path return features, cat_features, cont_columns, cat_columns, \ labels, example_ids, raw_ids def train(args, booster): X, cat_X, X_names, cat_X_names, y, example_ids, _ = read_data_dir( args.file_ext, args.file_type, args.data_path, args.verify_example_ids, args.role != 'follower', args.ignore_fields, args.cat_fields) if args.validation_data_path: val_X, val_cat_X, val_X_names, val_cat_X_names, val_y, \ val_example_ids, _ = \ read_data_dir( args.file_ext, args.file_type, args.validation_data_path, args.verify_example_ids, args.role != 'follower', args.ignore_fields, args.cat_fields) assert X_names == val_X_names, \ "Train data and validation data must have same features" assert cat_X_names == val_cat_X_names, \ "Train data and validation data must have same features" else: val_X = val_cat_X = X_names = val_y = val_example_ids = None if args.output_path: tf.io.gfile.makedirs(os.path.dirname(args.output_path)) if args.checkpoint_path: tf.io.gfile.makedirs(args.checkpoint_path) booster.fit( X, y, cat_features=cat_X, checkpoint_path=args.checkpoint_path, example_ids=example_ids, validation_features=val_X, validation_cat_features=val_cat_X, validation_labels=val_y, validation_example_ids=val_example_ids, output_path=args.output_path, feature_names=X_names, cat_feature_names=cat_X_names) def write_predictions(filename, pred, example_ids=None, raw_ids=None): logging.debug("Writing predictions to %s.tmp", filename) headers = [] lines = [] if example_ids is not None: headers.append('example_id') lines.append(example_ids) if raw_ids is not None: headers.append('raw_id') lines.append(raw_ids) headers.append('prediction') lines.append(pred) lines = zip(*lines) fout = tf.io.gfile.GFile(filename+'.tmp', 'w') fout.write(','.join(headers) + '\n') for line in lines: fout.write(','.join([str(i) for i in line]) + '\n') fout.close() logging.debug("Renaming %s.tmp to %s", filename, filename) tf.io.gfile.rename(filename+'.tmp', filename, overwrite=True) def test_one_file(args, bridge, booster, data_file, output_file): if data_file is None: X = cat_X = X_names = cat_X_names = y = example_ids = raw_ids = None else: X, cat_X, X_names, cat_X_names, y, example_ids, raw_ids = \ read_data( args.file_type, data_file, args.verify_example_ids, False, args.ignore_fields, args.cat_fields) pred = booster.batch_predict( X, example_ids=example_ids, cat_features=cat_X, feature_names=X_names, cat_feature_names=cat_X_names) if y is not None: metrics = booster.loss.metrics(pred, y) else: metrics = {} logging.info("Test metrics: %s", metrics) if args.role == 'follower': bridge.start(bridge.new_iter_id()) bridge.receive(bridge.current_iter_id, 'barrier') bridge.commit() if output_file: tf.io.gfile.makedirs(os.path.dirname(output_file)) write_predictions(output_file, pred, example_ids, raw_ids) if args.role == 'leader': bridge.start(bridge.new_iter_id()) bridge.send( bridge.current_iter_id, 'barrier', np.asarray([1])) bridge.commit() class DataBlockLoader(object): def __init__(self, role, bridge, data_path, ext, worker_rank=0, num_workers=1, output_path=None): self._role = role self._bridge = bridge self._num_workers = num_workers self._worker_rank = worker_rank self._output_path = output_path self._tm_role = 'follower' if role == 'leader' else 'leader' if data_path: files = None if not tf.io.gfile.isdir(data_path): files = [os.path.basename(data_path)] data_path = os.path.dirname(data_path) self._trainer_master = LocalTrainerMasterClient( self._tm_role, data_path, files=files, ext=ext) else: self._trainer_master = None self._count = 0 if self._role == 'leader': self._block_queue = queue.Queue() self._bridge.register_data_block_handler(self._data_block_handler) self._bridge.start(self._bridge.new_iter_id()) self._bridge.send( self._bridge.current_iter_id, 'barrier', np.asarray([1])) self._bridge.commit() elif self._role == 'follower': self._bridge.start(self._bridge.new_iter_id()) self._bridge.receive(self._bridge.current_iter_id, 'barrier') self._bridge.commit() def _data_block_handler(self, msg): logging.debug('DataBlock: recv "%s" at %d', msg.block_id, msg.count) assert self._count == msg.count if not msg.block_id: block = None elif self._trainer_master is not None: block = self._trainer_master.request_data_block(msg.block_id) return False else: block = DataBlockInfo(msg.block_id, None) self._count += 1 self._block_queue.put(block) return True def _request_data_block(self): while True: for _ in range(self._worker_rank): self._trainer_master.request_data_block() block = self._trainer_master.request_data_block() for _ in range(self._num_workers - self._worker_rank - 1): self._trainer_master.request_data_block() if block is None or self._output_path is None or \ not tf.io.gfile.exists(os.path.join( self._output_path, block.block_id) + '.output'): break return block def get_next_block(self): if self._role == 'local': return self._request_data_block() if self._tm_role == 'leader': while True: block = self._request_data_block() if block is not None: if not self._bridge.load_data_block( self._count, block.block_id): continue else: self._bridge.load_data_block(self._count, '') break self._count += 1 else: block = self._block_queue.get() return block def test(args, bridge, booster): if not args.no_data: assert args.data_path, "Data path must not be empty" else: assert not args.data_path and args.role == 'leader' data_loader = DataBlockLoader( args.role, bridge, args.data_path, args.file_ext, args.worker_rank, args.num_workers, args.output_path) while True: data_block = data_loader.get_next_block() if data_block is None: break if args.output_path: output_file = os.path.join( args.output_path, data_block.block_id) + '.output' else: output_file = None test_one_file( args, bridge, booster, data_block.data_path, output_file) def run(args): if args.verbosity == 0: logging.basicConfig(level=logging.WARNING) elif args.verbosity == 1: logging.basicConfig(level=logging.INFO) else: logging.basicConfig(level=logging.DEBUG) assert args.role in ['leader', 'follower', 'local'], \ "role must be leader, follower, or local" assert args.mode in ['train', 'test', 'eval'], \ "mode must be train, test, or eval" #follower或leader if args.role != 'local': bridge = Bridge(args.role, int(args.local_addr.split(':')[1]), args.peer_addr, args.application_id, 0, streaming_mode=args.use_streaming) else: bridge = None try: #boost booster = BoostingTreeEnsamble( bridge, learning_rate=args.learning_rate, max_iters=args.max_iters, max_depth=args.max_depth, l2_regularization=args.l2_regularization, max_bins=args.max_bins, num_parallel=args.num_parallel, loss_type=args.loss_type, send_scores_to_follower=args.send_scores_to_follower, send_metrics_to_follower=args.send_metrics_to_follower) #加载已存储的模型 if args.load_model_path: booster.load_saved_model(args.load_model_path) #训练不需要bridge,为什么呢 if args.mode == 'train': train(args, booster) #测试,评估模型需要bridge else: # args.mode == 'test, eval' test(args, bridge, booster) #把模型存起来 if args.export_path: booster.save_model(args.export_path) except Exception as e: logging.fatal( 'Exception raised during training: %s', traceback.format_exc()) raise e finally: #结束bridge if bridge: bridge.terminate() if __name__ == '__main__': run(create_argument_parser().parse_args())
rain701/fedlearner-explain
fedlearner/fedlearner/model/tree/trainer.py
trainer.py
py
21,840
python
en
code
0
github-code
6
9419348557
# Time limit exceeded at sight # range(n + 1 -i) in the second roop # You don't need to add the third roop. # Alternatively, you should use (k =) n - i - j n , y= map(int, input().split()) for i in range(n + 1): for j in range(n + 1): for k in range(n + 1): if i + j + k == n: if 10000 * i + 5000 * j + 1000 * k == y: print(i, j, k) exit() print(-1, -1, -1) # Sample answer n , y= map(int, input().split()) for i in range(n + 1): for j in range(n + 1 - i): if 10000 * i + 5000 * j + 1000 * (n - i - j) == y: print(i, j, n - i - j) exit() print(-1, -1, -1)
ababa831/atcoder_beginners
first_trial/c_otoshidama.py
c_otoshidama.py
py
746
python
en
code
1
github-code
6
28912342142
import transformers import torch.nn as nn import config import torch class BERT_wmm(nn.Module): def __init__(self, keep_tokens): super(BERT_wmm,self).__init__() self.bert=transformers.BertModel.from_pretrained(config.BERT_PATH) self.fc=nn.Linear(768,768) self.layer_normalization=nn.LayerNorm((64, 768)) # self.bert_drop=nn.Dropout(0.2) self.out=nn.Linear(768,6932) if keep_tokens is not None: self.embedding = nn.Embedding(6932, 768) weight = torch.load(config.BERT_EMBEDDING) weight = nn.Parameter(weight['weight'][keep_tokens]) self.embedding.weight = weight self.bert.embeddings.word_embeddings = self.embedding print(weight.shape) def forward(self, ids, mask, token_type_ids): out1, _=self.bert( ids, attention_mask=mask, token_type_ids=token_type_ids, return_dict=False ) # mean pooling # max pooling # concat # bert_output=self.bert_drop(out1) output=self.fc(out1) layer_normalized=self.layer_normalization(output) final_output=self.out(layer_normalized) return final_output
Zibo-Zhao/Semantic-Matching
model.py
model.py
py
1,326
python
en
code
0
github-code
6
17940241021
def load_train_test(train_file, test_file): """ load data from train and test files out of the project Args: train_file: a string of train data address test_file: a string of test data address Returns: train_feature: none train_label: none test_feature: none test_label: none """ # load train data from train file train_feature = [] train_label = [] file_read = open(train_file) for line in file_read.readlines(): data = line.strip().split() train_label.append(int(data[0])) # the first column is the label, data type: int # from the second column to the end are the features, data type: float _feature = [float(item) for item in data[1:]] train_feature.append(_feature) # load test data from test file test_feature = [] test_label = [] file_read = open(test_file) for line in file_read.readlines(): data = line.strip().split() test_label.append(int(data[0])) # the first column is the label, data type: int # from the second column to the end are the features, data type: float _feature = [float(item) for item in data[1:]] test_feature.append(_feature) return train_feature, train_label, test_feature, test_label
jingmouren/antifraud
antifraud/feature_engineering/load_data.py
load_data.py
py
1,312
python
en
code
0
github-code
6
36008540577
import sqlite3 import os import shlex class Database(): def __init__(self, db_file): """Connect to the SQLite DB""" try: self.conn = sqlite3.connect(db_file) self.cursor = self.conn.cursor() except BaseException as err: #print(str(err)) self.conn = None self.cursor = None def create_table(self, table_name, columns): query = f"CREATE TABLE IF NOT EXISTS {table_name} ({', '.join([f'{k} {v}' for k, v in columns.items()])})" self.cursor.execute(query) self.conn.commit() def create_index(self, index_name, table_name, column_list): #query = f"CREATE INDEX IF NOT EXISTS {index_name} ON {table_name} ({column_list})" query = f"CREATE INDEX IF NOT EXISTS idx_hash ON file_hash(filepath, filehash)" self.cursor.execute(query) self.conn.commit() def delete_table(self, table_name): query = f"DROP TABLE IF EXISTS {table_name}" self.cursor.execute(query) self.conn.commit() def add_record(self, table_name, record): query = f"INSERT INTO {table_name} ({', '.join(record.keys())}) VALUES ({', '.join(['?' for _ in record.values()])})" #print(query) self.cursor.execute(query, list(record.values())) self.conn.commit() def delete_record(self, table_name, condition): query = f"DELETE FROM {table_name} WHERE {condition}" self.cursor.execute(query) self.conn.commit() def run_query(self, query): #print(query) self.cursor.execute(query, args) return self.cursor.fetchall() def show_all_records(self, table_name): query = f"SELECT * FROM {table_name}" self.cursor.execute(query) return self.cursor.fetchall() def show_record(self, table_name, filepath): file_path = (filepath) #query = f"SELECT * FROM {table_name} WHERE {condition}" #print(f"SELECT filename,filepath, filehash, timestamp FROM {table_name} WHERE filepath = '{file_path}'") query = f'SELECT filename,filepath, filehash, timestamp FROM {table_name} WHERE filepath = "{file_path}"' self.cursor.execute(query) return self.cursor.fetchall() def update_record(self, table, filepath, filehash): """Update the SQLite File Table""" file_path = filepath #print(f"file path: {file_path}") query = f"UPDATE {table} SET filehash = '{filehash}' WHERE filepath = '{file_path}'" self.cursor.execute(query) return self.cursor.fetchall() def is_rec_modifed(filepath,filehash,timestamp): """Check record for any changes Returning false until function is completed""" return False def show_duplicate_records(self, table_name, index_name, value): query = f"SELECT filename, filepath, filehash FROM {table_name} WHERE {index_name} = '{value}'" self.cursor.execute(query) return self.cursor.fetchall() def show_all_tables(self): query = "SELECT name FROM sqlite_master WHERE type='table'" self.cursor.execute(query) return self.cursor.fetchall() def close_connection(self): self.conn.close() if __name__ == '__main__': db = Database('test.db') db.create_table('users', {'id': 'INTEGER PRIMARY KEY', 'name': 'TEXT', 'email': 'TEXT'}) db.add_record('users', {'name': 'Alice', 'email': '[email protected]'}) db.add_record('users', {'name': 'Bob', 'email': '[email protected]'}) db.add_record('users', {'name': 'Charlie', 'email': '[email protected]'}) print(db.show_all_records('users')) print(db.show_record('users', "name='Alice'")) db.delete_record('users', "name='Bob'") print(db.show_all_records('users')) db.delete_table('users') db.close_connection() os.remove('test.db')
echeadle/File_Track
app/sqlite_db.py
sqlite_db.py
py
3,901
python
en
code
0
github-code
6
33800228048
# BFS from collections import deque import sys input = lambda: sys.stdin.readline() def bfs(i, c): # 정점, 색상 q = deque([i]) visited[i] = True color[i] = c while q: i = q.popleft() for j in arr[i]: if not visited[j]: visited[j] = True q.append(j) color[j] = 3- color[i] else: if color[i] == color[j]: return False return True if __name__ == '__main__': k = int(input()) for _ in range(k): # 테스트 케이스 v,e = map(int, input().split()) color = [0] * (v+1) arr = [[] for _ in range(v+1)] for _ in range(e): a,b = map(int, input().split()) arr[a].append(b) arr[b].append(a) answer = True visited = [False] * (v+1) for i in range(1, v+1): if not visited[i]: if not bfs(i, 1): # return False이면 종료 answer = False break print('YES' if answer else 'NO') # DFS -> 메모리 초과 # from collections import deque # import sys # input = lambda: sys.stdin.readline() # sys.setrecursionlimit(10**6) # def dfs(i, c): # 정점, 색상 # color[i] = c # for j in arr[i]: # if color[j] == 0: # if not dfs(j, 3-c): # return False # elif color[i] == color[j]: # return False # return True # if __name__ == '__main__': # k = int(input()) # for _ in range(k): # 테스트 케이스 # v,e = map(int, input().split()) # color = [0] * (v) # arr = [[] for _ in range(v)] # for _ in range(e): # a,b = map(int, input().split()) # arr[a-1].append(b-1) # arr[b-1].append(a-1) # answer = True # for i in range(0, v): # if color[i] == 0: # if not dfs(i, 1): # answer = False # print('YES' if answer else 'NO')
devAon/Algorithm
BOJ-Python/boj-1707_이분그래프.py
boj-1707_이분그래프.py
py
2,065
python
en
code
0
github-code
6
42710543766
''' @ Carlos Suarez 2020 ''' import requests import datetime import time import json from cachetools import TTLCache import ssl import sys class MoodleControlador(): def __init__(self,domain,token,cert): self.domain = domain self.token = token self.cert = cert #Moodle LTI def getGrabacionesMoodleContextoLTI(self,moodle_id,tiempo): endpoint = 'https://' + self.domain + '/contexts/?extId=' + moodle_id bearer = "Bearer " + self.token headers = { "Authorization":bearer, 'Content-Type': 'application/json', 'Accept': 'application/json' } r = requests.get(endpoint,headers=headers,verify=self.cert) if r.status_code == 200: jsonInfo = json.loads(r.text) if jsonInfo['size'] > 0: contexto_id = jsonInfo['results'][0]['id'] return contexto_id else: return None else: print("Error Moodle ContextoLTI:" , str(r)) def grabacionesMoodleLTI(self,contexto_id): endpoint = 'https://' + self.domain + '/recordings/?contextId=' + contexto_id bearer = "Bearer " + self.token headers = { "Authorization":bearer, 'Content-Type': 'application/json', 'Accept': 'application/json' } r = requests.get(endpoint,headers=headers) if r.status_code == 200: jsonInfo = json.loads(r.text) return jsonInfo else: print("Error GrabacionesLTL: " , str(r)) def get_moodleLTI_recording_data(self,recording_id): authStr = 'Bearer ' + self.token url = 'https://' + self.domain + '/recordings/' + recording_id + '/data' credencial ={ 'Authorization': authStr, 'Content-Type': 'application/json', 'Accept': 'application/json' } r = requests.get(url,headers=credencial, verify=self.cert) if r.status_code == 200: res = json.loads(r.text) return res else: print(r) #Moodle plugin def moodleSesionName(self,sesionId): endpoint = 'https://' + self.domain + '/sessions/' + sesionId credencial = { "Authorization":"Bearer " + self.token, 'Content-Type': 'application/json', 'Accept': 'application/json' } r = requests.get(endpoint,headers=credencial,verify=self.cert) if r.status_code == 200: res = json.loads(r.text) return res['name'] else: print("Error Session:", str(r)) def listaCompletaSessiones(self,criteria): listaFiltrada = [] endpoint = 'https://' + self.domain + '/sessions' credencial = { "Authorization":"Bearer " + self.token, 'Content-Type': 'application/json', 'Accept': 'application/json' } r = requests.get(endpoint,headers=credencial,verify=self.cert) if r.status_code == 200: res = json.loads(r.text) resultado = res['results'] for sesion in resultado: if criteria in sesion['name']: listaFiltrada.append({'id':sesion['id'], 'name':sesion['name']}) return listaFiltrada else: print("Error Session:", str(r)) def listaCompletaMoodleGrabaciones(self): listaGrabaciones = [] endpoint = 'https://' + self.domain + '/recordings' credencial = { 'Authorization': 'Bearer ' + self.token, 'Accept':'application/json' } r = requests.get(endpoint,headers=credencial,verify=self.cert) if r.status_code == 200: jsonInfo = json.loads(r.text) resultado = jsonInfo['results'] if len(resultado) == 0: print("No recordings found") else: for grabacion in resultado: listaGrabaciones.append({'id':grabacion['id'], 'name':grabacion['name']}) print(listaGrabaciones) else: print("Error listaGrabación Moodle:", str(r)) def listaMoodleGrabaciones(self,sname): endpoint = 'https://' + self.domain + '/recordings?name=' + sname credencial = { "Authorization":"Bearer " + self.token, 'Content-Type': 'application/json', 'Accept': 'application/json' } r = requests.get(endpoint,headers=credencial,verify=self.cert) if r.status_code == 200: res = json.loads(r.text) idx = 0 recording_ids = [] try: numero_grabaciones = len(res['results']) if numero_grabaciones <= 0: return None while idx < numero_grabaciones: if 'storageSize' in res['results'][idx]: recording_ids.append({ 'recording_id':res['results'][idx]['id'], 'recording_name':res['results'][idx]['name'], 'duration':res['results'][idx]['duration'], 'storageSize':res['results'][idx]['storageSize'], 'created':res['results'][idx]['created'] }) else: recording_ids.append({ 'recording_id':res['results'][idx]['id'], 'recording_name':res['results'][idx]['name'], 'duration':res['results'][idx]['duration'], 'storageSize':0, 'created':res['results'][idx]['created'] }) idx += 1 return recording_ids except TypeError: return None else: return None
sfc-gh-csuarez/PyCollab
controladores/MoodleControlador.py
MoodleControlador.py
py
6,010
python
en
code
15
github-code
6
23423087794
import logging from ab.base import NavTable from ab.base import Link, Data, Item class Console (object): def __init__ (self): self._indent = 0 self._nt = NavTable() self.logger = logging.getLogger ('ab') self.log = lambda msg, level=logging.INFO: self.logger.info (msg) def reset (self): self._indent = 0 self._nt = NavTable() def indent_more (self): self._indent += 2 return self._indent def indent_less (self): self._indent -= 2 return self._indent def indent (self): return self._indent # def add_nav_entry (self, **kwa): # href = kwa.get ('href') # # if href: # no = self._nt.set (href = href) # return no # # # def nav_table (self): # if not len (self._nt): # raise UserWarning ('empty nav table') # # return self._nt # # # def next_target_no (self): # self._target_no += 1 def draw (self, thing): out = '\n' # if type (thing) in [list, tuple]: if type (thing) is list: self.indent_more() for t in thing: out += self.draw (t) self.indent_less() elif isinstance (thing, Item): out += '{indent}[{index}] {prompt} ({href})'.format ( indent = ' ' * self.indent(), index = self._nt.set (href = thing.href), prompt = 'Permaurl', href = 'GET ' + thing.href, ) out += self.draw (thing.data) out += self.draw (thing.links) elif isinstance (thing, Data): out += '{indent}{prompt}: {value}'.format ( indent = ' ' * self.indent(), prompt = thing.prompt, value = thing.value, ) elif isinstance (thing, Link): out += '{indent}[{index}] {prompt} ({method} {href})'.format ( indent = ' ' * self.indent(), index = self._nt.set (href = thing.href), prompt = thing.prompt, method = thing.method, href = thing.href, ) else: out += '<%s>' % thing return out
oftl/ab
ui.py
ui.py
py
2,324
python
en
code
0
github-code
6
44407906870
import wx import ResizableRuneTag ''' Created on 23/lug/2011 @author: Marco ''' class DrawableFrame(wx.Window): ''' Allows user to put resizable rune tags in a A4 like white frame Configuration realized on that frame is then replicated proportionally at export time ''' def __init__(self, parent, height, width): wx.Window.__init__(self, parent) self.SetSize((height, width)) self.SetMinSize((height, width)) self.SetMaxSize((height, width)) self.SetBackgroundColour(wx.Colour(255, 255, 255)) self.resizableRuneTags = [] ''' Constructor ''' def DrawRuneTag(self, runeTagName, position, size, originalSize, info): self.resizableRuneTags.append(ResizableRuneTag.ResizableRuneTag(self, runeTagName, size, position, originalSize, info)) def Clear(self): for resizableRuneTag in self.resizableRuneTags: resizableRuneTag.Destroy() def checkSpecificPosition(self, changedRuneTag): for tag in self.resizableRuneTags: if changedRuneTag != tag: radius1 = (tag.GetSize().GetHeight())/2 - 5 radius2 = (changedRuneTag.GetSize().GetHeight())/2 - 5 deltax = (tag.GetPosition().x + radius1) - (changedRuneTag.GetPosition().x + radius2) deltay = (tag.GetPosition().y + radius1) - (changedRuneTag.GetPosition().y + radius2) distance = (deltax*deltax + deltay*deltay)**(0.5) radiusSum = radius1 + radius2 if distance <= radiusSum: self.Parent.Parent.runeTagInfo.UpdateOverlap("In the output pdf file\n some slots of "+changedRuneTag.name+" RuneTag\n may laps over "+tag.name+"RuneTag") else: self.Parent.Parent.runeTagInfo.UpdateOverlap("") def checkPosition(self): size = len(self.resizableRuneTags) for i in range(0, size): for j in range(i+1, size): tag1 = self.resizableRuneTags[i] tag2 = self.resizableRuneTags[j] radius1 = (tag1.GetSize().GetHeight())/2 - 5 radius2 = (tag2.GetSize().GetHeight())/2 - 5 deltax = (tag1.GetPosition().x + radius1) - (tag2.GetPosition().x + radius2) deltay = (tag1.GetPosition().y + radius1) - (tag2.GetPosition().y + radius2) distance = (deltax**2 + deltay**2)**(0.5) radiusSum = radius1 + radius2 if distance <= radiusSum: self.Parent.Parent.runeTagInfo.UpdateOverlap("In the output pdf file some slots of\n"+tag1.name+" RuneTag\n may laps over\n"+tag2.name+" RuneTag") else: self.Parent.Parent.runeTagInfo.UpdateOverlap("")
mziccard/RuneTagDrawer
DrawableFrame.py
DrawableFrame.py
py
2,831
python
en
code
3
github-code
6
10423490633
from __future__ import annotations import pytest from randovania.lib import migration_lib def test_migrate_to_version_missing_migration() -> None: data = { "schema_version": 1, } with pytest.raises( migration_lib.UnsupportedVersion, match=( "Requested a migration from something 1, but it's no longer supported. " "You can try using an older Randovania version." ), ): migration_lib.apply_migrations(data, [None], version_name="something") def test_migrate_to_version_data_too_new() -> None: data = { "schema_version": 3, } with pytest.raises( migration_lib.UnsupportedVersion, match=( "Found version 3, but only up to 2 is supported. This file was created using a newer Randovania version." ), ): migration_lib.apply_migrations(data, [None])
randovania/randovania
test/lib/test_migration_lib.py
test_migration_lib.py
py
899
python
en
code
165
github-code
6
18680754942
import matplotlib.pyplot as plt import numpy as np import os import PIL import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.models import Sequential import pathlib data_dir = "./Covid(CNN)/Veriseti" data_dir = pathlib.Path(data_dir) image_count = len(list(data_dir.glob('*/*.jpeg'))) print(image_count) ''' roses = list(data_dir.glob('roses/*')) PIL.Image.open(str(roses[0])) PIL.Image.open(str(roses[1])) tulips = list(data_dir.glob('tulips/*')) PIL.Image.open(str(tulips[0])) PIL.Image.open(str(tulips[1])) ''' batch_size = 32 img_height = 180 img_width = 180 #Görüntülerin% 80'ini eğitim için ve% 20'sini doğrulama için kullanalım. train_ds = tf.keras.preprocessing.image_dataset_from_directory( "./Veriseti", validation_split=0.2, subset="training", seed=123, image_size=(img_height, img_width), batch_size=batch_size) val_ds = tf.keras.preprocessing.image_dataset_from_directory( "./Veriseti", validation_split=0.2, subset="validation", seed=123, image_size=(img_height, img_width), batch_size=batch_size) class_names = train_ds.class_names print(class_names) import matplotlib.pyplot as plt #Verileri görselleştirin.Eğitim veri kümesindeki ilk 9 görüntü. plt.figure(figsize=(10, 10)) for images, labels in train_ds.take(1): for i in range(9): ax = plt.subplot(3, 3, i + 1) plt.imshow(images[i].numpy().astype("uint8")) plt.title(class_names[labels[i]]) plt.axis("off") #Bu, 180x180x3 şeklinde 32 görüntüden oluşan bir 180x180x3 (son boyut, RGB renk kanallarına atıfta bulunur) #label_batch , şeklin bir label_batch (32,) , bunlar 32 görüntüye karşılık gelen etiketlerdir. for image_batch, labels_batch in train_ds: print(image_batch.shape) print(labels_batch.shape) break AUTOTUNE = tf.data.experimental.AUTOTUNE #Dataset.cache() , görüntüleri ilk dönemde diskten yüklendikten sonra bellekte tutar. #Bu, modelinizi eğitirken veri kümesinin bir darboğaz haline gelmemesini sağlayacaktır. train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE) val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE) #Dataset.prefetch() , eğitim sırasında veri ön işleme ve model yürütme ile çakışır. #RGB kanal değerleri [0, 255] aralığındadır. Bu bir sinir ağı için ideal değildir #Yeniden Ölçeklendirme katmanı kullanarak değerleri [0, 1] aralığında olacak şekilde standart hale getiriyoruz. normalization_layer = layers.experimental.preprocessing.Rescaling(1./255) #Bu katmanı kullanmanın iki yolu vardır. Haritayı çağırarak veri kümesine uygulayabilirsiniz: normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y)) image_batch, labels_batch = next(iter(normalized_ds)) first_image = image_batch[0] # Notice the pixels values are now in `[0,1]`. print(np.min(first_image), np.max(first_image)) #Veya katmanı model tanımınızın içine dahil ederek dağıtımı basitleştirebilirsiniz. Burada ikinci yaklaşımı kullanalım. num_classes = 4 #Modeli oluşturun model = Sequential([ layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)), layers.Conv2D(16, 3, padding='same', activation='relu'), layers.MaxPooling2D(), layers.Conv2D(32, 3, padding='same', activation='relu'), layers.MaxPooling2D(), layers.Conv2D(64, 3, padding='same', activation='relu'), layers.MaxPooling2D(), layers.Flatten(), layers.Dense(128, activation='relu'), layers.Dense(num_classes) ]) #Modeli derleyin model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) #Model özeti model.summary() #Modeli eğitin epochs=10 history = model.fit( train_ds, validation_data=val_ds, epochs=epochs ) #Eğitim ve doğrulama setlerinde kayıp ve doğruluk grafikleri oluşturun. acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) plt.figure(figsize=(8, 8)) plt.subplot(1, 2, 1) plt.plot(epochs_range, acc, label='Training Accuracy') plt.plot(epochs_range, val_acc, label='Validation Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') plt.subplot(1, 2, 2) plt.plot(epochs_range, loss, label='Training Loss') plt.plot(epochs_range, val_loss, label='Validation Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.show() #Veri büyütme data_augmentation = keras.Sequential( [ layers.experimental.preprocessing.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)), layers.experimental.preprocessing.RandomRotation(0.1), layers.experimental.preprocessing.RandomZoom(0.1), ] ) #Birkaç artırılmış örneğin nasıl göründüğünü, aynı görüntüye birkaç kez veri artırma uygulayarak görselleştirelim plt.figure(figsize=(10, 10)) for images, _ in train_ds.take(1): for i in range(9): augmented_images = data_augmentation(images) ax = plt.subplot(3, 3, i + 1) plt.imshow(augmented_images[0].numpy().astype("uint8")) plt.axis("off") #layers.Dropout kullanarak yeni bir sinir ağı oluşturalım. model = Sequential([ data_augmentation, layers.experimental.preprocessing.Rescaling(1./255), layers.Conv2D(16, 3, padding='same', activation='relu'), layers.MaxPooling2D(), layers.Conv2D(32, 3, padding='same', activation='relu'), layers.MaxPooling2D(), layers.Conv2D(64, 3, padding='same', activation='relu'), layers.MaxPooling2D(), layers.Dropout(0.2), layers.Flatten(), layers.Dense(128, activation='relu'), layers.Dense(num_classes) ]) #Modeli derleyin ve eğitin model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) model.summary() epochs = 15 history = model.fit( train_ds, validation_data=val_ds, epochs=epochs ) #Eğitim sonuçları acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) plt.figure(figsize=(8, 8)) plt.subplot(1, 2, 1) plt.plot(epochs_range, acc, label='Training Accuracy') plt.plot(epochs_range, val_acc, label='Validation Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') plt.subplot(1, 2, 2) plt.plot(epochs_range, loss, label='Training Loss') plt.plot(epochs_range, val_loss, label='Validation Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.show() #Eğitim veya doğrulama setlerinde yer almayan bir resmi sınıflandırmak için modelimizi kullanalım. img_path = "./Veriseti/Covid.jpeg" img = keras.preprocessing.image.load_img( img_path, target_size=(img_height, img_width) ) img_array = keras.preprocessing.image.img_to_array(img) img_array = tf.expand_dims(img_array, 0) # Create a batch predictions = model.predict(img_array) score = tf.nn.softmax(predictions[0]) print( "This image most likely belongs to {} with a {:.2f} percent confidence." .format(class_names[np.argmax(score)], 100 * np.max(score)) )
elifyelizcelebi/Covid-CNN
model.py
model.py
py
7,465
python
tr
code
0
github-code
6
44364880366
''' (mdc) Programa que lê dois inteiro positivos a e b e imprime o máximo divisor comum (mdc) de a e b. ''' def mdc(a,b): while b !=0: resto = a % b a = b b = resto return a print("Informe o valor de A e B: ", end='') a, b = map(int, input().split()) print("MDC de {} e {} = {}".format(a, b, mdc(a,b)))
danilosheen/topicos-especiais
q1.py
q1.py
py
342
python
pt
code
0
github-code
6
30478129230
# Reverse a Linked List in groups of given size # Normal Reverse def reverseList(head): if head is None: return -1 curr = head temp = None prev = None while curr: temp = curr.next curr.next = prev prev = curr curr = temp return prev # Reverse in k groups def solve(head, size, k): if not head or size < k: return head curr = head temp = None prev = None cnt = 0 while curr and cnt < k: temp = curr.next curr.next = prev prev = curr curr = temp cnt += 1 head.next = solve(curr, size - k, k) return prev def reverseKGroup(head, k): size = 0 temp = head while temp: size += 1 temp = temp.next return solve(head, size, k)
prabhat-gp/GFG
Linked List/LL Medium/5_reverse_k.py
5_reverse_k.py
py
828
python
en
code
0
github-code
6
6117949220
from google.cloud import bigquery import os import sys import json import argparse import gzip import configparser import pandas as pd def main(): # Load args args = parse_args() In_config=args.in_config Input_study=args.in_study Configs = configparser.ConfigParser() Configs.read(In_config) client = bigquery.Client() ## LOAD Job: load from GCS to BQ (table_id) # Would it be possible to make this table temporary? Or delete itself automatically after 1 week? Input_sumstats_path=Configs.get("config", "Input_sumstats_GCS") Input_study_URI=Input_sumstats_path+"/"+Input_study+".parquet/*.parquet" temp_BQ_sumstats=Configs.get("config", "Temp_BQ_sumstats") table_id = temp_BQ_sumstats+"."+Input_study print(table_id) load_job_config = bigquery.LoadJobConfig(source_format=bigquery.SourceFormat.PARQUET,) load_job = client.load_table_from_uri( Input_study_URI, table_id, job_config=load_job_config ) # Make an API request. load_job.result() # Waits for the job to complete. destination_table = client.get_table(table_id) # Make an API request. print("Loaded {} rows.".format(destination_table.num_rows)) # Query Job table_id = Configs.get("config", "Temp_BQ_sumstats")+"."+Input_study rsID_table = Configs.get("config", "RSID_BQ_sumstats")+"."+Input_study query_job_config = bigquery.QueryJobConfig(destination=rsID_table) query = """ WITH SNP_info AS ( SELECT CONCAT(CAST(chrom AS string), CAST(pos AS string), CAST(ref AS string), CAST(alt AS string)) AS identifier, ref, alt, n_total, pval, eaf, beta FROM `{0}` ) SELECT rs_id AS RSID, ref AS A1, alt AS A2, n_total AS N, pval AS P, eaf AS EAF, beta AS BETA FROM SNP_info JOIN ( SELECT CONCAT(CAST(chr_id AS string), CAST(position AS string), CAST(ref_allele AS string), CAST(alt_allele AS string)) AS identifier, rs_id FROM `open-targets-genetics.210608.variants` ) variants USING(identifier) """.format(table_id) query_job = client.query(query, job_config=query_job_config) query_job.result() # Extract Job rsID_GCS_bucket=Configs.get("config", "Formatted_sumstats_GCS") rsID_GCS_URI=rsID_GCS_bucket+"/{0}.txt.gz".format(Input_study) extract_job_config = bigquery.ExtractJobConfig() extract_job_config.field_delimiter = '\t' extract_job_config.compression='GZIP' extract_job = client.extract_table( rsID_table, rsID_GCS_URI, # Location must match that of the source table. location="EU", job_config=extract_job_config ) # API request extract_job.result() # Waits for job to complete. print( "Exported {} to {}".format(rsID_table, rsID_GCS_URI) ) def parse_args(): ''' Load command line args ''' parser = argparse.ArgumentParser() parser.add_argument('--in_config', metavar="<str>", type=str, required=True) parser.add_argument('--in_study', metavar="<str>", type=str, required=True, help=("Study ID of input sumstats")) args = parser.parse_args() return args if __name__ == '__main__': main()
xyg123/SNP_enrich_preprocess
scripts/LDSC_format_single_sumstat.py
LDSC_format_single_sumstat.py
py
3,343
python
en
code
1
github-code
6
70075742268
# -*- encoding:utf-8 -*- ''' @time: 2019/12/21 9:48 下午 @author: huguimin @email: [email protected] ''' import os import random import math import torch import argparse import numpy as np from util.util_data_gcn import * from models.word2vec.ecgcn import ECGCN from models.word2vec.ecgat import ECGAT from models.word2vec.fssgcn import ECClassifier from models.word2vec.aggcn import AGClassifier # from models.ecaggcn_no_dcn import ECClassifier from sklearn import metrics import torch.nn as nn import time class Model: def __init__(self, opt, idx): self.opt = opt self.embedding = load_embedding(opt.embedding_path) self.embedding_pos = load_pos_embedding(opt.embedding_dim_pos) self.split_size = math.ceil(opt.data_size / opt.n_split) self.global_f1 = 0 # self.train, self.test = load_data(self.split_size, idx, opt.data_size) #意味着只能从一个角度上训练,应该换几种姿势轮着训练 if opt.dataset == 'EC': self.train, self.test = load_percent_train(opt.per, self.split_size, idx, opt.data_size) elif opt.dataset == 'EC_en': self.train, self.test = load_data_en() else: print('DATASET NOT EXIST') # self.train, self.test = load_data(self.split_size, idx, opt.data_size) self.sub_model = opt.model_class(self.embedding, self.embedding_pos, self.opt).to(opt.device) def _reset_params(self): for p in self.sub_model.parameters(): if p.requires_grad: if len(p.shape) > 1: self.opt.initializer(p) else: stdv = 1. / math.sqrt(p.shape[0]) torch.nn.init.uniform_(p, a=-stdv, b=stdv) def _print_args(self): n_trainable_params, n_nontrainable_params, model_params = 0, 0, 0 for p in self.sub_model.parameters(): n_params = torch.prod(torch.tensor(p.shape)).item() model_params += n_params if p.requires_grad: n_trainable_params += n_params else: n_nontrainable_params += n_params print('n_trainable_params: {0}, n_nontrainable_params: {1}, model_params: {2}'.format(n_trainable_params, n_nontrainable_params, model_params)) print('> training arguments:') for arg in vars(self.opt): print('>>> {0}: {1}'.format(arg, getattr(self.opt, arg))) def _train(self, criterion, optimizer): max_test_pre = 0 max_test_rec = 0 max_test_f1 = 0 global_step = 0 continue_not_increase = 0 for epoch in range(self.opt.num_epoch): print('>' * 100) print('epoch: ', epoch) n_correct, n_total = 0, 0 increase_flag = False for train in get_train_batch_data(self.train, self.opt.batch_size, self.opt.keep_prob1, self.opt.keep_prob2): global_step += 1 self.sub_model.train() optimizer.zero_grad() inputs = [train[col].to(self.opt.device) for col in self.opt.inputs_cols] targets = train['label'].to(self.opt.device) doc_len = train['doc_len'].to(self.opt.device) targets = torch.argmax(targets, dim=2) targets_flatten = torch.reshape(targets, [-1]) outputs = self.sub_model(inputs) outputs_flatten = torch.reshape(outputs, [-1, self.opt.num_class]) loss = criterion(outputs_flatten, targets_flatten) # loss = nn.functional.nll_loss(outputs_flatten, targets_flatten) outputs = torch.argmax(outputs, dim=-1) loss.backward() optimizer.step() if global_step % self.opt.log_step == 0: train_acc, train_pre, train_rec, train_f1 = self._evaluate_prf_binary(targets, outputs, doc_len) print('Train: loss:{:.4f}, train_acc: {:.4f}, train_pre:{:.4f}, train_rec:{:.4f}, train_f1: {:.4f}\n'.format(loss.item(), train_acc, train_pre, train_rec, train_f1)) test_acc, test_pre, test_rec, test_f1 = self._evaluate_acc_f1() # if test_acc > max_test_acc: # max_test_acc = test_acc if test_f1 > max_test_f1: increase_flag = True max_test_f1 = test_f1 max_test_pre = test_pre max_test_rec = test_rec if self.opt.save and test_f1 > self.global_f1: self.global_f1 = test_f1 torch.save(self.sub_model.state_dict(), 'state_dict/'+self.opt.model_name+'_'+self.opt.dataset+'_test.pkl') print('>>> best model saved.') print('Test: test_acc: {:.4f}, test_pre:{:.4f}, test_rec:{:.4f}, test_f1: {:.4f}'.format(test_acc, test_pre, test_rec, test_f1)) if increase_flag == False: continue_not_increase += 1 if continue_not_increase >= 5: print('early stop.') break else: continue_not_increase = 0 return max_test_pre, max_test_rec, max_test_f1 def _evaluate_acc_f1(self): # switch model to evaluation mode self.sub_model.eval() targets_all, outputs_all, doc_len_all = None, None, None inference_time_list = [] with torch.no_grad(): for test in get_test_batch_data(self.test, self.opt.batch_size): inputs = [test[col].to(self.opt.device) for col in self.opt.inputs_cols] targets = test['label'].to(self.opt.device) doc_len = test['doc_len'].to(self.opt.device) targets = torch.argmax(targets, dim=2)#(32,75) if self.opt.infer_time: torch.cuda.synchronize() start_time = time.time() outputs = self.sub_model(inputs) torch.cuda.synchronize() end_time = time.time() inference_time = end_time - start_time inference_time_list.append(inference_time/targets.shape[0]) else: outputs = self.sub_model(inputs) outputs = torch.argmax(outputs, dim=2)#(32, 75) if targets_all is None: targets_all = targets outputs_all = outputs doc_len_all = doc_len else: targets_all = torch.cat((targets_all, targets), dim=0) outputs_all = torch.cat((outputs_all, outputs), dim=0) doc_len_all = torch.cat((doc_len_all, doc_len), dim=0) test_acc, test_pre, test_rec, test_f1 = self._evaluate_prf_binary(targets_all, outputs_all, doc_len_all) infer_time = np.mean(np.array(inference_time_list)) print('infer_time==================', str(infer_time)) return test_acc, test_pre, test_rec, test_f1 def _evaluate_prf_binary(self, targets, outputs, doc_len): """ :param targets: [32,75] :param outputs: [32,75] :return: """ tmp1, tmp2 = [], [] for i in range(outputs.shape[0]): for j in range(doc_len[i]): tmp1.append(outputs[i][j].cpu()) tmp2.append(targets[i][j].cpu()) y_pred, y_true = np.array(tmp1), np.array(tmp2) acc = metrics.precision_score(y_true, y_pred, average='micro') p = metrics.precision_score(y_true, y_pred, average='binary') r = metrics.recall_score(y_true, y_pred, average='binary') f1 = metrics.f1_score(y_true, y_pred, average='binary') return acc, p, r, f1 def run(self, folder, repeats=1): # Loss and Optimizer print(('-'*50 + 'Folder{}' + '-'*50).format(folder)) criterion = nn.CrossEntropyLoss() # criterion = nn.functional.nll_loss() _params = filter(lambda p: p.requires_grad, self.sub_model.parameters()) optimizer = self.opt.optimizer(_params, lr=self.opt.learning_rate, weight_decay=self.opt.l2reg) if not os.path.exists('log/'): os.mkdir('log/') f_out = open('log/' + self.opt.model_name + '_' + str(folder) + '_test.txt', 'a+', encoding='utf-8') max_test_pre_avg = 0 max_test_rec_avg = 0 max_test_f1_avg = 0 for i in range(repeats): print('repeat: ', (i + 1)) f_out.write('repeat: ' + str(i + 1)) self._reset_params() max_test_pre, max_test_rec, max_test_f1 = self._train(criterion, optimizer) print('max_test_acc: {0} max_test_hf1: {1}'.format(max_test_pre, max_test_f1)) f_out.write('max_test_acc: {0}, max_test_f1: {1}'.format(max_test_pre, max_test_f1)) max_test_pre_avg += max_test_pre max_test_rec_avg += max_test_rec max_test_f1_avg += max_test_f1 print('#' * 100) print("max_test_acc_avg: {.4f}", max_test_pre_avg / repeats) print('max_test_acc_rec: {.4f}', max_test_rec_avg / repeats) print("max_test_f1_avg: {.4f}", max_test_f1_avg / repeats) f_out.write("max_test_pre_avg: {0}, max_test_rec_avg: {1}, max_test_f1_avg: {2}".format(max_test_pre_avg / repeats, max_test_rec_avg / repeats, max_test_f1_avg / repeats)) f_out.close() return max_test_pre_avg / repeats, max_test_rec_avg / repeats, max_test_f1_avg / repeats if __name__ == '__main__': # Hyper Parameters parser = argparse.ArgumentParser() parser.add_argument('--model_name', default='fssgcn', type=str) parser.add_argument('--optimizer', default='adam', type=str) parser.add_argument('--initializer', default='xavier_uniform_', type=str) parser.add_argument('--learning_rate', default=0.001, type=float) parser.add_argument('--input_dropout', default=0.1, type=float) parser.add_argument('--gcn_dropout', default=0.1, type=float) parser.add_argument('--head_dropout', default=0.1, type=float) parser.add_argument('--keep_prob2', default=0.1, type=float) parser.add_argument('--keep_prob1', default=0.1, type=float) parser.add_argument('--alpha', default=0.3, type=float) parser.add_argument('--l2reg', default=0.00001, type=float) # parser.add_argument('--l2reg', default=0.000005, type=float) parser.add_argument('--num_epoch', default=100, type=int) parser.add_argument('--batch_size', default=32, type=int) parser.add_argument('--log_step', default=5, type=int) parser.add_argument('--embed_dim', default=200, type=int) parser.add_argument('--embedding_dim_pos', default=100, type=int) ###中文数据集的embedding文件 parser.add_argument('--embedding_path', default='embedding.txt', type=str) ###英文数据集的embedding文件################################ # parser.add_argument('--embedding_path', default='all_embedding_en.txt', type=str) ################################################# parser.add_argument('--pos_num',default=138, type=int) parser.add_argument('--hidden_dim', default=100, type=int) parser.add_argument('--num_layers', default=3, type=int) parser.add_argument('--nheads', default=1, type=int) parser.add_argument('--sublayer_first', default=2, type=int) parser.add_argument('--sublayer_second', default=4, type=int) parser.add_argument('--sublayer', default=1, type=int) parser.add_argument('--no_rnn', default=False, type=bool) parser.add_argument('--rnn_layer', default=1, type=int) parser.add_argument('--rnn_hidden', default=100, type=int) parser.add_argument('--rnn_dropout', default=0.5, type=float) parser.add_argument('--no_pos', default=False, type=bool) parser.add_argument('--n_split', default=10, type=int) parser.add_argument('--per', default=1.0, type=float) parser.add_argument('--num_class', default=2, type=int) parser.add_argument('--save', default=True, type=bool) parser.add_argument('--seed', default=776, type=int) parser.add_argument('--device', default=None, type=str) parser.add_argument('--infer_time', default=False, type=bool) ####数据集为英文数据集 # parser.add_argument('--dataset', default='EC_en', type=str) ####数据集为中文数据集 parser.add_argument('--dataset', default='EC', type=str) opt = parser.parse_args() model_classes = { 'ecgcn': ECGCN, 'ecgat': ECGAT, 'aggcn': AGClassifier, 'fssgcn': ECClassifier } input_colses = { 'ecgcn': ['content', 'sen_len', 'doc_len', 'doc_id', 'emotion_id', 'graph'], 'ecgat': ['content', 'sen_len', 'doc_len', 'doc_id', 'emotion_id', 'graph'], 'aggcn': ['content', 'sen_len', 'doc_len', 'doc_id', 'emotion_id', 'graph'], 'fssgcn': ['content', 'sen_len', 'doc_len', 'doc_id', 'emotion_id', 'graph'] } initializers = { 'xavier_uniform_': torch.nn.init.xavier_uniform_, 'xavier_normal_': torch.nn.init.xavier_normal, 'orthogonal_': torch.nn.init.orthogonal_, } optimizers = { 'adadelta': torch.optim.Adadelta, # default lr=1.0 'adagrad': torch.optim.Adagrad, # default lr=0.01 'adam': torch.optim.Adam, # default lr=0.001 'adamax': torch.optim.Adamax, # default lr=0.002 'asgd': torch.optim.ASGD, # default lr=0.01 'rmsprop': torch.optim.RMSprop, # default lr=0.01 'sgd': torch.optim.SGD, } opt.model_class = model_classes[opt.model_name] opt.inputs_cols = input_colses[opt.model_name] opt.initializer = initializers[opt.initializer] opt.optimizer = optimizers[opt.optimizer] if opt.dataset == 'EC': opt.max_doc_len = 75 opt.max_sen_len = 45 opt.data_size = 2105 opt.hidden_dim = 100 opt.rnn_hidden = 100 opt.embed_dim = 200 opt.embedding_path = 'embedding.txt' else: opt.max_doc_len = 45 opt.max_sen_len = 130 opt.data_size = 2105 opt.hidden_dim = 150 opt.rnn_hidden = 150 opt.embed_dim = 300 opt.embedding_path = 'all_embedding_en.txt' opt.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') \ if opt.device is None else torch.device(opt.device) if opt.seed is not None: random.seed(opt.seed) np.random.seed(opt.seed) torch.manual_seed(opt.seed) torch.cuda.manual_seed(opt.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False p, r, f1 = [], [], [] for i in range(1): model = Model(opt, i) ###计算模型大 model._print_args() p_t, r_t, f1_t = model.run(i) p.append(p_t) r.append(r_t) f1.append(f1_t) print("max_test_pre_avg: {:.4f}, max_test_rec_avg: {:.4f}, max_test_f1_avg: {:.4f}".format(np.mean(p), np.mean(r), np.mean(f1)))
LeMei/FSS-GCN
train.py
train.py
py
15,194
python
en
code
14
github-code
6
40467350126
# 1번 풀이 # import sys # dx = [0,0,-1,1] # 우좌상하 # dy = [1,-1,0,0] # def dfs(places, x, y,depth): # if depth == 3: # depth 3까지 찾아봤는데 거리두기 잘 지키는 경우 True # return True # for i in range(4): # nx = x + dx[i] # ny = y + dy[i] # if 0<= nx <5 and 0<= ny <5 and visited[nx][ny] == 0 and places[nx][ny] != 'X': # if places[nx][ny] == 'P': # return False # else: # visited[nx][ny] = 1 # if dfs(places,nx,ny,depth + 1): # visited[nx][ny] = 0 # else: # visited[nx][ny] = 0 # return False # return True # def solution(places): # global visited # answer = [] # for place in places: # flag = 0 # visited = [[0] * 5 for _ in range(5)] # for i in range(5): # if flag == 1: # 이미 거리두기 안지키는 사람을 발견함 # break # for j in range(5): # if place[i][j] == 'P' and not visited[i][j]: # visited[i][j] = 1 # if dfs(place, i, j,1): # continue # else: # 거리두기 안지키는게 발견 # answer.append(0) # flag = 1 # break # else: # answer.append(1) # return answer #2번 풀이 import sys dx = [0,0,-1,1] # 우좌상하 dy = [1,-1,0,0] def dfs(place, x, y,depth): global check if depth == 3: # depth 3까지 찾아봤는데 거리두기 잘 지키는 경우 True return for i in range(4): nx = x + dx[i] ny = y + dy[i] if 0<= nx <5 and 0<= ny <5 and visited[nx][ny] == 0 and place[nx][ny] != 'X': if place[nx][ny] == 'P': check = 0 return else: visited[nx][ny] = 1 dfs(place,nx,ny,depth + 1) visited[nx][ny] = 0 return def solution(places): global visited global check answer = [] for place in places: flag = 0 check = 1 # 거리두기 잘지킴 visited = [[0] * 5 for _ in range(5)] for i in range(5): if flag == 1: # 이미 거리두기 안지키는 사람을 발견함 break for j in range(5): if place[i][j] == 'P' and not visited[i][j]: visited[i][j] = 1 dfs(place,i,j,1) if check: continue else: # 거리두기 안지키는게 발견 answer.append(0) flag = 1 break else: answer.append(1) return answer # 3번 풀이 from collections import deque def bfs(place): dx = [0,0,-1,1] # 우좌상하 dy = [1,-1,0,0] start = [] q = deque() visited = [[0] * 5 for _ in range(5)] for i in range(5): for j in range(5): if place[i][j] == 'P' and not visited[i][j]: start.append((i,j)) for s in start: i,j = s visited = [[0] * 5 for _ in range(5)] visited[i][j] = 1 q.append(s) while q: x, y = q.popleft() if visited[x][y] < 3: for i in range(4): nx = x + dx[i] ny = y + dy[i] if 0 <= nx < 5 and 0<= ny < 5 and place[nx][ny] != 'X' and not visited[nx][ny]: if place[nx][ny] == 'P': return 0 else: visited[nx][ny] = visited[x][y] + 1 q.append((nx,ny)) return 1 def solution(places): answer = [] for place in places: answer.append(bfs(place)) return answer if __name__ == '__main__': places = [["POOPX", "OXPXP", "PXXXO", "OXXXO", "OOOPP"], ["POOOP", "OXXOX", "OPXPX", "OOXOX", "POXXP"], ["PXOPX", "OXOXP", "OXPOX", "OXXOP", "PXPOX"], ["OOOXX", "XOOOX", "OOOXX", "OXOOX", "OOOOO"], ["PXPXP", "XPXPX", "PXPXP", "XPXPX", "PXPXP"]] print(solution(places))
Cho-El/coding-test-practice
프로그래머스 문제/파이썬/level2/거리두기 확인하기.py
거리두기 확인하기.py
py
4,381
python
en
code
0
github-code
6
10424276001
#-*- coding: utf-8 -*- u""" .. moduleauthor:: Martí Congost <[email protected]> """ from cocktail.translations import translations from woost.models import Extension, Configuration translations.define("AudioExtension", ca = u"Àudio", es = u"Audio", en = u"Audio" ) translations.define("AudioExtension-plural", ca = u"Àudio", es = u"Audio", en = u"Audio" ) class AudioExtension(Extension): def __init__(self, **values): Extension.__init__(self, **values) self.extension_author = u"Whads/Accent SL" self.set("description", u"""Reproducció de fitxers d'àudio amb recodificació automàtica a múltiples formats.""", "ca" ) self.set("description", u"""Reproducción de ficheros de audio con recodificación automática a múltiples formatos.""", "es" ) self.set("description", u"""Audio file player with transparent encoding in multiple formats.""", "en" ) def _load(self): from woost.extensions.audio import ( strings, configuration, audiodecoder, audioencoder ) # Expose the controller for serving audio files in multiple encodings from woost.controllers.cmscontroller import CMSController from woost.extensions.audio.audioencodingcontroller \ import AudioEncodingController CMSController.audio = AudioEncodingController self.install() self.register_view_factory() def _install(self): self.create_default_decoders() self.create_default_encoders() def create_default_decoders(self): from woost.extensions.audio.audiodecoder import AudioDecoder config = Configuration.instance mp3 = AudioDecoder() mp3.mime_type = "audio/mpeg" mp3.command = '/usr/bin/mpg321 "%s" -w -' mp3.insert() config.audio_decoders.append(mp3) ogg = AudioDecoder() ogg.mime_type = "audio/ogg" ogg.command = '/usr/bin/oggdec -Q -o - "%s"' ogg.insert() config.audio_decoders.append(ogg) flac = AudioDecoder() flac.mime_type = "audio/flac" flac.command = '/usr/bin/flac -dsc "%s"' flac.insert() config.audio_decoders.append(flac) def create_default_encoders(self): from woost.extensions.audio.audioencoder import AudioEncoder config = Configuration.instance mp3 = AudioEncoder() mp3.identifier = "mp3-128" mp3.mime_type = "audio/mpeg" mp3.extension = ".mp3" mp3.command = "/usr/bin/lame --quiet -b 128 - %s" mp3.insert() config.audio_encoders.append(mp3) ogg = AudioEncoder() ogg.identifier = "ogg-q5" ogg.mime_type = "audio/ogg" ogg.extension = ".ogg" ogg.command = "/usr/bin/oggenc -q 5 - -o %s" ogg.insert() config.audio_encoders.append(ogg) def register_view_factory(self): from woost.models import Publishable from woost.extensions.audio.audioplayer import AudioPlayer from woost.views.viewfactory import publishable_view_factory def audio_player(item, parameters): if item.resource_type == "audio": player = AudioPlayer() player.file = item return player publishable_view_factory.register_first(Publishable, "audio_player", audio_player)
marticongost/woost
woost/extensions/audio/__init__.py
__init__.py
py
3,596
python
en
code
0
github-code
6
7640577991
test = 2+3 # 答案存在指定test物件 test # 最後一行打指定物件名稱 import random x=[random.randint(0,100) for i in range(0,12)] x x0_str=str(x[0]) x0_str x_str=[str(x[i]) for i in range(0,len(x))] x_str x6_logi=x[6]<50 x6_logi x_logi=[x[i]<50 for i in range(0,len(x))] x_logi num_false=x_logi.count(False) num_false import pandas as pd df_business=pd.read_csv("http://data.gcis.nat.gov.tw/od/file?oid=340B4FDD-880E-4287-9289-F32782F792B8") dict_business=df_business.to_dict() address=list(dict_business['公司所在地'].values()) num_taoyuan=["桃園市" in address[i] for i in range(0,len(address))].count(True) num_taoyuan capital=list(dict_business['資本額'].values()) logi_largeCapital=[capital[i]>500000 for i in range(0,len(capital))] num_largeCapital=logi_largeCapital.count(True) num_largeCapital import requests response=requests.get("https://cloud.culture.tw/frontsite/trans/SearchShowAction.do?method=doFindTypeJ&category=3") danceInfo=response.json() numDance=len(danceInfo) numDance title1=danceInfo[0]['title'] title1 local1=danceInfo[0]['showInfo'][0]['location'] local1 time1=danceInfo[0]['showInfo'][0]['time'] time1 ## 解答一: 當showInfo不唯一但只考慮每個showInfo的第一個 danceInfoList=[{ 'title': danceInfo[i]['title'], 'time': danceInfo[i]['showInfo'][0]['time'], 'location': danceInfo[i]['showInfo'][0]['location'] } for i in range(0,len(danceInfo))] danceInfoList ## 解答二: danceInfoList2=list([]) for i in range(len(danceInfo)): title_i=danceInfo[i]['title'] for j in range(len(danceInfo[i]['showInfo'])): time_ij=danceInfo[i]['showInfo'][j]['time'] location_ij=danceInfo[i]['showInfo'][j]['location'] danceInfoList2.append({ 'title': title_i, 'time': time_ij, 'location': location_ij }) ## 解答一: 當showInfo不唯一但只考慮每個showInfo的第一個 danceInfoStr=['【{title}】將於{time}在{location}演出'.format( title=danceInfoList[i]['title'], time=danceInfoList[i]['time'], location=danceInfoList[i]['location']) for i in range(0,len(danceInfoList))] danceInfoStr ## 解答二: danceInfoStr2=['【{title}】將於{time}在{location}演出'.format( title=danceInfoList2[i]['title'], time=danceInfoList2[i]['time'], location=danceInfoList2[i]['location']) for i in range(0,len(danceInfoList2))] danceInfoStr2
godgodgod11101/course_mathEcon_practice_1081
hw1_ans.py
hw1_ans.py
py
2,367
python
en
code
0
github-code
6
6425852046
# 한자리 숫자가 적힌 종이 조각이 흩어져있습니다. 흩어진 종이 조각을 붙여 소수를 몇 개 만들 수 있는지 알아내려 합니다. # 각 종이 조각에 적힌 숫자가 적힌 문자열 numbers가 주어졌을 때, # 종이 조각으로 만들 수 있는 소수가 몇 개인지 return 하도록 solution 함수를 완성해주세요. # 제한사항 # numbers는 길이 1 이상 7 이하인 문자열입니다. # numbers는 0~9까지 숫자만으로 이루어져 있습니다. # 013은 0, 1, 3 숫자가 적힌 종이 조각이 흩어져있다는 의미입니다. def find_prime(numbers) -> int: from itertools import permutations def is_prime(n: int) -> bool: if n==2: return True elif n==1 or n%2==0: return False for i in range(3, int(n**0.5)+1, 2): if n%i==0: return False return True answer=0 primes = [] for i in range(1, len(numbers)+1): perms = list(permutations(numbers, i)) for perm in perms: target='' for p in perm: target += p if is_prime(int(target)) and int(target) not in primes: primes.append(int(target)) answer += 1 return answer
script-brew/2019_KCC_Summer_Study
programmers/Lv_2/MaengSanha/findPrime.py
findPrime.py
py
1,326
python
ko
code
0
github-code
6
7868827179
# 入力 N = int(input()) S = input() # '(' の数 - ')' の数を depth とする # 途中で depth が負になったら、この時点で No depth = 0 flag = True for i in range(N): if S[i] == '(': depth += 1 if S[i] == ')': depth -= 1 if depth < 0: flag = False # 最後、depth = 0 ['(' と ')' の数が同じ] であるかも追加で判定する if flag == True and depth == 0: print("Yes") else: print("No")
E869120/math-algorithm-book
codes/python/Code_5_10_4.py
Code_5_10_4.py
py
430
python
ja
code
897
github-code
6
33447423792
#Kieren Singh Gill #11/10/2020 #Python Fall 2020, Section 1 #GillKieren_Assign8_extra_credit.py #import random module import random import sys #cards list cards = ['10 of Hearts', '9 of Hearts', '8 of Hearts', '7 of Hearts', '6 of Hearts', '5 of Hearts', '4 of Hearts', '3 of Hearts', '2 of Hearts', 'Ace of Hearts', 'King of Hearts', 'Queen of Hearts', 'Jack of Hearts', '10 of Diamonds', '9 of Diamonds', '8 of Diamonds', '7 of Diamonds', '6 of Diamonds', '5 of Diamonds', '4 of Diamonds', '3 of Diamonds', '2 of Diamonds', 'Ace of Diamonds', 'King of Diamonds', 'Queen of Diamonds', 'Jack of Diamonds', '10 of Clubs', '9 of Clubs', '8 of Clubs', '7 of Clubs', '6 of Clubs', '5 of Clubs', '4 of Clubs', '3 of Clubs', '2 of Clubs', 'Ace of Clubs', 'King of Clubs', 'Queen of Clubs', 'Jack of Clubs', '10 of Spades', '9 of Spades', '8 of Spades', '7 of Spades', '6 of Spades', '5 of Spades', '4 of Spades', '3 of Spades', '2 of Spades', 'Ace of Spades', 'King of Spades', 'Queen of Spades', 'Jack of Spades'] #values list values = [10, 9, 8, 7, 6, 5, 4, 3, 2, [1,11], 10, 10, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, [1,11], 10, 10, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, [1,11], 10, 10, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, [1,11], 10, 10, 10] #choose a random card from cards list #store it in card1 and card2 card1 = random.choice(cards) card2 = random.choice(cards) #obtain the corresponding values #store them in value1 and value2 value1 = values[cards.index(card1)] value2 = values[cards.index(card2)] #player's current hand player_hand_cards = [card1, card2] #compute possible sums of player's current hand #if one of the values is a list value, it means it one of the cards is an Ace #compute the possible sums depending on how many Aces are in hand #if there are 2 Aces if (type(value1) == list) and (type(value2) == list): sum1 = value1[0] + value2[0] sum2 = value1[1] + value2[0] player_hand_total = [sum1,sum2] #if the first card is an ace elif (type(value1) == list): sum1 = value1[0] + value2 sum2 = value1[1] + value2 player_hand_total = [sum1,sum2] #if the second card is an ace elif (type(value2) == list): sum1 = value2[0] + value1 sum2 = value2[1] + value1 player_hand_total = [sum1,sum2] #if there are no aces else: sum1 = value1 + value2 player_hand_total = [sum1] #remove cards from deck #remove corresponding values del values[cards.index(card1)] del values[cards.index(card2)] cards.remove(card1) cards.remove(card2) print("================================ RESTART ================================") print() #let player know their cards and hand value if len(player_hand_total) == 2: print("Player hand:",player_hand_cards, "is worth", player_hand_total[0], "or", player_hand_total[1]) elif len(player_hand_total) == 1: print("Player hand:", player_hand_cards, "is worth", player_hand_total[0]) print() #if the player gets a blackjack they win #program ends if 21 in player_hand_total: print("Player wins!") sys.exit() #ask user if they would like to hit or stand choice = input("(h)it or (s)tand? ") #data validation to make sure user can only progress if they enter 'h' or 's' #create a while loop #if user input is not 'h' or 's', reprompt them while choice not in ['h','s']: print("Invalid option!") choice = input("(h)it or (s)tand? ") #if the user chooses to hit if choice == 'h': card3 = random.choice(cards) value3 = values[cards.index(card3)] del values[cards.index(card3)] cards.remove(card3) player_hand_cards = [card1, card2, card3] #if user draws an ace if (type(value3) == list): #if user has any more aces, this ace must be worth 1 so user doesn't bust if (type(value1)==list) or (type(value2)==list): value3 == 1 #add 1 to all values in the list player_hand_total = [i + value3 for i in player_hand_total] #if any values are above 21, remove from list for i in player_hand_total: if i > 21: player_hand_total.remove(i) #if the user doesn't have any more aces else: player_hand_total = [i + 11 for i in player_hand_total] for i in range(len(player_hand_total)): if player_hand_total[i] > 21: player_hand_total[i] = player_hand_total[i] - 10 print("Player hand:",player_hand_cards, "is worth", player_hand_total[0], "or", player_hand_total[1]) if 21 in player_hand_total: print("Player wins!") sys.exit() #unfinished***
kierengill/CS002-Intro-To-Programming
Assignment 8/GillKieren_Assign8_extra_credit.py
GillKieren_Assign8_extra_credit.py
py
4,617
python
en
code
0
github-code
6
21367959963
from socket import socket from os import system from time import sleep s = socket() s.bind(('localhost', 50550)) s.listen(1) while True: try: conn, addr = s.accept() conn.close() except KeyboardInterrupt: sleep(0.2) system('clear') system('git -P adog')
CodeTriangle/gitviz
watcher.py
watcher.py
py
298
python
en
code
0
github-code
6